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Preface

Just two years after Schrödinger proposed in 1926 the (nonrelativistic) quantum
mechanical wave equation of electrons, Dirac established in 1928 the relativistic
counterpart by first quantizing the special theory of relativity set up by Einstein in
1905. Any difference between the Dirac and Schrödinger equations of electrons
was then called “relativistic effect.” However, just one year later, that is, in
1929, Dirac himself stated that “relativistic effects are of no importance in the
consideration of atomic and molecular structure and ordinary chemical reactions.”
The underlying assumptions were that the average speeds of valence electrons are
very low compared with that of light, such that relativistic effects are very small for
valence electrons, and that relativistic effects are indeed important for core electrons
but are canceled out for valence properties. Such wrong assumptions were taken
naively for granted for nearly half a century, until the mid-1970s, when relativistic
effects were found to be indeed very important for electronic structure, sometimes
even of light atoms. Since then, relativistic quantum chemistry witnessed fast
progresses, including deep understandings of not only relativistic effects but also
novel approximate two-component (A2C) relativistic theories such as second-order
DKH (Douglass-Kroll-Hess), ZORA (zeroth-order regular approximation), and
DPT (direct perturbation theory) developed between 1985 and 1995. The beginning
of the new millennium turned out to be also the beginning of a new era of relativistic
quantum chemistry, as symbolized by the exact two-component (X2C) relativistic
theory introduced and made mature between 2005 and 2010. Undoubtedly, X2C is
going to be the new workhorse of relativistic quantum chemistry. Notwithstanding
this achievement, the no-pair approximation underlying both A2C and X2C theories
has some fundamental defects. How to go beyond this approximation yet without
diving into full quantum electrodynamics (QED) is then the final high point of
relativistic quantum chemistry. After several unsuccessful tries, a proper effective
QED (eQED) approach was finally obtained in a bottom-up fashion, i.e., without
recourse to QED itself at all. This eQED paves a seamless bridge between relativistic
quantum chemistry and full QED, which used to be two mutually exclusive subfields
of relativistic molecular quantum mechanics. In the subfield of QED, both new
formulations and applications have been achieved in the last decade. Especially,
effective means to combine QED with many-body theory have been designed to
achieve unprecedented high accuracy in spectroscopic calculations.
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vi Preface

All the aforementioned fundamental developments in relativistic molecular
quantum mechanics, the union of relativistic quantum chemistry and QED, are
fully covered by this book but otherwise not covered by any other books. To
facilitate understandings of such methodological developments, sufficient peda-
gogic introductions are also provided. Therefore, the book should be useful for
both users and developers of relativistic quantum mechanical methods and tools.
It is somewhat unfortunate that a collection of representative applications of such
methods, although planned, was not yet accomplished but which will be included in
a new edition of the book.

The editor is very grateful to the section editors for their efforts in identifying
excellent chapter writers. The editorial team wants to acknowledge the chapter
writers for their great contributions and also the staff of Springer, including June,
Neha, and Stephen, whose patience and professional copyedit were of great help to
materialize the book.

Beijing Wenjian Liu
September 2016
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Abstract

The formulation of a theory which unifies quantum mechanics and special theory
of relativity, performed by Dirac nearly a century ago, required introduction of
new mathematical and physical concepts which led to models which, on one
hand, are very successful in terms of interpretation of the physical reality but,
on the other, still create some challenge, both conceptual and computational.
A central notion of relativistic quantum mechanics is a construct known as the
Dirac operator. It may be defined as the result of factorization of a second-order
differential operator in the Minkowski space. The result of this factorization,
in the case of the relativistic model of a single electron, gives the relativistic
Dirac Hamiltonian. The spectrum of this Hamiltonian describes the energy of
the electron, but it is unbounded from below. This weird property leads to many
computational problems, artifacts and misunderstandings in the interpretation of
the results derived from the Dirac model. This chapter contains a brief and self-
contained description of the basic properties of the Dirac operator.

Keywords
Brown-Ravenhall disease • Clifford algebra • Complex coordinate rotation •
Dirac eigenvalue problem • Dirac equation • Essential spectrum • Exactly-
solvable models • Lorentz covariance • Minimax principle • Non-relativistic
limit • Pauli Hamiltonian • Spinor

Introduction

The second half of the third decade of the twentieth century brought one of the
most important discoveries in the history of science. At the end of 1925 Werner
Heisenberg constructed the matrix form of quantum mechanics. Several months
later Erwin Schrödinger proposed his wave-equation-based formulation. Finally, in
1928 Paul Adrien Maurice Dirac performed a successful unification of quantum
mechanics and special theory of relativity. The formulation of the equation which
opens the way to this unification, referred to as the Dirac equation, required the
introduction of a new mathematical construct known as the Dirac operator. In the
simplest way the Dirac operator may be defined as the result of factorization of a
second-order differential operator in the Minkowski space.

In this chapter the properties of the Dirac operator relevant to quantum chemical
applications are briefly described. The subject is covered from a variety of perspec-
tives in many textbooks and monographs, and many new directions of development
are still under construction. The selection of topics addressed in this chapter has
been motivated by their importance for the understanding of basic ideas related
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to the properties of the Dirac operator and by the foreseen perspectives of further
development of the theory. The author did his best to be objective in his choice, but
he is aware that the selection is biased by his personal preferences. The author of
this section tried to cite mainly textbooks, monographs, and review papers. Only
exceptionally, when the subject has not been adequately covered in a review, the
original works have been cited.

For the basic understanding of some elementary problems related to the subject
of this chapter, the classical textbooks by Davydov [1], Messiah [2], Itzykson and
Zuber [3], and, in particular, Sakurai [4] are recommended. A broad pedagogical
presentation with illustrative solutions of many interesting problems has been
given by Greiner [5]. Modern, and more advanced, presentations may be found,
in textbooks by Landau [6], Pilkuhn [7], Das [8], Schwabl [9], and Scadron [10],
listed in an increasingly demanding sequence, as far as the formal background of
the reader is concerned. A particular position among books concerned with the
Dirac operator is occupied by the monograph by Thaller [11]. It has been written
for theoretical physicists and mathematicians, and, consequently, it does not offer
an easy reading for a theoretical chemist. However, to the author’s knowledge, it is
the most complete and rigorous presentation of the issues related to the one-particle
Dirac problem available in the literature.

In principle, the concept of the Dirac operator is restricted to the relativistic quan-
tum model of a single fermion. However, the subject is of chemical interest because
of its many-particle, in fact many-electron, extensions. Four recent monographs
cover different aspects of this direction of the development. The one by Reiher
and Wolf [12] offers probably the most complete summary of different aspects
of relativistic quantum chemistry. In particular, a list of 975 carefully selected
references is most helpful for a reader willing to study this field from different
perspectives. Another monograph, by Dyall and Fægri [13], covers various aspects
of modern methods of relativistic quantum chemistry. Computational methodology
is presented in detail in a monograph by Grant [14]. Finally, the one by Lindgren
[15] shows the present status of the developments aimed at combining quantum
electrodynamics and relativistic quantum mechanics into one computationally
manageable theory. Very recently new concepts directed towards the construction of
a bridge between theories based on relativistic theory of many-electron systems and
quantum electrodynamics have been developed by Lindgren [16], Liu and Lindgren
[17], and Liu [18]. Section Relativistic Hamiltonians of this handbook gives a broad
description of the most important constructions based on the concept of the Dirac
operator, relevant in the theory of many-electron systems.

In the next section two derivations of the Dirac equation are presented, and
relations between spin-dependent Schrödinger equation and the Dirac equation
are discussed. The following section is concerned with some formal features of
the Dirac formalism, in particular with the transformation properties of the Dirac
spinors and with relations between the Dirac matrices and the Clifford algebra.
The eigenvalue problem of the free Dirac operator and some unusual features of
the Dirac formalism related to the definition of the position and velocity of a
Dirac particle are discussed in the next section. Properties of the Dirac operator
describing an electron in external fields, with particular emphasis put on the bound
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properties of the energy spectrum, are the subject of section “External Fields.” In the
same section links between equations describing electrons and positrons are briefly
discussed. Two important exactly solvable models, namely, a harmonic oscillator
and an electron in a Coulomb field, are the subject of section “Exactly Solvable
Models.” The next section is devoted to the problem of two Dirac particles. Finally,
in the last section brief remarks about not fully resolved questions are given.

The following notation conventions are used: sans serif symbols denote operators
(e.g., H, pk) and quantum numbers (e.g., n, j, l) while the standard ones – the
corresponding classical quantities (H , pk) and integer indices (e.g., n, j , l). Unit
matrix n � n is denoted 1n. In most cases its dimension can easily be deduced
from the context, and then it is not given explicitly. Symbol 1 also stands for
the unit operator. Vectors or tensors in the Galilean three-dimensional (3D) space
are denoted by boldface symbols and their components by the standard symbols
with Latin indices. Thus, for example, the position and the momentum vectors in
the 3D space are, respectively, r D fx1; x2; x3g and p D fp1; p2; p3g. In the
four-dimensional (4D) Minkowski space-time, the Cartesian metric is used, i.e.,
the metric tensor is defined as 4 � 4 unit matrix and, consequently, there is no
distinction between covariant and contravariant coordinates of a vector. The Greek
indices identify components of vectors and tensors (e.g., x�, p�, � D 1; 2; 3; 4).
The coordinate and the momentum vectors are defined, respectively, as

x�
ˇ̌4
�D1 D fx1; x2; x3; x4g D f r; ictg;

p�
ˇ̌4
�D1 D fp1; p2; p3; p4g D f p; iE=cg; (1)

where c, t , and E denote, respectively, velocity of light, time, and energy. Implicit
summation over repeated Greek indices is assumed. Note that some authors use a
pseudo-Cartesian metric with the metric tensor g D diagf1;�1;�1;�1g. In this
case one has to distinguish between covariant and contravariant coordinates. In
particular, x� D g�� x� D fx0; rg with x0 D ct .

Hartree atomic units are used, i.e., the reduced Planck constant „ D h=2� D 1,
the elementary charge e D 1, and the rest mass of electron me D 1. Thus, the
charge of electron is equal to qelectron D �e D �1 and the charge of proton is
qproton D e D C1. Velocity of light c � 137:035 9895, fine structure constant
˛ D e2=„c, and energy unit Eh D ˛2mec

2 D me e
4=„2 D 1 hartree. In some cases

(in particular in the next section), for convenience of less experienced readers, some
constants are given explicitly. Also, whenever it is convenient, the mass m and the
charge q are used.

Equations of Motion

The time evolution equation of a closed quantum system in the coordinate represen-
tation and in the Schrödinger picture reads [2]�

i„ @
@t
� H. r/

�
 . r; t / D 0; (2)
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where H is the Hamilton operator (Hamiltonian) of the system and the remaining
symbols have their usual meaning. Depending on the physical context and on the
form of the Hamiltonian, this equation may be referred to as the Schrödinger
equation, Dirac equation, Weyl equation, causal equation of the matter field PSI,
etc. Quantum equations may be constructed using the correspondence principle.
This can be accomplished by the replacement of the classical quantities by the
appropriate operators. In particular for energy E and momentum p,

E 7! E D i„ @
@t
; pk 7! pk D �i„ @

@xk
; k D 1; 2; 3: (3)

Since the Hamiltonian corresponds to the energy of the system, solutions of its
eigenvalue problem give stationary state wave functions �E. r/ and the correspond-
ing energies E:

H�E. r/ D E �E. r/: (4)

From here one can derive solutions of Eq. (2) as

 . r; t / DPZ
E

e�iEt=„ c.E/ �E. r/ dE: (5)

Let us assume that the wave function  . r; t / fulfills an equation � D 0

and S is an operator transforming variables of this equation. Then the transformed
equation reads �0 0 D 0, where �0 D S�S

�1 and  0 D S . The results derived
from a model described by this equation are independent of the transformation
if S�S

�1 D �, i.e., if ŒS; �� D 0. In such a case S is called a symmetry
transformation. The most universal symmetry is related to transformations between
two inertial (i.e., moving with a constant velocity relative to each other) reference
frames. This symmetry implies that equations of the motion must retain the same
form in all inertial reference frames. This property is described as covariance of
the equations. The group of transformations which provide equivalent description
of physical phenomena in all inertial frames is referred to as the covariance
group. The non-relativistic theories are covariant with respect to the Galilei group.
All inertial frames share the same universal time. Positions of the particles are
determined by three coordinates forming three-component position vectors r D
fx1; x2; x3g which transform between two inertial frames according to the Galilei
transformation.

However, the physical reality is believed to be invariant with respect to the
Lorentz transformation. The theories which are Lorentz covariant are referred to
as relativistic. In the relativistic theories three coordinates and time, momentum
and energy, etc. form four-vectors (1). The components of a four-vector transform
between two inertial frames (the “unprimed” one and the “primed” one) according
to the Lorentz transformation:

x0� D a�� x�; (6)
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where a��a�� D ı�� ,
�
a�1

�
��
D a��, i.e., aaa is an orthogonal 4 � 4 matrix. The

general Lorentz transformation can be built as a composition of an ordinary rotation
!!! D ! n by a real angle ! around the axis defined by the unit vector n in the
3D subspace of the 4D Minkowski space, and a special Lorentz transformation
(also referred to as the Lorentz boost) which may be expressed as a rotation by an
imaginary angle ! D i 	 D i arctanh.v=c/ around the axis defined by v=v where v
is the velocity of the primed reference frame relative to the unprimed one.

A requirement of the covariance with respect to either Galilei or Lorentz
transformations imposes strong restrictions on the structure of a theory and on the
form of the basic equations. In a non-relativistic theory, three coordinates of a point
r, momentum p, and vector potential A are three-component vectors, while time
t , energy E, and electrostatic potential ' are invariants (scalars). Therefore, the
Schrödinger equation is invariant with respect to the Galilei transformation if the
Hamiltonian is Galilei invariant. In relativistic theories not only r and x4 D ict

form a four-component vector. Also momentum p and energy p4 D iE=c, current
j and density j4 D ic�, vector potential AAA, and electrostatic potential A4 D
i '=c form four-vectors. The covariance conditions are here more complicated. In
particular, the transformation properties of the wave function depend on the spin of
the particles. These topics are discussed in section “Relativistic Covariance of the
Dirac Equation” of this chapter.

Conclusion: In a Lorentz-covariant model, the space coordinates of a particle
and the time corresponding to this particle have to appear on an equal footing. In
particular, if an equation is of the first order in time, it must be of the first order
in all coordinates. In the general equation of motion (2), time plays a special role.
One can say that this equation is written in a non-covariant form. It may be either
Galilei or Lorentz covariant. Its possible Lorentz covariance is hidden and may be
discovered only after analyzing simultaneously the form of the Hamiltonian and the
structure of the equation.

Schrödinger Equation

The free-particle Schrödinger equation

i„ @
@t
 . r; t / D H S

0  . r; t /; (7)

with

H S
0 D

p2

2m
D � „

2

2m
4 (8)

describes quantum dynamics of non-relativistic particles and opens a way to the
formulation of the non-relativistic quantum mechanics. The equation is scalar; it is
defined in

H S
1 D L2

�
R
3
�

(9)
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Hilbert space and is invariant with respect to the Galilei transformation. Since time
and coordinate derivatives are of different orders, it cannot be Lorentz covariant.

In order to describe spin-1=2 particles within Galilei-covariant formalism, one
should use, instead of Eq. (7), its analog defined in a larger Hilbert space,

H P
1 DH S

1 ˚H S
1 D L2

�
R
3
�˝ C

2 (10)

with

HP
0 D

.


 � p/2

2m
; (11)

where the superscript P stands for Pauli and 


 D f
1; 
2; 
3g are Pauli spin 2 � 2
matrices. They are defined by the following relations:


2k D 1; 
k
l C
l
k D 0 if k ¤ l; 
1
2�
2
1 D 2i
3 with cyclicf1; 2; 3g:
(12)

These relations are invariant with respect to unitary transformations of the matrices.
Therefore, if they are fulfilled by one set of matrices, then they are also fulfilled
by all sets related to this one by a unitary transformation. In particular, in the Pauli
representation


1 D
�
0 1

1 0

�
; 
2 D

�
0 �i
i 0

�
; 
3 D

�
1 0

0 �1
�
: (13)

Pauli matrices fulfill a very useful identity known as the Dirac relation [12]:

.


 � A/ .


 � B/ D .A � B/C i


 � ŒA � B� ; (14)

where A and B are operators. Consequently,

HP
0 D

p2

2m
12: (15)

In this case  is not a scalar but a two-component Pauli spinor, i.e.,

 D
�
 ˛
 ˇ

�
; (16)

where  ˛ and  ˇ correspond to two projections of spin.

Dirac Equation

Relativistic generalizations of the Schrödinger equation appeared to be by far
nontrivial. The relativistic Hamilton function of a free particle

H rel
0 D E D

p
p2c2 Cm2c4 (17)
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prevents a straightforward use of the rules of the correspondence principle (3)
because of the square root of the momentum-dependent quadratic form. In an early
attempt (in 1925) Erwin Schrödinger applied the correspondence principle after
taking square of Eq. (17). The resulting equation is the following: 

@2

@ x2�
� ~2

!
 D 0; (18)

where ~ D mc=„, has been abandoned by Schrödinger since it is second order in
time and, thus, the resulting density is not positive definite. Several months later
Oskar Klein, Walter Gordon, and, independently, Vladimir Fock derived the same
equation, now known as the Klein-Gordon equation. This equation

• Is relativistically invariant,
• May be generalized to account for an external field,
• Does not describe electrons,
• Describes spinless particles.

Equation (18) yields the continuity equation

@j�

@ x�
D 0 with j� �  � @ 

@ x�
� @ 

�

@ x�
 (19)

with nonpositive definite density � � j4. The properties of the Klein-Gordon
equation and its applications in quantum field theory are broadly discussed in the
literature, e.g., [1–6].

A relativistic equation describing correctly a spin-1=2 particle, derived in 1928
by P. A. M. Dirac and known as the Dirac equation, has not been immediately
accepted because of its unusual properties. At about the same time also Hendrik
Anthony Kramers derived another form of the correct first-order equation, but he
did not publish his result until 1933 [7, 19], a year after the presentation of a
similar analysis by Bartel Leendert van der Waerden in his book on group theory
[20].

Derivation by Kramers
Following the discussion of the Schrödinger equation which led to defining a spin-
dependent non-relativistic Hamiltonian (11), the relativistic relation between energy
and momentum (17) may be also expressed as

E2 1 D c2 .


 � p/2 Cm2c41 (20)

The correspondence principle yields

ŒE 1 � c .


 � p/�ŒE 1C c .


 � p/�� D m2c4 �; (21)
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where � is a two-component function. Defining � r � ŒE 1C c .


 � p/� �=mc2,
and � l � � , one obtains

ŒE 12 � c .


 � p/� � r D mc2� l; (22)

ŒE 12 C c .


 � p/� � l D mc2� r;

i.e.,

i„@���
@t
D HW

0 ���; (23)

where

��� D
�
� r

� l

�
(24)

is a four-component wave function and

HW
0 D

�
c .


 � p/ mc2 1
mc2 1 �c .


 � p/

�
: (25)

Equation (23) is known as the Dirac equation in the representation of Weyl.

Derivation by Dirac
A relativistic equation of the first order in time has to be also of the first order
in coordinates. Therefore, the Hamilton operator deduced from the correspondence
principle applied to Eq. (17) should read

HD
0 D c.˛1p1 C ˛2p2 C ˛3p3/C ˇmc2; (26)

where ˛j ; j D 1; 2; 3, and ˇ do not depend on either coordinates or time and

HD
0 � HD

0 D
�
c2 p2 Cm2c4

�
14: (27)

By combining Eqs. (26) and (27), one readily gets

˛k˛j C ˛j ˛k � f˛k; ˛j g D 0; if k ¤ j;
˛kˇ C ˇ˛k � f˛k; ˇg D 0; (28)

˛2k D ˇ2 D 1; j; k D 1; 2; 3:

Thus, ˛̨̨ D f˛1; ˛2; ˛3g and ˇ form a set of anticommuting matrices. They have to
be Hermitian because the Hamiltonian and the momentum operators are Hermitian.
Then, the eigenvalues of these matrices can only be ˙1. The cycle invariance of
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trace yields Tr .˛k/ D Tr .ˇ2˛k/ D �Tr .ˇ˛kˇ/ D �Tr .˛k/. A similar calculation
for ˇ gives Tr .ˇ/ D �Tr .ˇ/. Therefore,

Tr .˛k/ D Tr .ˇ/ D 0: (29)

From here we deduce that the number of positive and negative eigenvalues has
to be the same, i.e., the order of the matrices is even. The Pauli matrices form a
complete set of 2 � 2 matrices, but only three of them anticommute (the fourth
one is the unit matrix which commutes with all matrices). Therefore the smallest
possible dimension of ˛̨̨ and ˇ matrices is 4. Such a set can easily be constructed,
as, for example,

˛̨̨ D
�

0 






 0

�
; ˇ D

�
1 0
0 �1

�
; (30)

where all entries represent 2 � 2 matrices and 


 are Pauli matrices.
Hamiltonian (26) with matrices (30) is a Hermitian square root of the second-

order differential operator given by Eq. (27) and is referred to as the free Dirac
operator. It is defined in

H D
1 DH P

1 ˚H P
1 D L2

�
R
3
�˝ C

4 (31)

Hilbert space. By the substitution of the Dirac operator to Eq. (2), the relativistic
time evolution equation may be written as

i„@���
@t
D HD

0 ���: (32)

The free Dirac operator may be conveniently expressed as

HD
0 D c .˛̨̨ � p/C ˇmc2 D

�
mc2 1 c .


 � p/
c .


 � p/ �mc2 1

�
: (33)

The wave function has four components. Its transformation properties are specific
for objects classified as Dirac spinors (cf. section “Transformation Properties of
the Dirac Spinor”). One should stress that ��� is not a four-vector and its four-
component structure has no relation to the 4 dimensions of the Minkowski space.
This kind of coincidence appears only in the case of the Dirac wave functions. The
relativistic wave functions describing particles with spin 0 (Klein-Gordon) or with
spin 1 (Proca) have, respectively, one and ten components [5].

The Dirac wave function can be expressed as

��� D

2664
 1
 2
 3
 4

3775 D �� L

� S

�
; ���� D � �1 ;  �2 ;  �3 ;  �4 � D h��

L; �
�
S

i
(34)
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where �L=�S are two-component functions referred to as large=small components
of��� . As it is shown in section “The Non-relativistic Limit and the Direct Approach,”
in the non-relativistic limit, �S ! 0. Equations (27) and (32) imply that each
component of the Dirac spinor is a solution of the Klein-Gordon equation (but the
inverse is not true).

Representations in the Spinor Space

If T is a non-singular 4 � 4 matrix, then the equations

i„@���
@t
D H��� and i„@���

0

@t
D H0��� 0; (35)

where

H0 D T H T �1 and ��� 0 D T ��� (36)

are equivalent. In particular, the Dirac equation in the standard (Dirac-Pauli)
representation (32) and the Dirac equation in the representation of Weyl (23) are
related by

TW D 1p
2

�
1 1
1 �1

�
D T �1W : (37)

Two other representations of some practical importance are known as the Majorana
representation and the supersymmetric representation. In the Majorana represen-
tation, the Dirac equation is purely real. Its properties are discussed in detail in
[4, 5, 9, 11]. The supersymmetric representation is related to the standard one by a
unitary transformation

TSUSY D 1p
2

�
1 i 1
i 1 1

�
: (38)

In this representation the Dirac operator

HSUSY
0 D

�
0 c .


 � p/ � i mc2 1

c .


 � p/C i mc2 1 0

�
;

after including external fields (see section “External Fields”), is particularly useful
in studies of supersymmetric systems [11].

Relativistic Covariance of the Dirac Equation

Originally the Dirac equation was expressed in terms of matrices ˛̨̨ and ˇ. This
mode of presentation is convenient when the Hamiltonian form of the equation is
discussed and when one is interested in the non-relativistic limit. However, for the
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discussion of general properties of the Dirac equation, in particular for studies on
its transformations between different inertial frames, the form in which time and
coordinates are treated in the same way is more appropriate. In order to express
the equation in the form which is usually referred to as covariant, one has to
introduce another set of anticommuting 4 � 4 matrices, called gamma matrices.
Each representation of the Dirac equation is associated with its own set of gamma
matrices, and, for a given representation, there are several different ways of defining
these matrices. In the present discussion the matrices appropriate for the standard
(Dirac-Pauli) representation and defined in the way advocated by Sakurai [4] are
used.

Gamma Matrices

The four gamma matrices are defined as

�
ˇ̌4
�D1 D f�i ˇ ˛̨̨; ˇg D f; ˇg ; (39)

or more explicitly

 D
�

0 �i



i


 0

�
; 4 D

�
1 0
0 �1

�
: (40)

Similarly to ˛̨̨ and ˇ, gamma matrices are Hermitian, are squares of the unit matrix
and anticommute:

� D ��; 21 D 22 D 23 D 24 D 1; and, if � ¤ �; f�; �g D 0: (41)

It results from (41) that Œ�; �� D 2�� . A fifth matrix 5 defined as

5 � 1234 D
�

0 �1
�1 0

�
(42)

also fulfills conditions (41) characteristic for the gamma matrices:

5 D �5 ; 25 D 1; and;
˚
�; 5

� D 0; �
�; 5

� D 2�5: (43)

Clifford Algebra

Matrices p , p D 1; 2; 3; 4; 5, and the unit matrix 1 make a set of six linearly
independent matrices. A complete basis in the space of complex 4�4matrices forms
an algebra. This algebra is isomorphic to the algebra of 4�4 complex matrices, one
of the Clifford algebras, named after William Kingdon Clifford who defined it at the
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end of the nineteenth century. It is composed of 16 linearly independent matrices
�n, n D 1; 2; : : : ; 16. The remaining 10 independent matrices are obtained from
products of two different gamma matrices:


pq � 1

2i

�
p; q

� D �i pq; p; q D 1; 2; 3; 4; 5; p < q: (44)

As one can see, 
qp D �
pq . Here is the explicit form of these matrices:


12 D
�

3 0;

0 
3

�
� ˙3; cyclicf1; 2; 3g (45)


k4 D
�
0 
k

k 0

�
� ˛k; k D 1; 2; 3 (46)

Matrices �n, n D 1; 2; : : : ; 16, fulfill several basic relations:

1. From � 2
n D 1 results that �n D � �1n and Tr

�
� 2
n

� D 4
2. If �n; �m ¤ 1 then Tr .�n �m/ D 0 since f�n; �mg D 0, and Tr .�n/ D 0 because

Tr .�n/ D Tr
�
� 2
m�n

� D �Tr .�m�n�m/ D �Tr
�
� �1m �n�m

� D �Tr .�n/.

Theorem 1. An arbitrary 4� 4 matrix G may be expressed in terms of �n matrices
as

G D 1

4

16X
nD1

Tr .G �n/ �n: (47)

Covariant Form of the Dirac Equation

Using definitions (1) and (39), one can combine Eqs. (32) and (33) to the so-called
covariant form of the Dirac equation:�

�
@

@ x�
C ~

�
���. x/ D 0; ~ D mc

„ ; (48)

where x D x�
ˇ̌4
�D1. In order to write the equation conjugate to (48), one has to

introduce a new form of conjugation of the Dirac spinor:

��� D ����ˇ � ����4 D
�
 �1 ;  �2 ;� �3 ;� �4

�
: (49)

The Hermitian conjugate of Eq. (48) reads

@���. x/
@ x�

� � ~ ���. x/ D 0: (50)
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By multiplying Eqs. (48) and (50), respectively, by ��� from the left and by ��� from
the right, subsequent subtraction and simple rearrangement of the result, one gets
the continuity equation

@ j�

@ x�
D 0; j� D i c ��� ���� D .jjj ; ic�/ : (51)

In the 3D notation, using (49) and (39), one gets

j D c ����˛̨̨ ���; � D �������: (52)

All Dirac equations expressed in terms of matrices which fulfill conditions (41)
are related by a unitary transformation. Thus, all these equations are equivalent in
terms of the physics they describe. This remarkable property of the Dirac equation
results from the fundamental Pauli theorem:

Theorem 2. If two sets of 4 � 4 matrices satisfy f�; �g D 2ı�� and f 0�;  0�g D
2ı�� , �; � D 1; 2; 3; 4, then there exists a non-singular and unique, up to a
multiplicative constant, matrix T such that  0� D T �T �1.

A proof of this theorem may be found, e.g., in the monograph by Sakurai [4].
One should remember that the structure of the wave function depends on the set
of gamma matrices used: If ��� corresponds to  , then T ��� corresponds to the  0.

Transformation Properties of the Dirac Spinor

The Dirac equation is covariant if after a Lorentz transformation it has the same
form as before the transformation, i.e., if in the primed coordinate system it reads"

 0�
@

@ x0�
C ~

#
��� 0. x0/ D 0; (53)

and if an explicit prescription which relates ���. x/ and ��� 0. x0/ exists. Matrices  0�
in Eq. (53) have to fulfill relations (41). Hence, according to the fundamental Pauli
theorem, there exists a non-singular matrix T such that  0� D T �T �1 and the
Dirac equations corresponding to all T are equivalent. Therefore, without any loss
of generality, one can set T D 14, i.e.,  0 D  .

Matrix aaa of the Lorentz transformation (6) is coordinate independent. Therefore,
one can expect that

��� 0. x0/ D S���. x/; (54)
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where S is a non-singular 4 � 4 matrix independent of x. Since @=@ x0� D
a��@=@ x� , Eq. (53) may be rewritten as�

S �1 � S a��
@

@ x�
C ~

�
���. x/ D 0: (55)

As one can see, the Dirac equation is covariant, i.e., Eqs. (48) and (55) are the same,
if

S �1� S a�� D � ) S � S �1 D � a��: (56)

From Eq. (56) one can derive S corresponding to a selected aaa. Detailed derivations
may be found, e.g., in [1, 4, 5, 10, 11]. In the next subsections only the final results
are presented.

According to (56), the covariance of the Dirac equation implies that  transforms
like a four-vector. A detailed discussion of the transformation properties of the
gamma matrices may be found in Section 5.B of [10] and in Chapter 2 of [11].
Note that the transformation rule of the gamma matrices is analogous to the one of
the Pauli matrices 


 [10, 12].

Proper Lorentz Transformation
Under a rotation by ! in 1-2 plane, the transformation matrix for the Pauli spinors
is equal to [1, 4]

S
.12/

Pauli D 12 cos !
2
C i 
3 sin !

2
: (57)

Under the same rotation in 1-2 plane of the Minkowski space, the Dirac spinors
transform according to

S
.12/

rot D 14 cos !
2
C i ˙3 sin !

2
D 14 cos !

2
C i 
12 sin !

2
(58)

and under a special case of the Lorentz boost – a rotation in 1-4 plane by an
imaginary angle ! D i 	, where 	 D arctanh.v=c/, according to

S
.14/

boost D 14 cosh 	

2
� 
14 sinh 	

2
: (59)

As one can see, S
.jk/

rot
� D S

.jk/
rot
�1

, but S
.k4/

boost

� D S
.k4/

boost. This means that the

transformation S
.k4/

boost is not unitary. It is important to note that

S � D 4 S �1 4 (60)

and ŒS ; 5� D 0.
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Space Inversion and Parity
The form of the Dirac equation is conserved under the space inversion, i.e., under
the replacement r ! � r, if the transformation operator Sinv is equal to 4, i.e., if

Sinv���. x/ D ��� 0. x0/ D 4 ���. x/ (61)

[1, 2, 4]. But ��� 0. x0/ D P0��� 0. x/ where P0 performs the transformation of
coordinates without changing the form of the function, i.e., it is the inversion
operator of the non-relativistic quantum mechanics. Therefore,

��� 0. x/ D P0 ��� 0. x0/ D P0 4 ���. x/ � P���. x/; (62)

where

P D P0 4 (63)

is the parity operator.

Infinitesimal Rotation
The angular momentum is a generator of rotations in 3D space, similarly to how
energy generates translations in time and linear momentum generates translations
in 3D space [1]. In the Minkowski space the form of the Dirac spinor under an
infinitesimal rotation in 1–2 plane changes according to [5]

��� 0. x/ D .1C i J3 ı!/���. x/; (64)

where

J3 D L3 C S3; S3 D 1

2
˙3 (65)

Thus, the generator of rotations in the Minkowski space is composed of two parts:
the orbital part described by L3 and the spin part described by S3. The first one acts
in R

3 space and the second one in the spinor space, C4. Therefore, Eq. (65) should
be written as J3 D L3 ˝ 1.C4/ C 1.R3/ ˝ S3, where 1.C4/ and 1.R3/ are the
appropriate unit operators. However, usually the simplified notation, as in Eq. (65),
is used. Obviously, neither the orbital angular momentum nor the spin operators are
covariant. A covariant description of spin is given by the Pauli-Lubanski vector. For
a detailed discussion, a reader is referred to, e.g., [5].

Bilinear Covariants ��� � ���

Let us consider transformation properties of the bilinear forms ��� � ��� , where �
is an element of the Clifford algebra. If ��� 0. x0/ D S���. x/, then, according to
Eqs. (49) and (60), ��� 0. x0/� D �.x/�.x/�.x/� S � D ���. x/S �14. From here ��� 0. x0/�4 D
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Table 1 Complete set of the bilinear covariants

Scalar Pseudoscalar Vector Pseudovector Antisymmetric tensor

������ ���5��� ������� i ���5���� ���
�����

���. x/S �1, and���
0
. x0/ D ���. x/S �1. Consequently,���

0
. x0/��� 0. x0/ D ���. x/���. x/.

This means that������ is invariant under the Lorentz transformation, i.e., it is a scalar.

In a similar way, using Eq. (56), one can show that
	
�������


0 D a��

	
�������



,

i.e., ������� is a four-vector. In particular, j� defined in Eq. (52) is a four-vector and
� D ������� is not a scalar but the fourth component of this vector. A complete set of
bilinear Lorentz covariants is given in Table 1.

Equation (51) may be rewritten as

rjC @ �

@ t
D 0: (66)

From here, using the Gauss theorem, one can see that the integral of � taken over
the domain of��� is time-independent. This result justifies the standard normalization
condition for the Dirac wave function:Z

V

������� d3x D 1: (67)

The conservation of the norm defined in this way was not obvious a priori, since
in the relativistic theory � is the fourth component of the four-current vector rather
than a scalar. In the quantum theory of many-electron systems, the relativistic wave
functions are usually normalized according to Eq. (67). However, in many other
areas of application of quantum physics, the bilinear scalar, ������ , is normalized
instead.

In the Pauli representation, eight � matrices, �L D
˚
1; 4; i5k; 
jk

�
, are

block-diagonal, and the remaining eight, �S D fk; i54; 5; 
k4g, are block-
antidiagonal. The corresponding bilinear covariants read

����L��������� D
h
�
�
L;���

S

i �A 0
0 B

� �
�L

�S

�
D ��

LA�L � ��
SB�S;

���� S��������� D
h
�
�
L;���

S

i � 0 A
A� 0

� �
�L

�S

�
D ��

LA�S � ��
SA��L (68)

In the non-relativistic limit, i.e., for c ! 1, the small component of the Dirac
spinor vanishes. Thus, limc!1����L��������� D �

�
LA�L and limc!1���� S��������� D 0.

Therefore, the bilinear covariants associated with �L / � S are referred to as
large/small covariants. Since the set of 16� matrices is complete, one cannot
generate more linearly independent bilinear covariants of the form ������� .
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Eigenvalue Problem of the Free Dirac Operator

The free Dirac operator (33) commutes with p. Therefore, solutions of Eq. (32)
corresponding to a given energy E may be written as a product of a scalar part
depending on time and coordinates and a spinor part:

���. x/ D ei. p� r�Et/

.2�/2
˚̊̊ ; (69)

where the spinor part of the wave function

˚̊̊ D

2664
�1
�2
�3
�4

3775 D �˚ L

˚ S

�
; ˚̊̊ � D ���1 ; ��2 ; ��3 ; ��4 � D h˚�

L; ˚
�
S

i
(70)

does not depend on time and, in the case of a free particle, on coordinates. Note
that except for some special cases, as free electron or electron in a homoge-
neous magnetic field (section “Electron in a Magnetic Field”), the separation of
coordinate-independent spinors from the Dirac wave function cannot be performed
and ˚̊̊ depends on the electron coordinates. Since this separation is possible in
the free-electron case, the eigenvalue equation of HD

0 may be expressed as a set
of homogeneous linear equations

�
mc2 �E c .


 � p/
c .


 � p/ �mc2 �E

� �
˚L

˚S

�
D 0: (71)

Equation (71) has nontrivial solutions if

det

ˇ̌̌̌
mc2 �E; c .


 � p/
c .


 � p/; �mc2 �E

ˇ̌̌̌
D 0 (72)

i.e., if E D �Ep , where � D ˙1 and

Ep D mc2
r
1C

	 p
mc


2
: (73)

Then, the spectrum of the free-particle Dirac operator is given by

E 2 ��1;�mc2� [ �mc2;1� : (74)
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The spectrum consists of two continua. The positive one spreads from the rest
energy of the particle, mc2, to C1. It corresponds to the non-relativistic energy
of a free particle. The negative continuum, spreading from �mc2 to �1, has no
physical meaning. Mathematically this implies that the plain Dirac equation cannot
describe a physically stable system since the ground state does not exist.

The Hilbert space in which the Dirac operator is defined contains vectors
corresponding to the positive and to the negative energies. Since a quantum
mechanical state is defined as a vector in the Hilbert space of the Hamiltonian, one
can define the positive-energy states and the negative-energy states, though the latter
ones have no physical meaning. It is important to note that in the charge-conjugate
equation, the negative- energy states correspond to positrons with positive energies
(cf. section “Charge Conjugation, Positrons”).

Constants of Motion

As it was already noticed,
�
HD
0 ; p

� D 0. Then, similarly as in the non-relativistic
theory, for a free Dirac particle, the linear momentum is conserved. However, as one
can easily check, neither orbital angular momentum L nor spin

S D 1

2
˙̇̇ ; ˙̇̇ D f˙1;˙2;˙3g;

commutes with HD
0 , but J D LC S does commute. This last observation and the

way the Dirac spinors transform under infinitesimal rotations (64) are important
for the understanding of the role of spin: from the formal point of view, spin
is optional in the Schrödinger theory, while spin is a necessary attribute of the
Dirac particles. Since the eigenvalues of S3 are equal to ˙ 1=2, the Dirac equation
describes particles with spin 1=2. Two other operators which commute with HD

0 are
helicity:

h D .˙̇̇ � p/
p

; (75)

and parity P, defined in Eq. (63). Helicity is a 4�4matrix with eigenvalues h D ˙1.
The states with helicityC1/�1 (spin parallel/opposite to the direction of the motion)
are referred to as right/left handed. However, neither p and J nor P and h commute
with each other. Since P changes sign of p, it does not commute with p. Therefore,
one can select the following sets of five commuting operators which include HD

0 and,
thus, can be used to construct and label its eigenfunctions:

• Plane waves: HD
0 , p1, p2, p3, and h;

• Spherical waves: HD
0 , J2, J3, p2, and either h or P.
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Free-Particle Spinors

The free-particle spinors corresponding to the plane waves may be chosen as
simultaneous eigenfunctions of HD

0 , ppp, and h. In the case of a free particle, the
operator

ƒ D HD
0

Ep
(76)

commutes both with HD
0 and with all operators commuting with the Hamiltonian.

Its eigenvalues � D C1 = � 1 correspond to the positive-/negative-energy solutions
[cf. Eqs. (72) and (73)]. If axis 3 of the coordinate system is directed along the
momentum of the particle, i.e., if ppp D f0; 0; p3g, then h D ˙3 p3=jp3j. Thus, in
this case, also ˙3 is a constant of the motion. As a consequence, the free-particle
spinors may be chosen as simultaneous eigenfunctions of HD

0 ,ppp, h,ƒ, and˙3. They
are labeled as ˚̊̊ �

p;s , where p D p3 and s D ˙1 are eigenvalues of ˙3.
Some simple algebra applied to Eq. (71) yields

˚̊̊Cp;1 D

2664
NC
0

N�
0

3775 ; ˚̊̊Cp;�1 D
2664

0

�NC
0

N�

3775 ; ˚̊̊�p;1 D
2664
�N�
0

NC
0

3775 ; ˚̊̊�p;�1 D
2664

0

N�
0

NC

3775 ;
(77)

where

NC D
s
Ep Cmc2
2Ep

; N� D p3

jp3j

s
Ep �mc2
2Ep

: (78)

For p D 0, i.e., for the particle at rest, NC D 1 and N� D 0. The transformation
of p D 0 spinors to the form corresponding to an arbitrary p may also be obtained
using the Lorentz transformation. A detailed analysis may be found, e.g., in [1,5,6].

Position and Velocity Operators, Zitterbewegung

One could expect that an electron in a positive-energy state should fall into a
negative-energy state and emit a photon with an energy which may be infinite,
since the spectrum is unlimited. In order to solve this difficulty, Dirac proposed
that all the negative-energy states are filled under normal conditions and the
Pauli exclusion principle prevents transitions to these states. An excitation of one
negative-energy electron results in creation of a hole in the “Dirac vacuum” and
of one positive-energy electron. This process corresponds to the creation of an



1 Dirac Operator 23

electron-positron pair. Thus, in this model the number of particles is not conserved.
The conserved quantity is the total charge.

However, it is hard to classify this interpretation as satisfying. It may only be
applied to fermions, while the Klein-Gordon equation describing 0-spin bosons
has also unbounded from below energy spectrum. The Dirac model describes a
single electron, and, at the same time, it is unable to explain the behavior of
a free electron without assuming that it is surrounded by an infinite number of
non-interacting electrons occupying the negative-energy states. This contradiction,
inseparable from the Dirac model, results in numerous artifacts and stimulated work
on the formulation of a more general Lorentz-covariant theory in which the energy
spectrum of a system of electrons is bounded from below. It has been realized that
the Dirac equation should be interpreted as a classical equation for the matter field,
as the Maxwell equation is the classical equation for the electromagnetic field.
A theory which correctly describes the physical reality, quantum electrodynamics
(QED), has been formulated during 1927–1937 by Dirac himself and by Wolfgang
Pauli, Eugene Wigner, Werner Heisenberg, and Enrico Fermi. QED unifies theories
describing matter (as the Dirac or the Klein-Gordon models) and radiation (the
Maxwell equation). The resulting equations have been obtained by the second
quantization procedure. In effect all contradictions of the original Dirac model
have been solved. The unboundedness from below of the energy spectrum has
been removed, the possibility of creation and annihilation of particles has been
introduced, and emission and absorption of photons have been correctly described.
Electrons and positrons have been described on an equal footing (in the original
Dirac model, positrons are interpreted as “holes in the vacuum” while the only “real
particles” are electrons) [2–4,11]. Nevertheless, the Dirac model of vacuum survived
as the very first intuitive quantum model of vacuum. The vacuum has been defined as
a polarizable medium from which new particles can be created. Observable effects,
as, e.g., vacuum polarization and related to the vacuum fluctuations self energy, can
be explained using this idea. Many concepts of the Dirac vacuum have been retained
in quantum field theories, and a substantial part of terminology used to describe the
phenomena related to the physical vacuum may be traced back to the original ideas
of Dirac [21].

The Dirac theory is considerably simpler than QED and leads to a much more
precise description of the physical reality than the approaches derived from the non-
relativistic Schrödinger equation. Therefore, it is the basis for nearly all relativistic
methods of description of many-electron systems, though the unboundedness from
below of the spectrum is the origin of serious conceptual and computational
problems.

One of the consequences of the unboundedness from below of the Dirac spectrum
is unusual properties of the velocity operator. In the Schrödinger theory,

v S D
�
d r
dt

�
S
D i ŒH S; r� D p

m
: (79)
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In the Dirac case,

vD D
�
d r
dt

�
D
D i ŒHD; r� D c ˛̨̨: (80)

This result is very strange in many aspects. First, the eigenvalues of ˛k are ˙1.
Therefore, the eigenvalues of vD are equal to ˙c. Besides, different components
of vD do not commute. Then, a measurement of one component of the Dirac
velocity is incompatible with a measurement of another one. This is also strange
since different components of the momentum operator do commute. Moreover, vD

does not commute with HD
0 . Therefore, the velocity is not a constant of the motion

despite the fact that the particle is free.
An analysis of the time dependence of ˛̨̨ and of the coordinate operator r

leads to the conclusion that both of them execute very rapid oscillations with an
angular frequency .2mc2/=„ � 1:5 � 1021s�1. This motion, named by Schrödinger
Zitterbewegung, is due to an interference between the positive- and negative-energy
components of the wave packet describing the electron. Intuitively it may be
interpreted as a consequence of a permanent creation and annihilation of the so-
called virtual electron-positron pairs. In order to understand the background of this
process, it is convenient to introduce even and odd operators. An even operator
acting on a function which belongs to the positive (negative) energy subspace of
a free electron transforms it into a function which belongs to the same subspace.
An odd operator transforms a positive (negative)-energy-subspace function into a
function which belongs to the complementary subspace. An operator, say �, may
be decomposed into its even part Œ�� and its odd part f�g:

� D Œ��C f�g; (81)

where

Œ�� D 1

2
.�Cƒ�ƒ/; f�g D 1

2
.� �ƒ�ƒ/: (82)

After some algebra one can see that

Œ vD� D c Œ̨˛̨� D c2 p
E

: (83)

This result is in agreement with the standard definition of velocity. A detailed
discussion of this subject may be found, e.g., in [1, 4, 5, 8, 9, 11]. Operators

…˙ D 1

2
.1˙ƒ/; (84)

are projection operators to the positive .…C/ and to the negative .…�/ energy
subspace. For example, …C�…C acts in the free-electron positive-energy space
only. One may think about modifying the theory by restricting the Hilbert space to
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its positive-energy part. Technically this can be done using projection operators (84)
and, in fact, is done in some approximate models. Since…˙ commutes with the free
Dirac operator, an initial state of a free particle belonging to the positive-energy
space will remain in this space forever. However, position-dependent operators
do not commute with …˙. They are composed of an even and an odd part and
couple the positive- and the negative-energy space. For example, the even part of
the position operator is given by

Œ x� D xC i

2E
. vD � Œ vD�/ : (85)

Due to the presence of the term proportional to vD, the position of a Dirac particle
is diffuse in the area comparable to the Compton wavelength „=mc.

External Fields

The notion of a particle in an external field is an idealized concept. Neither the
quantum structure of the field nor the influence of the particle on the field is
taken into account. The external field is used to replace in an effective way the
real interaction. For example, a simple, exactly solvable problem of an electron
in the Coulomb potential may be used to effectively describe a hydrogen-like
atom – a highly complicated mathematically and unsolvable analytically system of
two interacting particles. The external potentials may have different transformation
properties (scalar, pseudoscalar, vector, pseudovector, tensor) [5,11]. In this chapter
the discussion is limited to scalar and electromagnetic vector potentials. It is also
assumed that the potentials are time independent. This means that only closed
systems are considered.

Dirac Equation for a Particle in an External Field

The Dirac operator in a field described by a scalar potential Vsc. r/ may be obtained
from the free Dirac operator (33) by the replacement

mc2 7! mc2 C Vsc. r/: (86)

Scalar interactions for electrons and for positrons are the same – they do not depend
on the electric charge of the particle. Therefore, they can be attractive for electrons
and positrons at the same time. In quantum chromodynamics, scalar potentials are
used to model the confinement of quarks, but in theory of many-electron systems,
they appear very seldom, since interactions of non-electromagnetic origin (as,
e.g., the strong ones or the gravitational ones) are of rather marginal importance.
However, already in 1973, a possibility of establishing a limit on the scalar
coupling constant by discussing the Coulomb potential with a scalar contribution
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was discussed [22]. Until now there is no experimental evidence for the existence of
long-range scalar interactions. Such interactions are mediated by a scalar massless
boson which is experimentally unknown and does not exist in the Standard Model.
But the atomic spectroscopy is one of the most sensitive tools for studying
interactions. Therefore, studies on possibilities of some admixture of the scalar
coupling to the electromagnetic one may be useful in the search of phenomena
which are not described by the Standard Model.

The coupling of a Dirac particle to an electromagnetic field may be obtained
by applying the principle of minimal coupling [5, 9–11], originally developed in
classical mechanics. According to this principle, in order to account for an external
field described by an electromagnetic four-potential

A� D fAAA; i '=cg; (87)

one has to modify the free-particle equations by the replacement

p� 7! �� � p� � q A�; (88)

where q is the charge of the particle. Note that in many textbooks in Eq. (88) instead
of q A�, q A�=c appears. The factor 1=c depends on the choice of units and has
nothing to do with relativistic effect. In particular, it is present in the Gaussian cgs
system and absent in the SI. Thus, the free-particle Dirac equation (48) generalized
to account for the external fields reads�

�D� Cmc2 C Vsc
�
���. x/ D 0; (89)

where

D� D @

@x�
� i q A�. r/; (90)

is the gauge covariant derivative. Combining Eqs. (33), (86), and (88), one obtains
the Dirac operator for a particle in an external field:

HD D c .˛̨̨ ����/C Vel 1C �mc2 C Vsc
�
ˇ; (91)

where Vel D q ', and its eigenvalue equation� �
VC Cmc2 �E� 1 c .


 ����/

c .


 ����/ �
V� �mc2 �E� 1

� �
˚L. r/
˚S. r/

�
D 0; (92)

where V˙ D Vel ˙ Vsc. In the following it is assumed that q D �1, i.e., the charge
of the Dirac particle is equal to the charge of electron.

The external potentials modify spectrum of the Dirac operator. In particular, for
a broad class of potentials, discrete eigenvalues corresponding to physically bound
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states appear in the energy gap .�mc2;Cmc2/. The eigenvalues of HD may be
defined as the critical values of the Rayleigh quotient

QŒ̊˚̊ � D h˚̊̊ jH
D j̊˚̊ i

h˚̊̊ j̊˚̊ i ; (93)

where ˚̊̊ is in the domain of HD. Since the Dirac operator is unbounded from
below, the eigenvalues cannot be determined by a straightforward application, a
minimization procedure based on the Hylleraas-Undheim-MacDonald theorem [23–
26], commonly used in the non-relativistic quantum mechanics. However, over the
last half a century, numerous variational methods of finding the eigenvalues have
been elaborated [12–14, 23–25]. In particular, the lowest discrete eigenvalue in the
energy gap, i.e. the physical ground state energy, may be derived from the minimax
principle:

E D min
f˚Lg

h
max
f˚Sg

QŒ̊˚̊ �
i

(94)

originally formulated as a recipe for reaching the stationary points of the energy
hypersurface in the space of variational parameters [24, 26] and rigorously proved
after several years [27]. The consecutive eigenvalues may be obtained in the
usual way imposing appropriate orthogonality constraints on the wave func-
tion.

For some specific potentials, resonances embedded in the continuum, described
by the wave functions containing both localized and continuum-type contributions
and corresponding to auto-ionizing states, are also present [11, 28]. However,
for most of physically significant potentials, the essential spectrum of the Dirac
operator (74) remains unchanged (the essential spectrum of a Hermitian operator is
a subset of its complete spectrum; its complement is the discrete spectrum, i.e., the
set of isolated eigenvalues of finite multiplicity [11, 25]). In particular, the essential
spectrum of a particle in an external field is the same as of the free particle if
the potential vanishes in infinity. For a discussion of an external potential which
modifies the essential spectrum, see section “Harmonic Oscillators.”

Gauge Invariance

The gauge transformation of the electromagnetic four-vector potential is defined as

A�. r/ 7! A�. r/C @ f . r/
@ x�

; (95)

where f . r/ is a scalar function. Under this transformation, the electromagnetic
fields remain unchanged. The results of measurements should be gauge independent,
i.e., the physical contents of any theory cannot depend on the gauge. In particular,
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also the Dirac equation should be gauge invariant. One can easily check that if the
gauge transformation of the wave function is described by

���. x/ 7! exp Œi f . r/����. x/; (96)

then

D����. x/ 7! exp Œi f . r/�D����. x/: (97)

Since scalar potential is gauge independent, Eqs. (96) and (97) imply gauge invari-
ance of Eq. (89). However, note that the gauge transformations of ��� and @���=@x�
are inconsistent, and therefore the non-covariant derivative does not preserve the
gauge symmetry of the Dirac equation.

The Non-relativistic Limit and the Direct Approach

After shifting the energy scale by mc2, i.e., defining

E D E �mc2; (98)

and performing some simple algebra, the eigenvalue equation (92) becomes� �
VC � E

�
1 .


 ����/

.


 ����/ �2m �1C .E � V�/=.2mc2/
�

1

� �
˚L. r/
c ˚S. r/

�
D 0: (99)

In the non-relativistic limit, .E � V�/=.2mc2/ D 0 and Eq. (99) transforms to� �
VC � E

�
1 .


 ����/

.


 ����/ �2m1

� �
˚L. r/
c ˚S. r/

�
D 0: (100)

This equation, a non-relativistic limit of the Dirac equation defined in the same
Hilbert space as the original Dirac equation, is known as the Lévy-Leblond equation.
The corresponding equation of motion is Galilei covariant – it transforms according
to a spinor representation of the Galilei group. The normalization conditions of
the wave functions may be derived as follows: Given a Hamiltonian eigenvalue
problem, .H � �E/˚ D 0, where H and � are matrix operators. Then the
normalization condition for ˚ reads h˚ j�j˚i D 1. Therefore, for the Dirac
equations (92) and (99) h˚Lj˚Li C h˚Sj˚Si D 1, while for the Lévy-Leblond
one (100), h˚Lj˚Li D 1.

Equation (100) yields

˚S. r/ D .


 ����/
2mc

˚L. r/; (101)
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i.e., if j


 ����j � mc, then j˚Sj � j˚Lj. This justifies the names of these
components of the Dirac wave function in the Pauli representation. The elimination
of c˚S from Eq. (100) gives�

.


 ����/2
2m

C VC � E

�
˚. r/ D 0; (102)

i.e., the spin-dependent Schrödinger equation for ˚ D ˚L. In the non-relativistic
equation (102), the electrostatic and the scalar potentials are non-distinguishable
since they contribute on an equal footing to VC. Equation (102), with the help of the
Dirac relation (14), may be transformed to the Pauli equation:�

1

2m

�
���2 C 


 � B

�C VC � E

�
˚. r/ D 0; (103)

where B D r � A is the external magnetic field. It should be stressed that
Eqs. (100) and (102) are equivalent only if relation (101) is fulfilled. This relation,
known as the kinetic balance condition [12, 13], plays very important role in
designing approximate methods of solving Dirac eigenvalue problems.

A Dirac equation similar to the Lévy-Leblond equation can be obtained by setting
V� D 0. This may correspond to exact models with two kinds of fields: (1) a particle
in an external magnetic field with Vel D Vsc D 0 and (2) a rather unusual special
case of Vel D Vsc ¤ 0. Another option is an approximation V�=2mc2 7! 0,
originally proposed by Moore under the name direct Dirac equation [29]. The
resulting equation reads"�

VC � E
�

1 .


 ����/
.


 ����/ �2M 1

#"
˚L. r/

c˚S. r/

#
D 0; (104)

where

M D m
�
1C E

2m
˛2
�

(105)

and ˛ D 1=c is the fine structure constant. An intuitive rationale for the last
equation can be derived from Eq. (17) which may be rewritten as E D p2=.2M/.
The elimination of ˚S gives the direct Dirac equation in a Schrödinger-like
form: �

.


 ����/2
2M

C VC � E

�
˚L. r/ D 0: (106)

Note that the difference between ˚L of Eq. (106) an ˚ of Eq. (102) is of a
fundamental importance. In particular, ˚L corresponding to different values of
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E are not orthonormal since the Hamiltonian depends on E . In this case the
orthonormality condition isZ

V

h
˚
�
L. rIE /˚L. rIE 0/C ˚�

S. rIE /˚S. rIE 0/
i
d3r D ı.E � E 0/; (107)

while in the non-relativistic oneZ
V

˚�. rIE /˚. rIE 0/ d3r D ı.E � E 0/; (108)

where ı stands for either Dirac delta (if the spectrum is continuous) or the Kronecker
one (if the spectrum is discrete).

Elimination of the Small Component

In the general case the elimination of ˚S from the eigenvalue equation of HD

yields �
.


 ����/ R

2M
.


 ����/C VC � E

�
˚L. r/ D 0; (109)

where

R D 1

1 � w
; (110)

w D V�

2M
˛2; (111)

and

˚S. r/ D R˛
2M

.


 ����/˚L. r/: (112)

Since M depends on E , Eq. (109) is not an eigenvalue problem – the dependence on
E is nonlinear. However, solutions E of this equation are equal to the eigenvalues
of the corresponding Dirac operator, and the set of these solutions is bounded from
below by the lowest eigenvalue of HD located in the gap of its essential spectrum
[25]. This property of Eq. (109) has important practical consequences. In particular,
E may be obtained by minimization procedures which are technically difficult in
the case of basis-set calculations but rather straightforward when one is using grid
methods. It also explains the well-known (but not always correctly understood)
property of the numerical Dirac-Fock algorithms: When solving the corresponding
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equations, no effects of the unboundedness from below of the Dirac operator have
ever been observed [14].

By applying the Dirac relation (14), one can separate the spin-dependent
part [13]: �

���R���
2M

C i 




2M
Œ��� � R����C VC � E

�
˚L. r/ D 0: (113)

The R-containing terms may be expressed as

���R��� D R���2 C R2.p w/��� (114)

i


Œ��� � R���� D R.


 �BBB/C R2 


 Œ.rw/ ����� : (115)

It should be stressed that Eq. (109) [as well as (113)] is exact and, jointly with
Eq. (112), is equivalent to the original Dirac equation.

Pauli Corrections
Equation (113) may be expressed in a form correct up to terms proportional to ˛2.
By the substitution

R D 1C˛2 V�

2m
CO

�
˛4
�
; w D ˛2 V�

2m
CO

�
˛4
�
;

1

M
D 1

m
�˛2 E

2m2
CO

�
˛4
�

Eq. (113) becomes�
1

2m

�
���2 C 


 � B

�C VC C H0 C O
�
˛4
� � E

�
˚L. r/ D 0; (116)

where

H0 D ˛2

4m2

�
.V� � E /

�
���2 C 


 � B

�C . p V�/��� C 


 Œ.r V�/ ������ (117)

is the well-known Pauli relativistic correction with the consecutive terms corre-
sponding to the mass-velocity, Darwin, and spin-orbit terms [1, 5] in which the
interaction with an external magnetic field is included. In principle, H0 may be
treated as the first-order perturbation to the Schrödinger energy only. However,
in some approaches it is transformed in a way which allows to include them to
the Hamiltonian eigenvalue equation. In particular, some of the non-integrable
singularities which originate from the Coulomb potential may be eliminated by
introducing a finite-size nucleus [12,13]. The transformation of H0 to the Hermitian
form may be found, e.g., in [1].
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Gordon Decomposition

A similar separation of the spin-dependent term may be performed for the four-
current (51). After some algebra described in detail in [4, 5], one obtains the
separation of the four-current to a convection current j C

� and a spin current j S
� :

j� D j C
� C j S

� ; (118)

where

j C
� D

1

2m

h
���
�
p� C A�

�
��� �

	�
p� � A�

�
���


���
i

(119)

and

j S
� D �

i

2m
p�.���
�����/: (120)

In three-vector notation, Eq. (119) may be rewritten as

jC D 1

2m

h
������ ��� C .�������/���

i
; (121)

and if��� corresponds to a given energy E,

�C D E � Vel

mc2
��� ���: (122)

Similarly,

j S D 1

2m

�
r � .���˙̇̇���/C E

c

	
���˛̨̨���


�
(123)

and

� S D � 1

2mc
p
	
���˛̨̨���



: (124)

In the non-relativistic limit, i.e., if E �Vel ! mc2 and �S ! 0, then �C ! �
�
L�L

and � S ! 0 (cf. section “Bilinear Covariants ��� � ���”).

Charge Conjugation, Positrons

The Dirac equation is valid for all particles with spin 1=2, in particular for electrons
and for positrons. If Eq. (89) describes electrons, then the equation for positrons



1 Dirac Operator 33

may be obtained by the replacement �e 7! Ce in the expression for the covariant
derivative. This transformation is related to another symmetry of the Dirac equation
referred to as charge conjugation [3–5]. Some simple algebra shows that the charge
conjugation operator is equal to

C D 2 K0; (125)

where K0 is the operator of complex conjugation. The form of the charge conju-
gation operator depends on the representation of the Dirac equation (contrary to
the parity (63) operator, which is representation independent). For example, in the
Majorana representation, C D K0.

If Eq. (89) is symbolically expressed as

��e��� electron D 0;

then
�
C��eC�1

�
C��� electron D 0 is equivalent to

�Ce��� positron D 0;

where �Ce D C��eC�1 and ��� positron D C��� electron. Thus,

��� positron D C��� electron and ��� electron D C��� positron; (126)

where the last equation is a consequence of C2 D 1. The application of the charge
conjugation to the free-particle spinors (77) gives

C ˚̊̊Cp;1 D �˚̊̊��p;�1; C ˚̊̊Cp;�1 D ˚̊̊��p;1;
C ˚̊̊�p;1 D ˚̊̊C�p;�1; C ˚̊̊�p;�1 D �˚̊̊C�p;1: (127)

Combining with Eq. (69), one can see that the transformation electron , positron
is equivalent to

fE; p; s; hg , f�E;� p;� s; hg: (128)

Relation (128) implies that a state with negative energy corresponds to the antiparti-
cle with positive energy. The energy, charge, momentum, and spin of the antiparticle
are opposite to that of the particle, while the current, helicity, and velocity are the
same [cf. Eqs. (52), (75), (83)].

However, the interpretation of the negative-energy states of the electronic
Dirac equation as describing positrons meets some difficulties [11]. First, there
exist physically valid quantum states of electrons which are superpositions of the
positive- and negative-energy eigenfunctions. Second, in the quantized Dirac field
theory, the field operators anticommute and this results in the change of sign of the
current under charge conjugation.
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Exactly Solvable Models

The exact solutions of the Dirac and Klein-Gordon equations for a free-particle,
hydrogen-like atom, a particle in an external magnetic field, were obtained as a part
of the process of formulation of relativistic quantum mechanics, and the results were
crucial to the acceptance of the new theory. Detailed analysis of these solutions may
be found in all textbooks of relativistic quantum mechanics, in particular in [1–5]. In
this section solutions of several models are briefly discussed as illustrations of some
selected approaches and, in general, do not replicate the textbook presentations.
Three models, representing two different classes of exactly solvable problems, are
discussed: (1) two modes of relativistic generalizations of the harmonic oscillator
(HO) (one known as a particle in a homogeneous magnetic field corresponding to
an axial HO and the second one referred to as the Dirac oscillator corresponding to
a spherical HO) and (2) a charged Dirac particle in the Coulomb field, in the case
of an electron referred to as “the hydrogen-like atom,” represents problems with
spherical symmetry.

Harmonic Oscillators

Relativistic generalizations of harmonic oscillator are neither unique nor trivial. The
simplest approach: setting A D 0, Vsc D 0, and Vel � r2 leads to a quartic
oscillator with no bound solutions since the effective potential approaches �1
when r ! 1. A harmonic electrostatic potential describes a charged particle
within an infinite uniformly charged sphere. This is rather unphysical and one
may expect that a scalar rather than electrostatic potential is more appropriate
to model the harmonic-type interactions. Indeed, a quartic oscillator with bound-
state solutions results from Vel D 0;Vsc � r2. None of these models can
be solved analytically. However, two other models are exactly solvable. In both
the electrostatic and scalar potentials are set equal to zero. In the first model,
corresponding to an axial oscillator, the vector potential describes a homogeneous
magnetic field. In the second one, a non-electrostatic kind of interaction leads to a
spherical oscillator. Very recently an experimental realization of the second model
has been discovered [30].

With VC D V� D 0, Eq. (99) yields� �E 1 c 


 � . pC A�/

c 


 � . pC A/ �2Mc2 1

� �
˚L. r/
˚S. r/

�
D 0: (129)

From here one gets

˚S. r/ D 


 � . pC A/
2Mc

˚L. r/ (130)
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and, using the Dirac relation (14),�
1

2m
. pC A�/. pC A/C .


 � M/

2m
� E

�
˚L. r/ D 0; (131)

where

E D E
M

m
D E

�
1C E

2mc2

�
(132)

and

M D r � AC i. A� � A/C
	

A� � A


� r: (133)

There is a subtle interplay between Galilei and Lorentz covariance of these
equations. Equation (131) transforms according to a spinor representation of the
Galilei group and, thus, is Galilei covariant with the normalization condition for
the two-component wave function: h˚ Lj˚ Li D 1. On the other hand, the pair of
Eqs. (131) and (130) is equivalent to Eq. (129), an eigenvalue equation derived from
the Lorentz-covariant Dirac equation (the Lorentz-covariant equation is obtained
when E 7! mc2C i@=@t ) with the normalization condition for the four-component
wave function: h˚ Lj˚ Li C h˚ Sj˚ Si D 1. Note that in this case solutions of the
Schrödinger equation may be used to generate the corresponding solutions of the
Dirac equation. In particular, the analytical solubility of the Schrödinger equation
implies that also the corresponding Dirac equation is analytically solvable. The
dependence of the eigenvalues E of the Hamiltonian in Eq. (131) on E is shown
in Fig. 1. The spectrum is bounded from below; the states with the same jEj are
degenerate and in the non-relativistic limit E 7! E .

Electron in a Magnetic Field
If A describes a magnetic field B, then r � A D B and A D A�. For a
homogeneous magnetic field, A D B � r=2 and Eq. (131) becomes�

p2

2m
C B2

8m

h
r2 � .r � OB/2

i
���� � B � E

�
˚L. r/ D 0; (134)

where OB D B=B is the unit vector of B direction,

��� D ���orbit C���spin D � e

2m
. LC g S/; (135)

is the magnetic moment of the particle,

L D r � p; S D 1

2



; (136)
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Fig. 1 Eigenvalues E of Eq. (131) versus energy E D E Cmc2 in units of mc2. The eigenvalues
are bounded from below by �mc2=2 and the minimum corresponds to E D 0. The positive- and
the negative-energy continua are mapped to E > 0. The states ˚ L differing by the sign of energy
�, i.e., corresponding to the same values of jEj, are degenerate

and g is the spin g-factor. The non-relativistic and relativistic quantum mechanics
predicts g D 2 for all spin-1=2 particles. The experimental values (up to seven
significant figures) for electron and for muon are, respectively, ge D 2:002319 and
g� D 2:002332. The deviation from 2 is due to QED effects and is very precisely
predicted by the theory. For composite particles, as proton or neutron, the values of
g are substantially different from 2.

If the coordinate system is selected so that B D f0; 0;Bg, then the Hamiltonian
commutes with S3 and˚L may be expressed as a normalized two-component spinor

˚L.r; 
/ � ˚nms .r; 
/ D �n.r/	ms .
/; 	1=2 D
�
1

0

�
; 	�1=2 D

�
0

1

�
;

(137)

with h˚nms j˚n0m0
s
i D ınn0ımsm0

s
, where n D 0; 1; 2; : : : is the principal quantum

number and ms D ˙1=2 corresponds to two projections of spin. In this case
Eq. (134) reduces to the cylindrical harmonic oscillator equation. The eigenvalues
(i.e., the non-relativistic energies) are given by

Enms D
B
m

�
nCms C 1

2

�
C p2z

2m
: (138)
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For a detailed analysis, see, e.g., [1–3]. The relativistic energies may be obtained
from Eq. (132)

E D E Cmc2 D ˙mc2
r
1C 2E

mc2
: (139)

In this case the essential spectrum is different than the one of the free Dirac operator.
An infinite set of discrete energy levels numbered by nCms spreads fromCmc2Œ1C
.pz=mc/

2�1=2 toC1 and from �mc2Œ1C .pz=mc/
2�1=2 to �1. The corresponding

normalized four-component wave functions can be derived using Eq. (134). After
some algebra, one obtains

˚̊̊ �
nms
D 1p

2�

" p
� C � 	ms

�p
�C�

�



 ����
mc

�
	ms

#
�n.r/; � D

r
1C 2E

mc2
: (140)

Dirac Oscillator
One of many possible relativistic analogs of the non-relativistic harmonic oscilla-
tors, originally proposed by Cook [31] and then rediscovered by Moshinsky and
Szczepaniak [32], is based on the construction of an exactly solvable Dirac equation
which in the non-relativistic limit gives the Schrödinger harmonic oscillator. This
kind of oscillator may also be defined as a system which is invariant with respect
to a canonical transformation interchanging coordinates and momenta, i.e., its
eigenvalue problem looks the same in the coordinate and in the momentum
representations [33].

Equation (129) is invariant under the transformation p $ r if A � i r. In
particular, if A D �i m! r, then

M D �2m! Œr � p� D �2m! L (141)

and Eq. (131) yields�
p2

2m
C m!2

2
r2 C ! � L2 � J2

� � 3
4
! � E

�
˚L D 0; (142)

where J D LC S and the identities 


 � L D J2 � L2 � S2, S2 D .3=4/ 1 have
been used. Further analysis is similar to the one of Eq. (134). Details may be found
in [33].

Central Force

The description of the behavior of a Dirac particle in a spherically symmetric
potential is a prerequisite for the construction of relativistic theories of atomic
structure. The potential is centered at the origin of the coordinate system, and
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the corresponding Dirac operator is obtained by setting A D 0, Vsc D 0, and
Vel D V.r/. The set of commuting operators comprises H, J2, J3, P, and K, where

K D ˇ .˙̇̇ � LC 1/ D
�



 � LC 1 0

0 �


 � L � 1

�
: (143)

The corresponding eigenvalues are denoted E, j.jC 1/, mj , p D ˙1, and k, where

k D �
�

jC 1

2

�
and � D 2.j � l/ D k

jkj : (144)

Note that some authors, e.g., [4, 12, 13], use � D �k instead.
Neither the square nor the projection of L commutes with the Dirac Hamiltonian.

Therefore, the Dirac wave function cannot be an eigenfunction of either L2 or L3.
However, in the Dirac-Pauli representation, large and small components of the wave
function are eigenfunctions of L2, to the eigenvalues l L.l L C 1/ and l S.l S C 1/,
respectively, with l D �k� .�C1/=2 and l S D l LC�. Due to this feature, the Dirac-
Pauli representation is particularly useful in describing the angular dependence in
the spherically symmetric problems, and l � l L is used as an auxiliary label of the
eigenfunctions. The common eigenfunctions of J2, J3, and K may be expressed as
[1–5]

˚̊̊ nkmj .r; �; �/ D
�
˚L.r; �; �/

˚S.r; �; �/

�
D 1

r

"
Y l

kmj
.�; �/ Gnk.r/

i Y lC�
�kmj

.�; �/ Fnk.r/

#
(145)

where Y l
kmj

may be constructed by coupling ms D ˙1=2 spin eigenfunctions with
spherical harmonics Yl;mj˙1=2. Finally, the eigenvalue equation of the Dirac operator
may be reduced to the following system of two radial equations:"

V.r/Cmc2 �E; c
�� d

dr
C k

r

�
c
�
d
dr
C k

r

�
; V.r/ �mc2 �E

#"
Gnk.r/

Fnk.r/

#
D 0: (146)

Coulomb Potential
Usually the problem of an electron moving in the field of a Coulomb potential is
referred to as “hydrogen-like atom.” In fact, a quantum-mechanical treatment of a
hydrogen-like atom is equivalent to solving a two-body problem with a Coulomb
interaction. In the non- relativistic case, it may be solved exactly (assuming the
interacting particles are point-like). By the separation of the center of mass, the
six-dimensional Schrödinger equation is split into two three-dimensional equations.
One of them describes a free motion of the center of mass and the other one the
relative motion of the electron and the nucleus. In the relativistic case, each particle
has its own time and the interaction is not instant but spreads with the velocity of
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light. Therefore, a relativistic problem of two interacting particles cannot be solved
exactly, and the hydrogen-like atom in the Dirac theory is modeled by an electron
moving in an external Coulomb field with V D �Z=r , where Z is the “nuclear
charge.” The wave functions are usually expressed in the Dirac-Pauli representation
and are labeled by n, j, k (or l), and mj .

Both large and small radial components may be expressed as products of e��r and
a polynomial, where � D p

m2c2 �E2=c2. At the origin G.r/ and F .r/ behave
as rs , where s D pk2 �Z2 ˛2. Then, for jkj > 1 the wave function vanishes
for r D 0. However, for k D ˙1, s < 1 and the radial function is singular. This
singularity is weak and forZ˛ < 1 does not obstruct the normalizability of the wave
functions. The relativistic radial electron density is contracted relative to the non-
relativistic one (the Dirac hydrogen atom is “smaller” than the Schrödinger one).
Besides, it is nodeless since the nodes of the large and small radial components
(except the r D 0 node) never coincide.

The Dirac operator of Eq. (146) for V D �Z=r has a hidden supersymmetry.
Therefore, the system of radial equations, transformed to the second order, can be
separated [10, 11] giving in effect two Schrödinger-like equations:�

� d
2

d�2
C s.s ˙ 1/

�2
� 2Z

�
� 2e

�
Rṅk D 0 (147)

where � D r E=mc2,

e D mc2
�
1 � m

2c4

E2

�
(148)

Rṅk D q˙Gnk C q� Fnk, qC D
p
.jkj C s/=2s, q� D .k=jkj/p.jkj � s/=2s.

The spectrum is bounded from below since the negative continuum is shifted to
the positive-energy space and overlaps with the positive continuum. The discrete
eigenvalues are equal to

enjkj D � Z
2

2 Qn2 (149)

where Qn D n C s � jkj. By combining Eqs. (148) and (149), one can get a simple
expression for the discrete energy levels

Enjkj D � Z2

N.NC Qn/ ; (150)

where N D p˛2 Z2 C Qn2. The last equation is equivalent to the well-known
Sommerfeld formula. For ˛ ! 0, i.e., in the non-relativistic limit, s ! jkj; Qn!
n; N ! n. The expansion of the Dirac energy into a power series of .˛Z/2 yields
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Enjkj D mc2
�
1 � .˛Z/

2

2n2
� .˛Z/

4

2n3

�
1

jkj �
3

4n

�
C O

�
˛6 Z6

��
; (151)

where the first term is the rest energy of the electron, the second one is the
non-relativistic (Schrödinger) energy, and the third one is the relativistic (Pauli)
correction.

In the Dirac energy spectrum, apart from shifting the energy levels relative to the
Schrödinger ones, some of the degeneracies are removed. The Dirac energy levels
depend on jkj but not on its sign. In other words, they depend on the total angular
momentum quantum number j but not on l . Then, the energies of the states 2p1=2
and 2p3=2 are different, while the energies of 2p1=2 are the same as that of 2s1=2.
The splitting of the energy levels due to j is called the fine structure splitting. It is
relatively small for small Z, but it grows very fast with increasing nuclear charge
(it is proportional to Z4). Experimental measurements show that the energies of a
real hydrogen-like atom depend on l . In particular the energies of 2s1=2 and 2p1=2
are different. For the first time this splitting was measured for the hydrogen atom
in 1947 by Willis Lamb and Robert Retherford. The effect is called the Lamb shift.
It is explained on the ground of quantum electrodynamics. Its value grows rapidly
with increasing Z. For the hydrogen atom, it is equal to 1058MHz � 4 � 10�6 eV;
for the hydrogen-like uranium, it is about 468 eV, i.e., by eight orders of magnitude
larger than in hydrogen!

The effects resulting from the finite size of the nucleus, particularly important for
heavy ions, may be treated numerically [12–14]. Their influence on the structure of
the electronic spectrum supplies information about the distribution of the nuclear
charge and about the nuclear shape. The coupling between the nuclear and the
electronic angular momenta is responsible for additional splitting of the energy
spectrum – the hyperfine structure.

Two Dirac Particles

A many-electron time-evolution equation (2) cannot be Lorentz covariant – in a
covariant theory each particle has to have its own time coordinate. Besides, if the
particles interact, then the interaction is mediated by the virtual photons and spreads
with the velocity of light. The corresponding operators have to describe the coupling
with the electromagnetic field and cannot be expressed in a closed form. Also some
introductory steps, like the separation of the motion of the center of mass, cannot
be performed in a Lorentz-covariant model since the center of mass is not well
defined in the relativistic mechanics – one has to use the center of momentum
instead. Nevertheless, relativistic quantum chemistry is derived from many-electron
generalizations of the Dirac equation [12]. The most common approaches stem from
what is called the Dirac-Coulomb (DC) equation – the eigenvalue equation of the
n-electron DC Hamiltonian
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�
HDC
n �Eq

�
˚̊̊
.n/
q D 0; (152)

where q labels the eigenstates and ˚̊̊ .n/
q is the n-electron eigenfunction (in order

to simplify the notation, the energy and the wave functions are labeled by the
same index, i.e., the degeneracy is not shown explicitly). The DC Hamiltonian, in a
simplified notation, may be expressed as

HDC
n . r1; r2; : : : ; rn/ D

nX
jD1

HD
1 . rj /C

nX
i<j

1

rij
: (153)

It is a rather awkward composition of the Dirac one-body operators HD
1 with

electrostatic potential generated by fixed nuclei and a non-relativistic Coulomb
interaction term. A theory derived from this Hamiltonian is evidently non-covariant.
Also after the interaction operator is supplemented by the retardation and magnetic
corrections, the covariance is limited to the terms proportional to ˛2.

The eigenvalue problem of the Dirac-Coulomb Hamiltonian, additionally to
being unbounded from below, suffers from another mathematical inconvenience:
the discrete and continuous spectra of its one-electron part overlap. The wave
functions describing the discrete states are coupled by the interaction term to the
ones describing the continua. In effect, the spectrum of the DC Hamiltonian does
not contain any bound states. All its solutions either belong to a continuum or
are auto-ionizing. This property of the DC eigenvalue problem, discovered by G.
E. Brown and D. G. Ravenhall [34], is referred to as the Brown-Ravenhall (BR)
disease, and the continuum which spreads over the entire energy range (from �1
to C1) is known as the Brown-Ravenhall continuum. Most common escape is to
project the Hamiltonian to the positive-energy subspace of the complete Hilbert
space. In practical terms, this means that the many-electron basis, in which the
DC Hamiltonian is represented, is constructed as the Kronecker products of the
one-electron Dirac spinors corresponding to the positive-energy-state solutions of a
Dirac equation. In such a space the algebraic representation of the DC Hamiltonian
corresponds to an operator bounded from below and is free from the BR disease.
The projection method offers an efficient and conceptually simple solution, but it
carries several drawbacks. First, the projected variational space can never approach
completeness. Second, the results of the projection depend upon the choice of
the one-electron Dirac Hamiltonian. Third, an application of this approach in the
case of explicitly correlated wave functions is hardly possible. In practical terms,
all these difficulties have been solved [12–14]. However, the approach cannot
be considered as completely satisfactory from either mathematical or practical
perspective.

New directions aimed at linking relativistic quantum mechanics and quantum
electrodynamics have recently been formulated by Lindgren and Liu in a very
recent series of papers [16–18]. A complete description of this subject is given in
“Relativistic Hamiltonians” section of this handbook.
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Non-interacting Particles in an Electrostatic Field

The n-particle Dirac operator describing non-interacting particles in an external field
is referred to as the n-particle Dirac Hamiltonian. It is defined in the n-particle
Hilbert space

H D
n DH D˝n

1 D L2 �R3n�˝ C
4n : (154)

According to a definition more precise than Eq. (153), it is a direct sum of n one-
particle Hamiltonians. In the coordinate representation, it is a first-order differential
operator represented in the spinor space by a 4n�4n matrix. Its main features may be
seen already for n D 2, and therefore, for simplicity, the further discussion is limited
to two particles. A reader interested in general properties of n-particle models is
referred to monographs on relativistic many-body problems ([15] and references
therein). Thus, in the case of two identical particles, the Dirac Hamiltonian may be
expressed as

H2 D H1 ˚ H1 D H1 ˝ 1C 1˝ H1; (155)

where H1 and H2 denote, respectively, one- and two-particle operators and 1 is
the one-particle unit operator. One should remember that in a direct sum or in a
direct product, the particle number is defined by the position of the corresponding
operator. Thus, H1 ˝ 1 means that H1 acts in the space of particle 1 and 1 – in
the space of particle 2. If the particles move in the field of an external electrostatic
potential

V2. r1; r2/ D V1. r1/C V1. r2/ (156)

then [cf. Eq. (92)]

H1 D
�
.V1 Cmc2/ 1 c .


 � p/
c .


 � p/ .V1 �mc2/ 1

�
: (157)

The two-electron Dirac Hamiltonian is a 16 � 16 matrix operator which may be
expressed as

H2. r1; r2/ D266664
V2 1 c 1˝ .


 � p/ c .


 � p/˝ 1 000

c 1˝ .


 � p/ .V2 � 2mc2/ 1 000 c .


 � p/˝ 1

c .


 � p/˝ 1 000 .V2 � 2mc2/ 1 c 1˝ .


 � p/

000 c .


 � p/˝ 1 c 1˝ .


 � p/ .V2 � 4mc2/ 1

377775
(158)
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where

.


 � p/˝ 1 D

26664
p3 0 p1 � ip2 0

0 p3 0 p1 � ip2
p1 C ip2 0 �p3 0

0 p1 C ip2 0 �p3

37775 (159)

1˝ .


 � p/ D

26664
p3 p1 � ip3 0 0

p1 C ip2 �p3 0 0

0 0 p3 p1 � ip2
0 0 p1 C ip2 �p3

37775 : (160)

If the particles are identical, then, according to the Pauli principle, the Hilbert
space H D

n in which the eigenvalue problem of the n-particle Dirac Hamiltonian is
defined has to be reduced to its antisymmetric subspace AH D

n � H D^n
1 . Thus, if

˚̊̊
.1/
a and ˚̊̊ .1/

b are eigenfunctions of H1 to the eigenvalues Ea and Eb, respectively,
then

H2 ˚̊̊
.2/
ab D E.2/

ab ˚̊̊
.2/
ab ; (161)

where

˚̊̊
.2/
ab D

1p
2

h
˚̊̊ .1/

a ˝ ˚̊̊ .1/
b � ˚̊̊ .1/

b ˝ ˚̊̊ .1/
a

i
: (162)

is an antisymmetric eigenfunction of H2 to the eigenvalue E.2/
ab D E.1/

a C E.1/
b . The

16-component two-particle wave function expressed in terms of large and small
components of the one-electron spinors reads

˚̊̊
.2/
ab D

1p
2

2666664
˚
.1/
L a ˝ ˚.1/

L b � ˚.1/
L b ˝ ˚.1/

L a

˚
.1/
L a ˝ ˚.1/

S b � ˚.1/
L b ˝ ˚.1/

S a

˚
.1/
S a ˝ ˚.1/

L b � ˚.1/
S b ˝ ˚.1/

L a

˚
.1/
S a ˝ ˚.1/

S b � ˚.1/
S b ˝ ˚.1/

S a

3777775 �
2666664
˚
.2/
LL ab

˚
.2/
LS ab

˚
.2/
SL ab

˚
.2/
SS ab

3777775 : (163)

From here one can easily get the symmetry properties of the two-particle
components:

.12/˚
.2/
LL D �˚.2/

LL ;

.12/˚
.2/
LS D �˚.2/

SL ;

.12/˚
.2/
SL D �˚.2/

LS ;

.12/˚
.2/
SS D �˚.2/

SS ;

(164)
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Fig. 2 Spectrum of the Dirac Hamiltonian with an external potential supporting bound states for
one electron (a) and for two non-interacting electrons (b). In the one-electron case, there are two
continua: CC and C� corresponding, respectively, to the positive- and to the negative-energy
states. The discrete energies, D.1/, are located in the energy gap between the two continua.
The continuum CS of the non-relativistic Schrödinger model overlaps with CC. In the two-
electron case, the states with both electrons occupying the same one-electron continuum generate
either upper or lower continuum, CCC and C��, respectively. The Brown-Ravenhall continuum,
CC�, spreads from �1 toC1 and comprises two-electron states with one electron in CC and
the other one in C�. If one electron occupies a discrete state and the other one CC = C�, we get
the continuum CdC = Cd� associated with the one-electron ionization. The discrete two-electron
energies, D.2/, correspond to both electrons in D.1/ and are located between C�� and CCC

where .12/ is the transposition operator of the particles and the indices ab have been
omitted.

The structure of the two-electron spectrum resulting from different combinations
of the one-electron states is shown in Fig. 2 and in Table 2. As one can see, apart
from the positive and negative energy continua (similar to the one-electron case)
and the continua associated with the ionization of one of the electrons, the Brown-
Ravenhall continuum spreads over the entire energy range. All discrete states of
the two-electron Hamiltonian are degenerate with the states of this continuum.
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Table 2 Structure of spectrum of two-electron Dirac Hamiltonian

One-electron states Two-electron states

E
.1/
a E

.1/
b E

.2/
a b D E

.1/
a CE.1/

b Rangea Description

D.1/ D.1/ D.2/
��2mc2;C2mc2� Discrete

CC CC CCC �
2mc2;C1� Positive continuum

C� C� C�� ��1;�2mc2� Negative continuum

CC C� CC� .�1;C1/ Brown-Ravenhall continuum

D.1/ CC CdC
	
2mc2 �E.1/

d ;C1



Positive-energy ionization

C� D.1/ Cd�
	
�1;�E.1/

d



Negative-energy ionization

aE
.1/
d – discrete one-electron energy level

However, the discrete states are well defined and do not contain any contribution
of the BR continuum as long as the electron interaction terms are neglected.
Thus, the discrete solutions of the two-electron Dirac equation can be exactly
determined. In particular, one can eliminate the influence of the BR continuum
by the separation of the two-electron eigenvalue problem to two independent one-
electron problems.

The structure of spectra composed of mutually overlapping discrete and continu-
ous sections and also containing auto-ionizing states may be efficiently studied using
the complex coordinate rotation (CCR), also known as the complex scaling, method
[28]. The basic theorem of the method says that the transformation r ! r ei�

performed on the Hamiltonian does not change the bound-state energies while the
continua move to the complex plane. After the transformation the Hamiltonian
is non-Hermitian and its eigenvalues z are complex. The energies are equal to
E D Re.z/, and the imaginary parts, in the case of auto-ionizing states, are
related to their widths � D �2 Im.z/. The spectra of one- and two-particle Dirac
Hamiltonian, after the rotation by � , are shown in Fig. 3. The discrete levels are
separated from the continua, and each continuum occupies a specific area in the
complex plane.

The ideas based on CCR, recently applied in numerical studies of spectral proper-
ties of two-electron Dirac operator [35], present a useful tool for a description of the
structure of the computed spectrum. In a discrete representation, the eigenvalues of
the Hamiltonian matrix corresponding to the discrete and to the continuum states are
mixed and in many cases are difficult to distinguish. In the CCR calculations, using
the same basis set as in the standard ones, one can see which eigenvalues correspond
to the well-described discrete energies, which ones to the well-described continuum
states, and which ones to poorly described mixtures. This kind of diagnostics may
be done in both one- and two-electron calculations. Also the pedagogical features
of CCR are worth noticing. The structure of the two-electron DC spectrum is
complicated and difficult to describe using the traditional formalism. With CCR, one
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Fig. 3 The same as in Fig. 2 but after complex coordinate rotation by the angle � . The continua
are represented by lines and strips extending towards the imaginary axis. The dots in the real axis
represent the bound-state energies. Now the Schrödinger and the positive Dirac continua, CS and
CC, respectively, are separated

can easily distinguish different kinds of continua and explain what is the meaning of
the statement that the non-projected DC Hamiltonian of interacting particles does
not have bound states. The essential difference between two Coulomb-confined non-
interacting and interacting electrons becomes much easier to discuss with the picture
of the CCR spectrum in hand.

In the non-relativistic limit, Eq. (161) transforms to the two-electron LL equation:

.


 �ppp/2˚LS C .


 �ppp/1˚SL D E ˚LL;

.


 �ppp/2˚LL D 2m˚LS; (165)

.


 �ppp/1˚LL D 2m˚SL:

The elimination of ˚LS and ˚SL gives a two-electron Schrödinger equation.

Two Interacting Particles

The interaction operator couples the one-electron states with the states of the
Brown-Ravenhall continuum. As a consequence, the DC Hamiltonian, as defined in
Eq. (153), has no bound-state solutions. It can be used for a description of physical
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properties of many-electron systems if it is projected to the positive-energy subspace
of the Hilbert space. In the case of two electrons, this implies using a projected
Hamiltonian

HDCC
2 . r1; r2/ D …C.1/…C.2/HDC

2 . r1; r2/…C.2/…C.1/; (166)

where the projection operators, defined in Eq. (84), have to be related to a specific
one-electron Hamiltonian – they project on the space of the positive-energy states of
this very Hamiltonian. The resulting model is known as the no-pair approximation
since it cuts off a possibility of the creation of virtual electron-positron pair. It
suffers from many drawbacks [12, 13, 15], but it is a basis for computationally
stable and most commonly used approaches [12, 13]. A discussion of beyond-no-
pair approaches may be found in a recent work by Liu and Lindgren [17].

A simple and transparent way of solving relativistic many-electron problems is
based on using a representation of the Dirac-Coulomb Hamiltonian in the Fock
space. A discussion of this subject may be found, e.g., in [12, 13].

Summary

Contrary to the logically closed non-relativistic quantum mechanics, the relativistic
one suffers from many inconsistencies and artifacts. In particular, exact many-
particle generalizations are not possible, and the one-particle formulation requires
introduction of infinitely many particles which are not described by the mathemat-
ical formalism. All contradictions and conceptual difficulties have been removed
by quantum electrodynamics, a complete theory of electromagnetic interactions.
But, in chemical applications, relativistic quantum mechanics cannot be replaced
by quantum electrodynamics due to complexity of the latter. However, over the
last several decades, the sources of artifacts generated by the relativistic quantum
mechanics have been identified and efficient algorithms for solving many-electron
relativistic equations have been developed. As it was already mentioned, the
construction of a bridge between relativistic quantum mechanics and QED based
on solid mathematical foundations started several years ago and has been presented
in recent works [15–18] and in section Relativistic Hamiltonians.

Apart from the works aimed at developing approaches which are directly linked
to the QED limit of relativistic quantum mechanics, studies on mathematical prop-
erties of different forms of the Dirac-Coulomb Hamiltonian attract attention of some
researchers. In particular, an interesting and important monograph by Moiseyev
[28], concerned with non-Hermitian quantum mechanics, shows possibilities of
some nonstandard ways of approaching problems which in traditional terms would
be classified as “ill defined” [35].

Acknowledgements The author is most grateful to W. H. Eugen Schwarz, Wenjian Liu, and
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Abstract

In the study of electronic structure of matter, the atomic nuclei play the role
of centers of force to which the electrons are bound. Within this context,
almost all of the internal details of nuclear structure can be neglected, and the
nuclei can be considered as objects with static extended distributions of charge
and magnetic moment. This chapter presents a discussion of nuclear charge
density and magnetization distributions. The underlying general principles are
discussed, and details are given for model distributions that are widely used in
relativistic quantum chemistry. Finally, the principal effects of extended nuclear
distributions of charge and magnetic moment are pointed out.
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Introduction

In a large part of chemistry and physics, atomic nuclei are considered mainly as
massive point-like centers of positive charge, which attract the surrounding electrons
and repel other nuclei. The attractive and repulsive Coulomb interactions between
the constituents of matter, as well as their kinetic energy, must be balanced if
matter shall form stable structures. The application of quantum mechanics to the
problem of describing the behavior of electrons and nuclei under these interactions
finally leads – in combination with structure optimization according to the energy
minimization principle – to the understanding of stable molecular and crystalline
structures as representations of local minima on high-dimensional total energy
hypersurfaces.

The simplistic description of atomic nuclei just mentioned above requires
refinement in various aspects. On the one hand, the nuclei are known to be extended
(or finite) objects, composed of smaller constituents (nucleons or quarks) bound
together by the strong force (mediated through exchange of mesons or gluons).
This strong force outweighs the repulsive electromagnetic interaction between the
positively charged nuclear constituents in stable nuclei. Consequently any spatial
nuclear property should be represented by an extended distribution, instead of a
Dirac delta distribution (finite nucleus case, FNC, versus point-like nucleus case,
PNC). On the other hand, the atomic nuclei, which frequently also have a magnetic
dipole moment, can serve as most natural and most sensitive probes of the electronic
structure of matter. Several experimental techniques, e.g., nuclear magnetic or
quadrupolar resonance spectroscopy (NMR, NQR) and Mössbauer spectroscopy,
take advantage of this fact.

It follows already from these quite general considerations that a closer exami-
nation of models for extended nuclei is of importance in all quantum mechanical
studies aiming at an accurate representation of the electronic structure in atoms,
molecules, and solids.

The present chapter deals with the representation of extended nuclei in theoretical
approaches to the problem of electronic structure. The next section provides a rather
general discussion of the properties of atomic nuclei, including a look at the current
status of the chart of nuclides. Then follows a section that treats nuclear charge
density and magnetization distributions in greater detail, with particular emphasis
on spherically symmetric nuclear charge density distributions and purely dipolar
nuclear magnetization distributions. Finally, the importance of extended nucleus
models in several areas of relativistic quantum chemistry and atomic and molecular
physics is demonstrated.

Nucleons and Nuclei

For the purpose of studies of the electronic structure of atoms, molecules or periodic
systems (polymers, layers, surfaces, crystals), the atomic nuclei may be regarded as
compact objects carrying positive electric charge and possibly a magnetic moment.
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Table 1 Experimental values of some properties of the nucleons and other subatomic particles
[1]a

Particle
Charge
ratio q/e

Mass ratio
m=me g Factorb

Magnetic moment
� (in 10�26 J T�1)

Proton (p) C1 1836.15267389(17) 5.585694702(17) 1.4106067873(97)

Neutron (n) 0 1838.68366158(90) �3.82608545(90) �0.96623650(23)

Electron (e) �1 1 �2.00231930436182(52) �928.4764620(57)

Muon (�) �1 206.7682826(46) �2.0023318418(13) �4.49044826(10)
aThe numerical value of the standard uncertainty, given in parentheses, refers to the corresponding
last digits of the quoted result
bSee [2] for the adopted convention on sign of g factors

The nuclei can be considered as being composed of protons (p), carrying an electric
charge qp D Ce (e denotes the elementary charge), and neutrons (n) with qn D 0.
These particles are hadrons, i.e., they are subject to the short-ranged attractive strong
nuclear force (which overcomes the repulsive Coulomb interaction between the
protons). They are the lightest members of this kind of particles, and they have
nearly equal mass (see Table 1). Hence, the term “nucleon” has been introduced and
is being used to cover both protons and neutrons.

The nucleons are fermions with spin (intrinsic angular momentum) s of squared
magnitude s2 D s.s C 1/„2, where s D 1=2 is the associated spin quantum number
and „ D h=.2�/ is the reduced Planck constant. Both types of nucleons have
an intrinsic magnetic dipole moment �i D i s D gi�Ns=„ (i D n; p), where
�N D e„=.2mp/ denotes the nuclear magneton (mp is the mass of the proton).
These relations define two scalar quantities, the nuclear magnetogyric ratio i and
the nuclear g factor gi . Their sign shows whether the two vectors s and �i are
oriented in parallel or antiparallel. The scalar quantity �i D sgi�N is frequently
simply called the “magnetic moment.” Recommended values [1] for these quantities
are shown in Table 1, which includes also corresponding data for the electron (e)
and the muon (�) for comparison. The nucleons have no other higher electric or
magnetic multipole moments beyond the electric monopole moment (charge) and
the magnetic dipole moment.

It is known that the nucleons are extended rather than point-like objects (in
contrast to the electron, which has neither substructure nor smaller constituting com-
ponents according to present-day knowledge). As for any other quantum mechanical
system, the answer to the question of the size of the nucleons, expressed in terms
of some radius, depends on the property or quantity being studied (size of the
distribution of mass, of charge, or of magnetic moment) and on the probe being used.
There are currently available two significantly different values for the proton rms
charge radius [1, 3]: rch

p D 0:8751.61/ fm (from H and D transition frequencies and
electron-proton scattering) and rch

p D 0:84087.39/ fm (from Lamb shift in muonic
hydrogen). The disagreement is not yet understood and should in fact be absent
if both electron-proton and muon-proton interaction were purely electromagnetic
and of identical strength. The proton magnetic radius is rmag

p D 0:777.16/ fm [3].
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Also available are values for the neutron mean square charge radius, h�rch
n

�2i D
�0:1161.22/ fm2, and for the neutron magnetic radius, rmag

n D 0:862.9/ fm [3].
Neither the proton nor the neutron is an “elementary particle”; they are both

composed of smaller constituents called quarks: p D .uud/ and n D .udd/, where
u denotes the up quark (qu D C2=3 e) and d denotes the down-quark and e
denoting elementary charge (qd D �1=3 e/. These quarks, spin-1=2 fermions
themselves, are susceptible to elektroweak and strong interactions. They are bound
together through exchange of gluons, the massless spin-1 gauge bosons of the strong
nuclear force. The detailed study of this strong interaction is the domain of quantum
chromodynamics (QCD) and is beyond the scope of this chapter.

The two integers proton number (nuclear charge number), Z, and neutron
number, N , completely specify a nuclide, i.e., a type of atomic nucleus. Their sum
A D Z C N , the nucleon (or mass) number of the nuclide, is used together with
the element symbol X to denote a particular isotope of that element (AX, e.g., 2H,
7Li, 12C, 40K, 200Hg, 238U). An atomic ion with n electrons can then be denoted as
AX.Z�n/C .0 	 n < Z/, but this notation does not allow to distinguish between
the bare nucleus (n D 0, AX denotes the nuclide) and the neutral atom (n D Z,
AX denotes the atom). Recent editions of the chart of nuclides [4,5] provide data for
more than 3000 experimentally observed nuclides (see also Fig. 1). The nuclides can
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Fig. 1 Chart of nuclides showing stable nuclides (black dots) and primordial radionuclides (blue
dots) tracing out the bottom of the “valley of stability,” as well as artificial radionuclides with
longest confirmed half-life (for Z D 43, Z D 61 and Z > 83, red dots). “Magic” proton/neutron
numbers are indicated by horizontal/vertical lines (All data taken from [4])
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Table 2 Some ground-state properties of selected nuclides AX (nuclear spin quantum number I
and parity label � , magnetic moment �, electric quadrupole moment Q, rms charge radius a)

Nuclide I� a �b=�N Qc=mb ad=fm
1n 1/2C �1.91304273(45) – –
1H 1/2C C2.7928473508(85) – 0:8751
2H 1C C0.8574382311(48) 2.860(15) 2:1421
7Li 3/2� C3.256427(2) �40.1 2:4440
12C 0C – – 2:4702
13C 1/2� C0.7024118(14) – 2:4612
40K 4� �1.298100(3) �73 3:4381
200Hg 0C – – 5:4551
201Hg 3/2� �0.5602257(14) 387(6) 5:4581
235U 7/2� �0.38(3) 4936(6) 5:8337
238U 0C – – 5:8571

aFrom [5]
bFrom [1, 9]
cFrom [10], in millibarn (1mb D 10�31 m2)
dFrom [1, 20]

be grouped further into four classes, depending on whether the proton and neutron
numbers are even or odd.

The full characterization of a stationary state of an atomic nucleus requires, of
course, further quantities, in addition to proton and neutron number. These include
the nuclear spin quantum number I and the parity � of the state, usually denoted
together in shorthand as I� (see Table 2 for some examples). Nuclei with even mass
number A have integer spin quantum numbers (they are bosons), whereas those
with odd mass number have half-integer spin quantum numbers (they are fermions).
The fact that all even-even nuclei in their ground states have I D 0 supports
the suggestion that the nucleons tend to couple their individual spins pairwise,
similar to the way of spin coupling known from the electrons. In consequence, the
uncoupled (or valence) nucleon(s) are primarily responsible for a resulting nonzero
total nuclear spin.

In general, the nuclear spin quantum number I characterizes the state-specific
nuclear angular momentum (nuclear spin) I of squared magnitude I2 D I .I C1/„2.
The existence or nonexistence of nuclear electric and magnetic multipole moments
is intimately related to the nuclear spin (and to the assumption that parity is a
good quantum number for stationary nuclear states) [6]. There exist then nuclear
multipole moments of all orders 2l with 0 < l 	 2I . More specifically, electric
multipole moments require l to be even, and magnetic multipole moments require
l to be odd. Hence, electric multipole moments of lowest order are the electric
quadrupole moment (l D 2) and the electric hexadecapole moment (l D 4), whereas
magnetic multipole moments of lowest order are the magnetic dipole moment
(l D 1) and the magnetic octupole moment (l D 3).

With a nuclear state function at hand, denoted as j�IMI i (�I 	 MI < I ,
and � includes any additional quantum numbers required), all properties of the
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corresponding nuclear state could be evaluated, in principle. Nuclear properties of
interest for (nonrelativistic or relativistic) electronic structure calculations include,
in particular:

(1) the particle number density distributions for protons, np.r/, for neutrons, nn.r/,
and for nucleons, nnuc.r/, which are connected through

Annuc.r/ D Z np.r/CN nn.r/;
Z

d3r ni .r/ D 1: (1)

(2) the nuclear charge density distribution �.r/, normalized to the total nuclear
charge Z

d3r�.r/ D Ze: (2)

(3) if I > 0, the magnetization (or magnetic moment density) distribution m.r/,
normalized to the nuclear magnetic dipole moment �Z

d3r m.r/ D � D I;  D g�N=„: (3)

Here  and g denote, respectively, the magnetogyric ratio and nuclear g factor
of the nucleus under study.

(4) if I > 1=2, the nuclear electric quadrupole moment QZ
d3r.3z2 � r2/�.r/ D

r
16�

5

Z
d3rr2Y20.Or/�.r/ D Qe (4)

(more precisely, the nuclear charge density distribution in this integral is the
one obtained from the nuclear state function j�II i [7]; Y20.Or/ is a standard
spherical harmonic; the position unit vector Or D r=r is equivalent to the two
angular coordinates in the spherical coordinates system). A nonzero value of Q
indicates a deformed nuclear charge density distribution that is not spherically
symmetric. An axially symmetric nucleus with the shape of a prolate ellipsoid
has a positive quadrupole moment (Q > 0), whereas a negative quadrupole
moment (Q < 0) occurs when the shape is oblate ellipsoidal.

The nuclear magnetic dipole and electric quadrupole moments give rise to the
so-called hyperfine interaction, i.e., the interaction of the electrons with nuclear
multipolar moments. Therefore, these multipole moments can be extracted from,
e.g., hyperfine splitting (hfs) data derived from optical spectroscopy but also
from data obtained from electron paramagnetic resonance (EPR), nuclear magnetic
resonance (NMR), and nuclear quadrupolar resonance (NQR) spectroscopy. At
present, the combination of accurately measured nuclear quadrupole coupling
constants (NQCC) e2qQ=h with electric field gradients (EFG) eq obtained from
sophisticated quantum chemical calculations provides the best way of access to
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accurate nuclear electric quadrupole moments Q (see [8] and references therein for
further details of this approach). Extensive tables are available that provide critically
reviewed data of nuclear magnetic dipole moments [9] and electric quadrupole
moments [9–11] (see also [12,13]). A small subset of such data is exemplarily shown
in Table 2.

As shown above, the nuclear electric monopole moment (charge) and the
nuclear multipole moments are integrated quantities. Hence, they do not provide
any detailed information on the nuclear charge density distribution �.r/ and the
nuclear magnetization distribution m.r/ but have instead the role of normalization
constants. Details of the nuclear charge density and magnetization distributions
are accessible through elastic electron-nucleus or myon-nucleus scattering, and the
information gained from these experiments has been parametrized in terms of model
distributions [14–16] (see the next section for further details).

The most important nuclear parameters, extracted from these studies, are the
size parameters (rms radii a, see also [17–20]) and measures for the diffuseness of
the charge density distributions in their peripheral region (skin thickness t , i.e., the
radial distance over which the distribution decreases from 90 % to 10 % of its central
value). Values for the rms charge radius a are included in Table 2. In comparison
to the typical dimensions of atomic and molecular structure (1Å D 10�10 m), the
atomic nuclei are about five orders of magnitude smaller (1 fm D 10�15 m). In the
case of absence of experimental data, a good approximate value for the rms charge
radius a of nuclides AX close to the bottom of the “valley of stability” (see Fig. 1)
can be obtained from the mass number [21]

a.AX/=fm D 0:836A1=3 C 0:570; A > 9: (5)

This relation may be augmented with a relation between mass number and proton
number, like [22]

A.Z/ D 4:467 � 10�3Z2 C 2:163Z � 1:168; 1 	 Z 	 100; A.1/ D 1; (6)

to obtain rms charge radii changing monotonously and rather smoothly in a sweep
through the periodic table, allowing extrapolation even to superheavy elements
(Z > 100). A more general expression for rms charge radii, dependent on mass
number A and neutron excess N �Z, is [23]

a.Z;N / D rch
0 A

1=3

�
1C cch

1

1

A
C cch

2

N �Z
A

�
; A D Z CN; (7)

with parameters rch
0 D 1:240 fm, cch

1 D 1:646, cch
2 D �0:191. Equation (7)

describes particularly well the rms charge radii of even-even nuclides and may be
used for other nuclides too. The other parameter, the skin thickness t of the nuclear
charge density distribution, is practically constant for nuclei with sufficiently large
mass [17]:

t D 2:3 fm; A > 45: (8)



58 D. Andrae

Simple, but already quite realistic models for the charge density distribution that
depend on just one or two parameters can be (and always should be) standardized
to data for rms charge radius a and skin thickness t , whenever such data are
available. Parameter values for three widely used extended nuclear charge density
distributions (the homogeneous, the Gauss-type, and the Fermi-type distributions;
see next section for details), which are in accordance with such a standardization,
are available [24].

Nuclear Charge Density and Magnetization Distributions

From static distributions of the nuclear charge (�.r/) and of the nuclear magnetic
dipole moment .m.r//, the electrostatic scalar potential˚.r/ and the vector potential
A.r/ are obtainable. Both are required for (nonrelativistic or relativistic) electronic
structure calculations. The details are as follows [25]:

(1) the nuclear charge density distribution �.r/ leads to the scalar potential

˚.r/ D 1

4�"0

Z
d3r 0

�.r0/
jr � r0j ; (9)

which contributes via the nuclear potential energy function Vnuc.r/ D qe˚.r/ D
�e˚.r/ to the potential energy of the electronic system. The electric field
generated by the nucleus is E.r/ D �r˚.r/ D �grad˚.r/.

(2) the nuclear magnetization distribution m.r/ gives rise (within Coulomb gauge,
r � A D 0/ to a vector potential

A.r/ D �0

4�

Z
d3r 0
r 0 �m.r0/
jr � r0j : (10)

The magnetic field generated by the nucleus is B.r/ D r � A.r/ D curl A.r/.

These relations assume that the charge density and magnetization distributions, as
well as the potentials and the fields, vanish at infinity. The scalar potential ˚.r/ and
the vector potential A.r/ then enter into the Hamiltonian of the electronic structure
calculation at the usual places.

Spherically symmetric charge density distributions and purely dipolar magneti-
zation distributions are of largest importance for the practical work of calculating
the electronic structure and other properties of matter. The following subsections
provide detailed information on such distributions. The system of units is changed
to atomic units („ D e D me D 4�"0 D 1, �0=.4�/ D ˛2, ˛ � 1=137 denotes the
Sommerfeld fine structure constant).
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Spherically Symmetric Charge Density Distributions

The fundamental working equations for spherically symmetric nuclear charge
density distributions are given below. The presentation follows closely [22, 26].

Given is a spherically symmetric nuclear charge density distribution, �.r/ D
�.r/, that is properly normalized,Z

d3r�.r/ D 4�
Z 1
0

dr r2�.r/ D Z: (11)

Radial expectation values of this normalized charge density for an arbitrary function
of the radius, f .r/, are then obtained from

hf .r/i D 4�

Z

Z 1
0

dr r2f .r/�.r/: (12)

Of particular importance are the expectation values of integral powers of the radius

hrki D 4�

Z

Z 1
0

dr rkC2�.r/; kmin 	 k 	 kmax; hr0i D 1: (13)

For k < kmin, the integrand becomes singular at the lower boundary, whereas a finite
upper limit kmax (kmax < 1) applies only for charge density distributions that do
not decrease rapidly enough as r approaches infinity. Also of interest is

hln.r/i D 4�

Z

Z 1
0

dr r2 ln .r/�.r/: (14)

These expectation values are related to the moment function [27],

M.p/ D hrpi1=p .p ¤ 0/; M.0/ D exp .hln.r/i/ : (15)

Hence, the rms charge radius of �.r/ is a D hr2i1=2 D M.2/. The nuclear charge
form factor, a quantity of importance, e.g., in elastic electron-nucleus scattering, is

F .q/ D 4�

Z

Z 1
0

dr r2j0.qr/�.r/ D hj0.qr/i (16)

(see the appendix to this chapter for the definition of the spherical Bessel functions
jn.x//. The form factor depends on the magnitude of the transferred linear
momentum, q D jpf � pij (initial momentum pi, final momentum pf, jpij D jpfj/,
and is an even function .F .�q/ D F .q//. Its power series expansion for small q,

F .q/ D
1X
kD0

.�1/k
.2k C 1/Š hr

2kiq2k D 1 � 1
6
hr2iq2 CO.q4/; (17)
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relates the form factor to the radial expectation values hr2ki (k 
 0) of the nuclear
charge density distribution. Equation (16) can also be understood as a Fourier-Bessel
(or Hankel) integral transform (of order zero). There exists therefore an inverse
integral transform relation,

�.r/ D Z

2�2

Z 1
0

dq q2j0.qr/F .q/; (18)

that would allow to obtain the charge density distribution itself directly from
the charge form factor if the latter were accurately known from the scattering
experiments over the full infinite range of q. This, however, is not the case. The
experimentally available data for F .q/ always require augmentation for both very
small and very large values of the transferred momentum.

The spherically symmetric nuclear charge density distribution �.r/ leads to a
spherically symmetric potential energy function Vnuc.r/, given implicitly as

�rVnuc.r/ D 4�
�Z r

0

ds s2�.s/C r
Z 1
r

ds s�.s/

�
: (19)

The first and second derivatives of this potential energy function are

V 0nuc.r/ D
d

dr
Vnuc.r/ D 4�

r2

Z r

0

ds s2�.s/; (20)

V 00nuc.r/ D
d2

dr2
Vnuc.r/ D 4� �.r/ � 2

r
V 0nuc.r/: (21)

The potential energy function Vnuc.r/ is, in general, continuous and differentiable.
Charge density distributions �.r/, which have a discontinuity at some radius r D R,
lead to a discontinuity only in the second and all higher derivatives of Vnuc.r/ at
that same radius. The power series expansions for small r of the charge density
distribution,

�.r/ D
1X

mD�1
�mr

m D � � 1
r
C �0 C �1r CO.r2/; (22)

and of the potential energy function,

Vnuc.r/ D
1X
kD0

vkr
k D v0 C v1r CO.r2/; (23)

are related through

v0 D �Zhr�1i; vk D 4�

k.k C 1/�k�2; k 
 1: (24)
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Fig. 2 Spherical charge density distributions �.r/ (with indication of their rms radius a D
hr2i1=2/. Upper row: (a) Homogeneous or uniform distribution, (b) Gauss-type distribution, and
(c) Fermi-type distribution (with b D 0:15). Lower row: (d) Fourier-Bessel distribution for nuclide
12C [18] and (e) sum-of-Gaussians distribution for nuclide 12C [16] (See text for further details)

The coefficient v0 D Vnuc.0/ represents the depth of the potential well generated by
the extended nuclear charge density distribution.

The remaining parts of this subsection provide details for some widely used
charge density distributions �.r/, shown in Fig. 2, including expressions for the
expectation values hrki and hln.r/i (as required for the moment function), and for
the corresponding electrostatic potential energy functions Vnuc.r/. The expression
for the form factor F .q/ is included as well in some cases.

The definitions of special mathematical functions and expressions occurring at
several places below are given in the appendix to this chapter.

Point-like charge density distribution:

�.r/ D �0ı.r/ D �0

4�r2
ı.r/; �0 D Z: (25)

Form factor:
F .q/ D 1: (26)

Potential energy function:

Vnuc.r/ D �Z
r

.r > 0/: (27)
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Homogeneous (or uniform) charge density distribution (see Fig. 2a): This
piecewise defined distribution has a single parameter, the model-specific radial size
parameter RH.

�.r/ D �0 �.RH � r/; �0 D 3Z

4�R3H
: (28)

Expectation values required to evaluate the moment function M.k/ (k integer):

hrki D 3

k C 3R
k
H .k 
 �2/; hln.r/i D ln.RH/ � 1

3
: (29)

The relation RH D
p
5=3 a adapts the model-specific radial size parameter RH to

the rms radius a of a given nuclear charge density distribution.
Form factor:

F .q/ D 3

qRH
j1.qRH/: (30)

Potential energy function:

Vnuc.r/ D

8̂̂<̂
:̂
� 3Z
2RH

�
1 � 1

3

r2

R2H

�
0 	 r 	 RH;

�Z
r

r > RH:

(31)

Gauss-type charge density distribution (see Fig. 2b): This distribution has a
single parameter, the model-specific radial size parameter RG.

�.r/ D �0 exp
��r2=R2G� ; �0 D 1

� .5=2/

3Z

4�R3G
: (32)

Expectation values required to evaluate the moment function M.k/ (k integer):

hrki D 3

k C 3
� ..k C 5/=2/
� .5=2/

RkG .k 
 �2/; hln.r/i D ln.RG=2/C 1 � E

2
:

(33)

The relation RG D
p
2=3 a adapts the model-specific radial size parameter RG to

the rms radius a of a given nuclear charge density distribution.
Form factor:

F .q/ D exp.�q2R2G=4/: (34)
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Potential energy function:

Vnuc.r/ D �Z
r

erf.r=RG/: (35)

Fermi-type charge density distribution (see Fig. 2c): This distribution has two
parameters, the model-specific radial size parameter RF and a parameter b.0 <
b � 1/ related to the skin thickness t D R10 �R90.

�.r/ D C

1C exp

�
r �RF

bRF

���1
D C

2


1 � tanh

�
r �RF

2bRF

��
; (36)

C D �0f D 1

6b3F2.1=b/

3Z

4�R3F
; �.0/ D �0 D C

f
; f D 1C e�1=b; (37)

�.R90/ D 9

10
�0; �.RF/ D C

2
; �.R50/ D �0

2
; �.R10/ D 1

10
�0; (38)

R50

RF
D 1C b ln .2f � 1/ D 1C b ln .1C e�1=b/; (39)

t

RF
D b ln

90f � 9
10f � 9 D b ln

81C 90 e�1=b

1C 10 e�1=b
: (40)

Expectation values required to evaluate the moment function M.k/ (k integer):

hrki D .k C 2/ŠFkC2.1=b/
2F2.1=b/

.bRF/
k .k 
 �2/; (41)

hln.r/i D ln.bRF/C G2.1=b/

F2.1=b/
: (42)

From these expressions follows for the ratio of skin thickness t to rms radius a

t

a
D
�

F2.1=b/

12F4.1=b/

�1=2
ln
81C 90 e�1=b

1C 10 e�1=b
: (43)

The three ratios R50=RF, t=RF, and t=a, each of them a function of the parameter b
alone, are shown in Fig. 3. For sufficiently small values of b .b < 1=10/,

R50 � RF;
t

RF
� .4 ln.3//b;

t

a
�
 
4

r
5

3
ln.3/

!
b: (44)

The relations (41) and (43) can serve to adapt the two model-specific parameters to
given data for nuclear charge rms radius a and skin thickness t . First, inversion of
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Fig. 3 Important length ratios for the Fermi-type distribution, shown as functions of parameter
b. (a) R50/RF (see Eq. (39)), (b) t /RF (see Eq. (40)), and (c) t /a (see Eq. (43)). The dashed lines
represent the simple relations of Eq. (44)

Eq. (43) gives the parameter b, and then the model-specific nuclear size parameter
RF follows from Eq. (41) with k D 2.
Potential energy function:

Vnuc.r/ D �Z
r


1 � F2.1=b; z/

F2.1=b/
C z

2

F1.1=b; z/

F2.1=b/

�
; z D r

bRF
: (45)

Fourier-Bessel charge density distribution (see Fig. 2d): This piecewise defined
distribution is a “model-independent” representation of the nuclear charge density
distribution as derived from electron scattering data [28] (see [16, 18] for sets of
parameters). It vanishes exactly for r 
 Rcut.

�.r/ D C�.Rcut � r/
KX
vD1

avj0.qv; r/; qvRcut D v�; (46)

C D 1

S0

Z

4�R3cut
; �.0/ D C

KX
vD1

av: (47)

The values obtained from the finite expansion (46) are not strictly nonnegative. The
coefficients av are usually given to only five significant digits (at most) and may
alter in sign. A global factor C was introduced above to ensure exact normalization.
Expectation values required to evaluate the moment function M.k/ (k integer):

hrki D Sk

S0
Rkcut .k 
 �2/; hln .r/i D ln .Rcut/ � 1

S0

KX
vD1

av

.v�/3
Si.v�/:

(48)
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The auxiliary functions Sk are

Sk D
KX
vD1

av

.v�/kC3
Ik.v�/; Ik.v�/ D

Z v�

0

dt t kC2j0.t/: (49)

The integrals Ik.v�/ can be evaluated recursively from

I�2.v�/ D Si .v�/; I�1.v�/ D 1 � .�1/v; (50)

Ik.v�/ D �k.k C 1/Ik�2.v�/ � .�1/v.v�/kC1 .k 
 0/: (51)

Potential energy function:

Vnuc.r/ D

8̂<̂
:
� Z

Rcut

�
1C 1

S0

KP
vD1

av

.v�/2
j0.qvr/

�
0 	 r 	 Rcut;

�Z
r

r > Rcut:

(52)

Sum-of-Gaussians charge density distribution (see Fig. 2e): This distribution is
a “model-independent” representation of the nuclear charge density distribution as
derived from electron scattering data [29] (see [16] for sets of parameters).

�.r/ D C
KX
vD1

av
˚
exp

��z2C
�C exp

��z2�
��
; z˙ D .r ˙Rv/=; (53)

�.0/ D 2C
KX
vD1

av exp

�
�R

2
v

2

�
; av D 1

I0.Rv=/

QvZ

4�3
;

1

C
D

KX
vD1

Qv:

(54)

Each term of the finite expansion (53) is located at a different radius r D Rv and
carries a fraction Qv of the total charge Z.0 < Qv < 1/. A global factor C
was introduced above to ensure exact normalization. The parameter  determines
the minimal width of representable structures. It is related to the full width at
half-maximum (FWHM) value � of a nonsymmetrized Gauss-type function and
to the rms radius aG of a symmetrized Gauss function located at the origin

(Rv D 0) through  D �=
	
2
p

ln .2/


D p

2=3 aG. Hence, every term of the

sum-of-Gaussians expansion represents the charge density distribution only within
a spherical shell of radius r D Rv and of approximate width � .

Expectation values required to evaluate the moment function M.k/ (k integer):

hrki D Ck
KX
vD1

Qv

Ik.Rv=/

I0.Rv=/
.k 
 �2/: (55)
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The auxiliary functions

Ik.u/ D �
�
k C 3
2

�
exp.�u2/1F1

�
k C 3
2
I 1
2
I u2
�

(56)

can be evaluated recursively from

I�2.u/ D
p
�; I�1.u/ D

p
�u erf.u/C exp.�u2/; (57)

Ik.u/ D 1

2
.2k C 1C 2u2/Ik�2.u/ � 1

4
k.k � 1/Ik�4.u/ .k 
 0/; (58)

where it is understood that the last term of the recursion relation does not contribute
for k D 0 and k D 1. In addition,

hln .r/i D ln ./C C
p
�

4

KX
vD1

Qv

I0.Rv=/
exp

�
�R

2
v

2

�
L.Rv=/; (59)

L.x/ D
1X
jD0

 .j C 3=2/2j C 1
j Š

x2j : (60)

Potential energy function:

Vnuc.r/ D �C
p
�

4

Z

r

KX
vD1

Qv

I0.Rv=/

�
1C 2R

2
v

2

�
Œerf.zC/C erf.z�/�

C2Rv


r


Œerf.zC/ � erf.z�/�C 2p

�

Rv



�
exp.�z2C/ � exp.�z2�/

��
: (61)

The last two, rather elaborate representations of the nuclear charge density
distribution, the Fourier-Bessel distribution (Eq. (46)) and the sum-of-Gaussians
distribution (Eq. (53)), have not been used in electronic structure calculations up
to now, despite the fact that they are the most realistic distributions among those
presented here. The main reason for this is that electronic structure calculations
with finite nucleus models are certainly sensitive to the rms charge radius but rather
insensitive to any other further parameters or details of the models. Therefore, the
simple models, with just one or two parameters, are usually fully sufficient for the
intended purpose. The examples shown below, in the following section, provide
further support for these arguments.

Dipolar Magnetization Distributions

Magnetization distributions having just a magnetic dipole moment and vanishing
higher magnetic multipolar moments are the simplest form of such distributions.
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They are, hence, the magnetostatic equivalent to the spherically symmetric charge
density distributions discussed above. The following presentation provides detailed
general relations as well as expressions for five model distributions. It is based, in
parts, on [30].

Given is a purely dipolar magnetization distribution, m.r/ D �g.r/ D I g.r/
( is the nuclear magnetogyric ratio, I is the nuclear spin), that is properly
normalized Z

d3r g.r/ D 4�
Z 1
0

dr r2g.r/ D 1: (62)

Radial expectation values of the scalar distribution function g.r/ are then defined as

hf .r/i D 4�
Z 1
0

dr r2f .r/g.r/; (63)

in particular

hrki D 4�
Z 1
0

dr rkC2g.r/; kmin 	 k 	 kmax; (64)

wherefrom an rms radius hr2i1=2 as a measure of the size of the magnetization
distribution can be obtained. For subsequent use, a scalar auxiliary function v.r/
can be defined through

rv.r/ D 4�
�Z r

0

ds s2g.s/C r
Z 1
r

ds sg.s/

�
; (65)

with first derivative

dv

dr
D �4�

r2

Z r

0

ds s2g.s/: (66)

The close similarity between the Eqs. (62), (63), (64), (65), (66) and (11), (12), (13),
(19) and (20) deserves to be mentioned.

The vector potential A.r/, associated with the given magnetization distribution
m.r/, is then

A.r/ D �˛2 I � r
r

dv

dr
D 4�˛2 I � r

r3

Z r

0

ds s2g.s/: (67)

The remaining parts of this subsection provide details for five dipolar mag-
netization distributions m.r/. In addition to the magnetization distribution for a
point-like magnetic dipole, which has importance as a reference case, details are
also given for four extended distributions, each depending on a single parameter.
The exponential and Gauss-type dipolar magnetization distributions are in use
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in present-day electronic structure calculations, the latter even more so than the
former. Their modified variants may be used to model magnetization distributions
exhibiting a maximum in the outer parts of the nucleus, instead of at its center, so
that the distribution of the “unpaired” (or “valence”) nucleon(s), i.e., the nucleon(s)
primarily responsible for the nuclear magnetization, can be described in a more
realistic way.

The definitions of special mathematical functions and expressions occurring at
several places below are given in the appendix to this chapter.

Magnetization distribution of a point-like magnetic dipole:

m.r/ D Iı.r/ D I
ı.r/

4�r2
: (68)

Vector potential:

A.r/ D ˛2 I � r
r3

: (69)

Exponential dipolar magnetization distribution:

m.r/ D I
�3

8�
exp.�� r/: (70)

Expectation values of rk of the scalar distribution function:

hrki D � .k C 3/
� .3/

1

�k
.k 
 �2/: (71)

The relation � D p
12= hr2i adapts the model-specific parameter � to the mean

square radius hr2i of a given nuclear magnetization distribution.
Vector potential:

A.r/ D ˛2 I � r
r3

�
1 �

�
1C x C x2

2

�
exp.�x/

�
; x D � r: (72)

Modified exponential dipolar magnetization distributions:

m.r/ D I
1

� .mC 3/
�3

4�
.� r/m exp.�� r/ .m 
 0/: (73)

This expression includes Eq. (70) for m D 0.
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Expectation values of rk of the scalar distribution function:

hrki D � .k CmC 3/
� .mC 3/

1

�k
.k 
 �m � 2/: (74)

The relation � D p
.mC 3/ .mC 4/= hr2i adapts the model-specific parameter �

to the mean square radius hr2i of a given nuclear magnetization distribution.
Vector potential:

A.r/ D ˛2 I � r
r3

P .mC 3; � r/ D ˛2 I � r
r3

.1 �Q.mC 3; � r// : (75)

Gauss-type dipolar magnetization distribution:

m.r/ D I
�
�

�

�3=2
exp.�� r2/: (76)

Expectation values of rk of the scalar distribution function:

hrki D � ..k C 3/=2/
� .3=2/

1

�k=2
.k 
 �2/: (77)

The relation � D 3=.2hr2i/ adapts the model-specific parameter � to the mean
square radius hr2i of a given nuclear magnetization distribution.
Vector potential:

A.r/ D ˛2 I � r
r3

�
erf.x/ � 2p

�
x exp.�x2/

�
; x D

p
� r: (78)

Modified Gauss-type dipolar magnetization distributions:

m.r/ D I
1

� ..mC 3/=2/
�3=2

2�

	p
� r

m

exp.�� r2/ .m 
 0/: (79)

This expression includes Eq. (76) for m D 0.

Expectation values of rk of the scalar distribution function:

hrki D � ..k CmC 3/=2/
� ..mC 3/=2/

1

�k=2
.k 
 �m � 2/: (80)

The relation � D .m C 3/=.2hr2i/ adapts the model-specific parameter � to the
mean square radius hr2i of a given nuclear magnetization distribution.



70 D. Andrae

Vector potential:

A.r/ D ˛2 I � r
r3

P ..mC 3/=2; � r2/: (81)

The exponential and the Gauss-type dipolar magnetization distributions,
Eqs. (70) and (76), are nowadays routinely applicable in electronic structure
calculations. Their modified variants, given by Eqs. (73) and (79) with m >

0, may be useful for a more realistic modeling of the nuclear magnetization
distribution. However, a meaningful comparison of different models requires
accurate benchmark studies based on standardized magnetization distributions,
possibly requiring more information on the nuclear magnetization distribution than
just its mean square radius.

Finite Nucleus Models in Electronic Structure Calculations

The most important consequence for electronic structure calculations, due to the
use of a finite nucleus model, is a modified electrostatic potential energy function,
or Coulomb potential for short. The change from the Coulomb potential of a point-
like nucleus, V PNC

nuc .r/ D �Z=r , with its singularity at r D 0, to some spherically
symmetric potential energy function V FNC

nuc .r/with finite depth V FNC
nuc .0/.V FNC

nuc .0/ >

�1, see Table 3 and Fig. 4), represents the most important influence of the
finite nucleus model on the problem of electronic structure. In comparison to
this, any higher electric or magnetic nuclear multipole moment, if present, is of
smaller influence. In terms of changes in total energy, the influence of such higher
electric or magnetic nuclear multipole moments is smaller by several orders of
magnitude. These multipole moments are of importance, of course, for various kinds
of spectroscopy and for the understanding of finer details of electronic structure.
They need to be properly modeled in a suitable way, if such details are accurately
calculated by a purely theoretical approach.

The short-range behavior of the electrostatic potential energy functions V FNC
nuc .r/,

obtained from three different extended nuclear charge density distributions (prop-
erly standardized for the nuclide 200Hg), is shown in Fig. 4 together with the function
V PNC

nuc .r/ D �Z=r.Z D 80/ for the point-like nucleus case. The lower threshold
of the upper continuum has been chosen as zero of energy. The position of the rms
charge radius a and of the model-specific radial size parameters is indicated by

Table 3 Depth V FNC
nuc .0/ D v0 D �f Z=a (f D hr�1ihr2i1=2, cf. Eq. (23)) of electrostatic

potentials for three widely used finite nucleus models (the corresponding charge density distribu-
tions are standardized to a common rms charge radius a, see also Fig. 4)

Type Homogeneous (See Eq. (28)) Gauss-type (See Eq. (32)) Fermi-type (See Eq. (36))

f 3
p
15=10

p
6=�

p
3

F1.1=b/

F2.1=b/

s
F4.1=b/

F2.1=b/
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Fig. 4 Behavior of electrostatic potential energy functions Vnuc.r/ for small r for the case of
200Hg. Point-like nucleus case (PNC, dashed red line) and three different models for the finite
nucleus case (FNC, solid blue lines): homogeneous distribution (H), Gauss-type distribution (G),
and Fermi-type distribution (F). The latter three were standardized to the rms charge radius
a.200Hg/ D 5:4551 fm [20] (See text for further discussion)

vertical dashed lines. It is clearly seen that the potential energy functions obtained
from the homogeneous and the Fermi-type nuclear charge density distributions
differ only little, whereas the Gauss-type nuclear charge density distribution leads
to a considerably deeper potential energy well. However, in comparison with
the singular Coulomb potential of the point-like nucleus, the differences between
potential energy functions from different finite nucleus models are always moderate
[22]. Four energies are marked in Fig. 4 by horizontal dashed lines with labels.
At highest energy, practically indistinguishable from the horizontal axis, is the
(nonrelativistic or relativistic) ground-state energy of the hydrogen-like ion Hg79C
with a point-like nucleus. At the scale of the figure, any effects of finite nuclear
charge density distributions on the total energy of this ion are invisible. Next lower
in energy is the level of the upper boundary of the lower continuum of energies
for systems composed of ordinary matter (or the negative of the threshold energy
for electron-positron pair generation). Finally, two horizontal lines indicate the
nonrelativistic and relativistic ground-state energies of the muonic ion Hg80C ��
with a point-like nucleus. Even though the discussion of muonic systems is clearly
beyond the scope of this chapter, it is instructive to see the huge difference between
the ground-state energies of the hydrogen-like ion Hg79C and its muonic analogon.
One can easily predict that the change from a point-like nucleus model to a finite
nucleus model will have a much larger influence on a muonic system than on the
corresponding electronic system. Nevertheless, the change from the PNC to a FNC
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has important consequences also in electronic structure calculations. This can be
seen clearly already in atomic structure calculations, as will be shown now.

In a nonrelativistic approach [31], based on the Schrödinger equation, solutions
(spin orbitals) exist for any proton number Z in both cases, the PNC and the FNC.
Within the central field approximation and with equivalence restriction, the spatial
part of the spin orbitals

 i.r/ D r�1Pnl .r/Ylm.Or/ (82)

(with composite index i D .nlm/, n and l are the usual principal and angular
momentum quantum numbers, �l 	 m 	 l; Ylm.Or/ is a standard spherical
harmonic, Or D r=r/, contains the radial function Pnl .r/ that fulfills the boundary
conditions Pnl .0/ D limr!1 Pnl .r/ D 0. The power series expansion of this radial
function for small r is

Pnl .r/ D rlC1
1X
kD0

akr
k D rlC1.a0 C a1r C a2r2 CO.r3//; a0 ¤ 0: (83)

The ratio a1=a0 is known as the cusp value of the radial function. Upon change from
the PNC to a FNC, it changes from .a1=a0/PNC D �Z=.l C 1/ to .a1=a0/FNC D 0.

In a relativistic treatment [32], based on the Dirac equation, solutions have the
form of four-component vector-like functions (spinors),

 i.r/ D 1

r

�
Pn�.r/ ˝�m.Or/

iQn�.r/ ˝��m.Or/
�
; i2 D �1 (84)

(with composite index i D .n�m/, n is the principal quantum number and the
nonzero integer � is the relativistic symmetry quantum number, j D l˙1=2 D j�j�
1=2, �j 	 m 	 j ), where ˝�m.Or/ denotes a standard normalized two-component
angular spinor [33]. The pair of radial functions fulfills the conditions�

Pn�.0/

Qn�.0/

�
D
�
0

0

�
; lim

r!1

�
Pn�.r/

Qn�.r/

�
D
�
0

0

�
: (85)

In the PNC, the power series expansions of the radial functions Pn�.r/ and Qn�.r/

for small r are�
Pn�.r/

Qn�.r/

�
PNC

D r
�

a0
b0

�
C
�
a1
b1

�
r CO.r2/

�
;

�
a0
b0

�
¤
�
0

0

�
; (86)

where  D p
�2 � .˛Z/2 is noninteger (0 <  < j�j, 0 < ˛Z < 1). The ratio

.b0=a0/PNC D �˛Z=.��/ D C.C�/=.˛Z/ is the analogue of the nonrelativistic
cusp value. A point-like nucleus thus induces nonanalytic behavior of the radial
functions for small r . As a consequence, the radial parts of the spinors with j�j D 1
(j D 1=2/, i. e., the parts r�1Pn;˙1.r/ and r�1Qn;˙1.r/ of the ns1=2 and np1=2
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spinors (cf. Eq. (84)) exhibit a mild singularity � r�1 at r D 0. These solutions
eventually cease to exist when the nuclear charge number Z reaches and surpasses
the limit imposed by ˛Z D 1. Upon change from the PNC to a FNC, one has,
instead of Eq. (86),

– for � < 0 (j D l C 1=2, i.e., s1=2, p3=2, d5=2, f7=2 etc.):

�
Pn�.r/

Qn�.r/

�
FNC

D rlC1
�

a0
0

�
C
�
a1
b1

�
r CO.r2/

�
; a0 ¤ 0; (87)

– and for � > 0 (j D l � 1=2, i.e., p1=2, d3=2, f5=2 etc.):

�
Pn�.r/

Qn�.r/

�
FNC

D r l

�
0

b0

�
C
�
a1
b1

�
r CO.r2/

�
; b0 ¤ 0: (88)

The restriction ˛Z < 1 no longer applies in the FNC, and the power series
expansion of the radial function Pn�.r/ starts now with the same lowest power
(rlC1) as the one of its nonrelativistic counterpart Pnl .r/. It also deserves mention
that every second term in each row of the power series expansions of Eqs. (87) and
(88) vanishes if and only if the power series expansion for Vnuc.r/, Eq. (23), contains
only even powers.

The relativistic and nonrelativistic radial functions for the ground state (n D 1)
of hydrogen-like atoms with point-like nucleus (PNC) and Z D 1, 80 and 137
are shown in Fig. 5. For Z D 1, there is no visible difference between the
relativistic radial function P1;�1.r/ and its nonrelativistic counterpart P10.r/, and
the radial function Q1;�1.r/ has been enlarged twentyfold to make it clearly visible
and thus distinguishable from the horizontal axis. At Z D 80, the three radial
functions can be clearly identified and distinguished from each other, and the
relativistic radial function P1;�1.r/ reaches its maximum at slightly smaller radius
than the nonrelativistic radial function P10.r/. Finally, in the case of the largest
allowed proton number, Z D 137 < 1=˛, the two relativistic radial functions are
almost exactly of same magnitude, and the nonanalytic behavior (see Eq. (86)) is
very clearly exhibited (the behavior of P1;�1.r/ and Q1;�1.r/ for very small r ,
almost vertical increase/decrease, is neither an artifact nor an error of the graphics
software). In contrast, the nonrelativistic radial function still exhibits the analytic
behavior expressed by Eq. (83). While the conditions P10.0/ D 0, P1;�1.0/ D 0,
and Q1;�1.0/ D 0 are always fulfilled, only the nonrelativistic radial function
P10.r/ retains its linear behavior (� r/ for small r upon increase of Z. In contrast,
the relativistic radial function P1;�1.r/, which behaves � r for small r , becomes
steeper as Z increases ( � 1 for Z D 1,  � 0 for Z D 137). With a finite
nucleus (FNC), the behavior of the relativistic radial function P1;�1.r/ for small r
would resemble more closely its nonrelativistic counterpart P10.r/.

An illustrative example for the consequences of the change from the PNC to a
FNC in relativistic electronic structure calculations is shown in Fig. 6, where energy
differences between low-lying electronic states of lithium-like and beryllium-
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Fig. 5 Normalized radial functions of the electronic ground state (n D 1) of hydrogen-like
atoms with point-like nucleus and Z D 1, 80, 137: P1;�1.r/ (solid blue lines), Q1;�1.r/
(solid red lines); P10.r/ (dashed blue lines). See Eq. (82) for P10.r/ and Eqs. (84) and (86) for
P1;�1.r/ and Q1;�1 (r/, and see text for further discussion

like high-Z ions (100 	 Z 	 120) are considered. The data were obtained
from numerical finite-difference Dirac-Fock-Coulomb calculations [34]. For both
isoelectronic sequences, the studied energy differences are monotonously increasing
functions of the nuclear charge number Z, if a point-like nucleus model is used.
With a finite nucleus model, these energy differences are smaller than in the PNC at
Z D 100 and only slowly increasing at first, then they are gradually decreasing, and
finally they are being inverted asZ D 120 is reached. Reasons for this behavior are,
on one hand, the differences in the short-range behavior of the radial functions (r

in the PNC versus rlC1 in the FNC) and, on the other hand, the changes occurring
upon increase of Z in the relative magnitude of the radial functions Pn�.r/ and
Qn�.r/ of the 2s and 2p1=2 spinors in the FNC (for the 2s spinor P2;�1.r/ � r and
Q2;�1.r/ � r2, whereas for the 2p1=2 spinor P2;C1.r/ � r2 and Q2;C1.r/ � r , see
Eqs. (87) and (88)). It deserves mention that the differences seen between results
obtained with different FNC models, here in particular between Gauss-type and
Fermi-type nuclear charge density distributions, are very small. The Gauss-type
distribution, which yields a potential well of considerably greater depth than the
Fermi-type distribution (see Fig. 4), leads to energy differences that deviate only
little from those obtained with the Fermi-type distribution. One can conclude (i)
that it is preferable to use a properly parametrized FNC model of the nuclear charge
density distribution instead of the PNC, because the latter is not realistic, and (ii)
that the details of this FNC model are of lesser importance for electronic structure
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Fig. 6 Total energy differences �E (in atomic units) between low-lying electronic states of
lithium-like ions (left) and beryllium-like ions (right) with 100 � Z � 120. Data from numerical
finite-difference Dirac-Fock-Coulomb calculations with point-like nucleus (PNC, right axes) and
with two finite nucleus models (FNC, left axes) (Adapted from [34])

calculations as long as its parameters (rms charge radius a, skin thickness t ) are
standardized, e.g., to experimental data.

The use of finite nucleus models is mandatory for realistic relativistic electronic
structure calculations on compounds containing heavy or superheavy atoms. It is,
therefore, necessary to use such models also in the generation of reference data for
the adjustment of relativistic pseudopotentials (or effective core potentials, ECPs),
which represent a convenient means for inclusion of scalar relativistic effects in
routine electronic structure calculations [35, 36].

Modified Coulomb potentials Vnuc.r/ can be used not only in numerical (basis-
set-free) electronic structure calculations, as shown by the examples presented
above, but also in algebraic approaches using analytic basis functions. This requires
the evaluation of appropriate matrix elements (nuclear attraction integrals):

h�i .rA/ jVnuc.rC /j�j .rB/i D
Z

d3r��i .rA/Vnuc.rC / �j .rB/; (89)

with rX D r�RX , where RX usually denotes the positon vector of an atomic nucleus
X . This notation covers both the nonrelativistic and relativistic cases (scalar orbitals
and four-component spinors, respectively); the indices i and j carry information
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to identify the basis functions unambiguously. The integrals in Eq. (89) may involve
only a single center (A D B D C [“atomic” integrals]), two centers, or three centers
(A, B , C all different). The difficulty of their evaluation increases with the number
of centers. In addition, every type of basis functions requires its own implementation
of nuclear attraction integrals. The necessary algorithms for the efficient evaluation
of these integrals have been developed only for some of the very many combinations
of basis function types and Coulomb potentials. However, the implementation of
a finite nucleus model requires only little or moderate modification if both the
basis functions and the FNC model rely on Gauss-type functions, due to the fact
that almost all of the required functions and terms are already available from
the previous implementation adapted to the point-like nucleus case. This is the
main reason for the widespread and frequent use of the Gauss-type FNC model in
electronic structure calculations using Gauss-type basis functions. A large collection
of basis sets, including basis set sequences suitable for systematic improvement
of results from four-component relativistic all-electron calculations on compounds
containing heavy s-, p-, d-, and f-block elements, has been generated by Dyall (see
[37] and references cited therein). All these basis sets, which are constructed from
Gauss-type functions, were optimized in Dirac-Fock-Coulomb calculations using
standardized Gauss-type finite nucleus models.

There are several other effects of finite nucleus models in relativistic electronic
structure calculations, beyond their influence via modified Coulomb potentials. The
most prominent ones shall be mentioned here at least (see also the recent reviews
[38, 39]).

Within a formally nonrelativistic approach, relativistic effects may be included
through correction terms, frequently treated as perturbations. Those correction terms
that are to be modified when a finite nucleus model is used include the electron-
nucleus Darwin term [7] and terms contributing to hyperfine splitting (electron-
spin-nuclear-spin dipolar interaction and Fermi contact term) [30].

Within the two- and four-component relativistic approaches to electronic struc-
ture, the effect of a finite nucleus model is included most conveniently by the
use of the appropriate modified electrostatic potential energy functions and vector
potentials, as stated above. The available tools are now so far and so well developed
that the influence of extended nuclear charge density and magnetization distributions
on, e.g., hyperfine structure and EPR and NMR parameters can be studied. For some
recent examples, see [40–42].

The use of a finite nucleus model has also influence on quantum electrodynamic
(QED) effects (vacuum polarization, self-energy correction) and on the study
of the electron-nucleon weak interaction (parity nonconservation). For example,
the lowest-order vacuum polarization contribution, known as Uehling potential,
requires modification when an extended nuclear charge density distribution is used
[43, 44]. The nuclear number density distributions (see Eq. (1)) are required in
studies of the electron-nucleon weak interaction [45, 46].



2 Nuclear Charge Density and Magnetization Distributions 77

Summary

In electronic structure calculations for atoms, molecules, or periodic systems, the
atomic nuclei play the role of centers of force attracting the electrons and repelling
other nuclei. Accurate calculations of energies, electronic wavefunctions, and prop-
erties usually require to model the atomic nuclei as extended (or finite) instead of
point-like objects (finite nucleus case, FNC, vs. point-like nucleus case, PNC). For
a nuclide with given proton number Z and neutron number N , the nuclear charge
density and magnetization distributions can be modeled in a phenomenological way
with suitably parametrized functions (it is not required that some sort of nuclear
structure calculation precedes the electronic structure calculation). Most important
for practical work are spherically symmetric nuclear charge density distributions
and purely dipolar nuclear magnetization distributions, normalized, respectively, to
total nuclear charge and nuclear magnetic dipole moment. Several distributions are
discussed in detail, including the Gauss-type and Fermi-type distributions for the
charge density and the Gauss-type distribution for the magnetization.

The use of an extended instead of a point-like model for the atomic nucleus,
properly standardized to the size (and possibly also the shape) of that nucleus, is of
much more importance in relativistic than in nonrelativistic approaches. It is shown
that the change in the attractive electron-nucleus potential energy function, due to
the replacement of the PNC by a FNC, leads to large modifications in the small-
r behavior of the relativistic wavefunction, especially for nuclei with high Z. In
comparison, the small-r behavior of nonrelativistic wavefunctions is only slightly
modified by the change from the PNC to a FNC. It is also shown that differences
between different FNC models are almost always of only minor importance. Of
course, studies of the influence of the change from the PNC to the FNC on quantum
electrodynamic (QED) effects or on electron-nucleon weak interaction may require
a more elaborate modeling of atomic nuclei (including, e.g., the nuclear mass
density distribution).

Appendix

This appendix provides definitions for mathematical expressions and special func-
tions used in the main part of this chapter. Unless stated otherwise, further details
can be found in standard references [47, 48].
Euler-Mascheroni constant E:

E D lim
n!1

 
nX

kD1

1

k
� ln.n/

!
D 0:57721 : : : : (90)
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Heaviside step function �.x/:

�.x/ D
8<:
0 x < 0;

1=2 x D 0;
1 x > 0:

(91)

Gamma function � .a/ and its logarithmic derivative:

� .a/ D
Z 1
0

dt t a�1e�t .a > 0/; � .aC 1/ D a� .a/; � .1/ D 1: (92)

 .a/ D � 0.a/
� .a/

D 1

� .a/

Z 1
0

dt t a�1 ln.t/e�t ;  .1/ D �E: (93)

Incomplete gamma functions P .a; x/ and Q.a; x/ and error function erf.x/:

P .a; x/ D 1

� .a/

Z x

0

dt t a�1e�t ; Q.a; x/ D 1

� .a/

Z 1
x

dt t a�1e�t .a > 0/:

(94)

For a equal to a positive integer (a D nC 1, n 
 0):

P .nC 1; x/ D 1 �Q.nC 1; x/ D 1 � e�x
nX

kD0

xk

kŠ
: (95)

For 2a equal to an odd positive integer (2a D 2k C 1, k 
 0):

P .1=2; x2/ D erf.x/ D 2p
�

Z x

0

dt exp.�t 2/: (96)

P ..mC 3/=2; x2/ D 2

� ..mC 3/=2/
Z x

0

dt tmC2 exp.�t 2/ .m D 0; 2; 4; : : :/

D erf.x/ � 2xp
�

exp.�x2/
m=2X
kD0

.2x2/k

.2k C 1/ŠŠ : (97)

Confluent hypergeometric function1F1.aI cI x/:

1F1.aI cI x/ D
1X
kD0

.a/k

.c/k

xk

kŠ
; .a/k D � .aC k/

� .a/
: (98)
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Spherical Bessel functions of the first kind jn.x/:

jn.x/ D .�x/n
�
1

x

d

dx

�n sin.x/

x
.n 
 0/: (99)

The first two members of this sequence are

j0.x/ D sin.x/

x
; j1.x/ D sin.x/

x2
� cos.x/

x
: (100)

Sine integral Si.x/:

Si.x/ D
Z x

0

dt
sin.t/

t
: (101)

Fermi-Dirac integrals Fj .a/ and Fj .a; x/ and related functions:

Fj .a/ D 1

� .j C 1/
Z 1
0

dt
t j

1C exp.t � a/ ; (102)

Fj .a; x/ D 1

� .j C 1/
Z 1
x

dt
t j

1C exp.t � a/ ; (103)

Gj .a/ D 1

� .j C 1/
Z 1
0

dt
t j ln.t/

1C exp.t � a/ D  .j C 1/Fj .a/C @

@j
Fj .a/:

(104)

A general algorithm for the evaluation of complete and incomplete Fermi-Dirac
integrals has been published [49, 50].
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Abstract

Basis sets for relativistic calculations must satisfy conditions beyond those
required for nonrelativistic calculations. At the four-component level, they must
satisfy the proper symmetry and functional relationships between the large and
small components. For calculations in electrostatic fields, they must satisfy the
kinetic balance condition; when magnetic fields are added, they must satisfy
the magnetic balance condition. The basis sets must incorporate the effects of
the scalar and spin-dependent relativistic operators on the structure, whether
in four-component or two-component calculations. The use of contracted basis
sets introduces other requirements related to the method of solution of the
self-consistent field equations and the issue of linear dependence of the basis
functions.
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Introduction

The basis sets used in quantum chemistry have to satisfy a few conditions in order
to be useful. As the basis sets are used to expand the wave function as a linear
combination of functions of known form, the boundary conditions on the wave
function must also apply in some way to the basis functions. The main boundary
conditions to be considered are those for the behavior of the wave function far from
the nuclei and those for the behavior close to the nuclei (in addition to requirements
of continuity and differentiability).

In nonrelativistic quantum chemistry, the basis functions used are usually atom
centered, because the bulk of the energy is obtained from the regions near the atomic
nuclei, and a poor description of the atom would seriously affect the accuracy of
the molecular calculations. Thus, atom-centered basis sets must provide a good
description of the atom, which means satisfying in some degree the boundary
conditions of the atom. For the simplest case of a hydrogen atom, the wave function
has a cusp at the nucleus due to the use of a point nuclear model and decays
exponentially at large distances from the nucleus.

Atom-centered Gaussian basis functions are used in the vast majority of calcu-
lations on molecular systems, with great success. Although these functions do not
exactly satisfy the boundary conditions that the atomic wave function satisfies –
they decay faster at large distances and do not have a cusp at the nucleus – their
properties are similar enough to allow a reasonably accurate description of the
atom. What is more, it is possible to systematically expand a Gaussian basis set
so that it becomes complete, for the purpose of describing an atomic function [1].
The simplicity of these functions and the evaluation of their integrals compensate
for their deficiencies, and one can easily add more functions to better describe the
nuclear region or the long-range region. The values of the wave function itself
are not usually interesting, but the values of properties are, as they are related to
observables. Properties are expectation values of some operator, and small errors
in the wave function do not usually contribute significantly to the property. At any
level of calculation, then, a basis set is chosen that produces property values of a
desired accuracy.

To pursue the same sort of approach in relativistic quantum chemistry, several
extra conditions are necessary, as the calculations are based on the Dirac Hamilto-
nian rather than the Schrödinger Hamiltonian. The use of the Dirac Hamiltonian has
several consequences that affect basis set choice:

• The spectrum of the Dirac equation has both a positive-energy and a negative-
energy branch, and the energy includes the rest mass of the particle, in this case
the electron. The negative-energy states are related to the antiparticle (positron)
wave functions. This adds an extra degree of freedom to the wave function.

• As the Dirac Hamiltonian is spin dependent, the spin can no longer be separated
from the spatial coordinates. This results in coupling of spin and orbital angular
momenta in the atoms, and only the total angular momentum is a good quantum
number. In molecules this means that the double group must be used. With spin
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dependence and the particle-antiparticle behavior, the Dirac wave function has
four components to represent the extra degrees of freedom. (The spin is of course
included implicitly in nonrelativistic wave functions.)

• For a point nucleus, the solutions of the Dirac equation for the ground state of
a hydrogenic atom has a singularity at the nucleus, rather than a cusp. This is
related to the relativistic contraction of the wave function. More generally, the
wave function contains a non-integer power of r , the radial coordinate. It should
be pointed out that the point nuclear model is unphysical: nuclei are extended
objects with size and structure.

• Magnetic effects involve the coupling between the positive-energy and negative-
energy degrees of freedom (the so-called “large” and “small” components).

The implications of these issues for basis set development and use are discussed in
the sections below.

It is also possible to use approximations to the full four-component approach,
by decoupling the positive-energy and negative-energy states to some degree or
by treating the spin-dependent effects as a perturbation based on a spin-free
approximate Hamiltonian. The treatment below also includes comments appropriate
to such approximations. As the fundamental issues are those that arise out of the
four-component approach, the primary discussion centers on this approach.

In the developments below, SI-based Hartree atomic units are generally used,
„ D e D m D 4�"0 D 1, but e and m are kept where it is useful, or SI units are
used.

Kinetic Balance

To examine the requirements that are imposed on the basis set due to the existence
of the negative-energy states, the Dirac wave function is written in terms of its
components. However, as the spin dependence will not be explicitly examined at
this point, the wave function is represented in terms of two-component functions
(or 2-spinors), each of which has the spin part coupled to the spatial part in the
appropriate manner. The wave function in terms of these 2-spinors is

 D
�
 L

 S

�
(1)

where  L is the 2-spinor for the large component and  S is the 2-spinor for the
small component 1. These components are expanded in terms of a basis set of 2-
spinor functions,

1This nomenclature is appropriate for positive-energy or electron states, which we are mostly
concerned with here, where the large-component integrated density is larger than that of the small
component. Other nomenclature in use for these components is “upper” and “lower” components,
which refer to their placement in the standard representation of the Dirac wave function.
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 L D
X
�

a�	
L
�I  S D

X
�

b�	
S
� (2)

and the conditions that these basis functions must satisfy are then determined.
The Dirac equation is written in two-component form with the rest mass

subtracted 2 as two coupled equations,

.V �E/ L C c� � p S D 0 (3)

c� � p L C .V � 2mc2 �E/ S D 0; (4)

where � is the vector of Pauli matrices. The second equation is rearranged to make
 S the subject,

 S D .2mc2 CE � V /�1c� � p L (5)

This equation defines the relationship between the large component and the
small component. As the denominator in this expression can go to zero if E <

�2mc2, depending somewhat on V , one should be cautious in applying it for
the negative-energy states. But as the positive-energy states have a positive value
for the denominator (for most potentials in applications of interest to chemistry
and physics), this should not be a problem for determining properties relating to
electronic states.

The next step is to eliminate the small component from the first line,

.V �E/ L C c� � p.2mc2 CE � V /�1c� � p L D 0: (6)

This equation should reduce to the nonrelativistic equation in the limit c ! 1.
Taking this limit, the result is

.V �E/ L C 1

2m
� � p� � p L D 0 (7)

and it can be seen that the nonrelativistic kinetic energy operator T is represented
by the operator .� �p/2=2m. From the properties of the Pauli matrices, .� �p/2 D p2

which gives the desired result.
When the basis set expansion is substituted in to develop a matrix version of the

Dirac equation, the result is

.VLL �ESLL/aC c˘ LSb D 0
c˘ SLaC .VSS � .2mc2 CE/SSS /b D 0; (8)

2On this energy scale, the “positive-energy” bound states all have E < 0.
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where the matrices are

V LL
�� D h	L�jV j	L� i; (9)

V SS
�� D h	S�jV j	S� i; (10)

SLL�� D h	L�j	L� i; (11)

SSS�� D h	S�j	S� i; (12)

˘LS
�� D h	L�j� � pj	S� i D .˘SL

�� /
�: (13)

Eliminating b from the first equation using the second, and taking the nonrelativistic
limit,

.VLL �ESLL/aL C 1

2m
˘ LS.SSS /�1˘ SLaL D 0: (14)

The nonrelativistic kinetic energy matrix TLL is represented in Eq. (14) by a matrix
product. The presence of the inverse of the small-component overlap indicates that a
projection operator has been inserted into the product of the � �p operators in Eq. (7).
If a poor choice of the small-component basis set is made, a poor approximation to
the kinetic energy from the matrix product is the likely result.

The critical piece is the matrix of the operator � � p. The basis functions 	S�
must be chosen so that they span the range of � � p	L�; if not, the kinetic energy
is underestimated, and the energies will be too low [2–5]. The exact result for the
nonrelativistic kinetic energy is guaranteed by making the choice

	S� D � � p	L�: (15)

With this choice,

˘LS
�� D h	L�j.� � p/2j	L� i D 2mT LL�� (16)

SSS�� D h	L�j.� � p/2j	L� i D 2mT LL�� : (17)

and therefore

˘ LS.SSS /�1 D I (18)

and

1

2m
˘ SL D TLL: (19)

so that the correct nonrelativistic limit is obtained. The condition in Eq. (15) is
known as kinetic balance [5]. Scaling the small component by a constant (that
may depend on �) makes no difference, as the constants cancel in Eq. (14).



88 K.G. Dyall

Some convenient scaling constants are 1=2mc, which makes c˘ LS D TLL, and
a normalization constant, to make SSS�� D 1. If a scaling of 1=2mc is chosen, for
example, then Eq. (8) becomes

VLLaC TLLb D ESLL

TLLaC .WLL=4m2c2 � TLL/b D E.TLL=2mc2/b (20)

where

W LL
�� D h	L�j� � pV � � pj	L� i: (21)

In this formulation, it is only necessary to define the large-component basis set,
as kinetic balance is folded into the integrals. These are the usual nonrelativistic
integrals (though evaluated over 2-spinor functions), except for W, which is a
relativistic integral. Further relativistic integrals arise from the electron-electron
interaction. In essence, the kinetic balance condition is used to transform the
operators.

Kinetic balance is an approximation: it does not guarantee that the full relation
between the large-component and the small-component (Eq. 5) wave function is
satisfied. However, it does ensure that the correct symmetry relationships between
the components are satisfied. The operator .2mc2CE �V / is totally symmetric, in
any point group of a molecule. Its neglect in the kinetic balance relation therefore
does not matter, from the point of view of symmetry. What is important is that
kinetic balance is applied to the definition of the basis set, not to the wave function
itself. The relation between the large and small components of the wave function is
then carried by the coefficients a and b.

The use of kinetic balance means that, for the spatial functions used in the 2-
spinor basis, the small-component functions transform as the derivatives of the
large-component functions, due to the appearance of the momentum operator. This
means that they have the opposite parity under inversion to the large-component
functions: where the large component is even, the small component is odd, and vice
versa.

The kinetic balance requirement also helps to explain why relativistic four-
component calculations are more expensive than nonrelativistic calculations. With
no approximations to the integrals in the four-component calculation, it is necessary
to calculate derivatives of the usual nonrelativistic two-electron integrals up to fourth
derivatives. And as the derivatives are present regardless of the spin, the same
degree of differentiation is required if the spin-dependent operators are removed:
the derivatives appear in the scalar relativistic integrals.

Kinetic balance as outlined above only applies to the positive-energy, or electron,
states. The small component was eliminated and the large component was kept. The
large component becomes the nonrelativistic electronic wave function in the limit
c ! 1. If the large component is eliminated, and instead of subtracting the rest
mass, it is added, equations are obtained for the negative-energy states:
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 L D �.V �E C 2mc2/�1c� � p S; (22)

which on substitution to eliminate the large component gives

.V �E/ S � c� � p.V �E C 2mc2/�1c� � p S D 0: (23)

The kinetic balance condition for the negative-energy states, which is needed to
give an accurate representation of the kinetic energy in the nonrelativistic limit for
positrons, is

	L� D � � p	S�: (24)

When the Dirac Hamiltonian matrix is diagonalized, solutions for both the
positive-energy and negative-energy states are obtained. So the basis used applies
to both sets of states. If kinetic balance is to apply for both electrons and positrons,
then both Eqs. (15) and (24) must apply, and substituting one into the other yields

	L� D .� � p/2	L� D p2	L� (25)

This equation is satisfied by plane waves (allowing for a scaling factor in the
equations), but not by the usual basis sets of quantum chemistry. It is possible to use
dual kinetic balance [6, 7], in which four-component basis functions are used, and
the basis includes functions that have kinetic balance for electrons and for positrons.

The kinetic balance relations imply a one-to-one correspondence of the large-
component basis set and the small-component basis set. In fact, the accurate
reproduction of the nonrelativistic kinetic energy for electrons only requires that
the small-component set contains the kinetically balanced functions,

f	S�g � f� � p	L�g: (26)

If functions are added to the small-component basis set, these functions produce
extra negative-energy states. But as there are not enough large-component functions,
the extra states will have zero kinetic energy and essentially be eigenfunctions of
the potential energy. (In actuality, the extra negative-energy states will be mixed in
with the “real” negative-energy states, but they can always be rotated to produce
a set of states that have no large component and a set of states that do have a
large component.) These states are spurious, nonphysical states. If the negative-
energy states are not of interest, this might not matter much, as the description
of the positive-energy states will still be accurate. On the other hand, if there
are more large-component basis functions than small-component basis functions,
spurious positive-energy states would be obtained, which could adversely affect the
calculation of electronic states. As they are eigenfunctions of the potential energy,
they could be lower in energy than the genuine electronic states and cause some
kind of variational collapse. So maintaining a 1:1 correspondence of the large- and
small-component basis sets is generally to be preferred.
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Spin Coupling

The solutions of the Dirac equation are spin coupled, as a consequence of the
inclusion of spin operators in the Dirac equation – the Dirac matrices, which are
represented in terms of the Pauli matrices. The spin is represented here as a two-
component vector, with the first row representing alpha spin and the second row
representing beta spin. For an atom, the coupling means that the solutions are
eigenfunctions of the total angular momentum, rather than being eigenfunctions of
the spin and orbital angular momenta separately.

In the previous section the wave function was expanded in two-component
spinors. These are now examined more closely, in the context of an atom, as atom-
centered basis functions are desirable in relativistic calculations. The Dirac equation
for an atom separates into a radial equation and a spin-orbital equation, and hence
the solutions can also be factorized into radial and spin-orbital functions. So for an
atom the one-particle wave functions, or 4-spinors, can be written as

 D 1

r

�
P .r/ �L.�; �; �/

iQ.r/ �S .�; �; �/

�
(27)

where r , � , and � are the usual spherical coordinates and � is the spin coordinate
(which represents ms). The wave function is written in terms of a large component
and a small component, with P .r/ the radial large component and Q.r/ the
radial small component. The spin-angular functions � are coupled products of spin
functions and spherical harmonics,

�`jm D
X
m`;ms

h`m`smsjjmi Y`m`.�; �/ �.ms/ (28)

where h`m`smsjjmi is a Clebsch-Gordan coefficient, Y`m`.�; �/ is a spherical
harmonic (with the usual Condon and Shortley phase conventions), and �.ms/ is
a spin function. If the spin functions are written as two component vectors,

�.˛/ D
�
1

0

�
I �.ˇ/ D

�
0

1

�
; (29)

then the spin-angular functions can be written as follows,

�`jm D 1p
2`C 1

0@p`Cm` C 1 Y`m`
p
` �m` Y`m`C1

1A ; j D `C 1=2; (30)

�`jm D 1p
2`C 1

0@ �p` �m` C 1 Y`m`
p
`Cm` C 1 Y`m`C1

1A ; j D ` � 1=2; (31)
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Table 1 Quantum numbers
for large and small
components

Large Small
Label ` j � Label ` j �

s1=2 0 1/2 �1 p1=2 1 1/2 C1
p1=2 1 1/2 C1 s1=2 0 1/2 �1
p3=2 1 3/2 �2 d3=2 2 3/2 C2
d3=2 2 3/2 C2 p3=2 1 3/2 �2
d5=2 2 5/2 �3 f5=2 3 5/2 C3

where the Clebsch-Gordan coefficients have been expanded.
The spin-angular functions are eigenfunctions of a spin-orbit-type operator,

whose eigenvalues � D .` � j /.2j C 1/ can be used to characterize the functions
instead of ` and j . The large component and the small component have opposite
signs of �, so they can be labeled as follows:

 L D 1

r
P .r/ ��m.�; �; �/I  S D i

r
Q.r/ ���m.�; �; �/: (32)

As the large and small components are connected by the operator � � p,
the spherical harmonics must differ by one unit of angular momentum. If � is
negative for the large component, the small component must have one more unit of
angular momentum than the large component, whereas if � is positive for the large
component, the small component must have one less unit of angular momentum
than the large component. So for example, for a large-component s function, which
has j D 1=2 and � D �1, the small component must be a p function with j D 1=2
and � D C1. For a large-component p function, there are two possible values of j ,
corresponding to the spin-orbit components. If j D 1=2 for the large component,
� D C1, and the small component is an s function with � D �1, whereas for
j D 3=2 for the large component, � D �2, and the small component is a d function
with � D C2. The relation between the components and the quantum numbers for
several shells is given in Table 1.

The two-component functions that have been considered so far have the spin
coupled to the spatial part, to represent the eigenfunctions of the Dirac Hamiltonian.
The spin can be decoupled in the basis set, and each of the four components can
be expanded independently. Or, equivalently, the large and small components can
be expanded in terms of a set of spin orbitals, rather than a set of coupled 2-
spinors:

 L D
X
�

	
a�˛ N	L� �.˛/C a�ˇ N	L� �.ˇ/



(33)

 S D
X
�

	
b�˛ N	S� �.˛/C b�ˇ N	S� �.ˇ/



(34)

where the basis functions N	L;S� are now pure spatial functions. Note that the same
spatial functions are used for both alpha and beta spin: what differs in the expansion
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is the spin-dependent coefficient. This choice of basis is often called a scalar basis,
because each component of the wave function is expanded in a basis of scalar
functions.

The matrix Dirac equation now has to be represented in terms of integrals over
the scalar basis functions.0BBBBBB@

NVLL �E NSLL 0 c N̆ LSz c N̆ LS�
0 NVLL �E NSLL c N̆ LSC �c N̆ LSz

c N̆ SLz c N̆ SL� NVSS �E NSSS 0

c N̆ SLC c N̆ SL�z 0 NVSS �E NSSS

1CCCCCCA
0BB@

a˛

aˇ

b˛

bˇ

1CCA D 0: (35)

where the matrix elements are

NV LL
�� D h N	L�jV j N	L� i; (36)

NV SS
�� D h N	S�jV j N	S� i; (37)

NSLL�� D h N	L�j N	L� i; (38)

NSSS�� D h N	S�j N	S� i; (39)

. N̆ LSz /�� D h N	L�jpzj N	S� i (40)

. N̆ LS˙ /�� D h N	L�jpx ˙ ipy j N	S� i: (41)

It might be thought that the rank of the Dirac matrix in the scalar basis is twice
that of the Dirac matrix in the 2-spinor basis, but this is not necessarily the case.
The number of 2-spinors is the same as the number of spin orbitals for any given
` value. In the 2-spinor case, the Dirac matrix for an atom can be placed in block-
diagonal form, as both j and m are good quantum numbers. In the scalar basis this
is not the case, as neither ` nor s are good quantum numbers.

The sets of large- and small-component functions in the scalar basis must still
satisfy Eq. (26). Applying the kinetic balance relation Eq. (15) directly to the large-
component spin-orbital functions gives the following result:

� � p N	L� �.˛/ D �i„
�

d

dx
N	L� �.ˇ/C i

d

dy
N	L� �.ˇ/C

d

dz
N	L� �.˛/

�
; (42)

� � p N	L� �.ˇ/ D �i„
�

d
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N	L� �.˛/C�i

d

dy
N	L� �.˛/ �

d

dz
N	L� �.ˇ/

�
: (43)

It can be seen that using a spin-orbital basis for the large component still leads to
spin-coupled functions in the small component, when the kinetic balance relation
is strictly applied, and not to pure spin orbitals. To obtain pure spin orbitals for



3 One-Particle Basis Sets for Relativistic Calculations 93

the small component, extra functions must be introduced into the small-component
basis that do not arise from the kinetic balance relation, such as

� i„
�

d

dx
N	L� �.ˇ/ � i

d

dy
N	L� �.ˇ/

�
; (44)

� i„
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d

dy
N	L� �.ˇ/

�
; (45)

which permits the elimination of either the x derivative or the y derivative, and

� i„
�

d
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d
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�
; (47)

which permits the elimination of the z component and thus completes the decoupling
into spin orbitals. This formal demonstration of the need to add functions to obtain
a spin-orbital basis shows that there is no longer a 1:1 correspondence between
the large-component and small-component functions and that the small-component
basis is larger than the large-component basis.3

In practice, the small-component basis is obtained by simply differentiating the
spatial functions and taking combinations with the spin functions to form spin-
orbital functions. Kinetic balance in the context of a scalar basis set usually means
simple differentiation of the spatial functions, and this is termed scalar kinetic
balance in this article.

Using scalar kinetic balance on the large-component scalar basis set to generate
the small-component scalar basis set always generates more functions in the small-
component set than in the large-component set. This means that use of a scalar basis
set throughout the calculations will always result in extra negative-energy states, as
discussed in the previous section. In a 2-spinor basis set, applying kinetic balance
strictly to the large-component 2-spinors will result in the same number of small-
component basis functions as large-component basis functions.

To illustrate, consider the ground state of the hydrogen atom. In a 2-spinor basis,
applying kinetic balance to the s1=2 large-component basis functions generates only
a set of p1=2 basis functions. The p3=2 basis functions are not present. In a scalar
basis, applying scalar kinetic balance (as a simple differentiation) to the s functions
of the large component generates p functions for the small component, and there are

3It would of course be possible to use the mixed basis, with spin orbitals for the large component
and the spin-coupled functions derived here for the small component, and this is done implicitly
when � � p is incorporated into the operators instead of the small-component basis. In practice, it
is simpler to use spin orbitals, but see below for issues related to doing this.
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three times as many functions in the small-component set as in the large-component
set. Combined with the spin functions, the small-component spin-orbital basis spans
both the p1=2 and the p3=2 spinor space. The p3=2 functions are the ones that must be
added for spin separation of the small-component basis into spin orbitals. Solving
the Dirac equation in this basis for the hydrogen atom will give the correct solutions,
just as in the 2-spinor basis, but it will also give a set of unphysical negative-energy
states with only a p3=2 small component and no large component.

While for an atom, the extra states can be separated out by symmetry, this is not
the case in molecules. In a water molecule, for example, there is only one irreducible
representation (irrep) in the double group, so all spinor functions must belong to this
irrep, and the p1=2 functions cannot be easily separated from the p3=2 functions.

There is another issue with the use of a scalar basis. The application of
kinetic balance to large-component s functions and to large-component d functions
produces a set of small-component p functions in both cases. In the 2-spinor
basis, this is not a problem, as the p functions generated from the s functions
are p1=2 functions, and the p functions generated from the d functions are p3=2
functions, and these functions are orthogonal due to their angular symmetry. In the
scalar basis, there is no spin coupling to eliminate the extra functions: the small-
component p functions generated from both the large-component s and d functions
span the same space. This may result in linear dependence of the small-component
basis, which will have to be taken care of numerically. Other solutions to alleviate
this problem are discussed below, when the use of Gaussian basis functions is
considered.

From a practical point of view, however, there are advantages to working in
the scalar basis. The 2-spinor basis is a complex, spin-coupled basis, and the one-
electron and two-electron integrals would have to be calculated in or transformed
into this basis. This would require development of integral codes designed to
work with 2-spinors or code that transformed the scalar integrals into 2-spinor
integrals. The scalar basis can be represented in terms of real, spin-independent
functions (as the spherical harmonics can be represented in real form rather than
complex). The integrals can then be taken from standard nonrelativistic integral
codes, with some adaptions for the small component, such as the use of derivative
technology.

To address the problem of the extra negative-energy states, it is possible to
transform between the scalar and the 2-spinor basis. This means that for the critical
parts of the calculation where linear dependence matters, such as the diagonalization
of the Fock matrix, the 2-spinor basis is used, but in other parts of the calculation,
such as accumulation of the Fock matrix, the scalar basis is used.

Radial Behavior

By far the majority of nonrelativistic molecular calculations use Gaussian basis
sets, due to the ease of integral evaluation. Of the two deficiencies mentioned
above – the behavior at the nucleus and the behavior at large distances – the
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behavior at the nucleus is more of an issue in relativistic calculations than in
nonrelativistic calculations. The reason is that the Dirac wave function for an s
orbital at the nucleus has a singularity rather than a cusp, if the nucleus is treated
as a point charge. Although it is still possible to use Gaussian functions for a
point nucleus in relativistic calculations, the size of the exponents required to
approximate the singularity increases significantly as the atomic number increases.
For heavy elements, the largest exponent can be orders of magnitude larger than the
corresponding nonrelativistic exponents [8, 9].

However, as pointed out above, real nuclei are not point charges, but instead
have a spatial distribution. Most four-component relativistic calculations use a finite
nuclear charge distribution, which provides both a more physical picture and avoids
the mathematical difficulties of the unphysical point nucleus. The nucleus is usually
represented by a single Gaussian function [10]. With any finite-sized nuclear model,
the wave function near the nucleus for the large component or the small component
behaves as r`. For a Gaussian charge distribution, the wave function is an even
or odd function of r . Gaussian functions are therefore well suited to describing
the wave function near the nucleus with this model, and in addition, the nuclear
attraction integrals can be evaluated with the same methods as for the two-electron
integrals, as they reduce to integrals of the type (ssjab).

A further benefit is gained because the nuclear size increases with atomic number
Z (or, rather, atomic mass), and therefore the largest exponent needed in the basis
set starts to decrease at some point. For example, in the basis sets of Dyall [11–20],
the largest exponent in the quadruple-zeta basis set increases with Z to a maximum
of about 108 in the 3d block and thereafter slowly decreases as the effect of the
nuclear size becomes more significant. In the triple-zeta basis sets, the maximum
is in the 4d block, whereas in the double-zeta basis sets, the maximum is in the 5f
block. The smaller basis sets do not sample the region near the nucleus as much as
the larger basis sets, so the effect of the nuclear size is not felt until higher Z. The
use of a finite nuclear size limits the size of the basis set for the heavy elements.

The range of exponents needed for relativistic calculations differs from that in
nonrelativistic calculations due to the change in the radial extent of the relativistic
wave function. In one-electron systems, the wave function contracts due to the
effects of relativity. In many-electron systems, the behavior of the wave function
is more complex. The direct effect of relativity in contracting the wave function has
two consequences: it changes the orthogonality requirements of shells of the same
symmetry, and it produces increased screening of the nucleus. The indirect effect
of the increase in screening can result in an expansion of the screened outer shells,
which varies with angular momentum [21]. For the s shells, all of which penetrate
to the nucleus, the direct effect dominates, and all s shells have a smaller radius than
their nonrelativistic counterparts. For the p shells, the direct and indirect effects
balance to some extent in the valence region, so that the valence p shells differ very
little in extent from their nonrelativistic counterparts. The spin-orbit effect changes
this balance, as the p1=2 spinors have an s-like small component, and the direct effect
is larger. For the outer d and f shells, the indirect effects dominate, and these shells
expand.
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The most important effect for basis set design is the contraction of the inner
shells, which means that more tight functions are required to describe the wave
function. This requirement is primarily for the s shells but is important also for
the p shells. The largest exponent needed for the p shell actually increases faster
as a function of Z than for the s shell, so that by the 5f block, the largest s
exponent and the largest p exponent have similar magnitudes. This is not the case for
the nonrelativistic basis sets, where the largest p exponent is considerably smaller
than the largest s exponent. As an example, the use of nonrelativistic basis sets in
relativistic calculations on the 6p elements incurs a considerable error in the core, of
several hartrees, and two additional tight p functions are needed to reduce the error
to 0.5 hartrees [22].

In the outer region, the changes are smaller: contraction of the s functions may
mean that fewer diffuse functions are needed in the s space, and expansion of the d
and f space may require more diffuse functions. Usually these changes are limited
to only one function.

Spin-orbit splitting also affects the radial behavior of the wave function, and this
is particularly important for the p shells, where it is the largest. For nonrelativistic
calculations, sets of functions are usually developed for each ` value. In relativistic
calculations, the spin-orbit components of a shell have different radial extents, and
the difference increases with Z. The demands on the basis for the p1=2 shell are
greater than for the p3=2 shell, so much so that by the 7p block, the largest exponents
are more than an order of magnitude different. In fact, the observation on the largest
p exponent above is largely, though not entirely, due to the spin-orbit splitting. The
effect of spin-orbit splitting is not insignificant in the valence region, either, where
the smallest exponents differ by a factor of 2 or 3.

In the design of basis sets, some choices must be made about how to handle
the differences in requirements between the spin-orbit components. For efficient
integral evaluation, it would be better to have the same exponents for both spin-
orbit components. This means that the basis set is larger than needed for either of
the components separately. With this approach, the p sets become as large as the s
sets for the 7p elements and are not much smaller for the 6p elements [14, 20].

It would be a mistake to suppose that the demands of spin-orbit splitting are only
relevant for the heavy elements. Even for the F atom, the spin-orbit splitting of the
2p shell is underestimated by a significant fraction when using the nonrelativistic
cc-pVDZ and cc-pVTZ basis sets of Dunning, and an extra tight p function was
found necessary to be added to improve the results [23].

For higher angular momenta, the spin-orbit splitting is smaller, and so the effect
on the exponent range is smaller than for the p shell.

Primitive Gaussian Basis Sets

Having discussed the general effects of relativity on basis set requirements, the
use of Gaussian basis sets is now addressed. Gaussian functions can be written in
general as



3 One-Particle Basis Sets for Relativistic Calculations 97

	�.r/ D N�f .r/ e���r2 (48)

where N� is a normalization factor. For spherical Gaussians, the function f .r/ is
usually chosen as a solid spherical harmonic,

f .r/ D r` Y`m.�; �/ (49)

where Y`m.�; �/ is the complex spherical harmonic introduced above for 2-spinor
basis sets. However, for scalar basis sets it is often more convenient to use real
spherical harmonics so that the basis functions are entirely real. For Cartesian
Gaussians, the function f .r/ is a Cartesian tensor of a given rank,

f .r/ D xiyj zk; i C j C k D `: (50)

How these are used in calculations depends on the type of calculation: scalar
relativistic, 2-spinor, or 4-spinor. The discussion starts with the 4-spinor case, for
which there are the most constraints on the basis.

To work in a 2-spinor basis, the function f .r/ must written in terms of the spin-
angular functions of Eq. (28),

f .r/ D r` ��m.�; �; �/ (51)

Using these 2-spinor basis functions for the large component, the basis functions
for the small component must be determined by kinetic balance. The action of the
angular part of � � p on the spin-angular function changes the sign of kappa, so it
remains to determine the radial function. Applying the radial part of � � p,�

d
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� 2�r
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The value of � is �` � 1 for j D ` C 1=2, so in this case the first term vanishes,
and the radial function is a simple product of a power of r and a Gaussian. But for
j D ` � 1=2, the value of � is `, and the first term does not vanish: there is now a
sum of powers of r in the radial function.

As an example, consider a 2p-type Gaussian for the large component, re��r2 . For
the small component, the radial function is�

d
dr C �C1

r

�
re��r2 D �2�r2e��r2 ; j D 3=2

D .2`C 1/e��r2 � 2�r2e��r2 ; j D 1=2 (53)

From the discussion above, the small component for a p3=2 function is expected to
be a d3=2 function, and in this case the radial function is that of a 3d-type Gaussian.
For j D 1=2, the small-component function is expected to be an s1=2 function,
and in this case it is a linear combination of a 1s-type Gaussian and a 3s-type
Gaussian.
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This small-component function could be split into two basis functions: a 1s
function and a 3s function. Doing this has been called unrestricted kinetic balance
(UKB), also called extended kinetic balance [24]; keeping the linear combination
of the two functions has been called restricted kinetic balance [25]. From a
computational standpoint, this can be useful if the same exponents are used for both
spin-orbit components, as the 3s function can be obtained by transformation of the
Cartesian set of six d functions to a spherical basis.

For a scalar basis, in which scalar kinetic balance is applied to a Cartesian
Gaussian, the result is

d

dx
xiyj zke��r2 D ixi�1yj zke��r2 � 2�xiC1yj zke��r2 (54)

for the x derivative and similar expressions for the y and z derivatives. All of these
small-component functions consist of two radial functions, unless any of i , j , or k is
zero. However, from the set of all the derivatives, linear combinations can be taken
that reduce to single functions of Cartesian Gaussian type. (The exception is the
derivatives of the p functions, which result in six nonredundant functions, but there
are seven single functions: six Cartesian 3d functions and one Cartesian 1s function.
In this case the seventh function is split off, just as for UKB.) These functions span
the required space: one unit higher and one unit lower in angular momentum than
the large component.

The next issue is the relationships between the exponents. The kinetic bal-
ance requirement already imposes the condition that the exponents for the small
component basis functions must be the same as for the corresponding large-
component basis functions. From a practical standpoint, it is desirable to minimize
the computational cost and maximize the numerical stability. If a 2-spinor basis is
used, the exponents of the large-component functions can be chosen at will, as there
is never a linear dependence problem in the small component arising from kinetic
balance. If a scalar basis is used, kinetic balance produces a set of p functions in
the small component arising from the large-component s functions and another
set of p functions from the large- component d functions. As these two p sets
are highly linearly dependent, it makes sense to use a single set of p functions to
eliminate the linear dependence. This imposes the requirement that the d exponents
for the large component are a subset of the s exponents. A similar consideration
applies for the large-component p and f sets: both generate d functions for the small
component, so making the large-component f set a subset of the p set eliminates the
linear dependence. Two interleaving sets of exponents are obtained, which could be
described as “large s, small p, large d, small f . . . ” and “small s, large p, small d,
large f . . . .” Sets of this type are termed “dual family” basis sets [26]. In addition
to the removal of some linear dependence problems, the use of common exponents
results in more efficient integral evaluation, as it reduces the number of integrals to
be evaluated.

Even more efficiency could be obtained by using a common set of exponents for
all angular momenta, and the same integrals would be used for both the large and
the small components. These basis sets are termed “family” basis sets [26].
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Dual family basis sets do not entirely remove linear dependence from the
small component, however. The derivatives of the 3d Gaussians include both 2p-
type and 4p-type Gaussians. The set of 4p-type Gaussians has a fair degree of
linear dependence on the set of 2p-type Gaussians, so taking the two sets as
independent functions will require some approach for removing or alleviating the
linear dependence. Retaining the linear combinations does not do this, as the 2p
functions would still be needed as well as the combined 2p + 4p functions obtained
from scalar kinetic balance. The usual strategy of using a cutoff on the eigenvalues
of the overlap matrix to remove linear dependencies is one approach; another is
to perform the integral work and Fock matrix accumulation in a scalar basis and
transform the Fock and overlap matrices to a 2-spinor basis for solution of the SCF
equations.

These considerations only apply to four-component methods. In two-component
methods, the relation between the large and small components is folded into the
operators, and the basis set is essentially that of the large component. In this context,
the basis sets will differ from nonrelativistic basis sets only so far as the relativistic
changes in the radial wave function affect the exponent range.

Finally, the exponents themselves must be chosen. Nonrelativistic basis sets
are usually developed by minimizing the total energy with respect to exponent
variations. The same approach can be used in relativistic calculations but with
the caveat that the total energy is not bounded from below by the exact energy.
Instead, it can deviate from the exact energy by an amount of order c�4, as kinetic
balance guarantees that the nonrelativistic energy is an upper bound to the exact
nonrelativistic energy, and the first-order relativistic correction (of order c�2) is
obtained from the nonrelativistic wave function. Due to the relativistic contraction
of the core, more basis functions are needed in the core than in nonrelativistic
basis sets, particularly in the p space: for example, relativistic triple-zeta basis sets
for the 6p block have one more s function and three more p functions than the
corresponding nonrelativistic basis sets [12].

Another way of choosing the exponents is to use an even-tempered set, �i D
˛ˇi�1. Here, there are only two parameters to optimize or to choose, ˛ and ˇ, for a
given number of exponents. These sets tend to be larger than the energy-optimized
sets for a given valence quality, because the energy-optimized exponents spread out
in the high end of the exponent range and to some extent also at the low end of the
exponent range.

Contracted Basis Sets

The use of uncontracted basis sets is relatively uncommon in nonrelativistic
calculations: most calculations are performed with contracted basis sets. Contraction
reduces the number of basis functions and hence the work done in SCF and post-
SCF methods. For heavy elements, flexibility in the core is rarely required in
molecular calculations, so it makes sense to contract the core orbitals or spinors.
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Scalar relativistic calculations are functionally the same as nonrelativistic calcu-
lations, differing only in the operators used to construct the kinetic and potential
energy matrix elements. Consequently, contraction can be done in the same way
and presents no additional problems beyond those that may be encountered in
nonrelativistic calculations. Both generally contracted basis sets and segmented
basis sets can be used without any particular issues.

Two-component calculations are a different matter. Here, the spin cannot be
factored out, due to the presence of the spin-dependent operators. The natural
basis set is a 2-spinor basis, as presented in the section “Spin Coupling”. In
an uncontracted basis set, the spin-orbital basis spans the same space as a 2-
spinor basis, so it can be used instead. With contracted basis sets, the contraction
coefficients must be determined separately for each spin-orbit component. Using
these contractions in a 2-spinor basis presents no linear dependence problems, as
the components are associated with angular functions that are eigenfunctions of
the spin-orbit operator. Using the contractions in a spin-orbital basis produces a
doubling of the basis for each spin-orbit split shell, as there are two radial functions
to associate with each spherical harmonic and spin function. This leads to a large
degree of linear dependence, as the radial overlap of the two spin-orbit radial
functions is usually quite large, and almost unity in the valence region. If the spin-
orbital basis is used throughout the calculation, this linear dependence must be
removed. An alternative is to use a spin-orbital basis that is contracted in a scalar
relativistic calculation. Such a basis provides for first-order spin-orbit effects, but
the higher-order effects due to relaxation of the spin-orbit components are largely
absent (depending on how the contraction is done).

Four-component calculations present additional issues. Consider first the case
where the contraction coefficients are derived from an atomic calculation. Applying
kinetic balance directly to the contracted large component yields small-component
functions that deviate considerably from the actual small component, particularly
in the core region where the potential is large. What is needed here is not kinetic
balance, as given by Eq. (15), but atomic balance [24], as given by Eq. (5), or
its equivalent from an SCF calculation. In other words, the atomic large- and
small-component 2-spinors are used as contracted basis functions in the molecular
calculation. This choice builds in the information from the atomic calculation, which
is most important in the core.

As for two-component calculations, the issue of linear dependence is a major one
if a spin-orbital basis is used and applies to both the large and the small components.
Dual family primitive sets do not help here, as the contracted small components of
the same angular momentum that arise from different large components are not
identical, even if the primitives in the contraction are.

There is a further problem with contraction in four-component calculations.
In order to separate the positive-energy and negative-energy states, a reasonable
representation must be obtained for both. Otherwise, it is possible to produce
intruder states, where, for example, a negative-energy state is pushed up into the
positive-energy region and mixes with the positive-energy states. In an uncontracted
basis, it is possible to obtain a fairly good representation of the negative-energy
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states even with kinetic balance for the positive-energy states only, as the kinetically
balanced basis for the negative-energy states is fairly well represented by the
kinetically balanced basis for the positive-energy states. In a contracted basis, the
heavily contracted small components do not provide a good representation of the
negative-energy states, as they are contracted for an electronic spinor, not for a
positronic spinor. The presence of intruder states with heavily contracted basis sets
was observed in calculations on molecules containing 7p elements [20]. Contracted
basis sets for four-component calculations should therefore be used with some
caution, and it may be better to use uncontracted basis sets instead.

The same issue could arise if segmented contractions are used. Segmented
contractions are usually developed in atomic calculations on electronic states, just as
general contractions are. As the contractions are adapted for the electronic (positive-
energy) states, they do not represent the negative-energy states very well.

Magnetic Balance

While it is often possible for basis sets developed for SCF and correlated calcula-
tions to be used for calculating properties, these basis sets may need to be extended
for accurate property calculations. For example, calculation of polarizabilities
usually needs functions that are more diffuse than in standard basis sets, as the
first-order wave function must be able to represent the effect of the dipole operator
on the zeroth-order wave function. This requirement implies that functions of higher
angular momentum are also needed.

On the whole, for one-component and two-component relativistic calculations,
the basis set requirements for properties follow the nonrelativistic requirements.
In four-component calculations, the basis set requirements for electric properties
are not much different from the nonrelativistic requirements, as the electric field
appears in the Dirac equation in much the same way as in the Schrödinger equation.
No extension beyond kinetic balance is required to meet the nonrelativistic limit, as
the electric perturbation appears as a part of the potential V in the denominator of
Eq. (5) and is eliminated in the nonrelativistic limit.

Magnetic properties are a different matter and require a more detailed treatment.
The reason is that the vector potential, which is related to the magnetic field, appears
along with the momentum operator in the terms that couple the large and small
components. The Dirac equation in a magnetic field is written in two-component
form with the rest mass subtracted, as two coupled equations,

.V �E/ L C c� � .pC eA/ S D 0
c� � .pC eA/ L C .V � 2mc2 �E/ S D 0; (55)

where e is the elementary charge, and the derivation is based on SI units. The
relation between the small and large components now involves the magnetic field
as well as the momentum,
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 S D .2mc2 CE � V /�1c� � .pC eA/ L: (56)

Eliminating the small component and taking the nonrelativistic limit, the result is

.V �E/ L C 1

2m
� � .pC eA/� � .pC eA/ L D 0 (57)

which, with the use of the Dirac relation

.� � u/.� � v/ D u � vC i� � .u � v/ (58)

yields the familiar nonrelativistic magnetic operators,

OHmag D e

2m
.p � AC A � p/C e2

2m
A2 C e„

2m
� � B: (59)

The presence of the vector potential in the relation between the large and small
components necessitates a rederivation of the nonrelativistic limit conditions on the
basis set. The matrix Dirac equation with the vector potential included is written as

.VLL �ESLL/aC c.˘ LS C eALS/b D 0 (60)

c.˘ SL C eASL/aC .VSS � .2mc2 CE/SSS /b D 0; (61)

where the matrix of the vector potential is

ALS�� D h	L�j� � Aj	S� i D .ASL�� /�: (62)

As before, b is eliminated from the first equation using the second, with the
following result when the nonrelativistic limit is taken:

.VLL �ESLL/aL C 1

2m
.˘ LS C eALS/.SSS /�1.˘ SL C eASL/aL D 0; (63)

To ensure that the nonrelativistic magnetic operators are obtained, the following
choice is made for the relation between the small- and large-component basis
functions:

	S D � � .pC eA/	L: (64)

With this choice,

˘LS
�� D h	L�j� � p � � .pC eA/j	L� i (65)

ALS�� D h	L�j� � A � � .pC eA/j	L� i (66)

SSS�� D h	L�jŒ� � .pC eA/�2j	L� i (67)
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so that

˘ LS C eALS D SSS D ˘ SL C eASL (68)

The nonrelativistic limit reduces to

.VLL �ESLL/aL C 1

2m
SSSaL D 0; (69)

and from the definition of the small-small overlap above, it is clear that the expec-
tation of the nonrelativistic magnetic operator is indeed obtained. The condition in
Eq. (64) is called magnetic balance [27, 28].

In most applications, the magnetic field is small, so it is treated as a perturbation.
The zeroth-order Hamiltonian is field-free, so kinetic balance can be used for the
basis of the zeroth-order wave function, and magnetic balance is only needed in the
perturbed wave function.

The two most important cases of magnetic fields are an applied uniform field,
A D 1

2
B � r, and a nuclear magnetic field, A D � � r=r3, for a point nucleus.

In both cases, the critical part of the operator for magnetic balance is the vector
product. When combined with the spin operator, the result is

� � A D f .r/ � � D � r D �rf .r/ D � � � Or (70)

where D is a constant vector that relates to the field strength. The basis functions
themselves will not include this constant vector, so the magnetic component of the
basis functions can be written as

	S� D �rf .r/ � � Or 	L�: (71)

The vector product is now a pure spin-angular operator and gives the relation
between the angular functions. As a tensor of rank 1, it can change the total angular
momentum by one unit, and therefore it couples large-component functions with
small-component functions of different angular momentum (as well as those of the
same angular momentum). This is in contrast to kinetic balance, where the tensor
is of rank 0 and couples only large- and small-component functions of the same
angular momentum. Due to the fact that the angular operator Or is a tensor of rank
1, the orbital angular momentum of the small component must differ from that of
the large component by ˙1, just as for kinetic balance. This means that, as for
kinetic balance, the small-component magnetic basis can be expressed in terms of
functions of one unit higher and one unit lower in orbital angular momentum, but
both j values must be included.

For example, magnetic balance for an s1=2 spinor generates both p1=2 and p3=2
spinors; for a p1=2 spinor, both s1=2 and d3=2 spinors are generated; and for a p3=2
spinor, s1=2, d3=2, and d5=2 spinors are generated. As the space of these spinors is
spanned by the set of Cartesian spin orbitals, the use of a Cartesian basis in this
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application has some advantages. These functions must still be combined with the
field strength operator in the construction of the matrix, to ensure that the proper
balance is kept.

The radial functions differ from those generated by kinetic balance and obviously
depend on the type of magnetic field. For a uniform magnetic field, the small
components behave as one power of r higher than the large components. There
is no linear combination of r`�1 and r`C1 in the radial part � > 0 as there is for
kinetic balance. So, for example, magnetic balance generates a 3s1=2 spinor from a
2p1=2 spinor, whereas kinetic balance generates a linear combination of 1s1=2 and
3s1=2 spinors.

The main difficulty in the radial part lies with the nuclear magnetic field, where
f .r/ D 1=r2. Operating on a 1s1=2 spinor would result in a p1=2 spinor in the small
component with a prefactor of 1=r2, which is singular. However, the difficulty is no
greater than in the nonrelativistic case. If magnetic balance as defined by Eq. (64) is
applied in Eq. (60), with a prefactor of 1=2mc, the result is

.VLL �ESLL/ aC .TLL CHLL
mag/ b D 0;

.TLLCHLL
mag/ aC

	
.WLLCYLL/=4m2c2�.1CE=2mc2/.TLLCHLL

mag/



bD0:
(72)

where YLL is the matrix of the operator

OY D e

2m
.p �AV C VA � p/C e2

2m
A2V C e„

2m
� �BV C e„

2m
� � .rV /�A: (73)

This operator encompasses relativistic corrections to the (nonrelativistic) magnetic
interaction, and there will also be two-electron corrections.

The magnetic integrals HLL
mag are the same as in the nonrelativistic case, and any

problems with the nuclear terms can in principle be addressed in the same way. The
main issue is the behavior at the nucleus. If the nucleus is treated as a point, then the
resultant singularities in the relativistic wave function must be dealt with. However,
if a finite nuclear charge distribution is used, there is no singularity. For the magnetic
properties, a finite nuclear current distribution would be required, and the interaction
of the nuclear magnetic field with the electronic magnetic field would be evaluated
as a kind of Gaunt interaction,

OHint D ˛e � ˛n=ren (74)

where the subscripts e and n refer to the electronic and nucleonic coordinates,
respectively. It would be necessary to integrate over the nuclear wave function to
obtain the vector potential of the nucleus. In the absence of such a wave function,
a model vector potential could be used, just as for the nuclear charge distribution.
This should then eliminate the singularities.
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The relativistic correction integrals YLL pose similar problems, as they also
include the nuclear potential. Again, a finite nucleus should eliminate the singu-
larities, along with the behavior of the wave function near the nucleus imposed by
angular symmetry considerations.
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Abstract

The simplest relativistic computational methods for many-electron systems
involve the solution of one-particle Dirac equations for an electron moving
in some effective (“mean-field”) potential. This potential depends on the one-
particle solutions which describe the electron charge distribution; therefore, such
mean-field problems are solved iteratively until self-consistency. The two most
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important relativistic self-consistent field methods are the relativistic variants of
the Hartree-Fock and Kohn-Sham methods, whose computational frameworks
have large overlap. In this chapter, the development of these methods for atoms
and molecules is sketched. While atomic calculations are usually performed
solving differential variational equations, molecular calculations rely on basis set
expansion methods. These seemed to be problematic initially, but with kinetically
balanced basis sets, smooth convergence is obtained. Most relativistic Kohn-
Sham calculations performed today combine relativistic kinematics (the use of
Dirac spinors) with nonrelativistic exchange-correlation functionals.

Keywords
Relativistic • Mean field • Effective potential • Atomic structure •
Multiconfiguration • Hartree-Fock • Dirac-Fock • Kohn-Sham • Kinetic
balance • Dirac sea

Introduction

The properties of the Dirac equation for a single spin- 1
2

particle are known in much
detail. Whereas even a hydrogenic atomic ion is a two-particle system (electron
and nucleus), the nucleus in a first approximation is just the source of a classical
electrostatic field in which the electron moves. Then, hydrogenic ions may be
described by the one-particle Dirac equation. This description leads to results that
match experimental data fairly well, but some finer details require to go beyond.
For example, real nuclei are not point-like but have a finite extension and may
be non-spherical which leads to the occurrence of nuclear electric and magnetic
multipoles; there are errors introduced by the assumption of an infinitely massive
nucleus (these are termed nuclear recoil effects), and differences to a complete field
theoretical approach in which both the matter and the radiation fields are quantized
are called quantum electrodynamical (QED) corrections. Among the most notable
QED corrections is the Lamb shift (which, e.g., removes the degeneracy of the 2s 1

2

and 2p1
2

energy levels) and a small correction to the electron g value.
In atomic and molecular electronic structure theory, one is however primarily

interested in many-electron systems. Compared to the nonrelativistic case, the
increase in complexity when going beyond a one-electron system is much more
pronounced in a relativistic treatment. The first steps of a complete (or at least
convergent) treatment in the framework of bound-state QED are possible for few-
electron atoms (or atomic ions), but it is unlikely that this becomes a viable
computational approach to real many-electron systems. Designing a practical com-
putational method for a relativistic many-electron system that is firmly based on first
principles is a formidable challenge, but things remain relatively straightforward if
one uses a mean-field approximation that involves the solution of single-particle
Dirac equations for electrons moving in some (effective) potential. Usually, this
effective potential depends on the Dirac solutions it generates, which leads to some
kind of self-consistency cycle.
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While there may (or may not) be a relativistic many-electron wave function
present behind the curtain, the computational procedure only deals with single-
particle functions. But besides the more or less technical issue of how to calculate
self-consistent single-particle functions (Dirac spinors), there are two valid ques-
tions: (a) If this is an approximation, what is actually approximated? (b) How can
one go beyond this approximation? Such questions were asked when relativistic
self-consistent methods were already established, and this caused some confusion
(see below) because the reasons for some inconsistencies observed in numerical cal-
culations were not properly understood. But meanwhile relativistic self-consistent
field methods, in today’s nomenclature subdivided into relativistic Hartree-Fock and
relativistic Kohn-Sham methods, are a well-established first approximation to the
relativistic many-electron problem.

Relativistic Hartree-Fock for Atoms

The first attempt at a relativistic Hartree-Fock approach was made by Bertha Swirles
as early as 1935 [1]. Since a fully relativistic many-electron Hamiltonian does not
exist, she introduced an approximation, namely, the Hamiltonian for noninteracting
Dirac particles, augmented with the expression for the electron interaction as known
from nonrelativistic theory:

OHDC D
nX
iD1
OhD.i/C

X
i<j

1

rij
(1)

Here, n is the number of electrons and OhD is the Dirac operator for a single electron
moving in the electric field of the nuclear framework, described by its electrostatic
potential. In standard notation, the Dirac operator reads (with a shift that places the
positive continuum at zero energy)

OhD D �
�
VN c� � p
c� � p VN � 2mc2

�
(2)

Atomic Hartree units are used throughout, which means that the elementary charge
e and the electron rest mass m are set to unity from now on, c is the speed
of light (�137 in atomic units), � is the vector of the Pauli spin matrices, and
p is the momentum operator. Note that the nuclear framework is fixed and at
rest, so a particular Lorentz frame has been singled out. This Hamiltonian, today
called the Dirac-Coulomb Hamiltonian, is still a cornerstone of relativistic quantum
chemistry although it has some awkward properties if understood as a Hamiltonian
in configuration space. Swirles then considered a Slater determinant � ,

� D j�1�2 : : : �nj (3)
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an antisymmetrized product built from orthonormal Dirac spinors �i, and demanded
that these spinors are optimized as to produce the lowest possible energy expectation
value E D< � j OHDC� > of the Slater determinant with the Dirac-Coulomb
operator. The condition of variational stability then implies that the spinors are
eigenfunctions of a one-particle Dirac operator with an effective potential that in
turn depends on these solutions. This generates a self-consistency condition in
complete analogy to the nonrelativistic (Hartree-Fock) case, and the self-consistent
effective potential is termed the self-consistent field.

Swirles herself did not present numerical calculations; subsequently calculations
were presented by other workers either neglecting the exchange terms altogether
[2] or approximating them by “statistical exchange” [3]. The latter approximation,
also called Dirac-Fock-Slater or Dirac-Slater, is today viewed as a Dirac-Kohn-
Sham type method, but at that pre-DFT time, Slater exchange was considered as
an approximation to Fock exchange. Finally, Grant [4, 5] mastered all the angular
momentum algebra necessary to set up a computational procedure for atomic
calculations including Fock exchange. In 1973, Desclaux published Dirac-Fock
results for all atoms with Z D 1 through Z D 120 [6]. This work is essentially
a compilation of numerical results, but turned out to be highly influential. This is
so, because relativistic effects on atomic shell structures, and its consequence for
chemical bonding, were often qualitatively discussed based on Desclaux’ tables.

Negative-Energy Eigenstates and the “Dirac Sea”

The approach pioneered by Swirles does not look valid at first sight. For example,
possible problems associated with the existence of negative-energy Dirac solutions
were not even mentioned. As pointed out later in detail by Grant and Quiney [7],
variational stability problems cannot arise here because the numerical procedure
generates Dirac spinors that satisfy the correct boundary conditions. The angular
and spin parts of the eigenfunctions of a Dirac operator with a spherical (effective)
potential are known analytically, and the radial part is obtained by numerically
solving radial variational differential equations imposing the proper boundary
conditions at r ! 1 and r ! 0. Scattering eigenfunctions (both with positive
or negative energy) cannot be obtained this way; therefore, there is an implicit
projection to the positive-energy subspace, and the one-particle eigenvalue obtained
this way has a lower bound.

The numerical procedure for the calculation of the spinors thus implicitly
contains a projector to the bound positive-energy subspace, which makes the method
variationally stable. As a matter of fact, negative-energy eigenfunctions of the Fock
operator do exist, but the early work on relativistic Hartree-Fock obviously did not
see any reason to consider them – although they had irritated Dirac and others so
much just a decade before. Why were they disregarded when choosing the occupied
spinors? An argument that already goes back to Dirac is that the negative-energy
spinors are all occupied, but that this cannot be seen, as the “normal state of
electrification,” as Dirac termed it, corresponds to all but only the negative-energy
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states occupied and that everything one measures is just the departure from this
normal state. The Pauli exclusion principle then enforces that additional electrons
have to occupy positive-energy spinors. The charge density of the filled Dirac sea of
the free particle Dirac equation, in today’s terminology the vacuum, will be uniform
but not detectable although it is formally infinitely large. The early relativistic
Hartree-Fock procedures can thus be justified as defining vacuum expectation values
to be zero, such that only the positive-energy occupied spinors contribute.

There is however a problem here, namely, that in the presence of the atomic
nucleus, the negative eigenstates of the Dirac equation, if completely filled, do
not produce a homogeneous density, because the electric field of the nucleus
induces an asymmetry between positive and negative-energy one-particle states.
This remains true if the effective Dirac equation containing the Fock potential
is considered. In other words, the vacuum becomes polarized. Note that there
are additional contributions from pair creation not contained in this picture. The
vacuum polarization charge density constitutes a correction to the electron-nucleus
interaction and contributes to the removal of the degeneracy of the 2s 1

2
and 2p1

2

levels already in one-electron atoms (the so-called Lamb shift). From a conceptual
point of view, the vacuum polarization charge density is important in relativistic
density functional theory, where a charge density need be defined independently of
the external potential. However, if one attempts to calculate the interaction with the
vacuum polarization charge density, one finds that it becomes infinite.

The Dirac sea picture is a nice starting point to discuss what negative-energy
states are all about, but must be considered obsolete. For example, there are massive
bosons with negative-energy eigenstates, and here the Pauli exclusion principle
does not prevent them all falling into the sea. Quantum field theory – or quantum
electrodynamics (QED), as it is called for interacting electrons – is able to treat the
negative-energy eigenstates consistently which are then related to positive-energy
states of an antielectron (positron). Nevertheless, the problems of the infinities
of the Dirac sea remain present, and it requires normal ordering and a proper
renormalization procedure to arrive at finite results. A complete description of
interacting electrons requires a quantization of both the matter and the radiation
field, and this then adds a second term to the Lamb shift, the so-called electron
self-energy. This self-energy contribution is actually as important as the vacuum
polarization contribution and of opposite sign (in light atoms, it is actually much
larger), both together constitute the leading-order QED correction to one-electron
atoms. One should also not forget that for heavy nuclei, the finite nuclear volume
effect is also an equally important contributor to the Lamb shift. Of course, in many-
electron atoms, there are also QED corrections to the electron-electron interaction.
For group I atomic ionization energies, the corrections due to the Lamb shift have
been found to be as large as those from relativistic corrections to the electron-
electron interaction [8].

Another quantum field correction, which can quite easily be calculated for a free
electron, is the deviation of its g value from the Dirac result gD D 2 (for a free
electron, gf � 2:002319). The QED correction to the g value is more difficult
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to calculate for a bound electron. When calculating magnetic properties, the Dirac
operator is often modified by scaling magnetic interactions with an external field
by gf =2 and magnetic interactions between electrons by g2f =4. For the calculation
of electron paramagnetic resonance (EPR) parameters of molecules containing only
light elements, this is certainly a useful first estimate of QED effects.

Until today, the largest part of relativistic self-consistent field methods uses
the “no sea” (today mostly called “no-pair”) approximation tacitly introduced by
Swirles, where negative-energy states just remain unoccupied and any contributions
from quantum field theory are ignored. For few-electron ions and molecules, such
as the helium or lithium isoelectronic series and the hydrogen molecule, such
contributions can be calculated to high accuracy. It still seems state of the art to
use semiempirical estimates to assess QED effects in many-electron atoms and
molecules [9]. There is currently on-going work on how to include QED corrections
systematically in atomic and molecular calculations [10–12].

Open-Shell Atoms: Multiconfiguration Dirac-Fock

Early atomic relativistic self-consistent field calculations could only calculate total
energies of closed-shell atomic states or an energy average (over all states arising
from a given configuration) for open-shell situations. Although such results were
important for the development of our qualitative understanding of relativistic effects
in atoms and molecules, they were useless for the simulation of atomic spectra. For
this purpose, the treatment of partially filled atomic shells had to be improved.

The Dirac spinors used to construct the atomic wave functions were, by
construction, eigenfunctions of the one-particle total angular momentum operator
j2 and its z component Ojz. While Slater determinants constructed this way are
still eigenfunctions of the many-electron operator OJz, one generally needs linear
combinations of Slater determinants of a given configuration to construct atomic
wave functions of proper symmetry, which are eigenfunctions of J2. A textbook
example is the atomic p2 configuration. In the relativistic case, the p shell is split
into the p1

2
and p3

2
subshells, such that there are three subshell configurations:

�
p1
2

�2 W NDet D 1I J D 0�
p1
2

�1�
p3
2

�1 W NDet D 8I J D 1; J D 2�
p3
2

�2 W NDet D 6I j D 0; J D 2

For the .p 1
2
/2 configuration, there is only a single Slater determinant (closed-

shell case) which is eigenfunction of J2 with J D 0, and the radial part of the spinors
is optimized for this J D 0 energy. For the .p 3

2
/2 configuration on the other hand,

one can construct six Slater determinants by occupying two of the four p3
2

spinors.
There are fixed linear combinations of these Determinants which are eigenfunctions
of J2, a single one with J D 0 and a fivefold degenerate set that forms a multiplet
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with J D 2. One can optimize the radial parts of the Dirac spinors for either of the
two resulting energy levels. This procedure is known as jj -coupling. The problem is
now that for most atoms of interest, the interaction between the two J D 0 functions
arising from the

�
p1
2

�2
and

�
p3
2

�2
configurations, mediated by exchange, is larger

than their energy difference which depends on the spin-orbit splitting of the p shell.
It must therefore be expected that a realistic description involves a strong mixing
between the two J D 0 functions obtained from jj -coupling. Describing this
mixing was not possible in the first atomic structure programs; the radial parts of the
Dirac spinors were instead optimized for an average of all these energies (weighted
with the degeneracies). The average energy thus obtained roughly corresponds to an
energy average of the nonrelativistic LS configurations (in this case, 3P , 1D, 1S ).
Note that in group 14 atoms with a valence p2 configuration, these LS -multiplets
are separated by about 10,000 cm�1; therefore, the calculation of such averaged
energies is of little significance for the interpretation of atomic spectra.

The configuration mixing necessary for a realistic description of atomic energy
levels is performed in the multiconfiguration Dirac-Fock (MCDF) method. First
implementations were presented by Desclaux [13] and Grant [14]. This method
introduces a second self-consistency cycle: for a given linear combination of Slater
determinants, the variational radial differential equations are solved until self-
consistency. Then, the Hamiltonian matrix is constructed and diagonalized in the
space of these determinants, which generates new coefficients for these. This work
is largely based on the achievements by Froese Fischer in the nonrelativistic case
[15]. Even if a good wave function has been obtained as a linear combination
of jj -coupled determinants, it is of interest how this function reads if expanded
in LS -terms. For example, in a light atom with a p2 configuration, one wants to
know to which extent the excited 1S0 singlet mixes with the 3P0 component from
the lowest triplet. Such transformations between jj and LS coupled descriptions
(of the same wave function) can be done using angular momentum algebra [16].
The developments of Grant resulted in the first general-purpose relativistic atomic
structure program (GRASP) that has been developed further ever since [17].

Beyond Dirac-Coulomb

There are a number of effects that are not contained in the methods described so
far. They include relativistic corrections to the electron interaction, the QED (also
called “radiative”) corrections mentioned before, and the effect of nuclei not being
infinitely heavy point particles.

The Breit and Gaunt Interaction

There are relativistic corrections to the electron interaction, such as magnetic
interactions and the effect of retardation, which are not contained in the Dirac-
Coulomb Hamiltonian. However, no closed-form configuration space Hamiltonian



114 C. van Wüllen

exists for a fully relativistic description of the electron interaction. Starting from
QED, one can derive the (frequency-independent) Breit interaction as a lowest-order
approximation (single virtual photon exchange, low velocities):

b.i; j / D �˛.i/ � ˛.j /
rij

C 1

2

 
˛.i/ � ˛.j /

rij
� .˛.i/ � rij /.˛.j / � rij /

r3ij

!
(4)

˛ D
�
0 �

� 0

�
(5)

such that the Dirac-Coulomb-Breit Hamiltonian reads

OHDCB D
nX
iD1
OhD.i/C

X
i<j


1

rij
C b.i; j /

�
(6)

The first term in the Breit operator describes the instantaneous magnetic interaction
(Gaunt term); the second one stems from the retardation of the Coulomb interaction.
The retardation term leads to greater numerical complexity and is sometimes
neglected (then only the Gaunt term is used).

From early on, it has been argued that the Breit term should not be included in
the iterative self-consistent procedure, but rather only its expectation value should
be added to the Dirac-Coulomb result after convergence has been achieved. In
numerical atomic Dirac-Fock programs, it is all but trivial to include the Breit
interaction self-consistently [18]. This is (technically) easier in algebraic (basis set
expansion) methods (see below). With such methods, to include the Breit interaction
self-consistently [19] has been tried and the results suggested that this is a valid
procedure at the no-pair level, in contrast to what had been assumed for 30 years.
Note that this statement only refers to relativistic Hartree-Fock calculations. What
happens if one includes the Breit interaction in a variational procedure that goes
beyond Dirac-Fock (or MCDF) seems still to be under debate.

In high-Z, few-electron ions, it is certainly mandatory to include the Breit
interaction to obtain accurate results. More relevant is the question whether one
needs to include the Breit interaction in the calculation of valence properties
of (nearly) neutral atoms or molecules. It is often said that the effect of the
Breit interaction in this case is �1% of the effects due to relativistic kinematics.
However, the spin-other-orbit interaction (which is part of the magnetic interaction)
is important for spin-orbit splittings and spin-orbit-dependent properties such as
zero field splittings. The spin-dipolar interaction, which is the spin-spin part
of the magnetic interaction, can be important especially in light elements. For
example, it dominates the zero field splitting in small organic biradicals [20]. Of
course, it is the Breit (or rather, the Gaunt) term that is generally responsible for
long-range magnetic interactions and thus is important for macroscopic magnetic
phenomena.
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Nuclear Volume and Recoil Corrections

Nuclei are not point-like objects, but have finite dimensions, such that the electric
field generated by a nucleus nowhere goes to infinity. The difference between
calculations with a point-like and finite nucleus significantly increases when going
from a nonrelativistic to a relativistic description, because in the latter, there is a
weak singularity of the wave functions if there is a point-like nucleus. For point-
like nuclei, this even implies that there are no Dirac solutions for Z 
 c � 137.
To include finite nuclear size effects in atomic and molecular calculations, one
needs a simplified model for the nuclear charge distribution. Initially a uniformly
charged sphere with some nuclear radius has been assumed, but a Fermi-type charge
distribution is probably much more realistic [21]. In molecular basis set expansion
methods, a Gaussian nuclear charge model is still mostly used. Whereas this model
is certainly highly unphysical, it is rather popular because molecular integrals of
the resulting nuclear potential with Gaussian basis functions can very easily be
calculated. For the nuclear radius, there exists an empirical dependence on the
number of nucleons [22]. If one considers some electronic property for two different
isotopes, the nucleus of the heavier one will have its nuclear charge density more
spread out (larger nuclear radius), and this effect will be captured even by a crude
nuclear model. It goes without saying that the chosen nuclear model strongly affects
the r ! 0 behavior of the atomic orbitals. In heavy single-electron ions such as
U91C, the finite nuclear size effect on the Lamb shift is as important as the QED
corrections [8].

Much more difficult is to account for the finite nuclear mass. In nonrelativistic
theory, the center-of-mass motion can be separated off exactly. For one-electron
ions, this simply leads to using a reduced mass for the electron, for many-electron
atoms mass polarization terms arise which are the origin of the Hughes-Eckart
shifts. The relativistic nuclear recoil theory is much more complicated, but the
nonrelativistic terms are retrieved to the leading order [23].

Basis Set Expansion Methods

In atomic self-consistent field calculations, the spinor optimization leads to the
numerical solution of radial variational differential equations. This separation of
spin/angular and radial variable can be taken over to some extent for diatomic
molecules. For polyatomic molecules, the algebraic (basis set) expansion is the
preferred method to solve a variational problem. This has first been done, still for the
atomic case, by Kim [24]. The basis set expansion leads to the relativistic analogue
of the Roothaan equation. Atomic basis set expansion Dirac-Fock codes have been
further developed [19, 25] and were reasonably successful, but did not substitute
numerical atomic codes. For polyatomic molecules, the situation is dramatically
different: here basis set expansion methods are probably the best one can do. The
reason for this is that in quantum chemical applications, one is rather interested in
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energy differences than in total energies, and basis set expansion methods have some
sort of built-in error compensation, at least if one uses a fixed basis set for a given
problem.

Relativistic Hartree-Fock Matrix Equations

In the relativistic case, one chooses separate basis functionsL� and S� for the upper
(large) and lower (small) components of the Dirac spinors

L�.r/ D

0BBB@
L˛�.r/

L
ˇ
�.r/
0

0

1CCCA ; S�.r/ D

0BBB@
0

0

S˛�.r/

S
ˇ
�.r/

1CCCA : (7)

For simplicity, the number N of large and small-component basis functions are
assumed to match. Basis sets of this general kind are called spinor basis sets. If all
basis functions have only a single nonzero component (such basis sets are called
scalar basis sets), the number of large and small-component basis functions will
be different because of the kinetic balance condition (see below and the following
chapter in this section). All basis sets are constructed such that applying the time-
reversal operator on a basis function produces a function that can also be expanded
in the basis set. Usually, the basis functions are normalized, since this improves
numerical stability. Of course, we assume that the basis functions are linearly
independent. Then, 2N orthonormal Dirac spinors  p can be constructed

 p D
NX
�D1

CL
�pL� C CS

�pS� (8)

with two N � 2N matrices CL and CS containing the spinor (“MO”) coefficients.
If there are n electrons, one chooses n occupied Dirac spinors from the 2N linear
combinations and forms a Slater determinant. Then, one requires that the energy
expectation value with the Dirac-Coulomb operator is stationary with respect to a
variation of the MO coefficients under the constraint that the Dirac spinors remain
orthonormal. This leads, in full analogy to the nonrelativistic case, to an iterative
process, and in each iteration, a generalized (with overlap) eigenvalue problem of
the form �

FLL FLS

FSL FSS

��
CL

CS

�
D
�

ML 0

0 MS

��
CL

CS

��
"C 0

0 "�
�

(9)

has to be solved. The submatrices FXY, MY, etc. (X; Y is L or S ) are N � N
matrices, "C is a diagonal matrix with N positive-energy eigenvalues, and "� is a
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diagonal matrix with N negative-energy eigenvalues. The overlap submatrices (we
have chosen the letter M for metric instead of the more conventional S to avoid
confusion with the small-component basis functions) are

ML
�� D < L�jL� >; MS

�� D < S�jS� >; (10)

and the Fock matrices contain one-particle (V, T, and M), Hartree (J) and exchange
(K) terms

FLL D VL C JLL �KLL (11)

FSS D VS � 2c2MS C JSS �KSS (12)

FLS D T �KLS (13)

FSL D T� �KSL D T� � �KLS
�� D .FLS/� (14)

with matrix elements

V L
�� D < L�jVNL� >; (15)

V S
�� D < S�jVNS� >; (16)

T�� D < L�jc� � pS� >; (17)

JLL�� D
X
�;�
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�� .L�L� jS�S� /; (18)
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KLL
�� D

X
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?
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The J and K matrices are defined through the two-electron integrals .� � j � �/
(in Mulliken notation) and the density matrices are defined as

DXY
�� D

X
i

CX
�i

�
CY
�i

�? D 	DYX
��


?
(24)
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where the summation index i goes over the occupied molecular spinors. With
these definitions, the Fock matrices can be constructed. Note that only two-
electron integrals of type .LLjLL/, .LLjSS/=.SS jLL/, and .SS jSS/ occur in
the case of the Dirac-Coulomb operator. Including the Breit interaction leads to
rather complicated two-electron integrals, and sometimes the Gaunt term (without
retardation) is used, since it covers the most important (spin-other-orbit and spin-
dipolar) corrections. This is so because the retardation only alters the orbit-orbit
term. In each iteration, the diagonalization of the Fock matrix, Eq. (9) produces 2N
Dirac spinors, many more than n, as needed to construct the Slater determinant. This
is in sharp contrast to fully numerical methods, which solve differential equations
and produce only occupied Dirac spinors. So after diagonalization of the Fock
matrix, one has to decide which of the solutions become occupied in the next
iteration. Only positive-energy spinors are considered (this implements the implicit
positive-energy projection); among those, one often chooses the n spinors of lowest
orbital energy, but it is also possible to choose those with maximum overlap to the
occupied spinors of the preceding iteration. The energy expectation value of the
Slater determinant with the Dirac-Coulomb Hamiltonian is given by

E D E1e CE2e (25)

E1e D Tr.DLL � VLL/C Tr.DSS � VSS / � 2c2Tr.DSS �MS /

C Tr.DLS � T/C Tr.DSL � T�/ (26)

E2e D 1

2

n
Tr.DLL � .JLL �KLL//C Tr.DSS � .JSS �KSS //

� Tr.DSL �KLS/ � Tr.DLS �KSL/
o
: (27)

In this equation, E1e is the one-particle energy and E2e the electron interaction, and
Tr.�/ denotes the trace of a matrix. Note that the last two terms both of E1e and E2e
form a pair of complex conjugates.

The basis set expansion method for relativistic Hartree-Fock has been developed
by Kim [24] for closed-shell atoms and extended by Kagawa [26] to the open-shell
case. In these atomic cases, the basis set expansion is applied to the radial part of
the Dirac spinors only, while the angular and spin parts are taken from the known
central field solutions. A general molecular basis set expansion was already drafted
by Synek [27] and later by Malli [28]. Early numerical results for molecules were
presented by Matsuoka [29] and Mark [30]. The procedure essentially parallels the
nonrelativistic case, but the matrix dimension is larger and the matrices are complex
valued, such that the memory demand is considerably larger. A significant increase
in computer time comes from the additional two-electron integrals, but also matrix
operations (such as the diagonalization) become much more costly because of their
N3 scaling.
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The “Diseases” and How to Become Immune

Already in the first applications of relativistic basis set expansion methods to
molecules [29], it became obvious that the energy differences between a nonrel-
ativistic and relativistic calculation were too large and that one needs very large
basis sets to stabilize this energy difference. Even for basis sets that were already
large, the calculated energy showed large oscillations when adding new basis
functions, and the calculated energy when performing the limit c ! 1 was lower
than the nonrelativistic result. Even worse, it could happen that occupied Dirac
spinors were chosen, according to the low positive-energy eigenvalue criterion,
which were completely unphysical, as indicated by their near-zero kinetic energy
expectation value [31]. Initially, these failures were associated with the so-called
Brown-Ravenhall disease, which has been advocated as a major problem by Sucher
[32]. The problem is present for many-electron systems already in the absence of
electron interaction: Choosing a Dirac spinor from the negative and one from the
positive-energy continuum, one can construct many two-particle Slater determinants
which are eigenfunctions of OHDC in the absence of electron interaction for any
desired eigenvalue. Sucher’s recipe was to put projection operators around the
Dirac-Coulomb Hamiltonian such that any spinor in a determinant is projected to
some positive-energy space, either defined by the positive-energy solutions of a free
particle or by those of a single electron moving in the electric field of the nuclear
framework. The resulting no-pair Hamiltonian has become very important in the
relativistic correlation problem, but the projection is already implicitly present in the
relativistic Hartree-Fock procedure when picking only positive-energy solutions of
the eigenvalue problem Eq. (9) as occupied orbitals. Sucher discussed two possible
scenarios for the positive-energy projection: either the potential used to define the
positive-energy space is zero (free particle projection) or the potential of the nuclear
framework (external field projection). The projection implicit in the relativistic
Hartree-Fock procedure uses a third option, namely, the actual effective potential
of the current iteration. This approach is equally valid [33]. The viewpoint today
[34] is that the Dirac-Coulomb operator can only be used in Fock space (and not in
configuration space) and that the Brown-Ravenhall disease is an artifact of using an
illegitimate Hamiltonian. The no-pair projection is then viewed as a simplification of
the Fock-space formalism. Inherent to the Fock-space formalism is that the vacuum
state of the Hamiltonian depends on the positive and negative-energy spinor spaces
and thus changes from one to the next self-consistent field iteration. This also
implies that the Fock-space Dirac-Coulomb Hamiltonian to be used, e.g., in a post-
Hartree-Fock correlation treatment, depends on the reference state of the Hartree-
Fock calculation. These implications are more relevant to the correlation treatment
than to the self-consistent field calculation and thus outside the scope of this chapter.

Here it is sufficient to remind the reader that the positive-energy projection that is
performed automatically in the relativistic Hartree-Fock procedure makes it immune
against the Brown-Ravenhall disease. The actual problems observed in numerical
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calculations have a different origin, as first explicitly pointed out by Schwarz [35],
and are caused by the basis set expansion itself (finite basis set disease). That this
problem is different becomes quite obvious if one realizes that it already occurs
in one-electron systems. Consider, e.g., an atomic calculation on a hydrogenic ion,
where all basis functions L� and S� are of s type. Then, the matrix T (see Eqs. (17)
and (26)) will be zero, as well as the kinetic energy contribution to the one-particle
energy. Any Dirac spinor expanded in this basis will be a bad approximation to the
hydrogenic 1s orbital and a mixture of positive and negative-energy solutions. There
is a recipe, named kinetic balance, to construct relativistic basis sets [31, 36, 37].
In what is usually called restricted kinetic balance, there is a 1:1 correspondence
between large and small-component basis functions such that

S� D t�
�

0 0

� � p 0

�
L�; (28)

where the factor t� is used to make S� normalized. For all but the heaviest elements,
one can choose a scalar large-component basis set, but the restricted kinetic balance
recipe requires a spinor basis set for the small component. If one uses heavily
contracted Gaussian basis functions for atomic core orbitals, an extension of the
concept called atomic balance has been advocated [38]. In practice this means
that one starts with an uncontracted kinetically balanced basis set and obtains the
contraction coefficients of the contracted large and small-component basis functions
from the atomic spinor coefficients instead of imposing Eq. (28) for contracted
functions. Kinetic balance is discussed in detail in the following chapter; at this
place it is sufficient to remark that kinetic balance is a very effective cure of the
finite basis set disease.

To summarize, relativistic Hartree-Fock is immune against the Brown-Ravenhall
disease by construction, and the finite basis set disease does not harm if kinetically
balanced basis sets are used. As an aside, no such “diseases” have infected numerical
atomic relativistic Hartree-Fock calculations: because the proper boundary con-
ditions are imposed and the variational differential equations are solved exactly
(within numerical accuracy), a proper projection to the positive-energy states is
implicitly present, and the numerical solutions automatically exhibit kinetic balance.

New Developments

If one knows how to choose the basis set, all fundamental problems – within
the “no-pair” approximation – of Dirac-Hartree-Fock are solved. There have been
tremendous advances since the end of the 1980s, but these were mostly technical
and targeted at increasing the computational efficiency. This will not be discussed
in detail in this overview. A significant enhancement of the efficiency came from
new two-electron integral programs, especially those which are tailored to the
way relativistic basis sets are constructed (e.g., Ref. [39]). In fact, one of the
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major drawbacks of early molecular Dirac-Fock programs came from the fact that
they used an integral engine developed for nonrelativistic applications. Another
important observation was that the density arising from the small-component basis
functions is rather compact, nearly spherical, and centered around the nuclei.
Visscher has shown [40] that one can discard the .SS jSS/ two-electron integrals
involving four small-component basis functions altogether from the calculation
if a simple point-charge correction is applied. In routine applications performed
today, .SS jSS/ integrals are rarely calculated and processed. This speeds up the
calculation especially if scalar basis sets are used for the large components (either
L˛� or Lˇ� are zero) but spinor basis sets for the small components (both S˛� and

S
ˇ
� are nonzero), which is the case for kinetically balanced basis sets in which

the number of large and small-component basis functions match. Using methods
known from nonrelativistic treatments, two-electron integrals can be avoided (or
approximated) using pseudospectral [41] or density fitting [42] procedures. Current
developments focus on the calculation of molecular properties at Dirac-Fock level
rather than on how to calculate the Dirac-Fock energy itself.

Relativistic Kohn-Sham

It is known from the nonrelativistic case that the Kohn-Sham variant of density
functional theory is operationally very similar to Hartree-Fock. This largely also
holds in the relativistic case. The iterative procedure is very similar: one constructs
an effective potential (that depends on the occupied Dirac spinors) in each iteration,
diagonalizes a Fock-type matrix, and iterates until self-consistency. Although the
computational steps are similar, the theoretical foundation is quite different.

Relativistic Density Functional Theory Basics

A relativistic generalization of the Hohenberg-Kohn theorem has first been pre-
sented by Rajagopal and Callaway [43]. The four-current, in other words both
the charge density �.r/ and the charge current density j.r/, serves as the basic
variable. This first presentation was formulated in a field theoretical language, but
it was not taken into account that certain quantities that occur in such a formulation
may become infinite and therefore require proper renormalization. The nontrivial
point here is that one has to make sure that the renormalization procedure (and the
counterterms to the four-current that arise) does not destroy the one-to-one mapping
of external potentials to ground state densities needed for the Hohenberg-Kohn
logic. With quite some effort, one can show that the relativistic Hohenberg-Kohn
theorem holds [44]. A relativistic DFT procedure rooted in this quantum field
theoretical framework is however so complicated that all existing computational
schemes involve the no-pair approximation discussed at the beginning of this
chapter.
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The Kohn-Sham energy in the no-pair approximation is derived from a Slater
determinant-built positive-energy spinors; the charge and charge current densities
are defined as

�.r/ D
X
i

�
�
i .r/�i .r/; j.r/ D c

X
i

�
�
i .r/˛�i .r/ (29)

where the �i are the spinors of the Slater determinant. The kinetic energy of the
reference (Kohn-Sham) determinant is
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and the Hartree energy reads
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�
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All other contributions to the energy are cast into the exchange-correlation energy,
just as in the nonrelativistic case. The last (current-current) term of the Hartree
energy represents a magnetic interaction and is often neglected, since closed shells
(including the atomic core shells) do not contribute to j.

Making the energy stationary with respect to orbital variations generates an
eigenvalue equation similar to Eq. (9). The Hartree terms (J matrices) remain the
same, but the exchange terms (involving the K matrices) are redefined according to

�KLL
�� D < L�jVxcL� >; (32)

�KSS
�� D < S�jVxcS� >; (33)

�KLS
�� D < L�jc˛ � AxcS� >; (34)

�KSL
�� D < S�jc˛ � AxcL� >D �.KLS

�� /
?: (35)

involving the scalar and vector exchange-correlation potentials Vxc.r/ and Axc.r/
that result from a variation of the exchange-correlation energy w.r.t. �.r/ and j.r/.
If one includes the Breit interaction, there is an additional Hartree-type term which
is included by augmenting Axc by

AH.r/ D � 1
c2

Z
j.s/
jr � sj d s (36)

which directly follows from the Gaunt term (there is no retardation in the Hartree
part). If the external four-potential is generated by a fixed nuclear framework, it only
has a scalar time-independent part. This is called the electrostatic limit, for which
the relativistic Hohenberg-Kohn theorem states that the density alone is sufficient to
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determine the external potential. In this case, there exists an exchange-correlation
functional that only depends on the density, and Axc vanishes.

Relativistic Spin-Density Functional Procedures

Even in the electrostatic limit, there are internal magnetic fields in the molecule
unless it is a closed-shell system. Although the fundamental theorem tells us the
density is good enough, it is not possible to find a good enough exchange-correlation
functional for open-shell systems. This is already known from nonrelativistic theory,
where one needs a functional that also depends on the spin density to describe
open-shell systems, no matter whether there are external magnetic fields or not.
Unfortunately, there is, until today, no generally applicable relativistic exchange-
correlation functional that depends on the four-current. As a resort, one uses
spin-density functionals known from the nonrelativistic case in relativistic Dirac-
Kohn-Sham calculations. To this end, one performs a Gordon decomposition of the
charge current density into an orbital and a spin part and then defines an exchange-
correlation energy that depends only on the latter. For details, see the chapter
Ref. [45]. Besides the charge density, the magnetization density m becomes the basic
variable

m.r/ D
X
i

�
�
i .r/

�
� 0

0 ��

�
�i .r/; (37)

KLS and KSL disappear, and Vxc is augmented by a spinor potential involving the
functional derivative of the exchange-correlation energy w.r.t. m.r/. Note that the
definition used in Eq. (37) follows from the Gordon decomposition; it seems that
sometimes a slightly different definition is used in which the Pauli � matrix in the
lower right corner does not carry a minus sign.

Relativistic Functionals

It is known that in a (noninteracting) homogeneous electron gas, relativistic effects
grow with the density. The critical density at which they become discernible is
exceeded in atomic cores. Therefore, one should expect relativistic corrections to
exchange-correlation functionals to be important. The personal view of the present
author, however, is that no useful relativistic functional has emerged although much
effort has been spent. One reason is that too little is known about the current
dependent parts of the functional. In most cases, nonrelativistic functionals are
used today. So-called hybrid functionals, which mix density functional and Fock
exchange, are also widely used in the relativistic case. Magnetic interactions (Gaunt
or Breit) are included in an “100% exact exchange” manner, that is, the expectation
value of the Kohn-Sham reference determinant with the two-particle Gaunt or Breit
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operator defines the contribution to the total energy. This is relevant if one is
interested in the spin-other-orbit contribution to the two-electron spin-orbit terms,
or if one wants to include the spin-dipolar interaction. Today, relativistic Kohn-
Sham is theoretically well developed, but in practice it is mostly a combination of
relativistic kinematics with nonrelativistic density functional methods. The situation
is not so bad as it seems: in several studies, relativistic corrections to the exchange-
correlation functional showed no large effect on spectroscopic constants [46, 47].
But it has to be kept in mind that these investigations were limited to closed-shell
systems and relativistic corrections to a functional depending on the density only.

New Developments

As already mentioned for Dirac-Fock, the largest impact on advancing the Dirac-
Kohn-Sham method came from technical improvements that increase computational
efficiency. It is clear that many of the performance improvements achieved in Dirac-
Fock programs immediately transfer to the Dirac-Kohn-Sham case, especially if
hybrid functionals are used. Ref. [48] gives an overview over Dirac-Kohn-Sham
programs used today and discusses recent advances.

Beyond Self-Consistent Field Methods

Relativistic Kohn-Sham is a widely used method to target problems of heavy-
element chemistry. Its quality and applicability mainly depend on the chosen
exchange-correlation functional. The hierarchy of functionals is essentially the
same as in the nonrelativistic case: local density functionals are widely considered
obsolete today, gradient-corrected functionals are frequently used, but also hybrid
functionals which contain a portion of Fock exchange. The so-called � -dependent
functionals (also called meta GGAs), which contain the kinetic energy density as
an additional variable, have not yet found much use in relativistic calculations.
However, the Dirac-Kohn-Sham methods cannot be systematically improved (other
than replacing one functional with another). This is the main difference to relativistic
Hartree-Fock, which is usually viewed as a necessary (and boring) first step, the
post-Hartree-Fock or correlation treatment being the real issue. Because Sucher’s
warnings about the Dirac-Coulomb Hamiltonian [32] were highly influential, the
established relativistic electron correlation methods all start with a Dirac-Fock
calculation, after which the negative-energy Dirac spinors are discarded. This
implements an implicit no-pair projection defined through the self-consistent (mean)
field. Using the positive-energy spinors only, the correlation treatment then proceeds
in full analogy to the nonrelativistic case; this defines the relativistic configuration
interaction, many-body perturbation theory, or coupled cluster methods. Note that
only the conventional methods using a finite number of spinors have a relativistic
analogue; explicitly correlated (“r12”) methods formally involve an extension to a
complete (infinitely large) set, such that relativistic r12 methods need to go beyond
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the no-pair approximation [10]. The difference of the finite-dimensional methods
to the nonrelativistic case is mostly technical: the four-component structure results
in a much more demanding transformation of the two-electron integrals to the
molecular spinor basis set, and there are less savings due to time-reversal symmetry
in the relativistic case as there are savings due to spin symmetry in nonrelativistic
calculations. In practice, however, the major obstacle stems from the fact that the
electron correlation problem itself is much more demanding in applications to
heavy-element chemistry, because heavy metals often have multiple open shells, and
the number of strongly interacting electrons that must be included in the correlation
treatment is larger.

The how and why of including negative-energy spinors in the correlation
treatment is less clear. Continuum dissolution can be avoided by methods that
extract narrow resonances out of the Brown-Ravenhall continuum [49], but even if
one simply performs a configuration interaction calculation, including the negative-
energy states, within a finite basis set, one may not see continuum dissolution and
get (stable) numerical results [50]. A consistent treatment of the relativistic electron
correlation problem beyond the no-pair approximation starts from a Fock-space
formulation [34] but has to go beyond [10, 11]. This is a current research topic and
clearly beyond the scope of this introductory chapter on the relativistic treatment of
many-electron systems.

Summary

Using a mean-field approach, relativistic self-consistent field methods allow for an
approximate treatment of many-electron systems that only involves the solution of
one-particle Dirac equations in some effective potential. Formally, the relativistic
wave function is a Slater determinant built from positive-energy “occupied” spinors
which are varied as to minimize the resulting energy expression. In atomic calcula-
tions, the correct boundary conditions as obtained for (numerically) exact solutions
of the radial Dirac equations implicitly keep the spinors within the positive-energy
space; in atomic or molecular basis set expansion methods, this can approximately
be achieved through the kinetic balance condition. Then, relativistic self-consistent
methods are immune against the finite basis set disease that were so virulent already
in the earliest relativistic basis set expansion calculations. The existence of negative-
energy spinors is not problematic in relativistic self-consistent field methods, as
there is an implicit projection to the positive-energy space: these methods are also
immune against the so-called Brown-Ravenhall disease. Since these fundamental
issues have been solved, relativistic self-consistent field methods have advanced
mostly on the technical side by introducing better algorithms that lead to higher
computational efficiency. Today, relativistic Dirac-Fock is the starting point for
the much more involved relativistic correlation treatment, and relativistic Kohn-
Sham is a routine method for obtaining approximate results for fairly large systems
containing heavy elements.
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Abstract

In this chapter we describe the fundamental aspects of bound-state quantum
electrodynamics (BSQED). We recall the principal features of the Dirac equation.
Then we describe quantum electrodynamics as a field theory. We provide the
basic elements about representations, evolution operators and the S matrix.
We then proceed to describe perturbation expansion of the S -matrix, and its
relations with bound-state energies. We express this expansion in terms of
Feynman diagrams. Finally we illustrate on practical examples the concepts
of regularization, using the method of Pauli and Villars, and renormalization
in coordinate space. We describe in detail the practical ways of doing the
calculations, using self-energy, vacuum polarization, self-energy screening and
QED corrections to the ladder approximation. Finally we show the quality of the
agreement between BSQED and experiment by showing comparison for two-
and three-electron ions transitions.

Keywords
Atoms • Bound State Quantum Electrodynamics • Dirac-Equation • Self-
energy • Relativistic many-body • Highly charged ions • Quantum-field the-
ory • Vacuum polarization

Introduction to Quantum Electrodynamics

The most general theory of electrons and photons in electromagnetic fields is called
quantum electrodynamics (QED) (see, e.g., [1]). It combines special relativity and
quantum mechanics. It describes at the same time bound states (with the acronym
BSQED) and dynamical processes, like photon emission, and can then influence the
transition probability (see, e.g., Ref. [2]). Here we will specialize in the BSQED
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aspects. The starting point of QED is the Dirac equation [3], which combines
relativistic invariance and relativity. It is described in section “The Dirac Equation
for Bound States” together with the formulas and relations that are needed to
perform practical QED calculations. Yet the Dirac equation cannot describe all the
physics associated with special relativity, as the possibility of particle creation and
annihilation are not accounted for. We will thus describe QED, the field theory that
enables to treat particle creation and annihilation in section “Quantum Electrody-
namics.” We will then move to the perturbation theory that allows to do practical
calculations in QED in section “Perturbation Theory, S -Matrix, and Energy Shift
for Bound States.” We will then treat the most important QED corrections to
bound-state energies in one- and two-electron atoms in sections “Evaluation of the
One-Loop Self-Energy” to “Two-Photon, Two-Electron Diagrams”. We describe
in this a formalism based on the evolution operator. In the next three chapters,
a different formalism developed by the St Petersburg group, based on the two-
time Greens function, will be described in details. In the last chapter, a formalism
developed in the Göteborg group, which allows to combine BSQED and many-
body technique, is described. Thanks to 40 years of intense work, it is now possible
to calculate very accurately bound-state energies in hydrogen-like atoms from
hydrogen to Z D 110 with all first and second order in the fine structure constant
corrections [4]. Two-electron systems have also been studied [5], as well as lithium-
like [6, 7] and beryllium-like ions [8–10] and both singly and doubly excited states.
Finally QED calculations of the fine structure of the boron-like sequence have been
evaluated recently [11]. For more electrons, calculations become more and more
difficult. Combinations of many-body technique and QED corrections based on a
variety of model are used. The self-energy screening in many-electron atoms has
been calculated using method ranging from effective-Z based on the mean value
of r for the orbital [12], on the Welton method [13, 14], or BSQED calculations
based on the Hartree-Fock potential [15, 16] have been used. Recently a new
method has been proposed [17, 18] to evaluate the BSQED contribution, which
uses most available ab initio calculations to build model operators, allowing to
evaluate screened self-energy contributions, including non-diagonal ones in many-
body calculations.

The Dirac Equation for Bound States

In this section, we define the notations that are usually used in bound-state quantum
electrodynamics (BSQED) for the Dirac equation, and we recall useful properties
that are needed in practical QED calculations.

The Dirac equation for a free fermion of mass m, with a wave function �.x/, is
given by

.�p� �mc/�.x/ D 0 (1)

where  represent Dirac matrices, the properties of which are given in section “Prop-
erties of Dirac  Matrices.”
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In an external electromagnetic field, given by the 4-vector A� D .�=c;A/, one
obtains the Dirac equation in an external field by replacing in (1) the 4-momentum
p by p � qA following the principle of minimum coupling. Here q is the charge of
the particle (NB: q is the charge including the sign, e.g., for an electron q D �e
where e D 1:6019 � 10�19 C .):

Œ�.p� � qA�/ �mc� D 0: (2)

Using the definition of  and p, one obtains

�p� D 0p0 � �p D i„0 1
c

@

@t
C i„�r : (3)

The corresponding Hamiltonian-like equation is obtained by multiplying�
0�.p� � qA�/ � ˇmc

�
 D 0; (4)

by c and 0 D ˇ on each side, leading to

i„ @
@t
 D Œc˛.p � qA/C q� C ˇmc2� D H ; (5)

with

HD D Œc˛.p � qA/C q� C ˇmc2� (6)

as the Dirac Hamiltonian.
The first-order equation (2) can be transformed into a second-order equation by

applying the operator �.p� � qA�/Cmc:

Œ��.p� � qA�/.p� � qA�/ �m2c2� D 0: (7)

Replacing the second-order tensor �� by its decomposition in a symmetric and
antisymmetric operator (see Eq. 441), we obtain

�� D g�� C 
��; (8)

In the product of .p� � qA�/.p� � qA�/ by 
��only the antisymmetric part will
contribute. One can then express

.p� � qA�/.p� � qA�/! 1

2
Œ.p� � qA�/; .p� � qA�/� (9)

and

1

2
Œ.p� � qA�/; .p� � qA�/� D 1

2
q.�A�p� C p�A� � p�A� C A�p�/ (10)

D 1

2
i„q.@�A� � @�A�/ (11)

D �1
2
i„qF�� (12)
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and obtain an equation in terms of F�� D @�A� � @�A�, the tensor for the
electromagnetic field. To transform (10) into (11), we have used the fact that
Œ.p��qA�/; .p��qA�/� is an operator that act both onA� and on the following wave
function, and thus p�A�� D A�p�� C i„

�
@�A�

�
�, where we use the convention

that p� applies on all what follows, while @� applies only on the wave function that
immediately follow. We thus obtain the second-order equation:

Œ.p� � qA�/.p� � qA�/ � i q„
2

��F�� �m2c2� D 0: (13)

Expressing 
��F�� in the tridimensional form


�� D .˛; i†/; F �� D
�
�E
c
;B
�
; (14)

one gets


��F�� D 2
�

˛E
c
C i†B

�
: (15)

The final second-order Dirac equation is then"�
i„1
c

@

@t
� q �

c

�2
� .i„r C qA/2 � iq„˛E

c
C q„†B �m2c2

#
 D 0:

(16)

Dirac Equation for a Particle with a Landé Factor g ¤ 2

The second-order Dirac equation (16) corresponds to a Landé factor g D 2. One of
the first result of QED, obtained by Schwinger, is that the electron has an anomalous
magnetic moment such that g ¤ 2. Other particles that can be bound to an atom
like the antiproton may have a Landé factor very different from 2. The second-order
Dirac equation can be corrected in that case, as

��
i„1
c

@

@t
� q �

c

�2
� .i„r C qA/2

C.1C a/
�
�iq„˛E

c
C q„†B

�
�m2c2

�
 D 0; (17)

with, for example, 1C a D g=2 D 2:79278 for an antiproton or g � 2 D ˛
�

for an
electron.
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To obtain the corresponding first-order equation, let’s introduce a new term in the
original equation (see, e.g., Refs. [19, 20]) (2)�

��� �mc C �
��F��
�
 D 0; (18)

with �� D .p��qA�/ and � a constant. To obtain the corresponding equation, let’s
re-derive the second-order equation corresponding to (18), using the same method
as above:�

��� �mc C �
��F��
� �
��� Cmc � �
˛ˇF˛ˇ

�
 D 0; (19)

which leads to �
������ �m2c2

� ����
˛ˇF˛ˇ C �
��F�����
C 2mc�
��F�� � �2
��F��
˛ˇF˛ˇ

�
 D 0: (20)

Among those terms one can recognize the part with g D 2

������ �m2c2 (21)

and the anomalous magnetic moment part

2mc�
��F�� (22)

Comparing the part corresponding to g � 2 and (17), one gets

4imc� D a„q

� D �ia „q
4mc

; (23)

leading to the modified Dirac equation (18):�
��� �mc � ia „q

4mc

��F��

�
 D 0: (24)

The corresponding Hamiltonian equation for a particle with an anomalous magnetic
moment is then

hDa D c˛.p � qA/C q� C ˇmc2 C a „q
2m

ˇ

�
i
˛E
c
�†B

�
: (25)

This can be useful to evaluate lowest-order QED corrections to the g-factors in
many-electron atoms [21, 22].
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Bound States of the Dirac Equation

Second-Order Dirac Equation in a Coulomb Potential
Solving analytically the Dirac equation in a Coulomb potential can be more easily
performed starting from the second-order Dirac equation (16) [23]:"�

i„1
c

@

@t
� eA0

�2
� .i„r C eA/2 � ie„˛ � E

c
C e„†B �m2c2

#
 D 0;

(26)

where B D 0, for a pure Coulomb field. Using atomic units V D �Z=r , eE D
�OrZ=r2, where Or D r=r is the unit vector along r, we get"

1

c2

�
E C Z

r

�2
C 1

r

@2

@r2
r � L2

r2
C iZ˛˛ � Or

r2
�m2c2

#
 D 0; (27)

which can be rewritten as�
E2 �m2c4

c2
C 2E

c

Z˛

r
C .Z˛/2

r2
C 1

r

@2

@r2
r � L2

r2
C iZ˛˛ � Or

r2

�
 D 0: (28)

Regrouping 1=r2 terms it leads to"
E2 �m2c4

c2
C 2E

c

Z˛

r
C 1

r

@2

@r2
r �

�
L2 � iZ˛˛ � Or � .Z˛/2�

r2

#
 D 0;

(29)
We now need to study the angular eigenfunctions for this operator.

Symmetries of the Dirac Equation
The Dirac equation is defined so as to respect Lorentz invariance and the usual
discrete symmetries (parity, time reversal, charge invariance). It is also invariant
by rotations and translation. The transformations between two different reference
frames A and A’ are given by

ic�
@

@x�
 .x/ �mc2 .x/ D 0 (30)

ic�
@

@x0�
 0.x0/ �mc2 0.x0/ D 0 (31)

The 4-momentum expression is easily deduced from the one on x:

@

@x0�
D @x�

@x0�
@

@x�
D �A�1��

�

@

@x�
: (32)
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The observer in the second frame of reference should be able to reconstruct  0.x0/
from  .x/. This writes

 0.x0/ D S.A/ .x/: (33)

The transform S.A/ obeys S
�
A�1

� D S�1 .A/. An observer in the first frame of
reference should be able to reconstruct  .x/ from  0.x0/, leading to

 .x/ D S�1.A/ 0.x0/: (34)

The observer in the A0 frame should be able to do the inverse transform and one gets

 .x/ D S �A�1� 0.x0/; (35)

Applying S.A/ and (32) to the Dirac equation (31), and multiplying on the left by
S�1.A/, one gets

icS�1.A/�
�
A�1

��
�

@

@x�
S.A/ .x/ �mc2 .x/ D 0 (36)

which must be identical to (30)) for all observers to observe the same physics. This
leads to the relation

�
�
A�1

��
�
D S.A/�S�1.A/: (37)

We apply this formalism to the example of the parity operator. It transforms x
into �x and x0 leaves invariant. The corresponding matrix ˘ is thus

˘ D ˘�1
2664
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

3775 ; (38)

i.e., ˘�
� D g��. Equation (37) for parity thus writes

S�1.˘/�˘�
�S.˘/ D �: (39)

Using the properties of the  matrices (see Appendix Properties of Dirac 

Matrices), we find that the operator is thus S.˘/ D exp.i�/0. The usual
convention is to take � D 0.

Symmetries of Bilinear Forms
For applications to effects like parity violation or time reversal, it is necessary
to know the rules of transformation of the bilinear forms constructed from the
Dirac wave function. One can define the 5 D 5 D i0123 matrix, which
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Table 1 Properties of the bilinear forms of the Dirac equation. We denote xt D .�x0; x/ the
transform of the 4-vector x under time reversal and xp D .x0;�x/ the one transformed under
parity

Form Transforming under
Lorentz as

C P T

S.x/ D N�.x/�.x/ Scalar S.xp/ S.xt / S.x/

P s.x/ D N�.x/5�.x/ Pseudo-scalar Ps.x/ �Ps.xp/ �Ps.xp/
J �.x/ D N�.x/��.x/ Vector �J�.x/ J�.xp/ J �.xt /

Pj �.x/ D N�.x/5��.x/ Pseudo-vector Pj�.x/ �Pj�.xp/ Pj�.xt /

T ��.x/ D N�.x/���.x/ Tensor �J��.x/ T��.xp/ T ��.xt /

anticommutes with all other  matrices, and obey 25 D 1. In Dirac representation,
we find

5 D
�
0 �1
�1 0

�
(40)

Any 4 � 4 matrix can be written as a linear combination of the 16 matrices I ,
�, 
�� , 5�, and 5. One can define from those 16 matrices a number of bilinear
forms. The transformation rules for the different cases are shown on Table 1. We
reminds that the prefix “pseudo” concerns transformation by parity.

Spinors
We now turn to the angular properties of the solutions of the Dirac equation in a
central potential. We will make use of Pauli’s spinors of dimension 2. Using the
addition of angular momentum, we build the tensor products of eigenstate functions
of L2, Lz (Y l;m) by one of S2, Sz (jC >, j� >), to obtain an eigenstate of J 2, Jz,
L2 and S2. We thus have

j D l C 1
2
	j;mj ;l;s D aCY l;mj�1=2. Ox/jC > CbCY l;mjC1=2. Ox/j� >

j D l � 1
2
	j;mj ;l;s D a�Y l;mj�1=2. Ox/jC > Cb�Y l;mjC1=2. Ox/j� >

(41)

where Ox represents the angular variables � and �, and a˙ and b˙ are Clebsh-Gordan
coefficients. Rewriting j˙ > as column 2 vectors, we obtain for j D l C 1=2

	j;mj ;l;s D
1p
2l C 1

24ql CmC 1
2
Y l;m� 12 . Ox/q

l �mC 1
2
Y l;mC 1

2 . Ox/

35 ; (42)

and for j D l � 1=2

	j;mj ;l;s D
1p
2l C 1

24 q
l �mC 1

2
Y l;m� 12 . Ox/

�
q
l CmC 1

2
Y l;mC 1

2 . Ox/

35 : (43)
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To obtain more compact forms and find possible new symmetries, we study the
effect over the 	-functions of the product L � 
 , which represents the angle between
the particle spin and angular momentum. This product can be expressed from
J2 D .LC S/2, leading to L � � D 2L � S D �J2 � L2 � S2

�
. It then leads to


for j D l C 1

2
W L � �	j;mj ;l;s D

�
j � 1

2

�
	j;mj ;l;s

for j D l � 1
2
W L � �	j;mj ;l;s D

��j � 3
2

�
	j;mj ;l;s

(44)

It is then clear that the operator 1 C L � � has the eigenvalues ˙ .j C 1=2/ when
acting on 	j;mj ;l;s . We denote k D .1C L � � / and the eigenvalue��. One can write
l and j as a function of �, leading to j D j�j�1=2 and l D j�C1=2j�1=2. We can
thus write 	j;mj ;l;s as 	�� with � D mj . We note that 	�� and 	��� are eigenvectors
of L2 with l values differing by 1 and are thus of opposite parity.

We now use these equations to separate radial and angular coordinates in the
Dirac equation. We want to build a 4-spinor eigenstate of J 2, Jz and of the parity˘
and of the Dirac equation. The most general expression of such a 4-spinor is

�n�.x/ D
�
f1.x/	

�
� . Ox/C g1.x/	���. Ox/

if2.x/	
���. Ox/C ig2.x/	�� . Ox/

�
; (45)

which is not an eigenstate of parity. The i is added so that the radial parts are real.
For �n�.x/ to be an eigenstate of the parity, it must obey ˘�n�.x/ D $�n�.x/,
with $ D ˙1. Using (39), i.e., multiplying the wave function by 0 and changing
x! �x in the spinor, we must have ˘	�� . Ox/ D $	

�
� . Ox/ and ˘	

���. Ox/ D
�$	���. Ox/ since � et �� correspond to a difference of 1 in the l values and thus to
opposite parities. We thus get

˘�n�.x/ D 0
�
f1.x/˘	

�
� . Ox/C g1.x/˘	���. Ox/

Cif2.x/˘	���. Ox/C ig2.x/˘	�� . Ox/
�

D $
�
f1.x/	

�
� . Ox/ � g1.x/	���. Ox/

if2.x/	
���. Ox/ � ig2.x/	�� . Ox/

�
(46)

which must be equal to

$�n�.x/ D $
�
f1.x/	

�
� . Ox/C g1.x/	���. Ox/

if2.x/	
���. Ox/C ig2.x/	�� . Ox/

�
: (47)

This is only possible if g1.x/ D g2.x/ D 0. The most general spinor eigenstate of
J2, Jz and ˘ , solution to the Dirac equation, is thus of the form [24]

�n�.x/ D
�
f1.x/	

�
� . Ox/

if2.x/	
���. Ox/

�
: (48)
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It is not an eigenstate of L2 and S2, but it is one of

K D ˇk D ˇ.� � LC 1/ (49)

with the eigenvalue ��. We note thatK2 D 1C 2� �LC .� �L/2 D 1C � �LCL2

using the well-known identity

.� � A/.� � B/ D A � BC i� � A � B (50)

with A D B D L. Noting that the commutation rules among the components of
L lead to L � L D iL and that � D 2S, we have K2 D J2 C 1=4, and K thus
commutes with J2 and has the eigenvalues � D ˙pj .j C 1/C 1=4 D ˙.jC1=2/
as expected.

Solutions of the Dirac Equation in a Coulomb Potential
One can check that ŒK; hD� D 0, ŒK; J� D 0, ŒK;˛� Or� D 0, and ŒK;˛�p� D 0, where
hD is defined in Eq. (6). The solutions must be eigenstate of K and J . They can be
obtained in a number of methods, the easiest one being probably the one presented
in Ref. [25], using the second-order Dirac equation. The eigenenergy is found to be

En� D mc2r
1C .Z˛/2

.n�j�jC
p
�2�.Z˛/2/2

; (51)

D mc2r
1C .Z˛/2

.n�j� 12C
q
.jC 1

2 /
2�.Z˛/2/2

(52)

with a series expansion in the vicinity of Z˛ ! 0

Enj D mc2 � mc
2 .Z˛/2

2 n2
C
mc2

�
3
2 n4
� 2

. 12Cj/ n3
�
.Z˛/4

4
C O.Z˛/6: (53)

These solutions do not depend on the sign of �. This is due to an extra symmetry, a
remnant of the Lentz vector which commutes with the nonrelativistic Hamiltonian
and explains why the energy does not depend on l . Defining� D �ˇK � iZ˛˛ � Or ,
it is found that the Dirac Hamiltonian in a Coulomb potential commutes with the
operator

B D 5
�
�C KhD

mc2

�
(54)

as discovered by Johnson et Lippmann [26].
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The radial wave function fn;i in Eq. (48) obeys the differential equations (see,
e.g., [27] and Appendix “Appendix: Useful Properties” in this chapter)

d

dx
fn;1.x/ D �1C �n

x
fn;1.x/C Œ1CEn � V .x/� fn;2.x/

d

dx
fn;2.x/ D Œ1 �En C V .x/� fn;1.x/ � 1 � �n

x
fn;2.x/ : (55)

The function fn;1 is called the large component and fn;2 the small component. The
analytic solution of this equation can be obtained. We define

 D Z˛; � D
p
�2 � .Z˛/2;

nr D n� j � j; a D Z˛p
.n� j � j C�/2 C .Z˛/2 : (56)

With this notation the energy in Eq. (52) is simply En;� D
p
1 � a2 in theoretical

units. The radial wave function then writes [28]

f1n.x/ D N1=2
n;� .1CEn;�/1=2

nrX
mD0

	
C
.m/
1 C C .m/

2



.2ax/mC��1e�ax

f2n.x/ D N1=2
n;� .1 �En;�/1=2

nrX
mD0

	
C
.m/
1 � C .m/

2



.2ax/mC��1e�ax (57)

where the normalisation factor is given by

Nn;� D 2a5

. � �a/
� .2�C 1C nr/

� .2�C 1/2� .nr C 1/ (58)

and the coefficients are defined recursively by

C
.mC1/
1 D mC 1 � nr

.mC 2�C 1/.mC 1/C
.m/
1

C
.mC1/
2 D m � nr

.mC 2�C 1/.mC 1/C
.m/
2 (59)

with the initial condition

C
.0/
1 D �nr
C
.0/
2 D



a
� � : (60)

A specific expression for the 1s wave function is given in Ref. [29], and expressions
for the n D 2 wave functions are given in Ref. [30].
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Other Useful Properties of the Dirac Equation in a Coulomb Field

Notations
Here are some useful relations and properties of the Dirac equation (1) in an external
potential V .x/. It can be rewritten as

K D Œ�i˛ � r C V .x/C ˇ �En��n.x/ D 0; (61)

using the theoretical units „ D c D m D 1 and with 4 � 4 matrices ˛ et ˇ defined
in More Properties of the Dirac Matrices. The spinors defined in section “Spinors”
by Eq. (43), which obey

.� � LC 1/ 	�� . Ox/ D ��	�� . Ox/ (62)

also verify

� � Ox 	�� . Ox/ D �	���. Ox/; (63)

which is useful in many calculations.
In a system of spherical coordinates, one can make the variable separation

˛ � r D ˛ � Ox
�
1

x

@

@x
x � ˇK

x

�
(64)

for the nabla operator in Eq. (61) using the operator K as defined in (49). It can be
shown also that K has the property

K˛ � Ox�n.x/ D ��˛ � Ox�n.x/; (65)

from which we can deduce

˛ � r�n.x/ D ˛ � Ox
�
1

x

@

@x
x C ˇ �

x

�
�n.x/; (66)

and

r2�n.x/ D
�
˛ � Ox

�
1

x

@

@x
x � ˇK

x

��2
�n.x/

D ˛ � Ox
�
1

x

@

@x
x C ˇ �

x

�
˛ � Ox

�
1

x

@

@x
x C ˇ �

x

�
�n.x/

D
�
1

x

@2

@x2
x � �.� C ˇ/

x2

�
�n.x/: (67)
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Substituting Eq. (64) in the Dirac equation (61) leads to the two-component radial
Dirac equation �

˛ˇ
1

x

@

@x
x C ˛ �

x
C V .x/C ˇ �En

�
Fn.x/ D 0; (68)

where

Fn.x/ D
�
f1.x/

f2.x/

�
(69)

is the radial function defined in Eq. (57). The 2� 2 matrices in Eq. (68) are given by

˛ D
�
0 1

1 0

�
; ˇ D

�
1 0

0 �1
�
: (70)

We will write ˛ and ˇ the 4 � 4 Dirac matrices defined in Eq. (437) in the
4-component expressions �n.x/ and ˛ and ˇ the 2 � 2 matrices defined in Eq. (70)
in the expressions containing the radial function Fn.x/.

Operators Mean Value for the Dirac Equation in a Coulomb Field

A number of useful operators mean values and order-of-magnitude estimates are
given in this section. They will be used when dealing with regularization and
renormalization of divergent integrals.

The Dirac Hamiltonian (1)

H D ˛ � pC V C ˇ (71)

satisfies the operator identity

ˇH CHˇ D 2ˇV C 2; (72)

since ˇ˛ C ˛ˇ D 0. Taking the mean value of (72) on the state with principal
quantum number n, one obtains

En hˇi D hˇV i C 1: (73)

One can obtain two other exact identities˝
p2
˛ D ˝.˛ � p/2˛ D ˝.En � V � ˇ/2˛ D E2

n � 1 � 2En hV i C
˝
V 2
˛

(74)
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and

˝
ˇp2

˛ D �h˛ � p ˇ ˛ � pi � h.En � V � ˇ/ˇ.En � V � ˇ/i
D hˇi .E2

n � 1/ � 2 hV i �
˝
ˇV 2

˛
: (75)

Equation (73) was used in both cases to simplify the result.
Useful orders of magnitude in ˛ can be obtained for quantities appearing in

calculations. These orders of magnitude estimates make use of the fact that for a
Coulomb potential the mean value of the radial coordinates x and the momentum p
have orders of magnitude given by x � 1

Z˛
et jp j � Z˛.

As a consequence, for example, one has

hV i D
�
�Z˛
x

�
D O�.Z˛/2� (76)˝

p2
˛ D O�.Z˛/2� (77)˝

V 2
˛ D O�.Z˛/4�: (78)

These estimates, combined with the fact that the wave function small component is
of order .Z˛/ compared to the large component, lead to

h˛ � p i D O�.Z˛/2� (79)

En D 1CO�.Z˛/2� (80)

hˇV i D hV i CO�.Z˛/4� (81)

hV ˛ � p i D O�.Z˛/4�: (82)

In the same way, it is possible to deduce

1 �E2
n D En.hˇi �En/ � hˇV i
D hˇi �En � hV i CO�.Z˛/4� (83)˝

p2
˛ D ˝

.˛ � p/2˛
D 1

2
h˛ � p .En � V � ˇ/C .En � V � ˇ/˛ � p i

D h˛ � p i CO�.Z˛/4�: (84)
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Problems Associated with the Predictions of the Dirac Equation

The introduction of the Dirac equation leads to very important prediction and expla-
nation of experimental results concerning the energy spacing of levels and the fine
structure in atoms and the prediction of the existence of the positron. Yet progress
in experimental techniques leads to new experimental evidences that questioned the
theory based on the Dirac equation. In 1947, Lamb and Retherford [31, 32] showed
that the 2s1=2 and 2p1=2 levels, which should have exactly degenerate energies, have
in fact separate energies.

Moreover, Kush and Foley [33] showed the next year that the spectra of sodium
and gallium were leading to a Landé factor gJ incompatible with the prediction
of ge D 2 for the electron. Those two experiments lead to the birth of a new
theory, quantum electrodynamics, following the seminal work of Bethe [34], Kroll
and Lamb [35], Feynman [36–38], Schwinger [39–42], Dyson [43, 44], and others.

Quantum Electrodynamics

Introduction

It is not possible here to give a general account of quantum field theory (QFT).
Historically, QED has been the model for QFT. Here we will describe the main
features of QED and give practical examples of calculations of importance in
atoms. The Dirac equation was meant to replace classical mechanics by relativity
in quantum theory. Yet the difficulty related to the possibility of particle creation
could be solved only by the ad hoc hypothesis of the Dirac electron sea. Quantum
field theory represents then the next step after the Dirac equation, to solve this
problem. In this theory, based on second quantification, the classical fields and the
wave functions are replaced by linear combinations of annihilation and creation
operators. The use of the Dirac equation is particularly difficult in the framework
of many-body atomic and molecular theory, as, unless specific precautions are
taken in the electron-electron interaction treatment, continuum dissolution (unstable
solutions) due to the existence of the negative-energy continuum, also known as
the Brown and Ravenhall disease [45], will happen (Fig. 1). These issues have
been discussed in many references following the work of Brown and Ravenhall
and Sucher [46–50]. QED is then the only proper framework where a consistent
treatment of the electron-electron interaction and of radiative corrections can be
performed. Yet the complexity of the theory and the very strong limitation to
our ability to apply it beyond the simplest cases oblige to have approximations
based on standard techniques like relativistic many-body perturbation theory or
multiconfiguration Dirac-Fock or similar approaches.

Here we define the field operators, the equations they obey, and standard
perturbation theory for QED. Complementary informations can be found in Refs.
[51–53].
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Fig. 1 Continuum
dissolution of a two-electron
atom. The wavy line
represents the
electron-electron interaction

E>0 electron continuum

E<-2mc2 electron
continuum

Representations

In quantum mechanics, one can choose in which way operators and wave functions
depend on time. Each choice corresponds to a so-called representation. Standard
quantum mechanics textbooks (see, e.g., [25, 54]) describe in detail the different
representations: since the beginning of quantum mechanics, the Schrödinger repre-
sentation in which the operators are time independent and the Heisenberg one in
which the wave functions are time independent. In QED, one uses the intermediate
representation, in which both are time dependent. It is often called the Furry
representation [55]. From now on, we will suppose that the Hamiltonian is the sum
of a main Hamiltonian and of a perturbation, both time independent:

HT D H0 CH1: (85)

The Schrödinger equation is then

i„ d
dt
 D HT D .H0 CH1/ : (86)

We assume that we know the exact solution of the equation without perturbation

i„ d
dt
 0 D H0 0; (87)
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and we want to make explicit the time dependence due to the perturbation. We thus
write  I .t/ D e.iH0t=„/ . The Schrödinger equation (89) for  I then writes

i„ d
dt
 I .t/ D �H0e

.iH0t=„/ C e.iH0t=„/i„ d
dt
 

D �H0e
.iH0t=„/ C e.iH0t=„/.H0 CH1/ 

D e.iH0t=„/H1 D e.iH0t=„/H1e
.�iH0t=„/ I .t/; (88)

using the fact that H0 commutes with e.iH0t=„/. We thus see that  I obeys

i„ d
dt
 .t/ D HI .t/ I .t/; (89)

where HI .t/, the interaction representation Hamiltonian, is HI .t/ D e.iH0t=„/
H1e

.�iH0t=„/.

Evolution Operators

We now define the evolution operator, which transform a wave function known
at time t into the wave function at time t 0. This writes  .t 0/ D U.t 0; t / .t/.
This operator must obviously be such that U.t; t/ D 1. Applying the Schrödinger
equation to  .t 0/, one obtains

i„ d
dt 0
 .t 0/ D i„ d

dt 0
U.t 0; t / .t/ D HTU .t

0; t / .t/; (90)

from which we can deduce the differential equation for U.t 0; t /,

i„ d
dt 0
U.t 0; t / D HTU .t

0; t /: (91)

In the interaction representation, defining

UI .t
0; t / D e.iH0.t 0�t/=„/UT .t 0; t /e.�iH0.t 0�t/=„/ (92)

and using a reasoning identical to what was done in section “Representations”, we
get

i„ d
dt 0
UI .t

0; t / D HIUI .t
0/.t 0; t /: (93)

This equation is solved by integrating in both sides:

UI .t
0; t / � UI .t; t/ D UI .t 0; t / � 1 D 1

i„
Z t 0

t

dt1HI .t1/UI .t1; t/: (94)
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A perturbative expansion is obtained by replacing UI .t1; t/ D 1 in the right-hand
side

UI .t
0; t / � 1C 1

i„
Z t 0

t

dt1HI .t1/; (95)

and by iterating, one obtains

UI .t
0; t / � 1C 1

i„
Z t 0

t

dt1HI .t1/C
�
1

i„
�2 Z t 0

t

Z t1

t

dt1dt2HI .t1/HI .t2/C � � �
(96)

the basic equation for QED perturbation expansion.

Fundamental Relations Between Operators for the Electron Field

The next step consists in writing the general solution of the Dirac equation as
a linear superposition of all the solutions, including both positive- and negative-
energy continua:

 .x/ D
X
En>0

an�n.x/C
X
Em<0

b�m�m.x/;

D
X
En>0

ane
�iEnt�n .x/C

X
Em<0

b�me
iEnt�m .x/ : (97)

Here the sums are symbolic notations, which represents the sum over all bound
states and integrals over the continua. The an et b�m are complex numbers and �n are
Dirac Coulomb wave functions defined by HD�n D En�n. In order to implement
mathematically the idea of the Dirac sea of electrons, we will now assume, as it is
currently done, e.g., in solid-state physics for pseudo-particles, that the operator an
destroys an electron in state n (En > 0) and that the operator b�n creates a positron
in state m (Em < 0). To avoid that the electrons will fall into the negative-energy
continuum, as represented in Fig. 1, we assume as Dirac that all theE < 0 states are
filled and that the Pauli principle prevents them to occupy negative-energy states.
For that, the operators must obey the following anticommutations rules [56]:n

an; a
�

n0
o
D ıC

n;n0 ;n
bn; b

�

n0
o
D ı�n;n0 ;

fan; an0g D
n
a�n; a

�

n0
o
D 0;

fbn; bn0g D
n
b�n; b

�

n0
o
D 0; (98)
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where

ıṅ;n0 D � .˙En/ ın;n0ıl;l 0ıj;j 0ım;m0 (99)

if n et n0 correspond to bound states,

ıṅ;n0 D � .˙E/ ıE�E0ıl;l 0ıj;j 0ım;m0 (100)

if n and n0 correspond to continuum states, and

ıṅ;n0 D 0 (101)

if one of the state is in one of the continua and the other is bound.

Fundamental Operator Relations for the Electromagnetic Field

We now establish the expression equivalent to (97) for the photon field. The most
general solution for the wave equation can be written as

A�.x/ D
Z

dk
2k0.2�/3

3X
�D0

	
a�.k/���e

�ik�x C a��.k/���� eik�x



(102)

where k0 D jkj, ��� is the polarization vector and where a�.k/ annihilate a photon
of polarization � and momentum k. The integration weight

dk
2k0.2�/3

D d4k

.2�/4
2�ı

�
k2
�
�
�
k0
�

(103)

is invariant by Lorentz transform. One can show that in this case the commutators
are given by h

a�.k/; a�
0 �.k0/

i
D �2k0.2�/3ı �k � k0

�
g��

0
: (104)

Perturbation Theory, S-Matrix, and Energy Shift for Bound States

Standard bound-state QED provides [51] a complete description of any atomic
system and should enable to calculate its energy to any accuracy. This theory is
based on the Furry bound picture [55], described in section “Representations.”
The unperturbed Dirac Hamiltonian HD contains the Coulomb field of the nucleus.
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All effects of this Coulomb field are thus included to all orders in all the quantities
involved in the calculation, which derive from Eq. (1) (electron wave functions and
propagators). The electron-electron interaction is treated as a perturbation

V�;g D gHIe
��jt j; (105)

where

HI D j �A� � ıM.x/: (106)

As the electromagnetic interactions can act at an infinite distance, e��jt j enables to
turn off adiabatically the interaction at t D ˙1 to recover the unperturbed states
before and after the interaction. In Eq. (106),

j � D �e
2

� N .x/�;  .x/� (107)

is the 4-current, and

ıM.x/ D ım

2

� N .x/;  .x/� (108)

is the mass counter term, which will be needed for a proper definition of perturbation
theory, g is a perturbation parameter, e is the electron charge, and A� is the photon
4-vector operator defined in Eq. (102).  .x/, is the electron Dirac field operator
defined in Eq. (97). We also define N� D ��0.

Perturbation theory will be dealt with the adiabatic evolution operator

U�;g .t1; t2/ D Te�i
R t2
t1
dtV�;g.t/: (109)

where T is the time-ordering operator. One can then define the adiabatic S -matrix
as S�;g D limt!1 U�;g.�t; t /. The energy shift for the p-electron state with no
real photons

ˇ̌
NpI 0

˛ D ˇ̌
n1; : : : ; npI 0

˛
, the unperturbed energy of which is E0

Np
DPp

kD1 Enk , is given by the Gell-Mann and Low theorem [57, 58], as symmetrized
by Sucher [59]:

�ENp D lim
�!0
g!1

i�g

2

@

@g
log

˝
NpI 0

ˇ̌
S�;g

ˇ̌
NpI 0

˛
(110)

Before moving to perturbation theory, we need to define the disconnected
diagrams. We rewrite˝

NpI 0
ˇ̌
S�;g

ˇ̌
NpI 0

˛ D ˝NpI 0ˇ̌S�;g ˇ̌NpI 0˛C h0I 0jS�;g j0I 0i : (111)
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a b

Fig. 2 Disconnected Feynman diagrams of order ˛. (a), for the one-electron case; (b), for the
two-electron case

Replacing in Eq. (110), we get

�ENp D lim
�!0
g!1

i�g

2

"n @
@g

˝
NpI 0

ˇ̌
S�;g

ˇ̌
NpI 0

˛
C

o
h0I 0jS�;g j0I 0i˝

NpI 0
ˇ̌
S�;g

ˇ̌
NpI 0

˛
C
h0I 0jS�;g j0I 0i

C
˝
NpI 0

ˇ̌
S�;g

ˇ̌
NpI 0

˛
C

@
@g
h0I 0jS�;g j0I 0i˝

NpI 0
ˇ̌
S�;g

ˇ̌
NpI 0

˛
C
h0I 0jS�;g j0I 0i

#

D lim
�!0
g!1

i�g

2

@

@g
log

˝
NpI 0

ˇ̌
S�;g

ˇ̌
NpI 0

˛
C
C constant (112)

The disconnected diagrams are presented in Fig. 2. They contribute only to the
constant in Eq. (112) and affect in an identical manner all levels, since they have
no dependence on a specific wave function. They thus shift all level identically and
have no effect on transition energies. One can then consider only the connected
diagrams in any calculation.

The S -matrix can be expanded in power of g (see, e.g., [51, 60])

g
@

@g
log

˝
S�;g

˛
C

ˇ̌̌̌
gD1
D

D
S
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.1/
�;1

E
C

D
S
.2/
�;1

E
C
C
D
S
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S
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S
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S
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� 2

D
S
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S
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D
S
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�
D
S
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(113)

where D
S
.j /
�;1

E
C
D ˝

NpI 0
ˇ̌
S
.j /
�;1

ˇ̌
NpI 0

˛
C˝

S�;g
˛
C
D ˝

NpI 0
ˇ̌
S�;g

ˇ̌
NpI 0

˛
C

(114)
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At each order in Eq. (113), there are terms with different powers of 1=�. The
combination of terms in each order is such that all powers n > 1 cancel, so that
the energy expression in Eq. (110) has a finite limit when � ! 0.

From the definition of the S -matrix and of the evolution operator (109), one
obtains

S.j /�;g D
.�ig/j
j Š

Z
d4xj : : :

Z
d4x1e

��jtj j : : : e��jt1jT �HI

�
xj
�
: : :HI .x1/

�
(115)

It should be noted that in the case of QED, where the series expansion parameter
is ˛ D 1=137, it has been shown by Dyson [61] that the expansion in Eq. (113) is
only asymptotic. If one changes ˛ in �˛, the Dirac equation has no bound states,
since it corresponds to two particles of the same charge. This shows that the radius
of convergence of the series in ˛ is zero. Yet this has little practical influence, since
the divergence will happen only at orders n � 1=˛ D 137.

Wick’s Theorem, Contractions, and Propagators

Now that we have established the relationship between bound-state energies and
field operators, in the framework of the S -matrix formalism, we need to set up
the method to evaluate the time-ordered products that appears in Eq. (115). Here
we defined the so-called propagators and learned how to manipulate them and
relate them to time-ordered products. Wick’s theorem [62] relates T-products to
normal-ordered field operators, using the commutation rules defined in Eq. (98) and
contractions of field operators:

T
� N .x/ .y/� DW N .x/ .x/ W C N .x/ „ ƒ‚ … .y/ ; (116)

where the WW indicates normal ordering, in which all the creation operators have
been rearranged to be to the left of all destruction operators and the underbrace
the contraction. It is defined as

AB„ƒ‚… D h0 j T ŒAB� j 0i : (117)

More generally Wick has proven that

T ŒABCD : : : X� D W ABC : : : X W C W AB„ƒ‚…CD : : : X W
C W AB„ƒ‚… CD„ƒ‚… : : : X W C : : : (118)

where A, B , C , D. . . ,X are fields operators and the sum is running on all possible
contractions.

As it is useful for all two-electron application, we calculate as an example of
application the mean value over a two-electron bound state ji; j i D a

�
i a
�
j j0i

of a 4-operator normal-ordered product hi; j j a�ka�l aman ji; j i. All indices refer to
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positive-energy bound states. We use n as a short for n; l; j;m. There are two
possible methods. We can use Wick’s theorem with contractions aia

�
j„ƒ‚… D ıij ,

aiaj„ƒ‚… D 0. So all contractions involving two creations or destruction operators

vanish. Also vacuum expectation of normal-ordered products vanishes. The only
case for which a nonzero value can be obtained must have 4 contractions between a
and a� operators.

hi; j j a�ka�l aman ji; j i D h0j W aiaj a�ka�l amana�i a�j W j0i
C h0j aiaj„ƒ‚… W a�ka�l amana�i a�j W j0i
C h0j aiak„ƒ‚… W a�i a�l amana�i a�j W j0i C � � � (119)

Another method is to make direct use of the anti-commutation relations in Eq 98.
One can use the Mathematica [63] package NCAlgebra [64] to easily reduce these
products.

hi; j j a�ka�l aman ji; j i D h0j aiaj a�ka�l amana�i a�j j0i
D h0j aiaj a�ka�l am.�a�i an C ıni /a�j j0i
D � h0j aiaj a�ka�l ama�i ana�j j0i C � � � (120)

The result is

hi; j j a�ka�l aman ji; j i D .ı.i; l/ ı.j; k/ � ı.i; k/ ı.j; l//
� .ı.m; j / ı.n; i/ � ı.m; i/ ı.n; j // : (121)

Electron Field Propagator
In order to use efficiently Wick’s theorem, one can establish the following relation-
ships:

T Œ .x/ .y/� D W  .x/ .y/ W C h0jT Œ .x/ .y/� j0i
D W  .x/ .y/ W; (122)

T
� N .x/ N .y/� D W N .x/ N .y/ W C h0jT � N .x/ N .y/� j0i

D W N .x/ N .y/ W; (123)

T
�
 .x/ N .y/� D W  .x/ N .y/ W C h0jT � .x/ N .y/� j0i ; (124)

T
� N .x/ .y/� D W N .x/ .y/ W C h0jT � N .x/ r .y/� j0i : (125)

The two last expressions are equivalent since

T
�
 ˛ .x/ N ˇ .y/

� D �T � N ˇ .y/ ˛ .x/� (126)
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The propagator is expressed in terms of the vacuum expectation value of
T
�
 .x/ N .y/� as

SF .x; y/ D h0jT
�
 .x/ N .y/� j0i D  .x/ N „ ƒ‚ … .y/

D
( P

En>0
�n .x/ N�n .y/ tx > ty

�PEn<0
�n .x/ N�n .y/ tx < ty

D �i
2�

Z C1
�1

d z
X
n

�n .x/ N�n .y/
En � z.1C iı/e

�iz.t2�t1/ (127)

Contractions of other products are 0:

h0jT Œ .x/ .y/� j0i D h0jT � N .x/ N .y/� j0i D 0 (128)

The electron propagator can be written in terms of the Dirac Green function as

SF .x2; x1/ D �i
2�

Z
CF

d zG .x2; x1; z.1C iı// 0e�iz.t2�t1/ (129)

where the integration contour CF is presented in Fig. 3. G obeys

.�i˛ � r 2 C V .jx2j/C ˇm � z/G .x2; x1; z.1C iı// D ı .x2 � x1/ ; (130)

and corresponds to the operator G D .HD � z/�1, where HD is the Dirac
Hamiltonian defined in Eq. (6). From Eq. (127), we can write

G .x2; x1; z/ D
X
n

�n .x2/ �
�
n .x1/

En � z
; (131)

Fig. 3 Integration contour
CF for the Feynman bound
propagator. En is the
ground-state energy. The
black dots on the x axis
represent bound-state poles or
˙mc2. The gray area on the
x axis corresponds to the
positive- and negative-energy
continua

x

y

CF

En

En − √−iε

En +
√−iε

En +
√

Λ2 − iε

En −
√

Λ2 − iε

−mc2

mc2
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where the sum is a symbolic expression that runs over all solutions of the Dirac
equation. Replacing by the wave functions as defined in Eq. (48), we obtain

G .x2; x1; z/ D
X
n;�;�

1

En;� � z

�
"
f1.x2/	

�
� . Ox2/f1.x1/	��� . Ox1/ �if1.x2/	�� . Ox2/f2.x1/	����. Ox1/

if2.x2/	
���. Ox2/f1.x1/	��� . Ox1/ f2.x2/	

���. Ox2/f2.x1/	����. Ox1/

#
(132)

Analytic expressions for G .x2; x1; z/ derived from Eq. (132) can be found in
Ref. [29], Appendix A.

When setting the potential V .x/ D 0 in Eq. (130), one obtains the free Green
function, which has an exact analytic expression:

F .x2; x1; z/ D Œ�i˛ � r 2 C ˇmC z�
e�cjx2�x1j

4� jx2 � x1j ; (133)

with c D pm2 � z2, Re.c/ > 0. It obviously satisfies the equation

Œ�i˛ � r 2 C ˇm � z� F .x2; x1; z/ D ı.x2 � x1/ : (134)

The full Dirac Green function in Eq. (130) can be expanded in powers of the
external potential V as presented in Fig. 4:

G.x2; x1; z/ D F .x2; x1; z/�
Z
dx3F .x2; x3; z/V .x3/F .x3; x1; z/C � � � ; (135)

where F .x2; x1; z/ is the free-electron Dirac Green function, defined in Eq. (133).
A useful relation can be obtained by considering the expansion

F .x2; x1; zC ız/ D F .x2; x1; z/C
Z

dwF .x2;w; z/ ızF .w; x1; z/

C
Z

dv
Z

dwF .x2; v; z/ ızF .v;w; z/ ızF .w; x1; z/

C : : : : (136)

= + + + …

Fig. 4 Bound Coulomb propagator (double line) expansion in terms of the free propagator (single
line). The dashed line corresponds to the Coulomb interaction with the nucleus
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This yields

@

@ ız
F .x2; x1; zC ız/

ˇ̌̌̌
ızD0
D
Z

dwF .x2;w; z/ F .w; x1; z/ ; (137)

so we can write

G
.1/
A .x2; x1; z/ D �V .x2/C V .x1/

2

@

@z
F .x2; x1; z/ : (138)

The Green function can be expressed in terms of radial and angular functions in
a way similar to the wave functions as defined in section “Spinors” and Solutions of
the Dirac Equation in a Coulomb Potential.

Photon Field Operators
The contraction of two-photon field operators gives the photon propagation function

h0jA� .x2/A� .x1/ j0i D g��DF .x2 � x1/ (139)

where

DF .x2 � x1/ D � i

.2�/4

Z
d4q

e�iq�.x2�x1/

q2 C iı

D 1

.2�i/

Z C1
�1

dq0H .x2 � x1; q0/ e�iq0.t2�t1/ (140)

In (140) H .x2 � x1; q0/ is the photon Green function, which is given by

H .x2 � x1; q0/ D � e
�bx21
4�x21

x21 D jx2 � x1j I b D �i �q20 C iı� 12 ;<.b/ > 0: (141)

Unperturbed States

With this formalism we can write the state vector for a one-electron state as

jN1i D a�n j0i (142)

and

jN2i D
X
n;m

kn;ma
�
na

�
m j0i (143)
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for a two-electron state. For these states the mean value of the unperturbed
Hamiltonian is given by

H0 D
Z

x W  �.x/HD .x/ WD
X
En>0

Ena
�
nan �

X
Em<0

Emb
�
mbm: (144)

The � sign is what distinguishes the treatment of negative-energy states in a
quantum field theory from standard Dirac theory.

Evaluation of
D

S.1/

�,1

E
c

As an example, we use the formalism setup above to evaluate the first term in
Eq. (115). It reads

D
S
.1/
�;1

E
c
D �i ˝NpI 0ˇ̌ Z d4xe��jt jT ŒHI .x/�

ˇ̌
NpI 0

˛
c

D �i ˝NpI 0ˇ̌ Z d4xe��jt jT
�
j � .x/A� .x/ � ıM .x/

� ˇ̌
NpI 0

˛
c

(145)

Since there are no external photon lines (i.e., h0jA� j0i D 0), we get

D
S
.1/
�;1

E
c
D i ˝NpI 0ˇ̌ Z d4xe��jt jT ŒıM .x/�

ˇ̌
NpI 0

˛
c

D i
˝
NpI 0

ˇ̌ Z
d4xe��jt jT

�
ım N .x/ .x/� ˇ̌NpI 0˛c (146)

and we then apply Wick’s theorem

T
� N .x/ .x/� DW N .x/ .x/ W C N .x/ „ ƒ‚ … .x/ (147)

The second term is a disconnected loop and can be discarded and we are left with

D
S
.1/
�;1

E
c
D iım

Z
d4xe��jt j

˝
NpI 0

ˇ̌ W N .x/ .x/ W ˇ̌NpI 0˛
D iım

Z
d4xe��jt j

˝
NpI 0

ˇ̌ WX
nm

a�n�
�
n.x/

0am�m.x/ W
ˇ̌
NpI 0

˛
D iım

Z
d4xe��jt j��n .x/ 0�m .x/

� ˝NpI 0ˇ̌ WX
nm

ei.En�Em/ta�nam W
ˇ̌
NpI 0

˛
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D iım
X
nm

Z C1
�1

dtei.En�Em/t��jt j
Z
dx��n .x/ 

0�m .x/

� ˝NpI 0ˇ̌ W a�nam W ˇ̌NpI 0˛
D iım

X
nm

2�

.En �Em/2 C �2
Z
dx��n .x/ 

0�m .x/

� ˝NpI 0ˇ̌ W a�nam W ˇ̌NpI 0˛
D iım

X
nm

2

�
ı .En;Em/

Z
dx��n .x/ 

0�m .x/

� ˝NpI 0ˇ̌ W a�nam W ˇ̌NpI 0˛ (148)

using the definition of the field operator (97) and the fact that we consider bound
states made only of electrons. Finally we use the fact that

˝
NpI 0

ˇ̌
a
�
nam

ˇ̌
NpI 0

˛ D
ın;n1ım;n1 and (110) to get the first-order energy shift

�E.1/
n D lim

�!0
1

2
i�
D
S
.1/
�;1

E
c
D �ım

Z
dx��n .x/ 

0�n .x/ : (149)

To this order the energy shift is thus only the mean value of the mass counter term
on the bound state considered.

Evaluation of
D

S.2/

�,1

E
c

We now turn to the second order of Eq. (115). It reads

D
S
.2/
�;1

E
c
D .� i/2

2Š

˝
NpI 0

ˇ̌ Z
d4x2

Z
d4x1e

��.jt2jCjt1j/T ŒHI .x2/HI .x1/�
ˇ̌
NpI 0

˛
c

D �1
2

˝
NpI 0

ˇ̌ Z
d4x2

Z
d4x1e

��.jt2jCjt1j/T
��
j � .x2/A� .x2/ � ıM .x2/

�
� �j � .x1/A� .x1/ � ıM .x1/

�� ˇ̌
NpI 0

˛
c

D �1
2

˝
NpI 0

ˇ̌ Z
d4x2

Z
d4x1e

��.jt2jCjt1j/T
�
j � .x2/ j

� .x1/A� .x2/A� .x1/

� j � .x2/A� .x2/ ıM .x1/

� ıM .x2/ j
� .x1/A� .x1/

C ıM .x2/ ıM .x1/�
ˇ̌
NpI 0

˛
c

(150)

The terms with a single photon field operator annihilate j0> and we are thus left
with
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D
S
.2/
�;1

E
c
D �1

2

˝
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ˇ̌ Z
d4x2

Z
d4x1e

��.jt2jCjt1j/T
�
j � .x2/ j

� .x1/A� .x2/A� .x1/

C ıM .x2/ ıM .x1/�
ˇ̌
NpI 0

˛
c

D
D
S
.2a/
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E
c
C
D
S
.2b/
�;1

E
c

(151)

We first evaluate

D
S
.2b/
�;1

E
c
D �1

2

˝
NpI 0

ˇ̌ Z
d4x2

Z
d4x1e

��.jt2jCjt1j/T ŒıM .x2/ ıM .x1/�
ˇ̌
NpI 0

˛
c

D � .ım/
2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/

� ˝NpI 0ˇ̌T � N .x2/  .x2/ N .x1/  .x1/� ˇ̌NpI 0˛c (152)

We now apply Wick’s theorem.

T
� N .x2/  .x2/ N .x1/  .x1/� D T � N ˛2 .x2/  ˛2 .x2/ N ˛1 .x1/  ˛1 .x1/�

D W N ˛2 .x2/  ˛2 .x2/ N ˛1 .x1/  ˛1 .x1/ W
C N ˛2 .x2/  ˛2„ ƒ‚ … .x2/ W N ˛1 .x1/  ˛1 .x1/ W
C N ˛2 .x2/  ˛1„ ƒ‚ … .x1/ W  ˛2 .x2/ N ˛1 .x1/ W
� N ˛2 .x2/ N ˛1„ ƒ‚ … .x1/ W  ˛2 .x2/  ˛1 W
� ˛2 .x2/  ˛1„ ƒ‚ … .x1/ W N ˛2 .x2/ N ˛1 .x1/ W
C ˛2 .x2/ N ˛1„ ƒ‚ … .x1/ W N ˛2 .x2/  ˛1 .x1/ W
C N ˛1 .x1/  ˛1„ ƒ‚ … .x1/ W N ˛2 .x2/  ˛2 .x2/ W
C N ˛2 .x2/  ˛2„ ƒ‚ … .x2/ N ˛1 .x1/  ˛1„ ƒ‚ … .x1/
� N ˛2 .x2/ N ˛1„ ƒ‚ … .x1/  ˛2 .x2/  ˛1„ ƒ‚ … .x1/
C N ˛2 .x2/  ˛1„ ƒ‚ … .x1/  ˛2 .x2/ N ˛1„ ƒ‚ … .x1/ : (153)

We now use Eqs. (122), (123), (124), (125) and the definition of the Green
function (127) and of other vacuum expectations (128) to get
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T
� N .x2/ .x2/ N .x1/ .x1/�
D T � N ˛2 .x2/  ˛2 .x2/ N ˛1 .x1/  ˛1 .x1/�
DW N ˛2 .x2/  ˛2 .x2/ N ˛1 .x1/  ˛1 .x1/ W (154)

�SF .x2; x2/˛2;˛2 W N ˛1 .x1/  ˛1 .x1/ W (155)

�SF .x1; x2/˛1;˛2 W  ˛2 .x2/ N ˛1 .x1/ W (156)

CSF .x2; x1/˛2;˛1 W N ˛2 .x2/  ˛1 .x1/ W (157)

�SF .x1; x1/˛1;˛1 W N ˛2 .x2/  ˛2 .x2/ W (158)

CSF .x2; x2/˛2;˛2 SF .x1; x1/˛1;˛1 (159)

�SF .x1; x2/˛1;˛2 SF .x2; x1/˛2;˛1 : (160)

Returning to the matrix element we get, removing the disconnected loops (155), (159),
(160), (160), D

S
.2b/
�;1

E
c
D � .ım/

2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/

˝
NpI 0

ˇ̌ W N ˛2 .x2/  ˛2 .x2/ N ˛1 .x1/  ˛1 .x1/ W (161)

�SF .x1; x2/˛1;˛2 W  ˛2 .x2/ N ˛1 .x1/ W (162)

CSF .x2; x1/˛2;˛1 W N ˛2 .x2/  ˛1 .x1/ W
ˇ̌
NpI 0

˛
(163)

We evaluate (161) as
D
S
.2b;1/
�;1

E
c
. It writes

D
S
.2b;1/
�;1

E
c
D � .ım/

2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/

˝
NpI 0

ˇ̌ W N ˛2 .x2/  ˛2 .x2/ N ˛1 .x1/  ˛1 .x1/ W ˇ̌NpI 0˛
D � .ım/

2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/

�
X
n2m2

X
n1m1

ei.En2�Em2/t2ei.En1�Em1/t1

� ��n2 .x2/ 0�m2 .x2/ ��n1 .x1/ 0�m1 .x1/
� ˝NpI 0ˇ̌ W a�n2a�n1am2am1 W ˇ̌NpI 0˛

D � .ım/
2

2

X
n2m2

X
n1m1

Z
dx2

Z
dx1

�
2

�

�2
ı .En2 ; Em2/ ı .En1 ; Em1/

� ��n2 .x2/ 0�m2 .x2/ ��n1 .x1/ 0�m1 .x1/
� ˝NpI 0ˇ̌ W a�n2a�n1am2am1 W ˇ̌NpI 0˛ (164)
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We proceed in the same manner as in (148). Lets first consider a one-electron state
jN I 0 >D a�N j0I 0 >. We obtain

hN I 0j W a�n2a�n1am2am1 W jN I 0i D h0I 0j ıN;n2a�n1am2ıN;m1 j0I 0i D 0 (165)

Thus in the one-electron cases,
D
S
.2b;1/
�;1

E
c;1e� D 0. For a two-electron state with

jN1;N2I 0i D a�N1a
�
N2
j0; 0I 0 >, the result is given in Eq. (121). For compactness we

will usually leave the results without expanding the average values of the creation
and annihilation operators. Here however, because of the integral of wave function
products like ��n2 .x2/ 

0�m2 , which would give 0 if the angular parts of the wave
function do not have the same � and �, the ı .En;Em/ are really enforcing n D m.
We obtain

D
S
.2b;1/
�;1

E
c;2e� D

.ım/2

2

X
n2m2

X
n1m1

Z
dx2

Z
dx1

�
2

�

�2
���n2 .x2/ 0�n2 .x2/ ��n1 .x1/ 0�n1 .x1/
� .ı.n1;N2/ ı.n2;N1/ � ı.n1;N1/ ı.n2;N2//

D
�
2

�

�2
.ım/2

2

Z
dx2

Z
dx1

�
	
�
�
N1
.x2/ 0�N1 .x2/ �

�
N2
.x1/ 0�N2 .x1/

���N1 .x2/ 0�N1 .x2/ �
�
N2
.x1/ 0�N2 .x1/



D 0 (166)

because we can interchange x1 and x2 integration in the second term.
The next term (162) is

D
S
.2b;2/
�;1

E
c
D � .ım/

2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/

˝
NpI 0

ˇ̌ � SF .x1; x2/˛1;˛2 W  ˛2 .x2/ N ˛1 .x1/ W ˇ̌NpI 0˛
D C .ım/

2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/X
nm

ei.t1Em�t2En/

� SF .x1; x2/˛1;˛2 �n;˛2 .x2/ 0ˇ;˛1��m;ˇ .x1/
˝
NpI 0

ˇ̌ W ana�m W ˇ̌NpI 0˛
D � .ım/

2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/X
nm

ei.t1Em�t2En/

� ��m .x1/ 0SF .x1; x2/ �n .x2/
˝
NpI 0

ˇ̌
a�man

ˇ̌
NpI 0

˛
: (167)
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Similarly we obtain for (163)

D
S
.2b;4/
�;1

E
c
D � .ım/

2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/

� ˝NpI 0ˇ̌SF .x2; x1/˛2;˛1 W N ˛2 .x2/  ˛1 .x1/ W ˇ̌NpI 0˛
D � .ım/

2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/X
lm

ei.t2Em�t1El /

� SF .x2; x1/˛2;˛1 ��m;ˇ .x2/ 0ˇ;˛2�l;˛1 .x1/˝
NpI 0

ˇ̌ W a�mal W ˇ̌NpI 0˛
D � .ım/

2

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/X
lm

ei.t2Em�t1El /

� ��m .x2/ 0SF .x2; x1/ �l .x1/
˝
NpI 0

ˇ̌
a�mal

ˇ̌
NpI 0

˛
D i

2�

.ım/2

2

X
lm

Z C1
�1

d z
Z
d4x2

Z
d4x1e

��.jt2jCjt1j/

� ei.t2Em�t1El /e�iz.t2�t1/
� ��m .x2/ 0G .x2; x1; z.1C iı// 0�l .x1/

˝
NpI 0

ˇ̌
a�mal

ˇ̌
NpI 0

˛
D i

2�

.ım/2

2

X
lm

Z C1
�1

d z
Z
dx2

Z
dx1

� 4�2	
.Em � z/2 C �2


 	
.El � z/2 C �2



� ��m .x2/ 0G .x2; x1; z.1C iı// 0�l .x1/
� ˝NpI 0ˇ̌ a�mal ˇ̌NpI 0˛ : (168)

which is exactly
D
S
.2b;4/
�;1

E
c

as can be seen by exchanging x1 and x2 in the above

expression. We thus finally have, specializing on the one-electron case,

D
S
.2b/
�;1

E
c
D i

2�
.ım/2

X
lm

Z C1
�1

d z
Z
dx2

Z
dx1

� 4�2	
.Em � z/2 C �2


 	
.El � z/2 C �2
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� ��m .x2/ 0
X
n1

�n1 .x2/ �
�
n1 .x1/

En1 � z.1C iı/
0�n .x1/ ı .l; n/ ı .m; n/

D i

2�
.ım/2

Z C1
�1

d z
Z
dx2

Z
dx1

4�2	
.En � z/2 C �2


2
� ��n .x2/ 0

X
n1

�n1 .x2/ �
�
n1 .x1/

En1 � z.1C iı/
0�n .x1/ (169)

The integration over z is performed by changing the contour that can be rotated to
go along the imaginary axis. One can then drop ı in the expression and obtain, in
the limit � ! 0

Z C1
�1

d z
�2	

.Em � z/2 C �2

2 1

En1 � z.1C iı/ D
i�

�2
ı .Em;En1/ (170)

from which follows

D
S
.2b/
�;1

E
c
D i

2�

4i�

�2
.ım/2

Z
dx2

Z
dx1��n .x2/ 

0�n .x2/ ��n .x1/ 
0�n .x1/

D �2 .ım/
2

�2

�Z
dx��n .x/ 

0�n .x/
�2

(171)

The contribution to the energy shift of
D
S
.2b/
�;1

E
c

as in Eq. (149), including the

contribution of
D
S
.1/
�;1

E2
c

that belongs to the same order, is then

�E.2b/
n D lim

�!0
1

2
i�

�
2
D
S
.2b/
�;1

E
c
�
D
S
.1/
�;1

E2
c

�

D lim
�!0

1

2
i�

 
�2 .ım/2

�2

�Z
dx��n .x/ 

0�n .x/
�2

�
�
�iım2

�

Z
dx��n .x/ 

0�n .x/
�2!
D 0 (172)

Such a cancellation is necessary to avoid an infinite contribution since both pieces
of the S -matrix behaved as 1=�2.
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We now turn to the evaluation of
D
S
.2a/
�;1

E
c

in Eq. (151). It writesD
S
.2a/
�;1

E
c
D �1

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/

� ˝NpI 0ˇ̌T �j � .x2/ j � .x1/ A� .x2/A� .x1/� ˇ̌NpI 0˛c
D �1

2

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/ (173)

� ˝NpI 0ˇ̌T � N .x2/ � .x2/ N .x1/ � .x1/
�A� .x2/A� .x1/

� ˇ̌
NpI 0

˛
c

D 1

.4�i/

Z C1
�1

dq0

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/e�iq0.t2�t1/
e�bx21
4�x21

� ˝NpI 0ˇ̌T � N .x2/ � .x2/ N .x1/ � .x1/� ˇ̌NpI 0˛c (174)

with the expressions from (140) and (141) for the photon field. Wick’s theorem can
be applied to the preceding expression:

T
� N .x2/ � .x2/ N .x1/ � .x1/�
D �˛2ˇ2�˛1ˇ1T

� N ˛2 .x2/  ˇ2 .x2/ N ˛1 .x1/  ˇ1 .x1/�
D �˛2ˇ2�˛1ˇ1 . W N ˛2 .x2/  ˇ2 .x2/ N ˛1 .x1/  ˇ1 .x1/ W
C N ˛2 .x2/  ˇ2„ ƒ‚ … .x2/ W N ˛1 .x1/  ˇ1 .x1/ W
C N ˛2 .x2/  ˛1„ ƒ‚ … .x1/ W  ˇ2 .x2/ N ˇ1 .x1/ W
� N ˛2 .x2/ N ˛1„ ƒ‚ … .x1/ W  ˇ2 .x2/  ˇ1 W
� ˛2 .x2/  ˛1„ ƒ‚ … .x1/ W N ˇ2 .x2/ N ˇ1 .x1/ W
C ˛2 .x2/ N ˛1„ ƒ‚ … .x1/ W N ˇ2 .x2/  ˇ1 .x1/ W
C N ˛1 .x1/  ˇ1„ ƒ‚ … .x1/ W N ˛2 .x2/  ˇ2 .x2/ W
C N ˛2 .x2/  ˇ2„ ƒ‚ … .x2/ N ˛1 .x1/  ˇ1„ ƒ‚ … .x1/
� N ˛2 .x2/ N ˛1„ ƒ‚ … .x1/  ˇ2 .x2/  ˇ1„ ƒ‚ … .x1/
C N ˛2 .x2/  ˛1„ ƒ‚ … .x1/  ˇ2 .x2/ N ˇ1„ ƒ‚ … .x1/ / (175)
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D �˛2ˇ2�˛1ˇ1 . W N ˛2 .x2/  ˇ2 .x2/ N ˛1 .x1/  ˇ1 .x1/ W (176)

CSF ˇ2˛2 .x2; x2/ W  ˇ1 .x1/ N ˛1 .x1/ W (177)

CSF ˛1˛2 .x1; x2/ W N ˇ1 .x1/  ˇ2 .x2/ W (178)

CSF ˛2˛1 .x2; x1/ W N ˇ2 .x2/  ˇ1 .x1/ W (179)

CSF ˛1ˇ1 .x1; x1/ W  ˇ2 .x2/ N ˛2 .x2/ W (180)

D �˛2ˇ2�˛1ˇ1 W N ˛2 .x2/  ˇ2 .x2/ N ˛1 .x1/  ˇ1 .x1/ W
C2�˛2ˇ2�˛1ˇ1SF ˇ2˛2 .x2; x2/ W  ˇ1 .x1/ N ˛1 .x1/ W
C2�˛2ˇ2�˛1ˇ1SF ˛2˛1 .x2; x1/ W N ˇ2 .x2/  ˇ1 .x1/ W
DW N � .x2/ .x2/ N .x1/ � .x1/ W (181)

�2T r Œ�SF .x2; x2/� W N .x1/ � .x1/ W (182)

C2�˛2ˇ2�˛1ˇ1SF ˛2˛1 .x2; x1/ W N ˇ2 .x2/  ˇ1 .x1/ W (183)

removing term with contraction of type (128) and disconnected loops, exchanging
N and  to get proper order in propagators, and exchanging 1 and 2 in summed

indices and in integration variables. We then replace the field operators by their
value from Eq. (97) and go back to the S -matrix evaluation

D
S
.2a/
�;1

E
c
D 1

.4�i/

Z C1
�1

dq0

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/e�iq0.t2�t1/
e�bx21
4�x21

�
 ˝
NpI 0

ˇ̌ W N .x2/ � .x2/ N .x1/ � .x1/ W ˇ̌NpI 0˛
�2T r Œ�SF .x2; x2/�

˝
NpI 0

ˇ̌ W N .x1/ � .x1/ W ˇ̌NpI 0˛
C2�˛2ˇ2�˛1ˇ1SF ˛2˛1 .x2; x1/

˝
NpI 0

ˇ̌ W N ˇ2 .x2/  ˇ1 .x1/ W ˇ̌NpI 0˛ � : (184)

We can make the time dependence of the wave functions apparent, leading to

D
S
.2a/
�;1

E
c
D 1

.4�i/

Z C1
�1

dq0

Z
d4x2

Z
d4x1e

��.jt2jCjt1j/e�iq0.t2�t1/
e�bx21
4�x21 X

m2n2m1n1

ei.En2�Em2/t2ei.En1�Em1/t1

� ��n2 .x2/ 0��m2 .x2/ ��n1 .x1/ 0��m1 .x1/
� ˝NpI 0ˇ̌ W a�n2am2a�n1am1 W ˇ̌NpI 0˛ (185a)
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� 2T r
�
�
�i
2�

Z C1
�1

d zG .x2; x2; z.1C iı// 0
�

�
X
mn

ei.En�Em/t1��n .x1/ 0��m .x1/
˝
NpI 0

ˇ̌
a�nam

ˇ̌
NpI 0

˛
(185b)

C �i
�

Z C1
�1

d z
X
nm

ei.Ent2�Emt1�iz.t2�t1//

� ��n1 .x2/ 0�G .x2; x1; z.1C iı// 0��m .x1/

� ˝NpI 0ˇ̌ a�nam ˇ̌NpI 0˛ � (185c)

The Feynman diagrams of order ˛ corresponding to the three contributions above
are presented in Figs. 5 and 6. The term (185a) is the electron-electron interaction
(Fig. 5), the term (185c) is the self-energy (Fig. 6a), and the term (185b) corresponds
to vacuum polarization (Fig. 6b). All three diagrams represent contributions of order
˛ to the energy. No other connected diagram can be found at this order beyond those
three. The diagrams with closed loops represent radiative QED corrections.

To perform the time integration, Eq. (185) is expressed as a function of the
relative time t2 � t1. One can then establish for a variable z and �Eij D Ei �Ej ,

Z
dt2

Z
dt1e

��.jt2jCjt1j/e�iz.t2�t1/ei.�Enm/t2ei.�Elk/t1

Fig. 5 Electron-electron
interaction Feynman diagram

Fig. 6 One-photon,
one-electron Feynman
diagrams (a): self-energy.
(b): vacuum polarization. The
double line represents the
Coulomb-bound electron
propagator; the wavy line
represents the photon
propagator

a b
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D 2�

.zC�Enm/2 C �2
2�

.z ��Elk/2 C �2

D ı .�Enm;��Elk/ 2�
�
ı .zC�Enm/CO.�/ (186)

D ı .En CEk;El CEn/

�1
�

Z
d .t2 � t1/ e�iz.t2�t1/e�i.�Enm/t2ei.�Elk/t1 (187)

Equation (187) is then explicit in the relative time.

Contributions of Order ˛2

One can then go to the next order of Eq. (113). The third order does not provide
any physical contributions, as all odd orders. The next physical contribution is thus

provided by 4
D
S
.4/
�;1

E
�4

D
S
.1/
�;1

E D
S
.3/
�;1

E
�2

D
S
.2/
�;1

E2
. It provides contributions of order ˛2

to the energy. In this case there can be two-loop, one-electron diagrams, one-loop
two-electron diagrams, and 0-loop three-electron diagrams, which are connected.
The one-electron diagrams are presented in Fig. 7. Figure 7a–c represents the two-
loop self-energy contribution. They must be evaluated simultaneously to obtain
a finite contribution. Figure 7d, e represents mixed vacuum polarization, self-
energy (SE-VP diagrams) Fig. 7f mixed vacuum polarization, self-energy (SVPE)
diagram); and Fig. 7g, h, i two-loop vacuum polarization diagrams. Figure 7g and h
are the all-order version of the Källén-Sabry approximation, in which an expansion
of the bound propagator of the loop has been performed. This term also contains
two-electron contributions. The first one represented in Fig. 8a, b corresponds
to the first electron-electron correlation contributions and its non-radiative QED
corrections (the part corresponding to contributions from the negative energies
in the ladder diagram Fig. 8a and all of the crossed diagram Fig. 8b). The other
contributions Fig. 8c to Fig. 8f are radiative corrections to the electron-electron
interaction, often called screened QED contributions. At this order there is also a
new possibility, a three-body correction involving three-electrons and two photons,
as presented on Fig. 9.

It has required a lot of effort, in the recent years, to finally have an almost
complete evaluation of the two-loop diagrams of Fig. 7. Mixed vacuum polarization
and self-energy diagrams have been evaluated in several works [65, 66]. The
most difficult part has been the two-loop self-energy diagrams evaluation to all
orders [67–75]. Both the analytic part (regularization and renormalization) and the
numerical part required extensive work, and the low-Z evaluation to all orders is yet
to come. For the other diagrams, partial calculations have been performed, often by
doing an expansion on the electron-loop bound propagator. Some diagrams have led
to potentials in this approximation, like the well-known Källén-Sabry potential [76]
for which very accurate numerical evaluations can be performed using, for example
[77], approximate expressions for the potential.
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+ +

a b c

+

d e

f
ihg

Fig. 7 Two-photon, one-electron Feynman diagrams. (a)–(c): two-loop self-energy. (d), (e):
mixed vacuum polarization – self-energy (SE-VP diagrams). (f): mixed vacuum polarization –
self-energy (SVPE diagram). (g)–(i): two-loop vacuum polarization. (g) and (h) are the all-order
version of the Källén-Sabry contribution

a b c d
e f

Fig. 8 Two-photon two-electron radiative Feynman diagrams. (a), (b): two-electron-two-photon
interaction (first-order correlation energy and associated non-radiative QED correction). (c), (d):
vacuum polarization correction to the electron-electron interaction (vacuum-polarization screen-
ing). (e), (f): self-energy correction to the electron-electron interaction (self-energy screening)

The screened QED diagrams of Fig. 8c–f have also been the object of many
calculations. The vacuum polarization screening has been evaluated in Ref. [78, 79]
for two-electron ions and in Ref. [80] for three-electron ions. The self-energy screen-
ing has been first evaluated using the method presented in section “Self-Energy
Screening” [81]. It has been evaluated for two- and three-electron systems [82].

The two-photon ladder and crossed-ladder diagrams to all orders in Z˛ have
been evaluated by several groups [83–88] using either unperturbed orbitals or
orbitals modified by screening. Accurate two-photon exchange has also been
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Fig. 9 Two-photon
three-electron Feynman
diagram

evaluated for two- [5] and three-electron [6, 86, 88, 89] systems. Usually some
approximate many-body method is used to include three- and more photon exchange
in the ladder approximation as the convergence is only going like 1=Z rather than
in power of ˛ for the ladder approximation correlation terms.

Reference [89] is based on the S -matrix formalism presented here, which has
been extended recently to more complex ions with a valence electron outside a core
[90].

Evaluation of the One-Loop Self-Energy

Introduction

There are several methods of practical calculation for radiative corrections. Here
we show in detail how to treat in practice the one-electron self-energy diagram in
coordinate space [27]. We show in detail the different aspects of the calculation, on
how to perform regularization and renormalization.

We choose this example as the largest BSQED effect is in general the lowest-
order self-energy correction. Even in the simple case of an electron bound in a
pure Coulomb field, the precise theoretical evaluation of this correction has required
extensive developments and numerical calculations.

Since the first attempts, a number of methods of evaluating the one-electron self-
energy to all orders have been proposed [29, 91–93], and numerical calculations
based on these formulations have been done recently [28,94–96]. Specific numerical
developments for low-Z have been necessary, as the numerical accuracy needed to
have accurate-enough results becomes very high [97,98]. Convergence acceleration
techniques as developed in Ref. [99] where the key to obtain the low-Z, high-
accuracy results of Refs. [97, 98].

A necessary feature of any such work is the subtraction of the infinite mass
renormalization in such a way that a numerical evaluation of the remainder is
feasible. Here we follow Ref. [27], in which is described a method that has been
applied to practical calculations of the one-electron self-energy for n D 1 and n D 2



5 Introduction to Bound-State Quantum Electrodynamics 171

states, in [100], to higher-n states in [96], and to the self-energy screening evaluation
in [81].

It provides a formulation of the self-energy calculation for an arbitrary spheri-
cally symmetric local binding potential in which the infinities associated with mass
renormalization are removed by subtractions made in coordinate space. It uses for
that a term-by-term subtraction method, which has the advantage that it does not
require a mix of coordinate-space and momentum-space calculations as do earlier
methods, but works entirely within coordinate space.

The self-energy in Eq. (185c) is rewritten as

�En.�/ D ˛

2�i

Z
CF

d z
Z
dx2

Z
dx1 ��n.x2/˛�G.x2; x1; z/˛

��n.x1/

�
 
e�bx21
x21

� e
�b0x21

x21

!
� ım

Z
dx ��n.x/ˇ�n.x/; (188)

where b as explained in section “Photon Field Operators” is bD�ip.En � z/2C i�,
with Re.b/ > 0 and b0 D �ip.En � z/2 ��2 C i�, with Re.b0/ > 0. �
corresponds to a mass added to the photon propagator. The contour CF has been
defined in Fig. 3.

In the original paper [29], the QED expression for the self-energy correction,
�ESE , is then written as the sum�ESE D �ELC�EH of a low-energy part�EL
and a high-energy part �EH , in units in which „ D c D me D 1. This is obtained
by deformation of the contour in Fig. 3 as presented in Fig. 10. Using the analytic
properties of the different parts of Eq. (188), and letting z1 and z2 go to 0, one can
have a final integration path with CH along the vertical axis and CL a line between
0 and the EN pole.

En−mc2

mc2

Fig. 10 Integration contour CL and CH for the low- and high-energy part of the self-energy
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The high- and low-energy parts then read

�EL D ˛

�
En � ˛

�
P

Z En

0

d z
Z
dx2

Z
dx1 ��n.x2/˛

lG.x2; x1; z/˛m�n.x1/

�.ılmr 2 � r 1 � r l2rm1 /
sinŒ.En � z/x21�

.En � z/2x21
(189)

and

�EH D ˛

2�i

Z
CH

d z
Z
dx2

Z
dx1 ��n.x2/˛�G.x2; x1; z/˛

��n.x1/
e�bx21
x21

�ım
Z
dx ��n.x/ˇ�n.x/; (190)

where x21 D x2 � x1 (see definitions and notations in section “Electron Field
Propagator”). The indices l and m are summed from 1 to 3, and the index � is
summed from 0 to 3. The contour CH extends from �i1 to 0� i� and from 0C i�
to Ci1, with the appropriate branch of b chosen in each case. Notational details
are defined in section “Notations.”

The expressions in (189) and (190) contain no assumptions concerning the
external electrostatic potential except that the spectrum of the Dirac Hamiltonian
resembles the Coulomb spectrum in a way that is evident from the derivation in
Ref. [29]. For example, it can correspond to a Coulomb potential with a finite
nuclear size correction or to a screened potential. In addition the orders of magnitude
of the various Dirac operators for bound states of the external field must be
comparable to their counterparts in a Coulomb field so that the identification of
lower-order and higher-order terms presented below has validity.

The low-energy part in Eq. (189) is finite, so no subtraction is necessary. Yet, it
contains a finite part that contributes to the renormalization, and the physical level
shift is smaller by a factor of order .Z˛/4 than the apparent order of the contribution.
In order to identify the physically relevant part of (189), we explicitly calculate the
lower-order terms in section “Low-Energy Part.”

The difficult part of the work is to render the high-energy part finite. Here we
show how to carry out the isolation of the divergent terms and the mass renormal-
ization in coordinate space. A function is formulated that allows the subtraction
of the lower-order terms and the infinities associated with mass renormalization
point-wise, prior to carrying out the numerical integrations. Such a subtraction is not
necessary to obtain a finite result, but it is found that early removal of the divergent
terms improves significantly the convergence of the numerical integrations. This
approach enables to renormalize the self-energy diagram whether it is embedded
in a higher-order Feynman diagram [81] or for the regular self-energy [96, 100]. It
also allows to make calculation without the need to know an explicit form of the
Fourier transform of the wave functions. It has recently been extended to vacuum
polarization [101].
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Low-Energy Part

The low-energy part of the self-energy is finite and can be calculated very accurately
even at low-Z, although it is of apparent order ˛mc2.

Methods of evaluation of the complete low-energy part are described in Refs.
[28–30].

Those calculations can be applied for pure Coulomb field as well as to a broad
range of spherically symmetric external fields. The general expression for the real
part of the low-energy part is [29]

�EL D ˛

�
En � ˛

�
P

Z En

0

d z
Z 1
0

dx2x
2
2

Z 1
0

dx1x
2
1

�
X
�

2X
i;jD1

fi .x2/G
ij
� .x2; x1; z/fj .x1/A

ij
� .x2; x1/; (191)

where fi are the components of the radial wave function, i D 3 � i , Gij
� are the

components of the radial Green functions, and Aij� are functions that arise from
the photon propagator. Detailed definitions of the notation are given in Ref. [29].
The explicit low-order parts is given in Ref. [29] for a Coulomb field, and the
corresponding generalization is derived in this section. We identify the lower-order
terms not only to isolate the physical part of the correction but also to compare them
to the terms that they must cancel in the high-energy part. The identification of the
lower-order terms is based on order of magnitudes given in section “Operators Mean
Value for the Dirac Equation in a Coulomb Field,” which are valid for an electron
in a Coulomb field, but the calculations are general for an arbitrary external field.

To calculate the terms of order lower than .Z˛/4, we rewrite the low-energy part
in terms of operators as done in Ref. [29]

�EL D ˛

�
En � ˛

4�2
P

Z
k<En

dk
1

k

�
ılm � k

lkm

k2

�
�
�
˛l

1

˛ � p � ˛ � kC V C ˇ �En C k � iı ˛
m

�
(192)

and expand the right-hand side of (192), neglecting terms that are higher order than
first in V and 1 �En or higher order than second in ˛ � p

1

˛ � p � ˛ � kC V C ˇ �En C k � iı D

�
�

1

2Enk
� 1 �E

2
n

4k2

�
.˛ � k � ˇ �En C k/
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� 1

4k2
.˛ � k � ˇ �En C k/ .˛ � pC V /.˛ � k � ˇ �En C k/

� 1

8k3
.˛ � k � ˇ �En C k/ ˛ � p .˛ � k � ˇ �En C k/˛ � p

�.˛ � k � ˇ �En C k/C � � � : (193)

Neglected terms in this expansion contribute corrections of order .Z˛/4 ln.Z˛/�2
or higher. By dropping terms that are odd in k, and taking into account the fact that

.En C ˇ/˛l jn
˛ D ˛l.En � ˇ/jn

˛ D ˛l.˛ � pC V /jn˛ (194)

in estimating orders of magnitude, we find that the right-hand-side of (193) has the
same leading terms as

1

2Enk
.ˇ CEn � k/C 1 �E2

n

4k

� 1

4k2
Œ2˛ � k p � k � 2k˛ � pC 2k2V C 2.p � k/2 � kp2�C � � � : (195)

Substituting (195) into (192), and integrating over k, we obtain

�EL D ˛

�

�
1

2
En C hˇi � 1

2
.1 �E2

n/C
1

6
h˛ � pi C 1

2
hV i � 1

3

˝
p2
˛

CO�.Z˛/4 ln.Z˛/�2
��
: (196)

The replacements, based on section “Operators Mean Value for the Dirac Equation
in a Coulomb Field” ,

1 �E2
n ! hˇi �En � hV i CO�.Z˛/4� (197)

h˛ � p i ! En � hˇi � hV i (198)˝
p2
˛! h˛ � pi CO�.Z˛/4� (199)

in (196) give

�EL D ˛

�

�
5

6
En C 2

3
hˇi C 7

6
hV i CO�.Z˛/4 ln.Z˛/�2

��
: (200)

The physical part of the low-energy part is then contained in the function fL.Z˛/
defined by
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�EL D ˛

�

�
5

6
En C 2

3
hˇi C 7

6
hV i C .Z˛/4

n3
fL.Z˛/

�
: (201)

In a pure Coulomb field, En D hˇi, and this result coincides with Ref. [29].
This direct expansion procedure correctly isolates the lower-order terms because

the low-energy part is written here in Coulomb gauge. This fact was recognized
early by Kroll and Lamb [35] who employed such an expansion to obtain the lowest-
order Lamb shift. This procedure would not work in the Feynman gauge, as it
leads to an expansion that does not converge because of the presence of infrared
photon contributions. An alternative gauge was identified by Fried and Yennie in
1958 [102], in which spurious low-order terms also vanish.

The low-energy part of the self- energy is calculated by evaluating the complete
expression for�EL in (191) and solving numerically Eq. (201) to yield fL.Z˛/. In
the cases whereZ is small, this procedure entails substantial numerical cancellation,
but those problems have been solved successfully in Ref. [97, 98].

Regularization

The high-energy part given in Eq. (190) is only a formal expression, as each of the
two terms that contribute to it is infinite. Only the difference is finite. To make
the terms independently finite, one must employ a scheme such as dimensional
regularization (see, e.g., [103, 104] and applications in Refs. [15, 105]) or Pauli-
Villars regularization [106], which we employ here. It is implemented by making
the replacement

1

q2 C iı !
1

q2 C iı �
1

q2 ��2 C iı (202)

in the momentum-space expression for the photon propagator. In coordinate space,
this corresponds to the replacement

e�bx21
x21

! e�bx21
x21

� e
�b0x21

x21
; (203)

where

b0 D �i �.En � z/2 ��2 C iı�1=2 I Re.b0/ > 0: (204)

The mass renormalization term ım is obtained by the corresponding term calculated
with the regularized photon propagator with the result

ım! ım.�/ D ˛

�

�
3

4
ln.�2/C 3

8

�
: (205)
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The full regularized expression is then

�EH D lim
�!1


˛

2�i

Z
CH

d z
Z
dx2

Z
dx1 ��n.x2/˛�G.x2; x1; z/˛

��n.x1/

�
 
e�bx21
x21

� e
�b0x21

x21

!
� ım.�/

Z
dx ��n.x/ˇ�n.x/

�
; (206)

which, when combined to the low-energy part �EL, yields the finite self-energy
contribution.

Singular Terms: Renormalization in Coordinate Space

Although the integration over z in Eq. (206) is decreasing exponentially at large
values of the argument jzj, when x21 ¤ 0, the unregulated integral is infinite, since
the point x21 D 0 is included in the coordinate-space integration. To extract the
divergent terms, we examine the integrand in the immediate vicinity of x21 D 0 and
employ three expansions around this point. First we employ the expansion of the
Dirac Green function in power of V .x/ given in (206) and presented in Fig. 4.

Higher-order terms not included in Eq. (135), when substituted into Eq. (206),
yield a finite contribution of order .Z˛/4. Then we use an expansion of the bound-
state wave function in Eq. (206):

�n.x1/ D �n.x2/C .x1 � x2/ � r 2 �n.x2/

C1
2
.xl1 � xl2/.xm1 � xm2 /

@

@xl2

@

@xm2
�n.x2/C � � � ; (207)

where the indices l; m are summed from 1 to 3. This expansion is made to take
into account the fact that the dominant contribution to the function at large jzj
comes from the region where x21 � 0. This series expansion of the wave function,
designed to isolate the renormalization terms, has been employed in Ref. [107,108],
to calculate the electromagnetic self-energy of quarks in a cavity.

The series in Eq. (207) corresponds to an asymptotic expansion in jzj�1 for the
integrand of the integral over z in (206). This will be illustrated by an example in
section “Asymptotic Properties.” It also corresponds to an expansion in powers of p
in some sense, of power of Z˛.

We now come to the third expansion,

V .x3/ D V .x2/C � � � (208)

in the second term on the right-hand side of Eq. (135). Higher-order terms in
Eq. (208) would correspond to commutators of V and F . We have now to regroup
the terms corresponding to the first term in Eq. (135) and third term in Eq. (207),
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together with the second term in (135), the first term in Eq. (207), and the term
in Eq. (208). This will regroup all the divergent contributions and, in the Coulomb
case, all the parts of order lower than .Z˛/4 in Eq. (206). The combination of the
first term of Eq. (135) with the third term of Eq. (207) is finite, but it is of order
p2 � .Z˛/2. It is removed to improve the numerical accuracy at low-Z.

The expansion of the high-energy part provides the correct power series in .Z˛/
up to order .Z˛/4, even though its expression is written in the Feynman gauge.
Yet spurious low-order terms that should appear in the expansion of the complete
self-energy in Feynman gauge are absent, because the soft-photon contributions that
would lead to these terms appear only in the low-energy part.

Evaluation of the Singular Terms

The singular terms defined above are denoted by�E.i;j /
H , where i indicates the order

in V and j indicates the order in the power series in Eq. (207).
The leading term in this expansion is

�E
.0;0/
H D ˛

2�i

Z
CH

d z
Z
dx2

Z
dx1 ��n.x2/˛�F .x2; x1; z/˛

��n.x2/

�
 
e�bx21
x21

� e
�b0x21

x21

!
; (209)

where the free Green function is defined by

F .x2; x1; z/ D lim
Z˛!0 G.x2; x1; z/: (210)

This function is given explicitly by (see Eq. (133))

F .x2; x1; z/ D
��

c

x21
C 1

x221

�
i˛ � x21 C ˇ C z

�
e�cx21
4�x21

; (211)

where c D �1 � z2
�1=2

, Re.c/ > 0. In Eq. (209), integration over x1 is elementary

Z
dx1 F .x2; x1; z/

 
e�bx21
x21

� e
�b0x21

x21

!
D .ˇ C z/

�
1

b C c �
1

b0 C c
�
: (212)
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We obtain

�E
.0;0/
H D ˛

�i

Z
CH

d z h2ˇ � zi
�

1

b C c �
1

b0 C c
�
: (213)

Integration over z yields as shown in section “Integration of Singular Terms”

�E
.0;0/
H D ˛

�

˚ hˇi �ln.�2/ � 1C 1 �E2
n

E2
n

ln
�
1CE2

n

��
�En

�
1

4
ln.�2/C 3E

2
n � 2
8E2

n

C 1 �E
4
n

4E4
n

ln
�
1CE2

n

��CO.��1/�:(214)

The second term is expressed as

�E
.0;1/
H D ˛

2�i

Z
CH

d z
Z
dx2

Z
dx1 ��n.x2/˛�F .x2; x1; z/˛

�

�.x1 � x2/ � r �n.x/

ˇ̌̌̌
xDx2

 
e�bx21
x21

� e
�b0x21

x21

!
: (215)

Integration over x1 yields

Z
dx1 F .x2; x1; z/.x1 � x2/

 
e�bx21
x21

� e
�b0x21

x21

!
D

� i
3

˛

�
1

b C c �
1

b0 C c C
c

.b C c/2 �
c

.b0 C c/2
�
: (216)

This leads to

�E
.0;1/
H D ˛

�i

Z
CH

d z
1

3
h˛ � p i

�
�

1

b C c �
1

b0 C c C
c

.b C c/2 �
c

.b0 C c/2
�
; (217)

and to the final result

�E
.0;1/
H D ˛

�
h˛ � p i

�
1

4
ln.�2/ � 6 � 3E

2
n C 7E4

n

24E2
n.1CE2

n/

C1 �E
4
n

4E4
n

ln
�
1CE2

n

�CO.��1/
�
: (218)
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The third term given by

�E
.0;2/
H D ˛

2�i

Z
CH

d z
Z
dx2

Z
dx1 ��n.x2/˛�F .x2; x1; z/˛
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�1
2
.xl1 � xl2/.xm1 � xm2 /
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@xl
@

@xm
�n.x/

ˇ̌̌̌
xDx2

�
 
e�bx21
x21

� e
�b0x21

x21

!
(219)

(using the convention of summation over repeated indices) is evaluated usingZ
dx1 F .x2; x1; z/.xl1 � xl2/.xm1 � xm2 /

 
e�bx21
x21

� e
�b0x21

x21
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D 2

3
ılm.ˇ C z/

�
1

.b C c/3 �
1

.b0 C c/3
�
; (220)

which leads to
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H D � ˛

�i
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; (221)

and finally to
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n CE4
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:(222)

The fourth and last term is the correction linear in V

�E
.1;0/
H D � ˛

2�i
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dx2

Z
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: (223)

Using the operator identity

1

H0 � z

1

H0 � z
D
�
@

@�

1

H0 � z � �
�
�D0

; (224)
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the integral over the product of F s is given byZ
dx3 F .x2; x3; z/F .x3; x1; z/ D

�
@

@�
F .x2; x1; zC �/

�
�D0

; (225)

leading to
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: (226)

Integration over x1 as expressed in Eq. (212), followed by differentiation with
respect to �, provides
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and

�E
.1;0/
H D ˛

�


hV i

�
1

4
ln.�2/C 6 �E2

n

8E2
n

� 3CE
4
n

4E4
n

ln
�
1CE2

n

��
�
�
ˇ

En
V

� �
2 � 2

E2
n

ln
�
1CE2

n

��CO.��1/
�
: (228)

We combine these four terms to obtain the high-energy analytic part �EHA,
defined by

�EHA D lim
�!1

h
�E

.0;0/
H C�E.0;1/

H C�E.0;2/
H C�E.1;0/

H � ım.�/ hˇi
i
;

(229)

where the last term is the renormalization term from Eq. (190). We use Dirac
equation to replace h˛ � p i by En � hˇi � hV i, to obtain
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The divergent terms in Eq. (230) sum up to zero as expected. The terms in p2 can be
eliminated with the aid of the Dirac equation identities given in section “Operators
Mean Value for the Dirac Equation in a Coulomb Field”:˝

Enp
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2
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ˇp2

˛ D hˇi .E2
n � 1/ � 2 hV i �

˝
ˇV 2

˛
: (232)

We obtain
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In the general case, i.e., not assuming the Coulomb identity hˇi D En, we isolate
the parts of �EHA that are of order lower than .Z˛/4 by expanding in powers of
1�E2

n , assuming the potential leads to orders of magnitude identical to the Coulomb
potential:
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Chˇi
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�
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This expression is simplified by using the expressions given in section “Operators
Mean Value for the Dirac Equation in a Coulomb Field”:

En.1 �E2
n/ D hˇi �En � hV i CO�.Z˛/4� (235)

hˇi .1 �E2
n/ D hˇi �En � hV i CO�.Z˛/4� (236)�

ˇ

En
V

�
D hV i CO�.Z˛/4� (237)

leading to

�EHA D ˛

�

�
�5
6
En � 2

3
hˇi � 7

6
hV i CO�.Z˛/4��: (238)

We do observe here the expected cancellation of the leading terms between the
high- and low-energy parts.

Since the leading terms cancel in the total self-energy, it is convenient to express
the remainder of the analytic part in terms of a function fA.Z˛/ defined by

�EHA D ˛

�

�
�5
6
En � 2

3
hˇi � 7

6
hV i C .Z˛/4

n3
fA.Z˛/

�
: (239)

Equation (233) leads immediately to
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C ˝ˇV 2
˛ �3C 6E2

n �E4
n

3E2
n.1CE2

n/
2
� 1

E4
n

ln
�
1CE2

n

��
: (240)

The first contribution on the right-hand side is isolated to reduce numerical
cancellations for small values of Z˛.

Evaluation of the Subtraction Terms

The singular terms identified in the preceding section will be expressed here as
functions of z, x2, and x1 to allow for a point-wise numerical subtraction to obtain
the best possible accuracy. We calculate the remainder named �EHB by point-wise
subtraction of the singular terms obtained from the complete high-energy part

�EHB D �EH ��EHA: (241)

In this way the numerical integration formula is applied to both terms, so that the
dominant integration errors largely cancel. The integral of the difference is finite by
construction, so the expression is automatically regularized and no subtraction term
is required. The functions K.i;j /.x2; x1; z/ provide the point by point values of the
integrands of the singular terms:

�E
.i;j /
H D ˛

2�i

Z
CH

d z
Z 1
0

dx2 x
2
2

Z 1
0

dx1 x
2
1 K

.i;j /.x2; x1; z/: (242)

The first term, Eq. (209), corresponds to the integral

K.0;0/.x2; x1; z/ D
Z
d˝2

Z
d˝1 �

�
n.x2/˛�F .x2; x1; z/˛

��n.x2/
e�bx21
x21

:

(243)
The integral over ˝1 is expressed as (see section “Angular Integrations”)

Z
d˝1 ˛� F .x2; x1; z/˛�

e�bx21
x21

D
Z 1

�1
d�

e�.bCc/R

R2

�
��

c

R
C 1

R2

�
i˛ � Ox2.x2 � �x1/C 2ˇ � z

�
; (244)

where

R D .x22 � 2x2x1� C x21/1=2: (245)

Using

��n.x/˛ � Ox�n.x/ D 0; (246)
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we have

K.0;0/.x2; x1; z/ D
Z
d˝2 �

�
n.x2/

Z 1

�1
d�

e�.bCc/R

R2
.2ˇ � z/�n.x2/; (247)

and hence

K.0;0/.x2; x1; z/ D F T
n .x2/

Z 1

�1
d�

e�.bCc/R

R2
.2ˇ � z/Fn.x2/; (248)

where the notation is defined in section “Angular Integrations.”
The second term is given by

K.0;1/.x2; x1; z/ D
Z
d˝2

Z
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; (249)

with the associated angular integral (see section “Angular Integrations”).Z
d˝1 ˛�F .x2; x1; z/˛�.xm1 � xm2 /

e�bx21
x21
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: (250)

Using the identities (see section “Notations”)Z
d˝ ��n.x/i.˛ � Ox/. Ox � r/�n.x/ D �F T

n .x/˛ˇ
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Fn.x/ (251)Z

d˝ ��n.x/i˛ � r�n.x/ D �F T
n .x/˛ˇ

�
@

@x
C ˇ �

x

�
Fn.x/ (252)Z
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we obtain the expression
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�.x2 � �x1/.2ˇ � z/
@

@x2

�
Fn.x2/: (254)

We then turn to the term

K.0;2/.x2; x1; z/ D
Z
d˝2
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�
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; (255)

of which we retain only the diagonal part

K
.0;2/
D .x2; x1; z/ D

Z
d˝2
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; (256)

which corresponds to the diagonal part of the free Green function

FD.x2; x1; z/ D .ˇ C z/
e�cx21
4�x21

: (257)

The off-diagonal term is not considered as it gives no contribution to the final
result, as can be seen fromZ 1

0

dx1 x
2
1

h
K.0;2/.x2; x1; z/ �K.0;2/

D .x2; x1; z/
i
D 0: (258)

We then perform the angle integralsZ
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; (259)

and Z
d˝ ��n.x/.2ˇ � z/. Ox � r/2 �n.x/ D F T

n .x/.2ˇ � z/
@2

@x2
Fn.x/ (260)Z
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which combined leads to
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.0;2/
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The next term, which is proportional to V , is given by
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Using Eqs. (243) to (248), we obtain after differentiating with respect to � and taking
into account the spherical symmetry of V .x/:
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e�.bCc/R
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�
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(264)

The complete subtraction term KA.x2; x1; z/ is then given by the sum of the
individual terms obtained above:

KA.x2; x1; z/ D K.0;0/.x2; x1; z/CK.0;1/.x2; x1; z/

CK.0;2/
D .x2; x1; z/CK.1;0/.x2; x1; z/ (265)

where

K.0;0/.x2; x1; z/ D F T
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K.0;1/.x2; x1; z/ D F T
n .x2/

�
Q2.x2; x1; z/˛ˇ

@

@x2
�Q3.x2; x1; z/x

2
1

� ˛ˇ
�
@

@x2
� ˇ �

2x2

�
� Q4.x2; x1; z/.2ˇ � z/

@

@x2

�
Fn.x2/I (267)



5 Introduction to Bound-State Quantum Electrodynamics 187
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and

K.1;0/.x2; x1; z/ D F T
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�
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Finally we eliminate the derivatives of the radial wave function from Eqs. (267))
and (268) using the radial differential Dirac equation giving
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The seven functions Qi used above are given by
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Q4.x2; x1; z/ D
Z 1
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2x2

�
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Q7.x2; x1; z/ D
Z 1
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e�.bCc/R

R
D P�1; (278)

where the functions Qi are expressed as functions of the integrals Pi defined by

Pi D
Z 1

�1
d� Rie�.bCc/R D 1

x2x1

Z x2Cx1

jx2�x1j
dR R.iC1/e�.bCc/R: (279)

In these functions the integration over R is relatively convenient for analytic or
numerical evaluation.

We now rewrite the modified high-energy part (265) in terms of the function
KA.x2; x1; z/

�EHB D ˛

2�i

Z
CH

d z
Z 1
0

dx2 x
2
2

Z 1
0

dx1 x
2
1

�
X

�

2X
i;jD1

�
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ij
� .x2; x1; z/fj .x1/A�.x2; x1/

�fi .x2/Gij
� .x2; x1; z/fj .x1/A

ij
� .x2; x1/

� �KA.x2; x1; z/

�
; (280)

using the same notations as in Eq. (191) except that the functions Aij� are defined
differently, as explained in Ref. [29]. We define the corresponding numerical
function fHB.Z˛/ as

�EHB D ˛

�

.Z˛/4

n3
fHB.Z˛/: (281)

The total high-energy part is thus given by the sum

fH.Z˛/ D fHA.Z˛/C fHB.Z˛/; (282)
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with fHA.Z˛/ given by Eq. (240) and fHB.Z˛/ by Eq. (280) combined with
Eq. (281).

Results and Discussion

The total self-energy is given by

�En D ˛

�

.Z˛/4

n3
F .Z˛/mec

2 (283)

where

F .Z˛/ D fL.Z˛/C fH.Z˛/ (284)

from (201) and (282).
The foregoing discussion provides a prescription for removing the renormal-

ization terms from the bound-state self-energy diagram in such a way that a
complete numerical evaluation is feasible for a broad class of external potentials.
The renormalization subtraction is carried out before numerical integration over the
two radial coordinates or integration over the intermediate-state energy parameter,
so numerical integration errors are not amplified by the subtraction process. The
fact that the subtraction term is relatively simple is particularly beneficial in the
case where the self-energy diagram is embedded in a more complex Feynman
diagram. On the other hand, the subtraction term does not cancel term by term in the
summation over intermediate angular momentum in (280), so the slow convergence
of that sum is not improved by the subtraction. This factor can be compensated in
the numerical evaluation by the introduction of a high-order asymptotic expansion
in the sum to carry out an analytic summation of the leading orders [100].

Vacuum Polarization

In this section we follow [101] to perform the renormalization of vacuum polariza-
tion, in the Uehling approximation. We start here from Eq. (185b), which correspond
to the all-order vacuum polarization. This term was first studied in detail by
Whichman and Kroll in 1956 [109]. We integrate over the time difference and obtain

E
.2/
VP D �˛

Z
dx2

Z
dx1

1

jx2 � x1j
� Tr

�
�SF.x2; x2/

�
�n.x1/

��n.x1/ : (285)

where eTr Œ0SF.x2; x2/� plays the role of a charge density. The electron propagation
function is given in Eq. (130). Replacing in Eq. (285), one obtains
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= + +...

a b

Fig. 11 Expansion of the one-loop vacuum polarization in terms of the free electron propagator
(single line). The dashed line corresponds to the Coulomb interaction with the nucleus. (a): Uehling
potential. (b): Wichmann and Kroll correction. The two-interaction term, not represented here,
vanishes because of Furry’s theorem

E
.2/
VP D

i˛

2�

Z 1
�1

dz
Z

dx2

Z
dx1

1

jx2 � x1j
�˚Tr ŒG .x2; x2; z.1C iı// � ��n.x1/ �n.x1/

�Tr Œ˛G .x2; x2; z.1C iı// � � ��n.x1/˛�n.x1/
�
: (286)

The second term vanishes for a spherically symmetric potential, provided infinities
are regularized.

The bound electron propagator can be expanded in a series of the free propagator
and potential V .x/ as in represented in Fig. 4 and expressed in Eq. (135). Contrary
to self-energy, these corrections can be expressed as potentials. The two first con-
tributions, corresponding to the Uehling [110] and Wichmann and Kroll potentials
[109], are presented in Fig. 11. Each potential can be evaluated numerically to a high
level of accuracy [77]. Only the diagrams with an even number of photon insertions
are non-zero, due to Furry’s theorem [55].

Regularization of the Vacuum Polarization

Zero Potential Contribution
The first term in the expansion when replacing the full Green function depends on
the free Green function trace:

Tr ŒF .x2; x1; z/� D z e�cjx2�x1j

� jx2 � x1j : (287)

This term should vanish, except for the divergent behavior at x2 � x1. This
divergence is removed by using Pauli-Villars regularization. The free Green function
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Fig. 12 Integration path for
the free Green function. The
function is analytic in z and
has two branch points located
at z D ˙mc2.1� iı/

x

y

CF

−mc2

mc2

Fig. 13 Integration path for
the free Green function to
cancel out infinities in the
zero-potential term

−mc2

mc2

is analytic in z and it has branch point at z D ˙m.1 � iı/. We can modify the
integration contour, as presented in Fig. 12 to the one presented in Fig. 13. The
contributions from the two quarter circles will vanish when the radius of the circles
is enlarged provided the integrand of the regularized function decreases faster than
1=jzj for large jzj, if x2 D x1.

Taking z D iu as fully imaginary, we have

ci D
q
m2
i � z2 D

p
u2 C m2

i

2
p

u2
� m4

i

8u2
p

u2
C : : : ; (288)

so that the leading terms in the expansion in 1=u are defined by

e�ci jx2�x1j

jx2 � x1j D
e�
p

u2 jx2�x1j

jx2 � x1j �
m2
i e�
p

u2 jx2�x1j

2
p

u2
: (289)
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The two terms on the right-hand side of Eq. (289) give divergent contributions. We
eliminate them by introducing two auxiliary propagators with masses m1 and m2

with the constraint

1C C1 C C2 D 0 ; (290)

m2
0 C C1m2

1 C C2m2
2 D 0 ; (291)

which is satisfied by

C1 D m2
0 �m2

2

m2
2 �m2

1

; (292)

C2 D m2
1 �m2

0

m2
2 �m2

1

: (293)

To regularize the expression, we define

FR.x2; x1; z/ D
2X
iD0

CiFi .x2; x1; z/ ; (294)

with Fi that is defined by Eq. (133) where m is replaced by mi . One obtains

Tr ŒFR.x2; x1; z/� D
2X
iD0

Ci
iu e�ci jx2�x1j

� jx2 � x1j ; (295)

and

Tr ŒFR.x2; x2; z/� D lim
jx2�x1j!0
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"
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�
1
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�#
: (296)

We see here that the contribution from the quarter circles shown in Fig. 13 vanishes,
and since the branches of the square root are specified to give

p
u2 D juj for real

values of u, the integrand is an odd function of u, and we haveZ 1
�1

du Tr ŒFR.x2; x2; i u/� D 0 : (297)
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One Potential Contribution: The Uehling Potential
When substituting the development from Eq. (135) in Eq. (286), and selecting the
term with a single potential, one gets

G.1/ .x2; x1; z/ D �
Z

dwF .x2;w; z/ V .w/F .w; x1; z/ : (298)

First we rewrite Tr
�
G.1/ .x2; x1; z/

�
to isolate the singularity in x2 D x1, obtaining a

simple term with the aid of section “Details on the Evaluation of the One-Potential
Green Function”:

Tr
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jx2 � wj �.w/
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� 1

2�
ŒV .x2/C V .x1/� e�cjx2�x1j

jx2 � x1j ; (299)

where Z is the charge of the nucleus and � is the nuclear charge density normalized
to 1. The limit of Tr

�
G.1/ .x2; x1; z/

�
when x2 ! x1 is singular due to the third term,

so we introduce a counter term. It is designed to cancel the singularity point by point
and goes to zero when integrated over z. It is given by

G
.1/
A .x2; x1; z/ D �

Z
dwF .x2;w; z/

V .x2/C V .x1/
2

F .w; x1; z/ ; (300)

and (see section “Details on the Evaluation of the One-Potential Green Function”)
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The difference

G
.1/
B .x2; x1; z/ D G.1/.x2; x1; z/ �G.1/

A .x2; x1; z/ (302)
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has the trace

Tr
h
G
.1/
B .x2; x1; z/
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e�cjx2�wj

jx2 � wj
�
V .w/ � V .x2/C V .x1/

2

�
�e�cjw�x1j

jw � x1j : (303)

Taking the limit x1 ! x2, we obtain

Tr
h
G
.1/
B .x2; x2; z/

i
D �Z˛

2�

Z
dw �.w/

e�2cjx2�wj

jx2 � wj2

� z2

2�2

Z
dw ŒV .w/ � V .x2/�

�e�2cjx2�wj

jx2 � wj2 : (304)

To show that the integral over the counter term vanishes, we consider the
expansion in Eq. (136) and Eq. (139) and use the same contour shown in Fig. 13
as before. We find in the regulated trace a nonzero leading term which is

@

@z
Tr ŒFR.x2; x2; z/� D @

@u

1

8�u
p

u2

"
2X
iD0

Cim
4
i CO

�
1

u2

�#
: (305)

Finally we integrate, showing that the counter term vanishes:Z 1
�1

dz
@

@z
Tr ŒFR.x2; x1; z/� D Tr ŒFR.x2; x1; iu/�

ˇ̌̌̌uD1
uD�1

D 0 : (306)

The subtracted one-potential contribution to the Green function is regularized
to be

G
.1/
BR.x2; x1; z/ D �

Z
dw

�
V .w/ � V .x2/C V .x1/

2

�

�
2X
iD0

CiFi .x2;w; z/ Fi .w; x1; z/ ; (307)

and the trace of the propagation function at equal coordinates is given by

Tr
h
0S

.1/
FBR.x2; x2/

i
D 1

2� i

Z 1
�1

dz Tr
h
G
.1/
BR

�
x2; x2; z.1C iı/

�i
: (308)
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Performing a contour rotation to the imaginary axis, and replacing z by iu, and
noting that the contribution of the quarter circles as jzj ! 1 vanishes due to the
exponential falloff of the integrand, Eq. (308) becomes

Tr
h
0S

.1/
FBR.x2; x2/

i
D
Z 1
0

du
2X
iD0

Ci

(
� Z˛

2�2

Z
dw �.w/

e�2ci jx2�wj

jx2 � wj2

C u2

2�3

Z
dw ŒV .w/ � V .x2/� e�2ci jx2�wj

jx2 � wj2
)
: (309)

Looking at the singularity jx2 � wj � 0, we find that

2X
iD0

Ci

Z
dw �.w/

e�2ci jx2�wj

jx2 � wj2

! �.x2/
2X
iD0

Ci

Z
dw

e�2ci jx2�wj

jx2 � wj2

D 3�

4
�.x2/

2X
iD0

Ci
m4
i

u5
CO

�
1

u7

�
(310)

and

2X
iD0

Ci u2
Z

dw ŒV .w/ � V .x2/� e�2ci jx2�wj

jx2 � wj2

!
2X
iD0

Ci
u2

6

�r 2
2V .x2/

� Z
dw e�2ci jx2�wj

D 5�2Z˛

4
�.x2/

2X
iD0

Ci
m4
i

u5
CO

�
1

u7

�
: (311)

The integration over u is then convergent and performing the contour rotation was
legitimate.

We now integrate by parts in Eq. (309) and obtain

Tr
h
0S

.1/
FBR.x2; x2/

i
D
Z 1
0

du
2X
iD0

Ci

(
� Z˛u2

�2ci

Z
dw �.w/

e�2ci jx2�wj

jx2 � wj

C u4

3�3ci

Z
dw ŒV .w/ � V .x2/� e�2ci jx2�wj

jx2 � wj

)
: (312)
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Here again, an estimation analogous to what was performed in Eqs. (310) and (311)
shows that the integration over u converges and that the surface terms at u D 1
from the partial integration vanish even for jx2 � wj � 0. For the second term in
Eq. (312), we have

Z
dw ŒV .w/ � V .x2/� e�2ci jx2�wj

jx2 � wj D �Z˛
Z

dw
Z

dr �.r/

�
�

1

jw � rj �
1

jx2 � rj
�

e�2ci jx2�wj

jx2 � wj

D �Z˛

c2i

Z
dr �.r/

e�2ci jx2�rj

jx2 � rj (313)

leading to

Tr
h
0S

.1/
FBR.x2; x2/

i
D Z˛

�2

Z 1
0

du
Z

dr �.r/
2X
iD0

Ci

�
�u2

ci
C u4

3c3i

�

�e�2ci jx2�rj

jx2 � rj : (314)

We then obtain the one-potential level energy shift as

E
.2;1/
VP D �˛

Z
dx2

Z
dx1

1

jx2 � x1j Tr
h
0S

.1/
FBR.x2; x2/

i
� ��n.x1/ �n.x1/ ; (315)

which is the expectation value of a vacuum polarization potential given by

V
.2;1/

VP .x1/ D Z˛2

�2

Z
dx2

1

jx2 � x1j
Z 1
0

du
Z

dr �.r/
2X
iD0

Ci

�
u2

ci
� u4

3c3i

�

� e�2ci jx2�rj

jx2 � rj : (316)

Regrouping and isolating the terms depending on x2, we obtain

Z
dx2

1

jx2 � x1j
e�2ci jx2�rj

jx2 � rj D
�

c2i jx1 � rj
	
1 � e�2ci jx1�rj
 (317)
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The one-interaction potential is then

V
.2;1/

VP .x1/ D Z˛2

�

Z 1
0

du
Z

dr �.r/
2X
iD0

Ci

�
u2

c3i
� u4

3c5i

�

�1 � e�2ci jx1�rj

jx1 � rj : (318)

Performing the integral over u for the first term, we get

Z 1
0

du
2X
iD0

Ci

�
u2

c3i
� u4

3c5i

�
D �1

3

2X
iD0

Ci lnm2
i ; (319)

which produces a potential corresponding to a mass-dependent charge proportional
to the charge distribution �.

We then proceed to eliminate this mass-dependent part by charge renormal-
ization. For the exp.�2ci jx1 � rj/ term in Eq. (318), the contribution from each
i is separately finite because of the exponential factor. We now evaluate the
nonrelativistic estimate of the energy shift:

�Z˛
2

�
j�n.0/j2

Z
dx1

Z 1
0

du
Z

dr �.r/ Ci

�
u2

c3i
� u4

3c5i

�
e�2ci jx1�rj

jx1 � rj

D �Z˛2 j�n.0/j2
Z 1
0

duCi

�
u2

c5i
� u4

3c7i

�

D �4Z˛
2

15
j�n.0/j2 Ci

m2
i

: (320)

The terms of Eq. (318) with i > 0 thus tend to 0 in the limit of large masses, while
the i D 0 part is just the Uehling potential VU.x1/ [110, 111].

V
.2;1/

VP .x1/ D �Z˛
2

3�

Z
dr

�.r/
jx1 � rj

2X
iD0

Ci lnm2
i C VU.x1/ ; (321)

where

VU.x1/ D �Z˛
2

�

Z
dr �.r/

Z 1
0

du

�
u2

c30
� u4

3c50

�
e�2c0jx1�rj

jx1 � rj

D �Z˛
2

3�

Z
dr �.r/

Z 1
1

dt
p
t 2 � 1

�
2

t2
C 1

t4

�
e�2tm0jx1�rj

jx1 � rj :

(322)
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Specializing to the case of a point charge, we recover the well-known expression:

VU.x1/ D �Z˛
2

3�

Z 1
1

dt
p
t 2 � 1

�
2

t2
C 1

t4

�
e�2tm0x1
x1

; (323)

where x1 D jx1j.
To summarize, the Green function in the expression for the vacuum polarization

is not defined for equal coordinates as it appears formally, so a counter term that
removes this singularity is subtracted, the Pauli-Villars regularization sum is made
for unequal coordinates, and the regulated expression is taken to be the limit as the
coordinates become equal. Then, integration over the energy parameter in the Green
function is carried out; the charge is renormalized, after which the auxiliary masses
are taken to the infinite limit. The result is just the Uehling potential.

Many approximation and numerical methods have been developed to calculate
the Uehling potential. One can cite the approximate method by Fullerton and Rinker
[77] that provides both the Uehling and and Källén-Sabry vacuum-polarization
potentials. Accurate methods to numerically evaluate the Uehling potential have
also been provided by Huang [112] and Klarsfeld [113]. Origin expansion is also
available from Refs. [114] and [77]. Finite nuclear size is also taken into account in
the previous papers, as well as in Ref. [115].

Details on the Evaluation of the One-Potential Green Function
We derive here the equations used in the derivation of Eqs. (299) and (301). Using
Eqs. (133) and (298), we can write

Tr
�
G.1/.x2; x1; z/

� D � 1

4�2

�r 2 � r 1 Cm2 C z2
�

�
Z

dw
e�cjx2�wj

jx2 � wj V .w/
e�cjw�x1j

jw � x1j : (324)

Since 2r 2 � r 1 D .r 2 C r 1/
2 � r 2

2 � r 2
1, Eq. (299) follows from

.r 2 C r 1/
2

Z
dw

e�cjx2�wj

jx2 � wj V .w/
e�cjw�x1j

jw � x1j

D
Z

dw
e�cjx2�wj

jx2 � wj
�r 2

w V .w/
� e�cjw�x1j

jw � x1j (325)

together with the Poisson equation

r 2
w V .w/ D 4�Z˛ �.w/ (326)
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and

�r 2
i � c2

� e�cjxi�wj

jxi � wj D �4�ı.xi � w/ : (327)

For the counter term in Eq. (300), we have

Tr
h
G
.1/
A .x2; x1; z/

i
D � 1

4�2

 �r 2 � r 1 Cm2 C z2
�

�
Z

dw
e�cjx2�wj

jx2 � wj
e�cjw�x1j

jw � x1j
�
V .x2/C V .x1/

2
(328)

and Eq. (301) follows from

r 2 � r 1

Z
dw

e�cjx2�wj

jx2 � wj
e�cjw�x1j

jw � x1j D
2�

c
r 2 � r 1 e�cjx2�x1j

D 2�

c

�
2c

jx2 � x1j � c
2

�
e�cjx2�x1j

D 4�

jx2 � x1j e
�cjx2�x1j

C �z2 �m2
� Z

dw
e�cjx2�wj

jx2 � wj

� e�cjw�x1j

jw � x1j : (329)

Higher-Order Contributions

Furry’s theorem implies that the two-potential term in the expansion of the all-
order vacuum polarization vanishes. It can be shown by direct calculation using the
technique above, as is done in Ref. [101] Sec. C. The next order, the three-potential
term in Fig. 11b, corresponds to the Wichmann and Kroll potential [109]. The three-
potential Green function is given by

G.3/ .x2; x1; z/ D �
Z

ds
Z

dv
Z

dwF .x2; s; z/ V .s/F .s; v; z/ V .v/

�F .v;w; z/ V .w/F .w; x1; z/ : (330)
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which provides the leading term in powers of Z˛ in the all-order, point-nucleus
calculation of Wichmann and Kroll. All-order calculations with finite nuclei have
been performed in Ref. [116, 117].

Equation (330) can be approximated by

G
.3/
A .x2; x1; z/ D �

Z
ds
Z

dv
Z

dwF .x2; s; z/ V .x2/F .s; v; z/ V .x2/

�F .v;w; z/ V .x2/F .w; x1; z/

D � ŒV .x2/�
3

6

@3

@z3
F .x2; x1; z/ : (331)

We apply it to the mass-regularized functions Fi , as in the one-potential term above.
The zero-component trace of the term of mass mi is given by

@3

@z3
Tr ŒFi .x2; x1; z/� D @3

@z3
z e�ci jx2�x1j

� jx2 � x1j

D � @
3

@z3
z ci
�
CO .jx2 � x1j/ ; (332)

which is finite for x2 � x1, and

@3

@z3
Tr ŒFi .x2; x2; z/� D @3

@u3
u

�

q
m2
i C u2

D @

@u

p
u2

�

�
2

u
� 3m

4
i

4u5
C : : :

�
: (333)

Integration over u in Eq. 333 is finite and nonzero, as the branch of the square
root is positive at u D ˙1. This is a well-known property of the “light-by-light”
scattering Feynman diagram, which yields a spurious finite gauge-noninvariant part
[118]. Yet the integral of the regulated approximate expression vanishes with no
ambiguity from the quarter circles.

The higher-order terms in the potential expansion of the vacuum polarization
beyond those shown on Fig. 11 are all finite and unambiguous.

Self-Energy Screening

The two-electron diagrams in Fig. 8e, f can be evaluated in coordinate space, follow-
ing the technique described in section “Evaluation of the One-Loop Self-Energy,”
as shown in Ref. [81]. There is a new contribution here that is shown in Fig. 14.
One must treat separately in the diagram Fig. 8e the case in which the energy in the
electron propagator between the photon exchanged with the other electron and the
self-energy loop is the same as the bound- state energy on the external leg. This gives
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a b

Fig. 14 Feynman diagrams for the self-energy perturbed by an external potential. In the case
of the spherically averaged screening potential used in Ref. [81], the diagram labeled A in the
left originates in the irreducible part of diagram (e) in Fig. 8 and represents the wave function
correction, while the diagram labeled A’ in the center comes from the reducible part of diagram
(a) using the (symbolic) relation @

@E
G.E/ D G.E/ � G.E/, where G.E/ is the bound electron

propagator. The diagram on the right comes from the vertex correction (f)

rise to an extra contribution, called the reducible contribution, presented in Fig. 14a’.
Here we describe a framework for the calculation, in which the formalism is derived
in using perturbation theory, replacing the Coulomb potential V by V C ıV in the
equations derived in section “Evaluation of the One-Loop Self-Energy”.

In order to establish the expression for the self-energy for a general potential
V.x/, we take Eqs. (189) and (190) and make the replacements V ! V and En !
En. The potential V.x/ is supposed to be close to a pure Coulomb potential, perturbed
by a small potential ıV .x/, which does not have to be spherically symmetric.
Some applications of this method have been made with non-spherically symmetric
perturbations (see, e.g., Ref. [105]).

We rewrite the high-energy EH and low-energy EL parts accordingly, leading to
ESE D EL C EH, to

EL D ˛

�
En � ˛

�
P
Z En

0

d z
Z
dx2

Z
dx1 '�n.x2/˛

lG.x2; x1; z/˛m'n.x1/

� .ılmr 2 � r 1 � r l2rm1 /
sinŒ.En � z/x21�

.En � z/2x21
(334)

and to

EH D ˛

2� i

Z
CH

d z
Z
dx2

Z
dx1 '�n.x2/˛�G.x2; x1; z/˛�'n.x1/

e�bx21
x21

�ım
Z
dx '�n.x/ˇ'n.x/ : (335)

where the indices l and m are summed from 1 to 3 and � is summed from 0 to 3.
The notation is easily derived from the ones in section “Evaluation of the One-Loop

Self-Energy,” i.e., b D �i �.En � z/2 C iı�1=2, Re.b/ > 0. Here 'n are the Dirac
wave functions in the new potential, and G is the Green function for the Dirac
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equation corresponding to the operator G D .H � z/�1 The contour CH is the one
defined in Fig. 10.

The screening correction to the self-energy is obtained by applying the transfor-
mations

V.x/! V .x/C ıV .x/ ; (336)

'n.x/! �n.x/C ı�n.x/ ; (337)

G.x2; x1; z/! G.x2; x1; z/C ıG.x2; x1; z/ (338)

En ! En C ıEn (339)

in Eqs. (334) and (335) and retaining only the first-order correction terms. As
explained above we use in this section the convention that G, En, 'n correspond
to the exact quantities in the potential V.x/, while G, En, �n correspond to the same
objects in a pure Coulomb potential V .x/, as defined and used in all preceding
sections.

The operators on the unperturbed self-energy that enable to obtain the corrections
to the self-energy are defined as ı� , ıG, and ıE, respectively, noted as

ı� D ı�n @

@'n
(340)

ıG D ıG @

@G (341)

ıE D ıEn @

@En : (342)

The total screening correction is then given by

ı�n
@

@'n
C ıG @

@G C ıEn
@

@En (343)

where the @ symbol represents the (formal) differentiation with respect to the
indicated variable, while the result is evaluated with the unperturbed functions.

Perturbative Derivation of the Self-Energy Screening Correction

The perturbation expansion is obtained by performing the replacement V.x/ !
V .x/ C ıV .x/, with a spherically symmetric perturbation ıV .x/ . The wave
functions, the energy, and the Green function appearing in Eqs. (334) and (335)
are modified as follows. Perturbation theory gives a first-order energy correction
obeying
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ıEn D
Z
dx��n.x/ ıV .x/�n.x/

D
Z 1
0

dx x2
2X
iD1

fn;i .x/ ıV .x/fn;i .x/ ; (344)

where the wave function parts are defined in sections “Spinors” and “Solutions of
the Dirac Equation in a Coulomb Potential.” The first-order correction to the wave
function is obtained by using the reduced Green function GR.x2; x1; En/, defined
by (see, e.g., [119]):

GR.x2; x1; En/ D
X
m

Em¤En

�m.x2/�
�
m.x1/

Em �En

D lim
z!En

"
G.x2; x1; z/ � �n.x2/�

�
n.x1/

En � z

#
; (345)

This expression shows clearly how the separation between reducible and irreducible
parts in Fig. 14 is obtained. Using the reduced Green function, the correction to the
wave function is obtained as

ı�n.x2/ D �
Z
dx1GR.x2; x1; En/ ıV .x1/�n.x1/ ; (346)

which transforms to

ıfn;i .x2/ D �
Z 1
0

dx1x
2
1

2X
jD1

GR;ij
� .x2; x1; En/ ıV .x1/fn;j .x1/ : (347)

for a spherically symmetric potential. We define here the components of the radial
reduced Green function GR;ij

� .x2; x1; En/ in analogy with the components of the
full Green function Gij

� .x2; x1; z/ following Ref. [29], Eq. (A.14).
To evaluate the first-order correction to the Green function, which would

correspond to a diagram expansion similar to the one shown in Fig. 4, we use the
operator expansion

G.z/ D 1

H C ıV � z

D 1

H � z
� 1

H � z
ıV

1

H � z

C 1

H � z
ıV

1

H � z
ıV

1

H � z
C � � � : (348)
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We extract the term of first order in ıV as

ıG.z/ D � 1

H � z
ıV

1

H � z
: (349)

This term has second-order poles in En. The first-order correction has thus the
expression

ıG.x2; x1; z/ D �
Z
dx3 G.x2; x3; z/ıV .x3/G.x3; x1; z/ (350)

in coordinate space. For a spherically symmetric perturbation ıV , we get

ıGij
� .x2; x1; z/ D �

Z 1
0

dx3 x
2
3

2X
kD1

Gik
� .x2; x3; z/ıV .x3/G

kj
� .x3; x1; z/: (351)

Self-Energy Screening Low-Energy Part

We now turn to the low-energy part defined in Eq. (334). We integrate over the
spherical angles of the two vectors x2 and x1, for an arbitrary external spherically
symmetric potential, which yield

EL D ˛

�
En C ˛

�
P

Z En

0

d zU.z/ (352)

where

U.z/ D �
Z 1
0

dx2x
2
2

Z 1
0

dx1x
2
1

�
�DC1X
�D�1
�¤0

2X
i;jD1

Fn;N{ .x2/Gij� .x2; x1; z/Fn; N| .x1/Aij
� .x2; x1; z/: (353)

where we have defined N{ D 3 � i and N| D 3 � j .
We apply the variations defined in Eqs. (336), (337), (338), (339) to Eqs. (352)

and (353), through the radial components of the wave function Fn;i .x/, the energy
eigenvalue En, and the full Green function Gij� .x2; x1; z/, leading to three corrections
denoted as ı� EL, ıE EL, and ıG EL, respectively, summing up to

ıEL D ı� EL C ıE EL C ıG EL : (354)
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Lower-Order Terms
As for the calculation of the regular self-energy described in section “Low-Energy
Part,” the expression (334) contains spurious parts of lower order in Z˛ than the
complete result. We isolate the physically significant part in a function FL.Z˛/

defined as in Eq. (201) for the unperturbed self-energy

EL D ˛

�

�
5

6
En C 2

3
h'njˇj'ni C 7

6
h'njVj'ni C .Z˛/4

n3
FL.Z˛/

�
(355)

Performing the perturbation expansion in ıV up to first order leads to

ıEL.Z˛/ D ˛

�

�
2 ıEn C 4

3
h�njˇjı�ni C 7

3
h�njV jı�ni C ˛.Z˛/3

n3
ıFL.Z˛/

�
(356)

where we have used the indentity

ı h�njV j�ni D h�njıV j�ni C 2 h�njV jı�ni
D ıEn C 2 h�njV jı�ni : (357)

Additional transformations must be done to obtain a good numerical accuracy. They
are presented in Ref. [81] and will not be dealt with here.

Low-Energy Energy-Level and Wave Function Correction
We turn now to the correction of the low-energy part of the self-energy (334) due to
the perturbation to the energy level

ıEEL D ıEn @EL

@En ; (358)

where
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@En D
˛
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� Z
dx2

Z
dx1 ��n.x2/˛

lG.x2; x1; z/˛m�n.x1/

� .ılmr 2 � r 1 � r l2rm1 /
sinŒ.En � z/x21�

.En � z/2x21

�
zDEn

�˛
�

P
Z En

0

d z
Z
dx2

Z
dx1 ��n.x2/˛

lG.x2; x1; z/˛m�n.x1/

� .ılmr 2 � r 1 � r l2rm1 /
@

@En

sinŒ.En � z/x21�

.En � z/2x21
: (359)

There is no contribution from the second term on the right-hand side of (359) as
seen from
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.ılmr 2 � r 1 � r l2rm1 /
sinŒ.En � z/x21�

.En � z/2x21
D 2

3
ılm.En � z/CO.En � z/3; (360)

and Z
dx2

Z
dx1 ��n.x2/˛

lG.x2; x1; z/˛m�n.x1/

D
Z
dx2

Z
dx1��n.x2/˛

l
X

EjDEn

�j .x2/�
�
j .x1/

En � z
˛m�n.x1/CO.1/

D O.1/ : (361)

The first term on the right-hand side of Eq. (361) is also zero since

Z
dx ��n.x/˛

l�j .x/ D i
Z
dx ��n.x/ŒH; x

l ��j .x/

D i .En �Ej /
Z
dx ��n.x/x

l�j .x/ ; (362)

and the eigenfunctions are orthogonal for n ¤ j . The final correction due to the
perturbation of the bound-state eigenvalue is then

ıEEL D ˛

�
ıEn C ˛

�
P

Z En

0

d z ıEU.z/ ; (363)

in which

ıE U.z/ D �ıEn
Z 1
0

dx2 x
2
2

Z 1
0

dx1 x
2
1

X
�

2X
i;jD1

fN{ .x2/Gij
� .x2; x1; z/f N| .x1/

@

@En
Aij� .x2; x1; z/ : (364)

The dependence on the bound-state wave function in Eq. (334) is explicit, so the
contribution is just

ı�EL D �2˛
�

P
Z En

0

d z
Z
dx2

Z
dx1 ��n.x2/˛

lG.x2; x1; z/˛mı�n.x1/

� .ılmr 2 � r 1 � r l2rm1 /
sinŒ.En � z/x21�

.En � z/2x21
; (365)
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Low-Energy Green Function Correction
The final term to be examined for the low-energy part is due to the variation of the
Green function in Eq. (352). It is given by

ıGEL D ˛

�
Re
Z

CC
d z ıG U.z/: (366)

The first-order change ıG U.z/ due to the variation of G in Eq. (353) is given by

ıG U.z/ D �
Z 1
0

dx2 x
2
2

Z 1
0

dx1 x
2
1

�
X
�

2X
i;jD1

fn;N{ .x2/ ıGij
� .x2; x1; z/fn; N| .x1/Aij� .x2; x1; z/: (367)

We will define the integration contour CC after studying the properties of the
integrand. The Green function Gij� .x2; x1; z/ in Eq. (353) has poles along the real
axis (see section “Electron Field Propagator” and Fig. 3), which are covered in the
integration over z. In the perturbation expansion of Gij� .x2; x1; z/, in the potential
ıV and the Green function Gij

� .x2; x1; z/, new, higher-order poles are produced
at each order (see section “Perturbative Derivation of the Self-Energy Screening
Correction”).

We are going to isolate those poles in the relevant orders and evaluate their
contribution. We write the Green function in its spectral representation to make
explicit the poles:

Gij
� .x2; x1; z/ D

X
m

fm;i .x2/fm;j .x1/

Em � z
: (368)

This allows to rewrite Eq. (351) as

ıGij
� .x2; x1; z/ D �

Z 1
0

dx3 x
2
3

2X
kD1

X
m2;m1

fm2;i .x2/fm2;k.x3/

Em2 � z
ıV .x3/

fm1;k.x3/fm1;j .x1/

Em1 � z
; (369)

which is explicit for the first- and second-order poles. Only states m2;m1 with
spin-angular momentum quantum � can contribute in Eq. (369). We then proceed
by extracting the principal parts of ıGij

� .x2; x1; z/. We expand the functions in
Eq. (367) in Laurent series about each pole at z � Em:

Gij
� .x2; x1; z/ D

fm;i .x2/fm;j .x1/

Em � z
CGR;ij

� .x2; x1; Em/CO.z �Em/; (370)
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where GR;ij
� .x2; x1; Em/ are the radial components of the reduced Green function

given in Eq. (345). We then evaluate the constant term

GR;ij
� .x2; x1; Em/ D lim

z!Em

�
Gij
� .x2; x1; z/ �

fm;i .x2/fm;j .x1/

Em � z

�
D

X
l

El¤Em

fl;i .x2/fl;j .x1/

El �Em : (371)

The expression with the first- and second-order poles then reads

ıGij
� .x2; x1; z/ D �

Z 1
0

dx3 x
2
3

�
2X

kD1

�
fm;i .x2/fm;k.x3/ıV .x3/fm;k.x3/fm;j .x1/

1

.Em � z/2

CGR;ik
� .x2; x3; Em/ıV .x3/fm;k.x3/fm;j .x1/

1

Em � z

Cfm;i .x2/fm;k.x3/ıV .x3/GR;kj
� .x3; x1; Em/

1

Em � z

�
CO.1/ : (372)

Using Eqs. (344)) and (347)), we obtain the final expression

ıGij
� .x2; x1; z/ D �fm;i .x2/fm;j .x1/

ıEm

.Em � z/2

C
h
ıfm;i .x2/ fm;j .x1/C fm;i .x2/ ıfm;j .x1/

i 1

Em � z

CO.1/ : (373)

Alternatively this result can be obtained by expanding in powers of ıV .x/ the
pole contribution to the full Green function G�.x2; x1; z/,

G�.x2; x1; z/ D Fm;i .x2/Fm;j .x1/
Em � z

CO.1/ (374)

using

Em D Em C ıEm C � � �
Fm;i .x/ D fm;i .x/C ıfm;i .x/C � � � ; (375)
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and limiting the expansion to the first-order corrections

�fm;i .x2/fm;j .x1/ ıEm

.Em � z/2

C
h
ıfm;i .x2/ fm;j .x1/C fm;i .x2/ ıfm;j .x1/

i 1

Em � z
:

In Eq. (335), the level energy also appears in the photon propagator. We thus have
to take into account the energy dependence of the Aij� .x2; x1; z/ coefficients, issued
from the angular expansion of the photon propagator term, as defined in Ref. [29],
which appears, e.g., in Eq. (280). The expansion reads

Aij� .x2; x1; z/ D Aij� .x2; x1; Em/
C.z �Em/Bij

� .x2; x1; Em/

CO �.z �Em/2� ; (376)

where

Bij
� .x2; x1; Em/ D

d

d z

h
Aij� .x2; x1; z/

i
zDEm

: (377)

The complete expansion for z � Em is thus given byZ 1
0

dx3 x
2
3

2X
kD1

Gik
� .x2; x3; z/ıV .x3/G

kj
� .x3; x1; z/ A

ij
� .x2; x1; z/

D fm;i .x2/ fm;j .x1/ ıEm

�
�
Aij� .x2; x1; Em/

1

.Em � z/2
� Bij

� .x2; x1; Em/
1

Em � z

�
�
h
ıfm;i .x2/ fm;j .x1/C fm;i .x2/ ıfm;j .x1/

i
�Aij� .x2; x1; Em/

1

Em � z
CO.1/ : (378)

We now calculate the contribution of the low-energy part by subtracting the pole
terms from the integrand and evaluating the integral over z numerically. The pole
contribution is then added back after analytic evaluation. In the one-electron self-
energy calculation, the singularities along the real axis in the interval .0; 1/ give
poles, which leads to the principal value integral in Eq. (352). Here we have double
poles as well, so a new analysis is necessary to calculate this new terms. In Ref. [29]
it is shown that the integration over z can be written as

Re
Z

CC
d zU.z/; (379)
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where CC, extending from z D 0 to z D En above the real axis in the complex z
plane, is shown in Fig. 10. We use here an analytic method as described in Ref. [28].
We note Up the pole contribution in U. We thus write

Re
Z

CC
d zU.z/ D Re

Z
CC
d z

�U.z/ � Up.z/C Up.z/
�
;

D
Z En

0

d z

"
U.z/ � Up.z/C 1

En
Re

Z
CC
d z0 Up.z

0/
#
: (380)

The pole at the endpoint of the z integration, z D En, can be calculated easily
as shown in section “Low-Energy Energy-Level and Wave Function Correction”
[Eqs. (359), (360), (361), (362)].

The analytic evaluation of the one- and two-pole terms is thus

Re
Z

CC
d z

1

.Em � z/2
D � En

Em.En �Em/ ; (381)

Re
Z

CC
d z

1

Em � z
D ln

�
Em

En �Em
�
; (382)

where
0 < Em < En : (383)

Using these two results, we can evaluate Eq. (366) to get

ıGEL D ˛

�
Re
Z

CC
d z ıG U.z/

D ˛

�

Z En

0

8̂<̂
:ıG U.z/ �

X
m

Em<En

"
R
.2/
n;m

.Em � z/2
C R

.1/
n;m

.Em � z/

#9>=>;
C˛
�

X
m

Em<En

"
� R

.2/
n;m En

Em.En �Em/ CR
.1/
n;m ln

�
Em

En �Em
�#

(384)

where R.2/n;m is given by

R.2/n;m D ıEm
Z 1
0

dx2 x
2
2

Z 1
0

dx1 x
2
1

�
2X

i;jD1
fn;N{ .x2/fm;i .x2/ fm;j .x1/ fn; N| .x1/Aij� .x2; x1; Em/ (385)
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and R.1/n;m by

R.1/n;m D �ıEm
Z 1
0

dx2 x
2
2

Z 1
0

dx1 x
2
1

�
2X

i;jD1
fn;N{ .x2/fm;i .x2/ fm;j .x1/ fn; N| .x1/Bij

� .x2; x1; Em/

�
Z 1
0

dx2 x
2
2

Z 1
0

dx1 x
2
1

�
 2X
i;jD1

fn;N{ .x2/
h
ıfm;i .x2/ fm;j .x1/C fm;i .x2/ ıfm;j .x1/

i
fn; N| .x1/

�Aij� .x2; x1; Em/
�

(386)

Self-Energy Screening High-Energy Part

We now turn to the high-energy part in Eq. (335). This term is infinite an must
be regularized. We follow the same technique as for the normal self-energy
(section “Introduction” and Refs. [27,100]) to remove the infinities. Again, the high-
energy part EH, as given in Eq. (335), is separated into two contributions

ıEH D ıEHA C ıEHB : (387)

where EHA contains all divergences and can be calculated analytically. The other
quantity EHB can be calculated numerically. In this section we describe the method
used to evaluate ıEHB. The method to compute analytically the divergent part ıEHA

is explained in section “Self-Energy Screening: Analytic Terms and Verification of
Global Renormalization”.

The high-energy remainder with term-by-term subtraction, from Eq. (280) (see
also Eq. (32) in Ref. [100]), is written as

EHB D EH � EHA

D ˛

2� i

Z
CH

d z
Z 1
0

dx2 x
2
2

Z 1
0

dx1 x
2
1

�
 1X
j�jD1

�
K�.x2; x1; z/ �K.0;0/

� .x2; x1; z/ �K.0;1/
� .x2; x1; z/

�K.1;0/
� .x2; x1; z/

�
�K.0;2/

D .x2; x1; z/

�
; (388)
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where the different K functions are defined as

K�.x2; x1; z/ D
2X

i;jD1

�Fn;i .x2/Gij� .x2; x1; z/Fn;j .x1/A�.x2; x1/
�Fn;N{ .x2/Gij� .x2; x1; z/Fn; N| .x1/Aij� .x2; x1/

�
; (389)

K.0;0/
� .x2; x1; z/ D A�


F 11
� .x2; x1; z/

�F2n;1.x2/ � 3F2n;2.x2/�
CF 22��.x2; x1; z/

�F2n;2.x2/ � 3F2n;1.x2/� � ; (390)

K.0;1/
� .x2; x1; z/
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F 11
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@

@x2
C C� 1C �n
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�
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@

@x2
� C� 1 � �n

x2
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Fn;2.x2/

�
CF 22��.x2; x1; z/
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�
B�

@
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�Fn;2.x2/
�Fn;1.x2/

�
3B�

@
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� C� 1C �n
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�
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C2F 12��.x2; x1; z/Fn;1.x2/
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@

@x2
C C� 1 � �n

x2
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C2F 21
� .x2; x1; z/Fn;2.x2/
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@

@x2
C C� 1C �n

x2

�
Fn;1.x2/

�
; (391)

and

K.1;0/
� .x2; x1; z/ D �V.x2/A�


d

d z
F 11
� .x2; x1; z/

�F2n;1.x2/ � 3F2n;2.x2/�
C d

d z
F 22��.x2; x1; z/

�F2n;2.x2/ � 3F2n;1.x2/�� : (392)

In Eqs. (389), (390), (391), and (392) Aij� , A� , B� , and C� are integrals over angular
coordinates (see Refs. [28–30, 100]), Fn;i .x/ are radial components of the bound-
state wave function defined in the previous sections, and �n is the spin-angular
momentum quantum number of the bound-state n. The expressions for the free
Green function radial components F ij

� .x2; x1; z/ and their derivatives can be found
in [100] and those of the Coulomb Green function can be found in [29].
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The high-energy remainder for the self-energy screening is obtained from
Eq. (388) as described in section “Perturbative Derivation of the Self-Energy
Screening Correction” as the sum ı�EHB C ıGEHB C ıEEHB. We now derive the
expressions for ı�EHB, ıGEHB, and ıEEHB from Eqs. (389), (390), (391), and (392)
in sections “Wave Function Correction for the Screened Self-Energy,” “Green
Function Correction,” and “Energy Correction.”

Wave Function Correction for the Screened Self-Energy
The expression for the high-energy remainder for the wave function correction is
obtained using the functional derivatives of Eqs. (389), (390), (391), and (392) with
respect to the radial wave functions Fn;i .x/. For the full expression (389), we have

K�;�.x2; x1; z/ D
2X

i;jD1

n�
fn;i .x2/G

ij
� .x2; x1; z/ ıfn;j .x1/

Cıfn;i .x2/Gij
� .x2; x1; z/fn;j .x1/

�
A�.x2; x1/

�
�
fn;N{ .x2/Gij

� .x2; x1; z/ ıfn; N| .x1/

Cıfn;N{ .x2/Gij
� .x2; x1; z/fn; N| .x1/

�
Aij� .x2; x1/

o
: (393)

The subtraction terms are evaluated as

K
.0;0/
�;� .x2; x1; z/

D 2A�
n
F 11
� .x2; x1; z/

�
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�
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; (394)
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CF 22��.x2; x1; z/
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and

K
.1;0/
�;� .x2; x1; z/ D �2V.x2/A�

�

d

d z
F 11
� .x2; x1; z/ Œfn;1.x2/ ıfn;1.x2/ � 3fn;2.x2/ ıfn;2.x2/�

C d

d z
F 22��.x2; x1; z/ Œfn;2.x2/ ıfn;2.x2/ � 3fn;1.x2/ ıfn;1.x2/�

�
: (396)

Using Eqs. (393), (394), (395), and (396), the first-order wave function correction
to EHB is given by

ı�EHB D ˛

2� i

Z
CH

d z
Z 1
0

dx2 x
2
2

Z 1
0

dx1 x
2
1

�
1X
j�jD1

�
K�;�.x2; x1; z/ �K.0;0/

�;� .x2; x1; z/

�K.0;1/
�;� .x2; x1; z/ �K.1;0/

�;� .x2; x1; z/

�
: (397)

In order to evaluate the expression in Eq. (395), we need the derivative of the
bound-state Dirac wave function and the derivative of its first-order correction in the
potential ıV . The first part is found in section “Bound States of the Dirac Equation,”
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Eq. (55). Using this equation, we obtain the expressions for the perturbation of the
wave-function components in the potential V .x/CıV .x/. Retaining only first-order
terms in ıV .x/,it reads

d

dx
ıfn;1.x/ D �1C �n

x
ıfn;1.x/C Œ1CEn � V .x/� ıfn;2.x/

CŒıEn � ıV .x/�fn;2.x/
d

dx
ıfn;2.x/ D Œ1 �En C V .x/� ıfn;1.x/ � 1 � �n

x
ıfn;2.x/

CŒıV .x/ � ıEn�fn;1.x/ : (398)

Green Function Correction
The effect of the variation of the Coulomb Green function under a change of the
potential on the high-energy term is straightforward. The Coulomb Green function
has no poles on the high-energy integration contour so we use directly Eq. (351) and
get

K G;�.x2; x1; z/ D �
2X

i;j;kD1

Z 1
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dx3 x
2
3 ıV .x3/

�
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�
: (399)

Here only the K.1;0/ term contributes to the subtraction term, and Eq. (392) leads to

K
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The Green function correction to EHB is thus

ıGEHB D ˛
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(401)
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Energy Correction
We finally turn to the evaluation of the perturbation effect on ıEEHB, given by

ıEEHB D ıEn @

@En EHB ; (402)

Although this calculation can be performed by direct numerical differentiation of
EHB,it has been found preferable in Ref. [81] to differentiate directly the running
term in the sum over angular momenta in Eq. (388). The sum of derivatives obtained
by term-by-term differentiation is given by

@

@En
SA.r; y; u/ D

1X
j�jD1

@

@En

�
K�;�.ry; y; iu/

�K.0;0/
�;� .ry; y; iu/ �K.0;1/

�;� .ry; y; iu/

�K.1;0/
�;� .ry; y; iu/

�
(403)

where u D .1=2/.1=t � t / and K.i;j /
�;� are defined in Eqs. (393), (394), (395), and

(396).

Self-Energy Screening: Analytic Terms and Verification of Global
Renormalization

We finally turn to the analytic evaluation of contributions of the renormalization
terms from the three diagrams presented in Fig. 14 to ıEHA. These terms were
subtracted in the numerical calculation described in section “Self-Energy Screening
High-Energy Part” to obtain finite contribution. The calculations reported in the
previous sections and in Ref. [27, 81, 100] have been done to keep explicit the
dependence in V and En to be able to obtain these analytic contributions by direct
differentiation.

Wave Function Correction
The analytic portion of the wave-function correction follows from the previous
section (see Refs. [27, 100]). In each of the terms E.i;j /

H , we calculate the variation
with respect to a change in the wave function based on the explicit dependence on
the wave function in V and En and obtain
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ln.�2/ � 1C 1 �E2

n

E2
n
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�
1CE2

n
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�
;(404)
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and

ı�E.1;0/H D 2˛

�


h�njV jı�ni

�
1

4
ln.�2/C 6 �E2

n

8E2
n

� 3CE
4
n

4E4
n

ln
�
1CE2

n

��
� h�njˇV jı�ni

�
2

En
� 2

E3
n

ln
�
1CE2

n

��CO.��1/
�
: (406)

In analogy with what is described in section “Evaluation of the One-Loop Self-En-
ergy,” we define

ı�EHA D lim
�!1

�
ı�E.0;0/H C ı�E.0;1/H C ı�E.1;0/H � 2 ım.�/ h�njˇjı�ni

�
; (407)

where the last term is the renormalization term with

ım.�/ D ˛

�

�
3

4
ln.�2/C 3

8

�
; (408)

which reabsorb the infinite contributions into the physical mass of the particle.
We now regroup the contributions to ln.�2/ in Eq. (407), leading to

˛

2�
h�njˇ C ˛ � pC V jı�ni D ˛

2�
En h�njı�ni D 0 (409)

using the differential equations from Eqs. (395) and (398) for �n and the fact that
h�njı�ni D 0. Equation (409) show that the wave function correction is finite.
We can then deduce more generally that the contribution of diagram of Fig. 14b
is independently finite.

Energy Correction
Following the same route as in the previous subsection, we differentiate all terms
with respect to En. We obtain three terms
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�
; (410)
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ıEE.0;1/H D ˛
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and
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Summing up all three contributions, we obtain

ıEEHA D ıEE.0;0/H C ıEE.0;1/H C ıEE.1;0/H ; (413)

which contains the divergent term

ıEEHA D �˛ ıEn
4�

ln.�2/CO.1/ : (414)

It shows that the contribution of the diagram of Fig. 14a’ is not finite.

Green Function Correction
Here the whole contribution results from E.1;0/H , which is linear in the potential in the
Green function. Taking into account the definition of the perturbed energy correction
h�njıV j�ni D ıEn, we obtain
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We find again a divergent contribution

ıGEHA D ˛ ıEn

4�
ln.�2/CO.1/ : (416)

Comparing with Eq. (414), we see that the infinities cancel in the sum of the
two terms. This shows that the sum of the reducible and irreducible contributions
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represented by the two diagrams Fig. 14a and a’ must be taken into account
simultaneously to obtain a finite contribution. This completes the derivation of the
total corrections

ıEHA D ı�EHA C ıEEHA C ıGEHA; (417)

which is finite as expected.

Two-Photon, Two-Electron Diagrams

Here we give some indications on the evaluation of the so-called ladder and cross-
ladder diagrams (Fig. 8a, b). These diagrams are finite, since there are no closed
loops. Yet there are specific new issues that have to be dealt with, which were
not present in any of the diagram treated in the preceding sections. In Fig. 15, we
present the electron-electron interaction and non-radiative QED corrections. Non-
radiative means that they are no photon or electron loops. Many-body calculations
(see, e.g., Ref. [120]) in atoms were performed very early in the framework of
standard perturbation theory, or the one of the (multiconfiguration) Hartree-Fock
or many-body approximation [121], and more recently in the framework of the
multiconfiguration Dirac-Fock (MCDF) [122–125] or of the relativistic many-
body perturbation theory, the relativistic configuration interaction (RCI), or coupled
cluster techniques [126]. All those calculations were meant to calculate the electron
correlation energy. In a diagram language, these calculations represent a sum of the
ladder-approximation diagrams (Fig. 15, bottom part). It was shown that in the case
of the relativistic many-body techniques [127], the electron-electron interaction,
because it couples positive- and negative-energy states, must include projection
operators on the negative-energy states; otherwise the contribution is divergent
starting at second order in perturbation [46–48, 50].

+ +
+. . .

+ +

+ +

+ + + +

+ + + +

+ +

+ +

+ +

+ +
+ +

+ +

+ + + + + +. . .

Fig. 15 Non-radiative two-electron Feynman diagrams (top) and the ladder approximation (bot-
tom). The CC symbols mean that the electron-electron interaction is between projectors on the
positive- energy eigenvalues. This series of diagrams corresponds to the correlation energy as
evaluated by many-body techniques like RMBPT, MCDF, RCI, etc.
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Here we discuss the QED evaluation of the first- and second-order diagrams,
following Ref. [51, 83]. The QED expression for the upper leftmost diagram in
Fig. 15 between two states with energy Ea and Eb is given by

�E.2/ D ˛
Z
dx2

Z
dx1

(
��a .x2/ �

�

b .x1/
1

x21
˛.2/� ˛

� .1/�a .x2/ �b .x1/

���a .x2/ ��b .x1/
cos ŒjEb �Eaj x21�

x21
˛.2/� ˛

� .1/�a .x1/ �b .x2/

)
; (418)

using unperturbed Dirac wave functions. The cosine term corresponds to the
retardation part of the interaction (taking into account that the photon speed is finite)
and the ˛.2/� ˛� .1/ correspond to the magnetic part of the interaction. One recognizes
the usual perturbation theory result.

The second-order ladder (L) and cross-ladder (X) diagrams come from the same
fourth-order term in Eq. (113) as the screened self-energy,
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C
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: (419)

Only the two first terms contribute. Using the expression in Eq. (115), the energy
shift for the ladder diagram writes
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Similarly the energy shift for the cross-ladder diagram writes
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�)
: (421)

Performing the time integration in Eqs. (420) and (421) replacing the propagators
by the relevant expressions as defined in sections “Electron Field Propagator”
and “Photon Field Operators,” one gets
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We define

ga;b;c;d .q/ D �4�˛
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and replace G .xa; xb; z.1C iı// by its spectral decomposition (131) in Eqs. (422)
and (423). As an example, we treat the ground state

ˇ̌
1s2 1S0

˛ D a
�
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to rewrite Eq. (422) as
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and Eq. (423) as
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Finally, we have for the second-order term, which will be needed for having the
right order in 1=�:
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Here we will only describe how to deal with the limit � ! 0, which requires
distinguishing as in the case of the self-energy screening in section “Self-Energy
Screening,” between reducible and irreducible states. The reducible states corre-

spond to En D Em D E0. In this case the term
D
S
.4/
�

E
L

has a singularity of order

1=�2 that cancels out only when combining with
D
S
.2/
�

E2
E

.

Equation (426), when specializing to the ground state of He-like ions, can be
transformed into
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where

f� .q2; q1/ D
Z C1
�1

d z
1

E0 � z.1C iı/
�

�2 C .E0 � z � q2/2
�

�2 C .E0 � zC q1/2

D ���
.q2 C q1/2 C 4�2

q2 � q1 � 4i�
.q2 � i�/ .q1 C i�/ : (430)

In the same way one obtains
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The singularity can be isolated by noticing that
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The first term writes
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We can then evaluate
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and use the identity
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to show that �2
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This formalism has been applied to the ground state of He-like ions [83] and
to the 1s2s 1S0 and 3S1 [87]. It has also been applied to the 1s22p1=2 ! 1s22s1=2
transition [86] and to the 1s22p3=2 level in Li-like ions [88].

Conclusion

In his chapter, we have reviewed the formalism of QED, starting from the
Dirac equation, introducing field-theoretical approches and perturbation theory. We
have then developed the formalism of bound-state quantum electrodynamics in
space-coordinate approach, giving practical methods to perform explicit calcula-
tions. These were illustrated by several examples, from one-electron self-energy
and vacuum polarization, two-electron self-energy screening, and second-order
electron-electron interaction. In the following chapters, the two-time Green function
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Fig. 16 Comparison between theory and experiment for H-like ions for 16 � Z � 92. The
red lines correspond to a fit using a aZ3 functions, with the upper and lower 1
 error bands.
Theory: Ref. [4]. Experiment: Z D 12: Ref. [138], Z D 14: Ref. [139], Z D 16: Ref. [140],
Z D 18: Refs. [140–142], Z D 20: Ref. [143], Z D 22: Ref. [144], Z D 23: Ref. [145], Z D
26: Refs. [146, 147], Z D 28: Ref. [148], Z D 32: Ref. [149], Z D 36: Ref. [150], Z D 54:
Refs. [151, 152], Z D 66: Ref. [153], Z D 79: Refs. [154, 155], Z D 92: Refs. [156, 157]

approach is presented. Then the covariant-evolution-operator method, which aims at
unifying BSQED and many-body perturbation theory techniques, is described.

Many experimental tests of BSQED in few-electron ions have been performed,
using either accelerators, ion traps, or storage rings.

A compilation of theoretical values for hydrogen-like ions has been published
recently [4]. Agreement with hydrogen and highly charged ions is excellent as can
be seen from Fig. 16. Yet there is a strong difficulty connected to the 7
 discrepancy
between the proton size obtained from muonic and normal hydrogen [128, 129],
which is unexplained up to now. This disagreement can be a hint of new physics as
well as an incomplete understanding of the proton structure.

Measurements of 1s2` ! 1s2 1S0 transitions in two-electron ions also show an
excellent agreement with BSQED calculations as reported in [5]. The comparison
between theory and experiment for all lines that have been measured (1s2p 1P1 !
1s2 1S0, 1s2p 3P1 ! 1s2 1S0, 1s2p 3P2 ! 1s2 1S0, and 1s2s 3S1 ! 1s2 1S0) is
shown in Fig. 17. High-Z measurements of the 1s2p 3P2 ! 1s2s 3S1 transition
[130, 131] are also in excellent agreement with theory.

It can be seen from the error bands of a fit with a aZ3 function plotted in
Fig. 17 that there is no trend on the theory and experiment difference, although
the experimental values tend to be slightly above the Z-axis. Fits with constant,
linear, or quadratic functions lead to the same conclusion, which contradicts the



226 P. Indelicato and P.J. Mohr

W

Z

Y

X

20 25 30 35 40 45 50

–0.005

0.000

0.005

0.010

Z

10
4 (

E
xp

.-T
he

or
y)

/Z
4 

(e
V

)

Fig. 17 Comparison between theory and experiment for He-like ions for 16 � Z � 54. The
orange lines correspond to a fit using a aZ3 functions, with the upper and lower 1
 error bands.
Theory: Ref. [5]. Experiment: Z D 16: Ref. [140], Ref.Z D 18: Refs. [158, 159], Z D 19,
Z D 21, Z D 23: Ref. [160], Z D 22: Ref. [132, 160, 161], Z D 26: Refs. [160, 162, 163],
Z D 29: Ref. [164], Z D 32: Ref. [165], Z D 36: Refs. [166–168], Z D 54: Ref. [169]

conclusions of Ref. [132]. It is clear that including all the recent, much more
accurate Z D 18, Z D 22, Z D 29, and Z D 36 values makes the discrepancy
disappear.

Many experiments have also been made to measure the fine structure splitting
1s22pj ! 1s22s1=2 in lithium-like ions. Theoretical calculations have been
improved over the years, with better and better account of BSQED corrections.
The most recent, in the framework of the S -matrix formalism described here,
is presented in Ref. [89]. MCDF calculations are available [14, 133], as well as
RMBPT calculations [134], RCI calculations [135], RCI calculations with relaxed
QED [136], and BSQED calculations by St Petersburg group [71, 86, 137]. The
accuracy for the most recent calculations is in the range of 0.001eV at low-Z up
to ˙0:15eV at high-Z for the 1s22p1=2 ! 1s22s1=2 transition and up to ˙0:4eV
1s22p3=2 ! 1s22s1=2 transition. We show in Fig. 18 the comparison between the
calculations in Ref. [89] and available experiments with 10 	 Z 	 92. Again the
agreement is excellent and no deviation can be observed. All fits with functions of
the form aZn, 0 	 n 	 3 have 1
 error bands that are slightly above the Z-axis.

Finally, extensive comparisons have been performed for the K, L, and M
transitions in atoms with an inner-shell hole [182–185], in the framework of
RMBPT, with QED corrections including self-energy screening in the Welton
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Fig. 18 Comparison between theory and experiment for the 1s22pj ! 1s22s1=2 in Li-like ions
with 10 � Z � 92. The orange lines correspond to a fit using a Z3 function, with the upper and
lower 1
 error bands. Theory: Ref. [89]. Experiment from NIST database [170] with the following
exceptions. For the 1s22p1=2 ! 1s22s1=2 transition – Z D 47: Ref. [171], Z D 50: Ref. [172],
Z D 54: Ref. [173, 174], Z D 74: Ref. [175], Z D 82: Ref. [176], Z D 90, Ref. [177], Z D
92: Ref. [178, 179]. For the 1s22p3=2 ! 1s22s1=2 transition–for Z D 47: Ref. [171], Z D 50:
Ref. [172], Z D 54: Ref. [172, 174], Z D 79, Z D 82, Ref. [180], Z D 92: Ref. [180, 181]

approximation. The agreement is excellent for 10 	 Z 	 100, taking into
account the complexity of calculations with hole states, which requires taking care
simultaneously of correlation and auto-ionization.

It is then clear that all available experiments to date, using few-electron or
neutral atoms, for all Z are in excellent agreement with BSQED as presented here,
comforting the huge theoretical and experimental effort that has been performed
in the last 40 years. The mystery of the so-called proton size puzzle remains, and
there is not hint that this large discrepancy has repercussions in the high-Z region of
electronic atoms, even though the 1s electron distance with the nucleus, for Z 
 42
is smaller than the distance between the muon and the proton in the 2s state of
muonic hydrogen.

Acknowledgements Laboratoire Kastler-Brossel http://www.lkb.upmc.fr is Unité Mixte de
Recherche UMR #8552 of Sorbonne Université, UPMC Paris-6; PSL-ENS; Collège de France and
CNRS. The author is a member of the ExtreMe Matter Institute (EMMI) https://www.gsi.de/work/
wissenschaftliche_netzwerke/helmholtz_allianz_emmi.htm, an Helmholtz Association Alliance
(HA216/EMMI). P.I. wishes to thank P.B. for her continuous support and encouragements during
the redaction of this chapter.

https://www.gsi.de/work/wissenschaftliche_netzwerke/helmholtz_allianz_emmi.htm
https://www.gsi.de/work/wissenschaftliche_netzwerke/helmholtz_allianz_emmi.htm
http://www.lkb.upmc.fr


228 P. Indelicato and P.J. Mohr

Appendix: Useful Properties

Properties of Dirac � Matrices

Basic Relations

To recover the relativistic invariant

p�p� D E2=c2 � p2 D m2c2; (436)

the � matrices must obey

.�� C ��/ D 2g�� (437)

which can be rewritten as an anticommutator (noted f; g)
f�; �g D 2g��; (438)

where g�� D .1;�1;�1;�1/ is the metric tensor for special relativity. We first evaluate the
determinant of the �. Taking the determinant of �� , we must have using (437) for � ¤ �

Det Œ��� D Det Œ���� D .�1/NDet Œ���, where N is the dimension of the matrix. But
since Det Œ��� D Det Œ���, one must have .�1/N D 1, i.e., N even. The smallest value for
which this can be realized with 4 linearly independent matrices is N D 4. One can express the 
in terms of the Pauli matrices


1 D
�
0 1

1 0

�
; 
2 D

�
0 �i
i 0

�
et 
3 D

�
1 0

0 �1
�
: (439)

There are many representations used for the Dirac matrices. In atomic physics and BSQED, it is
more convenient to use them in the form:

0 D ˇ D
�
I 0

0 �I
�
; � D ˇ˛ D

�
0 �

�� 0

�
; ˛ D ˇ� D

�
0 �

� 0

�
† D

�
� 0

0 �

�
: (440)

Among other interesting properties, we can deduce from (437)
�
0
�2 D ˇ2 D 1 and

�
i
�2 D �1.

More Properties of the Dirac Matrices

One can rewrite the tensor �� as a sum of a symmetric and antisymmetric tensor as

�� D g�� C 
��: (441)

The Dirac  matrix commutators and anticommutators can be rewritten as

Œ�; �� D �� � �� D 2
��: (442)

f�; �g D �� C �� D 2g�� (443)

where with our conventions the antisymmetric tensors 
�� is given by
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�� D .˛; i†/ ; (444)

from which one can deduce the following contractions, using only Eq. (437):

�� D 4

��� D �2�
���� D 4g��

����� D �2���
����
� D 2

�

��� C ���
 � :

(445)

The traces are found to be

T rŒI � D 4

T rŒ�� D 0:
(446)

We will use the Feynman slash in QED expressions:

6p D p � �p� D ˇp0 � �p: (447)

Another important properties of the Dirac matrices are given by the adjoints. One can easily show
that

.�/
� D 0�0: (448)

Using the commutation rules, one can see easily that
�
0
�� D 0 and

�
i
�� D �i .

Asymptotic Properties

This section gives an example that indicates that the power series expansion of the wave
function discussed in section “Singular Terms: Renormalization in Coordinate Space” leads to
an asymptotic expansion for large values of jzj of the integrand in Eq. (190). A simple expression
with the essential features of (190) is

u.y/ D
Z
dx2

Z
dx1f .x2/ ŒaC yb � .x2 � x1/�

e�yjx2�x1j

4�jx2 � x1j2 g.x1/: (449)

If g.x1/ is expanded about the point x2, we have

g.x1/ D g.x2/C .x1 � x2/ �r 2 g.x2/C 1

2
.xl1 � xl2/.xm1 � xm2 / @

@xl2

@

@xm2
g.x2/C � � � : (450)

Term by term integration over x1 in (449) is elementary and yields

u.y/ D a

y

Z
dxf .x/ g.x/� 2

3y2

Z
dxf .x/ b�r g.x/C a

3y3

Z
dxf .x/r2g.x/C� � � ; (451)

where the three terms correspond to the three terms in (450). Since gradients of the wave function
are proportional to the momentum, the series depicted above is a power series in p or Z˛, as well
as an asymptotic series in y�1.
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Integration of Singular Terms
In section “Evaluation of the Singular Terms,” the result of integration over z is given for a number
of singular terms in the high-energy part. Here, we indicate a method of evaluation of the integrals
for one example:

I D 1

i

Z
CH

d z z

�
1

bC c �
1

b0 C c
�
: (452)

Changes of variables y D �iz on the positive imaginary axis and y D iz on the negative imaginary
axis lead to

I D 2 Im

Z 1

0

dy y

�
1

y � iEn C .1C y2/1=2

� 1

.�2 C .y � iEn/2/1=2 C .1C y2/1=2
�
: (453)

In the second term in (453), we make the replacement .1C y2/1=2 ! y with a resulting change
in the integral of order ��1. To integrate each of the two terms in (453) separately, we introduce a
temporary cutoff

I D 2 Im lim
Y!1

Z Y

0

dy y

�
1

y � iEn C .1C y2/1=2

� 1

.�2 C .y � iEn/2/1=2 C y
�
CO.��1/ (454)

where the limit Y ! 1 is taken before the limit � ! 1. Each integral can be evaluated
analytically, with the result for large Y that

2 Im

Z Y

0

dy
y

y � iEn C .1C y2/1=2 D
En

4

�
2 ln.2Y /� 1

E2
n

C1�E
4
n

E4
n

ln.1CE2
n/

�
CO.Y �1/ (455)

and

2 Im

Z Y

0

dy
y

.�2 C .y � iEn/2/1=2 C y D
En

4

�
2 ln.2Y /� ln�2 � �2

E2
n

�
�
�2

E2
n

� 1
�2

ln

�
1� E

2
n

�2

��
C O.Y �1/: (456)

Taking the difference for large � yields

I D En

4

�
ln.�2/C 3E2

n � 2
2E2

n

C 1�E4
n

E4
n

ln
�
1CE2

n

��CO.��1/: (457)

The remaining integrals in Section “Evaluation of the Singular Terms,” can be evaluated in this
way.
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Angular Integrations
Formulas pertaining to integration over d˝1 in section “Evaluation of the Subtraction Terms” are
given here. The calculation is facilitated by expressing the integral in terms of spherical angles �
and � of x1 relative to the direction of x2. In particular, we write

x1 D x1 cos� sin � OaC x1 sin� sin � ObC x1 cos � Ox2 (458)

where Oa and Ob are orthogonal unit vectors in the plane perpendicular to Ox2. For � D cos � , R D
.x22 � 2x2x1� C x21/1=2, and f a function of R, we haveZ

d˝1.x1 � x2/ f .R/ D
Z 1

�1
d�

Z 2�

0

d�
�
x1 cos�

p
1� �2 Oa

Cx1 sin�
p
1� �2 ObC x1� Ox2 � x2

�
f .R/

D 2�

Z 1

�1
d�.�x1 � x2/ Ox2 f .R/ (459)

and Z
d˝1.x

l
1 � xl2/.xm1 � xm2 / f .R/ D

Z 1

�1
d�

Z 2�

0

d�
�
x1 cos�

p
1� �2 Oal

Cx1 sin�
p
1� �2 Obl C x1� Oxl2 � xl2

�
��x1 cos�

p
1� �2 Oam

Cx1 sin�
p
1� �2 Obm

Cx1� Oxm2 � xm2
�
f .R/

D 2�

Z 1

�1
d�
�
x21

1
2
.1� �2/. Oal Oam C Obl Obm/

C.x1� � x2/2 Oxl2 Oxm2
�
f .R/

D 2�

Z 1

�1
d�f .R/

�
R2 Oxl2 Oxm2

C 1
2
.1� �2/x21.ılm � 3 Oxl2 Oxm2 /

�
: (460)
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Abstract

Quantum electrodynamics (QED) is the most accurate and the best confirmed
theory in modern physics. This chapter is devoted to the description of the QED
effects in atoms and molecules. Starting from the famous Lamb’s experiment
with hydrogen, we finish with the most recent experiments with heavy ions. We
will demonstrate the cases where the QED effects are extremely important for the
comparison of the theoretical predictions with the experiment. Finally, we will
provide brief review of the most important QED challenges at present.
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Introduction

It is generally accepted that the famous work of P. Dirac [1] has laid the foundation
of the QED. In this work for the first time has been formulated the Dirac equation
describing the relativistic electron. Instead of the nonrelativistic Schrödinger equa-
tion, with the Hamiltonian given by

HSchr D p2

2me

C Vext.r/ ; (1)

came the Lorenz-invariant Dirac equation with the Hamiltonian

HD D c˛ � p C ˇmec
2 C Vext.r/ : (2)

Here me is the electron’s mass, Vext.r/ is the external field (Coulomb field of the
nucleus for the atomic electron), c is the speed of the light, p is the momentum
operator, and ˛ and ˇ are the Dirac matrices, defined using the 2� 2 unitary matrix
I and � Pauli matrices by the formulas:

˛ D
�
0 �

� 0

�
; (3)

ˇ D
�
I 0

0 �I
�
: (4)

Note that since the complete energy in relativistic theory includes the rest-energy
mec

2, the one-to-one correspondence between Hamiltonians requires additional
term mec

2 in Eq. (1) (or subtraction of this term from Eq. (2)). This term, of course,
just shifts all the energy levels by the constant value without making any physical
changes.

Let us discuss now the physical differences between the nonrelativistic and
relativistic cases. First of all, it is immediately seen from Eqs. (2), (3) and (4)
that the wave function of the relativistic electron has four components. P. Dirac
has found that 4 is the minimal dimension, allowing to write Lorenz-invariant
Hamiltonian for the particle with the spin 1=2„. Second, the Hamiltonian (2) without
any potential or with the spherically symmetric potential VN does not commute
neither with the orbital angular momentum operator L nor with the spin operator
S but only with total momentum operator J D L C S . Physically it means
that even in the spherically symmetric fields, the electron does not have any well
definite values of angular (l) or spin (s) momenta. Only the value of the total
angular momentum j conserves. In spherically symmetric external fields, the wave
function of the state with well-defined total angular momentum j always consists
of two components with opposite parities. One of these components has the orbital
momentum l D j � 1=2 and another has l D j C 1=2. In the nonrelativistic limit,
c !1 remains only one of them. Therefore, the relativistic one-electron states are
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classified as nlj , where n is the principal quantum number, j is the total angular
momentum, and l is the orbital momentum of this state in nonrelativistic limit. Of
course, the four-component wave functions with different angular dependence make
the relativistic calculations much more complicated and time consuming than the
same calculations for the nonrelativistic particle.

However, besides the technical difficulties, the Dirac Hamiltonian brings also
completely new physics in comparison with the nonrelativistic case. Let us consider
the spectra of the eigenvalues of Schrödinger and Dirac Hamiltonians. It is well
known that the spectrum of the former Hamiltonian is limited from below. There
exists the lowest possible value of the energy, which the electron may have.
However, the energies of the Dirac Hamiltonian are not bounded from below. In
the case of the attractive nuclear potential, the energy spectrum contains, like the
spectrum of Schrödinger’s Hamiltonian (1), the discrete levels of bound states
with the energy 0 < " < mec

2 (Strictly speaking, in extremely strong fields this
condition may transform to �mec

2 < " < mec
2. It will be discussed in details

in section “Challenges”.) and the positive-energy continuum spectrum " > mec
2.

However, it also has negative-energy continuum of the states with the energies
" < �mec

2. The existence of negative continuum immediately arises the following
questions:

• What is the physical meaning of the negative-energy states?
• How can the positive-energy states exist? Why do not they decay into negative

continuum with the simultaneous release of energy?

The answers to these questions gives the “Dirac sea” formalism [2, 3]. According
to this formalism, all the negative-continuum states are occupied by electrons. So
spontaneous decay of the positive-energy state into negative continuum is forbidden
by the Pauli principle. However, one can provide to the electron from negative
continuum enough energy (usually > mec

2) to excite it into positive-energy state.
The remaining in the negative-continuum vacancy behaves as the positively charged
particle and was named positron. Sooner or later, this vacancy can be occupied by
a positive-energy particle. The vacancy (positron) and the particle itself (electron)
in this case disappear with release of energy. This process was called annihilation.
In total the discovery of the positron brought to modern physics the concept of
antimatter. Very soon this concept was successfully confirmed by the experimental
observation of positrons [4].

Since that time QED is one of the most successful physical theories. Up to now
no serious discrepancies between the QED predictions and the experimental results
have been found. Based on the first principles of our knowledge about space and
time, QED was chosen as a template for the construction of the theories describing
other types of interactions. In this chapter we are going to provide the reader
with some examples of successful applications of QED to the explanation of the
effects in atoms and molecules. We will also point out the problems that are not yet
solved.
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The chapter is organized as follows. In the next section, we are going to write
about Lamb’s experiment and its explanation, which stimulated the appearance of
QED in its modern form. In section “QED Effects” we provide several examples
of highly accurate QED calculations and their comparison with experiments. We
will show there the importance of QED effects in modern physics. Finally, in
section “Challenges” we will discuss several problems, not yet solved by theory.

The relativistic units („ D me D c D 1) are used throughout the chapter if not
stated otherwise. Sometimes we will leave „, me , and c to make the formulas more
evident, like we did it in Eqs. (1) and (2). For one-electron atomic states, we use the
notation nlj , where n, l , and j denote the principal quantum number, orbital angular
momentum (in nonrelativistic limit), and total angular momentum, respectively.

Lamb Shift

In this section we will discuss the discovery, which forced the development of QED
and led to its formulation in modern form. This discovery has been done by W. Lamb
and R. Retherford and was named after W. Lamb as the “Lamb shift.”

History

Let us start from history. In addition to the existence of antimatter, the Dirac
equation

HD� D "� (5)

with the Hamiltonian (2) and Coulomb field of the nucleus

VN.r/ D �˛Z
r
; (6)

where ˛ � 1=137 and Z is the charge of the nucleus, could explain the difference
between the energy levels with the same principal quantum number n and different
values of the total angular momentum j (so-called fine splitting). Equation (5)
with the Coulomb potential (6) can be solved analytically and yields the following
formula for the energy levels:

"nj D

0B@1C .˛Z/2hp
.j C 1=2/2 � .˛Z/2 C n � j � 1=2

i2
1CA
�1=2

mec
2: (7)

One can see that the energy of the levels with the same values of n and j , for
example, 2s1=2 and 2p1=2, is exactly the same. However, unlike the nonrelativistic
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case, where the energy depends only on the principal quantum number, the
relativistic electron energy is different for the levels with the same n but different j ,
for example, 2p1=2 and 2p3=2. The value of this splitting perfectly coincided with the
experimental measurements known at that time. So approximately during 15 years
after its derivation, the Dirac equation explained all experimental results and there
was no need for changes in the existing theory.

Of course, it does not mean that the theory stopped to develop. Already in that
time, the theoreticians tried to answer the question: is there any physics beyond the
Dirac equation? So, for example, they tried to describe how the electron interacts
with its own field. However, the infinite result of these calculations convinced
them that they were on the wrong way. And there were no experimental results
which could clearly confirm the existence of any physics beyond the Dirac theory.
Although, as we will see later, some of the experiments clearly pointed to this
unknown effects, they were not considered seriously.

WWII paused the development of QED but forced the progress, in particular, in
the development of the microwave technique, which was used for the radiolocation.
It made possible later the experiments which made a breakthrough in physics.
In particular, in 1947 W. Lamb and R. Retherford published the results of their
experiment with the hydrogen atoms, which strongly influenced the development
of QED and finally led to the formulation of QED in its modern form [5]. The
initial idea was to measure the shift between the 2s1=2 and 2p1=2 levels in magnetic
field. As we have just discussed before, the Dirac theory predicts that the energy
of these two levels in pure Coulomb field of the nucleus must be the same. The
former level is metastable, with the lifetime � � 1=7 s. The latter is short living,
with � � 10�9 s. So if one operates with a beam of excited atoms, one can be sure
that initially all atoms are in 2s1=2 states. In their experiment Lamb and Retherford
directed the beam of the excited hydrogen atoms through the region with adjustable
microwave radiation and magnetic field to the detector, which could count only
the excited atoms. The microwave radiation could excite the atom from metastable
2s1=2 to 2p1=2 state. So when the frequency of the microwave radiation is equal to
the energy difference between levels, all the atoms should be first excited in 2p1=2
state and then decay before reaching the detector.

Unexpectedly, Lamb and Retherford found that the energy difference between
2s1=2 and 2p1=2 states does not vanish even without magnetic field. In the absence
of the magnetic field, this difference was equal approximately 1,000 MHz. Later this
difference was called the Lamb shift. Just to demonstrate how tiny this effect is, let
us compare it with the binding energy of the states. As we know, the binding energy
of the hydrogen levels can be approximately expressed in atomic units as 1=.2n2/ D
0:125 a.u. Transferring 1,000 MHz to atomic units, we obtain 1;000MHz� 1:6 �
10�7 a.u., i.e., six orders of magnitude smaller. The smallness of the effect explains
why it was not found before, although some experiments pointed to it. In his Nobel
Lecture in 1955 [6], Lamb noticed that the experiments, performed almost ten years
before his and Retherford’s one by W. Houston [7] and R. Williams [8], “indicated
a discrepancy (between theory and experiment ANA) which should have been taken
seriously.”
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After the publication of Lamb’s results, it became definitively clear that the
theory needed further development. The Lamb shift became the main topic of the
Shelter Island Conference in 1947. Most theoreticians came to the conclusion that
the origin of the Lamb shift was in the interaction of the electron with its own field,
known also as “self-energy.” However, the theory provided for this correction an
infinite result. It was Bethe who first demonstrated how one should perform the
renormalization procedure and what the physical meaning of this procedure is. In
his work [9] he found a simple and clear way to perform the mass renormalization.
The detailed procedure of renormalization is described in the corresponding chapter
of this book. So here we will just emphasize its main features.

Using the nonrelativistic theory of radiation, Bethe has written the formula for
the energy shift of the electron due to emission and reabsorption of the photon
(self-energy). Then he noticed that the energy shift already contains the change
of the electron kinetic energy “due to the fact that electromagnetic mass is added
to the mass of the electron. This electromagnetic mass is already contained in the
experimental electron mass; the contribution (3) (corresponding to the change of
the mass ANA) to the energy should therefore be disregarded” [9]. In this phrase
Bethe formulated the main physical idea of the renormalization procedure. The
physical constants, like the electron mass or charge, may contain in their theoretical
description infinite integrals. However, the theory must use the “pure” values of
these constants, i.e., subtract the contribution of the infinities, already taken into
account. In particular, in his work [9] Bethe subtracted from the expression for the
energy shift due to self-energy the expression corresponding to the infinite change
of the electromagnetic mass of the electron. Due to this subtraction, the initially

linearly divergent (with respect to the upper limit) integral �
KR
0

dk converted to

the logarithmically divergent one, �
KR
0

dk=k. Then Bethe supposed that the upper

limit K must be large enough and that the fully relativistic treatment will provide
convergent result. He has chosen the upper limit K D mec

2 as the most natural for
the nonrelativistic case and obtained 1,040 MHz for the Lamb shift between 2s1=2
and 2p1=2 levels. One year later T. Welton [10] gave a qualitative description of the
electron self-energy, explaining it by the fluctuations of the field, felt by the electron,
and arrived to the same result as Bethe for the nonrelativistic case.

After publication of Bethe’s results, many people were involved in relativistic
self-energy calculations. However, due to the large number of ambiguities in the
procedure, their calculations led to different results. So in the end of 1947, V.
Weisskopf wrote to J. Oppenheimer [11] “I am somewhat doubtful that this problem
can be solved, and I think it is a limit in principle of the theory.” However, in
1949 this work has been done. First N. Kroll and W. Lamb [12] found the fully
relativistic Lamb shift to be equal to 1,052 MHz, which was very close to Bethe’s
1,040 MHz. Then S. Tomonaga et al. [13] calculated all the effects of the same order
of magnitude and obtained the formula for the Lamb shift of the level with principal
quantum number n, orbital momentum l , and total angular momentum j :
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(8)

Here Lnl are integrals of the wave function with the proper operators. For example,
for the hydrogen L20 D 7:03 and L21 D 0:03, which yields for the Lamb shift

�E2s1=2 ��E2p1=2 D 1;051 MHz : (9)

In this result is also included the shift of the levels due to the deformation of
the Coulomb field of the nucleus by the perturbed electron-positron field, the so-
called vacuum polarization correction. This correction in the lowest order in .˛Z/
was first evaluated by E. Uehling in [14] within the frameworks of the Dirac theory.
The nature of this contribution can be easily understood, if one considers the charge
density induced by the solutions of the Dirac equation:

�.r/ D e

2

24X
"n<0

j n.r/j2 �
X
"n>0

j n.r/j2
35 : (10)

Here  n are the eigenfunctions of the Dirac Hamiltonian with the energies "n. In the
absence of the external field, the solutions of Dirac equation are exactly symmetric.
One can see it from the fact that the change of the energy sign in the Dirac equation
for the free electron

.˛ � p C ˇ/ n D "n n (11)

is equivalent to the simultaneous sign change of the momentum and interchange
of two upper components with two lower. So the probability density, generated
by the electron and the positron solutions is exactly the same, and the sums in
Eq. (10) cancel each other. In the presence of the external field, this symmetry
disappears. The positive-energy (electron) states are attracted to the nucleus, and the
discrete spectrum appears. On the contrary, the negative-energy states (positrons)
are repelled from the nucleus. It leads to an induced charge density, which generates
the shift of the energy levels from the predictions of the Dirac theory. Usually,
this effect is smaller than the self-energy correction. So in the case of hydrogen,
it makes a 2.3 % contribution to the total Lamb shift. However, with the increase of
the nuclear charge, the vacuum polarization correction grows faster than the self-
energy one and becomes comparable with the latter for a nuclear charge close to
Z D 100.

The understanding and explanation of the Lamb shift was one of the greatest
triumphs of QED. The further intensive development of the theory led to the
final formulation of QED in its modern form to the end of the 50th of the
twentieth century. In the next section, we will provide some examples of successful
application of QED predictions. However we would like to make a first brief
description of QED effects from the point of view of modern theory.
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Modern Explanation

Modern QED for bound particles is a perturbative theory, based on the Wick’s
expansion of the S-matrix or Green function (depending on the approach used) in
powers of the fine-structure constant ˛ � 1=137. Each term of the perturbative
expansion in ˛ can be conveniently depicted by the corresponding Feynman diagram
[15]. The exact rules, allowing to write the calculation formula for the given
diagram, may depend on the approach used for the derivation. However, as a general
rule, each diagram consists of external and internal lines. External lines denote
the real incoming or outgoing particle, described by wave functions. Internal lines
correspond to virtual particles, described by propagators. The four momentums at
each vertex of the diagram must be conserved. Each vertex implies four-dimensional
time-space (or energy-momentum) integration with the proper factors. Each closed
loop implies the integration over the energy circulating inside the loop. In general,
the Feynman diagram technique allows to visualize the complicated processes and
essentially simplifies the calculation formula derivation.

In what follows, we will use straight double lines for the electrons moving in the
external field of the nucleus and wavy lines for the photons. So the Lamb shift in
hydrogen, discussed in the previous subsection, can be represented by the diagrams
shown in Fig. 1. The diagram shown in Fig. 1a is known as the self-energy (SE) and
the diagram (b) as vacuum polarization (VP).

Before proceeding further, let us define the main difference between the low-
Z and middle- and high-Z atoms. In natural (a.k.a. relativistic) units, the Dirac
Hamiltonian of the free electron does not contain any constant. It is just HD D
˛�pCˇ. All terms are proportional to 1. The Coulomb potential of the nucleus enters
here as VC D �˛Z=r , i.e., multiplied by .˛Z/. For low-Z atoms this constant is
small and serves allows to perform a additional perturbative expansion in powers of
.˛Z/. Unlike low-Z case, for higherZ 
 20, this parameter is no longer small, e.g.,
for uranium ˛Z � 0:7 and all calculations must be performed without additional
.˛Z/ expansion.

Historically, the Lamb shift was discovered and calculated first for the hydrogen
atom. In that time only the order-by-order evaluation in powers of .˛Z/ was
possible. Equation (8) represents the almost exact result for hydrogen but cannot
provide accurate result for the case of hydrogen-like ion of, e.g., uranium (Z = 92).
The all-order in .˛Z/ calculation of these diagrams became possible only with

Fig. 1 Self-energy and
vacuum polarization diagrams

(a) (b)
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 2 Second-order one-electron diagrams

the development of computers. While the lowest order in .˛Z/ (Eq. 8) was known
already in 1949, the first attempt of a complete evaluation of the SE correction for
the high-Z case was performed by A. Desiderio and W. Johnson in [16]. The first
precise evaluation of this correction was done by P. Mohr in [17,18]. The completion
of .˛Z/ evaluation of the VP correction took another 15 years and was done by G.
Soff and P. Mohr in 1988 [19] and independently by N. Manakov et al. in 1989
[20].

While the two diagrams shown in Fig. 1 almost completely define the Lamb shift
in hydrogen, in the case of highly charged ions, other corrections are required.
In the case of one-electron ions, in the second order of perturbation theory arise
the diagrams shown in Fig. 2.

The calculation of this set of diagram to all orders in .˛Z/ is not finished yet.
The contribution of the diagrams (h) and (i) is known only in the lowest order and
define nowadays the accuracy of the theoretical prediction for the low-lying energy
levels of high-Z atoms and ions. The recent progress in this field has been done by
V. Yerokhin and V. Shabaev [21]. The authors evaluated the entire set of two-loop
self-energy diagrams (a), (e), and (f).

In the case of several electrons, besides the one-electron diagrams already
discussed shown in Figs. 1 and 2, diagrams, including two and more electrons
become possible. The first and second orders of these diagrams are shown in Fig. 3.
In the first order, in ˛ there exists only one diagram of one-photon exchange.
This diagram describes the exchange by the single virtual photon between two
electrons and is shown in Fig. 3a. In the chapter devoted to the effective QED
Hamiltonian, it is shown that the Dirac-Coulomb-Breit Hamiltonian, frequently
used in many-electron calculations, can be derived from the first principles of QED.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Two- and three-electron diagrams

To this end one should consider the one-electron Dirac Hamiltonian (2) and the one-
photon exchange diagram, taken in the Coulomb gauge and evaluated in the Breit
approximation, i.e., neglecting the energy dependence of the photon propagator
(retardation effect) and the contribution of the negative-energy continuum. For the
details see the chapter �Chap. 7, “Effective QED Hamiltonian” and the original
work by V. Shabaev [22].

In the next order of the perturbation theory arise the diagrams describing the
exchange by two virtual photons (diagrams Fig. 3b, c, and for more than 2 electrons
(d)) as well as the screened SE ((e) and (f)) and VP ((g) and (h)). While the
diagrams (b)–(d) within the Breit approximation are automatically included in
the many-electron calculations using the Dirac-Coulomb-Breit Hamiltonian, the
contributions of the negative-energy continuum as well as the retardation effect
to these diagrams can be evaluated only within the rigorous QED approach. For
example, the contribution of the diagram shown in Fig. 3c vanishes within the Breit
approximation. It becomes nonzero only when the retardation effect and the negative
continuum are taken into account. Of course, the screened QED corrections (e)–(h)
can be evaluated only within the rigorous QED approach.

Nowadays the evaluation of the diagrams shown in Fig. 3 is completed for all
low-lying states of He- and Li-like ions, ground state of Be-like ions, and several
states of B-like ions in wide range of nuclear charge 10 	 Z 	 100 [23–31].
However, the larger is the electron number, the larger number of diagrams arises and
the higher order of perturbation theory is required in order to reach high precision.
So the application of the rigorous QED approach is restricted by the number of
electrons. Otherwise it is necessary to combine the advantages of many-electron
approach with those of QED approach in order to reach high precision of theoretical
predictions. See more in the �Chap. 7, “Effective QED Hamiltonians”.

http://dx.doi.org/10.1007/978-3-642-40766-6_27
http://dx.doi.org/10.1007/978-3-642-40766-6_27
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To finish the section devoted to the Lamb shift, we would like to mention that
historically Lamb shift was discovered for the atoms of hydrogen, where it is almost
completely defined by the contribution of one-loop SE diagram, shown in Fig. 1a.
With the development of the theory, it became clear that there are other effects
contributing to the Lamb shift even in hydrogen. So now it is common to call as
“Lamb shift” the difference between the exact energy of the level and the eigenvalue
of the Dirac Hamiltonian (2), calculated using Eq. (7) for the one-electron case, or
the Dirac-Coulomb-Breit Hamiltonian for the many-electron case. Besides already
discussed QED contributions, Lamb shift contains also the contribution due to the
nuclear recoil effect, nuclear polarization effect, and the deviation of the nuclear
field from the pure Coulomb one because of the finite nuclear size. In the next
section, we will provide some examples of the Lamb shift calculations and their
comparison with the experiment.

QED Effects

Energy Levels

In this section we are going to provide several examples of successful application of
QED theory. We start these examples from the QED evaluation of the energy levels
of highly charged ions (HCI). As we have already discussed in the previous section
(see Eq. 8), with the increase of the nuclear charge, the QED effects are growing as
.˛Z/4, while the binding energy just as .˛Z/2. Hence the larger the nuclear charge
Z is, the more pronounced the QED effects should be.

The high-precision experiments with HCI became possible in the last decades
of the twentieth century. These measurements gave next impact to the theory
development. In particular, new methods of all-order in .˛Z/ were created. The
comparison of the theoretical predictions with the experiment provided new tests of
QED in the region of extremely strong electric fields.

In the previous section, we have already discussed the Lamb shift in the hydrogen
atom. Let us now consider the Lamb shift of the hydrogen-like ion of uranium. The
various contributions to this Lamb shift are presented in the Table 1. The numbers
in the parentheses denote the uncertainty of the last digits. For the comparison, we
remind here that the ground state binding energy for the point-like nucleus can be
evaluated by the simplified formula (7)

"1s D mec
2
p
1 � .˛Z/2 ; (12)

"
binding
1s D mec

2 � "1s ; (13)

and is equal 132,279.92(1) eV for uranium, with the uncertainty ˙0:01 eV due to
the value of the fine-structure constant ˛.

From Table 1 one can see that the Lamb shift of the ground state in hydrogen-
like uranium makes � 0:35% of the binding energy (compared with 0:0001%
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Table 1 Individual
contributions to the Lamb
shift in hydrogen-like
uranium (in eV)

Contribution Value Reference

Finite nuclear size 198.54(19) [32]

First-order QED 266.45 [33]

Second-order QED 1.26(33) [34]

Nuclear recoil 0.46 [35]

Nuclear polarization 0.20(10) [36, 37]

Total lamb shift theory 463.99(39)

Experiment 460.2(4.6) [38]

Table 2 Individual contributions to the Lamb shift of the 2p1=2 ! 2s1=2 transition energy in
Li-like uranium (in eV)

Contribution Value Reference

Finite nuclear size �33:30.3/ [32]

One-photon exchange 368:83 [32]

One-electron first-order QED �42:93 [33]

Two-photon exchange within Breit approximation �13:54 [27]

Two-photon exchange beyond Breit approximation 0:17 [27]

Screened QED 1:16 [25, 26]

One-electron second-order QED 0:22.6/ [39]

Three and more photon effects 0:14.7/ [32]

Nuclear recoil �0:07 [35]

Nuclear polarization 0:03.1/ [36, 37]

Total Lamb shift theory 280:71.10/

Experiment 280:645.15/ [40]

Experiment 280:59.10/ [41]

Experiment 280:52.10/ [42]

for hydrogen). One can also notice that the main uncertainty of the theoretical
prediction arises from uncalculated contributions of the second order in ˛ shown
in Fig. 2. The calculation of each second-order diagram can be considered as a
separate very complicated problem and is, of course, one of the challenges to the
modern QED theory. To the knowledge of the author, there has not yet been made
any attempt to complete the calculations of the second-order contribution. On the
other hand, these calculations are not so urgently needed at the moment, since the
experimental precision is one order of magnitude worse than the theoretical one.

The situation with the experimental accuracy changes, if one considers the
2p1=2 ! 2s1=2 or 2p3=2 ! 2s1=2 transitions in Li-like ions. In this case
the experimental accuracy reaches 0.015 eV and provides a possibility for very
accurate tests of QED. As an example we provide here the table for the individual
contributions to the 2p1=2 ! 2s1=2 transition in Li-like uranium.

As one can see from Table 2, the main theoretical uncertainty in this case
arises from two sources. Besides the uncalculated contributions of one-electron
second-order diagrams, one should also consider the three and more photon
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effects. These effects can be taken into account nowadays only within the Breit
approximation. As a result the total theoretical uncertainty in the case of Li-like
uranium is almost one order of magnitude higher than the experimental one. In total
the comparison of theoretical predictions with experimental results allows to test
QED on a 0.2 % level to the first order in ˛ and on a 6.5 % level to the second order
in ˛. We note here again that only the highly charged nuclei allow to test QED in
non-perturbative regime in .˛Z/.

g-Factor

In the previous subsection, we have discussed the QED corrections to the energy
levels of the few-electron ions. The evaluation of these corrections and their
comparison with the experiment allow to test QED theory with very high accuracy.
In this subsection we provide an example of the successful use of QED predictions
for the accurate determination of the electron rest mass using precise measurements
of the bound electron g-factor.

By definition, g-factor connects the magnetic moment operator of an electron �

with its total angular momentum J :

g D �hjamaj�zjjamai
�Bma

; (14)

where �B D e„
2me

is the Bohr magneton, �z is the z�projection of the electron
magnetic moment operator �, and ja and ma denote total electron angular moment
and its projection. The Dirac theory gives for the g-factor the value

g D 2

3

�
1C 2"a

me

�
; (15)

where "a is the Dirac energy of the electron (7). Other corrections should be
calculated by means of QED. Theoretically various contributions to the g-factor
can be calculated using their relations to the corresponding energy shifts, caused by
the interaction with the homogeneous magnetic field B directed along the z�axis:

�E D �g�0Bma : (16)

The typical diagrams, which have to be calculated for the accurate evaluation of
the matrix element in Eq. (14), are shown in Fig. 4. The wavy line ending with the
triangle designates there the interaction with the external magnetic field.

In 2000 the results of the measurements of the g-factor in H-like ion of carbon
by Häffner et al. were published [43]. The experimentalists could store a single ion
12C 5C in the trap in the magnetic field and keep it there almost infinitely long.
By measuring the relation between the cyclotron �c and Larmor precession �L
frequencies, they could deduce the value for the bound electron g-factor using the
formula
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Fig. 4 Typical diagrams needed for the accurate evaluation of the g-factor

Table 3 Individual contributions to the g-factor in 12C 5C and 16O7C

Contribution 12C 5C 16O7C Reference

Dirac value 1.99872135439(1) 1.99772600306(2)

Finite nuclear size 0.00000000041 0.00000000155(1)

One-loop QED .˛Z/0 0.00232281947(1) 0.00232281947(1)

.˛Z/2 0.00000074216 0.00000131940 [47]

.˛Z/4 0.00000009342 0.00000024007 [52]

h.o.,SE 0.00000000828 0.00000003443(1) [51]

h.o.,VP-EL 0.00000000056 0.00000000224 [48]

h.o.,VP-ML 0.00000000004 0.00000000016 [54]

	two-loop QED .˛Z/0 0.00000351510 0.00000351510 [56]

.˛Z/2 0.00000000112 0.00000000200 [47]

.˛Z/4 0.00000000006 0.00000000008 [55]

h.o. 0.00000000000(3) 0.00000000000(11) [55]

Recoil me=M 0.00000008770 0.00000011707 [50]

h.o. 0.00000000008 0.00000000010 [49]

Total theory 2.00104159018(3) 2.00004702032(11)

Experiment 2.001041596(5) [43]

Experiment 2.0000470254(15)(44) [44]

g D 2�L
�c

Q

e

me

M
; (17)

where Q and M are the charge and the mass of the ion, respectively. In the
experiment [43] the frequency relation has been measured with the relative accuracy
better than 10�9. Later the highly accurate measurements have been also performed
for the hydrogen-like ions 16O7C [44] and 28Si13C [45].

Already after the first experiment, it became clear [46] that it provides not only
the precise test of the magnetic sector of QED but also gives a wonderful possibility
to improve the known accuracy of the electron mass. If the matrix element in
Eq. (14) is evaluated with high enough accuracy, one can invert Eq. (17) in order
to evaluate me instead of g, because me in this case has the worst relative accuracy.

The evaluation of various contributions to the matrix element in the Eq. (14) has
been performed by many authors [47–54] and finished by K. Pachucki et al. [55].
The individual contributions to the g-factor of bound electron in the hydrogen-like
ions of carbon and oxygen are shown in Table 3.
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As follows from the table, the calculations were performed using additional
perturbation expansion over the powers of .˛Z/ for the QED corrections, which
is of course possible for the values of nuclear charge less than 10. The “h.o.” in
the table denotes “higher orders” (in .˛Z/ for QED and in me=M for the recoil
corrections, respectively). The recoil contribution corresponds to the fact that the
nucleus has the finite mass and is of course in the lowest order proportional to the
mass relation me=M .

Comparing the theoretical and experimental results, one can deduce from
Eq. (17) the most accurate values of the electron mass. So the experiments with
carbon and oxygen provide the following values for the electron mass in atomic
mass units (1/12 of the 12C mass):

mC5C
e D 0:00054857990932.29/

mO7C
e D 0:00054857990960.41/ :

Recently the experiment with the hydrogen-like carbon has been repeated and
the accuracy was improved by an order of magnitude [57]. From this experiment
even more precise value of the electron mass was deduced:

mC5C
e D 0:000548579909067.14/.9/.2/ ;

where the first two errors are the statistical and systematic uncertainties of the
measurement and the third one represents the theoretical uncertainty.

The g-factor investigations may provide not only the ways for the electron mass
determination. The measurements of the g-factor in the high-Z ions may serve as a
tool for the accurate determination of the fine-structure constant ˛. This possibility
is based on the fact that the relative accuracy of ˛ determination is proportional
to the corresponding accuracy of g-factor and inversely proportional to the squared
nuclear charge Z:

ı˛

˛
� 1

.˛Z/2
ıg

g
: (18)

In turn the accurate determination of ˛ may answer to one of the fundamental
questions of modern physics: does the space or time variation of the fundamental
constants really exist? Nowadays scientists are looking for the answer to this
question mostly in astrophysical observations. For more information about the
perspectives of the g-factor investigations, we refer to the work of V. Shabaev
et al. [58] and references therein.

In this section we have provided several examples of successful QED effect
evaluation and their applications in modern physics. We hope that the reader
obtained an impression about the QED effects and their magnitude and importance
for modern physics. In the next section, we will tell about the challenges faced by
the modern QED theory.
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Challenges

In this section we are going to discuss the challenges to the modern QED theory. It is
convenient to separate the problems, which in principle can be explained within the
existing approaches but require either enormous computational resources or long
formula derivation, from the problem, requiring the creation of completely new
approaches. Let us call the former group as the “technical challenges” and the latter
as the “conceptual challenges” and briefly discuss both groups. Of course, these two
groups are closely mixed, so it is sometimes difficult to declare the exact border.

For the “technical challenges,” let us ascribe first of all the calculations of
the next orders of QED corrections, especially for the experiments, where they
are really needed already now. As an example let us consider Table 2. From
this table it is clear that in order to make accurate comparison of the theoretical
prediction with the best experimental results, one has to complete the evaluation
of the two-loop one-electron diagrams (see Fig. 2) to all orders in .˛Z/ and to
evaluate at least the three-photon exchange diagrams within the rigorous framework
of QED. These calculations will reduce the uncertainty of the theoretical result at
least by one order of magnitude and make it comparable with the experimental
precision.

The need for next-order correction calculations is even much stronger pro-
nounced for the case of dipole-forbidden 2p3=2 ! 2p1=2 transition in Be- and B-like
ions of argon. The experimental precision of the determination of these energies is
[59,60] 5�10�7 and 4�10�7 for Be- and B-like ions, respectively. The best to date
QED calculations [61] provide the relative accuracy 1:5�10�4 for the B-like argon.
These experiments potentially may allow to test the third and fourth orders of the
perturbation theory in ˛. However, as it has been already several times pointed out
here, even the calculations of the second order in ˛ corrections are not yet finished.

Another challenge, which can also be treated as rather technical, although par-
tially conceptual, consists in the development of the methods for QED calculations
in many-electron systems, like heavy neutral atoms. As one can notice, all the
successful calculations, which we have already discussed, have been performed for
the systems with the number of the electrons Ne 	 5. Of course, theoretically one
can try to apply the existing approaches to the many-electron systems. However,
in this case the number of diagrams grows drastically, which makes almost
impossible the application of the existing methods to the systems with number
of electrons greater than 10. The possible solutions of this problem are discussed
in the �Chap. 7, “Effective QED Hamiltonians” of this book. The effective QED
Hamiltonians, taking into account the QED effects in the lowest orders, are already
constructed (see, e.g., Ref. [62]). Now the challenge is the improvement of their
accuracy, inclusion of next orders of QED, and enhancement of the case of several
Coulomb centers (molecules). The latter task looks the most difficult, because up to
now the QED calculations in molecules have been performed only in the simplest
case ofH2 andD2 andHD molecules using .˛Z/ expansion (see, e.g., [63]). There
is still no technique for the molecular QED calculations in all orders in .˛Z/.

http://dx.doi.org/10.1007/978-3-642-40766-6_27
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Extremely Strong Fields

To the author’s opinion, the problems, discussed above, will be solved or at least
can be solved within the next decade. Now we would like to discuss one challenge,
which is rather conceptual – the QED in the extremely strong fields. Let us start
from formula (7) for the energy levels of the electron in the field of the point-like
nucleus with the charge Z. It is evident that this formula can be applied for all
values of nuclear charge Z 	 jC1=2

˛
. So for the states with total angular momentum

j D 1=2, the formula is limited by Z D 137. For larger Z the expression under the
square root in the denominator becomes negative and the energy gets the imaginary
part. This problem can be overcome, if one uses the finite (not point-like) nucleus
charge distribution. In this case the energy stays real, but at some critical value of the
charge Zcr, the energy of the ground state reaches the negative-energy continuum
and dives into it.

W. Pieper and W. Greiner [64] were the first to perform calculations with the
simple model of the nuclear charge distribution. They found that the critical value
of the charge is Z D 173. Around this value of the charge, the energy of the
ground state reaches the value �mec

2, and further increment of the charge leads
to the diving of this state into the negative-energy continuum. As we have already
discussed above, all negative-continuum states in the “Dirac sea” are occupied. If we
consider the ion or atom with the vacancy in the state, which sank in the negative-
energy continuum, this vacancy can be occupied by an electron from the “Dirac sea.”
Physically it means the spontaneous pair creation, or in the other words instability
of the electron-positron vacuum.

Unfortunately, the possibility for the experimental creation of stable critical field
sources does not exist. The heaviest nuclei available for the synthesis now and in
the nearest future have the charge far away from the critical one. The only way to
create critical fields for a short time is the collision of two ions with the total charge
exceeding the critical one. For example, two uranium nuclei have the total charge
ZU2 D 184 > Zcr. The energy of the collision should be chosen in such a way
that the ions come close to each other but do not collide. It is said that for a short
time the two colliding nuclei create the quasi-molecule. The energy levels of this
quasi-molecule can reach the negative continuum and dive into it.

First estimations of the energy levels of two colliding ions were performed
by G. Soff et al. [65]. They have found that at the critical internuclear distance
Dcr D 35 fm, the ground state of the quasi-molecule U 183C

2 reaches the border
of the negative continuum. The calculations were performed within the monopole
approximation, i.e., the total potential, created by two nuclei, was restricted to its
spherically symmetric part. Later this value was improved by two independent
calculations [66, 67]. The calculations with the full two-center potential yield for
the critical internuclear distance the value Dcr D 34:72 fm.

After the publication of the work by Pieper and Greiner [64], the idea to observe
the spontaneous vacuum decay became very popular. Plenty of investigations,
both theoretical and experimental, were devoted to this problem. See Ref. [68]
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and references therein for the review. Unfortunately, the experimental facilities
nowadays allow only the experiments by bombarding the foil consisting of the heavy
metal by the beam of the ions. In this case the target atoms have all the electrons, and
the exact solution of the collisional problem within the framework of the existing
theories is impossible. The best available approximation in this case is the single
active electron approximation, where the effect of all but one electron is replaced by
the effective screening potential. While this approximation works relatively good for
the description of the K-shell vacancies production or the emitted electron spectrum,
it fails if one tries to describe the positron production. At the future experimental
Facility for Antiproton and Ion Research (FAIR) [69], which will be built soon
in Darmstadt (Germany), new-generation experiments will become possible. The
“dream system” consisting of colliding U 92C and U 91C ions with total kinetic
energy between 5 and 6 MeV/u will be available for the experiment. This system
contains just one electron, so the inter-electronic interaction will not mask any
effects or complicate the theoretical calculations. On the other hand, the presence
of the electron will provide information about quasi-molecule formation (via the
photon emission due to the excitations and de-excitations). Let us now consider
what kind of problem may face the theory trying to describe this process.

Since the relative velocity of the nuclei is at least one order of magnitude
smaller than the average speed of bound electron, we are going to use the Born-
Oppenheimer approximation. Within this approximation the nuclei move along the
classical trajectories and the electron moves in their field. To the lowest order
the description of the process requires the solution of the time-dependent Dirac
equation, with the two-center potential V2C which is the sum of the potentials
generated by both nuclei when they are in the positions R1;2.t/:

i P .rI t / D .˛ � p C ˇ C V2C .rIR1.t/;R2.t/// .rI t / : (19)

The effective algorithms for the solutions of this equation have been recently
elaborated [66, 70]. Using these algorithms one can investigate the processes where
only the electrons are involved, like excitation and de-excitation, ionization, or
charge transfer. Moreover, in Ref. [71] the algorithm was applied for the calculation
of the charge transfer probabilities and K-shell vacancies production in the collisions
of the bare ions with the neutral target (in single active electron approximation) and
the reasonable agreement with the available experimental data was achieved.

However, as soon as it is necessary to evaluate the pair creation probability in
the super critical fields, the existing methods must be reconsidered. It is well known
that unlike the nonrelativistic Schrödinger equation, the Dirac equation can describe
only a single particle. If one uses the concept of the Dirac sea, where all negative-
energy states are initially occupied, it is not clear how to solve in this case the Dirac
equation and if it will provide the physical results. On the other hand, being the
perturbation theory, the QED requires some zeroth-order approximation. The main
question is what to select as this zeroth approximation if the Dirac equation does
not fit to this aim.
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Table 4 First-order QED corrections to the ground state energy of U 183C
2 quasi-molecule as a

function of the internuclear distance D. Preliminary results

D [fm] Eb �ESE �EVP �EQED

40 1:9030 0:01341 �0:00941 0:00400

80 1:4968 0:00782 �0:00404 0:00378

100 1:3884 0:00654 �0:00307 0:00347

160 1:1839 0:00437 �0:00171 0:00266

200 1:0954 0:00358 �0:00128 0:00229

500 0:7715 0:00144 �0:00040 0:00104

1,000 0:5641 0:000701 �0:000178 0:000523

The next interesting question arises if one starts to consider the QED corrections
in the critical fields. Taking into account the scaling of the QED corrections to
the energy levels in leading order as ˛.˛Z/4 and the fact that the overall sign of
this correction is positive, one may expect that this correction will grow very fast
and prevent the ground state from diving into the negative continuum. However,
very soon the first preliminary estimations of the QED effects for the hypothetical
superheavy nucleus with the charge Z D 170 [19, 72–74] demonstrated that the
QED corrections in this case represent less than 1 % of the total binding energy and
hence cannot prevent the diving of the ground state into the negative continuum. Our
new calculations [75] performed for the U 183C

2 quasi-molecule demonstrate (see
Table 4) that although the total QED correction grows very fast with the decreasing
of the internuclear distance D, this contribution remains to be less than 1 % of the
total binding energy Eb and hence can only reduce the critical internuclear distance
but cannot prevent the diving into the negative continuum.

On the other hand, all the QED correction calculations are based on the
assumption that the level (or the group of levels) is isolated. When the level reaches
the border of the negative-energy continuum and moreover dives into it, there is no
warranty that the existing approaches provide reasonable results.

In total the QED of the supercritical fields states a lot of problems, of both
technical and conceptual character, which should be solved within the next decade.

Summary

In summary, in this chapter we have provided a brief overview of the QED effects
and their importance for modern physics. We have demonstrated various examples
of the successful confirmation of the QED predictions by the experiment. Finally
we have highlighted the challenges faced by the theory in modern time. We hope
that the chapter will help the readers to become better informed about the modern
state of QED.
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Abstract

An effective QED Hamiltonian on the one hand should account for the QED
corrections and on the other hand should be constructed in such a way that
many-electron self-consistent calculations with this Hamiltonian remain to be
efficient. In this chapter various approaches to the construction of the effective
QED Hamiltonian are discussed. Finally, the scheme for the construction of
the Hamiltonian which takes into account the lowest- order QED corrections is
provided.
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Introduction

The constantly increasing power of computers allows one to perform the more and
more accurate calculations of many-electron systems. Traditionally, the relativistic
calculations in many-electron systems are based on the self-consistent solution
of the Dirac-Coulomb-Breit (DCB) equation. Modern computers allow to solve
this equation with accuracy, comparable with (or better than) the quantum elec-
trodynamic (QED) corrections’ contribution. Moreover, modern experiments often
require the exact knowledge of QED corrections. Just as an example of such
experiments, one can consider the measurements of parity nonconservation in
neutral cesium [1, 2]. Only accurate calculation of QED contributions could reduce
the disagreement between the theoretical predictions and the experimental results
from 2.5
 to 1.1
 , where 
 is the standard deviation.

Several methods are available to perform the fast, accurate, and effective solution
of the DCB equation. Among them one can distinguish the multi-configurational
Dirac-Fock (MCDF) method, the relativistic configuration-interaction (CI) method,
and the relativistic many-body perturbation (RMBPT) theory [3–13]. Using these
methods on modern computers, one can solve the DCB equation very precisely.
However, as soon as the accuracy on the level of QED corrections is reached, there
is no sense in its further improvement, before the QED corrections are taken into
account.

In turn, the QED of bound electrons is a perturbative theory. The ab initio calcu-
lation of the QED corrections represents a separate very complicated computational
problem. The calculations of the QED corrections to the energy levels of the bound
electrons are nowadays completed only up to the second order of the perturbation
theory in the fine-structure constant ˛. So the accurate ab initio calculations of
many-electron systems, where the accounting for the electron-electron correlations
requires much higher orders of the perturbation theory, within the rigorous QED
approach become impossible.

Concluding from mentioned above, in order to perform high-precision calcula-
tions in many-electron systems, one needs to invent the way to combine the methods
for the solution of the DCB equation, allowing to account for the most part of the
electron-electron correlations, with the rigorous QED approach, which allows to
evaluate the QED effects. Theoretically, the simplest way to combine these two
methods was found in Ref. [14], where the DCB Hamiltonian has been derived
within the rigorous QED approach and the additional term to the Hamiltonian,
which takes into account the QED effects in the lowest order, has been found.
However, due to the absence of the effective computational algorithms for all QED
effects, the direct implementation of this method to the self-consistent procedure of
the DCB equation solution is impossible. The evaluation of the QED corrections in
this case will be necessary to perform at each step of self-consistent procedure.
It will dramatically increase the computational time and make the calculations
unrealizable.
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Before discussing the effective QED Hamiltonian, we would like to mention
another method which allows to combine the accurate solution of the DCB equation
with the QED corrections. According to this approach, one should perform the
many-electron calculations with the DCB Hamiltonian without any QED effects,
representing the DCB Hamiltonian in the form

HDCB D H0 C �#V ; (1)

where H0 is the unperturbed Hamiltonian, which can be used in the rigorous QED
calculations as well, the perturbation #V describes the interelectronic interaction,
and � is an arbitrary parameter. For � D 1 the Hamiltonian (1) coincides with
the exact one. In order to improve the convergence of the perturbation series,
H0 may contain some effective screening potential, partially accounting for the
screening effects. In this case #V should contain the corresponding counterterm.
The calculations should be performed for several values of the parameter �, and
the result of the calculations should be then represented as the series in powers of
this parameter. After that the few first terms of this expansion should be replaced
by the same terms, calculated within the rigorous QED approach. This method has
been used in Refs. [15, 16] in order to evaluate the 2p3=2 ! 2p1=2 transition energy
in five-electron ions. It allows to include the QED corrections order by order in
rigorous way. However, the computational time needed to evaluate these corrections
grows very fast with the increment of the electron’s number. Moreover, the larger
is the electron number, the higher orders of perturbation theory in #V become
necessary to reach the same relative accuracy. It makes this method not applicable
for the systems with large number of electrons.

For the case of the large electron number, one should better try to include into the
initial DCB Hamiltonian the terms describing the QED corrections, at least approx-
imately, and then to perform the self-consistent calculations. Unfortunately, it is not
so easy to do due to the nonlocal nature of some of the QED corrections. There exist
plenty of attempts to write some additional terms to the DCB Hamiltonian, which
allow to take into account the QED effects and do not affect the efficiency of the
self-consistent procedure. In this chapter we will discuss some of these approaches
and describe the way for the construction of the effective QED Hamiltonian.

The chapter is organized as follows: in the next section, we remind the reader
the form of the DCB Hamiltonian and diagrams for the QED corrections. In sec-
tion “First-Order QED Corrections” the first-order QED corrections are discussed
in detail. It is shown which part of QED corrections can be easily combined with
the DCB Hamiltonian. The first attempts to account for all QED corrections are also
described in this section. In section “Systematic Approach” the systematic approach
to the construction of the effective QED Hamiltonian is discussed. Finally, in the last
section, we will briefly discuss the QED effects, which are up to now beyond the
effective Hamiltonian approach.

The relativistic units („ D me D c D 1) are used throughout the chapter.
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Dirac-Coulomb-Breit Equation and QED Corrections

As it has been already noticed in the Introduction, the good starting point for the
relativistic many-electron calculations is the Dirac-Coulomb-Breit equation:

OHDCB� D E�; (2)

OHDCB D �.C/
0@X

i

hDi C
X
i<j

Vij

1A�.C/: (3)

Here the summation is performed over all occupied electron states, �.C/ is the
projector on the positive energy states, hD is one-electron Dirac Hamiltonian, and
V is the interelectronic interaction operator:

hD D ˛ � pC ˇ C VN.r/ ; (4)

Vij D ˛

rij
� ˛

�
˛i � ˛j
rij

C 1

2
.r i � ˛i /.r j � ˛j /rij

�
: (5)

In this equation

˛ D
�
0 �

� 0

�
(6)

� is the vector, composed of Pauli matrices,

ˇ D

0BB@
1 0 0 0

0 1 0 0

0 0 �1 0
0 0 0 �1

1CCA ; (7)

VN.r/ is the nuclear potential, and ˛ � 1=137 is the fine-structure constant.
It is mentioned in the Introduction that this equation can be self-consistently

solved by means of the relativistic configuration-interaction (CI) method, multi-
configurational Dirac-Fock (MCDF) method, or relativistic many-body perturbation
theory (RMBPT). In section “Systematic Approach” it will be shown that the
Hamiltonian (3) can be derived from the first principles of QED, using the exact
formula for the one-photon exchange diagram contribution shown in Fig. 1 (taken
in Coulomb gauge) and neglecting the energy dependence of the photon propagator.

However, within the rigorous QED approach arise also the diagrams which are
not taken into account by the Hamiltonian (3). So in the first order of the perturbation
theory in fine-structure constant ˛, one should evaluate also the so-called self-energy
(SE, Fig. 2) and vacuum polarization (VP, Fig. 3) corrections. The wavy line in
the diagrams denotes the virtual photon exchange, and the double line designates
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Fig. 1 One-photon exchange
diagram

Fig. 2 Self-energy diagram

Fig. 3 Vacuum polarization
diagram

Fig. 4 SE and VP screening diagrams

the electron, moving in the external field of the nucleus. The former diagram (SE)
describes the interaction of the electron with quantized electromagnetic field and the
latter (VP) – with the quantized electron-positron field – disturbed by the presence
of the external charge (in the absence of the external charge, the VP correction
vanishes). The contribution of these two diagrams is also known as the radiative
correction to the energy levels.

In the next order of the perturbation theory for the few-electron atom arise one-
electron two-loop diagrams, as well as so-called SE screening and VP screening
diagrams, shown in Fig. 4. The contribution of one-electron two-loop diagrams is
relatively small and is up to now beyond the effective Hamiltonian approach. This
contribution is discussed in section “Beyond Effective QED Hamiltonian”. The
contribution of the radiative screening corrections, on the other hand, very often
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defines the accuracy of entire calculations. Moreover, in some cases the first-order
radiative corrections may cancel each other, since SE and VP contributions have
opposite signs. For example, in case of 2p3=2 ! 2p1=2 transition in B-like fermium
(Z D 100), the QED contribution to the transition energy is completely defined by
the screening SE and VP diagrams [16].

The ab initio evaluation of SE and VP corrections to the energy levels of
bound electron is a quite difficult and time-consuming procedure. It requires the
renormalization of divergent terms and evaluation of the Green function for the
electron, moving in the external field of the nucleus (or several nuclei in case
of molecule). The first accurate calculations of these corrections became possible
relatively recently, in the 70th/80th year of the twentieth century [17–20]. Since that
time, despite of tremendous progress of computational facilities, only the calculation
of the entire set of second-order diagrams is almost close to be finished (the
evaluation of mixed SE-VP two-loop one-electron diagrams in not yet completed
to all orders in ˛Z). So one can conclude that ab initio QED approach does not fit
to the direct incorporation to the procedure of self-consistent solution of the DCB
equation.

On the other hand, the accuracy of many-electron calculations with the DCB
Hamiltonian has already reached the level of QED contributions. Since the direct
QED methods are too complicated to be incorporated into the solution procedure,
one needs to find another way to take QED corrections into account. Numerous
attempts have already been undertaken to do that. In the next sections, we will
discuss how QED contribution can be expressed in terms of local potentials. We
will see that while for the VP contribution it can be done in quite natural way,
the search of the effective potential, approximating SE contribution is a serious
problem. Finally, in section “Systematic Approach” we will explain the systematic
approach to the construction of the effective QED Hamiltonian, developed recently
in Ref. [21].

First-Order QED Corrections

In this section we are going to demonstrate how the first-order QED corrections
should be calculated within the rigorous QED approach and how can they be
incorporated into the many-electronic calculations. Let us start the discussion from
the naive, but intuitively clear way to estimate the QED corrections. This method is
worth to be mentioned here, since it allows to estimate the QED contribution very
fast, without long calculations, and with relatively good accuracy. The approach
is based on the observation that the main QED contribution during the rigorous
calculations arises at the distances between electron and nucleus, close to the
Compton wavelength �c .

According to this approach, one should first of all solve the DCB equation (2) by
any of the available methods. Then one should evaluate the charge density for each
one-electron state at the Compton wavelength distance from the nucleus and find the
effective nuclear charge, which will produce the same density at this distance for



7 Effective QED Hamiltonians 273

the hydrogen-like case. Finally, one should perform the interpolation of tabulated
QED correction (e.g., from here: [22]) to the obtained value of the effective charge.
This method is suitable not only for the single-Coulomb-center atomic problem.
In the case of molecular description by means of the linear combination of atomic
orbital (LCAO) method, this approximation can be also useful. If one needs only to
estimate the approximate QED contribution to the many-electron calculations, this
method is more than enough. To the best of the author’s knowledge, this method is
incorporated in many program packages used for many-electron calculations.

More accurate QED evaluations require more sophisticated methods. Before
describing these methods, let us briefly discuss how one should calculate the QED
corrections within the rigorous approach.

Vacuum Polarization Contribution

Let us first discuss the vacuum polarization diagram, shown in Fig. 3. Within the
QED framework, this correction can be described in terms of the local potential:

UVP.r1/ D ˛

2�i

Z
dr2

1

r12

Z
d! TrŒG.!I r2; r2/� ; (8)

where G.!I r2; r2/ denotes the one-electron Green function. The expression (8) is
ultraviolet divergent and must be renormalized. The simplest way to renormalize it
is to use the expansion of the Green function:

G.!I x; x/ D G0.!I x; x/C
Z
dy G0.!I x; y/VN.y/G.!I y; x/ (9)

where G0 denotes the Green function in the absence of the external field. Applying
this equation consequently, one can obtain the expansion of Eq. (8) in terms
containing zero, one, two, etc. interactions with the external nuclear field. According
to the Furry theorem, the terms with an even number of such interaction vanish. The
resulting diagram equation is shown in Fig. 5. In this figure the double lines denote,
as usual, electron in external field, while the single lines mean the free-electron
propagators. The line with the cross at the end designates the interaction with the
external field. In this expansion, only the first nonzero term, known as the Uehling

= + +... = +

Ue WK

Fig. 5 Diagram equation for VP correction. “UE” and “WK” denote the diagrams, corresponding
to Uehling and Wichmann-Kroll contributions, respectively
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term [23], is infinite. The charge renormalization yields the following expression for
the Uehling potential:

U UE
VP .r1/ D �

˛Z

r1

2˛

3�

1Z
0

dr2 4�r2�.r2/

1Z
1

dt

�
1C 1

2t2

�

�
p
t 2 � 1
4t3

	
exp.�2jr1 � r2jt / � exp.�2.r1 C r2/t/



: (10)

Here Z and � denote the nuclear charge and the density of the nuclear charge
distribution, respectively. � is normalized as follows:

1Z
0

dr r2�.r/ D 1 : (11)

It is important to note that in case of several nuclei, the Uehling potential represents
the sum of the Uehling potentials generated by each separate nuclei. So all the
conclusions for the case of single center (atoms) can easily be extended to the many-
center case (molecule).

Moreover, the Uehling potential depends only on the potential, generated by the
nucleus (or nuclei). Even if one uses in the zeroth order of perturbation theory an
effective potential Veff D VNCVscr, where Vscr partially describes the interelectronic
interaction, the resulting Uehling term contains only the contribution of the nuclear
part VN of the total effective potential. The contribution of screening potential Vscr

is canceled due to the presence of the counterterm �Vscr in the perturbation.
The remaining part of the terms in the diagram equation in Fig. 5 can be summed

up again. This contribution is known as the Wichmann-Kroll contribution [24]. It
can be shown that this contribution is not divergent. As one can see from Fig. 5, the
calculation of this contribution requires the knowledge of the Green function in the
external field (double line in the diagram). So, unlike the UE term, this term in the
molecular case cannot be considered as the sum of atomic terms. Typically, the WK
contribution is calculated using the partial wave renormalization technique [19]: in
order to reduce the number of the space integrations, the WK term is expressed as
the difference between the entire VP contribution and non-renormalized UE term:
UWK D U non�ren

VP �U non�ren
UE . Both VP and UE terms are then expanded in the series

of the partial waves with the definite angular quantum number �: U DP
�

U� . In this

case, each partial term U� becomes finite for both VP and UE; however, the total
sum over � diverges also for both VP and UE parts but not for their difference. If
one considers the differences between VP and UE partial contributions, one can see
that the sum over � of these differences, corresponding to the WK term, converges
very fast. Usually one needs to take into account the partial waves with j�j 	 10 for
the accurate evaluation of the WK term.
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The procedure, described above, is of course very complicated, to be directly
included into many-electron calculations. However, this calculation can be per-
formed only once before starting the calculations; the resulting potential can be
tabulated and then incorporated into the DCB Hamiltonian (3). There exists also
the possibility to use the analytical approximation of the WK potential, provided
in the Ref. [20]. Concluding the discussion of the VP correction, we would like
to emphasize that this correction can be described in terms of the local potential
and therefore can be incorporated into the DCB Hamiltonian without loss of the
computational efficiency.

Self-Energy Contribution

Unfortunately, the calculation of the SE correction cannot be easily reduced to the
contribution of the local potential. In the general form, the SE operator can be
defined as

haj˙.�/jbi D i˛

2�

Z 1
�1

d!
X
n

hanj˛�˛�D��.!/jnbi
� � ! � "n.1 � i0/ : (12)

Here the summation is performed over all the solutions of the one-electron Dirac
equation, "n is the energy of the state jni, and D��.!/ is the photon propagator.
The expression (12) is divergent and becomes finite after the mass renormalization.
From Eq. (12) one can see that the SE contribution cannot be expressed in terms of
the local potential, because the summation over the intermediate states jni cannot
be performed before the radial integrations (the states jni in Eq. (12) depend on
different radial variables).

There exist several approaches to the accurate evaluation of the SE correction
within the rigorous QED approach [17, 18, 25–32]. However, none of them can
be considered as the universal algorithm for the fast and efficient SE evaluation,
suitable for the many-electronic calculations. Therefore, let us discuss the approxi-
mations of the SE contributions using the local potentials.

The first idea on how to represent the SE correction in the local potential form
belongs to Welton [33]. According to his work, SE arises due to the perturbations of
the classical electron trajectory induced by the fluctuations of the electromagnetic
field of the vacuum.

He starts from the observation that the quantum-mechanical zero-point variation
of the radiation field in vacuum leads to the electric and magnetic fields. Then
considering the motion of the electron in the static electric field V .r/, he notices
that due to the perturbation of the trajectory, the electron feels the field

V .rC ır/ D .1C ır � r C 1

2
.ır � r/2 C : : : /V .r/ : (13)
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Averaging this expression over all possible values of ır, he finds the average value
of the potential “seen” by the electron:

hV i D .1C 1

6
.ır/2#C : : : /V .r/ ; (14)

which leads to the correction to the external static potential, proportional to the
Laplacian of itself. Calculating this correction for the Coulomb field of the hydrogen
nucleus VC D �˛=r , he obtained the same result as Bethe [34] in his famous paper
about the nonrelativistic Lamb shift calculations.

For the practical purposes, one must take into account that the average value
of .ır/2 in Eq. (14) is infinite and must be renormalized. Since the values for the
SE corrections are known, one can use for the potential, simulating SE effect, the
expression:

VSE D A#V .r/ (15)

and define the value of the constant A from the known results for the SE
calculations. As a variation of this method, used in Ref. [5], one can evaluate the
SE contribution as

#ESE D
X
n

hnj#V jniDF

hnj#V jniH�like
#ESE;H�like (16)

in order to estimate the contribution of screening diagrams. Here the sum runs over
all occupied one-electron states, and the subscripts DF and H�like correspond to the
calculations with Dirac-Fock and hydrogen-like wave functions.

Later on various attempts to approximate the Lamb shift by the short-range
potentials of different form have been performed [35–37]. In particular, Pyykkö
and Zhao in Ref. [35] provide a good review of previously existed method for the
approximation of the SE contribution. Then they offer to approximate the SE effect
by means of the potential

VSE.r/ D B exp.ˇr2/ (17)

where two parameters B and ˇ are chosen in such a way that they reproduce the
reference values for the two quantities: the SE correction to the given energy level
and the change due to SE of the M1 hyperfine integral:

I�2 D
1Z
0

dr .gf C fg/ : (18)

Here g.r/ and f .r/ are the large and small component radial functions, respectively.
After the evaluation of the parameters B and ˇ for different values of nuclear charge
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Z, the authors performed their fit with the simple quadratic expression

B.Z/ D B0 C B1Z C B2Z2 (19)

ˇ.Z/ D ˇ0 C ˇ1Z C ˇ2Z2 (20)

and obtain the very simple potential suitable for the estimation of the SE correction
for arbitrary energy level and nuclear charge. Finally, the authors offer the extension
of the method, which fits more calibration data. For example, the potential of the
form

VSE D B1 exp.�ˇ1r2/C B2 exp.�ˇ2r2/ (21)

with B1 D 1;876:1, ˇ1 D 6;700, B2 D 2;345:1, and ˇ2 D 1:675 � 106 reproduces
for 2s state of H-like Bi the SE corrections to the energy levels, g�factor and
hyperfine splitting. They conclude that although the elaboration of the approximate
SE potentials is only in the beginning and despite the nonphysical shape of the
potential (21), this approach may be of practical use for the estimation of the SE
corrections to the valence energy levels of neutral atoms.

In Ref. [36] Flambaum and Ginges derived an approximate expression for a
radiative potential which can be used to calculate QED corrections in many-electron
atoms with an accuracy of a few percent. To this end the authors start from the case
of low nuclear charge .˛Z/ << 1 and derive approximate radiative potential:

Vrad D VUE C Vg C V �
f ; (22)

where VUE is the Uehling potential (10) and

Vg.r/ D ˛

4�
iˇ˛ � r

24VN.r/

0@ 1Z
1

dt
1

t2
p
t 2 � 1 exp.�2tr/ � 1

1A35 ; (23)

V �
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1

dt
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1 � 1

2t2
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ln.t2 � 1/C ln

4

�2

�
� 3
2
C 1
t2

�
(24)

are the magnetic and electric form factor contributions, respectively. The derivation
of Eqs. (22), (23) and (24) assumes the exchange by only the high-energy photon.
Therefore, in Eq. (24) appears the cutoff parameter �, which has been chosen by
authors to be equal to .˛Z/2 (the order of magnitude of the binding energies in the
atom). Equation (22) was then completed by the approximative expression for the
Wichmann-Kroll potential (see section “Vacuum Polarization Contribution”) and
used for the evaluation of the QED corrections.
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Although all the methods described above have the physical meaning, the
accuracy of the results, obtained within these approaches in the arbitrary case,
remains unclear. The more systematic approach to the construction of the effective
Hamiltonian in framework of QED will be discussed in the next section.

Systematic Approach

All the methods, described above, may provide in some cases very accurate results
or may not. Anyway they do not allow to conclude which part of QED corrections
has already been taken into account and what should still be calculated. On the
contrary, within the systematic approach, it is immediately clear which part of
diagrams has already been taken into account and what should be calculated in order
to improve the accuracy of the result.

In 2013 Shabaev et al. offered the new approach to the construction of the
effective QED Hamiltonian [21], taking into account the QED effects in lowest
order. In this section a brief description of their method is provided.

Let us begin with the definition of the active space, in which the Hamiltonian
acts. The theoretical description of middle- and high-Z atoms within rigorous QED
approach usually starts from the solution of one-electron Dirac equation with the
Hamiltonian given by Eq. (4):

hD i D �i i : (25)

Therefore, it will be natural to define the active space to be formed from the
Slater determinants, constructed from the one-electron unperturbed positive-energy
solutions of Dirac equation  i :

�n D
ˇ̌̌̌
ˇ̌  n1.r1/ � � �  nN .r1/� � �
 n1.rN / � � �  nN .rN /

ˇ̌̌̌
ˇ̌ ; (26)

where N is the number of electrons and fnig is the set of numbers, corresponding
to the n-th basis function. Strictly speaking, as it has been shown in Ref. [14], there
is a restriction to the total energy of these unperturbed many-electron state �n: it
should not exceed the pair-creation threshold. However, to the lowest order of QED
effects, one can neglect this restriction.

Now let us show how the DCB Hamiltonian (3) can be obtained from the QED
principles. In order to do it, let us consider the contribution of the one-photon
exchange diagram (Fig. 1). The evaluation of this diagram within the rigorous QED
approach [38] leads to the formula:

hint D
X

k¤l;m¤n
jklihkl j1

2
ŒI ."k � "m/C I ."l � "n/�jmnihmnj ; (27)



7 Effective QED Hamiltonians 279

where jki, jli, jmi, jni are the positive-energy solutions of Dirac equation with
the Hamiltonian (4), I .!/ D e2˛

�
1 ˛

�
2D��.!; jr1 � r2j/, and D�� is the photon

propagator. The operator (27) describes the interaction between only two electrons.
For many-electron atom, one should then perform summation over all pairs of
atomic electrons:

H int D
X
i<j

hint
ij ; (28)

where hint
ij is the operator (27), acting to the one-electron wave functions, depending

on ri and rj .
Now, if one takes into account the exact form of the photon propagator in

Coulomb gauge, one can obtain for I .!/ the following expression:

I .!/D˛
�
1

r12
� .˛1 � ˛2/ exp.i!r12/

r12
C
�
.˛1 � r 1/;

�
.˛2 � r 2/;

exp.i!r12/ � 1
!2r12

���
:

(29)
Neglecting the energy dependence and setting ! D 0, one immediately obtains
from Eq. (29) the interelectronic interaction operator (5). This Hamiltonian accounts
for all nonrelativistic and lowest- order relativistic effects. It has been shown in
Ref. [14] that in order to reach the same accuracy with the photon propagator in
Feynman gauge, one should partially consider the higher-order (two and more)
photon exchange diagrams.

Now let us discuss the contribution of the radiative corrections. The direct
calculation of the contribution of SE and VP diagram within the two-time Green
function method [38] leads to the symmetric form of one-electron QED operator:

hQED D hSE C hVP

D
X

"k>0;"l>0

j kih kj
�
1

2

�
˙SE."k/C˙SE."l /

�C U VP

�
j lih l j : (30)

Here˙SE."/ andU VP are renormalized operators of SE and VP, defined by Eqs. (12)
and (8), respectively.

For the total QED Hamiltonian, one needs to perform the summation over all
occupied one-electron states:

HQED D
X
i

.hSE
i C hVP

i / : (31)

As a result in the lowest QED approximation, one obtains the Hamiltonian

H D �.C/
24X

i

.hD
i C hQED

i /C
X
i<j

hint
ij

35�.C/ : (32)
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In principle, this Hamiltonian already can be used in calculations. However, since
up to now fast and effective algorithms for the evaluation of SE correction for
the arbitrary bound state do not exist, one has to pay special attention to the SE
contribution.

Before we proceed to the SE contribution, let us remind that as it has been
pointed out in section “First-Order QED Corrections”, the leading term describing
the VP diagram contribution is given by the Uehling potential Eq. (10). The
remaining Wichmann-Kroll term can be with the good accuracy approximated by
formulas from Ref. [20] or calculated directly [19, 39]. Since the calculation of
VP contribution can be reduced to the simple potential, we will restrict now our
consideration to the SE correction.

Because of the absence of effective algorithms for arbitrary state, the operator
hSE should be reduced to its matrix elements between restricted number of low-
lying bound states. This restriction, however, highly increases the interaction range
of the SE operator and excludes the highly excited bound and continuum states
out of consideration. As a result such a Hamiltonian may lead to wrong entire SE
correction. In order to improve this situation, in Ref. [21] the following two-step
procedure for the modification of hSE was proposed.

First of all, it was proposed to split the entire SE operator in two parts. The first
part represented by local operator V SE

loc .r/ and the difference hSE � V SE
loc .r/:

hSE D V SE
loc .r/C .hSE � V SE

loc .r// : (33)

The local potential should have a short range and act mostly within the sphere with
the radius, equal to the Compton wavelength �c . Since the operator hSE conserves
the angular quantum numbers � and m, the local operator can be chosen different
for every set of one-electron functions with the same angular quantum numbers.
Namely, if one defines the projector to the one-electron states with fixed � as

P�.n;n0/ D
0@Pm ˝�m.n/˝

�
�m.n0/ 0

0
P
m

˝��m.n/˝���m.n0/

1A ; (34)

where ˝�m is spherical spinor, the local potential can be defined as

V SE
loc D

X
�

V SE
loc;�P� : (35)

The exact form of Vloc;� can be chosen more or less arbitrary. It is only important
that it satisfies the conditions above: it must be operator with a range restricted by
distances close to Compton wavelength. In [21] this operator was chosen as

Vloc;� D A� exp.�r=�c/ : (36)
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The constants A� were selected in such a way that Vloc;� reproduces the exact SE
shift for the lowest one-electron Hydrogen-like state at given �.

For the remaining operator hSE � V SE
loc .r/, it is offered to use the matrix elements

representation. However, in order to limit the range of the operator, its active space
is restricted to the basis functions �i .r/, different from Dirac wave functions  i.r/.
The functions �i must be chosen as close as possible to the functions  i inside the
sphere with the radius �c and decrease much faster than  i outside the sphere. The
required behavior can be satisfied by the multiplication of the functions  i.r/ by
the factor

�l .r/ D expŒ�2˛Z.r=�c/=.l C 1/� ; (37)

where l D j� C 1=2j � 1=2 is the orbital angular momentum. However, the
simple choice �i .r/ D �l i .r/ i .r/ leads to numerical difficulties because of similar
behavior of the wave functions  i.r/with the same l at small distances. So the basis
functions  i were chosen as

�i .r/ D 1

2
ŒI � .�1/si ˇ��l i .r/ i .r/ ; (38)

where si D ni � li , ni is the principal quantum number, I is unitary matrix, and ˇ
is standard Dirac matrix (7). The number of the wave functions �i was restricted to
ni 	 3 for li D 0 and ni 	 4 for li D 1; 2.

With this choice the SE operator can be represented as:

hSE D V SE
loc C

nX
i;kD1
j�i iBikhkj ; (39)

where the matrix Bik must be determined in such a way that the matrix elements
of the operator (39) coincide with the exact ones when evaluated with H-like wave
functions  . This condition leads to the following system of equations:

B D .Dt /�1SD�1 ; (40)

where the matrices D and S are defined as follows:

Dij D h�i j j i ; (41)

Sij D h i j1
2
Œ˙.�i /C˙.�j /� � V SE

loc j j i : (42)

Finally, the model Hamiltonian, which takes into account the SE effect in the
lowest order, has a form:
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hSE D V SE
loc C

1

4

X
i;k

X
j;l

ŒI � .�1/si ��li .r/j i iŒ.Dt /�1�ij

�h j j

1

2
Œ˙.�j /C˙.�l /� � V SE

loc

�
j li

�.D�1/lkh kj�lk .r/ŒI � .�1/skˇ ; (43)

where the summations run over ns states with the principal quantum number n 	 3
and over np1=2, np3=2, nd3=2, and nd5=2 states with n 	 4.

The values of the ˙.�/ operator diagonal and non-diagonal matrix elements,
used in Eq. (43), have been calculated and tabulated in [21]. The calculations have
been performed using hydrogen-like wave functions in wide range of the nuclear
charges Z from 10 to 120. Using these tabulated values, it is easy to construct the
model operator, which takes into account the QED effects in the lowest order.

Some examples of the successful application of the effective QED Hamiltonian
are provided already in Ref. [21], where the SE correction was calculated for some
alkali metal atoms and Li- and Cu-like ions and compared with previous ab initio
calculations. Later on this approach was used in Ref. [13] to evaluate the QED
contribution to the energy levels of Be-like iron.

Beyond Effective QED Hamiltonian

Before finishing the discussion of the effective QED Hamiltonians, let us name the
QED effects, which are not taken into account by all the methods, discussed above.
The contribution of these effects is known to be small even for the case of low-
lying states of heavy few-electron ions, where the QED effects are most pronounced.
However, these contribution should be at least mentioned in this chapter.

First of all, it is the negative-energy states contribution. The Hamiltonian (3)
contains the projector operators to the positive-energy states. So these states are
excluded from the consideration from the very beginning. Partially, these states are
taken into account via SE and VP operators. In particular, the VP contribution cannot
appear without the negative-energy states, since it arises due to the asymmetry
between positive- and negative-energy solutions caused by the presence of the
external charge. However, the complete estimation of the negative-energy states
contribution requires the accounting for these states also in all two- and more-photon
exchange diagrams.

Another important effect neglected by the Hamiltonian (3) is frequency depen-
dence of the photon propagator, or the retardation effect. Within the rigorous QED
framework, the interaction between electrons is described by the virtual photon
exchange (see Eq. (29)). If the initial and final one-electron states have the same
energy, the virtual photon has zero energy, otherwise it must carry the difference
between the initial and final states energy from one electron to another. Since
the energy of the one-electron states changes at each step of the self-consistent
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 6 Example of diagrams, not included in the effective QED Hamiltonian

procedure and because the active space is restricted usually by the low-energy one-
electron solutions, so the energy difference is usually#E << mc2, one can neglect
the retardation effects during the solution of DCB equation. However, the energy
dependence contribution can be evaluated after the solutions of the DCB equation
are found.

At the level of Feynman diagrams, one can point to many of them, which are
not taken into account by the effective Hamiltonian. The set of the second-order
QED diagrams, which is not taken into account by the effective Hamiltonian, is
shown in Fig. 6. Of course, all higher- order diagrams, which have any building
block, taken from the Fig. 6 are also neglected. The diagram (a) from this figure
is known as the crossed two-photon exchange diagram. Its contribution is usually
small and vanishes in the Breit approximation. The contributions of the so-called
vertex self-energy diagram as well as the vacuum polarization correction to the
photon propagator (diagrams (b) and (c) in the Fig. 6) are also neglected within
the effective Hamiltonian approach, although their contribution may reach up to
15 % of the total screening QED diagrams, shown in Fig. 4. So if one needs the
highly accurate calculations, one should account for these diagrams. Within the
effective QED Hamiltonian approach, these diagrams could theoretically be taken
into account by some corrections to the interelectronic interaction operator (5).
However, up to now no attempts of such corrections have been performed.

Unlike the two-electron second-order diagrams, the contribution of the one-
electron two-loop diagrams (d)–(i) is usually very small. It can be important only
for the low-lying states of highly (Z & 80) charged atoms. The contribution of the
diagrams (d) and (h) can be expressed (at least in lowest order in ˛Z) in the form of
local potential, which can be introduced into the total effective QED Hamiltonian.
However, since all the diagrams (d)–(i) have the same order of magnitude but
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different signs, it is more natural to take into account the entire contribution of these
diagrams. Due to the relative smallness of this effect, one can do it using the known
results for the hydrogen-like functions [40].

Summary

To summarize, we have discussed in this chapter the construction of the Hamilto-
nian, which allows to perform many-electron calculations taking into account the
lowest-order QED effects. We have found that the main difficulties arise if one
wants to account for the contribution of self-energy diagram. We discussed several
approaches, which allow to insert this effect into many-electron Hamiltonian. We
also demonstrated which QED effects remain up to now beyond the effective QED
Hamiltonian approach and must be estimated by other means.
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Abstract

In this chapter we describe the Two-Time Greens Function (TTGF) method
developed by V. M. Shabaev. This method allows derivation of the formulas
for the energy shift and other QED effects. Unlike the preceeding methods, the
TTGF one is suitable not only in the case of single isolated, but also for the
(quasi-)degenerate levels. Starting from the very basic principles and concepts of
QED, we will demonstrate, how to derive basic formulas with the help of TTGF
method and apply them to the case of many-electron systems.

Introduction

Quantum electrodynamics (QED) is the most accurate and the best confirmed
theory in modern physics. Since its foundation in 1928 by the famous work of
P. Dirac about relativistic electron [1], the theory has been intensively developed.
The modern formulation has been finished in the 50th years of the twentieth
century. In principle, to that time all necessary equations have already been derived
and all necessary techniques, e.g., Feynman diagrams [2], elaborated. However,
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the formulation of the basic principles and techniques does not necessary mean
that all the problems and challenges, arising during the investigations, can be
immediately solved. As an example we can mention here more common case of
nonrelativistic quantum mechanics, where the basic equations and main principles
have been formulated even earlier than those of QED. However, some problems
of nonrelativistic quantum mechanics remain unsolved up to now. The Schrödinger
equation has laid a foundation of many different branches of theory, like atomic
and molecular physic, solid body physics, etc. Each branch has developed their own
approaches, based on the Schrödinger equation and suitable for its own purposes.
To deal with the new problems, one has to invent new methods, allowing at least
approximate solution of them. The same occurs in QED.

Due to the much more complicated basic equations, QED cannot be successfully
applied to a wide range of systems, unlike with nonrelativistic quantum mechanics.
Nowadays QED is most successful in description of few-body systems, like atoms,
ions, and exotic atoms (e.g., muonium, positronium, etc.). Usually, each class of
problems requires for its solution the elaboration of the method, based on main
principles of QED. The difference in methods can be caused, for example, by
different values of the nuclear charge, different mass of particles, etc.

In this chapter we are going to concentrate on the atoms and ions with the middle
and high values of nuclear charge. Although all methods, elaborated for such kind
of systems, are usually valid for low-Z as well, the latter case allows more efficient
methods due to additional perturbation expansion in powers of small (for low-Z
systems) parameter ˛Z (˛ � 1=137 is fine structure constant). Historically, the
hydrogen atom was the first object investigated by means of QED. See the �Chap. 6,
“QED Effects and Challenges” of this book for more details. The experimental
investigation of heavier systems, e.g., highly charged ions, has become possible
since the late 60th years of the twentieth century. Almost simultaneously the first
QED calculations in such systems were performed.

The first method for deriving the formal expressions for the QED energy
shift of a bound-state level was formulated by Gell-Mann and Low [3] and by
Sucher [4]. This method is based on the introduction of an adiabatically damped
factor, exp.��jt j/, in the interaction Hamiltonian and in the expression of the energy
shift in terms of the so-called adiabatic S�-matrix elements, with final evaluation of
lim
�!0. Due to its simple formulation, the Gell-Mann–Low–Sucher formula for the

energy shift became very popular in the literature related to high-Z few-electron
systems. However, the practical use of this method demonstrated that it had several
serious disadvantages. One of them is the very complicated derivation of the formal
expressions for the so-called reducible diagrams. As reducible diagrams we imply
the diagrams where an intermediate-state energy of the atom coincides with the
reference-state energy.

Another serious drawback of the Gell-Mann–Low–Sucher method is the fact that
this method requires special investigation of the renormalization procedure since the
adiabatic S�-matrix has ultraviolet divergences. The adiabatically damped factor,
exp.��jt j/, is non-covariant, and, therefore, the ultraviolet divergences cannot be

http://dx.doi.org/10.1007/978-3-642-40766-6_26
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removed from S� if � ¤ 0. However, from the physical point of view, one may
expect these divergences to cancel each other in the expression for the energy shift.
Therefore, they may be disregarded in the calculation of the energy shift for a
single level. For the case of degenerate levels, however, this problem remains since
we cannot expect that the standard renormalization procedure makes the secular
operator finite in the ultraviolet limit [5, 6].

It is also impossible within the framework of this method to deal with the quasi-
degenerate states (the levels with the same symmetry and having close energy in
zeroth-order approximation). Taking into account all the reasons, it becomes clear
that although the Gell-Mann–Low–Sucher approach can be used for the solution
of the wide class of the problems, the creation of more effective methods was
necessary.

The development of the new approaches took some time. Finally, within approx-
imately one decade, there appeared three theoretical methods, which significantly
improved the Gell-Mann–Low–Sucher approach:

• the two-time Green’s function (TTGF) method [7];
• the covariant-evolution-operator method [8];
• the spectral line profile method [9].

This chapter is devoted to the first of abovementioned methods, the TTGF. Because
the current book is addressed to the quantum chemists, we will concentrate within
this chapter only on the problem of the energy levels of few-electron system and
leave untouched other problems, which can be solved by means of TTGF, like the
scattering problem, g-factor calculations, hyperfine splitting of the energy levels,
etc. We are going to stress out at least the most important ideas and features of the
method. For the detailed derivation, we refer to the original paper [7] and references
therein.

The relativistic units („ D me D c D 1) and the Heaviside charge unit (˛ D
e2=4� , e < 0) are used throughout the chapter if not stated otherwise. We try to
keep the notations from the original work [7], so in case of any questions, one can
easily find in this paper more detailed derivations.

2N-Times Green’s Function

Before starting the description of the method, let us define the system which we
are going to investigate. We are interested in the system consisting of N electrons
moving in the field of the nucleus with the charge Z. For highly charged ions, it
is considered that Z  N . In this case the average interaction of an electron with
other electrons is smaller than its interaction with nucleus by the factor 1=Z. The
interaction with the quantized electromagnetic field in turn is by factor ˛ � 1=137
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smaller than that with nucleus. Therefore, it is natural to suppose that the movement
of the electrons in zeroth approximation is described by the Dirac equation:

.˛ � p C ˇ C VN .r// n.r/ D "n n.r/; (1)

where ˛ and ˇ are the Dirac matrices, VN is the potential of the nucleus, and p D
�ir is momentum operator. The potential can be conveniently represented as

VN D �˛Z.r/
r

(2)

where r�dependent charge is introduced to take into account the effect of the charge
distribution inside the nucleus. Without losing the generality, the potential VN can be
replaced by the effective potential Veff which partially describes the interelectronic
interaction. One should do it especially for the case of neutral atoms or ions with the
number of electronsN � Z. In such systems the average interaction of the electron
with other electrons is comparable with the interaction with nucleus and should be
better taken into account in the zeroth order at least partially by means of Veff. In this
case additional interaction ıV D VN�Veff must be taken into account perturbatively.
See for the details Refs. [10,11], where four different effective potentials have been
applied for the calculation of boron-like ions.

It can be shown that the complete information about the system withN electrons
contains 2N�times Green’s function defined as

G.x01 � � � x0NI x1 � � � xN / D h0jT .x01/ � � � .x0N / N .x1/ � � � N .x0N /j0i : (3)

Here j0i denotes vacuum, T is the symbol of T�ordered product,  is the electron-
positron field operator in the Heisenberg representation, and N D  �0 is the
Dirac conjugation. Note that x denotes time–space four vector; hence, this function
depends on 2N different times.

In the interaction representation (see, e.g., [12,13]) the Green’s function is given
by

G.x01; : : : x0N I x1; : : : xN /

D h0jT in.x
0
1/ � � � in.x

0
N / in.xN / � � � in.x1/ exp f�i R d4z HI .z/gj0i
h0jT exp f�i R d4z HI .z/gj0i (4)

D
n 1X
mD0

.�i/m
mŠ

Z
d4y1 � � � d4ym h0jT in.x

0
1/ � � � in.x

0
N / in.xN / � � � in.x1/

�HI .y1/ � � �HI .ym/j0i
o

�
n 1X
lD0

.�i/l
l Š

Z
d4z1 � � � d4zl h0jTHI .z1/ � � �HI .zl /j0i

o�1
(5)
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where

HI .x/ D e

2
Œ in.x/�;  in.x/�A

�
in.x/ �

ım

2
Œ in.x/;  in.x/� (6)

is the interaction Hamiltonian. The commutators in Eq. (6) refer to operators only.
The first term in (6) describes the interaction of the electron–positron field with
the quantized electromagnetic field, and the second one is the mass renormalization
counterterm. The significant difference of the methods, developed for the middle-
and highly charged atoms from that elaborated for the low-Z, is the fact that the
interaction of the electrons with the Coulomb field of the nucleus is included in the
unperturbed Hamiltonian. In other words we are working in the Furry picture. It is
easy to understand why one should better include the Coulomb field of the nucleus
into the zeroth order of the perturbation theory. As one can see from the Eq. (2),
the Coulomb interaction with the nucleus is always accompanied by the factor ˛Z.
While for low-Z systems this parameter is small and the perturbation series over
this parameter converge very fast, in the case of high-Z this parameter is close to
unity. It is clear that the expansion in powers of this parameter has no sense.

The Eq. (5) gives a key for the construction of the Green’s function. To do it
one expands the exponents in powers of the interaction Hamiltonians (second and
third lines of Eq. (5)) and then uses the Wick’s theorem (see, e.g., [12]). According
to this theorem, the time-ordered product of field operators is equal to the sum of
normal-ordered products with all possible contractions between the operators

T .ABCD � � � / D N.ABCD � � � /CN.AaBaCD � � � /CN.AaBCaD � � � /
C all possible contractions; (7)

where N is the normal-ordered product operator and the superscripts denote the
contraction between the corresponding operators. The normal-ordered product
yields zero if acts to the vacuum, because the annihilation operators act before the
creation ones. The contraction between neighboring operators is defined by

AaBa D T .AB/ �N.AB/ D h0jT .AB/j0i: (8)

If the contracted operators are boson operators, they can be put one next to another.
If the contracted operators are fermion operators, they also can be put one next
to another, but in this case the expression must be multiplied by the parity of the
permutation of the fermion operators. Since in the Green’s function the vacuum
expectation value is calculated, only the term with all operators contracted remains
on the right-hand side of Eq. (7).

The contractions between the electron–positron fields and between the photon
fields provide the following propagators:

h0jT in.x/ in.y/j0i D
i

2�

Z 1
�1

d!
X
n

 n.x/ n.y/

! � "n.1 � i0/ exp
��i!.x0 � y0/�

(9)
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and (in Feynman gauge)

h0jTA�in.x/A�in.y/j0i D �ig��
Z

d4k

.2�/4
exp Œ�ik � .x � y/�

k2 C i0 : (10)

In Eq. (9) the index n runs over all bound and continuum states, so effectively it
implies the integration over all continuum states.

The denominator in Eq. (4) describes unobservable vacuum–vacuum transitions,
and, as can be shown (see, e.g., [12]), it cancels disconnected vacuum–vacuum
sub-diagrams from the numerator. Therefore, one can omit all diagrams containing
disconnected vacuum–vacuum sub-diagrams in the numerator and replace the
denominator by 1.

Since in practical (especially chemical) calculations one is usually interested in
the value of the energy levels, it is convenient to make the Green’s function explicitly
dependent on the energy. It can be reached by the Fourier transform with respect to
time variables:

G
�
.p001 ;x01/; : : : ; .p00N ;x0N /I .p01;x1/; : : : ; .p0N ;xN /

�
D .2�/�2N

Z 1
�1

dx01 � � � dx0Ndx001 � � � dx00N
� exp

�
ip001 x001 C � � � C ip00N x00N � ip01x01 � � � � � ip0N x0N

�
�G.x01; : : : ; x0N I x1; : : : ; xN /: (11)

The next step in the evaluation of the Green’s function is direct application of
the perturbational expansion. To simplify this procedure, the Feynman diagram
technique [2] is invented. Instead of long and laborious order-by-order expansion
of T-exponent in Eq. (4) and evaluation of the corresponding contractions, one can
draw the diagrams and write the corresponding formulas following the rules. So
for the Green’s function (11), the following Feynman rules can be established:

x

y

ω

External electron line. i
2�
S.!Ix;y/, with

S.!Ix;y/ D
X
n

 n.x/ N n.y/
! � "n.1 � i0/ : (12)
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x

y

Internal electron line. i
2�

1R
�1

d! S.!Ix;y/.

x

y

ω2

ω1

Disconnected electron line. i
2�
ı.!1 � !2/ S.!Ix;y/.

x

y

Internal photon line. i
2�

1R
�1

d! D��.!Ix � y/, where in Feynman gauge

D��.!Ix � y/ D �g��
Z

dk

8�3
exp.ik � .x � y//

!2 � k2 C i0 : (13)

x

ω1

ω3

ω2
Vertex. �2�ie�ı.!1 � !2 � !3/

R
dx.
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x

ω1

ω2

Mass counterterm. 2�i ım ı.!1 � !2/
R
dx.

x

ω1

ω2

If in addition external potential V is present.
2�i 0 ı.!1 � !2/

R
dxV .x/.

Additionally the contribution of the diagram should be multiplied by the
symmetry factor .�1/NCP, where N is the number of closed electron (in general
case fermion) loops and P is the parity of the permutation of the outgoing electron
coordinates with respect to the incoming ones.

This set of rules provides a possibility to construct the Green’s function
perturbative expansion order by order. After the Green’s function is constructed,
one can extract from it all necessary information about the energy levels of the
system. However, to extract the information directly from 2N�times Green’s
function is a very complicated task, because it depends on 2N relative times
(energies). Therefore it was proposed to use instead of 2N�times Green’s function
G.t 01; � � � ; t 0N I t1; � � � ; tN /, the function, which depends only on two different times
(energies):

QG.t 0; t / � G.t 01 D t 02 D � � � D t 0N � t 0I t1 D t2 D � � � D tN � t /: (14)

In other words, all initial (as well as all final) times in this function are equal. In the
next sections, we will demonstrate that this function still contains all information
about the energy levels of the system and show how it can be used for the
calculations of the energy levels.

Analytical Properties of Two-Time Green’s Function

As we noticed in the previous section, it is much easier to extract the information
about the energy levels from the Green’s function, which depends on only two time
(energy) variables, than from the function, depending on 2N such variables. In this
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section we will demonstrate that setting all initial (final) times to be equal each other,
like it is done in Eq. (14), does not lead to any loss of information.

Let us introduce the Fourier transform of the two-time Green’s function by

G.EIx01; : : :x0N Ix1; : : :xN /ı.E �E 0/

D 1

2�i

1

N Š

Z 1
�1

dx0dx00 exp
�
iE 0x00 � iEx0�

� h0jT .x00;x01/ � � � .x00;x0N / .x0;xN / � � � .x0;x1/j0i; (15)

To study the analytical properties of the two-time Green’s function, we derive the
spectral representation for G.

Let us insert into the matrix element in Eq. (15) the unitary operator I expressing
it as an expansion over the complete set of the eigenstates of the Hamiltonian of the
system:

I D
X
n

jnihnj; (16)

H jni D Enjni: (17)

Using the time-shift transformation rule for the Heisenberg operators

 
�
x0;x

� D exp
�
iHx0

�
 .0;x/ exp

��iHx0� (18)

and the fact, that

exp .aH/jni D exp .aEn/jni; (19)

we find

G.EIx01; : : : ;x0N Ix1; : : : ;xN /ı.E �E 0/

D 1

2�i

1

N Š

Z 1
�1

dx0dx00 exp
�
iE 0x00 � iEx0�

�
n
�
�
x00 � x0�X

n

exp
�
i.E0 �En/.x00 � x0/

�h0j .0;x01/ � � � .0;x0N /jni
�hnj .0;xN / � � � .0;x1/j0i C .�1/N2

�
�
x0 � x00�X

n

exp
�
i.E0 �En/

�
x0 � x00��

�h0j .0;xN / � � � .0;x1/jnihnj .0;x01/ � � � .0;x0N /j0i
o
: (20)
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Assuming, for simplicity, E0 D 0 (it corresponds to choosing the vacuum energy as
the origin of reference) and taking into account thatZ 1

�1
dx0dx00 �

�
x00 � x0� exp

��iEn �x00 � x0�� exp
�
i
�
E 0x00 �Ex0��

D 2�ı.E 0 �E/ i

E �En C i0 ; (21)Z 1
�1

dx0dx00 �.x0 � x00/ exp
��iEn �x0 � x00�� exp

�
i
�
E 0x00 �Ex0��

D �2�ı.E 0 �E/ i

E CEn � i0 ; (22)

we obtain

G.EIx01; : : : ;x0N Ix1; : : : ;xN / D
X
n

˚n.x
0
1; : : : ;x

0
N /˚n.x1; : : : ;xN /

E �En C i0

� .�1/N
X
n

%n.x
0
1; : : : ;x

0
N /%n.x1; : : : ;xN /

E CEn � i0 :

(23)

Here

˚n.x1; : : :xN / D 1p
NŠ
h0j .0;x1/ � � � .0;xN /jni; (24)

%n.x1; : : :xN / D 1p
NŠ
hnj .0;x1/ � � � .0;xN /j0i: (25)

In Eq. (23) the summation runs over all bound and continuum states of the system
of the interacting fields. Let us now introduce the functions

A.EIx01; : : : ;x0N Ix1; : : : ;xN / D
X
n

ı.E �En/˚n.x01; : : : ;x0N /˚n.x1; : : : ;xN /;

(26)

B.EIx01; : : : ;x0N Ix1; : : : ;xN / D
X
n

ı.E �En/%n.x01; : : : ;x0N /%n.x1; : : : ;xN /;

(27)

which satisfy the conditionsZ 1
�1

dE A.EIx01; : : : ;x0N Ix1; : : : ;xN / D
1

N Š
h0j .0;x01/ � � � .0;x0N /

�  .0;xN / � � � .0;x1/j0i; (28)
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Z 1
�1

dE B.EIx01; : : : ;x0N Ix1; : : : ;xN / D
1

N Š
h0j .0;xN / � � � .0;x1/

�  .0;x01/ � � � .0;x0N /j0i: (29)

With the help of these functions, we can rewrite Eq. (23) as

G.E/ D
Z 1
0

dE 0
A.E 0/

E �E 0 C i0 � .�1/
N

Z 1
0

dE 0
B.E 0/

E CE 0 � i0 ; (30)

where we have omitted the variables x1; : : : ;xN ;x
0
1; : : : ;x

0
N and have taken into

account that A.E 0/ D B.E 0/ D 0 for E 0 < 0 since En 
 0.
Due to charge conservation, only states with an electric charge of eN contribute

to A in the sum over n in the right-hand side of Eq. (26), and only states with
an electric charge of �eN contribute to B in the sum over n in the right-hand
side of Eq. (27). This can easily be shown by using the following commutation
relations

ŒQ; .x/� D �e .x/; ŒQ; .x/� D e .x/; (31)

whereQ is the charge operator in the Heisenberg representation. Therefore, Eq. (30)
can be written as

G.E/ D
Z 1
E
.C/
min

dE 0
A.E 0/

E �E 0 C i0 � .�1/
N

Z 1
E
.�/
min

dE 0
B.E 0/

E CE 0 � i0 ; (32)

where E.C/
min is the minimal energy of states with electric charge eN and E.�/

min is the
minimal energy of states with electric charge �eN . Note that since we are working
in Furry picture, the charge under considerations is provided only by electrons and
positrons, because the nuclear charge is already taken into account as a source of
the external field.

So far we considered G.E/ for real E. However, for our purposes we are
interested in the definition of G.E/ in complex E plane. The mathematical
technique, allowing to extend the domain of a given analytic function, is called
analytic continuation. Let us first of all show that the Eq. (32) defines analytic
function. This equation shows that the Green’s function G.E/ is the sum of Cauchy-

type integrals. Since the integrals
Z 1
E
.C/
min

dE A.E/ and
Z 1
E
.�/
min

dE B.E/ converge (see

Eqs. (28) and (29)), one can show with the help of standard mathematical methods
that the equation

G.E/ D
Z 1
E
.C/
min

dE 0
A.E 0/
E �E 0 � .�1/

N

Z 1
E
.�/
min

dE 0
B.E 0/
E CE 0 (33)
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Re(E)E(−)min E(+)min

Im(E)

Fig. 1 Singularities of the two-time Green’s function in complex E plane

defines an analytical function ofE in the complexE plane with the cuts .�1; E.�/
min �

and ŒE.C/
min ;1/ (see Fig. 1). This equation provides the analytical continuation of the

Green’s function to the complex E plane. According to (32), to get the Green’s
function for real E, we have to approach the right-hand cut from the upper half-
plane and the left-hand cut from the lower half-plane.

In what follows we will be interested in bound states of the system. According
to Eqs. (23), (24), (25), (26), (27), (28), (29), (30), (31), (32), and (33), the bound
states correspond to the poles of the function G.E/ on the right-hand real semiaxis.
If the interaction between the electron–positron field and the electromagnetic field
is switched off, the poles corresponding to bound states are isolated. Switching on
the interaction between the fields transforms the isolated poles into branch points.
This is caused by the fact that due to zero photon mass, the bound states are no
longer isolated points of the spectrum, because zero-mass photon can carry arbitrary
energy. The poles corresponding to the bound states lie on the upper boundary of the
cut starting from the pole corresponding to the ground state. It is natural to assume
that G.E/ can be continued analytically under the cut, to the second sheet of the
Riemann surface. As a result of this continuation the singularities of G.E/ can be
turned down.

In order to formulate the perturbation theory for calculations of the energy
levels, we have to isolate the poles corresponding to the bound states from the
related cuts. It can be done by introducing a nonzero photon mass � which is
generally assumed to be larger than the energy shift (or the energy splitting) of
the level (levels) under consideration and much smaller than the distance to other
levels. Later one can calculate lim

�!0 to obtain physical results. The singularities of

G.E/ with nonzero photon mass, including one- and two-photon spectra (i.e., states
with one and two photons), are shown in Fig. 2. As one can see from this figure,
introducing the photon mass makes the poles corresponding to the bound states to be
isolated.
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Re(E)

Im(E)

Fig. 2 Singularities of the two-time Green’s function in complex E plane, taking into account
nonzero photon mass

In every finite order of perturbation theory, the singularities of the Green’s
function G.E/ in the complex E-plane are defined by the unperturbed Hamiltonian.
In quantum mechanics this fact easily follows from the expansion of the Green’s
function .E � H/�1 D .E � H0 � ıV /�1 in powers of the perturbation potential
ıV

.E �H/�1 D
1X
nD0
.E �H0/

�1 �ıV .E �H0/
�1�n : (34)

As one can see from this equation, to n-th order of perturbation theory, the Green’s
function has poles of all orders till n C 1 at the unperturbed positions of the
bound-state energies. This fact remains also valid in QED for G.E/ defined above
and allows us to evaluate the value of the bound-state energies in any order of
perturbation theory.

Energy Shift of a Single Level

In previous section we have found the correspondence between the poles of the
Green’s function and the energy of the bound state. Let us evaluate in this section
the energy shift �Ea D Ea � E.0/

a of a single isolated level a of an N -electron
atom due to the perturbative interaction. As we have agreed in the beginning of
this chapter, we start in zeroth order from the noninteracting electrons described by
the Dirac equation (1). So the unperturbed energy E.0/

a is equal to the sum of the
one-electron Dirac energies:

E.0/
a D "a1 C � � � C "aN ; (35)
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which are defined by Eq. (1).
To construct the zeroth-order wave function in the simplest case, one has to

consider the Slater determinant, constructed from the solutions of the Eq. (1):

ua.x1; : : : ;xN / D 1p
NŠ

det

ˇ̌̌̌
ˇ̌  1.x1/ � � �  N .x1/� � � � � � � � �
 1.xN / � � �  N .xN /

ˇ̌̌̌
ˇ̌

D 1p
NŠ

X
P

.�1/P Pa1.x1/ � � � PaN .xN /; (36)

where  n are the one-electron Dirac wave functions defined by Eq. (1) and P

is the permutation operator with the parity .�1/P . In the most general case, the
unperturbed wave function represents a linear combination of the one-determinant
functions:

ua.x1; : : : ;xN / D
X
b

C b
a

1p
NŠ

X
P

.�1/P Pb1.x1/ � � � PbN .xN /: (37)

In order to evaluate the energy shift, let us introduce the Green’s function gaa.E/
as

gaa.E/ D huajG.E/01 � � � 0N juai

�
Z
dx1 � � � dxNdx01 � � � dx0N u�a.x

0
1; : : : ;x

0
N /

�G.E;x01; : : : ;x0N Ix1; : : : ;xN /01 � � � 0N ua.x1; : : : ;xN /: (38)

From the spectral representation for G.E/ (see Eqs. (23), (24), (25), (26), (27), (28),
(29), (30), (31), (32), and (33)), we obtain

gaa.E/ D Aa

E �Ea C terms that are regular at E � Ea; (39)

where

Aa D 1

N Š

Z
dx1 � � � dxNdx01 � � � dx0N u�a.x

0
1; : : : ;x

0
N /h0j .0;x01/ � � � .0;x0N /jai

�haj �.0;xN / � � � �.0;x1/j0iua.x1; : : : ;xN /: (40)

As discussed in the previous section, we assume here that a nonzero photon mass
� is introduced to isolate the pole corresponding to the bound state a from the
related cut. To generate the perturbation series for Ea, it is convenient to use a
contour integral formalism developed first in operator theory by Szökefalvi-Nagy
and Kato [14], Kato [15, 16], Messiah [17], and Lepage [18]. Choosing a contour
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Im(E)

Fig. 3 Integration contour in complex E plane

� in the complex E plane in a way that it surrounds the pole corresponding to the
level a and keeps outside all other singularities (see Fig. 3), we have

1

2�i

I
�

dE Egaa.E/ D EaAa; (41)

1

2�i

I
�

dE gaa.E/ D Aa: (42)

Here we have assumed that the contour � is oriented counterclockwise.
Dividing Eq. (41) by (42), we obtain

Ea D
1

2�i

I
�

dE Egaa.E/

1

2�i

I
�

dE gaa.E/

(43)

It is convenient to transform Eq. (43) to a form that directly yields the energy shift
�Ea D Ea � E.0/

a . To this end we need to evaluate the zeroth order of the Green’s
function (38) and extract it from the total function. Substituting the operators

 in.0;x/ D
X
"n>0

bn n.x/C
X
"n<0

d�n n.x/; (44)

 in.0;x/ D
X
"n>0

b�n n.x/C
X
"n<0

dn n.x/ (45)

into Eqs. (24) and (25) instead of .0;x/ and .0;x/, respectively, and considering
the states jni in (24) and (25) as unperturbed states in the Fock space, one can find
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that every matrix element in the numerators of the fractions in (24) and (25) turns to
unity due to the ortho-normalization of the states. Then summation over all possible
permutations cancels the factor 1=N Š. Finally, selecting from entire sum only the
term proportional to 1=.E �E.0/

a /, we find

g.0/aa D
1

E �E.0/
a

: (46)

Defining �gaa D gaa � g.0/aa , from (43) we obtain the formula for the energy shift
[19]:

�Ea D
1

2�i

I
�

dE
�
E �E.0/

a

�
�gaa.E/

1C 1

2�i

I
�

dE �gaa.E/

: (47)

The Green’s function �gaa.E/ is constructed by perturbation theory, order by
order:

�gaa.E/ D �g.1/aa .E/C�g.2/aa .E/C � � � ; (48)

where the superscript denotes the order in ˛ (interaction constant). If we represent
the energy shift as a series in ˛

�Ea D �E.1/
a C�E.2/

a C � � � ; (49)

the formula (47) yields for two lowest orders

�E.1/
a D

1

2�i

I
�

dE �E �g.1/aa .E/; (50)

�E.2/
a D

1

2�i

I
�

dE �E �g.2/aa .E/

�
�
1

2�i

I
�

dE �E �g.1/aa .E/

� �
1

2�i

I
�

dE �g.1/aa .E/

�
; (51)

where �E � E � E.0/
a . One can of course continue this derivation for the higher

orders of perturbation theory. However, the calculations in Furry picture require
so intensive numerical calculations that modern computers allow the evaluation of
only two lowest orders of QED corrections. Moreover, the calculation of the one-
electron second-order QED corrections to all orders in ˛Z in the simplest case of
the hydrogen-like ion is not completed yet. See the �Chap. 6, “QED Effects and
Challenges” of this book for the details. Therefore we also restrict the derivation by
the second order.

http://dx.doi.org/10.1007/978-3-642-40766-6_26
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Fig. 4 Singularities of the photon propagator with nonzero mass �

In the previous section, deriving Eqs. (43) and (47), we assumed a nonzero
photon mass �. It allows to move all the cuts outside the contour � (see Fig. 3) and
also regularizes the infrared singularities of individual diagrams. In the Feynman
gauge, the photon propagator with nonzero photon mass � is

D��.!;x � y/ D �g��
Z

dk
.2�/3

exp .ik � .x � y//

!2 � k2 � �2 C i0 (52)

or, after integration,

D��.!;x � y/ D g�� exp .i
p
!2 � �2 C i0 jx � yj/
4�jx � yj ; (53)

where Im
p
!2 � �2 C i0 > 0. D��.!;x � y/ is an analytical function of ! in the

complex ! plane with cuts beginning at the points ! D ��C i0 and ! D � � i0
(see Fig. 4). The related expressions for the photon propagator with nonzero photon
mass in other covariant gauges are presented, e.g., in [12].

We know from the previous section that the singularities of the two-time Green’s
function in the complex E plane are defined by the unperturbed Hamiltonian if
it is constructed by perturbation theory. In particular, it means that in n-th order
of perturbation theory, gaa.E/ has poles of all orders till n C 1 at the position
of the unperturbed energy level under consideration. Therefore, in calculations by
perturbation theory, it is sufficient to consider the photon mass as a very small
parameter which provides a separation of the pole from the related cut. At the end
of the calculations after taking into account a whole gauge invariant set of Feynman
diagrams, we can put �! 0. The possibility of taking the limit �! 0 follows, in
particular, from the fact that the contour � can be shrunk continuously to the point
E D E.0/

a (see Fig. 3).
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Summarizing the result of the previous sections, we have derived the recipe of
evaluation of the energy shift of the bound level from the basic principles of QED.
To do so, one has to

• Define which order of the perturbation theory and what kind of diagrams are
considered;

• Construct the part of the 2N-time Green’s function, corresponding to the selected
diagrams, using Feynman rules from the section “2N -Times Green’s Function”;

• Evaluate the two-time Green’s function and the energy shift using Eqs. (47), (50),
and (51).

Some useful for practical calculations formulas, simplifying this procedure in the
simplest case of isolated level, can be found in Ref. [7]. In the next section, we will
demonstrate how to apply this method to the nontrivial case of quasi-degenerate
levels of two-electron ions.

Quasi-degenerate Levels

In the previous sections, we have discussed the TTGF method. In this section we
are going to demonstrate how to use this method for the case of quasi-degenerate
states of helium-like ions. In particular we are interested in the .1s2p1=2/1 and
.1s2p3=2/1 states, whose symmetry and total angular momentum are the same, and
the unperturbed zeroth-order energies are separated only by fine splitting. We select
this example because, on the one hand, it is a nontrivial case where all existed before
QED methods failed and, on the other hand, the two-electron case is rather simple
and allows to write all the formulas explicitly.

Let us start from the unperturbed wave functions. We define them as

u1 D
X
mamv

hjamajvmvjJM i 1p
2

X
P

.�1/P jPaPvi; (54)

u2 D
X
mbmw

hjbmbjwmwjJM i 1p
2

X
P

.�1/P jPbPwi; (55)

where a and b are taken to represent 1s orbitals while v and w are taken to represent
2p1=2 and 2p3=2 orbitals, respectively; P is the permutation operator:X

P

.�1/P jPaPvi D javi � jvai;

javi � jaijvi is the product of the one-electron Dirac wave functions. We use here
the jj coupling which is natural for high-Z few-electron atoms. The transition to the
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wave functions corresponding to the LS -coupling scheme can be done using the
following formula [20]:

� j1s2p 3P1i
j1s2p 1P1i

�
D R

 
j.1s2p1

2
/1i

j.1s2p3
2
/1i

!
; (56)

where

R D 1p
3

�p
2 �1
1
p
2

�
: (57)

According to the algorithm, given in the previous section, now we should define
the four-time Green’s function. The standard definition of this function in the
external field of the nucleus is (compare with Eq. (3))

G.x01; x02I x1; x2/ D h0jT .x01/ .x02/ N .x1/ N .x2/j0i: (58)

This Green’s function is constructed by perturbation theory after the transition to
the interaction representation where it is given by (see Eq. (4))

G.x01; x02I x1; x2/D
h0jT in.x

0
1/ in.x

0
2/ in.x2/ in.x1/ exp

�
i
R
d4zHint.z/

� j0i
h0jT exp

�
i
R
d4zHint.z/

� j0i :(59)

This equation allows to construct G using Wick’s theorem.
It is however more convenient to work with the Green’s function in the mixed

energy-coordinate representation, which is defined by

G.p001 ;x01; p002 ;x02Ip01;x1; p02;x2/ D
1

.2�/4

Z 1
�1

dx01 dx
0
2 dx

00
1 dx

00
2

� exp
�
ip001 x001 C ip002 x002 � ip01x01 � ip02x02

�
�G.x01; x02I x1; x2/:

(60)

The Feynman rules for G.p001 ;x01; p002 ;x02Ip01;x1; p02;x2/ are given in sec-
tion “2N -Times Green’s Function”.

Now we introduce the Green’s function g.E/ as

g.E/ ı.E �E 0/ D �

i

Z 1
�1

dp01 dp
0
2 dp

00
1 dp

00
2 ı

�
E � p01 � p02

�
�ı �E 0 � p001 � p002 � P0 G �p001 ; p002 Ip01; p02� 01 02 P0; (61)
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where P0 D P
k

uku�k is the projector on the subspace of the unperturbed quasi-

degenerate states under consideration. The main difference of this equation from
Eq. (38) is the space of unperturbed wave functions. While in the case of isolated
level the basis of this space is given by the single unperturbed function juai, in
quasi-degenerate case one should consider the two-(and possibly more-)dimensional
subspace.

It can be derived (see Ref. [7,21] for details) that the system under consideration
can be described by the set of two-dimensional Schrödinger-like equation (k D
1; 2),

H k D Ek k; (62)

where

H D P�1=2KP�1=2; (63)

K D 1

2�i

I
�

dE E g.E/; (64)

P D 1

2�i

I
�

dE g.E/; (65)

� is a contour in the complex E plane that surrounds the levels under con-
sideration but does not encircles other levels, and Ek are the exact energies
of the states under consideration. It is assumed that the contour � is oriented
anticlockwise. The operatorH in Eq. (62) is constructed by perturbation theory in ˛.
Substituting

g.E/ D g.0/.E/C g.1/.E/C g.2/.E/C � � � ; (66)

P D P .0/ C P .1/ C P .2/ C � � � ; (67)

K D K.0/ CK.1/ CK.2/ C � � � ; (68)

where the index indicates the order in ˛, we obtain

H.0/ D K.0/; (69)

H.1/ D K.1/ � 1
2
P .1/K.0/ � 1

2
K.0/P .1/; (70)

H.2/ D K.2/ � 1
2
P .2/K.0/ � 1

2
K.0/P .2/ � 1

2
P .1/K.1/ � 1

2
K.1/P .1/

C3
8
P .1/P .1/K.0/ C 3

8
K.0/P .1/P .1/ C 1

4
P .1/K.0/P .1/: (71)
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The solvability of Eq. (62) yields the basic equation for the calculation of the energy
levels

det.E �H/ D 0: (72)

As was noticed in Ref. [22], due to nonzero decay rates of excited states, the
matrix H becomes complex, and the self-adjoint part of H should be understood in
Eqs. (62) and (72):

H � .1=2/.H CH�/ : (73)

To the zeroth order in ˛, we have

g.0/.E/ D
2X
sD1

jusihusj
E �E.0/

s

; (74)

where E.0/
1 and E.0/

2 are the unperturbed energies of the .1s2p1=2/1 and .1s2p3=2/1
states, respectively. They are given by the sum of the one-electron Dirac–Coulomb
energies:

E
.0/
1 D "1s C "2p1=2 ; E

.0/
2 D "1s C "2p3=2 :

Substituting Eq. (74) into the definitions of K, P , and H , we find

K
.0/

ik D E.0/
i ıik; (75)

P
.0/

ik D ıik; (76)

H
.0/

ik D E.0/
i ıik; (77)

where Kik D hi jKjki, Pik D hi jP jki, and Hik D hi jH jki.
In order to illustrate the TTGF method, we present below the detailed derivation

of the correction to the quasi-degenerate energy levels .1s2p1=2/1 and .1s2p3=2/1
due to the one-photon exchange diagram (Fig. 5). On the one hand, this derivation
is much less cumbersome than that for the second-order corrections. On the other
hand, it demonstrates most essential features of the TTGF method applied to quasi-
degenerate case. For simplicity, in the derivation below, we will assume that the
unperturbed energy of the initial state i differs from that of the final state k: E.0/

i 6D
E
.0/

k (in the case under consideration, it corresponds to i 6D k). However, all the

final formulas can be shown to be valid also for the case E.0/
i D E.0/

k .
For the sake of brevity, we will use the short-hand notation for the summation

over the Clebsch–Gordan coefficients in Eqs. (54) and (55):

Fi ji1i2i �
X
mi1mi2

hji1mi1ji2mi2 jJM i ji1i2i: (78)
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Fig. 5 One-photon exchange
diagram

where ji1i2i is either javi or jawi. It is convenient also to use the notation for the
operator of the electron-electron interaction:

I .!/ D e2
X
��

˛
�
1 ˛

�
2 D��.!/; (79)

where ˛� D 0� D .1;˛/, andD�� denotes the photon propagator. For the matrix
elements of the operator I .!/, we will use the short-hand notation

Iijkl .!/ D hij jI .!/jkli: (80)

According to the Feynman rules and the definition of g.E/, the contribution of
the one-photon exchange diagram to the matrix elements gik.E/ D hi jg.E/jki is

g
.1/

ik .E/ D FiFk
	 i

2�


2 Z 1
�1

dp01 dp
00
1

X
P

.�1/P

� 1

.p001 � "P i1 C i0/.E � p001 � "P i2 C i0/

� IP i1P i2k1k2.p
00
1 � p01/

.p01 � "k1 C i0/.E � p01 � "k2 C i0/
: (81)

In order to evaluate the contour integrals in Eqs. (64) and (65), we must rewrite
the integrand in Eq. (81), separating the factors 1=.E �E.0/

i / and 1=.E �E.0/

k /. To
this end let us use the identities

1

.p00
1 � "P i1 C i0/.E � p00

1 � "P i2 C i0/
D 1

E �E.0/i

 
1

p00
1 � "P i1 C i0

C 1

E � p00
1 � "P i2 C i0

!
;

(82)
1

.p01 � "k1 C i0/.E � p01 � "k2 C i0/
D 1

E �E.0/k

 
1

p01 � "k1 C i0
C 1

E � p01 � "k2 C i0

!
:

(83)
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With their help we obtain

K
.1/

ik D FiFk
1

2�i

I
�
dE

E

.E �E.0/i /.E �E.0/k /

"�
i

2�

�2 Z 1

�1
dp01 dp

00
1

X
P

.�1/P

�
 

1

p00
1 � "P i1 C i0

C 1

E � p00
1 � "P i2 C i0

! 
1

p01 � "k1 C i0
C 1

E � p01 � "k2 C i0

!

�IP i1P i2k1k2 .p00
1 � p01/

#
: (84)

The expression in the square brackets is an analytical function of E inside the
contour � , if the photon mass � is chosen properly (see Refs. [21, 22]). Carrying
out the E integration by Cauchy’s theorem and taking into account that

�
i

2�

��
1

x C i0 C
1

�x C i0
�
D ı.x/; (85)

we obtain

K
.1/

ik D FiFk
(
i

2�

Z 1
�1

dp01

X
P

.�1/P E
.0/
i IP i1P i2k1k2."P i1 � p01/

E
.0/
i �E.0/

k

�
 

1

p01 � "k1 C i0
C 1

E
.0/
i � p01 � "k2 C i0

!

C i

2�

Z 1
�1

dp001
X
P

.�1/P E
.0/

k IP i1P i2k1k2.p
00
1 � "k1/

E
.0/

k �E.0/
i

�
 

1

p001 � "P i1 C i0
C 1

E
.0/

k � p001 � "P i2 C i0

!)
: (86)

In the same way, we find

P
.1/

ik D FiFk
(
i

2�

Z 1
�1

dp01

X
P

.�1/P IP i1P i2k1k2."P i1 � p
0
1/

E
.0/
i �E.0/

k

�
 

1

p01 � "k1 C i0
C 1

E
.0/
i � p01 � "k2 C i0

!

C i

2�

Z 1
�1

dp001
X
P

.�1/P IP i1P i2k1k2.p
00
1 � "k1/

E
.0/

k �E.0/
i

�
 

1

p001 � "P i1 C i0
C 1

E
.0/

k � p001 � "P i2 C i0

!)
: (87)
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Substituting Eqs. (86) and (87) into Eq. (70), we get

H
.1/

ik D FiFk
(
i

4�

Z 1
�1

dp01

X
P

.�1/P IP i1P i2k1k2."P i1 � p01/

�
 

1

p01 � "k1 C i0
C 1

E
.0/
i � p01 � "k2 C i0

!

C i

4�

Z 1
�1

dp001
X
P

.�1/P IP i1P i2k1k2.p001 � "k1/

�
 

1

p001 � "P i1 C i0
C 1

E
.0/

k � p001 � "P i2 C i0

!)
: (88)

Introducing the notations �1 D "P i1 � "k1 and �2 D "P i2 � "k2 , we can rewrite
Eq. (88) as follows:

H
.1/

ik D FiFk
i

8�

Z 1
�1

d!
X
P

.�1/P IP i1P i2k1k2.!/
�

1

! C�1 C i0 C
1

�2 � ! C i0

C 1

! C�2 C i0 C
1

�1 � ! C i0 C
1

! ��1 C i0 C
1

��2 � ! C i0

C 1

! ��2 C i0 C
1

��1 � ! C i0
�

D FiFk 1
4

Z 1
�1

d!
X
P

.�1/P IP i1P i2k1k2.!/

�
h
ı.! C�1/C ı.! ��1/C ı.! C�2/C ı.! ��2/

i
: (89)

Taking into account that I .z/ D I .�z/, we finally obtain [22, 23]

H
.1/

ik D FiFk
1

2

X
P

.�1/P ŒIP i1P i2k1k2.�1/C IP i1P i2k1k2.�2/� : (90)

The derivation of the second-order diagrams is rather lengthy and cannot be
discussed within a single chapter of the book. Only publication of final formulas
in this case would occupy more than two pages. Those who are interested in further
application of this technique to the quasi-degenerate levels can find in Ref. [24] the
detailed derivation and evaluation of all low-lying levels in helium-like ions. The
evaluations are performed for the wide range of the nuclear charges 12 	 Z 	 100
up to second order of the perturbation theory. The lowest uncalculated terms have
the orders ˛3.˛Z/2 and ˛2.˛Z/7. To date, it is the most accurate evaluation of the
energy levels of two-electron ions.
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Summary

In summary we have presented in this chapter the two-time Green’s function
method – the powerful method allowing to derive the computational formulas from
the basic principles of QED. We have discussed the main features of the method and
demonstrated its application to the evaluation of the one-photon exchange diagram
contribution to the energy shift of the quasi-degenerate levels.
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Abstract

A unified procedure for many-body perturbation theory and quantum elec-
trodynamics has been constructed by the Gothenburg group, based upon the
recently developed covariant-evolution-operator method. This is a form of time-
or energy-dependent perturbation theory, where all perturbations, including
relativity and quantum electrodynamics, are built into the wave function, which
is a necessary requisite for a true unification. The procedure is based upon
the use of the Coulomb gauge, where the dominating part of the electron-
electron interaction is expressed by means of the energy-independent Coulomb
interaction and only the weaker energy-dependent transverse part by means of
the covariant field theoretical expression. This leads to a more effective way of
treating quantum electrodynamics in combination with electron correlation than
the traditional purely quantum electrodynamical procedures. This will make it
possible to go beyond two-photon exchange, which until now has been possible
only for the lightest elements. The procedure has been implemented on highly
charged helium-like ions.

The procedure was primarily developed for static properties, but it is also
applicable to dynamical processes, like scattering processes and electronic
transition rates, as has recently been demonstrated.

Keywords
Covariant evolution operator • Electron correlation • Electron self energy •
Green’s operator • Model-space contribution • Perturbation theory • Quasi-
degeneracy • Quantum electrodynamics • Relativity • Vacuum polarization •
Vertex correction

Introduction

Many-body perturbation theory (MBPT) and its all-order variants, particularly var-
ious coupled-cluster approaches (CCAs), have been quite successful in describing
the correlational effects of quantum chemical systems to a high degree of accuracy
(see, for instance, Ref. [1]). Also relativity can here be handled in the standard “no-
virtual-pair” approximation. On the other hand, effects of quantum electrodynamics
(QED) beyond that approximation cannot be included – at least not in any systematic
fashion – effects that become increasingly important as the demand for higher
accuracy becomes more pronounced.

One systematic procedure is, of course, to perform a full QED calculation and to
treat all effects, including electron correlation, in terms of fully covariant multi-
photon interactions. This is, however, an extremely inefficient way of treating
electron correlation in cases where this is important, and more efficient approaches
have to be found.

Several procedures have been developed for pure QED calculations on electronic
systems. The most frequently used is the S-matrix formulation [2]. Another
approach is the two-time Green’s function (TTGF) method, developed by Shabaev
and coworkers [3] in St Petersburg, and the other approach is the Green’s operator
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procedure, based upon the covariant-evolution-operator (CEO), developed by the
Gothenburg group [4]. For practical reasons, these procedures in their original
form can only be applied to one- and two-photon exchange, which implies that the
electron correlation is treated only to the lowest order. This is sufficient and works
well for heavy, highly charged ions, where the electron correlation is comparatively
weak, but less so for other systems, particularly in the light or medium-heavy region.

For lighter elements, it is possible to expand the electron interactions, including
QED and relativity, in a perturbation expansion in powers of ˛ and Z˛, where ˛
is the fine-structure constant and Z is the nuclear charge, a procedure introduced
and employed for a long time by Drake and coworkers [5, 6] and developed more
recently to a high degree of sophistication by Pachuchi, Yerokhin, Sapirstein, and
others [7–10]. This works very well for light elements but converges slowly for
heavier ones.

In a standard MBPT expansion, QED contributions can be included in the form
of first-order energy corrections, a procedure successfully applied particularly by
the Notre Dame group [11]. For a genuine unification, however, it is required that
the QED perturbations are contained in the many-body wave function – not just
added to the final MBPT energy – which is not possible with the standard MBPT
procedures.

Of the three methods for QED calculations, mentioned above, the first two (S-
matrix and TTGF) can only give information about the energy, while the last method
(Green’s operator) can also yield contributions to the wave function. This latter
property suggests that it could serve as a basis for a unification of MBPT and
QED. Such a unified procedure has recently been developed and is presently being
implemented by the Gothenburg group [12–15].

In QED calculations, covariant gauges, like the Feynman gauge, are normally
used. The basic idea of the unified QED-MBPT approach presented here, however,
is that the non-covariant Coulomb gauge is used, where the Coulomb interaction
between the electrons is represented by the instantaneous interaction and only the
weaker transverse part is time dependent. In combining this with the covariant-
evolution procedure, the time-independent Coulomb interaction and time-dependent
QED interactions can be mixed arbitrarily. This is a legitimate procedure that
is much more effective in treating the combined effect than the conventional
procedures.

One fundamental problem in combining MBPT and QED is that they have quite
different structures. MBPT is based upon standard quantum mechanics with a single
time – the same for all particles – while QED is based on relativistic field theory with
individual time for each particle. In order to reconcile the two, one way is to sacrifice
the full covariance and apply the equal-time approximation with the same time for
all particles. This approximation can have serious effects in high-energy physics but
fortunately seems to have very small effect on problems in quantum chemistry (see,
for instance, the discussion in the Introduction of Ref. [15]).

By far, the most important interaction for normal quantum-chemistry systems
is the Coulomb interaction. With the CEO-based procedure, this interaction can be
included essentially to all orders, as in standard MBPT and CCA procedures, leading
to a correlated wave function. Simultaneously QED perturbations can be included
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in the expansion to some low order. The important thing here is that the QED effects
are included into the wave function, not only added to the energy. Furthermore, the
QED effects need only be considered to the degree that they are expected to be
significant. Including only first-order QED effects in the correlated wave function
will yield effects that go beyond what has been achieved so far in other approaches.
In addition, the most important higher-order QED effects can in this procedure be
included by iteration.

Ultimately, the Green’s operator procedure, taken to all orders, can be shown
to be equivalent to the Bethe-Salpeter equation for two-electron systems [12, 15],
which demonstrates its relativistic covariance. It can be regarded as a perturbative
procedure for this equation, where certain effects can be treated to higher orders
than others (at some expense of the full covariance).

We shall begin this chapter with a review of the standard method of perturbation
theory and then discuss how this can be combined with QED by means of the
Green’s operator (CEO) method. The covariant-evolution-operator (CEO) becomes
(quasi)singular, when an intermediate state is (quasi)degenerate with the initial one.
The elimination of these singularities leads to the Green’s operator, which can be
regarded as a time-dependent form of the wave operator of standard MBPT. There-
fore, this procedure leads to a generalization of standard MBPT to a time- or energy-
dependent regime. It is then possible to include the energy-dependent QED pertur-
bations directly into the correlated MBPT wave function, which leads to a true unifi-
cation. In this way, effects can be evaluated that have previously been beyond reach.

Standard Perturbation Theory

As an introduction, we shall review the standard nonrelativistic many-body pertur-
bation theory (MBPT) (see, for instance, Ref. [16]). We partition the Hamiltonian
for atomic and molecular systems into a model Hamiltonian and a perturbation:

H D H0 C V; (1)

where the model HamiltonianH0 is a sum of Schrödinger single-electron operators:

H0 D
X
n

h0.n/ (2)

and the perturbation V is mainly the electron-electron interaction. The electron
orbitals used in the calculations are generated by the single-electron Schrödinger
equation:

h0�i .x/ D "i�i .x/; (3)

where

h0 D Op
2

2m
C vext.x/: (4)
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Here, Op D �i„r is the momentum operator, „ the Planck’s constant divided by
2� , m the electron mass, and vext.x/ the external (mainly nuclear) potential. This is
known as the Furry picture.

In relativistic theory, the Schrödinger operator is replaced by the corresponding
Dirac operator:

hD D c˛ � OpC ˇmc2 C vext; (5)

where ˛; ˇ are the Dirac operators.
In the many-body theory, we consider a number of target states, satisfying the

many-body Schrödinger equation

H�˛ D E˛�˛ .˛ D 1 � � � d/; (6)

which form a target space. We define also a model space (with the projection
operator P ), composed of eigenstates of the model Hamiltonian, with the same
dimensionality and with a large overlap with the target space. For each target state,
there exists a model state, which in intermediate normalization is the projection on
the model space:

�˛
0 D P�˛: (7)

These states are not necessarily orthogonal, but they are normally linearly indepen-
dent, so that they span the entire model space.

The orbitals are separated into:

• core orbitals, occupied in all configurations of the model space;
• valence orbitals, occupied in some configurations of the mode space;
• virtual orbitals, unoccupied in the entire model space.

A state with no valence orbitals is said to be a closed-shell state, as opposed to an
open-shell state.

A wave operator transforms the model states to the full-target states:

�˛ D ˝�˛
0 .˛ D 1 � � � d/: (8)

An effective Hamiltonian can be defined, so that it generates the exact energies,
when operating on the model functions:

Heff�
˛
0 D PH˝�˛

0 D E˛�˛
0 : (9)

This can be separated into a zero-order part and a perturbative part:

Heff D PH0P CW; (10)

where
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W D PV˝P (11)

is known as the effective interaction.
It can then be shown that in intermediate normalization, the wave operator

satisfies the generalized Bloch equation [17]:�
˝;H0

�
P D �˝H0 �H0˝

�
P D �V ˝ �˝W �

P: (12)

This is valid for a general, multilevel (quasidegenerate) model space. If all model
states are exactly degenerate (with energy E0), this reduces to the original Bloch
equation [18]: �

E0 �H0

�
˝P D �V ˝ �˝W �

P: (13)

The Bloch equations (13) and (12) can generate the Rayleigh-Schrödinger
perturbation expansions for a degenerate and a quasidegenerate model space,
respectively.

It is convenient to represent the various terms of the perturbation expansions
in terms of diagrams, introduced by Feynman and others in quantum field theory
in the 1940s and later used in nuclear as well as atomic MBPT (see, for instance,
Ref. [16]).

In the diagrammatic representation, the Bloch equation can give rise to terms
that are linked and unlinked. A diagram is called unlinked if it has a separate piece
that is “closed,” i.e., with the initial and final states in the model space. This is the
case for the last term˝W , if there is no connection between the two operators. The
unlinked part is essentially canceled by similar terms originating from the first term,
V ˝, while the linked ones survive. This is the linked-diagram theorem.

It was conjectured by Brueckner in 1955 [19] that the unlinked terms in
the Rayleigh-Schrödinger expansion must vanish for physical reasons, since they
increase nonlinearly with the size of the system. This was a few years later formally
demonstrated to all orders by Goldstone [20], using field theoretical methods. This
has led to the linked-diagram expansion:�

˝;H0

�
P D �V ˝ �˝W �

linkedP; (14)

which holds also for a quasidegenerate model space, provided that the model space
is complete, i.e., containing all configurations that can be formed by the valence
orbitals. The linked-diagram theorem also holds under certain conditions for an
incomplete model space [21].

The connected (linked) part of the last term of the Bloch equation (14), which
appears only for open-shell systems, is known as the folded term, the reason being
that it is traditionally represented by folded Goldstone diagrams, as illustrated in
Fig. 1. The Goldstone diagrams, normally used in conventional perturbation theory,
are time ordered, in contrast to the originally introduced Feynman diagrams, which
contain all possible time orderings. When all relative time orderings are considered,
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Fig. 1 Illustration of a “folded” diagram, described in the text. The dashed lines represent
electrostatic interactions. The heavy, solid lines represent bound-state orbitals, generated in the
Furry picture. The “backward” lines represent valence orbitals. In the figure to the right, the fold is
indicated by a double solid line

the legs of the diagram of ˝W do factorize into a product of a wave-operator part
and an effective-operator part [16]. In the relativistic treatment, it is more natural
to employ Feynman diagrams, which automatically contain all time orderings, and
then it is no longer motivated to draw the diagram in a folded way. Therefore, we
shall here draw them straight, as indicated to the right in the figure. We shall follow
the convention, though, and still refer to these diagrams as “folded.”

The existence of the linked-diagram theorem has simplified the practical han-
dling of the perturbation expansion enormously in that the number of terms that
have to be considered is considerably reduced [16].

The cancelation of the nonlinear terms implies that the Rayleigh-Schrödinger
expansion and the linked-diagram version are size extensive, i.e., with the energy in
each order increasing linearly with the size of the system, in contrast, for example,
to the Brillouin-Wigner perturbation expansion.

For a degenerate part of the model space of energy E, with the projection operator
PE, the Bloch equation becomes

˝PE D PE C � .E/
�
V ˝ �˝W �

PE; (15)

where

� .E/ D 1

E �H0

(16)

is the resolvent. We shall later also need the reduced resolvent:

�Q.E/ D Q� .E/ D Q

E �H0

; (17)

where

Q D 1 � P (18)

is the projection operator for the orthogonal space outside the model space.
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Omitting the last term of the Bloch equation (15) leads to the expansion without
folds:

˝PE D
�
1C � .E/V C � .E/V � .E/V C � � � �PE: (19)

This becomes (quasi)singular, when a state (intermediate or final) lies in the model
space. The singularities are removed by the last term of the Bloch equation, �˝W ,
but there is a finite remainder, which is represented by the linked part of this
term. This is referred to as the model-space contribution. (This is also referred to
as the reference-state contribution in cases where only a single reference state is
considered.) This is the folded part, mentioned above. We shall see that it plays an
important role in the generalization to the energy-dependent formalism that we are
presently considering.

All-Order Methods: Coupled-Cluster Approach

In the perturbation expansion, certain effects, such as the pair correlation, can be
treated iteratively to arbitrary order by separating the wave operator by means of
second quantization into one-body, two-body, etc., parts:

˝ D ˝1 C˝2 C � � � : (20)

This leads to the coupled equations:�
˝n;H0

�
P D �V ˝ �˝W �

linked;nP : (21)

Expanding the two-body part (without singles) leads to the pair function,
illustrated in Fig. 2. This satisfies the pair equation:�

˝I;H0

�
P D �V ˝I �˝IWI

�
linked;2P; (22)

where

Fig. 2 Expanding the two-body part of the wave operator (without singles) leads to the pair
function. The solid vertical lines represent bound-state orbitals, generated in the Furry picture
(Eq. 3). The lines with upgoing arrows represent virtual or valence orbitals. The incoming lines
(without arrows) represent core or valence orbitals
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WI D PV˝IP (23)

is the corresponding effective interaction. The pair function is then expanded in
terms of the electron orbitals (3):

˝I.1; 2/ D
X
i;j

ci;j �i .1/�j .2/: (24)

Together with the exponential Ansatz

˝ D eT D 1C T C 1
2
T 2 C � � � (25)

the all-order procedure leads to the coupled-cluster approach with the cluster
operator T being a sum of one- and two-body operators, T D T1CT2C� � � . For the
open-shell case, it is convenient to define the cluster operator by means of normal
ordering, which removes the spurious contractions between valence orbitals [22]
that otherwise may occur:

˝ D feT g D 1C T C 1
2
fT 2g C � � � : (26)

Here, the curly brackets represent normal ordering. The diagrams of the cluster
operator are for a complete model space (see above) connected and satisfied in the
normal-ordered case the Bloch-type equation:�

T;H0

�
P D �V ˝ �˝W �

connectedP: (27)

(The expansion can be connected also under somewhat more general conditions,
as demonstrated by Mukherjee [21, 23].) Note the difference between “linked” and
“connected.” A linked diagram can be disconnected, if all parts are open (see, for
instance, Ref. [16] for a detailed account).

The coupled-pair equation becomes in analogy with the pair equation in Eq. (22):�
T2;H0

�
P D �V ˝2 �˝2W2

�
connected;2P: (28)

Solving these equations self-consistently is known as the coupled-cluster doubles
(CCD) approach. The wave operator is then approximated by

˝ D 1C T2 C 1
2
fT 22 g C � � � : (29)

One example of a coupled-pair contribution to the term V ˝2 is displayed in Fig. 3.
In the coupled-pair approximation, the most important quadrupole excitations,

which are the most important ones beyond doubles, are included by means of pair
functions only. The first CCD calculations were performed in the late 1970s [24–26].



322 I. Lindgren and P. Indelicato

Fig. 3 An example of a
coupled-pair contribution to
V ˝2 in Eq. (22). The heavy
horizontal line represents the
pair function in Fig. 2

A better approximation than CCD is

T D T1 C T2; (30)

known as coupled-cluster singles and doubles (CCSD), where the coupled equations
for T1 and T2 are solved self-consistently. The first calculation of this kind was
performed by Bartlett and Purvis in the early 1980s [27]. Singles have most
pronounced effect for valence orbitals, which then become (approximate) Brueckner
orbitals [28, 29]. Brueckner orbitals are characterized by the fact that there are no
single excitations in any order of perturbation. (Compare Hartree-Fock orbitals for
which there are no singles in first order [16, Chapter 12].)

For open-shell systems, a serious problem in perturbation theory is the appear-
ance of so-called intruder states, i.e., states outside the group of target states that
cross one or several target states as the perturbation is gradually turned on. Various
schemes have now been developed to avoid or reduce this effect (see Ref. [1] for a
recent review).

Multi-configuration Hartree/Dirac-Fock (MCHF/MCDF)

Alternatives to the perturbation expansion are the multi-configuration Hartree/Dirac-
Fock methods, which are extensions of the standard self-consistent field methods,
Hartree-Fock and Dirac-Fock. Here, the energy is minimized by varying the electron
orbitals as well as the mixing of configurations, which implies that the electron
correlation is included essentially to all orders [30]. In neither scheme, QED effects
are included, but first-order QED effects can be added separately to the energy as in
the MBPT case.

Relativistic MBPT

The standard relativistic MBPT is based upon the Dirac-Coulomb-Breit approxima-
tion [31]:
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H D �C
h NX
iD1

hD.i/C
NX
i<j

e2

4�rij
CHB

i
�C; (31)

HB D � e
2

8�

X
i<j

h˛i � ˛j
rij

C .˛i � rij /.˛j � rij /
r3ij

i
; (32)

where hD is the single-electron Dirac Hamiltonian (5) and ˛i is the vector part of
the Dirac ˛ matrices for particle i. The projection operators �C eliminate negative-
energy states. This is known as the no-(virtual)-pair approximation (NVPA). The
operator HB is known as the Breit interaction, containing magnetic interactions
between the electrons as well as some relativistic retardation effects.

Fock Space

Several approaches have been suggested in order to include the correlation between
negative-energy states (NES) into the relativistic Hamiltonian. Kutzelnigg has intro-
duced a so-called Fock-space approach, starting from a normal-ordered Hamiltonian
in the particle-hole formalism [32]. This procedure takes into account the effect of
NES, using the instantaneous Coulomb interaction only:

VC D 1

4��0r12
; (33)

where r12 is the electron-electron separation. Some QED effects are also included
indirectly. The procedure has been modified by Liu, who introduced a charged-
conjugated-contraction (CCC) potential with the effect that the first-order QED
corrections are included in a more consistent way [33, 34]. The first-order QED
effects included in the extended procedure are shown in Fig. 4 (compare Fig. 5).
The QED parts have to be properly renormalized.

Fig. 4 First-order QED effects included in the extended Fock-space Coulomb-only procedure,
from left electron vacuum polarization, single-electron self-energy, two-electron vertex correction,
and two-electron vacuum polarization (photon self-energy). Again, solid vertical lines represent
bound-state orbitals, generated in an external field (Ferry picture, Eq. 3)
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Fig. 5 Examples of low-order QED effects (single transverse photon)

QED Effects

The effects beyond NVPA are conventionally defined as QED corrections, which
are of the order ˛3 or higher (atomic units). Here, ˛ is the fine-structure constant
(�1=137), and the energy unit is the atomic unit, 2hcRy , where h is Planck’s
constant, c the speed of light in vacuum, and Ry the Rydberg constant. These
corrections involve retardation of the electromagnetic interaction and the effect of
virtual electron-positron pairs, as well as the so-called radiative corrections, namely
the electron self-energy and vacuum polarization, the photon self-energy (a form of
vacuum polarization), and the vertex correction (see Fig. 5).

Full QED Treatment

QED Methods

A full QED treatment requires that also the retardation of the electromagnetic
interaction is taken into account (beyond the level included in the Breit interaction),
which has an effect of the same order as that of negative-energy states and of
the radiative interactions. This can be achieved by means of the field theoretical
expression for the interaction between the electrons and the radiation field:

H.x/ D � O �.x/ ec˛�A� O .x/: (34)

Here, O ; O � are the electron-field operators, ˛� D ˇ� the Dirac operators, andA�
the electromagnetic field. An adiabatic damping is applied so that the perturbation
vanishes as time goes to˙1.

There exist several standard methods for QED calculations; the most frequently
used methods are:

• S-matrix formulation [2],
• Two-time Green’s function, developed by Shabaev et al. at St. Petersburg [3],
• Covariant-evolution-operator method (CEO), developed by the Gothenburg

group [4].
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All three methods are in practice limited to two-photon exchange, which implies
that the electron correlation is treated only to the lowest order. The CEO method,
however, can be modified so that also higher-order correlation can be included
(Green’s operator), as we shall describe in the following.

In traditional QED, the entire electron-electron interaction is treated by means
of the covariant expression (34). This is, however, a very inefficient way of treating
the electron correlation, which plays an important role in most quantum chemical
systems. Therefore, we shall here discuss an alternative procedure, introduced by
the Gothenburg group. Here, the dominating Coulomb interaction (33) between
the electrons is treated by means of the standard Coulomb interaction and only the
transverse part of the interaction by means of the field theoretical expression (34).
This is a non-covariant procedure, based upon the Coulomb gauge, which, however,
is quite legitimate and turns out to be a much more efficient way of treating
the electron correlation in combination with QED. The Coulomb gauge is more
complicated to use in QED than the more frequently used covariant gauges, like
the Feynman gauge, but the problems involved have recently been solved by the
Gothenburg group [35, 36], based upon works of Adkins [37, 38].

The Covariant Evolution Operator

We shall now introduce the covariant-evolution-operator method and see later how
this can lead to the Green’s operator that can be used to combine QED with electron
correlation to arbitrary order (see [4, 13, 15]).

We start by considering the field theoretical single-particle Green’s function,
which in the single reference case can be defined [39] as

G.x; x0/ D
˝
0H

ˇ̌
T Œ O H.x/ O �

H.x0/�
ˇ̌
0H
˛

h0Hj 0Hi ; (35)

where T is the Wick time-ordering operator and O H; O �
H are the electron-field

operators in the Heisenberg representation („ D 1 ),˝
�H

ˇ̌ D eiHt
˝
�S

ˇ̌
; (36)

where
˝
�S

ˇ̌
is the Schrödinger representation.

The state j0Hi represents the vacuum in this representation, i.e., the state with no
particles or holes. Both the numerator and the denominator of the definition (35) can
be singular in the limit of vanishing damping, but the ratio is always regular.

The standard, nonrelativistic evolution operator represents the time evolution of
the nonrelativistic wave function or state vector:

�.t/ D NU.t; t0/ �.t0/; (37)
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Fig. 6 Comparison between the standard evolution operator, the Green’s function, and the
covariant-evolution-operator for single-photon exchange in the equal-time approximation

where N is a normalization constant. This is illustrated for single-photon exchange
in the first diagram of Fig. 6. Here, only particle states (positive energy) are
involved, and time flows only in the positive direction. Therefore, this operator
is not relativistically covariant. The second diagram represents the corresponding
Green’s function, where the free lines are replaced by electron propagators, allow-
ing positive- and negative-energy states, making the concept covariant. The last
diagram represents the corresponding covariant-evolution-operator (CEO), where
in addition electron field operators are attached to the free ends, making the CEO an
operator, while the Green’s function is a function.

Generally, the single-particle covariant-evolution operator can be defined as

U 1
Cov.t; t0/ D

ZZ
d3x d3x0 O �.x/

˝
0H

ˇ̌
T Œ O H.x/ O �

H.x0/�
ˇ̌
0H
˛ O .x0/; (38)

using the same vacuum expectation as in the definition of the Green’s function (35).
In the interaction picture, ˝

�I

ˇ̌ D eiH0t
˝
�S

ˇ̌
; (39)

where H0 is the model Hamiltonian (1), this leads to the expansion

U 1
Cov.t; t0/ D

1X
nD0

1

nŠ

ZZ
d3x d3x0

	�i

c


n Z
d4x1 � � �

Z
d4xn

� O �.x/ T
h O .x/H.x1/ � � �H.xn/ O �.x0/

i O .x0/ e�.jt1jCjt2j��� /; (40)

coupled to a one-body operator. Here,  is the parameter of the adiabatic damping.
Note that a contraction of TWO interactions of H is needed to form a single-photon
exchange. Generally, when the evolution operator contains unpaired interactions of
the type (34), it will fall in the photonic Fock space, where the number of photons
is no longer conserved.
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The CEO represents the time evolution of the relativistic state vector

�Rel.t/ D NUCov.t; t0/ �Rel.t0/ (41)

in analogy with the nonrelativistic relation (37).

Energy-Dependent Perturbation Theory: The Green’s Operator

We consider now the CEO for a two-particle ladder (Fig. 7), analogous to the
Coulomb ladder in the pair function in Fig. 2 but with a general energy-dependent
interaction, V , (cf. Eq. 19):

UCov.t;�1/ PE D e�it.E�H0/�1C � .E/ V .E/C � .E/ V .E/ � .E/ V .E/C � � � �PE;
(42)

where PE represents the projection operator for a degenerate part of the model space
of energy E and � .E/ is the corresponding resolvent (16). We shall in the following
always assume that the initial time is t0 D �1, which implies – with the adiabatic
damping – that we start from an unperturbed state.

Intermediate model-space states may lead to (quasi)singularities. It can be shown
that the covariant evolution operator can be separated into a regular part G.t;�1/,
referred to as the Green’s operator, and a part containing all the singularities:

U.t;�1/P D G.t;�1/ � PU .0;�1/P: (43)

Here, the heavy dot indicates that the Green’s operator acts on the intermediate
model-space state.

From the relations (41) and (43) we have

�˛.t/ D N˛U .t;�1/�˛.�1/ D G.t;�1/ �N˛PU .0;�1/�˛.�1/; (44)

but N˛PU .0;�1/�˛.�1/ is the model function (Eq. 7), �˛
0 D P�˛ , showing

that the Green’s operator acts as a time-dependent wave operator:

UCov(t,−∞) = 1+
� �

�

PE

+ �

�

�

�

�

�
+

PE

�

�

�

�

�

�

�

�

�

+ · · ·

PE

· ·
· ·

· ·

· ·

· ·

· ·

Fig. 7 Ladder diagrams of the covariant-evolution-operator (cf., Fig. 2)
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�˛.t/ D G.t;�1/�˛
0 : (45)

For time t D 0, the Green’s operator becomes equivalent to the standard MBPT
wave operator (8):

˝ D G.0/; (46)

which demonstrates the close analogy between the QEO procedure and standard
MBPT. The covariant effective interaction (Eq. 11) is found to be

W D P
	

i
@

@t
G.t/



tD0P: (47)

Model-Space Contributions

Lowest Orders
We shall now look closer at the singularities due to intermediate model-space states,
which play an important role in the procedure we are now developing. The covariant
evolution operator and the Green’s operator can have the final state in the model
space P as well as in the complementary space Q. Here, we shall restrict ourselves
to the latter case with the final state in the Q space. Furthermore, we shall leave out
the initial time �1 and include the energy parameter. The definition (43) can then
be expressed as

U.t; E/PE D G.t; E0/PE0U.0; E/PE (48)

or

G.t; E/PE D U.t; E/PE � G.t; E0/PE0
�
U.0; E/ � 1�PE: (49)

The last term is referred to as the counterterm that eliminates the singularities of the
evolution operator, leaving a finite residue, known as the model-space contribution.
Note that the parameter of the Green’s operator of the counterterm is the energy of
the intermediate model-space state (E0), while the energy parameter of all factors of
the evolution operator (42) are equal to the energy of the initial state (E).

According to (42), the first-order Green’s operator, which is equal to the first-
order evolution-operator, is

G.1/.t; E/PE D U .1/.t; E/PE D G.0/ � .E/V .E/PE: (50)

where G.0/ D e�it.E�H0/: The second-order evolution operator can then be expressed
as

U .2/.t; E/PE D U .1/.t; E/ U .1/.0; E/PE D G.1/.t; E/ U .1/.0; E/PE: (51)
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If there is an intermediate model-space state, this becomes

G.1/.t; E/PE0U .1/.0; E/PE: (52)

(Note, the parameter E of the Green’s operator.)
From the definition (49), we have a counterterm

� G.1/.t; E0/PE0U .1/.0; E/PE (53)

(note, the parameter E0), yielding the second-order Green’s operator

G.2/.t; E/PE D U .2/
0 .t; E/PE C

h
G.1/.t; E/ � G.1/.t; E0/

i
PE0U .1/.0; E/PE:

Here, U0 � G0 represents the evolution operator without any model-space state. But

PE0U .1/.0; E/PE D PE0�Q.E/V .E/PE D PE0
V .E/
E � E0PE; (54)

and we then have

G.2/.t; E/PE D G.2/0 .t; E/PE C ıG.1/.t; E/
ıE PE0W .1/PE; (55)

where W .1/ is the first-order effective interaction

W .1/ D PVP; (56)

and

ıG.1/.t; E/
ıE D G.1/.t; E/ � G.1/.t; E0/

E � E0 (57)

is a difference ratio that turns into a partial derivative in the case of complete
degeneracy. The last term in (55) represents the second-order Green’s operator with
one model-space state

G.2/1 D
ıG.1/.t; E/

ıE PE0W .1/PE: (58)

The relation (55) is illustrated in Fig. 8, where the first diagram represents the
part without model-space state, G.2/0 , and the second one that with one such state,

G.2/1 . The latter corresponds to the “folded” diagram in standard MBPT (compare
Fig. 1).

The second-order relation (55) can with somewhat simplified notations for t D 0
be expressed as
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Fig. 8 Elimination of the singularity of the second-order evolution operator due to intermediate
model-space states (Eq. 55). The last diagram is the finite remainder or “folded” diagram,
corresponding to the folded diagram in the standard MBPT procedure (Fig. 1)

G.2/ D G.2/0 C
ıG.1/
ıE W .1/ D �QV G.1/ C ıG.1/

ıE W .1/ (59)

or

G.2/ D � .E/V G.1/ � �QG.1/W .1/ C �Q ıV
ıE W

.1/: (60)

We then see that this is quite analogous to the second-order expression obtained
from the Bloch equation (15). The folded term of the Bloch equation corresponds
to the second term in (59) or to G.2/1 in (58), which has an extra term (60) due to the
energy dependence of the interaction.

Higher Orders
We can generalize the treatment above, first to the general case with a single model-
space state. The evolution operator with a single model-space state can generally be
expressed as

U1.t; E/PE D U0.t; E/PE0
�
U0.0; E/ � 1

�
PE; (61)

where U0 represents the operator without model-space states. According to (49), we
have a counterterm:

U1.t; E/PE D �G0.t; E0/PE0
�
U0.0; E/ � 1

�
PE; (62)

where we again note the energy parameter E0. This yields the Green’s operator with
a single model-space state

G1.t; E/PE D ıG0.t; E/
ıE W0PE; (63)

where W0 is the effective interaction without intermediate model-space states.
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Fig. 9 Graphical representation of the third-order Green’s operator (67)

The process can be continued, leading to

G.t; E/ D G0.t; E/C G1.t; E/C G2.t; E/C � � �

D G0.t; E/C
hıG0.t; E/

ıE C ıG1.t; E/
ıE C � � �

i
W0PE (64)

or

G.t; E/ D G0.t; E/C ıG.t; E/
ıE W0: (65)

The corresponding equation for the effective interaction is

W D W0 C ıW

ıE W0: (66)

The third-order Green’s operator becomes, using the formula above,

G.3/ D G.3/0 C
ıG.2/
ıE W .1/ C ıG.1/

ıE W
.2/
0

D G.3/0 C
ıG.2/0
ıE W .1/ C ıG.2/1

ıE W
.1/
0 C

ıG.1/
ıE W

.2/
0 ; (67)

which is illustrated in Fig. 9. W .n/
0 represents the effective interaction of order

n without intermediate model-space states, and G.2/1 represents the second-order
Green’s operator with one fold (58).

Using the expression (58), the third-order Green’s operator can also be expressed
as

G.3/ D G.3/0 C
ıG.2/0
ıE W .1/ C ıG.1/

ıE W .2/ C ı2G.1/
ıE2

�
W .1/

�2
; (68)

where W .2/ D W
.2/
0 CW .2/

1 is the second-order effective interaction with zero and
one intermediate model-space state and
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W
.2/
1 D

ıW .1/

ıE W .1/: (69)

This can be generalized to

G.t; E/ D G0.t; E/C
X
nD1

ınG0.t; E/
ıEn W n: (70)

and similarly

W D W0 C
X
nD1

ınW0

ıEn W n: (71)

Generalized Bloch Equation

It would be convenient to be able to evaluate the higher-order Green’s operators
iteratively, in analogy with the the procedure used in ordinary MBPT (12). This
would require a Bloch equation valid also for energy-dependent perturbations. In
order to derive such an equation, we consider first the third-order expression (68),
which we want to express as

G.3/ D �QV G.2/ C � � � : (72)

From (59) we have

�QV G.2/ D �QV G.2/0 C �QV
ıG.1/
ıE W .1/; (73)

and the expression (68) then becomes

G.3/ D �QV G.2/C ı.�QV /
ıE G.1/W .1/C ı.�QV /

ıE W .2/C ı
2.�QV /

ıE2
�
W .1/

�2
: (74)

This contains only derivatives of the last interaction �QV , since the previous ones
are included in the first term, �QV G.2/. This can be generalized into a Bloch
equation for time- or energy-dependent perturbation theory:

G D G.0/ C �QV GC ı�G
ıE W; (75)

where the asterisk indicates that the differentiation is restricted to the last factor of
�QV . This relation can also be written as
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G D G.0/ C �QV G � �Q GW C ı�G
ıE W (76)

with differentiation of the last interaction, V , only. This equation can be compared
with the standard Bloch equation (15), and we see that the essential difference lies
in the extra model-space term, involving the energy derivative of the interaction.
The equation holds also when the interactions are different, provided that V in the
second term is the last interaction and that G in the remaining terms is formed by
the last interactions and W of the remaining ones.

The similarity between the Bloch equations for the Green’s operator and the
standard MBPT wave operator demonstrates that the perturbation expansion based
upon the CEO or Green’s function is completely compatible with the standard
procedure. Therefore, it can serve as a convenient basis for a unified procedure,
where QED and Coulomb interactions can, in principle, be mixed arbitrarily.

This completes the description of the procedure for energy-dependent perturba-
tion theory, developed by the Gothenburg group, and we shall now see how this can
be applied to the QED perturbations in combinations with electron correlation.

Combining QED with Electron Correlation

General

We shall now illustrate how the procedure of covariant-evolution operators pre-
sented here can be applied to the energy-dependent QED perturbations in combina-
tion with electron correlation. We consider first the case, where we have an iterated
wave function of Coulomb interaction, as in Fig. 2, and add to that one energy-
dependent perturbation. This is illustrated in Fig. 10.

In third order we have from (74)

˝.3/ D �QV ˝I
.2/ C ı.�QV /

ıE �QVCW
.1/
0 C

ı.�QV /

ıE W .2/ C ı2.�QV /

ıE2
�
W

.1/
0

�2
:

(77)

�

�

�
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· ·

· · · ·

· ·

· ·· ·

Fig. 10 A single energy-dependent interaction is added to the pair function of Coulomb interac-
tions in Fig. 2
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The last three terms represent the folded part due to the last energy-dependent
perturbation, while the folds due to the energy-independent part are contained in
the wave function ˝I. This can be generalized to a Bloch-like equation:

˝ D 1C �QV ˝I C
X
mD1

ım.�QV /

ıEm ˝IW
m

I : (78)

Here,

˝I D 1C �QVC C �QVC�QVC C � � � C folded (79)

is the Coulomb pair function in Fig. 2 and WI is the corresponding effective
interaction (23):

WI D PVC˝IP; (80)

VC being the Coulomb interaction. This makes it possible to add an energy-
dependent perturbation to an iterated wave function of energy-independent inter-
actions, such as a Coulomb pair function.

The corresponding relation for the effective interaction, with the final state in the
model space, is

W D PV˝IP C P
X ım.V /

ıEm ˝IW
m

I : (81)

The energy-dependent interaction, discussed here, can, in principle, contain all
kinds of QED effects, such as retardation, electron self-energy, vacuum polarization,
etc., as illustrated in Fig. 11.

For the time being, it is only feasible to include single-photon effects in a QED
potential. But the procedure can be iterated, as illustrated in the second diagram
of Fig. 12. That will yield so-called reducible diagrams, i.e., diagrams that can
be separated into simpler diagrams by a horizontal cut. A reducible diagram is
generally defined as a diagram that can be separated into two allowed diagrams by a
horizontal cut. If only energy diagrams are considered, then a diagram is reducible
only if the intermediate state lies in the model space. If, on the other hand, also
diagrams of the wave function or wave operator are considered, as we do here, then
a diagram can be reducible also if the intermediate state lies in the complementary
Q space and contains no photons. Examples of reducible diagrams are shown in
Fig. 13.

After applying the energy-dependent perturbation to the Coulomb pair function,
additional Coulomb perturbations can be added, as illustrated in the first diagram of
Fig. 12.

Iterating the general potential in Fig. 11 and including all irreducible effects leads
ultimately to the two-electron Bethe-Salpeter equation [12, 15].
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Fig. 11 QED potential, containing first-order QED effects

Fig. 12 Single and iterated
QED potential with electron
correlation
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Fig. 13 Examples of
reducible two-photon
diagrams that can be
separated into legitime
diagrams by a horizontal cut
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The QED pair functions, illustrated in Fig. 11, can, of course, also be used for
systems with more than two electrons, for instance, in a coupled-cluster approach
(CCA) in the same way as standard pair functions, discussed in section “All-Order
Methods: Coupled-Cluster Approach” (see Ref. [40]). Due to the complete compa-
bility between the standard MBPT and CEO approaches, the QED and non-QED
pair functions can be mixed and the former need only be inserted, when the QED
effect is expected to be significant. For instance, in the coupled-pair equation (22),
it might be sufficient to insert the QED-pair function in the linear term but use the
standard pair functions in the non-linear, coupled term.

An additional important advantage of using the Coulomb gauge is that the
instantaneous Breit interaction (Eq. 32) can be used in the same fashion as the
Coulomb interaction, which will yield important effects that otherwise would
require irreducible multi-photon effects.

Retardation and Virtual Pairs

A potential for the retarded electron-electron interaction, involving also negative-
energy states can be constructed, allowing also for crossing Coulomb interactions
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Fig. 14 Retarded transverse
interaction with electron
correlation and with one and
several Coulomb crossings
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Fig. 15 Diagrams
representing the combination
of non-radiative QED
perturbation (retardation,
virtual pair) and electron
correlation, evaluated by
Hedendahl [41]
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[41], [15, Chap. 8]. This can be combined with electron correlation, as discussed in
the previous section and illustrated in Figs. 14 and 15.

Self-Energy and Vertex Correction

More recently, also radiative QED effects (electron self-energy and vertex correc-
tion) have been included in the procedure [14]. So far, all self-energy calculations on
bound-state systems have been performed using a covariant gauge, like the Feynman
gauge. When radiative QED effects, mainly, self-energy and vertex corrections, it
turns out that there are large cancelations between the various contributions, which
make the calculations more unreliable. In the Coulomb gauge, this is much less the
case. This has the consequence that in going beyond second order, it is only possible
to obtain reliable numerical results in the Coulomb gauge as recently demonstrated
by our group [14]. This gauge is more complicated to use in QED calculations, but
these problems here have recently been solved by Hedendahl and Holmberg [35,36]
in the Gothenburg group, using dimensional regularization, based upon the works
of Adkins [37, 38] (see also [15, Chap. 12]).

For a two-electron system, we have in second order the screened self-energy
and vertex correction, illustrated in Fig. 16. We assume that the self-energy is mass
renormalized as mentioned above. Then the first diagram (A) is regular, while
the second one is divergent, due to model-space contribution. This singularity is
canceled by the last vertex-correction diagram (C), due to the Ward identity [15,42].

With an incoming pair function, we have the situation in Fig. 17 with a Q or a P
state immediately before the QED perturbation. We can now apply the formula (81),
with V D ˙ for the self-energy and V D �0VC for the vertex correction (�0 being
vertex-correction parameter).

From the formula (81) we find for diagram AA
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Fig. 16 First-order Coulomb
screened self-energy and
vertex correction for He-like
systems
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Fig. 17 All-order screened self-energy and vertex correction for He-like systems

WA D P˙Q˝IP C P
X ı˙

ıE Q˝IWI C � � � (82)

diagram BB

WB D P
X ı˙

ıE WI C � � � (83)

diagram CC

WB D P�0VCQ˝IP C P ı�
0VC

ıE Q˝IWI C � � � (84)

and diagram DD

WB D P ı�
0VC

ıE W 2
I C � � � (85)

The diagrams BB and CC are divergent with the singularities canceling due to
the Ward identity, while the diagrams AA and DD are regular.

Including additional Coulomb iterations, it leads to the situation indicated in
Fig. 18.
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Fig. 18 Diagrams
representing the combination
of radiative QED perturbation
(self-energy, vertex
correction, vacuum
polarization) and electron
correlation, recently evaluated
by Johan Holmberg et al. [50]
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Summary

The X-ray transition energies for helium-like ions can in some cases be measured
with extreme accuracy, in some cases up to the ppm level [43]. Such experimental
results can therefore serve as reference for tests of computational methods and
eventually for a test of the QED theory itself. Calculations on the two-photon level
have been carried out by Artemyev et al. by means of the two-time Green’s function
procedure [44]. This takes the single- and two-photon exchange into account in a
complete way but leaves out all third- and higher-order effects. Related calculations
have been performed by Plante et al., using the relativistic MBPT with first-order
QED energy corrections to the energy [11]. Here, higher-order effects are included
but only in a limited way. The agreement with experimental results is normally
quite good for these calculations, but Chantler et al. claim that there are significant
discrepancies [43, 45].

Third- and higher-order effects that are missing from the calculations of Arte-
myev, Plante, and coworkers might be relevant for an accurate comparison with the
experiments. With the Green’s operator procedure, discussed here, such high-order
effects can be evaluated, and such calculations have been performed for some time
by the Gothenburg group. The calculated effects contain a single transverse photon,
radiative and non-radiative, combined with Coulomb interactions to essentially all
orders. Such calculations, which have to be performed in the Coulomb gauge, are
quite complicated and time-consuming but still manageable. The accumulated effect
of these contributions is of the order of 5 meV for the ground states of the medium-
heavy helium-like ions [14], which is at least comparable to many experimental
uncertainties. Corresponding effects with multiple transverse photons are generally
beyond reach, but they should be considerably smaller and expected to be negligible
for the comparison between theory and experiment considered here.

The calculated higher-order QED effects (beyond second order) are much too
small to be able to explain the discrepancies claimed by Chantler. Therefore, if these
discrepancies are real, they must have other causes. Furthermore, several experimen-
tal groups have recently obtained results that are in excellent agreement with the
theoretical results, thereby strongly challenging the findings of Chantler [46–48].
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The Green’s operator procedure was primarily developed for investigating static
problems, but it has recently been demonstrated that also dynamical processes,
like scattering processes or transitions between atomic states, are governed by the
Green’s operator and can be handled by a similar procedure [49].
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Abstract

While the no-pair approximation widely used in relativistic quantum chemical
calculations is good enough for most purposes, there is still a great need to go
beyond it, not only for better accuracies but also for better understandings of
relativistic quantum mechanics. It is shown here that, at variance with the usual
top-down procedures for deriving relativistic Hamiltonians as approximations to
quantum electrodynamics (QED), a with-pair relativistic many-electron Hamil-
tonian can be constructed in a bottom-up fashion without recourse to QED itself.
It describes all virtual pair effects due to the instantaneous Coulomb/Gaunt/Breit
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interaction and is compatible with all wave function or density-functional-based
correlation methods. As such, it serves as the basis for “with-pair relativistic
quantum chemistry,” an extension of the traditional “no-pair relativistic quantum
chemistry.” Due to the short range nature, the effective potential Q describing
the electron vacuum polarization (EVP) and self-energy (ESE) can be fitted
into a model operator and included in variational mean-field calculations. The
major QED effects, including EVP and ESE, as well as the Coulomb/Gaunt/Breit
screenings of them, can then readily be accounted for in subsequent treatments
of electron correlation and properties.

Keywords
Relativistic Hamiltonians • Virtual pair effects • Charge conjugation • Quan-
tum electrodynamics

Introduction

Because of the very large gap (2mc2 � 1 MeV) between the positive (PES) and
negative (NES) energy states of the Dirac spectrum, freezing the NES in post-
SCF (self-consistent field) relativistic quantum chemical calculations of low-energy
chemical/physical processes/properties is usually a very good approximation. This
is just the so-called no-virtual-pair or simply no-pair approximation (NPA). Not
only so, under this approximation, all determinant-based wave function or density-
functional methods developed in the nonrelativistic regime for electron correla-
tion/excitation can directly be transplanted to the relativistic domain, although
additional technical difficulties do arise from the reduction in symmetry and the
use of complex algebra. The last decade has witnessed remarkable advances in
this “no-pair relativistic quantum chemistry,” symbolized primarily by the advent
and development of the so-called exact two-component (X2C) Hamiltonians [1–4].
Nevertheless, one has to be aware that the NPA has several fundamental defects,
both numerically and conceptually [5, 6]. First of all, the NPA results in an intrinsic
error of O.Z˛/3 in the energy [7], which is not only significant for core or
semi-core electrons but also relevant for valence electrons when the correlation
treatment has reached an accuracy of a few hundredths of an electron volt. Second,
unlike nonrelativistic FCI (full configuration interaction), the no-pair relativistic
correlation energy calculated at whatever level of methodology is always dependent
on the effective potential employed for generating the orbitals [8]. Third, there
are even situations where the NPA completely breaks down. For instance, in the
sum-over-state formulation of nuclear magnetic resonance shielding in terms of the
field-free PES and NES, the relativistic diamagnetism would be missed entirely
under the NPA [9]. Fourth, the no-pair projected Hamiltonians, whether four or
two component, are incompatible with explicitly correlated wave function methods
due to two reasons [7]: (a) Integrals like hpqj Ohrelf12jrsi and hpqjf12 Ohrelf12jrsi must
be evaluated analytically to achieve fast convergence [10], but the required (first
quantized) relativistic operator Ohrel is not available in such Hamiltonians. (b) More
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seriously, such Hamiltonians have only a finite spectrum limited by the given basis,
such that the effect of the correlation factor f12 is just null: The r12-dependent two-
electron basis functions try to simulate a correlation space that is complementary to
the determinantal space but which is not part of the Hamiltonians. Fifth, since the
correlation of NES is of the same order of O.Z˛/3 as the leading radiative QED
effect (Lamb shift), the usual Ansatz “NPA + Lamb shift” adopted in calculations of
many-electron systems is not fully justified. For instance, the remaining discrepancy
(ca. 0.05 eV) [11] between the theoretical “NPA + Lamb shift” and experimental
ionization potentials of the gold atom is likely due to the missing correlation of
NES. Therefore, to be internally consistent, the electron vacuum polarization (EVP),
electron self-energy (ESE), and the correlation of NES should be treated on an equal
footing.

The question is how to handle the NES properly. There have been many
attempts [12–15] to solve directly the non-projected, first-quantized Dirac-
Coulomb/Gaunt/Breit (DC/DCG/DCB) equation with standard techniques such
as CI and MBPT (many-body perturbation theory). Here, the number of electrons
is conserved, and the NES are treated as if they were particles, just like the virtual
PES. This manifestly violates charge conjugation symmetry, a key ingredient to
distinguish relativistic from nonrelativistic quantum mechanics. As such, the so-
obtained results are plainly wrong (vide post), regardless of numerical instabilities
[16]. In short, the first-quantized DC/DCG/DCB equation cannot be solved as
it stands, even if it has bound states. Instead, the NPA is a conceptual must for
such configuration space formulation, rather than merely an effective means [17]
for avoiding the (in)famous Brown-Ravenhall disease [16]. The proper treatment
of the NES can only be done with a Fock space formulation, where it is the
charge instead of the particle number that is conserved and the NES and PES are
treated symmetrically. The essential ingredients of such a Fock space formulation
include the filled Dirac picture and second quantization [18, 19] along with the
charge-conjugated normal ordering of fermion operators [20], with which a with-
pair relativistic many-electron Hamiltonian, or simply effective QED (eQED)
Hamiltonian in the Coulomb gauge, can be obtained naturally without recourse to
QED itself. It can be reduced [20, 21] to that [22] derived from QED in a top-down
fashion. Further approximations based purely on physical arguments lead to a series
of relativistic Hamiltonians that span a complete and continuous “Hamiltonian
Ladder” [21, 23].

The present account aims to present a thorough discussion on charge conju-
gation symmetry (section “Charge Conjugation”) as well as its incorporation in
describing electron-electron interactions (sections “Diagrammatic Derivation of the
eQED Hamiltonian” and “Algebraic Derivation of the eQED Hamiltonian”). As an
illustration, the second-order energy of an N -electron system is derived explicitly
in section “Second-Order Energy of an N -Electron System” and compared with
that of the configuration space formulation. A mean-field theory for real positrons
is further formulated in section “Mean-Field Theory of Positrons.” The account is
closed with concluding remarks in section “Conclusion.” Apart from the Einstein
summation convention over repeated indices, the following convention is to be
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adopted: The occupied PES and NES are denoted by fi; j; : : :g and fQi ; Qj ; : : :g,
respectively, whereas the unoccupied PES by fa; b; : : :g. Unspecified orbitals are
denoted as fp; q; r; sg. When necessary, the NES are designated explicitly by
f Qp; Qq; Qr; Qsg.

Derivation of the eQED Hamiltonian

Charge conjugation plays a key role in relativistic quantum mechanics and is
therefore first discussed in section “Charge Conjugation” before the eQED Hamil-
tonian is formulated diagrammatically in section “Diagrammatic Derivation of the
eQED Hamiltonian” and algebraically in section “Algebraic Derivation of the eQED
Hamiltonian.”

Charge Conjugation

The charge conjugation transformation of a Dirac spinor 'p.x/ (which can be
understood as a classical field) is effected by

C W 'p.x/ 7! 'Cp .x/ D Cˇ'�p.x/; x D rt; (1)

where the 4-by-4 matrix C is defined as

C D �i˛y; (2)

with the following properties

C� D CT D C�1 D �C; (3)

Cˇ D �ˇC; C˛i D �˛�i C D �˛Ti C; i D x; y; z: (4)

By taking the complex conjugate of the Dirac equation,

i
@

@t
'p.x/ D Œc˛ � .p � qAext/C ˇmc2 C q�ext�'p.x/; (5)

followed by multiplying from the left by Cˇ, we obtain

� i
@

@t
'Cp .x/ D CˇŒ�c˛� � .pC qAext/C ˇmc2 C q�ext�'

�
p.x/; (6)

D Œ�c˛ � .pC qAext/ � ˇmc2 C q�ext�'
C
p .x/; (7)

and hence

i
@

@t
'Cp .x/ D Œc˛ � .pC qAext/C ˇmc2 � q�ext�'

C
p .x/: (8)
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It follows that, for the same time-independent external potential .�ext.r/;Aext.r//, if
'p.x/ D 'p.r/e�i�pt is a stationary solution of the Dirac equation for an electron
(q D �1) of energy �p , 'Cp .x/ D 'Cp .r/ei�pt will then be a stationary solution of the
Dirac equation for a positron (q D C1) of energy ��p . Note in particular that the
probability density of a negative energy/frequency (�j� Qpj) electron ' Qp.r/e�i j� Qp j.�t/
is indistinguishable from that of a positive energy (j� Qpj) positron 'CQp .r/e

�i j� Qp jt , i.e.,

j'CQp .r/j2 D j' Qp.r/j2. Because of this feature, a negative energy electron can be
regarded as the mirror image of a positive energy positron propagating in opposite
direction and time.

Since the matrix elements of a quantum operator should have the same transfor-
mation property as the corresponding classical quantity, the classical field transfor-
mation (1) implies the following relation for the quantum field operator �.x/,

hˇ0j�.x0/j˛0i D hˇjCˇ��.x/j˛i; (9)

jˇ0i D Uc jˇi; j˛0i D Uc j˛i; U �
c Uc D 1 (10)

It is understood that the left- and right-hand sides of Eq. (9) refer to the new and
old quantum systems characterized, respectively, by the primed and unprimed state
vectors in Hilbert space. Since the transformation (1) does not alter the space-time,
we have here x0 D x. Moreover, the relation holds for arbitrary state vectors, such
that the following charge conjugation transformation law for the field operator �.x/

C W �.x/ 7! Uc�.x/U
�
c D Cˇ��.x/ D Cˇ��T .x/ (11)

can be deduced immediately. Its complex conjugate reads

C W ��.x/ 7! Uc�
�.x/U �

c D �T .x/ˇC �: (12)

For a better understanding of the unitary operator Uc , we consider the expansion of
the field operator �.x/ in terms of the solutions of the free-particle Dirac equation,
viz.,

�.x/D
X
n;s

�
bn;s'

.C/
n;s .x/C dn;s'.�/�n;�s.x/

�
; dn;sD d�n;s; bn;sD b�n;s; (13)

where

'.C/n;s .x/ D Nnu.n; s/e�ipn�x; Nn D 1p
2EnL3

; En D
q
c2p2n Cm2c4;

(14)

'.�/�n;�s.x/ D Nnv.n; s/eipn�x; pn � x D Ent � pn � r; pn D 2�

L
.nx; ny; nz/;

(15)
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u.n; s/ D
p
En C mc2

 
1

c� �pn
EnCmc2

!
	.s/; 	.

1
2 / D

�
1

0

�
; 	.� 12 / D

�
0

1

�
;

(16)

v.n; s/ D
p
En C mc2

 
c� �pn
EnCmc2

1

!
Œ�i
y	.s/�: (17)

The particular form (13) of �.x/ arises from the following considerations: (a) Only
particles of positive energy are allowed in quantum field theory – bn;s annihilates a
positive energy electron of momentum pn and spin s, while dn;s creates a positive
energy positron of momentum pn and spin s. (b) That dn;s must go with '.�/�n;�s.x/
is because the so-created positive energy positron propagates in opposite direction
and time from the negative energy electron of momentum �pn and spin �s. (c)
That the operator dn;s (instead of dn;s) must accompany bn;s is required by charge
conservation. Both bn;s and dn;s increase the charge of a state by one unit; bn;s
does this by destroying an electron, whereas dn;s does this by creating a positron.
Thus, the field operator �.x/ always increases one unit of charge. Similarly, the
field operator ��.x/ always decreases one unit of charge. Therefore, the operator
��.x/�.x/ conserves the charge. Had dn;s been chosen to accompany bn;s , the
operator ��.x/�.x/ would not conserve the charge: it would include terms like
bn;sdn;s and dn;sbn;s which decrease and increase two units of charge, respectively.

Since the Uc operator acts on the state vectors (e.g., j˛i D ˘n;sb
n;sj0I Q0i) in

Hilbert space, it is a function only of the fermion creation and annihilation operators
and hence does not act on the Dirac matrices or spinors. Inserting the expression (13)
into Eq. (11) leads to

Ucbn;sU
�
c '

.C/
n;s C Ucdn;sU �

c b
p'.�/�n;�sD bn;sCˇ'.C/�n;s C dn;sCˇ'.�/��n;�s: (18)

It is straightforward to show that

Cˇv�.n; s/ D u.n; s/; (19)

Cˇu�.n; s/ D v.n; s/; (20)

and hence

Cˇ'.�/��n;�s D '.C/n;s ; (21)

Cˇ'.C/�n;s D '.�/�n;�s : (22)

Therefore, Eq. (18) implies the following relations

Ucbn;sU
�
c D dn;s; Ucdn;sU

�
c D bn;s; (23)

Ucb
n;sU �

c D dn;s; Ucd
n;sU �

c D bn;s: (24)
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Relation (23) suggests the following first try [24] for Uc

U1 D ei�C1 ; (25)

C1 D
X
n;s

.bn;sdn;s C dn;sbn;s/ D C�
1 : (26)

By virtue of the following commutation relations,

ŒC1; bn;s� D �dn;s; ŒC1; dn;s� D �bn;s;
ŒC1; ŒC1; bn;s�� D bn;s; ŒC1; ŒC1; dn;s�� D dn;s; : : : ; (27)

as well as the Baker-Campbell-Hausdorff identity

eABe�A D B C ŒA; B�C 1

2Š
ŒA; ŒA;B��C � � � ; (28)

we can readily find

U1bn;sU
�
1 D bn;s

�
1 � 1

2Š
�2 C 1

4Š
�4 C � � �

�
�i dn;s

�
� � 1

3Š
�3 C 1

5Š
�5 C � � �

�
D bn;s cos � � idn;s sin �: (29)

The choice of � D �
2

leads to

U1bn;sU
�
1 D �idn;s: (30)

Similarly, we have

U1dn;sU
�
1 D �ibn;s: (31)

A second unitary transformation U2 is needed to just cancel the phase factor yet
without changing the nature of the fermion operators, i.e.,

U2.�idn;s/U �
2 D dn;s; U2.�ibn;s/U �

2 D bn;s: (32)

A rather obvious choice is

U2 D eiıC2 ; (33)

C2 D
X
n;s

.bn;sbn;s C dn;sdn;s/ D C�
2 : (34)
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In view of the commutation relations

ŒC2; bn;s� D �bn;s; ŒC1; dn;s� D �dn;s;
ŒC2; ŒC2; bn;s�� D bn;s; ŒC2; ŒC2; dn;s�� D dn;s; : : : ; (35)

we have

U2.�idn;s/U �
2 D �idn;se�iı; U2.�ibn;s/U �

2 D �ibn;se�iı: (36)

The requirements (32) are hence fulfilled by choosing ı D ��
2

. The overall Uc
operator can then be written as [24]

Uc D U2U1 D e�i �2 C2ei �2 C1 D ei �2 .C1�C2/: (37)

Therefore, an explicit construction of the quantum field charge conjugation Uc is
indeed possible. However, it should be kept in mind that this particular form (37) of
Uc holds only in the free-particle representation, at variance with the transformation
law (11) which is independent of any representation. The free-particle solutions are
of course hardly useful for describing bound states. Instead, the PES and NES of the
Dirac equation

.D C U/'p D �p'p; (38)

D D D0 � e�ext; D0 D c˛ � pC ˇmc2 (39)

should actually be used. Here, �ext.r/ is usually the field of the clamped nuclei
and U.r/ a screening potential. In this case, relations (23) and (24) no longer hold.
However, since any operator must be expanded in a complete basis spanned by the
PES and NES of the same Dirac equation, we still ought to write the field operator
�.x/ in the interaction (and particle-hole) picture as

��.x/ D bp'p;�.r/e�i�pt C b Qp' Qp;�.r/e�i� Qpt ; � D 1; : : : ; 4;
bpj0I Q0i D b Qpj0I Q0i D 0; bp D b�p; b Qp D b�Qp; �p > 0; � Qp < 0; (40)

with the usual interpretation, i.e., bp (bp) annihilates (creates) an electron of positive
energy �p , whereas b Qp (b Qp) creates (annihilates) a positron of positive energy j� Qpj D
�� Qp . The electron (positron) here is a quasiparticle when referring to free particles:
it is a composite of a free electron (positron) and a series of free electron-positron
pairs, rather than being a bare particle. In general, a particle moving in a potential is
composed of a series of pairs moving in another potential.
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Diagrammatic Derivation of the eQED Hamiltonian

The point of departure is the symmetrized [25] 4-current J�s

J �s .x/ D �
1

2
ec˛��


h
���.x/; �
 .x/

i
; e D C1; ˛� D �c�1;˛� ; (41)

D J�.x/ � eh0I Q0j1
2
Œ��.x/; c˛��.x/�j0I Q0i; (42)

where J�.x/ is the usual definition of the 4-current in the QED literature,

J�.x/ D �e ˚��.x/c˛��.x/� : (43)

Here, the curly brackets indicate normal ordering with respect to the vacuum j0I Q0i
of no particles or holes. Note that the two forms of the 4-current become identical
only for free particles; for the second, vacuum term of Eq. (42) then vanishes
pointwise. For bound states, it is the symmetrized form (41) of the 4-current that
should be used. Using relations (11) and (12) and the fact that the unitaryUc operator
therein does not act on the Dirac matrices or spinors, it is straightforward to show
that

UcJ
�
s .x/U

�
c D �

1

2
ec˛��


h
�T .x/

�
ˇC�

�
�
; .Cˇ/
���T� .x/

i
D �1

2
ec
�
ˇC�˛�Cˇ

�
�

h
�T .x/; �

�T
� .x/

i
D �1

2
ec˛��

�
�.x/; �

�
� .x/

�
D �J�s .x/: (44)

It is hence clear that the definition (41) of the 4-current is actually dictated by
charge conjugation, which interchanges particles and antiparticles, so as to reverse
the charge current.

By virtue of the identity for time ordering of fermion operators

T

�
AB
1

2
.CD � DC/EF � � �

�
D T ŒABCDEF � � � �; (45)

we can rewrite the interaction Hamiltonian density

H .x/ D T �J�s .x/A�.x/� ; A� D .�ext;�Aext/ (46)



354 W. Liu

in terms of the unnormal-ordered 4-current operator J�a , viz.,

H .x/ D T �J�a A�.x/� ; J �a D �e��.x/c˛��.x/ (47)

D T ���.x/ .Vext.x/C ec˛ � Aext.x// �.x/
�
; Vext D �e�ext: (48)

At this point, it is instructive to take a look at the so-called equal-time contraction
(ETC) [25] of fermion operators,

A.t/B.t/ D h0I Q0jT ŒA.t/B.t/j0I Q0i (49)

, 1

2
h0I Q0jT ŒA.t/B.t 0/�j0I Q0ijt 0�t!0˙ (50)

D h0I Q0j1
2
ŒA.t/; B.t/�j0I Q0i; (51)

which is symmetric in time. That is, the two expressions A.t/B.t/ and �B.t/A.t/
obtained by letting t 0 approach t from the past and future are both considered and
averaged here. Note that the ETC (51) is taken into account automatically by the
Feynman electron propagator

SF .x2; x1/ D �ih0I Q0jT Œ�.x2/��.x1/�j0I Q0i (52)

D �ih0I Q0j�.t2 � t1/�.x2/��.x1/ ��.t1 � t2/��.x1/�.x2/j0I Q0i
(53)

D
Z C1
�1

d!

2�
SF .!I r2; r1/e�i!.t2�t1/; (54)

SF .!I r2; r1/ D 'r.r2/'
�
r .r1/

! � �r .1 � i�/ ; r 2 PES;NES: (55)

To see this, we can calculate the equal-time propagator SF .r2t; r1t/ either by means
of Eq. (54),

SF .r2t; r1t/ D 'r.r2/'�r .r1/
Z C1
�1

d!

2�

1

! � �r .1 � i�/

D 1

2i
'r.r2/'�r .r1/sgn.�r /; (56)

or by means of the definition (52) and the ETC (51),

SF .r2t; r1t/ D �ih0I Q0j1
2

�
�.r2t/; ��.r1t/

� j0I Q0i (57)

D 1

2i
h0I Q0j'p.r2/'�q.r1/e�i.�p��q/t bpbq � ' Qp.r2/'�Qq.r1/e�i.� Qp��Qq/t b Qpb Qqj0I Q0i

(58)

D 1

2i

h
'p.r2/'�p.r1/ � ' Qp.r2/'�Qp.r1/

i
: (59)
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The two expressions (56) and (59) are obviously identical. The vacuum polarization
density as a result of the ETC (51) can be calculated as

�vp.r/D eiTrŒSF .x; x/�D e

2
'�r .r/'r .r/sgn.�r / D �e

2
Œn�.r/ � nC.r/�; (60)

nC.r/ D
X
p

'�p.r/'p.r/; n�.r/D
X
Qp
'
�

Qp.r/' Qp.r/; (61)

where nC.r/ and n�.r/ are the number densities of the PES and NES, respectively.
By virtue of the identity nC C n� D NnC C Nn� D 2 Nn�, with NnC and Nn� (D NnC)
being the free-particle number densities, we have

�vp.r/ D �eŒn�.r/ � Nn�.r/�; (62)

which is clearly the charge polarization of the vacuum. Equation (60) implies
that the NES are occupied by electrons e� with charge �1, whereas the PES by
positrons eC with chargeC1. Since the two pictures are equivalent thanks to charge
conjugation symmetry, they should be averaged. Otherwise, we would obtain twice
the polarization density (62). Formally, the charge density �vp.r/ (60) corresponds
[6] to an ensemble �vp of noninteracting Ne� electrons and NeC positrons

�vp D 1p
2
.j0INe�i C jNeC I 0i/; (63)

the first term of which corresponds to a filled negative energy sea, whereas the
second to a filled positive energy sea as a result of charge conjugation. The picture
remains the same when the electrons and positrons interact with each other, for
charge conjugation symmetry still holds in the absence of an external field.

After the above background, we are ready to derive diagrammatically the desired
“with-pair, no-retardation” relativistic many-body Hamiltonian. By this we mean
that only systems of electrons subject to the instantaneous Coulomb/Gaunt/Breit
interaction are under consideration. Inserting the field (40) into the Hamiltonian
density (47) gives rise to four terms, which can be represented by the diagrams
shown in Fig. 1. Here, the up- and down-going lines represent electrons (particles)
and positrons (holes), respectively, whereas the horizontal wavy lines represent
photons. Figure 1a, b describe scattering of electrons and positrons, respectively,
while Fig. 1c, d describe virtual pair creation and annihilation, respectively. Since
we are not interested in real photons, the photon lines of the diagrams must always
be contracted. The photon-only contractions lead to 16 two-body terms shown in
Fig. 2. When both photon and fermion lines are contracted, we get 16 one-body
diagrams shown in Fig. 3. Had the normal-ordered expression (43) been used for
the 4-current, only fermion lines of different vertices can be contracted, thereby
excluding the first 8 diagrams in Fig. 3 stemming from the fermion contractions
at the same vertex. As shown before, this is only correct for free Dirac particles.
Note also that the zero body terms, i.e., those closed bubble diagrams obtained
by connecting all the photon and fermion lines, are unphysical and will be
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Fig. 1 The Hamiltonian density

Fig. 2 The two-body terms from photon-only contractions (Reprinted with permission from
Ref. [6]. ©2014, Wiley Periodicals, Inc.)

“renormalized away.” The two-body “time-ordered” Goldstone-like diagrams in
Fig. 2 can be represented by a single “time-unordered” Feynman diagram in Fig. 4a.
Likewise, the first and second 8 diagrams in Fig. 3 can be represented by the EVP
diagram Fig. 4b and the ESE diagram Fig. 4c, respectively. It is obvious that only
diagram Fig. 4a could be obtained if the fermion contractions are not allowed at all
[18, 19].

The question now is how to evaluate such diagrams before knowing the algebraic
expressions. This is actually very simple for instantaneous interactions. Consider
first the first two diagrams in Fig. 3. Following the standard rules for evaluating
Goldstone diagrams [26], we have �gqs

ps (�s > 0) for Fig. 3a (one loop, zero hole)
andCgqs

ps (�s < 0) for Fig. 3b (one loop, one hole). Further in view of the “averaging
picture” of Eq. (60) or (63), these two terms should be averaged, thereby leading to
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Fig. 3 The one-body terms from both photon and fermion contractions (Reprinted with permis-
sion from Ref. [6]. ©2014, Wiley Periodicals, Inc.)

Fig. 4 The (time unordered)
first-order Feynman diagrams

QQŒ3.a; b/� D �1
2
gqs

pssgn.�s/
˚
bpbq

�
; p; q 2 PES; grspq D hpqjg.1; 2/jrsi;

(64)

for the first two diagrams of Fig. 3 (NB: it is the probability .1=
p
2/2 of the

components of �vp (63) that enters the energy and hence the potential operator).
The 9th and 10th diagrams of Fig. 3 are just the exchange of the first and second,
respectively. Therefore, their sum read
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NQŒ3.i; j /� D 1

2
gs q

ps sgn.�s/
˚
bpbq

�
; p; q 2 PES: (65)

The remaining diagrams in Fig. 3 differ from the first two only in the open fermion
lines and are therefore of the same algebraic forms. Summing up all the 16 terms
leads to

QQ D �1
2
gqs

pssgn.�s/
n
apq

o
; p; q 2 PES, NES; apq D apaq D a�paq; (66)

NQ D 1

2
gs q

ps sgn.�s/
n
apq

o
; p; q 2 PES, NES; (67)

Q D QQC NQ D �1
2
Ngqs

pssgn.�s/
˚
apaq

�
; p; q 2 PES; Ngrs

pq D grs
pq � gsr

pq:

(68)

The effective Q potential (68) agrees with that in Ref. [20] derived algebraically
(see also section “Algebraic Derivation of the eQED Hamiltonian”). However, the
weight factor of 1=2 has been introduced here in an ad hoc manner, for the weight
factor of these (asymmetric) diagrams should be 1 instead of 1=2 according to the
standard rules. The algebraic expression for Fig. 4a reads

G D 1

2
grs

pq

˚
apq

rs

�
; apq

rs D apaqasar ; (69)

where the prefactor arises from the reflection symmetry of the diagram. Further
collecting the one-electron Dirac operator D (39), the total Hamiltonian normal
ordered with respect to j0I Q0i reads

Hb D H FS
b CQq

p

n
apq

o
; (70)

H FS
b D Dq

p

n
apq

o
C 1

2
grs

pq

˚
apq

rs

�
; (71)

where H FS
b (71) is the so-called Fock space Hamiltonian [18, 19]. Note that

Eqs. (66)–(71) assume implicitly the particle-hole picture, viz.,

ap D bp; ap D bp; 8�p > 0I ap D bp; ap D bp; 8�p < 0: (72)

Algebraic Derivation of the eQED Hamiltonian

The point of departure here is the second-quantized DC/DCG/DCB Hamiltonian

H D Dq
pa

p
q C

1

2
grs

pqa
pq
rs ; (73)
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which is already normal ordered with respect to the genuine vacuum j0I Q0i, viz.,
apj0I Q0i D 0, p 2 PES, NES. Note that the particle-hole picture (72) is not used
hereafter. As it stands, the Hamiltonian H (73) does not distinguish the empty
from the filled Dirac picture. While the former is unphysical (vide post), the latter
can formally be imposed in a finite basis representation by setting the Fermi level
below the energetically lowest of the QN occupied NES. The physical energy of
an N -electron state is then defined [7] as the difference between those of states
�.N I QN/ and �.0I QN/, viz.,

E D h�.N I QN/jH j�.N I QN/i � h�.0I QN/jH j�.0I QN/i: (74)

To do so, we can shift up the Fermi level to zero. This amounts to normal ordering
the Hamiltonian H (73) with respect to the noninteracting, floating vacuum j0I QN i
of zero positive energy electrons and QN negative energy electrons (The term
“floating” here means that the same NES are used to construct the noninteracting
j0I QN i and the interacting �.0I QN/ and �.N I QN/ states. For comparison, a frozen
vacuum j0I NN i would employ, e.g., the free-particle NES that are different from
those for �.0I QN/ and �.N I QN/. This is just a different setting of the zero-
point energy. For more discussions, see Ref. [21].). Here, the charge-conjugated
contraction (CCC) [20] of fermion operators must be invoked, viz.,

apaq D h0I QN j1
2
Œap; aq�j0I QN i; p; q 2 PES, NES (75)

D 1

2
h0I QN ja QpaQqj0I QN ij� Qp<0;�Qq<0 �

1

2
h0I QN jaqapj0I QN ij�p>0;�q>0 (76)

D �1
2
ıpq sgn.�q/; p; q 2 PES, NES; (77)

in terms of which we have

apq D
˚
apaq

�
n
� 1
2
ıpq sgn.�q/; p; q 2 PES, NES; (78)

Dq
pa

p
q D Dq

p

˚
apaq

�
n
C C1n; C1n D �1

2
Dp
p sgn.�p/; (79)

where the subscript n of the curly brackets emphasizes that the normal ordering is
taken with respect to the reference j0I QN i. More specifically,

˚
apaq

�
n
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
apaq; �p > 0; �q > 0;

apaq; �p > 0; �q < 0;

apaq; �p < 0; �q > 0;

�aqap; �p < 0; �q < 0:

(80)
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By applying the relation (77) repeatedly, we obtain

apq
rs D

˚
apq

rs

�
n
� 1
2
fıpr aqs sgn.�r /C ıqs apr sgn.�s/ � ıqr aps sgn.�r / � ıps aqr sgn.�s/gn

C1
4

�
ıpr ı

q
s � ıqr ıps

�
sgn.�r /sgn.�s/; (81)

and hence

1

2
grs

pqa
pq
rs D

1

2
grs

pq

˚
apq

rs

�
n
CQq

p

n
apq

o
n
C C2n; (82)

Qq
p D QQq

p C NQq
p D �

1

2
Ngqs

pssgn.�s/; (83)

QQq
p D �

1

2
gqs

pssgn.�s/; (84)

NQq
p D

1

2
gsqps sgn.�s/; (85)

C2n D 1

8
Ngpq

pqsgn.�p/sgn.�q/ D �1
4
Qp
psgn.�p/: (86)

Note that the implicit summations in C1n (79), QQ (84), NQ (85), and C2n (86) include
all the PES and NES, whether occupied or not. The Hamiltonian H (73) can then
be rewritten as

H D Ha C Cn; (87)

Ha D H FS
a CQq

p

n
apq

o
n
; (88)

H FS
a D Dq

p

n
apq

o
n
C 1

2
grs

pq

˚
apq

rs

�
n
; (89)

Cn D C1n C C2n D h0I QN jH j0I QN i D �1
2
Dp
p sgn.�p/ � 1

4
Qp
psgn.�p/: (90)

By introducing the particle-hole picture (72), viz.,

˚
apaq

�
n
!

8̂̂̂̂
<̂
ˆ̂̂:
bpbq; �p > 0; �q > 0;

bpbq; �p > 0; �q < 0;

bpbq; �p < 0; �q > 0;

�bqbp; �p < 0; �q < 0;

(91)

the HamiltonianHa (88), normal ordered with respect to the floating vacuum j0I QN i,
will be converted to the Hamiltonian Hb (70) normal ordered with respect to the
genuine vacuum j0I Q0i. Therefore, we have arrived at the same eQED Hamiltonian
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through both diagrammatic and algebraic procedures. It is clear that the particle-
hole formalism (91) merely converts the reference j0I QN i to the mathematically
equivalent j0I Q0i and does not introduce new physics. It is useful only when going
to the diagrammatic presentation, as shown in section “Diagrammatic Derivation of
the eQED Hamiltonian.”

In short, the filled Dirac picture, second quantization, and normal ordering in
conjunction with the CCC [20] are the essential ingredients for constructing the
eQED Hamiltonian in a bottom-up fashion. Had the standard contraction of fermion
operators, viz.,

apaq D h0I QN japaqj0I QN i D ı QpQq nQq; (92)

been taken, we would obtain the following Hamiltonian

HCS
a D H FS

a C Ngq Qjp Qj
n
apq

o
n
; (93)

where the mean-field potential Ngq Qj
p Qj arises from the occupied NES alone, which

obviously breaks the charge conjugation symmetry. Actually, HCS
a (93) is more

akin to the second-quantized Schrödinger-Coulomb Hamiltonian if the NES Qj were
regarded as the occupied Hartree-Fock (HF) orbitals. It can readily be shown that
even the first-order energy of HCS

a (93), i.e.,

QEŒ1� D hN I QN jHCS
a jN I QN i D EŒ1�

np C Ngi Qji Qj ; (94)

EŒ1�
np D hN I QN jH FS

a jN I QN i D
�
D C 1

2
VHF

�i
i

; .VHF/
q
p D Ngqjpj ; (95)

is already different from that of Ha (88),

EŒ1� D hN I QN jHajN I QN i D EŒ1�
np �

1

2
Ngis

issgn.�s/ D EŒ1�
np CQi

i : (96)

In essence, the CCC (75) is the time-independent equivalent of the ETC (51),
whereas the standard contraction (92) corresponds to the following ETC

A.t/B.t/ D lim
�!0C

h0I Q0jT ŒA.t/B.t C �/�j0I Q0i; (97)

which is obviously asymmetric in time and holds only in the nonrelativistic limit. It
follows that the standard contraction (92) even of relativistic operators will result in
wrong, nonrelativistic type of expressions.

Likewise, we can also set the Fermi level (denoted as �F ) just above the
highest occupied PES, i.e., normal order the Hamiltonian H (73) with respect
to the noninteracting reference jN I QN i, which is just the zero order of �.N I QN/.



362 W. Liu

Following the same procedure, we obtain [21]

H D HF C CF ; (98)

HF D Dq
p

n
apq

o
F
C Y qp

n
apq

o
F
C 1

2
grs

pq

˚
apq

rs

�
F
; (99)

Y qp D QY qp C NY qp D �
1

2
Ngq!p!sgn.�! � �F /; (100)

QY qp D �
1

2
gq!p!sgn.�! � �F /; (101)

NY qp D
1

2
gq!!psgn.�! � �F /; (102)

CF D hN I QN jH jN I QN i D �1
2
Dp
p sgn.�p � �F / � 1

4
Y pp sgn.�p � �F /

D Cn CEŒ1�; (103)

where Cn and EŒ1� are given in Eqs. (90) and (96), respectively. In view of the
identity

Y qp D Qq
p C .VHF/

q
p; (104)

the Hamiltonian HF (99) can further be decomposed as

HF D H FS
F CQq

p

n
apq

o
F
; (105)

H FS
F D .Fe/qp

n
apq

o
F
C 1

2
grs

pq

˚
apq

rs

�
F
; (106)

.Fe/
q
p D Dq

p C .VHF/
q
p: (107)

It is interesting to note that the standard contraction of the Fermion operators, i.e.,

apaq D hN I QN j
˚
apaq

�
n
jN I QN i D hN I 0japaqjN I 0i D ıpq nq; �q > 0;

(108)

should be invoked when going from Ha (88) to HF (99). More specifically,

Dq
p

n
apq

o
n
D Dq

p

n
apq

o
F
CDi

i ; (109)

Qq
p

n
apq

o
n
D Qq

p

n
apq

o
F
CQi

i ; (110)

1

2
grs

pq

˚
apq

rs

�
n
D 1

2
grs

pq

˚
apq

rs

�
F
C .VHF/

q
p

n
apq

o
F
C 1

2
.VHF/

i
i : (111)
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Consequently, we have

Ha D HF CEŒ1�; (112)

H FS
a D H FS

F CEŒ1�
np : (113)

That is,Ha (88) differs fromHF (99) by a constant EŒ1� (96), which is just the first-
order QED energy (see Fig. 4). Likewise, H FS

a (89) differs from H FS
F (106) also by

a constantEŒ1�
np (95), which is nothing but the no-pair first-order energy (see Fig. 4a).

The Model Q Operator

The Coulomb-only QQ term (84) is the full EVP and can itself be charge renor-
malized. However, the NQ term (85) represents the Coulomb-only ESE and remains
logarithmically divergent even after mass renormalization. While such type of
divergence is hardly a serious issue in a finite Gaussian representation furnishing
a natural regularization, it is strongly recommended to combine the Coulomb- and
transverse-photon contributions to the ESE that can together be renormalized. In the
Coulomb gauge adopted here, the transverse part of the ESE reads [27]

. NQT /
q
p D

1

2
hpj˙C

T .�p/C˙C
T .�q/jqi; (114)

hpj˙C
T .�p/jqi D hpsj

Z 1
0

cdkf C
T .k; r1; r2/

�p � �s � .ck � i/sgn.�s/
jsqi; (115)

f C
T .k; r1; r2/ D

sin.kr12/

�r12

�
˛1 � ˛2 � .˛1 � r 1/.˛2 � r 2/

k2

�
: (116)

Therefore, the total ESE (still denoted as NQ) can be written in a symmetric form

NQq
p D

1

2
hpj˙C

C C˙C
T .�p/C˙C

T .�q/jqi; (117)

hpj˙C
C jqi D gsq

pssgn.�s/: (118)

Both QQ (84) and NQ (117) are extremely short ranged and die off beyond a distance
of ca. 0.001 a.u. from the position of the nucleus. Therefore, the kernels of QQ (84)
and NQ (117) can be fitted into a model operator for each atom [21, 28]:

Q D QQloc C NQloc C NQnloc; (119)

QQloc D
X
�

. QQloc/�P�; . QQloc/�.r/ D QA�f .r/; (120)

NQloc D
X
�

. NQloc/�P�; . NQloc/�.r/ D NA�f .r/; (121)
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NQnloc D
X
�

. NQnloc/�P�; (122)

. NQnloc/� D
X
m;n

�jRLm�i NBmn;� jRLn�i 0

0 jRSm�i NBmn;� jRSn�i
�
P�; (123)

P� D
X
mj

�j˝�mj ih˝�mj j 0

0 j˝��mj ih˝��mj j
�
; (124)

where RLm� (˝�mj ) and RSm� (˝��mj ) are the radial (angular) parts of an atomic
spinor �m�mj of principle quantum number m and angular quantum number k D
.�1/jClC1=2.j C 1=2/. The parameters QA� for the semi-local EVP QQloc, as well as
NA� and NBmn;� for the semi-local and nonlocal parts of the ESE, are to be determined

by least-square fittings of the known atomic data. The so-obtained model operator
Q (119) can then be included in the SCF calculations. In this way, screening effects
on the EVP and ESE are obtained automatically.

If wanted, the transverse part of the one-photon exchange, Fig. 4a, can also be
included, so as to replace the integral grs

pq in Eq. (89) with

grs
pq D hpqjVC C

1

2
VT .�r � �p/C 1

2
VT .�s � �q/jrsi; (125)

VC D 1

r12
; (126)

VT .!/ D �˛1 � ˛2 e
ijqjr12
r12

C .˛1 � r 1/.˛2 � r 2/
eijqjr12 � 1
q2r12

; ! D qc: (127)

As can be seen from the retarded no-pair first-order energy

EŒ1�
np;r D Di

i C
1

2
hij jVC C VT .0/jiji � 1

2
hij jVC C VT .�i � �j /jjii; (128)

retardation [! ¤ 0 in VT .!/] occurs only to the exchange (and correlation) but not
to the direct interaction. In the limit ! ! 0, VT .!/ (127) will reduce to the well-
known instantaneous Breit term VB (which can also be obtained in a semiclassical
manner),

VB D VG C Vg; (129)

VG D �˛1 � ˛2
r12

; (130)

Vg D ˛1 � ˛2
2r12

� .˛1 � r12/.˛2 � r12/
2r312

; (131)

where VG and Vg are the Gaunt and (scalar) gauge terms, respectively.
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No-Pair Relativistic Hamiltonians

In the present context, the NPA is just to confine the orbital indices of Ha (88) only
to PES, thereby leading to

H
QED
C D Dq

pa
p
q CQq

pa
p
q C

1

2
grs

pqa
pq
rs ; p; q; r; s 2 PES (132)

D .Fe CQ/qp
n
apq

o
N
C 1

2
grs

pq

˚
apq

rs

�
N
CEŒ1�; p; q; r; s 2 PES (133)

with EŒ1� and .Fe/
q
p defined in Eqs. (96) and (107), respectively. Here, the subscript

N indicates that the normal ordering is taken with respect to jN I Q0i. The HQED
C

Hamiltonian (132), along with QQ (84), NQ (117) and grspq (125), was already obtained
by Shabaev [22] but in a top-down fashion. Further neglecting the Q term leads to
the standard no-pair Hamiltonian HC

HC D .Fe/qp
n
apq

o
N
C 1

2
grs

pq

˚
apq

rs

�
N
CEŒ1�

np ; p; q; r; s 2 PES; (134)

which has been the basis of “no-pair relativistic quantum chemistry.” Both
H

QED
C (133) and HC (134) have an intrinsic error of O.Z˛/3. More seriously, the

calculated energy is always dependent on the mean-field potential for generating
the orbitals. However, as shown numerically by Sapirstein [8], such potential
dependence can largely be removed by introducing the following correction

E
.2/
PC D

.VHF/
i
QiU
Qi
i C U i

Qi .VHF/
Qi
i � U i

Qi U
Qi
i

�Qi � �i
; (135)

where U is the potential in Eq. (38). One then has a “potential-independent no-pair
QED” (PI-QED) approach [20]. The corresponding Hamiltonian reads

H
PI�QED
C D .Fe CQ � U/qp

n
apq

o
N
C 1

2
grs

pq

˚
apq

rs

�
N

C EŒ1� CE.2/
PC ; p; q; r; s 2 PES: (136)

Further neglecting the Q term in H PI�QED
C leads to

H PIC D .Fe � U/qp
n
apq

o
N
C 1

2
grs

pq

˚
apq

rs

�
N
CEŒ1�

NP CE.2/
PC ; p; q; r; s 2 PES:

(137)

The various Hamiltonians discussed so far, together with the quasi-four-component
as well as exact and approximate two-component ones [2], can be collected to span
a complete and continuous “Hamiltonian Ladder” [21, 23].
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Application of the eQED Hamiltonian

Second-Order Energy of an N-Electron System

The Hamiltonian Ha (88) (or Hb (70)) can be employed in the Bloch equation for
determining the wave operators order by order. The resulting energy expressions
are in full agreement with those obtained by the S-matrix formulation of QED [20].
However, the procedure treating all the PES as particles is rather involved. It is
more expedite [7] to calculate the physical energy according to Eq. (74) by treating
the occupied PES also as holes. Formally, the second term on the right-hand side
of Eq. (74) is the analog of nonrelativistic HF reference, whereas the left-hand side
is the analog of electron correlation. In reality, the second term corresponds to a
polarizable vacuum

�.0I QN/ D �.0/.0I QN/C �.1/.0I QN/C � � � ; (138)

with �.0/.0I QN/ D j0; QN i being the reference for the normal ordering (75). To
facilitate the application of MBPT to the first term of Eq. (74), the Hamiltonian (98)
normal ordered with respect to jN I QN i can be rewritten as

H D H0A C V0A C V1A C V2A; (139)

H0A D �p
n
app

o
F
� 1
2
�psgn.�p � �F /; (140)

D �p
n
app

o
F
C

NX
i

�i � 1
2
�psgn.�p/; (141)

V0A D
�
1

2
U � 1

4
Y

�p
p

sgn.�p � �F /; (142)

D
�
Q � U C 1

2
VHF

�i
i

C
�
1

2
U � 1

4
Q

�p
p

sgn.�p/; (143)

V1A D .V1A/qp
n
apq

o
F
; V1A D Y � U; (144)

V2A D 1

2
grs

pq

˚
apq

rs

�
F

(145)

while the Hamiltonian in the second term of Eq. (74) can be normal ordered with
respect to j0I QN i, i.e.,

H D H0B C V0B C V1B C V2B; (146)

H0B D �p
n
app

o
n
� 1
2
�psgn.�p/; (147)
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V0B D
�
1

2
U � 1

4
Q

�p
p

sgn.�p/; (148)

V1B D .V1B/qp
n
apq

o
n
; V1B D Q � U; (149)

V2B D 1

2
grs

pq

˚
apq

rs

�
n
: (150)

Here, both the PES and NES are solutions of the mean-field equation (38), where
the potential U can be chosen in various ways. For instance, U D VHF corresponds
to the standard Dirac HF (DHF) (107) with the empty Dirac picture, whereas U D
VHF C Q to the DHF with the filled Dirac picture [21]. Following the standard
MBPT, we obtain immediately

E.0/ D �1
2
�psgn.�p � �F /C 1

2
�psgn.�p/ D

NX
i

�i ; (151)

E.1/ D V0A � V0B D
�
1

2
VHF � U CQ

�i
i

; (152)

E.2/ D E.2/
1 CE.2/

2 ; (153)

E
.2/
1 D

"
.V1A/

a
i .V1A/

i
a

�i � �a C .V1A/
a
Qi .V1A/

Qi
a

�Qi � �a

#

�
"
.V1B/

i
Qi .V1B/

Qi
i

�Qi � �i
C .V1B/

a
Qi .V1B/

Qi
a

�Qi � �a

#
(154)

D E.2/
FS;1 CE.2/

Q;1; (155)

E
.2/
FS;1 D

.VHF � U/ai .VHF � U/ia
�i � �a C .VHF � U/aQi .VHF � U/Qia

�Qi � �a

� Ua
Qi U
Qi
a

�Qi � �a
� U i

Qi U
Qi
i

�Qi � �i
; (156)

E
.2/
Q;1 D

.VHF � U/ai Qi
a CQa

i .VHF � U/ia CQa
i Q

i
a

�i � �a

C .VHF/
a
Qi Q
Qi
a CQa

Qi .VHF/
Qi
a

�Qi � �a
� Q

i
QiQ
Qi
i � U i

Qi Q
Qi
i �Qi

Qi U
Qi
i

�Qi � �i
; (157)
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E
.2/
2 D

1

4

Ngabmn Ngmn
ab

�m C �n � �a � �b

ˇ̌̌̌
m;nDi;j;Qi ; Qj

� 1
4

Ngpq
Qi Qj Ng
Qi Qj
pq

�Qi C � Qj � �p � �q

ˇ̌̌̌
ˇ̌
p;qDi;j;a;b

(158)

D
241
4

Ngab
ij Ngij

ab

�i C �j � �a � �b C
1

2

Ngab
i Qj Ng

i Qj
ab

�i C � Qj � �a � �b

35

�
241
4

Ngij
Qi Qj Ng
Qi Qj
ij

�Qi C � Qj � �i � �j
C 1

2

Ngia
Qi Qj Ng
Qi Qj
ia

�Qi C � Qj � �i � �a

35 : (159)

As shown before [20], E.2/ (153) is identical with that obtained by the S-matrix
approach of QED. However, the latter involves 28 Feynman diagrams (see Fig. 5
in Ref. [20]) and requires careful cancelation of divergent integrals. The first and
second terms of E.2/

1 (154) and E.2/
2 (158) arise from the �.N I QN/ and �.0I QN/

states, respectively. The one-body E.2/
1 (154) can further be decomposed into two

terms, E.2/
FS;1 (156) and E.2/

Q;1 (157). Both E.2/
FS;1 (156) and E.2/

2 (159) arise from the

Fock space Hamiltonian [18, 19] H FS
a (89), while E.2/

Q;1 (157) is due exclusively
to the EVP and ESE. The two terms of E.2/ (153) can nicely be represented
by the same Goldstone-like diagrams shown in Fig. 5. It is just that the particles
and holes, as well as the one-body potential, are interpreted differently. Due to
the large gap between the NES and PES, the up-to-second-order treatment of the
NES should be sufficient. Therefore, the major challenge still resides in the no-
pair correlation within the manifold of PES. Yet, this can be facilitated by using
relativistic explicitly correlated methods, which are completely parallel [29] to the
nonrelativistic counterparts under the concept of “extended no-pair projection” [7].

Fig. 5 Diagrammatical representation of the second-order energy. (a) Two-body direct; (b) two-
body exchange; (c) one body. For the �.N I QN/ state, the particles (up-going lines) and holes
(down-going lines) are fa; bg and fi; j; Qi ; Qj g, respectively. The one-body potential represented
by the square is V1A. For the �.0I QN/ state, the particles and holes are fa; b; i; j g and fQi ; Qj g,
respectively. The one-body potential is V1B . A global negative sign should be inserted to the terms
of �.0I QN/ (Reprinted with permission from Ref. [20]. ©2013, American Institute of Physics)
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Finally, a brief comparison with the configuration space approach is in order. It
gives rise to the following second-order energy [7]

E
.2/
CS D E.2/

CS;1 CE.2/
CS;2; (160)

E
.2/
CS;1 D

.VHF � U/ai .VHF � U/ia
�i � �a C .VHF � U/Qii .VHF � U/iQi

�i � �Qi
; (161)

E
.2/
CS;2 D

1

4

Ngab
ij Ngij

ab

�i C �j � �a � �b C
1

4

NgQi Qjij Ngij
Qi Qj

�i C �j � �Qi � � Qj
C 1

2

Nga Qjij Ngij

a Qj
�i C �j � �a � � Qj

:

(162)

It is seen that E.2/
CS;1 and E.2/

CS;2 agree, respectively, with E.2/
FS;1 (156) and E.2/

2 (159)
only in the first terms involving solely the PES, but are very different from the
latter in the terms involving the NES. Therefore, the configuration space approach
is plainly wrong. This can also be seen from the “recovery” [7] of the configuration
space approach from QED by replacing the Feynman propagator SF .x2; x1/ (54)
with the “configuration space propagator”

SC .x2; x1/ D �ih0jT Œ�.x2/��.x1/�j0i; (163)

D �i�.t2 � t1/h0j�.x2/��.x1/C ��.x1/�.x2/j0i (164)

D
Z C1
�1

d!

2�

'r.r2/'
�
r .r1/

! � �r C i�j�r je
�i!.t2�t1/; r 2 PES;NES; (165)

where the field �.x/ is defined as

�.x/ D ap'p.r/e�i�pt C a Qp' Qp.r/e�i� Qpt (166)

in accordance with the empty Dirac picture. The distinction between SF .x2; x1/
(54) and SC .x2; x1/ (165) lies in that the former propagates the PES forward in time
(through the Heaviside function�.t2�t1/ or equivalently the lower-half-plane poles
�p � i�) and the NES backward in time (through the Heaviside function �.t1 � t2/
or equivalently the upper-half-plane poles � Qp C i�), whereas the latter propagates
both the PES and NES forward in time. Since the replacement of SF .x2; x1/ (54)
with SC .x2; x1/ (165) changes the nature of NES completely, it is clear that the
configuration space approach is even not an approximation of QED, the highest
level of theory for electromagnetic interactions between charged particles.
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Mean-Field Theory of Positrons

The term “electron-positron pair” discussed so far refers to virtual positrons.
However, the present relativistic many-body Hamiltonian in the form of Hb (70)
orHa (88) can also be used to describe real positrons. For instance, up to first order,
the energy of a system of N electrons and QM real positrons can be calculated as

EŒ1�
ep D hN I Q0jB�HbBjN I Q0i; B D ˘ QM

Qi b
Qi (167)

D hN I QN jA�HaAjN I QN i; A D ˘ QM
Qi aQi (168)

D
24 NX
iD1
.D CQ/ii C

1

2

NX
i;jD1

Ngij
ij

35C
24� QMX

QiDQ1
.D CQ/QiQi C

1

2

QMX
Qi ; QjDQ1

NgQi QjQi Qj

35

�
NX
iD1

QMX
QjDQ1
Ngi Qj
i Qj ; (169)

where the first and second terms are the energies of the N electrons and of the
QM positrons, respectively, whereas the third, cross term represents their mutual

interactions. The expression (169) can further be written in a more symmetric form

EŒ1�
ep D

X
k

nk.D CQ/kk C
1

2

X
k;l

nknl Ngkl
kl ; k; l 2 PES;NES (170)

by assigning an occupation number nk to each orbital 'k : nk is zero for the
unoccupied PES and NES,C1 for the occupied PES, and �1 for the occupied NES.
This occupation pattern has a nice interpretation [30]: A negative energy electron
has both a negative charge and a negative mass, such that its depletion leaves behind
a hole (positron) of positive charge and positive mass, with the occupation number
being �1. At first glance, the notation jN I QN i in Eq. (168) implies that all the NES
are occupied such that there are no unoccupied NES. However, the unoccupied NES
do exist due to the underlying normal ordering of Ha (99) over j0I QN i. Moreover,
one must work with a basis in which the functions for the PES and NES are strongly
orthogonal to each other. Otherwise, the distinction between the PES and NES
cannot be made in the energy expression. Therefore, the Lagrangian to be minimized
should be written as

L D EŒ1�
ep �

NX
i;jD1

.hi jj i � ıij/�ij C
QMX

Qi ; QjD1
.hQi j Qj i � ıQi Qj /�Qi Qj ; (171)
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which has no multipliers between the PES and NES. The conditions ıL

ı'
�
i

D 0 and

ıL

ı'
�

Qi
D 0 then give rise to the stationarity conditions for the variation of EŒ1�

ep (170)

f 'i D
NX
j

'j �j i ; f 'Qi D
QMX
Qj
' Qj � Qj Qi ; (172)

where

f D D CQC
X
k

nk Ngk�k� ; k 2 PES;NES; (173)

f q
p D .D CQ/qp C

X
k

nk Ngkq
kp ; k 2 PES;NES: (174)

Since the Fock operator f (173)/(174) is manifestly Hermitian and invariant with
respect to separate unitary transformations of the occupied PES and NES, one can
go to a canonical representation, viz.,

f 'k D 'k�k; k 2 PES;NES: (175)

The so-called dual kinetic balance [31] is most recommended for discretizing
Eq. (175), for it provides variational safety in conjunction with Gaussian type
of functions [32]. Moreover, the iterations should proceed by occupying the
energetically lowest PES and highest NES, which corresponds to an implicit but
updated projection for avoiding variational collapse.

A few remarks can further be made here: (a) The energy (170) does vary with
respect to rotations between the occupied PES and NES, since they belong to distinct

subspaces. (b) It is easy to show that the cross exchange term �Pi Qj g
Qj i
i Qj vanishes

in the nonrelativistic limit, meaning that electron and positron are distinguishable
particles in the nonrelativistic world, such that their mutual anti-symmetrization
is no longer required. In other words, only the QED formulation provides an
equal-footing treatment of electrons and positrons. (c) If the EVP-ESE term Q

is neglected, the present mean-field theory of electrons and positrons will reduce
to that formulated by Dyall [30] in a different way. A second-order MBPT can
also be formulated following the procedure in section “Second-Order Energy of
an N -Electron System,” but this goes beyond the scope of the work.

Conclusion

Charge conjugation is the key for distinguishing relativistic from nonrelativistic
quantum mechanics. Its incorporation via the charge-conjugated contractions of
fermion operators leads directly to a relativistic many-body Hamiltonian (70)/(88)
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that is not only fully in line with the principles of QED but also fully compatible with
any wave-function-/density-functional-based correlation method. The Hamiltonian
along with accurate correlation methods can be used for ultrahigh precision calcula-
tions of molecular spectroscopies and potential energy surfaces. It can therefore be
envisaged that “molecular QED” will soon become an active and exciting field of
research.
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Abstract

Under the no-pair approximation, four- and two-component relativistic quantum
chemical calculations can be made identical in all the aspects of simplicity,
accuracy, and efficiency through the quasi-four-component (Q4C) and exact two-
component (X2C) approaches.

Keywords
No-pair Hamiltonian • Quasi-four-component • Exact two-component

Introduction

Given some fundamental defects [1, 2], the no-pair approximation, which neglects
electron-positron pair creation and annihilation effects, is usually sufficiently
accurate for most chemical and physical properties. Under this approximation,
the machinery of relativistic quantum chemistry consists of two sets of methods,
four-component and two-component, and both sets have been developed with con-
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siderable success in the last two and a half decades [3–7]. Yet, as of now, statements
like “four-component good, two-component bad” or “two-component good, four-
component bad” can still be seen from the literature or heard from conference
lectures. In essence, the former emphasizes the accuracy and simplicity of the Dirac
operator and other four-component property operators against the approximate and
overly complicated structure of the two-component counterparts, whereas the latter
emphasizes the computational efficiency of two-component approaches against the
additional overhead of four-component approaches due to the existence of negative
energy states (NES). However, such judgments were based on personal preferences
instead of impersonal criteria in terms of all the aspects of simplicity, accuracy,
and efficiency. While those in favor of four-component approaches are extremely
reluctant in introducing any approximations (other than truncations in the 1- and
n-particle basis sets), those in favor of two-component approaches are willing to
accept even drastic approximations in the development of two-component Hamilto-
nians and property operators. That is, the accuracy and simplicity of four-component
approaches have to pay for the computational cost, whereas the efficiency and
complexity of two-component approaches come along with the loss of accuracy.
In reality, none of these is true. If one is willing to accept certain approximations
that are orders of magnitude smaller than, e.g., basis set incompleteness errors
as well as uncertainties of experimental measurements (NB: such approximations
are hardly “approximate”!), four- and two-component approaches can be made
identical in all the aspects of simplicity, accuracy, and efficiency, at both mean-field
and correlated levels, for both electronic structure and static/response properties.
This has already been achieved via the quasi-four-component (Q4C) [8] and exact
two-component (X2C) [5–7] approaches (NB: The acronym ‘X2C’ (pronounced
as ‘ecstacy’) for exact two-component Hamiltonians was proposed by W. Liu
after intensive discussions with H. J. Aa. Jensen, W. Kutzelnigg, T. Saue and L.
Visscher during the Twelfth International Conference on the Applications of Density
Functional Theory (DFT-2007), Amsterdam, August 26–30, 2007. Note that the
‘exact’ here emphasizes that all the solutions of the matrix Dirac equation can be
reproduced up to machine accuracy. It is particularly meaningful when compared
with the approximate two-component (A2C) Hamiltonians). As such, one should
really speak of “four- and two-component equally good!” [9]. The essential ideas
underlying these approaches are to be summarized here. Plain and boldface letters
are used to denote operators and matrices, respectively. The Einstein summation
convention over repeated indices is always employed.

Q4C

The Dirac equation for an electron moving in a local effective potential V reads�
V c� � p

c� � p V � 2mc2
��

 L
i

 S
i

�
D
�
 L
i

 S
i

�
�i ; (1)
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where the rest-mass energy mc2 has been subtracted. For a positive energy state
(PES)  i of energy �i , we get from the second row of Eq. (1) the relation between
the lower and upper components

c S
i D

1

2m
Ri� � p L

i

c!1! 1

2m
� � p L

i ; (2)

Ri.r/ D
�
1C �i � V .r/

2mc2

��1
c!1! 1; (3)

while for a NES  Ni of energy �Ni D �i C 2mc2, we will get from the first row of
Eq. (1)

c LNi D
1

2m
RNi� � p SNi

c!1! � 1

2m
� � p SNi ; (4)

RNi .r/ D �
�
1 � �Ni � V .r/

2mc2

��1
c!1! �1: (5)

It follows that, for the PES  i , the lower component  S
i is smaller (in the mean

sense) than the upper component  L
i by a factor of c�1. They are hence called

small and large components, respectively. In particular, the former vanishes in the
nonrelativistic limit. Obviously, the opposite is true for the NES Ni . It is also obvious
that the lower and upper components of both PES and NES are of opposite parity
for the � � p operator changes the parity, whereas the Ri.r/ [RNi .r/] operator is
totally symmetric. A direct deduction is that the two components must be expanded
in separate but properly related basis sets. Among the various prescriptions [10] for
constructing suitable basis sets, the so-called restricted kinetic balance (RKB) [11] is
the simplest. It provides the least adequate representation of the small components.
Specifically, a RKB basis consists of a 2-spinor basis fg�; � D 1; � � � ; 2NLg for the
large components, from which the small component 2-spinor basis is generated in a
one-to-one fashion according to the following prescription:

f� D 1

2mc
� � pg�; � D 1; � � � ; 2NL: (6)

The molecular 4-spinors (M4S)  i are then expanded as

 i D
�
g�
0

�
A�i C

�
0

f�

�
B�i ; i D 1; � � � ; 4NL: (7)

The corresponding matrix Dirac equation reads�
V T
T 1

4m2c2
W � T

��
A
B

�
D
�

S 0

0 1
2mc2

T

��
A
B

�
�; (8)
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where the individual matrices are all of dimension 2NL � 2NL, with the elements
being

V�� D hg�jV jg�i; T�� D 1

2m
h� � pg�j� � pg�i D hg�jT jg�i;

W�� D h� � pg�jV j� � pg�i D hg�j� � pV � � pjg�i; S�� D hg�jg�i: (9)

Equation (8) is therefore of dimension 4NL � 4NL with 2NL PES and 2NL NES,
which are separated by ca. 2mc2 � 1MeV. When solving Eq. (8) iteratively, the
energetically lowest PES are chosen to be occupied in each iteration cycle, so as to
avoid variational collapse. While the rotations between the occupied and unoccupied
PES lower the total energy, those between the occupied PES and unoccupied NES
raise the total energy, to a much lesser extent though.

It is clear that it is the appearance of the NES that makes four-component
calculations very expensive. There exist two paradigms to reduce the computational
cost. One is to retain the aesthetically simple four-component structure but freeze
these degrees of freedom, while the other is to remove these degrees of freedom so
as to obtain a two-component relativistic theory describing only electrons. Both
paradigms try to decouple the solutions of positive and negative energy. While
the former employs the untransformed Hamiltonian and introduces approximations
from the outset, the latter invokes an effective Hamiltonian and has to introduce
suitable approximations at a later stage, without which any such electron-only
theory, whether finite or infinite order, cannot really compete with the original four-
component approach. Anyhow, the two paradigms stem from the same physics and
should hence be fully equivalent.

To realize the first paradigm, we first take a close look at the Ri.r/ operator (3),
which is plotted in Fig. 1 as a function of the distance from the position of the Rn
atom. It is seen that the effect ofRi.r/ is extremely short ranged. That is, eachRi.r/
becomes just a constant factor beyond a small radius rc (ca. 0:05 a.u., roughly the
radii of 2s and 2p). Imagine we have first solved the (radial) Dirac equation for
each isolated (spherical and unpolarized) atom and thus obtained the corresponding
atomic 4-spinors (A4S) f'pg. Then, the atoms are brought together to synthesize the
molecule. While both the large and small components of 'p will change, the S=L
ratio will not! [9, 12]. The mathematical realization of such a physical picture is to
expand the M4S  i as a linear combination of such A4S (LCA4S) [13]:

 i D 'pCpi D
 
'Lp
'Sp

!
Cpi D

�
g�a�p
f�b�p

�
Cpi : (10)

Note that f'pg can either be non-expanded numerical (grid) A4S or generally
contacted atomic natural spinors (ANSs) expanded in a RKB basis, as indicated by
the last equality. Such an expansion amounts to projecting the molecular mean-field
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Fig. 1 The Ri .r/ operator (3) with V D VN C VH C VLDA as a function of the distance from
the position of Rn. The radial expectation values of 1s1=2, 2s1=2, 2p1=2, 2p3=2, and 3s1=2 are 0.015,
0.063, 0.051, 0.060, and 0.163 a.u., respectively (Reprinted with permission from J. Chem. Phys.
127, 104106 (2007). © 2007 American Institute of Physics)

Hamiltonian F onto the PES of the isolated constituent atoms,

F
Q4C
C D PCFPC �

 X̊
A

PAC

!
F

 X̊
B

PBC

!
; (11)

by which molecular NES are all excluded. Physically, this amounts to neglecting
rotations between the PES and NES of the isolated atoms, a kind of polarization
on the atomic vacua induced by the molecular field. As molecular formation is a
very low-energy process, its perturbation on the vacuum is of O.c�4/, smaller than,
e.g., the basis set incompleteness errors by orders of magnitude [8,9]. At this stage,
the computational efficiency is gained only in the matrix diagonalization step (by a
factor of 8), which is very little for a moderate basis. The real gain in efficiency can
only be achieved by further invoking a “model small component approximation”
(MSCA) [8]. The result is of four-component structure but looks very much like
an effective two-component approach and is therefore termed “quasi-4-component”
(Q4C) [8].

To be general enough, we write the mean-field operator F as [3]

F D
�
FLL F LS

F SL F SS

�
; (12)



380 W. Liu

where

FLL D V LL C c2.J LL C J SS/ � c3KLL C c4 QKSS ; (13)

FLS D c� � � � c3KLS � c4. QJLS � QKLS/; (14)

F SL D c� � � � c3KSL � c4. QJ SL � QKSL/; (15)

F SS D V SS C c2.J LL C J SS/ � c3KSS C c4 QKLL; (16)

V LL D VN C c0QLL C c1Vxc; (17)

V SS D VN C c0QSS C c1Vxc � 2mc2; (18)

JXX�� D
X
i

.�Y �Y jiX iX/; X; Y D L; S; (19)

KXY
�� D

X
i

.�XiX jiY �Y /; X; Y D L; S; (20)

QJXY�� D
X
i

.�X��Y ji˛i/; X ¤ Y; (21)

QKXX
�� D

X
i

.�Y � iX jiX��Y /; X ¤ Y; (22)

QKXY
�� D

X
i

.�X� iY jiX��Y /; X ¤ Y: (23)

A specific mean-field operator F (12) is obtained by setting the constants ci
to the corresponding values. For instance, the standard hybrid Dirac-Kohn-Sham
(DKS) scheme is obtained by setting c2 D 1, c0 D c4 D 0, and c1 and c3
to some empirical parameters. The model electron self-energy (ESE) and vacuum
polarization (EVP) operatorQ (see Refs. [3,14]) can be treated just like the nuclear
attraction VN . It is also interesting to see that the direct contributions (JXX ) from the
Coulomb interaction appear in the diagonal blocks, whereas the counterparts ( QJXY )
of the Gaunt interaction only in the off-diagonal blocks. In contrast, the exchange
contributions from both the Coulomb (KXY ) and Gaunt ( QKXY ) interactions are
distributed over all the four blocks. If wanted, the instantaneous Breit term can
further be added. The matrix representation of F Q4C

C (11) reads [5]

FQ4CC D QSC�; (24)

.FQ4C/pq D .hD/pq CGpq; (25)

where

.hD/pq D h'Lp jV LLj'Lq i C h'Sp jc� � pj'Lq i C h'Lp jc� � pj'Sq i C h'Sp jV SS j'Sq i;
(26)
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Gpq D Œc2.'p'qj'r's/ � c3.'p'sj'r'q/
� c4.'p˛'qj'r˛'s/C c4.'p˛'sj'r˛'q/�Psr ; (27)

D GLL
pq CGSS

pq ; (28)

GLL
pq D Œc2.'Lp 'Lq j'Lr 'Ls / � c3.'Lp 'Ls j'Lr  L

q /�Psr ; (29)

GSS
pq D Œc2.'Lp 'Lq j'Sr 'Ss /C c2.'Sp 'Sq j'Lr 'Ls /C c2.'Sp 'Sq j'Sr  S

s /

� c3.'Lp 'Ls j'Sr 'Sq / � c3.'Sp 'Ss j'Lr 'Lq / � c3.'Sp 'Ss j'Sr  S
q /

� c4.'Lp �'Sq C 'Sp �'Lq j'Lr �'Ss C 'Sr �'Ls /

C c4.'Lp �'Ss C 'Sp �'Ls j'Lr �'Sq C 'Sr �'Lq /�Psr (30)

� Œc2.'Lp 'Lq j'SiA'SiA/C c2.'Sp 'Sq j'LiA'LiA/C c2.'Sp 'Sq j'SiA'SiA/
� c3.'Lp 'LiA j'SiA'Sq / � c3.'Sp 'SiA j'LiA'Lq / � c3.'Sp 'SiA j'SiA'Sq /
� c4.'Lp �'Sq C 'Sp �'Lq j'LiA�'SiA C 'SiA�'LiA/

C c4.'Lp �'SiA C 'Sp �'LiA j'LiA�'Sq C 'SiA�'Lq /�niA ; (31)

QSpq D h'Lp j'Lq i C h'Sp j'Sq i; (32)

P D CnC�; P0 D
X̊
A

nA; T r.P QS/ D T rP0 D N: (33)

Here, the Mulliken notation for the two-electron integrals has been employed. The
two-body term G (27) is decomposed deliberately into a term GLL (29) that involves
only the large components and a term GSS (30) that involves the small components.
The latter is further approximated by replacing the molecular density matrix P with
P0 (33), the direct sum of the diagonal atomic density matrices. With this MSCA,
only the GLL (29) term, the analog of nonrelativistic Coulomb and exchange
interactions, needs to be updated in the SCF iterations. Usually only the occupied
and low-lying virtual ANSs are needed to form the backbone of the basis, which is
to be augmented with some flat functions f	�g for describing the deformation and
polarization of the atoms when forming the molecule. As R�.r/ � 1 in the valence
region (see Fig. 1), such flat functions 	� can be taken as

	� D
�
g�
f�

�
; f� D 1

2mc
� � pg� � 0: (34)

Unlike Eq. (7), the large and small component basis functions are here combined
together. Such an “ANS+P”-type basis, single-zeta for each core shell and multiple-
zeta for valence shells, is very efficient [8, 9]. Without much loss of accuracy,
the two-electron integrals in GSS can further be approximated. For instance, all



382 W. Liu

two-center jSS/ and jLS/ types of differential overlaps can be neglected. The
Fock matrix elements among the added flat functions can be treated nonrelativis-
tically, i.e.,

.FQ4C/�� D T�� C V�� C .g�g� j L
i  

L
i / � .g� L

i j L
i g�/; (35)

while the elements between 'p and 	� can be approximated as

.FQ4C/p� � h'Lp jT jg�i C h'Lp jV jg�i C Œ.'Lp g� j L
i  

L
i / � .'Lp  L

i j L
i g�/�ni

CŒ.'Lp g� j'SiA'SiA/ � .'Sp 'SiA j'LiAg�/�niA D .FQ4C/��p (36)

according to the RKB0 prescription [9]. Overall, Q4C has little overhead over
two-component approaches in orbital optimizations: Only the initial step is four-
component, whereas all subsequent SCF iterations are just two-component. The
many-electron second-quantized, normal-ordered Hamiltonian and equation can
then be written as

HQ4C�Q4C D EQ4C�Q4C; j�Q4Ci D W Q4Cj0i; (37)

HQ4C D HQ4C
0 CHQ4C

1 CHQ4C
2 ; (38)

H
Q4C
0 D h0jHQ4Cj0i; (39)

H
Q4C
1 D FQ4C

pq fa�paqg; (40)

H
Q4C
2 D 1

2
. p qj r s/fa�pa�r asaqg: (41)

The Hamiltonian HQ4C (38) can be combined with any method (ansatz) for
parameterizing the electronic wavefunction �Q4C (the wave operator W Q4C) which
has no reference to NES. As the major effect of the Gaunt/Breit interaction is already
accounted for at the self-consistent field (SCF) level, it need not be included in the
fluctuation potential (41) for routine calculations. On the other hand, one should not
attempt to approximate the Coulomb integrals therein only to the .LLjLL/ portion
because then not all designated electrons are correlated. This arises from the fact
that the large components are themselves not normalized; see Eq. (32). Such an
approximation becomes increasingly deteriorated when more and more electrons
are to be correlated. Nonetheless, the transformation of the integrals involving
the small components can be confined only to those M4S of appreciable small
components with h'Sp j'Sp i larger than a preset threshold. As a matter of fact, the
integrals .'p'qj'r's/ can be transformed as a whole since the large and small
components share the same coefficients C. So, both the integral transformation and
the correlation treatment are precisely the same as in two-component calculations.
In addition, because of the initial four-component step, Q4C does not suffer
from picture change errors (PCE) [15] which otherwise plague all two-component
approaches.
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With this Q4C ansatz, four-component relativistic calculations have been made
as efficient as two-component relativistic ones at both the mean-field and correlated
levels, without sacrificing the accuracy and simplicity.

Additional remarks should be made here. The above LCA4S (10) has a close
analogy with the nonrelativistic LCAO (linear combination of atomic orbitals),
but there exist some important differences. The A4S in Eq. (10) must be eigen or
pseudo-eigen functions of the atomic Dirac equation, but no particular requirement
needs to be imposed on the LCAO. Moreover, the LCAO can in principle achieve
arbitrary accuracy in the nonrelativistic energy, whereas the above LC4AS has an
inherent error of O.c�4/ in the relativistic energy, very small though. To respect
such subtleties as well as the MSCA, the above manipulations have been visualized
as “from atoms to molecule” (FATM) [9, 16] to emphasize the fact that the atomic
information is employed to synthesize the molecular relativistic Hamiltonian. In
other words, the interatomic interaction strength is taken as a perturbation parameter
to expand the projector defining the molecular no-pair relativistic Hamiltonian. The
zeroth order of the expansion is just the atomic approximation (11), while higher
orders would correspond to a fragmental approximation for the projector. What
makes this idea work is the atomic nature of the small component density. It will
be shown that the same idea can also be employed to simplify two-component
relativistic theories.

X2C

The development of two-component relativistic theories can be done at both opera-
tor and matrix levels. The former aims to first construct an analytic two-component
Hamiltonian by transforming the Dirac operator (1) in one way or another [17–
19] (for a recent comprehensive analysis, see Ref. [5]) and then introduces the
matrix representation in the end, whereas the latter starts from the outset with a
matrix representation of a Dirac-based mean-field Hamiltonian [e.g., F (12)] and
hence obtains an algebraic two-component Hamiltonian that can directly be used
in the calculation. The main problem with the operator type of formulations lies in
that the underlying transformations cannot be performed in closed form (except
for the trivial free-particle case), such that suitable approximations have to be
introduced from the outset, thereby leading to various approximate two-component
(A2C) Hamiltonians [20, 21]. Since the underlying approximations all stem from
the atomic cores, such analytic A2C Hamiltonians can best be viewed as “valence-
only” Hamiltonians, in the sense that they can describe only valence properties
to a good accuracy. In contrast, the algebraic two-component Hamiltonians can
reproduce all the solutions of the parent four-component matrix equation up to
machinery accuracy and can hence be christened “exact two-component” (X2C).
It was realized [22] only recently that the operator and matrix formulations are
actually equivalent. The key is to make a proper matrix representation for the non-
expanded analytic two-component Hamiltonian through appropriate resolutions of
the identity (RI) [5]. Because of this, we need to focus only on the much simpler
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matrix formulation, which is immune to singularities on one hand and does not
invoke additional integrals other than those enter the four-component formalism on
the other.

The matrix formulation of two-component Hamiltonians can be done in various
ways. The one-step decoupling of the matrix Dirac equation (8) was initiated by
Dyall [23] but was formulated properly and generally only by Kutzelnigg and Liu
[24]. Both two-step [25, 26] and multiple-step [27, 28] exact decoupling procedures
have also been proposed, with the resulting Hamiltonians coined Barysz-Sadlej-
Snijders (BSS) and Douglas-Kroll-Hess (DKH), respectively. Note in passing that,
although BSS and DKH are usually formulated in terms of analytic operators, they
are de facto matrix formulations due to the use of RI [5]. In other words, the
same DKH and BSS Hamiltonians can also be obtained [29] by starting with the
separation of the matrix Dirac equation (8) into a free-particle part and the rest. In
essence, all the three types of algebraic Hamiltonians share the same decoupling
condition (vide post) and differ only in the renormalization (and hence picture
change) [5]. The X2C and BSS Hamiltonians can even be mapped to each other
due to the existence of a closed relationship [5]. Hereafter, we focus only on the
simplest one-step X2C scheme.

To make the presentation as general as possible, we consider a generic four-
component mean-field equation

F i D �i i (42)

with F given in Eq. (12), and introduce the following expansion of the M4S  i

 i D Z Q i ; Q i D
�
g�A�i

g�B�i

�
(43)

D
�
Z11g�
Z21g�

�
A�i C

�
Z12g�
Z22g�

�
B�i ; (44)

where

Z D Zg.Zk CZm/ D
�
Z11 Z12
Z21 Z22

�
: (45)

Inserting the expansion (44) into Eq. (42) leads to the following matrix equation

FC DMC�; (46)

where

F D
�

F11 F12
F21 F22

�
; C D

�
A
B

�
; M D

�
M11 M12

M21 M22

�
; (47)
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.F11/�� D hg�jZ�
11F

LLZ11 CZ�
11F

LSZ21 CZ�
21F

SLZ11 CZ�
21F

SSZ21jg�i;
(48)

.F12/�� D hg�jZ�
11F

LLZ12 CZ�
11F

LSZ22 CZ�
21F

SLZ12 CZ�
21F

SSZ22jg�i
D .F21/���; (49)

.F22/�� D hg�jZ�
12F

LLZ12 CZ�
12F

LSZ22 CZ�
22F

SLZ12 CZ�
22F

SSZ22jg�i;
(50)

.M11/�� D hg�jZ�
11Z11 CZ�

21Z21jg�i; (51)

.M12/�� D hg�jZ�
11Z12 CZ�

21Z22jg�i D .M21/
�
��; (52)

.M22/�� D hg�jZ�
12Z12 CZ�

22Z22jg�i: (53)

To formulate the X2C counterpart of Eq. (46), we first introduce the following
formal relations

B D XA; QA D QX QB (54)

between the small and large coefficients for the PES and NES, respectively. We
then seek a transformation U that can block-diagonalize both the F and M matrices
in Eq. (47). It can generally be written as

U D UNUD; UN D
 

R�
C 0

0 R��

!
; UD D

�
I X�

QX� I

�
; (55)

where UD does the decoupling, whereas UN reestablishes the normalization. By
requiring that

UFU� D
�

FXC 0

0 FX�

�
; (56)

we obtain

FXC D R�
C QFXCRC; X D NESC;SESC; (57)

FX� D R�� QFX�R�; X D NESC;SESC; (58)

NLC C QX�LC D NL�� C L��X D 0; (59)

where

QFNESCC D LC C X� NLC D F11 C F12XC X�F21 C X�F22X; (60)

LC D F11 C F12X; NLC D F21 C F22X; (61)
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QFNESC� D L� C QX� NL� D F22 C F21 QXC QX�F12 C QX�F11 QX; (62)

L� D F22 C F21 QX; NL� D F12 C F11 QX: (63)

Equation (59) is the state-universal decoupling condition [24]. By further requiring
that

UMU� D
�

SC 0

0 S�

�
; (64)

we obtain the following relations:

R�
C QSCRC D SC; (65)

R�� QS�R� D S�; (66)

NMC C QX�MC D NM�� CM��X D 0; (67)

where

QSC DMC C X� NMC; (68)

MC DM11 CM12X; NMC DM21 CM22X; (69)

QS� DM� C QX� NM�; (70)

M� DM22 CM21
QX; NM� DM12 CM11

QX: (71)

Equation (67) implies that QX and X are not independent but are related as

QX D �.M�
C/
�1 NM�

C; X D .M��/�1 NM��; (72)

in terms of which the decoupling condition (59) can be rewritten as

M�1C LC D NM�1C NLC or M�1� L� D NM�1� NL�: (73)

Since the NESC (normalized elimination of the small component) [23] Hamiltoni-
ans QFNESCC (60) and QFNESC� (62) are manifestly Hermitian, the SESC (symmetrized
elimination of the small component) [8, 9] counterparts can readily be obtained as

QFSESCC D 1

2
Œ.LC C X� NLC/C c:c:� D 1

2
Œ QSCM�1C LC C c:c:�; (74)

QFSESC� D 1

2
Œ.L� C QX� NL�/C c:c:� D 1

2
Œ QS�M�1� L� C c:c:�; (75)
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where use of the relation (73) has been made. Note that both NESC and SESC are
still in the Dirac picture featured by the relativistic metric (68)/(70), viz.,

QFXCA D QSCA�C; X D NESC;SESC; (76)

QFX� QB D QS� QB��; X D NESC;SESC: (77)

To go to the Schrödinger picture, the nonrelativistic metric, i.e.,

.SC/�� D hg�jZ�
11Z11jg�i; .S�/�� D hg�jZ�

22Z22jg�i; (78)

should be adopted. Note in passing that an “intermediate picture” is also possible by
choosing a different definition for SC/S�. However, the nonrelativistic metric (78)
is most preferred since it allows an easy interface with the nonrelativistic machinery.
This is particularly so for correlated calculations, where the use of untransformed
two-electron integrals is only valid for the nonrelativistic metric.

With the above quantities, the unitary transformation of Eq. (46), viz.,

UFU�.U�/�1C D UMU�.U�/�1C�; (79)

gives rise to�
FXC 0

0 FX�

��
CC 0

0 C�

�
D
�

SC 0

0 S�

��
CC 0

0 C�

��
�C 0

0 ��

�
; (80)

or

FXCCC D SCCC�C; X D NESC;SESC; (81)

FX�C� D S�C���; X D NESC;SESC; (82)

which are the desired X2C equations for the PES and NES, respectively. In view of
the identity

C D U�

�
CC 0

0 C�

�
D
�

RCCC QXR�C�
XRCCC R�C�

�
D
�

A QX QB
XA QB

�
; (83)

the relationships between CC and A and between C� and QB read

CC D R�1C A; C� D R�1� QB: (84)

At this stage, the renormalization matrices RC and R� still remain to be specified.
Unfortunately, they cannot uniquely be determined by conditions (65) and (66),
respectively. Yet, the RC (R�) is just a transformation matrix between the f'0u D
Z11g

0
�g (f Q	0u D Z22g0�g) and f'� D Z11g�g (f Q	u D Z22g�g) bases due to the action

of some operator O ( QO), viz.,

'0 D O' D 'RC; Q	0 D QO Q	 D Q	R�: (85)
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Requiring that O and QO be Hermitian leads to

SCRC D O D O� D .SCRC/� D R�
CSC; (86)

S�R� D QO D QO� D .S�R�/� D R��S�: (87)

Conditions (65) and (86) then determine RC, while (66) and (87) determine R�
uniquely [5, 22], viz.,

RC D S�1=2C ŒS�1=2C QSCS�1=2C ��1=2S1=2C � ŒS�1C QSC��1=2; (88)

R� D S�1=2� ŒS�1=2� QS�S�1=2� ��1=2S1=2� � ŒS�1� QS���1=2: (89)

Alternatively, conditions (65) and (87), as well as (66) and (87), can be unified into
a single condition

RCS�1C QSCRC D I; R�S�1� QS�R� D I; (90)

such that RC and R� can be calculated as

QSCZC D SCZC�C; RC D ZC��1=2C Z�1C D ZC��1=2C Z�CSC; (91)

QS�Z� D S�Z���; R� D Z���1=2� Z�1� D Z���1=2� Z��S�: (92)

The so-normalized two-component eigenvectors  FW
p;C D

P
� g�.CC/�p are closest

[30] to the large components  L
p;C of the PES in the least-squares sense,

min
X
p

k FW
p;C �  L

p;Ck2 D min
X
p

h FW
p;C �  L

p;Cj FW
p;C �  L

p;Ci: (93)

In contrast, the BSS [25,26] and DKH [27,28] approaches amount to using different
renormalizations. However, they share the same decoupling condition (73) as X2C
[5].

Some remarks are in order.

1. The above formulation of the X2C Hamiltonians is more general than the
previous ones [22–24] that were based solely on the RKB condition (6) or
Z11 D 1, Z12 D Z21 D 0, and Z22 D 1

2mc
� � p in Eq. (45). Here, various kinetic

and magnetic balances (see Table 1 in Ref. [31]) have been incorporated in a
unified manner. In particular, an X2C quantum electrodynamics (QED) approach
is also possible by treating the EVP-ESE Q self-consistently. Two special cases
deserve to be mentioned here. One is the relativistic description of real positrons,
which are accommodated by high-lying NES. In this case, the dual kinetic
balance (DKB) [32] is most recommended since it describes the PES and NES
on an equal footing and additionally offers variational safety in conjunction with
Gaussian functions [10]. To simplify the integral evaluations, one can use DKB
for the one-electron terms while RKB for the two-electron terms in the spirit
of “different representations for different operators.” The other is the relativistic
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description of electrons in the presence of an ultra-strong magnetic field. In this
case, the dual magnetic balance (DMB) [10] is most recommended. Likewise,
one can use DMB only for the one-electron terms while the restricted magnetic
balance (RMB) for the two-electron terms.

2. Equations (81) [or (76)] and (73) form a coupled pair of equations, each of
which is of dimension 2NL � 2NL. In principle, they can be solved iteratively
through a dual-level algorithm. In the macro-iterations, Eq. (81) [or (76)] is
solved and the mean-field potential is updated. Meanwhile, for each macro-
iteration, some micro-iterations are performed to determine X via Eq. (73),
which require typically 3–4 cycles to converge [33]. At convergence, one obtains
results which fully duplicate those of the original Dirac matrix (47). However,
the computation is more expensive than directly solving the original matrix
Dirac equation (even for one-electron systems) and becomes impractical for
molecular applications. A more practical way is to find an accurate estimate of
X from the outset. As shown by Eq. (54), X is nothing but the ratio between
the small- and large-component coefficients. Therefore, the previous idea of
FATM [9, 16] underlying the Q4C approach can also be used here. Anyhow,
the interatomic interaction strength is much smaller and therefore more effective
than the perturbation parameters e2 (coupling strength) and c�1 employed in the
DKH and BSS approaches, respectively. Various schemes have been designed
following this philosophy; see Ref. [5]. A particular point to be made here is
that, while the popular one-electron approximation [34] to X works very well
for electronic structure calculations, it results in sizeable errors for, e.g., NMR
(nuclear magnetic resonance) shieldings [31]. In contrast, the superposition
of atomic/fragmental X matrices works uniformly well. It has two additional
merits. First, it also allows for an easy cure [8] of two-electron PCE, which is
essential for extended systems. Second, it allows for a natural “1/2C” hybrid
treatment of the light (one-component; 1C) and heavy (two-component; 2C)
atoms in the molecule, so as to interface seamlessly the Schrödinger and Dirac
equations. There have been attempts [35,36] to approximate the renormalization
matrix RC (88) as well. However, RC is much less local than X, such that the
approximations are generally not safe, especially for spatially adjacent heavy
atoms with diffuse functions [37]. Since both the construction of the RC matrix
itself and its use in transforming the integrals are computationally very cheap,
any approximation to RC is not recommended.

3. Once the X matrix is obtained, the SESC Hamiltonian QFSESCC /FSESCC has a great
advantage over QFNESCC /FNESCC : It does not involve .SS jSS/-type of integrals.

4. If wanted, the NES can also be obtained by solving Eq. (82) or (77) without any
iteration.

5. The second-quantized, normal-ordered many-electron X2C Hamiltonian can be
defined [9] as

HX2C D h0jHX2Cj0i C .FXC/pqfa�paqg C
1

2
. p qj r s/fa�pa�r asaqg;

 p D  FW
p;C; X D NESC;SESC; (94)
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which differs from the Q4C Hamiltonian HQ4C (38) only in the mean-field
term. For comparison, A2C approaches [20, 21] usually adopt an approximately
transformed one-electron operator hA2CC and the bare Coulomb operator, viz.,

HA2C D
NX
i

hA2CC .i/C 1

2

NX
ij

1

rij
; (95)

D h0jHA2Cj0i C .FA2CC /pqfa�paqg C
1

2
. p qj r s/fa�pa�r asaqg;

(96)

.FA2CC /pq D .hA2CC /pq C Œ.pqji i/ � .pi jiq/�ni : (97)

Apart from different one-electron terms, the HX2C/HQ4C Hamiltonian differs
from HA2C also in that the latter neglects all the picture change corrections,
whereas the former neglects only the picture change corrections to the genuine
two-electron terms. Since the two-electron PCE stem solely from the innermost
shells of heavy atoms, they can entirely be corrected at the mean-field level.
Therefore, the HX2C/HQ4C Hamiltonian is more accurate than albeit computa-
tionally the same as HA2C.

6. Although defined only algebraically, the spin separation of the X2C (and Q4C)
Hamiltonians is still possible, leading to a series of new Hamiltonians sf-
X2C+so-DKHn/so-BSSn/so-X2Cn that are infinite order in scalar relativity and
finite order in spin-orbit coupling [29, 30]. In this regard, the sf-X2C+so-DKHn

Hamiltonian as a combination of the spin-free (sf) part of X2C and the nth order
DKH (DKHn) type of spin-dependent (sd) terms is particularly promising [38].

7. The no-pair Q4C, X2C, and sf-X2C+sd-DKHn Hamiltonians, together with the
with-pair effective QED ones [39], form a continuous and complete “Hamilto-
nian ladder” [3, 4]. One can just pick up the right Hamiltonian for the target
physics and accuracy. Therefore, the development of relativistic Hamiltonians
can be considered as completed.

8. Unlike DKH and BSS, the X2C formalism allows easy formulations of nuclear
derives as well as electric/magnetic response properties. For instance, the
responses of X, RC, and QFNESCC can readily be obtained by expanding the
respective Eqs. (73), (90), and (60) in powers of the perturbations; see, e.g., Ref.
[31] for the formulation of NMR shieldings.

Finally, to confirm the above arguments, we compare Q4C and X2C with the
full DKS equation (8) for the energy levels of the heaviest diatomic molecule of
E1172. To simplify the calculations, only the local density approximation (LDA) of
the exchange-correlation functional was employed, in conjunction with a modified
QZ4P Slater-type basis set [9] and the point nuclear model. It is seen from Table 1
that Q4C and X2C[NESC] are indeed very accurate for all the energy levels. The
only caveat is that, at variance with X2C[NESC], X2C[SESC] is a bit more sensitive
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Table 1 Energy levels (in a.u.) of E1172 calculated with LDA at 3.425 Å. ModX, model potential
(superposition of spherical atomic densities) approximation to X; X˚

A D
P˚

A XA, superposition
of atomic X matrices; X1e , one-electron X matrix

X2C[NESC]a X2C[SESC]a

DKS Q4Ca ModX X˚
A X1e ModX X˚

A X1e

Core shells

1s1/2 �8046.3342 �0.0073 �0.0067 �0.0070 �0.0385 �0.0003 �0.0485 16.2793

2s1/2 �1675.0098 �0.0016 �0.0014 �0.0015 �0.0119 �0.0001 �0.0255 2.5114

2p1/2 �1622.3629 �0.0015 �0.0014 �0.0014 �0.0220 �0.0001 �0.0034 �5.4746

2p3/2 �1101.8697 �0.0009 �0.0008 �0.0008 �0.0106 0.0000 �0.0031 3.4665

3s1/2 �453.2514 �0.0004 �0.0004 �0.0004 �0.0028 0.0000 �0.0190 0.5444

3p1/2 �430.5377 �0.0004 �0.0004 �0.0004 �0.0045 0.0000 �0.0030 �1.3213

3p3/2 �303.4697 �0.0003 �0.0002 �0.0002 �0.0024 0.0000 �0.0029 0.8667

3d3/2 �273.3387 �0.0002 �0.0002 �0.0002 �0.0025 0.0000 �0.0029 �1.1775

3d5/2 �253.2403 �0.0002 �0.0002 �0.0002 �0.0019 0.0000 �0.0029 0.8993

4s1/2 �132.6890 �0.0001 �0.0001 �0.0001 �0.0007 0.0000 �0.0183 0.1422

4p1/2 �122.0502 �0.0001 �0.0001 �0.0001 �0.0011 0.0000 �0.0029 �0.4069

4p3/2 �85.2800 �0.0001 �0.0001 �0.0001 �0.0006 0.0000 �0.0029 0.2461

4d3/2 �70.4765 �0.0001 �0.0001 �0.0001 �0.0005 0.0000 �0.0029 �0.3538

4d5/2 �64.9376 �0.0001 0.0000 0.0000 �0.0004 0.0000 �0.0029 0.2463

4f5/2 �45.5699 0.0000 0.0000 0.0000 �0.0002 0.0000 �0.0029 �0.3081

4f7/2 �43.9159 0.0000 0.0000 0.0000 �0.0001 0.0000 �0.0029 0.2187

5s1/2 �36.3363 0.0000 0.0000 0.0000 �0.0001 0.0000 �0.0183 0.0379

5p1/2 �31.5952 0.0000 0.0000 0.0000 �0.0003 0.0000 �0.0029 �0.1302

5p3/2 �20.6721 0.0000 0.0000 0.0000 �0.0001 0.0000 �0.0029 0.0691

5d3/2 �14.2983 0.0000 0.0000 0.0000 �0.0001 0.0000 �0.0029 �0.1014

5d5/2 �12.8304 0.0000 0.0000 0.0000 �0.0001 0.0000 �0.0028 0.0628

6s1/2 �7.5898 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0198 0.0080

6p1/2 �5.7986 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0028 �0.0349

5f5/2 �5.1971 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0028 �0.0706

5f7/2 �4.8612 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0028 0.0434

6p3/2 �3.2453 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0028 0.0141

Valence shells

E1/2g �1.2331 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0028 �0.0183

E1/2u �1.2322 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0029 �0.0183

E3/2u �1.2260 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0028 �0.0184

E3/2g �1.2259 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0028 �0.0184

E1/2g �1.0055 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0029 0.0088

E1/2u �1.0023 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0029 0.0089

E3/2u �1.0010 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0029 0.0088

E3/2g �0.9997 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0029 0.0089

E5/2g �0.9945 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0028 0.0088

E5/2u �0.9944 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0028 0.0088

E1/2g �0.8968 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0078 0.0007

E1/2u �0.8864 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0161 0.0007

E1/2g �0.4646 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0027 �0.0051

E1/2u �0.4493 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0027 �0.0053

E1/2g �0.2033 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0024 0.0007

E3/2u �0.1874 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0022 0.0007

E3/2g �0.1532 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0023 0.0009
a Deviations from DKS
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to the approximations to X. This is because the NESC Hamiltonian QFNESCC (60)
arises from the stationarity condition for the energy variation [24], whereas the
SESC Hamiltonian QFSESCC (74) arises from QFNESCC (60) via the exact decoupling
condition (73) which cannot be satisfied by an approximate X. Still, however, the
diatomic approximation to X, i.e., X � P˚

A<B XAB , is sufficiently accurate for
X2C[SESC] in case of polyatomic systems.

Summary

The essential ideas underlying the Q4C and X2C approaches have been highlighted.
The take-home message is that four- and two-component relativistic approaches
can be made fully equivalent under very mild conditions and are hence equally
good for routine calculations of systems containing heavy elements. Yet, there
may exist some situations where four-component is a somewhat better choice than
two-component or vice versa. For instance, four-component is better suited for
spectroscopies of core electrons, while spin-separated two-component Hamiltonians
are better suited for two-step treatments of spin-free and spin-dependent relativistic
effects in systems where spin-orbit couplings are not too strong.

Acknowledgements This work was supported by the NSFC (Project Nos. 21033001, 21273011,
and 21290192).
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Introduction

In this conceptual review, we describe the development of Douglas–Kroll–Hess
(DKH) theory. While we discuss the essential concepts of this theory explicitly,
we refer the reader for further technical details to recent reviews [1–4] (for a
comprehensive background of relativistic quantum chemistry, see the monograph
in Ref. [5]).

The symmetric occurrence of positive- and negative-energy continua in the
spectrum of the field-free Dirac Hamiltonian is the basis for states describing
electrons and antielectrons (positrons) in quantum electrodynamics (QED). The
sophisticated framework of QED is neither feasible nor necessary for a theoretical
description of matter at the molecular level. In fact, the quantization of the radiation
field is hardly needed in molecular science. In a first-quantized theory, however,
in which all electromagnetic interactions are described in terms of classical fields
(electromagnetic scalar and vector potentials) rather than as being transmitted
by photons as in second-quantized QED, the negative-energy continuum creates
pathologies such as variational collapse and continuum dissolution because of the
resulting boundlessness of the Dirac Hamiltonian [5].

These pathologies make Dirac’s relativistic theory of the electron a difficult
basis for standard numerical solution methods. Still, all technical issues can be
solved in an orbital-based approach [6–8] – mostly by respecting the structure
of the one-electron Hamiltonian (kinetic balance) and the proper exponentially
decreasing long-range behavior of the electronic bound states when representing
the one-electron positive-energy states on a grid or in terms of basis functions.
Clearly, the negative-energy one-particle states, which are obtained whenever a one-
electron operator containing the Dirac Hamiltonian – such as the four-dimensional
Fock operator of four-component methods (“four-component” Fock operator) – is
diagonalized, are to be omitted from the construction of the density matrix required
for the calculation of the electron–electron potential and interaction energy.

In low-energy physics and therefore also in chemistry, electron–positron pair
creation processes are energetically not accessible, and therefore, negative-energy
states are usually not required for a sufficiently accurate quantum-mechanical
description of molecular matter. For this reason, approaches have been searched
for that produce relativistic (no-pair, electrons-only) Hamiltonians with an energy
spectrum that resembles the positive-energy states only. We should note that these
states feature positive energies even for bound electronic states as the zero-energy
reference is not the state, in which all particles are found at rest and at infinitely
large distance from each other. In this situation, which marks the nonrelativistic
zero-energy reference, each particle still possesses a rest energy defined by the mass
observed for the particle when it is at rest. The rest energy of an electron is given
by the product of its rest mass and the square of the speed of light, mc2, and it is so
large that even bound electronic states will feature a positive energy when the rest
energy is added to them (and if the attractive potential is not too strong as is the case
for all atomic nuclei known).
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An elegant option of removing the coupling to the charge-conjugated negative-
energy states is the application of a unitary transformationU that block-diagonalizes
the Dirac Hamiltonian hD in such a way that two decoupled operator blocks, hC
and h�, emerge:

hbd D UhDU � D
�
hC 02
02 h�

�
(1)

where 02 denotes a two-dimensional null matrix entering the off-diagonal blocks
of hbd . hC and h� then account for the positive- and negative-energy states
separately. Both hC and h� are two-dimensional one-electron Hamiltonians. The
2 � 2 superstructure of hD

hD D kO C rE C v (2)

with

kO D
�

02 c � �p
c � �p 02

�
(3)

and

rE D
�
mc2 02
02 �mc2

�
; (4)

where v is the potential energy operator, m the rest mass of the electron, c the
speed of light, p the momentum operator, and � the 3-vector of Pauli spin matrices,
is preserved by the transformation in Eq. (1). In the standard representation, the
kinetic energy operator kO is off-diagonal (odd, “O”), while an external electrostatic
potential vE in v D vE C vO is block-diagonal (even, “E ”) and vector-potential
contributions vO to v are odd. Also, the rest energy rE is an even operator, hence
the subscript.

Formal Exact-Decoupling

In the mid-1980s, a formal expression for the block-diagonalizing unitary transfor-
mation U was derived [9],

U D

0B@
�
1CX�X

��1=2 �
1CX�X

��1=2
X�

�ei'
�
1CXX�

��1=2
X ei'

�
1CXX�

��1=2
1CA (5)

as a function of the X -operator, which relates the large “L” and small “S”
components,

 S D X L; (6)
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of the 4-spinor,  D . L;  S/. In their original work [9], Heully and coworkers
chose ' D � for the relative phase '.

An expression for X depending on the energy eigenvalue � can be easily derived
from the Dirac equation,

X D �� � v C 2mc2��1c � �p: (7)

As the energy eigenvalue is the sought-for solution after applying the unitary
transformation, the energy-dependent X -operator is not very useful. In fact, it was
possible [9] to derive an equation for the determination of X that does not depend
on the energy eigenvalue,

X D 1

2mec2

n
c � �p � ŒX; V � � Xc � �pX

o
(8)

However, the solution of this equation for X was considered to be as complicated
as the solution of the Dirac equation itself. However, it was not before the dawn
of the new millennium that such an equation was solved by numerical means as a
true option for exact decoupling [10]. It was this paper by Barysz and Sadlej that
introduced the first infinite-order two-component (IOTC) method and that initiated
the intense development of exact-decoupling methods in the first decade of the
twenty-first century. We shall later discuss some of its ingredients in more detail
(see section “Relation to Other Exact-Decoupling Approaches”).

Foldy–Wouthuysen Transformations

Foldy and Wouthuysen were the first to find a block-diagonalizing unitary trans-
formation in closed form [11], but only for the free-particle (field-free) Dirac
Hamiltonian, for which v D 0. Unfortunately, such a closed-form solution is not
known for the general many-electron case in an external field of atomic nuclei
for two reasons: (i) already for a single electron in the presence of an external
electrostatic potential vE , no closed-form expression for a unitary transformation
can be constructed [12], and (ii) vector potentials, such as those emerging from
external magnetic fields or the magnetic interaction of two electrons, as well as
contributions from exchange integrals (in Hartree–Fock-type theories) to the off-
diagonal superblock of the Dirac Hamiltonian add additional complexity to the
problem [13]. A solution was already suggested by Foldy and Wouthuysen [11].
A sequence of unitary transformations can be used to suppress the off-diagonal
blocks order by order in terms of an expansion parameter. Strictly speaking, exact
decoupling is then obtained only after an infinite number of such transformations.

In physics, expansions of relativistic Hamiltonians are usually carried out order
by order with respect to the inverse speed of light 1=c, and so was the expansion
of Foldy and Wouthuysen. A 1=c-expansion is obviously advantageous as it
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easily allows us to derive the nonrelativistic limit for c ! 1, which should
match the Schrödinger Hamiltonian. This holds for the Foldy–Wouthuysen 1=c-
expansion. Already from the free-particle Foldy–Wouthuysen transformation, the
one-electron Pauli Hamiltonian emerges at second order in 1=c, which provides
the lowest-order one-electron mass velocity, Darwin, and spin–orbit corrections
to the Schrödinger Hamiltonian. If the free-particle transformation is applied to
the four-component many-electron Hamiltonian that includes Coulomb and Breit
interactions of the electrons, the Breit–Pauli Hamiltonian will result as zeroth- to
second-order terms [14–16].

The Pauli Hamiltonian is known to be useful in a perturbation theory context
but produces difficulties when applied in a variational approach. We have argued
[12] that all 1=c expansions – also the one produced by a sequence of unitary
transformations as proposed by Foldy and Wouthuysen – will fail in a variational
context as the true expansion parameter is actually the momentum divided by
mc, which should be smaller than one for a Taylor expansion of the relativistic
energy–momentum relation to converge. This, however, cannot be guaranteed as
can be understood in terms of formal and physical reasons. On the one hand,
high-momentum eigenfunctions cannot be excluded from a complete-basis-set
representation of the 1=c-expanded Dirac Hamiltonian, and so p=.mc/ < 1 cannot
be guaranteed for all such basis functions. On the other hand, an electron may
acquire high momentum in the close vicinity of heavy nuclei that may produce a
case in which p=.mc/ > 1.

Douglas–Kroll Transformations

An alternative is the expansion of the Hamiltonian in terms of the potential v as a
formal expansion parameter. It often goes without saying explicitly that vE and not
the full v is chosen as an expansion parameter. This has dramatic consequences as
vE is the even part of v, and its odd complement, vO , containing vector-potential
and exchange contributions is not considered in the transformation procedure. The
inclusion of vector potentials amounts to additional difficulties, which are not
discussed in this chapter. Instead, we may refer the reader to Ref. [13] and references
cited therein for a detailed discussion of vO in the context of transformation tech-
niques. Moreover, by default vE contains only the external electrostatic potential
of the nuclei, because the block-diagonal contribution from the electron–electron
interaction is not easy to evaluate (it depends on the ansatz for the wavefunction
approximation and requires an iterative, self-consistent determination). Hence, a
well-defined standard choice is vE D �PA ZA=rA as the sole contribution (ZA is
the nuclear charge number of nucleusA, and rA is the length of the difference vector
of its positions to that of an electron, all in Hartree atomic units).

Expansions in terms of the inverse speed of light and of the potential have been
considered by Erikson and coworkers at around 1960 [17–20], which apparently
have never been recognized in quantum chemistry. In 1974, an expansion of the
Dirac Hamiltonian in terms of the external electrostatic potential was proposed by
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Douglas and Kroll in the appendix of their paper [21]. In the mid-1980s, Hess dis-
covered this appendix [22–24] and combined it with a smart computational protocol
to evaluate the momentum-space expressions of the electrons-only Hamiltonian in
a basis of position-space one-electron functions (such as Gaussian functions used in
almost all molecular quantum chemistry computer programs).

The essential insight by Hess [22] was that for practical applications eigenvalues
of the squared momentum operator are required, which are known in a position-
space basis that diagonalizes the matrix representation of the p2-operator. Since the
nonrelativistic kinetic energy operator�„2�=.2m/ contains the squared momentum
operator, p2 D �„2�, an operator in a position-space basis can be transformed
into one in the p2-basis by transforming it with the eigenvectors of the kinetic
energy matrix scaled by 2m. As a fortunate consequence, an explicit momentum-
space representation of all operators is not necessary (and would have been a
significant obstacle for an implementation of the Douglas–Kroll–Hess approach
in a standard quantum chemistry program designed for molecular applications). It
was explicitly shown by Liu and coworkers that exploiting eigenvectors of the p2-
operator corresponds to the choice of a kinetically balanced basis set and that the
matrix representation of Hess’ (DKH) Hamiltonian can thus be derived from the
matrix form of the Dirac Hamiltonian in such a basis set [25, 26].

In his original work on the DKH Hamiltonian [23], Hess considered all terms
in the transformed Hamiltonian up to second order in the external electrostatic
potential, which defines the second-order DKH Hamiltonian hDKH2C . This derivation
had to be slightly corrected in Ref. [24]. It was not before the year 2000 that the
third-order Hamiltonian was derived and applied in quantum chemical calculations
[27], followed by the correct fourth- and fifth-order DKH Hamiltonians [28] and the
sixth-order one [29]. Note that the fourth- and fifth-order Hamiltonians in Ref. [27]
turned out to be not correct [28]. Moreover, Ref. [27] presents results only for
the third-order Hamiltonian, which, however, do not show the correct (oscillatory)
convergence behavior (see below). An arbitrary-order and therefore exact numerical
decoupling approach in terms of DKH Hamiltonians was then considered by us in
2004 [12].

While analytic results on the boundedness of the second-order DKH Hamiltonian
could be obtained [30–32], only the first implementation of the arbitrary-order
DKH approach [33] demonstrated the order-by-order convergence, and variational
stability could be (numerically) investigated for high orders. The order-by-order
convergence can be understood in terms of the true rather than the formal expansion
parameter [12]: that is the potential (expressed in terms of matrix elements in
the given p2-basis) divided by huge energy denominators. However, we found an
oscillatory convergence behavior [33]: odd DKH orders yield energy eigenvalues
that are below the Dirac reference energy, while even DKH orders approach the
Dirac reference from above. This behavior can be understood in view of the sign of
the leading term in the truncation error [12, 33].

For the sequential order-by-order decoupling of the Dirac Hamiltonian in
DKH theory, the necessary first step [12] is a free-particle Foldy–Wouthuysen
transformation U0 to generate an odd operator O1 that is linear in the potential,



12 Douglas–Kroll–Hess theory 401

h1 D U0hDU �
0 D E0 C E1 C O1; (9)

besides two four-dimensional even operators, E0 and E1 (the subscript denotes
the order in the potential vE ), which remain unchanged under all subsequent
transformations. They define the first-order DKH Hamiltonian:

hDKH1C D E0 C E1: (10)

For explicit expressions of the low-order even terms, see Ref. [28].
The subsequent transformations (in principle, infinitely many of them) are chosen

to eliminate the lowest-order odd term at a given step. Hence, U1 is chosen such that
O1 is eliminated, while new odd terms of higher order emerge. Then, U2 eliminates
O2 and so forth. Fortunately, each of these unitary transformations produces two
even orders that remain unchanged by the higher-order unitary transformations, i.e.,
U1 produces the final expression for E2 and E3, while U2 produces E4 and E5 and so
on. This has been called the .2nC 1/-rule for producing the .2nC 1/th-order DKH
Hamiltonian from U D UnU.n�1/ : : : U0.

The order-by-order elimination of odd operators in the Hamiltonian is achieved
by choosing the parameterW that parametrizes the unitary transformation at a given
step in such a way that the lowest-order odd operator of that step, to which W
contributes, cancels. Many closed-form expressions for the parametrization of the
unitary transformation are available. For example, Douglas and Kroll [21] proposed
the so-called square-root parametrization,

U
SQR
i D

q
1CW 2

i CWi; (11)

while Nakajima and Hirao [27] employed the exponential parametrization,

U EXP
i D exp.Wi /; (12)

which is known best in quantum chemistry.
When the exponential parametrization was applied in the derivation of the low-

order DKH Hamiltonians by Nakajima and Hirao [27], it was not clear whether these
low-order Hamiltonians are actually independent of the parametrization chosen.
Since the analytic parametrizations are expanded in a Taylor series expansion in
powers of the anti-hermitian parameter Wi , we set out [28] to study the most
general unitary transformation, in which unitarity is imposed on the coefficients
of a general power series expansion in terms of Wi . This ansatz covers all possible,
and thus infinitely many, parametrizations of the unitary transformation. We found
[28] that only up to fourth order is the DKH Hamiltonian independent of the
chosen parameterization. Starting at the fifth order, DKH Hamiltonians depend
on the expansion coefficients of the unitary transformation, an unfortunate effect
that vanishes only at infinite order. However, the parameter dependence of the
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fifth- and all higher-order DKH Hamiltonians is, for reasonable parametrizations
of the unitary transformation, much smaller than the amplitude of the oscillatory
convergence with increasing DKH orders [34].

It is clear that, at infinite order, any unitary transformation will exactly reproduce
the spectrum of the Dirac Hamiltonian. However, this does not hold for the
eigenstates. Different unitary transformations produce different DKH wavefunc-
tions and different DKH orbitals at some given order (and also at infinite order).
Only expectation values in the four-component theory are preserved by unitary
transformations of the wavefunction and the property operator. The according
transformation of the property operator has occasionally been omitted as the error
introduced – the so-called picture-change error [35] – is small for valence-shell
properties. However, it can be significant and therefore non-negligible for properties
probed closed to an atomic nucleus [36]. A most prominent example, in which the
picture-change error is dramatic, is the contact electron density [37], which is central
to calculating the Mössbauer isomer shift [38, 39].

For properties, the .2nC 1/-rule does not hold and n unitary transformations are
required to produce an nth-order DKH property operator [40]. A symbolic scheme
for the automated derivation of arbitrary-order DKH property operators has been
presented [36].

Note that the DKH expansion is not of the type that yields the Schrödinger
Hamiltonian to lowest order (that is only achieved by considering the limiting case
of c !1). Accordingly, one does not obtain “relativistic corrections” in the DKH
expansion as there is no nonrelativistic (zeroth-order) reference.

As a final remark, we should emphasize that the derivation of any DKH Hamilto-
nian produces a four-dimensional operator, i.e., one that contains an approximation
to hC as well as to h� on the block diagonal. The approximation for hC is then
obtained by replacing the Dirac parameter matrix ˇ D diag.1; 1;�1;�1/ in all
terms of the DKH expansion by the two-dimensional unit matrix.

Implementation of Douglas–Kroll Transformations

While Hess and others derived the lowest- and low-order DKH Hamiltonians
manually, it became apparent that this stepwise decoupling protocol can be fully
automated [12, 33], also for molecular properties [36, 40]. The derivation of an
arbitrary-order DKH Hamiltonian or property operator was accomplished fully
symbolically in two steps [33, 36]. First, all terms contributing to a given order
were derived on a rather abstract formal level in terms of even and odd operators
of a well-defined order in the external potential. Then, the resolution of the identity,
.� � p/.� � p/=p2, is used to break down all expressions into matrix products of
known nonrelativistic operator matrices plus two additional types of “relativistic”
matrices, namely, those of the operators p �vp and p �Op (where the omission of the
vector � of Pauli spin matrices in front of each momentum operator indicates the
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standard spin-free one-component approximation to the DKH approach) required
for the decoupled one-electron Hamiltonian and property operator O , respectively.

Unfortunately, this two-step protocol produces operator expressions of increasing
length (measured by the number of matrix multiplications) with increasing order.
Because of this steep scaling, DKH operators up to fourteenth order were considered
in the early years [33, 36]. Peng and Hirao realized that the cost of the whole
derivation can be significantly reduced by avoiding the second step [41] so that DKH
calculations up to 35th order were easily possible [42,43]. We should note, however,
that already the low-order DKH Hamiltonians, and in particular the original DKH2
one, provides an accurate description of valence-shell properties (see Refs. [44, 45]
for two examples). Only properties probed close to an atomic nucleus [34, 36, 46]
such as contact densities [37] or core excitations in X-ray and UV spectroscopies
require high orders.

Amazingly, the stepwise derivation of Foldy–Wouthuysen decoupling in powers
of 1=c had already been automated in 1968 on a Telefunken TR4 computer in
ALGOL60 by deVries and Jonker [47, 48]. The even and odd decomposition of
the Hamiltonian was achieved by mapping this digital structure to a binary number.
In this way, the Hamiltonian could be derived “semi-symbolically” up to 8th order
in p=.mc/ in Ref. [47] and to 10th order in p=.mc/ in Ref. [48].

The DKH approach is best known in its scalar-relativistic variant, in which all
spin-dependent terms are separated from the scalar ones (by application of Dirac’s
relation) and then omitted. Clearly, omitting all Pauli spin matrices from the DKH
Hamiltonian eliminates the spin–orbit coupling and a spin-averaged description
emerges. The resulting scalar DKH Hamiltonian still comprises all kinematic
relativistic effects (to arbitrary order in the potential). As its eigenfunctions are
scalar functions, it can be easily interfaced with any nonrelativistic quantum
chemistry computer program. The nonrelativistic one-electron Hamiltonian in the
Fock operator is then replaced by a scalar-relativistic DKH Hamiltonian of pre-
defined order. Various corrections to improve on the standard approximations in
practical applications of DKH theory have been proposed [49–57].

Relation to Other Exact-Decoupling Approaches

A hybrid approach first proposed by Jensen [58] and then elaborated by Liu,
Kutzelnigg, Saue, Visscher, Iliaš, and coworkers [59–68] offers the possibility to
achieve decoupling by a single unitary transformation. It is now common to denote
this approach the exact two-component approach, with acronym “X2C.” The central
idea is that one can construct an exact unitary transformation matrix U D U.X/

from the eigenvectors of the four-component Fock operator through their relation to
the X -operator in matrix representation, X,

C
.C/
S D XC .C/

L ) X D C .C/
S

	
C
.C/
L


�1
(13)
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where .C .C/
L ; C

.C/
S / contain the positive-energy “(C)” eigenvectors of the four-

component Fock matrix (they are the expansion coefficients of the basis-set
expansions for the large “L” and small “S” two-spinors of the four-component
molecular orbital). Clearly, this implies that the Fock operator needs to be diag-
onalized first (in a given one-electron basis set), and so the problem seems
to have already been solved then (it also implies that the solution of a four-
component problem is actually feasible). However, if this calculation is done only
for an approximate Fock operator, in which the electron–electron interaction terms
are neglected or approximated, then an efficient approximation to the basis-set
representation of the exact unitary transformation can be obtained, which produces
an approximate two-component Fock operator to which missing potential energy
terms (most importantly, the full electron–electron interaction) are added. This
procedure will produce a picture-change error for all interaction terms that were not
considered in the construction of the unitary transformation. However, the resulting
X2C Hamiltonian reproduces the original spectrum of the (full) four-component
(reference) Fock Hamiltonian well so that it can be employed in a two-component
electrons-only theory.

The abovementioned IOTC method of Barysz and Sadlej [10] is actually an
extended X2C approach that involves one additional unitary transformation, namely,
the free-particle Foldy–Wouthuysen transformation. Although the latter is the
essential first ingredient of DKH theory, it is not mandatory in an X2C-type
approach and therefore only increases the computational cost. In order to avoid
confusion due to the rather general acronym “IOTC,” the two-step exact-decoupling
approach by Barysz and Sadlej has often been called the “BSS” approach according
to the initials of the authors of an earlier paper [69] to which it is related.

It is important to understand that the computational effort for two-component
decoupling approximations scales with a measure of the size of the system
under consideration, e.g., with the number of basis functions. Accordingly, an
efficient systematic approach to the decoupling transformation considers its atomic
composition, which can be particularly easily achieved in the case of atom-
centered basis functions, to set up local decoupling approximations. An atomic
decomposition of the DKH unitary transformation has been proposed by us [70]
and by Seino and Nakatamo [71, 72], who also developed a geometry gradient
for structure optimizations [73]. An alternative is the atomic decomposition of
the Hamiltonian [74–77], which, however, produces no general recipe for the
transformation of off-diagonal atom–other-atom blocks in the Hamiltonian. Our
derivation of the diagonal local approximation to the unitary transformation (DLU)
[70] was sufficiently general to also comprise the local X2C and BSS approaches.
Hence, the computational effort is reduced by a reduction of dimension of matrices
subjected to multiplication, inversion, and diagonalization operations in DKH, BSS,
and X2C, rather than by a limitation of the decoupling accuracy by truncation of a
series expansion as in DKH2.

We have presented a highly efficient implementation of the local exact-
decoupling methods in the TURBOMOLE program package along with a detailed
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analysis of the performance of the different approaches [43]. Moreover, we refer the
reader to a general overview [42], which provides a detailed numerical comparison
of different exact-decoupling approaches.

Conclusions and Outlook

The present situation in relativistic quantum chemistry is such that all potential
pitfalls associated with a four-component many-electron theory based on the Dirac
one-electron Hamiltonian can be circumvented by an appropriate expansion of the
molecular orbitals (spinors) into a finite one-electron basis set in such a way that all
properties of the underlying Hamiltonian are respected by this expansion (kinetic
balance). Even the dimension of the matrix representation of a four-component Fock
operator can be limited to be about twice as large as the one for a corresponding
nonrelativistic Schrödinger-based Fock Hamiltonian. Consequently, computational
difficulties can no longer be held account for the development of two-component
methods. In fact, four-component relativistic calculations have become routine, but
since not many groups are working in this field, we can be grateful to the major effort
of the DIRAC development team [78] that an open-source, freely available, highly
professional, multipurpose, general, four-component molecular electronic-structure
program is available.

As a consequence, we finally need to address the question whether two-
component approaches are still of value in computational quantum chemistry or
whether they will be eventually replaced by four-component methods valid for the
whole periodic table of the elements. The discussion of this question has a long
history [79] and we shall only touch upon it from the point of view of practical
molecular electronic-structure calculations.

An important case can be made for sophisticated relativistic electron-correlation
methods such as (four-component) multi-configurational self-consistent-field
(MCSCF) [80, 81], (four-component) coupled cluster (CC) [82–84], and (four-
component) density matrix renormalization group (DMRG) [85]. They require a
four-index transformation which switches from one- and two-electron integrals
given in the atomic-orbital basis to those in the molecular-orbital basis, in which the
second-quantized Hamiltonian, that is the basis of all ab initio electron-correlation
methods, is formulated. The transformation scales with the fifth power of the
dimension of the problem and is thus particularly cumbersome for four-component
methods due to the additional basis set for the small components of the molecular
spinors. The requirements in terms of computational resources can be so large that
this step may prevent one from carrying out a four-component electron-correlation
calculation with an MCSCF, CC, or DMRG approach. Hence, for this step, a
two-component method is beneficial as it basically requires the same effort in the
four-index transformation step as a nonrelativistic approach would require.

Clearly, the X2C approach, especially in its local version [70], is most efficient
for this purpose and so the next question is whether approximate and sequential
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decoupling approaches will continue to have a right to exist in computational
chemistry. Clearly, DKH2 will be around for some time as many developments
have been based on this low-order Hamiltonian (and its accuracy for valence-shell
properties such as vibrational frequencies, reaction energies, or bond lengths is
undeniable). The most important technical advantage of DKH2 is the supply of basis
sets for the whole periodic table of the elements that were produced by many groups
in the past two decades.

Moreover, approximate two-component methods such as DKH2 require less
computational effort than X2C, and so they may be beneficial for extensive
calculation, if the calculation of the one-electron Hamiltonian is the limiting step,
which can, however, be circumvented by introducing the DLU approximation [70].

All analysis in this conceptual overview focused mostly on the Hamiltonian
and thus on the energy as the target observable. For other observables or specific
electronic-structure methods, it may still be advantageous to consider a sequential
decoupling protocol [26].

Apart from these computational considerations, we should not forget that, at its
heart, DKH theory is an analytic tool for deriving an electrons-only Hamiltonian
in the no-pair approximation of first-quantized relativistic many-electron theory. As
such it will persist as the unique decoupling protocol yielding variationally stable
Hamiltonians.
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Abstract

Separating a no-pair relativistic Hamiltonian into spin-free and spin-dependent
terms allows a clear distinction of scalar and spin relativistic effects, on one
hand, and enables an efficient two-step treatment of such effects, on the other.
That is, the spin-free Hamiltonian can be handled in the same way as the
Schrödinger-Coulomb Hamiltonian, while the spin-dependent Hamiltonian can
be handled either variationally or perturbatively. We here discuss the spin
separation of various no-pair relativistic Hamiltonians, focusing especially on
the algebraic exact two-component variants to which the Dirac identity for spin
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separation cannot directly be applied. A mean-field approximation to the two-
electron spin-orbit interaction is also introduced, which is sufficiently accurate
for valence properties. The so-obtained operators are then combined with the
analytic derivative technique, response theory, and quasi-degenerate perturbation
theory for spin-free and spin-dependent properties of both ground and excited
states. Nonadiabatic dynamics involving different spin states is also discussed
briefly.

Keywords
Exact two-component • Spin separation • Mean-field spin-orbit Hamiltonian •
Spindependent property • Nonadiabatic dynamics

Introduction

No-pair all-electron or valence-only relativistic Hamiltonians can all be written in
the following generic form:

hrel D hsf C hsd.E
/; (1)

where hsf includes all the terms that are independent of the Pauli matrix E
 , whereas
hsd includes all the terms that depend on E
 . The most important term in the latter
is the so-called spin-orbit coupling (SOC) which is under concern here. From a
computational point of view, there exist three different ways for treating the SOC:

1. One-step approach: The entire Hamiltonian hrel is used to perform two- or four-
component calculations, such that the SOC is accounted for already at the self-
consistent field (SCF) level for orbital optimization.

2. Two-step approach: The spin-free Hamiltonian hsf is first used to perform orbital
optimization, and the spin-dependent Hamiltonian hsd is then invoked in the post-
SCF step, either variationally or perturbatively.

3. Neglecting the SOC. That is, only the spin-free Hamiltonian hsf is considered.

The first approach is most accurate and is imperative for situations (e.g., core
properties) where the SOC is very strong, while the third approach is least accurate
and works only if the SOC is totally negligible for the target properties. In contrast,
the second, two-step approach is applicable to most real-life chemical systems
where the SOC is not negligible but not too strong. In this regard, there have been
several choices for hsf and hsd:

1. NR+so-BP: The nonrelativistic Schrödinger-Coulomb (SC) Hamiltonian com-
bined with the Breit-Pauli (BP) SOC operator

2. sf-ZORA+so-ZORA: The spin-free and spin-orbit terms separated from the
zeroth-order regular approximation (ZORA) [1]
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3. sf-DKH2+AMFI: The spin-free second-order Douglas-Kroll-Hess (DKH)
Hamiltonian [2, 3] combined with a mean-field approximation [4] to the two-
electron spin-orbit interaction through, e.g., the atomic mean-field integrals
(AMFI) [5]

4. sf-MDEQ+so-MDEQ: The spin-free and spin-orbit terms derived from the mod-
ified Dirac equation (MDEQ) [6] with the two-electron Coulomb/Gaunt/Breit
interaction

All such spin-separated Hamiltonians are derived a posteriori from their parent
operators hrel by virtue of the Dirac identity

.E
 � EA/B.E
 � EC/ D EA � .B EC/C iE
 � Œ EA � .B EC/�: (2)

Given the many choices, the question remains to be “What is the best relativistic
Hamiltonian that can be applied in two steps?” To be the best, it should satisfy the
following requirements:

(F1) It should describe scalar relativity to infinite order in ˛2, the fine structure
constant.

(F2) It should describe SOC at an accuracy that can be improved readily and
systematically.

(F3) It can be used both variationally and perturbatively.
(F4) It can be readily interfaced with existing wave function/density functional

methods for correlation and excitation.
(F5) It can be made linear scaling with respect to the molecular size.

That the first feature (F1) can be wanted is because an infinite order hsf still shares
the same machinery (single point group, spin symmetry, and real algebra) as the
SC Hamiltonian. The second feature (F2), which is important for ensuring the
accuracy, is more stringent and is not fulfilled by the spin separation of the regular
approximation and DKH for they include too numerous terms at high orders. The
third feature (F3) dictates that there should be no unbound operators in hsf and hsd.
The fourth feature (F4) is fulfilled by spin-free two-component Hamiltonians in the
Schrödinger picture but not by the sf-MDEQ Hamiltonian still in the Dirac picture.
The fifth feature (F5) is also very important for large systems. Overall, none of the
abovementioned relativistic Hamiltonians satisfies all the criteria (F1)–(F5). The
present account is to propose a relativistic Hamiltonian that satisfies all the criteria.
It is required to take the following second-quantized form

Hel D Hsf CHsd; (3)

Hsf D
X

pq

Œhsf�pqa
�
paq C

1

2

X
pqrs

hpqjrsia�pa�qasar ; (4)

Hsd D
X

pq

Œhsd�pqa
�
paq; Œhsd�pq D ŒhSO;1e�pq C ŒfSO;2e�pq; (5)
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which implies the following approximations:

(A1) Only the bare Coulomb interaction is retained in Eq. (4), which amounts to
neglecting the two-electron scalar relativistic picture change corrections. This
approximation is very accurate and renders the computation of two-electron
interactions the same as the nonrelativistic case.

(A2) Only the two-electron SOC of O.˛2/ is retained in the spin-dependent two-
electron interactions. If wanted, the BP form of the spin-spin interaction (which
may be significant for light elements) can further be added.

(A3) A mean-field approximation is adopted for the two-electron SOC, so as to
obtain an effective one-electron SOC fSO;2e in Eq. (5). This arises from the fact
that the SOC is heavily dominated by single excitations. Yet, it should be kept in
mind that a genuine two-electron SOC must be adopted when the SOC between
two configurations differing by two spin orbitals becomes important.

(A4) The screening of hSO;1e , furnished by fSO;2e , arises mainly from the core
electrons, as reflected by the fact that the SOC matrix elements are very
insensitive to valence occupations used to create the mean field [4]. Therefore, it
is justified to use a spin-averaged density matrix

NP D 1

2
.P˛ C Pˇ/ (6)

and a one-center approximation to the two-electron spin-orbit integrals. The
former simplifies the formulation of fSO;2e while the latter leads naturally to a
linear scaling construction of fSO;2e . The matrix elements ŒfSO;2e�pq can even be
confined only to heavy elements and their local surroundings, so as to achieve an
O.1/ scaling.

Even under these restrictions, there are still some degrees of freedom in choosing hsf

and hsd in Eq. (3). The most accurate variant of hsf can be derived from the sf-MDEQ
[6], whose spectrum contains both positive (PES) and negative (NES) energy states.
The corresponding hSO;1e is a simple spin-orbit operator of O.˛2/ (vide post). When
combined with fSO;2e to form a single perturbation operator, the post-SCF treatment
of SOC will be correct to O.˛2/ if the response of the scalar NES is neglected.
To get higher-order SOC, the response of the scalar NES should be accounted for
via coupled-perturbed equations. Therefore, such an explicit and exact treatment
of NES will make the computation significantly different from the nonrelativistic
counterpart involving only PES, although spatial and spin symmetries can be used
in the spin-free calculation.

To achieve feature (F4) but meanwhile maintain features (F1) and (F2), we have
to introduce further approximations to simply the hsf and hSO;1e derived from the
MDEQ. First, the explicit treatment of the scalar NES can be avoided by using
the ideas of the quasi-four-component (Q4C) [7] or exact two-component (X2C)
[8] approach. In Q4C, molecular orbitals are expanded in terms only of the atomic
PES, so as to avoid molecular NES. That is, Q4C works with the untransformed
four-component Hamiltonian but which is represented in a special basis. In contrast,
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X2C works with an effective two-component Hamiltonian for the PES alone. For the
one-step account of the SOC, Q4C and X2C are computationally identical in all the
aspects of simplicity, accuracy, and efficiency [9]. However, for a two-step account
of the SOC, the X2C formalism offers more flexibilities and is hence employed here
to construct hsf and hsd. Second, the explicit treatment of the response of the scalar
NES can be avoided by invoking a suitable approximation to the decoupling matrix
X (29) of X2C. It turns out that the following approximation for X is not only simple
but also sufficiently accurate:

(A5) Both the spin-free X0 and the kth-order spin-orbit response Xk are approxi-
mated at the one-electron level.

The treatment of the SOC then requires only the response of the scalar PES,
precisely the same as the nonrelativistic counterpart.

Having introduced the approximations (A1)–(A5), we are now ready to derive
detailed expressions for hsf, hSO;1e and fSO;2e . The spin separation of the Dirac
operator/matrix is first briefly recapitulated in section “Spin Separation at Two–
Component Level” to introduce the notations. After highlighting some general
aspects of the spin separation at the two-component level in section “Spin Sepa-
ration at Two-Component Level,” the lowest-order terms of hSO;1e are constructed
explicitly in three distinct ways in section “The Lowest-Order Spin-Orbit Terms.”
The results are further compared therein with the spin-orbit terms of some well-
known A2C Hamiltonians. A “two-component Hamiltonian ladder” is depicted
in section “A Short Summary.” Section “Two-Electron Spin-Orbit Coupling” is
devoted to the two-electron spin-orbit interaction. A two-electron SOC operator of
O.˛2/ is first introduced, followed by a mean-field approximation. The construction
of the desired Hamiltonian Hel (3) is then completed. Section “Applications:
Perturbative Treatment of SOC” demonstrates how to combine the so-obtained
spin-orbit operators with the analytic derivative technique, response theory, and
quasi-degenerate perturbation theory (QDPT) for spin-free and spin-dependent
properties of both ground and excited states. Nonadiabatic dynamics involving
different spin states is also discussed therein. The account ends with concluding
remarks in section “Summary.” The atomic units („ D m D e D 1) are always used.

The One-Electron hsf and hSO;1e

Spin Separation at Four-Component Level

The Dirac equation for an electron moving in an external potential V reads

hD D E ; hD D
�

V cE
 � Ep
cE
 � Ep V � 2c2

�
;  D

�
 L

 S

�
; (7)

where the rest mass energy c2 of the electron has been subtracted. To have a
meaningful spin separation, it should first be noted that the Dirac equation (7) has
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to be transformed to a form in which the Pauli spin matrix E
 appears in pairs. There
can be infinitely many transformations to achieve this [10]. Yet, the simplest choice
is the one [6] that leaves the large-component spinor  L unchanged but replaces the
small-component spinor  S with a pseudo-large spinor �L:

T D
 
1 0

0
E
 � Ep
2c

!
;  S D E
 � Ep

2c
�L: (8)

Under this transformation, the Dirac equation (7) becomes

hM M D EM M ; (9)

where

hM D T �hDT D
 
V T

T ˛2

4
W � T

!
; (10)

M D T �T D
 
1 0

0 ˛2

2
T

!
; (11)

 M D T �1 D
�
 L

�L

�
; (12)

T D p2

2
; W D .E
 � Ep/V .E
 � Ep/: (13)

Equation (9) has been termed “modified Dirac equation” (MDEQ) [6]. It is clear
that the dependence of spin in hM (10) appears only in the potential W (13) for the
pseudo-large component. In other words, the real spin dependence in the original
Dirac equation (7) is not in the kinetic energy per se but in the potential for the
small component. The use of the Dirac identity (2) can then be made to obtain the
spin-separated Hamiltonian in the form of Eq. (1),

hM D hMsf C hMsd ; hMsf D
 
V T

T ˛2

4
Wsf � T

!
; hMsd D

 
0 0

0 ˛2

4
Wsd

!
; (14)

where

Wsf D Ep � V Ep; Wsd D iE
 � . EpV � Ep/ D E
 � Œ.rV / � Ep�: (15)

It is seen that the spin-dependent term hMsd (14) is simply an operator of O.˛2Wsd/.

For the nuclear attraction V D �Z=r , Wsd is equal to 2Z
r3
Es � El , thereby revealing a

clear connection of Wsd with the SOC.
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Since the large ( L
p ) and pseudo-large (�Lp ) components share the same sym-

metry properties and nonrelativistic limit, they should be expanded [8] in the same
basis fg�g, viz.,

 L
p D

X
�

g�A�p; �Lp D
X
�

g�B�p: (16)

This leads to the following matrix representation of the MDEQ (9):

hDC D MCE; (17)

hD D
 

V T
T ˛2

4
W � T

!
D hDsf C hDsd; (18)

hDsf D
 

V T
T ˛2

4
Wsf � T

!
; hDsd D

 
0 0
0 ˛2

4
Wsd

!
; (19)

M D
 

S 0
0 ˛2

2
T

!
; C D

�
A
B

�
; (20)

where the corresponding matrices are defined as

S�� D hg�jg�i; T�� D hg�j1
2
p2jg�i; V�� D hg�jV jg�i;

.Wsf/�� D hg�j Ep � V Epjg�i; .Wsd/�� D hg�jiE
 � . EpV � Ep/jg�i: (21)

As a matter of fact, Eq. (17) is nothing but the matrix representation of the original
Dirac equation (7) in a basis where the small-component basis functions ff�g are
generated from the large-component ones fg�g via the restricted kinetic balance
(RKB) prescription [11]

f� D E
 � Ep
2c

g�: (22)

Therefore, the term “modified Dirac equation” loses its meaning in the matrix
representation. In the present context, it just means that the spin separation of the
Dirac equation can be done at both the operator and matrix levels.

Spin Separation at Two-Component Level

Two-component (i.e., electron-only) relativistic Hamiltonians are usually obtained
by block-diagonalizing the Dirac operator via unitary transformation [12] or
equivalently elimination of the small component [13]. However, except for the free-
particle case (i.e., V D 0 in Eq. (7)), the so-obtained two-component Hamiltonians
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do not have a closed form and are overly complicated as compared with the
aesthetically simple structure of the parent Dirac operator. Because of this, various
approximations must be introduced, thereby leading to a series of approximate two-
component (A2C) Hamiltonians, among which DKH2 [2,3] and ZORA [1] are most
popular. Being of explicit operator forms, a posteriori spin separation of such A2C
Hamiltonians can readily be made by using the Dirac identity (2). Their matrix
representations can then be formed in the large-component basis fg�g.

At variance with the unsurmountable difficulties in the decoupling of the opera-
tor Dirac equation (7) (which has an infinite number of solutions), the decoupling
of the matrix Dirac equation (17) (which has a finite number of solutions) is not
only very simple but also immune of singularities [14]. If one realizes that one
only solves in practice a particular matrix representation of a quantum mechanical
equation rather than the equation itself, one would bethink immediately that
it is the matrix formulation of two-component relativistic Hamiltonians that is
actually the natural choice. Again, this can be done in various ways. The one-step
decoupling of the matrix Dirac equation (17) was initiated by Dyall [15] but was
formulated properly and generally only by Kutzelnigg and Liu [16]. The resulting
Hamiltonian was christened “exact two-component” (X2C) [17] when going to the
Schrödinger picture [18]. At variance with the one-step decoupling, both two-step
[19,20] and multiple-step [21,22] exact decoupling procedures have been proposed,
with the resulting Hamiltonians coined Barysz-Sadlej-Snijders (BSS) and DKH,
respectively. The three types of algebraic Hamiltonians share the same decoupling
condition (42) and differ only in the renormalization (and hence picture change)
[8]. For a more complete summary of the matrix formulation of two-component
relativistic Hamiltonians, we refer the reader to Ref. [23].

In the context of spin separation, the price to pay for the algebraic two-component
Hamiltonians is that the Dirac identity (2) cannot be applied due to the lack of an
explicit expression for the transformation matrix. Yet, some a priori procedure can
be invoked to circumvent such a conceptual difficulty. Suppose a two-component
Hamiltonian hC and its spin-free part hC;sf are to be derived from hD (18) and
hDsf (19), respectively, the spin-dependent part hC;sd of hC can then be defined as the
difference between hC and hC;sf, viz.,

hC;sd D hC � hC;sf: (23)

Since both hC and hC;sf can be obtained in various ways, the so-defined hC;sd

is also not unique. Here we seek for an explicit hC;sd inspired by the DKH type
of transformation. Recall that the DKH transformation starts with a free-particle
Foldy-Wouthuysen (fpFW) transformation [12] to cover all kinematic relativistic
effects and then proceeds with a series of unitary transformations Ui to eliminate
at each step the lowest-order operators that are odd (off-diagonal) in V . For the
present purpose, we take the spin-orbit operatorWsd instead of the external potential
V as the expansion parameter. Therefore, the first transformation in place of the
fpFW is chosen to be the spin-free unitary transformation U0 that covers all scalar
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relativistic effects. The subsequent transformations are then introduced to eliminate
at each step the lowest-order odd terms in Wsd. The only difference lies in that
the fpFW transformation [12] is known in an explicit and closed form, whereas
the U0 transformation for the exact decoupling of hDsf is only known in an implicit
and matrix form. However, such subtlety is actually not immaterial, as the DKH
approach can be viewed as a kind of perturbation method based on a special partition
of the matrix Hamiltonian hD (18), viz., 

V T
T ˛2

4
W � T

!
D
�

0 T
T �T

�
C
 

V 0
0 ˛2

4
W

!
: (24)

Two better partitions can readily be envisaged: 
V T
T ˛2

4
W � T

!
D
�

V T
T �T

�
C
 

0 0
0 ˛2

4
W

!
; (25)

 
V T
T ˛2

4
W � T

!
D
 

V T
T ˛2

4
Wsf � T

!
C
 

0 0
0 ˛2

4
Wsd

!
: (26)

Equation (25) takes the nonrelativistic Hamiltonian as zeroth order and is therefore
in the spirit of direct perturbation theory (DPT) [24], while Eq. (26) takes the (two-
component) spin-free relativistic Hamiltonian as zeroth order and hence leads to a
more rapidly convergent expansion series. It is clear that Eq. (26) is the best partition
if the nonrelativistic machinery is to be maintained.

Before discussing the perturbative expansion of hC;sd, the (one-component) spin-
free Hamiltonian hC;sf must be specified, since the definition of hC;sd depends on
the form of hC;sf, as seen in Eq. (23). The simplest choice [25] is the one-step spin-
free X2C (sf-X2C) [16], whose construction can be summarized as follows. For
generality, we extend Eq. (17) to a generic generalized eigenvalue problem

hC D MCE; (27)

h D
�

h11 h12
h21 h22

�
D h�; M D

�
S11 0
0 S22

�
DM�; C D

�
A
B

�
: (28)

To decouple the PES and NES, we first introduce the following formal relations:

B D XA; A� D QXB� (29)

between the small and large coefficients for the PES and NES, respectively. The
following unitary transformation matrix UX can then be introduced [8]:

UX D 	N	D; 	N D
 

R�
C 0

0 R��

!
; 	D D

�
I X�

QX� I

�
; (30)
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where [18]

RC D .S�111 QSC/�
1
2 D S

� 12
11 .S

� 12
11
QSCS

� 12
11 /
� 12 S

1
2

11; (31)

R� D .S�122 QS�/�
1
2 D S

� 12
22 .S

� 12
22
QS�S

� 12
22 /
� 12 S

1
2

22; (32)

QSC D S11 C X�S22X; (33)

QS� D S22 C QX�S11 QX; (34)

QX D �S�111 X�S22: (35)

Note that UX is related [25] to the matrix representation of the unitary operator U
in a RKB basis, and the matrix identity corresponding to UU� D U �U D 1 reads

UXMU�
X DM or U�

XM�1UX DM�1: (36)

The renormalization matrix RC (31) for PES satisfies both the normalization
condition R�

C QSCRC D S and the Hermiticity condition R�
CS D .SRC/� D SRC,

which can be merged into a single equation for RC,

RCS�111 QSCRC D I: (37)

In practice, RC can simply be calculated as follows:

QSCZ D S11Z�; RC D Z�� 12 Z�1; Z�1 D Z�S11: (38)

Similar to Eq. (37), the renormalization matrix R� for NES satisfies

R�S�122 QS�R� D I: (39)

The as yet unknown matrix X in UX (30) is to be determined by the requirement
that the transformation UX can block-diagonalize the matrix Dirac equation (27) in
the following way:

.UXhDU�
X/CX D

�
hC 0
0 h�

�
CX DMCXE; (40)

with

CX D .U�
X/
�1C DM�1UXMC D

 
CC 0

0 C�

!
: (41)

The vanishing off-diagonal block of UXhDU�
X leads to the following equation for X:

h21 C h22X D S22XS�111 .h11 C h12X/: (42)
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Instead of solving this quadratic equation iteratively [26], the X matrix can actually
be obtained simply by the definition (29) using the eigenvectors of Eq. (27),

X D BA�1 D .BA�/.AA�/�1: (43)

The upper-left block of Eq. (40) defines the equation for the PES:

hCCC D S11CCEC; (44)

hC D R�
CLXCRC; X D UESC;SESC;NESC; (45)

LUESCC D h11 C h12X; (46)

LSESCC D 1

2
. QSCS�111 LUESCC C c:c:/; (47)

LNESCC D h11 C h12XC X�h21 C X�h22X; (48)

CC D R�1C AC; (49)

while the lower-right block defines the equation for the NES:

h�C� D S22C�E�; (50)

h� D R��LX�R�; X D UESC;SESC;NESC; (51)

LUESC� D h22 C h21 QX; (52)

LSESC� D 1

2
. QS�S�122 LUESC� C c:c:/; (53)

LNESC� D h22 C h21 QXC QX�h12 C QX�h11 QX; (54)

C� D R�1� B�: (55)

Here the acronyms UESC, NESC, and SESC refer to the unnormalized, normalized
[15], and symmetrized [9] eliminations of the small component, respectively. By
plugging the matrix elements of hDsf (19) and M (20) into Eq. (28), the above
procedure gives rise to the spin-free transformation U0 parameterized by Eq. (30)
with X0 (43). The transformation (41) of hDsf by U0 then yields the desired spin-free
Hamiltonian hC;sf (45) in Eq. (3) that covers all scalar relativistic effects.

The remaining task is to determine the spin-orbit part hsd (23) for hSO;1e in
Eq. (3). The U0 transformation of hD (17) yields a transformed Hamiltonian hD1
that can be written as

hD1 D U0hDU�
0 D U0hDsf U�

0 C U0hDsdU�
0 (56)

D E0 C E1 CO1; (57)
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where the subscripts count the order inWsd. The even operators E0 and E1 as well as
the odd operator O1 read explicitly

E0 D
�

EC;0 0
0 E�;0

�
D
�

hC;sf 0
0 h�;sf

�
; (58)

E1 D
�

EC;1 0
0 E�;1

�
; (59)

O1 D
 

0 O1

O�
1 0

!
; (60)

EC;1 D ˛2

4
R�
C;0X

�
0WsdX0RC;0; (61)

O1 D ˛2

4
R�
C;0X

�
0WsdR�;0; (62)

E�;1 D ˛2

4
R�
�;0WsdR�;0: (63)

There exist two distinct schemes to further block-diagonalize hD1 (56) so as to obtain
hC in Eq. (23). As outlined before, the DKH approach amounts to invoking a series
of transformations to eliminate at each step the lowest-order odd terms in Wsd,
leading eventually to

hDKH
bd D � � �U3U2U1U0hDU�

0U
�
1U

�
2U

�
3 � � �

D � � �U3U2U1hD1 U�
1U

�
2U

�
3 � � �

D
1X
kD0

Ek: (64)

The upper-left block hC of hDKH
bd is separated automatically into spin-free and spin-

dependent parts

hC;sf D EC;0; hDKHC;sd D
1X
kD1

EC;k : (65)

As the spin-orbit operatorWsd always goes with the factor ˛
2

4
, each term of EC;k (65)

is of O.˛2kW k
sd/.

Different from the multiple transformations, the second approach [19, 20] for
block-diagonalizing hD1 (56) invokes a single unitary transformation UY that is
parameterized by Eq. (30) with the decoupling matrix Y subject to a condition of
the same form as Eq. (42), viz.,

hBSS
bd D UY hD1 U�

Y D UY U0hDU�
0U

�
Y : (66)
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At variance with this two-step approach for block-diagonalizing hD , the X2C
Hamiltonian hC is obtained in one step:

hX2C
bd D UXhDU�

X : (67)

That is, the initial spin-free transformation U0 is not performed at all. Making
perturbation expansions [25] of the decoupling condition (42) for Yk or Xk and
the renormalization condition (37) for RC;k will give rise to the spin-free and spin-
dependent parts of hC (45) as

hC;sf D hC;0; hXC;sd D
1X
kD1

hXC;k ; X D BSS;X2C: (68)

The two- and one-step approaches for block-diagonalizing hD are closely related
to each other. That is, there exists [8] a closed relation between UY U0 and UX ,
such that they can be mapped to each other uniquely. In the context of spin
separation, a subtle difference in between lies in that the zeroth-order term Y0 of
Y vanishes, whereas the zeroth-order term X0 of X is just the spin-free matrix (43)
used for parameterizing U0. The former is due to the fact that hD1 (56) is already
diagonal in the absence of SOC. This feature of the BSS-like expansion results in
some simplifications when deriving explicitly the lowest-order terms of hC;k (see
section “BSS”). However, such an advantage disappears for higher-order terms [25].
Note also that the spin-free part hC;sf is the same for Eqs. (65) and (68) and therefore
does not carry a superscript.

The above general procedures can be used to construct arbitrary order DKH
(EC;k), BSS (hBSSC;k), and X2C (hX2CC;k ) types of spin-dependent Hamiltonians; for
more details, see Ref. [25]. Truncating the expansions to finite orders leads
naturally to a sequence of novel spin-dependent Hamiltonians. To reveal important
distinctions between the DKH, BSS, and X2C approaches, we construct their
second- and third-order terms explicitly in section “The Lowest-Order Spin-Orbit
Terms.”

The Lowest-Order Spin-Orbit Terms

DKH
In the DKH-like scheme, the transformation U1 in Eq. (64) subject to condition (36)
can be parameterized by an anti-Hermitian matrix W1, viz.,

U1 D exp.W1M�1/; W1 D
 

0 W1

�W�
1 0

!
; (69)

U�
1 D exp.M�1W�

1/ D exp.�M�1W1/: (70)
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By virtue of the asymmetric Baker-Campbell-Hausdorff (BCH) expansion, an
arbitrary matrix N can be transformed as

UNU� D exp.W1M�1/N exp.�M�1W1/

D NC ŒW1;N�M�1 C 1

2
ŒW1; ŒW1;N�M�1 �M�1 C � � � ; (71)

where the M�1-commutator is defined as

ŒW1;N�M�1 DW1M�1N � NM�1W1: (72)

Since ŒW1;M�M�1 D 0 holds for arbitrary W1, it can be verified from Eq. (71)
that the parametrization (69) does satisfy Eq. (36). In view of Eq. (71), the U1-
transformation of hD1 (57) can be written as

hD2 D U1hD1 U�
1

D hD1 C ŒW1;hD1 �M�1 C 1

2
ŒW1; ŒW1;hD1 �M�1 �M�1 C � � �

D E0 C E1 CO.2/
1 C E2 CO.2/

2 C E3 C � � � ; (73)

with

O.2/
1 D O1 C ŒW1; E0�M�1 ; (74)

E2 D ŒW1;O1�M�1 C 1

2
ŒW1; ŒW1; E0�M�1 �M�1 ; (75)

O.2/
2 D ŒW1; E1�M�1 ; (76)

E3 D 1

2
ŒW1; ŒW1; E1�M�1 �M�1 : (77)

By choosing W1 to eliminate O.2/
1 , viz.,

ŒW1; E0�M�1 D �O1; (78)

the second-order even term E2 becomes

E2 D 1

2
ŒW1;O1�M�1 : (79)

The so-determined W1 also specifies the third-order even term E3 (77) in accordance
with the 2nC 1 rule [27].
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Equation (78) can be recast into a Sylvester equation

2c2W1T�1E�;0 � EC;0S�1W1 D �O1; (80)

in terms of the two-component quantities. The equation can readily be solved in the
orthonormal basis spanned by the eigenfunctions of E0, viz.,

W1 D .C�
C;0/

�1w1.C�;0/�1 D ˛2

2
SCC;0w1C

�
�;0T; (81)

Œw1�pq D � Œo1�pq

ŒE�;0�q � ŒEC;0�p ; o1 D C�
C;0O1C�;0: (82)

Since the scalar PES and NES are well separated in energy, the denominator of
Œw1�pq (82) is never nonvanishing, such that the solution (81) is unique. In terms
of the so-obtained W1, the second-order (79) and third-order (77) spin-orbit DKH
Hamiltonians read

EC;2 D c2.W1T�1O�
1 C c:c:/; (83)

EC;3 D c2.W1T�1O�
2 C c:c:/; (84)

O2 D 2c2W1T�1E�;1 � EC;1S�1W1: (85)

It has been shown [25] that both EC;0 and E�;0 are of O.˛0/, while EC;2 and EC;3
are of O.W 2

sd˛
4/ and O.W 3

sd˛
6/, respectively. The leading odd term becomes O2,

which is of O.W 2
sd˛

4/. If the fourth-order (EC;4) and fifth-order (EC;5) terms are
wanted, the O2 operator can be eliminated by a second transformation with W2

satisfying

2c2W2T�1E�;0 � EC;0S�1W2 D �O2; (86)

which is of the same mathematical form as Eq. (80).

BSS
The first three orders of the BSS spin-orbit Hamiltonian can be derived via power
expansions (analytic derivatives) in Wsd. Since Y0 D 0, the expansions of QSBSSC and
RBSSC (37) go as

QSBSSC D QSBSSC;0 C QSBSSC;1 C QSBSSC;2 C QSBSSC;3 C � � �

D SC 0C ˛2

2
Y�
1TY1 C ˛2

2
.Y�

2TY1 C Y�
1TY2/C � � � ; (87)

RBSSC D RBSSC;0 C RBSSC;1 C RBSSC;2 C RBSSC;3 C � � �

D IC 0 � 1
2

S�1 QSBSSC;2 �
1

2
S�1 QSBSSC;3 C � � � ; (88)



426 Z. Li and W. Liu

while the expansion of hBSSC reads

hBSSC D hBSSC;0 C hBSSC;1 C hBSSC;2 C hBSSC;3 C � � � ; (89)

hBSSC;0 D QLNESCC;0 D EC;0; (90)

hBSSC;1 D QLNESCC;1 D EC;1; (91)

hBSSC;2 D QLNESCC;2 C
1

2
.RBSS�
C;2 QLNESCC;0 C c:c:/; (92)

QLNESCC;2 D O1Y1 C Y�
1O

�
1 C Y�

1E�;0Y1; (93)

hBSSC;3 D QLNESCC;3 C .RBSS�
C;2 QLNESCC;1 C RBSS�

C;3 QLNESCC;0 C c:c:/; (94)

QLNESCC;3 D O1Y2 C Y�
2O

�
1 C Y�

2E�;0Y1 C Y�
1E�;0Y2 C Y�

1E�;1Y1: (95)

The expansion of the decoupling condition (42), which in this case becomes

O�
1 C .E�;0 C E�;1/Y D ˛2

2
TYS�1.EC;0 C EC;1 CO1Y/; (96)

can be made to determine Y1 and Y2, viz.,

E�;0Y1 � ˛
2

2
TY1S�1EC;0 D �O�

1; (97)

E�;0Y2 � ˛
2

2
TY2S�1EC;0 D � QO�

2; (98)

with

QO�
2 D E�;1Y1 � ˛

2

2
TY1S�1EC;1: (99)

It has been found [25] that hBSSC;2 is identical with the second-order DKH Hamiltonian
EC;2, viz.,

hBSSC;2 D EC;2 D 1

2
.Y�

1O
�
1 C c:c:/ D c2.W1T�1O�

1 C c:c:/: (100)

This stems from the fact that hBSSC;2 involves only Y1 and that the relation Y1 D
2c2T�1W�

1 or equivalently W1 D ˛2

2
TY�

1 holds in view of Eqs. (80) and (97).
Because of this identity, the QO2 (99) and O2 (85) operators are actually the same,
thereby leading to Y2 D 2c2T�1W�

2. The third-order term hBSSC;3 can hence be written
as

hBSSC;3 D
1

2
.Y�

2O
�
1 C c:c:/ D c2.W2T�1O�

1 C c:c:/; (101)
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which is related to the third-order DKH Hamiltonian EC;3 (84) via

hBSSC;3 D EC;3 C .EC;0� C C c:c:/; (102)

where


C D S�1
A; 
A D 1

2
.
 � 
�/;


 D �˛
2

2
Y�
2TY1 D �2c2W2T�1W�

1: (103)

It is seen that while EC;3 does not involve W2 due to the underlying 2n C 1 rule
[27], the BSS-type hBSSC;3 does depend on Y2. The difference between hBSSC;3 and EC;3,
the second term in Eq. (102), is of O.W 3

sd˛
8/, higher than the leading order of hBSSC;3

and EC;3 by O.˛2/. This results from the different renormalizations (i.e., picture
changes) of the BSS and DKH approaches.

X2C
The lowest-order spin-orbit terms of hX2CC can be derived in the same way as done
for those of hBSSC . However, the procedure is somewhat more lengthy for the reason
that the spin-free matrix X0 of X2C is nonvanishing. Alternatively, we can make use
of the fact [8] that the transformations UX and UY U0 are related to each other via a
picture change matrix 	:

UX D 	�.UY U0/; 	 D
�

	C 0
0 	�

�
; (104)

such that the X2C and BSS Hamiltonians can be related simply by

hX2CC D 	
�
ChBSSC 	C: (105)

To determine 	, Eq. (104) can be written more explicitly as 
R�
C 0

0 R��

!�
I X�

QX� I

�
D
 

	
�
C 0

0 	��

! 
RBSS�
C 0
0 RBSS��

!�
I Y�

QY� I

�

�
 

R�
C;0 0
0 R�

�;0

! 
I X�

0QX�
0 I

!
; (106)

which leads to

X.RC;0 C QX0R�;0Y/ D X0RC;0 C R�;0Y; (107)

.RC;0 C QX0R�;0Y/RBSSC 	C D RC; (108)
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where R˙ represent the X2C renormalization matrices in UX ; see Eqs. (31) and (32).
Equation (107) is independent of R˙ and RBSS˙ and hence allows the calculation
of X from Y or vice versa. Equation (108) then determines 	C. The perturbative
expansions of Eqs. (107), (108), and (105) will establish the relation between hX2CC;k
and hBSSC;k at each order k. For k D 0, Eq. (107) is just an identity as Y0 D 0. For
k 
 1, it gives rise to

Xk D .R�;0Yk � ŒX QX0R�;0Y�0k/R�1C;0; (109)

where the prime indicates the exclusion of terms involving Xk . This shows that Xk

is composed generally of a connected term Yk and some disconnected terms as
products of lower-order Yp . The perturbative expansions of Eqs. (108) and (105)
lead to

	C;0 D I; (110)

	C;1 D R�1C;0.RC;1 � QX0R�;0Y1/; (111)

hX2CC;0 D hBSSC;0 D EC;0; (112)

hX2CC;1 D hBSSC;1 C .hBSSC;0	C;1 C c:c:/ D EC;1 C .EC;0	C;1 C c:c:/: (113)

It is clear that the difference between the spin-orbit X2C and BSS (and DKH)
Hamiltonians occurs already to first order. Yet, this difference is higher by O.˛2/
than the order of the Hamiltonians [25], similar to that between BSS and DKH albeit
starting from third order. Such an analysis reveals clearly the distinctions between
the DKH, BSS, and X2C approaches: They share the same decoupling condition and
differ only in the picture change reflected by the different renormalizations. As far
as lowest-order SOC are concerned, the DKH type of formulation is much preferred
due to the underlying 2nC 1 rule [27].

Relations with A2C Hamiltonians
It is also instructive to compare the present results with the well-known Pauli,
ZORA, and DKH1 spin-orbit Hamiltonians:

hPauli
SO;1e D

˛2

4
Wsd; (114)

hZORA
SO;1e D i E
 � . Ep �

c2

2c2 � V Ep/; (115)

hDKH1
SO;1e D ˛2QWsdQ; Q D c2p

2Ep.Ep C c2/
; Ep D

q
c4 C c2 Ep2: (116)
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The matrix representation of hPauli
SO;1e (114),

EC;1 � ˛2

4
Wsd; (117)

amounts to replacing the sf-X2C X0 and RC;0 matrices in EC;1 (61) with their
nonrelativistic limits, i.e., X0 � I and RC;0 � I, respectively. Similarly, the matrix
representation [25] of hZORA

SO;1e (115),

EZORAC;1 D
˛2

4
XZORA�
0 WsdXZORA

0 ; (118)

XZORA
0 D .T � ˛

2

4
Wsf/

�1T; (119)

can also be understood as an approximation to EC;1 (61) with RC;0 � I and
XZORA
0 (119) in place of the sf-X2C X0. Likewise, the matrix representation of

hDKH1
SO;1e (116) also takes the same form as EC;1 (61) but with X0 and RC;0 determined

from the free-particle part of the Dirac equation (17):

�
0 T
T �T

��
A
B

�
D
 

S 0
0 ˛2

2
T

!�
A
B

�
E: (120)

In sum, all these approximate spin-orbit Hamiltonians can be recovered by approx-
imating appropriately the sf-X2C X0 and RC;0 matrices.

A Short Summary

Apart from the compactness of the expressions, one important feature of the hXC;n
(X = DKH, BSS, X2C) Hamiltonians lies in that their errors decay very fast as
the order n increases [25]. A brief comparison between sf-X2C+so-DKHn and
ZORA for the SOC of states of Rn85C is shown in Fig. 1, where their errors
relative to the solutions of the matrix Dirac equation (17) are plotted. It is seen
that, at each order, sf-X2C+so-DKHn describes uniformly all the states of the same
angular momentum yet of different principal quantum numbers, while ZORA works
reasonably well only for the valence states. In other words, ZORA can be viewed
as a “valence-electron” Hamiltonian, whereas sf-X2C+so-DKHn is truly an “all-
electron” Hamiltonian. In particular, the sf-X2C+so-DKH3 Hamiltonian,

hDKHC;3 D EC;0 C EC;1 C EC;2 C EC;3; (121)

is sufficiently accurate for the SOC, with the relative errors being less than 0.01%
for all the states.
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Fig. 1 Relative errors of sf-X2C+so-DKHn and ZORA for the spin-orbit splittings of states of
Rn85C (The data are taken from Ref. [25])

At this stage, it is to be noted that both EC;2 (83) and EC;3 (84), stemming from
the spin separation though, are not yet of the desired form of Eq. (1). To achieve
this, a further spin separation is to be carried out [28]. To do so, we first note that
the Wsd matrix in a spin-orbital basis fg� D 	���g composed of spatial functions
f	�g and spin functions f�� D ˛; ˇg can be written as

Wsd D i.
x ˝ Vx C 
y ˝ Vy C 
z ˝ Vz/

D i

 
Vz Vx � iVy

Vx C iVy �Vz

!
, iE
 � EV; (122)

ŒVm��� D h	�j. EpV � Ep/mj	�i; m D x; y; z; (123)

with Vm being real-valued antisymmetric matrices for real-valued functions f	�g.
Since both X0 and RC;0 are spin free, all the first-order spin-dependent terms,
including EC;1, O1, E�;1 and WC;1, can be rewritten in the same form as Wsd (122),
e.g., EC;1 D iE
 � EEsdC;1 with EEsdC;1 in place of EV. In this way, EC;2 (83) can further be
separated into two parts by using the Dirac identity (2), viz.,

EsfC;2 D
1

˛2
. EW1 � T�1 EOT

1 C EO1 � T�1 EWT
1 /; (124)

EsdC;2 D
i

˛2
E
 � . EW1 � T�1 EOT

1 C EO1 � T�1 EWT
1 /: (125)
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Similarly, O2 (85) can be separated into

Osf
2 D �.2c2 EW1 � T�1 EE�;1 � EEC;1 � S�1 EW1/; (126)

Osd
2 D �iE
 � .2c2 EW1 � T�1 EE�;1 � EEC;1 � S�1 EW1/; (127)

such that EC;3 (84) can be rewritten as

EsfC;3 D
1

˛2
. EW1 � T�1 EOsd;T

2 C EOsd
2 � T�1 EWT

1 /; (128)

EsdC;3 D
i

˛2
E
 � . EW1T�1Osf;T

2 �Osf
2 T�1 EWT

1

C EW1 � T�1 EOsd;T
2 C EOsd

2 � T�1 EWT
1 /: (129)

As such, the sf-X2C+so-DKH3 Hamiltonian (121) can be rewritten in a fully spin-
separated form

hDKHC;3 D .EC;0 C EsfC;2 C EsfC;3/C iE
 � .EEsdC;1 C EEsdC;2 C EEsdC;3/: (130)

The constructions of Esf=sd
C;2 and Esf=sd

C;3 are essentially free, since all necessary
quantities are already available after constructing the sf-X2C Hamiltonian EC;0 (65).
The high accuracy and compactness of hDKHC;3 (130) arise from the spin-free and
spin-dependent partitioning (26) of the Dirac matrix (17), the one-step matrix
formulation (30) of the sf-X2C Hamiltonian hC;sf, as well as the 2nC 1 rule [27] in
the DKH type of transformation of the spin-dependent terms. Such spin separation
can also be applied to molecular properties [28].

The two-component Hamiltonians discussed so far can be collected to form a
“two-component Hamiltonian ladder” (see Fig. 2), which is just the lower segment
of the complete Hamiltonian ladder [23, 29]. From bottom to up, the lowest rung
is the nonrelativistic SC Hamiltonian. The second rung covers BP and DPT [24],
where both spin-free and spin-dependent terms are of finite orders in ˛2. The
third rung includes combinations of sf-X2C with spin-dependent terms of order
˛2. The fourth rung includes combinations of sf-X2C with the truncated spin-
dependent Hamiltonians EC;k (65) or hBSS=X2C

C;k (68) [NB: Although truncated, terms
of higher orders in ˛2 are still present]. The highest rung includes the original X2C
[= sf-X2C+so-X2C(1)], BSS, and DKH Hamiltonians, as well as the novel sf-
X2C+so-BSS(1) and sf-X2C+so-DKH(1) combinations. Such classification of
the two-component Hamiltonians is meaningful not only conceptually but also com-
putationally. Starting with a nonrelativistic program, the Hamiltonians in the second
rung will introduce some additional terms that have been available in many program
packages. A further upgrade of the zeroth-order term to the sf-X2C Hamiltonian
hC;sf will generate the Hamiltonians in the third rung. To construct the Hamiltonians
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5. Infinite-order spin-free and spin-dependent: 

2. Finite order spin-free and spin-dependent terms in a 2:
(Breit-Pauli, DPTn, ...)

3. Infinite-order spin-free, finite order spin-dependent in a 2:
(sf-X2C + finite order spin-dependent terms in a2 with  
approximate decoupling and renormalization matrices)

4. Infinite-order spin-free, finite order spin-dependent: 
(sf-X2C + so-X2Cn, so-BSSn, so-DKHn, ...)

1. Nonrelativistic Schrödinger Hamiltonian

sf-X2C+so-BSS(  ), sf-X2C+so-DKH(  ),…)
(X2C (=sf-X2C+so-X2C(  )), BSS, DKH,

Fig. 2 The two-component relativistic Hamiltonian ladder (Source: Reprinted with permission
from J. Chem. Phys. 141, 054111 (2014). © 2014, American Institute of Physics)

in the fourth rung, the responses of the decoupling matrix X and renormalization
matrix RC have to be calculated. Finally, to construct the Hamiltonians in the fifth
rung, the nonrelativistic program should entirely be replaced by a two-component
one. Therefore, in order to retain the nonrelativistic program and meanwhile achieve
accurate treatments of relativistic effects, it is the Hamiltonians in the third and
fourth rungs that should be used. By contrast, the Hamiltonians in the second rung
have no particular advantages in both accuracy and efficiency and should hence be
regarded as obsolete. Yet, to complete the spin-dependent Hamiltonians in the third
and fourth rungs, a proper treatment of the two-electron spin-orbit coupling should
further be introduced; see section “Two-Electron Spin-Orbit Coupling.”

Two-Electron Spin-Orbit Coupling

Following the spin separation of the one-electron Dirac Hamiltonian (7), the spin
separation of a two-body operator can be achieved in three steps: (a) The RKB
transformation (8) is first carried out to pair the Pauli spin matrices, (b) the spin-
dependent terms can be identified by applying the Dirac identity (2), and (c) the
results can be transformed to two-component form via unitary transformations.
Here, both the Coulomb and Gaunt interactions

GC
ij D

1

rij
; GG

ij D �
Ęi � Ęj
rij

(131)

are considered (NB: the spin-orbit terms from the Breit interaction are the same as
those from the Gaunt interaction). After the RKB transformation (8), we have
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QgCij D .Zi ˝Zj /�GC
ij .Zi ˝Zj / D

0BBB@
g
C;00
ij 0 0 0

0 ˛2

4
g
C;02
ij 0 0

0 0 ˛2

4
g
C;20
ij 0

0 0 0 ˛4

16
g
C;22
ij

1CCCA ;
QgGij D .Zi ˝Zj /�GG

ij .Zi ˝Zj /

D

0BBB@
0 0 0 ˛2

4
g
G;CC
ij

0 0 ˛2

4
g
G;C�
ij 0

0 ˛2

4
g
G;�C
ij 0 0

˛2

4
g
G;��
ij 0 0 0

1CCCA ; (132)

where

g
C;00
ij D gCij ; g

C;02
ij D ˘jg

C
ij ˘j ;

g
C;20
ij D ˘ig

C
ij ˘i; g

C;22
ij D ˘i˘jg

C
ij ˘i˘j ; (133)

g
G;CC
ij D gGij ˘i˘j ; g

G;C�
ij D ˘jg

G
ij ˘i;

g
G;�C
ij D ˘ig

G
ij ˘j ; g

G;��
ij D ˘i˘

jgGij ; (134)

gCij D
1

r12
; gGij D �

E
1 � E
2
r12

; ˘i D E
i � Epi : (135)

It is clear that in the transformed Coulomb operators (133), there is always a pair of

 in ˘ for the same electron, while in the transformed Gaunt terms (134), the 
 in
˘ is paired with that in gGij . Therefore, the spin separation can be achieved simply
by using the Dirac identity (2), with the terms linear in E
 being

g
C;20
ij;SO D Œ˘ig

C
ij ˘i�SO D iE
i � . Epi � 1

rij
Epi /;

g
C;02
ij;SO D Œ˘j g

C
ij ˘j �SO D iE
j � . Epj � 1

rij
Epj /;

g
G;CC
ij;SO D ŒgGij ˘i˘j �SO D �i.E
j � E
i / � 1

rij
. Epi � Epj /;

g
G;�C
ij;SO D Œ˘ig

G
ij ˘j �SO D �i.E
i C E
j / � . Epi � 1

rij
Epj /;

g
G;C�
ij;SO D Œ˘j g

G
ij ˘i�SO D �i.E
i C E
j / � . Epj � 1

rij
Epi /;

g
G;��
ij;SO D Œ˘i˘j g

G
ij �SO D �i.E
i � E
j / � . Epi � Epj / 1

rij
: (136)
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To get two-component spin-orbit operators that are correct to O.˛2/, only a spin-
free U0 transformation of the operators in Eq. (136) is sufficient, leading to Hsd;2e

composed of both spin-same-orbit (SSO) and spin-other-orbit (SOO) interactions
that can conveniently be written in second-quantized form [28]:

Hsd;2e D HSSO;2e CHSOO;2e; (137)

HSSO;2e D
X
pqrs

˛2

4
hpqjGSSOjrsia�pa�qasar ; (138)

HSOO;2e D
X
pqrs

˛2

4
hpqjGSOOjrsia�pa�qasar ; (139)

where

hpqjGSSOjrsi

D
X
����

.X0A/��p.A/��qh��jiE
1 � . Ep1 �
1

r12
Ep1/j��i.X0A/�rA�s; (140)

hpqjGSOOjrsi

D
X
����

�
A��pA��qh��jiE
1 �

1

r12
. Ep1 � Ep2/j��i.X0A/�r .X0A/�s

C .X0A/��pA��qh��j � iE
1 � . Ep1 � 1

r12
Ep2/j��iA�r .X0A/�s

C A��p.X0A/��qh��j � iE
1 � . Ep2 � 1

r12
Ep1/j��i.X0A/�rA�s

C .X0A/��p.X0A/��qh��j � iE
1 � . Ep1 � Ep2/ 1
r12
j��iA�rA�s

�
; (141)

where A D RC;0CC;0 (49). Note in passing that the integral hpqjGX jrsi (X D
SSO;SOO) is itself not symmetric with respect to the exchange of particles.
However, the sum hpqjGX jrsi C hqpjGX jsri does have the particle symmetry. Once
the sf-X2C decoupling matrix X0 is made available, the operatorsHSSO;2e (138) and
HSOO;2e (139) can be constructed and used to describe SOC between configurations
differing by up to two orbitals. Again, the BP and DKH1 spin-orbit Hamiltonians
can be obtained [28] by using the previous approximations for X0 and RC;0.

Due to the weak interplay with electron correlation, the two-electron spin-
orbit operators (138) and (139) can further be simplified by invoking a mean-field
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approximation, which amounts to replacing a�pa
�
qasar in Eqs. (138) and (139) with

np.ıpra
�
qas � ıpsa

�
qar / (i.e., keeping orbital p always occupied). The resulting

effective one-electron spin-orbit operator, to be used in Eq. (5), can be written as [28]

fSO;2e D
X

pq

.fSO;2e/pqa
�
paq; .fSO;2e/pq D .C�

C;0FSO;2eCC;0/pq; (142)

where

FSO;2e D R�
C;0 QLNESC

SO;2eRC;0; (143)

QLNESC
SO;2e D

˛2

4
ŒGLL

SO CGLS
SOXC X�GSL

SO C X�GSS
SOX�; (144)

ŒGLL
SO��� D

X
��

P SS
�� Œh��jŒ˘2g

C
12˘2�SOj��i � h��jŒ˘2g

G
12˘1�SOj��i�; (145)

ŒGLS
SO��� D

X
��

P SL
�� Œh��jŒgG12˘1˘2�SOj��i � h��jŒgG12˘1˘2�SOj��i�

C
X
��

P LS
�� Œh��jŒ˘2g

G
12˘1�SOj��i � h��jŒ˘2g

C
12˘2�SOj��i�; (146)

ŒGSL
SO��� D

X
��

P LS
�� Œh��jŒ˘1˘2g

G
12�SOj��i � h��jŒ˘1˘2g

G
12�SOj��i�

C
X
��

P SL
�� Œh��jŒ˘1g

G
12˘2�SOj��i � h��jŒ˘1g

C
12˘1�SOj��i�; (147)

ŒGSS
SO��� D

X
��

P LL
�� Œh��jŒ˘1g

C
12˘1�SOj��i � h��jŒ˘1g

G
12˘2�SOj��i�: (148)

Here, the spin-free density matrices PXY are defined as

PLL D RC;0P0R�
C;0; P0 D CC;0nC�

C;0;

PLS D PLLX�
0 D PSL�; PSS D X0PLLX�

0: (149)

If the spin-free density matrices P˛0 and Pˇ0 are further averaged as in Eq. (6), the
GXY

SO matrices can be simplified [28] to

GXY
SO D iE
 � EgXY D i
lg

XY;l ; l 2 fx; y; zg; (150)

gLL;l
�� D

X
��

g
G;LL;l
��;�� P

SS
�� ; g

G;LL;l
��;�� D �2Kl

��;��; (151)
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gLS;l
�� D

X
��

g
C;LS;l
��;��P

LS
�� ; g

C;LS;l
��;�� D �Kl

��;�� �Kl
��;��; (152)

gSL;l
�� D

X
��

g
C;SL;l
��;��P

SL
�� D �gLS;l

�� ; g
C;SL;l
��;�� D Kl

��;�� CKl
��;��; (153)

gSS;l
�� D

X
��

.g
C;SS;l
��;�� C gG;SS;l

��;�� /P
SS
�� ;

g
C;SS;l
��;�� D �2.Kl

��;�� CKl
��;��/; g

G;SS;l
��;�� D 2Kl

��;�� ; (154)

where the antisymmetric K integrals are defined as

Kl
��;�� D �lmn.�m�j�n�/ D �Kl

��;��;

�m D @m�; l;m; n 2 fx; y; zg: (155)

It is seen that gLS;l
�� /gSL;l

�� and gLL;l
�� are due entirely to the Coulomb-exchange

and Gaunt-exchange interactions, respectively, while gSS;l
�� (154) is a mixture of

the Coulomb-direct and Gaunt-exchange interactions. The Gaunt-direct interaction
vanishes due to spin averaging. If the approximations X0 � I and RC;0 � I are
further introduced, the FSO;2e matrix (143) will reduce to that of the mean-field BP
spin-orbit Hamiltonian [4],

ŒFBP
SO;2e��� D

X
��

i
l��Œg
C;SS;l
��;�� C .gG;LL;l

��;�� C gG;SS;l
��;�� /C .gC;LS;l

��;�� C gC;SL;l
��;�� /�P��

D
X
��

i
l��Œg
C;SS;l
��;�� C 3.gC;LS;l

��;�� C gC;SL;l
��;�� /�P��: (156)

At this level, the Gaunt-exchange interaction is just twice the Coulomb-exchange
interaction. Since Eqs. (143) and (156) share the same kind of integralsKl

��;�� (155),
their computational costs are virtually the same, for the additional matrix multi-
plications involved in the former are very cheap. The computational cost for the
evaluation of Kl

��;�� can substantially be reduced by employing the local nature

of spin-orbit interactions. For instance, the one-center approximation for Kl
��;�� is

already sufficiently accurate for the SOC of valence properties [4, 5, 30]. A two-
center approximation for Kl

��;�� would even be better. With the so-defined FSO;2e

Eq. (143), every term of the Hamiltonian (3) has been specified, which can then
be combined with the analytic derivative technique, response theory, or QDPT to
calculate properties of many-electron systems.
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Applications: Perturbative Treatment of SOC

Ground-State Spin-Dependent Properties

For a perturbed Hamiltonian H.�/ D H0 C �H1, we have the following relation:

dE.�/

d�
D h�.�/jH1j�.�/i; (157)

provided that the wave function j�.�/i is exact and normalized, viz.,

H.�/j�.�/i D j�.�/iE.�/; h�.�/j�.�/i D 1: (158)

This is nothing but the Hellmann-Feynman theorem, which implies that the static
property h�.0/jH1j�.0/i can alternatively be calculated as the energy derivative
dE.�/
d�
j�D0. While this makes no difference for exact theory, the energy derivative

type of formulations of molecular properties is more general [31] and can be used
for approximate models, which are not fully variational or even have no explicit
many-body wave functions. Taking the spin-dependent Hamiltonian Hsd (5) as the
perturbation �H1, the total energy of a many-electron system can be expressed as

E D Esf CEsd; Esf D E0; Esd D
1X
kD1

Ek; Ek D 1

kŠ

dkE.�/

d�k

ˇ̌̌̌
�D0

:

(159)

Here, the first term Esf is simply the spin-free energy, while Ek represents the kth-
order SOC correction. How to find the derivatives of the energy is technically the
same as the previous derivation of the spin-orbit Hamiltonians via an order-by-order
expansion.

Consider the Hartree-Fock (HF) model. Suppose the HF spin orbitals have been
optimized with the sf-X2C Hamiltonian Hsf (4), which constitute an orthonormal
basis for expanding the full Hamiltonian Hel (3) and the spin-free HF reference
j˚0i in the occupation number representation, the HF energy at a finite strength �
can then be written as

EHF.�/ D h˚HF.�/jH.�/j˚HF.�/i D h˚0je��.�/H.�/e�.�/j˚0i; (160)

where

j˚HF.�/i D e�.�/j˚0i; (161)

�.�/ D
X

pq

�pq.�/a
�
paq; �pq D ���qp: (162)
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By using the BCH expansion, EHF.�/ (160) can be expanded in � as

EHF.�/ D EHF;0 CEHF;1�CEHF;2�
2 CEHF;3�

3 C � � � ; (163)

EHF;0 D h˚0jH0j˚0i; (164)

EHF;1 D h˚0jH1j˚0i C h˚0jŒH0; �1�j˚0i; (165)

EHF;2 D h˚0jH2j˚0i C h˚0jŒH0; �2�j˚0i

Ch˚0jŒH1; �1�j0i C 1

2
h˚0jŒŒH0I �1; �1�j˚0i; (166)

EHF;3 D h˚0jH3j˚0i C h˚0jŒH0; �3�j˚0i
Ch˚0jŒH1; �2�j˚0i C h˚0jŒH2; �1�j˚0i

Ch˚0jŒH0I �1; �2�j˚0i C 1

2
h˚0jŒH1I �1; �1�j˚0i

C 1
3Š
h˚0jŒH0I �1; �1; �1�j˚0i; (167)

Hk D hX
sd;k C ık;1fsd;1; k 
 1; X D X2C;BSS;DKH; (168)

where a similar expansion for � has been made (NB: �0 D 0), while hX
sd;k and fsd;1

represent the one-electron and mean-field (142) spin-orbit terms. The symmetrized
commutators are defined as the symmetric sum of all possible permutations � of k
symbols:

ŒAIB1;B2; � � � ; Bk� D 1

kŠ

X
�2Sk

ŒŒ� � � ŒA; B�.1/�; B�.2/�; � � � ; B�.k/�: (169)

The orbital responses �k in Eqs. (166) and (167) can be found from the expansion
of the stationary condition

0 D @EHF.�/

@�pq.�/
D h˚0jŒH.�/; a�paq�j˚0i C h˚0jŒH.�/I a�paq; �.�/�j˚0i

C 1

2
h˚0jŒH.�/I a�paq; �.�/; �.�/�j˚0i C � � � : (170)

Specifically, the first three-order equations read

h˚0jŒH0; a
�
paq�j˚0i D 0; (171)

h˚0jŒH0I a�paq; �1�j˚0i D �h˚0jŒH1; a
�
paq�j˚0i; (172)

h˚0jŒH0I a�paq; �2�j˚0i D �h˚0jŒH2; a
�
paq�j˚0i � h˚0jŒH1I a�paq; �1�j˚0i

�1
2
h˚0jŒH0I a�paq; �1; �1�j˚0i: (173)
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For a spin-restricted closed-shell system, the condition (171) holds for the whole
manifold of the operators fa�paqg, such that the h˚0jŒH0; �k�j˚0i (k 
 1) terms
all vanish. The h˚0jhXsd;1 C fsd;1j˚0i term also vanishes in this case due to time
reversal symmetry. As a result, the lowest-order spin-orbit correction to a closed-
shell system starts from second-order EHF;2. As for an open-shell reference j˚0i,
the condition (171) holds in general only for a subset of the operators fa�paqg. The
h˚0jhXsd;1C fsd;1j˚0i term also does not vanish. Therefore, the spin-orbit correction
to an open-shell system appears already at first-order EHF;1. It is also seen that the
left-hand sides of the coupled-perturbed equations (172) and (173) are of the same
structure, such that they can be solved recursively with a single solver. The situation
is very similar to the inhomogeneous equations for W1 (80) and W2 (86) used for
constructing the spin-orbit DKH Hamiltonians.

The above procedure can readily be extended to multiple perturbations. For
instance, a second-order property (e.g., dipole polarizability or nuclear magnetic
resonance shielding tensor) due to perturbations V a and V b can be expanded as

Eab D
�

d2E

d�ad�b

�
�D0
D
1X
kD0

Eab
k ; Eab

k D
1

kŠ

dkEab.�/

d�k
j�D0: (174)

where the second equality represents the expansion in the strength of SOC: Eab
0

represents the sf-X2C term, while Eab
k (k 
 1) represent the spin-orbit corrections.

Thus, similar to the Hamiltonian (68) and energy (159), the property Eab can also
be separated into spin-free and spin-dependent terms:

Eab D Eab
sf CEab

sd ; Eab
sf D Eab

0 ; Eab
sd D

1X
kD1

Eab
k : (175)

The 2n C 1 rule of perturbation theory may further be invoked to simplify the
calculation of Eab

k . The only caveat is that, to avoid picture change errors, the
property operators must also be transformed accordingly with the transformations
that are used to transform the four-component Hamiltonian. Various transformed
operators have been discussed in Ref. [28] and are not repeated here.

Excited-State Spin-Dependent Properties

According to time-dependent perturbation theory, an excited-state property can be
extracted from the response of the ground state to time-dependent perturbations
characterized by the interaction operator V .t/

V .t/ D
X
k

e�i!kt
X
b

V b.!k/�b.!k/; (176)

where V b.!k/ represents a perturbation operator V b associated with frequency !k
and �b.!k/ is the corresponding perturbation strength. The idea has been utilized
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to formulate a response theory for ground-state dynamic properties, transition
properties between different states, as well as excited-state properties. It can be
viewed as an extension of the analytic derivative technique. In particular, by taking
the zero limit of the frequencies !k , ground-state static properties can be recovered.
By taking spin-dependent operators as the perturbations (176), spin-dependent
properties, such as spin-orbit matrix elements between two spin-free excited states,
can be extracted from the residues of the response functions. However, it is
to be noted that the response theory is essentially a nondegenerate perturbation
theory, implying that an order-by-order expansion cannot be made for studying
spin-dependent excited-state properties that mix degenerate spin-free states. Fine
structure splittings of spin-free states represent such an example.

To calculate fine structures, the response theory can first be applied to a given
theoretical model with SOC included. The excitation energies can then be expanded
in the SOC strength � via QDPT. Consider the configuration interaction single (CIS)
model, where the single excitations j˚a

i .�/i arise from a HF reference j˚0.�/i. The
excitation energies are to be determined by the eigenvalue problem

H.�/X˛.�/ D !˛.�/X˛.�/; (177)

with

ŒH.�/�ai;bj D h˚a
i .�/jH.�/j˚b

j .�/i D h˚a
i je��.�/H.�/e�.�/j˚b

j i; (178)

where �.�/ is the orbital rotation operator (170) determined by the ground-state
calculation. Similar to the expansion of the HF energy (160), the CIS Hamiltonian
matrix H.�/ can be expanded as

H.�/ D H0 CH1�CH2�
2 C � � � ; (179)

ŒH0�ai;bj D h˚a
i jH0j˚b

j i; (180)

ŒH1�ai;bj D h˚a
i jH1 C ŒH0; �1�j˚b

j i; (181)

ŒH2�ai;bj D h˚a
i jH2 C ŒH0; �2�C 1

2
ŒH0I �1; �1�j˚b

j i: (182)

Since the scalar excited-state states are always degenerate in spin, QDPT should
be applied by first decomposing the zeroth-order space into a strongly interacting
subspace P D fXP g and its orthogonal complement Q D fXQg. A unitary
transformation exp.�S/ can then be introduced to decouple the two subspaces, viz.,
the transformed Hamiltonian

NH D exp.�S/H exp.S/ (183)

which is block diagonal and . NH/PQ D 0. The SOC perturbation expansions of
S and NH are very similar to the DKH decoupling (73) of the PES and NES and
is hence not repeated here. Yet, a few remarks should be made here. First, the
interaction between the ground state and excited states vanishes at any order due
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to the condition (170). In other words, the spin-orbit corrections to the scalar
ground and excited states are carried out separately. However, the information of the
scalar ground state is still contained in the coefficients of the spinor excited states
through the ground-state orbital rotations �k . Second, expanding to all orders will be
equivalent to X2C-HF/CIS for the spinor ground/excited states. Third, the scheme
works only for a nondegenerate HF reference j˚0.�/i, since the condition (171)
does not hold for the whole manifold of operators fa�paqg in the case of an open-
shell reference.

For the fine structure of an open-shell ground state, the matrix of H.�/ can be
constructed and diagonalized in its degenerate manifold. This can also be done for a
group of energetically adjacent scalar excited states. However, for properties arising
from the SOC between the scalar ground and excited states (e.g., phosphorescence),
care should be taken when the excitation space is truncated. In view of QDPT,
the SOC between the scalar states can be treated by diagonalizing the effective
Hamiltonian Heff:

Heff D 	CHSO; (184)

where 	 is a diagonal matrix with the scalar excitation energies as the diagonal
elements:

	 D diagf0; !1; !2; � � � ; !N g: (185)

Here the first element is for the ground state. For a degenerate ground state, there
are as many zeros as the degree of degeneracy. The matrix elements between two
scalar states �I and �J (including the ground state) read

ŒHSO�IJ D h�I jHsdj�J i D
X
K;L

CK;ICL;J h˚K jHsdj˚Li; (186)

where ˚K are configuration state functions. In the case of sf-X2C FCI (full
configuration interaction), the Heff matrix can be diagonalized for the SOC of all
the states, as demonstrated in Fig. 1 for the special case of one-electron systems.
However, in the case of CIS, the diagonalization of Heff will lead to an unbalanced
treatment of SOC: The diagonalization accounts for spin-orbital relaxations of the
ground state but not of the excited states. The latter can be seen from the second term
of Eq. (181), viz., h˚a

i jŒH0; �1�j˚b
j i D

P
pq.h˚a

i jH0j˚bp
jq i � h˚aq

ip jH0j˚b
j i/.�1/pq.

The particular double excitations here with amplitudes .�1/pq are responsible for
spin-orbital relaxations of the excited states but which are missed by the CIS-based
state interaction. As a result, the energy of the ground state will be lowered much
more significantly than those of the excited states when single excitations from
the core orbitals are included [30]. To achieve a balanced treatment of SOC, some
selection rule should be invoked for defining the active orbitals appropriate for the
states under consideration.
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Nonadiabatic Dynamics Involving Different Spin States

Apart from solving the stationary equation

Hel� D E�; Hel D Hsf CHsd (187)

with the electronic Hamiltonian Hel (3), it is also of great interest to investi-
gate nonadiabatic dynamics involving states of different spins beyond the Bohn-
Oppenheimer approximation. For this purpose, the time-dependent equation can be
exploited

i@t j�ŒEr; ERI t �i D H j�ŒEr; ERI t �i; H D Hel C TN D Hsf CHsd C TN ; (188)

where the variables Er and ER represent the electronic and nuclear coordinates,
respectively, and TN is the nuclear kinetic energy operator. Recently, there have
been growing interests in developing on-the-fly mixed quantum classical surface
hopping (SH) methods for dynamical processes involving different spin states [32–
34]. Different representations, spin-adiabatic or spin-diabatic, will lead to different
formalisms and also different requirements for electronic structure calculations.

In the spin-adiabatic representation, where the eigenstates ofHel are taken as the
basis, such that the coupling between different states stems only from the nuclear
derivatives, the SH approaches developed for the nonrelativistic regime can be
applied directly. The basic idea of SH is that, while the electrons are treated quantum
mechanically via the electronic HamiltonianHel, the nuclear motion is described by
classical trajectories ER.t/, each of which evolves classically on a potential energy
surface (PES) of Hel, but may switch to another PES at any time with certain
probability. That is, instead of solving the full quantum dynamical equation (188),
the time-dependent electronic equation of motion

i@t j�ŒEr I ER.t/; t �i D Helj�ŒEr I ER.t/; t �i (189)

is first solved in a basis spanned by the instantaneous adiabatic states
fj�i ŒEr I ER.t/�igMiD1 of Hel, viz.,

Helj�i ŒEr I ER.t/�i D Ei Œ ER.t/�j�i ŒEr I ER.t/�i; (190)

j�ŒEr I ER.t/; t �i D
MX
iD1

ci .t/j�i ŒEr I ER.t/�i: (191)

Multiplying Eq. (189) from the left by h�i ŒEr I ER.t/�j and integrating over the
electronic coordinates, the equation of motion for the linear coefficients ci .t/ can
be obtained as

@t ci .t/ D �iEi Œ ER.t/�ci .t/ �
MX
jD1

�ijŒ ER.t/; t �cj .t/; (192)



13 Spin Separation of Relativistic Hamiltonians 443

where the coupling �ijŒ ER.t/; t � reads

�ijŒ ER.t/; t � D h�i ŒEr I ER.t/�j@t j�j ŒEr I ER.t/�ir D EdijŒ ER.t/� � Ev.t/; (193)

EdijŒ ER.t/� D h�i ŒEr I ER.t/�j @

@ ER.t/
j�j ŒEr I ER.t/�ir : (194)

Here, Ev.t/ D @t ER.t/ is the nuclear velocity, while EdjiŒ ER.t/� is the first-order
nonadiabatic coupling matrix elements (fo-NACME) between states i and j . The
transition probability between the two states in a small time interval �t can be
estimated by the Tully fewest-switch algorithm [35],

pij D maxf0; 2<.c
�
i cj Ev � Edij/

jci j2 �tg: (195)

However, such a one-step treatment of SOC is computationally very demanding
and is only necessary for very strong SOC. In contrast, the two-step treatment of
SOC is computationally more efficient and has wider applications. In particular, the
QDPT of SOC (184) can naturally be combined with SH, since the same model
space fj�I ŒEr I ER.t/�gMID1 of scalar electronic wave functions (uppercase suffixes) for

SOC can also be used for the SH dynamics. Specifically, the eigenvectors Ui Œ ER.t/�
of Heff (184) are just the coefficients of the adiabatic states (190) of Hel in the basis
fj�I ŒEr I ER.t/�gMID1,

HeffŒ ER.t/�Ui Œ ER.t/� D Ui Œ ER.t/�!i Œ ER.t/�; (196)

j�i ŒEr I ER.t/�i D
MX
ID1
j�I ŒEr I ER.t/�iUIiŒ ER.t/�: (197)

The energy Ei Œ ER.t/� (192) is simply the sum of the spin-free reference energy E0
and the SOC-including excitation energy !i . The fo-NACME (194) can be written
as

EdijŒ ER.t/� D
MX

I;JD1
.U �Ii h�I j/

@

@ ER
.j�J iUJj/r

D
MX

I;JD1
U �Ii EdIJUJj C

MX
ID1

U �Ii
@

@ ER
UIj; EdIJ D h�I j @

@ ER
j�J ir ; (198)

where the fo-NACME EdIJ between the scalar states can be calculated at various
levels of methodology [36–40]. The second term of (198) can be calculated as
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U�
i

@

@ ER
Uj D

U�
i

	
@

@ ERHeff



Uj

!j � !i ; (199)

@

@ ER
Heff D @

@ ER
	C @

@ ER
HSO; (200)�

@

@ ER
	

�
IJ

D ıIJ
@

@ ER
!J ; (201)�

@

@ ER
HSO

�
IJ

D @

@ ER
h�I jHsdj�J ir : (202)

It is seen that the evaluation of Eq. (199) requires the energy gradients (201) of the
scalar states as well as the nuclear derivatives of the SOC matrix elements (202)
between two scalar states. The nuclear derivative of Hsd (5) involves those of
X0, R0;˙, and W1, etc., which can be obtained by differentiating their defining
equations (42), (37)/(39), and (80) in exactly the same way as how the spin-orbit
operators are derived. The nuclear derivative of fSO;2e also involves the derivatives
of the MO coefficients through the density matrix P. However, such dependence
does not cause much additional cost for a post-SCF approach. Note in passing
that, at variance with such an explicit treatment of the second term in Eq. (198),
an implicit treatment is also possible [32] during the time propagation.

Apart from the above spin-adiabatic representation, the spin-diabatic representa-
tion can also be used. Here, the wave function j�ŒEr I ER.t/; t �i is expanded in terms
of the eigenstates of Hsf,

Hsfj�I ŒEr I ER.t/�i D EI Œ ER.t/�j�I ŒEr I ER.t/�i; (203)

j�ŒEr I ER.t/; t �i D
MX
ID1

cI .t/j�I ŒEr I ER.t/�i: (204)

As governed by both spin-orbit and derivative couplings, the equation of motion for
cI .t/ reads

@tcI .t/ D �i
 
EI Œ ER.t/�cI .t/C

X
JD1

ŒHSO�IJcJ .t/

!
�

MX
JD1
Ev � EdIJcJ .t/: (205)

The relative significance of the spin-orbit and derivative couplings for nonadiabatic
transitions can readily be revealed this way. This spin-diabatic representation is
manifestly cheaper than the previous spin-adiabatic representation. However, one
has to be aware that the SH mechanism is only valid when the nonadiabatic coupling
matrix elements are only significant in a small region. This is usually the case for
the fo-NACME EdIJ but not necessarily the case for the SOC ŒHSO�IJ. Therefore, the
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reliability and accuracy of such approach need to be verified, especially for systems
containing heavy elements.

Summary

The spin separation of the algebraic X2C Hamiltonians is basically a perturbation
theory based on the a priori partition (26) of the matrix Dirac Hamiltonian into
a sum of spin-free and spin-dependent parts. The spin-free part defines the non-
expanded sf-X2C Hamiltonian which includes scalar relativity to infinite order,
while the spin-dependent part is treated as a perturbation on top of sf-X2C, thereby
leading to a series of new two-component Hamiltonians, as shown in Fig. 2. In such
a matrix formulation, no new integrals other than those entering the parent Dirac
Hamiltonian arise and no singularities arise as well. The perturbation expansion
in spin on top of sf-X2C is guaranteed to converge very fast [25, 28]. Because of
this, even the lowest-order terms (esp. so-DKH3) are already very accurate. It also
deserves to be mentioned that the O.˛2/ spin-orbit corrections to sf-X2C electric
and magnetic properties are one-to-one correspondent to but more accurate than the
BP spin-orbit corrections to the nonrelativistic ones [28], such that the conceptual
and computational advantages of the BP Hamiltonian are all retained in the
spin-separated Hamiltonians. In short, the generic spin-separated Hamiltonian (3)
satisfies all the features (F1)–(F5) on the wish list. Further combined with the
effective quantum electrodynamics Hamiltonian [23, 29], it is justified to claim that
the development of relativistic Hamiltonians has been completed. One can just pick
up the right Hamiltonian for the target physics and accuracy.
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Abstract

The basic ideas of the effective core potential approach allowing for valence-only
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tic effects are briefly outlined. The model potential and pseudopotential variants
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are described in their forms mostly applied for molecular electronic structure
calculations. Effective core polarization potentials allowing to overcome some
of the basic approximations underlying the effective core potential approach are
also discussed.

Keywords
Effective core potentials • Model potentials • Pseudopotentials • Pseudo-
valence orbitals • Core polarization potentials • Frozen-core approximation •
Frozen-core errors • Core-valence separation • Breit interaction • Quantum
electrodynamics • Valence-only Hamiltonian • Relativistic effects • Compu-
tational effort • Error-balanced basis sets • Correlation-consistent basis sets •
Electronic structure • Excited states • Calibration • Copper • Roentgenium

Introduction

The effective core potential (ECP) approach is one of the oldest and still one of the
most frequently used methods in relativistic quantum chemistry [1, 2]. Following
chemical intuition, an atom is partitioned into a core and a valence electron system.
The chemically inert core of the atom is considered to be frozen. It is removed
from the explicit quantum chemical treatment, and its influence on a valence
electron is modeled by an effective Hamiltonian, i.e., the ECP [3]. Thus, basic
approximations underlying the ECP approach are the core-valence separation and
the frozen-core approximation. On the one hand, ECPs lead to significant savings
in the computations, especially for heavier atoms, since compared to an all-electron
(AE) treatment only the smaller number of valence electrons has to be described
explicitly. On the other hand, the corresponding valence-only model Hamiltonian
can be constructed by replacing the relativistic operators with their nonrelativistic
analogues, e.g., the nonrelativistic kinetic energy and the nonrelativistic Coulomb
interaction, and still accounting for relativistic contributions implicitly by a suitable
parametrization of the ECP to relativistic reference data.

The accuracy of a specific ECP thus depends on the accuracy of the underlying
relativistic AE Hamiltonian it is designed to model. It also depends to a certain
extent on the electronic structure method used to generate the suitable AE reference
data for the adjustment of the ECP parameters. Last but not least, it is determined
by the size of the core modeled by the ECP as well as by the chosen analytical
ansatz for the ECP. In most approaches the ECP for a many-valence electron
system is constructed as a sum over effective one-electron operators. Depending
on whether the radial nodal structure of the AE valence orbitals is kept or simplified
in the valence-only scheme, one works within the model potential (MP) [4] or the
pseudopotential (PP) [5] approach.

The formal transformation from valence orbitals with the correct number of
radial nodes used at the AE or MP level to the so-called pseudo-valence orbitals
of the PP schemes exhibiting less radial nodes allows for the usage of smaller
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valence basis sets and thus leads to considerable computational savings. However,
the elimination of radial nodes from the valence orbitals also leads to changes in
the electron interaction between the valence electrons, which is not in all cases
sufficiently compensated by the PP parametrization. Therefore, when using the same
core-valence separation, the MP approach is potentially more accurate than the PP
approach. Concerning the latter, aside from smaller frozen-core errors, small-core
PPs usually exhibit smaller errors due to the pseudo-orbital transformation than
large-core ones and are thus preferred for accurate calculations.

When going from an atom to a molecule, it is usually assumed that the atomic
contributions behave additively, i.e., the molecular ECP is a superposition of the
atomic ECPs. This assumption allows for an atomic parametrization of the ECPs, as
well as an atomic optimization of the corresponding valence basis sets. In view
of the about 120 elements in the periodic table as well as the various possible
choices for the core size and the modeled relativistic Hamiltonian, this assumption
is mandatory for efficiently generating consistent sets of ECPs which can be applied
for all combinations of elements occurring in molecules.

Corrections to the assumption of superposition of atomic ECPs are nevertheless
necessary for large cores, which exhibit in addition to the leading Coulomb
repulsion between the cores modeled as point charges also deviations in their
Coulomb interaction due to their extended and polarizable electron distributions
as well as a noticeable additional repulsion due to the Pauli principle. Typically, the
corresponding Pauli repulsion and mutual charge distribution penetration correc-
tions can be approximated by those pairwise interactions between frozen spherical
atomic cores, which go beyond their simple Coulomb point charge repulsion [6].

The ECPs further can be combined with so-called core polarization potentials
(CPPs), which are effective one- and two-electron operators and allow to correct
somewhat for both the frozen-core approximation and the core-valence separation
[7]. CPPs thus take into account the static polarizabilities of the atomic cores, as
well as their dynamic polarizabilities, i.e., core-valence correlation [8]. In contrast
to ECPs, the CPPs for many-valence electron systems are not merely sums of one-
electron operators. Moreover, although constructed from atomic contributions, the
molecular CPPs are not just superpositions of atomic terms. CPPs can be adjusted
to both AE and experimental reference data.

Besides a parametrization based on ab initio AE reference data, the PP approach,
usually then applied in combination with CPPs, also offers the possibility to adjust
the free parameters in the analytical ansatz for the PP to experimental data [3].
Semiempirical energy-adjusted PPs based on experimental data for one-valence
electron atoms and ions were derived for main group elements [9] as well as
transition metals in configurations with closed d10 shells [6]. Difficulties arise for
transition metals with open d and f shells, since due to the difficulties to accurately
account for valence electron correlation effects a rigorous semiempirical adjustment
is only possible for one-valence electron systems. However, when going from the
corresponding one-valence electron ions to the neutral atom, large frozen-core errors
arise, especially for elements with open d and f shells. Therefore, due to their more
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general applicability to all elements of the periodic table, the current article mainly
focuses on the ab initio PP approaches.

The present article will briefly discuss the at present most frequently used ECPs,
as well as CPPs, for standard molecular quantum chemical calculations. PPs used
for quantum Monte Carlo (QMC) calculations or PPs used in connection with plane
wave basis sets for density functional theory (DFT) calculations of solids are not
described here. The list of references provided in this article is merely a selection of
some representative articles, and as such it is incomplete. Further information on the
topic, including the items omitted here, can be found in numerous review articles;
cf., e.g., Schwerdtfeger [10] or Cao and Dolg [11] and the references cited therein.

General Considerations

A fundamental question before setting up an ECP approach is which AE Hamil-
tonian should be modeled by it. Various approximate relativistic many-electron
schemes are at hand nowadays to generate suitable AE reference data for the ECP
adjustment. In order to avoid any bias by finite basis sets, it is desirable to work
with atomic structure codes using a finite difference scheme and to optimize suitable
valence basis sets after the ECP has been constructed.

All-Electron Reference Approach

Consider a generic AE Hamiltonian for an atom with n electrons, i.e.,

OH D
nX
iD1
Oh.i/C

nX
iDjC1

n�1X
jD1
Og.i; j /; (1)

where i and j stand for electron indices. Here and in the following, the expression
X.i/ denotes the dependence of the preceding term X on the position vector ri ,
whereas the dependence on only the distance is denoted by X.ri /. Atomic units are
used in the equations.

For a relativistic calculation, the one-electron operator Oh might be chosen as the
Dirac (D) Hamiltonian

OhD.i/ D c Ǫ i � Opi C . Ǒ i � I4/c2 C OV .ri /; (2)

where the rest energy c2 of the electron was subtracted in order to get the same
zero of energy as in the nonrelativistic case. Here, c stands for the velocity of light
(c� 137.0359895 a.u.). I4 corresponds to the 4� 4 unit matrix. Ǫ and Ǒ denote the
4 � 4 Dirac matrices
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Ǫ D
�

02 O�
O� 02

�
and Ǒ D

�
I2 02
02 �I2

�
; (3)

which can be written in terms of the three-component vector of the 2 � 2 Pauli
matrices O� ,

O� x D
�
0 1

1 0

�
; O� y D

�
0 �i
i 0

�
; O� z D

�
1 0

0 �1
�
; (4)

the 2 � 2 unit matrix I2, and the 2 � 2 zero matrix 02. Opi D �i Or i is the momentum
operator acting on the i -th electron, with the vector differential (del or nabla)
operator Or i D .@=@xi ; @=@yi ; @=@zi /.

Frequently, instead of the Coulomb point charge model

OV .r/ D �Z
r

(5)

a finite nuclear model is used, e.g., a Gaussian-type charge distribution

��.r/ D �0;� exp.���r2/ with 4�

Z 1
0

dr r2��.r/ D Z�: (6)

The parameter �� can be determined from the nuclear radius R�, which is related to
the nuclear mass according to

�� D 3=.2R2�/ with R� D 2:2677 � 10�5M1=3

� : (7)

Other nuclear models, e.g., a hard sphere nucleus or a nucleus with a Fermi-type
charge distribution, are also in use. It is important to note that the accuracy of
modern ECPs can be so high that the parametrization can also include finite nucleus
effects which are noticeable for heavy elements.

For the two-electron terms Og, the simplest choice is the nonrelativistic Coulomb
(C) interaction

OgC .i; j / D 1

rij
: (8)

Inclusion of the magnetic interaction between the electrons leads to the Gaunt (G)
interaction

OgCG.i; j / D 1

rij
� Ǫ i � Ǫ j

rij
; (9)
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which includes the most important correction of the nonrelativistic Coulomb (C)
interaction. Including the retardation of the interaction due to the finite velocity of
light leads to the Breit (B) interaction in its low-frequency limit for the exchanged
photon

OgCB.i; j / D 1

rij
� 1

2rij

"
Ǫ i � Ǫ j C . Ǫ i � rij /. Ǫ j � rij /

r2ij

#
: (10)

Inserted together with the Dirac Hamiltonian OhD (Eq. 2) into the generic
Hamiltonian (Eq. 1), these three choices for Og lead to the Dirac-Coulomb (DC),
Dirac-Coulomb-Gaunt (DG), and Dirac-Coulomb-Breit (DCB) Hamiltonian,
respectively. For heavy atoms, the latter Hamiltonian has to be augmented to
include also low-order effects from quantum electrodynamics (QED), i.e., a
frequency-dependent expression of the Breit interaction, the electron self-energy,
and the vacuum polarization, leading to the best Hamiltonian which can currently
be applied routinely in atomic structure calculations, e.g., using computer codes
such as GRASP (general relativistic atomic structure package) [12]. These are
usually carried out at the multi-configuration finite difference Dirac-Hartree-Fock
(MCDHF) level to obtain suitable reference data for the determination of the
ECPs.

When answering the initial question which relativistic Hamiltonian the valence-
only approach should model, one has to consider the errors inherent to the ECP
approach as well as possible errors due to the use of finite basis sets and the applied
computational method in practical calculations. It is well known that the total
nonrelativistic energy of an atom roughly increases with the nuclear charge to the
second power, whereas relativistic corrections to it increase with the nuclear charge
to the fourth power. In contrast to this, for a fixed number of valence electrons,
the elements of a group of the periodic table are treated on equal footing within
the ECP schemes, and the corresponding ECP errors are roughly the same for all
members of the group. Thus, whereas for light elements the DC point nucleus
Hamiltonian or approximations to it are usually sufficiently accurate, reference
data based on at least the finite nucleus DCB Hamiltonian becomes mandatory
for heavy elements. Since nowadays atomic electronic structure codes featuring the
DC and DCB Hamiltonians are at hand, modern ECPs use the corresponding AE
reference data. Some older, but nevertheless still very popular, sets of ECPs are
based on approximate relativistic schemes such as the Wood-Boring [13] or Cowan-
Griffin [14] relativistic HF approaches.

Table 1 lists relative energies of selected low-lying electronic states of roent-
genium (Rg, eka-Au, Z = 111) calculated at the HF and MCDHF level using
various forms of the Hamiltonian. The corresponding differential effects, i.e.,
contributions to the energy differences, are provided in Table 2. It is clear that for
an element as heavy as Rg relativistic contributions arising from the Dirac one-
particle Hamiltonian �DC are huge and have to be included. This is also obvious
from the corresponding huge orbital contraction (7s1=2 vs. 7s) and noticeable
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Table 1 Energies (eV) relative to the ground J level of selected low-lying electronic states of
roentgenium (Rg) (Z = 111) [12]

Configuration J P HF DHF/DC

+B lfl +B+QED

pn pn fn fn fn

Rg d9 s2 5/2 + 0 0 0 0 0

3/2 + 0 2:3516 2:3663 2:2975 2:3000

d10 s1 1/2 + �6:2398 2:9685 2:7419 2:6740 2:6107

Rg� d10 s2 0 + �6:3094 �0:1471 �0:2157 �0:2583 �0:2793
RgC d8 s2 4 + 14:5812 9:7898 8:9056 8:9450 8:9670

HF Hartree-Fock (nonrelativistic), DHF Dirac-Hartree-Fock (relativistic), DC Dirac-Coulomb
Hamiltonian, +B perturbative treatment of the Breit interaction, lfl low-frequency limit, QED low-
order quantum electrodynamic contributions (self-energy, vacuum polarization), pn point nucleus,
fn finite nucleus

Table 2 Various contributions to energies (eV) relative to the ground J level of selected low-lying
electronic states of roentgenium (Rg) (Z D 111) [12]

Configuration J P �DC �f n �B �QED

Rg d9 s2 3/2 + 2:3516 0:0147 �0:0688 0:0025

d10 s1 1/2 + 9:2083 �0:2266 �0:0679 �0:0633
Rg� d10 s2 0 + 6:1623 �0:0686 �0:0426 �0:0210
RgC d8 s2 4 + �4:7914 �0:8842 0:0394 0:0220

�DC , DHF/DC pn vs. HF pn; �f n, DHF/DC fn vs. DHF/DC pn; �B , DHF/DC+B lfl fn vs.
DHF/DC fn;�QED , DHF/DC+B+QED fn vs. DHF/DC+B lfl fn; cf. Table 1 for other abbreviations

expansion (6d5=2 vs. 6d) of the valence orbitals depicted in Fig. 1. However, also the
contributions due to a finite nuclear model �f n, the Breit two-electron interaction
�B , and even low-order quantum electrodynamic contributions �QED are above the
accuracy typically achieved for modern ECP approaches in such energy differences,
i.e., 0.01 eV or better.

Frozen-Core Approximation

The most straightforward approach to formally reduce the explicit treatment to
the valence electron system is the frozen-core approximation. The valence-only
Hamiltonian can be written as

OHv D
nvX
iD1

h
Ot .i/C OVcv.i/

i
C

nvX
iDjC1

nv�1X
jD1
Og.i; j /: (11)

Here nv denotes the number of explicitly treated valence electrons, which adds up
with the number of core electrons nc to the total number of electrons n D nv C nc .
Ot represents the kinetic energy operator in the one-electron Hamiltonian Oh in Eq. 1,
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Fig. 1 Large components of the relativistic 6d3=2, 6d5=2, and 7s1=2 MCDHF/DC AE spinors
of roentgenium (Rg) (Z D 111) in its 6d9 7s2 ground state configuration in comparison to
corresponding nonrelativistic HF orbitals [12]. For the corresponding orbital energies, cf. Fig. 2

and OVcv is the nonlocal potential for the interaction of a valence electron with the
nucleus and the fixed core electron system. Besides the Coulomb potential arising
from the nucleus, the latter contains a sum over Coulomb operators OJk and exchange
operators OKk constructed from the nc=2 doubly occupied core orbitals, i.e., in the
case of a point nucleus, it reads

OVcv.i/ D �Z
ri
C

nc=2X
kD1

h
2 OJk.i/ � OKk.i/

i
: (12)

Clearly, the computational savings are small, if they are present at all, since the core
orbitals have to be determined in advance and the full primitive AE basis sets are
required to correctly describe the valence orbitals. However, atomic frozen-core AE
calculations are a useful tool to assess the potential accuracy of ECPs applying a
corresponding core definition.

Atomic Effective Core Potentials

Effective core potentials are constructed to model the DCB finite nucleus Hamil-
tonian, or some approximation of it, by using a parametrized valence-only Hamil-
tonian circumventing or at least simplifying the explicit construction of OVcv from
AE solutions. Hereby, a suitable compromise between computational efficiency
and accuracy is sought. The valence-only Hamiltonian is thus kept simple, but
still offers enough flexibility to compensate the approximations underlying the
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ECP approach by a suitable adjustment to AE reference data. In most of the ECP
schemes, the nonrelativistic kinetic energy is used in Oh, and the nonrelativistic
Coulomb interaction between electrons is assumed for Og. In the resulting, formally
nonrelativistic valence-only model Hamiltonian

OHv D �1
2

nvX
iD1
r2i C

nvX
iDjC1

nv�1X
jD1

1

rij
C

nvX
i

OVcv.i/ (13)

the core-electron interaction terms OVcv have to be chosen so that results of
calculations using the underlying AE Hamiltonian are reproduced as closely as
possible in calculations using a corresponding method for approximately solving
the Schrödinger equation, e.g., by matching results of AE calculations at the DHF
level and corresponding ECP calculations at the two-component HF level. The
whole machinery of nonrelativistic quantum mechanics can be used if a spin-free
form of OVcv is used. Either spin-orbit (SO) coupling is neglected or averaged out
at the level of the AE reference calculations prior to the parametrization of a one-
component ECP, or the two-component ECP adjusted to AE reference data including
SO effects is averaged after the adjustment. The resulting scalar-relativistic valence-
only Hamiltonians might lead to slightly different results.

Choice of the Core

A basic question, besides which Hamiltonian the valence-only approach should
model, is how large the atomic core to be replaced by the ECP should be. Larger
cores make the calculations less expensive, whereas smaller cores usually allow for
a higher accuracy due to smaller frozen-core errors as well as a better transferability
from the atom to the molecule. A suitable compromise has to be found for routine
calculations. Criteria for assigning shells to the core and valence space, respectively,
are orbital energies and the shape of the corresponding radial functions. Some hints
for an efficient choice of the core can also be obtained by performing atomic AE
frozen-core calculations. It frequently turns out that the chemical core, e.g., the core
implied by the ordering of the elements in the periodic system, is not a very accurate
choice, and smaller cores are preferable.

A spatial criterium for separating core and valence orbitals based on the extension
of the radial functions leads to smaller cores and usually to more accurate valence-
only schemes than the energetic criterium based on orbital energies, which favors
larger cores. Thus, a separation including all occupied shells of a given main
quantum number n, as well as those with higher main quantum numbers, in the
valence is favored nowadays. In the case of nd (n D 3; 4; 5; 6/ transition metals, this
corresponds to ns, np, nd, and .nC1/s in the valence space, whereas for nf elements
(n D 4 lanthanides, n D 5 actinides) ns, np, nd, nf, .nC 1/s, .nC 1/p, .nC 1/d,
and .nC 2/s are attributed to the valence space for accurate parametrizations [15].
For heavy main group elements, e.g., those which have one or more filled d shells,
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a choice analogous to the one made for the transition metals provides a sufficiently
high accuracy.

Table 3 lists frozen-core errors for a small-core (1s – 5f) and medium-core (1s –
6p) approximation for roentgenium (Rg). Only the small-core choice can provide
an accuracy of 0.01 eV or better. The medium-core approximation is suggested by
the orbital energies plotted in Fig. 2, both at the nonrelativistic and the relativistic
level. However, the radial overlap of 6d and the 6s, 6p semicore orbitals is obviously
too large to allow high accuracy, and, e.g., noticeable errors in energy differences
depending on the 6d occupation number arise. Clearly, the large-core (1s – 6d)
option is not possible for Rg due to the relativistically induced d9s1 ground state
configuration. The differential relativistic effect in the d10s1 - d9s1 energy difference
amounts to more than 9 eV; cf. Table 2. Figure 2 shows the strong stabilization of 7s
and the destabilization of 6d due to dominating direct and indirect relativistic effects,
respectively. The corresponding orbital contraction and respective expansion are
visualized by the hri expectation values in Fig. 3. The large-core choice is also too
inaccurate for the lighter homologue Au despite its d10s1 ground state configuration,

Table 3 Frozen-core errors (eV) in total MCDHF/DC energies relative to the ground J level of
selected low-lying electronic states of roentgenium (Rg) (Z D 111) using the Rg d9 s2 ground
state configuration core orbitals [12]

Configuration J P �14 �16

Rg d10 s1 1/2 + 0:0053 0:0187

Rg� d10 s2 0 + 0:0021 0:0198

RgC d8 s2 4 + 0:0023 0:0316

�14, 14 core shells frozen (1s – 5f); �14, 16 core shells frozen (1s – 6p)
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Fig. 2 Orbital energies of roentgenium (Rg) (Z D 111) in its 6d9 7s2 ground state configuration
from nonrelativistic HF and relativistic MCDHF/DC AE calculations [12]
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Fig. 3 Radial expectation values hri of roentgenium (Rg) (Z D 111) in its 6d9 7s2 ground state
configuration from nonrelativistic HF and relativistic MCDHF/DC AE calculations [12]

but it works reasonably well for the still lighter members of the group Ag and
especially Cu [6].

In special cases it is even possible to define open-shell cores, which correspond
to an average over all states arising from the core electron configuration. In the
case of lanthanides as well as (heavier) actinides, the f-in-core approximation can
be successfully used in electronic structure calculations to treat an atom/ion with a
given valency, corresponding to a fixed f occupation number, in molecules [11].

Nodes or No Nodes?

Another important question is if the radial nodal structure of the AE valence
orbitals should be kept in the valence-only scheme or if a formal transformation
to pseudo-valence orbitals with less radial nodes should be performed. Keeping the
radial nodal structure unchanged has the advantage of being able to use unchanged
AE operators in the calculations, whereas for pseudo-valence orbitals at least the
operators sampling mainly the core region have to be transformed or effective
operators have to be constructed. A typical and important example is the SO term
of Pauli-type relativistic Hamiltonians, e.g., the Wood-Boring Hamiltonian, which
exhibit a Z=r3 dependence. If such operators are used in calculations with pseudo-
valence orbitals, the (effective) nuclear charge Z is merely an adjustable parameter
and loses it physical meaning. It also turned out, especially for large cores, that
valence correlation energies as well as, e.g., multiplet splittings are more accurate



460 M. Dolg

0.0 1.0 2.0 3.0 4.0 5.0 6.0

r (Bohr)

–0.5

0.0

0.5
P

(r
) 

(a
.u

.)

7s1/2

6d5/2

6d3/2

Fig. 4 Large components of the 6d3=2, 6d5=2, and 7s1=2 MCDHF/DC AE spinors of roentgenium
(Rg) (Z D 111) in its 6d9 7s2 ground state configuration in comparison to corresponding pseudo-
valence orbitals of a MCDHF/DC+B-adjusted small-core PP (Q = 19) [12, 18]

when the radial nodal structure of the valence orbitals is kept unchanged. This
is related to a possible overestimation of exchange integrals, especially between
valence orbitals for which a different number of radial nodes was removed [16].
On the other hand, it was found that for energy differences of chemical interest the
related errors often cancel [17].

The main advantage of using pseudo-valence orbitals is the reduced basis set
requirements, since the oscillations of the valence orbitals in the core region
resulting from explicit orthogonality constraints with respect to the core orbitals
are replaced by a smooth shape. A comparison between AE valence orbitals [12]
and the corresponding pseudo-valence orbitals of an energy-consistent PP [18] is
provided for roentgenium in Figs. 4 and 5. As seen from Fig. 4, the pseudo-valence
orbitals virtually agree with the corresponding AE valence orbitals in the spatial
valence region, e.g., for distances of more than 1.5 Bohr from the nucleus. In the
spatial core region, which is emphasized by the logarithmic scale of the r axis in
Fig. 5, the pseudo-valence orbitals decay quickly and smoothly when approaching
the nucleus. The two options, keeping the number of radial nodes unchanged and
reducing it, lead to the model potential (MP) [4] and pseudopotential (PP) [19, 20]
approach, respectively.

Pseudopotentials

Pseudopotentials (PPs), in a semiempirical form, were historically the first [3]
and, in their ab initio form, are still the most widely used [10] ingredients for the
core-electron interaction OVcv in the valence-only Hamiltonian (Eq. 13) of an atom.
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Fig. 5 As in Fig. 4, but for a logarithmic scale of the radius r

The theoretical foundation for the PP approach was set in 1959 by Phillips and
Kleinman within an effective one-valence electron framework [5]. A generalization
to many-valence electron cases was provided in 1968 by Weeks and Rice [21]. In
the so-called generalized Phillips-Kleinman (GPK) equation, the valence electron
Hamiltonian OHv is supplemented by the GPK PP OV GPK ,	 OHv C OV GPK



j˚pi D Evj˚pi: (14)

Here, Ev denotes the total valence energy, and j˚pi is a many-electron pseudo-
valence eigenfunction. The term pseudo used here means that, e.g., ˚p is built
from orbitals which may have a different radial nodal structure than the AE
valence orbitals. The original AE valence eigenfunction ˚v is assumed to fulfill
the following Schrödinger equation:

OHvj˚vi D Evj˚vi: (15)

˚v and ˚p are related by a projection operator 1 � OPc , which projects out any core
components in the wave function it acts on, i.e.,

j˚vi D .1 � OPc/j˚pi: (16)

By substituting ˚v in Eq. 15 by this expression, acting from the left with 1 �
OPc , exploiting the idempotency of OPc , and comparing to Eq. 14, one arrives the

following expression for the GPK PP

OV GPK D � OHv
OPc � OPc OHv C OPc OHv

OPc CEv OPc; (17)
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which is a nonlocal, energy-dependent many-electron operator still requiring the
notion of the solutions for the core electron system.

Eqs. 14, 15, 16, and 17 are by no means easier to solve than corresponding
frozen-core HF AE equations. They demonstrate, however, that the correct total
valence energy can be obtained by a valence electron eigenfunction which has a
simplified form, e.g., a simpler radial nodal structure of the underlying orbitals. An
explicit orthogonality of the core and valence electron wave functions is not required
anymore. This can be more easily seen by looking at the case of a single valence
electron outside a closed-shell core treated at the HF level. The valence Hamiltonian
OHv then reduces to a Fock operator OF ; the AE and pseudo-valence wave functions
˚v and ˚p then correspond to the AE valence and PP pseudo-valence orbitals 'v
and 'p , respectively. The total valence energy Ev is replaced by the valence orbital
energy �v . Assuming that the core orbitals 'c are also eigenfunctions of the Fock
operator OF with eigenvalues �c , one can set up the so-called Phillips-Kleinman (PK)
equation  

OF C
X
c

.�v � �c/j'cih'c j
!
j'pi D �vj'pi: (18)

Any pseudo-valence orbital 'p which is a mixture of the original AE valence orbital
'v and the core orbitals 'c satisfies this equation and yields the correct eigenvalue
�v . One can now seek solutions for which the energetically lowest one is free of
radial nodes and thus requires only a reduced basis set for an accurate description.

However, for practical calculations, both the PK and the GPK equations are of
no use, since in both cases the core-type solutions also have to be known. Moreover,
restricting the pseudo-valence orbitals to be linear combinations of the original
valence orbitals and the core orbitals leads to too compact radial functions and to
related errors in molecular calculations, e.g., too short bond distances and too high
binding energies. Therefore, for practical applications, further simplifications are
necessary, and, in principle, the (formal) admixture of virtual orbitals has also to be
allowed when building the pseudo-valence orbitals.

Essentially all PP approaches neglect the many-electron character and the energy
dependence of the PK and GPK potentials, i.e., they use sums of effective one-
electron Hamiltonians. The leading term of the core-valence interaction is the
Coulomb interaction between the core, assumed as a point charge Q D Z � nc ,
and the valence electron i

OV PP
cv .i/ D �Q

ri
C� OVcv.i/: (19)

The analytical forms of the correction � OVcv are discussed in the following.
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Local Form

Historically, a local potential of Yukawa type was used by Hellmann [3] in his 1935
study of the K atom:

� OVcv.i/ D 2:74

r
e�1:16r : (20)

One disadvantage of the local ansatz is, e.g., that the valence energies for a given
pseudo-main quantum number Qn increase with the angular momentum quantum
number l . This ordering is not always fulfilled, e.g., the (n�1)d1 2D states of CaC,
SrC, and BaC are found experimentally below the np1 2P states.

Semilocal Form

For the deviation from the Coulomb potential, a semilocal form is used in modern
PPs [20], e.g., for scalar-relativistic calculations, the ansatz is

� OVcv.i/ D
lD1X
lD0

Vl .ri / OPl.i/: (21)

Here, OPl denotes an angular momentum projection operator based on spherical
harmonics jlmi

OPl.i/ D
mDlX
mD�l

jlmihlmj: (22)

Usually, the radial potentials Vl are very similar for angular momenta which are
higher than those present in the core. Thus, a simpler approximate ansatz can be
used, i.e.,

� OVcv.i/ Š VL.ri /C
L�1X
lD0
ŒVl .ri / � VL.ri /� OPl.i/; (23)

where L � 1 denotes the largest angular momentum of any of the core orbitals.
Relativistic calculations including SO coupling require a modified semilocal

ansatz [22, 23] such as

� OVcv.i/ D
lD1X
lD0

jDlC 1
2X

jDjl� 12 j
Vlj .ri / OPlj .i/; (24)
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where now OPlj denotes the projector on spinor spherical harmonics jljm >

OPlj .i/ D
mDjX
mD�j

jljmihljmj: (25)

Again, the summation over angular symmetry may be truncated at L, when L � 1
stands for the highest angular quantum number present in the core, i.e.,

� OVcv.i/ Š VL.ri /C
lDL�1X
lD0

jDlC 1
2X

jDjl� 12 j
ŒVlj .ri / � VL.ri /� OPlj .i/: (26)

SO coupling usually lowers the symmetry and therefore makes quantum chemical
investigations more expensive. It is thus advisable to use SO coupling as late as
possible in the calculations. The options are, e.g., to perform a SO-CI after standard
SO averaged configuration interaction (CI) or coupled cluster (CC) calculations for
the interacting states in the basis of correlated scalar-relativistic (LS or�S ) states, to
perform the SO-CI in the basis of determinants and thus include electron correlation
and SO coupling on the same footing, or to include it from the very beginning in
the SCF process. The latter one-step approach is closest to modeling the underlying
two- or four-component Hamiltonian, but it is also more costly than the two previous
two-step procedures.

For the two-step procedures in which SO coupling is treated after the scalar-
relativistic HF or even CI level, the relativistic PP in Eqs. 24 or 26 is splitted up in
a spin-free (spin-dependent terms neglected or averaged, av) and a spin-dependent
(spin-orbit, so) part

� OVcv.i/ D � OVav.i/C� OVso.i/: (27)

The one-component PP � OVav can be obtained from the two-component one by
applying the relations for the projection operators

OPl.i/ D
X
j

OPlj .i/ D OPl;jl� 12 j.i/C OPl;lC 1
2
.i/ (28)

and radial potentials

Vl.ri / D 1

2l C 1 ŒlVl;jl� 12 j.ri /C .l C 1/Vl;lC 1
2
.ri /�: (29)

The scalar-relativistic PP � OVav formally corresponds to the PPs defined in Eqs. 21
or 23. The corresponding SO term reads as

� OVso.i/ D
L�1X
lD1

�Vl.ri /

2l C 1 Œl
OPl;lC1=2.i/ � .l C 1/ OPl;l�1=2.i/�: (30)
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Here, �Vl is the difference between the relativistic radial potentials for the
corresponding l value

�Vl.ri / D Vl;lC 1
2
.ri / � Vl;jl� 12 j.ri /: (31)

A simpler form of the SO PP � OVso, which is especially suited for use in SO-CI
calculations following a scalar-relativistic HF solution, was proposed by Pitzer and
Winter [24]:

� OVso.i/ D
L�1X
lD1

2�Vl.ri /

2l C 1
OPl.i/Oli � Osi OPl.i/: (32)

An alternative way to include SO coupling in PP calculations is the usage of a
Pauli-type SO operator

� OVso.i/ D ˛2

2

Zeff

r3i

Oli � Osi : (33)

In contrast to Eq. 32, this form of the SO term is not variationally stable and can only
be used in perturbation theory. Moreover, due to the altered shape of the pseudo-
valence orbitals in the core region, the parameter Zeff takes values which are far
from those of an effective nuclear charge.

The angular parts of the ECPs given in Eqs. 23 and 26 are fixed in the semilocal
ansatz. The radial potentials however have to be parametrized. In order to be able
to perform calculations on multicenter systems, where mainly Gaussian basis sets
are applied, the radial potentials are usually represented by linear combinations of
Gaussian functions multiplied by powers of r

Vm.ri / D
X
k

Akmr
nkm
i e�akmr2i with m D l; lj; L: (34)

The free parameters Akm, akm have to be determined by a suitable adjustment to
AE reference data, as will be discussed in section “Adjustment”. For integrability,
nkm 
 �2 is required. Integrals over semilocal PPs as well as the corresponding SO
terms for Cartesian Gaussian basis functions were derived, e.g., by McMurchie and
Davidson [25] and Pitzer and Winter [24, 26].

Nonlocal Form

The integral evaluation over semilocal pseudopotential operators is quite involved
and may become quite costly if many centers in the system are bearing PPs. Pélissier



466 M. Dolg

et al. therefore proposed a transformation of the atomic semilocal part Vl OPl of the
PPs in Eqs. 21 and 23 into a nonlocal form [27]

OQV l.i/ D
X
j

X
k

Ajkjgj .i/ihgk.i/j: (35)

Here, the jgj i are orthonormalized linear combinations of Cartesian Gaussian
functions˝

rjgj
˛ DX

k

Bjkx
ljxyljy zlj ze�bjkr2 with ljx C ljy C lj z D l: (36)

The parameters in Eq. 35 can be determined by minimizing the sum S of squared

differences of matrix elements over OQV l and Vl for a large atom-centered basis set
fj	j gi of appropriate angular symmetry l

S D
X
jk

	
h	j j OQV l j	ki � h	j jVl j	ki


2
: (37)

The nonlocal operator OQV l can further be cast into a simpler form by diagonalizing
the matrix of the coefficients Ajk :

OQV l.i/ D
X
j

NAj j Ngj .i/ih Ngj .i/j: (38)

Here, NAj and j Ngj i denote the resulting eigenvalues and eigenvectors of the ŒAjk�
matrix in the original fjgj ig basis. The integral evaluation in molecular calculations
is thus reduced to the calculation of overlap integrals between the molecular basis
and the expansion basis fj Ngig. Similarly, the evaluation of derivatives of PP matrix
elements with respect to the nuclear coordinates, which are needed in energy
gradients for geometry optimizations, involves only the computation of derivatives
of these overlap integrals.

Adjustment

For the adjustment of the free parameters in the radial PPs of the semilocal ansatz,
two approaches differing in the type of AE reference data are in use today, i.e.,
the shape-consistent approach based on one-particle energies and wave functions
(e.g., orbital energies and orbitals or spinor energies and spinors) or the energy-
consistent approach relying exclusively on total valence energies. Thus, whereas
the shape-consistent approach makes use of quantities defined only within an
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effective one-particle picture, the energy-consistent approach is based on quantum
mechanically observable energy differences, i.e., excitation energies, ionization
potentials, and electron affinities, and makes no use of wave function information.

Shape-Consistent Approach
The main idea of the shape-consistent approach [28, 29] is to select one suitable
atomic reference state, to keep the orbital energy �p of the PP calculation at the value
of the AE reference calculation �v and to reproduce with the pseudo-valence orbital
'p;lj exactly the radial shape of the AE valence orbital 'v;lj in the spatial valence
region, e.g., outside a reasonably chosen critical radius (r 
 rc). In the spatial core
region (r < rc), the pseudo-valence orbital is represented by an auxiliary function
flj , i.e.,

'p;lj .r/ D

'v;lj .r/ for r 
 rc
flj .r/ for r < rc

and �p;lj D �v;lj : (39)

Usually, a polynomial is used for flj , which is required to be radially nodeless
and smooth, fulfills certain matching conditions at rc , and leads to a normalized
pseudo-valence orbital. In the case of reference data taken from, e.g., MCDHF/DC
calculations, the renormalized upper (large) components of the spinors are used for
'v;lj . The lower (small) components influence the radial density mainly in the core
region, which is modified by the usage of flj anyhow, and can thus be neglected.

Once the pseudo-valence orbital 'p;lj has been constructed, the radial part Vlj .r/
of the corresponding semilocal PP � OVcv can be determined for each lj -value from
the radial Fock equation for the chosen atomic reference state:�
�1
2

d2

dr2
C l.l C 1/

2r2
C V PP

lj .r/C OWp;lj .f'p0;l 0j 0g/
�
'p;lj .r/ D �v;lj 'p;lj .r/:

(40)
Here, the radial kinetic energy operator is represented by the first two terms in
the square brackets, whereas the last term OWp;lj stands for the effective valence
Coulomb and exchange potential acting on 'p;lj . The radial potential Vlj can be
determined pointwise on a grid by inversion. It is usually approximated by a linear
combination of Gaussian functions, possibly multiplied by powers of r ; cf. Eq. 34.
By repeating this procedure for each lj -combination, the complete PP in semilocal
form can be constructed. The construction of scalar-relativistic PPs and their radial
potentials Vl , e.g., based on Cowan-Griffin [14] HF reference data, is performed in
analogous fashion using the AE valence orbital 'v;l and its orbital energy �v;l .

In order to generate compact Gaussian expansions for the radial potentials Vl
or Vlj , Durand and Barthelat proposed to minimize the following operator norm
[30, 31]:

jj OOjj D
D
'pj OO2j'p

E1=2
with OO D Q�vj Q'p ih Q'pj � �vj'p ih'pj: (41)
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Here, the quantities without tilde correspond to the exact Vl or Vlj from a radial Fock
equation such as Eq. 40, whereas those with tilde are calculated with an analytical
potential QVl or QVlj .

One advantage of the shape-consistent approach is that (in optimal cases) only
one converged reference state is needed to derive a PP. Thus, even derivations of
0-valence electron potential modeling, e.g., rare gas elements, are possible. On the
other hand, the restriction to one reference state may also lead to a bias of the PP
between this state and others which might be equally important. Here, a suitable
averaging might help. Another drawback is the requirement that the pseudo-valence
orbitals in Eq. 39 have to be nodeless due to the necessary inversion of the radial
Fock Eq. 40. Thus, the adjustment sometimes has to be performed for highly charged
ions, which might lead to noticeable frozen-core errors when the PP is applied for
the neutral atom or lower charged ions. Prescriptions to overcome this restriction
were advised in the generalized relativistic effective core potential (GRECP) ansatz
[32]. However, due to the necessary extension of the semilocal PP by nonlocal terms,
the approach leads to a more complicated valence-only Hamiltonian and is thus not
widely used.

The most popular shape-consistent PP sets using the semilocal ansatz, which
is applicable for most standard quantum chemistry codes, are those of Hay and
Wadt [33], Christiansen and collaborators [34], and Stevens, Krauss, and cowork-
ers [35]. Whereas the first set is based on scalar-relativistic Cowan-Griffin AE
HF calculations, the latter two sets use DHF/DC AE reference data. The set of
Christiansen and collaborators covers essentially all elements of the periodic table.
For a complete list of references to these PP sets, cf. Ref. [11].

Energy-Consistent Approach
In the energy-consistent approach [10, 15], first an analytical ansatz for the radial
potentials Vl or Vlj in the PP is made. The free parameters therein are then adjusted
to reproduce best the total valence energies of a multitude of electronic states of
the neutral atom and its (not too highly charged) ions. This is usually achieved by
minimizing the following quantity:

S D
X
I

wI .E
PP
I �EAE

I C�Eshift/
2 WD min: (42)

Here, EAE
I and EPP

I represent the total valence energies for a state I at the AE
and PP level. The weights wI could in principle be used to increase the accuracy
for states of special interest, but they are usually set to one or to values leading
to equal weights for all configurations included in the fit. The global shift �Eshift

amounts usually to a small fraction of the total valence energies. It allows for each
state I a systematic deviation of the total PP valence energy from the AE reference
value (e.g., the sum of all valence ionization potentials for the ground state), but
usually leads to much better energy differences between the states included in
the adjustment (e.g., the lower ionization potentials, excitation energies, and the
electron affinity).
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A disadvantage of the energy-consistent approach is that a quite large number
of states, which are partly not necessarily of direct physical interest, have to be
included in the adjustment. For example, in order to describe semicore shells well,
energetically high-lying states with excitations and ionizations from these have to
be included in the reference data set. Sometimes, the reference data set has to
be unwillingly restricted due to convergence difficulties. On the other hand, one
advantage is that a large number of states of interest can be described in a balanced
way and that the reference energies might also include contributions which are not
treated self-consistently at the AE reference level, e.g., the Breit interaction or QED
contributions.

Energy-consistent PPs adjusted to Wood-Boring AE HF reference data are
available for most main groups as well as d- and f-transition metals. More recent
parametrizations are based on MCDHF/DC+B or even MCDHF/DC+B+QED AE
reference data and are available for heavy main group elements [36], d-transition
metals [37,38], some actinides [15], as well as some superheavy elements [39]. For
a complete list of references to these PP sets, cf. Ref. [11].

Model Potentials

Model potentials (MPs) [4], in contrast to pseudopotentials, retain the correct radial
nodal structure of the AE valence orbitals. They are based on the Huzinaga-Cantu
equation [40]  

OF C
X
c

.�2�c/h'c jj'ci
!
j'vi D �vj'vi (43)

and bridge the gap between PPs and AE frozen-core calculations. A shift operator
added to the Fock operator OF , i.e., the second term in parentheses in Eq. 43, moves
the energies of the core orbitals upward by �2�c , so that a desired valence orbital
is the lowest energy solution. Hereby, unlike in the PP approach where core and
virtual orbitals are admixed to the valence orbital to yield a nodeless pseudo-valence
orbital, the MP valence orbital keeps the nodal structure of the corresponding AE
valence orbital. It is obvious that the primitive basis sets used in MP calculations
have to be larger than those of PP calculations.

The interaction between a valence electron i and the atomic core is written in the
MP approach as

OV MP
cv .i/ D �

Q

ri
C� OVC .i/C� OVX.i/C OP .i/: (44)

Here, � OVC .i/ is the Coulomb (C ) interaction between the core electrons and the
valence electron
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� OVC .i/ D �nc
ri
C 2

X
c

OJc.i/ (45)

and � OVX.i/ stands for the corresponding exchange (X ) interaction

� OVX.i/ D �
X
c

OKc.i/: (46)

OJc.i/ and OKc.i/ denote for the Coulomb and exchange operators for the core orbital
j'ci. The shift operator

OP .i/ D
X
c

.�2�c/j'c.i/ih'c.i/j (47)

prevents the MP valence orbitals to collapse into core-like solutions.

Ab Initio Model Potentials

One of the most successful variants of the MP approach is the ab initio model
potentials (AIMPs) developed by Seijo, Barandiarán, and coworkers [41]. The
Coulomb interaction of a valence electron and the core is represented by a local
spherically symmetric potential

� OVC .i/ D �VC .ri / D 1

ri

X
k

Cke
�˛kr2i : (48)

A least-squares fit to the AE potential is used to determine the parameters ˛k , Ck
under the constraint

P
k Ck =Z�Q = nc enforcing the correct asymptotic behavior.

A spectral representation is used for the nonlocal exchange part

� OVX.i/ D
X
p;q

j	p.i/iApqh	q.i/j: (49)

This MP operator yields the same Coulomb and exchange (one-center) integrals
as the AE reference calculation, provided that sufficiently accurate expansions are
used in Eqs. 48 and 49. The shift operator in Eq. 47 is constructed with core orbitals
represented in sufficiently large AE basis sets.

Scalar-relativistic effects are taken into account implicitly. Using a Cowan-
Griffin [14] scalar-relativistic AE reference calculation, the parameters in the
Coulomb term (Eq. 45) and the shift operator (Eq. 47) are modified accordingly.
In addition, the spectral representation of the mass-velocity and Darwin terms are
added to the nonlocal representation of the exchange part (Eq. 49).
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In order to take also SO coupling into account, an effective one-electron operator
similar to the form proposed by Pitzer and Winter [24] for PPs is added [42]:

� OVcv;so.i/ D
X
l

 X
k

Blk

r2i
e�ˇlkr2i

!
OPl.i/Oli � Osi OPl.i/: (50)

Here, Oli D Ori � Opi and Osi denote the operators of orbital angular momentum and
spin, respectively. The coefficients Blk and exponents ˇlk are determined by means
of a least-squares fit to the radial components of the Wood-Boring [13] AE SO term.

Model Core Potentials

The model core potential (MCP) approach advocated by Klobukowski and cowork-
ers [43, 44] uses a simpler, entirely local approximation for the Coulomb and
exchange terms than the AIMP approach, i.e.,

� OVC .i/C� OVX.i/ D �Q
ri

X
k

Akr
nk
i e
�˛kr2i : (51)

The values of nk are restricted to 0 and 1. The model potential parameters Ak and
˛k are determined by a simultaneous fit to orbital energies and corresponding radial
functions for a given reference state.

Molecular Effective Core Potentials

The molecular valence-only Hamiltonian for a system with N atoms

OHv D �1
2

nvX
iD1
r2i C

nvX
iDjC1

nv�1X
jD1

1

rij
C

nvX
i

OVcv.i/C Vcc (52)

is usually constructed by using a superposition of the atomic potentials

OVcv.i/ D
NX
ID1
OV I
cv.i/: (53)

Here and in the following, I and J stand for nuclear indices. The interaction
between the nuclei and cores I , J

Vcc D
NX

JDIC1

N�1X
ID1

�
QIQJ

rIJ
C�V IJ

cc .rIJ /

�
(54)



472 M. Dolg

has as leading term the Coulomb interaction between the point charges QI and
QJ , which equal the nuclear charges or the core charges depending on whether the
centers are treated at the AE or ECP level. The pairwise corrections �V IJ

cc .rIJ /

describe deviations from the Coulomb repulsion of the point charges, e.g., for
mutually penetrating cores, where besides modified electrostatic contributions
also orthogonality constraints and the Pauli repulsion between the electron shells
localized on different cores have to be considered.

For large cores, the point charge approximation used in Eq. 54 is not sufficiently
accurate, and core-core/nucleus repulsion corrections have to be added, e.g.,

�V IJ
cc .rIJ / D BIJ e�bIJ rIJ : (55)

The parameters BIJ , bIJ can be fitted to the deviations of the core-core and/or core-
nucleus interactions from the point charge model as obtained from AE HF or DHF
calculations for pairs of interacting frozen cores [6].

Core Polarization Potentials

For large, easily polarizable cores, a core polarization potential (CPP) OVcpp can
be added to the Hamiltonians (Eqs. 13 and 52) in order to account for static core
polarization effects occurring already at the HF level as well as for dynamic core
polarization effects related to core-valence correlation, i.e.,

OVcpp D �1
2

X
I

˛I Of2I : (56)

Here, ˛I is the static dipole polarizability of the core I , and OfI denotes the electric
field produced by all valence electrons as well as all other cores and nuclei at the
core I

OfI D �
X
i

riI
r3iI
C
X
J¤I

QJ

rJI
r3JI

: (57)

For short distances between the polarizing particles and the polarized core, problems
arise due to the breakdown of this expression. The electric field is therefore
multiplied by a cutoff function F , i.e.,

OfI D �
X
i

riI
r3iI
F .riI ; ı

I
e /C

X
J¤I

QJ

rJI
r3JI

F .rJI ; ı
I
c /: (58)

A suitable ansatz for F was proposed by Meyer and coworkers [8] in the framework
of AE calculations and was successfully adopted for large-core PPs [7]:
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F .riI ; ı
I / D Œ1 � exp.�ıI r2iI /�n with x D i; I: (59)

The dipole polarizability ˛I of the core I can be, e.g., evaluated at the coupled
HF or DHF level, whereas the cutoff parameter ıI can be fitted to match ionization
potentials of one-valence electron systems from correlated calculations. Alterna-
tively, the parameters can also be taken from experimental data, if this is available
with sufficiently high accuracy.

It should be noted that unlike the ECPs (PPs, MPs), the CPP of a many-
valence electron atom has one- and two-electron contributions and the CPP for a
multicenter system is not a simple superposition of atomic one-electron potentials.
The square of the electric field OfI in Eq. 56 leads to modified electron-electron and
core-core/nuclei interactions. Integrals over the above CPP operator for Cartesian
Gaussian basis functions have been derived and implemented by Schwerdtfeger and
Silberbach [45].

The usage of CPPs is especially popular for semiempirical large-core PPs,
e.g., when treating alkaline and alkaline earth elements as one- and two-valence
electron atoms, respectively [7, 46]. CPPs are also used in combination with
semiempirical large-core PPs for main group elements [9] or when treating the
group 11 and 12 metals with closed d10 shell as one- and two-valence electron atoms,
respectively [6]. In the latter case, the extension to include higher-order effects, e.g.,
the quadrupole polarizability, has also been explored [47]. Their usage of CPPs
together with ab initio small-core PPs as well as with MPs in general has not yet
been sufficiently investigated, despite their quite successful applications at the AE
level [8].

Valence Basis Sets

For the MP approach, the computational savings arising from the use of specially
optimized valence basis sets are relatively small, since the MP valence orbitals
keep all radial nodes which are present in their AE counterparts. The situation is
quite different for the PP approach, since here the number of radial nodes in the
pseudo-valence orbitals is reduced for most angular quantum numbers with respect
to the AE case. Since the shape of the PP in the core region is to a certain extent
arbitrary, each PP requires an individually optimized valence basis set. The usage
of (truncated) AE basis sets or valence basis sets adopted from another PP may
lead to significant errors in the total valence energies and in consequence possibly
also to errors in the calculated atomic and molecular properties. The PP approach
has the advantage to lead to relatively small basis set superposition errors. This
advantage however may be lost when basis sets not optimized for the specific PP are
used. Many of the published sets of PPs come together with corresponding valence
basis sets, which therefore should be used in unchanged form or might be further
extended, e.g., by adding diffuse, polarization, and correlation functions.
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During the last decades, it became quite popular to use series of basis sets,
e.g., in order to estimate the basis set limit from results of, e.g., double-, triple-,
and quadruple-zeta quality by extrapolation techniques. For energy-consistent PPs,
two types of such systematic basis sets have been developed for a large number
of elements, i.e., the correlation-consistent generalized contracted basis sets of
Peterson and collaborators (e.g., cc-pVXZ-PP and cc-pwCVXZ-PP, X = D, T, Q,
5) [36–38] and the error-balanced segmented contracted basis sets of Weigend and
coworkers (def2-XVP and dhf-XVP, X = S, TZ, QZ) [48, 49]. The focus in the
latter basis sets was also put on their performance in two-component HF and DFT
calculations (dhf-XVP-2c, X = S, TZ, QZ). Further references to these and other
basis sets for ECPs are provided in Ref. [11].

Calibration

A successful adjustment of an ECP for an atom at a certain level of theory, e.g., at
the HF or DHF level, does not guarantee its success in calculations using different
computational methods, e.g., correlated approaches, or when the ECP is used in
a molecular environment. Calibration calculations with a rigorous comparison to
results of accurate AE calculations, preferentially using the Hamiltonian the ECP
aims to model and basis sets of comparable quality, or experimental data are
therefore mandatory for ECPs.

Figure 6 summarizes results for the ground state of Cu2 when Cu is treated
as a one-valence electron ion [6]. The underlying large-core PP replacing the
1s2 : : :3d10 core is designed to model scalar-relativistic DHF/DC results. The core-
core repulsion correction elongates the bond by more than 0.3 Bohr, whereas the
inclusion of static core polarization and core-valence correlation by means of a CPP
shortens the bond by more than 0.2 Bohr. After including valence correlation with a
local correlation density functional, the bond distance agrees within 0.1 Bohr with
the experimental value. The better performance of the PP at the HF level without any
corrections is most likely due to error cancellations. This becomes obvious from the
corresponding results for the binding energy and the vibrational frequency, which
approach the experimental values very systematically upon adding the corrections.

An example for a correlated atomic calibration study of a MCDHF/DC+B-
adjusted small-core PP for the roentgenium atom is provided in Table 4. AE DCB
Fock-space coupled cluster (FSCC) results of Eliav et al. [50] using very large basis
sets are compared to corresponding PP MRCI data using standard basis sets [18],
which are applicable also in molecular calculations [39]. The agreement with the AE
reference data is on the average within 0.15 eV (3 %) provided that, as necessary in
the FSCC approach, the spinors are taken from the closed-shell d10 s2 1S0 anion
ground state. Larger deviations occur when spinors individually optimized for each
configuration are used in the PP MRCI calculations, which points to substantial
relaxation effects not covered by the FSCC approach. The deviations between AE
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Fig. 6 Equilibrium distance Re , binding energy De , and vibrational frequency !e of Cu2 from
HF calculations with a DHF/DC-adjusted one-valence electron PP, including a core-core (cc)
repulsion correction, a core polarization potential (CPP), and valence correlation (corr) by means
of the Vosko-Wilk-Nusair local correlation functional [6]. Experimental values are indicated by the
horizontal dashed lines

Table 4 Electron affinity (EA), excitation energies (EE), and ionization potentials (IP) of
roentgenium (Rg) (Z D 111) from MRCI PP calculations in comparison to AE DCB FSCC results
(eV) [18, 50]

AE FSCC PP MRCI
DC DCB Basis a Basis b

EA d9 s2 2D5=2 – d10 s2 1S0 1:542 1:565 1:588 0:991

EE d9 s2 2D5=2 – d9 s2 2D3=2 2:719 2:687 2:629 2:511

d9 s2 2D5=2 – d10 s1 1S1=2 3:006 2:953 2:691 3:070

IP d9 s2 2D5=2 – d8 s2 3D4 10:57 10:60 10:859 9:852

d9 s2 2D5=2 – d9 s1 3D3 12:36 12:33 12:408 11:925

d9 s2 2D5=2 – d10 1S0 15:30 15:23 14:989 14:912

m.a.d. 0:15 0:39

m.r.d. 3:0 13:6

AE FSCC: 26s21p16d9f7g5h, atomic spinors from d10 s2 1S0
PP MRCI basis a: (12s11p9d3f)/[5s7p5d3f], atomic spinors from d10 s2 1S0
PP MRCI basis b: (12s11p9d3f)/[5s7p5d3f], individual atomic spinors for each configuration
Mean absolute deviations (m.a.d., eV), mean relative deviations (m.r.d., %)
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Table 5 Bond distances Re (Å) and force constants ke (N/m) for the monohydride of roentgenium
from AE and PP calculations [39]

Method DHF MP2

Re ke Re ke
AE, DCG 1:520 453:10 1:502 477:95

PP, DC+B 1:518 451:98 1:498 477:45

and PP data in these calculations are much larger than in the PP fit: in the case
of Rg, the energy adjustment was performed for 37 nonrelativistic configurations
corresponding to 309 J levels. The mean absolute errors in the total valence energies
were below 0.01 eV both for the nonrelativistic configurations and the J levels.

Table 5 lists results for the equilibrium distance and the force constant of the
monohydride of roentgenium using the same MCDHF/DC+B-adjusted small-core
PP for roentgenium in two-component HF and MP2 calculations [39]. Comparison
is made to corresponding AE DHF/DCG results, i.e., the Gaunt term was used
instead of the full Breit term. In view of the very large relativistic bond length
contraction of about 0.5 Å the obtained accuracy of better than 0.004 Å (0.27 %)
of the PP results for the bond distances is quite satisfactory. The agreement of the
force constants is better than 0.25 %.

Summary

The effective core potential approach, i.e., its model potential and pseudopotential
variants, and the effective core polarization potential approach have been briefly
reviewed. Despite the development of efficient, i.e., not too costly but still accurate,
relativistic all-electron schemes, effective core potentials will still remain the
workhorse for relativistic quantum chemical calculations on larger systems. The
possibility to include besides the Dirac relativity also the Breit interaction as well
as quantum electrodynamic effects implicitly in the calculations for heavy elements
renders the approach quite attractive, besides the computational savings due to the
reduced number of electrons to deal with.

References

1. Pyykkö P (1978) Relativistic quantum chemistry. Adv Quantum Chem 11:353–409
2. Pyykkö P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563–594
3. Hellmann H (1935) A new approximation method in the problem of many electron electrons.

J Chem Phys 3:61
4. Bonifacic V, Huzinaga S (1974) Atomic and molecular calculations with the model potential

method. I. J Chem Phys 60:2779–2786
5. Phillips JC, Kleinman L (1959) New method for calculating wave functions in crystals and

molecules. Phys Rev 116:287–294



14 Relativistic Effective Core Potentials 477

6. Stoll H, Fuentealba P, Dolg M, Flad J, v. Szentpály L, Preuß H (1983) Cu and Ag
as one-valence-electron atoms: pseudopotential results for Cu2, Ag2, CuH, AgH, and the
corresponding cations. J Chem Phys 79:5532–5542

7. Fuentealba P (1982) On the reliability of semiempirical pseudopotentials: dipole polarizability
of the alkali atoms. J Phys B: At Mol Phys 15:L555–L558

8. Müller W, Flesch J, Meyer W (1982) Treatment of intershell correlation effects in ab initio
calculations by use of core polarization potentials. Method and application to alkali and
alkaline earth atoms. J Chem Phys 80:3297–3310

9. Igel-Mann G, Stoll H, Preuss H (1988) Pseudopotentials for main group elements (IIIa through
VIIa). Mol Phys 65:1321–1328

10. Schwerdtfeger P (2003) Relativistic pseudopotentials. In: Kaldor U, Wilson, S (eds) Progress in
theoretical chemistry and physics: theoretical chemistry and physics of heavy and superheavy
elements. Kluwer Academic, Dordtrecht, pp 399–438

11. Cao X, Dolg M (2012) Relativistic pseudopotentials: their development and scope of applica-
tions. Chem Rev 112:403–480

12. Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) GRASP –
a general-purpose relativistic atomic structure program. Comput Phys Commun 55:
425–456

13. Wood JH, Boring AM (1978) Improved Pauli Hamiltonian for local-potential problems. Phys
Rev B 18:2701–2711

14. Cowan RD, Griffin DC (1976) Approximate relativistic corrections to atomic radial wave
functions. J Opt Soc Am 66:1010–1014

15. Cao X, Dolg M (2012) Relativistic pseudopotentials. In: Barysz M, Ishikawa Y (eds)
Relativistic methods for chemists. Challenges and advances in computational physics, vol 10.
Wiley, Chichester, pp 200–210

16. Pittel B, Schwarz WHE (1977) Correlation energies from pseudopotential calculations. Chem
Phys Lett 46:121–124

17. Dolg M (1996) On the accuracy of valence correlation energies in pseudopotential calculations.
J Chem Phys 104:4061–4067

18. Hangele T, Dolg M, Hanrath M, Cao X, Schwerdtfeger P (2012) Accurate relativistic energy-
consistent pseudopotentials for the superheavy elements 111 to 118 including quantum
electrodynamic effects. J Chem Phys 136:214105-1-11

19. Schwarz WHE (1968) Das kombinierte Näherungsverfahren. I. Theoretische Grundlagen.
Theor Chim Acta 11:307–324

20. Kahn LR, Goddard WA (1968) A direct test of the validity of the use of pseudopotentials in
molecules. Chem Phys Lett 2:667–670

21. Weeks JD, Rice SA (1968) Use of pseudopotentials in atomic structure calculations. J Chem
Phys 49:2741–2755

22. Lee YS, Ermler WC, Pitzer KS (1977) Ab initio effective core potentials including relativistic
effects. I. Formalism and applications to the Xe and Au atoms. J Chem Phys 67:5861–5876

23. Hafner P, Schwarz WHE (1978) Pseudopotential approach including relativistic effects. J Phys
B: At Mol Phys 11:217–233

24. Pitzer RM, Winter NW (1988) Electronic-structure methods for heavy-atom molecules. J Phys
Chem 92:3061–3063

25. McMurchie LE, Davidson ER (1981) Calculation of integrals over ab initio pseudopotentials.
J Comput Phys 44:289–301

26. Pitzer RM, Winter NW (1991) Spin-orbit (core) and core potential integrals. Int J Quantum
Chem 40:773–780

27. Pélissier M, Komiha N, Daudey JP (1988) One-center expansion for pseudopotential matrix
elements. J Comput Chem 9:298–302

28. Durand P, Barthelat JC (1974) New atomic pseudopotentials for electronic structure calcula-
tions of molecules and solids. Chem Phys Lett 27:191–194

29. Christiansen PA, Lee YS, Pitzer KS (1979) Improved ab initio effective core potentials for
molecular calculations. J Chem Phys 71:4445:4450



478 M. Dolg

30. Durand P, Barthelat JC (1975) A theoretical method to determine atomic pseudopotentials for
electronic structure calculations of molecules and solids. Theor Chim Acta 38:283–302

31. Barthelat JC, Durand P (1978) Recent progress of pseudo-potential methods in quantum
chemistry. Gazz Chim Ital 108:225–236

32. Titov AV, Mosyagin NS (1999) Generalized relativistic effective core potential: theoretical
grounds. Int J Quantum Chem 71:359–401

33. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations.
Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–282

34. Pacios LF, Christiansen PA (1985) Ab initio relativistic effective potentials with spin-orbit
operators. I. Li through Ar. J Chem Phys 82:2664–2671

35. Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared-
exponent basis sets for the first- and second-row atoms. J Chem Phys 81:6026–6033

36. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets
with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent
basis sets for the post-d group 16–18 elements. J Chem Phys 119:11113–111123

37. Peterson KA, Figgen D, Dolg M, Stoll H (2007) Energy-consistent relativistic pseudopotentials
and correlation consistent basis sets for the 4d elements Y – Pd. J Chem Phys 126:124101-1-12

38. Figgen D, Peterson KA, Dolg M, Stoll H (2009) Energy-consistent pseudopotentials and
correlation consistent basis sets for the 5d elements Hf – Pt. J Chem Phys 130:164108-1-12

39. Hangele T, Dolg M (2013) Accuracy of relativistic energy-consistent pseudopotentials for
superheavy elements 111–118: molecular calibration calculations. J Chem Phys 138:044104-
1–8

40. Huzinaga S, Cantu AA (1971) Theory of separability of many-electron systems. J Chem Phys
55:5543–5549

41. Seijo L, Barandiarán Z (1999) The ab initio model potential method: a common strategy for
effective core potential and embedded cluster calculations. In: Leszczynski J (ed) Computa-
tional chemistry: reviews of current trends, vol 4. World Scientific, Singapore, pp 55–152

42. Seijo L (1995) Relativistic ab initio model potential calculations including spin-orbit effects
through the Wood-Boring Hamiltonian. J Chem Phys 102:8078–8088

43. Klobukowski M, Huzinaga S, Sakai Y (1999) Model core potentials: theory and application. In:
Leszczynski J (ed) Computational chemistry: reviews of current trends, vol 3. World Scientific,
Singapore, pp 49–74

44. Zheng T, Klobukowski M (2009) New model core potential for gold. J Chem Phys 130:204107-
1–12

45. Schwerdtfeger P, Silberbach H (1998) Multicenter integrals over long-range operators using
Cartesian Gaussian functions. Phys Rev A 37:2834–2842

46. Fuentealba P, Preuss H, Stoll H, v Szentpály L (1982) A proper account of core polarization
with pseudopotentials: single valence-electron alkali compounds. Chem Phys Lett 89:418–422

47. Stoll H, Fuentealba P, Schwerdtfeger P, Flad J, v Szentpály L, Preuß H (1984) Cu and Ag as
one-valence-electron atoms: CI results and quadrupole corrections for Cu2, Ag2, CuH, AgH. J
Chem Phys 81:2732–2736

48. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and
quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem
Chem Phys 7:3297–3305

49. Weigend F, Baldes A (2010) Segmented contracted basis sets for one- and two-component
Dirac-Fock effective core potentials. J Chem Phys 133:174102-1–11

50. Eliav E, Kaldor, U, Schwerdtfeger P, Hess, BA, Ishikawa Y (1994) Ground state electron
configuration of element 111. Phys Rev Lett 73:3203–3206



Part IV

Relativistic Wave Functions
and Density Functionals

Wenjian Liu



15Basic Structures of Relativistic
Wave Functions

Sihong Shao, Zhendong Li, and Wenjian Liu

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Block Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Matrix Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Tracy-Singh Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Internal Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Angular Momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
Space Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Application to a Reduced 2-Electron System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Abstract

It is shown that relativistic many-body Hamiltonians and wave functions can
be expressed systematically with Tracy-Singh products for partitioned matrices.
The latter gives rise to the usual notion for a relativistic N -electron wave
function: a column vector composed of 2N blocks, each of which consists of 2N

components formed by the Kronecker products ofN one-electron 2-spinors. Yet,
the noncommutativity of the Tracy-Singh product dictates that the chosen serial
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ordering of electronic coordinates cannot be altered when antisymmetrizing
a Tracy-Singh product of 4-spinors. It is further shown that such algebraic
representation uncovers readily the internal symmetries of the relativistic Hamil-
tonians and wave functions, which are crucial for deriving the electron-electron
coalescence conditions.

Keywords
Relativistic Hamiltonian • Relativistic wave function • Tracy-Singh product •
Block structure • Internal symmetry

Introduction

The Dirac equation [1] describes the relativistic motion of an electron, which has
spin 1=2 and charge �1, and further acquires an angular momentum quantum
number corresponding to a quantized atomic orbital when bounded to an atomic
nucleus. The 1-electron Dirac Hamiltonian OhD is usually written in the atomic units
as

OhD D c Ę � Ep C ˇc2 C �I4; (1)

where

Ę D
�
0 E

E
 0

�
; ˇ D

�
I2 0

0 �I2
�
; (2)

Ep D �ir; (3)

� D �
X
A

ZA

rA
; rA D jEr � ErAj: (4)

Here, the constant c D 1=˛ is the speed of light, Ę and ˇ are the usual 4-by-4
Dirac matrices, E
 is the vector of the Pauli spin matrices, Ep is the linear momentum
operator, and � denotes the nuclear attraction. The stationary 1-electron Dirac
equation reads

OhD�D.Er/ D E�D.Er/; (5)

which is an eigenvalue problem and has the same form as the 1-electron Schrödinger
equation

OhS�S.Er/ D E�S.Er/; (6)

OhS D �1
2
r2 C �: (7)
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The N -electron Dirac equation can formally be written in the following form:

OH�D.Er1; Er2; : : : ; ErN / D E�D.Er1; Er2; : : : ; ErN /; (8)

where the Hamiltonian OH is defined in the framework of clamped nuclei as

OH D
NX
k

OhDk C
NX
k>l

Ogkl : (9)

Here, OhDk is the Dirac operator (9) for electron k, and the electron-electron
interaction operator Ogkl can be put into a generic form

Ogkl D dC 1

rkl
C dG Ęk � Ęl

rkl
C dR . Ęk � Orkl /. Ęl � Orkl /

rkl
(10)

with Orkl D Erkl=rkl . The Coulomb interaction is represented by Ogkl with .1; 0; 0/
for the coefficients (dC , dG , dR). Likewise, the Coulomb-Gaunt and Coulomb-
Breit interactions are recovered by the coefficients .1;�1; 0/ and .1;�1=2;�1=2/,
respectively. However, it must be pointed out that Eq. (8) is only formal and has a
vague meaning. Both the structure in which OhDk and Ogkl constitute OH (9) and the
way how OH acts on �D are not clearly shown therein.

Apart from the fact that the first quantized N -electron Dirac equation (8) has
some unphysical ingredients and hence cannot be solved as it stands [2–4], it also
differs from the N -electron Schrödinger equation in at least two mathematical
aspects.

The first main difference lies in that OhD (1) is a 4-by-4 matrix operator, while
OhS (7) is only a scalar operator. That is, the Dirac equation (5) is a set of four
equations with the unknown �D.Er/ being a 4-component complex vector (4-spinor),
but the Schrödinger equation (6) is just an equation with the unknown �S.Er/
being a complex scalar. When going from the 1-electron to the N -electron case,
such difference becomes even more enhanced. Actually, for an N -electron system,
�D.Er1; Er2; : : : ; ErN / has 4N components, each of which depends on 3N spatial
coordinates of the electrons,

�
X1X2:::XN
D .Er1; Er2; : : : ; ErN /; Xk 2 fL˛;Lˇ; S˛; Sˇg; (11)

but �S.Er1; Er2; : : : ; ErN / still has only one component (i.e., 1N � 1). Moreover,
the components (11) are not completely independent, since antisymmetry principle
dictates that they must satisfy the following relation:

�
X1X2:::Xk:::Xl :::XN
D .Er1; Er2; : : : ; Erk; : : : ; Erl ; : : : ; ErN /

D ��X1X2:::Xl :::Xk :::XN
D .Er1; Er2; : : : ; Erl ; : : : ; Erk; : : : ; ErN /: (12)

Therefore, the Dirac equation (8) is mathematically much harder than the
Schrödinger equation. For instance, the electron-electron coalescence conditions
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for �D.Er1; Er2; : : : ; ErN / were derived only recently [5], but those for �S.Er1; Er2, : : :,
ErN / have been known since 1957 [6].

A second main difference lies in that the spectrum of the 1-electron Dirac
operator OhD (1) consists of a point spectrum, a positive energy continuum, and
a negative energy continuum and is therefore unbounded from below, while the
spectrum of the 1-electron Schrödinger operator OhS does not contain any negative
energy state and is bounded from below. This negative energy continuum brings
challenges to both mathematical analysis and numerical solutions of the N -
electron Dirac equation (8). In numerics, the so-called variational collapse is quite
troublesome although practical solutions have been available [7–9]. In theory, the
spectrum of the 1-electron Dirac operator is well understood [10], but little is
known on the spectrum of the N -electron (N 
 2) Dirac operator [11]. Even for
the simplest 2-electron Dirac-Coulomb operator (i.e., .dC ; dG; dR/ D .1; 0; 0/ in
Eq. (10)), the question whether it has bound states is still open [5]. Obviously, the
first step toward a theoretical understanding of the spectrum of theN -electron Dirac
operator (9) is to uncover the structure of the operator itself.

In this chapter, we will examine the basic structures of the N -electron Dirac
operator and the corresponding wave function �D.Er1; Er2; : : : ; ErN /, by virtue of
matrix rings and Tracy-Singh products. In this representation, the N -electron Dirac
operator and other typical operators have explicit forms that can readily be used
in direct calculations (e.g., verification of commutation relations). Their actions on
4-spinors can also be made crystal clear. It is further shown that such algebraic
representation can uncover the internal symmetries of the relativistic Hamiltonians
and wave functions, which are crucial for understanding the electron-electron
coalescence conditions.

Block Structures

Equation (1) can be written more explicitly in block form:

Oh D
�
� C c2 c.E
 � Ep/
c.E
 � Ep/ � � c2

�
; �.Er/ D

�
 L.Er/
 S.Er/

�
: (13)

For brevity, the superscript (resp. subscript) “D” in Oh (resp. �.Er/) has been dropped.
For a positive energy solution, the lower component  S.Er/ of �.Er/ is smaller
(in the mean sense) than the upper component  L.Er/ by a factor of c�1 [10].
They are hence often called small and large components, respectively. In particular,
the former vanishes in the nonrelativistic limit. The N -electron wave function
�.Er1; Er2; : : : ; ErN / is usually written also in block form with 2N blocks, each of which
consists of 2N components formed by the Kronecker products of N one-electron
2-spinors. However, it is not clear how this structure is related to the N -electron
Hamiltonian (9). To reveal this, we invoke matrix ring and Tracy-Singh product for
partitioned matrices.
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Matrix Ring

In mathematics, a ring is an algebraic structure consisting of a set of addition and
multiplication operations. The set is required to be an abelian group under addition
and a semigroup (where no element has to have an inverse) under multiplication,
such that multiplication distributes over addition. All the 2-by-2 complex matrices
form a matrix ring K1 DM2.C/ under the matrix addition and multiplication, with
the four matrices fI2; 
x; 
y; 
zg being the basis. Likewise, the set of 2-by-2matrices
with entries from ringK1 is defined as another matrix ring QK1 DM2.K1/ under the
matrix addition and multiplication. The elements of QK1, which are originally 4-by-4
matrices of complex numbers, are now treated as 2-by-2 matrices with each entry
being a 2-by-2 matrix in K1. A scalar multiplication between rings K1 and QK1 can
then be introduced:

A D .aij / 2 K1; A D .Aij / 2 QK1I (14)

AA W D .AAij /ij 2 QK1; AA WD .AijA/ij 2 QK1; (15)

where the notation .AAij /ij means that the ij -th entry of AA is AAij calculated
by the multiplication in K1. This represents a generalization of the usual scalar
multiplication between C and K1, i.e., aA D .aaij /ij 2 K1 and Aa D .aij a/ij 2
K1 for a 2 C and A D .aij / 2 K1. Note that AA is generally different from
AA for the multiplication in K1 is not commutative. However, for the special case
Aij 2 fI2; 02g, the identity AA D AA always holds. The matrices Eij defined as

ŒEij �kl D ıikıjlI2 (16)

form the standard basis of QK1. Thus, an arbitrary 4-by-4 matrix A can be reexpressed
as

A D
2X

i;jD1
AijEij D

2X
i;jD1

Eij Aij ; Aij 2 K1: (17)

The following associative law can also readily be verified:

.AA/B D A.AB/; 8A;B 2 K1; 8A 2 QK1: (18)

In terms of the above definitions and relationships, any 4-by-4 matrix operator
can be decomposed into a “block operator” in QK1 that transforms linearly or
simply interchanges the blocks  L and  S of the Dirac 4-spinor . L;  S/T and
a “component operator” in K1 that acts on the components of every block. For
instance, the Dirac matrix Ę (2) can be decomposed as
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Ę D
�
0 E

E
 0

�
D E


�
0 I2
I2 0

�
D E
�5 D �5E
; (19)

where �5 2 QK1 is the “block operator” and E
 2 K1 the “component operator.”
Likewise, the one-electron Dirac Hamiltonian Oh (13) can be reexpressed as

Oh D c.E
 � Ep/�5 C c2ˇ C �I4; (20)

where E
 � Ep 2 K1, �5;ˇ; I4 2 QK1, and the nuclear attraction � is just a scalar.
Such a formalism is advantageous in that the part of an operator that retains the
block structure of the wave function, e.g., �5 in Eq. (19), and the part that mixes the
internal components of a block, e.g., E
 in Eq. (19), are separated out. Moreover, it
allows an easy and consistent extension to the many-body case through the Tracy-
Singh product [12, 13], which is a generalization of the Kronecker product for
partitioned matrices.

Tracy-Singh Product

Given matrices A of size m � n and B of size p � q, the Kronecker product is
defined as

A˝ B D .aijB/ij ; (21)

meaning that the ij -th subblock of the mp-by-nq product A ˝ B is the p-by-q
matrix aijB. The following identity holds for the Kronecker product

.A˝ B/.C˝ D/ D .AC/˝ .BD/ (22)

if the matrix products AC and BD are allowed to be formed. Let m D P�
iD1 mi ,

n D P�
jD1 nj , p D P�

kD1 pk , and q D P�

lD1 ql be partitions of integers m, n, p,
q, and A and B be so partitioned as well, viz., A D .Aij / and B D .Bij / with Aij
and Bkl being the submatrices of sizes mi � nj and pk � ql , respectively. Then the
Tracy-Singh product [12, 13] is defined as

A ı B D .Aij ı B/ij D ..Aij ˝ Bkl /kl /ij ; (23)

meaning that the ij -th subblock of the mp-by-nq product A ı B is the mip-by-nj q
matrix Aij ı B, the kl-th subblock of which is equal to the mipk-by-nj ql matrix
Aij ˝Bkl . As such, the Tracy-Singh product is just the pairwise Kronecker product
of the partitioned matrices. Note in passing that A ˝ B and A ı B are of the same
size mp � nq. They are related by simple permutation matrices [12] for equal-sized
partitioning and become identical for non-partitioned matrices (i.e., mi D nj D
pk D ql D 1).



15 Basic Structures of Relativistic Wave Functions 487

As the two-electron relativistic wave function � D .�LL; �LS ; �SL; �SS/T

belongs to C
42 with each block �XY .X; Y 2 fL; Sg/ in C

4, we shall
use rings K2 D M22.C/ and QK2 D M22.K2/ to express the two-electron
Hamiltonian

OH D
2X

kD1
.c Ęk � Epk C ˇkc2 C �k/C Og12; (24)

Og12 D dC 1

r12
C dG Ę1 � Ę2

r12
C dR . Ę1 � Or12/. Ę2 � Or12/

r12
: (25)

Note that the multiplication between K2 and QK2 can be defined in the same way as
Eq. (15) for K1 and QK1. Actually, we have the following mixed-product property,
which is the key for the extension of the above formalism to the many-body
case.

Proposition 1. For A;C 2 K1 and B;D 2 QK1, we have

.AB/ ı .CD/ D .A˝ C/.B ı D/; (26)

with A˝ C 2 K2 and B ı D 2 QK2.

Proof. Direct algebraic calculation shows that

.AB/ ı .CD/

D
 
AB11 AB12

AB21 AB22

!
ı
 
CD11 CD12

CD21 CD22

!

D

0BBBB@
AB11 ı

 
CD11 CD12

CD21 CD22

!
AB12 ı

 
CD11 CD12

CD21 CD22

!

AB21 ı
 
CD11 CD12

CD21 CD22

!
AB22 ı

 
CD11 CD12

CD21 CD22

!
1CCCCA

D

0BBB@
AB11 ˝ CD11 AB11 ˝ CD12 AB12 ˝ CD11 AB12 ˝ CD12

AB11 ˝ CD21 AB11 ˝ CD22 AB12 ˝ CD21 AB12 ˝ CD22

AB21 ˝ CD11 AB21 ˝ CD12 AB22 ˝ CD11 AB22 ˝ CD12

AB21 ˝ CD21 AB21 ˝ CD22 AB22 ˝ CD21 AB22 ˝ CD22

1CCCA

D

0BBB@
.A˝ C/.B11 ˝D11/ .A˝ C/.B11 ˝D12/ .A˝ C/.B12 ˝D11/ .A˝ C/.B12 ˝D12/

.A˝ C/.B11 ˝D21/ .A˝ C/.B11 ˝D22/ .A˝ C/.B12 ˝D21/ .A˝ C/.B12 ˝D22/

.A˝ C/.B21 ˝D11/ .A˝ C/.B21 ˝D12/ .A˝ C/.B22 ˝D11/ .A˝ C/.B22 ˝D12/

.A˝ C/.B21 ˝D21/ .A˝ C/.B21 ˝D22/ .A˝ C/.B22 ˝D21/ .A˝ C/.B22 ˝D22/

1CCCA
D .A˝ C/

 
B11 ı D B12 ı D
B21 ı D B22 ı D

!
D .A˝ C/.B ı D/;
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where the identity (22) for the Kronecker product has been used in the fifth line. ut
By defining

Ę1 WD Ę ı I4; Ę2 WD I4 ı Ę; (27a)

ˇ1 WD ˇ ı I4; ˇ2 WD I4 ı ˇ; (27b)

E
1 WD E
 ˝ I2; E
2 WD I2 ˝ E
; (27c)

and further noticing the relations (19) and (26), we have

Ęk D E
kCk; Ck 2 QK2; k D 1; 2 (28)

in terms of the Ck operators

C1 D �5 ı I4 D
�
0 I2
I2 0

�
ı
�
I2 0

0 I2

�
D

0BB@
0 0 I4 0

0 0 0 I4
I4 0 0 0

0 I4 0 0

1CCA ; (29)

C2 D I4 ı �5 D
�
I2 0

0 I2

�
ı
�
0 I2
I2 0

�
D

0BB@
0 I4 0 0

I4 0 0 0

0 0 0 I4
0 0 I4 0

1CCA : (30)

For example, Eq. (28) for k D 1 can be verified as follows

Ę1 D Ę ı I4 D .E
�5/ ı .I2I4/
D .E
 ˝ I2/.�5 ı I4/ D E
1C1: (31)

Consequently, we arrive at

Ęk � Epk D .E
k � Epk/Ck; k D 1; 2; (32)

Ę1 � Ę2 D .E
1 � E
2/C1C2 D .E
1 � E
2/C12; (33)

. Ę1 � Or12/. Ę2 � Or12/ D Œ.E
1 � Or12/C1�Œ.E
2 � Or12/C2�

D .E
1 � Or12/.E
2 � Or12/C1C2

D .E
1 � Or12/.E
2 � Or12/C12; (34)

where

C12 D C1C2 D C2C1 D

0BB@
0 0 0 I4
0 0 I4 0

0 I4 0 0

I4 0 0 0

1CCA : (35)
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Note that use of the commutation relation

AC D CA; 8A 2 K2; 8C 2 G (36)

has been made in the above. Here G is the abelian group

G D fE;C1;C2;C12g (37)

formed from the direct product of groups fE;C1g and fE;C2g, with E being

E D I4 ı I4 D
�
I2 0

0 I2

�
ı
�
I2 0

0 I2

�
D

0BB@
I4 0 0 0

0 I4 0 0

0 0 I4 0

0 0 0 I4

1CCA : (38)

Therefore, the two-electron Hamiltonian OH (24) can be expressed as

H D
2X

kD1
ŒcE
k � EpkCk C �kE�C c2B12 C VCEC VBC12; (39)

B12 D ˇ ı I4 C I4 ı ˇ D

0BB@
2I4 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �2I4

1CCA ; (40)

VC D dC 1

r12
; VB D dG E
1 � E
2

r12
C dR .E
1 � Or12/.E
2 � Or12/

r12
; (41)

where both E
k � Epk and VB belong to K2, whereas the E;Ck;C12, and B12 matrices
belong to QK2.

The above formulation can straightforwardly be generalized to the N -electron
case fDN ;KN ; QKN g with D

N WD C
4N ;KN WD M2N .C/; QKN WD M2N .KN /. For

instance, the N -body counterpart of Eq. (27a) is simply

Ęi WD I4 ı I4 ı � � � ı I4„ ƒ‚ …
i�1

ı Ę ı I4 ı � � � ı I4„ ƒ‚ …
N�i

; i D 1; : : : ; N; (42)

which reads, e.g.,

Ę1 WD Ę ı I4 ı I4; Ę2 WD I4 ı Ę ı I4; Ę3 WD I4 ı I4 ı Ę (43)

for N D 3.
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Likewise, a 4-spinor product “ i.1/ j .2/ : : :  k.N /” should also be understood
as a Tracy-Singh product  i.1/ ı  j .2/ ı � � � ı  k.N /.

Internal Symmetries

The previous formalism can also be applied to such operators as permutation OP12,
angular momenta Oj 212, and Oj12;z, as well as space inversion OI. Given the explicit
forms, the internal symmetries of a 2-electron system emerge naturally.

Permutation

The operator OP12 for permuting electrons 1 and 2 can be expressed as

OP12 D O�12 Ŏ 12…12; Ŏ
12 2 K2; …12 2 QK2; (44)

where O�12 interchanges the spatial coordinates, i.e.,

O�12f .Er1; Er2/ D f .Er2; Er1/; (45)

while the “component operator” Ŏ 12 acts on the blocks �XY .X; Y 2 fL; Sg/ of � ,

Ŏ
12 D 1

2
.I4 C E
1 � E
2/ D

0BB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCA : (46)

The “block operator” …12 in Eq. (44) is given as

…12 D

0BB@
I4 0 0 0

0 0 I4 0

0 I4 0 0

0 0 0 I4

1CCA : (47)

Direct algebraic calculations show that

Ŏ
12E
1 D E
2 Ŏ 12; (48)

Ŏ
12E
2 D E
1 Ŏ 12; (49)

Ŏ
12.E
1 � E
2/ D .E
1 � E
2/ Ŏ 12; (50)
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Ŏ
12.E
1 � Or12/.E
2 � Or12/ D .E
1 � Or12/.E
2 � Or12/ Ŏ 12; (51)

Ŏ
12VB D VB Ŏ 12: (52)

Similarly, we have the following relations between …12 2 QK2 and the elements of
group G (37):

…12C1 D C2…12; (53)

…12C2 D C1…12; (54)

…12C12 D C12…12: (55)

As an illustration, we construct a two-electron Slater determinant in terms of the
so-defined operator OP12 (44):

j i j i D 1p
2
.1 � OP12/ i .1/ ı  j .2/ (56)

D 1p
2

0BBB@
 L
i .1/˝  L

j .2/ � O�12 Ŏ 12 L
i .1/˝  L

j .2/

 L
i .1/˝  S

j .2/ � O�12 Ŏ 12 S
i .1/˝  L

j .2/

 S
i .1/˝  L

j .2/ � O�12 Ŏ 12 L
i .1/˝  S

j .2/

 S
i .1/˝  S

j .2/ � O�12 Ŏ 12 S
i .1/˝  S

j .2/

1CCCA (57)

D 1p
2

0BBBB@
 L
i .1/˝  L

j .2/ �  L
j .1/˝  L

i .2/

 L
i .1/˝  S

j .2/ �  L
j .1/˝  S

i .2/

 S
i .1/˝  L

j .2/ �  S
j .1/˝  L

i .2/

 S
i .1/˝  S

j .2/ �  S
j .1/˝  S

i .2/

1CCCCA (58)

D 1p
2
Œ i .1/ ı  j .2/ �  j .1/ ı  i.2/� D �j j i i; (59)

where we have used

O�12 Ŏ 12 X
i .1/˝  Y

j .2/ D O�12 Ŏ 12

0BBB@
 X˛
i .Er1/ Y ˛

j .Er2/
 X˛
i .Er1/ Y ˇ

j .Er2/
 
Xˇ
i .Er1/ Y ˛

j .Er2/
 
Xˇ
i .Er1/ Y ˇ

j .Er2/

1CCCA (60)

D O�12

0BBB@
 X˛
i .Er1/ Y ˛

j .Er2/
 
Xˇ
i .Er1/ Y ˛

j .Er2/
 X˛
i .Er1/ Y ˇ

j .Er2/
 
Xˇ
i .Er1/ Y ˇ

j .Er2/

1CCCA (61)



492 S. Shao et al.

D

0BBBB@
 X˛
i .Er2/ Y ˛

j .Er1/
 
Xˇ
i .Er2/ Y ˛

j .Er1/
 X˛
i .Er2/ Y ˇ

j .Er1/
 
Xˇ
i .Er2/ Y ˇ

j .Er1/

1CCCCA (62)

D  Y
j .1/˝  X

i .2/; X; Y 2 fL; Sg: (63)

It is seen from Eqs. (56) and (59) that the action of OP12 on a Tracy-Singh product
of two 4-spinors is equivalent to permute the functions  p.�/ rather than the spatial
coordinates. So is the action of O�12 Ŏ 12 on a Kronecker product between 2-spinors
(see Eq. (63)). This feature stems directly from the noncommutativity of the Tracy-
Singh or Kronecker products. The second equality of Eq. (59) emphasizes that
the permutation of the orbitals in the determinant j i j i is antisymmetric in the
common sense, such that the familiar Slater-Condon rule can directly be used for
evaluating matrix elements over determinants. A close inspection of Eq. (58) further
reveals the following relationship for the components �X1X2 :

�X1X2.Er1; Er2/ D ��X2X1.Er2; Er1/; Xk 2 fL˛;Lˇ; S˛; Sˇg: (64)

It follows that the components �X1X2.Er1; Er2/ with X1 D X2 are antisymmetric in
the common sense, but �X1X2.Er1; Er2/ with X1 ¤ X2 do not have any permutation
symmetry and are not all independent. As for the blocks �XY of the already
antisymmetrized function �.Er1; Er2/, the following relationship

O�12 Ŏ 12�XY .Er1; Er2/ D ��YX.Er1; Er2/; X; Y 2 fL; Sg (65)

can directly be deduced from the requirement OP12�.Er1; Er2/ D ��.Er1; Er2/. There-
fore, the antisymmetry relation (64) holds only for the individual components
but not for the blocks. The notation �XY .Er1; Er2/ D ��YX.Er2; Er1/ (X; Y 2
fL; Sg) often adopted in the literature is thus rather misleading and should be
abandoned.

Angular Momenta

The one-electron spin operator reads

Es D 1

2
Ė D 1

2

� E
 0
0 E


�
D 1

2
E
I4: (66)

To be consistent with the convention (27), the spin angular momenta for two
electrons should be written as
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Es1 D 1

2
.E
I4/ ı I4 D 1

2
E
1E; (67)

Es2 D 1

2
I4 ı .E
I4/ D 1

2
E
2E: (68)

The total angular momentum Ej12 is then given by

Ej12 D
�
El12 C 1

2
E
1 C 1

2
E
2
�

E: (69)

The commutation relations

Œ Ej12;C1� D Œ Ej12;C2� D Œ Ej12;C12� D 0 (70)

follow simply from that the group G (37) is abelian.

Space Inversion

The space inversion operator for the relative coordinate Er12 can be written as

OI D O�ƒ; O�f .Er12/ D f .�Er12/; (71)

where the “block operator” ƒ 2 QK2 reads

ƒ D ˇ ı ˇ D

0BB@
I4 0 0 0

0 �I4 0 0

0 0 �I4 0
0 0 0 I4

1CCA : (72)

In view of Eqs. (45) and (71), the actions of O�12 and O� are the same for any scalar
functions, such that O� � O�12. The relations of ƒ with the elements of the group G
(37) are

Œƒ;C1�C D Œƒ;C2�C D Œƒ;C12� D 0; (73)

where ŒA; B�C D AB C BA is an anticommutator.
At this stage, it deserves to be pointed out that the above two-electron operators,

including B12, C12, OP12, Ej12, and OI, are independent of the convention (27),
implying that the N -electron relativistic Hamiltonian (wave function) is symmetric
(antisymmetric) in the usual sense, as dictated by the indistinguishability of the
electrons. The change of the convention (27) can be achieved simply by the actions
OPijOj D Oi OPij with Oi 2 f Ęi ; ˇi ;Ci ; Epig.
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Application to a Reduced 2-Electron System

Introducing the coordinate transformation

ER12 D 1

2
.Er1 C Er2/; Er12 D Er1 � Er2; EP12 D Ep1 C Ep2; Ep12 D 1

2
. Ep1 � Ep2/;

the Hamiltonian (39) can be expanded in powers of the inter-electronic distance r12.
The lowest order Oh12 reads

Oh12 D cE
1 � Ep12C1 � cE
2 � Ep12C2 C VCEC VBC12; (74)

which determines the lowest power � of the wave function � in r12. With this form
of Oh12, we can readily arrive at the following commutation relations which play a
key role in deriving the lowest power � (for more details, see Ref. [5]).

Proposition 2. The operators f Oh12;C12; OP12; OI; Oj 212; Oj12;zg are mutually commuta-
tive and hence share the common eigenfunctions.

Proof. Since all the operators have explicit forms, the proof can readily be
accomplished by direct algebraic manipulations. Here we just take Œ OP12; Oh12� D 0

as an example. Substituting Eqs. (44) and (74) into OP12 Oh12, we have

OP12 Oh12 D . O�12 Ŏ 12…12/.cE
1 � Ep12C1 � cE
2 � Ep12C2 C VCEC VBC12/

D O�12.c Ŏ 12E
1 � Ep12…12C1 � c Ŏ 12E
2 � Ep12…12C2

C VC Ŏ 12…12EC Ŏ 12VB…12C12/ (75)

D O�12.c Ŏ 12E
1 � Ep12C2…12 � c Ŏ 12E
2 � Ep12C1…12

C VC Ŏ 12E…12 C Ŏ 12VBC12…12/ (76)

D O�12.cE
2 � Ep12 Ŏ 12C2…12 � cE
1 � Ep12 Ŏ 12C1…12

C VC Ŏ 12E…12 C VB Ŏ 12C12…12/ (77)

D O�12.cE
2 � Ep12C2
Ŏ
12…12 � cE
1 � Ep12C1

Ŏ
12…12

C VCE Ŏ 12…12 C VBC12
Ŏ
12…12/ (78)

D .�cE
2 � Ep12C2 C cE
1 � Ep12C1

C VCEC VBC12/. O�12 Ŏ 12…12/ D Oh12 OP12; (79)
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where we have applied Eqs. (53)–(55) in (76); Eqs. (48), (49), and (52) in (77);
Eq. (36) in (78) as well as the relation O�12 Ep12 D � Ep12 O�12 in (79). ut
It follows that the eigenfunctions of the reduced Hamiltonian Oh12 (74) can be
classified according to the quantum numbers of the operators C12, OP12, OI, Oj 212, and
Oj12;z. For more details, see Ref. [5].

Summary

It has been shown that, in the language of matrix rings, a relativistic many-electron
Hamiltonian can systematically be constructed from the one-electron Dirac operator
and the electron-electron interaction through the Tracy-Singh product for partitioned
matrices. A 4-spinor product “ i.1/ j .2/ : : :  k.N /” should also be understood
as a Tracy-Singh product  i.1/ ı  j .2/ ı � � � ı  k.N /. Permuting the labeling of
the 4-spinors rather than the spatial coordinates of the electrons then leads to a
determinant that has the well-known block structure. Such algebraic representation
provides a very useful and convenient mathematical tool for revealing the internal
symmetries of relativistic wave functions. However, it must be emphasized that what
have been discussed here are purely mathematical properties of the first quantized
many-electron Dirac equation which has some inherent unphysical ingredients. To
get the physics right, one has to go to a Fock space formulation that incorporates
properly the charge conjugation symmetry [4].
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Abstract

The electron-electron coalescence conditions for the wave functions of the Dirac-
Coulomb (DC), Dirac-Coulomb-Gaunt (DCG), and Dirac-Coulomb-Breit (DCB)
Hamiltonians are analyzed by making use of the internal symmetries of the
reduced two-electron systems. The results show that, at the coalescence point
of two electrons, the wave functions of the DCG Hamiltonian are regular, while
those of the DC and DCB Hamiltonians have r�12-type weak singularities, with �
being negative and of O.˛2/. Yet, such asymptotic expansions of the relativistic
wave functions are only valid within an extremely small convergence radius Rc
of O.˛2/. Beyond this radius, the behaviors of the relativistic wave functions are
still dominated by the nonrelativistic limit.

Keywords
Relativistic wave function • Coalescence condition • Internal symmetry

Introduction

Although finding explicit solutions to systems of interacting electrons is virtually
impossible (in fact, finding accurate numerical solutions is already an arduous
task), deriving some asymptotic behaviors (e.g., the electron-nucleus and electron-
electron coalescence conditions) of the exact wave functions is well possible. Such
information not only enriches our understandings of the exact wave functions but
can also be employed to accelerate the convergence of orbital-based methods for
constructing numerical wave functions. This was demonstrated already in 1929 by
Hylleraas [1] for the ground state of helium. However, his ansatz was motivated by
the observation that the helium 1S state depends only on the shape of the electron-
nucleus triangle, rather than by a consideration of the Coulomb singularity. In 1957,
Kato [2] found that the 1S state of the Schrödinger-Coulomb Hamiltonian must
satisfy the following correlation cusp condition:

lim
r12!0

�
@�

@r12

�
av
D 1

2
�.r12 D 0/: (1)

Here, the subscript “av” represents the average over the angular part of the
relative coordinate Er12. This condition arises directly from the requirement that the
divergence of the Coulomb interaction at the electron-electron coalescence point
(r12 D 0) should precisely be compensated by the local kinetic energy, so as to
result in a finite local energy. The integrated form of Eq. (1) is

� D
�
1C 1

2
r12

�
�.r12 D 0/C � � � : (2)

It follows that, for singlet coupled electrons, the exact wave function is linear in
r12 and hence has discontinuous first-order derivative around the coalescence point.
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More general cusp conditions for molecular systems were derived by Pack and
Brown [3] in 1966, viz., 

@lC1�S
@rlC112

!
r12D0

D 1

2

�
@l�S

@rl12

�
r12D0

; (3)

which covers Eq. (1) as a special case (l D 0). For triplet-coupled electrons, the
exact wave function is antisymmetric with respect to the interchange of the spatial
coordinates of the two coalescing electrons, such that only odd l enter Eq. (3), with
the lowest l being l D 1. The derivative discontinuity then appears at second order,
with the integrated form of Eq. (3) being [4]

� D Er12 � @�
@Er12

ˇ̌̌̌
r12D0

�
1C 1

4
r12

�
C � � � : (4)

Based on such analytic structures of the exact wave functions, a bunch of explicitly
correlated wave function methods have been developed in the last decades [5–9]. In
particular, by augmenting the conventional excitations into products of unoccupied
one-electron orbitals by just a few explicitly correlated configurations (which
depend explicitly on the interelectronic distance rij) and carefully factorizing the
difficult many-electron integrals into products of one- and two-electron integrals
through the resolution of the identity [10] with a complementary auxiliary basis set
[11], the so-called R12/F12 methods [12, 13] have now evolved into practical tools
for general molecules.

The request for relativistic explicitly correlated wave function methods for
systems containing heavy atoms is even more imperative, as relativistic correc-
tions converge more slowly with respect to the basis set size than nonrelativistic
correlation energies [14–16]. However, at variance with the significant advances
in nonrelativistic explicitly correlated methods, the development of the relativistic
counterparts lags far behind. The increased complexities and the reduced symme-
tries certainly result in substantial technical difficulties but which are not really
an issue. Rather, it is the lack of knowledge on the analytic structures of the
relativistic wave functions that has been the major obstacle. The first analysis of the
relativistic wave functions was made by Kutzelnigg [17]. Yet, a complete analysis
was performed only rather recently [18]. The essential results are to be summarized
here.

Relativistic Electron-Nucleus Coalescence Conditions

The Dirac equation for an electron subject to the attraction of a clamped point
nucleus Z reads

OhD D E ; (5)

OhD D c Ę � Ep C ˇc2 C �: (6)
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Here, Ę and ˇ are the usual 4-by-4 Dirac matrices, c D ˛�1 is the speed of light,
Ep D �i Er is the linear momentum operator, and �.r/ D �Z=r represents the
nuclear attraction. Equation (5) can also be rewritten in block form:�

� C c2 cE
 � Ep
cE
 � Ep � � c2

��
 L

 S

�
D E

�
 L

 S

�
: (7)

Like the one-electron Schrödinger equation, Eq. (7) can be solved analytically [19]
with the solution being of the form�

 L

 S

�
D
�
f L.r/Y�;m.�; �/
f S.r/Y��;m.�; �/

�
; (8)

where Y�;m.�; �/ is a spherical spinor with angular momentum quantum numbers
.�;m/, while f L.r/ and f S.r/ are the radial large and small components of the
wave function. By using the relation

E
 � Ep.f X.r/Y�;m/ D i

�
d

dr
C � C 1

r

�
f X.r/Y��;m; X 2 fL; Sg; (9)

Eq. (7) can be recast into a pair of coupled radial equations:�
�Z
r
�E C c2

�
f L.r/C ic

�
d

dr
C �� C 1

r

�
f S.r/ D 0; (10)

ic

�
d

dr
C � C 1

r

�
f L.r/C

�
�Z
r
�E � c2

�
f S.r/ D 0: (11)

To derive the electron-nucleus coalescence conditions, we expand the radial func-
tions in a power series of the electron-nucleus distance r

f X.r/ D r� �f X.0/ C f X.1/r C f X.2/r2 C � � � � ; X 2 fL; Sg: (12)

Inserting these expressions into Eqs. (10) and (11) leads to a set of equations for the
amplitudes f X.k/. The lowest order in r is a matrix equation

M
�
f L.0/

f S.0/

�
D
� �Z ic.� � � C 1/
ic.� C � C 1/ �Z

��
f L.0/

f S.0/

�
D 0; (13)

which has nontrivial solutions if and only if det.M/ D 0, from which the power �
can be determined as

� D
p
�2 � .Z˛/2 � 1: (14)

The value of � in Eq. (14) with a negative sign in front of the square root must
be discarded, because otherwise the corresponding wave function would not be
normalizable. The relation between f S.0/ and f L.0/ can then found to be
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f S.0/ D �iZ˛
� C 1 � � f

L.0/: (15)

It follows that the small and large radial components possess the same lowest-order
� (14) in r . Similarly, the equations for the first-order amplitudes f X.1/ read��ZfL.1/ C .�E C c2/f L.0/

�C ic.� � � C 2/f S.1/ D 0; (16)

ic.� C � C 2/f L.1/ C ��ZfS.1/ � .E C c2/f S.0/
� D 0; (17)

which, together with Eq. (15), give rise to the following relation between f L.1/ and
f L.0/:

f L.1/ D �ZŒ1C ˛
2E.2� C 3 � 2�/�

.� C 1 � �/.2� C 3/ f L.0/; (18)

which is no longer universal but energy dependent. In the nonrelativistic limit (nrl),
i.e., � ! j�j � 1 and E D c2 CE 0 with E 0 � O.˛0/, Eq. (18) reduces to

f L.1/ D
� �2Z.1 � � C j�j/
.j�j � �/.1C 2j�j/ CO.˛2/

�
f L.0/: (19)

For � D �.l C 1/ < 0, i.e., s1=2, p3=2, d5=2, f7=2 etc., Eq. (19) leads to

f L.1/

f L.0/
D � Z

l C 1 CO.˛2/; (20)

the first term of which is just the well-known nonrelativistic electron-nucleus cusp
condition [3]. Note, however, that Eq. (19) does not apply to the case of � D l > 0,
i.e., p1=2, d3=2, f5=2, etc., for the denominator j�j�� vanishes. As a matter of fact, in
this case, f L.0/ is of O.˛2/ according to the exact solution [19] and hence vanishes
in the nrl. The first nonvanishing term in the nrl will be f L.1/, such that it is the ratio
f L.2/=f L.1/ that should be explored. The derivation is similar, with the result also
of form (20).

It is interesting to see that, for � < 0, Eq. (15) leads to

lim
c!1 lim

r!0
 S

 L
D lim

c!1
f S.0/

f L.0/
D 0 D lim

r!0 lim
c!1

 S

 L
: (21)

That is, the two limits of r12 ! 0 and c ! 1 commute for the ratio  S= L

(� < 0). However, this does not hold for the individual components. Consider the
1s 1

2
state of a hydrogenic ion, whose radial components are

 L D
s
.� C 2/Z
� .2� C 3/.2Z/

�C1r�e�Zr;  S D �i
s

��Z
� .2� C 3/.2Z/

�C1r�e�Zr;

(22)
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from which we obtain

lim
r!0 lim

c!1 
L D lim

r!0 2Z
3
2 e�Zr D 2Z 3

2 ; lim
c!1 lim

r!0  
L D1; (23)

lim
r!0 lim

c!1 
S D 0; lim

c!1 lim
r!0  

S D1: (24)

It will be shown later on that the two limits do not commute even for the ratio
� SS=� LL between the small-small and large-large components of two-electron wave
functions, observed first by Kutzelnigg [17].

Relativistic Electron-Electron Coalescence Conditions

The Reduced Two-Electron Problem

The first-quantized N -electron Dirac equation reads

OH�.1; 2; : : : ; N / D E�.1; 2; : : : ; N /; (25)

OH D
X
k

OhDk C
X
k>l

Ogkl; (26)

OhDk D c Ęk � Epk C ˇkc2 C �k; (27)

�k D �
X
A

ZA

rkA
; rkA D jErk � ErAj: (28)

Here, OhDk is the one-electron Dirac operator (6) for electron k subject to the nuclear
attraction �k (28). The electron-electron interaction operator Ogkl can be put into a
generic form

Ogkl D dC 1
rkl
C dG Ęk � Ęl

rkl
C dR . Ęk � Orkl/. Ęl � Orkl/

rkl
(29)

with Orkl D Erkl=rkl. The Coulomb, Coulomb-Gaunt, and Coulomb-Breit interactions
are represented by Ogkl with .1; 0; 0/, .1;�1; 0/, and .1;�1=2;�1=2/ for the coeffi-
cients (dC , dG , dR), respectively. The corresponding Hamiltonians OH (26) are then
called Dirac-Coulomb (DC), Dirac-Coulomb-Gaunt (DCG), and Dirac-Coulomb-
Breit (DCB), respectively. To investigate the electron-electron coalescence condi-
tions, suffice it to concentrate only on the relative motion of two electrons at small
interelectronic distances. For this purpose, the coordinates Er1 and Er2 are transformed
to the center of mass ( ER12) and the relative (Er12) coordinates of two coalescing
electrons, viz.,
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ER12 D 1

2
.Er1 C Er2/; Er12 D Er1 � Er2: (30)

The corresponding momenta read

EP12 D Ep1 C Ep2; Ep12 D 1

2
. Ep1 � Ep2/: (31)

In terms of such transformations, Eq. (25) can be rewritten as

Oh12� D OW�; (32)

where

Oh12 D Ot12 C Og12; Ot12 D c. Ę1 � Ę2/ � Ep12; (33)

and OW contains all the remaining terms:

OW D E �
0@X
k	3
OhDk C

X
k>l	3

Ogkl

1A � X
kD1;2

�
1

2
c Ęk � EP12 C ˇkc2

�

�
X
kD1;2

0@�k CX
l	3
Ogkl

1A : (34)

The operators Ot12 (33) and Og12 (29) describe the relative kinetic energy and the
interaction energy of electrons 1 and 2, respectively, while OW describes screenings
on the interaction between the two electrons due to the rest of the system, including
the electrostatic interaction of the two electrons with the rest of the system, the
kinetic and potential terms of the other electrons, as well as the kinetic energy of the
center of mass motion.

Consider the region of configuration space where electrons 1 and 2 are close
together but all the other electrons and nuclei are well separated from these two
electrons and from each other, viz., 0 	 r12 	 � and rRA D j ER12 � ErAj, rRk D
j ER12 � Erkj, rkl D jErk � Erl j  � for k; l 
 3. Here � is an arbitrary small positive
number. Within this region, the wave function � can be expanded in powers of r12
as

� D �.�/ C �.�C1/ C � � � ; (35)

where � is the lowest power of nonvanishing � in r12. The operators Oh12 (33) and
OW (34) can also be expanded in the same way. In particular, both Ot12 and Og12 in Oh12
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lower the power of r12 by one and can hence be labeled as Ot .�1/12 and Og.�1/12 , leading

to Oh.�1/12 . For the potential terms in Eq. (34), the following partial wave expansions
can be invoked:

1

r1A
D 1

jErRA C 1
2
Er12j
D 1

rRA

C1X
lD0
.�1/l

�
r12

2rRA

�l
Pl .cos �A/;

1

r2A
D 1

jErRA � 1
2
Er12j
D 1

rRA

C1X
lD0

�
r12

2rRA

�l
Pl .cos �A/;

1

r1k
D 1

jErRk C 1
2
Er12j
D 1

rRk

C1X
lD0
.�1/l

�
r12

2rRk

�l
Pl .cos �k/;

1

r2k
D 1

jErRk � 1
2
Er12j
D 1

rRk

C1X
lD0

�
r12

2rRk

�l
Pl .cos �k/; (36)

where �A is the angle between ErRA and Er12, �k the angle between ErRk and Er12, and Pl
the Legendre polynomials. The operator OW then becomes

OW D OW .0/ CO.�2/C � � � ; (37)

OW .0/ D E �
0@X
k	3
OhDk C

X
k>l	3

Ogkl

1A � X
kD1;2

�
1

2
c Ęk � EP12 C ˇkc2

�

�
X
kD1;2

0@�.0/k CX
l	3
Og.0/kl

1A ; (38)

where �.0/k and Og.0/kl for k D 1; 2 arise from the s-wave (l D 0) terms in Eq. (36) and
can be summed up as

�
.0/
1 C �.0/2 D �2

X
A

ZA

rRA
WD 2�.0/; (39)

Og.0/1l C Og.0/2l D dC
2

rRl
C dG . Ę1 C Ę2/ � Ęl

rRl

C dR . Ę1 � OrRl/. Ęl � OrRl/C . Ę2 � OrRl/. Ęl � OrRl/

rRl
: (40)

It is important to realize that all the odd order terms OW .2nC1/ (n 2 N) in Eq. (37)
vanish identically due to the cancelation of the odd l terms for electrons 1 and 2. By
collecting the terms of the same order, Eq. (32) gives rise to a set of equations, with
the lowest three orders being
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O ����1� W 	
Ot .�1/12 C Og.�1/12



�.�/ D 0; (41)

O .��/ W
	
Ot .�1/12 C Og.�1/12



�.�C1/ D OW .0/� .�/; (42)

O ���C1� W 	Ot .�1/12 C Og.�1/12



�.�C2/ D OW .0/� .�C1/: (43)

The zeroth-order coalescence condition (41) (NB: the ordering is relative to the
leading term �.�/ in Eq. (35) and is determined by the largest m value of �.�Cm/ in
the considered equation) is essential for ensuring that the local energy

EL D
OH�
�

(44)

remains finite at the coalescence point. This can readily be understood as follows:

lim
r12!0

EL D lim
r12!0

. Oh12 � OW CE/�
�

(45)

D lim
r12!0

Oh.�1/12 � .�/C
h Oh.�1/12 � .�C1/C.� OW .0/CE/�.�/

i
C � � �

�.�/ C �.�C1/ C � � � (46)

D lim
r12!0

Oh.�1/12 � .�/

� .�/
C lim
r12!0

 
EC
Oh.�1/12 � .�C1/� OW .0/� .�/

� .�/

!
C � � � ; (47)

where Eq. (45) arises from Eq. (44) and the relation OH D Oh12 � OW C E. The first
term of Eq. (47) is of O.r�112 / and hence will diverge if the wave function does not
satisfy condition (41) properly.

At this stage, it is instructive to compare Eqs. (41)–(43) with the nonrelativistic
counterparts:

O ����2� W OtS.�2/12 �
.�/
S D 0; (48)

O ����1� W OtS.�2/12 �
.�C1/
S C OgS.�1/12 �

.�/
S D 0; (49)

O .��/ W OtS.�2/12 �
.�C2/
S C OgS.�1/12 �

.�C1/
S D OW S.0/�

.�/
S ; (50)

O ���C1� W OtS.�2/12 �
.�C3/
S C OgS.�1/12 �

.�C2/
S D OW S.0/�

.�C1/
S ; (51)

where

OtS.�2/12 D Ep212; OgS.�1/12 D 1

r12
; (52)

OW S.0/ D E�
0@X
k	3
OhSk C

X
k>l	3

OgSkl

1A�1
4
EP 2
12�

X
kD1;2

0@�.0/k CX
l	3
OgS.0/kl

1A : (53)
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The most important difference in between lies in that the nonrelativistic kinetic
energy operator OtS.�2/12 is a second-order differential operator, while the relativistic

one, Ot .�1/12 , is only first order. Consequently, the lowest-order equation (48) for the
Schrödinger equation is of O.���2/, which determines the asymptotic behavior
of the wave function �.�/

S as rl12Y
ml
l , with � D l and Y mll being the spherical

harmonics. The next-order equation (49) involves OgS.�1/12 , whose singularity results
in discontinuous (lC1)-th-order derivatives characterized by the cusp condition (3).
Both conditions (48) and (49) have to be satisfied for a finite local energy (44) of the
Schödinger equation. The next two-order equations (50) and (51) can be employed
to derive the second- and third-order coalescence conditions [4] that are no longer
universal but system and state dependent and vary throughout configuration space
due to the involvement of the OW S.0/ operator. In contrast, in the relativistic case,
the lowest-order equation (41) is only of O.���1/ and already involves the singular
term Og.�1/12 . At variance with the universality of the first-order nonrelativistic cusp
condition (3), the relativistic counterpart, i.e., the relation between �.�C1/ and �.�/

determined by Eq. (42), cannot be universal due to the appearance of OW .0/ (38).
Note also that the OW .0/ operator (38) is more complicated than the nonrelativistic
counterpart OW S.0/ (53) for the former does not commute with all the symmetry
operations of Oh12 (vide post). This will result in great difficulties in manipulating
Eqs. (42) and (43).

Another significant difference in between lies in that the relativistic wave
function � in Eq. (32) has 16 components depending on the relative coordinate Er12
and the spin degrees of freedom, while the nonrelativistic one �S is simply a scalar
function. As such, the relativistic local energy (44) is also a multicomponent func-
tion, with each component being the ratio between the corresponding components
of OH� and � .

Given the great complexities, the asymptotic behaviors of the relativistic wave
functions can still be obtained from conditions (41) and (42) by making use of the
internal symmetries of the reduced Hamiltonian Oh12 (33).

Symmetries of the Reduced Hamiltonian Oh12

Equation (41) can be rewritten in block form

0BB@
VC �cE
2 � Ep12 cE
1 � Ep12 VB

�cE
2 � Ep12 VC VB cE
1 � Ep12
cE
1 � Ep12 VB VC �cE
2 � Ep12
VB cE
1 � Ep12 �cE
2 � Ep12 VC

1CCA
0BB@
� LL

� LS

� SL

� SS

1CCA D 0; (54)

where each block �XY .X; Y 2 fL; Sg/ is a four-component function. For
simplicity, the superscript .�/ of �XY has been dropped. The operators VC and VB
read
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VC D dC 1

r12
; VB D dG E
1 � E
2

r12
C dR .E
1 � Or12/.E
2 � Or12/

r12
: (55)

To reveal the symmetry properties of Oh12, we rewrite it as [18, 20]

Oh12 D cE
1 � Ep12C1 � cE
2 � Ep12C2 C VCEC VBC12 (56)

in terms of the following “block operators” that merely interchange the blocks �XY

of the wave function:

E D I4 ı I4 D
�
I2 0

0 I2

�
ı
�
I2 0

0 I2

�
D

0BB@
I4 0 0 0

0 I4 0 0

0 0 I4 0

0 0 0 I4

1CCA ; (57)

C1 D �5 ı I4 D
�
0 I2
I2 0

�
ı
�
I2 0

0 I2

�
D

0BB@
0 0 I4 0

0 0 0 I4
I4 0 0 0

0 I4 0 0

1CCA ; (58)

C2 D I4 ı �5 D
�
I2 0

0 I2

�
ı
�
0 I2
I2 0

�
D

0BB@
0 I4 0 0

I4 0 0 0

0 0 0 I4
0 0 I4 0

1CCA ; (59)

C12 D �5 ı �5 D C1C2 D C2C1 D

0BB@
0 0 0 I4
0 0 I4 0

0 I4 0 0

I4 0 0 0

1CCA ; (60)

where the symbol ı represents the Tracy-Singh product [21, 22], which is a
generalization of the standard Kronecker product (˝) for partitioned matrices. The
multiplications between the “component operators” (e.g., cE
1 � Ep12) and the “block
operators” (e.g., C1) in Eq. (56) are similar to those between numbers and matrices
(for more details, see Ref. [20]). Such a formulation is particularly advantageous in
that the block structure of the wave function in Eq. (54) can always be retained and
the symmetry properties of Oh12 can readily be deduced. To do so, we first introduce
the following Abelian group [18]:

G D fE;C1;C2;C12g; (61)

which is just a direct product of groups fE;C1g and fE;C2g. It can then be shown
[18, 20] that the following operatorsn Oh12;C12; OP12; OI; Oj 212; Oj12;z

o
(62)
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are mutually commutative and hence share the same eigenfunctions. Here OP12 is the
permutation operator for electrons 1 and 2 (vide post), OI the space inversion for the
relative coordinate Er12, and Ej12 the angular momentum

Ej12 D El12 C Es; Es D Es1 C Es2; (63)

where El12 D Er12 � Ep12 is the orbital angular momentum of the relative motion and
Esk the spin of electron k.

To classify the solutions of Eq. (54) according to the eigenvalues of the opera-
tors (62), we first construct the eigenfunctions of f Oj 212; Oj12;zg (denoted as j.ls/; jmj i)
via the LS coupling (63),

j.ls/; jmj i D
CsX

msD�s
jlmlijsmsihlmlsmsjjmj i; (64)

where hlmlsmsjjmj i are the Clebsch-Gordan coefficients. Note that the quantum
number s of the total spin angular momentum Es can only be 0 (singlet) or 1 (triplet)
for two electrons. Given j , the quantum number l of El12 can only be j for s D 0 and
can be j C 1, j , or j � 1 for s D 1. For simplicity, the four possible eigenfunctions
are to be denoted as ˝i :

˝1 D j.l D j; s D 0/; jmj i; (65)

˝2 D j.l D j; s D 1/; jmj i; (66)

˝3 D j.l D j � 1; s D 1/; jmj i; (67)

˝4 D j.l D j C 1; s D 1/; jmj i; (68)

which form an orthonormal basis set for the subspace of given j and mj . As the
parity of j.ls/; jmj i is .�1/l , the four functions˝i can be classified into two groups,
one with parity .�1/j (i.e., l D j ) including ˝1 and ˝2 and the other with parity
.�1/jC1 (i.e., l D j ˙ 1) including ˝3 and ˝4. Thus, for given j and mj , the
components �XY of � can be expressed as

�XYC D f XY
1 ˝1 C f XY

2 ˝2; X; Y 2 fL; Sg (69)

with parityC.�1/j or as

�XY� D f XY
3 ˝3 C f XY

4 ˝4; X; Y 2 fL; Sg (70)

with parity �.�1/j . While the amplitudes f XY
i are dependent not only on the radial

part of Er12 but also on the center of mass coordinate ER12 of the two electrons as
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well as all the coordinates of the rest of the system, the ˝i depend only on the spin-
angular part of the relative coordinate Er12. Therefore, the notation 2sC1lj (s D 0; 1;
l D s; p; d; : : :; j D 0; 1; : : :) for the states to be used below should not be confused
with the true spectroscopic terms that involve the total angular momenta of all the
electrons. By noting that � LL and � SS have the same parity and � LS and � SL also
have the same parity but different from that of � LL and � SS (see Ref. [20]), the wave
function � for given j and mj can be constructed as

�C D

0BB@
� LLC
� LS�
� SL�
� SSC

1CCA ; �� D

0BB@
� LL�
� LSC
� SLC
� SS�

1CCA (71)

with paritiesC.�1/j and �.�1/j , respectively.
The function�C or�� still has eight unknowns but which can further be reduced

by using C12 and OP12. Since the eigenvalues of C12 and OP12 can only be C1 or �1,
the spaces for �C and �� can respectively be decomposed as direct sums .˚/ of
the eigensubspaces

VC D V A
.C;C/ ˚ V S

.C;C/ ˚ V A
.C;�/ ˚ V S

.C;�/; (72)

V� D V A
.�;C/ ˚ V S

.�;C/ ˚ V A
.�;�/ ˚ V S

.�;�/; (73)

where the second subscript C (�) indicates the corresponding eigenvalue C1 .�1/
of C12, while the superscript A (S ) indicates antisymmetric (symmetric) under the
permutation OP12. In addition, the following identities [18, 20]

C12C1 D C1C12; (74)

OIC1 D �C1
OI; (75)

OP12C1 D C2
OP12 D C1C12

OP12 (76)

imply that an arbitrary function � with eigenvalues f�.C12/, �. OI/, �. OP12/g will be
transformed to a function C1� with eigenvalues f�.C12/, ��. OI/, �.C12/�. OP12/g.
Therefore, the following relations can be established for functions in spaces VC and
V�:

V A
.�;C/ D C1V

A
.C;C/; V S

.�;C/ D C1V
S
.C;C/; (77)

V A
.�;�/ D C1V

S
.C;�/; V S

.�;�/ D C1V
A
.C;�/: (78)

It can then immediately be deduced that the asymptotic behavior of the wave
function �� constructed as
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�� D C1�C D C1

0BB@
� LLC
� LS�
� SL�
� SSC

1CCA D
0BB@
� SL�
� SSC
� LLC
� LS�

1CCA (79)

is exactly the same as that of �C. For instance, the 1s0 (D �C) and 3p0 (D C1�C)
states will have the same asymptotic behaviors. Note that the presentations so
far hold for both two identical fermions (electrons or positrons) and an electron-
positron pair. For an electronic system, only the antisymmetric parts V A

.C;C/ and

V A
.C;�/ of VC (72) and V A

.�;C/ and V A
.�;�/ of V� (73) are relevant. Furthermore,

because of the first equalities of Eqs. (77) and (78), we need to only consider the
wave function �C belonging to V A

.C;C/, V A
.C;�/, and V S

.C;�/, for the asymptotic

behaviors of �� belonging to V A
.�;C/ and V A

.�;�/ are the same as those of �C in

V A
.C;C/ and V S

.C;�/, respectively.
To construct explicitly the electronic wave functions �C, we first note that the

eigenfunctions of C12 are simply0BB@
'1
'2
'2
'1

1CCA ;
0BB@
'1
'2
�'2
�'1

1CCA (80)

with eigenvalues of C1 and �1, respectively. Additional restrictions on the ampli-
tudes f XY

i are further imposed by the antisymmetry principle. To see this, we write
the permutation operator OP12 as

OP12 D O�12 Ŏ 12…12; (81)

where O�12 interchanges the spatial coordinates, viz.,

O�12f .Er1; Er2/ D f .Er2; Er1/; O�12f .Er12; ER12/ D f .�Er12; ER12/; (82)

while the “component operator” Ŏ 12 acts on the blocks �XY.X; Y 2 fL; Sg/ of � :

Ŏ
12 D 1

2
.I4 C E
1 � E
2/ D

0BB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCA : (83)

The “block operator” …12 in Eq. (81) is given as
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…12 D

0BB@
I4 0 0 0

0 0 I4 0

0 I4 0 0

0 0 0 I4

1CCA : (84)

Then the antisymmetry principle OP12�.1; 2/ D ��.1; 2/ dictates that

O�12 Ŏ 12� YX.1; 2/ D ��XY.1; 2/; X; Y 2 fL; Sg: (85)

Straightforward manipulations further reveal that the respective actions of O�12 and
Ŏ
12 on ˝i are

O�12˝i D .�1/l˝i ; (86)

Ŏ
12˝i D Œs.s C 1/ � 1�˝i D .�1/sC1˝i ; s 2 f0; 1g: (87)

We therefore have

O�12 Ŏ 12˝i D .�1/lCsC1˝i : (88)

That is,˝i is the eigenfunction of O�12 Ŏ 12 with eigenvalue .�1/lCsC1. For �XYC (69),
the action of O�12 Ŏ 12 leads to

O�12 Ŏ 12�XYC D .�1/jC1f XY
1 ˝1 C .�1/j f XY

2 ˝2: (89)

In view of Eq. (85), the coefficients must satisfy

f YX
1 D .�1/j f XY

1 ; f YX
2 D .�1/jC1f XY

2 : (90)

Therefore, f XX
1 is nonzero only for even j , while f XX

2 is nonzero only for odd j .
Similarly, for �XY� (70), the action of O�12 Ŏ 12 leads to

O�12 Ŏ 12�XY� D .�1/jC1f XY
3 ˝3 C .�1/jC1f XY

4 ˝4; (91)

such that the coefficients are subject to

f YX
3 D .�1/j f XY

3 ; f YX
4 D .�1/j f XY

4 : (92)

That is, both f XX
3 and f XX

4 are nonzero only for even j . These results together with
Eq. (80) lead immediately to the following forms for functions �C in V A

.C;C/ and

V A
.C;�/
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�
A;e
.C;C/ D

0BB@
f LL
1 ˝1

f LS
3 ˝3 C f LS

4 ˝4

f LS
3 ˝3 C f LS

4 ˝4

f LL
1 ˝1

1CCA ; (93)

�
A;o
.C;C/ D

0BB@
f LL
2 ˝2

0

0

f LL
2 ˝2

1CCA ; (94)

�
A;e
.C;�/ D

0BB@
f LL
1 ˝1

0

0

�f LL
1 ˝1

1CCA ; (95)

�
A;o
.C;�/ D

0BB@
f LL
2 ˝2

f LS
3 ˝3 C f LS

4 ˝4

�.f LS
3 ˝3 C f LS

4 ˝4/

�f LL
2 ˝2

1CCA ; (96)

for even j (denoted by a superscript e) and odd j (denoted by a superscript o),
respectively. The forms for functions in V S

.C;�/ are the same as those in V A
.C;�/ if the

parity of j is reversed, viz.,

�
S;e
.C;�/ � �A;o

.C;�/; �
S;o
.C;�/ � �A;e

.C;�/: (97)

Therefore, the asymptotic behaviors of the relativistic wave functions can simply be
deduced from Eqs. (93) to (96). Noticeably, the number of unknowns in � has been
reduced from 16 to 1 for Eqs. (94) and (95) and to 3 for Eqs. (93) and (96). These
results facilitate greatly the subsequent analysis of the asymptotic behaviors.

For completeness, all the eight types of functions in Eqs. (72) and (73), i.e.,
the common eigenfunctions of the operators (62), are given in Table 1. internal
symmetry

Asymptotic Behaviors Determined by the Zeroth-Order
Condition (41)

Having determined the structures of �.�/ (93)–(96), we can now insert �.�/ into
Eq. (54) and integrate out the spin-angular part ˝i to obtain equations for the radial
part f XY

i . To do so, the actions of E
k � Ep12, E
1 � E
2, and E
k � Or12 on functions f XY
i ˝i

have to first be evaluated. The operator identity
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Table 1 Classification of two-particle relativistic wave functions as common eigenfunctions of
the operator set (62). See also Eqs. (72) and (73). Superscript A or S indicates antisymmetric or
symmetric under the permutation OP12. Superscript e or o refers to even or odd j . The first subscript
C or� refers to the parityC.�1/j or�.�1/j , whereas the second subscriptC or� indicates the
eigenvalueC1 or�1 of C12 (cf. Eq. (80)). The spin-angular functions˝i are defined in Eqs. (65)–
(68)

Eigensubspace Wave function

V A
.C;C/ �

A;e
.C;C/ D

0BBB@
f LL
1 ˝1

f LS
3 ˝3 C f LS

4 ˝4

f LS
3 ˝3 C f LS

4 ˝4

f LL
1 ˝1

1CCCA �
A;o
.C;C/ D

0BBB@
f LL
2 ˝2

0

0

f LL
2 ˝2

1CCCA

V S
.C;C/ �

S;e
.C;C/ D

0BBB@
f LL
2 ˝2

0

0

f LL
2 ˝2

1CCCA �
S;o
.C;C/ D

0BBB@
f LL
1 ˝1

f LS
3 ˝3 C f LS

4 ˝4

f LS
3 ˝3 C f LS

4 ˝4

f LL
1 ˝1

1CCCA

V A
.C;�/ �

A;e
.C;�/ D

0BBB@
f LL
1 ˝1

0

0

�f LL
1 ˝1

1CCCA �
A;o
.C;�/ D

0BBB@
f LL
2 ˝2

f LS
3 ˝3 C f LS

4 ˝4

�f LS
3 ˝3 � f LS

4 ˝4

�f LL
2 ˝2

1CCCA

V S
.C;�/ �

S;e
.C;�/ D

0BBB@
f LL
2 ˝2

f LS
3 ˝3 C f LS

4 ˝4

�f LS
3 ˝3 � f LS

4 ˝4

�f LL
2 ˝2

1CCCA �
S;o
.C;�/ D

0BBB@
f LL
1 ˝1

0

0

�f LL
1 ˝1

1CCCA

V A
.�;C/ �

A;e
.�;C/ D

0BBB@
f LL
3 ˝3 C f LL

4 ˝4

f LS
1 ˝1

f LS
1 ˝1

f LL
3 ˝3 C f LL

4 ˝4

1CCCA �
A;o
.�;C/ D

0BBB@
0

f LS
2 ˝2

f LS
2 ˝2

0

1CCCA

V S
.�;C/ �

S;e
.�;C/ D

0BBB@
0

f LS
2 ˝2

f LS
2 ˝2

0

1CCCA �
S;o
.�;C/ D

0BBB@
f LL
3 ˝3 C f LL

4 ˝4

f LS
1 ˝1

f LS
1 ˝1

f LL
3 ˝3 C f LL

4 ˝4

1CCCA

V A
.�;�/ �

A;e
.�;�/ D

0BBB@
f LL
3 ˝3 C f LL

4 ˝4

f LS
2 ˝2

�f LS
2 ˝2

�f LL
3 ˝3 � f LL

4 ˝4

1CCCA �
A;o
.�;�/ D

0BBB@
0

f LS
1 ˝1

�f LS
1 ˝1

0

1CCCA

V S
.�;�/ �

S;e
.�;�/ D

0BBB@
0

f LS
1 ˝1

�f LS
1 ˝1

0

1CCCA �
S;o
.�;�/ D

0BBB@
f LL
3 ˝3 C f LL

4 ˝4

f LS
2 ˝2

�f LS
2 ˝2

�f LL
3 ˝3 � f LL

4 ˝4

1CCCA

E
k � Ep12 D �i.E
k � Or12/
 
@

@r12
� E
k �

El12
r12

!
(98)
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reveals that only the formulas for E
k � Or12 and E
k � El12 acting on˝i are needed for the
evaluation of E
k � Ep12.f XY

i ˝i /. Being scalar operators, the actions of E
k � Or12, E
k � El12,
and E
1 � E
2 on ˝i can be expressed through the RI

OQ˝i D
4X

i 0D1
˝i 0h˝i 0 j OQj˝i i; OQ 2

n
E
k � Or12; E
k � El12; E
1 � E
2

o
; (99)

where the matrix elements h˝i 0 j OQj˝i i can systematically be evaluated using the
Wigner-Eckart theorem for composite operators [23]. The resulting matrices can be
summarized as follows:

ŒE
k � Or12� D

0BB@
0 0 ˙b �a
0 0 �a �b
˙b �a 0 0

�a �b 0 0

1CCA ; a D
s
j C 1
2j C 1 ; b D

s
j

2j C 1 ; (100)

ŒE
k � El12� D

0BB@
0 ˙pj .j C 1/ 0

˙pj .j C 1/ �1 0

0 0 j � 1
0 0 0 �.j C 2/

1CCA (101)

ŒE
1 � E
2� D

0BB@
�3 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

1CCA ; (102)

where the upper and lower signs in the matrix elements of ŒE
k � Or12� and ŒE
k � El12�
correspond to k D 1 and 2, respectively.

To expedite subsequent manipulations, we combine the functions (93)–
(96) with different eigenvalues of C12 to form eigenfunctions of f OP12; OI; Oj 212;Oj12;zg, i.e.,

�
A;e
C D

0BB@
f LL
1 ˝1

f LS
3 ˝3 C f LS

4 ˝4

f LS
3 ˝3 C f LS

4 ˝4

f SS
1 ˝1

1CCA ; (103)

�
A;o
C D

0BB@
f LL
2 ˝2

f LS
3 ˝3 C f LS

4 ˝4

�.f LS
3 ˝3 C f LS

4 ˝4/

f SS
2 ˝2

1CCA ; (104)

each of which has 4 unknowns. These two expressions fully cover Eqs. (93)–(96).
Substituting �A;e

C (103) into Eq. (54) and integrating out the spin-angular part ˝i

give rise to four equations for f LL
1 , f LS

3 , f LS
4 , and f SS

1 :
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2i.�bF LS
3 C aF LS

4 /C dC
˛

r12
f LL
1 C .�3dG � dR/

˛

r12
f SS
1 D 0; (105)

�iF LLSS
1� C .dC C dG C qdR/

˛

r12
f LS
3 C .pdR/

˛

r12
f LS
4 D 0; (106)

�iF LLSS
1C C .pdR/

˛

r12
f LS
3 C .dC C dG � qdR/

˛

r12
f LS
4 D 0; (107)

2i
��bF LS

3 C aF LS
4

�C dC ˛

r12
f SS
1 C .�3dG � dR/

˛

r12
f LL
1 D 0; (108)

while substituting �A;o
C (104) into Eq. (54) leads to another four equations for f LL

2 ,
f LS
3 , f LS

4 , and f SS
2 :

� 2i �aF LS
3 C bF LS

4

�C dC ˛

r12
f LL
2 C .dG C dR/

˛

r12
f SS
2 D 0; (109)

iF LLSS
2� C .dC � dG � qdR/

˛

r12
f LS
3 � .pdR/

˛

r12
f LS
4 D 0; (110)

iF LLSS
2C � .pdR/

˛

r12
f LS
3 C .dC � dG C qdR/

˛

r12
f LS
4 D 0; (111)

2i
�
aF LS

3 C bF LS
4

�C dC ˛

r12
f SS
2 C .dG C dR/

˛

r12
f LL
2 D 0: (112)

The intermediate quantities in the above equations are defined as

F LS
3 D

�
d

dr
� j � 1

r

�
f LS
3 ; (113)

F LS
4 D

�
d

dr
C j C 2

r

�
f LS
4 ; (114)

F LLSS
1� D b

�
d

dr
C j C 1

r

� �
f LL
1 C f SS

1

�
; (115)

F LLSS
1C D a

�
� d

dr
C j

r

� �
f LL
1 C f SS

1

�
; (116)

F LLSS
2� D �a

�
d

dr
C j C 1

r

� �
f LL
2 � f SS

2

�
; (117)

F LLSS
2C D b

�
� d

dr
C j

r

� �
f LL
2 � f SS

2

�
; (118)

p D 2
p
j .j C 1/
2j C 1 D 2ab; (119)

q D 1

2j C 1 D a
2 � b2; (120)
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with a and b given in Eq. (100). The asymptotic behaviors of �A;e
C and �A;o

C can be
obtained by inserting the expansions

f XY
i D r�12f XY.0/

i CO ���C1� ; X; Y 2 fL; Sg (121)

into the corresponding equations (vide post). The value for � and the mutual
relations between f

XY.0/
i are determined by the requirement that the algebraic

equations for f XY.0/
i have nontrivial solutions. If the determinant of the coefficient

matrix of the algebraic equations is zero for arbitrary �, the desired � has to
be determined from the next-order equation (42). This particular situation will
be discussed in section “Asymptotic Behaviors Determined by the First-Order
Condition (42).”

Algebraic Equations for � A,e
.C,C/

The algebraic equations for f XY.0/
i (93) can be obtained from Eqs. (105) to (108) as

Me

0B@f
LL.0/
1

f
LS.0/
3

f
LS.0/
4

1CA D 0 (122)

with

Me D

0B@˛.dC � 3dG � dR/ �2ib.� � j C 1/ 2ia.� C j C 2/
�2ib.� C j C 1/ ˛.dC C dG C qdR/ ˛pdR

�2ia.�� C j / ˛pdR ˛.dC C dG � qdR/

1CA : (123)

The determinant of the coefficient matrix Me is

det.Me/ D 4˛f.dC C dG C dR/Œ.� C 1/2 � 1� � dg (124)

with

d D .dC C dG � dR/

j .j C 1/ � Œ.dC � dG/2 � .2dG C dR/2�˛

2

4

�
: (125)

The value of � can then be determined by the conditions det.Me/ D 0 and dCCdGC
dR ¤ 0. The situations for the DC, DCG, and DCB Hamiltonians are summarized
below.
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The DC Hamiltonian
Setting dC D 1 and dG D dR D 0 in Eqs. (124) and (125) leads to

det.Me/ D 4˛

�2 C 2� � j .j C 1/C ˛2

4

�
D 0; (126)

� D
r
j .j C 1/C 1 � ˛

2

4
� 1: (127)

The value of � in Eq. (127) with a negative sign in front of the square root must
be discarded, because otherwise the corresponding wave functions would not be
normalizable. The relations among f XY.0/

i read

f
LS.0/
3 D 2ib

˛
.� C j C 1/f LL.0/

1 ; (128)

f
LS.0/
4 D 2ia

˛
.�� C j /f LL.0/

1 : (129)

For j D 0, Eq. (127) reduces to

� D
r
1 � ˛

2

4
� 1 D �˛

2

8
CO.˛4/; (130)

which indicates that the wave function for the 1s0 state has a weak singularity at
r12 D 0, as already noticed by Kutzelnigg [17]. As a D 1 and b D 0 for j D 0 (see
Eq. (100)), Eqs. (128) and (129) reduce to

f
LS.0/
3 D 0; (131)

f
LS.0/
4 D i˛

4
f

LL.0/
1 CO.˛3/: (132)

Further in view of the action (79) of C1 on �A;e
.C;C/ (93) for j D 0, one sees that the

3p0 state has the same singularity (130) as 1s0.

The DCG Hamiltonian
Setting dC D 1, dG D �1, and dR D 0 in Eq. (123) leads to

Me D
0@ 4˛ �2ib.� � j C 1/ 2ia.� C j C 2/
�2ib.� C j C 1/ 0 0

�2ia.�� C j / 0 0

1A : (133)

As det.Me/ is identically zero, there always exist nontrivial solutions for f XY.0/
i .

Actually, there can be two cases, j D 0 or j ¤ 0.
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If f LL.0/
1 ¤ 0, it can be deduced from the second and third rows of Eqs. (122)

together with (133) that

j D � D b D 0; (134)

with the relations among amplitudes being

f
LS.0/
3 D 0; (135)

f
LS.0/
4 D �i˛f LL.0/

1 : (136)

Equation (135) follows directly from the fact that the function˝3 (67) does not exist
for j D 0. Note that the present zero value of � is different from that (

p
1C ˛2�1)

obtained by Kutzelnigg [17].
On the other hand, if f LL.0/

1 D 0, only the relation

b.� � j C 1/f LS.0/
3 D a.� C j C 2/f LS.0/

4 (137)

can be obtained. Note that j ¤ 0 in this case, because otherwise f LS.0/
3 and hence

f
LS.0/
4 would also vanish, contradicting the requirement for nontrivial solutions. To

determine the power �, the algebraic equations of O.��/ must be considered, as the
Coulomb and Gaunt singularities happen to cancel out at O.���1/; see Eqs. (106)
and (107) for dC D 1, dG D �1, and dR D 0. We postpone the discussion
of this situation to section “Asymptotic Behaviors Determined by the First-Order
Condition (42).”

The DCB Hamiltonian
Setting dC D 1 and dG D dR D � 12 in Eqs. (124) and (125) leads to

det.Me/ D �4˛j .j C 1/: (138)

Obviously, a nontrivial solution can only be obtained for j D 0, for which Me (123)
becomes

Me D
0@ 3˛ 0 2i.� C 2/
0 0 0

2i� 0 ˛

1A : (139)

Since f LS.0/
3 D 0 again because of the nonexistence of ˝3 (67) for j D 0, the

requirement of nontrivial solution is only fulfilled if the minor Me
22

Me
22 D det

�
3˛ 2i.� C 2/
2i� ˛

�
D 3˛2 C 4�.� C 2/ (140)
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vanishes, leading to

� D
r
1 � 3˛

2

4
� 1 D �3˛

2

8
CO.˛4/: (141)

The relation between the amplitudes is then

f
LS.0/
4 D �2i�

˛
f

LL.0/
1 D 3i˛

4
f

LL.0/
1 CO.˛3/: (142)

It is seen from Eq. (141) that the wave function of the DCB Hamiltonian is also
singular at r12 D 0, somewhat worse than that of the DC Hamiltonian.

Curiously, had dC D 1 and dG D �dR D �1=2 been chosen in Eqs. (124)
and (125), corresponding to an artificial interaction consisting of the Coulomb
potential minus the gauge part of the Breit term, we would obtain � D 0

independently of j as well as the simple relation f LS.0/
4 D i˛

2
f

LL.0/
1 for the 1s0

state. This is the result actually obtained by Kutzelnigg [17], originally claimed for
the DCB Hamiltonian. Of course, this unfortunate mistake was already noticed by
himself [24], two decades after the work though.

Algebraic Equations for � A,e
.C,�/

In the case of�A;e
.C;�/ (95), the only nontrivial algebraic equation that can be obtained

from Eqs. (105) to (108) is

˛.dC C 3dG C dR/f LL.0/
1 D 0: (143)

Since the prefactor is different from zero for the DC, DCG, and DCB Hamiltonians,
we have f LL.0/

1 D 0. That is, there exist no nontrivial solutions for all the three
Hamiltonians. This occurs also to �S;o

.C;�/ and �A;o
.�;�/ for �S;o

.C;�/ has the same form

as �A;e
.C;�/ (see Eq. (97)) and �A;o

.�;�/ D C1�
S;o
.C;�/ (see Eq. (78)).

Algebraic Equations for � A,o
.C,�/

The algebraic equations for f XY.0/
i (96) are obtained from Eqs. (109) to (112) as

Mo

0B@f
LL.0/
2

f
LS.0/
3

f
LS.0/
4

1CA D 0; (144)
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where

Mo D
0@˛.dC � dG � dR/ �2ia.� � j C 1/ �2ib.� C j C 2/�2ia.� C j C 1/ ˛.dC � dG � qdR/ �˛pdR

2ib.�� C j / �˛pdR ˛.dC � dG C qdR/

1A : (145)

The determinant of the coefficient matrix Mo is

det.Mo/ D 4˛Œ.dC � dG C dR/.� C 1/2 � d� (146)

with

d D .dC � dG � dR/

j .j C 1/ � Œ.dC � dG/2 � d2R�

˛2

4

�
: (147)

The situations for the DC, DCG, and DCB Hamiltonians are summarized as follows.

The DC Hamiltonian
Setting dC D 1 and dG D dR D 0 in Eq. (146) leads to

det.Mo/ D 4˛

.� C 1/2 � j .j C 1/C ˛2

4

�
D 0; (148)

� D
r
j .j C 1/ � ˛

2

4
� 1: (149)

The relations between the amplitudes read

f
LS.0/
3 D 2ia

˛
.� C j C 1/f LL.0/

2 ; (150)

f
LS.0/
4 D 2ib

˛
.� � j /f LL.0/

2 : (151)

The DCG Hamiltonian
Setting dC D 1, dG D �1, and dR D 0 in Eq. (146) leads to

det.Mo/ D 8˛f.� C 1/2 � j .j C 1/C ˛2g D 0; (152)

� D
p
j .j C 1/ � ˛2 � 1: (153)
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The relations between the amplitudes read

f
LS.0/
3 D ia

˛
.� C j C 1/f LL.0/

2 ; (154)

f
LS.0/
4 D ib

˛
.� � j /f LL.0/

2 : (155)

The DCB Hamiltonian
Setting dC D 1 and dG D dR D � 12 in Eq. (146) leads to

det.Mo/ D 4˛Œ.� C 1/2 � 2j .j C 1/C ˛2� D 0; (156)

� D
p
2j .j C 1/ � ˛2 � 1: (157)

The relations between the amplitudes read

f
LS.0/
3 D ia

˛
.� C 2j C 1/f LL.0/

2 ; (158)

f
LS.0/
4 D ib

˛
.� � 2j � 1/f LL.0/

2 : (159)

In sum, as j is odd in Eqs. (149), (153), and (157), the wave functions �A;o
.C;�/ are

all regular at the coalescence point for all the three Hamiltonians. These results hold
also for �S;e

.C;�/ and �A;e
.�;�/ for �S;e

.C;�/ has the same form as �A;o
.C;�/ (see Eq. (97))

and �A;e
.�;�/ D C1�

S;e
.C;�/ (see Eq. (78)). It is just that, for �A;e

.�;�/ with even j , the
restriction j 
 2 should be imposed, because det.Mo/ > 0 for j D 0, which
implies no nontrivial solutions.

Algebraic Equations for � A,o
.C,C/

In the case of�A;o
.C;C/ (94), the only nontrivial algebraic equation that can be obtained

from Eqs. (109) to (112) is

˛.dC C dG C dR/f LL.0/
2 D 0: (160)

The prefactor dC CdGCdR equals one for the DC Hamiltonian and hence f LL.0/
2 D

0. Therefore, no nontrivial solutions exist for �A;o
.C;C/ of the DC Hamiltonian. In

contrast, the prefactor is zero for the DCG and DCB Hamiltonians, such that f LL.0/
2

cannot be determined. This situation will further be discussed below.
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Asymptotic Behaviors Determined by the First-Order
Condition (42)

As discussed before, there are two situations where the solutions cannot be
determined by the zeroth-order equation (41). One is �A;e

.C;C/ (93) with f LL.0/
1 D 0

for the DCG Hamiltonian, and the other is �A;o
.C;C/ (94) for the DCG and DCB

Hamiltonians. The desired solutions can only be found by resorting to Eq. (42) of
O.��/. To do so, we first rewrite the operator OW .0/ (38) in block form [18, 20]:

OW .0/ D Ow.0/0 E � c2B12 C Ow.0/1 C1 C Ow.0/2 C2; (161)

where

B12 D ˇ ı I4 C I4 ı ˇ D

0BB@
2I4 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �2I4

1CCA ; (162)

Ow.0/0 D E �
0@X
k	3
OhDk C

X
k>l	3

Ogkl

1A � 2�.0/ �X
l	3

dC
2

rRl
; (163)

Ow.0/k D �
X
l	3

�
dG
E
k � Ęl
rRl

C dR .E
k � OrRl/. Ęl � OrRl/

rRl

�

�1
2
cE
k � EP12; k D 1; 2: (164)

Since the spin-angular functions ˝i of given j and mj are not eigenfunctions of

E
k (k D 1; 2) in Ow.0/k (164), the amplitudes f XY.0/
i with different j and mj become

coupled. In addition, both the spins and orbital angular momenta of electrons 1 and 2
will be entangled individually with those of the other electrons due to the presence
of Ęl and OrRl in Ow.0/k . Therefore, the reduced two-electron problem becomes truly
a many-body problem and no simple solutions can be found from Eq. (42). Yet,
the situation can be simplified by neglecting the couplings between the f XY.0/

i with
different j and mj . That is, �.�/ are assumed to be eigenfunctions of f Oj 212; Oj12;zg.

� A,e
.C,C/

with f LL.0/

1 D 0 for the DCG Hamiltonian

In order to determine the asymptotic behavior of �A;e
.C;C/ (93) with f LL.0/

1 D 0 for the

DCG Hamiltonian, it is assumed that �.�/ is an eigenfunction of f Oj 212; Oj12;zg, viz.,
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�.�/ D �A;e
.C;C/ D r�12

0BBB@
0

f
LS.0/
3 ˝3 C f LS.0/

4 ˝4

f
LS.0/
3 ˝3 C f LS.0/

4 ˝4

0

1CCCA ; (165)

with the relation between f LS.0/
3 and f LS.0/

4 given by Eq. (137). The action of OW .0/

on �.�/ is

OW .0/� .�/ D r�12

0BBB@
0

Ow.0/0 .f LS.0/
3 ˝3 C f LS.0/

4 ˝4/

Ow.0/0 .f LS.0/
3 ˝3 C f LS.0/

4 ˝4/

0

1CCCA

C r�12

0BBB@
. Ow.0/1 C Ow.0/2 /.f LS.0/

3 ˝3 C f LS.0/
4 ˝4/

0

0

. Ow.0/1 C Ow.0/2 /.f LS.0/
3 ˝3 C f LS.0/

4 ˝4/

1CCCA : (166)

The first and second parts of OW .0/� .�/ correspond to different angular momenta
since Ow.0/1 and Ow.0/2 do not commute with f Oj 212; Oj12;zg. Therefore, to determine the
power �, suffice it to only consider the first part of OW .0/� .�/ (166), which shares
the same symmetry as �A;e

.C;C/. In this case, �.�C1/ can still be chosen as the form of

�
A;e
.C;C/ (93). Substituting the expression for �.�C1/ into Eq. (42) and integrating out

the angular parts ˝3 and ˝4 yield two algebraic equations:

� 2ib.� C j C 2/f LL.1/
1 D ˛ Ow.0/0 f LS.0/

3 ; (167)

�2ia.�� C j � 1/f LL.1/
1 D ˛ Ow.0/0 f LS.0/

4 ; (168)

where f
LL.1/
1 represents the first-order unknown in �.�C1/. Equations (167),

(168), and (137) together give rise to

� D j � 1; (169)

f
LS.0/
4 D 0: (170)

Note that the value of j here cannot be 0, because otherwise f LS.0/
3 would also

vanish, contradicting the requirement that � should be the lowest power of � with
at least one nonvanishing amplitude f XY.0/

i .
Finally, it is interesting to see from Eqs. (134) and (169) that the wave functions

�
A;e
.C;C/ of the DCG Hamiltonian are of integral powers of r12 and hence free of
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singularities. In the case of f LL.0/
1 D 0, � LL and � SS are of order r�C112 , one order

higher than that of � LS and � SL. This is quite different from all the other cases
where all the components share the same power.

� A,o
.C,C/

for the DCG and DCB Hamiltonians

The yet undetermined �A;o
.C;C/ (94) for the DCG and DCB Hamiltonians can be

analyzed in the same way as before. Again assume that �A;o
.C;C/ is an eigenfunction

of f Oj 212; Oj12;zg, viz.,

�.�/ D �A;o
.C;C/ D r�12

0BBB@
f

LL.0/
2 ˝2

0

0

f
LL.0/
2 ˝2

1CCCA : (171)

The action of OW .0/ on �.�/ leads to

OW .0/� .�/ D r�12

0BBB@
. Ow.0/0 � 2c2/f LL.0/

2 ˝2

0

0

. Ow.0/0 C 2c2/f LL.0/
2 ˝2

1CCCA

Cr�12

0BBB@
0

. Ow.0/1 C Ow.0/2 /f LL.0/
2 ˝2

. Ow.0/1 C Ow.0/2 /f LL.0/
2 ˝2

0

1CCCA : (172)

To determine the power �, only the first part of OW .0/� .�/ (172) is to be considered,
which conserves antisymmetry and has the same parity as �A;o

.C;C/, but breaks the

C12 symmetry. Therefore, �.�C1/ has to take the form (104). Substituting �.�C1/
into Eq. (42) and integrating out ˝2 gives rise to

˛f
LL.1/
2 � 2ia.� � j C 2/f LS.1/

3 � 2ib.� C j C 3/f LS.1/
4 � ˛f SS.1/

2

D ˛
	
Ow.0/0 � 2c2



f

LL.0/
2 ; (173)

� ˛f LL.1/
2 C 2ia.� � j C 2/f LS.1/

3 C 2ib.� C j C 3/f LS.1/
4 C ˛f SS.1/

2

D ˛
	
Ow.0/0 C 2c2



f

LL.0/
2 : (174)
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Table 2 Asymptotic behaviors (r�12) of the wave functions of the Dirac-Coulomb (DC), Dirac-
Coulomb-Gaunt (DCG), and Dirac-Coulomb-Breit (DCB) Hamiltonians. j D l for s D 0 and
j D l C 1; l; l � 1 for s D 1. For other explanations, see Table 1 (Source: Reprinted with
permission from J. Chem. Phys. 136, 144117 (2012). © 2012, American Institute of Physics)

Hamiltonian Wave function �.j / j

DC �
A;e
.C;C/, �

A;e
.�;C/

q
j .j C 1/C 1� ˛2

4
� 1 0, 2, 4, : : :

�
A;o
.C;�/, �

A;e
.�;�/

q
j .j C 1/� ˛2

4
� 1 1, 2, 3, : : :

DCG �
A;e
.C;C/, �

A;e
.�;C/ 0 0

�
A;e
.C;C/, �

A;e
.�;C/ j � 1 2, 4, 6, : : :

�
A;o
.C;�/, �

A;e
.�;�/

p
j .j C 1/� ˛2 � 1 1, 2, 3, : : :

DCB �
A;e
.C;C/, �

A;e
.�;C/

q
1� 3˛2

4
� 1 0

�
A;o
.C;�/, �

A;e
.�;�/

p
2j .j C 1/� ˛2 � 1 1, 2, 3, : : :

Note that the left-hand side of Eq. (173) is just the negative of that of Eq. (174),
which is also evident from Eqs. (109) and (112). The sum of Eqs. (173) and (174)
then leads to

2˛ Ow.0/0 f LL.0/
2 D 0: (175)

Since Ow.0/0 cannot always be zero, f LL.0/
2 must be zero. Therefore, there exist no

nontrivial solutions for �A;o
.C;C/ of the DCG and DCB Hamiltonians.

For clarity, the so-obtained asymptotic behaviors of the various relativistic wave
functions are summarized in Table 2.

Discussion

It can be deduced from Table 2 that, except for �.j / with j D 0 D l (DC, DCG,
DCB) and �.j / D j � 1 with j D l C 1 (DCG), the powers �.j / do not have the
correct nrl (� D l). That is, the two limits of r12 ! 0 and c !1 generally do not
commute. To further scrutinize this peculiarity, we consider the exact wave function
of the DC Hamiltonian for a two-electron system0BB@

VC cE
2 � Ep2 cE
1 � Ep1 0

cE
2 � Ep2 VC 0 cE
1 � Ep1
cE
1 � Ep1 0 VC cE
2 � Ep2
0 cE
1 � Ep1 cE
2 � Ep2 VC

1CCA
0BB@
� LL

� LS

� SL

� SS

1CCA D
0BB@

W� LL

.W C 2c2/� LS

.W C 2c2/� SL

.W C 4c2/� SS

1CCA ; (176)

where

W D E � 2c2 � �1 � �2: (177)
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Equation (176) gives rise to the following relations between the components �XY

� SL

� LS
D E
1 � Ep1�

LL C E
2 � Ep2� SS

E
2 � Ep2� LL C E
1 � Ep1� SS
; (178)

� SS

� LL
D E
1 � Ep1�

LS C E
2 � Ep2� SL

E
2 � Ep2� LS C E
1 � Ep1� SL
R.c; r12/; (179)

R.c; r12/ D W � VC
W � VC C 4c2 : (180)

Equation (178) implies that � SL and � LS are of the same orders in c and r12.
Therefore, the ratio � SS

�LL (179) at the two limits is determined mainly by the function
R.c; r12/ (180), which behaves as

lim
c!1R.c; r12/

D lim
c!1


c�2

�
� 1

4r12
CW
4

�
Cc�4

�
� 1

16r212
C W

8r12
�W

2

16

�
CO.c�6/

�
(181)

D 0; (182)

lim
r12!0

R.c; r12/

D lim
r12!0

˚
1C 4c2r12 CO �r212�� (183)

D 1: (184)

That is,

lim
r12!0

lim
c!1R.c; r12/ D 0; (185)

lim
c!1 lim

r12!0
R.c; r12/ D 1: (186)

The following limits can then readily be deduced:

lim
c!1

� SS

� LL
D 0; (187)

lim
r12!0

� SS

� LL
D lim

r12!0
E
1 � Ep1� LS C E
2 � Ep2� SL

E
2 � Ep2� LS C E
1 � Ep1� SL
� lim
r12!0

R.c; r12/ (188)

D lim
r12!0

E
1 � Ep12� LS.�/ � E
2 � Ep12� SL.�/

E
1 � Ep12� SL.�/ � E
2 � Ep12� LS.�/
(189)

D lim
r12!0

�VC� SS.�/

�VC� LL.�/
(190)

D 1: (191)
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Equation (189) arises from the coordinate transformation (30) followed by the
expansions (35) of �XY in r12, while Eq. (190) follows directly from the first
and fourth rows of the homogeneous equation (54) determining the asymptotic
behaviors of � . Finally, Eq. (191) stems from the relation limr12!0 �

SS.�/

�LL.�/ D
limr12!0

r�12f
SS.0/
jD0

r�12f
LL.0/
jD0

D 1, where the first equality holds because the j D 0 state is

singular while other states vanish at r12 D 0 and the second equality is implied
directly by the structure (93) arising from the C12 operation. It is therefore clear that
the two limits do not commute, viz.,

0 D lim
r12!0

lim
c!1

� SS

� LL
¤ lim

c!1 lim
r12!0

� SS

� LL
D 1: (192)

This is quite different from the electron-nucleus coalescence; see Eq. (21).
It is to be noted that the expansion (183) of R.c; r12/ around r12 D 0 only has a

finite convergence radiusRc D 1
j4c2CW j , which is about ˛

2

4
for the usual bound states

of interest (W � O.c0/). Therefore, the previously obtained asymptotic behaviors
of the relativistic wave functions are only valid for r12 < Rc . As for the behaviors
of the wave functions at r12 > Rc , the following expansion of R.c; r12/ around
r12 D C1 should be adopted:

R.c; r12/ D W

4c2 CW �
4c2

.4c2 CW /2r12 �
4c2

.4c2 CW /3r212
C � � � (193)

For the situation jW j < 4c2, the right-hand side can further be expanded around c D
1, leading formally to Eq. (181). However, it should be noted that r12 > Rc and
jW j < 4c2 together span only a subdomain of the expansion (181), viz., jW�VC

4c2
j < 1

or equivalently W � 4c2 < 1
r12
< W C 4c2. That is, the expansions (193) and (181)

agree with each other only if both jW j < 4c2 and r12 > Rc hold.
The expansion (181) of R.c; r12/ around c D 1 is intimately linked to the

explicitly correlated direct perturbation theory (DPT) [25]. Because of the change
of the metric, DPT assumes the expansion

N� SS D c2� SS D N� SS
0 C c�2 N� SS

2 CO.c�4/; (194)

which amounts to using (181) for the scaled quantity NR.c; r12/ D c2R.c; r12/ DNR0.r12/ C c�2 NR2.r12/ C O.c�4/. As already mentioned, for jW j < 4c2, the usual
energy range of interest, NR.c; r12/, only converges for r12 > Rc . Therefore, the
extension of NR.c; r12/ to the domain r12 < Rc is doomed to fail. Such a failure
occurs already to the second-order relativistic correction c�4E4, which involves
the term h N� SS

0 j 1r12 j N� SS
0 i. In view of the relations N� SS

0 � � LL
0
NR0.r12/, � LL

0 � r012,

and NR0.r12/ D � 1
4r12
C W

4
, it can immediately be seen that N� SS

0 goes as r�112 , in
agreement with the previous result [25] deduced from the nonrelativistic correlation
cusp condition (1) as well as the kinetic balance conditions. Therefore, the integrand
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ofh N� SS
0 j 1r12 j N� SS

0 i goes as r�312 at small r12, resulting in divergence. For higher orders
of DPT, even more severe divergences would arise, as can be seen from the more
singular term NR2.r12/ going as r�212 (see Eq. (181)). In contrast, the exact � SS is
much better behaved than N� SS

0 at r12 < Rc ; see Eq. (183). More specifically, the only
singular term of � SS goes as f SS.0/r�12 with � given in Eq. (130) for j D 0. Besides,
as dictated by the C12 symmetry, f SS.0/ has the same magnitude as f LL.0/, implying
that the leading term of N� SS D c2� SS should be of O.c2/, larger by two orders of
magnitude than the presumed O.c0/ starting point of DPT in Eq. (194). This is quite
different from the one-electron case, where the leading term of the ratio  S= L is
of O.c�1/, such that the leading term of the scaled small component N S D c S is
indeed of O.c0/. It is therefore not surprising that the ˛-morphology of one-electron
wave functions is guaranteed, but that of many-electron DC wave functions holds
only for some bounded interaction [26].

Another point that deserves to be mentioned here is that the denominator of
R.c; r12/ (180) becomes zero at r12 D Rc , such that the ratio � SS

�LL is divergent

if the factor E
1� Ep1�
LSCE
2� Ep2� SL

E
2� Ep2�LSCE
1� Ep1� SL cannot offset this singularity. As there is no obvious

reason for this factor as well as � LL to always be zero on the 3N � 1 dimensional
hypersurface determined by the constraint r12 D Rc , � SS might be divergent
at r12 D Rc . It can hence be conjectured that the DC wave functions cannot
be normalized. In other words, the first-quantized DC Hamiltonian has no bound
electronic states. This formal argument for the exact DC wave functions is in line
with the previous findings based on second-order perturbation analysis [27], all-
order numerical calculations [28], or simplified quasi-solvable models [29].

Summary

The asymptotic behaviors of relativistic wave functions at the electron-electron
coalescence points have been analyzed in depth by making full use of the internal
symmetries of the reduced two-electron systems. In addition, formal evidence has
been found to show that the first-quantized many-electron Dirac equation has no
bound electronic states. The results enrich our understandings of relativistic wave
functions. However, it must be realized that all the results here are purely mathemat-
ical properties of the first-quantized many-electron Dirac equation. Unfortunately,
the equation has some inherent unphysical ingredients and hence cannot directly
be solved [30–32]. This essentially means that the term “exact relativistic wave
function” is physically meaningless. Still, however, the present results are very
useful for designing practical relativistic explicitly correlated methods, a topic that
will be discussed elsewhere.
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Abstract

The fundamental problems inherent in relativistic explicit correlation are high-
lighted, with practical suggestions for guiding future development of relativistic
explicitly correlated wave function methods.

Keywords
Relativistic wave function • Coalescence condition • Explicit correlation •
Extended no-pair projection

Introduction

It has been well recognized that, being smooth functions, orbital products (Slater
determinants) fail to model the Coulomb cusp behaviors [1, 2] of the exact wave
functions of the Schrödinger equation. A direct consequence is that electron
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correlation energies calculated by orbital-based methods converge extremely slowly
with respect to the basis set size. The situation can only be improved by using trial
wave functions that depend explicitly on the interelectronic distances rij. This was
demonstrated by Hylleraas [3], already in 1929, for the ground state of helium.
However, the development of explicitly correlated wave function methods for
general molecular systems has long been hampered by the concomitant complicated
many-electron integrals. The problem was solved eventually by Kutzelnigg [4]
in 1985, who observed that the three- and four-electron integrals involving the
correlation factor f12 can be factorized into products of one- and two-electron
integrals by careful use of the resolution of the identity (RI). Since then, a bunch of
explicitly correlated wave function methods have been developed in the last decades
(for recent reviews, see Refs. [5–8]). In particular, by augmenting the conventional
excitations into products of unoccupied one-electron orbitals by just a small set of
explicitly correlated configurations, the so-called R12/F12 methods [9,10] have now
evolved into practical tools for general molecules.

The request for relativistic explicitly correlated wave function methods for
systems containing heavy atoms is even more imperative, as relativistic corrections
converge more slowly with respect to the basis set size than nonrelativistic correla-
tion energies [11–13]: The leading partial wave increment (PWI) of the first-order
relativistic correction to the ground state of helium-like ions goes [14] as .l C 1

2
/�2,

which is to be compared with .l C 1
2
/�4 for the nonrelativistic correlation energy

[15]. More insights can be gained [16] by means of double perturbation theory
that treats both relativity and electron-electron interaction as perturbations, with the
nonrelativistic bare-nuclear Hamiltonian as zeroth order, viz.,

� D �.0;0/ C ��.0;1/ C ˛2�.2;0/ C �2�.0;2/ C ˛2��.2;1/

C˛4�.4;0/ C � � � ; ˛ D c�1; (1)

E D E.0;0/ CEcorr CErel CErel=corr; (2)

Ecorr D
1X
nD1

�nE.0;n/; (3)

Erel D
1X
mD1

˛2mE.2m;0/; (4)

EX D
1X

m;nD1
˛2m�nE.2m;n/: (5)

Here, the first and second superscripts denote the respective orders in relativity
(˛) and electron-electron interaction (�). In particular, �.0;0/ is simply the anti-
symmetrized product of nonrelativistic hydrogenic orbitals. For the ground state
of helium-like ions, the .l C 1

2
/�4 type of leading PWI of the nonrelativistic
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correlation energy Ecorr (3) is known [17, 18] to arise from the second-order term
E.0;2/ D h�.0;0/j 1

r12
j�.0;1/i, where �.0;1/ is of O.r112/. The configuration interaction

type of expansion of �.0;1/, with one-electron functions saturated up to angular
momentum l , would hence amount to approximating r12 as

r12 �
lX

kD0
.r12/k; .r12/k D fr12gkPk.cos �12/;

fr12gk D 1

2k C 3
rkC2<

rkC1>

� 1

2k � 1
rk<
rk�1>

; (6)

which converges very slowly in modeling the identity 1 D 1
r12
r12. The first-order

uncorrelated relativistic correction E.2;0/ in E rel (4) can directly be evaluated and
hence does not contribute to the PWI. It is also straightforward to show that only the
s-wave term contributes to E.2;1/ (5). The leading PWI of the cross term E.2;2/ goes
as .l C 1

2
/�2 due to the mass-velocity term h�.0;1/jT1T2j�.0;1/i. It is therefore clear

that the observed leading PWI [14] ofE2 DP1nD1 E.2;n/, i.e., first order in relativity
but infinite order in correlation, is actually due to the lowest-order interplay E.2;2/

between relativity and correlation. Note in passing that the two-electron Darwin
term, going also as .l C 1

2
/�2, only appears in the Breit-Pauli Hamiltonian [13] but

not in direct perturbation theory (DPT) [19].
The central question is: How to do relativistic explicit correlation?
More specifically, the following issues must be addressed before going to a

specific Ansatz.

1. To achieve fast basis set convergence furnished by the correlation factor f12,
a first quantized kinetic energy operator, whether nonrelativistic or relativistic,
has to be adopted. This essentially means that any four-component relativistic
explicitly correlated wave function method must adopt the first quantized
Dirac-Coulomb (DC), Dirac-Coulomb-Gaunt (DCG), or Dirac-Coulomb-Breit
(DCB) Hamiltonian. However, the resulting configuration space DC/DCG/DCB
equation has unphysical ingredients and cannot directly be solved even if it had
bound states [20]. To show this, we compare the expressions for the second-
order correlation energy E.2/ (which is not expanded in relativity) by quantum
electrodynamics (QED) [21, 22]

E.2/QED DE.2/QED;1 C E.2/QED;2; (7)

E.2/QED;1 DE.2/QED;1a C E.2/QED;1b; (8)

E.2/QED;1a D�
"
.VHF/

a
Qi .VHF/

Qi
a

"Qi � "a
C .VHF/

i
Qi .VHF/

Qi
i

"Qi � "i

#
; (9)
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E.2/QED;1b D
Qa
i Q

i
a

"i � "a C
.VHF/

a
Qi Q
Qi
a CQa

Qi .VHF/
Qi
a

"Qi � "a

� Q
i
QiQ
Qi
i � .VHF/

i
QiQ
Qi
i �Qi

Qi .VHF/
Qi
i

"i � "Qi
; (10)

E.2/QED;2 D
1

4

Ngab
ij Ngij

ab

"i C "j � "a � "b C
241
2

Ngab
i Qj Ng

i Qj
ab

"i C " Qj � "a � "b

�1
4

Ngij
Qi Qj Ng
Qi Qj
ij

"Qi C " Qj � "i � "j
� 1
2

Ngia
Qi Qj Ng
Qi Qj
ia

"Qi C " Qj � "i � "a

35 ; (11)

.VHF/
q
p DNgqj

pj ; Ngrs
pq D grs

pq � grs
qp; grs

pq D hpqjg.1; 2/jrsi; (12)

Qq
p D�

1

2
Ngqs

pssgn."s/; (13)

and by the configuration space approach (CSA) [23]

E.2/CS D E.2/CS;1 C E.2/CS;2; (14)

E.2/CS;1 D 0; (15)

E.2/CS;2 D
1

4

Ngab
ij Ngij

ab

"i C "j � "a � "b

C
241
4

NgQi Qjij Ngij
Qi Qj

"i C "j � "Qi � " Qj
C 1

2

Nga Qjij Ngij

a Qj
"i C "j � "a � " Qj

35 : (16)

Here, the orbital indices fi; j g and fa; bg refer to the occupied and unoccupied
Dirac-Hartree-Fock (DHF) positive energy states (PES), respectively, while
fQi ; Qj g to the DHF negative energy states (NES). The Einstein summation
convention over repeated indices has been assumed. The HF-like potentialQ (13)
describes the electron vacuum polarization (EVP) and self-energy (ESE) and
stems from the “charge-conjugated contraction” [21, 22] of fermion operators
when normal ordering the second quantized two-body interaction 1

2
grs

pqa
�
pa

�
qasar

with respect to the filled Dirac sea (which regards the NES as holes). By contrast,
the CSA [23] has adopted an empty Dirac picture (which regards the NES as
particles) and hence breaks charge conjugation symmetry.

The comparison reveals two points: (a) The CSA misses totally the leading
QED EVP-ESE term (10). (b) Even after neglecting this term, E.2/CS (14) agrees

with E.2/QED (7) only in the terms involving solely the PES, but differs from the
latter in all the terms involving the NES (see the bracketed terms in Eqs. (9), (11),
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and (16)). It can hence be concluded that the no-pair approximation (NPA)
is a conceptual must for the CSA, rather than merely an effective means for
avoiding the (in)famous Brown-Ravenhall disease [23] arising from the last,
“continuum dissolution” term of Eq. (16). This gives rise to a first paradox:
Four-component relativistic correlation must work with the first quantized
DC/DCG/DCB Hamiltonian operator for fast convergence and the NPA for right
physics, but these two are mutually exclusive. The PES-projected Hamiltonian is
effectively a second quantized Hamiltonian and hence does not have the required
operator form for the kinetic energy. Moreover, the finite spectrum of the PES-
projected Hamiltonian, limited by the given basis set (GBS), implies that the
effect of the correlation factor f12 is just null: The r12-dependent geminal basis
functions try to simulate a correlation space that is complementary to the orbital
product space but that is not part of the Hamiltonian. In essence, any second
quantized Hamiltonian is incompatible with explicit correlation. It will be shown
below that this incompatibility problem can be resolved by the “extended no-pair
projection” [20].

2. The must NPA of CSA also implies that the term “exact relativistic wave
function” is physically meaningless (NB: QED works exclusively with electron
and photon propagators and even has no Hamiltonian and wave function in the
sense of eigvenvalue problem). Even if it were physical, the “exact relativistic
wave function” is not normalizable [16]. On the other, it is hardly possible to
get the analytical structures of the projected relativistic wave functions, simply
because a unique and exact projector does not exist and different projectors may
lead to different analytical structures for the wave functions. This represents
again a paradox: The analytical structures of the wave functions are needed for
guiding explicitly correlated wave function Ansätze, but they are not obtainable.
It will be shown below that the direct knowledge on the analytical structures
of the projected relativistic wave functions is not really needed. Rather, the
knowledge on the “exact relativistic wave functions” can directly be transplanted
to the NPA. Note in particular that the mathematical form of the asymptotic
behavior of a wave function at the coalescence point of two electrons is
independent of the physical nature of the state, bound, or scattering.

3. The recent analysis [16] reveals that, at the coalescence point of two electrons, the
wave functions of the DCG Hamiltonian are regular, while those of the DC and
DCB Hamiltonians have weak singularities of the type r�12, with � being negative
and of O.˛2/. Moreover, there does not exist a simple relativistic analog of the
nonrelativistic cusp condition [1, 2]. That is, the relation between the amplitudes
�.�C1/ of O.r�C112 / and �.�/ of O.r�12/ is not universal but is dependent on the
energy and state. This warrants in principle a rational correlation factor f XY

12 for
each block �XY of the wave function � ,

f XY
12 D r�12

�
aXY
11 C aXY

12 r12

aXY
21 C aXY

22 r12

�
; X; Y D L; S; (17)

where the parameters aXY
ij are to be optimized. However, this is hardly practical.

Given that the asymptotic behaviors r�12 of the DC/DCG/DCB wave functions
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affect only an extremely small neighborhood (with radius Rc � O.˛2/) of the
coalescence point, it can be expected that they are only of minor importance for
the calculation of the electronic energy, thanks to the suppression by the volume
element 4�r212 for very small r12. Anyhow, it is the extended region away from
the coalescence point and the overall shape of the correlation hole that are really
important [24]. In this extended region, the asymptotic behaviors of the “exact
relativistic wave functions” are still dominated by the nonrelativistic limit (nrl).
We are then led to a scenario of using a common nonrelativistic correlation factor
f12, e.g., the Slater-type [10]

f12 D � 1


exp.�r12/ D � 1

C r12 CO �r212� ; (18)

for all the blocks �XY of the relativistic wave function. Still, however, how to
apply this factor remains uncertain due to the fact [25] that the two limits ˛ ! 0

and r12 ! 0 do not commute (vide post).

Given the above formal issues, there have been attempts toward relativistic
explicitly correlated wave function methods, based on either the DC Hamiltonian
[26–29] or its approximate variants [30–33]. As said above, the former type
of calculations suffer from unphysical contributions from the NES, whereas the
latter work well only for not too heavy atoms. For heavy and super-heavy atoms,
four-component relativistic explicitly correlated methods based on the no-pair
DC/DCG/DCB Hamiltonian should be developed.

R-MP2-F12

To show how to resolve the issues raised previously for relativistic explicit correla-
tion, we consider the explicitly correlated second-order Møller-Plesset perturbation
theory (R-MP2-F12). First of all, the incompatibility between the PES-projected
Hamiltonian and explicit correlation can be resolved by introducing an extended
no-pair Hamiltonian [20], viz.,

OHC D
� OP OHCS OP OP OHCS OQ
OQ OHCS OP OQ OHCS OQ

�
; (19)

OHCS D
NX
k

ODk C
NX
k>l

Ogkl; (20)

OD D c Ę � Ep C ˇc2 C VextI4; Vext.Er/ D �
NAX
A

ZA

jEr � ERAj
; (21)

Ogkl D dC 1
rkl
C dG Ęk � Ęl

rkl
C dR . Ęk � Orkl/. Ęl � Orkl/

rkl
; Orkl D Erkl

rkl
; (22)
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where Dk is the Dirac operator (21) for electron k. The Coulomb, Coulomb-Gaunt,
and Coulomb-Breit interactions are represented by Ogkl with .1; 0; 0/, .1;�1; 0/,
and .1;�1=2;�1=2/ for the coefficients (dC , dG , dR), respectively. The projectors
OP and OQ in OHC (19) are to act on the conventional ( OC j0i) and explicit ( OX j0i)

correlation spaces, respectively. To construct such projectors, we first decompose
the identity operator as

O1 D O�C C O��; O�C D OOC C OV C C OQV C; O�� D OV � C OQV �; (23)

where OOC, OV C, and OV � are the respective projectors for the occupied PES,

unoccupied PES, and NES defined by the GBS, whereas OQV C and OQV � are the
corresponding orthogonal complements that vanish in the complete basis set (CBS)
limit. We then have

OP12 D . OOC1 C OV C1 /. OOC2 C OV C2 /; (24)

OQ12 D . O�C1 � OOC1 /. O�C2 � OOC2 / � OV C1 OV C2 : (25)

The particular form of OQ12 (25) is to ensure strong orthogonality to the vacuum and
orthogonality to the conventional products of virtual PES and will vanish in the CBS

limit. Since the orthogonal complement OQV C is unknown, a suitable approximation
has to be introduced. In view of the definitions (23), we consider the following
option [16]:

OQV C D O1 � . OOC C OV C/ � . OV � C OQV �/ ' O1 � . OOC C OV C/ � OV �; (26)

which amounts to neglecting the negative energy complement OQV �. This leads to

O�C D O1 � O�� ' O1 � OV �; (27)

OQ12 ' .O11 � OOC1 � OV �1 /.O12 � OOC2 � OV �2 / � OV C1 OV C2 (28)

D .O11 � OOC1 � OV �1 /.O12 � OOC2 � OV �2 /.O11 O12 � OV C1 OV C2 /: (29)

It is interesting to see that the so-defined OQ12 is formally in line with the filled Dirac
picture: Both OOC and OV � can be viewed as occupied. As a whole, OQ12 ensures
strong orthogonality to the “vacuum” OOC C OV � as well as orthogonality to the
conventional correlation subspace OV C1 OV C2 . In the nrl, the OQ12 operator (28) becomes

Q12

c!1! .O1C1 � OOC1 /.O1C2 � OOC2 / � OV C1 OV C2 ; (30)

which is known as Ansatz 3 in nonrelativistic F12 methods [34]. For comparison,

Ten-no and Yamaki [35] proposed a different approximation for OQV C
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OQV C ' O1L � OPL; (31)

where O1L and PL are the projectors onto the large-component bases of the CBS and
GBS, respectively. They then invoked the following strong orthogonality projector
(Ansatz 2ˇ):

OQ12 D .O1L1 � OPL
1 C OV C1 /.O1L2 � OPL

2 C OV C2 /; (32)

which reduces to OV C1 OV C2 in the CBS limit and .O1C1 � OOC1 /.O1C2 � OOC2 / in the nrl.
Since the large-component space OPL and hence its orthogonal complement O1L� OPL

are composites of the PES and NES, the so-defined OQ12 (32) suffers from severe
unphysical contamination from the NES [20]. By contrast, the present OQ12 (28) is
essentially immune from such contamination because of the huge gap (which is in
the order of 2NSmc2, with NS being the number of NES) between the occupied
PES and the energetically lowest NES described by the GBS.

The Hamiltonian HC (19) alongside with the projectors OP12 (24) and OQ12 (28)
can now act on the unprojected many-electron basis functions . OC j0i; OX j0i/T ,
independently of the wave function Ansatz. Taking MP2 as an example, we have
the following Hylleraas functional for a given occupied electron pair jiji:

H.ij/ D huijj OF12 � "i � "j juiji C huijj Og12jiji C hijj Og12juiji; (33)

OF12 D OF1 C OF2; (34)

juiji D jabit ijab C OQ12
OR12jklicij

kl; (35)

OR12 D f12
�
3

8
C 1

8
Op12
�
; (36)

where OFp is the Fock operator and "p the corresponding eigenvalue, while Op12 in
OR12 (36) permutes merely the spatial coordinates [36]. The functional (33) can be

decoupled into a conventional (MP2) part and an F12 correction term by omitting
their couplings. The amplitudes cij

kl are then obtained by solving the linear system of
equations

Bkl.ij/
mn C

ij
kl D �V ij

mn; (37)

Bkl.ij/
mn D hmnj OR12

OQ12. OF12 � "i � "j / OQ12
OR12jkli; (38)

V ij
mn D hmnj OR12

OQ12g12jiji: (39)

Alternatively, one can start from the first-order equation

. OF12 � "i � "j /j!iji C Og12jiji D 0 (40)
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for the unprojected pair function j!iji that is strongly orthogonal to jiji but
contaminated by NES. Thanks to the relation Œ OF12; O�CC12 � D 0, multiplying Eq. (40)
from the left by O�CC12 D O�C1 O�C2 leads to

O�CC12 . OF12 � "i � "j /juiji C O�CC12 Og12 O�CC12 jiji D 0; juiji D O�CC12 j!iji; (41)

which is just the stationarity condition for the projected functional (33), further
approximated to Eq. (37) though. This simple manipulation shows that one can
first construct the unprojected pair function j!iji and then from it the projected
one juiji. This trivial result has an important implication: The knowledge on the
analytic structures of the projected wave functions is not really needed. Rather, that
of the “exact relativistic wave functions” can directly be transplanted to the no-pair
approximation. This holds at least to first order in the electron-electron interaction.

Apart from the usual two-electron integrals, the following kinds of integrals

f12;
f12

r12
; f 2

12; Œ
OT1; f12�; ŒŒ OT1 C OT2; f12�; f12� (42)

are also required. They can all be evaluated analytically for Gaussian-type spinors.
Plugging the Dirac kinetic operator in Œ OT1; f12� yields

Œ Ę1 � Ep1; f12� D Œ Ę1 � Ep12; f12� D �if012. Ę1 � Or12/; (43)

such that

ŒŒ OT1 C OT2; f12�; f12� D 0: (44)

This strongly suggests the use of “approximation C” [37] when evaluating the
integral hijjf12 OF12f12jkli involving the exchange operator OK12, viz.,

hijjf12 OF12f12jkli D hijjf12. OF12 C OK12/f12jkli � hijjf12 OK12f12jkli

D 1

2
hijjŒf12; Œ OF12 C OK12; f12��jkli

C1
2
hijjŒ OF12 C OK12; f

2
12�Cjkli � hijjf12 OK12f12jkli

D 1

2
hijj. OF12 C OK12/f

2
12jkli C 1

2
hijjf 2

12.
OF12 C OK12/jkli

�hijjf12 OK12f12jkli: (45)

All the three terms can then be approximated by the RI with a kinetically balanced
complementary auxiliary basis set [34].
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In sum, the use of the extended no-pair projection (19) with Q12 (28), the
Ansatz (35), and a nonrelativistic correlation factor f12 renders no-pair four-
component relativistic explicitly correlated methods completely parallel to the
nonrelativistic counterparts.

Yet, additional remarks are still necessary. The Ansatz (35) implies that a
common correlation factor f12 is applied to all the components jkXlY i (X; Y D
L; S ) of the determinant jkli, in close analogy with the nonrelativistic counterpart.
Since jkli reduces to Z12jkLlLi in the nrl, with Z12 being the so-called geminal
kinetic balance (GKB)

Z12 D

0BBB@
1
E
2� Ep2
2cE
1� Ep1
2c

.E
1� Ep1/.E
2� Ep2/
4c2

1CCCA ; (46)

this Ansatz (35) can be characterized as “f12 � Z12.” A possible drawback of this
Ansatz resides in that the nonrelativistic cusp condition [1, 2] cannot strictly be
guaranteed [35]. To achieve this, one may adopt the “Z12 �f12” Ansatz [26–28,35]:

juiji D jabit ijab CQ12Z12 OR12jkLlLicij
kl; (47)

which originates from the limiting process of first taking ˛ ! 0 and then r12 ! 0.
In contrast, the previous Ansatz (35) amounts to taking the reverse process. Since
the two limits do not commute [25] and, in particular, a relativistic analog of the
universal nonrelativistic cusp condition does not exist [16], there seem no a priori
arguments to favor which of the two options. Yet, the following points might fell on
the “f12 �Z12” Ansatz (35):

(a) Due to symmetry reason [16], the � SS and � LL components of the “relativistic
exact wave functions” are of the same magnitude at the coalescence point of
two electrons. A direct deduction is that the leading term N� SS

0 of the expansion,
N� SS D c2� SS D N� SS

0 C ˛2 N� SS
2 CO.˛4/, is O.c2/ at small r12, which invalidates

the O.c0/ assumption of N� SS
0 in relativistic perturbation theory. Note that this

observation results from the limiting process of first taking r12 ! 0 and then
˛ ! 0. When the limiting process is reversed, it can be deduced [19] from
the nonrelativistic cusp condition [1] as well as the geminal kinetic balance (46)
that N� SS

0 behaves as r�112 at the coalescence point of two electrons, thereby far
more singular than � SS that goes as r�12, with � being negative but only of order
O.˛2/ � 10�5. As a result, the second-order relativistic correction to correlation,
˛4E.4;2/ in Eq. (5), is already divergent due to the involvement of h N� SS

0 j 1r12 j N� SS
0 i,

whose integrand goes as r�312 at small r12. Even more severe divergence will occur
to higher-order relativistic corrections [16]. It can therefore be argued whether
the combination of nonrelativistic cusp and kinetic balance conditions is really
valid for the DC Hamiltonian, nonexpanded though.
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(b) The one-electron counterpart of Z12jkLlLi is

jkS i D Z1jkLi; Zi D E
i � Epi
2c

; (48)

but which is not the kinetic balance per se. Rather, it is its realization at the basis
set level, viz.,

j	S�i D Z1j	L�i; (49)

that is the restricted kinetic balance (RKB) [38]. While the prescription (49) for
generating the small-component basis is numerically stable, the direct use of
relation (48) results in variational collapse. Therefore, it is likely that the second
term of Eq. (47) will lead to “two-electron prolapse,” to a lesser extent than the
one-electron collapse though. To remedy this defect, one can replace Eq. (47) by

juiji D jabit ijab CQ12j˚klicij
kl; (50)

j˚LL
kl i D OR12jkLlLi; (51)

j˚LS
kl i D Z2 OR12jkL QlLi; j QlLi D j	L�iCS

�l ; (52)

j˚SL
kl i D Z1 OR12j QkLlLi; j QkLi D j	L�iCS

�k; (53)

j˚SS
kl i D Z1Z2 OR12j QkL QlLi; (54)

jkXlY i D 1p
2

�
 X
k .1/˝  Y

l .2/� X
l .1/˝  Y

k .2/
�
; X; Y DL; S; (55)

where j QkLi and j QlLi are the so-called pseudo-large components [39], which
have the same symmetry properties and nrl as the large components jpLi and
are represented by linear combinations of the large-component basis functions
but with the small-component coefficients. Equations (51)–(54) represent hence
the true GKB, just like the one-electron RKB (49). Note also that the antisym-
metrization (55) permutes the spinor indices rather than the coordinates. For
valence electrons, the pseudo-large and large components are very similar, such
that Eqs. (50) and (47) do not differ much. However, this is not the case for core
or semi-core electrons.

As a matter of fact, the GKB realized by Eqs. (51)–(54) can be deduced naturally
from the modified Dirac and Dirac-Coulomb equations [39] or simply from the
parities of the small and large components [40]. It is not an approximation per
se (apart from the incompleteness error in the large-large-component basis) and
ensures the correct nonrelativistic cusp conditions [1, 2]. This is a strong point to
favor the “Z12�f12” Ansatz (50) over the “f12�Z12” one (35) (which cannot ensure
the nonrelativistic cusp conditions). However, it should be noted that, because of
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the use of common correlation factor, the Ansatz (50) does not respect the fact [16]
that the �XY (X; Y D L; S ) components of the DC/DCG/DCB wave functions �
have the same asymptotic coalescence behaviors r�12. In principle, the powers of r12
for the j˚LS

kl i, j˚SL
kl i, and j˚SS

kl i components should be higher than that for j˚LL
kl i

by one, one, and two, respectively (for more details, see Ref. [16]). However, the
implementation becomes then more involved. Given that the large-large components
have predominant contributions to correlation energy, the use of common correlation
factor should be acceptable.

Summary

The formal aspects of relativistic explicit correlation have been scrutinized in depth,
with the main take-home messages being:

1. The perturbative treatment of relativistic corrections to correlation makes sense
only at lowest order, viz., ˛2�nE.2;n/ with n 
 2, because higher-order terms,
˛2m�nE.2m;n/ with m > 1 and n 
 2, suffer from unsurmountable divergence.
This should apply also to standard orbital-based correlation methods for basis
sets of increasing quality may soon approach the divergence.

2. Any four-component relativistic explicitly correlated method must work with
the extended no-pair projected DC/DCG/DCB Hamiltonian [20]. Here, the DCG
Hamiltonian is particularly recommended for two reasons: (a) The asymptotic
behaviors r�12 of its wave functions are regular at the coalescence points of
two electrons and have the correct nrl (� D l) [16]. (b) It describes correctly
both the spin-same-orbit and spin-other-orbit couplings, in contrast with the DC
Hamiltonian that describes only the spin-same-orbit coupling.

3. The OQ12 projector (28) is clearly advantageous over OQ12 (32) insofar as the
contamination of NES is concerned.

4. Due to noncommutation of the ˛ ! 0 and r12 ! 0 limits, a decisive choice
of the “f12 � Z12” (35) and “Z12 � f12” (50) Ansätze for incorporating the
explicit correlation factor f12 cannot be made a priori. Both have pros and
cons. Nonetheless, more weights can be put on the latter for three reasons: (a)
The two-electron functions are truly kinetically balanced. (b) The nonrelativistic
cusp conditions can be ensured. (c) The large-large components dominate the
contributions to correlation energy, such that the violation of the same asymptotic
coalescence behaviors for all the components of the wave function does not really
matter.

5. Given the one-electron and short-range nature of spin-orbit couplings, it is more
practical to do only spin-free relativistic explicit correlation. Here, the extended
no-pair projected spin-free part of the modified DC (sf-MDC) Hamiltonian can
be adopted. The (spin-free) rational generator [36] OR12 (36) then recovers its
original meaning. Note also that the asymptotic behaviors of the wave functions
of the sf-MDC Hamiltonian are less singular than those of the original DC ones
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[16] [NB: This cannot be taken as a point to turn down the previous arguments
against the “Z12 � f12” Ansatz (47)/(50), for the same problems still persist.
See however point (4) above]. The interplay between spin-orbit coupling and
correlation can then be accounted for by using standard orbital-based methods
in conjunction with the newly obtained two-component spin-orbit Hamiltonians
[41, 42]. Even the spin-free PES and NES required by the sf-MDC explicit
correlation can also be generated by the spin-free exact two-component (X2C)
Hamiltonians [40]. That is, only the explicit correlation step involves the sf-
MDC Hamiltonian operator. It is likely that the increment between the explicit
and implicit (orbital-based) correlations can be accounted for at some low level
of methodology, e.g., MP2 or CEPA (coupled electron pair approximation). It
is very unfortunate that the X2C Hamiltonians cannot be adapted to explicit
correlation for they are defined only algebraically.

6. When the treatment of no-pair correlation has reached an accuracy of approx-
imately 10�2 eV, the O.Z˛/3 error inherent in the NPA can be corrected by
adding in the terms of E.2/QED (7) involving the NES.
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Abstract

This chapter gives an overview of relativistic density functional theory. Both its
foundations, the existence theorem and the Kohn–Sham equations, and its core
quantity, the exchange–correlation (xc) energy functional, are discussed. It is
first outlined how a workable relativistic Kohn–Sham scheme can be obtained
within the framework of quantum electrodynamics and which alternatives for
its implementation are available. Particular emphasis is then placed on the
relativistic corrections to the xc-functional. The modification of its functional
form due to the relativistic motion of the electrons and their retarded interaction
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via exchange of photons is distinguished from the effect resulting from insertion
of a relativistic density into the functional. The difference between the relativistic
xc-functional and its nonrelativistic form is studied in detail for the case of the
exchange functional (which can be handled exactly via the optimized effective
potential method). This analysis is complemented by some first-principles results
for the correlation functional, relying on a perturbative approach. Finally, the
accuracy of approximate relativistic xc-functionals, the local density and the
generalized gradient approximation, is assessed on the basis of the exact results.

Keywords
Breit interaction • Current-current response function • Exact exchange •
Exchange-correlation energy functional • Exchange-correlation magnetic
field • Ground state energy functional • Ground state four current • Hartree
energy • Interacting v-representability • Kinetic energy functional • Kohn-
Sham equations • No-pair approximation • Optimized effective potential
method • Relativistic generalized gradient • Approximation • Relativistic
local density approximation • Relativistic spin-density functional theory •
Transverse interaction • Variational equation

Introduction

Given the success of nonrelativistic DFT, the question for a relativistic general-
ization arises quite naturally. The appropriate framework for this generalization is
provided by quantum electrodynamics (QED), as the most fundamental approach
to the relativistic many-electron problem. As a result, relativistic density functional
theory (RDFT) necessarily inherits the full complexity of QED (�Chap. 6, “QED
Effects and Challenges”). Features such as the need for renormalization and the
gauge freedom do not only surface on the formal level, i.e., in the foundations of
RDFT, but also in the effective single-particle equations, making them extremely
difficult to implement. The final goal of the RDFT formalism, however, is an
efficient description of molecules and solids with truly heavy constituents, without
the ambition to reach QED accuracy. The most important step towards this goal is
the no-pair approximation, in which the contributions of virtual electron–positron
pairs to all relevant quantities are neglected �Chap. 11, “No-Pair Relativistic
Hamiltonians: Q4C and X2C”. The resulting relativistic Kohn–Sham (RKS) equa-
tions differ from their nonrelativistic counterpart by the relativistic form of the
kinetic energy operator and the relativistic coupling between the particles and the
effective RKS potential. As in the nonrelativistic situation, the total KS potential
consists of an external, a Hartree, and an exchange–correlation (xc) component,
which is obtained as functional derivative of the core quantity of RDFT, the xc-
energy functional Exc. Both the Hartree term and Exc reflect the fact that in QED
the electrons interact by the exchange of photons rather than via the instantaneous
Coulomb interaction. Together with the relativistic kinematics of the electrons, this

http://dx.doi.org/10.1007/978-3-642-40766-6_2
http://dx.doi.org/10.1007/978-3-642-40766-6_26
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retarded interaction leads to a modification of Exc, compared to its nonrelativistic
form. It is the primary intention of this chapter to discuss the xc-functional of RDFT,
with an emphasis on the role of the relativistic corrections in this functional.

The chapter starts with an overview of the foundations of QED-based RDFT, the
existence theorem and the resulting Kohn–Sham (KS) formalism. In this approach,
the four-current density j � is the fundamental variable which is used to represent
observables such as the ground state energy. In practice, however, RDFT variants
working with the charge and magnetization densities or the relativistic extensions
of the nonrelativistic spin densities are utilized. The corresponding KS equations are
therefore also summarized. For a rigorous assessment of the relevance of relativistic
corrections in Exc, one has to resort to first-principles expressions for Exc. A first-
principles treatment is in particular possible for the RDFT exchange Ex. This
functional, while known as an implicit functional of j �, is explicitly known only
in terms of the KS four spinors. Its self-consistent application in the KS formalism
relies on the relativistic optimized potential method, which is outlined next. On
this basis, the properties of Exc are analyzed more closely, addressing in particular
the transverse interaction. The analysis of the exact Ex is complemented by results
obtained with an MP2-type correlation functional. Finally, the relativistic extension
of the local density approximation (LDA) as well as the generalized gradient
approximation (GGA) are discussed. The resulting functionals are used to examine
the importance of the relativistic corrections inExc for bonding/cohesive properties.

[The present text is based on Chapter 8 of [1].]

Notation

In this chapter, space-time points are denoted by four vectors:

x � .x�/ D .ct; r/ D .ct; r1; r2; r3/ D .ct; r i /: (1)

Greek (Minkowski) indices always extend from 0 to 3, Roman indices always denote
spatial components, i; j; : : : D 1; 2; 3. The associated metric tensor reads

g�� �

0BB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA D �
1 0

0 �ıij
�
: (2)

Contraction of any four vector with the metric tensor transforms covariant into
contravariant components and vice versa,

a� D g�� a� I a� D g�� a�: (3)
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The spatial vector a, which characterizes the actual physical three vector, consists
of the contravariant components a D .a1 ; a2 ; a3/, from which the covariant
components ai differ by a minus sign, ai D �ai . The four gradient is abbreviated
by

@

@x�
D

�
1

c

@

@t
;r
�
: (4)

The summation convention is used throughout,

a�b� �
3X

�D0
a�b� I aibi �

3X
iD1

aibi D �
3X
iD1

aibi D �a � b: (5)

The four vector ˛� is defined in terms of the standard Dirac matrices �, ˛ and ˇ
as

˛� D 0� D .1;˛/ ˇ D 0: (6)

e D jej is used throughout this chapter.

Existence Theorem

The existence theorem of RDFT is based on bound-state quantum electrodynamics
(�Chaps. 6, “QED Effects and Challenges” and � 9, “Unifying Many-Body Per-
turbation Theory with Quantum Electrodynamics”). In this approach, the nuclei
(including their magnetic moments) and all other external sources are represented
in terms of a stationary four potential V �.x/, while the electrons interact by the
exchange of photons. Using the QED-Hamiltonian, it was shown [2–5] that there
exists a one-to-one correspondence between the class of all ground states j‰0i
which just differ by gauge transformations and the associated ground state four-
current density j �0 .x/, provided the ground state is nondegenerate (up to gauge
transformations, of course). Mathematically speaking, the ground state is a unique
functional of the ground state four-current density, j‰Œj �i, once the gauge has been
fixed universally by some suitable requirement on V �.x/. If a particular ground
state four-current density j0 is inserted into this functional, one obtains exactly the
associated ground state, j‰0i D j‰Œj0�i (with the gauge chosen).

As a result, the ground state energy can be expressed as a (four- current) density
functional EŒj �,

EŒj � D h‰0Œj �j OHQEDj‰0Œj �i; (7)

where OHQED denotes the Hamiltonian of bound-state QED (in the following the
short form “density functional” will also be used for functionals of j �). For this
functional, one has a minimum principle [2–5],

http://dx.doi.org/10.1007/978-3-642-40766-6_29
http://dx.doi.org/10.1007/978-3-642-40766-6_26
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EŒj0� < EŒj � for all four-current densities j � ¤ j �0 ; (8)

with j �0 denoting the four-current density resulting from the actual external potential
of the system.

Unlike in the case of nonrelativistic DFT, there is an ambiguity resulting from
the gauge freedom of QED. Since a mere gauge transformation of V � does not
affect the ground state energy, a unique relation between individual ground state
wave functions and the gauge invariant four-current density of QED cannot exist, as
long as the gauge is not fixed in some unique fashion. As a consequence, the issue
of gauge invariance has to be addressed in the derivation of explicit functionals for
RDFT.

Key to the proof of the existence theorem is the minimum principle for the
ground state energy, in complete analogy to the nonrelativistic Hohenberg–Kohn
argument [6]. In the case of QED, this minimum principle is a nontrivial issue,
since expectation values such as the ground state energy and the four-current
density diverge unless they are renormalized. The compatibility of the standard
renormalization scheme of QED with the logic of the Hohenberg–Kohn argument
has been demonstrated in [7, 8]. The necessity for renormalization also becomes
apparent in all explicit expressions for (current) density functionals, both on the
exact level and in the derivation of approximations. For a detailed discussion of the
existence theorem and its field theoretical background, the reader is referred to [1].

The minimum principle (8) leads to the variational equation

ı

ıj �.r/


EŒj � � �

Z
d3x j 0.x/

�
D 0; (9)

where the subsidiary condition reflects current conservation,

@j �

@x�
D r � j .r/ D 0 H)

Z
d3r j 0.r/ D N: (10)

Equation (9) allows one to recast the relativistic many-body problem as a minimiza-
tion procedure for EŒj �.

The transition from the minimum principle (8) to the variational equation (9) is
based on the functional differentiability of EŒj �, which, in turn, requires EŒj � to be
defined on a sufficiently dense set of j �. This leads to the question whether, for any
given function j �, one can find some V �, so that j � is obtained as ground state four-
current density by solving the stationary relativistic many-body problem with V �

(termed interacting v-representability). Given the counterexamples to interacting v-
representability known for nonrelativistic DFT, one should not expect the domain of
(7) to be sufficiently dense. As demonstrated by Eschrig and collaborators [9, 10],
interacting v-representability (and thus differentiability) can, however, be ensured
by a redefinition ofEŒj � via the functional Legendre transform approach, in analogy
to the Lieb energy functional of nonrelativistic DFT [11].
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Relativistic Kohn–Sham Equations

The basis for the relativistic KS scheme is the assumption that there exists a
relativistic system of noninteracting particles – the RKS system – with exactly
the same ground state four-current density j � as that of the interacting system
one is actually interested in. The particles of the RKS system experience a
multiplicative effective four-potential v�s .r/, including the radiative effects induced
by this potential: the RKS system is necessarily governed by a QED-Hamiltonian,
since it has to cover the noninteracting limit of the full Hamiltonian of bound state
QED.

In practice, however, mapping the interacting QED system onto a noninteracting
one is neither feasible nor of interest. On the one hand, the evaluation of the full four-
current density and energy of such an RKS system would require summation over all
negative and positive energy solutions of the associated Dirac-type RKS equations
as well as appropriate renormalization in each step of the iterative RKS procedure
(since the RKS vacuum depends on v

�
s and thus changes during the iteration

process). This self-consistent process including non-perturbative renormalization
is extremely difficult to implement. On the other hand, DFT typically aims at an
efficient but only moderately accurate description of the electronic structure of
molecules or solids, just capturing the essential bonding and excitation mechanisms.
In this context, radiative corrections are of limited interest, since they primarily
affect the innermost electrons (for a perturbative evaluation of radiative corrections
on the basis of RDFT spinors, see, e.g., [12, 13]). Electronic structure calculations
are therefore usually relying on the no-pair approximation in which all effects
resulting from the creation of virtual particle–antiparticle pairs are neglected (for
a more detailed discussion see [1]). This neglect automatically implies that charge
conservation, Eq. (10), reduces to the more familiar particle number conservation.

Within this approximation, the ground state four-current density j � of the RKS
system and, hence, by assumption, of the interacting system can be written as

j �.r/ D
X
k

�k�
�

k.r/˛
��k.r/ (11)

�k D

8̂<̂
:
0 for �k 	 �2mc2
1 for �2mc2 < �k 	 �F

0 for �F < �k

: (12)

Here �k represents the single-particle four spinors of the RKS system, �k the corre-
sponding eigenenergies. The no-pair approximation is reflected by the occupation
numbers �k : all RKS states below �2mc2 are suppressed (with the understanding
that �k does not contain the rest mass of the RKS particles). The Fermi level �F

defines the highest occupied RKS state.
The existence theorem of RDFT is equally valid for noninteracting systems.

Consequently, the total energy of the RKS system is a functional of its ground state
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four-current density (11). The same then applies to the kinetic energy Ts of the RKS
system, which, in the no-pair approximation, is given by

Ts D
X
k

�k

Z
d3r �

�

k.r/
� � i„c˛ � r C .ˇ � 1/mc2��k.r/ (13)

(since the total energy of the RKS system is Ts C
R
d3r j�v

�
s ). Using Ts, one can

write the ground state energy functional of the interacting system as

E D Ts CEext CEH CExc: (14)

Here Eext denotes the interaction of the electrons with the external sources,

EextŒj � D
Z
d3r j�.r/ V

�.r/: (15)

EH is the Hartree energy, which, in the context of RDFT, is usually defined to
include the transverse (retarded Breit) interaction (i.e., to include all direct matrix
elements of the electron–electron interaction of the order e2),

EHŒj � D e2

2

Z
d3x

Z
d3y

j�.x/ j
�.y/

jx � yj D EC
H CET

H (16)

EC
HŒj

0� D e2

2

Z
d3r

Z
d3r 0

n.r/ n.r 0/
jr � r 0j (17)

ET
HŒj � D �

e2

2c2

Z
d3r

Z
d3r 0

j .r/ � j .r 0/
jr � r 0j ; (18)

where the four-current density (11) has been split into the charge density j 0 � n

and the spatial components j defined as

j �.r/ D �
n.r/; j .r/=c

�
: (19)

The exchange–correlation (xc) energy Exc comes up for all remaining energy
contributions, with the exception of the radiative corrections, which have to be
dropped from (14) for consistency with (11)–(13). Since all other quantities in (14)
are density functionals, so is the xc-energy, ExcŒj �.

The minimization of the total energy functional (14) then leads to the RKS
equations,˚�i„c˛ �r C .ˇ � 1/mc2 C ˛�v�s .r/��k.r/ D �k�k.r/: (20)

In addition to the external potential V �, the potential of the RKS system v
�
s includes

the functional derivatives of EH, the Hartree potential v�H, and of Exc, the xc-
potential v�xc,
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v�s .r/ D V �.r/C v�H.r/C v�xc.r/ (21)

v
�
H.r/ D e2

Z
d3r 0

j �.r 0/
jr � r 0j (22)

v�xc.r/ D
ıExcŒj �

ıj�.r/
: (23)

As usual, self-consistent solution of Eqs. (11), (12), and (20)–(23) is required.

Relativistic Spin-Density Functional Theory

Several variants of RDFT have been introduced, primarily with the aim to avoid the
gauge arbitrariness. This problem ceases to exist as soon as there is no external
magnetic field, so that the electrons only experience a scalar potential, V � D
.vext; 0/. In this case, there is a one-to-one mapping between vext (up to global
constants), the ground state, and the ground state density [4]. The ground state can
thus be interpreted as a functional of the density only, j‰0Œn�i. The same then applies
to the spatial components of the current density j ,

j Œn� D h‰0Œn�j Oj j‰0Œn�i :

Consequently, the minimization of the energy (14) with respect to n leads to˚�i„c˛ �r C .ˇ � 1/mc2 C vs.r/
�
�k.r/ D �k�k.r/; (24)

with the density n given by the time-like component of (11) and

vs.r/ D vext.r/C vH.r/C ıExcŒn; j �

ın.r/

C
Z
d3r 0

�
ıExcŒn; j �

ıj .r 0/
C ıET

HŒj �

ıj .r 0/

�
� ıj Œn�.r

0/
ın.r/

: (25)

Since j Œn� is not known, however, one usually neglects the j -dependence ofEH and
Exc in (25). Corresponding results were published long before this form of RDFT
was formally established (see, e.g., [14]).

In the nonrelativistic limit, the full coupling of the magnetic field in the external
four potential

V � D .vext;�eAext/ .with Bext D r �Aext/

to the electrons via Oj �Aext reduces to a coupling of the magnetization density m to
the magnetic field, Om �Bext. This transition is most easily established by the Gordon
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decomposition, in which the total j is decomposed into an orbital current and the
curl of m. If one combines the standard Onvext-coupling with the Om � Bext-coupling
(rather than the Oj � Aext-coupling) and ignores the issue of renormalization, one
can establish [4] a unique correspondence between the ground state j‰0i and the
ground state charge and magnetization densities n;m, j‰0Œn;m�i. For Bext ¤ 0;

the resulting relativistic “spin” density functional formalism (RSDFT) represents
an approximation to full RDFT, which neglects the coupling between Aext and the
orbital current. For Bext D 0, however, RSDFT simply covers a wider class of
Hamiltonians than physically required (i.e., all Hamiltonians including an Om �Bext-
coupling), so that the RSDFT formalism becomes exact.

Together with the ground state, the current density is a functional of n and m,

j Œn;m� D h‰0Œn;m�j Oj j‰0Œn;m�i ;

and the same applies to the ground state energy and its components,

ET
HŒj � D ET

HŒj Œn;m�� ExcŒn; j � D ExcŒn; j Œn;m�� � ExcŒn;m� :

Assuming the noninteracting RKS system to reproduce the ground state densities n
and m of the interacting system,

n.r/ D
X
k

�k�
�

k.r/�k.r/ (26)

m.r/ D �B
X
k

�k�
�

k.r/ˇ˙�k.r/ (27)

with ˙ D
�

� 0

0 �

�
and �B D e„

2mc
; (28)

the minimum principle for the total energy then yields the equations [4, 5, 15, 16]˚�i„c˛ �r C .ˇ � 1/mc2 C vs C �Bˇ˙ �Bs
�
�k D �k�k (29)

vs.r/ D vext.r/C vH.r/C ıExcŒn;m�

ın.r/
C ıET

HŒj Œn;m��

ın.r/
(30)

Bs.r/ D Bext.r/C ıExcŒn;m�

ım.r/
C ıET

HŒj Œn;m��

ım.r/
: (31)

As in Eq. (25),ET
H is usually neglected in (30) and (31), relying on its proportionality

to 1=c2. Equations (26)–(31) have, for instance, been used to study open-shell atoms
and molecules as well as the magnetic anisotropy of solids [9, 17–20].

The direct counterpart of conventional nonrelativistic spin-density functional
theory is obtained from the general RSDFT formalism, if the spatial variation of
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the orientation of m is ignored (the legitimacy of this step in the case of open-shell
atoms and molecules is discussed in [9,18,19]). As soon as the coupling between the
electrons and the magnetic field is restricted to OmzBext;z, the ground state is uniquely
determined by n and mz only or, alternatively, by the generalized spin densities n˙,

n˙.r/ D 1

2

�
n.r/˙ 1

�B
mz.r/

�
: (32)

The corresponding RKS equations are given by
� i„c˛ �r C .ˇ � 1/mc2 C

X

D˙

P
vs;


�
�k D �k�k (33)

n˙.r/ D
X
k

�k�
�

k.r/P˙�k.r/ (34)

vs;
 .r/ D vext.r/C vH.r/C vxc;ff.r/ (35)

vxc;ff.r/ D ıExcŒnC; n��
ın
 .r/

C ıET
HŒj ŒnC; n���
ın
 .r/

(36)

PC D

0BB@
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1CCA ; P� D

0BB@
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1CCA : (37)

Here Bext;z has already been set to zero. Equations (33)–(37) represent the standard
RDFT approach to magnetic systems.

Relativistic Exchange–Correlation Functional

The close relationship of RSDFT and in particular of Eqs. (33)–(37) with non-
relativistic spin-density functional theory has triggered the use of nonrelativistic
spin-density functionals in R(S)DFT. This approach is easily implemented in
Eq. (36): one simply inserts a nonrelativistic functional ExcŒn"; n#� with the spin
densities n"; n# replaced by nC; n�. This approximation neglects all relativistic
corrections to the functional dependence ofExc on nC; n� but retains the relativistic
corrections inherent in the densities themselves. The obvious question then is: are
the relativistic corrections to the functional dependence of any relevance? To answer
this, one has to analyze the available relativistic forms for Exc.

Exact representations of the relativisticExc can be derived both via the relativistic
variant of the adiabatic connection [21] and by means of KS-based many-body
theory [22]. The adiabatic connection of RDFT is based on the assumption that
for any scaled electron–electron coupling strength �e2, with 0 	 � 	 1, one
can find an external four potential u��.x/, so that the ground state four-current
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density resulting from the corresponding �-dependent QED Hamiltonian is identical
with that obtained for the true coupling strength, � D 1, and true potential
V �.x/. Applying the coupling constant integration technique to the �-dependent
components of the Hamiltonian, one finds a representation of Exc in terms of
the current–current response function of the �-dependent system. The adiabatic
connection of RDFT has primarily been used to derive the relativistic LDA (see
section “Relativistic Local Density Approximation”).

In KS-based many-body theory, the total QED Hamiltonian is split into the
noninteracting RKS Hamiltonian (assuming the RKS four-potential to be known)
and a remainder OW , for which again the coupling constant integration technique
can be utilized. The resulting expression for Exc is a power series in OW , from which
explicit approximations can be obtained with the standard (diagrammatic) methods
of QED.

Orbital-Dependent Exchange–Correlation Functionals

KS-based many-body theory is particularly useful for the derivation of orbital-
dependent xc-functionals, such as the exact exchange of RDFT. Using Feynman
gauge and the no-pair approximation, one obtains [22]

Ex D �e
2

2

X
k;l

�k�l

Z
d3r

Z
d3r 0

cos.!kl jr � r 0j/
jr � r 0j

� ��k.r/˛��l .r/ ��l .r 0/˛��k.r 0/; (38)

where !kl D j�k � �l j=.„c/. Consistent with the Hartree energy (16), the exchange
functional (38) contains a transverse contribution, which may be extracted explicitly
by subtraction of the standard Coulomb exchange,

EC
x D �

e2

2

X
k;l

�k�l

Z
d3r

Z
d3r 0

�
�

k.r/�l .r/ �
�

l .r
0/�k.r 0/

jr � r 0j (39)

ET
x D Ex �EC

x : (40)

The expressions (38)–(40) are functionals of j � in the same sense as Ts is a
functional of j �: the RKS-spinors are unique functionals of j �, as the ground state
Slater determinant of the RKS system is a unique functional of j � by virtue of the
RDFT existence theorem for noninteracting particles.

It is worthwhile to emphasize that the expression (38) is gauge invariant. In
general, gauge invariance requires the inclusion of the negative energy states in
all intermediate sums over states, which show up in a perturbative treatment of
the electron–electron interaction. Since the no-pair approximation systematically
neglects the negative energy states, a gauge dependence is usually introduced.



558 E. Engel

As an exception from this rule, the no-pair exchange (38) turns out to be gauge
invariant due to the multiplicative nature of the RKS potential [22], justifying the
use of the simplest gauge, the Feynman gauge, in (38). The gauge invariance of
(38) also emphasizes the difference between the exchange of RDFT and relativistic
Hartree–Fock (RHF) exchange: unlike (38), the transverse RHF exchange is gauge-
dependent, since the RHF spinors experience a nonlocal potential.

Insertion of the four-current density (11) into (16) reveals that the Hartree energy
contains some self-interaction:

EH D e2

2

X
kl

�k�l

Z
d3r

Z
d3r 0

�
�

k.r/˛��k.r/�
�

l .r
0/˛��l .r 0/

jr � r 0j :

The self-interaction terms with k D l are, however, exactly cancelled by the exact
exchange (38). In fact, this is not only true for the Coulomb component of both
energies but also for the transverse interaction.

Orbital-dependent functionals can also be derived for the relativistic correlation
functional

Ec D Exc �Ex: (41)

The resulting expressions are completely analogous to the corresponding nonrel-
ativistic functionals, if the transverse interaction is neglected (which seems to be
well-justified in the case of correlation). For instance, second-order perturbation
theory with respect to the RKS Hamiltonian [22] yields the relativistic counterpart
of the second-order Görling–Levy functional [23],

E.2/
c D EMP2

c CE�HF
c (42)

EMP2
c D 1

2

X
ijklI�F <�k;�l

�i�j
.ij jjkl/ Œ.kl jjij / � .kl jjj i/�

�i C �j � �k � �l (43)

E�HF
c D

X
i lI�F <�l

�i

�i � �l

ˇ̌̌̌
hi j˛�v�x jli C e2

X
j

�j .ij jjjl/
ˇ̌̌̌2
; (44)

with the relativistic Slater integrals,

.ij jjkl/ D
Z
d3r1

Z
d3r2

�
�
i .r1/�k.r1/�

�
j .r2/�l .r2/

jr1 � r2j ; (45)

and the matrix elements of the RKS exchange potential,

hi j˛�v�x jli D
Z
d3r �

�
i .r/˛��l .r/v

�
x .r/; (46)
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depending on the RKS four spinors. Similarly, resummation of all ring diagrams
of RKS-based perturbation theory leads to the relativistic extension [24, 25] of the
random phase approximation (RPA) of DFT [26–29].

Relativistic Optimized Potential Method

Orbital-dependent xc-functionals are often applied a posteriori, utilizing the KS
orbitals resulting from LDA or GGA calculations. However, at least in the case
of the exact exchange, a self-consistent application is of obvious interest, in order to
obtain an RKS potential which is self-interaction-free.

The xc-potential v�xc D ıExc=ıj� for functionals of the type (38)–(44) has to be
evaluated by the relativistic extension of the optimized potential method (ROPM)
[30, 31]. The fundamental integral equation of the ROPM is most easily derived
by direct functional differentiation of the orbital-dependent expression, if the chain
rule is used to replace the derivative with respect to j � by ones with respect to the
orbitals and eigenvalues [22],

ıExc

ıj �.r/
D
Z
d3r 0

ıv
�
s .r
0/

ıj �.r/

X
k

( Z
d3r 00

"
ı�

�

k.r
00/

ıv
�
s .r 0/

ıExc

ı�
�

k.r
00/
C c:c:

#

C ı�k

ıv
�
s .r 0/

@Exc

@�k

)
: (47)

By virtue of the chain rule, the summation over k on the right-hand side of (47)
includes all negative (and positive) energy states. As soon as the no-pair approxi-
mation is applied to Exc, all derivatives of Exc with respect to negative energy states
vanish, so that the summation over k reduces to states with �k > �2mc2. This
constraint will, however, not be explicitly noted in the following. The derivatives on
the right-hand side of (47) can be evaluated from the RKS equations. Introducing
a small perturbation ıv

�
s into (20) leads to a modification of the spinors and

eigenvalues by ı�k and ı�k , respectively,˚�i„c˛ �r C .ˇ � 1/mc2 C ˛� �v�s .r/C ıv�s .r/�� Œ�k.r/C ı�k.r/�
D Œ�k C ı�k� Œ�k.r/C ı�k.r/� :

For the derivatives in (47), only the terms linear in ıv�s are relevant,˚�i„c˛ �r C .ˇ � 1/mc2 C ˛�v�s .r/ � �k� ı�k.r/
D ı�k�k.r/ � ˛�ıv�s .r/�k.r/: (48)

Multiplication of this equation by ��k.r/ and subsequent integration over r yields
the shift of the eigenvalue,
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s .r/�k.r/ H) ı�k

ıv
�
s .r/

D ��k.r/˛��k.r/ :

Using this result, the differential equation for ı�k , Eq. (48), can be formally solved
by means of the Greens function

Gk.r; r
0/ D

X
l¤k

�l .r/ �
�

l .r
0/

�l � �k (49)
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ıv
�
s .r 0/

D �Gk.r; r 0/˛��k.r 0/:

Moreover, ıv�s .r 0/=ıj �.r/ is the inverse of the static current–current response
function, which can be evaluated by differentiation of the four-current density (11),
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Multiplication of Eq. (47) by 	��s and subsequent integration leads to a set of four
coupled integral equations,Z
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: (51)

It is worthwhile to emphasize that (by construction) orbital-dependent expressions
are functionals of the complete four-current density (and not just functionals of n).
This is reflected by the fact that the spatial components vixc of the solution of (51)
do not vanish in general.

Equation (51) has to be solved in each cycle of the self-consistent RKS
procedure. In this process, one has to fix the gauge of v�xc. In the case of v0xc,
this amounts to a normalization, since Eq. (51) determines v0xc only up to a global
constant: the response function satisfies the identityZ

d3r 0 	�0s .r; r
0/ D

Z
d3r 	0�s .r; r

0/ D 0; (52)
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as can be verified by integration over (50) and use of the orthonormality of the �k .
The normalization of v0xc is usually defined by the requirement v0xc.jrj ! 1/ D 0

for finite systems, while the average of v0xc in the unit cell is set to zero in the case
of periodic systems.

The gauge freedom of the spatial components of v�xc is intrinsically related to
the transversality of 	��s . This property is easily verified as long as Gk , Eq. (49), is
accounted for exactly. Differentiation first yields
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0/˛��k.r 0/C c:c:; (53)

where the RKS equations have been used to arrive at the second line,

�
�

k.r/.�k � �l /�l .r/ D i„c��k.r/˛ �
�  r C !r �

�l.r/ (54)

(
 r denotes differentiation of the functions to the left of the r -operator). At this

point, the completeness of the �l ,
P

l �l .r/�
�

l .r
0/ D ı.3/.r � r 0/, can be utilized,

provided the summation over l in (53) includes all negative energy states,
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D 0: (55)

Note that this result holds for all possible choices for the occupation �k , including
the no-pair form (12). As a consequence, Eq. (51) determines the spatial compo-
nents of v�xc only up to a gauge function r�,Z

d3r 0 	�js .r; r 0/
@

@r 0j
�.r 0/ D �

Z
d3r 0

�
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@r 0j
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�
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If, however, the no-pair approximation is also applied to Gk , the l-summation
in (49) is restricted to states with �k > �2mc2. As a result, the completeness relation
is no longer available to ensure the transversality of 	��s ,

@

@rj
	j�s .r; r

0/ ¤ 0; (56)

and the gauge freedom of vxc is lost.
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The exact cancellation of the self-interaction by Ex is also visible in v�xc. A
detailed analysis of the integral equation (51) for finite systems allows one to derive
the asymptotic behavior of v0x [22],

v0x.r/
jrj!1�! � e2

jrj : (57)

In order to see the physics behind this result, it has to be combined with the
corresponding asymptotic forms of the external potential, V 0 � �Ze2=jrj (Z =
total charge of all nuclei), and of the Hartree potential, v0H � Ne2=jrj. The sum of
the three potentials decays as �.Z � N C 1/e2=jrj, as required by electrostatics,
if one electron far outside the molecule experiences the net attraction of the nuclei
and the other N � 1 electrons attached to them.

The derivation of Eq. (51) is based on the four-current RDFT formalism. An
analogous set of integral equations can be derived for RSDFT [25, 32],Z
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The kernels are once more the response functions of the RKS system,
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and Gk is again given by (49).
In the case of collinear magnetization density, m D .0; 0;mz/, these equations

can be rewritten in terms of the generalized spin densities (34),
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with P
 given by (37). Each of the spin-channels vx;
 of (64) satisfies (57) in the
case of finite systems [25].

It remains to remark that the ROPM equation of the purely n-dependent RDFT
formalism [33, 34] is given by the time-like component of Eq. (51).

Relativistic Corrections in Exc: I. Transverse Exchange

The exact exchange allows an unambiguous assessment of the importance of rela-
tivistic corrections in the xc-functional and in particular of the transverse interaction:
for this functional, one can directly compare the fully relativistic expression (38)
with the Coulomb exchange (39) and the Coulomb–Breit approximation, which
includes the transverse interaction only to leading order in 1=c2,
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(66)

(The Breit exchange can be derived from (40) by expansion in powers of 1=c and
subsequent use of (54)).

Results obtained by solution of the ROPM equation (51) for these three
exchange-only functionals (REXX) are given in Tables 1–4 as well as Fig. 1. Table 1
lists REXX ground state energies of closed-subshell atoms. On the one hand, a
comparison of the Coulomb with the Coulomb–Breit energies shows the well-
known magnitude of the Breit correction, ranging from marginal for light atoms
to keV-size for the heaviest ones. On the other hand, the corrections resulting
from the retardation effects by which the complete transverse interaction differs
from the Breit interaction are almost two orders of magnitude smaller. As to be
expected, the retarded exchange of photons effectively leads to a reduction of
the interaction strength compared to the instantaneous Coulomb interaction: both
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Table 1 Exchange-only ground state energies from finite differences REXX calculations for
closed subshell atoms: Coulomb (C)- and Coulomb–Breit (CCB)-limit in comparison with
complete transverse exchange (CCT) [22]. In all calculations, the nuclei were represented by
uniformly charged spheres with nuclear radii given by Rnuc D .1:0793A1=3 C 0:73587/ fm, A
being the atomic mass (weighted by isotopic abundances) taken from Table III.7 of [35]. The
speed of light was set to c D 137:0359895 a.u. (all energies in mHa)

E �ECCT

�ECCT C+B C

He 2;861:8 0:0 �0:1
Ne 128;673:6 0:0 �16:7
Ar 528;546:1 0:0 �132:2
Zn 1;793;840:0 2:6 �758:4
Kr 2;787;429:4 7:2 �1;418:5
Cd 5;589;495:8 34:1 �3;803:1
Xe 7;441;173:0 63:9 �5;702:6
Yb 14;053;749:7 247:3 13;871:3

Hg 19;626;704:9 490:2 22;121:0

Rn 23;573;354:2 707:1 �28;615:2
No 36;687;172:7 1;633:8 �53;452:8

Fig. 1 REXX exchange
potential for neutral Hg:
self-consistent Coulomb (C),
Coulomb–Breit (CCB), and
fully transverse (CCT)
results in comparison with
nonrelativistic limit (NR)
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the retardation of the Coulomb exchange term in (38) by the modulation factor
cos.!kl jr � r 0j/ and the current–current-coupling act repulsive, so that the Breit
interaction is repulsive. However, the lowest order representation of both effects by
expansion of cos.!kl jr � r 0j/ in 1=c necessarily overestimates the true reduction,
so that the transverse corrections beyond the Breit-limit are attractive.

As an example, the corresponding exchange potentials of the Hg atom are
shown in Fig. 1, together with the nonrelativistic vx. As is clear from the preceding
discussion, the transverse exchange potential vT

x is predominantly repulsive. Even
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Table 2 Exchange-only single particle energies (��nlj ) for neutral Hg from self-consistent
REXX calculations, using (i) the complete relativistic EXX potential (CCT), (ii) its Coulomb–
Breit approximation (CCB), and (iii) its Coulomb (C) limit. Also given are RGGA results
which have been obtained with the relativistic extension [36] of the Becke functional [37], either
restricting to exchange-only (RB88) or including the Lee–Yang–Parr correlation GGA (RBLYP)
[38] (all energies in mHa; nuclear charge distribution and c as in Table 1)

REXX RB88 RBLYP
Level CCT CCB C CCT CCT

1s1/2 3,036,871 3,032,278 3,047,431 3,036,453 3,036,485

2s1/2 538,444 537,853 540,057 538,051 538,085

2p1/2 516,198 515,546 518,062 516,097 516,132

2p3/2 445,422 445,013 446,683 445,276 445,311

3s1/2 127,956 127,858 128,273 127,703 127,738

3p1/2 117,994 117,885 118,351 117,857 117,893

3p3/2 102,302 102,236 102,537 102,152 102,187

3d3/2 86,069 86,036 86,202 85,959 85,994

3d5/2 82,692 82,665 82,808 82,582 82,617

4s1/2 28,361 28,351 28,428 28,037 28,072

4p1/2 24,090 24,075 24,162 23,819 23,854

4p3/2 20,321 20,315 20,364 20,024 20,059

4d3/2 13,397 13,397 13,412 13,151 13,186

4d5/2 12,689 12,690 12,701 12,441 12,476

4f 5/2 3,766 3,770 3,757 3,571 3,607

4f 7/2 3,613 3,616 3,603 3,417 3,453

5s1/2 4,394 4,394 4,404 4,278 4,313

5p1/2 3,004 3,002 3,013 2,886 2,920

5p3/2 2,360 2,360 2,364 2,219 2,253

5d3/2 507 507 506 367 399

5d5/2 440 441 440 300 332

6s1/2 330 330 330 222 249

for the L-shell, this correction is of the order of 1 Ha (hr.2s1=2/i D 0:069Bohr).
Unlike for the integrated energies, the local error of the Breit exchange potential is
quite substantial.

The RKS eigenvalues of Hg obtained with these potentials are listed in Table 2.
Both the K- and L-shell energies clearly reflect the shift of the total RKS
potential by inclusion of vT

x . Somewhat surprisingly, the 2p1=2-level percentage-
wise experiences a slightly larger shift than the 1s1=2-state (this phenomenon is
observed quite often for very heavy atoms). For all low-lying states (including the
M -shell), vT

x dominates over the correlation potential. In spite of the orthogonality
constraint, however, the 6s1=2-level remains almost unaffected by vT

x : vT
x amounts

to less than 0.3 % of the total RKS potential for the 1s-shell, so that only a minor
deformation of the 1s-orbital is observed. As a result, the eigenvalue of the 6s1=2-
level changes by only 0.15 %, which is irrelevant on the absolute scale.
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Table 3 REXX ionization potentials of neutral atoms calculated from total energy differences
between neutral and multiply ionized states: self-consistent inclusion of the transverse exchange
(CCT) versus neglect of ET

x (C). In the case of group IIA and IIB atoms, both s-electrons are
removed, for the IVB atoms both p1=2-electrons, for the noble gas atoms all p3=2-electrons (all
energies in mHa; point nuclei have been used)

Atom CCT C

Sr 558 558

Ba 501 501

Cd 838 838

Hg 942 941

Sn 744 743

Pb 769 767

Xe 3,785 3,784

Rn 3,406 3,407

Table 4 REXX electron removal energies of highly ionized Hg calculated from total energy
differences: self-consistent inclusion of the transverse exchange (CCT) versus perturbative
evaluation of ET

x on basis of self-consistent calculations with EC
x (CCpT) and complete neglect of

ET
x (C) (all energies in Ha; nuclear charge distribution and c as in Table 1)

�E CCT CCpT C

Hg70C �! Hg74C 2;810:227 2;810:219 2;813:784

Hg74C �! Hg76C 1;642:950 1;642:937 1;646:533

Hg76C �! Hg78C 1;718:586 1;718:582 1;720:295

Hg78C �! Hg80C 6;994:905 6;994:891 7;002:469

It is worthwhile to point out that all the potentials in Fig. 1 asymptotically obey
Eq. (57) (which is not visible in the figure due to the restricted r-range). As a result,
the REXX eigenvalues for the most weakly bound 6s1=2-state are quite close to the
REXX ionization energy for a 6s1=2-electron obtained by subtraction of the ground
state energy of HgC from that of neutral Hg (312 mHa, see below). This behavior
represents a clear improvement over the potentials of the GGA functionals, which
do not satisfy (57) and thus yield eigenvalues quite different from the ionization
energy (353 mHa for RB88).

The limited relevance of the transverse exchange for standard electronic structure
properties is confirmed by the atomic ionization potentials (IPs) listed in Table 3.
In this table, fully self-consistent results including the transverse exchange are
compared with energies obtained by neglecting ET

x . In all cases, complete subshells
are ionized, in order to avoid all ambiguities related to the handling of current
contributions for open subshells. Table 3 demonstrates that the impact of ET

x on
these IPs is marginal even for the heaviest atoms. One has to consider the removal
of the innermost electrons, in order to see a sizable effect, such as the removal of
the L-shell electrons of Hg shown in Table 4.

The results collected so far raise the question whether a perturbative treatment of
ET

x is sufficient? Corresponding data are also included in Table 4. It is obvious that
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the a posteriori evaluation of the transverse exchange with the RKS spinors obtained
by a self-consistent calculation with the Coulomb exchange gives highly accurate
results for both the L- and the K-shell ionization energies.

Relativistic Corrections in Exc: II. Coulomb Exchange

Once the transverse exchange is set aside, it remains to analyze the role of relativity
in EC

x . In the case of 1-electron systems, EC
x trivially reduces to a simple density

functional

EC;1�electron
x D �e

2

2

Z
d3r

Z
d3r 0

n.r/ n.r 0/
jr � r 0j :

Similarly, the Fock expression (39) can be rewritten as

EC;2�electron
x D �e

2

4

Z
d3r

Z
d3r 0

n.r/ n.r 0/
jr � r 0j

for spherically symmetric 2-electron systems with j D 1=2 (e.g., an atomic 1s-
shell). In these limits, the relativistic corrections to the functional dependence of
EC

x on the density vanish, since the corresponding nonrelativistic functionals have
exactly the same form. In the general situation, however, the functional EC

x Œj �

differs from the exact nonrelativistic exchange functional. Unfortunately, the orbital-
dependent expression (39) combines the relativistic corrections to EC

x Œj � itself with
the relativistic corrections in j � in an inextricable way. The discussion of the former
corrections is therefore continued later in the context of the relativistic LDA.

The present section focuses on the importance of an exact treatment of the rela-
tivistic Coulomb exchange as compared to the use of nonrelativistic LDA or GGA
functionals in R(S)DFT, without the attempt to resolve the role of the relativistic
corrections in the functional EC

x Œj �. The starting point is a brief comparison of
the purely n-dependent RKS formalism, Eqs. (24), (25), with collinear RSDFT,
Eqs. (33)–(37). Often Eq. (24) is used to discuss open-shell systems, ignoring,
however, all current contributions to Exc. Prototype results of this approach are
provided in Table 5, which lists the IPs of a number of atoms. While the ionization
of s-shells is reproduced rather well by the purely n-dependent RKS formalism, the
deviations become sizable as soon as p- or d -electrons are involved. Hence, reliable
results should only be expected from the RSDFT approach, which is therefore
consistently used in the following.

For heavy open-shell atoms, the alignment of spins favored by the exchange
interaction is competing with spin–orbit coupling, favoring good j . The ordering
of the RKS eigenvalues (and, eventually, the occupation of the RKS states) depends
on the strength of the exchange coupling and therefore on the exchange functional.
A comparison of results obtained with the exact Coulomb exchange (39), using
Eqs. (64) and (65), with the nonrelativistic LDA is shown in Fig. 2 [25]. Figure 2
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Table 5 REXX IPs of
selected atoms calculated
from total energy differences:
purely n-dependent RKS
equations (24) versus
spin-density-dependent RKS
equations (33) (all energies in
mHa; point nuclei have been
used)

Eq. (24) Eq. (33)

Zr 204 217

Hf 203 224

Ag 229 231

Au 280 282

Cd 269 267

Hg 313 312

Sn 229 246

Pb 239 240

Sb 275 309

Bi 238 253

I 365 345

At 318 304

Fig. 2 RKS eigenvalues of
the 6p-subshell for
6p-elements with occupation
6pn: exact relativistic
Coulomb exchange versus
nonrelativistic LDA
(including correlation [39]).
Lines are drawn to guide the
eye
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demonstrates that, even for heavy elements, the splitting of states resulting from
the exact exchange is significantly larger than that produced by the LDA. This is
particularly noteworthy for Pb, for which the LDA yields the usual degeneracy of
the closed 6p1=2-subshell.

The strength of the exchange coupling is particularly important for s-d transfer
energies – reproducing these energies has been a long-standing challenge for DFT
[40–42]. As an example, Fig. 3 shows the energy differences between the lowest-
lying states of the Cr atom, i.e., the 3d5.6S/4s 7S3 ground state, the first excited
state, 3d5.6S/4s 5S2, and the 3d44s2 5D multiplet [25]. The excitation to the
3d5.6S/4s 5S state requires the inversion of the 4s spin, that to the 3d44s2 5D

multiplet the transfer of a d -electron to the 4s-state. Figure 3 demonstrates that
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Fig. 3 Low-lying levels of Cr: EXX results versus nonrelativistic LDA [39], PBE-GGA [43], and
experimental [44] data (all DFT results were obtained by solution of the RKS equations (33), using
(71) in the case of the LDA and GGA). The experimental 3d5.6S/4s 5S2 state is only 0.7 mHa
lower than the lowest state (J D 0) of the 3d44s2 5D multiplet and can therefore not be resolved
on the scale used. In the case of the DFT results, the 3d44s2-energies correspond to different
occupations of the 3d -substates

the exact (relativistic) exchange provides a much better account of the exchange
coupling than the LDA or GGA.

Relativistic Corrections in Exc: III. Coulomb Correlation

Given the results for the RDFT exchange, neglect of the transverse interaction in
the correlation functional seems legitimate. Prototype RDFT results for Coulomb
correlation energies are given in Tables 6 and 7. Table 6 lists the nonrelativistic cor-
relation energies of the helium isoelectronic series together with the corresponding
relativistic corrections. In the nonrelativistic limit, exact reference data are available,
so that an unambiguous examination of density functionals is possible. One observes
that the orbital-dependent expression (42) leads to very accurate Ec for highly
charged ions, consistent with its first-principles character. For this reason, one would
expect the relativistic correlation energies obtained with E.2/

c to be quite reliable.
Neither the nonrelativistic LDA nor the PW91-GGA reproduces the Z-dependence
of the difference between the relativistic and the nonrelativisticE.2/

c -data, indicating
the need for relativistic corrections to these functionals.

Corresponding energies for neutral noble gas atoms are listed in Table 7. A
comparison of E.2/

c with the reference energies available for light atoms indicates
a substantial overestimation of atomic correlation energies by E.2/

c . In fact, the
deviation increases with increasing electron number. Although the relativistic
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Table 6 Coulomb correlation energies of the He isoelectronic series: nonrelativistic values (ENR
c )

and relativistic corrections ER
c � ENR

c from E
.2/
c [24], Eq. (42), LDA [39] and PW91-GGA [45].

Also given are the exact nonrelativistic correlation energies [46,47] and the relativistic corrections
from the RLDA [21, 48]. All results have been calculated a posteriori with the KS states obtained
by self-consistent EXX calculations (all energies in mHa)

�ENR
c ENR

c �ER
c

Ion LDA GGA E
.2/
c exact LDA GGA RLDA E

.2/
c

He 112:8 45:9 48:21 42:04 0:0 �0:0 0:0 0:00

Ne8C 203:0 61:7 46:81 45:69 0:1 �0:1 0:3 �0:07
Zn28C 267:2 71:3 46:67 46:34 0:9 �0:6 6:6 �0:19
Sn48C 297:7 76:0 46:65 46:47 2:8 �1:7 24:4 0:72

Yb68C 318:0 79:3 46:63 46:53 5:9 �3:3 58:3 3:71

Th88C 333:2 81:7 46:62 46:56 11:0 �5:6 117:1 11:00

Table 7 As Table 6, but for neutral noble gas atoms

�ENR
c ENR

c �ER
c

Atom LDA GGA E
.2/
c exact LDA GGA RLDA E

.2/
c

Ne 746 382 477 390 0 �0 1 0

Ar 1;431 771 866 722 1 �0 3 1

Kr 3;284 1;914 2;151 8 �2 23 13

Xe 5;199 3;149 3;487 23 �4 76 36

Rn 9;027 5;706 6;260 82 �18 303 208

corrections calculated with E.2/
c should provide a reasonable account of the true

corrections (since they originate primarily from the innermost states for which
E
.2/
c gives accurate results), their inclusion seems to be of secondary importance

for standard electronic structure calculations: they are completely masked by the
misrepresentation of correlation effects for the valence electrons even in the case of
first-principles functionals.

Relativistic Local Density Approximation

The relativistic LDA (RLDA) approximates the xc-energy density of the actual
system by that of a relativistic homogeneous electron gas (RHEG), eRHEG

xc , with
a density equal to the local density n.r/ of the actual system,

ERLDA
xc Œn� D

Z
d3r eRHEG

xc .n.r//: (67)

Since j vanishes in the uniform electron gas, there is no current dependence in
the RLDA. It should be noted, however, that the RLDA is an approximation to
the functional ExcŒn; j D 0� of four-current RDFT rather than to the functional
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Fig. 4 Relativistic correction
factor for the LDA exchange
energy density: Coulomb
contribution, transverse
contribution and total
correction ˚x
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ExcŒn; j Œn�� of the purely n-dependent form of RDFT in which current contributions
are represented as density functionals. The exchange contribution [3, 4, 49–52] can
be written as product of the nonrelativistic LDA exchange energy density eHEG

x ,

eHEG
x .n/ D �3.3�

2/1=3

4�
e2 n4=3 ; (68)

and a relativistic correction factor ˚x,

eRHEG
x .n/ D eHEG

x .n/ ˚x.ˇ/: (69)

˚x is most suitably expressed in terms of the ratio of the local Fermi momentum
and mc,

ˇ D „.3�
2n/1=3

mc
: (70)

The total eRHEG
x can be split into a Coulomb and a transverse component according

to Eqs. (39) and (40), in order to resolve the two sources of corrections. The variation
of the corresponding factors ˚C=T

x as well as of the total ˚x with ˇ is shown in
Fig. 4. The ˇ-dependence of ˚C

x reflects the fact that the expression (39), when
written as a functional of the density, in general differs from the exact nonrelativistic
ExŒn�: while the exact nonrelativistic exchange also has the form of the Fock term,
it is evaluated with nonrelativistic KS orbitals rather than the RKS spinors of (39).
However, ˚C

x varies only weakly with ˇ, in contrast to ˚T
x . In fact, ˚T

x dominates
for high densities and ultimately leads to a sign change of eRHEG

x .
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Fig. 5 Relativistic correction
factor of LDA exchange
potential. The ˇ-values
corresponding to the densities
of Kr and Hg at the
r-expectation values of the
1s-orbitals (r D< r >1s) and
the density of Hg at
r D 0:001Bohr are also
indicated (nuclear charge
distribution and c as in
Table 1)
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Table 8 Transverse exchange energies (ET
x ) for closed subshell atoms: self-consistent REXX,

RLDA, and B88-RGGA results (all energies in Ha; nuclear charge distribution and c as in Table 1)

Atom REXX RLDA RGGA

He 0:000064 0:000147 0:000059

Ne 0:0167 0:0350 0:0167

Ar 0:132 0:249 0:132

Zn 0:758 1:318 0:757

Kr 1:417 2:391 1:415

Cd 3:797 6:131 3:796

Xe 5:693 9:039 5:691

Yb 13:842 21:418 13:837

Hg 22:071 33:957 22:054

Rn 28:547 43:979 28:519

No 53:313 84:222 53:101

Figure 5 shows the corresponding ˇ-dependence of the RLDA exchange poten-
tial. The relevant range of densities is indicated by the ˇ-values found at the
r-expectation values of the 1s1=2-orbitals of Kr and Hg. In addition, the density of
Hg at r D 0:001Bohr is marked. At this density, the total RLDA correction factor
for vx has already changed its sign, so that the RLDA exchange potential becomes
repulsive. This result is, however, in contradiction to the exact vx, which remains
negative at r D 0:001Bohr (see Fig. 1).

The drastic overestimation of the transverse exchange in atoms by the RLDA
is also obvious from the corresponding exchange energies listed in Table 8. The
results in Fig. 5 and Table 8 point at the fundamental differences between the highly
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Table 9 Self-consistent exchange-only ground state energies of closed subshell atoms: (R)LDA
and (R)GGA results versus REXX reference data.ET

x has been included in the RLDA, RGGA, and
REXX calculations, but neglected to generate the RCLDA and RCEXX data. The PW91 form [53]
has been applied for the GGA (all energies in mHa; nuclear charge distribution and c as in Table 1)

Atom �E E �EREXX �E E �ERCEXX

REXX LDA RLDA GGA RGGA RCEXX RCLDA

He 2;862 138 138 6 6 2;862 138

Ne 128;674 1;038 1;080 �43 �24 128;690 1;062

Ar 528;546 2;159 2;458 �111 41 528;678 2;341

Zn 1;793;840 3;119 4;702 �1;146 �263 1;794;598 4;140

Kr 2;787;429 3;671 6;543 �1;683 �22 2;788;848 5;565

Cd 5;589;496 3;197 10;556 �4;537 �35 5;593;299 8;213

Xe 7;441;173 2;315 13;161 �6;705 83 7;446;876 9;800

Yb 14;053;750 �4;778 20;888 �17;660 �894 14;067;621 13;272

Hg 19;626;705 �11;491 29;161 �27;253 �257 19;648;826 17;204

Rn 23;573;354 �17;409 35;207 �35;145 �9 23;601;969 19;677

No 36;687;173 �43;631 56;937 �68;097 �1;344 36;740;625 25;787

localized core states in atoms and the infinitely extended states of a high-density
electron gas, for which the finite speed of the photons exchanged between states
plays a completely different role.

Table 9 provides some total RLDA energies for atoms. The table shows that
the combination of the underestimation of the true energies by the LDA on
the nonrelativistic level (obvious from the LDA data for light atoms) with the
overestimation of ET

x by the RLDA leads to particularly large errors for heavy
atoms. As soon as ET

x is dropped, the RLDA performs as well as the LDA
does in nonrelativistic DFT, as can be seen from the Coulomb exchange data in
Table 9.

The consistent application of the RKS equations (29) or (33) requires the use
of m-dependent xc-functionals. The corresponding RLDA is based on a spin-
polarized RHEG [15, 54–56]. Restricting the discussion to first-order corrections
in 1=c2, the xc-energy as well as the charge and magnetization density of this
system can be expressed in terms of spin-up and spin-down Fermi momenta, kF;
 .
Inversion of the functions n.kF;"; kF;#/ and jm.kF;"; kF;#/j then yields the desired
functional eRHEG

x .n; jmj/ [56]. Prototype ground state energies for open-shell atoms
obtained with this functional (XRR) are given in Table 10. It turns out, however,
that the XRR functional yields essentially the same results as the combination of
the m-independent expression (67) with the spin-dependence of the nonrelativistic
exchange functional [57], applied to n˙,

ERLSDA
x ŒnC; n�� D 1

2

n
ERLDA

x Œ2nC�CERLDA
x Œ2n��

o
: (71)
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Table 10 Dependence of atomic exchange-only ground state energies (�E) on the treatment
of spin: magnetization-dependent form of the weakly relativistic LDA (XRR [56]) versus
combination of the purely n-dependent RLDA (69) (with the relativistic corrections restricted to
first order in 1=c2) with Eq. (71) (all energies in mHa; nuclear charge distribution and c as in
Table 1)

Atom XRR Eq. (71)

Cr 1,045,939.4 1,045,939.3

Fe 1,267,112.3 1,267,112.0

Eu 10,813,724.3 10,813,723.0

W 16,099,343.5 16,099,343.5

Au 18,962,228.4 18,962,228.4

U 27,909,051.4 27,909,051.3

Am 30,313,657.0 30,313,656.6

Fig. 6 Relativistic correction
factor for the RPA
contribution to the correlation
energy density of the RHEG:
Coulomb contribution,
transverse contribution and
total correction ˚RPA
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If the functional (71) is consistently restricted to first order in 1=c2, the resulting
atomic ground state energies are extremely close to those obtained with the XRR
approach (see Table 10).

The correlation energy density eRHEG
c of the RHEG is only available in the RPA

[21,48]. The corresponding relativistic correction factor is shown in Fig. 6, together
with its Coulomb and transverse components (the latter is attractive in the case of
RPA correlation). The RPA includes the leading relativistic correction, but misses
the second-order exchange which contributes substantially for realistic densities.
Accurate results from the RPA can therefore only be expected in the ultrarelativistic
regime. In view of this restriction and of the well-known limitations of the LDA, it
is no surprise that the RPA-based RLDA misrepresents the relativistic corrections
in atomic correlation energies even if the transverse interaction is neglected (see
Tables 6 and 7).
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Relativistic Generalized Gradient Approximation

First-principles gradient corrections to the RLDA can be derived from the long-
wavelength expansion of the current–current response function of the RHEG [7].
This expansion determines in particular the lowest order gradient term proportional
to .rn/2. In view of the lacking information on the RHEG response function,
however, a first-principles relativistic gradient correction is not available so far.

A semiempirical relativistic GGA (RGGA) has been constructed in [36, 58].
Restricting the discussion to exchange, this functional has the form

ERGGA
x D ERLDA

x Œn�C
Z
d3r eGGA

x .n; �/˚GGA
x .ˇ/; (72)

with the dimensionless gradient � D Œrn=.2.3�2n/1=3n/�2 and eGGA
x .n; �/ denoting

the energy density of a nonrelativistic GGA – both the B88- and the PW91-form
have been used for eGGA

x in order to check the consistency of the ansatz (72) (the
functional (72) has to be combined with Eq. (71), when dealing with magnetic
systems). The relativistic correction factor ˚GGA

x has been optimized to reproduce
the exact relativistic Ex of closed-subshell atoms, with the two GGAs leading
to very similar shapes for ˚GGA

x .ˇ/ [36, 58]. The resulting RGGA consistently
improves the energetics of atoms over both the nonrelativistic GGA and the RLDA,
as can for instance be seen from Tables 8 and 9.

The same basic approach has been used to set up a RGGA for correlation [58],
with analogous results for atoms. However, relativistic and correlation effects are
rarely important simultaneously (since they usually involve different shells), so that
no details are given at this point.

Relativistic Corrections in Exc: IV. Bonding Properties

The accuracy of the RGGA allows an analysis of the significance of relativistic
corrections to the xc-functional for standard electronic structure properties [59–62].
Corresponding results are given in Tables 11 and 12. In both cases, Au is considered
which exhibits the effects of relativity most clearly [66]. The particular importance
of relativity for Au is illustrated by a comparison of relativistic with fully nonrel-
ativistic LDA results (obtained by solution of the nonrelativistic KS equations). A
substantial overestimation of bond lengths and underestimation of bond energies
and elastic constants by the fully nonrelativistic approach is observed, reflecting the
missing relativistic contraction of the 6s1=2-orbital (compare [61,65,67]). In contrast
to relativistic kinematics, however, the relativistic corrections to the xc-functional
have little impact on these data: neither for the spectroscopic constants of the Au
dimer nor for the cohesive properties of bulk Au and Pt, a significant difference
between GGA and RGGA results is found. As one might have expected, the sizable
relativistic corrections to the ground state energies of the dimer and the bulk on the
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Table 11 Spectroscopic constants of noble metal dimers: LDA and BP86-GGA [37, 63] versus
relativistic BP86-GGA. For comparison also fully nonrelativistic LDA results are given

Cu2 Au2
Re De !e Re De !e

Method (Bohr) (eV) (cm�1) (Bohr) (eV) (cm�1)
nonrel. calc., LDA[64, 65] 4:10 2:65 330 5:08 1:95 135

LDA[59, 61] 4:05 2:86 307 4:64 3:00 196

GGA[59] 4:16 2:28 287 4:75 2:30 179

RGGA[59] 4:17 2:27 285 4:76 2:27 177

Expt. 4:20 2:05 265 4:67 2:30 191

Table 12 Lattice constant a0 and cohesive energy Ecoh of Au and Pt obtained by LAPW
calculations with the nonrelativistic as well as the relativistic forms of the LDA and the PW91-
GGA [62] in comparison to experiment [68, 69]. The atomic ground state energies have here
been evaluated with RSDFT, Eq. (33), unlike in Ref. [62], in which the purely n-dependent RKS
approach was used. For comparison also fully nonrelativistic LDA results are given (these data have
been obtained with the plane-wave pseudopotential approach, with the valence space including the
5s, 5p, 5d , and 6s-states)

Au Pt
a0 �Ecoh a0 �Ecoh

Method (Bohr) (eV) (Bohr) (eV)

nonrel. calc., LDA 8:06 3:30 7:68 5:91

LDA 7:68 3:97 7:36 6:35

RLDA 7:68 3:94 7:37 6:32

GGA 7:87 2:73 7:51 4:86

RGGA 7:88 2:72 7:52 4:82

Expt. 7:71 3:81 7:41 5:84

one hand and the atoms on the other hand cancel out in the energy surface. The
accuracy of the data listed is completely dominated by the basic type of functional
used, as can be seen from a comparison of (R)GGA and (R)LDA numbers.

Summary

At the present level of sophistication, the inclusion of relativistic corrections in
LDA- or GGA-type approximations for the xc-energy functional does not seem
to be necessary, at least in standard electronic structure calculations in which an
accurate description of the inner shells is irrelevant. On the one hand, the RLDA
overestimates the effect of the transverse interaction drastically: the high densities
required for the transverse correction to become sizable are only found for the
extremely localized innermost shells, which, however, have little in common with
a uniform electron gas. On the other hand, the transverse correction has little effect
on the valence states, so that its more realistic description by suitably modeled
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GGA-type functionals is not really visible in the properties which one usually
addresses with DFT calculations. It remains to be seen, however, whether truly
current-dependent approximations for the xc-functional change this picture.

Acknowledgements I am very grateful to R. M. Dreizler and D. Ködderitzsch for many valuable
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The existence of an intrinsic electric dipole moment for the electron (eEDM),
which is a consequence of simultaneous violations of parity and time reversal
symmetries, is a very important problem in physics. This is because it can
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test theories beyond the Standard Model and provide insights into the matter-
antimatter asymmetry in the universe. The eEDM is determined by combining
the measured shift in the energy of an atom or a molecule and the effective
electric field, which can be calculated. This article deals with the calculations
of effective electric fields in the leading molecular candidates in the search for
eEDM, using ab initio relativistic quantum chemical methods.

Keywords
Electron electric dipole moment • Simultaneous violation of parity and time
reversal symmetries • Physics beyond the standard model • Matter-antimatter
asymmetry • Atoms and molecules • Energy shift • Effective electric field •
Configuration interaction • YbF • ThO • Relativistic coupled-cluster method •
Mercury monohalides

Introduction

The electric dipole moment of the electron (eEDM) is an excellent probe of physics
beyond the Standard Model [1, 2]. The Standard Model (SM), which encompasses
the electroweak theory and quantum chromodynamics (QCD), is by far the most
successful model to date, of particle physics, having withstood many experimental
tests. However, phenomena like neutrino oscillations and questions on the nature
of dark matter make it necessary to extend physics beyond the domain of SM [3].
Popular theories that go beyond SM include different variants of supersymmetric
(SUSY) models.

The eEDM is an intrinsic property of an electron, which arises due to simulta-
neous violations of two discrete symmetries, namely, parity reversal (P) and time
reversal (T) symmetries [4]. P would mean that Er ! �Er , where Er refers to spatial
coordinates. By definition, the parity operator P reverses the sign of the position
operator r. That is, PrP�1 D �r. Also, it is a unitary operator, which means that
P=P�1=P�.

Consider a system with its electric dipole moment (EDM) operator given by d.
Since it contains in it the displacement operator, and since PrP�1 D �r, PdP�1 D
�d. In the absence of an external electric field, a stationary state, j'i, has a nonzero
EDM, given by

hdi D h'jdj'i (1)

If the action of P on j'i gives j'0i, then

hdi D h'jP�PdP�1Pj'i
D �h'0jdj'0i (2)

The stationary state satisfies the equation

Hj'i D Ej'i (3)
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That is,

PHP�1Pj'i D EPj'i
Hj'0i D Ej'0i (4)

Here, the assumption is that the Hamiltonian is invariant under space inversion, that
is, PHP�1 D H

Therefore, j'i and j'0i describe stationary states with the same energy, E. If the
energy level is nondegenerate, then j'0i D cj'i, with c being an eigenvalue of the
parity operator, that is, it is either C1 or �1. Therefore,

h'jdj'i D �h'0jdj'0i
D �c2h'jdj'i
D �h'jdj'i (5)

This is true only if hdi is zero. That is, if the Hamiltonian is invariant under parity
and if the stationary state is nondegenerate, then the EDM of the system is zero.

T would mean that t ! �t , where t refers to time. Physically, time reversal
symmetry can be understood as motion reversal.

If the Hamiltonian is rotationally invariant, then the eigenvectors of H, J2,
and Jz form a complete set jE; j;mi. It is assumed that the degeneracy of these
eigenvectors is associated only with the .2j C 1/ values of m. The EDM in one of
these states is given by the Wigner-Eckart theorem:

hE; j;mjdjE; j;mi D CE;j hE; j;mjJjE; j;mi (6)

Here, J refers to the angular momentum operator, and CE;j is not a function of
m. It can be shown that if ju0i D Tjui, and if jv0i D Tjvi, then hu0jv0i D hujvi� [5].
If jui is j'i, and jvi is d˛j'i, where d˛ is a component of the EDM operator, then

ju0i D j'0i D Tj'i
jv0i D Td˛j'i D d˛j'0i

The last equation makes use of the fact that Td˛ D d˛T. Therefore,

h'0jd˛j'0i D h'jd˛j'i� (7)

Since d˛ is Hermitian,

h'0jd˛j'0i D h'jd˛j'i (8)

Similarly,

h'0jJj'0i D �h'jJj'i (9)
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This makes use of the fact that d˛J D �Jd˛. Also,

JzjE; j;mi D „mjE; j;mi (10)

TJzT�1TjE; j;mi D „mTjE; j;mi (11)

Jz.TjE; j;mi/ D �„m.TjE; j;mi/ (12)

Since JzjE; j;�mi D �„mjE; j;�mi, TjE; j;mi and jE; j;�mi vary only
by a phase factor (recalling that degeneracy is only due to m). Hence, if j'i D
jE; j;mi, and j'0i D TjE; j;mi, then

h'jd˛j'i D hE; j;mjd˛jE; j;mi (13)

h'0jd˛j'0i D hE; j;�mjd˛jE; j;�mi (14)

Substituting the above two expressions into Eq. (8), one obtains

hE; j;mjd˛jE; j;mi D hE; j;�mjd˛jE; j;�mi (15)

Similarly,

h'0jJj'0i D hE; j;�mjJjE; j;�mi (16)

h'jJj'i D hE; j;mjJjE; j;mi (17)

* h'0jJj'0i D �h'jJj'i;
hE; j;�mjJjE; j;�mi D �hE; j;mjJjE; j;mi (18)

Using Eqs. (15) and (18) in Eq. (6) gives EDM D 0. That is, under the combined
assumptions of rotational invariance and time reversal invariance, that degeneracy is
only due to m, the EDM vanishes. The proof discussed above follows Ballentine’s
approach [5] and is not specific only to eEDM, but of a more general nature.

Therefore, there must be simultaneous violation of both these symmetries in
order for the electron or any other system to have an intrinsic EDM. T violation
implies CP violation, due to the well- known CPT theorem [6].

The electron would not have an EDM, if it were a point particle. However, the
electron is actually surrounded by a cloud of virtual particles, and it is an asymmetry
in this electron cloud that gives it its EDM.

The SM eEDM arises only at the three-loop level, while in SUSY, for example,
eEDM arises even at the one-loop level. This can be understood from the fact that
in SUSY, the complex phases from emission and reabsorption need not be the same
and hence do not cancel out, as in the Standard Model [1]. The eEDM predicted by
SM is, hence, much smaller than that predicted by SUSY. The former predicts an
eEDM less than 10�38 e cm, while SUSY and other extensions of SM predict values
of eEDM that are a few orders of magnitude larger [1].
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A combination of theoretical calculations and experiment provides upper limits
on the eEDM. This imposes stringent constraints on the extensions of SM. The
current best limits for eEDM using atoms come from thallium (Tl), which is
20 � 10�28 e cm, with 90% confidence level. The best limit using molecules
is from ThO [7], which is 0:87 � 10�28 e cm, followed by YbF [8], which is
10:5� 10�28 e cm, both with 90% confidence level. Mercury halides are promising
candidates for eEDM searches, with their effective electric fields being about five
times that of YbF and one and a half times that of ThO.

Knowledge of eEDM may also shed light on the matter-antimatter asymmetry
of the universe [9]. It is believed that the early universe had equal amounts of
matter and antimatter. However, observations indicate that the observable universe
is dominated by matter. The baryon asymmetry in the universe (BAU) can be
expressed by a quantity, �, which is given by

� D nB

n
� 6:1C0:3�0:2 � 10�10 (19)

Here, the quantity nB is the number density of net baryons, that is, the difference
between the number density of baryons and that of antibaryons. n refers to the
number density of the cosmic microwave background radiation (CMBR) photons.

Sakharov put forth the three necessary conditions for baryogenesis, that is,
having BAU from an initial baryon symmetric state, namely, (1) baryon number
violation, (2) C and CP violation, and (3) out-of-thermal equilibrium conditions.
There are many models of baryogenesis, which satisfy these three conditions, with
one of the well-known models being electroweak baryogenesis.

The common theme that underlies both eEDM and the matter-antimatter asym-
metry is CP violation. CP violation in the SM is predominantly from the CKM
(Cabibbo-Kobayashi-Maskawa) matrix. The SM predicts a smaller value of eEDM
than its various extensions. Also, CP violation in SM predicts � to be of the order
of 10�18, whereas the value of � from observations gives � 6:1C0:3�0:2 � 10�10. The
search for a model that predicts the right amount of CP violation to describe both
these phenomena is a very important problem.

The SM has one Higgs doublet, which cannot produce CP violation, because
only one real field remains after the Higgs mechanism. A complex phase is required
for CP violation. Including a second Higgs doublet, that is, a two Higgs doublet
model (2HDM), results in CP violation from the Higgs sector too. Kazarian and
Kuzmin estimated the scalar CP violating parameter from cosmology and obtained
an estimate for the eEDM, jdej > 10�27 e cm [9]. Nataraj and Das modified the
idea and extended it further, and after imposing a cutoff for de from the best
limit then available (Tl), preliminary calculations indicated that � was 6–7 orders
lower than the expected value [10]. This may be an indication that more sources
of CP violation are required. As the eEDM limit improves, we can get a better
handle on �. If one finds the right model that explains both de and �, then there
would be a unified framework that predicts the right amount of CP for both the
phenomena.
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Applying an electric field, EE, to a quantum mechanical system such as an
electron would shift its energy by #E, which is given by

#E D � Ede � EE (20)

Applying an electric field on an electron would accelerate it, so better systems to
observe eEDM are atoms and molecules, commonly with one unpaired electron.

Consider an atomic system. The Hamiltonian, Ha, is given by

Ha D
X
i

p2i
2m
C
X
i>j

e2

rij
� de

X
i

� i � Eintl
i (21)

The summation is over the number of electrons in the atom, pi is the momentum
of the t th electron, m is the mass of an electron, Z is the atomic number of the atom,
ri refers to the distance of the i th electron from the nucleus, and rij D jEri � Erj j.
de is the eEDM, 
i are the .4 � 4/ Pauli matrices, and E intl

i is the electric field
experienced by the electron due to the nucleus and the other electrons in the atom.
The last term describes the interaction of the spin of an electron that has an eEDM
with the internal electric field that it experiences. Since de is small, this term can be
treated as a perturbation, HeEDM, to the atomic Hamiltonian, and hence,

Ha D H0 CHeEDM (22)

Also,

H0j 0
˛i D E0j 0

˛i (23)

Here, j 0
˛i refers to the unperturbed state of H0.

The application of an external electric field, Eextnl, induces an EDM given byP
i eEri , with the summation i going over the number of electrons. Assume that the

applied electric field is along the z direction. Hence, the atomic EDM operator, Da,

becomes

Da D
X
i

.de� z,i C ezi/ (24)

Then, the atomic EDM is given by

hD˛i D h ˛jDaj ˛iI (25)

j ˛i D j 0
˛i C dej 1

˛i C d2e j 2
˛i C : : : (26)
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Here, j ˛i is the state of Ha. Terms that are second order and beyond in de are
neglected, since de is very small. Note that de� z is even under parity, while ez is odd
under parity. Also, j 0

˛i and j 1
˛i are of opposite parities. Therefore,

hD˛i D .deh 0
˛ j
X
i

.de� z,ij 0
˛i/

C .deeh 0
˛ j
X
i

zij 1
˛i

C deeh 1
˛ j
X
i

zij 0
˛i/ (27)

D hD0i C hD1iI (28)

hD0i D deh 0
˛ j
X
i

.de� z,ij 0
˛i (29)

hD1i D deeh 0
˛ j
X
i

zzj 1
˛i

C deeh 1
˛ j
X
i

zzj 0
˛i (30)

And

j 1
˛i D

X
I¤˛

j 0
I ih 0

I jHeEDMj 0
˛i

E0
˛ �E0

I

(31)

It can be shown that

hD1i D �deh 0
˛ j
X
i

.de� z,ij 0
˛i (32)

* hD˛i D 0 (33)

That is, in a nonrelativistic scenario, although the electron has an EDM, due to
the various interactions in the atom, the atomic EDM is zero [11].

Consider the relativistic case, where the usual Hamiltonian is replaced by the
Dirac-Coulomb Hamiltonian, and the wave function is built from four-component
spinors. The atomic Hamiltonian is [12]

Ha D H0 CHeEDM

D
X
i

c˛ � pi C ˇmc2 C
X
i>j

e2

rij
� de

X
i

ˇ� i � Eintl
i (34)
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In the above equation, c is the speed of light, ˛ and ˇ refer to the Dirac matrices,
pi is the momentum of the i th electron, and m is the mass of the electron.

And the atomic EDM becomes

hD˛i D .deh 0
˛ j
X
i

.deˇ� z,ij 0
˛i/

C .deeh 0
˛ j
X
i

zzj 1
˛i

C deeh 1
˛ j
X
i

zij 0
˛i/ (35)

D 2cde

„
X
I¤˛

h 0
˛ jzj 0

I h 0
I jiˇ5p2j 0

˛

E0
˛ �E0

I

C h:c:

¤ 0

In the above equation, h.c. stands for Hermitian conjugate. And, the relation

Heff
eEDM D 2icdeˇ5p2

„ has been used, where Heff
eEDM is an effective eEDM Hamiltonian

and 5 is the product of the four Dirac matrices. This demonstrates that the eEDM
calculations can only be performed in a relativistic framework.

Therefore, the shift in energy of the system is given by

#E D �hDa � Eextnli
D �REextnlde

D �Eeffde (36)

Here, R � hD˛i
de

, and is called the enhancement factor, and Eeff D REexternal.
Eeff is called the effective electric field, and it is the electric field that the electron
experiences in the atom. Note that the effective electric field for an atom depends on
an external electric field. Typically, these fields are of the order of kV/cm. Thallium
atom, which is currently the candidate among atoms that has given the best upper
limit for eEDM, has R D �466:31

Consider a diatomic molecule. The interaction Hamiltonian due to the electron
having eEDM is given by [12]

HeEDM � de
NeX
iD1

ˇ� i � Eintl
i (37)

The internal electric field here is from the two nuclei as well as from all the other
electrons in the molecule. Ne refers to the number of electrons in the molecule. The
quantity that is measured in the experiment is the energy shift due to the effective
electric field, which can be written as
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#E D h jHeEDMj i

D �de
NeX
iD1
h jˇ� i � Eintl

i j i

D �deEeff (38)

) Eeff D
NeX
iD1
h jˇ� i � Eintl

i j i (39)

Eeff is evaluated using a relativistic many-body approach. Therefore, the energy
shift is measured from the experiment, and the effective electric field is obtained
from theory. The ratio of the two gives the eEDM. In the above equation, j i refers
to the wave function of a molecular state. The calculations must be performed in
the relativistic framework, since in a nonrelativistic treatment, the effective electric
field is zero. In such a case, the single particle wave function is built from the four-
component spinors.

Since the evaluation of the two-body term in the expression for the internal
electric field is complicated, the following relationship can be used [13]:

� de
NeX
iD1

ˇ� i � Eintl D Œ�de
e
ˇ� � r;H0�

C 2icde
NeX
iD1

ˇ5p2 (40)

where the summation over the electronic coordinates is given by i, and H0 refers
to the Dirac-Coulomb Hamiltonian, which is given by

H0 D
X
i

"
c˛ � pi C ˇmc2 �

X
A

ZA

jri � rAj

#

C
X
i¤j

1

jri � rjj (41)

Here too, the summation over the electronic coordinates is indicated by i. The
summation over the nuclear coordinates is indicated by A. ri is the position vector
from the origin to the site of an electron, and rA is the position vector from the origin
to the coordinate of a nucleus. ZA is the atomic number of the Ath nucleus.

Using the above relation, one can show that

Eeff D 2ic

e

NeX
iD1
h jˇ5p2i j i (42)
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This expression of the effective electric field is easier to evaluate than that given
by Eq. (39), because ˇ5p2

i is a one-body operator.
It is important to note that the eEDM is associated with CP violation, which

is a particle physics phenomenon. The signature of this effect is observed in an
experiment using an atom/molecule. This would fall under the domain of atomic,
molecular, and optical physics. The calculation of the effective field requires
relativistic quantum chemistry. Hence, the search for eEDM involves the synergy
of three distinct fields, in which theory and experiment are indispensable.

In the last few years, molecules have been generally preferred over atoms. This
is due to the fact that in molecules, there is hybridization of the atomic orbitals and
the matrix elements of the effective eEDM operator between some orbitals may be
large. The effective electric field is a function of the internal electric field (of the
order of MV/cm), unlike in atoms, where their effective electric fields are a function
of an applied field, which is typically of the order of kV/cm.

Experimentally, the shift in energy of a molecule in a particular state due to
eEDM in the presence of an internal electric field is given by

#E D �deEeff�.Eexternal/I (43)

�.Eexternal/ D hz:ni (44)

where � is called the polarization factor, defined as the dot product between the
z axis, defined by the external electric field, and the internuclear axis, n. If � is one,
which is an ideal case, then the molecule is completely polarized, that is, the external
field and the internuclear axis are along the same axis. The polarization factor can be
obtained from the experiment. As seen earlier, the shift in energy is from experiment
too, and Eeff is calculated from relativistic many-body theory, and a combination of
these is used to set an upper limit on eEDM.

In the following sections, we discuss the relativistic many-body methods that
have been used to determine the effective electric fields of the heavy polar molecules
that are currently the leading candidates in the eEDM searches.

Relativistic Configuration Interaction (RCI) Method

In this section, the method of relativistic configuration interaction (RCI) is described
for obtaining the exact energy of a many-electron state and the corresponding wave
function of that state. The discussions that follow, on this method, are based on the
book by Szabo and Ostlund [14], where its nonrelativistic version is expounded.
This also involves the method of obtaining the correlation energy of the many-
electron state. Among all the approaches developed so far, the CI method is
conceptually the simplest but computationally challenging. The basic idea is to
diagonalize the N -electron Hamiltonian in a basis of N -electron functions (Slater
determinants). In other words, we represent the exact wave function of any state as
a linear combination of N -electron trial functions and use the variational method to
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optimize the energy of the state. If the basis were complete, we would obtain the
exact energies of ground as well as of all excited states of the system. In principle,
CI provides an exact solution of the many-electron system. In practice, however, we
can handle only a finite set of N -electron trial function; consequently, CI provides
only upper bounds to the exact energies.

The starting point of RCI method is the Dirac Fock (DF) wave function, jˆ0i.
After solving the self-consistent field (SCF) equations in a finite basis set, we
obtain a set of relativistic molecular orbitals, f	ig. The determinant formed from
the N lowest energy orbitals is jˆ0i. Other than jˆ0i, we can form a large number
of N -electron determinants from the orbitals. It might be convenient to describe
these other determinants by stating how they differ from jˆ0i. Thus, the set of all
possible determinants include jˆ0i, the singly excited determinants jˆrai (which
differ from jˆ0i, in having the spin orbital 	a replaced by 	r/, the doubly excited
determinant jˆrsabi (differing from jˆ0i by replacing 	a with 	r and 	b with 	s/, and
N -tuple excited determinants. We can use these many-electron wave functions as a
basis to expand the exact many-electron wave function j‰i. If jˆ0i is a reasonable
approximation to j‰i, then a better approximation according to variation principle
(which becomes exact as the basis becomes complete) is

j‰i D c0jˆ0i C
X
a;r

crajˆrai C
X
a<b
r<s

crsabjˆrsabi C
X
a<b<c
r<s<t

crstabc jˆrstabci C � � � (45)

This is the form of full CI wave function. The restriction on the summation
indices (i.e., a < b, r < s, etc.) is to avoid multiple counting of a given excited
determinant. The above expression can be simplified as

j‰i D c0jˆ0iC
X
a;r

crajˆraiC
�
1

2Š

�2 X
a<b;r<s

crsabjˆrsabiC
�
1

3Š

�2 X
a<b<c
r<s<t

crstabc jˆrstabciC� � �

(46)
where a factor of .1=nŠ/2 is included in front of the summation to avoid multiple
counting in the case of unrestricted summation indices.

The trial wave function given above can be used to determine the wave functions
and the energies, by using the linear variational method. This consists of forming
the matrix representation of the Hamiltonian in the basis of N -electron functions
which we are used to expand the above equation. Then, the eigenvalues of this
matrix have to be found by diagonalizing the Hamiltonian matrix. This is called
the full CI matrix, and the method is referred to as full CI. The lowest eigenvalue
will be an upper bound to the ground state energy of the system, and the higher
eigenvalues will be upper bounds to exited states. The difference between the lowest
eigenvalue .E0/ and the DF energy .E0/ obtained within the same one-electron basis
is called the basis set correlation energy. As the one-electron basis set approaches
completeness, this basis set correlation energy approaches the exact correlation
energy. However, the basis set correlation energy obtained by performing a full CI
is exact within the subspace spanned by the one-electron basis.
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To construct the full CI matrix and examine its properties, it is convenient to
rewrite the previous full CI wave function in a symbolic form

j‰i D c0jˆ0i C cS jˆS i C cDjˆDi C cT jˆT i C cQjˆQi C � � � (47)

where jˆS i represents the terms involving single excitations, jˆDi represents
terms involving double excitations, and so on. Similarly, cS and cD are coefficients
corresponding to terms involving single and double excitations, respectively. Using
this notation, the full CI matrix takes the following form:266666664

hˆ0jH jˆ0i hˆ0jH jSi hˆ0jH jDi hˆ0jH jT i � � �
hS jH jSi hS jH jDi hS jH jT i � � �

hDjH jDi hDjH jT i � � �
� � �

377777775
H is the Hamiltonian for which ‰ is the eigenfunction. Since the matrix is

Hermitian, the lower triangle will be the same as the upper triangle. As mentioned
earlier, we have to diagonalize this full CI matrix to get the eigenvalues and the
corresponding eigenvectors, but the following observations of the full CI matrix are
important:

1. There is no coupling between the DF state and single excitations (i.e.,
hˆ0jH jSi D 0/. This is a consequence of Brillouin’s theorem which states
that all matrix elements of the form hˆ0jH jˆrai are zero.

2. There is no coupling between jˆ0i and triples or quadruples. Similarly, there is
no mixing between singles and quadruples. This is a consequence of the fact that
all matrix elements of the Hamiltonian between Slater determinants which differ
by more than two spin orbitals are zero (Slater-Condon rules). This also indicates
that the blocks which are not zero are sparse. For instance, the matrix element
hDjH jT i represents

hDjH jT i $ hˆrsabjH jˆtuvcdei

For a matrix element of this type to be nonzero, the indices a and b must be
included in the set fc; d; eg and also the indices r and s must be included in the
set ft; u; vg:

3. Since there is no mixing of single excitations with jˆ0i directly, it can be
expected that they have a very small influence on the ground state energy. There
effect is not zero because they do mix indirectly, i.e., they interact with doubles
which in turn interact with jˆ0i. Although they have almost negligible effect on
the ground state energy, they can influence one-electron properties like dipole
moment significantly.
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4. Because the double excitations mix directly with jˆ0i, it may be expected
that their contribution is important. In fact, for small systems, they have a
dominant contribution in the correlation energy. Moreover, it turns out that
quadruple excitations are more important than triple or single excitations, if one
is concerned solely with the ground state energy.

As mentioned earlier, the number of determinants is extremely large even for a
small system, and it becomes practically impossible to do a full CI calculation. One
of the common approximations is to truncate the full CI matrix or equivalently the
CI expansion for the exact many-electron wave function at certain excitation level.
If one includes only single excitations in the trial function for the CI expansion,
the scheme is called singly excited CI (SCI). Similarly, including single and double
excitations in the CI expansion is called singly and doubly excited CI (SDCI) and
so on.

For heavier system, even performing an SDCI calculation is impossible. For
such systems, a better approximation is the restricted active space configuration
interaction (RASCI) method. In this method, one considers a limited number of
occupied orbitals in jˆ0i and a limited number of virtual (un-occupied) orbitals
with respect to jˆ0i. These orbitals are called active orbitals. Within these active
orbitals, one could do a truncated CI calculation at certain excitation level.

Furthermore, in the RASCI method, the total active orbitals are divided into three
active subspaces: (a) RAS1 with a restricted number of holes allowed, (b) RAS2
where all possible configurations are permitted, and (c) RAS3 with an upper limit
on the number of electrons allowed.

In the CI method, Eq. (46) is used, to calculate the expectation value of an
operator, O.

Calculations of Eeff in YbF

Before we describe a relativistic CI calculation of Eeff in YbF, we briefly discuss
some of the early calculations of this quantity.

The effective electric field Eeff in YbF was first calculated by Kozlov using a
semiempirical method [15, 16] based on experimental hyperfine structure data. Ab
initio calculation of Eeff in the molecule was first calculated by Titov et al. [17]
using a generalized relativistic effective core potential (GRECP) at the level of
self-consistent field (SCF) and restricted active space (RAS). It is expected that
the GRECP procedure provides reasonable accuracy of the computed quantity with
small computational cost. However, it should be noted that this is not an all-electron
treatment.

When the core electrons of a heavy-atom molecule do not play an active role, the
effective Hamiltonian in GRECP approach, HEf , can be written as

HEf D
X

iv
�
hSchr.iv/C UEf .iv/

�C X
iv	jv

1

riv ; jv
(48)
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written only for the valence and some outer core electrons, which are denoted
by the indices iv and jv , and UEf is a relativistic effective core potential (RECP)
operator simulating interactions of the explicitly treated (“pseudo-valence”) elec-
trons with those which are excluded from the RECP calculations [17]. hSchr refers
to the one-body part and the last term is the two-body part of the Hamiltonian.

Titov and coworkers have further improved their results by considering an
effective operator (EO) technique to their previous calculations using GRECP
procedure at the level of SCF and RASSCF [18]. Their EO technique is based
on the framework of the second-order many-body perturbation theory (MBPT(2)),
which can include a significant part of the core-valence electron correlation [19].
Assuming that the valence-valence electron correlation effect is negligible, Parpia
[20] estimated Eeff from all-electron unrestricted Dirac-Fock (DF) (UDF) method.
Quiney et al. [21] reported Eeff computed at the core-polarization level, with all-
electron DF orbitals, neglecting the effect of pair correlation (PC) and higher order
corrections to Eeff. The calculations cited above predict the values of Eeff in the
interval of�18:81 to�26:05GV/cm, which is quite large. Therefore, a more precise
estimation of Eeff is necessary in order to set a reliable limit on de

In early 2006, Eeff for the ground (2†1=2/ states of the YbF [8] molecule
was computed, using all-electron DF orbitals at the RASCI level. Later, MBPT
(2) was employed, to calculate Eeff for the same system [22]. The active space
considered in the earlier calculation [8] using the RASCI method was not so large,
but some triple excitations were considered, which was generating a large number
of configuration state functions (CSFs). However, it was found that there was no
significant contribution by the inclusion of the triple excitations. Later, the same
RASCI approach was used, but with a sufficiently large CI space. Also, all possible
single and double excitations within the active space were considered, to study Eeff

[23]. However, the deep-lying occupied and high-lying virtual orbitals are excluded
in these calculations.

The effective electric field Eeff for the ground state of YbF estimated from our
recent RASCI calculation is compared with other calculations [17, 18, 20, 21] as
well as with our previous calculation [8, 22] and the semiempirical result [16] in
Table 1. As Table 1 shows, the recently estimated value of Eeff using the same
RASCI method, but with a slightly different technique, improved over our earlier
calculation [8], and the magnitude of the computed quantity has increased by around
6% over our earlier result [8]. These calculations [23] have considered (a) all the
31 active occupied spinors containing 31 electrons in RAS1 with a maximum of
two holes allowed, (b) 7 active virtual spinors in RAS2, and (c) the remaining
active virtual spinors in RAS3 with a maximum of two electrons are permitted.
The basic idea behind this choice is to consider all possible single and double
excitations, within the active space, with respect to the DF reference configuration.
Although from a methodology point of view, both the recent calculations [23]
and our earlier calculations [8] are the same, there are some technical differences,
such as employing a sufficiently large CI space and considering all possible single
and double excitations, within the active space, with respect to the DF reference
function, while in the earlier calculations, a relatively small CI space was used and



19 Relativistic Many-Body Aspects of the Electron Electric Dipole. . . 595

Table 1 Effective electric
field Eeff for the ground
2
P

1=2 state of YbF molecule

Mothods Eeff (GV/CM)

Semi-empirical [16] �26:05
GRECP-RASSCF [17] �18:81
DFCCP [21] �24:80
UDF (unpaired electron) [20] �19:89
UDF (all electrons) [20] �24:87
GRECP-RASSCF-EO [18] �24:93
DF (Nayak et al.) [8] 19:91

RASCI (Nayak et al.) [8] �22:49
MBPT(2) (Nayak et al.) [22] �21:56
RASCI [23] �24:06

considered all possible single, double, and some triple excitations, within the active
space, with respect to the DF reference function. For example, the active spaces for
YbF molecule considered in the recent calculations are composed of 31 electrons
and a maximum of 76 active orbitals, whereas the active spaces considered in the
earlier calculations [8] are composed of 31 electrons and a maximum of 56 active
orbitals. The recently estimated result of Eeff is off by �3 % from that of Mosyagin
et al. [18] at the level of RASSCF with the EO technique within the GRECP
approach (GRECP-RASSCF-EO) and differs by �7 % from the semiempirical
result of Kozlov [16], with the accuracy of the latter method expected to be 80 %.
Similarly, our recently estimated result of Eeff is off by �3 % from the calculation
of Quiney et al. [21] at the level of first-order core polarization with all-electron
DF orbitals (DF + core polarization) and Parpia’s all-electron UDF [20] calculation.
Although the core polarization contribution is the most important, the effects of PC
and higher- order terms are non-negligible. The inclusion of electron correlation
through UDF method is generally not recommended, as the UDF theory suffers
from spin contamination.

The inclusion of electron correlation to Eeff via the CI method is straightforward
but computationally challenging as a large number of electrons and orbitals need
to be included in the CI space. The effect of electron correlation is analyzed using
the RASCI method. There are 39 doubly occupied orbitals and one singly occupied
orbital in YbF, of which the 25th occupied orbital corresponds to 5s occupied spin
orbital of Yb. As the contribution of the 5s orbital of Yb to Eeff is quite significant
[15–17], this orbital is included in the CI space. The occupied orbitals above the 25th
are also included in the RASCI space from energy considerations [the 4f orbitals
of Yb and the 2p orbitals of F in YbF are energetically quite close (see Table 12 of
Ref. [20])]. Hence, 31 active electrons (16˛ and 15ˇ) are included in the CI space.
In the recent calculations for Eeff, six sets of RASCI spaces are constructed from 31
active electrons and 36, 46, 56, 66, 76, and 86 active orbitals to analyze the result
of Eeff. From this analysis, it was found that when more active orbitals are included
in the CI space, the magnitude of Eeff for YbF increases gradually and reaches a
value of�24:06GV/cm for the active space containing 76 active orbitals. Increasing
in the size of the active space further has almost negligible effect on the result of
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Eeff. Therefore, using a large CI space is quite important to study Eeff. Also, the
contribution of triple excitations, omitted in the recent calculation, but considered
in our earlier calculation [8], is negligible.

Calculations of Eeff in ThO

The first calculation of Eeff for the 3#1 state of the ThO molecule was per-
formed by Meyer et al. [24]. An approximate method, based on the nonrelativistic
molecular structure calculations, perturbed by the Hamiltonian arising from the
electron electric dipole moment (eEDM) interaction, was used in the work. The
relativistic effect is accounted for in a semiempirical way, as described in [24].
Augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pvqz)
basis of Dunning was considered to describe the O atom’s s � f orbitals. For
the Th atom, a relativistic 78 electron effective core potential (ECP78MWB) was
used, to describe the core of Th, and utilized the ECP78MBW aug-cc-pvqz basis set
to describe the s � f orbitals of the outer core and valence region. In addition,
the geometry was optimized by varying the Th and O bond distance to get an
equilibrium bond length, Re , of 3:47a0 in the ground state, where a0 is the Bohr
radius. The optimized bond length thus obtained is used to calculate Eeff in the first
excited state (3#1/ of molecule. A final result of 104 GV/cm was obtained. Due
to approximate relativistic matching of nonrelativistic orbitals and semiempirical
methods to incorporate the relativistic effects, the uncertainty was estimated to be
�3 %.

The next detailed study of the Eeff on the excited 3#1 state of ThO was by
Skripnikov et al. [25]. In their calculations, they used relativistic two-component
coupled-cluster formalism to include electron correlation effects. Based on this
formalism, the transition energy between 1†C and excited 3#1 states was calculated
and so were the molecular dipole moment, effective electric field, Eeff, electron-
nucleus scalar-pseudoscalar constantWP;T , and parallel hyperfine structure constant
Ak. A single-reference approach was used for the calculations of the above-
mentioned spectroscopic constants and symmetry-violating properties. In their
coupled-cluster approach, they considered single and double excitations (CCSD)
and the perturbative treatment of triple cluster amplitudes (CCSD(T)). The basis
set for Th is based on GRECP formalism, where the inner-core electrons (1s-
4f ) of Th were excluded from the molecular correlation calculations using the
GRECP operator. Thus, the outermost 38 electrons in ThO molecule were treated
explicitly, and the basis set for Th was constructed based on a generalized correlated
scheme [18]. The contracted basis set chosen for Th was (30s, 20p, 17d, 11f, 4g,
1h)/[30s, 8p, 6d, 4f, 4g, 1h]. Only the p-, d -, and f -type Gaussians are contracted.
For O, the aug-ccpvqz basis set, with two g-type basis functions removed, was
employed, which is (13s, 7p, 4d, 3f)/[6s, 5p, 4d, 3f]. In addition to that, basis set
enlargement corrections to the considered parameters were also analyzed, by using
extended basis set for Th (with added f , g, h, and i Gaussian functions). Also, the
ground- and excited-state geometries were optimized at the CCSD(T) level, with the
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extended basis set used for Th. A value of 3.482 a.u for 1†C and 3.515 a.u. for 3#1

was obtained, which is in very good agreement with the experimental results (3.478
a.u for 1†C and 3.511 a.u. for 3#1) [26]. Hence, the experimental bond length of
ThO was used for the study of Eeff on the excited 3#1 state. Based on the method,
they obtained a final result of Eeff D 84:0GV/cm for the 3#1 state at the CCSD(T)
level using 38 correlating electrons. The uncertainty in their calculation is given to
be within 15 % of the computed quantity.

A more detailed and elaborate study has been performed recently by Fleig
et al. [27]. Their work is based on the generalized active space (GAS) concept,
introduced into the configuration interaction (CI) method of DIRAC 11 program. In
the GAS-CI formalism, the total active orbital space is subdivided into an arbitrary
number of subspaces with arbitrary occupation constraints. In other words, different
excitation levels can be assigned to different subspaces of the total active orbital
space. This is a more general and extended formalism than the RAS concept
discussed earlier. For the study of the ThO molecule, Fleig et al. [27] used the
Dirac-Coulomb Hamiltonian and an all-electron DF calculation to optimize the
molecular spinors. In their study, they used fully uncontracted atomic Gaussian
basis sets of double-zeta, triple-zeta, and quadruple-zeta quality, for the description
of the electronic shells of ThO. For Th atom, Dyall’s basis sets were used, whereas
for O atom, Dunning’s cc-pvnz-DK basis set (where n 2 f2; 3; 4g/ and the aug-
cc-pvtz-DK set were used. More details of this work can be found in Ref. [27].
The basic model used in their Hartree-Fock open-shell calculations is based on an
average-of-configuration Fock operator for two electrons in Th (7s, 6ıd ) Kramers
pairs with all other (96) electrons of ThO restricted to the closed shell. This model
is appropriate for the region close to the equilibrium bond length of the molecule,
where the dominant configurations correspond to the system Th2C O2�. The open-
shell averaging ensures a balanced description of the low-lying electronic states of
interest.

As mentioned earlier, Fleig et al. [27] have used the concept of GAS-CI in
their electronic structure calculation and for the study of Eeff in the 3#1 state of
the ThO molecule. For this purpose, they constructed different GAS-CI spaces
for defining the CI wave functions of varying quality. As shown in Fig. 1, they
partitioned the active space into seven subspaces, which contain different number
of Kramers-paired spinors, five of which are active for excitations. Based on this
partitioning, they assign four parameters (m,n,p,q) that define the accumulated
electron occupation constraints of the subspaces. They choose five different CI wave
function models for their calculations. The values of the parameters (m,n,p,q) and
the corresponding GAS-CI wave function models are presented in Table 2.

The parameter, K, has been introduced to define the variable active valence
spinor space. For example, K D 3 includes only the (7s, 6ıd ) spinors of Th,
resulting in 3 Kramers pairs in the fourth active space as shown in Fig. 1, thus
providing a model for a balanced description of the ground state (� D 0) and the
excited states� 2 f1; 2; 3g arising from 3# in theƒ�S coupling picture. Similarly,
K D 5 includes two more Kramers pairs containing �-type spinors to the fourth
active space, and K D 7 adds two more Kramers pairs of 
 -type spinors. Again,
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# of Kramers
pairs

Accumulated
# of electrons

min max
Deleted (176)

Virtual 183-X 36 36

Th: 6d    , 7p, 8s, 8p
Th: 7s, 6d K 36-m 36

Th: 6s, 6p
O: 2s, 2p 8 34-n 34

Th: 5d 5 18-p 18

Th: 5s, 5p 4 8-q 8

Frozen core (31)

Fig. 1 Generalized active space models for the CI wave function used in Tho molecule. The space
with 183-K virtual Kramers pairs (for vTZ basis set) is considered as active virtual, whereas 31
Kramers pairs are kept a frozen and 176 virtual are deleted

Table 2 Parameters defining
the occupations constraint
and the label of the model
space for the CI wave
function of ThO molecule

Parameter values Label of correlation model

m D 2, n D 2, p D 2, q D 2 MRK -CISD(18)

m D 2, n D 3, p D 0, q D 0 MRCT
K -CISD(18)

m D 3, n D 2, p D 0, q D 0 MRK -CISDT(18)

m D 2, n D 2, p D 2, q D 0 MRK -CISD(28)

m D 2, n D 2, p D 2, q D 0 MRK -CISD(36)

K D 9 results from adding two more Kramers pairs of �-type, K D 10 includes
one more Kramers pair of 
 -type spinors, and finally K D 12 results from adding
two more Kramers pairs containing �-type spinors to the fourth active space. In
addition to this, the CI wave function models contain the number of total correlated
electrons (in parenthesis) and include the excitation ranks, where “SDT” stands for
single, double, and triple excitations, for example. The value of the parameter, for
example, n D 2, denotes the maximum hole rank of the respective active space.
In this particular example of n D 2, Slater determinants with zero up to two
holes in the Th .6s; 6p/ and O .2s; 2p/ (which are included in third active space)
would be included in the expansion of the CI wave function. Based on the GAS-
CI concept discussed above, Fleig et al. [27] defined various models of CI wave
functions in their study, which are labeled as MR3-CISD(18), MR5 � CISD.18/,
MR7-CISD(18), MR9-CISD(18), MR10-CISD(18), and MR12-CISD(18). These are
all basic model spaces which are at the level of single and double excitations and
contain 18 electrons in total. Furthermore, they defined a few additional models such
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as MR3-CISDT(18) and MRCT3 -CISD(18). The former contains Slater determinants
with triple excitations into the virtual spinor space, whereas the latter contains three
holes in the Th .6s; 6p/ and O .2s; 2p/ sub-valence spinors.

Fleig et al. [27], in their calculations, first establish the molecular wave functions
that describe accurately the excitation energy of the � D 1 electronic state. The
experimental internuclear distance of R D 3:477 a0 was used for their calculations.
Basis sets of different qualities were considered, and it was found that the vtz basis
set leads to a large correction of �15%, whereas the vqz set only yields another
�4 % i.e., less than 200 cm�1 in absolute value. Hence, their investigation proceeded
with the vtz basis set. The next criterion considered is the number of electronic shells
included in the explicit treatment of dynamic electron correlation. For that, cases
starting from 2 correlated electrons (Th (7s, 6d ) shells) were considered and went
up to 38 electrons (Th (5s, 5p, 5d , 6s, 6p, 6d , 7s) and O (2s, 2p)). It was observed
that the correlation among the valence and sub-valence electrons of both atoms are
quite important as compared to the core-valence and core-core correlations, where
the latter changes the excitation energy by only�3%. The third step was to consider
the size and structure of the active space. It was observed that increasing the size of
the active space leads to non-negligible corrections. In particular, the active spaces
arising from X D 7 to X D 10 provide important correlation effects. A very
accurate vertical excitation energy of Te D 5;410 cm�1 was obtained, as compared
to the experimental result 5;317 cm�1, for the � D 1 state, from their CI wave
function model MR12-CISD(18). Having studied the quality of the wave function
in describing the excited state (� D 1), which is relevant for the measurement of
electron EDM, the next goal was to determine the effective electric Eeff and the
parallel component of the magnetic hyperfine constant Ak for this state.

This effective one-body form of the electron EDM operator has been used by
Fleig et al. [27] in their calculation of Eeff for the ThO molecule.

Similar analysis was performed for Eeff and Ak as was performed for the
excitation energy Te . It was found that Eeff is virtually insensitive to the size of the
basis set employed. The hyperfine constant Ak changes by hardly 1 % in magnitude,
as the basis set cardinal number is increased from 2 to 4. Furthermore, it was found
that both Eeff and Ak are largely unaffected when more than 18 valence/sub-valence
electrons are included in the explicit treatment of electron correlation. The final
results were Eeff D 75:2GV=cm and the Ak D �1;339MHz in the (� D 1) excited
state of ThO, using the CI wave function MR12-CISD(18). The value of Eeff thus
obtained is 10% smaller than the result previously reported by Skripnikov et al. [25].
From their detailed analysis, the uncertainty (error bar) in their calculation for the
computed quantity Eeff is estimated to be around 3 %, which is quite small as
compared to the error bars in the previous studies [24, 25]. In addition to that, the
newly computed Eeff (which is 10 % smaller in magnitude) will have consequences
for the recently determined upper bound on the eEDM [7], which had been obtained
based on the earlier reported result Eeff D 84:0GV=cm [25]. It is because of
this 10 % smaller value of the Eeff that the upper bound of the eEDM de requires
adjustment, with the revised bound being jdej 	 9:7 � 10�29 e cm.
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Relativistic Coupled-Cluster Method for Eeff

General Aspects

In this section, we discuss a relativistic coupled-cluster (RCC) method [28,29], fol-
lowing the relativistic CI method. The single-reference RCC method is considered
to be the current gold standard of many-body theory of heavy atoms and diatomic
molecules, where the electronic state is mainly governed by a single determinant.
For example, the RCC method is very effective and accurate in systems consisting
of an alkali-earth-like atom and a halide atom, such as YbF and HgF. These
molecules are also considered to be promising candidates for eEDM measurement,
since the effective electric field, Eeff, is expected to be large, due to the high
electronegativity of the halides. In this section, we briefly explain the theory of
RCC and how to calculate Eeff using this method. We then discuss the results of
Eeff in the YbF molecule with detailed calibrations of the dependence of basis sets
and core correlation effects. To assess the accuracy of our RCC wave function,
we also calculate the parallel component of the hyperfine coupling constant .Ak/
and the dipole moment (DM) along the molecular axis and compare them with the
corresponding experimental values. From this assessment, we see that our RCC
method is accurate and is within 10 % of error. Finally, we report onEeff for mercury
monohalide systems (HgF, HgCl, HgBr, and HgI). These systems are promising
candidates for a new generation of EDM experiments, since their Eeff is more than
100 GV/cm, the largest values ever reported, and the sensitivity of measurement
can be improved by generating cold molecules of mercury monohalides by photo
association.

Theory of the Coupled-Cluster Method

The coupled-cluster wave function can be written as

j i D eTjˆ0i (49)

where jˆ0i refers to the DF wave function of the ground state of the molecule, which
is built from single-particle four-component spinors. This is a single-reference
CCM, that is, jˆ0i is taken to be a single determinant. T is the cluster operator,
which is given by T1 C T2, where T1 and T2 indicate the single (S) and double (D)
excitation operators, respectively. This is called the CCSD (coupled-cluster singles
and doubles) approximation. The excitation operators in CCSD are given by

T1 D
X
ap

tpa a
�
paa (50)

T2 D
X

p>q;a>b

t
pq

ab a
�
pa

�
qabaa (51)
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t
p
a and tpqab are the cluster amplitudes, with a and b referring to holes and with p

and q referring to particles. If a�paa acts on a state, then a hole “a” is destroyed from
that state, and a particle “p” is created. When a�paa acts on a model state, which is
the Slater determinant, then the resulting state is denoted by jˆpa i.

The CCSD amplitude equations are

hˆpa je�THNe
Tjˆ0i D 0 (52)

hˆpqab je�THNe
Tjˆ0i D 0 (53)

The term e�THNe
T can be written as fHNe

TgC , using the linked-cluster theorem
[30], where the subscript “C” means that each term is connected and HN is
the normal-ordered Hamiltonian. The important features of our relativistic CCSD
method are that it uses the Dirac-Coulomb approximation shown in Eq. (40), it is
size extensive, and the correlation effects are treated to all orders in the residual
Coulomb interaction for all possible single and double excitations [13]. In the
coupled-cluster method, the expectation value of any operator, O, is given by

hOi D h jOj ih j i

D hˆ0je
T�OeTjˆ0i

hˆ0jeT�eTjˆ0i

D hˆ0je
T�ONe

Tjˆ0i
hˆ0jeT�eTjˆ0i C

hˆ0jOjˆ0ihˆ0je T�eTjˆ0i
hˆ0jeT�eTjˆ0i (54)

The previous line uses the fact that O D ON C hˆ0jOjˆ0i. Using the expression
[31],

hˆ0jeT�O Ne
Tjˆ0i

hˆ0jeT�eTjˆ0i D hˆ0je
T�ONe

Tjˆ0iC (55)

results in the expectation value of the operator O becoming

hOi D hˆ0jeT�ONe
Tjˆ0iC C hˆ0jOjˆ0i (56)

In the present work, the expectation value of a normal-ordered operator was
calculated by considering only the linear terms in the coupled-cluster wave function
as they make the most important contributions. The expectation value can, therefore,
be expressed as

hˆ0j.1C T1 C T2/
�.ON/.1C T1 C T2/jˆ0iC C hˆ0jOjˆ0j (57)



602 B.P. Das et al.

An expectation value problem, such as the expression for Eeff, can be calculated
using Eq. 57, where T1 and T2 amplitudes are determined from the CCSD amplitude
equations. In the framework of coupled-cluster theory, the normal CC method
[32] is the most widely used approach to calculate expectation values. However,
this method requires substantially more computational time than the CC method
described above. In addition, our approach captures the dominant correlation effects.

To perform RCC calculation for Eeff, two of the most widely used relativistic
codes, REL4D in UTChem [33] and DIRAC08 [34], were combined and modified.
UTChem was used for the generation of the DF orbitals and the molecular
orbital (MO) integral transformations [35]. A suitable computational algorithm was
developed in UTChem to evaluate one-electron integrals of the effective EDM
Hamiltonian used in Eq. (41). We used the C8 double group symmetry, since the
adaptation of this symmetry drastically reduces the computational costs for both
the MO transformation and the RCCSD calculations. Using the MO integrals, the
DIRAC08 code was used to obtain the RCCSD amplitudes [13].

Calculation of Eeff in YbF

Dyall’s four-component valence double-zeta (dz), triple-zeta (tz), and quadruple-
zeta (qz) basis sets were used for ytterbium to check the basis set dependence inEeff

[36]. For fluorine, Watanabe’s four-component basis sets [37] were employed. Some
diffuse and polarization functions from the Sapporo basis sets [38] were used as
well. All of the basis sets were used in their uncontracted form. This is because of the
fact that although the DF results obtained from contracted as well as primitive basis
sets match, while at the CCSD level, the former gives rise to large T1 diagonostics,
which indicate that the CC calculations are not stable. The basis sets used in the
calculations are as follows: dz for Yb (24s, 19p, 13d, 8f, 1g), tz for Yb (30s, 24p,
18d, 14f, 3g, 2h), and qz for Yb (35s, 30p, 19d, 13f, 5g, 3h, 2i) and for F ( 13s,
10p, 4d, 3f). The total numbers of basis set orbitals for dz, tz, and qz are hence 270,
423, and 499, respectively. A cutoff value of 80 a.u. (atomic units) was imposed
for the energies of the virtual molecular spinors in our CCSD calculations. The qz
basis is the most accurate among the ones considered, with its accuracy confirmed
by Gomes et al. [39]. The bond length and harmonic frequency they obtained with
the qz basis were 2.0196 angstrom and 503.2 cm�1, respectively. These results agree
well with the experimental values, 2.0161 angstrom and 506.6674 cm�1 [40], and
are also close to the extrapolated values, 2.0174 angstrom and 507.6 cm�1, obtained
from the results of dz, tz, and qz basis sets [39].

Another important aspect for accurate calculations is correlation space in electron
correlation calculations. Here, three different relativistic CCSD calculations were
performed, in order to understand the importance of core correlation effects, which
are referred to as 49e-CCSD, 69e-CCSD, and 79e-CCSD. In the first case, 49
electrons are excited, that is, the 1s, 2s, 2p, 3s, 3p, and 3d orbitals of Yb and the
1s orbital of F are frozen. In the second case, 69 electrons of YbF were excited, that
is, the 1s, 2s, and 2p orbitals of Yb are frozen. In the last case, all 79 electrons of
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Table 3 Summary of the calculated results of the present work

Basis
set Method

Total energy
(a.u.) T1;dia

Eeff

(GV/cm)
DM

(D)
Ak
(MHz)

DZ DF �14,167.289602 � 17.9 3.21 �
TZ DF �14,167.321791 � 18.2 3.21 �
QZ DF �14,167.323266 � 18.2 3.21 6,239

DZ 49e-CCSD(197) �14,169.344299 0.0432 21.4 3.37 �
TZ 49e-CCSD(255) �14,169.899971 0.0588 21.1 3.46 �
QZ 49e-CCSD(293) �14,170.080575 0.0397 22.7 3.59 �
QZ 49e-CCSD(303) �14,170.026999 0.0339 22.8 3.59 �
QZ 69e-CCSD(293) �14,170.501826 0.0334 23.1 3.60 �
QZ 79e-CCSD(293) �14,170.522807 0.0311 23.1 3.60 7,913

Exp. � � � � 3.91(4) 7,424(81)

YbF are excited. The experimental value of bond length, which is 2.0161 angstrom,
is chosen for the calculations.

Table 3 summarizes the calculated results. At the DF level, the values of Eeff

and DM for the three basis sets are very close. However, at the CCSD level, there
is a basis set dependence for the 49-e calculations. For the tz basis, a relatively
large value for T1 diagnostic (0.0558) was obtained, which indicates instability of
the single-reference calculations with the basis. Gomes et al. also encountered the
same issue at the tz basis and discussed its influence on the spectroscopic constants
[39]. In our qz basis calculation, the T1 diagnostic is lower (0.0397) than that for
the tz basis. Therefore, it is reasonable to assume that our qz basis provides reliable
results for Eeff and DM. The difference in the values of DM for the three CCSD-qz
(49e-CCSD, 69e-CCSD, and 79e-CCSD) calculations was negligible. However, the
corresponding difference in the case of Eeff was significantly larger, especially in
between the 49e-CCSD and 69e-CCSD levels. The values of Eeff and DM of 69e-
CCSD are the same as those of 79e-CCSD to three significant figures, indicating
that the results of 69e-CCSD are saturated. We also compared two types of space of
the virtual orbitals (293 and 303) in the QZ-49e-CCSD calculations. The extension
of the virtual orbital space produces a very small change in the value of Eeff.

In addition, the DF and the individual correlation contributions to the Eeff for
79e-CCSD has been calculated. In the calculation of the expectation values shown
in Eq. 57, the bra state can be expanded as DF, the singly excited (S), or doubly
excited (D) determinants, and the ket state can be similarly expanded as DF, S, or
D. The value of Eeff can be broken down into nine contributions at the level of 79e-
CCSD (23.1 GV/cm), which are listed in Table 4. The dominant contribution comes
from the DF-DF term (i.e., the value of Eeff at the DF level). The S-DF and DF-S
terms contribute the most to Eeff among other terms.

In summary, the best result obtained was 23.1 GV/cm for Eeff and 3.60 Debye
for DM with the qz basis set. The value of DM was within 8 % percent of the
experimental value (3.91(4) Debye). Both Eeff and DM depend on the mixing of
orbitals of opposite parities. Another important property that has similarities with
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Table 4 Contributions of the
nine combination terms for
Eeff at the level of 79e-CCSD

DF S D

DF 18:16 3:14 0:00

S 3:14 �1:31 0:09

D 0:00 0:09 �0:17

Table 5 Calculated values of Eeff HFCC (Ak) and DM in the previous and present works

Method Ref Eeff GV/cm Ak MHz DM Debye

Semi-empirical Kozlov et al. [15] 26:1 – –

GRECP-RASSCF Titov et al. [17] 18:8 4,975 –

GRECP-RASSCF-
effective operator

Mosyagin et al. [18] 24:9 8,000 –

UDF-unpaired Parpia [20] 19:9 – –

UDF-all Parpia [20] 24:9 – 4.00

MBPT Quiney et al. [21] 24:8 7,985 –

(DF C Core polar-
ization)

DF Nayak et al. [43] 19:9 – 3.98

RASCI Nayak et al. [43] 22:5 – 3.90

RASCI Nayak et al. [43] 24:1 – –

DF/qz Present work 18:2 6,239 3.21

79e-CCSD/qz Present work 23:1 7,913 3.60

Experiment [40, 41] � 7,424(81) 3.91(4)

Eeff is the hyperfine coupling constant (HFCC). This is due to the fact that both
these quantities are sensitive to the behavior of the wave function in the region of
nucleus. The parallel component of HFCC .Ak/ was calculated, based on Quiney’s
formulation [21]. Ak was obtained as 6,239 and 7,913 MHz at the DF-qz and 79e-
CCSD-qz levels, respectively, with the corresponding experimental values being
7,822(5) MHz by Van Zee et al., in 1978 [41], and 7,424(81) MHz by Steimle et al.,
in 2007 [42]. Our best calculation of Ak is within 7 % of the latest experimental
value (Table 5).
Eeff in YbF has been previously calculated by different methods. The various

methods by which Eeff was calculated are summarized in Table 6. The earliest
work by Titov et al. in 1996 [17] was based on the restricted-active-space self-
consistent-field (RASSCF) method with the generalized relativistic effective core
potential (GRECP), with which they obtained an Eeff of 18.8 GV/cm. This result
was later improved to 24.9 GV/cm with an effective operator for core polarization
by Mosyagin et al. in 1998 [18]. Another study by Kozlov in 1997 [15], which was
based on a semiempirical method, calculated Eeff to be 26.1 GV/cm. A comparison
with the four-component relativistic methods is necessary to assess the accuracy of
the abovementioned approximations.

Within the framework of the four-component relativistic method, Parpia [20]
calculated Eeff D 19:9GV/cm from the unpaired spinor and obtained 24.9 GV/cm
from all the occupied spinors at the unrestricted DF level in 1998. In the same year,
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Table 6 DF and CCSD
results of Eeff in mercury
monohalide systems

Molecule Method T1;dia Eeff (GV/cm)

HgF DF � 104:25

HgCl DF � 103:57

HgBr DF � 97:89

HgI DF � 96:85

HgF CCSD 0:0268 115:42

HgCl CCSD 0:0239 113:56

HgBr CCSD 0:0255 109:29

HgI CCSD 0:0206 109:30

Quiney et al. [21] calculated Eeff D 24:8GV/cm at the restricted DF level with
the first-order core polarization taken into account using MBPT. In 2006 and 2009,
Nayak et al. [43] accounted for electron correlation in Eeff using the restricted-
active-space configuration interaction (RASCI) method at the four-component level
and obtained Eeff D 24:1GV/cm from a 31-electron correlated calculation in a
space of 76 active orbitals. However, this active space is not sufficiently large. Our
relativistic CCSD calculation has advantages over the relativistic CI approach used
by Nayak et al. [43], because CCSD is size extensive unlike the approximate CI used
in the latter work, the size of our qz basis is substantially larger than that used in
Ref. [43], and all the core-correlation effects were included, while only 31 electrons
were excited in the CI calculation. Also, the number of spinors in our virtual space
(293 orbitals) is much larger than in Ref. [43] (60 orbitals).

Electron correlation increased the DF value of Eeff by about 20 % in our work.
This trend is similar to the previous correlation calculations, especially where core-
polarization effects were included.

Calculation of Eeff in Mercury Monohalides

Based on the experience of the detailed calculation of Eeff in YbF, the quantity
was calculated for mercury monohalides. The mercury monohalides are expected
to have larger values of Eeff than YbF molecule, because mercury is heavier than
ytterbium. Since the present systems contain more number of electrons than in YbF,
Dyall’s c2v basis sets were chosen for Hg [44], and correlation-consistent polarized
valence double-zeta (ccpvdz) basis sets were chosen for F, Cl, and Br [45], all
in uncontracted form. For iodine, Dyall’s basis (uncontracted) was chosen. Their
details are as follows: Hg .22s; 19p; 12d; 9f; 1g/, F .9s; 4p; 1d/, Cl .12s; 8p; 1d/,
Br .14s; 11p; 6d/, and I (8s; 6p; 6d ). No core orbitals were frozen, and no virtuals
truncated in these calculations. The bond lengths (in angstrom) chosen for these
calculations are HgF (2.00686) [46], HgCl (2.42), HgBr (2.62), and HgI (2.81) [47].

A summary of the calculations, both at the DF and the CCSD levels, is given in
Table 7. The values for Eeff are very large for all of the chosen mercury halides:
about one and a half times and about five times that of ThO [48] and YbF [13],
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Table 7 Effective electric
field, Eeff, in the HgF
molecule

Work Eeff (GV/cm)

Dmitriev et al. [49] 99.26

Meyer et al. [24] 68

This work 115.42

Table 8 Contributions of the
nine combination terms for
Eeff in HgF

DF S D

DF 104:25 10:08 0:00

S 10:08 �3:91 0:22

D 0:00 0:22 �5:52

respectively. This is because there is strong mixing between the valence 6s and the
virtual 6p1=2 orbital of the Hg atom and also the large value of the matrix element
of the effective eEDM Hamiltonian between these two orbitals.

In the table below, our result for Eeff in HgF is compared with those available in
the literature.

Dmitriev et al. computed Eeff for HgF using relativistic effective core potentials.
They used five relativistic valence orbitals 5d3=2, 5d1=2, 6s1=2, 6p1=2, and 6p3=2 for
Hg, and the minimal atomic basis set for F. Meyer et al. computed Eeff for HgF
using a quasi-relativistic method and has compared their results with those obtained
by other methods. The present work is the first application of an all-electron and
fully relativistic method to mercury halides.

The contribution of the correlation effects is approximately 10 % of the effective
electric field. The eight terms containing operators that are linear in T that contribute
to the correlation show that there are cancellations between them, due to some terms
being positive and others negative. This point is illustrated in Table 8, where the
contributions of the individual terms to the expectation value in equation 57 are
shown, for HgF. Among the correlation terms, the DF-S and the S-DF terms together
contribute 20.16 GV/cm, while the S-S and the D-D terms together contribute
�9:43GV/cm. (These tendencies are similar to YbF.) The 9 correlation terms hence
add up to 11.17 GV/cm. The DF-D and the D-DF terms are zero, due to the Slater-
Condon rules and the fact that the HEDM operator is a one-body operator. This is
true, for example, also for the H eff

EDMT
2
1 term.

The eEDM sensitivity of experiments is proportional to Eeff

p
N , where N is

the number of molecules whose spin precession is detected. In order to achieve
high sensitivity in experiment, a large value of both Eeff and N would be very
desirable. Our calculations show a large value of Eeff for the mercury monohalides.
In addition, they can be produced in large quantities at ultracold temperatures, e.g.,
by photo-association of laser-cooled Hg with magnetically trapped halogen atoms
[50]. Hence, mercury monohalides can have both large values of Eeff and N and
hence be attractive candidates for the next generation of eEDM experiments.
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Summary

The first section explains why simultaneous violation of parity and time reversal
symmetries are needed for the electron to have an electric dipole moment and
the importance of eEDMs in the matter- antimatter asymmetry in the universe. It
then explains in detail how atoms and molecules are used to get an upper limit on
eEDM and why molecules are nowadays preferred over atoms. The second section
describes the configuration interaction method and explains how one applies this
method in the calculation of the effective electric fields of YbF and ThO molecules,
respectively, along with other details such as the choice of basis and frozen cores.
The third section introduces the reader to the current gold standard of electronic
structure calculations, namely, the relativistic coupled cluster method, and how it is
applied to calculate effective electric fields in YbF and the mercury monohalides,
with the latter set of molecules showing great promise in the search for the eEDM.
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Abstract

A pedagogic introduction to the atomic clock physics, mainly from a theoretical
viewpoint, is presented, and the need for sophisticated relativistic many-body
methods for their studies is emphasized. Few general aspects on the working
principles of atomic clocks, their necessities in the daily life as well as for the
fundamental sciences, and their present status are outlined. Special attention
has been paid to keep the discussion at the graduate course level. Basic
physics related to major systematics in an atomic system exposed to external
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electromagnetic fields and theoretical approaches for their accurate estimations
for the atomic clock frequency measurements are highlighted. In this context, we
discuss the roles of many-body methods to evaluate Stark, Zeeman, quadrupole,
and multipolar blackbody radiation shifts and to search for magic wavelengths in
the atomic systems. A few examples are given to show usefulness of theoretical
perception for scrutinizing suitability of a candidate as an atomic clock a
priori to performing measurement. Since the modern atomic clocks offer most
precise measurements of the atomic transition frequencies, they are also used
as tools for probing both temporal and spatial variation of many fundamental
physical constants at the low-energy scale. The requirement of relativistic many-
body methods to yield information on the temporal variation of fine-structure
constant from the atomic clock studies is demonstrated. Several theoretical
methods, capable of calculating atomic properties very accurately, are prescribed
to facilitate better comprehension to the subject.

Keywords
Atomic clock • BBR shift (black-body radiation shift) • Configuration inter-
action (CI) • Coupled-cluster (CC) • Doppler effect • Fine structure con-
stant • Frequency standard • Instability • Linewidth • Magic wavelengths •
Micromotion • Microwave clock • Optical clock • Quadrupole shift • Qual-
ity factor • Random phase approximation (RPA) • Reproducibility • Secular
motion • Signal-to-noise ratio • Stark shift • Zeeman shift

Introduction

An atomic clock is a device that uses resonance frequency of an electromagnetic
transition between two energy levels in an atomic system as frequency standard
to count ticks between two consecutive seconds. More than 50 years ago, Essen
and Parry had proposed for the first time to use transition frequency between the
hyperfine sublevels of the ground state in Cs atom to define unit of time. Today,
this frequency is measured up to 9,192,631,770 oscillations per unit of time (known
as second) and is conceded as primary frequency standard. This sort of accuracy
is several orders higher than the accuracies of a typically used quartz clock in the
daily life activities. The guiding cause for accrediting atomic transition frequencies
as the time or frequency standards lies in their origin as they are the consequences
of the fundamental interactions between the elementary particles; their values must
remain the same irrespective of their locations or time of measurements. A selection
criterion for a particular transition to be considered for this purpose depends mainly
on three critical factors: a transition frequency that can be probed by a short-term
stable local oscillator, the availability of a suitable frequency-counting mechanism,
and a weak forbidden transition having intrinsic narrow natural linewidth. Broadly,
atomic clocks are classified into either active or passive depending on whether the
frequency standard is derived directly from the electromagnetic radiation or it is
probed by an electromagnetic radiation of an external oscillator.
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One of the quantities that signifies a better frequency standard is the quality
factor (Q), defined as Q D v

ıv
where � and ı� are the transition frequency and

linewidth of the transition, respectively. The ultimate objective would be to search
for an atomic clock with Q-factor as large as possible. The accuracy of an atomic
clock cannot be, in fact, defined uniquely. In practice, it quantifies either the offset of
a frequency standard from its normal operating frequency or how well the frequency
of the device can be related to the standard international (SI) unit of frequency. We
shall return back to the estimation of uncertainties in the determination of the offset
from its original value of the frequency in an atomic clock later. Another important
aspect that also needs to be looked into before accepting candidates for atomic
clocks is their instability and reproducibility limitations. Stability (as opposed to
instability) is a measure of variability of the frequency standard over a specified
period of time. Gauging this quantity requires a suitable reference standard having
either lower or equally compatible stability with the considered atomic clock. All
the three factors (reproducibility, accuracy, and instability) of an atomic frequency
standard depend on the sensitivity of the reference frequency to the environmental
perturbations and to the extent within which these perturbations can be controlled.
The stability of the frequency standard is generally characterized by either two-
sample or Allan variance given by [2]


2y.�/ D
�
1

2
†k. Nyk � NykC1/2

�
; (1)

where Nyk is the mean fractional deviation frequency measured at time tk with an
interval dtk from its nominal operating frequency �0 over the averaging period �
and reads

Nyk D 1

�

Z tkC�

tk

y.tk/dtk D 1

�

Z tkC�

tk

�.tk/ � �0
�0

dtk: (2)

For better statistical accuracy, the average value needs to be evaluated by integrating
over a large period of time � . The final deviation is determined as the square root of
the variance.

The present primary Cs clock is a microwave clock; however, most of the
modern clocks are preferred to operate in the optical frequencies. The optical clocks
operate at frequencies about five orders of magnitude higher than the Cs clock.
The local reference in an optical clock is generally a narrow linewidth laser that
is stabilized to a narrow optical atomic reference transition. Candidates chosen for
the optical clocks can be grouped into two major classes: neutral atoms trapped and
cooled using magnetic optical traps (MOT) and a single singly and multiply charged
ion trapped using the Paul-type trap. The real state of the art for considering optical
transitions as the frequency standards lies in their stabilities and to the precisions
at which the uncertainties associated with their measurements can be elucidated.
Instability in the fractional frequency shift due to the quantum fluctuations in an
atomic absorption signal can be estimated by
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y.�/ D n

Q .S=N/
�1=2; (3)

where S=N is the signal-to-noise ratio for a 1 Hz detection bandwidth and �
value depends on the shape of the atomic resonance line and the method used to
determine its central frequency. From the above expression, it can be understood
that stability is a measure of the precision within which a given quantity can be
measured and is usually stated as a function of averaging time. Owing to this
fact, very significant reduction in the instability is gained in the optical clocks.
The reduction factors depend exactly on the signal-to-noise ratio at which the
atomic absorption signal is observed and proportional to N1=2, where N is the
number of atoms detected in the measurement process. Thus, the atomic clocks
based on the optical lattices have relatively large stability compared with the
microwave clocks as well as from a single ionized optical clock. The other concern
in setting up an atomic clock is the uncertainties in the systematics, arising due
to the sensitivity of an experiment to the environmental perturbations, which can
shift the measured frequency from its unperturbed natural atomic frequency. It
is, indeed, indispensable to expect suppressed systematics for an ideal frequency
standard. Thus, it is imperative to understand all the physical processes happening
surrounding the experiments and enable to estimate their systematics rigorously. It is
also important that clock frequency can be reproducible irrespective of the location
and time of an experiment. Contemplating both reproducibility and sensitivity to
the environmental perturbations, there seems to be strong competition between the
optical clocks based on the cold neutral atoms trapped in the optical lattices and a
singly charged ion trapped using the Paul trap to replace the Cs microwave clock
to become the next-generation primary frequency standard. In this scenario it is
very much useful to have comprehensive understanding about the present status of
different atomic clocks that are under consideration in different laboratories around
the world and the roles of various environmental perturbations that are accountable
for limiting the accuracies of the atomic clocks.

Among other prominent applications, atomic clocks are the essential components
of the global positioning system (GPS). Each GPS satellite contains multiple atomic
clocks. GPS receivers decode detected signals by synchronizing each receiver to
the atomic clocks. In this process, it provides very precise time to an observed
GPS signal and helps in finding out position and time of an object. It provides us
the time to within 100 billionths of a second. Atomic clocks are also employed
for synchronizing various signals from different instruments to carry out high-
precision measurements. This is very important to differentiate tiny signatures that
are observed in the high-resolution instruments like the measurements that are
carried out using high-energy-based accelerators in the particle physics to probe
any possible subtle effects governed by the fundamental interactions. In addition,
these clocks are of immense use in the radio astronomy, telecommunications,
meteorology, military services, etc. Besides, there are of intense investigations
carried out for studying fundamental sciences directly using atomic clock signals. At
the end of this chapter, a special section is devoted describing principles of probing
variation in fundamental constants, especially the fine-structure constant ˛e , using
the atomic clock studies.
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The main objective in this chapter would be to demonstrate the requirement
of relativistic many-body methods in the context of studying physics related to
atomic clocks. One may wonder how theoretical calculations in the considered
atomic systems for the frequency standards could be useful at the standpoint where
everything seems to be very precise. Note that most of the clock candidates are
heavy atomic systems and performing ultrahigh precision calculations in these
systems is insurmountable. Although the systematics of atomic clocks themselves
are small but the physical quantities of atomic systems associated with these
systematics are essentially large enough to be calculated accurately. All the physical
quantities measured in the atomic clock experiments are undoubtedly very precise;
hence, these observed results can also act as benchmarks for testing the capability
of a (relativistic) many-body method to reproduce the experimentally measured
quantities. Indeed, it requires powerful many-body methods for theoretical studies
that are capable of taking care both the relativistic and electron correlation effects
adequately. It is also worth mentioning that appropriateness of a candidate for an
atomic clock can be prejudged from the knowledge of the calculated quantities a
priori to actual measurement. Thus, it would be vital to understand differences and
similarities among the theoretical methods used for the calculations to validate their
reported results. In this regard, an attempt is made to formulate various many-body
methods with the common starting point (reference state).

Classes of Clocks and Their Status

Operational Principles of Atomic Clocks

The advent of frequency comb is one of the major discoveries in the last century. It
helps in stabilizing mode-locked femtosecond lasers to a very high degree and acts
as a frequency divider connecting with frequencies of the entire range of the optical
spectra. In fact, this can compare two atomic clocks hand in hand even falling under
far apart range like optical to microwave frequencies. Frequency combs are used
as common references to provide better stabilities to the optical clocks, which also
helps to define accuracies of atomic clocks in an elegant manner. Confining atoms
or ions for optical clocks in small regions under ultrahigh vacuum makes them well
isolated from the environmental perturbations, and they produce narrow linewidths
for the transitions as per the obligation. Howbeit, thermal motions of atoms and
ions trapped using the electromagnetic fields in the optical clocks put tremendous
challenges to reduce systematics during the clock frequency measurements. Also,
operating the clocks at room temperature can give rise to a velocity distribution
for the atoms causing Doppler shifts. In the Paul traps, the residual thermal motion
and the micromotion of the ions can produce second-order Doppler shifts. Various
sub-Doppler techniques have been invented recently to resolve atomic resonances
much narrower than those of the Doppler distributions to eliminate Doppler effects.
The advanced cooling and trapping techniques that make use of an array of
lasers and external electric and/or magnetic fields are able to reduce these effects
acutely. Techniques like the use of ultralow expansion glasses to measure quantum
fluctuations on a fast time scale with a high S=N ratio have also been developed
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to minimize many systematics. Depending on the choices of the candidates, special
skills are being exploited to overcome these challenges. For example, it is argued
that by confining microwave hyperfine transitions in the ground states of Cs and
Rb atoms in an optical lattice generated by a circularly polarized laser field and
by applying an external magnetic field with appropriately chosen direction may
cancel out the dynamic Stark frequency shifts [3]. This may improve the accuracy
in the frequency of Cs clock as in this case the clock transition is insensitive to the
strengths of both the laser and external magnetic fields.

On the basis of ionic charges, general characteristics of optical clocks distinguish
from each other and few of their working principles are discussed below case-
wise by highlighting their advantages and drawbacks in constraining accuracies of
the clocks.

Optical Lattice Clocks
Optical lattice clocks employ neutral atoms trapped in a specially engineered
standing-wave laser fields, termed as magic trapping that uses magnetic optical
trap (MOT) to form a lattice kind of potential structure with regular spacing. Its
main advantage is that since the interactions between the neutral atoms are fairly
short ranged, millions of atoms can be trapped and interrogated simultaneously. It
extraordinarily improvises the stability of the clock owing to

p
N -factor offered by

N -number of ensemble atoms trapped in the system. In this case, individual energy
levels of a clock transition may be perturbed very strongly by the trapping fields;
however, at the magic conditions both the clock levels are shifted almost identically.
As a result, magic optical trapping potentials for clock transitions are defined for
specific tailored trapping fields in which differential shifts of the clock transitions
consequently vanish. The effects of optical laser trapping fields on energy levels are
quantified using the ac Stark shifts that can be expressed in terms of the dynamic
polarizabilities of the states and strengths of the applied electric fields. Even when
the electric field oscillates, as in lasers, the differential Stark shift of a transition
between two energy levels remains time independent. In this approach very narrow
hyperfine-induced transitions, such as the ns2 1S0 ! nsnp 3P0 transitions (n being
the principal quantum number of the ground state) in the fermionic stable isotopes
of alkaline earth elements (Be, Mg, Ca, Sr, Ba, and Ra atoms), can be exercised
to make felicitous frequency standards. The analogous transitions from the rare-
gas Zn, Cd, Hg, and Yb atoms can also fulfill the same errand. In fact, the atomic
ns2 1S0 ! nsnp 3P0 transitions of the corresponding bosonic stable isotopes are
strictly forbidden by the angular momentum and parity selection rules. Applying
small external magnetic fields, the excited nsnp 3P0 states of these transitions
can mix with their almost-degenerate fine-structure nsnp 3P1 states. Under this
condition nsnp 3P0 the states can gain finite lifetimes and can be used as the
interrogation time when the ns2 1S0 ! nsnp 3P0 transitions are considered for
frequency standards. These transitions thrive as perfect atomic clocks because of
their contrived linewidths which can be manipulated to yield optimum stability
by selecting the strengths of the applied magnetic fields. Thus far the most stable
clock frequency of the above hyperfine-induced transition in 87Sr has been measured
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Table 1 Comparative analysis of important clock properties among few leading optical clocks

System
Clock
transition

�

(in nm)

Natural
linewidth
(in Hz)

Observed
linewidth
(in Hz)

Fractional
uncertainty
(in �10�15)

Instability
(in
10�15��1=2)

Atoms
40Ca 1S0$3 P1 657 375:0 250:0 4:2 1:8
87Sr 1S0$3 P0 698 0:001 0:5 0:006 0:4
171Yb 1S0$3 P0 578 0:01 1:0 0:36 1:5
174Yb 1S0$3 P0 578 0:0 4:0 1:5 5:5
199Hg 1S0$3 P0 266 0:1 11:0 5;000 5:4
201Hg 1S0$3 P0 266 0:1 11:0 5;000 5:4

Ions
27AlC 1S0$3 P0 267 0:008 2:7 0:0086 0:6
40CaC S1=2$ D5=2 729 0:2 30:0 2:4
88SrC S1=2$ D5=2 674 0:4 5:0 0:021 1:1
171YbC S1=2$ D3=2 436 3:1 10:0 0:45

S1=2$ F7=2 467 10�9 7:0 0:071
199HgC S1=2$ D5=2 282 1:7 6:7 0:019

within 3�10�17 fractional uncertainty and a stability of better than 0:4�10�15��1=2
[2, 4, 5].

A synchronous frequency comparison has been demonstrated of two optical
lattice clocks using 87Sr and 88Sr atoms with the Allan standard deviation 1� 10�17
in an averaging time of 1,600 s [2, 4, 5]. Similarly in 174Yb, magnetically induced
transition has been observed for a width of 5 Hz with the reported fractional
uncertainty 1:7 � 10�15 and a stability better than 5:5 � 10�16��1=2 [2, 4, 5].
Particularly, clock transitions from 199Hg and 201Hg exhibit small blackbody
radiation shifts (BBR shifts), and their clock frequencies are observed within the
fractional uncertainties to 5 � 10�12 [2, 4, 5]. In Table 1, we compare many pivotal
properties of few leading atomic clocks accumulating from the review articles
[2, 4, 5] to enliven about their adequacies and to explore about other better possible
ways to boost their further advancements.

Singly Charged Ions
Although it appears as if use of a single singly charged trapped ion is a drawback
in view of instability for an optical clock, but owing to developed competent
principles to keep the ions isolated from the environmental perturbations makes
them expedient contenders for the atomic clocks. Narrow transitions in several
ions have been identified which are potentially pertinent for the optical frequency
standards. Each of these ions has its own advantage and disadvantage in terms of
clock transition parameters and intrinsic sensitivity to the environmental pertur-
bations as well as in their technical complexities for running the corresponding
experiments. The typical working scheme of a singly charged ion, presumed to
be suitable for optical frequency standard, comprises a strong allowed transition
for the laser cooling and a weak forbidden transition as the frequency reference.
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The frequency is readily observed by detecting the resonance fluorescence from
the strong cooling transition; however, detecting absorption of individual photon
at the frequency of narrow reference transition is, in practice, not an easy affair.
This is achieved by an electron shelving technique, whereby quantum jump in
the cooling laser fluorescence signal is observed by driving the ion to the upper
state of the reference transition by the clock laser. This trick empowers the narrow
reference transition to be detected within incredible efficiency. The line profile of
a clock transition can be built up by measuring quantum jump probability as a
function of the probe laser frequency. The probe laser can be stabilized to the
reference transition by repeatedly stepping its frequency back and forth between
two estimated half-maximum intensity points of the resonance curve and monitoring
the quantum jump rate imbalance between these two points. This quantum jump
imbalance can provide a frequency discriminant from which a correcting steer
to the frequency of the probe laser can be derived. Some of the prominent and
routinely used ions are 27AlC, 40CaC, 43CaC, 87SrC, 88SrC, 115InC, 171YbC, 173YbC,
199HgC, and 201HgC in which a lot of developments are carried out toward frequency
standards. Few important key parameters of these standards are already compared
in Table 1. Clock transitions from the alkaline earth ions, YbC and HgC, involve
ground S-states and one of the metastable 2D3=2;5=2 states that lie below the 2P1=2;3=2
states. Therefore, these D-states decay to their ground S-states via the electric-
quadrupole transitions with natural linewidths in the range of 0.2–3 Hz, while the
P1=2 to S1=2 transitions are used for cooling the ions. The highest observed Q-
factor 1:6 � 1014 is achieved for 199HgC with linewidth of 6.7 Hz [2, 4, 5]. The
other important set of ions are 27AlC and 115InC having electronic configurations
similar to the alkaline earth elements; their ns2 1S0 ! nsnp 3 P0 transitions
are analogous to the previously discussed lattice clock transitions, which are also
considered for frequency standards. Mixing of the nsn 3 P0 states with the nsnp 3 P1
and nsnp 1 P1 states due to their hyperfine interactions allows to measure the
transition frequencies of the above transitions in sufficiently finite time. These
transitions are ideal for the frequency standards because of their longer stability and
for exhibiting low systematic frequency shifts. A direct comparison of measurement
between the 199HgC and 27AlC frequency standards has been carried out with a
relative uncertainty in their ratio as 5:2�10�17 for the total systematic uncertainties
1:9 � 10�17 and 2:3 � 10�17 in HgC and AlC, respectively, and for the frequency
stability 4 � 10�15��1=2 [4, 5]. Further clock frequency of the 1S0 $3 P0 transition
in the same group AlC ion is measured independently trapping with the MgC and
BeC ions with the achievement of a relative statistical measurement uncertainty of
7:0�10�18 improved with the MgC ion for a relative stability of 2:8�10�15��1=2 and
a fractional frequency difference of 1:8�10�17 [2,4,5]. In other set of experiments, a
frequency instability of 9�10�15��1=2 with reproducibility at the 6�10�16 level for
the Œ4f 14�6s 1S0 ! Œ4f 14�5d 2D3=2 clock transition in 171YbC [2,4,5] and absolute
frequency difference between the 87Sr and 87SrC clocks up to 2:8 � 10�17 [4, 5]
have been accomplished. In a categorically different experiment with the octopole
transition Œ4f 14�6s 1S0 ! Œ4f 13�6S2 2F7=2 in 171YbC, which is insensitive to
the field-induced transitions and for possessing very long lifetime of its metastable
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excited state (about 6 years), a fractional uncertainty of 7:1 � 10�17 with quantum
projection noise 
y.5;000 s/ D 6 � 10�17 has been reported [4, 5]. Among many
other proposed ions, theoretical analysis also projects that both the S $ D3=2;5=2

transitions in the BaC and RaC ions are also capable for realizing them as very high
accurate frequency standards [6–8].

Highly Charged Ions
There have been recent proposals [9] to consider single but a highly charged ion
as new atomic clock for bespeaking only minuscule systematics encountered by
such ions. This owes to their strikingly shrunk orbitals which get least affected
by the external perturbations. Since the radiative transition matrix elements are
proportional to power expression of the atomic radius, coupling of atomic states with
the external fields scales down for increasing charge of an ion. This is an obviously
favorable condition for becoming an atomic clock and is the key factor why it is
believed that the highly charged ions can be the unrivaled clocks. In principle,
highly charged ions can be loaded in the ion traps by employing sympathetic cooling
techniques along with another ion species, say BeC ions [9]. At sufficiently low
temperatures the rates of undesirable charge-exchange processes between two ionic
species become negligible. In this scheme, long-range elastic Coulomb collisions
with continually laser-cooled BeC ions can drive these highly charged ions with
temperature down to mK. It is possible to co-trap heavy highly charged ions with
relatively light ions of low ionic charge depending upon the ratio of ion charge
to its mass. In fact heavier cooling species like MgC can also be used instead
of BeC to improvise mass matching, hence the cooling efficiency. It is found
that the transitions among the fine-structure levels of the ground state in ions
having Œ4d10�f 12 electronic configuration, e.g., Œ4d10�f 12 3H6 ! Œ4d10�f 12 3F4
transition, are the most felicitous ions for constructing such kind of frequency
standards [9].

The feasibility of using magnetic-dipole (M1)-induced hyperfine transitions in
the highly charged ions has also been looked into for possible atomic clocks
with exceptional accuracy on the basis of anticipated negligibly small blackbody
radiation (BBR), quadratic Zeeman, ac Stark, and quadrupole shifts in these ions
[10]. The advantage of these clocks over other hyperfine clock transitions is that
wavelengths of the corresponding transitions fall within the optical domain, while
most of the other considered ground state-based hyperfine clock transitions lie in
the microwave spectral region.

Other Possible Candidates

In spite that there is a less scope to discuss elaborately and connect the need
of relativistic calculations at present, a brief discussion on proposed prospective
nuclear and molecular clocks is presented for the sake of completeness and to give
a broad outlook on this topic to the general readers.
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Nuclear Clock
Nuclear systems, where the most common three fundamental interactions strongly
interplay each other, are very interesting from the point of view of studying
many fundamental sciences; however, their spectroscopy was not yet explored for
metrology purposes owing to strenuous procedure to keep bare atomic nucleus
isolated. In 2003, Peik and Tamm came up with an idea [11] proposing to use
nuclear transition in the 229Th3C ion for the frequency standard. Radioactive 229Th
nucleus has an isomeric nuclear state at the unusually low excitation energy of
3:5˙1:0 eV above the ground state and its lifetime is about two to four times smaller
than the half-life of its nucleus. This energy is comparable with the excitation
energies of outer electrons in the atomic shell of 229Th3C. The corresponding
transition wavelength lies in the range of available tunable laser sources using
which its frequency can be measured very precisely. However, the measurement of
the corresponding frequency may encounter two important limitations. The under-
considered transition will experience a significant second-order differential Zeeman
shift (�70 kHz/mT 2), and their electric-quadrupole transitions could restrict the
clock linewidths to �1 Hz. It has been demonstrated that a pair of stretched
hyperfine states within the 5F5=2 electronic ground level of both the nuclear ground
and isomeric manifolds in 229Th3C could provide a clock linewidth of 	100(Hz
and can offer unprecedented systematic shifts [12].

Molecular Clock
It is also proposed fairly recently by Schiller et al. [13] after carrying out calculations
of external-field shift coefficients and analyzing at least 11 systematic effects in
the one-electron molecular HC2 and HDC ions that frequency measurements in
their ro-vibrational transitions may reach up to 2 � 10�17 uncertainty at the room
temperature. They also argued that by considering measurement of composite M
C 1 transitions (M being the number of systematic effects to be canceled) in
different wavelength ranges, one can reduce the external-field effects. Following
this proposal, Karr was quick to estimate light shifts induced by the probe laser
using his calculated values of transition amplitudes, differential dynamic polariz-
ability, hyperfine-structure constants, and clock interrogation times for the states
accessible by the two-photon and quadrupole transitions [14]. From the estimation
of quadrupole and Zeeman shifts, he showed that light shift is the main limiting
factor in the case of two-photon transitions for both the HC2 and HDC ions and gave
an estimated accuracy level close to 5�10�16 in the best possible case. However, he
suggested that quadrupole transitions could be better as promising clock transitions
with the estimated accuracies reaching beyond 1 � 10�16.

Typical Systematics

Systematics in the frequency standard measurements are categorically of two
types. One of them is due to the construction of the instruments (defined as
instrumental systematics), while the other one is subjected to expose the systems
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to the external or stray electromagnetic fields (defined as external systematics).
Generally, instrumental systematics depend on size, shape and construction of the
mechanical devices, while systematics caused by the external forces are guided
by the atomic state properties and the strengths of the applied fields. Thus, the
latter systematics can be controlled by suitably choosing clock transitions and by
optimizing strengths of the electromagnetic fields. In the theoretical calculation
prospects, atomic properties that are relevant to the external systematics are of
immense interest. A brief discussion on both types of systematics is outlined below.

Instrumental Effects

With atomic clocks operating in the optical lattices, millions of atoms are trapped
and interrogated simultaneously. The mechanism of trapping atoms with lasers
brings a seemingly insurmountable challenge, and most of their instrumental sys-
tematics depend on the configurations of the devices. One of the major systematics
is due to the Doppler’s shifts which are reduced by the Doppler cooling technique
given by Hänsch and Schawlow. In contrast, issues related with ion clocks are
technically different. It follows from Maxwell’s equations that it is not possible to
trap a charged particle using three-dimensional potential well; however, they can
be confined in the Penning and Paul traps. In Penning traps, three-dimensional
confinement is achieved by the combination of a strong static magnetic field and
a quadrupolar electrostatic field. Since trapped ions are strongly perturbed by the
applied fields in the Penning traps, such traps are incompatible for the optical
frequency standards, and hence, the Paul traps are commonly used for clocks. In
these traps the quadrupole potential seen by the ions is

�.r; z; t / D .Qdc CQac cos�t/.r2 � 2z2/; (4)

with the dc and ac components of the potential Qdc and Qac, respectively, for the
angular frequency � (known as micromotion frequency). Appropriately selecting
values of Qdc, Qac, and �, motions of the ions can be stabilized in both the radial
and axial directions. Under these conditions the motions of the trapped ions can
be separated into two parts, a driven oscillatory motion at the trap drive frequency
(micromotion) and a slower motion associated with the time-averaged confining
potential (secular motion). The characteristic frequency of the secular motion is an
order of magnitude smaller than�. The typical depth of the Paul traps is of the order
of 10 eV, which is sufficient enough to capture ions created by the electron impact
ionization or photo-ionization of neutral atoms emitted from a hot oven. The ions are
laser cooled within the traps and confined to a region with dimensions less than the
wavelengths of the light used to probe the reference transitions of the optical clocks.
This is referred to as Lamb–Dicke regime, where the first-order Doppler effect is
completely eliminated. The micromotion of the ion leads to amplitude modulation
of the cooling laser fluorescence via the Doppler effect and allows to be monitored
using radio-frequency photon-correlation techniques. In this approach, micromotion
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is minimized by applying small dc voltages to additional compensation electrodes
and also the second-order Doppler shift is greatly reduced by confining the ion
tightly to the center of the trap. It is also necessary to operate the trap under ultrahigh
vacuum condition to reduce the collisional perturbations.

External Effects

In order to determine the overall uncertainty budgets for the optical frequency
standards with trapped atomic systems, it is a requisite to consider the effects
of environmental perturbations such as magnetic, trapping electric, and applied-
light fields on the trapped atoms or ions. External magnetic fields interact with
the magnetic moments of the atomic states leading to linear Zeeman shifts of the
atomic transition frequencies. In cases like clock transitions in the odd isotopes of
alkali-like ions, which have half-integral nuclear spin I, it is possible to select a
magnetic field-independent mF D 0$ mF D 0 component of the clock transition.
These transitions can still experience second-order Zeeman shifts; however, they
can be controlled at an acceptable precision level by operating the frequency
standard in a low magnetic field of around 1mT . In addition, the quadrupole shifts
due to the interaction between the electric-field gradient and the atomic electric-
quadrupole moments can also be eliminated by averaging out the shifts to the
transition frequency over three mutually orthogonal magnetic-field orientations.
Nonetheless, knowing the functional form of the perturbation due to the quadrupole
shift is still very useful for conducting the experiment facilely. Stark shifts of the
clock transition frequency in a trapped atom or ion can arise in a variety of ways.
Firstly, the micromotion and the thermal motion of the atom or ion within the trap
cause it to experience a nonzero root mean square value of the electric field. The
magnitude and stability of this field depend on the stray charges present within
the trap. With careful micromotion compensation, it should be possible to reduce
these effects to few parts in 1018 level. Secondly, there will be a blackbody Stark
shift due to the temperature of the apparatus surrounding the atom or ion. All the
cooling, repumper, and clearing-out laser beams can be switched off, while the clock
transition is being probed in order to minimize the surrounding effects, but the probe
laser light has to be on throughout the experimentation. Thus, the Stark shifts can
still be present, but they can be reduced by manipulating intensities required to drive
the clock transitions. However, for the kind of laser linewidths achieved these days
in the clock frequency measurements, high laser intensity is required to drive these
transitions at reasonable rates. Hence, the transition frequencies are measured as
functions of laser power and extrapolated to zero power to determine the actual
value. Few important systematics will be discussed here that require auxiliary
measurements to find out them or can be estimated by combining strengths of the
applied electromagnetic fields with high-accuracy calculations of relevant physical
properties of the transitions in the clock candidates. Of course, it is important to
consider a suitable many-body method for such theoretical calculations. Particularly,
at least four reasons can be cited to justify that it is enviable interest to carry
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out theoretical studies of the above properties especially for the atomic clocks:
(i) as has been demonstrated before, it is feasible to select an atomic system to
check its viability for the frequency standard prospectus with accurate knowledge
of atomic spectroscopy; (ii) when the experimental results are either not available or
carrying out precise measurements is extremely strenuous, theoretical results can be
their substitutes; (iii) performing high- precision calculations at the level of present
interest can be much economical than setting up their auxiliary experiments; and (iv)
comparison between the measurements and calculations of spectroscopic properties
in a system obtained from the clock studies could serve as tool to assess the potential
of the employed many-body methods.

Quadratic Zeeman Shift
In the presence of static magnetic field, the spectral lines of an atomic system
can be split into several components as known from the Zeeman effect. In most
of the atomic clocks, linear Zeeman shifts are almost canceled out, while the
quadratic Zeeman shifts still contribute to the uncertainties. The interaction operator
to determine the quadratic Zeeman shift due to the hyperfine interaction subjected
to the external magnetic field EB D jBjOz is given by

HB D Ahf EI : EJ C gJ�B EJ : EB C gI�B EI : EB; (5)

where gJ is the gyromagnetic constant of the electronic state of angular momentum
J , gI is the gyromagnetic constant of the nuclear state with spin I , and �B is
the Bohr magnetron. This shift can be estimated if the hyperfine constants and g-
factors for both the electronic and nuclear components of the system known. Ahf

values can be extracted by measuring hyperfine splitting; however, such procedure
is complicated in a fermionic system with I > 1=2 when the second- or higher-
order hyperfine interactions can be significantly contributing. Due to limited scope,
only few examples of comparison between the experimental and theoretical results
are provided later. Theoretically, Ahf of a state is calculated by

Ahf D �n

I

hJ ��Hmag
hf

��J ip
J .J C 1/.2J C 1/ ; (6)

for the nuclear magnetic moment �n D �I�B where �I is the nuclear moment
in units of �B and hJ ��Hmag

hf

��J i is the reduced matrix element of the electronic
component of the magnetic-dipole hyperfine interaction Hamiltonian Hmag

hf .
Similarly, the gJ -factor can be measured precisely or can be evaluated using the

expression

gJ hJ i D �hJJ jmec
p
2irfEa˝ C .1/g.1/jJJ i (7)

with the Dirac matrix Ea and Racah operator C .
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Two other approaches are adopted to obtain more precise values of gJ -factors
of the bound electrons. The expression given in Eq. (7) is basically for determining
the Dirac gJ -factor of a bound electron analogous to gD D 2 for a free electron.
However, QED correction yields

gD D 2
�
1C ˛e

2�
� 0:328 ˛

2
e

�2
C � � �

�
� 2 � .1:01160/: (8)

Accounting full QED effects for bound electrons in the atomic systems with more
than three electrons is kind of intractable. The QED corrections, however, can be
approximated roughly using the interaction Hamiltonian [15]

ıgJ D 0:001160 ˇ†.1/0 ; (9)

where ˇ and †.1/0 are the Dirac matrix and the z-component of the Dirac spinor †,
respectively.

It is also appropriate to estimate only the bound-state relativistic correction to gJ
as [16]

#gJ D h.ˇ � 1/2J � ˇLi; (10)

for the orbital angular momentum operator L. Then, the final gJ -value can be
determined by subtracting the above correction from the gD-value.

Using a classical vector coupling model, gJ can also be estimated reasonably as

gJ D 1C J .J C 1/ � l.l C 1/C s.s C 1/
2j .j C 1/ ; (11)

where l and s are the orbital and spin angular momentums, respectively. Similarly,
gI can be extracted from the knowledge of gJ - and g-factor of the hyperfine state
(gF ) using the relation

gF D gJ F .F C 1/C J .J C 1/ � I .I C 1/
2F .F C 1/

C gI F .F C 1/ � J .J C 1/C I .I C 1/
2F .F C 1/ (12)

for the I - and J -coupled hyperfine angular momentum F .

Quadratic Stark Shift
The change in the energy of an atomic state j‰ni with angular momentum and its
z-component of the state as jn and mj placed in an external weak electric field
EE D jEjOz is given by
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#En.jn;mj / ' �1
2
˛E1n E2 (13)

where ˛E1n is the static electric dipole (E1) polarizability of the state. If the electric
field is of ac type with altering frequency !, it yields

˛E1n D �†k¤njh‰njDj‰kij2 �
�

1

.En �Ek/C ! C
1

.En �Ek/ � !
�
; (14)

where D is the E1 operator and Ei is the energy of the j‰i i state. The sum over
k denotes contributions from all possible E1 transitions. Using the tensor product
formalism, it becomes

˛E1n D ˛E1n .0/C A cos �k
mj

jn
˛E1n .1/

C

3 cos2 �p � 1

2

� (
3m2

j � jn.jn C 1/
jn.2jn � 1/

)
aE1n .2/: (15)

Here A, �k , and �p are the degree of circular polarization angle, angle between
the wave vector of the electric field 
 and the Oz-axis, and angle between the
direction of polarization and Oz-axis, respectively. Here it should be noted that
A D 0 for the linearly polarized light and A D 1.�1/ for the right(left)-handed
circularly polarized light. In the absence of magnetic field, cos �k D cos �p D 1.
In the above expression ˛E1n .0/, ˛E1n .1/, and ˛E1n .2/ are known as scalar, vector,
and tensor polarizabilities, respectively, and are usually defined in terms of mj

independent factors (reduced matrix elements) to evaluate them conveniently and
given by

˛E1n .0/ D .†q 1/.†mj 1/

3.2jn C 1/ †jk¤jn jhJnkdkJkij2

�
�

1

.En �Ek/C ! C
1

.En �Ek/ � !
�
; (16)

˛E1n .1/ D � .†q 1/.†mj 1/
3.2jn C 1/

s
54 jn.2jn C 1/
.jn C 1/ †jk¤jn.�1/jnCjkC1


jn 1 jn
1 jk 1

�

� jhJnkdkJkij2 �
�

1

.En �Ek/C ! �
1

.En �Ek/ � !
�
; (17)
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and

˛E1n .2/ D� 2.†q 1/.†mj 1/
3.2jn C 1/

s
15 jn.2jn C 1/.2jn � 1/
2.jn C 1/.2jn C 1/

†jk¤jn.�1/jnCjkC1

jn 2 jn
1 jk 1

�

� jhJnkdkJkij2 �
�

1

.En �Ek/C ! C
1

.En �Ek/ � !
�
: (18)

Here q corresponds to the z-component of rank of D. It is obvious that for the
static (dc) electric fields, contributions due to the vector polarizability vanishes and
also contributions from both ˛E1n .1/ and ˛E1n .2/ to the closed-shell configurations
nullify.

In the hyperfine jI jnFnmF i state the Stark shift is given, analogously, by

#En.Fn;mF / ' �1
2
˛E1n;F E

2; (19)

where ˛E1n;F is the corresponding dipole polarizability and can also be expressed in
terms of scalar, vector, and tensor components as before. Since it is hindered to
work with the hyperfine states for practicality, the hyperfine state polarizabilities
are expressed in terms of the atomic polarizabilities by relating ˛E1n;F with ˛E1n in the
IJ-coupling approximation as

˛E1n;F .0/ D ˛E1n .0/; (20)

˛E1n;F .1/ D .�1/jnCICF
s
4 Fn .2Fn C 1/.2jn C 1/.jn C 1/

9.Fn C 1/jn

Fn Jn I

jn Fn 1

�
˛E1n .1/

(21)

and

˛E1n;F .2/ D.�1/jnCICF
s
Fn .2Fn � 1/.2Fn C 1/.2jn C 3/.2jn C 1/.jn C 1/

.2Fn C 3/.Fn C 1/jn.2jn � 1/
Fn jn I

jn Fn 2

�
˛E1n .2/: (22)

So with accurate knowledge of the atomic polarizabilities and strengths of the
applied electric fields, Stark shifts for the frequency standards can be deduced.
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Electric-Quadrupole Shift
Electric-quadrupole shifts occur due to interaction between the atomic electric-
quadrupole moments with the external electric-field gradients that are generated by
the electrodes of the trapping systems. The Hamiltonian describing the interaction
of external electric-field gradient with the atomic quadrupole moment of an atomic
state is given by

HQ D ErE.2/ � E‚.2/ D †2qD�2.�1/qrE.2/
q ‚

.2/�q; (23)

where ErE.2/ is the tensor describing the gradient of the external electric field at the
position of the atom and E‚.2/ is the electric-quadrupole operator. In the principal-
axis frame HQ reads out

HQ D �2 A ‚.2/0
0 C

r
2

3
�A.‚

.2/0
2 C‚.2/0

�2 /: (24)

The first-order correction due to HQ in the hyperfine state jIjnFnmF i is given by

#EQ D hIjnFnmF jHQjIjnFnmF i

D �2Œ3M2
F � F .F C 1/�AhIjnFnk‚.2/kIjnFn

Œ.2Fn C 3.2Fn C 2/.2Fn C 1/2Fn.2Fn � 1/�1=2
� Œ.3 cos2 ˇ � 1/ � � sin2 ˇ.cos2 ˛ � sin2 ˛/�; (25)

where ˛, ˇ, and  are the standard Euler angles that convert the actual principal-axis
frame to the working laboratory frame (taking  D 0), � is known as asymmetry
parameter and A is the strength of the field gradient of the applied direct current
(dc) voltage. The reduced matrix element in the above expression is given by

hIjnFnj‚.2/jjIjnFni D .�1/ICjnCFn.2Fn C 1/

jn 2 jn
Fn I Fn

� �
jn 2 jn
�jn 0 jn

�2
‚.jn/:

(26)

for the atomic quadrupole moment ‚.jn/. By knowing accurate ‚.jn/ values of
the atomic states involved in a clock transition, differential quadrupole shift of a
transition can be obtained. The quadrupole moment of an atomic level with angular
momentum jn is evaluated by

‚.jn/ D hjnjnj‚.2/
0 jjnjni (27)

with ‚
.2/
0 D e

2
†.3z2 � r2/. In an experiment, ‚.jn/ is measured by altering

static dc voltage and is a challenge to extract precisely. Several calculations of this
quantity are also available with accuracies as par with the measurements and even in
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some cases accuracies in the calculations have surpassed over their corresponding
measurements.

Multipolar BBR Shifts
Shifts in the quantum energy levels owing to the atom residing in an environment
at finite temperature at which an atom can emit radiations with wavelengths
depending on the magnitude of temperature are known as BBR shift. Atomic
clocks are advised to operate at the room temperature for the general use and the
wavelengths emitted from the atoms at this temperature are typically in the infrared
region of the electromagnetic spectrum. Accurate estimates of BBR shifts for the
laboratory as well as those used in the spacecraft atomic clocks are inevitable
as even in the most remote place of intergalactic space, an isolated atom is still
subject to cosmic microwave background radiation (CMBR). Uncertainties in the
estimated BBR shifts can impose limits to achieve the best atomic clocks. These
shifts can be estimated using the multipole expansion of the electromagnetic field.
Usually contribution due to the E1 channel is taken into account for its dominant
contribution; however, contributions from other higher multipoles, especially from
the M1 and E2 channels, can also be significant when the accuracy of clocks reach
below 10�19 level. A general theory of BBR shift follows below.

The Hamiltonian describing interactions between the electrons in an atomic
system with the external propagating electromagnetic field in the Coulomb gauge
coupling is given by

V .r; !/ D �c Ę � EA.r; !/ D �c. Ę � E�/ei Ek�Er ; (28)

where ! is the angular frequency of the field and Ek D jkj Ok and E� are its wave
vector and polarization direction, respectively. The expression for the BBR shift of
an atomic energy level j‰ni with energy En is given by

#EBBR D 1

2
†m;! jVnm.r; !/j2

�
En �Em

.En �Em/2 � !2
�
; (29)

for Vnm.r; !/ being the transition matrix of V .r; !/ between the states j‰ni and
j‰mi.

Carrying out multipolar expansion of V .r; !/ in terms of general moments
Q�
LM.
Ek � Er/, it can give

. Ę � E�/ei Ek�ErD�†LM .K
L/.iLC1C�/
.2LC1/ŠŠ Œ EY �LM . Ok/ � E�/�

r
4�.2LC 1/.LC 1/

L
Q�
LM .
Ek � Er/

D �†LM;l .K
L/.iLC1C�/
.2LC 1/ŠŠ Y �LM .kl /

r
4�.2LC 1/.LC 1/

L
Q�
LM .rl /;

(30)
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where kl is the component of Ek projecting toward the l th unit vector of E�, and � D 1
and � D 0 correspond to the electric and magnetic multipoles, respectively. Since
emission from BBR is isotropic, each component of the electric and magnetic fields
is related to the spectral energy density as

u.!; T / D 3

8�
E2
l .!/ D

3

8�
B2
l .!/ D

1

�2c3
!3

e!=kBT � 1 : (31)

Hence, averaging over polarizations and propagation directions in Eq. (29), we get
[17, 18]

#E
�;L
BBR D �

˛kBT

2jn C 1†m¤nL;M

ˇ̌h‰nkQ�
LMk‰mi

ˇ̌2 � FL �En �Em
kBT

�
; (32)

where the universal function is defined as FL.y/ D 1
�

LC1
L.2LC1/ŠŠ.2L�1/ŠŠ �R1

0
dx
	

1
yCx C 1

y�x


x2LC1

ex�1 that is applicable to all atoms with argument y

depending on the range of the atomic parameters. With jyj  1, corresponding to
the transition energy much larger than the kBT values as of our interest and for the
dominant term L D 1, we have

#E�
BBR D �

1

2c
Q�
L

n

�
8�3˛3e .kBT /

4

45.2jn C 1/
�
˛
Q�
L

n .0/; (33)

where ˛e is the fine-structure constant and ˛
Q�
L

n .0/ is the scalar polarizability defined
as

˛
Q�
L

n .0/ D CQ�
L

n †m¤n

ˇ̌h‰nkQ�
LMk‰mi

ˇ̌2
En �Em ; (34)

with the appropriate angular coefficient C
Q�
L

n D 2

˛
2.��1/
e .2LC1/.2jnC1/

due to the

radiative moment Q�
L. Usually large contribution comes from E1, followed by M1,

then E2, and so on. On average over polarization, the BBR shifts from the first three
important channels are given by

#EE1
BBR D �

1

2

4�3˛3e
15

.kBT /
4˛E1n .0/ D �1

2
hE2

E1.!/i˛E1n .0/; (35)

#EM1
BBR D �

1

2

4�3˛5e
15

.kBT /
4˛M1
n .0/ D �1

2
˛2e hB2

M1.!/i˛M1
n .0/ (36)
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and

#EE2
BBR D �

1

2

8.˛�/5

189
.kBT /

6˛E2n .0/ D �1
2
hE2

E2.!/i˛E2n .0/; (37)

where ˛M1
n .0/ and ˛E2n .0/ are the scalar M1 and E2 polarizabilities, respec-

tively, and hE2
E1.!/i, B2

M1, and hE2
E2.!/i are the averaged E1-induced electric,

M1- induced magnetic, and E2-induced electric fields, respectively. Conventionally,
the above shifts are expressed as functions of temperature scaled with respect to the
room temperature (T D 300 ıK) as

#EE1
BBR.300

ıK/ D �1
2

�
831:9

V

m

�2 �
T .K/

300

�4
˛E1n .0/; (38)

#EM1
BBR.300

ıK/ D �1
2
.2:77 � 10�6Tesla/2

�
T .K/

300

�4
˛M1
n .0/; (39)

and

#EE2
BBR.300

ıK/ D �1
2

�
7:2 � 10�3 V

m

�2 �
T .K/

300

�6
˛E2n .0/: (40)

Even for estimating the E1 BBR shift, the above formula does not take into account
frequency distribution properly. Including the appropriate dynamic correction, the
final expression for the BBR shift due to the E1 component yields

#EE1
BBR.300

ıK/ D �1
2

�
831:9

V

m

�2 �
T .K/

300

�4
˛E1n .0/Œ1C �.˛E1n ; T /�; (41)

where

�.˛E1n ;T /D
�
80
63

�
�2

˛E1n .0/T
†m¤n

jhjnkDkjmij2T 3
.2jn C 1/.En �Em/3

�
1C 21�2T 2

5.En �Em/2C
336�4T 4

11.En �Em/4
�

.

Relativistic Many-Body Methods

As mentioned at several occasions, it is possible to estimate many important sys-
tematics for the atomic clocks and propose new clock candidates by the theoretical
studies. This warrants for development of suitable many-body methods that are
capable of considering the electron correlation effects more effectively. It is also evi-
dent from most of the undertaken examples that consideration of a suitable atomic
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transition with one of the atomic states having almost-degenerate fine-structure
partner has many merits, e.g., achieving high stability and accuracy, for the optical
frequency standards. This urges for using relativistic mechanics in the theoretical
studies. Moreover, almost all the candidates considered for frequency standards are
relatively heavy atomic systems for which accurate calculations of their properties
necessitates employing valid relativistic many-body methods. Consideration of a
fully relativistic theory in its covariant form is impractical in the many-electron
bound systems. Working with Dirac Hamiltonian for electrons along with nuclear
potential and Coulomb repulsion between the electrons can suffice the present goal
to accomplish calculations within the required accuracy. Nevertheless, corrections
from higher relativistic effects at the leading orders, e.g., Breit interaction due
to exchange of transverse photons and quantum electrodynamics (QED), can be
incorporated to augment the calculated results.

General Approach

The Dirac–Coulomb (DC) Hamiltonian for an atomic system is given by

HDC D †i Œc Eai � Epi C ˇi c2 C Vn.ri /�C† i;j
i	j

1

rij
(42)

(in atomic unit (au)), where Ę and ˇ are the Dirac matrices and Vn.r/ is the nuclear
potential. This is a good approximation to describe the positive energy states of the
Dirac theory. Weak coupling with the positron wave functions are usually neglected
and also the rest mass energy of the electrons can be subtracted for the convenience.
Thus, the working DC Hamiltonian reads out

HDC D †i Œc Eai � Epi C .ˇi � 1/ c2 C Vn.ri /�C† i;j
i	j

1

rij
: (43)

Again, it may not be appropriate to assume atomic nucleus as a point- like object for
accurate calculations. On the other hand, there are not proper valid models available
to describe the nuclear structure exactly. Among many, Fermi charge distribution
model is more popular in which density of an electron within the atomic nucleus is
described by

�n.r/ D �0

1C e.r�b/=a ; (44)

where �0 is the normalization factor, b is known as half-charge radius and
a D 2:3=.4 ln 3/ is related to the skin thickness of the nucleus. Considering this
distribution, the nuclear potential can be obtained as
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Vn.r/ D Z

@r

8<:
1
b

	
3
2
C a2�2

2b2
� r2

2b2
C 3a2

b2
P2 C 6a3

b2r
.S3 � PC3 /



for a 
 b

1
r

	
1C a62�2

b2
� 3a2r

b3
P�2 C 6a3

63b
.S3 � P�3 /



for r 
 b; (45)

for the factors @ D 1 C a2�2

b2
C 6a3

b3
S3 with Sk D †1mD1

.�1/m�1
mk

e�b=a and

Pk̇ D †1mD1
.�1/m�1
mk

e˙m.r�b/=a. The b-parameter can be determined from b Dq
5
3
r2rms � 7

3
a2�2 with the root mean square radius rrms, which can be estimated

using the empirical formula rrms D 0:836A1=3 C 0:57 in fermi (fm) or can be taken
from a standard nuclear data table.

We now turn to outline procedures to estimate corrections due to higher-order
relativistic effects. Since the nuclear potential is the dominating contributing term
in the above DC Hamiltonian, the QED effects are estimated by treating the nuclear
potential as the strong external electromagnetic field seen by the bound electrons
in an atomic system. Thus, an effective potential is defined accounting lower-order
vacuum polarization (VP) and self-energy (SE) QED effects [19] in place of Vn.r/
in the atomic Hamiltonian and reads

Veff.r/ D Œ1C VU .r/C VWC.r/C Vmg.r/C Vel.r/�Vn.r/; (46)

where VU .r/ D 2˛e
3�

R1
1

dt
p
t2�1
t2

�
1C 1

2t2

�
e�2ctr and VWC.r/ D � 4˛e9� 0:092 Z2˛2e

1C.1:62cr/4
are the Uehling and Wichmann–Kroll corrections, respectively, representing the
lower-order VP effect and the SE effect is taken through the magnetic form-factor

Vmg.r/ D ˛e
4�c
i �#

h
Vn.r/

	R1
1

dt 1

t
p
t2�1e

�2ctr � 1

i

and the electric form-factor

Vel.r/ D �˛e�
R1
1

dt 1

t
p
t2�1

h�
1 � 1

2t2

� h
ln.t2 � 1/C ln

	
4c2

�2


i
� 3

2
C 1

t2

i
e�2ctr for

the cutoff parameter chosen cautiously as � � .Z˛2e /c.
The potential due to the Breit interaction between the electrons located at the i th

and j th positions is given by

VB.rij / D � 1

2rij
f˛i � ˛j C .˛i � Orij /.˛j � Orij /g: (47)

Owing to the two-body nature of the Coulomb and Breit interactions, solving
eigenvalue equation for the atomic Hamiltonian Hat (with only Coulomb or both
Coulomb and Breit interactions), given by

Hat

ˇ̌
‰.0/
n i D En

ˇ̌
‰.0/
n i; (48)

with more than three electrons in an atomic system is infeasible. Instead, it is a usual
practice to get the approximated solution to the above equation and then append
corrections from the residual contributions gradually. This approximated solution is
treated as a model space in the working Hilbert or Fock space accounting majority
of the contributions from the Coulomb (and Breit) interaction(s) in the calculation of
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the atomic wave functions. One of the most conducive and appropriate approaches
to determine the approximated wave functions is to use the Hartree–Fock (Dirac–
Fock (DF) in the relativistic framework) Hamiltonian (H0). The residual interaction
(Vres D Hat�H0) can further improve the results by annexing contributions from the
rest of the Hilbert or Fock space, referred to as orthogonal space, through a decent
many-body method. Below we demonstrate few methods and try to inculcate one-
to-one connections among these methods. For this purpose, we try to build up each
many-body approach by commencing from the same DF wave function. To proceed
further, we adopt the procedure of the generalized Bloch equation to explain the
many-body methods systematically in a comprehensible and logical manner. In the
many-body perturbation theory (MBPT), the exact wave function of an atomic state
can be expressed as

j‰.0/
n i D �.0/

n jˆni; (49)

where jˆni is the model space (here DF wave function) and �.0/
n is the wave

operator which is responsible for incorporating contributions from the orthogonal
space due to Vres. Orthogonal space contributions can either be expressed in terms
of the order of perturbation or in the form of excited configurations with respect to
jˆni. For the simple reason, we can go on with the perturbation series expansion
approach first and then we can manifest the same in terms of the excited state
configurations.

Two projection operators P and Q satisfying jˆni D P j‰.0/
n i and Q D I � P

for the identity operator I are defined for easy description, which follows P D
jˆnihˆnj. In the perturbative approach, it yields

�.0/
n D �.0;0/

n C�.1;0/
n C�.2;0/

n C � � � D †k�.k;0/
n : (50)

Notice that we use two superscripts, for the later use, among which the first one
represents the number of Vres present in the calculations, while the second one with
zero means there is no external source of perturbation taken into account. The
amplitudes of the above wave operators are solved one by one in the sequence
of order of perturbations involved with the wave operators using the following
recursive relation:�

�.k;0/
n ;H0

�
P D QVres�

.k�1;0/
n P �†k�1mD1�.k�m;0/

n PVres�
.m�1;0/
n P: (51)

The energy of the state .En/ can be evaluated using an effective HamiltonianH eff
n D

PH�
.0/
n P at different orders of perturbation with the expansion form of �.0/

n . That
is, En D hˆnjH eff

n jˆni.
There are, specifically, two approaches adopted to evaluate dipole polarizability

of an atomic state. In a conventional approach, the energy of the j‰ni state of an
atom placed in an isotropic electric field of strength " changes as [20, 21]

En."/ D En.0/ � ˛
E1
n

2
"2 � � � � ; (52)
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whereEn.0/ andEn."/ are the total energies of the state in the absence and presence
of the electric field, respectively. This approach requires mixed parity orbitals to
calculate the atomic energy in the presence of the electric field, which are practically
cumbersome using the spherical coordinate systems but are manifested using the
molecular methods (in the Cartesian coordinate system).

Alternatively, the modified wave function .j‰ni/ of the atomic system in the
presence of an external weak perturbative source (Vprt) can be approximated to first-
order approximation as

j‰ni D
ˇ̌
‰.0/
n i C �

ˇ̌
‰.1/
n i; (53)

where � is an arbitrary parameter (corresponds to " in the evaluation of ˛E1n )
representing the strength of the perturbation source. In this way, ˛E1n can be obtained
by expressing [22–26]

˛E1n D
h‰njDj‰ni
‰nj‰n ' h‰

.0/
n jDj‰.1/

n i
‰
.0/
n j‰.0/

n

; (54)

by considering Vprt � "DOz for small values of ".

It is commanding to obtain solution for j‰.1/
n i by solving an inhomogeneous

equation of the type ˇ̌
.H eff

n �En/
ˇ̌
‰.1/
n i D .E1

n � Vprt/j‰.0/
n i; (55)

analogous to the approach proposed and implemented by Dalgarno [27]. In Bloch
equation methodology, we can express j‰.1/

n i D �.1/
n jˆni such as �.1/

n D †k�.k;1/
n

encompassing kth order of Vres and one order external perturbation Vprt. The

amplitudes of �.1/
n are obtained from the following equation [26]:

�
�.k;1/
n ;H0

�
P D QŒVprt�

.k;0/
n C Vres�

.k�1;1/
n �P�

†k�1mD1
�
�.k�m;0/
n PVprt�

.m;0/
n P ��.k�m;1/

n PVres�
.m;0/
n

�
P:

(56)

For the choice of reference state jˆni as the DF wave function and external
perturbation operator Vprt being a one-body operator, the zeroth-order expressions

for the wave operators can yield �.0;0/
n D 1, �.1;0/

n D 0, and �.0;1/
n D †p;a

hpjVprtjai
�p��a

for the occupied a and unoccupied p-orbitals with energies �a and �p , respectively.
In the double perturbative sources, up to k D 0; 1; 2 � � � approximations in the
wave operators are referred to MBPT(1) or DF, MBPT(2), MBPT(3), etc. methods,
respectively.
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Having said and done with the basic formalism of determining atomic wave
functions in the many-body perturbative analysis, extending them to build up
these wave functions containing all orders in Vres for both the cases, the absence
and presence of external source, would be now much straightforward. This can
be achieved by generalizing the above perturbative approaches after carefully
formulating the wave operator �n in a slight different form or assembling the
coefficients from each order of perturbation expansion to compose various degrees
of excitations. We discuss few important all-order many-body methods that are
widely used in the studies of atomic clock pertinent physics; specifically, two
all- order perturbative approaches known as configuration interaction (CI) and
coupled-cluster (CC) methods in the absence of external field and their extensions
to deal with weak external interaction up to the first-order perturbation.

Configuration Interaction (CI) Method
As mentioned above, the exact wave function j‰.0/

n i can be expressed in terms of
excited configurations with respect to jˆni. Mathematically, this corresponds to

j‰.0/
n i D jˆni C†NII C I

n jˆIni C†NIIII C
II
n jˆIIn i C†NIIIIII C

III
n jˆIIIn i C � � �

� QCn
ˇ̌̌
 .0/
n i C†NII QCI

ˇ̌̌
 
.0/
I i C†NIIII

QCII
ˇ̌̌
 
.0/
II i C†NIIIIII

QCIII
ˇ̌̌
 
.0/
III i C � � �

(57)

where jˆKn is are the determinants corresponding to DF wave functions for NK
number of possible kth excited states constructed from jˆni and C �n s are their
corresponding mixing coefficients. Obviously it is only possible to generateN -tuple
excitations for full expansion in a system having N -number of electrons. The above
expansion is a direct consequence of the fact that each order in the correction from
the perturbed wave functions can be expressed as linear combination of excited
states. This also directly follows; the excited state determinants are nothing but the
leading part of the excited atomic states. As a result, the calculated atomic state
function (ASF) j‰.0/

n i can be expressed as a linear combination of configuration
state functions (CSFs) representing the trial atomic state functions (denoted by the
notation j .0/

n i). This approach of constructing atomic wave functions is known as
CI method. In a special condition the above excited Slater determinants (jˆ�ni) can
also be chosen as CSFs in a CI method. By diagonalizing the atomic Hamiltonian
with respect to the CSFs, one can obtain the values of the C �k or QC �k coefficients.
Although conceptually CI method looks simpler, computationally it is much difficult
to account the higher-level excitations and often it has been truncated to only single
and double excitations (referred to as CISD method) in the practical applications.
It can be shown by considering only the double configurations that the corrections
from Vres to the wave function calculations in a truncated CI method are proportional
to 1=

p
N [20, 28]. This simply means for N ! 1, the correlation contributions

to the calculation diminish (famously known as size-consistency problem). Hence,
truncated CI method may not be judicious to employ for accurate calculations of
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atomic properties in the heavy systems (large N ) conceptually and results from
the truncated CI can be questionable for their validation. Nevertheless, results
close to the experimental values can be achieved by taking only important CSFs
from the energy-level configurations in a truncated CI method. Indeed upon the
consideration of more Slater determinants in the construction of j .0/

n i, it is possible
to improve the quality of truncated CI results, and this approach is recognized as
multi-configurational Dirac–Fock (MCDF) method.

In a similar approach, the first-order correction to the wave function due to the
external field and matrix elements of an operator among different states can be
obtained by mixing CSFs with appropriate parities and angular momentum as per
the selection rules.

Coupled-Cluster (CC) Method
In the CC method, linear combination of the Slater determinants are carried out in a
distinct manner so that atomic wave functions are contrived to form an exponential
function. Starting with the same basic principle as in the CI method, we can rewrite

j‰.0/
n i D jˆni C†NII C I

n jˆIni C†NIIII C
II
n jˆIIn i C†NIIIIII C

III
n jˆIIIn i C � � �

� jˆni C†NII T .0/I jˆni C†NIIII T
.0/
II jˆni C†NIIIIII T

.0/
III jˆni C � � �

D jˆni C T .0/1 jˆni C T .0/2 jˆni C T .0/3 jˆni C � � �
D eT .0/1 CT .0/2 CT .0/3 C���CT .0/N jˆni D eT .0/ jˆni; (58)

where T .0/k D †
NK
K T

.0/
K for k D 1; 2; 3 � � � represents the CC excitation operator

with subscript k implying the kth level excitation carried out from jˆni. The
advantage of this method is of manyfold: (i) it is both conceptually and compu-
tationally simpler, (ii) truncated CC methods also satisfy both size-extensivity and
size-consistency properties, (iii) owing to exponential form of the expression for the
wave function, contributions from higher-level excitations to a certain extent also do
appear through the nonlinear terms in a truncated CC method, etc.

Although we mentioned above about computational simplicity in the use of CC
method, in actual practice it may not turn out to be factual. Because of the presence
of the nonlinear terms and requirement of a sufficiently large Hilbert or Fock space
to carry out accurate calculations of the atomic wave functions, intermediate com-
putational strategy may be required conforming available computational resources
and depending upon the size of the atomic system of our interest [20, 22, 26]. This
can be judiciously accomplished by devising a proper plan before implementing
the method. For example, a well-suited symmetry group and Kramers relations
[29] can be adopted to reduce the computational cost when molecular orbitals are
used. Since atomic orbitals are meticulously described in the spherical coordinate
system, the use of reduced matrix elements instead of actual matrix elements would
be more pertinent and can prevail extra computations for the azimuthal quantum
numbers. This can be the most well-versed approach for states having closed-sell
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configurations, but states of open-shell configurations cannot be dealt with this way.
However, atomic states having one or two electrons in the valence orbitals and
one or two electron less from closed-shell configurations can be computed using
the reduced matrix elements by appending valence orbitals or removing electrons
from the appropriate closed-shell configurations in the Fock-space approach. We
discuss here a few such approaches but restricting to only one electron attachment
or removal from the closed-shell configurations.

In the Fock-space CC formalism, wave functions of one valence (� D n) atomic
states are expressed as

j‰ni D eT
.0/
0
˚
1C S.0/�

� jˆ�i; (59)

where S� is a CC operator exciting the valence electron � along with the closed-
core jˆ�i. In a Fock-space approach, jˆ�i is constructed from the closed-core
jˆ0i by appending the respective valence orbital � as jˆ�i D aC� jˆ0i. Likewise,
wave functions for the states having less than one electron from the closed-shell
configurations can be expressed as

j‰ai D eT
.0/
0
˚
1CR.0/a

� jˆai; (60)

where Ra is the CC operator responsible for annihilating a core electron (a D n)
from the closed-core jˆni and exciting an electron from a reference state jˆai
constructed as jˆai D aajˆ0i. In both of the above approaches, CC T

.0/
0 operator

is responsible for accounting electron excitations from the closed-core jˆ0i. In
these expressions, superscript .0/ is used to highlight that wave functions are still
free from the external fields. It is called as CCSD method when only the single
and double excitations are taken in, while it is known as CCSDT, CCSDTQ,
etc. methods with the inclusion of triples, quadrupoles, and so on excitations,
respectively [20]. Since computational complexity increases with the addition of
higher-level excitations, CCSD approximation is the prevalent method in the atomic
and molecular spectroscopy studies. Contributions from important triples can be
included perturbatively through the CCSD method in the CCSD[T], CCSD(T),
CCSDpT, and CCSDvT framework [20,25,30] in the same amount of computational
requirements to uplift the results further. The matrix element of an operator O
between the j‰f i and j‰i i states (for the expectation value j‰f i D j‰i i) can
be determined by

hOif i D h‰f jOj‰iq˝
‰f j‰f

˛ h‰i j‰i i
D

hˆf
ˇ̌̌n
1C�Cf

o

f1C�ig

ˇ̌̌
ˆir

hˆf
ˇ̌̌n
1C�Cf

o NN f1C�ig
ˇ̌̌
ˆf ihˆi

ˇ̌˚
1C�Ci

� NN f1C�ig
ˇ̌
ˆi i

;

(61)
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where �n is either Sn or Rn for the attachment or detachment of an electron case,

respectively, and NO D eT
.0/C
0 OeT

.0/
0 and NN D eT

.0/C
eT

.0/
are two non-truncated

series in the above expression. For the closed-shell atomic states (j‰i i D j‰f i D
j‰0i), it yields [20]

hOi D h‰0jOj‰0iph‰0j‰0i D hˆ0j NOjˆ0ic (62)

where the subscript c in the expression represents to only the connected terms. In
many cases, only linear terms even in the CCSD method are considered (referred
here as LCCSD method) for carrying out the calculations. The above non-truncated
series can be computed at several steps [22–26], but it is advisable to use other CC
methods like normal CC method with biorthogonal condition, extended CC method,
etc. to fend off these non-truncated series [20].

Creating excited states from an atomic state of closed-shell configuration j‰0i in
a Fock-space approach is onerous, but an equation-of-motion CC (EOMCC) method
is apropos to determine Lth level excited states j‰L.J; �/i with total angular
momentum J and parity � from j‰0i. In this approach, it follows [20, 31]

j‰L.J; �/i D �L.J; �/j‰0i D �L.J; �/e
T
.0/
0 jˆ0i D eT

.0/
0 �L.J; �/jˆ0i:

(63)

By construction both the T .0/ and �L operators are similar in nature; hence, they
can commute each other, but they commission operationally different roles.

In the presence of an external source, the first-order corrected wave function in
the CC method can be expressed as [22–26]

j‰.1/
n i D eT

.0/

.T .1//jˆni (64)

Similar to T .0/ the perturbed CC operator T .1/ excites electrons from jˆni, but
parity of T .0/ is always even as it originates from the Coulomb (or Breit) operator,
while the parity of T .1/ can depend on the characteristic of V prt.

Random-Phase Approximation (RPA)

Though random-phase approximation is a subclass of CC method, technically it is
derived from the DF method in a completely different approach. Its main advantage
is that it can embody the core-polarization effects to all orders at the same time
being cost effective. Its expression can be obtained from Eq. (56) by continuing k
to infinite order for �.k;1/ while suppressing �.k;0/ in a self-consistent procedure.
The derivation of the final expression is a repercussion of expanding the DF wave
function jˆni to first order due to Vprt and generalizing it to infinite order. Thence,
it only picks up the singly excited configurations from j‰ni in case of polarizability
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calculations owing to one-body form of the interaction operator Vprt � D. In the

RPA approach, the first-order corrected wave operator �.1/
n � �

.RPA/
n is explicitly

given by

�.RPA/
n D †1kD1†pq;ab

(
ŒhpbjVresjaqi � hpbjVresjqai��.k�1;1/

b!q
�p � �a

C �
.k�1;1/C
b!q ŒhpqjVresjabi � hpqjVresjbai�

�p � �a

9=; ; (65)

where a! p implies singly excitation operation by the wave operator replacing an
orbital a by p in jˆni.

Demonstration of Few Theoretical Results

The main aim here is to testify the role of relativistic many-body methods for
accurate calculations of the quantities that can be useful in various possible ways
for the atomic clock studies, especially in the precise estimate of systematics.
Proclaiming through only few examples, accurate calculations of Ahf constants, gJ -
factors, static polarizabilities, and quadrupole moments of atomic states in a number
of clock candidates will be demonstrated at different levels of approximations in the
employed many-body methods.

Ahf-Constants and gJ-Factors

Almost all heavy singly charged ions from the alkaline earth metal group in the
periodic table (from Ca to Ra) are either considered or proposed for the atomic
clocks because these ions have typically an S-state as the ground state and two
excited metastable D-states. In Table 2, a summary of the calculated results for
Ahf=.�I =I / of the above states in the alkaline earth ions, YbC and HgC, considering
the DF, RCC, and MCDF methods is reported from [6,8,32–34]. It has been shown
explicitly in these references that accurate calculations of these quantities in the
ground andD3=2 states require both pair-correlation and core-polarization effects to
be considered to all orders, while the core-polarization effects are solely important
for the correct evaluation of Ahf values in the D5=2 states [33]. In fact, these values
for the metastable 6D3=2 state in RaC was first predicted by theory using the CC
method and later it was verified by the experiment [35].

Among others, 171YbCion is the most valuable ion for the atomic clock perspec-
tives as its three transitions, the largest among all the elements, are considered for
the frequency standards as it has three metastable states (5d -fine-structure levels
with lifetimes of the order of few seconds and the first excited 4f 13 2F7=2 state
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Table 2 Comparison between the calculated Ahf values divided by I=�I from the DF, CC, and
MCDF methods against their available experimental results in the alkaline earth ions, YbC and
HgC. The MCDF results are mostly taken from [32], while other results are compiled from the
electron attachment method of [6, 8, 33, 34] and from the references therein. Here n represents the
principal quantum number of the ground state of the corresponding ion

Method CaC SrC BaC RaC YbC HgC

ns state

DF 1;561:62 3;039:53 4;741:67 14;913:89 9;637:42 34;380:31

CC 2;142:01 4;123:06 6;517:57 19;689:37 13;166:69 41;592:88

MCDF

Experiment 2;142:02 4;120:04 6;429:83 18;772 12;807:14 40;035:74

.n� 1/d3=2 state

DF 88:74 128:30 205:38 293:53 286:67

CC 125:64 187:64 305:47 441:67 406:14

MCDF 125:56 308:83 405:55

Experiment 125:64 303:77 430:67 435:51

.n� 1/d5=2 state

DF 9:18 53:56 C82:58 107:60 109:47

CC 9:56 �8:83 �19:19 �138:36 �69:88
MCDF 12:86 C15:03 �12:75
Experiment 10:34 8:95 �19:25 �64:42

with a lifetime about 6 years). The octopole transition 6s ! 4f7=2 of this ion
has the uttermost narrow linewidth which is advantageous for making prospective
primary frequency standard. Except the 4f7=2 state, the other three states (including
the ground state) of 171YbC have three valence orbitals, but they can be treated
as states with one valence configurations with the closed-core Œ4f 14�. Also, both
the ground and 4f7=2 states of YbC can be regarded as one electron less than
the closed-core Œ4f 14�6s2. Analogously both the states of the clock transition
Œ5d10�6s 2S1=2 ! 5d96s2 2D5=2 in HgC can be calculated in the similar approach.
Comparison between the Ahf values obtained using different many-body methods
and with the available experimental results can be found from Tables 2 and 3. It can
be seen from these tables that when Ahf of the ground state of YbC is calculated
using an electron detachment than attachment approach, the result becomes closer
with the experimental value. This is because in the former case the core orbitals see
effect due to the valence electron and in the latter approach they come only through
the CC operators [36]. It is indeed a quite remarkable observation, though not much
difference found in the calculations for HgC (Nandy DK, Private communication).

Lindroth and Ynnerman had critically evaluated #gJ values of the ground states
of Li, BeC, and BaC to quite a high accuracy using the CC method in comparison
with the experimental values [16]. In Table 4, preliminary calculations of gJ and
ıgJ values have been demonstrated of the ground and metastable states of CaC
using the CC method at different levels of approximations and considering the
higher-order relativistic corrections, while the semiclassical formula gives these
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Table 3 Comparison between the calculated Ahf values divided by I=�I from the MCDF [32]
method and electron detachment theory with DF and CC methods [36] against their available
experimental values

YbC HgC

Œ4f 14�6s state 4f 136s2 2F7=2 state Œ5d10�6s state 5d96s2 2D5=2 state

DF 7;318:10 878:78 30;050:78 902:43

CC 12;871:96 1;016:87 41;608:82 1;080:29

MCDF 952:29

Experiment 12;807:14 916:60

Table 4 Preparatory calculations of gJ -factors and their ıgJ corrections (given within the
parentheses) in the states of interest for the clock transitions in CaC from DF and different CC
methods and comparison with the semiclassical and available experimental results

Method 4s 2S1=2 state 3d 2D3=2 state 3d 2D5=2 state

DF 1.99995307831 0.799922324299 1.19991738748

(C0.00284130797) (�0.000898052128) (C0.00112057581)

LCCSD 1.99347972816 0.796582101999 1.19726585871

(C0.00282940412) (�0.000898459207) (C0.00111787848)

CCSD 1.99783376440 0.802135504861 1.20140651205

(C0.00283303463) (�0.000893389416) (C0.00111891602)

CCSD(T) 1.99941009011 0.802210930664 1.20151553526

(C0.00283303788) (�0.000893393408) (C0.00111892083)

CCSDvT 1.99942182027 0.802214948013 1.20151548994

(C0.00283304004) (�0.000893394022) (C0.00111893179)

# Breit �0.00000546639 C0.00004031931 C0.00000746347

(�0.00000000443) (�0.00000000687) (C0.00000000212)

# QED �0.00000006897 C0.00000000808 C0.00000000002

(�0.00000000014) (C0.00000000004) (C0.00000000001)

Final 2.00224932 0.801361875 1.20264189

Semiclassical 2.0 0.8 1.2

Experiment [37] 2.00225664(9)

values as 2, 0.8, and 1.2 for the respective states. In the above table, the ground
state value is also compared with its experimental result [37] up to the 4th decimal
places. It, thus, clearly advocates in favor of the potential of the CC method to
produce results accurately.

Static Polarizabilities (In Au)

Two elegant methods have already been described to evaluate ˛E1n values in the
atomic systems. To demonstrate the first kind, these values for the 3s2 1S0 and
3s3p 3P0 states in AlC along with excitation energy between these two states are
given in Table 5 by taking two arbitrary values of the electric field as " D 0:001 au
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Table 5 An example of amelioration of ˛E1n values for the states of clock transition in AlC
by estimating second- order energy difference with arbitrary electric fields in the finite gradient
method using an EOMCC approach [21]. The final results are also compared with a sum-over-
states approach in the CI+MBPT method framework [38]

Method Excitation energy 3s2 1S0 3s3p3P0 Differential

CCSD 37;186˙ 52 24:251˙ 0:044 24:656˙ 0:088 0:406˙ 0:042
CTriples 146˙ 33 �0:126˙ 0:011 �0:061˙ 0:015 0:065˙ 0:026
CQuadrupoles 2˙ 4 �0:002˙ 0:005 �0:001˙ 0:002 0:003˙ 0:007
CBreit �6˙ 6 0:015˙ 0:0015 0:018˙ 0:018 0:003˙ 0:003
Total 37;326˙ 95 24:137˙ 0:075 24:614˙ 0:123 0:477˙ 0:078
CI+MBPT 24.048 24.543 0.495

Table 6 Ground state ˛E1n values of few alkaline earth atoms, Yb and Hg, from different many-
body methods

Method Ca Sr Ba Yb Hg AlC InC

DF 122:90 156:83 218:88 122:21 40:95 19:514 25:734

MBPT(2) 151:70 188:98 34:98

MBPT(3) 132:80 163:13 22:98 21:752 18:374

RPA 44:98 26:289 29:570

LCCSD 33:91 26:118 25:360

CCSD 157:03 186:98 268:19 144:59 34:98 24:299 24:246

CCSD(T) 33:95

CCSDpT 34:07 24:26 24:11

C Breit 156:83 186:80 34:16

C QED 
0.0 186:78 34:27

CI+MBPT [38] 20:048 24:01

Experiment 169(17) 186(15) 268(22) 142(36) 33.91(34)

and " D 0:002 au in an EOMCC method with various levels of approximations [21].
These values are also compared with another latest calculation using the CI+MBPT
method in a sum-over-states approach [38].

There have also been ˛E1n values evaluated for the ground states of alkaline earth
atoms, AlC, InC, Yb, and Hg, and of the ground and excited states involved in the
clock transitions of alkaline earth ions by calculating the first-order perturbed wave
functions due to the E1 operator using the DF and CC methods. In Table 6, results
for the ground states of the above systems are listed from these calculations and
experiments [23, 26, 30, 39]. Similarly, results for the ions are given and compared
with the experimental values [22–25] in Table 7. Polarizabilities due to the E1, M1,
and E2 operators in these ions and only due to the E1 operator in few alkali atoms
are also determined precisely using the sum-over-states approaches by dividing
electron correlation effects into three classes [8, 18, 40–42] as contributions: due
to the valence correlation, due to correlations among the occupied electrons, and
due to the core-valence correlation which are denoted by ˛O;�n , ˛O;cn , and ˛O;c�n
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Table 7 Evaluation of results in the clock transitions of alkaline earth ions using the DF and RCC
methods and comparison with the available measured values taken from [22–25]

CaC SrC BaC RaC

Method 4s1=2 3d3=2 3d5=2 5s1=2 4d3=2 4d5=2 6s1=2 5d3=2 5d5=2 7s1=2 6d3=2 6d5=2

DF 42.76 40:66 39:71 56.72 64:83 60:82 81.99 40:03 38:96 73:18 81:36 63:90

CCSD(T) 73.0 28:5 29:5 88.29 61:43 62:87 124.26 48:81 50:67 104:54 83:71 82:38

Experiment 70.89(15) 93.3(9) 123.88(5)

75.3(4)

72.5(19)

for the corresponding operator O , respectively [18]. These values, with individual
contributions, are given in Table 8.

Using the above static polarizabilities, the BBR shift due to the E1 operator for
the clock transition 3s2 1S0 ! 3s3p 3P0 in AlC yields #v D �0:0041Hz, while
they are about 0.37, 0.22, 0.64, and 0.19 in Hz for the ns ! .n � 1/d5=2 clock
transitions in the CaC, SrC, BaC, and RaC ions, respectively, with n as the principal
quantum number of the ground states of the respective ion.

In a similar approach to above sum-over-states approach, dynamic ˛E1n polariz-
abilities for both the ground and first two excited states are evaluated using both
the linearly and circularly polarized lights in the alkali atoms [41, 42]. To illustrate
magic wavelengths obtained from these calculations, the dynamic polarizabilities of
the 5s, 5p1=2, and 5p3=2 states in the Rb atom are plotted against the wavelengths
of applied lights with both the linearly and left-handed circularly polarizations in
Fig. 1a–d. Magic wavelengths for the ns 2S1=2 ! np 2P1=2;3=2 transitions in the
Rb atom due to these lights are indicted by pointing arrows at the crossings of the
polarizability values of the above states.

Quadrupole Moments

Itano has reported quadrupole moments of many of the abovementioned ions and for
YbC by performing MCDF calculations [32]. These values are compared with the
CC and experimental results [6, 8, 36, 43] in Table 10. As was in the Ahf results,
the MCDF results for the ‚ values in the nd states of the Alkaline earth ions
are also off than their respective experimental values, whereas CC methods were
able to produce them more reliably. A detailed analysis to the passage of electron
correlation effects and role of higher relativistic corrections for precise estimate of
‚ values in the CaC metastable states is also demonstrated in Table 9. It can be
noticed that correlation effects improve the results from the DF values significantly
and occurrence of strong cancelations is found among the higher-order correlation
effects. Though it appears that relativistic corrections are small in the determination
of ‚ values, their contributions, especially from the Breit interaction, are useful
in order to reduce the uncertainty in the calculations. As can also be seen, some
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Fig. 1 (continued)
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Fig. 1 Dynamic polarizabilities of the 5s, 5p1=2, and 5p3=2 states in Rb atom corresponding to
the linearly and left-handed circularly polarized lights. Magic wavelengths for (a) the 5s! 5p1=2
transition with the linearly polarized light, (b) the 5s! 5p3=2 transition with the linearly polarized
light, (c) the 5s ! 5p1=2 transition with the circularly polarized light, and (d) the 5s ! 5p3=2
transition with the circularly polarized light, shown pointing by arrows at the crossing points
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Table 9 Theoretical and experimental ‚ values of states involved in the clock transitions of
alkaline earth and Yb ions. A detailed analysis for the CaC results given at different levels of
approximations in the CC method and contributions from higher-order relativistic corrections is
tabulated explicitly

CaC SrC BaC RaC YbC

Method 3d3=2 3d5=2 4d3=2 4d5=2 5d3=2 5d5=2 6d3=2 6d5=2 5d3=2 5d5=2 4f7=2

DF 1:712 2:451 2:469 3:496 2:72 3:99 3:58 5:29 2:440 3:613 �0:259
MBPT(2) 1:288 1:848

LCCSD 1:234 1:770848

CCSD 1:309 1:877 2:068 3:116 �0:216
CCSD(T) 1:301 1:867 2:12 2:94 2:32 3:42 2:90 4:45

CCSDvT 1:291 1:846848

CTriples �0:005 �0:004848
CBreit �0:003 �0:002848
CQED 0:00002 0:00003848

MCDF [32, 44] 1:338 1:917 2:107 3:048 2:297 3:379 2:174 3:244 �0:22
Experiment 1.83(1) 2.6(3) 2.08(11) �0.041(5)

of the calculations are as par with the available measurements, and in some cases
they are even better than their experimental values. For many states, experimental
results are not known but the calculated values can be reliably trusted because the
employed methods have been proven to give rise this quantity in other systems very
accurately. In fact, it is interesting to note that calculations of ‚ in the 4f7=2 state
of YbC using the MCDF [44] and CC [36] methods report consistent values but its
corresponding experimental result is found to be quite small. This, essentially, calls
for further experimental and theoretical investigation to be sure about its correct
value and to scrutinize reasons for which such large discrepancies are resulting.
Nevertheless, both the experimental and theoretical results for the 5d3=2 state in
YbC agree with each other quite nicely and uncertainty in the theoretical value
is estimated to be smaller [36]. In Fig. 2, the estimated quadrupole shifts for the
clock transitions in YbC using the calculated ‚ values and compared with their
corresponding experimental results are shown.

Clocks for Fundamental Physics

In the standard model (SM) of particle physics, there are several dimensionless
“fundamental constants” such as gauge couplings whose constancies are not really
predicted by the model itself, but they are accepted on some logical grounds without
having sufficient scientific proof. However, this fact needs to be verified and any
recognizable anomaly observed for all plausible circumstances with respect to
variation in space or time that should be adequately explained by a fundamental
theory. This persuades many to invent innovative notions of ideas to search for
such signatures. One of the important and popular concepts is to presume dynamic
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a b

Fig. 2 Comparison between the quadrupole shifts estimated using‚ values from the measurement
and calculations by the CC methods for (a) the Œ4f 146s� 2S1=2.F D 0/! Œ4f 136s2� 2S7=2.F D
3/ and (b) the Œ4f 146s� 2S1.F D 0/! Œ4f 145d � 2D3=2.F D 2/ clock transitions in YbC

behavior of some of the physical constants, which should be probed by any either
direct or indirect methods [45,46]. Since all the modern atomic clocks are capable of
measuring atomic transition frequencies to ultrahigh-precision level, any observed
discrepancies in that place of accuracy can be interrogated. It may be suggestive
not to take values of the constants directly from their single observational methods;
rather, they should be extracted from a series of theoretical and experimental studies
concurrently. Determination of a self-consistent set of values of the fundamental
constants giving best matching between theories and a defined set of experiments
can address how much constancy the physical constants are really immanent within
themselves. In fact, the test of variability of the physical constants does not require
knowledge of their actual values to sufficient high precision in anticipation. A
procedure for inferring any possible temporal variation of ˛e from the clock
frequency measurements has been elucidated here.

Let a physical quantity A be decomposed as A D k1F1 D k2F2 such as both k1
and k2 are two dimensionless quantities, while F1 and F2 are two functions of the
physical constants among which F1 is a function of the base units only (say) to some
power. In this case the time variation of A (denoted by dA=dt ) can be given by

d lnA

dt
D d ln k1

dt
C d lnF1

dt
D d ln k2

dt
C d lnF2

dt
; (66)

such that, let us say, time variation of either dk1=dt or dk2=dt can be measured
for which it is mandatory to have either dF1=dt D 0 or dF2=dt D 0. In this
condition by measuring either dk1=dt or dk2=dt , it is possible to infer dA=dt . This
is the basic underlying principle that can be adopted to probe d˛e=dt . The ancillary
attainment from the finding of d˛e=dt is that this information can be used for
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extracting information on possible variation in quantum chromodynamics parameter
ƒQCD and electron (quark) mass me.q/ using the empirical relations [45, 46]

ıƒQCD

ƒQCD
� 34ı˛e

˛e
(67)

and

ıme.q/

me.q/

� 70ı˛e
˛e
: (68)

Since mass of the proton (mp) is related with nuclear magnetic moment and is
almost approximated to mp � 3ƒQCD, so from d˛e=dt along with the above two
relations, variation in the ratio mp=me , strong to weak scale variation, can also be
determined. Any possible signature in observing variation in the above physical
quantities will be very useful to support physics describing by Grand Unified Theory
(GUT) and other sophisticated models of particle physics and may also imply
plausible violation of Einstein’s equivalence principle [45, 46].

The energy level in an atomic state of any multi-electron system is expressed as
[47]

En ' c2.Z ˛e/
2


1

2n2
C .Z˛e/

2

2n3

�
1

jknj �
3

4n

��
; (69)

where kn D ˙
�
jn C 1

2

�
is the relativistic quantum number. Since the relativistic

effects in an energy level close to the nucleus is large due to the high angular velocity
of the electron and approximately given by

# D �Z
2
a

2

.Z˛e/
2

�3

 
1

jn C 1
2

� Za

Z�

�
1 � Za

4Z

�!
(70)

where � is the effective principal quantum number and Za is the effective charge
experienced by the electron in that energy level after accounting the screening
effects due to the inner-core electrons. As the relativistic effects in the atomic energy
levels scale in the order of ˛2e , the transition frequencies among the atomic levels are
very sensitive to a small change in ˛e and get enhanced with large atomic numberZ
and for a small value of �. The advantage of considering atomic systems for probing
variability of the physical constants is owing to the reason as any change due to a
small variation in ˛e in the atomic transition frequencies can be probed using the
relativistic many-body methods by expressing a transition frequency (!) as

!.x/ � !0 C q x; (71)

where !0 is a referenced transition frequency with its corresponding fine-structure

constant ˛0 value, x D
	
˛e
˛0



� 1 is the Taylor coefficient of the first derivative of
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!, and q D d!
dx

ˇ̌
xD0 is known as the sensitivity coefficient due to variation in the ˛e

value. For the numerical estimate of the q-factor, it can be evaluated at the level of
the first-order correction in ˛2e using the expression

q � !.Cx/ � !.�x/
2x

(72)

for an arbitrary small value of x. By combining ultrahigh- precision frequencies
measured in the optical frequency standards for a certain time interval with the
calculated q-factors, it is possible to get some information on variation in ˛e from a
given reference. In the heavy atomic systems, the sensitivity parameters can be quite
significant and can be of the order of one. Hence, it may be ideal to define another
quantity (L˛e ) in the logarithmic form, to address the same issue, as

L˛e D ˛e
@

@˛e
lnŒFrel.Z˛e/� (73)

where Frel.Z˛e/ is the relativistic scaling factor in an atomic energy level. For the
(optical) atomic transitions, it can be expressed as

L˛e D
2q

!ref
; (74)

for the reference frequency !ref.
All the microwave clocks and some of the optical clocks, by the way, involve

hyperfine transitions. The magnetic-dipole hyperfine structure constant Ahf of an
atomic state can be analytically expressed as

Ahf /
�
mee

4

¯2
�
Œ˛2eFrel.Z˛e/�

�
�B

me

mp

�
; (75)

where for the S-wave electron Frel.Z˛e/ D 3p
1�.Z˛e/2.3�.2Z˛e/2/

and L˛e D
.Z˛e/

2 11�.Z˛e/2
.1�.Z˛e/2/.3�.Z˛e/2/ . It can be shown that variation in ˛e is related to variation

in Frel.Z˛e/ as

ıFrel.Z˛e/

Frel.Z˛e/
D K ı˛e

˛e
; (76)

for the factor K D .Z˛e/
2

.1�.Z˛e/2/.3�.2Z˛e/2/ . Using this formula one obtains K D
0:74 for Cs, K D 0:29 for Rb, K D 2:18 for HgC, etc.; however, after
expressing

Ahf D
�
˛e

˛0

�
.Aref

hf C qx/ (77)
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Table 10 Preliminary results obtained by combining CC calculations with corresponding exper-
imental frequency measurements from three important atomic clocks (Nandy DK, Private
communication)

System Transition Krel
1
R

@R
@t

(in year�1)
YbC Œ4f 14�6s! 5d3=2 0:951 .0:5˙ 1:9/� 10�16

YbC Œ4f 14�6s! 4f 136s2 2F7=2 �4:692 .0:2˙ 4:1/� 10�16

HgC Œ5d10�6s! 5d96s2 2D5=2 �2:88 .3:7˙ 3:9/� 10�16

for the reference Aref
hf value, it is obtained as K D 0:83, K D 0:34, and K D 2:28

for Cs, Rb, and HgC, respectively [47].
The more straightforward relations that are convenient to use for inferring

information on d˛e=dt from the combination of a probed transition (denoted by
index 1) and a reference transition (referred by index 2) in the consideration of
variety of transitions in an atomic system are given as [45, 46]

@

@t
ln

�
f 1

hfs

f 2
hfs

�
� @

@t
ln

�
�1I
�1I

�
C
�
@F 1

rel

@˛e
� @F

2
rel

@˛e

�
@ ln˛e
@t

; (78)

@

@t
ln

�
f 1

atm

f 2
atm

�
� @

@t
ln

�
@F 1

rel

@˛e
� @F

2
rel

@˛e

�
@ ln˛e
@t

; (79)

and

@

@t
ln

�
f 1

hfs

f 2
atm

�
� @

@t
ln

�
�1I
�1I
C .2C L1hfs � L2atm/ ln˛e

�
; (80)

where the abbreviations hfs and atm represent, particularly, the hyperfine and atomic
transitions, respectively. At least the following quantities

R D fobs

fCs
and Krel D 1

Frel

@Frel

@˛e

for three are clock transitions listed in Table 10 from the calculations using CC
methods (Nandy DK, Private communication). Here Cs clock frequency standard is
taken as the reference to compare with the observed values. Using these quantities,
possible variation in ˛e versus variation in nuclear magnetic moment �n inferred
from the combinations of the above three clock transitions are demonstrated
pictorially in Fig. 3.

Summary

Many basic concepts on working principles, needs, and roles of theoretical studies
for atomic clocks are described for the general readers. It mainly highlights the
essential criterion, present status, and future prospective of atomic clocks and
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Fig. 3 Constraints on
temporal variations in ˛e and
�n from the quadrupole (E2)
clock transitions from YbC
and HgC ions and octopole
(E3) clock transition of YbC
ion with reference to Cs clock
using the calculated
q-parameters by CC method
and available experimental
data
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mentions the candidates that are capable of replacing the present Cs primary
frequency standard. Optical clocks based on the neutral atoms and a single trapped
singly charged ions are discussed in great detail and their constraining factors to
achieve high accuracy are demonstrated by considering a few cases. Uncertainties
due to both the instrumental and external fields are also briefly given. In this context,
the role of relativistic many-body methods for accurate estimate of uncertainties
in some of the major systematics is discussed. Underlying differences between
various many-body methods that are usually employed to calculate these properties
are explained and few concrete examples are shown by giving results from these
methods. The importance of higher-order relativistic effects is shown by evaluating
their contributions explicitly in few cases. It is seen that in several cases, the
theoretical calculations are more precise than the experimental results and in
some situations both the experimental and theoretical results do not match. This,
obviously, calls for developing more sophisticated many-body methods to validate
these results more reliably. It is also emphasized how a priori theoretical studies
are acting as the guiding factors for selecting new clock candidates. Finally, the
need of studying atomic clocks, both theoretically and experimentally, for probing
fundamental sciences is illustrated.
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Abstract

The theoretical picture of nuclear magnetic resonance (NMR) shielding is
first discussed in depth through the body-fixed molecular Hamiltonian that
treats electrons fully relativistically and nuclei quasi-relativistically. Various
ways are then presented to capture the relativistic diamagnetism, which is
otherwise missed by the standard four-component relativistic linear response
theory of NMR shielding. With an explicit relativistic diamagnetism, the correct
nonrelativistic limit of the four-component relativistic theory can be guaranteed
even with a finite basis. The gauge origin problem can further be resolved
by means of the idea of distributed gauge origins. The exact two-component
counterpart can also be formulated in a simple way.

Keywords
Nuclear shielding • Relativistic molecular Hamiltonian • Four-component •
Exact two-component • Diamagnetism • Magnetic balance • Gauge-including
atomic orbital

Introduction

The nonrelativistic theory of nuclear magnetic resonance (NMR) shielding was
formulated by Ramsey [1] in 1950. It can nowadays be applied at various levels of
methodology for analyzing the electronic and molecular structures of medium-size
to large molecules. Yet, since NMR shielding samples the electronic wave function
in the vicinity of an NMR active nucleus, it is an intrinsic all-electron, relativistic
property. The four-component relativistic theory of NMR shielding was formulated
[2–4] between the 1960s and 1980s but was not much used during that period
of time. This is not only because the theory was computationally too expensive
but also because the theory itself was not yet put into an appropriate form [5, 6]
(vide post). Because of this, various approximate two-component (A2C) relativistic
theories became popular since the mid-1990s, including first-order perturbation
theory [7–10], zeroth-order regular approximation (ZORA) [11,12], Douglas-Kroll-
Hess (DKH)-type approximation [13, 14], and second-order regular approximation
[15, 16] to the normalized elimination of the small component (NESC) approach
[17]. Since the approximations inherent in such A2C theories all result from
the atomic cores, it is clear that they cannot provide accurate absolute NMR
shielding, especially of heavy atoms. For instance, it was found [18] that ZORA
underestimates the isotropic shielding of 199Hg, which is on the order of 104 ppm
in typical mercury molecules, by over 1,000 ppm compared to four-component
relativistic calculations. Nevertheless, such A2C theories work well for relative
shielding (chemical shift ı), viz.,

ı D 
 ref � 

1 � 
 ref

' 
 ref � 
: (1)
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Table 1 Summary of the acronyms

Acronym Full name

NMR Nuclear magnetic resonance, 2, 3, 4, 13, 26, 28, 29, 30, 31

LAB Laboratory frame of reference, 4, 5, 6, 7, 8, 9, 11, 12, 13

BFF Body-fixed frame of reference, 3, 6, 7, 8, 9, 10, 12, 14

DKS Dirac-Kohn-Sham, 3, 20, 21, 23

4C Four-component, 30

X2C Exact two-component, 3, 23, 25, 26, 29, 30

NESC Normalized elimination of the small component, 1, 26

SESC Symmetrized elimination of the small component, 26

UESC Unnormalized elimination of the small component, 25

A2C Approximate two-component, 1, 3, 30

ZORA Zeroth-order regular approximation, 1, 3, 29, 30

DKH Douglas-Kroll-Hess approximation, 1, 3, 29, 30

LRT Standard linear response theory (without magnetic balance), 18

ODA Orbital decomposition approach, 16, 17, 18

EFUT External field-dependent unitary transformation, 17, 18, 19, 22

FFUT Full field-dependent unitary transformation, 16

MB Magnetic balance, 3, 19, 20, 30

RMB Restricted magnetic balance, 17, 18

GIAO Gauge-including atomic orbital, 3, 18, 19, 20, 22, 30

ppm Part per million, 1, 13

PES Positive energy states, 15, 25, 28

NES Negative energy states, 14, 17, 23, 28
EA10 Vector potential of the uniform external magnetic field, 14, 16, 17, 18
EA01 Vector potential of the nuclear magnetic dipole moment, 14, 17, 18

Here, 
 ref is the shielding of a reference with the same nuclear isotope of
interest (199Hg, say). Due to the subtraction of the shielding constants, core orbital
contributions to the shielding, along with their relativistic effects, essentially cancel
in the chemical shift. This is of course the reason why chemical shifts are sensitive to
the chemical environment of a nucleus – their trends are determined by the valence
orbitals. Yet, relativistic effects can be transferred via valence orbitals and chemical
bonds from a heavy atom to a neighboring heavy or light atom. The nomenclature
HAHA for relativistic (“heavy atom”) effects on the heavy atom’s NMR parameters,
and HALA for relativistic effects induced by a heavy atom on a light atom’s NMR
parameters [19], has become quite common in the field. Despite the cancelation of
core orbital contributions, both HAHA and HALA effects on chemical shifts can be
very large, and therefore, relativistic methods should be used for NMR calculations
of heavy element compounds.

The importance of valence orbitals for NMR shifts (and also NMR J -coupling
[20]) implies that relativistic pseudopotentials for heavy atoms can also be employed
effectively for chemical shift calculations of the HALA type [21]. In this case, an
all-electron relativistic method is not vital – although potentially more accurate.
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However, without further modifications, pseudopotentials cannot be used for heavy
atom chemical shifts or J -coupling involving a heavy atom. Analysis has shown
that the near-nucleus nodal structure of the valence orbitals is chiefly responsible
for HAHA effects [22]. That is, the effects are valence shell effects in terms of
orbitals but core and semi-core effects in terms of where they originate spatially.
If the all-electron nodal structures of the valence orbitals are reconstructed from
the pseudo-orbitals of a pseudopotential calculation, it is indeed possible to
calculate heavy atom chemical shifts and relativistic effects thereupon properly [23].
However, at the time of writing this chapter, such methods are in limited use for
heavy element chemical shift calculations. Likewise, it is possible to use frozen
core orbitals for NMR calculations [22] (but of course not for absolute shielding).
However, the valence orbital basis sets have to be very flexible in the core regions in
order to recover the relativistic effects properly, with the consequence that the gain
in computational efficiency is limited.

Considering the paramount role of valence orbitals for chemical shifts and J -
coupling, it is then not surprising that variational A2C methods such as ZORA
and DKH2 have been in use for a long time for NMR calculations [20, 24]. Such
methods are often used in combination with density functional theory (DFT) for
treating electron correlation. In this realm of application, with efficient but not
necessarily the most accurate approximations for electron correlation, basis sets
of moderate quality, and other aspects of the computational model to worry about
(e.g., solvent effects), variational A2C approaches can be considered “good enough”
for most purposes. Yet, there exist good reasons for treating relativistic effects
more accurately. First, the NMR shielding is a fundamental physical observable.
If absolute shielding constants can be calculated accurately, accurate chemical shift
will be obtained naturally instead of as a result of error compensation. Second, a
more accurate relativistic theory is not necessarily more expensive than the A2C
ones. It will be shown here that, when formulated properly, both four-component
[6] and exact two-component (X2C) [25, 26] relativistic theories of NMR shielding
are operationally very much the same as the A2C ones, but more accurate, such as to
render the latter in principle obsolete. Indeed, the existing A2C codes can sometimes
be easily retrofitted for X2C calculations [27].

This chapter is composed in the following way. The notations to be adopted
are first outlined in section “Notation.” Section “Theoretical Description of NMR
Shielding” is devoted to the proper theoretical definition of NMR shielding. To
the best of our knowledge, this has not been documented before in the liter-
ature. The four-component relativistic theory of NMR shielding is reviewed in
section “The Relativistic Diamagnetism,” where we focus on the question why the
diamagnetic term appearing in the nonrelativistic theory does not show itself in
the four-component treatment and how to regain it appropriately. Then, the gauge
origin problem is discussed in section “The Gauge Origin Problem.” The working
equations of NMR shielding within the framework of Dirac-Kohn-Sham (DKS) are
given in section “The MB-GIAO-DKS Approach.” The X2C theory is reviewed in
section “Two-Component Relativistic Theory of Nuclear Shielding.” Finally, the
summary is given in section “Summary.”
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Notation

The System International-based atomic units are used throughout, in which „ D
Me D e D 1 and the speed of light c is approximately 137. The charge and mass of
nucleus K are denoted by ZK and mK , respectively. Unless designated explicitly,
the spatial coordinates of the nuclei ( ERK) and electrons (Eri ) refer to the body-fixed
frame (BFF) of reference, the origin of which is placed at the nuclear center of
mass (NCM). The spatial displacements are defined as ERKL D ERK � ERL or EriK D
Eri� ERK . The three Cartesian components of a vector are denoted by u, v, and w. The
Pauli representation is employed for both nuclear and electronic spins. For nonlinear
molecules, the inertia tensors I 0, I 0, and I 00 are defined in Eqs. (33), (29), and (34)
in Ref. [28], respectively. For linear molecules, the inertia numbers I0, I0, and I00
are defined in Eqs. (27), (26), and (28) in Ref. [29], respectively. The occupied and
virtual orbitals are denoted by fjii; jj ig and fjai; jbig, respectively, or by fjpi; jqig
collectively. The Einstein summation convention over repeated indices is always
employed.

Theoretical Description of NMR Shielding

The Effective Nuclear Spin Hamiltonian in Experimental Picture

NMR shielding is a parameter for defining an effective (mixed second-order) nuclear
spin Hamiltonian HNS

eff ,

HNS
eff D �

X
K

BLAB.K/
eff;v �K;v; E�K D gK�N ESK; (2)

D �
X
K

.BLAB
ext;v C BLAB.K/

ind;v /�K;v; (3)

BLAB.K/
ind;v D �BLAB

ext;u

LAB
K;uv: (4)

Here, E�K is the magnetic momentum operator of nucleus K, with the spin angular
momentum ESK quantized in the laboratory (LAB) frame of reference, while the

quantity EBLAB.K/

ind in Eq. (3) can be understood as the electronically induced magnetic
field EBLAB.K/

ind .f ERg/ further averaged over the nuclear vibrational and rotational

degrees of freedom. Consider a simple case where only the z-component of EBLAB
ext is

nonvanishing and only nucleusK in the molecule has spin. Further assume BLAB.K/
eff;z

is the only nonvanishing component and the spin states j˚i i of nucleus K are
eigenstates of both SK;z and HNS

eff , viz.,

SK;zj˚i i DMi j˚i i; HNS
eff j˚i i D Ei j˚i i; Ei D �gK�NMiBLAB.K/

eff;z : (5)
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It is seen that the energy levels Ei are proportional to the strength of the effective
magnetic field and are equally separated for the absolute difference between the
spin projectionsMiC1 andMi is always one. Therefore, the transition frequency �L
between any two adjacent states reads

�E D gK�NBLAB.K/
eff;z D h�L: (6)

As the nuclear magneton �N D e„
2mp

is 1,836 times smaller than the Bohr magneton

�B D e„
2Me

and the magnetic field EBLAB
ext is very weak even in modern experimental

setup [NB: this is why the induced field EBLAB.K/

ind (3) has been truncated only to
the linear term (4), with the proportionality 
LAB

K;uv being the nuclear shielding],
the energy separation �E is in the radiofrequency domain, much smaller than the
electronic excitation energies of a closed-shell molecule. That is, what is described
here is a nucleus-electron composite system where the (quantized) nuclei are in
the hyperfine excited spin states, while the electrons in the ground state. The
shielding 
LAB

K;uv can be deduced from the measured transition frequencies �L or

equivalently the strength of the magnetic field EBLAB.K/

eff . Note in passing that in this
“experimental picture,” the nuclei are considered as internal particles, whereas the
electrons as external particles. To calculate the nuclear shielding 
LAB

K;uv , we must go
to a “theoretical picture,” where the role of electrons and nuclear spins are reversed.

The Effective Nuclear Spin Hamiltonian in Theoretic Picture

To see how to construct the nuclear spin effective Hamiltonian HNS
eff (3), we

first briefly review the concept of effective Hamiltonian. Consider the following
Hamiltonian:

H D H00 C V 10 C V 01 C V 11 C � � � ; (7)

with the zeroth-order problem known as

H00jp00i D E00
p jp00i: (8)

We further assume that there exist degeneracies in the zeroth-order space, but only
a specific nd -fold degenerate subspace Vmod is to be considered, i.e.,

E00
p D const:; p D 1; : : : ; nd : (9)

The degeneracy of the manifold Vmod will split in the presence of perturbations
V 10, V 01, and V 11. The energies can be obtained exactly by solving the reduced
eigenvalue problem

Heffjqi D Eqjqi; (10)
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where the effective Hamiltonian Heff is defined in Vmod, whose eigenvectors jqi are
just linear combinations of fjp00ig. For the present purpose, it is the mixed second-
order term of Heff that is wanted, viz.,

HNS
eff D H11

eff D H11;d
eff CH11;p

eff ; (11)

H
11;d
eff D P 00V 11P 00; (12)

H
11;p
eff D P 00V 10Q00 1

E00 �H00
Q00V 01P 00 C h:c:; (13)

where the project operators are defined as

P 00 D
X
p2Vmod

jp00ihp00j; (14)

Q00 D 1 � P 00 D
X
q…Vmod

jq00ihq00j: (15)

Once the Hamiltonian (7) is specified (see section “The Body-Fixed Molecular
Hamiltonian”), the desired effective Hamiltonian H11

eff (11) can be constructed
accordingly.

The Body-Fixed Molecular Hamiltonian

The point of departure is the following molecular Hamiltonian [28] that is written
in the LAB frame and treats electrons fully relativistically and nuclei quasi-
relativistically:

H LAB D T LAB
n0 C T LAB

n2 C T LAB
e CH LAB

ee CH LAB
ne CH LAB

nn

CH LAB
eB CH LAB

nB ; (16)

where the first two terms represent the respective nonrelativistic nuclear kinetic
energy and its first-order relativistic correction, while the following four terms
are the electronic kinetic energy, electron-electron, nucleus-electron, and nucleus-
nucleus interactions, respectively. These terms have been documented before [28]
and are hence not repeated here. The last two terms represent the interactions of the
electronic current (c Ę) and nuclear spin ( E�K) with the uniform external magnetic
field EBLAB

ext , viz.,

H LAB
eB D 1

2

X
iD1

BLAB
ext;u .r

LAB
i;v � QRLAB

g;v /c˛i;w�uvw DW H LAB
10 ; (17)

H LAB
nB D �

X
KD1

�K;uB
LAB
ext;u DW H LAB

11 ; (18)
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where EQRLAB
g is the gauge origin of EBLAB

ext and �uvw the Levi-Civita permutation
symbol. The third perturbation operator H LAB

01 , which is one of the terms in H LAB
ne

(see Eq. (92) in Ref. [28]), describes the interaction between the nuclear spin and
the electronic current:

H LAB
01 D �vv0w

�K;vr
LAB
iK;v0

c2.rLAB
iK /3

c˛w: (19)

By using the identities

rLAB
i;v D Rv0vr

BFF
iv0 CRLAB

NCM;v; (20)

RLAB
K;v D Rv0vR

BFF
Kv0 CRLAB

NCM;v; (21)

the H LAB
10 (17) and H LAB

01 (19) operators can be rewritten as

H LAB
10 D 1

2

X
iD1

BLAB
ext;u .Rv0vr

BFF
iv0 CRLAB

NCM;v � QRLAB
g;v /c˛i;w�uvw; (22)

H LAB
01 D �vv0w

�K;vr
BFF
iK;v00

c2.rBFF
iK /3

Rv00v0c˛w: (23)

The real orthogonal cosine matrix R in Eq. (20) is the rotation of the spatial space
from LAB to BFF:

R.˛; ˇ; / D Rz./Ry.ˇ/Rz.˛/; (24)

Rz.˛/ D
0@ cos˛ sin˛ 0
� sin˛ cos˛ 0
0 0 1

1A ;
Ry.ˇ/ D

0@cosˇ 0 � sinˇ
0 1 0

sinˇ 0 cosˇ

1A ;
Rz./ D

0@ cos  sin  0
� sin  cos  0
0 0 1

1A ; (25)

where ˛, ˇ, and  are the Euler angles (to be denoted collectively as s). Because of
the relation

MnucR
LAB
NCM;u C

X
i

Me.R
LAB
NCM;u CRvur

BFF
iv / DMmolR

LAB
MCM;u; (26)
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the nuclear center of mass ERLAB
NCM in Eq. (20) should be understood as

RLAB
NCM;u D RLAB

MCM;u �
Me

Mmol

X
i

Rvur
BFF
iv ; (27)

where ERLAB
MCM is the molecular center of mass (MCM). One particular disadvantage

of the Hamiltonian H LAB (16) lies in that the electronic and nuclear degrees of
freedom are strongly coupled, given very different energy scales. To minimize such
couplings, the BFF molecular Hamiltonian HBFF should be introduced [28]:

HBFF D ��1=4UeSH LABU�1eS �1=4; (28)

where � is the determinant of the reciprocal of the effective inertial tensor, a
complicated function of normal coordinates (see Eq. (28) in Ref. [28]). Since it
commutes with all the perturbation operators,H LAB

01 ,H LAB
10 , andH LAB

11 , it is actually
ineffective for the present purpose. The UeS operator in Eq. (28) is defined as

UeS D eiSez eiˇSey ei˛Sez ; ESeD
X
i

ESi ; ESiD1
2
Ė
i ; Ė

i D
�E
i 0
0 E
i

�
: (29)

Under such a transformation, the Dirac matrices are transformed as

UeS˛uU
�1
eS D ˛vRvu: (30)

The UeS transformations of H LAB
10 (22) and H LAB

01 (23) then read

HBFF
10 D UeSH LAB

10 U�1eS

D 1

2

X
iD1

BLAB
ext;u .Rv0vr

BFF
iv0 CRLAB

NCM;v � QRLAB
g;v /c˛i;w0Rw0w�uvw; (31)

HBFF
01 D UeSH LAB

01 U�1eS

D �vv0w
�K;vr

BFF
iK;v00

c2.rBFF
iK /3

Rv00v0c˛w0Rw0w: (32)

The second-order perturbation operator H LAB
11 (18) commutes with UeS , so it

remains unchanged:

HBFF
11 D H LAB

11 : (33)

To further simplify HBFF
10 (31), we invoke an additional perturbation-dependent

unitary transformation to HBFF (28):
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H D UgHBFFU�1g ; (34)

Ug D eiTg ; (35)

Tg D �1
2
�uvwB

LAB
ext;u .�RLAB

NCM;v C QRLAB
g;v �Rv0vR

BFF
g;v0 /riw0Rw0w; (36)

where ERBFF
g stands for the common gauge origin with constant components in the

BFF and has nothing to do with EQRLAB
g introduced in Eq. (17). It is the Hamiltonian

H (34) that is to be used for Eq. (7). By construction, Tg (36) commutes withHBFF
01

(32). Therefore,

V 01 D HBFF
01 D �vv0w

�K;vr
BFF
iK;v00

c2.rBFF
iK /3

Rv00v0c˛w0Rw0w; (37)

V 11 D HBFF
11 C ŒiTg;HBFF

01 � D HBFF
11 D �

X
KD1

�K;uB
LAB
ext;u : (38)

In contrast, the V 10 operator in Eq. (7) becomes

V 10 D HBFF
10 C ŒiTg;HBFF

00 � (39)

D HBFF
10 C c˛iw0 ŒiTg; p

BFF
iw0 �CO. Me

Mnuc
/; (40)

where the O. Me

Mnuc
/ terms arise from the fact that Tg (36) involves R.˛; ˇ; / and

RLAB
NCM;u, which do not commute with the derivatives @

@s
, @
@Qk

, and @

@RLAB
MCM

in HBFF
00 .

The commutator in Eq. (40) can be calculated as

�
iTg; p

BFF
iw0
� D 1

2
�uvwB

LAB
ext;u .�RLAB

NCM;v C QRLAB
g;v �Rv0vR

BFF
g;v0 /Rw0w

CO. Me

Mnuc
/; (41)

where the O. Me

Mnuc
/ term stems from the commutator ŒRLAB

NCM;u; p
BFF
iu �, with RLAB

NCM;u

(27) expressed in terms of independent variables RLAB
MCM;u, ˛, ˇ,  , and rBFF

iv .
Neglecting all the O. Me

Mnuc
/ terms, V 10 (40) can be simplified to

V 10 D 1

2

X
iD1

BLAB
ext;uRv0v.r

BFF
iv0 �RBFF

gv0 /c˛i;w0Rw0w�uvw: (42)

In sum, the Ug transformation (35) has effectively shifted the gauge origin from
EQRLAB
g (a constant vector in the LAB frame) to ERBFF

g (a constant vector in the BFF).
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Further Simplification of the First-Order Operators

For a real orthogonal matrix O and two arbitrary vectors EU and EV , we have the
following identity:

�vuw0UvVuOw0w D �vuwUv0Ov0vVu0Ou0u: (43)

It follows that the spatial transformation of the cross product EU � EV is equivalent to
first transform EU and EV , separately, and then make the cross product. With the help
of Eq. (43), the expression (37) can be simplified to

V 01 D
X
K

D
01.K/

v0 Rv0v�K;v; (44)

D01.K/
v D

X
i

�ErBFF
iK � c Ęi

�
v

c2.rBFF
iK /3

; (45)

where ED01.K/ is independent of the Euler angles. Similarly, V 10 (42) can be
simplified to

V 10 D Ru0uD
10
u0 BLAB

ext;u ; (46)

D10
u D

1

2

X
i

.ErBFF
ig � c Ęi /u; (47)

where ED10 is also independent of the Euler angles.
It is interesting to note that D01.K/

v (45) can formally be written as

D01.K/
v D @

P
i c Ęi � EAC;01.K/i

@�
C;01
K;v

; (48)

where E�C;01K is a classical (C) nuclear magnetic momentum with constant compo-

nents in BFF and EAC;01.K/i is the corresponding vector potential

EAC;01.K/i D E�
C;01
K � ErBFF

iK

c2
�
rBFF
iK

�3 : (49)

This represents the usual “theoretical picture,” where the electrons are treated
as internal quantum particles, whereas the clamped nuclei as external classical
particles. Likewise, the ED10 operator in Eq. (47) can formally be written as

D10
u D

@
P

i c Ęi � EAA;10i

@B
A;10
u

; (50)
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where EBA;10 is an artificial (A) magnetic field with constant components in BFF and
EAA;10i is the corresponding vector potential with the gauge origin at ERBFF

g :

EAA;10i D 1

2
EBA;10 � ErBFF

ig : (51)

Given the natural quantum mechanical definitions of D01.K/
v (45) and D10

u (47),
the ad hoc introduction of Eq. (48) through a classical nuclear magnetic moment
E�C;01K and Eq. (50) through an artificial magnetic field EBA;10 is not necessary, widely
adopted in the literature though.

The Model Space Vmod

Apart from the perturbation operators, V 01 (38), V 01 (44), and V 10 (46), the effective
Hamiltonian H11

eff (11) still requires a proper definition of the model space Vmod in
which it is defined. SinceH00 D HBFF

00 , the zeroth-order rovibronic state ji 00rvei under
concern can be obtained as

H00ji 00rvei D E00
i ji 00rvei: (52)

It is further assumed that ji 00rvei is nondegenerate. The model space Vmod can then be
built according to

Vmod D fji 00rve˚pig; p D 1; � � � ; nd ; (53)

where the spin states f˚pg form a complete orthonormal basis for the given nuclear
spin. Under the adiabatic approximation, the rovibronic state ji 00rvei is expressed as
the product of an electronic state ji 00elei, a vibrational state ji 00vibi, and a rotational state
ji 00roti, viz.,

ji 00rvei � ji 00roti ˝ ji 00vibi ˝ ji 00elei: (54)

The electronic state ji 00elei with energy E00
eleŒi

00
ele�.Qk/ can first be obtained by

solving the electronic Dirac-Coulomb-Breit equation with the clamped nuclei. The
rotational state ji 00roti with quantum number J can then be calculated under the rigid
rotor approximation, while the vibrational state ji 00vibi can finally be obtained by
solving the nuclear Schrödinger-like equation�

�1
2

@2

@.Qk/2
C Tcor CE00

eleŒi
00
ele�.Qk/C VJ C Vad.Qk/

�
ji 00vibi D E00

ev ji 00vibi: (55)

Here, Tcor is a correction due to the vibrational angular momentum Ej vib. For
nonlinear molecules Tcor D 1

2
j vib

u .I 0�1/uvj vib
v [see Eq. (63) in Ref. [28]], while
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for linear molecules Tcor D 1
2
I��1Œ.j vib

x /2 C .j vib
y /2� [see Eq. (72) in Ref.

[29]]. The term VJ arises from the centrifugal effect of the molecular rotation
(the Qk-dependent part of the rotational energy). For nonlinear molecules VJ D
1
2
JuŒI

0�1 � .I 0/�1�uvJv [see Eq. (63) in Ref. [28]], while for linear molecules VJ D
1
2
ŒI��1�.I0/�1�.J 2xCJ 2y / [see Eq. (72) in Ref. [29]]. The last term Vad.Qk/ collects

all the diagonal adiabatic corrections (including the mass polarization, Watson
potential, inverse-inertia-weighted spin-orbit, spin-spin, and orbit-orbit interactions,
etc.). Equation (55) is usually approximated as�

�1
2

@2

@.Qk/2
CE00

eleŒi
00
ele�.Qk/C VJ

�
ji 00vibi D E00

ev ji 00vibi; (56)

or �
�1
2

@2

@.Qk/2
CE00

eleŒi
00
ele�.Qk/

�
ji 00vibi D E00

ev ji 00vibi (57)

when the centrifugal effect VJ is further neglected.

Construction of the Effective Nuclear Spin Hamiltonian

With the available zeroth-order state ji 00rvei (54), as well as the perturbation operators
V 11 (38), V 01 (44), and V 10 (46), the mixed second-order nuclear spin Hamiltonian
H11

eff (11) can now be constructed. The diamagnetic term H
11;d
eff (12) reads

H
11;d
eff D

ndX
p;qD1

ji 00rve˚pihi 00rve˚pjV 11ji 00rve˚qihi 00rve˚qj (58)

D �
ndX

p;qD1
ji 00rve˚pihi 00rve˚pj

X
KD1

BLAB
ext;u�K;uji 00rve˚qihi 00rve˚qj (59)

D �ji 00rveihi 00rvej
X
KD1

BLAB
ext;u�K;uji 00rveihi 00rvej (60)

D �ji 00rvei
X
KD1

BLAB
ext;u�K;uhi 00rvej: (61)

If we understand thatH11;d
eff is only defined in the model space, we can simply write

it as

H
11;d
eff D �

X
KD1

BLAB
ext;u�K;u: (62)

The paramagnetic term H
11;p
eff (13) can be calculated similarly, leading to
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H
11;p
eff D

hi 00rvejRu0uD10
u0 ja00rveiha00rvej

P
K D

01.K/

v0 Rv0vji 00rvei
E00
i �E00

a

BLAB
ext;u�K;v

Ch:c:: (63)

Comparing the sum of Eqs. (62) and (63) with Eq. (3) leads to


LAB
K;uv D

hi 00rvejRu0uD10
u0 ja00rveiha00rvejD01.K/

v0 Rv0vji 00rvei
E00
i �E00

a

C c:c: (64)

Here, the intermediate rovibronic states ja00rvei are different from the state ji 00rvei
under concern. However, they can have the same or different electronic states. In
the former situation, the element ha00rvejD01.K/

v ji 00rvei is zero, because hi 00elejD01.K/
v ji 00elei

is zero (which is obvious for ji 00elei is nondegenerate, while D01.K/
v is time odd).

Therefore, ji 00rvei and ja00rveimust have different electronic states. The denominator of
Eq. (64) can hence be approximated as

E00
i Œi

00
rve� �E00

a Œa
00
rve� � E00

eleŒi
00
ele�.Q

0
k/ �E00

eleŒa
00
ele�.Q

0
k/ (65)

� E00
eleŒi

00
ele�.Qk/ �E00

eleŒa
00
ele�.Qk/; (66)

which amounts to neglecting the vibrational and rotational corrections to the
electronic energy difference. Using Eq. (66), the following closure relations for the
normal vibrational coordinates Qk and Euler angles s D ˛; ˇ;  ,X

p00vib

jp00vib.Qk/ihp00vib.Q
0
k/j D ı.Qk �Q0k/; (67)

X
p00rot

jp00rot.s/ihp00rot.s
0/j D ı.s � s0/; (68)

as well as the fact that neither D10
u nor D01.K/

v is dependent on the Euler angles,
Eq. (64) can be brought into the following form:


LAB
K;uv D 
Ku0v0

Z
Ru0uRv0vi

00�
rot i

00
rot sinˇd˛dˇd; (69)

where the nuclear shielding 
Kuv in BFF is defined as


Kuv D
Z
dQk


K
uv.Qk/i

00�
vib i

00
vib; (70)


Kuv.Qk/ D hi
00
elejD10

u ja00eleiha00elejD01.K/
v ji 00elei

E00
eleŒi

00
ele�.Qk/ �E00

eleŒa
00
ele�.Qk/

C c:c:: (71)
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The nuclear shielding at the equilibrium structure, 
Kuv.Q
0
k/, is usually a good

approximation to 
Kuv . To get more accurate result, the vibrational correction Eq. (70)
should be performed, followed by the rotational average (69).

Now it is worthy to discuss what is available from an experimental measurement.
First of all, the off-diagonal components of 
LAB

K;uv cannot be measured, because they

can hardly affect the measurable strength of the effective magnetic field EBLAB.K/

eff .
This can be seen as follows. Supposing EBLAB

ext is applied to the z direction (Bz), we
have

EBLAB.K/

eff D .�
LAB
K;zxBz;�
LAB

K;zyBz; .1 � 
LAB
K;zz /Bz/; (72)

jEBLAB.K/

eff j D Bz

q
.
LAB
K;zx /

2 C .
LAB
K;zy /

2 C .1 � 
LAB
K;zz /

2 (73)

� .1 � 
LAB
K;zz /Bz: (74)

Equation (74) arises from the fact that all the components of 
LAB
K;uv are only on

the order of ppm, several orders of magnitude smaller than one. Second, even the
diagonal components 
LAB

K;uu can hardly be resolved individually. Instead, only the
isotropic shielding 
LAB

K;iso can be measured, which is just the average of the diagonal
components 
LAB

K;uu:


LAB
K;iso D

1

3

Ku0v0

Z
d˛dˇd sinˇi00�rot i

00
rotRu0uRv0u (75)

D 1

3

Ku0u0

Z
d˛dˇd sinˇi00�rot i

00
rot (76)

D 1

3

Ku0u0 D 
Kiso: (77)

The effective Hamiltonian HNS
eff (3) can then be replaced by

HNS
eff D �

X
K

BLAB
ext;v .1 � 
LAB

K;iso/�K;v: (78)

In sum, the calculation of NMR shielding involves three steps. The first step is
to calculate 
Kuv.Qk/ (71) for a given geometry. Here, only the isotropic component
is interested. In view of Eqs. (48) and (50), 
Kuv.Qk/ (71) is nothing but the mixed
second-order derivative of the electronic energy


Kuv.Qk/ D d2EeleŒi
00
ele�.Qk/

dB
A;10
u d�

C;01
K;v

j
B
A;10
u D�C;01K;v D0 (79)
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in the presence of an artificial magnetic field EBA;10 and a classical nuclear magnetic
moment E�C;01K . The second step is to account for the vibrational (cf. Eq. (70)) and
rotational (cf. Eq. (69)) corrections for a given rovibronic state. The third step is
to make the thermal average according to the statistical distributions of rovibronic
states. The first step is the most crucial step and will be discussed below in details.
To simplify the notation, the superscripts “BFF ,” “A,” and “C ” in Eq. (79) will be
omitted.

The Relativistic Diamagnetism

The fully relativistic theory (71) of the nuclear shielding 
Kuv.Qk/ has a profound
feature: It is purely paramagnetic according to the usual convention. That is, the
diamagnetic term hi 00elejD11.K/

uv ji 00elei known from the nonrelativistic theory [1] is
missing. This is because the Dirac operator is only linear instead of quadratic
with respect to the mechanical momentum. If the paramagnetism is interpreted
as the polarization of the electron cloud under the influence of an external
magnetic field, the diamagnetism would correspond to a rigid motion of the
electron cloud. One then has a funny situation: The electrons of a spherical
atom are only polarized, but not moved, by the external magnetic field in the
relativistic world, whereas it is the opposite that happens in the nonrelativistic
world. In a simplified note, one can say that “Dirac’s atoms are purely paramagnetic
while Schrödinger’s atoms are purely diamagnetic.” Apart from such conceptual
discontinuity, the absence of the relativistic diamagnetism also has additional
consequences:

• The negative energy states (NES) as intermediate states in the shielding expres-
sion (71) have nonzero contributions even in the nonrelativistic limit (nrl). In
other words, the no-pair approximation fails completely in this case.

• The basis set convergence is extremely slow: Exceedingly large basis sets with
functions of very high angular momenta are needed to get a reasonable estimate
of the shielding.

• The way to obtain experimental shielding has been based on the separation
of diamagnetic and paramagnetic terms, which cannot be generalized to the
relativistic realm if the relativistic diamagnetism cannot be identified.

To show how to recapture the relativistic diamagnetism, suffice it to consider
a single Dirac electron moving in an electric field represented by the local
scalar potential V and a magnetic field represented by the vector potential EA D
EA01 C EA10 defined in Eqs. (49) and (51), respectively. The very first try [2]

for this was to attribute the paramagnetic contribution of NES to the diamag-
netism:
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K.�/uv .Qk/ D
X

E00a <�c2

hi 00jD10
u ja00iha00jD01.K/

v ji 00i
E00
i �E00

a

C c:c: (80)

�
X

E00a <�c2

1

2c2
hi 00jD10

u ja00iha00jD01.K/
v ji 00i C c:c: (81)

�
X

E00a <�c2

1

2c2
hi 00jD10

u jp00ihp00jD01.K/
v ji 00i C c:c: (82)

D
X

E00a <�c2

1

2c2
hi 00jD10

u D
01.K/
v C h:c:ji 00i: (83)

The common denominator approximation has been used when going from
Eqs. (80) to (81). Compared with this approximation, going from Eqs. (81)
to (82) is more justified, because both D10 and D01.K/ are off-diagonal
operators, such that the artificially introduced positive energy states (PES)
contribute only to O.c�2/. The closure relation for a complete basis is finally
invoked to arrive at Eq. (83). More detailed discussions along this line can
be found from Ref. [30]. Such manipulation looks simple but is a very crude
approximation.

The second try [31, 32] for getting the relativistic diamagnetism was based on
the Gordon decomposition [33] of the electronic current. It is equivalent to using
the following operator identities:

QD10 D D10 C ŒD00; �10�; (84)

QD01 D D01 C ŒD00; �01�; (85)

where

D00 D c Ę � Ep C .ˇ � 1/c2 C V; (86)

�10 D � 1
2c
ˇ Ę � EA10; (87)

�01 D � 1
2c
ˇ Ę � EA01: (88)

Under the Coulomb gauge, the diagonal operators QD10 and QD01 read explicitly

QD10 D ˇ EA10 � Ep C 1

2
ˇ Ė � EB10; (89)

QD01 D ˇ EA01 � Ep C 1

2
ˇ Ė � EB01: (90)
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Equations (84)/(85) shows that the off-diagonal operator D10/D01 entering the
shielding 
Kuv.Qk/ (71) can be reexpressed as the summation of a diagonal operator
QD10/ QD01 and a commutator. The commutator will then appear as diamagnetism

whereas QD10/ QD01 in place of D10/D01 as paramagnetism. This approach was
reformulated more elegantly by Kutzelnigg [34] through a unitary transformation
of the field-dependent Dirac operator D:

D D D00 CD10 CD01; (91)

QD D e��De� ; � D �10 C �01; (92)

D D00 C QD10 C QD01 C QD11 C � � � ; (93)

where QD10 and QD01 are already defined in Eqs. (84) and (85), respectively. The
diamagnetic term QD11 has a rather complicated form and is hence not documented
here.

At variance with the approximate nature of the Sternheim approach [2, 30],
the Gordon decomposition [31, 32] or equivalently the Kutzelnigg unitary trans-
formation [34] approach is exact and captures the relativistic diamagnetism in
a natural manner. However, this latter approach suffers from severe numerical
divergences, which were only noticed in an alternative formulation, i.e., full field-
dependent unitary transformation (FFUT) [35]. It turns out that the concept of
“orbital decomposition” [35, 36] provides a more generic route for the exact and
divergence-free formulations. It goes as follows.

From the one-electron Dirac equation,�
V cE
 � E�

cE
 � E� V � 2c2
��jpLi
jpS i

�
D �p

�jpLi
jpS i

�
; E� D Ep C EA10 C EA01; (94)

we readily obtain the following relation:

jpS i D YpjpLi; (95)

Yp D 1

2c
Rp.Er/E
 � E�; Rp.Er/ D Œ1C �p � V .Er/

2c2
��1 � 1 (96)

between the small and large components of the Dirac spinor jpi with energy �p .

Regarding EA10 as the primary perturbation, the first-order term of the spinor jpi
reads

jp10i D
ˇ̌̌̌
pL;10

pS;10

�
D
ˇ̌̌̌
ˇ pL;10

Y 00p p
L;10

+
C
ˇ̌̌̌
ˇ 0

Y 10p p
L;00

+
; (97)

where
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Y 00p D
1

2c
E
 � Ep CO.c�3/; (98)

Y 10p D
1

2c
E
 � EA10 CO.c�3/; (99)

according to Eqs. (95) and (96). Had only the first leading term of Y 10p (99) been
used, the second term in Eq. (97) would be known before solving the response
equation for jp10i. Inspired by this, Eq. (97) can be rewritten in a more general
form as

jp10i D jp10m i C jp10r i; jp10m i D Z10jp00i; (100)

with the following Z10 and jp10m i:

Z10
ODA D

 
0 0
E
 � EA10
2c

0

!
; jp10m;ODAi D

ˇ̌̌̌
ˇ 0
E
 � EA10
2c
pL;00

+
: (101)

In other words, the first-order orbital jp10i is here decomposed into a known
field-dependent term jp10m i and a residual jp10r i, which contribute to the respective
diamagnetic (i.e., an expectation value over the zeroth-order state) and paramagnetic
(i.e., response) components of the mixed second-order energy E11, viz.:

E11 D hi 00jD01ji 10i C c:c: (102)

D hi 00jD01Z10 C h:c:ji 00i C .hi 00jD01ji 10r i C c:c:/: (103)

The residual jp10r i is to be projected onto the space of zeroth-order orbitals, i.e.,

jp10r i D
X
q;�00q >0

C 10
qp jq00i C

X
q;�00q <0

C 10
qp jq00i: (104)

It can readily be shown [36] that the above second term due to the NES contributes
to the paramagnetic shielding at O.c�2/ and therefore vanishes in the nrl. This term
can safely be neglected if only chemical shift instead of accurate total shielding is
to be targeted [35].

It should be emphasized here that, given the significant difference between Z10

(101) and the exact Y 10p (99), the Ansatz (100) for jp10i is exact: Any difference
in between is to be covered by the expansion (104) for jp10r i. Even the choice of
Z10 D 0 is exact. It is just that the diamagnetism does not show up explicitly in this
case. Given the nonuniqueness of Z10, several other choices are possible [6]. For
instance, the anti-Hermitian part of Z10

ODA reads
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Z10
EFUT D Z10

ODA � .Z10
ODA/

� D
 

0 � E
 � EA10
2c

E
 � EA10
2c

0

!
D �10; (105)

which leads to

jp10m;EFUTi D
ˇ̌̌̌
ˇ� E
 � EA

10

2c
pS;00

E
 � EA10
2c
pL;00

+
: (106)

This approach has been dubbed as EFUT (external field-dependent unitary transfor-
mation) [35]. Although formulated differently, EFUT is equivalent to the Kutzelnigg
unitary transformation [34] but with � (92) replaced by �10 (87) and also equivalent
to the Gordon decomposition approach if only the “10” but not the “01” part of
the current density is decomposed. It is precisely the r�2 behavior of EA01 (49) that
results in numerical divergences through the commutator Œc Ę � Ep; �01� [35]. The so-
called restricted magnetic balance (RMB) approach [37] can also be regarded as a
particular decomposition of the first-order orbitals [38]; see the RMB Z10

m operator
in Table 2. It deserves to be mentioned that all the approaches, with different Z10

though, are completely equivalent. They are just different decompositions of a single
value (total shielding) into the sum of two values (diamagnetic and paramagnetic
terms). In practice, they perform rather similarly [38].

For completeness, we now give the explicit expressions of the nuclear shielding
by the EFUT approach. The paramagnetic term is very similar to Eq. (71),


K;puv .Qk/ D hi
00
elejD10

u .EFUT/ja00eleiha00elejD01.K/
v .EFUT/ji 00elei

E00
ele.i

00
ele;Qk/ �E00

ele.a
00
ele;Qk/

C c:c:; (107)

where

D10
u .EFUT/ D QD10

u ; D01.K/
v .EFUT/ D D01.K/

v ; (108)

Table 2 The Z10
m and Z10

g operatorsa. LRT linear response theory with Z10
m D 0, ODA orbital

decomposition approach, EFUT external field-dependent unitary transformation, RMB restricted
magnetic balance, GIAO gauge-including atomic orbitalsb (Reprinted with permission from [26]
©2012 American Institute of Physics)

Method .Z10
m /11 .Z10

m /12 .Z10
m /21 .Z10

m /22 .Z10
g /11 .Z10

g /12 .Z10
g /21 .Z10

g /22

LRT-GIAO 0 0 0 0 �i��g 0 0 �i��gKp

ODA-GIAO 0 0 KA 0 �i��g 0 0 �i��gKp

EFUT-GIAO 0 �KAKp KA 0 �i��g 0 0 �i��gKp

RMB-GIAO 0 0 0 KA �i��g 0 0 �i��gKp

aKA D E
 � EA10�
2c

; Kp D E
 � Ep
2c

bStrictly speaking, Z10
g D Œexp.�i��g /�10 D �i��g (112). However, to unify the notation,

we have redefined Z10
g as �i��gKp
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while the diamagnetic term reads


K;duv .Qk/ D hi 00elejD11.K/
uv .EFUT/ji 00elei; (109)

where

D11.K/
uv .EFUT/ D d2ˇ EA10 � EA01;.K/

dB10
u d�

01
K;v

: (110)

The Gauge Origin Problem

It is well known that the gauge origin of the external magnetic field is not an
observable and should hence not affect the calculated nuclear shielding. However,
this is not the case when a finite basis set is employed. To see this, consider two
gauge origins: ERg and ERg0 . The vector potentials of the same external magnetic

field EB10 are related by

EA10g0 D EA10g C Er�gg0 ; (111)

where

�
g

g0 D 1

2
Œ EB10 � . ERg � ERg0/� � Er: (112)

This is equivalent to making a unitary transformation of the Hamiltonian and the
wave function:

D0 D e�i�
g

g0De
i�
g

g0 ; (113)

jp. ERg0/i D e�i�
g

g0 jp. ERg/i: (114)

It is interesting to see that such equivalence holds for both the nonrelativistic and
relativistic cases. To first order, the wave functions with gauge origins at ERg0 and
ERg are related by

jp10. ERg0/i D �i�g
g0 jp00i C jp10. ERg/i: (115)

The appearance of the electronic coordinate Er in �g
g0 (112) implies that a fully

polarized field-free basis set is required to account for the difference between
jp10. ERg0/i and jp10. ERg/i. For an atom, the position ERK of the nucleus is a natural
choice for the gauge origin, as the unperturbed atomic wave function is then correct
up to first order (i.e., jp10. ERK/i D 0) in the absence of spin-orbit interactions. For
an arbitrary gauge origin ERg, a first-order atomic orbital j	10� . ERg/i of atom K can
be decomposed into a gauge term and an atom-centered term
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j	10� . ERg/i D �i�Kg j	00� . ERK/i C j	10� . ERK/i; (116)

which amounts to replacing ERg with ERK and ERg0 with ERg in Eq. (115). The atom-

centered term j	10� . ERK/i can further be decomposed into a magnetic term and a
residual according to Eq. (100). This idea can be generalized to molecular orbitals,
leading to

jp10i D jp10g i C jp10m i C jp10r i; (117)

jp10g i D �i��g j	00� . ER�/iC00
�p; (118)

D B10
v Z

10;v
g jp00i; Z10;v

g j	00� i D �
i

2

	 ER�g � Er


v
j	00� i; (119)

jp10m i D Z10
m j	00� . ER�/iC00

�p; (120)

D B10
v Z

10;v
m jp00i; (121)

where ER� stands for the center of the atomic function j	00� i and C00
�p are the

coefficients of zeroth-order molecular orbitals

jp00i D j	00� iC00
�p: (122)

It is understood that both the gauge factor Z10;v
g and the magnetic balance Z10;v

m

act directly on the field-free atomic function j	00� i instead of the molecular orbital
jp00i as a whole. Equation (119) is just the gauge-including atomic orbital (GIAO)
approach [39, 40]. When Z10

EFUT (105) is used for Z10 in Eq. (120), we have

jp10m i D B10
v Z

10;v
m jp00i; Z10;v

m j	00� i D �
1

4c

�
ˇEr� � Ę

�
v
j	00� i: (123)

Equations (119) and (123) together have been dubbed as magnetically balanced
GIAO (MB-GIAO) [41]. As confirmed numerically [41], not only the gauge
dependence has been removed completely, but also the basis set convergence has
been accelerated greatly.

The MB-GIAO-DKS Approach

In this section, we consider the MB-GIAO-DKS approach for nuclear shielding.

General Formulation

The (infinite-order) DKS energy in the presence of two fields characterized by E�01
and E�10 reads
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E D h i jhj i i CEcoulŒ��CExcŒ�; s�; (124)

where

h D D00 CD01
u �

01
u CD10

v �
10
v C �01u h

11
uv�

10
v ; (125)

EcoulŒ�� D 1

2

“
�.Er1/�.Er2/
jEr1 � Er2j d Er1d Er2: (126)

A noncollinear form of the exchange-correlation functional ExcŒ�; s� must be
adopted to describe properly the spin-orbit couplings for the response even of
closed-shell systems [42–44]. Under the adiabatic local density approximation
(ALDA), three definitions of the four-component “spin density” s have been
proposed [26]:

s D j EMj; EM.Er 0/ D h i j OMı.Er � Er 0/j i i; OM D
�E
 0

0 �E

�
: (127)

All the three variants are invariant with respect to rotations in the real and spin
spaces. Given the formal difference, they perform rather similarly in practice [26].

The DKS spinors  p can generally be expanded in a perturbation-dependent
basis f	�g:

 p D 	�C�p; (128)

	� D 	00� C 	01;u� �01u C 	10;v� �10v C � � � : (129)

The stationarity condition for the coefficients reads

FC D SC�; C �SC D I; (130)

F�� D h	�jF j	�i; S�� D h	�j	�i: (131)

Taking �10v as the primary perturbation, the condition can be expanded to first order
as

F 00C 00 D S00C 00�00; C 00�S00C 00 D I; (132)

F 10;vC 00 C F 00C 10;v D S10;vC 00�00 C S00C 10;v�00 C S00C 00�10;v; (133)

C00�S10;vC 00 C .C 10;v/�S00C 00 C C00�S00C 10;v D 0: (134)

The expressions can be simplified by going to the basis f�q D 	�C 00
�qg, viz.,

QF 00 D �00; QS00 D I; U 00 D I; (135)

QF 10;v C �00U 10;v D QS10;v�00 C U 10;v�00 C �10;v; (136)

QS10;v C U 10;v� C U 10;v D 0; (137)
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in view of the relations

QF D C00�FC 00; QS D C00�SC 00; U D .C 00/�1C: (138)

Having determined the coefficients U 10;v by Eq. (136), the orbitals  i can be
constructed as

 i D �qUqi D  00
i C  10;v

i �10v C � � � ; (139)

 00
i D �00i D 	00� C 00

�i ; (140)

 
10;v
i D  10;v

i;b C  10;v
i;r ; (141)

 
10;v
i;b D �10;vi D 	10;v� C 00

�i D Z10;v 00
i ; (142)

 
10;v
i;r D  00

q U
10;v
qi : (143)

It is seen that the first-order orbital  10;v
i (141) contains two terms: the already

“known” term  
10;v
i;b (142) and the residual response  10;v

i;r (143) that can well be
represented in the basis of zeroth-order orbitals. In terms of the so-obtained first-
order orbitals, the mixed second-order energy can be calculated as

E11
uv D E11;d

uv CE11;p
uv (144)

E11;d
uv D h 00

i jh11uvj 00
i i C h 00

i jh01u Z
10;v C h:c:j 00

i i; (145)

E11;p
uv D h 00

i jh01u j 00
p iU 10;v

pi C c:c: (146)

D �h 00
i jh01u j 00

j i QS10;vj i C
h
h 00

i jh01u j 00
a iU 10;v

ai C c:c:
i
; (147)

QS10;vpq D h 00
p jZ10;v C h:c:j 00

q i; (148)

where the first and second terms of E11;p
uv (147) arise from the occupied to occupied

and occupied to virtual transitions, respectively. Moreover, the second term arises
from the unitary normalization condition (137).

The expressions so far are valid for both electric and magnetic fields. For
the latter, the first-order density vanishes pointwise [41], such that the coupled-
perturbed DKS (CPDKS) equation (136) can further be rearranged [38] to

Œ.�00a � �00i /ıij ıab C 2Kai;bj �U
10;v
bj D �G10;v

ai ; (149)

where

Kai;bj D . 00
a ˇ˙v 

00
i j
@2"

@s2
Œ�00; s00�ı.Er � Er 0/j 00

j ˇ˙v 
00
b /; (150)

G
10;v
ai D h 00

a j Qh10v C QV 10
ind;vj 00

i i � QS10;vai �00i ; (151)
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Qh10v D h10v CZ10�
v F 00 C F 00Z10

v ; (152)

h 00
a j QV 10

ind;vj 00
i i D h 00

a ˇ˙u 
00
i j
@2"

@s2
Œ�00; s00�ı.Er � Er 0/jM10;v

u i; (153)

M10;v
u .Er 0/ D fh 00

i jˇ˙uı.Er � Er 0/j 10;v
i;b i C c:c:g

�h 00
i jˇ˙uı.Er � Er 0/j 00

j i QS10;vj i : (154)

Application to Nuclear Shielding

For nuclear shielding, the Z10;v operator in Eq. (142) is composed of both Z10;u
g

(119) and Z10;u
m (123). Due to the lack of h11uv , only the second term of E11;d

uv (145)
gives rise to the diamagnetic term of the shielding 
Kvu.Qk/,


K;dvu .Qk/ D h 00
i jD01.K/

u Z10
v C h:c:j 00

i i (155)

D 
K;da
vu C 
K;db

vu C 
K;dc
vu ; (156)


K;da
vu D h	00� j

ˇ.ıuvErK � Er� � rK;vr�;u/
2c2r3N

j	00� iC00�
�i C

00
�i ; (157)


K;db
vu D h	00� j �

i

2

h
. ER��/ � Er

i
v
D01.K/

u j	00� iC00�
�i C

00
�i ; (158)


K;dc
vu D h	00� j

1

4c

	
ˇ ER�� � Ę



v
D01.K/

u j	00� iC00�
�i C

00
�i ; (159)

where 
K;da
vu stems from the magnetic balance incorporated by EFUT [35], whereas

both 
K;db
vu and 
K;dc

vu arise from the GIAO [41].
In view of Eq. (147), the paramagnetic term of 
Kvu.Qk/ reads


K;pvu .Qk/ D 
K;p1
vu C 
K;p2

vu ; (160)


K;p1
vu D �h 00

i jD01.K/
u j 00

j i QS10;vj i (161)


K;p2
vu D h 00

i jD01.K/
u j 00

a iU 10;v
ai C c:c:; (162)

where

QS10;vqp D h	00� j �
i

2

h
. ER��/ � Er

i
v
j	00� iC00�

�q C
00
�p

Ch	00� j
1

4c

	
ˇ ER�� � Ę



v
j	00� iC00�

�q C
00
�p: (163)

The coefficients U 10;v
ai are determined by the CPDKS equation (149), where the

force G10;v
ai reads explicitly
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G
10;v
ai D h 00

a j Qh10v j 00
i i C h 00

a j QV 10
ind;vj 00

i i � QS10;vai �00i : (164)

The first term of Eq. (164) reads

h 00
q j Qh10v j 00

p i D h	00� j
ˇ.r� � Ep/v C ˇ˙v

2
� i
2

h
. ER��/ � Er

i
v
F 00

C 1

4c

	
ˇ ER�� � Ę



v
F 00j	00� iC00�

�q C
00
�p; (165)

while the second term of Eq. (164) is defined by Eq. (153) yet with the following
spin magnetization density M10;v

u as input:

M10;v
u DM10;v

u;b1 CM10;v
u;b2 CM10;v

u;b3 CM10;v
u;b4; (166)

M10;v
u;b1 D �

i

2
	00��

	
. ER�� � Er/vˇ˙u



	00� C

00�
�i C

00
�i ; (167)

M10;v
u;b2 D �

1

4c
	00��

h
iıuv ER�� � Ę � i.R��/u˛v

i
	00� C

00�
�i C

00
�i ; (168)

M10;v
u;b3 D �

1

4c
	00�� 5�wuv

�
.r�/w C .r�/w

�
	00� C

00�
�i C

00
�i ; (169)

M10;v
u;b4 D � 00�

i ˇ˙u 
00
j
QS10;vj i : (170)

When solving the CPDKS equation (149), the NES can safely be treated in an
uncoupled manner [41] (i.e., setting Kai;bj D 0 for U 10;v

bj with �b < �2c2). The
computational cost of Eq. (149) is then not much different from the two-component
counterpart. The contributions of the NES to the nuclear shielding can even be
obtained from atomic calculations in the spirit of “from atoms to molecule” [45,46].
If only chemical shift is wanted, the NES can be neglected completely for they are
essentially irrelevant for the description of first-order valence orbitals.

Two-Component Relativistic Theory of Nuclear Shielding

The X2C Equations

We start with a general four-component relativistic mean-field equation

F i D �i i (171)

or in block form �
FLL F LS

F SL F SS

��
 L
i

 S
i

�
D
�
 L
i

 S
i

�
�i : (172)
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The spinor  i is to be expanded as

 i D Z M
i ;  M

i D
�
 L

�Li

�
D
 
g�CL

�i

g�CS
�i

!
: (173)

The large and pseudo-large components of the modified spinor  M
i are assumed

to share the same symmetry properties and can therefore be expanded in the same
basis fg�g. The Z operator in Eq. (173) takes the following form [26]:

Z D Zg.Zk CZm/; (174)

the zeroth and first orders of which read

Z00 D Zk D
 
1 0

0
E
 � Ep
2c

!
; (175)

Z10 D Z10
g CZ10

m : (176)

For the various choices of the Z10 operator (176), see Table 2 (a more complete list
is given in Table 1 of Ref. [26]).

With the replacement (173), Eq. (171) can be rewritten as

FM M
i DM M

i �i ; FM D Z�FZ; M D Z�Z: (177)

To expedite subsequent manipulations, we further rewrite the modified spinor  M
i

as

 M
i D

�
fpApi

fpBpi

�
; (178)

where

fp D g�CL00
�p ; A D .CL00/�1CL; B D .CL00/�1CS : (179)

The matrix representation of Eq. (177) in the fp-basis is then

HC DMC�; (180)

where

H D
�

H11 H12

H21 H22

�
; C D

�
A
B

�
; M D

�
M11 M12

M21 M22

�
; (181)

and
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.H11/pq D hfpjZ�
11F

LLZ11 CZ�
11F

LSZ21 CZ�
21F

SLZ11 CZ�
21F

SSZ21jfqi;
(182)

.H12/pq D hfpjZ�
11F

LLZ12 CZ�
11F

LSZ22 CZ�
21F

SLZ12 CZ�
21F

SSZ22jfqi
D .H21/

�
qp; (183)

.H22/pq D hfpjZ�
12F

LLZ12 CZ�
12F

LSZ22 CZ�
22F

SLZ12 CZ�
22F

SSZ22jfqi;
(184)

.M11/pq D hfpjZ�
11Z11 CZ�

21Z21jfqi; (185)

.M12/pq D hfpjZ�
11Z12 CZ�

21Z22jfqi D .M21/
�
qp; (186)

.M22/pq D hfpjZ�
12Z12 CZ�

22Z22jfqi: (187)

To formulate the X2C counterpart of Eq. (180), we first introduce a formal
relation between the small and large coefficients for the PES

B D XA; (188)

in terms of which Eq. (180) can be written as two coupled sets of equations only in
the large-component space

LCA DMCA�; (189a)

NLCA D NMCA�; (189b)

where

LC D H11 CH12X; (190)

MC D M11 CM12X; (191)

NLC D H21 CH22X; (192)

NMC D M21 CM22X: (193)

Eliminating the energy dependence in Eq. (189) leads to

M�1C LC D NM�1C NLC; (194)

which is just the decoupling condition for block-diagonalizing Eq. (180) in one
step [47, 48]. Equation (189a) for determining the large-component coefficients A
is known as the unnormalized elimination of the small component (UESC) [17]
albeit in the absence of magnetic fields. The Hamiltonian LC (190) is noticeably
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non-Hermitian. The Hermitian counterpart is readily obtained by left-multiplying
Eq. (189b) with X� and adding the result to Eq. (189a), viz.,

QLCA D QSCA�; (195)

where

QLC D LC C X� NLC; (196)

QSC D MC C X� NMC: (197)

Although known as the normalized elimination of the small component (NESC)
[17], Eq. (195) is nothing but the stationarity condition for the variation of the
energy expectation value with respect to the large-component coefficients [47].
Another variant, i.e., the symmetrized elimination of the small component (SESC)
[45, 46], can also be formulated but is not considered here. Note in passing that,
featured by the relativistic metric (197), Eq. (195) is still in Dirac picture. A proper
renormalization has to be introduced to go to the Schrödinger picture [49,50]. Again,
it is not considered here, as it is immaterial for the understanding of the X2C theory
of nuclear shielding.

The X2C Approach for NMR Shielding

Both Eq. (195) for the coefficients A and Eq. (194) for the decoupling matrix X are
infinite order in the magnetic fields. For nuclear shielding, only the first-order terms
A10 and X10 are needed. Expanding Eq. (195) up to first order leads to

QL00C D �00; A00 D I; QS00C D I; (198)

QL10C C �00A10 D QS10C�00 C A10�00 C �10; (199)

where

QL10C D L10C C X00� NL10C C X10� NL00C ; (200)

QS10C DM10C C X00� NM10C C X10� NM00C : (201)

Likewise, the first order of Eq. (194) reads

.M�1C /10L00C C .M�1C /00L10C D
� NM�1C �10 NL00C C � NM�1C �00 NL10C ; (202)

which can be rewritten as

�.M00C /�1M10C .M00C /�1L00C C .M�1C /00L10C
D �. NM00C /�1 NM10C . NM00C /�1 NL00C C

� NM�1C �00 NL10C (203)
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by means of the following identity for a matrix W:

.W�1/10 D �.W00/�1W10.W00/�1: (204)

In view of the zeroth-order equation

.M00C /�1L00C D . NM00C /�1 NL00C D �00; (205)

Eq. (203) can further be simplified to

.M�1C /00
�
L10C �M10C�00

� D � NM�1C �00 � NL10C � NM10C�00
�
: (206)

Expanding Eqs. (190)–(193) to first order and using the fact that both M00
12 and M00

21

are zero for all the Z operators under consideration (see Table 2), Eq. (206) can be
rearranged [26] to

P00X10 � X10�00 D Q10ŒA10;X10�; (207)

where

P00 D .M00
22/
�1H00

22 � X00.M00
11/
�1H00

12; (208)

Q10ŒA10;X10� D X00.M00
11/
�1 �H10

11 CH10
12X

00 �M10
11�

00 �M10
12X

00�00
�

� .M00
22/
�1 �H10

21 CH10
22X

00 �M10
21�

00 �M10
22X

00�00
�
: (209)

The dependence of Q10 (209) on A10 and X10 stems from the induced exchange-
correlation potential. Close inspections reveal that P00 (208) is of O.c2/ and Q10

(209) is of O.c2/ for Z10 D 0, whereas O.c0/ for all the cases with Z10 ¤ 0.
Therefore, X10 is of O.c0/ and O.c�2/ for the respective two sets of schemes,
clearly indicating the importance of incorporating the magnetic balance explicitly.

Equations (199) and (207) are themselves coupled equations and are also coupled
together. To solve them, the following micro-macro iterative scheme can be invoked
[26]:

• Macro-iteration = 0:

1. Set (a) X10 D 0 and A10 D 0 or (b) X10 D 0 and A10 D A10
uc , with A10

uc being
the uncoupled solution of Eq. (199);

2. Construct Q10ŒA10;X10� (209) with a given pair of A10 and X10. If
Q10ŒA10;X10� is fixed, Eq. (207) will become a standard linear Sylvester
equation for X10 and can be solved non-iteratively by the means of the
LAPACK routines ZGEES and ZTRSYL;

3. With the fixed X10 from step 2, construct and solve Eq. (199) for A10 iteratively
(micro iterations);
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• Macro-iteration = Macro-iteration + 1:
Repeat steps 2 and 3, with the X10 from step 2 and the A10 from step 3 of the
previous macro iteration, until the shielding tensor has converged.

The above scheme converges typically within one or two macro-cycles. Still,
however, the computation is more expensive than the four-component counterpart
(149). An accurate estimate of X10 must hence be made available from the outset.
Among the various possibilities [26], the superposition of the atomic matrices X10

A ,
again in the spirit of “from atoms to molecule” [45,46], is most recommended. Here,
an atomic X10

A matrix is constructed from a spherical and unpolarized atomic/ionic
configuration and back-transformed to the atomic orbital space,

X100
A D CL00

A X10
A .C

L00
A /�1: (210)

The molecular X10 matrix in the fp-basis is then obtained as

X10 � .CL00/�1.
X̊
A

X100
A /C

L00 D X10˚
A ; (211)

where CL00
A and CL00 are the zeroth-order large-component coefficients of the

atomic and molecular orbitals, respectively. This ansatz is not only very efficient but
also very accurate (typically less than 0:05% in error). By contrast, the one-electron
approximation X10

1e (which is widely adopted in electronic structure calculations)
leads to much larger errors in the total shielding, still accurate enough for chemical
shift though [26].

With the available X10 and A10, the nuclear shielding can be calculated as [25,26]


Kuv.Qk/ D 
K;duv .Qk/C 
K;puv .Qk/; (212)


K;puv .Qk/ D 
K;p1uv .Qk/C 
K;p2uv .Qk/; (213)


K;p2uv .Qk/ D 
K;p2auv .Qk/C 
K;p2buv .Qk/; (214)

where


K;duv .Qk/ D.Huv.K/
11 CHuv.K/

12 X00 C X00�Huv.K/
21

C X00�Huv.K/
22 X00/i i ; (215)


K;p1uv .Qk/ D� .Hv.K/
11 CHv.K/

12 X00 C X00�Hv.K/
21

C X00�Hv.K/
22 X00/ij QS10;uC;j i ; (216)


K;p2auv .Qk/ D.Hv.K/
11 CHv.K/

12 X00 C X00�Hv.K/
21

C X00�Hv.K/
22 X00/iaA10;u

ai C c:c:; (217)
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K;p2buv .Qk/ D
	
.Hv.K/

12 C X00�Hv.K/
22 /X10;u



i i
C c:c:; (218)

Huv.K/
�� D @2H��

@B10
u @�

01
K;v

j EB10DE�01KD0; �; � D 1; 2; (219)

Hv.K/

�� D @H��

@�01K;v
j EB10DE�01KD0: (220)

As an expectation value, 
K;duv .Qk/ (215) can be recognized as the diamagnetic
term. The paramagnetic term 


K;p
uv .Qk/ (213) consists of three contributions, i.e.,



K;p1
uv .Qk/ (216) involving summation over only the occupied orbitals resulting

from the explicit dependence of the basis on the magnetic field, 
K;p2auv .Qk/ (217)
involving summation over the virtual orbitals, and 
K;p2buv .Qk/ (218) involving X10.
Note that, for any finite basis, the so-defined 
K;duv .Qk/, 


K;p1
uv .Qk/, and 
K;p2uv .Qk/

agree with the four-component counterparts shown in Eqs. (155), (161), and (162),
respectively, thereby justifying perfectly the name of “exact two-component.” In
other words, 
K;puv .Qk/ (213) is just a recombination of the contributions of the PES
and NES to the four-component paramagnetic term. Also, the computational costs
for solving the coupled-perturbed equations (199) (with the fixed X10 (211)) and
(149) (with the uncoupled treatment of NES) are very much the same. Therefore,
the four- and two-component approaches for NMR shielding (and other properties)
have been made identical in all the aspects of simplicity, accuracy, and efficiency, a
point observed already several years ago [46].

The ZORA Approach for NMR Shielding

The X2C approach presented in section “The X2C Approach for NMR Shielding” is
simpler, but more accurate, than the low-order DKH approach [13, 14]: The former
does not involve any new integrals other than those entering the four-component
theory, whereas the latter involves additional complicated operators, the evaluations
of which are nontrivial. Due to this reason, before the advent of X2C [25, 26], the
ZORA approach [11, 12] has been the workhorse for chemical shift calculations of
heavy element compounds. In the language of section “The X2C Equations,” ZORA
(with a common gauge origin) amounts to adopting the following Z operator:

ZZORA D
 
1 0

0 KE
 �E�
2c

!
; K D 2c2

2c2 � V ; E� D Ep C EA10 C EA01; (221)

and the following X matrix:

XZORA D I: (222)

Inserting Eqs. (221) and (222) into Eqs. (196) and (197) gives rise to



21 Relativistic Theories of NMR Shielding 689

LZORA D H11 CH12 CH21 CH22 (223)

D VC TZORA; T ZORA D 1

2
E
 � E�K E
 � E�; (224)

SZORA D M11 CM22 � S: (225)

The effective one-electron operator in Eq. (94) has been assumed for the Fock
operator (172) when going from Eqs. (223) to (224). The relativistic metric (225) is
further approximated to the nonrelativistic one. So, the final field-dependent ZORA
equation reads

LZORAA D SA�: (226)

When solving Eq. (226), a (fixed) model potential QV , instead of the true potential
V , is usually adopted for the denominator of K (221), so as to circumvent the
origin dependence of the energy scale. Under this approximation, the first order
of Eq. (226) reads

LZORA
10 C �00A10 D A10�00 C �10; (227)

where

LZORA
10 D V10 C TZORA

10 ; (228)

.TZORA
10 /pq D 1

2
hfpjE
 � EA10K E
 � Ep C h:c:jfqi: (229)

Equation (227) is not much different from the coupled-perturbed X2C equation
(199), provided that the approximation (211) is adopted for the molecular X10

matrix. As shown before [26], this approximation is very accurate and costs
essentially nothing. Therefore, X2C has very little overhead over ZORA (or DKH2).

Summary

It is shown that the theoretical calculation of rovibronically resolved NMR shielding
requires a body-fixed molecular Hamiltonian that treats both electrons and nuclei
quantum mechanically. Such a Hamiltonian that treats electrons fully relativistically
and nuclei quasi-relativistically has been adopted here. The shielding expression
is then featured by only a single term, the paramagnetism. The underlying reason
is that the Dirac operator is linear instead of quadratic with respect to the
mechanical momentum. However, the “missing” diamagnetism can be recaptured by
incorporating the magnetic balance in various equivalent ways through the generic
idea of “orbital decomposition.” The magnetic balance can further be adapted to
distributed gauge origins, leading to, e.g., magnetically balanced gauge-including
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atomic orbitals (4C-MB-GIAO), where each magnetically balanced atomic orbital
has its own local gauge origin on its center. Such 4C-MB-GIAO approaches can be
transformed to X2C-MB-GIAO via a single matrix block diagonalization. Under
very mild approximations (which lead to errors of less than 0.05 % in the total
shielding and no errors in the chemical shift), the 4C-MB-GIAO and X2C-MB-
GIAO approaches can be made computationally identical. They also have little
overhead over the A2C approaches. It is therefore expected that while the A2C
approaches remain suitable for the realm of applications they were designed for,
over time they will retire or be retrofitted for the 4C/X2C-MB-GIAO approaches.
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Abstract

The relativistic theory for the nuclear spin-rotation (NSR) tensor is formulated
based on the body-fixed molecular Hamiltonian that treats quantum electrons
fully relativistically and quantum nuclei quasi-relativistically. The resulting
expression for the NSR tensor is then compared with that for the nuclear
magnetic shielding tensor, so as to establish a relativistic mapping between
them. This relativistic mapping is very robust and permits an easy and direct
translation of experimental NSR tensors into semi-experimental absolute nuclear
shielding tensors which are otherwise difficult to obtain experimentally. In
contrast, the well-known nonrelativistic mapping (Ramsey–Flygare relation)
between the nuclear shielding and NSR tensors breaks down even for relatively
light elements. Some classic systems are taken as examples to elucidate the
concepts.

Keywords
Relativistic molecular Hamiltonian • Nuclear spin-rotation • Nuclear magnetic
resonance • Relativistic mapping • Rotational London orbitals

Introduction

The so-called nuclear spin-rotation (NSR) tensor, MK
uv , is a parameter for defining

the effective Hamiltonian

HNSR
eff D

X
K

IKuM
K
uvJv; .u; v D x; y; z/; (1)

where EIK is the spin operator for nucleus K, while EJ is the molecular angular
momentum operator but with the nuclear spin excluded. Physically, the effective
Hamiltonian Eq. (1) describes the interactions between the nuclear magnetic dipole
moment of the target nucleus and the effective magnetic field of the rotating
molecule, which includes the magnetic field induced by the rotation of the nuclear
framework and that by the polarization of the electron cloud. Such interactions are
most prominent in high-resolution microwave studies of rotational spectra, where
these interactions appear as hyperfine structures in the rotational spectra [1–3].
These high-resolution microwave spectra represent a valuable source of highly
accurate NSR tensors in the gas phase. For this reason, NSR tensors have been
important in benchmarking quantum chemical methods. Using highly accurate
coupled-cluster calculations with rovibrational corrections, excellent agreement
can be obtained between theory and experiment for the NSR tensors [4, 5].
Ab initio calculations are nowadays also being an important component in the
analysis of rotational spectra [4]. By contrast, density functional theory (DFT) with
approximate functionals performs in general less well for the calculation of NSR
tensors [6], the accuracy being, however, comparable to that observed for the nuclear
magnetic shielding tensors [6].
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NSR tensors can also be determined directly from nuclear magnetic reso-
nance (NMR) spectroscopy experiments, as they are responsible for important
relaxation mechanisms for the nuclear spins [7, 8]. However, the so-determined
NSR tensors are much less accurate than those obtained from rotational spec-
troscopy.

In the nonrelativistic (NR) framework, the operator describing the polarization
of the electron cloud due to the molecular rotation reads

d10v .NR;NSR/ D �.I 0/�1vv
h
.Er � ERC / � Ep

i
v
; (2)

where ERC refers to the nuclear center of mass (NCM), I 0 the inertia tensor at
the equilibrium structure, and Ep the electronic momentum. It is interesting to see
that this operator is proportional to the operator describing the polarization of the
electron cloud due to a homogeneous external magnetic field

d10v .NR;NMR/ D 1

2

h
.Er � ERg/ � Ep

i
v
; (3)

provided that the global gauge origin ERg is placed at ERC . Further, in view of the
proportionality between the nuclear magnetic dipole moment E�K and the nuclear
spin EIK , i.e.,

E�K D gK�n EIK; (4)

with gK and �n being the nuclear g-factor and magneton, respectively, it can readily
be deduced [9] that the electronic paramagnetic contributions to the NMR shielding


K;p
vu;eq.NR/ and the NSR coupling MK;p

uv;eq.NR/ are related in a simple way, viz.,


K;pvu;eq.NR/ D � I 0vv
2gK�n

MK;p
uv;eq.NR/: (5)

By replacing the theoretical paramagnetic term M
K;p
uv;eq.NR/ with the experimental

counterpart, MK;p
uv;eq.exp/ D MK

uv;eq.exp/ � MK;d
uv;eq.NR/, one would obtain the

following equality:


K;pvu;eq.exp;NR/ D � I 0vv
2gK�n

h
MK

uv;eq.exp/ �MK;d
uv;eq.NR/

i
: (6)

Further adding in the diamagnetic term 
K;dvu;eq.NR/ calculated with the gauge origin
ERg placed at ERC , i.e.,


K;dvu;eq.NR/ D h�00j
X
i

EriC � EriKıuv � riC;uriK;v
r3iK

j�00i; EriA D Eri � ERA; (7)
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gives rise to the well-known Ramsey–Flygare relation between the “experimental”
(more precisely, semi-experimental) magnetic shielding 
Kvu;eq.exp;NR/ and the
experimental NSR coupling MK

uv;eq.exp/,


Kvu;eq.exp;NR/ D � I 0vv
2gK�n

h
MK

uv;eq.exp/ �MK;d
uv;eq.NR/

i
C 
K;dvu;eq.NR/: (8)

Due to the importance of absolute nuclear magnetic shielding tensors as benchmarks
for theoretical calculations [10–12] as well as in the determination of nuclear
magnetic moments [13, 14], the above relation Eq. (8) has been extensively used
to determine “experimental” absolute shielding tensors; see Refs. [11, 12, 15] for
some recent examples. It can be shown [1–3] that, by shifting the gauge origin from
the NCM ERC to the position ERK of the active nucleusK and further introducing the
free-atom (FA) approximation, Eq. (8) can be simplified to


Keq.exp;NR/ � 
K;FA.exp/ �
X

vDx;y;z

I 0vv
6gK�n

MK
vv;eq.exp/: (9)

Then, only experimentally available data is needed to derive the isotropic shielding

Keq.exp;NR/. Although it is an approximation to Eq. (8), the relation Eq. (9)
has often been used to determine the “experimental” absolute magnetic shielding
constants [1–3], which are otherwise difficult to obtain experimentally.

Being nonrelativistic in nature, the validity of relation Eq. (5) and hence the rela-
tions Eq. (8)/(9) in the relativistic domain was long questioned [16, 17]. However,
the situation became clear only after the relativistic theory of NSR tensors was
formulated [18–21]. Specifically, the relativistic counterparts of Eqs. (2) and (3) read
[20, 21]

d10v .NSR/ D �.I 0/�1vv
�	
.Er � ERC / � Ep



v
C 1

2
˙v

�
; (10)

d10v .NMR/ D 1

2

h
.Er � ERg/ � c Ę

i
v
: (11)

Since d10v .NSR/ Eq. (10) and d10v .NMR/ Eq. (11) are diagonal and off-diagonal
operators, respectively, it is clear that the electronic paramagnetic terms of the NSR
coupling and NMR shielding tensors are very different in the relativistic regime.
Nonetheless, a “relativistic mapping” [20–23] between the two quantities is still
possible by analyzing the internal relationship between the relativistic theories of
NMR shielding and NSR coupling tensors. The “relativistic mapping” is very robust
in the sense that it is very insensitive to the quality of both one- and many-particle
basis sets [23], such that a highly accurate 
Kvu;eq.exp/ can readily be obtained by
combining the experimentalMK

uv;eq.exp/ and the theoretical quantitiesMK;d
uv;eq, 
K;dvu;eq,

and �K;p
vu;eq (vide post) calculated simply at a low level of theory.

To make the subsequent presentation compact, the conventions for the notation
are first summarized in section “Conventions.” The relativistic theory of the NSR
tensor is reviewed in section “Relativistic Theory of the NSR Tensor.” At variance
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Table 1 Summary of the
acronyms

Acronym Full name

NSR Nuclear spin-rotation

NMR Nuclear magnetic resonance

LAB Laboratory frame of reference

BFF Body-fixed frame of reference

NCM Nuclear center of mass

DFT Density functional theory

NR Nonrelativistic

KS Kohn–Sham

DKS Dirac–Kohn–Sham

DHF Dirac–Hartree–Fock

SSO Spin-same-orbit

SOO Spin-other-orbit

KB Kinetic balance

RKB Restricted kinetic balance

KU Kinetic unbalance

EFUT External field-dependent unitary transformation

nrl Nonrelativistic limit

FA Free-atom

HALA Heavy-atom effect on the light atoms

AO Atomic orbital

LO London orbital

RLO Rotational London orbital

ppm Part per million

with the semi-classical Born–Oppenheimer decoupling approach [18, 19], the
present rigorous formulation is based on the relativistic molecular Hamiltonian
in the body-fixed frame (BFF) of reference [20,21], which treats both electrons and
nuclei as quantum particles. In section “The Perturbation-Dependent Basis Set,” a
proper perturbation-dependent basis set, the relativistic analog [24] of the rotational
London orbitals (RLO) [25], is introduced to speed up the basis set convergence.
The “relativistic mapping” [20–23] between the NSR coupling and NMR shielding
tensors is then discussed in section “Relativistic Mapping Between NMR and NSR
Tensors.” Some illustrative examples are provided in section “Illustrative Examples”
for both the NSR coupling and NMR shielding constants. The entry ends with a brief
summary in section “Summary.” Summary of the acronyms can be found in Table 1.

Conventions

All equations will be written in SI-based atomic units. The charge and mass of
nucleus K are denoted as ZK and mK , respectively. The nuclear (RKu, u D x; y; z)
and electronic (riu) coordinates refer to the BFF of reference, with the origin placed
at the NCM along the principal axes of inertia. The relative coordinate Erab is defined
as Era � Erb . The moment of inertia tensor I in the BFF is defined as
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Iuv D "uu0w"vv0w
X
K

mKRKu0RKv0 ; (12)

where "uvw is the Levi–Civita second-rank antisymmetric tensor. The inertia tensor
I in Eq. (12) at the reference (equilibrium) geometry will be denoted as I 0. The
so-called effective moment of inertia tensor I 0 defined as

I 0 D I 00 �
I 0
��1

I
00
; (13)

I
00
uv D I 0uv C "uu0w"vv0w

X
K

m
1=2
K R0Ku0L.Kv0/;kQk (14)

will also be invoked. Here, Qk are the normal coordinates and L.Kv0/;k the
transformation matrix from the Cartesian displacements to the normal coordinates;
see Ref. [20]. The Einstein summation convention over repeated indices is always
employed.

Relativistic Theory of the NSR Tensor

The proper formulation of the NSR tensor MK
uv Eq. (1) involves four steps. The

very first step is to transform the relativistic molecular Hamiltonian H LAB in the
laboratory (LAB) frame to HBFF in the BFF. This is outlined in section “The
Molecular Hamiltonian HBFF.” The second step (see section “Perturbation Expan-
sion of HBFF”) amounts to decomposing the resulting HBFF Hamiltonian into a
perturbation series

HBFF D H00 C V 10 C V 01 C V 11 C � � � : (15)

The third step is to construct a mixed second-order effective Hamiltonian H11
eff (see

section “The Effective Hamiltonian H11
eff ”), which can finally be specified to MK

uv
in Eq. (1) based on the perturbation expression Eq. (15) (see section “The NSR
Tensor”). Some adaptations need to be made for linear molecules [21], but these
will not be discussed any further here.

The Molecular Hamiltonian HBFF

Since the derivation of the BFF molecular HamiltonianHBFF, which treats quantum
electrons fully relativistically and quantum nuclei quasi-relativistically, has recently
been discussed in depth for both nonlinear [20] and linear [21] molecules, only
a brief sketch is given here. The point of departure is the molecular Hamiltonian
H LAB written in the LAB frame. It consists of six terms [20]:
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H LAB D T LAB
n0 C T LAB

n2 C T LAB
e CH LAB

ee CH LAB
ne CH LAB

nn ; (16)

where the first two terms represent the nonrelativistic nuclear kinetic energy and its
first-order relativistic correction, whereas the following four terms are the electronic
kinetic energy, electron–electron, nucleus–electron, and nucleus–nucleus interac-
tions, respectively. For explicit expressions, see Ref. [20]. The Hamiltonian H LAB

Eq. (16) can be transformed to HBFF through the following unitary transformation:

HBFF D ��1=4USH LABU�1S �1=4; (17)

where � is the determinant of the inverse of the effective inertial tensor I 0 Eq. (13).
The main purpose of the �-transformation is to simplify the vibrational kinetic
energy operator as well as the integrals over the vibrational normal coordinates.
The US operator in Eq. (17) is defined as

US D eiSmol
z eiˇS

mol
y ei˛S

mol
z ; ESmol D

X
i

ESi C
X
K

EIK; (18)

where ESmol is the total spin operator of the molecule, with the electronic spin ESi
being

ESi D 1

2
Ė
i ; Ė

i D
�E
i 0
0 E
i

�
; (19)

and ˛, ˇ, and  the Euler angles. Under such a US -transformation, the spin space
of both electrons and nuclei is rotated from the LAB frame to the BFF. It is the
BFF Hamiltonian HBFF Eq. (17) that is used as the reference for the perturbation
expansion Eq. (15).

Perturbation Expansion of HBFF

The Hamiltonian HBFF Eq. (17) can be expanded in powers of the perturbation
parameters EIK and EJ , which are denoted by superscripts ‘01’ and ‘10’, respectively.
A natural choice for the zeroth-order term H00 is

H00 D HBFFj EIKD EJD0 CH rot; (20)

H rot D 1

2

X
vDx;y;z

J�BIJ�; BI D .I 0�1/vv: (21)

The first term of H00 Eq. (20) is obtained from HBFF Eq. (17) by setting EJ D 0

and EIK D 0 for all the nuclei, whereas the second term H rot refers to a rigid rotor.
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The latter implies that the effective Hamiltonian is to be constructed for a rovibronic
state. One can also decide to remove the rotational term fromH00, so as to limit the
model space of the effective Hamiltonian only to a vibronic state. For the present
choice Eq. (20), it is more correct to state that it is the coupling between EJ and other
degrees of freedom than EJ itself that is treated as the ‘10’ perturbation.

The V 01 operator in Eq. (15) contains those terms in HBFF Eq. (17) [20] that are
linear with respect to the nuclear spin EIK but independent of the molecular angular
momentum EJ . Retaining only the term that is of first order in the electron–nucleus
mass ratio leads to

V 01 D
X
K

IKuD
01.K/
u ; (22)

D01.K/
u D

X
i

gK�n

cr3iK

�EriK � Ęi�u : (23)

The V 10 operator in Eq. (15) contains those terms in HBFF Eq. (17) [20] that
are linear with respect to the molecular angular momentum EJ but independent of
the nuclear spin EIK . Again, retaining only the terms that are of first order in the
electron–nucleus mass ratio leads to

V 10 D D10
v Jv; (24)

D10
v D �

X
i

�
liv C 1

2
˙iv C j vib

v

�
BI CD10

ne;G.O/;v; (25)

liv D
h	
Eri � ERC



� Epi

i
v
; (26)

j vib
v D �i�vklQk

@

@Ql

; �vkl D �vuw

X
K

L.Ku/;kL.Kw/;l ; (27)

D10
ne;G.O/;v D

X
iK

ZK

mKc

˛iu

riK
A.K/uv ; (28)

A.K/uv D �mK�uv0wR
0
Kv0.I 00�1/wv: (29)

The first term of D10
v Eq. (25) describes the coupling between the electronic orbital

motion and the molecular rotation and is the leading term. The second term of D10
v

describes the coupling between the electronic spin and the molecular rotation and
is of O.c�2/ in a relative sense. The third term accounts for the Coriolis coupling,
which vanishes identically for diatomic molecules [20] and is also very small for
polyatomic molecules, especially when the electronic wave function does not vary
much near the equilibrium geometry. The D10

ne;G.O/ term Eq. (28) arises from the
Gaunt interaction between the electrons and nuclei. It is formally of the same order
as the spin term inD10

v Eq. (25) [20,21] but has no discernible contribution [26] due
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to the mismatch in parity [23]. Therefore, D10
v Eq. (25) can safely be approximated

as

D10
v �

X
i

d 10v ; (30)

d10v D �BI
�
liv C 1

2
˙iv

�
; (31)

which reduces to Eq. (10) at the equilibrium geometry.
The mixed second-order operator V 11 in Eq. (15) reads

V 11 D
X
K

IKuD
11;K
uv Jv; (32)

D11;K
uv D D11;n;K

uv CD11;e;K
uv ; (33)

where the purely nuclear term D11;n;K
uv stems from the nucleus–nucleus Coulomb

spin-same-orbit (SSO) and Breit spin-other-orbit (SOO) interactions, viz.,

D11;n;K
uv D D11.K/

nn;C.SSO/;uv CD11.K/

nn;B.SOO/;uv; (34)

D
11.K/

nn;C.SSO/;uv D �
X

L.L¤K/

gK�nKZL

mKc2
�uwv0

RKL;w

R3KL
A
.K/

v0v ; (35)

D
11.K/

nn;B.SOO/;uv D
X

L.L¤K/

gK�nZL

mLc2
�uwv0

RKL;w

R3KL
A
.L/

v0v : (36)

Here, K is the Thomas precession. The electronic term D11;e;K
uv in Eq. (33) arises

from the electron–nucleus Coulomb SSO interaction,

D11;e;K
uv D D11.K/

ne;C.SSO/;uv D �
X
i

gK�nK

mKc2
�uwv0

riK;w

r3iK
A
.K/

v0v : (37)

At the (calculated) equilibrium geometry, this contribution will cancel theD11.K/

nn;C.SSO/

Eq. (35) term [18, 20], thereby leaving D11.K/

nn;B.SOO/ Eq. (36) the only diamagnetic
term.

The Effective Hamiltonian H11
eff

Given the perturbation form Eq. (15) of the HBFF Hamiltonian, it is assumed that
the zeroth-order problem can be solved,

H00jp00i D E00
p jp00i: (38)
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Only a specific nd -fold degenerate subspace Vmod, i.e.,

E00
p D const:; p D 1; � � � ; nd ; (39)

is of interest here. The degeneracy of the manifold Vmod will split in the presence
of the perturbations V 10, V 01, and V 11. The energies can be obtained exactly by
solving the reduced eigenvalue problem

Heffjqi D Eqjqi; (40)

where the effective Hamiltonian Heff is defined in Vmod, whose eigenvectors jqi are
just linear combinations of fjp00ig. For the present purpose, it is the mixed second-
order term of Heff that is wanted, viz.,

HNSR
eff D H11

eff D H11;d
eff CH11;p

eff ; (41)

H
11;d
eff D P 00V 11P 00; (42)

H
11;p
eff D P 00V 10Q00 1

E00 �H00
Q00V 01P 00 C h:c:; (43)

where the projection operators are defined as

P 00 D
X
p2Vmod

jp00ihp00j; (44)

Q00 D 1 � P 00 D
X
q…Vmod

jq00ihq00j: (45)

The NSR Tensor

The Model Space
To apply the previous effective Hamiltonian H11

eff Eq. (41) to the NSR tensor,
the model space Vmod still remains to be specified. In the Born–Oppenheimer
approximation, the vectors in the model space are chosen as

jp00i D ji 00vib ˝ i 00ele ˝ J LAB
z ˝ ˚mi; (46)

where ji 00vib˝i 00elei stands for the nondegenerate, zeroth-order vibronic state, fjJ LAB
z ig

denotes the 2J C1 degenerate rotational states (with z D �J;�J C1; � � � ; J �1; J
being the z component of the rotational quantum number in the LAB frame),
whereas fj˚mig is a complete and orthonormal basis describing different nuclear
spin states, the dimension of which is nspin D Q

K.2IK C 1/. Therefore, the
dimension of the model space Vmod is nd D .2J C 1/nspin.
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The electronic state ji 00elei with energy Ee.Qk/ can be obtained by solving the
electronic Dirac–Coulomb or Dirac–Coulomb–Breit equation within the clamped
nucleus approximation.

The rotational states, with rotational quantum number J , can be calculated
for any given Qk (because Qk determines I 0 and hence H rot Eq. (21)). The
corresponding eigenvalue problem is

H rotjJ 2J LAB
z �i D Erot

J 2;�
.Qk/jJ 2J LAB

z �i; (47)

where � D 1; 2; � � � ; 2JC1 denotes the energy levels, each of which is .2JC1/-fold
degenerate, corresponding to the range of J LAB

z from �J to J . Since J 2, J LAB
z and

Jz mutually commute, their .2J C 1/2 common eigenvectors fjJ 2J LAB
z Jzig (which

are solutions of a spherical top rotor) can be taken as the complete and orthonormal
basis to solve Eq. (47) algebraically. Since both J 2 and J LAB

z commute with H rot

whereas Jz generally does not, those states fjJ 2J LAB
z Jzig with the same J 2 and

J LAB
z but different Jz will get mixed, with the mixing coefficients dependent on
Qk . The rotational energies Erot

J 2;�
.Qk/ therefore depend onQk . TheQk-dependent

solutions jJ 2J LAB
z �i are denoted simply as jJ LAB

z i in Eq. (46).
The vibrational state ji 00vibi can be obtained by solving the nuclear Schrödinger-

like equation �
�1
2

@2

@.Qk/2
CEe.Qk/C VJ

�
ji 00vibi D E00

ve ji 00vibi; (48)

where VJ D E rot
J 2;�

.Qk/ � E rot
J 2;�

.Q0
k/ stands for the J -dependent rotational energy

correction to the potential energy surface. This equation can be solved using a
variety of methods; see, e.g., Ref. [27] and references therein.

The Diamagnetic Term
To calculate the diamagnetic term Eq. (42), the projection operator P 00 Eq. (44) is
first written explicitly as

P 00 D
JX

J LAB
z D�J

nspinX
mD1
ji 00elei

00
vibJ

2J LAB
z �˚mihi 00elei

00
vibJ

2J LAB
z �˚mj; (49)

D ji 00elei
00
vibihi 00elei

00
vibjP rot.Qk/; (50)

P rot.Qk/ D
JX

J LAB
z D�J

jJ 2J LAB
z �ihJ 2J LAB

z �j: (51)

Use of the fact that fj˚mig constitutes a complete basis for the nuclear spin states
has been made when going from Eqs. (49) to (50). It is now easily seen that the
rotational projection operator P rot.Qk/ depends on Qk . As a consequence, the
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effective Hamiltonian cannot be written as in Eq. (1), in which the EJ operator does
not depend on Qk . This can be avoided if a vibronic instead of a rovibronic state is
chosen as the model function, i.e., neglectingH rot inH00 Eq. (20). This conundrum
can anyway be resolved for semirigid rotors by making the approximation

P rot.Qk/ � P rot.Q0
k/; (52)

where Q0
k stands for the reference (equilibrium) geometry. Since D11;K

uv Eq. (33) is
independent of the Euler angles, H11;d

eff can be calculated as

H
11;d
eff D ji 00elei

00
vibihi 00elei

00
vibjD11;K

uv ji 00elei
00
vibihi 00elei

00
vibj

�IKup
rot.Q0

k/Jvp
rot.Q0

k/: (53)

In a simplified notation, the H11;d
eff Hamiltonian can be rewritten as

H
11;d
eff D hi 00elei

00
vibjD11;K

uv ji 00elei
00
vibiIKuJv; (54)

provided that the domain ofH11;d
eff Eq. (54) is confined only to the model space Vmod.

The Paramagnetic Term
As for the paramagnetic term Eq. (43), an important simplification arises from
the fact that D01.K/

u is a time-odd operator, such that the intermediate states in
Q00 Eq. (45) cannot take i 00ele as its electronic-state component. The effective Q00

operator is therefore given by

Q00 D
X
a¤i

X
p

1X
JD0

X
�

JX
J LAB

z D�J

nspinX
mD1

ja00elep
00
vibJ

2�J LAB
z ˚miha00elep

00
vibJ

2�J LAB
z ˚mj (55)

D
X
a¤i
ja00eleiha00elej: (56)

By approximating the energy gap of two rovibronic states by the energy gap of
their electronic states at the equilibrium geometry, the resolvent in Eq. (43) can be
written as

Q00 1

E00 �H00
Q00

D
X
a¤i
ja00eleiha00elej

1

Ee.i
00
ele;Q

0
k/ �Ee.a

00
ele;Q

0
k/
ja00eleiha00elej: (57)
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Inserting Eqs. (50) and (57) into Eq. (43) leads to

H
11;p
eff D P rot.Q0

k/ji 00elei
00
vibi
hX
a¤i

hi 00elei
00
vibjD10

v Jvja00eleiha00elejD01.K/
u IKuji 00elei

00
vibi

Ee.i
00
ele;Q

0
k/ �Ee.a

00
ele;Q

0
k/

Ch:c:
i
hi 00elei

00
vibjP rot.Q0

k/; (58)

which can also be rewritten as

H
11;p
eff D

X
a¤i

hi 00elei
00
vibjD10

v ja00eleiha00elejD01.K/
u ji 00elei

00
vibi

Ee.i
00
ele;Q

0
k/ �Ee.a

00
ele;Q

0
k/

IKuJv C h:c: (59)

by confining the domain of H11;p
eff Eq. (59) in the model space Vmod. For practical

use, the Hamiltonian H11;p
eff Eq. (59) can be further approximated as

H
11;p
eff D hi 00vibj

X
a¤i

hi 00elejD10
v ja00eleiha00elejD01.K/

u ji 00elei
Ee.i

00
ele;Qk/ �Ee.a00ele;Qk/

ji 00vibiIKuJv C h:c; (60)

where the integral is nothing but the vibrational average of a second-order electronic
property calculated at an arbitrary geometry QK .

The NSR Tensor
The desired effective Hamiltonian H11

eff Eq. (41) is the sum of H11;d
eff Eq. (54) and

H
11;p
eff Eq. (60). By comparing H11

eff Eq. (41) with Eq. (1), the NSR tensor MK
uv can

be calculated as

MK
uv D hi 00vib.Qk/jMK

uv.Qk/ji 00vib.Qk/i: (61)

In view of Eqs. (23), (30), and (33), MK
uv.Qk/ can be decomposed as

MK
uv.Qk/ D MK;d

uv .Qk/CMK;p
uv .Qk/; (62)

MK;d
uv .Qk/ D MK;dn

uv .Qk/CMK;de
uv .Qk/; (63)

MK;dn
uv .Qk/ D D11;n;K

uv ; MK;de
uv .Qk/ D hi 00elejD11;e;K

uv ji 00elei; (64)

MK;p
uv .Qk/ D hi

00
elejD01.K/

u ja00eleiha00elejD10
v ji 00elei

Ee.i
00
ele;Qk/ �Ee.a00ele;Qk/

C c:c:; (65)

where MK;dn
uv .Qk/ is the nuclear term (which is simply a constant for a given

geometry), while MK;de
uv .Qk/ and MK;p

uv .Qk/ are the electronic diamagnetic and
paramagnetic terms, respectively.
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The Perturbation-Dependent Basis Set

The electronic paramagnetic term M
K;p
uv .Qk/ Eq. (65) converges very slowly with

respect to the one-electron basis sets. This can be improved greatly by introduc-
ing proper relativistic rotational London orbitals (RLO) [24] as a perturbation-
dependent basis set. Before doing so in section “Relativistic Rotational London
Orbitals,” the introduction of RLO in the nonrelativistic framework for the NSR
tensor is first recapitulated briefly in section “Rotational London Orbitals.”

Rotational London Orbitals

The introduction of the RLO [25],

	� D ei
� ER�C�Er��BI EJ 	00� ; (66)

was inspired by the improved basis set convergence of London orbitals (LO) [8,28–
30] for the calculation of nuclear shielding tensors and the similarity between the
operators in Eqs. (2) and (3). It is the latter that dictates that the complex phase factor
multiplying the conventional atomic orbital (AO) 	00� is simply proportional to that
appearing in the LO

	� D e� i
2

� ER�g�Er�� EBext	00� : (67)

For nuclear shielding tensors, the effect of the phase factor in 	� Eq. (67) is to move

the single global gauge origin ERg to more suited local gauge origins for each AO.
These local gauge origins are the atomic centers to which the AOs are attached.
The reason for this being an (close to) optimal choice can be realized from the fact
that, in the case of a one-electron, one-center system in the presence of an external
magnetic field, the LO Eq. (67) is correct to first order in the external magnetic field,
whereas the conventional AO is only correct to zeroth order [31]. In the presence
of an external magnetic field, the LO Eq. (67) are thus better basis functions than
the conventional AO. Although there is no arbitrariness in the choice of origin in
the case of NSR tensors, being well defined to be the NCM of the molecule, the
improved basis set convergence is an argument for introducing the RLO Eq. (66)
in calculations of NSR tensors. Another important reason lies in the fact that the
mapping relation Eq. (8), together with 
K;dvu;eq.NR/ defined in Eq. (7), also holds
when the RLO Eq. (66) are used for the NSR tensor and the LO Eq. (67) for the
nuclear shielding tensor. It will be shown in section “Relativistic Rotational London
Orbitals” that these two advantages can also be realized in the relativistic domain
by introducing properly the relativistic RLO [24].
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Relativistic Rotational London Orbitals

The underlying reason for the particular forms of the LO Eq. (67) and RLO
Eq. (66) lies in that both d10v .NR;NMR/ Eq. (3) and d10v .NR;NSR/ Eq. (2) can be
decomposed into a (reduced) paramagnetic term and a diamagnetic term. To see this,
the d10v .NR;NSR/ Eq. (2) and d10v .NR;NMR/ Eq. (3) operators are first written in
a unified form

d10v .NR;X/ D f �.Er � ERO/ � Ep�v; (68)

where X D NSR with f D �BI and ERO D ERC or X D NMR with f D 1=2 and
ERO D ERg. Eq. (68) can obviously be rewritten as

d10v .NR;X/ D Qd10v .NR;X/C Nd10v .NR;X/; (69)

where

Qd10v .NR;X/ D f �.Er � ER�/ � Ep�v; (70)

Nd10v .NR;X/ D f � ER�O � Ep�v; ER�O D ER� � ERO: (71)

Further in view of the operator identity�
1

2
p2; Er

�
D �i Ep; (72)

Nd10v .NR;X/ Eq. (71) can be replaced by

Nd10v .NR;X/ D if �h00.NR/; . ER�O � Er/v
�
: (73)

In the revised form Eq. (69) of d10v .NR;X/, Qd10v .NR;X/ Eq. (70) still contributes
as a paramagnetic term but with the (gauge) origin placed at the center ER� of the
AO. In contrast, Nd10v .NR;X/ Eq. (73) will contribute as a diamagnetic term, because
the commutator therein will cancel the energy denominator in the corresponding
response function  10;v

i;b , so as to make the latter a fixed instead of a response

function, i.e.,  10;v
i;b D 	10;v� C 00

�i with 	10;v� D �if . ER�O � Er/v	00� [24].
The above procedure can also be applied to the relativistic d10v .NMR/ Eq. (11)

operator by rewriting it as

d10v .NMR/ D Qd10v .NMR/C Nd10v .NMR/; (74)

Qd10v .NMR/ D 1

2

�
.Er � ER�/ � c Ę

�
v
; (75)

Nd10v .NMR/ D 1

2
. ER�g � c Ę/v; ER�g D ER� � ERg: (76)
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In place of the identity Eq. (72), the following identity

Œc Ę � Ep; Er� D �ic Ę (77)

allows one to replace Nd10v .NMR/ Eq. (76) by

Nd10v .NMR/ D i

2

�
h00; . ER�g � Er/v

�
; (78)

where h00 is the one-electron Dirac operator. The similarity between Nd10v .NR;NMR/
Eq. (73) and Nd10v .NMR/ Eq. (78) implies that the nonrelativistic LO [8, 28–30]
for nuclear shielding tensors can directly be extended to the relativistic domain
[32, 33].

However, the above procedure cannot be applied to d10v .NSR/ Eq. (31) because
no operator O can satisfy the desired identity

Œh00; O� D �i. ER�C � Ep/v; ER�C D ER� � ERC : (79)

This is of course not surprising, as the dependence of the NSR tensor on the NCM
ERC is a physical consequence. Therefore, the introduction of “relativistic RLO”
f	�.NSR/g can only be done in a special way.

Following the principles of “orbital decomposition” [34], what is really wanted
is the following form:

 
10;v
i .NSR/ D  10;v

i;b .NSR/C  10;v
i;r .NSR/ (80)

for the first-order  10;v
i .NSR/ of the bi-spinor  i.NSR/, which is featured by a

known term  
10;v
i;b .NSR/ and a residual  10;v

i;r .NSR/. That the nonrelativistic limit

(nrl) of the large component  L;10;v
i;b .NSR/ of  10;v

i;b .NSR/ should take the same
form as the first order of the nonrelativistic RLO Eq. (66) gives rise to the following
condition:

 
L;10;v
i;b .NSR/ D Z10

g;v.NSR/
	
 
L;00
i CO.c�2/



; (81)

EZ10
g .NSR/ D iBI ER�C � Er: (82)

To see what constraint can be imposed on the small component of  10;v
i;b .NSR/

suffices it to consider the one-electron Dirac equation 
Veff cE
 � . Ep C EAN /

cE
 � . Ep C EAN / Veff � 2c2
! 

 L
i .NSR/

 S
i .NSR/

!
D �i

 
 L
i .NSR/

 S
i .NSR/

!
; (83)
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where

Veff D VN �
�
ElC C 1

2
E

�
� BI EJ : (84)

The second line of Eq. (83) gives rise to the following relation between the small
and large components of a positive-energy spinor  i :

.2c2 C �i � Veff/ 
S
i .NSR/ D cE
 � . Ep C EAN / L

i .NSR/; (85)

which can be expanded first in c�1

 S
i .NSR/ D E
 � . Ep C

EAN /
2c

�
 L
i .NSR/CO.c�2/� ; (86)

and then in EJv

 
S;00
i D E
 � Ep

2c

	
 
L;00
i CO.c�2/



; (87)

 
S;10;v
i .NSR/ D E
 � Ep

2c

	
 
L;10;v
i .NSR/CO.c�2/



: (88)

Suppose now that the residual  10;v
i;r .NSR/ of  10;v

i .NSR/ Eq. (80) can effectively
be expanded in the basis of zeroth-order orbitals f 00

p g, viz.,

 
10;v
i;r .NSR/ D

 
 
L;10;v
i;r

 
S;10;v
i;r

!
D
 
 L;00
p

 S;00
p

!
U 10
pi ; (89)

where the summation over p includes both positive (pC) and negative (p�) energy
states. However, it can be required that the contribution of the negative energy states
vanishes in the nrl, which can only be satisfied if

 
10;v
i;r .NSR/ D

 
 
L;10;v
i;r

 
S;10;v
i;r

!
D
 
 
L;00

pC
 
S;00

pC

!
U 10
pCi CO.c�2/: (90)

Applying the condition Eq. (87) to  
S;00

pC leads to that the small component of

 
10;v
i;r .NSR/ Eq. (90) should have the following structure:

 
S;10;v
i;r .NSR/ D E
 � Ep

2c

	
 
L;00

pC CO.c�2/


U 10
pCi (91)

D E
 � Ep
2c

	
 
L;10;v
i;r .NSR/CO.c�2/



(92)
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in order to guarantee the correct nrl. The difference between  S;10;v
i .NSR/ Eq. (88)

and  S;10;v
i;r .NSR/ Eq. (92) then gives rise to the desired condition for determining

the small component of  10;v
i;b :

 
S;10;v
i;b .NSR/ D E
 � Ep

2c

	
 
L;10;v
i;b .NSR/CO.c�2/



(93)

D E
 � Ep
2c

	
Z10
g;v.NSR/ L;00

i CO.c�2/



(94)

D
	
Z10
g;v.NSR/ S;00

i CO.c�2/



C QZ10
m;v.NSR/

	
 
L;00
i CO.c�2/



; (95)

where

QZ10
m;v.NSR/ D

� E
 � Ep
2c

;Z10
g;v.NSR/

�
D 1

2c
BI . ER�C � 
/v: (96)

Equations (81) and (95) are the necessary and sufficient conditions of the RLO
for four-component relativistic NSR calculations with the correct nrl. Given the
weakness and diagonal form of the perturbation Jv , the O.c�2/ terms therein can be
neglected, thereby leading to

 
10;v
i;b .NSR/ D

 
 
L;10;v
i;b .NSR/
 
S;10;v
i;b .NSR/

!

D
 
Z10
g;v.NSR/ 0
QZ10
m;v.NSR/ Z10

g;v.NSR/

!�
 
L;00
i

 
S;00
i

�
: (97)

The first-order relativistic RLO can be extracted as

	10;v� .NSR/ D
 
	L;10;v� .NSR/
	S;10;v� .NSR/

!
D
 
Z10
g;v.NSR/ 0
QZ10
m;v.NSR/ Z10

g;v.NSR/

!
	00� ; (98)

because the zeroth-order functions f	00� g span the same space as f 00
p g. Given the

non-determination of the O.c�2/ terms, it is perfectly legitimate to antisymmetrize
the operator in Eq. (98), viz.,

	10;v� .NSR/ D
 
	L;10;v� .NSR/
	S;10;v� .NSR/

!
D
 
Z10
g;v.NSR/ � QZ10

m;v.NSR/
QZ10
m;v.NSR/ Z10

g;v.NSR/

!
	00�

, Z10
v .NSR/	00� ; (99)
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where

EZ10.NSR/ D EZ10
g .NSR/C EZ10

m .NSR/ D � EZ10�.NSR/; (100)

EZ10
m .NSR/ D �BI

2c
ˇ ER�C � Ę: (101)

Apart from elegance in the operator, a clear advantage of Eq. (99) over Eq. (98) lies
in that the one-center, first-order overlap matrix elements S10;v�� D h	00� jZ10

v .NSR/C
h:c:j	00� i vanish for the former.

Had the EQZ10
m .NSR// EZ10

m .NSR/ term been neglected, Eqs. (98) and (99) would be
reduced to

	10;v� .NSR/ D Z10
g;v.NSR/	00� ; (102)

which amounts to a naive extension of the nonrelativistic RLO [25] to the four-
component case. In this case, the nrl cannot be guaranteed, in contrast with the

Ansätze Eqs. (98) and (99). It is the EQZ10
m .NSR/= EZ10

m .NSR/ term that restores the
kinetic balance missed by EZ10

g .NSR/. For this reason, the Ansätze in Eqs. (98)/(99)
and Eq. (102) can be denoted as “kinetically balanced RLO” (KB-RLO) and
“kinetically unbalanced RLO” (KU-RLO), respectively.

The above Ansätze fits all kinds of kinetic balances [35] for the zeroth-order
functions f	00� g. If the restricted kinetic balance (RKB) [36] is considered, the
following Ansatz can also be used:

	L;10;v� .NSR/ D Z10
g;v.NSR/g�; 	

S;10;v
� .NSR/ D E
 � Ep

2c
Z10
g;v.NSR/g�: (103)

That is, the nonrelativistic RLO Eq. (66) are used for the large-component basis,
from which the small-component basis is generated according to the RKB prescrip-
tion. This Ansatz also belongs to the KB-RLO category.

Some remarks are in order.

1. Unlike the zeroth-order (in Jv) relation Eq. (87) where the O.c�2/ terms cannot
be neglected for a finite speed of light, neglecting the O.c�2/ terms in Eqs. (81)
and (95), thereby leading to Eq. (97) for  10;v

i;b .NSR/, is not an approximation.

Even setting  10;v
i;b .NSR/ to zero is not an approximation. A different choice of

 
10;v
i;b .NSR/ means simply a different decomposition of  10;v

i .NSR/ and hence
a different definition of the diamagnetic and paramagnetic terms. In this regard,
all the Ansätze in Eqs. (98), (99), (102), and (103) are equivalent. However, the
Ansätze Eqs. (98), (99), and (103) ensure that the contribution of the negative-
energy states to the paramagnetic term vanishes in the nrl and are hence much
preferred.
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2. In terms of the field-dependent basis, only the electronic paramagnetic term
M

K;p
uv .Qk/ Eq. (65) of MK

uv.Qk/ Eq. (62) needs to be revised; see Ref. [24] for
explicit expressions.

As a final note, it is interesting to see that the Ansatz Eq. (99) for the NSR tensor is
closely parallel to the EFUT (external field-dependent unitary transformation) for-
mulation [37, 38] of the nuclear shielding tensor, where the first-order magnetically
balanced LO 	10;v� .NMR/ reads [32]

	10;v� .NMR/ D Z10
v .NMR/	00� D

	
Z10
g;v.NMR/CZ10

m;v.NMR/


	00� ; (104)

Z10
g;v.NMR/ D � i

2

	 ER�g � Er

v
; ER�g D ER� � ERg; (105)

Z10
m;v.NMR/ D � 1

4c
ˇ
�Er� � Ę�v ; Er� D r � ER�: (106)

Equation (104) obviously matches the form of Eq. (99).

Relativistic Mapping Between NMR and NSR Tensors

The interest in the NSR tensor resides not only in the understanding of hyperfine
structures of molecular rotational spectra but also in the determination of absolute
nuclear magnetic shielding tensors [3, 11, 12, 15, 22]. It is well known that,
although the relative shielding between two nuclei, the chemical shift, can be
measured accurately in NMR experiments, the absolute nuclear magnetic shielding
cannot [8]. In most cases, the reported “experimental” values of isotropic nuclear
magnetic shielding constants were mapped via Eq. (9) from the experimental NSR
coupling constants. As emphasized before, the relation Eq. (8) and hence Eq. (9)
are nonrelativistic in nature. In reality, the relation Eq. (8) is actually “inversely
relativistic” [23], i.e., nonrelativistic for heavy atoms but relativistic for (very) light
atoms. This peculiarity arises from the fact that the so-mapped 
Kvu;eq.exp;NR/ for
light atoms inherits some relativistic effects from the experimental MK

uv;eq.exp/,
whereas relativistic corrections to theMK

uv;eq of heavy atoms are generally very small
(vide post).

In the relativistic framework, the NMR and NSR tensors are distinct properties.
Yet, a formal relation between them can still be established by starting with the
apparent identity


K;pvu;eq D �
I 0vv

2gK�n
MK;p

uv;eq C�K;p
vu;eq; (107)

�K;p
vu;eq D 
K;pvu;eq C

I 0vv
2gK�n

MK;p
uv;eq; (108)
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where the gauge origin of the external vector potential is supposed to be at the
NCM. Just like the step going from Eqs. (5) to (6), the theoretical paramagnetic
term M

K;p
uv;eq in the first term of Eq. (107) can be replaced with the experimental

counterpart, MK;p
uv;eq.exp/ DMK

uv;eq.exp/ �MK;d
uv;eq, so as to obtain


K;pvu;eq.exp/ D � I 0vv
2gK�n

h
MK

uv;eq.exp/ �MK;d
uv;eq

i
C�K;p

vu;eq: (109)

The desired “relativistic mapping” between NMR and NSR tensors then reads


Kvu;eq.exp/ D 
K;pvu;eq.exp/C 
K;dvu;eq

D 
K;dvu;eq �
I 0vv

2gK�n

h
MK

uv;eq.exp/ �MK;d
uv;eq

i
C�K;p

vu;eq; (110)

where 
K;dvu;eq is again the calculated diamagnetic term of the shielding. Any four-
component relativistic formulation (for a recent review, see Ref. [33]) of NMR
shielding can be employed here, provided that it has an explicit diamagnetic term.
However, only the EFUT approach [37] allows for a direct evaluation [20, 21] of
�
K;p
vu;eq defined in Eq. (108). Specifically, the EFUT paramagnetic term 


K;p
vu .Qk/

reads


K;pvu .Qk/ D hi
00
elejD01.K/

u .NMR/ja00eleiha00elejD10
v .NMR/ji 00elei

Ee.i
00
ele;Qk/ �Ee.a00ele;Qk/

C c:c:; (111)

where

D01.K/
u .NMR/ D

X
i

.EriK � c Ęi /u
c2r3iK

; (112)

D10
v .NMR/ D

X
i

ˇ

2

	h
.Eri � ERg/ � Epi

i
v
C˙iv



: (113)

By comparing D
01.K/
u .NMR/ with D

01.K/
u Eq. (23) and D10

v .NMR/ with D10
v

Eq. (30), the difference �
K;p
vu;eq Eq. (108) between 


K;p
vu .Qk/ Eq. (111) and

� I 0vv
2gK�n

M
K;p
uv .Qk/ Eq. (65) can be obtained as

�K;p
vu;eq D

hi 00elejD01.K/
u ja00eleiha00elej�D10

v ji 00elei
Ee.i

00
ele;Q

0
k/ �Ee.a00ele;Q

0
k/

C c:c:; (114)

�D10
v D D10

v .NMR/j ERgD ERC �
	
� 1
2
I 00D10

v



(115)

D 1

2

X
i

h
.ˇi � 1/li;v C

	
ˇi � 1

2



˙i;v

i
: (116)
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To complete Eq. (110), the EFUT 
K;dvu;eq (with the gauge origin at ERC ) should be
specified [37]


K;dvu;eq D h�00jˇ
X
i

EriC � EriKıuv � riC;uriK;v
r3iK

j�00i: (117)

Of course, Eq. (110) is only meaningful if �K;p
vu;eq Eq. (114) is insensitive to both

one- and many-particle basis sets. This is indeed the case [23], simply because�D10
v

Eq. (116) is a differential one-electron operator. In other words, while both 
K;pvu;eq and
M

K;p
uv;eq are very sensitive to basis sets, their difference�K;p

vu;eq is not (due to systematic
cancellation [23]). Close inspections reveal [23] that 
Kvu;eq.exp/ Eq. (110) has three
relativistic corrections to 
Kvu;eq.exp;NR/ Eq. (8):

• �A D �K;p
vu;eq, relativistic effect in the paramagnetic mapping

• �B D 
K;dvu;eq � 
K;dvu;eq.NR/, relativistic effect in the NMR diamagnetism

• �C D I 0vv
2gK�n

h
MK;d

uv;eq �MK;d
uv;eq.NR/

i
, relativistic effect in the NSR diamagnetism


Kvu;eq.exp/ Eq. (110) and 
Kvu;eq.exp;NR/ Eq. (8) are hence related by


Kvu;eq.exp/ D 
Kvu;eq.exp;NR/C�A C�B C�C ; (118)

which shows that if the “nonrelativisitic mapping” Eq. (8) or Eq. (9) is to be used for
deriving the nuclear shielding tensor 
Kvu;eq.exp;NR/ from the experimental NSR
tensor MK;d

uv;eq.exp/, the difference between the relativistic effects in the calculated
nuclear shielding and NSR tensors must further be added in.

For notional reasons, the combination of Eq. (110) with Eq. (114) and that of
Eq. (110) with Eq. (108) have been dubbed [23] as “direct relativistic mapping”
and “indirect relativistic mapping,” respectively. It is the latter that was used in
Ref. [22]. If the absolute shielding 
Kvu;eq.exp/ is the sole target, the former is
more advantageous, for then only one set of coupled-perturbed equations needs
to be solved for the responses of the electronic wave function to the differential
perturbation �D10

v Eq. (116), which converges very fast. If both the shielding and
NSR tensors are wanted, the “indirect relativistic mapping” is instead recommended
even for EFUT, for which Eqs. (108) and (114) yield identical results as long as the
coupled-perturbed equations for the shielding and NSR tensors are both sufficiently
convergent.

Without going into details, Eq. (110) along with Eqs. (114) and (117) holds
[24] also when the relativistic RLO Eq. (99) are used for the NSR tensor and the
relativistic LO Eq. (104) for the nuclear shielding tensor. This is another indicator
that the “direct relativistic mapping” is indeed very robust.
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Illustrative Examples

NSR Constants of Hydrogen Halide

The hydrogen halide series HX (X = F, Cl, Br, I) has been taken [19, 23, 24, 26, 39]
as a prototypical test set for the relativistic theory of NSR tensors. Consider first
the basis set convergence. For this purpose, the performance of the RLO discussed
in section “The Perturbation-Dependent Basis Set” is compared in Fig. 1 with that
of the conventional basis sets for the NSR constants of HBr and HI. It is seen that,
for the hydrogen NSR constants, the RLO do not show any significant improvement
over the conventional basis sets, neither at the KS nor at the DKS level. However,
the situation changes for the halogen NSR constants. Both nonrelativistic and
relativistic RLO improve the conventional calculations significantly, at very much
the same rate. Consequently, when combined with the RLO, triple-zeta basis sets are
already sufficient for accurate predictions (within 1 % of the KS/DKS limit) of NSR
constants. It is also clear that the EFUT variant Eq. (99) of the KB-RLO performs
more uniformly than the KU-RLO Eq. (102). The underlying reason can be traced

Fig. 1 Basis set convergence in the Kohn–Sham (KS) and Dirac–Kohn–Sham (DKS) calculations
of the NSR constants of HBr and HI. w/o-RLO, without rotational London orbitals; KB-RLO,
kinetically balanced RLO Eq. (99); KU-RLO, kinetically unbalanced RLO Eq. (102) (Reprinted
with permission from J. Chem. Phys. 141, 164110 (2014). ©2014, American Institute of Physics)
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to that, in the nrl, the contribution of negative-energy states vanishes in the former
formulation but still survives in the latter formulation [24]. Therefore, the former is
clearly favored both conceptually and numerically.

As for relativistic effects, it can be seen from Fig. 1 that they are negligibly small
for the halogen NSR constants but significant for the hydrogen NSR constants.
More specifically, relativity increases the hydrogen NSR constants by 1.1, 5.5, 31.5,
and 96.7 % going from F to I [23]. This peculiar “inverse relativity” can be well
understood by taking a close look at theD01.K/

u Eq. (23) andD10
v Eq. (30) operators.

Due to the r�2 behavior, the D01.K/
u operator is effective only in the vicinity of

nucleus K, such that the matrix elements D01.K/
ia are only large for innermost atom-

like orbitals  00
i . On the other hand, the D10

v operator can be rewritten as

D10
v D �

X
i

h
.Eri � ERK/ � Epi C 1

2
˙i

i
v
BI

�
X
i

h
. ERK � ERNCM/ � Epi

i
v
BI

D �
X
i

j
.K/
iv BI �

X
i

h
. ERK � ERNCM/ � Epi

i
v
BI : (119)

Since atomic core orbitals are approximate eigenfunctions of the angular momentum
Ej .K/i , it is clear that the first term of Eq. (119) does not contribute much. The
second term also contributes very little because it has an opposite parity to D01.K/

Eq. (23), just like the previously discussed electron–nucleus Gaunt term Eq. (28). In
short, only atomic core orbitals that are strongly distorted by neighboring heavy
atoms can have significant relativistic contributions to NSR coupling constants.
This is the case for H in HX but not for the halogen atoms. It is also instructive
to make a cross comparison of the relativistic effects on the NSR and shielding
constants. That the relativistic effects on the hydrogen NSR constants are enhanced
by the heavier halogen is in line with the importance of relativistic corrections
to hydrogen shielding constants due to the so-called heavy-atom effect on the
light atoms (HALA) [40]. As the spin-orbit operator is an important contributor
to both the shielding and NSR constants and is responsible for the HALA effect
[18, 43], the strong relativistic effects on the hydrogen NSR constants should
be expected. However, the situation is quite different for heavy atoms. While
relativistic effects are in general significant for the shielding constants of heavy
atoms, spin-orbit interactions no longer dominate. Instead, it is the atom-centered
interaction operators that dominate the relativistic effects of the heavy atoms
themselves [41,42]. On the contrary, many of these contributions do not enter in the
expression for the relativistic corrections to the NSR constants [18, 43]. Therefore,
the relativistic effects on the halogen NSR constants appear numerically small.
However, it deserves to be pointed out that relativistic effects on the NSR constants
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of heavy atoms have similar scaling powers as those of the shielding constants [39].
It is just that the prefactors of the former are much smaller.

Finally, the available Dirac–Hartree–Fock (DHF) and Dirac–Kohn–Sham (DKS)
results are collected in Table 2 to compare with experimental data [44–47]. Since the
zero-point vibrational corrections are quite significant, e.g., as large as 10 % in the
case of the fluorine NSR constant [23], they are subtracted from the experimental
values. It can be seen that in most cases, there exists a rather substantial electron
correlation effect as described by DFT. However, neither the generalized gradient
approximation nor the hybrid exchange-correlation functionals perform better than
DHF, especially for the halogen NSR constants. Instead, it is the simplest local
density approximation (LDA) that performs best for these systems. It is clear that
more refined exchange-correlation functionals need to be developed.

Absolute Nuclear Shielding Constants

The “direct relativistic mapping” discussed in section “Relativistic Mapping
Between NMR and NSR Tensors” permits an easy and direct translation of
experimentally measured NSR constants to absolute nuclear shielding constants.
As shown in Fig. 2, the so-derived semi-experimental nuclear shielding constants
of HX are indeed very close to the best theoretical values (designated as 4C-
CASSCF in the figure; for more details, see Ref. [23]). In contrast, the “NR-Expt”
results obtained by the “nonrelativistic mapping” Eq. (8) are far off, amounting
to 4.5 ppm already for F in HF and even to 1,276 ppm for I in HI. They are
actually very close to the nonrelativistic values (NR-CASSCF in the figure) for the
halogen atoms. Yet, for the hydrogen atom, these “NR-Expt” results are close to
the relativistic instead of the nonrelativistic values. As explained in section “NSR
Constants of Hydrogen Halide,” this “inverse relativity” behavior of the otherwise
“nonrelativistic mapping” Eq. (8) arises from the inheritance of relativistic effects
on the hydrogen NSR constants, which are, however, very small for the halogen
NSR constants.

Similar findings were also observed for the absolute shielding constants of 119Sn
in SnH4, Sn(CH3)4, and SnCl4 [22] as well as in SnX (X = O, S, Se, Te) [43]. In
these cases, the “nonrelativistic mapping” Eq. (8) is in error by about 1,000 ppm.
Since the relativistic effects on the NSR constants of 119Sn are very small, this large
error is due to the substantial relativistic effects on the shielding of 119Sn, which are
atomic in nature and hence insensitive to the chemical environments. This argument
can further be confirmed by a perturbational analysis of the relativistic corrections
to the nuclear shielding and NSR constants [18, 43]. Specifically, there are five
contributions that only appear for the nuclear shielding constants, four of which
tend to sample the vicinity of the nucleus by sampling the electron density either
at the nucleus (ı.rK/) or close to the nucleus (r�nK ; n 
 2). The only exception is

the contribution 
p=KE�OZK;�� in the notation of Ref. [42]. However, this contribution
involves the orbital angular momentum around the nucleus of interest and will
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Fig. 2 Deviations of theoretical from experimental nuclear shielding constants of HX (X = F, Cl,
Br, I) (The data was taken from Tables 4 and 7 of Ref. [23])

vanish for molecules with spherical symmetry or have only one nonvanishing com-
ponent for linear molecules. Thus, for highly symmetric molecules, the relativistic
corrections signaling the breakdown of the “nonrelativistic mapping” Eq. (8) have a
strongly atomic character. Indeed, the perturbational analysis [48] of the relativistic
corrections to the shielding of 119Sn in SnH4 reveals that these five contributions
amount to 978 ppm, very close to the 1,000 ppm [22].

The above results reveal that if the “nonrelativisitic mapping” Eqs. (8) or (9)
is used for deriving the nuclear shielding constants from the experimental NSR
constants, the difference between the relativistic effects on the calculated nuclear
shielding and NSR constants must further be added in [22] as shown clearly in
Eq. (118) [23]. Along this line, accurate absolute shielding constants have been
established for various systems such as XF6 (X = B, Al, Ga, In, Tl) [49], XF6 (X = S,
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Se, Te, Mo, W) [50], and XCO (X = Ni, Pd, Pt) [51]. It is also possible to determine
in this way more accurate nuclear magnetic dipole moments [52].

Given the robustness of the “relativistic mapping” Eqs. (110) or (118), the
“nonrelativistic mapping” Eqs. (8) or (9) remains only useful for generating absolute
shielding constants to calibrate nonrelativistic ab initio calculations. Still, however,
the relativistic effects must first be subtracted from the experimental NSR constants.
For instance, for the shielding of 33S in H33

2 S, a value of 716.4(4.6) ppm could
be obtained from the “nonrelativistic mapping” Eq. (8), which is to be compared
with the nonrelativistic coupled-cluster value of 719.0 ppm [11]. After subtracting
the relativistic effects from the experimental NSR constant of 33S, the former was
increased to 718.3(4.6) ppm [12], which is in even better agreement with the latter.
In contrast, the true shielding of 33S in H33

2 S amounts to 742.9(4.6) ppm [12]
according to the “relativistic mapping” Eqs. (110)/(118), a very clear example of
the breakdown of the “nonrelativistic mapping” Eqs. (8)/(9) even for atoms as light
as sulfur.

Summary

The relativistic theory [18–21] of the nuclear spin-rotation tensor has critically
been reviewed, focusing especially on the relativistic mapping [20–23] between the
nuclear magnetic shielding and NSR tensors. Thanks to the robustness [23] of this
relativistic mapping, the nonrelativistic counterpart [1–3, 9] that has been in use for
many decades should now be regarded as outdated.

Since the theory itself was formulated only rather recently, practical applications
have so far been performed only at the DHF and DKS levels. The available results
suggest that the standard exchange-correlation functionals cannot match the very
high experimental accuracy that can be obtained for the NSR tensors. As such, the
NSR tensors represent an important test ground for future development of more
refined exchange-correlation functionals. Nevertheless, accurate absolute shielding
tensors can still be obtained through the combined use of experimental NSR tensors
and relativistic corrections calculated with DFT. More accurate approaches such as
four-component relativistic coupled-cluster theory are highly desired. Before such
approaches are made available, perturbation theory [43] appears very promising.
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Preliminaries: Units, Notations, Acronyms

The reader is assumed to be familiar with basic concepts of quantum mechanics
– including relativistic methods covered in other chapters – and basic concepts of
computational chemistry. SI units are employed. Nuclear motion is not considered;
the focus is on electronic structure and the resulting magnetic properties. The
symbols � and � indicate inner and outer products, respectively, for vectors and
matrices or tensors. Bold-italic notation such as r; OS ; and � is used for vectors and
vector operators, while upright-bold such as a;G; and � is used for matrices and
rank-2 tensors.

The following acronyms are used occasionally in the text:

AO atomic orbital (basis function or actual AO)
CAS complete active space
DFT Density Functional Theory (usually KS, “pure” and generalized KS vari-

ants)
EM electromagnetic
GIAO gauge-including atomic orbital
HF Hartree-Fock
HFC hyperfine coupling
KS Kohn-Sham
MO molecular orbital
NR nonrelativistic (calculation excluding any relativistic effects)
PV principal value (of a tensor)
PAS principal axis system (of a tensor)
QM quantum mechanical (e.g., in reference to Dirac, Schrödinger Eqs.)
SO spin-orbit (usually means calculation also includes SR effects)
SOS sum over states
SR scalar relativistic (relativistic calculation without SO effects)
WFT wavefunction theory
ZFS zero-field splitting

Introduction and Background: EPR Parameters and Spin
Hamiltonians

Many of the chemical species encountered in the laboratory and in everyday life
have nondegenerate closed-shell ground states. But there are also many exceptions,
such as open-shell metal complexes, stable radicals, and most atoms. In the absence
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of external electromagnetic (EM) fields, such species may afford a degenerate
electronic ground state and degenerate excited states. Species with closed-shell
ground states may also afford degenerate excited states such as excited spin triplets.
The term degeneracy means that an electronic state � with energy E� may have
d� state components j�; ai, with a D 1 : : : d�, such that each j�; ai and any
linear combination thereof is a solution to the field-free quantum mechanical
(QM) equation describing the system (e.g., Schrödinger equation, Dirac equation,
approximate two-component relativistic QM methods, as discussed elsewhere in this
handbook) with the same energyE�. The index �may simply be a number counting
the energy levels of the system, or it may be a spectroscopic symbol characterizing
a state of interest, or a symmetry label, or a combination thereof. The discussion
excludes cases of accidental degeneracy.

Electron paramagnetic resonance (EPR) [1–4] is a primary tool for studying
degenerate and nearly degenerate electronic states experimentally. An external
magnetic field B splits the degeneracy (Zeeman effect) to yield a new set of states.
EM radiation of a suitable frequency may then induce transitions among them and
allow to measure the energy splittings spectroscopically. The parameters extracted
from the spectra (vide infra) contain a wealth of information about the electronic
structure and molecular structure.

To illustrate the effect utilized in EPR spectroscopy, consider a single unpaired
electron and – first – neglect spin-orbit (SO) coupling. This situation represents a
spin doublet (a twofold degenerate state) with spin quantum number S D 1=2.
If there is no external magnetic field, the two possible orientations of the spin
projection onto a quantization axis (MS D ˙1=2) have the same energy. Associated
with the spin angular momentum vector S is a magnetic dipole moment me D
�geˇeS of the electron, with ˇe D e„=.2me/ being the Bohr magneton and
ge the free electron g-value or g-factor with a current experimental value [5] of
2:002 319 304 361 53 .53/. The Dirac equation predicts ge D 2 exactly. Therefore,
ge D 2 is used occasionally in the following. The small differences in the values of
ge are due to quantum electrodynamic corrections.

For S D 1=2, the magnetic moment associated with the spin has two projections
onto a quantization axis. If a static external magnetic field is applied, the direction
of B defines the quantization axis. With the field present, the quantized projections
of me do not have the same energy. In classical physics, the energy of a magnetic
dipole m in a magnetic field B is

E D �m �B (1)

The lowest energy is for m and B being antiparallel, and the highest energy
is for m and B being parallel. This is the physical mechanism that keeps a
compass needle pointing toward the magnetic north pole. Quantum mechanically, a
phenomenological Zeeman Hamiltonian that describes such an effect for a quantized
spin magnetic moment is

OZ D geˇe OS �B (2)
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with OS being the spin vector operator. The negative sign in (1) is canceled by the
negative sign relating me to the spin. One may choose a coordinate system such
that B is oriented along the z axis, with amplitude B0. The Hamiltonian (2) then
reads

OZ D geˇeB0 OSz (3)

The eigenvalues are those of OSz times geˇeB0, i.e., ˙.1=2/geˇeB0. The magnetic
field lifts the degeneracy of the spin doublet. A transition from the lower energy
level (B and S “antiparallel”) to the higher one (B and S “parallel”) requires an
energy of

�E D h� D geˇeB0 (4)

In the equation above, � is the frequency of EM radiation used to induce the
transition. The frequency is approximately 28 GHz/T. In a typical EPR spectrometer,
B0 is 0.34 T (3,400 Gauss), which translates to a free electron spin-1/2 resonance
frequency of about 9.5 GHz. This is radiation in the X-band microwave region of the
EM spectrum. For general spin values S , the degeneracy of the projection is 2SC1.
A magnetic field splits these into 2S C 1 individual states. The selection rule is that
transitions with �MS D 1 are allowed.

One may repeat the calculation for the spin IK of some nucleus no. K, by
substituting the electron spin magnetic dipole moment by the nuclear spin magnetic
dipole moment mK D gKˇN IK . Here, gK is the g-factor for a given nuclear
isotope, and ˇN D e„=.2MP / is the nuclear magneton, with MP being the
proton mass. The latter is approximately 2,000 times greater than the electron
mass, and therefore, the associated transition energies for nuclear spins are in
the radio-frequency range (tens of MHz) at magnetic field strengths used in EPR
spectrometers. Transitions between nuclear spin projections are observed directly
in nuclear magnetic resonance (NMR). At EPR spectrometer field strengths, the
energy splitting for nuclear transitions is very small, and one may assume equal
Boltzmann populations of the nuclear spin projection states in the absence of other
magnetic fields. However, there is a magnetic coupling of electronic and nuclear
magnetic moments called hyperfine coupling (HFC). Hyperfine coupling gives rise
to hyperfine structure of EPR spectra when nuclei with nonzero spin are present.

There is another type of fine structure that can be observed in EPR experiments
for systems with S 
 1. For a given magnetic field strength B0, the 2S C 1 spin
projections with differentMS would be expected to be equally spaced energetically,
meaning that any of the possible 2S allowed transitions with �MS D 1 give
resonances at the same frequency. However, the spectra may exhibit 2S distinct
features even at lower field strengths [1], which indicates unequal energetic
separations of the MS components in the presence of the field. This fine structure
can be traced back to a removal of the degeneracy of the spin multiplet already at
zero field. The effect is therefore called zero field splitting (ZFS). A spin S 
 1
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implies that there are two or more unpaired electrons. The physical origin of ZFS is
a magnetic interaction between pairs of electrons, either directly (a dipolar spin–spin
interaction arising from relativistic corrections to the electron–electron interaction)
or mediated via SO coupling (which has one- and two-electron contributions). The
ZFS can therefore be associated with relativistic effects. For systems with heavy
elements, as well as for many lighter systems, the SO contribution to ZFS is the
dominant one.

The observed electronic magnetic moment resulting from an electronically
degenerate state may differ from what is expected based solely on the spin quantum
number. For instance, there may be an orbital degeneracy present in an electronic
state, meaning that the observed magnetic moment is not only due to an electron
spin but also due to an orbital angular momentum. The interaction with the external
field can be expressed via the total angular momentum J , which is obtained from
the vector addition of the quantized spin and orbital angular momenta, S and L. As
an example, the S D 1=2;L D 1 (2P ) ground state of the fluorine atom has a total
angular momentum quantum number J D 3=2, with total spin and orbital angular
momentum parallel, giving a fourfold degenerate state (MJ ranging from C3=2 to
�3=2) whose components split in the presence of a magnetic field. Transitions in the
EPR experiment may be observed for�MJ D ˙1. Instead of Eq. (4), the transition
frequencies are determined by

�E D h� D gJˇeB0 (5)

with gJ D 4=3 for the fluorine 2P3=2 state, instead of 2. Here, gJ is the Landé g-
factor; the experimentally observed g-factor obtained from matching the measured
resonance frequency with Eq. (5) for known field strength B0 is very close to this
number. The large difference of gJ from the free-electron ge D 2 arises because the
state reflects not only a spin doublet but also an orbital triplet.

In the absence of orbital degeneracy, an orbital magnetic moment and deviations
of observed g-factors from the free electron value may arise because of SO coupling.
For organic doublet radicals with only light elements, S D 1=2;MS D ˙1=2 are
basically good quantum numbers. However, even in this situation, the observed
g-factors may differ from 2 (typically ranging from 1.9 to 2.1) because of SO
coupling. Because of the small deviations, it is sometimes preferred to report g-
shifts �g D g � ge (often in units of parts per thousand (ppt)), in analogy to NMR
chemical shifts. Since SO coupling is a relativistic effect, the presence of g-shifts for
orbitally nondegenerate states directly indicates relativistic effects. If SO coupling is
strong, S andMS may not be good quantum numbers at all. In this case, g-shifts can
become very large even in the absence of orbital degeneracy (meaning an absence
of orbital angular momentum in the corresponding scalar relativistic (SR) state). A
case in point is the doublet ground state of NpF6 for which the observed [6] g-factor
is �0:6.

To summarize: A degenerate paramagnetic electronic state gives rise to a more
or less complicated pattern of EPR resonances. Given the potential influence of SO
coupling, orbital angular momenta, and ZFS, the spectrum is usually interpreted and
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quantified by invoking the concept of a pseudo-spin S rather than the actual electron
spin S . The value of S defines the degeneracy, 2SC 1, of the state that is split by
the magnetic field into components with different MS. The various effects discussed
above can be included in a phenomenological pseudo-spin Hamiltonian, which, in
lowest order, reads

OS D ˇeB � g � OSC IK � aK � OSC OS � d � OS (6)

The parameters in the Hamiltonian are determined by requiring that the transitions
between its eigenstates reproduce the observed spectrum. The spin Hamiltonian
is designed such that its elements within the set of fictitious spin eigenstates are
the same as the matrix elements of the true Hamiltonian within the set of true
eigenstates. It supposes a correspondence between pseudo-spin and true eigenstates,
up to a phase factor common to all the eigenvectors. While this assignment can be
rather arbitrary, the basic requirement is that the spin Hamiltonian in the fictitious
space transforms in coherence as the real Hamiltonian does in the real space, either
by time reversal or by the spatial symmetries of the molecule [7].

On the right-hand side of Eq. (6) are, from left to right, the pseudo-spin operators
for the Zeeman interaction, the HFC interaction, and the ZFS. Only the pseudo-spin
related to the electronic state is treated quantum mechanically. The nuclear spin and
external magnetic field are parameters. In Eq. (6), g, aK , and d are 3 � 3 matrices
parametrizing the various interactions. The fact that they are written in matrix
form reflects the possibility that the observed interactions may be anisotropic. For
example, observed g-factors for a molecule with axial symmetry may be very
different if the magnetic field is oriented along the axial direction or perpendicular
to it. Higher-order terms requiring additional sets of parameters in Eq. (6) may
be required to reflect the full complexity of an EPR spectrum, as discussed in
section “Higher-Order EPR Parameters and Mapping of Ab Initio to Pseudo-spin
Functions.”

The matrices g and aK are often referred to as the g-“tensor” and the HFC
“tensor.” It was pointed out in the book by Abragam and Bleaney [4] that they are
in fact not proper rank-2 tensors. Following a suggestion by Atherton [1], one may
refer to them as the Zeeman coupling matrix (g) and the HFC matrix (aK) instead.
The g-factor observed for a magnetic field in the direction of a unit vector u in the
laboratory coordinate system is given by

gu D ˙.u � ggT � u/1=2 (7)

(superscript T indicating a matrix transpose). One may define a hyperfine coupling
associated with a particular quantization direction chosen for the pseudo-spin in
a similar way. The corresponding objects G D ggT and AK D aKaTK are rank-
2 tensors whose eigenvalues and eigenvectors define the squares of the principal
values (PVs) of g and aK and a principal axis system (PAS) for each of the
interactions. For example, the principal g-factors correspond to the g-factors that
are observed when the direction of the magnetic field B coincides with one of
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the principal axes. Section “Signs of EPR g-Factors and Hyperfine Couplings”
addresses the question of the signs of the PVs of the Zeeman and HFC interaction
in more detail.

Section “Computational Methods for EPR Parameter Calculations” sketches
different computational relativistic methods by which to obtain the EPR parameters
in the spin Hamiltonian of Eq. (6) from first principles. As already mentioned, SO
coupling plays an important role. So do SR effects. Selected illustrative examples
are presented in section “Selected Case Studies.”

Computational Methods for EPR Parameter Calculations

Representation of the Pseudo-spin Hamiltonian in an Ab Initio
Framework

Equation (6) and generalizations thereof present some conceptual challenges when
addressing the problem by relativistic or nonrelativistic (NR) molecular quan-
tum mechanics. The reason is that the pseudo-spin operator OS may have lit-
tle in common with the electron spin operator OS if SO coupling or ZFS is
strong, or if the orbital angular momenta are not quenched. What can be done
instead follows roughly the following sequence [3], if a calculation starts out
with a pure spin multiplet (i.e., from a NR or SR reference without orbital
degeneracy) and if effects from SO coupling can be dealt with as a perturba-
tion:

• Define a Hamiltonian O0 for the system in the absence of external EM fields and
find its eigenstates with energies E�, spin degeneracies d�, and corresponding
orthonormal QM eigenfunctions j�; ai.

• Consider a perturbation: a homogeneous external field B for the Zeeman interac-
tion, the hyperfine magnetic field from a nuclear spin magnetic moment mK , or
spin-dependent perturbations. Define a corresponding perturbation Hamiltonian
O0. The effects from SO coupling may also be absorbed into O0. The perturba-
tions are assumed to be weak enough such that one can identify the eigenstates
of O0 C O0 corresponding to a multiplet � of O0 of interest. Diagonalization of
the matrix H0 C H0 representing the Hamiltonian in the complete set (or a large
subset) of eigenstates of O0, or finding a selected number of eigenfunctions and
eigenvalues with techniques such as the Davidson or Lanczos algorithms, would
give the eigenfunctions and energies for the perturbed system. Typically, there
would be a mixing among eigenvectors belonging to a multiplet � as well as
some admixture from components of other multiplets.

• Instead, select a multiplet � with degeneracy d� of interest corresponding to O0,
and seek a d� � d� matrix representation Heff of an effective Hamiltonian Oeff

with the following properties: (i) the eigenvalues of Heff are the same as those of
H0CH0 for the perturbed multiplet �. (ii) The eigenvectors of Heff describe how
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the components of the unperturbed multiplet mix under the perturbation. There
are various ways by which Heff can be calculated. A well-known approach is by
perturbation theory as an approximation to second order, which gives for a matrix
element related to the multiplet �:

h�aj Oeffj�a0i D ıaa0E�Ch�aj O.a/j�a0iC
X
�¤�

d�X
bD1

h�aj O.b/j�bih�bj O.c/j�a0i
E� �E�

(8)

Here, O.a/
, O.b/

, and O.c/
are parts of O0 such that the overall matrix element

(minus the ıaa0E� part) affords terms that are linear in B or IK , or bi-linear in
electron spin operators.

• Apart from a constant shift on the diagonal, the matrix representation of the
pseudo-spin Hamiltonian, Eq. (6), written in terms of jMSi pseudo-spin projects,
is then supposed to have the same elements as those of Heff. For the Zeeman

interaction, the contribution to Heff should be linear in B. Then, O.a/
and O.b/

are the Zeeman operator (in a suitable relativistic form), and O.c/
additionally

considers SO effects. If O.a/
and O.b/

are instead QM operators linear in IK
describing the nuclear hyperfine field, a mapping onto the HFC part of the

pseudo-spin Hamiltonian can be made. Finally, if O.a/
is the dipolar spin–spin

interaction operator, and O.b/
and O.c/

represent SO interactions, one obtains an
effective Hamiltonian quadratic in the electron spin which represents ZFS.

In the previous approach, the matching between real and fictitious states is made
according to j�;M i � jS;MSi since the model space is a spin multiplet; it supposes
a similarity between the real spin and the pseudo-spin. This is only valid in the
weak SO limit, but the procedure permits the calculation of the spin Hamiltonian
parameters for all values of the pseudo-spin S [8]. Equation (8) misses quadratic
contributions which may be important [9].

The value of the pseudo-spin S defines the size of the model space. If the state
of interest, usually the ground state, is d -fold degenerate or nearly degenerate, S
is chosen such that d D 2SC 1. In the case of weak SO coupling and a spatially
nondegenerate state 2SC1� where � is a nondegenerate irreducible representation
(irrep) of the system’s point group, the SO coupling with the excited states splits the
spin degeneracy. This ZFS splitting is on the order of a few cm�1 and gives the fine
structure to the EPR spectra. In some cases, the ZFS splitting may be on the order
of several ten cm�1, and high-field high-frequency EPR (HF-HF EPR) is necessary
to detect the transitions between these components. In this case, one usually takes
SD S . When the ground state is spatially degenerate or if there are very low-lying
excited states, there can be large orbital contributions to the magnetic moment, and
the choice of the spin Hamiltonian becomes more complicated and must be treated
case by case.
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For systems where SO coupling is strong, a close correspondence of a degenerate
electronic state of interest with an electron spin multiplet may simply not exist.
A corresponding QM method used to determine the electronic states may already
include SO coupling in some form, possibly along with dipolar a spin–spin
interaction term. In this case, the ZFS effects are included in the electronic spectrum.
It is shown next how the pseudo-spin Hamiltonian parameters for the Zeeman
and HFC interactions can be extracted from such QM calculations. For further
discussion, see section “Higher-Order EPR Parameters and Mapping of Ab Initio
to Pseudo-spin Functions.”

When the SO coupling is large, the degeneracy of the states is related to
symmetry. For odd-electron systems, the degeneracy is even due to Kramers’
theorem. Fourfold degenerate irreps only appear in the cubic and icosahedral groups,
along with sixfold in the latter. Therefore, except for highly symmetric molecules,
the ground state of Kramers systems is modeled using SD 1=2. For even-electron
systems, if there is a high-order rotation axis, states may be doubly degenerate and
S D 1=2 represents a non-Kramers doublet. Only cubic and icosahedral groups
may have higher degeneracies. Therefore, the states of even-electron systems with
a heavy element are usually nondegenerate or, in the presence of symmetry, can be
considered as non-Kramers doublets. In lanthanide and actinide complexes, the term
2SC1LJ of the free ion is split due to the environment of the ligands. This splitting
is usually on the order of some tens of cm�1 for lanthanides since the 4f orbitals
are mostly inner shell and interact weakly with the environment. The splitting of
the free ion term of an actinide is larger since the 5f orbitals interact more with
the ligands, even forming covalent bonds for the early actinides; it can be on the
order of several hundred cm�1. Therefore, in the case of heavy elements, states are
at the most doubly degenerate or nearly degenerate, and there are usually no EPR
transitions with excited states, except for cubic systems.

An ab initio calculation provides the 2SC 1 quasidegenerate wave functions
j�; aiaD1;2SC1 in the absence of external magnetic field, defining the model space,
and the corresponding energies Ea. Let

OZ D �.�ˇe O�/ �B (9)

be the electronic Zeeman operator, with O� being a dimensionless time-odd QM
operator that gives the electron magnetic moment operator upon multiplication
with �ˇe . The Zeeman interaction is characterized by the three matrices of the
magnetization operator .�k/a;b D h�; aj O�kj�; bi with a; b 2 Œ1; 2S C 1�, and
k D x; y; z being defined in the physical space. Hyperfine matrices can be defined
analogously. These matrices are further discussed in sections “Higher-Order EPR
Parameters and Mapping of Ab Initio to Pseudo-spin Functions” and “Signs of EPR
g-Factors and Hyperfine Couplings.”

The approach is outlined in this section for the Zeeman interaction and a
doublet of Kramers states (S D 1=2). In this case, there is no ZFS and the spin
Hamiltonian reduces to the Zeeman term. In the basis of the pseudo-spin projection
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eigenfunctions jMSi, the operator OSk (k D x; y; z) is represented by a matrix
Sk D .1=2/� k , with � k being one of the 2 � 2 Pauli spin matrices. The magnetic
field vector is expressed in terms of its components as B D .Bx; By; Bz/. The
matrix representation of the spin Hamiltonian for the Zeeman interaction then reads

H D
X
k

hkSk with hk D ˇe
X
l

Blglk (10)

The eigenvalues are easily obtained as ˙ the square roots of the eigenvalues of H2,
which is diagonal because of SkSl C SlSk D .ıkl=2/

�
1 0
0 1

�
:

H2 D 1

4

�P
k h

2
k 0

0
P

k h
2
k

�
(11)

Therefore, the energy difference�E for the two spin projections is 2Œ.1=4/
P

k h
2
k�
1=2

D ŒPk h
2
k�
1=2, i.e.,

�E D ˇe
hX
k;l

BkBl
X
m

gkmglm

i1=2 D ˇehX
k;l

BkBlGkl

i1=2
(12)

In the previous equation,Gkl is an element of the tensor G introduced below Eq. (7).
Next, consider a quantum mechanical framework with a doublet state with two

wavefunction components,  1;  2, assumed to be orthonormal for convenience.
Further, for the time being, it is assumed that the doublet components  1 and  2
have the time-reversal properties of a Kramers pair. In the basis f 1;  2g, the QM
Zeeman operator can also be expressed with the help of the spin-1/2 matrices, as

H0 D
X
k

h0kSk with

h0x D 2ˇeReh 2j O�j 1i �B
h0y D 2ˇeImh 2j O�j 1i �B
h0z D 2ˇeh 1j O�j 1i �B

(13)

Note that h 1j O�j 1i � B D �h 2j O�j 2i � B because of the time-reversal
symmetry. As with the pseudo-spin Hamiltonian, one can calculate twice the square
root of the eigenvalues of H02 to obtain the energy splitting in the presence of a
magnetic field. The result can be rearranged as follows:

�E D
hX

k

h0k
2
i1=2 D ˇeh2X

k;l

BkBl

2X
aD1

2X
bD1
h aj O�kj bih bj O�l j ai

i1=2
(14)
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A factor 1/2 enters inside the square root when the double sum over a; b is
introduced, to avoid double counting of contributions. By comparison of Eqs. (14)
and (12), one finds for the elements of the tensor G:

Gkl D 2
2X

aD1

2X
bD1
h aj O�kj bih bj O�l j ai (15)

At this point, the assumption that  1 and  2 transform as a Kramers pair can
be dropped, because any linear combination obtained from f 1;  2g by unitary
transformation gives the same tensor G from Eq. (15). Therefore, a computation
of G can utilize a pair of doublet wavefunction components without imposing
time-reversal symmetry explicitly. The reader is reminded that the definition of
the magnetic moment operator components in Eq. (15) excludes pre-factors of
ˇe . As written, Eq. (15) assumes a complete one-particle basis set to represent
 1 and  2, such that there is no dependence of the results on the gauge origin
chosen for the external magnetic field. In calculations with finite basis sets, an
origin dependence can be avoided by adopting a distributed gauge origin such as
gauge-including atomic orbitals (GIAOs). When distributed origin methods are not
available, calculations of magnetic properties of complexes with one paramagnetic
metal center often place the metal center at the gauge origin.

The eigenvectors of G represent the molecule-fixed PAS of the Zeeman interac-
tion, sometimes referred to as the “magnetic axes” of the system under consideration
[10]. The square roots of the eigenvalues are absolute values of the principal g-
factors. The signs of the g-factors are not obtained directly. For further discussion,
see section “Signs of EPR g-Factors and Hyperfine Couplings.”

The tensor A plays an analogous role for HFC as G plays for the Zeeman
interaction. Therefore, after a QM operator OF K has been defined for the hyperfine
interaction as follows:

OHFC D OF K �mK D gKˇN OF K � IK (16)

the HFC tensor for a Kramers doublet can be calculated via

Akl D 2.gKˇN /2
2X

aD1

2X
bD1
h aj OFKkj bih bj OFKl j ai (17)

For hyperfine coupling, a natural choice for the gauge origin of the hyperfine field
is the nucleus for which the HFC tensor is calculated.

A different route has been proposed [11] for calculating G for arbitrary values
of S, which is briefly discussed in section “Higher-Order EPR Parameters and
Mapping of Ab Initio to Pseudo-spin Functions.” The expression given in Eq. (45)
is the same as (15) for SD 1=2. As for the SD 1=2 case, the expression for G of
Eq. (45) should be adaptable for calculations of HFC.
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Wavefunction-Based Methods for EPR Calculations

Popular starting points for wavefunction-based computations of EPR parameters
are complete active-space self-consistent field (CASSCF) calculations and related
restricted and generalized active-space approaches [12], often followed by pertur-
bation theory (PT)-based treatments of dynamic correlation on top of CASSCF. For
the latter, second-order perturbation theory (CASPT2) [13] and n-electron valence
state perturbation theory (NEVPT) [14] are in relatively widespread use. Limitations
arise from an insufficient description of spin polarization with the size of active
spaces commonly achievable in these types of calculations, which is detrimental
for HFC calculations. g-factors, ZFS parameters, and magnetic susceptibilities,
on the other hand, can be obtained with good accuracy. Recently developed
combinations of active-space methods with density matrix renormalization group
(DMRG) techniques allow for larger active spaces, which is beneficial for treating
electron correlation as well as spin polarization. “Proof of concept” calculations of
HFC appear promising [15]. Linear response methods have also been developed
for multi-configurational SCF wavefunctions in order to generate spin polarization
suitable for HFC calculations without the need of very large active spaces [16].
In principle, multi-reference coupled-cluster (MRCC) methods should be suitable
for EPR parameter calculations. To the authors’ knowledge, relativistic MRCC
calculations have not been used to predict EPR parameters at the time of writing
this chapter.

Relativistic effects have been/can be included in wavefunction-based EPR calcu-
lations in a variety of ways, for instance: (i) by using all-electron SR Hamiltonians
or SR effective core potentials (ECPs) to generate wavefunctions for a range of
electronic states, followed by treatment of SO coupling via state-interaction (SI),
[17] (ii) by including SR and SO effects either via an all-electron Hamiltonian
[18] or with ECPs from the outset, and (iii) by calculating SR components of a
spin multiplet and treatment of SO coupling as a perturbation in the EPR step [3].
In case (ii), SO effects are treated fully variationally, whereas in case (i), an SO
Hamiltonian matrix is calculated in a limited basis of active-space wavefunctions
and subsequently diagonalized. Approach (iii) is applicable in the weak SO coupling
limit. Note that without application of specialized techniques, the use of a relativistic
ECP for a given atom prevents calculations of the HFC for the same atom because
the inner core nodal structure of the valence orbitals is needed. An order-by-order
treatment of SO coupling via perturbation theory is also viable, for instance, based
on four-component relativistic perturbation theory [19] after separation of SR and
SO components of the QM operators.

Hartree-Fock and Kohn-Sham Methods for EPR Calculations

The approaches to obtaining EPR parameters outlined above assume that the
wavefunction components of a degenerate state of interest are available explicitly
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from a calculation. With single-reference methods such as Hartree-Fock (HF)
theory and Kohn-Sham (KS) Density Functional Theory (DFT) and generalized
KS methods, the usual approach in the absence of strong SO coupling is to start
from a spin-unrestricted SR calculation. For brevity, HF theory is considered as
a special case of a generalized KS hybrid functional from here on. The use of a
spin-unrestricted single-determinant reference typically leads to spin contamination:
while the spin-unrestricted KS reference can be designed as an eigenfunction of
OSz, it is not necessarily an eigenfunction of OS2. Perdew et al. have pointed out

that some degree of spin contamination is good because the KS reference is not
the true wavefunction [20]. Spin polarization is generated straightforwardly in
spin-unrestricted calculations but can be severely over- or underestimated. Single-
reference KS methods with approximate functionals are often not suited to represent
degenerate states. The calculation then results in breaking of spin or spatial
symmetry of the KS wavefunction or both. Projection techniques can be used to
restore lost symmetries.

In the absence of orbital degeneracy, the components of a pseudo-spin doublet
can often be treated reasonably well by standard spin-unrestricted KS methods
for the purpose of calculating EPR spin Hamiltonian parameters. In an SR or
NR framework, the g-factors then simply become equal to ge , while the isotropic
average of the HFC matrix, the isotropic HFC constant, is calculated from averaging
gKˇN h j OFKkj i over k, with j i being the MS D C1=2 component of the
doublet. There is also extensive literature on utilizing the same expectation value
approach within single-reference correlated wavefunction methods. Extensions to
treat cases with S > .1=2/, and ways for additional inclusion of SO coupling via
first-order perturbation theory, have been devised. The reader can find details in
Refs. [21–27] and citations to original literature provided therein.

Some of the KS methods that are currently in use for relativistic EPR parameter
calculations with SO coupling being included variationally [28–30] employ two
different approaches. The first utilizes a variant of Eq. (13), but within a single-
electron framework where the many-electron wavefunctions are replaced by one-
electron orbitals. In the second approach, three separate SCF cycles are typically
performed, with different quantization axes of spin, magnetic moment, or total
angular momentum, and the quantization axis is identified with the directional index
“k” of Eqs. (10) and (13).

The first approach [28, 30] as it was devised and implemented in a two-
component relativistic form is quasi-spin restricted and limited to Kramers doublets.
An SCF calculation is performed with the unpaired electron distributed over two
degenerate frontier orbitals, with occupations of 1/2 each. In the absence of SO
coupling, these would be an ˛ and ˇ spin pair of orbitals with identical spatial
components. The method has some resemblance to restricted open-shell HF (ROHF)
but is not the same. After the SCF step, one of these orbitals, say ', is chosen to
represent the component �1 of the Kramers pair of orbitals. Its conjugate �2 is then
constructed from �1. Written explicitly in terms of real (R) and imaginary (I) parts
of the two spin components of the SCF orbital ', the Kramers pair is
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�1 D
 
'R˛
'Rˇ

!
C i

 
'I˛
'Iˇ

!
(18a)

�2 D
 
�'Rˇ
'R˛

!
C i

 
'Iˇ
�'I˛

!
(18b)

For calculations of g-factors, the matrix elements of the Zeeman operator are then
calculated as in Eq. (13), but with the orbital pair f�1; �2g, and then processed
similar to Eqs. (14)–(15) to yield the g-factor. Alternatively, the h0k of Eq. (13) are
directly identified with the hk terms of Eq. (10), and the g-matrix elements can be
extracted from the calculation results without the detour via G. HFC matrix elements
can be calculated in an analogous way. However, due to the lack of spin polarization,
the performance of the quasi-restricted approach is unsatisfactory for the latter. The
performance for g-factors has frequently been satisfactory.

Regarding the “three SCF cycles” techniques, van Wüllen and coworkers have
provided a justification for their use in KS calculations [31]. The approach of Ref.
[30] is illustrated for HFC: the expectation value of the HFC part of the EPR
spin Hamiltonian taken with a Kohn-Sham determinant calculated with a spin-
quantization axis u

E.u/ D
X
i

ni h'u
i jIK � a � OSj'u

i i D
X
k;l

aklIKk
X
i

ni h'u
i j OSl j'u

i i (19)

with k; l 2 fx; y; zg. The 'u
i are assumed to be orbitals obtained from a

“generalized-collinear” KS calculation with selected spin-quantization axis u,
and the ni are the occupation numbers. Assume next that u is along the Cartesian
direction k, that the orbitals are OSk eigenfunctions, that the electron spin S is the
same as the pseudo-spin S, and that the KS determinant is a solution corresponding
to hSki DMS D S D S. One then finds

P
i ni h'ki j OSl j'ki i D Sıkl , such that

E.k/ D S
X
l

aklIKl (20)

Instead, calculate an analogous expectation value, but this time with the QM
hyperfine operator gKˇN OF �IK and with the actual relativistic generalized-collinear
two-component KS orbitals:

E.k/ D gKˇN
X
l

X
i

ni h'ki j OFKl j'ki iIKl (21)

One can now map the result (20) for the pseudo-spin onto the result (21) calculated
by KS, which gives

akl D gKˇN

S

X
i

ni h'ki j OFKl j'ki i (22)
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An analogous approach is possible for calculations of g-factors, which gives with
the QM Zeeman operator ˇe O� �B

gkl D 1

S

X
i

ni h'ki j O�l j'ki i (23)

Both for the Zeeman and HFC matrices, one can form the rank-2 tensors AK and
G afterward and diagonalize them in order to obtain the PAS. As with variational
wavefunction methods, GIAO basis sets are sometimes employed in order to
generate Zeeman coupling matrices that are strictly origin invariant.

Within the generalized-collinear KS framework, it is also possible to obtain
elements of the ZFS tensor d, from the magnetic anisotropy of the KS energy with
respect to the spin-quantization axis u. With the pseudo-spin Hamiltonian and a
MS D S pseudo-spin eigenfunction, one obtains

EZFS.u/ D S.S� 1
2
/u � d � u (24)

As for the other parts of the EPR spin Hamiltonian, the result of a QM calculation of
E.u/ for different directions of u can then be mapped onto Eq. (24). The approach
was first introduced in Refs. [31,32], where the reader can find comments regarding
some subtleties leading to the S.S � 1=2/ factor instead of S2. For weak SO
coupling, E.u/ can also be calculated by perturbation theory. In this case, the “sum
over states” (SOS) – as in Eq. (8) – can be interpreted as the result of a double
perturbation of the energy by SO coupling and the dipolar ZFS interaction, and
a KS coupled-perturbed analog can be devised instead. For details, see Ref. [31].
In cases where SO coupling dominates the ZFS, and for spin triplets, there is
another KS route: starting with a closed-shell reference state, one calculates energy
differences between the reference and a triplet state of interest by time-dependent
linear response KS (“time-dependent DFT”) within a framework that includes SO
coupling variationally or as a perturbation.

Operators for the Zeeman and HFC Interactions

In principle, the Zeeman and hyperfine operators that are used in QM calculations of
EPR parameters should match the Hamiltonian used for calculating the wavefunc-
tions or KS orbitals in order to avoid picture-change errors. For further details, the
reader is referred to the chapters in this handbook that are concerned with calcula-
tions of NMR parameters within various relativistic frameworks, because derivatives
of the Zeeman and hyperfine operators with respect to the external field components
and the nuclear spin magnetic moment components, respectively, are needed for
those calculations. In order to render this chapter somewhat self-contained, for
illustration, the Zeeman and hyperfine one-electron operators are provided here for
the NR case, for the two-component zeroth-order regular approximation (ZORA),



740 H. Bolvin and J. Autschbach

and for the four-component case in its standard notation where diamagnetism is not
explicit. For brevity, field-dependent two-electron operators are not listed.

Assuming point nuclei for the hyperfine terms, the gauge origin for the external
field coinciding with the coordinate origin, and Coulomb gauge for the nuclear
and external vector potential, the nonrelativistic Zeeman (Z) and HFC one-electron
operators read

NR W OhZ D ˇe

„ Œ.r � Op/C „� � �B

D ˇeŒ OLC 2 OS � �B (25a)

OhHFC
K D 2ˇe

„
�0

4�
Œ
rK

r3K
� Op� �mK (25b)

C ˇe �0
4�
Œ� � fmK.r � rK

r3K
/ � .mK � r/rK

r3K
g� (25c)

Curly brackets, f� � � g, in the operator expressions indicate that derivatives are only
taken inside the operator, not of functions to its right-hand side. As elsewhere in this
chapter, mK D gKˇN IK . Further, rK is the electron-nucleus distance vector and
rK its length. The Zeeman operator is a sum of contributions from orbital and spin
angular momentum. Likewise, in the hyperfine operator, there is the “paramagnetic
nuclear spin–electron orbital” (PSO) term in Eq. (25b) which is independent of the
electron spin, and there is the electron spin dependent sum of the Fermi contact (FC)
and spin dipole (SD) operators in Eq. (25c). The usual expressions for the FC and
SD operators are obtained by taking the derivatives of rK=r

3
K , which gives

NR W OhFC
K D ˇe

�0

4�

8�

3
ı.rK/ � �mK (26a)

OhSD
K D ˇe

�0

4�

3.� � rK/.mK � rK/
r5K

(26b)

The “contact” part of the name of the FC operator refers to the presence of the Dirac
ı-distribution.

Due to the fact that code for calculating matrix elements of these operators
with Gaussian-type atomic orbital (AO) basis functions is rather widely available,
nonrelativistic operators are sometimes used in relativistic calculations of EPR
parameters. For the Zeeman operator, the relativistic corrections from the operator
are likely small because it samples the valence and outer regions of light and
heavy atoms. The hyperfine operators are to be used in relativistic calculations
only with caution, because of the singular behavior evident from Eqs. (26a)–(26b).
Due to their local nature, it is possible to use them for light nuclei in a system
that also contains heavy elements, because then no significant relativistic effects
are generated around the nucleus for which the HFC is calculated. It may also be
possible to generate estimates of a heavy-element HFC if the relevant orbitals have
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high angular momentum, and the HFC is dominated by the PSO mechanism. It is
certainly not physically meaningful to use the nonrelativistic hyperfine operators in
other relativistic scenarios such as HFC tensors of heavy alkali metal atoms or for
small radicals containing mercury (see section “Selected Case Studies”).

When adopting the two-component ZORA framework, the operators relevant for
the Zeeman and HFC interactions read

ZORA W OhZ D ˇe

2„ Œ.r � Op/C .r � Op/� �B (27a)

C ˇe

2
� � ˚B.r �r/ � .B � r/r

�
(27b)

OhHFC
K D ˇe

„
�0

4�
Œ

rK

r3K
� Op C rK

r3K
� Op� �mK (27c)

C ˇe�0

4�
Œ� � fmK.r � rK

r3K
/ � .mK � r/rK

r3K
g� (27d)

The function  D 2mec
2=.2mec

2 � V / is a “relativistic kinematic factor” that
typically shows up in equations derived within the ZORA framework. Formally,
the NR limit is obtained for  ! 1. In this case, (27a) becomes the orbital
Zeeman (OZ) operator, (27b) becomes spin Zeeman, (27c) becomes PSO, and (27d)
becomes FC + SD. It therefore makes sense to adopt the same terminology with
two-component methods such as ZORA, Douglas Kroll Hess (DKH), and other
approximate or formally exact two-component methods that afford operators of
similar structure. In the vicinity of heavy nuclei,  is very different from unity
which generates the desired relativistic effects. It is noted that for point nuclei with a
charge below 118, there is no “contact” term (i.e., a delta distribution) [33], because
it is suppressed by ! 0 for rK ! 0 in the operator.

The one-electron Zeeman and hyperfine operators in the four-component (Dirac)
framework involve the 4 � 4 Dirac ˛ matrices:

Dirac W OhZ D ce

2
˛ � r �B (28)

OhHFC
K D ce�0

4�
˛ � rK

r3K
�mK (29)

Unlike the NR and two-component versions, the operators do not explicitly include
derivative terms. However, the derivative terms are implicitly contained in the
formalism because of the relation between the large (upper) and small (lower)
components of the electronic wavefunctions or orbitals.

For HFC that is nominated by s orbitals (heavy alkali metals and Hg in
particular), finite nucleus effects can be large. There are different ways to treat
finite nuclear volume effects [34]. Due to the ubiquity of Gaussian-type basis
functions in quantum chemical calculations, the spherical Gaussian nuclear model
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is in widespread use. Here, the charge distribution �K of nucleus A is “smeared out”
by a Gaussian function as

�K.R/ D ZK
�
�K

�

�3=2
e��K jR�RK j2 (30)

The exponent �K is inversely proportional to the mean square radius hR2K i of the
nucleus:

�K D 3

2hR2Ki
(31)

The root mean square nuclear radius is, in turn, related to the nuclear mass MK (in
amu) as follows:

hR2K i1=2 D .0:863M1=3
K C 0:570/ fm (32)

The electron–nucleus attraction term for nucleusK with charge ZK in the Hamilto-
nian for point nuclei

V
point
K D � e2

4�"0

ZK

rK
(33a)

changes to

V
gauss.
K D � e2

4�"0

ZK

rK
P .1=2; Qr2K/ (33b)

with Qr2K D �Kr2K . Further,

P .a; x/ D 1

� .a/

Z x

0

ta�1e�t dt (34)

is the lower incomplete Gamma function ratio, and � .a/ is the gamma function.
Assuming as a first approximation that the magnetization density of the nucleus can
also be described by a spherical Gaussian, the vector potential for a point nucleus

A
point
K D �0

4�

mK � rK

r3K
(35a)

changes to

A
gauss.
K D �0

4�

mK � rK

r3K
P .3=2; Qr2K/ (35b)
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The presence of the incomplete Gamma function terms in the expressions serves
to dampen the inverse powers of rK such that the resulting potential and vector
potential remain finite as rK ! 0. In calculations, there are two effects: The first
one is via the potential (33b) and affects the electron spin and orbital magnetizations
around the nucleus. The second one is the modification of the hyperfine operators
by (35b). In combination, they tend to reduce the magnitude of hyperfine coupling
constants.

Higher-Order EPR Parameters and Mapping of Ab Initio to
Pseudo-spin Functions

This section focuses on ZFS and the Zeeman interaction as examples. The HFC
can be treated in an analogous fashion as the Zeeman interaction as far as higher-
order pseudo-spin Hamiltonian terms are concerned. For a unified formalism and
examples, see Ref. [35].

The larger the pseudo-spin S, the more degrees of freedom there are. Higher-
order spin operators are then added to the spin Hamiltonian to describe the
supplementary degrees of freedom. Higher orders include terms with polynomials
of order l , m, and n in the components of OS, B, and I respectively, symbolically
denoted here as a term of order SlBmI n where l , m, and n are nonnegative integers
and l C m C n is even to preserve time even parity of the Hamiltonian. An
exception concerns the description of non-Kramers doublets. This point is presented
in section “Selected Case Studies.” The expansion is limited to l 	 2S since all
matrix elements of the operators with l > 2S are zero. The ZFS term corresponds
to m D n D 0

OZFS
S D OZFS

.2/ C O
ZFS
.4/ C � � � (36)

where OZFS
.l/ is a term of order l even in S. The term linear in the magnetic field,

with m D 1 and n D 0, is the Zeeman term

OZ

S D O
Z

.1/ C O
Z

.3/ C � � �
D ˇe. O�.1/ C O�.3/ C � � � / �B

(37)

where O�.l/ is a term of order l odd in S. The next term with m D 2 describes the
quadratic contribution in the magnetic field. This term is usually negligible due to
the smallness of the magnetic interaction [36].

According to the irreducible tensor operator decomposition, the preceding terms
can be written as

OZFS
.l/ D

lX
mD�l

al;ml;m. OS/ (38)
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and

O�u
.l/ D

lX
mD�l

bu
l;ml;m.

OS/ (39)

where O�u
.l/ is the component of O�l in direction u and lm are the tesseral

combinations of the spherical-tensor operators Tl;m

l;m. OS/ D 1p
2
Œ.�1/m Tl;m. OS/C Tl;�m. OS/�

l;�m. OS/ D ip
2
Œ.�1/mC1 Tl;m. OS/C Tl;�m. OS/� (40)

with 0 	 m 	 l . Equation (39) becomes for l D 1

O�u
.1/ D bu

1;1
OSx C bu

1;�1 OSy C bu
1;0
OSz (41)

with u D x; y; z. This defines nine parameters bu
1;m corresponding to the elements

of the g matrix. Equation (41) corresponds to the first term of Eq. (6) and appears
for all values of S
 1=2. The third term of Eq. (6) appears for S
 1

OZFS
.2/ D a2;2 1p

2
. OS2x � OS

2

y/C a2;�2 1p
2
. OSx OSy C OSy OSx/C a2;1 1p

2
. OSx OSz C OSz OSx/

Ca2;�1 1p
2
. OSy OSz C OSz OSy/C a2;0 1p

6
.2 OS2z � OS

2

x � OS
2

y/

(42)
The five parameters a2;m define the symmetric and traceless d tensor. The cubic term
in S contributes to the Zeeman interaction for S
 3=2:

O�u
.3/ D

3X
mD�3

bu
3;m3;m.

OS/ (43)

All 3;m. OS/ can be expressed as a product of three spin components OSu defining a
third-rank tensor g0.

OZ

.3/ D ˇeB � g0 � OS
3

(44)

where g0 is a third-rank tensor.
In the case of weak SO coupling, the j�; ai wavefunctions correspond closely

to the SR components j�0; ai. Without SO coupling, the j�0; ai functions are the
2S C 1 spin components of the real spin and degenerate. These j�0;M i behave
properly under all spin operations, time inversion, and spatial symmetries of the
molecule and can be assigned to the pseudo-spin states j�0;MS i � jS;MSi. As it
has been shown in section “Representation of the Pseudo-spin Hamiltonian in an Ab
Initio Framework,” the spin Hamiltonian parameters can be calculated in this case
by a perturbative approach using wavefunctions which do not include SO effects.
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In the case where SO coupling is included in the QM calculation, the assignment
of the j�; ai functions to pseudo-spin functions becomes more difficult. There are
currently two types of methods to calculate the spin Hamiltonian parameters from
the Ea and the three matrices �k of the electron magnetic moment (see Eq. (9))
represented in the basis of j�; ai calculated by the ab initio methods (i) either by
projecting the Zeeman matrices using the irreducible tensor operators algebra [10],
since these latter operators form a basis of orthogonal and linearly independent
matrices, each matrix has a unique expansion in this basis set, (ii) or by mapping
the matrix elements of the real and pseudo-spin matrices one by one once the
correspondence between the real and pseudo-spin states is performed.

For the projection technique, one considers first that the term linear in S is the

dominant one in the OZ

S operator, and the tensor G D g gT can be calculated as [11]

G D 6

S.SC 1/.2SC 1/ (45)

where the tensor  (not to be confused with A of Eq. (17)) is defined as

k;l D 1

2
tr.�k �l / (46)

The diagonalization of G provides the absolute values of the g factors gi D ˙
p
Gi

with i D X; Y;Z. Equation (45) is equivalent to Eq. (15) in the case SD 1=2.
The matching technique consists in rotating the three matrices �k .k D x; y; z/
(i) In the Euclidean space of spatial coordinates

�l 0 D
X
k

Rk;l 0�
k with k D x; y; z and l 0 D x0; y0; z0 (47)

where R is a 3 � 3 rotation matrix of the Cartesian coordinates.
(ii) In the Hilbert space generated by j�; ai .a D 1; 2SC 1/.

.�k/0 D 
� � �k � for all k D x; y; z (48)

where  is a rotation in the .1C 2S/2 Hilbert space.
These rotations are performed in order to put the three matrices �k .k D x; y; z/

to suit the matrices of the spin Hamiltonian. The rotations in coordinate space
may rotate the real space in the principal axis of the D or , for example.
Then the rotations in the Hilbert space of wavefunctions may diagonalize the �Z

matrix, make �X real, and �Y imaginary. No information is lost during these
transformations. In the final form, one can fit the spin Hamiltonian parameters on
the matrix elements of the �0k .k D x0; y0; z0/ matrices. The deviation through
the fitting procedure can be evaluated and scores the propensity of the model to
reproduce the ab initio data. But this procedure needs some symmetry in order to
find the proper rotations.
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For the calculation of the ZFS parameters, one needs the assignment of the
combination of the j�; ai to the pseudo-spin states jS;MSi. One must find a rotation
 in the model space such the transformed wavefunctions fulfill the time inversion
properties O�j�;MSi D .˙1/.S�MS/j�;�MSi. The real Hamiltonian, including the
interactions attributed to the ZFS, is diagonal in the basis of the j�; ai if SO coupling
and the dipolar two-electron spin–spin interaction are included variationally in the
ground state. In the new basis set, it becomes

HZFS D 
� � E � (49)

where E is the diagonal matrix with Ea;b D Eaıa;b . Then, these matrix
elements match the matrix elements of the pseudo-spin matrix HZFS

MS;M
0
S

D
hS;MSj OZFS

S jS;MSi
If SO coupling is weak, the j�; ai derives mostly of a pure spin state 2SC1� with

components j�0;M i whereM is the projection on the quantification axis of the real
spin. This assignment is easily performed using the effective Hamiltonian technique
[37] briefly outlined in section “Representation of the Pseudo-spin Hamiltonian in
an Ab Initio Framework.”

j�; ai D
X
M

Ci;M j�0;M i (50)

where  is the projector on the pure spin space. The effective Hamiltonian in this
target space is

HZFS
eff D C�1 � E � C (51)

i;M is not an orthogonal matrix since it is a projector. The wavefunctions j�0;M i
satisfy all the properties of transformations of spin with time inversion and spin
operators since they are eigenfunctions for a real spin. Equations (49) and (51) are
closely related. In the case of weak SO coupling, C is close to being orthogonal, and
the effective Hamiltonian procedure is a convenient way to obtain the rotation ,
eventually using an orthogonalization procedure. This procedure is applicable for
all values of S, while for large values of S, the determination of  becomes more
complicated due to the increase of the number of degrees of freedom.

The spin Hamiltonian is designed in order to reduce as much as possible the
number of parameters to fit the EPR spectra. In the case of high S, many of the
spin Hamiltonian parameters are negligible. In the case of weak SO coupling, the
Zeeman interaction is almost Isotropic and the magnetic anisotropy arises from
the ZFS term. The determination of the ZFS tensor is then the key step of the
fitting.

In the case of S D 1, without any spatial symmetry, the three j�; ai are
not degenerate and are not magnetic to first-order h�; aj O�uj�; ai D 0. Magnetic
properties arise from the off-diagonal matrix elements. The spin Hamiltonian
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expressed in the principal axis of the d tensor with an isotropic Zeeman interaction
writes

OS D ˇegB � OSC dX OS2X C dY OS
2

Y C dZ OS
2

Z

D ˇegB � OSCD
	 OS2Z � 1

3
S.SC 1/



CE. OS2X � OS

2

Y /
(52)

In the basis set
n
j0X i D 1p

2
.�j1; 1iCj1;�1i/; j0Y i D ip

2
.j1; 1iCj1;�1i/; j0Zi D

j1; 0i
o

where j0ki is the spin state with MS D 0 for direction k

OS j0X i j0Y i j0Zi
h0X j 1

3
D �E �iˇegBZ iˇegBY

h0Y j iˇegBZ 1
3
D CE �iˇegBX

h0Z j �iˇegBY iˇegBX � 2
3
D

(53)

Figure 1 represents the variation of the energy of the three states as a function of B
for the three directions X , Y , and Z for g D 2, D D 10 cm�1, and E D 1 cm�1.
The largest magnetization (slope of the E D f .B/ curve) is obtained for j0X i and
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j0Y i when the field is applied along Z since j0X i and j0Y i are the closest, and the
Zeeman interaction couples them in this direction. When D < 0, these two states
are lower than j0Zi, and the ground state is magnetic along Z; the smaller the E is,
larger the magnetic interaction between these states is. This corresponds to an axial
magnetization in direction Z.

The spin Hamiltonian of Eq. (52) is widely used for SD 3=2 systems as well. It
is shown in section “Selected Case Studies” that the cubic term in S is negligible in
the case of weak SO coupling. In the basis of the jS;MSi, its matrix is

OS j3=2i j1=2i j � 1=2i j � 3=2i
h3=2j D C 3

2ˇegBZ

p
3
2 ˇeg .BX � iBY /

p
3E 0

h1=2j
p
3
2 ˇeg .BX C iBY / �D C 1

2ˇegBZ ˇeg .BX � iBY /
p
3E

h�1=2j p
3E ˇeg .BX C iBY / �D � 1

2ˇegBZ

p
3
2 ˇeg .BX�iBY /

h�3=2j 0
p
3E

p
3
2 ˇeg .BX C iBY / D � 3

2ˇegBZ
(54)

The energies from diagonalization of this spin Hamiltonian are plotted as functions
of B for g D 2, D D �10 cm�1, and E D 1 cm�1 in Fig. 2. The two Kramers
doublets j ˙ 1=2i and j ˙ 3=2i are split by an energy 2

p
D2 C 3E2. With D < 0,
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the j˙ 3=2i doublet is the lowest. When E D 0, the j˙ 3=2i doublet is purely axial
alongZ with a magnetization of 3=2g while the j˙1=2i doublet has a magnetization
1=2g along Z and g along X and Y . The E parameter induces some mixing of the
j ˙ 1=2i component in the ground state at zero field and couples the two doublets
through the Zeeman interaction. The magnetization becomes less axial. When D is
large, the second Kramers doublet may not be detected by EPR, even with HF-HF
EPR. In this case, the ground Kramers doublet can be modeled with a restricted
model space with S D 1=2; the spin Hamiltonian is then pure Zeeman, and the g
matrix is purely axial gZ D 3g and gX D gY D 0 for D < 0 and gZ D g and
gX D gY D 2g for D > 0.

Most cases with large values of S are in the weak SO coupling limit with S

close to the real spin S of the spin-free state. When there is no very low-lying
state, the orbital contribution arises through second-order coupling with the excited
states, the Zeeman interaction is almost isotropic, and the anisotropic behavior of
the magnetization arises from the D tensor. In this case, whatever the value of S is,
the effective Hamiltonian technique permits a simple assignment between the “real”
wavefunctions to the pseudo-spin components.

Signs of EPR g-Factors and Hyperfine Couplings

In the Zeeman term of Eq. (6), the matrix g links the pseudo-spin operator OS, which
acts in the spin space, with the magnetic field, which acts in the physical space.
Rotations in each of the two spaces are a priori disconnected, and consequently,
the matrix g is not a tensor. It is rather arbitrary since any rotation in the spin
space affects the g matrix but gives the same electronic magnetic moment me ,
which is the physical observable coupling to the magnetic field. The g-factors are
calculated as the square roots of the principal values of the G tensor of Eq. (15),
which therefore determines the absolute values of the g-factors but does not provide
any information about their sign. Experimentally, the g-factors are deduced from
Eq. (7). Conventional EPR does not provide the sign of the g-factors. In the weak
SO limit, they are close to ge ' 2 and they are positive.

Let X; Y;Z denote the magnetic axes of a system. Pryce has shown [38] that
the sign of the product gXgY gZ determines the direction of the precession of the
magnetic moment around the magnetic field. Experimentally, this sign has been
measured for octahedral compounds where the three factors are identical. Negative
signs were deduced relative to the sign of the hyperfine coupling [39] for PaCl2�6
as well as [40] for UF�6 . The sign of gXgY gZ was found to be negative as well for
ŒNpO2.NO3/3�

� [41].
The sign of gXgY gZ defines the sign of the Berry phase of a pseudo-spin applied

in an applied magnetic field [42]. In the case of SD 1=2,

�X�Y�Z D i gXgY gZI2 (55)
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where �u represents the electron magnetic moment O�u in the basis of the doublet-
state components, as defined in section “Representation of the Pseudo-spin Hamilto-
nian in an Ab Initio Framework” and Eq. (9), and I2 is the 2�2 identity matrix. This
product of matrices is invariant by rotation in the Hilbert spin space and therefore
does not need any assignment between the two physical wavefunctions with the
jS;MSi pseudo-spin eigenfunctions. Equation (55) is easily calculated ab initio and
gives access to the sign of the product of the three g-factors.

In the case of symmetric molecules, the degree of arbitrariness of the matrix g can
be reduced by imposing symmetry constraints on the pseudo-spin. More specifically,
the pseudo-spin may be required to behave under spatial rotations as a spin operator,
up to a multiplicative function [43]. The two physical kets j�; 1i and j�; 2i span an
irrep � of the point group of the molecule, while the two components j˛i and jˇi
of a spin S D 1=2 span an irrep �S . If one can find a real scalar function � such

j�; 1i D � j˛i
j�; 2i D O� j�; 1i D � jˇi (56)

where O� is the time-reversal operator and two j�; 1i and j�; 2i are properly defined
for the rotations of the molecule. This implies that � D �� ˝ �S with �� being the
irrep of �. Since the pseudo-spin and the multiplet are supposed to have the same
degeneracy, �� must be a one-dimensional symmetry species. For example, in the
case of the octahedral AnXq�

6 complexes with 5f 1 configuration, the ground state is
of symmetry E5=2u and �S D E1=2g. It follows that �� D A2u since E5=2u D A2u ˝
E1=2g: the decomposition of Eq. (56) is uniquely defined and one can determine the
signs of the g-factors [44]. By symmetry, the three principal g-factors are equal and
their sign is equal to the sign of the product.

The case of the neptunyl ion, NpO2C
2 , is different [45]. The free ion is linear

and has a nonzero principal gk-factor in the direction k, parallel to the molecular
axis. The components g? perpendicular to the axis are zero, however. This means
that gXgY gZ D 0, i.e., this product conveys no information about the sign of
gk. In 1h, the ground state of neptunyl is E5=2u and �S D E1=2g. There is,
however, no one-dimensional irrep satisfyingE5=2u D � ˝E1=2g , and therefore, the
decomposition as in Eq. (56) is not possible. With equatorial ligands, the symmetry
of the neptunyl is lowered, either to 3h, e.g., in ŒNpO2.NO3/3�

�, or to 4h, e.g., in
ŒNpO2Cl4�2�. In both cases, the two equatorial g?-factors are equal, and gk has the
sign of the product of the three g-factors. This sign is experimentally negative for
the first complex [41]. According to Eq. (55), ab initio calculations give a negative
sign for the nitrate complex but a positive sign for the chloride. The ground state
of ŒNpO2.NO3/3�

� is of symmetry E1=2 and in the 3h double group �S D E1=2.
The scalar function � belongs either to A01 or to A02 since E1=2 D A01.2/ ˝E1=2. The
decomposition of Eq. (56) leads in both cases to the same negative sign of gk < 0,
but one of the solutions gives g? > 0 while the other one gives g? < 0. In this
case, the use of symmetry arguments does not produce a unique sign of g?. In the



23 Electron Paramagnetic Resonance Parameters 751

same way, the ground state of ŒNpO2Cl4�2� is of symmetry E3=2u, �S D E1=2g, and
� belongs to either B1u or B2u. Both solutions give gk > 0 but one gives g? > 0,
while the other one gives g? < 0. Therefore, the individual signs of the g-factors of
these neptunyl complexes cannot be determined. It has been proposed [43] that the
sign of g-factors in the case of an arbitrarily distorted complex could be determined
by considering an adiabatic distortion of the complex toward a symmetric system
for which the signs are well defined. But the analysis above shows that even in
symmetrical cases, the signs of individual g-factors may not be unique.

While the sign of the product of the three g-factors can be related to an
observable, namely, the sense of the precession of the magnetic moment around
the magnetic field, it appears that it is not possible in general to determine a
specific sign of each individual g-factor, even in the case of molecules with high
symmetry. Anyhow, the decomposition of Eq. (56) permits constructing a set of
doublet components which behave as the components of a spin under the symmetry
operations of a molecule.

Selected Case Studies

In this section, selected examples are presented where EPR parameters have been
calculated with relativistic two-step complete active-space (CAS) wavefunction
methods (treating SO coupling by state interaction) and KS methods, drawing from
the authors’ research.

In the CAS approaches, first, the wavefunctions are calculated in the absence
of magnetic fields, and in a second step, EPR parameters are deduced from the
wavefunctions. In two-step approaches, the quality of the wavefunction depends on
the quality of the basis set, on the size of the active space, on the introduction of the
dynamic correlation, and on the number of states included in the state interaction for
the calculation of the SO coupling. In all cases, for a metal in nd.f /l configuration,
minimal active space includes the l electrons in the 5(7) nd.f / orbitals. Such a
minimal active space is often sufficient for the description of f elements as far as g-
factors and ZFS are concerned. In order to get accurate HFC interactions, the active
spaces must allow for spin polarization to take place. For transition metals, also
for ZFS and g-factors, the active spaces should be increased with some correlating
orbitals, namely, the double shell nd 0 orbitals and some orbitals of the ligands,
namely, the orbitals most involved in the bonding with the metal ion. Except for
lanthanides, the inclusion of the dynamical correlation with perturbation theory
tends to improve the results. For the state interaction, all the states with the same
spin as the ground term of the free ion arising from the nd.f /l configuration are
usually included. The lowest states with S ˙ 1 should often be included as well.

Once the wavefunctions are calculated, the model space must be chosen. In the
case of Kramers doublets, the spin Hamiltonian comprises only the Zeeman term
linear in S and the g-factors are calculated according to Eq. (15). It is illustrated
below with the example of neptunyl NpO2C

2 . For non-Kramers doublets, a ZFS
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parameter must be added as shown below for the plutonyl PuO2C
2 . The case S D 1

is illustrated with a complex of Ni.II/ where the pseudo-spin is very close to the
real spin. Two examples are presented for S D 3=2: a complex of Co.II/ with a
ZFS splitting and a octahedral complex of Np.IV/ without ZFS splitting but with
a large third-order term in the pseudo-spin Hamiltonian. Finally, the S D 2 case
is illustrated with a high-spin complex of Fe.VI/ where there is a low-lying SF
state. These calculations are all based on the second-order DKH operator with SO
coupling treated by an atomic mean-field integral procedure. This section concludes
with selected examples for hyperfine coupling extracted from KS calculations,
where the relativistic effects are treated with the help of ZORA.

The neptunyl ion NpO2C
2 is a linear complex of Np6C in 5f 1 configuration [45].

The 5f orbitals split due to the interaction with the two oxygen atoms; the three
orbitals of symmetry 
 and � are antibonding and are destabilized. The remaining
four orbitals, ı and �, are nonbonding and are occupied with the single electron.
The ground state is of symmetry E5=2u of the 1h group and is close to the MJ D
˙5=2 components of the J D 5=2 term of the free ion. Results are summarized
in Table 1; gk D ˙4:23 is close to the 2gJ J D 30=7 value of the free ion limit
for a j5=2;˙5=2i doublet. The spin and orbital contributions to the g-factors are
determined by turning off the orbital and spin term, respectively, in the Zeeman
interaction. The orbital contribution is the largest and opposite to the spin one, as it
is the case for the free ion where spin and orbit are in opposite direction since the
open shell is less than half filled and L > S .

The g-factors of the ground state of NpO2C
2 were measured by EPR spectroscopy

in the solid state diluted either in CsUO2.NO3/3 or in Cs2UO2Cl4. The g-factors of
the excited states were deduced from the absorption bands in a magnetic field. In the
first environment, three nitrate ligands are in the equatorial plane of NpO2 leading
to a local 3h symmetry, while in the latter, there are four chloride with a local 4h

symmetry. In the first complex, the � orbitals split by interaction with the orbitals of
the equatorial ligands and their orbital moment is partially quenched. It gives rise to
a magnetic moment in the equatorial direction (see Table 1) dominated by the spin
contribution; in this case, spin and orbit are opposite. In 4h, the ı orbitals split by
mixing with the orbitals of the ligands quenching their orbital moment. One obtains
again a magnetic moment in the equatorial plane almost as large as the axial one.
It should be noticed that in this case, the spin and orbital contributions of the axial
component have the same sign and are therefore additive. The main effect of the
environment is to affect the ratio of ı and � orbitals in the ground state, and it is this
ratio which determines the magnetic properties. The effect of the ligands is so large
in the chloride environment that there is no relationship anymore with the properties
of the free actinyl ion.

As pointed out already, even-electron systems may have doubly degenerate states
in presence of rotational symmetry or almost degenerate states with a small energy
gap. In this case, the pseudo-spin is SD 1=2. But, while in the spin space the kets
behave as O�j1=2;˙1=2i D ˙j1=2;�1=2i under time reversal, with O� being the
time-reversal operator, in the real space O�j�; ai D j�; ai since there is an even
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number of electrons. The states j�; ai have no magnetic moment, but the magnetic
moment arises from the coupling between the two states h�; aj O�j�; bi ¤ 0 if a ¤ b.
It follows that the spin Hamiltonian takes the following form:

OS D gkˇe OSzBz C� OSx (57)

assigning the j1=2;˙1=2i � 1p
2
.j�; ai ˙ i j�; bi/. The second term of Eq. (57) is a

ZFS term linear in S and is not even with time reversal. In this equation, x and y do
not refer to spatial directions and the Hamiltonian is not invariant under rotations.
gk is a number. Although ill defined for symmetries, this Hamiltonian is used to fit
EPR spectra of non-Kramers systems, and its parameters can be determined from
ab initio calculation.

The plutonyl ion PuO2C
2 is the analog of NpO2C

2 with a 5f 2 configuration. The
ground state is of 4g symmetry, close to the MJ D ˙4 of the ground free ion 3H4

term. The calculated g-factor (see Table 1) is close to 2gJ J D 6:4 of the free ion.
The equatorial component is zero, and the spin and orbital contributions to the axial
component have opposite signs. The EPR spectrum of plutonyl has been measured
diluted in a diamagnetic crystal, forming ŒPuO2.NO3/3�

� clusters. The equatorial
moment remains zero, even with the lowering of the symmetry since there is an
even number of electrons in the molecule. In this case, the splitting of the � orbitals
has less effect than in neptunyl since the configuration of the ground state remains
mostly �1ı1.

In the complex ŒNi.II/.HIM2 � py/2.NO3/�
C, the Ni.II/ ion (3d8 configuration)

is in a pseudo-octahedral environment. Magnetization measurements, HF-HF-EPR
studies, and frequency domain magnetic resonance spectroscopy (FDMRS) studies
indicated the presence of a very large Ising-type anisotropy with an axial ZFS
parameter D D �10:1 ˙ 0:1 cm�1 and a rhombic ZFS parameter of E D
0:3 ˙ 0:1 cm�1 [47]. The spectrum is fitted with an isotropic giso D 2:17. In an
octahedral ligand field, the SR ground state is a 3A2g with a t 62ge

2
g configuration.

This state is orbitally nondegenerate and triply degenerate for the spin. With SO
coupling, it becomes a T2 state and remains triply degenerate. A distortion of
the octahedral environment removes this degeneracy, creating three nondegenerate
states. SO coupling is dominated by coupling to a 3T2g state with configuration
t 52ge

3
g . The latter is triply degenerate in octahedral symmetry and also splits in three

states when the symmetry is lowered. The model space consists in the three states
arising from the ground 3A2g state and SD 1.

According to SO-CASPT2 calculations, the 3T2g state splits in three components
at 7,750, 10,088, and 10,504 cm�1 above the energy of the ground state. This large
splitting is at the origin of the large ZFS in this molecule. According to Eq. (51), one
gets D D �11:53 cm�1 and E D 0:48 cm�1. The directions of the principal axes
of the d tensor are depicted on Fig. 3. The norms of the projections of the model
wavefunctions in the target space j�; ai are 0.99 and their overlap about 10�4.
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Fig. 3 The
ŒNi.II/.HIM2 � py/2.NO3/�

C
molecule. The thick arrows
show the direction of the
axial magnetization and the
thinner arrows the two other
principal axes of the d tensor

It follows that the matrix C is close to being orthogonal and close to the rotation
matrix  of Eq. (49). Equations (49) and (51) provide similar results.

The g-factors determined by the projection procedure, Eq. (45), and the matching
procedure are the same gX D 2:21, gY D 2:22, and gZ D 2:30. The principal axes
of the g tensor are very close to those of the d tensor even if the molecule has
no symmetry. The g-factors are almost equal and the Zeeman interaction is almost
isotropic. This means that the magnetic behavior is dictated by the principal axes of
the ZFS tensor d. The spin contribution to the g-factors is gSX D gSY D 1:998, gSZ D
1:992 and the orbital contributions are gLX D 0:225 gLY D 0:222 and gLZ D 0:306.
As expected for a weak SO case, the spin contribution is by far the largest. But it is
isotropic and close to 2. The orbit contribution is smaller, but it brings the departure
from the free electron and the anisotropy of the Zeeman interaction.

In HgCo.NCS/4, the Co.II/ ion has a 3d7 configuration and is in a pseudo-
tetrahedral environment. The ŒCo.NCS/4�

2� molecule belongs to the S4 point
group. In Td , the ground state would be a fourfold degenerate 4A2, but in the
lower symmetry, this state splits in two Kramers doublets. The spin Hamiltonian
parameters were deduced from susceptibility data measured with a SQUID in
the range 1.7–300 K [48]; D lies between 10 and 11 cm�1, gk D 2:168, and
g? D 2:251.

The splitting between the two Kramers doublets calculated with SO-CASPT2 is
16.2 cm�1. Due to the symmetry of the molecule, all spin Hamiltonian tensors have
the same principal axis, and the spin Hamiltonian takes the following form:
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OS D ˇe
	
g?BX OSX C g?BY OSY C gkBZ OSZ



C ˇe

	
g0?BX OS

3

X C g0?BY OS
3

Y C g0kBZ OS
3

Z



CD

�
OS2Z �

5

4

�
CE

	 OS2X � OS2Y 
 (58)

The matrix g0 is reduced to its diagonal elements. The ZFS tensor d is calculated
by the effective Hamiltonian technique; the Z axis lies along the 2 axis, and D D
8:1 cm�1 and E D 0. The validity of the effective Hamiltonian procedure can be
assessed by the projection of the j�; ai on the j�0;M i, more than 0.99 and the
overlap between the projected vectors, less than 10�4. The projection technique
provides the tensor  defined in Eq. (45) leading to gk D 2:173 and g? D 2:255.
The matching technique permits the determination of both linear and cubic terms:
one gets gk D 2:178, g0k D �0:002, g? D 2:263, g0? D �0:004. The Zeeman
interaction is mostly isotropic and the cubic term is negligible. The two techniques
give close but not similar g-factors due to the neglect of the cubic term in the first
one. These values are in very good agreement with the experimental ones. The spin
(orbital) contributions are for g? 1.992 (0.271), for g0? �0.0002 (�0.004), for gk
1.989 (0.189), and for g0k �0.0002 (�0.002). The spin contribution is again the
largest, isotropic, and close to 2. The orbital one is more anisotropic and provides
the only contribution to the cubic term. As it was the case for the Ni.II/ complex,
in the weak SO limit, the anisotropy of the magnetic property is determined by the
ZFS interaction.

Another description is to consider the two Kramers doublets independently, each
being described by a S D 1=2. One gets for the first Kramers doublet g1k D 2:18

and g1? D 4:50 and for the second one g2k D 6:52 and g2? D 0:1. This description
does not give information on the second-order Zeeman interaction between the
two Kramers doublets. But in the case of a large ZFS, the transition between the
two Kramers doublets cannot be induced even using HFHF EPR, and one only
determines the magnetic properties of the ground Kramers doublet. In this scheme,
the magnetic anisotropy is described by the Zeeman interaction.

Another example for S D 3=2 is the NpCl2�6 cluster diluted in Cs2ZrCl6. The
Np4C ion has a 5f 3 configuration and is in an octahedral environment. The ground
state is a quartet F3=2u (using Mulliken’s notation, or �8 in Bethe’s notation) [49].
In the principal axis system, the spin Hamiltonian takes the form

OS D ˇeg OS �B C ˇeg0
	
BX OS3X C BY OS

3

Y C BZ OS
3

Z



(59)

Due to the cubic symmetry, OZ

.1/ is isotropic, OZ

.3/ is invariant by “changing” the
axes by permutation X  ! Y  ! Z but is not isotropic. There are two degrees
of freedom, the two scalar g and g0 which were deduced from EPR measurements
as g D �0:516 and g0 D 0:882. These two numbers define the magnetization
of the two pairs of Kramers doublets, h˙3=2j�uj ˙ 3=2i D �. 3

2
g C 27

8
g0/ and
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h˙1=2j�uj ˙ 1=2i D �. 1
2
g C 1

8
g0/. The matching technique permits to find the

rotation  in the model space which assigns the j�; ai to the jS;MSi. One can find
two possible assignments as was already pointed out by Bleaney, corresponding to
the permutation

˚
�3=2 $ ��1=2I��3=2 $ �1=2

�
. One of the solutions transforms

under rotations as a spin S D 3=2, while the other one does not. The solution given
above fitting the EPR spectrum does not. From calculations, one gets g D �0:406
and g0 D 0:785. The spin and orbital contributions are 0.027 and �0.460 for g and
�0.250 and 1.285 for g0. The accordance with the experimental values is reasonable.
The spin and orbital contributions are opposite, the orbital one being the largest as
in the free ion. The cubic term is by far non-negligible; it is larger than the linear
one and opposite in sign. Due to the high symmetry of the complex, there is no ZFS.
However, the cubic term plays an essential role for the Zeeman interaction.

When the complex is distorted, one gets two Kramers doublets with different
energies. The two g-tensors are not collinear. Two pseudo-spin models can be used:
either one considers two distinct S D 1=2 each with its own g-tensor, or the two
g-tensors are not collinear. The two spin spaces are coupled through second-order
Zeeman interaction. It is usually the way one describes the low-energy spectra of
lanthanide ions. Another way is to describe the model space as an S D 3=2 case.
The g and g0 tensors are not collinear in general, and even if this space is more
complete than the previous description, the parameters are less intuitive.

In the ŒFeLCl� complex with L=ˇ-diketiminate, the Fe.II/ is in 3d6 high-spin
configuration with a S D 2 ground state. EPR measurements in the X band gives
a quasidegenerate MS D ˙2 ground doublet with an axial g D 10:9 and a small
splitting of � D 0:35 cm�1. The next component of the spin quintet is estimated
to be higher than 150 cm�1 [50]. In a pure spin quintet, the MS D ˙2 components
have a g-factor of 6. The experimental value shows that there is a large orbital
contribution due to a partially quenching of the orbital moment and a low-lying
state. The CASPT2 calculation shows that without SO coupling, the first excited
state is another spin quintet lying 516 cm�1 above the ground state. With the SO
coupling, the spin quintet becomes a ground doublet split by 0.34 cm�1, and the
other components are 118, 132, and 180 cm�1 above. The g-factors of the ground
doublet modeled with a SD 1=2 are given in Table 2. The magnetization is along
the Fe-Cl bond with g D 10:9 in perfect accordance with the experimental value.

Table 2 g-factors of FeLCl calculated with two model spaces SD 1=2 and SD 2. gS and gL

are the spin and orbital contributions

SD 1=2 SD 2

g g g0

x y z x y z x y z

calc g 0:0 0:0 10:903 2:104 1:983 3:108 �0:015 �0:013 �0:094
gS 0:0 0:0 7:994 2:000 1:965 2:000 �0:016 �0:012 0:000

gL 0:0 0:0 2:909 0:104 0:018 1:108 0:002 �0:001 �0:094
exp 0.0 0:0 10:9
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The spin contribution of 7.99 is the expected value for a spin quintet, and one notices
a large orbital contribution due to the low-lying quintet state. The five components
issued from the spin quintet may be modeled with a SD 2 pseudo-spin. In the case
where all the matrices are collinear, the spin Hamiltonian is the following:

OS D ˇe
	
gXBX OSX C gY BY OSY C gZBZ OSZ



C ˇe

	
g0XBX OS

3

X C g0Y BY OS
3

Y C g0ZBZ OS
3

Z



CD

	 OS2Z � 2
CE. OS2X � OS2Y /CD0 � OS4Z � 345
�
CE 0

	 OS4X � OS4Y 
 (60)

The matrices g0 and d0 are reduced to their diagonal elements. All the spin
parameters have been determined. Z is along the Fe � Cl axis. The g-factors and
their spin and orbital contributions are summarized in Table 2. For the ZFS tensors,
one finds D D �58:0 cm�1, E D 2:0 cm�1, D0 D 3:3 cm�1, and E 0 D 0:1 cm�1.
The tensor of second order is largely dominant. While the rhombic term E models
the splitting between the two MS D ˙2 components, the parameter D0 of the
term of fourth order is necessary to model the whole spectrum of energy of the
five pseudo-spin components. It should be noticed that, due to the large coupling
with the excited spin quintet, the projection of the five wavefunctions in the target
space is reduced to 0.89 and 0.95. For the Zeeman interaction, as in Co.NCS/4, the
linear term is largely dominant and the cubic one is negligible. The spin contribution
is isotropic and close to 2, while the orbital contribution is very important in the Z
direction, larger than 1, and negligible in the two other ones.

Electronic EPR parameters can be calculated in many different cases. In tran-
sition metal complexes, the pseudo-spin is usually the spin of the ground state. In
the case of a large ZFS, the model space can be reduced to the lower components,
and effective values of g-factors are measured and calculated. When the pseudo-
spin is equal to the spin, the spin contribution to the g-factor is isotropic and close
to 2. The anisotropy of g arises from orbital contributions. For large values of the
pseudo-spin, the higher-order terms, in S3 for the Zeeman interaction and in S4 the
ZFS interaction, are much smaller than the S and S2 terms. Except in the case of
a low-lying excited state, the anisotropy of the magnetic properties arises from the
ZFS tensor, the g-factors being almost isotropic.

In the case of complexes with heavy elements, the pseudo-spin is rarely larger
than 2. Usually, the spin and orbital components are in opposite directions for less
than filled open shells and in the same direction otherwise, as a reminiscence of the
free ion. But in the case of the quenching of some orbitals due to the interaction
with the ligands, this rule can be skewed for actinides.

Regarding HFC, there are few examples highlighting the role of relativistic
effects and finite nuclear volume effects better than 199Hg. Table 3 lists a collection
of calculated (DFT, with a hybrid functional for NR and ZORA and a non-
hybrid functional for the four-component calculations) and experimental data for
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Table 3 Isotropic 199Hg
HFC constants, in units of
MHz, calculated with
different relativistic methodsa

HgF HgAg

NR PN 9,173 2,068

ZORA PN 21,958 3,404

ZORA FN 19,171 3,094

4-component PN 18,927 3,690

4-component FN 16,895 3,285

Expt. 22,163 2,720
a PN = point nucleus, FN = finite
nucleus (spherical Gaussian model),
ZORA = zeroth-order regular approx-
imation 2-component method. For
citations of the original data, see
Table 3 of Ref. [51]

the radicals HgH and HgAg. The increase of the Hg HFC from NR to relativistic
calculations, in particular for HgH, is rather spectacular. The effect is mainly due to
SR effects from the relativistic increase of the spin density at the Hg nucleus. The
effects from a finite nuclear volume are also very large, roughly on the order of 10 %
relative to the total, and decrease the HFC. SO effects on mercury HFC constants
tend to be relatively minor because they are dominated by contributions from the
Hg 6s orbital.

The situation is different for the 5f 1 complex 237Np and 19F HFC constants
of NpF6. Experimentally, the isotropic HFC constants were found to be �1995
MHz for 237Np and �73 MHz for 19F. For Np, the HFC tensor is isotropic due
to the octahedral symmetry of the complex. For 19F, there are two unique tensor
components, ak in the direction of the Np–F axes and a degenerate pair of a?
perpendicular to the Np–F axes, with ak D �132, a? D �42MHz experimentally.
The unpaired electron is described at the SR level by a nonbonding Np 5f orbital of
ı symmetry with respect to the Np–F axes. Without SO coupling, the isotropic Np
HFC is calculated to be much too small in magnitude, by a factor of 3 to 5 depending
on the computational method. Spin polarization is responsible for the residual Np
HFC and most of the fluorine HFC at the SR level. Under the SO interaction, there
is a very dominant contribution to the Np HFC from the PSO mechanism. This
mechanism can be interpreted as follows: Via SO coupling, the unpaired spin at Np
creates a paramagnetic orbital current density in the 5f shell which then interacts
magnetically with the nuclear spin. The NMR shielding tensors for diamagnetic
molecules afford a similar mechanism, except that a paramagnetic orbital current
density is induced by the external magnetic field rather than via an unpaired spin
and SO coupling.

Figure 4 shows the 237Np HFC constant for NpF6 calculated with HF theory
and DFT using Eq. (22). The horizontal axis indicates a parameter � used to scale
the SO Hamiltonian integrals in the ground-state calculations, meaning that � D 0

gives the SR limit. The fact that the data exhibit significant curvatures shows that
SO effects beyond first order are important and reduce the HFC magnitude. Indeed,



760 H. Bolvin and J. Autschbach

Fig. 4 237Np HFC constant
of NpF6 versus scaling of SO
Hamiltonian integrals in the
ground-state calculation
(� D 0 means SR, � D 1

means full SO). HF and DFT
calculations (PBE functional)
of Ref. [30] utilizing Eq. (22)
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calculations where SO coupling is treated with a linear-response method to produce
the PSO mechanism overestimate the Np HFC by 15 % or more, depending on the
functional used for the calculations. Further details and citations of prior studies
where such SO scaling has been used can be found in Ref. [30].

For 19F, CASSCF calculations recently indicated [52] that without SO coupling,
the HFC tensor anisotropy is not correctly predicted. With SO coupling, the
calculations predict ak to be twice as large in magnitude as a?, with the latter close
to experiment. The magnitude of the calculated ak appears to be underestimated.
However, the measurements were performed on a solid, with NpF6 diluted in a UF6
host crystal, while the calculations were for an isolated molecule. It is presently
unknown precisely how solid-state packing affects the fluorine HFC tensors.

The CAS calculations of g-tensors and ZFS discussed above were performed
with the MOLCAS suite of programs. For the benefit of the reader, some details
regarding the computations are given here. NpO2C

2 , ŒNpO2.NO3/3�
�, ŒNpO2Cl4�

2�,
PuO2C

2 and ŒPuO2.NO3/3�
�W Results are given with ano.rcc basis sets of TZP

quality at the SO-CASPT2 level with CAS(7,10) comprising the 7 5f orbitals
and the two bonding 
 and � orbitals. The environment is described by ECP
and point charges. The state interaction for the calculation of the SO coupling is
performed with six spin doublets. ŒNi.II/.HIM2 � py/2.NO3/�

CW Results are given
with ano.rcc basis sets of TZP quality on the Ni and DZP on the ligands at the
SO-CASPT2 level with CAS(8,10) comprising the eight 3d electrons within a
double shell of d orbitals. The state interaction for the calculation of SO coupling
is performed with 10 triplets and 15 singlets. Similar calculations are published in
Ref. [53]. HgCo.NCS/4W Calculations are performed with ano.rcc basis sets of TZP
quality for the ŒCo.NCS/4�

2� complex. The complex is embedded in point charges
describing the rest of the crystal. Hg2C ions are described by ECPs and other ions by
point charges within a radius of 10 Å. The cluster is described at the SO-CASPT2
level with 10 spin quartets and 40 spin doublets using a CAS(7,5) (7 electrons in
the 5 3d orbitals). NpCl2�6 W Calculations are performed with ano.rcc basis sets of
TZP quality for the ŒNpCl6�

2� complex. The complex is embedded in point charges
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and model potentials describing the rest of the crystal. Hg2C ions are described by
ECPs and other ions by point charges. The cluster is described at the SO-CASPT2
level with 35 quartets and 84 doublets using a CAS(3,7) (3 electrons in the 7 5f
orbitals). LFeClW Results are given with ano.rcc basis sets of TZP quality on the Fe
and DZP on the ligands at the SO-CASPT2 level with CAS(6,5) comprising the 6
3d electrons within the 5 3d orbitals. The state interaction for the calculation of SO
coupling is performed with 5 quintets, 15 triplets, and 10 singlets.

Summary

There is a large variety of techniques available for ab initio calculations of
EPR parameters. Nonetheless, it can be a complicated task to extract EPR spin
Hamiltonian parameters from ab initio calculations if SO coupling is strong, if
the degeneracy of the state of interest is higher than twofold. In the limit of weak
SO coupling, the effective Hamiltonian technique is well established. For strong
SO coupling, the wavefunctions should include SO coupling variationally or via
state interaction. KS methods can be an effective alternative to wavefunction-based
methods.
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Abstract

Zero-field splitting (ZFS) is one of the essential ingredients for the occurrence
of magnetic bistability at a molecular level. It is commonly understood as the
loss of degeneracy of the spin components of a spin-orbit free electronic state
in the absence of an external magnetic field. The loss of degeneracy finds its
origin in the combined action of spin-orbit coupling and an anisotropic crystal
field exerted on the magnetic center. Although ZFS was already described in the
early days of quantum mechanics, it became a central issue of many theoretical
and experimental studies after the discovery of single-molecule magnet behavior
about twenty years ago. Moreover, ZFS also plays an important role in the
magnetic properties of multiferroic solid state compounds, where electric and
magnetic properties are intrinsically coupled and one may induce magnetic phase
transitions by applying an external electric field, or vice versa. ZFS is commonly
described in terms of model Hamiltonians that are basically introduced on a
phenomenological basis. Typically, these model Hamiltonians only contain spin
operators, since the ZFS applies by definition only to systems where the ground
state orbital configuration is well separated from the other configurations (i.e., no
orbital degree of freedom), and hence, the effective description of the low-lying
energy levels can be restricted to the spin variables. This chapter aims to fill the
gap between ab initio calculations based on the full electronic Hamiltonian and
the phenomenological Hamiltonians used to describe ZFS. In this way, the model
Hamiltonians can be validated and put on a rigorous foundation. Moreover, we
establish magneto-structural correlations and demonstrate that these correlations
can be understood within a crystal field reasoning.

Introduction

Zero-field splitting (ZFS) is a concept that is commonly used to indicate the loss
of the degeneracy of the spin components of a spin-orbit free (SOF) state in the
absence of an external magnetic field. This picture of ZFS is based on the separation
of SOF and spin-dependent effects such as spin-orbit coupling (SOC). With this
viewpoint, ZFS between the spin components of S > 1=2 SOF states can be
observed in mononuclear complexes (i.e., complexes with one transition metal (TM)
center), when (i) the “crystal” field felt by the TM ion is anisotropic (i.e., does not
correspond to a spherical or cubic symmetry) and (ii) when SOC is sufficiently
large [56]. Spin-spin coupling (SSC) is also at play [55], but usually to a lesser
extent. ZFS can in principle occur in any type of systems; however, it is commonly
associated with an orbitally nondegenerate ground SOF state. This chapter focuses
on TM complexes and more particularly the 3d ones. Mononuclear and binuclear
(i.e., with two TM centers) complexes will be considered to introduce the main
features of single-ion and molecular or intersite anisotropies.

Although ZFS is a concept that has been known for almost a century, it has trig-
gered new investigations in the last 20 years, among which theoretical studies play
a key role. One of the reasons for this revival is the discovery of the single-molecule
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magnet (SMM) behavior [26], which was first evidenced in the so-called Mn12
molecule [13]. In this system, the low-temperature magnetic behavior is interpreted
as coming from the splitting of the spin components of the S D 10 SOF ground
state. The slow relaxation of the magnetization from the MS D �10 to MS D 10

components and vice versa is observable at reasonable experimental timescales.
The relaxation occurs via different mechanisms, such as thermal activation, direct
tunneling, or thermally assisted tunneling. More information concerning SMMs can
be, for instance, found in the nice review of Gatteschi and Sessoli [26]. Let us
just recall that in order to design higher-temperature SMMs, various strategies have
been attempted, as, for instance, enlarging the number of TM centers or enlarging
the single-ion anisotropies. More particularly for the latter strategy, it became
clear that more extensive studies were necessary to understand the properties of
“exotic” coordination spheres with pentacoordinated or heptacoordinated metal
centers [16, 68, 75, 76] or even low-coordinated cases [7, 89]. Moreover, the search
for magneto-structural correlations from ab initio calculations and crystal-field
models appeared necessary to eventually guide the synthesis of new coordination
complexes, as highlighted by Telser in 2006 [83].

ZFS also plays an important role in the magnetic properties of condensed matter,
as, for instance, ionic solids. In these systems, TM centers may be the subjects of
local and intersite anisotropies. Low-temperature magnetic properties of extended
systems are at least partly driven by the microscopic interactions that lead to ZFS.
One may quote magnetic multiferroics [23], for which magnetic and, for instance,
electric transitions are coupled, meaning that one can in principle influence the
magnetism of the material by the application of an external electric field or the
electric polarization by a magnetic field. One common way of tackling the properties
of solids is to treat infinite systems by applying periodic boundary conditions
(PBCs), i.e., neglecting edge effects and assuming an ideally ordered arrangement
of the atoms. However, for reasons that will be discussed later in this chapter, it
is practically impossible to accurately compute ZFS when PBCs are considered.
Another approach, which is perfectly suited for the computation of local effects
in ionic solids, consists of using an embedded cluster to model the material, as
was done by Pradipto et al. to study cupric oxide [67] and Maurice et al. for
LiCu2O2 [52]. The interested reader may consult more literature concerning this
approach ([33, 34] and references therein), but we already stress that the methods
and conclusions that are given in this chapter are directly applicable to solids
provided that an embedded cluster approach is followed.

ZFS is often described in terms of model Hamiltonians, which have been
(almost) always introduced phenomenologically. Such models are typically spin
Hamiltonians, since by definition ZFS applies to systems for which the ground
orbital configuration is separated in energy from the others, and hence, the effective
description of the lowest-lying states can be restricted to the spin variables. For
mononuclear complexes, these Hamiltonians only consider the spin anisotropy of
the magnetic center. For polynuclear complexes, two main types of models are
widely used, namely, the giant-spin and the multispin models. Both types will be
discussed here for binuclear systems to keep the discussion as clear as possible.
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This chapter aims at (i) making a bridge between ab initio calculations and
model Hamiltonians to validate phenomenological Hamiltonians, (ii) establishing
magneto-structural correlations, and (iii) demonstrating that magneto-structural
correlations can also be understood in terms of crystal-field models. Therefore, in
principle, one can bridge ab initio calculations, model Hamiltonians, and crystal-
field models to get a full and intuitive picture of the ZFS in TM complexes. The
chapter is organized as follows; first, we describe the ab initio methodologies that are
sufficiently accurate to compute ZFS, as well as the effective Hamiltonian theory;
second, we discuss the relevance of standard and improved model Hamiltonians that
effectively describe the ZFS in mononuclear and binuclear complexes; third, we
evaluate magneto-structural correlations, either derived from ab initio calculations
performed on model complexes or analyzed within crystal-field model; finally, we
conclude on the overall progress made in the last two decades and also give some
perspectives.

Ab Initio Calculations and Effective Hamiltonians

In this part, we describe a common strategy to introduce relativistic effects in the
calculation of ZFS, the typical way to introduce electron correlation in contracted
spin-orbit configuration interaction (c-SOCI) and a way to bridge the resulting spin-
orbit wave functions to model Hamiltonians to (i) assess the validity of model
Hamiltonians and (ii) extract the model parameter values if appropriate. Apart from
the here-discussed approach, other methods have been developed to compute ZFS
and extract the model parameter values [6,15,25,61–63,66,78], but these are out of
the scope of this chapter.

From the Dirac Equation to Contracted Spin-Orbit Configuration
Interaction

The time-independent Dirac equation may be written as:

bH D 	c Op Ǫ Cmec
2 Ǒ C OV



 D E 

where c is the speed of light, Op is the momentum operator, Ǫ and Ǒ are the Dirac
4 � 4 matrices, OV is the one-electron external potential, and  is a four-component
(4c) wave function. The resolution of the Dirac equation leads to two different types
of solutions; the upper energy eigenfunctions are usually referred to as the “large”
components, and the lower energy ones are known as the “small” components.
Since the large components tend to standard spin orbitals in the nonrelativistic limit,
these may also be considered as “essentially electronic” solutions. Although the
introduction of relativistic effects is in principle more natural in 4c frameworks,
much effort has been devoted in the last decades to reduce the complexity and derive
accurate two-component (2c) models.
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Various transformations/approximations have been implemented in standard
codes, among which we quote the Douglas-Kroll (DK) transformation-based expan-
sions [20, 31, 36] and the zeroth-order regular approximation (ZORA) approach
[86, 87]. More recently, exact 2c formalisms (X2C) have been proposed [35]. Since
many investigations of ZFS in TM complexes make use of the DK transformation,
we will here describe briefly how to reach c-SOCI formalisms after this transfor-
mation, although c-SOCI schemes may also be derived from other reference 2c
Hamiltonians.

The DK transformation can in principle lead to the exact energies of the
Dirac Hamiltonian if one considers an infinite-order expansion of the one-electron
external potential ( OV /. In practice, the expansion is of course limited to finite
order; in most cases, the expansion only contains second-order terms. After the
sign correction by Jansen and Hess in the original derivation of the transformation
[36], the second-order (and higher) DK expansions are commonly referred to as
the Douglas-Kroll-Hess (DKHn) Hamiltonians, where n is the expansion order.
Another approximation, called the no-pair transformation, can be then introduced, in
which the one-electron kinetic Hamiltonian matrix is diagonalized within a (finite)
basis set to form a conventional one-electron basis. Although one can in principle
use transformed one-electron and two-electron interactions, a one-component (1c)
pseudo-relativistic Hamiltonian can be used in scalar relativistic calculations if only
the spin-independent one-electron interactions are transformed [72], which means
that nonrelativistic two-electron interactions are formally considered. A standard
approximation consists of introducing the SOC after a nonrelativistic or scalar
relativistic calculation. Assuming that a set of scalar relativistic reference states
has been built in the first step, a c-SOCI calculation consists of diagonalizingbH D Eel C bH SOC within the basis of the spin components of these reference SOF
states, in which Eel are SOF electronic energies and bH SOC is an appropriate SOC
Hamiltonian. More details concerning the choice of the SOF electronic energies
will be given in the next section. Let us just mention that it is common practice
nowadays to use electronic energies coming from a higher level of theory than
the one that is used to compute the multireference wave functions. So in addition
to using the reference wave functions for the off-diagonal SOC matrix elements
of bH , one can “dress” the diagonal elements of a c-SOCI matrix with higher-
level electronic energies. Such an approach was proposed by [82] and also Llusar
et al. [42].

Due to the local character of the spin-orbit operator, one may neglect interatomic
SOCs. Expressions for the atomic SOC Hamiltonian that include one-electron and
two-electron interactions adapted to the no-pair DKH2 Hamiltonian can be found
elsewhere [72]. If one further applies a mean-field approximation to treat the two-
electron part of the atomic SOC Hamiltonian by assuming an atomic one-electron
density and adding the resulting mean-fields to the one-electron integrals, the so-
called atomic mean-field integral (AMFI) approximation is used [32]. Note that
alternative mean-field approximations of the SOC operator have been proposed by
Neese [60] and that the atomic approximation can nowadays be avoided even in
routine calculations.
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The Treatment of the Spin-Orbit Free Electron Correlation

Although c-SOCI calculations can in principle be performed using single-reference
SOF states, this is not an optimal approach to compute ZFS since it is in most cases
impossible to converge enough excited SOF states to obtain a good representation
of the SOC operator. Therefore, it is more appropriate to use multireference SOF
states, which are obtained from multiconfigurational self-consistent field (MCSCF)
approaches. A second requirement to compute ZFS is that all the spin components of
the SOF state(s) of interest have to be coupled to excited components in a balanced
way, i.e., one should not introduce a bias in the treatment of the lowest-energy
spin-orbit states toward one specific spin-orbit component. This common-sense
requirement has two implications in practice; (i) the set of SOF states considered
in the first step of the calculation must be rather well thought, since selections based
on an energy basis do not always lead to a consistent choice, and (ii) it is convenient
to consider state-averaged (SA) orbitals between all the SOF states of interest to
control the balance between the SOC excitations that are introduced a posteriori.
Although SA orbitals can be calculated for any type of MCSCF multireference SOF
states, the appropriate calculation of physical properties requires ensuring some
properties of the wave functions, which may break down by any space truncation of
the CI space that is used for computing the SOF states. This is why most researchers
consider the complete active space self-consistent field (CASSCF) method [73] in
the first step of a ZFS calculation.

Perhaps it is necessary at this stage to introduce the example of the nearly
octahedral d8 complexes to illustrate how one can consistently choose balanced
active spaces and balanced SOCI spaces, i.e., an adequate set of SOF states in
the first step of the calculation. If one only considers the d8 manifold, ten spin-
triplet (10T) and 15 spin-singlet (15S) SOF states can be at maximum consideration.
Therefore, the easiest way to define balanced spaces consists of choosing an active
space of eight electrons in five orbitals, i.e., a CAS(8/5), and in computing 10T and
15S SOF states with the state-averaged CASSCF (SA-CASSCF) method [71]. Note
that it is easier to guess which active spaces and which sets of states can be suitable
by looking at the reference, most symmetrical situation, i.e., in the octahedral case.
One can for instance think of adding the two orbitals associated to the ligand-to-
metal “¢” donation or to consider the ground SOF state plus a number of excited
states that are consistent with the orbital degeneracies in that symmetry point group
(“roots”), leading, for instance, to 4T, 7T, and 2S and 10T and 9S sets of SOF states
[44]. In any case, the degeneracy of the first three spin-orbit roots should be strictly
maintained in the octahedral situation. When the symmetry is lowered, which is
necessary to observe ZFS, one should maintain a balanced treatment of the SOC
operator. While it is clear that the active spaces that are consistent for the octahedral
situation are transferable to the case of nearly octahedral complexes, the definition
of the set of SOF states may be problematic. One can always recommend using the
full set of states that can be formed within an 8/5 active space (i.e., 10T and 15S)
or check that any of the previously mentioned subsets of it leads to similar averaged
occupation numbers for the orbitals from which excitations are formed, i.e., for the
three orbitals that correspond to the t2g orbitals in the octahedral case. A similar
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reasoning can be applied to any d n configuration near an ideal geometry that leads
to orbitally nondegenerate ground states, as, for instance, in nearly tetrahedral d7

complexes. In this case, the “full” set of spin-orbit free states consists of ten spin-
quartet (10Q) and 40 spin-doublet (40D) SOF states, while it is also safe to consider
the 4Q and 7Q subsets [44].

Now that the set of SOF states has been defined, the SOC is computed between
the spin components (i.e., MS components) of these states to form the c-SOCI
matrix. However, one needs to further discuss the choice of the SOF electronic
energies that appear on the diagonal of the matrix. Since the spin components of the
SA-CASSCF SOF states are considered to compute the off-diagonal elements of the
c-SOCI matrix, it may appear natural to just consider the SA-CASSCF electronic
energies on the diagonal of this matrix. This straightforward choice may however
not be the wisest. In mononuclear complexes, satisfactory results may be obtained
at this level, although it is also clear that results are in general slightly improved
when the diagonal of the c-SOCI matrix is “dressed” with post-CASSCF correlated
energies [44]. In binuclear complexes, ZFS can be severely underestimated if SA-
CASSCF energies are considered on the diagonal elements of the c-SOCI matrix, as
shown by Maurice et al. showed in a very detailed study concerning the ZFS of the
first excited spin-triplet block in copper acetate monohydrate [50]. In this case, it
was shown via a crystal-field model that the ZFS of interest relates at second order
of perturbation to the isotropic magnetic couplings of the orbitally single-excited
states. As shown by decades of experience, a proper description of isotropic mag-
netic couplings is not trivial at post-CASSCF levels [43]. Perturbative approaches
such as the complete active space perturbation theory at second order (CASPT2)
[4] and the n-electron valence state perturbation theory at second order (NEVPT2)
[5] do not fully account for the effect of charge-transfer configurations on the
isotropic couplings. Although the description is clearly improved compared to
CASSCF, multireference configuration interaction (MRCI) has to be considered for
quantitative results. Among the different MRCI schemes, the difference-dedicated
configuration interaction (DDCI) methods [57] is one of the most successful ones
for computing isotropic couplings. This method considers all the single and double
excitations minus the double excitations that create two holes (h) in the inactive
orbitals and two particles (p) in the virtual orbitals, usually referred to as the
2h2p excitations. Numerical examples will be given in sections “Mononuclear
Complexes” and “Binuclear Complexes” for mononuclear and binuclear complexes,
respectively, and the comparison with experimental data will be discussed.

On the Effective Hamiltonian Theory

The effective Hamiltonian theory [8,18] enables one to establish a bi-univocal rela-
tion between a sophisticated Hamiltonian (here called the “reference” Hamiltonian)
expressed in a large reference space and an effective Hamiltonian working on a trun-
cated space, usually of much smaller dimension, that is called the “model” space. By
definition, the eigenfunctions of an effective Hamiltonian are the wave functions of
the reference Hamiltonian projected onto the model space, while its eigenvalues are
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set to be identical to the energies of the reference Hamiltonian. Note that effective
Hamiltonians can be used to design computational approaches [14, 24, 79, 80].
Alternatively, effective Hamiltonians can be used to extract information from wave
functions and energies in order to determine the interactions of model Hamiltonians
(i.e., the model operators and parameters). By doing so, computational chemistry
can (i) assess the validity of the considered model Hamiltonian by checking that the
model space is appropriate (the norms of the projections onto the model space must
be large enough) and checking that the operators of the model Hamiltonian are the
relevant ones (a good one-to-one correspondence between the model Hamiltonian
and the effective Hamiltonian matrices must be obtained) and (ii) extract the model
parameter values. This approach proved to be particularly appropriate in the field of
ZFS for the second purpose, even if alternatives exist, as, for instance, the pseudo-
spin approach of Chiboratu and Ungur [15].

Various formulations of effective Hamiltonians have been reported in the litera-
ture, among which the [8] and des Cloizeaux [18] ones that will be commented here.
The Bloch formulation of the effective Hamiltonian is defined as:

bHBloch D
X
k

j Q kiEkhS�1 Q kj

where Q k and Ek are the kth projected eigenvector and eigenvalue of the refer-
ence Hamiltonian. The projected eigenvectors of the reference Hamiltonian are
mutually non-orthogonal, and S�1 is the inverse of the overlap matrix between
the projected eigenvectors. However, one should note that this formulation does
not ensure hermiticity of the effective Hamiltonian, which may be problematic for
extracting model parameter values. In order to get Hermitian model Hamiltonians,
the des Cloizeaux formalism, which symmetrically orthogonalizes the projected
eigenvectors (usually referred to as the Löwdin’s orthogonalization in quantum
chemistry), can be used. In this formalism, the effective Hamiltonian is defined as:

bH des Cloizeaux D
X
k

ˇ̌̌
S�

1
2 Q k

E
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D
S�

1
2 Q k

ˇ̌̌
Examples of discussions on the validity of model Hamiltonians and extractions

of model parameter values are given in the next section.

Model Hamiltonians and Effective Hamiltonians

Model Hamiltonians not only reduces the complexity of a given reference Hamil-
tonian, the model space being always smaller than the reference space, but also
introduce effective parameters with a well-defined physical meaning. In the field
of molecular magnetism, the typical simpler Hamiltonians are the well-known
phenomenological spin Hamiltonians, in which no track of the orbital part of the
wave functions is kept. Although the earliest spin Hamiltonian is the Heisenberg-



24 Zero-Field Splitting in Transition Metal Complexes. . . 773

Dirac-van Vleck (HDV) [19, 29, 88] one (vide infra), the expression “spin Hamil-
tonian” was introduced later by Abragam and Pryce [2] in the context of the
electron paramagnetic resonance (EPR) spectroscopy. In this part, we will show
that (i) the effective Hamiltonian theory can be used to project the information
contained in c-SOCI wave functions onto a model space consisting of the spin
components of one (or several) spin state(s), (ii) question the validity of model
Hamiltonians and improve them if necessary, and (iii) show that model parameter
values in good agreement with experiment can be obtained. We will start by
discussing mononuclear complexes prior to dealing with binuclear systems to
gradually increase the complexity of the models to be introduced. Note that a
basic introduction to the use of effective Hamiltonian theory in relation to model
Hamiltonians can be found in a recent textbook [17].

Mononuclear Complexes

Mononuclear complexes with a d n electronic configuration can be split in two
groups, S D 1 or S D 3=2 systems and S D 2 or S D 5=2 systems, as the model
Hamiltonians that have to be used to describe the full complexity of their ZFS are
different. Note that, in a first approximation, the model Hamiltonian for S D 1 or
S D 3=2 systems can be used to describe S D 2 or S D 5=2 systems. Although this
is commonly done in the literature, this approximation may not always be adequate,
as will be discussed later. One should also stress that usually, in the S D 2 or
S D 5=2 systems, the SSC can contribute to a significant part of the total ZFS,
around 10 % of the total ZFS in manganese(III) complexes [21] and even up to 20 %
in manganese(II) complexes [90]. Therefore, one should account for the SSC in
the determination of ZFS parameters [61]. A remark is thus worth here. Both SOC
and SSC generate second-rank ZFS tensors, and, unless these axes are imposed
by symmetry, both effects may independently generate different magnetic axes.
Therefore, one should in principle not only perform a c-SOCI calculation but rather
diagonalize bH D Eel C bH SOC C bH SSC prior to applying the effective Hamiltonian
theory. This point is also valid for the S D 1 and S D 3=2 systems, althoughbH SSC can be more safely neglected in these cases, especially in complexes for
which large ZFSs are observed. For mononuclear complexes, we compare computed
values to experimental ones when the SSC contribution to the ZFS can be neglected.
When this contribution is expected to play a more important contribution, we do not
compare to experiment but rather focus on the SOC contribution and on the validity
of the model Hamiltonians.

S D 1 and S D 3=2 Systems
For S D 1 and S D 3=2 systems, the model Hamiltonian which describes the ZFS
of orbitally nondegenerate states is simply [39]:

bHmod1 D OSD OS
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Table 1 Analytical interaction matrix corresponding to the ZFS of S D 1 systems [44]. X , Y ,
and Z correspond to the Cartesian axes of an arbitrary axis framebHmod1 j1;� 1i j1;0i j1;1i
h1;�1j 1

2
.DXX CDYY /CDZZ �

p
2

2
.DXZ C iDYZ/

1
2
.DXX �DYY /C iDXY

h1; 0j �
p
2

2
.DXZ � iDYZ/ DXX CDYY

p
2

2
.DXZ C iDYZ/

h1; 1j 1
2
.DXX �DYY /C iDXY

p
2

2
.DXZ � iDYZ/

1
2
.DXX CDYY /CDZZ

where OS is the spin operator row or column vector and D the second-rank ZFS

tensor. D is symmetric and only composed of real numbers. Expanding this
Hamiltonian and applying it to the jS;MS i spin component basis allows one to
derive the analytical interaction matrix to be compared to the effective Hamiltonian
matrix. Although a similar reasoning can be used for S D 3=2 systems, we will
only discuss in details the S D 1 case. Note that the analytical interaction matrix
for S D 3=2 systems is available elsewhere [44]. The analytical interaction matrix
is given in Table 1 for S D 1. As mentioned earlier, the analytical interaction matrix
is Hermitian (see Table 1), as any other analytical interaction matrix that will be
discussed in this chapter.

The c-SOCI calculation delivers wave functions expressed in terms of the
spin components of a set of SOF states. To describe the ZFS of an S D 1

system with bHmod1, the c-SOCI eigenvectors have to be projected onto the
spin components of a SOF state, typically the ground state. The norm of the
projection can be assessed by looking at the diagonal elements of the overlap
matrix between the projected eigenvectors (S in bHBloch or in bH des Cloizeaux/. If
the (ground) SOF state is well separated in energy from any other SOF state, the
norm of the projections is expected to be close to 1. Let us choose the exam-
ple of the [Ni(HIM2-Py)2NO3]C (HIM2-py = 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-
dihydro-1H-imidazolyl-1-hydroxy) complex (see Fig. 1) [44].

The projected wave functions are obtained from the ab initio ones simply by
truncation, i.e. by only the part that concerns the spin components of the �0 ground
SOF states:

j Q‰1i D .0:045C i0:092/ j‰0;�1i � .0:668 � i0:724/ j‰0; 0i
C .0:096C i0:037/ j‰0; 1i

j Q‰2i D � .0:395 � i0:578/ j‰0;�1i C .0:062C i0088/ j‰0; 0i
� .0:096 � i0:173/ j‰0; 1i

j Q‰3i D .0:701C i0:026/ j‰0;�1i � .0:090C i0:037/ j‰0; 0i
� .0:519C i0:472/ j‰0; 1i

The norms of the projected vectors (prior to orthonormalization) are all larger
than 0.99, which perfectly legitimates the use of a spin Hamiltonian in this case.
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Fig. 1 Ball-and-stick
representation of a model of
the [Ni(HIM2-Py)2NO3]C
complex and its main
magnetic axes [44]. The
“external” methyl groups
have been modelled by
hydrogen atoms; all hydrogen
atoms are omitted for clarity

Table 2 Effective interaction matrix corresponding to the ZFS of the [Ni(HIM2-Py)2NO3]C
complex [44]bH des Cloizeaux j‰0;� 1i j‰0;0i j‰0;1i
h‰0;�1j 6.386 �0:690C i0:376 �3:734C i3:134
h‰0; 0j �0:690� i0:376 0.125 0:690� i:0376
h‰0; 1j �3:734� i3:134 0:690C i:0376 6.386

However, prior to validating bHmod1, other tests are necessary: one must show that
(i) the effective and analytical interaction matrices match and (ii) how the extracted
tensor component values transform with respect to a change of the axis frame (i.e.,

that the extractedD actually transforms as a tensor). The effective interaction matrix
that is built with bH des Cloizeaux is represented in Table 2 (E1 D 0:00, E2 D 1:529

and E3 D 11:396, all energies being in cm�1).
By construction, the effective interaction matrix is Hermitian and has the same

eigenvalues as the reference Hamiltonian (bH ref D EelCbH SOC/, and its eigenvectors
Q‰1, Q‰2, and Q‰3 are identical to the projected ab initio eigenvectors up to a given
complex phase factor. By the term-by-term comparison of bHmod1 and bH des Cloizeaux,
it is immediately clear that both matrices perfectly match, meaning that bHmod1 is
suited to describe the ZFS in this system, as it turns out to be the case for any S D 1
system with an orbitally nondegenerate ground state. Therefore, the second-rank
ZFS tensor can be unambiguously extracted. Diagonalization of this tensor leads



776 R. Maurice et al.

to the determination of the magnetic axes Xm, Y m, and Zm, as well as the ZFS
parameters:

D D DZmZm � 1
2
.DXmXm CDYmY m/

E D 1

2
.DXmXm �DYmY m/

provided that conventions are applied, i.e., jDj > 3E and E > 0 (or, alternatively
E=D > 0). If one uses the transformation matrix P�1 that allows expressing

D in the magnetic axis frame (such that Dm D P�1DP /, one can build againbH des Cloizeaux after computing the c-SOCI solutions in this coordinate system and
show that the extracted tensor is diagonal and finally that the same ZFS parameters

can be extracted. Therefore, we conclude that D actually transforms as a second-
rank tensor and show that the model Hamiltonian bHmod1 is fully valid. In this
case, the extracted values for D and E are �10:60 and 0.76 cm�1, respectively,
[44] and compare well with the most accurate experimental values (�10:15 and
0.10 cm�1, respectively, from high-field and high-frequency EPR spectroscopy
[70]). Other nickel(II) complexes have been studied in a similar way, and a good
agreement between theory and experiment is generally observed with c-SOCI
[16, 44, 51, 75, 76], while density functional theory methods seem to fail for this
high-spin d8 configuration [41].

A similar reasoning can be applied to S D 3=2 complexes, such as nearly
tetrahedral cobalt(II) complexes. TheD andE parameters cannot be extracted from
the eigenvalues of any reference Hamiltonian, since one only has access to the
energy difference between the two Kramer’s doublets of interest. On the contrary,
the application of the effective Hamiltonian theory unambiguously allows extracting
the full ZFS tensor, i.e., determining the magnetic axes and the ZFS parameters.
As shown elsewhere [44], bHmod1 is indeed also perfectly suited to describe the
ZFS of S D 3=2 ground states. As an example of application, let us consider the
[Co(PPh3/2Cl2] (Ph = phenyl) complex (see Fig. 2) [44]. In this case, the extracted
ZFS parameter values are �14:86 and 0.54 cm�1 for D and E, respectively [44],
which also compares well to the experimental values of �14:76 and 1.14 cm�1,
respectively [40]. Also, note that the energy difference from the two Kramer’s
doublet of interest relates to the D and E parameters as follows:

#E D 2
p
D2 C 3E2

In both nickel(II) and cobalt(II) examples described above, the computational
methodology was based on SA-CASSCF calculations with quite large active spaces,
small sets of SOF states (4T and 7Q, respectively), and CASPT2 correlated energies
[44]. As a recommendation, one may note that enlarging the set of SOF states does
not systematically improve the results: on the one hand, more SOC excitations are
accounted for, and on the other hand, averaging artifacts are introduced, which may
result, for instance, in a poor orbital set for describing the ground state. Therefore,
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Fig. 2 Ball-and-stick
representation of the
[Co(PPh3/2Cl2] complex and
its main magnetic axes [44].
All the hydrogen atoms are
omitted for clarity

one should make the compromise of describing as best as possible the stronger SOC
interactions, i.e., the balance between the number of possible excitations and the
accurate description of the involved states. As a conclusion concerning the ab initio
methodology, one may say that c-SOCI methods do not constitute a “black-box
machinery” to compute ZFSs.

S D 2 and S D 5=2 Systems
For S D 2 and S D 5=2 complexes, additional operators must be introduced in the
model Hamiltonian to achieve a complete description of the ZFS:

bHmod2 D OSD OS C
4X

qD�4
B
q
4
bOq
4

where q may be odd and where the bOq
4 operators are extended Stevens operators

[1, 3, 77, 81]. This Hamiltonian is valid in any arbitrary axis frame for S D 2 and
S D 5=2 complexes. When the ground SOF state is well separated in energy from
the excited states, the fourth-rank spin bOq

4 operators have a very small effect on
the effective interactions of the model bHmod1. Therefore, one can first find the main
anisotropy axes by extracting D from the comparison of the effective interaction
matrix and the analytical one that is obtained with bHmod1 and then compute the
effective interaction matrix in this frame after a second c-SOCI calculation. In this
case, the model Hamiltonian reduces to:

bHmod3 D
4X

nD0

4X
kD2

Bn
k
bOn
k
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where k and n must be even and the bOn
k operators are standard Stevens operators.

Note that B0
2 D D=3 and that B2

2 D E, i.e., B0
2 is a second-rank axial ZFS

parameter, while B2
2 is a rhombic one. As shown elsewhere, this two-step procedure

leads to the unambiguous extraction of the main magnetic axes and of the five
Bn
k parameters (B0

2 , B2
2 , B0

4 , B2
4 , and B4

4 / [45]. Indeed, in the magnetic axis
frame, the effective interaction matrix is in almost perfect correspondence with the
analytical one derived for bHmod3 with only some negligible deviations, typically
not larger than 0.01 cm�1. These deviations can be considered as numerical noise
and do not significantly alter the extracted Bn

k values. Note that if one wants
to neglect the Bn

4 parameters, i.e., introduce only second-rank spin operators in
the model Hamiltonian, as in bHmod1, it is important to check a priori that the
k D 4 terms are not important to insure that the model and effective interaction
matrices match. As will be discussed in section “Magneto-Structural Correlations
Based on Crystal-Field Models and Ab Initio Calculations”, the fourth-rank Stevens
parameters relate to the near-degeneracy of spin components of different SOF states.
Therefore, one should not neglect them in such situations, as, for instance, in nearly
octahedral manganese(III) complexes [45]. Note that, however, the Jahn-Teller
effect tends to largely remove the near-degeneracy between the two lowest orbital
configurations in this case, which explains, for instance, why the Bn

4 parameters
are not crucial to describe the ZFS in the [”-Mn(acac)3] (acac = acetylacetonato)
complex (see Fig. 3) [49], for which the first coordination sphere is tetragonally
elongated.

Fig. 3 Ball-and-stick
representation of the
[”-Mn(acac)3] complex and
its main magnetic axes [49].
All the hydrogen atoms are
omitted for clarity
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In many cases of experimental interest, bHmod1 is perfectly suited to describe the
ZFS of S D 2 and S D 5=2 complexes.

Binuclear Complexes

Prior to introducing the model Hamiltonians that can be used to describe the ZFS
in binuclear complexes, it is worth introducing the HDV Hamiltonian [19, 29, 88],
which may be expressed in a “multispin” picture, i.e., by considering local spin
operators that are to be applied within the basis of local spin components, i.e., within
the uncoupled spin basis:

bH uncoupled
HDV D J OSa � OSb

where J is the isotropic coupling constant and OSa and OSb are spin operator column
vectors. Note that various expressions coexist in the literature, depending on a factor
that is applied to this Hamiltonian (here 1, but one may find �1 or more often �2).
It can easily be shown that bHmod1 can be also written in terms of spin operators that
lead to a diagonal analytical interaction matrix if one works within the basis of spin
eigenfunctions, i.e., within the coupled spin basis:

bH coupled
HDV D J

2

X
S

. OS2 � OS2a � OS2b /

where S ranges between jSa � Sbj and Sa C Sb , OS is the spin operator associated
to each coupled spin state, and Sa and Sb are the local spins on the a and b

sites. Therefore, it is clear that bHHDV splits the coupled spin states, which may
further be the subject of ZFS and mixings when anisotropic effective interactions
are considered in the model Hamiltonian. Such ZFSs and “spin mixings” can be
effectively described in two different ways that work in the coupled and uncoupled
basis, respectively, and which are classified as “giant-spin” or “block-spin” models
and “multispin” ones.

Giant-Spin and Block-Spin Hamiltonians
If the isotropic coupling constantly plays a much more important role on the
effective interaction matrix than the spin mixings, which is usually referred to as the
“strong-exchange limit” [9], very simple models can be used to describe the low-
energy spectrum. If only one spin “block” has to be described and that its magnetic
axis frame is considered, one can use a very simple giant-spin Hamiltonian that is
similar to bHmod3:

bH coupled
giant spin D

kX
nD0

xX
kD2

Bn
k
OOn
k

where x D 2S if S is even or x D 2S � 1 if S is odd and k and n are even.
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Fig. 4 Ball-and-stick
representation of copper
acetate monohydrate [50]

The simplest case is the ZFS of an S D 1 spin state resulting from the coupling
of two local spins Sa D Sb D 1=2. One typical example of such a situation is copper
acetate monohydrate (see Fig. 4) [50].

In this system, it is crucial to account for both SOC and SSC to compute the ZFS
of the excited 3A1u SOF state. As shown by Maurice et al. [50], the treatment of
SOC requires a special attention to the correlated energies appearing on the diagonal
elements of the bH D Eel C bH SOC C bH SSC matrix (see Table 3). The reference
wave functions were obtained with SA-CASSCF(18/10) calculations (see [50] for
more details). As can be seen in Table 3, second-order perturbation theory does
not describe sufficiently well the SOF excitation energies, as well as variational
approaches with limited configuration interaction spaces (the DDCI1 calculations
include in this case only the 1h and 1p excitations, while the DDCI2 ones also
account for the 1h1p, 2h, and 2p excitations). Although the DCCI2 level appears
to lead to an almost converged value of D when only bH SOC is considered, it is
essentially due to error cancellations (more details are given on this in [50]). The
best value, obtained with the DDCI3 energies, is in exceptional agreement with
experiment (Dexpt: D �0:335 cm�1 [65]). The rhombic E parameter value is very
small, 0.006 cm�1 with the DDCI3 energies (in good agreement with Eexpt: D
0:01 cm�1), and will not be discussed in details here.
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Table 3 Computed axial ZFS D parameters as a function of the correlated energies used on the
diagonal of the contracted configuration interaction matrices and of the operators introduced in the
Hamiltonian [50]

Eel bH SOC bH SSC bH SOC C bH SSC

SA-CASSCF �0.017 �0.118 �0.137

NEVPT2 �0.026 �0.118 �0.144

DDCI1 0.005 �0.118 �0.115

DDCI2 �0.172 �0.118 �0.291

DDCI3 �0.200 �0.118 �0.319

Fig. 5 Ball-and-stick
representation of the
[Ni2(en)4Cl2]2C complex and
its S = 2 block main magnetic
axes. All the hydrogen atoms
are omitted for clarity

One should stress that in this particular case, i.e. the d9–d9 configuration,
computing the ZFS of the triplet block happened to be particularly challenging, but
it may not be the case for other configurations. Another system that has been stud-
ied within the giant-spin approach is the [Ni2(en)4Cl2]2C (en = ethylenediamine)
complex (see Fig. 5) [46, 47]. Although this system does not fall within the strong-
exchange limit, it is possible to build two effective Hamiltonians in the basis of
the spin components of the S D 2, S D 1, and S D 0 spin components, one
in which spin mixings are set to zero and one in which these spin mixings are
allowed [47, 49]. From this theoretical study, it was shown that, in the magnetic
axis frame, bH coupled

giantspin can describe the ZFS of both the S D 2 and S D 1

blocks in the absence of spin mixing and that the spin mixings can be described
using additional operators [47] (in this case, due to a symmetry center, the spin
mixings concern the S D 0 and some S D 2 spin components). In other words,
one can define a block spin Hamiltonian which describes the isotropic coupling
and the ZFSs of the different blocks in the absence of spin mixing, and the spin-
mixing effects can actually be introduced inside the different spin blocks, i.e.,
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one can use a block-diagonal analytical interaction matrix to describe the entire
low-energy spectrum [49]. The comparison with experimental data is complicated
since all the studies reported so far neglected some, and usually different, effective
interactions in the model Hamiltonians [27, 30, 37, 38]. One can just mention that
the best computed value for D2, i.e., the axial ZFS parameter of the S D 2 block,
is in good semiquantitative agreement with the experimental one [30] (�3.0 vs.–
1.8 cm�1, respectively).

Another study of the d8–d8 configuration, related to the strong-exchange limit,
concerned model complexes [74]. It was shown that, contrary to what is often
proposed, no simple relations appear between the ZFS parameters of the S D 2

and S D 1 blocks, which can also be analyzed within a multispin picture (vide
infra). Also, it is clear that giant-spin and block-spin Hamiltonians may not be
relevant in the weak-exchange limit, i.e., when J becomes negligible, since spin
mixings cannot be considered as a perturbation in such a case. In principle, one
should in this case consider a multispin model, the extraction of which is far from
being straightforward, as will be shown later.

Multispin Hamiltonians
As in section “Mononuclear Complexes”, we will introduce progressively the
complexity of the multispin Hamiltonian in binuclear complexes. Let us start with
the easiest case of two coupled S D 1=2 centers, as in the d9–d9 configurations,
for instance. The model Hamiltonian which is commonly used includes an isotropic
coupling terms (bHHDV) plus an anisotropy tensor [39]:

bH uncoupled
multispin.SaDSbD1=2/ D J OSa � OSb C OSaT ab OSb D J OSa � OSb C OSaDab

OSb C Ndab OSa � OSb

where T ab is a second-rank tensor that is neither symmetric nor antisymmetric

in the general case, Dab is the symmetric anisotropy exchange tensor, and Ndab
is the Dzyaloshinskii-Moriya term [22, 58] that can also be referred to as the

antisymmetric exchange pseudo-vector. As mentioned earlier, computing Dab may
turn into a real nightmare [50], but the semiquantitative determination of Ndab is much
less demanding, since it can be obtained from CASSCF(2/2) + c-SOCI calculations
[48,67]. The analytical interaction matrix built in the uncoupled basis is represented
in Table 4.

One can also express this analytical interaction matrix with the Dab tensor and
the Ndab pseudo-vector by using the Dii D Tii , Dij D 1=2.Tij C Tji /, dX D
1=2.TYZ � TZY /, dY D 1=2.TZX � TXZ/, and dZ D 1=2.TXY � TYX/ relations
[48]. The analytical interaction matrix can be transformed into the coupled basis as
follows:

bH coupled
multispin D UT bH uncoupled

multispin U
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Table 4 Analytical interaction matrix corresponding to bH uncoupled
multispin when Sa D Sb D 1=2 [48]. A

shortened notation jMSa ;MSb i is used for the jSb;MSa ; Sb;MSb i uncoupled functions. X , Y , and
Z correspond to the Cartesian axes of an arbitrary axis framebH uncoupled

multispin j�1=2;� 1=2i j�1=2;1=2i j1=2;� 1=2i j1=2;1=2i
h�1=2;�1=2j 1

4
.J C TZZ/ � 1

4
.TZX C iTZY / � 1

4
.TXZ C iTYZ/ 1

4
ŒTXX � TY Y
Ci .TXY C TYX/�

h�1=2; 1=2j � 1
4
.TZX � iTZY / � 1

4
.J C TZZ/ 1

4
Œ2J C TXX C TY Y 1

4
.TXZ C iTYZ/

Ci .TYX � TXY /�
h1=2;�1=2j � 1

4
.TXZ � iTYZ/ 1

4
Œ2J C TXX C TY Y � 1

4
.J C TZZ/ 1

4
.TZX C iTZY /

�i .TYX � TXY /�
h1=2; 1=2j 1

4
ŒTXX � TY Y 1

4
.TXZ � iTYZ/ 1

4
.TZX � iTZY / 1

4
.J C Tzz/

�i .TXY C TYX/�

where UT is the transpose of the change of basis matrix U . The matrix elements of
U are given by the appropriate Clebsch-Gordan coefficients [9]. When bHmultispin is

expressed in the coupled basis, the Dab tensor relates to the splitting and mixing of
the S D 1 block (i.e., its ZFS in the strong-exchange limit), while the Ndab pseudo-
vector introduces spin mixings between the S D 1 spin components and the S D 0
one. This type of S/S+1 spin mixing is not always symmetry allowed (the symmetry
rules are available elsewhere [12]). One may just recall that if the system contains a
symmetry center, as it is the case for copper acetate monohydrate, the Ndab pseudo-
vector is null [58]. Therefore, in this system, as in any other d9–d9 binuclear system,

a simple relation appears between D1 and Dab [50]:

D1 D 1

2
Dab

By studying model copper(II)-copper(II) complexes, Maurice et al. showed thatbHmultispin is perfectly valid to describe the isotropic coupling and the ZFSs when
Sa D Sb D 1=2 [48]. Owing to the effective Hamiltonian theory, all the model
parameter values can be theoretically extracted, while it appears complicated to
properly distinguish between the symmetric and antisymmetric exchange terms
from the outcomes of experiments. Moreover, since one can obtain good semiquanti-
tative estimates of the Ndab pseudo-vector components from CASSCF(2/2) + c-SOCI
calculations [48, 67], antisymmetric exchange is essentially due to the direct SOC
between the S D 1 and S D 0 spin components.

When Sa D 1 and Sb D 1=2, another term must be added to the phenomenolog-
ical model Hamiltonian, related to the single-ion anisotropy of site a [39]:

bH uncoupled
multispin.SaD1;SbD1=2/ D J OSa � OSb C OSaDa

OSa C OSaDab
OSb C Ndab OSa � OSb
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In this case, both the Da and Dab symmetric tensors affect the S D 3=2 block,
while Ndab relates to the S=SC 1 spin mixings, as usual.

The situation is drastically complicated when considering the Sa D Sb D 1 case,
e.g. nickel(II)-nickel(II) complexes. The following model Hamiltonian was used for
decades to interpret experimental data [27, 30, 37, 38]:

bH uncoupled
multispin.SaDSbD1/ D J OSa � OSb C OSaDa

OSa C OSbDb
OSb C OSaDab

OSb C Ndab OSa � OSb

The validity of this model Hamiltonian was assessed by c-SOCI calculations
and the effective Hamiltonian theory in 2010 by Maurice et al. [46]. It was
shown that many terms of the effective interaction matrix which were obtained
for the [Ni2(en)4Cl2]2C complex were not associated to any model parameter in
the analytical interaction matrix. In order to reproduce all features of the effective
Hamiltonian matrix, one must actually introduce a symmetric fourth-rank exchange
tensor, Daabb, in the model Hamiltonian, leading to:

bH uncoupled
multispin.SaDSbD1/ D J OSa � OSb C OSaDa

OSa C OSbDb
OSb C OSaDab

OSb
C OSa ˝ OSaDaabb OSb ˝ OSb

if Ndab is null. The extraction of the Daabb components is not straightforward even
with all information contained in the 9 � 9 effective interaction matrix; one should
thus consider relations between these components, as done in a study of model
complexes [74]. One should thus stress that the spin mixings between the S D 2

and S D 0 spin components, mentioned in section “Giant-Spin and Block-Spin
Hamiltonians”, can be interpreted in terms of the parameters of the multispin
Hamiltonian after transforming the analytical interaction matrix to the coupled

basis: these terms actually relate to all symmetric tensors of bHmultispin, i.e., Da,

Db , Dab , and Daabb [47].
Another interesting point which is worth mentioning here is that one may

be interested in computing only the local anisotropy tensors, i.e., Da and Db .
Various strategies exist; (i) one may replace one of the two magnetic centers by
a model potential [46] or by a diamagnetic ion [11, 46, 53], (ii) one may also
consider its lowest-energy closed-shell configuration [74], and (iii) another method
considers local excitations while keeping the other site in its lowest-energy open-
shell configuration [69]. This last strategy is meant to be the most accurate approach.
From the study of model complexes, it was shown that the local anisotropy
parameters that can be obtained in these various ways are in very close agreement
with those obtained from the extraction of the interactions of bHmultispin [74]. In
conclusion, if one wants to estimate local anisotropy parameters or local magnetic
axes, these approaches can be safely considered. It is also worth mentioning here
that in the general case, the S/SC 1 spin mixings do not arise solely from Ndab: the
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mismatch between the local magnetic axes of the local Da and Db tensors also
affects the effective couplings related to these mixings. This can be easily shown
by considering Da D Db ¤ 0, Ea D Eb D 0, and an angle 2˛ between coplanar
local Zm

a;b axes. If one builds the corresponding model interaction matrix within the
uncoupled basis and transforms it to the coupled one, the S=S C 1 spin-mixing
terms are found proportional toDa sin 2’ (the details of the derivation are not given
here for a sake of simplicity). It is thus clear that these terms vanish for ’ D 0, as it
is the case for centrosymmetric complexes. Therefore, the local anisotropy tensors
can be affected in the general case by the S=S C 2 and to S=S C 1 spin mixings.
Furthermore, note that one should also never neglect these terms within the weak-
exchange limit, contrary to what was done, for instance, to interpret the low-energy
spectrum of a cobalt(II)-cobalt(II) complex [64]. From the perspective of modeling,
it is not clear yet whether the model Hamiltonian used for the Sa D Sb D 1 case
is directly applicable to any other configuration. Actually, higher-rank tensors could
be necessary to reproduce all ZFS features for higher local spins [54], such as, for
Instance, a sixth-rank tensor in the Sa D Sb D 3=2 case.

Magneto-Structural Correlations

Magneto-structural correlations are particularly useful for chemists as they give
clues to tune the properties of a system and pave the way for the rational design
of new magnetic systems with predetermined properties. In the field of ZFS,
they can be established from correlations of molecular geometry features with
the experimental values of the parameters, as was done by Titiš and Boča in
nickel(II) and cobalt(II) mononuclear complexes [84,85]. Here, we will only discuss
magneto-structural correlations deduced from the analysis of ab initio results or
from combined ab initio/crystal-field studies.

Magneto-Structural Correlations Based on Ab Initio Calculations

Due to the lack of intuition on the role of distortions on the Ndab pseudo-vector
components, Maurice et al. studied the effects of two angular distortions on the
DM vector components on model [Cu2O(H2O)6]2C complexes (see Fig. 6) [48].
This study was based on CASSCF(2/2) + c-SOCI calculations and made use of the
effective Hamiltonian theory, as mentioned in section “Multispin Hamiltonians”.

The norm of the Ndab pseudo-vector as a function of the #1 and #2 deformation
angles is represented in Fig. 7.

In this study, the only point for which the Ndab pseudo-vector is null by symmetry
corresponds to the ª1 D ª2 D 0 case, for which the system possesses a symmetry
center. Another interesting point refers to #1 D  =2 and ª2 D 0. In this case, there is
no atomic orbital contribution from the copper(II) centers, and as a consequence, the
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Fig. 6 Ball-and-stick representation of model [Cu2O(H2O)6]2C complexes and the deformation
angles that were applied to them [48]. All the hydrogen atoms are omitted for clarity

Fig. 7 Norm of the Ndab pseudo-vector as a function of the #1 and #2 deformation angles (see
Fig. 6 for the definition of these angles) [48]

only important contribution to this norm comes from the bridging oxygen center. As
the Ndab pseudo-vector is far from being null, in this case (j Ndabj D 3:6 cm�1 [48]) the
(essentially) closed-shell bridging oxygen contributes to the norm of the Ndab pseudo-
vector, as highlighted by Moskvin in 2007 [59]. Other studies concerning single-ion
anisotropies exist in the literature, among which one may quote the extensive one
of Gomez-Coca et al. [28], but these will not be discussed here. Instead, we will
explore the cases of mononuclear complexes for which ab initio calculations are
used to extract crystal-field parameters.
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Magneto-Structural Correlations Based on Crystal-Field Models and
Ab Initio Calculations

Joint ab initio and crystal-field studies are important to validate the equations
derived from the crystal-field theory and to interpret the outcomes of experiments
in a simple way. It is commonly practiced on mononuclear complexes, although
equations can also be derived in binuclear complexes, as was done, for instance, in
the case of copper acetate monohydrate [50]. In this section, we shall illustrate the
procedure for the d8 and d4 configurations, using ab initio calculations on nearly
octahedral [Ni(NCH)6]2C and [Mn(NCH)6]3C model complexes. In both cases, we
define the axial deformation parameter as:

�ax D 2d.TM;NZ/

d .TM;NX/C d.TM;NY /

and the rhombic deformation as:

�rh D d.TM;NY /

d .TM;NX/

The mean d (TM,N) distance is 2.054 Å and 2.061 Å for TM = Ni [49] and
TM = Mn [45], respectively, while all d (TM,C) parameters are fixed to 1.155 Å
and all the d (C,H) ones to 1.083 Å. Minimal CASSCF calculations have been
carried out with the five d-orbitals and 8 (Ni) or 5 (Mn) electrons within the active
space. Note that in the formulae that are presented here, monoelectronic — SOC
constants are considered. These constants are always positive and can be converted
into polyelectronic œ ones by using the following relation:

œ D ˙ —

2S

where S is the total spin of the ground SOF free-ion multiplet.
It is easy to show, as done in the textbook of Abragam and Bleaney [1], that for

axially distorted systems:

D D � —
2

#1

C —2

#2

where #1 is the 3B1g !3B2g excitation energy and #2 corresponds to the
3B1g !3Eg excitation energy. The derivation of this equation is based on a model
space containing the spin components of the ground SOF 3B1g state, while the
external space consists of the spin components of the lowest two excited SOF states,
namely, 3B2g and 3Eg, which are essentially singly excited states with respect to
3B1g. To check the correlation between the ab initio results and the outcomes of the
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Table 5 Ab initio #1, #2,
and D values and values of D
derived from the crystal-field
expression (DCF/ obtained
with — D 648 cm�1 (all
values are in cm�1/ [49]

�ax #1 #2 D DCF

0:957 8382:4 9692:5 �5:519 �6:855
0:971 8669:7 9559:4 �3:568 �4:564
0:985 8964:0 9416:5 �1:736 �2:279
1:000 9266:9 9266:9 0:000 0:000

1:015 9576:9 9110:8 1:659 2:271

1:029 9895:8 8951:8 3:259 4:530

1:044 10;224:0 8791:1 4:814 6:778

crystal-field model, we substitute the ab initio #1 and #2 values in the expression
for D and take the SOC constant of the free Ni2C ion, 648 cm�1 (see Table 5).
As can be seen, a good correlation appears between the ab initio and the crystal-
field D values (DCF /: the trend line that passes through the origin, as forced by
symmetry, leads to DCF D 1:32D with R2 D 0:9969. This shows that accounting
for covalency effects by applying a reduction factor of 0.87 brings the DCF values
in perfect agreement with the ab initio ones along the whole curve. Therefore, the
crystal-field formula presented above is fully supported by c-SOCI calculations that
consider the spin components of four SOF triplet states. Note that considering more
SOF states in the first step of the calculation does not significantly improve the
computed values, meaning that this formula explains most of the ZFS in axially
distorted six-coordinated nickel(II) complexes.

In a similar way, one can introduce a rhombic distortion, i.e., an in-plane radial
distortion. The crystal-field derivation leads to:

D D � —
2

#1

C —2

2#2

C —2

2#3

and:

E D � —2

2#2

C —2

2#3

where #1 correlates with the 3B1g ! 3B2g energy difference in the D4h symmetry
point group and where#2 and#3 both correlate with the energy of the 3B1g ! 3Eg

excitation in the same symmetry point group [49]. Similarly, it can be shown that
these formulae are supported by ab initio calculations [49], corroborating that the
outcomes of model complex studies which aim at establishing magneto-structural
correlation can be safely explained by crystal-field models.

Before presenting the example of nearly octahedral manganese(III) complexes,
it is worth mentioning that such derivations are only valid close to ideal geometries
of high symmetry, since it is assumed that the ground and excited SOF wave
functions are either (i) not much affected by the distortion or (ii) affected in a
way that can be easily modeled. In general, it is always advisable to perform
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ab initio calculations and to analyze the nature of the SOF wave functions of
interest. For instance, large angular distortions usually result in a mixing of various
configurations in such a complex way that pen-and-paper analytical derivations
become cumbersome. Moreover, even if analytical derivations can be performed,
if the resulting formulae are too complicated, they become pointless in practice for
establishing or understanding magneto-structural correlations. In such cases, it is
preferable to directly establish the correlations by means of ab initio calculations,
as presented in section “Magneto-Structural Correlations Based on Ab Initio
Calculations”.

Another interesting point concerns the role of the second coordination sphere.
Although this effect is traditionally neglected in crystal-field models, it was shown
by means of ab initio calculations that the second coordination sphere can play a
crucial role on the single-ion anisotropy in some particular cases [11, 51].

Nearly octahedral manganese(III) complexes, corresponding to the d4 configu-
ration, are particularly interesting as they present nonintuitive ZFSs [45]. Although
formulae which rationalize the ZFS of such systems are presented in the book of
Abragam and Bleaney [1], this case is often misinterpreted. Ab initio calculations
showed that the external space cannot be restricted to quintet-spin SOF state
components. Indeed, three triplet-spin roots must also be included in the derivation
to obtain accurate crystal-field formulae for this configuration [45]. The use of
these newly derived expressions leads to the energies of the ten spin components
of the SOF 5E state reported in Table 6. Note that the same wave functions as those
obtained by Abragam and Bleaney with five quintet roots were obtained [1]. The
trend line ECF D 1:034Eab initio has an R2 value of 0.9992, meaning that (i) the
crystal-field formulae presented in Table 6 are valid and (ii) a reduced effective
SOC constant of 346 cm�1 has to be used in the crystal-field model to effectively
account for covalency.

Similarly to the nickel(II) case, one can derive formulae for the D and E

parameters of Mn(III) complexes which belong to the D4h and D2h symmetry point
groups. In this case, analytical formulae can also be written down for the parameters
appearing in the Stevens fourth-rank operators. However, as shown in [45], one can

Table 6 Analytical crystal-field expressions of the energies, ab initio, and derived crystal-field
energies (in cm�1/ [45]. For the computation of the crystal-field energies, the free-ion SOC of
352 cm�1 and ab initio SOF excitation energies of #Q D 13;993 cm�1 and #T D 11;005 cm�1
have been used

Multiplicity Eanalytical Eab initio ECF

Singlet 2
4#Q—2C3#T —2

8#Q#T
16:813 17:900

Triplet 4#Q—2C3#T —2

8#Q#T
8:399 8:950

Doublet 0 0:000 0:000

Triplet � 4#Q—2C3#T —2

8#Q#T
�8:890 �8:950

Singlet � 2 4#Q—2C3#T —2

8#Q#T
�17:775 �17:900
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consider various approximations, i.e., neglecting (i) the Stevens fourth-rank terms
(large distortions) and (ii) the degeneracy lift of the excited SOF multiplets of the
octahedral situation (3T1g and 5T2g/. For the former approximation, one should note
that in the case of small distortions, the Stevens fourth-rank terms can be important
as they are closely related to the near-degeneracy of the states that originate from
the 5Eg of the octahedron [45]. In theD2h symmetry point group, two configurations
mix to form the two lowest SOF states [1]. It is therefore necessary to introduce a
mixing parameter ı to express these states as:

j�1i D cos ıjQ1i C sin ıjQ2i

and:

j�2i D � sin ıjQ1i C cos ıjQ2i

where Q1 and Q2 are the two coupled configurations. This leads, after some pen-
and-paper work, to [45]:

D D �2 cos 2ı

�
3

16#Q
C 1

4#T

�
and:

E D �2jsin 2ıj
�

3

16#Q
C 1

4#T

�
where E is defined positive by convention. The careful reader will notice that, as in
the octahedral situation, the contribution of the triplet roots which were added in this
derivation is proportional to the effect of the quintet roots that correlate with 5T2g in
the octahedron. Finally, we end up with the same formula as the one reported in the
book of Abragam and Bleaney [1]:

E

jDj D
p
3

3
jtan 2ıj

To conclude, one should mention that the anisotropy parameters are not enlarged
by distorting the first coordination sphere in this configuration, as illustrated by
Fig. 8 in the case of axial distortions. The ZFS of complexes belonging to this
configuration is nonintuitive, and the combined ab initio and crystal-field model
study has proved to be enlightening for experimental applications. Indeed, in this
configuration, it is pointless to synthesize complexes with large distortions to
enlarge the ZFS parameters, which is notably consistent with the empirical fact that
d4 complexes typically have axial ZFS parameter values ranging between �5 and
5 cm�1 [10].
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Fig. 8 Ab initio D parameter as a function of the axial distortion in model D4h manganese(III)
complexes [45]

Conclusion

In this chapter, we have shown that phenomenological Hamiltonians can be justified
or even improved using the effective Hamiltonian theory; this creates a bridge
between (supposedly) accurate ab initio calculations and intuitive models. We have
also exemplified how the crystal-field theory can be used to rationalize the nature
and magnitude of ZFS. These tools allow us to take another step in the direction
of the control of magnetic properties as they provide concrete understanding of
how to increase the magnetic anisotropy. Magneto-structural correlations have also
been established, which may help to design molecules with desired properties. To
maximize single-ion anisotropies, researchers followed strategies such as exploring
exotic coordination spheres (for instance, pentacoordinate or heptacoordinate com-
plexes) and even low-coordination spheres. Several efforts have been devoted to
binuclear and polynuclear systems, more often concerning single-ion anisotropies
but also concerning giant-spin and multispin models. Consequently, substantial
progress has been made in the understanding of the magnitude and nature of the
magnetic anisotropy in TM complexes with a wide range of ZFS parameter values
over the last two decades.

Nevertheless, many aspects deserve further studies. For instance, the treatment
of large systems is still problematic as (i) it is not clear which method can be
used to obtain an optimal balance between accuracy and efficiency and (ii) current
models to describe polynuclear complexes may not be complete. Indeed, even in
the case of mononuclear complexes, some cases are typically pathological, e.g.,
when heavy atom ligands are involved. In this situation, it is not clear yet if sum-
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over-states or c-SOCI approaches can be safely applied to the computation of the
ZFS due to the truncation and state-averaging errors [49]. One may thus prefer to
introduce the spin-dependent effects a priori, as done within 2c frameworks. Also,
some experimental data may have been incorrectly interpreted due to the use of
inadequate models to fit the experimental outcomes of various techniques (magnetic
susceptibility, magnetization, EPR, etc.). Therefore, there is clearly a need for more
extensive studies and developments in the field of molecular magnetism. We hope
that this chapter will motivate future work of this kind.
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Abstract

Equation-of-motion coupled-cluster (EOM-CC) theory can be employed to
calculate excitation energies (EE), ionization potentials(IP), as well as electron
affinities (EA). The EOM-CC approach at the CC singles and doubles level
(CCSD) is able to provide EEs, IPs, and EAs with an error of about 0.1–0.3 eV
for single-excitation states or Koopmans states from a reference with a dom-
inant single-reference character. Scalar-relativistic effects can be incorporated
straightforwardly in EOM-CC calculations when untransformed two-electron
interactions are adopted. On the other hand, time-reversal symmetry and spatial
symmetry of double point groups need to be exploited to achieve an efficient
implementation when spin-orbit coupling (SOC) is present. Furthermore, includ-
ing SOC in post-self-consistent field (SCF) treatment could result in a further
reduction in computational effort particularly for molecules with low symmetry.
Due to effective treatment of orbital relaxation effects by single excitations in the
cluster operator, this approach can afford accurate description on SOC effects.
It is nontrivial to impose time-reversal symmetry for open-shell reference and
broken time-reversal symmetry could result in spurious-level splitting. Open-
shell system with one-unpaired electron can be calculated based on EOM-CC
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for IPs or EAs from a closed-shell reference. In addition, Kramer’s degeneracy
has to be taken into consideration when calculating properties of systems with
an odd number of electrons using EOM-CC for IPs or EAs from a closed-
shell reference. EEs, IPs, and EAs for systems containing heavy elements can
be obtained reliably based on EOM-CCSD approaches, and SOC splitting is
calculated with reasonable accuracy even for double-excitation states.

Keywords
Coupled-cluster theory • Equation-of-motion coupled-cluster theory • Spin-
orbit coupling • Excitation energy • Ionization potential • Electron affinity

Introduction

Coupled-cluster theory [1] is one of the most important methods in quantum
chemistry to calculate dynamical correlation. Energies and properties of ground
states or the lowest state of a certain symmetry with mainly single-reference
character can be estimated rather accurately with CC approaches. In addition, total
energies provided by CC approaches are size extensive and converge fast with
respect to the highest excitation level employed in the cluster operator. The CC
approach with the singles and doubles (CCSD) approximation augmented by a
perturbative treatment of triple excitations (CCSD(T)) [2] is currently referred to
as the “gold standard” of quantum chemistry.

Besides ground states, CC theory can also be used to calculate excited-state
energies based on the equation-of-motion CC approach (EOM-CC) [1, 3, 4]. Exci-
tation energies (EE) are determined from eigenvalues of a similarity-transformed
Hamiltonian within EOM-CC. Besides excitation energies, ionization energies
(IP), electron attachment (EA), double ionization potentials (DIP), as well as
double electron attachment (DEA) can also be calculated from eigenvalues of
the same similarity-transformed Hamiltonian in various spaces. Recently EOM-
CC has even been extended to calculate triple electron-attached states [5]. It is
worth noting that IPs and EAs can also be obtained from EOM-EE-CC calculations
at a larger computational cost by including a continuum orbital in the basis set
and calculating transition energies from or to this continuum orbital [6]. Closely
related CC approaches for excitation energies are the linear response CC (LR-CC)
approach [4,7], the Fock-space CC (FSCC) approach [8], the similarity-transformed
equation-of-motion CC method (STEOM-CC) [9], and the symmetry-adapted-
cluster configuration-interaction (SAC-CI) method [10]. EEs from EOM-CC and
LR-CC are the same and these two approaches differ in transition properties.
Transition properties based on LR-CC are size intensive, while those with EOM-CC
are not. However, it is more involved to calculate transition properties with LR-
CC than that with EOM-CC, and recent investigations show that transition dipole
moments with these two approaches agree rather well with each other at the CCSD
level, while difference will be somewhat larger in lower-level calculations [11].
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EEs, IPs, EAs, etc. can also be obtained with FSCC in different sectors of Fock
space. In fact, IPs and EAs with EOM-CC are equivalent to those obtained with
FSCC, while EEs, DIPs, and DEAs with FSCC differ from those based on EOM-
CC. Computational effort for EEs, DIPs, and DEAs with FSCC is smaller than that
with EOM-CC, but FSCC results depend on the chosen active space. On the other
hand, the STEOM-CC approach closely resembles the intermediate Hamiltonian
FSCC approach [12], which is proposed to avoid intruder-state problem in FSCC.

One of the most popular EOM-CC approaches is the EOM-CCSD approach.
Error in excitation energies with EOM-CCSD for states dominated by single
excitations is usually about 0.1–0.3 eV, and it would be somewhat larger for IPs
and EAs of Koopmans type due to a more significant orbital relaxation effect
[1]. Another popular EOM/LR-CC approach for excitation energies is the CC2
approach [13] where single-excitation amplitudes are treated as zeroth order, while
the double-excitation amplitudes are approximated to be correct to the first order.
The CC2 approach is computationally less demanding than EOM-CCSD. Excitation
energies with CC2 has been shown to agree even better with those of high- level
EOM/LR-CC approaches than EOM-CCSD especially for valence-type excitations
of single-reference molecules [14]. However, Rydberg-type excitations are less
accurate and CC2 is also found to be sensitive to a strong correlation effect.
Besides energies, analytic energy gradient for excited states [15], ionized states [16],
and electron-attached states based on EOM-CC approaches have also been imple-
mented, which greatly facilitates determination of equilibrium or transition-state
structures and other first-order properties such as dipole moment of corresponding
states.

Scalar-relativistic effects can readily be incorporated in CC and EOM-CC calcu-
lations especially when untransformed two-electron interactions are employed. On
the other hand, it is not as straightforward to include SOC effects in CC and EOM-
CC calculations due to spin symmetry breaking and complex arithmetic particularly
for low-symmetry molecules. In addition, double point group symmetry and time-
reversal symmetry need to be exploited to achieve an efficient implementation.
Kramers-restricted closed-shell CCSD [17] and Kramers-unrestricted open-shell
CCSD(T) [18] based on four-component Dirac-Coulomb reference have been
reported by Visscher et al. The largest Abelian subgroup of the corresponding
double point group is exploited in their implementations. Similar to spin adaption
in nonrelativistic CC calculations, Kramers adaption is nontrivial for open-shell
systems. These works are extended recently to general-order relativistic CC models
[19] using the string-based techniques so that calculations based on relativistic CC
approach with arbitrary excitation levels can be carried out. The CC approach with
SOC using relativistic effective core potentials (RECP) [20] has also been reported
by Lee et al. at the CCSD and CCSD(T) levels [21] and by Hirata et al. at general
order [22].

A multireference problem shows up for many open-shell systems when SOC is
present and CCSD calculations will be problematic for those systems. Fleig et al.
reported a general active space (GAS) CC approach of general order within the four-
component formalism [23]. This GAS-CC approach is able to tackle multireference
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problems such as dissociation of HBr. However, their implementation is based
on a large-scale configuration-interaction technique and computational scaling is
nnC2

o nnC2
v , while it is only nn

on
nC2
v with ordinary CC approach, where no and nv

are the number of occupied and virtual orbitals/spinors, respectively, and n is the
highest excitation level in the cluster operator. Their approach can only be applied
to systems with less than 12 correlated electrons and with a medium-size basis set.
This GAS-CC approach has recently been fulfilled in a Kramers-restricted form with
string-based formalism [24]. Computational scaling of this new implementation is
the same as that of conventional CC approach.

In the CC approaches mentioned above, SOC is always included at the SCF
level, and two-component or four-component spinors are employed in calculation
of correlation energies. It has been demonstrated that the computational effort of
two-component CC approaches is the same as that of four-component CC methods
if the same level of CC approach and the same number of (occupied and virtual)
orbitals are considered [25]. Furthermore, the number of floating-point operations of
a two-component or four-component Kramers-restricted CCSD method is about 32
times that of a scalar relativistic or nonrelativistic CCSD calculation when a twofold
symmetry element exists [17]. For real double point groups, this factor reduces to
eight, while it will be significantly larger for quaternion groups.

An alternative way to treat SOC in CC approaches is to include SOC in post-SCF
treatment. This method is proposed first by Eliav et al. [26], and it is implemented
in an efficient way recently by Wang et al. at CCSD and CCSD(T) levels [27] for
closed-shell systems with RECPs. This treatment of SOC is conceptually similar
to the one-step spin-orbit configuration-interaction approach. Real spin orbitals are
adopted in CC calculations, and an SOC operator represented by a one-electron
operator is used. Two-electron integrals are thus identical to those in nonrelativistic
or scalar-relativistic calculations. The number of floating-point operations with this
approach at the CCSD level for closed-shell systems is about 8–20 times that
of nonrelativistic CCSD method even for systems without any symmetry [27].
Time-reversal symmetry and spatial symmetry are exploited in implementation to
reduce computational effort. Practical calculations show that the wall time for an
SOC-CCSD calculation is about 10–12 times that of a spin-adapted closed-shell
nonrelativistic or scalar-relativistic CCSD calculation [28]. Neglecting SOC in the
SCF step usually means that orbital relaxation due to SOC is not taken good care
of. However, most of orbital relaxation effects can be accounted for via single
excitations in the cluster operator with orbital-unrelaxed CC calculations. Results
indeed show that this CC approach is able to provide a rather accurate description on
SOC effects of even superheavy p-block element compounds [27,29]. Analytic first-
[30] and second-order [31] derivatives of total energy have also been reported at
the CCSD and CCSD(T) levels for closed-shell molecules with SOC using RECPs.
In fact this approach can be extended readily to make use of other relativistic
Hamiltonian as long as SOC can be separated out and represented (or approximated)
as a one-electron operator. This SOC-CC approach can also be applied to open-shell
systems; however, it would be difficult to exploit time-reversal symmetry and spatial
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symmetry in this case. Furthermore, a convergence problem rises up for spatially
degenerate states since SOC will couple degenerate states.

In fact SOC is usually more important for excited states as well as open-shell
systems, and EOM-CC approach can be used to account for SOC effects of these
states with high accuracy. The EOM-CC approach with SOC has been reported for
EEs, IPs, EAs, and DIPs either with SOC included in post-SCF treatment [32–34] or
in the SCF part at CCSD level [35–37] as well as up to CCSDTQ levels [22]. Hubert
presented an EOM/LR-CC approach for excitations based on four-component GAS-
CC of general order; however, it is based on a CI technique which renders its high
computational cost [38]. A different way to treat SOC with EOM-CC is to include
SOC perturbatively, and it has been fulfilled by Klein and Gauss using EOM-IP-
CCSD [39]. Their method shows promise for SOC splittings of some 2… states.
In addition, FSCC in various sectors of Fock space for EEs, IPs, etc. have been
implemented [40] at the four-component CCSD level, and it has been extended to
intermediate Hamiltonian FSCC approach [41] to avoid intruder-state problem. This
chapter will review relativistic EOM-CC theory for EEs, IPs, and EAs based on
closed-shell reference with emphasis on treatment of SOC effects.

Relativistic EOM-CC Theory

• Equation-of-motion coupled-cluster theory
ı Basic equations in EOM/LR-CC for EEs, IPs, and EAs

CC equations have first to be solved to calculate EEs, IPs, and EAs with the
EOM-CC approach. In CC theory, the wave function is represented by eT jˆ0 i
where ˆ0 is the reference determinant wave function and is usually chosen as the
HF wave function of the corresponding Hamiltonian and T is the cluster operator
and defined as the following:

T D
X
�

t� O�� D
X
i;a

t ai a
C
a ai C

1

4

X
a;b;i;j

t abij a
C
a aia

C
b aj C : : : ; (1)

where t� is the cluster amplitude and O� is the excitation operator, i; j; k; : : : are
indices for occupied orbitals; a; b; c; : : : are for virtual orbitals; and p; q; r; : : :

denote general orbitals in the referenceˆ0. In CCSD the cluster operator is truncated
to the first two terms on the right-hand side (r.h.s.) of Eq. (1). The cluster amplitudes
in Eq. (1) are determined by the following equations:

< ˆ�je�THeT jˆ0 >D 0; (2)

where ˆ( is an excitation determinant defined as
ˇ̌
ˆ� i D O�� jˆ0 i. The energy of

the reference state is thus

ECC D< ˆ0jHeT jˆ0 >D< ˆ0je�THeT jˆ0 > : (3)



802 F. Wang

In the EOM-CC approach, the wave function for an excited state, ionized state,
or electron-attached state is represented by ReT jˆ0 i, where R is the excitation,
ionization, or electron-attachment operator if EEs, IPs, or EAs are to be calculated
and defined as

R D r0 C
X
i;a

rai a
C
a ai C

1

4

X
a;b;i;j

rabij a
C
a aia

C
b aj C : : : D

X
�

r� O��; (4)

R D
X
i

ri ai C 1

2

X
a;i;j

raij a
C
a aiaj C : : : D

X
�

r� O��; (5)

R D
X
a

raaCa C
1

2

X
a;b;i

rabi a
C
a aia

C
b C : : : D

X
�

r� O��; (6)

for EEs, IPs, and EAs, respectively. Note that O� defined in these equations is different
from O�� in the cluster operator for IPs and EAs. ThisR operator is determined using
the following eigenvalue equation:

e�THReT jˆ0 i D e�THeTR jˆ0 i D NHR jˆ0 i D ER jˆ0 i; (7)

where NH D e�THeT is the similarity-transformed Hamiltonian, or effective
Hamiltonian, and E is the energy of the excited, ionized, or electron-attached state.
The fact that R is commutable with the cluster operator T has been used in Eq. (7).
In EOM-CCSD calculations, the R operator is truncated to the first three terms for
EEs and the first two terms for IPs and EAs. Similar to the CC equations in Eqs. (2)
and (3), Eq. (7) is satisfied only in a space spanned by fˆ0;ˆai ; ˆabij ; : : :g for EEs,

fˆi ;ˆaij ; : : :g for IPs, and fˆa;ˆabi ; : : :g for EAs, where ˆai ;ˆ
ab
ij ; ˆi ; ˆ

a
ij ; ˆ

a, and

ˆabi are defined as 1hole-1particle, 2hole-2particel, 1hole, 2hole-1particle, 1particle,
and 2particel-1hole determinants with respect to the referenceˆ0, respectively. This
space is defined by summation terms of the R operator in Eqs. (4), (5), and (6). One
can easily see from Eqs. (2) and (3) that the reference wave function ˆ0 is also an
eigenfunction of the similarity-transformed Hamiltonian with eigenvalue Ecc in the
space spanned by fˆ0; O��ˆ0g with O�� defined in Eq. (1). It should be noted that
eigenvalues of NH are the same as those of the bare Hamiltonian H in the space
spanned by all possible Slater determinants no matter how the cluster operator T
is truncated. However, difference between eigenvalues of NH and those of H rises
up when this space is truncated or a truncation on R operator is introduced and
truncation in the cluster operator matters in this case.

One can see that the EOM-CC approach closely resembles the CI approach
except that NH is employed in calculations. It is well known that the CI approach
usually provides excitation energies that are too high due to a bias toward the ground
state at the CISD level. On the other hand, excitation energies with EOM-CCSD are
rather accurate for single-excitation states. This is because the matrix elements of the
similarity-transformed Hamiltonian NH between triple-excitation determinants and
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single-excitation determinants
D
ˆabcijk

ˇ̌̌
NH ˇ̌
ˆdl
˛

are of the second order in correlation

perturbation, while they are of the first order for the bare Hamiltonian H . Accuracy
of energies for excited states dominant by single excitations in EOM-CCSD is thus
of second order, while it is only of the first order in CISD [42]. On the other hand,
matrix elements of NH between triple-excitation determinants and double-excitation
determinants are of the first order. Excitation energies for states with a significant
double-excitation character using EOM-CCSD are thus unreliable since they are
only accurate to the first order. An interesting strategy has been proposed by Nooijen
to perform a second similarity transformation on NH , the STEOM-CC approach
[9], so that matrix elements between double-excitation determinants and single-
excitation determinants are of the second order. Excitation energies can be obtained
with reasonable accuracy from eigenvalues of the new similarity-transformed
Hamiltonian only in the single-excitation space. The resulting equations of the
STEOM-CC approach are quite close to those in the intermediate Hamiltonian
FSCC approach.

The fact that NH is a non-Hermitian operator indicates that its eigenfunctions
will not be orthogonal to each other and its left-hand side eigenvector will not
be complex conjugate to the right-hand side eigenvector of the same eigenvalue.
One can solve either the left-hand side eigen-equation or the right-hand side
eigen-equation as in Eq. (7) to determine EEs, IPs, or EAs. However, both left-
hand side and right-hand side eigenvectors are required to calculate transition
properties or properties of target states. The non-Hermitian nature of NH implies
that eigenfunctions of NH for excited states with the same symmetry as the ground
state will not be orthogonal to the ground-state wave function, i.e., ˆ0, and r0 for
excited states with the same symmetry as the reference state would thus be nonzero.
Another consequence of the non-Hermitian nature of NH is that complex eigenvalue
would rise up. In actual calculations, complex eigenvalues would be encountered
when two states are rather close in energy to each other.

Making use of Eq. (2) the eigenvalue equation in Eq. (7) can readily be written
in the following form:

hˆ� j Œ NH;R� jˆ0i D .E �ECC / hˆ� jR jˆ0i : (8)

and the left-hand eigen-equation becomes

hˆ0jLŒ NH; ��� jˆ0i D .E �ECC / hˆ0jL jˆ�i : (9)

The L operator in Eq. (9) takes the form of a complex conjugate of R operator
in Eqs. (4), (5) and (6). These two equations are actually eigen-equation of the
matrix hˆ0j O�C� Œ NH; O�
 � jˆ0 i where O�� and O�
 are defined in Eqs. (4), (5), or (6)
and eigenvalues of this matrix become excitation energies, ionization energies,
or electron affinities of the reference state, instead of the total energy of the
corresponding state. In addition, the r0 term is unnecessary with Eq. (8). The highest
excitation level in the R operator may not be the same as that in the T operator. It
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should be noted that Eqs. (8) and (9) can only be reached when the number of
annihilation operators for the highest excitation level in R is smaller than or equal
to that in the cluster operator and the same also holds for creation operators. When
this is not the case or when an approximate cluster operator that does not satisfy
Eq. (2) is employed in EOM-CC calculations, Eq. (8) will no longer be equivalent
to Eq. (7). However, Eq. (8) is still preferred over Eq. (7) to determine EEs, IPs, or
EAs in these circumstances since size-intensive EEs, IPs, or EAs can be achieved
using Eq. (8).

Equations (8) and (9) can also be obtained based on linear response (LR) theory.
In LR theory, a frequency-dependent external potential is introduced, and excitation
energies are determined using the fact that the linear response function will have
a pole when the frequency of the external field is equal to some excitation energy.
The linear response function can be determined from second-order derivatives of the
total energy with respect to external perturbation. Time-dependent cluster amplitude
satisfies the following equation [7]:

i Pt� D< ˆ�je�T .t/HeT .t/jˆ0 > C < ˆ�je�T .t/V .t/eT .t/jˆ0 > (10)

where V .t/ is the external time-dependent potential. The first-order change of
the cluster amplitude with respect to a potential V with frequency ¨ can thus be
determined from Eq. (10) as

!t1�� < ˆ�jŒe�THeT ; T .1/�jˆ0 >D< ˆ�je�T VeT jˆ0 > (11)

where T .1/ is the first-order change of the cluster operator. One can easily
see that T .1/ will be singular when ¨ is equal to an eigenvalue of the matrix
hˆ0j O�C� Œ NH; O�
 � jˆ0 i. Excitation energies with LR-CC are thus equivalent to those
in EOM-CC. IPs or EAs are not as straightforward with LR-CC, but they can be
determined as excitation energies to or from a continuum orbital, and the same
equations as those in EOM-CC for IPs or EAs can thus be achieved based on LR-
CC. Furthermore, when some kind of approximation is introduced in determining
the cluster operator, i.e., Eq. (2) or Eq. (10), such as that in CC2, the corresponding
approximate equation for EEs can readily be obtained based on LR-CC from the
equation that T .1/ satisfies, while it is not so easy to achieve such an equation based
on EOM-CC. On the other hand, contributions from higher-level excitations not
included in the R operator can be introduced more easily with EOM-CC based on
perturbation theory.

To facilitate implementation and to reduce computational effort, intermediates
Fpq and Wpqrs are usually introduced which are the one- and two-electron parts of
the similarity-transformed Hamiltonian H , respectively:

e�THeT D ECC C
X
p;q

FpqfaCp aqg C
1

4

X
pq;rs

WpqrsfaCp aCq asarg C : : : (12)
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Note that the effective HamiltonianH also contains operators higher than two-body
terms. Furthermore, Davidson’s algorithm with modification for non-Hermitian
matrix is usually adopted to calculate the lowest several or some specified states
in EOM-CC calculations. In Davidson’s algorithm, approximate eigenvalues and
eigenfunctions are first determined by diagonalizing the NH matrix in a small
subspace. This subspace is augmented with error vectors of those approximate
eigenfunctions. The NH matrix in this new subspace is constructed and diagonalized
to update the approximate eigenfunctions. This process is iterated until error of the
eigenfunction is smaller than a specified criterion. In EOM-CC calculations without
SOC, the NH matrix is non-Hermitian and complex eigenvalues and eigenfunctions
may be encounter in this process, although the final results are still real. One can
simply treat the real and imaginary parts of the complex eigenfunction as two
approximate eigenfunctions with the same eigenvalues.

Computational effort of EOM-CC for an excited state is similar to that for the
ground state. On the other hand, it is less demanding in calculating IPs or EAs.
Scaling of EOM-CCSD for excitation energies is N6, same as that of a CCSD
calculation, while it is only N5 for IPs or EAs, where N represents system size.
In calculations of IPs and EAs, solving the CC equation becomes the most time-
consuming step. Another advantage of EOM-CC for IPs or EAs is that the resulting
wave function is free from spin contamination when a closed-shell state is chosen
as reference, which is a nontrivial task in CC calculations for open-shell systems.
This is important in calculations when SOC is present since SOC will couple states
with different spins, and spin contamination would result in spurious splitting of
energy levels. Furthermore, by choosing the reference state that can be described
by a single- reference method, some states with a significant multiconfiguration
character can be treated with EOM-CC for IPs or EAs based on single-reference
formalism. Another similar scheme is the EOM-CC method for spin-flip transitions
[43], where the singlet state of diradicals can be reached from a triplet reference
state. However, spin contamination is inevitable in such calculations.

ı Transition and excited-state properties

In the EOM-CC method, the left-hand and right-hand wave functions for the n-th
state are represented by hˆ0jLne�T and eT Rn jˆ0i, respectively, and the following
orthonormalized condition is employed:

hˆ0jLmRn jˆ0i D ımn (13)

For ground state, R0 D 1 and L0 D 1Cƒ with ƒ being the de-excitation operator
introduced in analytic energy gradient for CC theory. r0 in Rn is usually determined
with the orthogonal condition between the left-hand ground-state wave function and
the right-hand n-th state wave function using Eq. (13). On the other hand, l0 for the
n-th state is always zero due to orthogonality between the left-hand n-th state wave
function and the right-hand ground-state wave function.
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Transition properties between an excited state and the ground state or between
two excited states in EOM-CC are calculated directly based on the left- and right-
hand wave function as the following:

hmj OAjni D hˆ0
ˇ̌̌
Lme

�T OAeTRn
ˇ̌̌
ˆ0i: (14)

In LR-CC theory, transition properties are determined from residue of the response
function at the poles. The linear response function as the second-order derivative
using the 2nC 1 rule can be calculated as [7]

<< X; Y >>!yD
d2ECC

dxdy
D hˆ0j .1Cƒ/Œe�T XeT ; T y� jˆ0i

C hˆ0jƒye�T XeT jˆ0i ; (15)

where T y and ƒy are the first- order response of the T and ƒ operator due to
the external perturbation Y with frequency !y . T y is determined by Eq. (11). The
time-dependent ƒ operator satisfies the following equation when an external time-
dependent potential is present:

�i P�� D < ˆ0j.1Cƒ.t//Œe�T .t/HeT .t/; O���jˆ0 >
C < ˆ0j.1Cƒ.t//Œe�T .t/V .t/eT .t/; O���jˆ0 >; (16)

and ƒy can thus be determined using the following equation:

�!y�y� D< ˆ0j.1Cƒ/ŒŒe�THeT ; T y�; O���jˆ0 >
C < ˆ0jƒyŒe�THeT ; O���jˆ0 >
C < ˆ0j.1Cƒ/Œe�T YeT ; O���jˆ0 > : (17)

Transition properties are obtained from residue of the linear response function:

lim
!y!!n

.!y � !n/ << X; Y >>!yD< 0jX jn >< njY j0 > : (18)

To calculate residue of linear response functions, residue of T y and ƒy needs to be
determined first. Residue of T ycan be obtained from Eq. (11):

lim
!y!!n

.!y � !n/T y D hˆ0jLne�T YeT jˆ0iRn: (19)

With Eqs. (17) and (19), residue of ƒy will be written in the following form:

lim
!y!!n

.!y � !n/ƒy D hˆ0jLne�T YeT jˆ0iZn: (20)
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Zn in the above equation is a de-excitation operator similar to ƒ, and it satisfies the
following equation based on Eq. (17):

�!nZn
� D< ˆ0j.1Cƒ/ŒŒ NH;Rn�; O���jˆ0 > C < ˆ0jZnŒe�THeT ; O���jˆ0 > :

(21)

Residue of the linear response function in LR-CC can thus be determined from the
above equations as:

lim
!y!!n

.!y � !n/ << X; Y >>!yD Œhˆ0j .1Cƒ/Œe�T XeT ;Rn� jˆ0i

C hˆ0jZne�T XeT jˆ0i� hˆ0jLne�T YeT jˆ0i : (22)

Transition properties with LR-CC can be achieved by comparing Eqs. (18) and (22):

< 0jX jn >Dhˆ0j .1Cƒ/Œe�T XeT ;Rn� jˆ0i C hˆ0jZne�T XeT jˆ0i : (23)

< njY j0 >D hˆ0jLne�T YeT jˆ0i : (24)

Transition properties between two excited states are determined in a similar way
from residue of a quartic response function, and an equation similar to Eqs. (21)
and (23) will be achieved except that 1Cƒ is replaced byLn and that !n in Eq. (21)
is replaced by energy difference between the two excited states:

< mjX jn >D hˆ0jLmŒe�T XeT ;Rn� jˆ0i C hˆ0jZmne�T XeT jˆ0i
C hˆ0j .1Cƒ/e�T XeT jˆ0i ımn ; (25)

.!m � !n/Zmn
� D< ˆ0jLmŒŒ NH;Rn�; O���jˆ0 > C < ˆ0jZmnŒe�THeT ; O���jˆ0 > :

(26)

Transition properties with Eqs. (23) or (25) are shown to be size intensive, while this
is not the case with Eq. (14). However, an additional equation, i.e., Eqs. (21) or (26),
has to be solved to calculate transition properties in LR-EOM, while transition
properties based on Eq. (14) can be obtained more easily. In addition, the transition
matrix < mjX jn > is not a complex conjugate of < njX jm > due to the non-
Hermitian nature of the effective Hamiltonian, and their geometric mean is usually
adopted for the transition matrix element.

Some properties such as dipole moments and nuclear forces are defined by
the first-order derivative of total energy with respect to a certain external per-
turbation. Although finite difference techniques can be adopted to calculate the
first-order derivative of total energy, availability of analytic energy gradient greatly
facilitates calculations for first-order properties and determination of optimized or
transition-state structures. Total energy for an excited, ionized, or electron-attached
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state with EOM-CC can be written in the following way [15, 16]:

En D hˆ0jLn NHRn jˆ0i D hˆ0jLnŒH;Rn� jˆ0i C hˆ0j NH jˆ0i ; (27)

where Eq. (13) has been employed. To avoid calculating derivatives of R, L, and
T operators with respect to external perturbation, the following energy functional is
introduced:

NEn D hˆ0jLn NHRn jˆ0i C
X
�

��
˝
ˆ�
ˇ̌ NH jˆ0i C ".1 � hˆ0jLnRn jˆ0i/;

(28)

where Ÿ( and © are Lagrange multipliers. One can readily see that the energy
functional is always equal to the EOM-CC energy in Eq. (27) and its derivatives with
respect to the introduced Lagrange multipliers are zero. Furthermore, the derivative
of the energy functional with respect to l( and r( will also be zero when © is equal
to the EOM-CC energy. On the other hand, Ÿ( is determined from the requirement
that the derivative of the energy functional with respect to the cluster amplitude is
zero:

@ NEn
@t�
D 0 D hˆ0jLnŒ NH; O���Rn jˆ0i C

X
�

��
˝
ˆ�
ˇ̌
Œ NH; O��� jˆ0i : (29)

The first term on the right-hand side of Eq. (29) can be further expressed as the
following:

hˆ0jLnŒ NH; O���Rn jˆ0i D
X
q

hˆ0jLn NH
ˇ̌
ˆq
˛ ˝
ˆq
ˇ̌
Rn
ˇ̌
ˆ�
˛
; (30)

where ˆq represents the determinant with excitation level higher than that in the
R operator. Equation (29) is the same as the ƒ equations used in analytic energy
gradient in CC theory except for the constant term, i.e., the term in Eq. (30). The
analytic energy gradient of EOM-CC energy is equal to that of the energy functional
in Eq. (28) and can be calculated with the following equation:

dEn

dx
D d NEn

dx
D hˆ0jLne�T dH

dx
eTRn jˆ0i C

X
�

��
˝
ˆ�
ˇ̌
e�T

dH

dx
eT jˆ0i :

(31)

This expression is in accord with the 2nC1 rule, which implies that the first-
order derivative of a wave function is not required when calculating the first-order
derivative of the total energy. One can see from this equation that �( is introduced to
represent response of the R and L operator as well as the cluster operator T due to
external perturbation. One-particle and two-particle density matrices for the excited
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state are usually introduced to facilitate calculation of analytic energy gradient as
the following:

Dpq D hˆ0jLne�T aCp aqeT Rn jˆ0i C
X
�

��
˝
ˆ�
ˇ̌
e�T aCp aqeT jˆ0i ; (32)

+pqrs D hˆ0jLne�T aCp aCq asareT Rn jˆ0i C
X
�

��
˝
ˆ�
ˇ̌
e�T aCp aCq asareT jˆ0i :

(33)

It should be noted that the orbital relaxation effect is not taken into consideration
with the above density matrices. In actual calculations, the orbital relaxation effect
may be neglected when atomic orbitals do not depend on the perturbation. Properties
such as dipole moment of the excited state can thus be determined with density
matrices in Eqs. (32) and (33). On the other hand, orbital relaxation effects must
be included when basis functions depend on the perturbation. This is the case when
nuclear forces are to be calculated since atomic orbital basis functions centered at
nuclear positions are customarily used in quantum chemistry.

The analytic energy gradient can be determined alternative based on the second
total energy expression in Eq. (27) [44]. Similar to the above treatment, the
following energy functional is introduced:

NEn Dhˆ0jLnŒ NH;Rn� jˆ0i C hˆ0j NH jˆ0i C
X
�

��
˝
ˆ�
ˇ̌ NH jˆ0i

C ".1 � hˆ0jLnRn jˆ0i/; (34)

and �( satisfies the following equation:

@ NEn
@t�
Dhˆ0jLnŒŒ NH;Rn�; O��� jˆ0i C hˆ0j Œ NH; O��� jˆ0i

C
X
�

��
˝
ˆ�
ˇ̌
Œ NH; O��� jˆ0i D 0: (35)

Density matrices and energy gradient can be calculated in a similar manner as in
Eqs. (31), (32) and (33) and are equivalent in these two approaches. It should be
noted that density matrices of the excited state can be obtained alternatively based
on the response theory in Eq. (25) with m D n, except that �( is the summation of
Z( in Eq. (26) and œ( in the ƒ operator.

• Implementation of relativistic EOM-CC approach

Basic equations in relativistic EOM-CC are the same as those in nonrelativistic
EOM-CC. However, difference in implementation details is significant when SOC
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is included. This is mainly due to complex arithmetic and broken spin symmetry.
This section will discuss new features in implementation of EOM-CC when SOC is
present.

ı Time-reversal symmetry and spatial symmetry

Time-reversal symmetry is trivial in closed-shell nonrelativistic or scalar-relativistic
calculations, and it maps spin ’ orbits with spin “ orbitals. On the other hand, it
could introduce an additional reduction in calculation effort when SOC is present.
For closed-shell systems, orbitals (or spinors) can be classified to two sets f pg
and f Npg where  p and  Np form a Kramers pair with  Np D K p , and K is the
time-reversal operator. For spin orbitals,  p is simply a spin ’ orbital, while  Np is
a spin “ orbital. Eigenfunction of a system with time-reversible Hamiltonian and
an even number of electrons can always be chosen to be invariant with respect to
time reverse, although not necessarily. A Slater determinant composed of a set of
Kramers pairs is time reversible, and the requirement that the CC wave function be
time reversible indicates that the cluster operator should be commutable with the
time-reversal operator. The following relations between different cluster amplitude
can thus be achieved [17, 27]:

t ai D .t NaNi /�; t aNi D �.t Nai /�; (36)

t abij D .tabij /�; t abij D .tabij /�; t ab
ij
D �.tabNij /�; t abij D �.tabij /�; t ab

ij
D .tab

ij
/�;

(37)

With these relations, only a certain cases of cluster amplitudes need to be decided
and the other cases can be determined either with the above equations or with the
permutation symmetry. In calculations without SOC, spin cases of tai ; t

NaNi ; t
ab
ij ; t

NabNij ,

and t ab
ij

are required, and the other spin cases such as t aNi ; t
ab
ij
; t abij , and t ab

ij
are

zero, since they do not conserve spin. For closed-shell systems without SOC, time-
reversal symmetry implies t ai D t NaNi and t abij D t NabNij . Furthermore, an additional
constraint on double-excitation amplitudes exists for wave functions with S = 0:
t abij D t ab

ij
� t ba

ij
. Spin cases of the cluster amplitudes to be considered in CCSD

calculations for closed-shell systems are thus only ft ai ; t abij g. On the other hand,
when SOC is included in post-SCF treatment, the reference determinant ˆ0 is the
Hartree-Fock wave function of the scalar-relativistic Hamiltonian, and spin orbitals
are employed in calculations. Much more spin cases of the cluster amplitudes need
to be calculated since SOC will couple states with different spins. In a recent work
[27], amplitudes of spin cases ft ai ; t aNi ; t abij ; t abij ; t abij ; t a

Nb
ij ; t

ab
ij
g are determined in CCSD

calculations with SOC. On the other hand, it is not an easy task to impose time-
reversal symmetry for open-shell systems in CC calculations with SOC. This is
similar to spin adaption for open-shell systems in nonrelativistic or scalar-relativistic
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CC calculations. Kramers-unrestricted calculations are usually employed in such
calculations.

Exploitation of spatial symmetry can reduce computational effort significantly.
This reduction can be as high as h2 in electron-correlation calculations, where h is
the order of the point group. In almost all correlation calculations without SOC,
Abelian single point groups, i.e., D2h and its subgroups, are adopted. When SOC
is present, double point group symmetry has to be exploited. Molecular spinors
will transform according to the Fermion irreducible representations (IR) of the
corresponding double point group. Fermion IRs of the double point group is closely
related to time-reversal symmetry, but special care has to be taken to construct
symmetry functions that transform as basis of fermion IRs of the double point group
and form Kramers pairs at the same time. Two-electron integrals < pqjjrs > will
vanish unless +�p˝+�q˝+r˝+s contains the totally symmetric representation of
the molecular point group [17, 19], where +p represents IR of spinor p. Similar
rules hold for cluster amplitudes and amplitude t abij will be nonzero only when
+�a ˝ +�b ˝ +i ˝ +j contains the totally symmetric representation. This rule
stems from the requirement that the symmetry of the wave function is determined
by its Slater determinant part and the cluster operator should be totally symmetric
Abelian double point groups, e.g., S �n ; C �n are employed to facilitate determination
of the direct product of these IRs [45]. For groups with a mirror-plane or a twofold
axis, a symmetry function and its Kramers pair belong to different IRs or different
columns of a same IR. This means the cluster amplitudes with odd number of bars
in Eqs. (36) and (37) will be zero. Furthermore, for systems containing D2 or C2v
as subgroups, a symmetry function and its Kramers pair can be chosen to belong
to different columns of a two-dimensional IR and the involving integrals as well as
amplitudes can thus be made real. However, these groups are non-Abelian groups.
This problem can be solved by choosing a proper Abelian subgroups of the non-
Abelian group [45], where a symmetry function and its Kramers pair belong to
different IRs in the Abelian subgroup. Property of the non-Abelian group can still
be exploited with this scheme.

When SOC is only included in post-SCF treatment, molecular orbitals that
transform according to IRs of the corresponding single point group are employed.
Furthermore, the wave function of a system with an even number of electrons will
also transform according to boson IRs of the double point group when SOC is
present. It is thus possible to exploit symmetry of Abelian single groups, i.e., D2h

and its subgroups in such calculations, and the fermion IRs of the corresponding
double group are not required. The cluster operator should be totally symmetric
and its symmetry is the direct product between symmetry of its spin part and
symmetry of its spatial part. This indicates that the spatial part symmetry for a
specified spin case of cluster operator should be equal to symmetry of its spin
part. In the following, symmetry for a certain spin case of the t-amplitude actually
refers to symmetry of its spatial part, i.e., the direct product of IRs of the involving
orbitals. Based on the theory of tensor operators for angular momentum and time-
reversal symmetry for cluster operators in Eqs. (36) and (37), symmetry for different
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spin cases of the cluster amplitudes for D2h and its subgroups can be determined
as the following [28]: the real part and imaginary part of t-amplitudes with an
even number of ˇ spin orbital indices, i.e., t ai ; t

ab
ij ; t

ab
ij
; t ab
ij

transform as the totally
symmetric representation and +lz , respectively; while for t -amplitudes with an odd

number of “ spin orbital indices, i.e., taNi ; t
ab
ij
; t a
Nb

ij , their real part and imaginary part
should transform as +ly and +lx , respectively, where +lx , +ly , and +lz are the IR
of the angular momentum operator along x, y, and z direction, respectively. This
symmetry rule will also apply to other quantities such as density matrices as well as
intermediates. Using the fact that the direct product of +lx and +ly is +lz for Abelian
single point groups, one can deduce that real and imaginary parts of the amplitudes
or the intermediates will belong to a different IR for D2h, C2v , and D2 groups since
+lz is not the totally symmetric representation for these groups. This means that the
amplitudes or the intermediates will be either real or pure imaginary for D2h, C2v ,
and D2 groups. This is consistent with the case when SOC is introduced in SCF
calculations. However, this property is not employed directly in implementations.
The real and imaginary parts of the amplitudes or intermediates for different spin
cases can be calculated separately based on their own symmetry without scarifying
efficiency

It is difficult to impose time-reversal symmetry on the reference wave function
of an open-shell system, and time-reversal symmetry in EOM-CC calculations with
closed-shell reference will be discussed here. In EOM-CC for excitation energies
of closed-shell systems, the r-amplitudes in Eq. (4) satisfy similar relations as in
Eqs. (36) and (37), and r0 must be a real number since one can always require the
corresponding wave function to be invariant under time reverse. On the other hand,
in EOM-CC calculations for IPs or EAs with a closed-shell reference, the target
state has an odd number of electrons. The wave function for such a system and its
Kramers pair will thus be orthogonal and degenerate to each other, i.e., Kramers
degeneracy. For the wave function of the form ReT jˆ0i and its time-reversal
R0eT jˆ0i D KReT jˆ0i in EOM-IP-CC calculations with closed-shell reference,
r-amplitude of different cases in R and R0 satisfies the following relations [28]:

r 0i D �.rNi /�; r 0Ni D .ri /�; (38)

r 0aij D �.r NaNi Nj /�; r 0ai Nj D �.r Naj Ni /�; r 0 Naij D .raNi Nj /�; r 0 Nai Nj D .raj Ni /�;

r 0aNi Nj D �.r Naij /�; r 0 NaNi Nj D .raij /�: (39)

The r-amplitudes in EOM-EA-CC calculations satisfy similar relations. Exploitation
of time-reversal symmetry in EOM-EE-CC calculations is similar to that in CC
calculations and time-reversal symmetry will reduce the cases of the r-amplitudes
to be calculated. An additional advantage by making use of time-reversal symmetry
in EOM-EE-CC calculations is that the matrix element of NH between two time-
reversible wave functions ‰1 and ‰2 W< ‰1j NH j‰2 > will be real regardless of
point group symmetry of the system. Making use of the fact that NH is invariant
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under time reverse, this matrix element is an inner product between two time-
reversible functions and should be real since this inner product is also invariant
under time reverse. The real nature of the NH matrix does not mean the r-amplitudes
are real. Furthermore, saving in computational effort is mainly due to exploitation
of time-reversal symmetry for the r-amplitudes instead of the real nature of the NH
matrix since a matrix with a rather small dimension is diagonalized in Davidson’s
algorithm. On the other hand, approximate eigenvectors of the real NH matrix will
usually be real and their error vectors to augment the subspace will thus be invariant
under time reverse. In EOM-IP-CC or EOM-EA-CC calculations, however, making
use of Kramer’s symmetry means only one partner of a Kramer’s pair needs to
be calculated and its time reverse is determined readily with Eqs. (38) and (39).
For double point groups with a mirror-plane or a twofold axis, a symmetry function
and its Kramers pair are classified according to two different IRs or two different
columns of the same IR and time-reversal symmetry can be exploited simply by
only calculating states that transform according to one of the two IRs. Note that for
systems containing D2 or C2v as subgroups, the fact that the two Kramers partners
belong to two columns of the same IR implies that the NH matrix will be real. On the
other hand, a symmetry function and its time-reversal state belong to the same IR
for C �1 and C �i groups. Time-reversal symmetry for these groups can be exploited
in calculating the action of NH on trial vectors: NHR jˆ0i, which is the most time-
consuming part in EOM-CC calculations. When NHR jˆ0i is obtained, the action of
NH on time reverse of the trial wave functionKR jˆ0i can be determined easily using

the similar relations as in Eqs. (38) and (39) based on NHKR jˆ0i D K NHR jˆ0i.
Furthermore, one should ensure that the Kramers partner of each eigenvector
is included in the obtained eigenvectors when diagonalizing the NH matrix in a
subspace.

As for spatial symmetry of the r-amplitude in EOM-CC calculations, symmetry
of the target state is determined by direct product between symmetry of the R
operator and that of the reference state. For closed-shell reference, symmetry of
the R operator will thus be equal to that of the target state. When SOC is included
in SCF part and spinors are employed in post-SCF calculations, the r-amplitude
rabij in EOM-EE-CC will be nonzero only when +�a ˝ +�b ˝ +i ˝ +j is equal
to the symmetry of the R operator. A similar rule also applies to r-amplitudes in
EOM-IP/EA-CC calculations. Exploitation of symmetry in EOM-CC calculations
closely resembles that in CC calculations except that the cluster operator is totally
symmetric, while symmetry of theR operator depends on the symmetry of the target
state and reference state.

On the other hand, when SOC is included in post-SCF treatment, symmetry of
the r-amplitude in EOM-EE-CC calculations can be determined in a similar way as
that of the cluster operator with closed-shell reference. For excited states that can be
classified according to IR +I , spatial symmetry for the corresponding r-amplitudes
of different spin cases is determined as the following [34]: for r-amplitudes with
an even number of “ spin orbital indices, e.g., rai ; r

ab
ij ; r

ab
ij

, and rab
ij

, their real and
imaginary part should transform as +I and +lz ˝ +I , respectively; for r-amplitudes
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with an odd number of ˇ spin orbital indices, i.e., raNi ; r
ab
ij

, and ra Nbij , their real and
imaginary part should transform as +ly˝+I , and +lx˝+I , respectively. Determining
symmetry of different spin cases of r-amplitude is a little bit more complicated
in EOM-IP/EA-CC calculations since the target state will transform according to
Fermion IR of the double point group. Furthermore, theD2h

�,D2
�, andC2v� double

groups are non-Abelian groups, and their fermion IRs are two-dimensional. Unlike
the case with SOC included in the SCF part where complex Abelian groups such as
Cn and Sn group with n > 2 can be employed, real spin orbitals are always adopted
and complex Abelian groups are avoided. To circumvent this problem, one can make
use of symmetry of the effective Hamiltonian matrix elements, i.e., intermediates,
with different spin cases [32]. The symmetry rule for different spin cases of the
intermediates is the same as that of the cluster amplitudes. The real and imaginary
part of the matrix elements of NH between two determinants with an even number
of spin “ orbitals or two determinants with an odd number of spin “ orbitals will be
nonzero unless the direct product of the spatial symmetry of the two determinants
is totally symmetric or +lz , respectively. On the other hand, the real and imaginary
part of the matrix elements of NH between one determinant with an even number
of spin “ orbital indices and another determinant with an odd number of spin “
orbital indices will vanish unless the direct product of their spatial symmetry is
+ly and +lx , respectively. With this property, spatial symmetry for the r-amplitudes
in EOM-IP/EA-CC calculations with SOC included in post-SCF treatment can be
determined as the following: if a certain r-amplitude with an even number of spin “
orbital indices is chosen to be real and its spatial symmetry is �I , spatial symmetry
for real and imaginary part of r-amplitudes with an even number of “ spin orbital
indices will be �I and �lz ˝ �I , respectively; on the other hand, spatial symmetry
for the real and imaginary part of r-amplitudes with an odd number of “ spin orbital
indices will be �ly ˝ �I and �lx ˝ �I , respectively. Single point group symmetry
can thus be exploited even in calculating states that transform according to Fermion
IRs of double point groups. It should be noted that �I is only spatial symmetry
of the real part of r-amplitudes with an even number of spin “ orbital indices,
and symmetry of the target state cannot be determined by it since one can always
multiply the wave function with some phase factor. There is no such freedom in
EOM-EE-CC calculations because of the requirement that the target wave function
should be invariant under time reverse. The same IPs or EAs will be obtained no
matter which �I is chosen for groups without inversion center. On the other hand,
�I and symmetry of the target state will be both of g-symmetry or u-symmetry for
groups with inversion center. Note that the above argument only applies to D2h and
its subgroups.

ı Excited state and transition properties in EOM-IP/EA-CC method

Excited-state properties are usually calculated as derivative of total energy with
respect to corresponding perturbations. Density matrices defined in Eqs. (32) and
(33) are introduced to calculate excited-state properties. Transition and excited-state
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properties based on EOM-EE-CC method with SOC can be obtained in basically the
same way as those in nonrelativistic or scalar-relativistic cases. On the other hand,
they are more involved in EOM-IP/EA-CC calculations when SOC is present. One
always has to take into account the degenerate Kramers pair in these calculations.
For operators that are commutable with a time-reversal operator such as dipole
moment, their expectation values in a state are the same as those with its Kramers
partner: < ‰jAj‰ >D< K‰jAjK‰ >, and the matrix element of this type of
operators between a Kramers pair will be zero: < ‰jAjK‰ >D 0. In EOM-
IP/EA-CC method, < ‰jAj‰ > will be a complex number since j‰ > and
< ‰j are not a complex conjugate to each other and is a complex conjugate to
< K‰jAjK‰ >. The expectation value for operator A is determined from the real
part of < ‰jAj‰ >. However, time-reversal symmetry cannot be fully exploited
in this way. It would be advantageous to calculate the expectation value of such
operators with density matrix defined from 1=2.< ‰jAj‰ > C < K‰jAjK‰ >/

since time-reversal symmetry can be made use of. The average of density matrices
corresponding to the Kramers pair should thus be used:

D0
pq
D .h‰j aCp aq j‰i C hK‰j aCp aq jK‰i/=2; (40)

This strategy can be employed in calculating nuclear forces in the EOM-IP/EA-
CC approach with SOC. On the other hand, for operators that are odd with time
reverse, AK D �KA, such as angular momentum and spin, their expectation
values in a state are opposite to those with its Kramers partner: < ‰jAj‰ >D
� < K‰jAjK‰ >. Furthermore, matrix element for this type of operators between
a Kramers pair will generally be nonzero. The degenerate perturbation theory is
required in this case. One has to calculate < ‰jAj‰ >, < K‰jAj‰ > and to
diagonalize the matrix of this operator in the f‰;K‰g space in order to fully
determine expectation value of this operator. To exploit time-reversal symmetry,
density matrices with the following form that are invariant under time reverse are
calculated:

D1
pq
D i.h‰j aCp aq j‰i � h‰j aCp aq j‰i/=2;

D2
pq
D i.hK‰j aCp aq j‰i C h‰j aCp aq jK‰i/=2;

D3
pq
D .h‰j aCp aq jK‰i � hK‰j aCp aq j‰i/=2 (41)

where D1
pq
;D2

pq
, and D3

pq
are used to determine < ‰jAj‰ >, the real and

imaginary part of < K‰jAj‰ >, respectively. It should be noted that if the
Ÿ( term in Eqs. (32) and (33) is not considered in calculating density matrices,
i.e., neglecting the response of the cluster and the R;L operators with respect
to external perturbation, saving in computational effort would not be achieved
by exploitation of time-reversal symmetry. However, excited-state properties are
calculated with higher accuracy when the Ÿ( term is taken into account. Exploitation
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of time-reversal symmetry can result in reduction in computational effort when
solving equations of Ÿ(. That is the reason why calculating three density matrices
listed in Eq. (41) is preferred over calculating two density matrices corresponding
to h‰j aCp aq j‰i and h‰j aCp aq jK‰i in determination of the expectation value
for such operators. The above scheme can be used in calculating EPR g-tensors
based on the EOM-IP/EA-CC approach with SOC where the energy derivative with
respect to external magnetic field is required.

Things are more complicated when transition properties are to be calculated. The
following relations can be obtained for operators that are even with time reverse:
< ‰1jAj‰2 >D< K‰1jAjK‰2 >�; < ‰1jAjK‰2 >D � < K‰1jAj‰2 >�.
On the other hand, transition matrix elements for operators that are odd with time
reverse satisfies < ‰1jAj‰2 >D � < K‰1jAjK‰2 >�; < ‰1jAjK‰2 >D<
K‰1jAj‰2 >�. It should be noted that a linear combination of an eigenfunc-
tion and its time reverse is also an eigenfunction for the same state due to
Kramers degeneracy. One can thus choose a proper linear combination so that
< ‰1jAjK‰2 > is equal to zero. The transition property for operator A between

two states can thus be determined using
q
jh‰1jA j‰2ij2 C jh‰1jA jK‰2ij2. It can

be calculated either based on left-hand and right-hand eigenfunction of NH as in
Eq. (14) or based on linear response theory directly. If linear response theory is to
be employed, equations involving Z( as in Eq. (21) have to be solved. To exploit
time-reversal symmetry, all the four density matrices defined in Eqs. (40) and (41)
are to be calculated.

• Results

To illustrate performance of the EOM-EE/IP/EA-CC approach with SOC, EEs,
IPs, and EAs for some 6s- and 6p-block atoms and cations are listed in Table 1
together with experimental data. In these calculations, the small-core energy-
consistent pseudopotentials with one-electron SOC operator developed by the
Stuttgart/Cologne groups [20] are employed to describe relativistic effects, and
the aug-cc-pwCVQZ basis is chosen. The correlation-consistent polarized weighted
core-valence basis set is adopted not only to account for core-valence correlation but
also to provide a reasonable description on SOC effects. In these calculations, SOC
is included in CC and EOM equations with closed-shell reference and the HF wave
function of the scalar-relativistic Hamiltonian is used as the reference determinant.
All electrons that are not treated via ECPs are included in post-SCF calculations.

According to this table, excitation energies of Hg and Rn with EOM-EE-CCSD
are in good agreement with experimental results, and their errors are within 0.1 eV.
Excited states for Hg are represented based on LS coupling scheme, while a jj
coupling scheme is adopted for Rn. SOC splittings for Hg are obtained from
difference between excited-state energies and average of 3P0, 3P1, and 3P2 states.
On the other hand, they are represented by energy difference between two neighbor
states for Rn. One can also see that the calculated splittings are in accord with
experimental data. Results for the ground state of HgC and RnC are their EAs, and
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Table 2 Fine-structure splitting for some diatomic hydrides with a 2… ground state using various
approaches (Unit: cm�1)

Exp. EOMIP-CCSD TDDFT Mk-MRCCa MR-CISDb P-EOMIP-CCSDc

OH 139:2 140:1 143:9 135:1 137:0 137:3

SH 377:0 375:1 369:6 375:2 377:6 370:2

SeH 1;764:4 1;749:0 1;700:5 1;707:9 1;679:0

TeH (3,830) 3;912:7 3;536:4

aMuck and Gauss [48]
bBerning et al. [49]
cKlein and Gauss [50]

those for the other states are EEs from EOM-IP-CCSD calculations using the neutral
atoms as references. The obtained EAs for these two anions agree rather well with
experimental values with an error of less than 0.04 eV. Excitation energies and SOC
splitting for Koopmans states, i.e., the 2D5=2 and 2D5=2 states for HgC and the 2P1=2
state of RnC, are calculated to be consistent with experimental data. On the other
hand, the 5d106p1 configuration of HgC can only be reached from the reference
by ionizing one 6s electron and exciting another one to the 6p orbital. Excitation
energies for this configuration are thus overestimated significantly. However, SOC
splitting from this state can still be calculated rather accurately. IPs corresponding
to the ground state and EEs for the other states are listed for Au and Tl based on
EOM-EA-CCSD using AuC and TlC as references. Calculated IPs and EEs for a
principle electron-attached state are in accord with experimental data once again,
and errors are within 0.1 eV. For the 5d96 s2 configuration of Au, which are reached
by attaching one electron to the 6s orbital and exciting another one from the 5d to
6s orbital, excitation energies are overestimated by about 4 eV. On the other hand,
SOC splitting between the two states that originated from this configuration are still
calculated with high accuracy.

To further demonstrate accuracy of the EOM-CCSD approach in describing SOC
splitting, the fine-structure splitting of the ground 2… state for OH, SH, SeH, and
TeH at their experimental equilibrium bond lengths is calculated with EOM-IP-
CCSD and listed in Table 2. Results with other approaches as well as experimental
data are also listed for comparison. The exact two-component (X2C) Hamiltonian
adopted in the calculation is described in Ref. [47] with a molecular mean field
treatment on the two-electron SOC operator. The ANO basis set in uncontracted
form is chosen for the involving atoms. Corresponding closed-shell anions of these
hydrides are employed as references, and SOC is included in post-SCF treatment
in these calculations. According to results in Table 2, splittings of these states with
EOM-IP-CCSD are in excellent agreement with experimental results and the EOM-
IP-CCSD approach are the best approach among the methods listed in this table in
describing SOC splitting of this state. In fact, pilot calculations on splitting of 2…
ground state for other diatomic hydrides indicate that results with similar accuracy
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can be achieved using the EOM-IP/EA-CCSD approach. It should be noted that a
large basis set is necessary to achieve SOC splitting with such high accuracy.

Summary

EOM-CC approach is a black-box approach and EEs, IPs, as well as EAs can
be obtained with relative ease. Accuracy of EOM-CCSD results depends on
reliability of CCSD approach for the reference state as well as contribution of
single excitations to the target state. Results with reasonable accuracy can usually
be achieved for single- excitation states or Koopmans states from a reference
dominant by a single-reference character. In addition, SOC splitting of degenerate
states can be calculated with reasonable accuracy using the EOM-CCSD approach
even for states with a significant double-excitation character. It should be noted
that a large basis set is usually required to obtain highly accurate SOC splittings
even for light elements. As for heavy elements, many basis sets are designed
only for scalar-relativistic calculations, and additional steep p functions need to be
included or a basis set with core-valence correlation should be used to properly
account for SOC effects. Significant saving in computational effort can be achieved
by exploitation of time-reversal symmetry and spatial symmetry. However, it is
nontrivial to impose time-reversal symmetry for an open-shell reference state.
In addition, including SOC in post-SCF treatment in EOM-CC calculations can
lead to further reduction in computational effort, which is especially the case for
systems with low symmetry. SOC effects can still be calculated with high accuracy
even for superheavy element compounds since the single excitations in a cluster
operator are able to account for most of orbital relaxation effects. Computational
effort for an excited state is similar to that for the ground state, while calculating
an ionized state or an electron-attached state is much faster. Comparing with
nonrelativistic or scalar-relativistic EOM-CC calculations, it is computationally
much more demanding when SOC is included. The computational time for EOM-
CC approach with SOC included in post-SCF treatment is usually about 10 times
that of nonrelativistic or scalar-relativistic calculations. Furthermore, more states
have to be determined since SOC will split degenerate states. On the other hand,
due to the use of Abelian group symmetry and broken spin symmetry when
SOC is present, assignment of the obtained states is more involved than that in
nonrelativistic or scalar-relativistic calculations.

Although EOM-CC calculations with SOC can be applied to open-shell ref-
erence, it is still recommended that closed-shell reference states be employed in
such calculations. Calculations based on open-shell reference are usually com-
putationally more demanding since it is not easy to impose Kramers symmetry.
This may also lead to fictitious splitting of Kramers degenerate states. In addition,
a convergence problem would be encountered or multireference approaches have
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to be used for some open-shell systems. On the other hand, EOM-CC for IPs
and EAs are only applicable to systems with one unpaired electron when closed-
shell references are adopted. For systems with two unpaired electrons, they can be
reached based on EOM-CC for double ionization or double electron attachment. The
most popular EOM-CC approach, i.e., the EOM-CCSD approach, may lead to large
errors for states with significant double-excitation character. A higher excitation
level is required to achieve a reliable description on those states. Moreover, triples
are also necessary to obtain results with higher accuracy. However, the EOM-
CCSDT approach with a computational scaling of N8 is much too demanding. Some
approximate approaches such as CC3 [4] and EOM-CCSDT-3 have been introduced
in nonrelativistic calculations. In these approximate approaches, the contribution
of triple excitations, which scales as N7, is determined iteratively and it is still
rather demanding. In the most successful approach to account for triples of ground
state, the CCSD(T) approach, triples are treated in a perturbative way and the
N7 step only needs to be calculated once. Similar treatments on triples in EOM-
CC calculations have also been proposed [51]. Including contribution of triples
approximately in EOM-CC calculations with SOC would lead to a more accurate
description on SOC splittings and is critical for double-excitation states. On the
other hand, the EOM-CCSD approach is still not feasible even for medium-size
molecules due to its computational scaling of N6. CC2 is one of the most popular
CC approaches in determining excitation energies with reasonable accuracy and
a computational scaling of N5. Other approximate EOM-CCSD approaches also
exist such as the EOM-CCSD (2) approach [52], where the cluster operator is
approximated with MP2 theory. In addition, CIS(D) [53] can also be considered as
an approximate CC approach based on EOM-CCS with a perturbative treatment on
double excitations. SOC may be treated in an approximate way, for example, only
included in single-excitation amplitudes, which will result in a significant reduction
in solving the CCSD equations. It would be interesting to investigate performance
of these approaches in describing SOC effects for excited states, ionized states, as
well as electron-attached states. Another possible future development is to include
SOC in EOM-CC calculations based on perturbation theory or analytic derivative
techniques. This should be applicable to processes involving SOC for light elements,
such as spin-crossing reactions and phosphorescence. Moreover, the analytic energy
gradient for excited states, ionized states, or electron-attached states is also of great
importance in locating minimum energy structures or transition-state structures of
heavy element compounds, as well as calculating other first-order properties, such
as EPR g-tensor when SOC is already considered in calculating wave functions.
Effects of SOC on structures have been ignored in most calculations mainly due to
a lack of available analytic energy gradient when SOC is present. In fact, it could be
important when several states with different symmetries are close to each other, even
if the system does not contain very heavy elements. Recent investigation indeed
shows that the geometries of ground and the lowest excited states for CH3IC are
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affected to a large extent by SOC [54] due to coupling between the close-lying
2A0 and 2A00 states. Availability of analytic energy gradient would greatly facilitate
investigation of structures for such molecules.
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Abstract

High-accuracy calculations of atomic properties of the heaviest elements, up
to element 122, are reviewed. The properties discussed include ionization
potentials, electron affinities, and excitation energies, which are associated with
the spectroscopic and chemical behavior of these elements and are therefore
of considerable interest. Accurate predictions of these quantities require high-
order inclusion of relativity and electron correlation, as well as large, converged
basis sets. The Dirac-Coulomb-Breit Hamiltonian, which includes all terms up
to second order in the fine-structure constant ˛, serves as the framework for
the treatment; higher-order Lamb shift terms are considered in some selected
cases. Electron correlation is treated by the Fock-space coupled cluster method,
enhanced by the intermediate Hamiltonian scheme, allowing the use of large,
converged model (P ) spaces. The quality of the calculations is assessed by
comparison with available experimental information. Very good agreement is
obtained, usually within a few hundredths of an eV, and similar accuracy is
expected for the superheavy elements (SHEs), with Z
104, for which exper-
imental values are scarce. Many of the properties predicted for these species
differ significantly from what may be expected by straightforward extrapolation
of lighter homologs, demonstrating that the structure and chemistry of SHEs are
strongly affected by relativity. The major scientific challenge of the calculations
is to find the electronic structure and basic atomic properties of the SHE and
assign its proper place in the periodic table. Significant recent developments
include joint experimental-computational studies of the ionization energies of At
and Lr, with excellent agreement of experiment and theory. For Lr, calculations
were required not only for comparison with experiment; the extraction of the
ionization potential from experimental data depended on reliable estimates of
atomic excitation energies, obtainable from theory.

Keywords
Heavy elements • Relativity • Electron correlation • Coupled cluster methods

Introduction

The experimental study of heavy and superheavy elements presents considerable
difficulties. Many of these elements are rare, toxic, or radioactive. Most actinides,
starting with Np, and all transactinides or superheavy elements (SHEs), with
Z
104, are produced in accelerators, many of them in minute quantities or with
short lifetimes [1], limiting their experimental study. Atomic and chemical studies
of the heaviest elements shed light on the lower part of the periodic table, revealing
trends which may differ from those shown by lighter elements. Their properties
cannot always be estimated by simple extrapolation of the relevant group in the
periodic table. One fundamental aim of experiment is to reveal the similarities and
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differences in the chemistry of the heaviest elements and their lighter homologs.
Relativity and in some cases quantum electrodynamics (QED) are known to strongly
affect their valence electron shells and, hence, their chemical behavior, causing
significant deviations from the trends exhibited by the group. In particular, the
relative energies of orbitals may be affected, modifying the electron configurations
of atomic ground and excited states. While some chemistry of these elements
can be studied in single-atom experiments, spectroscopy usually requires larger
amounts of the relevant species. Important atomic properties, such as ionization
potentials (IP), electron affinities (EA) and excitation energies (EE), have not yet
been measured for the heavier elements, and theoretical investigations are the only
source of this information. This situation may be expected to change in the near
future, as indicated by several joint experimental-theoretical efforts involving the
spectroscopy of these elements reported in recent years. The excitation spectrum of
Fm, using a weighable quantity of an isotope with half-life of 20 h, was measured
and calculated in 2003 [2], with very good agreement of the two approaches. More
recent joint research established the IP of At in 2013 [3]. Of particular interest is
the 2015 publication of the IP of Lr, the heaviest actinide [4], using an isotope with
a half-life of 27 s and a slow production rate of one atom every few seconds. In
this case, theory was important not only for comparing experimental and calculated
IPs; the extraction of the experimental IP from the measured data relied on the
2007 high-precision calculation of the excitation energies [5]. Excellent agreement
between experimental and computed IPs was found (see section “Experimental–
Computational Collaborative Research: The IPs of At and Lr”). Theory can reveal
the contributions of electron correlation, relativistic, and QED effects to different
atomic and chemical properties. These effects are often large and nonadditive,
and their contributions are complicated by the multireference character of many
electronic states, presenting severe challenges to theoretical and computational
methodology.

Theoretical investigations provide a very powerful, relatively inexpensive, radia-
tion free, and in many cases the sole alternative to experimental research of SHEs.
Indeed, advanced state-of-the-art computational methods, such as those discussed
below, can nowadays provide theoretical predictions of atomic properties with an
accuracy comparable or even superior to experiment. The high-level first-principles
approaches designed to benchmark the heavy and superheavy elements should be
based on size-extensive, size-consistent, and balanced treatment of the nondynamic
electron correlation, due to virtual states with energy close to the state studied, and
dynamic correlation, coming from all other virtual states. In particular, they should
include relativity right from the outset, at a level consistent with the treatment of
electron correlation.

The currently known nuclear, atomic, and chemical properties of the heaviest
elements were summarized in a recent book [6]. Reviews of theoretical aspects are
also available [7]. The RTAM searchable database [8] provides an up-to-date list of
relativistic calculations for atoms and molecules.
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Methodology

The methods used below have been presented earlier. Here we give only a short
account of the basic equations which provide the framework for the relativistic
atomic structure calculations described below. More extensive presentations may
be found in [9].

The Relativistic Hamiltonian

The relativistic many-electron Hamiltonian cannot be written in closed form; it
may be derived perturbatively from quantum electrodynamics [10]. The simplest
analytical form is the Dirac-Coulomb (DC) Hamiltonian, where the nonrelativistic
one-electron terms in the Schrödinger equation are replaced by the one-electron
Dirac operator hD ,

HDC D
X
i

hD.i/C
X
i<j

1=rij ; hD D c˛ � p C ˇc2 C Vnuc: (1)

˛ and ˇ are the four-dimensional Dirac matrices, and Vnuc is the nuclear attraction
operator, with the nucleus modeled as a point or finite-size charge. Only the one-
electron terms of the DC Hamiltonian are relativistic, and the two-electron repulsion
remains in the nonrelativistic (noncovariant) form. The lowest-order correction
to the two-electron term in Coulomb gauge is the frequency-independent Breit
operator

B12 D �1
2
Œ˛1 � ˛2 C .˛1 � r12/ � .˛2 � r12/=r212�=r12; (2)

giving rise to the Dirac-Coulomb-Breit (DCB) Hamiltonian

HDCB D
X
i

hD.i/C
X
i<j

.1=rij C Bij /: (3)

All equations are in atomic units. The negative-energy solutions of these Hamil-
tonians are eliminated by the projector operator �C, yielding the no-virtual-pair
approximation (NVPA) [11] with the projected Hamiltonians HCDC and HCDCB,

HCDCB D
X
i

hD.i/C�C
X
i<j

.1=rij C Bij /�C: (4)

HCDCB is correct to second order in the fine-structure constant ˛ and is expected to
give highly accurate results for all neutral and weakly ionized atoms [12]. Higher
quantum electrodynamic (QED) terms are required for strongly ionized species and
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may also be necessary for very high-Z elements. An up-to-date review of Lamb shift
energy calculations in superheavy atoms may be found in [13].

The One-Electron Equation

The no-virtual-pair DCB Hamiltonian (4) is often used as a starting point for vari-
ational or many-body relativistic calculations [14]. The computational procedure
is similar to the nonrelativistic case, with the Hartree-Fock orbitals replaced by
the four-component Dirac-Fock-Breit (DFB) functions. The spherical symmetry
of atoms leads to the separation of the one-electron equation into radial and spin-
angular parts. The radial four-spinor has the so-called large component Pn� in the
upper two places and the small component Qn� in the lower two. The quantum
number � (with j�j D j C 1=2) comes from the spin-angular equation, and n is the
principal quantum number, which counts the solutions of the radial equation with
the same �. The DFB equation has the form

F��n� D "n��n�; �n� D
 
Pn�.r/

Qn�.r/

!
; (5)

where the one-electron DFB operator F� is

F� D
 
Vnuc C ULL c˘� C ULS

c˘C� C USL Vnuc C USS � 2c2
!
; (6)

˘� D �d=dr C �=r; ˘C� D d=dr C �=r: (7)

The superscriptsL; S refer to the large and small components, respectively, and Vnuc

is the nuclear attraction potential. The point-charge model employed in light atom
calculations gives rise to significant errors for heavy elements, and the finite extent
of the nucleus must be considered. Several models for the distribution of the nuclear
charge are commonly used in the literature.In the uniform charge distribution model,
for example, the charge of a nucleus of atomic mass A is distributed uniformly over
a sphere with radius R D 2:2677 � 10�5A�1=3. The nuclear potential for a nucleus
with charge Z is then

Vnuc D
 �Z=r for r > R
�.Z=2R/.3 � r2=R2/ for r 	 R: (8)

Two other commonly used nuclear potentials employ either a Fermi or Gaussian
charge distribution. Dirac-Fock calculations for all elements up to Mt (E109) [15]
found that significant differences exist between point-charge and finite nuclei, while



830 E. Eliav et al.

Table 1 Effect of nuclear model on DF calculated properties of Fm (E100). Values from Ref. [15].
Absolute and percent differences are shown. The finite nuclear models used include the Fermi,
Gaussian, and uniformly charged sphere distributions. Energies in hartree, distances in bohr units

Largest differences between

Point and finite nuclei Finite nuclear models

Total energy 42(0.12 %) 0.53(0.0015 %)

1s orbital energy 16(0.3 %) 0.20(0.0038 %)

7s orbital energy 6�10�4(0.3 %) 7�10�6(0.0034 %)

hri of 1s 1.2�10�4(0.24 %) 1.5�10�6(0.0030 %)

hri of 7s 0.010(0.24 %) 1.2�10�4(0.0029 %)

hr�1i of 1s 1.6(1.1 %) 0.024(0.016 %)

hr�1i of 7s 9�10�4(0.3 %) 1.1�10�5(0.004 %)

the three finite nuclei models give very similar values. Table 1 lists some results
for atomic Fm. The numerical effect of choosing a different finite nuclear model
is two orders of magnitude smaller than the change caused by going from a finite
to a point-charge nucleus. These results are typical, indicating that a finite nucleus
should be used, but the choice of the exact model is secondary.

The terms ULL;ULS , etc. in the DCB operator (6) represent the one-body
mean-field potential, which approximates the two-electron interaction in the Hamil-
tonian. Similar procedures appear generally in SCF methods. Here [Eq. (6)], the
U interactions include the Breit term (2), in addition to the electron repulsion
1=rij . The radial functions Pn�.r/ and Qn�.r/ may be obtained by numerical
integration or by expansion in a basis (for more details, see [16]). Since the
Dirac Hamiltonian is not bound from below, a “variational collapse” may occur
if the correct boundary conditions are not properly considered, where admixture of
negative-energy solutions may yield energies much below experimental. To avoid
this collapse and to keep the variational minimax procedure stable, the basis sets
used for expanding the large and small components must obey “kinetic balance”
[17]. In the nonrelativistic limit (c !1), the small component should be related to
the large component by

Qn�.r/ D .2c/�1˘C� Pn�.r/; (9)

where ˘C� is defined in (7). The simplest way to ensure kinetic balance is to derive
the small-component basis functions from those used to span the large component
by

	S�j D ˘C� 	L�j : (10)

It has been shown [18] that G-spinors, with functions spanned in Gaussian-type
functions chosen according to (10), satisfy kinetic balance for finite c values if the
nucleus is modeled as a uniformly charged sphere.
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Electron Correlation: Fock-Space (FS) and Intermediate Hamiltonian
(IH) Coupled Cluster

The relativistic coupled cluster (CC) approach in global (usually Gaussian) basis
sets has been first implemented in the 1990s [19] and has since become one of
the most powerful and generally applicable electron correlation methods for bound
states. The CC method is an all-order, size-extensive, systematic, and very accurate
many-body approach, as has been shown in many benchmark applications of 4-
component relativistic CC methods to heavy and superheavy atoms and molecules.
Multireference variants of relativistic 4-component CC methods capable of handling
quasi-degeneracies, which are important for open-shell heavy atomic and molecular
systems, have also been developed in recent years. In particular, the multireference
Fock-space or valence-universal CC scheme [20,21] is applicable to systems with a
variable number of particles and is an ideal candidate for merging with QED theory
to create an infinite-order size-extensive covariant many-body method applicable
to systems with variable numbers of fermions and bosons [9]. The FSCC gave
remarkable agreement with experiment for many ground and excited state properties
of heavy systems [9, 22]. This success makes the scheme a useful tool for reliable
predictions of the structure and spectrum of superheavy elements, which are difficult
to access experimentally.

The Dirac-Coulomb-Breit Hamiltonian HCDCB may be rewritten in second-
quantized form [11, 23] in terms of normal-ordered products of spinor creation and
annihilation operators frCsg and frCsCutg,

H D HCDCB � h0jHCDCBj0i D
X
rs

frsfrCsg C 1

4

X
rstu

hrsjjtuifrCsCutg; (11)

where

hrsjjtui D hrsjtui � hrsjuti; (12)

hrsjtui D
Z
dx1dx2��r .x1/��s .x2/.r�112 C B12/�t .x1/�u.x2/: (13)

Here frs and hrsjjtui are, respectively, elements of the one-electron Dirac-Fock-
Breit and the antisymmetrized two-electron Coulomb-Breit interaction matrices
over Dirac four-component spinors. In this re-formulation, the effect of the pro-
jection operators �C is taken over by normal ordering, denoted by the curly braces
in (11), which requires annihilation operators to be moved to the right of creation
operators as if all anticommutation relations vanish. The Fermi level is set at the top
of the highest occupied positive-energy state, while the negative-energy states are
simply ignored.

The development of a general multi-root multireference scheme for treating
electron correlation effects usually starts from a consideration of the Schrödinger
equation for a number (d ) of target states,

H�˛ D E˛�˛ , ˛ D 1; : : : ; d : (14)
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The physical Hamiltonian is divided into two parts, H D H0 C V , so that V is a
small perturbation to the zero-order Hamiltonian H0, which has known eigenvalues
and eigenvectors, H0j�i D E�

0 j�i.
The case of exact or quasi-degeneracy, occurring in many open-shell heavy com-

pound systems, involves the equality or near equality of some energy values E˛
0 . By

adopting the NVPA approximation, a natural and straightforward extension of the
nonrelativistic open-shell CC theory emerges. This multireference valence-universal
Fock-space coupled cluster approach is presented here briefly; a more detailed
description may be found in [20, 21]. The FSCC method defines and calculates
an effective Hamiltonian in a d -dimensional model space P D P j�i h�j ; � D
1; ::; d , comprising the most strongly interacting zero-order many-electron wave
functions. All other functions are in the complementary Q-space, so that P CQ D
1. All d eigenvalues of Heff coincide with the relevant eigenvalues of the physical
Hamiltonian,

Heff�
˛
0 D E˛�˛

0 ; ˛ D 1; : : : ; d : (15)

The functions �˛
0 D

P
� c

a
�j�i, with ˛ D 1; : : : ; d , describe the projections P�˛ ,

which constitute the major part of �˛ . The effective Hamiltonian has the form [24]

Heff D PH˝P; Heff D H0 C Veff: (16)

˝ is the normal-ordered wave operator, mapping the eigenfunctions of the effective
Hamiltonian onto the exact ones, ˝�˛

0 D �˛ , ˛ D 1; : : : ; d . It satisfies
intermediate normalization, P˝P D P . The effective Hamiltonian and wave
operator are connected by the generalized Bloch equation, which may be written
for a complete model space P in the compact linked form [24]

QŒ˝;H0�P D Q.V ˝ �˝Heff/linkedP: (17)

˝ is parametrized exponentially in the coupled cluster method. A particularly
compact form is obtained with the normal-ordered form ˝ D fexp.S/g.

The Fock-space approach starts from a reference state (closed-shell in our
applications, but other single-determinant functions may also be used), correlates
it, and then adds and/or removes electrons one at a time, recorrelating the whole
system at each stage. The sector .m; n/ of the Fock space includes all states
obtained from the reference determinant by removing m electrons from designated
occupied orbitals, called valence holes, and adding n electrons in designated virtual
orbitals, called valence particles. The practical current limit is mC n 	 2, although
higher sectors have also been considered [25]. The excitation operator S , defined
by the exponential parametrization of ˝, is partitioned into sector operators S DP

m	0
P

n	0 S.m;n/. This partitioning allows for partial decoupling of the open-shell
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CC equations according to the so-called subsystem embedding condition [20]. The
equations for the (m; n) sector involve only S elements from sectors .k; l/ with
k 	 m and l 	 n, so that the very large system of coupled nonlinear equations
is separated into smaller subsystems, which are solved consecutively: first, the
equations for S.0;0/ are iterated to convergence, the S.1;0/ (or S.0;1/) equations are
then solved using the known S.0;0/, and so on. This separation, which is exact,
reduces the computational effort significantly. The effective Hamiltonian (16) is also
partitioned by sectors. An important advantage of the method is the simultaneous
calculation of a large number of states.

The FSCC equations for a particular .m; n/ sector of the Fock space are
derived by inserting the normal-ordered wave operator into the Bloch equation (17).
The final form of the FSCC equation for a complete model space includes only
connected terms [24],

QŒS
.m;n/

l ;H0�P D Qf.V ˝ �˝Heff/
.m;n/

l gconnP; (18)

H
.m;n/
eff D P .H˝/.m;n/conn P: (19)

After converging the FSCC equation (18), the effective Hamiltonian (19) is
diagonalized, yielding directly the low-lying transition energies. The effective
Hamiltonian in the FSCC approach has diagonal structure with respect to the
different Fock-space sectors. From (19) it follows that two Fock-space sectors
belonging to a common Hilbert space, with the same net number of particles, e.g.,
(0,1) and (1,2), do not mix even if they have strongly interacting states. This means
that important nondynamic correlation effects are only approximated. The mixed-
sector CC [26] can eliminate this problem.

The FSCC equation (18) is solved iteratively, usually by the Jacobi algorithm. As
in other CC approaches, denominators of the form .EP

0 �EQ
0 / appear, originating in

the left-hand side of the equation. The well-known intruder state problem, appearing
when some Q states are close to and strongly interacting with P states, may
lead to divergence of the CC iterations. To avoid this problem, a generalization
of the effective Hamiltonian, the intermediate Hamiltonian (IHFSCC) approach
[27, 28], has been developed in recent years. It eliminates intruder state problems
caused by energy overlap of P and Q spaces, which spoils the convergence of
the CC iterations, and allows thereby much larger model spaces, with enhanced
applicability and accuracy. An additional advantage of the ability to use extended
model spaces may be reducing the need for including high excitation levels in the
formalism. High excitations (triple and higher) with large contributions are usually
limited to a small group of virtual orbitals. If such orbitals are brought into P ,
all excitations involving them are included to infinite order by diagonalizing the
effective Hamiltonian, avoiding the need for the (usually expensive) treatment of
their contribution to dynamical correlation. Many of the calculations reported below
resort to this approach.
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Applications

Relativistic and correlation effects are known to strongly influence the structure
and properties of heavy elements and to be nonadditive, as demonstrated, e.g., in
our early work on the gold [29] and lanthanum [30] atoms. The reasons for these
large effects are largely understood: the spatial distribution of the relativistic orbitals
differs significantly from that of nonrelativistic counterparts (s and p orbitals
undergo contraction, whereas d and f orbitals expand); see, however, the discussion
in Ref. [31]. These changes affect not only the orbital energies; they also modify
the electron correlation, thereby making relativistic and correlation corrections
nonadditive. Additional complications and challenges arise from the size of the
systems, as well as the often close energetic proximity of many electronic states.

Many calculations using the NVPA Fock-space CC method have been carried out
over the last 20 years for heavy and superheavy atomic and molecular systems, with
dozens of transition energies calculated per system. Most atomic results agreed with
available experiment within a few hundredths of an eV. Molecular applications are
less precise, due to their lower symmetry, which limits the molecular basis sets. Still,
our calculations of heavy molecular systems, including actinide compounds, yield
state-of-art benchmark molecular parameters. A more detailed description may be
found in the original publications and the recent reviews [9].

The spherical symmetry of atoms, which leads to angular decomposition of
the wave function and coupled cluster equations, is used at both the Dirac-Fock-
Breit [23] and CC [29, 32] stages of the calculation. The energy integrals and
CC amplitudes, which appear in the Goldstone-type diagrams defining the CC
equations, are decomposed in terms of vector coupling coefficients, expressed by
angular momentum diagrams, and reduced Coulomb-Breit or S matrix elements,
respectively. The reduced equations for single- and double-excitation amplitudes
are derived using the Jucys-Levinson-Vanagas theorem [24] and solved iteratively.
This technique makes possible the use of large basis sets with high l values, as a
basis orbital gives rise to two functions at most, with j D l ˙ 1=2, whereas in
Cartesian coordinates the number of functions increases rapidly with l . Typically
we go up to h (l D 5) or i (l D 6) orbitals, but higher orbitals (up to l D 8) have
also been used. To account for core-polarization effects, which may be important in
many systems, we correlate at least the two outer shells, usually 20–50 electrons, but
as many as 119 electrons were correlated for the anion of element 118 [33]. Finally,
uncontracted Gaussians are used, since contraction leads to problems in satisfying
kinetic balance and correctly representing the small components. On the other hand,
it has been found that high-energy virtual orbitals have little effect on the transition
energies calculated, since these orbitals have nodes in the inner regions of the atom
and correlate mostly the inner-shell electrons, which we do not correlate anyway.
These virtual orbitals, with energies above 80 or 100 hartree, are often eliminated
from the CC calculation, constituting, in effect, a post-SCF contraction.

The applications presented below involve heavy and superheavy atomic systems
and show the power of the relativistic FSCC approach.
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Experimental-Computational Collaborative Research:
The IPs of At and Lr

Collaborative determinations of the IPs of At [3] and Lr [4] have been reported
recently. These are more difficult experimentally than the earlier case of Fm [2],
where an isotope with half-life of 20.1 h was available vs. 7.2 s for 199At and 27 s
for 256Lr. The IP of At was measured by resonance ionization laser ion source
(RILIS) studies, giving the experimental value IPD9.317510(8) eV, compared with
the MCSCF value of 9.24(15) eV and the CC result of 9.315(12) eV [3].

The experimental determination of the Lr IP is made even more difficult by
the very slow production rate of the element. It was measured by a surface
ionization process taking place on a tantalum surface at very high temperature
(2700 and 2800 K). The Lr atoms coming out of the accelerator, one atom every
few seconds, were trapped in cavities on the surface, and the ionized atoms
were extracted and mass-separated. The value of the IP was determined from the
measured thermoionization data using the thermodynamic partition function Q,
which depends on atomic excitation energies [4]. These energies are not available
experimentally; they were obtained from the 2007 IHFSCC work of Borschevsky
et al. [5]. The excitation spectrum of Lu, the lighter homolog of Lr, was also
calculated in that work, giving an excellent agreement with experiment, with a
mean absolute error of 0.05 eV for the lowest 20 excitations; similar accuracy
may be expected for Lr. To obtain such accuracy, basis sets and model spaces
were augmented to convergence. The final basis included 37s31p26d21f 16g11h6i
Gaussian spinors; the Pm included 2s2p2d orbitals, and the full P included all the
combinations of 6s5p4d2f 1g orbitals.

The IHFSCC calculations assign the 7s27p1=2 configuration as the ground state
of Lr, in contrast to the 6s25d3=2 ground state of Lu. This is due to the strong
relativistic effects, which push the 7p1=2 orbital below the 6d . Thus, while the
excitation energy in Lu corresponding to the 5d3=2 ! 6p1=2 transition is 4136 cm�1
[34], in Lr the order of the two states is reversed, and the predicted energy of the
6d3=2 ! 7p1=2 transition is �1436 cm�1 (Table 2).

The IHFSCC calculations provide a prediction of the Lr IP (Table 2). As the
experimental IP is extracted relying on transition energies obtained by the same
approach, comparison between the experimental and computed IP values may
raise questions. Moreover, single-reference CCSD(T) is a better scheme for the
IPs in question, which involve no quasi-degeneracy, unlike the excited states. An
independent calculation of the Lr IP was therefore carried out, using the relativistic
single-reference coupled cluster method with single, double, and perturbative triple
excitations [SRCCSD(T)]. This was the approach applied in the study of the At IP
discussed above. For Lr we used a basis set of 25s23p15d14f 6g3h Gaussians and
corrected for the Breit contribution and the Lamb shift. The calculations confirmed
the earlier identification of 7s27p1=2 as the ground state of the atom and put the Lr IP
at 4.963(15), in excellent agreement with the newly measured value of 4:96C0:08�0:07 eV.
This IP is one of the lowest in the periodic table, lower than that of Na (but higher
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Table 2 Calculated IPs and excitation energies of Lu and Lr (cm�1); experimental values for Lu
are taken from Ref. [34]

Lu Lr

State IHFSCC Exp. State IHFSCC

Ionization potential

6s25d 2D3=2 42836 43762 7s27p 2P1=2 39466

Excitation energies

6s25d 2D5=2 1945 1994 7s26d 2D3=2 1436

6s26p 2P1=2 4080 4136 2D5=2 5106
2P3=2 7383 7476 7s27p 2P3=2 8413

6s27s 2S1=2 23730 24126 7s28s 2S1=2 20118

6s28p 2P1=2 30457 29430 7s28p 2P1=2 26111
2P3=2 30930 30489 2P3=2 27501

6s26d 2D3=2 31929 31542 7s27d 2D3=2 28118
2D5=2 32040 31714 2D5=2 28385

6s28s 2S1=2 33978 34610 7s29s 2S1=2 30119

6s25f 2F5=2 36595 36633 7s29p 2P1=2 32295
2F7=2 36595 36644 2P3=2 32840

6s28p 2P1=2 36005 36809 7s26f 2F5=2 32949
2P3=2 36119 37131 2F7=2 32950

than K), confirming the large relativistic stabilization and spatial contraction of the
7s shell. The publication of this research in Nature [4] prompted a wide response,
in particular regarding the structure of the periodic table, with suggestions that Lr
and its lighter homolog Lu should be put in group 3, below Sc and Y. Ongoing and
future progress in experimental techniques will probably lead to more collaborations
of this kind.

Ground State of Rutherfordium: Interplay of Relativity
and Correlation

The nature of the rutherfordium ground state has been a subject of interest for
a long time. Rf is the first transactinide; in analogy with the lighter group-4
elements, it should have the ground-state configuration [Rn]5f 146d27s2. Early
considerations and calculations [35] suggested that the relativistic stabilization of
the 7p1=2 orbital would yield a 7s27p21=2 ground state, and MCSCF calculations
including all possible distributions of the four external electrons in the 6d , 7s and
7p orbitals indicated a 6d7s27p ground state, with the lowest state of the 6d27s2

configuration higher by 0.5 or 0.24 eV. Dynamic correlation, largely omitted from
these MCSCF calculations, has been shown to play a significant role in determining
atomic excitation energies, reducing the average error in FSCC calculations of
Pr3C excitation energies by a factor of four relative to prior MCSCF results [36].
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Table 3 Excitation energies
(EE) and ionization potentials
(IP) in RfC and Rf (eV) [37]

RfC Rf

7s26d3=2 7s26d5=2 7s26d2 7s27p6d
2D3=2 IP 2D5=2 EE 3F2 IP 3D2 EE

MCSCF 13.47 5.30 �0.24

MCSCF �0.50

CCSD

l � 2a 13.37 0.79 5.15 �0.60

l � 3a 13.95 0.82 5.65 �0.11

l � 3 14.05 0.87 5.76 0.03

l � 4 14.20 0.90 5.90 0.17

l � 5 14.34 0.92 5.99 0.25

l � 6 14.37 0.92 6.01 0.27

l � 5b 14.34 0.87 5.99 0.27
a5f electrons not correlated
bWith Breit interaction

The FSCC method was therefore applied to Rf [37]. Starting from Rf2C with
the closed-shell configuration [Rn]5f 147s2, two electrons were added, one at a
time, in the 6d and 7p orbitals, to form the low-lying states of RfC and Rf. A
large basis set of 34s24p19d13f 8g5h4i G-spinors was used, and the external 36
electrons were correlated, leaving only the [Xe]4f 14 core uncorrelated. A series of
calculations, with increasing l values in the virtual space, was performed to assess
the convergence of the results. Some of the calculated transition energies are shown
in Table 3. Others may be found in the original publication [37].

The salient feature of the calculated transition energies is their monotonic
behavior with the amount of correlation included. The correlation of the 5f

electrons and the gradual inclusion of higher l virtual orbitals all increase the four
transition energies in Table 3, as well as those not shown here. The MCSCF results
fall invariably between the d and f limits. This makes sense, since the MCSCF
function optimizes the orbitals and CI coefficients in a space including configuration
state functions which correspond to all possible distributions of the four external
electrons in the 6d , 7s, and 7p orbitals. Nondynamic correlation, resulting from
interactions of configurations relatively close in energy, is thus described very well;
in contrast, the dynamic correlation, which is more difficult to include and requires
many thousands of configurations, is less well described and leads to the failure in
predicting the Rf ground state. The identity of the ground state is determined by the
sign of the excitation energy in the last column of Table 3. A negative energy means
that the 7s27p6d configuration is lower than 7s26d2 and is therefore the ground
state. From the calculations reported in Ref. [37], we estimate the CCSD converged
value for this energy at 0.30–0.35 eV, making the 7s26d2 state the ground state of
atomic Rf. State-of-the-art experiments with Rf confirmed [38] that the chemistry
of the atom is similar to that of Hf, which has a 6s25d2 ground state.

This example shows the intricate interplay of relativity and correlation. It is well
known that relativity stabilizes the p vs. d orbitals, while correlation has often
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the opposite effect. When both effects are important and the result not obvious a
priori, one must apply methods, such as relativistic CC, which treat relativity and
correlation simultaneously to high order.

Gold and Roentgenium (E111): Local Maximum
of Relativistic Effects

The gold atom exhibits very large relativistic effects on its chemical and physical
properties, due to the contraction and stabilization of the 6s orbital. The compact-
ness of the atom relative to its neighbors leads to a local maximum in relativistic
effects, called by Pyykkö the “gold maximum.” Nonrelativistic calculations lead
to large errors, including the reversal of the two lowest excited states [39]. Gold
was therefore selected as the first heavy atom to be treated by the CC method [29].
Two closed-shell states can be used as starting points for the Fock-space treatment,
defining the (0,0) sector, namely, AuC or Au�. Electrons are then added or removed
according to the schemes

AuC.0; 0/! Au.0; 1/! Au�.0; 2/; (20)

Au�.0; 0/! Au.1; 0/! AuC.2; 0/: (21)

The basis consisted of 21s17p11d7f Gaussian spinors, and correlated shells
included 4spdf 5spd6s. Table 4 shows the nonrelativistic, Dirac-Coulomb, and
Dirac-Coulomb-Breit total energies of the two ions. As expected, relativistic effects
are very large, over 1100 hartree. The nonadditivity of relativistic and correlation
corrections to the energy, discussed above, is apparent in Table 4. The correlation
energy of the 4spdf 5spd6s electrons increases significantly (in absolute value),
by nearly 0.1 hartree, upon going from the nonrelativistic to the relativistic
Hamiltonians, due to orbital contraction.

The various transition energies of the gold atom and its ions are shown and
compared with experiment [40] in Table 5. The nonrelativistic results have errors
of several eV. The CC values, on the other hand, are highly accurate, with an
average error of 0.06 eV. More recent (unpublished) values, obtained with a larger
31s26p21d17f 14g11h8i basis, are even closer to experiment, giving 9.17 eV for
the IP and 2.29 eV for the EA. The inclusion of the Breit interaction has a small

Table 4 Total energies of the closed-shell systems AuC and Au� (hartree), with nonrelativistic,
DC, and DCB Hamiltonians. Correlation includes 4s and higher shells

AuC Au�

Uncorrelated Correlation Uncorrelated Correlation

NR �17863.46301 �1.29756 �17863.68392 �1.37018

DC �19029.01322 �1.36150 �19029.32077 �1.46436

DCB �19007.42385 �1.36430 �19007.73063 �1.46690
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Table 5 CCSD transition energies in Au (eV). IP is the ionization potential, EA denotes electron
affinity, and EE is excitation energy relative to the ground state. FS denotes fine-structure splittings

NR DC DCB Expt. [40]

IP 5d106s 2S1=2 6.981 9.101 9.086 9.22

EE 5d96s2 2D5=2 5.301 1.115 1.150 1.136

5d96s2 2D3=2 5.301 2.661 2.669 2.658

5d106p1=2
2P1=2 3.313 4.723 4.720 4.632

5d106p3=2
2P3=2 3.313 5.193 5.184 5.105

FS 2D 0 1.546 1.519 1.522
2P 0 0.470 0.466 0.473

EA 5d106s2 1S0 1.267 2.278 2.269 2.31

Table 6 CCSD EEs, EAs, and IPs of element 111 (eV)

Transition DC DCB NR

EE 6d97s2 2D5=2! 6d97s2 2D3=2 2.719 2.687 0

6d97s2 2D5=2! 6d107s 2S1=2 3.006 2.953 �5.430

EA 6d97s2 2D5=2! 6d107s2 1S0 1.542 1.565 6.484

IP 6d97s2 2D5=2! 6d87s2 3D4 10.57 10.60 22.98

6d97s2 2D5=2! 6d97s 3D3 12.36 12.33 0.92

6d97s2 2D5=2! 6d10 1S0 15.30 15.23 �0.44

effect on the excitations energies, apart from some improvement of the fine-structure
splittings.

A major relativistic effect in the gold atom is the stabilization of the 6s orbital.
This is manifested by the energy separation between the 5d106s 2S ground state and
the 5d96s2 2D excited state. Looking at group 11 (coinage metal) atoms, the 2D

excitation energies of Cu are 1.389 (J D 5=2) and 1.642 (J D 3=2) eV, increasing
to 3.749 and 4.304 eV for Ag [40]. Were it not for relativity, one would expect
even higher energies for Au. Indeed, nonrelativistic CCSD (Table 5) puts the 2D

energy at 5.301 eV above the 2S ground state, in line with expectations. Relativistic
effects reduce this value radically, giving 1.150 and 2.669 eV for the excited 2D

sublevels, within 0.015 eV of experiment [40]. Even larger stabilization may be
expected for the next member of the group, element 111. The question arose whether
this stabilization would be sufficient to move the 2D5=2 level below the 2S1=2 and to
make it the ground state of the atom.

Calculations were carried out as for gold above, starting with the Rg� anion
as reference [41]. As expected, very large relativistic effects are observed, demon-
strated by the large contraction of the 7s orbital of neutral Rg (Fig. 1). The 7s orbital
energy of the anion goes down from �0.018 to �0.136 hartree, while the 6d goes
up from �0.355 to �0.186 (j D 3=2) and �0.080 (j D 5=2) hartree. Atomic
energies also show dramatic changes (see Table 6). Of particular interest to us is
the 6d97s2 2D5=2 state, predicted by nonrelativistic CCSD to lie 5.43 eV above the
6d107s 2S state, but reduced relativistically to 3 eV below the 2S , thus becoming
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Fig. 1 Relativistic and
nonrelativistic densities of Rg
(element 111) 7s orbital 0.
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the ground state. Note that the IPs of the atom show relativistic effects of 12–
15 eV! Similar effects were observed in Cn (E112) [42] and eka-thallium (E113)
[43], described below.

Cn (E112) and Eka-Tl (E113): What Chemistry?

The chemistry of mercury is determined by the simple electronic structure of its
atom and ions. The IPs and EEs were reproduced with high accuracy by relativistic
coupled cluster calculations [42]. The ground-state configuration of the Hg atom is
[Xe]4f 145d106s2, with a relatively high 4.67 eV excitation energy to the lowest
6s6p 3P1 level. The excited configurations of the mono- and dication may be
described by ionization of one or two 6s electrons of the neutral atoms, so that
no low-energy excited states exist. Application of the same method to Cn gave
a very different picture [42]. The ground state of CnC was found to be 6d97s2,
like that of the isoelectronic Rg (see above), with an excitation energy to the
6d107s level of only 1.6 eV, compared to 3.0 eV for Rg. The dication shows an
even more complex behavior, with strong mixing of the 6d87s2, 6d97s, and 6d10

configurations (see Table 7). The ground state is 6d87s2, but two excited states with
dominant 6d97s contributions are found within 0.2 eV. Since both open s and d
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Table 7 IPs and EEs of Cn
(E112) and its ions (eV)

State Energy

Cn, ground state 6d107s2 1S0
IP 11.97

CnC, ground state 6d97s2 2D5=2

IP 22.49

EE 6d107s 2S1=2 1.60

6d97s2 2D3=2 3.14

Cn2C, ground state 6d87s2 J D 4

EE 6d87s2; 6d97s J D 2 0.05

6d9.2D5=2/7s
3D3 0.19

6d10; 6d87s2 1S0 0.79

6d97s; 6d87s2 J D 2 1.39

shells can be present, the chemistry of this element may show characteristics of
either main group or transition elements.

A similar picture emerges from studies of Tl and eka-Tl (E113) [43]. Here it
is interesting to note the high electron affinity (0.68 eV) predicted for E113. The
reliability of this value is supported by the history of the Tl EA, which was quoted
at the time as 0.2˙0.2 eV [44]. Our calculations gave 0.4 eV, in contrast with earlier
CI [45] and MCSCF [46] values of 0.27–0.29 eV. Later experiments [47] gave
0.377(13) eV, in very good agreement with our value. The high electron affinity of
E113 raises the possibility of E113� compounds. Another major difference between
Tl and eka-Tl is the much reduced energies for dn.s C p/m ! dn�1.s C p/mC1
excitations in the latter. In particular, the 6d97s2 level of E1132C is only �0.1 eV
above the 6d107s ground state [43]; the corresponding energy in Tl2C is 8.2 eV. It is
therefore possible that the E1132C ion will form molecules resembling both Cu2C
(3d9) and TlC (6s2) compounds. For further details see [43].

Fl (Element 114): Exotic Chemical Properties?

Here we compare the properties of Fl with those of lead and lighter group-4
elements. The intermediate Hamiltonian method is used to allow large P spaces and
higher accuracy [48]. Two series of calculations were carried out. The first started
from the closed-shell M4C ion, where M stands for Pb or Fl, adding two electrons
in the Fock-space scheme

M4C.sector 0/! M3C.sector 1/! M2C.sector 2/: (22)

Thirty-two electrons [.n � 1/s2.n � 1/p6.n � 1/d10.n � 2/f 14, with n D 6 for
Pb and 7 for Fl] are correlated in the reference state. We were interested in the few
lowest states only for these sectors, so a relatively small Pm was taken, including
only states with ns and np electrons added to the reference. The full P space was
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considerably larger, including in addition the next four s, four p, four d , three
f , and two g orbitals. In this case, the traditional FSCC converges with a model
space constructed from the ns and np orbitals, and the advantage of IHFSCC lies in
enhancing accuracy by allowing the larger P space.

The closed-shell M2C ns2 state is taken as reference in the second Fock-space
sequence,

M2C.sector 0/! MC.sector 1/! M.sector 2/: (23)

Here 34 electrons are correlated in the reference state. Basis sets going to l D 8were
used, with 35s26p21d16f 11g9h9i7k7l Gaussian orbitals. The FSCC iterations
converge only when the np orbitals serve as the sole valence particles, i.e., only
ns2np2 states could be obtained. The IHFSCC method allows many more valence
orbitals and, consequently, many more states. The Pm for lead included all states
constructed from the 7s, 8s, 6p, 7p, and 6d orbitals; P included, in addition, states
with occupied 9s–12s, 8p–11p, 7d–9d , 5f –7f , and 5g orbitals. For Fl (E114) we
were interested in fewer states, so that Pm was smaller, with 8s, 7p, and 8p orbitals;
9s–13s, 9p–12p, 7d–10d , 6f –8f , and 5g orbitals complete the P space.

The ionization potentials and low excitation energies of the lead and Fl atoms
and cations are reported, together with Pb experimental values [40], in Table 8.
For easy comparison, terms are listed in the LS coupling as in Moore’s tables
[40], although the validity of this coupling scheme for Pb, and even more so for
Fl, is questionable; the only good quantum number in the reported levels (and in
the calculation procedures) is J . All Pb values are within a few hundredths of an
eV of experiment. This close agreement indicates that the Fl values should provide
good predictions for the electronic spectrum of the superheavy element. Many more
transition energies are given in the original paper [48], showing similar agreement. It
is noteworthy that many Pb states can be obtained accurately by the IHFSCC method
(the average error for the 22 Pm excitations is 602 cm�1 or 1.6 %), while only the
6s26p2 states are accessible by traditional FSCC. The predicted transition energies
of Fl given in the same table show IPs higher by 0.2–0.3 eV than those reported
by Seth et al. [49]. Our values are probably more accurate, due to the inclusion
of the Breit term and the use of a larger basis and a much extended model space,
which more than compensates for the perturbative inclusion of triples. The transition
energies reported here should be roughly as accurate as those of Pb, with errors of
a few hundredths of an eV, and should therefore provide good predictions for future
experimental values.

The most prominent feature of Table 8 is that the ionization and excitation
energies of Fl are much higher than corresponding Pb values. Table 9 collects the
first four ionization potentials of all group-14 elements (experimental values [50] for
C–Pb, calculated for Pb and Fl), and Fig. 2 shows the first IPs of these elements. The
usual trend of IPs decreasing for heavier atoms holds from C to Sn, but is reversed
from Pb on, with large increases for Fl, sufficient to make its IPs larger than those
of Si. This reversal is due to the relativistic stabilization of the valence s and p1=2
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Table 8 IPs and EEs of lead and Fl (eka-lead) cations and neutral species (cm�1). n is 6 for Pb
and 7 for Fl

Pb Fl
Transition Expt. [40] Calc. Calc.

M3C. Ground state .n� 1/d10ns 2S1=2
IP ! .n� 1/d10 1S0 341350 341748 373208

EE ! .n� 1/d10np1=2 2P1=2 76158 76839 86676

! .n� 1/d10np3=2 2P3=2 97219 97803 138047

M2C. Ground state .n� 1/d10ns2 1S0
IP ! .n� 1/d10ns 2S1=2 257592 257617 288256

EE ! .n� 1/d10nsnp1=2 3P0 60397 60396 73135

! 3P1 64391 64451 79832

! .n� 1/d10nsnp3=2 3P2 78985 78964 119597

! 1P1 95340 95716 135170

! .n� 1/d10np21=2 3P0 142551 143412 166645

MC. Ground state .n� 1/d10ns2np1=2 2P1=2
IP ! .n� 1/d10ns2 1S0 121243 121077 136074

EE ! .n� 1/d10ns2np3=2 2P3=2 14081 13885 39355

! .n� 1/d10ns2.nC 1/s 2S0 59448 59253 71993

Neutral M. Ground state .n� 1/d10ns2np21=2 1S0
IP ! ns2np1=2

2P1=2 59821 59276 68868

EE ! ns2np2 3P1 7819 7531 26342

! 3P2 10650 10307 28983

! 1D2 21458 20853 60956

! 1S0 29467 29259 67817

! ns2np1=2.nC 1/s 3P0 34960 34405 43111

! 3P1 35287 34711 43441

Table 9 Ionization potentials of group 14 elements (eV). Experimental data from the Handbook
[50], calculated data: present work

Experimental Calculated
C Si Ge Sn Pb Pb Fl

IP1 11:260 8:152 7:900 7:344 7:417 7:484 8:539

IP2 24:383 16:346 15:935 14:632 15:032 15:012 16:871

IP3 47:888 33:493 34:224 30:503 31:937 31:941 35:739

IP4 64:494 45:142 45:713 40:735 42:322 42:372 46:272

orbitals, which becomes stronger in the superheavy elements. The higher IPs of Fl
indicate it will be more inert and less metallic than lead.

More recently, extensive MCSCF calculations were carried out for the IPs
discussed here [51]. The limited treatment of correlation led to substantial deviations
from experimental values, between 0.4 and 1.4 eV for the four IPs of Pb, compared
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Fig. 2 First ionization
potentials of group 14
elements
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to the 0.02–0.07 eV shown in Table 9. The errors were extrapolated to obtain the
corrected IPs of Fl. The corrected first IP was 8.28 eV, 0.26 eV below the earlier
FSCC value [48], which is probably more accurate, due to the more extensive
inclusion of correlation. Similar differences occur for the other IPs. Other FSCC
calculations addressed the EA of Fl [52], found to be negative, and its adsorption
behavior on inert surfaces [53]; the latter is important in setting up experiments
studying the chemistry of this element.

Another atomic property of considerable interest is the dipole polarizability,
calculated for Fl (and also for Cn) in [53]. This property was calculated at
the CCSD(T) level for the group-14 elements and measured for Sn and Pb by
Thierfelder et al. [54]. Good agreement with experimental values was obtained,
although the latter have rather large error bounds. The calculations demonstrate the
importance of relativity and electron correlation, as well as the nonadditivity of the
two effects, in the case of Fl.

Element 118: Can a Rare Gas Have Positive Electron Affinity? How
Important Is QED?

One of the most dramatic effects of relativity is the contraction and concomitant
stabilization of s orbitals. An intriguing question is whether the 8s orbital of element
118, the next rare gas, would be stabilized sufficiently to give the atom a positive
electron affinity. Using the neutral atom Dirac-Fock orbitals as a starting point raises
a problem, since the 8s orbital has positive energy and tends to “escape” to the most
diffuse basis functions. This can be avoided by calculating the unoccupied orbitals
in an artificial field, obtained by assigning partial charges to some of the occupied
shells. The nonphysical fields are then compensated by including an appropriate
correction in the perturbation operator. A series of calculations with a variety of
fields gave electron affinities differing by just a few wave numbers [55], from which
an electron affinity of 0.056(10) eV was deduced. It should be emphasized that
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correlated nonrelativistic or relativistic uncorrelated calculations yield no electron
affinity. Another point to note is that the Rn atom does not show a bound state of the
anion even at the relativistic CC level.

More recently, the issue of possible quantum electrodynamic (QED) effects
on this quantity was raised. The impetus was a calculation of QED effects on
the ionization potential of E119, which were estimated at 0.0173 eV [56], of the
same order as the calculated EA of 118. Thus, QED effects could change the EA
significantly, and their calculation has been undertaken [33]. An improved basis
set with 36s32p24d22f 10g7h6i uncontracted Gaussian-type orbitals was used,
and all 119 electrons were correlated, leading to a better estimate of the electron
affinity within the Dirac-Coulomb-Breit Hamiltonian, 0.064(2) eV [33]. Since the
method for calculating the QED corrections [56] is based on the one-electron
orbital picture, the 8s orbital of E118 was extracted from the correlated wave
function by

�8s.r/ D h�CC
118j�CC

118�i�h�CC
118j�CC

118ih�CC
118� j�CC

118�i�1=2 : (24)

The numerator of Eq. (24) is a configuration-space integral involving the product
of ��118, a 118-electron function, with the 119-electron function �118� ; the inte-
gration is carried out over the coordinates of 118 electrons. It may be written
explicitly as

R
�CC�
118 .1; : : : ; 118/ �

CC
118�.1; : : : ; 119/ d1 : : : d118, with the result

being a one-electron function. The normalization integrals in the denominator
involve integration over all electrons, 118 for the first integral and 119 for the
second. Using �8s and the total electron density, the self-energy and vacuum
polarization terms were calculated, giving a total QED effect of 0.0059(5) eV,
reducing the electron affinity by 9 % to 0.058(3) eV (for details see Ref. [33]).
This is the largest relative QED effect found so far for neutral or weakly ion-
ized species, confirming the importance of QED corrections for superheavy ele-
ments.

Beginning of the Eighth Period: Relativistic Effects Increase

Recent studies addressed the IPs, EAs, dipole polarizabilities, and other properties
of elements 119 [57] and 120 [58]. As expected, stronger relativistic effects
are observed. In general, properties in group-1 and group-2 elements change
monotonically from row 2 to row 6 in the periodic table, due to the more diffuse
s orbitals, reaching an extremum in Cs and Ba, respectively; the trend then breaks,
with the properties going in the opposite direction for heavier elements. The changes
observed going from row 6 to 7 increase for the eighth period elements. As an
example, the dipole polarizabilities of group-1 elements are (in atomic units) 163
for Na, 291 for K, 319 for Rb, 401 for Cs, 311 for Fr, and 170 for E119, where the
first four are experimental and the last two are calculated [57]. Other properties are
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discussed in the original papers. These calculations made it possible to estimate the
adsorption enthalpy of the two SHEs on Teflon, indicating that it is low enough to
allow an easy transport of these atoms through Teflon capillaries to the chemistry
set up.

Electron Affinities of E119 and Other Alkali Atoms: Accuracy at the
5 meV Level

Alkali atoms are conceptually simple one-valence-electron systems and have
consequently attracted many experimental and theoretical studies. The electron
affinities of the atoms up to Cs are known with great precision [44], but only a
semiempirical value of 492 meV (with an uncertainty of 2.2 %) is available for Fr
[59]. An interesting aspect of the alkali systems is the suggestion made some years
ago [60–62] that Cs� might have bound excited states, an idea refuted by more
recent experimental [63] and theoretical [59] work. One of the first applications of
the relativistic Fock-space coupled cluster (FSCC) method has been to transition
energies of alkali atoms [32]. Excellent agreement with experiment was obtained
for ionization potentials (an average error of 0.09 %) and excitation energies (0.2 %
error), but electron affinities, particularly those of the heavier elements in the group,
were less satisfactory, with errors of 4–9 % for K, Rb, and Cs. The newly developed
intermediate Hamiltonian method allowed more extensive calculations with much
larger P spaces, and the problem was therefore revisited [64].

The model spaces employed are believed to converge to within a few meV; they
are listed in Table 10. The number of correlated electrons in the cation reference
states varied from 8 in NaC up to 50 in E119C; corresponding anions have two
additional correlated electrons.

Calculated electron affinities are collected and compared with experiment in
Table 11. The power of the intermediate Hamiltonian method is demonstrated
by the excellent agreement with experiment. The Fock-space values start well
for Na, but errors increase to 5 %, 7 %, and 9 % for the heavier K, Rb, and Cs,

Table 10 Correlated electrons in the reference cations and structure of model spaces

Correlated electrons
Atom Number Orbitals Pm orbitals Pi orbitals

Na 8 2s2p 3–6s,3–5p,3–5d ,4f 7–10s,6–9p,6–7d ,5–7f

K 16 2s2p3s3p 4–7s,4–6p,3–5d ,4f 8–11s,7–10p,6–7d ,5–6f

Rb 26 3s3p3d4s4p 5–8s,5–7p,4–6d ,4f 9–12s,8–11p,7–8d ,5–6f

Cs 26 4s4p4d5s5p 6–9s,6–8p,5–7d ,4f 10–13s,9–12p,8–9d ,5–6f

Fr 40 4f 5s5p5d6s6p 7–10s,7–9p,6–8d ,5f 11–14s,10–13p,9–10d ,6–7f

E119 50 4f 5d6s6p6d7s7p 8–11s,8–10p,7–9d ,5–6f 12–15s,11–13p,10–11d ,7–8f
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Table 11 Electron affinities
of the alkali atoms (meV).
Fock-space (FS) and
intermediate Hamiltonian
(IH) compared with
experimental [44]
(semiempirical [59] for Fr)
values

% error
Atom Expt. FS IH FS IH

Na 547.9 549.1 549.9 0.3 0.4

K 501.5 525.4 506.8 4.8 1.1

Rb 485.9 519.3 490.8 6.9 1.0

Cs 471.6 516.0 474.6 9.4 0.6

Fr 492˙2.2 % 542.2 491.3

E119 717.1 662.5

respectively. IHFSCC values, on the other hand, are all within 5 meV or 1 % of
experiment. It should be noted that the FSCC function of the anions includes only
one determinant in the P space, whereas the IHFSCC P space includes several
thousand. The importance of these additional determinants (and of excitations from
them to Q) increases with the size of the alkali anion.

The excellent agreement with known experimental values enables us to propose
with confidence a reference value for the yet unmeasured electron affinity of Fr,
491˙5 meV. This is in agreement with the recent semiempirical value [59] of
492˙10 meV. It is interesting to note the increase of the electron affinity for the
heaviest alkali atoms, due to relativistic stabilization of the s orbitals. While the
EAs go down from Na to Cs, Fr exhibits a modest increase, and the superheavy
element 119 is predicted to have a much larger affinity, larger in fact than any other
alkali atom. This dramatic stabilization effect on the 8s orbital has been observed
for element 118, which is predicted to be the first rare gas with positive electron
affinity (see above).

Eka-actinium (E121) vs. Its Homologs La and Ac: When Is the Breit
Term Important?

Element 121 and its lighter homologs were studied by an early application of the
FSCC approach [30]. The IPs and EEs of the two light atoms are all within a few
hundredths of an eV of experiment (when available). The calculations for E121,
shown in Table 12, are expected to have similar accuracy. The interesting feature
exhibited by the latter is the relativistic stabilization of the 8p1=2 orbital. Table 12
compares Ac and E121 levels, showing that the ground state of the latter, 8s28p1=2,
differs from the ns2.n � 1/d3=2 ground states of La .n D 6/, Ac .n D 7/, and
the lighter Sc (n=4) and Y .n D 5/. Another finding involves the effect of the Breit
term on transition energies. It is rather small (0.01–0.02 eV) for most transitions, but
goes up to 0.1 eV for transitions involving f electrons. Similar behavior was found
in other heavy and superheavy atoms.
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Table 12 Ionization potential (IP) and excitation energies (EE) of elements Ac and eka-Ac
(E121) and their cations (eV) by the Dirac-Coulomb (DC) and Dirac-Coulomb-Breit (DCB)
FSCCSD method

Final state DC DCB Exp.a Final state DC DCB

Ac2C, ground state 7s 2S1=2 E1212C, ground state 8s 2S1=2
IP [Rn] 1S0 17:518 17:512 IP [E118] 1S0 18:67 18:65

EE 6d 2D3=2 0:157 0:145 0:099 EE 7d 2D3=2 2:883 2:859
2D5=2 0:588 0:569 0:521 2D5=2 3:507 3:478

8p 2P1=2 4:186 4:196
2P3=2 6:831 6:819

6f 2F5=2 4:557 4:471
2F7=2 5:050 4:960

AcC, ground state 7s2 1S0 E121C, ground state 8s2 1S0
IP 7s 2S1=2 11:91 11:90 12:1 IP 8s 2S1=2 12:67 12:66

EE 6d7s 3D1 0:634 0:623 0:588 EE 7d8s 3D1 2:764 2:744
3D2 0:702 0:690 0:653 3D2 2:850 2:829
3D3 0:976 0:960 0:921 3D3 3:209 3:185
1D2 1:194 1:176 1:127 1D2 3:800 3:775

8s8p 3P0 3:001 3:010
3P1 3:331 3:338
3P2 5:293 5:284

5f 8s 3F2 5:149 5:082

3F3 5:314 5:238
3F4 5:635 5:558

Ac, ground state 7s26d3=2 2D3=2 E121, ground state 8s28p1=2 2P1=2
IP 7s2 1S0 5:31 5:32 5:17b IP 8s2 1S0 4:458 4:447

EE 7s26d5=2
2D5=2 0:274 0:290 0:277 EE 8s27d3=2

2D3=2 0:412 0:389

7s27p1=2
2P1=2 0:969 0:984 8s27d5=2

2D5=2 0:738 0:714

7s27p3=2
2P3=2 1:573 1:583 8s28p3=2

2P3=2 1:436 1:424

aRef. [40]
bRef. [50]

Thorium and Eka-thorium (E122): Different Level Structure

The discussion of Rg above describes an example where the ground-state configu-
ration of a superheavy element differs from that of the lighter atoms in the group;
another example of a superheavy element not following its lighter homologs is given
by E122.

The Fock-space and intermediate Hamiltonian coupled cluster methods were
applied to the ground and excited levels of the second actinide element, thorium,
and its heavy homolog, eka-thorium (E122) [65]. The two Fock-space schemes
described above, starting with the M4C ion [Eq. (22)] and M2C ion [Eq. (23)], are
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Table 13 Valence orbitals in Fock-space and intermediate Hamiltonian calculations

Th E122

Scheme (22)

FSa 7s; 6d; 5f 8s; 7p; 7d; 6f

IH: Pm 7–8s,6–7p,6–7d ,5–6f 8–9s,7–8p,7–8d ,6–7f

IH: P 7–12s,6–11p,6–10d ,5–9f ,5–7g; 6h; 7i 8–14s,7–12p,7–11d ,6–10f ,5–7g; 6h; 7i

Scheme (23)

FSa 6p; 6d; 5f 7p; 7d; 6f

IH: Pm 6p; 6d; 5f 9s; 7p; 7d; 6f

IH: P 8–13s,6–10p,6–10d ,5–8f ,5–6g; 6h; 7i 9–13s,7–11p,7–11d ,6–9f ,5–6g; 6h
aSome determinants had to be moved from P to Q to achieve convergence of the FS calculations.
These include all the p2, pd , and pf determinants in scheme (22) for E122 and the p2, f 2, and
pf determinants in scheme (23) for both elements

used; here M denotes the Ac or E121 atom. It should be noted that the experimental
ground state of Th2C is 6d2 rather than 7s2 [66]; this is also the ground state
determined by scheme (22). The closed-shell 7s2 state is, however, used as reference
in the sequence (23). The calculated ground state of E1222C is 8s2.

The structure of the model space P in the Fock-space method and of Pm and P
in the intermediate Hamiltonian approach is shown in Table 13. All determinants
constructed from the orbitals listed in the table constitute the relevant space. Pm is
a subspace of P in the IHFSCC approach. Convergence difficulties of the FSCC
formalism in sector 2 made it necessary to use an incomplete model space [67, 68],
moving certain determinants from P toQ. The IH calculations employ much larger
P spaces, which are always complete (i.e., include all combinations of relevant
orbitals). Orbital selection was determined primarily on the basis of orbital energies.

The ionization potentials and lower excitation energies of Th and its monocation
are reported in Table 14. Many more energies, including those of the di- and
trication, were shown in the original publication [65]. Very good agreement with
experiment [66] is obtained: the mean absolute error of the 51 Fock-space energies
at all ionization levels is 0.062 eV. The intermediate Hamiltonian approach reduces
it to 0.051 eV. This level of accuracy is obtained in spite of the complicated
interactions between different electronic configurations, which lead to a rather dense
spectrum.

The ionization potentials and low excitation energies calculated for E122
are shown in Table 15. More values may be found in [65]. Intermediate
Hamiltonian values for E122 and its monocation were calculated by the Dirac-
Coulomb and Dirac-Coulomb-Breit schemes in order to explore the effect
of the Breit interaction (2). Overall, the Breit term contribution is small
(0.01–0.04 eV) for transitions not involving f electrons, but increases to 0.07–
0.1 eV when f orbitals are involved in the excitations, as observed above
(section “Eka-actinium (E121) vs. Its Homologs La and Ac: When Is the Breit Term
Important?”). The ground state is predicted to be 8s28p7d , in agreement with early



850 E. Eliav et al.

Table 14 Fock-space and
intermediate Hamiltonian
transition energies of thorium
compared with experiment
[66] (eV)

Transition expt. FS IH

Th. Ground state 6d27s2 3F2
! ThC 6d7s2 2D3=2

a 6.537 6.497 6.521

! 6d27s2 3P0 0.317 0.486 0.450
3F3 0.355 0.345 0.369
3P2 0.457 0.592 0.538
3P1 0.479 0.680 0.669
3F4 0.615 0.623 0.624
1D2 0.902 1.062 1.008

! 5f 6d7s2 3H4 0.966 1.048 1.062

! 6d27s2 1G4 1.005 1.155 1.070

! 5f 6d7s2 3F2 1.021 1.079 1.087
1G4 1.290 1.361 1.371
3G3 1.304 1.464 1.462

ThC. Reference state 6d27s 2D3=2
a

! 5f5=27s
2 2F5=2 0.326 0.217 0.234

! 6d5=27s
2 2D5=2 0.512 0.510

! 5f7=27s
2 2F7=2 0.808 0.713 0.734

aThe ground state of ThC is 6d27s 4F3=2, which cannot
be reached in the Fock-space scheme used here. The IP
of Th and excitations of ThC are therefore shown for the
6d7s2 2D3=2 state, which lies 0.23 eV above the ground
state

Table 15 Fock-space and
intermediate Hamiltonian
transition energies of
eka-thorium (element 122)
(eV)

FS IH
Config. J DCB DC DCB

E122. Ground state 8s27d3=28p1=2 J D 2

! E122C 7d3=2 3/2 5.651 5.613 5.595

! 8p21=2 0 0.185 0.157 0.162

! 7d23=2 2 0.348 0.385 0.353

! 7d3=28p1=2 1 0.662 0.651 0.636

! 7d3=27d5=2 3 0.860 0.891 0.856

! 7d5=28p1=2 2 0.875 0.872 0.862

! 7d5=28p1=2 3 0.955 0.954 0.940

! 7d3=27d5=2 4 1.012 1.028 0.988

2 1.036 1.030 0.996

1 1.154 1.144 1.113

E122C. Ground state 8s27d3=2
! E1222C 8s2 0 11.332 11.288 11.301

! 8s26f5=2 5/2 0.262 0.342 0.261

! 8s27d5=2 5/2 0.663 0.658 0.653

! 8s28p1=2 1/2 0.696 0.644 0.681

! 8s26f7=2 7/2 0.967 1.059 0.970
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Dirac-Fock(-Slater) calculations [69,70] but in contrast to the 8s28p2 configuration
obtained by density functional theory [71]. The separation of the levels is not large:
the lowest 8p2 and 7d2 states appear just 0.16 and 0.35 eV, respectively, above the
ground state. It should be noted that the ground state of thorium is 7s26d2, and
the increased relativistic stabilization of the p orbital of E122 changes the relative
energy of the configurations. The first excited state of E122 is 8p2, whereas the
corresponding Th level is quite high. Similar phenomena occur in the ions. The
ground state of ThC is 6d27s, while the lowest level of E122C is predicted to be
7d8s2. Th2C has a 6d5f 3H4 ground state, with 6d2 3F2 less than 0.01 eV away;
the accuracy of the current method is not sufficient to decide between these two
states. The lowest level of E1222C is a closed-shell 8s2, with all the low excited
states (up to 4 eV) having an 8snl configuration.

Quantum electrodynamic effects were not included here. Calculations of these
effects for s electrons [56] gave estimates of about 0.04 eV for the ionization
potential of the Tl2C 6s electron (self-energy 0.05 eV, vacuum polarization
�0.01 eV), 0.06 eV for the E111 7s electron (self-energy 0.09 eV, vacuum
polarization �0.03 eV), and similar shifts of 0.02–0.04 eV were calculated for
the low-lying energies of atomic No [72]. Since the p electrons responsible for the
transitions discussed in this work exhibit much weaker penetration into the nucleus,
QED effects here are expected to be considerably smaller, at most 0.01–0.02 eV,
within the error limits of the method (� 0:05 eV) estimated by comparing calculated
and experimental results for thorium (Table 14).

Summary

The no-virtual-pair Dirac-Coulomb-Breit Hamiltonian, correct to second order in
the fine-structure constant ˛, provides the framework for four-component methods,
the most accurate approximation applied in electronic structure calculations of
heavy atomic and molecular systems, including SHEs. Electron correlation is taken
into account by the powerful coupled cluster approach. This method is particularly
suitable to SHEs, where the high density of states necessitates simultaneous
treatment of large manifolds of levels. The intermediate Hamiltonian variant of
FSCC is instrumental in avoiding intruder states, which destroy the convergence of
the CC iterations, thereby allowing the use of extensive and converged model spaces.
As demonstrated above, these methods are applicable to a variety of SHEs. Their
accuracy was assessed by carrying out equivalent calculations for lighter homologs,
up to 6th period and early 7th period elements, and by comparing these results
with known experimental values. It was found that the atomic transition energies,
including excitation energies and ionization potentials, are usually reproduced
within a few hundredths of an eV; similar precision is expected for SHEs. Both the
basis sets and model spaces must be carefully extended to convergence to achieve
this benchmark.
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The main advantages of IHFSCC include the simultaneous economical deter-
mination of large numbers of energy levels and the treatment of both dynamic and
nondynamic electron correlation to high order. Its main shortcoming is the limitation
to states obtained from a closed-shell configuration by adding and/or removing two
electrons at most. Efforts have been made [25] to extend the method to sectors of
the Fock space with a larger number of electrons or holes. Other work in progress
includes the further development of the Hilbert-space and mixed-sector IHCC [26],
as well as the double FSCC formalism mentioned in the introduction, which will
include higher QED terms and allow a more precise treatment of SHEs, especially
in the case of highly ionized species.

The spectroscopic and chemical behavior of the heaviest elements is often
different from that expected by extrapolation of their lighter homologs. Perhaps
the most interesting deviations from lighter element behavior involve changes in
the ground-state electron configuration, which largely determines the chemistry.
Examples include but are not limited to the following:

• Rg (E111) is predicted to have a 6d97s2 ground state, unlike the (n-1)d10ns1

configurations of the lighter Cu, Ag, and Au.
• The ground state of element 121 will be 8s28p11=2, compared with the 7s26d13=2

ground configuration of the homolog Ac.
• Similarly, the ground state of element 122 will be 7d3=28s28p1=2 vs. the 6d23=27s

2

of Th.

These changes are caused by the relativistic stabilization of s and p1=2 orbitals,
which is also a major factor in other findings for the heavy elements:

• The IP of Lr, the last actinide, is one of the lowest in the periodic table, lower
than that of Na (but higher than K).

• Element 118, the next rare gas, is predicted to bind an electron, with a positive
electron affinity of 0.06 eV. An interesting finding is the 9 % reduction of the EA
calculated within the DCB Hamiltonian by the Lamb shift, the largest relative
QED effect shown to date in atomic transition energies.

• Cn (E112) chemistry will be affected by the increased HOMO-LUMO gap
between the fully occupied 8s and unoccupied 8p and the larger IP compared
to Hg, leading probably to a more inert element. This also applies to the cation of
element 113, making the expected chemistry of this element different from that
of Tl.

• The trends in atomic properties exhibited by the 7th-period atoms, which are
often opposite to trends in the lighter elements, are even stronger in 8th-period
atoms, as seen in calculations on elements 119 and 120.

Finally, it is important to treat relativity and electron correlation simultaneously and
with similar precision. This is demonstrated by the ground state of Rf, where one
candidate electron configuration is favored by relativity and another by correlation,
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and only the careful simultaneous incorporation of both contributions leads to a
decisive answer.

While experimental information on the chemistry of these elements is becoming
available, this is not the case for spectroscopic data. Nevertheless, there is consid-
erable progress. As shown above, such information has been obtained for Fm and
Lr; the latter is the heaviest actinide, so we may expect exciting developments for
transactinides in the near future.
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Abstract

Production and investigation of properties of superheavy elements (SHEs) belong
to the most fundamental areas of physical science. They seek to probe the upper-
most reaches of the periodic table of the elements where the nuclei are extremely
unstable and relativistic effects on the electron shells are increasingly strong.
Theoretical chemical research in this area is very important. Due to experimental
restrictions, it is often the only source of useful chemical information. It enables
one to predict the behavior of the heaviest elements in the sophisticated and
demanding experiments with single atoms and to interpret their results. Spectacu-
lar developments in the relativistic quantum theory and computational algorithms
in the last few decades allowed for accurate calculations of electronic structures
and properties of SHE and their compounds. Results of those investigations,
particularly those related to the experimental research, are overviewed in this
chapter. The role of relativistic effects is elucidated.
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Introduction

Superheavy elements (SHEs) are elements with Z
 104, also called transactinides.
They are located in the periodic table after the actinide series ending with element
103, Lr. Nowadays, SHEs from Z D 104 through 118 are all known, and most of
them have been named (Fig. 1) [1–5].

The SHEs are all man-made. The first members of the transactinides series,
Z D 104, 105, and 106, were discovered in 1969 through 1974 in heavy-ion
accelerators by bombardment of the heavy actinide (Cf) targets with light ions
(C and O), so-called “hot-fusion” reactions. In the 1970s, a different type of fusion
reactions was found and later used in the production of elements with Z from 106
through 113. These so-called “cold-fusion” reactions were based on targets in the
vicinity of doubly magic 208Pb (mainly Pb and Bi) and beams of the complementary
medium-mass projectiles with Z 
 24. The lifetime of the produced elements
proved to be very short, for example, the half-life of 277Cn is only 0.6 ms. The cross
section was also found to decrease rapidly with increasing Z. It is, for example,
only �0.5 pb for 277Cn [2]. It was, therefore, concluded that it would be very
difficult to reach even heavier elements in this way. Thus, SHEs from Z D 112

through 118 were produced using “hot-fusion” reactions between 48Ca ions and

Fig. 1 Modern periodic table of the elements (Reproduced with permission from Ref. [5].
Copyright 2013 American Chemical Society)
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238U, 242;244Pu, 243Am, 245;248Cm, 249Bk, and 249Cf targets [3]. These discoveries
are of considerable interest for chemical studies, because the reported half-lives
are much longer (many orders of magnitude) than those of the isotopes produced
by “cold-fusion” reactions which lead to more neutron-deficient isotopes, e.g.,
t1=2.

283Cn/ D 3:8 s and t1=2.289Fl/ D 2:1 s.
For the positive identification of a new element and its placement in a proper

position in the periodic table, its atomic number, Z, must be determined or
deduced in some way. For the transactinides up to Z D 113, their atomic number
has been identified first by “physical” techniques. One widely used technique is
that of ˛˛ – correlation of the element’s ˛-decay to a known daughter and/or
granddaughter nucleus. Positive identification becomes more difficult for species
that decay predominantly by spontaneous fission. Also, neutron-rich isotopes of
elements beyond Z D 113 decay into unknown products, so that their Z cannot
be directly established. One of the indirect ways of determining Z in that area is by
measuring X-ray spectra along the scheme established for element 115 [4].

But even when the atomic number can be positively assigned by ˛-decay chains,
no knowledge is obtained about electronic configurations or chemical properties of
these new elements from these physical methods. The elements are just placed in
the periodic table in corresponding chemical groups or periods according to their
Z. Thus, it is a matter of chemistry, both theoretical and experimental, to validate
or contradict such a placement [5]. It is also essential to establish whether trends
in properties observed in the chemical groups for the lighter elements is continued
with SHE or whether deviations occur due to the increasingly important relativistic
effects.

Due to the instability of isotopes of these elements and low production rates,
experimental chemical research in this area is very demanding. Chemical experi-
ments are usually designed so that the behavior of the unknown isotope is compared
to that of lighter homologs in the chemical group in order to assess their similarity.
Such experiments are restricted to measurements of only few properties – volatility
and complex formation. Electronic ground-state configurations, lying in the basis
of the periodicity, ionization potentials (IPs), electron affinities (EAs), and many
other properties, cannot be measured for SHE. Even a chemical composition of SHE
species is assumed in experimental studies by analogy in the behavior with that of
their lighter homologs in the groups. Thus, in the area of the heaviest elements,
chemical theory becomes extremely important and is often the only source of useful
information. It also aims at predicting an outcome of sophisticated experiments
with single atoms and interpreting their results. Finally, it is only the theory that
can reveal relativistic effects influence on chemical properties of SHE: only by
comparing the observed behavior with that predicted on the basis of relativistic vs
nonrelativistic calculations can the importance and magnitude of relativistic effects
be established.

In the past, predictions of chemical properties of the heaviest elements were
made with the help of relativistic atomic calculations and extrapolations of the
periodic trends [6,7]. Due to recent developments in the relativistic quantum theory,
calculation algorithms, and computer techniques, very accurate calculations for
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SHE and their compounds became possible. On their basis, reliable predictions of
SHE properties and experimental behavior required for their chemical identification
have been made. Examples of these studies are given in this chapter. Some latest
reviews on this subject are those of [5, 8–11].

Relativistic and QED Effects on SHE

The relativistic mass increase for a particle (an electron) with velocity v is

m D m0

�
.1 � .v=c/2��1=2 (1)

where m0 is the mass at zero velocity (rest mass) and c is the speed of light. The
Bohr model for a hydrogen-like species gives the following expressions for the
velocity, energy, and orbital radius of an electron:

v D .2�e2=nh/ZI (2)

E D �.2�2e4=n2h2/mZ2I (3)

r D Ze2=mv2; (4)

where n is the principal quantum number, e is the charge of the electron, and h
is Planck’s constant. For SHE, m=m0 is dramatically enlarging. It is, e.g., 1.79 for
Fl and 1.95 for element 118. As a consequence, all the three relativistic effects on
the valence AOs – contraction and stabilization of the s and p1=2 AOs, expansion
and destabilization of the p3=2, d, f, and g AOs, and the spin-orbit (SO) splitting of
AOs with l> 0 – are also very large for SHE. Figure 2 shows, e.g., the relativistic
stabilization of the ns and np1=2 AO and the SO splitting of the np AOs of group-14
elements, with the latter reaching 50 eV for element 164 [6].

For element 112, Cn, the 7s AO is 10 eV relativistically stabilized and 25 %
contracted (Fig. 3). At this element, the relativistic contraction and stabilization of
the 7s AOs reach their maximum in the seventh row of the periodic table [10].

In the 6d series, the relativistic destabilization and the SO splitting of the 6d AOs
increase. Together with the stabilization of the 7s AO, this results in an inversion of
the 7s and 6d5=2 energy levels at Cn, so that its first ionized electron is (n � 1)d5=2,
but not the ns one as in Hg (Fig. 3). (The inversion of the 7s and 6d5=2 levels in the
7th row starts already at element 108, Hs.) The example of group-12 elements also
shows that trends in the relativistic and nonrelativistic energies and Rmax(ns) AOs
(the same is valid for the np1=2 AOs) are opposite with increasing Z in the groups,
which results in opposite trends in relativistic and nonrelativistic properties of the
elements defined by those AOs.

In the 7p series, the 7s2 pair is so stabilized that it becomes practically an inert
core (Fig. 2). The 7p AO SO splitting is also very large: 4.7 eV for Fl and 11.8 eV
for element 118 [12]. The relativistic stabilization and contraction of the 8s AO of
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elements 119 and 120 are also enormous, so that they should behave like K and Ca,
respectively. For the heavier elements, relativistic effects are even more pronounced
and could lead to properties very much different from those of the lighter homologs
[6]. Without relativistic effects the properties would, however, have been also very
much different due to the diffuse valence s- and p-AOs and compact d, f, and g
AOs [10].

Breit effects accounting for magnetic and retardation interactions on valence
orbital energies and IP of the heaviest elements are small, for example, only 0.02 eV
for element 121. They can, however, reach a few % for the fine-structure-level
splitting in the 7p elements and are of the order of correlation effects there. In
element 121, they can be as large as 0.1 eV for transition energies between states
including f AOs [13].

Quantum electrodynamic (QED) effects, such as vacuum polarization and
electron self-energy, are known to be very important for inner shells, for example, in
accurate calculations of X-ray spectra. For the valence shells, the Breit and Lamb-
shift terms were shown to behave similarly to the kinetic relativistic effects scaling
as Z2 [14]. For the group-11 and group-12 valence s-shells, the increase with
Z is even larger. The nuclear volume effect grows faster with Z. Consequently,
for SHE, its contribution to the orbital energy will be the second important one
after the relativistic contribution. Thus, e.g., for element 118, QED effects on the
binding energy of the 8s electron cause a 9 % reduction (0.006 eV) of EA [15].
QED corrections for some SHE are given in [16].

Chemical Experiments

Due to the short half-lives of SHE isotopes and low production rates, special
techniques had to be developed that allow for measurements of macrochemical
properties of these elements on the basis of single-atom events. Chemical sep-
arations in which a single atom rapidly participates in many identical chemical
interactions to two-phase systems with fast kinetics that reach equilibrium quickly
turned out to be appropriate. Thus, it is sufficient to combine results of many
separate “one-atom-at-a-time” experiments or identical experiments with only one
atom, in order to get statistically significant results. Two main types of experimental
techniques – gas phase and liquid chemistry chromatography – are based on this
principle.

• Gas-Phase Chemistry

Gas-phase chemistry deals with the study of volatility of the heaviest elements
or their compounds [5, 8, 17, 18]. In macrochemistry, a measure of volatility of a
substance is its sublimation enthalpy, #Hsub. In the gas-phase chromatography, a
measure of volatility is the adsorption enthalpy, #Hads, of a species on the surface
of gold- or SiO2-plated detectors located along the chromatography column. (Gold
is chosen as it is free from oxide layers.) The obtained #Hads are then used to
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deduce #Hsub via a loose correlation between these quantities. Many assumptions
are involved in this approach.

There are two kinds of such techniques. In the first one, thermochromatography,
a longitudinal, negative temperature gradient (from about room temperature down to
about �180 ıC), is established along the chromatography column through which a
gas stream is conducted. It contains volatile species of interest (atoms or molecules)
that deposit on the surface of the column according to their volatilities. The
deposition zones are registered by detectors, which are associated with specific
deposition (adsorption) temperatures, Tads (Fig. 4, left panel). The obtained Tads are
then used to deduce the adsorption enthalpy, #Hads, using adsorption models and
Monte Carlo simulations [17].

In another technique, isothermal chromatography, the entire column is kept
at a constant temperature. Volatile species pass through the column undergoing
numerous adsorption-desorption steps on the surface of the column, usually made of
quartz. Their retention time in the column is indicative of their volatility at a given
temperature. A series of temperatures is run, and the chemical yield of the species is
studied as a function of the temperature (Fig. 4, right panel). A temperature, T50%, at
which 50 % of the species pass through the column is taken as a measure of volatility
in a comparative study. A Monte Carlo program is used to deduce #Hads from the
measured T50% using adsorption models [17].

Both techniques were used to study volatility of compounds of Rf through Hs
and of atoms of Cn and Fl, whose isotopes have half-life, t1=2, of the order of at least
one second [2, 5, 18].
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Fig. 4 Upper panel, temperature profiles employed in thermochromatography and isothermal
chromatography, and lower panel, deposition peak and integral chromatogram resulting from
thermochromatography and isothermal chromatography, respectively (Reprinted with permission
from Ref. [18]. Copyright 2003 Kluwer Academic Publishers)
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• Aqueous chemistry

To study complex formation of the heaviest elements and their homologs in
aqueous solutions liquid-liquid or ion (cation, CIX, or anion, AIX) exchange
chromatography fast separation techniques have been developed [19]. They allow
for measurements of the distribution coefficient, Kd , between aqueous and organic
phases:

Kd D KDM ŒRB
CL��porgˇi ŒL

��i�p
NP
0

ˇn ŒL��n
; (5)

where ˇi is the complex formation constant. Obtained Kd (usually plots of Kd

values vs acid concentration) are used to judge about stabilities of the formed
complexes, ˇi . In experiments with radioactive species,Kd is measured as a ratio of
the activity of the studied species in the organic phase to that in the aqueous phase. It
is closely related to the key observable, the retention time, tr , in the chromatography
column:

Kd D .tr � t0/ V
M
; (6)

where t0 is the column holdup time due to the free column volume, V is the flow
rate of the mobile phase, and M is the mass of the ion exchanger.

Aqueous chemistry experiments that are more time-consuming than the gas-
phase ones, mainly because of the time needed for the preparation of a sample
suitable for ˛-spectroscopy, require isotopes with longer t1=2, of the order of
minutes. Therefore, only complex formation of Rf, Db, and Sg has been studied
so far [19].

Relativistic Quantum Chemical Methods and Approaches

• Relativistic quantum chemical methods

For reliable predictions of SHE properties, quantum chemical methods should treat
relativistic and correlation effects at the highest possible level of theory. A short
description of the relativistic methods is given below. Comprehensive reviews can
be found in [20, 21], as well as in this issue.

Wave-function-based (ab initio) methods. The most straightforward way to solve
the Dirac many-electron equation

hDCB D
X
i

hD.i/C
X
i<j

�
1=rij C Bij

�
; (7)
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where the one-electron Dirac operator is

hD.i/ D c Ęi Epi C c2.ˇi � 1/C V n.i/; (8)

and Ę and ˇ are the four-dimensional Dirac matrices, V n is the nuclear attraction
operator, and the Breit term in the low photon frequency limit is

Bij D �1=2b. Ęi Ęj /r�1ij C . Ęi Erij /. Ęj Erij /r�3ij c; (9)

is that without approximations. The operators of the Dirac equation (7) are 4 �
4 matrix operators, and the corresponding wave function is therefore a four-
component (4c) vector (spinor). The V n includes the effect of the finite nuclear size,
while some finer effect, like QED, can be added to hDCB perturbatively, although the
self-energy QED term is more difficult to treat. The DCB Hamiltonian in this form
contains all the effects through the second order in ˛, the fine-structure constant.

Since the relativistic many-body Hamiltonian cannot be expressed in closed
potential form, which means it is unbound, projection one- and two-electron oper-
ators are used to solve this problem. The operator projects onto the space spanned
by the positive-energy spectrum of the Dirac-Fock-Coulomb (DFC) operator. In this
form, the “no-pair” Hamiltonian is restricted then to contributions from the positive-
energy spectrum and puts Coulomb and Breit interactions on the same footing in the
SCF calculation [22]. The proper way to go beyond the “no-pair” approximation has
recently been discussed by Liu [23].

Because the Dirac equation is written for one electron, the real problem of ab
initio methods for a many-electron system is an accurate treatment of electron
correlation. The latter is of the order of magnitude of relativistic effects for binding
energies and other properties. The DCB Hamiltonian (Eq. 7) accounts for these
effects in the first order via the Vij D 1=rij term. Some higher orders of magnitude
correlation effects are taken into account by the configuration interaction (CI) and
many-body perturbation theory (MBPT) techniques, including the Møller-Plesset
(MP) theory, or, presently, at the highest level of theory, coupled cluster with single-
double and perturbative triple, CCSD(T), excitations, or Fock-space CC (FSCC)
techniques [13, 24, 25].

The problems of electron correlation and proper basis sets make the usage of the
4c ab initio DF(C) methods rather limited in molecular calculations. These methods
are still too computer time intensive and are not sufficiently economic to be applied
to the heaviest elements in a routine manner, especially to the complex systems
studied experimentally. Mostly small molecules, like hydrides or fluorides of SHE,
were calculated with their use. The DC method is also implemented in the DIRAC
program package [26].

Two-component (2c) methods. Due to the practical limitations of the 4c methods,
the 2c ones are very popular in molecular calculations. In this approximation, the
“positronic” and electronic solutions of the Dirac-Hartree-Fock (DHF) method are
decoupled. This reduces the number of matrix elements in the Hamiltonian to inter-
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actions solely among electrons (positive-energy states) and nuclei and, therefore,
saves valuable computer time. Perhaps, the most applied method of decoupling the
large and small components of the wave function is the Douglas-Kroll-Hess (DKH)
approximation [27]. The 2c Hamiltonians often used in molecular applications are
X2C [28–31] and BSS [32], also implemented in the DIRAC program package [26].
A comprehensive review on the X2C methods is that of [29].

Effective core potentials (ECPs) allow for more economic calculations within
the DHF schemes by replacing inner core orbitals that do not take part in the bond
formation by a special (effective core) potential. In this way, the number of basis
functions and, therefore, two-electron integrals is drastically diminished. There are
ECPs of two main types, as well as pseudo-potentials (PPs) and model potentials
(MPs). Energy-adjusted PPs known as the Stuttgart ones [33, 34] and the shape-
consistent relativistic ECPs (RECPs) [35, 36] are available for SHE. Generalized
RECPs accounting for Breit effects have also been developed for some heaviest
elements [37].

Density functional theory (DFT) is based on the knowledge of the ground-state
electron density. Due to the high accuracy and efficiency, computational schemes
based on the DFT methods are among the most popular in theoretical chemistry,
especially for extended systems, such as large molecules, liquids, or solids [38].
Usually, self-consistent all-electron calculations are performed within the relativistic
local density approximation (LDA). The general gradient approximation (GGA),
also in the relativistic form (RGGA), is then included perturbatively in Eex , the
exchange correlation energy functional. The accuracy depends on the adequate
knowledge ofEex , whose exact form is, however, unknown. There is quite a number
of such potentials and their choice is dependent on the system. Thus, PBE is usually
favored by the physics community, PBE0, B3LYP, B88/P86, revPBE, etc., and by
the chemistry community, while LDA is still used extensively for the solid state.

Spin-unrestricted, or spin-polarized (SP), 4c-DFT methods allowing for accurate
calculations of open-shell systems are those of Anton et al. [39], the Beijing group
(BDF) [40], and ReSpect [41]. The first two were extensively used for SHE. They
differ by basis set techniques, though they give similar results. The 4c-DFT of Anton
et al. [39] allows for treating explicitly very large systems such as clusters of up
to more than 100 atoms and is, therefore, suitable for the treatment of adsorption
phenomenon on surfaces of solids.

The 2c-DFT methods are a cheaper alternative to the 4c ones [29, 30, 42, 43].
Quasi-relativistic methods such as the spin-orbit zeroth-order regular approximation
(SO ZORA) implemented in the Amsterdam DFT code (ADF) [44] and the DKH
method [45] implemented in most program packages are also popular among
theoretical chemists. Dispersion-corrected Eex are available in ADF for Z 	 92.

Periodic DFT codes are generally not developed for the SHE: they have neither
basis sets nor suitable PP. Also, as a rule (with the exception of RFPLO [46]
and ADF-BAND [44]), they are scalar relativistic (SR). In some cases, like, e.g.,
for calculations of solid Cn and Fl, PPs have been specially developed using the
Stuttgart PP model [33]. The ADF-BAND [44] having basis sets for elements up
to Z D 120 is presently an efficient tool to perform solid-state and adsorption
calculations for SHE.
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• Approaches used to predict experimentally measurable properties

For weak interactions, e.g., for predictions of the transport of SHE nuclides through
Teflon or polyethylene capillaries from the accelerator to the chemistry set up
or for the adsorption of volatile species on inert surfaces of a chromatography
column, the usage of adsorption models proved to have advantages over direct
DFT calculations of adatom-surface interactions. For example, for an atom or a
symmetric molecule with a zero dipole moment adsorbed on a dielectric surface,
the dispersion interaction energy can be calculated using the following equation
coming from an adatom-slab adsorption model [47]:

E.x/ D � 3
16

�
" � 1
"C 2

�
˛mol	

1
IPslab
C 1

IPmol



x3
; (10)

where " is the dielectric constant of the adsorbent material and x is the
adatom/molecule – surface distance (usually van der Waals radius). All the atomic
or molecular properties of Eq. (10) can be accurately calculated using relativistic
codes. Since the detailed structure of the surface of the column is, as a rule,
unknown, in a comparative study, it is reasonable to predict#Hads of a SHE species
with respect to the measured#Hads of a homolog. Thus, x can be deduced from the
measured �#Hads � Eb (binding energy) of a lighter homolog using Eq. 10, while
x of a species of interest can be estimated using a difference in their van der Waals
radii.

In the case of adsorption of atoms on chemically reactive surfaces such as gold
or quartz, calculations of Eb can be directly performed either via a cluster model
(Fig. 5) using molecular codes or adatom-slab/supercell models using relativistic
periodic codes (e.g., ADF-BAND [44]).

Fig. 5 A cluster model for the prediction of adsorption (Reprinted with permission from Ref. [9].
Copyright 2014 Springer Verlag)
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Various correlations, e.g., betweenEb in smaller systems and#Hads or#Hsub of
substances, turned also out to be useful in predictions of adsorption and sublimation
properties of SHE (see below). Knowing then #Hads, a relative yield of a volatile
species at the end of a capillary or a chromatography column or its Tads can be
predicted using a model of mobile adsorption (see [5, 9] for reviews).

Atomic Properties of SHE and the Structure of the Periodic Table

Electronic configurations. Ground-state configurations of SHE from Z D 104

through Z D 172 were predicted in the past with the use of DS and DF methods
[6,7]. Later, MCDF calculations for neutral and ionized states of Rf through Hs [48,
49] and for grounds states of elements 119 through 164 [50–52] were performed.
With the development of CC methods, results of the DC(B) FSCC calculations for
Rf and Rg through Fl and for elements 118 through 122 became available (see [13]
for a review).

All these calculations have shown that the relativistic stabilization of the 7s AO
results in the availability of the 7s2 electron pair in the ground states of the 7th
row elements, 7s26dq and 7s27pp . This is in contrast to the 6th row, where Pt and
Au have different ground states, 5d96s and 5d106s, respectively. For Rf, the MCDF
calculations have given the 7s27p6d configuration as the ground state [48]. More
accurate DCB FSCC calculations have, however, corrected the MCDF result leading
to the 7s26d2 configuration as the ground [13]. A very high level of correlation with
l D 6 was required to reach this accuracy. For elements 119 and 120, the 8s and 8s2

states, respectively, beyond the 118 core were found as most stable. Element 121 has
an 8s28p1=2 state in the difference to Ac(7s26d) due to the relativistic stabilization
of the 8p1=2 AO. All these calculations generally agree on the ground states of the
elements up to Z D 122. They, however, disagree at Z > 122 (Table 1).

Elements beyond the 7th row of the periodic table are characterized by mixing of
states coming from partially filled 8p1=2;3=2, 7d3=2;5=2, 6f5=2;7=2, and 5g7=2;9=2, shells.
The proximity of the valence SO bands makes the search for the correct ground
state very difficult. The usual classification on the basis of a simple electronic
configuration and the placement of these elements in a proper column in this
part of the periodic table becomes, therefore, problematic. Thus, the filling of the
electron shells and the structure of the periodic table beyond Z D 122 are still
under discussion and debate (see, e.g., different versions of the periodic table in
[6] and [53]). Accurate calculations, preferably using DBC CC + QED techniques,

Table 1 Ground states of element 121–124 (Z = 120 core +) and 143 (Z = 120 core + 8p21=2+)

Method 121 122 123 124 . . . 143 Ref.

DF 8p 7d8p 6f7d8p 6f38p 5g176f27d2 [6]

DF 8p 7d8p 6f7d8p 6f27d8p 5g187d3 [50]

MCDF 8p 7d8p 6f28p 6f28p2 5f176f27d2 [51]

DCB FSCC 8p 7d8p – – – [13]
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Table 2 Polarizabilities, ˛ (in a.u.), and ionization potentials, IPs (in eV), of Hg and Cn

Method Hg Cn Ref.

˛ IP ˛ IP

4c-BDF PBESIC 36.4 10.40 29.8 11.40 [54]

QR PP CCSD(T) 34.2 10.37 28.0 13.17 [54]

AR PP CCSD(T) 34.42 – 25.82 – [55]

ECP CCSD(T) 28.48 10.39 28.68 11.675 [56]

DC CCSD(T) 34.15 10.445 27.64 11.97 [57, 58]

Exp. 33.919 10.4375 [59]

are, therefore, highly needed in this area to resolve the contradictions. At the time
being, advanced MCDF calculations including QED effects [52] confirmed earlier
predictions from single-configuration DF calculations [6] about the end of the
periodic table at Z D 173, when the energy of the 1s level becomes less than�2mc2.

Ionization potentials. Various calculations – DF, DS, MCDF, and DC(B) CC –
of IPs were performed for elements 104 through 166 (see [6–9, 13, 54–58]). The
accuracy upon approximation is shown in Table 2 for Hg and Cn, as an example,
with the DC CCSD results [57, 58] being the most accurate.

The influence of relativistic effects on IP and other atomic properties of group-
12 elements is shown in Fig. 6, as an example. The relativistic IPs are larger than
the nonrelativistic ones, and they increase in group 12, with the maximum at Cn.
Nonrelativistically, IP(Cn) would have been about that of Cd. Relativistic effects
act similarly on elements 113 and 114, i.e., they cause an increase in IPs due to the
relativistic stabilization and contraction of the np1=2 AO. On the contrary, in groups
15 through 18, IPs decrease with atomic number due to the destabilization of the
np3=2 AO, so that DC FSCCSD IP(118) of 8.914 eV [60] is smaller than IP(Rn) of
10.799 eV [59].

Especially interesting are trends in properties of group-1 and group-2 elements,
having the ns and ns2 ground states, respectively. The trends in IP are reversed in
groups 1 and 2 at Cs and Ba, respectively (Fig. 7) due to the trend reversal in the
energies of the ns AOs. Thus, IP(119) should be about IP(K), and IP(120) should be
about IP(Ca).

Electron affinities. EAs were calculated for a few of the heaviest elements. No
bound anion was found for Cn by the DCB FSCC calculations [58]. Fl was shown
to have no EA at the DC FSCC level of theory either [61]. On the contrary, element
118 has a positive EA of 0.058 eV, according to the DCB FSCC + QED calculations
[15]. This is a result of the 8s AO relativistic stabilization.

EAs of group-1 and group-2 elements, like their IPs, show a reversal of the trends
from the 6th row on, however, group 1 behaves differently from group 2. Thus, in
group 1, the trend to a decrease in EA at the lighter elements is changed at Cs to an
increase toward element 119 (Fig. 7), while in group 2, the trend to an increase at the
lighter elements is changed at Ba to a decrease toward element 120. These opposite
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Fig. 6 Relativistic (solid lines) and nonrelativistic (dashed lines) ionization potentials (IPs),
atomic radii (AR), and polarizabilities, ˛, of group-12 elements (Reprinted with permission from
Ref. [47]. Copyright 2005 Elsevier)

Fig. 7 Electron affinities, EAs, and ionization potentials, IPs, of alkali and alkaline-earth ele-
ments. The data for Na through Fr and Mg through Ra are experimental

trends in EA in groups 1 and 2 are due to the opposite trends in the energies of
different AOs responsible for the electron acceptance process – the ns AOs in the
former case and the np1=2 + (n�1)d AOs in the latter. It was also shown that inclusion
of the triple excitations (T) in the CC procedure for the electron correlation is crucial
in stabilizing the 120 anion: the RCCSD(T) result is 21 meV, while the DHF result
(without correlation) is much worse, �121 meV (Table 3) [62]. The EA of element
121 is the highest in group 3 due to the relativistic stabilization of the 8p1=2 AO [13].
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Table 3 Electron affinity of
group-2 elements calculated
within different
approximations [62]

Elem. State DHF RCCSD RCCSD(T) Exp.

Ba 6s26p �0:143 0:070 0.138 0.144

Ra 7s27p �0:099 0:042 0.082 > 50

120 8s28p �0:121 �0:002 0.021 –
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Fig. 8 The difference in the lengths of the single (filled rhomboids) and triple (open squares)
bonds between the 6d and 5d metals (Reproduced with permission from Ref. [53]. Copyright 2011
Royal Society of Chemistry)

Atomic/ionic/covalent radii. Atomic (AR) and ionic (IR) radii of SHE were
predicted using DS/DF and MCDF calculations of Rmax of the charge density of
outer AOs [6,48,49]. A set of atomic single- and triple-bond covalent radii (CR) for
most of the elements of the periodic table including the heaviest ones till Z D 118

and 112, respectively, is also suggested in [63]. They were obtained from calculated
bond lengths, R, in simple compounds. All the results show that the CR of the
group 4 – 8 6d elements – are about 0.5–0.8 Å larger than those of the 5d elements.
An important finding of these works is a decrease in the R6d � R5d difference
starting from group 9, reaching negative values in groups 11 and 12, as a result
of the increasing 7s AO contribution (Fig. 8). This is called a “transactinide break”
[63]. The relativistic AR contraction of Cn is also shown in Fig. 6.

In groups 13 and 14, AR also decrease with Z due to the relativistic contraction
of the 7p1=2 AOs, while in groups 15 through 18, they increase with Z due to the
relativistic expansion of the np3=2 AOs.

Polarizabilities. Static dipole polarizabilities, ˛, were calculated at various levels
of the relativistic quantum theory for Cn through element 119 (see [9] for a review).
Table 2 shows results of various calculations for Hg and Cn [54–57]. According
to the calculations, ˛(Cn) should be the smallest in group 12 due to the relativistic
contraction of the outer 7s AO (Fig. 6). Correlation effects were shown to decrease
˛ in Hg, Cn, and Pb and to increase it in Fl. Thus, one can see that exclusively due to
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relativistic effects, Cn should be chemically rather inert, much more than the lighter
homologs in group 12, while element 118 should be chemically most reactive in
group 18, having a DC CCSD(T) ˛ of 46.33 a.u., larger than ˛(Rn) of 35.04 a.u.
[60].

The calculated atomic properties were used to predict the transport of single
atoms from the accelerator to the chemistry setup though Teflon capillaries. Using
Eq. (10), �#Hads of elements 113, 114, 118, and 120 were obtained as 14, 10.4,
10.8, and 35.4 kJ/mol, respectively, ensuring their safe delivery [11, 57, 60, 62]. The
relative yield of SHE at the end of the transport system has also been given using
the #Hads. Thus, e.g., for the 300120 isotope with t1=2 D 1 s and �#Hads.120/ D
35:4 kJ/mol, the relative yield is calculated as 90 % and 60 % for an open Teflon
column or a capillary with an inner diameter of 2 mm and a length of 1 m and 10 m,
respectively, and a gas volumeQ D 1 l/mol at room temperature [62]. Thus, for this
element, the limiting factor for the delivery is not its volatility, but the short half-life.

Gas-Phase Chemistry

Groups 4–8, common features. Elements at the beginning of the 6d series were
shown to form volatile halides, oxyhalides, and oxides by analogy with their lighter
homologs in groups 4–8. With the aim to predict their stability and volatility,
calculations for the following species – MF4, MCl4, MOCl2, MBr4 (M = Zr, Hf,
and Rf), MCl5, MBr5, MOCl3 (M = Nb, Ta, and Db), MCl6, MO3, MOCl4, MO2Cl2,
M(CO)6 (M = Mo, W, and Sg), MO3Cl (M = Tc, Re, and Bh), MO4 (M = Ru, Os,
and Hs), and MX (M = Rf – Cn, X = H, N, B, and C) – were performed with the use
of relativistic DFT and CC methods. (A full list of calculated properties is given in
Tables 8 and 9 of [9]). The calculations confirmed that compounds of Rf through Hs
are homologs of the lighter congeners in the chemical groups and that bonding is
due to the participation of the 6d and 7s AOs. An increase in covalence (a decrease
in effective metal charges, QM , and an increase in overlap population, OP), as well
as in the stability of the maximum oxidation state in the groups has been established.
It was shown to be a relativistic effect (Fig. 9) [9].

The atomization energies, De , of the 6d-element molecules turned out to be
smaller than De of the lighter homologs due to the larger SO effects and a smaller
ionic contribution. Thus, e.g., SP 4c-DFT De(RfCl4/ is 19.53 eV, smaller than
De(ZrCl4/ of 21.7 eV and De(HfCl4/ of 21.1 eV [9]. Electron correlation is proven
to contribute to more than 50 % to bonding in the SHE systems (see Table 5 below).
Electron correlation and relativistic effects were shown to be nonadditive.

Group 4. In the difference to expectations, an unusual trend in volatility has been
observed for group-4 halides, ZrCl4 � RfCl4 >HfCl4 and ZrBr4 � RfBr4 >HfBr4,
using isothermal gas-phase chromatography with a quartz column (Fig. 10) (see [5]
for a review).

To interpret this unusual behavior and to prove stability of the halide and
oxyhalide of Rf, 2c- and 4c-DFT calculations were performed for MCl4 and MOCl2
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Fig. 9 Relativistic (solid lines) and nonrelativistic (dashed lines) effective charges, QM , and
overlap populations, OP, for MCl5 (M = V, Nb, Ta, and Db). L denotes the ligand (Reprinted with
permission from Ref. [9]. Copyright 2014 Springer Verlag)
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Fig. 10 Adsorption enthalpies of group-4 tetrachlorides and tetrabromides (Reproduced with
permission from Ref. [5]. Copyright 2013 American Chemical Society)
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Table 4 The X2C (B88/P86) calculated properties of MCl4 (M = Zr, Hf, and Rf): equilibrium
bond lengths, Re (in Å); atomization energies, De (in eV); ionization potentials, IPs (in eV);
polarizabilities, ˛ (in a.u.); as well as adsorption enthalpies,#H ˚ads (in kJ/mol), on a quartz surface
and sublimation enthalpies, #H ˚sub (in kJ/mol), of bulk

Molecule Re De IP ˛ #H ˚a
ads #H ˚b

ads #H ˚c
sub

ZrCl4 2:336 20:34 11:00 103:6 106:5 97 110:5

HfCl4 2:316 20:80 11:00 99:3 103 103 104:7

RfCl4 2:370 19:40 10:96 101:2 102:7 87 (104.2)a

aTheory [64, 65]
bExperiment (see [5] for references)
c[59]

Fig. 11 Relativistic (solid lines) and nonrelativistic (dashed lines) bond lengths, Re , and polariz-
abilities, ˛, of MCl4 (M = Ti, Zr, Hf, and Rf). Experimental values are shown with open triangles
connected by dashed-dotted lines (Reproduced with permission from Ref. [64]. Copyright 2014
American Institute of Physics)

(M = Ti, Zr, Hf, and Rf) [64, 65]. Results are shown in Table 4 for MCl4. The trend
in the formation of the tetrachlorides from the oxychlorides, formed in the oxygen
atmosphere ahead of the pure halides, was found to be Zr<Hf<Rf. This means
that if the pure chlorides of Zr and Hf exist under experimental conditions, RfCl4
should also be stable.

Trends in Re and ˛ of MCl4 in the group, as well as the action of relativistic
effects on them, are shown in Fig. 11. Relativistic effects are found to be responsible
for the bond contraction in HfCl4 and for even a larger bond contraction in RfCl4,
so that ˛(RfCl4/ is almost equal to ˛(TiCl4/.

For the long-range interaction of the MCl4 (M = Zr, Hf, and Rf) molecules with
a quartz surface, #Hads were predicted with the use of the calculated molecular
properties (Table 4) and Eq. (10). The obtained enthalpies (Table 4) show that
volatility of the chlorides should increase smoothly in group 4: Zr<Hf<Rf. Thus,
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Fig. 12 The ML�
6 (M = Nb,

Ta, and Db) complex formed
on the KL (L = Cl, Br) surface
(Reproduced with permission
from Ref. [66]. Copyright
2012 American Institute of
Physics)

RfCl4 should be the most volatile species due to the relativistically decreased ˛.
(Nonrelativistically, RfCl4 would have been less volatile than its homologs.) This
trend is also in line with #Hsub(ZrCl4/ > #Hsub(HfCl4/ [59]. For the formation of
the MCl2�6 and MOCl2�4 complexes on a chlorinated quartz surface, the calculated
energies of the complex formation reactions have given the following smooth trends
in volatility: Zr > Hf > Rf and Zr < Hf < Rf, respectively [65]. The trend observed
experimentally is, however, reversed, Zr<Hf> Rf, which cannot find its theoretical
explanation from the molecular calculations and the assumed adsorption scenarios.

Group 5. Similarly to group 4, unusual reversed trends in volatility were also
observed for group-5 halides: NbCl5 � DbCl5 > TaCl5, NbBr5 > TaBr5 > DbBr5,
and NbBr5 � DbBr5 > TaBr5 (see [5] for references). To find a reason for that,
calculations for ML5, MOL3 (L = Cl and Br), and complexes ML6 and MCl5Br
(M = Nb, Ta, and Db) that can be formed on a halogenated quartz surface (Fig. 12)
were performed using the 4c-DFT method [66].

Results of the calculations reveal a smooth change in properties of the com-
pounds, as well as in their Eads on different surfaces, similarly to the group-4
(oxy)halides, but not the reversed trend observed experimentally.

The difference between the theoretical [64–66] and experimental [5] trends in
volatility of group-4 and group-5 halides has not yet found its explanation. Detailed
calculations of the interaction of the molecule with the adsorbent are not an easy
task as modifications of the surface by the reactive agents occur and the structure of
real surfaces is very hard to integrate into the model calculations. This work may,
therefore, be prolonged, provided additional studies of surfaces and processes follow
from the experimental side, as well as theoretical methods for molecular adsorption
receive further development.

Group 6. In group 6, the most stable gas-phase oxychlorides are MoO2Cl2 and
WO2Cl2. Stability and volatility of SgO2Cl2 were, therefore, to be investigated using
isothermal phase-phase chromatography technique with a quartz column [67]. The
4c Dirac-Slater discrete variation (DS-DV) [68] and RECP [69] calculations for
MO2Cl2 (M = Mo, W, and Sg) have found SgO2Cl2 to be also stable. However, its
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Table 5 Correlation and SO
effects on the electronic
density distribution (QM and
OP); dipole moments, � (in
D); and atomization energies,
De (in eV), of MO2Cl2
(M = W and Sg)

RECP DFT

Molecule HF(AREP)a SO-CCSD(T)b DS-DVc

QM WO2Cl2 2:18 1:71 1:08

SgO2Cl2 1:94 1:52 0:97

OP WO2Cl2 2:14 2:03 2:23

SgO2Cl2 2:72 2:55 2:34

� WO2Cl2 1:80 1:51 1:35

SgO2Cl2 2:64 2:39 1:83

De WO2Cl2 11:7 22:2 23:8

SgO2Cl2 14:2 21:0.22:5d/ 21:8

aAverage relativistic, i.e., without SO and correlation [69]
bWith SO effects and correlation [69]
cFully relativistic [68]
dWithout SO effect

De is somewhat smaller than De(WO2Cl2/ due to the SO effects (see Table 5).
The following trend in volatility was predicted from the DFT calculated molecular
properties (Table 5): MoO2Cl2 > WO2Cl2 > SgO2Cl2 [68]. The reason for this
trend is increasing dipole moments in this row of molecules causing their stronger
interaction with the surface. The experiments [67] have, indeed, demonstrated a
decrease in volatility of the group-6 oxychlorides (see [5]), in good agreement with
the predictions [68]. Thus, no unexpected behavior was observed in group 6 for Sg.

A search for a new class of volatile species suitable for gas-phase chromatog-
raphy studies resulted in an idea to synthesize carbonyl complexes of the heaviest
elements. Carbonyls proved to be also ideal for the transport of short-lived isotopes
of the heaviest elements. Group-6 carbonyls including those of Sg were to be
studied first using thermochromatography with a quartz column having a negative
temperature gradient [70]. In turn, electronic structures of M(CO)6 (M = Cr, Mo, W,
and Sg) were calculated using the CCSD RECPs and 4c-DFT methods [71,72], with
the latter work being devoted to predictions of their volatility. Since the nature of the
molecule-surface interaction should be dispersive,#Hads of Sg and of Mo carbonyls
were predicted using Eq. (10) and the calculated molecular properties (Table 6) [72]
with respect to the measured �#Hads of W(CO)6 of 46:5˙2:5 kJ/mol [70]. Results
are shown in Table 6 and Fig. 13.

The obtained #Hads of the Sg carbonyl turned out to be almost equal to #Hads

of W(CO)6 due to the cancelling effects between its larger ˛, though relativistically
decreased, and its larger size (x in Eq. 10). Experimental results [70] confirmed
the theoretical predictions [72] showing an almost equal volatility of the W and Sg
carbonyls (Table 6). Thus, Sg again proved to be an ordinary member of the group-6
elements.

Group 7. Group-7 elements Tc and Re form stable and volatile oxychlorides,
MO3Cl. Volatility of the Bh oxychloride, which should be formed by analogy with
the lighter homologs, was to be studied using gas-phase isothermal chromatography
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Table 6 Ionization potentials, IPs (in eV); average dipole polarizabilities, < ˛> (in a.u.);
interatomic distances, Re (in Å); and adsorption enthalpies, �#Hı

ads (in kJ/mol), of M(CO)6,
where M = Mo, W, and Sg, on quartz

Molecule Method Re(M-C)/Re(C-O) IP ˛ #H ˚a
ads #H ˚b

ads

Mo(CO)6 4c-DFT 2.063/1.145 9:00 156:4 48.1˙ 2.5 50˙ 2

W(CO)6 4c-DFT 2.058/1.148 8:93 151:5 46.5˙ 2.5c 49˙ 2

Sg(CO)6 4c-DFT 2.123/1.154 8:63 159:4 46.2˙ 2.5 50˙ 4

RECP CC 2.112/1.150d

aTheory [72]
bExperiment [70]
cAn experimental value taken as a reference point
dTheory [71]

Fig. 13 Calculated (solid lines) polarizabilities and adsorption enthalpies of M(CO)6 (M = Cr, Mo,
W, and Sg) on quartz [72]. The points (open symbols) for Mo and W are results of two different
experiments [70] (Reproduced with permission from Ref. [72]. Copyright 2013 American Institute
of Physics)

with a quartz column [73]. To predict an outcome of these experiments, energy
contributions to the total molecule-surface interaction energy E.x/ for molecules
having nonzero dipole moments were determined for MO3Cl (M = Tc and Bh)
with respect to E.x/ of ReO3Cl using a model of long-range interactions [74]
(Table 7). The resulting �#Hads(BhO3Cl) of 78.5 kJ/mol and �#Hads(TcO3Cl)
of 48.2 kJ/mol turned out to be in very good agreement with the experimental
�#Hads(BhO3Cl) of 75 kJ/mol and �#Hads(TcO3Cl) of 51 kJ/mol establishing the
following trend in volatility: TcO3Cl > ReO3Cl > BhO3Cl (see Fig. 14, where the
BhO3Cl yield curve is at the highest temperatures). Increasing dipole moments � of
MOCl3 in the group were shown to be responsible for this decreasing trend.
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Table 7 Contributions to the interaction energy E.x/ of the MO3Cl molecules (M = Tc, Re, and
Bh) with the chlorinated surface [Q(Cl)D �0:4] (From [74])

Molecule �Qe ˛Qe ˛˛(Cl)

E1016 x2, eV cm2 E1032 x4, eV cm3 E1048 x6, eV cm6

TcO3Cl 2.23 5.69 379.1

ReO3Cl 3.10 6.81 460.7

BhO3Cl 4.67 8.63 591.2

Tiso (°C)
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Fig. 14 The relative yields of TcO3Cl (filled black circles), ReO3Cl (open circles), and BhO3Cl
(filled black squares) as a function of the isothermal temperatures, Tiso, in isothermal gas-phase
experiments (Reproduced with permission from Ref. [73]. Copyright 2000 Nature Publishing
Group)

Group 8. Group-8 elements Ru and Os are known to form stable and volatile
tetroxides, MO4. Volatility of HsO4 was, therefore, of interest. It was to be studied
with respect to that of OsO4 using gas-phase thermochromatography with a quartz
column [75]. Accordingly, the 4c-DFT calculations were performed for MO4

(M = Ru, Os, and Hs) [76]. Results are given in Table 8 and Fig. 15 showing
excellent agreement of IP, ˛, and Re with experimental data for RuO4 and OsO4.
The high accuracy of the calculations was achieved by using extremely large
basis sets.

The measured relatively low �#Hads(OsO4/ on quartz was indicative of the van
der Waals type of adsorption [75]. Taking this into account, �#Hads(HsO4/ of only
6 kJ/mol larger than�#Hads(OsO4/was calculated using Eq. (10) and the computed
molecular properties (Table 8) [76], in excellent agreement with the experimental
�#Hads(HsO4/ and the observed Tads(HsO4/ > Tads(OsO4/ [75] (Fig. 16). The
obtained #Hads(MO4/ show a reversal of the trend in group 8, the same as ˛ and
IP do, which is stipulated by the trend reversal in the energies of the (n � 1)d AOs
(see Fig. 1b in [76]). This example shows that for very similar species, a particularly
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Table 8 Ionization
potentials, IPs (in eV);
polarizabilities, ˛ (in a.u.);
bond lengths, Re (in Å);
vibrational frequencies, �e , of
the M-O bond (in cm�1/; and
adsorption enthalpies,
�#H ˚ads (in kJ/mol), on
quartz for MO4 (M = Ru, Os,
and Hs)

Property Methoda RuO4 OsO4 HsO4

IP Calc. 12.21 12.35 12.29

Exp. 12.19 12.35 –

˛ Calc. 58.07 55.38 65.99

Exp. 58.64 55.13 –

Re Calc. 1.712 1.719 1.779

Exp. 1.706 1.711 –

�e Calc. 851 900 989

Exp. 880 965 –

#Hads Calc. 41.0˙ 1 39.0˙ 1 45.4˙ 1

Exp.b 39.0˙ 1 46.0˙ 2
aCalculations are from [76]; see also references for exper-
imental values there
bRef. [75]
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Fig. 15 Relativistic (rel.) and nonrelativistic (nonrel.) bond lengths,Re ; ionization potentials, IPs;
and polarizabilities, ˛, of MO4 (M = Ru, Os, and Hs) (Reproduced with permission from Ref. [76].
Copyright 2008 American Physical Society)

high accuracy of the calculations is required in order to “detect” tiny differences in
their molecular and adsorption properties. A linear extrapolation of #Hads in group
8 proved to be unreliable.

Relativistic effects were shown to have no influence on the trends in the
molecular properties and #Hads(MO4/ in group 8 (Fig. 15), because of identical
trends in the energies and Rmax of the charge density of the relativistic and
nonrelativistic (n � 1)d AOs responsible for bonding.

Group 9, 10, and 11. Mt and Ds have received little attention so far, because very
short half-lives of their isotopes are not suitable for experimental investigations.
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Fig. 16 Observed adsorption behavior of OsO4 and HsO4 in the gas-phase thermochromatogra-
phy experiments (Reproduced with permission from Ref. [75]. Copyright 2002 Nature Publishing
Group)

A few theoretical studies deal with DsF6, DsX (X = H, C, and CO) of DsH3 (see [9]
for references).

Chemistry of Rg was, on the contrary, of much theoretical interest: unusual
properties of its compounds were anticipated due to the strongest relativistic
stabilization of the 7s AO in group 11. Particularly, the electronic structure of RgH,
a sort of a test molecule like AuH, was of interest in probing the accuracy of various
methods in predicting the trend fromRe(AuH) toRe(RgH) (see Table 13 of [9]). The
4c-DFT and DHF CCSD(T) results were proven to be most accurate. The SR effects
were shown to double De(RgH), though the SO effects on the Rg atom diminish it
by 0.7 eV. The trend to an increase from De(AgH) to De(AuH) turns, therefore, out
to be reversed from De(AuH) to De(RgH).

Group 12. Group-12 elements have a (n�1)d10ns2 closed-shell ground state. With
increasing relativistic effects in this group, the elements become more inert. Thus,
Hg is known to be a liquid. For Cn, the maximum of the relativistic stabilization of
the 7s AO in the group (Fig. 2), as well as in the 7th row of the periodic table, was
a reason to believe it to be noble gas-like: In 1975, Pitzer suggested that the very
high valence-state excitation energy 6d107s2 ! 6d107s7p1=2 of 8.6 eV will not be
compensated by the energy gain of the chemical bond formation [77].

The idea of Cn having noble gas properties was tested by gas-phase thermochro-
matography experiments allowing for comparison of its volatility with that of Hg,
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a lighter homologous d element, and Rn, an inert gas [78]. Gold was chosen as
a surface of detectors of a chromatography column: it strongly adsorbs Hg, while
very weakly Rn. The questions to the electronic structure theory were, therefore: Is
Cn metallic in the solid state, or is it more like a solid noble gas? How volatile and
reactive toward gold is the Cn atom in comparison with Hg and Rn?

Homonuclear dimers. Bonding in the solid state, i.e., cohesive energy, Ecoh, of an
element can be described in the first approximation by bonding in its homonuclear
dimer, M2. De(Cn2/ had, therefore, to be accurately calculated. Moreover, Hg2
and Cn2 were of interest for theory in probing the accuracy of various methods in
treating closed-shell interactions. Accordingly, the electronic structures of Hg2 and
Cn2 were calculated using a variety of methods, such as X2C CCSD(T) [79], 4c-
BDF, ECP CCSD(T), QR PP CCSD(T) [54], 4c-BDF [80], and 4c-DFT [81]. Some
results are shown in Table 9 and Fig. 17. A more complete table is given in [9].

As expected, the DFT underestimates De(M2/ (M = Hg and Cn) [54, 81], but
nicely reproduces the trend to an increase in it of 0.04 eV from Hg2 to Cn2,
also shown by the CCSD(T) calculations [54, 79] (Fig. 17). As the nature of this
interaction is predominantly dispersive, such an increase is due to a smaller M-M
distance caused by the smaller Rmax of the 7s(Cn) AO in comparison with Rmax of
the 6s(Hg) AO. This is a first indication that the cohesive energy, Ecoh � #Hsub, of
bulk Cn should be larger than Ecoh(Hg).

Solid state. LDA DFT (nonrelativistic, scalar relativistic, SR, and 4c relativistic)
band structure calculations were performed on the Cn solid state [83]. The results
have shown that Cn prefers the hcp structure (as that of Zn and Cd) in the difference
to Hg (fcc). Thus, it should differ from its lighter homolog Hg on a structural level
and resemble the solid-state noble gases. A cohesive energy of 1.13 eV was obtained
for Cn at the SR level of theory, which is larger than that of Hg (0.64 eV) and is an
order of magnitude larger than those of the solid noble gases. It was concluded that
Cn is not a metal, but rather a semiconductor with a band gap of at least 0.2 eV. In
this sense, Cn resembles the group-12 metals more closely than it does the noble
gases. This result is consistent with the larger De(Cn2) with respect to De(Hg2/.

Table 9 Bond lengths, Re (in Å), and dissociation energies, De (in eV), of Hg2, Cn2, and Fl2

Hg2 Cn2 Fl2
Method Re De Re De Re De Ref.

X2C CCSD(T) 3.744 0.050 3.461 0.084 3.547 0.117 [79]

4c-BDF (PBE) 3.904 0.025 3.363 0.075 3.490 0.12 [54, 80]

RECP CCSD(T) 3.73 0.049 3.320 0.095 3.730 0.07 [54, 80]

QR PP CCSD(T) 3.769 0.044 3.386 0.097 – – [54]

4c-DFT (B88/P86) 3.63 0.010 3.450 0.050 3.490 0.13 [81, 82]

Exp.a 3.63 0.043 – – – –
aSee the original publications for references
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Thus, the case of group-12 elements shows that the relativistic calculations are
indispensable in order to predict the right trend in volatility, Cn<Hg, or#Hsub(Cn)
> #Hsub(Hg), while an extrapolation of #Hsub in group 12 gives 22.2 kJ/mol for
Cn, which is the lowest in group 12.

Interaction with metals. In order to predict volatility of Hg and Cn as adsorption
enthalpy on gold, #Hads

Au(M) (and other noble metals), measured in the gas-
phase experiments [78], 4c-DFT calculations were performed for MM0 (M = Hg,
Cn; M0 = Ag, Au, Pt, Pd, and Cu) [84] and M-Aun systems, where Aun (n D 1

through 120) are clusters simulating a gold surface [85, 86]. It was shown that Cn
interacts rather well with the noble metals. In CnAu, the 
 -bond formation takes
place between the doubly occupied 7s(Cn) AO and the singly occupied 6s(Au) AO
(Fig. 18).De(CnAu) is, however, smaller thanDe(HgAu) due to the more stabilized
7s(Cn) AO than 6s(Hg) AO. Among different metals M, bonding of Cn with Pd
should be the strongest, while with Ag the weakest [84].

Since the structure of the real gold surface is unknown, two types of ideal surfaces
were considered: Au(100) and Au(111) [85, 86]. For the Au(111) surface that is
more realistic, the convergence in Eb(M-Aun/ (M = Hg and Cn) with the cluster
size was reached for n D 95 for the top, n D 94 for the bridge, and n D 120 for
the hollow-1 and n D 107 for the hollow-2 positions. For Hg, the bridge position
was found to be preferential for both types of surfaces, while for Cn, the hollow 2.
Eb(Cn-Aun/ of 0.46 eV on the Au(111) surface was given then as a final prediction
[86] (Table 10 and Fig. 19).

The measurements of volatility of Cn have shown that Cn adsorbs in the
chromatography column on gold at Tads around �20 ıC, which is much lower than
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Table 10 The Cn-Aun and Fl-Aun binding energies and �#Hı
ads(M) on gold (M = Cn and FI)

(in eV)a

Method n/surface Cn Fl Ref.

4c-DFT 1 0.51 0.73 [86]

2c-DFT 1 0.47 0.72 [87]

SO DFT 3 0.47 0.77 [87]

2c-DFT 26br/Au(100) 0.33 0.55 [86]

2c-DFT 37holl�2/Au(111) – 0.49 [88]

4c-DFT 95top/Au(111) 0.30 0.47 [86]

4c-DFT 94br/Au(111) 0.42 0.71 [86]

4c-DFT 107holl�2/Au(111) 0.46 0.59 [86]

Exp. �#Hı
ads(M)/Aub 0.54C0:2

�0:04 0.34C0:5
�0:1 [78, 89]

> 0:50 [90]
aMost stable states are in bold
bThe structure of the gold surface is unknown

Tads of Hg (Hg adsorbs right at the beginning of the column with 35 ıC), but
higher than Tads(Rn) of �180 ıC [78]. The obtained �#Hads

Au(Cn)D 0:54C0:2�0:01 eV
(52C20�4 kJ/mol) turned out to be in good agreement with the theoretical value
[86]. Such a relatively high �#Hads

Au(Cn) was evident of the metal-metal bond
formation, a behavior typical of group-12 lighter homologs.
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Works on the RECP and 2c-DFT calculations for Hg and Cn interacting with
different gold clusters arrived at the same conclusion: Eb(Cn-Aun/ is about 0.2 eV
smaller than Eb(Hg-Aun/ (Table 10) [87]. (The data for FlAun are also given
in Table 10 [88–90], but discussed below.) In [47], the influence of relativistic
effects on Eb(M-Aun/ (M = Hg and Cn) was investigated. Relativistic effects were
shown to increase Eb(M-Aun/ of both the Hg- and Cn-containing species and to be
responsible for Eb(Hg-Aun/ > Eb(Cn-Aun/.

In summary, both the theoretical and experimental studies show that Cn forms a
rather strong bond, however weaker than that of Hg, with metals. Thus, it behaves
like a d element upon adsorption, but not like an inert gas. In this way, its position in
group 12 of the periodic table has been confirmed. The obtained - #Hads

Au(Cn) <
�#Hads

Au(Hg) do not correlate with #Hsub(Cn) > #Hsub(Hg) due to the different
types of bonding in these two cases. The example of group-12 elements shows how
important are theoretical calculations in order to distinguish between the nature of
the studied processes and trends in the group.

Some other compounds of Cn, hydrides, and fluorides were also considered
theoretically. A review of those works can be found elsewhere [5, 8–11].

Groups 13 through 18. In the 7p elements, the 7s2 electrons are bound more
tightly than the 6s2 ones in the 6p homologs, so that they do not take part in the
chemical bond formation. Also, a large SO splitting of the 7p shell into the nlj
subshells should result in differences in the chemical bonding in comparison with
the homologs having (almost) a complete nl shell. Thus, these elements are expected
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to be more volatile than their lighter homologs, as their #Hsub obtained via linear
extrapolations in the groups indicate [91].

Experimentally, volatility of the 7p elements at the beginning of the series, i.e.,
those with sufficiently long half-lives, is supposed to be studied using gas-phase
chromatography techniques with gold- or SiO2-plated detectors. First results for
adsorption on gold with the use of thermochromatography have been published for
289Fl (t1=2 = 2.1 s) and 288Fl (t1=2 D 0:7 s) [89,90]. The next element to be studied is
284113 with t1=2 � 0.9 s.

Homonuclear dimers. Keeping again in mind that bonding in M2 is related to
bonding in the solid state, De(M2/ were calculated for the entire series of the
6p and 7p elements using the 4c-DFT method [92, 93]. (A few dimers were also
calculated in [80]). All the dimers of group-13 through group-17 7p elements were
shown to be, indeed, weaker bound than their 6p homologs, with the difference in
De(M2/ between them decreasing with the group number and a final reversal of
the trend in group 18 (Fig. 20). The reason for that is very large SO effects on the
7p AOs preventing them from making a full 
 -bond: in (113)2 and Fl2, bonding is
preferentially made by the 7p1=2 AOs, while in the heavier elements, mainly by the
7p3=2AOs.

An interesting observation was the shift of the De(M2/ maximum in the seventh
row toward group 16 with respect to group 15 in the sixth and upper rows (Fig. 20).
This is also a strong manifestation of the relativistic effects. As a result of the
stabilization of the 7p1=2 AOs, the system of the highest bonding-antibonding MOs
in M2 consists of only four MOs composed of the 7p3=2 AOs, so that the half-filled
shell (with four electrons) falls on (116)2. In contrast, the 6p1=2 and 6p3=2 AOs are
not so well separated energetically from each other and form a set of six highest
bonding-antibonding MOs, so that the half-filled shell (with six electrons) falls on
Bi2 (see Fig. 4 in [92]).

Flerovium. Due to the very large SO splitting of the 7p AOs (Fig. 2), Fl has a quasi-
closed-shell ground state, 7s27p21=2. The argument of Pitzer, similar to that used for

Cn, which due to the 7p1=2(Fl) AO stabilization, the 7p21=2 ! 7p2 promotion energy
to the metal valence state will not be compensated by the metal bond formation,
led to the conclusion that this element should be a relatively inert gas or a volatile
liquid bound by van der Waals forces [77]. To test this assumption at the MO level of
theory, electronic structures of Fl2 (and Pb2 for comparison) were calculated using
DFT and CC methods [80, 92]. The calculations agree on the fact that bonding in
Fl2 is stronger than a typical van der Waals one. It is stronger than that in Cn2, but
much weaker than that in Pb2 (Table 9 and Fig. 20). A Mulliken population analysis
indicates that both the 7p1=2 and 7p3=2 AOs of Fl take part in the chemical bond
formation. SO effects were shown to decrease De , but increase Re in both Pb2 and
Fl2 [80]. The DFT results [81, 82] perfectly reproduce the trend to an increase in
De from Hg2 to Cn2 and further to Fl2 in agreement with the CC calculations [79],
where dispersion interactions are more fundamentally taken into account (Table 9
and Fig. 17). Also, the 4c-DFT and CCSD(T) De(Fl2/ nicely agree with each other
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confirming that the Fl-Fl interactions are of no van der Waals nature. This is a clear
indication that the Fl-Fl bonding should be stronger than the Cn-Cn one, also in the
bulk.

In the difference to the other 7p elements, the bond in (118)2 should be stronger
than that of the lighter group-18 homologs due to its largest ˛(118) in the group [92].

Sublimation enthalpies. TheDe(M2/ of the np elements were shown [92] to nicely
correlate with #Hsub D #Hf̊ (g) of bulk of these elements [59]. Obtained on
the basis of this correlation, #Hsub of the 7p elements are smaller than those
of the lighter homologs and agree rather well with #Hsub predicted via a linear
extrapolation in groups 13–17 [91]. Thus, elements 113 through 117 should, indeed,
be more volatile than their lighter homologs.

In [94], Ecoh(Fl) of 0.5 eV was predicted from SR and SO DFT (PW91) periodic
calculations. The resulting value is in good agreement with #Hsub obtained from
a correlation with De.M2/ in group 14 [92]. SO effects were shown to lower Ecoh

and to lead to structural phase transitions for the solid Fl having the hcp structure in
contrast to the fcc one for Pb.

Interaction with metals and adsorption on gold. In order to predict#Hads of the 7p
elements on gold, 4c-DFT calculations for the MAu dimers were performed in [93].
Obtained De(MAu) are shown in Fig. 20 in comparison with De(M2/. One can see
that in group 13 and 14, De(MAu) of the 7p elements are smaller than De of the 6p
homologs, which is explained by the relativistic stabilization of the 7p1=2 AOs. On
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the contrary, in groups 15 through 17, they are about the same. This is in contrast
to the trends in De(M2/, where De(Bi2/ >> De[(115)2], De(Po2/ >> De[(116)2],
and De(At2/ > De[(117)2]. The relatively strong M-Au bonding of elements 115
through 117 with gold is explained by the relativistic destabilization of the 7p3=2(M)
AO fitting nicely to the 6s(Au) AO, thus making – together with the 7p1=2(M) AO
– a full 
 -bond in the difference to M2, where only the 7p3=2(M) AO are involved
in bonding. In group 18, a reversal takes place, so that De(118Au) > De(RnAu), in
agreement with the trend in De(M2/. This is due to the relativistically destabilized
7p3=2(118) AO better fitting to the 5d and 6s AOs of Au than the 6p3=2(Rn) AOs.

The 4c-DFT calculations were also performed for group-14 intermetallic dimers
MM’, where M’ are group-10 and group-11 elements [82]. The Fl-Pt bonding was
found to be the strongest, while the Fl-Ag and Fl-Ni, the weakest.

Using De(MAu), �#Hads of element 113 and Fl on gold of 159 and 92 kJ/mol,
respectively, were estimated via a correlation between these quantities in groups 13
and 14 [93, 95]. In groups 15 through 17, no correlation is observed between these
quantities, because De(M-Au) does not decrease linearly with Z, while De(M-M)
does [93]. Thus, the case of the 7p elements with large SO effects shows that linear
extrapolations of properties, such as #Hads

Au(M), from the lighter homologs in the
groups might lead to erroneous predictions.

The 2c-DFT and 1c-CCSD(T) calculations were performed for MAun, where
M = Tl and element 113 (n D 1; 2; 3, and 58) [96], with the gold clusters
simulating Au(100) and Au(111) surfaces. The difference in Eb(M-Aun/ between
Tl and element 113 was found to stay within ˙15 kJ/mol of 82 kJ/mol obtained
for De(MAu) [93]. Thus, taking into account �#Hads(Tl) of 240 kJ/mol [97],
�#Hads(113) can presently be given as 159˙15 kJ/mol.

Extended 4c-DFT calculations were also performed for M = Pb and Fl (along
with Hg and Cn) interacting with large Aun clusters (n D 1 through 120) simulating
the Au(111) surface [86]. Both Pb and Fl were found to prefer the bridge adsorption
position, where the convergence in Eb(M-Aun/ with the cluster size was reached
for n D 94 (Table 10 and Fig. 19). The calculated Eb turned out to be in very good
agreement with the experimental �#Hads of Pb and Cn on gold [78] indicating
that the Au(111) surface is obviously the proper one. Taking into account that Hg
dissolves in gold, the trend in �#Hads

Au(M) was predicted as Cn < Fl < Hg �
Pb [86].

Particularly interesting is the comparison of Fl with Cn, both revealing relatively
weak metal-surface interaction. Both the 4c-DFT [86, 93] and BSS CCSD(T) [79]
calculations for the gold dimers, as well as for large metal-gold cluster systems [86–
88], have shown Fl to be stronger bound with Au than Cn (Table 10 and Fig. 19).
The reason for that is the following: in FlAu – even though both FlAu and CnAu are
open-shell systems with one antibonding 
* electron – electron density is donated
from the lying higher in energy 7p1=2(Fl) AO to the 6s(Au) AO, while in CnAu,
some excitation energy is needed to transfer some electron density from the closed
7s2(Cn) shell to the 6s(Au) AO (Fig. 18).

In contrast to the theoretical predictions, the first thermochromatography exper-
iment with three events of Fl has shown that it adsorbs on the surface of chro-
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matography column with gold detectors at temperatures about those of Rn and
�#Hads

Au(Fl) of 0.34 C0:54�0:11 eV has been given on their basis [89], smaller than
�#Hads

Au(Cn) of 0.54 C0:02�0:04 eV (Table 10). Such a small �#Hads
Au(Fl) was

interpreted as an indication of “the formation of a weak physisorption bond between
atomic Fl and a gold surface.” According to these results, Fl should have been
chemically more inert than Cn. The second similar experiment on volatility of Fl,
conducted at a lower background of interfering products, registered two events of
this element adsorbed on gold at room temperature [90]. Such a relatively high Tads

and estimated �#Hads
Au(Fl) > 48 kJ/mol support the theoretical conclusion that Fl

should form a chemical bond with Au. Further experiments are underway to collect
better statistics of the Fl events in order to have a more accurate #Hads(Fl).

Other compounds. Other than elements 114 and 118, elements 113 and 115 through
117 will not be stable in the gas phase in the elemental state. Thus, element 113
should form hydroxides in the presence of traces of water in the experimental setup.
Relativistic 4c-DFT calculations have shown the 113-OH bond to be rather strong
(2.42 eV), but weaker than the Tl-OH one (3.68 eV) [95]. Element 113 may then
adsorb on gold in the form of the hydroxide. �#Hads

Au(113OH) is expected to be
lower than �#Hads

Au(113).
There are numerous relativistic – DCB, RECP, and 4c-DFT – calculations of

other compounds of group-13 elements, such as MX and MX3 (X = H, F, Cl, Br,
and I), or (113)(117). A very large bond contraction is found in 113X due to
the 7p1=2(113) AO contraction, as in none of the other compounds (see [9] as a
review). The electronic structures of FlX (X = F, Cl, Br, I, O, O2/ were calculated
using the 2c-RECP CCSD(T), 2c-DFT SO ZORA, and 4c-BDF methods [80].
In contrast to PbO2 (De D 5:60 eV), FlO2 (De D 1:64 eV) was predicted to
be thermodynamically unstable with respect to the decomposition into the metal
atom and O2.

Chemistry of elements 115, 116, and 117 received little attention so far. Chem-
istry of element 118, on the contrary, was of much theoretical interest. It should
be unusual due to the huge SO effects (11.8 eV) preventing the 7p21=2 pair from
the participation in the chemical bond. Thus, a different geometry of 118F4(Td /
than that of RnF4 (D4h/ was predicted due to availability of only 7p43=2 electrons of
element 118 for bonding [98]. (See also [7–11] for reviews.)

Summary. Predicted trends in volatility of group-4 through group-8, group-12, and
group-14 species in comparison with observations are given in Table 11. They show
largely the synergy between theory and experiment. Observed unusual trends in
volatility of group-4 and group-5 halides, as well as of Fl with respect to Cn, belong
to the few unresolved cases that may require further research efforts.

Elements 119 and 120. Elements 119 and 120 are the next elements awaiting
discovery. Their properties should be defined by the 8s and 8s2 ground-state config-
urations, respectively. Volatility of atoms of elements 119 and 120 might be studied
in the long term using an advanced (vacuum) chromatography technique designed
for extremely short, presumably sub-millisecond, half-lives of their isotopes.
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Table 11 Trends in volatility of group-4–8, group-12, and group-14 species

Group Volatile species Theoretically predicted Ref. Experimentally observed Ref.a

4 ML4 (L = Cl, Br) Zr < Hf < Rf [64, 65] Hf < Rf� Zr See [5]

5 ML5(L = Cl, Br) Nb < Ta < Db [66] Ta < Db� Nb See [5]

MOL3 (L = Cl, Br) Nb > Ta > Db [66] Nb > Ta > Db See [5]

6 MO2Cl2 Mo > W > Sg [68] Mo > W > Sg [67]

M(CO)6 Mo�W� Sg [72] Mo�W� Sg [70]

7 MO3Cl Tc > Re > Bh [74] Tc > Re > Bh [73]

8 MO4 Ru < Os > Hs [76] Os > Hs [75]

12 M Hg < Cn [86] Fl > Cn [78, 89]

14 M Fl < Cn [86] Fl � Cn [90]
aFor most experimental studies, see references in [5]

0,2

0,4

0,6

0,8

1

0 50 100 150

Z

D
e(

M
2)

, Δ
H

su
b(

M
), 

eV

Cs
Fr

119

Rb

K

ΔH sub(M)

D e(M2)

-1

-0,5

0

0,5

1

1,5

2

2,5

0 50 100

Z

D
e (

M
2 )

, Δ
H

su
b ,e

V

calc.

exp.
Ba

RaSr
Ca

Ca
Sr

 Ba

D e(M2)

ΔH sub(M)

120

Ra
120

Fig. 21 Dissociation energies, De , of group-1 and group-2 M2 (filled rhomboids are 4c-DFT
calculations, open squares – experiment), as well as sublimation enthalpies, #Hsub(M) (filled
triangles connected by solid lines are experiment, those connected by dashed lines – estimates)
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Homonuclear dimers and sublimation enthalpies. To estimate #Hsub of elements
119 and 120, the 4c-DFT calculations were performed for group-1 and group-2
homonuclear dimers [99, 100]. The obtained De(M2/ show a reversal of trends at
Cs in group 1 and at Ba in group 2, though in the opposite direction: an increase in
group 1 from Cs on and a decrease in group 2 from Ba on (Fig. 21). The reason for
these different trends is the different types of the M-M binding in these two cases:
a covalent ns(M)-ns(M) one in group 1, while a van der Waals ns2(M)-ns2(M) one
in group 2. Accordingly, Re(M2/ decreases in group 1 from Cs toward element 119,
while it steadily increases in group 2.
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A linear correlation between De(M2/ and #Hsub(M) was established in these
groups. On its basis, #Hsub of element 119 of 94 kJ/mol and of element 120 of
150 kJ/mol were obtained (Fig. 21) [99, 100]. According to these data, the element
119 metal should be as strongly bound as K, while the element 120 metal should be
most weakly bound in group 2, though stronger than the element 119 one. A reversal
of the M-M binding trends in these groups is a result of the E(ns) AO trend reversal
from the 6th row on.

Intermetallic dimers and adsorption on noble metals. In order to predict#Hads(M)
of elements 119 and 120 on noble metals, electronic structures of MAu, where M
are group-1 and group-2 elements, were calculated using the 4c-DFT method [99,
100]. The 2c-DFT calculations were also performed for the 120-Aun clusters [101].
Elements 119 and 120 were shown to strongly interact with gold though weaker than
the homologs. The De(MAu) values reveal a reversal of the increasing trend at Cs
and Ba in group 1 and 2, respectively (Fig. 22), in accordance with the trend reversal
inE(ns) AO. They were also shown to correlate with the semiempirical�#Hads(M)
[102] of K through Cs and Ca through Ba on gold and other metals, respectively. On
the basis of these correlations,�#Hads of element 119 of 106 kJ/mol and of element
120 of 353.8 kJ/mol on gold, as well as on other metals, were determined (Fig. 22).
Finally, no proportionality was found between the #Hsub(M) and �#Hads

Au(M)
in group 1, because these quantities change in opposite directions with Z in these
groups. In group 2, there is a correlation between #Hsub(M) and �#Hads

Au(M).
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permission from Refs. [99] and [100]. Copyright 2012 Elsevier and 2013 American Institute of
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The predicted #Hads
Au(M) mean, however, that very high temperatures must be

applied to establish an equilibrium Tads. This is presently not feasible, because the
detectors cannot be heated above �35 ıC.

Few other simple compounds of elements 119 and 120 were calculated, whose
description can be found elsewhere [5, 8–11].

Elements with Z > 120. The chemistry of elements heavier than Z D 120 rests
on a purely theoretical basis. Due to even stronger relativistic effects, as well as the
existence of a plenty of open shells and their mixing, it will be much more different
than anything known before. Very few molecular calculations exist in this SHE
domain. The latest considerations of the chemistry of some of these elements can be
found in [103,104]. In this area, some unexpected oxidation states and coordination
number like, e.g., (E148)O6 or (E158)X8 (X = halogen), could be reached.

Aqueous Chemistry

• Redox potentials and stability of oxidation states

Knowledge of redox potentials, E˚, is very important for chemical separation of
SHE. Early predictions of oxidation states and E˚ of the heaviest elements based
on atomic DF and DS calculations and a Born-Haber cycle are summarized in
[6]. Later, E˚ of Rf, Db, and Sg were estimated using results of atomic MCDF
calculations of multiple IPs and known experimental redox potentials in group 4, 5,
and 6 [48, 49]; see also [5, 8, 9] for reviews. The following trends were established
for SHE: the stability of the maximum oxidation state increases within group 4
through 6 as a result of the proximity of the relativistically destabilized 6d AOs,
while that of lower oxidation states decreases. Along the 7th period, the stability
of the maximum oxidation state decreases: Eı(Lr3C/Lr2C/ < Eı(RfIV/Rf3C/ <
Eı(DbV/DbIV/ < Eı(SgVI/SgV/. A similar trend is observed for Eı(MZmax/M).
The increasing stability of the maximum oxidation state in group 4, 5, and 6 was
shown to be a relativistic effect due to the proximity of the relativistic energy levels,
while the 3+ state of Db and the 4+ state of Sg should be unstable. A summary of
the redox potentials is given in Table 3.22 of [9].

• Complex formation and extraction by liquid chromatography

A number of theoretical works were devoted to predictions of complex forma-
tion, hydrolysis, and extraction behavior of Rf, Db, and Sg, in aqueous acid solutions
(Eq. 5). Complex formation of Hs has also been studied as a specific case. (See
[5, 8, 9] for the reviews.) The predictions were made with the use of a model
that treats the formation energy of a compound as a sum of ionic and covalent
constituents. The latter were obtained via 4c-DFT electronic structure calculations
of the systems of interest [105, 106]. Those studies demonstrated that even though
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Fig. 23 Predicted logKd for
the extraction of Hf and Rf by
amines with respect to the
measured ones for Zr
(Reprinted with permission
from Ref. [107]. Copyright
2006 Oldenbourg
Wissenschaftsverlag GmbH)
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the heaviest elements are homologs of their lighter congeners in the chemical
groups, trends are not necessarily continued with them (see, e.g., predictions of
an unexpected trend in the distribution coefficients, Kd , of the group-5 complexes
by extraction from the HCl solutions into amines [105], confirmed by experiments
[19]). The calculations have also shown that the theory of hydrolysis based on the
ratio of the cation size to its charge does not explain, e.g., the difference between
Nb and Ta or Mo and W. Only by performing relativistic calculations of the real
chemical equilibria can the complex formation or hydrolysis be correctly predicted.

As an example, predictions of logKd for the extraction of Zr, Hf, and Rf from
the H2SO4 solutions by amines are shown in Fig. 23. For that purpose, the formation
energies of the M(SO4/2(H2O)4, M(SO4/3(H2O)2�2 , and M(SO4/

4�
4 (M = Zr, Hf, and

Rf) complexes were calculated using the 4c-DFT method [107]. According to the
results, the following trend in the complex formation was predicted: Zr > Hf 
Rf. Aqueous chemistry extraction experiments [108] confirmed the theoretically
predicted trend and have given the Kd (Rf) values close to the predicted ones.

A summary of the predicted trends in hydrolysis, complex formation, and
extraction of the group-4 through group-6 elements including the heaviest is given
in [5,8,9]. As one can see there, most of the predictions have been confirmed by the
experiments, while some of them, e.g., predictions for Sg in HF solutions [109], are
still awaiting the confirmation.
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Summary

Theoretical studies on the electronic structures and properties of SHE have reached
in the recent years remarkable achievements. With many of them linked to the
experimental research, these investigations have contributed to better understanding
of chemistry of these exotic elements, as well as the role and magnitude of
relativistic effects. They helped predict the outcome of sophisticated and demanding
experiments with single atoms and interpret their results.

Atomic structures were accurately predicted at the DCB CCFS level of theory
for elements up to Z = 122. For the heavier elements, there is still some uncertainty
in the ground states, so that the structure of the 8th row of the periodic table is still
being discussed and debated.

Molecular calculations were performed for Rf through Z = 118 and a few heavier
elements using a variety of relativistic methods, from DF CC ab initio to quasi-
relativistic schemes. Most valuable information about properties of chemically
interesting compounds (complex molecules, clusters, and solid state) was obtained
with the use of the 4c-/2c-DFT and RECP/PP CC methods. They proved to be
complimentary both conceptually and quantitatively, and their combination is the
best way to investigate properties of the heaviest elements.

It was shown that elements Rf through 118 are homologs of their lighter
congeners in the chemical groups, though their properties may differ due to very
large relativistic effects. Straightforward extrapolations in the chemical groups can,
therefore, result in erroneous predictions. For even heavier elements, properties
should be even more unusual due to the mixing of many electronic states.

In the future, theoretical chemistry will still have a number of exciting tasks
with respect to the new systems under investigation. Some further methodical
developments in the relativistic quantum theory, like, e.g., inclusion of the QED
effects on the SCF basis in molecular calculations, will be needed to achieve a
required accuracy of the calculations.
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equation
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Dirac-Coulomb-Breit (DCB), 865, 868
equation, 268–272
Hamiltonian, 251, 252

Dirac derivation, 11–13
Dirac equation, 4, 9–13, 84, 90, 92, 244, 246,

768–769
bilinear forms, 138
Coulomb potential, 137, 141–142
covariant form of, 15–16
definition, 137
external field, 25–27
free fermion, 133
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Dirac Hamiltonian, 84
Dirac-Hartree-Fock (DHF), 717
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Dirac operator, 5
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769
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approach, 450
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effects, 831
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relativity and, 844, 852

Electron electric dipole moment, 581–607
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relativistic corrections
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Energy-consistent approach, 468–469
Energy shift, 588, 589
Equation-of-motion coupled-cluster theory
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transition and Excited state properties,
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approaches, 403–405
Exactly solvable models, 34
Exact two-component (X2C), 383–392, 414,

418
Exchange-correlation energy functional

relativistic density functional theory, 550,
553

Exchange-correlation energy relativistic
corrections atoms, 563

Exchange-correlation magnetic field
relativistic spin density functional theory,

555
Exchange energy functional no-pair relativistic

density functional theory, 557
Exchange potential relativistic corrections

atoms, 564
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Excitation energy, 801–805
Existence theorem

relativistic density functional theory, 551
Explicit correlation, 535, 536
Extended no-pair projection, 535, 540
External energy functional

relativistic density functional theory,
553

External fields, 25–33

F
Fine structure constant, 612, 614, 629
Fine structure splitting, 818
Finite basis set disease, 125
Finite nucleus effects, 741
First-order DKH Hamiltonian, 401
Fock space, 323
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398–399
Four-component ‘spin density, 679
Four-component theory, 688
Four gradient, 550
Fourier-Bessel, 63
Free Dirac operator, 20
Free-particle spinors, 22
Frequency standard, 612, 613, 620
Frozen-core approximation, 456
Frozen-core errors, 457, 458
Furry’s theorem, 199

G
Galilei/Lorentz transformations, 8
Gamma matrices, 14
Gauge invariance, 27
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Gaussian basis sets, 96–99
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Gell-Mann–Low–Sucher method, 288, 289
General relativistic atomic structure (GRASP),

454
Generalized gradient approximation

relativistic extension, 575
Gordon decomposition, 32
Green’s function, 156, 157, 160, 177, 185,

190, 199, 202, 207–211, 215,
218, 325

Green’s operator, 327
Ground state density

relativistic density functional theory, 550

Ground state energy
relativistic corrections atoms, 564
relativistic density functional theory, 550,

553
relativistic LDA, GGA

closed-subshell atoms, 573
open-shell atoms, 574

Ground state four current
relativistic Kohn-Sham system, 552

H
Hamiltonian-like equation, 134
Harmonic oscillators, 34
Hartree energy functional

no-pair relativistic density functional
theory, 553

relativistic density functional theory, 553
Heavy elements, 826–853
Hohenberg-Kohn logic, 121
Hohenberg-Kohn theorem, 122
Hybrid functionals, 123, 124
Hyperfine coupling (HFC), 728, 730, 735,

749–751

I
Infinitesimal rotation, 18
Instability, 613
Integral equation, relativistic optimized

potential method, 560
magnetization-dependent, 562
spin-dependent, 563

Integrals of electron-nucleus attraction, 76
Interacting v-representability

relativistic density functional theory, 551
Internal symmetry, 490–493, 506–512
Ionization potential, 801–805

atoms, 568
relativistic corrections

atoms, 566
Isotropic coupling, 779

K
Källén-Sabry approximation, 168
Kinetic balance, 85–89, 116, 120
Kinetic energy functional

relativistic density functional theory, 553
Kohn-Sham eigenvalues

relativistic corrections
atoms, 565, 568
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relativistic density functional theory, 553
relativistic spin density functional theory

collinear, 556
non-collinear, 555

Kohn-Sham potential
relativistic density functional theory, 554

Kramers degeneracy, 812, 816
Kramers derivation, 10

L
Lamb shift, 111, 115, 246–253, 862

history, 246–249
modern explanation, 250–253

Landé factor, 135–136
Lentz vector, 141
Linewidth, 612, 613, 615
Linked-diagram theorem, 318
Local decoupling, 404
Local density approximation

relativistic exchange, 571
Lorentz-covariance, 7
Lorenz-invariant Dirac equation, 244
Lorentz transformation, 17, 150

M
Magic wavelengths, 643
Magnetic balance, 101–105, 678, 689
Magneto-structural correlations

ab initio calculations, 785–791
crystal-field models, 787–791

Matrix elements of potential energy, 75
Matter antimatter asymmetry, 585, 607
Mean-field approximation, 108
Mean-field spin-orbit Hamiltonian, 436
Mercury monohalides, 605–606
Metric tensor, 549
Micromotion, 615, 621, 622
Microwave clock, 613, 614, 650
Minimum coupling, 134
Minkowski indices, 549
Minkowski space, 4
Model core potential (MCP), 471
Model Hamiltonians, 772–773

binuclear complexes, 779–785
mononuclear complexes, 773–779

Modelpotentials (MPs), 469–470
ab initio modelpotentials, 470
model core potentials, 471

Molecular effective core potentials, 471
Mononuclear complexes, model Hamiltonians

S D 1 and S D 3=2 systems, 773–777

S D 2 and S D 5=2 systems, 777–779
Mulliken population analysis, 885
Multiconfiguration Dirac-Fock (MCDF), 268
Multi-configuration finite-difference

Dirac-Hartree-Fock (MCDHF) , 454
Multiconfigurational self-consistent field

(MCSCF), 770
Multiconfiguration Dirac-Fock (MCDF),

112–113, 219, 868, 869, 871, 891
method, 268

Multireference configuration interaction
(MRCI), 771

N
Neutron, 53
Neutron number, N , 54
NMR shielding

theoretical description of, 661
Nonadiabatic dynamics, 415
Nonrelativistic, 71

basis sets, 99
limit and direct approach, 28
quantum chemistry, 84
theory, 109

No-pair approximation, 552
No-pair Hamiltonian, 383
Notation

relativistic density functional theory, 553
Nuclear attraction integrals, 75
Nuclear charge density distribution, 56, 58–65,

67
Fermi-type, 63
homogeneous (or uniform), 62
point-like, 61
Sum-of-Gaussians, 65

Nuclear charge form factor, 59
Nuclear electric quadrupole moment, 56
Nuclear magnetic dipole moment, 56
Nuclear magnetic resonance (NMR), 695–697
Nuclear magnetization distributions, 57–70

exponential, 68
Gauss-type, 69
modified exponential, 68
modified Gauss-type, 69

Nuclear mass number A, 55
Nuclear quadrupole coupling constants

(NQCC), 56
Nuclear rms charge radius a, 59
Nuclear shielding

application, 681–682
Nuclear skin thickness t , 57
Nuclear spin, 55, 728, 730, 759
Nuclear spin-rotation tensor, 697–720

Hamiltonian definition, 694
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nuclear shielding constants, 717
relativistic theory of, 696, 698, 715

Nucleon, 52–58
Nuclides, 54

chart of, 54

O
One-loop self-energy, 170–172

coordinate space, renormalization in,
176–177, 177

low-energy part, 173–175
regularization, 175–176
singular terms, evaluation of, 177–183
subtraction terms, evaluation of, 183–189

Open-shell systems, 797, 799, 801, 805
Optical clock, 613–617, 652

P
pair function, 320
Pauli corrections, 31
Pauli exclusion principle, 111
Pauli-Villars regularization, 175, 190
Periodic boundary conditions (PBCs), 767
Perturbation theory, 151D

S
.1/
�;1

E
c
, 158–159D

S
.2/
�;1

E
c
, 159, 170

adiabatic evolution operator, 151
Wick’s theorem, contractions and

propagators, 153 (See also Wick’s
theorem)

Photon exchange, 271
Poisson equation, 198
Position and velocity operators,

Zitterbewegung, 22–25
Positrons, 32
Potential energy function, 58–66, 70–72
Predictions of experimental behaviour, 860
Primitive Gaussian basis sets, 96–99
Proton, 53
Proton number Z, 54
Pseudopotentials (PPs), 460–462

adjustment, 466–469
local form, 463
nonlocal form, 465–466
semilocal form, 463–465

Q
Quadrupole shift, 619, 622, 627–628
Quality factor, 613

Quantum chemical calculations, 864–868
Quantum electrodynamics (QED), 108, 111,

244–261, 287, 288, 348–363, 396
challenges, 258–261
continuum dissolution, 147
corrections, 268, 270–272

first order, 272–278
effects, 253–257
electromagnetic field, 150
electron field, 149–150
eQED Hamiltonian, algebraic derivation,

358–363
eQED Hamiltonian, diagrammatic

derivation, 353–358
evolution operator, 148–149
perturbation theory, S -Matrix and energy

shift, 150 (see also Perturbation
theory)

representations, 147
self-energy screening, 200 (see also

Self-energy screening)
two-photon, two-electron diagrams,

219–224
vacuum polarization, 189 (see also Vacuum

polarization)
Quantum electrodynamics (QED), 287

corrections, 268, 270–272
first order, 272–278

Hamiltonian, systematic approach,
278–282

systematic approach, 278–282
Quantum field theory (QFT), 146
Quantum Monte Carlo (QMC) calculations,

452
Quasi-four-component (Q4C), 376–383

R
Radial behavior, 94–96
Radial function, atomic structure

relativistic, 72
series expansion for small r , 72

Radial functions in atomic structure, 71–73
Random phase approximation (RPA),

638–639
Redox potentials, 891
Relativistic configuration interaction (RCI),

219
Relativistic coupled cluster method, 600–606
Relativistic effective core potentials (RECP),

866, 875
Relativistic effects, 859, 860, 862, 865, 869,

872, 874, 879, 885, 891, 893
Relativistic Hamiltonian, 345–372, 484, 493
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Relativistic Hartree-Fock, 109–113
matrix equations, 116–118
negative-energy eigenstates, 110–112
open-shell atoms, 112–113

Relativistic Kohn-Sham, 109
density functional theory basics, 121–123
equations, 552, 553
spin-density functional procedures, 123

Relativistic many-body perturbation (RMBPT)
theory, 268

Relativistic mapping, 696, 697, 712–714
Relativistic molecular Hamiltonian, 663–666,

697, 698
Relativistic nuclear recoil theory, 115
Relativistic self-consistent field, 112, 124–125
Relativistic spin density, 556

functional theory, collinear, 556
Relativistic wave function, 482–495, 535, 536,

539
DCB Hamiltonian, 518
DCG Hamiltonian, 517–518
DC Hamiltonian, 517, 520
reduced Hamiltonian, 506–512
reduced two-electron problem, 502–506

Relativity, 826, 827, 839
dramatic effects of, 844
and electron correlation, 844, 852
interplay of, 836–838

Reproducibility, 613
Response function

relativistic Kohn-Sham system, 560
Restricted kinetic balance, 120
Roentgenium (Rg)

electronic states of, 455
orbital energies of, 458
radial expectation values hArĂB of, 459

Rotational London orbitals (RLO), 697,
706–712

S
Scalar kinetic balance, 93
Schrödinger

Zitterbewegung, 24
equation, 8–9, 147, 148, 244, 260, 288

s-d transfer energy, 569
Second-order DKH Hamiltonian, 400
Secular motion, 621
Self energy, 271

contribution, 275–278
Self-energy screening, 200–202

Feynman diagrams, 201
global renormalisation, 216–219
high-energy part, 211–216

low-energy Green’s function correction,
207–211

lower-order terms, 205
perturbative derivation, 202–204
wave function correction, 205–206

series expansion for small, 72
Shape-consistent approach, 467–468
Ė -matrices, 555

Signal-to-noise ratio, 614
Simultaneous violation, of parity and time

reversal symmetries, 582, 584, 607
Single-molecule magnet (SMM), 766–767
Space inversion and parity, 18
Spectroscopic constants

relativistic corrections, 576
Spin-angular functions, 91
Spin coupling, 90–94
Spin-dependent property, 437
Spin Hamiltonian, 726–735
Spinor basis sets, 116
Spin-orbit coupling(SOC), 727, 729, 731–733,

739, 745, 760, 766, 797
Spin-orbit free (SOF), 766, 770–771
Spin-orbit splitting, 96
Spinor space representations, 13
Spin separation

Dirac equation, 417
at two-component level, 417–423, 425

Spin-spin coupling (SSC), 766
Standard Model (SM), physics beyond, 582,

584
Stark shift, 616, 622, 624–626
Sublimation enthalpy, #Hsub , 862
Summation convention, 550
Superheavy elements (SHE), 858–893
Symmetry transformation, 7

T
ThO, 596–599
Time-reversal symmetry, 810–814
Tracy-Singh product, 486–490
Transactinide element, 859
Transition properties, 805–809, 814–816
Transverse exchange energy, 557

relativistic LDA, GGA
atoms, 572

Transverse interaction, 553
Two-component relativistic theory, of nuclear

shielding, 682–688
2N-time Green’s function, 289–294
Two-Time Greens Function (TTGF) method,

287–310, 324
analytical properties, 294–299
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energy shift of single level, 299–304
quasi-degenerate level, 304–310

U
Uncontracted basis sets, 99

V
Vacuum polarization, 189, 271

contribution, 273–275
higher-order contributions, 199–200
one-potential Green function, 198–199
Uehling potential, 193–198
zero potential contribution, 190–192

Valence basis sets, 473
Variational equation

relativistic density functional theory, 551
Vector potential, 58, 66–70
Virtual electron-positron pairs, 24
Virtual pair effects, 355
Volatility, 862, 863

W
Wave functions, 769, 770
Wichmann-Kroll contribution, 274

Wick’s theorem, 153, 154, 160, 165
electron field propagator, 154–157
photon field operators, 157
unperturbed states, 157

X
X2C, 403–404

Y
YbF, 593–596, 602–605

Z
Zeeman interaction, 730, 733–735, 743, 746,

747, 749, 752, 755–758
Zeeman shift, 620, 622–624
Zero-field splitting (ZFS), 766

ab initio calculations, 768–772
in magnetic properties, 767
magneto-structural correlations, 785

(see also Magneto-structural
correlations)

model Hamiltonians and effective
Hamiltonians, 772–773 (see also
Model Hamiltonians)
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