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Abstract. Transcatheter aortic valve implantation (TAVI) is becom-
ing the standard choice of care for non-operable patients suffering from
severe aortic valve stenosis. As there is no direct view or access to the af-
fected anatomy, accurate preoperative planning is crucial for a successful
outcome. The most important decision during planning is selecting the
proper implant type and size. Due to the wide variety in device sizes and
types and non-circular annulus shapes, there is often no obvious choice
for the specific patient. Most clinicians base their final decision on their
previous experience. As a first step towards a more predictive planning,
we propose an integrated method to estimate the aortic apparatus from
CT images and compute implant deployment. Aortic anatomy, which in-
cludes aortic root, leaflets and calcifications, is automatically extracted
using robust modeling and machine learning algorithms. Then, the finite
element method is employed to calculate the deployment of a TAVI im-
plant inside the patient-specific aortic anatomy. The anatomical model
was evaluated on 198 CT images, yielding an accuracy of 1.30±0.23mm.
In eleven subjects, pre- and post-TAVI CT images were available. Errors
in predicted implant deployment were of 1.74± 0.40mm in average and
1.32 mm in the aortic valve annulus region, which is almost three times
lower than the average gap of 3 mm between consecutive implant sizes.
Our framework may thus constitute a surrogate tool for TAVI planning.

1 Introduction

Valvular heart disease (VHD) affects a large number of people and often re-
quires costly diagnostic, interventional procedures and long-term management
[1]. Traditionally, valvular heart disease has been treated with surgical repair or
replacement. Over the last years, there have been important advances in con-
cepts, tools, techniques, and patient selection for treatment of valvular heart
disease using nonsurgical procedures. One of the most prevalent procedures is
the transcatheter valve implantation (TAVI) where a replacement valve is deliv-
ered via a catheter using one of several access methods: transfemoral, transapical,
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subclavian and direct aortic. The procedure offers the potential to reduce proce-
dural morbidity, mortality, and costs of valve treatment and is currently being
utilized in non-operable and high-risk surgical patients [2].

In the current field of medical image analysis there has been several proposals
to construct geometric models from established diagnostic modalities. In the
context of valvular disease management, the authors in [3] proposed to estimate
mitral valve models from MRI. The modeling of the aortic valve from cardiac
CT was investigated in [4,5,6]. The models extracted using the previous methods
can provide important biomarkers for patient selection and procedure planning
such as aortic valve annulus diameters for device sizing. However due to the non-
circular annulus shapes, the vast number of device types and sizes, there is often
no obvious choice for the specific patient based solely on diameter measurements.
Moreover, the effect of the stiff calcifications on implant deployment may be
difficult to predict solely based on images. More advanced planning tools are
thus required.

At the same time, researchers are developing detailed computational models
of valve biomechanics and implant properties to simulate TAVI [7]. In [8], the au-
thors computed TAVI deployment on a patient-specific anatomy calculated from
CT image. They obtained promising results with non-linear, hyper-elastic model
of aortic apparatus. In [9], the authors investigated the radial force generated by
Medtronic - CoreValve and Edwards Sapien device. However, to the best of our
knowledge, little validation against postoperative clinical data has been reported
so far. Furthermore, current methods rely on tedious manual delineations of the
aortic apparatus, which hinders the necessary large scale validation studies.

In this paper, we propose a framework to automatically estimate a patient-
specific model of the aortic valve and compute implant deployment. Using robust
machine learning techniques, we automatically segment the complete aortic ap-
paratus, including calcifications (Sec. 2). We then employ finite element models
of aortic valve to predict the configuration of the implant in the patient-specific
anatomy after deployment. The anatomical model was evaluated on 198 3D CT
data (Sec. 3). On eleven of them, pre- and post- TAVI images were available. We
could therefore quantify the prediction power of our framework in these patients,
yielding an accuracy of almost three times lower in average than device sizing
gaps. Sec. 4 concludes the paper.

2 Method

Starting from a clinical pre-operative 3D CT image (Fig. 2), we automatically
segment the aortic valve model using machine-learning algorithms and generate
a patient-specific anatomical model of the aortic valve suitable for simulations
(Sec. 2.1). We then apply the biomechanical model of the valve and the CoreValve
implant (Sec. 2.2) to compute device deployment for TAVI planning. Finally we
compare the computed geometry of the deployed implant with a ground-truth
annotation extracted from the post-operative CT.
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Fig. 1. Diagram showing the estimation framework for the volumetric aortic valve
model, which consists of 9 landmarks m (3 commissures, 3 hinges and 3 leaflet tips),
aortic root and aortic leaflet volumetric models M , and aortic valve calcifications C

2.1 Parametrization and Estimation of Aortic Valve Morphology

Aortic Model Parameterization. We propose a physiological and volumetric
model of the aortic valve capable to capture complex morphological and patho-
logical variations. The anatomical structures consist of nine landmarks including
three commissures, three hinges, three leaflet tips, the aortic root, aortic leaflets
and calcifications. To efficiently handle the anatomical complexity, the model
representation and corresponding parameterization is constructed hierarchically
using 1) a non-rigid landmark model m and 2) two volumetric models M and C
for the anatomy structure and calcifications respectively (Fig. 1).

The landmarks m define key anatomical structures of the aortic valve and are
modeled with nine points: R-, N- and L-hinges, NL-, RN-, NL-commissures, N-,
L- and R-leaflet tips. The aortic root and three leaflets are parameterized using
a rectangular grid which intrinsically captures volumetric information through
a depth parameter d. More precisely, each of the four anatomical structures
is spanned across three dimensions, two physiologically aligned curvilinear di-
mensions u and v, and the third dimension d which defines the thickness in a
specific region of the anatomy. For the aortic root, u and v define circumferential
and longitudinal directions respectively. For the leaflets, u and v are defined as
paraboloids, as illustrated in Fig. 1.

Aortic Valve Detection. Based on the pre-operative CT, herein denoted I,
the landmarks m are estimated within the Marginal Space Learning (MSL)
framework by maximizing the conditional probability p(m |I ), which is based
on training and detecting on marginal spaces using the Probabilistic Boosting
Tree (PBT) with Haar and steerable features [4]. The vertices of the surface
model M are estimated like in [4], where robust machine learning techniques are
used to maximize the conditional probability p(M |m, I ). Due to limited image
resolution and quality within our data set the volumetric dimension d is fixed to
nominal clinical values as reported in [10]. This step could be later replaced by
estimating patient specific thickness parameters.
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Fig. 2. Diagram showing our validation framework

Calcification Detection. We utilize a discriminative learning approach to seg-
ment the calcifications within the aortic valve by maximizing the probability
p(C |M,m, I ). We train a boosting classifier and utilize steerable and novel
geometric features xi in order to distinguish the calcified regions within the
valve. More precisely, the geometric features xi are defined as distances to
the previously estimated anatomical landmarks m (Fig. 1): xi(j = 1 . . . 9) =
||i−mj || , i ∈ R

3, j = 1, . . . , 9. The intuition behind these geometric features is
to capture geometric information of tissue distribution relative to the hinge, com-
missures and leaflet tips landmarks m. Finally, we constrain the spatial search
for the classifier with the previously estimated volumetric model M . The system
is trained using user-defined thresholds for each training volume.

Implant Parameterization. The CoreValve implant is modeled as a tubular
mesh grid aligned along the circumferential u and longitudinal v direction. We
utilize a manual annotation framework to fit the ground-truth implant model to
the post-operative CT data.

2.2 Finite Element Model of the Aortic Valve and CoreValve

From the segmentation estimated in Sec. 2.1, we build a volumetric, tetrahedral
mesh whose elements are automatically tagged according to the structure it
belongs to (aortic root, leaflets, calcification). The model is cut at the inflection of
the aorta for computational efficiency (Fig. 3). The volumetric mesh is then used
to compute the deformation of the aortic apparatus induced by the deploying
implant. To that end, we solve the dynamics system MÜ+CU̇+KU = Fc, where
M is the lumped mass matrix, calculated from the mass density of the tissue
(ρt = 1070g/L) and of the implant (ρs = 6450g/L), K is the stiffness matrix,
encoding material properties, C is a Rayleigh damping, whose coefficients for
mass and stiffness matrix are both equal to 0.1, U is the displacement of the
nodes of the objects in the scene and Fc is the vector gathering the external
forces resulting from self-collisions and collisions with the implant stent.
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Tissue Model. In this work, aortic tissue is modeled with linear isotropic elas-
ticity for computational efficiency, although our framework can easily accom-
modate for more realistic hyper-elastic constitutive laws that better capture the
non-linear behavior of aortic tissues. Poisson ratio ν and Young’s moduli E are
defined per tissue type: Aortic root: E = 2MPa, ν = 0.48; Aortic leaflets:
E = 1MPa, ν = 0.48; Calcifications: E = 60GPa, ν = 0.3 [8]. Co-rotational
FEM are employed to cope with large deformations.

CoreValve Model. The CoreValve implant is modeled using a spring model
whose stiffness is calculated directly from the specifications of the device (Young’s
modulus E = 75GPa). To mimic the shape-memory deployment, the model is
deformed according to springs defined between the undeployed and deployed
configurations (Fig. 3, right panel). The stiffness of these springs, k = 1MPa
(determined off-line), is the minimal stiffness necessary to fully undeploy the
implant when free from interactions of any neighboring structures.

Boundary Conditions. The aortic apparatus is tethered to the left ventricle
and the aorta. To mimic the compliance of these neighboring organs, aortic
annulus and aortic root are tethered in space through springs whose stiffness is
equal to 10MPa (Fig. 3). We ignored the pressure gradients as in the clinical
practice rapid pacing is applied before implant deployment. This ameliorates the
effect of pressure gradients between the aorta and the left ventricle.

Contacts. Implant / valve contacts and valve self-contacts are modeled using
sphere contact models. For instance, for each vertex of the aortic root, a sphere
of radius of 1mm is defined. As soon as a vertex of any object (implant / valve)
enters the area defined by this sphere, a spring of stiffness 100 kPa is added
between the two vertices to avoid contact. A contact friction of 0.1 is assumed
based on [8]. The contribution of the contact forces are gathered into the contact
force vector Fc.

Computational Model CoreValve Model 

Aortic root 
tethering 

Aortic annulus 
tethering 

Deployed configuration 

Undeployed 
configuration

Shape springs for 
stent deployment 

Fig. 3. Left panel : anatomical model estimated from the images. Colors encode the dif-
ferent anatomical parts, in red are the calcifications. Arrows indicate spatial tethering.
Right panel : CoreValve model. Thick black lines represent the strings used to model
shape-memory deployment.
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Implementation. The model is implemented using the SOFA framework1. Spa-
tial discretization is done using linear tetrahedra. An implicit Euler scheme is
employed for time integration as it is unconditionally stable.

3 Experimental Results

3.1 Anatomical Model Evaluation

We first evaluated the accuracy of the automatically detected anatomical model
M and C on 198 contrasted 3D CT images from stenotic patients with severe cal-
cifications undergoing the TAVI procedure. Three-fold cross-validation against
manual delineations yielded a point-to-mesh error of 1.30 ± 0.23mm (mean
± standard deviation; detection speed: 3.1 s per 3D volume, Intel Core2Duo,
2.66GHz quad core, 2GB RAM).

3.2 Evaluation of Implant Deployment Prediction

We then evaluated the complete framework on eleven patients, for whom pre- and
post-operative CT images where available. For these patients, the post-operative
valve anatomy and CoreValve implant was obtained through an incremental an-
notation process guided by experts, which included manual placement of anatom-
ical landmarks and delineation of the valve surface and implant struts model.
The preoperative anatomy was detected automatically, corrected by experts if
needed, and meshed with an average tetrahedral edge-length of ≈ 1.2mm. For
all patients, nominal tissue and implant parameters (Sec. 2.2) were employed to
evaluate the robustness of the predictions with respect to tissue properties. Sim-
ulation time step was dt = 1ms. The simulation was stopped when the overall
system reached equilibrium.

Nine out of eleven cases had the aortic leaflets closed in the preoperative im-
age. In order to be able to place the virtual CoreValve device, we artificially
opened the leaflets by applying a pressure of 80mmHg to their ventricular sur-
face. Tissue and simulation parameters were kept unchanged. Then, once the
valve was open, the undeployed CoreValve was placed according to the postop-
erative anatomy in order to reproduce as close as possible the real intervention.
More precisely, the post-to-pre rigid transformation T between the aortic root
model Mrootpost and Mrootpre was estimated using Procrustes alignment. Based
on that transformation, the undeployed implant model was mapped to the pre-
operative data with the same relative position as in the post-op data. The post-
operative implant was also registered to the preoperative data for evaluation
purposes.

Fig. 4 reports simulation results on four patients. As one can see, despite
the nominal tissue parameters and the relative simplicity of the biomechanical
model, the predicted deployed implants were in close agreement with the actual
postoperative outcome. More quantitatively, the point-to-mesh error between the

1 www.sofa-framework.org

www.sofa-framework.org
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Table 1. Point-to-mesh distance between computed and ground-truth implant deploy-
ment configuration. The average error is 1.73 ± 0.40mm.

Patient Point-to-Mesh Error Patient Point-to-Mesh Error Patient Point-to-Mesh Error

01 1.77± 1.36mm 05 2.11 ± 1.57mm 09 1.00± 0.85mm
02 1.86± 1.39mm 06 1.54 ± 1.08mm 10 1.76± 1.30mm
03 2.36± 1.62mm 07 1.90 ± 1.26mm 11 1.21± 0.94mm
04 1.44± 1.31mm 08 2.07 ± 1.69mm

Table 2. Average diameter error between computed and ground-truth implant model.
Precise results were achieved in the annulus region (ring ID 6) where the error is far
below the average 3mm gap between consecutive implant sizes.

Ring ID Diameter Error Ring ID Diameter Error

01 1.86± 1.44mm 06 1.32 ± 0.72mm
02 1.20± 0.80mm 07 2.77 ± 1.21mm
03 1.04± 0.55mm 08 4.10 ± 1.96mm
04 0.80± 0.58mm 09 2.68 ± 2.34mm
05 1.00± 0.84mm 10 3.60 ± 2.56mm

computed deployed implant struts and the ground-truth implant annotation was
of 1.73± 0.40mm (Table 1). In addition we compared implant diameter errors
for several key locations along the tubular implant structure (Table 2). As one
can see, we could achieve precise results (1.32mm error) for the annular ring
(ring ID 6), which is the critical area for TAVI intervention. Compared to the
usual implant gap of 3mm between implant sizes, our precision has significant
accuracy in clinical practice.

Patient 01 Patient 03 Patient 05 Patient 09

Fig. 4. Example of simulated implant deployment using our automatic volumetric
model estimation and our simulation framework. In transparent red is the ground
truth. Our model could predict CoreValve deployment based on pre-operative image
data only.
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4 Conclusion
In this paper we proposed an integrated framework for personalized compu-
tation of TAVI deployment. Our approach enables fully automated model ex-
traction from pre-operative CT data and patient-specific implant deployment
simulations. We have demonstrated the validity our framework to predict post-
operative implant geometry on eleven patients undergoing TAVI with pre- and
post-operative data. Regarding the segmentation, future work includes the devel-
opment of volumetric segmentation algorithms to replace the generic thickness
parameters. On the modeling side, anisotropic hyper-elastic materials will be
investigated, as well as more accurate models of implant devices. Owing to its
automation, our framework may thus constitute a surrogate tool for a more
predictive planning of the TAVI procedure.
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