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Abstract. One of the main limitations of ݈ଵ-norm feature selection is that it fo-
cuses on estimating the target vector for each sample individually without  
considering relations with other samples. However, it’s believed that the geo-
metrical relation among target vectors in the training set may provide useful  
information, and it would be natural to expect that the predicted vectors have 
similar geometric relations as the target vectors. To overcome these limitations, 
we formulate this as a graph-matching feature selection problem between a pre-
dicted graph and a target graph. In the predicted graph a node is represented by 
predicted vector that may describe regional gray matter volume or cortical 
thickness features, and in the target graph a node is represented by target vector 
that include class label and clinical scores. In particular, we devise new regula-
rization terms in sparse representation to impose high-order graph matching be-
tween the target vectors and the predicted ones. Finally, the selected regional 
gray matter volume and cortical thickness features are fused in kernel space for 
classification. Using the ADNI dataset, we evaluate the effectiveness of the 
proposed method and obtain the accuracies of 92.17% and 81.57% in AD and 
MCI classification, respectively. 

1 Introduction 

The most prevalent neurodegenerative brain disease in elderly people is Alzheimer's 
Disease (AD), which is characterized by progressive worsening of cognitive and 
memory functions [1]. According to Brookmeyer et al.’s report [2], it is expected that 
more than 30 million people worldwide could be living with this disease by 2050. Its 
prodromal stage called Mild Cognitive Impairment (MCI) can also cause cognitive 
changes that have a high risk of progressing to AD within years [3]. There has been 
great interest in the automatic diagnosis and/or prognosis of these diseases in many 
scientific fields. 

The main difficulty for the computer-aided brain disease diagnosis comes from the 
high-dimensional nature of the neuroimaging data. For the last decades, the applica-
tion of machine learning techniques to the neuroimaging data made a promising im-
provement in brain disease classification [4, 5]. However, it remains challenging to 
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circumvent the problem of feature selection from the noisy and redundant features to 
enhance the diagnostic accuracy. To address this issue, the Least Absolute Shrinkage 
and Selection Operator (LASSO), a sparse representation method, which penalizes a 
linear regression model with ݈ଵ-norm [6], has been used. While LASSO proved the 
efficacy in selecting features by inducing sparsity to the regression coefficients, it is 
limited in the sense that it estimates the target vector for each sample individually 
without considering the relation with other samples.  

To overcome this limitation, we propose a novel feature selection method by 
means of high-order graph matching in sparse representation. The motivation of our 
approach is that the target vectors of the same class should be closer to each other, 
while those of different classes should be farther apart from each other. We expect 
that the same property should be satisfied with the vectors predicted via the sparse 
representation. This is formulated as a graph-matching feature selection problem be-
tween a predicted graph and a target graph. In the predicted graph a node is 
represented by the predicted vector that may describe regional Gray Matter Volume 
(GMV) or Cortical Thickness (CT) features, while in the target graph a node is 
represented by target vector. In short, the graph of the predicted vectors should be 
similar to, or ideally matched to, the graph of target vectors. We introduce two regula-
rization terms to the conventional LASSO: the first term takes into account the simi-
larity between two nodes in the predicted graph and the corresponding two nodes in 
the target graph (i.e. binary term), and the second term takes into account the geome-
tric similarity between three nodes in the predicted graph and the corresponding three 
nodes in the target graph (i.e. ternary term). Unlike the conventional LASSO that 
considers a unary relation between a target vector and its predicted one, the proposed 
method takes into account high-order relations such as binary and ternary from a 
graph perspective. It’s worth noting that our method is also different from Local Li-
near Embedding (LLE), where neighboring samples in the original space still stay 
near to each other in the dimension-reduced space. Therefore, LLE does not guarantee 
the separation of original nearby samples that belong to different classes. In contrast, 
the proposed method finds a low-dimensional space where the transformed samples 
are more separable between classes due to the two additional regularization terms. 
Using the ADNI dataset, we evaluate the performance of the proposed method, and 
compare with the competing methods. 

2 Materials and Preprocessing 

We use the MRI datasets of 594 subjects in the ADNI dataset1: 198 AD patients, 198 
MCI patients, and 198 normal controls. Subjects from each group are randomly se-
lected with a ratio of 1:1:1 to prevent data unbalance problem. Although the dataset 
includes longitudinal MRI data, we consider only the baseline data in this study. The 
T1-weighted MRI images are preprocessed using FreeSurfer software2. The prepro-
cessed images are parcellated into 68 cortical regions based on the Desikan–Killiany 
                                                           
1 http://www.loni.ucla.edu/ADNI 
2 http://surfer.nmr.mgh.harvard.edu/ 
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Cortical Atlas [7]. In each cortical region, we compute the average regional GMV and 
CT as features, obtaining two 68-dimensional feature vectors for each subject. Before 
feature selection, GMV and CT of each region are normalized by intracranial volume 
and its corresponding standard deviation, respectively.  

3 Proposed Method 

Figure 1 illustrates an overview of the proposed framework for AD/MCI classifica-
tion. From the preprocessed MRI images, we first extract the GMV and CT features 
from each ROI as outlined in Section 2. For each feature type, feature selection is 
performed using the proposed graph matching based method. Using the selected fea-
tures, a GMV kernel matrix and a CT kernel matrix are constructed, respectively. The 
two kernel matrices are then combined and used to train the SVM classifier. 

 

Fig. 1. Schematic diagram of the proposed classification framework 

3.1 Sparse Representation with High-Order Graph Matching 

Let ܆௙ ൌ ,ଵ௙ܠൣ … , ,௡௙ܠ … , ே௙ܠ ൧ א Ը஽ൈே  be a feature matrix of feature type f and ܇ ൌ ሾܡ૚, … , ,࢔ܡ … , ሿࡺܡ א Ըெൈே be a matrix of corresponding target vectors, where N 
is the total number of training samples, ܦ is the dimension of the feature vector, and ܯ is the dimension of the target vector. In general, the target vector can include class 
label, Mini-Mental State Examination (MMSE) score, or other clinical scores. Assum-
ing that the target vectors can be represented by a linear combination of the feature 
vectors, we minimize the regression errors between the target vectors and the pre-
dicted vectors as follows: ܮሺ܅௙ሻ ൌ min܅೑ ฮሺ܅௙ሻ܆ࢀ௙ െ ฮிଶ܇                       (1) 

where ܅௙ ൌ ,ଵ௙ܟൣ … , ௠௙ܟ , … , ெ௙ܟ ൧ א Ը஽ൈெ denotes the regression coefficient matrix 
and ԡ·ԡி  denotes a Frobenius norm. In order to remove the unexpected noises and 
redundant information in data, a sparse representation method referred as LASSO [6] 
has been applied in previous studies by penalizing linear regression model ܅௙with a ݈ଵ-norm. However, the conventional LASSO estimates the target vector of each sam-
ple independently without considering the relation among samples. Therefore, from a 
classification standpoint, it is limited in terms of finding discriminative features that 
can enhance the classification accuracy. 
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Geometrically, target vectors of the same class should be closer to each other, 
while those of different classes should be farther apart from each other. It is expected 
that the same property should be satisfied with the predicted vectors. That is, the 
geometric relations among the target vectors ܇ should be kept in the predicted vec-
tors ሺ܅௙ሻ܆ࢀ௙ . This can be defined as a graph-matching problem, between a pre-
dicted graph and a target graph, where the graph of the predicted vectors should be 
similar to, or ideally match to, the graph of target vectors. To accomplish this, we 
devise the binary regularization term (B) as shown in Eq. (2), and the ternary regula-
rization term (T) as shown in Eq. (3). 

Β ൌ ෍ ฮ൫ܡ௜ െ ௝൯ܡ െ ሺ܅௙ሻࢀ൫ܠ௜௙ െ ௝௙൯ฮிଶܠ
ே

௜,௝ୀଵ                                  ሺ2ሻ 

Τ ൌ ෍ ቛ൫ܡ௜ െ ௝ܡ௝൯்൫ܡ െ ௞൯ܡ െ ൛ሺ܅௙ሻࢀ൫ܠ௜௙ െ ௝௙ܠ௙ሻ்൫܅௝௙൯ൟ்൛ሺܠ െ ௞௙൯ൟቛிଶܠ
ே

௜,௝,௞ୀଵ      ሺ3ሻ 

In particular, the binary regularization term in Eq. (2) produces a scalar value that 
measures the similarity between two target vectors (ܡ௜ and ܡ௝) in the target graph and 

the corresponding predicted ones (ሺ܅௙ሻܠࢀ௜௙ and ሺ܅௙ሻܠࢀ௝௙) in the predicted graph. 

Meanwhile, the regularization term in Eq. (3) produces a scalar value that measures 
the geometric (i.e., the dot product between two edges) similarity among three nodes 
 in the target graph and the corresponding three nodes in the predicted (௞ܡ ௝ andܡ ,௜ܡ)

graph (ሺ܅௙ሻܠࢀ௜௙, ሺ܅௙ሻܠࢀ௝௙, and ሺ܅௙ሻܠࢀ௞௙). Figure 2 presents a conceptual illustra-

tion of these relations in a graph.  

 

Fig. 2. A conceptual illustration of the proposed high-order graph matching, binary (left) and 
ternary (right) relation 

With the introduction of these two terms into the conventional LASSO, we define 
our new objective function as follows: ܮሺ܅௙ሻ ൌ min܅೑ ฮሺ܅௙ሻ܆ࢀ௙ െ ฮிଶ܇ ൅ ௙ฮଵ܅ଵฮߣ ൅ ଶΒߣ ൅  ଷΤ               ሺ4ሻߣ

where ߣଵ, ଶߣ  and ߣଷ  are regularization control parameters. By setting ߣଶ  and ߣଷ 
zero, we obtain the conventional LASSO. In contradiction to the conventional 
LASSO, the proposed method considers the high-order relationship, i.e., the  
binary and ternary, from a graph perspective. Besides the binary and ternary relations, 



 High-Order Graph Matching Based Feature Selection 315 

 

theoretically, it is possible to include higher-order of graph matching information into 
the objective function in Eq. (4). An Accelerated Proximal Gradient (APG) method 
[8] is used for the optimization of Eq. (4). Of note, we select features with non-zero 
regression coefficients from original feature space for final classification.  

It is noteworthy that the proposed method can be used for feature selection in both 
classification of the clinical category and prediction of the clinical scores. If we use 
class label as the target vector, as done in our experiments, then the selected features 
can be considered as discriminative ones in classification. Meanwhile, if MMSE and 
other clinical scores are considered as the target vector, then the selected features are 
informative in predicting clinical scores in regression study. In the experiment below, 
we just use class label as the target vector for the purpose of classification. 

3.2 Multi-kernel SVM for Classification 

Using the regional GMV features and CT features selected in Section 3.1, we exploit 
the complementary information. Specifically, in order to fuse the information for 
classification, we utilize a multi-kernel SVM approach [9]. First a kernel matrix is 
constructed for each feature type, and then combined using a weighted linear combi-
nation as follows: 

௡ଵܠሾሺܭ , ௡ଶܠ ሻ, ሺܠଵ, ଶሻሿܠ ൌ  ෍ ,௡௙ܠ௙݇௙൫ߚ ௙൯ଶܠ
௙ୀଵ                              ሺ5ሻ 

where ሺܠ௡ଵ , ௡ଶܠ ሻ is the feature vectors of the ݊-th sample with two types of features ܠ௡ଵ  and ܠ௡ଶ , and ሺܠଵ,  ௙ is a mixingߚ .ଶሻ is the feature vectors of a testing sampleܠ
coefficient with the constraint of ߚ௙ ൒ 0  and ∑ ௙ଶ௙ୀଵߚ ൌ 1 . ݇௙൫ܠ௡௙, ௙൯ܠ ൌ߶௙൫ܠ௡௙൯்߶௙ሺܠ௙ሻ is a kernel function and ߶௙ is a kernel-mapping function of the ݂-
type feature. After constructing the combined kernel matrix, it is then straightforward 
to apply a linear SVM as follows: 

݈ሺܠଵ, ଶሻܠ ൌ ൝෍ ݊݃݅ݏ ܿ௡ߙ௡ܭሾሺܠ௡ଵ , ௡ଶܠ ሻ, ሺܠଵ, ଶሻሿேܠ
௡ୀଵ ൅ ܾൡ                     ሺ6ሻ 

where ܿ௡ א ሼ1, െ1ሽ is the class label of the ݊-th training sample, ߙ௡ is a Lagrangian 
multiplier, and ܾ is a bias. LIBSVM toolbox3 is used to solve the above functions. 

4 Experimental Results and Analysis 

In this section, we present the effectiveness of the proposed method in two binary 
classification problems, i.e., AD vs. NC and MCI vs. NC, on ADNI dataset. Even 
though the proposed method can deal with multiple target values by concatenating 

                                                           
3 http://www.csie.ntu.edu.tw/~cjlin/libsvm 
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them into a vector, we use only the class label for the target value in Eq. (4) to focus 
on the classification problems. 

4.1 Experimental Settings 

A 10-fold cross-validation strategy is employed to evaluate the classification perfor-
mance. Specifically, the whole samples are randomly partitioned into 10 subsets and 
then we choose one subset for test and use the remaining 9 for training, and this pro-
cedure is repeated 10 times. In order to determine the hyper-parameters of ߣଵ,  ௙ in Eq. (5), we further split the training samples for anotherߚ ଷ in Eq. (4), andߣ ଶ andߣ
round of cross-validation. The hyper-parameters that perform the best in the inner 
cross-validation are used to classify testing subjects in the outer loop. Due to a possi-
ble bias during dataset partitioning for cross-validation, we repeat the whole process 
10 times. The final accuracy is computed by averaging of the accuracies from all ex-
periments. We quantify classification performance using four statistical measures, i.e., 
accuracy, sensitivity, specificity, and Area Under receiver operating characteristic 
Curve (AUC). 

4.2 Classification Performances 

We first consider the effectiveness of the proposed regularization terms by comparing 
with the conventional LASSO-based feature selection. In this experiment, feature 
combination is not considered to validate the methodological efficacy of our method. 
Specifically, we consider the following four competing methods: 1) LASSO-based 
feature selection on the CT feature (L-CT), 2) LASSO-based feature selection on the 
GMV feature (L-GMV), 3) Proposed Graph Matching based feature selection method 
on the CT feature (GM-CT), and 4) Proposed Graph Matching based feature selection 
method on the GMV feature (GM-GMV). 

Table 1. Performance comparison with the competing methods for AD/MCI classification 

Methods 
AD vs. NC  MCI vs. NC 

ACC 
(%)  

SEN 
(%)  

SPE 
(%)  

AUC 
(%)  

ACC 
(%)  

SEN 
(%)  

SPE 
(%)  

AUC 
(%)  

  L-CT 82.42 81.46 83.38 89.03 72.23 67.20 77.25 76.78 
  L-GMV 86.57 85.00 88.13 92.20 75.65 71.70 79.60 79.30 
  GM-CT 85.10 82.32 87.88 92.78 75.25 74.75 75.76 81.94 
  GM-GMV 88.89 85.35 92.42 94.44 77.76 75.25 80.30 84.83 
  L-COM 88.69 88.23 89.14 93.93 77.22 73.45 81.00 80.82 
  Baseline 90.59 88.42 92.76 95.79 80.15 76.12 84.18 86.88 
  Proposed 92.17 89.39 94.95 96.83 81.57 77.78 85.35 88.16 

 
We summarize the results in Table 1 and present Receive Operating Characteristic 

curves in Figure 3. The proposed high-order graph matching method consistently 
outperforms the conventional LASSO across feature types in both classification prob-
lems. For MCI diagnosis, the proposed method result in an increase of 7.55% and 
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3.55% in sensitivity (i.e., correct diagnosis of MCI patients) by using CT and GMV, 
respectively, which is clinically important for early and proper treatment. In our 
second experiment, we test the validity of the proposed method by combining the 
feature types of GMV and CT. Specifically, we compare with the method of LASSO-
based feature selection from each type of features (GMV and CT) and combine with 
multi-kernel SVM (L-COM). 

 

Fig. 3. Receiver Operating Characteristic (ROC) curves of the competing methods for AD vs. 
NC (left) and MCI vs. NC (right) 

By fusing the GMV and CT features, compared to L-COM, we could improve the 
accuracies, showing 92.17% (with sensitivity of 89.39%, specificity of 94.95%, and 
AUC of 96.83%) and 81.57% (with sensitivity of 77.78%, specificity of 85.35%, and 
AUC of 88.16%) in AD and MCI classification, respectively. To test the validity of 
multi-kernel SVM, we perform AD and MCI classifications by concatenating of all 
types of features (Baseline, as shown in Table 1), i.e., equal weight for each feature 
type, and obtain the accuracies of 90.59% and 80.15% for AD and MCI classification, 
respectively. These results demonstrate the superiority of multi-kernel SVM method. 

Table 2. Comparison of reconstruction error and the number of selected features (Mean ± 
SD) 

Methods 

AD vs. NC MCI vs. NC 
 

Number of features 
 

Reconstruction error
 

Number of features
 

Reconstruction error 

L-COM 35.16 ± 11.43 0.75 ± 0.22 47.77 ± 23.50 0.86 ± 0.38 
Proposed 29.60 ± 15.45 0.63 ± 0.18 38.63 ± 17.24 0.73 ± 0.29 

 
We also compare the reconstruction error (i.e., first term in Eq. (4)) and the number 

of selected features between L-COM and the proposed method. Since the feature se-
lection in each fold is performed on the different training samples, the selected fea-
tures and the reconstruction error can vary across cross-validation folds. To this end, 
we provide the statistics of them in Table 2. Both the number of selected features and 
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the reconstruction error are smaller than those of L-COM, indicating the effectiveness 
of the proposed method. Besides, we define the most discriminative regions as the 
regions that are most frequently selected in all cross-validations. The most discrimina-
tive regions include precuneus, entorhinal cortex, temporal pole, fusiform gyrus, pa-
rahippocampal gyrus, insula, etc, which are highly associated with AD-pathology.   

5 Conclusions 

We propose a novel feature selection method via high-order graph matching frame-
work. The key idea of the proposed method is that the predicted target vectors should 
have the same geometric properties with that of the target vectors, formulating it as a 
high-order graph-matching problem. We devise two new regularization terms, specif-
ically a binary relation and a ternary relation among nodes in the target and predicted 
graphs. The selected regional GMV and CT features were then fused using a multi-
kernel SVM. In our experiment on ADNI dataset, the proposed method outperform 
the competing methods, presenting the accuracies of 92.17% and 81.57% in AD and 
MCI classification, respectively. 
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