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Abstract. The fusion of image data from trans-esophageal echogra-
phy (TEE) and X-ray fluoroscopy is attracting increasing interest in
minimally-invasive treatment of structural heart disease. In order to cal-
culate the needed transform between both imaging systems, we employ a
discriminative learning based approach to localize the TEE transducer in
X-ray images. Instead of time-consuming manual labeling, we generate
the required training data automatically from a single volumetric image
of the transducer. In order to adapt this system to real X-ray data, we
use unlabeled fluoroscopy images to estimate differences in feature space
density and correct covariate shift by instance weighting. An evaluation
on more than 1900 images reveals that our approach reduces detection
failures by 95% compared to cross validation on the test set and improves
the localization error from 1.5 to 0.8 mm. Due to the automatic genera-
tion of training data, the proposed system is highly flexible and can be
adapted to any medical device with minimal efforts.

1 Introduction

Catheter-based procedures such as trans-aortic valve implantation (TAVI) or
paravalvular leak closure are gaining increasing importance for the treatment
of structural heart disease. The inherent challenge for the cardiac intervention-
alist is to infer the exact position of the catheter from the available imaging
information. X-ray fluoroscopy is the dominant imaging modality for these inter-
ventions, increasingly supported by 3D trans-esophageal echography (TEE) [2].
Both modalities show complementary information, but in clinical practice they
are controlled and displayed completely independently from each other.
Recently, image fusion was proposed to combine both modalities and to pro-
vide the cardiac interventionalist with a better overview of the in situ conditions.
The co-registration can be accomplished by means of electromagnetic tracking
(EMT) [3], but this approach requires EMT hardware to be attached to the
transducer and is sensitive to EM field distortions. Alternatively, the pose of
the transducer can be estimated from its appearance in the X-ray images, either
directly [2l6] or supported by fiducial markers attached to the probe head [4].
Since the former approach does not require additional hardware, it is advan-
tageous for integration into the clinical workflow, albeit more challenging to
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implement. While 2D-3D registration [2] yields accurate results, it has a lim-
ited capture range of < 10 mm, requiring a manual initialization every time a
new fluoroscopy sequence is acquired. Discriminative learning (DL) [6] can lo-
cate the TEE probe everywhere in the image, but its performance is strongly
dependent on quantity and quality of the available training data. In the medical
domain, data is generally difficult to acquire, and the required manual labeling
is an extremely tedious and time-consuming task. Moreover, trained operators
cannot reproducibly annotate images with perfect accuracy, and every variation
in ground truth will decrease the performance of the resulting DL system.

In this paper, we propose a novel approach for training a DL system, which
is based on in silico training data that can be generated automatically in great
quantities with perfectly accurate labels. To adapt the system to in vivo fluo-
roscopy data, we employ unsupervised domain adaptation, a technique which
is widely used in speech processing and has recently gained attention in the
computer vision community [5I]. In particular, we show how unlabeled data
from the target domain (i.e. in vivo images) can be used to improve the per-
formance of object localization beyond what is achievable with semi-supervised
learning [I1]. We start with presenting the basic learning method in the next
section and explain our adaptation approach afterwards.

2 Learning from Synthetic Data

2.1 Generation of in silico Images

The synthetic training data is based on digitally reconstructed radiographs,
which approximate X-ray images from computed tomography (CT) volumes.
Source is a high-resolution (0.18 mm/voxel) isotropic C-arm CT of the TEE
transducer, which was aligned to the image axes and cropped to contain only
the probe head. A binary mask of the transducer was prepared and multiplied
with the original volume to remove streak artifacts in the surrounding air.

For each synthetic image, the 3D position and three Euclidean angles of the
transducer are randomized with the constraint that the probe is oriented in
posterior direction. The flexible shaft of the probe is modeled by a 3D spline
originating from a random position at the upper image boundary. Along this
spline, a collection of rings is positioned in regular pattern. 2D projections are
generated using a composite ray-caster, i.e. every pixel is assigned the sum of all
values along the respective ray through the volume. Key to generating realistic-
looking images is the transfer function used to calculate the opacities along the
ray. Based on the appearance of in vivo images, we chose an exponential trans-
fer function with randomized parameters in order to generate sequences with
slightly varying appearance and contrast. As background, we used a number
of cardiac fluoroscopy sequences (without transducer) and combined them with
the generated ray-caster images by additive blending. Annotations were created
automatically by storing the 2D position of a fixed point in the center of the
transducer together with the respective Euler angles. Figure [l gives an impres-
sion of the look of the generated images compared to in vivo data.



Learning without Labeling: Domain Adaptation 51

Fig. 1. A selection of generated in silico images with automatic labeling (top row) and
in vivo fluoroscopy images (bottom row)

2.2 Transducer Localization by Discriminative Learning

Following the marginal space learning approach [10], transducer localization is
performed in several stages by a pipeline of three discriminative classifiers. The
first classifier @ employs Haar-like features g to determine the 2D position of
the probe in images rescaled to 1 mm isotropic pixel spacing. All pixels closer
than 1 mm to the reference annotation are labeled as y = Y, all others as
y = Y. During detection, the 50 candidates with the highest classifier output
Po(y = YT |xg) are passed on to orientation detector ©. O is based on steerable
features zg [10] calculated at 0.25 mm isotropic resolution. Possible angles of
the transducer are discretized into 6° steps, and all correctly positioned samples
deviating < 4° from the annotated angle are labeled as Y . For test images, the
50 candidates with the highest po(y = Y T|zg) are passed on to scale detector ¥.
¥ is again based on steerable features zg with 0.25 mm spacing and selects the
most probable size of the transducer from a set of 9 hypotheses, corresponding to
feature window sizes from 30-46 mm. Lastly, the 50 highest-ranked candidates
are combined by weighted averaging according to their respective py (y = Y 1|zg)
and produce the final output. All classifiers of the pipeline are implemented
as probabilistic boosting trees (PBTs) [9], which combine high computational
efficiency with competitive accuracy.

3 Domain Adaptation

A fundamental assumption in machine learning is that training and test data
stem from the same distribution. In our approach, however, the training data
originates from the in silico source domain S, while the test data comes from
the in vivo target domain T'. Consequently, the above assumption may not hold,
in which case the classifiers would work along non-optimal decision boundaries.
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Let x represent a feature vector for a sample and y € [Y1,Y 7] its label,
then the joint probability distribution P(y,x) should be identical for source and
target domain. In our case, we know that the marginalized label probabilities
are equal, i.e. Ps(y) = Pr(y), since images from both domains show exactly one
transducer. Moreover, given a certain feature vector, the question if the corre-
sponding image region shows a probe can also be decided without knowing its
domain, which makes it reasonably safe to assume that Ps(y|z) = Pr(y|x). How-
ever, the distribution of feature vectors in both domains is probably different,
i.e. Ps(x) # Pr(z), which leads to a situation called covariate shift [7].

3.1 Learning under Covariate Shift

As described by Shimodaira [7], a classifier can be adapted to different training
and test distributions by minimizing its loss function. This is accomplished by
assigning each training sample an instance weight according to the ratio of joint
probabilities. Under covariate shift, this ratio simplifies to:

Pr(y.a) _ Pr()Priyle) _ Pr(a)
Ps(y,x)  Ps(z)Ps(ylr)  Ps()

Conveniently, this formulation does not include any labels y, i.e. no annotations
are required for the target domain in order to adapt the classifier.

There exist a number of approaches to estimate the required density ratio [g].
In this work, we employ the probabilistic classification approach, in which a
classifier is trained to differentiate between samples zg € S and z7 € T. Among
different types of classifiers, logistic regression is especially well suited for this
task [§]. During training, all zg are assigned to y = 1 and all 7 to y = 0. The
density ratio can then be estimated using classifier output p by:

(1)

PT(x) o 1 _
Ps(a) ~ ply=1le) " @)

3.2 Instance Weighting for Object Localization

While instance weighting has already been employed for a number of different
tasks [5], its application to object localization raises two important questions:
Which samples should be used to train the logistic regression classifier, and
should positive and negative samples be treated equally for weighting? Using all
available samples would mean to extract feature vectors for every pixel in every
available image multiple times (for different orientation and scale hypotheses).
Not only would this result in the impractical amount of 10'? feature vectors,
but it would also lead to highly unbalanced class labels Y™ and Y ~. Moreover,
as we use a relatively small number of background sequences to generate the in
silico data, features for Y~ are repeating in the source domain. In summary,
this would lead to background samples Y~ completely dominating the logistic
regression, while it is the appearance of the transducer (labels Y ) which should
ideally drive the domain adaptation.
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We propose a two step approach to solve this problem. In order to draw a
subset of samples, we employ a DL pipeline trained on in silico data to localize
the transducer in another set of synthetic images and unlabeled in vivo data. As
even an average DL system will detect the transducer with reasonable accuracy
on the majority of images, this step effectively reverses the class imbalance in
favor of positive samples Y +. Feature vectors for the drawn samples are normal-
ized to zero mean and unit variance over the entire set and used to train the
logistic regression. As the quality of the density ratio estimation may vary, we
relax instance weights w as suggested by Shimodaira [7]:

Pr(x) ) ‘
w(zx) = 3
@ = )
with ¢ € [0..1] as regularization parameter. In this study, we set ¢ = 0.5.
The domain adapted classifier is then trained on the in silico set used as test
data in the first step. For each image of this set, the feature vector x of the

drawn sample is used in Eq.[3l to estimate the instance weights for all positive
samples. Negative samples remain unweighted.

4 Experiments and Results

4.1 Image Data

Image data originates from two clinical centers and was mostly acquired dur-
ing standard TAVI procedures. Both centers used an Artis Zeego C-arm system
(Siemens AG, Germany) for acquisition of fluoroscopy and an X7-2t 3D trans-
ducer (Philips, The Netherlands) for acquisition of TEE. In order to estimate
the physical resolution of each fluoroscopy sequence, the pixel spacing of the
fluoroscopic detector was divided by the radiologic magnification factor, which
accounts for the projection geometry of the C-arm. In order to prevent problems
with local feature calculation, we excluded approx. 256% of all frames in which
the transducer was too close to the image boundaries. In prospective clinical ap-
plication, the X-ray window could always be chosen to include the probe entirely,
i.e. this data exclusion does not limit the applicability of the proposed approach.
In the end, we used 68 sequences from 22 patients for our study, comprising 6280
frames in total. For 37 sequences comprising 1913 frames, the probe head was
annotated manually by placing an oriented rectangle over it. We denote this set
of annotated in vivo images as Tr, while the remaining unlabeled 4367 frames
are denoted as Ty . Finally, using the method from Sec. 21l we generated two
sets S1, 52 of 10,000 in silico images each. In a small annotation study, the point
used for automatic labeling of these sets was selected to best match the center
of the rectangle used for manual annotations.

4.2 Selecting the Stages for Domain Adaptation

The first set of experiments was conducted to analyze the effectiveness of domain
adaptation (DA) for different stages of the detector pipeline. As baseline system,
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Fig. 2. A selection of in silico training samples that received high instance weights
(left) and low instance weights (right) for the position detector

we first trained the pipeline presented in Sec. on S1 (P9 = Oy = ).
Subsequently, we trained another system on Sy and used it to draw TEE probe
samples from S; and Ty. The resulting samples were used to calculate three
sets of instance weights for Sp, using the feature set selected by @g, @, and
¥y, respectively. Some examples for samples that obtained very high and low
weights are shown in Fig. 2l Training a position detector on the weighted data
from S; yielded the first domain-adapted classifier @4, which was integrated
into pipeline “DA Pos” ($4 = Oy = ¥). Similarly, weighted orientation (©4)
and scale detectors (W4) were trained and included in pipelines “DA Pos+Ori”
(P4 = O4 = ¥) and “DA Pos+Ori+Scale” (Pg = Oy = Uy).

All systems were evaluated on image set Tr. For a detailed analysis of each
system, we looked at the detected candidates before the final averaging step and
counted a true positive if one of the candidates had a position error < 1 mm, an
orientation error < 4°; and a scale error < 3 mm. Plotting these counts against
the average number of false positives results in the ROC-style curves shown in
Fig. Bl The corresponding areas under the curve (AUCs) are given in Table [l

As can be seen, domain adaptation on the position detector has the largest
impact with an increase of 4.5% AUC relative to the baseline system. Domain
adaptation on the orientation detector brings only slight additional improve-
ments (+4.8% AUC relative to baseline), while trying to adapt the scale detector
deteriorates the results again (only +1.6% AUC relative to baseline remain).

Detector Performance

Table 1. Area-under-curve
values
g /
E / System AUC
/ / Baseline 78.3
b DA Pos 81.8
: gi :zzig:LScale DA POS+Ori 82'0
10 20 50 DA Pos+Ori—|—Scale 79.5

20 30
Avg FPs per Image

Fig. 3. True positive rate (TPR) vs. average
number of false positives (FPs)
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Table 2. Mean errors with standard deviation for successful detections

Failed Position Orientation Scale

Detections Error Error Error
in vivo Reference 7.34 % 1.5+2.5 mm  3.24+5.4° 3.8+3.0 %
in silico Baseline 2.35 % 0.9£1.1 mm 1.8+1.6° 6.0 (3‘2:|:2.4) %
Domain Adaptation 037 %  0.840.6 mm 1.7£1.3° 5.7 (3.0£2.3) %
Self Training 1.41 % 0.8+0.8 mm 1.64+1.4° 6.5 (3‘0:|:2.2) %

4.3 Evaluation of Robustness and Accuracy

For the main evaluation, the reference system was trained directly on 717, without
any synthetic data (using three-fold cross-validation for evaluation). The baseline
system from the previous section, trained exclusively on in silico images, came
second, and the best-performing domain adaptation (“DA Pos+0Ori”) third. For
the last system, we used the samples drawn from Ty (as described in Sec. B2)) to
enlarge our synthetic training set and generated another unweighted system from
S1 UTy. This is a popular approach in semi-supervised learning and called self-
training [I1]. For each system, the final output of the pipeline (after candidates
are merged) was compared to the reference labels. In case the output was located
outside the annotated probe area (circles in Figs. [l & ), the localization was
counted as failure. For successful detections, average position, orientation and
scale errors were computed. The complete results are displayed in Table 2l As it
turned out, the labels of in silico images had a systematic bias of 5% regarding
the scale of the transducer; the scale errors in parenthesis show the bias-corrected
results. The complete detection pipeline runs in <40 ms per frame, enabling a
real-time localization of the transducer in the operating room.

5 Discussion

Our results clearly demonstrate the dependency of DL systems on the available
training data. The reference system in our experiments, although trained on the
same domain as the test data, yields the worst overall results. The in silico sys-
tem can compensate its different source domain by an eight times larger training
set with perfectly placed labels and reduces the number of failed detections by
a factor of three, while at the same time improving on all errors. Given these
good results, we were surprised by the large impact of domain adaptation, which
managed to reduce misdetections yet considerably further down to 5% of the ref-
erence system. Its success is based on up-weighting training samples that appear
similarly in the target domain and down-weighting less common samples with
e.g. very high contrast or large rotations (see Fig. Bl). Obviously, generating in
silico data with more realistic parameters from the start would have a similar
effect, but — as for most applications — the true distribution of parameters in
real-world data is not known. Since the largest differences between source and
target domain appear in the feature set of the position detector (which has to
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cope with different orientations and scales), this stage of the pipeline can benefit
most from domain adaptation. In order to gain the complete 3D pose of the
transducer, our TEE localization can be combined with 2D-3D registration [2]
or template-matching [6] to deliver an automatic, robust, and accurate real-time
fusion of TEE and fluoroscopy images.

We believe the combination of automatically generated data and unlabeled
real-world images to be a highly promising approach for training DL systems. It
resolves the need for thousands of annotated training samples, which is one of
the main bottlenecks of machine learning in the medical domain. Moreover, the
ability to create large quantities of training data for any X-ray imageable device
(e.g. implants or new transducers) within hours offers unmatched flexibility.
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