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Abstract. Cone-beam computed tomography (CBCT) is an increasingly utilized 
imaging modality for the diagnosis and treatment planning of the patients with 
craniomaxillofacial (CMF) deformities. CBCT scans have relatively low cost 
and low radiation dose in comparison to conventional spiral CT scans. Howev-
er, a major limitation of CBCT scans is the widespread image artifacts such as 
noise, beam hardening and inhomogeneity, causing great difficulties for accu-
rate segmentation of bony structures from soft tissues, as well as separating 
mandible from maxilla. In this paper, we presented a novel fully automated me-
thod for CBCT image segmentation. In this method, we first estimated a pa-
tient-specific atlas using a sparse label fusion strategy from predefined spiral 
CT atlases. This patient-specific atlas was then integrated into a convex seg-
mentation framework based on maximum a posteriori probability for accurate 
segmentation. Finally, the performance of our method was validated via com-
parisons with manual ground-truth segmentations. 

1 Introduction 

Segmentation of the cone-beam computed topographic (CBCT) image is an essential 
step of generating 3D models in diagnosis and treatment planning of patients with 
craniomaxillofacial (CMF) deformities. It requires segmenting bony structures from 
soft tissues, as well as separating mandible from maxilla. Unlike expensive conven-
tional spiral CT scanners, CBCT scanners, usually cost around $200K, are getting 
popularly used clinically, even in private practice settings. However, CBCT image 
quality is significantly inferior to the spiral CT. Besides extremely low signal-to-noise 
ratio, CBCT scans have severe image artifacts, including noise, beam hardening, in-
homogeneity, and truncation, thus affects image contrast and the accuracy of subse-
quent segmentation [1]. Furthermore, in order to better quantify the deformity, CBCT 
scans are usually acquired when the maxillary (upper) and mandibular (lower) teeth 
are in maximal intercuspation, which brings even more challenges to separate the 
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mandible from the maxilla [2]. To date, in order to use CBCT clinically for diagnosis 
and treatment planning, the segmentation must be completed manually by experts. 

Manual segmentation is a tedious, time-consuming and user-dependent. Previous 
automated segmentation methods are mainly based on threshold and morphological 
operations [3], which are sensitive to the presence of the artifacts. Recently, shape 
information has been utilized for robust segmentation [4-6], e.g., Zhang et al. [6] pro-
posed a deformable segmentation via sparse shape representation. However, these 
approaches are only applicable to objects with relatively regular shapes (e.g., mandi-
ble), but not the objects with complex shapes (e.g., maxilla). Interactive segmentation 
approaches [2, 7] were also provided to take advantage of both manual and automatic 
segmentation. To our best knowledge, there is no existing method that is able to au-
tomatically and simultaneously segment both maxilla and mandible from CBCT. 

In this paper, we propose a fully automated CBCT segmentation method to 1) 
segment bony structures from the soft tissues, and 2) further separate the mandible 
from the maxilla. Specifically, we first employ a sparse label propagation strategy to 
estimate a patient-specific atlas from the spiral CT atlases. There are two reasons that 
why the spiral CT subjects are employed as the atlases: 1) although image formation 
process between spiral CT and CBCT is different, they share the same patterns of 
anatomical structures, which are captured in a patch fashion in our method to estimate 
the probability; 2) the images from CT scanners have better signal contrast and less 
noise than those from CBCT scanners, therefore less time is needed to construct atlas-
es of manual segmentations from spiral CT images (i.e., ~30 minutes per image) than 
from CBCT images (i.e., ~12 hours per image) by an experienced operator. Finally, 
the patient-specific atlas is then integrated into a convex segmentation framework 
based on maximum a posteriori probability (MAP) for accurate segmentation. 

2 Method 

In this study, we aim to segment a CBCT scan into three structures/regions: mandible, 
maxilla (the skull without the mandible), and background. We consider image seg-
mentation as the task of partitioning the image domain ߗ into a set of three disjoint 
regions, such that ߗ ൌ ڂ ௜ଷ௜ୀଵߗ .  

2.1 Subjects  

We used 30 (15 males/15 females) spiral CT images with manual segmentations as 
atlases, and 13 (4 males/9 females)  CBCT images as testing images. The 30 spiral 
CT images of the subjects with normal facial appearance scanned at maximal 
intercuspation were randomly selected from our HIPAA de-identified CT database. 
Their ages were 22 ± 2.6 years (range: 18-27 years). The CT matrix was 512×512  
(resolution: 0.488×0.488×1.25 mm3). 13 CBCT images were collected from the 
patients with non-syndromic dentofacial deformities and scheduled for double-jaw 
orthognathic surgery for their treatment.  Their age were 24 ± 10 years (range: 10-49 
years). The CBCT matrix was 400×400 (resolution 0.4×0.4×0.4 mm3). These 30 CTs 
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and 13 CBCTs were labeled by two CMF surgeons who are experienced in 
segmentation using Mimics 10.01 software (Materialise NV, Leuven, Belgium). 

2.2 Estimating Patient-Specific Atlas from Spiral CT Atlases 

Atlas-based segmentation has demonstrated its robustness and effectiveness in many 
medical image segmentation problems [8]. Conventionally, a population-based atlas is 
constructed from multiple training images (e.g., manually segmented CBCTs). Howev-
er, a population-based atlas often fails to provide useful guidance especially in the  
regions with high inter-subject anatomical variability, and leads to unsatisfactory seg-
mentations results. One way to overcome this problem is to integrate the patient-specific 
information in the atlas construction. To this end, we propose to construct a patient-
specific atlas by combining both population and patient information as follows.  

We propose to estimate the prior, i.e., the patient-specific atlas, using a patch-based 
representation technique [9, 10]. The rational is that an image patch generally pro-
vides richer information, e.g., anatomical pattern, than a single voxel. Specifically, ܰ ൌ 30  spiral CT images ܫ௝  and their corresponding segmentation maps ௝ܵ  ሺ݆ ൌ1, ڮ , ܰሻ are nonlinearly aligned onto the space of the testing image ܫ using ELASIX 
[11]. Then, for each voxel ݔ in the testing image ܫ, its corresponding intensity patch 
with size ݓ ൈ ݓ ൈ -ሻ. An initial codeݔሺࡽ can be represented as a column vector ݓ
book ࡮ሺ࢞ሻ can be constructed with respect to all these patches ൛ࡽ௝ሺݔሻ|݆ ൌ 1, … , ܰൟ 
from all aligned templates at the same location, i.e., ࡮ሺݔሻ ൌ ሾࡽଵሺݔሻ, ,ሻݔଶሺࡽ … ,  ሻሿ. To alleviate the effect of registration error, theݔேሺࡽ
initial codebook can be extended to include more patches from the neighboring search 
window ࢃሺݔሻ, i.e., ࡮ሺݔሻ ൌ ሼࡽ௝ሺݕሻ, ݆ ׊ ൌ 1 … , ܰ, ݕ א  ሻሽ, where each patch isݔሺࢃ 
represented by a column vector and normalized to have the unit ℓ2 norm. To 
represent the patch ࡽሺݔሻ by the codebook ࡮ሺݔሻ, its coding vector ࢉ could be esti-
mated by many coding schemes, such as vector quantization, locality-constrained 
linear coding [12], and sparse coding [13].  Here, we utilize the sparse coding 
scheme [13] to estimate the coding vector ࢉ by minimizing a non-negative Elastic-
Net problem [14], minࢉஹ଴ ଵଶ ԡࡽሺݔሻ െ ԡଶଶࢉሻݔሺ࡮ ൅ ԡଵࢉଵԡߣ ൅ ఒమଶ ԡࢉԡଶଶ                            (1) 

where the first term is the least square fitting term, the second term is the ℓ1 regula-
rization term which is used to enforce the sparsity constraint on the reconstruction 
vector ࢉ, and the last term is the ℓ2 smoothness term to enforce the similarity of 
coding coefficients for the similar patches. Each element of the coding vector ࢉ, i.e., ௝ܿሺݕሻ, reflects the similarity between the target patch ࡽሺݔሻ and the patch ࡽ௝ሺݕሻ in 
the codebook. Based on the assumption that the similar patches should share similar 
labels, we use the sparse coding ࢉ to estimate the prior probability of the voxel ݔ 
belonging to the ݅-th structure/region, i.e., ݌௜ሺݔሻ ൌ ∑ ∑ ௝ܿሺݕሻߜ௜൫ ௝ܵሺݕሻ൯௬אௐሺ௫ሻ௝ , where ߜ௜ሺ ௝ܵሺݕሻሻ ൌ 1  if the label ௝ܵሺݕሻ ൌ ݅ ; otherwise, ߜ௜ሺ ௝ܵሺݕሻሻ ൌ 0 . Finally, ݌௜ሺݔሻ  is 
normalized to ensure ∑  ௜ ሻݔ௜ሺ݌ ൌ 1.  



254 L. Wang et al. 

 

2.3 Convex Segmentation Based on MAP  

After obtaining the prior probability from the patient-specific atlas, we integrate it 
with the intensity distribution of the testing image itself for better segmentation. In the 
testing image, to accurately label each voxel ݔ in the image domain ߗ, we jointly 
consider its neighboring voxels ݕ א ࣩሺݔሻ, where ࣩሺݔሻ is the neighborhood of voxel ݔ.  The regions ሼߗ௜ሽ  produce a partition of the neighborhood ࣩሺݔሻ, i.e., ሼߗ௜ ځ ࣩሺݔሻሽ௜ୀଵଷ . We first consider the segmentation of ࣩሺݔሻ based on maximum a 
posteriori probability (MAP). According to the Bayes rule:  

ݕሺ݌ א ௜ߗ ת ࣩሺݔሻ|ܫሺݕሻሻ ൌ ௣൫ூሺ௬ሻห௬אఆ೔ࣩתሺ௫ሻ൯௣ሺ௬אఆ೔ሻ௣൫௬ࣩאሺ௫ሻ൯௣൫ூሺ௬ሻ൯              (2) 

where ݌ሺܫሺݕሻ|ݕ א ௜ߗ ځ ࣩሺݔሻሻ, denoted by ݌௜,௫൫ܫሺݕሻ൯, is the structure probability den-
sity in region ߗ௜ ת ࣩሺݔሻ. Note that ݌ሺݕ א ݕ൫݌ .௜, which has been estimated in section 2.2ߗ belonging to the region ݕ ሻ, is the a priori probability ofݕ௜ሺ݌ ,.௜ሻ, i.eߗ א ࣩሺݔሻ൯ ൌ૚ࣩሺ௫ሻሺݕሻ is the indicator function and ݌൫ܫሺݕሻ൯ is independent of the choice of the re-
gion and can therefore be neglected. Thus, Eq. (2) can be simplified as  ݌ሺݕ א ௜ߗ ת ࣩሺݔሻ|ܫሺyሻሻ ൌ ሻݕ௜ሺ݌ሻሻݕሺܫ௜,௫ሺ݌ . Assuming that the voxels within each 
region are independent, the MAP will be achieved only if the product of ݌௜,௫൫ܫሺݕሻ൯݌௜ሺݕሻ across the region ࣩሺݔሻ is maximized: ∏ ∏ ሺ௫ሻଷ௜ୀଵࣩתሻఆ೔ݕ௜ሺ݌ሻ൯ݕሺܫ௜,௫൫݌ . 
In fact, we can use a Gaussian kernel ܭఘ with scale ߩ to indicate the neighborhood ࣩሺݔሻ [15]. Taking a logarithm transformation and integrating all the voxels ݔ, the max-
imization can be converted to the minimization of the following energy, ࣟࣞ ൌ െ ∑ ׬ ׬ ݔఘሺܭ െ ሻݕ log ሻݕ௜ሺ݌ሻ൯ݕሺܫ௜,௫൫݌ ఆ೔ݕ݀ ఆݔ݀  ଷ௜ୀଵ                     (3) 

Based on [16], we can use multiple variables which take values between 0 and 1 to 
derive a convex formulation for Eq. (3). Since in our project, there are only 3 different 
regions of interest: mandible, maxilla, and background, we need only 2 segmentation 
variables ݑଵ א ሾ0 1ሿ and ݑଶ א ሾ0 1ሿ to represent the partitions ሼߗ௜ሽ: ܯଵ ൌ ଵݑ ଶܯ , ൌݑଶ, ܯଷ ൌ ሺ1 െ ଵሻሺ1ݑ െ ࣞࣟ ,ଶሻ. Therefore, Eq. (3) can be converted as followsݑ ൌ െ ∑ ׬ ׬ ݔఘሺܭ െ ሻݕ log ሻݕሺ݅ܯሻݕ௜ሺ݌ሻ൯ݕሺܫ௜,௫൫݌ ఆݕ݀ ఆݔ݀          ଷ௜ୀଵ (4) 

There are many options to estimate the ݌௜,௫൫ܫሺݕሻ൯. In this paper, we utilize a Gaus-
sian distribution model with the local mean ߤ௜ሺݔሻ and the variance ߪ௜ଶሺݔሻ [17] to 

estimate it: ݌௜,௫൫ܫሺݕሻ൯ ൌ exp ቀെ ൫ߤ௜ሺݔሻ െ ሻ൯ଶݕሺܫ ሻൗݔ௜ଶሺߪ2 ቁ ቀ√2ߪߨ௜ሺݔሻቁൗ .  

Based on the assumption that there should be no overlap between mandible and 
maxilla, we propose the following penalty constraint term, ࣟ࣪ ൌ ׬  (5)                                                   ݔሻ݀ݔଶሺݑሻݔଵሺݑ
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In addition, the length regularization term [18] is defined as weighted total varia-
tion of functions ݑଵ and ݑଶ, ࣟ࣬ ൌ ධ ݃൫ܫሺݔሻ൯ሺ|ݑ׏ଵሺݔሻ| ൅  (6)                                 ݔ݀ ሻ|ሻݔଶሺݑ׏|

where ݃ is a non-edge indicator function that vanishes at object boundaries [18]. 
Finally, we define the entire energy functional below, which consists of the data 

fitting term ࣟࣞ, the overlap penalty term ࣟ ࣪ and the length regularization term ࣟ࣬ : min௨భ,௨మאሾ଴ ଵሿ ሼࣟሺݑଵ, ଶሻݑ ൌ ࣟࣞ ൅ ࣟߙ ࣪ ൅  ሽ                                 (7)࣬ࣟߚ

where ߙ and ߚ are the positive coefficients. Based on [16], the energy functional 
(Eq. (7)) can be easily minimized in a fast way with respect to ݑଵ and ݑଶ. 

3 Experimental Results 

The parameters used in this paper were determined experimentally via cross valida-
tion. In fact, the results are relatively insensitive to the variation of the parameters. 
We finally chose the following parameters for all the experiments: the weight for ℓ1-
norm term ߣଵ = 0.1, the weight for ℓ2-norm term ߣଶ = 0.05, the patch size 9×9×9, 
the search window size 5×5×5,  3 = ߩ for the Gaussian Kernel ܭఘ, and the weights ߙ 
= 10 for the overlap penalty term ࣟ࣪  and ߚ  = 10 for the length regularization 
term ࣟ࣬ .  

Fig. 1 demonstrates the segmentation results of different methods for one typical 
subject. In the first row, the volume rendering of the original intensity image, and 
surfaces rendering of the segmentation result obtained by majority voting (MV), 
patch-based fusion method [10], the proposed method by directly using the maximum 
class probability from step 1 (prior estimation) as the segmentation result, the pro-
posed method with both step 1 (prior estimation) and step 2 (convex segmentation), 
and the manual segmentation, are shown from left to right. The following rows show 
the corresponding results on slices and zoomed views for better visualization, from 
which the artifacts can be clearly observed. Due to possible errors during image regis-
tration, the surface by MV is far from accurate, which incorrectly labels some upper 
teeth as lower teeth, by referring to the manual segmentation. Due to the closed-bite 
position and large intensity variations, the patch-based fusion method [10] cannot 
accurately separate the mandible from maxilla, thus mislabeling the upper teeth and 
lower teeth. Note that, to be a fair comparison, we have performed the similar search-
ing scheme to derive the optimal parameters for the patch-based fusion method [10], 
by obtaining the final patch size of 9×9×9 and the final search window size of 5×5×5. 
Overall, the proposed method produces much more reasonable results.  

We then quantitatively evaluate the performance of different methods on 13 sub-
jects by employing Dice ratio. The average Dice ratios of different methods are 
shown in Fig. 2. As also shown in Table 1, with the convex segmentation integrating 
the estimated prior, the proposed method achieves the highest Dice ratios. To further 
validate the proposed method, we also evaluate its accuracy by measuring the average 
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surface distance error, as plotted in Fig. 3. Additionally, the Hausdorff distance is also 
used to measure the maximal surface-distance errors of each of 13 subjects. The 
average Hausdorff distance on all 13 subjects are shown in Table 1, which again 
demonstrates the advantage of our proposed method. 

 

Fig. 1. Comparisons of segmentation results of 4 different methods on a typical CBCT image 

 

Fig. 2. Dice ratios on mandible and maxilla by 4 different methods 
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Fig. 3. Average surface distances from the surfaces obtained by 4 different methods to the 
ground-truth surfaces on 13 subjects 

Table 1. Average Dice ratio and surface distance error (in mm) on 13 subjects 

 Majority voting
Patch-based
fusion [10]

Proposed 
    (step 1)

  Proposed 
  (step 1+2)

Dice ratio 
Mandible 0.82±0.03 0.88±0.02 0.89±0.02 0.91±0.02 
Maxilla 0.72±0.04 0.81±0.03 0.85±0.03 0.87±0.02 

Average distance error Mandible 1.21±0.25 0.81±0.21 0.67±0.15 0.61±0.17 
Hausdorff distance errorMandible 3.61±1.53 2.22±1.1 1.14±0.54 0.92±0.47 

4 Discussion and Conclusion 

We have successfully developed and validated a novel fully automated method for 
CBCT segmentation. We first estimated a patient-specific atlas from spiral CT atlases 
using a sparse label fusion strategy. Then, we integrate it into a convex segmentation 
framework based on MAP for segmentation. Comparing to the state-of-the-art label-
fusion methods, our method achieved the best results.  

The success of applying normal CT atlases to the CBCT subject with CMF defor-
mity can be mainly attributed to the following two factors: 1) The deformation be-
tween the subject with the CMF deformity and the normal subject is first alleviated by 
nonlinear image registration; 2) After registration, the structure probabilities for the 
CBCT subject with CMF deformity are then robustly estimated by the proposed 
patch-based sparse technique in Section 2.2.  

In our experiment, we found that increasing the number of atlases would generally 
improve the segmentation accuracy. For example, the combination of CT and CBCT 
atlases achieves slightly improved Dice ratios: 0.005 higher for mandible and 0.0046 
higher for maxilla. However, more atlases also bring in larger computational cost.  

In our future work, we will validate the proposed method on more dataset and fur-
ther compare with other methods such as [19]. We will also improve the robustness of 
the proposed method by increasing the variability of the atlases such as including 
more datasets with different CMF deformities. 
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