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Preface

The 16th International Conference on Medical Image Computing and Computer
Assisted Intervention, MICCAI 2013, was held in Nagoya, Japan during Septem-
ber 22–26, 2013 at Toyoda Auditorium, Nagoya University. The conference was
held on a university campus, unlike the past three conferences. Toyoda Audi-
torium is memorable for all Nagoya University students, because entrance and
graduation ceremonies are held in it during cherry-blossom season. Since MIC-
CAI is the premier conference in the field of medical image computing and
computer assisted surgery, it was our great honor to host it. Nagoya University
has more than 50 years of history in medical image processing, which was initi-
ated by Prof. Jun-ichiro Toriwaki. Nagoya also is famous for transportation and
aerospace industries that utilize many robotics technologies. These robots are
also manufactured in the Nagoya area and have become indispensable in current
medical interventions.

This is the second time that the MICCAI conference has been held in Japan;
the 5th MICCAI was held in Tokyo in 2002, which was the first MICCAI in Asia
or Oceania. In MICCAI 2002, 184 papers were accepted among 321 submissions,
and the conference included five satellite half-day tutorials. Since then, MICCAI
has become a much larger event and typically includes 250 accepted papers
from 800 submissions and 30 satellite events. At MICCAI 2013, 262 papers
were accepted from 798 submissions; 34 satellite events (workshops, challenges,
tutorials) were accepted.

The Program Committee (PC) of MICCAI 2013 was comprised of 101 mem-
bers coordinated by a program chair and two program co-chairs from three
countries. Each of the 798 papers was assigned to one primary and two sec-
ondary PC members. The primary member knew the identity of the authors,
but the secondary ones did not. Each PC member had five to ten papers as the
primary member and another ten to twenty as the secondary member, according
to their expertise and the subject matter of the paper. The primary PC member
assigned three or more external reviewers to each paper. 835 external review-
ers provided 2794 reviews (359 words on average per review): 3.5 reviews per
paper. At this stage, 76 papers, which failed to receive sufficient support from
the external reviews, were rejected without further consideration. The authors
of the remaining 722 papers were given the opportunity to rebut the anonymous
reviews, based on which discussions among the reviewers took place. Finally,
two secondary members independently provided meta-reviews by taking all in-
put (the reviews, rebuttal, discussion, and the paper itself) into account to make
an acceptance or rejection recommendation. For a few papers that had only two
external reviews, the secondary members provided detailed reviews in addition
to the meta-reviews.
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A two-day PC meeting was held in Tokyo with 32 of its members. Prior to
the meeting, the initial acceptance of 198 papers was decided, because they were
ranked high by the external reviewers as well as two secondary PC members.
362 papers were rejected because they did not receive enough support from the
reviewers or the two secondary members. Each of the remaining 162 borderline
papers was considered in the following three-phase decision process.

– First stage: Six groups of five or six PC members ranked the 162 papers to
select the best 36 papers for acceptance and rejected the lowest 72 papers.

– Second stage: A different set of groups selected the best 18 papers for accep-
tance from the remaining 54 papers and rejected 18 papers.

– Third stage: The program chair and the co-chairs selected an additional ten
papers from the remaining 18 papers by considering the topics, the institu-
tional variety, and the quality.

262 papers were finally accepted, for a 32.8% acceptance rate. The PC mem-
bers also selected a set of papers suitable for oral presentation, from which the
program chair and co-chairs finally decided a list of 37 oral papers by taking
the variety of topics as well as the suitability for oral presentation into account.
During all the review processes, possible conflicts of interests were carefully mon-
itored and avoided as far as possible. The geographic and keyword distributions
of the accepted papers are summarized in the figures.

All accepted papers were presented during three poster sessions. Oral pa-
pers were further presented during six single-track plenary oral sessions. We are
greatly indebted to the reviewers and the PC members for their extraordinary
efforts of careful evaluations of the submissions within a very short time frame.

In addition to the three days of the MICCAI main conference, the annual
MICCAI event hosted satellite workshops, tutorials, and challenges that were or-
ganized on the day before and after the main conference. This year’s call for sub-
missions for workshops and tutorials recorded 30 workshop / challenge proposals
(including four half-day proposals) and seven tutorial proposals (also including
four half-day proposals). These proposals were independently reviewed by the
workshop, tutorial and challenge chair teams, headed by Hongen Liao (Tsinghua
University), Pierre Jannin (University of Rennes 1), Simon Warfield (Harvard
Medical School), and Akinobu Shimizu (Tokyo University of Agriculture and
Technology).

In the review process for the proposals for these events, we emphasized the
following points. The workshop proposals were reviewed under criteria that ad-
dressed whether the workshop emphasized an open problem addressed in the
MICCAI community. Tutorial proposals were reviewed based on whether they
provided educational material for training new professionals in the field, includ-
ing students, clinicians, and new researchers. Also, we emphasized tutorials that
focused on existing sub-disciplines of MICCAI with known material, approaches,
and open problems. Challenge proposals were reviewed based on whether they
were interactive and encouraged problem solving. Although all of the workshop
proposals were very strong, the workshop chairs selected 22 workshops (including
three half-day workshops), six tutorials (including four half-day tutorials), and
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six challenges (including one half-day challenge and one challenge included in
the workshop). We thank the workshop, tutorial, and challenge chairs for their
hard work organizing such a comprehensive and unique program.

The highlights of the MICCAI 2013 events were the keynote lectures by
Dr. Atsushi Miyawaki (Riken) and Prof. Toshio Fukuda (Meijo University). Dr.
Miyawaki’s talk focused on new imaging technology that enables us to cruise
inside a cell. Prof. Fukuda discussed simulation-based medicine for intravascular
surgery. We believe these two talks provided deep insights into new technologies
and highlighted the future and emerging trends in these areas.

A public lecture, which was held on the day before MICCAI’s main confer-
ence, widely introduced MICCAI to the public. Three distinctive guest speakers
show the state-of-the-art technologies in the MICCAI field. Prof. Koji Ikuta pre-
sented exciting nano-robotics technologies. Prof. Yoshihiro Muragaki presented
technologies for advanced intelligent operating theaters. Prof. Hidefumi Ko-
batake demonstrated the technologies and medical applications of computational
anatomy. This wonderful public lecture was managed by Prof. Ken Masamune
(The University of Tokyo.)

The First InternationalWorkshop onMedical Imaging and Computer-assisted
Intervention (MICI Workshop) was independently organized just after the PC
meeting at The University of Tokyo under the support. This workshop shared
knowledge among the public audience and PC members who are experts in the
MICCAI field.

MICCAI 2013 would not have been possible without the efforts of many peo-
ple behind the scenes. We thank the Organizing, Executive, and Local Executive
Committee members. The Scientific Council of Japan provided great assistance
organizing this conference in Japan. The Japan Society of Computer Aided
Surgery (JSCAS), headed by Prof. Masaki Kitajima (International University
of Wealth and Health), also helped organize it. Prof. Takeyoshi Dohi (Tokyo
Denki University) supervised a successful MICCAI meeting as a founders of the
MICCAI Society and the general chair of MICCAI 2002. We also thank Prof.
Etsuko Kobayashi (The University of Tokyo) and Prof. Takayuki Kitasaka (Aichi
Institute of Technology) for handling the financial issues. Dr. Toshiyuki Okada
(Osaka University) efficiently organized the review process and compiled the pro-
ceedings. Prof. Masahiro Oda (Nagoya University) solved facility management
problems. Dr. Takehiro Ando and Dr. Junchen Wang made local arrangements
for the PC meeting. Prof. Daniel Rueckert (Imperial College) helped us from the
preparation of MICCAI 2013 proposal to actual conference management.

We also thank the MICCAI Secretaries, Janette Wallace, Jackie Williams,
and Johanne Langford of the team from Canada. We communicated with them
by e-mail around midnight every day (the time difference between Nagoya and
Toronto is 11 hours) for advice regarding the conference organization. Without
their help, the MICCAI 2013 conference would not have been successful. We
thank the MICCAI Board headed by Prof. James Duncan (Yale University) and
Prof. Alison Noble (University of Oxford) for trusting us with the organization
of the MICCAI 2013 conference. They gave us a lot of freedom and advice.
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We also thank our secretaries, Mizuru Suzuki, Kengo Suzuki, and Emi Tana-
hashi (Inter Group Corp.) for their hard work handling so many requests from
attendees. We say a special thanks to Rie Ohashi (Nagoya University), Ai Okano
(The University of Tokyo), and Naho Obata (The University of Tokyo). The
original MICCAI 2013 logos and banners were sketched by the following four
students of the Aichi Institute of Technology: Miki Takahashi, Kaori Suzuki,
Hikaru Sekiguchi, and Yuiko Kori.

We appreciate the financial support from the Nagoya Convention and Vis-
itors Bureau, The Murata Science Foundation, and the Daiko Foundation. We
are deeply grateful to Nagoya University for allowing us to use the Toyoda Au-
ditorium for MICCAI 2013.

We also deeply thank our sponsors and exhibitors for their financial support.
Our initial proposal for MICCAI 2013 was accepted during MICCAI 2010

in Beijing. Six months later, a huge earthquake devastated North East Japan.
Thousands of people lost their lives. We encountered many difficult situations,
including the threat of radiation from the Fukushima Nuclear Power Plant. Many
people from countries all over the world helped Japan and offered assistance. We
are deeply grateful.

The next MICCAI conference will be held during September 14–18, 2014 in
Boston, which is the one of the most beautiful cities in the world. It hosted the
1st MICCAI conference in 1998. We are looking forward to seeing all of you in
Boston in 2014!

September 2013 Kensaku Mori
Ichiro Sakuma

Yoshinobu Sato
Christian Barillot

Nassir Navab
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Awards Presented at MICCAI 2012,

Nice, France

MICCAI Society Enduring Impact Award: The Enduring Impact Award is the
highest award of the MICCAI Society. It is a career award for continued ex-
cellence in the MICCAI research field. The 2012 Enduring Impact Award was
presented to Jerry Prince, Johns Hopkins University, USA.

MICCAI Society Fellowships: MICCAI Fellowships are bestowed annually on
a small number of senior members of the society in recognition of substantial
scientific contributions to the MICCAI research field and service to the MICCAI
community. In 2012, fellowships were awarded to:

– Alison Noble (Oxford University, UK)
– Wiro Niessen (Erasumus Medical Centre, The Netherlands)
– Nassir Navab (Technical University of Munich, Germany)

Medical Image Analysis Journal Award Sponsored by Elsevier: Benoit Scherrer,
for his paper entitled “Super-Resolution Reconstruction to Increase the Spatial
Resolution of Diffusion Weighted Images from Orthogonal Anisotropic Acquisi-
tions”, authored by Benoit Scherrer, Ali Gholipour and Simon K. Warfield.

Best Paper in Computer-Assisted Intervention Systems and Medical Robotics:
Benjamin Bejar for his paper entitled “Surgical Gesture Classification from
Video Data”, authored by Benjamin Bejar, Luca Zappella, Rene Vidal.

Young Scientist Publication Impact Award Sponsored by Kitware Inc.: MIC-
CAI papers by a young scientist from the past 5 years were eligible for this award.
It is made to a researcher whose work had an impact on the MICCAI field in
terms of citations, secondary citations, subsequent publications, h-index. The
2012 Young Scientist Publication Impact Award was given to Caroline Brun:
“A Tensor-Based Morphometry Study of Genetic Influences on Brain Structure
using a New Fluid Registration Method” authored by C. Brun, N. Lepore, X.
Pennec, Y.-Y. Chou, K. McMahon, G.I. de Zubicaray, M. Meredith, M.J. Wright,
A.D. Lee, M. Barysheva, A.W. Toga, P.M. Thompson.

MICCAI Young Scientist Awards: The Young Scientist Awards are stimula-
tion prizes awarded for the best first authors of MICCAI contributions in distinct
subject areas. The nominees had to be full-time students at a recognized uni-
versity at, or within, two years prior to submission. The 2012 MICCAI Young
Scientist Awards were given to:
– Hang Su for his paper entitled: “Phase Contrast Image Restoration Via

Dictionary Representation of Diffraction Patterns”, authored by Hang Su,
Zhaozheng Yin, Takeo Kanade, and Seungil Huh
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– Eli Gibson, for his paper entitled: “Registration Accuracy: How Good is
Good Enough? A Statistical Power Calculation Incorporating Image Regis-
tration Uncertainty”, authored by Eli Gibson, Aaron Fenster and Aaron D.
Ward

– Stephanie Marchesseau for her paper entitled: “Cardiac Mechanical Parame-
ter Calibration Based on the Unscented Transform”, authored by Stephanie
Marchesseau, Herve Delingette, Maxime Sermesant, Kawal Rhode, Simon G.
Duckett, C. Aldo Rinaldi, Reza Razavi, and Nicholas Ayache

– Roland Kwitt for his paper entitled: “Recognition in Ultrasound Videos:
Where am I?”, authored by Roland Kwitt, Nuno Vasconcelos, Sharif Raz-
zaque, and Stephen Aylward

– Robin Wolz, for his paper entitled: “Multi-Organ Abdominal CT Segmen-
tation Using Hierarchically Weighted Subject-Specific Atlases”, authored
by Robin Wolz, Chengwen Chu, Kazunari Misawa, Kensaku Mori, Daniel
Rueckert



Table of Contents – Part III

Image Reconstruction and Motion Modeling

Improved Multi B-Value Diffusion-Weighted MRI of the Body
by Simultaneous Model Estimation and Image Reconstruction
(SMEIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Moti Freiman, Onur Afacan, Robert V. Mulkern, and
Simon K. Warfield

Cardiac Image Super-Resolution with Global Correspondence Using
Multi-Atlas PatchMatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Wenzhe Shi, Jose Caballero, Christian Ledig,
Xiahai Zhuang, Wenjia Bai, Kanwal Bhatia,
Antonio M Simoes Monteiro de Marvao, Tim Dawes,
Declan O’Regan, and Daniel Rueckert

Self-gated Radial MRI for Respiratory Motion Compensation
on Hybrid PET/MR Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Robert Grimm, Sebastian Fürst, Isabel Dregely,
Christoph Forman, Jana Maria Hutter, Sibylle I. Ziegler,
Stephan Nekolla, Berthold Kiefer, Markus Schwaiger,
Joachim Hornegger, and Tobias Block

Complex Lung Motion Estimation via Adaptive Bilateral Filtering
of the Deformation Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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Improved Multi B-Value Diffusion-Weighted

MRI of the Body by Simultaneous Model
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Abstract. Diffusion-weighted MRI images acquired with multiple b-
values have the potential to improve diagnostic accuracy by increasing
the conspicuity of lesions and inflammatory activity with background
suppression. Unfortunately, the inherently low signal-to-noise ratio (SNR)
of DW-MRI reduces enthusiasm for using these images for diagnostic pur-
poses. Moreover, lengthy acquisition times limit our ability to improve
the quality of multi b-value DW-MRI images by multiple excitations ac-
quisition and signal averaging at each b-value. To offset these limitations,
we propose the Simultaneous Model Estimation and Image Reconstruc-
tion (SMEIR) for DW-MRI, which substantially improves the quality of
multi b-value DW-MRI images without increasing acquisition times. Our
model introduces the physiological signal decay model of DW-MRI as
a constraint in the reconstruction of the DW-MRI images. An in-vivo
experiment using 6 low-quality DW-MRI datasets of a healthy subject
showed that SMEIR reconstruction of low-quality data improved SNR
by 55% in the liver and by 41% in the kidney without increasing acqui-
sition times. We also demonstrated the clinical impact of our SMEIR
reconstruction by increasing the conspicuity of inflamed bowel regions
in DW-MRI of 12 patients with Crohn’s disease. The contrast-to-noise
ratio (CNR) of the inflamed regions in the SMEIR images was higher by
12.6% relative to CNR in the original DW-MRI images.

1 Introduction

Diffusion-weighted MRI (DW-MRI) of the body is a non-invasive imaging tech-
nique sensitive to the incoherent motion of water molecules inside the area of
interest. This motion is characterized by a combination of a slow diffusion com-
ponent associated primarily with the Brownian motion of water molecules, and a
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fast diffusion component associated primarily with the bulk motion of intravas-
cular molecules in the micro-capillaries [8].

The signal in DW-MRI images decays as a function of the amount of inco-
herent motion present in the tissue and a diffusion-weighting parameter known
as “b-value.” The rapid DW-MRI signal decay in tissue with normal diffusion
characteristics, combined with the reduced signal decay in regions of restricted
diffusion, increases the conspicuity of abnormal regions in DW-MRI images ac-
quired with sufficiently high b-value and aids in detecting abnormal regions.

Recent studies demonstrate the potential of sufficiently high b-value DW-MRI
images to improve the detection rate of different types of carcinoma [4,5,11], focal
hepatic lesions [6], and inflammatory activity in the bowel [9] without ionized
radiation and/or exogenous contrast media.

Unfortunately, DW-MRI images have an inherently low signal-to-noise ratio
(SNR), which reduces enthusiasm for using these images for diagnostic pur-
poses. Koh and Collins [7] recommend acquiring the DW-MRI data with multi-
ple excitations (i.e., 5 to 6 excitations) and using the averaged signal to improve
DW-MRI image quality. However, acquiring multi b-value DW-MRI data with
multiple excitations to achieve both sufficient image quality and sufficient infor-
mation for quantiative assessment of fast and slow diffusion will substantially
increase the overall acquisition time, thus making this method less suitable for
routine clinical use.

A unique feature in DW-MRI images in particular, and in parametric imaging
techniques in general, is the addition of a 4th dimension to the control parameters
in the acquired data. This 4th parametric dimension, which is the diffusion-
weighting factor (b-value) at play in DW-MRI, can be exploited as an additional
source of prior information that can be utilized in reconstructing images.

Several groups have suggested incorporating the 4th parametric dimension as
a constraint to increase the quality of reconstructed images in quantitative T1
and T2 images [1,2,12]. However, these models are difficult to optimize and have
not been successfully applied to body DW-MRI reconstruction.

In this work, we reduce the number of excitations required to obtain multi b-
value DW-MRI images of the body with sufficient SNR by introducing a Bayesian
model of the expected signal with the signal decay model utilized as the prior
information. With this model, we are able to simultaneously obtain high-quality
DW-MRI images for multiple b-values at once and estimate the signal decay
model parameter values instead of generating estimates of each b-value image
independently and without estimating the signal decay model parameter values.

We also introduce an efficient iterative solution based on the Expectation-
Maximization framework through which we obtain high SNR DW-MRI images
and parameter estimates with the “Simultaneous Model Estimation and Im-
age Reconstruction” (SMEIR) solver, a novel approach that simultaneously es-
timates the intra-voxel incoherent motion signal decay model parameters and
reconstructs high-quality DW-MRI images. In our experiments, we have shown
substantial improvements in DW-MRI image quality. Specifically, our SMEIR
reconstruction approach improves the SNR of 6 DW-MRI datasets of a healthy
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volunteer by 55% in the liver and by 41% in the kidney. We have also assessed
clinical impact, namely, by demonstrating increased conspicuity of inflammatory
bowel regions in a study cohort of 12 pediatric Crohn’s disease patients. Our re-
sults show that SMEIR-reconstructed images have a contrast-to-noise ratio that
is 12.6% higher than the CNR produced by the original DW-MRI data.

2 Method

2.1 DW-MRI Reconstruction Model

DW-MRI images have an inherently low SNR, which reduces enthusiasm for
using these images for diagnostic purposes. Specifically, the SNR of DW-MRI
images decreases as the b-values used to acquire the images increases. As a rule,
the SNR of DW-MRI images obtained with high b-values is increased by ac-
quiring the images with multiple excitations at each b-value. An SNR-optimized
DW-MRI image is then reconstructed by solving a Maximum-Likelihood esti-
mation problem for each b-value independently:

Ŝi = argmin
Si

M∑
j=1

(Si − S
′
i,j)

2 (1)

where S′
i,j is the observed signal at excitation j with b-value bi, Si is the unknown

signal, and M is the number of excitations. The solution is simply obtained by
averaging the signal at the different excitations:

Ŝi =
1

M

M∑
j=1

S
′
i,j (2)

Unfortunately, by obtaining images with M as the number of excitations
(NEX), we are only able to achieve a SNR increase of

√
M , the low rate of

which requires acquisitions of long duration.
As an alternative, we propose to incorporate a prior knowledge on signal

evolution in the b-value dimension to reconstruct the DW-MRI images by adding
a regularization term to Eq. 1:

Ŝi = argmin
Si

M∑
j=1

(Si − S
′
i,j)

2 + α (Si − f (Θ, i))2 (3)

Where α is the regularization weighting parameter, f(Θ, i) is the expected signal
at b-value bi given the signal decay model parametersΘ. In this work we used the
intra-voxel incoherent motion (IVIM) model of DW-MRI signal decay proposed
by Le Bihan et al. [8]. This model assumes a signal decay function of the form:

f (Θ, i) = S0 (f exp (−bi(D +D∗)) + (1− f)(exp(−biD))) (4)
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Where f(Θ, i) is the expected signal at b-value bi, Θ = {s0, f,D∗, D} are the
intra-voxel incoherent motion model parameters describing the baseline (i.e.,
without any diffusion effect) signal (s0); the fast-diffusion fraction (f); the fast-
diffusion coefficient (D∗) characterizing primarily the bulk motion of intravascu-
lar molecules in the micro-capillaries; and the slow-diffusion coefficient
(D) characterizing primarily the Brownian motion of water molecules in the
extra-cellular space.

Unfortunately, the expected signal is dependent on the parameters of the sig-
nal decay model (i.e., Θ) which are unknown. Therefore, we cannot optimize
Eq. 3 directly. Instead, we formulate the reconstruction problem as a simultane-
ous reconstruction of the DW-MRI images acquired with different b-values and
an estimation of the signal decay model:

[Ŝ, Θ̂] = argmin
S,Θ

N∑
i=1

M∑
j=1

(Si − S
′
i,j)

2 + α

N∑
i=1

(Si − f(Θ, i))2 (5)

where S = {S1, . . . , SN}.

2.2 Optimization Scheme

We used an Expectation-Maximization-like approach to solve Eq. 5 by iteratively
estimating the signal decay model parameters Θ given the current estimate of
signal S and then estimating signal S given the current estimate of the model
parameters Θ. We describe these steps in detail next.

E-Step: Signal decay model (Θ) estimation:
The expected DW-MRI signal decay at each voxel is described by the intra-voxel
incoherent motion model (Eq. 4). We used the spatially constrained incoherent
motion signal decay model described by Freiman et al. [3] to robustly estimate
the model parameters Θ. Given the current estimate of the DW-MRI signal St,
the estimate of the model parameters Θt was obtained by minimizing:

Θ̂t = argmin
Θt

N∑
i=1

(St
i − f(Θt, i))2 +

∑
vp∼vq

g(Θt
vp , Θ

t
vq ) (6)

where g(·, ·) is the spatial constraint given by:

g(Θt
vp , Θ

t
vq ) = αW |Θt

vp −Θ
t
vq | (7)

and α ≥ 0 is the spatial coupling factor; W is a diagonal weighting matrix
that accounts for the different scales of the parameters in Θ; and vp, vq are the
neighboring voxels established by the employed neighborhood system utilized in
this model. We then estimated the model parameters Θ by minimizing Eq. 6
using the “fusion bootstrap moves” combinatorial solver introduced by Freiman
et al. [3].
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M-Step: DW-MRI Signal (S) reconstruction:
Given the current estimate of the DW-MRI signal decay model Θt, we minimized
Eq. 5 using the BOBYQA non-linear optimization algorithm [10] to get the next
estimate of the signal St+1.

First, we initialized the algorithm with the acquired DW-MRI data as the
current estimate of the signal; and second, using the acquired DW-MRI data
and the current estimate of the model parameters, we iteratively alternated
between estimating the model parameters from the current signal (Eq. 6) and
estimating the true DW-MRI signal (Eq. 5) until the change in the estimated
signal became negligible.

3 Experimental Results

3.1 In-vivo Evaluation Using Healthy Control

We conducted an in-vivo study with healthy control volunteer data to analyze
the improvement in SNR achieved by using our SMEIR approach.

We acquired DW-MRI data of a healthy volunteer using a 1.5-T unit (Mag-
netom Avanto, Siemens Medical Solutions, Erlangen, Germany). We performed
free-breathing single-shot echo-planar imaging using the following parameters:
repetition/echo time (TR/TE) = 6800/59 ms; matrix size = 192×156; field of
view = 300×260 mm; slice thickness/gap = 5 mm/0.5 mm; 40 axial slices; 7 b-
values = 0,50,100,200,400,600,800 s/mm2 with 6 excitations (i.e. NEX=6). The
acquisition time for each excitation was 3:30 min. with an overall acquisition
time of 21 min.

We generated high-quality images by averaging the data from the 6 excita-
tions and 6 low-quality datasets - each one consisting of data acquired with
1 NEX. For each low-quality dataset, we reconstructed the images using our
SMEIR reconstruction approach. We experimentally set the value of α in Eq. 5
to 0.01. The average (std) running time required to reconstruct DW-MRI im-
ages of 256 × 256 × 40 voxels on an 8 processors machine Intel R© Xeon R© at 2.40
GHz with cache size of 12 MB and overall memory of 48 GB using the SMEIR
reconstruction was 8:04 (2:35) min.

For purposes of evaluation, we defined 2 spherical regions of interest (ROI) in
the liver and in the kidney, respectively. We defined SNR at each voxel as the
average signal over the 6 low-quality datasets divided by the standard deviation
of the signal over these datasets. We likewise calculated SNR for the b-value=800
s/mm2 DW-MRI image for the raw low-quality datasets (RAW) and for the
SMEIR-reconstructed datasets (SMEIR). Next, we averaged SNR for the RAW
and SMEIR data, respectively, over the liver and kidney ROIs.

Fig. 1 presents a high b-value (i.e. 800 s/mm2) image acquired in high-quality
(NEX=6); in low-quality (NEX=1); in low-quality (NEX=1) combined with
SMEIR reconstruction; and a bar-plot representation of SNR of low-quality data
with and without SMEIR reconstruction. The average±std SNR of SMEIR data
(12.2±2.5 in the liver and 11±2.5 in the kidney) was higher than the SNR of the
low-quality data (7.9±4.2 in the liver and 7.8±2.7 in the kidney) - a difference
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(a) High-quality DW-MRI (6 NEX) (b) Low-quality DW-MRI (1 NEX)

(c) SMEIR DW-MRI (1 NEX)
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Fig. 1. In-vivo example. This figure presents b-value=800 s/mm2 images acquired in
high-quality (NEX=6); in low-quality (NEX=1); and in low-quality (NEX=1) com-
bined with SMEIR reconstruction, and a bar-plot representation of SNR of low-quality
data with and without SMEIR reconstruction.

that was statistically significant (Paired Student’s t-test, p<0.0001). Notably,
the SMEIR reconstruction of low-quality data improved SNR by 55% in the
liver and by 41% in the kidney without additional acquisition time.

3.2 Clinical Impact

To demonstrate the actual clinical impact of using our SMEIR reconstruction ap-
proach instead of the raw low-quality DW-MRI data, we assessed the conspicuity
of inflamed bowel regions in b-value=800 s/mm2 images by means of contrast-
to-noise ratio (CNR) between regions with active inflammation and surrounding
normal tissues in DW-MRI data of Crohn’s disease patients.

We retrospectively reviewed DW-MRI data of 30 patients who underwent
clinical MRI exams including a MR enterography (MRE) protocol that included
polyethylene glycol administration for bowel distention; gadolinium-enhanced,
dynamic 3D VIBE (volume-interpolated breath hold exam); and DW-MRI with
the same protocol described in section 3.1 acquired with 1 NEX.
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(a) Raw data (b) SMEIR reconstruction

Fig. 2. Representative Crohn’s disease patient with active inflammation in the ileum.
(a) The acquired raw DW-MRI data; and (b) SMEIR-reconstructed data. The region
with active inflammation is more conspicuous in the SMEIR-reconstructed image than
in the raw DW-MRI data.

Two board-certified radiologists reviewed the MRE data independently. Dis-
ease activity was defined as abnormal bowel wall thickening and enhancement in
the gadolinium-enhanced images by each of the readers. In case of disagreement
between the two reviewers, consensus was reached by joint reading of the data.
The consensus decision identified 12 patients with active inflammation in the
ileum. Another board-certified radiologist, blinded to the MRE data and to the
review, identified the ileum on the DW-MRI data for each patient. We manu-
ally annotated the ileum wall on the DW-MRI images with b-value=200 s/mm2.
Next, we calculated the CNR of the inflamed ileum in b-value=800 s/mm2 im-
ages by subtracting the background signal from the signal of the inflamed ileum
and dividing by the standard deviation of the signal in the ileum.

Fig. 2 depicts the acquired raw DW-MRI data and SMEIR-reconstructed
data of a representative Crohn’s disease patient with active inflammation in the
ileum. Visually, the region with active inflammation is more conspicuous in
the SMEIR-reconstructed image than in the raw DW-MRI data. Quantitatively,
the average (std) CNR between the inflamed regions and the surrounding neigh-
borhood in the SMEIR-reconstructed images was higher (2.52±0.69) than in the
raw DW-MRI data (2.23±0.47) - a difference that was statistically significant
(Paired Student’s t-test, p<0.05). The SMEIR-reconstructed images improved
CNR by 12.6%.

4 Conclusions

We have presented a new model and method for reconstructing high-quality
multi b-value DW-MRI images of the body without increasing overall acquisition
times. This novel approach features the signal decay model as a prior knowledge
in the image reconstruction, effectively enabling us to simultaneously reconstruct
DW-MRI images and estimate the signal decay model parameters using the
Expectation-Maximization framework.
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As demonstrated in our experiments, our method improves overall image qual-
ity by increasing the signal-to-noise ratio (SNR) by up to 55% and by increasing
the conspicuity of inflamed bowel regions of pediatric Crohn’s disease patients
by 12.6% without increasing overall acquisition times. The proposed method
permits the acquisition of high-quality DW-MRI images for diagnostic purposes
within a clinically acceptable acquisition timeframe.
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Abstract. The accurate measurement of 3D cardiac function is an im-
portant task in the analysis of cardiac magnetic resonance (MR) images.
However, short-axis image acquisitions with thick slices are commonly
used in clinical practice due to constraints of acquisition time, signal-to-
noise ratio and patient compliance. In this situation, the estimation of a
high-resolution image can provide an approximation of the underlaying
3D measurements. In this paper, we develop a novel algorithm for the
estimation of high-resolution cardiac MR images from single short-axis
cardiac MR image stacks. First, we propose to use a novel approximate
global search approach to find patch correspondence between the short-
axis MR image and a set of atlases. Then, we propose an innovative
super-resolution model which does not require explicit motion estima-
tion. Finally, we build an expectation-maximization framework to opti-
mize the model. We validate the proposed approach using images from
19 subjects with 200 atlases and show that the proposed algorithm signif-
icantly outperforms conventional interpolation such as linear or B-spline
interpolation. In addition, we show that the super-resolved images can
be used for the reproducible estimation of 3D cardiac functional indices.

1 Introduction

3D cardiac magnetic resonance (MR) imaging has developed rapidly during the
past few years, particularly in the acquisition of 3D cine MR images [1,2]. Near
isotropic 3D cardiac MR images allow reliable assessment of complex cardiac
morphology. Using 3D images also allows for a more accurate and reproducible
estimation of cardiac functional indices [3]. However, 3D cardiac MR imaging is
not always available due to several limitations: First, 3D cardiac MR imaging
often involves breath-holding for periods that are too long for many patients.
In addition, it often has a low signal-to-noise ratio (SNR). Finally, advanced
3D cardiac MR imaging is not yet widely available in clinical practice and still
requires substantial specialist expertise.

Image super-resolution is an active field of research in computer vision. Most
super-resolution algorithms use an observation model which establishes a rela-
tionship between the high-resolution image and the observed low-resolution im-
ages. The observed low-resolution images are considered to be warped, blurred,

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 9–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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down-sampled and noisy versions of the original high-resolution image. One of
the most common approaches to the super-resolution problem is to use the
maximum likelihood (ML) or maximum a posteriori (MAP) estimation [4]. In
these approaches, a distance measure between the reconstructed image and the
observed images is iteratively reduced. Example-based image super-resolution
[5] is another popular approach where correspondences between low- and high-
resolution image patches are learned from a database and then applied to a new
low-resolution image to recover its most likely high-resolution version. In both
approaches, a distance measure between the current estimation and the low-
resolution images must be computed. Takeda [6] proposed a distance estimation
approach which requires no explicit motion estimation by inverting the position
of the patch selection operator and the resampling operator.

Fig. 1. Variability of heart orientation, position and shape across subjects

The idea of super-resolution has been applied in medical imaging too: Gholipo
[7] reconstructed a high-resolution volume from multiple low resolution (LR) im-
ages using image priors based on total variation constraint with MAP estimation.
However, this method cannot be directly applied to our problem because it re-
quires multiple instances of low resolution (LR) images from different views. To
take advantage of the information redundancy in similar patches across differ-
ent subjects, patch-based methods have been shown to be highly efficient in
applications such as segmentation [8,9]. Rousseau [10,11] proposed to combine
registration with a patch-based approach to create super-resolution brain MR
images from atlases of multiple LR images of different subjects. In this approach
the high-resolution image is constructed via non-local fusion of those patches.
However, the method requires rough correspondence between images either via
explicit motion estimation or other means. This is difficult to guarantee in car-
diac MR images due to the large variation in the orientation, position and shape
of the heart across subjects (see Fig.1). Moreover, the complexity of these non-
local patch-based methods increases with the number of atlases.

In this paper we aim to reconstruct a super-resolution (SR) cardiac MR image
from a single short axis (SA) cardiac MR image with a set of 3D atlases available
as the training database. Three different aspects are challenging: First, the slice
thickness of the SA image is much larger than the slice thickness of the 3D image
(approximately 5 times, e.g. 2mm vs. 10mm) while the up-sampling factor of
classic super-resolution algorithms is usually around two [12]. Second, the search
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for the best match of patches in 3D with multiple atlases using conventional
approaches is very expensive. Finally, cardiac images exhibit significantly more
variability in terms of orientation and anatomy compared to brain images. Local
search methods used in brain imaging [10] are thus not suitable. In addition an
exhaustive global search for patches is impossible given the computational cost.

To solve this problem, we propose a framework to combine classic and
example-based super-resolution approaches using an approximation graph based
search based on the recently proposed PatchMatch algorithm [13]. Inspired by
[10], we assume that information redundancy in similar patches across different
subjects can be exploited. Thus, we reformulate the PatchMatch approach to
find patch correspondence between a single image and an atlas database. We
then use the principles in [6,7] to estimate the super-resolved image using the
expectation-maximization (EM) framework.

The novelty and contributions of this paper are the introduction of a global
search strategy as well as an observation model with non-explicit motion estima-
tion that avoids any spatial alignment or registration of the images. Furthermore,
the computational cost is kept low by using PatchMatch and a closed-form solu-
tion in the observation model [6,9]. The number of atlases does not influence the
computational cost and thus allows full exploitation of a large atlas database.
Our results demonstrate that the algorithm can robustly estimate a SR image
in the presence of thick slice data and performs both extrapolation and interpo-
lation by recovering missing apical and basal slices.

2 Methods

2.1 Multi-Atlas PatchMatch

The PatchMatch algorithm proposed by Barnes [13] finds corresponding patches
across two images or regions. In contrast with the original PatchMatch algorithm,
our multi-atlas PatchMatch (MAPM) finds patch correspondences N between
an image and a database of atlases. Given an image I and an atlas database
A (individual atlases are denoted as Ai), we would like to find for each point
x = (x, y, z) in image I a match in the atlas databaseA,N(x) = (p, i) where p =
(x′, y′, z′) is the closest match in atlasAi for a given distance function D between
patches. The distance function to be used during the search is independent from
MAPM and can be customized to different applications.

The MAPM algorithm consists of four different steps which will be described
in the following. The reader can find additional figures showing a graphical illus-
tration of the four different steps in the supplementary material1. The mapping
N can be initialized either by random assignment or by using prior informa-
tion (Fig.1 in supplementary material). In our case, we assign N(x) = (x, R(n))
where R(n) generates a random selection uniformly between A1 and An. After
initialization, we perform an iterative process of improving the mapping N us-
ing propagation and random search. During the propagation of N, from point

1 https://www.dropbox.com/s/eoeqbviq5kqcdix/MAPdiagram.pdf

https://www.dropbox.com/s/eoeqbviq5kqcdix/MAPdiagram.pdf
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p neighbouring to point x (Fig.2 in supplementary material), we attempt to
improve N(x) using the known mapping of N(p) as in [13]. During the random
search step, we attempt to improve N(x) by testing a sequence of candidate
points at an exponentially decreasing distance from N(x). Different from [13],
in our case, the atlas index i can be fixed (Fig.3 in supplementary material)
or relaxed (Fig.4 in supplementary material). Each iteration of the algorithm
proceeds as follows:

– for each x propagation from (x− 1, y, z), (x, y − 1, z) and (x, y, z − 1);
– for each x random search with Ai fixed then relaxed
– for each x propagation from (x+ 1, y, z), (x, y + 1, z) and (x, y, z + 1);
– for each x random search with Ai fixed then relaxed

This process is performed until the sum of all distances in image I converges.

2.2 Super-Resolution Model with No Explicit Motion Estimation

In the classical observation model, the SR image is reconstructed from a LR
training database. The LR images are considered to be degraded versions of the
SR image undergoing blurring, downsampling and the addition of noise [6,7,4].
In our case, we aim to reconstruct the SR image from a SR atlas database
constrained by a single LR image.

Takeda [6] suggested that the patch selection should be applied before rather
than after the downsampling in order to avoid an explicit motion estimation.
Gholipour [7] proposed the following formulation designed for MR images:

ILk = RBkSkMkI
H , (1)

Here k denotes a slice, M denotes motion operator which is no longer needed
in our case, Sk denotes the slice selection operator which can be replaced by
patch selection operator P, Bk is a blurring kernel representing the point spread
function (PSF) of the MR imaging signal acquisition process and R is the down-
sampling operator.

By combining patch redundancy [10] and the formulation proposed in [7], we
propose a novel model with two terms ΦSR = Φ1

SR +Φ2
SR to reconstruct the SR

image I where Ω is the image domain. In this model, the first term constrains
N using the observed LR image so that the selected patches after downsampling
operations should be as similar as possible to the LR image:

Φ1
SR :=

∑
x∈Ω

w[x,N(x)]‖PxI
L −RPN(x)BA‖2. (2)

The second term constrains I using N and A based on the fact that the
reconstructed images should be as similar as possible to the selected patches:

Φ2
SR :=

∑
x∈Ω

w[x,N(x)]‖PxI−PN(x)A‖2, (3)
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Here Px selects a patch from an image with radius in mm around x and
PN(x) with N(x) = (p, i) selects a patch from Ai with radius in mm around

p. w[x,N(x)] is chosen as exp
{
−D(N(x))2

2σ2

}
according to [6] and controls the

contribution of the selected patch to the final reconstruction. Finally, we define
D(N(x)) = ‖PxI

L − RPN(x)BA‖2+‖PxI − PN(x)A‖2. We blur the atlases
before patch selection to save computation time.

2.3 Expectation Maximization Framework

In this subsection, we construct the whole super-resolution approach within an
EM framework: In this context the atlases A and the LR image IL correspond
to the observed data, I is the unobserved data and N are the parameters. The
EM algorithm is initialized by assuming I to be empty and N(x) = (x, R(n)).
The distance between an empty patch and any patch is defined as +∞.

In the M-step we optimize N using the MAPM described in Sec. 2.1. Then,
the weighting matrix W is updated according to the distance computed. In the
E-step we estimate the SR image I by optimizing the observation model ΦSR.
We can calculate the penalty at each patch PxI independently if N is fixed
similar to the multi-point estimation in [9]:

argmin
PxI

ΦSR(PxI) :=
∑

p∈ΩP

w[x,N(p)]‖PxI−PN(p)A‖2, (4)

Here ΩP is a neighborhood with all patches which contain point x and centered
at point p and the distance is calculated on overlapping areas as in [9]. This leads
to a closed-form solution:

PxI =

∑
p∈ΩP w[x,N(p)] PN(p)A∑

p∈ΩP w[x,N(p)]
, (5)

3 Application to Cardiac MR Images

The proposed framework was applied to cardiac MR images and evaluated its
performance in two scenarios using both simulated and real cardiac MR images.
Two hundred healthy volunteers were scanned using a 1.5T Philips Achieva
system with a 32-channel cardiac coil. A single breath-hold 3D balanced steady-
state free precession (b-SSFP) sequence is acquired. The final voxel size is
1.25 x 1.25 x 2 mm. The typical breath-hold time is 20 seconds. 11 good quality
images were selected and used to build a synthetic data set and the remaining
189 images were used as the atlases. The LR images (1.25 x 1.25 x 10 mm) were
generated from the 3D images using the operator defined by Eq.1. In addition,
19 normal volunteers were scanned twice on the same day. A standard acquisi-
tion was performed including an axial stack of cine b-SSFP MR images in the
left ventricular short axis plane. The voxel sizes for these image is 1.25 x 1.25 x
10 mm. The images were then super-resolved using the previous 200 3D images.
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Table 1. The median and interquartile range of PSNR for different methods from
11 synthetic cases. There is significant difference between the PSNRs of interpolation
methods and the proposed method (p-value < 0.05 indicated by *).

linear B-spline cubic B-spline MAPM

PSNR (dB) 19.05 (1.17)∗ 19.62 (1.28)∗ 19.9 (1.22)∗ 20.96 (1.1)

There are three pre-processing steps which occur before applying the EM
algorithm. First, the SA slices are spatially aligned to remove the inter-slice
shifting caused by respiratory motion. The inter-slice shifts between SA slices
are corrected by registering SA slices to long-axis (LA) slices [14]. Second, a
region of interest (ROI) is detected using a Haar feature classifier [15]. Finally,
all atlases are intensity normalized [16] to the spatially corrected image. During
the experiments we have set our patch size to 14 x 14 x 14 mm.

3.1 Quantitative Evaluation

In this evaluation, we compare the PSNR between the image reconstructed from
the synthetic LR image and the original image. We reconstruct the SR image
using linear interpolation, spline interpolation [17] and the proposed approach.
The result is shown in Tab. 1. During the down-sampling process, part of the
apex and base might be missing due to the reduced field of view. This is also
a common problem in SA images. It can be seen from Fig.2 that the missing
parts of the apical and basal slices can be recovered. This is due to the fact that
a patch is copied from the atlases instead of a single voxel. Thus, during the
iterative process, the missing topology can be gradually repaired.

(a) (b) (c) (d) (e)

Fig. 2. This figure shows the results of the synthetic evaluation from long-axis view.
(a) shows the down-sampled images; (b) shows the linear interpolation; (c) shows the
cubic B-spline interpolation; (d) shows the proposed method and (e) shows the original
3D image.

3.2 Reproducibility Analysis

In the second experiment, we attempt to super-resolve the SA cardiac MR im-
ages using the proposed algorithm (Fig 3). The super-resolved image has better
contrast and less noise compared to 3D image of the same subject. In addition,
we segment both the SA images and super resolved images using the patch-based
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(a) (b) (c) (d) (e)

Fig. 3. This figure shows the results from the super-resolution of the SA MR images.
(a) original SA image; (b) linear interpolation; (c) cubic B-spline interpolation; (d)
proposed and (e) corresponding 3D image of the same subject rigidly align to the SA
MR image.

segmentation [8]. We calculate the mean and the standard deviation of absolute
differences d between the left ventricle (LV) volume obtained from two scans of
the 19 subjects. The results from SR images (dSR : 4.94 ± 4.36 ml) are more
reproducible compare to results from SA images (dSA : 6.58± 6.76 ml).

4 Conclusion

In this paper, we developed a MAPM based framework for medical images. We
have shown that our framework works well in cases where hundreds of atlases
are used as the training database to super-resolve one LR image. In addition,
there is no need for any spatial alignment with atlases. The computational time
is 2 hours on average per case and does not change with an increasing number
of atlases. Finally, the algorithm performs extrapolation as well as interpolation
of the images. This is desirable in cardiac images where apical and basal slices
may be missing due to limited field of view and thick slices. In the SR image,
the original SA slice is a little blurred due to the fusion of multiple patches
[6]. This is a trade-off for improved through-plane resolution. Future work will
include exploring the possibility to extend MAPM to patch-based segmentation
and to exploit neighboring correspondence [18] to preserve the original SA slice
and image self similarity [19] to increase the robustness.
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Abstract. Accurate localization and uptake quantification of lesions in
the chest and abdomen using PET imaging is challenging due to the
respiratory motion during the exam. The advent of hybrid PET/MR
systems offers new ways to compensate for respiratory motion with-
out exposing the patient to additional radiation. The use of self-gated
reconstructions of a 3D radial stack-of-stars GRE acquisition is pro-
posed to derive a high-resolution MRI motion model. The self-gating
signal is used to perform respiratory binning of the simultaneously ac-
quired PET raw data. Matching μ-maps are generated for every bin,
and post-reconstruction registration is performed in order to obtain a
motion-compensated PET volume from the individual gates. The pro-
posed method is demonstrated in-vivo for three clinical patients. Motion-
corrected reconstructions are compared against ungated and gated PET
reconstructions. In all cases, motion-induced blurring of lesions in the
liver and lung was substantially reduced, without compromising SNR as
it is the case for gated reconstructions.

1 Introduction

With scan times of between two and ten minutes per bed position, positron
emission tomography (PET) imaging of the lung and abdomen is affected by
respiratory motion. Breath-hold techniques cannot be applied for such long time,
and respiratory gating approaches lack clinical acceptance because they reduce
the scan efficiency and, thus, lead to increased noise or excessive scan time.
Clinical PET scans are affected by two types of artifacts due to respiratory
motion: First, the mismatch between the MR-based attenuation correction map
(μ-map) used for PET reconstruction, which is typically acquired in an end-
expiratory breathhold, and the PET image itself, which is acquired during free
breathing, causes an under- or overestimation of tracer activity especially in the
vicinity of the diaphragm [1]. Second, respiration leads to local image blurring
(smearing) along the direction of motion, i.e., primarily in the cranio-caudal
direction. This can result in an incorrectly estimated volume, shape, and uptake
of lesions [2–4] as well as in reduced conspicuity especially of small lesions.
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Respiration is a predominantly periodic type of motion that can be compen-
sated for if a model of the motion is available. Typically, this model consists of
a displacement vector field describing the nonrigid deformation that maps vox-
els between different respiratory states. A comprehensive review of respiratory
motion models has recently been published by McClelland et al. [5].

In hybrid PET/MR scanners, respiratory motion models can be formed either
by near-realtime 3D MR sequences [6–8] or by retrospective gating and averaging
over multiple respiratory cycles [4, 9]. Retrospectively gated MR motion mod-
els can further be subdivided into three categories according to the acquisition
method: 1) The displacement fields can be measured directly using tagged MRI
[9–11], 2) the volume can be sampled using a 2D multi-slice technique [4, 7] or
3) using a 3D acquisition [6, 7].

According to these characteristic features, the proposed approach for respira-
tory motion compensation on integrated PET/MR scanners can be classified as
follows. It utilizes a 3D radial stack-of-stars MRI sequence. This sequence allows
for self-gating, i.e. a respiratory signal can be derived without the need for ad-
ditional MR navigator echoes or sensors attached to the patient. Moreover, the
trajectory allows for retrospective gating, without having to face discontinuities
between slices that affect 2D multi-slice methods. The model is acquired for the
whole PET acquisition and thereby assures high spatial fidelity and can adapt
to changes in the respiratory pattern.

After derivation of the MR-based motion model, it is utilized for motion-
corrected PET image reconstruction. The PET gates are reconstructed using
conventional algorithms, then warped to a common respiratory phase, and fi-
nally averaged [4, 6]. We followed this approach rather than incorporating the
motion model directly into the PET reconstruction, as recently suggested in lit-
erature [7, 12–14], because we focused on the formation of the motion model in
this work. The utilized post-reconstruction registration approach is well-studied,
reproducible, and provides comparable results given that the respiratory bins
have similar and sufficient count statistics [13–15].

2 Methods

Our approach is based on the following scan protocol for a combined whole-body
PET/MR scanner. First, the μ-map is acquired conventionally (20 s breathhold
scan at end-expiration). Afterwards, MR and PET data are acquired simultane-
ously. Detailed sequence parameters can be found in Section 4.

In the subsequent data processing chain, described in more detail in the fol-
lowing sections, a motion model is computed from the MR data. It is subse-
quently applied to deform the μ-map to different respiratory states. A self-gating
signal extracted from the MR scan is used to perform respiratory gated PET
reconstructions at different levels of inspiration, each utilizing the matching μ-
map. Finally, the inverse deformations are used to co-register and combine the
individual PET volumes.
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2.1 Self-gated Radial MRI

The respiratory motion model is generated with the help of a T1-weighted
3D radial stack-of-stars spoiled gradient echo sequence with fat suppression. A
golden-angle increment of 111.25◦ between subsequently acquired radial angles
distributes the sampling incoherently but approximately uniformly [16] over the
readout plane, facilitating retrospectively gated reconstruction.

Fig. 1. Radial
stack-of-stars

This particular k-space trajectory, shown in Fig. 1, allows
to derive a self-gating signal (SGS) from the central k-space
partition kz = 0 that is sampled everyNz ·TR [17]. Each sample
of the self-gating signal is computed as the mean absolute value
of the central three k-space samples in a readout. A suitable
coil element to derive the signal is determined automatically
by computing the Fourier transform of the SGS for every coil
and selecting the one with the highest ratio of the peak in
the range of expected respiratory frequencies to the energy in
the remaining high-frequency coefficients. It should be noted that the SGS is of
qualitative nature and, unlike a 1D navigator echo or projection-based self-gating
[6], does not indicate an absolute displacement e.g. of the liver.

Variable amplitude-based binning is applied to partition the radial readouts
into NBins bins containing equal amounts of data, according to the respective
self-gating signal amplitude. This scheme ensures comparable statistics also for
the PET listmode data that were gated in the same manner (see Section 2.3).

2.2 Motion Modeling

A state-of-the art nonrigid registration algorithm that was recently proposed
for lung registration [18] is employed to compute the deformation between the
respiratory-gated MR volumes. Its output is a 3D deformation field T i,j that
maps a volume at respiratory phase i to a volume at respiratory phase j. The
deformations are estimated from each respiratory phase to the reference phase
1 (end-exhale), and vice versa.

2.3 Motion-Compensated PET Reconstruction

To generate matching μ-maps M̂i for the respiratory phases i ∈ {2 . . .NBins},
the original end-exhale μ-map M1 is warped to each respiratory state using the
corresponding deformation field T 1,i.

The self-gating signal from the MRI acquisition is used to reconstruct gated
images from the PET listmode data. For this purpose, each listmode event is
assigned to the same bin as the closest SGS sample according to the respective
timestamps. Static (ungated) images are reconstructed from all available PET
data as well. The vendor-provided clinical reconstruction algorithm (ordered-
subset expectation maximization, OSEM) is applied. The respective μ-maps
(warped / native) are utilized for attenuation correction. After reconstruction,
the gated PET volumes Pi are co-registered to the end-expiratory state by ap-
plying T i,1. Finally, the co-registered images are averaged.
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3 Experiments

3.1 Self-gating

To study the accuracy of the respiratory self-gating, images were reconstructed
using NBins ∈ {2 . . . 15} respiratory bins. Partitioning the data into more bins
reduces the SNR in every bin but allows more accurate separation of different
respiratory states. A virtual 1D navigator column (averaged over 3 × 3 voxels
in the transversal plane) was extracted at the apex of the liver dome in the
reconstructed volumes. The position of the liver edge at each respiratory state
was detected by Canny filtering (σ = 1.5, θlow = 0.8, θhigh = 0.95) along the
column.

3.2 PET Reconstruction

The three datasets were analyzed visually as well as quantitatively, in terms of
apparent lesion volume that was computed by placing ellipsoidal VOIs using
syngo TrueD (Siemens Healthcare, Erlangen, Germany) and applying a fixed
threshold for segmentation. The following reconstructions were compared:

1. RAll: Ungated reconstruction using all PET data and original μ-map.
2. R40: Gold standard : Gated reconstruction using the 40% of the data with

the least variation in the SGS amplitude.

To examine the effects of post-reconstruction registration, the gated PET im-
ages were computed with the adapted μ-map and warped to the reference state
before fusion. This gives the corrected reconstruction:

3. G5: Gating to 5 bins, warped μ-maps, post-reconstruction registration.

4 Clinical Study

The protocol described in Section 2 was used for three oncological patient studies
P1, P2, P3, conducted on a 3 Tesla hybrid PET/MR system (Biograph mMR;
Siemens Healthcare, Erlangen, Germany). Written consent from the subjects and
approval from the local ethics committee was obtained prior to the examinations.
Between 401 and 455 MBq of 18F-FDG were administered as radionuclide agent,
96 - 148 min before the study. The μ-maps were acquired with a 3D Dixon
GRE sequence while the patients were instructed to hold their breath at end-
expiration. No particular respiratory instruction was given for the following PET
listmode acquisition, during which the motion modeling scan was carried out:
P1 (f/58y/82kg): coronal slab orientation (FOV 450 × 450× 245 mm3), spatial
resolution 1.6× 1.6× 1.7 mm3, 288 pixel matrix, 145 slices (50% slice resolution,
5/8 partial Fourier, 10% oversampling), 3296 radial angles, 12 min scan time.
P2 (m/79y/96kg) and P3 (m/67y/115kg): sagittal slab orientation (FOV 400×
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400 × 360 mm3), spatial resolution 1.65 × 1.65 × 5 mm3, 256 pixel matrix, 72
slices (61% slice res., 5/8 partial Fourier), 4416 radial angles, 10 min scan time.

To demonstrate the applicability of the derived motion model, NBins = 5
respiratory states were used. MR data were reconstructed using regridding. The
empirically selected parameters for the deformable registration were smoothing
α = 5, 75 % randomized sampling, and 3 levels with a grid spacing of 8, 4, and 2.
The PET reconstruction (OSEM3D 3i21s) used 3 iterations on 21 subsets, with
a matrix size of 172× 172 and 4 mm Gaussian post-reconstruction filtering.

5 Results and Discussion

5.1 Self-gating

In all cases, the self-gating signal was successfully extracted. Fig. 2a) shows the
detected maximal edge displacement depending on the number of bins chosen.
An asymptotic behavior, caused by successive reduction of intra-bin motion with
a higher number of bins [19], was observed. The maximal displacement in the
three patients was 10-13 mm. Due to the uniform bin size, a relatively high
number of bins is required to capture the full respiratory range, eventually com-
promising image quality in the exhale bins. A cumulative respiratory histogram
was computed from the detected liver edge displacements using NBins = 15. As
can be seen in Fig. 2b), 60-75% of the detected respiration was in a range of 5
mm from maximal end-expiration, while ∼20% are within 5 mm from maximal
inspiration. Thus, when using only 5 bins, the intra-bin motion blur causes the
edge of the last bin to be detected at about 2-3 mm below maximal inspiration
(cf. also Fig. 2a)). The choice of NBins = 5 can be considered a compromise
between accuracy and sufficient statistics for all bins.

Upon comparing the motion model with the Dixon images acquired for the
μ-map it was noticed that P2 and P3 had held their breath at end-inspiration
rather than at end-expiration as instructed. Therefore, in both cases the de-
formed μ-maps M̂i were generated by applying the model T 5,i. Moreover, the
end-exhale μ-map for reconstructions RAll, R40 was estimated by appling T 5,1.
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Fig. 2. a) Maximal displacement of liver edge
depending on NBins. b) Cumulative respiratory
histogram for P1 − P3.

Fig. 3. Self-gated MRI of P3

overlaid with warped μ-map
(brown: lung compartment)
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5.2 PET Reconstruction

The tissue interfaces in the deformed μ-maps were visually consistent with the
acquired motion model, as shown in Fig. 3 depicting a fusion of the motion model
at end-expiration and end-inspiration with the corresponding μ-maps in P3.
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Fig. 4. Line profiles
through pulmonary
lesion in P1

In P1, a lesion (Ø 20 mm) was found to move by
approx. 6 mm in head-feet direction in the individ-
ual gated PET reconstructions of G5. Fig. 4 shows a
line profile through the lesion, averaged over 3× 3 pix-
els. In the ungated reconstruction, the lesion appears
elongated by ∼5 mm. As shown in Fig. 4b), the true
shape was restored after post-reconstruction registra-
tion. Corresponding PET images are given in Fig. 5a).

In P2, a larger lesion (Ø 45 mm) was found in the
liver. Significant respiratory movement in the anterior-
posterior direction was visible in the model and con-
firmed by the direction of motion blur in the ungated
PET reconstruction. The SUV=6 iso-intensity contour
of the lesion for all reconstructions is shown in Fig. 5b),
as an overlay in the end-exhale motion model. Gated
and corrected reconstructions match the outlines of the
slightly hypointense region in the MR image well, while
the ungated contour is displaced by ∼6 mm.

In P3, multiple foci (Øup to 10 mm) in both kidney cortices showed increased
uptake of FDG. The largest spot was considered pathological. Due to respiratory
motion, the foci were less conspicuous in the ungated images, cf. Fig. 5c).

The lesions were segmented with fixed thresholds of SUV=2.5 (P1) and
SUV=6 (P2, P3) and the apparent lesion volume was compared against the gated
reconstruction R40. For (P1, P2, P3), the difference was reduced from (+27.5%,
+18.2%, -58.9%) in the ungated reconstructions, respectively, to (+1.1%, +6.4%,
+15.3%) by applying the proposed method. Loss of contrast in the motion-
compensated reconstruction, as also reported by [4], was noticed for few very
small details. A possible reason is residual intra-bin motion especially in end-
inspiration, as discussed in Section 5.1. Moreover, R40 utilizes 40% of the data
for reconstruction, while the bins of G5 are reconstructed from only 20%. The
non-linear reconstruction may recover such small structures in the former case,
but fail to do so in the latter. Here, applying the motion compensation already
during rather than after PET reconstruction [12] promises improved sensitivity.

6 Summary and Conclusion

We presented first in-vivo results of self-gated MRI motion modeling applied to
respiratory motion compensation in PET/MR scanners. It requires no additional
physiological signal sensors and captures an averaged respiratory motion cycle
throughout the measurement. This information is used to correct for respiratory
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Fig. 5. a) Sagittal slice through pulmonary lesion in P1. b) SUV=6 iso-contours as
overlay over MR image of liver lesion in P2. c) Spots in left kidney cortex in P3 are
more clearly enhanced in the motion-compensated and gated reconstructions.

motion in the PET reconstruction, resulting in a clear reduction of motion blur
but improved SNR compared to conventional gated reconstructions. The ap-
proach was validated on clinical patients with lesions in three different organs.

Further investigations will consider applying the motion model in motion-
compensation incorporated PET reconstructions [12], especially utilizing a higher
number of respiratory bins. Moreover, despites the advantage of capturing the
global course of respiration during the examination, the scan time for motion
modeling is relatively long. A reduction is easily possible by acquiring fewer ra-
dial spokes at the cost of increased radial streaking artifacts. Robust registration
methods on the one hand and Compressed Sensing reconstruction enforcing a
temporal regularization on the MRI images on the other hand can help to over-
come the undersampling artifacts. Finally, the proposed method will be extended
to automatically detect the actual respiratory position of the acquired μ-map.
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Abstract. Estimation of physiologically plausible deformations is crit-
ical for several medical applications. For example, lung cancer diagnosis
and treatment requires accurate image registration which preserves slid-
ing motion in the pleural cavity, and the rigidity of chest bones. This
paper addresses these challenges by introducing a novel approach for
regularisation of non-linear transformations derived from a bilateral fil-
ter. For this purpose, the classic Gaussian kernel is replaced by a new
kernel that smoothes the estimated deformation field with respect to the
spatial position, intensity and deformation dissimilarity. The proposed
regularisation is a spatially adaptive filter that is able to preserve discon-
tinuity between the lungs and the pleura and reduces any rigid structures
deformations in volumes. Moreover, the presented framework is fully au-
tomatic and no prior knowledge of the underlying anatomy is required.
The performance of our novel regularisation technique is demonstrated
on phantom data for a proof of concept as well as 3D inhale and ex-
hale pairs of clinical CT lung volumes. The results of the quantitative
evaluation exhibit a significant improvement when compared to the cor-
responding state-of-the-art method using classic Gaussian smoothing.

Keywords: nonrigid registration, respiratory motion, sliding motion
modeling, adaptive bilateral filtering.

1 Introduction

Image registration is a key processing step in medical image analysis. However,
common deformation models such as diffusion, elasticity or fluid methods usu-
ally do not reflect the underlying mechanisms (true tissue properties) of the tis-
sue changes between the consecutive volumes. Therefore, additional constraints
need to be introduced such as displacement field discontinuities (sliding motion)
[8,7,9,1], rigidity [11] or incompressibility [5]. Applications such as diagnosis and
image guided radiotherapy (IGRT) have attracted active research on accurate
lung motion estimation over the last years [3,9,1].

The sliding motion pattern that naturally occurs at e.g. lungs and liver bound-
aries has been addressed by various image registration approaches. Direction de-
pendent regularisation [9] decouples diffusion regularisation into normal and
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tangential direction around lung boundaries, while the registration of the remain-
ing part of the volume is based on a classic diffusion model. Similarly, anisotropic
diffusion regularisation was utilised for a lung phantom data study in [6]. A dif-
ferent concept was proposed in [8] where the deformation is decomposed into ba-
sic components that are then regularised separately. Recently, Large Deformation
Diffeomorphic Metric Mapping (LDDMM) was extended towards the piecewise-
diffeomorphic registration that enables explicit slidingmotionmodelling [7]. These
approaches have some limitations, as they require preprocessing steps in form of
segmentation of some structures where sliding motion may occur [6,9], very accu-
rate domain splitting strategy to ensure diffeomorphism [7], or a sliding motion
detection system [9]. For approaches where no segmentations are required or avail-
able, the estimated deformations remain smooth at lung boundaries, or disconti-
nuity preserving regularisation is applied to the whole volume domain [8].

Several methodologies that enforce the rigidity on some volume objects have
been described in literature. The most related to the method presented in this
paper was proposed in [11]. It is based on an iterative procedure of adaptive
filtering of the deformation field that is employed for the area of rigid objects.
The simplicity is however deceptive as it requires a stiffness coefficient which
has to be derived either from segmentation or from Hounsfields unit if CT data
are available. One such example is the recent work [1], where a fluid registration
framework with preservation of topology and rigidity is proposed, which however
also relies on the segmentation of the lung surface and bony structures.

This work aims to develop automated method for deformable registration to
address both, the problem of sliding motion estimation and the local rigidity
preservation. The contributions of this paper are as follows. First, we adapt the
bilateral filter technique previously introduced for image filtering and occlusion
detection in computer vision applications [13,15] to regularise the estimated
deformation field in a Demons formulation [12]. The classic Gaussian kernel is
then replaced by a new kernel that is dependent on the anisotropic diffusion,
the intensity and deformation dissimilarity. The presented framework does not
require any prior knowledge about the organs’ properties and therefore it forms
a fully automated technique.

2 Classic Diffusion Based Regularisation

In a classic non-linear image registration formulation [4,16], the optimal dis-
placement field û describing the geometrical transformation between a reference
image IR and a source image IS is estimated by minimising a global energy:

û = argmin
u

(Sim(IR, IS(u)) + αReg(u)) (1)

where Sim is a similarity measure, Reg is a regularisation term, and α is a
positive weighting factor. A common choice of similarity criterion is the sum of
the squared differences (SSD) and a diffusion regularisation yielding:∫

Ω

(IR(x)− IS(x+ u(x)))2 + αtr(∇u(x)T∇u(x))2dx (2)
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The diffusion regularisation is performed as Gaussian smoothing of the defor-
mation field, therefore solving the Euler-Lagrange equations of Eq. (1) can be
divided into two steps [15]: finding an update du that is related to the similarity
measure Sim, and performing smoothing of the estimated deformation field us-
ing an isotropic Gaussian kernel Giso instead of explicit regularisation Reg(u):

unew(x) = Giso ∗ (uold(x) ◦ du(x)) (3)

where unew is a new estimate of the deformation field, uold is a deformation
field calculated in the previous iteration, and ◦ is a composition operation. Fil-
tering the deformation field using an isotropic Gaussian kernel leads to smooth
deformations. In medical image registration, this framework can be related to
the commonly used Demons algorithm [12,14].

3 Adaptive Bilateral Smoothing

In order to prevent the deformation field to be smoothed across object bound-
aries which would not be physically realistic, we propose to replace the standard
Gaussian filtering of the deformation field by a more powerful non-linear filter-
ing technique originally proposed for image denoising [13]. The bilateral filter
smoothes an input image Ii by two Gaussian kernels in the following way:

Io(x) =
1

W

∑
y∈N

exp

(
− (x− y)T (x− y)

2σ2x

)
︸ ︷︷ ︸

Giso(x,y)

· exp
(
−‖Ii(x)− Ii(y)‖

2

2σ2r

)
︸ ︷︷ ︸

Gr(I(x),I(y))

·Ii(y)

(4)
where Giso is Gaussian kernel on the spatial domain (with variance σ2x) and Gr

is another Gaussian kernel but defined on the intensity domain Ii (with variance
σ2r), y is a spatial position within the image neighbourhood N , and W is a nor-
malisation factor for this image neighbourhood N . Even though the additional
kernel Gr does not allow for smoothing when the neighbourhood intensity values
are different, direct substitution of the Gaussian kernel by the bilateral kernels in
our registration framework can lead to several deformation field discontinuities
(motion over-segmentation) in the whole volume domain. This discontinuity can
occur at each intensity change and is typical for image-driven regularisation [16].
In addition to this, some organs have very similar intensity values, however they
can slide along each other. Therefore, a supplementary kernel is employed [15]
and the bilateral filtering of deformation field is extended in the following way:

unew(x) =
1

W

∑
y∈N

Giso(x,y) ·Gr(I(x), I(y)) ·

exp

(
− (ucur(x)− ucur(y))

T (ucur(x)− ucur(y))

2σ2u

)
︸ ︷︷ ︸

Gu(u(x),u(y))

·ucur(y) (5)
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Fig. 1. Comparison between different kernels used for deformation filtering. Two local
patches from distinctive areas of the chest were taken from the NCAT data. The patch
presenting the chest bone (red circle) and its corresponding kernels are shown in the top
row, while the patch including the lung boundary (green circle) and its corresponding
kernels are shown in the bottom row.

whereGu describes a Gaussian kernel based on the local deformation field dissimi-
larity anducur(x) = uold(x)◦du(x). Thus, the combination of three kernelsGiso,
Gr, andGu leads to a joint image- and deformation-driven regularisationmethod,
which compromises mutual benefits such as discontinuous deformation without
motion over-segmentation. Finally, we can also replace the isotropic Gaussian ker-
nel Giso by an oriented Gaussian kernel Gani. After that substitution, the kernel
Gani varies at different image position x with respect to the diffusion tensor D.
The diffusion tensor D for n-dimensional volumes is defined as [4]:

D =
(λ+ ‖∇I‖2)Id −∇I∇IT

(n− 1)‖∇I‖2 + nλ
(6)

where ∇I is the gradient of image I, λ is an (an)isotropy parameter, Id is a
n× n identity matrix. As can be expected, if the intensity values around point
x are (close to) constant (‖∇I‖ ≈ 0), the eigenvalues of D are equal and the
kernel Gani is equivalent to the isotropic kernel Giso.

Examples of different kernels are presented in Fig. 1. Filtering the deforma-
tion field with the anisotropic Gaussian kernel leads to smooth flow at lung
boundaries (Fig. 1 bottom row) as the kernel averages the deformation field
between neighbourhood areas. Whereas the bilateral filter working on both the
spatial Gani and intensity domain Gr improves the shape of the kernel, still some
deformation field averaging is done (see area marked by arrows). While better
separation between different structures can be only captured by limiting the size
of the bilateral filter using only an intensity kernel (lower value of variance σ2r),
it will lead to the aforementioned motion over-segmentation problem. Such ex-
ample of motion over-segmentation in case of lung data registration is illustrated
in Fig. 2c. The proposed composition of three kernels Gani, Gr and Gu produces
a kernel which visually has better overlap with the underlying anatomical struc-
ture than the two others. Similarly, the kernel comprising all of Gani, Gr and
Gu acts mostly inside the rigid structure (Fig. 1 top row).
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Table 1. Average ratio of overlap obtained for the NCAT data set using the Demon
framework with four different smoothing kernels. The last column shows statistical
significance of improvement between iso-dem compared to others methods.

lungs liver ribs p-value

iso-dem 0.86±0.08 0.89±0.10 0.76±0.05 N/A
ani-dem 0.90±0.05 0.91±0.07 0.79±0.05 0.475
iso-bil 0.92±0.02 0.93±0.05 0.80±0.05 0.061
ani-bil 0.92±0.02 0.93±0.05 0.80±0.05 0.067

4 Results

Materials. The proposed approach is assessed using two publicly available data
sets. The first data set is a set of synthetically generated 4D CT volumes mod-
elling consecutive respiratory cycle phases from the NCAT phantom [10]. The
spatial resolution of the data is 2.0 x 2.0 x 2.0 mm3. The second data set con-
sists of ten 4D CT data from the Dir-Lab data set [2]. The spatial resolution of
that data varies between 0.97 x 0.97 x 2.5 mm3 and 1.16 x 1.16 x 2.5 mm3. For
all data sets, the end-of-inspiration volume was chosen as a reference, and the
end-of-expiration volume as a source image.

Experiments. For quantitative evaluation of the proposed regularisation filters,
a Demon approach with an update composition scheme was implemented (see
[14] for details). Four different kernels for smoothing the deformation field were
used for comparison: isotropic Gaussian Giso (iso-dem), anisotropic Gaussian
Gani (ani-dem), bilateral kernel with isotropic Gaussian Giso ·Gr ·Gu (iso-bil)
and with anisotropic GaussianGani ·Gr ·Gu (ani-bil). In most cases, the registra-
tion with a bilateral filter without deformation similarity kernelGiso·Gr produces
unrealistic deformation fields (see example in Fig. 2c), therefore the quantitative
results obtained are not included. Additionally, a two-sample Wilcoxon rank sum
test was performed between iso-dem and the other evaluated methods. Filtering
of the deformation field was performed once after each update of deformation
field, but in principle it could be done several times at each iteration following
the approach presented in [11]. Although the best design parameters (σx, σr , σu,
λ) were determined empirically by an extensive search over parameter space for
each method, experiments on both data sets showed that the proposed algorithm
is very robust to their choice, hence these parameters do not need to be tuned
for each volume separately (for this particular application i.e. lung CT).

Results on NCAT Data. The ratio of overlap (RO) for the organ of interest
(lungs, liver, ribs) was calculated and the registration outcomes for the NCAT
data are presented in Tab. 1. The RO exhibits an improvement for methods based
on the bilateral filtering when compared with the Gaussian smoothing. Although
this does not necessarily ensure deformation field plausibility, it can highlight
differences between methods in terms of the anatomical correspondence.
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Results on CT Dir-Lab Data. The TRE was calculated for the landmarks
which are included in this data set (300 per case) and the results of quantitative
evaluation can be found in Tab. 2. The initial average TRE is 8.46±5.48 mm.
As can be seen, the deformation fields obtained using both frameworks based
on the bilateral filtering produce significantly lower TRE when compared to the
classic Demon algorithm. Contrary to expectation, the bilateral filtering with
anisotropic kernel Gani performs slightly worse than the method with isotropic
kernel Giso. This indicates that the bilateral filtering with isotropic Gaussian
kernel can effectively adapt smoothing across different structures. Moreover, the
proposed methods based on bilateral filtering yields a lower TRE (2.34 mm)
whereas the classic Demon has a TRE=2.88 mm. The results reported in the
literature [9] were 3.02 mm for diffusion regularisation and 2.13 mm for direction
dependent regularisation. It must be noted that further improvement might be
expected when a more advanced similarity Sim would be applied to capture local
intensity variations apparent in the Dir-Lab data due to lung compression [2].

Fig. 2 is an illustrative example of the deformation field magnitudes when reg-
istering case c5 from the Dir-Lab data set using different smoothing kernels. The
results from the quantitative evaluation (shown in fifth row of Tab. 2) exhibit
a statistically significant improvement in terms of the TRE between different
methods, and consequently some noticeable differences between the estimated
deformation fields can be identified especially close to the lung boundaries (com-
pare Fig. 2b and Fig. 2d, and its corresponding zoomed images in Fig. 2f and
Fig. 2h). Employing bilateral filtering derived both from intensity and deforma-
tion field similarity preserves discontinuity between the lungs and the pleura,
while satisfying smoothness of the deformation field inside the lungs. Contrary,
applying the bilateral filter based only on intensity difference generates disconti-
nuities inside and outside the pleural cavity (depicted by black arrows in Fig. 2c).

Table 2. Target Registration Error and its standard deviations obtained for Dir-Lab
data set using the Demon framework with four different smoothing kernels. The last
column shows statistical significance of improvement between iso-dem compared to
others methods with p-value level below 0.05 (marked as (+)). The proposed iso-bil
achieves the lowest average TRE among all methods.

No. data before iso-dem ani-dem iso-bil ani-bil sign.

c1 3.89±2.78 1.08±0.57 1.09±0.58 1.05±0.54 1.07±0.57 - - -
c2 4.34±3.90 1.11±0.64 1.10±0.63 1.08±0.58 1.09±0.60 - - -
c3 6.94±4.05 1.54±0.98 1.52±0.91 1.47±0.86 1.49±0.89 - ++
c4 9.83±4.86 2.38±2.04 2.38±2.03 2.28±1.82 2.40±2.04 - + -
c5 7.48±5.51 2.26±1.93 2.22±1.90 2.04±1.71 2.13±1.78 - ++
c6 10.9±6.97 3.26±2.84 3.14±2.67 2.72±2.01 3.05±2.49 +++
c7 11.0±7.43 3.81±3.69 3.62±3.47 3.14±2.76 3.53±3.33 +++
c8 15.0±9.01 8.22±8.27 7.73±8.26 4.99±5.14 7.19±7.67 +++
c9 7.92±3.98 2.56±2.02 2.46±1.89 2.08±1.45 2.36±1.79 +++
c10 7.30±6.35 2.65±3.27 2.61±3.21 2.45±2.78 2.57±3.11 - ++

mean 8.46±5.48 2.88±2.07 2.79±1.92 2.34±1.16 2.67±1.77
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Fig. 2. Results for case c5 of the Dir-Lab data set. (a) coronal view of the reference
image with the corresponding contours. The magnitude of the deformation fields esti-
mated using: (b) isotropic Gaussian kernel Giso (Demon), (c) original bilateral kernel
Giso · Gr, (d) the proposed bilateral kernel Giso · Gr · Gu, (e)-(h) zoomed images of
the region of interest (labelled by squared box in the top row), the intensity differences
between input images (i) before registration, and after using (j) iso-dem, (k) original
bilateral kernel Giso ·Gr , and (l) iso-bil. Registration using iso-bil yields smooth defor-
mation inside the pleura cavity whilst preserving sliding motion at the lung boundary.

5 Discussion and Conclusions

This paper presents an image registration framework which is able to estimate
deformation fields preserving both the sliding motion in the cavity of the pleura
whilst preserving the rigidity of the chest bones and yielding desirable smooth
deformation field inside the lungs. The overall deformation field is regularised
within a one step procedure that is performed via adaptive deformation field
filtering. The kernel which is used for the purpose of deformation field filter-
ing, is based on three components: spatial smoothness, local image intensity and
deformation field similarity. Evaluation of the proposed regularisation scheme
was done both on the NCAT phantom data and clinical lung CT data. In cases
where noticeable sliding motion occurs in the data, the presented results exhibit
significant improvements when the new filtering procedure is applied compared
to the classic Gaussian smoothing. Moreover, for non-sliding cases (where sta-
tistical significance of the improvements for the proposed filtering procedure was
not achieved) the slightly lower average TRE was obtained, and in addition, the
visual inspection of the estimated deformation fields still exhibited physiologi-
cally more plausible results. Future work will perform a sensitivity analysis of
design parameters of the proposed filtering procedure such as σx, σr, σu to this
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application, and comparison to methods that require segmentation or explicit
sliding motion detection to achieve desired properties [7,9].
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Abstract. 4D computed tomography (CT) has been widely used for treatment 
planning of thoracic and abdominal cancer radiotherapy. Current 4D-CT lung 
image reconstruction methods rely on respiratory gating to rearrange the large 
number of axial images into different phases, which may be subject to external 
surrogate errors due to poor reproducibility of breathing cycles. New image-
matching-based reconstruction works better for the cine mode of 4D-CT acqui-
sition than the helical mode because the table position of each axial image is 
different in helical mode and image matching might suffer from bigger errors. 
In helical mode, not only the phases but also the un-uniform table positions of 
images need to be considered. We propose a Bayesian method for automated 
4D-CT lung image reconstruction in helical mode 4D scans. Each axial image is 
assigned to a respiratory phase based on the Bayesian framework that ensures 
spatial and temporal smoothness of surfaces of anatomical structures. Iterative 
optimization is used to reconstruct a series of 3D-CT images for subjects un-
dergoing 4D scans. In experiments, we compared visually and quantitatively the 
results of the proposed Bayesian 4D-CT reconstruction algorithm with the res-
piratory surrogate and the image matching-based method. The results showed 
that the proposed algorithm yielded better 4D-CT for helical scans. 

Keywords: Bayesian estimation, respiratory motion, 4D-CT reconstruction. 

1 Introduction 

4D-CT has been widely used for radiation therapy planning of lung cancer for defin-
ing the clinical target volume (CTV) and planning target volume (PTV) to ensure that 
the radiation dose covers CTV, is within PTV, and does not damage neighboring crit-
ical tissues during respiratory cycles [1, 2]. 4D-CT scanning captures a large number 
of axial images during multiple breathing cycles using cine or helical modes, and 
reconstructs them to a series of 3D-CT images [3]. The cine mode captures multiple 
axial images in respiratory cycles at each table position; while the helical mode per-
forms the scans when the table is slowly and continuously moving.  

Efforts have been made to either using respiratory sensors such as gating and opti-
cal tracking to capture detailed respiratory motion patterns or using image computing 
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methods to retrospectively improve the image sorting. Traditionally, using surrogate 
respiratory signals from a chest height marker, a strain gauge or a spirometer [4], 
respiratory cycles are detected and divided into a number of respiratory phases. Then, 
the synchronized axial images are rearranged to reconstruct the serial 3D images. 
However, because of the lack of reproducibility of breathe cycles, such gating signals 
appear to be not exactly periodical and may miss group some axial images, resulting 
discontinuity of anatomical structures in the images [5-7]. Recent studies have  
attempted to reconstruct 4D-CT through image computing in the cine mode [8-11]. 
For helical mode, since each axial image has a different table position, such additional 
variable should be considered in the reconstruction, and few works have been  
reported in the literature. As more helical 4D scans are being used in radiotherapy 
planning, it is highly desirable to study the methods for its image reconstruction.  

This paper proposes an automated 4D-CT reconstruction algorithm for helical 
scanning based on the Bayesian framework, referred to as Bayesian 4D-CT recon-
struction. The objective for lung 4D-CT image reconstruction is to preserve the ana-
tomical structures at each time-point, while the image sequence reflects underlying 
respiratory motion. Spatial and temporal smoothness of certain surfaces of anatomical 
structures can be used as constraints in the reconstruction. In the Bayesian 4D-CT 
reconstruction algorithm, image sorting is jointly estimated with an underlying ideal 
image sequence whose surface’s spatial-temporal properties are subject to such 
smoothness constraints. A novel energy function is designed and formulated in the 
Bayesian framework, and the optimization is achieved by iteratively assigning axial 
images to their best phase, and at the same time, enforcing spatial-temporal surface 
smoothness. Finally, due to the nature of helical 4D scanning, the image and surface 
matching also takes into account the unequal inter-slice distances of axial images in 
each respiratory phase, and the final reconstructed images are generated using a cubic 
B-Spline-based interpolation. 

In experiments, we used the images from thirty nine patients undergoing radiothe-
rapy planning to validate the algorithm. The final reconstructed images were com-
pared visually and quantitatively with the external surrogate-based reconstruction and 
the image matching-based method [10] that are currently used in radiotherapy plan-
ning. For quantitative comparison, we compared the spatial and temporal smoothness 
of the surfaces extracted from all the results. The results indicated that our method 
outperformed both methods: visualization of the CT images showed less artifacts, 
particularly in the regions close to the diaphragm; and quantitative results showed that 
the surfaces extracted from the resultant images were smoother, so there was less 
sudden bumps along the image boundaries. 

2 Method 

2.1 Algorithm Formulation 

During the helical mode scanning, axial images are captured while the table is slowly 
and continuously moving. Depending on the slice thickness and the number of simul-
taneous slices the scanner can capture (e.g., multiple row detector CT), the table speed 
can be determined so that the axial images captured within a small position range 
cover an entire respiratory cycle. Using the synchronized surrogate respiratory signal 
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the axial images can be initially resorted to different respiratory phases, and each 3D 
image is formed by the axial images according to their table positions. The goal for 
the proposed Bayesian 4D-CT reconstruction algorithm is to assess such assignment 
and correct the miss grouped ones so that the 3D images at each phase preserve ana-
tomical structures, and the 4D data reflect respiratory motion well. Thus, spatial and 
temporal smoothness of surfaces act as the key for enforcing this requirement. We 
used the smoothness constraint of chest surface to ensure the quality of the recon-
structed images. The reason is that it is smoother compared to internal organs, and it 
is also possible to extend our algorithm to use computer vision-based method to track 
the chest surface. Suppose the set of all axial images is , the chest surfaces of an 
underlying ideal image sequences are R , , … ,  , and R and  are indepen-
dent, the goal of our reconstruction algorithm is to jointly estimate a new image series , , … ,  and the ideal surfaces R by maximizing the following joint post-
erior distribution, where K is number of respiratory phases in one breathing cycle: , | | ,

.  (1) 

The joint probability of  and  can be expressed as, , | . (2) 

Combining Eq. (1) and Eq. (2), and assuming that the probability of the known axial 
image set  is 1 ( 1),  and  can be estimated by , argmax , | argmax | | . (3) 

When the probabilities are estimated using the Gibbs distribution, the maximization 
of the joint posterior distribution is equivalent to minimizing the energy function: , | | . (4) 

 and  are the weighting factors. The first term |  denotes the degree of 
matching between the serial image  and the observed data , and it can be calcu-
lated by the normalized cross correlation (NCC) between the two image series: | ∑ , . (5) 

The second term |  stands for the degree of matching between  and , with  
as the underlying ideal surfaces. Here, |  is defined by the distance between 
ideal surface  and the surfaces extracted from , | ∑ dist , , (6) 

where the distance dist  is calculated according to [12].  represents the surface 
extracted from . The third term of Eq. (4) represents the prior shape constraints of 

. In this case, it consists of the spatial and temporal smoothness constraints of the 
chest surface series. Because it is not necessary to constrain the surface within each 
axial plane, we only need to consider the smoothness in z-direction as well as in the 
time-domain (between neighboring phases). Thus,  is calculated as: ∑ | | ∑ ∑ | | ∑ , (7) 

where the first term is the average of the squared surface gradients along z-direction 
by considering the unequal slice distances, and the second term calculates the average 
of the temporal smoothness of the deformation field , 1, … , 1  across the 
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image sequence.  is the tradeoff between them, and  is the surface point set of the 
lung image in phase . 

Compared to the maximizing a posteriori (MAP) formulation, the major difference 
of the proposed algorithm is that an intermediate ideal surface R is jointly estimated 
together with . This helps facilitate the additional spatial and temporal anatomical 
constraints to the reconstructed 4D-CT images. Finally, after assigning each axial 
image into their phase by minimizing the energy function defined in Eq. (4), the slices 
of each phase are arranged according to their table positions. Because of the unequal 
slice distances, we then use a cubic B-Spline-based interpolation tool to resample 
them and reconstruct the 3D image sequences with equal slice distance. 

2.2 Implementation 

The optimization of the energy function in Eq. (4) can be implemented by alternative-
ly calculating  and . Given a series of  axial images (for lung imaging,  is 
more than 1000), we can first sort them into  (typically 10) phases based on the 
surrogate signals, which gives the current data observation . We use  as the initia-
lization of S and iteratively perform the following two optimization steps: 

Step 1. Optimize the ideal serial surfaces  by fixing . By extracting the surfaces 
from the images of  and performing longitudinal surface registration [13], we obtain 
the current surface series , and their longitudinal deformations , 1, … , 1. 
Then,  can be optimized using the finite gradient descent method: , / , (8) 

where  is the updating step. 

Step 2. Optimize the image sequences  by fixing . We iterate all the axial images 
and re-assign each to the th phase that gives the minimal energy function: argmin , argmin | | . (9) 

 

 

Fig. 1. The framework of the 4D-CT reconstruction algorithm 
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Notice that because of the nature of helical mode scanning, the distances between 
neighboring slices within each 3D CT image  are different. The surface registration 
method we used can register two surfaces with different meshes, and thus it can han-
dle this issue. The optimization algorithm stops until the number of phase re-
assignment is smaller than a prescribed number (5 in our case), and the algorithm 
generally stops after 3-4 iterations. Fig. 1 summarizes the process of the algorithm.  

3 Results 

The datasets of thirty nine patients were used in the experiments. The data were col-
lected using Philips Pinnacle³ in helical mode. The number of slices per scan is 
around 1330. Slice thickness is 3.0 mm, and pixel spacing in the X and Y directions is 1.17 1.17 . Elastic belt was used for monitoring the breath. Initial respiratory 
gating-based 4D-CT reconstruction was performed on the Pinnacle machine, which 
was used as the initialization of our algorithm. The datasets were then transferred to 
our workstation from PACS, and the proposed Bayesian 4D-CT reconstruction was 
applied to refine the results using a workstation running Microsoft Windows 7 profes-
sional with an Intel i7 CPU (2.30GHz) and 8.00 GB of RAM.  

We compared the reconstruction results with two other methods. The first is the 
one reconstructed by the Pinnacle machine based on respiratory belt gating, and the 
second is the image matching-based image reconstruction proposed by Carnes et al. 
[10]. The Carnes algorithm first assigns manually the initial axial images into differ-
ent respiratory phases and then uses slice-by-slice matching to sort the rest axial im-
ages. NCC is used as the image similarity measure. To automate this procedure, we 
used the assignment results of the first 20 axial images from the Pinnacle machine as 
the initialization of the Carnes algorithm. For our method,  and  were selected as 
0.5 divided by the mean value of the corresponding energy functions.  was selected 
so that the weight for temporal smoothness was half of the spatial smoothness. After 
reconstruction, we first visually assessed all the data. For the surrogate method, the 
artifacts of miss-assignment appeared more frequently, and we can also notice some 
 

 

 

Fig. 2. Visual comparison of 4D-CT reconstruction results. Top: surrogate method; middle: 
Carnes algorithm; and bottom: the proposed Bayesian 4D-CT reconstruction. 

(a1)
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similar discontinuity of the anatomical structures for the Carnes algorithm. Overall, 
the proposed Bayesian 4D-CT reconstruction preserved the anatomical structure in 
each 3D CT image much better. Fig. 2 illustrates some examples of the results. The 
top row shows the results of surrogate method, the middle row shows those of the 
Carnes algorithm, and the bottom row gives the reconstruction results of the proposed 
algorithm. Because the areas close to the diaphragm are subject to larger motion, we 
can notice the artifacts easily for the methods compared, and such motion artifacts 
have been corrected using the Bayesian 4D-CT reconstruction.  

For quantitative comparison, we calculated the spatial and temporal smoothness 
about the chest surfaces and the lung field surfaces (extracted from the resultant CT 
images using [14]). Similar to Eq. (7), the spatial smoothness  of each subject is 
defined by the average absolute values of the surface gradients along z-direction, ∑ | | ∑ | / |. (10) 

The temporal smoothness  is calculated from the longitudinal deformation fields 
of the serial surfaces extracted: ∑ | | ∑ | |. (11) 

 

Fig. 3. Comparison of spatial and temporal smoothness of chest surfaces 

Fig. 3 is the boxplot of the spatial and temporal smoothness of the chest surfaces 
for all 39 subjects in the experimental dataset. It can be seen that the proposed Baye-
sian 4D-CT reconstruction algorithm yielded more spatially and temporally smoother 
chest surfaces. Because we did not change the original axial images (only cubic B-
Spline-interpolation was used), larger average smoothness value may indicate that 
there are more slices with artifacts in the reconstructed data. Therefore, the quantita-
tive results indicate that there are less sudden jumps of the surfaces or less artifacts as 
compared to other methods. We also calculated the spatial and temporal smoothness 
of the lung fields extracted from the experimental results, and similar conclusion can 
be drawn from the boxplot shown in Fig. 4. It is worth noting that the spatial smooth-
ness for lung field is bigger than that of the chest surface. This may indicate that chest 
surface is smoother and is suitable for applying the smoothness constraints.  

Notice that the chest surface smoothness might be biased because it is also used in 
the energy function. Since the lung field surfaces were not used in the algorithm, the  
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Fig. 4. Comparison of spatial and temporal smoothness of lung field surfaces 

spatial and temporal smoothness metrics for the lung field surfaces extracted from the 
reconstructed images would be more appropriate. Due to the lack of ground truth of 
the 4D-reconstructed patient data, it is hard to conceive other relevant quantitative 
metrics at this point. In the future, we would like to further validate the quality of 
reconstruction using simulated images with known 4D-CT deformation patterns. 

To further validate the results, all the reconstructed images were visually evaluated 
by two expert radiologists. Each image was visually assessed and the number of slices 
with artifacts (namely with noticeable sudden anatomical jumps) was counted. Fig. 5 
illustrates the box plots of such numbers of slices with artifacts. The results confirmed 
the superiority of the proposed method as compared to others. 

 

 

Fig. 5. Average numbers of slices with artifacts of 39 subjects 

4 Conclusion 

We proposed a Bayesian 4D-CT reconstruction algorithm for helical mode lung scan-
ning. To preserve anatomical structures a joint Bayesian estimation is designed to 
ensure spatial and temporal smoothness of surfaces in the reconstructed 4D-CT im-
ages. Using clinical datasets for patients undergoing radiotherapy planning, we visual-
ly and quantitatively compared the performance of the proposed algorithm with the 
current surrogate and image-matching-based methods. The results showed that the 
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proposed algorithm yielded much less artifacts. In the future, we plan to incorporate 
vision-based chest surface monitoring devices in the framework for 4D-CT recon-
struction on the fly. 
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Abstract. Understanding the deformation of the tongue during human
speech is important for head and neck surgeons and speech and language
scientists. Tagged magnetic resonance (MR) imaging can be used to im-
age 2D motion, and data from multiple image planes can be combined via
post-processing to yield estimates of 3D motion. However, lacking bound-
ary information, this approach suffers from inaccurate estimates near the
tongue surface. This paper describes a method that combines two sources
of information to yield improved estimation of 3D tongue motion. The
method uses the harmonic phase (HARP) algorithm to extract motion
from tags and diffeomorphic demons to provide surface deformation. It
then uses an incompressible deformation estimation algorithm to incor-
porate both sources of displacement information to form an estimate of
the 3D whole tongue motion. Experimental results show that use of com-
bined information improves motion estimation near the tongue surface,
a problem that has previously been reported as problematic in HARP
analysis, while preserving accurate internal motion estimates. Results on
both normal and abnormal tongue motions are shown.

Keywords: Tongue, motion, HARP, registration, 3D, surface.

1 Introduction

The human tongue moves rapidly in complex and incompressible motions dur-
ing speech [1]. In post-glossectomy patients, i.e., people who have had surgi-
cal resection of part of the tongue muscle for cancer or sleep apnea treatment,
tongue moving ability and its speech functionality may be adversely affected.
Therefore, understanding the tongue motion during speech in both normal and
post-glossectomy subjects is of great interest to speech scientists, head and neck
surgeons, and their patients.

To capture the tongue’s motion during speech, tagged magnetic resonance
(MR) images can be acquired over a series of time frames spanning a speech
utterance [2,3]. The two-dimensional (2D) motion information carried in these
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images can be extracted using the harmonic phase (HARP) algorithm [4]. With a
collection of 2D motions from image slices covering the tongue, a high-resolution
three-dimensional (3D) motion estimate can be achieved by interpolation with
previously reported incompressible deformation estimation algorithm (IDEA) [5].

However, since HARP uses a bandpass filter to extract the harmonic images,
object boundaries are blurred and motion estimates near the anatomical surfaces
are inaccurate [6,7]. To make matters worse, HARP measurements near the
boundaries are sparse because of the sparseness of image plane acquisition. These
two problems severely affect 3D motion estimation near anatomical surfaces, as
shown in Fig. 1. Zooming in on the back of the tongue (see Fig. 1(a)), 1(b)
shows the sparse 2D motion components from HARP and 1(c) is the IDEA
reconstruction of 3D motion that shows inaccurate large motion.

Fig. 1. (a) Tongue mask of a normal control subject (sagittal view). (b) HARP field
on axial and coronal slices as input for IDEA, zoomed in at the tongue back. (c) IDEA
result at the tongue back. (d) Surface normal deformation component at tongue back
surface. (e) Proposed method result. Note: In this paper cones are used to visual-
ize motion fields, where cone size indicates motion magnitude and cone color follows
conventional DTI scheme (see cone color diagram).

This paper presents a novel approach that combines data from tagged images
with surface deformation information derived from cine MR images to dramat-
ically improve 3D tongue motion estimation. At every time frame, the tongue
is segmented to achieve a 3D mask, and the deformation between the reference
mask at the resting position and the deformed mask is computed using de-
formable registration. The normal components of surface deformation are then
used to augment the HARP measurements within the IDEA estimation frame-
work. Fig. 1(d) shows the additional input and Fig. 1(e) shows the result of
proposed method. Comparing with Fig. 1(c), this result is more sensible from
a qualitative point of view. Quantitative evaluations provided below also show
that this method achieves a more accurate estimate of the whole tongue motion.
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2 Methods

2.1 Data Acquisition and HARP Tracking

In this study, subjects repeatedly speak an utterance “a souk” during which
tagged and cine MR image sequences are acquired at multiple parallel axial
slice locations covering the tongue. The resolution scheme is 1.88 mm in-plane
(dense) and 6.00 mm through-plane (sparse). For tagged images, both horizontal
and vertical tags are applied on each slice, providing motion components in two
in-plane directions (x and y components). To acquire motion components in
the through-plane direction (z component), another set of parallel coronal slices
orthogonal to axial is also acquired. HARP is then used on every tagged image
at every time frame, resulting in a corresponding 2D motion field representing
the projection of the 3D motion of every tissue point on the current slice plane.
Fig. 1(b) shows such HARP slices for the utterance “a souk” at the moment
when /s/ is sounded (current time frame), where the tongue is expected to have
moved forward from the /a/ moment (time frame 1) when the tags are applied.
Meanwhile, cine images revealing better anatomical structures are going to be
used for segmentation and registration to be described in section 2.3.

2.2 IDEA Algorithm

Figs. 2(a) and 2(b) illustrate how HARP data are processed in IDEA [5]. The
undeformed tissue at time frame 1 has undeformed reference tag planes. At
current time frame, the tag planes have deformed along with the tissue. To each
point (pixel location) xa on an axial image such as Fig. 2(a), HARP produces
two vectors representing components of displacement:{

qx = qxex ,
qy = qyey ,

(1)

where ex and ey are unit vectors in the x and y directions and qx and qy are the
projections of the 3D motion u(xa) on the current axial plane. Similarly, for each

Fig. 2. Relationship between 2D motion components and 3D motion on (a) an axial
slice, (b) a coronal slice and (c) the tongue surface
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point xc on a coronal image such as Fig. 2(b), HARP yields the displacement
component vector

qz = qzez , (2)

where ez is the unit vector in the z direction.
IDEA takes such data on all pixels {xa,qx(xa),xa,qy(xa),xc,qz(xc)} as in-

put, and estimates an incompressible deformation field u(x) on a high-resolution
grid within the tongue mask. The details are omitted here for lack of space, but
are given in [5]. We only note two important aspects. First, IDEA is carried
out as a series of smoothing splines, each of which seeks a divergence-free ve-
locity field yielding the deformation field only when integrated. Thus the final
field u(x) is nearly incompressible and its reprojected components at all input
points nearly agree with the input measurements. Second, the inputs are ob-
served components of displacements that can arise at any physical position and
in any sub-direction of motion. This is the key to utilization of surface defor-
mation measurements within the IDEA framework. In particular, as shown in
Fig. 2(c), the tongue surface may deform between time frames, and a point xs on
the surface at current time frame can be associated with a point on the reference
tongue surface. However, like the traditional aperture problem in optical flow,
we should not assume to know any tangential information about the surface dis-
placement. This leads to a perfect analogy with HARP data: observations about
surface normal deformation, if available, can be used in 3D reconstruction.

2.3 Measuring Tongue Surface Deformation

IDEA requires segmentation of the tongue volume in order to limit the tissue
region that is assumed to be incompressible [8]. Cine MR images are used to
construct a super-resolution volume [9] at each time frame, which is then manu-
ally segmented for the tongue surface mask. We notice that these 3D masks can
also be used for deformable registration in order to provide surface deformation
information.

The diffeomorphic demons method [10] is applied to the pair of masks between
the two time frames where motion is to be computed. Denoting the reference
mask at time frame 1 as I1 : Ω1 ⊂ R3 → {0, 1} and the current deformed mask
as It : Ωt ⊂ R3 → {0, 1} defined on the open and bounded domains Ω1 and
Ωt, the deformation field is found and denoted by the mapping d : Ωt �→ Ω1.
The estimated displacement field at a point xs on the surface of the tongue in
current time frame can be denoted as

u(xs) = −d(xs) . (3)

Although diffeomorphic demons generates a whole 3D displacement volume, we
take only tongue surface normal components for the reason stated in the previ-
ous section. We represent the 3D tongue mask at current time frame by a levelset
function φ(x) that is zero on the surface, positive outside the tongue, and negative
inside the tongue. The normal directions of the surface are given by

n(xs) =
∇φ(xs)

|∇φ(xs)|
. (4)
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The normal components of motion—serving as additional input to IDEA—are

qn(xs) = (u(xs) · n(xs))n(xs) . (5)

An example of such a field is shown in Fig. 1(d).

2.4 Enhanced IDEA

With the enhanced input {xa,qx(xa),xa,qy(xa),xc,qz(xc),xs,qn(xs)}, our
proposed method computes the 3D motion over the super-resolution grid points
{xi} and all the surface points {xs}. The algorithm is summarized below.

Algorithm. Enhanced Incompressible Deformation Estimation Algorithm

1. Set u(xi) = 0 and u(xs) = 0.
2. Set M time steps, for m = 1 to M do
3. Project currently computed displacement onto input directions by px(xa) =
u(xa) · ex, py(xa) = u(xa) · ey, pz(xc) = u(xc) · ez, pn(xs) = u(xs) · n(xs).
4. Compute remaining motion projection by rx(xa) = qx(xa)−px(xa), ry(xa) =
qy(xa)− py(xa), rz(xc) = qz(xc)− pz(xc), rn(xs) = qn(xs)− pn(xs).
5. Use part of the remaining motion to approximate velocity: vx(xa) = rx(xa)/
(M − m + 1), vy(xa) = ry(xa)/(M − m + 1), vz(xc) = rz(xc)/(M − m + 1),
vn(xs) = rn(xs)/(M −m+ 1).
6. Update estimation: u(xi) = u(xi) + DFVS{vx(xa), vy(xa), vz(xc), vn(xs)},
u(xs) = u(xs) + DFVS{vx(xa), vy(xa), vz(xc), vn(xs)}.
7. end for

Here DFVS stands for divergence-free vector spline, which is also the key algo-
rithm “workhorse” of IDEA [5].M is typically set to 20 which provides a proper
trade-off between accuracy and computation time. Enhanced IDEA, which we
refer to as E-IDEA below, typically takes about 5 hours on 26 time frames.

3 Results

We evaluated E-IDEA on 50 tongue volumes (25 from a normal control and
25 from a patient) during the utterance “a souk”. Conventional IDEA was also
computed for comparison. We computed motion fields relative to time frame 1
which was the /a/ sound, because the resting tongue serves as a good reference
configuration, is the natural reference frame for the MR tags, and also fits into
continuum mechanics framework for deforming bodies.

Firstly, we visually assessed the motion fields. The results of both subjects are
shown in Figs. 1(c), 1(e) and Fig. 3 on two critical time frames: at the /s/, when
forward motion is prominent, and at the /k/, when upward motion is prominent
(Fig. 1 is for control at time frame /s/). Knowing that the internal muscular
structure of tongue prevents its back from performing either too large or zero
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motion [1], at tongue’s back, we see E-IDEA has reduced the erroneous large
motions for the control, and has captured those small motions where IDEA mis-
takenly interpolates as zero for the patient. We also see E-IDEA can straighten
up the motion at the top of the tongue to better estimate the displacement when
the tongue hits the palate vertically (Figs. 3(a), 3(d)). In general, the boundary
estimation agrees more with tongue physical mechanics [1].

Fig. 3. Visual comparison of conventional IDEA result and E-IDEA result

Secondly, to obtain a numerical comparison, we manually tracked the motions
of 15 surface points distributed 5 each on the front, top, and back parts of the
tongue (labeled in Fig. 4(a)). We then computed their trajectories with IDEA
and E-IDEA motion fields. The tracks of three methods are shown in Fig. 4(a)
and errors from manual tracking at each point are shown in Figs. 4(b) and 4(c),
boxplotted across all time frames. The error magnitude has been reduced by
E-IDEA, especially on the back part of the tongue. Also, the mean error (circles
in boxes) is reduced by E-IDEA at all 15 points. The improvement is significant
(p = 0.00003).

Lastly, we took the estimated 3D motions at input sample locations and repro-
jected them onto input directions using Eqns. (1) and (5). We then computed a
reprojection error that gives the error in distance in the input directions between
the estimated sample components and the input sample components. This mea-
sure assumes input motion components (HARP and surface normal motions)
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Fig. 4. Comparison of IDEA and E-IDEA with manually tracked surface points. (a)
Tracks of the control surface points by manual (blue), IDEA (yellow), and E-IDEA
(green). (b) Error magnitude for the control (bar is median and circle is mean). (c)
Error magnitude for the patient.

are the truth. We compare four types of reprojection errors in histograms of
Fig. 5: on IDEA internal points, on E-IDEA internal points, on E-IDEA bound-
ary points, and on IDEA boundary points as indicated in the legend. For the
control, on a total of 105455 internal points and 108853 boundary points, the
mean of the four errors are: 0.32 mm, 0.35 mm, 0.65 mm, and 1.33 mm, re-
spectively. The boundary error has been reduced by 0.68 mm and the internal
error has been raised by 0.03 mm. For the patient, on 133302 internal points and
100523 boundary points, the mean of the four errors are: 0.22 mm, 0.24 mm,
0.96 mm and 3.11 mm. The boundary error has been reduced by 2.15 mm and
the internal error has been raised by 0.02 mm.

Fig. 5. Regularized histogram of IDEA and E-IDEA’s reprojection error on internal
and surface points. Dotted lines show the mean of four types of reprojection error.

4 Conclusion and Discussion

We have proposed a novel algorithm for estimating the tongue’s motion field in
3D. The major innovation is in the incorporation of surface motion as additional
information, which compensates for the well-known deficiencies of HARP in



48 F. Xing et al.

estimating boundary motions. Both qualitative and quantitative improvements
are evident using two independent metrics. Especially, from reprojection error,
we see that boundary error is substantially reduced while internal error is only
minimally increased.

This method is still being improved. Aspects that will be addressed in the
future include optimizing the segmentation and registration methods, studying
intra-subject volume dependency, and adding data reliability terms to balance
HARP and registration information. Also, choice of different reference frames
can be explored. And fitting the “internal plus surface motion” idea into other
motion estimation frameworks can be an interesting topic.
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Abstract. The fusion of image data from trans-esophageal echogra-
phy (TEE) and X-ray fluoroscopy is attracting increasing interest in
minimally-invasive treatment of structural heart disease. In order to cal-
culate the needed transform between both imaging systems, we employ a
discriminative learning based approach to localize the TEE transducer in
X-ray images. Instead of time-consuming manual labeling, we generate
the required training data automatically from a single volumetric image
of the transducer. In order to adapt this system to real X-ray data, we
use unlabeled fluoroscopy images to estimate differences in feature space
density and correct covariate shift by instance weighting. An evaluation
on more than 1900 images reveals that our approach reduces detection
failures by 95% compared to cross validation on the test set and improves
the localization error from 1.5 to 0.8 mm. Due to the automatic genera-
tion of training data, the proposed system is highly flexible and can be
adapted to any medical device with minimal efforts.

1 Introduction

Catheter-based procedures such as trans-aortic valve implantation (TAVI) or
paravalvular leak closure are gaining increasing importance for the treatment
of structural heart disease. The inherent challenge for the cardiac intervention-
alist is to infer the exact position of the catheter from the available imaging
information. X-ray fluoroscopy is the dominant imaging modality for these inter-
ventions, increasingly supported by 3D trans-esophageal echography (TEE) [2].
Both modalities show complementary information, but in clinical practice they
are controlled and displayed completely independently from each other.

Recently, image fusion was proposed to combine both modalities and to pro-
vide the cardiac interventionalist with a better overview of the in situ conditions.
The co-registration can be accomplished by means of electromagnetic tracking
(EMT) [3], but this approach requires EMT hardware to be attached to the
transducer and is sensitive to EM field distortions. Alternatively, the pose of
the transducer can be estimated from its appearance in the X-ray images, either
directly [2,6] or supported by fiducial markers attached to the probe head [4].
Since the former approach does not require additional hardware, it is advan-
tageous for integration into the clinical workflow, albeit more challenging to
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implement. While 2D-3D registration [2] yields accurate results, it has a lim-
ited capture range of < 10 mm, requiring a manual initialization every time a
new fluoroscopy sequence is acquired. Discriminative learning (DL) [6] can lo-
cate the TEE probe everywhere in the image, but its performance is strongly
dependent on quantity and quality of the available training data. In the medical
domain, data is generally difficult to acquire, and the required manual labeling
is an extremely tedious and time-consuming task. Moreover, trained operators
cannot reproducibly annotate images with perfect accuracy, and every variation
in ground truth will decrease the performance of the resulting DL system.

In this paper, we propose a novel approach for training a DL system, which
is based on in silico training data that can be generated automatically in great
quantities with perfectly accurate labels. To adapt the system to in vivo fluo-
roscopy data, we employ unsupervised domain adaptation, a technique which
is widely used in speech processing and has recently gained attention in the
computer vision community [5,1]. In particular, we show how unlabeled data
from the target domain (i.e. in vivo images) can be used to improve the per-
formance of object localization beyond what is achievable with semi-supervised
learning [11]. We start with presenting the basic learning method in the next
section and explain our adaptation approach afterwards.

2 Learning from Synthetic Data

2.1 Generation of in silico Images

The synthetic training data is based on digitally reconstructed radiographs,
which approximate X-ray images from computed tomography (CT) volumes.
Source is a high-resolution (0.18 mm/voxel) isotropic C-arm CT of the TEE
transducer, which was aligned to the image axes and cropped to contain only
the probe head. A binary mask of the transducer was prepared and multiplied
with the original volume to remove streak artifacts in the surrounding air.

For each synthetic image, the 3D position and three Euclidean angles of the
transducer are randomized with the constraint that the probe is oriented in
posterior direction. The flexible shaft of the probe is modeled by a 3D spline
originating from a random position at the upper image boundary. Along this
spline, a collection of rings is positioned in regular pattern. 2D projections are
generated using a composite ray-caster, i.e. every pixel is assigned the sum of all
values along the respective ray through the volume. Key to generating realistic-
looking images is the transfer function used to calculate the opacities along the
ray. Based on the appearance of in vivo images, we chose an exponential trans-
fer function with randomized parameters in order to generate sequences with
slightly varying appearance and contrast. As background, we used a number
of cardiac fluoroscopy sequences (without transducer) and combined them with
the generated ray-caster images by additive blending. Annotations were created
automatically by storing the 2D position of a fixed point in the center of the
transducer together with the respective Euler angles. Figure 1 gives an impres-
sion of the look of the generated images compared to in vivo data.
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Fig. 1. A selection of generated in silico images with automatic labeling (top row) and
in vivo fluoroscopy images (bottom row)

2.2 Transducer Localization by Discriminative Learning

Following the marginal space learning approach [10], transducer localization is
performed in several stages by a pipeline of three discriminative classifiers. The
first classifier Φ employs Haar-like features xH to determine the 2D position of
the probe in images rescaled to 1 mm isotropic pixel spacing. All pixels closer
than 1 mm to the reference annotation are labeled as y = Y +, all others as
y = Y −. During detection, the 50 candidates with the highest classifier output
p̂Φ(y = Y +|xH) are passed on to orientation detector Θ. Θ is based on steerable
features xS [10] calculated at 0.25 mm isotropic resolution. Possible angles of
the transducer are discretized into 6◦ steps, and all correctly positioned samples
deviating < 4◦ from the annotated angle are labeled as Y +. For test images, the
50 candidates with the highest p̂Θ(y = Y +|xS) are passed on to scale detector Ψ .
Ψ is again based on steerable features xS with 0.25 mm spacing and selects the
most probable size of the transducer from a set of 9 hypotheses, corresponding to
feature window sizes from 30–46 mm. Lastly, the 50 highest-ranked candidates
are combined by weighted averaging according to their respective p̂Ψ (y = Y +|xS)
and produce the final output. All classifiers of the pipeline are implemented
as probabilistic boosting trees (PBTs) [9], which combine high computational
efficiency with competitive accuracy.

3 Domain Adaptation

A fundamental assumption in machine learning is that training and test data
stem from the same distribution. In our approach, however, the training data
originates from the in silico source domain S, while the test data comes from
the in vivo target domain T . Consequently, the above assumption may not hold,
in which case the classifiers would work along non-optimal decision boundaries.
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Let x represent a feature vector for a sample and y ∈ [Y +, Y −] its label,
then the joint probability distribution P (y, x) should be identical for source and
target domain. In our case, we know that the marginalized label probabilities
are equal, i.e. PS(y) = PT (y), since images from both domains show exactly one
transducer. Moreover, given a certain feature vector, the question if the corre-
sponding image region shows a probe can also be decided without knowing its
domain, which makes it reasonably safe to assume that PS(y|x) = PT (y|x). How-
ever, the distribution of feature vectors in both domains is probably different,
i.e. PS(x) �= PT (x), which leads to a situation called covariate shift [7].

3.1 Learning under Covariate Shift

As described by Shimodaira [7], a classifier can be adapted to different training
and test distributions by minimizing its loss function. This is accomplished by
assigning each training sample an instance weight according to the ratio of joint
probabilities. Under covariate shift, this ratio simplifies to:

PT (y, x)

PS(y, x)
=
PT (x)PT (y|x)
PS(x)PS(y|x)

=
PT (x)

PS(x)
(1)

Conveniently, this formulation does not include any labels y, i.e. no annotations
are required for the target domain in order to adapt the classifier.

There exist a number of approaches to estimate the required density ratio [8].
In this work, we employ the probabilistic classification approach, in which a
classifier is trained to differentiate between samples xS ∈ S and xT ∈ T . Among
different types of classifiers, logistic regression is especially well suited for this
task [8]. During training, all xS are assigned to y = 1 and all xT to y = 0. The
density ratio can then be estimated using classifier output p̂ by:

PT (x)

PS(x)
=

1

p̂(y = 1|x) − 1 (2)

3.2 Instance Weighting for Object Localization

While instance weighting has already been employed for a number of different
tasks [5], its application to object localization raises two important questions:
Which samples should be used to train the logistic regression classifier, and
should positive and negative samples be treated equally for weighting? Using all
available samples would mean to extract feature vectors for every pixel in every
available image multiple times (for different orientation and scale hypotheses).
Not only would this result in the impractical amount of 1012 feature vectors,
but it would also lead to highly unbalanced class labels Y + and Y −. Moreover,
as we use a relatively small number of background sequences to generate the in
silico data, features for Y − are repeating in the source domain. In summary,
this would lead to background samples Y − completely dominating the logistic
regression, while it is the appearance of the transducer (labels Y +) which should
ideally drive the domain adaptation.
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We propose a two step approach to solve this problem. In order to draw a
subset of samples, we employ a DL pipeline trained on in silico data to localize
the transducer in another set of synthetic images and unlabeled in vivo data. As
even an average DL system will detect the transducer with reasonable accuracy
on the majority of images, this step effectively reverses the class imbalance in
favor of positive samples Y +. Feature vectors for the drawn samples are normal-
ized to zero mean and unit variance over the entire set and used to train the
logistic regression. As the quality of the density ratio estimation may vary, we
relax instance weights w as suggested by Shimodaira [7]:

w(x) =

(
PT (x)

PS(x)

)c

(3)

with c ∈ [0..1] as regularization parameter. In this study, we set c = 0.5.
The domain adapted classifier is then trained on the in silico set used as test

data in the first step. For each image of this set, the feature vector x of the
drawn sample is used in Eq. 3 to estimate the instance weights for all positive
samples. Negative samples remain unweighted.

4 Experiments and Results

4.1 Image Data

Image data originates from two clinical centers and was mostly acquired dur-
ing standard TAVI procedures. Both centers used an Artis Zeego C-arm system
(Siemens AG, Germany) for acquisition of fluoroscopy and an X7-2t 3D trans-
ducer (Philips, The Netherlands) for acquisition of TEE. In order to estimate
the physical resolution of each fluoroscopy sequence, the pixel spacing of the
fluoroscopic detector was divided by the radiologic magnification factor, which
accounts for the projection geometry of the C-arm. In order to prevent problems
with local feature calculation, we excluded approx. 25% of all frames in which
the transducer was too close to the image boundaries. In prospective clinical ap-
plication, the X-ray window could always be chosen to include the probe entirely,
i.e. this data exclusion does not limit the applicability of the proposed approach.
In the end, we used 68 sequences from 22 patients for our study, comprising 6280
frames in total. For 37 sequences comprising 1913 frames, the probe head was
annotated manually by placing an oriented rectangle over it. We denote this set
of annotated in vivo images as TL, while the remaining unlabeled 4367 frames
are denoted as TU . Finally, using the method from Sec. 2.1, we generated two
sets S1, S2 of 10,000 in silico images each. In a small annotation study, the point
used for automatic labeling of these sets was selected to best match the center
of the rectangle used for manual annotations.

4.2 Selecting the Stages for Domain Adaptation

The first set of experiments was conducted to analyze the effectiveness of domain
adaptation (DA) for different stages of the detector pipeline. As baseline system,
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Fig. 2. A selection of in silico training samples that received high instance weights
(left) and low instance weights (right) for the position detector

we first trained the pipeline presented in Sec. 2.2 on S1 (Φ0 ⇒ Θ0 ⇒ Ψ0).
Subsequently, we trained another system on S2 and used it to draw TEE probe
samples from S1 and TU . The resulting samples were used to calculate three
sets of instance weights for S1, using the feature set selected by Φ0, Θ0, and
Ψ0, respectively. Some examples for samples that obtained very high and low
weights are shown in Fig. 2. Training a position detector on the weighted data
from S1 yielded the first domain-adapted classifier ΦA, which was integrated
into pipeline “DA Pos” (ΦA ⇒ Θ0 ⇒ Ψ0). Similarly, weighted orientation (ΘA)
and scale detectors (ΨA) were trained and included in pipelines “DA Pos+Ori”
(ΦA ⇒ ΘA ⇒ Ψ0) and “DA Pos+Ori+Scale” (ΦA ⇒ ΘA ⇒ ΨA).

All systems were evaluated on image set TL. For a detailed analysis of each
system, we looked at the detected candidates before the final averaging step and
counted a true positive if one of the candidates had a position error < 1 mm, an
orientation error < 4◦, and a scale error < 3 mm. Plotting these counts against
the average number of false positives results in the ROC-style curves shown in
Fig. 3. The corresponding areas under the curve (AUCs) are given in Table 1.

As can be seen, domain adaptation on the position detector has the largest
impact with an increase of 4.5% AUC relative to the baseline system. Domain
adaptation on the orientation detector brings only slight additional improve-
ments (+4.8% AUC relative to baseline), while trying to adapt the scale detector
deteriorates the results again (only +1.6% AUC relative to baseline remain).
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Fig. 3. True positive rate (TPR) vs. average
number of false positives (FPs)

Table 1. Area-under-curve
values

System AUC

Baseline 78.3
DA Pos 81.8
DA Pos+Ori 82.0
DA Pos+Ori+Scale 79.5
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Table 2. Mean errors with standard deviation for successful detections

Failed Position Orientation Scale
Detections Error Error Error

in vivo Reference 7.34 % 1.5±2.5 mm 3.2±5.4◦ 3.8±3.0 %
in silico Baseline 2.35 % 0.9±1.1 mm 1.8±1.6◦ 6.0 (3.2±2.4) %
Domain Adaptation 0.37 % 0.8±0.6 mm 1.7±1.3◦ 5.7 (3.0±2.3) %
Self Training 1.41 % 0.8±0.8 mm 1.6±1.4◦ 6.5 (3.0±2.2) %

4.3 Evaluation of Robustness and Accuracy

For the main evaluation, the reference system was trained directly on TL without
any synthetic data (using three-fold cross-validation for evaluation). The baseline
system from the previous section, trained exclusively on in silico images, came
second, and the best-performing domain adaptation (“DA Pos+Ori”) third. For
the last system, we used the samples drawn from TU (as described in Sec. 3.2) to
enlarge our synthetic training set and generated another unweighted system from
S1 ∪ TU . This is a popular approach in semi-supervised learning and called self-
training [11]. For each system, the final output of the pipeline (after candidates
are merged) was compared to the reference labels. In case the output was located
outside the annotated probe area (circles in Figs. 1 & 2), the localization was
counted as failure. For successful detections, average position, orientation and
scale errors were computed. The complete results are displayed in Table 2. As it
turned out, the labels of in silico images had a systematic bias of 5% regarding
the scale of the transducer; the scale errors in parenthesis show the bias-corrected
results. The complete detection pipeline runs in <40 ms per frame, enabling a
real-time localization of the transducer in the operating room.

5 Discussion

Our results clearly demonstrate the dependency of DL systems on the available
training data. The reference system in our experiments, although trained on the
same domain as the test data, yields the worst overall results. The in silico sys-
tem can compensate its different source domain by an eight times larger training
set with perfectly placed labels and reduces the number of failed detections by
a factor of three, while at the same time improving on all errors. Given these
good results, we were surprised by the large impact of domain adaptation, which
managed to reduce misdetections yet considerably further down to 5% of the ref-
erence system. Its success is based on up-weighting training samples that appear
similarly in the target domain and down-weighting less common samples with
e.g. very high contrast or large rotations (see Fig. 2). Obviously, generating in
silico data with more realistic parameters from the start would have a similar
effect, but – as for most applications – the true distribution of parameters in
real-world data is not known. Since the largest differences between source and
target domain appear in the feature set of the position detector (which has to
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cope with different orientations and scales), this stage of the pipeline can benefit
most from domain adaptation. In order to gain the complete 3D pose of the
transducer, our TEE localization can be combined with 2D-3D registration [2]
or template-matching [6] to deliver an automatic, robust, and accurate real-time
fusion of TEE and fluoroscopy images.

We believe the combination of automatically generated data and unlabeled
real-world images to be a highly promising approach for training DL systems. It
resolves the need for thousands of annotated training samples, which is one of
the main bottlenecks of machine learning in the medical domain. Moreover, the
ability to create large quantities of training data for any X-ray imageable device
(e.g. implants or new transducers) within hours offers unmatched flexibility.
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Abstract. Dictionary learning has been shown to be effective in ex-
ploiting spatiotemporal coherence for echocardiographic segmentation.
To overcome the limitations of previous methods, we present a stochastic
online dictionary learning approach for segmenting left ventricular bor-
ders from 4D echocardiography. It is based on stochastic approximations
and processes a mini-batch of samples at a time, which results in lower
memory consumption and lower computational cost than classical batch
algorithms. In contrast to the previous methods, where dictionaries and
their weights are optimized only on the most recently segmented frame,
our stochastic online learning procedure optimizes the dictionaries and
the corresponding weights by aggregating all the past information while
adapting them to the dynamically changing data. The rate of updating
the past information is controlled and varied according to the appear-
ance scale to seek a balance between old and new information. Results
on 26 4D echocardiographic images show the proposed method is more
accurate, more robust, and faster than the previous batch algorithm.

1 Introduction

Segmentation of 4D echocardiography plays an important role in the quanti-
tative analysis that provides important cardiac functional parameters such as
ejection fraction and strain. Due to gross intensity inhomogeneities, character-
istic artifacts, and poor contrast, automatic segmentation of the left ventricle is
particularly challenging in echocardiography. The inherent spatiotemporal coher-
ence of echocardiographic data provides useful constraints. The key observation
is that the inherent spatio-temporal consistencies regarding image appearance
(e.g., speckle pattern) and shape over the sequence can be exploited to guide car-
diac border estimation. Statistical models have received considerable attention.
Following the seminal work of Cootes et al. on statistical shape modeling [1],
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a number of statistical models [2–5] have been proposed for learning spatiotem-
poral priors offline from a database. The main limitation of these methods is
that the high level spatiotemporal patterns in routine clinical images, especially
for disease cases, may deviate from the priors learned from a database.

Exploiting individual data coherence through online learning overcomes this
limitation. It is particularly attractive when a database is inapplicable or
unavailable. Sparse representation and dictionary learning have recently been
successfully applied to modelling local image appearance and segmenting left
ventricular borders in 4D echocardiography [6, 7]. Dictionary learning on the fly
exploits the spatiotemporal coherence inherent to individual data and achieves
promising segmentation results [6]. However, these methods use classical second-
order batch procedures for dictionary learning. The batch algorithm assumes a
fixed-size dataset and accesses the whole training set at each iteration. It is
memory-consuming and computationally expensive. It can be impractical when
the training set is large. Every time new data is added to the training set, the
dictionary needs to been retrained on the new complete training set in order to
incorporate the new information, which makes the batch algorithm inefficient for
dynamically changing data and online learning. In [6, 7], the appearance dictio-
naries are trained only on the last segmented frame rather than all the previous
frames. This accelerates error accumulation and compromises the segmentation
accuracy and reliability, especially for endocardial borders.

To overcome these limitations, we present a stochastic online dictionary learn-
ing approach for segmenting left ventricular borders from 4D echocardiography.
It utilizes a stochastic optimization technique and processes a mini-batch of
samples at a time, which results in lower memory consumption and lower com-
putational cost than classical second-order batch algorithms. In contrast to the
previous methods, our stochastic online learning procedure optimizes the dictio-
naries and the corresponding weights by aggregating the information of all the
past frames while adapting the dictionaries to the latest segmented frame. The
past information is carried forward by sufficient statistics. We weight the past
information to control the rate at which the past information is updated by the
new information. This updating rate varies with appearance scale to maintain a
balance between old and new information.

2 Methods

2.1 Segmentation Framework

We employ a frame-by-frame sequential segmentation procedure interlaced with
dictionary learning on the fly introduced in [6, 7]. Multiscale appearance dic-
tionaries are dynamically updated each time a new frame is segmented. In a
maximum a posteriori (MAP) framework, we estimate the shape St in frame It
given the knowledge of Ŝ1:t−1 and I1:t:

Ŝt = argmax
St

p(St|Ŝ1:t−1, I1:t). (1)
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It is approximated by a decomposition of information into intensity It, local
appearance discriminant Rt, and shape prediction S∗

t :

Ŝt ≈ argmax
St

p(S∗
t |St)p(Rt|St)p(It|St)p(St). (2)

The discriminant Rt summarizing multiscale local appearance dominates the
estimation. It is predicted by multiscale appearance dictionaries Dt that are de-
rived from Ŝ1:t−1 and I1:t−1 through sparse representation and dictionary learn-
ing. In [6, 7], the dictionaries Dt are trained only on Ŝt−1, It−1. The knowledge
of the previous information is not fully utilized. This paper focuses on comput-
ing Dt more efficiently and reliably and achieving more accurate and reliable
discriminant Rt. Further details of solving (2) can be found in [6].

2.2 Multiscale Sparse Representation

Let Ω denote the 3D image domain. We describe a pixel u ∈ Ω in frame It
with a series of appearance vectors yk

t (u) ∈ IRn at different appearance scales
k = 1, ..., J . yk

t (u) is constructed by concatenating orderly the pixels in a local
block centered at u and normalized to unit length. Complementary multiscale
appearance information is extracted at different levels of Gaussian pyramid.
A shape St in It is represented by a level set function Φt(u). The regions of
interest are two band regions Ω1

t = {u ∈ Ω : 0 ≤ Φt(u) < ψ2} and Ω2
t =

{u ∈ Ω : 0 > Φt(u) > −ψ1} which form two appearance classes. Let {D1
t ,D

2
t}k

denote two dictionaries adapted to appearance classes Ω1
t and Ω2

t respectively
at scale k. Under a sparse linear model, an appearance vector y ∈ IRn can
be decomposed as a sparse linear combination of the atoms from a dictionary
D ∈ IRn×K which encodes the typical patterns of a corresponding appearance
class. That is, y ≈ Dx, and ‖x‖0 is small. How well yk

t (u) is sparsely represented
by the appearance dictionary {Dc

t}k is measured by the reconstruction residue:

{Rc
t(u)}k = ||yk

t (u)− {Dc
t x̂

c
t(u)}k||2 (3)

∀k ∈ {1, ..., J} and c ∈ {1, 2}, where

{x̂c
t(u)}k = argmin

x
‖yk

t (u)− {Dc
t}kx‖22 s.t. ‖x‖0 ≤ T, (4)

where T is a sparsity factor. The residue indicates the likelihood u is in class c.
Combining the multiscale information, we define the discriminant as

Rt(u) =
J∑

k=1

[(log
1

βk
t

)sgn({R2
t (u)}k − {R1

t (u)}k)/
J∑

j=1

(log
1

βj
t

)], (5)

∀u ∈ Ω, where βk
t ’s are the weighting parameters of the J appearance scales.
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2.3 Stochastic Online Dictionary Learning

Learning a dictionary D ∈ Rn×K from a finite training set Y = [y1, ...,yM ] ∈
Rn×M is to solve a joint optimization problem with respect to the dictionary D
and the sparse representation coefficients X = [x1, ...,xM ] ∈ RK×M :

min
D,X

1

2
‖Y −DX‖22 + λ

M∑
i=1

‖xi‖q, (6)

where ‖x‖q is a sparsity-inducing regularization that can be 0 pseudo norm
or 1 norm. Classic algorithms for dictionary learning are second-order iterative
batch algorithms such as the K-SVD [8] algorithm that is used in [6, 7]. The
batch algorithm accesses the whole training set at each iteration and is memory
consuming and computationally expensive. It may become impractical in the
case of large training sets. This problem is aggravated when the data is dynam-
ically changing over time like echocardiography, since the dictionary needs to
be retrained on the new complete dataset each time new data is available. In
[6, 7], the appearance dictionaries are updated each time a new frame is seg-
mented, but they are only optimized on the newly segmented frame rather than
all the previous frames. This accelerates accumulation of errors, especially at
endocardial borders where there are often large deformations.

Stochastic online learning technique proposed in [9] can be used to overcome
these limitations. It has recently been applied to shape modeling [10]. It processes
one element of the training set at a time, which particularly suits applications
with large training sets or image sequence analysis. It alternates classic sparse
coding steps with dictionary update steps where the new dictionary Dm at mth
iteration minimizes a surrogate for the empirical cost (6):

Dm = argmin
D

1

m

m∑
i=1

(
1

2
‖yi −Dxi‖22 + λ‖xi‖1) (7)

where sufficient statistics xi computed during the previous steps aggregate the
past information. The past information is carried forward in matrices:

Am = Am−1 + xmxT
m and Bm = Bm−1 + ymxT

m, (8)

which enables optimizing dictionaries on the past information without accessing
the past data again. Then the dictionary update step (7) is reduced to solving (9)
with initialization Dm−1. This procedure leads to faster performance and better
dictionaries than classical batch algorithms [9]. It converges almost surely to a
stationary point of the cost function and scales up gracefully to large datasets
[9]. For dynamic data, the dictionary is dynamically updated by the new data
while optimized on the whole dataset. Here we use a variant of [9] as summarized
in Algorithm 1. We use a mini-batch extension that accesses a mini-batch of η
samples per iteration to accelerate convergence. We assign weights � to the past
training data to control the rate of updating out-of-date information.

We introduce a stochastic online learning process supervised in a boosting
framework [11] as detailed in Algorithm 2. Algorithm 1 is invoked to enforce the
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Algorithm 1. Stochastic Online Dictionary Learning

Require: training set y ∈ R
n ∼ p(y), sparsity weight λ, initial dictionary DmI ∈

R
n×K , initial iteration number mI and terminal iteration number mT , mini-batch

size η, weight �, and initial matrices AmI and BmI .
for m = mI to mT do

Draw η samples Ym = {ym,i}ηi=1 from p(y)
Sparse coding: xm,i = argminx∈RK ‖ym,i −Dm−1x‖22 + λ‖x‖1,∀i ∈ {1, ..., η}
Am = �Am−1 +

1
η

∑η
i=1 xm,ix

T
m,i, Bm = �Bm−1 +

1
η

∑η
i=1 ym,ix

T
m,i.

Update dictionary: compute Dm with Dm−1 as initialization

Dm = argmin
D

1

m
(
1

2
Tr(DTDAm)− Tr(DTBm)). (9)

end for
return dictionary DmT , and matrices AmT and BmT .

reconstructive property of the dictionaries. The boosting supervision strengthens
the discriminative property and optimizes the weighting of multiscale informa-
tion. At each time point t, the series of multiscale appearance dictionary pairs
{D1

t ,D
2
t}k, matrices Ak

t and Bk
t , and the corresponding weighting parameters

βk
t , k = 1, ..., J , are updated by the latest segmented frame t−1: training samples

of appearance vectors belonging to two classes {Y1
t−1}k = {yk

t−1(u) : u ∈ Ω1
t−1}

and {Y2
t−1}k = {yk

t−1(u) : u ∈ Ω2
t−1}. In contrast to [6, 7] where {D1

t ,D
2
t}k and

βk
t depend only on frame t − 1, we optimize {D1

t ,D
2
t }k and βk

t by aggregating
the information of all the preceding frames (stored in Ak

t−1, B
k
t−1, and β

k
t−1). If

an error occurs in one frame, it can be compensated by the information of the
previous frames. The propagation of errors is alleviated. The rate of updating
the past information varies with appearance scale. Let lk be the axial width in
millimeter of the local image at scale k, we set �k = al−2

k where a ∈ R+. Higher
�’s are assigned to finer appearance scales to incorporate more past information.
Lower �’s are assigned to coarser appearance scales to put more emphasis on the
latest information, since the coarse appearance scale is more sensitive to cardiac
deformation. The stochastic online learning procedure can be initialized either
by offline learning from a suitable database or by a manual tracing.

3 Results

We validated our method on 26 4D canine open-chest echocardiographic images
acquired from both healthy and post-infarct animals using Phillips iE33 and an
X7-2 array probe. Each image sequence spanned a cardiac cycle and contained
about 25− 30 volumes. The sequential segmentation was initialized with a man-
ual tracing of the end-diastole volume. 100 volumes were randomly selected for
expert manual segmentation and quality assessment. We evaluated automatic re-
sults against manual tracings using the following segmentation quality metrics:
Hausdorff Distance (HD), Mean Absolute Distance (MAD), and Dice coefficient
(DICE). We compared the proposed method to [6] that uses the batch dictionary
learning technique K-SVD. The two algorithms shared the same set of relevant
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Algorithm 2. Boosted Multiscale Online Dictionary Learning

Require: training sets {Y1
t−1}k = {yk

1,i}M1
i=1 and {Y2

t−1}k = {yk
2,j}M2

j=1, initial dictio-

naries {D1
t−1,D

2
t−1}k, matrices Ak

t−1 andBk
t−1, accumulated # of previous iterations

Nt−1, weighting parameters βk
t−1, �k, k = 1, ..., J , mini-batch size η, # of iterations

N , and sparsity factor T .
w1

1 = {w1
1,i}M1

i=1 = 1,w1
2 = {w1

2,j}M2
j=1 = 1.

for k = 1 to J do
Dictionary Learning: Apply Algorithm 1 for N iterations to adapt {D1

t ,D
2
t}k

to {Y1
t−1}k ∼ pk

1 = {pk1,i}M1
i=1 =

wk
1∑M1

i=1 wk
1,i

and {Y2
t−1}k ∼ pk

2 = {pk2,j}M2
j=1 =

wk
2∑M2

j=1 wk
2,j

. Use � = �k for the first iteration and � = 1 for the rest.

Sparse Coding: ∀y ∈ {Y1
t−1,Y

2
t−1}k, solve (4) for sparse representations w.r.t.
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end for
return {D1
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k
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k
t , k = 1, ..., J , and Nt = Nt−1 +N .

parameters. We used the following parameter setting: J = 10, T = 2, K = 1.5n,
N = 10(t > 2) or 20(t = 2), η = 2048, λ = 0.8, and a = 100.

Figure 1 shows representative segmentation results for frames at end-systole
when it is easiest to access error accumulation. In the top row, the batch method
[6] resulted in more errors in end-systolic segmentations, since it learned appear-
ance dictionaries only on the latest segmented frame and did not fully leverage the
information carried in all the previous frames. The segmentation error of a frame is
likely to propagate to the following frames. Images in the bottom row show the im-
proved segmentation results by employing our new stochastic learning procedure.
Since we optimize the dictionaries on all the previous frames, the error in a given
frame is compensated by the information of the other frames. Figure 2 presents the
quality measure curves from end-diastole to end-systole for the endocardial seg-
mentations of a healthy sequence and a post-infarct sequence. DICE decays and
HD and MAD rise from end-diastole to end-systole due to accumulation of errors.
Compared to the batch method, our method resulted in flattened curves, which
suggests our method effectively alleviates error accumulation and improves seg-
mentation performance for both healthy and post-infarct images. For epicardial
segmentation, the improvement was not significant, since the baseline accuracy of
[6] was already very high (97% in DICE). Table 1 summarizes the statistics of seg-
mentation qualitymeasures and computational efficiency achievedby the two algo-
rithms in segmenting endocardial borders. The proposedmethod achieved smaller
mean MAD, smaller mean HD, larger mean DICE, and smaller standard devia-
tions of all the measures. The overall segmentation accuracy and robustness were
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Fig. 1. Comparisons of segmentation results by the batch method (top row) and our
method (bottom row). Green: Manual segmentation. Red: Automatic segmentation.

Fig. 2. Segmentation quality measures at different frames of two example sequences
(healthy (top row) and post-infarct (bottom row)) from end-diastole to end-systole.
Blue: the batch method. Red: the proposed method.

Table 1. Sample means ± standard deviations of the quality measures and dictionary
learning time per frame for the segmentation of endocardial borders

DICE (%) MAD (mm) HD (mm) Time (s)

Batch Algorithm [6] 93.6 ± 2.49 0.57 ± 0.14 2.95 ± 0.62 ∼45

Proposed Algorithm 94.6 ± 2.17 0.48 ± 0.11 2.83 ± 0.53 ∼25

effectively improved using our stochastic online learning procedure. We tested the
two algorithms on a laptop with Intel quad-core 2.2 GHz CPU and 8 GB memory.
Both algorithms were implemented with a mixture of MATLAB and C++. The
batch algorithm took about 45 seconds per frame for dictionary learning. The
proposed algorithm took only about 25 seconds per frame.
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4 Conclusion

We have presented an approach for segmenting left ventricular borders from 4D
echocardiography using stochastic online dictionary learning. It is based on a
stochastic optimization technique resulting in lower memory consumption and
computational cost than classical batch algorithms. We optimize the dictionaries
and their weights on all the preceding frames while adapting them to the latest
segmented frame. The rate of updating the past information is controlled and
varies with appearance scale. Our method effectively improved the accuracy and
robustness of endocardial segmentation and computational efficiency compared
to the previous batch methods. Future work will include automating the dic-
tionary initialization through offline learning. The stochastic learning procedure
is suitable for both offline and online learning. A database that is too large for
batch methods can be gracefully handled by our method which avoids accessing
the database during online learning. Our method can ultimately be used to build
an integrated offline and online learning framework.
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Atlas Encoding by Randomized Forests

for Efficient Label Propagation

Darko Zikic, Ben Glocker, and Antonio Criminisi
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Abstract We propose a method for multi-atlas label propagation based
on encoding the individual atlases by randomized classification forests.
Most current approaches perform a non-linear registration between all
atlases and the target image, followed by a sophisticated fusion scheme.
While these approaches can achieve high accuracy, in general they do so
at high computational cost. This negatively affects the scalability to large
databases and experimentation. To tackle this issue, we propose to use
a small and deep classification forest to encode each atlas individually
in reference to an aligned probabilistic atlas, resulting in an Atlas Forest
(AF). At test time, each AF yields a probabilistic label estimate, and
fusion is done by averaging. Our scheme performs only one registration
per target image, achieves good results with a simple fusion scheme,
and allows for efficient experimentation. In contrast to standard forest
schemes, incorporation of new scans is possible without retraining, and
target-specific selection of atlases remains possible. The evaluation on
three different databases shows accuracy at the level of the state of the
art, at a significantly lower runtime.

1 Introduction

Labeling of healthy human brain anatomy is a crucial prerequisite for many
clinical and research applications. Due to the effort involved in fully manual la-
beling and increasing database sizes (e.g. ADNI, IXI, OASIS), a lot of research
has been devoted to develop automatic methods for this task. While brain label-
ing is a general segmentation task (with a high number of labels), the standard
approach for this task is multi-atlas label propagation (MALP) – see [1] for an
overview of the state of the art. With the atlas denoting a single labeled scan,
MALP methods first derive a set of label proposals for the target image, each
based on a single atlas, and then combine these proposals into a final estimate.
There are two main strategies for estimating atlas-specific label proposals. The
first and larger group of methods non-linearly aligns each of the atlas images to
the target image, and then – assuming one-to-one correspondence at each point
– uses the atlas labels directly as label proposals, cf. e.g. [2,3,4]. The second
group of patch-based methods has recently enjoyed increased attention [5,6,7].
Here, the label proposal is estimated for each point in the target image by a local
similarity-based search in the atlas. Patch-based approaches relax the one-to-one
assumption, and aim at reducing the computational times by using linear instead
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of deformable alignment [5,6], resulting in labeling runtimes of 22-130 minutes
per target on the IBSR dataset [6]. However, note that these approaches do not
change the actual number of required registrations. The fusion step, which com-
bines the atlas-specific label proposals into a final estimate, aims to correct for
inaccurate registration or labellings, and remains an active research topic.

While current state of art techniques can achieve high levels of accuracy, in
general they are computationally demanding. This is primarily due to the non-
linear registration between all atlases and the target image, combined with the
long runtimes for the best performing registration schemes for the problem [8].
Current methods state runtimes of 2-20 hours per single registration [1]. Further-
more, sophisticated fusion schemes can also be computationally expensive. State
of the art approaches state fusion runtimes of 3-5 hours [9,10,11] on a database
of 15 atlases [1]. While the major drawback of high computational costs is the
scalability to large and growing databases, they also limit the amount of possible
experimentation during the algorithm development phase.

Our method differs from previous approaches in the way how label proposals
for a single atlas are generated, and is designed with the goal of low computa-
tional cost at test time and experimentation. In this work, we focus on the ques-
tion of how a single atlas is encoded. From this point of view, methods assuming
one-to-one correspondence represent an atlas directly as an image/label-map
pair, while patch-based methods encode it by a set of localized patch collections.
Variations of the patch-based encoding include use of sparsity [7], or use of label-
specific kNN search structures [12]. In contrast to previous representations, we
encode a single atlas together with its relation to label priors by a small and deep
classification forest – which we call an Atlas Forest (AF). Given a target image as
input (and an aligned probabilistic atlas), each AF returns a probabilistic label
estimate for the target. Label fusion is performed by averaging of the probability
estimates. While patch-based methods use a static representation for each image
point (i.e. a patch of fixed size), our encoding is spatially varying. In the training
step, our approach learns to describe different image points by differently shaped
features, depending on the point’s contextual appearance. Compared to current
MALP methods, our approach has the following important characteristics:

1. Only one registration per target is required. This registration aligns the prob-
abilistic atlas to the target. Since only one registration per target is required,
the runtime is independent of the database size in this respect.

2. Efficient generation of atlas proposals and their fusion. For proposal gen-
eration one AF per atlas is evaluated, and the fusion consists is done by
averaging. While both operations scale linearly with database size, they are
significantly more efficient than current approaches. For example, for the
database with 15 atlases from [1], labeling of a single target takes ca. 4 min.

3. Efficient Experimentation. A leave-one-out cross-validation of a standard
MALP approach on n atlases requires registration between all images, thus
scaling with n2. In contrast, the training of the single AFs, which is the most
costly component of our approach for experimentation, scales with n (this
assumes a given probabilistic atlas which is not part of experimentation).
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Besides being efficient, experiments on 3 databases in Sec. 3 indicate that our
scheme also achieves high accuracy, comparing favorably to state of the art.

Compared to standard forest schemes (cf. e.g. [13,14,15,16]) which train each
tree on data from all training images, our model, which trains each tree on a
single atlas exemplar, has three advantageous properties for MALP.

1. Simple incorporation of new atlases into the database. For standard forest
schemes, non-approximative addition of new training data requires complete
retraining. In our scenario, a new forest is simply trained on the new atlas
exemplar and added to the other, previously trained AFs.

2. Selection of atlases for target-specific evaluation is straightforward since ev-
ery AF is associated with a single atlas. This step seems non-obvious for
standard forest schemes. This property allows use of atlas-selection [17],
which can reduce the computational cost, improve accuracy.

3. Efficient experimentation. For cross-validation, standard schemes have to be
trained for every training/testing split of data, which is extremely costly. In
our scenario, each AF is trained only once. Any leave-k-out test is performed
simply by using the subset of n−k AFs corresponding to the training data.

After presenting the method in Sec. 2, and demonstrating its performance in
Sec. 3, we summarize and discuss its properties in Sec. 4.

2 Method - Atlas Forests

An atlas forest (AF) encodes a single atlas by training a classification forest
exclusively on the data from the atlas. AFs do not depend on the reference
frame of the target image, since every point is described only by its appearance,
without considering its location (this can be seen as a further relaxation of the
one-to-one assumption). While this allows us to avoid the registration of atlases
to the target, a problem with such a location-oblivious approach is that the
location carries valuable information about label probabilities (e.g. a point on
the far left is unlikely to carry a right-side label). To efficiently integrate this
information, we augment the intensity information from the atlas/target image
by label priors warped to the image, and AFs operate on this augmented input.
For the alignment of the priors, only a single registration per image is required.

2.1 Forest Training, and Labeling by Testing and Fusion

We use randomized forests as a classifier since they can efficiently handle a high
number of classes, which is important in the MALP setting. Since we use a
standard forest type, we keep the description short, and refer for details to e.g.
[18,19]. Classification forests consist of a set of trees, and as a supervised learning
method, they operate in two stages: training and testing. During training, each
tree of the AF ai is trained on the specific atlas image Ii and the corresponding
label map Li which contains label class values c. Specifically, each tree t learns
a label class predictor pt(c|f) for a high-dimensional feature representation f of
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points from Ii. The training is performed by splitting the training examples at
each node based on their representation in the feature space. The split functions
are computed by maximizing the information gain in randomly selected dimen-
sions of the feature space. In this work, we stop the tree growth at a certain tree
depth (d=36), with the condition that no tree leaf contains less than a certain
number of samples (smin=8). Since we are dealing with a high number of classes
with extremely varying sizes, we use class re-weighting, i.e. we adjust the proba-
bility computation for each class according to its frequency, such as to obtain a
uniform distribution at the root node. Without this standard step, small classes
would have low influence, resulting in reduced accuracy for these classes. After
training, each leaf l contains a class predictor pl(c|f), which is computed as the
re-weighted empirical class distribution of its samples.

At testing, a target image I is labeled by processing its points by the trained
AFs. By applying the learned splitting functions to the feature representation
f of a point to be labeled, each tree t from a certain AF yields a prediction
pt(c|f). The probabilistic estimate of the AF a with nt trees is then formed as
the average of the single tree predictions pa(c|f) = 1

nt

∑nt

i=1 pti(c|f). The fusion
of these probabilistic estimates from na AFs is done by averaging, i.e. p(c|f) =
1
na

∑na

i=1 pai(c|f), and subsequent maximum selection ĉ = argmaxc p(c|f).

2.2 Features and Label Priors

We describe the intensity around a certain location by a bank of generic intensity-
based parametric features, which are non-local but short-range. Given the point
of interest x in image I, offset vectors u,v, cuboids Cs(x) (centered at x with
side lengths s,r), and the mean operator μ, we use the following feature types:

1. Local cuboid mean intensity: μ(I(Cs(x)))
2. Difference of local intensity and offset cuboid mean: I(x)− μ(I(Cs(x+ u)))
3. Difference of local and offset cuboid means: μ(I(Cs(x))) − μ(I(Cs(x + u)))
4. Difference of offset cuboid means: μ(I(Cs(x + u)))− μ(I(Cr(x+ v)))

The feature type and the above parameters (u,v,s,r) are drawn randomly during
training at each node, thus defining the random feature space dimensions to be
explored. Guided by the results from patch-based works [5,6], we use a maximum
offset of 10mm, and cuboid side length s, r<5mm.

Additionally to the random features, we use a set of deterministic features,
which are considered at every node. These features are the local intensity Ĩ(x)
in a multi-channel image Ĩ, which is formed by augmenting the atlas image I
by the aligned label priors PL. Next to the priors for the individual labels, we
employ further 6 priors, which aggregate priors for left/right, lower/upper and
inner/outer labels, thus subdividing the brain in a coarser manner. In a setting
with |L| different labels, this results in a |L|+7-dimensional image Ĩ. The use
of the prior labels allows us to include the available knowledge about the label
probabilities at this point in an efficient way, at the cost of a single registration
per target. For an effect of using the label priors, please see Fig. 1.
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In this work, we construct simple label priors ourselves since we deal with vary-
ing labeling protocols – for actual applications, a use of carefully constructed,
protocol-specific priors would seem beneficial, e.g. [20]. The construction is per-
formed by iterative registration of the training images to their mean [21]. This
results in an average intensity image Ī, and applying the computed warps to cor-
responding label maps followed by averaging yields a set of label priors PL. To
account for potential registration errors at test time, we smooth the prior maps
by a Gaussian with σ=2mm. We use affine registration, followed by a deformable
registration by the FFD-based method from [22], with cross-correlation as data
term, and conservative deformable settings with an FFD-grid spacing of 20mm
and strong regularization. The registration operates on images down-sampled by
a factor of 4, taking less than 30 seconds per image.

At test time, the average intensity image Ī is registered to the target, and
the computed transformation is used to align the label priors PL to the target.
Here, the same registration scheme as above is employed.

3 Evaluation

We evaluate our approach on three brain MRI databases. For all tests we per-
form the standard preprocessing steps: skull-stripping (own implementation),
inhomogeneity correction [23], and histogram matching (www.itk.org).

We used the IBSR dataset in this work for the development of the method and
the parameter settings. The same settings were then used also for the evaluation
on the other two databases. As final settings, we use 5 trees per atlas forest.
The single trees are trained down to depth of 36, with the restriction that each
leaf contains at least 8 samples. Each node uses 1000 features from a pool of
10000 random features per tree. The training of one tree takes on average ca. 36
minutes on a standard desktop PC (Intel Xeon E5520 2.27GHz, 12 GB RAM).
The runtimes reported below are for the label propagation only, and do not
include the time for the registration of the probabilistic atlas (ca. 30 seconds),
and the preprocessing of the target image.

IBSR Database. The IBSR data (http://www.cma.mgh.harvard.edu/ibsr/)
contains 18 labeled images with 32 labels. To provide a comparative context,
we cite the results from [6], which are shown to compare favorably to average
dice scores (DSC) reported previously for the IBSR data. The IBSR data set is
used in [6] in a leave-one-out evaluation, and the best performing version of the
proposed method (group-wise multipoint) reaches a mean DSC of 83.5%, with
a runtime of 130 minutes. A different variant discussed in [6] (fast multipoint),
which aims at faster runtimes by performing the search at a reduced number of
locations in the image, reaches a DSC of 82.25%, with a labeling runtime of 22
minutes. Our approach with the above settings reaches a DSC of 84.60% with
a runtime of 3 minutes per target image. Further, we quantify the influence of
some elements of our method on IBSR data (all by leave-one-out experiments):

– Using the proposed AF scheme without the augmentation by label priors
significantly reduces the DSC to 77.38%, and introduces noise and extreme
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(a) manual reference (b) no use of priors (c) atlas forest (AF)

Fig. 1. Labeling example (IBSR): Using intensity-based features only (b) leads to
extreme errors, which can be removed by additional use of label priors (c)

errors, as the forest is no longer able to compensate for the missing location
information, see Fig. 1(b) for a visualization.

– Using only affine registration for construction and warping of the label priors
decreases the DSC to 82.71%, indicating that accuracy improvement through
a dedicated registration method might be possible [8].

– A standard forest scheme which uses approximately the same amount of
data for training of each tree (i.e. 1/17th of all data), but randomly draws
samples from all training images (i.e. performs bagging), reaches a DSC of
84.08%, with otherwise identical settings. This shows that our method does
not reduce the quality, while introducing advantages for the MALP setting.

LONI-LPBA40 Database. The LONI-LPBA40 database [20] consists of 40
images of healthy volunteers, with 56 labels, most of them within the cortex.
To provide some context, we cite the recent results on this data set from [7],
where three methods are evaluated for 54 labels: an implementation of a patch-
based scheme as in [5,6] (PBL), and two modifications aiming at sparsity of used
patches (SPBL), and spatial consistency (SCPBL). The corresponding reported
DSCs for a leave-one-out experiment are 75.06%, 76.46% and 78.04%, with run-
times of 10, 28 and 45 minutes per class. Our approach reaches an average DSC
of 77.46% with a runtime of 8 minutes per image (for all classes).

MICCAI 2012 Multi-atlas Labeling Challenge. Finally, we apply our ap-
proach to the data from [1], consisting of 15 training images and 20 test images
from the OASIS project and corresponding label maps as provided by Neuromor-
phometrics, Inc. (http://Neuromorphometrics.com/) under academic subscrip-
tion. The evaluation is performed on 134 labels (98 cortical, 36 non-cortical).
Here, we train the AFs on the 15 training atlases, and perform the evaluation on
the 20 testing target images. With the above settings, our mean DSC is 73.66%
over all labels (71.04% for cortical, 80.81% for non-cortical structures) with a
runtime of 4 minutes. In the evaluation in [1], this would place our approach
in 8th position, out of 25 entries. The approach with the highest DSC in the
challenge, PICSL-BC [9], reaches a score of 76.54%. A significant source of error
in our approach seems to be a wrong labeling of background labels due to the
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used skull stripping – by restricting the evaluation to the reference brain masks,
our approach would achieve 76.06%, while PICSL-BC would increase to 77.76%.

4 Summary and Discussion

We presented an efficient scheme for encoding of individual atlases for the pur-
pose of multi-atlas label propagation. It represents an atlas by an atlas-specific
classification forest, which is in contrast to the currently standard represen-
tations as an image/label-map pair, or a set of local patch collections. While
previous methods use a static encoding for all points in the image domain, our
approach learns a variable representation depending on the local context of the
particular points. The major practical advantage of our approach is that only
a single registration is required to label a target image. In return, compared to
previous approaches, we require a training stage and a probabilistic atlas. How-
ever, we show that these additional requirements are not prohibitive. Compared
to standard forest schemes, our approach has a number of advantages for label
propagation, without loss of accuracy. Overall, our approach achieves accuracy
comparable to state of the art at a much lower computational cost, both for the
actual use of the system for labeling, as well as for experimentation.

With our approach in an early stage, we see several potential directions for
improvement. Use of better atlases [20], registration [8], or skull-stripping might
improve results. Early tests indicate that the size of the used feature space can
be reduced without loss in accuracy, leading to more efficient training. Finally,
adopting existing fusion approaches (e.g. [24]) is an interesting future direction.
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Abstract. Various methods have been proposed to extract coronary artery center-
lines from computed tomography angiography (CTA) data. Almost all previous
approaches are data-driven, which try to trace a centerline from an automatically
detected or manually specified coronary ostium. No or little high level prior in-
formation is used; therefore, the centerline tracing procedure may terminate early
at a severe occlusion or an anatomically inconsistent centerline course may be
generated. Though the connectivity of coronary arteries exhibits large variations,
the position of major coronary arteries relative to the heart chambers is quite
stable. In this work, we propose to exploit the automatically segmented cham-
bers to 1) predict the initial position of the major coronary centerlines and 2)
define a vessel-specific region-of-interest (ROI) to constrain the following cen-
terline refinement. The proposed prior constraints have been integrated into a
model-driven algorithm for the extraction of three major coronary centerlines,
namely the left anterior descending artery (LAD), left circumflex artery (LCX),
and right coronary artery (RCA). After extracting the major coronary arteries, the
side branches are traced using a data-driven approach to handle large anatomi-
cal variations in side branches. Experiments on the public Rotterdam coronary
CTA database demonstrate the robustness and accuracy of the proposed method.
We achieve the best average ranking on overlap metrics among automatic meth-
ods and our accuracy metric outperforms all other 22 methods (including both
automatic and semi-automatic methods).

1 Introduction

Cardiovascular disease (CVD) is the first leading cause of death in the United States and
coronary stenosis (narrowing of the vessel) is the most common CVD. Cardiac com-
puted tomography angiography (CTA) is the primary non-invasive imaging modality to
diagnose coronary stenosis thanks to its superior image resolution. To facilitate the di-
agnosis, coronary centerlines are often extracted before the detection and quantification
of the stenosis (i.e., measuring the percentage of the lumen area blocked by plaques).
However, automatic centerline extraction is challenging due to the presence of severe
calcifications, occlusions, imaging artifacts, and insufficient contrast agent, etc. Large
anatomical variations of the coronary tree are another major challenge. For example,
depending on the dominance pattern, the posterior descending artery (PDA) and pos-
terolateral branch artery (PLB) can be fed by either the right coronary artery (RCA) or
the left circumflex artery (LCX).
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Various coronary centerline extraction methods have been proposed in the litera-
ture [1,2]. Almost all previous approaches are data-driven, which try to trace a centerline
from an automatically detected or manually specified coronary ostium. One advantage
of these approaches is the potential to handle anatomical variations. However, since
no or little high level prior information is used, the centerline tracing procedure may
terminate early at a severe occlusion or an anatomically inconsistent centerline course
may be generated. Recently, Kitamura et al. [3] proposed a method to build the coro-
nary shape model composed of 30 discrete nodes sampled from three major coronary
arteries and two coronary veins. The coronary shape model is then fitted to the detected
coronary candidates via an optimization procedure. However, it is not clear how the
coronary anatomical variations are handled with one global shape model.

Though the connectivity of coronary arteries exhibits large variations, the position
of major coronary arteries relative to the heart chambers is quite stable. For example,
the left anterior descending artery (LAD) runs in the anterior groove between the left
and right ventricles, while the LCX and RCA run in the atrial-ventricular groove before
extending toward the heart apex. In this work, we propose to exploit the automatically
segmented chambers to 1) predict the initial position of the major coronary centerlines
and 2) define a vessel-specific region-of-interest (ROI) to constrain the following cen-
terline refinement. The prior knowledge of the relative position of three major coronary
arteries w.r.t. heart chambers is encoded in a mean shape model learned from a training
set. As the first step of the centerline extraction process, the heart chambers are seg-
mented [4] and coronary ostia are detected [5] automatically in an input volume. The
deformation field from the mean shape model to the input volume is estimated using
the thin-plate spline (TPS) model [6] with the coronary ostia and heart chambers as
anchor points. A centerline in the pre-learned mean shape model is transformed to the
input volume as an initial estimate of the coronary path. The centerline is refined using
dynamic programming and then further extended to the distal end using a data-driven
approach. However, without proper constraints, the refined centerline may be traced to
a non-coronary structure. In this work, we propose a vessel-specific region-of-interest
(ROI) mask to constrain the tracing of a coronary centerline. Using the ROI mask, the
tracing error is reduced and, if it happens, the error is controlled. After extracting the
major coronary arteries, the side branches are traced using a data-driven approach [7]
since side branches exhibit far more anatomical variations and a data-driven approach
can handle such variations.

Different to our previous work [8], here, we propose a new mean centerline gener-
ation method to model the full length of a coronary and a vessel-specific ROI mesh
to constrain the tracing of centerlines. Previously, we only extracted three major coro-
nary centerlines using a model-driven approach. In this work, we combine it with a
data-driven approach to further extract all side branches. The proposed approach has
a few advantages compared to the data-driven approaches: 1) It is much more robust
under severe occlusions since the prior information is used to help the algorithm cross
an occlusion; 2) By combining model-driven and data-driven approaches, it can handle
variations in the length and topology of an artery; and 3) We combine the centerline
extraction and vessel labeling into the same procedure. Consequently, the extracted
centerlines are already labeled once detected.
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(a) (b) (c)

Fig. 1. Generating the centerline mean shape and region-of-interest mesh for the left anterior
descending artery from a set of aligned training centerlines. (a) Aligned centerline point cloud
and the coarse mean centerline (red line). (b) The refined mean centerline (blue line) (c) Region-
of-interest mesh enclosing all the point cloud.

2 Building Prior Coronary Model

The prior knowledge of the coronary artery is embedded in a mean shape model com-
posed of the four heart chambers and the three major coronary arteries. The visible
length of a major coronary artery can vary greatly either due to anatomical variations
(especially in the distal segment) or insufficient contrast agent inside the vessel. Previ-
ously, we proposed a method [8] to truncate the coronary centerlines to the same relative
length by discarding the variable distal segments. The truncation based method has two
limitations. First, the centerline points may have bad anatomical correspondence across
patients due to the variable tortuousness of a coronary artery. Second, the generated
mean centerline does not provide a model for the full length of the coronary artery.

In this work, we propose a novel two-step approach to generating a mean coronary
centerline. We first align all centerlines in the training set to the same coordinate system
by warping them into the space of the mean heart chamber shape, which is generated
using a method presented in [4]. Here, we use the nonrigid transformation defined by
the TPS model [6]. The deformation field is estimated using the heart chamber mesh
points as anchor points and it is then used to warp the annotated coronary centerlines.
Fig. 1a shows the aligned LAD centerline points. We then pick a centerline that best
represents the whole shape population. That means the average Euclidean distance from
other centerlines to this optimal centerline (one-way distance) is the smallest. Suppose
two centerlines A and B are given and they are represented as a set of equal-distance
points A0, A1, . . . , Am−1 and B0, B1, . . . , Bn−1, respectively. For each point Ai on
centerlineA, we calculate the minimum distance to centerlineB as d(Ai, B). The one-
way average Euclidean distance from A to B, D(A,B) is defined as

D(A,B) =
1

m

m−1∑
i=0

d(Ai, B). (1)
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Fig. 2. Region-of-interest (ROI) masks by combining the vessel-specific ROI and pericardium
based mask. The LAD, LCX, and RCA masks are shown at the top, middle, and bottom row,
respectively. From left to right are the masks of the proximal, middle, and distal segment, re-
spectively. The red contours show the intersection of the ROI meshes with an image slice. The
intensity of the masked voxels is increased by 1000 HU for visualization purpose.

Given a set of aligned centerlinesC0, C1, . . . , Ck−1, the coarse mean centerlineM c

is picked as the one with the minimum one-way distance from the other centerlines to
it,

Mc = argmin
Ci

k−1∑
j=0

D(Cj , Ci). (2)

We use the one-way distance to bias toward a longer centerline to model the full length
of a coronary artery. The mean centerline picked by the algorithm is always one of the
longest, which is shown as the red thick line in Fig. 1a. It has a realistic shape since it
is just one example training centerline. Furthermore, it is located roughly at the center
of the point cloud of the aligned centerlines. We further refine the mean centerline by
moving it even closer to the center of the point cloud. At each point on the coarse
mean centerline, we generate a cutting plane perpendicular to the tangent direction at
that point, as shown in Fig. 1b. The intersections of all centerlines with the cutting
plane are calculated and the mean centerline point is then adjusted to the mean position
of intersections. After adjustment, the refined mean centerline (the blue thick line in
Fig. 1b) is closer to the point cloud center.

Using the mean shape model composed of the heart chambers and major coronaries,
an initial centerline can be generated and is then further refined (refer to Section 3).
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However, without proper constraints in the refinement procedure, the extracted center-
line may be traced to a non-coronary structure. Sometimes, a distal side branch may
be picked as the main trunk, e.g., a long diagonal branch is picked as the LAD. In this
work, we propose a vessel-specific coronary mask to constrain the search of each major
coronary centerline. Besides reducing centerline tracing leakage and branch labeling er-
rors, the coronary ROI mask can also speed up the computation since irrelevant voxels
are excluded. Starting from the aligned point cloud of the training centerlines (Fig. 1a),
we generate a surface mesh tightly enclosing all aligned centerlines (Fig. 1c). Since
such a surface mesh defines a region-of-interest (ROI) for each major coronary during
centerline refinement, we call it an ROI mesh. The ball-pivoting algorithm [9] is used
to generate the ROI mesh. Given a ball with a certain size, we roll it around the point
cloud. The surface mesh (which may have multiple pieces) is defined by the outer sur-
face of the region that the ball cannot roll into. To generate a single-piece surface mesh,
we set the ball size to a relative large value (10% of the maximum distance of any point
pairs in the cloud). The generated ROI mesh is tight and it is then expanded a bit (5%)
to provide a safety margin. The vessel-specific ROI mesh can be combined with the
pericardium based coronary mask [10] to further constrain the search of major coro-
nary centerlines. Fig. 2 shows the ROI mask of three major coronaries. The proposed
method can be extended to define an ROI mesh for the whole left or right coronary tree
(including all side branches). In [11], a similar ROI is exploited for automatic calcium
scoring. However, their ROI is generated by multi-atlas based registration, which is far
more time consuming than our approach.

3 Coronary Centerline Extraction

Given an input volume, the heart chambers are segmented [4] and coronary ostia are
detected [5] automatically, and they are then used to predict the initial position of the
coronary arteries. Since the heart chambers and coronary ostia are available in both
the mean shape and the input volume, we use them to estimate a TPS deformation
field [6]. The pre-trained mean shape centerline is then transformed to the input volume,
using the estimated deformation field, to provide an initial estimate of the centerline. A
dynamic programming based optimization is then applied to refine the initial centerline
path. The initial centerline is represented as a set of evenly sampled points Pi, for i =
0, 1, . . . , n − 1. For each point Pi, we uniformly sample 41 × 41 candidate positions
P j
i on a plane perpendicular to the centerline path at this point. The candidates P j

i are
sampled on a regular grid of 20 × 20 mm2 (with grid spacing of 0.5 mm) centered at
the initial centerline point. Now, the problem is how to select the best position for each
point Pi. It can be formulated as a shortest path computation problem,

P̄
J(0)
0 , P̄

J(1)
1 , . . . , P̄

J(n−1)
n−1 = arg min

P
J(i)
i

n−1∑
i=0

C(P
J(i)
i ) + w

n−2∑
i=0

‖P J(i)
i − P

J(i+1)
i+1 ‖. (3)

The first term is the cost for a single node, measuring how likely this point is at the
center of the vessel. Here, a machine learning based vesselness [10] is used as the node
cost. The second term is the total length of the path by summing the Euclidean distance
between two neighboring points on the path. Free parameterw, which is used to balance
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Table 1. Comparison with other automatic centerline extraction methods on the Rotterdam
coronary CTA test set (24 datasets) using the overlap metrics. The semi-automatic methods par-
ticipated in the ranking, but are removed in the table due to the page limit.

Method Overall Rank OV OF OT
% score rank % score rank % score rank

Proposed Method 8.91 93.5 53.4 10.98 76.5 54.9 8.22 95.6 70.0 7.54
GFVCoronaryExtractor 9.02 93.7 55.9 10.73 74.2 52.9 9.09 95.9 68.5 7.24

GVFTube’n’Linkage 10.52 92.7 52.3 12.31 71.9 51.4 10.35 95.3 67.0 8.91
SupervisedExtraction 11.28 90.6 53.8 12.75 70.9 49.0 10.52 92.5 61.2 10.56
DepthFirstModelFit 11.86 84.7 48.6 14.26 65.3 49.2 10.19 87.0 60.1 11.14

COR Analyzer 12.92 87.7 50.3 14.53 71.7 47.8 12.00 89.8 59.5 12.22
AutoCoronaryTree 15.07 84.7 46.5 15.88 59.5 36.1 14.23 86.2 50.3 15.11

CocomoBeach 16.23 78.8 42.5 17.66 64.4 40.0 14.19 81.2 46.9 16.83
VirtualContrast 16.44 75.6 39.2 18.26 56.1 34.5 14.80 78.7 45.6 16.27

the two terms, is heuristically tuned on a few datasets and then fixed throughout the ex-
periments. The optimal path can be calculated efficiently using dynamic programming.
For patients with short discernible coronaries, the centerline extracted by the above
model-driven step may be too long; therefore, the distal centerline may be traced into a
non-coronary structure. We shrink the centerline from the end point, one by one, if its
vesselness score is less than a threshold. The centerline is then extended to the distal end
to extract the full length of the coronary. After the verification-and-extension process,
errors in the distal centerline are corrected.

After extracting centerlines of the three major coronary arteries, the algorithm starts
to trace side branches. First, the bifurcation of a side branch is detected on a major
centerline using region growing based lumen segmentation. Starting from a centerline
point, bright voxels connected to the current point are added iteratively. The growing
front (composed of the added voxels in the latest iteration) is monitored. If a side branch
presents, the region growing procedure will go into the side branch. A side branch is
detected when we find a front with a distance to the existing major centerline larger than
a threshold. At each detected bifurcation point, a data-driven centerline tracing process
is initialized [7]. Please refer to [7] for more details for the tracing of a coronary sub-tree
from a given starting point.

Though in general the extracted centerline is located at or close to the lumen center,
sometimes, it may take a shortcut at a tortuous segment or be attracted to calcifications.
Further post-processing is exploited to move the centerline to the lumen center.

4 Experiments

The algorithm was trained on our proprietary datasets (108 volumes) and evaluated on
the public Rotterdam coronary CTA database [2]. The Rotterdam database contains a
training set (eight datasets) and a test set (24 datasets), and each dataset has four man-
ually annotated coronary artery centerlines, namely the RCA, LAD, LCX, and a ran-
domly picked large side branch. An algorithm is evaluated with the overlap and accuracy
inside (AI) metrics. The overlap metric is further broken down into three individual mea-
surements, including overlap (OV), overlap until first error (OF), and overlap with the
clinically relevant part of the vessel (OT). All measurements are based on point-to-point
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Table 2. Comparison with other centerline extraction methods on the Rotterdam coronary CTA
test set (24 datasets) using the accuracy inside (AI) metric

Method Automatic AI Method Automatic AI
mm Score Rank mm Score Rank

Proposed Method Y 0.20 51.6 2.48 VesselTractography N 0.36 30.7 14.99
ShapeRegression N 0.23 49.6 3.10 VirtualContrast Y 0.39 30.6 15.01

MHT N 0.23 47.9 3.86 GVFTube’n’Linkage Y 0.37 29.8 15.79
SupervisedExtraction Y 0.25 47.3 4.28 KnowledgeBasedMinPath N 0.39 29.2 16.22

Tracer N 0.26 44.4 6.17 ElasticModel N 0.40 29.3 16.22
COR Analyzer Y 0.25 44.8 6.78 TwoPointMinCost N 0.46 28.0 16.94

VirtualContrast2b N 0.27 41.6 7.56 AxialSymmetry N 0.46 26.4 18.07
DepthFirstModelFit Y 0.28 41.9 7.63 StatisticalTracking N 0.51 25.1 18.22
BayesianMaxPaths N 0.29 37.0 10.41 TubSurfGradFlow N 0.47 24.8 19.14

GFVCoronaryExtractor Y 0.30 37.1 10.41 3DInteractiveTrack N 0.51 24.2 19.84
CocomoBeach Y 0.29 37.7 10.71 CoronaryTreeMorphoRec N 0.59 20.7 20.75

AutoCoronaryTree Y 0.34 35.3 11.32

Fig. 3. Examples of the extracted coronary centerlines on the Rotterdam database. The first five
patients have occlusions and the last one has low image quality.

correspondence between the detected centerline and the ground truth. A centerline point
is claimed to be detected correctly if its distance to the corresponding ground truth point
is no more than the radius of the annotated lumen at that point. The AI metric measures
the distance between the extracted centerline and the ground truth for the correctly de-
tected centerline part. A score is further assigned based on the inter-observer variability
(score 100 for a perfect result and score 50 for an error matching the inter-observer vari-
ability). The algorithms are ranked on each vessel and the average ranking is reported.
Please refer to [2] for more details about the datasets and evaluation metrics.

On the training set, the proposed method outperforms the other automatic methods
on all overlap metrics (OV, OF, and OT). On the test set, as shown in Table 1, our method
has the best average ranking (ranking 1st on OF, and 2nd on OV and OT) among all
automatic methods (nine submissions in total). Regarding the accuracy measurement
(AI), the proposed method clearly outperforms all other 22 algorithms (including both
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automatic and semi-automatic methods) on both the training and test sets. Table 2 shows
the ranking of all algorithms on the test set using the AI metric. With an average score
of 51.6, we achieve an accuracy comparable to inter-observer variability. Please refer
to http://coronary.bigr.nl/centerlines/results/results.php for more details. Fig. 3 shows a
few examples of extracted centerlines using the proposed method.

5 Conclusion

We proposed a novel centerline extraction method combining the advantages of model-
driven (robustness under severe occlusions) and data-driven approaches (the capabil-
ity to handle anatomical variations of the coronary tree). Experiments on the public
Rotterdam coronary CTA database demonstrate the robustness and accuracy of the pro-
posed method. We achieve the best average ranking on overlap metrics among auto-
matic methods and our accuracy metric outperforms all other 22 methods (including
both automatic and semi-automatic methods).

References

1. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmen-
tation techniques: Models, features and extraction schemes. Medical Image Analysis 13(6),
819–845 (2009)

2. Schaap, M., Metz, C.T., van Walsum, T., et al.: Standardized evaluation methodology and
reference database for evaluating coronary artery centerline extraction algorithms. Medical
Image Analysis 13, 701–714 (2009)

3. Kitamura, Y., Li, Y., Ito, W.: Automatic coronary extraction by supervised detection and
shape matching. In: Proc. IEEE Int’l Sym. Biomedical Imaging, pp. 234–237 (2012)

4. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart
modeling and automatic segmentation for 3D cardiac CT volumes using marginal space
learning and steerable features. IEEE Trans. Medical Imaging 27(11), 1668–1681 (2008)

5. Zheng, Y., Tek, H., Funka-Lea, G., Zhou, S.K., Vega-Higuera, F., Comaniciu, D.: Efficient
detection of native and bypass coronary ostia in cardiac CT volumes: Anatomical vs. patho-
logical structures. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III.
LNCS, vol. 6893, pp. 403–410. Springer, Heidelberg (2011)

6. Bookstein, F.: Principal warps: Thin-plate splines and the decomposition of deformations.
IEEE Trans. Pattern Anal. Machine Intell. 11(6), 567–585 (1989)

7. Tek, H., Gulsun, M.A., Laguitton, S., Grady, L., Lesage, D., Funka-Lea, G.: Automatic coro-
nary tree modeling. The Insight Journal, 1–8 (2008)

8. Zheng, Y., Shen, J., Tek, H., Funka-Lea, G.: Model-driven centerline extraction for severely
occluded major coronary arteries. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds.) MLMI
2012. LNCS, vol. 7588, pp. 10–18. Springer, Heidelberg (2012)

9. Bernardini, F., Mittleman, J., Rushmeier, Silva, C., Taubin, G.: The ball-pivoting algorithm
for surface reconstruction. IEEE Trans. Visualization and Computer Graphics 5(4), 349–359
(1999)

10. Zheng, Y., Loziczonek, M., Georgescu, B., Zhou, S.K., Vega-Higuera, F., Comaniciu, D.:
Machine learning based vesselness measurement for coronary artery segmentation in cardiac
CT volumes. In: Proc. of SPIE Medical Imaging, vol. 7962, pp. 1–12 (2011)

11. Shahzad, R.K., Schaap, M., van Walsum, T., Klein, S., Weustink, A.C., van Vliet, L.J.,
Niessen, W.J.: A patient-specific coronary density estimate. In: Proc. IEEE Int’l Sym.
Biomedical Imaging, pp. 9–12 (2010)



Incorporating Shape Variability in Image

Segmentation via Implicit Template Deformation

Raphael Prevost1,2, Remi Cuingnet1, Benoit Mory1,
Laurent D. Cohen2, and Roberto Ardon1

1 Philips Research Medisys, Suresnes, France
2 CEREMADE UMR 7534, CNRS, Université Paris Dauphine, Paris, France

Abstract. Implicit template deformation is a model-based segmenta-
tion framework that was successfully applied in several medical appli-
cations. In this paper, we propose a method to learn and use prior
knowledge on shape variability in such framework. This shape prior is
learnt via an original and dedicated process in which both an optimal
template and principal modes of variations are estimated from a collec-
tion of shapes. This learning strategy requires neither a pre-alignment
of the training shapes nor one-to-one correspondences between shape
sample points. We then generalize the implicit template deformation
formulation to automatically select the most plausible deformation as
a shape prior. This novel framework maintains the two main proper-
ties of implicit template deformation: topology preservation and com-
putational efficiency. Our approach can be applied to any organ with a
possibly complex shape but fixed topology. We validate our method on
myocardium segmentation from cardiac magnetic resonance short-axis
images and demonstrate segmentation improvement over standard
template deformation.

1 Introduction

Model-based methods are particularly effective and popular in medical image
segmentation. Among them, template deformation has recently been used in
various applications [1–4] for its interesting properties (computational efficiency,
topology preservation, compatibility with user interactions). This variational
method consists in seeking a segmenting implicit function as a deformed implicit
template. This template, acting as a shape prior, is therefore of paramount im-
portance. However, in previous works the initial template was either set as a
synthetic model (e.g. ellipsoid for a kidney [2–4]) or as a segmented organ from
a single arbitrary image [1]. Despite the consensus that learning shape priors is
a powerful approach to improve robustness [5, 6], this has never been proposed
in the context of segmentation by implicit template deformation.

In this paper, our goal is thus to improve implicit template deformation by
taking into account learnt shape information while keeping both topology preser-
vation and computational efficiency. Shape learning is often performed through
statistical analysis of boundary vertices [6, 7] or implicit functions [8, 9]. However
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neither of these two representations guarantees topology preservation after av-
eraging. To do so, other methods represent shapes via diffeomorphisms [10, 11],
but they come with a high computational cost that is not compatible with real-
time segmentation. We therefore propose a dedicated learning approach by us-
ing the template deformation energy as a pre-metric in the shapes space. This
yields a co-segmentation process (similar to [12] for registration), within which
an optimal template is estimated (see Figure 1). We also capture further infor-
mation by building a space of main deformations around this template. Finally,
we introduce a generalization of the template deformation formulation by us-
ing the computed statistics in the regularization term. The proposed framework
is generic and can be applied to any organ with a possibly complex and vari-
able shape but a fixed topology. We demonstrate its efficacity and interest by
addressing the problem of myocardium segmentation in 2D cine-MR images.

In the following, Section 2 introduces the main notations and recalls the im-
plicit template deformation framework. In Section 3, we develop the learning
framework to estimate statistics that will be used to improve segmentation in
Section 4. Optimization details are provided in Section 5. Validation results on
clinical data are presented in Section 6 and discussion concludes the paper.

2 Segmentation by Implicit Template Deformation

Implicit template deformation [1, 2] is a variational framework for image seg-
mentation. The segmentation is defined through the zero level-set of an implicit
function φ : Ω → R, and φ is positive (resp. negative) inside (resp. outside) the
segmentation. In this framework, the set of admissible segmentations S is defined
via an implicit template φ0 : Ω → R as the set of all implicit functions with the
same topology as φ0, i.e. S = {φ : Ω → R s.t. φ = φ0 ◦ ψ , ψ is diffeomorphic} .
The unknown is thus the transformation ψ : Ω → Ω which is sought as a mini-
mum of a region competition energy:

min
ψ

{∫
Ω

H(φ0 ◦ ψ) rint +
∫
Ω

(1−H(φ0 ◦ ψ)) rext + λ R(ψ)

}
, (1)
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where H denotes the Heaviside function (H(a) = 1 if a > 0, 0 otherwise) while
rint and rext are image-based functions such as rint(x) is lower (resp. higher) than
rext(x) if voxel x seems to belong to the target object (resp. background). R(ψ)
is a contraint term on ψ that prevents the segmentation φ = φ0◦ψ to deviate too
much from the initial template φ0; it is weighted by a parameter λ. In [2], ψ is
decomposed into (i) a global transformation G ∈ G (e.g. a similarity) accounting
for the pose of the template in the image, and (ii) a diffeomorphism L ∈ D(Ω)
that yields local deformation and does change the shape of the template. This
decomposition allows to define the regularization as a function of the deformation
only R(ψ) = R(L) = 1

2‖L − Id‖22. The problem finally reads

min
L,G

{∫
Ω

H(φ0 ◦ L ◦ G) rint +
∫
Ω

(1−H(φ0 ◦ L ◦ G)) rext +
λ

2
‖L − Id‖22

}
.

(2)
In such a setting, φ0 not only fixes the topology of the segmentation but also

acts as a shape prior, which makes its choice of paramount importance. Moreover,
the term R could be improved by taking into account shape variability of the
considered organ. In the next section, we develop a framework to tackle both
problems by estimating statistics on a collection of shapes.

3 A Dedicated Learning of Shape Variability

Consider N shapes of a given organ (coming for example from manual expert
segmentations) implicitly represented by {φi}i=1..N ⊂ S. From this set we aim
to extract useful statistical information in terms of segmentation, that is to say
a mean shape and a deformation model.

In order to estimate statistics in S, we first define an adapted pre-metric in
this space. Any shape φ1 ∈ S can be warped to another shape φ2 ∈ S via implicit
template deformation by solving Problem (2) with φ0 := φ1, and for example

rφ2

int := max(−φ2, 0) and rφ2

ext := max(φ2, 0). This leads to a dedicated
definition of shape dissimilarity:

C2(φ1, φ2) = min
L∈D

G∈G

{∫
Ω

H(φ1◦L◦G) rφ2

int+

∫
Ω

(1−H(φ1◦L◦G)) rφ2

ext+
λ

2
‖L−Id‖22

}
As in [12], our dedicated notion of mean is defined via a minimization problem :

φm = argmin
φ∈S

N∑
i=1

C2(φ, φi) ⇔ φm = φ0 ◦
{
argmin
L∈D(Ω)

N∑
i=1

C2(φ0 ◦ L, φi)
}

(3)

The right-handside equivalence comes from the constraint φm ∈ S. Indeed, the
mean template has to preserve the topology of the training shapes. Expanding
the segmentation costs and neglecting constant terms in Equation (3) yields the
following optimization problem to solve:

min
L∈D(Ω)

(Li)i∈D(Ω)N , (Gi)i∈G
N

Elearn = −
N∑
i=1

∫
Ω

H(φ0◦L◦Li ◦Gi) φi+
λ

2
‖Li−Id‖22 . (4)
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This can be interpreted as segmenting simultaneously all training shapes {φi}i
starting from φ0 while estimating an optimal common intermediate shape φ0 ◦L
(see Figure 1). In Eq (4), the energy is minimized (see Section 5) with respect
to three kinds of variables

– the global transformations (Gi)i, called the poses, that register all shapes
to φ0 with translation, rotation and scaling. As they are part of the opti-
mization process (see Section 5), they do not bias the learning, as a fixed
pre-alignement (e.g. [8, 9]) would do.

– the common deformation L, which includes the common parts of the
deformations from φ0 to all the training shapes.

– the local deformations (Li)i, called the residual deformations, are the
residual components of the deformations from φ0 ◦ L to φi. Unlike L, their
magnitude is penalized so that any deformation which is common to all the
training set will be preferably included in L.

The optimal common deformation L∗ can be used to define the optimal tem-
plate as φm = φ0 ◦ L∗. This shape globally minimizes the magnitude of residual
deformations to each shape of the dataset. Note that L is not penalized so the
choice of φ0 defines the topology of φm but does not affects it further.

The optimal residual deformations (L∗
i )i are also available and can be used

to capture further information on the variability of the training shapes. We
build a space of principal deformations L to constrain future segmentation of
new images. As in [13], a principal component analysis (PCA) is applied to the
residual deformations (L∗

i )i to find a suitable parametrization of such a space.
Any deformation  ∈ L can then be written as a linear combination of the offset
̄ and (k)k=1..M the first M modes of variation:

[w] = ̄+

M∑
k=1

wk k , w ∈ R
M . (5)

The space of diffeomorphisms is not stable under linear combinations so ele-
ments of L are not necessarily diffeomorphisms. Nevertheless we show hereafter
how this space indirectly in a topology-preserving segmentation framework.

4 Generalized Implicit Template Deformation

The previously estimated statistical information can be used to improve the im-
plicit template deformation described in Eq. (2). A first improvement is achieved
by replacing the original template φ0 by the mean template φm = φ0 ◦ L∗. Sec-
ondly, the estimation of the deformation can also be enhanced by using the space
of principal deformations L. In most previous work [7, 9, 14], the learnt variable
is directly expressed as a linear combination of modes. Here we rather modify
the regularization term R so that diffeomorphism L is constrained with respect
to the set L instead of the identity. Thus, only deformations that cannot be ex-
plained through the learnt space L are penalized. The rationale is to use linear
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combinations of diffeomorphisms indirectly to preserve both the topology and
the computational efficiency. The new segmentation energy therefore reads

Eseg(L,G, w) =
∫
Ω

H(φm◦L◦G) rint+(1−H(φm◦L◦G)) rext+
λ

2
‖L−[w]‖22 . (6)

Minimization of (6) can be performed with an alternate scheme:

Update of the Segmentation. With [w] fixed, the energy is minimized
through a gradient descent-like scheme on L and G (see Section 5).

Update of the Modes Weights. With L and G fixed, the update of L[w] can
be seen as a projection of L onto L. Indeed the energy minimization comes
down to a simple quadratic problem, whose closed-form solution is

∀k ∈ {1, ..,M}, wk =
〈
L − ̄, k

〉
/ 〈k, k〉 . (7)

The first step is similar to standard template deformation [2] and the second one
is straightforward. Therefore, the proposed algorithm maintains the efficiency of
the original algorithm. Further details on optimization are provided herebelow.

5 Optimization Schemes

Both learning (4) and segmentation (6) energies involve variables, either in G for
poses or in D(Ω) for deformations, that are simultaneously updated. Variables
in G can be parameterized by a vector p in RP (translation, rotation angles,
scales). Minimization of a given energy E is done through a gradient descent on
this vector: p(n+1) ← p(n) − Δt∇pE, where Δt is the time step. On the other
hand, such a process is not suitable in D(Ω) as this space is not stable under
linear combinations. A more appropriate way is to combine diffeomorphisms via
composition since (D(Ω), ◦) is a group. Following [1], we therefore update any
diffeomorphism L in the following way: L(n+1) ← (Id − Δt ∇LE) ◦ L(n).
The regularity is enforced by a Gaussian filtering of the gradient as in [2].

6 Validation

We validated our method in the context of myocardium analysis and segmenta-
tion in cardiac short-axis 2D cine-MR images. This task is particularly challeng-
ing for model-based approaches because of the complex topology of the target
object, i.e. a band around left and right ventricles.

Our dataset is composed of 245 MR images coming from 61 different patients,
which was randomly split into a training set (120 images, 30 patients) and a
testing set (125 images, 31 patients). The acquisitions have been synchronised
so that each heart is in the same cardiac phase. In every image, a myocardium
segmentation has been manually performed by a radiologist. The initial synthetic
template φ0 used is shown in Figure 1.
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Fig. 2. Mean model and first two modes of the variation of the myocardium learnt
on the training dataset using implicit shape model [9] (left), active shape model [7]
(middle) and the proposed method (right). For our approach, the visualized shapes are
the zero level-sets of φm ◦ (�̄+w1 �1 + w2 �2).

First we compare qualitatively the shape information learnt from the implicit
shape model proposed in [9], the active shape framework [7] and our proposed
approach. Figure 2 shows the mean shape and first two modes of variation for
each method. The implicit method fails at recovering the true topology of the
mean shape, as well as its first modes of variations. The explicit method performs
better and provides a reasonable mean model. However, the modes of variation
are less satisfying than the modes of deformations learnt with our approach
(which tends to provide a better topology preservation and seem more realistic).

Then we evaluate how learnt information improves segmentation via implicit
template deformation of unseen images. Myocardiums have been segmented in
test images using (i) the synthetic model φ0 as template, (ii) the estimated
mean model φm as template, (iii) the new deformation model-based regulariza-
tion term in addition to the mean model φm (with 5 modes). The image-based
classification functions rint and rext were negative log-likelihoods of intensity
probability distributions inside and outside the myocardium. Performance of
each algorithm is quantified using Dice coefficients between the segmentation
and the expert ground truth. Results on the whole testing set are summarized
in Figure 3. Both the replacement of the template φ0 by φm and the introduction
of the new regularization term improved the robustness of the segmentations (p-
value < 0.0001 for a Wilcoxon signed-rank test). To illustrate this improvement,
Figure 4 shows some results in three different cases, for the classical regulariza-
tion term with two values of the shape constraint parameter λ ∈ {1, 2} and the
new model-based regularization term. In all settings, the template was the mean
model φm. Consider Case �1: since the image term is reliable, a satisfying result
is obtained with a small shape constraint. However, the myocardium deviates
significantly from the mean shape: using a too strong constraint λ2 prevents
the algorithm to converge towards the right solution. Conversely in Case �2, the
image information is much more ambiguous. This provokes some leaks with λ1,
which shows there is no fixed value that allows a good segmentation in both
cases. Yet by introducing the new regularization (fourth column), likely defor-
mations are not penalized. This allows us to widen the capture range while still
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avoiding unrealistic leaks. Finally, case �3 illustrates that our method may also
improve the result even if no λ was originally successful.

Fig. 3. Boxplot of the Dice coeffi-
cients for myocardium segmentation
in MR images via implicit template
deformation with synthetic model
φ0 (left), mean model φm (middle),
mean model φm and deformation
model (right)

�
��
��
��
��
���
��
	


�� � �������

��	
��
�����
���
�����	
��������
���
���

���

���

���

���

���

�� 

	1

	2

	3

(a) (b) (c) (d)
Baseline, λ = 1 Baseline, λ = 2 Proposed, λ = 2

Fig. 4. Segmentation results (red) of different cases versus ground truths (green). Main
failures are highlighted by yellow arrows. (a) Original images, (b,c) Baseline method [2]
with small (λ = 1) and high (λ = 2) shape constraint, (d) Proposed method.

7 Conclusion

In this paper we have presented a method to include organ shape variability in
the implicit template deformation framework. A variational approach was pro-
posed to extract statistical information (mean and principal variations) from a
collection of shapes. This training method is automatic, does not require land-
marks correspondance and relies upon a definition of shape dissimilarity that is



Incorporating Shape Variability in Image Segmentation 89

directly derived from the implicit template deformation functional. We also pro-
posed a generalization of the original segmentation algorithm in which the shape
prior is automatically adapted to the current image during the deformation pro-
cess with almost no additional cost (segmentation takes around one second on a
standard computer). Quantitative results demonstrated the improvement over im-
plicit template deformation for a 2D application. Our approach is very generic and
can be used to segment any object with a complex shape but a fixed topology that
shall be preserved. Furthermore, extension in 3D or to multiple objects (e.g. brain
structures) is straightforward thanks to the implicit representation of shapes. De-
spite its paramount importance, the image-based term was not investigated as we
focused on incorporating shape information on top of any pixelwise classifier. We
plan to extend our framework to learn a dedicated appearance model as well.
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Abstract. Compared to pre-operative imaging modalities, it is more convenient
to estimate the current cardiac physiological status from C-arm angiocardiog-
raphy since C-arm is a widely used intra-operative imaging modality to guide
many cardiac interventions. The 3D shape and motion of the left ventricle (LV)
estimated from rotational angiocardiography provide important cardiac function
measurements, e.g., ejection fraction and myocardium motion dyssynchrony.
However, automatic estimation of the 3D LV motion is difficult since all anatom-
ical structures overlap on the 2D X-ray projections and the nearby confounding
strong image boundaries (e.g., pericardium) often cause ambiguities to LV en-
docardium boundary detection. In this paper, a new framework is proposed to
overcome the aforementioned difficulties: (1) A new learning-based boundary
detector is developed by training a boosting boundary classifier combined with
the principal component analysis of a local image patch; (2) The prior LV mo-
tion model is learned from a set of dynamic cardiac computed tomography (CT)
sequences to provide a good initial estimate of the 3D LV shape of different car-
diac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All
these components are integrated into a multi-surface graph optimization method
to extract the globally coherent motion. The method is tested on seven patient
scans, showing significant improvement on the ambiguous boundary cases with a
detection accuracy of 2.87±1.00mm on LV endocardium boundary delineation
in the 2D projections.

1 Introduction

With multi-view or rotational angiocardiography, the 3D shape and motion of the left
ventricle (LV) can be estimated for intra-operative analysis of cardiac physiology, e.g.,
ejection fraction (EF) and myocardium motion dyssynchrony. Previous methods in 3D
LV shape/motion estimation from angiocardiography include binary voxel reconstruc-
tion based on 2D image intensities [1], elastic matching [2], and 4D B-spline model [3],
etc. Most of these methods rely on manual editing of the silhouette of the LV endo-
cardium due to the difficulty in automatic boundary detection. Recently, an automatic
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c© Springer-Verlag Berlin Heidelberg 2013
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(a) (b) (c) (d)

Fig. 1. (a) One projection image; (b) Projected initial mesh; (c) The silhouette (green contour)
of the projected mesh and projected trajectory (yellow lines) based on the normal direction; (d)
The silhouette of the projected mesh and projected trajectory based on the prior model

method was proposed for 3D motion estimation of the LV from rotational angiocardio-
graphy [4]. First, a 3D LV mesh model is segmented from the 3D volume containing
motion blur. The mesh is then forward-projected to each 2D X-ray angiogram as an
initial estimate of the LV boundary (Fig. 1b). The silhouette of the projected mesh is
extracted and deformed to fit the LV boundary observed on the angiogram. Therefore,
the 2D motion vector can be estimated for each silhouette point. With the assumption
that the 3D LV motion is along the surface normal, the estimated 2D motion vector can
be converted into 3D motion.

In this paper, a new method is proposed to overcome several limitations in the pre-
vious work. First, the initialization with a static LV model [4] (which is close to the
shape of the end-diastolic phase) is not accurate enough, especially for the end-systolic
phase, which has a much smaller LV volume. To address this issue, a prior LV motion
model is learned from a set of dynamic cardiac CT sequences. Using the previous 3D
static LV model generated from the non-gated reconstruction, the prior motion model is
aligned to the patient coordinate system to provide individualized initial mesh for each
cardiac phase. Second, the previous assumption of motion along the surface-normal is
reasonable for the middle and basal LV segments, but not good for the LV apex (Fig. 1c)
with many intersections in the trajectories of mesh points around the apex. In this work,
for each mesh point, a 3D motion trajectory is also learned from the dynamic cardiac
sequences to replace the assumption of motion along the surface normal. Third, instead
of using each individual local image feature [4] for the weak classifiers to train an Ad-
aBoost based boundary detector, principal component analysis (PCA) is applied to a
local image patch to create a compact feature representation. The new feature pool is
composed of the top principal components (PC) and the combination of a pair of PCs,
which are more powerful than the previous local image features. Last, instead of esti-
mating the 3D LV shape of each cardiac phase independently, we exploit the recently
proposed multi-surface graph optimization approach [5] to extract the whole motion
sequence from one single optimization procedure.

2 Method

2.1 Problem Formulation

In rotational angiocardiography, the C-arm X-ray source/detector pair is rotated around
the patient over 200 degrees while acquiring 2D projection images. Imaging starts with
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(a) (b)

Fig. 2. (a) An illustration of computing cost values along motion trajectory. (b) An illustration of
computing the dot product between the 2D motion vector (yellow arrow) and the image gradient
(red arrow) in two locations indicated by the white rectangle.

a delay of 1s with respect to the injection of contrast agent into the heart chambers.
The electrocardiography (ECG) signal is used to record the cardiac phase synchronous
to the acquisition of each projection image. The patients were asked to hold breath
during the acquisition. In the proposed framework, The ECG signal is analyzed and a
relative phase bin is assigned to each projection image. The LV motion is assumed to
be periodic and is represented by a sequence of triangulated meshes −→n (m, t), which
indicates the 3D spatial location of a mesh point indexed by m ∈ [0,M − 1] at phase
t ∈ [0, T − 1]. Here, M is the number of mesh points and T is the number of cardiac
phase bins. This representation inherently enforces the identical topology of the LV
meshes and point correspondence in different phases. The motion detection framework
is established on predetermined motion trajectories from an initial location, which pro-
vides a close approximation to the detected motion and is used to create the base of the
4D graph. The motion trajectories determine the possible location for each mesh point
before the detection. They are sampled by a limited number of points ns(m, t), where
ns ∈ [0, N − 1] is the point index. (For an initial estimation based on a static mesh,
ns(m, t) is irrelevant to t.) Each sampled point ns(m, t) is assigned a cost value, which
is used during the optimal detection framework. The optimization aims to minimize the
following function,

n̂(m, t) = arg min
ns(m,t)

T−1∑
t=0

M−1∑
m=0

cost(ns(m, t),m, t), (1)

where n̂ is selected from all the possible ns. The details of the graph-search-based
motion detection framework can be referred to Chen et al. [5], where both spatial and
temporal smoothness constraints are incorporated in the optimization framework.

The assignment of the cost value for motion trajectories on the silhouette is illustrated
in Fig. 2a, where the black and the white rectangles represent the original 3D sampled
location and the corresponding 2D projected locations. For each sampled point the cost
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value is computed by the following functions:

cost(ns,m, t) = −
P−1∑
p=0

δ(p, t)ζ(m, p)w(ns,m, p), (2)

where P is the number of projection images. Function δ(p, t) equals to one if and only
if the projection image p belongs to the phase index t. Otherwise, it equals to zero.
Function ζ(m, p) equals to one if and only if the mesh pointm locates on the silhouette
in projection p. Otherwise, it equals to zero. Function w(ns,m, p) computes the cost
value for a sampled point ns of a mesh point m in one projection image p. In [5], the
cost functionw(ns,m, p) is assigned based on the dot-product of the projection motion
direction and image gradient (Fig. 2b), which works well for lung tumor boundary
detection in 2D projections of mega-voltage cone beam CT. In this application, the
image boundary of the LV endocardium is much weaker than a nearby confounding
boundary of the LV pericardium (the boundary between the heart and lung). Therefore,
the deformed silhouette is often attracted to the pericardium. In this work, we propose to
use the response of a learning-based boundary detector as the cost functionw(ns,m, p)
(Section 2.4).

2.2 Prior Motion Model

The prior LV motion model is derived from a training set containing 12 LV motion se-
quences extracted from dynamic cardiac CT data sets, where each sequence contains 10
LV meshes (10 phases). The mean LV surface is computed after aligning the 4D (3D+t)
shapes based on the Procrustes analysis [6]. Given an input dataset of a patient, a static
LV mesh is extracted from the non-ECG-gated reconstruction. The static mesh and the
prior motion model are represented by the same LV model with built-in point correspon-
dences. The prior motion model is transformed to the patient coordinate system specified
by the static mesh based on the thin-plate-spline (TPS) interpolation approach [7] to pro-
vide an personalized initial mesh for each phase. The static mesh is found close to the
shape of the end-diastolic (ED) phase, instead of the average shape of the whole cardiac
cycle. The displacement between ED phase of the mean LV motion model and the static
mesh provides the landmarks/anchor points for the registration technique.

2.3 Motion Trajectory

In order to convert the 2D motion vector estimated from the angiogram to 3D, a previous
assumption is that the motion occurs mainly along the surface normal [4]. It is reasonable
for most parts of the LV where the motion is dominated by the contraction and relaxation
of the LV cavity. However, this assumption does not hold well for the LV apical region,
where the LV endocardium forms a sharp wedge. As shown in Fig. 1c, the projected
normal directions have severe self-intersections around the LV apex. The intersections
in the motion trajectory will eventually result in folds in the estimated 3D mesh.

In this work, the prior motion trajectory is fitted by a 3D quadratic curve for each
mesh point (m, t). The fitting is based on using the transformed prior motion model
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(a) (b) (c)

Fig. 3. (a) Sample of an image patch; (b) Along a manual contour (green) in one projection im-
age, positive (yellow arrows) and negative (red arrows) locations are selected to train the boundary
detector; (c) Positive (blue) and negative (red) training data visualized in PCA-reduced 2D space.
Each cyan line shows the classification boundary of a weak classifier.

introduced in the previous section, where a parametric curve with the following repre-
sentation is determined by the least-squared errors (LSE) with 10 points (one from each
cardiac phase and the whole cardiac cycle contains 10 phases):

x(t) = x0 + a1t+ a2t
2, (3)

y(t) = y0 + b1t+ b2t
2, (4)

z(t) = z0 + c1t+ c2t
2. (5)

(x0, y0, z0) is assigned with the point location of the initial mesh model.
Fig. 1d shows the projected motion trajectory. Compared to the normal direction, the

learned motion trajectory has much fewer self-intersections around the LV apex.

2.4 Boundary Detector Based on Supervised Learning

Instead of computing the image gradient for each projected 2D location [5], a binary
classifier is trained from a data set containing manually labeled positive and negative
data points. The graph node cost w(ns,m, p) in Equation (2) is computed based on
the posterior probability p(+1|x), where x is a feature vector including the intensity of
a sampled 11 × 11 pixel patch centered on the projected location. The orientation of
the patch is determined by the tangent direction of the motion trajectory at its center
location. Fig. 3a illustrates one image patch example.

The manually annotated LV contours on the projection images are used to create
the training data set, which is illustrated in Fig. 3b. The contour points are used as
positive data, while the negative data are located at certain distance outside or inside
of the contour. The orientation of both positive or negative patches is set to the normal
direction of the nearby annotated contour.

The training stage includes a dimensionality reduction step based on the principal
component analysis (PCA) and an AdaBoost training step [8]. During the PCA step,
the original 121 dimensional space is reduced to a few principal components (PC) with
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largest variations. Two types of features are extracted after PCA to train an AdaBoost
classifier. The first type of features contains coefficients for the 50 most significant PCs:

fT1(Xr) =
∑
i

wiIri, (6)

wherewi and Iri represents the weight and value of the ith PC, respectively. The second
type of features contains a linear combination of the first two PCs since the two most
significant PCs cover about 98% of all the variance,

fT2(Xr) = cos(θ)Ir1 + sin(θ)Ir2, (7)

where Ir1 and Ir2 are the value of the training point Xr in the reduced dimension and θ
sets the relative weight of these two PCs. Parameter θ is quantized with a step size of 1
degree to generate an finite number of 2D linear features. Fig. 3c shows a few selected
type-II features by the AbaBoost classifier. The positive and negative training data are
shown as blue and red dots, respectively. A cyan line shows a type-II feature with a
specific combination of the first two PCs.

For each training point, the feature function fT1 or fT2 is able to generate a value
used for a weak classifier:

hi(Xr) = sign(pifi(Xr)− piγi), (8)

where pi is ±1, representing the parity of the data, and γi is the threshold for the binary
classification. The subscript i in those denotations represents the ith feature in the fea-
ture pool. A strong classifier is generated by combining a set of selected weak classifiers
from the feature pool with a value F :

H(Xr) = sign(F (Xr)), F (Xr) =

K∑
i=1

σihi(Xr), (9)

where σi is a parameter related to the training error of the ith weak classifier and K
is the number of selected weak classifiers. The posterior probability of the binary Ad-
aBoost classifier is given by:

q(+1|Xr) =
e2F (Xr)

1 + e2F (Xr)
, q(−1|Xr) =

e−2F (Xr)

1 + e−2F (Xr)
. (10)

3 Experiments

We collected seven sequences of C-arm rotational angiocardiograms from two clinical
sites. A typical imaging protocol was composed with a rotation of the C-arm X-ray
source/detector around the patient for 200 degrees. Each rotation took about five sec-
onds and a total of 133 projection images were recorded. Leave-one-out cross validation
is performed to quantitatively evaluate the accuracy of the proposed method by com-
puting the distance between the mesh silhouette and a manual contour. The distance of
the two contours is computed by measuring the distance between each silhouette point
and its closest location on the manual contour:

dist(C1, C2) =
1

Np

∑
p1∈C1

minp2∈C2dist(p1, p2), (11)
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Fig. 4. Mean of the distance (measured in mm) between silhouette derived based on four
approaches and manual contour

where p1 and p2 are the points belonging to contour C1 and C2, respectively. Np is
the number of points in C1 that are taken to compute the distance metric. To evaluate
the performance of the algorithm for each scan, the mean and variance of the contour
distance in all the projection images are computed. Fig. 4 shows the mean distance
before and after the motion estimation in seven scans. The bars “Static Mesh” show
the initialization error using a static mesh extracted from a 3D volume using non-ECG-
gated reconstruction, while the bars “Prior Model” show the initialization error using
the pre-learned motion model, which is more accurate than the initialization using a
static mesh. The performance of the previous approach [4] is shown as the green bar,
which is surpassed by the proposed method (the purple bar). The proposed method
achieves a mean contour distance of 2.87 ± 1.00 mm. It should be noted that for a
gradient-based approach, the difference to the manual contour is even larger than the
initial static model, and it is not shown in this figure.

Fig. 5. Detected silhouette (green) using gradient-based boundary detector (left, [5]) and learning-
based boundary detector (right) compared with manual contour (red). The 3D mesh of LV (green)
and outflow tract (blue) is shown on the right for each 2D projection image.
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Fig. 5 compares the detection result of a gradient-based cost function [5] and the
proposed learning-based cost function. It can be seen that for the learning-based bound-
ary detector, the detected silhouette is much closer to the manual contour, while the
gradient-based approach is attracted to the confounding boundary.

4 Discussions and Conclusions

In this work, a new method was proposed to automatically estimate the 3D motion
of the left ventricle from rotational angiocardiography, which incorporated a boundary
detector based on the principal component analysis of local image patches. All the com-
ponents were integrated into a multi-surface graph optimization framework to achieve a
coherent 3D motion estimate. The estimated 3D motion can be used for motion compen-
sated reconstruction and intra-operative measurement of the cardiac function, including
ejection fraction and dyssynchrony analysis.
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Abstract. Fluoroscopy is the mainstay of interventional radiology.
However, the images are 2D and visualisation of vasculature requires
nephrotoxic contrast. Cone-beam computed tomography is often avail-
able, but involves large radiation dose and interruption to clinical work-
flow. We propose the use of 2D-3D image registration to allow digital
tomosynthesis (DTS) slices to be produced using standard fluoroscopy
equipment. Our method automatically produces patient-anatomy-
specific slices and removes clutter resulting from bones. Such slices could
provide additional intraoperative information, offering improved guid-
ance precision. Image acquisition would fit with interventional clinical
workflow and would not require a high x-ray dose. Phantom results
showed a 1133% contrast-to-noise improvement compared to standard
fluoroscopy. Patient results showed our method enabled visualisation of
clinically relevant features: outline of the aorta, the aortic bifurcation
and some aortic calcifications.

Keywords: Interventional digital tomosynthesis, 2D-3D image registra-
tion, endovascular aneurysm repair.

1 Introduction

The fundamentals behind interventional fluoroscopy have remained largely un-
changed since its inception. Large advances have been made in detector sensitiv-
ity, however, clinicians still view 2D projective “shadow” images which simply
integrate all information along the beam path. This often results in clinically
relevant information being obscured by over- or under-lying anatomy.

Enhancement of blood vessels using iodinated contrast is routine, but must
be used sparingly as contrast is nephrotoxic. In modern fluoroscopy suites, 3D
imaging is often available via semicircular C-arm rotation, i.e. cone beam CT
(CBCT). However, the set-up time for CBCT (5∼10 min) can cause a large in-
terruption to clinical workflow, especially if multiple acquisitions are required [8].
Repeated CBCT also involves a significant radiation dose [2]. In addition, the
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3D nature of CBCT images requires some interaction from clinicians to scan
through 2D sections to find the clinically relevant information. For these rea-
sons, CBCT is not a natural interventional modality, and is unlikely to be used
repeatedly during interventions to aid guidance.

Tomosynthesis was the first medical sectional modality, but was largely su-
perseded by computed tomography after its invention in the 1970s. In the last
decade, however, digital tomosynthesis (DTS) is being increasingly used for diag-
nosis of breast lesions and pulmonary nodules as it offers some of the tomographic
benefits of CT but at substantially lower dose and shorter acquisition time [3].
Nevertheless, such diagnostic systems require dedicated equipment and suffer
from the presence of background “clutter”, caused by high contrast features
outside the slice of interest.

Recently, a 3D DTS prototype system, based on a mobile isocentric C-arm,
has been proposed for intraoperative guidance of head and neck surgery [1].
The limited DTS arc (e.g. 20◦ ∼ 90◦) enabled a short acquisition time and low
radiation dose causing minimal interruption to surgical workflow [2]. However,
apart from being modified for intraoperative use, the prototype employs the same
technique as diagnostic DTS systems and suffers from the same drawbacks.

In this submission, we propose the use of 2D-3D image registration to facilitate
DTS as an interventional modality which allows repeated acquisitions and results
in minimal interruption to standard clinical workflow. Moreover, we propose a
method which: produces DTS slices using a standard fluoroscopy system; can
automatically produce patient-anatomy-specific DTS slices that display the most
clinically relevant information; and can automatically remove clutter resulting
from bony anatomy.

2 Materials and Methods

DTS slice reconstruction requires a set of 2D intraoperative images to be acquired
from a limited range of view directions. These are reconstructed into a sectional
slice, commonly using the shift and add method, which combines the fluoroscopy
images so that structures in the reconstruction plane line-up, and so appear in-
focus, while structures outside the reconstruction plane are not aligned, and so
are blurred-out.

2.1 DTS Required Information and Main Limitation

In order to reconstruct a DTS slice, the following is required:

1. Relative view positions of input 2D images.
2. Reconstruction plane position with respect to the imaging device.

Standard diagnostic DTS obtains relative view positions using mechanical
tracking. This requires a calibration process, and calibration errors can result
in artifacts and reduced image quality [6]. Also in standard diagnostic DTS, a
number of slices are reconstructed on planes defined with respect to the imaging
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device. Prior to reconstruction it is not possible to define a reconstruction plane
to image specific regions of the patient’s anatomy.

DTS attempts to blur-out all structures outside the reconstruction plane, but
because of the limited data acquisition, clutter from high contrast structures
above and below the reconstruction plane remain. A number of methods have
been proposed to reduce the effect of clutter [4], but this remains one of the
main problems of DTS [5].

2.2 Using 2D-3D Registration to Facilitate Enhanced DTS Using a
Standard Fluoroscopy System

Our interventional DTS method uses an established intensity-based 2D-3D reg-
istration algorithm [7]. The novelty of this paper is with respect to the use of
2D-3D registration to facilitate improved DTS reconstruction using standard
hardware, on patient-anatomy-specific surfaces and with reduced clutter.

Figure 1 shows an overview of the entire process. This begins at the top with
the input images: a C-arm sweep (1) to produce a set (of size n) of intraop-
erative fluoroscopy images (2), and a preoperative CT scan (3). These images
are input into the 2D-3D registration algorithm which calculates the 2D-3D
transformations Pi between the CT scan and each of the n fluoroscopy images.
The registration provides us with the necessary information to carry out DTS
and enables us to greatly reduce clutter from bone. This is illustrated by the
three boxes showing the output from the 2D-3D registration in Fig. 1, where the
Roman numerals labelling each box correspond to the below descriptions:

I. Calculate view positions: The transformations Pi enable the relative view
positions of the input 2D images to be determined.

II. Position reconstruction surface: A patient-anatomy-specific plane can be pre-
operatively defined in the CT scan. The transformations Pi can position this
plane with respect to the fluoroscopy images, enabling reconstruction to oc-
cur on a patient-anatomy-specific plane.

III. Remove bones: Bony details from the CT scan in the form of digitally recon-
structed radiographs (DRRs) can be produced for each fluoroscopy image
using the transformations Pi. DRRs are produced by casting rays through
automatically segmented vertebra from the CT and integrating voxel val-
ues above a threshold (200 HU). Therefore, DRR intensities come only from
vertebral bone ((4).a). The DRR can be subtracted from the fluoroscopy
image ((4).b) to give a “deboned” image ((4).c) leaving just the soft tissue
and aortic calcifications (features of clinical interest), and any interventional
instruments. This deboning process is carried out on each fluoroscopy image
prior to reconstruction to greatly reduce clutter from high contrast bony
features.

In addition, we propose the use of curved patient-anatomy-specific reconstruc-
tion surfaces. It is rare that structures of clinical interest lie on flat planes. Our
aim in interventional DTS is to produce images with enhanced clinically relevant
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Fig. 1. A flow diagram of overall method. Top shows input images (intraoperative
fluoroscopy images (1,2) and preoperative CT (3)). Middle shows the 2D-3D registra-
tion which enables bone removal (4), calculation of view directions and positioning of
curved patient-anatomy-specific reconstruction surface. Bottom shows interventional
DTS process producing the DTS slice containing additional clinical information (5)
and then projection of this information into the fluoroscopy image to aid guidance (6).

structures. As shown in Fig. 2, if the structure of clinical interest is the aorta,
then only approximately half of its length could be included in a flat reconstruc-
tion plane (Fig. 2.(a&b)). The use of a curved surface allows reconstruction of
the entire length of the aorta (Fig. 2.(c&d)).

Returning to Fig. 1, the tomosynthesis process is shown in (5). Here, after
bone removal and using the transformations Pi, rays are back projected from
the target image onto the patient-anatomy-specific reconstruction surface (e.g.
pixel (i, j)). Rays are then forward projected from 3D interception positions
(e.g. intCT) to each of the other images in turn. The intensity values from each
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Fig. 2. Illustration of advantage of using curved surface over flat plane for DTS where
aorta is feature of clinical interest: (a,c) sagittal views showing (a) flat reconstruction
plane intersecting aorta and (c) curved reconstruction surface along aortic centreline;
(b,d) anterior views showing (b) flat plane only intersects with roughly half of aorta
whereas (d) curved surface can intersect (and therefore can reconstruct) entire aorta

2D interception position (e.g. int1, . . . , intn) are summed to produce a curved
patient-anatomy-specific DTS slice. In order to allow effective use of this new
information, the reconstructed slice is then projected onto the target image be-
ing used to guide the operation (6). This automatically produces an enhanced
fluoroscopy image which shows additional information of the clinical features of
interest, in the view being clinically used.

3 Data and Experiments

Experiments were carried out using data from an abdominal spine phantom
and from two patients who underwent endovascular aortic repair (approved by
national research ethics committee (09/H0707/64)). Each data set had a pre-
operative CT scan; and intraoperative low dose screening images acquired by
rotating the C-arm ∼ 20◦ right/left anterior oblique with a frame rate of 30 fps,
which were resampled to obtain one image per one degree of rotation, i.e. ∼ 40
images. Set-up time for the ∼ 20◦ sweep took less than a minute for each data
acquisition. For comparison, a series of ∼ 40 screening images from an anterior-
posterior view were also saved and averaged to produce a high contrast image
from a single view direction.

The phantom CT had voxel sizes of 1.094× 1.094× 1.487mm3. Prior to flu-
oroscopy acquisition, an interventional instrument (a catheter) and three pieces
of Blu-Tack (to represent calcium in the aortic wall) were placed on the anterior
surface of the phantom. Therefore, the anterior surface of the CT volume was
used for reconstruction.

The patients’ standard diagnostic CT scans had voxel sizes of approximately
0.75 × 0.75 × 0.8mm3. The reconstruction surface was defined to intersect the
curved aortic centreline and to be perpendicular to the sagittal plane. This sur-
face was chosen to enhance features of interest such as the aortic walls.

DTS slice reconstruction, as described in Sec. 2.2, was carried out for both
phantom and clinical data sets to reconstruct two interventional DTS slices, the
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first using the standard fluoroscopy images, and the second using the fluoroscopy
images after applying the deboning process. After providing a starting position
for the first 2D-3D registration the registrations were totally automatic. As real
data was used, our experiments included realistic registration errors.

For the phantom data set, the contrast-to-noise ratio (CNR) values were cal-
culated on profile lines as follows: CNR = (ĪFG − ĪBG)/σBG, where ĪFG and
ĪBG were the mean foreground and background intensities, and σBG was the
standard deviation in the background region.

For clinical data, CT segmentations were overlaid onto the DTS slices to
provide context to the enhanced features. The first overlay shows the aorta,
and the second shows aortic calcification. The overlay was initally positioned
using the 2D-3D registration, and then due to intraoperative aortic deforma-
tion, the overlay was manually moved to match the aortic outline in the DTS
slices.

4 Results

For each data set we show: the target image (TI), the high contrast image
(CI), the reconstructed slice (DTS) and the reconstructed slice after deboning,
i.e deboned DTS (DDTS). We also show the two CT overlays for the clinical
data.

Figure 3 shows the phantom results. The high contrast catheter can be clearly
seen in all images; whereas the low contrast synthetic calcium cannot be clearly
distinguished in ‘a’ nor ‘b’ from the overlying vertebrae. However, in both DTS
reconstructions, ‘c’ and ‘d’, the synthetic calcium is successfully brought into
focus (indicated by circles). Significantly more clutter from the underlying ver-
tebrae can be seen in ‘c’, compared to the reconstruction after deboning ‘d’.

Table 1 shows CNR results, and percentage improvement in CNR compared
to TI, calculated on the profile lines (PL) shown in Fig. 3. CNR values were
calculated on three lines close to the PLs shown (one on the PL and two with the
line vertically shifted by ± 3 pixels), and the results were averaged. Foreground
region was defined as the region within FWHM calculated using the DDTS
image (as features could be most clearly observed). PLs 1,2 and 3 are through
synthetic calcium and PL4 is through the catheter. An average improvement of
72% is seen between TI and CI as random noise is averaged. Both DTS and
DDTS show much improved CNR for the low contrast synthetic calcium and for
the high contrast catheter, and the further improvement due to the deboning
method is clearly seen.

Figure 4 shows the patient data results. Comparing the overlay outline in
‘e’ and ‘d’ shows how the DDTS method has been able to show the outline
of the aorta. Some calcium deposits (indicated by arrows) were also enhanced,
and for patient 1 the aortic bifurcation was visible. Comparison between ‘c’ and
‘d’ clearly show the benefits of the deboning process, and although ‘b’ shows a
high contrast image of the instruments and bony anatomy, none of the clinically
relevant soft tissue features enhanced by the DTS process are visible.
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Fig. 3. Phantom results: a) TI with profile lines positions, b) CI, c) DTS and d) DDTS.
Circles indicate synthetic calcium.

Table 1. Calculated CNR, with improvement compared to TI in brackets, for the four
PLs shown in Fig. 3

TI (a) CI (b) DTS (c) DDTS (d)

PL1: CNR (Imp.) 0.43 (-%) 1.10 (156%) 4.69 (990%) 4.77 (1009%)

PL2: CNR (Imp.) 0.25 (-%) 0.28 (12%) 3.67 (1368%) 5.06 (1924%)

PL3: CNR (Imp.) 0.56 (-%) 0.63 (12%) 4.50 (703%) 4.61 (723%)

PL4: CNR (Imp.) 0.64 (-%) 1.33 (108%) 6.37 (895%) 6.25 (877%)

Average Imp. - 72% 989% 1133%

Fig. 4. Patient 1 (top) and patient 2 (bottom) results: (a) TI, (b) CI, (c) DTS, (d)
DDTS, (e) AAA overlay and (f) calcification overlay into the DDTS slice. Arrows
indicate calcium deposits.

5 Discussion and Conclusions

The development of novel imaging technologies capable of near-real-time visual-
isation of soft-tissue structures in the interventional suite is challenging. Short
acquisition and reconstruction times, low radiation dose and minimal interrup-
tion to the clinical workflow are key requirements for an effective interventional
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modality. We have presented a novel technique, “interventional digital tomosyn-
thesis”, which can be directly implemented on existing fluoroscopy systems. The
small C-arm sweep of ±20◦ takes a fraction of the image acquisition time and ra-
diation dose compared to CBCT, and causes very little disruption to the clinical
workflow.

Our method was able to enhance clinically important structures situated on
a curved surface. These structures could provide additional spatial information
during interventions, offering surgeons an increased guidance precision and con-
fidence. Contrast usage would be reduced compared to the techniques currently
used to visualise the aorta, which require injection of iodinated contrast.

The preoperative CT overlays (Fig. 4.(e&f)) needed manual adjustment to
accurately match our DDTS images. This was due to anatomical deformation
occurring during intervention caused by the stiff interventional instruments [7].
This shows a potential application for our interventional DTS: to provide ad-
ditional information to update overlays from an image guided surgery system
enabling more accurate representation of the intraoperative scene.

In summary, a novel method of interventional DTS has been presented. The
method employs a 2D-3D registration algorithm to enable production of DTS
slices using standard interventional equipment, with much reduced out-of-plane
clutter and on a patient tailored reconstruction surface. Results from a phantom
and two patients show the method’s ability to automatically enhance structures
of clinical interest.
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Abstract. In this paper, a calibrationless method is proposed for paral-
lel magnetic resonance imaging (pMRI). It is motivated by the observa-
tion that the gradients of the aliased images are jointly sparse. Therefore,
the pMRI problem can be formulated as a joint total variation regular-
ization task. The field of view is finally obtained via a sum of square
approach. We develop an iterative algorithm to efficiently solve this prob-
lem. Experiments on pMRI datasets demonstrate that our method out-
performs the state-of-the-art pMRI methods even when they can achieve
sufficient calibration data, and far better than existing calibrationless
pMRI algorithms. Clinic MR applications could benefit from this method
even when accurate calibration is limited or not possible at all.

1 Introduction

It is routine to accelerate MRI with parallel technique in clinic applications by
using multiple receiver coils to acquire undersampled k-space data. The coils
are installed around the patient at different locations. Thus, the MR signals are
scanned with different spatial sensitivities. If estimated precisely, the sensitivity
information could be used to interpolate the missing data due to undersampling.

The data acquired by each receiver coil corresponds to an aliased image. Based
on the way to reconstruct each aliased image, existing methods can be classified
broadly in two types: a) image domainmethods such as SENSE [1] and JSENSE [2],
which directly transform the undersampled data to aliased images and then unfold
themto the field of view (FOV)via SENSEencoding; b) frequencydomainmethods
such as GRAPPA [3] and SPIRiT [4], which interpolate the missing data to fill
the full k-space and then transform them to aliased images. For the image domain
methods, the sensitivity map is required to be estimated. Any noise or inaccuracy
in the sensitivitymapwill be amplified significantly and result in visible artifacts in
the FOV. For the frequency domain methods, the interpolation weights need to be
calibrated with sufficient auto-calibration signals (ACS). However, the efficiency
or feasibleness of calibration is limited in many applications such as dynamic MRI
and non-Cartesian imaging. Without sufficient ACS, the performance of all these
methods and their improved versions [5][6] can not be guaranteed.

To avoid calibration, an algorithm CaLMMRI is proposed recently [7]. It
is based on compressive sensing MRI (CSMRI) [8] scheme to reconstruct MR
image from undersampled data without the need for the sensitivity informa-
tion. Because all the aliased images represent the same anatomical cross section,
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they are jointly reconstructed by exploiting the joint sparsity among them. The
FOV is obtained by the sum of square (SoS) approach with the reconstructed
aliased images. However, their assumption on the appearance similarity among
aliased images does not hold strictly due to the sensing difference caused by the
coil locations. This makes their algorithm still hard to be comparable to the
state-of-the-art calibration methods such as GRAPPA and SPIRiT. As we are
interested in calibrationless pMRI, CSSENSE [5] could also be viewed as a cal-
ibrationless method if the SENSE encoding step is replaced by SoS. Compared
to CaLMMRI, CSSENSE can only reconstruct each aliased image coil-by-coil.
No spatial prior knowledge in the data other than sparsity is utilized to improve
the reconstruction. Moreover, all these CS based MRI methods [7][5] strongly
rely on the incoherence of the sampling matrix [9][10], which can not be always
guaranteed in MR applications.

In this paper, we propose a new pMRI method called Joint Total Variation
MRI (JTVMRI), which is an extension of the total variation (TV) [11] regular-
ization for ill-posed problem. Unlike CaLMMRI, we do not assume the images of
the different coils have similar appearance but only assume their gradients are
similar. Since MR images are often piecewise smooth, most of the gradients are
approximate to zeros. The non-zero gradients only appear on the edges, which
is consistent in all the aliased images of different coils. An efficient algorithm
is developed to efficiently solve the ill-posed pMRI problem. Our method does
not require any calibration step and can be applied on arbitrary sampling which
is not available for GRAPPA and SPIRiT. Extensive experiments demonstrate
that the proposed method is far better than CaLMMRI. And more importantly,
it outperforms the state-of-the-art auto-calibration method such as GRAPPA
and SPIRiT, which makes calibrationless pMRI much feasible than before.

2 Related Work

2.1 CSSENSE

CSSENSE[5] is a hybrid approach, which apply CSMRI[4] to reconstruct the
aliased images and the second step is to unfold them to full FOV with SENSE
encoding[1]. Because we are interested in calibrationless pMRI in this paper, we
consider it as a calibrationless CSMRI method, where the second step replaced
with SoS. The problem to reconstruct one aliased image xc is:

xc = argmin
xc

{1
2
||Fxc − bc||22 + α||xc||TV + β||Φxc||1} c = 1, 2, ..., C (1)

where C denotes the total number of coils; Φ denotes the wavelet transform; F is
the undersampled Fourier operator and bc is the undersampled k-space data for
coil c; α, β are two parameters. ‖x‖TV =

∑
i

√
(∇1xi)2 + (∇2xi)2 for an image

of N pixels, i = 1, ..., N , where ∇1 and ∇2 denote the forward finite difference
operators on the first and second coordinates. Conjugate gradient method (CG)
[4] is applied to solve this problem. No structured prior information is utilized
and each image can only be reconstructed separately.
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2.2 CaLMMRI

CaLMMRI[7] is a CSMRI[4] approach for pMRI. It reconstructs the aliased
images of all coils simultaneously with joint sparsity and the FOV is obtained
via the SoS scheme.

X = argmin
X

||ΦX||2,1 s.t.

C∑
c=1

||FX(:, c)− bc||22 < ε (2)

where X = [x1, x2, ..., xC ] is the images of all coils. The 2,1 norm is the summa-
tion of each row’s 2 norm. Problem (2) is solved by SPGL1[12] in their method.
It is a joint reconstruction method as ours. However, as discussed above, their as-
sumption of the similar appearance among images of all coils can not be strictly
satisfied in practice. This results in its relatively lower performance and makes it
unable to be comparable to the state-of-the-art auto-calibration methods when
sufficient ACS is available.

3 Algorithm

Different fromCaLMMRI, we only assume the gradients of aliased images from all
the coils are jointly sparse. Figure 1 demonstrates the appearances and gradients
of two images from different coils. We could observe that the appearances are only
similar at the center area. However, as MR images are often piecewise smooth, the
gradients are not only very sparse but also jointly sparse. The non-zero gradients
tend to be at the same positions across different images, that is, on the edges. This
assumption holds at almost entire image areas. As an extension of TV regulariza-
tion, the pMRI reconstruction is therefore formulated as a JTV reconstruction:

X = argmin
X

{1
2

C∑
c=1

||FX(:, c)− bc||22 + α||X||JTV } (3)

where ‖X‖JTV =
∑N

i=1

√∑C
c=1((∇1Xic)2 + (∇2Xic)2). The JTV is also known

as vectorial TV[13] for color image processing. Problem (3) can be solved by
proximal gradient method and accelerate by FISTA [14]. The whole algorithm

is summarized in Algorithm 1, where f(X) = 1
2

∑C
c=1 ||FX(:, c)− bc||22, ∇f(X)

denotes its gradient and L is its Lipschitz constant.

(a) (b) (c) (d)

Fig. 1. The appearances and gradients of two aliased images from different coils. (a)
and (b): appearances. (c) and (d): magnitude of gradients.
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The key problem is thus how to efficiently solve the JTV denoising problem
in the second step:

X = argmin
X

{1
2
‖X −B‖2 + λ‖X‖JTV } (4)

where λ = α/L. For convenience of solving (4), X and B are now reshaped to
m × n × C where m,n denote the number of rows and the number of columns
of an image. Following previous works [15], we consider a dual method for (4).
Let P ∈ R(m−1)×n×C , Q ∈ Rm×(n−1)×C and they satisfied:

C∑
c=1

(P 2
i,j,c +Q2

i,j,c) ≤ 1, ∀i, j, |Pi,n,c| ≤ 1, |Qm,j,c| ≤ 1 ∀i, j, c (5)

A linear operator is defined as L(P,Q)i,j,c = Pi,j,c−Pi−1,j,c+Qi,j,c−Qi,j−1,c

and the corresponding inverse operator is defined as LT (X) = (P,Q) with
Pi,j,c = Xi,j,c −Xi+1,j,c, Qi,j,c = Xi,j,c −Xi,j+1,c.

Algorithm 1. JTVMRI

Input: ρ = 1
L
, α, t1 = 1, Y 1 = X0

for k = 1 to K do
1) B = Y k − ρ∇f(Y k)
2) Xk = argminX{ 1

2ρ
‖X −

B‖2 + α‖X‖JTV }
3) tk+1 = [1 +

√
1 + 4(tk)2]/2

4) Y k+1 = Xk + tk−1
tk+1 (X

k −
Xk−1)

end for

Algorithm 2. JTV denoising

Input: λ, B, (U1, V 1) = (P 0, Q0) =
(0(m−1)×n×C , 0m×(n−1)×C)
for k = 1 to K do

1) (P k, Qk) = Pp[(U
k, V k) +

1
8λ

LT (B − λL(Uk, V k))]

2) tk+1 =
1+

√
1+4(tk)2

2

3) (Uk+1, V k+1) = (P k, Qk) +
tk−1
tk+1 (P

k − P k−1, Qk −Qk−1)
end for
X = B − λL(P k, Qk)

Therefore, the optimal solution for problem (4) is X = B − λL(P ∗, Q∗) [15],
where P ∗, Q∗ is the optimal solution for

minP,Q{h(P,Q) =
1

2
||B − λL(P,Q)||2F } (6)

Note that the gradient of h(P,Q) = −λ(B − λL(P,Q)). Therefore problem (6)
can be solved by FISTA and summarized in Algorithm 2.

The projection operator Pp(P,Q) = (U, V ) is used to force (P,Q) satisfy the
conditions (5):

Ui,j,c =

⎧⎨
⎩Pi,j,c/max{1,

√∑C
c=1(P

2
i,j,c +Q2

i,j,c)} ∀i, j, c
Pi,n,c/max{1,

√∑C
c=1 P

2
i,n,c} ∀i, c

(7)

and

Vi,j,c =

⎧⎨
⎩Qi,j,c/max{1,

√∑C
c=1(P

2
i,j,c +Q2

i,j,c)} ∀i, j, c
Qm,j,c/max{1,

√∑C
c=1 Q

2
m,j,c} ∀j, c

(8)
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Accelerated by FISTA [14], the convergence rate of Algorithm 2 is O(1/k2).
The total time complexity of JTVMRI is O(CN logN) by applying fast Fourier
transform (FFT). There are double loops in the algorithm. Due to the trade off
between efficiency and effect, the JTV denoising algorithm only runs 1 iteration
in our implementation.

4 Experiments

4.1 Materials and Methods

The experiments are conducted on three brain MRI datasets shown in Figure
2. These images are widely used for validating pMRI methods [4][7][5]. Figure
2(a) shows an image scanned from a GE 3T commercial scanner with an eight-
channel head coil using a two-dimensional T1-weighted spin echo protocol (TE
= 11ms, TR = 700ms, FOV = 22cm, 256 × 256 pixels). Figure 2(b) shows a
T1-weighted image from spoiled gradient echo (SPGR) sequence, scanned on a
GE Signa-Excite 1.5-T scanner with an eight-channel receive coil (TE = 8ms,
TR=17.6 ms, FOV = 20cm, 200×200 pixels). The image shown in Figure 2(c) is
a T1-weighted image extracted from SRI24 Multi-Channel Brain Atlas Data [16].
It was acquired with a 3D axial IR-prep SPGR sequence, where TR=6.5ms and
TE=1.54 ms. Imaging was performed on a 3.0T GE scanner with an 8-channel
head coil with 256× 256 resolution covering a 24-cm FOV.

Gaussian random sampling masks are used, with more samples are obtained
in low frequencies and less samples are obtained in higher frequencies [7]. Our
method is compared with the-state-of-the-art auto-calibration methods
GRAPPA [3], SPIRiT [4] and the calibrationless CSMRI methods CaLMMRI [7]
and CSSENSE [5]. All codes are downloaded from their websites and we carefully
follow their experiment setup. For fair comparison, the sampling mask contains
a 30× 30 fully sampled region to ensure accurate calibration for GRAPPA and
SPIRiT (shown in Figure 2(d)). All experiments are conducted in MATLAB with
a 3.4GHz CPU. Gaussian white noise with 0.01 standard deviation is added in
the original data and Signal-to-Noise Ratio (SNR) is used as the metric for
evaluation. The parameters are set α = 0.04, β = 0.4 for our algorithm and
CSSENSE. All other algorithms are with their default parameters. SPIRiT runs
10 CG iterations as suggested because the result would be worse with more
iterations [4]. All other algorithms run 50 iterations.

(d)(a) (b) (c)

Fig. 2. Three MR brain images and the sampling mask
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4.2 Results

Figure 3 shows the reconstruction results on the first brain image at a reduction
factorR = 4.Compared to all others, the result of ourmethodpreservemost details
of the original image (as shown in the zoomed region of interest). The results of
other algorithms have visible artifacts while ours are the closest to the original one.

For better visualization of the difference errors, all the corresponding error
images are shown in Figure 4. The error of our algorithm only appears slightly
on the edges while those of all other algorithms significantly distribute over
all the image. The SNRs of GRAPPA, SPIRiT, CSSENSE, CaLMMRI and the
proposed method are 23.27, 24.73, 23.1., 22.21 and 26.20 respectively. Their CPU
time consumptions are 626.2s, 7.8s, 55.7s, 12.5s and 7.4s respectively.

To reduce randomness, each algorithms run 100 times to obtain the average
results. The average SNRs and CPU time on the three images are shown in
Table 1 and Tabel 2 respectively. On each image, our method always achieve
the best results with the least CPU time. GRAPPA is very slow on the random
sampling mask, which need more than 10 minutes for a 256× 256 image. Unlike
other iterative methods, the SNR of SPIRiT does not increase monotonously[4].
How to choose the optimal iteration number to terminate is still unsolved.
CaLMMRI is hard to be comparable to the state-of-the-art methods such as
CSSENSE and SPIRiT. These results is consistent with the comparisons in
previous work[7]. CSSENSE in our implementation is the same as coil-by-coil

Original GRAPPA CGSPIRiT

CSSENSE CaLMMRI Proposed

Fig. 3. Visual results of different methods with reduction factor R = 4
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GRAPPA CGSPIRiT

CSSENSE CaLMMRI Proposed

Fig. 4. The error images of different methods with reduction factor R = 4

Table 1. The SNRs (dB) of different methods performed on 3 MR images

GRAPPA[3] CGSPIRiT[4] CSSENSE[5] CaLMMRI[7] Proposed

Brain 1 23.31 24.80 23.10 22.27 26.19
Brain 2 18.39 20.85 21.17 20.28 22.99
Brain 3 36.81 32.00 32.18 28.58 38.13

Table 2. The CPU time (s) of different methods performed on 3 MR images

GRAPPA[3] CGSPIRiT[4] CSSENSE[5] CaLMMRI[7] Proposed

Brain 1 588.5 7.2 58.4 10.1 6.5
Brain 2 719.1 9.6 71.0 14.3 8.3
Brain 3 723.8 9.4 71.5 14.9 9.1

SparseMRI[8] reconstruction for each individual image. It has stable perfor-
mance. However, the correlations among the aliased images are not exploited.
That is why it always worse than the proposed method. The computational cost
of CSSENSE is also expensive compared with other iterative methods, which
makes it hard to be applied on large scale data.

4.3 Discussion

In contrast to GRAPPA and SPIRiT, CSSENSE and CaLMMRI are calibration-
less methods that do not rely on sufficient ACS. In contrast to GRAPPA and
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CSSENSE, SPIRiT and CaLMMRI can perform joint reconstruction on the un-
dersampled data. Compare with CaLMMRI, CSSENSE has utilized the sparsity
in gradients to improve reconstruction. Only our method inherit all these bene-
fits in pMRI, which can efficiently, jointly, reconstruct MR images by exploiting
their sparsity in gradient domain without calibration.

5 Conclusion

In this paper, we have proposed a novel calibrationless method for calibration-
less pMRI. It is motivated by the observation that the images of different coils
are jointly sparse in the gradient domain. Compared to existing auto-calibration
methods, our algorithms can be widely applied in the cases when calibration is
time consuming or impossible. Compared to exiting calibrationless methods, our
model is much more applicable on pMRI data and our algorithm is much more
efficient. Extensive experiments have demonstrated that our algorithm outper-
forms the state-of-the-art auto-calibration methods when sufficient calibration
can be achieved, and is far better than previous calibrationless methods. All
these benefits make calibrationless pMRI much more feasible than before.
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Abstract. Image denoising is an important pre-processing step for ac-
curately quantifying functional morphology and measuring activities of
the tissues using PET images. Unlike structural imaging modalities, PET
images have two difficulties: (1) the Gaussian noise model does not nec-
essarily fit into PET imaging because the exact nature of noise propa-
gation in PET imaging is not well known, and (2) PET images are low
resolution; therefore, it is challenging to denoise them while preserving
structural information. To address these two difficulties, we introduce
a novel methodology for denoising PET images. The proposed method
uses the singular value thresholding concept and Stein’s unbiased risk
estimate to optimize a soft thresholding rule. Results, obtained from 40
MRI-PET images, demonstrate that the proposed algorithm is able to
denoise PET images successfully, while still maintaining the quantitative
information.

Keywords: PET, Denoising, Singular Value Thresholding, Stein Risk
Estimate.

1 Introduction

Positron emission tomography (PET) is a molecular imaging technique that has
rapidly emerged as an important functional imaging tool; it provides superior
sensitivity and specificity, when combined with anatomical imaging such as com-
puted tomography (CT) or magnetic resonance imaging (MRI). Since PET has
a significantly low number of detected photons, constructed images have high
amount of noise (i.e., low signal-to-noise ratio (SNR)). Therefore, there is often
a need for denoising PET images to determine accurate quantitative measures
for evaluating changes in lesion biology.

Current approaches in PET image denoising are limited to Gaussian smooth-
ing and locally adaptive filtering [1–3]. The majority of researchers focused on
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additive Gaussian noise models regardless of the image type, and only a few
works have considered characteristics of PET images when developing a denois-
ing technique. In these current approaches, [1–3], one has to carefully chose
the spatial width of the Gaussian smoothing filter to yield a good compromise
between spatial resolution and SNR. However, smoothing can produce a loss
of resolution by averaging voxels together and blurring the distinction between
two closely adjacent objects. Moreover, the use of edge preserving or Gaussian
smoothing filters are not optimal choices when denoising PET images, unlike
the common belief, because PET images are low resolution due to low photon
counts and consequential statistical noise. In fact, in PET and other images with
low photon counts (e.g., SPECT, microscopy), the pixel intensities follow a non-
Gaussian distribution. More recently, a Poissonian distribution noise model [4]
was suggested to be used in PET images because of the following observations:
the noise variance in PET images are multiplicative, asymmetric, and vary-
ing over the image [4]. Therefore, it was shown to be feasible to model noise
with Poissonian. It is also important to emphasize that the invariance of the to-
tal photon counts in a PET images or a region of interest (ROI) in PET images
should be preserved within some limits so that it does not affect the diagnostic
utility of quantification metrics such as standardized uptake value (SUV ) which
gives physiologically relevant measurements of cellular metabolism.

In [1], locally adaptive filtering (i.e., anisotropic diffusion) was developed to
denoise medical images for general purposes; maintaining the edge information,
while smoothing the noise was the aim. Although total photon counts were
preserved with this approach, the additive noise model, with constant noise
variance, violated the non-Gaussian nature of the PET images. In [5], structural
information (either from CT or MRI) of matched anatomic images were used in a
multi-resolution model to enhance SNR of PET images. However, the presented
method is not optimal because one-to-one wavelet parameter exchange between
PET images and their anatomical correspondences does not necessarily hold for
all subjects. More recently in [2], bilateral filtering was used for denoising PET
images. Although improvement in the SNR was observed, substantial change in
SUVmax was inevitable. To alleviate the challenges described above, we propose
to (1) transform PET images with Anscombe’s variance stabilizing transform
(VST) in order to Gaussianize the image data and inherent noise, (2) remove
Gaussianized noise using Stein’s unbiased risk estimate and a soft thresholding
rule within the popular singular value thresholding (SVT) framework, and (3)
apply the inverse variance stabilizing transform (IVST) to obtain denoised PET
images. In the next section, we present our proposed framework in detail.

2 Methods

Our approach hinges on the basic notion that medical images are mostly low-
ranked due to high correlations of its columns (or rows); therefore, it is possible to
model the images with simpler components. For a low-rank matrix, with entries
perturbed by Gaussian noise, one may recover an estimate of the low-rank matrix
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by using techniques based on the singular value decomposition (SVD). However,
accuracy of these estimations are often limited. In practice, since the low-rank
matrix is not perturbed by Gaussian noise but rather varying magnitudes–as it is
the case in PET images–SVD-based methods are not directly applicable to solve
such problems. Herein, we describe a method to Gaussianize PET image noise so
that SVD-based methods, SVT in particular, can be applicable. We then apply
Stein’s unbiased risk estimate formulation to SVT in order to remove noise from
the image data.

Anscombe’s Variance Stabilizing Transform. Anscombe’s VST is a spe-
cial case of Anscombe’s theorem [4], and it allows a Gaussianization of the Pois-
sion distribution. According to the theorem, if S is Poission distribution (i.e.,
S ∼ P (ξ) where

√
ξ is the standard deviation of noise), then there is a function

V ST such that Y = V ST (S) = 2
√
S + 3/8 when ξ → ∞. Practically, Y is ap-

proximately Gaussian with unit variance for ξ > 10 [4], so once the PET images
are transformed with Anscombe’s VST, Gaussianized noise can be removed with
the proposed methodology. Next, an inverse of Anscombe’s VST is required to
transform denoised PET data back into the SUV domain. IVST of the estimated
signal is straightforward as VST is explicit.

Singular Value Thresholding. Assume that a 3-D VST transformed PET
image is considered as a stack of slices and each slice is denoted as matrix
Y, with a m × n dimension and the observed PET image is denoted by S.
In denoising, we estimate the original data matrix X from noisy observations:
Yij = Xij + Nij , for i = 1...m, j = 1...n, where noise N is modeled as the
additive Gaussian, with a constant variance τ : N ∼ N (0, τ2). Since VST is
applied to original PET images, the resultant images include residual noise with
an approximate constant variance; hence, the Gaussian noise assumption can be
used. Conventionally, estimating X via SVD can simply be done by truncating
the singular values of the observed matrix Y, but this truncation mechanism,
known as a hard threshold rule, does not provide continuous estimation [6]:

SV Thard(Y) = argmin
X∈Rm×n

1

2
||Y −X||2F + λ rank(X), (1)

where λ is a positive scalar, and SVD of the Y can be defined as Y = UΣV ∗ =∑min(m,n)
i=1 σiuiv

∗
i . Letting I be an indicator function denoting the shrinkage of

the singular values (i.e., σi), then SVT with hard thresholding can simply be

written as SV Thard(Y) =
∑min(m,n)

i=1 I(σi > λ)uiv
∗
i . Selecting a positive scalar λ

is the core of the estimation problem because Eq.1 is minimized when appropriate
λ is found. For this type of estimation problem, Stein, in his seminal paper [7],

showed that if Yij ∼ N (Xij , 1) with an estimator X̂ of the form X̂ = Y+g(Y),
where gij ∈ Rm×n → R is differentiable with respect to Yij , then the risk of the

estimate is given by E||X̂−X||2F = E{mn+2∇(g(Y)) + ||g(Y)||2F }, where ∇ is
the first partial derivatives with respect to Yij . Since mn is constant, choosing a
suitable function g that makes∇(g(Y))+||g(Y)||2F everywhere negative will yield
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a satisfactory estimate for the problem at hand. However, there is no continuous
differentiable function, required by Stein’s lemma, in SVT methodology based
on hard thresholding rule. In order to avoid a discontinuous estimation caused
by the indicator function, one may provide a continuous estimation of λ by
shrinking the singular values towards zero, namely called soft thresholding rule
for SVT, and it can be formulated as

SV Tsoft(Y) =

min(m,n)∑
i=1

(σi − λ)+uiv
∗
i . (2)

In this equation, since large λ causes a large bias and small λ leads to a high
variance, a proper estimation of λ is expected to find the correct trade-off be-
tween large bias and high variance in the soft thresholding rule of SVT. As earlier
noted, because the soft thresholding rule in SVT formulation (i.e., (σi − λ)+) is
continuous, it is differentiable at the singular value matrix (note that derivative
of (σi − λ)+ is equivalent to I(σi > λ) when σ �= λ) [6]. Hence, SV Tsoft follows
the requirement of the function g stated by the Stein’s risk estimation method.
Replacing g with SV Tsoft yields the unbiased risk estimate for SVT as [6]

E(SV Tsoft(Y)) = −mnτ2 +

min(m,n)∑
i=1

min(λ2, σ2
i ) + 2τ2∇(SV Tsoft(Y)). (3)

The solution of Eq.3 gives the optimum λ such that the risk of the estimate
cannot be improved at any point through multiplication of λ by a constant factor.
For the computation of the ∇(SV Tsoft(Y)) operation, a closed-form expression
can be obtained by differentiating SV Tsoft(Y) with respect to the λ as

∇(SV Tsoft(λ)) =

min(m,n)∑
i=1

[
I(σi > λ) + |m− n|

(
σi − λ

σi

)
+

]
(4)

+2

min(m,n)∑
i�=j,i,j=1

σi(σi − λ)+
σ2
i − σ2

j

.

Once λ is found, then denoising is conducted through shrinking singular values
of noisy observations Y towards λ[6]. At the final step, the denoised image
is transformed back to the original SUV domain via the Anscombe’s IV ST
method.

3 Experiments and Results

With IRB approval, we collected 40 MRI-PET image sets from 40 different
patients. Each patient had either Von-Hippel-Lindau disease, colon cancer, a
paraganglioma carcinoid tumor, or hederditary leiomyomatosis renal cell cancer.
PET images had a spatial resolution of 4.17 x 4.17 x 2 mm3. The SNR and
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relative contrast of all images were analyzed and compared to other commonly
used methods in the literature. The SUV analysis–the selected 40 lesions from all
the subjects–was conducted to quantify the effect of denoising on the quantitative
metrics of PET imaging. For this, we used the SUVmax and SUVmean criterion
to follow clinical routine. In order to remove any bias towards the proposed
method in our evaluations, we transformed PET images via VST prior to conduct
experiments for Perona-Malik’s, Bilateral, and Gaussian filtering methods so
that the noise properties of the transformed PET images were approximately
Gaussian. Otherwise, all these approaches diminished the quantitative indexes
of PET images considerably.

We first demonstrate the validation of the proposed risk estimate via Monte
Carlo estimation. Herein, z independent samples of Y were drawn from the
model of Y = X+N. The data matrix X was constructed based on predefined
singular values in low-rank approximation without having repetitive singular
values. Then, we computed the average mean squared error between the Stein’s
unbiased risk estimate and the original matrix by 1

z

∑z
u=1 ||SV Tsoft(Y

u)−X||2F .
Fig. 1a shows the comparison of the risk estimate using Monte Carlo and Stein’s
unbiased risk estimate for z = 25 samples. As clearly seen from the Fig. 1a,
Stein’s unbiased risk estimate within the SVT framework (solid line), follows
the Monte Carlo estimates closely.

Qualitative Evaluation. We qualitatively compared our method with
anisotropic diffusion filtering [1], which performed best among the other com-
pared methods. Fig. 1b illustrates the filtered output from the proposed method
(ii) and Perona-Malik’s method (iii) with respect to the original PET images (i).
Red arrows show reduced noise areas in (ii) and limited success of Perona-Malik
filtering in (iii) for the corresponding regions. Similarly, the yellow arrows denote
the object of interests, where edge information was preserved with the proposed
method (ii); however, the object of interests were over-smoothed by the Perona-
Malik filtering (iii). As can be seen in all images (rows show different anatomical
level of different subjects) in Fig. 1b, the boundary contrast seems to be higher
with the proposed method visually, while Perona-Malik’s method over-smooths
the noisy areas. This is because the proposed method is tuned to preserve fine
details of the objects of interests better than Perona-Malik’s method.

Quantitative Evaluation. For our quantitative analysis, SNR was used to
evaluate the effectiveness of the filtering operation; it is defined as 20 log 10(Mν ),
where ν and M indicate the standard deviation and mean of the voxel intensities
in a ROI. In order to estimate the SNR levels in the image data, several 3-D
ROIs were positioned within the liver and lung areas for all image sets, as it is
the convention when measuring SNR in PET images. Positioned ROIs were iden-
tical for all filtered and original images. Resulting SNR rates were averaged over
all subjects and plotted in Fig. 2a. As it is readily seen, improvement in SNR
with respect to the original PET images is higher with the proposed method
than the rest. Since a measure of SNR alone may not be sufficient enough to
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(a) (b)

Fig. 1. (a) X
(1)
0 : Stein’s unbiased risk estimate. X

(2)
0 : Monte Carlo estimates. Red

point indicates the smallest average squared error (global optima). (b) Each row shows
different subjects and different slice levels. (i) Original PET images, (ii) denoised by
the proposed method, (iii) denoised by Perona-Malik anisotropic diffusion filtering.

characterize the effectiveness of a filtering method, we also used the concept of
relative contrast (RC) in our evaluation, where RC was defined as follows [8]:

RC =
|MO

i −MB
i |√

νOi νBi
, (5)

and i implies the specific ROI, MO and νO denote the mean and standard
deviation of pixel intensities over the object region O, respectively. Similarly,
MB and σB denote the mean and standard deviation of pixel intensities over
the background region B, respectively. RC is a measure of object-to-background
contrast relative to noise in each region. Object regions were selected from liver
and lung areas for each image, as a 3-D ROI, and the resultant RC values are
plotted in Fig. 2b. For each experiment, the same set of object and background
regions were selected to avoid any bias in the calculations. Note that a higher
value of RC indicates a more accurate filtering; hence, the proposed method
outperforms all the compared methods, among which Perona-Malik’s anisotropic
diffusion filtering [1] was having the second higher accuracy due to its property
of preserving structural information.

We also investigated how PET specific quantitative markers such as SUVmax

and SUVmean change after denoising the PET images. For this purpose, 40
lesions from all subjects were identified manually with a fixed ROI, and the
quantitative markers were computed for each lesion from (1) the original PET,
(2) the filtered image by Perona-Malik’s method, and (3) the filtered image by
our proposed method. As a comparison, only Perona-Malik’s method was used
in this evaluation because it was the second best method among other compared
methods. The changes of SUVmax and SUVmean, for each method and for all
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Fig. 2. Proposed method’s SNR (a) and RC (b) comparison with Perona-Malik’s
anisotropic filtering, bilateral filtering, and Gaussian smoothing with respect to the
original PET images over all subjects are reported

Fig. 3. Comparison of SUVmax (a) and SUVmean (c) reduction rates (%) is demon-
strated for 40 lesions from different subjects, respectively. Mean (b) and standard de-
viation (d) of the proposed method and Perona-Malik’s filtering is compared through
boxplots

lesions, were computed with respect to the original PET images; the comparative
results are reported in Fig. 3a and c. In addition, the mean decrease in SUVmax

and SUVmean values are shown in Fig. 3b and d, respectively. Notice that smaller
changes in SUVmax and SUVmean are highly desirable in order to have a valid
denoising method that does not substantially change quantitative markers of
the PET imaging. Our experimental results show that when using the proposed
method, the reduction rates in SUVmax and SUVmean are much smaller than
Perona-Malik’s method [1].
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4 Concluding Remarks

In this study, we presented an effective tool for denosing PET images. The pro-
posed algorithm adapts Stein’s unbiased risk estimation within the singular value
soft thresholding rule. We also emphasized the usefulness of variance stabilizing
transform and its inverse before and after the denoising procedure, respectively,
in order to Gaussianiaze the Poissionous nature of the noise in PET images. Ex-
perimental results demonstrated that the proposed framework respects the tissue
boundaries well, reduces the noise considerably without losing quantitative infor-
mation of PET images including SUVmax and SUVmean. As an extension of this
work, we are currently comparing the low-rank data representation algorithms
(such as [9]) within the same proposed platform and exploring the model-free
algorithms for PET denoising.
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Abstract. In MRI, the relatively thick slices of multi-slice acquisitions
often hamper visualization and analysis of the underlying anatomy. A
group of post-processing techniques referred to as super-resolution recon-
struction (SRR) have been developed to address this issue. In this study,
we present a novel approach to SRR in MRI, which exploits the high-
resolution content usually available in the 2D slices of MRI slice stacks to
reconstruct isotropic high-resolution 3D images. Relying on the assump-
tion of local self-similarity of anatomical structures, the method can be
applied both to a single slice stack and to the combination of multiple
slice stacks that differ in the orientation of their field of view. We evalu-
ate the method quantitatively on synthetic brain MRI and qualitatively
on MRI of the lungs. The results show that the method outperforms
state-of-the-art MRI super-resolution methods.

Keywords: Super-resolution, reconstruction, MRI, self-similarity,
dictionaries, cross-scale, brain, lung, inverse problems, regularization.

1 Introduction

In magnetic resonance imaging (MRI) sequences requiring long repetition times,
conventional 3D imaging usually leads to infeasible scan times, and 2D multi-
slice imaging is used instead. However, due to hardware induced limitations on
gradient strength, requirements on signal-to-noise ratio (SNR), and other factors,
the slices are usually relatively thick compared to the in-plane resolution. Such
anisotropy negatively affects visualization and hampers analysis. The isotropy
and resolution of images may be improved by super-resolution reconstruction
(SRR) methods [1], often divided into 1) methods that base the high-resolution
(HR) reconstruction on a single image only, and 2) methods that combine multi-
ple low-resolution (LR) images of the same object acquired under varying fields
of views. In both cases, the inverse problem of recovering the HR image is ill-
posed, and regularization is applied by exploiting prior knowledge of the HR
solution, such as that it must be smooth, piecewise smooth, or sparse.

Recently, a quite different prior has been shown to be very powerful: example-
based self-similarity. It is based on the observation that small-scale structures
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Fig. 1. Left: Quantitative check of self-similarity in a T2-weighted brain MRI from
BrainWeb [12]. Similarity between the 10% axial 7x7 patches with the highest variance
and all coronal and sagittal 7x7 patches was evaluated. For several similarity thresholds,
the fraction of axial patches is plotted as function of the number of coronal and sagittal
patches exceeding the threshold. Similarity is measured as the inner product between
the patches (after vectorization and unit length normalization). Right: Example of local
self-similarity in the cortex. The yellow arrows point at a similar cortex structure in
the axial (top), coronal (middle), and sagittal (bottom) slices.

tend to repeat themselves throughout an image. This concept has been widely
applied for image compression, denoising, inpainting, and SRR [2], and has
spawned methodologies such as image hallucination [3], sparse coding using
learned dictionaries [4,5], and non-local means (NLM) [6]. A common feature
of these example-based methods is the formulation of a parent-child structure
in which the “nearest-neighbor” of an input LR-patch is sought among the LR-
parents of HR-child-patches in either a database [3] or in the image itself [7]. In
MRI, applications include resolution enhancement of T2-weighted stacks from
isotropic HR T1-weighted stacks [8], and upsampling by iteratively applying
NLM-denoising to an interpolated version of the image itself [9].

Here we propose a novel approach to SRR in multi-slice MRI based on the
concept of cross-scale self-similarity [10]. Multi-slice 2D MRI scanning yields
two native scales simultaneously: one at in-plane resolution (HR) and one in the
slice-selection direction (LR). Local self-similarity of anatomical features occurs
both within and across these scales (Fig. 1), which we exploit to achieve SRR.
Our method can be applied to both a single image and to multiple images, tran-
scending the methodological division described above. We describe our method
and show its potential by comparing it quantitatively and qualitatively with a
baseline interpolation scheme and a state-of-the-art SRR algorithm.
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2 Method

2.1 From Single-Scale to Cross-Scale Self-similarity

Our method is developed from one of the most successful applications of image
self-similarity: the non-local means (NLM) method [6,11]. In NLM, the ith pixel
in image u, defined over the domain Ω, is represented as a weighted average of
pixels from similar patches found elsewhere in the same image:

NLM(u(i)) =
1

C(i)

∑
j∈Ω

w(i, j)u(j) (1)

with w(i, j) = exp(−‖u(N (i))− u(N (j))‖22,a/h2) and C(i) =
∑

j∈Ω w(i, j).

Here, N (k) is a square patch of a fixed size centered on pixel k, ‖.‖22,a is the
norm weighted by a Gaussian with standard deviation a, and h is a parameter
that controls the decay of the weights as a function of the norm.

For our purposes, a HR example image v is used to modify the above NLM
expression, leading to cross-scale NLM [10]:

csNLM(u(i)) =
1

C(i)

∑
j∈Ω

ω(i, j)v(j) (2)

with ω(i, j) = exp(−‖u(N (D(i))) − Hz(v(N (j)))‖22,a/h2) and C(i) as defined
above. Here, D maps u onto a HR lattice, and Hz is a linear model of the
imaging process, with degradation z. In other words, in csNLM, HR patches
v(j) whose degraded versions are similar to an up-scaled LR patch u(i) are used
to update the HR estimate csNLM(u(i)).

The method we propose is a special case of csNLM. In the limit, when h→ 0,
the weight of only one patch (the “nearest neighbor”) dominates. The cross-scale
super-resolution expression thus becomes:

csSR(u(i)) =
1

ω(i, j)
ω(i, j)v(j) = v(j) with j = argmax

l
ω(i, l). (3)

In the experiments we demonstrate that the use of only the nearest neighbor is
indeed sufficient to improve resolution and image quality considerably.

2.2 MRI Super-Resolution Using Cross-Scale Self-similarity

From a 2D viewpoint, MR stacks contain both LR images (anisotropic slices
containing the slice-selection direction) and HR images (isotropic in-plane slices).
Using the knowledge of 2D self-similarity of 3D anatomical structures (Fig. 1),
we can apply Eq. (3) as follows: Let u denote the 2D LR slices of a stack, let D
be an interpolation operator that maps the LR slices onto a 2D HR grid, and
Hz a number of blurring kernels (one of them approximating the point-spread
function, PSF, of the upsampled LR slices) applied to the in-plane slices v.
We search for the nearest neighbor of u(N (D(i))) over all HR patches j, at all
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Fig. 2. Quantitative evaluations. Top: PSNR of SRR using six different methods. Bot-
tom: mSSIM of SRR by the six methods. Left: Reconstructions from images of the 3%
noise group. Right: Reconstructions from images of the 9% noise group.

blurring levels z, in Hz(v(N (j))). The reason for using multiple blurring levels
is to enrich the model and capture cross-scale self-similarity at scales besides
the two native ones (relevant for recursive structures such as vessel-trees). In the
experiments we used two levels, empirically chosen to achieve good performance.

Multiscale Dictionary. The vectorized versions of all HR patches (or a ran-
domly selected subset thereof) are collected in a matrix. The corresponding vec-
torized patches of the blurred versions of the HR slices are appended as columns
in this matrix, such that each blurring level is represented by a contiguous block
of columns. The columns are then normalized and the normalization factors are
saved for later rescaling. Adopting the terminology of the sparse coding litera-
ture, we shall call this matrix a dictionary.

Reconstruction Process. An initial HR estimate is created by interpolating
and aligning the LR images onto a 3D HR grid. The slice stack is traversed,
LR slice by LR slice. Around each pixel in each slice, a 2D patch is extracted
(of size 7×7 pixels in this study). According to the cross-scale self-similarity
assumption, the HR version of this LR patch will be well-approximated by the
in-plane patches in the dictionary. For each LR patch, the dictionary is searched
for its nearest neighbor (NN), defined as the column that has the maximum
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inner product with the vectorized and normalized LR patch. The corresponding
HR patch is found in the HR block of the dictionary and rescaled to its original
intensity. HR patches are inserted into the grid and averaged where they overlap.

3 Experiments and Results

3.1 Image Data

Simulated Brain MRI. Two isotropic HR T2-weighted images (1×1×1 mm
voxels) with intensity non-uniformity of 20%, and noise-levels of 3% and 9%,
respectively, were downloaded from BrainWeb [12]. To simulate a common case
from anatomical neuro-imaging, slice stacks were obtained from each of these
HR images by application of a 1D Gaussian PSF in the slice-selection direction.
The full-width-half-maximum of the PSF was equal to the downsampling factor
applied in the slice-selection direction. By varying this factor as well as the slice-
selection direction, three orthogonal slice stacks (axial, coronal, sagittal) were
generated for downsampling factors of 3, 5, 7, 9. Thus, a total of eight sets, each
containing three orthogonal slice stacks, with resolutions of 1×1×3 mm, 1×1×5
mm, 1×1×7 mm, and 1×1×9 mm, were generated from the two original images
with noise-levels of 3% and 9%.

Lung MRI. Lung MRI data was acquired on a 1.5 Tesla GE scanner. Axial,
coronal, and sagittal slice stacks of a test-subject with the lung in expiratory
state were acquired during breath hold. A 2D gradient-recalled steady-state se-
quence (TR = 2.2 s, TE = 0.75 s, flip angle = 35 degrees, number of averages
= 1) was used, having a scan time of 15 seconds per slice stack. The field of
view was 400×400 mm, the acquisition matrix was 128×160 pixels, yielding an
in-plane resolution of 3.125×2.5 mm. The slices were reconstructed by the scan-
ner to a grid of 256×256 pixels with uniform sizes of 1.56×1.56 mm. 40 slices
were acquired per stack with a slice thickness of 8 mm. Lung MRI courtesy of
H. Tiddens, P. Ciet, and P. Wielopolski, Dept. of Radiology, Erasmus MC.

3.2 Quantitative Evaluation

The proposed method, referred to as patch-based super-resolution (PBSR), was
quantitatively evaluated for 1) a single axial slice stack (siPBSR), 2) the com-
bination of three orthogonal stacks (3orthoPBSR), and 3) post-processing of
the result of another SRR method (LASR) [13] using three orthogonal stacks
(LASR+PBSR). Initial estimates of the HR image were created from the avail-
able data: in the case of a single stack, by cubic interpolation, and in the case of
three stacks, by either the average of the interpolated and aligned stacks (3or-
thAvg) or by the LASR method. Performance was quantified by peak-signal-to-
noise ratio (PSNR) and mean structural similarity (mSSIM) [14]. To compute
these measures, a noise-free HR T2-weighted image (1×1×1 mm voxels) from
BrainWeb was used. The results are shown in Fig. 2. As expected, lower noise
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Fig. 3. Coronal slice of the simulated brain images reconstructed using six methods: (a)
the noise-free HR reference image, (b) cubic interpolation, (c) 3orthoAvg, (d) LASR,
(e) siPBSR, (f) 3orthoPBSR, (g) LASR+PBSR. The reconstruction method of (h)-(m)
corresponds to (b)-(g). See Section 3.2 for nomenclature. Reconstructions (b)-(g) and
(h)-(m) are, respectively, based on stacks of 3 mm and 7 mm slice thickness.

and thinner slices yielded better reconstructions, and in most cases the recon-
structions based on three slice stacks were better than the ones based on a single
stack. More importantly, compared to interpolation and LASR, PBSR consis-
tently improved the PSNR and mSSIM of the resulting images. In all cases but
one, either 3orthoPBSR or LASR+PBSR performed best.

3.3 Qualitative Evaluation

Figure 3 shows coronal brain MR images reconstructed from either one or three
LR stacks with slice thickness of 3 mm or 7 mm generated from the original
HR image with a noise level of 3%. The results of the proposed PBSR method
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a

e fd

cb

Fig. 4. Axial slice of the lung data reconstructed using the six methods: (a) cubic in-
terpolation, (b) 3orthoAvg, (c) LASR, (d) siPBSR, (e) 3orthoPBSR, (f) LASR+PBSR

(e-g, k-m) appear both sharper and less noisy than the input images (b-d, h-j).
Figure 4 shows axial reconstructions of the lung MRI data. The images demon-
strate the potential of multi-image SRR for MRI slice stacks: comparing (a), an
interpolated coronal slice stack, with (b, c, e, f), where three stacks are com-
bined using SRR methods, the difference is striking. Comparing the SRR images
based on three slice stacks with each other, again, the PBSR images (e, f) appear
sharper and less noisy than the images they are based on (b, c). PBSR based on
a single slice stack (d) also looks sharper and less noisy than the original inter-
polated image (a), but in this case it is difficult to assess whether (d) becomes
a more accurate representation of the underlying anatomy.

4 Discussion and Conclusions

The main contribution of this paper is the idea of exploiting redundancy across
scales in an MRI slice stack for SRR. This idea is especially appealing because
of the vast amounts of such data that could potentially be enhanced using the
proposed method. Cross-scale self-similarity has previously been exploited for
SRR in MRI [8,9], but, to the best of our knowledge, the present study is the
first that takes explicit advantage of the relation between structural features in
the HR slices of a stack and in the orthogonal LR slices.

Our quantitative evaluation revealed that applying PBSR on an initial HR
estimate consistently improves the PSNR and mSSIM. The fact that the PBSR
improves the HR estimate of another SRR method (LASR) is worth noting.
LASR obtains a regularized maximum likelihood estimated after an iterative pro-
cedure that takes into account the acquisition process while maintaining global
data consistency. The improved performance after applying PBSR indicates that
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the image data contain valuable information that is not exploited by the LASR
method but can be exploited using a self-similarity prior.

As future work, we plan to study in detail how patch size and the number of
patches in the dictionary affect the performance of our method. The number of
blurring levels of the dictionary is another free parameter whose effect on the
performance will be thoroughly tested. Such results may, however, not generalize
easily, since they will be dependent on the specific anatomy, and on the image
quality. Also, we have used only the first NNs for our reconstruction. Using an
average of the first n NNs may improve the results. Finally we will study how
the size of the used dictionary can be optimally chosen to balance computational
cost and reconstruction quality.
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Abstract. We address the problem of dynamic CT reconstruction from 
parsimoniously sampled sinograms.  In this paper we propose a novel approach 
to solve the aforesaid problem by modeling the dynamic CT sequence as a low-
rank matrix. This dynamic CT matrix is formed by stacking each frame as a 
column of the matrix. As these images are temporally correlated, the dynamic 
CT matrix would therefore be of low-rank as its columns are not independent. 
We exploit the low-rank information to reconstruct the CT matrix from its 
parsimoniously sampled sinograms. Mathematically this is a low-rank matrix 
recovery problem, and we propose a novel algorithm to solve it. Our proposed 
method reduces the reconstruction error by 50% or more when compared to 
previous recovery techniques. 

1 Introduction 

Traditional knowledge dictates that in order to get a good quality high resolution  
X-Ray CT image, the sinogram should be densely sampled. Dense sampling  
of a sinogram requires higher CT dosage than parsimonious sampling. CT 
reconstruction researchers have been looking for ways to parsimoniously sample the 
sinogram (thereby reducing the radiation dosage) and to reconstruct a good quality 
image from it. 

Recently, Compressed Sensing (CS) based techniques have shown how transform 
domain sparsity of the underlying CT image can be exploited in order to recover it 
from parsimoniously sampled sinogram [1-3]. These studies have shown that CS 
techniques can indeed be used to cut the CT radiation dose by more than 50% for 
static CT imaging.  

In this work we address the problem of reconstructing dynamic CT images.  CS 
based techniques have also been used in the past to reconstruct the dynamic image 
sequence for parsimoniously sampled sinograms. In this paper we propose a novel 
formulation to solve this problem where we model the image sequence as a low-rank 
matrix. The reconstruction problem is thus recast as a low-rank matrix recovery 
problem from its parsimoniously sampled sinograms. We also propose a new 
algorithm to solve the low-rank matrix recovery problem. 
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The rest of the paper is organized into several sections. The following section 
briefly reviews the prevalent CS based recovery algorithms in dynamic CT imaging. 
In section 3, we briefly discuss the similarity between dynamic CT and dynamic 
magnetic resonance imaging (MRI). We formulate the problem in section 4 and 
propose a new algorithm to solve it. The experimental results are shown in section 5. 
Finally the conclusions of this work and future directions of research are discussed in 
section 6. 

2 Compressed Sensing in Dynamic CT 

In CT, the data acquisition model can be expressed as follows: 

y Ax=  (1)

Here x is the underlying image (to be reconstructed), y is the sampled sinogram and A 
is the X-ray transform.  

For dynamic CT, the sinogram is sampled in an interleaved fashion, so the A 
matrix changes with time. The data acquisition model for the tth frame is as follows: 

t t ty A x=  (2)

This is an inverse problem; one is supposed to reconstruct xt given At and yt. For 
non-iterative reconstruction using Filtered Back Projection (FBP), the sinogram needs 
to be densely sampled; dense sampling translated to higher ionizing radiation for the 
subject. Researchers in CT reconstruction aim to reconstruct the image from smaller 
number of sinogram samples. CS based techniques are useful to achieve this goal; CS 
exploits the sparsity of the image in order to reconstruct it from a smaller number of 
sinogram samples than was deemed necessary previously [1-3].  

Recent papers however have shown how CS techniques can be used for dynamic 
CT reconstruction [4, 5]. The first step is to generate a static FBP reference image (x0) 
from the interleaved projections. Once this reference image is computed, the 
reconstruction of the tth frame is solved via the following optimization problem,  

 1 0 2min ( ) (1 )  subject to 
p p

t t t t tp px
x x x y A xα αΨ − + − Ψ =  (3)

whereΨ1 and Ψ2 are sparsifying transforms (wavelet or gradient). The lp-norm 
(0<p≤1) is the sparsity promoting objective function. There are two sparsity 
promoting terms. The first term assumes that the difference between the current frame 
and the reference image is sparse in Ψ1. The second term assumes the tth frame is 
sparse in Ψ2. The scalar α controls the relative importance of the two sparsity 
promoting terms.   

This technique (3) is called Prior Image Constrained Compressed Sensing 
(PICCS). This was originally developed with convex sparsity promoting l1-norm [4] 
but was later shown to yield even better results with non-convex lp-norm (NCPICCS) 
[5]. It should be noted that even though the frames are reconstructed separately, this is 
an offline technique because the reference image x0 can only be generated after the 
full sequence has been collected. 
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3 Compressed Sensing in Dynamic MRI 

In MRI, the data acquisition model is the same as the CT for both static (1) and 
dynamic (2) scenarios. For MRI, the matrix A is the Fourier transform and the y is the 
sampled Fourier coefficients (called K-space in MRI). In MRI the challenge is 
different from CT. For MRI the challenge is to reduce the data acquisition time. Thus 
A or At is not the full Fourier transform (F), it is an under-sampled Fourier transform 
( A RF= ); where R is the sampling mask.  

Even though the challenges in CT and MRI are different, the fundamental 
mathematical problem remains the same. When the K-space is parsimoniously 
sampled, the inverse problems represented by (1) and (2) become under-determined. 
CS is used to reconstruct the MR images by exploiting their sparsity in a domain such 
as the wavelet or gradient.  

In dynamic MRI reconstruction the main idea is to maximally exploit the spatio-
temporal redundancies of the dynamic MRI sequence. The CS based techniques 
reconstruct the dynamic MRI sequence by solving an optimization problem of the 
following form [6, 7]: 

1 2 1
min ( ')  subject to ' ' '

x
x y A xΨ ⊗ Ψ =  (4)

where y’ is the vector formed by concatenating all the acquired vectors yt’s, similarly 
x’ is the vector formed by concatenating all the unknown xt’s and A’ is a block 
diagonal matrix formed by At’s as the blocks. Ψ1 is the sparsifying transform along the 
temporal direction and Ψ2 is the sparsifying transform along the spatial direction. 

CS based sparsity promoting techniques are not the only solution for dynamic MRI 
reconstruction. In general, one can use a different sampling mask for each frame. But 
if the sampling mask is the same for all the frames, i.e. if At=A for all t’s, then (2) can 
be expressed as 

Y AX=  (5)

where Y is a matrix formed by stacking the yt’s as columns, similarly X is formed by 
stacking the xt’s as columns.  

In [8] it is argued that the matrix X is rank deficient; this is because the MRI time-
frames are correlated with each other. Thus the columns of X are therefore not 
independent and thus X can be modeled as a low-rank matrix [8]. Therefore X can be 
recovered by solving the following problem, 

 min ( ) such that 
X

rank X Y AX= (6)

In general, minimizing the rank is a combinatorial problem and it is thus not 
feasible for large scale systems such as (6). Thus a matrix factorization based 
approach was proposed in [8] in order to recover X. 
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4 Proposed Solution 

In this work, we propose to solve the dynamic CT reconstruction problem (2) by 
modeling the sequence of CT images as a low-rank matrix. Our work is motivated by 
the studies in dynamic MRI reconstruction [8]. In the dynamic CT sequence, the 
frames are correlated temporally. When the frames from the sequence (xt’s) are 
stacked as columns of a matrix (X), the resulting matrix (X = [x1|…|xt|…|xN], 
assuming N frames in all) is rank-deficient; this is because the columns are correlated. 
We propose to recover this matrix by exploiting its rank-deficiency. 

For dynamic CT, the sinograms for different time-frames are sampled in an 
interleaved fashion. The data acquisition model is expressed as follows: 

' ' 'y A x=  (7)

where y’ is the vector formed by concatenating all the (acquired) yt’s, similarly x’ is 
the vector formed by concatenating all the (unknown) xt’s and A’ is a block diagonal 
matrix formed by At’s as the blocks. 

It must be understood by now that x’ and X are just two different ways to represent 
the same group of vectors xt’s. In x’ they are concatenated one after the other, and in X 
they are stacked as its columns. To exploit the prior information that X is low-rank, 
we exploit the rank deficiency of X in order to recover it: 

min ( ) subject to ' ' '
X

rank X y A x=  (8)

This is an NP hard problem. There are two solutions – i) replace the rank by its 
nearest convex or non-convex surrogate (i.e. nuclear norm or the Schatten-p norm); 
or, ii) use matrix factorization.  

The second approach is computationally faster but does not provide any recovery 
guarantees. The first approach that recovers the low-rank matrix via nuclear norm 
minimization [9] provides theoretical recovery guarantees for solving problems like 
(8). In practice however, it has been found that the non-convex Schatten-p norm 
minimization yields even better results than the nuclear norm minimization [10].  

Our work is motivated by the smoothed l0-minimization (SL0) [11] algorithm in 
CS; SL0 is faster and more accurate than most state-of-the-art l1-minimization 
algorithms. SL0 approximately solves the l0-norm minimization, i.e. it does not 
substitute the NP hard l0-norm by its convex (l1-norm) or non-convex (lp-norm) 
surrogates. In this work we propose to approximately solve the rank-minimization 
problem (8) by a similar approach. 

The matrix X can be expressed in terms of its singular value decomposition (SVD): 
TX U V= Σ  , where U and V are the left and right singular vectors and Σ is the 

diagonal matrix consisting of the singular values σj’s. The rank of a matrix is the 
number of non-zero singular values. We define a function for every singular value, 

1 when 0
( )

0 when 0

σ
γ σ

σ
>

=  =
 (9)
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Based on the above definition, the rank is expressed as ( ) ( )j
j

rank X γ σ= . The 

function γ(σj) is spiky; i.e. it has the value 0 or 1. Following [11] we replace the spiky 
function by a smooth zero-mean Gaussian whose spread can be varied by changing its 

standard deviation (θ) – 
2 2( /2 )( )f e σ θ

θ σ −=  

The function is wide when θ is large and becomes narrow when its value reduces. 
In the limit that the θ is zero, the above function has the following property,  

0

1 when =0 
lim ( )

0 when >0
fθθ

σ
σ

σ→


= 


 (10)

Therefore,
0

lim ( ) 1 ( )fθθ
σ γ σ

→
= − . This allows for approximating the rank by 

0
1 1

lim ( ) ( ) 1 ( ) ( )
n n

j j
j j

F x f n rank Xθ θθ
σ γ σ

→
= =

= = − = −  , (where n is the minimum of 

the number of rows or the number of columns in X). Therefore the rank 
minimization problem (8) can be recast as follows, 

max (x) subject to ' ' '
X

F y A xθ =  (11)

Since the objective function is smooth, it is easy to solve (11) by gradient based 
methods. The main idea behind the algorithm proposed below is that at each iteration, 
(11) is solved for a particular value of θ; then in the following iteration the value of θ 
is decreased and (11) is solved again. This continues till the solution converges (i.e. 
when there is no significant change in the solution). 
 
Algorithm for Smoothed Rank Minimization 

Initialization – Obtain the initial solution
2(0)
2

ˆ ' min ' ' '
x

x y A x= − . Rearrange 

(0)ˆ 'x in matrix form (0)X̂ . Compute the SVD, (0) (0) (0) (0)ˆ TX U V= Σ  

At iteration k – Continue the following steps till solution is reached (i.e. till θ is 
greater than a specified value) 

1. Choose 1,  where c > 4cθ σ= .  

2. Maximize (11) for the current value of θ. The Steepest Ascent method is 
used to achieve this. 

a. Initialize, ( 1)( )ks diag −= Σ . Here diag() operator forms a vector from 
the diagonal elements 

b. Let
2 22 2

1 /2/2
1[ ,..., ]nss T

ns s e s e σθ −−Δ = ⋅ ⋅  .  

c. Update: s s sμ← − Δ , where μ is a small constant. 
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Express ( )ˆ ( )k diag sΣ = . Here diag() generates a matrix with diagonal 
elements. 

d. Generate the matrix ( ) ( 1) ( ) ( 1)ˆ ˆk k k k TX U V− −= Σ and ( ) ( )ˆˆ ' ( )k kx vec X=  . 

e. Project the solution back to the feasible set by 
( ) ( ) 1 ( )ˆ ˆ' ' ' ( ' ' ) ( ' ' ')k k T T kx x A A A A x y−← − − .  

3. Rearrange ( )' kx  in matrix form and compute the SVD, ( ) ( ) ( ) ( )k k k k TX U V= Σ  
and return to step 1 until convergence. 

5 Experimental Evaluation 

We compared the above proposed technique with the Non-convex Prior Image 
Constrained Compressed Sensing (NCPICCS) method [7] since this method [7] yields 
the best reconstruction for dynamic CT when α = 0.7 and p = 0.7 (refer to problem 
formulated in (3)). The reconstruction accuracy in our study is measured in terms of 
Relative Mean Squared Error (RMSE) as this metric has been used previously for the 
same purpose [5].  

   

Fig. 1. Variation of RMSE with time. Blue plot represents error from NCPICCS and red plot 
represents error from proposed method. 

We use a portion of the experimental data used in [5]. The reconstructions were 
carried out on a synthesized Shepp Logan phantom and on an in-vivo animal kidney 
perfusion CT scans. The Shepp Logan phantom was modified in [5] such that the 
uppermost ellipses in the simulated original object changed attenuation through time 
as follows: 

( )exp /br at t c= −  (12)
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where t is the time and the parameters a, b, and c control the amplitude, width, and 
speed of decay of the gamma-variate function. The values, a=.05, b=7, and c=2 were 
used to simulate tissue perfusion. A total of 20 time points were simulated, with time 
steps t=0.5 s. 

The in-vivo study scans were performed at 80 kV, using 160 mA s, with 24X1.2 
mm collimation and 0 mm table feed. Using a 0.33 sec. gantry rotation time, 70 
exposures (images) were acquired with 0.67 sec interval between consecutive  frames. 

For the simulated Shepp Logan, the reconstruction was carried using 4 and 6 
projections (with parallel beam geometry). For the in-vivo experiment the number of 
projections were 16 and 22. These values were suggested in [5]. The frame-by-frame 
RMSE’s are plotted in Fig. 1. Owing to limitations in space, we only show the results 
for the in-vivo data. 

We see that our proposed method (red plot) reduces the RMSE by 50% or more. 
Also the variation in error from our proposed method is less compared to NCPICCS. 
Both of these observations stem from the same fact. NCPICCS and other PICCS 
based methods reconstruct the images frame-by-frame, whereas our method 
reconstructs all the frames simultaneously. During reconstruction, our method makes 
better use of the spatio-temporal redundancy compared to PICCS. That is why our 
proposed method yields more stable (less variation in time) and better reconstruction 
results.  

To corroborate the numerical results, we show the ground truth, reconstructed and 
difference (between ground truth and reconstructed) images. Owing to limitations in 
space, we only show one frame from each of the datasets. The contrast of the 
difference images is magnified 10 times for visual clarity. From the difference 
images, it is clearly seen that our proposed method is better than PICCS; the 
difference images are darker. The improvement from our proposed method is better 
evident from the phantom. The PICCS reconstructed phantom image clearly shows 
reconstruction artifacts; the artifacts are absent in our proposed method. 

    

    

Fig. 2. Left to right: Ground truth, Difference image from NCPICCS, Reconstructed image 
from NCPICCS, Difference image from proposed method, Reconstructed image from proposed 
method 
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6 Conclusion 

In this work we propose a novel technique to reconstruct dynamic CT image 
sequences. The temporal correlation of the CT images allows us to model the entire 
sequence as a low-rank matrix. We exploit this low-rank structure of the matrix while 
reconstructing the sequence. The proposed method yields considerably better results 
than the well known PICCS based technique for reconstructing dynamic CT images 
from parsimoniously sampled sinograms.   

In the future, we want to combine the sparsity promoting reconstruction with the 
proposed low-rank model to achieve even better reconstruction.   
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Harnessing Group-Sparsity Regularization
for Resolution Enhancement of Lung 4D-CT

Arnav Bhavsar, Guorong Wu, and Dinggang Shen
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Abstract. A critical concern with lung 4D-CT is the low superior-inferior res-
olution, due to the consideration of radiation dose. We propose a resolution en-
hancement approach that reconstructs missing intermediate slices by exploiting
the idea that information lost in one respiratory phase can be found in others,
according to the complimentary nature of inter-phase information. Our approach
is based on a patch-based framework that explores the role of group-sparsity in-
volving groups of similar neighbouring patches. We discuss the regularizing role
of group-sparsity, which helps in reducing the effect of noise and enables bet-
ter enhancement of anatomical structures. Our results positively demonstrate the
potential of group-sparsity for 4D-CT resolution enhancement.

1 Introduction

4D-CT plays a crucial role in radiation therapy for lung cancer. Unlike 3D-CT under
free breathing, 4D-CT provides a more accurate estimate of the lung motion across
respiratory phases. This helps to better localize the moving structures in the lung.

However, to control radiation dose in 4D-CT, usually a reduced number of slices are
acquired, which results in low superior-inferior resolution. This can adversely affect
the image quality [1] due to false apparent vessel discontinuities, shape distortions etc.,
which makes the assessment of tumor and vessel structures difficult [7]. This compro-
mises the potential of 4D-CT for providing accurate structural information. Resolution
enhancement here aims at addressing this important limitation.

Resolution enhancement, often known as super-resolution (SR), involves retrieving
lost high-frequency sampling information (e.g. fine structures) [2,3]. Typically, SR ap-
proaches exploit multiple observations with relative sub-pixel motion [2] or a large
dictionary of local patches from an off-line high-resolution (HR) image dataset [3,4].

For 4D-CT, it is difficult to rely on accurate registration due to poor superior-inferior
resolution. While there have been attempts for correspondence-based interpolation [5]
or super-resolution via motion-estimation [6], in general, registration-based method
can be quite inaccurate, as demonstrated in [7]. Also, availability of large off-line
HR datasets for constructing dictionaries is infeasible. Nevertheless, one can exploit
motion-induced information in a patch-based framework without the need for registra-
tion and large HR data. Due to lung motion, local image information across respiratory
phases is complimentary, which one can capture in a dictionary of patches [7,8].

We propose a group-sparsity-based approach to integrate such local inter-phase lo-
cal information. Our approach involves multiple dictionaries that consider spatial neigh-
bourhood and similarity. Our work is closely related to the sparse representation method

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 139–146, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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in [7], which, however, does not employ any neighbourhood constraints. Accordingly,
relatively large-scale patches have to be used in [7], in order to resist noise and other
artifacts. However, a large scale results in over-smoothing. On the other hand, a smaller
scale to improve localization could result in an error-prone noisy reconstruction.

Such a behaviour is an example of ‘noise-structure trade-off’ [2]. From a clinical
view, structural accuracy and localization is important for assessment of shape/extent
of tumors and anatomical structures, which is vital in radiation therapy. It is also crucial
that noise-effects and artifacts are minimized during reconstruction. Thus, the clinical
importance of mitigating the ‘noise-structure trade-off’ can be clearly appreciated.

In this regard, we harness the regularizing potential of group-sparsity over spatially
neighbouring patches. This enables a constructive use of smaller patch-scale, which
helps in enhancing local structures, while still being robust to noise effects and artifacts.

Thus, our work contributes in: 1) Advancing the recent and clinically important area
of 4D-CT resolution enhancement in a different framework than traditional SR meth-
ods; 2) Exploring the role of group-sparsity for image reconstruction; 3) Exploiting
neighbourhood constraints for better structural enhancement.

2 Role of Group-Sparsity in Regularization

In many estimation problems, multiple factors (tasks) can be related. In such cases, the
sparse representation problem can be expressed for a group of tasks as follows:

Â = argmin
αl

P∑
l=1

||yl −Dlαl||22 + λ||A||2,1, where ||A||2,1 =

m∑
q=1

||aq ||2 (1)

Here, yl is the observation andDl is the dictionary for the lth task.A=[α1, .., αl, .., αP ]
is an m × P matrix whose columns are coefficient vectors related to the P different
tasks. Each vector αl describes the linear combination of atoms inDl that best matches
yl. ||A||2,1 is the l2,1-norm, viz. an l1-norm over the l2-norms of the rows of A, where

aq denotes the qth row of A. The l2,1-norm enforces coefficient vectors for all tasks to
have a similar sparsity structure, i.e., same locations of the zero elements. The intuition
is that the related tasks employ the same (or similar) dictionary atoms.

Such an insight helps us to exploit the regularization potential of group-sparsity. We
group patches into dictionaries, considering spatial neighbourhood and appearance sim-
ilarity. The selected patches satisfy closeness with their neighbouring patches, result-
ing in smoothness, which, however, tends not to adversely affect the salient structures.
Thus, group-sparsity plays a regularizing role towards mitigating the noise-structure
trade-off. To our knowledge, only [10,11] employ group-sparsity for image reconstruc-
tion. While our method is very different, these works support such an intuition.

3 Methodology

Given 4D-CT data I = {Ii(s)|i = 1, ...., L; s = 1, ...., S} (with L phases and S slices),

we estimate a slice between Ii(s) and Ii(s+1) for the ith phase, in a patch-wise manner
[7]. We consider patches from Ii(s) and Ii(s+ 1) to form the observation vectors.



Harnessing Group-Sparsity Regularization 141

Ours is a two-stage strategy, where the second stage uses the reconstructed slice from
the first. We elaborate our method for the first step, and briefly indicate the modifications
in the second. Patches are used as lexicographic vectors and, for simplicity, we do not
use the subscript denoting the phase in which the slice is reconstructed.

3.1 Group-Based Dictionary Construction and Group-Sparse Representation

Our method involves a group of neighbouring patches. Below, we discuss the dictionary
construction for this group, followed by our group-sparse representation.

Dictionary Construction for the Central Patch
The dictionary construction for the central patch is similar to that in [7]. The 2D
patches yU

c and yL
c from I(s) and I(s + 1), respectively, and their x and y gradients

(Fx(yU
c ),F

y(yU
c ),F

x(yL
c ),F

y(yL
c )) are used as observations. We search for candidate

patches ypc in a 3D region in each phase p (other than the current phase), around the
same locations as that of yU

c and yL
c . We select theK best patches yielding theK low-

ermost costs. Observing that yU
c and yL

c may be dissimilar, we incorporate a balancing
condition in the overall cost Ed

c as defined below.

Ed
c = EU

c + EL
c if 1/ε < EU

c /E
L
c < ε, and Ed

c =∞ otherwise (2)

where the sub-costs EU
c and EL

c , involving yU
c and yL

c , respectively, are defined as

EU
c = ||yU

c − ypc ||2 + γ(||Fx(yU
c )− Fx(ypc)||2 + ||Fy(yU

c )− Fy(ypc)||2) (3)

EL
c = ||yL

c − ypc ||2 + γ(||Fx(yL
c )− Fx(ypc)||2 + ||Fy(yL

c )− Fy(ypc)||2)

where γ is the weighting of the gradient feature cost. Thus, only those patches which
yield a low-cost and are similar to both yU

c and yL
c are included in the dictionary.

A similar balancing as in equation (2) is also used in [7], but during the greedy
sparse representation step. We follow a non-greedy optimization for sparse representa-
tion, where the balancing term yields non-linearities. Hence, we incorporate it during
dictionary construction, to resist imbalanced patches from entering the optimization.

Dictionary Construction for Neighbouring Patches
Having defined the dictionary for the central patch (sayDc), we now constructN neigh-
bourhood dictionaries D1 to DN using observed patches yU

1 , ...,y
U
N and yL

1 , ...,y
L
N

neighbouring to the central patch yU
c and yL

c , respectively. This proceeds as follows:
a) Patches in D1, ..., DN are selected such that their spatial relationship with those in
Dc is consistent as that of yU

1 , ...,y
U
N to yU

c (and yL
1 , ...,y

L
N to yL

c ). For instance, if yU
1

is left to yU
c , then the patches in D1 are left to those in Dc. This ensures that the spatial

correspondence among neighbouring candidate patches is same as that of neighbouring
observed patches. b) To induce a constructive smoothness, the candidate patches that
contribute to the dictionaries satisfy a soft-similarity condition (equation (4)), so as to
avoid the inclusion of unsuitable patches in the dictionaries.

ypn ∈ Dn if Ed
n < κEd

c (4)



142 A. Bhavsar, G. Wu, and D. Shen

where ypn is the candidate patch for dictionary Dn, and Ed
n is the corresponding cost

for ypn (defined similarly to Ed
c , using proper change in subscripts). κ is a threshold pa-

rameter. Note that this condition plays a similar (rather, a softer) role as neighbourhood
similarity [4], which advocates that neighbours tend to be similar in appearance. Hence,
it is fair to assume that neighbouring patches typically tend to have similar costs. Indeed,
the condition helps in excluding those dissimilar neighbouring patches, which may not
be suitable in group-sparse representation for inducing a constructive smoothness.

For every patch, we keep the number of atoms in all dictionaries (including Dc)
equal. Hence, if the above condition is not satisfied by all the neighbouring patches, we
do not include the corresponding patch in any dictionary.

Group-Sparse Coefficient Estimation and Reconstruction
We use the constructed dictionaries to solve for the coefficients that minimizes the
group-sparse problem of equation (1), rewritten for our case in the left equation in (5):

Â = argmin
αk

∑
k∈{{1,...,N},c}

||ỹk −Dkαk||22 + λ||A||2,1 ỹO
c = Dcα̂c (5)

where ỹk is the concatenated observation vector for the kth task defined as: ỹk =
[(yU

k )
T , (γFx(yU

k ))
T , (γFy(yU

k ))
T , (yL

k )
T , (γFx(yL

k ))
T , (γFy(yL

k ))
T ]T . To

maintain dimensional consistency with ỹk , the atoms in the dictionary are defined as
[(ỹpk

)T , (ỹpk
)T ]T , where ỹpk

= [(ypk
)T , (γFx(ypk

))T , (γFy(ypk
))T ]T .

The coefficient matrix Â is estimated via convex optimization of left equation in (5)
[9]. Following this, the output vector ỹO

c corresponding to the central patch is recon-
structed as in the right equation in (5) using α̂c, the coefficient vector corresponding to
the center patch (which is extracted from the matrix Â and normalized to 1). The top
one-sixth of ỹO

c (containing raw intensities) is reshaped and placed into the unknown
slice, with overlapping values properly averaged.

Observe that although the coefficients are estimated for all dictionaries, we only re-
construct the central patch, i.e. using only the dictionary Dc and coefficient vector α̂c.
It might appear that the group-sparsity is not being exploited during the patch recon-
struction. However, we note that group-sparsity regularization guides the coefficient
estimation (including α̂c), thus enabling the selection of those dictionary patches from
Dc for reconstruction and better inducing the controlled smoothness.

3.2 Two-Stage Strategy

The above approach provides a reasonable reconstruction, but has further scope of im-
provement. Hence, we employ a second step that improves upon the above reconstruc-
tion. We now use only the patches from the reconstructed slice.

The dictionary construction cost for the central patch using the patch yR
c in the re-

constructed slice, and its gradients Fx(yR
c ) and Fy(yR

c ), is similar to equation (3) as

Ed
c = ||yR

c − ypc ||2 + γ(||Fx(yR
c )− Fx(ypc)||2 + ||Fy(yR

c )− Fy(ypc)||2) (6)



Harnessing Group-Sparsity Regularization 143

Note that here we do not require any balancing condition. The neighbourhood dictio-
naries are also constructed similarly as before, except with yR

1 , ...,y
R
N as the patches

neighbouring to yR
c . Finally, sparse representation and reconstruction is carried out as

Â = argmin
αk

∑
k∈{{1,...,N},c}

||ỹR
k −Dkαk||22 + λ||A||2,1 and ỹF

c = Dcα̂c (7)

where ỹR
k = [(yR

k )
T , (γFx(yR

k ))
T , (γFy(yR

k ))
T ]T , and the dictionary atoms for the

selected patches are denoted as: ỹpk
= [(ypk

)T , (γFx(ypk
))T , (γFy(ypk

))T ]T .
ỹF
c is the output vector which is used in reconstructing the final output slice.

The need for the second step indicates that the group-sparsity method works better
given a ‘good’ estimate from the first step. Hence, inspired by [7], a larger scale is
chosen in the first step, which yields smooth but structurally more correct results. We
then choose a smaller scale in the second step for better structure localization.

While the method in [7] also reduces scale over iterations, the successive outputs are
averaged with a large weight to the output at the highest scale. Our second stage output
is constructed strictly at a lower scale, thus yielding better structural enhancement and
still maintaining robustness to noise and artifacts due to group-sparsity regularization.

4 Experimental Results

Our experiments involve the DIR-Lab lung data [12], containing 10 cases, each with
10 respiratory phases. The in-plane resolution is 1 mm and the superior-inferior reso-
lution is 2.5 mm. We further subsample this data by removing alternate slices, so as
to compare our estimated intermediate slice with the true slice. We provide qualitative
and quantitative results, and also compare with the method in [7], a related sparse-
representation-based approach. As our work is about resolution enhancement, we se-
lect a range of slices with a good amount of vessel structures. The quantitative metrics
are computed around vessel regions extracted using the method in [13]. Such an error
computation emphasizes structural enhancement, better localization and reduction in
artifacts, which is central to SR and an indicator of improvement in spatial resolution.
Due to space constraints, we do not provide visual results for interpolation methods.

We use the MALSAR package [14] for group-sparse coefficient computation. Our
approach involves parameters γ, ε, κ and λ which, for the results below, are as follows:
γ = 0.2, ε = 1.1, κ is chosen so that dictionary contains 300 - 400 patches, and
λ = 40000 (sparsity of ∼ 30%). The patch-size in the first step is 32 × 32 and in the
second is 16 × 16. The 3D search region is 11 × 11 × 11, and we employ N = 4
neighbors to the center patch. It is worth noting that our parameter range for best result
is narrow, which simplifies tuning, in general.

4.1 Visual Qualitative Results

We first demonstrate some qualitative slice reconstructions in Fig. 1, which shows some
typical outputs. The first to third columns depict reconstruction obtained using the ap-
proach in [7], our output, and ground truth, respectively. It can be observed that ves-
sel structures in our outputs are better localized and more accurate than those in [7].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Examples for reconstruction of some slices: (a,d,g) Outputs using the approach in [7].
(b,e,h) Outputs using the proposed method. (c,f,i) Ground-truth.

Method in [7] Our approach Ground-truth Method in [7] Our approach Ground-truth

Fig. 2. Close-up views: Each row depicts the close-up views of two regions from slices shown in
the corresponding row of Fig. 1. Column pairs {1, 4}, {2, 5}, {3, 6} correspond to the results by
the approach in [7], proposed approach and ground-truth, respectively.



Harnessing Group-Sparsity Regularization 145

Some of the improvements are marked with red arrows. We zoom into some regions
of Fig. 1, and show the close-up views in Fig. 2, where one can further appreciate our
method achieving more plausible and better structure reconstruction. While the results
are somewhat smooth than ground-truth (which is due to patch averaging), they clearly
indicate improved spatial resolution of vessel structures over the state-of-the-art [7].

4.2 Quantitative Results

We next provide quantitative results averaged over complete sets of data used in our
experiments. Table 1 provides case-wise root-mean-square (RMS) and structural sim-
ilarity (SSIM) metrics for bi-cubic interpolation, the method in [7] and our approach.
Observe that our approach shows a clear improvement with respect to both metrics for
all 10 cases (note that such an order of improvement is common in contemporary super-
resolution (e.g. [3,15])). The RMS results support our claims for overall mitigation of
the noise-structure trade-off, whereas the SSIM results emphasize better structure en-
hancement. In Fig. 3 we show the percentage of slices across cases, for which our ap-
proach favourably compares with that in [7]. Clearly, our approach better reconstructs
a vast majority of slices, which highlights that the group-sparsity-based smoothing in-
deed has a constructive effect. Overall, the RMS improvement is over 85% of the slices
and the SSIM improvement is over 89% of the slices.

Table 1. Average RMS and SSIM for 10 cases

Case (No. of Slices) RMS: Bicubic RMS: [7] RMS: Proposed SSIM: Bicubic SSIM: [7] SSIM: proposed
Case 1 (170) 28.97 18.56 17.96 0.5492 0.7069 0.7127
Case 2 (200) 27.83 16.74 16.32 0.5777 0.7445 0.7511
Case 3 (160) 26.82 15.86 15.15 0.5895 0.7589 0.7734
Case 4 (170) 26.95 17.10 16.36 0.5869 0.7372 0.7550
Case 5 (170) 29.00 19.23 18.24 0.5671 0.7184 0.7329
Case 6 (190) 24.81 17.75 17.25 0.5151 0.6255 0.6421
Case 7 (180) 28.12 18.94 17.94 0.5181 0.6622 0.6856
Case 8 (180) 37.38 26.72 24.70 0.4913 0.6137 0.6462
Case 9 (130) 25.34 16.63 16.04 0.5558 0.6980 0.7123
Case 10 (190) 37.10 25.40 23.74 0.4820 0.6148 0.6461

Average (Total: 1740) 29.23 19.29 18.37 0.5433 0.6860 0.7057

(a) (b)

Fig. 3. % of slices on which our approach performs favourably over [7] for (a) RMS, (b) SSIM
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5 Conclusion

We proposed a super-resolution method for 4D-CT, where we discussed the regularizing
role of group-sparsity and employed it via careful dictionary construction based on
patch neighbourhood and similarity. Our results justify the potential of group-sparsity
for noise robustness and structure enhancement. In the future, we aim to explore other
group-sparsity frameworks and carry out exhaustive parameter analysis.
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Abstract. Image resolution is an important factor for accurate my-
ocardial scar assessment from late gadolinium enhanced (LGE) MR.
It has been shown that the conventionally used short-axis (SA) LGE
acquisition with anisotropic resolution may overestimate the scar size
due to partial volume effect, undermining the prognostic and diagnos-
tic accuracy of LGE MRI in critical clinical applications. In this work,
we present a method for combining three complementary anisotropic
orthogonal LGE sequences of the heart region into a single isotropic
volume. Our algorithm is based on the super-resolution reconstruction
technique and employs joint localized gradient-correlation-based tech-
nique for compensation of breathing motion. The proposed method was
validated on the gold standard electroanatomical voltage mapping
(EAVM) data of 15 post-infarction patients. The reconstructed myocar-
dial scar image demonstrated improved agreement with the EAVM com-
pared to the conventional SA image, especially at the clinically significant
gray zone region.

Keywords: Myocardial scar, late gadolinium enhanced MR, image
registration, super-resolution reconstruction.

1 Introduction

Myocardial infarction occurs in more than 7 million patients worldwide annu-
ally, and is a frequent cause for cardiac arrhythmia and sudden cardiac death.
Accurate characterization of the post-infarction myocardial scar has important
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diagnostic and prognostic value for patient management and treatment [1], in e.g.
defibrillator implantation and catheter ablation. In recent years, late gadolinium
enhanced (LGE) MR has become the gold standard for myocardial scar imaging
in clinical practice [2]. In particular, the size of partially infarcted myocardial
tissue, named as gray zone, has shown to be an important predictor for risks of
death and arrhythmia, outperforming traditional function parameters [1].

However, recent animal studies demonstrated that the LGE-derived myocar-
dial scar size, especially that of the gray zone, is susceptible to partial volume
effect (PVE) and changes with MR imaging resolution [3]. These studies under-
score the significant importance of image resolution for reliable clinical evalua-
tion of myocardial scar. Unfortunately, current clinical LGE typically has poor
through-plane resolution (between 5 to 10 mm) compared to in-plane resolution
of about 1.5mm, resulting in significant PVE. To alleviate the problem, standard
MR protocols often include three LGE acquisitions in orthogonal1 views: short-
axis (SA), two-chamber (2CH), and four-chamber (4CH). To evaluate each view
separately is however cumbersome and suboptimal with PVE present in differ-
ent directions. The newly developed three-dimensional LGE MR technique can
be used for isotropic myocardial scar imaging, however, the sequence is still of
limited availability and the image quality is currently compromised by motion
artifacts [4].

1.1 Related Work

Super-resolution reconstruction (SRR) comprises a group of methods aiming at
creating a high-resolution image from multiple low-resolution views of the same
scene [5]. During last years, reconstruction of isotropic three-dimensional (3D)
MR volumes from a set of anisotropic images has become, probably, the largest
consumer of SRR techniques. This is primarily caused by intrinsic limitations
imposed on the slice thickness by some MR scanning protocols. Reconstruction
of the isotropic volume from three orthogonal views was, in particular, applied
to cardiac MR images by using two orthogonal views [6]. However, combining
all three views was concluded as not providing any additional benefit compared
to averaging due to difficulty in aligning the data.

1.2 Our Contribution

Here we present our algorithm for reconstruction of an isotropic 3D myocar-
dial scar volume from three orthogonal views in LGE MR sequences. To our
knowledge, this is the first work to address the issue of low clinical resolution
problem in MRI myocardial scar imaging, with validation on in vivo clinical
measurements. Three orthogonal views are combined by the SRR framework.
For correction of the heart position displacements as result of the breath-hold
variations, we suggest using a localized gradient-correlation-based registration

1 Here and further we refer by word “orthogonal” to both orthogonal as well as nearly-
orthogonal cases.
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algorithm in combination with sub-voxel refinement that is performed simulta-
neously with the SRR. Estimation of the displacement is performed in a joint
manner, using all the available image stacks simultaneously, which guarantees
high quality and consistency of the calculated results. In addition, we have de-
veloped a method for compensating for possible slice shifts in the SA volumes
that are acquired with two separate breath-holds.

2 Method

2.1 MRI Data

Fifteen chronic infarction patients who were referred for MR prior to catheter
ablation of ventricular arrhythmia were involved in this study. MR imaging was
performed using a 1.5T Gyroscan ACS-NT MRI scanner (Philips Medical Sys-
tems, Best, The Netherlands). After obtaining the scout and cine views, a Look-
Locker sequence was acquired approximately 15 min after bolus injection of
gadolinium DPTA (0.15 mmol/kg). T1-weighted LGE images were acquired with
an inversion-recovery three-dimensional turbo-field echo sequence with parallel
imaging. The heart was imaged with 20 to 24 imaging levels in the SA view,
and 5–10 levels in the 2CH and 4CH view. All views were acquired at the same
late diastolic phase. Due to the high number of slices in the SA view, it was
typically acquired as two stacks in two separate breath-holds. For the other two
views, images were acquired in one stack within a single breath-hold. For the
SA acquisition, the slice thickness is 10 mm with 5 mm overlap, with in-plane
resolution of 1.56× 1.56 mm; for the other two acquisitions, the slice thickness
is 12 mm with 6 mm overlap, with in-plane resolution of 1.56× 1.56 mm.

2.2 Heart Registration

Since each acquisition is performed with a separate breath-hold, the position of
the heart may vary in each of the volumes. In particular, this may result in a
large discontinuity in the slice direction in the SA volumes that are acquired
using two breath-holds.

Registration schemes based on the image gradient, including the one used in
this work, are proven to be more robust to the intensity variation in the MR
data than those operating on the intensity directly. For alignment of the heart in
different images, we used the FFT-based scale invariant image registration with
gradient correlation [7], which allows immediate recovery of the unknown trans-
lation, rotation, and scaling between two image stacks. This method can also
estimate sub-pixel image displacements, but, unfortunately, this methodology
was not yet extended to 3D.

Before performing the registration, all the image stacks have to be transformed
into a common coordinate system. We achieve it by bringing all three image
stacks into the coordinate space of the SA view. At this stage, we aim at rough
(with voxel precision) compensation of the inter-scan heart displacement. Thus,
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Fig. 1. Joint gradient-correlation-based registration of three orthogonal heart views

we restrict ourselves to estimation of the unknown displacement. As the region
around the heart is the volume of interest, the registration method is expected
to perform reliable alignment inside it while neglecting possible misalignment
outside. To constrain the registration, we calculate the region where all three
views intersect. Then, we find the largest right rectangular parallelepiped R that
fits entirely in the described overlap region. This step is necessary for performing
the correlation, which expects rectangular images as input. Finally, each of the
views is cropped to the region R.

The gradient of each view in the region R is used to estimate the unknown
displacements d(V1,V2) between each volume pair V1, V2 ∈ {SA, 2CH, 4CH}. The
best triple of the displacement vectors D =

{
d(SA,2CH);d(SA,4CH);d(2CH,4CH)

}
should maximize each of corresponding gradient-correlation maps

d(V1,V2) = argmax
x

GC(x;V1, V2),

and satisfy the vector addition rule

d(SA,2CH) + d(2CH,4CH) = d(SA,4CH).

The gradient-correlation maps are scaled beforehand by dividing them by their
largest value. Consequently, we calculate the set D by jointly analyzing all three
correlation maps (see left panel of the Fig. 1) for all possible combinations of
displacements. In order to limit the search space, for each correlation map we
select only the points with the intensity higher than 99.99 percentile of all the
intensity values.

2.3 Slice Shift Correction in SA Volume

For correction of a possible slice shift in the SA view, we developed a method
that utilizes information from the other two views. More precisely, we split the
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entire SA volume into two sub-volumes SA(1) and SA(2), each acquired within a
separate breath-hold. Consequently, both sub-volumes are registered to the 2CH
and the 4CH volumes. This procedure, illustrated in the right panel of Fig. 1, is
similar to the one described above. The only difference is that in this case joint
estimation of the displacements is performed on five gradient correlation maps

D =
{
d(SA(1),2CH),d(SA(1),4CH),d(SA(2),2CH),d(SA(2),4CH);d(2CH,4CH)

}
with the following constraints

d(SAk,2CH) + d2CH,4CH) = d(SAk,4CH), k = 1, 2.

The unknown shift d(SA(1),SA(2)) between the SA(1) and the SA(2) is calculated
based on the estimated displacements using the vector addition rule

d(SA(1),SA(2)) = d(SA(1),2CH) − d(SA(2),2CH) = d(SA(1),4CH) − d(SA(2),4CH). (1)

Allowing arbitrary slice shifts may result in an unwanted gap in the image
stack in case the estimated displacement d(SA(1),SA(2)) has a positive component
in the slice direction z. To avoid such scenarios, we assume that the slice shift
is in-plane. Mathematically this means that d(SA(1),SA(2)),z = 0, which adds two
extra constraints

d(SA(1),2CH),z = d(SA(2),2CH),z, d(SA(1),4CH),z = d(SA(2),4CH),z. (2)

After the slice shift d(SA(1),SA(2)) is calculated, the corresponding displacement

is applied to SA(2) and both parts are recombined into a single SA volume.

2.4 Orthogonal Super-Resolution Reconstruction

For calculating the high-resolution image, we use the method of Poot et al. [8].
Intensities of all three views were normalized by histogram equalization before-
hand. The SSR was implemented with total variation smoothing. During re-
construction, all the affine transformation parameters: translation, rotation, and
scale, are iteratively updated to allow sub-voxel precision of image alignment.

3 Experiments and Results

3.1 Myocardial Scar Characterization

SA LGE sequence is conventionally used in clinical studies to assess myocardial
scar. To evaluate the improvement of the proposed SRR over SA, we interpolated
the original SA volume to the same isotropic resolution as SRR by cubic spline
and used it as a reference in all experiments. From both SRR and SA volume, we
performed myocardial scar characterization using a validated scar segmentation
method [9]. The myocardial scar region was identified using the Otsu method to
differentiate normal and scar tissue. Within this region, the scar core zone and
gray zone were further differentiated by the full-width-half-maximum method as
validated on histological data [10]. It is worth mentioning that the scar was not
necessarily at the same location among subjects.
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Fig. 2. Comparison between the interpolated SA and the SRR volumes. A 3D recon-
struction of the myocardial scar and one slice of each orthogonal view are shown. The
locations of improvement in scar definition are indicated by the red and green arrows.

3.2 SRR Reconstruction Results

Compared to the interpolated SA volume, similar core zone size (percent to left
ventricle volume) was identified from the SRR volume: 12.0 ± 9.2% vs 11.6 ±
8.7%, p = NS (absolute size: 17.2 ± 16.7cm3 vs. 16.5 ± 15.6cm3, p = NS) by
the nonparametric Kolmogorov-Smirnov test, but reduced gray zone size was
identified: 6.2 ± 4.7% vs 9.8 ± 6.5%, p < 0.05 (absolute size: 8.4 ± 5.2cm3 vs.
13.2 ± 8.0cm3, p < 0.05). The results were in line with previous observation
that low imaging resolution does not significantly influence the scar core zone
estimation, but may lead to over-estimation of scar gray zone, since PVE is
pronounced in the latter zone [3]. Fig. 2 a illustrates such phenomenon in 3D,
where the reduction of gray zone is obvious in the through-plane direction. The
increase of image resolution is further observed in all three orthogonal views,
especially in the z-x and y-z plane (see red arrows in Fig. 2 b).

In the interpolated SA volume, the image gradients were anisotropic (Fig. 3
b). Subtle difference was further observed between the two in-plane gradients
in the SA volume. The x-direction is smoother than the y-direction, as can
be attributed to the non-symmetric acquisition matrix (256 × 104) during MR
image acquisition: more frequency components were encoded in the y-direction
than in the x-direction. In the SRR reconstructed volume, the gradient was more
homogenous in all directions as a result of integrating two orthogonal views.

3.3 Electroanatomical Mapping

All patients underwent catheter ablation of ventricular arrhythmias. During the
procedure, high-density electroanatomical voltage mapping (EAVM) was per-
formed on the endocardial surface to measure the electrophysiological (EP)
characteristics in and around the myocardial scar region. The amplitude of the
bipolar voltage reflects the local EP activities in vivo. Previous clinical studies
have validated the empirical voltage thresholds for myocardial tissue character-
ization: normal v > 1.5 mV, scar gray zone 0.5 mV < v < 1.5 mV, and scar
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Fig. 3. Distribution of the bipolar voltages in identified normal tissue, scar gray zone,
and core zone, from the interpolated SA and SRR volume (a). Green lines indicate
0.5 mV and 1.5 mV respectively, while the gray zone is supposed to have volt-
ages between these two empirical thresholds. Distribution of image gradient in three
directions (b).

core zone v < 0.5 mV. In absence of histological data, the EAVM measurement
provides the best available gold standard for characterizing the underlying my-
ocardial tissue composition. Registration between the EAVM and MRI data was
performed by minimizing the point-to-surface distance under the assumption of
a fixed heart orientation [11]. To evaluate the myocardial scar characterization
from the SRR and the SA volumes, the acquired bipolar voltage was labeled
according to their identified location on the endocardial surface. Fig. 3 a shows
the box plot of the voltages in three regions: normal myocardium, scar gray zone,
and scar core zone.

No significant difference was observed between the bipolar voltages in the
normal tissue and scar core zone identified from the two volumes. The differ-
ence was however pronounced at the gray zone: the bipolar voltages from the
gray zones of the interpolated SA volume were higher from those from the SRR
reconstructed volume, 2.14 ± 1.38 mV vs 1.07 ± 0.66 mV with p < 0.05 by
the nonparametric Kolmogorov-Smirnov test. This indicates that with the con-
ventional SA volume, overestimation of scar gray zone can indeed occur due
to PVE. In comparison, the identified gray zone from the SRR volume showed
better agreement with clinical EAVM value (between the two horizontal lines of
EAVM voltage) , indicating improved gray zone characterization.

4 Conclusion

By integrating image information from the SA, the 2CH, and the 4CH LGE
sequences, we are able to reconstruct a high-resolution myocardial scar repre-
sentation. Our method uses the SRR framework to reconstruct the isotropic
volume from the three anisotropic volumes. For compensation of the inter-scan
motion of the heart, whose precise alignment is a crucial prerequisite for success
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of the SRR reconstruction, we have developed a method that jointly estimates
the optimal and consistent positioning of the volumes with respect of each other.
An important property of this method is that it is very well suited for the MR
data as it is based on the gradient information. The proposed method enables
more accurate characterization of myocardial scar compared to conventional SA
LGE volume, especially with respect to the clinically significant gray zone, al-
lowing improved risk profiling and procedure planning in individual patients.
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Abstract. The separation of multiple PET tracers within an overlapped
scan based on intrinsic difference of pharmacokinetics is challenging due
to the limited SNR of PET measurements and high complexity of fitting
models. This study developed a novel direct parametric reconstruction
method by integrating a multi-tracer model with reduced number of
fitting parameters into image reconstruction. To incorporate the multi-
tracer model, we adopted EM surrogate functions for the optimization
of the penalized log-likelihood. The algorithm was validated on realis-
tic simulation phantoms and real rapid [18F]FDG and [18F]FLT PET
imaging of mice with lymphoma mouse tumor. Both results have been
compared with conventional methods and demonstrated evident improve-
ments for the separation of multiple tracers.

1 Introduction

The complexity of tumor microenvironment reflects multiple physiological fea-
tures, such as glycolysis, angiogenesis, proliferation, and hypoxia. These prop-
erties can be captured by positron-emission tomography (PET) imaging with
different radiolabeled metabolites (tracers). The clinical value of combining mul-
tiple tracers in oncological detection, staging, localization and the consequent
individualization of cancer therapy has been confirmed in several clinical stud-
ies [1]. For example, the combination of [18F]FDG and [18F]FLT has significantly
improved the sensitivity and specificity in the diagnosis of lung nodules [2].

However, radioactive signals of different PET tracers cannot be physically
differentiated [3] and the typical practice of multi-tracer PET imaging needs to
wait for the full decay and clearance of each tracer, leading to scans in consecutive
days. This imposes additional dose due to multiple CT scans on PET/CT as well
as increasing labor and financial costs. The possible physiological and anatomical
discrepancy due to separate scans may even reduce the expected clinical value.
These limitations hamper a wider application of multi-tracer imaging.

Rapid multi-tracer PET imaging aims to differentiate physically identical sig-
nals of different tracers based on the intrinsic difference of their pharmacokinet-
ics. This enables the acquisition of multiple tracers with overlaps. In practice,
tracers are injected with a short interval of 10-15 mins and activities of different
tracers are separated by fitting the superposed pharmacokinetic models of the
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corresponding tracers [4,5]. However, this method suffers from the low signal-
to-noise ratio (SNR) of the measured time-activity curves (TACs) and the high
complexity of multi-tracer model. The poor quality of model fitting makes the
separation of tracers unstable and failure prone. Previous efforts have been made
to improve image reconstruction for better kinetic estimation [6], or to reduce
the number of fitting parameters for improving stability [1,7].

One way to improve the pharmacokinetic estimation is to integrate the model
fitting into reconstruction [8,9]. Direct parametric image reconstruction (DPIR)
methods utilize the complete spatial and temporal information and highly im-
proves SNR for reconstruction as well as kinetic model fitting. However, conven-
tional DPIR is limited to simple models due to the increased complexity of the
objective function for nonlinear model with high parameter dimension.

In this study, we propose a novel DPIR algorithm to reliably separate multi-
tracer signals within a rapid overlapped scan. This is achieved by integrating
a multi-tracer model with reduced number of parameters into reconstruction.
EM surrogate functions are employed for the optimization of the penalized log-
likelihood [10,11]. By incorporating the spatiotemporal consistency in model
fitting, this method results in reconstructed parametric images with higher SNR
and less statistical errors.We evaluated our algorithm both in realistic simulation
phantoms and micro-PET scans of mice with lymphoma tumor using [18F]FDG
and [18F]FLT. The results have been compared with conventional indirect meth-
ods and demonstrated improved quality for the separation of multiple tracers.

2 Methods

2.1 Multi-tracer Kinetic Model

A measured TAC C(t) of an image voxel for a dynamic multi-tracer PET scan de-
scribes the temporal development of the mixed uptakes of L investigated tracers.
It can be modeled as superposition of the L pharmacokinetic models [12]:

Ĉ(t) = θBC̄P +

L∑
l=1

[θPlC̃Pl + θalSal(t; νal, CPl) + θblSbl(t; νal, νbl, CPl)] (1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C̄P �

∑L
l=1 CPl

C̃Pl(t) �
∫ t

0
e−(t−τ)CPl(τ)dτ

Sal(t; νa, CP (t)) �
∫ t

0
e−νal(t−τ)CPl(τ)dτ

Sbl(t; νa, νb, CP (t)) �
∫ t

0
e−νbl(t−τ) − e−νal(t−τ)CPl(τ)dτ

(2)

where [θB, θPl, θal, θbl]
T and [νal, νbl]

T are intermediate parameters of tracer l;
CPl(t) is the arterial input function (AIF); Intermediate parameters are combi-
nations of conventional kinetic constants kl = [K1l, k2l, k3l, k4l, θB]

T . θB is the
fractional blood volume. The modeled Ĉ(t) can be expressed as:

Ĉ(t) = θTy(ν) (3)
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where θ denotes the linear parameters [θB, θP1, θa1, θb1, · · · , θPL, θaL, θbL]
T and

y represents the nonlinear parts [C̄P , C̃P1, Sa1, Sb1, · · · , C̃PL, SaL, SbL]
T , which

is a function of nonlinear parameters ν = [νa1, νb1, · · · , νaL, νbL] and AIFs;
Reduced parameter space [7] can be then formulated through calculating the

weighted sum square error (WSSE):

WSSE =

Nt∑
t=1

wt(Ct − Ĉt)
2 (4)

where Nt is the number of acquisition time points; wt denotes the weights of
measurements [12]. To minimize Eqn. 4, we set ∂WSSE/∂θ = 0 and derive:

Nt∑
t

wt

⎡⎢⎢⎢⎢⎢⎣
(C̄Pt)

2 C̃P1tC̄Pt Sa1tC̄Pt Sb1tC̄Pt . . .

. (C̃P1t)
2 Sa1tC̃P1t Sb1tC̃P1t . . .

. . (Sa1t)
2 Sb1tSa1t . . .

. . . (Sb1t)
2 . . .

...
...

...
... . . .

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

M

⎡⎢⎢⎢⎢⎢⎣
θB
θP1

θa1
θb1
...

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

θ

=

Nt∑
t

wtCt

⎡⎢⎢⎢⎢⎢⎣
C̄Pt

C̃P1t

Sa1t

Sb1t

...

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

x

(5)
where M ∈ R(3L+1)×(3L+1) is a symmetric matrix.

Substituting the linear parameters θ in Eqn. 3 with M−1x, the multi-tracer
model Ĉ(t) can be reduced with only non-linear parameters ν:

Ĉ = [M−1x]Ty (6)

Applying Eqn. 6 back in Eqn. 4, ν can be estimated by minimizing WSSE
using numerical algorithms. θ is calculated analytically and the original kinetic
parameters k can be obtained from θ and ν [12].

2.2 Direct Parametric Reconstruction Using Optimization Transfer

The expectation of projected PET measurements yk in the kth frame of sinogram
can be expressed as an affine transform of the current image xk(ν):

ȳk(ν) = Pxk(ν) + rk + sk (7)

P ∈ RNi×Nj is the system matrix where pi,j measures the probability that
an event emits from the jth voxel being detected by the ith detector pair; Nj

and Ni the total number of image voxels and line-of-responses (LORs); r and s
are randoms and scatters respectively. The relationship between image intensity
xk(νj) and activity concentration C(t;νj) of voxel j at frame k is given by:

xk(νj) =

∫ t,e

t,s

C(τ,νj)dτ (8)

where t, s and t, e are the start and end times of frame k.
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To estimate the parametric images ν from y directly, we are seeking the ν̂
that maximizes the following penalized log-likelihood function Φ(ν):

ν̂ = argmax
ν
Φ(ν) = argmax

ν
{L(y|ν)− βU(ν)} (9)

L(y|ν) =
Nk∑
k=1

Ni∑
i=1

yik log ȳik(ν)− ȳik(ν) (10)

where L(y|ν) is the log-likelihood function with respect to ν [8]; Nk the total
number of time frames; U(ν) the smoothness penalty term and β the regular-
ization parameter controlling the tradeoff between image resolution and noise.
Here a common quadratic penalty is used as described in [11].

To include multi-tracer model Eqn. 6 into reconstruction, maximization of
Eqn. 9 is achieved by in each iteration optimizing Expectation Maximization
(EM) surrogate functions QL, QU designed for L(y|ν) and U(ν) [10,11]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QL(ν;ν
(n)) =

∑Nj

j=1

∑Ni

i=1 pij

(∑Nk

k=1 x̂
(n)
jk log xk(νj)− xk(νj)

)
QU (ν;ν

(n)) =
1

2

∑Nk

k=1

∑Nj

j=1

∑
l∈Nj

αjl

(
x̂
reg,(n)
jk − xk(νj)

)2
x̂
(n)
jk =

xk(ν
(n)
j )∑Ni

i=1 pij

∑Ni
i=1 pij

yik
ȳik(ν(n))

x̂
reg,(n)
jk =

1

2
∑

l∈Nj
αjl

∑
l∈Nj

αjl

(
xk(ν

(n)
j ) + xk(ν

(n)
l )

)
(11)

where Nj is the set of neighborhood voxels centering around voxel j; αjl the
weighting factors set to be the inverse of distance between voxels j and l; x̂(n) and
x̂reg,(n) are intermediate reconstructed images and smoothed images respectively
at the nth iteration.

The overall surrogate function is then Q � QL−βQU . Thus the maximization
of Eqn. 9 is transferred to maximizeQ(ν;ν(n)). As bothQL andQU are separable
for voxels, the maximization can be further transferred into a voxel-wise scale:

ν
(n+1)
j = argmax

νj

q(νj ;ν
(n)
j ) = argmax

νj

qL(νj ;ν
(n)
j )− βqU (νj ;ν

(n)
j ) (12)

Eqn. 12 resembles a 1D curve fitting problem. Here we used the modified
Levenberg-Marquardt (LM) algorithm as described in [11] and combined with
the Hooke and Jeeves pattern search.

Overall, the proposed algorithm consists of three main steps. Given ν(0), the
dynamic dual-tracer images x is initialized in Eqn. 8. Each iteration consists of a
frame-wise reconstruction to obtain QL, a frame-wise regularization to calculate
QU in case of β > 0, and a voxel-wise fitting step to update ν. As loops end,
linear parameters θ are calculated from Eqn. 5 analytically. Separated dynamic
images of each tracer are retrieved from corresponding pharmacokinetic models.
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3 Results

To validate the algorithm, a realistic phantom was generated using computa-
tional simulations following the procedure in [11]. The combination of [18F]FDG
and [18F]FET were simulated with an interval of 15 mins for 45 minutes of
65 frames on the Zubal brain phantom, which includes gray matter (2 types),
white matter, caudate, putamen, skin, skull, thalamus and an additional tumor.
The pharmacokinetic parameters of [18F]FDG and [18F]FET were derived from
clinic data. To test the separation of tracers, exclusive uptake was assumed on
the tumor area and therefore there is only contrast in FET and the tumor is
not differentiable in FDG. The PET measurements were simulated based on the
geometry of real clinical scanner (FWHM 4.0mm) with attenuation, scattering
and random effects. Poisson noise was added to each generated sinogram bin.

Fig. 1. The results of the separated tracer uptakes and the kinetic parametric images
using the conventional and the proposed method on a phantom

Fifty datasets were simulated with different noise realizations. The separation
of two tracers were tested with the proposed algorithm without regularization
and the conventional indirect method (kinetic modeling after image reconstruc-
tion). For both methods, 128 iterations were used for EM reconstruction to
keep the balance between bias and noise. For the conventional method, kinetic
parameters were estimated using nonlinear least square regression. For fair com-
parisons, uniform weights were assigned here for the proposed method. Initial
values of all parameters in both methods were set to 0.001 for all voxels. The
lower and upper bounds were set to 0 and 2.0 respectively. The last frame (t=45
min) of the overlapped and separated tracer uptake maps as well as the para-
metric images were compared with the ground truth (GT) as shown in Fig. 1.
The conventional method was able to recover some voxels of single tracers but
it was in general unstable and noisy. With the proposed method, parametric
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images and individual tracer uptakes were well recovered with relative less mean
bias (B2) and variations over all datasets. Tumor is clearly visible in the recov-
ered FET images and no contrast in FDG. Although k3 is sensitive to noise, the
new method has better result than the conventional method. Overall, the new
algorithm has reduced up to 87.8% variance and 85.7% bias for the separated
tracer uptake maps and up to 97.8% variance and 98.4% bias for the parametric
images.

Fig. 2. The fitting results of the conventional (left) and the proposed method (right)
for an example TAC in the tumor area

The effect of the regularization term β of the proposed algorithm was further
evaluated on the phantom. The total square bias and variance of intermediate
parameter ν with β from 0 to 4e − 1 were computed and the variance-bias2

curves were plotted in Fig. 3. An optimized β = 1e − 1 was chosen for the
tradeoff between bias and variance for νFET . The results were shown in Fig. 1.
With the regularization, the variance can be further reduced up to 1.1% for the
separated tracer uptake and 10.1% for the parametric images.

The conventional method failed to separate the tracer uptake in the tumor
area. An example TAC is shown in Fig. 2. The left plot demonstrates the fitting
result of the conventional method. It falsely ended up with a zero uptake for
FET, which conflicts with the expectation. The right plot shows the result for the
proposed algorithm, the temporal information of each tracer were well recovered
and reflected the true designed TACs.

We further evaluated the proposed algorithm with the real micro-PET data.
Four mice with SUDHL-1 tumor model were scanned for 70 min after injection
of approximately 6 MBq [18F]FDG and [18F]FLT with an interval of 10 min. The
dual-tracer AIF was derived from left ventricle data at early time and 2 venous
blood samples in the end of the scan [13]. Two single tracer AIFs were separated
by fitting the combined AIF models [14]. This lymphoma tumor model has been
reported to have higher specificity for FLT [15]. Thus the FLT image has higher
tumor to muscle contrast than FDG images. The better consistency of the results
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Fig. 3. Total squared bias v.s. variance tradeoff of ν images

Fig. 4. An example of the results of the conventional and the proposed methods for a
mouse with lymphoma tumor model scanned using [18F]FDG and [18F]FLT PET

of the new method (an example shown in Fig. 4) with the know properties of
the tumor model confirms further that the new method can separate the two
tracers better.

4 Conclusion

This study proposed a novel direct rapid multi-tracer PET reconstruction algo-
rithm which can robustly retrieve single tracer images from overlapped acquisi-
tions. In particular, we integrated a multi-tracer model with reduced number of
parameters into parametric image reconstruction and incorporate EM surrogate
functions for the optimization of the penalized log-likelihood. Both phantom and
real data has proved that this new algorithm can separate the overlapped sig-
nals significantly better than the conventional methods. Further improvements
may be done by smoothing noisy TAC for better model fitting concerning low
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measurement statistics of dynamic PET acquisitions. The reliable and less noisy
separation of the overlapped PET signal using the proposed method demon-
strated a great potential to promote the application of multi-tracer in clinical
practice, which could influence the state of the art of the individualized medicine.
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Abstract. The aim of this paper is to propose a novel mapping algorithm be-
tween 2D images and a 3D volume seeking simultaneously a linear plane trans-
formation and an in-plane dense deformation. We adopt a metric free locally
over-parametrized graphical model that combines linear and deformable param-
eters within a coupled formulation on a 5-dimensional space. Image similarity
is encoded in singleton terms, while geometric linear consistency of the solu-
tion (common/single plane) and in-plane deformations smoothness are modeled
in a pair-wise term. The robustness of the method and its promising results with
respect to the state of the art demonstrate the extreme potential of this approach.

Keywords: 2D-3D registration, medical imaging, markov random fields,
discrete optimization.

1 Introduction

2D-3D image registration is an important problem in medical imaging and it can be
applied in multiple medical procedures. Depending on the technology used to capture
the 2D image, it can be a projective (e.g. X-Ray) or sliced (e.g. Ultrasound) image;
in this work we focused on sliced images. Image guided surgeries, as laparoscopic
or endoscopic [1], and brain surgeries [2] use such images. In those surgeries, pre-
operative 3D images (e.g. Computed Tomography (CT) or Magnetic Resonance Images
(MRI)) and intra-operative 2D images are used to guide surgeons during the procedure.
2D-3D registration plays a key role in this process because it allows doctors to guide
surgery using the 3D pre-operative high resolution annotated data. Tissue shift, as well
as breathing and heart motion during the surgery, causes elastic deformation in the
images and makes the registration process an extremely challenging problem.

Several methods to deal with slice-to-volume registration have been proposed. [1]
proposes a method to register endoscopic and laparoscopic ultrasound (US) images
with pre-operative computed tomography volumes that potentially could work in real
time. It is based on a new phase correlation technique called LEPART and it manages
only rigid registration. [3] presents a flexible framework for intensity based slice-to-
volume nonrigid registration algorithms used to register histological section images to
human brain MRI. A feature based method that performs slice to volume registration is
presented in [4]. It uses several slices in order to improve the quality of the results. [5]
tracks intra-operative MRI slices of prostate images with a pre-operative MRI volume.
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This monomodal registration is designed to provide patient tracking information for
prostate biopsy performed under MR guidance.

Discrete optimization of Markov Random Fields (MRFs) has been widely used to
solve the problem of non-rigid image registration in recent years [6, 7]. However, to
the best of our knowledge, most of those works focus on 2D-2D or 3D-3D registration
instead of 2D-3D registration. [8] presents a method based on MRFs to perform 2D-
3D registration, but it estimates only rigid transformations and works with projective
images.

The main contributions of this paper consists of a local pair-wise method to register
2D and 3D images using MRFs and discrete optimization techniques capable of captur-
ing the plane and the in-plane dense deformations. It is intensity based and independent
of the metric that is being used, so it can be adapted to different image modalities.

The remainder of the paper is organized as follows: the MRF based formulation of
2D-3D deformable registration is described in Section 2. Section 3 provides the valida-
tion tests and results, while Section 4 concludes our paper and provides some ideas on
relevant future directions.

2 2D-3D Non-rigid Registration Using MRFs

The problem of non-rigid 2D-3D image registration can be formulated as an optimiza-
tion problem. Given a 2D source image I and a 3D target volume J , we seek the 2D-2D
in-plane local deformation field T̂D and the plane π̂[J ] (i.e. a bi-dimensional slice from
the volume J) which in the most general case minimize the following objective func-
tion:

T̂D, π̂ = argmin
TD,π

M(I ◦ TD(x), π[J ](x)) +R(TD, π), (1)

where M represents the data term and R the regularization term. The data term M
measures the matching quality between the deformed 2D source image and the corre-
sponding 3D slice. The regularization term R imposes certain constraints on the final
solution that can be used to render the problem well posed and imposes certain expected
geometric properties on the deformation field. The plane, π̂, that minimizes the equa-
tion indicates the location of the 3D volume slice that is most similar to the deformed
source image. The deformation field T̂D represents the in-plane deformations that must
be applied to the source image in order to minimize the energy function.

Our MRF based formulation of the 2D-3D non-rigid registration problem consists of
an undirected pair-wise graphG =< V,E > super-imposed to the 2D image with a set
of nodes V and a set of cliquesE. The nodes (a regular lattice) are interpreted as control
points of a bi-dimensional quasi-planar grid that models at the same time the in-plane
deformations and the current position of the 2D image into the 3D volume. In order to
represent the in-plane deformations, the grid is interpreted as a Free Form Deformation
model (FFD) where each control point has local influence on the deformation.

Such a coupled estimation problem can be expressed using graphical models of vary-
ing complexity. The most natural one is to consider a two layer graph, one modeling
the global linear mapping as done in [8] and another modeling the in-plane deformation
as done in [6] where interconnection between them will produce coupling and global
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consistency on the obtained solution. Despite the theoretical soundness of such an ap-
proach, it is not suitable simply because the linear mapping is a global variable. This
is due to the fact that global linear mapping variables are to be associated with all con-
trol nodes resulting in a densely connected graph, while at the same time the parameter
space is high-dimensional and the associated variables are not bounded resulting in
rather complex discrete sampling requirements. The aforementioned limitations make
such an approach problematic in terms of the quality of the obtained solution (non-
submodular terms) and inefficient from a computational view point.

We propose to overcome these limitations through a local pair-wise over-parameteri-
zed graphical model. In our formulation, the energy is formed by data terms g =
{gi(·)} (unary potentials) associated to each graph vertex and regularization terms
f = {fij(·, ·)} (pairwise potentials) associated to the edges. The first ones are typ-
ically used for encoding some sort of data likelihood, whereas the later ones act as
regularizers and thus play an important role in obtaining high-quality results [6]. The
minimization energy problem in the context of a discrete MRF is thus defined as:

MRF (g,f ) = min
∑
i∈V

gi(ui) +
∑

(i,j)∈E

fij(ui,uj), (2)

where ui,uj ∈ L are the labels assigned to the vertices vi, vj ∈ V respectively.
Vertices vi ∈ V are moved by assigning them different labels ui ∈ L (whereL is the

label space) until an optimal position is found. To reach such an optimal position, we
need to define an energy term that will be minimized using an optimization algorithm.
We adopt the FastPD algorithm [9] for the optimization of the aforementioned MRF
due to good trade-off between complexity and quality of the obtained minimum in the
context of non-submodular MRFs (this is our case due to the definition of the pair-wise
terms).

Label Space. It includes all the possible values that a vertex label can take to deform
the graph. Our label space L consists of 5-tuples u = (dx, dy, dz, φ, θ), where the first
three parameters define a displacement vector di in the cartesian coordinate system,
and the angles (φ, θ) define a vector Ni over a unit sphere, expressed using spherical
coordinates. Let us say we have a control point pt

i = (ptxi, p
t
yi, p

t
zi) at optimization step

t and we assign the label ui = (dxi, dyi, dzi, φi, θi) to this point. So, the new point
position at optimization step t + 1 will be calculated using the displacement vector
resulting in pt+1

i = (ptxi+dxi, p
t
yi+dyi, p

t
zi+dzi). Additionally, we define a plane πi

containing the displaced control point pt+1
i and whose unit normal vector (expressed

in spherical coordinates and with constant radius r = 1) is Ni = (φi, θi). One of
the most important constraints to be considered is that our graph should have a quasi-
planar structure, i.e. it should be similar to a plane; the plane πi associated to every
control point pi will be used by the energy term to take this constraint into account.

Unary Potentials. The formulation of the unary potentials that we propose is indepen-
dent of the similarity measure. It is calculated for each control point given any intensity
based metric δ capable of measuring the similarity between two bi-dimensional images
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Fig. 1. Data term (Unary potential). The points x ∈ Ωi are used to calculate the unary potential.
π[J ](x) returns the intensity of the point in the 2D slice corresponding to the plane πi in the 3D
image, whereas I(x) returns the 2D image intensity. δ represents the similarity measure.

(e.g sum of absolute differences, mutual information, normalized cross correlation).
This calculation is done for each control point pi, using its associated plane πi in the
target image J and the source 2D image I . An oriented patch Ωi over the plane πi
(centered in pi) is extracted from the volume J , so that the metric δ can be calculated
between that patch and the corresponding area over the source 2D image (see Figure 1):

gi(ui) =

∫
Ωi

δ(I(x)− πi[J ](x))dx. (3)

In monomodal scenarios, where two images of the same modality are compared,
the simplest and the most used similarity measure is the Sum of Absolute Differences
(SAD). In multimodal scenarios, where different modalities are compared (e.g. CT
with US images), statistical similarity measures such as Mutual Information (MI) are
generally used since we can not assume that corresponding objects have the same in-
tensities in the two images. So, depending on the type of image that we want to reg-
ister, the framework can be adapted using any similarity measure defined over two
bi-dimensional images.

Pairwise Potentials. Generally, these terms are used to encode the regularization of the
displacement field. In our formulation, the pairwise potentials are defined by two terms:
the first one (F1) controls the grid deformation assuming that it is a plane, whereas the
second one (F2) maintains the plane structure of the mesh. Those terms are weighted by
a coefficient α ∈ [0, 1] resulting in fij(ui,uj) = αF1(ui,uj) + (1− α)F2(ui,uj).

The in-plane grid deformation is thus controlled using a distance preserving ap-
proach: it tries to preserve the original distance between the control points of the grid.
Since this metric is based on the euclidean distance between the points, it assumes that
they are coplanar. So, the equation that regularizes the in-plane deformations is:

F1(ui,uj) = 1− || (pi + di)− (pj + dj) ||
|| (po,i)− (po,j) ||

, (4)

where po,i and po,j are the original positions of the control points. Regarding the plane
preservation regularization term, it penalizes the average distance between the control



Non-rigid 2D-3D Medical Image Registration Using Markov Random Fields 167

Fig. 2. Average of absolute differences between the ground truth and estimated plane translation
(Tx, Ty and Tz) and rotation (Rx, Ry and Rz) parameters for 10 sequences of 20 images each
one. The average error is less than 0.013rad for rotations and less than 1mm for translations.

points and the plane corresponding to the neighboring one. The aim is to maintain the
quasi-planar structure of the grid. Given that the distance between a point and a plane is
zero when the point is contained in the plane, this term will be minimum when both of
the control points are on the same plane. The term F2 is then defined using the distance
between a point p = (px, py, pz) and a plane π given by Dπ(p). So, we calculate the
average of Dπj (pi + di) and Dπi(pj + dj):

F2(ui,uj) =
1

2
(Dπj (pi + di) +Dπi(pj + dj)). (5)

3 Validation and Results Discussion

A dataset was created in order to validate both the resulting 2D-2D deformation field and
the final plane location using a temporal series of 3D heart MRI. The monomodal dataset
consists of a temporal series of twenty 2D slices, Ii, each one extracted from its cor-
responding volume Mi. Starting from a random initial translation T0=(Tx0 , Ty0 , Tz0)
and rotation R0 = (Rx0 , Ry0 , Rz0), we extracted a 2D slice I0 from the initial volume
M0. Gaussian noise was added to every parameter in order to generate the position used
to extract the next slice from the next volume. We used σr = 3◦ for the rotation and
σt = 5mm for the translation parameters. Those parameters generate maximum dis-
tances of around 25mm between the current and its succeeding plane. In that way, we
generated a series that corresponds to a trajectory into the volume. Since the series con-
sists of temporally spaced volumes of the heart, there are local deformations between
them due to the heartbeat.

We tested it over 10 sequences of 20 images to validate the estimated plane loca-
tions, giving a total of 200 registration cases, using SAD similarity measure. The MRI
resolution was 192 × 192 × 11 voxels and the voxel size was 1.25 × 1.25 × 8mm3.
The resulting position of the slice Ii was used to initialize the slice Ii+1. As shown in
Figure 2, the average error is less than 0.013rad (0.74◦) for rotation and less than 1mm
for translation parameters. Given that the image resolution in z axis is lower than in x
and y, we can recognize a bigger error in the estimated translation for z coordinate.

In order to validate the in-plane deformations, we created a set of manual segmenta-
tions S of the left endocardium from a set of 20 slices (extracted from the volumesMi).
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Fig. 3. One of the slices used in the validation test of the in-plane deformations: (a) Source image.
The red line is the initial segmentation of the left endocardium. (b) Deformation field obtained
after the registration process. (c) Slice corresponding to the estimated plane and extracted from
the target volume M0. The red line corresponds to the deformed initial segmentation and the
green line is the ground truth. (d) Overlapping between source image (red) and target initial plane
(cyan). (e) Overlapping between deformed source image (red) and estimated plane (cyan).

Each slice was registered with the volume M0 starting from a random position around
the ground truth. Positions were generated adding gaussian noise with σr = 4.5◦ and
σt = 5mm to every translation (Tx, Ty, Tz) and rotation (Rx, Ry , Rz) parameters
respectively. Those parameters generate maximum distances of about 25mm between
the initialization and the ground truth. The estimated deformation field TDi was ap-
plied to the corresponding initial segmentation si ∈ S and it was compared with the
ground truth using DICE coefficient. The average DICE coefficient for the 20 test cases
was 0.93 and the average distance between the initial and the estimated parameters
was R̂ = (0.011, 0.007, 0.003)rad, T̂ = (0.503, 0.302, 0.578)mm, showing that our
method can capture in-plane deformations at the same time as it looks for the optimal
plane location (see Figure 3). In all these cases (both plane estimation and in-plane de-
formation tests) we use 13122 labels, α = 0.9, 3 levels of grid refinement and final grid
resolution of 16 × 16 nodes; the execution time was about 4min for every case. An-
other dataset was used to test our approach over multimodal registration. Since it was
performed over images of different modalities, we used Mutual Information as similar-
ity measure instead of SAD. The dataset consists of a preoperative brain MRI volume
(voxel size of 0.5× 0.5× 0.5mm3 and resolution of 394× 466× 378 voxels) and 6 se-
ries of 10 US images extracted from the patient 01 of the database MNI BITE presented
in [2]. The intraoperative US images were acquired using the prototype neuronaviga-
tion system IBIS NeuroNav. We generated 6 different sequences of 10 2D US images
of the brain ventricles, with a size of 48× 38mm and resolution of 0.3× 0.3mm. The
ventricles were manually segmented in both modalities. The estimated position of the
slice n was used to initialize the registration process of slice n + 1. Slice 0 was ini-
tialized in a position near to the Ground Truth using the rigid transformation provided
together with the dataset. The DICE coefficient and Contour Mean Distance (CMD)
were calculated before and after registration. Figure 4 summarizes the average DICE
and CMD coefficients for every series. It shows that the DICE increases after the reg-
istration process an average of 0.05 while CMD decreases an average of 0.4mm. Note
that average DICE coefficients are always greater thanc 0.7. Given that we are dealing
with highly challenging images of low resolution being heavily corrupted from speckle,
those results are extremely promising. In all the registration cases an initial grid size of
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Fig. 4. Average DICE Coefficient (a) and Average CMD (Contour Mean Distance) (b) of all the
slices, for every brain series, before (BR) and after (AR) registration process. The average DICE
increment after registration of all the series is 0.05 and the average CMD decrement is 0.4mm.

4mm, 6174 labels, α = 0.9, 3 grid levels and 4 iterations of the optimization process
were used, giving an average time of around 10min per case.

It is also important to analyze results presented by other authors performing slice-to-
volume registration. [5] worked with monomodal registration of prostate MRI images
and reported average target registration errors below 1mm. [1] tackled the problem of
multimodal registration (US and CT images) reporting results with an error of 1.56 ±
0.78mm, using initializations with uniformly random shifts in the range -5 to 5mm.
Both of them model only the rigid transformations without taking into account the in-
plane deformations. Our method achieved results below 1mm in case of monomodal
registration and it maintained the DICE coefficient greater than 0.7 in case of multi-
modal registration, but was able to deal with the in-plane deformations.

4 Conclusion

In this paper we proposed a novel method for deformable 2D-3D registration using
a single shot optimization method that involves plane selection and in plane dense-
deformation. This was achieved through an over-parameterized graphical model (5-
dimensional representation) that is metric free, can cope with arbitrary deformation
models and encodes different in-plane regularization constraints. Clinical validation
using real scenarios and examples where 2D acquisitions have been simulated demon-
strated the potentials of our method, proved its efficiency in terms of precision and,
compared to other methods that tackle a similar problem (like [1] and [5]), seems to
achieve state of the art results.

The proposed formulation from theoretical view point inherits two limitations, one
related with the dimensionality of the label space (that can be handled due to the limited
2D grid size), and a second related with the coplanarity constraint that is approximately
imposed through the suggested over-parameterization. Both of them could be allevi-
ated through the use of third-order potentials. Given a 3D label deformation space and
triples of neighborhood control points, the plane and the in-plane deformation can be
automatically determined. This will introduce certain additional complexity in terms of
optimization that could be easily dealt with higher-order to pair-wise MRF reduction
methods [10] or dual decomposition [11]. Such an approach will be more precise in
terms of data/regularization term definition and of comparable complexity.
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Fig. 5. Registration of a 2D US image and a MRI scan of the brain. (a) 2D US source image. (b)
Slice extracted from the MRI corresponding to the initial position of the plane. (c) Deformation
field obtained after the registration process. (d) Overlapping between images a (red) and b (green).
(e) Overlapping between the deformed source image (red) and the MRI slice corresponding to
the estimated plane (green).
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Abstract. We present a new strategy to constrain nonrigid registrations
of multi-modal images using a low-dimensional statistical deformation
model and test this in registering pre-operative and post-operative im-
ages from epilepsy patients. For those patients who may undergo surgical
resection for treatment, the current gold-standard to identify regions of
seizure involves craniotomy and implantation of intracranial electrodes.
To guide surgical resection, surgeons utilize pre-op anatomical and func-
tional MR images in conjunction with post-electrode implantation MR
and CT images. The electrode positions from the CT image need to be
registered to pre-op functional and structural MR images. The post-op
MRI serves as an intermediate registration step between the pre-op MR
and CT images. In this work, we propose to bypass the post-op MR im-
age registration step and directly register the pre-op MR and post-op CT
images using a low-dimensional nonrigid registration that captures the
gross deformation after electrode implantation. We learn the nonrigid
deformation characteristics from a principal component analysis of a set
of training deformations and demonstrate results using clinical data. We
show that our technique significantly outperforms both standard rigid
and nonrigid intensity-based registration methods in terms of mean and
maximum registration error.

Keywords: nonrigid registration, multi-modal, statistical deformation
model, principal component analysis, image-guided surgery.

1 Introduction

Nonrigid, multi-modal image registration is a challenging task. The ability of
nonrigid registration algorithms to successfully find a globally optimal defor-
mation is made difficult by the high dimensionality of the deformations being
modeled. In multi-modal registration tasks, nonlinear intensity relationships ex-
acerbate the problem by causing similarity metrics to have many local minima.
With an unconstrained search space, algorithms fail to escape the local minima
and inaccurately register the images. In this paper, we present a solution to this
problem that uses a training set to learn a low-dimensionality parameterization
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Fig. 1. To co-visualize icEEG electrodes with pre-op imaging data, the currently prac-
ticed registration framework rigidly registers the post-op CT image and the localized
electrodes to a post-op MRI, and then nonrigidly registers the post-op MRI to the
pre-op MRI. Our proposed method directly registers the post-op CT image to pre-
op MRI using a learned statistical deformation model. Without having a constrained
model of deformation, missing anatomical correspondences, e.g. removal of the skull
during surgery, as well as imaging artifacts caused by the presence of the electrodes
make direct nonrigid registration of the CT to the pre-op MRI inaccurate, even less
accurate than rigid registration (see Figure 2).

of the deformation space for a specific task. We present results showing our initial
application to nonrigidly map post-surgical electrode implantation CT images
to pre-operative MR images acquired as part of epilepsy treatment.

For epilepsy patients whose seizures do not adequately respond to medica-
tion, surgical treatment is often an effective method to reduce or to eliminate
seizure activity. Intracranial electroencephalography (icEEG), in which surgeons
perform a craniotomy and implant (typically over 200) electrodes in suspected
regions the brain, is the current “gold-standard” for localizing the focus of seizure
activity [8]. Following electrode implantation, clinicians constantly monitor the
icEEG for several days to identify, if possible, the electrodes nearest to the
seizure focus. The surgeons localize the physical locations of these electrodes
using post-op CT imaging. Successful electrode localization in combination with
pre-operatively acquired functional brain images can be used to determine the
feasibility of surgical tissue resection. Therefore, accurate spatial registration of
electrodes with respect to functionally eloquent areas of the brain is critical.

The best, current approach to co-register the icEEG electrodes with the pre-
op MR data involves the acquisition of a post-op MR image. The post-op MRI, in
this case, serves as an intermediate registration step between the post-op CT and
pre-op MR images. This registration framework projects the electrodes to the
pre-op MRI space by first rigidly registering the CT image to the post-op MRI,
and then nonrigidly registering the post-op MRI to the pre-op MRI to account for
post-surgical deformations. Once the electrodes have been transformed to pre-
op imaging space, they may be co-visualized with any other functional imaging
studies. However, not all institutions are capable of acquiring the post-op MR
image, and instead rely upon rigid registration of the post-op CT and pre-op
MR images, which leads to inaccurate electrode localization. Given that post-op
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MRIs are available at our institution, we propose to use this information to learn
the nonrigid deformations from the post-op CT space to pre-op MR space, as
Figure 1 illustrates.

Our proposed method leverages the currently used mono-modal post-op MRI
to pre-op MRI nonrigid registrations to learn a statistical deformation model
(SDM). The SDM is surgical-site dependent because larger brain deformations
generally occur ipsilateral to the craniotomy site [1], thus we assume that pa-
tients with craniotomies in similar locations will experience similar deformation
characteristics. We perform a principal component analysis (PCA) of the non-
rigid deformations to construct our SDM [6]. While PCA has difficulty with
high-dimensional data, we hypothesize that the post-surgical brain deformation
is of low enough dimension that our SDM can capture the gross, intra-subject
deformations observed after surgery. Other authors have made use of PCA SDMs
to register mono-modal medical images for inter-subject registration [10,4] and
for intra-subject motion compensation [2]. In contrast, we use our SDM trained
on MR images to directly register each patient’s post-op CT image to their pre-
op MRI. Our SDM models intra-subject deformations that result from surgical
intervention, and not inter-subject anatomical variability. To the best of our
knowledge, training a SDM on a mono-modality registration task and using that
SDM to perform a multi-modality registration is a novel application. By doing
so, the SDM can model subcortical deformations in the CT image that would
otherwise not be possible with standard, intensity-only registration to the pre-op
MR. Our results show our approach significantly reduces both mean and maxi-
mum registration error compared to standard rigid and nonrigid intensity-only
MR-CT registration methods. We emphasize that standard intensity-based non-
rigid methods perform worse than rigid ones, and our approach is the first, to
our knowledge, to successfully directly register pre-op MRIs and post-electrode
implantation CT images.

2 Methods

2.1 Training the Deformation Model

Given a database of surgical epilepsy patients, we select N patients with cran-
iotomies at similar locations to train our SDM. Each patient’s dataset consists

of a pre-op MR image I
(1)
MR, a post-op MR image I

(2)
MR, and a post-op CT im-

age I
(2)
CT, where I

(t) denotes pre-op images acquired at time t = 1 and post-op
images at time t = 2. To create our SDM, we need to transform all N images
into a common reference space. As per current practice, we first rigidly register
the post-op MR and CT images by maximizing their normalized mutual infor-
mation (NMI) [9], and obtain the transformation TCT→MR (here, i→ j denotes
rigid transformation from space i to j). Next, we rigidly register the pre- and
post-op MR images using NMI to produce a transformation TMR→MR. Finally,
we nonrigidly register all pre-op MR images to the MNI Colin 27 brain, IMNI,
using a free-form deformation (FFD) [7] with NMI and write this transformation
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TMR�MNI (we denote nonrigid transformation from space i to j as i� j). Once
we have computed all transformations, we reslice all images from each of the N
patients into MNI space (181× 217× 181 volume with 1mm3 resolution) by con-
catenating the transformations. Spatial normalization to MNI space is necessary
for defining a common reference space for intra-subject nonrigid deformations.

In MNI space, the post-op MR has yet to be nonrigidly registered to the pre-
op MR. In current practice, this registration task uses skull-stripped brains to
mitigate the effects of missing anatomical correspondences after surgery. How-
ever, since we are planning to register the CT images directly to the pre-op
MR, the skull is actually one of the most informative structures to register, even
if it is lacking some correspondence. Therefore, to accurately register the two
non-skull stripped MRIs, we first create brain surface masks with some man-
ual refinement, and then utilize an integrated intensity and point-feature reg-
istration algorithm [5]. This algorithm uses a FFD transformation model with
15mm control point spacing and minimizes the NMI similarity metric. With
points weighting parameter set to 0.1, the brain surface points constrain the
algorithm to align the cortical surface that otherwise has difficulty being accu-
rately registered using intensity registration by itself. We denote the resulting
transformations TMR�MR. It is these transformations that we use to train our
SDM.

For each patient i = 1, . . . , N , we rewrite the transformation TMR�MR as
a column vector of P concatenated FFD control point displacements in 3D,
di ∈ R3P . Using PCA, we linearly approximate the deformation distribution [6]

d = d̄+Φw (1)

where d̄ = 1
N

∑N
i=1 di is the mean deformation of the N training registrations,

Φ is the matrix of orthogonal principal components, and w is the vector of
model variation coefficients. We compute the principal components from the
eigensystem decomposition of the covariance matrixC = 1

N−1

∑N
i=1(di−d̄)(di−

d̄)T . Using this formulation, Φ = (φ1|φ2| . . . |φK) ∈ R
3P×K is a matrix of K ≤

min {N, 3P} eigenvectors φk ∈ R3P with corresponding eigenvalues in decreasing
order λ1 ≥ λ2 ≥ . . . ≥ λK , and w ∈ RK . The eigenvectors with the k largest
eigenvalues define a SDM using k principal modes of variation, with 1 ≤ k ≤ K.

2.2 Nonrigid SDM MR-CT Registration

Given a previously unseen pre-op MR and post-op CT image pair for a new pa-
tient, we use the learned SDM in Equation 1 to drive the nonrigid registration of
post-op CT images to pre-op MR without the use of a post-op MR image. Before
we nonrigidly register the two images, we must first transform the images into

our model reference space. We do so by rigidly registering I
(2)
CT to I

(1)
MR and then

nonrigidly registering I
(1)
MR to IMNI. In both cases we maximize NMI, and use a

FFD transformation for nonrigid registration. We use the resulting transforma-

tions to reslice both images into MNI space such that I
(1)′

MR = TMR→MNI ◦ I(1)MR
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and I
(2)′

CT = TCT→MR ◦ TMR→MNI ◦ I(2)CT, where ◦ is the transformation operator
and I ′ indicates a resliced image.

With the images now transformed to our SDM reference space, we nonrigidly

register I
(2)′

CT to I
(1)′

MR . The SDM model coefficients w in Equation 1 are a low-
dimensional parameterization of a high-dimensional FFD d, and we denote this
transformation TSDM(x;d) for points x in the reference image domain ΩMNI ⊂
R3. We register I

(2)′

CT and I
(1)′

MR by optimizing the cost function

T̂SDM = argmax
w

J(I
(1)′

MR (x), TSDM(x; d̄+Φw) ◦ I(2)
′

CT (x)), ∀x ∈ ΩMNI (2)

where J is the NMI similarity metric. We use a multi-resolution image pyramid
and conjugate gradient optimization to solve Equation 2.

3 Results and Discussion

From the database of surgical epilepsy patients available at our institution, we
manually identified 18 patients with lateral craniotomies (10 on the ride side, 8 on
the left). In order to increase our dataset size, we flipped the left-side craniotomy
images to be right-side craniotomies under the assumption that the direction of
gross brain deformation correlates to craniotomy location. For each patient in

the database, we have images I
(1)
MR (256 × 256 × 106 at 0.977 × 0.977 × 1.5mm

resolution), I
(2)
MR (256× 256× 110 at 0.977× 0.977× 1.5mm resolution), and I

(2)
CT

(512× 512× 137 at 0.488× 0.488× 1.25mm resolution).
We performed leave-one-out testing to demonstrate our approach. For each

patient i = 1, . . . , 18, we trained the SDM as described in Section 2.1 by omitting
the i-th patient from the training set, which consists of the N = 17 remaining
samples. We then register the i-th patient’s post-op CT to their pre-op MR
using the SDM in MNI space as described in Section 2.2. We repeated our
registration method using different numbers of modes of variation in w, i.e.
different values for k. We compared our method to rigid registration, which in our
case T̂R = I, and intensity-only FFD T̂FFD with 15mm control point spacing. We
also compared to FFD using a lower-dimensional 30mm control point spacing,
but the results were similar to 15mm. Thus, for brevity, we reported only the
results using 15mm FFD. We implemented and ran our algorithm as part of
BioImage Suite [3].

To evaluate registration performance, we treated the nonrigid transforma-
tions TMR�MR found during training with the post-op MR image, and as used
in current practice, as a ground-truth. For an estimated transformation T̂ , we
calculated the magnitude of transformation error

ε(x) =‖ T̂ (x)− TMR�MR(x) ‖, x ∈ ΩMNI.

While this method evaluates performance against the current standard, we as-
sessed our MR-CT registration results with the rigid registration T̂R in mind.
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Fig. 2. Our nonrigid SDM registration method using a single mode of variation has
lower transformation error throughout much of the brain, particularly in the areas
around the craniotomy and around the ventricles, than both standard rigid and FFD
intensity-only registration methods. We spatially visualize voxel-wise transformation
error using a colormap overlay for an exemplar patient with a craniotomy on right side
of the skull (left side of the axial images in radiological convention). The left column
shows intensity-blended MR-CT images that highlight electrodes and skull location
with respect to the skull-stripped MRI brain, along with a deformation grid.

It is our experience that surgeons generally only trust rigid registration for volu-
metric MR-CT registration. Furthermore, we evaluated maximum error because
surgeons are most interested in quantifying worst-case performance.

We spatially visualized ε(x), ∀x ∈ ΩMNI using a colormap overlay, as shown
in Figure 2, to compare our estimates for T̂R, T̂FFD, and T̂SDM. In compari-
son to rigid registration, our method reduced error throughout the brain, and
particularly so around the craniotomy and ventricles. We highlight the poor
performance of the intensity-only FFD MR-CT registration. Due to the poor
soft-tissue contrast in the CT, the FFD failed to accurately register the interior
of the brain. Even though both FFD and SDM used the same NMI similarity
metric, the SDM constrained the transformation to accurately mimic the interior
deformations.
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Fig. 3. Our proposed nonrigid SDM registration method significantly reduced trans-
formation error compared to standard rigid and FFD intensity registration methods.
SDM k denotes registration using the first k = 1, 2, 3, . . . principal modes of variation.
We plot the distributions of both mean (left plot) and maximum (right plot) transfor-
mation error at electrode locations for the 18 leave-one-out MR-CT registrations. The
boxplots show median, inner quartile, extremes, and outlier values.

We next quantified ε(xe) at each patient’s electrode locations xe ∈ ΩE ⊂
ΩMNI, where the mean number of electrodes for a patient was 197. Figure 3
summarizes patient mean error ε̄ and maximum error εmax over all xe ∈ ΩE.
Our proposed SDM registration significantly (p ≤ 0.05, paired t-test) reduced
both ε̄ and εmax for all modes of variation with respect to rigid registration.
The mean and maximum ε across all 18 patients using SDM with 1 mode was
1.58±0.24mm and 4.39±1.70mm, respectively, which compared to 2.12±0.37mm
and 6.08± 1.84mm for rigid registration and 2.75± 0.85mm and 5.95± 1.64mm
for FFD (all reported values are mean± std). FFD significantly increased ε̄ with
respect to rigid registration.

Additionally, we computed mean error throughout 4 different volumes of in-
terest (VOIs): the right brain hemisphere ΩRB, the right skull ΩRS, the left brain
hemisphere ΩLB, and left skull ΩLS, such that Ωi ⊂ ΩMNI and Ωi

⋂
Ωj = ∅, i �=

j. The ΩRB and ΩRS VOIs were of particular interest since they were ipsilat-
eral to the craniotomy. Compared to rigid registration, our method significantly
(p ≤ 0.05) reduced ε̄ in ΩRB using 1-5 modes of variation and in ΩRS using 1
and 3 modes. SDM registration significantly increased ε̄ in ΩLB when using 15
and 17 modes, but otherwise there were no significant increases in ε̄ in ΩLB or
ΩLS compared to rigid registration. We noted that ε̄ generally increased as we
used more modes of variation in our SDM, which is most likely explained by the
PCA over-fitting to the training set.

4 Conclusion

Our proposed method models post-surgical nonrigid deformations to signifi-
cantly reduce both mean and maximum transformation errors in multi-modality
nonrigid MR-CT registration compared to standard rigid and unconstrained
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nonrigid registrations. As shown in Figures 2 and 3, standard nonrigid registra-
tion methods perform worse than rigid methods, at least in this dataset where the
CT images had both deformation and significant artifacts. Although we present
results for training a SDM at only a single craniotomy location, in the future,
we aim to create craniotomy site-specific SDMs to model the corresponding de-
formations at different locations. Furthermore, we could improve our training
set registrations by including additional labeled anatomical structures, e.g. the
ventricles, to improve PCA model construction. The ideas presented in this pa-
per constitute a general framework to effectively register multi-modal volumetric
images nonrigidly. In particular we demonstrate how we can use a small subset
of high quality training data (in this case the rare availability of a post-electrode
implantation MRI) to learn about the properties of the deformation model in
a given case of nonrigid deformation, and to subsequently use this knowledge
to solve the nonrigid registration problem in the more general case with lesser
quality data (i.e. the direct nonrigid multimodal registration of pre-op MRI to
post-implantation CT). Similar principles could be applied to nonrigidly register,
for example, interventional ultrasound images to pre-operative MRI.
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Abstract. Overlay of preoperative images is increasingly being used to
aid complex endovascular aortic repair and is obtained by rigid 2D-3D
registration of 3D preoperative (CT) and 2D intraoperative (X-ray) data.
However, for tortuous aortas large non-rigid deformations occur, thus a
non-rigid registration must be performed to enable an accurate overlay.
This article proposes the use of Thin-Plate Splines (TPS) to perform
non-rigid 2D-3D registration. Intraoperative X-ray data contain no spa-
tial information along the X-ray projection direction. Our approach ac-
counts for this lack of spatial information by the use of an approximating
TPS with non-isotropic error ellipsoids, where the major ellipsoid axis
is aligned with the X-ray projection direction. Experiments are carried
out using 1D-2D and 2D-3D simulated data and 2D-3D interventional
data. Simulated results show that our proposed method is 1.5 times more
accurate than interpolating TPS based registration. Interventional data
results show how large rigid registration errors of 9mm can be reduced
to 4mm using our proposed method.

Keywords: Non-Rigid, 2D-3D registration, thin plate spline,
non-isotropic errors.

1 Introduction

Complex endovascular aortic repair (EVAR), where the aneurysm extends over
visceral vessels, is increasingly being used instead of open surgery. Complex
EVAR is a technically challenging procedure requiring accurate 3D placement
of often seven or more stent-grafts. The standard imaging protocol includes a
contrast enhanced preoperative CT, showing 3D bony and vascular anatomy. The
procedure is carried out using fluoroscopy guidance which provides 2D images
of bony structures and interventional instruments, and 2D Digital Substraction
Angiography (DSA) images that are used to visualise the blood vessels.

Due to the complex nature of these procedures, computer assistance has been
proposed [1, 2], which involves rigid registration of the 3D preoperative data
with the 2D intraoperative data, to enable 3D information from the preoperative
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CT to be overlayed onto the intraoperative fluoroscopy (as seen in Fig. 5(a)).
However, in some cases (e.g. aortas with a neck angulation greater than 30◦

[3]), inserting instruments leads to non-rigid deformation of the patient’s aorta,
which can result in large errors if a rigid registration method is used.

Several authors have proposed non-rigid 2D-3D registration to address this
concern. Two such methods [4, 5] assume constant vessel length, and that de-
formations minimise a smoothness criterion. Liao et. al. ’s method uses a 3D
CT angiographic scan and proposes automatic segmentation of blood vessels
from 2D DSA images, which is difficult to achieve robustly on clinical images.
In addition, the deformations caused by stiff instruments inside the aorta are
likely to violate the assumption of a minimum bending energy made by these
two approaches.

We present a novel approach for 2D-3D non-rigid registration: Thin-Plate
Splines (TPS) plus Projection Uncertainties (which we refer to as TPS+PU).
After an initial rigid registration, aortic deformation is based on preoperatively
determined fixed landmarks and a small number (less than 10) of manually
identified moving landmarks in two fluoroscopy images. Unlike standard back-
projection methods, our approach does not require corresponding landmarks to
be identified in both fluoroscopy images. Such corresponding landmarks are diffi-
cult to find in clinical images. Instead our method models the lack of information
perpendicular to the 2D fluoroscopy images using non-isotropic error ellipsoids,
where the major axis lies along the back-projection lines.

2 Theory

Spline-based deformation algorithms have been widely used (see [6–8] for exam-
ples) for non-rigid registration when the source and target data have the same
dimensionality, and are based upon the matching of source and target landmarks
and minimisation of a smoothness criterion.

We propose a TPS-based registration method to register data sets with differ-
ent dimensionality: a 3D preoperative CT to 2D intraoperative fluoroscopy. This
configuration leads to projection uncertainties as the 3D position of landmarks
selected from a 2D image cannot be determined within the 3D space. When two
views are used, the 3D position of a landmark can be deduced from its corre-
sponding 2D positions in both views. However, due to the nature of the images
used during EVAR, corresponding landmarks are only rarely observed in both
views, thus 3D reconstruction is generally not feasible.

Our method uses approximating TPS with non-isotropic errors [8] in a two-
view scenario to cope with the aforementioned issue. As shown in Fig. 1, 3D
source points {si} and 2D target points {t2Di } are picked on the aorta surface
and in the fluoroscopy images. 3D target points {t3Di } are calculated from {t2Di }
as the closest point to {si} on the back-projection line {li} that joins {t2Di }
to the X-ray source. Covariance matrices {Σi} that represent the uncertainty
in matching points si to t

3D
i along lines li are computed as follows: the major

axis of the error ellipsoid is set to the direction of li and to have length 1000
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(approximate fluoroscopy focal length) while the two other axes are set to zero
length. Using these parameters for the ellipsoids and setting a weighting function
λ to 1 allows loose matching of landmarks along the back-projection lines. The
following energy function, which weights the smoothness of the deformation u =
(u1, u2, u3) against its ability to match source and target points, is minimised:

Jλ(u) =
1

n

n∑
i=1

(
t3Di − u(si)

)T
Σ−1

i

(
t3Di − u(si)

)
+ λ

3∑
k=1

J3
2 (uk)

where J3
2 (uk) =

∑
α1+α2+α3=2

2

α1!α2!α3!

∫
R3

(
∂2uk

∂xα1
1 ∂xα2

2 ∂xα3
3

)2

dX

and n is the number of source landmarks. The analytical solution is:

uk(s) =
4∑

v=1

ak,vφv(s) +
n∑

i=1

wk,iU(s, si) for all k in {1, 2, 3}

with s = (sx, sy, sz)
T a point from the source image, φ1(s) = 1, φ2(s) = sx,

φ3(s) = sy, φ4(s) = sz and U a suitable radial basis function. The ak,v and wk,i

are sets of coefficients that respectively account for the rigid and the non-rigid
part of uk. Solution is obtained by solving the system:

(K + nλW−1)w + Sa = v

STw = 0

where Kij = U(si, sj), Sij = φj(si), W
−1 = diag(Σ1, . . . , Σn), v =

(
tT1 , . . . , t

T
n

)
,

with tTi =
(
t3Di,x , t

3D
i,y , t

3D
i,z

)
, a =

(
aT1 , . . . , a

T
4

)
, with aTv = (ax,v, ay,v, az,v) and

w =
(
wT

1 , . . . , w
T
n

)
, with wT

i = (wx,i, wy,i, wz,i) .

Fig. 1. Approximating TPS can be used to account for the uncertainty along the back-
projection lines: 3D-3D TPS registration is performed using landmarks {si} and {t3Di }
with associated error ellipses with their major axes along the back-projection lines

The solution of this system is computed and applied to the aorta surface. We
refer to this novel method as the ‘single warp’ strategy (see Fig. 2(left)). We
compare it to a ‘sequential warp’ strategy which registers to each 2D image in
turn and does not use non-isotropic error ellipsoids (see Fig. 2(right)).
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.

Fig. 2. Single warp strategy: registration is performed using target points from both
views. Sequential warp strategy: a first registration is performed using target points
from the first view, yielding an intermediate surface. A second registration is then
performed using target points from the second view to warp the intermediate surface.

3 Experiments

3.1 Data

Three sets of data were used: (1) simulated 1D-2D synthetic data, (2) simulated
2D-3D data generated from interventional data, (3) 2D-3D interventional data.

Simulated 1D-2D synthetic data was produced to resemble an axial 2D
slice of the aorta at the site of the renal arteries. This 2D slice is the simulated
preoperative image (see Fig. 3 (a)), which was then warped to generate intra-
operative datasets as follows: TPS transformations were carried out using five
fixed points (the corners of a square around the aorta to anchor the deformation
and the ostium of the left renal artery) and a single moving point at the right
renal ostium which was displaced by 10mm at an angle of i × 45◦, i = 1, . . . , 8
for each ith deformation. From each of these warped images two 1D simulated
intraoperative datasets were generated by a) projecting the ostia of the renal
arteries onto one 1D plane (rr and lr in Fig. 3 (b)) and then b) projecting the
edges of the aorta onto a second, 30◦ rotated, 1D plane (ae and pe in Fig. 3 (b)).

Simulated 2D-3D data generated from interventional data was pro-
duced using a patient CT as the preoperative data. Intraoperative data sets
were generated by warping the CT image, eight times, using a TPS transfor-
mation. Fixed points were the corners of a large bounding box surrounding the
abdominal aorta, the centres of vertebrae L1 to L5 and the bifurcations of the il-
iac arteries. Moving points were placed on the renal artery ostia and anterior and
posterior edges of the aorta level with the renal arteries. These points were dis-
placed 10mm. From each simulated ‘intraoperative’ CT scan, two intraoperative
DSA images, with 30◦ difference in view direction, were synthesised.
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2D-3D interventional data were used from a complex EVAR procedure.
The data consisted of a preoperative CT scan, two intraoperative DSA images
acquired after insertion of stent delivery device (views differed by 20◦ rotation).

3.2 Methods

For each experiment, the aorta was deformed with either a single warp (TPS+PU,
Fig 2(left)) or a sequential warp (interpolating TPS, Fig 2(right)). Each experi-
ment used a set of fixed points (picked preoperatively) and moving points (picked
from intraoperative images). The fixed points were as follows: for the 1D-2D syn-
thetic experiment, corners of a square surrounding the aorta were fixed. For the
2D-3D experiments, corners of a large cube surrounding the aorta, centre of
lumbar vertebrae and bifurcation of common iliac arteries were fixed.

Moving points for 1D-2D synthetic data were picked as illustrated in Fig.
3 (c). As in the case with real DSA images different information is visible in
different views. We assume that the renal ostia are visible, and so can be picked,
in plane 1 (equivalent to an anterior-posterior DSA), whereas only the outline
of the aorta is likely to be visible from the rotated view, plane 2.

Fig. 3. (a) interpolating TPS is applied to the preoperative aorta to obtain the in-
traoperative aorta (b) 1D intraoperative points: left, right renals (lr, rr) and anterior,
posterior edges (ae, pe), are generated by projecting the intraoperative aorta onto the
1D planes. (c) 1D target points are selected on the 1D intraoperative planes and the
points on the relevant aortic area closest to the back-projection lines are selected as cor-
responding 2D source points. The points on the back-projection lines closest to the 2D
source points are selected as corresponding 2D target points. For the single warp, error
ellipses are produced along the back-projection lines. (d) Result of applying non-rigid
TPS + PU registration on the aorta using 2D source and 2D target points.

1D target points are selected on the 1D intraoperative planes and the cor-
responding points on the aorta are selected as 2D source points. For the renal
positions corresponding points were the 2D renal artery ostia (see Fig. 3 (c)).
For aortic edge positions corresponding points were the closest 2D edge points
to back projection lines from the 1D point positions.
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Moving points for the simulated 2D-3D data were picked at the ostia of
the renal arteries and the Superior Mesenteric Artery (SMA) on the first DSA
image and at the outline of the aorta on the second DSA image. The location of
corresponding 3D source and 3D target points was found in a process equivalent
to the one presented in Fig. 3 (c).

Moving points for the interventional data were picked at the ostia of
the vessels when visible, generating 3D source and 3D target points as in the
case of simulated 2D-3D data. The rigidly-registered aortic CT surface was then
overlayed onto the first DSA image and the location of largest displacement with
respect to the aortic outline was located. An additional moving point was picked
at this location, non-rigid registration was performed using all previously picked
points and the displayed aortic overlay was updated. This process was repeated,
generating one additional moving point at each iteration until the aortic overlay
closely matched the DSA image (i.e. within ≈ 2mm). Moving points were selected
in the second DSA image using the same procedure. Overall, 7 moving points
were picked within approximately 2 minutes.

3.3 Validation

For simulated data experiments Target Registration Errors (TRE) were calcu-
lated to the known ground truth using the following regions of interest: ROI 1
was 26 × 26mm2 or 30 × 30 × 30mm3 region centred on the aorta at the level
of the renal arteries for the 1D-2D and 2D-3D data respectively. ROI 2 was a
2× 2mm2 or 2× 2× 2mm3 region centred on the right renal artery ostium (for
the 2D-3D data ROI 3 denotes the left renal ostium).
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Fig. 4. All TRE values are expressed in mm. (a) 1D-2D synthetic data: Single Warp
vs. Rigid Registration TRE (b) 1D-2D synthetic data: Single Warp vs. Sequential Warp
TRE (c) 2D-3D synthetic data: Single Warp vs. Rigid Registration TRE (d) 2D-3D
synthetic data: Single Warp vs. Sequential Warp TRE.
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No ground truth was available for the interventional data. Instead the po-
sition of the CT overlay was compared to a DSA image acquired later in the
intervention. Reprojection error distances were calculated (as described in [2])
at the left (ROI 1 ) and right (ROI 2 ) renal artery ostia.

4 Results

Results comparing TRE values for rigid registration, single warp and sequential
warp for the 1D-2D and 2D-3D synthesised data are shown in Fig. 4. The single
warp results show a major improvement compared to rigid registration: registra-
tion accuracy is on average 3.8 times higher for the 1D-2D data and 3.1 times
higher for the 2D-3D data. The single warp results also show an improvement
compared to the sequential warp: registration accuracy is on average 1.4 times
higher for the 1D-2D data and 1.6 times higher for the 2D-3D data.
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Fig. 5. (a) Comparison of CT overlay with DSA image before and after warp. Aorta
outline from overlay (red) matches more accurately to DSA (cyan) after warp. (b)
Registration accuracy at renal ostia using rigid registration, sequential and single warp.

Fig 5(a) visually shows the improvement in using the single warp compared
to rigid registration on clinical data. Numerical results are presented in Fig. 5(b)
where applying the single warp halved the rigid registration error.

5 Discussion and Conclusions

Two approaches (sequential warp with interpolating TPS and single warp with
TPS+PU) to deform the aorta were described and compared. Results on sim-
ulated data show a clear improvement in accuracy when using TPS+PU. A
recent study [3] reported a range of up to 11mm (mean 4.5mm) for aortic move-
ment. Despite applying deformations of 10mm, almost at the top of this reported
range, we managed to achieve the required registration accuracy less than 3mm
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(as proposed in [3]) for half the single warp registrations. No sequential warp
registration achieved < 3mm accuracy (see Fig. 4(d)).

Our method fits well within the standard clinical workflow. It requires knowl-
edgeable manual input for point picking, but only a few points are required,
which are usually located in standard clinical images within a few minutes (com-
pared to the procedure time of 4+ hours). Automated landmark identification
would be preferred, however this is very difficult to achieve with guaranteed
100% robustness, and subsequent required checks on automated landmark selec-
tion are likely to require knowledgeable manual visual inspection. 2D-3D rigid
registration is performed regularly to account for rigid patient, and fluoroscopy
gantry, movement during complex EVAR. Our current approach assumes that
only one major non-rigid deformation (which occurs after inserting a stiff wire)
takes place during the procedure. Therefore, the non-rigid registration algorithm
would only need to be applied once per procedure. This assumption remains to
be clinically verified.

In conclusion, we present a new non-rigid 2D-3D registration method using a
TPS with non-isotropic error ellipsoids to model projection uncertainties. Results
show improved accuracy using TPS+PU, which has the potential to increase the
number of EVAR patients who can benefit from computer-assisted surgery.
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Abstract. We present a novel variational formulation of discrete deformable
registration as the minimization of a convex energy functional that involves dif-
fusion regularization. We show that a finite difference solution (FD) of the varia-
tional formulation is equivalent to a continuous-valued Gaussian Markov random
field (MRF) energy minimization formulation previously proposed as the random
walker deformable registration method [1]. A computationally efficient solution
using the finite element method (FEM) method has been proposed to solve the
variational minimization problem. Our proposed method obtained competitive
results when compared with 14 other deformable registration methods on the
CUMC12 MRI dataset.

1 Introduction

The task of non-rigid or deformable image registration refers to the process of finding
meaningful dense correspondences between two images. It is required in a wide variety
of medical imaging applications such as longitudinal studies on disease progression,
multi-modal image fusion, statistical studies on anatomical variability and atlas-based
segmentation. More formally, the problem of deformable image registration is posed
as the estimation of an optimal displacement field that maps points in an image to the
corresponding points in another image such that a similarity criterion is minimized.
This minimization is inherently ill-posed due to the large number of degrees of freedom
(DOF) involved and therefore it relies on regularization or smoothing constraints.

Over the years, numerous regularization approaches have been proposed for de-
formable registration (see [2] for a detailed review). These approaches can be broadly
categorized into two groups, namely non-parametric and parametric approaches. In non-
parametric approaches, explicit regularization terms such as elastic [3], diffusion [4] and
curvature [5] are added to the data term and a variational minimization of the combined
energy functional is performed. Alternatively, a demons minimization strategy can be
used, where the smoothing of the displacement field is decoupled from the minimiza-
tion of the data term [6], [7], [8]. In parametric approaches, regularization is enforced in
an implicit manner through the parametrization of the displacement field using a finite
set of basis functions, such as radial basis functions (RBF) [9], B-spline based free form
deformations (FFD) [10], finite element method (FEM) basis functions [11].

The various non-parametric and parametric deformable registration approaches men-
tioned above attempt to determine the unknown displacement field through the contin-
uous optimization of energy functionals. As an alternative to continuous formulations,
there has been some interest in formulating the deformable registration task as a dis-
crete labeling problem. Here, the space of possible displacements is discretized and
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a Markov random field (MRF) energy corresponding to the registration objective is
minimized. However, as the MRF energy minimization is in general NP-hard, exist-
ing methods on MRF-based discrete deformable registration are only able to find good
quality approximate solutions using graph cuts [12] and linear programming [13].

Previous discrete formulations of deformable image registration were inherently dis-
crete in both the image domain and displacement space. In this work, we seek a formu-
lation that keeps the image domain continuous resulting in a variational formulation for
discrete deformable registration. Our formulation results in a convex functional which
can be conveniently minimized to obtain a unique solution. Specifically, we associate
a continuous prior probability map to each of the possible displacement values using
image similarities. The prior probability maps denote how likely the corresponding
displacement value is at particular spatial location in the continuous image domain.
The discrete deformable registration task is then posed as a variational problem corre-
sponding to the diffusion-based smoothing of prior probability maps. For solving this
variational problem, we propose a finite element method (FEM) that employs a non-
uniform mesh well adapted to the salient image features. This significantly reduces the
number of DOFs involved in the minimization compared to a traditional finite differ-
ence (FD) discretization and hence leads to a highly computationally efficient solution.
Further, we show that a FD discretization of our variational formulation is equivalent
to the the random walker (RW) solution of discrete registration recently proposed by
Cobzas et al. [1].

To summarize, we make the following contributions:

(1) We develop a novel variational formulation of discrete deformable registration on
the continuous image domain. This formulation results in a convex energy func-
tional that involves diffusion regularization.

(2) We show that a finite difference solution (FD) of the variational formulation is
equivalent to a continuous-valued Gaussian MRF energy minimization formulation.

(3) We propose a computationally efficient FEM solution.
(4) We validate our method on the publicly available CUMC12 MRI dataset [14] and

show a competitive performance of our proposed method in comparison to 14 other
deformable registration methods.

2 Methods

2.1 Variational Formulation of Discrete Deformable Registration

Given a source image IS : ΩS → R, ΩS ⊂ Rν and a target image IT : ΩT → R,
ΩT ⊂ Rν , ν = 2 or 3, the goal of non-rigid or deformable registration is to estimate a
displacement field U : ΩT → Rν such that the warped source image IS(x +U(x)) is
similar to the target image IT . A similarity map Ψ : ΩT → R can be defined to measure
the similarity between the warped source and target images as:

Ψ(x;U, IT , IS) = (IS(x +U(x)) − IT (x))2. (1)

In discrete deformable registration, the space of possible displacement values is
discretized or quantized such that it corresponds to a finite set of K vectors, i.e.,
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U : ΩT → D, where D = {dk}Kk=1, dk ∈ Rν . Based on the similarity map, sim-
ilar to [1] we can define a prior probability map λk : ΩT → [0 1] for each of the
displacement values dk ∈ D as:

λk(x;dk) =
exp(−αΨ(x;dk, IT , IS))

K∑
r=1

exp(−αΨ(x;dr , IT , IS))

. (2)

It can be seen that the prior λk(x;dk) essentially encodes the belief that the corre-
sponding displacement value dk is more likely at a spatial location x ∈ ΩT , when the
similarity measure between the warped source image and the target image at x ∈ ΩT is
small. The discrete deformable registration task is next formulated as a variational en-
ergy minimization problem that estimates an unknown probability map Lk : ΩT → R

corresponding to each of the displacement values dk ∈ D:

L∗ = argmin
L

ED[L; IT , IS ,D] + βEdiff
R [L], (3)

with ED[L; IT , IS ,D] =
∫
ΩT

||L(x) − λ(x;D)||2 dx,

Ediff
R [L] =

K∑
k=1

∫
ΩT

∇LkT(x)W (x)∇Lk(x) dx,

where λ = [λk]Kk=1, L = [Lk]Kk=1, L∗ = [L∗k]Kk=1 and β is a regularization constant.
The above energy minimization formulation essentially corresponds to the anisotropic
diffusion-based smoothing of the prior probability maps {λk}Kk=1. In other words, the
minimization attempts to find a smooth probability map Lk associated with the dis-
placement value dk such that it is as “close” as possible to the corresponding prior
probability map λk. The smoothness is enforced through the anisotropic diffusion-based
regularization term Ediff

R , where W is a ν × ν symmetric matrix denoting the diffusiv-
ity or the stiffness field. Note that in the above we do not need an explicit constraint
to make sure that the unknown probability maps {Lk}Kk=1 sum to 1. This because the
unique minimizer of (3) should naturally satisfy this constraint, as the prior probability
maps {λk}Kk=1 were defined such that they sum to 1 (like in Grady [15]). The esti-
mated displacement field U(x) at a spatial location x ∈ ΩT is obtained by choosing
the displacement value dk with the highest optimal probability at that spatial location:

U(x) = dk ∀x ∈ ΩT , (4)

where k = argmax
r∈{1,2,...,K}

L∗r(x).

However, it should be noted that even though the above displacement field is constructed
from the optimal probability maps {L∗k}Kk=1, this estimated displacement field by itself
does not necessarily minimize any formal registration energy.

2.2 Equivalence to the Random Walker (RW) Registration Method

We next show that a finite difference solution (FD) of the variational formulation
in (3) is equivalent to the continuous-valued Gaussian MRF energy minimization
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formulation referred as the random walker registration in [1]. For this, consider the
Euler-Lagrange equations corresponding to the energy functional in equation (3) for
each k ∈ {1, 2, . . . ,K}:

∇Lk(ED + βEdiff
R ) = (Lk − λk)− β∇(W∇Lk) = 0. (5)

Rearranging we get for each k ∈ {1, 2, . . . ,K}:

Lk − β∇(W∇Lk) = λk. (6)

Now, consider a uniform discretization G = ({xi}Ri=1,N ) of the template image do-
main ΩT , where {xi}Ri=1 is the set of pixels (voxels) and N denotes neighborhoods.
Further, choose an image dependent stiffness field W (x) = exp(−γ(diag(∇IT ))2)).
Writing the FDM approximation of the equations in (6) we obtain the following set of
equations for each k ∈ {1, 2, . . . ,K}:(

IdN + β�G

)
Lk = λk. (7)

Here, IdN is aN×N identity matrix and�G is the discrete Laplacian operator defined
on the uniform mesh G as:

(�G)ij =

⎧⎪⎪⎨⎪⎪⎩
∑

r∈N (i)

wir if i = j

−wij if j ∈ N (i)

0 otherwise

, (8)

where wij = exp(−γ(IT (xi)− IT (xj)
2)). It is easy to observe that the FD discretiza-

tion on the uniform grid G of the Euler-Lagrange equations in (5) corresponds to the
set of linear equations in (7) that arise from the minimization of the continuous-valued
MRF based discrete registration problem in [1].

2.3 FEM-Based Solution for Variational Discrete Deformable Registration

A more efficient solution of the proposed variational formulation for discrete registra-
tion (3) can be obtained using the FEM method. Consider a non-uniform discretization
M = ({Pn}Nn=1, T ) of the domainΩT , where {Pn}Nn=1 denotes the nodes of the mesh
and T is the set of elements (triangles in 2D, tetrahedra in 3D) (see Figure 1). Then
using nodal basis functions {φn}Nn=1 we can discretize the probability maps as:

L(x) =

N∑
n=1

Lnφn(x;M) ∀x ∈ ΩT , (9)

where Ln = L(Pn) which represents the value of the probability map at the node Pn

of the meshM. The task is now to find the nodal probabilities Θ = [Ln]
N
n=1. The FEM

approximation of the energy in (3) can be written as:
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Θ∗ = argmin
Θ∈RNK

ED(Θ; IT , IS ,D) + βEdiff
R (Θ), (10)

with ED(Θ; IT , IS ,D) =
∫
ΩT

||
N∑

n=1

Lnφn(x)− λ(x;D)||2 dx,

Ediff
R (Θ) =

K∑
k=1

N∑
m,n=1

Lk
nL

k
m

∫
ΩT

∇φTn (x)W (x)∇φm(x) dx,

where Ln = [Lk
n]

K,N
k,n=1.

Setting the gradient of (10) to zero w.r.t each {Ln}Nn=1 and by re-writing Θ =
[Θk]Kk=1, where Θk = [Lk

m]Nm=1 is as a N × 1 vector of nodal probabilities, we obtain
the following system of linear equations for each k ∈ {1, 2, . . . ,K}:

SΘk − Fk = 0, (11)

where S = [Sm,n]
N
m,n=1 is a N × N matrix and Fk = [F k

m]Nm=1 is a N × 1 vector
defined as:

Sm,n =

∫
ΩT

φm(x)φn(x) dx + β

∫
ΩT

∇φTm(x)W (x)∇φn(x) dx,

F k
m =

∫
ΩT

λk(x;dk)φn(x) dx. (12)

The system of independentN ×K linear equations in (11) is solved to obtain the opti-
mal nodal probabilities Θ∗ = [L∗

m]Nm=1 = [L∗k
m ]K,N

k,m=1. Now, the optimal probabilities
L∗(x) = [L∗k(x)]Kk=1 at any spatial location x ∈ ΩT can found through interpola-
tion of the nodal probabilities [L∗

m]Nm=1 based on the finite element approximation in
equation (9). Then, the estimated displacement field U(x) at x ∈ ΩT is obtained by
choosing the displacement value dk with the highest optimal probability at that spatial
location, i.e., U(x) = dk where k = argmax

r∈{1,2,...,K}
L∗r(x).

3 Experiments

In this section, we evaluate our proposed FEM-based variational discrete deformable
registration method on synthetic and real medical images. We implemented our method
in a multi-resolution framework with 4 levels. The range of displacements used in each
of the 4 levels are as follows: [0,±0.125, . . . ,±0.5]ν , [0,±0.25, . . . ,±1.0]ν , [0,±0.5
, . . . ,±1.5]ν , [0,±1.0]ν, where ν = 2 or 3. We chose the Perona-Malik [16] diffusivity
W (x) = 1/(1 + exp(||∇IT ||2/γ)) with γ = 0.05 and set α = 1.0 in the experiments
below. An image-adaptive meshing strategy proposed by Yang et al. [17] was used
to generate the non-uniform FEM mesh. We coded our method in MATLAB using the
MEX facility. We ran all experiments on a Intel i7 3.60 GHz machine with 32GB RAM.
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3.1 Comparison with Random Walker (RW), DROP and Demons Registration

In Figure 1, we show the performance of our FEM-based discrete registration method in
comparison to the random walker (RW) [1], DROP [13] discrete registration methods
and also the continuous diffusion-based demons [7] registration method on synthetic
2D brain MRI images with a known ground truth displacement field. The RW, DROP
and demons methods all use a uniform mesh, while our FEM-based discrete registration
method employs a non-uniform mesh well adapted to the image features. The number
of DOFs associated with a mesh is given as twice the number of nodes in the mesh.
Further, the computational times reported for the various algorithms correspond to the
time taken by their respective optimization steps. In the case of our proposed method
the optimization step involves solving the equation system in (11). It can be clearly
seen that all the four registration methods successfully recover the displacement field
between the two images. But, our FEM-based discrete registration method achieves

Template Non-uniform mesh Color encoding

Source FEM discrete RW [1] DROP [13] Demons [7]

Ground truth

Method AAE SSDE DOF Time(sec)
Source (before registration) − 4866.67 − −
FEM discrete (proposed) 4.06◦ 102.73 11264 0.02
Random walker (RW) [1] 4.72◦ 142.96 331588 1.27

DROP [13] 2.48◦ 11.63 331062 54.74

Demons [7] 1.93◦ 31.35 331588 122.20

Fig. 1. Results on synthetic 2D MRI data. Average angular error (AAE), sum of squared differ-
ences error (SSDE) and degrees of freedom (DOF) are shown along with the computational times
(we set β = 50 in our proposed method).
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Fig. 2. Results on the CUMC12 MRI brain database (we set β = 200 in our proposed method)

this with a considerably lower computational effort (∼ 30 times lower DOFs and > 60
times faster) when compared to the other three registration methods.

3.2 Validation on the CUMC12 MRI Database

The CUMC12 dataset [14] consists of 3D brain MRI scans from 12 subjects taken at
256× 256× 124 resolution with a 0.86mm× 0.86mm× 1.5mm voxel spacing. Man-
ual segmentations of 128 anatomical regions were provided for each of these images.
We performed 12 × 12 − 12 = 132 pair-wise registrations between the images using
our proposed FEM-based discrete registration method. The overall computational time
for each registration is about 15.5 minutes of which 4.5 minutes are taken for the op-
timization step (solving equation system in (11)). For evaluating registration accuracy,
anatomical labels on the source image were mapped to the template using the estimated
displacement field. The Jaccard overlap measure was computed between the warped
source labels and the template labels. In Figure 2, we report the Jaccard score obtained
by our proposed method averaged over 128 anatomical regions and 132 pair-wise reg-
istrations. Klein et al. [18] reported average Jaccard scores obtained by 14 popular
deformable registration methods on the CUMC12 dataset. We can see that our methods
ranks in the top 5 among these methods.

4 Conclusion

We developed a computationally efficient FEM-based discrete deformable registration
method using the squared differences similarity measure and diffusion-based regular-
ization. A salient aspect of our method was the use of an image-adaptive discretization
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of the problem domain. This resulted in our method being multiple orders of magni-
tude faster than the existing registration methods that are implemented using uniform
meshes. A limitation of our method is that the estimated displacement field is not dif-
feomorphic. This is because the displacement field is not explicitly regularized and the
regularization is only implicit through the smoothing of prior probability maps. In fu-
ture, we want to explore the use of an additional explicit regularization step that would
yield diffeomorphic displacement fields. Further, we intend to extend our method for
multi-modality registration using more complex similarity measures.
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Abstract. Most registration algorithms, such as Demons [1], align two
scans by iteratively finding the deformation minimizing the image dissim-
ilarity at each location and smoothing this minimum across the image
domain. These methods generally get stuck in local minima, are neg-
atively impacted by missing correspondences between the images, and
require careful tuning of the smoothing parameters to achieve optimal
results. In this paper, we propose to improve on those issues by choos-
ing the minimum from a set of candidates. Our method generates such
candidates by running the registration algorithm multiple times vary-
ing the setting of the smoothing and the image domain. We iteratively
refine those candidates by fusing them with the outcome of alternative
approaches and locally adapting the smoothing parameters. We imple-
ment our algorithm based on Demons [1] and find alternative minima via
manifold learning [2]. Compared to those two methods, our 600 pairwise
registrations of cardiac MRIs significantly better handle the large shape
variations of the heart and the different field of views captured by scans.

Keywords: Image Registration, Manifold Learning, Cardiac MRI.

1 Introduction

General-purpose registrations, such as [1], model deformable image alignment as
a problem of finding the (local) minimum of an energy function. The accuracy of
the search is sensitive to the setting of the optimization method, which commonly
assumes one-to-one correspondence between moving and target scan. Scans, such
as cardiac MRI (see Fig. 1), often vary with respect to the anatomy captured
in their field of view as well as the shape of the anatomy, such as the heart. It
is thus difficult to find the optimal setting for methods off-line. In this paper,
we address this shortcoming of existing tools by refining their solution to the
minimization problem through iteratively fusing the results of multiple searches.

Applications relying on non-rigid registration, such as atlas-based segmen-
tation, contain various coping mechanisms for these issues. The most common
technique is to crop the scan to a specific region, such as in skull stripping, before
refining registration. Accurate cropping is only reliable for certain areas, such
as brain MRI, but even then generally requires manual editing. Alternatively,
researchers register scans multiple times or from multiple subjects and then fuse
the aligned label maps [3].
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(a) Moving (b) Fixed (c) Demons (d) FLOOR

Fig. 1. (c) shows the result of Demon aligning (a) to (b). The artifacts shown in (c)
are caused by missing correspondences. FLOOR’s output (d) much better matches (b).

These mechanisms are less beneficial when directly analyzing deformations,
such as in [4]. Here, the optimal registration setting is often determined via
cross validation [5] hoping the results during training translate to new scans. This
assumption generally does not hold for heterogeneous populations. Alternatively,
graphical models find the global instead of a local minimum [6]. The accuracy of
these methods suffers from the discretization of the deformation map. Finally,
manifold learning [2,7] improves registration by decomposing the problems into
a set of simpler registration tasks. The accuracy of these methods depends on
the size of the training data as well as the accuracy of the solutions to those
simpler tasks. To address the first issue, manifolds are created for image parcels
instead of the entire domain[8,9]. Our proposed method, called Fusing Locally
Optimal Registrations (FLOOR), is a first attempt to advance these learning
techniques with respect to the second issue by iterating between improving the
tasks’ solutions and refining the corresponding manifolds. To the best of our
knowledge, FLOOR is also the first method to improve deformation maps (and
not aligned segmentations as in [3]) by fusing the outcome of several registrations.

FLOOR improves the accuracy of a registration by iteratively reducing the
corresponding minimum based on a set of local optima, called candidates. At
each iteration, FLOOR generates candidates by applying the registration with
different smoothing settings to various parcels of the image and including the
outcome of alternative methods, such as manifold learning. It improves the min-
imum by fusing the candidates, i.e. selecting the deformation at each voxel that
minimizes the energy function. Note, all candidates are local minima of the en-
ergy function but differ in the degree of flexibility, the parcel they are defined
on, and the way they were generated. The approach converges to a smooth de-
formation map after the selection process does not improve candidates.

FLOOR addresses many of the previous issues as it draws from multiple
searches, contains the influence of missing correspondences to parcels instead
of the entire domain, and adapts the stiffness locally and online. If we include
Manifold Learning based Deformation maps (MLD)[2] in the candidate set, the
corresponding manifolds are also likely to be improved at each iteration as they
are trained on refined pairwise registrations. Our implementation of FLOOR
demonstrates this by fusing the results of Demons[1] with MLD. We register
600 pairs of cardiac MRIs. FLOOR not only significantly improves the result of
Demons, such as in Fig. 1, but also of MLD trained on the entire domain.
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2 Fusing Deformation Maps

Non-linear registration approaches generally define the best mapping between
two images F andM as the spatial transformation s that minimizes Sim(F,M◦s),
the dissimilarity between the aligned images, while being smooth according to
the regularizer Reg(s). In other words, s minimizes the energy function

E(s) � Sim(F,M ◦ s) + 1

σ2
Reg(s), (1)

where σ controls the flexibility of the deformation andE(·) is defined with respect
to the image domain Ω. We now briefly review the Demons algorithm [1], which
finds a local minimum for a specific instance of this equation. We then derive
FLOOR, which iteratively refines those results by spatially varying σ, confining
E(·) to parcels and fusing them with alternative deformation maps.
Demons: The method defines both terms of Eq. 1 with respect to L2-norm || · ||,
where Sim(F,M ◦ s) � ||(F −M ◦ s)||2 and Reg(s) � ||�s||2. The algorithm
determines the local minimum s of E(·) by iteratively minimizing for s and an
approximation of s, called c, according to

E(s, c) �
∑
x∈Ω

(
||F (x) −M(x+ c(x))||2 + ||c(x) − s(x)||2 + 1

σ2
||�xs||2

)
. (2)

�xs is the gradient of s at x. Given s, it first updates c at each voxel x ∈ Ω:

c(x)←arg min
t(x)∈R3

||F (x) −M(x+ t(x))||2 + ||t(x)− s(x)||2, (3)

which has a closed form solution. Keeping c fixed, the methods updates s by
applying c to a Gaussian kernel K(σ) with the width depending on σ, i.e.

s← K(σ) � c. (4)

The algorithm iterates between Eq. 3 and Eq. 4 until convergence.

FLOOR: Demons assumes the degree of stiffness of the deformation controlled
by σ and the error measured by Sim(·, ·) is uniformly defined across the do-
main Ω. The method also does not improve the results once it converges to a
local optimum. These assumptions generally reduce Demons accuracy when, for
example, missing correspondences in one region impact the deformation in the
remaining image domain. FLOOR drops these assumptions by iteratively fusing
and improving the results of Demons based methods (see Algorithm 1).

FLOOR drops the assumption of the uniform stiffness across Ω by replacing σ
in Eq. 2 with σ(·), a smoothly varying map. At each voxel x ∈ Ω, σ(·) is confined
to a small range S, such as S = [0.5, 4.5] . Given that σ(·) should be specific to
the corresponding image pair, we assume that our approach is initialized with a
set of candidates C � {C1, . . . , CM} where each candidate Ci � (ci, σi) consists
of a deformation map ci that minimizes Eq. 2 for the specific smoothing map
σi. We furthermore assume that all of those candidates are close to the true
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deformation s and smoothing map σ(·). Thus, ||ci(x) − s(x)||2 ≈ 0 in Eq. 2 so
that we omit the term in Eq. 3 and improve the estimate of c(·) at x ∈ Ω via

(c′(x), σ′(x))← arg min
Ci∈C

||F (x) −M(x+ ci(x))||2. (5)

If we assume that σ′(x) is constant in close proximity of x, i.e. is locally smooth,
then c′(x) is equal to s(x). To enforce smoothness, we first compute σ′(·) over
Ω and then smooth σ′(·) similar to Eq. 4 via σ̂ ← K(γ) � σ′ with γ being
the smoothing parameter specific to the smoothing map. Next, we replace the
Gaussian kernel in Eq. 4 with one whose width at x ∈ Ω is defined by σ̂(x):

s(x)← K(σ̂(x)) �x c′. (6)

where �x is the convolution at x. We call this process fusing deformation maps.
Next, we drop the assumption of misalignment being uniformly accounted for

across the domain Ω by fusing candidates, who are optimal solutions with re-
spect to specific image parcels. Specifically, we first parcellate Ω into overlapping
regions O � {Ω1, . . . , ΩN} so that Ωi ⊂ Ω, Ωi∩(O\{Ωi}) �= ∅, and ∪N

i=1Ωi = Ω.
If we now replace Ω in Eq. 2 with Ωi then the deformation map s of Eq. 4 is
also only defined for Ωi and not impacted by the mismatches between the images
outside of Ωi. We then create the candidates of C by applying Demons to Eq.
2 confined by samples taken from O and the smoothing interval S. Now fusing
those candidates according to Eq. 5 and Eq. 6 results in a deformation map over
Ω that is the minimum solution with respect to maps defined on overlapping
parcels instead of the entire image domain. Unlike the original outcome of Eq.
4, the impact of missing correspondences on s are thus locally confined.

Finally, we incorporate in FLOOR deformation maps from other registration
algorithms, which are initialized by the current set C. An example of such an
algorithm is MLD[2]. We apply MLD to each collection of candidates, which
register a group of images using the same smoothing setting and parcel. For
each set, MLD encodes the manifold as a kNN graph with each node representing
an image and the weight of the edges between nodes defined by the similarity
measure of Eq. 5. MLD’s solution to Eq. 2 is then based on the manifold’s
geodesic path from M to F . The “geodesic” deformations are added to C and
s is updated according to Eq. 5 and Eq. 6. We then learn the manifold based
on the new set of s defined over the group of images. We repeat the process
of updating s and the manifold until convergence. Note, the algorithm has to
converge as each iteration reduces the minimum of Eq. 5.

By improving the pairwise registrations, we also expect the accuracy of the
manifolds to be improved. FLOOR thus address an issue of current manifold
learning techniques, whose accuracy depend on the initial, pairwise registrations,
by iteratively fusing pairwise with manifold-based deformation maps. This idea
applies to many other registration algorithms. The fusing of deformation maps
as proposed by FLOOR is simple as long as one can first find the minimum
locally and then modify the corresponding deformation map to comply with
global constraints.
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Algorithm 1. Fusing Locally Optimal Registrations(S,O)

Create a set of candidates C by running Demons varying σ ∈ S and Ω ∈ O

repeat
STEP 1: Train MLDs for a set of images based on C. Add the results to C

STEP 2: Find the best candidate (c′, σ′) according to Eq. 5 and smooth σ′

STEP 3: Update s via Eq. 6 and add to C

until s converges

3 Experiments on Cardiac MRI Dataset

We analyze the accuracy of FLOOR on the pairwise registrations of 25 cardiac
MRIs at end-diastole. We measure the accuracy for the 600 registrations (25×24)
by the Dice score [10] between the aligned and corresponding manual segmenta-
tions of the right ventricle blood pool (RV), the left ventricle myocardium (MY)
and blood pool (LV) (see Fig. 2(a)). RV and LV have similar intensity patterns
and MY is relatively thin. Thus, the Dice score with respect to these structures
is a good indicator for the quality of deformations. For comparison, we measure
the accuracy of different implementations of FLOOR.

Data Set: The set consists of short-axis MRIs at end-diastole of 15 healthy and
10 Tetralogy of Fallot (TOF) subjects. Registering these scans is difficult due to
missing correspondences, low image quality, and the irregular ventricular shapes
of TOF hearts (see Fig. 1). The resolution of each scan is 1.25× 1.25× 8mm3.
To speed up registration, we crop scans to 12 slices showing the ventricles and
120× 120 inplane voxels centered at the heart. Scans are bias corrected [11] and
linearly aligned to a template [12]. Finally, an expert segmented LV, RV and MY
in each scan via [13]. Note, these maps are only used for the Dice computation.

Parameters: Parameters of FLOOR are the parcellationO, the set of smoothing
parameters S, and the size K of the neighborhood of the kNN graph generated
by MLD. Out of convenience, we parcellate the scans into 3× 3× 2 overlapping
parcels as shown in Fig. 2(b). Each parcel is of size 55 × 55 × 7 voxels with
the overlapping regions shown in red and blue. The set of smoothing widths is
S = {0.5, 1.5, 2.5, 3.5, 4.5} as Demons achieves the highest overall accuracy for
σ = 2.5. Note, we now refer to σ as the actual width of the Gaussian kernel of
Eq. 4 and not the weight of Eq. 2, which indirectly defines σ. Thus, the larger σ
the less flexible the resulting deformation. Finally, we choose K = 10, which is
double the neighborhood size of the thinnest connected kNN graph.

Implementations: As a baseline, we apply Demons [1] to the entire image
with fixed σ = 2.5 and train MLD on the resulting 600 pairwise registrations
(called GMLD). Next, we run Algorithm 1 omitting Step 1, i.e. not generating
candidates via MLD. Specifically, we fuses the outcome of Demons applied to the
entire image domain with the different smoothness parameter σ of S (sDemon),
applied to the different parcels of O but with fixed σ = 2.5 (pDemon), and by
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(a)Segmentation (b)Parcels (c)Fused Deformation (d)Smoothing Map

Fig. 2. (a) Expert segmentation (LV: white, RV: light grey, MY: dark grey) of Fig.
1(b). (b) The image is divided into 3 × 3 × 2 parcels with the colors indicating the
number of overlapping parcels. (c) shows the y-displacement of the fused deformation
map and (d) the smoothing map (σ(·)) generated by FLOOR. Both maps are smooth.

running Demons with different σ as well as on different parcels (fDemon). Finally,
we run FLOOR as specified in Alg. 1. pFLOOR applies Demons and learns a
MLD for each of the parcels of O with fixed σ = 2.5 . fFLOOR applies Demons
and learns a MLD for different smoothing setting as well as parcels. It also learns
a new MLD based on the updated (600) deformations until convergence.

Comparison: We now review Table 1, which lists each implementation’s av-
erage Dice score (Avg) and standard deviation (std), denoted by Avg ±std%,
across all pairwise registrations for each structure and across structures, i.e. 600
×3 scores. Note, we call improvements significant if the p-value is below 1% for
the unpaired t-test of the scores of two implementations across all image pairs.

Out of all implementations, GMLD received the lowest score (72.9%), which
was slightly lower than Demons. The decrease in accuracy indicates that the
neighborhood size K was too small. Increasing K did not greatly improve the
score until we set it close to 25, which means that every image pair is directly
connected, i.e. the results are equivalent to Demons. An alternative explanation
for the low score of GMLD is the number of training samples (25), which was
too small to properly learn the manifold over the entire image domain. This is
a common problem in medical imaging [8,9] and a motivation behind FLOOR.

The score increases by simply fusing the results of Demons, when run with
different smoothing parameters (sDemon). There is significant improvement for
pDemon and fDemon, who both apply Demons to different parcels. These results
indicate that for our data set the overall accuracy of Demons is mostly impacted
by missing correspondences in the background and not the uniform smoothness
setting of the deformation map. The way our approach addresses this problem
is by running Demons on different parcels so that not all of the results are
corrupted by the same missing correspondences during the fusion process (Step
2 in Algorithm 1). The corruption free maps most likely will be chosen over the
corrupted ones resulting in a more accurate registration.

Finally, the scores further improve when including MLDs such as for pFLOOR
vs. pDemon. Unlike for GMLD, whose manifold is based on the entire image
domain, the training set is now large enough to properly learn the manifold for
specific parcels. fFLOOR receives the highest average scores with 77.9 % after
the first iteration and converges to 79.2 % after three iterations. This score is
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(a) Demons (b) GMLD (c) fDemon (d) fFLOOR

Fig. 3. Average across 24 binary maps of MY aligned to Fig. 1(b) with (d) being best

Table 1. Average and standard deviation of Dice scores of 600 registrations for each
individual structure and across all 3 structures. fFLOOR achieves the highest scores

GMLD Demon sDemon pDemon fDemon pFLOOR fFLOOR

LV 84.9 ± 0.07 85.3 ± 0.06 86.5 ± 0.06 88.3 ± 0.04 88.6 ± 0.04 88.7 ± 0.04 89.7 ± 0.04

MY 58.6 ± 0.11 59.7 ± 0.10 58.0 ± 0.09 65.1 ± 0.08 64.4 ± 0.08 65.8 ± 0.08 68.1 ± 0.08

RV 75.2 ± 0.09 75.8 ± 0.09 76.5 ± 0.09 78.5 ± 0.08 78.9 ± 0.08 79.1 ± 0.08 79.7 ± 0.08

ALL 72.9 ± 0.14 73.6 ± 0.13 73.7 ± 0.13 77.3 ± 0.11 77.6 ± 0.11 77.9 ± 0.12 79.2 ± 0.11

significantly better than fDemon. Thus, manifold learning really improves the
results of FLOOR as it provides alternative candidates that locally minimize
Demons energy function. Furthermore, fFLOOR produces smooth deformation
and smoothing maps as also shown in Fig. 2(c-d). The smooth deformation
maps indicate that our method correctly fuses the different candidates produced
by fFLOOR. The variation in the smoothing width map support our claim that
optimal regularization parameter differ across the image. We end the comparison
noting that fFLOOR was significantly better than the state of the art represented
by 5.6 % improvement over Demons and 6.3 % over GMLD.

Our findings based on the average Dice score also translates to the scores of the
individual structures. Most noticeable are the differences of the implementations
with respect to MY, for which the average score of fFLOOR was 68.1% which
is 3.7% higher than fDemon, 8.4% higher than Demons, and 9.5% higher than
GMLD. The MY is smaller than RV and LV so that the Dice score is most
sensitive to deformation errors. This is also reflected by the average maps shown
in Fig. 3. The maps are the results of aligning 24 cases to the scan of Fig. 1 (b)
and then applying the deformations to the corresponding MY segmentations.
The map produced by fFLOOR shows the least amount of variation across the
24 aligned segmentations. The map of fDemon varies a little bit more but far
less than the maps of Demons and GMLD. These results further confirm our
intuition behind FLOOR that iteratively fusing the deformation maps of pairwise
registration with parcel-specific manifolds further improves registration.

4 Conclusion

We derived FLOOR, an algorithm for improving registrations by fusing mul-
tiple solutions to the corresponding minimization problem. FLOOR generated
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such solutions, called candidates, by applying known methods, such as Demons,
varying the regularization and registration regions. FLOOR can also include can-
didates from other methods, such as MLD, in an iterative fashion. Compared
to those original methods, the 600 pairwise registrations of cardiac MR scans of
FLOOR were much more accurate in dealing with the large shape variations of
the heart and the difference in the field of views across scans. We expect similar
results when adapting FLOOR to other registration methods and scans.
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Abstract. We present a novel image registration method based on
B-spline free-form deformation that simultaneously optimizes particle
correspondence and image similarity metrics. Different from previous B-
spline based registration methods optimized w.r.t. the control points,
the deformation in our method is estimated from a set of dense unstruc-
tured pair of points, which we refer as corresponding particles. As inten-
sity values are matched on the corresponding location, the registration
performance is iteratively improved. Moreover, the use of correspond-
ing particles naturally extends our method to a group-wise registration
by computing a mean of particles. Motivated by a surface-based group-
wise particle correspondence method, we developed a novel system that
takes such particles to the image domain, while keeping the spirit of the
method similar. The core algorithm both minimizes an entropy based
group-wise correspondence metric as well as maximizes the space sam-
pling of the particles. We demonstrate the results of our method in an
application of rodent brain structure segmentation and show that our
method provides better accuracy in two structures compared to other
registration methods.

1 Introduction

The study of brain changes in rodent models of neuropathology and drug expo-
sure has been of increasing interest to the neuroscience community. In contrary to
human studies, rodent models have several advantages, such as a well controlled
environments and access to genetic modifications as well as shorter lifespan.
Magnetic Resonance Imaging (MRI) has emerged as an important modality to
study such rodent brain morphological changes. Non-rigid registration is a cru-
cial tool to process such MRIs providing structural segmentations and enabling
the analysis of group differences.

Several methods have been proposed for the study of rodent brains. Among
those atlas-based registration methods are popularly used. However, a single
atlas-based method has a disadvantage of the introduction of bias that might
cause poor segmentation and dilute the difference between groups [6]. Group-
wise registration method which deals with every subject together can be an
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alternative to reduce the effects of template selection [2]. Since a group-wise
registration method does not require the choice of a template or reference, it is
expected to produce consistent results which means a consistent comparison of
groups.

Motivated by a particle correspondence algorithm [3], a non-parametric and
group-wise surface correspondence method, we propose a novel group-wise image
registration method guided by particles. These particles are distributed inside
a particular region and directly optimized so that each particle will be placed
at corresponding positions across subjects minimizing a group-wise intensity
metric. During this optimization, a B-spline free-form deformation is estimated
for each subject to constitute a common reference frame. The contributions of
the proposed method are following:

1. Unbiased Group-Wise Registration with Implicit Mean: Instead of
choosing a specific template, a common reference frame is estimated from
dynamic particles distributed inside ROIs, i.e. a brain mask. Using the Eu-
clidean mean of those particles, each subject is efficiently registered into a
common space.

2. Computational Efficiency with Particles: Since the number of parti-
cles is fewer than the number of voxels, a common reference frame is more
efficiently computed than other methods [2]. We compensate this sparsity
by considering a local patch for each particle, which also provides robust
performance than single voxel random sampling strategy.

3. Flexibility in Adaptive Processing: In contrary to a regular control
point grid, particles are unstructured and independent each other so that it
is easy to adopt adaptive strategy depending on local context. For example,
particles can be easily placed more densely in salient ares, i.e. edges, by
controlling a single parameter.

As our work is in an early stage, we demonstrate preliminary results of rodent
brain structure segmentation with comparison to two different registration meth-
ods for humans: the spline-based FFD available in Slicer and to SyN available in
ANTS. We show that our group-wise algorithm performs better in different sizes
as well as produces statistically indifferent results with the comparing methods
otherwise.

2 Methods

We propose a group-wise image registration method guided by dynamic particles.
The structure of our method is similar to the surface-based particle correspon-
dence algorithm [3] and can be thought as an extension of the algorithm. The
application of particles in an image domain, however, has never been attempted.
Our method is also uniquely different from the previous one in that we intro-
duce B-spline free-form deformation to associate different subject spaces as well
as deal with local patch information for robust performance.
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2.1 Particle Correspondence with Local Similarity

The main goal of our method is to drive each particle toward a corresponding
position that satisfies two conditions in the mean space: 1) overlapping of parti-
cles and 2) local intensity similarity. The particles are governed by two forces: a
positional coherence force and a force from local intensity similarity.

To describe the motion of particles, we define the particle system P that
comprisesN number of subject volumes V = {V 1, V 2, . . . , V N}. For each subject
j, we sample the same n number of particles P j = {pj1, p

j
2, . . . , p

j
n} in which

pi = {p1i , p2i , . . . , pNi } is the corresponding particles from each subject. From
these correspondences, an implicit mean space V̄ is estimated from the mean of
particles P̄ =

¯1
N

∑N
j=1 P

j . Our group-wise registration process is formulated to
find an optimal particle configuration p̌ji that minimizes a positional coherence
metric HP (pi) and a local intensity similarity metric HI(pi). The final dense
deformation field Ťj that maps V j to V̄ is derived by taking P j and P̄ as a set
of correspondences.

Correspondence Formulation. By the transform Tj, a particle pji is mapped
to qji ∈ V̄ . Ideally, it is assumed that q1i � q2i � · · · � qNi . Therefore, each
particle of pi should move to the direction where the variance of qi is minimized
as depicted in Figure 1a. In the mean time, if there is local differences in intensity
values, the particles are allowed to deviate from the overlapping position so that
the local variance of intensity values are minimized such that I1(q1i ) � I2(q2i ) �
· · · IN (qNi ) where Ij = Vj(T

−1
j (qi)). To compare similarity among a group, [3]

and [2] approach in similar using entropy. The entropy of a random variable q
with a given p.d.f f(q) is minimized when there is less information in q and
formulated H(q) = −

´
f(q) log(f(q))dq. Denoting the random variable as qi

and Ii respectively for qji and Ij(qji ), the goal is to find the optimal particle
configuration P̂ such that

P̂ = arg min
P j∈Ωj

S(P ) = λP

n∑
i=1

HP (qi) + λI

n∑
i=1

HI(Ii). (1)

Since the number of particles is much smaller than the number of voxels, we
sample a local patch near by a particle qji so that Iji = {Iji (1), I

j
i (2), . . . , I

j
i (M)},

where M is the number of neighborhoods of qji .

Correspondence Optimization. Given covariance matrices of Σ and Λ that
follows N , we derive HP and HI analytically [7] so that

HP (qi) = −r +
1

2
ln (2π)

r |Σ| , HI(Ii) = −M +
1

2
ln(2π)M |Λ|, (2)

where r is the dimension of q and |Σ| and |Λ| are the determinants. The
gradient ofHP andHI in the space of V are given ∂HP

∂p = JT−1
j
p̌′ (Σ + αI)

−1 and
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(a) (b)

Fig. 1. Schematic diagram of (a) overlapping particles and local intensity similarity
in correspondence across subjects. Colored in blue, green, and red, each particle has
correspondence across subjects and attracts together minimizing HP . At the same time,
the entropy of local intensities sampled in colored squares is also minimized so that the
particles stay at a locally similar position. (b) a repulsion force uniformly distributes
in-subject particles to fill a given region.

∂HI

∂p = JT−1
j
I ′(Λ + β)−1 ∂I

∂p̂ , respectively. where p̌′ and I ′ are displacement from
the mean and α, β is a relaxation factor to avoid degenerative cases.

From the particle perspective, the negative gradient direction, −∂HP

∂p and
−∂HI

∂p can be interpreted as two different forces: a positional coherence force and
an intensity force as depicted in Fig. 1.

2.2 Particle Sampling in a Volume

Corresponding particles across subjects are attracted together to be overlapped
at a locally similar position. Without an appropriate repulsion force, the particles
would degenerate to a single point. Moreover, since we sample local intensity
values nearby a particle, a repulsion force is required to uniformly sample a
given image domain. In order for that, we extend the surface-based particle
correspondence algorithm [3] to the image domain to uniformly sample a set of
particles in a volume. In the algorithm, each particle position is rendered as a
random variable with regard to a particular region and iteratively optimized to
maximally contain the spatial information of the region.

Problem Definition. Given a bounded region of interest Ω in a volume V , we
sample n number of points X =

(
xT1 , x

T
2 , . . . , x

T
n

)T ∈ Ωn where xi = (x, y, z).
By letting X be a random variable of X , the goal is to find an instance X̃ such
that

X̃ = arg max
X̃∈Ωn

HS [X ] = arg min
X̃∈Ωn

n∑
i=1

ˆ

xi∈Ω

p(xi) log p(xi)dxi, (3)

where HS is the differential entropy

HS(X ) = −
ˆ

X∈Ωn

p(X) log p(X)dX, (4)
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Apply Boundary Conditions
Compute the Spatial 

Entropy Force 

Compute the Intensity 
Force

−∂HI

∂p

Compute the Positional 
Ensemble Force −∂HP
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Compute the net force 
f ji = λR

∂HS

∂p
+ λP

∂HP

∂p
+ λI

∂HI

∂p

Update the system
pji (t+ 1) = pji − dtf

j
i

Compute P̄ =
1

N

N∑
j=1

P j

Estimate Tj : Pj → P̄

−∂HS

∂p

Initial Particle Placement

Fig. 2. Overall algorithm flow. The registration process is finished when the system
stabilizes, and images are registered with the estimated Tj .

and p(X) is the p.d.f of X . Assuming xi is i.i.d, HS(X ) can be decomposed into
the sum of the spatial entropy HS(xi). From the definition, X̃ contains maximal
information of Ω.

SamplingOptimization. Akey step to computeHS[X ] is the density estimation
of p(x). The density for a particle is estimated as p(xi)= 1

n(n−1)

∑n
j=1,j �=iG(xi −

xj , σi) using a nonparametric, Parzen windowing estimation[3] with the assump-
tion of Gaussian. The negative gradient of HS [X ] to maximize the cost function
is

− ∂HS

∂xi
=

1

σ2i

∑n
j �=i(xi − xj)G(xi − xj , σj)∑n

j �=iG(xi − xj , σj)
= σ−2

i

n∑
j �=i

(xi − xj)wij . (5)

For the optimization, we employ a standard gradient descent optimization
via Euler scheme, xt+1 = xt − α∂HS

∂x . The control of adaptivity is achieved by
assigning different σj for each particle [5].

2.3 B-spline Deformation Driven by Corresponding Particles

An improved FFD B-spline is proposed by [9]. In [9], the authors show that the
straightforward optimization of B-spline control points is suboptimal and pro-
pose a fitting-based strategy that directly manipulates free-form deformations.
In the same regard, we estimate the deformation Tj directly from the set of cor-
responding particles interpolating B-spline deformation in Least Squares sense.
[8] gives a solution for the interpolation generalized to n-dimensional scattered
data. The overall algorithm flow of our method is shown in Fig. 2.

2.4 Particle Initialization

Since the registration is performed by iterative particle optimization, the initial
particle placement is important to achieve good registration results. Assuming
that a basic preprocessing such as the rigid or affine registration is performed,
we compute the initial particle placement as following:
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1. Compute the intersection ΩM of a set of given ROIs Ω1, Ω2, · · · , ΩN

2. Choose random particle samples X, inside of the intersection ΩM

3. Uniformly distribute the sampled particles X inside ΩM

4. Transfer X into each subject i and distribute Xi inside Ωi

We rely on this heuristic to set up particles. By gradually distributing particles,
the corresponding particles will be located at similar position inside each mask
Ω. This strategy is specifically useful for rodent brain where the volume of each
subcortical structure is proportional to whole brain.

3 Experimental Results

3.1 Data Set

The data set acquired post mortem, at 3 age groups across adolescence (postna-
tal days 28 through 80). MR images of each animal using a Bruker BioSpec 9.4T
horizontal bore MRI system (Bruker, Billerica, MA). Images were acquired using
a 4-channel phase-array surface coil with the rat in supine position. 3D MDEFT
sequence was used for T1-weighted image acquisition with the following parame-
ters: TE=6.7 ms, TR=4000 ms, NEX=4; matrix size of 320× 210, and the voxel
size of 0.1mm isotropic, and acquisition time was 6 hours. To improve signal-to-
noise-ratio (SNR), two images were acquired immediately following each other
for each animal, and these two were averaged together following rigid registra-
tion. Total imaging time was 12 hours.

3.2 Evaluation

For the preliminary results of our method, we compared the results of our method
with two popularly used non-rigid registration methods using cross correlation
as a similarity metric: the non-rigid FFD B-spline image registration method
packaged in Slicer3, and the SyN image registration method implemented in
ANTS [1]. To study the performance of our group-wise registration, we warped
manual regions of interests of brain structures, Thalamus and Cerebellum, of
each subject to every other subject with each method. We included all 17 subjects
ranging from postnatal days 28 to postnatal days 72 and computed total 272
pairs. We then computed Dice overlap ratios (2|A∩B|/(|A|+ |B|)) between the
manual and automatic structural segmentations. For the proposed method, we
sampled 2048 particles from each volume and used 7 × 7 × 7 intensity regions
per each particle. For B-spline displacement field interpolation, we used 8×8×8
control points grid with the order of 3 splines. Each compared method was
applied with its default settings except the number of B-spline control points
matched with ours. The average Dice ratios of two ROIs for post-mortem rat
images for each method are shown in Table 1.

From the results, the proposed method showed higher Dice coefficients than
other two methods. Our method showed better performance in Dice coefficients
than the FFD B-spline implementation and ANTS tool in the manually seg-
mented regions.
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Table 1. Overall Dice coefficients and its standard deviation of Thalamus and Cere-
bellum, by the proposed group-wise method, Symmetric Diffeomorphic Mapping in
ANTS, and FFD B-spline registration

Methods Thalamus Cerebellum

The proposed method 86% (±8%) 87.8% (±6%)
ANTS 81% (± 6%) 84% (± 14%)

B-spline 81% (± 6%) 79% (± 11%)

a) Target Image
b) Group-wise

Proposed Method
d) B-spline

Deformation
c) Pair-wise

Proposed Method
e) ANTS

Coronal 
Slice

Zoomed 
External 
Capsule

Zoomed 
Corpus 

Callosum

Sagittal
Slice

Target Image Moving Image
Warped Image
by Group-wise 

Proposed Method

Fig. 3. Visual comparison of segmentation results. From left to right, the moving, fixed,
result of proposed method, B-spline, and ANTS respectively in the first three rows.
The bottom row shows sagittal slices of the fixed image, the result of the proposed
image, and the moving image. The intensity scale was inverted during the acquisition
but corrected in the experiments.

4 Conclusion

We proposed a novel image registration method that is guided by dynamic par-
ticles. Having correspondences each other, those particles are driven to locally
similar positions in the mean space. By computing an implicit mean rather
than an explicit image, our method was efficiently performed group-wise im-
age registration in a linear time with respect to the number of subjects. Our
method can be immediately applied to for example the multi-atlas joint regis-
tration/segmentation, the detection of outliers in a large data study, the inclu-
sion of statistical shape information during registration, etc. Since the proposed
method stays at a very early stage of research, future work will include thor-
ough validation for its accuracy and robustness as well as comparison to other
group-wise registration method [2,4,10].
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Abstract. We present a novel method for inferring tissue labels in atlas-
based image segmentation using Gaussian process regression. Atlas-based
segmentation results in probabilistic label maps that serve as input to
our method. We introduce a contour-driven prior distribution over la-
bel maps to incorporate image features of the input scan into the label
inference problem. The mean function of the Gaussian process poste-
rior distribution yields the MAP estimate of the label map and is used
in the subsequent voting. We demonstrate improved segmentation ac-
curacy when our approach is combined with two different patch-based
segmentation techniques. We focus on the segmentation of parotid glands
in CT scans of patients with head and neck cancer, which is important
for radiation therapy planning.

1 Introduction

Atlas-based segmentation extracts information from image collections with man-
ually labeled images to facilitate the automatic segmentation of new images.
Methods that use atlas information can be broadly classified into two groups.
The first group employs deformable registration to align atlas images to the novel
scan [6,10]. The estimated deformation fields propagate labels from the atlas to
the new image. The second group searches for image patches most similar to the
voxel neighborhood [4,11]. Since similar patches tend to share the segmentation
label, weighted voting based on patch similarity promises to produce accurate
segmentation.

High anatomical variability presents a serious challenge for atlas-based seg-
mentation. Registration approaches often fail to warp structures that vary sig-
nificantly in shape due to regularization constraints. Such inaccuracies cause
segmentation errors at the boundaries. Patch-based approaches also experience
difficulties in correctly segmenting regions close to the boundaries. Fig. 1 illus-
trates this problem for a patch-based segmentation of the left parotid gland. To
further investigate the source of errors, we examine patches in the atlas that are
the most similar to the one example patch in the image. According to the man-
ual labeling, the selected patch belongs to the left parotid gland. However, all of
the closest patches vote for background, yielding a wrong result. Such errors are
not surprising because it is possible that patches have a very similar appearance

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 211–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Left: CT image with segmentation of left parotid (yellow: manual, red: patch-
based). Right: Magnification of the blue patch (top) with manual segmentation (bot-
tom). The four most similar patches in the repository vote for background (black at
the center location), although the patch belongs to the left parotid. Intensity values of
patches are normalized for visualization.

overall but vary slightly in the center. Such variations are especially problematic
close to organ boundaries, where they can cause segmentation errors.

We present a new probabilistic approach to atlas-based segmentation to in-
corporate image contour information into the decision on segmentation labels.
We achieve this by defining an image-specific distribution over label maps based
on Gaussian processes. We employ the concept of intervening contours [1] to
construct contour-driven covariance functions. A robust contour estimation is
obtained by calculating image and texture gradients on multiple scales. Con-
ditioning the distribution over label maps on the atlas information results in
label maps that are consistent with image contours while also accommodating
the label maps proposed by the atlas. We experiment with two patch-based seg-
mentation approaches to obtain the initial label maps that serve as input to our
algorithm.

We evaluate our approach by segmenting parotid glands in CT scans of pa-
tients with head and neck cancer. Radiation therapy motivates our work. Ra-
diation therapy planning aims to maximize the dose in the target region while
minimizing the radiation dose in the surrounding tissue. Intensity modulated
radiation therapy allows the more effective administration of the radiation dose
to reduce the damage to healthy cells. During the planning phase, experts delin-
eate most critical structures, also called organs at risk, to ensure low radiation
in these regions. The parotid glands are organs at risk for head and neck cancer
treatment because they are the most important salivary glands. Irradiation of the
parotid glands can lead to xerostomia, resulting in difficulties for mastication,
deglutition, and speech of the patients. Automatic segmentation is challenging
due to low soft-tissue contrast in CT images and high anatomical variability.

1.1 Related Work

Our work builds on previously mentioned atlas-based segmentation methods and
is related to algorithms for label refinement. Spectral label fusion [14] extracts
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superpixels from the image to perform region-based voting. It further relates to
an approach for the refinement of atlas propagation with graph cuts [12]. Regres-
sion has been previously used to estimate correlations of errors for atlas-based
segmentation [15]. Our probabilistic approach uses Gaussian processes, which
arise in numerous fields of machine learning [9]. In [13], Gaussian processes were
applied for image segmentation of natural images. In contrast to our work, the
identity covariance function was used, samples from the process are thresholded,
and no atlas information is available.

Atlas-based segmentation of parotid glands with deformable registration was
demonstrated in [5,8]. In [3], the atlas images are used for training an active
shape model of parotid glands. The refinement of head and neck segmentations
based on classification with features was proposed in [7].

2 Method

Given a novel image I, we aim to infer segmentation S based on an atlas
that contains images I = {I1, . . . , In} and segmentations S = {S1, . . . , Sn}.
A probabilistic label map L = {L1, . . . , Lm} specifies the likelihood for each
label l ∈ {1, . . . ,m}, i.e., Ll(x) = p(S(x) = l|I, I,S) and serves as an interme-
diate segmentation result. The estimated segmentation Ŝ at voxel x is obtained
by choosing the label with highest probability at voxel x. A perfect label map
assigns probability one to the correct label for each location. Atlas-based meth-
ods produce label map Lo, which might be susceptible to errors, motivating the
model Ll

o = Ll + ε, where Ll is the underlying true label map for label l. Un-
der the assumption of independent and identically distributed noise, we have
Ll
o(x) = Ll(x) + ε(x) for all locations x in the image, with ε ∼ N (0, σ2). The

assumption of independent Gaussian noise may interfere with the normalization
requirements

(∑
l L

l
o(x) = 1 and 0 ≤ Ll

o(x) ≤ 1
)
, which can be satisfied with a

subsequent normalization step. In our application, this is not necessary because
we decide on the segmentation based on the maximal value across label maps.
We drop the label index l in the following discussion, to simplify notation.

2.1 Atlas-Based Segmentation

We briefly review two atlas-based segmentation methods we use to obtain the
initial label map Lo. We focus on patch-based approaches because they are well
suited to handle the high variability of parotid glands. Further, standardized
intensity values of CT images make patches comparable across subjects. Prior
to segmentation, we define regions of interest (ROI) that surround the parotid
glands to restrict the search. Such regions could be obtained from a coarse reg-
istration. We exploit the knowledge that the parotid glands are adjacent to the
mandible bone, which we detect with a simple template matching method.

The first baseline method is the non-local means (NLM) segmentation [4,11].
For each location x within the ROI, we create the surrounding patch Px of
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size 7 × 7 × 3 and retrieve the N = 10 closest patches P with corresponding
labels L from the repository. The label map is obtained as a weighted sum [4]:

Lo(x) =

∑N
i=1 wi,xLi∑N
i=1 wi,x

with wi,x = exp

(
− ‖Pi − Px‖22
minj ‖Pj − Px‖2

)
. (1)

The second approach uses a random forest classifier [2] to predict the segmen-
tation label Lo(x) for each location in the ROI. In contrast to NLM labeling, the
classifier has to be trained first. In our experiments, we randomly select six pa-
tients for training. We train different classifiers for left and right parotid glands
on patches selected from the ROI. We choose 500 trees per random forest with
12 predictors sampled for splitting at each node.

2.2 Gaussian Process Regression for Label Inference

Our approach to inferring the latent label map L from Lo employs a distribution
over label maps p(L). In contrast to most atlas-based methods that make deci-
sions at each voxel separately and do not consider contour information, we choose
a label distribution that models the relationship between locations, exploiting the
contour information in image I. Stochastic processes offer a versatile framework
to model interactions between possibly infinite number of random variables. We
view label maps as realizations from a Gaussian process, L ∼ GP(m, k), with
meanm and covariance k. Gaussian processes are entirely characterized by mean
and covariance functions and have the property that every finite subset is dis-
tributed according to a multivariate Gaussian distribution [9].

To obtain the posterior distribution over label maps, we condition the distri-
bution of label maps L on the labels Lo implied by the atlas:

p(L|Lo) ∼ N (μ, Σ) (2)

with mean and covariance

μ = m+K · [K + σ2I]−1 · (Lo −m), (3)

Σ = K −K · [K + σ2I]−1 ·K, (4)

where I is the identity matrix and σ2 is the noise variance. The mean vector m
and the kernel matrix K are constructed from the mean function m and kernel
function k, respectively. We use the Cholesky factorization for the matrix inver-
sion. The maximum a posteriori label map coincides with the mean label map for
Gaussian distributions, LMAP = argmaxL p(L|Lo) = argmaxLN (L;μ, Σ) = μ.
Performing this estimation for all labels yields segmentation:

Ŝ(x) = argmax
l

μl(x). (5)

The mean function m causes a constant additive shift of all label maps μl and
therefore does not influence the segmentation result Ŝ, motivating the choice of
m = 0. Fig. 2 illustrates the key steps of the segmentation process.
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Fig. 2. Gaussian process segmentation of parotid gland. The initial label from the atlas-
based segmentation only partially agrees with the manual segmentation. We extract
contours from the image and use them in the kernel function k that allows us to
sample label maps L ∼ GP(0, k), supported by the image. Conditioning these on the
atlas labels results in an improved segmentation.

2.3 Contour-Driven Distributions over Label Maps

The distribution over label maps p(L) is determined by the covariance or ker-
nel function k. We seek label maps that are supported by intensity and texture
features in the input image I. In the first step, we estimate image and texture
gradients per slice with the oriented gradient signal, following closely the con-
struction in [1]. This method calculates the χ2 distance between the histograms
of two half-discs at each location for various orientations and at multiple scales.
Textons are calculated to quantify the texture by convolving the image with
17 Gaussian derivative and center-surround filters and subsequently clustering
with K-means into 64 classes [1]. Image and texture gradients of multiple scales
are added to yield the multi-scale contour Γ . We use the contour information
to calculate weights between in-plane points x and x′, following the concept of
intervening contours [1] by identifying the maximum response along the line xx′:

k(x, x′) = exp

(
− max

y∈xx′
{Γ (y)}/ρ

)
. (6)

We set the scale parameter to ρ = 0.1 and only consider locations within the
ROI that are at most 20 pixels away from each other, giving rise to sparse kernel
matrices. High weights are assigned to pairs of points that are not separated by
a contour and these points are subsequently encouraged to share the same label.

Fig. 2 shows samples drawn from the prior distribution p(L), where we have
overlaid the manual segmentation for reference. We observe that the prior
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Fig. 3. Dice volume overlap and modified Hausdorff distance for left and right parotid
glands. Red line indicates the median, the boxes extend to the 25th and 75th percentiles,
and the whiskers reach to the most extreme values not considered outliers (red crosses).
*, **, and *** indicate significance levels at 0.05, 0.01, and 0.001. For each baseline
method (NLM, RF), the performance of the basic method, the variant that employs
spectral label fusion (SLF) [14] and the variant based on Gaussian processes proposed
here (GP) is reported.

promotes label maps that follow image structures. In this example, labels are
propagated to the thin ends of the left parotid gland, which improves the seg-
mentation in comparison to the initial labeling.

3 Experiments

We evaluate the method on 16 CT scans of patients with head and neck cancer.
Each image was labeled by a trained anatomist for treatment planning. Images
contain between 80 and 200 axial slices with a slice thickness of 2.5mm. The
in-plane resolution is 0.9mm, slice size is 512 × 512 pixels. All 16 images have
the left parotid gland labeled. The right parotid gland was consumed by a tu-
mor in one patient. Experiments are performed on 10 datasets for left parotid
gland and 9 datasets for right parotid gland that have not been selected for
training the RF classifiers. We quantify the segmentation quality by calculating
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(a) NLM (b) NLM+SLF (c) NLM+GP

(d) RF (e) RF+SLF (f) RF+GP

Fig. 4. Examples of automatic segmentation results for different methods are shown
in yellow. Manual delineations are shown in red.

the Dice volume overlap score and modified Hausdorff distance between the au-
tomatic and manual segmentations. We compare our method to spectral label
fusion (SLF) [14], which was previously demonstrated to refine segmentations
based on image contours.

Fig. 3 presents the results for both parotid glands for different algorithms and
σ2 = 1. Non-local means (NLM) and random forests (RF) serve as initial label
maps. The segmentation with NLM leads to many false positives, causing worse
performance than RF. Applying spectral label fusion improves the segmentation
results. The Gaussian process (GP) segmentation achieves the significantly best
results in our experiments. A reason for the improvement of GP in comparison
to SLF is that SLF votes on small image regions. If these regions are not well
defined or if the baseline segmentation algorithm cannot gather enough votes
in a region, this can cause large errors. The outlier of zero dice overlap for
NLM+SLF of the left parotid illustrates this case. Fig. 4 shows example results
for all methods.

4 Conclusion

We proposed a novel probabilistic approach for improving atlas-based segmen-
tation. The key contribution is a contour-driven distribution over label maps
that is supported by features in the image. We employ Gaussian process regres-
sion to obtain MAP estimates of label maps, on which the voting is performed.
The initial label map is estimated with two different patch-based segmenta-
tion approaches, non-local means segmentation and random forest classification.



218 C. Wachinger, G.C. Sharp, and P. Golland

Our experiments in segmentation of the parotid glands show improved perfor-
mance when the proposed method is used to refine the atlas-based label maps.
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4. Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-
based segmentation using expert priors: Application to hippocampus and ventricle
segmentation. NeuroImage 54(2), 940–954 (2011)

5. Han, X., Hibbard, L.S., O’connell, N.P., Willcut, V.: Automatic segmentation of
parotids in head and neck CT images using multi-atlas fusion. In: Medical Image
Analysis for the Clinic: A Grand Challenge, pp. 297–304 (2010)

6. Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., Hammers, A.: Automatic
anatomical brain MRI segmentation combining label propagation and decision fu-
sion. NeuroImage 33(1), 115–126 (2006)

7. Qazi, A.A., Pekar, V., Kim, J., Xie, J., Breen, S.L., Jaffray, D.A.: Auto-
segmentation of normal and target structures in head and neck CT images: A
feature-driven model-based approach. Medical Physics 38, 6160 (2011)

8. Ramus, L., Malandain, G.: Multi-atlas based segmentation: Application to the
head and neck region for radiotherapy planning. In: Medical Image Analysis for
the Clinic: A Grand Challenge, pp. 281–288 (2010)

9. Rasmussen, C., Williams, C.: Gaussian processes for machine learning. MIT Press
(2006)

10. Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D., Maurer, C.: Quo vadis, atlas-
based segmentation? In: Handbook of Biomedical Image Analysis, pp. 435–486
(2005)

11. Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for
human brain labeling. IEEE Trans. Med. Imaging 30(10), 1852–1862 (2011)

12. Song, Z., Tustison, N., Avants, B., Gee, J.C.: Integrated graph cuts for brain MRI
segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS,
vol. 4191, pp. 831–838. Springer, Heidelberg (2006)

13. Sudderth, E.B., Jordan, M.I.: Shared segmentation of natural scenes using depen-
dent Pitman-Yor processes. In: NIPS, pp. 1585–1592 (2008)

14. Wachinger, C., Golland, P.: Spectral label fusion. In: Ayache, N., Delingette, H.,
Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 410–417.
Springer, Heidelberg (2012)

15. Wang, H., Suh, J.W., Das, S., Pluta, J., Altinay, M., Yushkevich, P.: Regression-
based label fusion for multi-atlas segmentation. In: CVPR, pp. 1113–1120 (2011)



Discriminative Parameter Estimation

for Random Walks Segmentation

Pierre-Yves Baudin1,2,3,4,5,6, Danny Goodman1,2,3, Puneet Kumar1,2,3,
Noura Azzabou4,5,6, Pierre G. Carlier4,5,6,

Nikos Paragios1,2,3, and M. Pawan Kumar1,2,3

1 Center for Visual Computing, École Centrale Paris, FR
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Abstract. The Random Walks (RW) algorithm is one of the most effi-
cient and easy-to-use probabilistic segmentation methods. By combining
contrast terms with prior terms, it provides accurate segmentations of
medical images in a fully automated manner. However, one of the main
drawbacks of using the RW algorithm is that its parameters have to be
hand-tuned. we propose a novel discriminative learning framework that
estimates the parameters using a training dataset. The main challenge
we face is that the training samples are not fully supervised. Specifically,
they provide a hard segmentation of the images, instead of a proba-
bilistic segmentation. We overcome this challenge by treating the opti-
mal probabilistic segmentation that is compatible with the given hard
segmentation as a latent variable. This allows us to employ the latent
support vector machine formulation for parameter estimation. We show
that our approach significantly outperforms the baseline methods on a
challenging dataset consisting of real clinical 3D MRI volumes of skeletal
muscles.

1 Introduction1

The Random Walks (RW) algorithm is one of the most popular techniques for
segmentation in medical imaging [5]. Although it was initially proposed for inter-
active settings, recent years have witnessed the development of fully automated
extensions. In addition to the contrast information employed in the original for-
mulation [5], the automated extensions incorporate prior information based on
appearance [4] and shape [1].

It has been empirically observed that the accuracy of the RW algorithm relies
heavily on the relative weighting between the various contrast and prior terms.
Henceforth, we refer to the relative weights of the various terms in the RW
objective function as parameters. At present, researchers either rely on a user to

1 Supplementary materials at: http://hal.inria.fr/hal-00830564
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hand-tune the parameters or on exhaustive cross-validation [1,4]. However, both
these approaches quickly become infeasible as the number of terms in the RW
objective function increase.

In contrast to the RW literature, the problem of parameter estimation has
received considerable attention in the case of discrete models such as CRFs [9].
Recent years have witnessed the emergence of structured-output support vector
machine (Structured SVM) as one of the most effective discriminative frame-
works for supervised parameter estimation [10,11]. Given a training dataset that
consists of pairs of input and their ground-truth output, structured SVM mini-
mizes the empirical risk of the inferred output with respect to the ground-truth
output. The risk is defined by a user-specified loss function that measures the
difference in quality between two given outputs.

We would like to discriminatively learn the parameters of the RW formulation.
To this end, a straightforward application of structured SVM would require a
training dataset that consists of pairs of inputs as well as their ground-truth
outputs—in our case, the optimal probabilistic segmentation. In other words, we
require a human to provide us with the output of the RW algorithm for the best
set of parameters. This is an unreasonable demand since the knowledge of the
optimal probabilistic segmentation is as difficult to acquire as it is to hand-tune
the parameters itself. Thus we cannot directly use structured SVM to estimate
the desired parameters.

In order to handle the above difficulty, we propose a novel formulation for dis-
criminative parameter estimation in the RW framework. Specifically, we learn
the parameters using a weakly supervised dataset that consists of pairs of med-
ical acquisitions and their hard segmentations. Unlike probabilistic segmenta-
tions, hard segmentations can be obtained easily from human annotators. We
treat the optimal probabilistic segmentation that is compatible with the hard
segmentation as a latent variable. Here, compatibility refers to the fact that the
probability of the ground-truth label (as specified by the hard segmentation)
should be greater than the probability of all other labels for each pixel/voxel.
The resulting representation allows us to learn the parameters using the latent
SVM formulation [3,8,12].

While latent SVM does not result in a convex optimization problem, its local
optimum solution can be obtained using the iterative concave-convex procedure
(CCCP) [13]. The CCCP involves solving a structured SVM problem, which
lends itself to efficient optimization. In order to make the overall algorithm com-
putationally feasible, we propose a novel efficient approach for ACI based on dual
decomposition [2,7]. We demonstrate the benefit of our learning framework over
a baseline structured SVM using a challenging dataset of real 3D MRI volumes.

2 Preliminaries

We will assume that the input x is a 3D volume. We denote the i-th voxel of
x as x(i), and the set of all voxels as V . In a hard segmentation, each voxel is
assigned a label s ∈ S (for example, the index of a muscle). We will use z to
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represent the human annotation (that is, the class labels of the voxels in x) in
binary form:

z (i, s) =

{
1 if voxel i ∈ V is of class s ∈ S,
0 otherwise.

(1)

In other words, the binary form z of the annotation specifies delta distribution
over the putative labels for each voxel. Our training dataset is a collection of
training images x and hard segmentations z: D = {(xk, zk)}k. Note that we use
subscript k to denote the input index within a dataset, and parenthetical i to
denote a voxel within a particular input.

2.1 Random Walks Segmentation

The RW algorithm provides a probabilistic—or soft—segmentation of an input
x, which we denote by y, that is,

y(i, s) = Pr [voxel i is of class s] , ∀i ∈ V, s ∈ S . (2)

When using one contrast term and one prior model, the RW algorithm amounts
to minimizing the following convex quadratic objective functional:

E (y,x) = y�L (x)y + wprior ‖y − y0‖2Ω0(x)
, (3)

= y�L (x)y + Eprior(y,x) . (4)

Here, y0 is a reference prior probabilistic segmentation dependent on appear-
ance [4] or shape [1], and Ω0(x) is a diagonal matrix that specifies a voxel-wise
weighting scheme for x. The term L(x) refers to a combinatorial Laplacian ma-
trix defined on a neighborhood system N based on the adjacency of the voxels.
It is a block diagonal matrix—one block per label—with all identical blocks,
where the entries of the block Lb(x) use the typical Gaussian kernel formulation
(see [5]). The relative weight wprior is the parameter for the above RW frame-
work. The above problem is convex, and can be optimized efficiently by solving a
sparse linear system of equations. We refer the reader to [1,5] for further details.

2.2 Parameters and Feature Vectors

In the above description of the RW algorithm, we restricted ourselves to a single
Laplacian and a single prior. However, our goal is to enable the use of numerous
Laplacians and priors. To this end, let {Lα}α denote a known family of Lapla-
cian matrices and {Eβ (·)}β denote a known family of prior energy functionals.

In section 4, we will specify the family of Laplacians and priors used in our
experiments. We denote the general form of a linear combination of Laplacians
and prior terms as:

L (x;w) =
∑
α

wαLα (x) , Eprior (·,x;w) =
∑
β

wβEβ (·,x) ,w ≥ 0 . (5)

Each term Eβ (·,x) is of the form:

Eβ (y,x) = ‖y − yβ‖2Ωβ(x) , (6)
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where yβ is the β-th reference segmentation and Ωβ(x) is the corresponding
voxel-wise weighting matrix (which are both known). We denote the set of all
parameters as w = {wα, wβ}α,β . Clearly, the RW energy (4) is linear in w, and

can therefore be formulated as:

E (y,x;w) = yTL (x;w)y + Eprior (y,x;w) , (7)

= wTψ (x,y) , (8)

where ψ (x,y) is known as the joint feature vector of x and y. Note that by
restricting the parameters to be non-negative (that is, w ≥ 0), we ensure that
the energy functional E(·,x;w) remains convex.

2.3 Loss Function

As mentioned earlier, we would like to estimate the parameters w by minimizing
the empirical risk over the training samples. The risk is specified using a loss
function that measures the difference between two segmentations. In this work,
we define the loss function as the number of incorrectly labeled voxels. Formally,
let ŷ denote the underlying hard segmentation of the soft segmentation y, that
is, ŷ (i, s) = δ (s = argmaxs∈S y (i, s)), where δ is the Kronecker function. The
loss function is defined as

Δ(z,y) = 1− 1

|V| ŷ
T z , (9)

where V is the set of all voxels, and |·| denotes the cardinality of a set.

3 Parameter Estimation Using Latent SVM

Given a dataset D = {(xk, zk), k = 1, · · · , N}, which consists of inputs xk and
their hard segmentation zk, we would like to estimate parameters w such that
the resulting inferred segmentations are accurate. Here, the accuracy is measured
using the loss function Δ(·, ·). Formally, let yk(w) denote the soft segmentation
obtained by minimizing the energy functional E(·,xk;w) for the k-th training
sample, that is,

yk(w) = argmin
y

w�ψ(xk,y) . (10)

We would like to learn the parameters w such that the empirical risk is mini-
mized. In other words, we would like to estimate the parameters w∗ such that

w∗ = argmin
w

1

N

∑
k

Δ(zk,yk(w)) . (11)

The above objective function is highly non-convex in w, which makes it prone to
bad local minimum solutions. To alleviate this deficiency, it can be shown that
the following latent SVM formulation minimizes a regularized upper bound on
the risk for a set of samples {(xk, zk), k = 1, · · · , N}:

min
w≥0

λ||w||2+λ′||w −w0||2+ 1

N

∑
k

ξk , (12)

s.t. min
yk,Δ(zk,yk)=0

w�ψ(xk,yk) ≤ w�ψ(xk,yk)−Δ(zk,yk) + ξk ,∀yk, ∀k ,
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where the slack variable ξk represents the upper bound of the risk for the k-
th training sample. Note that we have added two regularization terms for the
parametersw. The first term ||w||2, weighted by hyperparameter λ, ensures that
we do not overfit to the training samples. The second term ||w−w0||2, weighted
by hyperparameter λ′, ensures that we do not obtain a solution that is very far
away from our initial estimate w0. The reason for including this term is that
our upper bound to the empirical risk may not be sufficiently tight. Thus, if we
do not encourage our solution to lie close to the initial estimate, it may drift
towards an inaccurate set of parameters. In section 4, we show the empirical
effect of the hyperparameters λ and λ′ on the accuracy of the parameters.

While the upper bound of the empirical risk derived above is not convex, it
was shown to be a difference of two convex functions in [12]. This observation
allows us to obtain a local minimum or saddle point solution using the CCCP
algorithm [12,13], outlined in Algorithm 1, which iteratively improves the pa-
rameters starting with an initial estimate w0. It consists of two main steps at
each iteration: (i) step 3, which involves estimating a compatible soft segmenta-
tion for each training sample—known as annotation consistent inference (ACI);
and (ii) step 4, which involves updating the parameters by solving problem (13).
In the following subsections, we provide efficient algorithms for both the steps.

Algorithm 1. The CCCP method for parameter estimation using latent SVM.

Input: Dataset D, λ, λ′, w0, ε

1: Set t = 0. Initialize wt = w0.
2: repeat
3: Compute y∗

k = argminyk,Δ(zk,yk)=0 w
�
t ψ(xk,yk),∀k.

4: Update the parameters by solving the following problem

wt+1 = argmin
w≥0

λ||w||2+λ′||w −w0||2+ 1

N

∑
k

ξk , (13)

s.t.w�ψ(xk,y
∗
k) ≤ w�ψ(xk,yk)−Δ(zk,yk) + ξk,∀yk,∀k ,

5: t = t+ 1
6: until The objective function of problem (12) does not decrease below tolerance ε.

3.1 Annotation Consistent Inference

Given an input x and its hard segmentation z, ACI requires us to find the soft
segmentation y with the minimum energy, under the constraint that it should
be compatible with z (see step 3 of Algorithm 1). We denote the ground truth
label of a voxel i by si, that is, si = argmaxs z(i, s), and the set of all voxels by
V . Using our notation, ACI can be formally specified as

min
y∈C(V)

y�L(x;w)y +Eprior(y,x;w) . (14)
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Here, C(V) is the set of all compatible probabilistic segmentations, that is,

y(i, s) ≥ 0, ∀i ∈ V,∀s ∈ S , (15)∑
s∈S

y(i, s) = 1, ∀i ∈ V , (16)

y(i, si) ≥ y(i, s),∀i ∈ V, ∀s ∈ S . (17)

Constraints (15) and (16) ensure that y is a valid probabilistic segmentation.
The last set of constraints (17) ensure that y is compatible with z. Note that in
the absence of constraints (17), the above problem can be solved efficiently using
the RW algorithm. However, since the ACI problem requires the additional set
of compatibility constraints, we need to develop a novel efficient algorithm to
solve the above convex optimization problem. To this end, we exploit the pow-
erful dual decomposition framework [2,7]. Briefly, we divide the above problem
into a set of smaller subproblems defined using overlapping subsets of variables.
Each subproblem can be solved efficiently using a standard convex optimization
package. In order to obtain the globally optimal solution of the original sub-
problem, we pass messages between subproblems until they agree on the value
of all the shared variables. For details on the ACI algorithm, please refer to the
supplementary materials of this paper.

3.2 Parameter Update

Having generated a compatible soft segmentation, the parameters can now be
efficiently updated by solving problem (13) for a fixed set of soft segmentations
y∗
k. This problem can be solved efficiently using the popular cutting plane method

(for details on this algorithm, please refer to [6]). Briefly, the method starts by
specifying no constraints for any of the training samples. At each iteration, it
finds the most violated constraint for each sample, and updates the parameters
until the increase in the objective function is less than a small epsilon.

In this work, due to the fact that our loss function is not concave, we approx-
imate the most violated constraint as the predicted segmentation, that is,

y = argmin
y

w�ψ(x,y) . (18)

The above problem is solved efficiently using the RW algorithm.

4 Experiments

Dataset. The dataset consists of 30 MRI volumes of the thigh region of dimen-
sions 224 × 224 × 100. The various segments correspond to 4 different muscle
groups together with the background class. We randomly split the dataset into
80% for training and 20% for testing. In order to reduce the training time for
both our method and the baselines, we divide each volume into 100/2 volumes
of dimension 224× 224× 2.
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Fig. 1. Estimated risk Δ(y�
k,yk(w)) for three different methods

Fig. 2. Method comparison: (columns 1 & 2) segmentations using w0; (columns 3 &
4) segmentations using learned w using latent structured SVM. The latter are closer
to expert segmentation.

Laplacians and Prior Terms. We use 4 different Laplacians (generated with
different weitghing functions). Furthermore, we use two shape priors based on [1]
and one appearance prior based on [4]. This results in a total of 7 parameters to
be estimated.

Methods. The main hypothesis of our work is that it is important to represent
the unknown optimal soft segmentation using latent variables. Thus we compare
our method with a baseline structured SVM that replaces the latent variables
with the given hard segmentations. In other words, our baseline estimates the
parameters by solving problem (13), where the imputed soft segmentations y∗

k

are replaced by the hard segmentations zk. During our experiments, we found
that replacing the hard segmentation with a pseudo soft segmentation based on
the distance transform systematically decreased the loss of the output. Thus the
method refered to as ”Baseline” uses a structured SVM with distance-tranform
”softened” segmentations.

Results. Fig. 1 shows the test loss for three different methods: (i) the initial
hand-tuned parametersw0; (ii) the baseline structured SVM with distance trans-
forms; and (iii) our proposed approach using latent SVM. As can be seen from
Fig. 1, latent SVM provides significantly better results than the baselines—even
when using the distance transform. For the 4 x 5 hyperparameter settings that
we report (that is, four different values of λ and 5 different values of λ′), latent
SVM is significantly better than SVM in 15 cases, and significantly worse in only
2 cases. Note that latent SVM provides the best results for very small values of
λ′, which indicates that the upper bound on the empirical risk in tight. As ex-
pected, for sufficiently large values of λ′, all the methods provide similar results.
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For the best settings of the corresponding hyperparameters, the percentage of
incorrectly labeled voxels as follows: (i) for w0, 13.5%; (ii) for structured SVM,
10.0%; and (iii) for latent SVM, 9.2%. Fig. 2 shows some example segmentations
for the various methods.

5 Discussion

We proposed a novel discriminative learning framework to estimate the param-
eters for the probabilistic RW segmentation algorithm. We represented the op-
timal soft segmentation that is compatible with the hard segmentation of each
training sample as a latent variable. This allowed us to formulate the problem
of parameter estimation using latent SVM, which upper bounds the empirical
risk of prediction with a difference of convex optimization program. Using a
challenging clinical dataset of MRI volumes, we demonstrated the efficacy of our
approach over the baseline method that replaces the latent variables with the
given hard segmentations. The latent SVM framework can be used to estimate
parameters with partial hard segmentations. Such an approach would allow us
to scale the size of the training dataset by orders of magnitude.
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Abstract. We propose a new method for fully-automatic landmark de-
tection and shape segmentation in X-ray images. Our algorithm works
by estimating the displacements from image patches to the (unknown)
landmark positions and then integrating them via voting. The funda-
mental contribution is that, we jointly estimate the displacements from
all patches to multiple landmarks together, by considering not only the
training data but also geometric constraints on the test image. The
various constraints constitute a convex objective function that can be
solved efficiently. Validated on three challenging datasets, our method
achieves high accuracy in landmark detection, and, combined with sta-
tistical shape model, gives a better performance in shape segmentation
compared to the state-of-the-art methods.

1 Introduction

Segmenting anatomical regions such as the femur and the pelvis in the clini-
cal X-ray images provides invaluable information for computer aided diagnosis
[1,2], surgery planning and image-guided intervention [3], and three-dimensional
(3D) model reconstruction [4,5]. Manual landmarking and segmentation are both
time-consuming and error-prone. Therefore, automatic landmark detection and
shape segmentation techniques have been an active research topic in medical
image analysis [5]-[10].

Landmarking and segmentation X-Rays has to deal with many challenges
such as poor image illumination, unknown image projection and unexpected
appearance caused by trauma or implants. Many algorithms have been proposed,
such as methods based on local image features [1,3] and model-based methods
[5,6]. A large body of methods rely on machine learning techniques, such as the
shape regression machine proposed in [7] and the marginal space learning method
in [8]. Perhaps the most popular method up to now is the voting scheme based on
random forest (RF) regression [9,10], which estimates the displacements from a
set of sampled image patches to the landmark by random forest (RF) regression,
and then the landmark position is estimated by aggregating the votes made by
all the patches. In [2], Lindner et al. combine this method with a constrained
local model (CLM) for automatic segmentation of proximal femur.

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 227–234, 2013.
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Fig. 1. Schematic illustration of the semi-supervised joint estimation of image displace-
ments. Left: training data. Right: test data.

There are two key components behind the success of RF voting based method.
The first is the strategy of positioning landmarks by estimating its relative dis-
placements with regard to other image parts (e.g. patches). This is reasonable
since medical image is highly structured. The second is the discriminative power
of the RF model. In this paper, we focus on improving the estimation the dis-
placements from image patches to landmarks. In previous methods based on
RF regression, the displacement from each patch to each landmark is estimated
independently by the pre-trained RF model, i.e. the displacements are deter-
mined solely by the training data. Our method is fundamentally different, as we
estimate the displacements from all patches to multiple landmarks all together.
This joint estimation scheme allows us to exploit the mutual interactions among
the displacements that are being estimated by considering the geometric con-
straints. In this way, our joint displacement estimation method achieves better
accuracy. We tested our method on three large and challenging datasets: Com-
pleteFemur, ProximalFemur and Pelvis. The experimental results show that our
method achieves better performance compared to the state-of-the-art methods.

2 Landmark Detection by Joint Displacement Estimation

2.1 Problem Formulation

Training Data. Assume that we are interested in L landmarks, and the ground-
truth position of these landmarks are known in a set of training images. As shown
in Fig. 1 (left), x̃l ∈ R2 is the position of the lth landmark. Furthermore, we
randomly sample a number of square patches around all the landmarks. For the
kth patch, we denote c̃k ∈ R

2 as its center position, f̃k ∈ R
df as its visual feature,

and d̃l
k = x̃l − c̃k ∈ R2 is the displacement from the kth patch center to the

lth landmark. We totally sample K̃ patches over all the training images, and we

denote F̃ = [f̃1, ..., f̃K̃ ] ∈ Rdf×K̃ as the matrix of features of all training patches,

and D̃ ∈ R2L×K̃ , whose element D̃ij = d̃i
j , as the matrix of displacements.

Test Data. During test, we have a new image, on which we want to estimate the
positions of the L landmarks, as shown in Fig. 1 (right). We randomly sample



Fully Automatic X-Ray Image Segmentation 229

K patches, where ck ∈ R2 and fk ∈ Rdf are the center position and the visual
feature of the kth patch that we sampled. We denote F = [f1, ..., fk] ∈ Rdf×K as
the matrix of features of all test patches.

Strategy. To estimate the position of the L landmarks on the test image, we
first want to estimate {dl

k}k=1...K,l=1...L, which is the displacement from each
patch to each landmark. Then, {ck+dl

k}k=1...K will be the set of votes of the lth
landmark’s position from all the test patches, from which we can compute the
response image by a voting scheme (details on response image will be presented
in Section 2.4). Therefore, if we denote D ∈ R

2L×K , whose element Dij = di
j ,

as the matrix of displacements in the test image, our goal is to estimate D.

2.2 Objective Function

First, we construct a compound displacement matrix:

D̂ =
[
D̃ D

]
=

⎡⎢⎣ d̃1
1 · · · d̃1

K̃
d1
1 · · · d1

K

...
. . .

...
...

. . .
...

d̃L
1 · · · d̃L

K̃
dL
1 · · · dL

K

⎤⎥⎦ ∈ R
2L×(K̃+K) (1)

The left part (the first K̃ columns) of D̂ contains the displacements in the
training images, and the right part (the last K columns) is the displacements in

the test image. Note that we have D = D̂Q if we define Q =

[
0K̃×K

IK

]
, where

In is the n× n identity matrix, and 0m×n is the m× n zero matrix.
Treating D̂ as a variable, our problem can be converted to finding the optimal

D̂. Then, the optimal D can be computed by D = D̂Q. To this end, we design
an objective with regard to D̂:

E(D̂) = Eg(D̂) + αEs(D̂) + βEp(D̂) + γEl(D̂) (2)

Ground-Truth Penalty Eg(D̂). The left part of D̂ should be close to the

ground-truth displacements in the training data, which is encoded in D̃. There-
fore, we want to minimize the Ground-truth Penalty:

Eg(D̂) =
1

2LK̃

∥∥∥∥D̂ [
IK̃

0K×K̃

]
− D̃

∥∥∥∥2
F

=
1

2LK̃

∥∥∥D̂P− D̃
∥∥∥2
F

(3)

where ‖.‖F is the Frobenius norm, and P =

[
IK̃

0K×K̃

]
.

Smooth Mapping Penalty Es(D̂). First, we construct a compound feature

matrix F̂ = [ f̃ f ] ∈ R
df×(K̃+K). Now, each column of F̂ is the feature of a

patch, and each column of D̂ is the displacement vector (to all landmarks) of a

patch. Then, ‖coli(F̂)−colj(F̂)‖L2 is the L2 feature distance of a pair of patches
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(i, j), where coli(F̂) denotes the ith column of F̂. From all pairwise distances,

we construct a binary affinity matrix S ∈ {0, 1}(K̃+K)(K̃+K), where Sij = 1 if
and only if the ith and the jth patches are mutually k(k = 20) nearest neighbors
in the feature space. Note that the edges in the affinity matrix might link two
training pathes, two test patches, or a training patch and a test patch.

The mapping from the feature space to the displacement space should be
smooth. That is, for every pair of patches (i, j), if they are similar in the feature
space, their displacements to landmarks should also be similar. We define the
Smooth Mapping Penalty Es(D̂) as the violation from this assumption:

Es(D̂) =
1

2L
∑

i�=j

∑
i�=j

Sij

∥∥∥coli(D̂)− colj(D̂)
∥∥∥2
L2

(4)

For each pair of patches, Es introduces a high penalty if the two patches
are similar in the feature space (i.e. Sij = 1) but their displacements are very

different (i.e.
∥∥∥coli(D̂)− colj(D̂)

∥∥∥
L2

is large). If we construct M as the (trace

normalized) laplacian matrix [11] of S, Es can be compactly written as:

Es(D̂) =
1

L
Tr
(
D̂MD̂


)
(5)

Patch Offset Penalty Ep(D̂). Each column of D is the displacements from a
single patch in the test image to all the landmarks. If we take the subtraction
of two columns coli−j(D) = coli(D) − colj(D), it can be written as: coli−jD =

D(eKi − eKj ) =

⎡⎣ d1
i − d1

j

· · ·
dL
i − dL

j

⎤⎦, where eKi is a K dimensional column vector whose

ith element is 1 and all other elements are 0s. From Fig. 1 (right), we can see
that d1

i − d1
j = ... = dL

i − dL
j = cj − ci, because (d1

i ,d
1
j), ..., (d

L
i ,d

L
j ) form

triangles with the same edge cj −ci. Therefore, we impose a penalty Ei−j
p (D) =∥∥D(eKi − eKj )− c̄j−i

∥∥2
F
, where c̄j−i is the L times vertical replicate of cj − ci.

We can include a penalty for each pair (i, j) of columns. For efficiency reasons,
we eliminate redundancies and useK−1 pairs to define the Patch Offset Penalty:

Ep(D̂) =
1

2LK

L−1∑
i=1

Ei−(i+1)
p (D) =

1

2LK

∥∥∥D̂QU− C̄
∥∥∥2
F

(6)

where U =
[
eK1 − eK2 , ..., e

K
K−1 − eKK

]
and C̄ =

[
c̄2−1 ... c̄K−(K−1)

]
.

Landmark Offset Penalty El(D̂). Now we investigate the subtraction of rows
inD. For each pair of rows (i, j), we can write rowi−j(D) = rowi(D)−rowj(D) =
(e2Li − e2Lj )
D. Note that D has 2L rows with interleaving coordinates in two

axis as each di
j is two dimensional. For any even number i between 1 and 2L,

we have

[
row(i−1)−(i+1)(D)
row(i)−(i+2)(D)

]
= [d

i/2
1 − d

i/2+1
1 , ...,d

i/2
K − d

i/2+1
K ]. Note that,
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d
i/2
1 ,d

i/2+1
1

)
, ...,

(
d
i/2
K ,d

i/2+1
K

)
all form triangles with edge xi/2+1−xi/2 (Fig.

1 (right)). Therefore, although the value xi/2+1−xi/2 is not known, we however
know that elements of rowi−(i+2)(D) should be identical, i.e. with zero variance:

Var
(
rowi−(i+2)(D)

)
=
(
e2Li − e2Li+2

)

DHkH



k D


 (e2Li − e2Li+2

)
= 0 (7)

where Hk is the K×K centering matrix Hk = Ik− 1
K1K×K , where 1K×K is the

K ×K matrix whose elements are all 1s. Eq. (7) holds for every pair, and since
variance is always non-negative, this is equivalent to say that the summation of
all variances is also zero, and we define Landmark Offset Penalty:

El(D̂) =
1

2LK

2L−2∑
i=1

Var
(
rowi−(i+2)(D)

)
=

1

2LK
Tr
(
VD̂QHkH



k Q


D̂
V

)
(8)

where V = [e2L1 − e2L3 , e2L2 − e2L4 , ..., e2L2L−2 − e2L2L ]
.

2.3 Optimization

Substituting Eqs. (3),(5),(6) and (8) into Eq. (2), we get the final objective
function. We can prove that Eq. (2) is convex, and the derivative is:

∂E(D̂)
/
∂D̂ = D̂A+ BD̂C + G (9)

where A = 1
LK̃

PP
 + 2α
L M+ β

LKQUU
Q
, B = γ
LKV
V, C = QHkH



k Q


,

G = − D̃P�

LK̃
− βC̄U�Q�

LK . We use gradient descend for the global optimum D̂.
Note that in our optimization process we jointly optimize the training data

D̃ and the test data D. We could also take another way where the we optimize
only D. However, the advantage of our approach is that we can exploit the
complex and relations between each training and test patch which is reflected in
the matrix S in the term Es.

2.4 Constructing Response Image

After we find the optimum D̂, we haveD = D̂Q, and {ck+dl
k}k=1...K will be the

set of votes for the position of the lth landmark. From these votes we perform
kernel density estimation, which gives us the probability of landmark at each
pixel location of the image (this is called the response image of the landmark).
The response images of all landmarks will be used later for shape segmentation.

3 Shape Segmentation via Statistical Shape Model

Our shape segmentation algorithm works by combining the landmark detec-
tion with a statistical shape model. First, we detect a small set of global land-
marks by exhaustively search in the image in different scales and rotations.



232 C. Chen et al.

According to the position of these global landmarks, the image is scaled, trans-
lated and rotated to compensate for the global transformation. Then, the land-
marks defining the shape are detected. During this step, we divide the whole
shape into multiple subshapes consisting of several nearby successive landmarks.
The method introduced in Section 2 is performed on each subshape. Then, shape
segmentation is performed using response images of landmarks along with a sta-
tistical shape model. Instead of using the classical Active Shape Model [13] via
PCA, we adopt the shape model based on sparse representation technique intro-
duced in [14].

4 Experiments

Data: We tested our method on three tasks: segmentation of complete femur,
proximal femur and pelvis. The X-ray data come from our clinical partner:

– CompleteFemur: 80 training images, 109 test images.
– ProximalFemur: 100 training images, 188 test images.
– Pelvis: 100 training images, 163 test images.

Note that a considerable part of the images are post-operative x-ray radiographs
after trauma or joint replacement surgery, which significantly increases the chal-
lenge due to large variation of femur/pelvis appearance and the presence of im-
plants (as can be seen in Fig. 2). As a indication, we made a manual counting,
which shows that 32% of the test images contain implants.

Implementation Details: Each shape is divided into subshapes of 4 successive
landmarks (i.e. L=4 in Section 2). The landmark detection algorithm in Section
2 is performed on each subshape, and then the segmentation of the whole shape
is derived as in Section 3. In Section 2, for the patch visual feature, we use
multi-level HoG (Histogram of Oriented Gradient [12]) feature with block sizes
1 × 1 and 2 × 2. Each block is divided into 2 × 2 cells and for each cell an 18
dimensional HoG feature is extracted by histogramming the gradient direction
of each pixel. Therefore, feature dimension df = 360. For each subshape, we

sample K̃ = 2000 training patches and K = 2000 test patches. For the objective
function, we use α = 0.1, β = 0.1, γ = 0.1.

4.1 Results

Fig. 2 shows the qualitative result for all the three segmentation tasks. We can
see that despite the challenges such as significant variation of appearance, poor
image contrast and implants, our method achieves good results. For quantitative
evaluation, we manually annotate the contour on all the test images, and the
segmentation error is then calculated by the average point-to-curve distance
between the landmarks of the segmented shape and the annotated contour. The
error is then converted from pixel unit to physical unit (mm) as the pixel spacing
of our radiograph is known. Table 1 shows the result. Note that to calculate the
success rate, the failure cases are manually identified.
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Fig. 2. Segmentation result on (a): CompleteFemur; (b): ProximalFemur; (c): Pelvis

Table 1. Quantitative evaluation. Numbers are in unit mm.

Anatomy Success rate Median Minimum Maximum Mean Standard deviation.

CompleteFemur 100% 1.2 0.7 3.4 1.3 0.4

ProximalFemur 98.4% 1.3 0.6 3.8 1.4 0.6

Pelvis 98.8% 1.9 1.0 4.3 2.2 0.8

Table 2. Comparison of our method with RF method. Numbers are in unit mm.

CompleteFemur ProximalFemur Pelvis

Mean Std Mean Std Mean Std

Our method 1.3 0.42 1.4 0.62 2.2 0.80

RF method 1.8 0.55 1.3 0.54 2.5 0.78

p-value 0.00005 0.31 0.05

Our method processes one image of resolution 3000×3000 in about 2 minutes,
with an unoptimized Matlab implementation on a computer with 3.0GHz CPU.

We compare our method with the random forest (RF) regression method. We
use the same parameter for both methods when applicable (e.g. the same patch
feature, the same number of training/test patches). For RF, we use 5 trees per
forest1. The results are shown in Table 2, which shows the average error and
standard deviation (in mm) of the two methods as well as the p-value. From the
table we see that our method have comparable performance in proximal femur
segmentation, and outperforms RF in complete femur and pelvis segmentation.

5 Conclusions

We have proposed a new method for fully-automatic landmark detection and
shape segmentation in X-ray images. Our method works by jointly estimating

1 We also tried more than 5 trees and no notable improvement was found.
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the displacements from test patches to landmarks by considering both training
data and geometric constraints. Experiments show that our method improves
the landmark detection accuracy, and, combined with statistical shape model,
can accurately segment shapes on the challenging datasets. In the future, we
would like to integrate the shape model into our joint regression framework.

Acknowledgement. This work is supported by SNSF Project 51NF40-144610.
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Abstract. Automatic segmentation techniques, despite demonstrating excellent
overall accuracy, can often produce inaccuracies in local regions. As a result,
correcting segmentations remains an important task that is often laborious, es-
pecially when done manually for 3D datasets. This work presents a powerful
tool called Intelligent Learning-Based Editor of Segmentations (IntellEditS) that
minimizes user effort and further improves segmentation accuracy. The tool part-
ners interactive learning with an energy-minimization approach to editing. Based
on interactive user input, a discriminative classifier is trained and applied to the
edited 3D region to produce soft voxel labeling. The labels are integrated into
a novel energy functional along with the existing segmentation and image data.
Unlike the state of the art, IntellEditS is designed to correct segmentation results
represented not only as masks but also as meshes. In addition, IntellEditS ac-
cepts intuitive boundary-based user interactions. The versatility and performance
of IntellEditS are demonstrated on both MRI and CT datasets consisting of varied
anatomical structures and resolutions.

1 Introduction

Interactive approaches to segmentation have a proven track record [9]. However, the
important task of interactively editing a pre-existing but imperfect segmentation, or pre-
segmentation, has not enjoyed much attention [6,11,8]. This is unfortunate, as manually
correcting segmentations in 3D medical imaging applications can be a time-consuming
but necessary task. Local corrections are often needed for fully-automatic segmentation
techniques [6,8], which are powerful and time-saving but still have not matched the per-
formance of interactive tools in key applications [9]. To use all available information,
an editor should consider: (1) user interactions, (2) the presegmentation, and (3) the
underlying volume or data. These sources should guide an editing algorithm that strives
to (1) minimize number of edits to achieve desired result, (2) minimize segmentation
error after each edit, and (3) respect user guidance.

Apart from 2D-focused tools [10,15], many 3D editors function by propagating user
corrections from an interaction plane to the larger 3D volume [6,3,8]. Propagation can
be achieved by minimizing an energy term constrained by user input, the presegmen-
tation, and the volumetric data [6]. Such approaches face several key challenges. First,
volumetric data is incredibly rich and varied, making it non-trivial in how to best em-
ploy it. Ideally, an editor would use volume data in a way that can generalize to different

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 235–242, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



236 A.P. Harrison, N. Birkbeck, and M. Sofka

(a) (b) (c) (d) (e)

Fig. 1. Removing the vena cava from a liver mesh (red) using IntellEditS. (a) User chooses an
interaction plane and draws a corrected boundary (green); (b) Mesh is updated in the plane;
(c) As shown in a perpendicular plane, mesh boundary is accurately propagated in 3D; (d)-(e)
The 3D propagation can also be viewed by comparing before and after surfaces in (d) and (e),
respectively. As IntellEditS is executed within an MPR viewer, pre- and post-edit segmentation
accuracy can be quickly assessed.

modalities, imaging qualities, and anatomical structures. Second, many presegmenta-
tions are mesh-based, meaning they must be reconciled with the voxel-based volume
data. Third, user input should be as intuitive and user-friendly as possible.

This work presents an interactive editor of 3D presegmentations that simultaneously
addresses all the above challenges. First, the system allows users to precisely draw new
boundaries using lines within the interaction plane. This is called splice-based inter-
actions. Second, a discriminative classifier uses foreground and background regions
defined by the splice to model voxels inside and outside the object being edited. Clas-
sification results of unknown voxels are then incorporated within an energy functional
that locally propagates user interactions to the 3D volume. Finally, when editing mesh
presegmentations, a soft voxel-based representation is used, reconciling it with the vol-
ume data while still retaining a highly accurate boundary. These features culminate in
a system entitled Intelligent Learning-Based Editor of Segmentations (IntellEditS) that
provides a sophisticated and flexible means to rapidly edit presegmentations. Fig. 1
visually depicts the steps involved in editing.

IntellEditS advances the state of the art of data-driven editing through several means.
For instance, many editing techniques use interactions, such as brush-based tools [6,3],
that are nonintuitive for clinicians [8] as they do not allow precise correction of bound-
aries. In addition, state of the art data-driven editors only consider mask-based pre-
segmentations [6,3,8], meaning that IntellEditS is the first to simultaneously perform
mesh-based and data-driven editing. Finally, the above works only use local differences
in volume intensity and do not attempt to model foreground and background voxels.
This state of data-driven editing is in contrast to many interactive segmentation tech-
niques, which successfully leverage learning algorithms as they build up a segmentation
from scratch [16,17,13,18].

With these advances, IntellEditS fills an important gap in the state of the art of
data-driven editing. The algorithmic details of IntellEditS are expounded further in the
methodology section (§2). As demonstrated in the results section (§3), using identical
parameters IntellEditS can perform effectively on volumetric data coming from differ-
ent anatomical structures, modalities, imaging conditions, resolutions, and anisotropic
characteristics. This work is concluded by a discussion of results (§4).
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Ŝb

Sf Sb

yi

pi

xi

Final result

Fig. 2. Algorithm steps of IntellEditS

2 Interactive Learning-Based Editing

IntellEditS partners interactive discriminative classification with energy-based mini-
mization in order to edit mesh- or mask-based representations of anatomical structures.
Fig. 2 provides a high-level view of IntellEditS’ algorithm steps.

First, a user corrects a presegmentation on a 2D interaction plane using splices. Fore-
ground and background seed points, Sf and Sb respectively, are calculated based on
user input and the presegmentation. If the presegmentation is a mesh, it is converted to
a floating-point distance map, yi, where i indexes individual voxel locations within the
volume. IntellEditS only operates on a cropped region of the volume, Ωbox, which is
specified using a bounding box around the splice line and the region of the presegmen-
tation contained within said splice.

An augmented set of seed points, Ŝf and Ŝb, serve as inputs to IntellEditS’ classifier,
which learns how to discriminate between foreground and background regions based
on a pool of features for each voxel. Features are denoted using an ordered vector of
values θi. In formal terms, define a variable pi ∈ [0, 1], which describes the probability
that voxel vi is in the foreground. Based on the trained model, the classifier calculates
the following posterior probability for each non-seed voxel:

pi = P (vi ∈ Ωobj |θi), (1)

whereΩobj denotes the true boundary of the anatomical object being edited.
If the pi values were completely accurate, the editing task would be finished. How-

ever, as complete accuracy cannot be guaranteed, pi values are employed as part of an
energy minimization formulation that incorporates the presegmentation, user seeds, and
a regularizer. Formally, the energy formulation can be expressed as:

E(x) =
∑
eij

wij(xi − xj)2 + γi
∑

i∈Ωbox

(yi − xi)2 + α
∑

i∈Ωbox

(pi − xi)2 (2)

s.t.,

{
xi = 1, vi ∈ Sf

xi = 0, vi ∈ Sb
,

where xi are soft output potential values and wij denotes the weights assigned to the
graph edges eij connecting each vertex vi or voxel. The first summation acts as a reg-
ularizer, ensuring coherent output potentials. The second summation incorporates the



238 A.P. Harrison, N. Birkbeck, and M. Sofka

(a) (b) (c) (d)

Fig. 3. Calculating Seed Points. (a) an edit and the presegmentation; (b) corresponding foreground
(Sf ) and background (Sb) seed points in green and red, respectively; (c) volume and presegmenta-
tion above the editing plane; (d) corresponding foreground (Ŝf ) and background (Ŝb) augmented
seed points in green and red, respectively.

presegmentation, where γi is a local parameter controlling its influence. IntellEditS
uses the same γi and wij values as Grady and Funka-Lea [6]. However, floating-point
presegmentation values are used instead of binary values. Finally, the third summation
incorporates the per-voxel probabilities of being in the foreground. The influence of the
pi values are controlled by α, which has a context sensitive value explained in Sect. 2.2.
IntellEditS minimizes (2) using the random walker algorithm [5].

Apart from using splice-based interactions and accommodating mesh-based preseg-
mentations, the third summation in (2) represents one of the most important depar-
tures from the state of the art. While combining learning with energy minimization
has proven successful in interactive segmentation, it has not been used to locally edit
presegmentations. Other energy-minimization-based editors only employ volume data
to calculate wij [6,3,10,15]. As a result, these methods neglect the highly informative
ensemble of local foreground and background voxel features that users implicitly spec-
ify during edits. Thus, the strength of (2) rests on its use of all available sources of
information—foreground/background features, presegmentation, and user seeds.

In order to apply (2) in a concrete implementation, the generation of seed points must
be specified (§2.1). The seed points define the fixed regions of the segmentation and are
also used to train the discriminative classifier (§2.2). After solving (2), the voxel-based
output potentials are converted to a mesh-based representation (§2.3) or thresholded for
mask-based presegmentations.

2.1 Determining and Augmenting Seeds

When a user draws a splice intersecting a presegmentation, she is drawing a new 2D
boundary. As Fig. 3(a) and (b) demonstrate, corresponding seed points, Sf and Sb, can
be inferred by flood filling the new boundary. These are only extracted from the 2D
interaction plane. A buffer ensures any voxels on or close to the new boundary are not
chosen as seed points, allowing IntellEditS to settle on a precise iso-contour instead.
Sf and Sb provide reliable training samples. However, since IntellEditS must propa-

gate an edit away from the interaction plane, training samples should be extracted from
the larger volume. As well, any learning algorithm’s performance partly hinges on the
number of training samples used. For this reason, seed points are augmented into two
larger sets, Ŝf and Ŝb. These are calculated by projecting locations of out-of-editing-
plane voxels onto the editing plane itself. If their 2D projected location is far enough
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from the user’s splice then they are included into Ŝf (Ŝb) if they are in the presegmen-
tation foreground (background). One such example is provided by Fig. 3(c) and (d).
While there is a possibility of incorrectly labelled samples entering the training set,
experience indicates the impact, if any, to be minimal.

2.2 Discriminative Learning

Both generative [16,17] and discriminative [13,18] models have been used to interac-
tively segment visual data. While powerful, generative-model performance hinges on
selecting an appropriate model and the correct feature(s) to examine. This is a chal-
lenge when faced with different modalities, anatomical structures, image qualities, and
editing contexts. Since IntellEditS’ goal is to operate effectively even on dataset types
not encountered during development, it employs discriminative classification to directly
model posterior probability. Classification features are drawn from a large pool of 3D
Haar wavelets, where their relative influence varies based on the dataset.

This work uses a Probabilistic Boosting Tree (PBT) [14], whose nodes are composed
of AdaBoost classifiers. Unlike much of previous work using PBTs, classification must
execute at interactive speeds. A recent work by Birkbeck et al. documented a GPU PBT
implementation [4], which also included fast calculation of 3D Haar features. However,
since classifiers were still trained offline using multiple volumes, the algorithm was not
meant to be interactive and did not address speeding up training. In contrast, IntellEditS
requires both fast training and detection using a single volume. As a result, IntellEditS
extends Birkbeck et al.’s work by implementing an interactive-speed PBT (I-PBT) for
single-volume classification. Training is GPU-implemented using CUDA.

Based on feature values of Ŝf and Ŝb, IntellEditS trains the I-PBT to discriminate
between foreground and background voxels. After training, the detection accuracy,
ρ ∈ [0, 1], of the I-PBT in classifying the training samples is calculated. The weight
parameter, α, in (2) is then set to 0.5ρ, providing an automatic and performance-based
tuning of the editor.

2.3 Data Conversion

Unlike previous works, IntellEditS’ goal is to edit meshes in addition to masks. Nonethe-
less, outside of pre- and post-processing steps to convert data, IntellEditS works within
a voxel-based domain. This enables parallel execution of many of the per-voxel tasks in
training and detection. As well, resampling of the volume and its features, commonly
needed in simplex-based representations of voxel data, is avoided.

To retain the high resolution of mesh-based presegmentations, IntellEditS converts
them to soft-valued voxel representations based on distance-map calculations. For the
mesh-to-distance-map direction, IntellEditS uses the fast pseudo-normal method [2].
Converting the distance map back to a mesh is accomplished using the marching cubes
algorithm [12]. The authors’ experience indicates that this conversion does not affect
visual quality of the boundary. Since (2) works within a [0, 1] range, distance-map val-
ues must be mapped to this range using a scale and offset. The reverse mapping must
also be executed before converting output potentials to a mesh.
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Fig. 4. Cumulative probability distribution of improvements in SPS error after IE and IntellEditS
corrections. The median improvements of the IE and IntellEdits were 11 and 19% respectively
and third-quartile improvements were 48 and 55%, respectively.

3 Results

Experiments tested IntellEditS’ performance on 11 CT and MRI datasets of different
anatomical structures, resolutions, and anisotropies. Using the same single splice, ex-
periments compared IntellEditS’ performance against an intensity-based editor (IE) that
only uses the first two summations in (2). As such, IE does not model foreground
and background voxels and is similar to Grady and Funka-Lea’s approach [6], ex-
cept it has been significantly modified to use splice interactions and edit meshes. Each
tool’s performance was gauged using symmetrical point-to-surface (SPS) error against a
manually-annotated ground truth in the Ωbox region. These results were then compared
against the original SPS error of the presegmentation.

All experiments used the same parameter values, detailed in §2. For all datasets,
the I-PBT was configured to have a depth of 3 with 10 weak classifiers at each node.
On average, editing time consumed 3 seconds on an 8 core machine with an NVIDIA
GeForce 9800 GT video card. As Fig. 4 illustrates, IntellEditS is able to more effectively
reduce segmentation errors after the same user interaction. Fig. 5 visually demonstrates
the effectiveness of IntellEditS by depicting representative qualitative results drawn
from the quantitative experiment.

4 Discussion and Conclusion

This work presented an interactive editing tool called IntellEditS that represents a novel
and powerful way to correct presegmentations in a 3D context. Unlike previous
data-driven editors, IntellEditS can edit meshes. Users employ intuitive splice-based
interactions to correct presegmentations on a 2D interaction plane, which IntellEditS
propagates in 3D through a combination of discriminative learning coupled with energy
minimization. The practical benefits and versatility of IntellEditS were demonstrated in
quantitative and qualitative experiments composed of challenging datasets of various
modalities, anatomical structures, resolutions, and anisotropy. Comparing against an
intensity-based editor and using the same user input, these experiments demonstrated
that IntellEditS can output a mesh significantly closer to ground truth, saving valuable
end-user time and effort. Interesting directions of future work include combining Intell-
EditS with tools that can help choose suspicious interaction planes [1], providing the
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Fig. 5. Qualitative comparison of IntellEditS vs IE using the same single splice. (a) overall view
of presegmentation and editing splice; (b) zoomed-in view of (a); (c) corrected mesh; (d) cross-
section view of presegmentation; (e) and (f) same view as (d) but after the correction produced
by IE and IntellEditS, respectively. Dataset dimensions and resolutions are also provided.

option to use live-wire techniques [7], and incorporating online learning into the editing
process to incrementally learn a more robust model from consecutive interactions.

Acknowledgments. We thank S.Kevin Zhou, Noha El-Zehiry, and Enrico Kuhn for
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Abstract. This paper proposes a fully automatic approach for comput-
ing Nuchal Translucency (NT) measurement in an ultrasound scans of
the mid-sagittal plane of a fetal head. This is an improvement upon cur-
rent NT measurement methods which require manual placement of NT
measurement points or user-guidance in semi-automatic segmentation of
the NT region. The algorithm starts by finding the pose of the fetal head
using discriminative learning-based detectors. The fetal head serves as
a robust anchoring structure and the NT region is estimated from the
statistical relationship between the fetal head and the NT region. Next,
the pose of the NT region is locally refined and its inner and outer edge
approximately determined via Dijkstra’s shortest path applied on the
edge-enhanced image. Finally, these two region edges are used to define
foreground and background seeds for accurate graph cut segmentation.
The NT measurement is computed from the segmented region. Experi-
ments show that the algorithm efficiently and effectively detects the NT
region and provides accurate NT measurement which suggests suitability
for clinical use.

1 Introduction

Nuchal Translucency (NT) refers to the fluid-filled region under the skin of pos-
terior neck of a fetus. Increased NT in early gestation period is correlated to the
high risk of major cardiac defects and chromosomal defection including Down
Syndrome [1]. The NT screening is performed in the first trimester of pregnancy
using ultrasound scans. A sonographer first needs to navigate to the mid-sagittal
plane containing echogenic nasal tip along with nasal bone, and translucent di-
encephalon in the center (Fig. 1). The plane is then stored and the measurement
computed from manually placed marks. The accuracy requirement on the mea-
surement is very high since even a slight deviation can completely change the
diagnosis [1]. This makes the manual measurement and the design of automated
tools difficult.

There have been semi-automatic approaches [2,3] to detect the NT measure-
ment in 2D scans of mid-sagittal plane. In these approaches, the user is required
to manually specify a region-of-interest (ROI) surrounding the NT measurement
location. The ROI is used as input to the segmentation algorithm for finding up-
per and lower edges of the NT region. The final NT thickness is computed from
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Fig. 1. Fetal ultrasound scans for measuring Nuchal Translucency (NT) in the mid-
sagittal plane. NT (yellow lines) is a small fluid-filled region behind fetus neck. The
NT detection is constrained by automatically found anchoring structure, fetal head,
defined by stable landmarks (green): head crown (HC), throat (TH), nasal tip (NAT),
and external occipital region (EO). The NT measurement is shown in red.

the traced edges as the maximum distance between them. Similarly, measuring
the NT in 3D images is also performed on the mid-saggital plane, but the plane
must be first found from the acquired ultrasound volume [4].

This paper proposes a fully automatic solution for NT measurement in 2D
ultrasound scans of a mid-sagittal plane. Fig. 1 depicts typical examples of NT
images used for NT measurements. The algorithm first detects the fetal head
by implicitly relying on the appearance of stable structures that characterize
the mid-sagittal plane: echogenic nasal tip, nasal bone, and translucent dien-
cephalon. The NT region is predicted based on a statistical model obtained
from the relative poses of the fetal head and the NT region. Approximate edges
of the NT region are then found using Dijkstra’s shortest path algorithm with
graph weights extracted from the intensity image [5]. The edges are used to
define foreground and background seed points for accurate Graph Cut segmen-
tation algorithm [6]. Finally, the NT measurement value is computed from the
segmentation result at the location of maximum thickness. To the best of our
knowledge, this work is the first to propose the fully automatic NT measurement.

The paper is organized as follows. Background literature is briefly reviewed in
Section 2. Section 3 formulates the problem of estimating the NT region using
fetal head as an anchoring structure. The segmentation algorithm for accurately
finding the NT edges is discussed in Section 4. Experimental results are presented
in Section 5. The paper is concluded in Section 6.

2 Background

As mentioned in Section 1, the previously proposed methods for NT measure-
ment in 2D ultrasound scans require manual steps [2,3]. The early techniques for
automatically detecting other fetal structures relied on filtering, morphological
operators, and Hough transform [7]. These techniques tend to be slow and are
typically designed for a specific anatomy which makes them difficult to gener-
alize to new structures. Chalana et al. [8] describe a method for detecting the
biparietal diameter and head circumference based on active contour model. The
algorithm does not use the image appearance which is necessary to increase the
robustness and accuracy. Carneiro et al. [9] proposed a system for detecting and
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measuring several anatomies in 2D ultrasound images using the same underlying
algorithm. The method learns to discriminate between the structures of interest
and background via a Probabilistic Boosting Tree classifier [10]. The appearance
variations and imaging artifacts are captured by a large annotated database of
images. An efficient search technique makes the system run in under half second.
However, the detected structures are large (e.g. fetal limbs, abdominal circum-
ference, crown rump length) and constraints between the structures are not
exploited. Deng et al. [11] proposed an algorithm to locate NT bounding box
using hierarchical model constructed from three SVM-based detectors of NT,
Head, and Body. The algorithm has several limitations. It uses very coarse scale
range of only 7 levels and does not provide NT orientations. Therefore, it does
not provide automatic NT measurements, but only axis-aligned NT bounding
boxes.

3 Automatic Estimation of the NT Region

In this section, we formally discuss the overall approach to automatically find the
NT region. Let θ denote the parameter of NT pose represented by its position
(x, y), width w, height h, and orientation α, and Iθ denote the observed image
patch parametrized by θ. Similarly, let us define ϕ and Iϕ for fetal head. The

goal is to find the parameter of the best pose θ̂ as:

θ̂ = argmax
θ
P (θ|I) = argmax

θ

∫
ϕ

P (θ, ϕ|Iθ, Iϕ)dϕ. (1)

The term P (θ, ϕ|Iθ, Iϕ) inside the integral in Eq. (1) can be reformulated as
follows by applying the Bayesian rule:

P (θ, ϕ|Iθ , Iϕ) =
P (Iθ|θ, ϕ, Iϕ)P (θ,ϕ|Iϕ)

P (Iθ|Iϕ)
=

P (Iθ|θ)P (θ, ϕ|Iϕ)

P (Iθ|Iϕ)
, (2)

where P (Iθ|θ, ϕ, Iϕ) can be simplified to P (Iθ|θ) because Iθ is only depended
by θ. By substituting Eq. (2) into Eq. (1), we obtain the following objective
function:

θ̂ = argmax
θ

∫
ϕ

P (Iθ|θ)P (θ, ϕ|Iϕ)

P (Iθ|Iϕ)
dϕ

≈ argmax
θ

P (Iθ|θ)
∫
ϕ

P (θ|ϕ, Iϕ)P (ϕ|Iϕ)dϕ

= argmax
θ

P (Iθ|θ)
∫
ϕ

P (θ|ϕ)P (Iϕ|ϕ)P (ϕ)dϕ. (3)

The first term in Eq. (3), P (Iθ|θ), is the likelihood of Iθ given θ, which is
obtained from a discriminative classifier trained to detect presence or absence of
the NT region. Similarly, the likelihood P (Iϕ|ϕ) is obtained from a discriminative
classifier for the fetal head. The term P (θ|ϕ) represents the transition probability
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of θ from ϕ, which is learned in a nonparametric manner to capture the geometric
relationship between the fetal head and NT regions. The term P (ϕ) is the prior
probability for fetal head that is set as uniform.

3.1 Detection of Fetal Head and Nuchal Translucency

The algorithm employs discriminative learning [10,12,13,14] to compute the like-
lihoods of observing the fetal head and NT region Eq. (3). Robustness of the
system is achieved by exploiting spatial relationships and multi-resolution hier-
archy using Hierarchical Detection Network (HDN) [15]. In our case, the pose of
the NT region is predicted using the most reliable candidates (samples) of the
fetal head pose detected by the fetal head detector which is trained using three
resolution levels (0.4 mm, 0.2 mm and 0.1 mm). The NT region detector uses
two resolution levels (0.2 mm and 0.1 mm). The final HDN network is shown in
Fig. 2-(a).

The multi-resolution hierarchy, has the advantage that the complexity of the
training and detection (and therefore the complexity of the classifiers) is reduced
by distributing it into each level. Global structures are best detected at the coarse
resolution and provide constraints for local detection at finer resolutions. This
way, the search space for the local detection is reduced which increases robustness
since many image regions are never considered. In addition, computational speed
is increased due to the reduced search space.

(a) (b) (c)

Fig. 2. (a) The hierarchy of the detectors. HD represents the fetal head detector and
NT represents the NT region detector. 0.4 mm, 0.2 mm and 0.1 mm indicate the
three image resolutions. (b) Fetal head bounding box (green) and NT location (red
point). The two yellow axes define the local coordinate system based on the center and
orientation of the fetal head. (c) The distribution of the NT location (red points) in
the local coordinate system of the fetal head defined in (b). The black coordinate axes
correspond to the yellow axes in (b).

It is clear that the successful detection of the NT region hinges on the modeling
of the statistical relationship between the fetal head and the NT region. In
this modeling, we rely on the strong anatomical prior present in the domain of
fetal head scans. Fig. 2-(b) and (c) illustrate the statistical relationship between
the NT position predicted from the pose of the head. For each image, the NT
location is computed based on the local coordinate system defined by the head as
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illustrated in Fig. 2-(b). The distribution of NT location in the local coordinate
system is shown in Fig. 2-(d) where the origin is the location of the fetal head
center. This distribution corresponds to P (θ|ϕ) in Eq. (3).

4 Nuchal Translucency Measurement

The NT measurement is computed from the segmentation of the NT region. The
pose of the detected NT region is passed into the segmentation algorithm and the
upper edge and the lower edge are initially segmented based on the directional
gradient of the edge. The Dijkstras algorithm computes each path separately
using two inversed gradient magnitude images which are generated by applying
oriented gradient filters (rotated 180 degrees w.r.t. each other). Segmentation
seeds are placed between the initial paths for foreground and outside of them
for background. The seeds are used in a Graph Cut segmentation algorithm to
find an accurate segmentation of the NT region. The NT measurement value is
computed from as the maximum thickness of the NT region segmentation.

Fig. 3. Algorithm flow of NT segmentation using the NT region detection result. (a)
The pose of the detected NT region is used for defining the segmentation region. (b)
The initial NT region edges are obtained from Dijkstra’s shortest path on the inverse
gradient magnitude as the cost. (c) The NT edges are used to define foreground (green)
and background (red) seeds. (d) The final segmentation is obtained by running Graph
Cut segmentation.

5 Experiments

Our dataset consists of 196 DICOM scans from the first trimester screening
exams. Experts annotated the fetal head and the NT region as shown in Fig. 1.
The fetal head is annotated using 4 landmarks shown as green points in Fig. 1
and they are used to define the pose of the fetal head as follows. The two points on
head crown and on throat define the orientation and the height of the bounding
box, and the other two points on nasal tip and external occipital region define the
width of the bounding box. The two yellow lines represent the NT edges and the
red line across the two edges is the one for actual measurement of NT thickness.
If there is insufficient and ambiguous information in an image for annotation,
experts were encouraged to choose the best guess using the context of the image.
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We normalized the orientation of fetal head such that the fetus always faces
upwards and the head is towards the left side of the image. Standardizing the
head pose helps to train more robust NT detector. During detection, the the
head orientation is determined by using both the original input image and its
left-to-right flipped image. The head orientation is decided based on the score
of the two detection results. To achieve this, the detector is trained by generat-
ing images where the head is oriented towards the right side of the image and
adding them to negative sample pool. Based on our experimental results, the al-
gorithm can discriminate the head orientation in 100% of the cases. The images
were resampled to 0.1 mm resolution. For performance evaluation, the collected
data set was divided into two sets: randomly selected 80% for training and the
remaining 20% for testing.

Our first experiment focuses on the robustness and accuracy of the fetal head
and NT region detection. We use the following error metrics: angle difference
(degree), center-to-center distance, and size difference, computed between the
results from expert’s ground truth and the algorithm. Table 1 shows the error
between the ground truth and the algorithm detection of all the test data. The
error of the NT location is slightly higher due to the inherent ambiguity in the
accurate localization along the NT region. Overall, the detected NT region can
be reliably used for the segmentation.

Table 1. Performance evaluation of the testing data. The angle difference is in degrees.
The center and size errors are in millimeters.

Test Data (39)

Fetal Head NT
mean std med max mean std med max

Angle [deg] 6.13 4.24 5.94 17.30 3.45 2.62 2.91 9.22

Center [mm] 1.16 0.56 1.10 2.31 2.63 1.93 2.59 8.81

Size [mm] 2.63 1.56 2.36 6.72 1.28 0.94 1.21 3.33

Qualitative results and associated final NT measurements are in Fig. 4. Due
to the space limitation, we only show 5 most accurate and 5 least accurate
detection results along with the final NT region segmentations from 39 test
results. The green and yellow boxes represent the ground truth poses of the
fetal head and NT region, respectively. The red and cyan boxes correspond to
the detected results. The following observations can be made from these results.
As expected, the fetal head detection is very reliable because of its consistent
appearance. Furthermore, the NT detection results are accurate for most cases,
even for the 5 least accurate results. For most cases, the detected NT pose has
lower accuracy in the horizontal direction along the NT edge. This is because
of the ambiguity of the NT localization in this direction. However, the slight
inaccuracy in the horizontal direction is less important for the segmentation and
final NT measurement computation. The segmentation algorithm yields slightly
better results of actual NT measurements for the 5 worst NT detection cases
whose average error is 0.24 mm than for the 5 best NT detection results whose
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(a) Best detection examples of test data and their NT segmentation results.

(b) Worst detection examples of test data and their NT segmentation results.

Fig. 4. Fetal head and NT detection results. The green and yellow boxes represent the
ground truth poses of the fetal head and the NT region, respectively. The red and cyan
box represent the fetal head and NT region detection results. The red and green lines
highlight the upper and lower edge of the NT.

average error is 0.29 mm. It is evident that even when the NT detection box is
less accurate, the NT measurement error is low and reliable.

6 Conclusion

This paper proposes a fully automatic approach for NT measurement. The algo-
rithm starts by accurate detection of the fetal head pose. The fetal head serves as
an anchoring structure and predicts the approximate pose of the NT region. The
pose of the NT region is then locally refined and used to define a segmentation
region. The initial edges of the NT region found by Dijkstra’s shortest path are
used to define seeds for accurate Graph Cut segmentation. Experimental results
show that the proposed algorithm is robust and accurate. A slight inaccuracy in
the detection of the NT location is caused by the ambiguity of the NT region
localization along the edge of the neck but does not negatively impact the final
measurement value.

The proposed algorithm can be extended to 3D ultrasound scans. To achieve
this, mid-sagittal plane must be first found reliably. This can be done by relying
on salient features inside the plane, but also by modeling fetal face profile after
accurately detecting the fetal face [16]. This is an exciting direction of our future
research and an important step towards automating routine measurements in
obstetrics sonography.



250 J. Park et al.

References

1. Souka, A.P., Krampl, E., Bakalis, S., Heath, V., Nicolaides, K.H.: Outcome of
pregnancy in chromosomally normal fetuses with increased nuchal translucency in
the first trimester. Ultrasound in Obstetrics and Gynecology 18(1), 9–17 (2001)

2. Moratalla, J., Pintoffl, K., Minekawa, R., Lachmann, R., Wright, D., Nicolaides,
K.H.: Semi-automated system for measurement of nuchal translucency thickness.
Ultrasound in Obstetrics and Gynecology 36(4), 412–416 (2010)

3. Nirmala, S., Palanisamy, V.: Measurement of nuchal translucency thickness for de-
tection of chromosomal abnormalities using first trimester ultrasound fetal images.
Int’l J. of Computer Science and Information Security 6(3), 101–106 (2009)

4. Won, H.S., Hyun, M.K., Lee, H.: The clinical usefulness of volume NT using
three-dimensional (3D) ultrasound. Samsung-Medison Article No. WP201012-VNT
(2010)

5. Mortensen, E., Barrett, W.: Intelligent scissors for image composition. In: ACM
Computer Graphics (SIGGRAPH), pp. 191–198 (1995)

6. Boykov, Y., Zabih, O.V., Fast, R.: approximate energy minimization via graph
cuts. IEEE Trans. PAMI 23(11), 1222–1239 (2001)

7. Lu, W., Tan, J., Floyd, R.: Automated fetal head detection and measurement
in ultrasound images by iterative randomized Hough transform. Ultrasound in
Medicine & Biology 31(7), 929–936 (2005)

8. Chalana, V., Kim, Y.: A methodology for evaluation of boundary detection algo-
rithms on medical images. IEEE Trans. Med. Imag. 16(5), 642–652 (1997)

9. Carneiro, G., Georgescu, B., Good, S., Comaniciu, D.: Detection and measure-
ment of fetal anatomies from ultrasound images using a constrained probabilistic
boosting tree. IEEE Trans. Med. Imag. 27(9), 1342–1355 (2008)

10. Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classifica-
tion, recognition and clustering. In: Proc. of ICCV, pp. 1589–1596 (2005)

11. Deng, Y., Wang, Y., Chen, P., Yu, J.: A hierarchical model for automatic nuchal
translucency detection. Computers in Biology and Medicine 42(6) (2012)

12. Zheng, Y., Barbu, A., Scheuering, M., Comaniciu, D.: Four-chamber heart model-
ing and automatic segmentation for 3D cardiac CT volumes using marginal space
learning and steerable features. IEEE Trans. Med. Imag. 27(11), 1668–1681 (2008)

13. Zhang, J., Zhou, S., Comaniciu, D.: Joint real-time object detection and pose
estimation using probabilistic boosting network. In: Proc. of CVPR (2007)

14. Sofka, M., Ralovich, K., Birkbeck, N., Zhang, J., Zhou, S.: Integrated detection
network (idn) for pose and boundary estimation in medical images. In: ISBI (2011)

15. Sofka, M., Zhang, J., Zhou, S.K., Comaniciu, D.: Multiple object detection by
sequential Monte Carlo and Hierarchical Detection Network. In: Proc. of CVPR
(2010)

16. Feng, S., Zhou, S., Good, S., Comaniciu, D.: Automatic fetal face detection from
ultrasound volumes via learning 3D and 2D information. In: Proc. of CVPR, pp.
2488–2495 (2009)



 

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 251–258, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Automated Segmentation of CBCT Image Using Spiral 
CT Atlases and Convex Optimization 

Li Wang1, Ken Chung Chen2, Feng Shi1, Shu Liao1, Gang Li1, Yaozong Gao1,  
Steve GF Shen3, Jin Yan3, Philip K.M. Lee4, Ben Chow4,  

Nancy X. Liu5, James J. Xia2, and Dinggang Shen1 

1 Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA 
2 The Methodist Hospital Research Institute, Houston, Texas, United States 

3 Shanghai Jiao Tong University Ninth Hospital, Shanghai, China 
4 Hong Kong Dental Implant & Maxillofacial Centre, Hong Kong, China 
5 Peking University School and Hospital of Stomatology, Beijing, China 

Abstract. Cone-beam computed tomography (CBCT) is an increasingly utilized 
imaging modality for the diagnosis and treatment planning of the patients with 
craniomaxillofacial (CMF) deformities. CBCT scans have relatively low cost 
and low radiation dose in comparison to conventional spiral CT scans. Howev-
er, a major limitation of CBCT scans is the widespread image artifacts such as 
noise, beam hardening and inhomogeneity, causing great difficulties for accu-
rate segmentation of bony structures from soft tissues, as well as separating 
mandible from maxilla. In this paper, we presented a novel fully automated me-
thod for CBCT image segmentation. In this method, we first estimated a pa-
tient-specific atlas using a sparse label fusion strategy from predefined spiral 
CT atlases. This patient-specific atlas was then integrated into a convex seg-
mentation framework based on maximum a posteriori probability for accurate 
segmentation. Finally, the performance of our method was validated via com-
parisons with manual ground-truth segmentations. 

1 Introduction 

Segmentation of the cone-beam computed topographic (CBCT) image is an essential 
step of generating 3D models in diagnosis and treatment planning of patients with 
craniomaxillofacial (CMF) deformities. It requires segmenting bony structures from 
soft tissues, as well as separating mandible from maxilla. Unlike expensive conven-
tional spiral CT scanners, CBCT scanners, usually cost around $200K, are getting 
popularly used clinically, even in private practice settings. However, CBCT image 
quality is significantly inferior to the spiral CT. Besides extremely low signal-to-noise 
ratio, CBCT scans have severe image artifacts, including noise, beam hardening, in-
homogeneity, and truncation, thus affects image contrast and the accuracy of subse-
quent segmentation [1]. Furthermore, in order to better quantify the deformity, CBCT 
scans are usually acquired when the maxillary (upper) and mandibular (lower) teeth 
are in maximal intercuspation, which brings even more challenges to separate the 
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mandible from the maxilla [2]. To date, in order to use CBCT clinically for diagnosis 
and treatment planning, the segmentation must be completed manually by experts. 

Manual segmentation is a tedious, time-consuming and user-dependent. Previous 
automated segmentation methods are mainly based on threshold and morphological 
operations [3], which are sensitive to the presence of the artifacts. Recently, shape 
information has been utilized for robust segmentation [4-6], e.g., Zhang et al. [6] pro-
posed a deformable segmentation via sparse shape representation. However, these 
approaches are only applicable to objects with relatively regular shapes (e.g., mandi-
ble), but not the objects with complex shapes (e.g., maxilla). Interactive segmentation 
approaches [2, 7] were also provided to take advantage of both manual and automatic 
segmentation. To our best knowledge, there is no existing method that is able to au-
tomatically and simultaneously segment both maxilla and mandible from CBCT. 

In this paper, we propose a fully automated CBCT segmentation method to 1) 
segment bony structures from the soft tissues, and 2) further separate the mandible 
from the maxilla. Specifically, we first employ a sparse label propagation strategy to 
estimate a patient-specific atlas from the spiral CT atlases. There are two reasons that 
why the spiral CT subjects are employed as the atlases: 1) although image formation 
process between spiral CT and CBCT is different, they share the same patterns of 
anatomical structures, which are captured in a patch fashion in our method to estimate 
the probability; 2) the images from CT scanners have better signal contrast and less 
noise than those from CBCT scanners, therefore less time is needed to construct atlas-
es of manual segmentations from spiral CT images (i.e., ~30 minutes per image) than 
from CBCT images (i.e., ~12 hours per image) by an experienced operator. Finally, 
the patient-specific atlas is then integrated into a convex segmentation framework 
based on maximum a posteriori probability (MAP) for accurate segmentation. 

2 Method 

In this study, we aim to segment a CBCT scan into three structures/regions: mandible, 
maxilla (the skull without the mandible), and background. We consider image seg-
mentation as the task of partitioning the image domain  into a set of three disjoint 
regions, such that .  

2.1 Subjects  

We used 30 (15 males/15 females) spiral CT images with manual segmentations as 
atlases, and 13 (4 males/9 females)  CBCT images as testing images. The 30 spiral 
CT images of the subjects with normal facial appearance scanned at maximal 
intercuspation were randomly selected from our HIPAA de-identified CT database. 
Their ages were 22 ± 2.6 years (range: 18-27 years). The CT matrix was 512×512  
(resolution: 0.488×0.488×1.25 mm3). 13 CBCT images were collected from the 
patients with non-syndromic dentofacial deformities and scheduled for double-jaw 
orthognathic surgery for their treatment.  Their age were 24 ± 10 years (range: 10-49 
years). The CBCT matrix was 400×400 (resolution 0.4×0.4×0.4 mm3). These 30 CTs 
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and 13 CBCTs were labeled by two CMF surgeons who are experienced in 
segmentation using Mimics 10.01 software (Materialise NV, Leuven, Belgium). 

2.2 Estimating Patient-Specific Atlas from Spiral CT Atlases 

Atlas-based segmentation has demonstrated its robustness and effectiveness in many 
medical image segmentation problems [8]. Conventionally, a population-based atlas is 
constructed from multiple training images (e.g., manually segmented CBCTs). Howev-
er, a population-based atlas often fails to provide useful guidance especially in the  
regions with high inter-subject anatomical variability, and leads to unsatisfactory seg-
mentations results. One way to overcome this problem is to integrate the patient-specific 
information in the atlas construction. To this end, we propose to construct a patient-
specific atlas by combining both population and patient information as follows.  

We propose to estimate the prior, i.e., the patient-specific atlas, using a patch-based 
representation technique [9, 10]. The rational is that an image patch generally pro-
vides richer information, e.g., anatomical pattern, than a single voxel. Specifically, 30  spiral CT images  and their corresponding segmentation maps  1, ,  are nonlinearly aligned onto the space of the testing image  using ELASIX 
[11]. Then, for each voxel  in the testing image , its corresponding intensity patch 
with size  can be represented as a column vector . An initial code-
book  can be constructed with respect to all these patches | 1, … ,  
from all aligned templates at the same location, i.e., , , … , . To alleviate the effect of registration error, the 
initial codebook can be extended to include more patches from the neighboring search 
window , i.e., ,  1 … , ,  , where each patch is 
represented by a column vector and normalized to have the unit ℓ2 norm. To 
represent the patch  by the codebook , its coding vector  could be esti-
mated by many coding schemes, such as vector quantization, locality-constrained 
linear coding [12], and sparse coding [13].  Here, we utilize the sparse coding 
scheme [13] to estimate the coding vector  by minimizing a non-negative Elastic-
Net problem [14], min                             (1) 

where the first term is the least square fitting term, the second term is the ℓ1 regula-
rization term which is used to enforce the sparsity constraint on the reconstruction 
vector , and the last term is the ℓ2 smoothness term to enforce the similarity of 
coding coefficients for the similar patches. Each element of the coding vector , i.e., 

, reflects the similarity between the target patch  and the patch  in 
the codebook. Based on the assumption that the similar patches should share similar 
labels, we use the sparse coding  to estimate the prior probability of the voxel  
belonging to the -th structure/region, i.e., ∑ ∑ , where 1  if the label ; otherwise, 0 . Finally,  is 
normalized to ensure ∑  1.  
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2.3 Convex Segmentation Based on MAP  

After obtaining the prior probability from the patient-specific atlas, we integrate it 
with the intensity distribution of the testing image itself for better segmentation. In the 
testing image, to accurately label each voxel  in the image domain , we jointly 
consider its neighboring voxels , where  is the neighborhood of voxel .  The regions  produce a partition of the neighborhood , i.e., 

. We first consider the segmentation of  based on maximum a 
posteriori probability (MAP). According to the Bayes rule:  |              (2) 

where | , denoted by , , is the structure probability den-
sity in region . Note that , i.e., , is the a priori probability of 

 belonging to the region , which has been estimated in section 2.2. 
 is the indicator function and  is independent of the choice of the re-

gion and can therefore be neglected. Thus, Eq. (2) can be simplified as  | y , . Assuming that the voxels within each 
region are independent, the MAP will be achieved only if the product of ,  across the region  is maximized: ∏ ∏ , . 
In fact, we can use a Gaussian kernel  with scale  to indicate the neighborhood 

 [15]. Taking a logarithm transformation and integrating all the voxels , the max-
imization can be converted to the minimization of the following energy, ∑ log ,                      (3) 

Based on [16], we can use multiple variables which take values between 0 and 1 to 
derive a convex formulation for Eq. (3). Since in our project, there are only 3 different 
regions of interest: mandible, maxilla, and background, we need only 2 segmentation 
variables 0 1  and 0 1  to represent the partitions : , 

, 1 1 . Therefore, Eq. (3) can be converted as follows, ∑ log ,          (4) 

There are many options to estimate the , . In this paper, we utilize a Gaus-
sian distribution model with the local mean  and the variance  [17] to 

estimate it: , exp 2 √2 .  

Based on the assumption that there should be no overlap between mandible and 
maxilla, we propose the following penalty constraint term,                                                    (5) 
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In addition, the length regularization term [18] is defined as weighted total varia-
tion of functions  and , | | | |                                   (6) 

where  is a non-edge indicator function that vanishes at object boundaries [18]. 
Finally, we define the entire energy functional below, which consists of the data 

fitting term , the overlap penalty term  and the length regularization term : min ,   ,                                  (7) 

where  and  are the positive coefficients. Based on [16], the energy functional 
(Eq. (7)) can be easily minimized in a fast way with respect to  and . 

3 Experimental Results 

The parameters used in this paper were determined experimentally via cross valida-
tion. In fact, the results are relatively insensitive to the variation of the parameters. 
We finally chose the following parameters for all the experiments: the weight for ℓ1-
norm term  = 0.1, the weight for ℓ2-norm term  = 0.05, the patch size 9×9×9, 
the search window size 5×5×5,   = 3 for the Gaussian Kernel , and the weights  
= 10 for the overlap penalty term  and  = 10 for the length regularization 
term .  

Fig. 1 demonstrates the segmentation results of different methods for one typical 
subject. In the first row, the volume rendering of the original intensity image, and 
surfaces rendering of the segmentation result obtained by majority voting (MV), 
patch-based fusion method [10], the proposed method by directly using the maximum 
class probability from step 1 (prior estimation) as the segmentation result, the pro-
posed method with both step 1 (prior estimation) and step 2 (convex segmentation), 
and the manual segmentation, are shown from left to right. The following rows show 
the corresponding results on slices and zoomed views for better visualization, from 
which the artifacts can be clearly observed. Due to possible errors during image regis-
tration, the surface by MV is far from accurate, which incorrectly labels some upper 
teeth as lower teeth, by referring to the manual segmentation. Due to the closed-bite 
position and large intensity variations, the patch-based fusion method [10] cannot 
accurately separate the mandible from maxilla, thus mislabeling the upper teeth and 
lower teeth. Note that, to be a fair comparison, we have performed the similar search-
ing scheme to derive the optimal parameters for the patch-based fusion method [10], 
by obtaining the final patch size of 9×9×9 and the final search window size of 5×5×5. 
Overall, the proposed method produces much more reasonable results.  

We then quantitatively evaluate the performance of different methods on 13 sub-
jects by employing Dice ratio. The average Dice ratios of different methods are 
shown in Fig. 2. As also shown in Table 1, with the convex segmentation integrating 
the estimated prior, the proposed method achieves the highest Dice ratios. To further 
validate the proposed method, we also evaluate its accuracy by measuring the average 
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surface distance error, as plotted in Fig. 3. Additionally, the Hausdorff distance is also 
used to measure the maximal surface-distance errors of each of 13 subjects. The 
average Hausdorff distance on all 13 subjects are shown in Table 1, which again 
demonstrates the advantage of our proposed method. 

 

Fig. 1. Comparisons of segmentation results of 4 different methods on a typical CBCT image 

 

Fig. 2. Dice ratios on mandible and maxilla by 4 different methods 
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Fig. 3. Average surface distances from the surfaces obtained by 4 different methods to the 
ground-truth surfaces on 13 subjects 

Table 1. Average Dice ratio and surface distance error (in mm) on 13 subjects 

 Majority voting
Patch-based
fusion [10]

Proposed 
    (step 1)

  Proposed 
  (step 1+2)

Dice ratio 
Mandible 0.82±0.03 0.88±0.02 0.89±0.02 0.91±0.02 
Maxilla 0.72±0.04 0.81±0.03 0.85±0.03 0.87±0.02 

Average distance error Mandible 1.21±0.25 0.81±0.21 0.67±0.15 0.61±0.17 
Hausdorff distance errorMandible 3.61±1.53 2.22±1.1 1.14±0.54 0.92±0.47 

4 Discussion and Conclusion 

We have successfully developed and validated a novel fully automated method for 
CBCT segmentation. We first estimated a patient-specific atlas from spiral CT atlases 
using a sparse label fusion strategy. Then, we integrate it into a convex segmentation 
framework based on MAP for segmentation. Comparing to the state-of-the-art label-
fusion methods, our method achieved the best results.  

The success of applying normal CT atlases to the CBCT subject with CMF defor-
mity can be mainly attributed to the following two factors: 1) The deformation be-
tween the subject with the CMF deformity and the normal subject is first alleviated by 
nonlinear image registration; 2) After registration, the structure probabilities for the 
CBCT subject with CMF deformity are then robustly estimated by the proposed 
patch-based sparse technique in Section 2.2.  

In our experiment, we found that increasing the number of atlases would generally 
improve the segmentation accuracy. For example, the combination of CT and CBCT 
atlases achieves slightly improved Dice ratios: 0.005 higher for mandible and 0.0046 
higher for maxilla. However, more atlases also bring in larger computational cost.  

In our future work, we will validate the proposed method on more dataset and fur-
ther compare with other methods such as [19]. We will also improve the robustness of 
the proposed method by increasing the variability of the atlases such as including 
more datasets with different CMF deformities. 
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Abstract. In this paper we present a segmentation method for ultra-
sound (US) images of the pediatric kidney, a difficult and barely studied
problem. Our method segments the kidney on 2D sagittal US images and
relies on minimal user intervention and a combination of improvements
made to the Active Shape Model (ASM) framework. Our contributions
include particle swarm initialization and profile training with rotation
correction. We also introduce our methodology for segmentation of the
kidney’s collecting system (CS), based on graph-cuts (GC) with intensity
and positional priors. Our intensity model corrects for intensity bias by
comparison with other biased versions of the most similar kidneys in the
training set. We prove significant improvements (p < 0.001) with respect
to classic ASM and GC for kidney and CS segmentation, respectively.
We use our semi-automatic method to compute the hydronephrosis index
(HI) with an average error of 2.67±5.22 percentage points similar to the
error of manual HI between different operators of 2.31±4.54 percentage
points.

1 Introduction

Kidney segmentation in US images is a topic of limited presence in the image
processing literature [1, 2]. Several limitations of US images make segmenta-
tion a particularly daunting task: poor signal-to-noise ratio, signal drop-out,
missing boundaries, misplaced boundaries and reconstruction errors [3]. US seg-
mentation methods have been previously classified according to the prior knowl-
edge employed to improve the accuracy of results. These constraints include
image-derived priors (intensity, intensity derivatives, local phase, texture), and
application-derived priors (shape and motion) [3].

Two-dimensional ultrasound (US) is the widely preferred image modality for
in vivo assessment of renal conditions, particularly for pediatric applications,
mainly for its safety and cost-effectiveness, both prenatally and postnatally.

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 259–266, 2013.
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For the diagnosis of hydronephrosis (dilatation of the renal pelvis and calyces,
often caused by obstruction of the free flow of urine from the kidney [4]) in young
children, Shapiro et al. [5] have proposed a hydronephrosis index (HI), a quantita-
tive measure in which HI (percentage) = 100 × (renal area - renal pelvis/calyces
area)/(renal area). Computation of HI requires manual delineations of the kid-
ney and the pelvis/calyces on a single 2D sagittal US image in which the kidney
achieves its maximal longitudinal dimensions. It could be discussed whether us-
ing a single slice allows for robust shape model creation and good estimation
of HI. We show in Fig. 3 in Section 3 some examples of longitudinal kidney
sections and in Fig. 1 the good behaviour of the obtained shape model can be
appreciated. Although the estimation of HI would certainly be improved by 3D
quantification, it is not our purpose to go beyond the accuracy of the current
standard clinical procedure, which is performed on properly chosen 2D slices due
to higher availability of 2D acquisition equipment [5].

The purpose of the work presented herein is to increase the availability and
reduce the variability of HI computation by automating the segmentation of
the renal parenchyma and the renal collecting system (pelvis and calyces). This
task presents several challenges. For the segmentation of renal structures there is
limited availability of robust priors, especially from noisy 2D US images acquired
at variable angles that give variable renal shapes. Furthermore, in US the interior
of the kidney exhibits heterogeneous structures of different shapes, sizes and
intensities, and many of the boundaries are lost due to the density similarity to
surrounding structures and shadowing [1].

To the best of our knowledge, the automated segmentation of the renal col-
lecting system (CS) has not been tackled by previous work. CS appears as a
hypoechoic (dark) region inside the kidney, and expands into the parenchyma
from the ureteropelvic junction (UPJ). Difficulties for segmentation of CS in
sagittal US sections arise due to intensity offset, signal drop-out (shadowing)
and loss of the 3D connectivity of the CS region when studied on 2D views. Fur-
thermore, in very young children the renal pyramids appear more hypoechoic
than in other subjects, and can be confused with CS even by the experienced
eye.

In the following Sections we present our methodology for segmentation of
renal structures relevant to hydronephrosis. For segmenting the kidney we intro-
duce a modification of the classic Active Shape Models (ASM) [6], with shape
and radial intensity priors based on statistical models that incorporate the rel-
ative orientation with respect to the US probe. We also propose an automatic
robust initialization strategy, important for ASM under large shape uncertainty,
based on particle swarm optimization. For segmentation of CS we introduce a
methodology based on graph-cuts (GC) [7] with intensity and positional pri-
ors. To correct for intensity bias we developed a correction strategy based on
probability density function (PDF) cross-correlations with similar cases iden-
tified in the training set. As output of the GC algorithm we obtain a set of
candidate regions that are ranked according to anatomical and clinical priors.



Automatic Analysis of Pediatric Renal Ultrasound Using Shape 261

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

(a)
−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

(b)
−1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c)
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(d)

Fig. 1. Three principal modes of shape variations for the kidney shape model. (a)-(d)
First to forth mode. Blue: mean shape. Green: mean+3σ. Red: mean−3σ.

Ultimately, the proposed technique allows the semi-automatic analysis of the
kidney and its CS from difficult US image data with low error.

2 Method

2.1 Kidney Segmentation: ASM with Image Acquisition Priors

In the classic ASM methodology [6], shape is represented by a large number of
landmarks distributed along the object’s contour. ASM performs by adjusting
the position of the landmarks to fit pre-trained radial intensity derivatives along
rays traced normally to the contour’s landmarks. The new set of landmarks is
then filtered through the pre-trained shape model. This procedure is re-iterated
until convergence or for a given number of iterations. The shape model does
not incorporate any information on the pose, particularly relevant in US images,
but is instead constructed from pose-corrected instances. Our pose normalization
was performed by finding the centroid of the region enclosed by the contour, by
correcting orientation using the main axis of inertia, and by scaling the contour
according to the average distance from the computed centroid. Then landmarks
were obtained by even arc-length sampling of the contour. Furthermore, in ASM
the range of search on the radial profiles is usually small. Therefore, a good initial
estimation of the pose (location, orientation, scale) of the object is necessary for
good convergence. In our method, the user provides two mouse-clicks along the
main longitudinal axis of the kidney so that the line connecting the two clicks
provides an initial approximation of centroid location (midpoint), orientation
and scale.

Particle Swarm Optimization (PSO) [8] is adopted to optimize the initializing
shape for the ASM (the pose, and also the shape by allowing variations along
the main modes of variation). PSO was chosen because it makes few or no
assumptions about the problem being optimized and can search very large spaces
of candidate solutions. In PSO the optimization is achieved by having a swarm of
particles (candidate solutions) moving around in the search space. Each particle’s
position and velocity are initialized as uniformly distributed random vectors and
each particle’s position and velocity are updated according to the best solutions
found in previous iterations. In our implementation the pose is obtained from the
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Fig. 2. (a) Definitions for computation of the incidence angle. Edge profiles without
(b) and with (c) rotation correction averaged across all kidneys for landmarks spaced
around the kidney contours (θi = (0 (red), π/2 (green), π (blue), 3π/2 (black)).

two mouse-clicks as described above, allowing variations of±20 pixels in location,
±10 degrees in orientation, and ±10 in scale. The result is a pose/shape-adjusted
instance of the shape model that best fits the image features. All parameters in
this and following algorithms were tuned heuristically by systematic trial and
error, and further parameter space exploration was left for future work.

Both the initialization and ASM procedures rely on the sum of Mahalanobis
distances between the radial intensity derivative profiles at landmark locations
for the test image and training data. In our adaptation to US, in order to ac-
count for the fading of edges that are tangent to the US propagation direction,
profile training must be addressed not by anatomical landmark correspondence,
but instead in accordance to the angle of incidence at landmark i, located at
xi. According to the conventions in Fig. 2(a), referred to image origin O, if the
position of the probe (xP ) and the kidney centroid (xK) are considered approxi-
mately constant for all images, the incidence direction only depends on xi. Then
if we approximate the contour of the kidney by a circumference of radius R, both
the normal Ni ≈ xi

|xi| and xi ≈ (R cos θi, R sin θi) (and therefore xI) are only a

function of the angular coordinate αi ≈ f(θi) ≈ f(i − i0), where landmark i0
has angular coordinate θ0. Then, the right incidence-angle correspondence can
be obtained if the set of landmarks is circulated around the contour according
to the orientation θ0 of every shape instance. As seen in Fig. 1(b-c), the kidney
radial profiles become more distinct when rotation correction is applied, since
the averaging over landmarks with different incidence angles is avoided.

2.2 CS Segmentation: Intensity Correction and Anatomical Priors

In renal US the structures of the CS appear as hypoechoic structures proximal to
the UPJ (Fig. 3). To incorporate priors of intensity and position an appropriate
framework is GC segmentation [7]. GC techniques operate on a graph analogue of
an image and exhibit good performance and guaranteed convergence of energies
of the following form: E(f) = Σp∈P (Dp(fp)) + λΣ(p,q)∈N (Vp,q(fp, fq)), where
Dp(·) is the pixel-wise regional term and Vp,q(·, ·) is the boundary term for
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measuring the interaction potential over neighborhood N , for a labeling scheme
f . Often, the regional term depends on the Bayesian likelihood of a certain pixel
feature according to a pre-trained model. We propose nonparametric estimation
of the likelihoods for intensity and also position via kernel density estimation
(KDE) from training images.

Intensity Model. The main characteristic of the CS in US images is its hypoe-
choic appearance. However, US images can present significant intensity bias due
to user-controlled depth gain settings and beam attenuation within the body.
Other authors proposed intensity correction for US images by estimating the
bias field according to complex models [9]. We make a less restrictive assump-
tion: that the intensity distribution of the kidney suffers from a constant bias
that can be determined by comparison with biased versions training kidneys.
The advantage is that no assumptions are made on specific bias field models.

For each of the test images we estimate the PDF of the pixels inside the
kidney according to the automatic segmentations performed as in Section 2.1.
The intensity distributions of the training images for the pixels inside the kidney,
parenchyma and CS are obtained according to manual segmentations from our
ground truth. If fi is the PDF of kidney intensities in training image i we define
the bias bi as

bi = argmax
|n|≤Q

(fi � g)[n] , (1)

where g is the kidney PDF in the test image, and � denotes cross-correlation.
Notice that the cross-correlation is maximized over bounded values of n. If
{Cg

j }j=1...K are the K (we used K = 10) training images with larger (fi � g)[bi]

among the T training images {Ci}i=1...T , then our intensity models f̂
P/CS
g for

segmenting image g into parenchyma or collecting system (P/CS) are obtained
as

f̂P/CS
g = KDE

({{
I
P/CS

k,Cg
j

+ bCg
j

}
k=1...M

P/CS

C
g
j

}
j=1...K

)
, (2)

where I
P/CS

k,Cg
j

is the k-th intensity sample over P/CS for training image Cg
j , from

the set of all M
P/CS

Cg
j

samples. Intuitively, we find a subset of the most similar

training kidneys and for which bias this highest similarity occurs for each one of
them. Then the intensity model is obtained from kernel density estimation over
the bias-corrected training kidneys in the obtained subset.

Position Model. Another available prior for CS segmentation is its anatom-
ical location with respect to the UPJ. The location of UPJ for each kidney is
obtained by exploiting landmark correspondence in the ASM. To build the posi-
tional model from kidneys of different sizes we normalize the distances from each
pixel to the UPJ by the distance from the kidney centroid to UPJ, in each of
the T training segmentations (ground truth). The normalized positional models
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p̂P/CS for P/CS segmentation are estimated from the set of all normalized pixel

locations J
P/CS
k,i of each training image i as

p̂P/CS = KDE

({{
J
P/CS
k,i

}
k=1...M

P/CS
i

}
i=1...T

)
. (3)

Graph Energy. The trained models for intensity and position can be incorpo-
rated into the region term of the GC energy:

Dp(P/CS) = f̂P/CS
g (Ip) + α · p̂P/CS(Jp) . (4)

The boundary term depends on the difference of likelihood for intensities across
the n-link to being CS:

Vp,q(fp, fq) =

{
β · eγ|f̂CS

g (Ip)−f̂CS
g (Iq)| iffp �= fq ,

0 otherwise .
(5)

α, β and γ are tuning constants (we used α = 0.5, β = 5 and γ = 100) that
weight the contributions of the different terms to the GC energy.

Candidate Selection. The output of the GC segmentation can consist of sev-
eral regions. However, CS is a single connected structure inside the kidney, so
we post-process the results by connected-component analysis. For each of the
L output connected components {CCl}l=1...L we compute a score S(CCl) as
follows:

S(CCl) =

(
1−

∣∣∣∣MCCl

MK

∣∣∣∣
)

+ δ

(
· Mean({ICCl

k }k=1...MCCl )

Mean({IKk }k=1...MK )

)
+

+ ε ·Mean({JCCl

k }k=1...MCCl ) , (6)

whereMA is the number of pixels in region A, and K = P ∪CS (i.e. the kidney).
The bar indicates the normalization of the mean and standard deviation of the
terms to the [0, 1] range over all connected components {CCl}l=1...L. We used
δ = 0.9 and ε = 0.3. Intuitively, the score S is a measure of likelihood for a
region to be selected as final single connected segmentation among the regions
obtained from GC. It integrates priors on region size (should be large), region
relative hypoechoic quality (should be high) and location relative to UPJ (should
be close).

3 Results

We collected 34 US image studies of hydronephrotic kidneys, from one Philips
IU22 and three General Electrics Logiq E9 units. Two trained operators (GT1
and GT2) manually delineated the kidneys and their CS, under the supervision
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Results for (a) best, (b) median and (c) worst case. (d-f) Some more results.
Green: GT1. Red: GT2. Yellow: Result. Green arrow: UPJ. Red arrow: Renal pyramid.
Yellow arrow: CS.

Table 1. DICE, RAD, and MPD (pixels) with respect to GT1. IO K: Kidney delin-
eation by GT2. cKS: Kidney segmentation with classic ASM. KS: Kidney segmentation
with proposed method. IO CS: CS delineations by GT2. cCS: CS segmentation with
classic GC. CS: CS segmentation with proposed method.

Measure IO K cKS KS IO CS cCS CS

Dice 0.95±0.03 0.83±0.04 0.87±0.05 0.76±0.18 0.32±0.22 0.62±0.32

RAD 0.04±0.04 0.16±0.11 0.13±0.11 0.79±1.48 1.42±1.54 0.85±1.21

MPD 6.47±4.14 21.2±6.36 17.3±7.50 11.7±14.1 28.4±41.4 25.3±35.3

of a radiologist and a urologist, on a single sagittal 2D US image. All images and
GT1 delineations were used for training and testing in a leave-one-out configu-
ration. The average time for each test was 45±39 s. (ASM) and 4±2 s. (GC).

We compared results for kidney and CS segmentation from our methods (M)
with GT1, and also compared GT2 with GT1. We obtained Dice’s coefficients
(DICE), relative area differences (RAD), and mean perimeter distances (MPD).
Classic ASM (mean shape initialization, no rotation correction) and classic GC
(no bias correction, positional prior or candidate selection) implementations were
also included in the comparison. Results are shown in Table 1. Significant im-
provements (p < 0.001) were noted using our method over a classic ASM (for
kidney segmentation) and classic GC (for CS segmentation). We computed HI
for all test cases as in [5] using GT1, GT2 and M. The average error for M
vs. GT1 was 2.67±5.22 percentage points, and 2.31±4.54 for GT2 vs. GT1. HIs
from M and GT1 are significantly correlated (r = 0.99, p < 0.001). Fig. 3 shows
segmentation results.
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4 Conclusion

We have presented a segmentation framework for renal US. Our kidney segmen-
tation method is based on an improvement of ASM via rotation correction and
PSO initialization. Our framework also includes a GC segmentation algorithm
for structures of the renal collecting system (pelvis and calyces). The GC en-
ergy depends on intensity and positional priors estimated from training images
via KDE. Intensity bias is corrected by optimizing cross-correlations of the test
image PDF with the most similar kidneys in the training set. Results show that
our approach performs well in difficult images, and that the HI can be obtained
with error similar to the disagreement between manual operators, suggesting the
potential for computer-aided diagnosis of (pediatric) renal conditions, related to
the size and geometry of the organ and its substructures, from US imaging data.

Acknowledgment. This project was supported by a philanthropic gift from the
Government of Abu Dhabi to Children’s National Medical Center. Its contents
are solely the responsibility of the authors and do not necessarily represent the
official views of the donor.
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Abstract. This paper proposes a novel framework for image segmenta-
tion through a unified model-based and pixel-driven integrated graph-
ical model. Prior knowledge is expressed through the deformation of a
discrete model that consists of decomposing the shape of interest into
a set of higher order cliques (triplets). Such decomposition allows the
introduction of region-driven image statistics as well as pose-invariant
(i.e. translation, rotation and scale) constraints whose accumulation in-
troduces global deformation constraints on the model. Regional trian-
gles are associated with pixels labeling which aims to create consistency
between the model and the image space. The proposed formulation is
pose-invariant, can integrate regional statistics in a natural and efficient
manner while being able to produce solutions unobserved during train-
ing. The challenging problem of tagged cardiac MR image segmentation
is used to demonstrate the performance potentials of the method.

1 Introduction

Segmentation is one of the most well studied topics in computer vision. Model-
free methods are often based on clustering, aiming at grouping together pixels
with consistent intensity properties. Knowledge-driven methods, on the other
hand, aim to find a solution that is a compromise between the one produced
from the observations and the one expressed from the model space.

Popular examples of model-free segmentation refer to the mean-shift method
[4], variational formulations such as the Mumford-Shah framework [12], or graph-
based methods including normalized cuts [9], graph-cuts [2]. Due to the lack of
assumptions on the geometric form of the object of interest, these methods are
rather flexible in terms of spread of admissible solutions while it can also lead
to erroneous results due to intensity variability, occlusions, noise presence.

Knowledge-based methods are either manifold constrained or manifold en-
hanced. The former class of methods models geometric variation of the ob-
ject of interest and then seeks an instance of this space in the image. Active
shape/appearance models [6,5] and atlas-based methods [7] are popular exam-
ples. Manifold enhanced methods aim to minimize the distance of the solution
from the learned manifold, e.g. active contours/surface models [10,11]. Both
classes of methods inherit a severe limitation with respect to pose, due to the
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fact that the current solution should be brought to the same referential as the
ones used in learning.

Recently, [14] proposed a pose invariance model through a higher order graph-
based formulation with promising results. Due to the discrete shape model, it
might produce significant segmentation errors on the boundary. Meanwhile, com-
bined image-model segmentation has been investigated as well. The approach of
[13] considered extremely simple shape priors. [3] addressed the problem within
an alternating minimization approach involving both discrete and continuous
optimization process, where no guarantees on the optimality properties of the
obtained solution could be satisfied.

In this paper, we propose a novel pose-invariant segmentation approach that
simultaneously solves the problem in both model space and image space. It is
achieved by the definition of an objective function aiming to: (i) assign labels to
image pixels in order to maximize the image likelihood [2], (ii) deform a point
distribution model in order to maximize the geometric likelihood of the model
as well as the model-to-image likelihood [14], (iii) impose consistency between
the two label spaces. The resulting higher order graphical model formulation is
solved by using a state of the art message passing algorithm [8]. Promising results
on a challenging clinical setting demonstrate the potentials of our method.

The remainder of the paper proceeds as follows. We present the shape model
in section 2 and the segmentation energy is defined in section 3. Experimental
validation are shown in section 4 while section 5 concludes the paper.

2 Shape Representation

We adopt the pose invariant shape model in [14]. It consists of: (1) a set of
control points distributed on the boundary (Fig.1 left); (2) a set C of cliques
including all possible combinations of three points; (3) a series of probability
distributions pc of each triplet c ∈ C learned from a training set.

LetX = {xi}ni=1 denote a shape instance defined by n points, where xi denotes
the coordinates of point i. Given a training set of K samples {Xt}Kt=1, we assume
that point correspondences exist within the training set, but no need to align all
the samples in a common reference space. For a triplet clique c = (i, j, k) ∈ C, the
co-occurrence probability of the three points xc = (xi,xj ,xk) can be represented
by their inner angles {αc = ∠xjxixk, βc = ∠xixjxk}.

pc(xi,xj ,xk) = pc(αc, βc) (1)

This angle representation of triplet is invariant to global pose (i.e. translation,
rotation, scale) of the shape of the object. With K training samples, the prob-
ability density distributions pc(αc, βc) of triplet c are learned using a standard
probabilistic model (e.g. Gaussian distribution model). Assuming that the local
constraints on triplets are independent, the global shape is constrained through
the accumulation of all the local constraints.

p(X) ∝
∏
c∈C

pc(αc, βc) (2)
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Fig. 1. Shape model. Left: point distribution model. Right: model triangulation.

The shape model inherits pose invariance from the local representation. As a
result, no shape alignments to the same referential are needed for both training
samples and testing shapes. Moreover, it can be easily encoded with a MRF
inference due to the local interactions defined by prior related clique set C.

In addition to prior related concerns, we introduce a data related clique set A
which decomposes the object region into triangles (Fig.1 right). Such a triangu-
lation can be applied to any shape (heart, liver etc.) represented as a polygonal
area and it should meet the conditions: (1) each triplet is a subset of the model
and its corresponding triangle region should be included only in the object; (2)
these triangle regions should not overlap; (3) the union of these triangle re-
gions recovers the whole object domain. Using model triangulation facilitates
to factorize the regional-driven energy as well as to introduce pixel and model
interactions which will be shown in the following segmentation framework.

3 Combined Model-Pixel Based Segmentation

In this section, we propose a framework to combine both model-based and pixel-
based segmentation. The aim is to simultaneously deform the shape model to
an observing image and to label the image pixels as object/background within
an interconnected graphical model.

3.1 MRF Formulation

Now we address the segmentation problem within a higher order Markov Ran-
dom Field (MRF) formulation. The proposed graph model G consists of two
sub-graphs: (1) The model-based Gm consists of a set Vm = {1, · · · , n} of model
nodes (associated with n points in shape model) and a set of cliques Cm used in
model-based segmentation independently; (2) The pixel-based Gp consists of a
set Vp = {1, · · · , k} of pixel nodes (associated with k pixels in the image) and
a set of cliques Cp introduced by pixel-based segmentation. Moreover, the two
sub-graphs are connected with a clique set Cint. We illustrate the graph structure
in Fig.2, where the yellow upper part represents model-based Gm and the green
lower part represents pixel-based Gp.
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Model-based

Pixel-based
Y 

X 

Fig. 2. MRF graphical model coupling the model space and the label space

Let Xi∈Vm(i.e. point coordinates) and Yi∈Vp(i.e. pixel label) denote the latent
random variables for model nodes and pixel nodes respectively. The variable
Xi can take a configuration xi from its candidate space Ui, while the variable
Yi can take a value yi from label space L. We define the pixel label space1

L = {0, · · · m}, where m is the number of triangle parts produced by the clique
set A as defined in the last section. Given an image I, the segmentation problem
is formulated as an estimation of an optimal configuration (X = (xi)i∈Vm ,Y =
(yi)i∈Vp) of all the nodes over model space U =

∏
i∈Vm

Ui and labeling space Lk.

(X,Y)opt = arg min
X∈U ,Y∈Lk

E(X,Y, I)

E(X,Y, I) = E(1)(X, I) + E(2)(Y, I) + E(3)(X,Y)
(3)

where the MRF energyE(X,Y, I) contains model-based energyE(1), pixel-based
energy E(2) and interaction-based energy E(3).

3.2 Model-Based Energy

This energy is composed by data-related term and prior term [14]. The data
term encodes the image likelihood given a model configuration. The prior term
encodes spatial constraints of a model configuration with respect to the shape
prior manifold. We formulate the model-based energy E(1)(X, I) as follows.

E(1)(X, I) = λ1 ·
∑
a∈A

Φ(1)(xa) + λ2 ·
∑
c∈C

Ψ (1)(xc) (4)

where λ1, λ2 are the weights of data term and prior term respectively.
The data term captures the homogeneity properties of the object region inside

the model. Based on the model triangulation, the regional term can be factorized
into higher order potentials Φ(1) on data triplet set A introduced in section 2.

Φ(1)(xa) =
�
xa

Lds, a ∈ A (5)

1 When a pixel takes a non-zero value, it is labeled as a triangle part of the object,
otherwise it is labeled as background.



Joint Model-Pixel Segmentation 271

where data potential Φ(1) encodes the integral of image likelihood function L

over the triangle area xa. We denote likelihood2 Li = log pbck(Ii)
pobj(Ii)

.

The prior term is formulated with the prior probability p(X) defined in Eq.(2).
It is factorized into potentials Ψ (1) defined on prior clique set C.

Ψ (1)(xc) = − log pc(xc), c ∈ C (6)

where the distribution probabilities pc are learned from training. We generalize
the model-based interactions Cm = {A, C}, where both subsets are triplet cliques.

3.3 Pixel-Based Energy

The energy E(2) also consists of a data term and a prior term as in [2].

E(2)(Y, I) = λ3 ·
∑
i∈Vp

Φ(2)(yi) + λ4 ·
∑

(i,j)∈Cp

Ψ (2)(yi, yj) (7)

where λ3, λ4 are the weights. The data term encodes the image likelihood over
the pixel assignments. The unary potential Φ(2) encodes the individual penalties
for labeling pixel i as object or background.

Φ(2)(yi) =

{
− log pbck(Ii) if yi = 0
− log pobj(Ii) otherwise

(8)

where label yi = 0 assigns the pixel i as background, otherwise non-zero value
assigns the pixel i as object. We denote pbck and pobj in footnote 2. The prior
term penalizes the inconsistency of the pixel labels within a neighborhood system
(e.g. 8-connected) which is defined by pairwise clique set Cp.

Ψ (2)(yi, yj) =

{
0 if yi = yj
W otherwise

(9)

where pairwise potential Ψ (2) constraints the neighboring pixel i and pixel j to
have the same label, and W is a penalizing parameter.

3.4 Interaction-Based Energy

The interaction energy is the key of producing consistency between model space
and labeling space. This consistency is held when given a shape configuration
X, pixels inside/close to the shape boundary should be more likely labeled as
object. Due to its dependency on the global shape, it is difficult to be encoded
in the framework where both model solution and pixel labeling are sought for at
the same time. Using the model triangulation, the model-pixel interaction can
be factorized into constraints between pixel and model parts (triplets).

E(3)(X,Y) =
∑

(i,a)∈Cint

Φ(3)(yi,xa), Φ(3)(yi,xa) = − log p(yi|xa) (10)

2 pobj, pbck are the appearance distribution models of object and background obtained
from a training set.
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The potential Φ(3) is a third-order term, encoding the dependency of a pixel label
and a regional triplet. The interaction clique set Cint = {(i, a)|i ∈ Vp, a ∈ A}
connects every pixel with every regional triangle. The distribution p(yi|xa) of
the pixel label conditioned on a triplet, uses a softmax function.{

P (yi = l(a)|xa) = [1 + exp(dist(i,xa))]
−1

P (yi �= l(a)|xa) = [1− p(yi = l(a)|xa)] /m
(11)

where label value l(a) ∈ {1, · · · ,m} equals to the index of triplet a;m is the num-
ber of the regional triplets in clique A. We denote dist(i,xa) a signed Chamfer
distance of the pixel i to the triangle xa boundary (i.e. negative/positive when
pixel is inside/outside the triangle). Hence, all energy terms are defined in MRF
formulation and we can use TRW-S algorithms [8] for MAP-MRF inference. To
search for an optimal model configuration, we use the same strategy as in [1].

4 Experimental Validation

A dataset of 40 2D tagged cardiac MR images (100*100 pixels) is used to validate
our method. The ground truth provided by experts is used for both training and
validation. Gabor features are used as the image representation to deal with
tagged MR images. We performed a leave-one-out cross validation on the whole
dataset. The experiments were run on a 2.8GHz, 12GB Ram computer and our
segmentation took a couple of seconds per image.

Some visual results of two test images are presented in Fig. 4. The first col-
umn is our results in both model space X (yellow contours) and label space Y.
The second column shows the results from model-based module (using only en-
ergy E(1)) [14] (blue contours) and pixel-based module (using only energy E(2))
respectively. The third column provides the ground truth (green contours) and
the pixel-wise difference image between our labeling result and the ground truth,
where the gray pixels are correct labeled, the white/black pixels are wrongly la-
beled as object/background. The fourth column zooms in the area inside the red
box (shown in the third column) with our model results (yellow contours) and
model results by [14] (blue contours). We can see that only pixel-based method is
sensitive to the complicated background and noise. The only model-based results
are globally correct, but do not give accurate segmentation around the boundary
locally (e.g. see the zoom in effects in the fourth column). The results from our
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Fig. 3. Comparisons on dice coefficients. Left: box plot. Right: statistic figures.
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Fig. 4. Segmentation results of 2 test images. The columns from left to right are our
results, only model/pixel based results, ground truth and comparison, zoom effects.

integrated framework can overcome this defect, showing flexibility to get local
deviations as well as producing pixel-wise labeling result at the same time. Our
method also deals well with the varying scales of the object (e.g. the scale of the
inner contour shows large variability) thanks to the pose-invariant shape prior.

For both quantitative evaluation and comparison purposes, we present in Fig.3
the Dice coefficient distributions obtained respectively by (1) our hybrid method,
(2) model-based method 1 [14], (3) model-based method 2 [1], (4) standard ASM
method and (5) pixel-base method. Noted that a higher Dice coefficient implies
a better segmentation result, Fig. 3 highlights the better performance of our
method compared with the previous methods.

5 Conclusions

In this paper we propose a novel approach to address jointly model/image-based
segmentation using a higher order graphical model. The proposed formulation
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can easily encode regional support, meanwhile being able to account for shape
variability unseen during training. Furthermore, it produces states of the art
results in particular when exact boundary delineation is of interest through the
combined model-pixel graph. To the best of our knowledge, this is the first
method that recovers a consistent solution between the model and the image
space in a single shot optimization framework, while being pose-invariant.

The formulation involves more weight coefficients of different energy terms
that need to be tuned to optimize the result. This defect can be addressed
by estimating the parameters through a MRF training algorithm which can
deal with a larger number of parameters. It is also necessary to extend the
method in 3D cases where numerous challenging segmentation problems do exist
in particular in medical image analysis. Compact modeling of shape variability
is critical in terms of complexity (number of higher order cliques). Last but
not least, understanding the varying importance of these cliques with respect to
modeling of shape variations is also important. Recent progress on MRF learning
could be a natural path towards adjusting the local contributions of the model.
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Abstract. The paper addresses the automated segmentation of multi-
ple organs in upper abdominal CT data. We propose a framework of
multi-organ segmentation which is adaptable to any imaging conditions
without using intensity information in manually traced training data.
The features of the framework are as follows: (1) the organ correlation
graph (OCG) is introduced, which encodes the spatial correlations among
organs inherent in human anatomy; (2) the patient-specific organ shape
and location priors obtained using OCG enable the estimation of inten-
sity priors from only target data and optionally a number of untraced
CT data of the same imaging condition as the target data. The proposed
methods were evaluated through segmentation of eight abdominal organs
(liver, spleen, left and right kidney, pancreas, gallbladder, aorta, and in-
ferior vena cava) from 86 CT data obtained by four imaging conditions at
two hospitals. The performance was comparable to the state-of-the-art
method using intensity priors constructed from manually traced data.

Keywords: shape prediction, intensity model, partial least squares.

1 Introduction

Several general frameworks for abdominal multi-organ CT segmentation have
been proposed. Recent approaches utilize a number of pairs of CT data and
their manual traces, called atlases, as training data. Wolz et al. proposed a novel
hierarchical method based on nonrigid registration and weighted label fusion
using a large dataset of atlases [1]. The method uses sum of squared differences
between target data and CT data in atlases, which means that the target data
will be required to have similar contrast patterns as CT data in the atlases.
Therefore, applicability to different imaging conditions (ICs) may be limited. In
addition, nonrigid registration involves high computational cost and difficulty

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 275–282, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



276 T. Okada et al.

in dealing with discontinuous deformations among abdominal organs. Machine-
learning based approaches have also been studied [2,3]. Although these methods
were validated for the various organs, they were not evaluated for organs having
large inter-subject variations on shape and location, such as the pancreas and
gallbladder. Since the features of the classifiers include the original CT value,
the performance for unknown ICs is not clear.

Some multi-organ segmentation methods utilize prior models constructed from
atlases [4,5]. Linguraru et al. used 4D graph incorporating multi-organ relations
and two phases of intensity priors [4]. Okada et al. used patient-specific statistical
atlases based on shape prediction from pre-segmented organ regions [5], which
is also regarded as a generalization of some methods specialized to pancreas
segmentation [6]. These methods used intensity priors based on intensity infor-
mation obtained from traced CT data (hereafter we call “supervised intensity
information”), and thus again the application to different ICs will be limited.
Finally, Freiman et al. proposed a kidney segmentation method [7], in which
the estimation of shape and intensity priors was performed by EM algorithm.
Although intensity-based non-rigid registration between target and CT data in
atlases was needed for initializing shape and intensity priors, only target data
was used to estimate intensity prior without the atlases.

In this paper, we propose a framework for multi-organ segmentation, which
is adaptable to any ICs without supervised intensity information. The features
of the framework are as follows: (1) the organ correlation graph (OCG) is intro-
duced, which encodes the spatial correlations among organs inherent in human
anatomy. The concept of OCG is similar to [5], however, we provide fully au-
tomated methods for the construction and utilization of OCG. Then (2) the
patient-specific organ shape and location priors obtained using OCG enable the
estimation of intensity priors without using supervised intensity information and
nonrigid registration. We evaluated the proposed method using 86 abdominal CT
datasets obtained by four ICs at two hospitals.

2 Methods

We analyze eight organs, that is, the liver, spleen, left and right kidneys, gall-
bladder, aorta, inferior vena cava (IVC), and pancreas. The fundamental idea
is to incorporate inter-organ spatial correlations to attain stable and accurate
segmentation of the target organs. To do so, we first perform the segmentation
of relatively stable organ in their position and shape (hereafter called “predic-
tor” organs), and then segment other less stable organs whose positions and
shapes are expected to be well-predicted by pre-segmented organs. In order to
realize the above concept, we begin with a single organ segmentation method
described in 2.1. In 2.2, we have a basic segmentation module to analyze mul-
tiple organs by using shape and location priors incorporating prediction from
predictor organs. In 2.3, we obtain intensity priors from untraced CT data using
the prediction-based priors in 2.2. Finally, we introduce OCG to assemble the
single segmentation modules to establish a multi-organ segmentation system.
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(a) (b)

Fig. 1. Conventional and proposed probabilistic atlas (PA). (a) Conventional PA. (b)
Proposed prediction-based PA. Upper: Pancreas. Lower: Gallbladder.

2.1 Single Organ Segmentation Method

As priors of the target organs, we utilize a statistical shape model (SSM) and a
probabilistic atlas (PA) as shape and location priors [8], and an intensity model
(IM) represented as Gaussian mixture model of the intensity distribution as
intensity prior. After CT data is spatially transformed to the normalized space
defined by the liver dome top and the rectangle circumscribing the bone tissue
regions, voxel-wise MAP segmentation using PA and IM is performed, followed
by SSM fitting with IM [8]. Finally graph-cut refinement is performed [9].

2.2 Prediction-Based Shape and Location Priors

We assume that n− 1 predictor organs are available for the target organ. Let a
set of predictor organ shapes be s and the target organ shape be v, and let S and
V be training data of the predictor and target organ shapes, respectively. We
denote the function of PLSR (partial least squares regression) trained using S
and V by PLSR(s;S, V ) [10]. Given the pre-segmented predictor organ shapes
s∗, the prediction equation is given by v = v∗ + r, where v∗ = PLSR(s∗;S, V ),
v is the true shape, and r denotes the residual after the prediction. We represent
r using PA and SSM [5].

To obtain PA and SSM of r, we use the average shape of V as reference shape
v′
0. The true shape v is transformed using the 3D deformation field generated

by correspondences from the predicted shape v∗ to reference v′
0, and then the

transformed true shape v′ is obtained. Now, we have r′ = v′− v′
0 of all training

data, which are the residuals in the reference space, and then PA and SSM are
generated. When we use PA and SSM for segmentation, the inverse of the 3D
deformation field is used to bring them to the patient space. Figure 1 shows the
prediction-based PA for the pancreas and gallbladder (and the comparison with
the conventional PA). Segmentation is performed using the method described in
2.1 by replacing the conventional PA and SSM by the above-described prediction-
based ones.

2.3 Estimating Intensity Model from Untraced CT Data

Two types of intensity models are constructed: (1) target-data specific intensity
model (TD-IM) where only one CT dataset, which is the segmentation target is
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used; (2) imaging-condition specific intensity model (IC-IM), where a sufficient
number of CT data acquired using the same IC as the target are used.

The TD-IM is constructed as follows. Let I0 be the target CT data. First,
PA is binarized using the threshold value determined by the 1-percentile in the
probability distribution of PA. The binarized region R is the initial volume of
interest (VOI). The histogram H0 is calculated from the intensity distribution
of I0 within R. IM is calculated by fitting a Gaussian mixture model (GMM) to
H0. MAP segmentation is applied to I0 using PA and IM, and R is updated by
the extracted region. The processes calculating IM with R and updating R by
MAP are repeated sufficient times.

The IC-IM is constructed as follows. Let I = {Ii}(i = 1, . . . , N) be N optional
CT data acquired using the same IC as I0. Note that manual traces are unavail-
able for these CT data. TD-IMs are calculated for each Ii(i = 0, 1, . . . , N). Let
H = {Hi}(i = 0, 1, . . . , N) be the calculated histograms. The average histogram

H̄ = 1
N+1

∑N
i=0Hi is calculated. IM is calculated by fitting GMM to H̄ .

Segmentation is performed using the method described in 2.1 by replacing
conventional IM by the above-described TD-IM or IC-IM.

2.4 Multi-organ Segmentation Based on Organ Correlation Graph

The OCG is defined as a set of nodes and directed edges. Each node corresponds
to an organ, and each directed edge denotes the correlation from one organ to
the other. We consider a simple OCG defined by three nodes and two edges (Fig.
2 (a)). Two nodes having out-edges are regarded as the predictor organs, whose
segmentation is assumed to be stable enough as predictors, and the other having
in-edge as the target organ or response.

Among the eight organs, liver segmentation has been studied intensively, and
is now sufficiently accurate and stable by itself [1,4,5,8]. The spleen and kidneys
have also been studied by a sufficient number of works, which showed relatively
good accuracy [1,4,5]. Finally, the segmentation of other organs has not been
well-studied nor shown to be so accurate. Based on the above observations, we
classified the eight organs into the following three types.

Type 1, VC1 = {Liver}: Only out-edges are defined (no in-edges). Segmenta-
tion is performed unconditionally.

Type 2, VC2 = {Spleen, Right kidney, Left kidney}: Both in- and out-edges
are defined. Segmentation is performed under the condition that the segmenta-
tion is completed for at least one node connected by an in-edge. In addition, the
organ can be a predictor for a node connected by an out-edge.

Type 3, VC3 = {Pancreas, Gallbladder, Aorta, IV C}: Only in-edges are
defined (no out-edges). Segmentation is performed conditionally like for VC2.
This type cannot be a predictor.

Given the constraints on the above three types of nodes, the edges connec-
tions representing organ correlations are automatically defined based on shape
predictability by PLSR [10]. Let Vp = VC1 ∪ VC2 be a set of nodes for predic-
tion and Vr = VC2 ∪ VC3 be a set of nodes for response. Let Vall be all possible
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Liver

Spleen

Right kidney

Left kidney

Pancreas

Gallbladder

Aorta

IVC

Type 1 Type 2 Type 3

(b)(a) (f)(e)

(d)(c)

Fig. 2. Multi-organ segmentation based on organ correlation graph (OCG). (a, b)
OCG. Blue and red edges indicate the directed edges from a node in Types 1 and 2,
respectively. (c-f) Sequential segmentation steps based on OCG. Red border indicates
the nodes to be segmented. Green node indicates segmented nodes.

combinations of the nodes in Vp. For each set in Vall, the prediction of node
vr ∈ Vr is performed by applying PLSR and the prediction error is calculated
[10]. Then a set of nodes Vmin(vr), which has minimum prediction error, is
selected. Let E(vr) = {{v, vr}|v ∈ Vmin(vr)} be a set of directed edges to vr.
OCG G =< V,E > is defined as V = VC1 ∪ VC2 ∪ VC3 and E =

⋃
vr∈Vr

E(vr).
Figure 2 (b) shows OCG constructed from the eight organs.

Let v be a node to be segmented, Vout(v) be a set of nodes having the edge
directed from v, and Vin(v) be a set of nodes having the edge directed to v. v is
segmented using prediction-based priors constructed from the nodes in Vin(v).
After the segmentation of v, all nodes in Vout(v) become ready for segmentation
at the next stage. Let V j

target be a set of nodes ready for segmentation at Stage j,
and Vextracted a set of segmented nodes. Let Segmentation(v;Vpredictor) denote
the segmentation of v based on prediction from Vpredictor. The process of multi-
organ segmentation based on OCG is formulated as follows:

1. j ← 0, V j
target ← VC1, Vextracted ← ∅.

2. For each v ∈ V j
target, apply Segmentation(v;Vin(v) ∩ Vextracted).

3. V j+1
target ←

⋃
v∈V j

target
Vout(v), Vextracted ← Vextracted ∪ V j

target, j ← j + 1.

4. Repeat steps 2 and 3 a fixed number of times.

Fig. 2 (c) to (f) show the process of multi-organ segmentation based on OCG.

3 Experimental Results

We tested the proposed methods using 86 abdominal CT data obtained by four
different ICs at two hospitals: Osaka University Hospital and National Institutes
of Health (NIH). Table 1 shows the details of the four conditions. Figure 3 shows
examples of CT data. In all data, the eight organs were manually segmented.
No intensity information combined with manual traces was used in the proposed
TD-IM and IC-IM.
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Table 1. Detatils of CT scans used in experiment

Dataset Institution Phase # of cases Slice thickness [mm]

A Osaka Univ. Hospital late arterial phase 10 2.5

B Osaka Univ. Hospital late arterial phase 39 0.625

C NIH portal venous phase 25 0.68 - 1.25

D NIH non-contrast 12 1.0

(a) (b) (c)

Fig. 3. Examples of CT cross-sectional images of our data. (a) Late arterial phase. (b)
Portal venous phase. (c) Non (intra-venous) contrast but artifact due to oral contrast.

The segmentation accuracy using the proposed TD-IM and IC-IM was com-
pared with the intensity model constructed from manual traces (hereafter called
“supervised IC-IM”). Leave-one-out cross validation was performed for the evalu-
ation of segmentation accuracy. The supervised IC-IM was constructed by leave-
one-out method for each IC. Jaccard index (JI) and Dice coefficient (DC) were
used for evaluation. The multi-organ segmentation based on OCG was performed
until Stage 4. For liver segmentation, only TD-IM was used.
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Fig. 4. Summary of accuracy evaluation for three intensity models. Average JIs of
86 cases using proposed TD-IM (blue box plot), proposed IC-IM (orange box plot),
and supervised IC-IM (green box plot) for each of eight organs were plotted. Red and
black lines in box indicate average and median JIs, respectively. In the liver, only the
result using TD-IM was shown. Average JI and DC (shown in parenthesis) values and
statistical significance are also shown below the plots.
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Liver Spleen Right kidney Left kidney Pancreas Gallbladder Aorta IVC
Proposed

IC-IM
Supervised

IC-IM

(a) (c)(b)

0.919 0.929
0.929

0.968
0.977

0.951
0.959

0.704
0.690

0.859
0.836

0.966
0.969

0.614
0.579(using TD-IM)

Fig. 5. Typical segmentation result. (a) Manual segmentation. (b) Proposed method
using IC-IM. (c) Result using supervised IC-IM. Orange, purple, pink, yellow, green,
red, and cyan volumes indicate the liver, spleen, kidneys, pancreas, gallbladder, aorta,
and IVC, respectively. Jaccard index of each segmented organ is also shown. In the
liver, JI using the proposed TD-IM is shown.

Figure 4 shows the segmentation accuracy for the three intensity models.
Figure 5 shows typical segmentation results. Average JIs of the liver, spleen,
right and left kidneys using the proposed intensity model were around 0.90 for all
methods. These performances were comparable to state-of-the-art segmentation
methods based on the availability of large training sets with manual tracings.
In the pancreas and IVC, TD-IM achieved the best performance with average
JI of 0.592 and 0.551, respectively. In the gallbladder (GB), supervised IC-IM
achieved the best performance with average JI of 0.745. No significant accuracy
improvement was observed between the proposed IC-IM and supervised IC-IM
except for the GB.

The similarity between the proposed IC-IM and supervised IC-IM was calcu-
lated using normalized cross correlation (NCC). All NCCs were higher than 0.9
(average was 0.98 ± 0.03), except for GB where NCC was 0.64.

4 Discussion and Conclusion

We have presented a framework for multi-organ segmentation from abdominal
CT which is adaptable to any contrast ICs without using supervised intensity
information. The performance was comparable to the supervised intensity prior
by using additional (untraced) CT data for intensity prior modeling. Results
demonstrate that initialization of organ location and shape becomes accurate
enough to estimate the intensity model in an unsupervised manner by using
OCG and prediction-based priors.

Among the eight analyzed organs, GB was the only organ for which the super-
vised intensity information was significantly useful. Even for GB, however, if CT
cholangiography data are used, in which the gallbladder contrast is enhanced,
our method may be adaptable while the conventional method needs a number
of manual traces to obtain additional supervised intensity information.
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In the proposed method, failures of liver segmentation affect the subsequent
prediction and segmentation of other organs. In non-contrast data, the prediction
and segmentation of GB failed when the segmented liver region was leaked into
GB. The low NCC of IM on GB was due to this leakage problem in addition to the
small size of GB. Although this problem also occurred in IVC, its segmentation
could be recovered using prediction-based priors.

Future work will include adding other abdominal organs, such as gastroin-
testinal tract, and the application to diseased organ segmentation.
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Personalized tumor growth model using clinical imaging data is valuable in tumor 
staging and therapy planning. In this paper, we build a patient specific tumor growth 
model based on longitudinal dual phase CT and FDG-PET. We propose a reaction-
advection-diffusion model integrating cancerous cell proliferation, infiltration, meta-
bolic rate and extracellular matrix biomechanical response. We then develop a 
scheme to bridge our model with multimodal radiologic images through intracellular 
volume fraction (ICVF) and Standardized Uptake Value (SUV). The model was eva-
luated by comparing the predicted tumors with the observed tumors in terms of aver-
age surface distance (ASD), root mean square difference (RMSD) of the ICVF map, the 
average ICVF difference (AICVFD) of tumor surface and the tumor relative volume 
difference (RVD) on six patients with pathologically confirmed pancreatic neuroendo-
crine tumors. The ASD between the predicted tumor and the reference tumor was 
2.5 0.7 mm, the RMSD was 4.3 0.6%, the AICVFD was 2.6 0.8%, and the RVD 
was 7.7 1.9%. 

1 Introduction 

Quantitatively characterizing the tumor spatial-temporal progression is valuable in 
staging tumor and designing optimal treatment strategies. Tumor growth not only 
relies on the properties of cancer cells, but also depends on dynamic interactions 
among cancer cells, and between cells and their constantly changing microenviron-
ment. The complexity of the cancer system motivates the study of the tumor growth 
using mathematical models [1] [2] [3]. Swanson et al. [1] assumed an infiltrative 
growth of the tumor cells, while considering differences in cell diffusion in white and 
gray matter. Clatz et al. [2] modeled locally anisotropic migration patterns by inte-
grating information from diffusion tensor images (DTI). Hogea et al. [3] included the 
mechanical properties of the lesion on surrounding structures to model mass effect. 

All these works use a reaction-diffusion model, originally introduced by Turing 
over 60 years ago, to study cell proliferation and infiltration. In this work, we will 
extend the reaction-diffusion model to incorporate cell metabolic rate based on the 
energy conservation law. The travelling front of the reaction-diffusion model offers 
the benefit that the model prediction (front) can be directly connected with the  
anatomical CT and MRI via the identifiable tumor boundary in the image. However, 
tumor boundary only provides limited tumor physiological information. In this paper, 
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we extract underlying tumor cell fraction in each image voxel using dual phase CT 
image and incorporate it into the growth model. 

In this paper, we target image driven patient specific tumor modeling using routine 
clinical CT and FDG-PET data. To bridge the gap between the model and the imaging 
data, we introduce energy conservation law into the modeling and developed a reac-
tion-advection-diffusion model to incorporate cell proliferation, infiltration, metabolic 
rate and mass effect. We further incorporate intracellular volume fraction (ICVF) de-
rived from dual phase CT data and glucose metabolic rate from FDG-PET (2-[18F] 
Fluoro-2-deoxyglucose positron emission tomography) to measure model physiologi-
cal parameters. 

We evaluate the proposed model on pancreatic neuroendocrine tumor. The only 
work on the pancreatic tumor modeling that we are aware of is [4], in which the  
authors used a compartment model to divide the cell population into three subpopula-
tions: primary tumor cells, metastasis-enabled cells and metastasized cells. The mi-
gration rate between subpopulations and the growth rate and death rate within each 
subpopulation were estimated based on autopsy data. In this paper, we focus on the 
way to combine routine clinical multimodal images to study the growth of the primary 
solid tumor. 

2 Method 

In this section, we first derive a reaction-advection-diffusion model incorporated with 
cell metabolic rate via energy conservation law, and then describe how to adapt the 
model to associate it with routine dual phase CT and FDG-PET. 

2.1 Tumor Growth Model 

According to the tumor logistical growth law presented in [1], the number of the  
newly created cells can be described by, 1  (1)

where  is the number of cells, a function of time .  is spatial-temporal invariant 
proliferation rate. This law describes that the tumor grows exponentially at the begin-
ning and then gradually slows down as approaching the carrying capacity  (N<K).  

As a tumor progresses, the parts with sufficient nutrients and oxygen grow faster, 
and those suffering vascular inefficiencies will develop into necrosis, suggesting a 
heterogeneous or spatial-temporal varying proliferation function , . The meta-
bolic energy conservation law presented by West et al. [5] quantitatively describes the 
relationship between the metabolic energy and the ontogenetic growth, providing the 
theoretical foundation to explore the heterogeneity of the proliferation rate. The ener-
gy conservation law states that the incoming energy  required for tumor growth is 
allocated to two parts,  

 (2)
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where the first term represents the energy to maintain the existing cells and the second 
term represents the energy to create new cells.  is the metabolic rate of a single cell, 
and  is the energy required to create a cell. Both  and  are assumed constant 

during tumor growth. Replace   in equation (2) with 1 ,  

1  (3)

The proliferation rate  in equation (3) is a function of time t. However, in clinical 
practice,  is only available at specific time points when  and  are measurable. 
Thus, we approximate  at time t between 0 and T through linear interpolation, 0 0     (4)

where B , ,  and  are the measured metabolic rate and cell numbers at time 0 

and , respectively. Apply model (1) to each voxel (millions of cells within 1 ) at 
position , and add a diffusion term as that in the reaction-diffusion model [1] to ac-
count for cancerous cell infiltration into surrounding tissues, leading to a reaction-
diffusion model, 1  (5)

where the first term is the diffusion term, and the second term is the reaction (prolifera-
tion) term.  is the diffusivity or infiltration rate. Equation (5) describes that the rate of 
cell number change equals the sum of the net dispersal of cancerous cells and the net 
proliferation of cancerous cells. Note that both  and  are a function of position   and 
time . The cell number at position  is not only affected by the proliferation and diffu-
sion (Brownian movement) but also affected by the underlying mechanical deformation 
(so-called mass effect), which is caused by the growing cells impacting on the extracel-
lular matrix. An advection term is added into model (5) to account for the tumor cells 
being displaced as a consequence of the underlying mechanical deformation [3], · 1    ·                                                               ·                                                                                                           

           

(6)

where the tumor cell drift velocity  depends on the displacement vector  induced by 
the balance between Cauchy stress tensor  and body force .  and  are unknown 
Lame’s coefficients in linear elasticity. The body force  originated from the growing 
cells is proportional to the local gradient of the tumor cell density, 

 (7)

where  is an unknown positive constant. 
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Model (6) allows the incorporation of cell metabolic rate and accounts for cell pro-
liferation, infiltration, metabolism and mass effect, but not directly connected to clini-
cal imaging data. We will further develop model (6) in the following two sections in 
order to associate the model parameters with measurements from CT and FDG-PET. 
The proposed model accounts for the cell metabolic rate and directly connects to rou-
tine CT and FDG-PET, which makes our model fundamentally novel and different 
from the model in [3].  

2.2 Associate the Model with Dual Phase CT 

Tissues within a voxel are considered to be made of three well known compartments: 
(1) a vascular space through which the blood flows; (2) an extravascular extracellular 
space (EES) which provides the supporting structure of the tissues; and (3) the cellular 
space. The extracellular volume fraction (ECVF) of the studied voxel at position  and 
time t can be estimated by equation (8) using dual phase CT [6], , , ,_ _ / 1.0  (8)

where the numerator is the HU enhancement brought by the contrast distributed in the 
extracellular space (EES plus vascular space) of the studied voxel, and the denomina-
tor is the HU enhancement brought by the contrast distributed in the whole space (EES 
plus vascular space plus cellular space) of the reference blood pool voxel. The ratio of 
the HU enhancement is a measure of the fraction of the extracellular space, i.e., ECVF 
because the HU enhancement is proportional to the volume of the space, in which the 
contrast reaches equilibrium.  and  are HU of the post-contrast CT image 
and the pre-contrast CT image, respectively. _  and _  are 
average HU of the blood pool of the post-contrast CT and pre-contrast CT, respective-
ly. The hematocrit  is the volume percentage (%) of red blood cells in blood, 
which varies from patient to patient, but can be measured by the blood sample.  

ECVF’s complement ICVF can be calculated by, , 1.0 ,  (9)

In equation (6), the cell number  is difficult to be directly measured by CT im-
age. We adapt the reaction-advection-diffusion equation by replacing ,  with ,  based on the assumption that all cells have similar volumes, 

· 1  (10)

where (replace  and  in (4) with  and , respectively) 

 (11)

where  and . Both parameters  and  have specific biological mean-
ings, representing the energy to maintain  cells and create  cells, respectively.  
Similarly, replacing  in (7) with  leads to . 
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2.3 Associate the Model with FDG-PET 

Normally, when the scanning time is longer than 45 min post-injection, the glucose 
metabolic rate  or  can be approximated by [7], 

100.0 · /· /100.0  (12)

where  is the glucose concentration in arterial plasma.  denotes the radioactive 
tracer FDG18 concentration in tissue at time  that is measurable from PET. k is a constant 

that is not dependent on the particular subject being studied. 
.· / . , a lumped 

unknown parameter. The numerator in (12) is widely used as standardized uptake value 
(SUV), which is proportional to  since both k and LC are constants [7].  

Replace    in equation (11) with  and , respectively, 

 (13)

where / , / .  
Equation (6) with its reaction-advection-diffusion equation replaced with equation 
(10) constitutes our proposed model (or state equations from an optimal control 
standpoint [8]). The proposed model constitutes the forward problem with unknown 
control parameter , , ,  , , , which can be estimated by fitting the model 
predicted ICVF  (a function of ) with the observed ICVF , ·  (14)

where the first term measures the degree of similarity, and the second term is Tikho-
nov regularization term to recover a locally unique solution close to a reference solu-
tion , , ,  , ,  defined as: 2.3 10 · · , 1.910 , 0. 13 / , 9310 ,  1034 , 200 . The refer-
ence solution was derived from literature and was just a rough estimation of the real 
solution. It is not necessary to be accurate since it is only used to define a region in 
which the real solution is located.   controls the balance of these two terms, which is 
obtained by a trial-and-error strategy. Functional (14) along with model (state) equa-
tions constitutes a coupled PDE-constrained optimization problem, which is solved by 
the one-shot method presented in [8]. 

3 Results 

To study tumor growth, we have developed a dedicated protocol spanning for several 
years to collect patients with pancreatic tumors. The desirable longitudinal data needs 
to satisfy the requirements: 1) the tumor should be big enough (volume > 20mm3) to 
allow us to ignore the error induced by segmentation and registration, 2) at least three 
time points and each time point includes both dual-phase CT and FDG-PET, and 3) 
without any treatments. Usually, a tumor will be surgically removed when it becomes 
sufficiently big. The contradictive requirements 1) and 3) lead to the difficulty to 
obtain desirable data.  
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We evaluate the proposed model by comparing the predicted ICFV and tumor with 
the measured ICVF and tumor at the 2nd follow-up. The predicted ICVF was produced 
by growing the ICVF (using model equation) from the 1st follow-up for the period 
between the 1st and 2nd follow-up with the parameters estimated from the longitudinal 
data at the baseline and the 1st follow-up. The predict tumor is an isosurface extracted 
from the predicted ICVF based on a threshold. Six patients with pathologically con-
firmed untreated pancreatic neuroendocrine tumors were enrolled in our experiment. 
Fig.1 shows the longitudinal post-contrast CT, fused PET/CT, estimated SUV map 
(with decay correction) and the ICVF maps (only the relative heterogeneous ICVF 
region is shown).   

 

Fig. 1. Longitudinal original and intermediate results. The rows correspond with baseline (T=0 
day), 1st follow-up (T=248 days), and 2nd follow-up (T=606 days) and the columns correspond 
with post-contrast CT, fused PET/CT, estimated SUV and ICVF maps. The white bounding 
box highlights the tumor. 

Fig.2 shows the comparison between the reference results of the 2nd follow-up and 
the prediction results of two patients. The first row demonstrates a similar distribution 
of the ICVF map between the reference and the prediction results for both two pa-
tients: cell number decreases from the center to the rim of the tumor. The predicted 
center region (blue) is more homogeneous than the reference part, which might be 
caused by the exclusion of the complex heterogeneous tumor microenvironment in 
our model. The comparison of the isocontours of the ICVF map is shown in the 
second row. The inner most contour shows larger discrepancy, but the outer contours 
agree well with each other, suggesting a more heterogeneous cell distribution in the 
center region of the reference tumor, which also can be observed in the gray scale 
ICVF (the last column of Fig.1). In the third row, we compare the ICVF on the surface 
of the segmented tumor in post-contrast CT of the 2nd follow-up. We focus on this 
surface because it is one that can be identified in the image data with our naked eyes. 
Both patients show similar ICVF distribution and the second patient demonstrated a 
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more homogeneous ICVF distribution on the tumor surface than the first patient. We 
assume the average ICVF on the tumor surface to be the threshold that defines the 
detectable tumor boundary, which makes sense since ICVF is a main factor affecting 
HU of CT. We use this threshold to extract the isosurface (predicted tumor) from the 
predicted ICVF map to compare with the segmented tumor in terms of average surface 
distance and relative volume difference.  

The quantitative evaluation regarding the root mean square difference (RMSD) of 
ICVF map, the average ICVF difference (AICVFD) of tumor surface, the average  
surface distance (ASD) between the predicted tumor surface and the segmented (refer-
ence) tumor surface, and the relative tumor volume difference (RVD, ratio of the vo-
lume difference and the volume of the reference volume) are listed in Table 1, in 
which the RMSD is 4.3 0.6%, the AICVFD is 2.6 0.8%, the ASD is 2.5 0.7 mm, 
and the RVD is 7.7 1.9%. The predicted ICVF value is slightly large, but the boun-
dary prediction (clinically relevant) is very promising with an average error around 
2.5mm. In fact, there is no work to compare with our work regarding ICVF because 
we are the first to introduce ICVF into the modeling. 

We conducted the global nonlinear non-monotonic sensitivity analysis using ex-
tended Fourier Amplitude Sensitivity Test (eFAST). Both the first order (Si) and total 
order (STi) sensitivity indexes show the biological parameters: ,  and  are consis-
tently higher than the three biomechanical parameters: ,  and , which suggests the  
biological parameters affect the ICVF more than the biomechanical parameters. In the 
biological parameters, the diffusion  is highest (Si=0.4206, STi=0.7422), probably 
disclosing the aggressive infiltration of the pancreatic tumor. In the biomechanical 
parameters,  and  dominate the explanation of the variation, which makes sense 
since these two parameters control the stiffness and incompressibility of the tissue. 

 

Fig. 2. Comparison between the reference (the 2nd follow-up) and the prediction of two patients 
regarding ICVF map, isocontour and ICVF of tumor surface 
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Table 1. Quantitative evaluation. ICVF ([min%, max%]), RMSD (%), AICVFD (%), ASD (mm), 
RVD (%).The value in the parenthesis of the ASD is the threshold to extract the predicted tumor 
from predicted ICVF map. 0.6. 

Id ICVF Predicted ICVF RMSD AICVFD ASD RVD 

1 [0,73] [0,81] 4.3 2.9 2.1(42.8) 8.3 
2 [0,75] [0,88] 5.2 2.4 2.5(38.1) 7.6 
3 [0,69] [0,65] 4.6 3.1 3.3(34.0) 10.4 
4 [0,75] [0,79] 3.7 1.2 3.1(41.5) 8.2 
5 [0,79] [0,77] 3.8 3.5 1.5(39.2) 4.5 
6 [0,66] [0,78] 4.1 2.2 2.4(32.2) 7.1 

[0,73 5] [0,81 4] 4.3 0.6 2.6 0.8 2.5 0.7 7.7 1.9 

4 Conclusions and Future Work 

In this paper, we presented a tumor growth model, which is characterized by incorpo-
rating cell metabolic rate into the reaction-diffusion model and being driven by rou-
tine clinical imaging data based on ICVF and SUV. The experiment on pancreatic 
neuroendocrine tumors demonstrated the promise of the proposed model. Other than 
the characteristics of tumor itself such as the aggressiveness measured by the meta-
bolic rate, tumor microenvironment is also essential for the tumor growth. In the fu-
ture, besides dual phase CT and FDG-PET, we will introduce DCE-MRI to measure 
vasculature/perfusion region and FMISO-PET to measure hypoxia region in order to 
capture some parts of the complex tumor microenvironment. 
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Abstract. Ogden type of hyperelastic constitutive law has recently emerged in 
modeling ventricular enlargement in hydrocephalic brain with finite element 
method, but this material property for brain tissue has not been investigated in a 
patient-specific setting in hydrocephalus. Consequently, the accuracy of the si-
mulated ventricular enlargement using this hyperelastic tissue property remains 
unknown. In this study, we evaluated this brain material model in four patients 
with communicating hydrocephalus under a small trans-mantle pressure differ-
ence (TPMD) between brain ventricle and subarachnoid space (<1mmHg).  
Based upon changes in ventricular geometries obtained with sequential MRI, 
we found that this hyper-elastic model has a great flexibility and accuracy in 
modeling ventricular enlargement (with errors less than 1mm).  Our study sup-
ports the utility of this hyperelastic constitutive law for future hydrocephalus 
modeling and suggests that the observed ventricular enlargement in these pa-
tients may be caused by a slight increase in TMPD. 

Keywords: Brain finite element modeling, Brain mechanics, Hydrocephalus, 
Hyper-elastic brain modeling, Finite element analysis, Ventricular enlargement. 

1 Introduction 

Hydrocephalus is defined as an active enlargement of brain ventricles caused by the 
impairment of cerebrospinal fluid (CSF) homeostasis. CSF is mainly produced by the 
choroid plexus in the lateral and third ventricles. After flowing into the fourth ven-
tricle through aqueduct of Sylvius, CSF is reabsorbed in the subarachnoid space 
(SAS) through arachnoid granulations in the sagittal sinus. Hydrocephalus is referred 
to as communicating hydrocephalus when no apparent obstruction is presented within 
the brain ventricular system [1].   

Finite element method (FEM) based simulation of brain ventricle enlargement started 
with a biphasic model for brain tissue. Nagashima et al employed Biot’s consolidation 
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theory to model brain tissue as a biphasic poroelastic medium in 2D, and demonstrated 
that increased hydraulic conductivity may lead to periventricular CSF edema. The 
transmantle pressure difference between ventricle and SAS (TMPD) applied to the  
ventricular wall was 20mmHg [2]. Pena et al demonstrated that distribution of periven-
tricular edema in acute hydrocephalus is highly related to not only the increased  
intra-ventricular pressure, but also the natural geometry of the ventricle [3].  Clatz et al 
combined the biphasic brain tissue model with a scalar model of CSF production-
resorption cycle and used Monroe-Kellie assumption (the total volume of brain, CSF 
and blood is a constant due to the confinement of skull) to simulate the interaction be-
tween brain tissue and CSF production under the assumption of infinitesimal deforma-
tion [4]. As pointed out in [5], these works have limitations by using both linear elastic 
tissue property and linear geometrical analysis. More recently, Momjian and Bichsel 
introduced nonlinearity to this poroelastic model in 2D by varying the Young’s modulus 
as a function of local parenchymal void ratio and relaxing the internal stress [6].  

Different from the previously discussed biphasic tissue model, through testing por-
cine brain tissue, Miller et al have found that brain tissue deforms like a hyperelastic 
material with a linear viscoelasticity [7, 8].  Due to the large time scale considered 
for ventricular enlargement, this model was simplified to an Ogden type of hyperelas-
tic constitutive law and was first applied to simulate ventricular enlargement in hy-
drocephalus by Taylor and Miller [9].  Based upon this hyperelastic model, they 
suggested that the modulus in previous biphasic modeling of hydrocephalus may be 
too high, and a considerably lower modulus value of approximately 584Pa should be 
used [9].  In addition, based upon generic brain geometry, Dutta-Roy et al demon-
strated that the Biot’s consolidation theory based biphasic brain tissue model is not 
advantageous when compared to the hyperelastic model in simulating ventricular 
enlargement [5].  In this work, this hyperelastic model will be further evaluated in 
terms of deformation capability and accuracy in modeling ventricular enlargement in 
a patient-specific setting. 

As pointed out in [10], one important limitation in current FEM-based numerical 
analyses in hydrocephalus is the lack of quantitative comparison between the  
FEM simulation and the actual patient-specific anatomical changes caused by hydro-
cephalus, which provides a critical feedback for us to gain more insights into brain 
mechanics in hydrocephalus.  To address this limitation, we performed patient-
specific geometrical modeling of ventricle enlargement using FEM simulation and the 
accuracy of the simulated deformation was assessed by using the same patient’s se-
quential MRI as the ground truth.  In particular, we sought to determine whether 
FEM simulation with this hyperelastic model using the parameters as in [5] can model 
the ventricular enlargement accurately especially under a small pressure loading. To 
the best of our knowledge, our study is the first 3D nonlinear FEM analysis of ventri-
cular enlargement in hydrocephalus in a patient-specific setting. 

2 Methods 

2.1 Image Acquisition and Preprocessing 

This is an institution review board (IRB) approved study and written consents were 
obtained prior to image acquisition.  We included four patients with communicating 
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hydrocephalus caused by lysosomal storage disorder. In these patients, ventricular 
enlargement is a chronic process developed in years. The T1 weighted images of 
these four patients were acquired 24 months, 28months, 17months, and 57months 
apart, respectively. No treatment was administrated for these patients. The T1 
weighted images from the later scans were registered onto the same patient’s initial 
scan using the linear registration in FSL toolkit [11]. Ventricular segmentation was 
performed with an atlas based approach and manual editing was performed when mis-
segmentation occurred with the altered T1 intensity due to the disease. The brain  
supporting structures including falx cerebri and tentorium cerebelli were manually 
delineated due to their low image contrast in T1. Tetrahedral meshes were generated 
using the segmented brain images with a constrained Delaunay process [12]. 

2.2 Biomechanical Modeling 

The hyperelastic material model for the brain was originally proposed by Miller et al 
as a linear viscoelastic material to account for the nonlinear and strain rate dependent 
behavior of brain tissue during deformation [7, 8].  Due to the large time scale consi-
dered for ventricular enlargement, this model was simplified to an Ogden type of 
hyerpelastic model assuming a potential quasi-static loading with zero strain rate [5]. 
The hyperelastic constitutive law for brain parenchyma is given as: 2μ/ 1 ,                         (1) 

where W is the potential function; λis are the principle stretches, µ is the initial shear 
modulus (155.77Pa) and α is a material constant (-4.7) [5, 9].  Jel is the elastic volume 
ratio and D is a material coefficient inversely related to the initial bulk modulus.  
Effectively, this model has only three parameters including µ, a, and D, and λis and Jel 
are computed from nodal displacements. Poisson’s ratio (PR) is computed as 6/μ 2 / 12/ μ 2 .  Previously, Dutta-Roy et al have chosen PR as 0.35, 
0.49 and 0.5 representing brain tissue as compressible, nearly incompressible, and 
fully incompressible materials [5]. It should be noted that even though we use a very 
fine mesh, potential locking may exist when the PR approximates 0.5. We varied PR 
in a range of [0.35, 0.49] at a step size of 0.02 for all the four patients. The rigid sup-
porting structures including falx cerebri and tentorium cerebelli were modeled as 
isotropic elastic material with a Young’s modulus of 3.15*107Pa and a PR of 0.45 
[13].  It is also worth pointing out that our study is the first to consider these support-
ing structures in hydrocephalus modeling even though the Young’s modulus of these 
supporting structures is approximately 105 times higher than the initial Young’s mod-
ulus of the hyperelastic brain tissue model (~584Pa). 

We have applied both large (~10mmHg) and small pressure loadings (<1 mmHg) 
to the ventricular wall in FEM simulation.  The large pressure loading is used to eva-
luate the capability of this hyperelastic constitutive law in modeling large deformation 
in patient-specific geometrical setting.    

Even though all current FEM-based studies in hydrocephalus load the model with 
an assumed TMPD [2-6, 9], intriguingly, several experimental studies (including both 
patient and animal studies) did not detect such a pressure difference [14-16].  
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These results suggest that the assumed TMPDs (~20mmHg) in previous FEM studies 
[2, 3] were too high and their FEM models may not truly represent in-vivo biological 
conditions.  In our study, we assume that the maximal TMPD applied to the ventricu-
lar wall is with 1mmHg (133.47Pa) as that in [5], and such a small TMPD is expected 
to be within the experimental variations in [14-16].  We also varied TMPD in the 
range of 0.1–1 mmHg (with a step size of 0.1 mmHg) jointly with different PRs dis-
cussed previously.   

Two types of brain-skull boundary conditions have been used in previous hydroce-
phalus modeling studies. The majority employed the Dirichlet boundary condition by 
fixing brain mesh surface nodes in all degrees-of-freedom [2-4, 6, 9]. The only excep-
tion is a nonlinear boundary condition constraining the brain surface nodes on the 
bottom while allowing the remainder to move within the cranial cavity as an arbitrary 
3mm gap between brain and skull [17]. This boundary condition was originally de-
signed to account for brain shift due to the loss of CSF upon craniotomy for brain 
tumor resection. Since all subjects in this study had an intact skull, we employed the 
Dirichlet boundary condition accordingly. 

2.3 Evaluation of Simulation Accuracy 

The distance from one node in the simulated ventricular surface to the ground truth 
geometry (the ventricular surface from the later scan) was defined as the minimal 
distance from this node to all the triangular patches consisting of the ground truth 
ventricle (Eq. [2]).  

          min dist ,  ,                        (2) 

where D(i) is the shortest distance from node i on the simulated ventricular surface to 
all the triangular patches (Tri) on the ground truth ventricle from the later MRI.  M is 
the total number of nodes in the simulated ventricular surface and N represents the 
total number of triangular patches on the ground truth ventricle.  We further compute 
the weighted sum of D(i) from all the nodes as a measure of error of the simulation 
(Eq. (3)).  The weight for one node was computed as the ratio of 1/3 of the total area 
of all the neighboring triangular patches over the total area of the entire simulated 
ventricular surface (Eq. (3)).  The purpose is to account for the area differences of the 
triangular patches after mesh is deformed.  ∑ 1/3 ∑⁄ ; ∑               (3)                           

Ni is the number of neighboring patches to node i, and Areaj is the area of the triangular 
patch j on the surface.  For reference, the same measure was also computed between 
the initial and the ground truth ventricles of the same patient (referred to as Dinit). 

3 Results 

3.1 Deformation Capability of Hyperelastic Modeling 

The registered images from the later scans to the initial scans are given in Fig. 1 for 
all four patients. The rendered ventricular surfaces from patient1 are given for the initial 
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4 Conclusions 

Our initial experience with the hyperelastic modeling supports its future application in 
investigating hydrocephalus. We have demonstrated that with the previously sug-
gested parameters, this model is not only able to approximate the deformation ob-
served in these four patients with high accuracy (less than 1mm in error), but also 
flexbile enough to achieve large deformations even under a large TMPD in line with 
previous experimental reports (4.0±3.6mmHg [18]).   

Our results suggest that the investigation of the mechanical factors in communicat-
ing hydrocephalus may warrant the investigation of the existence of a small TMPD, 
which may be able to explain the controversies among some of the previous hydroce-
phalus studies.  For instance, the existence of TMPD in hydrocephalic patients with 
ventricular enlargement has been reported in [18, 20] but not in [14-16].  We specu-
late that such a small TMPD as in communicating hydrocephalus may not be readily 
detected in these experiments due to instrumental variations.   

Limitations in our study are noted. Measurements of TMPD and tissue property in 
these patients were not conducted due to the invasive nature of the involved proce-
dures. Evidence from magnetic resonance elastography suggests that hydrocephalic 
brain tissue may be more compliant due to the weakened mechanical structures [21, 
22]. If this is the case for our patients, even though we may have underestimated the 
ventricular enlargement under the same TMPD, the major conclusion that a small 
TMPD may leads to ventricular dilation in these patients remains to be true.  Due to 
the same limitation, we did not consider the potential temporal changes and spatial 
inhomogeneity of brain tissue property. We varied Poisson’s ratio to account for devi-
ation from the originally proposed model parameters. At last, in the initial scans of 
these patients, brain tissue may have already been strained due to ventricular en-
largement and our analysis may not start from an ideal tension-free setting.   
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Abstract. We present a method to simulate the outcome of reconstruc-
tive facial surgery based on fat-filling. Facial anatomy is complex: the fat
is constrained between layers of tissues which behave as walls along the
face; in addition, connective tissues that are present between these dif-
ferent layers also influence the fat-filling procedure. To simulate the end
result, we propose a method which couples a 2.5D Eulerian fluid model
for the fat and a finite element model for the soft tissues. The two models
are coupled using the computation of the mechanical compliance matrix.
Two contributions are presented in this paper: a solver for fluids which
couples properties of solid tissues and fluid pressure, and an application
of this solver to fat-filling surgery procedure simulation.

Keywords: Simulation, fluid-solid interaction, reconstructive surgery.

1 Introduction

The Parry-Romberg syndrome is a progressive hemifacial atrophy. It is due to
disorders of central nervous system and is characterized by a degeneration of
tissues beneath the skin. The syndrome affects generally one side of the face
and distorts the nose and the mouth. Causes are still unknown, an autoimmune
mechanism is suspected. The reconstructive surgery is the only way to restore
the face with the adding of fat. In addition, there are less severe cases of facial
dystrophy due to side effect of drugs or insulin-resistance for which drug solutions
are not considered sufficient compared with reconstructive surgery [1].

The fat-filling procedure consists of injecting fat in subcutaneous areas. The
main literature concerning about the fat-filling surgery are the result analyses of
the operation. Surgeons test different methods of injection, or different products,
and they compare measures before the operation, short-term and long-term to
define the viability of their method [2]. As it is difficult to predict the results,
most of the time surgeons rely on their experience to plan the operation and
calculate the required volume of fat. So the surgeon must become familiar with
the possible depths of injection (subdermal, intramuscular, supraperiosteal), and
the amounts of fat to get the desired change [3].

The facial anatomy is complex: there are many layers of tissues (skin, Surper-
ficial Musculo-Aponeurotic System ...) with different properties [4]. Futhermore,
ligaments, nerves and blood vessels connect the layers, change the stiffness of
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tissues and create obstacles for injected fat. Each patient has a particular anatomy,
and surgeons may need help planning difficult cases.

The long-term aim of this project is to use simulation and patient specific data
to predict the behavior of injected fat under the skin. So the anatomy needs to
be modelized realistically [5] to understand the role of each element.

The model presented in this paper is an 2.5D eulerian fluid. The fluid is
injected between two layers of tissues, moves along a curved surface and has a
thickness. The fluid solver uses the compliance properties of the solid to calculate
the pressure of fluid. This pressure acts to surfaces and deforms solids.

2 Related Works

In simulation, while we can find a large amount of works about breast augmenta-
tion, it mainly concerns implants [6] and not the fat injection. The aim of these
works consists to plan the surgery operation, finds the best implant and predicts
the result. These works use the finite element method to simulate deformable
tissues. The reconstruction of facial atrophy may use computed-assisted lipofill-
ing [7], it only considers the volume difference of fat between the original model
and the wished result.

The simulation of fluid-structure coupling is often particularly challenging.
Each problem depends on the aim of the simulation, on the required precision
and on the available data. The coupling method often needs to be adapted.

In gynaecology, Karry [8] describes a model with viscous fluid between soft
tissues. It concerns a microbicide gel injected in the vagina to analyze the repar-
tition of gel due to the pressure of membranes. This model is composed of a
viscous fluid between two deformable solids. However, the proposed model is
restricted to the simple case of an homogeneous solid.

Lagrangian particle-based methods allow to describe volume of solid and fluid
as particles and generate repulsive forces among particles [9]. Solenhaler et al. [10]
fixes the problem of incompressibility, but introduces a costly iterative scheme.

Eulerian models have inherent difficulties to resolve moving domain bound-
aries. Moreover, the method needs to avoid fluid loss and to correctly transfer
forces between fluid and solid. Klingner [11] defines the topology of the domain
at each step-time and handles accurately the behaviour of boundaries. Other
methods handle moving boundaries within an Eulerian grid by modeling partly
filled cells [12–14].

3 Fluid-Solid Model

The fat flows along a surface between two layers of tissues. In this model the
fat is considered as a fluid and tissues are represented by deformable solids. The
purpose of this section is to describe the fluid-solid coupling.
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3.1 Fluid Model

The fluid model needs to be physically realistic and stable to simulate fluid
between two deformable surfaces. The base of the method is described in [15]: it
is an Eulerian fluid model which consists of a velocity field and a pressure field.
The domain of the surface is in the form of a staggered grid representation [16].
Further, the surface is curved, the model uses a distortion matrix to adapt data
(velocities and pressure) from facial topology to unitary cells [17]. We extend
the model to add a fluid height field and take it into account in all equations to
obtain a 2.5D formulation.

The method considers a succession of four operations: computation of external
forces, the diffusion to simulate viscosity, the advection for turbulence and the
projection to force fluid incompressibility. Regarding fluid-solid interactions, it
is important to detail the projection mechanism.

The projection step allows the input fluxes in a cell to be equal to the output
fluxes. So there is neither surplus nor loss of matter. At the beginning of the
step the error between input flux and output flux is computed (eq.1). The error
is named divergence D and is the sum of flux around the cell. The flux is the
velocity uedge multiplied by the area Aedge between adjacent cells.

Dcell =
∑
edge

Aedgeuedge(t) (1)

The pressure is a scalar field of values defined within each cell. It creates an
additional flux proportional to the pressure differences between adjacent cells.
For an incompressible fluid, the pressure can be computed as the solution en-
abling the divergence of the resulting velocity field to be zero, i.e. the divergence
of the fluxes introduced by difference of pressure within a cell Pcell and in an
adjacent cell Padj should counterbalance the initial cell divergences:

Dcell =
∑
edge

Aedge (Pcell − Padj) (2)

By gathering the equations of all cells, we obtain a matrix system of the form:

d = Jp (3)

Where d is a vector with the divergence values Dcell, p is a vector which contains
pressure values P , and J is the assembling matrix which includes area coefficients
Aedge.

3.2 Deformable Solid

Good visual results can be obtained with discrete approaches (like spring-mass
or particles) that are very fast to compute but not physics-based. On the other
hand, numerical solutions, like the finite element method, allow to integrate
accurately the constitutive law (strain/stress relation) of the deformable solid.
The computation cost of such methods could be highly reduced when using
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corotational strain measure [18] which is valid for deformations with large trans-
formation (displacement and rotation).

This formulation gives the possibility to compute the compliance matrix (in-
verse of the matrix of the dynamic system) which have a pivotal role in the in-
teraction calculation [19]. Equation (eq.4) describes the dynamic of a non-linear
deformable object with external constraints applied :

Mv̇ = fext − F(q, v) +HTλ (4)

where M is mass matrix, q and v are the position and velocity vectors. F is
a function which describes the internal visco-elastic forces. fext is the external
forces such as the gravity. λ is a vector of applied constraints forces, multiplied
by a constraint space to mechanical space correspondence matrix HT .

The constraints are given as a set of (in)equations :

δ =

[
H

(
M

h2
+
dF

hdv
+
dF

dq

)
︸ ︷︷ ︸

K−1

HT

]
λ (5)

δ corresponds to the desired constraint displacements and K−1, the inverse of
matrix K which is homogeneous to stiffness matrix, is called the compliance
matrix. So, (eq. 5) corresponds to the displacement of the fluid-solid interface
due to forces applied on the object.

3.3 Fluid-Solid Coupling

We combine the above models to create a coupled system. The interactions
between the fluid and the solid are handled by combining the fluid pressure and
mechanical constraints equations.

From the point a view of the fluid, any motion of the solid which introduces
height variations δh changes the incompressibility pressure equation (eq.3) into:

Jp+Aδh = d (6)

A is the matrix containing area coefficients converting height displacements to
volumes. The height variation is a modification of the thickness of the fluid
per time-step due to the pressure of the fluid on the solid. This volume change
corresponds to having a flow normal to the surface of the cell. This flow is added
to the divergence to compute the pressure.

From the point of view of the deformable solid, the coupling is considered as
a set of constraints pushing on the surface exposed to the pressure of the fluid:

λ = ATp (7)

Combining with (eq.5), we obtain:

δh = HK−1HTλ (8)
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H is a matrix which adapts forces applied on the fluid-solid interface to the solid.
That is to say, the fluid interface and the solid may have different topologies.
Next, we merge (eq.7) and (eq.8) with the pressure equation (eq.6) :

Jp+
(
AHK−1HTAT

)︸ ︷︷ ︸
C

p = d (9)

C is a compliance expressed in the volume/pressure space. As the fluid is a closed
domain, the above equation can be difficult to solve. To avoid this problem, we
use numerical regularization and reinforcement of the diagonal of the matrix by
replacing C with a regularization matrix R whose diagonal is the sum of all
contributions of volume displacement on the domain (N cells) by a pressure on
the considered cell i:

Ri,i =

N∑
j=1

Ci,j (10)

(J+R)p = d (11)

The model allows to calculate pressure using fluid data and solid data. By in-
troducing the matrix R, we have the volume changes of the fluid-film domain
when applying pressure on the deformable walls. The role of this matrix is to
provide some improvements to the numerical level: it essentially stabilizes the
system and helps the convergence of the system. Thus, when solving this equa-
tion, we guaranty the incompressibility of the fluid. Finally, the pressures are
transformed to forces to affect the motion of the deformable tissues.

4 Results

4.1 Simple Square

We first tested the behavior of our model on a square domain, where the fluid
is placed between a rigid solid and a deformable solid. The simulation starts
with an tunnel-like fluid volume in the center. The displacement over time of
the fluid-solid surface is given in Fig.1. It shows a convergence of results with the
use of different time-steps and mesh resolutions. The third graph corresponds to
simulations with different stiffness. The simulations shows the coherence of the
mathematical model: wherther spatial, temporal, respect of fluid incompressibil-
ity or general behavior.

4.2 Facial Fat-Filling

To validate our simulation on actual patient data, we start with a geometrical
mesh of part of the face around the jaw. This three-dimensional mesh is obtained
by laser scan of the skin of the patient’s face. The surface mesh is then extruded
and three layers of different tissues (skin, subcutaneous and SMAS1.) are created

1 Superficial Muscular Aponeurotic System
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Fig. 1. Test simulation with a simple square (bottom layer: rigid ; top layer: de-
formable). The graphs show simulation results with different time-step, resolution and
rigidity (Young’s Modulus); curves represent the height of fluid over time of a point at
the center of the square.

as hexahedral meshes. These meshes support a finite element computation of
the tissue deformation, where the constitutive law is based on geometrically
non linear elasticity (large displacements, small strains). Mechanical parameters
(Young’s modulus) of each layer is derived from data available in the literature:
muscle 0.5 MPa [20], skin between 0.09 MPa [22] and 0.5 MPa [21]. The fat may
be injected between any of the two layers. Adding fat near the skin modifies
locally the shape of the cheek and adding fat near the SMAS corrects more
globally the shape. Each layer is attached to one another by constraints to create
zones separated by ligaments or walls.

The simulation illustrated in Fig.2 is composed of two layers of tissues (muscle
and skin) and we inject fat to fill two zones: at the masseter and at the angle of
inferior maxillary, corresponding to a good part of what was performed during
the actual surgery. The simulated fat injection deforms the tissues based on
the fluid pressure and tissue stiffness, it generates a change in the shape of the
cheek. Then we compared the result of the simulation to the actual shape of the
patient after surgery. Fig.2 shows the resulting deformation and the comparison.
Although some differences exist between our results of the simulated fat-filling
and the surgical outcome, the deformations are similar and the behaviour of
model provides realistic results.

4.3 Performance Measurements

The time-step used in the above simulations is 10 ms. The computation time
for each step is 0.6 seconds on average. Obtaining the compliance matrix C is
currently the most expensive operation, because it involves the inverse of the
matrix K whose size is proportional to the number of nodes of the deformable
model (1244 hehahedrons compose each layer and 220 cells for the fluid).
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Fig. 2. Simulation with patient-specific data. The patient is suffering from Parry-
Romberg syndrome. The blue zone is the simulated side. At the left, the patient before
operation and the patient with simulated injection. At the right, is the Hausdorff dis-
tance with the result of surgical operation.

5 Conclusion

We presented a simulation method for fat-filling surgery procedure, based on
a fluid-solid coupling interaction model. This model can take into account the
variation in stiffness due to each patient anatomy.

Further works could be investigated in three areas : improving computational
speed, handling large fluid viscosity, and using better ligament model and more
generally a better knowledge of the anatomy. The computation speed could be
significantly improved by optimizing the inversion of the mechanical stiffness
matrix, or using one of several possible approximation methods. Fat is a really
material in-between fluid and solid, but visco-elastic properties are not included
in the fluid model. Afterwards, the model of tissue is constituted of layers which
are constrained at many points to simulate obstacles. The constraints do not
use properties of ligaments and should be more elastic. In addition, the tissue
layers currently have a uniform thickness. The use of more accurate description
of tissues should provide more realistic tissue behaviors.
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Abstract. Genital prolapse is a pathologic hyper-mobility of the organs
that forms the pelvic system. Although this is common condition, the
pathophysiology of this disorder is not well known. In order to improve
the understanding of its origins, we recreate - virtually - this biomechan-
ical pathology using numerical simulation. The approach builds on a fi-
nite element model with parameters measured on several fresh cadavers.
The meshes are created from a MRI of a healthy woman and the sim-
ulation includes the mechanical interactions between organs (contacts,
ligaments, adhesion...). The model is validated through comparison of
functional mobilities of the pelvic system observed on a dynamic MRI.
We then propose to modify, step by step, the model and its parameters
to produce a pathologic situation and have a better understanding of the
process. It is not a formal proof but the numerical experiments reinforce
the clinical hypothesis on the multifactorial origins of the pathology.

1 Introduction

Genital prolapse is a pathologic hyper-mobility of the pelvic system’s organs. It
induces a strong discomfort and incontinence. This pathology affects one third
of women, whatever the age [1] and more than 60% of women older than 60 [2].
To improve quality of life, surgical treatments exist with an intervention rate of
12 % at the age of 80. Unfortunately, these interventions have a failure of 30 %
independently of the surgical technic. The main reason of these failures relates
to the complex and multifactorial physiopathology of the prolapse which is still
not perfectly understood.

In order to better understand the physiological mobilities and to improve the
surgical technics, several works have started to model the pelvic system. For
instance, an important work on tissue characterization has been leaded, using
destructive methods [3][4]. Other work address the problem of the evolution of
soft connective tissue characteristics with respect to the age and/or the pathology
[4] [5]. These results provide a range of tissue properties and evolution for several
structures that can possibly be compared. But they can not provide a global
understanding of the respective contribution of each element on the deformations
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of pelvic organs. Some previous work present FEM based models of the pelvic
system. For instance, FEM model is used to simulate the bladder filling [7]. In
[8], bladder filling is used to get the material properties by inverse simulation.
In [9] a FEM approach completed by characterization measurements provides
a first FEM model dedicated to pelvic system mobilities. In [11], the work is
completed by a study of the ligaments modeling. The problem of modeling the
interactions between the pelvic organ is faced in [6] but the solution is only 2D.

In this paper, we build on these works to provide a complete 3D FEM sim-
ulation with a wide variety of boundary conditions (contacts with friction, role
of ligaments, adhesion and fixations), in order to reproduce the healthy pelvic
mobilities that are validated with a dynamic MRI. But the main contribution
of this work is to use and degrade the FEM model till progressively reaching a
simulation of pathological cases. The topology of the ligament support system
is also modified while carefully relying on anatomical and clinical references. We
then compare the mobilities obtained in simulation to the ones observed clini-
cally. Finally, the pathologic example of cystocele illustrates how this simulation
tool provides new evidence on the phenomena at the origin of the disease.

2 Bio-mechanical Model of the Pelvic System

In order to build the FEM simulation of the pelvic system mobilities, it is nec-
essary to have a geometrical model of the anatomy, the mechanical properties
of tissues and a good modeling and numerical tools for the boundary conditions
(attachments, loadings, contacts, etc.). This section describes how the physics-
based model of pelvic system mobilities is obtained.

Geometrical Model. The geometry of the key structures of the pelvic system
is obtained from segmentation of MR images of voluntary healthy women. The
images are segmented to get the geometrical contours. The image is taken while
the bladder is full in order to have a good contrast on the image. For the vagina
and the rectum, a gel is inserted in order to increase the contrast. From the data
we get also the contour of the uterus and the bony pelvis. However, the MRI
does not provide enough signal for the segmentation of the ligament system of
the pelvic floor. Its geometry was reconstructed according to anatomical data,
available in the literature [12].

Fig. 1. Geometric model construction: contour segmentation
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Fig. 2. Protocol and experimental set-up for the mechanical characterization of soft
tissues. The samples are cut using a punch (left). Their geometry was defined in order
to obtain a homogeneous deformation.

Mechanical Properties of Soft-Tissues. Experimental measurements were con-
ducted in order to estimate the mechanical properties of the tissues that form the
pelvic system. The protocol used for ex vivo characterization has been carefully
built (control of hygrometry of the tissue, body temperature, rate of deformation
for visco-elasticity, etc.) [9] [10]. A portable uniaxial traction machine (see Fig-
ure 2) was developed and used in order to do the experiments at the morgue, on
18 fresh cadavers (without pathology) with a mean age of 75. Several mechanical
tests were realized on each cadaver (2 to 3 per organ) which makes a total of more
than 300 tests. These tests are completed by measurements on pathologic tissues
(see section 3) for a total of up to 2000 tests. Biaxial tension tests have been con-
sidered but would require too large samples for the considered organs (with our
machine: 9cm x 9cm). Moreover, our experimental results reveal that there is no
statistical evidences of anisotropy for pelvic soft tissues. In our measurements, if
we sort the organs according to their stiffness, the order is always the same. The
vagina is the organ made of the stiffer tissue, whereas the rectum and the bladder
are softer. Even if the dispersion is important between cadavers, we can define -
statistically - average mechanical properties for each organs if we define classes
of population related to age and nulliparous or not. The following table provides
the mechanical properties used for the tissues to build the healthy model:

Anatomical structure

Young Modulus

median (interquartile range) Thickness/Diameter(mm)

Rectum 0,54 (0.66) MPa 3
Vagina 0,67 (2,22) MPa 4
Bladder 0,24 (1.5) MPa 3
Pelvic floor (quantitative data) 3 MPa 10
Uterosacral Ligament 0,78 (1.98) MPa 8
Round Ligament 1,32 (1.08) MPa 4
Large Ligament 2.22 (4.5) MPa 4

For the simulation, we use the Finite Element code available in SOFA [13]. The
organs of the pelvic system are mostly hollow, so for modeling their deformation,
we use triangular elements based on shell theory (both membrane and bending
energies are modeled). Due to its high rigidity, the uterus is modeled as a rigid
body. For modeling the ligaments, series of beam elements are used. The tissues
are considered as almost incompressible due to their high level of water content.
Thus we use a Poisson ratio of 0.45 for deformable shells.
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Boundary Conditions. At this stage, the model includes the organ geometry and
their mechanical properties, but the boundary conditions play a central role in
the resulting mobilities. The suspension and the support systems of the organ
are needed, as well as the modeling of the interactions between the organs.

For the ligaments, the literature often highlights the role of the round, large
and uterosacral ligaments. This is in line with our observations during the dis-
section and measuring programs on cadavers. But, to obtain better results on
the mobilities, we have also modeled some existing ligaments that are less doc-
umented: paravaginal and umbilical. The role of the paravaginal ligament is
fundamental to limit the retroversion of the uterus and the umbilical ligament
limits the mobility at the top of the bladder. The figure 3 presents two views on
the models with the organs that are modeled and the ligaments.

The analysis of the displacement field of a dynamic MRI shows that there
is two zones where the organs are fixed: where the bladder is in contact with
the pubis, and where the rectum is in contact with the sacrum. These adhesions
are modeled using fixed boundary conditions on the models. Finally, in order to
model the mechanical interactions between the organs and reproduce the role
played by the facias, we use a friction contact model, as proposed in 2D in [6].
The model relies on Signorini conditions and Coulomb friction law and leads
to complex non-smooth dissipative behaviors. We benefit from the numerical
treatment of such unilateral contact constraints that is provided by SOFA [13].

Fig. 3. Complete model of the pelvic system: the four organs, the pelvic floor, the
umbilical ligament and the four symmetric pairs of ligaments: round, paravaginal, large
and uterosacral

Validation for Healthy Tissues. The figure 4 shows a comparison between the
displacement that are measured by dynamic MRI of a healthy woman. The dis-
placements are obtained when simulating a push effort. The data in [12] indicates
that such effort can be modeled by a pressure P, in the order of 10 MPa, oriented
at a 45 degree angle. This is a strong hypothesis that is very difficult to verify,
yet the difference between the measured displacements and simulated ones is less
than 1 cm while the maximal displacements is more than 10 cm.
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Fig. 4. The displacements of the organs are measured on a dynamic MRI to validate
the displacements obtained by FEM simulation on healthy woman

3 Simulation of the Multi-factorial Origins of Pathologies

According to mechanical studies, pelvic sagging pathologies are mostly due to the
elongation of the ligaments but other factors like the change of tissues properties,
and the degradation of the fascias are also mentioned. However, in real life, it
is impossible to evaluate separately the impact of each of these factors. Yet it
is a relevant information for reparative surgery. In this work, we propose a first
answer based on a set of numerical experiences, on the healthy biomechanical
model of the pelvic system. These experiences illustrate the role that the different
factors can play in the pathology.

The Role of Ligaments. For obtaining healthy physiological mobilities, we have
placed, modeled and use several ligaments. If we refer to anatomical books,
and in particular to comparative anatomy [14], it can be seen that all female
mammals have round, large, paravaginal and umbilical but only biped mammal
have uterosacral ligaments. In order to understand the reason, we have realized
some simulation in which the direction of the gravity changes compared to the
body axis. Figure 5 shows the force exerted on the ligaments compared to the
direction of gravity: it highlights the role of the ligaments according to the body
angle.

Fig. 5. Forces in the ligaments according to different position of the body. Calculated
by simulation.
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Fig. 6. Left: Dynamic MRI of a cystocele pathology, Right Dynamic MRI of healthy
tissues. The motion of the bladder is completely different.

These simulations allow to confirm that in the lifted position (θ < 35o) the
uterosacral ligaments play a predominant role, while in a lying position, the
contribution of the paravaginal and umbilical ligaments is crucial. These results
allow to understand why important work published in pelvic surgery studies
consider empirically, that the uterosacral ligaments play a key role on the pelvic
mobilities.

Modeling the Prolapse Pathology. The following simulations consist in degrading
progressively the healthy physiological model in order recreate, artificially, a
frequent pathological mobility: the cystocele. The cystocele is a pathology that
leads abnormally important motion of the bladder that can lead to an important
sagging of the vagina and the bladder and to incontinence problems. Figure 6
(left) shows a MRI issued from a dynamic sequence in the sagittal plane in the
case of a cystocele pathology. During the push effort, the bladder undergoes
an important displacement and tends to move out of the body. This pathologic
mobility can be compared with healthy mobilities during the same effort (Figure
6 right).

In order to identify the role of each element in the pathology, we intention-
ally degrade the functional healthy model in order to reproduce the pathologic
motion of the bladder. Several steps were used to degrade the model. We con-
ducted additional experimental measures of characterization using biological tis-
sues taken during prolapse surgeries (issued from about 40 patients) and also

Fig. 7. Comparison of the mechanical behavior of vagina tissues of cadaver, with and
without genital prolapse - Simulation obtained using pathologic constitutive law
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Fig. 8. Simulation of the elongation of the ligaments (left), elongation of ligaments and
degradation of fascia between bladder and pubic bone

on 5 pathologic fresh cadavers (approximatively the same age than the non-
pathologic ones). These experiments highlight the discrepancies in the charac-
teristics of pathological and healthy tissues. Paradoxically, contrary to what we
might expect, the pathologic tissues are often stiffer than the healthy ones (see
Figure 7 left).The simulation of the mobilities while using the properties of the
pathologic tissues is not sufficient to reproduce a cystocele by simulation (Figure
7 right).

It is often considered that the cystocele is due to an elongation of ligaments,
induced by micro damages cumulated through the years. We progressively aug-
ment the length of the uterosacral ligament in order to get, on the biomechanical
model, the same level of displacement that are observed for the cervix on patho-
logical data. We obtain an increasing of the length of about 10%. However, we
notice that the mobilities are not sufficient to re-create, by simulation, a cysto-
cele. We then applied successively the 10% augmentation of the length for all
ligaments (especially the umbilical ligament in the case of the bladder) and even
a complete rupture of umbilical ligament but the obtained displacements were
not sufficient to be considered as pathologic.

In fact, an other factor of cystocele is the degradation of the adhesions of the
bladder on the pubis, that are considered as perfect in healthy situations. The
simulation presented on the right of figure 8, is obtained by combining a 10%
elongation of the ligaments and the degradation of the mechanical properties
of the fascias between the bladder and the public bone. The perfect adhesion
is replaced by a friction contact law combined with an elastic link with a low
stiffness. The obtained mobilities for the cervix and the bladder now corresponds
to the ones that can be observed during a cystocele.

Discussion: The successive degradation of the biomechanical model of the
pelvic system mobilities allows to switch from healthy mobilities to pathological
mobilities. The simulation reinforce the hypothesis of a multi factorial origin
for the pathology for cystocele: it seems to be due to a change of traumatic
elongation of the ligaments and to a degradation of the adhesive fascias. Of
course, the impact of these results is limited by the fact that we can not validate
the simulations of the pathology by ground truth data. Indeed, these data do
not exist as we have created artificially a pathology starting from a healthy set
of data !
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4 Conclusion and Perspective

This paper presents a simulation tool of the pelvic system that is based on charac-
terization of the tissues, modeling the boundary conditions and providing Finite
Element approach. The main contribution is to provide an assessment, thanks
to numerical experiments, to the hypothesis made by the medical community on
the origin of the cystocele. In future work, we plan to work on patient-specific
models based on a fusion of 3D images and 2D dynamic data with our simula-
tion. From pathologic mobilities observed in the images, we will try to identify
the main factors that induce the pathologic mobilities and adapt the parameters
of our simulation accordingly. Then, we could then compare the results with
experimental ground truth data collected during reparative surgery and validate
this numerical simulation tool. If predictive, we could then use it for individual
planning of surgery.
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Abstract. As demands on surgical training efficiency increase, there is a
stronger need for computer assisted surgical training systems. The ability
to provide automated performance feedback and assessment is a critical
aspect of such systems. The development of feedback and assessment
models will allow the use of surgical simulators as self-guided training
systems that act like expert trainers and guide trainees towards improved
performance. This paper presents an approach based on Random Forest
models to analyse data recorded during surgery using a virtual reality
temporal bone simulator and generate meaningful automated real-time
performance feedback. The training dataset consisted of 27 temporal
bone simulation runs composed of 16 expert runs provided by 7 different
experts and 11 trainee runs provided by 6 trainees. We demonstrate how
Random Forest models can be used to predict surgical expertise and
deliver feedback that improves trainees’ surgical technique. We illustrate
the potential of the approach through a feasibility study.

Keywords: real time feedback, surgical simulation, random forest.

1 Introduction

Over the past two decades, a variety of virtual reality simulations have been de-
veloped for surgical training purposes, using novel techniques such as 3D illusion,
haptic feedback and augmented reality. These advanced high fidelity simulations
offer many potential benefits for surgical training, but also raise new challenges
[7]. One potential benefit is the ability to use surgical simulators as self-guided
learning tools, thus reducing the burden of work on surgical trainers. However,
to realise this benefit, simulators must possess the ability to provide timely
meaningful feedback to trainees, in order to facilitate effective learning through
deliberate practice [2].

In minimally invasive surgery (MIS), [3,9] have applied data mining techniques
to evaluate surgical processes or identify surgical gestures. This type of surgery
typically requires surgeons to manipulate a set of tools in a prescribed way, and
there are identifiable “gestures” associated with correct surgical technique. On
the other hand, open surgery such as temporal bone surgery often utilises a
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small instrument set of surgical drills and suction devices and there are many
ways to achieve a correct outcome. As such, it is difficult to identify specific
gestures that represent good surgical technique. Furthermore, the time frame of
the analysis is typically longer than in MIS tasks, thus increasing the complexity
of identifying underlying motion patterns. Thus, evaluating performance in open
surgery simulators is a challenging task.

Most existing work [8,6] on automated performance evaluation in open surgery
simulators is limited to assessment of surgical outcomes. Work on the provision
of online feedback is still in its infancy. One such work is [8], where users are
provided with an evaluation console allowing review of their performance based
on surgical motion metrics. Interactive feedback took the form of coloured voxels
indicating whether the correct region was drilled. While this type of feedback
provides some guidance to achieve the correct surgical outcome, it provides no
assistance in improving surgical technique, which can be equally important.

We introduce a method based on Random Forests (RF) [1] to design and de-
liver online technique feedback within a temporal bone surgical simulator, which
can be generalised to other types of open surgery. First, a RF model is built from
drilled region data to predict expertise. During a simulator task, if this model
predicts that a user is a trainee, a second model combining RF and nearest neigh-
bour search is used to generate human understandable feedback where necessary.
The RF model used to generate such feedback is based on surgical stroke data,
such as stroke force and length. We evaluated the RF approach against a baseline
and our experimental results suggest that RF is a robust technique suitable for
expertise classification and feedback delivery during an ongoing temporal bone
surgical simulation.

In summary, the paper makes the following contributions: 1) We present the
first virtual surgery system which can provide automatic real time feedback to
improve surgical technique. 2) The first use of random forest classifiers in virtual
simulations as the basis for providing feedback to users.

The remainder of the paper is organised as follows. We first introduce the
simulator dataset that was used to train the RF feedback models. We proceed
to explain how the two RF models are used to assess expertise and provide
feedback. Finally, we define two evaluation metrics to measure the quality of the
feedback and present the results of our experiments.

2 Method

Simulation Metrics. Training data was collected using the University of Mel-
bourne temporal bone simulator [5]. This simulator displays a 3D temporal bone
model based on segmented micro-CT data and provides haptic feedback through
a Sensable PHANToM Desktop haptic device. The simulator can be used to per-
form any temporal bone drilling task and it records two kinds of performance
measures at a sample rate of approximately 15 Hz: outcome measures and tech-
nique measures. Outcome measures consist of a time series of drilled voxel posi-
tions. Technique measures include motion-based metrics, simulator parameters
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Table 1. Technique measures derived from the Temporal Bone Simulator

Motion-based Simulator parameters Proximity

stroke duration drill burr size distance to facial nerve
stroke distance zoom level distance to hearing bone
stroke speed distance to membrane
stroke acceleration distance to dura
stroke force distance to sigmoid
stroke straightness distance to tendon
stroke centroid distance distance to round window
# bone drilled by stroke

and proximity data as shown in Table 11. A k-cos [4] approach is used to segment
drill trajectories into a series of surgical strokes for the calculation of motion-
based metrics.

We collected 16 expert and 11 trainee temporal bone simulation runs. The
data was provided by 7 different experts and 6 trainees. The training data was
unevenly distributed due to limitations in the availability of trainees, but this
does not affect the training of RF models significantly. Each simulator run con-
sisted of three surgical tasks: cortical mastoidectomy, followed by posterior tym-
panotomy and cochleostomy. Cortical mastoidectomy is the preparatory step of
many ear operations while posterior tympanotomy and cochleostomy are parts
of cochlear implantation surgery.

Random Forest Based Feedback. The Random Forest [1] algorithm builds
a strong classifier out of an ensemble of decision trees. A single decision tree
(DT) is not a stable classifier, because a small change in the training set can
significantly alter the tree structure. To overcome this drawback, RF creates a
set of randomly selected subsets from the training data and each subset is used
to build a DT. In each tree, nodes are also split using a random subset of all
features (i.e. measures) in the data. Each tree classifies each data point (in our
case, as expert or trainee), and RF uses the majority vote as the final prediction.

The first step of our approach was to predict the expertise of the surgeon.
This step was vital to provide feedback appropriate to the surgeon’s expertise.
We built a RF model to carry out this task. From a surgical point of view,
drilled bone regions (i.e. voxels) are highly related to surgeon expertise so they
are appealing to use as features to train a classifier. However, the bone volume
contained a large number of voxels (9090750 to be precise) and not every voxel
is related to expertise. Thus, it was necessary to employ a feature selection step:
mutual information was used to extract the top 10% of voxels based on their
capability to distinguish expertise. The RF tree was built using these voxels as

1 The stroke force metric refers to the force (in Newtons) being generated by the
haptic device motors in response to user interaction.
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Fig. 1. Expertise classification certainty against surgical task progress. X-axis is the
percentage of removed voxels. Y-axis is the expertise classification certainty.

features. We note that previous work by Sewell et al [8] used Naive Bayes(NB)
to predict expertise. We chose RF over NB in our method, since the features
(voxels) are not independent. If a voxel has been drilled, its neighbours are highly
likely to have been drilled as well. Figure 1 illustrates expertise classification
certainty using three methods. Prediction models were trained at multiple times
during the surgical task, according to when a certain number of voxels were
drilled. We expected that the accuracy of prediction models would increase as
the number of drilled voxels increased. Figure 1 shows that we can predict the
expertise of a user with increasing certainty, by using more information about
the voxels drilled so far. By deploying a model that considers the locations of
the first 37% (approximately) of voxels drilled, we can be around 80% certain
of whether the user is an expert or trainee. In the end, RF misclassified only
1 out of 27 simulation runs. A single DT was generally better than NB, but
it is unstable, since we see a large decrease in certainty, even near the end of
the task. Overall, we can see that drilled voxel measures provided a very good
prediction of expertise. Once we are 80% confident about the trainee’s expertise,
we can start delivering real time feedback to improve their performance. We note
that while drilled voxels provided good expertise classification, they could not
provide useful guidance on improving surgical technique. Therefore we used the
surgical technique measures shown in Table 1 to create a second RF model for
the purposes of feedback generation.

Human trainers often suggest ways to improve surgical technique as part of
their feedback. We attempt to mimic this interaction by making suggestions to
change one technique feature at a time (e.g. “use longer strokes”). Therefore we
begin by selecting the feature on which to provide feedback. A naive way to do
this is to select the feature possessing the highest association with expert tech-
nique. Work in [1] proposed a way to compute feature importance by randomly
shuffling the values of each feature across the dataset. Feature importance is
defined as imp(f) = err(df ) − err(d), where df denotes the data with shuffled
values for feature f , d is the original dataset, and err denotes the classification
error. We computed imp(f) for each feature and chose the feature of highest
importance as our global feature. This feature was used as the baseline (naive)
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Input: si = new stroke, eg = expert stroke group, dist = distance function
Output: fn

1 es = nearest(si, eg, dist);
2 F = feature vote array;
3 for each tree in forest do
4 l1=classify si; l2=classify es;
5 if l1 is trainee and l2 is expert then
6 f = feature id at which si and es go to different branches;
7 if es[f ] > si[f ] then F[f+]++;
8 else F[f−]++;

9 end

10 end
11 fn = maxIndex(F);

Algorithm 1. Random Forest feedback algorithm

feedback in our feasibility study. This naive approach can provide basic feed-
back to improve one feature towards expertise, but other features may be just
as important at different times during the surgical task. Therefore we propose a
dynamic way to deliver feedback using a joint RF model and nearest neighbour
approach, outlined in Algorithm 1. The algorithm begins when we identify a
user as a trainee using the first RF model introduced above. Once the user has
performed a stroke, the algorithm identifies the most similar expert stroke (from
a historical database) using a nearest neighbour strategy. Instead of using Eu-
clidean distance, we use the distance function derived from RF [1]. The expert
stroke serves as a reference for delivering feedback. In order to choose the specific
feedback feature, the user stroke and the reference stroke are classified by each
tree in the RF feedback model. In a given tree, provided both strokes have been
classified correctly, we compute the first feature on which the strokes are split
into different branches and this feature receives one vote. Once a feature in a
given tree is chosen, we calculate the degree of change (in terms of magnitude
and direction) on that feature between the user stroke and the reference expert
stroke. As we iterate through the forest, we store the votes for each feature in
each direction in an array F . The size of F is twice the number of features, since
we count votes for increase (f+) and decrease (f−) separately.

Figure 2 shows a running example. This forest contains four decision trees. The
dashed cyan line indicates the path of an expert stroke while the solid magenta
line is the path of a trainee stroke. Expert leaves are dashed cyan buckets while
trainee leaves are magenta solid buckets. In the first tree, the trainee and expert
were classified correctly and the split was at the zoom feature. Experts used a
lower zoom value, so the vote for zoom− increased by one. In the second and
fourth trees, the split feature suggested a decrease in force, so force− received
two votes. In the third tree both strokes were classified incorrectly, so this tree
was ignored. The final feedback chosen would be to “decrease force”.
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Fig. 2. Example of voting in a forest with four trees (E=expert, T=trainee)

3 Feasibility Study and Results

Comprehensively evaluating the quality of feedback is difficult and would require
prospective methods, such as a randomised controlled trial. A controlled trial is
beyond the scope of this paper, as the aim is to present the RF-based feedback
method and evaluate its practical potential. To evaluate our methods, we con-
ducted a feasibility study based on two metrics we designed to assess feedback
quality.

The first metric is recovery rate. We generated a “synthetic trainee” as follows:
1) Randomly select a stroke made by an expert. 2) Randomly select a feature
from the selected expert stroke. 3) Randomly change the value of this feature.
4) If the altered stroke is classified as trainee by the RF model, go to step 5,
otherwise discard the stroke and go to step 2. 5) Label the altered stroke as a
“synthetic trainee stroke”. Then we input this synthetic trainee stroke to the RF
feedback model, and if the suggested feedback corresponded to the modification
we made, the number of correct suggestions was increased by one. We repeated
this process 10 times on each expert stroke in the dataset and calculated the

recovery rate as
# correct suggestions

# expert strokes
.

Table 2 presents an example of recovery rate computation using both the
baseline and RF approaches. Suppose we created 5 synthetic trainee strokes by
changing the features listed in the first column. We assume that force is the
global feature used as the baseline, so the baseline will only make suggestions
about force. The only correct suggestion by the baseline is for the first stroke,
hence the recovery rate is 1/5. On the other hand, RF feedback makes 4 correct
suggestions so the recovery rate is 4/5.

The second method to assess our RF model is to take each trainee stroke, apply
the suggested feedback (i.e manipulate the stroke’s characteristics according to
the feedback), and then determine whether the altered stroke is classified as
‘expert’ by the RF model . We call this metric promotion rate and it is equal to
# trees which classify stroke as expert in RF

# total trees in RF
.

To calculate the above measures for our data set, each simulator run was
first divided into five stages or sub-tasks. These stages have different surgical
goals and characteristics, so we created separate RF models for each stage. We
set the number of trees in each RF to 500, which is large enough to tolerate
the noise caused by variability in surgical performance. All experiments were
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Table 2. Example of recovery rate computation

feature change baseline RF feedback

force+ force+ speed+

speed− force− speed−

zoom− force+ zoom−

zoom+ force+ zoom+

stroke length+ force− stroke length+

conducted using a ten-fold cross validation scheme. In each fold we used 24 runs
as the training set and the remaining 3 runs as the test set. For the recovery rate
calculation, we changed the value of features by a random percentage ranging
from 10% to 50%. For the promotion rate calculation we changed the value of
the proposed feature by 10% to 200% in the suggested direction of the feedback.
We used a range of value changes to reflect the real life situation, where a trainee
is unlikely to be able to achieve the exact suggested correction.

Fig. 3. Average recovery and promotion rate across 5 stages. Curve colour is significant.

Figure 3 shows the results. Both rates are expected to increase across the
stages, since later stages involved a more restricted surgical work area with less
freedom of movement. As shown in Figure 3, the later the stage, the higher
the rate for both metrics. This suggests that there were more easily identifiable
differences between experts and trainees in later stages. The recovery rate for
stage 4 is an outlier and requires further investigation. One possible explanation
is that the trainees in our dataset were more skilled in this stage.

RF feedback achieved significantly higher recovery rates than the baseline (us-
ing 95% significance t-test). The peak point at stage 5 appears at 100% change,
which is consistent with our expectations since it is the exact suggested correc-
tion. RF feedback achieved 50% in stage 5 for both rates. This is a good result
because it shows that stroke technique improved considerably by making just
one feature correction. However, the promotion rate appears to taper off after
120% change, suggesting that change in a single feature has limited potential
to improve overall technique. This is unlikely to be a serious problem, since our
approach is not limited to providing feedback on only one feature. In a real
simulated training situation, the model could provide a series of suggestions,
gradually guiding the trainee towards expertise.
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4 Discussion and Conclusion

We have presented a method to automatically deliver online constructive feed-
back on surgical technique within a temporal bone surgical simulation. This
approach is generalisable to other types of open surgery simulation. Our eval-
uation showed that the RF based approach is effective at classifying expertise
and outperformed the baseline in feedback quality measures. The measures of
recovery rate and promotion rate demonstrated the feasibility of this approach.
Further work including controlled trials is needed to evaluate the feedback system
in situ. In addition, future work will also focus on automatic approaches to im-
prove promotion rate. One possible direction might be to investigate correlations
between metrics when generating and responding to feedback. In general, there
remain intriguing open questions regarding automated feedback in simulation-
based training, such as when to provide feedback and how to provide it (such as
auditory, visual or haptic).
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Chloé Audigier1,2, Tommaso Mansi2, Hervé Delingette1, Saikiran Rapaka2,
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Abstract. Radio-frequency ablation (RFA), the most widely used min-
imally invasive ablative therapy of liver cancer, is challenged by a lack
of patient-specific planning. In particular, the presence of blood vessels
and time-varying thermal diffusivity makes the prediction of the extent
of the ablated tissue difficult. This may result in incomplete treatments
and increased risk of recurrence. We propose a new model of the physi-
cal mechanisms involved in RFA of abdominal tumors based on Lattice
Boltzmann Method to predict the extent of ablation given the probe
location and the biological parameters. Our method relies on patient im-
ages, from which level set representations of liver geometry, tumor shape
and vessels are extracted. Then a computational model of heat diffusion,
cellular necrosis and blood flow through vessels and liver is solved to esti-
mate the extent of ablated tissue. After quantitative verifications against
an analytical solution, we apply our framework to 5 patients datasets
which include pre- and post-operative CT images, yielding promising
correlation between predicted and actual ablation extent (mean point to
mesh errors of 8.7 mm). Implemented on graphics processing units, our
method may enable RFA planning in clinical settings as it leads to near
real-time computation: 1 minute of ablation is simulated in 1.14 minutes,
which is almost 60× faster than standard finite element method.

1 Introduction

In spite of recent advances in cancer therapy, treatment of primary and metastatic
tumors of the abdomen, including the liver, remains a significant challenge. Hep-
atocellular carcinoma (HCC) for example is one of the most common malignan-
cies (more than 1 million cases per year), with increasing frequency in Western
countries [1]. Unfortunately, less than 25% of patients with primary or secondary
liver cancer are candidates for resection or transplantation, which are consid-
ered as the most effective treatments. Consequently, ablative therapies such as
radio-frequency ablation (RFA) has raised increasing interest.
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RFA consists in placing a probe within the target area. Electrodes at the tip
of the probe create heat, which is conducted into the surrounding tissue, caus-
ing coagulative necrosis at temperatures above 50◦C. Success of the procedure
depends on the complete coverage of the tumor by the generated necrosis area,
which relies on optimal probe placements and the extend of heat delivery. How-
ever, the latter is challenged by the hepatic blood vessels that dissipate heat,
thus potentially reducing RFA efficiency and increasing risks of recurrence.

Several studies [2,3,4] have investigated finite element method (FEM) to com-
pute heat diffusion in liver and predict the optimal placement of the RFA probes.
Heat sink as well as various cellular necrosis models [5] have been studied. How-
ever, to the best of our knowledge, none of these models rely on patient-specific
data. In particular, the vascular system of the liver is neglected or simplified and
blood flow circulation is not computed based on patient-specific clinical infor-
mation. Moreover, FEM is computationally demanding (execution time is in the
range of hours), which is not suitable for clinical purposes.

This paper presents a multi-physics model for efficient patient-specific plan-
ning of RFA based on medical images such as CT or MRI (Sec. 2). In particular,
we rely on the Lattice Boltzmann Method (LBM) to compute heat diffusion in
the liver tissue. The LBM offers high scalability, second order accuracy in space
and the simplicity of implementation on a uniform Cartesian grid [6]. In Sec. 3,
we demonstrate the validity of our algorithm against an analytical solution and
its predictive power is evaluated on patient data. Sec. 4 concludes the paper.

2 Method

Fig. 1 illustrates the different steps of our method. Starting from a preoperative
clinical CT image, we extract the liver geometry and the venous systems. Next,
the bioheat equation is solved using LBM. The liver is highly vascularized and
modeling the impact of all vessels is out of reach. Therefore, only the effect of
large vessels are described explicitly with the Pennes model [7]. Small ones are
represented implicitly in the parenchyma as a porous medium using the Wulff
and Klinger model [8]. The bioheat equation is weakly coupled to a computa-
tional fluid dynamics (CFD) solver to accurately take into account the effect of
blood circulation on the dissipated heat, while the blood flow in the porous tis-
sue is computed by solving the Darcy’s equation [9]. The heat transfer depends
on the blood flow, which is not modified as the organ is heated (the effect of

Ablation 
Extent 

Prediction 

Model of Heat Diffusion in 
Liver Tissue 

Bi-domain bio-
heat model 

CFD in large 
vessels 

Flow in porous 
media Cell necrosis Probe location 

Segmentation Image 

Fig. 1. Steps of the proposed method (blue: input, green: processes, purple: output)
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heat on the viscosity of the flow is neglected as well as the coagulation effect).
This assumption allowed us to compute CFD and porous flow only once, at the
beginning of the algorithm, thus speeding up the process. LBM and CFD are
calculated on a Cartesian grid while the porous solver is executed using FEM
on a linear multi-domain tetrahedral mesh for increased accuracy. The resulting
flow is tri-linearly rasterized on the Cartesian grid after computation. Finally, a
cellular necrosis model is employed to compute cell death due to overheating [5].

2.1 Model of Patient Liver Anatomy

Preoperative images are semi-automatically segmented, yielding a detailed
anatomical model of patient’s liver, including parenchyma, tumors, hepatic veins,
vena cava, and portal vein (Fig. 2, left panel). For each structure, we define seeds
inside and outside of the area of interest. Then, the random-walker algorithm
is employed [10] to automatically estimate the boundaries of the structure. The
process can be refined interactively. From the segmentation, a level set represen-
tation of the liver, without tumor and vessels is computed. A multi-label mask
image is also created to identify the structures of interest for the simulation.
Finally, a tetrahedral multi-domain mesh is generated based on the resulting
multi-label mesh (www.cgal.org) for computing the porous flow.

2.2 Model of Heat Transfer in Liver Tissue

Computing heat diffusion in biological tissues amounts to solving the coupled
bioheat equations derived from the theory of porous media, where each elemen-
tary volume is assumed to comprise both tissue and blood with a certain fraction.
As current imaging techniques do not allow to estimate the accurate ratio be-
tween blood and liver tissue, two main simplifications of the bioheat equations
have been proposed. The Pennes model [7] assumes constant blood temperature,
which holds close to large vessels, where blood velocity is high. The model writes:

(1− ε)ρtct
∂T

∂t
= (1− ε)Q+ (1− ε)∇ · (dt∇T ) +H(Tb0 − T ) (1)

For small vessels, the Wulff-Klinger (WK) model [8] assumes equilibrium
between tissue and blood temperatures, with a blood volume fraction ε � 1:

(1− ε)ρtct
∂T

∂t
= (1− ε)Q+ (1− ε)∇· (dt∇T )− ερbcbv ·∇T (2)

In both equations, T , Q, v and Tb0 stand for temperature, source term, blood
velocity and the mean temperature (assumed constant) of the blood in large
vessels. The other parameters are listed in Table 1. In our framework, we use
either the Pennes model or the WK model according to the spatial location in
the anatomy. Assuming that blood vessels and surrounding tissue are isolated
from each other, we compute the temperature by solving the diffusion equation:

ρtct
∂T

∂t
= Q+∇ · (dt∇T ) (3)
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Table 1. Values from literature [9] of the parameters used in the simulation

parameter description value

ρb,ρt blood and tissue densities 1.06 × 103 kg m−3

cb blood heat capacity 4.18 × 103 J(kg K)−1

ct tissue heat capacity 3.6 × 103 J(kg K)−1

ct∗ tissue heat capacity in dead cells 0.67 × 103 J(kg K)−1

db, dt blood and tissue heat conductivities 0.512 × (1 + 0.00161 × (T − 310)) W(m K)−1

H convective transfer coefficient 24.4 × 104 W (m3 K)−1

ε blood volume fraction 0.1

κ permeability 4.0 × 10−11 m2

μ dynamic viscosity of the blood 0.0035 Pa s

ϕvcin
vena cava inflow 2.0 L min−1

ϕi flow through the inlets of the hepatic veins 1.6 L min−1

p0 vena cava outlet pressure 3 mmHg

k̄f forward rate constant 3.33 × 10−3 s−1

kb backward rate constant 7.77 × 10−3 s−1

Tk parameter of cell state model 40.5◦C

everywhere in the domain, to which we add the cooling term H(Tb0−T )/(1− ε)
when a point belongs to a large vessel (Pennes model) or −ερbcbv · ∇T/(1 − ε)
when it belongs to the parenchyma (WK model).

2.3 Model of the Patient Hepatic Venous Circulation System

Blood velocity v inside the parenchyma is calculated according to Darcy’s law :
v = −κ/(με2/3)∇p where p is the pressure. This amounts to solving the Laplace
equation : ∇ · (−κ/(με2/3)∇p) = 0. At the border of the liver, Neumann bound-
ary conditions are employed. Dirichlet boundary conditions are applied at the
tip of the portal and hepatic veins, to define the pressure drop between them.
As we cannot estimate these pressures in-vivo, we rely on a CFD model of the
hepatic venous circulation system (Fig. 2, right panel). We used a full 3D CFD
solver (incompressible Navier-Stokes equations with viscous terms, expressed in
an Eulerian framework which embeds the domain boundary using a level set
representation of the segmented vessels [11]). The blood is modeled as a New-
tonian fluid with pre-specified density ρb and viscosity μ. Let ϕp be the portal
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Fig. 2. Left : A detailed anatomical model of the liver is estimated from a standard
clinical CT image. Right : Model of the hepatic circulatory system. Arrows denote blood
flow. Circles and squares denote portal and hepatic vessel tips. See text for details.
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vein inflow and ϕvc = ϕvcin + ϕp the vena cava outflow (conservation of mass,
the hepatic artery is neglected). We also fix the vena cava outlet pressure in the
range of physiological values of healthy patients. The values are listed in Table 1.
Blood flow and pressure distribution within the vena cava and hepatic
veins: A plug profile velocity field is applied at the inlets (squares in Fig. 2),
computed from the outflow ϕp and each inlet cross-sectional area. The CFD
calculation give the downstream pressures p−i for each inlet of the hepatic vein.
Blood flow and pressure distribution within the portal vein: To estimate
the upstream pressure p+, assumed constant, of the portal vein outlets (circles in
Fig. 2), we solve the Darcy’s law and optimize over p+ such that the computed
perfused flow through the hepatic vein inlets matches the one computed using
3D CFD. Once p+ is estimated, we compute the blood flow using the CFD solver.

2.4 Model of Cellular Necrosis

Tissue necrosis is computed based on the simulated temperatures using a 3-
state model [5]. The model computes the variation of concentration of alive (A),
vulnerable (V) and dead (D) cells over time according to the state equation :

A

kf (T )−−−−→←−
kb

V
kf (T )−−−−→ D (4)

where kf (T ) = k̄fe
T/Tk(1−A) and kb are the rates of cell damage and recovery

respectively. This equation results in 3 coupled ODEs solved with a first order
explicit scheme at each vertex of the Cartesian grid, yielding a spatially-varying
cell state field used in the bioheat solver to update the heat capacity during the
computation (Table 1). The initial conditions are chosen as in [5].

2.5 Lattice Boltzmann Formulation of the Bioheat Equations

The bioheat model is solved on an isotropic Cartesian grid using LBM with 7-
connectivity topology and Neumann boundary conditions. For stability reason,
we use a Multiple-Relaxation-Time model. The boundaries are treated accord-
ing to the level set representation using linear interpolation without requiring
advanced meshing techniques. The governing equation at position x = (x, y, z)
for the edge ei is given by (5). f(x) = {fi(x)}i=1..7 is the vector of distribution
function with fi(x), the probability of finding a particle travelling along the edge
ei of the node x at a given time, c = Δx/Δt, c2s = 1/4, Δx is the spacing.

f(x+ eiΔx, t+Δt) = f(x, t) +A[feq(x, t)− f(x, t)] +ωΔtH(Tb0− T (x, t)) (5)

feqi (x, t) = ωiT (x, t)[1 + ei.v
cc2s

] and ω = {ωi}i=1..7 the vector of weighting fac-

tors [6]. The temperature is computed as T (x, t) =
∑7

i=1 fi(x, t) and is updated
at every node of the grid for every timestep. Finally, we model the heat source
term through a Dirichlet boundary condition at the location of the probe.
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3 Experiments and Results

All experiments were executed on a Windows 7 desktop machine (Intel Xeon, 2.80

GHz, 45GB RAM, 24 CPUs) with a Nvidia Quadro 6000 1.7 GB (448 CUDA cores).

3.1 Quantitative Verification against Analytical Solution

To evaluate our model, we compared its behavior on a regular cuboid domain
with the 3D analytical solution of a source of mass M released at x0 at time t0:

T (x, t) =
M

[4π(t− t0)D]3/2
exp

(
−‖x− x0 − (t− t0)v‖2

4D(t − t0)

)

of the advection-diffusion equation : ∂T
∂t + v · ∇T = ∇ · (D∇T ). Parameters

were chosen to get heat diffusion in physiological range: D = 0.1mm2/s, v =
(2, 0, 0)mm/s, M = 35000 ◦C/mm3, t0 = −50 s, yielding a Gaussian-shape
source term of 70◦C at the center at time t = 0. In our LBM solver, we initial-
ized the temperature values at each point with the analytical solution at time
t = 0. The temperature at several points of the domain was reported. Our im-
plementation was qualitatively close to the analytical solution (Fig. 3). For a
given resolution, an upper and lower bound for the time-step were provided by
the simulated physics and the Courant-Friedrichs-Lewy conditions. As expected,
the smaller the spatial resolution, the more accurate the solution. A time-step
of 75ms and a resolution of 1 − 2mm appeared to be a good compromise be-
tween accuracy and computational cost. From a computational point of view,
experiments showed a speed-up of 11 with parallel optimization (OpenMP) and
45 with graphical processing units (GPU) implemented on CUDA with respect
to a single-core implementation of LBM. After a quantitative verification of the
FEM simulation against the analytical solution, experiments showed that a 60×
speed-up was obtained with respect to FEM for a similar accuracy.

Fig. 3. Left : Spatial convergence analysis for a fixed time-step of 0.01 s. Right : Time
convergence analysis for a resolution of 1 mm compared to the analytical solution. As
one can see, the proposed framework quickly converges to the right solution.
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3.2 Evaluation on Patient Data

We evaluated our model on 5 patients, with 7 ablations (patient 5 had 3 tu-
mors ablated) for whom pre- and post-operative CT images were available. For
all patients, nominal tissue parameters were employed. Clinical RFA protocol
requires that the probe is deployed within the tumor with a diameter defined
pre-operatively according to the size of the tumor, and then maintained for 7
minutes after the target temperature of 105◦C was reached, as measured by the
probe thermisters. For large tumors, the process was iterated with sequentially
increasing diameters. After anatomical model extraction, we emulated the RFA
protocol by placing the virtual probe at the center of the tumor. Cells around the
probe tip within the probe diameter sphere were heated at 105◦C during 7 min-
utes or 2 times 7 minutes. The simulation continued for 3 more minutes without
the probe so that each cell reach a steady state. Qualitatively, computed ablation
followed closely the boundaries of the vessels, due to the heat sink effects of the
blood. The shape of the ablated area also depended on the heat advection due to
the small arteries (Fig. 4). Cell death area computed using the model compared
qualitatively well with the observed postoperative necrosis zone (Fig. 4, the le-
sion was manually segmented by an expert and rigidly registered to preoperative
image). Quantitatively, average point-to-mesh errors (Table 2) were within clin-
ical variability as they were lower than the different size configurations of the
probes. More importantly, the simulation predicted that the selected protocols
covered the entire lesion, which is the clinical criterion for ablation planning.
One minute is computed in 1.14 minutes, in comparison, using FEM it takes
1.14 hours. To the best of our knowledge, this is the first time that near real-
time simulations of RFA ablation could be achieved. All cases presented a larger
necrosis area compared to the ground truth, the diffusion coefficient used from
the literature was too high to get a perfect match.

4 Discussion and Conclusion

We have presented a first patient-specific model of liver tumor ablation allowing
near real-time computation. As we rely on LBM, our framework does not require
advanced meshing techniques to solve bioheat equations and the level set repre-
sentations of the structures are directly computed from images. We focused on

Fig. 4. Predicted necrosis compared qual-
itatively well with ground truth (patient 2)

Table 2. Evaluation on Patient Data

patient point-to-mesh error probe diameter

1 9.5 ± 5.9 mm 4 cm then 5 cm
2 4.6 ± 3.3 mm 3 cm
3 10.4 ± 6.5 mm 4 cm then 5 cm
4 11.7 ± 6.3 mm 4 cm then 5 cm
5-1 7.3 ± 5.1 mm 4 cm then 5 cm
5-2 8.2 ± 6.2 mm 4 cm then 5 cm
5-3 9.0 ± 5.5 mm 4 cm then 5 cm
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modeling heat propagation and cell death based on a patient image taking into
account the heat sink effect of blood vessels and porous circulation in the liver.
Despite possible biases in establishing correspondences between the post- to the
pre-operative images, and the use of nominal biological parameters, which are
not patient-specific, our model provided promising results, opening new oppor-
tunities in the RFA planning and guidance, even if the target is to go beyond
real-time, as we need 1-2 minutes of computation for clinical use. We have not
considered the effects of the arterial flow, but it would be straightforward to
include it for improved accuracy, provided the hepatic artery is visible in the
image. It is worth noting that the veins account for more than 70 % of the blood
flow [12]. Future works include validation on larger cohorts of patient, and a full
coupling of blood flow and heat transfer models for more accurate predictions.

Acknowledgments.We thankMartaMesaGonzalez for segmenting all the cases.
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Abstract. This paper is centered on the development of a new train-
ing and rehearsal simulation system for middle ear surgery. First, we
have developed and validated a mechanical atlas based on finite element
method of the human middle ear. The atlas is based on a microMRI.
Its mechanical behavior computed in real-time has been successfully val-
idated. In addition, we propose a method for the registration of the
mechanical atlas on patient imagery. The simulation can be used for a
rehearsal surgery with the geometrical anatomy of a given patient and
with mechanical data that are validated. Moreover, this process does not
necessitate a complete re-built of the model.

Keywords: Simulation & training systems, Atlases, Head and neck.

1 Introduction

Learning surgery requires a large amount of practice to acquire experience, espe-
cially for complex tasks that involve knowledge or delicate gestures achievement.
In this context, training simulations are crucial to preserve the patient safety dur-
ing the learning process. However, to gain interesting experience from simulation,
the simulated environment must be highly realistic. In this paper, we present a
new approach based on a validated mechanical atlas that is adapted with patient
data. We applied this approach for a simulator of middle ear surgery.

Middle ear surgery is a microsurgery of hearing rehabilitation for conductive
loss. This surgery is particularly complex due to the high susceptibility to trauma
and the sub-millimetric size of the anatomical structures, such as the ossicular
chain (Fig. 1). Training on cadavers is the most realistic and appreciate solution
but it is expensive and there is a risk of infection [1]. Synthetic models are mainly
used for economical and safety reasons [2]. Some virtual simulators exist for ear
surgery, like the Visible Ear [3] or the Voxel-Man (Voxel-Man Group, Hamburg,
Germany), which are mostly centered on drilling tasks. The main limitations of

� The authors would like to thank Collin Ltd. (Bagneux, France) for financial support.
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Fig. 1. Anatomy of the human ear. The tympanic membrane and the ossicular chain
with the malleus, the incus, and the stapes compose the middle ear.

the simulation are the low number of pathological scenarios. Yet, the anatomy
of the middle ear is dissimilar between patients and can lead to different surgical
approaches or even to a surgical contraindication.

The objective of this study is the design of a mechanical atlas for the ossicular
chain dedicated to the simulation of the middle ear surgery. The mechanical
behavior of our atlas is confronted to measurements on human temporal bone
specimens. As the atlas is developed for an interactive surgical simulator, the
computation efficiency is also investigated. Finally, a registration method of the
mechanical atlas to fit patient imagery is also described.

2 Validated Mechanical Atlas Dedicated to Real-Time

This section presents a biomechanical model of the middle ear behavior. The
approach is built on finite element methods (FEM) with parameters that were
collected from literature. The model is validated for both dynamic small defor-
mations and static large transformations. We then optimize the computation to
use the model, without changes, in an interactive real-time simulation context.

Design and Specifications: The three-dimensional geometric model obtained
from a micro-Magnetic Resonance Imaging of the middle ear [4] is used to cre-
ate our atlas. The missing ligaments are manually reconstructed according to
the anatomical data using Blender. A volumetric model of the ossicular chain
is generated using the Computational Geometry Algorithms Library (CGAL)
that allows to create a coherent mesh while defining several domains. We then
assign adequate parameters to these different domains (as illustrated in Figures
2(a) and 3(a) with red and blue meshes for respectively, high and low stiffnesses
in the domain). The eardrum and the ossicular chain (meshed respectively by
2492 and 4361 tetrahedral deformable elements) are implemented in SOFA, a
real-time medical simulation project [5]. Both models use a finite element de-
formable model (large displacements and rotations) derived from [6], with re-
spectively, membrane and volume elastic energy. The mass is lumped at the
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Table 1. Mechanical parameters used in our atlas

Anatomical structures Density(kg/m3) Young modulus (N/m2)

Eardrum Pars tensa 1.20 x 103 [7] 3.34 x 107 [7]
Pars flaccida 1.20 x 103 [7] 1.10 x 107 [8]

Malleus Handle 3.70 x 103 [8], [9] 1.41 x 1010 [8]
Head 2.55 x 103 [8], [9] 1.41 x 1010 [8]
Neck 4.53 x 103 [8], [9] 1.41 x 1010 [8]

Incus Body 2.36 x 103 [8], [9] 1.41 x 1010 [8]
Short process 2.26 x 103 [8], [9] 1.41 x 1010 [8]
Long process 5.08 x 103 [8], [9] 1.41 x 1010 [8]

Stapes - 2.20 x 103 [8], [9] 1.41 x 1010 [8]
Ligaments Superior 2.50 x 103 [7] 4.90 x 104 [8],[10]

Incudostapedial 2.50 x 103 [7] 6.00 x 105 [8]
Incudomalleolar 2.50 x 103 [7] 1.41 x 1010 [8]
Malleus anterior 2.50 x 103 [7] 2.10 x 107 [7]
Malleus lateral 2.50 x 103 [7] 6.70 x 104 [10]
Incus posterior 2.50 x 103 [7] 6.50 x 105 [7]

Tendons Tensor tympani 2.50 x 103 [7] 2.60 x 106 [7]
Stapedial 2.50 x 103 [7] 5.20 x 105 [7]

nodes. The tympanic annulus, the stapedial annular ligament, the cochlea, the
ligaments and the tendons of the middle ear are used as boundaries of our FEM.
The density and the Young modulus parameters of our atlas are chosen accord-
ing to published data on middle ear mechanics [7], [8], [9], [10], as reported in
table 1.

Validation of the atlas: The dynamics of the atlas model is evaluated using the
transfer function analysis (TFA) of the ossicular chain. The TFA consists in
the measurement of the stapes footplate velocity when a sinusoid pressure is
applied to the malleus (Fig. 2(a)). The pressure is set to 0.632 Pa equivalent
to 90 dB (SPL) and the frequency ranged from 250 to 8000 Hz like in a phys-
iological condition of hearing. This test cannot be performed in real-time due
to the very small time steps required to simulate vibrations at high frequency.
The TFA result provides the stapes footplate velocity transfer function (STF)
which is increasing for frequency below 1000 Hz and decreasing for higher fre-
quency (Fig. 2(b)). This characteristic shape is also observed by other FEM
simulation [8] (but non targeted towards real-time application) and by reported
studies on human temporal bone [11]. The large repartition of the TFA re-
ported by Rosowski et al. is explained by the individual anatomical variability
of the middle ear components and by the storage condition of the specimens.
This test assesses the dynamics of our model at different frequencies (which is
linked to the mass and stiffness values) but the deformations are limited to small
displacements.

Consequently, we have also conducted the analysis of the umbo displacement
under static pressure load (UDSP) to assess the model with large deformation
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Fig. 2. Evaluation of the atlas in physiological condition using the transfer function
analysis. The motion of the stapes footplate is analyzed when a sinusoid pressure is
applied to the malleus.

transformation at equilibrium. The UDSP corresponds to the observation of the
umbo motion when a static pressure is applied to the eardrum (Fig. 3(a)). We
use pressures ranged from -4000 to 4000 Pa which are comparable to pressures
involved in a conventional tympanometry diagnostic. As shown in figure 3(b)
the results of the simulation of our atlas are close to published observations on
human temporal bones [12] or previously published FEM model [13]. Moreover,
the ratio of the umbo displacement between negative and positive force is around
1.76 ± 0.31 (n=8) for our atlas, which is similar to the ratio between 1.8 -
1.9 obtained on temporal bones. The analysis of the UDSP allows to assess
the realism of the middle ear model when the displacements induced by the
deformation are significant compared to the size of the structure (more than
15%). This range of deformation with large displacements is similar to those
encountered when simulating a surgery.

Interactive surgical simulation: The goal of this work is to build a training sim-
ulation system of a new generation, in which the physics-based models are not
over-simplified for real-time performance. Real-time is a needed condition to

Z

Y

X

Static pressure

Displacement
response

(a) Static pressure method.

Pressure (Pa)

U
m

b
o

 d
is

p
la

c
e

m
e

n
t 

(µ
m

)

−4000 −2000 0 2000 4000

−500

−250

0

250

Dirckx 1991
Wang 2007
FEM

(b) Static pressure results.

Fig. 3. Evaluation of the atlas in surgery condition using the static pressure. The
motion of the umbo is analyzed when a static pressure is applied to the eardrum.
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allow for the interactivity required for a surgical simulator. This constraint of-
ten leads to the choice of plausible models rather than validated physics-based
approaches. In this work, we have deliberately chosen to base the real-time sim-
ulation on the atlas model that is validated using TFA and UDSP tests. As
previously mentioned, the number of elements used in the FEM models is not
excessive. We assessed the convergence of the FEM at several resolutions, be-
tween the presented model and a model composed of 210689 elements the mean
square error using TFA is 2.8 μm/s/Pa, less than 1 dB. Due to the relatively
high stiffness/mass ratio, the use of implicit integration is necessary. Still, due
to the strong heterogeneities in the model, we had a bad condition number on
the system of equations generated by the FEM model. Consequently, iterative
solvers, like the conjugate gradient algorithm had difficulties to reach the conver-
gence. Moreover, the factorization cost induced by direct solvers was too heavy
for real-time performance. Thus, we have opted for the solution presented in
[14], in which a preconditionner is factorized asynchronously in a separate par-
allel thread (i.e. without additional computation cost in the simulation process).
This solution strongly improves the convergence of the conjugate gradient algo-
rithm used in our simulation. The time step of the backward Euler scheme that
we use in the simulation is set at 0.04 s. An average of 40 frames per second is
observed with no interaction and collision. In the worst case (collision response
with more than 15 friction contact points), the number of frame rates falls down
to 20Hz. The framework SOFA allows for haptic rendering with Phantom Omni
devices (Sensable, Wilmington, MA). The collision response and the haptic algo-
rithm is based on a multithreaded approach [15]. It allows for updating the force
feedback at higher rates than the simulation. Using these components of SOFA,
we are able to use the atlas model without any changes in the parameters, for a
real-time simulation and contact response with surgical instruments.

3 Patient Specific Model

The atlas is developed for training and for rehearsal simulation of the middle
ear surgery. Therefore, we implement a registration method to fit our validated
mechanical model to the patient image data. The goal is to perform the regis-
tration of the atlas (mechanical model, parameters, boundary conditions...) to
avoid time-consuming work of segmentation and the re-parametrization. First,
a rigid semi-automatic approach is used to place approximately the atlas in the
same area and orientation as the patient anatomy. This method is followed by a
deformable registration that uses the FEM of the atlas and the implementation
of additional spring forces that depends on the intensity of the pixel.

The rigid registration is based on the manual selection of 3 points: The umbo
(p̃a), the incudomalleolar joint (p̃b) and the incudostapedial joint (p̃c). These
points correspond to distinct landmarks on the ossicular chain that are easily
identifiable on the images. These landmarks are also placed on our atlas model,
noted px (Fig. 4(a)) to allow for a simple rigid registration.

In practice, after the rigid registration, the middle ear components on the
images are close to the surface of our atlas. But to enhance the precision of the
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Fig. 4. Registration of our atlas. (a) presents the method of the rigid registration, and
(b) the results of the deformable approach, with a representation of the surface of the
atlas in orange before (top) and after (down) the deformable registration process.

registration, we perform a deformation based on the variation of the imaging’s
pixel intensity around the atlas and elastic energy from FEM model. We start
from the barycenterBi, of each triangle i of the atlas surface mesh and we explore
the neighborhood along the normal vector ni inside the mesh (c = 1) and outside
(c = 2) using the equation 1. Where Xc

i is the coordinate of the exploration
point along the normal vector, step corresponds to the smallest thickness of
the imaging slices, and j to the exploration iteration parameter (Fig. 5). The
equation 2 computes a pixel intensity ratio between two successive points around
the atlas in order to detect an intensity shift meaning that we are at a bone
boundary on the patient image. Thus, a border point is detected and associated
to each points that compose the triangle i. As a point belongs to several triangles,
each point of the surface have several associated border points. Thus, we compute
the barycenter ωk of these associated border points for each point k of the surface
mesh. Then a spring is implemented between ωk and k to deform the mechanical
FEM of the atlas. We perform several iterations of the simulation with an update
of the border points at each step until an equilibrium position is reached.

Imagery acquisition of four left ears is obtained using a NewTom 5G Cone
Beam Computed Tomography (QR SRL, Verona, Italy). The figure 4(b) repre-
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sents the surface of our mechanical atlas over the patient images before and after
the deformable process. The results presented are obtained after 300 iterations
performed in 110 seconds on a conventional computer. The registration accuracy
is compared to manual segmentations using MeshDev [16], a mean error of 0.201
mm is found for our registration algorithm and 0.187 mm between manual seg-
mentations. This error is within the imaging resolution, 0.26 mm, corresponding
to the voxel diagonal.

4 Discussion

The objective of the atlas is to supply models for a new surgical tool for train-
ing and rehearsal purpose. The simulator is planed to simulate the otosclerosis
surgery including stapes footplate drilling or placing the prosthesis to restore
the sound transmission. Our simulation, based on a mechanical atlas, provides
realistic and validated results for the behavior of the middle ear model. Indeed,
results show that our simulation is realistic in regard to experimental obser-
vation on human ear. Moreover, the computational efficiency of our approach
allows real-time interactions, making it suitable for use in a training simulator.

In middle ear surgery, the anatomy of the patient has a strong influence on
the choice of surgical procedure or on a contraindication statement. To account
for rehearsal simulation, information from the patient should be taken into con-
sideration. A registration approach of our model to fit the anatomical data is
developed and tested. The main advantage of this registration approach is that
the process is performed on a tested and validated mechanical model. Indeed,
all the mechanical parameters such as the meshing, the boundaries conditions,
etc, are still implemented into our atlas after the registration. However, only the
geometry of the atlas is adapted to patient data, the mechanical results provided
by the registered models are similar to the atlas model.

To build a predictive patient specific model, we should also use the mechanical
parameters (such as the Young moduli of each structures) that correspond to
each individual patient. Indeed, these parameters differ from a patient to an other
and the search of parameters from the patient data is still future work. Using
such a predictive model, the simulation could find new applications. Namely, it
could be used as a planning pre-operative tool to anticipate the choices that are
currently done during the surgery: selection of ossicular bones to repair, type of
implantable prosthesis, etc.

5 Conclusion

A mechanical atlas of the human middle ear was implemented for surgical train-
ing and rehearsal simulator. The realism of the atlas behavior was evaluated in
physiological and in surgery condition. The computation efficiency of the devel-
oped atlas allows for real time computation simulation and for haptic interac-
tions. To our best knowledge, this is the first paper that presents such a real-time
simulation. An interactive method is reported to adapt the proposed mechanical
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atlas to the individual anatomy of the patient in few minutes. A patient specific
model is obtained directly from the evaluated mechanical model avoiding the
time-consuming work of a manual segmentation, mechanical parametrization
and evaluation. The presented study is the basis of a microsurgical simulator
design for training, practice and planning for otological surgery.
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Surgical Gesture Segmentation and Recognition
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Abstract. Automatic surgical gesture segmentation and recognition can provide
useful feedback for surgical training in robotic surgery. Most prior work in this
field relies on the robot’s kinematic data. Although recent work [1,2] shows that
the robot’s video data can be equally effective for surgical gesture recognition, the
segmentation of the video into gestures is assumed to be known. In this paper, we
propose a framework for joint segmentation and recognition of surgical gestures
from kinematic and video data. Unlike prior work that relies on either frame-level
kinematic cues, or segment-level kinematic or video cues, our approach exploits
both cues by using a combined Markov/semi-Markov conditional random field
(MsM-CRF) model. Our experiments show that the proposed model improves
over a Markov or semi-Markov CRF when using video data alone, gives results
that are comparable to state-of-the-art methods on kinematic data alone, and im-
proves over state-of-the-art methods when combining kinematic and video data.

Keywords: surgical gesture segmentation, surgical gesture recognition, time
series analysis, conditional random fields, structured output learning.

1 Introduction

Robotic minimally invasive surgery (RMIS) offers several advantages over traditional
surgery, including better precision, smaller incisions, and quicker recovery time. How-
ever, reductions in the amount of one-on-one teaching [3], together with the steep learn-
ing curve of RMIS [4], advocate for the development of a new teaching paradigm where
surgical skill is automatically assessed and timely feedback is automatically provided.

Advances in machine learning, computer vision, and speech processing can be ex-
ploited for this purpose. For instance, segmentation and recognition methods can be
used to decompose a surgical task (e.g., suturing) into a sequence of gestures (e.g., grab
needle, position needle, insert needle), and perform skill assessment based on how well
a sequence of gestures is executed. As shown in [5], gesture recognition can also be
used to accomplish shared or cooperative control tasks that are triggered based on what
the user is doing. Hence, we could envisage robotic gesture recognition being used,
for example, to trigger appropriate information displays. All these applications require
segmentation and recognition of surgical gestures, which is the main focus of this paper.

Most of the prior work on automatic segmentation and recognition of surgical ges-
tures relies on the kinematic observations of the robot’s motion. The temporal evolu-
tion of such observations is typically modeled using a Hidden Markov Model (HMM),
where each gesture corresponds to one or more states of the HMM and the transitions
among consecutive gestures are modeled by the HMM transition probabilities. Differ-
ent papers [6,7,8,9,10,11,12] use different models for the observations associated with

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 339–346, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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each gesture, including discrete HMMs, Gaussian HMMs, factor analyzed HMMs and
Sparse HMMs. While generally successful, these methods rely mostly on local cues
from a few frames, thus failing to capture global cues about the whole execution of a
gesture. To address this issue, [11] uses Switched Linear Dynamical Systems (SLDSs),
which model the dynamics of the whole execution of a gesture with an LDS. However,
this comes at a steep computational cost because inference for SLDSs is intractable.

More recently, video-based solutions have drawn the attention of the research com-
munity. Most of the prior work focuses on the detection of the instruments used during
surgery or in the operating room [13,14,15,16,17,18,19,20] using techniques such as dy-
namic time warping, support vector machines and HMMs. However, these techniques
use only frame-level features, such as color, texture and shape-based cues. Moreover,
the desired solution is a high-level recognition based on the presence of some tools,
rather than fine-grained gesture recognition based on motion data.

To the best of our knowledge, the only existing works that use state-of-the-art com-
puter vision algorithms for surgical gesture recognition from video data are [1,2]. These
works show that video data can be as discriminative as kinematic data when appropriate
features and algorithms are used. Specifically, [1,2] obtain very high gesture recogni-
tion rates using global bag-of-spatio-temporal features (BoSTF) and LDSs to model the
whole execution of a gesture. However, this is possible only because the temporal seg-
mentation of the video into gestures is assumed to be known. Recent work in computer
vision addresses the joint segmentation and recognition of generic actions in videos
using conditional Random fields (CRFs), where the sequence of gestures is obtained
by minimizing the energy of the CRF. The work of [21] adopts a Markov CRF model
whose energy depends on which objects are present in each frame and their interactions,
while the work of [22] adopts a semi-Markov CRF model based on global features ex-
tracted from many frames. However, these methods have not been combined for joint
gesture segmentation and recognition, nor have they been applied to surgical gestures.

In this paper, inspired by the use of graphical models in speech processing [23],
we propose a combined Markov/semi-Markov conditional random field (MsM-CRF)
model for joint segmentation and recognition of surgical gestures from kinematic and
video data. Our MsM-CRF model captures both local cues (thanks to the Markov com-
ponent) and global cues (thanks to the semi-Markov component). Moreover, we exploit
the high accuracy of the BoSTF approach from [1,2] to model the unary potentials of
the CRFs using two kinds of spatio-temporal features. Our experiments on a typical
surgical training setup show that our model improves over a Markov or semi-Markov
CRF model on video data alone, gives state-of-the-art results on kinematic data alone,
and improves over state-of-the-art methods by combining kinematic and video data.

2 Joint Segmentation and Recognition of Surgical Gestures

2.1 MsM-CRF Model

Let V = {It}Tt=1 be a sequence of observations, where It represents the observations
at frame t. Let C= {1, . . . , C} be the set of possible gesture labels. Our goal is to find
the sequence of frame-level gestures Y={Y F

t }Tt=1, where Y F
t ∈ C denotes the gesture

label at frame t. Since each gesture may span a few consecutive frames, we can divide
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the time interval [1, T ] into M segments, where the i-th segment is [ti−1, ti), such that
the frame gesture label within a segment does not change. Here ti is the last frame of
i, t0 = 1, and tM = T . We can then define the sequence of segment-level gestures as
{YS

i }Mi=1, where YS
i = Yt for all t ∈ i. In what follows, we will use the superscripts F

and S to denote variables at the frame and segment levels, respectively.
We representV with a graphical modelG = (NF , EF ,NS , ES). In the case of CRFs,

each node NF
t ∈ NF denotes a frame t, hence |NF | = T . In the case of semi-CRFs,

each node NS
i ∈ NS denotes the collection of frames in segment i, hence |NS | =M .

In both cases, an edge ej ∈ E denotes the connection between consecutive nodes Nj

and Nj+1. We model the conditional distribution of the sequence of labels Y given
V , with a Gibbs distribution: p(Y|V) ∝ exp(E(Y,V)), where E(Y,V) is an energy
function defined on the cliques of G. In our MsM-CRF model, we have:

E(Y,V) = λFU
T∑

t=1

ψFU
t (Y F

t ;V) + λFP
T−1∑
t=1

ψFP
t,t+1(Y

F
t , Y

F
t+1;V)+

λSU
M∑
i=1

ψSU
i (YS

i ;V) + λSP
M−1∑
i=1

ψSP
i,i+1(Y

S
i ,Y

S
i+1;V),

(1)

where ψFU and ψFP are the CRF unary and pairwise potentials, while ψSU and ψSP

are the semi-CRF unary and pairwise potentials, each one weighted by its own λ factor.

CRF Unary. This potential gives the score of assigning a gesture label to a single
frame. For kinematic data, the score is computed from the output of an SVM classifier,
with an RBF kernel, trained for each possible gesture on the raw data of each frame. For
video data, this score is obtained from the output of a classifier applied to a histogram
of features extracted from a neighborhood of the frame. Specifically, during training the
spatio-temporal video features are clustered byK-means to form a dictionary of visual
words. Each frame is then represented with a histogram of words and these histograms
are used to train an SVM classifier with a χ2-RBF kernel. In both cases, the logarithm
of the probability returned by regression of the SVM output is used as a unary score.

Semi-CRF Unary. This potential gives the score of assigning a gesture label to a
segment, thereby capturing global features related to the overall gesture. For kinematic
data, we train an SVM classifier with RBF kernel for each gesture on the average of
the raw data within each segment. For video data, we represent each segment by the
histogram of words accumulated over all the frames that correspond to the segment
using the same dictionary of visual words described before. These histograms are then
used to train an SVM classifier with χ2-RBF kernel for each gesture. Hence, we use
the logarithm of the probability returned by regression of the SVM output as our unary
term. This way of computing the most likely label for each segment corresponds exactly
to the approach followed in [1,2].

Spatio-temporal Features. We use two kinds of spatio-temporal features. The first one
is a concatenation of histograms of oriented gradients (HOG) and histograms of optical
flows (HOF) extracted from a cuboid centered around each STIP point [24]. Since STIP
points tend to be sparse in space, we also use the dense features presented in [25], which
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consist of HOG, HOF, and histograms of motion boundaries and velocities (in term of
x and y coordinates) computed around dense trajectories.

CRF Pairwise. This potential captures the probability of switching from gesture label
gk to gj when moving from one frame to the next. Since a gesture is composed of many
frames, this potential encourages the frame labels to be temporally coherent. We capture
the relationship between adjacent frames using the transition probability

PF
gk,gj

=
# frames switching from gk to gj

# frames with label gk
(2)

computed from the training set. We then set ψFP
t,t+1(Y

F
t , Y

F
t+1;V) = log(PF

Y F
t ,Y F

t+1
).

Semi-CRF Pairwise. This potential captures the probability of switching from gesture
label gk to gj when moving from one segment to the next. Since each segment repre-
sents a single instance of a gesture, two consecutive segments should not have the same
label. Thus, this potential encourages a switch from one gesture label to a different one.
We capture the relationship between adjacent segments using the transition probability

PS
gk,gj =

# segments switching from gk to gj
# segments with label gk

(3)

computed from the training set. We then set ψSP
i,i+1(Y

S
i ,Y

S
i+1;V) = log(PS

YS
i ,YS

i+1
).

2.2 Efficient Inference and Learning

Inference. The energy in (1) can be re-written as E(Y,V) = w
Ψ(Y;V), where

w =

⎛⎜⎜⎝
λFU

λFP

λSU

λSP

⎞⎟⎟⎠ and Ψ(Y;V) =

⎛⎜⎜⎜⎝
∑T

t=1 ψ
FU
t (Y F

t ;V)∑T−1
t=1 ψ

FP
t,t+1(Y

F
t , Y

F
t+1;V)∑M

i=1 ψ
SU
i (YS

i ;V)∑M−1
i=1 ψSP

i,i+1(Y
S
i ,Y

S
i+1;V)

⎞⎟⎟⎟⎠ . (4)

Given the MsM-CRF model parameters in w and a test video V , we can perform
joint gesture segmentation and recognition by solving the inference problem Y∗ =
argmaxY E(Y,V). One can show that the energy in (1) is equivalent to an energy that
depends only on the segment labels {YS

i }. The maximization of the resulting energy
can be done by a Viterbi-like dynamic programming algorithm, as described in [22].

Learning. GivenB training videos {Vi}Bi=1 and their corresponding labelings {Ȳi}Bi=1,
we learn the parameters w using a method based on structural SVM [26]. Specifically,
let us refer to any labeling of Vi that is different from Ȳi as a negative example, and
denote the set of negative examples for a video Vi as Y−

i . Given μ > 0, we learn the
parameters w by solving the following optimization problem:

{w∗, {ξ∗i }Bi=1} = argmin
w,{ξi}B

i=1

1

2
‖w‖2 + μ

B

B∑
i=1

ξi, subject to (5)

(a) ∀i = 1, . . . , B, ∀Y ∈ Y−
i , w


(Ψ(Ȳi;Vi)− Ψ(Y;Vi)
)
≥ (Ȳi,Y)− ξi

(b) ∀i = 1, . . . , B, ξi ≥ 0 and (c) w ≥ 0.
(6)
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The intuition behind the first inequality is that we want the energy at the ground truth
labeling w
Ψ(Ȳi;Vi) to be greater than the energy of any wrong labeling w
Ψ(Y;Vi)
by the loss (Ȳi,Y) while allowing some slack ξi. The loss function (Ȳi,Y) measures
the error in the labeling Y as the fraction of misclassified frames. Since the number of
constraints is exponentially large, we use the cutting plane algorithm [27] to find w.

3 Experiments

Data. We evaluate our approach using the dataset in [28], which contains three different
surgical tasks, suturing (SU), needle passing (NP) and knot tying (KT), each performed
by 8 surgeons with three different skill levels (expert, intermediate and novice). Each
surgeon performs around 3 to 5 trials for each task, which gives 39 trials for SU, 26 trials
for NP and 36 trials for KT. Each trial lasts, on average, 2 minutes, and both kinematic
and video data are recorded at a rate of 30 frames per second. Kinematic data consists
of 78 motion variables (positions, rotation angles, and velocities of the master/patient
side manipulators), whereas video data is taken from the first person view point of the
robot and consists of jpeg images of size 320× 240. The data is manually labelled with
15 surgical gestures (e.g., reach needle, position needle, etc.) described in Figure 1.

Setup. Following [1,2], we use two different test setups. The first one is the leave-
one-super-trial-out (LOSO), where super trial i (i.e., trial i from each user) is held out
for testing. The second, and more changeling setup, is the leave-one-user-out (LOUO),
where all the trials from user i are held-out for testing. We compute the video CRF unary
terms using a neighborhood of 25 frames, and the CRF and semi-CRF unaries using a
dictionary of 300 words. To speed up the computation of the Viterbi-like algorithm, we
perform inference every 10 frames, and assume that the maximum length of a segment is
400 frames. We compare the performance of the proposed MsM-CRF model with that of
a CRF and a semi-CRF model. Note that the semi-CRF model with STIP features can be
seen as an extension of the method presented in [1,2] to the case where the segmentation
is unknown. The average percentage of correctly classified frames is shown in Table 1.
For each technique, the type of features used is indicated within parenthesis. For MsM-
CRF, the first feature refers to the CRF unaries and the second one to the semi-CRF
unaries. For instance, MsM-CRF(kin-STIP) means that kinematic data are used for the
CRF unary, while STIP features are used for the semi-CRF unary.

Results on Video Data. Notice that the combination of local and global features from
video data used by the MsM-CRF model always improves over the CRF and semi-CRF
models, for all tasks and test setups. Notice also that using dense features leads to better
results than using of STIP features. This should be related to the fact that the features
of [25] include motion boundaries and velocities in addition to HOG and HOF. Finally,
notice that the results from [1] are 2-12% better, but they assume known segmentation.

Results on Kinematic Data. In this case, the CRF model outperforms the semi-CRF
model. Arguably, this is because the feature used in the unary term of the semi-CRF
model (average of the data in a temporal window) is too simple. This is also reflected
on the MsM-CRF results, which are similar to those of the CRF. The results of sparse-
HMMs [12] are better than those of MsM-CRF(dense-dense) in the LOSO setup. How-
ever, in the more challenging LOUO setup MsM-CRF(dense-dense) seems to generalize
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Table 1. Average percentage of correctly classified frames on the dataset in [28]. Best results for
methods that do not assume known segmentation are highlighted in boldface.

Method
LOSO LOUO

SU KT NP SU KT NP

V
id

eo

1) CRF(STIP) 70.86% 68.33% 55.12% 61.12% 62.63% 52.58%
2) semi-CRF(STIP) 67.91% 67.07% 56.49% 51.71% 40.04% 45.03%
3) MsM-CRF(STIP-STIP) 73.32% 70.95% 63.31% 66.28% 66.53% 58.85%
4) CRF(dense) 76.51% 69.16% 62.23% 68.80% 60.17% 54.52%
5) semi-CRF(dense) 65.83% 44.82% 56.22% 59.41% 41.46% 46.89%
6) MsM-CRF(dense-dense) 79.04% 72.04% 68.81% 71.76% 66.94% 60.39%
7) BoSTF(STIP,known segment.) [1] 84.87% 84.03% 72.16% 75.72% 79.05% 61.73%

K
in

em
at

ic 8) CRF(kin) 81.62% 81.06% 74.56% 68.65% 67.38% 46.44%
9) semi-CRF(kin) 63.20% 39.20% 54.15% 62.24% 44.28% 38.36%
10) MsM-CRF(kin-kin) 80.99% 79.39% 74.85% 69.03% 64.28% 52.39%
11) sparse-HMM [12] 81.1% 82.6% 76.1% 67.8% 65.7% 59.3 %

M
ix 12) MsM-CRF(kin-STIP) 82.49% 80.50% 76.41% 70.09% 68.43% 54.41%

13) MsM-CRF(kin-dense) 82.81% 81.10% 76.82% 72.60% 68.83% 57.08%

T
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(b) Ground-truth “- -” and prediction “-” for
one suturing trial.

Fig. 1. Results for the MsM-CRF(kin-dense) algorithm on the Suturing-LOSO setup. S1 reaching
for needle with right hand. S2 positioning needle. S3 pushing needle through tissue. S4 transfer-
ring needle from left to right. S5 moving to center with needle in grip. S6 pulling suture with
left hand. S7 pulling suture with right hand. S8 orienting needle. S9 using right hand to help
tighten suture. S10 loosening more suture. S11 dropping suture at end and moving to end points.
S12 reaching for needle with left hand. S13 making ‘C’ loop around right hand. S14 right hand
reaches for suture. S15 both hands pull.

better. Overall, our method is able to achieve state-of-the-art results on kinematic data,
and its performance on video data is comparable to that on kinematic data.

Results on Video and Kinematic Data. We also exploit the flexibility of the MsM-
CRF framework to combine both kinematic data (in the CRF-unaries) and video data
(in the semi-CRF unaries). The resulting MsM-CRF(kin-dense) model performs almost
always better than any other technique that uses only kinematic or video data.
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Fig. 1(a) shows the confusion matrix for the MsM-CRF(kin-dense) method on the
Suturing-LOSO setup, while Fig. 1(b) shows the predicted and ground-truth sequence
of gestures for one suturing trial. From these figures it is possible to appreciate the
quality of the results produced. Note that gesture 10 is never classified correctly. This
is due to the fact that this gesture appears very rarely, hence, it is not possible to learn
a robust classifier. Fig. 1(b) shows that most of the errors appear around the switching
times. Typically, the prediction switches either too early or with some delay. This might
be due to the fact that for speed convenience we perform inference every 10 frames,
hence, the results could be slightly improved by sacrificing some computational time.

Computing Time. A final note on the computational complexity. For completing one
held-one-out experiment, in which usually around 30 trials are used for training and 8
for testing, the training stage took around 4 hours with a Matlab implementation on a
x86@3.33GHz processor, and testing for one trial usually required around 1 minute.

4 Conclusions

We have proposed a combined Markov/semi-Markov CRF model for temporal gesture
segmentation and recognition. Our model can capture local features and interactions be-
tween frames, as well as global characteristics of each gesture and interactions between
gestures. We have shown on a typical surgical dataset that the MsM-CRF model always
improves with respect to the CRF or semi-CRF frameworks used alone. We have also
observed that the MsM-CRF model based on dense features is more robust in the LOUO
setup. Moreover, thanks to the flexibility of the MsM-CRF, we were able to present a
hybrid solution where kinematic and video data were both used. Such a hybrid solution
achieved results that are similar or superior to those of state-of-the-art algorithms.

Acknowledgments. Work funded by Sloan Foundation, and NSF 0931805 and 0941362.
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Abstract. In recent years, optical coherence tomography (OCT) has
gained increasing attention not only as an imaging device, but also as a
guidance system for surgical interventions. In this contribution, we pro-
pose OCT as an external high-accuracy guidance system, and present
an experimental setup of an OCT combined with a cutting laser. This
setup enables not only in situ monitoring, but also automatic, high-
accuracy, three-dimensional navigation and processing. Its applicability
is evaluated simulating a robotic assisted surgical intervention, includ-
ing planning, navigation, and processing. First results demonstrate that
OCT is suitable as a guidance system, fulfilling accuracy demands of
interventions such as the cochlear implant surgery.

Keywords: optical coherence tomography, laser, navigation system,
guidance system, cochlear implant surgery.

1 Introduction

The cochlear implant (CI) surgery is a surgical procedure during which an elec-
trode is inserted into the cochlea in order to electrically stimulate the auditory
nerve. Current research investigates the realization of a single-channel using
Robot Assisted Surgery (RAS) and the direct insertion from the outer lateral
skull to the cochlea. This surgical intervention demands an accuracy of 0.5 mm.
In this contribution, we focus on the use of OCT as intra-operative monitoring
and guidance system for this purpose.

OCT was established in 1991. Its working principle is based on the interference
of back-reflected laser light from a sample with reference laser light in a Michelson
interferometer. OCT typically has a resolution in the micron-scale and is highly
sensitive. It is contact-free and, therefore, a nondestructive imaging device, ca-
pable not only of scanning the surface, but also of obtaining three-dimensional
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tissue information. OCT is used in wide range of applications and usually as
qualitative imaging system. With an increased utilization in the field of medical
engineering, quantitative applications gain importance. The idea to use OCT as
a guidance system may be as old as OCT itself. The visualization using OCT
during a surgical procedure and its feedback, enables the user to control the
tissue processing at the micron-scale. Boppart et al. [1] used and proposed OCT
for surgical guidance by manually imaging a region of interest. Recently, more
sophisticated approaches combining OCT with other tools have been developed
and are used in a guided manner. In the field of opthalmology, the integration
of OCT in an microsurgical instrument enables the surgeon to perform OCT
guided retinal microsurgery by visualization of internal structures of the eye [7].
Zhao et al. [6] combined OCT with MRI for neurosurgery guidance. During the
insertion and while navigating with MRI, Zhao et al. use real-time 2D OCT
to image adjacent structures and navigate the surgeon. These examples have in
common, that the guidance is based on forward-imaging. The adjacent target
region of the instrument is imaged with OCT, which is used as internal guidance
system without a direct feedback to the planning.

In this contribution, we propose a novel setup of combined OCT and cutting
laser as a monitoring, navigation and processing system for RAS in hard tissue.
Moreover, we introduce OCT as an external navigation system for laser ablation.
Since OCT is used as stand-alone external guidance system, intra-operative OCT
data has to be matched to (pre-operative) planning data. In order to demon-
strate OCT’s suitability with regard to the stated accuracies, experiments are
performed by simulating a surgical intervention, including planning, navigation
and processing. The experimental setup, methods, and workflow are introduced
in section 2. The results are presented in section 3 and discussed in section 4.

2 Setup and Methods

The following hardware components are part of the proposed system:

– tool for processing: cutting laser.
– tracking system: high-accurate OCT.
– tracking landmarks: spherical artificial fiducial landmarks.
– positioning system: high-accurate parallel robot.
– sample: imaging and navigation phantom.

Recent approaches for navigated material removal involve state-of-the-art optical
tracking systems in an eye-to-hand configuration. When using OCT, an eye-
in-hand configuration is more appropriate due to the limitation of the OCT’s
working distance. In clinical applications, a suitable robot iteratively positions
the combined laser and OCT. The ablation procedure starts after reaching the
target pose with respect to the patient. In the present paper, however, and only
for the experimental setup, an eye-to-hand configuration is used to position the
sample and not the tool. Methodology and relative motion with respect to the
phantom nevertheless remain the same.
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Fig. 1. Eye-in-hand (left) and eye-to-hand (right) of the experimental system with its
components, coordinate frames and transformation matrices

2.1 Experimental Setup

The experimental system is sketched out in figure 1 and shown in figure 2 (left).
The cutting laser is the erbium-doped yttrium aluminium garnet (Er:YAG)

laser of Pantec Biosolutions AG (model DPM-15). It is a pulsed solid-state laser
with a wavelength of λlaser = 2940 nm. The functionality of the laser is expanded
with scan components. Therefore, the entity of laser and scanner is converted into
a three axis laser system, defining a coordinate system (CF)laser. The working
space of this entity, in the following just laser, has a working space of 10 mm in
each dimension.

The OCT used in the optical setup is the system GANYMEDE of Thorlabs,
Inc. The OCT has a center wavelength of λOCT = 930 nm. The maximum field
of view has been enlarged to image approximately 20 mm× 20 mm× 2.7 mm,
defining a coordinate system (CF)OCT. Furthermore, a geometric calibration [2]
of this OCT has been performed in order to reduce the imaging error.

The optical paths of OCT and laser are combined by a dichroic mirror for
an approximate co-axial propagation of the beams and a spatial overlap of the
working spaces, keeping the relative configuration constant. This important fea-
ture enables an in situ imaging and control of the ablation process. We refer
to [4] for further information and first results.

Using OCT as tracking device requires to adapt the tracking landmarks to
this technology. In this contribution, we focus on artificial fiducial landmarks.
Due to previous results, we choose spheres of titan with a diameter of 1 mm. The
sample used for the evaluation of the navigation accuracy, i.e., the phantom, is
composed of two parts (see figure 2 (right)). The first part is the carrier for the
fiducial landmarks and the target area. This second part is a cuboid made of
wood. The artificial fiducial landmarks are positioned not only on the front, but
also on the flip side of the phantom for evaluation purposes, defining an upper
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Fig. 2. Experimental setup (left) with OCT (upper left), laser (upper middle), phantom
(middle), and robot (lower middle). Phantom (right) including fiducial landmarks and
wooden target.

and lower fiducial landmark plane, respectively, and defining a sample coordinate
frame (CF)sample. The configuration of all fiducial landmarks has been measured
with the coordinate measurement machine Zeiss ZMC 550. Both parts have a
relevant depth of approximately 12 mm.

The phantom is positioned using a high accuracy parallel robot, the F-206.S
HexAlign™ 6 Axis-Hexapod of Physik Instrumente (PI) GmbH & Co. KG.

2.2 System Calibration

The aim of this subsection is the description of the methods used to determine
the transformation between rigid components. First, coordinate frames (CF)laser
and (CF)OCT have to be registered, i.e., the homogenous transformation matrix
OCTTlaser has to be determined. An arbitrary material is positioned in the com-
mon working space. We perform the ablation by a limited number of single
pulses removing a small part of material. After appropriate filtering for noise
reduction, the surface including the ablation spot is segmented using snakes [5],
i.e., by choosing the curve in the image that minimizes an energy functional
composed of internal and external energy. For the external part, an energy map
based on the diffusion of the gradient vectors [9] have been used. Using the seg-
mented curves, the volume centroid is calculated. Ablation and image processing
is repeated while positioning the material in several different depths. The laser
is described by a point and a direction. We use the data of ablation spots to
calculate the point of origin by evaluating the spot size as a function of depth,
and the direction by calculating the line of best fit in terms of least squares.

Second, the homogenous transformation matrix EETsample between the robot’s
end effector (EE) and the sample has to be determined. The basic idea is to se-
lect different poses of the robot, such that the sample’s region of interest is in
the OCT imaging volume. After positioning the EE, OCT images are aquired of
the sample including the fiducial landmarks. The OCT data is processed auto-
matically. The centroids of the fiducial landmarks are calculated with a template
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matching algorithm using cross correlation. On the one hand, the localized center
points of the fiducial landmarks define the sample coordinate frame (CF)sample

with respect to the OCT coordinate frame (CF)OCT, i.e.,
OCTTsample. On the

other hand, the transformation 0TEE is defined through the relative position of
robot EE with respect to robot basis. The workflow is repeated for different

poses of the EE, acquiring pair of matrices 0T
(m)
EE and OCTT

(m)
sample for the m-th

repetition. Due to the hand-to-eye configuration, and in order to calculate the
unknown EETsample, the following set of algebraic equations

A ·EE Tsample = EETsample ·B, (1)

A =
(
0T

(m)
EE

)−1

·0 T (n)
EE , B =

(
OCTT

(m)
sample

)−1

·OCT T
(n)
sample (2)

is solved for a pair or set of matrices using methods introduced by Tsai et al. [8].

2.3 Navigation

The conventional workflow starts with an appropriate pre-operative imaging of
the patient in order to aquire data the planning is going to be based on. This
imaging, generally using CT, is omitted, since a ground-truth of the sample,
being the patients replacement, is well-known. We realize the planning by local-
izing artificial tracking landmarks Lk (k = 1, 2, . . .), relative to which we define
an entry T0 and an exit target point T1, i.e., a target transformation matrix
sampleTtarget. This enables us to define a target pose of the sample

OCTT
(target)
sample =OCT Tlaser ·laser Ttarget · (sampleTtarget)

−1, laserTtarget = I. (3)

Intra-operatively, the iterative process is the alternation of tracking landmarks
and comparing actual to target sample pose. The residual error of these two data
sets is minimized performing a singular value decomposition of the weighted
mean fiducial covariance matrix. Tracking is realized through calculating the
centroid of the fiducial landmarks Lk (k = 1, 2, . . .) with a template matching
algorithm using cross correlation. This results in the sample’s pose in the i-th

iteration OCTT
(i)
sample. The difference transformation between actual and target

sample pose

ΔT
(i)
sample = (OCTT

(i)
sample)

−1 ·OCT T
(target)
sample , (4)

enables us to calculate the positioning of the robot’s EE for iteration step i+ 1

0T
(i+1)
EE = 0T

(i)
EE ·EE Tsample ·ΔT

(i)
sample · (EETsample)

−1. (5)

The fiducial registration error (FRE) [3] of the two set of fiducials, target and
actual, as well as the estimated target registration error (TRE) [3] of the entry
target point are used as quality criterion. If these values fall below a certain
threshold, we stop the navigation and start with the ablation.

The evaluation is carried out by imaging the upper as well as the bottom part
of the sample after ablation and comparing actual and planned target points.
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Fig. 3. 2D OCT image (B-scan) of ablation spot with segmented surface (left) and
segmented 3D surface (right)

The errors errin and errout at the target entry and exit point, respectively, as
well as the angle error errα between trajectories are used for evaluation. The
error err35mm is extrapolated at a depth of 35 mm from the surface, which is
approximately the distance from the outer lateral skull to the cochlea, using the
intercept theorem and the entry and exit point.

3 Results

The registration of the OCT and laser has been carried out by positioning and
cutting a sample of wood at 9 different axial positions. The (laser) parameters
for current, puls duration, puls frequency, scanner coordinate have been chosen
to I = 220 A, Δt = 180 μs, f = 200 Hz, and xlaser = (0, 0, 5)
 mm, respectively.
Dense and calibrated volume OCT scans of the ablation spots with a spatial
resolution of 8.2 μm× 8.2 μm× 2.6 μm for a scan region of 3.0 mm× 3.0 mm×
2.7 mm have been acquired. An example of the image processing for calculating
the center of the ablation spot in the OCT image data is given in figure 3
(left), showing an original 2D OCT image of an ablation spot. The segmented
surface, i.e., the snake is superimposed. The segmentation of the surface of the
complete 3D volume is presented in figure 3 (right). The real configuration of
both system components is unknown, so the results can only be evaluated in
terms of precision. The mean distance between localized ablation spots and line
of best fit is 3.5 μm having a standard deviation of 1.5 μm (see figure 4 (left)).

The registration of the EE and sample has been carried out performing a
hand-eye calibration positioning the EE, and, therefore, the sample in ten poses.
The different poses have a translational width of maximal ± 2 mm and rotational
width of maximal ± 5 ◦. With the calibrated OCT measurement system, dense
volume scans of the sample have been acquired. A spatial resolution of 15.0 μm×
15.0 μm × 2.6 μm for a scan region of 15.0 mm × 15.0 mm × 2.7 mm has been
chosen. Figure 4 shows for the i-th step the translational (middle) and rotational

(right) part of the matrix EET
(i)
sample · (EET

(10)
sample)

−1, being EET
(i)
sample the result

an hand-eye calibration with the the first i poses. Both registrations show high
convergence and small residual errors.
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Fig. 4. Distance of localized ablation spots to line of best fit (left). Translational (mid-

dle) and rotational (right) error with respect to converged result (EET
(10)
sample)

−1. The
rotational error is the angle of the axis-angle representation of the difference matrix.

The key experiment including navigation and cutting has been carried out by
pre-positioning the (evaluation) sample laterally in the center and axially ap-
proximately at the focal distance of OCT and cutting laser, respectively. With
the calibrated OCTmeasurement system, dense volume scans have been acquired
choosing the same parameters as for the hand-eye calibration. The (laser) param-
eters for current, puls duration, and puls frequency remain unchanged avoiding
a possible ”pointing” of the laser. The ablation is carried out performing the
scanner a truncated cone geometry with a diameter of 3000 μm at the upper
and 200 μm at the lower end of the cutting geometry. The height is of 10000 μm.
The entry point T0 is planned to be the center point of the three landmark
fiducials on the upper side of the evaluation sample. The target exit point T1

is defined through the intersection of the normal of the upper fiducial landmark
plane and the lower fiducial landmark plane at an approximate distance from
T0 of 12 mm. The navigation and cutting is performed ten times. Generally, the
iterations of the navigation, i.e., the repositioning of the robot, stop, when the
FRE and TRE fall below a threshold of 10 μm. Then, we start with the ablation.
The navigation errors at the last iteration step and the ablation errors are as
follows:

exp.
1

exp.
2

exp.
3

exp.
4

exp.
5

exp.
6

exp.
7

exp.
8

exp.
9

exp.
10

FRE [μm] 4.0 4.1 15.1 7.5 9.3 7.9 9.7 7.1 4.3 10.1

TRE [μm] 1.2 3.1 10.3 3.7 1.9 1.5 2.0 2.4 1.3 7.6

errin [μm] 32.2 46.6 51.2 53.3 49.1 58.2 39.9 31.3 21.3 22.5

errout [μm] 98.0 121.7 83.1 66.0 33.8 58.2 105.0 166.3 156.36116.2

err35mm [μm] 226.1 336.9 341.3 237.1 133.0 179.5 379.2 473.7 462.1 312.5
errα [◦] 0.3 0.5 0.64 0.44 0.28 0.27 0.68 0.76 0.76 0.49

The trials have been carried out in a series of two (exp. 1-2), four (exp. 3-6),
and four (exp. 7-10) experiments. Each of these series has been performed with
slight variations, e.g., with a different laser OCT registration. The three series
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show consistent results, with all experiments fulfilling the necessary accuracy for
CI surgery.

4 Conclusion

This contribution reports ten trials of OCT guided laser ablation, all of which
consistently resulted in an error of less than 0.5 mm. Although the number of
repetitions is not sufficient to assume statistical significance, the results fulfill the
accuracy demands of interventions such as CI surgery and, thus, lend preliminary
support to the assumption that OCT may be used as an external high-accuracy
guidance system. Simulating a robotic assisted surgical intervention, we demon-
strated the feasibility and potential of the combined setup of laser and OCT for
navigation and processing.
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Abstract. We propose a novel automatic fiducial frame detection and
registration method for device-to-image registration in MRI-guided
prostate interventions. The proposed method does not require any man-
ual selection of markers, and can be applied to a variety of fiducial frames,
which consist of multiple cylindrical MR-visible markers placed in dif-
ferent orientations. The key idea is that automatic extraction of linear
features using a line filter is more robust than that of bright spots by
thresholding; by applying a line set registration algorithm to the detected
markers, the frame can be registered to the MRI. The method was ca-
pable of registering the fiducial frame to the MRI with an accuracy of
1.00 ± 0.73 mm and 1.41 ± 1.06 degrees in a phantom study, and was
sufficiently robust to detect the fiducial frame in 98% of images acquired
in clinical cases despite the existence of anatomical structures in the field
of view.

1 Introduction

Magnetic Resonance Imaging (MRI) is an advantageous option as an intra-
operative imaging modality for image-guided prostate interventions. While tran-
srectal ultrasound (TRUS) is the most commonly used imaging modality to guide
core needle prostate biopsy in the United States, the limited negative predictive
value of the TRUS-guided systematic biopsy has been argued [1]. To take advan-
tage of MRI’s excellent soft tissue contrast, researchers have been investigating
the clinical utility of MRI for guiding targeted biopsies [2]. MRI-guided prostate
biopsies are often assisted by needle guide devices [3, 4] or MRI-compatible ma-
nipulators [5–7]. These devices allow the radiologist to insert a biopsy needle
accurately into the target defined within the MRI coordinate space.

Registering needle guide devices to the MRI coordinate system is essential
for accurate needle placement [3–5]. These devices are often equipped with MR-
visible passive markers to be localized in the MRI coordinate system. Because
the locations of those markers in the device’s own coordinate system are known,
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one can register the device’s coordinate system to the MRI coordinate system
by detecting the markers on an MR image. However, the detection and regis-
tration of markers on an MR image are not always simple to achieve, because
simple thresholding does not always provide robust automatic detection due to
noise from other sources such as the patient’s anatomy. Even if the markers are
successfully detected, associating them with the individual markers is another
hurdle for device-to-image registration. Existing methods rely on specific designs
of fiducial frames or MR sequences [3, 4], restricting the device design.

In this paper, we propose a novel method for robust automatic fiducial frame
detection and registration that can be applied to a variety of fiducial frame
designs. The only requirement for the frame design is that the frame has at
least three cylindrical MR-visible markers asymmetrically arranged. The key
idea behind the method is that extraction of 3D linear features from cylindrical
markers using a line filter is more robust than that of bright spots on the image by
thresholding; by matching the cylindrical shapes detected on an MR image and
a model of the fiducial frame, one can register the frame to the MRI coordinate
system. We conducted phantom and clinical studies to evaluate the accuracy and
the detection rate of the method using an existing MRI-visible fiducial frame [4].

2 Methods

2.1 Requirements for a Fiducial Frame

Our method is designed to detect a fiducial frame consisting of multiple MR-
visible cylindrical markers on an MR image and register a model of the fiducial
frame to the detected markers. The cylindrical markers can be an MR skin
marker product, or sealed tubes filled with liquid that produces MR signal. The
frame must be rotationally asymmetric to obtain a unique solution in marker
registration. The configuration of the fiducial frame is modeled as a model line
set {lM1 , ..., lMNM} in our registration algorithm. Each line is described by a pair
of position and direction vectors, pM

i and nM
i (i = 1, ..., NM); those vectors

represent the coordinates of a point on the line and the direction vector of the
line defined in the fiducial frame coordinate system respectively.

2.2 Detection of Cylindrical Markers on MRI

After a 3D or multi-slice MR image of the fiducial frame has been obtained, each
indi-vidual marker of the frame is automatically segmented on the MR image
using the 3D multi-scale line filter [8]. To distinguish the fiducial frame from other
anatomical structures, we propose the following filtering steps. First, the line
filter is applied to the image of the fiducial frame to highlight the 3D lines that
have the same width as the cylindrical markers. The filter can target 3D lines of
a specific width by σf , the standard deviation of the isotropic Gaussian function
used to estimate the partial second derivatives. The filtered image is binarized
with a threshold. At this stage, only the voxels within the line structures are
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Fig. 1. We defined a distance function between one of the lines in the model of the
fiducial frame, lMi , and one of the lines extracted from the image, lIj , using the distances
from two points q−

i and q+
i on line lMi to line lIj . q

−
i and q+

i are defined by point pM
i ,

direction vector vM
i and the distance to pM

i , a/2. The distance function gives zero only
if the two lines match. Although the distance function depends on how pM

i is chosen,
it does not depend on the location of pI

j along line lIj . Therefore, the distance function
is insensitive to translation along line lIj during the registration process.

labeled ’1’, while the remaining voxels are labeled ’0’. The voxels within the lines
are then relabeled so that each segment has a unique voxel value. Each segment is
examined based on its volume and dimensions. If the volume in a given segment
is within a pre-defined range [Vmin, Vmax], the length and width of the segment
are assessed by computing the principal eigenvector of the distribution of the
voxels in the segment. The segment is identified as a cylindrical marker only if
its length along the principal eigenvector is close to the physical length of the
markers. Once the segment is identified as a cylindrical marker lIj , the centroid of

the segment is calculated as pI
j , and the principal eigenvector as nI

j(j = 1, ..., N I).

2.3 Registration of the Two Line Sets

Once the markers are identified as a line set {lI1, ..., lIN I} on the MR image, the
line set in the model {lM1 , ..., lMNM} is registered to {lI1, ..., lIN I}. The challenge
here is that the transformation that registers the model to the MR image can-
not be determined analytically, because an one-to-one correspondence between
{lM1 , ..., lMNM} and {lI1, ..., lIN I} has not been established. To address this challenge,
we developed an approach similar to the Iterative Closest Line (ICL) [9]. The
ICL is a point cloud registration algorithm alternative to the Iterative Closest
Points (ICP) [10]; whereas the ICP registers two point clouds by iteratively as-
sociating points in the two clouds by nearest-neighbor criteria, the ICL registers
them by associating linear features extracted from the point clouds. Unlike ICL,
we compute the translation and rotation at once rather than computing them
separately. To achieve this, we define a distance function, which becomes zero
when two given lines match (Fig. 1). The two points on line lMi are defined by
q+
i = pM

i + anM
i /2 and q−

i = pM
i − anM

i /2, where the distance between the two
points is a. The distances from those points to line lIj are:

d(q+
i , l

I
j) = ‖(q+

i − pI
j)− {(q+

i − pI
j) · nI

j}nI
j‖ (1)

d(q−
i , l

I
j) = ‖(q−

i − pI
j)− {(q−

i − pI
j) · nI

j}nI
j‖ (2)
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Fig. 2. A configuration of the Z-frame, which has been used in our clinical trial [4].
The Z-frame has seven rigid tubes with 7.5 mm inner diameters and 30 mm length
filled with a contrast agent (MR Spots, Beekley, Bristol, CT) placed on three adjacent
faces of a 60 mm cube, thus forming a Z-shaped enhancement in the images.

If we define the error function for line lMi and line lIj as:

E(lMi , l
I
j) = d(q+

i , l
I
j) + d(q−

i , l
I
j) (3)

the error function between line lMi and the line set identified on the MRI, LI =
{lI1, ..., lIN I}, can be defined as:

E(lMi , L
I) = min

j∈1,...,N I
E(lMi , l

I
j) (4)

Finally, the linear transformation is computed by optimizing E using the same
iterative approach as in ICP.

2.4 Experimental Setup

We evaluated the performance of the proposed fiducial detection algorithm using
an existing fiducial frame called Z-frame that has been used for registration
of a needle-guide template in our clinical study [4]. The existing registration
algorithm estimates the position and orientation of the Z-frame with respect to a
given 2D image plane based on distances between hyper-intensity dots, where the
cylindrical markers intersect the slice plane. Although the automatic registration
algorithm for the Z-frame works well for CT images [11], it encounters two
problems when used for MRI. First, it often requires manual masking on the
input image to exclude anatomical structures that lead to misidentification of
tubes. Second, the existing algorithm is specialized for the Z-frame’s shape and
does not allow for different shapes. The rationales for using the Z-frame in our
evaluation are as follows: 1) it allows direct comparison of registration accuracy
with the established method; 2) it allows retrospective tests using existing clinical
data, which provide realistic image features e.g. noise and structures other than
the fiducial frame, including the patient anatomy.

Phantom Study. We fixed an acrylic base with a scale on the patient table of a
3 Tesla MRI scanner (MAGNETOMVerio 3T, Siemens AG, Erlangen, Germany)
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to give known translations and rotations to the Z-frame. The scale allows the
Z-frame to be placed at 0, 50, 100, 150, and 200 mm horizontally off the isocenter
of the imaging bore, and tilted 0, 5, 10, 15, and 20 degrees horizontally from the
B0 field. We evaluated the accuracy of the Z-frame registration, while translating
the Z-frame along the Z-frame’s X- and Y-axes and rotating around the X-, Y-
and Z-axes i.e., roll, pitch and yaw, respectively (Fig. 2). The translation along
the Z-axis was not considered, since the scanner can position the subject to its
isocenter by moving the table. For the acquisition of the 3D images, we used
the 3D Fast Low Angle Shot (FLASH) imaging sequence (TR/TE: 12 ms/1.97
ms; acquisition matrix: 256 × 256; flip angle 45◦; field of view: 160 × 160 mm;
slice thickness: 2 mm; receiver bandwidth: 400 Hz/pixel; number of averages: 3).
For each translation and rotation, eight sets of 3D images were acquired. The
existing and proposed detection and registration methods were applied.

Clinical Study Using Existing Data. MRI data of the Z-frame were obtained
during clinical MRI-guided prostate biopsies performed under a study protocol
approved by the Institutional Review Board. Three-dimensional images of the
Z-frame acquired at the beginning of each case were collected in 50 clinical cases,
where the Z-frame was used to register the needle guide template. We performed
automatic registration of the Z-frame using the proposed method. The results
were visually inspected by overlaying the Z-frame model on the MRI.

For both studies, we used the medical image computing software, 3D Slicer
4.1 [12] running on a workstation (Apple Mac Pro, Mac OS X 10.7.1, CPU: Dual
6-Core Intel Xeon 2.66 GHz, Apple Inc., Cupertino, CA).

3 Results

Phantom Study. The parameters for the multi-scale line filter [8] were as fol-
lows: σf = 3.0, α1 = 0.5, α2 = 2.0. We used threshold for the Hessian matrix
= 13.0, [Vmin, Vmax] = [300mm3, 2500mm3], and minimum length of principal
axis = 10 mm. Registration of the Z-frame on all MR images was successfully
completed without tuning the parameters. Fig. 3 shows the errors between trans-
lations and rotations of the Z-frame estimated from the proposed registration
method and measured on the scale. The average time for computation was 4.3
seconds per image. Table 1 shows a comparison between the registration accu-
racy of the proposed algorithm and that of the existing algorithm.

Table 1. Comparison between the registration accuracy of the existing (original) al-
gorithm and the proposed algorithm using the Mann-Whitney U test

X (mm) Y (mm) Roll (deg) Pitch (deg) Yaw (deg)

Original −1.08± 0.80 −1.44 ± 1.83 −0.70± 0.97 −1.55 ± 1.55 0.04± 0.05
Proposed −1.00± 0.73 −0.38 ± 0.44 −1.41± 1.06 −0.87 ± 0.66 0.01± 0.13
p-value 0.5 0.005 0.01 0.1 9.0 × 10−6
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Fig. 3. The plots shows the mean and standard deviations of the translational registra-
tion errors when the fiducial frame is placed at 0, 50, 100, 150, and 200 mm horizontally
off the isocenter and the rotational registration errors when it was tilted 0, 5, 10, 15,
and 20 degrees around the X, Y and Z axis of the frame from its original position

(A)

(B)

(C)Axial

Coronal

Axial

Coronal

Fig. 4. (A) The original 3D MR image of the Z-frame acquired in the clinical study
presents the sections of the cylindrical markers and the thighs of the patient. (B) The
segmented markers are overlaid onto the original MR image. The segmented area was
relabeled so that each segment has a unique voxel value presented as unique color. (C)
The surface models of the segmented markers are shown with the model of the fiducial
frame and an axial slice of T2-weighted prostate MRI in the 3D space.

Clinical Study Using Existing Data. The same parameters were used in
the clinical study. Visual inspection of the results (Fig. 4) showed that, the Z-
frame was successfully registered in 49 cases (98%). In one case, threshold values
for minimum and maximum volume of markers had to be adjusted to achieve
successful registration. The average computation time was 5.6 seconds.
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4 Discussion and Conclusion

In this paper, we proposed a novel method for robust automatic fiducial frame
detection and registration that can be applied to a variety of fiducial frame de-
signs. The phantom study demonstrated that the proposed method was capable
of registering the model of the fiducial frame to the MRI with an accuracy of
1.00 ± 0.73 mm and 1.41 ± 1.06 degrees. The clinical study demonstrated that
the method was sufficiently robust to detect the fiducial frame with a success
rate of 98% without any manual operation.

The use of cylindrical markers is essential to the proposed method. Our as-
sumption is that automatic extraction of 3D linear features from cylindrical
markers on the input image is more robust than that of spherical markers or
sections of cylindrical markers because the Hessian matrix can selectively high-
light the linear structures with a specific width, and once the linear structures
are extracted, several criteria e.g. volume and size in primary and secondary
axes, can be applied to filter out unwanted structures. Moreover, thanks to the
approach’s use of lines instead of points, the method is less prone to detection
error due to MR signal defects than the other approaches that rely on simple
threshold. In practice, signal defects are often caused by bubbles in capsules of
liquid-based MR-visible markers. However, the signal defects can still impact the
registration accuracy in our approach, because a line is identified as the eigen-
vectors of the voxel distribution in the segmented markers. This might explain
why the registration error of the proposed method was significantly higher than
the existing method in Roll but not in the other directions; for the existing tech-
nique, only the slices without any signal defect in the markers were manually
selected, whereas the proposed method relies on the entire 3D image. Krieger et
al proposed the use of template matching to minimize the effect of bubbles [5].

The proposed method provides several advantages over other methods for fully
automated device-to-image registration. First, it only relies on passive markers
and does not require any embedded coil or MR pulse sequence to enhance the
signal from the markers. Second, the algorithm does not assume any particu-
lar frame design for automatic detection and registration. The only requirement
for the fiducial frame design is the use of more than three cylindrical markers
asymmetrically arranged. Such flexibility allows automatic detection and reg-
istration of a wide variety of needle guide devices. Third, the algorithm does
not require any modification of its implementation in order to be adapted to a
particular fiducial frame design. It only requires modifying a model of the frame
and parameters, which can be provided as a configuration file. Therefore, even
developers who are not specialized in image processing can design and imple-
ment device-to-image registration. Those advantages help developers to design
needle guide devices with less effort and fewer constraints.

In conclusion, we propose a novel method for robust automatic fiducial frame
detection and registration that can be used for a variety of fiducial frame con-
figurations for device-to-image registration in MRI-guided interventions. The
phantom and clinical studies demonstrate that the method provides accurate
and robust automatic detection and registration of fiducial frames.
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Abstract. In the context of minimally-invasive procedures involving
both endoscopic video and ultrasound, we present a vision-based method
to track the ultrasound probe using a standard monocular video laparo-
scopic instrument. This approach requires only cosmetic modification to
the ultrasound probe and obviates the need for magnetic tracking of
either instrument. We describe an Extended Kalman Filter framework
that solves for both the feature correspondence and pose estimation, and
is able to track a 3D pattern on the surface of the ultrasound probe in
near real-time. The tracking capability is demonstrated by performing
an ultrasound calibration of a visually-tracked ultrasound probe, using
a standard endoscopic video camera. Ultrasound calibration resulted in
a mean TRE of 2.3mm, and comparison with an external optical tracker
demonstrated a mean FRE of 4.4mm between the two tracking systems.

1 Introduction

Many procedures can be performed using endoscopy as a viable alternative to
open surgery. Such minimally-invasive approaches can reduce recovery time,
length of hospital stay, and morbidity. During such procedures, surgeons employ
an endoscopic camera to view the organ surface and an endoscopic ultrasound
(US) probe to visualize structures within the organ. In a typical surgical configu-
ration, the video and US images are presented separately and in 2D. The surgeon
must, therefore, perform spatial reasoning to mentally map the US image onto
the video. Furthermore, the 2D nature of these images results in decreased depth
perception.

Navigated endoscopy incorporates a spatial tracking device to infer the pose
of the US probe relative to the camera, allowing US images to be registered to,
and fused with, the video. The fused image is more intuitive, and lowers the cog-
nitive load by eliminating the mental transform between the two images, which
may improve hand-eye coordination of the surgeon. Examples of such systems
include tumour resections using magnetic [4], robotic [9], photoacoustic [3], and
vision-based [12] tracking systems, with Langø et al. [8] providing a compre-
hensive overview. Systems that employ extrinsic tracking devices increase cost,
impact surgical workflow, require additional sterilization, and introduce other
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limitations such as line-of-sight and metal interference issues for optical and
magnetic tracking solutions respectively. Intrinsic tracking using the endoscopic
camera to perform spatial measurements [12] does not incur these limitations,
but accuracy, robustness, and the need to modify standard surgical instrument
may be of concern. In particular, vision-based tracking in an endoscopic envi-
ronment may be subject to lighting conditions, erroneous feature detection, and
occlusion.

In this paper, a vision-based tracking system using a standard surgical laparo-
scopic camera is presented. A 3D marker was designed and rigidly attached to the
semi-cylindrical back surface of a standard linear laparoscopic US probe, provid-
ing a set of features that can be reliably detected in the video sequence. Based on
an Extended Kalman Filter framework, the proposed system is capable of track-
ing the 3D marker in 6 degrees of freedom, in the presence of spurious and/or
missing features, even under strong specular lighting conditions. The tracking
capability of the proposed system is demonstrated by performing an US probe
calibration, along with both visual and quantitative validation procedures.

2 Methods and Materials

Given a set of known 3D model points M , and a set of 2D observed features U
as imaged by the camera, the process of 2D-to-3D registration can be treated as
a Perspective-n-Point (PnP ) problem. In general, a PnP solution requires the
correspondence between the 2D and 3D features to be established, as well as the
optical properties of the imaging system to be known [13].

In practice, spurious features are often detected in the image, and features
may be missing due to occlusion or strong specular lighting conditions. There-
fore, to ensure robust operation of PnP algorithms, it is advantageous to address
both the correspondence and pose estimation problems simultaneously. The pro-
posed method employs an Extended Kalman Filter (EKF) framework [11] to
constrain the search for feature correspondence. Given a calibrated camera and
a 3D marker, possible poses of the 3D marker with respect to the camera are
represented as a Gaussian Mixture Model (GMM). Uncertainty relating to the
pose of the marker is propagated from the 3D model space to the 2D image
space using EKF equations, constraining the search space for feature correspon-
dence in a sequential fashion. A globally convergent PnP algorithm is applied to
further refine the estimation established with at least 4 correct correspondences.

2.1 Hardware Setup

An “X-Corner” fiducial pattern (Fig. 1) was rigidly attached to the curved back-
surface of a linear endoscopic US probe (UST-5536-7.5, Aloka, Japan) to serve as
the 3D marker. A local 3D coordinate system of the pattern was defined, with
the locations of the black-and-white intersections (i.e. X-corners) accurately
determined using a measuring microscope (STM6-LM, Olympus, Japan).
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(a) (b) (c)

Fig. 1. (a) a 3DX-corner pattern affixed to a linear US probe, (b) the proposed method
is able to establish the 2D to 3D correspondence even in the presence of spurious(top
right) and missing features (those occluded by surgical grasper), and (c) a surrogate
marker designed for validation using an optical tracking system

To locate the X-corners in the video image, a corner detection algorithm [1]
specifically designed to detectX-corners was employed. Compared to generic cor-
ner and edge detectors [7], this algorithm tends to detect less clutter and is more
computationally efficient. Once detected, the locations of X-corners are further
refined to sub-pixel accuracy [2]. The camera (Surgical laparoscope, Olympus)
was calibrated in a standard fashion using a planar pattern [2]. Both video and
US images were captured at an image size of 640× 480 pixels (Morphis, Matrox,
Canada), and the video was corrected for both tangential and radial distortion.

2.2 Simultaneously Solving for the Pose and Correspondence

The pose of the US probe is represented as a 6D vector: 3 components repre-
senting the rotation in Rodrigues’ form [2] and 3 representing the translation. It
is assumed that the US probe can be freely displaced within the viewing frus-
tum of the endoscopic camera, with a depth ranging from 5cm to 20cm. The
orientation of the US probe mimicked realistic surgical conditions. Under these
range constraints, pose samples were simulated and a Gaussian Mixture Model
(GMM) was learned [5] offline to represent the 6D pose space. The learned GMM
was then used to provide the initial pose and correspondence of the US probe
by minimizing the following error function [11]:

Error(p) =
∑

(m,u)∈Matches

‖u− Proj(p;m)‖ + τ |NotDetected| (1)

where u is a detected X-corner, Proj(p;m) is the projection of a model point m
using the pose p, τ is a penalty term for unmatched points, and |NotDetected|
denotes the cardinality of the undetected feature set. Uncertainty in pose space
is propagated to image space using EKF equations and used to constrain the
matching between the detected X-corners and model points. Once a correspon-
dence is found, the pose and the associated uncertainty are updated using EKF
equations to further reduce the search space for subsequent correspondence
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matching. This process is repeated until at least 4 correct correspondences are
established, by which time the initial pose estimation given by the GMM is up-
dated in response to the found correspondence. This estimated pose is refined
by solving the generic PnP problem with a globally convergent algorithm [10].

The GMM, which provides an accurate pose prior but is computationally
expensive, is nevertheless used to provide the initial pose estimation for the first
video frame. For all subsequent frames, the pose provided by the PnP algorithm
at frame i is employed as a motion prior for frame i+1. Standard EKF equations
are used to propagate the pose and the associated covariance throughout the
video sequence.

2.3 Laparoscopic Ultrasound Calibration

The tracked US probe was calibrated [6] using a Z-phantom with 2 line fiducials
arranged in a Z pattern. The Z-phantom was filled with polyvinyl chloride-
plastisol (PVC) compound, which serves as a clear tissue-mimicking medium
(Fig. 2(b)). A rectangular checkerboard pattern was rigidly attached to the pla-
nar surface of the phantom, and its pose was determined using OpenCV [2]. Once
the homologous features were determined in both the image and camera space,
the calibration was solved using the standard Orthogonal Procrustes algorithm.

(a) (b) (c)

Fig. 2. (a) a CAD model of the Z-phantom (designed by PERK
http://perk.cs.queensu.ca), (b) an US image showing 2 Z-patterns, and (c)
pose of the US probe/Z-phantom was determined using the proposed method and
OpenCV [2], respectively

2.4 Validation Using Optical Tracker

A surrogate 3D marker, similar to that attached to the US probe, was con-
structed and rigidly attached to an optical Dynamic Reference Body (DRB)
(Fig. 1c). The 3D marker and the optical DRB were carefully coregistered using
a calibrated stylus. This setup was simultaneously tracked using both the pro-
posed method and an optical tracking system (OTS) (Vicra, NDI, Canada). A
total of 75 measurements were made within the depth range between 92mm to
99mm, typical of an endoscopic intervention.

http://perk.cs.queensu.ca
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3 Results

A total of 17 US/video image pairs were acquired for calibration. In each US im-
age, the two fiducials, corresponding to the cross line of the Z-phantom (Fig. 2)
were manually identified to obtain a total of 34 homologous points in both the
US image and the 3D space. The calibration was accomplished using the Orthog-
onal Procrustes algorithm and resulted in a mean Fiducial Registration Error
(FRE) of 2.2mm with a standard deviation of 0.9mm. A leave-one-out cross val-
idation was performed where one of the 17 image pairs was removed prior to the
calibration and the two fiducials on this image were then used as target points.
This cross validation was repeated 17 times with different validation images,
resulting in a mean Target Registration Error (TRE) of 2.3mm and a standard
deviation of 1.0mm. Table 1 summarizes the result.

Table 1. US probe calibration result using a total 17 tracked US images

mean error (mm) standard deviation (mm)

Calibration FRE 2.2 0.9

leave-one-out TRE 2.3 1.0

Once US calibration is established, it is used to fuse the US image onto the
endoscopic video. For the purpose of visual validation, two phantoms were con-
structed. The first comprises a spine vertebra semi-submerged into a PVC block;
the second, a surgical needle inserted through a block of PVC. Figure 3(b) clearly
shows that the outline of the spine forms a continuous contour, verifying that
both visual tracking and US calibration are performing as expected. The pro-
posed method is able to track the US probe in the presence of feature occlu-
sion (Fig. 3(c,d)), as well as under ambient and endoscopic lighting conditions
(Fig. 3(e,f)). Note that in the fused image, the needle seen in US is in alignment
with the ends of the needle protruding from the phantom.

A total of 75 measurements of the surrogate marker were taken simultaneously
using the endoscopic camera and the OTS. The tracking accuracy was evaluated
at a set of 3D points lying on a virtual US fan created using the calibration ob-
tained from the previous experiment. The 3D location of each pixel in the US fan
was determined in both the OTS and the camera coordinate systems, allowing
the two tracking systems to be coregistered. The FRE of this registration incor-
porates tracking errors from the two tracking systems as well as the registration
error between the 3D marker and the optical DRB. Assuming the OTS is the
gold standard, and the obtained registration is valid over the region of interest,
the FRE represents the tracking error of the proposed method propagated to
the US fan.

Figure 4 depicts the mean FRE of the camera coregistration using US image
pixels as fiducials. The mean FRE exhibits a radial pattern: pixels close to the
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(a) (c) (e)

(b) (d) (f)

Fig. 3. Visual validation of tracking and US calibration: (a) a spine phantom, (b) US
overlay showing a continuous contour of the spine outline under endoscopic lighting
conditions. Needle phantom with (c,e) ambient lighting, (c,d) occlusion by surgical
tool, (e,f) no occlusion, and (d,f) under endoscopic lighting conditions. Red arrows
point to the ends of the needle while the yellow arrow points to its image in US. Note
the dramatic improvement in the visual perception of the US beam with respect to the
US probe, when the probe occludes the upper part of the US image, compared to the
more näıve rendering of simply overlaying the US image on the video scene.

origin of the 3D marker exhibit a smaller mean FRE, which gradually increases
as the pixel location is moved further away from the origin. This radial pattern
suggests that the main contribution of the tracking error is from the rotational
error of pose estimation. Over the acquired 75 measurements, the mean FRE
of all pixels was 4.4mm, with a standard deviation of 3.3mm. The per-pixel
mean FRE ranges from a minimum of 4.2mm to a maximum of 4.7mm. In
our experience, this error is over-estimated due to the coregistration between
the checker pattern and the optical DRB. Nevertheless, these results provide
an upper-bound on the error introduced by the proposed method. The visual
validation results suggest that the actual tracking error is substantially lower.

4 Discussion and Conclusion

A vision-based tracking procedure using a standard surgical monocular camera
is proposed. By tracking a 3D pattern that is rigidly attached to a surgical
tool, this approach operates under endoscopic lighting conditions and in the
presence of occlusion. As with other vision-based systems, the limitation of this
method is that it requires a fixed-focus camera that adheres to the pin-hole
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Fig. 4. Per-pixel mean FRE (in mm) of the camera-OTS coregistration shown in US
image space. The x and y axis are the US image axis, with the top-left corner being
closest to the origin of the 3D marker.

camera model. In contrast to other systems, this approach only requires trivial,
cosmetic modification of the tracked object (endo-ultrasound probe).

One advantage of this approach is the ability to track a marker defined on a
curved, rather than a planar surface, and can thus be adapted to a wide range
of surgical tools. The current implementation tracks X-corners, but any feature
that can be reliably detected in a video sequence can be used. Modifications to
surgical tools are therefore minimized, and since no extrinsic tracking system is
used, additional cost is minimal.

This method was used to calibrate a tracked US probe, and US image overlay
gives a visually consistent augmentation. The reported US calibration FRE and
TRE are in the order of 2mm which, in our experience, is comparable to results
obtained using a magnetic tracking system. An optical tracking system was used
to validate the accuracy of the proposed system. Using a surrogate marker to
represent that attached to the US probe, simultaneous tracking by both systems
was performed, allowing the local coordinate systems of the two trackers to
be coregistered. Using the measurements from the OTS as the gold standard,
camera tracking proved to be consistent with the OTS. The error of camera
tracking exhibits a radial pattern, suggesting that the main contributor of the
error is the rotational component of the pose estimation. The reported mean
FRE is 4.4mm with a standard deviation of 3.3mm. This FRE is a combined
system error including the co-calibration error of the 3D marker and DRB, which
provides an upper-bound for the tracking error of the proposed system. Further
analysis is warranted to provide a more accurate estimate of this error.

The proposed system currently performs at about 5 frames per second, but
can be dramatically improved through more efficient implementation. Future
work includes 1) pattern design of the 3D marker to optimize tracking accuracy
and range of tracking angle, 2) integration into standard endoscopic procedure,
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3) improvements to the algorithm to track multiple surgical instruments, and 4)
extending this algorithm to track intrinsic visual features of the surgical tools,
eliminating the need for extrinsic 3D markers entirely.
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Abstract. We propose a method to perform automatic detection of 
electrophysiology (EP) catheters in fluoroscopic sequences. Our approach does 
not need any initialization, is completely automatic, and can detect an arbitrary 
number of catheters at the same time. The method is based on the usage of blob 
detectors and clustering in order to detect all catheter electrodes, overlapping or 
not, within the X-ray images. The proposed technique is validated on 1422 
fluoroscopic images yielding a tip detection rate of 99.3% and mean distance of 
0.5mm from manually labeled ground truth centroids for all electrodes. 

1 Introduction 

Sudden cardiac death (SCD) is an unexpected death due to cardiac-related 
complications occurring in a short amount of time. SCD accounts for approximately 
325,000 deaths per year in the United States alone. The trend of increasing SCD in 
developing or developed nations is thought to reflect a change in dietary and lifestyle 
habits in these nations. It is estimated that SCD claims more than 7,000,000 lives per 
year worldwide [1]. Most cases of SCD are related to cardiac arrhythmias. The most 
common electro physiological mechanisms leading to SCD are tachyarrhythmias such 
as ventricular fibrillation (VF) or ventricular tachycardia (VT). These disorders are 
frequently treated by radiofrequency (RF) catheter ablation. The precise localization 
of  the  arrhythmogenic  site  and  positioning  of  the  RF  catheter  at  that  site  are 
problematic. These shortcomings can both reduce the efficacy of the procedure and 
increase the surgery time to several hours, especially with complex arrhythmias. To 
shorten the duration of RF catheter ablation and increase efficiency for treatment, 
commercial mapping systems providing 3D volume and color display of the cardiac 
chamber and electrical activation sequence have been developed. A review of these is 
presented in [2]. 

State-of-the-Art: In recent research practice, the medical imaging community has 
refocused its efforts to detect catheters directly in X-ray images. Many different types 
of catheters are used during EP procedures, each having specific configuration 
electrodes (e.g. size, shape). These electrodes are used for the measurement of 
electrical signals within the heart and also for the delivery of radiofrequency energy 
during treatment. Accurate and robust localization of catheters in the X-ray images 



372 F. Milletari, N. Navab, and P. Fallavollita 

 

can provide enhanced functionality during procedures for guidance and also for post- 
procedural analysis. A crucial application of catheter localization is to record the 
position of the ablation catheter-tip in X-ray and map it onto the 3D roadmap during 
ablation therapies. Electrode detection methods must be robust enough to be used 
routinely during clinical procedures. Fallavollita et al. developed a catheter tip 
detection algorithm based on thresholds of the fluoroscopic images; this failed in low 
contrast images [3]. A technique for tracking and detecting the ablation catheter in X-
ray images was first proposed by Franken et al. but the computational cost was 
relatively high making the method not applicable in clinic [4]. Coronary Sinus and 
ablation catheter detections were first proposed in [5-6]. Multiple user interaction and 
parameter fine-tunings were necessary to meet the quality of the X-ray image. 
Employing respiration and motion compensation methods may succeed in 
overcoming some of the above challenges [7]. Recently, Brost et al. developed a 
model-based lasso catheter tracking algorithm in biplane X-ray fluoroscopy [8-9]. 
However, the tracking required re- initialization and user interaction. Wen et al. 
successfully tracked one catheter in a cardiac cycle and required user-initialization in 
selecting tip electrodes [10-11]. The only work addressing multiple catheter tip-
detection is presented in [12]. Here the authors require user interaction for their 
detections using a geodesic framework. In conclusion, all of the above works are 
excellent and demonstrate to the community how challenging the task is in achieving 
automatic and robust methods for electrode detection, specifically for the catheter-tip 
positions. 

Contributions: In an effort to build upon published literature, we propose a method 
that considers all of the key challenges associated with catheter detections. Our 
automatic method: (i) detects the tip of the catheter; (ii) detects the other catheter 
electrodes; (iii) detects multiple catheters; and (iv) considers the overlapping scenario. 
We believe that the combination of these distinguish this paper making it unique in 
our community. Our proposed method does not rely on prior knowledge from 
previous X-ray frames. The aim is to obtain clinically acceptable results− an assigned 
error value of 2 mm for cardiac applications [13]. 

2 Methodology 

First, our goal is to find all potential electrode candidates in X-ray. We perform these 
detections without the requirement of user interactivity or algorithm re-initialization. 
Then we aim at obtaining the highest number of candidate electrodes that correspond 
to real electrodes and to subsequently filter the outliers. Of the 1422 fluoroscopic 
images used in the evaluation, we randomly selected one X-ray frame from each 
dataset (a total of 20) to empirically define the algorithm parameters (Table 1).  

2.1 Blob Detections 

A blob detector formulation is used to detect electrodes. The electrode appearances 
are not always the same due to foreshortening and projective effects. They can appear 
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larger or smaller and their shape can change from rectangular → elliptical → circular 
over consecutive frames. It should be noted that for an individual X-ray image, the 
appearance of the electrodes belonging to the same catheter are very similar: if one of 
them appears as a circle it is very likely that the others share the same appearance. 
The candidate electrodes are obtained from a blobness measure influenced by non-
maximum suppression. This blobness measure is implicitly greater than one since we 
are using a scale-space approach to detect electrodes at different scales. In other 
words, a catheter tip electrode will appear larger than the other electrodes. 

Table 1. Algorithm parameter settings 

 
 
We investigated two different methods that yield different performances both w.r.t. 

the detection rate and execution time. These approaches are based respectively on the 
usage of a “laplacian of gaussian” (LoG) and a “difference of gaussian” (DoG). The 
(LoG) blob detector [14] is a non-separable linear filter capable of finding blob-like 
structures while having low responses to edge-like structures. For each X-ray image it 
is necessary to run three linear filters and to evaluate the blobness measure:  , ,        (1) 

where Lxx, Lyy, Lxy are respectively the convolution of the fluoroscopic image I(x,y) 
with Gxx, Gyy, Gxy being the second derivatives of the gaussian filter and t0 = σ2 is used 
for normalization purposes equal to the variance of the gaussian filter.  

The (DoG) blob detector [15] is an approximation of the “laplacian of gaussian” 
filter and is based only on the usage of gaussian filters that are linearly separable. A 
scale-space [16] representation of the image is obtained by filtering the image with a 
gaussian kernel using increasing variances. The difference between two neighboring 
scale-space images is taken and this latter result is used as a blobness measure. The 
mathematical formulation for the 2D gaussian filter is:  , , /        (2)  

and the blobness measure becomes:  , ,  , , , , , ,     (3)  
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This detector has a significant response in correspondence to edge-like features in the 
image and thus yields more outliers (i.e. higher false positives) when compared to the 
LoG detector.  

2.2 Rejecting Outliers via Spatial and Geometric Constraints 

False positive candidate electrodes exist. To eliminate these, a Top-Hat filter is 
implemented which discards candidates that do not fulfill spatial and geometric 
constraint characteristics of an electrode. Since we are looking for “quasi circular” 
candidates mimicking electrodes a structuring element with a circular diameter of 15 
pixels is used. This immediately removes the majority of outliers. Second, since an 
electrode is metallic (and thus radiopaque), it appears as a very dark cluster in the X-
ray image. Thus, candidate electrodes appearing as a bright cluster are rejected. From 
this, the blobness measure can be used to distinguish between catheter tips and other 
electrodes (tip-electrodes have a stronger measure as they are larger in size).  

2.3 Clustering and Catheter Detection Recovery 

Clustering is then implemented to select and group those candidate electrodes that are 
more likely to be part of a specific catheter. We perform clustering to: 

1. Reject isolated electrode detections that were not filtered out in Section 2.2. 

2. Evaluate an "importance" measure ∑  for each cluster i where bj 
are the blobs of the cluster ci. The strength measure S(.,.) is just the blobness 
response as it was produced by the blob detector. We will use the cluster 
"importance" measure in the blob recovery stage. 

For a randomly selected unvisited blob we create a new cluster and we search the 
blob’s neighborhood. If there are other neighbors we will add them to the current 
cluster and we will label the current blob as visited. Next, we visit the neighborhood 
of the candidates that we just added. Clusters containing just one blob will be deleted 
(they cannot be catheters).The size of the neighborhood search is specified in Table 1. 
Note: it does not matter if electrodes belonging to two or more catheters are grouped 
together in one cluster. As long as each one of the electrodes belonging to each 
catheter is inside the same cluster our method will account for this as described in the 
subsection 2.4.  

Detection recovery is performed next. For blob clusters that have a measure Pi 
higher than a threshold, and for each of the candidate electrodes belonging to that 
cluster, we search their neighborhood to find similar structures. If the cluster i is very 
likely to contain a good number of true electrodes or tips (we decide this from Pi), we 
perform Normalized Cross Correlation in a small window around each one of the 
candidate electrodes to identify similar electrodes (i.e. recall that electrodes in a 
specific catheter share similar shape). An example of the improvement brought by the 
detection recovery is shown in Figure 1. 

 



 Automatic Detection of Multiple and Overlapping EP Catheters 375 

 

2.4 Catheter Detection and Scoring Criteria 

We define a catheter as a grouping of electrodes. Prior to a cardiac ablation procedure, 
the electrophysiologists know the exact number of catheters that will be used. From 
this we formulate catheter hypotheses using the candidate electrodes detected. Then, 
to select the optimal global hypothesis for a specific catheter, we explore the space of 
possible solutions using the following greedy algorithm: 

 
1. Knowing that N catheters are present in X-ray we select N +2 electrodes that 

have the strongest blobness measure. It’s very likely that N of them will be 
catheter tips. 

2. Starting from each of the detected tips, generate the catheter hypotheses as 
follows: (a) recursively create paths that include electrode candidates; (b) the 
created paths must be more or less straight; (c) paths should not violate any 
catheter geometrical constraints (length, bending angle) and be more or less 
straight. 

3. Formulate the global hypotheses for each N-uple of catheters from (2) that do 
not share candidate electrodes. 

4. Select the best global hypothesis by privileging those that contain straight 
and long catheters as their components. 

It is not recommended to select a catheter as the ensemble of electrodes that lie on the 
straightest and longest path not violating the catheter geometrical constraints. This 
will fail since some electrodes from catheter N+1 might be erroneously inserted in the 
path of catheter N − if the catheters are overlapping or really close to each other this 
effect will be predominant.  

 

Fig. 1. (Left) blobs before clustering and recovery. (Right) blobs after clustering and recovery; 
blue - false positive detections induced by the recovery method. red – true positive detection 
induced by the recovery method. 
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Scoring Criteria via the Greedy Algorithm: for each candidate catheter the score is 
the number of electrodes it comprises. These electrodes cannot be in positions which 
are very far from the tip (< 150px selected) or that force an impossible bending angle 
of the catheter (< 20° selected) as stated above in solution 2. Since the maximum 
number of catheters in our dataset is three, we evaluate the global hypotheses in order 
to find the best triple of candidate catheters. The best triple is the one that comprises 
the longest possible candidate catheters, each one starting from one tip, that don't 
share any of the electrodes (e.g. the intersection of the electrodes belonging to two 
different candidates is always the null set). The evaluation of the best global 
hypotheses is done taking for each generated triple, the product of the scoring 
functions of the candidate catheters contained in that triple. The triple achieving the 
highest score is then selected. Two examples of catheter detection are presented in 
Figure 2. 
 

 

Fig. 2. Sample images depicting accurately the three catheters and their electrodes 

3 Results 

The method was evaluated using canine specimen laid on its right side on a 
fluoroscopy table (Integris Allura, Philips Inc.). A reference and a pacing catheter (7-
French) were inserted into the right ventricle, close to the septal wall. Finally, a 
standard 8-French ablation catheter was inserted from the femoral vein into the left 
ventricle (LV) and mapped at different sites within the ventricle. A total of 20 
Anterior/Posterior datasets were acquired. The image sizes are 512 × 512 with a pixel 
spacing of 0.44 mm. The C-arm energy was varied between 60-90kV to ensure 
variability within the data. In total, for one X-ray image there were 17 electrodes (3 
tips + 14 other electrodes). A total of 1422 fluoroscopic frames were analyzed (i.e. 
4266 tip electrodes; 19908 other electrodes; 24174 total electrodes). The centroids of 
the electrodes for each X-ray image were annotated manually by an expert observer. 
The mapping catheter is labeled as ‘cat 3’, the pacing catheter as ‘cat 2’ and the 
reference catheter as ‘cat 1’. 
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Detection Accuracy: Figure 3-left depicts the performances for the electrode 
detection using a LoG blob detector. On the horizontal axis we placed the catheters 
(cat1, cat2, cat3), on the vertical axis the percentage of detection of the respective 
electrodes (values between 0 and 1). Without the catheter recovery algorithm the 
detection results are: (0.68, 0.61, 0.85) and improved to (0.78, 0.78, 0.93) when 
performing catheter recovery. This is an 11% improvement. Similarly, Figure 3-right 
depicts the performances for the electrode detection using a DoG blob detector. 
Without the catheter recovery algorithm the detection results are: (0.81, 0.82, 0.83) 
and improved to (0.86, 0.88, 0.93) when performing catheter recovery. This is a 7% 
improvement. 

Detection Precision: The mean distance of all electrodes from ground truth using a 
LoG blob detector with catheter recovery is 1.05 ± 0.33pixels (0.46 ± 0.14mm). 
Similarly, the mean distance of all electrodes from ground truth using a DoG blob 
detector with catheter recovery is 1.10 ± 0.52pixels (0.48 ± 0.22mm). The 95th and 
99th percentile errors were 0.66mm and 0.78 mm respectively. These are well within 
cardiac clinical tolerances [13].  
 
Catheter-Tips: A total of 4236 tip electrodes were automatically annotated yielding a 
detection rate of 99.3%. The missed detections were due to blobs being isolated away 
from the catheters− we observed that both the catheter tip and background of the X-
ray image had similar grayscale intensity.  

 

 

Fig. 3. Electrode detections per catheter (in %) 

Outliers Per Image: Using catheter recovery, the mean number of outliers using the 
LoG blob detector is 10 compared to 53 for DoG. We conclude that the LoG blob 
detector is a more practical solution since the number of outliers is smaller; however 
it yields slightly less precise results compared to DoG. 

Comparison to Literature: No direct numerical comparison can be made since the 
evaluation data, algorithm parameters, and types of catheters used differ between all 
published works in state-of-the art. 
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Processing: The algorithm was prototyped in C++ and CUDA. It has a runtime of 0.1 
(LoG) and 0.3 (DoG) seconds per X-ray image using an Intel Core 2 Duo 1,86 GHz 
computer. 

Future Work: There is room to investigate this method under various clinical 
conditions and different C-arm fluoroscopy devices. The variety in image quality in 
clinical cases is due to the variability in patient size, the variability in the image 
content with the presence of additional or implanted devices that were not used in our 
animal experiment. These will be accounted for as well as incorporating  tracking  in 
improving results [17]. Ultimately, achieving automatic detections can simplify 3D 
reconstruction of electrodes using single or multi-view approaches [18-19]. 

4 Conclusion 

We introduced an automatic and robust method for multiple and overlapping catheter 
detection. Our method was evaluated on 1422 fluoroscopic sequences achieving 
99.3% tip-detection accuracy. As expected, resolving the overlap issue and obtaining 
accurate electrode detections is difficult. We presented first results for these. 
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Abstract. Segmentation of interstitial catheters from MRI needs to be
addressed in order for MRI-based brachytherapy treatment planning to
become part of the clinical practice of gynecologic cancer radiotherapy.
This paper presents a validation study of a novel image-processing method
for catheter segmentation. The method extends the distal catheter tip, in-
teractively provided by the physician, to its proximal end, using knowledge
of catheter geometry and appearance in MRI sequences. The validation
study consisted of comparison of the algorithm results to expert manual
segmentations, first on images of a phantom, and then on patient MRI im-
ages obtained duringMRI-guided insertion of brachytherapy catheters for
the treatment of gynecologic cancer. In the phantom experiment, the max-
imum disagreement between automatic and manual segmentation of the
same MRI image, as computed using the Hausdorf distance, was 1.5 mm,
which is of the same order as the MR image spatial resolution, while the
disagreement between automatic segmentation ofMR images and “ground
truth”, manual segmentation of CT images, was 3.5mm. The segmenta-
tion method was applied to an IRB-approved retrospective database of 10
interstitial brachytherapy patients which included a total of 101 catheters.
Compared with manual expert segmentations, the automatic method cor-
rectly segmented 93 out of 101 catheters, at an average rate of 0.3 seconds
per catheter using a 3GHz Intel Core i7 computer with 16 GB RAM and
running Mac OS X 10.7. These results suggest that the proposed catheter
segmentation is both technically and clinically feasible.

Keywords: validation, segmentation, catheter, MRI.

1 Introduction

Gynecologic malignancies, which include cervical, endometrial, ovarian, vagi-
nal and vulvar cancers, cause significant mortality in women worldwide. In the
United States, the number of gynecologic cancers has been increasing in re-
cent years, while the death rate has remained relatively steady at about 35%
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of incidence [1]. The standard-of-care treatment for many primary and recur-
rent gynecologic cancers consists of chemoradiation (concurrent chemotherapy
and external-beam radiation) followed by brachytherapy. In contrast to external-
beam radiation treatment, in which a linear accelerator aims radiation beams at
the pelvis from outside the body, in high dose rate (HDR) brachytherapy, sources
that deliver high doses of radiation are placed directly inside the cancerous tissue
using intracavitary applicators or interstitial applicators with catheters.

MRI is used routinely in the diagnosis of cervical cancer due to its increased
tumor-to-normal-tissue contrast, scaled by noise (CNR) relative to CT. There
is an increasing interest in expanding the role of MRI beyond diagnosis and
into HDR treatment planning because of early results indicating it may lead to
more precise treatment of the tumor and a reduction in the radiation dose to
healthy tissue [2]. However, the deployment of MRI based gynecologic cancer
brachytherapy treatment planning is not without challenges. In addition to the
expense involved with running an MR-based clinical practice compared to the
current standard-of-care, CT, there are companion technical, and specifically
image analysis challenges, that have been acknowledged by international radio-
therapy societies. Specifically, the GYN GEC ESTRO guidelines note that due to
the steep brachytherapy dose gradients, catheter identification errors can lead to
major dose deviations in both the target tumor, as well as neighboring tissues.
While the source channels are well visualized in CT images, the task is more
challenging and error prone when using MR images [3]. In a typical treatment,
the radiation oncologist places several catheters using a transperineal approach,
spaced about a centimeter apart, and these catheters can bend as they perforate
stiff tissues along the insertion path. The “gold-standard” CT catheter visual-
ization method involves placing copper wires, which have large CT absorption
cross-sections, into the catheters at the end of the insertion process, with the
resulting CT images segmented in brachytherapy treatment planning clinics. In
contrast, distinguishing catheters from other signal voids in MRI is challeng-
ing, and requires dedicated MRI sequences that provide magnetic susceptibility
artifacts that are controlled in their dimensions and directions integrated with
sequence-specific image analysis. This paper presents a catheter segmentation
method and validates its results in phantoms and clinical cases.

1.1 Related Work

Catheter artifact segmentation from MRI has primarily been pursued in the
context of MR-guided interventions such as biopsy or radio-frequency ablation.
In contrast to x-ray based imaging, where the material of the catheter is the main
factor that influences its visibility, the success of this segmentation task when
using MRI is heavily dependent on the MR imaging parameters, the sensitivity of
the imaging sequence to magnetic susceptibility effects, and the direction of the
catheter relative to the static magnetic field [5,6]. Quantifying these differences
in the catheter tip locations from MR sequences optimized for susceptibility
imaging, based on the shaft orientation, demonstrated a 4-5mm difference when
the direction of the catheter was parallel vs. perpendicular to the direction of
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the static magnetic field [7]. Once satisfactory imaging sequences and parameters
are selected, the segmentation of these catheters is typically performed using a
Hough transform, and it is frequently suggested in the literature that this step
could use improvement because catheters tend to bend as they are inserted into
the body. Methods that enhance vessel-like structures using eigenvalues of the
Hessian matrix have been successful for pre-processing contrast-enhanced images
(MRA, CTA) [8,9] but the results were not very useful for our MR images, which
were acquired without contrast. While not developed for MRI (or 3D imagery), a
method for catheter detection that is closest in approach to ours was reported in
[10] for segmentation of catheters from 2D B-mode ultrasound images. It relies
on the use of a Hough Transform to provide a set of points along the catheter
path, and then polynomial regression to fit a curve to the catheter data, thus
adequately capturing the bending of the catheter.

2 Methods and Materials

MR Imaging Sequence and Catheter Appearance. Three MRI sequences
– Two-dimensional (2D) T2-weighted Fast Spin Echo (FSE), Three-dimensional
(3D) FSE (Siemens SPACE), and 3D balanced steady state free precession (3D
bSSFP) - were used to acquire the patient data in a 3 Tesla MRI (Siemens
Healthcare, Erlangen, Germany). The tungsten-alloy filled, MRI-safe plastic
catheters appear as signal voids of differing size, with the 2D FSE and 3D
SPACE providing smaller artifact dimensions. The 2D T2-weighted FSE param-
eters were TR/TE = 3000/120 msec, 0.2x0.3x2.0mm3. The SPACE parameters
were TR/TE = 3000/160msec, 0.4x0.4x1.0mm3. 3D b-SSFP MRI sequence with
TR/TE = 5.8/2.9 msec, 0.6x0.6x1.6mm3 resolution, was used for rapid imaging
(1.5 min/volume).

Fig. 1. Gel Wax
Phantom

Phantom Construction. To validate the geometry of the
extracted catheters, a phantom as shown in Figure 1, was con-
structed using commercially available transparent gel wax. An
obturator, the long cylindrical component of an interstitial ap-
plicator assembly that holds the catheters in place, was placed
at the center of a transparent plastic container, and gel wax
was melted and poured around it. A Syed-Neblett template
was then affixed orthogonal to the obturator at the edge of
the plastic container. Catheters were inserted to mimic clin-
ical scenarios, with some inserted straight, others bent, and
some touching each other.

Image-Based Catheter Segmentation. The goal of the
algorithm is to segment catheters of diameter 1.6mm, length
upto 240mm, that may be straight or bent in configuration. In essence, starting
with a manually provided catheter tip, the segmentation algorithm iteratively
searches the image for a direction that maximizes the likelihood of 1.6mm-
diameter signal voids in a conic region, and fits Bézier curves to the end points
of these segments. Implementation of the algorithm is described next.
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Fig. 2. Segmenting the catheter, one line-segment at a time. The user-defined catheter
tip c0, and the plane, P , of the template where all catheters enter the body. The
algorithm first finds points along the catheter by searching in conic regions of increasing
height and radius, and then fits a Bézier curve to these.

Segmentation Algorithm Implementation

1. As illustrated in Figure 2, each catheter is represented as a curve with 6
control points. ci denotes the ith control point on the catheter; c0 is the
distal end of the cather or the catheter tip, as provided by the user, and c5
lies on the proximal template plane, P , defined by the user

2. d is the length of the segment from tip c0 to the proximal plane P .
3. λi is the height of the search cone for each successive control point. λi values

were chosen to be increasing in magnitude, and the increases related to the
Fibonnaci sequence1 as follows:

λi =

⎧⎪⎨⎪⎩
λi−1 + λi−2 if i ≥ 2
1
19 · d if i = 0
2
19 · d if i = 1

(1)

4. bi is the center of the base of the search cone for the ith point. These centers
are computed as follows:

bi+1 = ci + λi ·
cici−1

‖cici−1‖
(2)

5. ri is the radius of the ith search cone and is defined as an increasing series
similar to λi.

6. ci is computed by a search; it is the end point of the line segment that starts
at ci−1 and has the minimal value for the intensity line integral along its
length, among all choices in the search cone defined by bi, ri, and ci−1.
After the control points are obtained, a 5th degree Bézier curve is computed
as a linear combination of the Bernstein basis polynomial, in which the first

1 This particular method of choosing λ values delivered the computational efficiency
required by the problem but other choices for the series would be valid as well.
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and last control points define the extremity of the curve while the interior
points pull the curve toward them:

B(t) =

5∑
i=0

(
5

i

)
(1 − t)5−itici t ∈ [0, 1]. (3)

3 Validation Experiments, Metric, and Results

The segmentation method was validated in three steps. The first two steps uti-
lized the phantom, and the third used patient images. In the phantom exper-
iments, first the disagreement between automatic and manual segmentation of
the 12 catheters from the same MR image was computed. Second, this disagree-
ment computation was repeated between automatic segmentation of catheters
in MR images and “gold-standard” obtained from manual segmentation in CT.
In the third experiment, the disagreement between manual and automatic seg-
mentations on MR images of patients was computed.

The metric used to quantify the accuracy of the catheter segmentation in each
case was the symmetric Hausdorff distance (HD) [11]. If X,Y are two non-empty
subsets of a metric space (E, δ) the HD is defined by

dH(X,Y ) = max{ sup
x∈X

inf
y∈Y

δ(x, y), sup
y∈Y

inf
x∈X

δ(x, y)} (4)

It should be noted that the Hausdorff distance between two catheters is high
even when they disagree only along a short fraction of their lengths. This is an
important criterion for this particular clinical application.

MR-MR Phantom Result. The maximum HD between automatic and man-
ual segmentation across all 12 catheters in the same MR images was 1.5mm.
This was close to the resolution of the MR scan.

MR-CT Phantom Result. The maximum HD between automatic segmenta-
tion of MR images and “ground truth”, as determined from manual segmentation
of CT images for the 12 catheters was 3.5mm. The mean HD was 2.3mm and
σ was 0.5mm. A visual illustration is provided in Figure 3. The RMS error of
catheter tip locations from the registration of MR and CT images was 1mm.
Rigid registration was performed using markers embedded in the phantom. We
assume that the remainder 1mm error was due to the geometry differences be-
tween MR and CT.

Patient MRI Results. The HD between manual and automatic segmentations
was computed on 101 catheters from 10 patients. The catheter tips provided in
manual segmentations were used to initialize the automatic segmentation, and
an axial plane was defined to mark the proximal end of the catheters. A catheter
segmentation was classified as correct if this HD was less than 2mm. 2mm was
chosen as the classification target by rounding up the 1.6mm catheter diameter;
in the absence of apriori knowledge of the orientation of the device relative to
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Fig. 3. Phantom MRI/CT.
HD differences between
manual MRI (green) &
automatic CT segmenta-
tion (red): 3.5mm (max),
2.3mm(μ), 0.25mm2(σ2).

Fig. 4. Patient MRI.
HD differences between
manual (green) and au-
tomatic (red) segmen-
tation: 1.23mm (max),
1.01mm(μ), 0.01mm2(σ2).

Fig. 5. Another patient
MRI. HD differences be-
tween manual (green) and
automatic (red) segmen-
tation: 1.36mm (max),
1.01mm(μ), 0.01mm2(σ2).

the magnetic field or the imaging planes, the susceptibility artifact is always
somewhat greater than the physical device dimensions. The method correctly
localized 93 out of 101 catheters in an average time of 0.3 seconds per catheter
on a 3GHz Intel Core i7 computer with 16 GB RAM and running Mac OS X
10.7. Figures 4 and 5 illustrate two cases in which all catheters were correctly
identified. Table 1 summarizes validation statistics for each of the 10 cases.

Table 1. Summary of Patient MRI validation. Each row corresponds to a patient;
it shows the catheter count, the max, the mean, and the variance of HD across all
catheters, the count of catheters that were incorrectly segmented, and statistics on HD
(HD*) after the outlier catheters are removed.

Case Catheter MaxHD MeanHD VarHD Outliers MaxHD* MeanHD* VarHD*
ID count mm mm mm2 count mm mm mm2

1 7 1.08 0.99 0.00 0 1.08 0.99 0.00
2 14 6.50 1.81 2.91 2 1.56 1.15 0.04
3 8 8.93 2.74 9.53 2 1.00 0.93 0.01
4 15 1.00 0.96 0.00 0 1.00 0.96 0.00
5 16 10.43 2.19 10.33 2 1.23 1.01 0.00
6 5 1.00 0.97 0.00 0 1.00 0.97 0.00
7 7 1.20 1.06 0.01 0 1.20 1.06 0.01
8 6 1.92 1.33 0.19 0 1.92 1.33 0.19
9 9 1.22 1.05 0.01 0 1.22 1.05 0.01
10 14 17.56 3.28 29.03 2 1.67 1.19 0.09

4 Conclusions

This study validated the segmentation of interstitial catheters from MRI im-
ages based on a novel method, and demonstrated that this method was able to
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properly identify most of the catheter positions in clinically reasonable process-
ing times.

5 Discussion and Future Work

Dependence on Tip Initialization. A common failure mode was observed in
patient segmentations, especially when a large number of catheters were used.
When the user provided a tip position, which was not located sufficiently close
to the shaft of the desired catheter, the results varied based on the configuration
of neighbouring catheters. Figure 6 illustrates a case where the user-provided tip
resulted in a segmentation (red) that terminated in a neighbouring valley of the
objective function (i.e. it mistakenly followed the path of a neighboring catheter),
while the correct manual segmentation of the catheter is shown in green. In
Figure 7, the catheter tip was initialized correctly, and the segmentation (red)
closely matched the (green) manual segmentation. To address this weakness in
the method, randomly perturbed restarts will be investigated. In addition, we
believe that we can explicitly model the relation between the geometry of the
catheter tip artifact and its orientation in the static magnetic field, and plan to
investigate this for automatic tip detection.

Fig. 6. Failure Mode Fig. 7. Reinitialized Tip

From Segmentation to Patient Impact. It should be noted that the cor-
relation of segmentation error with radiation dose for our patient cohort is at
this time unknown, and will be analyzed in the future. Given the uncertainties
associated with dose metrics in brachytherapy, it is unlikely that dose difference
due to segmentation errors lower than 2mm will have a clinical impact. How-
ever, neither the dosimetry literature nor published guidelines currently provide
tolerances for catheter segmentation error. In order to gauge the benefits of this
study to clinical practice, a comparison is needed between radiation plan dose to
tumor and organs at risk using the automated catheter segmentation from MR
and the standard-of-care catheter segmentation created from CT images. If these
two doses turn out to be within the dose uncertainty margins routinely employed
in treatment planning, then a contribution will have been made to clinical care;
the need of a treatment planning CT will be obviated for cases where appropriate
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MR imagery is available at the conclusion of the catheter placement procedure.
If the MR-based dose turns out to be a significant improvement over CT, then a
case will have been made for performing MR based treatment planning instead
of CT.
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Abstract. High intensity focused ultrasound (HIFU) is a promising technique 
for cancer treatment owing to its minimal invasiveness and safety. However, 
skin burn, long treatment time and incomplete ablation are main shortcomings 
of this method. This paper presents a novel HIFU robotic system for breast can-
cer treatment. The robot has 4 rotational degrees of freedom with the workspace 
located in a water tank for HIFU beam imaging and ablation treatment. The 
HIFU transducer combined with a diagnostic 2D linear ultrasound probe is 
mounted on the robot end-effector, which is rotated around the HIFU focus 
when ablating the tumor. HIFU beams are visualized by the 2D probe using 
beam imaging. Skin burn can be prevented or alleviated by avoiding long time 
insonification towards the same skin area. The time cost could be significantly 
reduced, as there is no need to interrupt the ablation procedure for cooling the 
skin. In addition, our proposed robot control strategies can avoid incomplete ab-
lation. Experiments were carried out and the results showed the effectiveness of 
our proposed system. 

1 Introduction 

Breast cancer is a type of cancer originating from breast tissue and most likely occurs 
in women. It accounts for 22.9% of all cancers in women worldwide in 2008 which 
has been thought as the biggest health threat to women among all cancers. The treat-
ments for breast cancer include surgery, medications, radiation and/or immunothera-
py, among which, surgery (e.g. mastectomy, quadrantectomy) is the most reliable 
treatment to increase the cure rate and prevent recurrence.  However, the removal or 
partial removal of breast significantly affects the QOL (Quality of Life) in patients. 
Therefore, breast-conserving surgery has been drawing great attentions in the biomed-
ical engineering community. As a type of breast-conserving surgery, high intensity 
focused ultrasound (HIFU) has become available for breast cancer treatment. HIFU 
can focus ultrasound at its focal point and direct acoustic energy into the focus. In 
HIFU treatment, the focused acoustic energy in human body is absorbed by tissue and 
is converted into heat so as to ablate tumors. Since only the focus area at a depth in-
side the body is heated while leaving the superficial skin intact, HIFU is considered as 
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a non-invasive or minimally invasive medical procedure for precise tumor ablation 
such as breast cancer, liver cancer, prostate cancer, etc. 

Apart from the accuracy in position control of the HIFU focus, another two con-
cerns about HIFU treatment are skin burn and ablation monitoring [1]. Although most 
of the acoustic energy is directed to the focus during the insonification, there is still a 
risk of skin burn if long-time high acoustic energy is delivered for effective ablation. 
In order to avoid skin burn, the ablation process has to be interrupted periodically 
waiting for heat dissipation of the skin, which increases the treatment time. In addi-
tion, HIFU itself cannot provide the image of the ablation area and it is usually used 
with other imaging modalities for identifying the target and monitoring the ablation 
process. Magnetic Resonance-guided HIFU (MRgHIFU) [2] and ultrasound-guided 
HIFU (USgHIFU) [3] are two most common types of HIFU treatment systems. The 
former uses intra-operative MR images and the latter uses ultrasound images to moni-
tor the ablation process. Although intra-operative temperature monitoring (updated 
every several seconds) is possible by using MR thermometry, the limitations of 
MRgHIFU still include the oversize of the MR scanner, the complicated electronic 
control for HIFU focusing, and the high manufacture and treatment cost. In contrast, 
USgHIFU has promising potentials in terms of its “real” real-time imaging, compact-
ness and low cost. Some robotic systems for HIFU treatment were also proposed to 
enable automatic and precise HIFU transducer positioning [4, 5]. However, these 
studies only focus on the transducer positioning by robotic systems. The robots are 
only used as automatic transducer holders. The mentioned concerns on skin burn and 
long treatment time remain unsolved. 

In this paper, we propose a novel HIFU robotic system for non-invasive breast 
cancer treatment with effective ablation and without skin burn. A HIFU transducer for 
ablation and a diagnostic linear 2D ultrasound probe for real-time imaging (imaging 
of both the HIFU beams and the target tumor) are combined together and attached to 
the robot end-effector. The large movement of the HIFU focus is executed by the 
robot arm and the small adjustment by electronic control, which only needs 56 pie-
zoelectric elements to constitute the HIFU transducer. Skin burn is prevented by vary-
ing insonification region of the breast skin while keeping the focus (ablation area) 
beneath the skin unchanged or moving under control according to our proposed abla-
tion strategies. The robotic system is designed to work under water for ultrasound 
compatibility. 

2 System Design 

2.1 System Overview 

In HIFU treatment, the gap between the HIFU transducer and the human body must 
be filled with water or gels for ultrasound propagation. Although a water bag may be 
used for this purpose, the bag will touch against the breast and cause breast deforma-
tion. In addition, the HIFU transducer also has to come in contact with the bag caus-
ing our concept of rotary insonification to be unfeasible. Thus the workspace of our 
robot is designed under water. Because the skin burn is caused by heat accumulation 
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on the skin surface covered by the insonification, it is possible to reduce the heat ac-
cumulation by moving the insonification region while keeping the focus unchanged. 
Based on this idea, we designed a novel articulate robot that can perform rotary inso-
nification under water. As illustrated in Fig. 1, our system consists of an operation 
table on which a patient lies in the prone position, a robotic arm performing rotary 
insonification, a HIFU transducer that is integrated with a diagnostic ultrasound 
probe, a diagnostic ultrasound machine to which the probe is connected, and some 
control units. The spatial relationship between the diagnostic probe and the HIFU 
probe is calibrated so that the beams emitted by the HIFU probe can be imaged by the 
diagnostic probe (beam imaging), which enables visualizing both the focus (intersec-
tion of HIFU beams) and the tumor on the ultrasound machine. The robotic arm 
enables precise focus positioning. Furthermore, our novel ablation strategy can reduce 
the heat accumulation and treatment time while performing efficient ablation. 

 

Fig. 1. System overview 

2.2 Integrated HIFU Transducer 

The function of a HIFU transducer is to focus HIFU beams at its focal point so that 
most acoustic energy is delivered to the focus to ablate tumors. By moving the focus, 
a volume thus can be ablated. However, the focus is below the skin and is invisible to 
surgeons, which makes it difficult to locate the HIFU focus to the target tumor. Un-
like the diagnostic ultrasound, the HIFU transducer has no imaging functionality. 
First, the visualization of the HIFU beams should be solved.  

We developed an integrated HIFU transducer that enables accurate and registra-
tion-free focus localization. The integrated HIFU transducer consists of a multi-
channel piezoelectric element array for HIFU beam generation, a diagnostic ultra-
sound probe for real-time imaging, and peripheral circuit. The transducer has a diame-
ter of 100 mm with a focal length of 100 mm. The irradiation frequency is 2 MHz. 
The diagnostic ultrasound probe is fixed at the center of the transducer as shown in 
Fig. 2(a). HIFU beams are imaged using the diagnostic probe by receiving reflected 
acoustic waves that are emitted from the HIFU transducer. The principle and the im-
aged HIFU beams are shown in Fig. 2(b). More detailed information about beam im-
aging can be found in our previous paper [6]. By this way, the target tumor and the 
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HIFU beams can be simultaneously visualized in real-time on the diagnostic ultra-
sound machine. Since all spatial information regarding the focus and the tumor is 
visible to surgeons, registration becomes unnecessary. The integrated transducer is 
attached to the robot end-effector and the HIFU focus is adjusted and located to the 
target tumor by visual feedback. Afterwards, the robot is driven to perform rotary 
insonification. 

 

Fig. 2. Integrated transducer (a) Picture of integrated transducer (b) HIFU beam imaging 

2.3 Robot Arm 

We developed a chain-driven articulated robot with 4 degrees of freedom that works 
in a water tank. Fig. 3(a) shows the design drawing and the Denavit–Hartenberg (DH) 
model of our robot, and Fig. 3(b) shows its physical setup. It has two serial links with 
the same length and four joints, which are inside the water tank. The driving motors 
with encoders are placed under the water tank. Because the driving force of each joint 
is transmitted by gears and chains, which can work under water, only the motor shafts 
need water sealing. The diameter of the water tank is 600 mm and the height includ-
ing motor units is 775 mm, which can be easily moved by a cart. 

 

Fig. 3. Robot arm (a) Design drawing and DH model (b) Physical setup 
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In order to locate the focus in the 3D space within the water tank, the robot is con-
trolled using inverse kinematics. The rotation angle of each joint can be calculated: 

  arccos arccos  arccosarccos  arccos   (1) 

Where , , ,  represents the target pose of the transducer (see Fig. 3(a)), , , ,  are the rotation angles of each joint, 2 2 , ~  are link 
lengths with 130 , 50 , and 160 .  

2.4 Rotary Insonification Ablation 

In this study, we propose a rotary insonification procedure that could prevent the skin 
burn without losing ablation efficiency. Since the skin burn is caused by the lasting 
insonification towards the same skin area, it is possible to reduce the heat accumula-
tion by varying the insonification region of acoustic energy during the ablation. There 
are two modes of rotary insonification as illustrated in Fig. 4: 1. Rotate the transducer 
around the vertical axis passing through the focus (Fig. 4(a)). 2. Rotate the transducer 
around the vertical axis deviated from the focus (Fig. 4(b)). In Mode 1, the insonifica-
tion region of the superficial skin varies over time while keeping the focus un-
changed; in Mode 2, the focus also moves (rotation) in order to cover a large ablation 
volume. Both of the two modes can alleviate the heat accumulation by avoiding the 
stationary lasting insonification towards the same skin area. 

 

Fig. 4. Rotary insonification (a) With fixed focus (b) With moving focus 

3 Experiments 

3.1 Evaluation of Robot Accuracy 

The rotation accuracy of each robot joint was evaluated. An optical tracking system 
(Polaris, NDI) was used to produce ground truth. A 6DOF optical marker was  
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attached to the end-effector of the robot. Rotation accuracy was evaluated by compar-
ing the actual rotation angles reported by Polaris with the input values. The evaluation 
was performed for ten times every 10 degrees for each joint and the angle errors were 
calculated. Table 1 summarizes the statistic results of rotation angle errors. Δθi 
represents the rotation angle error of joint i. (+) means forward rotation; (-) means 
backward rotation. The errors for forward and backward rotation are different owing 
to the backlash of the chains. STD stands for standard deviation. 

Table 1. Rotation angle error (degree) 

 Δθ0 Δθ1(+) Δθ1(-) Δθ2(+) Δθ2(-) Δθ3(+) Δθ3(-) 
Average 0.53 0.22 0.97 0.56 1.32 0.12 1.04 

STD 0.098 0.29 1.03 0.71 0.95 0.16 1.01 
Maximum 0.69 0.67 2.38 1.60 2.79 0.31 2.75 

3.2 Evaluation of Skin Burn 

In order to evaluate the extent of the skin burn, temperature of the skin surface was 
estimated. As demonstrated in Fig. 5(a), a thermosensitive liquid crystal (TLC) sheet 
was placed on an acoustic absorbent that simulates the breast skin. Since the TLC 
sheet can sense temperature between 50~60°C with accuracy 1°C by color change, the 
temperature can thus be measured by a camera. The focus was adjusted at the distance 
of 20 mm under the TLC sheet. Ablation was performed during the same interval 
using both our rotary insonification method and a stationary insonification method. 
Pictures were taken using the camera as experimental results to compare the tempera-
ture distribution indicated by colors. 

 

Fig. 5. Skin burn evaluation (a) Experiment design (b) Experimental results 

Temperate results are shown in Fig. 5(b). The top is the result of our proposed ab-
lation method and the bottom is the result of traditional one. It is obvious that our 
method successfully suppressed the heat accumulation and led to low skin tempera-
ture. The stationary insonification method heated the TLC up to over 60°C indicated 
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by the blue region. On the other hand, although very small region became over 50°C, 
our method succeeded in reducing the high temperature region. 

3.3 Evaluation of Ablation 

Ablation performance was evaluated using a breast phantom consisting of chicken 
breast meat and ager gel (Fig. 6). The phantom was made by firstly dissolving gra-
phite and ager powder into deaerated water with the concentration of 1.5% and 4% 
respectively. Subsequently, the solution was put into a hemispherical mold with a 
diameter of 150 mm and cooled until it was solidified. Lastly, the chicken breast meat 
was added into the gel and was covered by pouring the solution once again onto the 
meat. The final breast phantom has similar shape and physical property with a real 
one. Here the chicken meat serves as the ablation target. The addition of graphite is to 
simulate the tissue scattering properties of the ultrasound. 

 

Fig. 6. Breast phantom 

A single spot was ablated using rotary insonification Mode 1 described previously. 
Joint 0 was rotated 360 degree with the speed of 9 degree/sec while emitting HIFU 
beams of 4 W/ch. For comparison, the ablation was also performed under the same 
condition but without rotating the transducer. Next, a larger region was ablated conti-
nuously using rotary insonification Mode 2, where the focus was moved in a circle 
while emitting HIFU beams of 4 W/ch. Joint 0 was rotated 360 degree with the speed 
of 3 degree/sec, which means that the overall treatment time was 120s. The ablation 
using the traditional method was also performed, where seven spots were ablated 
separately in order to cover the entire ablation volume with 40s lasting insonification 
and waiting 80s for cooling on each spot. The overall treatment time was 840s, which 
was significantly longer than the proposed method. 

Fig. 7(a) shows the results of the single spot ablation. The ablation area was about 
12×4 mm (left) with the stationary insonification, 8×4 mm (right) with our method. 
Fig. 7(b) shows the results of the region ablation. The left is the ablation results of the 
stationary insonification on seven spots. The right is the results of our proposed me-
thod. We can see that our method enabled almost homogeneous ablation to avoid in-
complete ablation. In contrast, the traditional method only ablated spots one by one to 
cover the entire target volume, resulting in inhomogeneous and incomplete ablation. 
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4 Conclusion 
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Compared with the tradition
our low-cost robotic system
focus. The advantages of th
breast skin, decreasing the t
Future work includes ultra
HIFU beam autofocusing. 

Acknowledgements. This 
Systems Biology and Med
Culture, Sports, Science and

References 

1. Zhang, L., Zhu, H., Jin, C.
Safe Therapy for Hepatoc
diol. 19, 437–445 (2009) 

2. Gianfelice, D., Khiat, A., B
Guided Focused Ultrasoun
gical Patients with Breast C

3. Vaezy, S., Shi, X., Martin,
trasound Treatment Using U

4. Kheng, N., Sing, N., Phee
Prostate Cancer. In: Proce
Robotics and Vision 2002, 

5. Pather, S., Davies, B.L., H
Surgery Applied to Liver 
Control, Automation, Robo

6. Yonetsuji, T., Fujiwara, K
nals from Focal Area. In: P
282–285 (2013) 

ed Ultrasound Robotic System for Breast Cancer Treatment 

 

a) One spot ablation (traditional vs. proposed method) (b) La
proposed method) 

cture that works under water for ultrasound compatibil
nal ablation method that performs stationary insonificati
m can achieve flexible rotary insonification without los
his approach include reducing the heat accumulation of 
treatment time and enabling homogeneous region ablati

asound image-based visual servo control of the robot 

work was supported in part by Grant for Translatio
icine Initiative (TSBMI) from the Ministry of Educati
d Technology of Japan. 

, et al.: High-intensity Focused Ultrasound (HIFU): Effective 
cellular Carcinoma Adjacent to Major Hepatic Veins. Eur. 

Boulanger, Y., et al.: Feasibility of Magnetic Resonance Imag
nd Surgery as an Adjunct to Tamoxifen Therapy in High-risk S
Carcinoma. J. Vasc. Interv. Radiol. 14, 1275–1282 (2003) 
 R., et al.: Real-time Visualization of High-intensity Focused
Ultrasound Imaging. Ultrasound Med. Biol. 27(1), 33–42 (200

e, L., Cheng, C.: A HIFU Robot for Transperineal Treatmen
eedings of 7th International Conference on Control, Automat

vol. 2, pp. 560–565 (2002) 
Hibberd, R.D.: The Development of a Robotic System for H

Tumours. In: Proceedings of 7th International Conference
otics and Vision 2002, vol. 2, pp. 572–577 (2002) 
., Itani, K., et al.: HIFU Beam Imaging Based on Scattering 
Proceedings of CIRP Conference on BioManufacturing 2013,

395 

arge 

lity. 
ion, 
sing 
the 

ion. 
and 

onal 
ion, 

and 
Ra-

ging 
Sur-

d Ul-
01) 
nt of 
tion, 

IFU 
e on 

Sig-
, pp. 



Cell Orientation Entropy (COrE): Predicting

Biochemical Recurrence from Prostate Cancer
Tissue Microarrays

George Lee1, Sahirzeeshan Ali2, Robert Veltri3, Jonathan I. Epstein3,
Christhunesa Christudass3, and Anant Madabhushi2,	

1 Rutgers, The State University of New Jersey. Piscataway, NJ, USA
2 Case Western Reserve University, Cleveland, OH, USA

3 The Johns Hopkins Hospital, Baltimore, MD, USA

Abstract. We introduce a novel feature descriptor to describe can-
cer cells called Cell Orientation Entropy (COrE). The main objective
of this work is to employ COrE to quantitatively model disorder of
cell/nuclear orientation within local neighborhoods and evaluate whether
these measurements of directional disorder are correlated with biochem-
ical recurrence (BCR) in prostate cancer (CaP) patients. COrE has a
number of novel attributes that are unique to digital pathology image
analysis. Firstly, it is the first rigorous attempt to quantitatively model
cell/nuclear orientation. Secondly, it provides for modeling of local cell
networks via construction of subgraphs. Thirdly, it allows for quantifying
the disorder in local cell orientation via second order statistical features.
We evaluated the ability of 39 COrE features to capture the characteris-
tics of cell orientation in CaP tissue microarray (TMA) images in order
to predict 10 year BCR in men with CaP following radical prostatectomy.
Randomized 3-fold cross-validation via a random forest classifier evalu-
ated on a combination of COrE and other nuclear features achieved an
accuracy of 82.7 ± 3.1% on a dataset of 19 BCR and 20 non-recurrence
patients. Our results suggest that COrE features could be extended to
characterize disease states in other histological cancer images in addition
to prostate cancer.

1 Introduction

In this paper, we developed a new approach to quantitatively characterize prostate
cancer (CaP) morphology via cell orientation entropy (COrE) and thereby at-
tempt to predict biochemical recurrence (BCR), a strong marker for presence of
recurring cancer following radical prostatectomy (RP) treatment. BCR is defined
by a detectable persistence of prostate specific antigen (PSA) of 0.2 ng/mL fol-
lowing RP. Nearly 60,000 patients undergo RP treatment for CaP each year, and
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for 15-40% of RP patients, BCR occurs within 5 years [1]. Gleason scoring (GS)
is a qualitative system (2-10) which uses gland morphology to grade CaP aggres-
siveness and is representative of the clinical standard for predicting BCR. High
GS 8-10 cases have been found to be correlated with BCR and presence of aggres-
sive disease and often secondary treatment is provided to accompany RP based
on the identification of high GS. Meanwhile, patients with GS 6 typically have a
very low incidence of BCR and would not indicate a need for secondary treatment.
Unfortunately, outcomes of intermediate GS 7 cancers can vary considerably, and
statistical tables suggest a 5-year BCR-free survival rate as low as 43% in these
men [2]. As such, predicting BCR in GS 7 cases is an important and largely un-
solved problem with significant clinical and therapeutic implications.

While pathologists have traditionally used microscopic evaluation of histolog-
ical tissue to determine the extent and severity of cancer, the recent advent of
digital whole slide scanners has allowed for the development of quantitative his-
tomorphometry (QH) for automated evaluation of histological tissue. The main
idea behind these QH methods is to model the appearance of tumor morphol-
ogy on histopathology via shape, textural, and spatio-architectural descriptors.
While qualitative cancer grading remains by far the single most important prog-
nostic measure of aggressive disease, it subjective and prone to inter-reviewer
variability among pathologists [3].

Many researchers have attempted to develop automated, computerized grad-
ing algorithms to address the problems of inter-reviewer variability in cancer
grading and thereby improve classification accuracy [4,5,6,7,8]. Jafari-Khouzani
et al. [6] examined the role of image texture features based on co-occurrence ma-
trices for the purpose of automated CaP grading. However, these matrices are
based on pixel intensity and lack direct biological significance. Tabesh et al. [5]
also looked at color, texture, and structural morphology to evaluate prostate
histopathology in terms of grading. However, complex spatial relationships be-
tween structures are not investigated.

Graph tesselations of cell nuclei using Voronoi or Delaunay graphs aim to de-
scribe the spatial interactions between nuclei in the tissue and have previously
been found to be predictive of CaP grade [4]. However, these features are derived
from fully connected graphs, whose edges traverse across epithelial and stromal
regions. By connecting globally, fully connected graphs tend to dilute the con-
tribution of the tumor morphologic features specific to the cancer epithelium.
Therefore, global graphs are not sensitive to local cell organization, which may
be critical in characterizing tumor aggressiveness.

Analysis of local subgraphs, which unlike global graphs (e.g. Voronoi and De-
launay) that aim to capture a global architectural signature for the tumor, can
allow for quantification of local interactions within flexible localized neighbor-
hoods. Bilgen et al. [7] constructed different types of cell graphs for evaluat-
ing breast cancer. In [8], Veltri et al. investigated nuclear morphology using a
descriptor called nuclear roundness variance. Cell morphology was found to ex-
ceed Gleason scoring for predicting CaP aggressiveness.
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In this paper, we present a new set of QH features, cell orientation entropy
(COrE), which aim to capture the local directional information of epithelial
cancer cells. CaP is fundamentally a disease of glandular disorganization and the
resulting breakdown in nuclei orientation is related to its grade [9]. Epithelial
cells align themselves with respect to the glands, and thus display a coherent
directionality. However, cancerous prostate glands are less well formed, resulting
in a more chaotic organization and orientation of the surrounding nuclei.

COrE attempts to model this difference between cancerous and benign regions
via a novel scheme, unique to digital pathology image analysis. Firstly, it is the
first rigorous attempt to quantitatively model cell orientation and explore the
linkage between cell orientation and CaP aggressiveness. Secondly, while previous
work has focused on global graph networks for characterizing tumor architecture,
COrE employs subgraphs to construct local cell networks and thereby quantify
second order statistics based on co-occurrence matrices of cell orientations.While
co-occurrence matrices are commonly used to describe image textures [10], by
quantifying second order statistics of image intensities, this is the first instance
of the use of the co-occurrence matrix to evaluate local, higher order interactions
of nuclear orientations. These second order local statistical features of nuclear
orientation yield a rich set of descriptors for distinguishing the different CaP
tumor classes.

2 Cell Orientation Entropy (COrE)

2.1 Automated Cell Segmentation

We employed an energy based segmentation scheme presented in [11] to detect
and segment a set of cell/nuclei γi, p ∈ {1, 2, . . . , n}, where n is the total num-
ber of nuclei found. This segmentation scheme is a synergy of boundary and
region-based active contour models that incorporates shape priors in a level set
formulation with automated initialization based on watershed. The energy func-
tional of the active contour is comprised of three terms. The combined shape,
boundary and region-based functional formulation [11] is given below:

F = βs

∫
Ω

(φ(x) − ψ(x))2|∇φ|δ(φ)dx︸ ︷︷ ︸
Shape+boundaryforce

+ βr

∫
Ω

ΘinHψdx+

∫
Ω

ΘoutH−ψdx︸ ︷︷ ︸
Regionforce

(1)
where βs, βr > 0 are constants that balance contributions of the boundary based
shape prior and the region term. {φ} is a level set function, ψ is the shape prior,
δ(φ) is the contour measure on {φ = 0}, H(.) is the Heaviside function, Θr =
|I − ur|2 + μ|∇ur|2 and r ∈ {in, out}.

The first term is the prior shape term modeled on the prostate nuclei, thereby
constraining the deformation achievable by the active contour. The second term,
a boundary-based term detects the nuclear boundaries from image gradients. The
third term drives the shape prior and the contour towards the nuclear boundary
based on region statistics.
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2.2 Calculating Cell Orientation

To determine the directionality for each cell γi, we perform principal component
analysis on a set of boundary points [xi, yi] to obtain the principal components
Z = [z1, z2]. The first principal component z1 describes the directionality of the
cell in the form of the major axis z1 =< zx1 , z

y
1 >, along which the greatest

variance occurs in the nuclear boundary. The principal axis z1 is converted to
an angle θ̄(γi) ∈ [0◦180◦] counterclockwise from the vector < 1, 0 > by θ̄(γi) =
180◦
π arctan(

zy
1

zx
1
).

2.3 Local Cell Subgraphs

Pairwise spatial relationships between cells are defined via sparsified graphs. A
graph G = {V,E}, where V represents the set of n nuclear centroids γi, γj ∈ V ,
i, j ∈ {1, 2, . . . , n} as nodes, and E represents the set of edges which connect
them. The edges between all pairs of nodes γi, γj are determined via the proba-
bilistic decaying function

E = {(i, j) : r < d(i, j)−α, ∀γi, γj ∈ V }, (2)

where d(i, j) represents the Euclidean distance between γi and γj . α ≥ 0 controls
the density of the graph, where α approaching 0 represents a high probability of
connecting nodes while α approaching ∞ represents a low probability. r ∈ [0, 1]
is an empirically determined edge threshold.

2.4 Calculating Second Order Statistics for Cell Orientation

The objects of interest for calculating COrE features are the cell directions given
by a discretization of the angles θ̄(γi), such that θ(γi) = ω × ceil( θ̄

ω ), where ω is
a discretization factor. Neighbors defined by the local cell subgraphs G, allow us
to define neighborhoods for each cell. For each γi ∈ V , we define a neighborhood
Ni, to include all γj ∈ V where a path between γi and γj exists in graph G.

An N × N co-occurrence matrix C subsequently captures angle pairs which
co-occur in each neighborhood Ni, such that for each Ni,

CNi(a, b) =

Ni∑
γi,γj

N∑
a,b=1

{
1, if θ(γi)=a and θ(γj)=b

0, otherwise
(3)

where N = 180
ω , the number of discrete angular bins. We then extract second

order statistical features (Contrast energy, Contrast inverse moment, Contrast
average, Contrast variance, Contrast entropy, Intensity average, Intensity vari-
ance, Intensity entropy, Entropy, Energy, Correlation, Information measure 1,
Information measure 2) from each co-occurrence matrix CNi(a, b). Selected for-
mulations are described in Table 1. Mean, standard deviation, and range of Θ
across all Ni constitute the set of 39 COrE features.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Prostate TMAs pertaining to (a)-(f) BCR and (g)-(l) NR case studies. Nuclei
are used as nodes for calculation of (b),(h) Delaunay graphs. Automated segmentation
(d),(j) defines the nuclear boundaries and locations from the TMA image. (e),(k) Cell
orientation vectors are calculated from the segmentated boundaries (illustrated via
different boundary colors). (c),(i) Subgraphs are formed by connecting neighboring
cells. COrE features calculate contrast in the cell orientation (with dark regions showing
more angular coherence and bright regions showing more disorder). Summation of the
co-occurrence matrices provide a visual interpretation of disorder, where (f) shows
brighter co-occurrence values in the off-diagonal cells, suggesting higher co-occurrence
of nuclei of differing orientations compared to (l).
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Table 1. Representative COrE features

COrE Feature (Θ) Description

Entropy
∑

a,b −C(a, b) log(C(a, b)))
Energy

∑
a,b C(a, b)2

Correlation
∑

a,b
(a−μa)(b−μb)C(a,b)

σaσb

Contrast (variance)
∑

a,b |a− b|2C(a, b)

3 Experimental Design

3.1 Prostate Cancer Tissue Microarray Data

While COrE is extensible towards the histological analysis of other pathological
diseases, we have chosen prostate cancer (CaP) as a test case for this initial
work. Our dataset comprised of histologic image samples in the form of tissue
microarray (TMA) cores from 19 CaP patients who experienced BCR within 10
years of RP, and from 20 patients who did not (NR). Patients were matched
for GS 7 and tumor stage 3A. CaP tissue included in the TMAs were selected
and reviewed by an expert pathologist. For this study, each of 39 patients was
represented by a single randomly selected 0.6mm TMA core image, chosen from
a set of 4 TMA cores taken for that patient.

3.2 Comparative Methods for Evaluating COrE

We compared the efficacy of COrE features with previously studied nuclear fea-
tures. The shape of individual nuclei has previously been shown to be prognostic
of GS [8,12]. The set of 100 cell morphology features representing mean, standard
deviation of nuclear size and shape are summarized in Table 2.

Nuclear/cell architecture refers to the spatial arrangement of cells in cancer-
ous and benign tissue. 51 architectural image features describing the nuclear
arrangement were extracted as described in [12]. Voronoi diagrams, Delaunay
Triangulation and Minimum Spanning Trees were constructed on the digital
histologic image using the nuclear centroids as vertices (See Table 2).

For all feature sets, the nuclear segmentations from Section 2.1 were used to
calculate the cell boundaries and centroids. In total, we investigated the perfor-
mance of 4 feature cohorts: (1) 100 features describing cell morphology, (2) 51
features describing cell architectures, (3) 39 features describing cell orientation
entropy (COrE), and (4) the combined feature set spanning cohorts (1-3).

3.3 Random Forest Classifier

In this study, we demonstrate the efficacy of including COrE features for improv-
ing classification accuracy and area under the receiver operating characteristic
curve (AUC) in predicting BCR in CaP patients from prostate TMAs. Ran-
domized 3-fold cross validation was performed on the top 10 most informative
features selected via Student t-test for each of 4 feature cohorts defined in Section
3.2. Classification was performed using a random forest classifier.
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Table 2. Summary of 151 nuclear morphologic features

Cell Morphology # Description

100 Area Ratio, Distance Ratio, Standard Deviation
of Distance, Variance of Distance, Distance Ratio,
Perimeter Ratio, Smoothness, Invariant Moment 1-
7, Fractal Dimension, Fourier Descriptor 1-10 (Mean,
Std. Dev, Median, Min / Max of each)

Cell Architecture Description

Voronoi Diagram 12 Polygon area, perimeter, chord length: mean, std.
dev., min/max ratio, disorder

Delaunay Triangulation 8 Triangle side length, area: mean, std. dev., min/max
ratio, disorder

Minimum Spanning Tree 4 Edge length: mean, std. dev., min/max ratio, disorder

Nearest Neighbors 27 Density of nuclei, distance to nearest nuclei

4 Results and Discussion

Figure 1 reveals the ability of the COrE features to capture the differences in
angular disorder across localized cell networks and illustrates the differences
between the BCR and NR cases in terms of the COrE features.

In Table 3, we can summarize the performance of feature descriptors describ-
ing cell architecture and cell morphology which appear to have a maximum BCR
prediction accuracy of 79.9%. However, by inclusion of novel cell orientation en-
tropy (COrE) features, the overall classifier accuracy improves to 82.7%. Similar
improvements are also observed in terms classification AUC. This reflects the
utility of COrE features as a valuable prognostic measurement for predicting
BCR in conjunction with previously described nuclear morphologic features.

Classifier improvement following inclusion of COrE features suggests that
many of the new COrE features are non-correlated with previously defined cell
architectural and morphological feature sets. This distinction is illustrated in
Figure 1, where we observe the differences between COrE features compared
with those obtained from Voronoi and Delaunay graphs. These graphs span
across stromal and epithelial regions, while COrE features are limited to sub-
graphs in localized regions. It is also important to note that the combination of
COrE and nuclear morphologic features clearly and significantly outperform the
clinical standard of pathologist grade, which classified all cases as GS 7.

Table 3. 100 runs of 3-fold Random Forest Classification

Architecture Morphology COrE Arch + Morph + COrE

Accuracy 71.2 ± 4.2% 79.9 ± 3.7% 74.6 ± 4.1% 82.7 ± 3.1%

AUC 0.641 ± 0.054 0.773 ± 0.042 0.688 ± 0.063 0.809 ± 0.037
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5 Concluding Remarks

In this work, we presented a new feature descriptor, cell orientation entropy
(COrE), for quantitative measurement of local disorder in nuclear orientations
in digital pathology images. We demonstrated high accuracy and improvement
in predicting BCR in 39 CaP TMAs via the use of COrE features. While COrE
features did not outperform other quantitative histomorphometric measurements
such as nuclear shape and architecture significantly, the combination of nuclear
shape, architectural and COrE features boosted classifier accuracy in identifying
patients at risk for BCR following radical prostatectomy. More significantly, the
combination of COrE and other image based features significantly outperformed
pathologist derived GS, which is 50% for GS 7, and is further known to have at
best moderate inter-observer agreement (κ = 0.47-0.7) [3]. In future work, we
aim to evaluate the applicability of COrE features in other disease sites such as
breast cancer.
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Abstract. Accurate cellular level segmentation of lung cancer is the pre-
requisite to extract objective morphological features in digitized pathol-
ogy specimens. It is of great importance for image-guided diagnosis and
prognosis. However, it is challenging to correctly and robustly segment
cells in lung cancer images due to cell occlusion or touching, intracellu-
lar inhomogeneity, background clutter, etc. In this paper, we present a
novel segmentation algorithm combining a robust selection-based sparse
shape model (top-down) and an efficient local repulsive balloon snake
deformable model (bottom-up) to tackle these challenges. The algorithm
has been extensively tested on 62 cases with over 6000 tumor cells. We
experimentally demonstrate that the proposed algorithm can produce
better performance than other state-of-the-art methods.

1 Introduction

Efficient and accurate cell segmentation on pathology images for lung cancer
can provide diagnosis and prognosis support for improved characterization and
personalized treatment, but it remains as a challenging problem due to cell oc-
clusion/touching, densely clustering, size variation, intracellular inhomogeneity,
etc. Segmentation methods that only rely on bottom-up information may not
be sufficient to handle images exhibiting large inhomogeneities like lung cancer.
Supervised learning [11], multi-reference level set [4], hierarchical partial match-
ing [17], and various shape prior models [7,3,8,16,14] were proposed to address
these challenges and achieved excellent performance. Recently, Zhang et al. [19]
modeled shape prior using a sparse shape composition, which produces accurate
organ-level segmentation in lung and liver images. Compared with the traditional
PCA-based active shape model [7], sparse representation-based shape model can
preserve local details [19].

Sparse shape model using all training shapes as the dictionary is inefficient for
a large dataset. KSVD [1] is a popular dictionary learning algorithm which is also
used in [19], however it is not designed as a discriminative and selection-based
dictionary learning method with respect to classification and segmentation. In
this work, we propose a novel and robust selection-based dictionary learning
algorithm for cellular level shape modeling for lung cancer tumor cells. Different
from KSVD, this method directly selects the most representative cellular shapes
from the training dataset as dictionary bases. The robustness of the dictionary
learning method is achieved by minimizing an integrated square error with a

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 404–412, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. The flow chart of the proposed algorithm

sparse constraint. In addition, an efficient online dictionary update scheme is
designed to adaptively update dictionary bases. Finally, a novel local repulsive
balloon snake is presented to fast deform shapes considering the requirement for
touching cell segmentation.

2 Methodology

Figure 1 shows the framework of the whole segmentation algorithm. In the train-
ing stage, a cell boundary detector is learned using the method in [18]. The
training cell shapes, after alignment with Procrustes analysis [7], are utilized to
train a compact dictionary using the proposed selection-based dictionary learn-
ing method. In the testing stage, the seeds of the cells are automatically detected
using a voting-based seed detection algorithm presented in [12], and these de-
tected local minima (seeds) are used to initiate an adaptive H-minima transfor-
mation to obtain the initial shapes [5], one per cell. The algorithm alternately
performs shape deformation using an efficient local repulsive balloon snake, and
shape inference using the shape prior derived from the sparse shape model.

Robust Selection-Based Sparse Shape Model: In this paper, cell shape
v ∈ R2m is represented by the concatenated 2D coordinates of m landmarks
which are automatically detected by the rules: 1) The two endpoints of the ma-
jor axis of the shape are selected as major landmarks. 2) All the other landmarks
are interpolated along the shape. Given N cell shapes {vi} aligned by Procrustes
analysis [7], sparsity-based shape modeling aims to find a compact shape dictio-
nary B = [b1 b2, ...bK ] ({bk ∈ R2m} are bases) and a sparse coefficient α such
that any aligned shape v can be represented with a few bases: v = Bα+ ε, where
ε is the residual. Calculating α is called sparse coding, while dictionary learning
can be formulated as

min
B,{αi}

N∑
i=1

||vi −Bαi||2 + λ||αi||1, (1)

For a large cell shape dataset, it is intuitive to select a subset of the data as
a shape repository that can sufficiently represent the whole dataset. This sum-
marization can help remove outliers that are not the true representatives of the
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dataset and reduce the computational time for runtime optimization due to the de-
creased object-space dimension. Based on these considerations, we propose a novel
selection-based dictionary learning method for sparse representation by minimiz-
ing a locality-constrained integrated squared error (ISE):

min
θ
J(θ) = min

θ
[(

∫
g(ε|θ)2dε− 2

N

N∑
i=1

g(εi|θ)) + λ

N∑
i=1

K∑
k=1

|αik|||vi − bk||2],

s. t. 1Tαi = 1, ∀i, (2)

where εi = vi − Bαi and αi = [αi1 αi2 ... αiK ]T . g(x|θ) is a parametric model
with parameter θ. The first two terms forms the integrated squared error, which
is robust to outliers [13]. The last term constrains local representation of bases
with weighted sparse codes, and is used to encourage each cell to be sufficiently
represented by its neighboring dictionary bases for similarity preserving, which
is essential in the sparse reconstruction. The constraint 1Tαi = 1, ∀i ensures
the shift-invariance. The residual is modeled with multivariate normal distri-
bution: εi ∼ N(0, σ2I2m). In this way g(εi|θ) = ξφ(εi|0, σ2I2m), where ξ de-
notes the percentage of the inlier shapes that need to be estimated and φ is the
probability density function of multivariate normal distribution. Based on (2),
the dictionary B and sparse coefficients {αi} can be calculated by estimating
θ = {ξ, B, α1, α2, .., αN , σ

2}.
Equation (2) can be solved by performing dictionary basis selection and sparse

coding alternatively. As J(θ) in (2) is differentiable, projection based-gradient
descent is utilized for minimization. We update the bases {bk} by directly se-
lecting shapes within each iteration. For sparse coding, we keep the dictionary
fixed. Based on the sparse reconstruction criterion, the sparse coding objective
function can be rewritten as:

min
{αi}i∈A

[
∑
i∈A

||vi −Bαi||2 + λ

K∑
k=1

|αik|||vi − bk||2], s. t. 1Tαi = 1, i ∈ A, (3)

where A is the set of indices corresponding to estimated inlier shapes. Locality-
constrained linear coding (LLC) [15] is applied to (3) for sparse coding, where
the neighboring bases are defined in terms of the Euclidean distances between
the shape and dictionary bases.

LetB0 be the initial dictionary where the bases are randomly selected from the
dataset, LLC is used in (3) to compute the current coefficients {αi}. Meanwhile,
the active set A is updated with the indices corresponding to the N · ξ shapes
with the smallest reconstruction errors ||εi||22 in each iteration. At the t-th step,

θt = {ξt, Bt, αt
1, α

t
2, .., α

t
N , σ

t2}, and Bt = [bt1, b
t
2, ..., b

t
K ], denote the gradient of

J(θ) in (2): ∂J(θ)
∂bk

, ∂J(θ)∂σ2 , and ∂J(θ)
∂ξ , as Jbk , Jσ2 and Jξ, respectively. The basis bk

is updated by selecting the shape vl which has the largest correlation between
the displacement and the current btk:

COR(xl, b
t
k, Jbk) =

(vl − btk)T (−Jbk)
||(vl − btk)||2|| − Jbk ||2

, (4)
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Let At represent a set of indices corresponding to the current estimated inliers,
the current reconstruction error Et and the ISE error F t are defined as

Et =

∑N
i=1,i∈At ||εti||22∑N
i=1 I(i ∈ At)

, F t = ξt
2
φ(0|0, 2σt2I2m)− 2ξt

N

N∑
i=1

φ(εti|0, σt
2
I2m), (5)

where I(x) is the indicator function. Assume that Et
min is the current reconstruc-

tion error, Et
rep is the reconstruction error after replacing the k-th basis with vl,

F t
min is the current ISE error, and F t

rep is the ISE error after replacing the k-th
basis with vl, then the replacement will be performed only if Et

min > Et
rep and

F t
min > F t

rep. The σ
2 and ξ are updated in the negative gradient directions:

(σt+1)
2
= σt

2 −Δhσ2 · Jσ2 , ξt+1 = ξt −Δhξ · Jξ, (6)

where Δhσ2 and Δhξ represent the learning rates.

Sparse Shape Model Update: Our algorithm supports efficient dictionary
update. Recall that each basis bk corresponds to one row α(k) of the sparse coef-
ficient matrix, and one basis is significant if it is used to represent many shapes
in the sparse reconstruction such that α(k) will have many nonzero elements with
relatively large values. Therefore, we define the significance of basis bk as

sig(bk) = C

N∑
i=1

α
(k)
i e

−||εi||22
σ2 , (7)

where C denotes the normalized constant, and α
(k)
i is the i-th element of α(k)

which is the k-th row of the sparse coefficient matrixG = [α(1)T α(2)T ...α(K)T ]T .
The learned shape dictionary can be only updated when the current reconstruc-
tion error in (5) is larger than a threshold by replacing the current least signif-
icant basis with the most important one generated from the new images. This
represents the case that cell shapes change dramatically.

Shape Deformation: For shape deformation, we propose a novel repulsive
balloon snake (RBS) with locality constraint. We introduce a local repulsive
term into the model in [6] to handle touching cells so that each point on the i-th
shape vi will be driven by both its own internal/external forces, and the extrinsic
repulsive forces calculated from its neighboring contours (shapes). Practically,
each cell is often surrounded by a limited number (M) of adjacent cells, and only
its neighboring cells make dominant repulsive force contributions to its shape
deformation. This suggests that we can deform shape vi in its local coordinate
system for speedup, and it can be implemented by simply using vi’s M (M <<
N) nearest neighbors Vi. Therefore, we formulate a local RBS to find a balance
between internal Fint(vi) [6] and external FLRB

ext (vi) forces: Fint(vi)+F
LRB
ext (vi) =

0, where FLRB
ext (vi) is defined as:

FLRB
ext (vi) = γni(s) + ω

∑
j∈Si

∫ 1

0

f(dij(s, u))nj(u)du + ηp(vi(s)), (8)

where Si = {j : vj ∈ Vi, j �= i}. dij(s, u) = ||vi(s) − vj(u)||2 is the Euclidean
distance between vi(s) and vj(u). f(dij(s, u)) is preferably designed so that its
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Fig. 2. Segmentation results using the proposed algorithm on regions of interest (ROIs)
of the lung cancer pathology specimens. The ROIs and non-ROIs are separated by cyan
curves. Several patches are zoomed in for better illustration.

value decreases as the distance from point vi(s) to vj(u), and it controls the
magnitudes of repulsive forces. In the implementation f(x) is simply chosen as:
f(x) = x−2. p(vi(s)) represents the edge detector which is chosen as the learned
boundary detector [18] (the non-learning based edge detector [6] can also be
utilized). Equation (8) reduces the computation complexity significantly from
O(N2) to O(N ·M) due to M << N .

3 Experiments

The algorithm is extensively tested on the whole slide H&E-stained images of
non-small cell lung cancer that contains 62 cases. There are hundreds of cells
in each case, and in total the dataset has over 6000 tumor cells. The ground
truth segmentation is manually labeled and confirmed by three pathologists. 20
cases out of 62 are used for training with the rest for testing. The algorithm
is implemented with Matlab, and the parameters are chosen based on cross-
validation and fixed in the experimental stage: λ = 0.0001,K = 300 in (2,3) and
γ = 0.8, w = 0.5, η = 5 in (8).

Segmentation Performance Analysis I: We design both qualitative and
quantitative experiments to evaluate the proposed segmentation algorithm.
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Fig. 3. Comparative segmentation using different methods on two sample patches (rows
1 and 2). From left to right: original image, MS, ISO [10], MWS, GCC [2], RLS [12],
and ours. MWS, RLS, and ours use the same initialization.

Table 1. PIXEL-WISE SEGMENTATION AC-
CURACY

P.M.� P.V. P.80% R.M. R.V. R.80%

MS 0.74 0.08 0.96 0.79 0.03 0.89

ISO [10] 0.71 0.09 0.99 0.81 0.02 0.92

MWS 0.89 0.05 1.0 0.77 0.01 0.86

GCC [2] 0.79 0.06 0.99 0.77 0.02 0.88

RLS [12] 0.84 0.02 0.95 0.85 0.01 0.92

Ours 0.90 0.01 0.98 0.89 0.01 0.96

� P.M./R.M., P.V./R.V., and P.80%/R.80% are
mean, variance, and sorted 80% highest accuracy
of precision/recall, respectively.

In Figure 2, hundreds of cells on
four image patches (1712× 952)
are accurately segmented within
the regions of interest (ROIs).
The ROIs are obtained using an
Adaboost learning method [9]
with texton feature, and the
ROIs represent those regions
in which pathologists are more
interested, such as epithelium
regions. The comparative seg-
mentation results on two ran-
domly selected image patches
using the proposed algorithm
and the other five methods, in-
cluding mean shift (MS), isoperimetric (ISO) [10], marker-based watershed
(MWS), graph-cut and coloring (GCC) [2], and repulsive level set (RLS) [12]
are presented in Figure 3. It is clear that this novel algorithm does take advan-
tage of object topology constraints and shape prior, and therefore it can handle
partial occlusion, inhomogeneous intensity, and size variations. Please note that
the proposed algorithm is designed to preserve the touching cell shapes in order
to facilitate the subsequent morphological feature extraction. For quantitative
analysis with the pixel-wise segmentation accuracy, we calculate the precision P

and recall R: P= |sr∩gt|
|sr| , R = |sr∩gt|

|gt| where sr represents the segmentation result

and gt denotes the ground truth. The final segmentation results are presented in
Table 1. The 80% column denotes the sorted 80% highest accuracy. As one can
tell, the proposed method produces the best quantitative segmentation accuracy.

Segmentation Performance Analysis II: To analyze the performance of the
selection-based sparse shape model, we compare our shape modeling method
with: mean shape model (MSM) generated with Procrustes analysis, traditional
shape model using PCA [7], general sparse shape model using KSVD [1], and
shape inference by solving the LASSO optimization problem. All these methods
are tested with the same initialization. The results are displayed in Figure 4 in
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Fig. 4. Box plot for quantitative comparison (precision, recall, and F1 score). In each
panel, x-axis denotes 5 shape models (from left to right): MSM, PCA, KSVD, LASSO,
and Our method.

Fig. 5. The performance with respect to the number of nearest neighbors M

terms of precision P , recall R, and F1 score (F1 = 2PR
(P+R) ). MSM and LASSO

give the worst performance in terms of recall, while shape models based on MSM,
PCA, and KSVD have relatively higher precision. Our model produces better
performance with respect to the criteria. Please note that one advantage of the
proposed dictionary learning method is its robustness to outliers.

Running Time Analysis: The Matlab execution time of this novel algorithm
depends on M in (8). We evaluate the execution time of the segmentation algo-
rithm with {M = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 60, 100} on one 704× 704
image patch that contains N = 101 detected tumor cells, as shown in Figure 5.
M = 0 corresponds to no repulsive term considered in (8). The recall is rela-
tively high since all shapes deform independently without any repulsion until
they reach the maximum number of iterations, therefore they can almost cover
the whole cells. However, the precision of boundary segmentation is extremely
low. The execution time is 602 seconds when M = N − 1, which represents the
case that the repulsive forces from all other cells in the image are calculated.
WhenM = 5, also used in our experiments, the execution time is 35 seconds. As
shown in Figure 5, the segmentation accuracy does not have a significant vari-
ation when M > 5, since the square of distance in f(x) of (8) greatly penalizes
those contours far away. Practically, one can select a proper M by providing a
rough estimation to speed up the algorithm instead of using M = N − 1.

4 Conclusion

In this work, we present a novel cellular image segmentation algorithm for
lung cancer, which combines the bottom-up image appearances with top-down
shape priors. The shape repository is learned with a novel locality-constrained,
selection-based dictionary learning algorithm, and a local repulsive balloon snake
is proposed for adaptive shape deformation.
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Abstract. Scanning Electron Microscopy (SEM) is an invaluable tool
for biologists and neuroscientists to study brain structure at the intra-
cellular level. While able to image tissue samples with up to 5nm isotropic
resolution, image acquisition is prohibitively slow and limits the size of
processed samples. In this work, we propose a novel approach to speeding
up imaging when looking for specific structures. Unlike earlier methods,
we explicitly balance the conflicting requirements of spending enough
time scanning potential regions of interest to ensure that all targets are
found while not wasting time on unpromising regions. This is achieved
by using a Markov Random Field to model target locations and optimiz-
ing scanning locations by using a Branch-and-Bound strategy. We show
that our approach significantly outperforms state-of-the-art methods to
locate mitochondria in brain tissue.

1 Introduction

Modern neuroscience has greatly benefited from Scanning Electron Microscope
(SEM) technology. With its ability to image with nm and isotropic resolu-
tion, SEMs allow detailed visualization of intra-cellular structures as depicted
in Fig. 1. This has already produced important advances in the study of neuro-
degenerative diseases [1,2] and is expected to play a critical role in further un-
derstanding of brain function [3,4].

However, the very slow scanning speed of SEMs stands in the way of that
promise because it severely limits the size of tissue samples that can be imaged.
To image a volume, the electron beam has to scan the tissue surface multiple
times, accumulate pixel information at each pass, and then average pixel sam-
ples to provide a clear and coherent image of the tissue surface. The top layer,
or slice, is then removed using a diamond cutter or Focused Ion Beam and the
process repeated for the newly visible layer. This process may take days for vol-
umes as small as 10μm3. This is particularly burdensome for hypothesis testing
procedures where the goal is to perform many different experimental manipu-
lations and verify their effects on specific properties of tissue samples, such as
counting the number of mitochondria or synapses per μm3.

In this paper, we therefore address the problem of speeding up SEM imag-
ing for the purpose of detecting and measuring specific intra-cellular structures.
While the majority of related research has focused on providing automatic seg-
mentation and labeling tools [5,6,7], very few have addressed this throughput
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Fig. 1. (a) Volume gener-
ated from slice by slice SEM
scanning. (b) Sample slice
image with a mitochondrion
outline drawn in green. In
red, the scanned region
qn = (un, vn, wn, hn) at time
step n.

wn(un, vn)

hn

qn

(b)�(a)�

issue. Among these, hypothesize-and-scan strategies [7,8] save time by first scan-
ning the image fewer times than typically required, using the resulting noisy
image to hypothesize regions very likely to contain target structures, and re-
scanning these regions. The procedure is repeated until only parts of the image
that contain target structures are imaged with maximum quality. In [7], this is
achieved by using a cascade of detectors to sequentially identify promising image
regions. This requires correctly setting numerous parameters in the cascade and,
as we will show in our experiments, is challenging to tune. By contrast, the scan-
ning strategy of [8] is optimal in theory, but only when there is a single target in
the field of view, an assumption that is systematically violated in practice and
leads to inefficiencies. Furthermore, only results on simulated data are reported
in these two papers [7,8].

Part of the problem with these earlier approaches is that they do not explicitly
optimize for scanning time. The speed-ups are only byproducts of performing
fewer scans at uninteresting locations. By contrast, in this work, we propose
a hypothesize-and-scan approach that avoids the aforementioned problems by
explicitly formulating the selection of regions to be scanned and re-scanned as
finding the optimal compromise between maximizing the probability of finding
target structures and minimizing the cost of scanning. In practice, this is done
by using a Markov Random Field (MRF) to model the likelihood of targets
being at different locations and performing mean-field approximate inference
to estimate Maximum Posterior Marginals (MPM). Finding the optimal region
to scan can then be solved exactly and yields regions to be re-scanned that are
both compact and likely to contain targets. This strategy is simple to implement
and we demonstrate significant accuracy and speed improvements on real brain
tissue.

2 Flash Scanning for Target Discovery

The goal of our Flash Scanning approach is to scan as many times as necessary
all the target structures and the rest as sparsely as possible. In essence, this
means simultaneously satisfying two conflicting goals–minimizing the size of the
scanned regions, while maximizing the number of targets within them–that is,
finding a Pareto-Optimum.

To this end, for each slice, we first scan each pixel once and use a mean-
field approximation to estimate the probability of a pixel belonging to a target
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Fig. 2. (a) Visual representation of P (Y n
i |Xn, Y n−1), with high values in red and low

values in blue. Two rectangular regions, q1 and q2, are shown and their corresponding
f scores. (b) Branch-and-Bound: depiction of regions Q∪ and Q∩ when optimizing
the bounding function f̂(Q). (c) MRF depiction with 4-connected neighbourhood and
dependencies on previous slices.

structure, based both on learned texture measures and the strong correlation
between slices. We then find a rectangle that maximizes the integral of the
probability density within it, minus its area multiplied by a fixed coefficient. In
essence, the multiplicative coefficient selects one among many possible Pareto-
Optima because the scanning time is proportional to the rectangle area. We then
solve our optimization problem exactly using a branch-and-bound approach, re-
scan the optimal rectangle, update our probabilities and iterate. This process is
visually depicted in the supplementary video associated with this paper.

2.1 Notation

For a single slice, S, let n = 0, ..., N be discrete time steps of our iterative
process. Let In be the reconstructed image of the slice at step n, with I0 = 0 at
each pixel location. Our goal is to scan the slice such that we reconstruct clearly
all targets by time step N .

At each step n, we must hence direct the electron beam to scan a rectangular
region of the slice once and denote this region qn = (un, vn, hn, wn), as depicted
by Fig. 1(b). Let Cp be the number of times pixel p has been scanned and let Cmax

be the maximum number of times a pixel can be scanned. For each scanned region

qn, we acquire the corresponding new pixel intensities {snp}
|qn|
p=1, and incorporate

them into In by weighted averaging for all p ∈ qn, Inp = In−1
p (1 − αp) + snpαp,

where αp = 1/Cp. Furthermore, let In be decomposed into r × r image patches
and let Y n

i ∈ {−1, 1} be a random variable denoting the presence of a target
in image patch i at iteration n. Also, let Xn

i ∈ {−1, 1} be a random image
observation at location i and computed from the image In.
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2.2 Objective and Optimization

Our goal at each time step n is to compute the next region qn+1 to scan in
order to image as fast as possible all the targets with the highest accuracy. In
particular, we want regions with high target probability to be scanned many
times, while avoiding scanning large regions that are irrelevant. For this reason,
we take qn+1 to be

qn+1 = argmax
q∈Q

f(q) = argmax
q∈Q

∑
i∈q

P (Y n
i = 1|Xn, Y n−1)�{Ci≤Cmax}−λ|q|, (1)

where P (Y n
i = 1|Xn, Y n−1) is the conditional probability that a target is at

patch Y n
i , |q| is the area of region q,Q is the space of all rectangular patch regions

and λ > 0 is a user parameter that balances accuracy and speed. In addition,
�{Ci≤Cmax} is 1 as long as Ci ≤ Cmax and 0 there after, hence penalizing regions
that have been over-scanned.

To give some intuition for the meaning of Eq. (1), Fig. 2(a) depicts the con-
ditional probability at each location i, two candidate regions (q1, q2) and their
respective f scores. Observe that the objective favors regions very likely to con-
tain targets, while penalizing large ones that are slow to scan, which results in
densely packed target regions.

Given Eq. (1) is additive in P (Y n
i = 1|Xn, Y n−1), we may use a Branch-

and-Bound optimization strategy [9] to solve the global optimum exactly. The
idea is to evaluate bounds on subsets of regions Q ⊂ Q in a divide-and-conquer
approach. This is achieved by defining a bounding function f̂ : Q → R for subsets
of regions. We write

f̂(Q) =
∑
i∈Q∪

P (Y n
i = 1|Xn, Y n−1)�{Cs≤Cmax} − λ|Q∩|, (2)

where Q∪ is the union of all rectangles in Q and Q∩ is the intersection of all
rectangles in Q, as depicted in Fig. 2(b). Clearly, f̂ is a proper bounding function

as f(q) = f̂(Q) when Q = q, and f̂(Q) ≥ maxq∈Q f(q).

3 Implementation

Given the optimization problem of Eq. (1), we now discuss how we compute the
image observations Xn

i and the posterior distributions P (Y n
i = 1|Xn, Y n−1), as

well as our Flash Scanning algorithm.

Target Detectors and Observation Model. The observation Xn
i , describing

the evidence of a target at location i, is computed directly from the reconstructed
image In. As in [5], we use simple feature extraction with SVM classification to
describe this evidence. Specifically, for node i, we compute 1) a feature dedicated
to node i and 2) a feature from the 8-connected neighbours of node i. For 1)
we compute for image patch i, the histogram of intensity (10 bins), the co-
occurrence matrix (64 bins) and concatenate the two. For 2), we extract the
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same features as in 1) from each neighbour of i, adding intensity histograms
together and co-occurrences together. These are then normalized by the number
of neighbours and concatenated, yielding a second 10+64 bin feature. Both 74-
bin feature vectors are then concatenated and the estimator, Xn

i is the output of
a trained RBF-kernel binary SVM (target=1 or background=-1) evaluated with
the extracted 148 bin feature vector. Given that image noise varies as a function
of how many scans have been performed at a location, a dedicated c-scan SVM
is used when estimating regions observed with c scans. Note that other features
may improve performances and in effect shift the pareto-optimum higher.

Target Model and Posterior Update. Given we are interested in inferring
each of the variables Y n, we use a Markov Random Field (MRF) to describe
the joint probability distribution of all the target locations Y n and observations
Xn. We write

P (Xn, Y n|Y n−1) =
1

Z

∏
i

P (Y n
i |Y n−1

i )
∏
j∈Ni

P (Y n
i Y

n
j )
∏
i

P (Xn
i |Y n

i ), (3)

where Ni is a 4-connected neighbourhood of node i (depicted in Fig. 2(c)) and
Z is a normalizing constant. This model allows us to describe the likelihood of a
given patch of being a target, while taking into account it’s local neighbourhood.
Here, we have assumed that Xn

i is conditionally independent of Y n−1
i given

Y n
i , and P (Y n|Y n−1) =

∏
i P (Y

n
i |Y n−1

i )
∏

j∈Ni
P (Y n

i Y
n
j ). This MRF model is

convenient as it allows us to represent where all the targets lie on a current slice,
as a function of occupancy in previous slices.

Within this MRF model, P (Y n
i |Xn, Y n−1) is known as the Maximum Poste-

rior Marginal (MPM). To compute these for all Y n
i , we use the Mean-Field [10]

approximation method, which involves setting P (Y n
i |Xn, Y n−1) = μi, where μi

is initially 0 and then iteratively updating

μi = μiβ + (1 − β) tanh(
∑
j∈Ni

μj + P (Y n
i |Xn

i ) + P (Y n
i |Xn

i , Y
n−1
i )), (4)

where β is a damping rate and P (Xn
i |Y n

i ) ∝ (1 + exp(g(Xn
i )))

−1 with g(Xn
i )

being the output of the SVM. In our experiments, we set β = 0.5, iterate 10
times for each node and set P (Y n

i |Y n−1
i ) = exp(Y n

i Y
n−1
i /T ) and P (Y n

i , Y
n
j ) =

exp(Y n
i Y

n
j /T ), where T = 5 is a temperature.

Algorithm: The proposed algorithm is summarized in Alg. 1. For each slice, the
user provides an initial probability distribution for each node P (Y 0

i ), λ and the
total number of iterations permitted N . Both the final MPM and the scanned
image IN are returned by our procedure. For a given slice, we first scan each pixel
location once (line 1), then iterate lines 3-6 N times. For subsequent slices, we
first apply temporal smoothing of the form P (Yi) = P (Yi)α+1/2(1−α), where
α = 0.75 in our experiments, and then use the smoothed probability as the prior
for the next slice. As in [7], this is to account for the 3D nature of the targets
and promote regions that have been heavily scanned in previous locations, as
they are likely to be in nearby locations. For the first slice, we set P (Y 0

i ) = 1/2.
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Algorithm 1. Flash Scanning (P (Y 0), λ,N)

1: Scan the entire slice one.
2: for n = 1, . . . , N do
3: Select region to scan: qn = argmaxq∈Q f(q)
4: Scan region qn and update In

5: Compute target estimators: {Xn
i }i∈qn from In

6: Compute MPMs using Eq. (4)
7: end for
8: return P (Y N ) and IN

n = 10 n = 100 n = 225 n = 350 n = 500

λ = 0.5

λ = 0.3

G
round 
Truth 

G
round 
Truth 

Target Log 
Pixel Error 

Target Log 
Pixel Error 

Posterior 
Distribution 

Posterior 
Distribution 

Scanned 
Regions 

Scanned 
Regions 

Fig. 3. Flash Scanning iterations for a slice when λ = 0.5 and 0.3. In each case, we
show the evolution of the posterior distribution and the scanned locations for different
values of n. At n = 500, we show the log-pixel errors for mitochondria locations (yellow
are high errors and blue are low errors).

4 Experiments and Results

To test our approach we imaged 120, 5nm thick slices using a Zeiss NVision40
FIBSEM microscope, such that each slice consisted of a 1280× 1280 image with
5nm pixel resolution. Each slice was scanned a total of 10 times to produce 10
noisy 1280× 1280 images, i.e. Cmax = 10, and we collected the individual pixel
values from each scan using a Fibics scanning head [11].

As in [7,8], we use mitochondria as our target structures. Mitochondria pix-
els were hand labeled in the entire 120-image stack by an expert. The first 20
images were used to train the different c = {1, ..., Cmax} scan SVM classifiers
as described in Sec. 3 and the rest for testing purposes. Each Yi node of the
MRF consisted of an image patch of size 12 × 12 pixels. Computations were
performed offline using a 2.3GHz PC. In practice, steps 3 and 6 of Alg. 1 take
approximately 0.2 seconds, which is negligible considering the days of scanning
performed during typical experiments.
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Fig. 4. Scanning time, PSNR and TPR performances of Flash Scanning and earlier
methods. For each method, a data point corresponds to a set of parameters used. In
general, Flash scanning consistently outperforms earlier approaches by being faster and
more accurate at scanning mitochondria.

Evaluation: In Fig. 3, we show a sequence of iterations of the Flash Scanning
algorithm for a given slice with parametersN = 500 and λ = {0.3, 0.5}. We show
the evolution of the MPMs and the number of scans dedicated to each region
of the space as n approaches 500 (large values in red, small values in blue). We
also show the ground truth locations of mitochondria for the evaluated slice, as
well as the log pixel error between the reconstructed images and the maximally
scanned images at mitochondria locations.

From the figure, we see that our objective Eq. (1) concentrates scanning on
target locations and generally avoids scanning irrelevant regions. We also see
that when λ = 0.5, scanned regions are smaller and more compact than when
λ = 0.3. This is consistent with Eq. (1) that imposes heavier costs for scanning
large windows for large values of λ. In other words, larger values of λmeans faster
scanning at the risk of missing some target structures. This effect is clearly visible
at n = 500 where some mitochondria have not been scanned when λ = 0.5 but
have been when λ = 0.3. The full sequence of iterations can be viewed in our
supplementary video.

Comparison: We evaluated our method against the SRC [7] and the Entropy
Scanning (ES) [8] algorithms. For each tested method, including ours, we eval-
uated the scanning time relative to scanning the entire block with 10 scans, the
Peak Signal-To-Noise Ratio (higher values being better) at mitochondria loca-
tions and the True Positive Rate (TPR) for regions scanned maximally. To show
the effect of using different parameters, we ran our algorithm with different pa-
rameter values, {N ∈ (300, 1000), λ ∈ (0.3, 0.6)}. We did the same for both SRC
and ES, while using the same SVM classifiers for all three methods. The results
are shown in Fig. 4.

Flash scanning outperforms SRC, which itself does much better than ES.
More specifically, for the tested set of parameters, Flash scanning significantly
improves the speed and accuracy compared to SRC. For example, at roughly
half traditional scanning times, our method has an average PSNR of over 37,
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while SRC is of under 34. Similarly, for a PSNR of 37, SRC is 8% slower than
our method. Note, that these differences are statistically significant, and similar
observations can be made with respect to the reported TPR results. Note that
similar results were also attained by performing experiments on synthetic data
generated as described in [7].

5 Conclusion

We have presented a new method for efficiently scanning tissue samples using
SEMs when imaging predefined targets. Our method uses an intuitive objective
function that selects scanning regions that are likely to contain targets, but which
are small in order to avoid taking too long to scan. In addition, our optimiza-
tion is solved exactly and use a MRF to allow localization of multiple targets
simultaneously. Our method requires far fewer parameters to tune compared to
earlier approaches and out-performs them in terms of speed and accuracy. In
the future, we plan to investigate how to integrate the cost of beam reposition
when selecting regions to scan.

Acknowledgements. This work was supported in part by the ERC grant
MicroNano.
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Abstract. In this paper, we propose a superpixel classification based
optic cup segmentation for glaucoma detection. In the proposed method,
each optic disc image is first over-segmented into superpixels. Then mean
intensities, center surround statistics and the location features are ex-
tracted from each superpixel to classify it as cup or non-cup. The pro-
posed method has been evaluated in one database of 650 images with
manual optic cup boundaries marked by trained professionals and one
database of 1676 images with diagnostic outcome. Experimental results
show average overlapping error around 26.0% compared with manual
cup region and area under curve of the receiver operating characteristic
curve in glaucoma detection at 0.811 and 0.813 in the two databases,
much better than other methods. The method could be used for glau-
coma screening.

1 Introduction

Glaucoma is a chronic eye disease in which the optic nerve is progressively dam-
aged. It is the second leading cause of blindness, and is predicted to affect around
80 million people by 2020 [1]. Although glaucoma cannot be cured, its progres-
sion can be slowed down by treatment. Therefore, it is important to detect it in
time. The cup-to-disc ratio (CDR) [2] is a widely used indicator for glaucoma. A
larger CDR indicates a higher risk of the disease. In current clinical practice, the
CDR is measured manually. However, manual measurement is subjective, time
consuming and expensive for large scale screening. Recently, automated CDR
measurement from 2D fundus images starts to receive some attention. In 2D
images, the optic disc can be divided into two distinct zones, namely, a central
bright zone called the optic cup (in short, cup) and a peripheral region called

� This work is funded by Singapore A*STAR SERC Grant (092-148-0073).
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the neuroretinal rim (in short, rim), as shown in Fig. 1. The CDR is computed
as the ratio of the vertical cup diameter to the vertical disc diameter clinically.
Accurate segmentation of the cup is essential for CDR measurement. In this
paper, we focus on automatic cup segmentation only.

Fig. 1. Major structures of the optic disc Fig. 2. An example with no pallor

Cup segmentation in 2D fundus images is a challenging task as 2D images do
not carry depth information, which is the primary indicator of the cup boundary.
In these images, one landmark for cup detection is the area of maximum color
contrast inside the optic disc, i.e., pallor. Another landmark is the vessel bends
at the cup boundary. Several methods have been proposed for cup segmentation
from 2D images. In [3], thresholding is used. It is essentially based on pallor
information. However, in many subjects from screening, there is no obvious pallor
to mark the cup boundary. Fig. 2 shows such an example. In [4], [5], vessel bends
are used. The challenge is to correctly identify vessel bends. Xu et al. proposed
a sliding window and regression based method [6]. However, the sliding window
strategy requires heavy computational cost. Recently, Yin et al. [7] developed a
deformable model based approach, where the initialization of the cup boundary
is based on pallor combined with prior knowledge of cup.

One main challenge in cup segmentation is to determine the cup boundary in
images with weak or no pallor. In such scenarios, it is difficult to determine the
cup based on intensity only. Although vessel bends are potential landmarks, they
suffer from high false alarm. In addition, these methods often require a set of
heuristic parameters which raises the concern of the robustness of the methods.
In this paper, we propose superpixel classification for cup segmentation. The pro-
posed method embeds the prior knowledge into superpixel classification by using
location feature to overcome the absence of pallor. In addition, other challenges
such as uneven illuminations within and between images have also been newly
discussed and explored. Contrast enhanced intensities, mean removed intensities
and center surround statistics are proposed to overcome these challenges accord-
ingly. Based on the detected cup, CDR is computed for glaucoma detection.

The rest of paper is organized as follows. In Section 2, we introduce superpixel
classification based cup segmentation including the generation of superpixels, the
extraction of feature from superpixels for the classification and the classification
of superpixels for cup estimation. Section 3 shows the experimental results in-
cluding the accuracy for cup segmentation, the CDR and the glaucoma detection.
Discussions and conclusions are presented in the last section.
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2 Methodology

The proposed superpixel classification based method comprises: an over-
segmentation step to divide the disc image into superpixels; a feature extraction
step to compute features from each superpixel; a classification step to determine
each superpixel as cup or non-cup (rim) and to estimate the boundary. Fig. 3
shows the procedure. Superpixel is an image patch which is better aligned with
intensity edges than a rectangular patch. It captures redundancy in the image
and reduces the complexity of subsequent processing. This paper uses the simple
linear iterative clustering [8] algorithm (SLIC) to aggregate nearby pixels into
superpixels in retinal fundus images. Compared with other superpixel methods,
SLIC is fast, memory efficient and has excellent boundary adherence. It is also
simple to use with only one parameter, i.e., the number of desired superpix-
els k. Next, features from superpixels are extracted to classify them as cup or
non-cup.

Superpixel Generation Feature Extraction

Classification

SmoothingEllipse fitting

Fig. 3. Superpixel based optic cup segmentation

2.1 Feature Extraction

Many features such as color, appearance, gist, location and texture can be ex-
tracted for superpixel classification. To compute good features for cup segmen-
tation, it is important to understand the main challenges in the task. The first
challenge is that the contrast between rim and cup varies largely from one im-
age to another. Therefore, it is beneficial to enhance the image contrast. In
this paper, we apply histogram equalization on the red r, green g, and blue b
channels to get three contrast enhanced intensity maps HE(r), HE(g), HE(b),
where HE(·) denotes the function of histogram equalization. The second chal-
lenge is the illumination changes from one image to another, i.e., some images
look darker and some brighter. To overcome this issue, the mean removed in-
tensity maps are also computed as r − r̄, g − ḡ, b − b̄, where x̄ denotes the
mean value in channel x. Combining them with the contrast enhanced inten-
sity maps, we obtain six intensity based maps I = [I1, · · · , I6]. The first type of
features from a superpixel are the mean intensities MI of pixels within the su-
perpixel. Mathmatically, MI for jth superpixel SPj with nj pixels is computed
as: MI(i) = 1

nj

∑
(x,y)∈SPj

Ii(x, y), for i = 1, · · · , 6.
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Unbalanced illumination across the optic disc within the image is another
challenge. For example, the temporal side of the disc is often brighter than
the nasal side. In this paper, we compute center surround statistics (CSS) to
overcome this issue. CSS are useful as they are computed from the difference
between image maps, which are less sensitive to unbalanced illumination across
the disc. To compute CSS, nine spatial scale dyadic Gaussian pyramids are
generated with a ratio from 1:1 (level 0) to 1:256 (level 8). Then center-surround
operation between center finer levels c = 2, 3, 4 and surround coarser levels
s = c+d, with d = 3, 4 is applied to obtain six maps computed at levels of 2-5, 2-
6, 3-6, 3-7, 4-7, and 4-8 from an image channel [9]. Because of the scale difference,
surround levels are interpolated to be the same size as the corresponding center
levels, and then they are subtracted to generate the center surround difference
maps. In this paper, we compute the maps from r, g and b channels to get
6×3 = 18 maps. The CSS features are then computed as the mean and variance
of these maps within superpixels. Denoting Mi, i = 1, 2, · · · , 18, as the ith map,
the feature CSS consists of the mean Mμ and variance Mσ of maps within the
superpixels, i.e., CSS = [Mμ Mσ], where Mμ and Mσ are computed as follows:

Mμ(i) =
1

nj

∑
(x,y)∈SPj

Mi(x, y), Mσ(i) =
1

nj

∑
(x,y)∈SPj

(Mi(x, y)−Mμ(i))
2 (1)

Combining CSS withMI yield a feature with 18×2+6 = 42 dimensions. Besides
the above, blood vessels from the cup and rim often look quite similar. In order
to differentiate the vessels from the two regions,MI and CSS from neighboring
superpixels are also included as context features in the classification of current
superpixel. By choosing proper desired number of superpixels, a superpixel from
vessels often have two or more non-vessel neighbors. Therefore, the vessels from
the cup and rim can be better differentiated from their neighbors. In this paper,
four neighboring superpixels for current superpixel SPj are obtained and denoted
as SPj1 , SPj2 , SPj3 and SPj4 . SPj1 is determined as the first superpixel by
moving out of the current superpixel horizontally to the left from its center.
Similarly, SPj2 , SPj3 and SPj4 are determined by moving right, up and down.

Since intensities and CSS features rely on color changes from cup to rim, they
do not work well for images with very weak or no color changes from the cup
to rim. To obtain a reliable result in such a scenario, we make use of the prior
knowledge that the cup is usually the center part of the disc. For this purpose,
we further include the distance D between the center of superpixel SPj and the
center of optic disc as location information. Mathematically, D is computed as

D =

√(
xc−xj

h

)2
+
(

yc−yj

w

)2
, where (xc, yc) denotes the coordinate of the disc

centre, (xj , yj) denotes the coordinate of the centre of SPj , h and w denotes the
height and width of the disc, respectively. By including the location information,
the prior knowledge would be automatically embedded into classification. The
final feature has 42× 5 + 1 = 211 dimensions.
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2.2 Superpixel Classification

The support vector machine (SVM) is used for the two-class classification in
our application. The LIBSVM [10] with linear kernel is used in our experiments
as we find that the nonlinear mapping using the radial basis function kernel
does not improve much the performance. In the training step, we randomly
obtain the same number of superpixels from the cup and the rim. Two-fold cross-
validation is adopted to determine the SVM parameters. In the testing, instead
of directly using the binary classification results from LIBSVM, we obtain the
output values from the SVM decision function and smooth them with a mean
filter, as illustrated in Fig. 3. The smoothed decision values are then used to
get the binary decisions for all pixels by the default threshold used in SVM.
The largest connected object is obtained and its boundary is used as the raw
estimation. The best fitted ellipse [11] is computed as the cup boundary. The
ellipse fitting here is beneficial to overcome the noise introduced by vessels at
the inferior and superior sector of the cup.

3 Experimental Results

Two data sets are used. The first set includes 650 different eye images from Sin-
gapore Malay Eye Study (SiMES). Manual disc and cup boundaries are available
for the 650 images. The 650 images are randomly divided into 325 images for
training and 325 images for testing. The second set includes 1676 images of a pop-
ulation based data from Singapore Chinese Eye Study (SCES). Only diagnostic
outcome is available for SCES. All SCES data are used in evaluating the perfor-
mance of glaucoma screening using the proposed method. The disc boundaries
are obtained following the method in [12]. Among the 2326 eyes, 168 of SiMES
and 46 of SCES eyes are diagnosed as glaucomatous by ophthalmologists. The
overlapping error E is computed as one evaluation metric to examine the differ-

ence between automated and manual cup:E = 1 − Area(S∩M)
Area(S∪M) , where S and M

Table 1. Mean overlapping error μE at different parameters

no filter 5 × 5 10 × 10 15 × 15 20 × 20 25 × 25

50 29.3% 28.4% 27.7% 27.2% 26.8% 26.6%

100 27.1% 26.5% 26.3% 26.1% 26.0% 26.1%

200 26.6% 26.2% 25.9% 25.9% 25.8% 25.8%

400 26.6% 26.1% 26.0% 25.9% 25.8% 25.9%

Table 2. Performance by various methods

Measurement μE Mean CDR error μδ AUC

Data set SiMES
SiMES

SiMES SCES
glaucoma healthy

Threshold [3] 53.5% 0.141 0.129 0.638 0.574

ASM [7] 31.3% 0.121 0.088 0.716 0.756

Regression [6] 28.4% 0.133 0.091 0.729 0.767

MI + CSS 28.3% 0.108 0.084 0.734 0.694

MI + D 27.0% 0.074 0.102 0.757 0.768

CSS + D 26.8% 0.102 0.078 0.782 0.789

MI + CSS + D (Proposed) 26.0% 0.100 0.075 0.811 0.813

Manual - - - 0.839 -
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Fig. 4. ROC of glaucoma detection

(a) Original (b) Manual (c) Threshold (d) ASM (e) Regression (f) Proposed

Fig. 5. Sample results. From top to bottom, the manual CDR for the five examples
from top to bottom are: 0.54, 0.55, 0.35, 0.68 and 0.83. The CDR by the proposed
method are 0.55, 0.55, 0.54, 0.65, and 0.63 respectively.
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denote the segmented and the manual cup respectively. In addition, the CDR
accuracy is also evaluated using CDR error, computed as δ = |CDRm −CDR|,
where CDRm denotes the manual CDR. The glaucoma detection accuracy is
evaluated using the area under curve (AUC) of the receiver operating character-
istic (ROC) curve.

The first set of experiments was carried out to evaluate the performance un-
der different parameters. Table 1 shows the mean overlapping error μE for the
number of superpixels k at 50, 100, 200 and 400 in combined with different filter
sizes from 5× 5 to 25× 25 as well as the case without a filter. The results show
k = 50 is too small for this application while there is mild improvement when
k increases from 100 to 400. It is shown that the results with a filter are better
than that without. The size of filter only affects the performance very slightly
from 15× 15 to 25 × 25. Since a smaller k requires less computation, we adopt
k = 100 with a 20× 20 filter in subsequent tests.

In order to evaluate how the features MI, CSS and D affect the cup segmen-
tation, we conducted the tests using different combinations of the three types of
features. Besides the mean overlapping error μE , we also compute mean CDR
error μδ and AUC of ROC curve in glaucoma detection to evaluate the per-
formance. In addition, we have also compared the proposed method with the
threshold method [3], the ASM method [7] and the regression method [6]. Table
2 shows mean overlapping error μE , the mean CDR error μδ and the AUC of
the ROC curves. Fig. 4 shows the ROC curves. Results show that MI works
well for glaucomatous subjects while relatively poor for healthy subjects. CSS
works better for healthy subjects. D is an important feature that improves the
performance significantly. Fig. 5 shows the cup boundaries for five samples by
the proposed method and three other methods. From the results, we can see
that previous methods can work well when pallor is obvious, but their perfor-
mance in discs without obvious pallor is less accurate. The proposed method
over-estimates very small cups ( CDR<0.4) and under-estimates very large cups
(CDR>0.8) when the pallor is very weak or absent, e.g., the third and last sam-
ples. This is because there are very few such very small or very large cups in
the data set. When D is included in the feature space where most discs have
medium cups, the trained classifier is dominated by the majority medium cups.
This limitation is reasonable as these are the most difficult cases even for hu-
man eyes. Although the bias exists, the obtained CDRs for very large cups are
still high and the CDRs for very small cups are still small, as shown in Fig. 5.
Therefore, we obtain good glaucoma detection results.

4 Discussions and Conclusions

In this paper, we present a superpixel classification based cup segmentation
for glaucoma detection. It is shown that MI is a good feature as majority of
glaucomatous subjects often have relatively obvious pallor. CSS is useful to
reducing difficulty due to the uneven illumination. It is less sensitive to the
illumination change. The location information further improves the results as it
incorporates the prior knowledge of the cup.
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The accuracy of our current method is much better than previous methods
[3], [6], [7]. The glaucoma detection accuracy by the proposed method is only
slightly below the manual CDR. From the discussions with clinicians, it is good
enough for a large-scale glaucoma screening program. However, there are still
many aspects for improvement in the proposed methods. For example, the pro-
posed method under-estimates the very large cups while over-estimating the very
small cups when pallor is very weak or absent. In addition, CDR based screen-
ing also has its limitations. Therefore, combining CDR with other factors are
expected to further improve the performance. In the future, we would explore
the integration of other factors to improve diagnosis outcomes toward a more
reliable and efficient glaucoma screening system.
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Abstract. Annotations delineating regions of interest can provide valu-
able information for training medical image classification and segmenta-
tion methods. However the process of obtaining annotations is tedious
and time-consuming, especially for high-resolution volumetric images. In
this paper we present a novel learning framework to reduce the require-
ment of manual annotations while achieving competitive classification
performance. The approach is evaluated on a dataset with 59 3D opti-
cal projection tomography images of colorectal polyps. The results show
that the proposed method can robustly infer patterns from partially an-
notated images with low computational cost.

1 Introduction

Optical Projection Tomography (OPT) microscopy is a relatively new 3D imag-
ing modality [7]. It has an effective resolution of 5µm to 10µm and is ideally
suited for specimens between 0.5 mm and 10 mm. Recently OPT has been used
to image colorectal polyps. The analysis of these images is currently performed
visually and the classification of polyps exhibits variability depending on the
experience and awareness of the experts [4]. We investigate automated analysis
of polyp regions to assist pathologists in colorectal cancer diagnosis.

To model the underlying patterns of image regions, accurate annotations are
desirable. However the volumetric images of polyps are large (10243 voxels);
while high resolution brings us considerable detail, difficulty arises in obtaining
annotations. In our dataset, a polyp typically extends across 700 ∼ 800 slices
and about 0.5 billion voxels in total. Fully delineating 3D regions slice by slice
is tedious and time-consuming.

In this paper we investigate an alternative approach based on partial, sparse,
incomplete annotations. We propose a learning framework for partially anno-
tated OPT images, for the task of classifying dysplastic changes in colorec-
tal polyps. More specifically, the objective in this paper is to discriminate be-
tween image patches that contain low-grade dysplasia (LGD) and image patches
that contain invasive cancer. This is a first step towards the goal of automated
polyp analysis.
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(a) (b)

Fig. 1. OPT colorectal polyp images with (a) region annotation and (b) partial
annotations

Different forms of partial annotation can be appropriate for different image
modalities and applications. In this paper, we consider partial annotations con-
sisting of just one click or a few clicks in the 3D polyp region of interest (as shown
in Fig. 1(b)) as an alternative to the stronger annotation shown in Fig. 1(a). The
annotation effort required is quite different. Our goal is to reduce the annota-
tion efforts while achieving good classification performance. In addition, learning
should scale well making it suitable for high-resolution volumetric images.

In [4] local features for patch and region classification of OPT images were
compared. Here we focus on the model learning aspect of the task. Our method
falls into the broad category of weakly supervised classification. At one extreme
of this category, annotation is performed only at the image level in which case
Multiple Instance Learning (MIL) has been adopted. In MIL, a sample is clas-
sified as positive if at least one of the instances is classified as positive. Dundar
et al. [2] proposed a large margin based approach for pathology slides. It shared
some similarity to this work however the prediction was at image level. In [8]
MIL was adapted to classify and segment histopathology images. Doyle et al. [1]
applied active learning to detect cancer regions with histopathology annotations.
Our approach is to leverage spatial annotation but to keep annotation simple,
sparse and thus fast to perform.

2 Methods

In supervised classification settings, locations outside annotated regions are usu-
ally ignored during training because the corresponding class labels are considered
unknown. However, for images annotated with a partial annotation protocol, the
annotations carry information about the class membership at unannotated loca-
tions. We refer to 3D windows as patches. Patches in the training set at locations
with annotated (known) class labels are referred to as reference patches. Patches
near to them (in terms of displacement or distance in feature space) are referred
to as candidate patches. In this paper, we consider an extreme form of partial
annotation consisting of point locations obtained via mouse clicks. We introduce
our definition of contextual relevance, based on which we then propose a ranking
model for classification.
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2.1 Labeling Patches’ Confidence

First we assign confidence labels to candidate patches. Consider a reference patch
Sr sampled at an annotated location zr labeled as yr ∈ {1,−1}. The patch Sk

sampled at location zk will have a lower confidence label yk. yk can be set to:

yk = a(Sk,Sr) yr, (1)

where a( · , · ) ∈ (0, 1] is a measurement of affinity between two image patches.
The absolute value of yk can be viewed as a confidence measurement.

As patches sampled at locations near to each other usually belong to the same
class, the reference patch of Sk can be set as the nearest annotated patch Sr.
Affinity a( · , · ) is set as a Gaussian function with regard to spatial displacement
of Sk and Sr in the image and a scaling parameter σ, i.e.:

a(Sk,Sr) = exp(−‖zk − zr‖2
σ2

). (2)

Another way to define a( · , · ) is to consider similarity in image feature space.
Assuming feature xr is extracted from reference patch Sr and xk from Sk, we
can alternatively define the function as:

a(Sk,Sr) = exp (−‖xk − xr‖2
δ2

). (3)

Note that a( · , · ) can be extended to use multiple reference patches. Here we
assign only one (the nearest) reference patch for each candidate patch.

2.2 Contextual Relevance Ranking Model

Let xi ∈ IRd, i = 1, · · · , N denote a feature vector extracted from an image
patch indexed by i. We assign the label yi ∈ {1,−1} if the ith feature vector is
from a reference patch; otherwise we set yi according to formula (1). We form
the ranking model by optimizing a regularized margin-based problem:

min
w, b

λ

2
||w||2, (4)

s.t.
1

yi
(wTxi + b) ≥ 1, ∀xi ∈ X, (5)

wTxi −wTxj ≥ Rij , ∀xi ∈ X+,xj ∈ X−, (6)

where X+ = {xk : 0 < yk < 1} and X− = {xk : −1 < yk < 0}. Rij is the
pairwise contextual relevance of two patches Si and Sj :

Rij =
a(Si,Sir)a(Sj ,Sjr)

a(Si,Sir) + a(Sj ,Sjr)
, (7)

where the patches Sir and Sjr are the reference patches of Si and Sj respectively.



432 W. Li et al.

   

w

Decision Boundary

   

   

   

   

   

r
   

Margin

k

   

Fig. 2. Geometric interpretation of contextual relevance ranking model. w is the weight
vector; point k is a feature vector extracted from a reference patch. r refers to the
differences of ranking score between data point k and points in the other class (projected
along the direction of w). Constraints in formula (5) were designed for minimizing
classification error; constraints in formula (6) were designed for optimizing ranking
difference r.

Constraints (5) are for all feature vectors in the training set. Note that in (5)
features from candidate patches yk are loosely constrained compared to their
reference patches yr ∈ {−1, 1} because |yk| ∈ (0, 1). Constraints (6) are rankings
of a pair of patches from two images with regard to their contextual relevance.
We argue that patches sampled nearer to annotated locations (in terms of image
location or location in feature space) should be classified with a larger score,
i.e., further away from decision boundaries. The constraints keep the projected
distance between any data point with high magnitude in y and the data in the
opposite class large. In the case that pair (xi, xj) is labeled with certainty, i.e.,
yi = ±1 and yj = ±1, the pairwise constraint (6) vanishes due to constraint (5).
Fig. 2 illustrates the geometric interpretation of this model.

Given a fixed training set, the optimization problem can be transformed into

dual form of w by constructing a new feature set with
(xi−xj)

Rij
. Then this can

be solved by any SVM dual form solver, e.g. LIBSVM, SVMlight. However, this

method is very slow and constructing feature set
(xi−xj)

Rij
across all the pairwise

constraints is infeasible for our problem because the set of candidate patches is
large. Here we tackle the primal form directly with a recently proposed efficient
stochastic gradient method, SAG [6]. This method enables us to learn features
online and with minimal storage cost.

To solve the optimization problem we minimize function (4) while controlling
constraint violations in (5) and (6). Combining them together the risk function

J(w, b) on training features {xi}Ni=1 and labels {yi}Ni=1 can be written as:

J(w, b) =
λ

2
||w||2 + 1

N+N−
∑

xi∈X+

∑
xj∈X−

(fi + fj + Cgij); (8)

where: fi = f(
1

yi
(wTxi + b)), fj = f(

1

yj
(wTxj + b)), (9)

gij = g(wTxi −wTxj −Rij). (10)
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Fig. 3. Demonstration of loss functions (left to right): (1) squared hinge loss f(t), (2)
Huber loss gh(t), (3) smoothed hinge loss gs(t)

The loss term f( · ) corresponding to constraints (5) is squared hinge loss:

f(t) = max(0, 1− t)2; (11)

the loss term g( · ) corresponding to constraints (6) can be a Huber loss function
or a smoothed hinge loss function:

g(t) =

⎧⎨⎩
0 if t ≥ 0

−2t− 1 if t < −1
t2 otherwise

, (12) g(t) =

⎧⎨⎩
0 if t ≥ 0

−t− 1
2 if t < −1

1
2 t

2 otherwise
. (13)

In risk function J(w, b), parameter λ is the regularization strength; C ≥ 0
controls the trade-off between classification errors and ranking errors; N+ and
N− are the number of positive and negative samples respectively. Fig. 3 illus-
trates the loss function used in J(w, b). Squared hinge loss is much more sensitive
to outliers and large errors than the smoothed hinge loss and Huber loss. It is
applied to patch classification to ensure the risk function is sensitive to every
training label. The latter two functions are choices for the pairwise ranking er-
rors. OPT images of colorectal polyps usually involve large intra-class variations
so we expect the pairwise outliers would not dominate the risk function. There
are other loss functions that meet our requirements [5]. We chose these convex
and smooth functions as they can be efficiently integrated into SAG.

To apply SAG methods for minimizing J(w, b) iteratively, at each iteration w
is updated with an average of the gradient of a randomly selected training pair
(xi,xj) and most recently computed gradients of the other training pairs. At the
(k+1)th iteration the updating rule with a small step size αk has the form:

wk+1 = (1− αkλ)w
k − αk

N+N−
∑

xi∈X+

∑
xj∈X−

gradkij , (14)

where for the training pair (ik, jk), we set:

gradkij =

{
f ′i + f ′j + Cg′ij if(i, j) = (ik, jk)

gradk−1
ij otherwise

. (15)

For the bias term b, we simply extend each feature vector with one bias com-
ponent (from x to [x; b]) in each iteration. This method has an exponential
convergence rate and with a few implementation tricks (described in [6]) we re-
duce the storage cost to O(N+N−). This allows the method to scale to large
datasets.
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3 Experiments

Data. OPT images from 59 patients acquired using ultraviolet light and Cy3
dye were used in this study. Each image was of one colorectal polyp specimen
and had 1024 × 1024 × 1024 voxels with aspect ratio 1 : 1 : 1. For each volu-
metric image, 3D regions were annotated by a trained pathologist with labels of
dysplastic change. In 30 images, regions judged to consist entirely of low-grade
dysplasia (LGD) were annotated. In the other 29 images, regions judged to con-
sist entirely of invasive cancer were annotated. During the manual annotation
process, the pathologist was asked to roughly indicate significant regions instead
of exhaustively delineating all the regions.

Experimental Setup. We evaluated two aspects of the proposed model in
terms of patch classification performance: (1) the ability to utilise unlabelled pa-
tches, compared with not using unlabelled patches, and using unlabelled patches
naively (standard SVM); (2) the choice of loss function and affinity measurement.

In the experiments we applied 10-fold cross-validation. The dataset was ran-
domly split into 10 folds (about 3 cancer and 3 LGD images per fold); 10 itera-
tions of training and testing were performed such that within each iteration one
fold was used as test set. The performance was averaged over the 10 iterations.

Test patches were randomly sampled from annotated regions in the test sets
(about 1400 patches per fold). The partial annotation process was simulated
by randomly sampling point locations within the pathologist-annotated regions.
Candidate patches were randomly sampled outside the annotated regions in the
training set. With reference and candidate patches, three types of models were
trained:

– T1: training with only reference patches, using standard SVM. (SVM-ref )
– T2: training with both reference and candidate patches, using standard

SVM. Labels of candidate patches can be assigned with either feature-based
or location-based affinity (formula (2) or (3)). (SVM-fea and SVM-loc)

– T3: using our proposed model with both reference and candidate patches.
We evaluated four combinations of different loss functions (formula (12) and
(13)) and affinities (formula (2) and (3)). (Prop-hub-fea, Prop-hub-loc, Prop-
squ-fea, and Prop-squ-loc)

We started with a training set with only 1 reference patch and 20 candi-
date patches for each training image (training set size: 1, 140). The models were
learned using T1, T2 and T3 methods respectively and the classification perfor-
mance was evaluated on the test patches. Then we added more reference patches
and their associated candidate patches. At each iteration 1 reference and about 6
candidate patches per image were added. Such iterations were repeated 30 times
till there were 1, 590 reference patches in the training set. At the final iteration
the number of training patches was about 12, 000.

The size of each image patch was set to 21 × 21 × 21 voxels. For feature
extraction we used Bag of Words with Random Projection since this achieved
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highest classification accuracies in [4]. The dimensionality of each feature vector
was 200. Each feature was normalized to zero mean and unit variance.

In all standard SVM evaluations we used the LIBLINEAR [3] solver that solves
the L2 regularized squared loss primal problem (with regularization parameter
searched from 10−7 to 107 and eps = 0.01). In our proposed method, C searched
from 10−10 to 10−5, λ = 1

N+N− , b = 0, and the stochastic gradient step size
was set to 0.004. The scaling factors were estimated from standard deviation of
all distances (‖zk − zr‖ or ‖xk − xr‖) between reference patches and candidate
patches in the training set (σ = 158.1 in formula (2), δ = 7071.1 in formula (3)).
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Fig. 4. AUC values depending on number of reference patches with (a) location-based
affinity measurement, and (b) feature-based affinity measurement

Results. Area Under ROC Curve (AUC) obtained when classifying patches as
LGD or invasive cancer was used as a performance measure. Fig. 4 shows AUC
values depending on the number of reference patches per training image. We list
the AUC values depending on number of reference patches per image in Table 1.

In Fig. 4, with more than 10 reference patches per image (530 reference patches,
about 3,000 training patches in total) the classification performances of all the
methods saturated. With both location-based and feature-based affinity the
SVM-loc method showed the same or slightly higher AUCs than the SVM-ref
method. This indicates that simply feeding uncertain patches to standard SVM
does little to help patch classification performance. The information presented in
uncertain patches was not utilized effectively by standard SVM. The proposed
methods performed relatively well with small training sets indicating that they
were making effective use of the unannotated patches. AUCs of all methods
converged to similar values when number of reference patches reaches 30 per
image.

For both affinity-based experiments, the proposed models with Huber loss and
smoothed hinge loss showed almost the same AUCs. However our grid search of
parameters showed that the best parameters C are quite different (C = 10−4 for
Huber loss and C = 10−2 for smoothed hinge loss).
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Table 1. Performance comparison between standard SVM and proposed model. AUC
values(%) ± standard errors depending on the number of reference patches per image.

affinity Location-based Feature-based

patches 1 2 5 10 1 2 5 10

SVM-ref 71± 2.9 72± 1.4 79± 2.3 82± 2.1 71± 2.9 72± 1.4 79± 2.3 82± 2.1
SVM 67± 2.2 69± 3.0 80± 2.2 83± 2.3 70± 2.8 71± 2.5 79± 2.8 82± 1.7
Prop-hub 70± 2.2 74± 2.0 81± 1.9 84± 1.6 78± 2.7 78± 2.4 84± 2.6 85± 1.9
Prop-squ 71± 2.3 75± 1.8 81± 1.8 84± 1.9 77± 3.0 78± 2.7 83± 2.7 84± 1.9

4 Conclusions

We have proposed a learning model for partially annotated images. The exper-
iment on a dataset of 59 OPT images showed that it is able to robustly learn
from patches with uncertain labels, achieving high classification accuracies while
reducing the annotation effort. At the same time our model can be efficiently
evaluated with only O(N+N−) in storage cost. Therefore it is suitable for high-
resolution, volumetric datasets.
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Abstract. Large-scale global efforts are underway to knockout each
of the approximately 25, 000 mouse genes and interpret their roles in
shaping the mammalian embryo. Given the tremendous amount of data
generated by imaging mutated prenatal mice, high-throughput image
analysis systems are inevitable to characterize mammalian development
and diseases. Current state-of-the-art computational systems offer only
differential volumetric analysis of pre-defined anatomical structures
between various gene-knockout mice strains. For subtle anatomical phe-
notypes, embryo phenotyping still relies on the laborious histological
techniques that are clearly unsuitable in such big data environment. This
paper presents a system that automatically detects known phenotypes
and assists in discovering novel phenotypes in μCT images of mutant
mice. Deformation features obtained from non-linear registration of mu-
tant embryo to a normal consensus average image are extracted and
analyzed to compute phenotypic and candidate phenotypic areas. The
presented system is evaluated using C57BL/10 embryo images. All cases
of ventricular septum defect and polydactyly, well-known to be present in
this strain, are successfully detected. The system predicts potential phe-
notypic areas in the liver that are under active histological evaluation
for possible phenotype of this mouse line.

1 Introduction

Completion of the human genome project brought comprehension of location
and sequence of each human gene. Owing to the 99% genetic homology be-
tween mouse and human, mouse has been chosen as the principal study model
to annotate genetic sequence with its functional information [1], [2]. Gene tar-
geting technology is being actively employed by many international organiza-
tions to generate mutant mouse lines by knocking out each of the approximately
25, 000 mouse genes (i.e., systematically removing each gene one by one and
growing the mouse). High-throughput phenotypic assessment systems are neces-
sary to systematically analyze and interpret the genetic information generated by
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Fig. 1. Defect detection consists of two steps. A mean of the normal mouse group is
computed in the first step. In the second step, mutant group is registered to the normal
mean and the resulting deformations are analyzed to detect defects.

these large-scale mutagenesis programs. A significant proportion of the generated
strains are embryonic lethal resulting in the shift towards prenatal phenotyping.

The research community focusses on semi-automatic analysis of anatomical
volumetric variation in various mouse strains using representative average im-
ages [3], [4], [5]. Although evaluation based on average images may be beneficial
for an initial examination, phentoypes that are randomized in position and tex-
ture such as the intestines and developing trabeculae of the heart [6] or subtle
structural organ failures without large volume changes cannot be characterized
using this technique. Another body of work focusses on detection of defects via
model-based segmentation [7] or by better data visualization using tissue stain-
ing [8], [9]. Segmentation techniques fail if the defect characteristics are unknown
or if the anatomy is hard to label such as bone joints. Enhanced visualization,
while useful, still requires long expert hours to interpret the data.

In this paper, we present a generalized defect detection framework that auto-
matically computes candidate phenotypic areas without using atlas, segmenta-
tion or any defect specific features. Instead, our approach uses deformation fields
that are widely used to study anatomical variations [3], [4], [10], [11]. We extract
various features from deformation fields obtained by registering mutant mice to
a normal mean and combine them to detect coarse, subtle as well as random-
ized defects (Fig. 1). Statistical characteristics of deformation fields have been
previously studied to detect gross defects in mice brain using multi-modality
images [11]. Our approach, however, targets a single imaging modality and suc-
cessfully handles both subtle as well as significantly differing anatomy.

2 Methods

2.1 Sample Preparation and Imaging Protocol

This study is performed using C57BL/10 mutant mice generated at the National
Institute of Genetics, Japan. Post organogenesis, growth and development in the
embryo starts at ∼14.0 days post-coitum (dpc). Image registration cannot be ap-
plied at stages earlier than this due to unformed or absent organs. Further, at
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(a) (b) (c) (d) (e)

Fig. 2. This figure illustrates the steps in the computation of normal mean image. (a)
Acquisition volume (b) extracted normalized embryo images (c)-(e) consensus average
images at rigid, affine and B-Spline registration stages respectively.

a relatively mature stage such as 15.5 dpc accurate registration of abdomen is
difficult to achieve due to variation in intestinal position and crowding within
the abdominal cavity [4]. Therefore, embryo samples at 14.5 dpc were collected.
A total of 14 embryos were used out of which 3 were normal and 11 had chromo-
somal aberrations. 11 mutant embryos consisted of 3 homozyogotes generated
by inbreeding C57BL/10 mice and 8 heterozygotes obtained by cross breed-
ing C57BL/10 and normal littermates. The samples were washed in phosphate
buffered saline and fixed in 4% paraformaldehyde until imaging. Before scanning,
embryos were soaked in 1 : 3 mixture of lugol solution and double distilled wa-
ter. Scan was carried out in Scanxmate-E090S 3D μCT system (Comscantecno,
Japan) with the embryos fitted in 1.5 milliliters eppendorf tube fixed using wet
paper. Keeping the X-ray source at 60kVp and 130mA, each specimen was ro-
tated 360◦ in steps of 0.36◦ generating 1000 projections of 640× 480 pixels. The
3D μCT data was reconstructed at an isotropic resolution of 9.5×9.5×9.5 μm3.

2.2 Normal Mouse Consensus Average Image

Embryo pixels are extracted from the acquisition volumes using Gaussian mix-
ture modeling, thresholding and mathematical morphology (Fig. 2(a) and (b)).
Pixel intensity ranges are normalized and a standard group-wise registration
routine consisting of rigid, affine and B-Spline registration stages is initiated.
Rigid registration corrects differing orientations of individual embryos by choos-
ing a reference and spatially aligning the rest to it. Averaging the rigid registered
images results in a blurry reference (Fig. 2(c)) that is not biased towards the
geometry of the initial reference because this step does not affect the geom-
etry of the subjects [5]. Embryos are then registered to the blurry reference
via affine transformation and the reference is updated (Fig. 2(d)). As a final
step B-Spline based non-linear registration is applied to locally align the affine
registered embryos to the reference. The non-linear registration is formulated
with a similarity energy function comprising of mutual information [12] and a
rigidity penalty [13]. 10 iterations of this registration are applied in a multi-
resolution fashion where the control point spacing gradually reduces to 8 voxels.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a),(b),(c) Jacobian, stress and intensity variance masks overlaid on mutant
image respectively (d),(e) defective areas identified by (IIV ∩IJ ) (f),(g) areas generated
by (IIV ∩ IS) (h) defective areas captured by (IJ ∩ IS)

The reference image is updated after each iteration leading to the final consen-
sus average (Fig. 2(e)). Elastix toolbox is used to implement this registration
scheme [14].

2.3 Deformation Features and Masks for Defect Detection

To detect defects in mutant mice, they are registered to the normal average
image using the same three-stage registration pipeline as above except that in
each stage the reference is always kept fixed to the normal average. Registration
of each mouse results in the corresponding deformation field. These deformation
fields are used to compute 3D Jacobian maps using determinant of local Jacobian
matrix at each voxel [10]. Jacobian determinant greater than one represents
voxel expansion and less than one represents voxel compression. Jacobian of
deformation is a popular tool to study inter-group structural differences [10], [11].
We apply Jacobian determinant in phenotyping by computing a Jacobian mask,
IJ , one for each mutant mouse, that selects voxels at which Jacobian determinant
is δ units away from one (Fig. 3(a)). δ is kept 0.5 for experiments. We realized,
however, that Jacobian determinant fails for defects where volume changes are
minimal. Further, we find that Jacobian introduces numerous false positives by
highlighting areas that are found to be non-defective by the phenotyping experts,
thus resulting in low precision. Performance of IJ in detecting known defects
namely, Ventricular Septum Defect (VSD) and polydactyly is summarized in
Table 1. Detection specificity for both the defects is very low with IJ .

To capture subtle defects with low volumetric changes, we compute another
deformation feature that we call deformation stress. Deformation stress (Ds) is
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Table 1. This table compares VSD and polydactyly detection accuracy (in %) of
various features. VSD is assumed detected if the ventricular area is highlighted.

IJ IS (IJ ∩ IS) (IIV ∩ IJ ) (IIV ∩ IS) (F2 ∪ F3) (F1 ∪ F4)
F1 F2 F3 F4 F5

VSD Sensitivity 88.8 100.0 88.8 77.7 77.7 77.7 100.0
VSD Specificity 50.0 100.0 100.0 100.0 100.0 100.0 100.0
Polydactyly Sensitivity 76.9 84.6 61.5 46.1 76.9 76.9 92.3
Polydactyly Specificity 48.4 80.6 87.1 90.3 87.1 87.1 87.1

computed by dividing the volume into small blocks and measuring the entropy
of deformation direction inside each block.

DS(v) = −
∑

u∈B(v)

p(θ(u)) log(p(θ(u)); (1)

B(v) in Equation 1 represents the block in which voxel v lies and θ(u) is the
displacement direction at voxel u. For experiments the volume was divided into
cuboids of size 8 voxels. Using DS we compute a mask, IS , that chooses voxel
blocks that have high entropy of deformation direction and hence are undergoing
incoherent deformation. For experiments IS selected the top 50% blocks that
exhibited high deformation entropy. Fig. 3(b) shows an example of IS and Table 1
enlists its performance in detecting known phenotypes. Some false positives are
introduced due to inclusion of sources and sinks in the deformation field.

Since IJ and IS individually fail to detect all defects and both introduce false
positives, a simple combination of the two does not give satisfactory results (Ta-
ble 1). In practice multiple mice from a mouse line are imaged before phenomic
analysis is performed. We introduce this group information in defect detection
by calculating voxel-wise intensity variance (VIV ) across the group of mutant
mice that are registered to the normal mean.

VIV (v) =
1

NM − 1

NM∑
i=1

(Mi(v)−NAvg(v))
2. (2)

NM ,Mi andNAvg in Equation 2 are mutant mouse population size, ith registered
mutant mouse image and the normal consensus average respectively. From VIV
we compute a mask IIV by selecting the top 50% voxels that have high intensity
variance and hence low registration accuracy(Fig. 3(c)).

We find that many false positives introduced by IJ and IS are pruned when
these features are combined with IIV . Table 1 lists the accuracies when the
detection criterion is (IIV ∩IJ ), (IIV ∩IS) or both combined. From experiments
on C57BL/10 mutant mice we find that (IIV ∩IJ ) mainly captures VSD and
unusually wide liver lobe junctions. Figs. 3(d) and 3(e) show some detection
results obtained by this factor. (IIV ∩IS) captures polydactyly and unnatural
position and deformations of tail and limbs (Figs. 3(f) and 3(g)).

It is possible to have inaccurately registered morphological structures that
are not selected by the intensity variance mask. Uniform body cavities (dark
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(a) (b)

Fig. 4. (a) Defect detection results in the liver lobe junctions, heart and intestine of
C57BL/10 mice (b) the left and right images depict a healthy heart and the misjudged
defect respectively

regions) or muscular organs (like liver lobes and heart atria) are some examples
where we find that intensity variance is low due to spatially uniform intensity
values even though there is a abnormality. (IJ∩IS) addresses regions where both
Jacobian and stress are high irrespective of the intensity variance. By adding
this term in the detection rule we are able to detect spatially uniform defective
regions. Some secondary phenotypes like enlarged heart atrium due to high blood
pressure induced by VSD are captured by this term as shown in Fig. 3(h).

Combining the three terms we propose the defect detection rule as

IDefect = (IIV ∩ IJ ) ∪ (IIV ∩ IS) ∪ (IJ ∩ IS). (3)

Table 1 enlists the performance of this detection rule. Number of detected regions
can be readily increased or decreased by relaxing or tightening the thresholds
while generating the Jacobian, deformation stress and intensity variance masks.
Simple morphological operations like dilation and erosion are applied as noise
reduction measures to clean up the detection results.

3 Results

Complete phenomic analysis of a mouse strain is a very tedious and slow process.
C57BL/10 strain is still under investigation and hence full phenotypic character-
istic consisting of all phenotypic defects is yet unknown. Therefore, even though
we can evaluate the detection rule (Equation 3) in terms of precision, a formal
evaluation of recall is not possible. VSD and polydactyly are two established
genetic defects in C57BL/10 mice. We compute sensitivity and specificity of the
detection algorithm with respect to these two defects.

When evaluated over the mutant database of 3 homozygote and 8 heterozygote
embryos, the algorithm detected all cases of VSD without generating any false
positives. Out of the 13 cases of polydactyly 12 were successfully detected and
1 was missed. The missed case belonged to the only mouse in the database that
had its umbilical chord removed resulting in registration errors at the nearby
areas. 4 false positive polydactyl cases were reported in situations where due to
high proximity toes of both the feet seemed fused in the 3D renderings.

To evaluate the rest of the detected areas, a user study was conducted with
phenotyping experts having long experience in mouse imaging and phenotyping.
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The expert comments were very encouraging and they noted that all the regions
detected by the algorithm had biological significance. Some of the areas were due
to genetic defects, some due to non-genetic defects and some due to organogenesis
or procedural interventions. After careful histological examination, it was found
that majority (57%) of the total detected regions belonged to genetic defects.
Apart from known phenotypes, the algorithm detected areas in the liver lobe
junctions that are candidate areas for potential phenotype of this mouse strain
and are under active phenotypic evaluation.

14% output regions were detected due to malformed body cavities. Though
these regions do not represent defects due to genetic makeup, they still signify
biological malformations. Another 8% regions were noted to be due to genesis
and extensive developmental remodeling of gonads at this gestational stage. The
rest of the output was attributed to blood clots, randomized umbilical chord
regions and pancreatic genesis.

When the detection rule was applied to wild-type mice, some areas were re-
ported. These areas represent blood clots, umbilical chord, malformed body cav-
ities and pancreatic and gonadic organogenesis. One false positive was generated
for heart septal defect in a case where low spatial intensity variance makes the
judgement hard even for an unexperienced human eye (Fig. 4(b)). With further
image processing it is possible to improve the detection accuracy by neglecting
the high intensity blood clots and masking out umbilical chord regions.

4 Discussion and Conclusion

We have presented a generic deformation based defect detection framework for
3D μCT images of mutant mice. Our system has the potential to greatly enhance
phenotyping throughput by automatically detecting all known phenotypes. Un-
like other algorithms designed to detect specific known defects, our system also
highlights candidate novel defects that may not be readily recognized by hu-
man experts due to absence of significant visual features. Owing to voxel-by-
voxel analysis, defects are localized to sub-structures and those affecting multiple
structures are visualized collectively. Though our evaluation database is small,
the results clearly establish the potential of the proposed system in patterning
defects. Our framework can be easily adapted to examine other 3D scan images
amenable to registration. We acknowledge that the registration method may ef-
fect the detection results, however, the registration scheme used in the paper
is widely employed in mice phenotyping [3], [4], [5]. Deformation field result-
ing from only the non-linear registration step is used for defect detection. The
detection performance is found to be fairly robust to parameter variation.

Since the proposed framework is independent of the defect features, classifi-
cation of defects into those that are genetically induced and those that are not
is out of scope for the current system. Currently we provide frequency of oc-
currence as an indicator of whether or not a defect is genetic. As an example,
since VSD and polydactyly are detected in all homozygote embryos, the proba-
bility of these defects being genetic is reported to be 100%. Similar probabilities
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are assigned to all detected regions. In future we plan to use advanced image
processing and statistical techniques to device classifiers that can differentiate
between genetic and non-genetic defects.
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Abstract. We present a reconstruction-based learning technique to localize the
optic cup in fundus images for glaucoma screening. In contrast to previous ap-
proaches which rely on low-level visual cues, our method instead considers the
input image as a whole and infers its optic cup parameters from a codebook of
manually labeled reference images based on their similarity to the input and their
contribution towards reconstructing the input image. We show that this approach
can be formulated as a closed-form solution without any search, which leads to
highly efficient and 100% repeatable computation. Our tests on the ORIGA and
SCES datasets show that the performance of this method compares favorably to
those of previous techniques while operating at faster speeds. This suggests much
promise for this approach to be used in practice for screening.

1 Introduction

Glaucoma is a disease of the optic nerve and a leading cause of blindness worldwide.
Due to the lack of visual symptoms or discomfort in the early stages, studies have shown
that more than 90% [1] of those with glaucoma are unaware that they have the disease.
Since visual loss in glaucoma is irreversible and permanent, there is a strong need to
detect this “silent thief of sight” as early as possible for immediate intervention.

During glaucoma progression, the death of ganglion nerve cells often leads to changes
in the appearance of the optic nerve head, also known as the optic disc. In particular, there
is a deepening and expansion of the excavation in the optic disc, known as the optic cup,
as glaucoma advances, leading to an increase in the cup-to-disc ratio (CDR) as illustrated
in Fig. 1. The CDR is a major consideration of clinicians in assessing glaucoma from
direct observation [2]. However, manual assessment is labor-intensive, highly reliant on
the training and expertise of the examiner, and not cost-efficient for screening.

These practical issues have motivated the development of computer-aided techniques
for glaucoma screening using images from digital fundus cameras, which have become
widely available in healthcare settings. Various automated methods based on CDR es-
timation have been presented, with the optic cup localized either by classifying pixels
as part of the cup or rim (the disc area outside the cup) [3][4], or through an analysis
of sub-regions (e.g., defined by sliding windows [5] or superpixels [6]). These methods
typically perform their classification or analysis based on explicit low-level visual cues
such as intensity [4][5] or vessel kinks [7], but the reliance on low-level cues can make
a method less robust to imaging noise and low contrast edges.
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Healthy
(Normal cup size)

Glaucoma
(Increased cup size)

Fig. 1. Effect of glaucoma on cup-to-disc ratio (CDR): optic disc (blue) and cup (green)

In contrast to these methods, our technique identifies the optic cup within an input
image in a holistic, reconstruction-based manner. From a codebook of reference images
with expert-labeled cup regions, our method computes an optimal linear reconstruction
of the input image from the reference images in a manner that gives greater emphasis to
references more similar to the input. The linear reconstruction weights are then applied
to the cup parameters of the corresponding reference images to estimate the cup region
in the input image. Through this use of manually-labeled cup localization examples
from reference images, our reconstruction-based technique can directly take advantage
of clinician knowledge without having to rely on low-level feature processing.

This holistic approach to optic cup localization leads to higher accuracy than the
current state-of-the-art optic cup detection method [6]. Furthermore, our formulation of
this method has a one-step closed-form solution which results in significant computa-
tional savings. Our approach is inspired by medical image segmentation techniques that
employ linear reconstruction [8] but require additional processing steps (e.g., nearest
neighbor search) and are less effective for sparse sets of reference images. The accu-
racy and efficiency of our reconstruction-based technique holds much promise for the
development of practical automated/assisted glaucoma diagnosis systems.

2 Methodology

In our proposed localization framework, we adopt a left-eye frame of reference, with
fundus images from right eyes horizontally flipped to be aligned with this reference
frame. The optic disc is first segmented by using existing methods such as Active Shape
Model (ASM) [9]. After normalization of the segmented disc, we localize the optic
cup with our proposed reconstruction-based method. The risk of glaucoma is finally
assessed using the calculated CDR value.

2.1 Disc Segmentation and Normalization

To segment the optic disc from a retinal fundus image, we employ either ASM [9]
trained on codebook images or Template Matching [10]. The purpose of using two
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different disc segmentation methods is so that we can compare the effect of different
disc segmentation results on our optic cup localization. Following [9] and [10], we use
only information from the green channel to localize the optic cup. Each segmented disc
is normalized to a standardized circle with a radius of 128 pixels, and then each pixel
value is linearly scaled to [0, 1]. Finally, the mean value over all the pixels in the optic
disc is subtracted from each pixel to remove the influence of illumination variation
among images.

2.2 Codebook Generation

In this work, our codebook is generated by random sampling from the manually-labeled
images. To prevent bias, these samples are selected with an even distribution over
the range of CDR values, which is divided for our dataset into three intervals: large-
cup (CDR>0.6, 72 images), mid-cup (0.4<CDR≤0.6, 418 images), and small-cup
(CDR≤0.4, 160 images). One-third of the codebook is thus generated by taking ran-
dom samples from each of the three CDR intervals.

2.3 Closed-Form Reconstruction

From the codebook, we have n reference (ground truth) disc imagesX = {x1, x2, · · · ,
xn} ∈ R

k×n and their corresponding ground truth cupsC = {c1, c2, · · · , cn} ∈ R
4×n,

where ci = {ui, vi, ai, bi}T denotes the cup descriptors of the i-th reference disc, ui, vi
are the coordinates of the cup center, and ai is the cup radius and bi is the associated
CDR after disc normalization to a radius of 1. For a given test disc y ∈ Rk×1, we want
to recover optimal linear reconstruction coefficients w ∈ Rn×1, |w| = 1, that minimize
the reconstruction error ||y − Xw||2. After w is obtained, the cup localization of y is
estimated as Cw.

Since reconstruction of cup parameters is more accurate from images more similar
to the test disc, we also include a cost term in the objective function that penalizes
the use of references that are less similar to the test image. Let us denote the costs for
the reference discs in X as the vector d = {d1, d2, · · · , dn}T ∈ Rn×1, where di is
the cost of using xi for reconstruction. The overall cost term can then be expressed as
||d � w||2 where � denotes the Hadamard product. Combining this cost term with the
reconstruction error gives the following objective function:

argmin
w
||y −Xw||2 + λ||d� w||2, s.t. |w| = 1. (1)

This objective can be minimized in closed form using the Lagrange multiplier method,
without the need for iterations:

w =
1

1T (X̂T X̂ + λDTD)1
(X̂T X̂ + λDTD)−11, X̂ = (1⊗ y −X), (2)

where D = diag(d) and ⊗ denotes the Kronecker product. For simplicity, we define in
our implementation the cost di as the Gaussian distance between the test disc y and the
i-th reference disc xi, i.e.,

di = e
||y−xi||2

2σf
2
, (3)

where σf is a parameter that accounts for imaging noise.
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3 Experiments

We evaluated the cup localization accuracy and CDR-based diagnosis performance of
our proposed method. Comparisons are presented of our reconstruction-based approach
to state-of-the-art pixel [4], sliding window [5] and superpixel [6] based methods, as
well as to other reconstruction-based approaches. In addition, we compare our system
against the current clinical standard for glaucoma detection using intra-ocular pressure
(IOP) and to CDR values from expert graders. The effects of different optic disc seg-
mentation algorithms and codebook sizes on our system are also examined.

3.1 Evaluation Criteria

For cup localization, we use the two evaluation criteria in [5] and [6], i.e., non-overlap
ratio (m1) and absolute CDR error (δ), defined as

m1 = 1− area(Edt

⋂
Egt)

area(Edt

⋃
Egt)

, δ =
|Ddt −Dgt|

2
(4)

where Edt denotes a detected cup region, Egt denotes the ground-truth cup ellipse,
Ddt is the vertical diameter of the detected cup, and Dgt is the vertical diameter of the
ground-truth cup.

For glaucoma diagnosis, the area under the ROC (receiver operation characteristic)
curve (AUC) is used for performance evaluation. The ROC is plotted as a curve which
shows the tradeoff between sensitivity (P+) and specificity (P−), defined as

P+ =
TP

TP + FN
, P− =

TN

TN + FP
, (5)

where TP and TN denote the number of true positives and true negatives, respectively,
and FP and FN denote the number of false positives and false negatives, respectively.

3.2 Experimental Setup

Two datasets, namely ORIGA [11] and SCES [12], were used in the experiments to
validate both cup localization and glaucoma diagnosis accuracy. The ORIGA dataset,
with ground truth disc and cup labelings as well as clinical glaucoma diagnoses, is
comprised of 168 glaucoma and 482 normal images from studies of a Malay population.
It is used in our work to validate both cup localization and glaucoma diagnosis. The
Chinese population-based SCES dataset consists of 1676 images, of which 46 (∼ 3%)
are glaucoma cases. Since the SCES dataset provides only clinical diagnoses, it will
be used only to assess the diagnostic performance of our system.

3.3 Effect of Different Disc Segmentation Methods on Our Method

We investigated the effect of different disc segmentation methods in our framework.
The same parameters (codebook size n = 99, regularization weight λ = 1000, and
Gaussian distance parameter σf = 4) were used for all the methods, and the results are
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Table 1. Performance comparisons using different disc segmentation algorithms

Segmentation algorithms Evaluation criteria
Reference discs Test discs m1 δ

Template matching Template matching 0.225 0.071
ASM ASM 0.227 0.073

Manual Manual 0.229 0.074
Manual Template matching 0.230 0.075
Manual ASM 0.231 0.075

ASM Template matching 0.229 0.074
Template matching ASM 0.232 0.076

listed in Table 1. From the results, we observe that the proposed framework is robust
and not very sensitive to the disc segmentation method. Slightly better performance was
achieved when the reference discs and test discs were obtained using the same method.
We note that using the same automatic segmentation method gives better results than
manual labeling, likely because of greater consistency in the automatic methods.

3.4 Cup Localization Comparisons

We compared our reconstruction-based approach to state-of-the-art pixel, window and
superpixel based methods. Listed in Table 2, the results show that the proposed method
achieves significant improvements in cup localization accuracy, which indicates the ad-
vantage of a holistic, reconstruction-based approach over techniques that analyze low-
level visual cues. Substantial gains are made in terms of speed as well. With a codebook
of 99 reference images, the proposed method locates cups in 0.1s, more than ten times
faster than the comparison methods: pixel-based [4] (1.5s), window-based [5] (360s),
and superpixel-based [6] (1.7–20.2s).

To support our particular reconstruction-based formulation, we also compare it to
other possible reconstruction approaches, based on sparse coding [13], Locally Lin-
ear Embedding (LLE) [14], and Locality Preserving Projections (LPP) [15]. The code-
book used for our method (with 99 reference images) is also used for these other re-
construction techniques. The sparse coding regularization weight was set to 100; LLE
was implemented using the 11 nearest neighbors, and LPP was applied with an 11-
dimensional subspace. These settings were found to approximately maximize the per-
formance of these techniques, which is also reported in Table 2. The performance of the
sparse coding method indicates limitations in using only a small number of reference
images and not taking their similarity to the test image into account. Its optimization
runs at 6.4s per image. Like our method, LLE considers both reference image similarity
and reconstruction error, but does so in separate steps (first finding nearest neighbors,
then reconstructing from them). This is shown to give lower accuracy than optimiz-
ing them jointly in our method. As with sparse coding, a reason for this is the sparse
reference data, which makes it difficult to determine a priori which or how many refer-
ence images are needed for accurate reconstruction. A benefit of LLE, however, is its
computational efficiency, running at 0.02s per image. The LPP method is also very fast
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Table 2. Cup localization performance comparisons on ORIGA dataset

Method m1 δ

reconstruction based 0.225 0.071
pixel based [4] 0.474 0.149

window based [5] 0.284 0.096
superpixel based [6] 0.267 0.081

error reduction relative to [4] 52.5% 52.3%
error reduction relative to [5] 20.8% 26.0%
error reduction relative to [6] 15.7% 12.3%

sparse coding 0.408 0.158
LLE 0.247 0.081
LPP 0.377 0.150

reconstruction-based without similarity cost 0.271 0.091
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Fig. 2. Cup localization accuracy and speed comparison with different codebook sizes

(0.012s per image), but loses much information in the dimensionality reduction and is
very sensitive to alignment errors in the training and testing samples.

Table 2 also shows that leaving out the similarity-based cost term from our objective
function (by setting λ = 0) yields a result that is worse (with significance tests of m1:
p < 0.001, cdr: p < 0.001). This indicates that giving higher weights to more similar
references is indeed better.

3.5 Influence of Codebook Size on Accuracy and Processing Time

For reconstruction-based approaches, codebook size is a key performance factor in
terms of both accuracy and speed. We examined the cup localization accuracy and pro-
cessing time of the proposed method with different codebook sizesN ∈{33, 66, 99, 132,
165} and the remaining images used for testing. As shown in Fig. 2, accuracy in terms
of m1 and δ improves with larger codebook sizes. The consequent increases in compu-
tation time still leave this method much faster than previous cup localization techniques,
and in the following subsection we use all 650 images from ORIGA as reference images
in evaluating glaucoma diagnostic performance on the SCES dataset.
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Fig. 3. Glaucoma diagnosis performance. Left: ORIGA dataset. Right: SCES dataset.

3.6 Glaucoma Diagnosis

To assess the glaucoma diagnosis accuracy of our method, we compare its predictions
to the ground truth diagnoses of ophthalmologists and to state-of-the-art techniques. In
addition, we compare to the current standard of care for glaucoma detection using IOP,
as well as CDR grading results from an expert grader. For testing on ORIGA, a random
selection of N = 99 images is used to generate the codebook and the remaining 551
images are used for testing. Testing on SCES was carried out using a codebook trained
using the 650 images from ORIGA. We note that the reference images from ORIGA are
of a different ethnicity from that of SCES.

The results are shown in Fig. 3. One can observe that the proposed reconstruction-
based method outperforms previous automatic methods and IOP. The results are also
close to those of the expert grader on the ORIGA dataset. The AUC values of our method
on ORIGA and SCES are 0.823 and 0.860, respectively. However, the corresponding
sensitivity values are only 58.0% and 73.9% on ORIGA and SCES, respectively, at an
observation specificity of 85%. This indicates that other clinical diagnosis cues besides
just CDR should be explored to further improve accuracy.

4 Conclusion

For CDR-based cup localization in glaucoma diagnosis, we have proposed a one-step
reconstruction-based method that is computationally efficient and relatively insensitive
to the disc segmentation method used. On tests with the ORIGA dataset to evaluate cup
localization accuracy, our system achieves a 22.5% non-overlap ratio (m1) against the
ground truth and a 0.071 absolute CDR error (δ), a significant improvement over current
state-of-the-art methods. Tests on the SCES datset show that our method achieves an
AUC value of 0.86, a sensitivity of 73.9% at a specificity of 85%. In future work, we
plan to improve this reconstruction technique by introducing a learning algorithm to
generate more effective codebooks for larger datasets, and also will investigate using
data from multiple modalities to improve system performance.
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Abstract. Skin lesions are often comprised of various colours. The presence of
multiple colours with an irregular distribution can signal malignancy. Among
common colours under dermoscopy, blue-grey (blue-white veil) is a strong in-
dicator of malignant melanoma. Since it is not always easy to visually identify
and recognize this feature, a computerised automatic colour analysis method can
provide the clinician with an objective second opinion. In this paper, we put for-
ward an innovative method, through colour analysis and computer vision tech-
niques, to automatically detect and segment blue-white veil areas in dermoscopy
images. The proposed method is an attempt to mimic the human perception of
lesion colours, and improves and outperforms the state-of-the-art as shown in our
experiments.

1 Introduction

Early detection of melanoma is paramount to patients’ prognosis towards greater sur-
vival. The challenges involved in clinical diagnosis of early melanoma have provoked
increased interest in computer-aided diagnosis systems through automatic analysis of
skin lesion images.

Dermoscopy is a popular imaging technique, widely used by clinicians for examining
and monitoring pigmented skin lesions [1]. “Inevitably, most efforts in computerizing
diagnosis of melanoma lean towards automatic analysis of dermoscopy images” [2].
Dermoscopy unveils visual features in pigmented lesions that are not discernible by the
naked eye.

Among dermoscopic features, colour has a substantial role. For instance, one of the
most significant indicators of malignant melanoma is the blue-white veil (a.k.a. blue-
grey veil) feature (with sensitivity of 51% and a specificity of 97% [3]).

Fig. 1-(a,c) show dermoscopy images of melanoma with blue-white veil feature; the
blue-white veil regions are structureless areas of confluent blue pigment with a ground-
glass haze (as if the image were out of focus there) [4].

The colour blue (under dermoscopy) indicates melanin localized within deeper parts
of the skin [5]. Blue-white veil is found associated with hyperkeratinisation over dense
amounts of melanin in the dermis [6]. While uniform blue-white structures may also be
observed over blue nevus (benign) lesions, asymmetrical and irregular blue-white veil
usually indicates malignant melanoma.

There exists extensive literature on skin lesion image analysis (see [8] for a survey),
but here we focus on a study by Celebi et al. [7] which specifically targets automatic
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(a) (b) (c) (d)

Fig. 1. (a,c): Melanoma images with Blue-white Veil; (b): veil mask by Alg. 1; The red areas are
indicating disagreement between Alg. 1 and [7]; (d): veil probability map by Alg. 2

blue-white veil detection 1. Their approach involves pixel classification using explicit
thresholding, where the threshold values are induced by a trained decision tree.

This paper puts forward an alternative method, by incorporating colour analysis and
computer vision techniques, to automatically detect and segment blue-white veil regions
in dermoscopy images. The proposed method is described next.

2 Method

We describe two approaches for automatic detection and segmentation of blue-white
veil regions in dermoscopy images. The first approach is a makeover of the method [7]
which performs equally well with substantively less computation. The second approach,
our main contribution, is an innovative method which attempts to mimic human inter-
pretation of lesion colours under dermoscopy. The latter incorporates colour analysis
and computer vision techniques and, as will be shown, outperforms the former method
in our experimental trials.

2.1 Blue-White Veil Detection by Thresholding

Celebi et al. [7] used a set of 105 images selected from [4], consisting of 43 images
containing sizeable blue-white veil areas with the remaining 62 free of this feature. For
each image a number of small circular regions that contain either veil or non-veil pixels
were manually determined by a dermatologist and used for training.

A decision tree classifier with C4.5 [10] induction algorithm was employed to clas-
sify each pixel in the training stage into two classes: veil and non-veil. Among the 18
different colour and texture features included, 2 only two features appeared in the in-
duced decision rules: The classification was conducted by thresholding on a normalized-
blue channel (B/ (R+G+B)) and relative-red feature (defined as R− R̄s where R̄s

is the mean of red channel values for healthy skin areas only).
Decision trees are simple to use and easy to understand, yet they impose disadvan-

tages and shortcomings. For instance, their good detection rate usually arrives at the
expense of high false positives. In our experiments to reproduce the method [7], using

1 The use of blue-white veil feature has been reported in some commercially available computer-
aided diagnosis (CAD) systems that do use colour information (see e.g. [9]). To our knowledge
however, the only study that reports a method, experimental procedure, and results specifically
pertaining to the feature being examined here is the one by Celebi et al.

2 The description of features – as well as the feature extraction process– is omitted for space
considerations. The interested reader is referred to [7] for details.
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the training images, 3 we arrived at sensitivity of 78.51% and specificity of 97.03%,
which demonstrates our earlier argument about this method.

Also, caution must be taken in defining the decision boundaries (threshold values);
the colour values are highly dependent on the acquisition technique and the imaging
setup. For example, if illumination changes, or in cases with shadows, shading, and
other colour-degrading factors, thresholding methods might fail ungracefully.

The findings of Celebi et al. indicate that blue-white veil colour data has a restricted
range of values and does not fall randomly in a given colour feature space. This indicates
that their method can benefit from the choice of colour representation. To investigate
this, we have reproduced their training experiment where each pixel has been repre-
sented by its corresponding coordinates in RGB, nRGB, L*a*b*, YIQ, HSV, and MHG
[11] colour spaces. These colour models were chosen since each represents a different
family of colour spaces.

Our investigation revealed that by using normalized blue, and the L* channel (of
L*a*b*) one can reproduce the results obtained by Celebi. Our finding further showed
that we can replace L* with Lum = R +G+ B and obtain equally good results. The
latter colour feature is considerably faster to compute, particularly to replace relative-
red feature in the original method. Note that the computation of the relative-red feature
requires a search for normal (healthy) skin colour in the background. This search also
constrains the method’s performance subject to the accuracy of the lesion border detec-
tion algorithm and skin colour filter used.

We further investigated the efficacy of employing alternative classification tech-
niques. In our trials, we used Single Gaussian, Mixture of Gaussian, Bayesian, Logistic
Regression, and support vector machine (SVM). Unsurprisingly, the SVM produced the
best results, however, the improvements were negligible with respect to added compu-
tational cost and complexity (data not shown for space considerations).

In conclusion, we first propose a revised thresholding-based method (Algorithm 1)
which is based on but improves on Celebi’s approach (in term of computational cost
and complexity). Testing Algorithm 1 on training images, we achieved sensitivity of
78.22% and specificity of 96.76%, which is very similar to the performance of [7].
Fig. 1-(b) illustrates the veil mask generated by this method.

Algorithm 1. – Blue-white veil detection by thresholding
1: Load a skin lesion image
2: for each pixel do
3: Lum = R +G+B
4: nB = B/Lum
5: if nB ≥ 0.3 and 0.6 ≤ Lum ≤ 2 then
6: Classify pixel as veil
7: else
8: Classify pixel as non-veil
9: end if

10: end for

3 To conduct the experiments the entire training image-set were used, whereas training has been
done on the manually selected regions as described.
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An important insight to Celebi’s study is that texture features were found irrelevant to
detection of blue-white veil data. Celebi et al. used the classical statistical texture mea-
sures of [12] (entropy, contrast, correlation) derived from the grey level co-occurrence
matrix (GLCM) of an image. We further investigated this by using two more popular
descriptors in the texture classification literature: LBP [13] and MR8 [14]. Our investi-
gation agrees with the findings in [7], attesting that texture descriptors are not discrim-
inating features for detection of blue-white veil structure.

2.2 Blue-White Veil Detection by Discrete Colour Matching

In this section we intend to analyse the problem under study, from a further level of
abstraction. That is, going beyond describing a given colour by merely indicating the
location of the corresponding colours in the considered colour space.

The scheme followed in Alg. 1 and also in [7] and many others is entirely based on
data analysis: it is meant for computational convenience and not to model human per-
ception and interpretation of colour. We propose an alternative approach, as described
shortly, to mimic the colour assessment performed by human observers. The alternative
is an attempt to find a more perceptually and semantically meaningful way of describ-
ing colours under dermoscopy. To this aim, we ask the question of how a dermatologist
identifies the presence of certain colours under dermoscopy.

Colour naming is to some degree subjective. However we can safely say that ob-
servers are influenced by the colours they saw previously. Indeed, a dermatologist needs
training to be able to identify the blue-white veil feature. Thus, we propose to identify
this feature by colour matching to a discrete set of colours best describing “blue-white
veil”. Here, we are interested in asking the question how we would name the blue-white
veil colour and which colours are in this colour family.

To answer the latter questions, we analysed the veil data by mapping their colour
values to the Munsell colour system [15]. In colorimetry, the Munsell colour system
is one of the most fundamental colour-modellings. The Munsell system offers both
perceptual and quantitative colour definitions. The perceptual definition (given in the
form of a book with printed colour patches) is appropriate for the use of artists such
as painters and designers, whereas the quantitative definition provides measurement
standards that are appropriate for technical and scientific use.

Quantitatively, a colour in Munsell space is defined by its hue, value (lightness), and
chroma (colour purity). Hue is given by a number between 0 and 10 which denotes
the five principal hues: Red, Yellow, Green, Blue, and Purple, along with 5 interme-
diate hues (e.g., YR) halfway between adjacent principal hues. Each of these 10 hues
is then broken into 10 sub-steps, so there are a total of 100 hues with integer prefixes.
Value, indicating how light a colour is, is a number between 0 (signifying black) and
10 (signifying white). For any given Munsell hue and value, chroma starts at 0 (grey)
and extends to a variable positive number, which represents the most saturated colour
of that hue and value.

Since there is no direct conversion from standard RGB to Munsell colour quanti-
ties, we consider finding the best (closest) match between each pixel colour triple and
the equivalent colour value representation of each Munsell colour patch. For colour
matching, we consider working in the L*a*b* colour space (a.k.a. CIELAB) which is
an approximately perceptually uniform colour model. That is, colours are organized in
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Fig. 2. Colour Palette of most frequent colours identified as blue-white veil

such a way that colour differences agree more consistently with human visual percep-
tion. Thus the difference between two colours can be measured using e.g. the Euclidean
distance metric. Note that the common sRGB colour space does not yield this property.
In addition, CIE colour spaces are device independent, which make them suitable for
colour matching and colour comparison.

Moreover, to achieve the best generalization, each colour pixel value is replaced
with the colour value of its ‘superpixel’ representation. “Superpixels group pixels into
perceptually meaningful atomic regions, which can be used to replace the rigid structure
of the pixel grid” [16]. Superpixels also preserve information over scales and sampling
resolutions, which captures image redundancy. 4

Next, we match each colour of veil data to its closest colour patch in the Munsell sys-
tem using the nearest neighbour (NN) searching technique. Interestingly, the 146,353
pixels under analysis mapped to only 116 of the totality of 2352 Munsell colour patches
available in our look-up table. 5 Among these, 98% of the veil data is described by only
80 colour patches. Fig. 2 shows these 80 colours organized on a palette according to
their frequency (in a descending fashion, from left to right).

We also analysed non-veil data by the same principle. The 254,739 pixels from non-
veil areas mapped to 129 Munsell colour patches, among which only 3 patches were
overlapping with the 116 veil patches. These 3 contribute (all together) to less than 2%
of veil data and are not considered among the 80 patches in the blue-white veil colour
palette.

The colour palette (Fig. 2) can be used (much like dermatologist prior knowledge)
to extract blue-white veil regions from an input image according to a nearest neighbour
approach. 6From the training data we can also define the posterior probability of a pixel
being veil given its colour in terms of the likelihood of observing its associated colour
patch given the class label and the prior probability of classes.

Matching each pixel of each image in the fashion described above could be compu-
tationally expensive. To reduce this cost, we can segment colours in any given image
and instead match the colour vector of the centroid of each cluster (segment) to colours
in the colour palette. By colour segmentation, we decompose an image into visually
homogeneous regions and effectively reduce the number of basic colour regions, while
preserving salient features of the overall image. This is particularly of interest to us
because in dermoscopy images there are a handful of distinct colour regions (such as

4 Here, we compute superpixels according to the SLIC [16] algorithm. SLIC is a simple and
efficient method based on a spatially localized version of k-means clustering.

5 The look-up table is available at http://www.wallkillcolor.com/muntable.csv
6 The use of a colour palette is in part inspired by the work of Seidenari et al. [17].

http://www.wallkillcolor.com/muntable.csv
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blue-white veil) where the presence of a feature significantly affects the diagnosis while
the information within such a region is often less important and can be neglected.

Colour image segmentation can be done in an automated fashion using e.g. the mean-
shift method. Mean shift (MS) is a fast and robust mode-seeking algorithm; it has been
used for unsupervised image segmentation where the number and the shape of the image
clusters are unknown. In this study we use the EDISON [18] software.

Algorithm 2 summarizes the method described here. Testing Alg. 2 on training im-
ages, we achieved sensitivity of 83.36% and specificity of 98.04%, which outperforms
Alg. 1 as well as the method [7]. Fig. 1-(d) illustrates the veil mask generated by this
method (note the probabilistic [non-binary] output).

Algorithm 2. – Blue-white veil detection by discrete colour matching
1: Load a skin lesion image
2: Convert from sRGB to CIELAB (Assumption: light is D65)
3: Segment using EDISON (parameters are SpatialBandWidth=7, RangeBandWidth=6.5, and

MinimumRegionArea=0.01*nRows*nColumns.)
4: for each segmented region do
5: Find the best match from colour palette
6: if The best match is within the tolerance (threshold) distance then
7: Classify region as veil
8: Assign P (V eil|segmentcolour) = P (colourpatch|V eil)× P (V eil)
9: else

10: Classify region as non-veil
11: Assign P (V eil|segmentcolour) = 0
12: end if
13: end for

3 Experiments

We tested our proposed methods on a set of 223 images selected from [4] by Celebi
et al. [7]. This set consists of 173 images containing blue-white veil areas and a remain-
ing 50 free of this feature. For this set of images, since the lesion border is provided
with the ground truth, we can run the method [7] and compare the classification results,
as presented in Table 1. Note that, as claimed, the proposed method Alg. 1 has pro-
duced reasonably similar results to [7] whereas it is substantively easier to compute.
Moreover, the proposed method Alg. 2 performs best and in particular has higher recall
(sensitivity), which is of significant importance for clinical examinations.

Accurate detection and segmentation of blue-white veil feature can be useful for
computer analysis of skin lesion images. In clinical assessments however, presence or
absence of this feature is associated with diagnosis. Accordingly, in a different exper-
iment we aimed to determine only the presence (or absence) of veil feature in a set

Table 1. Classification results – Proposed methods vs. [7]

Method n Precision Recall F-Score Specificity
Celebi et al. [7] 223 0.70 0.65 0.68 0.97
Proposed Method 1 223 0.67 0.65 0.66 0.97
Proposed Method 2 223 0.70 0.71 0.70 0.97
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a-d): Easy images; (e-h): challenging images – The green border indicates veil areas
detected by Algorithm 2. Note, the binary mask here is created by setting a threshold on the
distance metric. The threshold was found empirically from training data (and set to 100 units).

of 300 images taken from various sources. The image set is divided to two subsets of
200 ‘easy’ and 100 ‘challenging’ images. An image is considered challenging if the
blue-white veil area was too small, too pale, occluded, or had variegated colour.

Our experiment produced accuracy of 75% and 58% for Alg. 1 on easy and chal-
lenging sets respectively. Using Alg. 2 these results were boosted to 87% and 67%
accordingly. Note that, in order to exclude very small areas which are without clinical
relevance, a minimum value7 for areas of veil region was considered. Fig. 3 illustrates
the output of Alg. 2 on some of the images in each set.

It is to be noted that the proposed method can easily be extended to account for
detecting other colour features in dermoscopy images. In fact, it can be seen as a frame-
work for colour based detection and assessment problems of similar nature. Common
colours under dermoscopy are light brown, dark brown, black, blue, blue-grey, red, yel-
low, and white [5]. Since it is not always easy to visually distinguish these, our method
(once extended to detect these common colours) can be effectively used as a colour
clustering and colour naming engine.

The blue-white veil colour palette can be used for training purposes, as well as a ref-
erence tool (such as designers’ colour chart) for dermoscopy trainees. For that matter,
a colour palette of other common colours can be generated as well. Note that the pro-
posed method can automatically generate colour palettes given labelled training data.
The advantage of this is twofold since statistical data can be extracted from training data
and associated with colour patches on colour palettes. In fact, one can use this method
to extract a colour map of lesions with common colours (under dermoscopy) and link it
to statistical data to e.g. associate a feature with a diagnosis.

Finally, this method can aid clinical and laboratory investigations to e.g. confirm the
high diagnostic relevance of presence or absence of colour and colour related features.

4 Conclusion

We have presented two schemas for automatic detection of blue-white veil feature in
dermoscopy images. We first propose a revised thresholding-based method with results

7 Threshold is set to 0.5% of image area.
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comparable to state of the art, with much reduced computation. The second approach,
our main contribution, sets out an innovative method that attempts to mimic human
interpretation of lesion colours. The latter outperforms prior art and moreover intro-
duces a perceptually and semantically meaningful new approach which can serve as a
scaffolding for new colour investigations in dermoscopy, for example for detection and
recognition of common colours under dermoscopy.

Future work includes extending the proposed method to detect other common colours
under dermoscopy, and demonstrating the usefulness of the feature under study in de-
tection of early melanoma in a computerized automatic fashion.
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Abstract. This paper presents an analysis of the high resolution histo-
pathology images of the prostate with a focus on the evolution of mor-
phological gland features in prostatic adenocarcinoma. Here we propose
a novel technique of labeling individual glands as malignant or benign.
In the first step, the gland and nuclei objects of the images are automati-
cally segmented. Individual gland units are segmented out by consolidat-
ing their lumina with the surrounding layers of epithelium and nuclei.
The nuclei objects are segmented by using a marker controlled water-
shed algorithm. Two new features, Number of Nuclei Layer (NNL) and
Ratio of Epithelial layer area to Lumen area (REL) have been extracted
from the segmented units. The main advantage of this approach is that it
can detect individual malignant gland units, irrespective of neighboring
histology and/or the spatial extent of the cancer. The proposed algo-
rithm has been tested on 40 histopathology scenes taken from 10 high
resolution whole mount images and achieved a sensitivity of 0.83 and
specificity of 0.81 in a leave-75%-out cross-validation.

Keywords: Nuclei layer, epithelial layer, prostatic adenocarcinoma.

1 Introduction

Prostate cancer is one of the most frequently diagnosed cancers and ranks sec-
ond among the cancer related deaths of men worldwide [1]. Analysis of the
histopathology specimens of prostate is an important step for prostate cancer
diagnosis and treatment planning.

The tissue features of these histopathology images are the key indicators of
prostate cancer. Among the different types of prostate cancer, the most common
one is the prostatic adenocarcinoma, cancer pertaining to the gland units of the
prostate. Pathologists determine the extent of this cancer by carefully evaluating
the changes in the gland morphology. The gland is the main histopathological
structural unit in prostate. Fig. 1 shows the structure of a normal gland unit.
It mainly comprises a lumina of irregular shape, a layer of epithelial cells, and
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Fig. 1. Illustration of the histopathology components associated with a gland unit: 1.
Lumen, 2. Epithelial layer, 3. Nuclei, and 4. Stroma.

nuclei surrounding the lumina. The unit is supported by a surrounding fibro-
muscular stroma. When the slides are stained using a Hematoxylin and Eosin
(H&E) solution, the nuclei turn dark blue and the epithelial layer and stroma
turn into different shades of purple to pink.

The recent literature on computerized diagnosis of prostate cancer quantizes
the morphological and architectural features associated with the gland units for
cancer detection and grading. The most commonly used features on analyzing
histopathology specimens are related to the size and shape of gland lumina,
nuclei shape and density [2], [3], [4], [5]. Though gland size and shape do contain
information about the abnormality of prostate tissue, this feature is not exclusive
to cancerous tissue only. In case of other prostate anomalies such as, atrophy
and benign prostatic hyperplasia the gland size and shape resembles that of
cancerous ones [6]. Apart from gland-based features, some approaches exploit
overall image features such as, energy and entropy of multiwavelet coefficient of
the image [7], fractal dimension [8] and so on. But these features are not specific
to each gland and do not capture the gland specific features that are clinically
used for cancer classification.

Therefore, more decisive features are needed for effective separation of indi-
vidual glands. Here, we propose two novel features based on which glands can
be classified: i) Number of Nuclei Layer (NNL), and ii) Ratio of Epithelial layer
area to Lumen area (REL). Fig. 2 illustrates the change of appearance between
benign and malignant glands. In benign glands there are multiple layers of nuclei
surrounding the gland unit with relatively thinner epithelial layer compared to
lumen area. On the other hand, in malignant units there are usually a single
layer of nuclei surrounding the gland unit with a thick epithelial layer. Our pro-
posed features NNL and REL quantize these two properties of malignant glands.
In a recent literature, Nguyen et al. [3] achieved an accuracy of 0.79 in clas-
sification of benign and malignant glands by exploiting region-specific features
such as percentage of nuclei pixels, gland shape, crowdedness etc. In compari-
son to that, our proposed features are strictly gland specific and involve i) pixel
labeling, ii) segmentation of each nuclei in gland, and iii) finding the number of
layers of nuclei for each gland from angle-dependent histograms. The advantage
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Fig. 2. Visual comparison between benign and malignant prostate glands

of this technique is that it can detect a malignant gland irrespective of the region
properties. In cases where malignant glands are present in close proximity of
benign glands, this approach might provide a more sensitive cancer annotation
compared to the approaches that use region-dependent image features [3]. The
proposed technique has been evaluated on 40 histopathology scenes extracted
from 10 whole mount images with a resolution of 0.5 μm per pixel and achieved
0.83 and 0.81 of sensitivity and specificity, respectively, in a leave-75%-out cross-
validation experiment.

This paper is organized as follows: the methodology of the complete gland
classification algorithm is presented in Section 2. In Section 3 the experimen-
tal results of the proposed algorithm are presented. Finally, Section 4 presents
concluding remarks and suggestions for future work.

2 Methodology

2.1 Segmentation of the Gland

The gland segmentation algorithm has been partially adopted from another work
of Nguyen et al. [9]. In the first step, each pixel in the image is categorized into
one of these four categories: i) Gland lumen, ii) epithelial layer, iii) nuclei, and
iv) stroma. Small training patches of each class have been selected to train the
classifier for pixel labeling. The classification is based on the color information
of these histological objects in the two chromaticity layer ‘a*’ and ‘b*’ of the
L*a*b color space.

For pixel labeling, we have used linear discrimination analysis instead of the
Voronoi tesselation based approach from [9]. The main drawback of Voronoi
tesselation approach is that when the number of training samples is large, the
classification time for each testing data point is very high compared to that of
linear discriminant analysis [10]. Therefore, when the number of testing sam-
ples are very large the reported nearest neighborhood approach will be very
expensive to compute. After having the labeled image, the complete gland units
are constructed by iteratively consolidating lumen objects with the surrounding
epithelial layer and nuclei pixels [9] (see Fig. 3c).
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Fig. 3. Gland segmentation. a) A sample histopathology scene, b) Labeled image, c)
Segmented gland units after consolidation of lumina with surrounding epithelial layer
and nuclei objects, d) Segmented nuclei objects overlaying on the segmented gland
units, and e) enlarged view of the segmented nuclei objects.

2.2 Segmentation of the Nuclei Units

Segmentation of nuclei is performed by employing a marker controlled water-
shed algorithm [11] followed by a Support Vector Machine (SVM) based object
classification. The segmentation function used in the watershed algorithm is the
gradient image of the inverted grayscale image of the input scene. This gradient
image is modified by placing regional minima in the marked pixels of foreground
and background objects of the image. The foreground markers are determined
by finding the regional minima in the image after the morphological opening
and closing by reconstruction operations. To determine the background marker,
the same operation is performed with the inverted image. Along with the nu-
clei objects, the segmented objects often include some other histological objects,
i.e., crystalloids inside glands, darkly stained stroma/epithelial object due to
nonuniform staining and so on.

The non-nuclei objects are then filtered out by employing a SVM classifier.
The features used in this classification are the mean intensity, entropy, and the
standard deviation of the segmented objects. The classifier is trained using a
linear kernel and manually selected training samples of nuclei and non-nuclei
objects. Fig. 3d) and e) depicts the segmented nuclei objects that are part of
the gland unit. Since our main focus is to extract the features related to gland
morphology, the segmented nuclei units that float in the stromal region are not
considered for further analysis.
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Fig. 4. a) Graphical illustration of Yang calculation. b) Sample histopathology scene
with a single benign (marked with blue ellipse) and two malignant gland units (marked
with red ellipses). c), d), and e) illustrate the different appearances of the histograms
(Yang) of benign and malignant glands.

2.3 Extraction and Classification of the Features

Number of Nuclei Layer, NNL: To determine the number of nuclei layers per-
taining to each gland, at first the segmented nuclei objects are paired with the
corresponding gland unit that minimizes the distance between the centroid of
the nuclei and the gland lumen boundary. For each of the combined gland-nuclei
object, an ellipse is fit around it. The angular location of each of the nuclei
is evaluated by calculating the angle of the connecting line of the gland cen-
troid and corresponding nuclei centroid (see Fig. 4a). Then the feature NNL is
evaluated from the histogram Yang of angular locations of nuclei. Customized
bin spacing has been utilized to account for glands of different sizes. The bin
spacing for the histogram is evaluated as 360/Pg, where Pg is the perimeter of
the corresponding ellipse surrounding the gland. Then the NNL is evaluated by
counting the total number of instances where multiple nuclei have same angular
location in the histogram and then normalizing it by dividing by Pg. Mathemat-
ically, NNL = 1

Pg
|{n|Yang(n) >= 1}|. Fig. 4c-e illustrates the different nature

of histogram, Yang in case of benign and malignant glands. As can be observed
from the figure, the benign histogram provides more instances of multiple nuclei
having same angular location.

Ratio of Epithelial Layer area to Lumen Area, REL: This feature is evaluated
by simply taking the ratio of the epithelial layer area to lumen area of the gland.
In case of malignant glands, fast multiplication of cells lead the epithelial layer
to invade more in to gland lumina. As a result, the ratio gets larger in case of
malignant gland units.
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After the feature extraction we choose optimum thresholds on the features,
τNNL and τREL for the classification of benign and malignant glands. We classify
a gland (Gi) as malignant when the parameters fulfill the following criteria,
LabelGi = {Malignant|NNL(Gi) < τNNL , REL(Gi) > τREL}. These threshold
parameters are tuned by performing Receiver Operator Characteristics (ROC)
analysis in a leave-75%-out experiment (discussed in the following section).

3 Experiments and Results

The proposed algorithm has been evaluated on 40 different histopathology scenes
containing a total of 2145 glands. These scenes have been extracted from 10
whole mount histopathology images obtained from eight radical prostatectomy
patients. These whole mount histopathology images are digitized at 20× magni-
fication (0.5 μm per pixel) with an Aperio scanner. Cancerous regions in these
images are annotated by an expert pathologist. These annotations are used as
the gold standard to evaluate the performance of the proposed algorithm.
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Fig. 5. a) ROC of our algorithm for four discrete values of REL. At the optimum
operating point the algorithm achieves, sensitivity Sn = 0.87 and specificity Sp = 0.87.

The performance of the algorithm is influenced by the choice of the parameter
value of REL and NNL. We tune the parameters by performing ROC analysis on
randomly selected 25% of the glands in the dataset. The ROC curve of the classi-
fier is generated by varying the parameter NNL as {0, 0.08, 0.16, ..., 4}. To deter-
mine the effect of varying REL on the classifier performance the following opera-
tion has been performed: for each choice of REL in the setREL = {0, 0.25, ..., 2.5}

Table 1. AUC obtained by our algorithm for different parameter values of REL

REL 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
AUC 0.84 0.88 0.89 0.87 0.81 0.81 0.81 0.81 0.80 0.77
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individual ROC curve by varyingNNL has been generated. We choose the thresh-
olds τNNL and τREL corresponding to the optimum operating point in the ROC
curve. Then we use these thresholds on the remaining 75% of the data for gland
classification. By repeating the above leave-75%-out experiment 10 times we
achieved 0.83± 0.007 of sensitivity and 0.81± 0.005 of specificity. When we per-
formed similar analysis on the entire dataset we achieved 0.87 of sensitivity and
0.87 of specificity at the optimum operating point. The corresponding values of
τREL and τNNL at this point are 1 and 2.24, respectively. Table 1 lists the Area
Under the Curve (AUC) obtained for different values of REL. Fig. 5 illustrates
the ROC curve for four different REL values .

Fig. 6 illustrates the performance of the proposed algorithm on three sample
histology scenes, one entirely benign scene, one entirely malignant scene obtained
from marked cancerous region by the pathologist, and one scene comprising both
malignant and benign glands in close proximity of each other. Experimentally
classified benign and malignant units are marked by blue and yellow ellipses,
respectively. In all the examples, strong agreement between the pathologist’s
marking and experimental classification of glands corroborates the effectiveness
of the proposed algorithm.

Fig. 6. Application of the proposed technique on three sample histology scenes. The
yellow and blue ellipses are used to denote the malignant and benign gland units re-
spectively. Sample scenes containing a) only benign glands, b) only malignant glands
and c) both the benign and malignant glands. The green annotation mark by patholo-
gist denotes the separation of benign and malignant glands. All the images are shown
in the same scale of magnification.

4 Conclusion

In this paper, we have proposed a technique for the classification of individual be-
nign and malignant glands based on two novel features, Number of Nuclei layers
and Ratio of Epithelial layer area to Lumen area. To the best of our knowledge,
this is the first work to quantify nuclei layers associated with each gland based
on angular histogram. This is also the first report of individual gland labeling
as malignant or benign without relying on the surrounding histology informa-
tion. Since most reports on automatic cancer annotation are region based, cases
with very small cancerous area might not be diagnosed by those approaches.
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The application of individual gland-based technique proposed here will lead to
a more sensitive cancer annotation and thus improved diagnosis of early stage
prostate cancer. In the future, we plan to implement this technique on entire
whole mount images. Moreover, we plan to investigate the relationship between
the proposed features and long term disease progression.
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Abstract. We propose a cross-sectional piecewise constant model for
the segmentation of highly curved fiber tracts in diffusion MRI scans.
An “anchor curve”, obtained via tractography, provides the overall shape
of the tract and allows us to examine the tract’s microstructure at the
level of cross-sectional planes normal to the curve. Each cross-section is
modeled as a piecewise constant image, allowing us to address changes in
measured diffusion due to the curving of the tract while still capturing
overall tract structure. Results on both synthetic and real data show
improved segmentation quality compared to state-of-the-art methods,
particularly in areas of crossing fibers.

1 Introduction

In diffusion MRI (dMRI), segmentation is often used to delineate axonal fiber
tracts connecting functional brain regions [12]. Initial attempts to segment fiber
tracts focused around performing streamline tractography, then defining the seg-
ment as the set of voxels that contain the streamlines (e.g., [16]). However, the
goal of tractography is to capture a tract’s direction and orientation, not its
width. As a result, tractography cannot capture fine details along the surface of
a fiber tract, routinely leading to under-segmentation [3]. Instead of relying on
a collection of 3D streamlines with an unclear encapsulating surface, segmen-
tation algorithms that label the underlying 3D image domain are preferred for
defining a tract’s volumetric region. Among these volumetric dMRI segmenta-
tion algorithms, many assume a piecewise-constant model of the image [9, 11].
However, given the fact that dMRI data contains tract orientation information,
the success of these piecewise constant approaches is limited to tracts that have
little curvature (e.g., corpus callosum [9]).

Segmenting highly curved tracts in dMRI scans requires extending segmen-
tation techniques to handle a tract’s variable appearance. This can be done by
either increasing the complexity of the image model (e.g., piecewise smooth [17])
or by pre-processing the dMRI scan so that a simpler segmentation model can
be applied effectively. The latter approach has been more popular over the past
decade with examples including segmentation based on pre-computed edge infor-
mation [10] and clustering voxels using local statistics pre-computed from Parzen
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windows [2]. More recently, tractography results have been used to provide global
tract shape information as input to the segmentation process [3, 13, 15], allow-
ing for the pre-processing of an image based on the orientation of the tract.
This global shape information may well complement the local appearance infor-
mation obtained using Parzen windowing or edge maps, yet, individually, these
approaches are limited by either susceptibility to noise or lack of fidelity between
the data and the image model [13].

We propose that a hybrid approach, where local appearance information is
combined with global shape information, can show increased segmentation accu-
racy for diffusion MR images. We base this hybrid algorithm on the assumption
that a tract’s cross-section (i.e., the plane perpendicular to the tract’s local di-
rection) shows relatively constant diffusion compared to its surroundings. The
piecewise constancy assumption is then justifiably applied only at a local scale
while, at the global scale, cross-sectional planes are defined based on an “an-
chor curve” obtained from tractography. Results on both synthetic and real
data show improved segmentation quality compared to state-of-the-art meth-
ods [2, 9–11, 15], particularly in areas of crossing fiber tracts.

2 Methods

Figure 1 displays the general workflow of our segmentation algorithm. Like in
the work of Niethammer et al. [15], we begin by generating an anchor curve
from a tractography algorithm. We also end by segmenting a simplified version
of the diffusion MR image. Where we differ is in how we generate that simplified
image. In [15], Niethammer et al. reorient tensors by the curvature of the anchor

Input Image and Seeds Anchor Curve and 
Cross-Sectional Planes

Tract Cross-Sections

Cross-Sectional Distance Maps 3D Distance Map Final Segmentation

Fig. 1. Our proposed segmentation workflow. Tractography is employed to generate
an anchor curve (blue) which is then used to generate cross-sections of the fiber bun-
dle (magenta). For each cross-section, we measure diffusion dissimilarities between the
points on the plane and the intersection point between the plane and the anchor curve.
These dissimilarities are then interpolated back into a 3D image and a scalar segmen-
tation algorithm provides us with the final segmentation.
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curve, then assume a global piecewise-constant image model. We instead assume
a piecewise-constant model only on cross-sectional planes normal to the anchor
curve. The following subsections describe how we employ that model to simplify
and segment diffusion MR images.

Anchor Curve Generation: Given a dMR image I : Ω → M that maps a
point x in our image space Ω ⊂ R3 to a diffusion representation (e.g., tensor,
ODF) on a manifold M, we can generate an anchor curve r : [0, 1] → Ω from
various tractography algorithms. In this work, we employ the minimal path
tractography algorithm of Zalesky [18] to generate r. Edge weights for the graph
used by Zalesky’s algorithm were computed analytically using [6].

Obtaining Tract Cross-Sections: For each point s along the given anchor
curve r, we compute the Frenet frame defined by the curve’s local tangent T,
normal N, and binormal B vectors

T = ∂r
∂s N =

∂T
∂s

‖ ∂T
∂s ‖ B = T×N. (1)

The resulting normal and binormal vectors span (and parameterize) the cross-
sectional plane normal to r. For points si on the anchor curve r where ∂T/∂s = 0,
we use the closest stable Frenet frame of r rotated so that is tangent vector aligns
with the tangent vector at si.

Given the local Frenet frame {T,N,B} and a point s on the anchor curve
r, we generate points x ∈ Ω on the cross-sectional plane by sampling along the
normal and binormal vectors:

x = r(s) + u ∗N+ v ∗B. (2)

The diffusion representation (e.g., tensor, ODF) at x – and correspondingly
(u, v) in the cross-sectional image space Φs – is linearly interpolated from the
original image I. This procedure produces our cross-sectional images Is : Φs →
M and the corresponding 3D coordinates of each cross-sectional image pixel
Πs : Φs → Ω.

Cross-Sectional Piecewise Constancy: Our approach is based on the as-
sumption that the diffusion data within a cross-section of a fiber bundle can
be well-modeled using a piecewise-constant function. Given that a fiber tract
is a collection of coherently aligned axons, we expect the diffusion within the
cross-section of the tract to be similar to that at the plane’s intersection with
the anchor curve. Meanwhile, we expect diffusion on that cross-sectional plane
but outside the fiber tract to be different from that at the plane’s anchor curve
intersection point. As a result, computing dissimilarities between the diffusion
data on the anchor curve I(r(s)) and the diffusion data throughout the cross-
section Is will provide us with a scalar feature Ds that will correlate well with
fiber bundle membership.
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Various dissimilarity metrics can be employed, including those for second or-
der tensors (e.g., [1]), 4th-order tensors [5], and spherical harmonic ODF repre-
sentations [8]. Given a chosen metric d(·), we employ the following mapping

Ds(u, v) = log

(
d(Is(u, v), I(r(s)))

FA(I(r(s))) + ε

)
(3)

which applies a log mapping to the dMRI dissimilarities and normalizes them
by the fractional anisotropy (FA) of the point intersecting the anchor tract.
We found, following empirical examination, that the log-mapping leads to more
Gaussian-distributed dissimilarities inside and outside the tract of interest while
dividing by the anchor curve’s FA helps normalize the range of dissimilarities
from one cross-section to another. Note that since the anchor curve was obtained
via tractography, its FA will be greater than zero.

Mapping Dissimilarities to the Image Space: Once we have the tensor
distance feature Ds computed from (3) for a collection of points Πs defined
by (2), we proceed with reconstructing a 3D distance image. This task is a basic
scattered data interpolation problem and we employ an approach based on radial
basis functions and k-nearest neighbours. The interpolated 3D dissimilarity map
D is given as

D(x) =
k∑

i=1

exp(−‖Πs(i)(u(i), v(i))− x‖)∑k
j=1 exp(−‖Πs(j)(u(j), v(j))− x‖)

Ds(i)(u(i), v(i)) (4)

where (u(i), v(i)) in cross section s(i) is the ith nearest neighbour to x in Ω.

Dissimilarity Map Segmentation: Using the local diffusion dissimilarities
from (3), we have reduced our dMR image, with its variable region appearance
and manifold-valued data, to a scalar image that is well modeled by a piecewise
constant function. As a result, it now makes sense to employ a piecewise con-
stant segmentation algorithm. We use a probabilistic variant of the Chan-Vese
segmentation algorithm that minimizes

E(S, μin, σin, μout, σout) =α

∫
∂S

dx+ β

∫
x∈S

− log(p(x|μin, σin))dx+

β

∫
x/∈S

− log(p(x|μout, σout))dx (5)

where S ⊂ Ω is the segmentation, μin, σin(μout, σout) represent the mean and
standard deviation of distances D inside (outside) S, and weights α, β regulate
the trade-off between the contour regularization and image fidelity terms. We
optimize the segmentation energy in (5) using the total variational approach of
Bresson et al. [7]. Note that this is the same optimization scheme used by the
competing approach of Niethammer et al. [15] though they use it to segment
images of diffusion tensor primary eigenvectors. As with the approach of Ni-
ethammer et al., all voxels a distance greater than dmax from the anchor curve
are set to belong to the background while the foreground segment containing
the anchor curve is taken as the final segmentation.
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(a) Crossing fiber phan-
tom (from [14] visualized
using [4]).

(b) DSC for phantom at different noise levels. In-
set are FA maps for (left to right) images with
σ = 0, 0.02, and 0.04.

Proposed Niethammer et al. [15] Feddern et al. [10] Descoteaux et al. [9] Lenglet et al. [11]

(c) Sample segmentation results for all methods at noise level σ = 0.01. Over-
segmentation is shown in yellow while under-segmentation is shown in red. The
ground truth segmentation is shown in gray.

Fig. 2. Segmentation results for the ring tract in (a). Note that we obtain significantly
higher Dice coefficients than competing methods as we are able to better model curved
tracts and fiber crossings. Further, our approach generates consistent results across
various noise levels.

3 Experimental Setup and Results

To evaluate the effectiveness of our segmentation approach, we perform two
quantitative experiments, one on the synthetic phantom presented in [14] and
another on 18 cingulum bundles from dMRI scans from the IXI database1. In
both cases, resulting segmentations were compared to expert-drawn manual seg-
mentations using the Dice similarity coefficient (DSC). The segmentation algo-
rithms from [9–11, 15] are used as comparison methods. In all cases, k = 5,
ε = exp(−4) and the log-Euclidean distance metric was used to compute the
dissimilarity maps [1]. To ensure fairness of comparison between segmentation
algorithms, we optimize the weights of all energy terms in all segmentation al-
gorithms (e.g., α, β) using genetic algorithms. Results are shown for the weights
that produce the maximum DSC.

Phantom Experiment: Figure 2(a) displays the middle slice of the synthetic
phantom from [14]. We seek to segment the ring tract in the phantom in order to
test our algorithm’s ability to handle both tract curvature and crossing regions.
We further test the impact of image noise by adding Rician noise of different

1 http://brain-development.org
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(a) Sample anchor
curve (yellow) and
ground truth seg-
mentation (gray) of
a cingulum bundle.

(b) Dice coefficients for all algorithms
over 18 cingulum bundles. Results for
Awate et al. are over only 2 datasets
(taken from [2]). Although Neitham-
mer et al.’s DSC is comparable, it suf-
fered from localized under-segmentation
in difficult areas (see text and Fig. 3(c)).

Proposed

Niethammer et al. [15]

(c) Sample cingu-
lums (gray) with
under-segmentation
shown in red.

Fig. 3. Results on the segmentation of cingulum bundles from real dMRI scans. A
sample is shown in (a). Note that we obtain significantly higher Dice coefficients than
competing methods (largest p = 0.0298). For the methods that were able to segment
the cingulum, we were better able to reduce under-segmentation as highlighted by the
blue arrows in (c).

magnitudes to the phantom. Twenty-five noisy images are generated for each
noise level and all competing segmentation methods are applied.

Figure 2(b) shows the resulting DSC for each algorithm and noise level. Note
that our approach significantly outperforms those algorithms presented in [9–11,
15]. The reasons for this improvement can be seen in Figure 2(c). The approach of
Niethammer et al. [15], which assumes a piecewise constant image after rotating
tensors to the anchor curve’s Frenet frame, has difficulty segmenting the crossing
regions where the global piecewise constant assumption does not hold. However,
our assumption of cross-sectional piecewise constancy still holds in these regions,
resulting in a more accurate segmentation. Further, Niethammer et al. rely only
on the primary eigenvector for segmentation, leading to over-segmentation leak-
ing into isotropic regions in which the primary eigenvector may align with those
within the segment of interest. Meanwhile, the geodesic active contours approach
of Feddern et al. [10] is limited by poor edge information due to image noise. Fi-
nally, the piecewise constant segmentation approaches of Descoteaux et al. [9] and
Lenglet et al. [11] (the latter of which includes a geodesic active contour edge term
to the segmentation energy) fail to model the tensor image appropriately, lead-
ing to poor segmentations. Our approach avoids these problems by applying the
piecewise constant image model on a per cross-section basis.

Real Data Experiment: We employ 18 expertly-drawn manual segmentations
of cingulum bundles from 9 dMRI scans as ground truth segmentations to test
the accuracy of our algorithm on real data. Figure 3(a) shows a representative
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example of the region of interest and its corresponding anchor curve. Note that
the curvature of the cingulum makes a piecewise constant function a poor choice
for modelling diffusion across the whole bundle.

Figure 3(b) shows the resulting DSC for all 18 cingulum segmentations. Note
that our proposed approach performs better than the competing methods, even
beating the average 0.615 DSC reported on comparable data for only two cin-
gulum bundles in [2]. The piecewise constant approaches in [9, 11] failed to
segment the cingulum. Instead, the segmentation leaked and delineated the cor-
pus callosum seen in red in Figure 3(a). Meanwhile, the geodesic active contours
approach of Feddern et al. [10] showed difficulty dealing with noisy edge informa-
tion, leading to over-segmentation. The closest competing method to ours is that
of Niethammer et al. [15], one sample of which is shown in Figure 3(c). Although
the DSC values are somewhat comparable (Fig. 3(b)), the increased accuracy
of our method was significant (p = 0.0298). Further, our approach showed con-
sistent (i.e., over all 18 tracts) reduction in the amount of under-segmentation
compared to [15]. This reduction, likely due to our use of a more localized im-
age appearance model, was most pronounced around the genu and splenium (as
highlighted by the blue arrows). Quantitatively, we observed a significant reduc-
tion of 10.48% in the number of under-segmented voxels (Niethammer et al. [15]:
μ = 1306.8 voxels, σ = 362.8 voxels; Proposed: μ = 1169.8 voxels, σ = 381.9
voxels. p = 0.018).

4 Conclusion

We proposed herein a cross-sectional piecewise constant model for diffusion MRI
segmentation, allowing us to combine local diffusion information with global
shape information. Using an “anchor curve” obtained via tractography, we are
able to generate cross-sections of the tract and apply the piecewise constant
model at that local level. We have shown that the resulting segmentation al-
gorithm is better capable of handling curved tracts and crossing regions than
many competing methods [2, 9–11, 15]. Future work will focus on determining
whether these results remain consistent if we change the diffusion model (e.g.,
from tensor to ODF).
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Abstract. Diffusion Tensor Imaging (DTI) provides us with valuable
information about the white matter fibers and their arrangement in the
brain. However, clinical DTI acquisitions are often low resolution, caus-
ing partial volume effects. In this paper, we propose a new high reso-
lution tensor estimation method. This method makes use of the spatial
correlation between neighboring voxels. Unlike some super-resolution al-
gorithms, the proposed method does not require multiple acquisitions,
thus it is better suited for clinical situations. The method relies on a
maximum likelihood strategy for tensor estimation to optimally account
for the noise and an anisotropic regularization prior to promote smooth-
ness in homogeneous areas while respecting the edges. To the best of
our knowledge, this is the first method to produce high resolution ten-
sor images from a single low resolution acquisition. We demonstrate the
efficiency of the method on synthetic low-resolution data and real clini-
cal data. The results show statistically significant improvements in fiber
tractography.

Keywords: DTI, Super-resolution, Partial volume effect.

1 Low Spatial Resolution in Clinical DTI

DTI is a non-invasive imaging modality used for mapping the diffusion of water
molecules in the brain. The diffusion process depends on the tissue microstruc-
ture and thus makes imaging white matter (WM) fibers and their organization
in the brain feasible. It can be used to study the brain connectivity through a
tractography analysis. In the clinics, DTI is used to study WM disorders. How-
ever, clinical DTI acquisitions have usually low spatial resolution (typically 2.0
- 5.5 mm in each direction). In practice, it is often desirable to visualize and
gather fiber structure information from high resolution (HR) images. But, ac-
quiring HR diffusion weighted images (DWI) requires either longer acquisition
time or using scanners with stronger magnetic fields (7 T and 11 T), compared
to the ones used in a clinical setting (1.5 T and 3.0 T). Both of these options
are not suitable for clinical scenarios. So, resampling the low resolution DTI to
a high resolution space is currently the only option available to clinicians. How-
ever, the present resampling techniques do not account for partial volume (PV)
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effects present in the clinical images at native resolution. The PV effects in the
DWI leads to an underestimation of tensors adversely affecting fiber tractogra-
phy [1]. In this work, we propose a tensor estimation method, which takes into
account the partial volume effect and yields a more spatially coherent tensor
field. The efficacy of the method is established through significant improvements
in tractography.

Super-Resolution Reconstruction
One of the first super-resolution algorithms for MRI proposed by Peled et al.
uses a combination of spatially shifted single shot diffusion weighted images to
create HR images [2]. This method uses eight repeated low resolution scans with
a shifted field of view and different b-values each time. In another study [3],
the volume acquisition is spatially shifted in the slice-selected direction and in-
ter slice reconstruction is achieved using the Irani-Peleg’s [4] back-projection
method. But this method was not extended for DTI studies. More recently,
super-resolution on diffusion weighted images using multiple anisotropic orthog-
onal DWI scan has been proposed [5]. All these methods of super-resolution
rely on multiple acquisitions of the same subject. While this may be an ac-
ceptable practice in a research environment, this would be difficult and even
undesirable in a clinical setting. Unlike previous methods, we propose a HR ten-
sor reconstruction algorithm which does not require multiple acquisitions. Our
method also accounts for the PV in the low resolution DWIs, producing DTI
at higher resolutions. The proposed method can be related to the regularized
super-resolution method of [6], which recovers WM fiber configuration based on
volume fraction of anisotropic fiber population in the neighboring voxels. How-
ever, we use anisotropic regularization to recover the full tensor information.
The method is described in section 2. Experiments performed on simulated low
resolution acquisitions in section 3.1 show that the fractional anisotropy (FA)
image computed using HR tensor estimation is better contrasted and less blurry
compared to the one computed using tensor resampling. A comparison of FA im-
ages on real data and quantitative evaluation on fiber tractogaphy is presented
in sections 3.2 and 3.3 respectively.

2 Statistical Tensor Reconstruction with Spatial Prior at
Any Resolution

The diffusion tensor D is related to each DWI Si corresponding to the encoding
gradient gi and the image with null gradient S0 using the Stejskal-Tanner Equa-

tion [7], Si = S0e
−bgi

TDgi where b is the diffusion factor. D is a second order
tensor (i.e., a symmetric positive definite matrix). We build our tensor estima-
tion model based on variational methods for joint estimation and smoothing of
DTI [8] in the Log-Euclidean framework.
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2.1 A Discrete Signal Degradation Model: From High Resolution
to Low Resolution Images

A voxel in the low resolution (LR) image xk is composed of the voxels yj in the
HR image. The observed signal SLR(xk) in the voxel xk is the weighted sum of
the intensities of the voxels yj :

SLR(xk) =
∑
j

αkjS
HR(yj),

where SHR(yj) is the signal intensity in the voxel yj of the HR image; αkj is
the partial volume overlap of the HR voxel yj in the LR voxel xk. Based on
the above model, each LR gradient image, SLR

i can be written in terms of the
underlying HR tensors (DHR) and the SHR

0 (image with null gradient in high
resolution):

SLR
i (xk) =

∑
j

αkjS0
HR(yj)e

−bgi
TDHR(yj)gi . (1)

For simplicity, we write SLR
i as Si and expand the term using Equation 1, when

necessary.

2.2 Tensor Estimation

With the above image degradation model, we solve the inverse problem of esti-
mating tensors in the HR space. This is an ill-posed inverse problem because for
a given signal Si(xk) there is an infinite number of combinations of D(yj) pos-
sible in Equation 1. In the Log-Euclidean framework, we define L as the matrix
logarithm of D: L = Log(D). Following [8], the tensor estimation can be looked
upon as a variational formulation, i.e., one should minimize the following energy
functional,

E(S0,L) =
1

2
Sim(S0,L) +

λs

2
Reg(S0) +

λL

2
Reg(L), (2)

where Sim(.) is the data fidelity term and Reg(S0), Reg(L) are the regularization
priors on S0 and L images with the respective weights λs and λL. In [8], the
tensor estimation is performed at the same resolution as that of acquisition.
However, in this paper, we aim to estimate tensors at a resolution higher than
the acquisition resolution. The LR acquired signal and the HR estimated tensors
are linked through the degradation model described in Equation 1. Thus, the
solution of the energy minimization problem is an optimal tensor field, which is
spatially coherent and is consistent with the observed signal.

2.3 Similarity Criteria for Tensor Estimation

The observed signal in any DWI can be modeled as S̃i = Si + η, where S̃i is the
observed DWI, Si is the true image (as in Equation 1) and η is the associated
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noise model. As described in [8], the data attachment term E(.) corresponds to
a maximum likelihood estimator (MLE) adapted to the noise model. The MLE
for the probability density function of a given noise model is,

SimML(.) = −
N∑
i=0

∑
xk

log
[
p
(
S̃i(xk)|Si(xk)

)]
, (3)

where Si(xk) is the same as in Equation 1 and p(.) is the probability density
function (pdf) of the the noise model. Unlike [8], E(.) is a function of two vari-
ables, the HR image with null gradient, S0(yj) and the logrithm of HR tensor
field, L(yj). The maximization is achieved using the steepest descent algorithm.
The gradient of SimML(S0(yj), L(yj)) by differentiating Equation 3 is,

∇SimML =
[
∂SimML

∂S0(yj)
∂SimML

∂L(yj)

]T
. (4)

Taking partial derivatives of Equation 3 with respect to S0(yj) and L(yj),

∂SimML

∂S0(yj)
= −

N∑
i=0

∑
xk

r(.)
∂S̃i(xk)

∂S0(yj)
;

∂SimML

∂L(yj)
= −

N∑
i=0

∑
xk

r(.)
∂S̃i(xk)

∂L(yj)
,

where r(.) = p′(.)/p(.) and p′(.) is the derivative of p(.) with respect to S̃i(xk).
Differentiating Equation 1, we get

∂S̃i(xk)

∂S0(yj)
= αkj exp[−bgTi exp(L(yj))gi];

∂S̃i(xk)

∂L(yj)
= −b αkj S0(yj) exp[−bgTi exp(L(yj))gi] ∂Gi [exp(L(yj))],

where ∂Gi [exp(L(yj))] = ∂[gTi exp(L(yj))gi]/∂L(yj) is the directional derivative
of the matrix exponential. A detailed implementation for computing
∂Gi [exp(L(yj))] is available in [8]. In the following sections, we discuss the MLE
with Gaussian noise model followed by brief implementation details.

MLE with Gaussian Noise. Assuming Gaussian noise of variance σ2 on the
LR image, the pdf of the observed signal S̃i knowing the expected signal Si is
p(S̃i|Si). Using Equation 3, r(S̃i(xk)|Si(xk)) can be computed as,

p(S̃i|Si) =
1

σ
√
2π

exp
(
− (S̃i − Si)

2

2σ2

)
; r(S̃i|Si) =

Si − S̃i

σ2
, (5)

Alternatively, the MLE with Rician noise can be computed as in [8].

2.4 Non-stationary Spatial Prior

Without any additional constraints, many HR tensor images could explain the
observed low resolution DWIs. Among all these solutions, anisotropic regular-
ization promotes smooth images in homogeneous areas while respecting the
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edges. The anisotropic behavior is achieved using a φ-functional, i.e., Reg(s) =∫
Ω
φ(||∇s||), where s is the intensity (scalar or tensor) of the voxel of image Ω.

In our implementation, we use φ(s) = 2(1 + s2/κ2) − 2, with κ as the image
normalization factor [8]. The gradient of Reg(s) is

∇Reg(s) = −2ψ(||∇s||)�s− 2∇T (ψ(||∇s||))∇s, (6)

where ψ(s) = φ′(s)/s. The anisotropic regularization can also be viewed as a
spatial Markov random field (MRF) where the state (intensity) of the voxel is
dependent on the states of the neighboring voxels. The anisotropic smoothing
of posterior probabilities is equivalent to the Maximum A Posteriori (MAP)
solution of a discrete MRF, making the full criterion in Equation 2 a MAP
estimator.

The proposed HR tensor estimation method is similar to the one proposed
in [8], in terms of the variational formulation. However, the total energy E(.) is
constrained through the signal degradation model in Equation 1. The novelty of
the method lies in the fact that it estimates the tensors in HR while taking into
account the unavoidable partial volume effects during acquisition, to produce a
spatially coherent tensor field.

2.5 Implementation

The total energy E(S0,L) is minimized using the steepest descent method with
line search algorithm.

S0
t+1=S0

t−dts
2

[∂Sim
∂S0

+λs∇Reg(S0)
]
; Lt+1 = Lt−dtL

2

[∂Sim
∂L

+λL∇Reg(L)
]
,

where dts and dtL are the step sizes for steepest descent. The two images S0

and L are optimized alternately, until convergence. The step-sizes are reduced
by half if the the total variational energy is not decreased, until the step-size
are too small (dts < 10−6, dtL < 10−10), that is the total energy E cannot be
minimized any further. The algorithm is implemented in C++.

3 Comparison between Tensor Resampling and HR
Tensor Estimation

3.1 Simulated LR Acquisition

Data were acquired using a GE 1.5 T scanner, with 24 encoding gradient direc-
tions (with a b-value of 700 s/mm2). The image has 256 × 256 × 26 voxels of
size 0.9375× 0.9375× 5.5 mm3. The images are downsampled by a factor of two
in the axial plane and the tensor field is estimated. This LR tensor field is then
resampled to the original image size using Log-Euclidean interpolation [9]. The
HR tensor estimation is used to estimate tensors at the original resolution from
the downsampled images. In Fig. 1, the fractional anisotropy (FA) maps from
both tensor resampling and HR estimation methods are shown. The FA map
computed from the HR tensor estimation is better contrasted and less blurry
when compared with the one computed from resampling the LR tensor image.
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Fig. 1. Simulated LR acquisition. Top row: axial views of the ground truth image,
FA computed from resampled tensor field and HR tensor estimation. The FA map
computed from the HR tensor estimation method is better contrasted than the one
computed from the resampled tensor field. Bottom row: zoomed region (red square).

3.2 Increase in FA on Real Data

In this section, we use a real dataset acquired with a Siemens 1.5 T scanner,
with 21 encoding gradient directions and a b-value of 1000 s/mm2. The images
have 80 × 80× 40 voxels of size 3 × 3 × 3.3 mm3. The tensor field is estimated
at the native resolution and is resampled using the Log-Euclidean framework.
Several WM tracts which were not visible in the resampled images can easily
be seen in the FA map, when the FA is computed from HR tensor estimation
method. The HR tensor estimation algorithm presented in this paper shows an
increase in FA values in the white matter regions. In Fig. 2, the FA maps are
overlaid on the corresponding B0 image for better anatomical reference. In both
the axial and coronal views, the external capsule and the corpus callosum can
be clearly delineated with the HR tensor estimation method. We observed an
increase in FA values by 43% in the WM regions (regions marked with arrows
in Fig. 2) with the proposed method.

3.3 Influence on Tractography: Quantitative Evaluation

The same data set as in section 3.1 is used for a fiber tracking experiment.
However, in this case the HR tensor estimation is done at 1 mm isotropic res-
olution and the tensor field is resampled to the same isotropic resolution. The
fiber-tracking is done using the MedINRIA (www.med.inria.fr) 1.90 DTI-Track
tool. All the voxels with FA > 0.25, are considered as seed voxels for fiber track-
ing. The proposed method shows a statistically significant increase in the fiber
lengths, when compared with tensor resampling. A one tailed t-test on fiber
lengths gives a p-value less than 2 × 10−16. The increase in FA values in WM
regions as described in section 3.2 leads to an 82% increase in the number of
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Fig. 2. Influence on FA in real clinical data: The axial and coronal views show that the
external capsule and part of corpus callosum can be delineated using the HR tensor
estimation. The corresponding arrows show regions with considerable increase in FA.

Fig. 3. Middle column shows comparatively denser fiber bundle in the fornix region
for the HR tensor estimation method (superior-inferior view) compared to tensor re-
sampling (left column). Right column: a quantitative comparison of fiber lengths.

seed voxels for HR tensor estimation and thus denser fibers. The fornix of the
brain is tracked and the results are compared in Fig. 3 for tensor resampling (left
column) and HR tensor estimation (middle column). There is a 25% increase in
the mean length of fibers with the proposed tensor estimation method compared
to tensor resampling. The right column in Fig. 3 shows the histogram for fiber
length distribution.

4 Conclusions

In this paper, we tackled the problem for resampling low resolution DTI data on
higher resolution for tractography or statistical analysis purposes at the popu-
lation level. We propose to replace the resampling step by a DTI reconstruction
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at the high resolution using a MAP estimator with a spatial prior. The method
is compared with tensor resampling method on simulated low resolution data as
well as on real clinical data. Results showed better contrasted and less blurry
FA maps on the simulated data. We confirmed our results with experiments
on the Fiber Cup [10] which shows a 6.39 % reduction in mean error in the
principal diffusion direction. On the real data, a considerable increase in FA
is observed, making some WM regions in parts of corpus callosum and exter-
nal capsule recognizable. Fiber tracking with the HR tensor estimation shows
statistically significant increase in the length and number of fibers. In the fu-
ture, we would like to investigate if a better statistical power can be achieved in
population based studies using the proposed method.
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for Accurate Fiber Orientation Estimation with
High Order Spherical Harmonics
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Abstract. Diffusion imaging data from the Human Connectome Project
(HCP) provides a great opportunity to map the whole brain white matter
connectivity to unprecedented resolution in vivo. In this paper we develop
a novel method for accurately reconstruct fiber orientation distribution
from cutting-edge diffusion data by solving the spherical deconvolution
problem as a constrained convex optimization problem. With a set of
adaptively selected constraints, our method allows the use of high order
spherical harmonics to reliably resolve crossing fibers with small separa-
tion angles. In our experiments, we demonstrate on simulated data that
our algorithm outperforms a popular spherical deconvolution method
in resolving fiber crossings. We also successfully applied our method to
the multi-shell and diffusion spectrum imaging (DSI) data from HCP to
demonstrate its ability in using state-of-the-art diffusion data to study
complicated fiber structures.

1 Introduction

With the advance of diffusion weighted MR imaging techniques from the Human
Connectome Project (HCP) [1, 2], large scale datasets acquired using sophisti-
cated sampling schemes are becoming publicly available. This provides unprece-
dented opportunities for mapping the white matter fiber structure with higher
spatial and angular resolutions. The vast amount of data, however, also poses
significant challenges for data analysis algorithms that have focused mostly on
conventional, single-shell acquisition schemes. In this work, we propose a novel
method for analyzing diffusion images with arbitrary acquisition schemes by
accurately reconstructing the fiber orientation distribution (FOD). We demon-
strate our method can achieve superior angular resolution and resolve fiber struc-
tures on both simulated and in vivo data from the HCP.

The diffusion tensor model is practically the most popular method for study-
ing major fiber bundles with diffusion imaging data[3]. For the mapping of whole
brain connectivity, however, the tensor model is vastly insufficient as complicated
fiber crossings occur frequently throughout the brain. To overcome this difficulty,

� This work was in part supported by NIH grants K01EB013633, R01MH094343, and
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K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 485–492, 2013.
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various techniques for high angular resolution diffusion imaging (HARDI) were
developed [4–9]. By representing the FOD with spherical harmonics, the spheri-
cal deconvolution model has demonstrated great potential in efficiently resolving
complicated fiber crossings [6, 9]. The ill-posedness of the deconvolution prob-
lem, however, has hindered the use of high order spherical harmonics to resolve
fibers with small separation angles. To improve numerical stability, Laplacian or
Tiknohov regularizations [7, 9] were incorporated, but these models are limited
to single-shell acquisition schemes and only partially overcome the difficulty.
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Fig. 1. An illustration of the two acqui-
sition schemes from the HCP. (a) The
multi-shell sampling scheme with 270 di-
rections distributed over three shells with
b=1000,2000,3000 s/mm2. (b) The DSI
sampling scheme has 514 directions with
b-values increasing from 400 to 10,000
s/mm2.

In this work we propose a new
method for FOD estimation from
data acquired with general sampling
schemes, which enables us to seam-
lessly process HCP data collected
with either the multi-shell or DSI
schemes [10] illustrated in Fig. 1. At
the core of our method is a con-
strained convex optimization problem
for spherical deconvolution with adap-
tively chosen constraints. By adap-
tively selecting a minimal set of uni-
formly distributed constraints, our
method can easily use high order
spherical harmonics to reconstruct
crossing fibers with very small sepa-
ration angles. In our experiments, we demonstrate on simulated data that our
method outperforms a previous method [9] in reliably resolving fibers with small
crossing angles. We also apply it to data from the HCP to demonstrate its gen-
erality in processing cutting-edge diffusion imaging data.

The rest of the paper is organized as follows. In section 2, we formulate the
spherical deconvolution problem in the general setting of analyzing data from
arbitrary acquisition schemes. The adaptively constrained convex optimization
approach is then developed in section 3. Experimental results are presented in
section 4. Finally conclusions are made in section 5.

2 Spherical Deconvolution Model

In this section, we develop the spherical deconvolution model for FOD recon-
struction from general acquisition schemes. At each voxel, the diffusion signal
at the b-value bi and the direction ui is denoted as s(bi, ui)(i = 1, · · · , N). Let
S denote the unit sphere, and f : S → R+ the FOD. Given the single fiber
response function k(b, u, w) for a fiber in the direction w, the diffusion signal is
expressed as the convolution of the FOD and the kernel:

s(b, u) =

∫
S

f(w)k(b, u, w)dw + n(b, u) (1)
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where n is noise. Instead of estimating the kernel directly from the data [6], which
is difficult for general acquisition schemes such as DSI, we follow the single tensor
model and represent the kernel parametrically as:

k(b, u, w) = e−b(λ2+(λ1−λ2)(u·w)2). (2)

where the only parameters λ1 >> λ2 = λ3 are the eigenvalues of the tensor
model. These parameters can be either chosen from previous literature or com-
puted easily from the data.

For efficient computation, the FOD is represented with the spherical harmon-
ics up to the order L as:

f(w) =
∑
l,m

xm
l Y m

l (w) ∀w ∈ S (3)

where Y m
l is the m-th real spherical harmonics at the order l = 0, 2, · · · , L,

and xm
l is the coefficient for the basis Y m

l . Note that only even order spherical
harmonics are used because the FOD is symmetric on the sphere. From a signal
processing perspective, high order spherical harmonics are needed if we want to
accurately represent or reconstruct crossing fibers with really small separation
angles. Due to numerical difficulties, typically spherical harmonics up to the
order of eight were used in previous work [6, 9], which limits their capability in
reliably resolving fiber crossing of small angles.

Using the Funk-Hecke theorem, we can express the diffusion signal as

s(b, u) =

∫
S

∑
l,m

xm
l Y m

l (w)e−b(λ2+(λ1−λ2)(u·w)2)dw + n(b, u)

=
∑
l,m

Y m
l (u)Gl(b, λ1, λ2)x

m
l + n(b, u) (4)

with Gl(b, λ1, λ2) defined as:

Gl(b, λ1, λ2) = 2π

1∫
−1

Pl(t)e
−bλ2−b(λ1−λ2)t

2

dt, (5)

where Pl is the Legendre polynomial of degree l.
Let s denote the vector of diffusion signals s(bi, ui) sampled at a discrete set of

points (bi, ui)(i = 1, · · · , N). For simplicity, we denote Y m
l and xm

l by Yj and xj ,

respectively, with j = m+
l2 + l + 2

2
. Given the maximum order L of spherical

harmonics used, the total number of basis functions is J = (L+1)(L+2)/2. Let
x = [x1, · · · , xj , · · · , xJ ] be the vector of coefficients for the FOD, we can write
(4) in matrix form as:

s = Ax+ n (6)
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where n denotes the vector of noise, and A = B ·G is the entry-wise product of
two matrices B and G defined as follows:

B =

⎛
⎜⎜⎝

Y1(u1) Y2(u1) · · · YJ (u1)
Y1(u2) Y2(u2) · · · YJ (u2)
· · · · · · · · · · · ·

Y1(uN ) Y2(uN ) · · · YJ(uN )

⎞
⎟⎟⎠G =

⎛
⎜⎜⎝

G0(b1) G2(b1) · · · G2(b1) · · · GL(b1)
G0(b2) G2(b2) · · · G2(b2) · · · GL(b2)

· · ·
G0(bN ) G2(bN) · · · G2(bN) · · · GL(bN )

⎞
⎟⎟⎠ .

For each order l, the element Gl(bi) = Gl(bi, λ1, λ2) is repeated 2l + 1 times on
the i-th row.

3 Adaptively Constrained Convex Optimization

(a) Q = 73. (b) Q = 100.

Fig. 2. FOD reconstruction from simulated
diffusion data. The true fiber directions are
plotted as red lines.

In this section, we develop a novel ap-
proach for FOD estimation by solving
the spherical deconvolution problem
as a constrained convex optimization
problem. The key idea is the adaptive
selection of the set of constraints for
every voxel to avoid overly constrain
the solution and affect reconstruction
accuracy. The constraint we impose
on FOD reconstruction is motivated
by its non-negativity condition. With
the spherical harmonics representa-
tion up to a fixed order, however, it
is impossible to completely eliminate
negative values in the FOD. It is thus
critical to limit the negative compo-
nents to the minimal extent and ensure major fiber directions are captured. To
achieve this goal, our strategy is to constraint the FOD to be non-negative on a
minimal set of uniformly distributed points on the sphere.

With a remeshing algorithm [11], we build a collection of constraint sets
V = {V1, V2, · · · , } with varying number of points on the sphere, where each

member VQ = {v1Q, v2Q, · · · , v
Q
Q} is a set of Q uniformly distributed points on the

hemisphere of the unit sphere. With the spherical harmonics representation, the
requirement that f should be non-negative on VQ can be expressed as:

CQx ≥ 0 (7)

where CQ is a matrix of size Q× J defined as

CQ =

⎛
⎜⎜⎝

Y1(v
1
Q) Y2(v

1
Q) · · · YJ (v

1
Q)

Y1(v
2
Q) Y2(v

2
Q) · · · YJ (v

2
Q)

· · · · · · · · · · · ·
Y1(v

Q
Q) Y2(v

Q
Q) · · · YJ(v

Q
Q)

⎞
⎟⎟⎠ .
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Given a specific constraint set VQ(Q = 1, 2, · · · ), the spherical deconvolution
problem for FOD reconstruction can be formulated as a constrained convex
optimization problem:

min ‖ s−Ax ‖2

s.t. CQx ≥ 0 (8)

Because this problem is convex, global minimum can always be found numerically
with software packages such as cvx [12]. With the FOD being non-negative on
a set of uniformly distributed points, we ensure that large negative components
will not occur and most of the energy of the FOD are contributed by physically
meaningful, i.e., positive, components. Because the complexities of fiber crossings
are spatially varying across the brain, the number of active constraints in (8)
could be different as a result. Thus it is also unreasonable to fix the number
of constraints. To overcome this difficulty, we adaptively search through the
constraint collection V at every voxel to find the smallestQ such that the solution
satisfies: ∫

f(w)>0
fdw∫

f(w)<0 |f |dw
> δ. (9)

This condition measures how successful the reconstructed FOD is able to focus
its energy on positive components. For example, if we pick δ = 25, we ensure
more than 95% of the L1 energy of the FOD are from positive components.
As a demonstration, we show in Fig. 2 the FOD reconstruction results of two
fibers using simulated diffusion data from 60 directions with b=1000 s/mm2.
The maximum order of spherical harmonics used here is L = 8. The result in
Fig. 2 (a) is obtained from adaptively determined constraints, where Q = 73,
and the result in Fig. 2 (b) is obtained by fixing Q = 100. We can see the overly
constrained solution is less sharp and one of its peaks is obviously misaligned
with the true fiber direction.

For practical implementation, there is no need to start the search from Q = 1.
Given a maximum order L, we can pick a constraint set from experience and
start the search there. For L = 8, we typically start the search at Q = 60 and
the reconstruction of the FOD in Fig. 2(a) took less than one second.

4 Experimental Results

In this section, we present experimental results to demonstrate our method on
both simulated and in vivo data from the HCP. In our experience, the FOD
reconstruction results from our method are very robust to the selection of the
parameters in the kernel. For all experiments, we thus fix the parameters for
the kernel as λ1 = 0.0017 and λ2 = 0.0003 following the literature [9], and the
threshold in (9) as δ = 25.
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4.1 Simulated Data

(a) (b) (c)

Fig. 3. A comparison of 100 runs of FOD recon-
struction results from simulated diffusion data. The
cyan surface is the mean FOD and the shaded sur-
face is mean plus two standard deviation of the FOD
from 100 runs. Red lines indicate true fiber direc-
tions. (a) Method in [9]: L = 8. (b) Method in [9]:
L = 16. (c) Our method: L = 16.

In the first experiment, we
compare with the spherical
deconvolution method in [9]
on simulated data. For two
fibers with a crossing angle
of 30o, we follow the multi-
tensor model to simulate the
diffusion data from a single-
shell acquisition scheme of
81 directions with b = 3000
s/mm2. Rician noise was
added to obtain a signal to
noise ratio of 20. For ev-
ery parameter selection from
both methods, the experi-
ments were run 100 times to obtain the mean and standard deviation of the
FOD. For the spherical deconvolution method in [9], the results with the max-
imum order L = 8 and L = 16 are plotted in Fig. 3 (a) and (b). At the order
of L = 8, we chose the same regularization parameter 0.006 as in [9]. We can
see that the reconstructed FOD at this order cannot resolve the fiber crossing.
When the order was increased to L = 16, its result became highly oscillatory even
though we increased the regularization parameter to 0.02. With our adaptively
constrained optimization method, such oscillations were successfully suppressed
and accurate results were obtained as shown in Fig. 3(c). This demonstrates the
superior ability of our method in resolving fiber crossings at small angles with
data from single-shell acquisition schemes.

4.2 Multi-shell Data from HCP

In the second experiment, we applied our method to the diffusion data of a
subject from the HCP that was acquired with a multi-shell sampling scheme as
illustrated in Fig. 1 (a). The reconstructed FODs of an ROI on an axial slice,
which is shown in Fig. 4(b), in the right thalamus with L = 8 and L = 16
are plotted in Fig. 4 (a) and (c). All FODs are color-coded with the directions.
The reconstructed FODs are consistent with known anatomical knowledge that
various fibers cross the thalamus to reach different cortical regions. The top-
right corner of the ROI touches the cortical spinal tract that goes from inferior
to the superior part of the brain. At this location, the FOD reconstructed with
our method in both Fig. 4 (a) and (c) has only one major fiber direction, which
is consistent with the orientation of the cortical-spinal tract. By comparing the
results in Fig. 4(a) and (c), especially regions highlighted by the dashed lines, we
can clearly see that our method successfully uses high order spherical harmonics
to achieve better angular resolution of crossing fibers than results reconstructed
with low order spherical harmonics.
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(a) L=8. (b) ROI. (c) L=16.

Fig. 4. FOD reconstruction results from multi-shell diffusion data of the HCP

(a) L = 8. (b) ROI. (c) L = 16.

Fig. 5. FOD reconstruction results from DSI data of the HCP

4.3 DSI Data from HCP

In the third experiment, we applied our method for FOD reconstruction using
DSI data of a subject from the HCP. As illustrated in Fig. 1(b), the diffusion data
was acquired at 514 points in the q-space with b-values ranging from 400 to 10000
s/mm2. For an ROI on a coronal slice shown in Fig. 5(b) that has crossing fibers
possibly from the corpus callosum, cortical spinal tract, and superior longitudinal
fasciculus, we applied our method with L = 8 and L = 16 to compute the FODs.
The reconstructed FODs are plotted in Fig. 5(a) and (c). As a demonstration, we
highlighted two FODs with dashed lines in Fig. 5(a) and (c). It clearly shows the
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power of our method in using high order spherical harmonics to resolve crossing
fibers with small separation angles.

5 Conclusions

In this paper we developed a novel approach for the accurate reconstruction of
FODs from arbitrarily sampled diffusion imaging data. By solving the spherical
deconvolution as an adaptively constrained convex optimization problem, our
method can robustly use high order spherical harmonics to resolve complicated
fiber crossings. We demonstrated the power of our method on HCP data from
both the multi-shell and DSI acquisition schemes. For future work, we will inte-
grate our method with tractography algorithms and investigate its application
in studying whole brain connectivity.
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Abstract. The reliable estimation of fiber orientation distributions from diffusion-
sensitized magnetic resonance imaging is an important processing step for reveal-
ing structural connectivity in the human brain. Fiber orientation distributions are
usually represented in spherical harmonic (SH) domain, but many modern spatial
regularization techniques were not yet formulated in SH-domain such that they
cannot benefit from the well known advantages. In this article we propose a novel
SH-formulation of the contour enhancement propagator (fiber continuity) which
enables to implement a variety of processing steps in SH-domain.

1 Introduction

Magnetic resonance imaging (MRI) has the potential to visualize non-invasively the
fibrous structure of the human brain white matter [5]. Based on the directional depen-
dency of water diffusivity in fibrous tissue it is possible to reveal underlying connec-
tivity information. There are numerous methods for estimating orientation distributions
on the basis of the diffusion-weighted MR-signal. We will focus on spherical decon-
volution [8], which is one way to estimate the so called fiber orientation distributions
(FOD) on the basis of the diffusion-weighted MR-signal. The idea is based on a model-
driven deconvolution scheme to turn the diffusion weighted MR-signal into a FOD.
Fiber orientation distributions are usually represented in spherical harmonic (SH) do-
main. However, sophisticated spatial regularizers based on R3 × S2-diffusion [1,2,3,6]
are difficult to implement in SH domain (apart from the simple isotropic ones [4]). They
all rely on an equiareal discretization of the two-sphere S2. Indeed, there are implemen-
tations [3] that use spherical harmonics as an intermediate S2-interpolation scheme, but
they cannot benefit from the well-known advantages of the spherical harmonic repre-
sentation such as the compact and memory efficient storage, the analytic and efficient
computations of S2-convolutions, and the closeness under rotations. In this article we
overcome these restrictions by showing how the generators of diffusion and convection
on R3×S2 can be described and implemented in terms of spherical harmonics and how
the spherical discretization as proposed in [3,6] can be avoided.

2 Theory

We are interested in solving or propagating a partial differential equation of the form
∂tφ(r,n, t) = Hφ(r,n, t) where φ is a function (typically the FOD) on R

3 × S2 and
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H a linear differential operator in the orientation n ∈ S2 and position r ∈ R3. The
orientation n corresponds the local fiber direction at location r in the brain. In [3] it was
shown that, if H generates directed diffusion/convection, then it is a linear/quadratic
form in n
∇ (convection and anisotropic diffusion) and linear in Δ = ∂2

x + ∂2
y + ∂2

z

and J 2, which denotes the Laplace-Beltrami operator on the two-sphere. Our goal is to
understand the action of the generator H , if the field φ is written in terms of a spherical
harmonics expansion

φ(r,n) =

∞∑
j=0

f j(r)
Yj(n) =

∞∑
j=0

m=j∑
m=−j

f j
m(r)Y j

m(n)

where the spherical tensor fields f j are obtained by the projections f j = 1
2j+1 〈Yj , φ〉,

where Yj are semi-Schmidt normalized spherical harmonics. Hence we are interested
in matrix elements Ĥjm

j′m′ = 〈Y j′
m′ , HY j

m〉 of H in spherical harmonic representation

such that the propagating equation can be written as ∂tf j
m(r, t)=

∑
j′,m′ Ĥ

jm
j′m′f

j′
m′(r, t)

where Ĥjm
j′m′ is a differential operator in r, but purely algebraic in the orientation co-

ordinate. The spherical Laplace-Beltrami operator is well known in this representa-
tion 〈Y j

m,J 2φ〉 = −j(j + 1)f j
m. Also for the spatial Laplacian Δ the result is trivial

〈Y j
m, Δφ〉 = Δf j

m (see [7]). But for the directed convection n · ∇ and the directed
diffusion (n · ∇)2 generator the results are more intricate. In our companion report [7]
we give the general proof for SE(3) diffusion, but state here the more simple case for
R3 × S2. For the convection generator one finds

〈Y j
m, (n · ∇)φ〉 =

∑
j′=−1,1

m=m′+q

2j′ + 1

2j + 1
〈jm|j′m′, 1q〉〈j0|j′0, 10〉 ∂1

qf
j′
m′ (1)

where ∂j
m = Rj

m(∇) is the so called spherical derivative operator, which is a j-
homogeneous differential as the solid harmonicRj

m(r)=rjY j
m(r/r) is a j-homogeneous

polynomial. The 〈jm|j′m′, 1q〉 are the so called Clebsch Gordan coefficients, which are
just real numbers. The sum runs over the indices j′,m′ and q, but note that due to the
selection rules of the Clebsch Gordan coefficients only very few terms remain (at most
6). On the other hand the diffusion generator takes the form

〈Y j
m, (n · ∇)2φ〉 = Δ

3
+

2

3

∑
j′=−2,0,2

m=m′+q

2j′ + 1

2j + 1
〈jm|j′m′, 2q〉〈j0|j′0, 20〉 ∂2

qf
j′
m′ (2)

Again the sum runs over j′,m′ and q and can contain at most 10 terms.

Spatially Regularized Spherical Deconvolution. The goal of spherical deconvolution
is to find a FOD φ such that ||Fφ− S||2 is minimized. Here S is typically the diffusion
weighted measurement normalized by the b0-image. The operator F denotes the spher-
ical convolution with the so called fiber response function. As F is highly non-regular
a regularizer is needed. In this article we consider the contour enhancement [3] regu-
larizer (also called fiber continuity [6]) RFC(φ) = λ

∫
(n · ∇φ)2 dxdn that prevents
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‘arbitrary’ smoothing and preserves and emphasize the fibrous nature of the data. In-
stead of smoothing isotropically like done in [4] the smoothing takes place only along
the current fiber direction. The idea behind is that a fiber which goes through voxel r
with direction n is very likely to go also through voxel r+ εn for some small ε.

The choice of regularization strength is a crucial issue. We found that too strong
regularization emphasizes discretization artifacts. On the other hand too low values lead
to less stable results. We found by a simple visual inspection of a simulated crossing a
value of λ = 0.005 is a good trade-off between stability and accuracy.

Optimization and Implementation. In order to find the optimum of Jreg = ||Fφ −
S||2+RFC(φ), one has to compute its derivative and set it to zero. This leads to (F
F−
λ(n · ∇)2)φ = F
S. The second term of the equation is formulated with the proposed
SH representation from equation (2) and solved by an ordinary conjugate gradients
(CG) scheme. The operator F is simple to implement in terms of spherical harmonics,
because it is a diagonal matrix. For details about the discretized sphere (512 directions)
approach we refer to our companion report [7]. For both methods the CG algorithm was
iterated 100 times, which was enough for convergence. For initialization a ’zero’ FOD
was used.
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Fig. 1. Two simulated crossing situations to compare the SH representation with the angular
discrete version. The simulation was performed with 64 gradient directions at a b-value of
1000s/mm2 and with a diffusion coefficient of 10−3mm2/s
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3 Experiments

The goal of the experiment is to compare the proposed spherical harmonic represen-
tation with the discrete angular representation of the fiber orientation distributions.
Therefore, we simulated the MR-signal of a crossing region with 64 gradient direc-
tions. The signal was simulated by using the standard exponential model Snfib(n) =

e−bD(n·nfib)
2

, that is, no diffusion perpendicular to a fiber is assumed. We have cho-
sen bD = 1, which emulates a b-value of 1000s/mm2 and a typical diffusion coeffi-
cient for the human brain. The generated signal was distorted by Rician noise Snoisy =√
(S + nreal)2 + n2

imag, where nreal and nimag are normally distributed real numbers with

standard deviation σ. The signal-to-noise ratio is defined as SNR = 1/σ, that is, the
SNR is calculated with respect to the b = 0 measurement. The crossing was created
on a 24× 24 voxel grid, where the tracts of the crossing are on average 5 voxels thick.
To get an impression look at Figure 1. To measure the performance of the deconvolu-
tion method, the local maxima of the estimated FODs are extracted and compared to
the ground truth direction (see [7] for details). A ground truth direction is said to be
detected, when it is in a range of 10◦ from a detected direction. To measure the per-
formance we used precision, recall and the f-score1. The precision rate reflects how
many of the directions detected by the algorithm are true fiber directions, on the other
hand, the recall rate gives the percentage of true fiber directions that were detected by
the algorithm. The f-score is just a measure reflecting the trade-of between recall and
precision. To generate the performance measures the simulations were repeated 100
times.

Method Comparison and Discussion. In Figure 1 we visually compare the spherical
harmonic implementation for a cutoff of L = 8 with the discrete version with 512 di-
rections on the sphere. We consider a crossing angle of 35◦ and 45◦. For both situations
one fiber bundle direction was chosen along the underlying Cartesian coordinate axis.
For the larger crossing, which is easier to resolve, we assumed a relatively low SNR of
7. For this case one can see that the discrete version is more susceptible to noise than the
spherical harmonic version, which is not astonishing due to the implicit regularization
by the finite SH-cutoff of L = 8. For the smaller crossing angle of 35◦ a higher SNR
of 20 was assumed. In this case a SH-representation of L = 8 is nearly at its limits
to discriminate between both directions, while the discrete version can still well distin-
guish. Further, one can observe that for both methods the FODs along the horizontal
Cartesian axis are sharper than along the skew axis. But this effect is more prominent
for the discretized version than for the spherical harmonic representation.

In Figure 2 we show quantitative results. The crossing was simulated for varying
crossing angles between 30◦ and 90◦. Additionally we varied the absolute pose α of
the crossing. For α = 0◦ the horizontal bundle is aligned with underlying x-axis of

1 Let TP be the number of successfully found ground truth directions, let FP be the number
of detections that are not in a range of 10 degree to a ground truth direction, and let FN the
number of ground truth direction that are not detected, then precision = TP/(TP + FP) and
recall = TP/(TP + FN) and f-score = 2 precision · recall/(precision + recall).
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Fig. 2. Detection accuracies in terms of precision/recall and f-score for different crossing angles
and absolute angles α. The measurement was simulated at a SNR = 20 with a value of bD = 1
and 64 gradient directions.

the Cartesian grid. With growing α the whole configuration is rotated clockwise. The
crossing was simulated at an SNR of 20, which is a realistic scenario. As a baseline ex-
periment we show results of the so called Constrained Spherical Deconvolution (CSD)
approach [9], where an additional positivity constraint is used to obtain more stable
results (original implementaion obtained by the author). Apart from the CSD approach
the results obviously depend on the absolute angle of the configuration due to the un-
derlying Cartesian voxel grid. The discrete approach has advantages for small crossing
angles, but suffers from a more severe dependency on the absolute orientation of the
configuration and less precision. For crossing angles above 45◦ the SH-based approach
solves the task nearly without any error.

In Figure 3 the results are further investigated by scatter plots in the φ, θ-plane. Each
extracted local maxima is represented as a blue dot in the φ, θ-plane, while the true di-
rections are depicted by solid red lines and the tolerance used for quantitative evaluation
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Fig. 3. Scatter plots in the φ-θ plane for the crossing configuration with a crossing angle of 50◦.
The angle φ is plotted along the x-axis, θ along the y-axis of the scatter plots. The intersections
of the thick red lines indicate the expected ground truth directions. The dotted lines indicate the
10◦ detection tolerance. On the left, the results for the configuration with an absolute angle of
α = 0 are shown, on the right the results for α = 15◦ are given.

by dashed red lines. With the same parameters as above a crossing of 50◦ was simulated
and reconstructed by the three methods. The crossing was simulated twice, for an abso-
lute angle of α = 0, i.e. one direction is along the x-axis, and secondly for an absolute
angle of α = 15◦. For α = 0 the SH-based approach is able to perfectly resolve the
direction along the x-axis (φ = 90◦), while the other direction (φ = 40◦) is a bit more
blurry. On the other hand, the discrete approach has severe problems with the φ = 90◦

direction, which explains the lack of precision, i.e. apart from the true direction there
are some additional local maxima that produce false positives. The main reason is the
interplay of the 64 gradient directions and the 512 discrete directions of the FOD. The
effect is reduced by an increase of measurement directions. But also the SH-based ap-
proach has problems when the number of measurement directions is too low. They are
revealed for an absolute angle of α = 15◦. Besides the uncertainty caused by the mea-
surement noise one can observe a systematic bias. For example, for the direction along
φ = 55◦, the center of the distribution is shifted in θ by approximately 5◦. Also for the
other direction the distribution is a bit squeezed. We also found that the main reason is
the low number of measurement directions. For example, for 128 gradient directions the
estimated directions are unbiased. Another way to reduce the effect is to decrease the
expansion cutoff of the spherical harmonic representation. For L = 6 and 64 gradient
directions the estimates do not show a bias. To conclude the differences: both methods
have problems when the number of measurements becomes too low. While the discrete
approach shows scattered, multimodal distributions, the SH-based approach shows a
slight systematic bias but the distributions stay unimodal.

In Figure 4 we show a real world example of the human brain. The setting of the
measurement is nearly the same like in the simulations. A b-value of 1000s/mm2 and
61 gradient directions were used with an isotropic resolution of 2mm. A kernel of the
form Snfib(n) = e−bD(n·nfib)

2

with bD = 1 was used as a model for deconvolution.
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Fig. 4. A real world example of the human brain. A coronal section is shown. Left: results of the
SH-based approach with L = 8, right: the discrete approach with 512 directions.

Figure 4 shows a coronal section in glyph representation. The green rectangle high-
lights a region with the largest differences. The red rectangle shows a regions where the
discrete approach shows a direction which does not appear for the SH-based approach.
Whether the direction is true or not is difficult to say, but the fact that it precisely points
along the x-axis makes it dubious.

Memory Consumption and Running Time. The memory consumption of the SH-
based and discrete approach is easy to compare. We want to consider the above real
world experiment as an example. The whole volume has a size of 96×96×60. Exploit-
ing the symmetry and realness each voxels consumes (L+ 2)2/4 complex numbers in
SH representation, resulting in 50 ·8 bytes for L = 8 and double precision. Overall, one
volume needs 962 · 60 · 50 · 8 = 220 MB. On the other hand, in discrete representation
with 512 direction needs 962 · 60 · 512 · 8 = 2264 MB, which is 10-times more com-
pared to the SH-representation. Recall, that the conjugate gradient algorithm needs four
instances of the volume in memory. The running time is more difficult to compare. The
application of (n · ∇)2 and the spherical convolution H are the important processing
steps. In case of the discrete approach one has to compute for each of the 512 compo-
nents six second order finite differences to get (n · ∇)2φ. For the SH-based approach
one also have to compute six finite differences, but the linear combinations of them to
obtain the final values are more expensive. In practice we found that one application of
(n·∇)2 with 256 discrete directions is comparable to an SH-based application of (n·∇)2

with L = 10. The computation of the operator H is negligible in SH-representation,
while it is the bottleneck for the discrete approach. The running time can heavily dif-
fer depending on the used library. For example, the highly optimized BLAS matrix-
multiplication shipped with MATLAB is 10 times faster than the standard non-optimized
version. To give an example, to reconstruct the above volume with 100CG iteration with
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512 directions takes on a Intel Xeon X7560 @ 2.27GHz about 20 minutes with a highly
optimized multiplication. For comparison, our SH-implementation for L = 8 takes
about 10 minutes on the same machine.

4 Conclusion

We proposed a SH-formulation for a family of diffusion/convection generators that are
of particular interest for the spatial regularization of FODs. The SH-formulation of-
fers advantages in terms of running time and memory consumption and keeps approx-
imately the performance and behavior of the original discrete implementation. While
the discrete implementation tends to produce additional local maxima and spikey dis-
tributions, the distributions of the SH-implementation are more smooth, but shows a bit
worse performance for smaller crossing angles.
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Abstract. 3D q-space can be viewed as the surface of a 4D hypersphere.
In this paper, we seek to develop a 4D hyperspherical interpretation of
q-space by projecting it onto a hypersphere and subsequently modeling
the q-space signal via 4D hyperspherical harmonics (HSH). Using this or-
thonormal basis, we analytically derive several quantitative indices and
numerically estimate the diffusion ODF. Importantly, we derive the in-
tegral transform describing the relationship between the diffusion signal
and propagator on a hypersphere. We also show that the HSH basis
expends less fitting parameters than other well-established methods to
achieve comparable signal and better ODF reconstructions. All in all,
this work provides a new way of looking at q-space.

1 Introduction

One of the first physical applications of quantum mechanics was in solving the
Schrödinger equation for the hydrogen atom. It had been solved in position-
space by Schrödinger, himself, but not in momentum-space, which is related
to position-space via the Fourier transform. The momentum-space solution was
of interest to quantum chemists because it could potentially reveal additional
quantum mechanical insights about the hydrogen atom not found in the position
space solution. Nearly a decade after Schrödinger’s work, V. Fock solved the
Schrödinger equation for the hydrogen atom directly in momentum-space. In his
classic paper [4], Fock stereographically projected 3D momentum-space onto the
surface of a 4D unit hypersphere, and after this mapping was made, he was able
to show that the momentum-space hydrogen orbitals could be simply expressed
in terms of 4D hyperspherical harmonics (HSH), which are the multidimensional
analogues of the 3D spherical harmonics.

In diffusion MRI, analogous to momentum- and position-space in quantum
mechanics, the signal decay and ensemble average propagator (EAP) are Fourier
transform (FT) pairs within the q-space framework:

P (k) =

∫
E(q)e−2πiq·kd3q, (1)

where k is the displacement vector in EAP-space and q is the diffusion wave-
vector in signal-space. We denote q = qu and k = kr, where u and r are 3D
unit vectors. An interesting problem, similar to that of the hydrogen atom, is
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whether a new interpretation of q-space can be obtained by stereographically
projecting q-space and EAP-space onto a hypersphere.

In this paper, following the work of Fock, we seek to develop a 4D hyper-
spherical interpretation of q-space by focusing on four things: 1) Modeling the
3D q-space signal in terms of the 4D HSH, which is achieved by stereographi-
cally projecting 3D q-space onto the surface of a 4D hypersphere; 2) Using this
single, orthonormal basis to reconstruct the diffusion orientation distribution
function (ODF); 3) Computing the familiar q-space metric zero-displacement
probability (Po) and introducing a novel hyperspherical diffusivity index; and
4) Deriving the integral transform that maps from the signal-hypersphere to the
EAP-hypersphere. The last point is especially significant because the integral
transform describing the relationship between any two functions individually
existing on some n-dimensional sphere Sn, given that the two functions are FT
pairs on the (n− 1)-plane, has never been derived. Lastly, we compare the HSH
basis to Bessel Fourier Orientation Reconstruction (BFOR) [5], and show that
HSH expansion requires less fitting parameters than BFOR to achieve compa-
rable signal and better ODF reconstructions.

2 Methods

2.1 4D Hyperspherical Harmonics

Consider the 4D unit hypersphere S3 existing in R4. The Laplace-Beltrami op-
erator on S3 is defined as ΔS3 = 1

sin2 β
∂
∂β sin2 β ∂

∂β + 1
sin2 β

ΔS2 , where ΔS2 is the

Laplace-Beltrami operator on the unit sphere S2. The eigenfuctions of ΔS3 are
the 4D HSH Zm

nl(β, θ, φ): ΔS3Zm
nl = −l(l+2)Zm

nl. The 4D HSH are defined as [3]

Zm
nl(β, θ, φ) = 2l+1/2

√
(n+ 1)Γ (n− l + 1)

πΓ (n+ l + 2)
Γ (l+ 1) sinl βCl+1

n−l(cos β) Y
m
l (θ, φ),

(2)
where (β, θ, φ) obey (β ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π]), Cl+1

n−1 are the Gegenbauer
(i.e. ultraspherical) polynomials, and Y m

l are the 3D spherical harmonics. The l
denotes the degree of the HSH, m is the order, and n = 0, 1, 2, ..., and these three
integers obey the conditions 0 ≤ l ≤ n and −l ≤ m ≤ l. The number of HSH
corresponding to a given value of n is (n + 1)2. The HSH form an orthonormal
basis on the hypersphere.

2.2 4D Stereographic Projection of q-space onto Hypersphere

In order to model the q-space signal with the HSH, we need to map 3D q-space
onto a 4D hypersphere of radius po, which is achieved via stereographic projec-
tion. The q-space coordinates are defined as qx = q sin θ cosφ, qy = q sin θ sinφ,
and qz = q cos θ. The coordinates of the signal-hypersphere are defined by the 4D
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vector s, whose components are s1 = po sinβ sin θ cosφ, s2 = po sinβ sin θ sinφ,
s3 = po sinβ cos θ, and s4 = po cosβ. The relationship between q and s is then

s1 =
2p2oqx
q2 + p2o

, s2 =
2p2oqy
q2 + p2o

, s3 =
2p2oqz
q2 + p2o

, s4 =
po(q

2 − p2o)

q2 + p2o
(3)

According to Eq. (3), the center of q-space (0, 0, 0) projects onto the south pole
(0, 0, 0,−po) of the hypersphere. As q →∞, the projection (s1, s2, s3, s4) moves
closer to the north pole (0, 0, 0, po). Eq. (3) establishes a one-to-one correspon-
dence between q-space and the 4D hypersphere.

Stereographic projection exhibits two important properties. First, it is confor-
mal, which means it preserves angles - the angles (θ, φ) in q-space are preserved
in 4D hyperspherical space. However, stereographic projection does not preserve
volume; in general, the volume of a region in the 3D plane doesn’t equal the
volume of its projection onto the hypersphere. In fact, the degree of volume dis-
tortion in going from a differential volume element in q-space d3q to that of the
hypersphere dV = p3odΩ can be shown to be

d3q =

(
q2 + p2o
2po

)3
1

p3o
dV =

(
q2 + p2o
2po

)3

dΩ =

(
po

1− cosβ

)3

dΩ, (4)

where dΩ = sin2 β sin θdβdθdφ.

2.3 Diffusion Signal Modeling via HSH Basis

Stereographically projecting q-space onto the hypersphere results in the q-space
signal existing along the surface of the hypersphere. According to Fourier analy-
sis, any square-integrable function defined on a sphere can be expanded in terms
of the spherical harmonics. Thus, stereographic projection allows the 3D q-space
signal to be expanded in terms of the HSH:

Epo(β, θ, φ) ≈
N∑

n=0

n∑
l=0

l∑
m=−l

CnlmZm
nl(β, θ, φ), (5)

where Epo denotes the q-space signal existing on hypersphere of radius po. The
realness of the diffusion signal requires use of the real HSH, and so we employ a
modified real basis proposed in [6] for Y m

l .
An important axiom to state is that the q-space signal, itself, remains in-

variant after the mapping - that is, for a given q-space point (qx, qy, qz) and
its corresponding projection on the hypersphere (s1, s2, s3, s4), E(qx, qy, qz) =
Epo(s1, s2, s3, s4). In q-space, the diffusion signal is even i.e. E(qx, qy, qz) =
E(−qx,−qy,−qz). Evenness in q-space doesn’t necessarily translate into even-
ness on the hypersphere. According to Eq. (3), (−qx,−qy,−qz) projects to
(−s1,−s2,−s3, s4), and so evenness in q-space is tantamount to Epo(s1, s2, s3, s4)
= Epo(−s1,−s2,−s3, s4) on the hypersphere, indicating that the signal is not
even on the hypersphere. In other words, stereographic projection destroys
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evenness. For this reason, we are free to use both the even and odd HSH. Thus,
for a given truncation order N , the total number of expansion coefficients is
W = (N + 1)(N + 2)(2N + 3)/6.

2.4 Relationship between EAP and q-space Signal on Hypersphere

Lets project 3D EAP-space onto a 4D hypersphere of radius po, whose coordi-
nates are defined by the 4D vector v = v(po, β

′, θ′, φ′). The Fourier relationship
given in Eq. (1) between the signal and EAP does not hold true on the hyper-
sphere. The question, then, is what integral transform maps from the signal-
hypersphere to the EAP-hypersphere. We show1, for the first time, that this
integral transform is

Ppo(v) = p3o

∫
Epo(s)

e−2πi[s·v−s4v4]/(1−cosβ)(1−cosβ′)

(1 − cosβ)3
dΩ, (6)

where Ppo denotes the EAP existing on hyphersphere of radius po. Eq. (6) is
not one of the more familiar integral transforms encountered in mathematics
literature.

2.5 HSH Metrics

A well-known q-space metric is Po ≡ P (k = 0) [1, 9], which is a measure of dif-
fusion restrictivity. k = 0 corresponds to the south pole of the EAP-hypersphere
i.e. β′ = π. Hence using Eq. (6) and the HSH basis, we can derive a hyperspher-
ical Po:

Po = Ppo(β
′ = π) =

∫
Ω∈S3

Epo(s)

(1− cosβ)3
dΩ =

∫
Ω∈S3

(
q2 + p2o
2po

)3

Epo(s)dΩ (7)

The integral in (7) is difficult to evaluate analytically, which is due to the non-
volume-preserving nature of stereographic projection. To overcome this, we com-
pute an uncorrected Po by assuming q-space is uniformly projected onto the
hypersphere:

Pounc =

∫
Ω∈S3

Epo(Ω)dV = p3o
∑
n,l,m

Cnlm

∫
Ω∈S3

Zm
nl(Ω)dΩ = π

√
2p3oC000,

(8)

where we use the fact that Z0
00 = 1

π
√
2
. Pounc will, naturally, suffer from volume

distortion, which is corrected for by a signal weighting operation discussed in
the next section.

1 For derivation, see http://brainimaging.waisman.wisc.edu/∼ameer/HSH Suppl.pdf
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Examples of q-space distance metrics include the q-space inverse variance
(QIV) [5] and the mean squared displacement (MSD) [1], which are measures
of diffusivity and only pertinent to planes. A useful distance metric defined on
the hypersphere is the chordal distance [7], denoted χ. Consider the two q-space

points Q = (qx, qy, qz) and Q̂ = (q̂x, q̂y, q̂z) and their corresponding projections

on the hypersphere S = (s1, s2, s3, s4) and Ŝ = (ŝ1, ŝ2, ŝ3, ŝ4), respectively. Then

the Euclidean (4D) distance between the projections S and Ŝ on the hypersphere
is given by the chordal distance, and it can be shown that

χ = χ(Q, Q̂) =
2p2o

√
(qx − q̂x)2 + (qy − q̂y)2 + (qz − q̂z)2√

q2 + p2o
√
q̂2 + p2o

, (9)

where q̂ =
√
q̂2x + q̂2y + q̂2z . If Q̂ = 0, then the distance between the projection

S and the south pole is χsp ≡ χ(Q, 0) = 2poq√
q2+p2

o

. Likewise, if q̂ → ∞, then

the distance between the projection S and the north pole is χnp ≡ χ(Q,∞) =
2p2

o√
q2+p2

o

. Geometrically, χnp and χsp are the chords on the hypersphere that

form the legs of a right triangle (by Thales’ theorem), with the diameter of the
hypersphere the hypotenuse. The ratio of these 2 chordal lengths illuminates the

relationship between the hypersphere radius po and q-space: po = q
χnp(q)
χsp(q)

(=

constant). It can be shown that cosβ =
χ2
sp−χ2

np

4p2
o

, which we define as the chordal

squared difference (CSD). We then define the mean chordal squared difference
(MCSD) as the CSD averaged over the surface of the signal-hypersphere i.e.
〈cosβ〉:

MCSD ≡ 〈cosβ〉 = p3o

∫
Ω∈S3

cosβ Epo(Ω)dΩ =
π√
2
p3oC100, (10)

where we use the fact that Z0
10 =

√
2 cosβ/π. MCSD is an inherently hyper-

spherical metric, whereas Po is a native q-space metric.

2.6 Numerical Implementation and Estimation of ODF

Consider M diffusion signal measurements (including b = 0) spread across k
shells in q-space. Denote G as the M x 1 vector representing the M measure-
ments, C the W x 1 vector of unknown expansion coefficients Cnlm, and A the
M x W matrix constructed with the HSH basis. Thus, we have a simple linear
model of the form G = AC. This system of over-determined equations is solved
via linear least squares (LLS) with Laplace-Beltrami regularization (LBR), yield-

ing Ĉ = (ATA+ λlLreg)
−1ATG, where Lreg is the LBR diagonal matrix with

entries l2(l + 2)2 along the diagonal. The regularization serves to reinforce the
positivity constraint of the signal.

Using Eq. (4), we correct for the volume distortion induced in Pounc by weigh-

ing each signal shell in q-space by
(

q2i+p2
o

2po

)3
, where qi is the radius of the ith
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shell, before signal fitting. The resulting “weighted” coefficients are then solely
used for computing Po via Eq. (8). The q-shell radii are listed in the next section.
The volume weighting of each q-shell, in this case, can be viewed as a sampling
density correction of the projected q-space points on the hypersphere.

Given the intricacy of Eq. (6), it is difficult to estimate the EAP analytically
using the HSH framework. However, the zeroth-order diffusion ODF [8] can be
numerically estimated. Lets construct a 11 x 11 x 11 (−qmax : Δq : qmax) Carte-
sian lattice, which we map onto the 4D hypersphere via Eq. (3). Once we have
computed the HSH expansion coefficients via LLS from the acquired data, Eq.
(5) can then be used the estimate the signal at any location on the hypersphere,
including the projected lattice points. Taking the fast Fourier transform (FFT)
of the HSH-estimated signal for the lattice gives the EAP. The radial projection
of the EAP then yields the ODF. Since the zeroth-order ODF is not inherently
normalized, we min-max normalize it [8].

3 Experiments

The synthetic and in vivo datasets use a hybrid, non-Cartesian q-space sampling
scheme (HYDI) [9], consisting of 7 baseline images acquired at b = 0 and 125
diffusion measurements spread across 5 shells in q-space. The number of encoding
directions and b-value (in s/mm2) for each shell are (6,300), (21,1200), (24,2700),
(24,4800), and (50,7500); and qmin = 15.79 mm−1, qmax = 78.95 mm−1, and
Δq = 15.79 mm−1.

Synthetic Data. Synthetic experiments were done the same way as in [5], with
data generated via the bi-exponential mixture model. We look at two equally
weighed fibers crossing at 45◦, and set eigenvalues of each diffusion tensor to
be [1.6,0.4,0.4]e-3, which gives FA=0.7071. Monte Carlo noise simulations were
performed to investigate the effect of SNR on the signal reconstruction. Five
SNR levels ([10 20 30 40 80]) for the b = 0 image were simulated, 1000 times
each, in a similar manner as in [5], and the quality of the HSH signal fit is
assessed by computing the normalized mean squared error (NMSE), given by
||S−Ŝ||2
||S||2 . The HSH parameters are N = 4, po = 42, and λl = 10−6 and those of

BFOR are taken from [5]. In the signal fitting, HSH expends W = 55 parameters
while BFOR uses 90.

Fig. 1 displays the HSH signal fit for each shell and the corresponding ground
truth in absence of noise, and shows that the HSH basis fits the diffusion signal
nearly perfectly across all b-values. Fig. 2 displays the results of the noise simu-
lations, with the NMSE plotted against SNR for each shell, and shows that the
HSH and BFOR bases have a nearly identical robustness to noise. Fig. 3 shows
the ground truth, HSH-estimated, and BFOR ODF profiles in absence of noise,
indicating that the HSH basis succesfully captures the geometry and orientation
of the ODF profile. However, as with the Laplacian modeling framework in dif-
fusion propagator imaging (DPI) [2], the HSH basis smoothens the ODF peaks.
The BFOR-estimated ODF is not as accurate as that of HSH.
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(a) b=300 (b) b=1200 (c) b=2700 (d) b=4800 (e) b=7500

Fig. 1. The ground truth diffusion signal (green) and reconstructed signal (red) using
HSH basis in absence of noise. Two equally weighted WM fibers were simulated crossing
at 45◦. Measurements from all 5 shells were used.
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(a) NMSE for HSH basis
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(b) NMSE for BFOR

Fig. 2. The normalized mean squared error (NMSE) of the HSH signal fit, left, and
BFOR signal fit, right, for each b-value plotted against SNR. 1000 noise trials were
simulated for each SNR level for two equally weighted fibers crossing at 45◦.

(a) HSH ODF (b) Ground Truth ODF (c) BFOR ODF

Fig. 3. The HSH-estimated ODF, ground truth ODF, and BFOR ODF in absence of
noise for two equally weighted fibers crossing at 45◦. The ODF is normalized to [0 1].
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(a) HSH Po (b) BFOR Po (c) MCSD

Fig. 4. Axial slices of Po, computed via HSH and BFOR bases, and MCSD maps for
a healthy, adult human

Real Data. HYDI was performed on a healthy, adult human using a 3 T GE-
SIGNA whole body scanner. MR parameters were TE=102ms, TR=6500ms,
FOV=24cm, matrix=96x96, voxel size=2.5x2.5mm2, 43 slices with slice thick-
ness=3mm, and scan time=15min. Diffusion parameters were δ = 37.86ms and
Δ = 43.1ms.

Axial slices of Po, computed via HSH and BFOR bases, and MCSD are shown
in Fig. 4. The Po map closely resembles BFOR’s, exhibiting both tissue/CSF
and WM/GM constrasts. The HSH Po map, however, has sharper WM/GM
contrast than BFOR’s (compare the left and right putamen in both maps),
which probably arises from the signal weighting operation. The MCSD map has
tissue/CSF contrast but very little WM/GM contrast, and interestingly, closely
resembles a mean squared displacement map. The MCSD can be viewed as a
hyperspherical diffusivity measure, and specifically, an index of isotropic diffusion
in neural tissue.

4 Discussion

We have introduced a new orthonormal basis to model the 3D q-space signal, and
from which various metrics can be analytically derived. 4D HSH signal modeling
allows for the capture of the radial and angular contents of the diffusion profile by
a single basis function, and the basis’ orthonormality provides robust numerical
stability. The HSH basis’ ability to give as good a signal reconstruction as BFOR
and better ODF reconstruction, but with less fitting parameters, implies that it
may be better suited to sparser sampling schemes than BFOR. Major drawbacks
of the hyperspherical interpretation of q-space, however, are the destruction of
the q-space signal’s symmetry by stereographic projection and the difficulty in
estimating the EAP via Eq. 6. Future work for HSH signal expansion includes
implementing it on sparser q-space sampling schemes, estimating the EAP, and
imposing a symmetry constraint.
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Abstract. Estimation of the diffusion propagator from a sparse set of
diffusion MRI (dMRI) measurements is a field of active research. Sparse
reconstruction methods propose to reduce scan time and are particularly
suitable for scanning un-coperative patients. Recent work on reconstruct-
ing the diffusion signal from very few measurements using compressed
sensing based techniques has focussed on propagator (or signal) esti-
mation at each voxel independently. However, the goal of many neuro-
science studies is to use tractography to study the pathology in white
matter fiber tracts. Thus, in this work, we propose a joint framework
for robust estimation of the diffusion propagator from sparse measure-
ments while simultaneously tracing the white matter tracts. We propose
to use a novel multi-tensor model of diffusion which incorporates the bi-
exponential radial decay of the signal. Our preliminary results on in-vivo
data show that the proposed method produces consistent and reliable
fiber tracts from very few gradient directions while simultaneously esti-
mating the bi-exponential decay of the diffusion propagator.

1 Introduction

To obtain accurate information about the neural architecture, diffusion spectrum
imaging (DSI) was proposed by [1]. However, this technique requires many mea-
surements, making it impractical to use in clinical settings. Consequently, other
imaging and analysis schemes, which use fewer measurements have been proposed
in [2–6]. These techniques acquire important information about the neural tissue,
which is missed by HARDI methods, yet, only a few of these are used in clinical
studies. Traditional methods that compute the entire propagator incorporating
the non-monoexponential decay of the signal, require many measurements at high

b-values (greater than 3000 s/mm2) [7, 8], making the scan time too long for un-
cooperative patients. Thus, reducing the number of measurements is an important
step towards making these techniques clinically viable.

Several methods have used the concept of compressed sensing to dramatically
reduce the number of measurements [5, 9–12]. However, all of these methods
estimate the fiber orientation distribution function (fODF) or the ensemble av-
erage propagator (EAP) at each voxel independently. Tractography is done as a
post-processing step, making it susceptible to errors in estimation of the prin-
cipal diffusion direction. On the other hand, most neuroscience studies require

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 510–517, 2013.
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tractography to analyze white matter fiber paths. Thus, we propose a joint frame-
work for tractography and EAP estimation using a causal filter - the unscented
Kalman filter (UKF), allowing for incorporating the correlation in water diffu-
sion along the fiber tracts. With experiments on in-vivo data, we show that the
proposed framework is rather robust to the number of measurements required,
giving very similar results for sparse as well as dense set of measurements spread
over two b-value shells (1000 and 4000 s/mm2). Thus, we propose a model based
framework which is an alternative to the compressed sensing based techniques
in terms of the number of measurements required to accurately represent the
bi-exponential decay of the diffusion signal.

2 Our Contribution

The proposed work has several novel contributions and extends the work of [13]
in a significant way; (i) The method in [13] uses a multi-tensor model with
the assumption of a mono-exponential signal decay, making it inaccurate for use
with high b-values. Note that, several studies have established the bi-exponential
decay of diffusion signal at high b-values [8]. Thus, we propose a novel multi-
tensor bi-exponential model of diffusion to represent the signal in the entire q-
domain, which also has an analytical form for computing the diffusion propagator
(EAP). Further, this representation is not limited to the spherical sampling
scheme as required by methods based on spherical functions. (ii) The proposed
UKF based method is robust enough for estimation of the EAP with very few
measurements, thus allowing for reducing the number of measurements required.
(iii) Most sparsity based methods report error in estimation of the EAP at an
individual voxel level, making it difficult to asses its effect on estimation of long
and short range fiber tracts. To the best of our knowledge, for the first time,
we compare the effect of using different number of measurements on tracing
several different fiber bundles on a very high b-value data set. We also report
error in estimation of return-to-origin probability (RTOP), a measure derived
from EAP, for each fiber bundle. (iv) Further, we propose a novel probabilistic
overlap metric to compute fiber bundle overlap, which is less sensitive to noise.

3 Methods

The diffusion signal S(q) : R3 → R+ is a real-valued function, which determines
the value of S at location q in q-space. Alternatively, S can also be written as
a function of b and a unit vector u, such that S(b,u) : R × S

2 → R
+, where

b = (2πq)
2 (

Δ− δ
3

)
= (2πq)

2
τ with δ being the duration of the gradient pulse,

Δ is the time between the gradients and q =‖ q ‖.
Signal Model: At low b-values, the signal decay as a function of b can be
approximated by a Gaussian, however at higher b-values, the signal decay is
markedly bi-exponential in nature [7, 14]. Signal from high b-values can provide
subtle information about the tissue, such as, fast and slow diffusion fractions,
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which cannot be obtained by assuming a mono-exponential decay. Further, as
shown in [15], high b-value data is more sensitive to minor changes in the under-
lying tissue. Consequently, we propose a novel multi-tensor bi-exponential model
to represent the diffusion signal in the entire q-space as follows:

S(b,u) =
1

n

n∑
i=1

w exp(−buTDiu) + (1− w) exp(−buT D̄iu), (1)

where w is the weight fraction of the fast diffusing component, Di = λ1mmT +
λ2

(
ppT + vvT

)
and D̄i = λ3mmT + λ4

(
ppT + vvT

)
are the diffusion tensors,

where we have assumed a cylindrical shape for the diffusion tensor as in [13]. The
corresponding diffusion propagator (EAP) has the following analytical form:

P (r) =
1

n

n∑
i=1

√
w

(4πτ)3|Di|
exp(

rTD−1
i r

−4τ ) +

√
(1− w)

(4πτ)3|D̄i|
exp(

rT D̄i
−1

r

−4τ ). (2)

Several analytical formulae can be derived from this expression, for example, the
return-to-origin probability (RTOP) P (0), is simply given by:

P (0) =
1

n

n∑
i=1

√
w

(4πτ)3|Di|
+

√
(1 − w)

(4πτ)3|D̄i|
. (3)

Modeling Assumptions: From reported experimental data [14] and some a-
priori knowledge about the human anatomy, we make certain assumptions about
the model in (1), which allows us to reduce the number of unknowns while
allowing for a robust estimation of the parameters. First, we assume that the
fast and slow diffusing tensors Di and D̄i have the same orientation but different
shapes, i.e. different eigenvalues. This is a reasonable assumption, since the fast
and slow diffusing components essentially sample the same biological tissue,
albeit at different diffusion times (given by the low and high b-value data). Thus,
they have the same orientation and differ only in the “amount” of diffusion in
different directions, which can be easily represented using the two eigenvalues
λ3, λ4 of D̄i. Similar to the work in [13, 16], in this preliminary work, we restrict
our experiments to the case where n = 2 assuming at-most two fiber crossings.
The proposed framework is however general enough to be used for three fiber
crossings as well. This could be done by adaptively adding a third component
if one of the two tensor components becomes planar, indicating a three-fiber
crossing. Experiments done in [14] have shown that throughout the brain, the
fraction of fast diffusing component is around 0.7, while the slow fraction is
0.3. We thus fix w = 0.7 in our work. This, however does not preclude us from
modeling other diffusion fractions as can be seen by adjusting the eigenvalues:
exp(−buTDu) = exp(−buT (Diso + D2)u) = α exp(−buTD2u), where we have
decomposed a diffusion tensor D into a sum of isotropic tensor Diso and an
anisotropic part D2 leading to α = exp(−bDiso). Thus, changing the eigenvalues
is equivalent to changing the volume fraction of the diffusion tensor. This also
proves that bi-exponential models cannot have a unique solution. In our case,
the UKF acts as a regularizer resulting in smooth parameter estimation.
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Thus, the number of unknowns per tensor compartment is 7 (3 for the eigen-
vector m, 2 eigenvalues of tensor Di and 2 eigenvalues of tensor D̄i). For a
two-fiber model, the total number of unknowns is 14. Note that, the proposed
model is different from that of [7], where the restricted compartment is modeled
in terms of the axonal diameter. On the other hand, the model of [14] is a gen-
eral model with a separate bi-exponential fit done for each gradient direction.
This model does not account for consistency in the spherical domain, making the
estimation quite susceptible to noise (which is significant at high b-values). The
NODDI model [17] utilizes Watson functions for representing the intra-cellular
components and a customized acquisition sequence for optimal performance.

Unscented Kalman Filter: We use the unscented Kalman filter (UKF), as
described in [13], for robust estimation of the parameters in (1). The UKF frame-
work has the advantage of estimating the model parameters and performing trac-
tography simultaneously, resulting in an inherent regularization of the model pa-
rameters and the tracts themselves. To use this state-space filter for estimating
the model parameters, we define the following four filter components: (1) The
system state (x): the model parameters, (2) The state transition function (f):
how the model changes as we trace the fiber, (3) The observation function (h):
how the signal appears given a particular model state, (4) The measurement
(y): the actual signal obtained from the scanner.

The state x of the system consists of the parameters of the model given by:
x = [m1 λ11 λ12 λ13 λ14 m2 λ21 λ22 λ23 λ24]. As in [13], we assume the state
transition function to be an identity matrix, since the diffusion signal does not
change much when stepping from one location to the next within a voxel (we
take very small step size). The observation function h(x) is given by equation
(1), which “predicts” the signal based on the model parameters x. Finally, y is
the signal measured by the scanner (we perform interpolation as in [13] to obtain
the signal at sub-voxel locations). The UKF allows for recursive estimation of the
parameters x and the confidence in the estimation of x via a covariance matrix
P . This is extremely important, since model parameters (and the corresponding
tracts) estimated with low confidence can essentially be discarded.

To initialize the model parameters x, we first estimate a single tensor using
the low b-value data to obtain the principal diffusion direction m. Next, the
UKF is run for several iterations (typically 20) at the same location to obtain a
reasonable estimate of the initial set of parameters for the bi-exponential model
(1). Next, we start the tractography process, by alternately estimating the pa-
rameters x and taking a small step in the direction of the principal diffusion
direction, until a suitable termination criteria is reached.

4 Experiments

We performed several experiments on in-vivo human data to demonstrate the
efficacy of the proposed method in computing the EAP and tracing the fiber
tracts. Our data set involved 4 different acquisitions of one subject done during
the same scanning session. The scans were acquired with N = {32, 40, 60, 120}
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(a) RTOP (b) Tractography Comparison

Fig. 1. (a) Tracts obtained with N = 120 measurements and colored using the esti-
mated RTOP. Notice the low values (red) in the gray matter and high values (blue)
in white matter, as expected. (b) Tracts generated using different number of mea-
surements: red(N = 120), green(N = 60), blue(N = 40) and white(N = 32). Note
the significant overlap between the fiber bundles. Overlap measure B60 = 0.97, B40 =
0.94, B32 = 0.92.

gradient directions at the following b-value shells: b = {1000, 4000}s/mm2 and
spatial resolution of 2.5mm3. We acquired different sparsely sampled scans to
avoid interpolating the densely sampled data and sub-sampling it, which could
potentially introduce errors and change the actual SNR (due to smoothing in
the interpolation process). In addition a T1 and T2-weighted images with 1mm3

resolution were also acquired with a total scan time of 61 minutes. All diffusion
images (of all scans) were spatially normalized and corrected for motion and eddy
current distortions using FLIRT [18]. T1-image parcellation was performed with
CMTK (www.nitrc.org/projects/cmtk) using the SRI24 atlas [19] and it was
subsequently registered to the diffusion space.

We performed whole brain tractography on each of the four data sets, using
the proposed method, by seeding 10 times (random) per voxel. Several fiber
bundles connecting two regions in the SRI24 atlas were extracted for subsequent
analysis. Figure 1 shows tracts connecting the precentral areas in the left and
right hemisphere. On the left, we show the tracts obtained with dense sampling
of 120 measurements (60 gradient directions per shell) and color coded with
the return-to-origin probability (RTOP). As expected, RTOP is low in gray
matter (yellow-red) and high white matter (green-blue). Figure 1 (right) also
shows the precentral fiber bundles obtained using all the four sampling schemes;
red(N = 120), green(N = 60), blue(N = 40) and white(N = 32). Note that, all
the other fiber bundles overlap significantly with the one obtained using dense
sampling (red). In Figure 2, we show two views of a part of the cortico-spinal
tract (CST) obtained by selecting fibers that pass through the internal capsule.
For the sake of clarity, we show results for N = 120 (red) and N = 32 (white).

Next, we provide some quantitative results on how well the proposed method
traces various fiber bundles (from different scans) relative to the dense sampling
method (gold standard) with N = 120. To quantify the overlap between two
fiber bundles, we propose to use the Bhattacharyya metric B on probability
distributions [20]. We compute probability distribution for each of the spatial

www.nitrc.org/projects/cmtk
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(a) Coronal (b) Sagittal

Fig. 2. Two views of the CST. Red - fibers obtained with dense sampling (N = 120) and
white - fibers with sparse sampling (N = 32). Note that, despite the sparse sampling
the later method traces similar regions of the brain. Overlap measure B32 = 0.9.

co-ordinates (x, y, z) of a fiber bundle (denote the probability distribution func-
tion (pdf) on the x-coordinate of the gold standard as pg(x)). Then, the Bhat-

tacharyya metric Bx is given by: Bx =
∫ √

pg(x)p(x)dx, where p(x) is the pdf
of a fiber bundle to be compared. To compute the distance between two fiber
bundles, we simply take an equally-weighted combination in each co-ordinate:

B =
1

3

(∫ √
pg(x)p(x) dx+

∫ √
pg(y)p(y) dy +

∫ √
pg(z)p(z) dz

)
.

This metric has several advantages: 1). The values of B are bounded between 0
and 1. Thus, B will be 1 for a perfect match between two fiber bundles and 0 for
no overlap at all. 2). Since the probability distributions are smooth, the metric
accounts for minor deviations in tracts due to noise (as opposed to discretizing
the fibers to obtain a label map for computing the dice coefficient).

We selected 66 different cortical regions from the SRI24 atlas and computed
B for each of the fiber bundles that connected these regions. Fiber bundles ob-
tained using N = 120 measurements were considered as the “gold standard” and
distance (B) between fiber bundles obtained with sparser set of measurements
were computed. Figure 3 shows the connectivity network for the three different
acquisitions color coded with the distance B between the fiber bundles. Note
that, B varies between 0.8 and 0.9 for all the acquisitions indicating a good
overlap of the traced fibers. Further, as expected, the acquisition with N = 120
is closest to the gold standard, while the one with N = 32 has only a few fiber
bundles with overlap close to 0.8.

We performed a similar analysis on the network, by computing the normalized

mean error E in estimation of RTOP for each of the fiber bundles (E =
|mg−m|

mg
,

where mg and m is the mean RTOP for the gold standard and the other fiber
bundle respectively). Figure 4 shows result for all the three acquisitions (with the
dense one being the gold standard). In general, the percentage error in estimation
of RTOP is small (around 2-3%), which is close to the variability between two
different scans of the same subject. However, there are a few fiber bundles for
which the percentage is around 10%, specially for the N = 32 acquisition data.
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(a) N=32 (b) N=40 (c) N=60

Fig. 3. Fiber bundle overlap measure B between the “gold standard” (N = 120) and
the corresponding fiber bundles obtained from sparser acquisitions. B is greater than
0.8 in all cases (all acquisitions), and close to 0.9 in most cases.

(a) N=32 (b) N=40 (c) N=60

Fig. 4. Color coding reflects normalized mean error in estimation of RTOP compared
to the “gold standard” in all fiber bundles traced for different acquisitions

5 Conclusion and limitations

In this work, we proposed a novel bi-exponential multi-tensor tractography
framework for consistent estimation of the diffusion propagator and fiber tracts.
We investigated our technique on four different data sets from the same sub-
ject but with different number of gradient directions. Our quantitative results
showed that the tracts traced with sparser set of samples (N = 32, 40, 60) showed
good overlap with those traced using dense sampling of N = 120. Further, the
estimated diffusion measure of return-to-origin probability (RTOP) for sparser
data sets was quite consistent with that obtained from the dense one. We should
however note that, this work is quite preliminary in nature and essentially a
proof-of-concept. Our future work entails comprehensive comparison on several
subjects as well as quantifying error in different diffusion measures.

Acknowledgements. This work has been supported by NIH grants: R01MH
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References

1. Wedeen, V., Hagmann, P., Tseng, W., Reese, T., Weisskoff, R.: Mapping complex
tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic
Resonance in Medicine 54(6), 1377–1386 (2005)



Diffusion Propagator Estimation from Sparse Measurements 517

2. Wu,Y., Alexander, A.: Hybrid diffusion imaging. NeuroImage 36(3), 617–629 (2007)
3. Jensen, J., Helpern, J., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis

imaging: The quantification of non-gaussian water diffusion by means of magnetic
resonance imaging. Magnetic Resonance in Medicine 53(6), 1432–1440 (2005)
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Abstract. Diffusion-weighted imaging (DWI) enables investigation of
the brain microstructure by probing natural barriers to diffusion in tis-
sues. In this work, we propose a novel generative model of the DW signal
based on considerations of the tissue microstructure that gives rise to the
diffusion attenuation. We consider that the DW signal can be described
as the sum of a large number of individual homogeneous spin packets,
each of them undergoing local 3-D Gaussian diffusion represented by
a diffusion tensor. We consider that each voxel contains a number of
large scale microstructural environments and describe each of them via
a matrix-variate Gamma distribution of spin packets. Our novel model of
DIstribution of Anisotropic MicrOstructural eNvironments in DWI (DI-
AMOND) is derived from first principles. It enables characterization of
the extra-cellular space, of each individual white matter fascicle in each
voxel and provides a novel measure of the microstructure heterogeneity.
We determine the number of fascicles at each voxel with a novel model
selection framework based upon the minimization of the generalization
error. We evaluate our approach with numerous in-vivo experiments,
with cross-testing and with pathological DW-MRI. We show that DIA-
MOND may provide novel biomarkers that captures the tissue integrity.

1 Introduction

Diffusion-weighted imaging (DWI) enables investigation of the brain microstruc-
ture by probing natural barriers to diffusion in tissues. Because the DWI spacial
resolution is typically on the order of 6−27mm3, the measured DW signal in each
voxel combines the signal arising from a variety of heterogeneous microstructural
environments including multiple cell types, sizes, geometries and orientations
and extra-cellular space. This is well known to give rise to an overall observed
non-monoexponential decay [9,1,7,10]. Multiple models have been proposed to
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Fig. 1.Multiple scales of intra-voxel heterogeneity are responsible for the observed non-
monoexponential decay (Ax: axons with various degrees of myelination; As: Astrocyte;
O: Oligodendrocyte). (a): Large scale heterogeneity includes the mixing of large scale
microstructural environments (LSME) such as the mixing of multiple WM fascicles
with extra-cellular space. (b): Furthermore, each LSME may contain a complex varying
microstructure such as axons with varying radii and degrees of myelination. (c): At an
even smaller scale, other biophysical mechanisms such as intracellular heterogeneities
and the proximity of cell membranes that locally restricts motion may contribute to
the signal decay behavior. For example, Sehy et al. [8] observed a non-monoexponential
decay within the intracellular space of a single cell, the frog oocyte.

account for the observed non-monoexponential decay. Among them, generative
models focus on modeling the biophysical mechanisms underlying the MR sig-
nal formation and are of great interest to characterize the white-matter (WM)
microstructure. In this context, Assaf et al. [1] proposed in CHARMED to rep-
resent the intra-axonal diffusion with a model inspired by the analytic diffusion
in impermeable cylinders, which however required b-values up to 10000s/mm2

to distinguish between multiple fascicles. Zhang et al. [10] proposed in NODDI
to represent it with a spherical Watson distribution of sticks. The appropriate
model for representing each compartment, however, remains an open question.

The solution may lie in considering a more detailed model of the tissue mi-
crostructure that gives rise to the diffusion attenuation. Particularly, it is likely
that the observed non-monoexponential decay arises from both large scale and
small scale intra-voxel heterogeneity (see Fig.1). In [9], Yablonskiy et al. pro-
posed a statistical distribution model of the apparent diffusion coefficient (ADC)
that intrinsically reflects the presence of heterogeneous micro-structural envi-
ronments in each voxel. They assumed that the DW signal in a voxel can be
described as a sum of signals from a large number of individual spin packets,
each of them undergoing local isotropic Gaussian diffusion described by an ADC
D. Originally mono-directional, this model was extended to the multi-directional
case by estimation of one ADC per direction. This model, however, does not cap-
ture the anisotropic diffusion observed in the brain. It cannot characterize the
restricted diffusion such as occurs in dense WM fascicles. A generalization of [9]
may be achieved by representing each spin packet with a full diffusion tensor
D. This, however, is analytically challenging because it implies the integration
of a matrix-variate distribution of probability defined over the set of symmetric
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positive-definite (SPD) matrices. Basser et al. [2] proposed a normal distribution
for symmetric matrices that is however not restricted to SPD matrices.

In contrast, a natural distribution for SPD matrices is the matrix-variate
Gamma distribution, which generalizes the Wishart distribution by allowing a
non-integer number of degrees of freedom. In [5], a mixture of Wishart distribu-
tions with prespecified degree of freedom was used to discretize the manifold of
the fascicle orientation distribution in a spherical deconvolution (SD) approach,
and was shown to successfuly capture the fascicle orientation. SD, however, relies
on the definition of a prespecified convolution kernel that is assumed constant
for all the brain. Therefore, variations of the fascicles microstructure (Fig.1b)
are conflated with variations of the estimated mixing proportions, and SD can-
not provide an indicator of the WM microstructure. Additionally, SD relies on
an acquisition with a single non-zero b-value, and water molecules with very
different restrictions such as water molecules in the extra-cellular space and in
the intra-axonal space cannot be distinguished.

In contrast, a generative model based upon the 3-D generalization of the ap-
proach in [9] together with the acquisition of multiple non-zero b-values will
enable characterization of both the WM structure and microstructure. However,
unlike [5], this requires the identification of the appropriate model complexity,
which is a challenging model order selection problem. In the literature, most
approaches such as the Bayesian Information Criterion (BIC), the F-Test or the
Bayesian Automatic Relevance Determination (ARD) focus on assessing the fit-
ting error of each model while penalizing complex models to avoid overfitting.
However, the choice of a penalization strategy and the trade-off between penal-
ization and quality of fit are rather arbitrary and produce highly variable results.
In contrast, generative models are predictive models, and a natural measure to
identify the appropriate model complexity is the generalization error (GE). It
describes how well a model can predict new data not included in the estima-
tion. Typically, a model not complex enough to represent a dataset will have
a large GE, and so will a too complex model so that it overfits the data. The
GE, however, cannot be computed directly and must be approximated. Leave-
one-out cross-validation provides an estimate with low bias but large variance,
leading to high root mean squared errors [3]. K-fold cross-validation provides
an estimator with lower variance but increased bias. Instead, the .632 bootstrap
approach of [3] has been shown to provide low bias and low variance.

In this work, we propose a statistical distribution model of the diffusion in
which we model the signal arising from each spin-packet with a 3-D diffusion
tensor and the presence of multiple large scale microstructural environments in
each voxel with a mixture of peak-shaped matrix-variate Gamma distribution
of spin-packets. This has analytical solution and enables us to derive a novel
generative model that describes the DIstribution of Anisotropic MicrOstructural
eNvironments with DWI (DIAMOND). Our model is derived from first principles
and allows for the representation of both unrestricted diffusion and multiple
fascicles with heterogeneous orientations, while providing a novel measure of
heterogeneity of the microstructure. We determine the number of fascicles at
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each voxel with a novel model selection framework based upon the minimization
of the generalization error estimated with the bootstrap .632 approach [3,6]. We
evaluate our approach with numerous in-vivo experiments, with cross-testing
and with pathological DW-MRI. Importantly, we show that it may provide a
novel biomarker that reflects the WM microstructure integrity.

2 Theory and Methods

A Generative Model of the Diffusion Signal. Following the ADC approach
of [9], we consider that the measured signal can be described by a sum of sig-
nals arising from a large number of individual spin packets within the voxel. In
contrast to [9], we consider that each spin packet undergoes homogeneous 3-D
Gaussian diffusion represented by a diffusion tensor D, whose contribution for
a diffusion gradient gk is : S0 exp

(
−bkgT

k Dgk

)
dD. The fraction of spin packets

described by a same D in the voxel is given by a matrix-variate distribution
P (D), leading to the signal generation model :

Sk = S0

∫
D∈S+

3

P (D) exp
(
−bkgT

k Dgk

)
dD , (1)

where S+
3 is the set of 3× 3 SPD matrices. If a voxel was composed of exactly a

single homogeneous microstructural environment (ME) characterized by exactly
D0, P (D) could be modeled by a matrix Dirac delta function P (D) = δ(D −
D0) and our model is equivalent to DTI. If it were to contain several exactly
identifiable ME, a mixture of delta functions could be used. However, it is more
realistic to consider that a voxel contains multiple large-scale microstructural
environments (LSME) (Fig. 1), each of them having some degree of heterogeneity.

We consider that a voxel contains N LSMEs and we model the composition of
each LSME j with a matrix-variate Gamma probability distribution Ppj ,Σj (D) of
spin packets. Specifically, a random matrix D ∈ S+

3 has a matrix-variate Gamma
distribution with shape parameters pj > 1 and Σj ∈ S+

3 if it has density:

Ppj ,Σj (D) =
|D|p

j−2

|Σj |pj

Γ3(pj)
exp(−trace(Σj−1

D)) , (2)

where Γ3 is the 3-variate gamma function and | · | the matrix determinant.
The distribution Ppj ,Σj is a peak-shaped distribution. Its expected value is

Dj
0 = pjΣj and describes here the average diffusivity of the LMSE j. The shape

parameter pj determines the concentration of the distribution, the density (2)
becoming more concentrated about Dj

0 as pj increases. This captures the mi-
crostructural heterogeneity of each LMSE j. We consider that the LSMEs are in
slow exchange by considering P (D) =

∑N
j=0 fjPpj ,Σj(D) where fj ∈ [0, 1] are

the volume fractions of occupancy and sum to one, leading to:

Sk = S0

N∑
j=0

fj

∫
D∈S+

3

Ppj ,Σj (D) exp
(
−bkgT

k Dgk

)
dD (3)
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The integrals in the right-hand side of (3) are Laplace transforms of Ppj ,Σj (D),
which have a known analytical expression [4]. This leads to the generative model:

Sk = S0

N∑
j=0

fj exp

(
−pj log

(
1 +

bkg
T
k D

j
0gk

pj

))
(4)

Using the Taylor expansion −p log(1+ u
p
) =

∑∞
l=1

(−1)l

l
ul

pl−1 about u = 0 it follows

that: Sk = S0

∑N
j=0 fj exp

(
−bkg

T
k D

j
0gk + 1

2pj

(
bkg

T
k D

j
0gk

)2− 1
3p2

j

(
bkg

T
k D

j
0gk

)3
+ . . .

)
.

It shows that when pj → ∞ for all j, which corresponds to infinitely narrow
Ppj ,Σj (D)’s, our model is equivalent to the multi-tensor model. In contrast, fi-
nite values of pj captures the heterogeneity of each LMSE. Note that the decay
rate decreases as the b-value increases, modeling a non-monoexponential decay.

Model Order Selection for Generative Models. We present our novel
model order selection approach based on the minimization of the generalization
error (GE). The model (4) is a generative model that relates input parameters
xk (the diffusion sensitization direction and strength) to output measurements
yk (the diffusion attenuation). Denoting by z = {z1, ..., zn} with zi = (xi, yi)
the set of n training data, by Gz(x) the model whose parameters were estimated
with z, and by z0 = (x0, y0) a new hypothetical data point, the GE conditional
on the observed data is :

Eg|z = Ez0∼F

[
|y0 − Gz(x0)|2

∣∣z] , (5)

where E[.] is the statistical expectation and z0 ∼ F indicates that the expectation
is taken over the new data point that follows some distribution F . To account
for the variability of the observed data points, the unconditional GE can be

defined as the expectation of (5) over all z : Eg = E
zi

iid∼F

{
Eg|z

}
. We propose

to estimate Eg with the .632 bootstrap approach [3]. It counter-balances the

positive bias of the leave-one-out bootstrap estimate ÊBS
g by the negative bias

of the fitting error estimate Êfit
g , by assessing: Ê632

g = 0.368 Êfit
g + 0.632 ÊBS

g .

The 0.632 coefficient comes from that, on average, ÊBS
g uses [1− (1− 1

n )
n]n data

point at each bootstrap iteration, which is approximately equal to 0.632 for large
n. We refer to [3] for details of the expressions of Êfit

g and ÊBS
g . As in [6], we first

consider a model with a single compartment and then progressively increase the
model complexity as long as it provides a statistically significant decrease in GE.

Methods. At each voxel, we considered one matrix-variate Gamma distri-
bution with isotropic Diso

0 = diag(3× 10−3)mm2/s to model the diffusion of un-
restricted water and up to 3 matrix-variate Gamma distributions with tensor
Dj

0 to represent up to three fascicles. The .632 bootstrap model order selection
was performed with B = 30 bootstrap iterations. Similarly to [7], the model pa-
rameters were estimated using a maximum a posteriori approach by considering
a diffusion model with gradually increasing complexity, from the ball-and-stick
model to the full DIAMOND model.
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Fig. 2. (a) Plots of log(Sk/S0). Our model captures the non-monoexponential decay
observed in a region of a single fascicle direction. Note that the plotted data points were
not used for the model estimation. (b) Cross-testing evaluation: difference between the
mean-square prediction error of DIAMOND and MTM (lower is better).

Evaluation of the benefits of DIAMOND with actual MR measurements is
challenging because we cannot rely on any ground truth providing the distribu-
tion of MEs in each voxel. First, we performed an experiment to illustrate that
our model captures the non-monoexponential decay. In vivo imaging was carried
out on a healthy volunteer using a Siemens 3T Trio scanner with a 32 channel
head coil and the following parameters : FOV=220mm, 68 slices, matrix=128×128,

resolution=1.72× 1.7× 2mm3. We focused on imaging the body of the corpus cal-
losum (see Fig.2), a region known to contain a single fascicle orientation. We
measured the diffusion attenuation in both the parallel and perpendicular direc-
tions with respect to the fascicles (Fig.2i), with various b-values from 500 to 5000
by increments of 250. The number of repetition for each b-value was determined
to ensure uniform SNR across b-values, resulting in a total of 548 DW images.
We also imaged a multi-shell (Fig.2ii) with 95 DW-images (5 b=0, 30 b=1000 and

15 images at each of b=1500, 2000, 2500, 3000). The multi-shell HARDI was utilized
to estimate the parameters of our model. We then compared the diffusion decay
predicted by DIAMOND to the actual measured diffusion decay.

To further characterize DIAMOND, we performed a cross-testing analysis.
This procedure consists in repeatedly splitting the set of DW images into a
random estimation set and testing set, estimating the parameters with the for-
mer and evaluating the performance on the latter. This measures the predic-
tion performance and objectively characterizes how well a model captures a
phenomenon. This, however, requires a large number of measurements. We per-
formed a multi-shell acquisition with 395 images (5b = 0 and 15 shells of 26

directions with b ∈ [200, 3000] by increments of 200). We repeated the estimation-
testing process 100 times, using at each iteration 70% of the data for estimation
and 30% for testing. We computing the mean-square prediction error at each
voxel across the iterations. We compared DIAMOND to the multi-tensor model
(MTM), which corresponds to using infinitely narrow distributions (pj =∞).
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Fig. 3. TSC patient with CUSP65 imaging. Particularly, it shows that the orientation
of the estimated fascicles (b) and the fractions of occupancy (c) correctly matches the
known anatomy, while only 65 DW-images were acquired.

Finally, a great potential of assessing the distribution of MEs in the brain
is the potential derivation of novel bio-markers that reflect the tissues integrity.
We imaged a patient with Tuberous Sclerosis Complex (TSC), a genetic disorder
characterized by the presence of benign tumors in the brain called cortical tu-
bers. 65 DW-images were acquired with a CUSP65 (CUbe and SPhere) gradient
encoding set [7], which achieves multiple b-values and directions with short echo
time and high SNR. The data acquisition protocol was approved by the IRB.

3 Results

Fig 2a shows that DIAMOND successfully captures the non-monoexponential
decay observed in the body of the corpus callosum. Fig 2b demonstrates that
the cross-testing error is qualitatively lower with DIAMOND than with MTM.
Quantitatively, a paired t-test on the differences between the testing errors at
each voxel shows that DIAMOND is significantly better than MTM (p < 10−8)
with a mean error decreased by over 8%. Finally, Fig 3 reports DIAMOND
imaging of a TSC patient. It shows decreased concentration parameter pj (i)
and increased fraction of unrestricted diffusion (ii) in the region of the tuber.

4 Discussion

We proposed a generative model motivated by biophysical considerations of the
microstructure that gives rise to the DW signal. Inspired by the approach of [9],
we considered that the signal in a voxel is the sum of the signal arising from a
large number of homogeneous spin packets within each voxel. In contrast to [9],
we considered that each spin packet locally undergoes 3-D Gaussian diffusion
described by a diffusion tensor, capturing the 3-D geometrical structure of the
local restrictions to water diffusion. We formulated the DIAMOND generative
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model (4) which describes each large-scale microstructural environment (LSME)
in the voxel with a matrix-variate Gamma distribution of spin packets. The
concentration of each distribution was estimated, providing a novel measure of
the microstructural homogeneity. Interestingly, DIAMOND is equivalent to the
multi-tensor model when the distributions are infinitely concentrated. Unlike
[5,10], our model does not rely on a convolution kernel with prespecified diffu-
sivity. In contrast to [10], we have considered multiple fascicles per voxel (up to
3). We employed a novel model order selection approach based on the minimiza-
tion of the generalization error. Using moderate b-values ≤ 3000 s/mm2 (unlike
[1]), we showed that both the estimated number of fascicles and fascicle orienta-
tions matches the known anatomy, even with a moderate number of DW images
(Fig 3b). We showed that DIAMOND captures the non-monoexponential decay
(Fig 2a) and better captures the underlying biophysical mechanisms underlying
the DW signal formation compared to the MTM (Fig 2b). Interestingly, DIA-
MOND imaging in a patient with TSC showed that, in the region of the tuber,
the estimated fraction of unrestricted diffusion is increased (Fig 3c.ii). This might
reflect an increased extra-cellular space, the presence of perivascular spaces, or
the presence of giant cells typically observed in TSC brain specimens. Impor-
tantly, we observed a reduction in the concentration parameter for the fascicle
located in the tuber (Fig 3c.i), indicating an increased anisotropic heterogeneity
consistent with the orientation of the fascicle. In contrast, there was no signifi-
cant heterogeneity consistent with unrestricted diffusion. We speculate that this
may reflect heterogeneous myelination or heterogeneous mixture of glial cells as
observed in mice models of TSC. In future work we will compare DIAMOND
to NODDI and CHARMED with cross-testing, and investigate the possibility of
characterizing different types of tubers in TSC. DIAMOND imaging may enable
novel investigations in both normal development and in clinical practice.
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Abstract. The advent of diffusion magnetic resonance imaging (DMRI)
presents unique opportunities for the exploration of white matter connec-
tivity in vivo and non-invasively. However, DMRI suffers from insufficient
spatial resolution, often limiting its utility to the studying of only ma-
jor white matter structures. Many image enhancement techniques rely
on expensive scanner upgrades and complex time-consuming sequences.
We will instead take a post-processing approach in this paper for res-
olution enhancement of DMRI data. This will allow the enhancement
of existing data without re-acquisition. Our method uses a generative
model that reflects the image generation process and, after the param-
eters of the model have been estimated, we can effectively sample high-
resolution images from this model. More specifically, we assume that
the diffusion-weighted signal at each voxel is an agglomeration of signals
from an ensemble of fiber segments that can be oriented and located
freely within the voxel. Our model for each voxel therefore consists of
an arbitrary number of signal generating fiber segments, and the model
parameters that need to be determined are the locations and orienta-
tions of these fiber segments. Solving for these parameters is an ill-posed
problem. However, by borrowing information from neighboring voxels,
we show that this can be solved by using Markov chain Monte Carlo
(MCMC) methods such as the Metropolis-Hastings algorithm. Prelimi-
nary results indicate that out method substantially increases structural
visibility in both subcortical and cortical regions.

1 Introduction

Diffusion magnetic resonance imaging (DMRI) [3] is a key imaging technique for
the investigation and characterization of white matter pathways in the brain.
It probes water diffusion in various directions and at various diffusion scales
to characterize micro-structural compartments that are much smaller than the
voxel size. However, limited by today’s imaging technique, the typical (2mm)3

resolution of DMRI is too coarse to sufficiently capture the subtlety of neuronal
axons, diameters of which range from 1μm to 30μm [3,9,11]. This causes signif-
icant partial volume effect since the signal collected at each voxel is likely to be
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Fig. 1. Ambiguity Due to Partial Volume Effect. Radically different subvoxel
fiber configurations (red) can result in similar fiber ODF shapes (blue).

due to multiple fascicles that concurrently traverse the voxel. Acquiring images
with resolution higher than the typical (2mm)3, however, is extremely difficult
without incurring unrealistic scan times and causing very low SNR due to re-
duced voxel size [9]. The impact of noise is aggravated in high angular resolution
diffusion imaging (HARDI), which often requires prolonged echo time (TE) to
achieve relatively high diffusion weighting.

In this paper, we propose to harness the rich connectivity information afforded
by DMRI for estimating a generative model that best explains the observed data.
By sampling from this model using a resolution that is higher than the acquisition
resolution, high-resolution images can then be generated. More specifically, we
assume that the diffusion-weighted signal at each voxel is an agglomeration of
signals from an ensemble of fiber segments that can be oriented and located
freely within the voxel. Our model for each voxel therefore consists of an arbitrary
number of signal generating fiber segments, and the model parameters that need
to be determined are the locations and orientations of these fiber segments.

Solving these parameters is an ill-posed problem. For example, Fig. 1 illustrates
that, due to the symmetrical nature of diffusion-weighted MR measurements, the
resulting fiber orientation distribution functions (ODFs) are symmetric and do
not distinguish between curving and fanning fiber configurations. Put differently,
even though the fiber segments that form the fibers traversing this voxel are lo-
cated and oriented in radically different configurations, the signal observed within
this voxel cannot be used to disambiguate between the configurations, let alone
be used to estimate the configurations of the fiber segments. One viable solution
to this is to gather information from neighboring, anatomically connected voxels
to regularize the problem. The continuous nature of the fiber trajectories provides
subvoxel information that can help super-resolve the voxel. This provides a pow-
erful mechanism that allows us to collapse measurements across multiple voxels
to estimate micro-structural properties with spatial resolution that is finer than
the voxel dimensions. We will show that the associated problem can be solved
by using the Metropolis-Hastings algorithm [2, 5], a Markov chain Monte Carlo
(MCMC) method that is well suited for solving high-dimensional problems.
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2 Approach

We assume that the signal at each voxel is an agglomeration of signals from con-
stituent fiber segments that reside within the voxel. Formally, denoting the signal
at location x and gradient direction g as E(x,g) = S(x,g)/S0(x), we define the
generative model of this signal in the form of spatio-angular decomposition:

E(x,g) =
∑
i

G(x,xi)Ei(g) + ε(x,g) s.t. M. (1)

Our task is to solve for the parameters of model M by minimizing error ε(x,g)
and at the same time imposing some form of regularity on the solution, i.e,

min
M

[Θ(M)] = min
M

⎧⎪⎨⎪⎩
∫

Ωx×Ωg

|E(x,g) −
∑
i

G(x,xi)Ei(g)|2dxdg + γΦ(M)

⎫⎪⎬⎪⎭ . (2)

Here G(x,xi) = e−|x−xi|2/σ2

models the smoothing effect owing to signal averag-
ing and Φ(·) is a regularization term that enforces a certain degree of cross-voxel
smoothness in the model M, which encodes the fiber configuration. The pre-
dicted signal is generated via an ensemble of constituent signals {Ei(·)}, each
assumed to be generated by the i-th fiber segment located at xi. γ is a tun-
ing parameter that balances the two terms. The L2-norm is evaluated over all
locations (denoted by set Ωx ⊂ R3) and gradient directions (denoted by set
Ωg = S2), i.e., the position-orientation space (POS). The goal here is to deter-
mine the parameters (i.e., locations and orientations) of the fiber segments that
will result in a configuration that can best explain the observed signal E(x,g).
Unlike approaches such as spherical deconvolution [10] that seek to decompose
the signal at each voxel on the S2 domain; our framework seeks a R3×S2 decom-
position. The additional spatial component provides sub-voxel information that
is important for resolution enhancement. Note that since we are in practice only
concerned with white matter, the observed and predicted signals in (2) are first
centralized by removing their means so that isotropic diffusion will not affect
the outcome; a similar approach was used in [4, 7].

2.1 Signal Generating Fiber Segments

×xi
e−i

e+i

vi

li

Fig. 2. A Fiber Segment.
The signal at each voxel is as-
sumed to be an accumulation
of signal generated by an en-
semble of fiber segments.

Our method assumes that an arbitrary number
of fiber segments can reside within a voxel space.
Each fiber segment is represented by a cylinder
that contributes a signal typical of parallel fibers
within the voxel it resides. Each cylinder (see Fig-
ure 2) is defined by the tuple hi = (xi,vi, li, di).
The three-dimensional vector xi specifies the cen-
ter of the cylinder, and vi is a unit vector that
defines its orientation. The length li and diameter
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di are predefined and are identical for all cylinders (i.e., li = l, di = d, ∀i). The
two ends e+i and e−i of the cylinder hi are determined by e+i = xi +

li
2 vi and

e−i = xi − li
2 vi. The cylinders can be connected at the ends, e.g., e+i = e−i+1

and e−i = e+i−1. Each fiber segment i is assumed to generate signal based on a

single-tensor model, i.e., Ei(g) = we−bgTDig, where b is the diffusion weighting.
Di = λ1viv

T
i + λ2I denotes a diffusion tensor with diffusivities λ1 and λ2 and

principal diffusion direction vi, which is equivalent to the orientation of the fiber
segment. Constant w ∈ R+ controls the amount of signal contribution from each
fiber segment.

2.2 Fiber Continuity as Regularization

The regularization term Φ(M) is important to ensure that the otherwise ill-
posed minimization of Θ(M) in (2) is tractable. The modelM here consists of a
set of fiber segments H = {hi} as well as their connections E = {(eαi

i , e
αj

j )} with
α ∈ {+,−}. Smooth transition in both location and orientation is expected from
fiber segments that are connected. Similar to [8], this is enforced by defining

Φ(M) =
∑

(e
αi
i ,e

αj
j )∈E

1

l2
(
||eαi

i − x̄ij ||2 + ||eαj

j − x̄ij ||2
)
− L, (3)

where x̄ij =
xi+xj

2 is the midpoint of the line connecting the centers of the i-th
and j-th fiber segments. Parameter L controls the likeliness of connections. A
large L causes two segments to be connected with higher likeliness. The first two
terms of the above equation encourages the fiber segments to be close to each
other, but not closer than the length of the segments. The fiber segments are
also encouraged to be aligned by penalizing the misalignment of vi and vj .

2.3 The Metropolis-Hastings Algorithm

We minimize Θ(M) in (2) by utilizing the Metropolis-Hastings algorithm [2,5].
This is equivalent to maximizing the posterior distribution P (M|D). That is, we
need to determine the most probable M given the observed data D. The core
idea of the Metropolis-Hastings algorithm is to update the model from M to
M′ based on a proposal distribution Q(M′|M) and accept the model update
with probability min(1, R), where R is the so-called Green’s ratio

R =

(
P (M′|D)
P (M|D)

) 1
T Q(M|M′)
Q(M′|M)

. (4)

Temperature T is progressively lowered in a manner similar to simulated anneal-
ing so that the estimated posterior distribution can progressively become sharper
and more defined. The algorithm works best if the proposal density Q(M′|M)
matches the shape of the target distribution P (M′|D) from which direct sam-
pling is difficult, that is Q(M′|M) ≈ P (M′|D). We follow the approach outlined
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in [8] to construct a proposal distribution. The modelM is allowed to be modified
by creation/deletion, connection/disconnection, and shifting of fiber segments.
For more details, please refer to [8].

2.4 Generating High-Resolution Images

Once the optimal model M∗ has been determined, high-resolution data can
be sampled from the model using a grid with resolution (e.g., (1mm)3) that is
higher than the acquisition resolution. More formally, the sampled signalE′(x,g)
is obtained as

E′(x,g) =
∑
i

G′(x,xi)Ei(g) s.t. M∗, (5)

where G′(x,xi) is the same function as G(x,xi), but with the bandwidth σ
reduced according to the up-sampling factor to reflect the reduced voxel size and
the fact that the sampled signal should now come from a smaller neighborhood,
in line with the actual MR acquisition mechanism. This in effect reduces the
blurring effect associated with the larger voxel size and hence helps produce a
super-resolved version of the data.

A scalar image indicating the anisotropy at each location can be generated
with the help of (5). This can be achieved by considering the anisotropic energy
of the fiber ODFs [10], i.e.,

A(x) =

∫
Ωg

E′(x,g)⊗H(g)dg =
∑
i

G′(x,xi)

∫
Ωg

Ei(g)⊗H(g)dg, (6)

where ⊗ denotes the spherical deconvolution operator, and H(g) is the response

function of a directionally coherent fiber bundle. If we let H(g) = we−bgTDg,
where D = λ1vv

T+λ2I with an arbitrary v, then (6) gives A(x) ∝
∑

iG
′(x,xi).

Essentially, this implies that the anisotropic energy A(x) at each location x can
be evaluated by a weighted count of fiber segments in the vicinity of x. On
the surface, this approach resembles track-density imaging (TDI), as reported
in [1]; however, in TDI no signal model is attached to the fiber segments and an
arbitrarily huge or tiny number of fibers are allowed to transverse each voxel.
This makes interpretation of the fiber count based image contrast generated by
TDI very difficult.

3 Experimental Results

We report here preliminary results from our evaluation of the proposed tech-
nique using two different in vivo datasets, one acquired at the common (2mm)3

resolution, the other at (1mm)3 resolution.

3.1 Materials

Diffusion-weighted images for an adult subject were acquired at the typical
(2mm)3 resolution using a Siemens 3T TIM Trio MR scanner. Diffusion gradi-
ents were applied in 120 non-collinear directions with diffusion weighting
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Fig. 3. Results for (2mm)3 Data. Using our technique, the (2mm)3 data are en-
hanced to (1mm)3. The fractional anisotropy images are shown for the original data;
the anisotropic energy images are shown for the enhanced data. The images in the sec-
ond and fourth rows are closeup views of the images in first and third rows, respectively.

b = 2,000 s/mm2. An additional set of high-resolution (1mm)3 diffusion-weighted
images were acquired from a different adult subject using the same scanner with
the acquisition technique reported in [6]. Diffusion gradients were applied in 42
non-collinear directions with diffusion weighting b = 1,000 s/mm2.

3.2 Parameters

Setting the parameters of our algorithm to the following values was found to
yield reasonable results. Regularization tuning parameter: γ = 1; tensor model
parameters: bλ1 = 1, bλ2 = 0; the weight of each fiber segment: w = 0.0018;
the smoothing bandwidth: σ = d = 1mm; the length of each fiber segment: l =
3mm; the connection likelihood parameter: L = 10; and the initial temperature:
T = 0.1, which was decreased to the final temperature T = 0.001 in 5 × 107

iterations. More details on how to set these parameters can be found in [7, 8].
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1mm 2mm 1mm

Fig. 4. Results for Simulated (2mm)3 Data. The high resolution (1mm)3 data
(left) were down-sampled by averaging every 8 adjacent voxels to simulate the (2mm)3

data (middle), which were then enhanced to the resolution of (1mm)3 (right) by using
our technique.

3.3 Results

For preliminary evaluation, we applied our technique to the (2mm)3 data and en-
hanced the resolution to (1mm)3. The results, shown in Fig. 3, indicate that struc-
tural visibility can be significantly improved by using the proposed technique.
Structures not visible in the low resolution becomes visible after enhancement.

For better evaluation of the proposed technique, we down-sampled the (1mm)3

data by averaging every 8 adjacent voxels to simulate a (2mm)3 version of the
data. This simulated low-resolution data were then enhanced using our technique
to become (1mm)3. The results, shown in Fig. 4, indicate that the resolution
enhanced data retains most of the structures in the original high-resolution data.
It can also be observed that the enhanced data are generally less noisy.

4 Conclusion

We have presented a method to learn a generative model for producing high-
resolution DMRI data. The model consists of a set of fiber segments that are
configured in a way that best explains the observed data. The high-resolution
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data are generated by sampling from this learned model using a grid with res-
olution that is higher than the acquisition resolution. Even though the results
reported were preliminary, they do demonstrate that the proposed method is
effective and produces reasonable results.
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A Supervoxel-Based Approach

Hongzhi Wang and Paul A. Yushkevich�

Department of Radiology, University of Pennsylvania

Abstract. Multi-atlas segmentation is a powerful segmentation tech-
nique. It has two components: label transfer that transfers segmentation
labels from prelabeled atlases to a novel image and label fusion that com-
bines the label transfer results. For reliable label transfer, most methods
assume that the structure of interest to be segmented have localized spa-
tial support across different subjects. Although the technique has been
successful for many applications, the strong assumption also limits its ap-
plicability. For example, multi-atlas segmentation has not been applied
for tumor segmentation because it is difficult to derive reliable label
transfer for such applications due to the substantial variation in tumor
locations. To address this limitation, we propose a label transfer tech-
nique for multi-atlas segmentation. Inspired by the Superparsing work
[13], we approach this problem in two steps. Our method first overseg-
ments images into homogeneous regions, called supervoxels. For a voxel
in a novel image, to find its correspondence in atlases for label trans-
fer, we first locate supervoxels in atlases that are most similar to the
supervoxel the target voxel belongs to. Then, voxel-wise correspondence
is found through searching for voxels that have most similar patches
to the target voxel within the selected atlas supervoxels. We apply this
technique for brain tumor segmentation and show promising results.

1 Introduction

Multi-atlas segmentation has been widely applied in medical image analysis, e.g.
[10,8,9,4,11,15]. This technique has two main components: label transfer and
label fusion. In the label transfer step, it computes voxel-wise correspondence
between pre-labeled images, called atlases, and a novel target image, from which
the atlas segmentation labels are transferred to the target image. Label fusion is
then applied to derive a consensus segmentation to reduce segmentation errors
produced by label transfer.

So far, multi-atlas segmentation has been mostly applied to problems, where
deformable image registration can establish reliable voxel-wise correspondences
for label transfer. The advantage of image registration is that it enforces spatial
regularization, such as smoothness on the correspondence map, to improve the
reliability of voxel-wise correspondences obtained from local appearance match-
ing. For applications such as brain parcellation where the structures of interest

� This work was supported by NIH awards AG037376, EB014346.

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 535–542, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



536 H. Wang and P.A. Yushkevich

have stable spatial structures, registration usually can provide high quality label
transfer. However, for problems such as tumor and lesion segmentation where
the assumption of localized spatial support does not hold, it is not straightfor-
ward to apply registration for label transfer across different subjects. Note that
although non-local mean label fusion [4,11] does not require non-rigid registra-
tion for label transfer, it still requires the structure of interest to have localized
spatial support across subjects to make the technique practical due to its high
computational cost for non-local averaging. In order to extend multi-atlas seg-
mentation to problems where the structure of interest does not have localized
spatial support, our contribution is to develop a supervoxel-based label transfer
scheme for multi-atlas segmentation.

Our work is inspired by the Superparsing work [13], which was developed for
semantic natural scene segmentation. Given pre-labeled training images and a
novel target image, this technique first generates oversegmentation for all images
using bottom-up segmentation techniques. Each segmented region is treated as a
superpixel (or supervoxel in 3D). Typically, an image is represented by hundreds
or thousands of superpixels. To segment a novel image, segmentation labels of
superpixels in training images are transferred to superpixels in the novel image.
For this task, each superpixel is described by a feature vector, which may in-
clude intensity, texture histograms and shape features extracted from all pixels
within the superpixel. For each superpixel in the target image, the most similar
superpixels in the training images are selected based on feature matching for
label transfer. After label fusion, the consensus label produced for a superpixel
in the target image is assigned to all pixels within the superpixel.

The advantages of employing superpixel for label transfer are three fold: 1)
it can be applied to structures that do not have localized spatial support, 2)
it significantly reduces the computational burden, making label transfer based
multi-atlas segmentation practical for large datasets, and 3) feature matching
between superpixels allows more reliable image statistics to be used, which gives
more accurate matching than voxel-wise patch matching. The technique also has
limitations. First, bottom up oversegmentation may contain errors, i.e. mixing
pixels from different label classes into a single superpixel. Hence, its performance
is limited by the performance of bottom-up oversegmentation. Second, as exten-
sive studies in the multi-atlas segmentation literature have verified, label fusion
should be performed in a way that spatially varies the relative contribution of
atlases to accommodate spatially varying performance of label transfer [1,12].
Performing label fusion at the superpixel level can be considered as a semi-local
approach, which may not fully capture spatial variations for optimal label fusion.

To address these limitations, instead of label transfer and fusion at the su-
perpixel level, we propose to use superpixel matching as an additional matching
constraint for establishing voxel-wise label transfer and fusion. For each voxel
in a novel target image, we first find supervoxels in the atlases that are most
similar to the supervoxel it belongs to. Then voxel-wise correspondences of the
target voxel are located by searching the most similar voxels within the selected
atlas supervoxels by appearance patch matching. This technique maintains the
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computational efficiency achieved by employing supervoxels and also improves
the accuracy of voxel-wise correspondences produced by local patch matching.
For validation, we apply our multi-atlas segmentation technique to multimodal
brain tumor segmentation and show promising results.

2 Method

2.1 Supervoxel Generation and Feature Extraction

To generate supervoxel representations, we apply the efficient graph-based seg-
mentation technique [6] to oversegment images into homogeneous regions. [6]
groups neighboring voxels based on their intensity differences, such that similar
voxels are more likely to be grouped together. Since for the tumor segmentation
problem addressed in our experiments, multi-modality magnetic resonance (MR)
images, including T1, contrast-enhanced T1, T2, and FLAIR, are available, we
define intensity difference between two neighboring voxels as the maximal ab-
solute intensity difference between them in all modality channels. In addition,
we specify the minimal region size in the resulting oversegmentation to be 100
voxels. These parameters were chosen so that about 1000∼2000 supervoxels are
produced for each brain image (see Fig. 1 for examples of produced oversegemt-
nations). With such specifications, an image can be segmented within a few
seconds on a single 2GHZ CPU.

Before extracting features, we apply image histogram equalization imple-
mented by the histeq function in Matlab with default parameters to reduce the
intensity scale variations across different subjects. After histogram equalization,
the image intensities are normalized into [0, 1] and all processed images have
similar intensity histogram profiles. We include the following features to repre-
sent each supervoxel: the mean and standard deviation of voxel intensity and
gradient within each supervoxel from each modality channel, the intensity and
gradient histogram from each modality channel. The histograms are computed
with 41 bins. Hence, each supervoxel is described by 344 features in total.

2.2 Supervoxel-Based Voxel-Wise Label Transfer

Our goal is to find voxel-wise correspondence between a target image and all
atlases for label fusion. For this task, we apply image patch based appearance
matching. However, directly searching voxel-wise correspondences based on local
appearance similarity has limitations. First, local image appearance similarity
is not always a reliable indicator for correspondence. Additional regularization
constraints, such as smoothness on the correspondence map used in image regis-
tration, are often required to make local appearance matching based correspon-
dence searching more reliable. Second, the computation cost for global voxel-wise
correspondence searching is too high. Hence, the assumption of localized spatial
support for the structure of interest across subjects is necessary for limiting the
searching area [4,11].
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One insight provided by the Superparsing work [13] is that regions obtained
from bottom up segmentation provide meaningful information for correspon-
dence matching. Hence, we propose to use supervoxel-based region matching as
an additional constraint to guide voxel-wise correspondence searching. For each
supervoxel in a novel target image, we find K most similar supervoxels in the
atlases based on their feature vectors using L1 norm. Based on the selected corre-
sponding supervoxels, we apply label fusion to derive the consensus label for the
target supervoxel, as described below. If the target supervoxel is labeled as the
structure of interest, then for each voxel within the target supervoxel, we search
its corresponding voxels within the K selected atlas supervoxels. Again, L1 norm
on appearance patches extracted for the voxels from all modality channels are
used for voxel matching. N most similar voxels are selected as the correspon-
dences of the target voxel. Their segmentation labels are transferred and fused
into a consensus label for the target voxel.

Limiting the voxel-wise correspondence searching within selected correspond-
ing atlas supervoxels significantly reduces potential matches into a small set
of regions that are most likely to contain the correct correspondence and en-
forces weak spatial regularization on the voxel-wise correspondences. The above
mentioned drawbacks in directly using local appearance matching for searching
voxel-wise correspondence are properly addressed.

2.3 Label Fusion

For label fusion, we apply local weighted voting. The fused consensus label prob-
ability for a novel target image TF is obtained by:

p(l|x, TF ) =

N∑
j=1

wx(j)p(l|x(j), A), (1)

where x indexes through all voxels in the target image and l indexes through all
possible labels. A is the set of all atlases. x(j) is the jth selected corresponding
voxel for x from A using the method described in section 2.2. p(l|x(j), A) is
the probability that x(j) votes for label l, which is 1 if x(j) has label l and

0 otherwise. wx(j) is the voting weights for x(j), with
∑N

j=1 wx(j) = 1. The
consensus segmentation is obtained by selecting the label with the maximal
probability for each voxel in the target image. To compute the voting weights,
we apply the joint label fusion technique [15], and the solutions are given as:

wx =
M−1

x 1N

1tNM−1
x 1N

, (2)

where 1N = [1; 1; ...; 1] is a vector of sizeN .Mx is a dependency matrix capturing
the pairwise dependencies of the N selected corresponding atlas voxels voting
for wrong labels for the target voxel x, which is computed as:

Mx(j, k) ∼
LM∑
m=1

〈|Am
F (N (x(j)))−Tm

F (N (x))|, |Am
F (N (x(k)))−Tm

F (N (x))|〉, (3)
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where m indexes through all modality channels and |Am
F (N (x(j)))−Tm

F (N (x))|
is the vector of absolute intensity difference between a selected atlas image and
the target image over local patches N centered at voxel x(j) and voxel x, re-
spectively. In our experiments, we applied a patch size 5× 5× 5. 〈·, ·〉 is the dot
product. LM is the total number of modality channels.

Label fusion at the supervoxel level. In our experiments, we compare our voxel-
wise label transfer and fusion approach with the standard supervoxel-wise label
transfer and fusion approach [13]. For supervoxel-wise label fusion, we compute
the label distribution of all voxels within an atlas supervoxel to represent its
label votes. As in [13], we apply majority voting to fuse the votes from the K
selected corresponding supervoxels. The label that has the greatest consensus
vote is assigned to all voxels within the target supervoxel.

Machine learning based error correction. Multi-atlas segmentation may produce
systematic segmentation errors with respect to manual segmentation. We apply
the technique described in [14] to train AdaBoost classifiers [7] to automatically
correct systematic errors produced by our multi-atlas segmentation method on
a voxel by voxel basis.

3 Experiments

We evaluate our method on brain tumor segmentation. Tumor segmentation is
an ideal application for testing our method because the classical deformable reg-
istration based multi-atlas segmentation technique and non-local mean methods
cannot be directly applied due to the substantial variation in tumor locations.

3.1 Data and Experiment Setup

To facilitate comparisons with state-of-the-art brain tumor segmentation tech-
niques, we evaluate our method on the data from MICCAI 2012 Multimodal
Brain Tumor Segmentation (BRATS) challenge. This dataset contains both real
patient data and simulated data. The images are skull-stripped multimodal MR
images, including T1, contrast enhanced T1, T2, and FLAIR. Both high grade
and low grade tumor data are available for real patient data and simulated
data. Overall, there are 20 real patient data with high grade tumors, 10 real
patient data with low grade tumors. For simulated data, both high grade and
low grade tumor data contain 25 image sets. For evaluation, we conduct leave-
one-out cross-validation for each of the four datasets separately, i.e. each image
is segmented by the remaining images of its kind.

Since empirical studies have shown that the performance of multi-atlas seg-
mentation usually reaches saturated levels when 20 or more atlases are used, e.g.
[2], we fixed the parameter K, the number of selected candidate corresponding
atlas supervoxels, and N , the number of selected corresponding voxels for label
transfer, to be 20 in our experiments.
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3.2 Results

Table 1 summarizes the performance for edema and tumor segmentation in terms
of Dice Similarity Coefficient (DSC) produced by each method for each of the
four datasets. Overall, automatic segmentation algorithms all produced more
accurate results for simulated data, possibly due to the fact that simulated data
have better image quality. Our supervoxel matching based voxel-wise label fu-
sion approach produced substantial improvements over the supervoxel-wise label
fusion approach. Machine learning based error correction (EC) produced sub-
stantial improvement over our voxel-wise label fusion approach for real patient
data, but did not produce much improvement for the simulated data, indicating
that our method did not produce prominent systematic errors for simulated data.
In terms of computational cost, supervoxel-wise label fusion segments an image
within a few minutes using ten or twenty atlases. Supervoxel matching based
voxel-wise label fusion usually takes about 30 minutes to segment one image,
which is significantly faster than deformable registration-based label fusion.

Table 1. The performance of edema and tumor segmentation in terms of Dice similarity
coefficient (2|A ∩B|/|A|+ |B|) produced by each method

Real patient edema(High) tumor (High) edema(Low) tumor (Low)

supervoxel 0.58±0.20 0.62±0.29 0.32±0.14 0.41±0.27

voxel-wise 0.64±0.17 0.63±0.28 0.37±0.16 0.54±0.22

voxel-wise + EC 0.66±0.15 0.67±0.28 0.41±0.15 0.60±0.25

[16] 0.70±0.09 0.71±0.24 0.44±0.18 0.62±0.27

[3] 0.61±0.15 0.62±0.27 0.35±0.18 0.49±0.26

Simulated edema(High) tumor (High) edema(Low) tumor (Low)

supervoxel 0.55±0.29 0.86±0.05 0.39±0.24 0.74±0.07

voxel-wise 0.65±0.29 0.92±0.04 0.61±0.25 0.82±0.06

voxel-wise + EC 0.67±0.28 0.92±0.04 0.59±0.26 0.83±0.06

[16] 0.65±0.27 0.90±0.05 0.55±0.23 0.71±0.20

[3] 0.68±0.26 0.90±0.06 0.57±0.24 0.74±0.10

Overall, our method compares well with the state-of-the-art algorithms [16]
and [3], which finished in the top two places in the BRATS challenge.1 Both
methods apply decision forest based classification technique [5]. Our results are
consistently better than those reported in [3], except for edema segmentation
for high grade real patient data. In comparison with [16], our results on real
patient data are worse but our results on simulated data are better. Note that
classification-based approach implicitly chooses training samples for classifying
new data. The key difference from our method is that no spatial regularization
is used for locating training samples for classifying target voxels, which may
compromise the reliability of the located training samples.

1 Ranking is based on on-site evaluation, for which the data is not available for testing.
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T1 oversegmentation supervoxel voxel-wise manual

Fig. 1. Edema (red) and tumor (green) segmentation produced by supervoxel label
fusion and our voxel-wise label fusion. From first row to fourth row: high/low grade
real data, high/low grade simulated data.

Fig. 1 shows a few segmentation results produced by supervoxel label fusion
and our voxel-wise label fusion. Note that since the supervoxels produced by
bottom up segmentation have irregular shapes, the results produced by super-
voxel label fusion also have irregular shapes. This effect is greatly reduced when
voxel-wise label fusion is applied.

4 Conclusions

We introduced a novel region matching based voxel-wise label transfer scheme for
multi-atlas segmentation. This technique is much faster than registration-based
label transfer and can be easily applied on large datasets. As a proof of concept,
we showed promising performance on a brain tumor segmentation problem.

In our current experiments, a fairly crude set of criteria and simple features
were used to create supervoxel representations. There is room left for improve-
ment by specially tuning the supervoxel representation for multimodal MRI tu-
mor segmentation. We will also explore the performance of the supervoxel-based
label transfer scheme for segmenting structures with less distinctive appearance
patterns than tumors.
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Abstract. The detection of Gad-enhancing lesions in brain MRI of Mul-
tiple Sclerosis (MS) patients is of great clinical interest since they are
important markers of disease activity. However, many of the enhancing
voxels are associated with normal structures (i.e. blood vessels) or noise
in the MRI, making the detection of Gad-enhancing lesions a challenging
task. Furthermore, these lesions are typically small and in close proximity
to vessels. In this paper, we present a probabilistic Adaptive Multi-level
Conditional Random Field (AMCRF) framework, capable of leveraging
spatial and temporal information, for detection of MS Gad-enhancing
lesions. In the first level, a voxel based CRF with cliques of up to size
three, is used to identify candidate lesions. In the second level, higher or-
der potentials are incorporated leveraging robust textural features which
are invariant to rotation and local intensity distortions. Furthermore, we
show how to exploit temporal and longitudinal images, should they be
available, into the AMCRF model. The proposed algorithm is tested on
120 multimodal clinical datasets acquired from Relapsing-Remitting MS
patients during multi-center clinical trials. Results show a sensitivity of
93%, a positive predictive value of 70% and average False Positive (FP)
counts of 0.77. Moreover, the temporal AMCRF results show the same
sensitivity as the AMCRF model while decreasing the FP counts by 22%.

1 Introduction

Multiple Sclerosis (MS) is one of the most common neurological disease in young
adults. Conventional Magnetic Resonance Imaging (MRI) techniques, such as
T2-weighted (T2) and Gadolinium-enhanced T1-weighted (T1) sequence are sen-
sitive in detecting its white matter (WM) plaques known as lesions. Specifically,
due to their ability to reflect areas of blood-brain barrier disruption and acute
inflammations, Gad-enhancing lesions1 lesions serve as a measure of disease ac-
tivity. At present, the number of Gad lesions is a widely used MRI outcome

� This work was supported by an NSERC CRD grant (CRDPJ 411455-10).
1 We refer to Gad-enhancing lesions simply as Gad lesions hereafter.
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parameter in MS clinical trials. Gad lesions are generally segmented manually,
a laborious task which is subject to intra- and inter-rater variability and very
expensive for clinical trials that involve enormous amounts of data from multi-
ple centers. It is desirable to have an automatic segmentation method that is
robust to data variability due to different scanners and protocols. Moreover, it
is necessary for any automatic technique to have high sensitivity and low False
Positive (FP) rate to be clinically relevant. Unfortunately, there exists huge vari-
ability in the size (as small as 3 voxels), texture, intensity and location of Gad
lesions making the detection task very challenging. Furthermore, the presence
of numerous non-lesional enhancements (e.g. blood vessels, MRI noise and par-
tial volume effects) renders maintaining low FP rate a challenging task. Most of
the existing methods for Gad segmentation described in the literature are either
not fully automatic [1,2], or depend on non-conventional MRI acquisition se-
quences [2,3], or require prior segmentation of T2 lesions in order to remove the
FPs [3,4]. In [5,6,7], conditional random field models are proposed for address-
ing this problem, which were shown to outperform standard MRF, SVM and
linear regression models. However, these models incorporate mainly local, voxel-
level features and FPs still remain. As Gad lesions are typically very small and
noisy, higher order features could be integrated in order to express more complex
patterns. However, computing such features for all enhancing voxels is computa-
tionally prohibitive. Also, since MS is a longitudinal disease, clinical trials often
consist of multiple scans of each patient over time which can provide additional
information to the manual raters by observing persistence of enhancements in
scans acquired at least six months apart (Gad lesions are generally enhance for
less than six months). No automated methods have explored how additional
temporal information (if available) can be leveraged in Gad lesion segmentation
for further removal of the possible FPs.

In this work, we present an Adaptive Multi Level Conditional Random Field
(AMCRF) classifier which incorporates both local voxel level and robust higher
order textural patterns into the model. Specifically, at the voxel level, a local
CRF (with cliques of up to size 3) is developed to infer binary labels at each
voxel (i.e. lesions/non-lesion). At this level, the classifier is tuned to be highly
sensitive at the expense of additional FP detections. At the second level, voxels
with the same label are grouped together to form lesion candidates. Each can-
didate is further analyzed by considering new textural patterns, derived from a
larger neighborhood, along with its voxel-wise observations to differentiate true
and false lesion detections. To this end, SPIN image and RIFT features [8] are
explored, two texture descriptors that are invariant to rotation and local inten-
sity distortions. In addition to removing false lesions, the AMCRF also refines
the boundaries of lesions at the second level and as such, is adaptive. We also
show effective ways to exploit the temporal information from a past or future
time point (should it be available) into our AMCRF model to further improve
our results. The temporal AMCRF outperforms other methods with a sensitiv-
ity of 93%, a positive predictive value of 75% and average False Positive (FP)
counts of 0.60.
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2 Method

2.1 Adaptive Multi-level CRF

Our single timepoint AMCRFmodel infers the posterior distribution of the labels
in two levels: the first voxel-based level, and the second level which incorporates
higher order texture information. The first level is similar to the model presented
in [7], except that in addition to the unary and pairwise interactions, here triplet
cliques are considered as well. We first describe these two levels at a single time-
point, and then present algorithms for exploiting temporal information, should
it be available.

Let xi ∈ "d denote the observation vector (e.g. intensity values) at voxel i in
the image and yi ∈ {1, 0} be a binary random variable indicating its label (e.g.
lesion vs. non-lesion). Given a test image, X , the goal of a probabilistic classifier
is to infer the posterior distribution of the labels given the observations, i.e
p(Y |X) where X = {xi}n1 , Y = {yi}n1 , and n is the total number of voxels in the
image. At the first level, we introduce a voxel-based CRF with cliques of size up
to 3 to formulate pv, the posterior of labels given the observations:

pv(Y |X,λv) =
1

Z
exp[−(

n∑
i=1

λv
φ φ(yi|xi) +

∑
i,j∈Ni

λv
ϕ ϕ(yi, yj|xi,xj)

+
∑

i,j∈Ni

λv
δ δ2(yi, yj) +

∑
i,(j,k)∈Ni

λv
ψ ψ(yi, yj, yk|xi,xj ,xk)] (1)

where Z is the partition function. φ , ϕ and ψ represent the voxel level potentials
for the unary, pairwise and triplet cliques respectively. The smoothing constant
δ2(·) is for penalizing discrepancies in the labels of neighbouring pairs. It is zero
if the two labels are equal and is one otherwise. Ni represents the first order
neighborhood of voxel i. The voxel level parameters λv, modulate the effect of
each term in the final decision and are learned at the training stage (Sec.3.1). φ,
ϕ and ψ are modeled as:

φ(yi|xi) = − log p(yi|xi), (2)

ϕ(yi, yj |xi,xj) = − log p(yi, yj |xi,xj) (3)

ψ(yi, yj, yk|xi,xj ,xk) = − log p(yi, yj , yk|xi,xj ,xk) (4)

Random Forest [RF] [9] can be used to model the probabilities in Eq.(2) to (4).
A set of labeled voxels are inferred as the result of the voxel level analysis. At
this stage, the goal is to capture all of the lesions at the expense of additional
FPs.

So far only voxel-wise interactions are considered. However, the pure intensity
at each voxel might be distorted due to the presence of noise or other artifacts
such as partial volume. Hence, higher order textural patterns that are robust
to local intensity distortions are incorporated in to the model to remove the
possible FPs. To that end, at the second level, voxels with the same label are
grouped together to form a set of lesion candidates. A bounding box (BB) is
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considered around each candidate with a 2 voxel margin from each side, and
a new CRF is constructed for the voxels inside the BB modeling voxel-wise
interactions together with higher order textural patterns:

p(YBB|XBB,λ
l,λl

Ω) = pv(YBB|XBB,λ
l) exp(−

∑
i

λl
Ω Ω(yi|H(XBB))) (5)

whereXBB and YBB indicate the observations and labels inside BB. pv(YBB|XBB,λ
l)

represents a set of voxel-wised cliques similar to Eq.(1) with a new set of modulat-
ing parameters λl which along with λl

Ω are learned for the second level. H(XBB)
is the textural pattern derived from the region inside the BB. In principal, any
textural feature can be used to represent H(XBB). In this work, inspired by [8],
we chose two novel descriptors: SPIN image and RIFT which are 2D histograms
encoding the appearance pattern inside each BB based on its intensity and gra-
dient orientation distributions. Ω(yi|H(XBB)) = −log(p(lesionBB|H(XBB)) which
represents the likelihood of detecting a Gad lesion inside BB given H(XBB). It
should be noted that the SPIN image and RIFT descriptors are computationally
expensive, but the proposed hierarchical framework computes them only at the
second level where we are left with only a few candidates. During training, we
apply the voxel level model to a subset of the training data to obtain a set of le-
sion candidates. Spin image and RIFT features are computed for each candidate
and are saved as a textural pattern dictionary according to whether it is a true or
false detection. At test time, we use a KNN classifier (e.g. K=100) to find the K
closest match between the textural patterns of the test candidate and the ones
in the dictionary. Specifically, Earth Movers Distance (EMD) [10] can be used to
find the distance between textural patterns. The probability of lesionBB = 1 is
proportional to the number of true detections among the K nearest neighbours.

2.2 Leveraging Temporal Information

In clinical practice, temporal information can be available to help the rater detect
Gad lesions. Let Xt and Xt±m, respectively, denote the image at the current time
point and the one acquired m months before or after. In this paper, we focus
on the context where the temporal interval, m, is large enough such that, if a
Gad lesion is enhanced in Xt, it is most likely not enhanced in Xt±m. In clinical
practice, this typically translates to scanning intervals of 6 months or more (i.e.
m=6). In order to incorporate this temporal information, at the voxel level of
the AMCRF model, we use the voxel intensities of both Xt and Xt±m for all
cliques. At the second level, in addition to comparing the textural pattern of
the detected region at Xt with those in the dictionary, we also compare it with
the textural pattern at the same location at Xt±m. Hence, the second level is
modeled as:

p(YBB|Xt
BB, X

t±m
BB ,λl′ ,λl′

Ω ,λl,′
Γ )=pv(YBB|Xt

BB, X
t±m
BB ,λl′) exp(−

∑
i

λl′
Ω Ω(yi|H(Xt

BB)))

exp(−
∑
i

λl,′
Γ Γ (yi|G(Xt

BB, X
t±m
BB ))) (6)
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where Γ (yi|G(Xt
BB
, Xt±m

BB
)) = −log(p(LesionBB|G(Xt

BB
, Xt±m

BB
)) and G(Xt

BB
,

Xt±m
BB ) is the EMD between textural patterns of Xt and Xt±m at the same

location. A RF classifier is designed to model this term. As before, λl′ , λl′
Ω,

and λl,′
Γ are modulating parameters learned in training. For a non-lesional en-

hancement at Xt, textural patterns are similar to the ones extracted from the
same location at Xt±m (compare Fig.1(e)-(f) to Fig.1(g)-(h)). This is typical
for enhancing structures such as blood vessels, for example. However they look
different for a lesional enhancement (compare Fig.1(m)-(n) to Fig.1(o)-(p)).

3 Experiments and Results

3.1 Parameter Learning and Inference

There are two sets of parameters in our model: the RF parameters used in φ, ϕ,
ψ and Γ and the modulating parameters. RF parameters are learned separately
for each clique. However, due to the complexity of the partition function, exact
learning of the modulating parameters is intractable. In this work we used an
iterative approach proposed by Taskar et al. [11] in order to find the modulating
parameters.

In the inference stage, considering the CRF model at each level and its learned
parameters, the most probable labeling is found. Graph Cuts are chosen to solve
this optimization problem primarily because of their ability to find globally op-
timal solutions for binary classifications [12].

3.2 Data Pre-processing

The training and test data was acquired from multi center clinical trials with
RRMS patients with varying numbers of Gad lesions, each located in different
areas of the brain WM. Each acquisition was composed of five sequences: pre-
and post-contrast T1, T2, PD and FLAIR. Therefore, our voxel-wise observation
vector, x, consists of the intensities of the above five modalities, WM and partial
volume tissue priors2 and spatial locations of each voxel. For the particular data
set that we had access to, the “silver standard” manual labels were determined
using a protocol where two trained experts label the data separately, followed by
consensus agreement. Prior to classification, pre-processing steps including bias-
field inhomogeneity correction as well as removal of non-brain regions from the
MRI are performed [13]. Furthermore, all intra-subject sequences are registered
to a common coordinate space and the intensity histogram of all sequences is
normalized [14]. The training data consists of 1760 scans (880 pairs of two time
points) from 160 different centers and testing is based on 120 scans (60 pairs of
two time points) from a separate clinical trial consisting of 24 centers in order

2 The WM prior is built based on statistical tissue frequencies of 152 manually labelled
brains (ICBM 152). The PV atlas was built based on overlapping locations between
Grey Matter and Cerebrospinal Fluid (CSF) atlases and WM and CSF atlases.
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to examine the robustness of the method to different multi center trials. Before
computing the statistics, any detected region with size 1 or 2 is deleted according
to clinical protocol that requires Gad lesions to consists of at least 3 voxels. If
at least three voxels of a lesion are classified correctly, it is counted as a TP,
otherwise it is a False Negative (FN). Any candidate with size greater than two
that does not correspond to an enhancing lesion is counted as an FP. Sensitivity
( TP
TP+FN ), Positive Predictive Value ( TP

TP+FP ) and average number of FPs are
reported.

3.3 Single Timepoint Results

Figure 1 compares the higher order textural descriptors for a non-lesional (first
row) and lesional (second row) enhancement. As it is observed, the proposed
textural patterns look very different for false (Fig.1(e)-(f)) and true (Fig.1(m)-
(n)) detections and hence when compared to the dictionary of textural patterns
(by computing the EMD), they can be distinguished from each other.

(g) SPINt-6 

(e) SPINt (f) RIFT t 

(h) RIFTt-6 (a) T1ct (d) T1ct + label (b) Enhancedt 

(o) SPINt-6 

(m) SPINt (n) RIFT t 

(p) RIFTt-6 (i) T1ct (k) T1ct  (l) T1ct + label (g) Enhancedt 

(c) T1ct  

Fig. 1. Comparisons of the higher order textural features for a non-lesional and lesional
enhancement. Post contrast T1 images are shown in the first column. Zoomed views
are shown without and with labels in the third and forth columns. The second column
shows all the high enhancement voxels. The textural features are shown for the detected
regions at the current timepoint image and a previous timepoint.

In Table 1(a), we quantitatively compare the performance of the AMCRF
model with the HCRF model proposed in [7] and an MRF. Here, a conventional
MRF model is considered consisting of a unary clique and a non data dependant
smoothing term (i.e. Eq.(1) without ϕ and ψ). For this experiment, a mask
outlining the “new” enhancing voxels at the current time point is made available
to all three methods. The results show that the proposed model has the highest
sensitivity and PPV rate over all methods. Lower sensitivity in the MRF stems
from the lack of observations in the smoothing term resulting in over smoothing
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the small lesions. In HCRF, the high level features used in the second level were
not robust enough to capture all lesions. We also show the overall performance of
the AMCRF model along with its break down based on the size of the detected
regions in Table 1(b). The AMCRF model achieves overall sensitivity of 0.93,
PPV of 0.70 and average FP count of 0.77. As the size of the detected regions
get larger both sensitivity and PPV values increase. Furthermore, Fig.2(a) shows
that majority of the false detections are very small (i.e. less than 5 voxels).

Table 1. (a) Quantitative comparison of the performance of the AMCRF, HCRF and
MRF models. (b) The performance of the AMCRF based on the voxel size.

(a)

AMCRF HCRF [7] MRF

Sens 0.93 0.86 0.78

FPs 0.77 0.76 0.80

PPV 0.70 0.68 0.66

(b)

overall 1-5 6-10 11-20 21-50 51-100 101+

#Les 231 64 44 35 53 20 15

Sens 0.93 0.89 0.93 0.94 1 1 1

PPV 0.70 0.37 0.55 0.82 0.91 1 1

3.4 Temporal Model Results

Fig.1 shows qualitative results depicting the improvement caused by the higher
order textural patterns when longitudinal data is available. The higher order
textural features of a false detection at time t are very similar to those of the
same location at time t− 6 (compare Fig.1(e)-(f) to Fig.1(g)-(h)). On the other
hand, the higher order textural features of a true detection at time t are very
different from those of the same location at time t− 6 (compare Fig.1(m)-(n) to
Fig.1(o)-(p)). The classifier designed to capture these differences (by computing
the EMD between the two textures) can appropriately distinguish true and false
detections.

Fig.2(c) shows the quantitative comparisons of the AMCRF model with the
temporal AMCRF. As it is observed, incorporation of the temporal data has in-
creased the PPV value by 5% without changing the sensitivity. Also, the average
number of false detections has been reduced by 22%. The histogram of the voxel
size of the FPs is also shown in Fig.2(b). Once again we see that majority of the
FP counts are small.
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(b)

AMCRF temporal-AMCRF

Sens 0.93 0.93

FPs 0.77 0.60

PPV 0.70 0.75

(c)

Fig. 2. (a) and (b) show the histograms of the voxel wised size of the total FP detections
for the AMCRF and temporal AMCRF models respectively. (c) is the quantitative
comparison of the performance of the AMCRF and temporal AMCRF.
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4 Discussion

In this paper, we propose a new a Adaptive Multi-level CRF (AMCRF) model to
detect Gad lesions in brain MRI that embeds contextual information at multiple
levels. At the first level, a local voxel-based CRF is used to identify candidate
lesions. In the second level, a CRF model is designed to further examine the
lesion candidates. We also proposed exploiting temporal data into our model.
The temporal AMCRF outperforms other methods with a sensitivity of 93%, a
positive predictive value of 75% and average False Positive (FP) counts of 0.60.
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Abstract. Automated labeling of anatomical structures in medical images is 
very important in many neuroscience studies. Recently, patch-based labeling in 
the non-local manner has been widely investigated to alleviate the possible mi-
salignment when registering atlases to the target image. However, the weights 
used for label fusion from the registered atlases in conventional methods are 
generally computed independently and thus lack the capability of preventing the 
ambiguous atlas patches from contributing to the label fusion. More critically, 
these weights are often calculated based only on the simple patch similarity, 
thus not necessarily providing optimal solution for label fusion. To address 
these issues, we present a novel patch-based label fusion method in multi-atlas 
scenario, for the goal of labeling each voxel in the target image by the best rep-
resentative atlas patches that also have the lowest joint risk of mislabeling. Spe-
cifically, sparse coding is used to select a small number of atlas patches which 
best represent the underlying patch at each point of the target image, thus mi-
nimizing the chance of including the misleading atlas patches for labeling.  
Furthermore, we examine the joint risk of any pair of atlas patches in making 
similar labeling error, by analyzing the correlation of their morphological error 
patterns and also the labeling consensus among atlases. This joint risk will be 
further recursively updated based on the latest labeling results to correct the 
possible labeling errors. To demonstrate the performance of our proposed me-
thod, we have evaluated it on both whole brain parcellation and hippocampus 
segmentation, and achieved promising labeling results, compared with the state-
of-the-art methods.  

1 Introduction 

With the advent of modern imaging techniques, image analysis plays an important 
role in quantitatively measuring the structural differences between either individuals 
or groups. In many neuroscience and clinical studies, certain regions of interest 
(ROIs), e.g., hippocampus, in the human brain are widely investigated due to their 
close relation to brain diseases, such as Alzheimer’s disease (AD). Consequently, 
automatic and accurate labeling of anatomical structures becomes critical in those 
studies that often have large datasets. However, automatic labeling still remains as a 
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challenging problem because of complicated brain anatomy and high inter-subject 
variability.  

Recently, patch-based labeling methods have emerged as a popular direction for 
multi-atlas based segmentation [1-4]. The basic assumption of these methods is that, if 
two image patches are similar in appearance, they should have the same anatomical 
label [1]. Most patch-based labeling methods perform label fusion from registered 
atlases in a non-local manner [1, 2, 5]. Specifically, to label a patch in the target im-
age, all possible candidate patches from different atlases are considered, with their 
contributions weighted by their similarities w.r.t. the target patch. In this way, these 
non-local based labeling methods can alleviate the labeling errors due to possible 
registration errors.  

Although patch-based labeling methods are effective, they also have several limita-
tions. First, all candidate patches from atlases contribute to label fusion, as long as 
they are similar to the target patch. However, even patches with high appearance simi-
larities from atlases could bear the wrong labels, thus affecting the final labeling  
result. Second, weights assigned to candidate patches during label fusion are often 
estimated independently. Thus, if majority of candidate patches have wrong labels, 
they will dominate the label fusion process and lead to incorrect labeling result [4]. 
Third, the weights calculated from patch appearance similarity are often directly ap-
plied for label fusion. However, although these weights are optimal for patch repre-
sentation, i.e., making the combination of candidate patches close to the target patch, 
they are not necessarily optimal for label fusion.  

To address these limitations, we aim to label the target patch by the best represent-
ative candidate patches that have the lowest joint risk of mislabeling. Specifically, 
sparse coding [6] is used to select only a small number of candidate patches that can 
best represent the target patch. In this way, the chance of including the misleading 
candidate patches for label fusion can be minimized. Moreover, we examine the joint 
risk of mislabeling by atlas patches in two ways. First, we measure the pairwise corre-
lation of morphological error patterns for any pair of candidate patches, in order to 
reject those candidate patches with repeated incorrect labels. Second, we further ex-
amine whether the labeling result for the target patch achieves the largest labeling 
consensus among the candidate patches. In this way, our label fusion method is able 
to iteratively improve the label fusion result by gradually refining the estimation of 
the joint risk of mislabeling among the candidate atlas patches. We have applied our 
proposed label fusion method to both whole brain parcellation and hippocampus seg-
mentation. Promising labeling results have been achieved with comparison of the 
state-of-the-art labeling methods, which indicates the high applicability of our patch-
based labeling method in neuroscience and clinical scenario.   

2 Methods 

Let  be the set of  atlas images | 1, … ,  and their corresponding label 
maps | 1, … , , already registered to the target (to-be-labeled) image . 
For each point Ω  at the domain of deformed atlas ,  is its binary vector 
of 0,1 , representing the particular label, where  is the total number of labels. 
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Thus, the goal of label fusion for labeling the target image  is to propagate the labels 
from the registered atlases to the target image. For each point Ω  in the target 
image , its label  will be estimated through the interaction between the target 
patch  centered at point  and all possible candidate atlas patches  from 
the registered atlas images . In order to reduce the computation burden, the search 
range is usually confined to a relatively small neighborhood Ω . Given the 
weight ,  associated with  and , we can calculate the assignment 
vector  for voxel  as: 

 
∑ ∑ , ·∑ ∑ , . (1) 

It is worth noting that , … , , … ,   is a vector of likelihood 
for each label at point  after label fusion. Then, the final label at point  can be de-
termined by binarizing the vector  to a binary label vector , … , , … , , where 
 

 
1,      0,  (2) 

2.1 Conventional Patch-Based Labeling Method by Non-local Voting 

For each point Ω  in the target image, we vectorize the local patch  (red 
box in Fig. 1(a)) into the column vector . In order to account for the registration 
uncertainty, a set of candidate patches are included in a search neighborhood  
(blue boxes in Fig. 1(a)) from different atlas images. For clarity, we arrange each 
candidate patch  (pink boxes in Fig. 1(a)) into a column vector  and then as-

semble them into a matrix ,…, , where ,  is a bivariate index of 

particular candidate patch  and · | | denotes the total number of 
candidate patches. With the same order, we assemble the label vector  of each 
candidate patch into the label matrix, denoted as , , … , . In non-local 
voting, each candidate patch  contributes to label fusion, with the non-local weight 

 in the column vector , , … ,  calculated by:  

 ,  (3) 

where  is named as the decay parameter in [1] to control the strictness on distance 
penalty. Given the weighting vector  for the point , we are able to predict the label 

 by following Eqs. (1) and (2). The procedure of non-local voting is dem-
onstrated in Fig. 1(b), where each one-end arrow indicates the independent calculation 
of weight  for each candidate patch .   

2.2 Joint Label Fusion with Sparse Patch Representation 

In order to alleviate the issue of ambiguous patches in label fusion, sparsity constraint 
is imposed so that only a small number of candidate patches will contribute to label 
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fusion. Specifically, by regarding the set of candidate patches  as the local dictionary 
for the point , the weights for label fusion can be obtained by solving the following 
LASSO problem [7]: 

 arg min , . . 0, , (4) 

where  is the scalar which controls the strength of sparsity. Eventually, most ele-
ments in the weighting vector  approach to zero after imposing sparsity constraint. 
As demonstrated in Fig. 1(c), only a few candidate patches (connected to the red box 
with solid curves) will contribute to the final label fusion, which is different from the 
conventional non-local based methods (Fig. 1(b)).        

 

Fig. 1. The overview of patch-based labeling method in multi-atlas scenario. As shown in (a), 
the target patch (red box) seeks for the linear combination from all possible candidate atlas 
patches (pink boxes) in a search neighborhood (blue box). (b) and (c) demonstrate the labeling 
procedure on the particular point by non-local voting and our method, respectively.  

It is apparent that Eq. 4 does not account for the dependency among candidate 
patches in label fusion. In order to make the estimation tractable, we define  as the 
joint risk of mislabeling that two candidates patches  and  simultaneously suffer 
from labeling error. Thus, besides seeking for the optimal patch representation by Eq. 
4, the weight vector  is also required to minimize the joint risk of labeling error by 
any pair of patches as 

 w argmin ∑ ∑ arg min , (5) 

where  is a symmetric matrix.  

In general, we can learn the joint risk  in two ways: (1) correlation of morpho-
logical error patterns (w.r.t. ) between each pair of  and  in the dictionary , and 
(2) the labeling consensus between a pair of  and  in  and the tentative label 
fusion result . For the first criterion, we assume that two candidate patches  and  
have high chance to produce similar labeling error only if their error patterns, i.e., 

 and , are highly correlated. Thus, we define  as the correlation of 
two patches in terms of error pattern as 1: 

 · . (6) 

                                                           
1 We will further normalize  to the range from 0 to 1.  
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Given the tentatively estimated weighting vector w, we can determine the labeling 
result  by Eq. 1~2. Here, we go one step further to examine whether the estimation  
achieves the largest labeling consensus between any pair of label  on patch  and 

 on patch  . We use  to measure the labeling consensus between  and   as:   

 1 , (7) 

where  is the Dirac pulse function at zero, i.e., 0 1. It is apparent that 1 only if both candidate patches  and  bear different labels against , for 
which our method will panelize the weights  and  to have high values. In this 
way, our method is able to not only prevent the repeated labeling error from two cor-
related patches, but also provide our label fusion method a chance to iteratively cor-
rect the possible mislabeling by refining the labeling consensus . Finally, the joint 
risk of labeling error  is defined as: 

 1 · ·  (8) 

where 0 1 is the scalar balancing the two measurements. 0 in the begin-
ning since there is no estimation of  at that moment. We increase  from 0 to 0.5 
linearly and iteratively. As we will show later, the labeling performance keeps im-
proving as iteration progresses.   

By integrating Eq. 8 into Eq. 4, the new energy function can be formulated as: 

 , arg min , · · , . . 0, , (9) 

where  controls the strength of joint labeling risk. Fig. 1(c) demonstrates the im-
provements of our method: (1) a small number of candidate patches are eventually 
involved in label fusion (i.e., few dash boxes are connected with red box by solid 
curves in Fig. 1(c)); (2) the dependencies of candidate patches are clearly described 
(as indicated by the dash lines in Fig. 1(c)); (3) the label fusion result  is recursively 
used to refine the labeling result by updating the joint labeling risk  (as indicated by 
the two-end arrows in Fig. 1(c)). It is worth noting that our method will degrade to the 
sparse patch-based labeling method [8] if â 0.  

To solve this problem, we alternatively repeat two sub-steps, i.e., (1) optimizing  
by fixing , and (2) updating  with the latest  by Eq. 1~2. For step (1), we use 
coordinate descent method [9] to efficiently find . The idea is to go through each  
in  and minimize the energy function in Eq. 9 along one  at a time. Specifically, 
for each , we discard all terms in Eq. 9 that are not related with  and turn Eq. 9 
into: 

 arg min 2 , (10) 

where ∑ ,  and ∑ , .  

By letting ì  and ⁄ , we further 
rewrite Eq. 10 as:  

 arg min , . . 0, (11) 
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which turns to the classic  regression problem [9]. Thus, by requiring the directional 
derivative along the coordinate direction of  coincide with the ordinary partial de-

rivative , the optimal solution to particular  is given as: 

 0  (12) 

In our implementation, we randomly set the order to visit each element  and fix the 
iteration number as 200 in optimizing  for each point  in the target image.  

3 Experiments 

We apply our joint patch-based labeling method (Joint-PBM) on both ADNI and 
NIREP-NA40 [10] datasets to evaluate the labeling performance. For comparison, we 
also deploy the conventional patch-based method by non-local weighting (Nonlocal-
PBM) and recently proposed sparse patch-based method [8] (Sparse-PBM) on the 
same datasets. For each subject, we first use FLIRT in FSL package 
(http://fsl.fmrib.ox.ac.uk/) and then diffeomorphic Demons 2[11] to deform all atlases 
to the underlying subject space.  

In the following experiment, we fix the patch size as 7 7 7 and the search 
range as 9 9 9 for all label fusion methods. We follow the patch pre-selection 
strategy and local adaptive selection of decay parameter in [1] for Nonlocal-PBM. 
Also, according to [8], we set the parameter for -norm strength as 0.1 for sparse-
PBM. For our Joint-PBM method, we fix 1.0 and 0.1 for all experiments. 
Particularly, we repeat the steps of estimating  and updating labels  for 5 times.  

3.1 Experiment Result on Hippocampus Labeling in ADNI Dataset 

In this experiment, we randomly select 61 NC (normal control) subjects, 96 MCI 
(Mild Cognitive Impairment) subjects, and 41 AD (Alzheimer’s disease) subjects 
from the ADNI dataset. For each subject image, the skull is stripped and the intensity 
range has been normalized by histogram matching. The segmentation ground truth of 
hippocampus for each image is also provided in the ADNI dataset. 

The overall Dice ratio of left/right hippocampus by three label fusion methods are 
shown in Table 1, where our Joint-PBM method has achieved 4.7% and 2.2% im-
provements over Nonlocal-PBM and Sparse-PBM, respectively. Moreover, we show 
the average and standard deviation of Dice ratio in NC, MCI and AD groups by three 
label fusion methods in Table 2. Again, our Joint-PBM method has the best labeling 
performance in each group. It is worth noting that the highest Dice ratio of hippocam-
pus is 0.893 in [4]. However, only 57 NC and 82 MCI subjects are included in [4].  

                                                           
2  The parameters for diffeomorphic Demons are: 15, 15, and 15 iterations in low, middle, and 

high resolutions. The kernel size for deformation smoothing is set to 1.8. The option of histo-
gram matching is turned on.  
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As shown in Table 2, labeling hippocampus of AD subjects are more challenging than 
MCI and NC groups. Discarding the AD subject, the overall Dice ratio of NC and 
MCI groups by our method is able to reach 0.896. As our labeling method iteratively 
refines the labeling result by increasing  (Eq. 8), the Dice ratio increases consistently 
from 0.882 to 0.887 in the end of labeling.  

Table 1. The mean and standard deviation of Dice ratio on left/right hippocampus by Nonlocal-
PBM, Sparse-PBM, and Joint-PBM 

Method Left Hippocampus Right Hippocampus Overall 
Nonlocal-PBM 0.854 0.040 0.849 0.043 0.852 0.042 
Sparse-PBM 0.877 0.032 0.869 0.036 0.873 0.034 
Joint-PBM . .  . .  . .  

Table 2. The mean and standard devidation of Dice ratio in hippocampus labeling for three 
groups (NC, MCI, and AD) by Nonlocal-PBM, Sparse-PBM, and Joint-PBM 

Method NC MCI AD 
Nonlocal-PBM 0.866 0.034 0.859 0.039 0.831 0.046 

Sparse-PBM 0.882 0.030 0.873 0.036 0.864 0.041 
Joint-PBM . .  . .  . .  

3.2 Experiment Result on Whole Brain Labeling in NIREP-NA40 Dataset 

The NIREP-NA40 dataset consists of 16 MR images of 8 normal male adults and 8 
normal female adults, each with 32 manually-delineated ROIs. The image size is 256 300 256 and the voxel resolution is 0.7 0.7 0.7 .  

Table 3. The average Dice ratio in NIREP-NA40 dataset by three label fusion methods 

ROI (left+right) Nonlocal-PBM Sparse-PBM Joint-PBM 
Occipital Lobe 0.801 / 0.813    0.815 / 0.820 0.833 / 0.859 

Cingulate Gyrus 0.815 / 0.812 0.811 / 0.814 0.819  / 0.852 
Insula Gyrus 0.851 / 0.873 0.855 / 0.878 0.862  / 0.890 

Temporal Pole 0.837 / 0.829 0.838 / 0.841 0.842  / 0.875 
Superior Temproal Gyrus 0.779 / 0.777 0.781 / 0.784 0.801  / 0.811 
Infero Temporal Region 0.832 / 0.833 0.848 / 0.832 0.867  / 0.871 
Parahippocampal Gyrus 0.829 / 0.843 0.831 / 0.851 0.842  / 0.864 

Frontal Pole 0.820 / 0.804 0.824 / 0.820 0.849  / 0.852 
Superior Frontal Gyrus 0.807 / 0.785 0.805 / 0.800 0.822  / 0.837 
Middle Frontal Gyrus 0.791 / 0.753 0.809 / 0.763 0.819  / 0.805 

Inferior Gyrus 0.755 / 0.751 0.758 / 0.775 0.785  / 0.790 
Orbital Frontal Gyrus 0.833 / 0.831 0.841 / 0.835 0.863  / 0.860 

Precentral Parietal Lobule 0.762 / 0.744 0.785 / 0.762 0.801  / 0.789 
Superior Parietal Lobule 0.742 / 0.739 0.756 / 0.780 0.802  / 0.805 
Inferior Parietal Lobule 0.759 / 0.738 0.771 / 0.802 0.800  / 0.812 

Postcentral Gyrus 0.707 / 0.694 0.713 / 0.711 0.756  / 0.738 
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The leave-one-out strategy is used in this experiment by alternatively taking 16 
images as the target image in each leave-one-out case. Table 3 shows the average 
Dice ratio in each brain structure (left and right combined) across 16 leave-one-out 
cases. The overall Dice ratios across 32 ROIs are 0.792 by Nonlocal-PBM, 0.803 by 
Sparse-PBM, and 0.827 by Joint-PBM. Our Joint-PBM method achieves the best 
labeling accuracy over the other two methods, by 3.5% and 2.4%, respectively.  

4 Conclusion 

In this paper, we present a novel patch-based label fusion method for multi-atlas seg-
mentation. Sparsity constraint is introduced in our method to suppress the misguid-
ance from ambiguous patches. Furthermore, our method explicitly describes the  
dependency of patches from different atlases or same atlas to guide the label fusion, 
which is iteratively updated based on the latest label fusion result. In this way, our 
method is able to gradually improve the labeling accuracy by reducing the chance of 
making the repeated labeling errors. Our experiments on hippocampus segmentation 
and whole brain parcellation show the promising labeling results, indicating its appli-
cability in neuroscience and clinical studies.  
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Abstract. Intraventricular hemorrhage (IVH) is a common disease
among preterm infants with an occurrence of 12-20% in those born at less
than 35 weeks gestational age. Neonates at risk of IVH are monitored by
conventional 2D ultrasound (US) for hemorrhage and potential ventric-
ular dilation. Compared to 2D US relying on linear measurements from
a single slice and visually estimates to determine ventricular dilation,
3D US can provide volumetric ventricle measurements, more sensitive to
longitudinal changes in ventricular volume. In this work, we propose a
global optimization-based surface evolution approach to the segmenta-
tion of the lateral ventricles in preterm neonates with IVH. The proposed
segmentation approach makes use of convex optimization technique in
combination with a subject-specific shape model. We show that the in-
troduced challenging combinatorial optimization problem can be solved
globally by means of convex relaxation. In this regard, we propose a cou-
pled continuous max-flow model, which derives a new and efficient dual
based algorithm, that can be implemented on GPUs to achieve a high-
performance in numerics. Experiments demonstrate the advantages of
our approach in both accuracy and efficiency. To the best of our knowl-
edge, this paper reports the first study on semi-automatic segmentation
of lateral ventricles in neonates with IVH from 3D US images.

Keywords: lateral ventricle segmentation, convex optimization,
pre-term neonate, 3D ultrasound imaging.

1 Introduction

Preterm neonates that are born of low birth weight (< 1500g) are at an in-
creased risk of intraventricular hemorrhage (IVH) [1], bleeding in and around
the ventricles. Diagnosis of IVH is done using 2D clinical ultrasound (US). The
hemorrhage is ranked using the Papile grading system [2] that qualitatively de-
scribes the location and approximate volume of ventricle affected. By this system,
grade I and II indicate a minor hemorrhage and tends towards favourable patient
outcomes, and grades III and IV indicate severe hemorrhage often with follow-
ing ventricular dilation (ventriculomegaly) and poor patient outcomes. Patients
often have ventriculomegaly that spontaneously resolves, but some fraction of
those will progress to hydrocephalus, and may require interventional therapy to
reduce the amount of cerebral spinal fluid (CSF) accumulated in the brain. 3D
US can monitor the ventricular system in neonates [3,4], and can be done at the
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bed side, however; to incorporate 3D US into clinical setting, a segmentation
algorithm would be required to adequately reduce the time required to obtain
the ventricle volume from the 3D image.

Previous cerebral ventricle segmentation algorithms have been exclusively for
CT [5] and MRI images [6], and mainly for adult populations. While studies
have quantified 3D US ventricle volumes in neonates [3,4], all have used expert
manually contoured regions in lieu of a semi-automatic or automatic approach.
Unlike in a healthy neonate, IVH patients ventricles provide an increased diffi-
cultly to segment due to both the bleed itself as well as the irregular manner in
which the ventricle deforms. The bleeding creates a hyperechoic region around
and inside the relatively hypoechoic region of the CSF filled ventricles making
most threshold or boundary based segmentation algorithms not useful for this
application. Atlas based segmentations fail as dilation and subsequent reduc-
tion in conjunction with brain growth cause deformations to the structure that
cannot be accounted for and vary drastically from patient to patient. Manual
segmentation, though done in previous studies to quantify 3D US ventricle vol-
umes [3,4], is too arduous and time consuming to be clinically feasible. Moreover,
manual segmentation of such a structure is challenging due to indistinct bound-
aries and irregular shape deformation, even for an expert. Thus, accurate and
efficient automatic or semi-automatic ventricle segmentation is highly desired in
clinical practice.

Contributions: In this study, we propose convex optimization based approach
for delineating lateral ventricles of pre-term neonates from 3D US images, which
incorporates a subject-specific model as the shape prior. We show that the intro-
duced challenging combinatorial optimization problem can be globally optimized
by means of convex relaxation. Moreover, we introduce a coupled continuous
max-flow model which is equivalent to the formulated convex relaxed optimiza-
tion problem. With the help of the coupled continuous max-flow formulation, we
derive an efficient multiplier augmented algorithm, which avoid directly tackling
the original non-smooth convex energy functional and can be readily imple-
mented on a GPU to achieve a substantial speed-up in computation. To the best
of our knowledge, this paper reports the first study on semi-automatic segmen-
tation of lateral ventricles of premature newborn brains from 3D US images.

2 Method

2.1 Segmentation Pipeline

A specific subject model is used to facilitate the segmentation task considering
great individual shape variations and inhomogeneous context. A 3D US image at
baseline is first segmented manually by an expert. Then, two segmented lateral
ventricle surfaces (left and right lateral ventricles) as subject-specific models are
rigidly registered to the following repeat images (from the second time-point)
through six chosen landmarks. The registered models are used as an initial guess
of lateral ventricles for repeat images, estimating the prior probability density
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(a) segmentation pipeline (b) subject model

Fig. 1. Schematic diagram of segmentation pipeline; (a) segmentation pipeline, (b)
example of a 3D rendered ventricle model with landmarks

functions (PDF) for the background and foreground. The subject-specified mod-
els also served as shape priors to assist the subsequent convex optimization based
segmentation algorithm. Figure 1(a) shows the segmentation pipeline.

2.2 Rigid Registration

Three landmarks, locating at anterior, posterior, and inferior horn of right lateral
ventricle, respectively (green circle, square, and star in Fig. 1(b)), are manually
chosen from each ventricle in a given subject-specified model at baseline, result-
ing in six landmarks for the two ventricles. Six corresponding initial landmarks
are also manually chosen from the repeat images. An affine transformation is
then calculated from those six corresponding point pairs, which are used to
rigidly register the subject model to the following repeat images. It should be
noted that a rigid registration can not guarantee a good segmentation for repeat
images due to the nonlinear deformation caused by neonate brain growing, ven-
tricle deformation and bleeding. Thus, a more accurate segmentation algorithm
is needed to refine the rough registration initial result.

2.3 Convex Optimization Based Surface Evolution with Shape
Constraint

In this work, a convex optimization based method with shape constraint was
used to refine the registered surface. We denote Ri, i = L,R, and B as the
left ventricle, right ventricle, and background pixels, respectively; ui ∈ {0, 1},
i = L,R, and B are denoted as the corresponding indicator labeling functions of
RL , RR, and RB , respectively. Since there is no overlap between left and right
ventricle in R, we have

uL ∩ uR = ∅, ∀x ∈ R. (1)

Multiple-Region Segmentation: The segmentation of R into three regions of
RB, RL and RR can be formulated as a coupled continuous min-cut problem,
which minimizes the following energy function:

min
uL,R(x)∈{0,1}

∑
i=L,R

{
Ematching(ui) +

∫
R
gi(x) |∇ui(x)| dx

}
(2)
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where Ematching(u) is Bhattacharyya distance [7,8] used to measure the distance
between the estimated PDFs for the two estimated regions and their correspond-
ing PDF models(see Section 2.1); the weight function g(x) in (2) is positive and
is given by

g(x) = λ1 + λ2 exp(−λ3 |∇I(x)|) , λ1,2,3 ≥ 0 . (3)

Note that, I(x) ∈ Z be a given repeat image, where Z is the set of image
intensity values, and the values of g(x) fall within the range [λ1, λ1 + λ2]. We
can estimate the PDF pi(u, z), where z ∈ Z and i = L,R,B, for the estimated
region R by the Parzen method [9], such that

p(u, z) =

∫
R K(z − I(x))u dx∫

u dx
,

whereK(·) is theGaussian kernel function such thatK(x)= 1√
2πσ2

exp(−x2/2σ2) .

q(z) is defined as the intensity PDF model of the region R, where z ∈ Z. Thus,
Ematching(u) is defined as:

Ematching(u) = −
∑
z∈Z

√
p(u, z) q(z) (4)

Convex optimization with shape constraint: In addition, we penalize the
difference between the evolved ventricle surface and the registered
subject-specified model so as to enforce that the resulting surface is not far
from the initial guess. Let C∗ be the registered surface model, and u∗(x) ∈ {0, 1}
the indicator function of C∗, which is used to assist the segmentation task of
C [10]. The indicator function u(x) ∈ {0, 1} of the ventricle regions within C is
optimized over the following energy function:

min
uL,R(x)∈{0,1}

∑
i=L,R

{
Ematching(ui)+ω1

∫
R
gi(x) |∇ui(x)| dx+ω2

∫
R
|ui − u∗

i | dx
}

(5)
where Ematching(u) formulates the statistical intensity distribution matching

energy inside and outside two ventricles, the second weighted total-variation
function gives the surface smoothness term and ω1,2 > 0 are the positive penalty
parameters (ω1 = 0.3 and ω2 = 0.05 were used in our experiments). The last
energy term of (5) encodes and penalizes the difference between the evolved
ventricle surface and the registered model.

To optimize the energy function (5), which is often highly nonlinear, we intro-
duce the convex optimization based evolution approach [11], which can efficiently
move the given surface to the object of interest. In contrast to the traditional
evolution methods, e.g. active contour or level-set, the introduced surface evolu-
tion approach provides a fully time implicit scheme in numerics, for which a large
time step-size is allowed to significantly speed up the surface evolution process
and, during each discrete evolution time frame, the surface can be moved to its
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globally optimal position by globally solving the following continuous min-cut
problem:

min
uL,R(x)∈{0,1}

∑
i=L,R

{〈
1− ui, C

i
s

〉
+
〈
ui, C

i
t

〉
+

∫
R
gi(x) |∇ui| dx

}
(6)

where the functions Ci
s,t(x) are set up w.r.t. the current surface[11]. The con-

tinuous min-cut problem (6) can be solved globally and efficiently by means of
the continuous max-flow method[12] and implemented on the modern parallel
computing platforms (GPUs) to obtain the high-performance in numerics. The
proof of the duality between the continuous max-flow model and the convex
relaxed optimization model (6) is omitted due to the limited space.

3 Experiments

Image acquisition: A motorized 3D US system developed for cranial US scan-
ning of pre-term neonates was used to acquire the images. Following the routine
cranial US exam, the 2D US transducer (Phillips C8-5 broadband curved ar-
ray) is placed into the motorized housing and the 3D US image is acquired.
The US technician locates the midline of lateral ventricles through the ante-
rior fontanelle. Images are then acquired while the motor housing is held firmly
while the device rotates the transducer at an axis at the probe tip. Scans were
performed with a 60-72 degree scan angle, a step size of 0.3 degrees at a frame
rate of 25 frames/s with scan times between 8-12 seconds [13]. The image sizes
ranged from 300× 300× 300 to 450× 450× 450 voxels at the same voxel spacing
of 0.22× 0.22× 0.22mm3. Scans were performed 1-2 times per week for the first
month enrolled in the study and 1-4 per month for the duration of the patients
stay in the neonatal intensive care unit.

Evaluation Metrics: Ventricles were manually segmented in parallel slices of
the 3D US image with 0.75 mm between slices. Our segmentation method was
then evaluated by comparing the algorithm to manual segmentation results using
volume-based metrics: Dice similarity coefficient (DSC)[14]; and distance-based
metrics: the mean absolute surface distance (MAD) and maximum absolute sur-
face distance (MAXD)[15]. In addition, each image was segmented three times
by the same observer for assessing the intra-observer variability. The mean run
time of three repeated segmentations for each 3D US image was considered as
the segmentation time to assess the algorithm’s efficiency.

4 Results

Accuracy: Figure. 2 shows two algorithm segmented lateral ventricles (green
contours) and manual delineations (red contours) of one patient, demonstrating
good agreement. Table. 1 shows the mean quantitative segmentation results for
20 patient images using the proposed method. Our approach obtained a mean
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(a) segmented sur-
face

(b) sagittal view (c) coronal view (d) transvers view

Fig. 2. Segmented ventricles (green contour) overlapped with manual segmentations
(red contour)

Table 1. Segmentation results of twenty 3D US images of four patients (five time
points each) in terms of DSC, MAD, and MAXD (p1-p4: patient ID)

p1 p2 p3 p4 Mean

DSC (%) 71.2 ± 1.5 74.3± 2.0 70.5± 2.1 70.5 ± 2.1 72.4± 2.5
MAD (mm) 0.5± 0.2 0.6± 0.1 0.7± 0.1 0.7± 0.1 0.7± 0.1
MAXD (mm) 3.8± 1.2 2.7± 1.6 3.1± 2.2 3.4± 1.5 3.5± 1.6

DSC of 72.4±2.5%, a MAD of 0.7±0.1mm, and a MAXD of 3.5±1.6mm for the
patients’ two ventricles. Considering that values of DSC above 70% are usually
regarded as a satisfactory level of agreement between two segmentations[14,16],
the segmentation accuracy generated by our method is useful for clinic use.

Reiliability: The result of the intra-observer variability test showed that the
proposed method yielded a DSC of 72.5± 2.1%, 73.4± 2.6% and 73.2± 2.4% for
three segmentations from the same observer, respectively. ANOVA analysis with
a single factor failed to demonstrate a statistically significant difference between
these three segmentations (p = 0.80, F = 0.75). The approximately similar DSCs
yielded by algorithm in all three repetitions suggest a high reproducibility of our
approach.

Computational Time: The proposed approach was implemented using paral-
lel computing architecture (CUDA, NVIDIA Corp., Santa Clara, CA) and the
user interface in Matlab (Natick, MA). The experiments were conducted on a
Windows desktop with an Intel i7-2600 CPU (3.4 GHz) and a GPU of NVIDIA
Geforce 5800X. The segmentation time including registration and convex opti-
mization was calculated as the mean run time of three repeated segmentations
for each 3D US image. The mean segmentation time of our method was 15± 2s
in addition to 50± 5s for initialization, resulting in a total segmentation time of
less than 1.5 minutes for a single 3D lateral ventricle US image, significantly
less than 30 minutes for manual segmentation.
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5 Discussion and Conclusion

This paper proposes an accurate, reproducible and numerically efficient solu-
tion to a challenging segmentation problem of the lateral ventricles of pre-term
neonates from 3D US images, which makes use of the latest development of con-
vex optimization technique combined with a subject-specific shape model. The
experimental results show that the proposed method is reliable to the initial
segmentation of the first image, where the rough manual segmentation is reg-
istered to the other images as the shape prior, in combination with the local
image features, to assist the segmentation of the following images. In practice,
the local image appearance can derive the correct region boundaries even when
the shape prior has errors. In addition, the intra-observer experiments show that
the variability introduced by the user-selected shape prior is small in terms of
DSC, which demonstrates that the proposed method is reliable at least for a sin-
gle expert. Although the current algorithm is semi-automatic, and still requires
manual segmentation for the first image, the 1.5 min computational time is still
promising for repeat images in clinical trials compared to half an hour for a
currently used manual segmentation, The algorithm performance suggests that
it has the potential to be used for measuring the volume of lateral ventricles of
pre-term neonates.

Many investigators are focusing on segmentation of brain anatomic struc-
tures in 3D MRI, such as lateral ventricle and hippocampus. However, these
are found to be application-dependent, which can not be directly applied in our
3D US application due to the difference of modality and segmentation object.
We tested the classic active contour [17], level set [18], and graph cut [19] algo-
rithms in our dataset. Visual inspection show that all of these failed to generate
favourable results for all testing images. It should be noted that our algorithm
cannot handle the situation when bleeding extends outside ventricles (grade IV
haemorrhage), which greatly concerns obstetricians and neonatologist along with
ventricle volume.

Acknowledgments. The authors are grateful for the funding support from the
Canadian Institutes of Health Research (CIHR), the Ontario Institute of Cancer
Research (OICR), the Canada Research Chairs (CRC) Program, and Academic
Medical Organization of Southwestern Ontario (AMOSO).

References

1. Wilson-Costello, D., Friedman, H., Minich, N., Fanaroff, A.A., Hack, M.: Improved
survival rates with increased neurodevelopmental disability for extremely low birth
weight infants in the 1990s. Pediatrics 115(4), 997–1003 (2005)

2. Papile, L.A., Burstein, J., Burstein, R., Koffler, H.: Incidence and evolution of
subependymal and intraventricular hemorrhage: a study of infants with birth
weights less than 1,500 gm. The Journal of Pediatrics 92(4), 529–534 (1978)

3. Abdul-Khaliq, H., Vogel, M., Lange, P.: Feasibility of brain volumetric analysis and
reconstruction of images by transfontanel three-dimensional ultrasound. Journal of
NeuroImaging 10(3), 147–150 (2000)



566 W. Qiu et al.

4. McLean, G., Coombs, P., Sehgal, A., Paul, E., Zamani, L., Gilbertson, T., Ptasznik,
R.: Measurement of the lateral ventricles in the neonatal head: Comparison of 2-d
and 3-d techniques. Ultrasound in Medicine & Biology (2012)

5. Liu, J., Huang, S., Ihar, V., Ambrosius, W., Lee, L.C., Nowinski, W.L.: Automatic
model-guided segmentation of the human brain ventricular system from ct images.
Academic Radiology 17(6), 718–726 (2010)

6. Liu, J., Huang, S., Nowinski, W.L.: Automatic segmentation of the human brain
ventricles from mr images by knowledge-based region growing and trimming. Neu-
roinformatics 7(2), 131–146 (2009)

7. Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active
contours driven by the bhattacharyya gradient flow. IEEE Transactions on Image
Processing 16(11), 2787–2801 (2007)

8. Ukwatta, E., Yuan, J., Rajchl, M., Qiu, W., Tessier, D., Fenster, A.: 3d carotid
multi-region MRI segmentation by globally optimal evolution of coupled surfaces.
IEEE Tran. Med. Imag. 32(4), 770–785 (2013)

9. Parzen, E.: On estimation of a probability density function and mode. The Annals
of Mathematical Statistics 33(3), 1065–1076 (1962)

10. Qiu, W., Yuan, J., Ukwatta, E., Tessier, D., Fenster, A.: Prostate segmentation
in 3d TURS using convex optimization with shape constraint. In: SPIE, Medical
Imaging (2013)

11. Yuan, J., Ukwatta, E., Tai, X.C., Fenster, A., Schnoerr, C.: A fast global
optimization-based approach to evolving contours with generic shape prior. Tech-
nical report CAM-12-38, UCLA (2012)

12. Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches.
In: CVPR 2010 (2010)

13. Kishimoto, J., Lee, D., Lawrence, K.S., Romano, W., Fenster, A., de Ribaupierre,
S.: Development of a 3d ultrasound system to investigate post-hemorrhagic hydro-
cephalus in pre-term neonates. In: SPIE Medical Imaging, p. 86751M (2013)

14. Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C.: Morphometric anal-
ysis of white matter lesions in mr images: method and validation. IEEE Transac-
tions on Medical Imaging 13(4), 716–724 (1994)

15. Garnier, C., Bellanger, J.J., Wu, K., Shu, H., Costet, N., Mathieu, R., de Crevoisier,
R., Coatrieux, J.L.: Prostate segmentation in HIFU therapy. IEEE Trans. Med.
Imag. 30(3), 792–803 (2011)

16. Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A.D., Rueckert, D., Ha-
jnal, J.V.: Automatic segmentation and reconstruction of the cortex from neonatal
mri. Neuroimage 38(3), 461–477 (2007)

17. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision 1(4), 321–331 (1988)

18. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Img. Pro-
cess. 10(2), 266–277 (2001)

19. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization
via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 23(11), 1222–1239 (2001)



Semi-automatic Brain Tumor Segmentation by

Constrained MRFs Using Structural Trajectories�

Liang Zhao1, Wei Wu2, and Jason J. Corso1

1 Computer Science and Engineering, SUNY at Buffalo, Buffalo, NY, USA
2 Wuhan University of Science and Technology, Wuhan, Hubei, China

{lzhao6,jcorso}@buffalo.edu

Abstract. Quantifying volume and growth of a brain tumor is a primary
prognostic measure and hence has received much attention in the medical
imaging community. Most methods have sought a fully automatic seg-
mentation, but the variability in shape and appearance of brain tumor
has limited their success and further adoption in the clinic. In reaction,
we present a semi-automatic brain tumor segmentation framework for
multi-channel magnetic resonance (MR) images. This framework does
not require prior model construction and only requires manual labels on
one automatically selected slice. All other slices are labeled by an itera-
tive multi-label Markov random field optimization with hard constraints.
Structural trajectories—the medical image analog to optical flow—and
3D image over-segmentation are used to capture pixel correspondences
between consecutive slices for pixel labeling. We show robustness and
effectiveness through an evaluation on the 2012 MICCAI BRATS Chal-
lenge Dataset; our results indicate superior performance to baselines and
demonstrate the utility of the constrained MRF formulation.

1 Introduction

Magnetic resonance imaging provides detailed information of the human brain
and is an essential tool for the neuro-oncologist. Quantifying the volume of a
brain tumor is the key prognostic measurement of tumor progression [1, 2]. Yet,
manually labeling a brain tumor in 3D MRI is a time-consuming and error-prone
task. The medical imaging community has hence invested a significant amount
of effort in methods for automatic brain tumor segmentation [3–7]. However,
despite these efforts, there has been limited success in translation to the clinical
environment; the current performance of automatic methods does not meet the
prognostic needs [1] (e.g., the best performer in BRATS 2012 has a Jaccard score
of 0.5 for high-grade tumor). This may be due to the underlying variability of
tumor shape and appearance, or due to assumptions of the approaches.

Semi-automatic methods that require some input from the user are a plausible
alternative. They have received comparatively little attention for brain tumor
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imaging, e.g., [2, 8, 9]. In contrast, 2D image interactive labeling has been hotly
studied, e.g., GrabCut [10], LazySnapping [11]. Similar ideas have been used on
2D brain tumor segmentation, such as [8]. However, generalizing these ideas to
3D is non-trivial. The interaction mechanisms in these papers, such as drawing
lines to specify foreground and background, moving a square brush or lasso, or
giving a bounding box, are no longer trivial tasks in a 3D volume for complex
objects, tumor and edema. Recently, some approaches for object segmentation
in 3D medical images by iterative energy optimization based on shape model
were proposed [12, 13]. However, compared to some organs, such as the liver,
the edema and tumor shape are comparatively harder to model.

We propose an alternative mechanism for incorporating human input in semi-
automatic brain tumor segmentation. Our main idea is based on the assumption
that pixels with the same label in consecutive slices will have a similar feature
distribution and strong spatial correspondence. Hence, we require the human to
manually label only one slice (using standard 2D annotation techniques) and
then all other slices are sequentially labeled based on a constrained Markov ran-
dom field model. The constraints in the model are created based on a 3D notion
of optical flow, which we call structural trajectories, and on over-segmentation.
The initial slice to be labeled is automatically selected based on an asymmetry
heuristic. Our thorough experiments on the BRATS 2012 data set [3] demon-
strate the potential of our approach with limited input of only one manually
labeled slice (our Jaccard score for high-grade tumor is 0.75, which is a 50% im-
provement over the best fully automatic method). To the best of our knowledge,
this is the first time an optical flow-like calculation has been used to provide a
global 3D structural consistency measure for brain tumor segmentation.

2 Methods

Our proposed semi-automatic segmentation approach labels the volume slice-
by-slice using a constrained Markov random field (MRF) energy minimization
on neighboring slices. In this procedure, the structural correspondence between
adjacent slices is detected by optical flow estimation, which we call structural
trajectories and helps in the iterative pixel labeling as hard constraints.

Given a sequence of slices, S = {si, i = 1 : n}, the whole procedure of the
proposed approach is as follows:

1. Compute structural trajectories TR = {trj , j = 1...M}.
2. Select the most asymmetric slice simax .
3. Label pixels in simax as tumor, edema, or background manually.
4. In simax+1 to sn and simax−1 to s1, label pixels slice-by-slice with Alg. 1.

2.1 Slice Selection by Asymmetric Area Detection

Consider a 3DMRI brain image, Img.We first flip it sagittally, yielding Imgmirror

and then refine it with a non-rigid 3D registration [14] to the original Img. We
then compare the refined flipped image Imgr to Img to look for regions of high
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Algorithm 1. Sequential Optimization on Three Consecutive Slices

Input: Three consecutive slices, {si, sk, s2k−i}(k = i± 1). Labels of pixels in si.
Output: Labels of pixels in sk

1: Estimating the intensity distributions on si with GMM
2: Selecting some pixels in sk to label by estimating the constraints between si and

sk. Calling the set of these pixels Consk (Sec. 2.3, 2.4)
3: Labeling pixels in sk \Consk by MRF optimization on Ji+1 = {si, sk, s2k−i} with

hard constraints on the labeled pixels. (Sec. 2.4)

asymmetry. Concretely, for pixel p ∈ Img(x, y, z), let I(p) be its feature vector
(4D MRI). To define Asym(p), we measure local asymmetry of p:

Asym(p) = minq∈N(p)‖I(p)− Imgr(q)‖ (1)

where, N(p) is the neighborhood of p. We use Otsu’s Method [15] on Asym(p),
p ∈ I, resulting in the threshold θAysm and define the most asymmetric slice:
imax = argmini

∑
p∈si

1(Asym(p) ≥ θAysm), where 1(·) returns 1 if the argu-
ment is true and 0 otherwise.

2.2 Annotation

For manual annotation of the selected slide, we have developed an interface that
allows the human to make labels (Tumor, Edema and Background) in all four
channels. The interface supports drawing rectangles and curves with the mouse.
When a pixel is labeled in one channel, it will be labeled in all the other three
channels in the same time in the interface. This approach has been a minimal
burden on the user as the asymetric slice typically finds large tumor and edema
regions and at the same time, our method is robust to minor errors in initial
labeling (see Sec. 2.4 for details). A novice annotator with no background on
medicine spends about 2–4 minutes (used in this paper).

2.3 Structural Trajectories

Fig. 1. Example
trajectories

To exploit the 3D structural consistency of the MRI volume,
we develop a method to constrain the ultimate pixel label
problem based on tracking voxels through the volume, which
we call structural trajectories. Ultimately, these will form con-
straints for our MRF formulation (i.e., linking a tumor pixel in
one slice to the corresponding tumor pixel in the next slice, if
it exists, and analogously for the other types of tissue). We use
an optical flow algorithm [16] to track points between neigh-
boring slices by successive registrations, resulting in spatially
dense trajectories, capturing the global correspondence of pix-
els over the whole volume.

First, we register neighboring slices by minimizing intensity and gradient pixel
matching scores [17]. Given a sequence of slices S = {si, i = 1...n}, define a struc-
tural trajectory to be a sequence of pixels: trj = {pjt |p

j
t ∈ st, t = t0...t1, 1 ≤ t0 ≤
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Algorithm 2. Over-Segmentation Based Local Consistency

Input: Jk = si, sk, s2k−i

1: for label1 ∈ {tumor, edema, background} do
2: Defining slabel1i , such that I(slabel1i (x, y)) = I(si(x, y)) ∗ δ(f(x,y) == label1)
3: Defining J label1

k = {slabel1i , sk, s2k−i}
4: Making over-segmentation on J label1

k , resulting in a set of segments, SEGlabel1 =
{Seglabel1j , j = 1...T} using the method of [18] with the implementation of [19]

5: Defining Llabel1
k = {p ∈ sk|∃[Seg1 ∈ SEGlabel1, q ∈ si], s.t. fq == label1, p ∈

Seg1, q ∈ Seg1}
6: end for
7: Cons1tumor

k ← Ltumor
k \ (Ledema

k ∪ Lbackground
k )

8: Cons1edema
k ← Ledema

k \ (Ltumor
k ∪ Lbackground

k )

9: Cons1background
k ← Lbackground

k \ (Ledema
k ∪ Ltumor

k )

t1 ≤ n}. Trajectories hence capture slice-to-slice pairwise pixel correspondence
(Fig. 1), even if the pair of pixels are not neighboring. In a brain MRI 3D image,
a point trajectory refers to a sequence of physical points in brain which inten-
sities are successively similar. We use the point tracking with forward-backward
checking method to compute the trajectories. To the best of our knowledge,
this is the first time an optical flow-like computation has been used to enforce
structural consistency in 3D MRI brain tumor segmentation.

2.4 Constrained MRF Pixel Labeling

Given the label of pixels of si, we define a traditional Markov random field on
pixels of Jk = {si, sk, s2k−i}. (k = i± 1). In this pixel labeling problem we have
a 3D image Jk with a 6-connected neighborhood system N and a set of labels
L = {tumor, edema, background}. A labeling f assigns a label fp ∈ L. The
feature vector of p is defined as I(p). The goal is to find a labeling minimizing
an energy function of the form,

E(f) =
∑
p∈Jk

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq) (2)

where Dp(fp) = −log(P (I(p)|fp)) is the data term and smoothness is

Vpq(fp, fq) = Smoothness(fp, fq)× exp(−α ∗Dis(I(p), I(q), Σ)) (3)

where Smoothness is a 3× 3 non-negative matrix, α is a positive scalar, Dis(·)
is Mahalanobis distance, Dis(x, y,Σ) =

√
(x− y)TΣ−1(x− y). Σ is computed

with the training data.

Estimation of Intensity Distribution: Using the labeled pixels in si as train-
ing data, we model the node-class likelihoods P (I(p)|fp) as a Gaussian mixture
(GMM). Let Σ be the covariance matrix of {I(p)|p ∈ si, fp == background}.
Estimation of Constraints: With the constraints between si and sk, we use
two different methods to select two sets of pixels in sj to label; here a constraint
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Algorithm 3. Local Modification of Structural Trajectories

1: for q ∈ si do
2: NEAR(q) = argminp∈sk(‖I(p)− I(q)‖|pre(p) ∈ N(q)))
3: end for
4: for p0 ∈ sk do
5: voter 1(p0) = {q ∈ si|p0 = NEAR(q)}
6: cr(p0) = argminq∈voter 1(p0)(‖I(p)− I(q)‖)
7: discr(p0) = ‖I(p0)− I(cr(p0))‖
8: voter(p0) = {q ∈ voter 1(p0)|}
9: end for
10: for label1 ∈ {tumor, edema, background} do
11: Cons2label1k = {p ∈ sk|∀[q ∈ voter(p)], fp = label1}
12: end for

means that we will fix the label of the pixel during inference use it to propagate
the labels to neighboring unconstrained pixels (see Sec. 2.5 for details).

Erosion-like Processing with Over-Segmentation: The basic idea is that if a

Fig. 2. Local modi-
fication of structural
trajectories

pixel is grouped (in the over-segmentation) with other
pixels of different labels on si, then its labeling has a
high uncertainty and it should hence not be selected as a
hard-constraint, which makes our method robust to mi-
nor errors in the labeling. The estimation process is per-
formed according to Alg. 2.
Local Modification of Structural Trajectories: Structural-
trajectories cross slices and there is strong correspon-
dence between the pixels in the same trajectory. We
make a local modification of these trajectories to se-
lect some pixels in sk to label. For a pixel p0 ∈ sk,
let pre(p0) be the pixel in si and in the same trajec-
tory with p0. Obviously, p0 is likely to have the same
label with pre(p0). Let voter(p0) be the set of pixels in
si that have the same label with p0. Define Cons2label1k

as the set of pixels in sk that we select to label as label1.
Alg. 3 shows how to compute Cons2label1k and Fig. 2
gives a visualization. We then intersect the two con-
straint sets, Conslabel1k = Cons1label1k ∩Cons1label1k where
label1 ∈ {tumor, edema, background} and Consk = ∪Conslabel1k , as a conserva-
tive step since these will be used as hard constraints in the MRF optimization
(all pixels in Conslabel1k are given label label1), which we discuss next.

2.5 Optimizing MRF with Hard Constraints

In Jk = {si, sk, s2k−i}, we have pixels in si ∪Consk labeled. Hence, the Markov
random field on Jk is constrained by the labeled pixels. We implement these
hard constraints through with the following MRF conversion. We define Hk =
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si ∪ Consk, J
H
k = Jk \ Hk. We can define a new MRF on JH

k with the same
neighborhood system N , which has no hard constraints. To make the two MRFs
equivalent, we define a new energy function based on the original one in Eq. (2):

EH(fH) =
∑
p∈JH

k

DH
p (fH

p ) +
∑

(p,q)∈N

V H
pq (f

H
p , fH

q ). (4)

DH
p (fH

p ) = Dp(f
H
p ) +

∑
(p,q)∈N,q∈H

Vpq(f
H
p , fH

q ) (5)

V H
pq (f

H
p , fH

q ) = Vpq(f
H
p , fH

q ) (6)

It is easy to prove, if ∀p ∈ JH
k , fp = fH

p ,then EH(fH) = E(f). Hence, we can

optimize E(f) on Jk by optimizing EH(fH) on JH
k . Our MRF is a conventional

multi-class MRF, we hence optimize with the alpha-expansion graph cut [20].

3 Experiments and Results

Data Set: We evaluate our method on 2012 BRATS Training Data [3], which
is now the standard benchmark for brain tumor segmentation research. This
dataset contains 30 cases from patients with high- and low-grade gliomas. The
data has four channels, T1, T2, T1C and FLAIR; the feature I(p) in our experi-
ment is hence a 4D vector. The typical volume size is about 130× 170× 170. We
also evaluate our method on 2012 BRATS Challenge Data [3], which contains
11 high- and 4 low-grade gliomas from patients, and compare the result with a
state-of-the-art semi-automatic method, Tumor-cut [9]. The gold standard labels
are not given and DICE scores of Tumor and Complete Tumor(Tumor+Edema)
are computed by an online evaluation infrastructure (hence we avoid a bias by
the human annotator, who has never seen the gold standard). The DICE Scores
of [9] are given by 2012 BRATS [3].

Table 1. Smoothness term

Smoothness bg tumor edema

bg 0 2 1

tumor 2 0 1

edema 1 1 0

Parameters: The MRF parameter α is set
to 0.001 and Smoothness is given by Table 1
based on empirical experiments.

Baselines and Metrics: We use the Jac-
card and DICE metrics in our evaluation. j∗

refers to our method. We define a set of ap-
propriate baselines: to evaluate the hard constraints from the structural tra-
jectories and the over-segmentation, denote the baseline without any hard con-
straints as jB. We also assess the value of the structural trajectories, which are
global through the whole volume, with respect to the local over-segmentation
constraints; jL uses only the local over-segmentation. We follow the exact eval-
uation regime specified in [3].

Results: We show the quantitative results in Table 2. As a point of comparison
to the current state of the art fully automatic method, we also compare our
results to supervised automatic method [21] on the same dataset (denoting it
jA), which won the first prize in the BRATS Challenge 2012 [3]. Although this
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Table 2. Comparative Jaccard scores on BRATS Training Set and DICE scores on
BRATS Challenge Set: our method (j∗), no hard constraints (jB), no structural trajec-
tories (jL), the best fully automatic method [21] from [3] (jA), and the state-of-the-art
semi-automatic Tumor-cut(jT ) [9]

BRATS Training Set BRATS Challenge Set
Tumor Edema Tumor Complete tumor

jB jL j∗ jA jB jL j∗ jA j∗ jT j∗

High-grade 0.121 0.653 0.750 0.500 0.113 0.451 0.629 0.450 0.683±0.242 0.694 0.835±0.089
Low-grade 0.072 0.564 0.657 0.360 0.050 0.144 0.215 0.230 0.563±0.345 0.324 0.848±0.087

comparison will clearly favor our semi-automatic method, we show it to get a
sense of what value our approach yields. Note that not all of the semi-automatic
methods in Table 2 outscore the automatic counterparts. The results clearly
demonstrate that the proposed semi-automatic method, which requires only one
slice to be labeled by a human, outperforms the best fully automatic method
[21] by a significant margin on all cases except the low-grade edema class, which
is known to be challenging. The results also indicate the value of both the local
over-segmentation constraints and the global structural trajectories. The average
runtime of one case is about 5 minutes in Matlab. Fig. 3 shows an example.

Fig. 3. Example results. Top: results of our
method (Tumor: Red; Edema: Green). Mid-
dle: gold standard. Bottom: T1C-MRI.

Failure Modes: Mode 1: In some
cases, especially low-grade cases, tu-
mor or edema is not successive slice-
by-slice. In these cases, because we
cannot estimate the feature distri-
bution accurately and no pixel cor-
respondence is available, our results
may just contain some connected
components of tumor or edema. Mode
2: Let A be a small homogeneous re-
gion contained in slice sk. If its fea-
ture distribution is very different from
any of the feature distribution of tu-
mor, edema or background estimated
by the previous labeled slice si, and it is strongly adjacent to both of two dif-
ferent tissues (e.g. tumor and edema), then the pixel labeling of A by MRF
optimization will not be accurate.

4 Conclusion

In this work, we have proposed a novel semi-automatic brain tumor segmenta-
tion method. We just need to ask for a manual labeling on a single slice, which is
selected automatically based on asymmetry. All the other slices are labeled iter-
atively with the local intensity distribution and both global and local constraints
in a constrained MRF framework. The constraints are extracted automatically
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based on an optical flow-like measure, which is the first time such a structural
global measure has been used for brain tumor segmentation, to the best of our
knowledge. Our method does not depend on the assumption that training data
and testing data have similar intensity distribution or similar shape prior, unlike
many existing methods. Our experiments demonstrate that the proposed ap-
proach yields significant improvements over fully automatic methods (e.g., 50%)
in most cases, as expected, and the novel structural constraints greatly improve
the MRF optimization over the conventional MRF labeling.
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Abstract. Multi-atlas techniques are commonplace in medical image
segmentation due to their high performance and ease of implementation.
Locally weighting the contributions from the different atlases in the label
fusion process can improve the quality of the segmentation. However, how
to define these weights in a principled way in inter-modality scenarios re-
mains an open problem. Here we propose a label fusion scheme that does
not require voxel intensity consistency between the atlases and the target
image to segment. The method is based on a generative model of image
data in which each intensity in the atlases has an associated conditional
distribution of corresponding intensities in the target. The segmenta-
tion is computed using variational expectation maximization (VEM) in
a Bayesian framework. The method was evaluated with a dataset of eight
proton density weighted brain MRI scans with nine labeled structures
of interest. The results show that the algorithm outperforms majority
voting and a recently published inter-modality label fusion algorithm.

1 Introduction

Automated segmentation of brain MRI scans is a key step in most neuroimag-
ing pipelines. Manual delineation of structures of interest is time consuming and
rater dependent, making automated approaches desirable. Some of the most pop-
ular segmentation methods in the recent literature are based on the multi-atlas
paradigm, in which a set of training images with manual annotations (henceforth
“atlases”) are deformed to the image to analyze. The deformations are used to
propagate the annotations to target space, where they are finally merged into an
estimate of the segmentation; this step is known as label fusion. Multi-atlas tech-
niques overcome the main limitation of using a single atlas: the fact that a single
template can seldom cover all the anatomical variability within a population.

The simplest form of label fusion is majority voting, in which the most fre-
quent label is assigned to each voxel [1]. Better results can be achieved by locally
weighting the contribution of the atlases by their similarity to the target scan
after registration. In [2], Isgum et al. define weights by inverting the absolute dif-
ference in image intensities. A more principled framework based on a generative
model was proposed by Sabuncu et al. [3]: a smooth, discrete, latent membership

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 576–583, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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field determines from which deformed atlas the intensity and label are taken at
each spatial location; Bayesian inference is used to compute the segmentation.

These methods rely on the consistency of voxel intensities across the atlases
and the target scan. This assumption falters in inter-modality scenarios, includ-
ing MRI when the atlases and the target have been acquired with different hard-
ware or pulse sequences. This is often the case when analyzing clinical or legacy
data. Another example of application that could benefit from inter-modality la-
bel fusion is the analysis of infant brain MRI, in which the intensities are very
different than in scans from adults due to ongoing myelination.

While the image registration literature has managed inter-modality scenarios
using metrics based on mutual information [4], label fusion across modalities
remains an open problem. One possible approach is to arbitrarily define weights
based on the mutual information or cross-correlation computed in a window
around each voxel [5], yet the optimality of such an approach is unclear.

A principled way of carrying out label fusion across modalities was presented
in [6]. This method is based on a generative model in which the intensity of the
voxels corresponding to each label follows a Gaussian distribution. The param-
eters of the Gaussian are estimated from the data, making the fusion robust
against changes in modality or MRI contrast. While this approach outperforms
heuristic schemes based on local cross-correlations [7], it still has two disadvan-
tages. First, the performance is poor when the Gaussian assumption is violated,
such as in the thalamus or the putamen in brain MRI scans. And second, since
the fusion only considers the deformed labels from the atlases, it ignores poten-
tially valuable information from their intensities.

Here we propose a generalization of Sabuncu et al.’s model to inter-modality
scenarios. The generative model is essentially the same; however, we do not hy-
pothesize a Gaussian relation between the intensities of the atlases and the target
scan. Instead, we assume a more flexible model based on a semi-parametric or
non-parametric conditional distribution of the intensities of the target given the
intensities of the atlases. Using a Bayesian framework, we first estimate this con-
ditional distribution and also a multiplicative bias field. Then, the segmentation
is computed as the most likely labels given these estimates and the input image.

2 Methods

2.1 Generative Model

The proposed generative model is shown in Fig. 1a, and the corresponding equa-
tions in Fig. 1b. We assume that registration is a preprocessing step: the intensi-
ties {In} and corresponding labels {Ln} of theNatl deformed atlases are constant
during the fusion. M(x) ∈ {1, . . . , Natl} is a discrete, latent membership field
that indexes which atlas generated the label and intensity of the voxel at spatial
location x. M(x) is smooth thanks to a Markov random field (MRF) prior (Eq. 1
in Fig. 1b, where Vx is the 6-neighborhood of x and δ(·) is Kronecker’s delta).

Given M(x), the label of a voxel L(x) is sampled from a categorical distribu-
tion given by a logOdds model [8] defined by the warped labels of atlas M(x)
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(Eq. 2 in Fig. 1b, where ρ is the slope of the model and Dl
n is the signed distance

transform for atlas n and label l ∈ {1, . . . ,L}). This prior has been shown to
outperform taking the label LM(x)(x) directly [3]. Given L(x), the uncorrupted

(i.e., bias field corrected) intensity of the voxel Ĩ(x) is sampled from the condi-
tional distribution p(Ĩ(x)|IM(x)(x), Θ), which depends on the model parameters
Θ (Eq. 3 in Fig. 1b). Here we have made two assumptions. First, that the condi-
tional PDF is stationary in space. Second, we assume that the image intensities
are consistent across atlases, which is fair when the atlases are from the same
modality. This allows us to represent the conditional probability density function
(PDF) with a single, atlas-independent PDF.

For the conditional PDF of intensities, we consider two different models. First,
a semi-parametric (SP) model which describes Ĩ(x) with a Gaussian PDF with
mean and variance depending on IM(x)(x). And second, a non-parametric (NP)

model based on a collection of conditional 1D histograms (h) of Ĩ(x) depending
on IM(x)(x). These two forms of the algorithm allow us to isolate and understand
the effects of the two contributions of this model with respect to [6]: the departure
from the Gaussian model (NP) and using the intensities of the atlases in the
fusion (NP and SP). The models are given by:

Semi-parametric (SP): p(Ĩ(x)|IM(x), Θ) = N (Ĩ(x);μQ[IM(x)], σ
2
Q[IM(x)]

). (1)

Non-parametric (NP): p(Ĩ(x)|IM(x)(x), Θ) = h(Q[Ĩ(x)];Q[IM(x)(x)]), (2)

where Q[·] is a nearest neighbor interpolator that quantizes the intensities of the
target scan and the atlases into discrete sets A and B, respectively.

Finally, Ĩ(x) is corrupted by a low-frequency, multiplicative bias field to yield
the observed intensities I(x) (Eq. 4 in Fig. 1). The bias field is modeled as the
exponential (to ensure non-negativity) of a linear combination of smooth basis
functions {ψk}. The linear coefficients b = {bk} are grouped with the parameters
of the conditional PDF of intensities into the model parameters θ = (b, {h(a; b)})
(NP) or θ = (b, {μb, σ

2
b}) (SP). A flat prior distribution p(θ) ∝ 1 completes the

model. Note that the denominator in Eq. 5 in Fig. 1b ensures integration to one.

2.2 Inference

The segmentation L̂ of image I is estimated by maximizing the posterior proba-
bility: p(L|I, {In}, {Ln}). This leads to an intractable integral for which we can
use the approximation that the posterior distribution of the model parameters
is a Dirac’s delta, i.e., p(θ|I, {In}) ≈ δ(θ = θ̂):

L̂ = argmax
L

∫
p(L|θ, I, {In}, {Ln})p(θ|I, {In})dθ ≈ argmax

L
p(L|θ̂, I, {In}, {Ln}),

(3)

Thus, we first need to estimate θ̂ and then use it to compute L̂ with Eq. 3.

Estimating θ̂: the problem here is

θ̂ = argmax
θ

p(θ|I, {In}) = argmax
θ

log p(I|{In}, θ). (4)
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(a)

1. M ∼ 1
Z(β)

∏
x exp

(
β
∑

y∈Vx
δ(M(x) = M(y))

)
2. L(x) ∼ exp

(
ρD

L(x)

M(x)
(x)

)
/
∑L

l=1 exp
(
ρDl

M(x)(x)
)

3. Ĩ(x) ∼ p(Ĩ(x)|IM(x), Θ)

4. I(x) = Ĩ(x) exp
(∑

k bkψk(x)
)

5. p(I(x)|In(x), Θ) =
p

(
I(x)

exp(
∑

k bkψk(x))

∣∣In(x),Θ

)
exp(

∑
k bkψk(x))

(b)

Fig. 1. Graphical model (a) and corresponding equations (b). Random variables are in
circles, constants in boxes, observed variables shaded and plates indicate replication.

Note that θ does not depend on {Ln}. Optimizing Eq. 4 requires marginalizing
overM , which is intractable due to the MRF. Therefore, we use VEM to compute
an approximate solution by optimizing a lower bound J instead:

log p(I|{In}, θ)≥J(q(M), θ)= log p(I|{In}, θ)−KL[q(M)||p(M |I, θ, {In})] (5)

= H [q] +
∑
M

q(M) log p(M, I|θ, {In}), (6)

whereH [·] is the entropy of a random variable,KL represents the (non-negative)
Kullback-Leibler divergence and q is a distribution over M which is restricted
to having a simpler form than p(M |I, θ, {In}). We alternately optimize J with
respect to q (E step) and Θ (M step).

In the E step, we work with Eq. 5. Maximizing J amounts to minimizing
the KL divergence. The standard “mean field” approximation assumes that q
factorizes as q(M) =

∏
x qx(M(x)), where qx(m) is a categorical distribution

over the atlas indices m = 1, . . . , Natl, and
∑

m qx(m) = 1. This yields:

argmin
q

∑
x

∑
m

qx(m) log
qx(m)

p(I(x)|Im(x), θ)
− β

∑
x

Eqx

⎡⎣∑
y∈Vx

qy(M(x))

⎤⎦ . (7)

Building the Lagrangian and setting derivatives to zero gives:

qx(m) ∝ p(I(x)|Im(x), θ) exp[β
∑
y∈Vx

qy(m)], (8)

such that
∑

m qx(m) = 1. We can solve this equation with fixed point iterations.
In the M step, it is more convenient to work with Eq. 6: since we are op-

timizing for θ, we can disregard H(q). Because of the structure of q, we have:

argmax
Θ

∑
x

∑
m

qx(m)

[
log p(Ĩ(x)|Im(x), Θ) −

∑
k

bkψk(x)

]
, (9)

with Ĩ(x) = I(x)e−
∑

k bkψk(x). The solution depends on whether we consider
the SP or the NP model. In the first case, replacing p(Ĩ(x)|Im(x), Θ) by the
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corresponding Gaussian (Eq. 1), taking derivatives with respect to the means
and variances, and setting them to zero gives:

μb =
∑
x

∑
m

wb
x(m)I(x)e−

∑
k bkψk(x)

/∑
x

∑
m

wb
x(m), (10)

σ2
b =

∑
x

∑
m

wb
x(m)(I(x)e−

∑
k bkψk(x) − μb)

2
/∑

x

∑
m

wb
x(m), (11)

where wb
x(m) = qx(m)δ (Q[Im(x)] = b). Eqns. 10 and 11 are weighted means and

variances depending on the (approximate) membership posteriors qx(m).
For the NP model, we substitute Eq. 2 into Eq. 9 and build a Lagrangian to

ensure integration to one. Taking derivatives and setting them to zero yields:

h(a; b) ∝
∑
x

∑
m

wb
x(m)δ

(
Q[I(x)e−

∑
k bkψk(x)] = a

)
. (12)

such that
∑

a∈A h(a; b) = 1/Δ, where Δ is the quantization interval. Again,
Eq. 12 is simply a weighted histogram.

Finally, we use a quasi Newton solver with an explicit line search to optimize
Eq. 9 for the bias field coefficients, both in the SP and BP case.

Computing the Final Segmentation: given θ, estimating the final segmen-
tation with Eq. 3 still requires an intractable sum over M . However, since q(M)

minimizes the KL divergence with p(M |θ̂, I, {In}), we approximate:

L̂ = argmax
L

∑
M

p(L|M, {Ln})p(M |θ̂, I, {In}) ≈ argmax
L

∑
M

p(L|M, {Ln})q(M)

= argmax
L

∏
x

∑
m

qx(m)p(L(x)|Lm)⇒L̂(x)= argmax
L(x)

∑
m

qx(m)p(L(x)|Lm) (13)

Summary of the Algorithm: we initialize the bias field coefficients bk = 0,
and the distribution qx(m) = 1/Natl. Next, we alternate the E and M steps until
convergence. The E step updates q with fixed point iterations of Eq. 8. The M
step first updates the bias field by numerically optimizing Eq. 9 with respect to
{bk}, and then the parameters of the conditional PDF with Eqns. 10, 11 (SP
model) or Eq. 12 (NP). Upon convergence, the final segmentation is computed
with Eq. 13. The method is illustrated with a simple example in Fig. 2.

3 Experiments and Results

We used 39 manually delineated (see protocol in [9]) T1 MRI scans as atlases to
segment 36 brain structures in eight proton-density (PD) scans. The annotations
of the PD scans were made on co-registered T1 data, allowing consistent annota-
tions across the two datasets. FreeSurfer [10] was used to skull-strip the volumes
and intensity-normalize the atlases, since consistent intensities are assumed.
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Fig. 2. Intermediate outputs for a sagittal patch of a PD scan segmented with three
T1 atlases and the NP model. Top row: I , {In}, qx(m) overlaid on I , and segmentation
L (green = putamen, purple = ventricle, blue = caudate); qx(m) highlights where
each atlas contributed to generating I, L. Bottom row: initial and final estimates of
the conditional PDFs h(a; b); the latter are much sharper and emphasize three modes
corresponding to gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF).
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Fig. 3. (a) Box plot of Dice scores for majority voting (black), the Gaussian model [6]
(red) and the proposed SP (green) and NP (blue) methods. Lines are at the three
quartile values, whiskers extend to 1.5 times the interquartile range from the box, and
dots mark outliers. (b-i) Axial slice of a PD scan, (ii) manual labels, (iii) segmentation
from majority voting, (iv) the Gaussian model, (v) the SP model, (vi) the NP model.
Arrows point at mistakes. The color code is: red = CT, white = WM, pink = PT, dark
blue = PD, light blue = CA, green = TH, purple = LV, orange = accumbens.

We used Elastix [11] to register the T1 to the PD scans (b-spline transform,
mutual information). We compared four label fusion methods: majority voting,
the Gaussian model from [6] and the proposed approach (SP and NP). We set
ρ = 1, β = 0.75 (as in [6]), {ψk} to a fourth order polynomial and the number
of bins |A| = |B| = 64. The Dice overlap between the manual and automatically
generated labels was used as measure of performance. Statistical significance
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Table 1. Mean Dice scores (in %, highest in bold) and p-values with respect to NP

Method WM CT LV TH CA PT PD HP AM All combined

Maj. Vot. 75.6 72.8 70.7 85.5 76.2 87.4 81.2 76.3 68.6 77.2
p-value 0.008 0.008 0.008 0.008 0.016 0.078 0.023 0.008 0.008 6.8 10−13

Gaussian 86.3 88.7 77.3 84.9 77.7 84.2 81.1 78.2 69.3 80.8
p-value 0.008 0.008 0.11 0.008 0.008 0.008 0.016 0.078 0.008 8.2 10−4

SP 86.5 84.1 79.6 86.2 83.4 87.4 81.7 76.6 68.9 81.6
p-value 0.008 0.46 0.016 0.008 0.055 0.016 0.023 0.008 0.008 2.8 10−5

NP 83.5 84.3 80.9 88.1 84.6 88.6 83.1 79.6 70.1 82.5

was assessed with paired Wilcoxon signed rank tests. For simpler presentation
of results, we merged the label of each left structure with its right counterpart,
and used a representative subset of structures in the evaluation (as in [3]): white
matter (WM), cortex (CT), lateral ventricle (LV), thalamus (TH), caudate (CA),
putamen (PT), pallidum (PA), hippocampus (HP) and amygdala (AM).

Box plots of the structure-wise Dice scores are shown in Fig. 3a, whereas seg-
mentations for a sample axial slice are shown in Fig. 3b. The p-values for the
statistical tests comparing the NP method (the top-performing algorithm) with
the other competing approaches are shown in Tab. 1. Majority voting produces
decent outputs for the subcortical structures, but fails to extract the convoluted
white matter surface, which is very difficult to register (see Fig. 3b-iii). It also
produces bad results for the ventricles, as illustrated in the same figure. The
Gaussian model gives excellent results for the cortex, but falters when the nor-
mality assumption does not hold. This is often the case for the thalamus and
the putamen. For instance, the latter leaks into the white matter in Fig. 3b-iv.

The NP version of the proposed approach significantly outperforms majority
voting for every brain structure (Tab. 1). It also yields Dice scores significantly
higher than those from the Gaussian model for all subcortical structures. Only
in the cortex and the white matter the performance is inferior; see for instance
the mistake marked by the arrow in Fig. 3b-vi. This is because the registration is
poor for these convoluted structures, making a simple Gaussian intensity model
more suitable. Overall, the mean improvement in Dice score is ∼ 2% over the
Gaussian model and ∼ 5% over majority voting. The SP version also beats
majority voting and the Gaussian model. However, it performs slightly worse
than the NP method, likely due to its inability to describe multimodal shapes
in the conditional intensity PDF (e.g., see atlas intensity range 10-20 in Fig. 2).

4 Discussion

We presented a cross-modality label fusion method based on a generative model
that describes the relationship between image intensities in a SP or NP manner.
The algorithm often converges in less than 15 iterations (about 20 minutes on
a modern PC). The results show that using the intensities of the atlases in the
fusion allows the SP algorithm to outperform previously proposed inter-modality
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label fusion techniques. Moreover, departure from the Gaussian model allows
the NP model to further improve the results. Exploring more flexible SP models
(such as those based on mixtures of Gaussians), incorporating the registration
step into the framework and using more accurate approximations than nearest
neighbors when estimating the conditional intensity PDF remain as future work.
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Abstract. Atlas-building from population data is widely used in medi-
cal imaging. However, the emphasis of atlas-building approaches is typ-
ically to compute a mean / median shape or image based on population
data. In this work, we focus on the statistical characterization of the
population data, once spatial alignment has been achieved. We introduce
and propose the use of the weighted functional boxplot. This allows the
generalization of concepts such as the median, percentiles, or outliers
to spaces where the data objects are functions, shapes, or images, and
allows spatio-temporal atlas-building based on kernel regression. In our
experiments, we demonstrate the utility of the approach to construct sta-
tistical atlases for pediatric upper airways and corpora callosa revealing
their growth patterns. Furthermore, we show how such atlas information
can be used to assess the effect of airway surgery in children.

1 Introduction

Fig. 1. Illustration of boxplots for points, func-
tions, shapes and images. Median (middle black
line), confidence region (magenta) and the max-
imum non-outlying envelope (two outward blue
lines). The gray dash lines are the outliers.

Atlas-building from population
data has become an important
task in medical imaging to provide
templates for data analysis. Nu-
merous methods for atlas-building
exist, ranging from methods de-
signed for cross-sectional, longitu-
dinal, and random design data.
These approaches typically esti-
mate a representative data object
(e.g., shape, surface, image) for
the population; e.g., a population
mean [7] or median [3] with re-
spect to spatial deformations and appearance. This is a restrictive represen-
tation, as much of the population data is discarded. In the literature, this has
been acknowledged, e.g., by multi-atlas approaches [1] or manifold learning ap-
proaches [5] which retain population information by using sets of representative
objects or by identifying a low-dimensional data representation.

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 584–591, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Weighted Functional Boxplot with Application 585

An alternative strategy to retain population information is to represent ad-
ditional aspects of the full data distribution, such as percentiles, the robust
minimum and maximum, variance, confidence regions and outliers as captured
by a boxplot for scalar-valued data. The functional boxplot [12] allows just this
for functions. Similarly, we can use it to treat shapes and images (see Fig. 1)
and therefore as a simple method to augment atlases with additional population
information while avoiding restrictive point-wise analyses of data-objects. Note
that we focus in this paper on augmenting atlases with statistical information
and assume a given spatial alignment of data objects. However, the method could
be extended to build order statistics from low-dimensional manifold embeddings
where point-wise analysis becomes meaningful as each point then represent a
full data object.

As subject data typically has associated individual characteristics (e.g., age,
weight, gender) we want to be able to compute the statistical information con-
tinuously parameterized by these characteristics. For example, given a subject
at a particular age we want to compute subject age-specific confidence regions
to assess similarity with respect to the full data population.

We make the following contributions in this paper:

– We develop a weighted variant of the functional boxplot in Sec. 2. This allows
us for example to use kernel-regression to build spatio-temporal atlases.

– We show the effectiveness of the method in comparison to point-wise analysis
in Sec. 3 highlighting the importance of object-oriented data analysis.

– We show applicability of the method to functions, shapes, and images in Sec. 4
and demonstrate how an atlas can robustly be augmented with statistical
data for two applications: capturing changes in pediatric airway development
and changes of the corpus callosum over time. We also briefly sketch how
our method could be used to build order-statistics on manifolds.

– We show the use of our method for airway surgery assessment in children in
Sec. 5, where an age-adapted atlas can be used to quantify how “normal” a
child suffering from airway obstruction is before and after surgery.

2 Weighted Functional Boxplots and Atlas-Building

The population of data-objects for atlas building could be functions, shapes, and
images with associated to subjects characteristics. As an example, we consider
subject age and demonstrate spatio-temporal atlas-building as a combination of
weighted functional boxplots and kernel smoothing.

2.1 Atlas Building with Kernel Regression

Given spatially aligned data objects we want to capture population changes for
example with respect to age. This can be achieved through kernel regression
which essentially assigns weights to data-objects with respect to the regressor
(say a desired age ā). We can use for example a Gaussian weighting function
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wi(ai;σ, ā) = ce(ai−ā)2/2σ2

, where ai is the age for the observation i, σ is the
standard deviation for the Gaussian distribution and c a normalization constant
to assure that the weights sum up to one. For scalar-valued data the weights can
simply be used to define a weighted mean. When deformations are of concern
they can be used as weights in an atlas-building procedure for images [2]. Here,
we are interested in augmenting an atlas with functional statistical information
and hence need to develop a weighted functional boxplot to obtain a regressed
median (which is an actual data-object from the population), α central region,
maximum non-outlying envelop, and outliers.

2.2 Weighted Functional Boxplots

To define a weighted functional boxplot consistent with the functional boxplot
introduced by Sun et. al. [12] requires the definition of a consistent weighted band
depth for functional data. This imposes an ordering of the weighted observations
(data-objects) with respect to the (to be determined) central data-object.

Weighted Band-Depth. The functional boxplot is defined through the con-
cept of band-depth [9, 12]. Since each observation has a different weight, we
need to define a weighted band-depth. Such a definition immediately defines
the weighted functional boxplot. To motivate our choice, assume we want
to compute a standard weighted median of scalar values, which is given by
μ∗ = argmin

μ

∑n
i=1 wi|xi − μ|, where μ is the sought-for median, {xi} are the

measurements, and wi > 0 are weights for the individual measurements. As-
sume that all weights are natural numbers, i.e., wi ∈ N+. This can be achieved
exactly for arbitrary rational wi and approximately in general by multiplying
the energy with a suitable constant and does not change the minimizer. Hence,
we replace the weighted problem with the equivalent unweighted minimization
problem μ∗ = argmin

μ

∑n
i=1

∑mi

j=1 |xi − μ|, where the individual measurements

are simply repeated based on their multiplicities, mi = wi. Similarly, repeating
observations (according to weight), the sampled band-depth can be written as

BD
(j)
n (y) = 1

C

∑
1≤i1<i2<···<ij≤n I{G(y) ⊆ B(yi1 , · · · , yij )}, (1)

s.t. {yi1 , · · · , yij} contains unique observations. (2)

where C is a normalization constant (i.e., contains the number of admissible
permutations), I denotes the indicator function, G(y) is the graph of the function
y(x), and B is the band delimited by the observations given as its arguments.
We made use of the fact that, according to our definition, we only want to
consider unique observations for the depth measure; the {yi} contain the original
observations {yi}, but according to their respective multiplicity given by the
weights. Rewriting the sampled band-depth as

WBD(j)
n (y) =

∑
1≤i1<i2<···<ij≤n wi1wi2 · · ·wij I{G(y) ⊆ B(yi1 , · · · , yij )}∑

1≤i1<i2<···<ij≤n wi1wi2 · · ·wij

(3)
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defines the weighted band-depth and generalizes to non-natural-numbered
weights wi ∈ R+. In fact, this is a “natural” way to define a weighted band-
depth and, in further consequence, a weighted functional boxplot. Computing
the weighted band-depth in this way is intuitive, as only bands with large weights
for all its individual observations have a large impact. Furthermore, this weighted
version can be also adapted to the modified band-depth proposed in [12], i.e.,

WMBD(j)
n (y) =

∑
1≤i1<i2<...<ij≤n wi1wi2 · · ·wijλm{A(y; yi1 , ..., yij )}∑

1≤i1<i2<...<ij≤n wi1wi2 · · ·wij

(4)

where Aj(y) ≡ A(y; yi1 , ..., yij ) ≡ {x ∈ Rm : minr=i1,...,ijyr(x) ≤ y(x) ≤
maxr=i1,...,ijyr(x)}, m is the observation’s dimension, λm(y) = λ(Aj(y))/λ(R

m)
and λ is the Lebesgue measure on R

m.
With the above definitions, the band depths of all the sampled observations

can be calculated and ranked in descending order, y[1](x) ≥ ... ≥ y[n](x). y[1](x)
is the deepest observation and regarded as the median of the population, whereas
y[n](x) is the most outlying observation which is a potential outlier.

α Central Region. The concept of central region was introduced in [8]. We
define the α central region for the weighted functional boxplot based on the
weights of observations. The band of the α central region is delimited by the
α proportion of all weights, i.e., the accumulated weights of the first p deepest
observations

WCRα = {(x, y(x)) : min
r=1,...,p

y[r](x) ≤ y(x) ≤ max
r=1,...,p

y[r](x),

(
∑

r=1,...,p−1

w[r] < α) ∩ (
∑

r=1,...,p

w[r] ≥ α), 0 ≤ α ≤ 1}, (5)

where w[r] corresponds to the weight for the r-th deepest observation. When
α = 0.5, (5) corresponds to the 50% central region WCR0.5. In practice, the
50% central region is commonly chosen as the confidence region for analysis
because it 1) is a robust range for interpretation and 2) enables visualization of
the data spread which is less affected by outliers or extreme-values.

Outlier Detection. In classical boxplots, the outliers can be detected by the
1.5 IQR (interquartile range). This is comparable to 1.5 times the height of the
50% central region for the weighted functional boxplot. Besides, the weights of
the observations also need to be taken into consideration during outlier detection.
According to the probability density function for a boxplot based on a normal
distribution, the IQR is equal to the 50% distribution and the 1.5 IQR covers
the 99.3% distribution. Hence, we define fences by combining the one of the
1.5 IQR with the accumulated weights consistent with the 1.5 IQR of the normal
distribution, and any objects outside the fences will be flagged as outliers:

Cfences = {(x, y(x)) :max(minr=1,...,qy[r](x),min(WCRα)− 1.5 ∗ IQR)∪
min(maxr=1,...,qy[r](x),max(WCRα) + 1.5 ∗ IQR),

(
∑

r=1,...,q−1

w[r] < β) ∩ (
∑

r=1,...,q

w[r] ≥ β), β = 0.993}
(6)
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3 Comparisons of Boxplots for Analysis

Fig. 2. Observations

We compare atlases built by 1) weighted point-wise
boxplots and 2) functional boxplots, using synthetic
observations defined by

yi(x) = 500 ∗ (1 + sin(2πx+ 0.1πi)) + 2 ∗ agei,

where x ∈ [0, 1], i is the curve index and agei its age.
Fig. 2 shows the curves colored by age.

Fig. 3(a) shows an atlas built with the weighted
point-wise boxplot including four typical percentiles and the point-wise median.
While the median curve follows the overall population trend, it is not close to any
of the observations because weighted boxplots applied in a point-wise manner to
a population of functions disregard the spatial aspect of the functional data. In
contrast, our method 1) provides a median curve which corresponds to a curve
in the data set, and 2) allows for the computation of functional outliers (gray
dashed lines) which results in a more robust statistical description for the atlas.

(a) Atlases built by the weighted pointwise boxplot and the weighted functional boxplot.

(b) Atlases built by the functional boxplot and the weighted functional boxplot.

Fig. 3. Comparisons of boxplots on the synthetic data

To construct an atlas at a particular age using standard functional boxplots,
we use a uniform window to pick curves centered around the age of interest. As
shown in Fig. 3(b), only two curves are available in the uniform window for atlas-
building with functional boxplots, and one of them is flagged as an outlier. This
atlas includes little information about the population. The atlas built using the
weighted functional boxplot (with a Gaussian window size that is comparable to
the uniform one according to [10]) captures the population data much better as
it does not suffer from the local data sparsity and makes use of all the data.
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4 Applications

4.1 Data

The data objects for the weighted functional boxplot can for example be func-
tions, shapes and images (with shapes and images converted to long vectors).

Functions: Our first application is the construction of a pediatric airway atlas
for normal subjects to assess airway malformations (subglottic stenosis (SGS)).
The observations are a population of 1D functions describing airway cross-
sectional areas parameterized along the centerline of the airway. Functions are
generated from 3D CT data for 44 normal subjects using the approach in [6]
followed by landmark based spatial alignment [11]. We focus the analysis on the
region between the true vocal cord and the trachea carina, where SGS locates.

Shapes: The second application is to build a corpus callosum atlas and to
explore shape changes with age. The observations are a collection of 32 corpus
callosum shapes of varying ages from [4]. Each shape is represented by 64 2D
boundary points. We perform affine alignment before atlas constructions.

Images: The third application is to understand age-related changes of the corpus
callosum using binary images of the corpus callosum segmentations. The images
are converted from the aligned corpus callosum shapes.

4.2 Comparison with Point-Wise Boxplots

We compare the functional boxplot to the point-wise approach on above real
datasets to further demonstrate the advantages of our method. Fig. 4 shows the
median (the black curve) and the confidence region (the 50% central region, ma-
genta) for both point-wise and functional boxplots. We count the number of data
objects inside the confidence region: for the point-wise boxplots only 5 (of 44)
functions and none of the shapes or images are fully within the confidence region.
However, the functional boxplots by construction achieves a confidence region
containing 50% of the data objects. Hence it is a more intuitive representation
of true data-object variation. To construct the point-wise confidence regions for
shapes we locally compute distances with respect to the median point which
establishes an (unsigned) ordering. The confidence region is then the convex
hull of the closest half of the points. This strategy would extend to constructing
approximate confidence regions with respect to manifold embedding coordinates.

4.3 Atlas Construction with Weighted Functional Boxplots

The weighted functional boxplot is used to build a pediatric airway atlas with
variance σ = 30 months for the weighting function, Fig. 5(a), and the corpus
callosum shape/image atlases with σ = 10 years, Fig. 5(b). The pediatric airway
atlases capture increases in cross-sectional airway area with age which is consis-
tent with the growth pattern for pediatric airways and indicates the necessity of
building an age-adapted atlas as a reference. The corpus callosum atlases reveal
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Fig. 4. Comparison between point-wise (top) and functional (bottom) boxplots on
functions, shapes and images (from left to right)

(a) Functions: pediatric airway atlases at 34 (left) and 160 (right) months respectively.

(b) Shapes (left) and images (middle) : corpus callosum atlases at 37 and 79 years.

Fig. 5. Age-adapted atlases for functions, shapes, and images

the thinning trend in the shape and the decreasing volume in the image with
age, especially at the anterior and posterior parts consistent with [4].

5 Assessment with Statistical Atlas

To test the utility of the statistical atlas built by weighted functional boxplots we
show (Fig. 6) airway changes of a SGS subject before (at 9 months) and after (at
20 months) surgery compared to the age-matched normal control airway atlas.
Before treatment, there is a constricted region outside the atlas; after treatment,
the airway size increases and the corresponding curve is almost entirely within
the maximal non-outlying envelope, indicating a successful surgery.
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6 Discussion and Conclusions

Fig. 6. Airway changes for a subject pre- and post-
surgery (green lines) compared to the age-matched
atlas. The stenosis of the airway is marked by the red
ellipse on the pre-surgery geometry and no stenosis
exists in the post-surgery geometry.

We proposed a method to
compute weighted functional
boxplots and use it for spatio-
temporal atlas building. We
applied it to construct a pe-
diatric airway atlas to as-
sess children with subglottic
stenosis and a corpus callo-
sum atlas capturing aging.
The proposed method is gen-
eral, easy to compute, and
allows robust statistical de-
scription of functional, shape,
and image data.
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Abstract. Traditional analyses of Functional Magnetic Resonance Imag-
ing (fMRI) use little anatomical information. The registration of the
images to a template is based on the individual anatomy and ignores
functional information; subsequently detected activations are not con-
fined to gray matter (GM). In this paper, we propose a statistical model
to estimate a probabilistic atlas from functional and T1 MRIs that sum-
marizes both anatomical and functional information and the geometric
variability of the population. Registration and Segmentation are per-
formed jointly along the atlas estimation and the functional activity is
constrained to the GM, increasing the accuracy of the atlas.

Keywords: Probabilistic atlas, geometric variability, joint registra-
tion segmentation, atlas-based segmentation, multi-modal, T1 MRI and
fMRI.

1 Introduction

Brain atlas is a useful tool in medical image analysis for both segmentation
and registration. Probabilistic atlases yield a useful summary of a given dataset
[6,7], as they take into account the uncertainty on the underlying tissue type,
which is related to partial volume effect (PVE) or to perfectible registration.
In [3], a probabilistic framework was proposed for joint nonlinear registration,
intensity normalization and segmentation of a single image, from which it infers
tissue probability maps. In [10], a probabilistic model was proposed to segment
a heterogeneous data set of brain MRIs simultaneously while constructing the
probabilistic atlases. In spite of its convincing results, this model is not consistent
as the deformations are considered as parameters (whereas segmentation is an
unobserved random variable). In [13], the model proposed in [3] was generalized
in order to provide estimates of individual segmentation as well as the proba-
bilistic atlas from a set of anatomical images. This approach handles both the
segmentation and registration as hidden variables, leading to a coherent conver-
gent statistical estimator. However, this model is limited to scalar images. Here,
we generalize it to create a probabilistic atlas that provides the probabilistic
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templates of each tissue as well as the degree of activation on GM voxels and
the geometric variability.

Functional Magnetic Resonance Imaging of the brain is used to localize func-
tional areas in the cortex and deep nuclei by measuring MRI signal changes
associated with neural activity. It is a tool of choice for cognitive studies that
aim at identifying specific regions of the brain that are activated in percep-
tual, cognitive or motor tasks. The most popular type of analysis is Statistical
Parametric Mapping (SPM) [5], an approach that estimates the probability that
some activation can be due to chance alone and provides p-value maps. Group
analysis is then used to detect regions that show a positive mean activation
across subjects [4,12]. Accurate realignment of individual scans is most often
obtained by normalizing individual anatomical images to a T1 MRI template.
These processing steps are done without considering the complementarity of
the anatomical and functional information available in each subject. Therefore,
detected activations are not confined to gray matter. Few fMRI segmentation
methods have been proposed to take into account multi-modal data, such as T1
and functional MRI. An implementation of cortical-based analysis of fMRI data
was proposed in [2]. The fMRI data is mapped to the cortical surface, then ac-
tivations are detected on the surface. It has been shown to achieve anatomically
accurate activation detection. In [8], Markov Random Fields (MRF) were used
as a spatial regularization in fMRI detection and anatomical information was
incorporated into the MRF-based detection framework. In [11], both anatomical
and functional data are used to improve the group-wise registrations. Anatom-
ical information appears helpful in fMRI detection; however, the approaches so
far do not incorporate a group model into the analysis. In this paper, we process
multi-modal data jointly to ensure that the detected active areas are conditioned
to gray matter while registration is informed by functional information. More
specifically, group analysis first performs the realignment of individual images to
a T1 MRI template and then segments active regions by thresholding. However,
performing registration and segmentation jointly is generally more effective than
performing them sequentially [13,14]. In this paper, we take advantage of such
coupling.

To deal with all the issues described above, we propose an atlas estimation
procedure that can improve the template image estimation and the detection of
the active areas. We generalize the model proposed in [13]. The input is now
multivariate, as it encodes multi-modal patient observations (gray level T1 and
functional MRIs). The estimated active areas are conditioned to GM segmenta-
tion. We perform the estimation by coupling the segmentation and registration
steps. We estimate a probabilistic atlas that accounts for the variability of active
areas in the population. We also learn the geometry as the metric on the space
of deformations which drives the coupled segmentation. We use a stochastic al-
gorithm with known guarantees on the convergence in the estimation procedure.
The output of the algorithm is the probabilistic atlas, the individual active areas
and the means and variances of each tissue type in each modality.
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The rest of this paper is organized as follows. In Section 2, we present the
model, the estimation procedure, the algorithm. Section 3 yields experimental
results on simulated and real data.

2 Methods

Statistical Model. Let us consider n pairs of T1- and f- MRIs (y1,i, y2,i)1�i�n
from n patients. Each image is observed on a grid of voxels Λ embedded in
a continuous domain D ⊂ R3. We denote xj ∈ D the location of voxel j.
We consider that each T1 MRI is composed of voxels belonging to one of
the four classes, corresponding to four tissue types: gray matter, white matter
(WM), CSF and background (BG). Each fMRI is composed of voxels belong-
ing to one class among 3 + K, corresponding to WM, CSF and BG, where
no activation is expected to occur, and K different levels of activation in
gray matter. We assume that the signal in the 3 + K classes is normally dis-
tributed with class dependent means (μ1,f(k), μ2,k)k∈{WM,CSF,BG,GM1,...GMK}
and variances (σ2

1,f(k), σ
2
2,k)k∈{WM,CSF,BG,GM1,...GMK}, where f(k) = k if k ∈

{WM,CSF,BG}, GM otherwise. The whole set of parameters is denoted by Θ.
As mentioned previously, we are working with gray level images which have

not been pre-segmented. The unknown class of each voxel is supposed to be the
discretization on Λ of a random deformation of probability maps (Pk)1�k�K+3.
These probability maps correspond to the probability of each voxel to belong to
each class in the template domain. They form the probabilistic template of the
population. The random deformations from this template to each subject are
also unobserved as the images are not pre-registered. We define them through a
random field z : R3 → R3 such that for j ∈ Λ the prior probability of a voxel j
from subject i to be in the kth class is given by:

P(cji = k) = Pk(xj − z(xj)) . (1)

We define the deformation field as a finite linear combination of a given kernel
Kg centered at some fixed equi-distributed control points in the domain D,
(xg)1�g�kg , with parameter β ∈ (R3)kg

∀x ∈ D, zβ(x) =

kg∑
g=1

Kg(x, xg)β(g) , (2)

where Kg is chosen as a radial Gaussian Kernel. Note that we expect the tissue-
specific information to be found in all the brain volume, hence the whole volume
has to be covered with control points. As for the deformation model, the prob-
ability template maps Pk : R3 →]0, 1[, ∀k ∈ �1,K + 3� are parametrized by the

coefficients αk ∈]0, 1[kp which satisfy ∀l ∈ �1, kp�,
K+3∑
k=1

αl
k = 1. Let (pl)1�l�kp be

some control points :

∀x ∈ D,Pk(x) =

kp∑
l=1

Kp(x, pl)α
l
k, (3)

where Kp(x, pl) = 1 if pl is the nearest neighbor of x among (pj)j , 0 otherwise.
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The previous hypothesis provides a generative statistical model for a sample
of pairs of gray level images. The random variables are the deformation vector β,
the class of each voxel c and the observed gray levels of the images. We assume
that the deformation vector follows a normal distribution with mean zero and
non-diagonal covariance matrix Γg. The hierarchical model is given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

βi ∼ N (0, Γg)|Γg; cji ∼
K+3∑
k=1

δkPk(xj − zβi(xj))|βi,(
yj1,i
yj2,i

)
∼ N

((
μ1,f(k)

μ2,k

)
,

(
σ2
1,f(k) 0

0 σ2
2,k

)) ∣∣∣∣cji = k,

(
μ1,f(k)

μ2,k

)
,

(
σ2
1,f(k)

σ2
2,k

) (4)

where N (·;μ, σ2) is the normal density with mean μ and variance σ2 and δk is a
Dirac function. The covariance matrix Γg is not assumed to have any particular
pattern of zeros. This makes it possible to model local and global correlations
between control point moves, in particular, very correlated displacements can be
captured such as translation of a large area of the images.

The parameters to estimate are the covariance matrix Γg of the deformation
distribution (Eq. (2)), (αk)1�k�K+3 the coefficients that define the template
maps (Eq. (3)), (μ1,f(k), μ2,k)1�k�K+3 and (σ2

1,f(k), σ
2
2,k)1�k�K+3 the class de-

pendent means and variances. As medical images are high-dimensional but usu-
ally come in small samples, we work in a Bayesian framework. We use the stan-
dard conjugate priors for the covariance matrix, the class dependent means and
variances with fixed hyper-parameters. All priors are assumed independent.

Estimation Algorithm. A maximum a posteriori (MAP) approach yields es-

timates of the model parameters: θ̂n = argmaxθ∈Θ qB(θ|(y1,1, y2,1), · · · , (y1,n,
y2,n)), where qB denotes the posterior distribution of the parameters given the
n observations (y1,1, y2,1), ..., (y1,n, y2,n). As we are in an incomplete-data setting,
we choose the Stochastic Approximation Expectation-Maximization (SAEM) al-
gorithm coupled with a Markov Chain Monte Carlo method to take advantage of
its theoretical and numerical properties [1,13]. The SAEM algorithm is an iter-
ative procedure that consists of three steps. First, we simulate the missing data
using a Metropolis-Hastings algorithm within Gibbs sampler. Then a stochastic
approximation is done on the sufficient statistics using the simulated value of
the missing data. Last, we maximize the expected log-likelihood with respect to
the model parameters.

3 Experiments and Results

We test our algorithm on both simulated data and real data. As the SAEM
algorithm is an iterative procedure, we run 250 iterations which was checked to
reach convergence. We initialize β0 = 0 and a random classification c0.

Simulated Data. We use a pair of 64 × 64 × 8 images as the reference images.
We consider here K = 3, i.e. three different levels of activation in GM and 6
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Fig. 1. Experiments on simulated data. The first column displays the first slice of
the probabilistic template, each row corresponding to a class and white/black colors
to high/low probability. The second and third columns show one slice of six pairs of
data images. The forth to seventh columns correspond to the ground truth and the
estimated segmentation for different models.

classes in total. We define the means and the standard deviations as follows
(taking values that are observed in real fMRI for the standard deviations):(

μ1,1:6

μ2,1:6

)
=

(
1 2 4 3 3 3
0 0 0 2.5 0 −2.5

)
,

(
σ1,1:6

σ2,1:6

)
=

(
0.25 0.25 0.25 0.25 0.25 0.25
0.24 1.22 0.91 0.78 0.71 0.83

)
The training data is composed of 20 pairs of images with random deformations

of our template following Eq. (4) with previous parameters. We take 64 fixed
control points for the deformation model given in Eq. (2), i.e. one control point
in each 4 × 4 × 4 cube. We take all the points in the image as landmarks for
the template model given in Eq. (3).

The most important output of our estimation procedure is the probabilis-
tic template. The estimated probabilistic maps are shown in the first column
in Fig.1, each row corresponding to one class. The white/dark colors represent
high/low probability of the tissues. Our probabilistic maps are sharp, as most
voxels in each class have a probability larger than 0.9. Only voxels at the bound-
ary between two classes are fuzzy which takes into account both the accuracy of
deformation and the level of noise.

As mentioned previously, our model uses both the T1- and f- MRIs because
we want the active areas to be conditioned to GM. We compare our model with
the segmentation model in [13] using fMRI only. The result is shown in Fig.1.
The second and third columns correspond to one slice of six pairs of data images.
The ground truth and the final estimated segmentation of different methods (our
model, the model using fMRI only) are shown from the forth to sixth columns.
From the forth and fifth columns, we can see that the segmentation obtained
with our atlas estimation is accurate. From the fifth and sixth columns, we see
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Table 1. Experiments on synthetic data. Jaccard Index for the different methods
averaged across all data.

BG CSF WM GM1 GM2 GM3

Our model 98.5% 92.3% 88.4% 88.0% 73.1% 90.4%
fMRI only 89.0% 75.0% 69.7% 78.3% 48.2% 81.4%
Pre-Aligned 96.6% 91.1% 87.0% 86.6% 67.8% 86.6%

the improvement using the information provided from the T1 MRI. We calculate
the Jaccard index for each class as a quantitative validation (Table 1) for each
method. Our model yields an accurate segmentation, as only few voxels are
misclassified. For the model using fMRI only, we are only interested in GM1

and GM3 which correspond to the active areas. As the other classes are non-
active, the means of these classes are close to zero, therefore they are difficult
to segment without the MRI tissue type information, leading to lower values
for these classes. Moreover, the Jaccard indexes for the active area are lower
than those obtained with our procedure, which shows that the coupling of both
images information increases the accuracy of detection.

In our model, the registration and segmentation are done jointly, which avoids
any pre-registration. In the preprocessing, each fMRI is pre-aligned to its cor-
responding MR image. However, the inter-subject non-rigid registration is not
done, as it would require a template and would not take into account the fMRI
observation to drive this preprocessing step. We compare our model with the
pre-aligned model which does the registration and the segmentation sequentially.
Fisrt, we use the segmentation model in [13] using the T1 MRIs, we get the de-
formation vector and individual tissue segmentation as our output. Then we
apply the same deformation to the fMRI and detect the activation only in GM.
The estimated segmentation of the pre-aligned model is shown in the seventh
columns in Fig.1. Comparing the fifth and seventh columns, the segmentations
look similar which makes it difficult to say which method gives the better result.
However our model gives less isolated points. Moreover, looking at the Jaccard
indexes (Table 1), we see that our model outperforms the pre-aligned model.
This shows the improvement of doing registration and segmentation jointly.

In-Vivo Data. The proposed method was also tested on a real MRI and fMRI
dataset described in [9]. Both anatomical and functional data were subject to
standard preprocessing using SPM8, including spatial normalization and General
Linear Model analysis. Images are sampled at 3mm resolution, yielding volumes
of shape 46 × 53 × 63. We select a contrast from the fMRI that yields differential
effect of a computation task versus a simple instruction reading/listening. We
have K = 3 levels of activation in the GM, hence 6 classes overall.

We take 792 fixed control points for the deformation model given in Eq. (2),
corresponding to one control points in each 6 × 6 × 6 cube and 23 × 27 × 32
points in the image as the landmarks for the template model given in Eq. (3),
corresponding to one landmark in each 2 × 2 × 2 cube.
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Fig. 2. The estimated template on real data. The yellow/red colors correspond to
high/low probability of the activation for the computation task.

Fig. 3. Experiments on real data showing the detected active areas p > .95 for the
computation task. The first row for our method using both T1- and f- MRI and the
second row for the standard method using fMRI only. Each column corresponds to one
slice of the same patient.

The estimated probabilistic maps, thresholded at the p > .95 level, are shown
in Fig.2. The yellow/red colors correspond to high/low probability of the com-
putation task activation. Our probabilistic maps are sharp. The detected areas
are well conditioned to GM and fits the known active areas for the computation
task. For example, in the slice x = 25mm, we find well the Putamen.

We compared our model with the standard method that thresholds the group-
level mean activation. We represent the active areas in the computation task
overlayed on T1 images. The results of one patient are shown in Fig.3. The first
row for our method uses both T1- and f- MRI and the second row for the method
uses fMRI only. Each column corresponds to one slice of the same patient. In
zone 1, we see that the areas detected as active by our method are limited to
the GM. However, a part of the detected active areas by the non-anatomically
aware method are outside of the brain. In zone 2, the standard method detects
some active areas in WM, while our method does not. These show that we reach
our goal, i.e. the detected active areas are well conditioned to GM. The detected
active areas by our method are similar to those by the standard method in GM,
this shows that our segmentation is accurate.

4 Conclusion

In this study, we proposed a statistical model to detect the active areas in the
brain using both T1 and functional MRI. We used a stochastic algorithm to
perform registration, segmentation and to create a probabilistic atlas simultane-
ously. Our model has several advantages. First, the probabilistic atlas contains
both the templates and the geometric variability of the population. Second, we
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do not need any pre-registration to perform the segmentation which is automat-
ically obtained as an output. Third, the detected active areas are confined to
GM with the information provided from the MRI data. Our experiments show
that we get better results with our algorithm than the standard method. The
detected active areas are well conditioned to GM and the atlas is sharp.
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Abstract. The SNP-SNP interactome has rarely been explored in the context of 
neuroimaging genetics mainly due to the complexity of conducting ~1011 pair-
wise statistical tests. However, recent advances in machine learning, specifical-
ly the iterative sure independence screening (SIS) method, have enabled the 
analysis of datasets where the number of predictors is much larger than the 
number of observations. Using an implementation of the SIS algorithm (called 
EPISIS), we used exhaustive search of the genome-wide, SNP-SNP interactome 
to identify and prioritize SNPs for interaction analysis. We identified a signifi-
cant SNP pair, rs1345203 and rs1213205, associated with temporal lobe vo-
lume. We further examined the full-brain, voxelwise effects of the interaction in 
the ADNI dataset and separately in an independent dataset of healthy twins 
(QTIM). We found that each additional loading in the epistatic effect was asso-
ciated with ~5% greater brain regional brain volume (a protective effect) in 
both the ADNI and QTIM samples. 

Keywords: epistasis, interaction, genome, sure independence, tensor-based 
morphometry. 

1 Introduction 

Traditional univariate methods can test the association of common genetic variants 
with complex quantitative traits, but they only consider the marginal effect of a single 
locus and potentially miss variance explained by synergistic or interacting effects of 
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pairs or sets of SNPs1 [1]. For many complex traits, the similarity of family members 
drops faster than would be expected as relatedness decreases [2]. This implies that 
there are non-additive (epistatic) interactions involved in the etiology of many com-
plex traits. Statistical interactions have been demonstrated to be plausible representa-
tions of the complex interactions of genes in biological pathways [3-4].  

Some prior studies have examined second-order interactive effects of SNPs on 
brain structure [5-7]. However, none of these studies has considered genome-wide 
genotype data; the closest conceptually related study tested for SNP effects on diffu-
sion imaging measures, and aggregated all SNPs with correlated effects into a net-
work [8]. The concept here is different, and aims to assess gene pairs that influence 
each other’s effects on the brain. Prior studies tested interaction effects only for a 
limited number of popular candidate genes. Any approach based on pre-selecting a 
pair of genes will overlook a vast search space of potential interactions among SNPs 
in the genome that have no obvious prior connection. Also, a large main effect is not 
necessary to be able to detect significant second-order interactions [9]. Given this, 
prior hypotheses focusing on SNPs with large individual effects may also overlook 
large second-order effects. Importantly, power estimates for detecting interactive 
effects are comparable to those for single SNP tests [1]. In simulation studies, the 
inclusion of interaction terms can boost the power to detect main effects, at least for 
certain genetic tests [10]. Here we examined the genome-wide, SNP-SNP interac-
tome2 to test genetic associations with a quantitative biomarker of Alzheimer’s dis-
ease (temporal lobe volume) in the public Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset. We further examine the whole-brain effects of interaction pairs 
in statistical parametric maps generated with tensor-based morphometry (TBM); we 
also replicate our tests in an independent, non-overlapping dataset of young healthy 
twins from the Queensland Twin Imaging (QTIM) study [11].  

2 Methods 

2.1 Imaging Parameters and Study Information 

We downloaded the full baseline set of 818 high-resolution, T1-weighted structural 
MRI brain scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 
ADNI is a multi-site, longitudinal study of patients with Alzheimer’s disease (AD), 
mild cognitive impairment (MCI) and healthy elderly controls (HC). Subjects were 
scanned with a standardized protocol to maximize consistency across sites. We used 
the baseline 1.5 Tesla MRI scans, i.e., the T1-weighted 3D MP-RAGE scans, with 
TR/TE = 2400/1000 ms, flip angle = 8˚, slice thickness = 1.2 mm, and a final voxel 
resolution = 0.9375 x 0.9375 x 1.2 mm3. Raw MRI scans were pre-processed to  
                                                           
1  SNP (=single nucleotide polymorphism): a single-letter variant in the genome; these varia-

tions are common, even in healthy human populations, and their effects on brain measures 
can be assessed using association testing, at one SNP or up to a million genotyped SNPs. 

2  Interactome: The study of interactions between genetic variants or sets of variants in terms 
of their effects on traits such as brain measures. 
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remove signal inhomogeneity, non-brain tissue, and affine registered to the MNI  
template (using 9 parameters). 

Additionally, we obtained 753 high-resolution, T1-weighted structural MRI brain 
scans from the Queensland Twin Imaging (QTIM) study. QTIM is a longitudinal 
neuroimaging and genetic study of young, healthy twins and their family members. 
All structural MRI scans were acquired on a single 4-Tesla scanner (Bruker Meds-
pec): T1-weighted images, inversion recovery rapid gradient echo sequence, TR/TE = 
1500/3.35 ms, flip angle = 8˚, slice thickness = 0.9 mm, 256 x 256 acquisition matrix, 
with a final voxel resolution = 0.9375 × 0.9375 × 0.9 mm3. Raw MRI scans were pre-
processed to remove signal inhomogeneity, non-brain tissue, and affine registered to 
the ICBM template (using 9 parameters). 

2.2 Genotype Pre-processing and Study Demographics 

Genome-wide genotyping data were available for the full set of ADNI subjects. We 
performed standard quality control procedures to ascertain the largest homogenous 
genetic sub-population in the dataset, using multi-dimensional scaling (MDS)  
compared to a dataset of subjects of known genetic identity (HapMap III; 
http://hapmap.ncbi.nlm.nih.gov/). The largest subset contained 737 subjects from the 
CEU population (Caucasians). We therefore removed the remaining 81 subjects from 
our analysis to limit the effects of genetic stratification on our statistical analyses [12]. 
Additionally, we applied filter rules to the genotype data to remove rare SNPs  
(minor allele frequency < 0.01), violations of Hardy-Weinberg Equilibrium (HWE  
p < 5.7x10-7), and poor call rate (<95%). Data were further “phased” to impute any 
missing individual genotypes after filtering using the MaCH program [13] following 
the ENIGMA imputation protocol [14]. After filtering and phasing, 534,033 SNPs 
remained. 

All QTIM subjects were ascertained for genetic similarity, so no subjects were re-
moved before analysis. All 753 subjects in the QTIM dataset clustered with the CEU 
population, in the MDS analysis. The same genotype filter rules from the ADNI data-
set were applied to the QTIM sample’s genetic data. After filtering and phasing, 
521,232 SNPs remained. 

After all rounds of genotype pre-processing, the ADNI sample contained 737 sub-
jects (mean age±sd: 75.5±6.8 yrs; 436 males) comprised of 173 patients diagnosed 
with Alzheimer’s disease, 358 subjects with mild cognitive impairment, and 206 
healthy elderly controls. The QTIM sample contained 753 subjects (mean age±sd: 
23.1±3.0 yrs; 286 males) and consisted of 110 monozygotic twin pairs, 147 dizygotic 
twin pairs, 3 dizygotic twin trios, 143 singletons, and 87 siblings from 438 families.  

2.3 Tensor-Based Morphometric Differences in the Full Brain 

We calculated information on regional brain morphometry using an elastic, nonlinear 
registration algorithm (3DMI) [15] applied to the entire brain. Voxelwise volumetric 
differences were stored, using the Jacobian value of the deformation matrix obtained 
by nonlinearly registering a subject’s scan to a study-specific minimum deformation 
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template (MDT). Scans from the ADNI and QTIM datasets were processed and ana-
lyzed separately (using separate study templates). The MDT for the ADNI sample is a 
nonlinear average of 40 age-and-sex matched healthy elderly controls [16]. The MDT 
for the QTIM is a nonlinear average of 32 age- and sex- matched, unrelated subjects 
[17]. Nonlinear registration with 3DMI yields a 110 x 110 x 110 voxel statistical  
parametric map, where the Jacobian value at each voxel represents the expansion 
required to match the same voxel in the study-specific MDT. 

2.4 Genome-Wide, Gene-Gene Interaction Testing 

The EPISIS software is an implementation of the machine-learning algorithm called 
sure independence screening (SIS) developed by Fan and Lv [18]. The SIS algorithm 
is a correlation learning method that can be applied to ultra-high dimensional datasets 
where the number of predictors p is much greater than the number of observations n. 
Despite the development of robust methods for cases where p>n (e.g., the Dantzig 
selector of Candes and Tao [19]) the properties of the selector fail when p>>n.  
Fan and Lv [18] developed the SIS algorithm to reduce the ultra-high dimension of p 
to a moderately-sized subset, while guaranteeing that the subset still explains the  
maximum amount of variance explained by the full set of predictors.   

We conducted an exhaustive search of association tests of genome-wide SNP-SNP 
interactions with temporal lobe volume (computed by integrating the Jacobian over  
an temporal lobe ROI on the MDT) [20] in the ADNI dataset using the EPISIS  
software. EPISIS utilizes the massively parallel processing available in GPGPU 
(General-purpose computing on graphics processing units) framework to test p(p-1)/2 
SNP-SNP interactions in the ADNI dataset in a feasible timeframe. We used the SIS 
algorithm with cell-wise dummy coding (CDC) [21] to reduce the full predictor space 
into a subset d of n/log(n) interaction terms [18]. After screening the full set of possi-
ble two-way SNP-SNP interactions, we applied ridge regression [22-23] to the subset 
of interaction terms (the multiplicative loading of each SNP-SNP pair) and selected 
significant SNP-SNP interaction terms using the extended Bayesian Information Cri-
terion (EBIC) [24] with γ = 0.5. The choice of the parameter γ was chosen based on 
simulations [21]. The EPISIS software is implemented in CUDA and optimized for 
parallel processing across multiple NVIDIA GPU cards as detailed elsewhere [21]. A 
single exhaustive search of the genome-wide, SNP-SNP interactome with EPISIS was 
completed in 7 hours (using one NVIDIA Tesla C2050 GPU card). 

2.5 Voxelwise Interaction Analysis and Replication 

We tested the significant SNP-SNP interaction pair selected by ridge regression for 
association with voxelwise, regional volume differences (V) at each point, i, in the full 
brain. The association test at each voxel in the ADNI dataset followed the multiplica-
tive interaction model in multiple linear regression: 

 
Vi ~ β0 + βageXage + βsexXsex + βsnp1Xsnp1 + βsnp2Xsnp2 + βsnp1,2Xsnp1*Xsnp2 + ε    (1) 
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Additionally, we used QTIM as an independent replication sample of the top  
SNP-SNP interaction pair identified by ridge regression after EPISIS. The voxelwise 
association tests assume the multiplicative interaction model, detailed previously. Due 
to the family design of the QTIM sample, we tested association using mixed-effects 
modeling as implemented in the R package kinship (version 1.3) in order to account 
for relatedness.  

3 Results 

After screening the full set of SNP-SNP interaction pairs for association with tempor-
al lobe volume in the ADNI dataset, we obtained a subset d of SNP-SNP interaction 
pairs such that d = n/log(n). The subset is chosen by ranking the marginal correlation 
coefficients of each interaction pair and selecting the top d SNP-SNP pairs (correla-
tion learning) [18], in this case d = 111 pairs. Next, we applied ridge regression to the 
pruned subset of SNP-SNP interaction pairs. Using the extended BIC (γ = 0.5) [21] to 
estimate significance in our ridge regression, we identified a significant interaction 
between rs1345203 and rs1213205. The distribution of alleles for each SNP and their 
interaction is given in Table 1. 

Table 1. The distribution of alleles for the significant SNPs and the number of subjects with 
each genotype by study. For rs1345203 the minor allele is G and the major allele is A in both 
studies. The minor allele is A and the major allele is G for rs1213205. The association testing 
assumes an additive model (each subject is assigned a value 0,1,2 based on the number of 
minor alleles they have at a given SNP). The interaction column gives the number of subjects in 
each category after multiplying together the counts of each of the alleles. 

Study rs1345203 rs1213205 Interaction 

ADNI (n=737) G/G: 27 A/A: 93 0 loadings: 612 

 A/G: 223 G/A: 297 1 loadings: 79 

 A/A: 487 G/G: 347 2 loadings: 46 

QTIM (n=753) G/G: 5 A/A: 78 0 loadings: 664 

 A/G: 193 G/A: 300 1 loadings: 70 

 A/A: 555 G/G: 375 2 loadings: 19 

 
 
We further examined the significant SNP pair, rs1345203 and rs1213205, for 

whole-brain effects in the statistical parametric maps generated using tensor-based 
morphometry (TBM). In the ADNI dataset, we found broad effects bilaterally in the 
temporal and occipital lobes (Fig. 1) after correcting for multiple tests at a 5% false 
discovery rate (FDR) using the searchlight FDR method [25].  
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Fig. 1. 3D maps of percent tissue change for each additional genetic variant in the interaction in 
ADNI. Only significant regions are shown after correcting for multiple comparisons with sear-
chlight FDR [25] at a 5% false discovery rate. Images follow radiological orientation. The 
origin is placed at the Posterior-Right-Inferior corner. Cooler colors over the tissue represent 
tissue expansion (larger regional brain volume) compared to an average template. There is a 
clear protective effect of the epistatic loadings bilaterally in the temporal (# in the figure) and 
occipital lobes (## in the figure): as the number of alleles a subject has increases, the amount of 
local brain tissue they have is also increased on average.   

We examined the whole-brain effects of the SNP pair on voxelwise, regional brain 
volume in the statistical parametric maps in an independent dataset (QTIM). The dis-
tribution of alleles for each SNP and their interaction in the QTIM sample is given in 
Table 1. In the QTIM, we identified significant effects in the left temporal lobe and 
along the border of the left frontal and occipital lobes (Fig. 2) after correction for 
multiple tests at 5% false discovery rate (FDR) using the searchlight FDR method. 
 
 

 

Fig. 2. 3D maps of percent tissue change for each additional genetic variant in the interaction in 
QTIM. Only significant regions are shown after correcting for multiple comparisons with sear-
chlight FDR [25] at a 5% false discovery rate. Images follow radiological orientation. The 
origin is placed at the Posterior-Right-Inferior corner. Cooler colors over the tissue represent 
tissue expansion (larger regional brain volume) compared to an average template. There is a 
clear protective effect of the epistatic loadings in the left temporal (# in the figure) and along 
the boundary of the frontal and occipital lobes (## in the figure): as the number of alleles a 
subject has increases, the amount of local brain tissue they have is also increased on average. 
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4 Discussion 

The genome is incredibly complex and statistical epistasis has been suggested as an 
appropriate model for the biological interactions among genes and protein products in 
related pathways [3-4]. Here we examined the multiplicative effect of SNP-SNP pairs 
on brain volume differences. Significant interaction terms explain additional variance 
in brain volume beyond what is already explained by the additive SNP terms. In  
our primary tests of associations with temporal lobe volume in the ADNI dataset,  
we screened 1011 possible SNP-SNP interaction pairs using the GPU acceleration  
implemented in the EPISIS software. The top 111 interaction pairs were selected after 
ranking the marginal effect of each SNP-SNP pair on temporal lobe volume, using  
an implementation of the sure independence screening (SIS) algorithm [18]. We  
used ridge regression and the extended BIC [24] to identify a significant interaction 
between rs1345203 and rs1213205. The functional relevance of the two SNPs  
is as yet unknown. However, data obtained from the ENCODE dataset 
(http://genome.ucsc.edu/) show that rs1345203 is located in a transcription factor 
gene (ELF1/CEBPB) that demonstrates regulatory influence on the DNA structure. 
The SNP rs1213205 is located in a region of hypersensitivity to cleavage by DNase 
regulatory elements. It is worth noting that the parameter choices made in the interac-
tion analysis may influence the results, however, parameters were chosen based on 
the recommended values for EPISIS [21] and SIS [18]. Additional work is still re-
quired to identify precisely how these two SNPs might affect brain structure, and to 
further replicate their interaction. Specifically, we need to identify how changes at a 
given SNP are related to changes in activity in gene transcription or translation into 
protein products involved in similar biological pathways.  
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Abstract. The human brain function involves complex processes with 
population codes of neuronal activities. Neuroscience research has 
demonstrated that when representing neuronal activities, sparsity is an 
important characterizing property. Inspired by this finding, significant amount 
of efforts from the scientific communities have been recently devoted to sparse 
representations of signals and patterns, and promising achievements have been 
made. However, sparse representation of fMRI signals, particularly at the 
population level of a group of different brains, has been rarely explored yet. In 
this paper, we present a novel group-wise sparse representation of task-based 
fMRI signals from multiple subjects via dictionary learning methods. 
Specifically, we extract and pool task-based fMRI signals for a set of cortical 
landmarks, each of which possesses intrinsic anatomical correspondence, from 
a group of subjects. Then an effective online dictionary learning algorithm is 
employed to learn an over-complete dictionary from the pooled population of 
fMRI signals based on optimally determined dictionary size. Our experiments 
have identified meaningful Atoms of Interests (AOI) in the learned dictionary, 
which correspond to consistent and meaningful functional responses of the 
brain to external stimulus. Our work demonstrated that sparse representation of 
group-wise fMRI signals is naturally suitable and effective in recovering 
population codes of neuronal signals conveyed in fMRI data.   

Keywords: DTI, Task-based fMRI, Sparse coding. 

1 Introduction 

The human brain function intrinsically involves complex processes with population 
codes of neuronal activities [1-2, 4]. In the neuroscience community, a large amount 
of research has supported that when determining neuronal activity, sparse population 
coding is an effective exploration [3]. For example, the primary visual cortex V1 
receives image signals with a sparse set of sensory neurons [2], and similarly, the 
middle temporal lobe (MTL) neurons fire selectively to visual stimulus [4]. In other 
words, a sparse set of neurons encode specific concepts rather than responding to the 
input independently [3]. Inspired by these findings, significant amount of research 
efforts from the machine learning and pattern recognition fields has been recently 
devoted to sparse representations of signals and patterns, and remarkable 
achievements have been made [5]. 
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In general, fMRI neuroimaging takes the advantage of the coupling between 
neuronal activities and hemodynamics in the human brain, and thus fMRI signals, in 
principle, represent the population codes of large-scale neuronal activities. Given the 
remarkable successes of sparse representations in the machine learning and pattern 
recognition fields [5], in which the achievements were originally inspired and 
motivated by brain sciences discoveries, it is natural and well-justified to explore 
sparse representation of fMRI signals and the associated brain activity patterns. In the 
literature, there have been several pioneering efforts along this direction. For instance, 
a data-driven sparse coding fMRI analysis approach with K-SVD method and general 
linear model were developed to extract more accurate individually adaptive activation 
patterns in [6]. In [7], the authors used the Fisher Discriminative Dictionary learning 
(FDDL) method to cluster and differentiate functional brain states in resting and 
under task performance based on resting state fMRI and task-based fMRI datasets [7]. 
However, there have been very few studies that aim to examine the sparse 
representation of fMRI signals at the population level and to investigate how atoms in 
the learned sparse dictionary correspond to meaningful functional brain responses.  

To address the above questions, in this paper, we design and apply a novel group-
wise sparse representation framework for task-based fMRI signals from multiple 
subjects via dictionary learning methods. Specifically, we employ an effective online 
dictionary learning method [8] to learn an over-complete dictionary for group-wise 
sparse representation of the fMRI signals pooled from large-scale corresponding 
cortical landmarks of a group of subjects. For each subject, we adopted the publicly 
available DICCCOL (Dense Individualized and Common Connectivity-Based 
Cortical Landmarks) system [9] to locate 358 consistent cortical landmarks based on 
DTI data. Since the 358 DICCCOLs have been shown to possess intrinsic structural 
and functional correspondence across subjects [9], we extract fMRI signals for each 
of them across a group of subjects and then the pooled fMRI signals are used to learn 
a dictionary for group-wise sparse representations based on optimally determined 
dictionary size. The major advantage of using DICCCOL is that the small set of 
samples reduce the computing consume for group analysis, and the anatomical 
correspondence enable statistical exploration to the spare representation. Applications 
of this novel framework on a working memory task-based fMRI dataset [10] have 
identified meaningful Atoms of Interests (AOI) in the learned dictionary, 
corresponding to consistent and meaningful functional responses of the brain to 
block-based external stimulus.  

2 Materials and Methods 

2.1 Overview 

Our novel computational framework of group-wise sparse representation of fMRI 
signals is summarized in Fig.1. First, 358 corresponding DICCCOL landmarks 
(Fig.1a) are localized and optimized on DTI datasets of all subjects via the methods in 
[9]. For each subject, after the linear intra-subject image registration of DTI and fMRI 
data, we extract task-based fMRI signal for each landmark. Then, the signals of 358 
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Table 1. The number of DICCCOLs of each group within the activation areas. The 2nd row is 
the total number of each DICCCOL group using different AOIs. The following four rows are 
the overlaid numbers with activations detected with different z-value thresholds. 

Used 

AOIs #217 #6 #279 #381 

#217 

&#6 

#217 

&#279 

#217 

&#381 

#6 

&#279 

#217,#6 

&#279 

#217,#279 

&#381 

Total 83 13 7 4 12 4 10 1 2 1 

z=2.5 37 1 3 2 9 3 6 0 1 1 

z=3.0 33 1 2 2 9 3 6 0 1 1 

z=3.5 23 1 1 2 7 3 5 0 1 0 

z=4.0 14 0 1 1 6 3 5 0 1 0 

 
 
For quantitative comparison, we selected activation foci with different z-value 

thresholds, and the DICCCOL numbers of the 10 groups that are within the yellow 
activation maps are presented in Table 1 (Rows 3-6). By comparing the total number 
of the 10 groups in the 2nd Row, we can see that even with a relatively low threshold 
(z-value=2.5), the traditional method by FSL FEAT can only detect a limited number 
of the selected DICCCOL landmarks that possess reference to AOI #217 with similar 
pattern as the stimulus curve. Also, it performs even poorer in detecting DICCCOLs 
that have other activity pattern (AOIs #6, #279 and #381). These results support that 
group-wise decoding of fMRI activity using sparse coding is much more robust to 
noise than GLM-based activation method, and is much more adaptive in decoding 
multiple task-related fMRI activity patterns. 

4 Conclusion 

We have described a novel group-wise sparse representation framework for task-
based fMRI signals pooled via consistent DICCCOL landmarks, and demonstrated by 
extensive experiments that the framework can recover consistent and functionally 
meaningful atoms that represent population codes in task-based fMRI data. Our work 
demonstrated that sparse representation is effective in representing task-based fMRI 
signals and functional brain activity patterns. Thus, our work offers a promising 
general framework for representation and modeling of fMRI data.   
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Abstract. Establishment of structural and functional correspondences across 
different brains is one of the most fundamental issues in the human brain map-
ping field. Recently, several multimodal DTI/fMRI studies have demonstrated 
that consistent white matter fiber connection patterns can predict brain function 
and represent common brain architectures across individuals and populations, 
and along this direction, several approaches have been proposed to discover 
large-scale cortical landmarks with common structural connection profiles. 
However, an important limitation of previous approaches is that the rich ana-
tomical information such as gyral/sulcal folding patterns has not been incorpo-
rated into the landmark discovery procedure yet. In this paper, we present a 
novel anatomy-guided discovery framework that defines and optimizes a dense 
map of cortical landmarks that possess group-wise consistent anatomical and 
fiber connectional profiles. This framework effectively integrates reliable and 
rich anatomical, morphological, and fiber connectional information for land-
mark initialization, optimization and prediction, which are formulated and 
solved as an energy minimization problem. Validation results based on fMRI 
data demonstrate that the identified 555 cortical landmarks are producible,  
predictable and exhibit accurate structural and functional correspondences 
across individuals and populations, offering a universal and individualized brain 
reference system for neuroimaging research. 

Keywords: DTI, fMRI, anatomical, connectivity, cortical landmarks. 

1 Introduction 

Establishment of structural and functional correspondences across different brains is 
one of the most fundamentally important issues in the brain imaging field. Current 
popular approaches to establishing the correspondences of brains regions across indi-
viduals can be broadly classified into three categories: image registration algorithms 
[1-3], cortical parcellation [4, 5], and manual/semi-automatic regions of interests 
                                                           
* These authors contributed equally to this work. 
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(ROI) analysis [6, 7]. Although these methods have their own advantages and have 
been successfully applied in different scenarios [1-7], they are limited due to the lack 
of quantitative representation of the regularity and variability of brain structure and 
function. In recognition of this limitation, recent literature studies have proposed to 
automatically define and discover common and consistent brain ROIs/landmarks with 
intrinsic structural/functional correspondences in a group of subjects or populations 
[8-11]. The underlying neuroscience basis is that consistent white matter fiber con-
nection patterns can be used as common landmarks to predict brain function [8-12]. 
However, those approaches [8-11] also have limitations in that they do not consider 
rich and meaningful anatomic information of human brains and the accuracy of the 
discovered brain landmarks can be significantly improved. 

In response to the above challenges, in this paper, we propose a novel framework 
for large-scale consistent connectivity-based cortical landmark discovery that defines 
and optimizes landmarks via integrating reliable and rich anatomical, morphological, 
and connectional information. These meaningful constraints have been used for land-
mark initialization, optimization and prediction based on multimodal DTI/fMRI data-
sets. The major novelty of our framework is that based on the predefined gyral/sulcal 
folding pattern homology, our landmark optimization and prediction simultaneously 
consider structural connection pattern similarity and homogeneity, and landmark spa-
tial constraint, all of which are computationally formulated into a unified energy mi-
nimization problem. The proposed framework discovers 555 cortical landmarks that 
are consistent, reproducible, and predictable across individuals and populations, as 
demonstrated by extensive validations. Our results suggest that this set of 555 cortical 
landmarks effectively represents common cortical architectures and potentially pro-
vides opportunities for numerous applications in brain sciences. 

2 Materials and Methods 

2.1 Overview 

The framework includes three major 
steps as shown in the red boxes in 
Fig.1. We perform landmark initia-
lization and optimization under the 
guidance of four constraints (green 
boxes) for model brains, and con-
duct landmark prediction for testing 
brains. Details will be presented in 
the following sections. 

2.2 Multimodal Data Acquisition, Preprocessing and Landmark Initialization 

Two multimodal DTI/fMRI datasets were acquired and used in this work. In brief, 
dataset 1 includes DTI and four task-based fMRI scans (semantic decision making, 
emotion, empathy and fear networks) of eleven healthy young adults. Dataset 2  

 

Fig. 1. The flowchart of the discovery of large-
scale consistent cortical landmarks 
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includes DTI and working memory task-based fMRI scans of twenty three healthy 
adult students. Imaging parameters and preprocessing steps of these datasets are re-
ferred to [10]. We randomly selected ten subjects from dataset 2 as the model brains. 
The other brains in datasets 1 and 2 were used as testing brains.  

The landmark initialization procedure is as follows. First, we randomly selected 
one of the ten model brains as the template and other model brains were linearly reg-
istered to it via FSL FLIRT so that their global shape differences are removed and 
their cortical surfaces are in the same space for comparison. Second, for each corres-
ponding major clearly identifiable gyrus/sulcus of each model brain according to the 
brain template used in the BrainVoyager Brain Tutor (http://www.brainvoyager.com), 
a certain number (ranging from 3-20) of landmarks were interactively labeled at cor-
tical surface mesh vertices that are roughly distributed evenly along the gyral 
ridge/sulcal valley, and are 
sufficiently dense to ensure 
the full coverage of the whole 
gyral ridge/sulcal valley. In 
total, we manually labeled 
594 landmarks for each model 
brain. It should be noted that 
during the following optimi-
zation step, the neighboring 
initialized landmarks that 
satisfy specific criteria are 
merged (Section 2.4). In this 
way, the number of initial 
landmarks (594) is not a critical issue. Since the variability of folding pattern across 
subjects is huge, the manually initialization and homology determination of the 594 
roughly corresponding cortical landmarks in the ten model brains based on the gyr-
al/sulcal folding patterns effectively enforces the first anatomy constraint for land-
mark optimization. That is, corresponding cortical landmarks in different brains 
should be located on the same clearly identifiable gyrus or sulcus in order to preserve 
the same anatomical identity. 

2.3 Structural Connection Pattern Similarity and Homogeneity Constraints 

The second constraint for landmark optimization is that corresponding landmarks 
across ten model brains should possess similar structural connection patterns, which is 
represented by the DTI-derived fiber bundles emanating from the landmark. For each 
initialized landmark with extracted fiber bundles emanating around its neighbour-
hood, we used the trace-map model in [8], which is represented as a 144-dimenional 
vector, to quantitatively describe the structural connection pattern. Thus, the problem 
of quantitatively comparing the similarities across connections is converted to com-
paring the similarities across 144-dimenional trace-map vectors. 

The third constraint for landmark optimization is that the corresponding landmarks 
across ten model brains should move toward to the location with local maximum of 

 
Fig. 2. The 594 manually labeled landmarks on the 
model brains. (a)-(b) show landmarks on the gyri/sulci 
of one model brain’s right hemisphere, respectively. 
The landmarks and corresponding gyrus/sulcus are 
highlighted in the same color. (c) shows the 594 
landmarks on two example model brains. 
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structural connection pattern homogeneity, which is not considered in previous works 
[8-11]. The homogeneity is defined as the similarity between the trace-map represen-
tations of fiber bundles connected to the current ROI and its outside neighbouring 
ROIs, and calculated by the Kendall’s coefficient of concordance [13]. Prior studies 
have demonstrated that the structural connection profile of a cortical ROI can be high-
ly nonlinear, that is, a slight change to the location, size or shape to the ROI could 
significantly alters its fiber connection patterns [8, 11]. Therefore, this high nonlinear-
ity can cause uncertainties and instabilities in the optimization and discovery of con-
sistent and reproducible cortical 
landmarks. In this paper, we 
examined the nonlinearity of 
the entire cortex of the ten 
model brains, and found that 
there are cortical areas with 
substantially less nonlinearity, 
or more homogeneity. By mea-
suring the fiber pattern similari-
ty via the trace-map model as 
mentioned above, we found that 
the fiber patterns extracted from 
the local maximum of homo-
geneity (red bubbles) across 
corresponding landmarks in ten model brains have higher similarity than those  
extracted from the vertices in outside neighbourhoods, such as those in the 1-ring,  
3-ring, and 5-ring surface mesh neighbourhood (yellow, green and purple bubbles). 
Fig. 3 suggests that there are cortical regions with homogeneity peaks on the cortex, 
and importantly, these peaks exhibit quite consistent fiber connection patterns. Thus, 
the initialized landmarks across ten model brains should move toward to the cortical 
regions with homogeneity peaks within a neighborhood. The fourth constraint for 
landmark optimization is that the landmark should move within a neighborhood of the 
initial location with a predefined size. 

2.4 Landmark Optimization 

With the availability of initialized cortical landmarks in Section 2.2 and four  
meaningful constraints in Sections 2.2-2.3, we performed landmark optimization by 
searching all possible combinations of candidate landmark locations within their local 
morphological neighbourhoods in different model brains, and to seek the optimal 
solution with the optimal group-wise consistency and homogeneity. In this paper, we 
formulated and solved the landmark optimization problem by jointly modeling the 
four constraints. The goal is to minimize the group-wise variance of these jointly 
modeled profiles. Assume that there are M brains (i is i-th brain) and j is the current 
landmark that to be optimized. k  is the initial location of j in brain i, and k  is  

the candidate location in its neighborhood C  (k  ϵ C  ). The maximum principal 

 

Fig. 3. Structural connection pattern homogeneity. 
(a)-(b): one corresponding landmark in two model 
brains. (c)-(d): Cortical regions are plotted by homo-
geneity values. The color bar is in the bottom right. 
Local maximum of homogeneity and example ver-
tices in its 1-ring, 3-ring and 5-ring neighborhood 
are shown in red, yellow, green and purple bubbles, 
respectively. The fiber shape patterns of the colored 
bubbles in the left panel are shown in the right panel. 
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curvature of  is represented by 0,0,  and it is used as the anatomical 

constraint in the following energy function. Mathematically, the group-wise variance 
is modeled as the energy  that we want to minimize as follows.  (j), ϵ C  and 

0,0,   (1)

where  is the structural connection pattern similarity constraint,  is the structur-
al connection pattern homogeneity constraint, and  is the landmark movement 
constraint. Here, we have weights 1 (0 ,  ,  1). 

First,  is defined to ensure that the corresponding landmark j across M brains 
have similar fiber bundle shape patterns as mentioned in Section 2.3.   , , … ,  (2)

where  is a 144-dimension trace-map vector of . var(·) is the variance. 
Second,  is defined to ensure that the corresponding landmark j across M 

brains should move toward to the location with local maximum of homogeneity with-
in C  . We assume there are Q vertices in the candidate vertex’s neighborhood C   
and they are regarded as the objects to be ranked. Each of 144 dimensions of trace-
map is considered as a judge [13] and the number of judges is denoted by P. Define 
object q is given the rank ,  by judge p, tk is the number of tied ranks in k-th of m 
groups of ties. The Kendall’s coefficient of concordance [13] of landmark  of brain 
 is defined as 12 ∑ ∑ , 3 1∑  (3)

1  (4)

Third,  is defined to ensure the landmark j moves within C   where 0,0,  during the optimization procedure. 

,  (5)

where dist ·  is the Euclidean distance between    on the cortical surface. 
The energy minimization is solved as follows. For each iteration, by searching the 

whole-space of landmarks candidate locations in different model brains for one cor-
responding landmark, we can find an optimal combination of landmark locations that 
minimizes E (Eq. (1)). The convergence criterion is that the distance of landmark 
locations between two consecutive iterations is less than ε (ε = 2 mm, since the dis-
tance between two adjacent surface mesh vertices is about 2 mm). Notably, for each 
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iteration, if the distance between two neighboring landmarks to be optimized is less 
than or equal to a threshold td (td =2 mm, since the distance between two adjacent 
surface mesh vertices is about 2 mm) across p% (here p=80) of all model subjects, we 
label these two landmarks as ‘merged’ and only optimize one of them in the next 
iteration. In our implementation, we considered about 30 candidate locations (3-ring 
neighborhood) for each landmark. We tested different combinations of ,  and   
in Eq. (1) and chose the ones with best optimization results (for gyri, λ 0.5, λ0.4 and λ 0.1  and for sulci, λ 0.6, λ 0.3 and λ 0.1 ). Other efficient 
approaches for energy minimization may be considered in the future.   

2.5 Landmark Determination and Prediction 

To examine and ensure the reproducibility of the discovered cortical landmarks, we 
divided the ten model brains into two groups and performed landmark optimization 
separately. As a result, two independent groups of optimized cortical landmarks were 
obtained. Then, for each optimized landmark in all of the ten brains in two groups, we 
evaluated the consistency of landmarks using both quantitative (trace-map similarity 
[8]) and qualitative (visual inspection) methods the same as in [10]. In brief, for each 
corresponding landmark, we calculated its mean trace-map distance [8], which meas-
ures the similarity of fiber shape patterns, between two groups and adopted the same 
criterion in [10] to verify if the landmark was similar across groups of brains [8, 10]. 
Furthermore, we used in-house batch visualization tool [10] to visually check the fiber 
patterns in all model brains of two groups. If the landmark in any of the ten model 
brains has substantially different trace-map distance value, and is confirmed to have 
different fiber shape patterns by visual inspection, this landmark is discarded. Finally, 
we retained 555 landmarks which exhibit consistent fiber connection patterns across 
all ten model brains. 

Based on the 555 landmarks in the ten model brains, we predicted them in other 
testing brains (Section 2.2). Given a testing brain, we first mapped the 555 landmarks 
of one model brain to the testing brain via linear image registration (FSL FLIRT) to 
have rough locations. Then we optimized the locations of the 555 landmarks on the 
testing brain by minimizing the energy E (Eq. (1)) across ten model brains and the 
testing brain. The landmark prediction procedure is fast and efficient (about 15 mi-
nutes for one testing brain on a typical PC). 

3 Experimental Results 

3.1 Reproducibility and Predictability of 555 Cortical Landmarks 

Figs. 4a-4b show the 555 landmarks (yellow bubbles) in three model brains and three 
testing brains, respectively. As an example, we randomly selected 5 landmarks and 
visualized their fiber connectional patterns in the three model and three testing brains 
in the left and right panel of Fig. 4, respectively. Quantitatively, the average trace-
map distances of the corresponding landmarks across model and testing brains are 
2.08, 2.18, 2.15, 2.20 and 2.24, respectively, which are considered as quite low [8, 
10]. By visual inspection, there is also no much difference among the fiber patterns of  
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Fig. 4. The 555 landmarks (yellow bubbles) in (a) three model brains and (b) three testing 
brains, respectively. Five landmarks are randomly selected and their fiber connectional patterns 
in the model and testing brains are shown in the left and right panel, respectively. 

the same corresponding landmark in all model and testing brains. Importantly, all of 
these 555 landmarks have been confirmed to possess the above-mentioned characte-
ristics in all ten model brains and testing brains, indicating that the 555 landmarks 
represent a common structural brain architecture that is reproducible and predicable 
across different subjects. 

3.2 Functional Annotation of Landmarks 

We adopted the two fMRI datasets including five task-based scans in Section 2.2 to 
examine the functional roles and correspondences of the 555 DTI-derived cortical 
landmarks. The benchmark fMRI 
activation peaks were detected 
and selected using FSL FEAT as 
the functional locations. In total, 
we identified 69 functional loca-
tions from the five functional 
networks. For each functional 
location, we first identified five 
closest (Euclidean distance) cor-
tical landmarks within each mod-
el brain as the candidates. Then, 
the cortical landmark with the 
most votes as the closest to the 
functional location across all ten 
model brains was annotated by 
the functional location. In total, 
46 cortical landmarks were anno-
tated. The same cortical landmark 
is truly in the specific functional 
network across all subjects,  

 

Fig. 5. Functional annotation of the cortical land-
marks by fMRI-derived functional locations in 
five networks shown on one model brain. (a) 
semantic decision making; (b) emotion; (c) empa-
thy; (d) fear; (e) working memory; In each sub 
figure, the functional locations are highlighted by 
white bubbles and the annotated landmarks are 
highlighted by other color bubbles. The mean 
distance and standard deviation between each pair 
of functional location and landmark are shown in 
the histogram. (f) all functionally annotated land-
marks. The mean distance and standard deviation 
between each pair of functional location and 
landmark within each of five networks are illus-
trated in the histogram. 
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suggesting that these landmarks specifically align with regions of task-related 
processing. The mean distances for the five functional networks are 6.27 mm 5.68 
mm, 6.38 mm, 5.91 mm and 6.33 mm, respectively. On average, the distance is 6.11 
mm. The results in Fig. 5 demonstrate the corresponding structural connectivity-based 
landmarks are consistently co-localized with the same functional regions, and reflect 
the common structural/functional cortical architectures that are reproducible across 
subjects. It should be noted that more cortical landmarks may be functionally anno-
tated if more specific, large-scale fMRI tasks can be designed and performed in the 
future for the purpose of functional annotation of landmarks. 

3.3 Comparisons with Image Registration Algorithms 

Finally, we compared the functional annotation accuracies by our 555 landmarks and 
those by four different linear/nonlinear image registration algorithms (linear: FSL 
FLIRT; nonlinear: FSL FNIRT, ANTS, and HAMMER). The working memory func-
tional locations in Fig. 5 were used as benchmarks. The average annotation errors by 
the five methods (our landmarks, FSL FLIRT, FSL FNIRT, ANTS and HAMMER) 
are 6.33 mm, 7.76 mm, 8.01 mm, 7.74 mm, and 7.73 mm respectively, indicating that 
our landmarks have superior functional annotation accuracy than those four image 
registration algorithms. 

4 Conclusion 

In this paper, we presented a novel anatomy-guided discovery framework to define 
and optimize a dense map of cortical landmarks that possess group-wise consistent 
anatomical/connectional profiles. Extensive experiments demonstrated its reproduci-
bility and predictability. Furthermore, a validation study via task-based fMRI was 
provided for a subset of the discovered landmarks, suggesting the accurate structural 
and functional correspondences of these landmarks across individuals and popula-
tions. In the future, we will compare our 555 landmarks with the available DICCCOL 
system [10]. Other possible future studies will apply this dense map of 555 landmarks 
as a universal and individualized brain reference system on clinical datasets for con-
nectivity analysis and mapping human brain connectomes. 
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Abstract. Traditional task-based fMRI activation detection methods, e.g., the 
widely used general linear model (GLM), assume that the brain’s hemodynamic 
responses follow the block-based or event-related stimulus paradigm. Typically, 
these activation detections are performed voxel-wise independently, and then 
are usually followed by statistical corrections. Despite remarkable successes 
and wide adoption of these methods, it remains largely unknown how function-
al brain regions interact with each other within specific networks during task 
performance blocks and in the baseline. In this paper, we present a novel  
algorithmic pipeline to statistically infer and sparsely represent higher-order 
functional interaction patterns within the working memory network during task 
performance and in the baseline. Specifically, a collection of higher-order inte-
ractions are inferred via the greedy equivalence search (GES) algorithm for 
both task and baseline blocks. In the next stage, an effective online dictionary 
learning algorithm is utilized for sparse representation of the inferred higher-
order interaction patterns. Application of this framework on a working memory 
task-based fMRI data reveals interesting and meaningful distributions of the 
learned sparse dictionary atoms in task and baseline blocks. In comparison with 
traditional voxel-wise activation detection and recent pair-wise functional con-
nectivity analysis, our framework offers a new methodology for representation 
and exploration of higher-order functional activities in the brain.  

Keywords: task-based fMRI, GES, sparse coding, dictionary learning, higher-
order interaction. 

1 Introduction 

Voxel-based fMRI activation detection has been widely adopted in the functional 
brain mapping field. For instance, the general linear model (GLM) [1] is often used to 
detect activated voxels in task-based fMRI data, and followed by statistical correc-
tions of the detected foci. However, voxel-wise activation detection methods have 
their limitations in terms of revealing the complex functional interaction patterns, 
since the brain often functions a network behavior. In recognition of this limitation, 
recently, several new studies have examined the functional connectivities during  
task performance in task fMRI data. The authors in [2] proposed a fiber-centered  
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activation detection method to find the activated connectivity patterns and the results 
demonstrated activated fiber-connected regions covered substantially wider brain 
areas than the traditional voxel-based activation methods. Another recent literature 
study in [3] examined the temporal dynamics of functional connectivity during task 
performance and found that the whole-brain’s functional connectivity pattern well 
correlated with the block-based stimulus curve [3]. The results in [2, 3] suggested the 
feasibility and promise of examining functional connectivity patterns in task-based 
fMRI. 

However, all the above-mentioned method [1, 2, 3] are still constrained in terms of 
the lack of quantitative representation of higher-order functional brain responses, and 
multivariate functional interaction patterns within brain networks are omitted in these 
methods. Essentially, both basic neuroscience research and computational modeling 
of neuroimaging data have proved that brain functions are typically realized via high-
er-order functional interactions among specific networks [4, 5]. In the literature, there 
are several other methods published to deal with higher-order interactions among 
multiple ROIs (regions of interests) such as independent component analysis [6], 
Granger causality modeling [7], dynamic causal modeling [8] and Bayesian graphical 
models [4, 5]. In particular, the Bayesian graphical causal models are proven to exhi-
bit superior performance on estimating the network structure [4, 5] in both simulated 
and real data. Conceptually, Bayesian models are based on marginal and conditional 
probabilistic dependencies, which determines this method more suitable in estimating 
the network structure and less sensitive to the noises in fMRI signals [4]. However, 
only Bayesian models is not enough, the inferred interaction patterns in both baseline 
and task blocks among the whole-brain structural connectomes could be potentially 
overlapping with each other, their temporal transitions could be gradual.   

In this paper, our novel algorithmic framework offers a new methodology to  
explore and represent higher-order functional activities in task-based fMRI data. Spe-
cifically, the greedy equivalence search (GES) algorithm [9] is employed to infer 
multivariate functional interactions for both task performance and baseline blocks. 
Then, an effective online dictionary learning algorithm [10] is utilized for sparse re-
presentation of the inferred higher-order functional interaction patterns obtained by 
GES. Both of the GES algorithm [9] and online dictionary learning algorithm [10] are 
not new to the world, but the novelty of this paper lies in its integration of both me-
thods into an effective framework for modeling task-based fMRI data. Importantly, 
applying the proposed method on a working memory task-based fMRI data [11] has 
revealed distinguished and interesting of the learned sparse dictionary atoms in task 
and baseline blocks.             

2 Materials and Methods 

2.1 Overview 

Based on the recently developed and publicly released DICCCOL (Dense Individua-
lized and Common Connectivity-based Cortical Landmarks) system [12], structural 
connectome is constructed (Fig.1a) and the higher-order functional interactions are 
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modeled on the relevant sub-networks (Fig.1b) of the connectome. Then, the fMRI 
signals from each subject split into blocks by following the task and baseline para-
digm (Fig.1c). All these segmented blocks of fMRI signals then generate one func-
tional interaction pattern inferred by GES (Fig.1d). Afterwards, all of these interaction 
patterns are arranged into one matrix, as the bases of online dictionary learning algo-
rithm used for sparse coding (Fig.1e). Finally, the proposed methods are applied on an 
operational span (OSPAN) working memory task-based fMRI dataset [11]. The flow-
chart is summarized in Fig. 1. 
 

 

Fig. 1. The overview of sparse representation of higher-order functional interaction patterns in 
task-based fMRI data. The framework includes five main steps. 

2.2 Data Acquisition and Pre-processing 

In an operational span (OSPAN) working memory task-based fMRI experiment under 
IRB approval [11], 19 healthy young adult subjects were scanned and fMRI images 
were acquired on a 3T GE Sigma scanner. Briefly, acquisition parameters were taken 
as following: fMRI: 64×64 matrix, 4mm slice thickness, 220mm FOV, 30 slices, 
TR=1.5s, TE=25ms, ASSET=2. Each subject was performed by a modified version of 
the OSPAN task (3 block types: OSPAN, Arithmetic, and Baseline) while fMRI  
data were acquired [11]. DTI data was acquired with dimensionality 128×128×60, 
spatial resolution 2mm×2mm×2mm; parameters were TR 15.5s and TE 89.5ms,  
with 30 DWI gradient directions and 3 B0 volumes acquired. More details about  
pre-processing can be referred to [11]. 

2.3 Bayesian Network Modeling and The GES Algorithm 

Bayesian network is a probabilistic graphical model that represents a set of random 
variables and their conditional dependencies via a direct acyclic graph (DAG).  
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For instance, ,  is a directed acyclic graph satisfying the causal condition, 
and thus Markov factorization of the distribution can be utilized. Here, V is a finite set 
of DAG nodes and E is a finite set of directed edges between the DAG nodes. As a 
measure of how well a DAG is, D represents the conditional independencies between 
the random variables, we can use the relative probability:  

                     , |                                          1   
where S(D) refers to a network score [13], p(d|D) calculates the probability for ob-
serving a given dataset d under a given graphical model D with un-weighted edges, 
where an “improved” model will have larger p(d|D). Thus the direction obtained by 
GES is based on the fact that two graphical models with the same undirected connec-
tivity but different directionality would have different p(d|D), resulting in the differ-
ent scores for S(D). In this work, we adopt the GES algorithm [10] to infer the D from 
fMRI signals extracted for the relevant sub-networks of DICCCOL-based structural 
connectomes. Briefly, GES begins with an empty graph, and then each time it 
searches for one edge to add to the graph over the space of Markov equivalence, and 
it only stops when the graph is not further improved by adding any more edges.  
Then, GES starts to search backwards, and each time it removes one edge until no 
improvement occurs by removing any edge. Thus the converged network graph is 
obtained. 

In this work, each fMRI 
signal is split into 12 tem-
poral segments by following 
the task paradigm for the 19 
subjects. It leads to 228 
pieces of fMRI segments. 
Then, for each segment, 
GES is used to generate a 
functional interaction graph 
that can represent the cur-
rent higher-order brain activities. The GES toolbox we used is the publicly available 
TETRAD system [14], which is an effective tool for the GES algorithm. Until now, 
there are 228 GES-derived graphs obtained, among which 57 are for OSPAN blocks, 
57 graphs for the Arithmetic blocks, and the last 114 graphs for the Baseline blocks. 
Two examples with different pattern of the GES graphs are shown in Fig. 2. Accor-
dingly, higher-order functional interactions, instead of pair-wise connectivities, on the 
structural connectomes can be clearly appreciated. 

2.4 Dictionary Learning and Sparse Coding 

A large amount of recent studies in the machine learning field have demonstrated  
that sparse coding is superior in representing features and patterns. In this paper, we 
adopt the effective online dictionary learning algorithm [10] for sparse representation 
of the higher-order functional interaction patterns obtained in section 2.3. Specifical-
ly, for the problem interested, each GES graph matrix derived from section 2.3 with mV  rows and  mV  columns is first reorganized into a vector x  with the size 

 
Fig. 2. Two exemplar patterns of the GES-derived 
graphs. The original data matrix is shown on the right 
bottom for each case.      
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of  m mV mV, where mV is the number of vertex in the graph. Then, given the 
intrinsically-established correspondences of DICCCOL-based connectomes across 
individual brains [12], we pool all the GES graphs from 19 subjects together to form a 
set of training samples , , … … ,  for dictionary learning. Thus, 
by using a learned dictionary , the aim is to represent each sample with a 
weight vector  that sparsely and linearly combine dictionary atoms, i.e., 

 . Here, the empirical cost function is defined: 1 ℓ ,                                                     2  

in which the loss function to minimize the regression error of  with D is defined 
with a ℓ  regulation that seeks a sparse solution of  in Eq.(3). The parameter λ is a 
weight to control sparsity level. In our experiments, λ is all empirically set as 0.1 to 
minimize regression error residual. ℓ , 12 || || || ||                                  3  

With the effective online dictionary learning method in [10], this problem can be 
solved using the publicly available SPAM-toolbox [10, 15]. Here, the learned dictio-
nary D consists of k columns of components ( ) are believed to be bases of GES 
graph patterns in the form of vectors. As our training dataset is not large with n=228, 
we empirically choose a relatively smaller dictionary size k=10. Further, in order to 
identify the most relative GES graph pattern atom for each sample , a sparse coding 
approach is implemented via the fast Orthogonal Matching Pursuit algorithm [3] in 
the SPAM-toolbox. Specifically, the purpose is to minimize the representation error 
with a limited number of dictionary atoms, i.e., || || , see Eq.(4), which used 
for sparse coding of the input GES graph with the constraint on the number of atoms 
used  

 || ||  ,   . .  || ||                                4  

In our experiments, the sparsity constrain L is set as 5, and in this way, each input 
GES graph pattern can be sparsely represented by 5 or less than 5 atoms in the learned 
dictionary. The sparse coding representation of the group-wise GES graph patterns 
can be used to discriminate different states of the brain during working memory task.  

3 Experimental Results 

3.1 Dictionary Learning Results  

According to the algorithmic pipeline in Fig.1, first, group-wise activation detection is 
performed on 358 DICCCOLs via traditional GLM method, and 37 identified ROIs 
are most consistently activated in order to narrow down the number of ROIs con-
cerned. Then, the 228 segments of fMRI signals within this sub-network of 37 ROIs 
are obtained via the online dictionary learning methods [10]. The size of the dictio-
nary is empirically set as 10 in our application and the learned dictionary is visualized 
in Fig.3. It is interesting that the dictionary atom #2, #4 and #7 exhibit different levels 
of intense functional interactions within this sub-network, they are very important as  
 



 Sparse Represe

 

Fig. 3. The 10 learned dic

Fig. 4. (a) Frequency distribut
T1 stands for OSPAN task, T2
of the 10 atoms (C1-C10) in 
represents higher functional in

they have similar interactio
other atoms show much le
they have similar patterns b
the dense (thus higher-weig
vidual atoms are not high
which is really high in Fig.4

In addition, the 10 dictio
tional interactions in Fig.4
atoms is performed in three
the two most active atoms
and #7 are substantially m
frequent in both OSPAN 
Arithmetic task blocks than
the Baseline block, as i
strated by the two red lines
Fig.4. This result is proven
be reasonable since t
blocks exhibit more act
interaction patterns. Also, 

entation of Higher-Order Functional Interaction Patterns 

 

ctionary atom components (C1-C10, respectively) are shown 

 

ions of the 10 dictionary atoms in the three types of blocks. H
2 stands for Arithmetic task, and B for Baseline. (b) Visualiza
the functional interaction matrices. The red color in the ma

nteraction and the blue indicates lower functional interaction.  

on patterns with the result from group-wise GLM, wh
ess but variable functional interaction patterns. Moreov
because the learning process needs more atoms to regr
ghted) interaction patterns. Though the frequencies of in
, their combined presence in task blocks is nearly 50
4a. 
onary atoms are visualized in the matrix formats of fu

4b and the statistical analysis of the distributions of th
e types of blocks as shown in Fig.4a. It is interesting t
 #4 

more 
and 
n in 
illu-
s in 
n to 
task 
tive 
for 

 
Fig. 5. (a) Activated networks of 37 ROIs detected 
from group-wise GLM [16]. (b) The most active 
atom by the method in this paper with 37 ROIs. 

631 

Here, 
ation 
atrix 
  

hile 
ver, 
ress 
ndi-
0%, 

unc-
hese 
that 



632 S. Zhang et al. 

 

comparison purpose, the ac
ROIs via our recently devel
evident that the functional 
activated pair-wise connect
functional interactions in F
order functional interaction
riority of GES-based inferen

3.2 Reproducibility Stu

As a reproducibility study o
detecting the consistently a
thus 60 and 74 activated R
ments in section 3.1. Then 
ments with different sizes 
experiments, there were tw
atoms #7 and #9 in Fig.6b
quent in both OSPAN and 
replicated the conclusion i
methods and results. Notab
in Fig.6a and atom #8 in 
Baseline block than in OSP
in Fig.6. This result furthe
emphasize is the atoms with

For another compariso
obtained by group-wise GL
atoms by our purposed met
was inspiring to observe m
in Fig.7, and the connection
the right side figure. This r
voxel-based [1] and conne
large portion of the whole
working memory in this p
detected by traditional voxe
 

Fig. 6. Reproducibility study.
green means Baseline. (a) Resu

ctivated networks are visualized within the same set of
loped methods in [16] via group-wise GLM in Fig.5a. I
interaction pattern in atom #7 in Fig.5b exhibits sim

tions as those in Fig.5a, though there are more higher-or
Fig.5b. This result not only suggests the validity of high
n modeling in this paper, but also demonstrates the su
nce of multivariate interaction patterns. 

udy 

of our methods, the z-value threshold was decreased w
activated DICCCOL landmarks via group-wise GLM, 

ROIs were obtained, respectively, to re-perform the exp
we applied the methods in section 2 on these two exp
of ROIs, and the results were shown in Fig.6. In b

wo active dictionary atoms, atoms #5 and #7 in Fig.6a 
b. Again, these active atoms were substantially more 

Arithmetic blocks than in the Baseline block. This re
in section 3.1, suggesting the good reproducibility of 
bly, for some inactive interaction patterns such as atom #
Fig.6b, their frequencies were substantially higher in 

PAN and Arithmetic blocks, as illustrated by the green li
r manifested the validity of our methods. What I wan
h same number in different experiment are independent.
on, we visualized the activated connections in the netwo
LM methods and the interaction pattern of the most act
thods with different numbers of selected ROIs in Fig.7

more and more active connections from the left to the ri
ns on the left side figure tended to be a sub-set of those
result triggered us to re-think the limitations of traditio
ction-based [2, 3] activation detection methods. Hence
 brain might be responsive to external tasks, such as 
aper, instead of a very small number of activated foci
el-based and connection-based methods [1-3]. 

. In the charts, blue means OSPAN, red means Arithmetic 
ults for 60 ROIs. (b) Results for 74 ROIs. 

f 37 
It is 

milar 
rder 
her-
upe-

when 
and 

peri-
peri-
both  
and 
fre-

esult 
our 
#10 
the 

ines 
nt to 
. 
orks 
tive 
7. It 
ight 
e on 
onal 
e, a 
the 

i as 

 
and 



 Sparse Represe

 

Fig. 7. Visualization of inter
method, (b) most active atom 
number of 60, and (d) most act

4 Conclusion 

In this paper, in compariso
cent pair-wise functional c
presented, which statisticall
al interaction patterns with
and in the baseline. Experim
demonstrated meaningful, 
evaluations and applying th
to be planed.  

References 

1. Friston, K.J., et al.: Statis
proach. Human Brain Map

2. Lv, J., Guo, L., Li, K., H
Activation Detection in T
LNCS, vol. 6801, pp. 574

3. Li, X., Lim, C., Li, K., Gu
Functional Connectivity A

4. Sun, J., et al.: Inferring C
FMRI Data. NeuroImage 

5. Ramsey, J., et al.: Six 
1545–1558 (2010) 

6. Calhoun, V.D., et al.: A m
ing independent compone

7. Roebroeck, A., Formisano
Granger Causality and fM

8. Friston, K.J., et al.: Dynam
9. Meek, C.: Graphical Mo

University, Pittsburgh (19
10. Mairal, J., Bach, F., Ponc

Proceedings of the Interna
11. Faraco, C.C., et al.: Com

memory. NeuroImage 55(

entation of Higher-Order Functional Interaction Patterns 

 

raction patterns in (a) activated networks via group-wise G
with the ROI number of 37, (c) most active atom with the R

tive atom with the ROI number of 74 

on with traditional voxel-wise activation detection and 
connectivity analysis, a novel algorithmic framework w
ly inferred and sparsely represented higher-order functi

hin the working memory network during task performa
mental results on a working memory task-based fMRI d
reproducible and interesting results. In the future, furt

his framework on larger scale task-based fMRI datasets 

stical parametric maps in functional imaging: a general linear
pping 2(4), 189–210 (1994) 

Hu, X., Zhu, D., Han, J., Liu, T.: Activated Fibers: Fiber-cente
Task-based FMRI. In: Székely, G., Hahn, H.K. (eds.) IPMI 20
4–587. Springer, Heidelberg (2011) 
uo, L., Liu, T.: Detecting Brain State Changes via Fiber-Cente
Analysis. Neuroinformatics (2012) 
Consistent Functional Interaction Patterns from Natural Stimu
(2012) 
problems for causal inference from fMRI. Neuroimage 49

method for making group inferences from functional MRI data
ent analysis. Human Brain Mapping 14(3), 140–151 (2001) 
o, E., Goebel, R.: Mapping directed influence over the brain u

MRI. NeuroImage 25, 230–242 (2005) 
mic causal modelling. NeuroImage 19(3), 1273–1302 (2003) 
dels: Selecting Causal and Statistical Models. Carnegie Me

997) 
ce, J., Sapiro, G.: Online dictionary learning for sparse coding
ational Conference on Machine Learning, ICML (2009) 
mplex span tasks and hippocampal recruitment during work
(2), 773–787 (2011) 

633 

GLM 
ROI 

 re-
was 
ion-
ance 
data 
ther 
are 

r ap-

ered 
011. 

ered 

ulus 

9(2),  

a us-

sing 

ellon 

. In: 

king 



634 S. Zhang et al. 

 

12. Zhu, D., Li, K., Guo, L., Jiang, et al.: DICCCOL: Dense Individualized and Common 
Connectivity-Based Cortical Landmarks. Cerebral Cortex (2012)  

13. Susanne, G., et al.: DEAL: A Package for Learning Bayesian Networks (2003) 
14. Eberhardt, F., Hoyer, P.O., Scheines, R.: Combining Experiments to Discover Linear Cyc-

lic Models with Latent Variables. Journal of Machine Learning, Workshop and Conference 
Proceedings (AISTATS 2010) 9, 185–192 (2010) 

15. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and 
sparse coding. Journal of Machine Learning Research 11, 19–60 (2010) 

16. Shu, Z., et al.: Activated Cliques: Network-based Activation Detection in Task-based 
FMRI. In: ISBI 2013 (2013) 

 



Fusing Functional Signals

by Sparse Canonical Correlation Analysis
Improves Network Reproducibility

Jeffrey T. Duda1, John A. Detre1, Junghoon Kim2,
James C. Gee1, and Brian B. Avants1

1 University of Pennsylvania
2 Moss Rehabilitation Research Institute

Abstract. We contribute a novel multivariate strategy for computing
the structure of functional networks in the brain from arterial spin la-
beling (ASL) MRI. Our method fuses and correlates multiple functional
signals by employing an interpretable dimensionality reduction method,
sparse canonical correlation analysis (SCCA). There are two key aspects
of this contribution. First, we show how SCCA may be used to compute
a multivariate correlation between different regions of interest (ROI). In
contrast to averaging the signal over the ROI, this approach exploits the
full information within the ROI. Second, we show how SCCA may simul-
taneously exploit both the ASL-BOLD and ASL-based cerebral blood
flow (CBF) time series to produce network measurements. Our approach
to fusing multiple time signals in network studies improves reproducibil-
ity over standard approaches while retaining the interpretability afforded
by the classic ROI region-averaging methods. We show experimentally in
test-retest data that our sparse CCA method extracts biologically plau-
sible and stable functional network structures from ASL. We compare
the ROI approach to the CCA approach while using CBF measurements
alone. We then compare these results to the joint BOLD-CBF networks
in a reproducibility study and in a study of functional network struc-
ture in traumatic brain injury (TBI). Our results show that the SCCA
approach provides significantly more reproducible results compared to
region-averaging, and in TBI the SCCA approach reveals connectivity
differences not seen with the region averaging approach.

1 Introduction

Functional MRI (fMRI) is capable of measuring subject-specific and long-range
correlations in brain activity (i.e. networks) as measured by changes in a direct or
indirect time-series measurement of cerebral blood flow (CBF). EPI-BOLD is the
standard protocol for studying network structure, however a second approach, ar-
terial spin labeling (ASL) MRI, more directly measures CBF by tagging arterial
blood and tracking changes in magnetization over time. ASL provides a quan-
titative measure of blood flow, which is believed to be more directly related to
neuronal activity than the measure provided by EPI-BOLD [1]. One advantage
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of ASL is greater signal stability and reproducibility when compared to EPI-
BOLD especially over the range of resting state frequencies [2]. Additionally, the
ASL acquisition contains images that exhibit BOLD contrast (ASL-BOLD) [1].
Although the temporal resolution of ASL is lower than EPI-BOLD, resting state
fluctuations are thought to reside well within the range of frequencies that may
be captured by ASL (0.01 Hz to 0.1 Hz).

While EPI-BOLD has been used extensively to examine functional brain con-
nectivity in large-scale brain networks, only a small number of studies have ex-
amined functional connectivity in ASL [3,4]. Two studies have compared ASL-
connectivity and BOLD connectivity measured with either EPI-BOLD [5], or
ASL-BOLD [6]. To our knowledge no previous work has combined the CBF and
BOLD components of the ASL signal to obtain a functional connectivity mea-
sure that exploits the full information provided by this modality. The scarcity
of related work may be due, in part, to the fact that most ASL sequences col-
lect relatively fewer time frames (impacting the stability of correlations) in a
given amount of scan time as well as the lack of off-the-shelf methodology for
computing ASL networks. There is no work that we are aware of employing
ASL-connectivity in TBI.

In this work, we contribute a new multivariate method for ASL-based network
analysis. We improve upon existing approaches in two ways. First, we extend
standard region-based methods with a sparse dimensionality reduction method
that optimally correlates two ROIs. This is achieved by formulating the cor-
relation between ROIs as a sparse selection optimization algorithm that finds
non-uniformly weighted sub-ROIs that are most related. Second, we show how
this method may jointly find these sub-ROIs by using both ASL-BOLD and
CBF time series signal. Both of these advances relax some of the assumptions of
standard region-based approaches while retaining the interpretability afforded
by these classic approaches. In short, our contributions are: (1) We detail a new
multivariate network analysis method; (2) We show how it may be used to fuse
simultaneous time series measurements from multiple signal sources to estimate
correlation matrices; (3) We evaluate these approaches in terms of reproducibil-
ity and applicability to studying TBI; (4) The method is freely available in a
public open source toolkit [7].

2 Methods

ROI Analysis for Network Construction. Denote the matrices that de-
scribe the ASL-BOLD or ASL-CBF time series within a whole-brain ROI as
X and Y respectively. Additionally, for a given set of anatomical ROIs for
which there are L regions, we denote the ASL-BOLD sub-matrix extracted
from ROIi as X i. Then Y i will contain that same ROI’s ASL-CBF measure-
ments. The classic region-based analysis will compute xi = 1/n

∑
k x

i
k which

denotes averaging the xi
k columns of X i and similarly for yi. From these region-

averaged time-signals, a correlation matrix, R, of size L×L is calculated, where
R(i, j) = Corr(xi, xj) with Corr denoting the Pearson’s correlation.
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Fusing Functional Signals via SCCA. Canonical correlation analysis (CCA)
is a method for elucidating the relationship between two sets of measurements
taken across a population [8] and is thus well-suited to multivariate neuroimaging
data. Here, we show how CCA generalizes the basic ROI-based approach to
network analysis described above. CCA introduces new unknown vectors, ui

and uj , that act as weighted averages of X i, Xj. CCA will optimize:

argmax
ui,uj

Corr( ui X i, uj Xj ). (1)

This formulation allows for the inclusion of the full time signal in all voxels in an
ROI and is “nice” in that it can be solved by singular value decomposition if the
number of samples is larger than the minimum number of columns in X i or Xj .
Sparse CCA extends CCA with additional constraints that allow the problem
to be solved even when the input matrices are “fat” i.e. the number of columns
far exceeds the number of rows, as is typically the case in functional MRI data.
The SCCA formulation optimizes:

argmax
ui,uj

ui (X i)T Xj uj

subject to∑
i

‖ui‖1 ≤ s, ui ≥ 0,
∑
i

‖uj‖1 ≤ t, uj ≥ 0, ‖uiX i‖ = ‖ujXj‖ = 1,

where s, t determine sparseness. Due to the non-linear (even np-hard) nature of
subset selection from a large matrix, optimizing for a single canonical variate,
ui, involves a nonlinear gradient descent on the objective function above. This
is one disadvantage of these methods. However, one gains robustness and the
ability to exploit the full information of the input data. An additional advantage
is that the formulation shown above may easily incorporate both ASL-CBF and
ASL-BOLD data for simultaneous analysis. In all experiments presented here,
the sparsity parameters were fixed and equal (s = t). Additionally a positivity
constraint was imposed upon ui and uj.

Recall that we represent a given ROI’s BOLD and ASL signal as X i and Y i

where each matrix is n × p (rows by columns) with n the number of acquired
time points and p the number of voxels in ROIi. Since both ASL-CBF and ASL-
BOLD derive from the same acquisition, X i and Y i will always have the same
dimensions. To examine both time series measurements simultaneously, we can
column-append the two matrices: Zi =

[[
X i
] [
Y i
]]

resulting in a n× 2p matrix.
For clarity, X will be used in further equations with the knowledge that it could
be replaced with Y or Z with no resulting changes to the algorithm.

Now note that in the standard approach to ROI-based network analysis, the
correlation matrix is given by RROI(i, j) = Corr(a(X i), a(Xj)) where a(·) in-
dicates averaging over the ROI. The SCCA solution is trivial to use in the
same manner, producing RSCCA(i, j) = SCCA(X i, Xj) = Corr(uiX i, ujXj).
Note that the key difference is that SCCA will optimize the canonical variates
to specifically identify the sub-regions within ROIi and ROIj that are most
mutually informative.
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Fig. 1. ASL signals in the cingulate gyrus of a normal individual showing ASL-CBF
and ASL-BOLD in all voxels in the ROI (top). The average ASL-CBF and ASL-BOLD
are illustrated on the bottom in red and the ASL-CBF and ASL-BOLD that result
from using SCCA to examine connectivity with the hippocampus is shown in blue.
Both signals on the bottom have been intensity normalized for visualization

To obtain a connectivity matrix for an individual, the original ASL data and
corresponding anatomical labels are required. For each labeled voxel, the ASL-
CBF and ASL-BOLD times series are extracted. Motion-correction parameters
are regressed out of the signals and a band pass filter is applied so that only
frequencies between 0.01 Hz and 0.1 Hz are retained. This filtered time series
data is then used to construct a matrix for each labeled region in the subject. For
the region-averaged approach, the time-series are averaged to produce a single
vector for each ROI while the SCCA method utilizes the full matrix to estimate
connectivity.

3 Results

Our experimental design will establish the impact of SCCA-based network anal-
ysis on: (1) test-retest reliability of network correlation matrices; (2) how reli-
ability changes with different signal (BOLD, CBF, concatenated BOLD-CBF)
extracted from the input ASL time series; (3) the impact of the SCCA strategy
on a population analysis of traumatic brain injury.

3.1 Evaluating Reproducibility via Test-Retest Data

Neuroimaging Data. The cohort consists of 12 healthy young adult partici-
pants (mean age 25.5 ± 4.5, 7 female). For each subject, data was acquired at
three time points. Two of these time points were acquired on the same day, in
separate scanning sessions, while the third was acquired one week away from
the same-day data. For each time point high resolution T1-weighted anatomic
images were obtained using a 3D MPRAGE imaging sequence and the following
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(A) (B)

Fig. 2. Intrahemisheric connectivity in the default mode network of an individual sub-
ject is visualized using A) ROI averaged combined CBF and BOLD and B) SCCA
based combined CBF and BOLD. The centroid of all labeled regions are illustrated
with blue spheres, and the connections in the DMN are illustrated with line segments.
The connectivity matrix values are used along with heat-mapping to color the line
segments where higher connectivity values result in “hotter” colors.

acquisition parameters: TR = 1620 ms, TI = 950 ms, TE = 3 ms, flip angle =
15 degrees, 160 contiguous slices of 1.0 mm thickness, FOV = 192 × 256 mm2,
matrix = 192 × 256, 1NEX with a scan time of 6 min. The resulting voxel size
was 1 mm3. Additionally, pulsed ASL (PASL) images were aquired with 80 al-
ternating tag/control images and 2 M0 images all with 14 contiguous slices of
7.5mm thickness, FOV = 220 × 220mm2, matrix = 64 × 64. Additional acqui-
sition parameters: TI1 = 700ms, TI2 = 1700ms.

Image Processing.The set of T1 images from each subjects first time point was
used to construct a template using ANTs [9]. This template was brain masked
and labeled with the AAL dataset [10]. A three-tissue segmentation was per-
formed to allow the labels to be partially masked so only cortex and deep gray
structures were labeled. For each time point, the T1 image was registered to
the template image. Additionally, registration was used to find an intra-subject
mapping between the T1 image and the M0 image that is acquired as a reference
for the PASL acquisition. These transforms were composed to map the cortical
labels into ASL native space for each time point. For PASL images, the M0 im-
age served as a reference for motion-correction of all time-point volumes. Sinc
interpolation was used to estimate the full time-series for both the control and
tag data. The difference between control and tag was used along with relevant
acquisition parameters to calculate the ASL-CBF over time, while the average
of the two signals was calculated for ASL-BOLD [1].

Reproducibility Testing. To examine reproducibility, functional connectiv-
ity matrices are calculated for each time point using the classic region-averaged
approach and the SCCAmethod on: ASL-CBF, ASL-BOLD, and combined ASL-
CBF and ASL-BOLD. Graph correlation [11] is used for the comparison of con-
nectivity matrices in order to examine reproducibility between images acquired
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Fig. 3. For each metric, using both region averaging (orange) and SCCA (yellow),
connectivity matrices were calculated from ASL data acquired in separate acquisitions
in the same day and for data acquired one week apart. Whole network correlations
were then calculated to examine reliability for the daily (left) and weekly (right) data
for each subject. Here we illustrate results using sparsity values of s = t = 0.05. A
range of sparsity values (s = t) up to 0.25 were examined and these higher values did
not produce qualitatively different results.

on the same day, and images acquired one week apart. The results are illustrated
in figure 3. A paired, one-sided Student’s t-test was used to determine when the
SCCA based method produced significantly more reproducible results than the
corresponding region-averagedmetric. Here we list the percent improvement pro-
vided by the SCCA method along with the p-value from the t-test.

Daily. ASL-BOLD = 17.72% (p=5.0e-7), ASL-CBF = 23.45% (p=4.5e-7), Com-
bined = 23.45% (p=0.0014)

Weekly. ASL-BOLD = 18.79% (p=8.1e-6), ASL-CBF = 17.97% (p=1.0e-7),
Combined = 7.23% (p=1.75e-5)

The largest improvements in daily reproducibiliy occur in the CBF based func-
tional connectivity, suggeting that in this particular case, little useful information
is gained by including the ASL-BOLD signal.

3.2 Cross-Sectional Examination of Brain Connectivity in TBI

Neuroimaging Data. Our cohort consists of 41 participants (mean age 30.4 ±
10.2), including 22 patients with TBI (9 females), and 18 controls (9 females).
No significant difference exist between age or education in the patient or control
groups. The same image T1 acquisition as described above was used for these
subjects.

Image Processing. Processing for this data is identical to that for the test-
retest data described above. The pulsed ASL (PASL) images were acquired with
160 alternating tag/control images and 2 M0 images all with 14 contiguous slice
of 7.5mm thickness, FOV = 220 × 220mm2, matrix = 64 × 64. Additional
acquisition parameters: TI1 = 700ms, TI2 = 1900ms.
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Network Differences. To identify potential effects of TBI, connectivity matri-
ces were calculated for all subjects using all metrics. In particular, the default
mode network (DMN) is of interest as this network has been shown to be af-
fected by TBI [12] and is relevant here as the data was acquired during the
resting state. Here we used the following labeled regions for the DMN: posterior
cingulate gyrus, hippocampus, frontal medial orbital cortex, and the angular
gyrus. This network is illustrated in figure 2. Each subject’s time from injury
was categorized as either: no injury, less than one year since injury, or more than
one year since injury. For each metric of interest, connectivity values for intra-
hemispheric connections in each hemisphere were extracted and R was used to
examine the influence of diagnosis (TBI or control) on connectivity values using
(in R language syntax):

Conn ∼ 1+Diagnosis+Age+Gender+Y earsEducation+ InjuryT ime (2)

All p-values for diagnosis were FDR corrected and connections with q<0.1
were reported as potentially compromised connections. The region-averaging
approach did not result in any reported connectivity differences between con-
trol and TBI, nor were any results reported for ASL-BOLD alone. Connectivity
measured using SCCA on the ASL-CBF and the combined data both reported
connectivity differences in the right hemisphere between the posterior cingulate
gyrus and both the hippocampus (q = 0.084) and angular gyrus (q = 0.091).

4 Discussion

We detailed how SCCA may be used to fuse the ASL-CBF and ASL-BOLD
signals to exploit both the multi-variate signal provided by ASL as well as the
full information provided within each anatomical region. We demonstrated that
the SCCA method provides a more repeatable measure of network connectiv-
ity than the classic region-averaged approach. However, the reproducibilty gains
in combined ASL-CBF and ASL-BOLD were less than either metric examined
alone. This may be a result of equally weighting the signals. As these signals
have different physiological origins, an adaptive weighting method may be more
appropriate and will be examined in future work. An examination of TBI sug-
gested that the SCCA method provides a measure of connectivity that is more
sensitive to disruptions in the DMN. Future work will include exploring how
additional modalities, such as standard BOLD fMRI, may be incorporated into
the framework described here.

There are several caveats that must be kept in mind when interpreting these
findings. One important issue in connectivity studies is the possible artifacts
induced by motion. While we did not find significant differences in motion pa-
rameters between groups, this confound may not be entirely ruled out, although
we note that its effect should be similar across all comparisons. Regarding our
BOLD findings, we note that ASL sequences are not optimized for BOLD sen-
sitivity; in general, our findings may differ for different types of ASL or other
functional MRI sequences. Finally, we did not study every frequency range and
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these may impact reliability in all of the studied signals. In future work, we will
more carefully characterize the signal that is extracted by the SCCA approach
in comparison to the ROI analysis. However, we believe that the novel find-
ings reported in this work encourage further exploration of using SCCA to drive
network analyses of the brain.
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Abstract. Advances in resting state fMRI and diffusion weighted imag-
ing (DWI) have led to much interest in studies that evaluate hypotheses
focused on how brain connectivity networks show variations across clin-
ically disparate groups. However, various sources of error (e.g., tractog-
raphy errors, magnetic field distortion, and motion artifacts) leak into
the data, and make downstream statistical analysis problematic. In small
sample size studies, such noise have an unfortunate effect that the differ-
ential signal may not be identifiable and so the null hypothesis cannot
be rejected. Traditionally, smoothing is often used to filter out noise.
But the construction of convolving with a Gaussian kernel is not well
understood on arbitrarily connected graphs. Furthermore, there are no
direct analogues of scale-space theory for graphs — ones which allow to
view the signal at multiple resolutions. We provide rigorous frameworks
for performing ’multi-resolutional’ analysis on brain connectivity graphs.
These are based on the recent theory of non-Euclidean wavelets. We pro-
vide strong evidence, on brain connectivity data from a network analysis
study (structural connectivity differences in adult euthymic bipolar sub-
jects), that the proposed algorithm allows identifying statistically signif-
icant network variations, which are clinically meaningful, where classical
statistical tests, if applied directly, fail.

1 Introduction

The development of diffusion weighted imaging (DWI) and functional magnetic
resonance imaging (fMRI) have laid the groundwork for ambitious initiatives
towards a full characterization of the human connectome (the brain’s wiring
diagram) to better understand the structural and functional aspects of brain
connectivity. While such large scale projects will clearly push the frontiers of
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neuroscience forward, these efforts must necessarily go hand in hand with stud-
ies seeking to answer more focused questions pertaining to the variations in the
connectivity structure in the context of specific neurodegenerative diseases, and
how its manifestation is modulated by genetic and demographic factors. As such
these studies operate in the small sample size regime, and the first order re-
quirement on analysis methods appropriate for such applications is to maximize
statistical power — in other words, the likelihood of observing a differential
signal in the connectivity data given the limited size of the cohort.

Consider a brain connectivity network modeled as an undirected weighted
graph denoted as G = (V , E , ω). The vertices, V may denote anatomically mean-
ingful parcellations [6] or regions exhibiting spatially contiguous BOLD activa-
tions where as the weighted edges may correspond to temporal correlations or
strength of tract connectivity[1]. Now, our interest is to perform statistical anal-
ysis on a population of such brain connectivity networks in clinically disparate
groups, to understand which connections are severely affected by the disease.
The overwhelming majority of current literature suggests applying standard hy-
pothesis testing at the level of individual network edges. This approach generally
works well, but when the group-wise differences are weak to begin with, one finds
that after correcting for multiple comparisons, a statistically significant signal
may be unidentifiable. One may smooth out the noise variance in E and V , but
it is still an issue in brain connectivity analysis. For example, even a small head
motion in the scanner can influence the DTI connectivity information. [16]

The standard procedure to improve the signal to noise ratio is to smooth
the input signal. In image processing, the measurements are defined on a uni-
formly sampled lattice (Euclidean space) where the standard notions of a convo-
lution filter apply directly. The few instances in the literature which implement a
smoothing process on brain network data essentially average the measurements
within a the node or edge ROIs with isotropic Gaussian kernels [18,14], discard-
ing the network structure. In computer vision, anisotropic diffusion kernels [15],
heat kernels [20] and pyramids [11] have been used extensively, but mostly in
the context of a regular lattice over pixels. Developments of these ideas have led
to much work in scale space theory, towards deriving multi-resolution represen-
tations of the image by incremental smoothing. The question we investigate is
whether such connections can be exploited to analyze brain connectivity network
data with enhanced statistical sensitivity. The literature offers few strategies for
filtering of signals on the edges of a brain connectivity network.

Key Contributions. The most natural mathematical tool which offers multi-
resolution behavior, i.e., wavelets, was until recently, restricted to the Euclidean
space. But the objects of interest here are networks with arbitrary topology
(non-Euclidean). a) We make use of a recent harmonic analysis results to show
how non-Euclidean wavelets provide tools for defining multi-scale representations
of brain networks. b) We demonstrate an application to analyzing structural
connectivity differences between euthymic bipolar disorder and healthy subjects.
Our framework applies multi-resolutional analysis on the information defined on
the edges, not on the vertices. The noise in raw connectivity data has the effect
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that few edges show up as statistically significant after accounting for multiple
comparisons correction. But applying the proposed method, clinically meaningful
group differences can be detected at the Bonferroni threshold of α < 0.01.

2 Non-euclidean Wavelets

Wavelet transform is conceptually similar to the well-known Fourier transform,
however, it uses a certain shape of oscillating function as a basis with finite du-
ration instead of the sine and cosine basis with infinite duration. The traditional
construction of wavelets is defined by a mother wavelet function ψ and a scaling
function φ, which are band and low-pass filters in the frequency domain.

The wavelet function ψ on x is a function defined by two parameters, the scale
parameter s and translation parameters a

ψs,a(x) =
1

a
ψ(

x− a

s
). (1)

Change in s varies the dilation of the wavelet, and together with a translation
parameter a, approximates a signal in harmonics using wavelet expansion. The
function ψs,a(x) forms bases for the signal and can be used with other basis at
different scales to decompose a signal. The wavelet transform of a signal f(x) is
defined as the inner product of the wavelet basis ψs,a and f(x),

Wf (s, a) = 〈f, ψ〉 =
1

a

∫
f(x)ψ∗(

x− a

s
)dx, (2)

where Wf (s, a) is the wavelet coefficient at scale s and at location a. The original
signal f(x) can be reconstructed from Wf (s, a) and basis function without loss
of information; the inverse transformation is

f(x) =
1

Cψ

∫∫
Wf (s, a)ψs,a(x)da ds (3)

where Cψ =
∫ |Ψ(jω)|2

|ω| dω is known as the admissibility condition constant, Ψ is

the Fourier transform of the wavelet [9], and ω denotes the frequency domain.
Recent work in harmonic analysis [7] provides wavelet basis on structured data

which expresses in a wide spectrum of frequencies. The solution in [7] relies on a
graph Fourier transform to derive a spectral graph wavelet transform (SGWT).
It is shown that SGWT formalization preserves the localization properties at fine
scales as well as other wavelet specific properties, while addressing the bottleneck
of defining scales on a domain where the space is non-Euclidean.

Let a graph G = {V , E , ω} be a undirected graph with a vertex set V with
N vertices, an edge set E and corresponding edge weight ω ≥ 0. The adjacency
matrix A of G is given as a N × N matrix whose elements aij are the edge
weight ωij if ith and jth nodes are connected. The degree matrix D is computed
as a N ×N diagonal matrix whose ith diagonal is

∑
j ωij . The graph Laplacian

from these graph matrices is defined in the usual way as L = D − A. Then,
the complete orthonormal basis χl and eigenvalues λl, l ∈ {0, 1, · · · , N − 1}
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obtained from the graph Laplacian, a self-adjoint operator, forms the basis for
the graph Fourier transformation. Note that the λl are increasingly ordered, and
are irrelevant to the order of vertex index in the graph domain. Using these
basis, the forward and inverse graph Fourier transformation are defined using
the eigenvalues and eigenvectors of L as,

f̂(l) = 〈χl, f〉 =
N∑

n=1

χ∗
l (n)f(n) and f(n) =

N−1∑
l=0

f̂(l)χl(n) (4)

Using these transforms, we construct spectral graph wavelets by applying band-
pass filters at multiple scales and localizing it with an impulse function and
low-pass filter for the scaling function.

Here, λl, the spectrum of the Laplacian, serves as an analog of the 1-D fre-
quency domain, where scales can be easily defined. This directly provides the
key component in obtaining a multi-resolutional view of the signal localized at
n. Constructing a kernel function g which acts as band-pass filter in the fre-
quency domain, when g is transformed back to the original graph domain, we
directly obtain a representation of the signal for that scale. Repeating this pro-
cedure for multiple scales, the set of coefficients obtained for each s ∈ S gives a
multi-resolution representation for that particular vertex.

Since the transformed impulse function in the frequency domain is equivalent
to a unit function, the wavelet ψ localized at vertex n can now be defined as,

ψs,n(m) =

N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m) (5)

where m is a graph vertex. With this in hand, the wavelet coefficients of a given
function f(n) is given by the inner product of wavelets and the function,

Wf (s, n) = 〈ψs,nf〉 =
N−1∑
l=0

g(sλl)f̂(l)χl(n) (6)

SGWT follows the same procedure of constructing wavelets as in the contin-
uous wavelet transform. In the fine scale limit, SGWT maintains many of the
properties of the traditional wavelet transform, including localization.

Remark. Wavelets in Euclidean space have a rich history in Signal processing.
However, defining wavelets in non-Euclidean space is a recent development [7,5],
and is especially interesting for network analysis in Neuroimaging.

3 Deriving a Multi-Resolution Perspective of a Network

Line Graphs. In graph theory, one defines the line graph L(G) as a dual form
of graph G. The L(G) is formed by interchanging the roles of V and E in G.
Two vertices in L(G) are connected when the corresponding edges in G share
a common vertex. The line graph L(G) = {VL, EL, ωL} has a vertex set for the
edges {E , ω} and a edge set that corresponds to the vertices V in G [8].
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Fig. 1. Examples of graphs and the corresponding line graphs. Original graphs with
vertices (red) and edges (yellow) with edge weights (thickness), and corresponding line
graphs with vertices (yellow) with function (vertex size) and edges (red).

The transformation of L(G) from a graph G is defined as follows. Let gij be
the elements in the adjacency matrix AL of L(G), then

gij =

{
1 if v ∈ V , v � ei, ej

0 otherwise
(7)

where v is a vertex in V and e is an edge in E . This means that when two
edges share a common vertex in G, these edges are connected to each other
by the common vertex. After this transformation, the isolated vertices in G are
completely neglected in L(G). If there are no isolated vertices in G, then G and
L(G) have equal number of components. After constructing a line graph L(G)
of a graph G, the edges in G form a completely new domain of analysis and the
edge weight ω can be defined as a function defined on each vertex in VL, where
the connection between each vertex in EL is given from V . Toy examples of this
transformation are shown in Fig. 1.

In a measured signal, the true signal tends to change smoothly while noise
varies very rapidly in high frequencies. Using wavelets, smoothing can be ef-
ficiently performed by removing high frequency components tied to the finer
scales, moreover, due to the bandpass property of wavelet, we can get a multi-
resolutional view of the given signal. The multi-scale view comes from the inverse
wavelet transformation of the resultant function that provides the estimate of
the signal at various scales. Rewriting (3) in terms of the graph Fourier basis,

f(m) =
1

Cg

∑
l

(∫ ∞

0

g2(sλl)

s
ds

)
f̂(l)χl(m) (8)

which sums over the entire scale s. Limiting the scales to the coarse scales will
reconstruct the smoothed approximation of the original signal, and the original
signal can be reconstructed by adding finer scales.

In order to filter the network structure, it is necessary to bring the network
connectivity information as a signal into another domain. As described above,
the transformation of a graph domain G to a line graph L(G) enables us to view
the edge weights as a signal defined in the domain of L(G). We can therefore
define the connectivity as a signal on each vertex of L(G), and continue with the
smoothing technique using wavelet. An illustrative example of the framework for
the network smoothing is given in Fig. 2, where the edge weights are filtered along
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Fig. 2. A toy example of graph structure filtering. The top panel shows the graph
filtering steps: (1) Construction of the line graph, (2) filtering the signal on the line
graph vertices, (3) reconstructing the filtered graph. The bottom panel shows the cor-
responding adjacency matrices.

their connection and not losing the original topology of G. The corresponding
adjacency matrices are displayed at the bottom.

In addition to the filtering, we define Wavelet Multi-scale Descriptor (WMD)
using the wavelet wavelet coefficients over the signal defined on each vertex as

WMDf (n) = {Wf (s, n)|s ∈ S} (9)

which characterizes the signal at multi-resolutions on the vertex according to
the geometry of the graph[10]. While [19] uses a sphere to obtain the descriptor,
which causes data distortion by mapping process, WMD is derived based on the
eigenfunction of the original graph itself, and thus avoids ’ballooning’.

4 Connectivity Differences in Bipolar Disorder

Dataset. We scanned 25 healthy subjects (13 male and 12 female; age: 42.2±
10.8) and 25 gender and age matched bipolar subjects (14 male, 11 female; age:
41.7± 12.6). All bipolar subjects received comprehensive psychiatric evaluations
using the structured clinical interview for DSM disorders (SCID) and met the
DSM IV criteria for bipolar I disorder (at the time of image acquisition all
subjects have been in an euthymic state for at least 30 days). A Siemens 3T Trio
scanner was used to acquire the brain MRI data. High resolution T1-weighted
images were acquired with MPRAGE sequence (FOV = 250×250 mm2; TR/TE
= 1900/2.26 ms; flip angle = 9◦; voxel size = 1×1×1 mm3). Diffusion weighted
(DW) images were acquired using SS-SE-EPI sequences (FOV = 190×190 mm2;
resolution 2 × 2 × 2 mm3; TR/TE = 8400/93 ms; 64 gradient directions, b =
1000 s/mm2 and one minimally DW scan: b=0 image).

Structural brain networks were generated using a pipeline which integrates
multiple image processing steps. First, DW images were eddy current corrected
using FSL by registering all DW images to their corresponding b=0 images with

http://www.scid4.org
http://www.fmrib.ox.ac.uk/fsl
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Fig. 3. Anatomical connectivity showing group differences between bipolar and con-
trols after Bonferroni threshold at α = 10−7. Connection thickness represents the p-
value in negative log scale; color gives sign of strength: red (and blue) are stronger
in controls (and bipolar group). Region labels are: 1. ctx-rh-precentral, 2. ctx-rh-
superiorfrontal, 3. ctx-lh-superiorfrontal, 4. ctx-rh-caudal anterior cingulate, 5. ctx-
lh-precentral, 6. ctx-lh-temporalpole, 7. left amygdala, 8. right hippocampus, 9. left
hippocampus.

12-parameter affine transformations. This was followed by the computation of
diffusion tensors and then deterministic tractography using the FACT algorithm
[13] built into the DTIStudio program (maximum bending angle 60 degrees;
FA cut-off 0.25). T1-weighted images were used to generate label maps using
Freesurfer. The number of tracts connecting 87 cortical/subcortical regions were
used in constructing 87× 87 connectivity matrix for each subject.

Group Analysis. There are total 3741 edges in the network. In order to de-
tect connectivity differences between the two groups, we performed a Hotellings
T 2- test using WMD. WMD was realized by a Mexican-hat wavelet, which was
defined at 5 scales over the spectrum of λ. Since typically noise lies in high fre-
quency, we dropped 2 scales that correspond to larger λ, and used the rest for
the statistical analysis. When using the raw edge weights, we could not detect
any significant difference between the two groups after accounting for Bonfer-
roni correction at α = 0.05 significance level. However, after applying WMD on
smoothed edge weights with the proposed method, we identified 5 connections
over 9 different brain regions as having significant connectivity differences at a
very conservative Bonferroni correction level, 10−7.

Interpretation. Results showed that relative to control subjects, bipolar pa-
tients on average exhibited weaker strength for the connections within the frontal
lobe (bilateral precentral to superior frontal) as well as in fiber tracts linking the
bilateral hippocampus. These findings are consistent with past studies where
abnormalities in the frontal, limbic, and callosal systems have been reported (for
a review, see for example [12]). Additionally, previous fMRI studies of euthymic
bipolar patients have also consistently revealed frontal hypoactivation [4,3,17].
In contrast, bipolar subjects exhibit a stronger connection, relative to controls,
between the left amygdala and the left temporal pole and between the left supe-
rior frontal gyrus and the right caudal anterior cingulate. Although our subjects
were in euthymia at the time of the scan, these stronger connections in bipolar
may be related to amygdala activation during mania as reported in [2].

http://www.mristudio.org
http://surfer.nmr.mgh.harvard.edu
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5 Conclusion

In this paper, we introduced a novel signal filtering approach for brain network
data that takes into account the non-Euclidean nature of the structured data.
Using a line graph construction from the original network, we perform band-pass
filtering of signals defined on network edges to obtain a multi-resolutional view.
The algorithm siginficantly improves the statistical sensitivity of connectivity
differences using Hotelling’s T 2-tests and Bonferroni correction. We believe that
adapting non-Euclidean wavelets for improving the statistical properties of brain
connectivity networks may improve analysis of a much wider variety of studies.

References

1. Adluru, N., Chung, M.K., Lange, N.T., Lainhart, J.E., Alexander, A.L.: Applica-
tions of epsilon radial networks in neuroimage analyses. In: Ho, Y.-S. (ed.) PSIVT
2011, Part I. LNCS, vol. 7087, pp. 236–247. Springer, Heidelberg (2011)

2. Altshuler, L., Bookheimer, S., Proenza, M.A., et al.: Increased amygdala activation
during mania: a functional magnetic resonance imaging study. American Journal
of Psychiatry 162(6), 1211–1213 (2005)

3. Cerullo, M.A., Adler, C.M., Delbello, M.P., et al.: The functional neuroanatomy
of bipolar disorder. International Review of Psychiatry 21(4), 314–322 (2009)

4. Chen, C., Suckling, J., Lennox, B.R., Ooi, C., et al.: A quantitative meta-analysis
of fMRI studies in bipolar disorder. Bipolar Disorders 13(1), 1–15 (2011)

5. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Applied and Computational Har-
monic Analysis 21(1), 53–94 (2006)

6. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C., et al.: Mapping
the structural core of human cerebral cortex. PLoS Biol 6(7), e159 (2008)

7. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral
graph theory. App. and Comp. Harmonic Analysis 30(2), 129–150 (2011)

8. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
9. Haykin, S., Van Veen, B.: Signals and Systems, 2nd edn. Wiley (2005)

10. Kim, W.H., Pachauri, D., Hatt, C., et al.: Wavelet based multi-scale shape features
on arbitrary surfaces for cortical thickness discrimination. In: NIPS (2012)

11. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 2,
pp. 1150–1157. IEEE (1999)

12. Mahon, K., Burdick, K.E., Szeszko, P.R.: A role for white matter abnormalities
in the pathophysiology of bipolar disorder. Neuroscience and Biobehavioral Re-
views 34(4), 533–554 (2010)

13. Mori, S., Crain, B.J., Chacko, V.P., et al.: Three-dimensional tracking of axonal
projections in the brain by magnetic resonance imaging. Annals of Neurology 45,
256–269 (1999)

14. Pachauri, D., Hinrichs, C., Chung, M.K., et al.: Topology-based kernels with ap-
plication to inference problems in AD. TMI 30(10), 1760–1770 (2011)

15. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
TPAMI 12(7), 629–639 (1990)

16. Power, J.D., Barnes, K.A., Snyder, A.Z., et al.: Spurious but systematic correla-
tions in functional connectivity MRI networks arise from subject motion. NeuroIm-
age 59(3), 2142–2154 (2012)



Multi-resolutional Analysis on Brain Networks 651

17. Van der Schot, A., Kahn, R., Ramsey, N., et al.: Trait and state dependent func-
tional impairments in bipolar disorder. Psychiatry Research 184(3), 135 (2010)

18. Van Hecke, W., Leemans, A., De Backer, S., et al.: Comparing isotropic and
anisotropic smoothing for voxel-based DTI analyses: A simulation study. Human
Brain Mapping 31, 98–114 (2010)

19. Yu, P., Grant, P.E., Qi, Y., et al.: Cortical surface shape analysis based on spherical
wavelets. TMI 26(4), 582–597 (2007)

20. Zhang, F., Hancock, E.: Graph spectral image smoothing using the heat kernel.
Pattern Recognition 41(11), 3328–3342 (2008)



 

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 652–659, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Implications of Inconsistencies between fMRI and dMRI 
on Multimodal Connectivity Estimation 

Bernard Ng1,2, Gael Varoquaux1, Jean Baptiste Poline1, and Bertrand Thirion1 

1 Parietal team, Neurospin, INRIA Saclay, France 
2 FIND Lab, Stanford University, United States 

bernardyng@gmail.com 

Abstract. There is a recent trend towards integrating resting state functional 
magnetic resonance imaging (RS-fMRI) and diffusion MRI (dMRI) for brain 
connectivity estimation, as motivated by how estimates from these modalities are 
presumably two views reflecting the same underlying brain circuitry. In this pa-
per, we show on a cohort of 60 subjects that conventional functional connectivity 
(FC) estimates based on Pearson’s correlation and anatomical connectivity (AC) 
estimates based on fiber counts are actually not that highly correlated for typical 
RS-fMRI (~7 min) and dMRI (~32 gradient directions) data. The FC-AC correla-
tion can be significantly increased by considering sparse partial correlation and 
modeling fiber endpoint uncertainty, but the resulting FC-AC correlation is still 
rather low in absolute terms. We further exemplify the inconsistencies between 
FC and AC estimates by integrating them as priors into activation detection and 
demonstrating significant differences in their detection sensitivity. Importantly, 
we illustrate that these inconsistencies can be useful in fMRI-dMRI integration for 
improving brain connectivity estimation.  

Keywords: brain activation, connectivity, dMRI, fMRI, multimodal integration. 

1 Introduction 

Recently, there is a growing interest in integrating resting state functional magnetic 
resonance imaging (RS-fMRI) and diffusion MRI (dMRI) for brain connectivity esti-
mation [1, 2]. This is motivated by how connectivity inferred from these modalities 
are presumably two views resembling the same underlying wiring structure of the 
brain. To enable meaningful integration, it is important to understand the relationships 
between brain function and structure and the degree to which these relationships are 
reflected by the connectivity estimates derived from RS-fMRI and dMRI data. A 
number of studies suggest a strong positive correlation between RS-fMRI and dMRI 
connectivity estimates [3-5], but it is unclear how much this correlation depends on 
the data acquisition and analysis methods. 

Pearson’s correlation is, by far, the most widely-used estimate of functional con-
nectivity (FC) for RS-fMRI studies. Due to confounds, such as head motions, scanner 
noise, and physiological artefacts, as well as the typically small sample size as limited 
by data acquisition rate of standard pulse sequences, Pearson’s correlation is subject 
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to a high degree of estimation error [6]. Also, Pearson’s correlation cannot distinguish 
direct from indirect connections, which complicates connection structure identifica-
tion [6]. As for inferring anatomical connectivity (AC) from dMRI data, fiber count 
and the average fractional anisotropy (FA) along fiber tracts between pairs of brain 
areas are typically used as estimates [7]. Approaches for estimating the probability of 
diffusion between brain area pairs have been put forth [7], but do not scale well com-
putationally to whole-brain analysis. In general, the fundamental limitations of fiber 
tractography pose great challenges to accurate AC estimation [7], especially when 
applied to typical dMRI data with limited number of gradient directions due to acqui-
sition time restrictions. Besides the problem of crossing fibers, which harms the accu-
racy of the fiber tracts’ trajectories, the location of the fiber endpoints holds high  
uncertainty, since the diffusion orientation is ambiguous near white-gray matter inter-
face and tractography often terminates before reaching gray matter tissues [7].  

In this paper, we assess the impact of the aforementioned limitations in data acqui-
sition and analysis techniques on the consistency of FC and AC estimates. On typical 
RS-fMRI (~7 min) and dMRI (32 gradient directions) data collected from a cohort of 
60 subjects, we take the correlation between conventional FC and AC estimates based 
on Pearson’s correlation and fiber count as baseline, and examine the effects of using 
sparse partial correlation [8] as the FC estimate, which controls for estimation errors 
and reduces indirect influences. We also propose a simple post-processing scheme for 
modeling fiber endpoint uncertainty and examine its influence on the FC-AC correla-
tion. These comparisons are performed to determine whether and to what extent 
methodological improvements can compensate for limitations in data acquisition. In 
addition, we describe how these FC and AC estimates can be meaningfully incorpo-
rated as priors for task activation detection to further evaluate their consistency. The 
implications of combining the FC and AC estimates are also explored. 

2 Methods 

In this work, we are interested in contrasting Pearson’s correlation against sparse 
partial correlation as FC estimates (Section 2.1) and examining the effects of model-
ing the uncertainty in fiber endpoint location when estimating AC (Section 2.2). Con-
sistency between various FC and AC estimates is evaluated based on their correlation 
and their impact as priors on task activation detection (Section 2.3). 

2.1 Functional Connectivity Estimation 

Pearson’s Correlation. Let Z be a t×d matrix with normalized RS-fMRI time courses 
(i.e. demeaned with unit standard deviation) of d brain areas along the columns. The 
Pearson’s correlations between all brain area pairs are given by: C = ZTZ/(t   1). For 
typical RS-fMRI data, t < d, thus C will contain high estimation errors [6]. Also, ele-
ments in C are assumed independent from each other, which renders separation of 
direct connections from indirect connections impossible [6]. These limitations can be 
alleviated by adopting sparse partial correlation as an FC estimate, as discussed next. 
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Sparse Partial Correlation. Given a d×d empirical covariance matrix, S, computed 
from samples drawn from a centered multivariate Gaussian distribution, we can esti-

mate a well-conditioned sparse invariance covariance matrix, Λ̂ , by minimizing the 
negative log-likelihood over the space of positive definite matrices, Λ > 0, and impos-
ing an l1 penalty on the off diagonal elements of Λ [8]: 
 

10
)det(log)(min ΛΛSΛ

Λ
λ+−

>
tr . (1) 

 

Sparse partial correlation, Γ̂ , can then be computed by applying a simple normaliza-

tion on Λ̂ : jjiiijij ΛΛΛΓ ˆˆˆˆ −=  for i ≠ j and ijΓ̂ = 1 for i = j. The level of sparsity 

on Λ̂  is governed by λ, which we select using a refined grid search strategy com-
bined with cross-validation as in [1]. (1) can be efficiently solved using e.g. the QUa-
dratic Inverse Covariance (QUIC) algorithm [8]. In the context of FC estimation, S 
corresponds to C of a given subject. We highlight that enforcing sparsity serves the 
dual purpose of controlling for estimation errors and imposing our prior knowledge 
that the connection structure of the brain is sparse [1]. Also, partial correlation pro-
vides a measure of connectivity between two brain areas with the effects from all 
other brain areas partialled out, thus discriminates direct connections from indirect 
connections. 

2.2 Anatomical Connectivity Estimation 

The fiber count between a pair of brain areas is widely-used as an estimate of AC, 
since this measure presumably reflects the anatomical capacity for functional interac-
tions. This AC estimate requires the fiber tracts to terminate in gray matter brain ar-
eas. For terminating a fiber tract, low FA (e.g. 0.15) and large curvature (e.g. 45o) are 
typically used as the criteria [7]. Although gray matter tissues have relatively lower 
FA than white matter tissues, voxels containing crossing fibers or near white-gray 
matter boundaries also have low FA. Thus, fiber tracts might not necessarily termi-
nate in gray matter voxels. One simple way to deal with this limitation is to extrapo-
late along the tangent direction of the fiber endpoints (e.g. < 10 mm from the  
endpoints) until the fiber tracts reach a gray matter voxel (Fig. 1(a), option 2). How-
ever, the location of the resulting endpoints could very well be incorrect, especially if 
the original fiber endpoints are near gyri (Fig. 1(a)) [7]. In fact, the restriction on cur-
vature during tractography would bias fiber tracts towards option 2 in Fig. 1(a) if 
tracking is not prematurely terminated by low FA [7].  

To model the uncertainty in fiber endpoint location, we propose the following 
schem: Let ωp be a 27×1 weight vector associated with an endpoint p of a fiber tract. 
We assign a weight of 1 to the endpoint and a weight of exp(-Δps) to its 26-connected 
neighbors but only if the neighbors are gray matter voxels. If no neighboring gray 
matter voxels are present, the given fiber is discarded. Δps is the distance between the 
endpoint p and the neighbor s in voxel units. We then normalize ωp such that its  
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elements sum to 1. The same procedure is performed for the other endpoint q of the 
given tract in generating ωq. For each pair of elements ωp(k) and ωq(l) in which the 
two corresponding voxels lie in brain area i and j, respectively, we add ωp(k)·ωq(l) to 
Aij, where Aij is the (i,j)th element of the fiber count matrix, A. In effect, we are plac-
ing a Gaussian kernel at each endpoint and partitioning a tract across spatially prox-
imal brain areas to model endpoint uncertainty. If all neighbors of endpoint p lie with-
in the same brain area i and all neighbors of endpoint q lie within the same brain area 
j, the scheme above reduces to simple fiber count. Note that the resulting AC esti-
mates would depend on the choice of neighborhood size and the drop off rate of the 
Gaussian kernel. We defer sensitivity analysis on these parameters to future work.  

2.3 Connectivity Consistency Assessment 

We evaluate the consistency between the various FC and AC estimates described in 
Section 2.1 and 2.2 using two criteria. The first is simply the correlation between the 
FC and AC estimates averaged over subjects. The second is based on the incorpora-
tion of the FC and AC estimates as priors for task activation detection using the model 
that we proposed in [9]. The assumption is that if the FC and AC estimates are consis-
tent, then using them as priors should result in the same brain areas detected as  
activated. To safely base our assessment on activation detection, we employed the 
maximum-t permutation test [10] to enforce strict control on false positive rate. Under 
the model in [9], the maximum a posteriori mean of the activation effects is given by: 

 

( ) ( ) 11
1

11
2

1
1

−−−−− += TT XXYXVVVM α , (2) 

 

where Y is a d×n matrix containing task fMRI time courses of d brain areas of a given 
subject. X is a m×n regressor matrix, where m is the number of experimental condi-
tions. V1 and V2 are d×d covariance matrices of Y and the activation effects, respec-
tively. We assume V1 = Id×d as conventionally done and V2 is where we inject  
different connectivity priors. The influence of the prior on M is controlled by α, 
which we optimize based on model evidence [9]. We note that the model in [9] as-

sumes V2
-1 is positive definite, hence theoretically, only FC estimates, Λ̂ , generated 

by (1) can be directly employed for this model. In practice, even if V2
-1 is only posi-

tive semi-definite, with V1 = Id×d, the optimal α derived based on model evidence 
would ensure V1

-1 + αV2
-1 is invertible. This observation is particularly important, 

since as we will now show, it enables fiber count, ill-conditioned Pearson’s correla-
tion matrix, and combinations of these connectivity estimates to be integrated into 
activation effect estimation. Specifically, let W be a d×d matrix with non-negative 
elements, Wij, reflecting the connectivity between brain areas i and j, and L = D    
W be the corresponding weighted graph Laplacian, which is always positive semi-
definite. D is a d×d diagonal matrix with Dii = ΣjWij. We claim here that L is a useful 
prior that permits connectivity estimates to be meaningfully integrated into activation 
effect estimation when substituted into V2

-1. For intuition, consider the simplified 
scenario in which m = 1 and the columns of X are orthonormal. One can easily show 
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that the negative log posterior distribution of the activation effects comprises a term 
aTLa, where a corresponds to activation effects. Since aTLa = (Σij(ai     aj)

2Wij)/2, 
minimizing the negative log posterior probability penalizes discrepancies between the 
activation effect estimates of connected brain areas. Given this setup, AC estimates 
can be easily integrated into activation effect estimation by setting W to fiber count. 
For Pearson’s correlation, C, one would normally take the matrix inverse and directly 
assign it to V2

-1. However, since t < d for typical RS-fMRI data, matrix inversion 
would be unstable. We thus propose zeroing the negative elements of C and using the 
resulting matrix as W. The rationale is that negative FC estimates are usually asso-
ciated with less anatomical support, i.e. lower fiber count, hence we hypothesize that 
they are more likely to be false correlations [5]. Building on this intuition, further 
zeroing elements of C with no anatomical support might help remove some of the 
noise-induced correlations. Conversely, spurious fiber tracts induced by tractography 
errors have no functional relevance. Thus, retaining only elements of the fiber count 

matrix with functional support based on the sparsity pattern of Λ̂  might improve 
activation detection. We assess the effectiveness of these simple FC-AC integration 
schemes by setting W to the corresponding connectivity estimates.  

3 Materials 

60 healthy subjects were recruited and scanned at multiple centers. Each subject per-
formed 10 experimental tasks similar to those in [11], as fMRI data were acquired 
over a duration of ~5 min. ~7 min of RS-fMRI data were also collected. Scanning was 
performed using 3T scanners from multiple manufacturers with TR = 2200 ms, TE = 
30 ms, and flip angle = 75o. The task fMRI data were corrected for slice timing and 
head motions, temporally detrended, and spatially normalized using the SPM8 soft-
ware. The RS-fMRI data were similarly preprocessed except a band-pass filter with 
cutoff frequencies at 0.01 to 0.1 Hz was applied. White matter and cerebrospinal fluid 
confounds were regressed out from the gray matter voxel time courses.  

We divided the brain into N = 500 parcels by concatenating RS-fMRI time courses 
across subjects and applying hierarchical Ward clustering. The gray matter voxel time 
courses within each parcel were averaged to generate parcel time courses. The time 
courses were then normalized by subtracting the mean and dividing by the standard 
deviation to account for scanner variability across imaging centers. The choice on N 
was based on a recent brain surface analysis and macaque monkey studies [12]. From 
the perspective of stable FC estimation with limited time samples, setting N to a lower 
value would be more suitable. We defer investigation on how to draw a balance be-
tween functional localization and stable FC estimation for future work. 

dMRI data were collected from the same 60 subjects with TR = 15000 ms, TE = 
104 ms, flip angle = 90o, 32 gradient directions, and b-value = 1300 s/mm2. After 
correcting for eddy currents and head motions using FSL, tensor estimation and fiber 
tractography based on a single-tensor model were performed using MedINRIA. To 
better deal with crossing fibers, we also employed the unscented Kalman filter (UKF) 
tractography algorithm with a two-tensor model [13] for comparison. We warped our 
parcel template onto each subject’s B0 volume for fiber count computation. 
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Fig. 1. Connectivity estimate comparisons. (a) Fiber endpoint near gyri has high uncertainty. 
(b) Pearson’s correlation vs. fiber count. (c) Correlation between FC and AC estimates. 

4 Results and Discussion 

The correlation between various FC and AC estimates are summarized in Fig. 1(c). 
Fiber count based on tracts generated by MedINRIA with endpoint extrapolation is 
taken as the baseline AC estimate. Conventional Pearson’s correlation and fiber count 
are not very consistent (Fig. 1(b)) with an average correlation of only 0.1223 across 
subjects, which is much lower than that reported in [4]. In fact, for the same estimated 
AC, the estimated FC vary substantially. This finding suggests a high variability in 
the degree of functional interactions for the same anatomical capacity, but could also 
be attributed to limitations of the conventional connectivity estimates and data acqui-
sition. Using sparse partial correlation as an FC estimate to control for estimation 
errors and indirect effects significantly increased the FC-AC correlation based on a 
Wilcoxon signed rank test (p-value < 0.01). Modeling fiber endpoint uncertainty fur-
ther increased the FC-AC correlation (p-value < 0.01), but the overall correlation is 
still low compared to [4], in which RS-fMRI data of 35 min and dMRI data with 128 
gradient directions were acquired from 5 subjects. Our results thus indicate that meth-
odological improvements might not be adequate to compensate for the fundamental 
limitations in data acquisition. Further examining this point, we employed UKF trac-
tography, which exploits tracking history to improve fiber estimation [13], but the 
resulting FC-AC correlation was lower than MedINRIA. We suspect that the number 
of gradient directions in our data was insufficient to benefit from UKF tractography. 

FC-AC consistency results with activation detection as the assessment criterion are 
shown in Fig. 2. We used maximum-t permutation [10] to strictly control false posi-
tive rate, so that more detections would imply higher sensitivity. The average percent-
age of parcels detected over 10 experimental conditions and 21 contrasts between 
these conditions using ordinary least square (OLS) is taken as the baseline. Integrating 
FC estimated using Pearson’s correlation significantly increased sensitivity (Fig. 2(a)) 
based on a permutation test described in [1]. Minor improvement over Pearson’s cor-
relation was observed at lower p-value thresholds by incorporating AC priors with 
tracts extracted using UKF tractography. A greater increase in sensitivity was found 
using AC priors with tracts generated by MedINRIA, which was slightly improved by 
modeling endpoint uncertainty. Overall, highest sensitivity was achieved with sparse 
inverse covariance as an FC prior. These differences in detection sensitivity again  
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Fig. 2. Activation detection results. (a) % of parcels found activated vs. p-values with FC and 
AC estimates separately incorporated as priors. GK = Gaussian kernel, EE = endpoint extrapo-
lation. (b) Activation map for an auditory task, p-value < 0.01. SPC = sparse partial correlation. 
(c) FC and AC estimates combined. AS = anatomical support, FS = functional support. 

indicate that the FC and AC estimates are not very consistent. In fact, using AC priors 
generally detected less distant bilateral activation (Fig. 2(b)), which is likely due to 
difficulties in tracking fibers across the two hemispheres [7]. Removing Pearson’s 
correlation with no anatomical support significantly increased sensitivity compared to 
directly using Pearson’s correlation as an FC prior (Fig. 2(c)). We speculate that this 
increase arises from more false correlations and indirect effects being eliminated 
compared to true correlations on average. Retaining only fiber count with functional 
support also significantly enhanced sensitivity, which is likely due to spurious tracts 

being removed. However, when we zeroed out ijΛ̂  that has no anatomical support, 

detection sensitivity actually reduced. This suggests that the sparse inverse covariance 
estimates have false correlations and indirect effects reasonably controlled, thus nul-

ling ijΛ̂  with no anatomical support actually removed important connections missed 

by the AC estimates. Hence, determining the presence of a functional connection 
completely based on AC estimates could be detrimental. Instead, penalizing FC esti-
mates with no anatomical support [1] or probabilistically modeling the absence of 
anatomical connections [2] are likely better strategies for FC-AC integration. 

5 Conclusions 

We showed on a cohort of 60 subjects that FC and AC estimates are not very consis-
tent for typical RS-fMRI and dMRI data. Integrating them as priors for task activation 
detection further demonstrated their inconsistencies. Importantly, we illustrated that 
isolating fibers with functional support as well as removing Pearson’s correlation with 
no anatomical support enhanced activation detection compared to directly using fiber 
count and Pearson’s correlation as priors. This suggests that the inconsistencies actu-
ally make integration of FC and AC estimates all the more valuable for connectivity 

estimation. However, when ijΛ̂  with no anatomical support was nulled, activation 

detection worsened. Thus, FC and AC estimates should be combined with caution. 
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• In the Experimental Evaluation section, paragraph one, it is mentioned that our 

technique has been compared with NCPICCS. This is true, but the corresponding 
reference is incorrect. The reference should be [5] and not [7]. 

Similarly in the last paragraph of the experimental results and the conclusion, it 
was mentioned that our work was compared with the PICCS technique. This was 
incorrect, as mentioned above our work was compared with the NCPICCS 
technique 

• The data description for the in-vivo scan (p. 137, paragraph 2) is incorrect. The 
described data pertains to the dynamic perfusion scan used in [5]. However, this 
dynamic CT dataset is not publicly available and has not been used in our work. 
We synthesized a rotational motion from a single in-vivo image-frame published 
in paper [5]. This image was used for synthesizing the data used in our 
experiments. The frame-by-frame reconstruction error in Fig. 1 and the 
reconstructed image in Fig. 2. correspond to the synthesized data (rotational 
motion) and not the actual perfusion data 
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Béjar, Benjamı́n I-26
Ben Ayed, Ismail I-509
Bendlin, Barbara B. III-501
Benseghir, Thomas I-179
Bhatia, Kanwal III-9
Bhavsar, Arnav III-139
Bhushan, Manav I-316
Bicknell, Colin II-369
Bieth, Marie II-35
Bijnens, Bart H. II-484
Birkbeck, Neil III-235
Block, Tobias III-17
Bloem, Johan L. I-106
Boag, Alexander III-461
Boctor, Emad III-323
Booth, Brian G. III-469
Börnert, Peter I-106
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Dorfer, Matthias I-219
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Letort, Véronique II-271
Leviridge, Michael II-279
Lewis, James I-412

Li, Chunming I-477
Li, Gang I-58, I-703, III-251
Li, Junning I-655

Li, Kaiming II-674, III-617
Li, Kang II-157
Li, Lingjiang II-698

Li, Wenqi III-429
Li, Xiang II-698, III-608, III-626
Li, Xin II-149

Li, Yang II-319
Li, Yeqing III-106
Liang, Xi III-437

Liao, Hongen III-388
Liao, Rui I-380
Liao, Shu II-254, II-649, III-251, III-551

Liao, Wei I-550
Lilja, Ylva I-687

Lin, Ben A. III-57
Lin, Stephen II-468, III-445
Lin, Weili I-58, I-703, III-291

Lindner, Claudia II-181
Linguraru, Marius George I-340, II-83,

II-222, II-641, III-259, III-275
Linte, Cristian A. I-9

Litt, Harold I-477
Liu, Feng I-308, II-311

Liu, Hesheng I-98
Liu, Jiamin I-243
Liu, Jianfei I-340, II-83, II-518

Liu, Jiang II-468, III-421, III-445
Liu, Jindong II-369
Liu, Liu I-542

Liu, Nancy X. III-251
Liu, Peter I-243
Liu, Shubao II-526

Liu, Sidong II-303

Liu, Tianming I-66, II-665, II-674,
II-698, III-608, III-617, III-626

Liu, Xiaofeng I-743
Liu, Yixun III-283
Liu, Yu-Ying II-444
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