
Chapter 7
Variants of the Simplex Method

Besides the simplex method and dual simplex method, a number of their variants
have been proposed in the past. To take advantages of both types, attempts were
made to combine them. At first, two important variants will be presented in
the following two sections respectively, both of which prefixed by “primal-dual”
because they execute primal as well as dual simplex steps, though they are based on
different ideas. More recent variants of such type will be presented later in Chap. 18.

In the other sections, the primal and dual simplex methods are generalized to
handle bounded-variable LP problems, which are commonly used in practice.

7.1 Primal-Dual Simplex Method

The primal-dual method (Dantzig et al. 1956) will be presented in this section,
which is an extension of the same named method (Ford and Fulkerson 1956) for
solving transportation problems.

Just like the dual simplex method, this method proceeds toward primal feasibility
while maintaining dual feasibility and complementarity. However, they pursue
primal feasibility in different ways. The former attempts to fulfil x � 0 while
maintaining Ax D b, whereas the latter attempts to get rid of artificial variables
in the auxiliary Phase-I program to fulfil Ax D b while keeping x � 0.

We are concerned with the standard LP problem (1.8), whose dual problem is
(4.2). Let . Ny; Nz/ be the current dual feasible solution, satisfying AT Ny C Nz � c.

To obtain a primal solution matching . Ny; Nz/, consider the auxiliary program
(3.16), written as

min � D eT xa;

s:t: Ax C xa D b; x; xa � 0;
(7.1)
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170 7 Variants of the Simplex Method

where xa D .xnC1; : : : ; xnCm/T is an artificial variable vector. It would be well to
assume b � 0. Introducing index set

Q D fj 2 A j Nzj D 0g; (7.2)

define the so-called “restricted program”:

min � D eT xa;

s:t: Ax C xa D b; xa � 0;

xj � 0; j 2 Q;

xj D 0; j 62 Q:

(7.3)

Since b � 0, it is clear that the feasible region of the preceding program is nonempty,
and hence there is an optimal solution to it. The restricted program may be viewed
as one formed by all artificial columns and columns indexed by j belonging to Q.

Assume that . Nx; Nxa/ is an optimal solution to (7.3) with optimal value N�, and that
Nw is the associated optimal simplex multiplier.

Theorem 7.1.1. If the optimal value N� vanishes, Nx and . Ny; Nz/ are a pair of primal
and dual optimal solutions.

Proof. N� D eT Nxa D 0 and Nxa � 0 together imply that Nxa D 0. Thus, Nx is a feasible
solution to the original problem (4.1). By the definition of Q, moreover, it holds that
NxT Nz D 0, as exhibits complementarity. Therefore, Nx and . Ny; Nz/ are a pair of primal
and dual optimal solutions. ut

When N� > 0, otherwise, Nx could be regarded as the closest one to feasibility
among all those complementary with . Ny; Nz/. Nevertheless, the Nx is not feasible to
the original problem because it does not satisfy Ax D b, but x � 0 only. In other
words, it should be possible to improve . Ny; Nz/ by increasing the associated dual
objective value. To do so, consider the dual program of (7.3) in the form

min bT w;

s:t: aT
j w C sj D 0; sj � 0; j 2 Q;

w � e:

(7.4)

Since the simplex multiplier vector Nw is just an optimal solution to the preceding
program, it follows from the duality that

bT Nw D N� > 0;

which implies that Nw is an uphill with respect to the objective bT y of the dual
problem (4.2). This leads to the following line search scheme for updating . Ny; Nz/:

Oy D Ny C ˇ Nw; Oz D c � AT Oy: (7.5)
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For being an improved dual feasible solution, it must satisfy the dual constraints for
some ˇ > 0, i.e.,

Oz D c � AT . Ny C ˇ Nw/ D Nz C ˇ Ns � 0; Ns D �ˇAT Nw: (7.6)

Since Nz � 0, and Nw satisfies the constrains of (7.4), it is known that

Nsj D �aT
j Nw � 0; 8j 2 Q:

Therefore, if index set

J D fj 2 AnQ j Nsj D �aT
j Nw < 0g (7.7)

is empty, then (7.6) holds for all ˇ � 0, giving a class of dual feasible solutions.
Since N� > 0, the associated dual objective value

bT Oy D bT Ny C ˇbT Nw D bT Ny C ˇ N�

tends to C1 as ˇ infinitely increases. This implies dual unboundedness or primal
infeasibility.

If, otherwise, there is some j 2 AnQ such that Nsj D �aT
j Nw < 0, then (7.6)

holds for the largest possible stepsize ˇ such that

ˇ D � Nzq

Nsq

D min

�
� Nzj

Nsj

j Nsj < 0; j 2 AnQ

�
> 0: (7.8)

Thus, the resulting dual solution is feasible, corresponding to a strictly larger dual
objective value. It is then used for the next iteration.

Let B be the optimal basis of the restricted program. If a column of B is not
artificial, it must be indexed by some j 2 Q such that Nzj D 0. Since the associated
reduced cost is zero, i.e., Nsj D 0 � aT

j Nw D 0, it holds that

Ozj D Nzj C ˇ Nsj D 0;

implying that the j also belongs to the next Q. Therefore, the optimal basis of the
restricted program can be used as a starting basis for the next iteration. In addition, it
is seen from (7.8) that there is at least one index (e.g., q) in AnQ belongs to the next
Q, and the associated reduced cost is negative, i.e., Nsq < 0. In other words, there
exist new candidates to enter the basis in the next iteration. Therefore, the restricted
program in each iteration can be solved by applying primal simplex method to the
original auxiliary program (7.1) itself, except the choice of columns entering the
basis is restricted to those indexed by j 2 Q \ N . Once an artificial variable leaves
the basis, it is dropped from the auxiliary program immediately.

It is clear that optimality of the restricted program is achieved if Q \ N D ;.
In case when the initial set Q is empty, for instance, all the artificial columns just
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form an optimal basis and the optimal multiplier is Nw D e; so, no any simplex step
is needed for the first iteration.

The steps can be summarized into the following algorithm, the meanings of
whose exists are clear.

Algorithm 7.1.1 (Primal-dual simplex algorithm). Initial: a dual feasible solu-
tion . Ny; Nz/, and associated Q defined by (7.2). B D fn C 1; : : : ; n C mg; N D
f1; : : : ; ng. This algorithm solves the standard LP problem (1.8).

1. Carry out simplex steps to solve the restricted auxiliary program (7.1).
2. Stop if the optimal value of the restricted program vanishes (optimality achieved).
3. Stop if J defined by 7.7 is empty. (infeasible problem)
4. Compute ˇ by (7.8).
5. Update . Ny; Nz/ by (7.5).
6. Update Q by (7.2)
7. Go to step 1.

Although the simplex method was used to solve the restricted program, any
method for solving it will apply. The primal-dual simplex method seems to be
amenable to certain network flow problems, in particular, since the labeling method
solves the restricted program more efficiently and an initial dual feasible solution is
easy to obtain (Papadimitriou and Steiglitz 1982).

It is noted that the objective value, corresponding to the dual feasible solution,
increases monotonically iteration by iteration. Therefore, the primal-dual method
will terminate if each restricted program encountered is solved in finitely many
subiterations, It is however not the case as the simplex method is utilized.

Example 7.1.1. Solve the following problem by Algorithm 7.1.1:

min 2x1 C 5x2 C x3 C 4x4 C 8x5;

s:t: �x1 C 4x2 � 2x3 C 2x4 � 6x5 D �1;

x1 C 2x2 C 2x3 � 4x5 D 8;

�x1 C x2 C 2x4 C 2x5 D 2;

xj � 0; j D 1; : : : ; 5:

Answer Construct the auxiliary program below:

min � D x6 C x7 C x8;

s:t: x1 � 4x2 C 2x3 � 2x4 C 6x5 C x6 D 1;

x1 C 2x2 C 2x3 � 4x5 C x7 D 8;

�x1 C x2 C 2x4 C 2x5 C x8 D 2;

xj � 0; j D 1; : : : ; 8:

Initial: B D f6; 7; 8g; N D f1; : : : ; 5g. Since the costs of the original problem are
positive, a feasible dual solution . Ny D .0; 0; 0/T ; Nz D .2; 5; 1; 4; 8/T / is available,
with Q D ;.
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Iteration 1:

1. Since Q D ;, no simplex step is needed.
2. The optimal value of the restricted program is positive, and the optimal simplex

multiplier is Nw D .1; 1; 1/T .
3: NsJ D .�1; �4; �4/T ; J D f1; 3; 5g ¤ ;:

4: NzJ D .2; 1; 8/T ; � D minf2=1; 1=4; 8=4g D 1=4; q D 3:

5: Ny D .0; 0; 0/T C 1=4.1; 1; 1/T D .1=4; 1=4; 1=4/T ;

NzN D

0
BBBBB@

2

5

1

4

8

1
CCCCCA

�
0
@ 1 �4 2 �2 6

1 2 2 �4

�1 1 2 2

1
A

T 0
@ 1=4

1=4

1=4

1
A D

0
BBBBB@

7=4

21=4

0

4

7

1
CCCCCA

:

6: Q D f3g:
Iteration 2:

1. Carry out restricted simplex steps of Algorithm 3.5.1:
Subiteration 1:

(2) Column selection is restricted to Q \ N D f3g:x3 enters the basis.
.4/ Na3 D a3 D .2; 2; 0/T 6� 0:

.6/ NxB D .1; 8; 2/T ; ˛ D minf1=2; 8=2g D 1=2; p D 1; x6 leaves the basis;
and is dropped:

.7/ NxB D .1; 8; 2/T � 1=2.2; 2; 0/T D .0; 7; 2/T : Nx3 D 1=2:

.8/ B�1 D
0
@ 1=2

�1 1

1

1
A :

.9/ B D f3; 7; 8g; N D f1; 2; 4; 5g:
Subiteration 2:

.1/ Nw D
0
@ 1=2

�1 1

1

1
A

T 0
@ 0

1

1

1
A D

0
@ �1

1

1

1
A ;

NsN D �
0
@ 1 �4 �2 6

1 2 �4

�1 1 2 2

1
A

T 0
@ �1

1

1

1
A D

0
BB@

1

�7

�4

8

1
CCA :

.2/ Q \ N D f3g \ f1; 2; 4; 5g D ;:

2. The optimal value of the restricted program is positive.
3: NsJ D f�7; �4/T ; J D f2; 4g ¤ ;:

4: NzJ D .21=4; 4/T ; ˇ D minf.21=4/=7; 4=4g D 21=28; q D 2:

5: Ny D .1=4; 1=4; 1=4/T C 21=28.�1; 1; 1/T D .�1=2; 1; 1/T :
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NzN D

0
BB@

2

5

4

8

1
CCA �

0
@ 1 �4 �2 6

1 2 �4

�1 1 2 2

1
A

T 0
@ �1=2

1

1

1
A D

0
BB@

5=2

0

1

13

1
CCA :

6: Q D f3; 2g:
Iteration 3:

1. Carry out simplex steps of Algorithm 3.5.1 restricted:
Subiteration 1:

(2) Column selection is restricted to Q \ N D f2g. x2 enters the basis.

.4/ Na2 D
0
@ 1=2

�1 1

1

1
A

0
@ �4

2

1

1
A D

0
@ �2

6

1

1
A 6� 0:

.6/ NxB D .1=2; 7; 2/T ; ˛ D minf7=6; 2=1g D 7=6; p D 2; x7 leaves the
basis; and is dropped:

.7/ NxB D .1=2; 7; 2/T � 7=6.�2; 6; 1/T D .17=6; 0; 5=6/T ; Nx2 D 7=6:

.8/ B�1 D
0
@ 1 1=3

1=6

�1=6 1

1
A

0
@ 1=2

�1 1

1

1
A D

0
@ 1=6 1=3

�1=6 1=6

1=6 �1=6 1

1
A :

.9/ B D f3; 2; 8g; N D f1; 4; 5g:
Subiteration 2:

.1/ Nw D
0
@ 1=6 1=3

�1=6 1=6

1=6 �1=6 1

1
A

T 0
@ 0

0

1

1
A D

0
@ 1=6

�1=6

1

1
A ;

NsN D �
0
@ 1 �2 6

1 �4

�1 2 2

1
A

T 0
@ 1=6

�1=6

1

1
A D

0
@ 1

�5=3

�11=3

1
A :

.2/ Q \ N D f3; 2g \ f1; 4; 5g D ;:

2. The optimal value of the restricted program is positive.
3: sJ D .�5=3; �11=3/T ; J D f4; 5g ¤ ;:

4: NzJ D .1; 13/T ; ˇ D minf1=.5=3/; 13=.11=3/g D 3=5; q D 4:

5: Ny D .�1=2; 1; 1/T C 3=5.1=6; �1=6; 1/T D .�2=5; 9=10; 8=5/T ;

NzN D
0
@ 2

4

8

1
A �

0
@ 1 �2 6

1 �4

�1 2 2

1
A

T 0
@ �2=5

9=10

8=5

1
A D

0
@ 31=10

0

54=5

1
A :

6: Q D f3; 2; 4g:
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Iteration 4:

1. Carry out simplex steps of Algorithm 3.5.1 restricted:
Subiteration 1:

(2) Column selection is restricted to Q \ N D f3; 2; 4g \ f1; 4; 5g. x4 enters the
basis.

(4) Na4 D
0
@ 1=6 1=3

�1=6 1=6

1=6 �1=6 1

1
A

0
@ �2

0

2

1
A D

0
@ �1=3

1=3

5=3

1
A 6� 0.

(6) NxB D .17=6; 7=6; 5=6/T ; ˛ D minf.7=6/=.1=3/; .5=6/=.5=3/g D 1=2;

p D 3; x8 leaves the basis, and dropped.
(7) NxB D .17=6; 7=6; 5=6/T � 1=2.�1=3; 1=3; 5=3/T D .3; 1; 0/T , Nx4 D 1=2.

(8) B�1 D
0
@ 1 1=5

�1=5

1 3=5

1
A

0
@ 1=6 1=3

�1=6 1=6

1=6 �1=6 1

1
AD

0
@ 1=5 3=10 1=5

�1=5 1=5 �1=5

1=10 �1=10 3=5

1
A.

(9) B D f3; 2; 4g; N D f1; 5g.

2. The optimal value of the restricted program is zero, optimality achieved.
The optimal solution and objective value are

Nx D .0; 1; 3; 1=2; 0/T ; Nf D 10:

7.2 Self-Dual Parametric Simplex Method

Based on discussions made in Sect. 6.4, it is not difficult to go over to a method for
solving problems with the costs and the right-hand side both parameterized, i.e.,

min f D .c C �c0/T x;

s:t: Ax D b C �b0; x � 0:
(7.9)

In this section, we will solve the standard LP program via handling the preceding
parametric program. This method is closely related to Orchard-Hays’ work (1956),
and has been used by Smale (1983b) for investigating the worst-case complexity of
the simplex method.

The method belongs to a more general approach, so-called “homotopy”, which
generates a continuous deformation, converting a given problem to a related but
trivially solved one, and then proceeds backwards from the latter to the original by
solving all the problems in between. It is seen that the standard problem (1.8) is just
the parametric program (7.9) with � D 0.

Assume availability of a simplex tableau to the standard LP problem, which
is neither primal nor dual feasible. It is a simple matter to determine a value
� D �2 > 0 such that the objective row and the right-hand side both become
nonnegative after adding it relevantly. Such doing amounts to adding some terms
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�c0 and �b0 respectively to the costs and the right-hand side of the original problem,
corresponding to � D �1 D 0. Then, � is decreased from �2 down to 0 while
maintaining optimality. If primal feasibility is violated first in this process, a row
index p and a new �2 are determined; then a column index q is determined by the
dual simplex ratio test. If, otherwise, dual feasibility violated first, a column index
q and a new �2 are determined; a row index p is determined by the primal simplex
ratio test. Subsequent operations in the iteration are just for a normal basis change.

Assume that the current simplex tableau is optimal to � D �2, i.e.,

xT
B xT

N RHS

I NN Nb C Nb0�
NzT
N C N.z0/T

N � � Nf

(7.10)

The procedure is put into the following algorithm, where the parametric program
with � D 0 corresponds to the original problem.

Algorithm 7.2.1 (Self-dual parametric algorithm: tableau form). Given �2 > 0.
Initial: a simplex tableau of the form (7.10), which is optimal for � D �2. This
algorithm solves the standard LP problem.

1. If Nz0
N � 0, set ˇ D 0; else, determine q and ˇ such that

˛ D �Nzq= Nc0
q D maxf�Nzj =Nz0

j j Nz0
j > 0; j 2 N g:

2. If Nb0 � 0, set ˛ D 0; else, determine p and ˛ such that

ˇ D � Nbp= Nb0
p D maxf� Nbi= Nb0

i j Nb0
i > 0; i D 1; : : : ; mg:

3. If ˛ � ˇ, do the following

(1) If ˛ � 0, set �2 D 0 and stop (optimality achieved);
(2) Stop if Naq � 0 (unbounded );
(3) Determine row index p such that

. Nbp C Nb0
p�/= Napq D minf. Nbi C Nb0

i �/= Naiq j Naiq > 0; i D 1; : : : ; mg;

where � is close to �2;
else
(4) If ˇ � 0, set �2 D 0, and stop (optimality achieved);
(5) Stop if J D fj 2 N j Napj < 0g (infeasible );
(6) Determine column index q such that

�.Nzq C Nz0
q�/= Napq D min

j 2J
�.Nzj C Nz0

j �/= Napj ;

where � is close to �2.
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4. If ˛ � ˇ, set �2 D ˛ else set �2 D ˇ.
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Go to step 1.

An advantage of the preceding Algorithm is that it can solve problems in a
single phase by starting from any basis. It is sometimes describe as “criss-cross”
because of its shuttling between primal and dual sides, depending on which of
˛ and ˇ is larger (see step 3). Therefore, it seems critical to scale the costs and
the right-hand side for equilibrium of their magnitudes before hand. On the other
hand, the algorithm requires more computational effort per iteration, compared with
the simplex algorithm. As a homotopy algorithm, it seems to be more suitable for
solving hard problems. At least, it stands good as a tool for handling the parametric
program (7.9) itself.

Discussions concerning the preceding Algorithm can be made similarly to
Algorithms 6.4.1 and 6.4.2. The revised version of it is omitted.

Example 7.2.1. Solve the following problem by Algorithm 7.2.1:

min �2x1 � 3x2;

s:t: x1 C 2x2 C x4 D 2;

�2x1 � x2 C x3 D �1;

�3x1 C 4x2 x5 D �3;

xj � 0; j D 1; : : : ; 4:

Answer Put the program into the following tableau with the costs and the right-
hand side both parameterized

x1 x2 x3 x4 x5 RHS
1 2 1 2

�2 �1 1 �1 C �

�3 4* 1 �3 C �

�2 C � �3 C �

Given �2 D 4 > 0.

Iteration 1:

1. ˛ D maxf�.�2/=1; �.�3/=1g D 3; q D 2.
2. ˇ D maxf�.�1/=1; �.�3/=1g D 3; p D 3.
3. ˛ � ˇ.

(3) minf.�3 C �/=4g D .�3 C �/=4; p D 3, where � is close to 4.

4. Set �2 D 3.
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5. Taking q D 2; p D 3, according basis change leads to

x1 x2 x3 x4 x5 RHS

5=2 1 �1=2 7=2 � 1=2�

�11=4 1 1=4 �7=4 C 5=4�

�3=4* 1 1=4 �3=4 C 1=4�

�17=4 C 7=4� 3=4 � 1=4� �9=4 C 3=2� � 1=4�2

Iteration 2:

1. ˛ D maxf�.�17=4/=.7=4/g D 17=7; q D 1.
2. ˇ D maxf�.�7=4/=.5=4/; �.�3=4/=.1=4/g D 3; p D 3.
3. ˛ 6� ˇ.

(6) minf�.�17=4 C 7=4�/=.�3=4//g D �17=3 C 7=3�; q D 1, where � is
close to 3.

4. Set �2 D 3 (a degenerate step).
5. Taking p D 3; q D 1, according basis change leads to

x1 x2 x3 x4 x5 RHS

10=3* 1 1=3 1 C 1=3�

�11=3 1 �2=3 1 C 1=3�

1 �4=3 �1=3 1 � 1=3�

�17=3 C 7=3� �2=3 C 1=3� 2 � 5=3� C 1=3�2

Iteration 3:

1. ˛ D maxf�.�17=3/=.7=3/; �.�2=3/=.1=3/g D 17=7; q D 2.
2. ˇ D maxf�1=.1=3/; �1=.1=3/g D �3; p D 1 .
3. ˛ > ˇ.

(3) minf.1 C 1=3�/=.10=3//g; p D 1, where � is close to 3.

4. Set �2 D 17=7.
5. Taking q D 2; p D 1, according basis change leads to

x1 x2 x3 x4 x5 RHS

1 3=10 1=10* 3=10 C 1=10�

1 11=10 �3=10 21=10 C 7=10�

1 2=5 �1=5 7=5 � 1=5�

17=10 � 7=10� �1=10 C 1=10� 37=10 � 9=5� C 1=10�2
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Iteration 4:

1. ˛ D maxf�.�1=10/=.1=10/g D 1; q D 5.
2. ˇ D maxf�.3=10/=.1=10/; �.21=10/=.7=10/g D �3; p D 1.
3. ˛ > ˇ.

(3) minf.3=10 C 1=10�/=.10=3//g; p D 1, where � is close to 17=7.

4. Set �2 D 1.
5. Taking q D 5; p D 1 as pivot, according basis change leads to

x1 x2 x3 x4 x5 RHS

10 3 1 3 C �

3 1 2 3 C �

1 2 1 2

1 � � 2 � � 4 � 2�

Iteration 5:

1. ˛ D 0.
2. ˇ D maxf�3=1; �3=1g D �3; p D 1.
3. ˛ > ˇ.

(1) �2 D 0. The basic optimal solution and associated objective value:

Nx D .2; 0; 3; 0; 3/T ; Nf D �4:

7.3 General LP Problems

Sa far we have presented methods for solving standard LP problems. Nevertheless,
models from practice are various, as can be put in a more general from below:

min f D cTx;

s:t: a � Ax � b;

l � x � u;

(7.11)

where A 2 Rm�n; c; l; u 2 Rn; a; b 2 Rm; m < n; rank A D m, and a; b; l; u
are all given vectors. Such type of problems have not only upper and lower bounds
on variables, but also ranges, i.e., variation range of Ax. This type of problems are
usually referred to as problems with ranges and bounds.
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Ranges involved in the problems can be eliminated by introducing new variables.
Setting w D Ax, in fact, the preceding problem is converted to

min f D cTx;

s:t: Ax � w D 0;

l � x � u;

a � w � b:

(7.12)

Components of x are said to be structural variables, whereas those of w said to be
logical variables.

We will focus on the following bounded-variable problem:

min f D cTx;

s:t: Ax D b; l � x � u;
(7.13)

where A 2 Rm�n; c; l; u 2 Rn; b 2 Rm; rank A D m; m < n. Unless indicated
otherwise, it is assume that l; u are finite, and lj < uj . Infinite upper or lower
bounds can be represented by sufficiently large or small reals. Thereby, the standard
LP problems (1.8) can be regarded as a special case of the preceding problem.

Clearly, such a problem can be converted to the standard form by variable
transformations though such doing increases problem’s scale. In the following
sections, we will generalize the simplex method and dual simplex method to solve
the bounded-variable problem directly.

In the sequel, the following sign function will be useful:

sign.t/ D
8<
:

1; if t > 0;

�1; if t < 0;

0; if t D 0:

(7.14)

Assume that the current basis and nonbasis are

B D fj1; � � � ; jmg; N D AnB: (7.15)

7.4 Generalized Simplex Method

Almost all terms for the standard LP problem are applicable for the bounded-
variable problem. A solution to Ax D b is said to be basic if nonbasic components
of it attain one of the associated upper and lower bounds. It is clear that basic
solution, associated with a basis, is not necessarily unique, in contrast to basic
solution in the standard LP problem context.

The following results are similar to those for the standard problem, as are stated
in the sequel without proofs.
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Lemma 7.4.1. If there exists a feasible solution to the bounded-variable problem,
so does a basic feasible solution; if there exists an optimal solution to it, so does a
basic optimal solution.

Therefore, it is possible to find a basic optimal solution among basic feasible
solutions, as is a basis for the generalized simplex algorithm.

Let Nx be a basic feasible solution, associated with B:

Nxj D lj or uj ; j 2 N; (7.16)

lB � NxB D B�1b � B�1N NxN � uB: (7.17)

The according reduced costs and objective value are

NzN D cN � N TB�T cB; Nf D cT
BB�1b C NzT

N NxN : (7.18)

Define index set

� D f j 2 N j Nxj D lj g; … D f j 2 N j Nxj D uj g: (7.19)

So it holds that

� [ … D N; � \ … D ;:

Without confusion, thereafter � and … are also used to respectively denote
submatrices, consisting of columns indexed by their elements.

Lemma 7.4.2. A feasible solution Nx is optimal if the following set is empty:

J D fj 2 � j Nzj < 0g [ fj 2 … j Nzj > 0g: (7.20)

Proof. Let x0 be any feasible solution. Thus it holds that

lj � x0
j � uj ; j 2 N:

It is known by the assumption that

Nzj � 0; j 2 �I Nzj � 0; j 2 …:

Hence for any j 2 N , there two cases arising:

(i) j 2 � . It follows from x0
j � lj D Nxj that

Nzj x0
j � Nzj Nxj I (7.21)

(ii) j 2 …. From x0
j � uj D Nxj again (7.21) follows. Therefore

X
j 2N

Nzj x0
j �

X
j 2N

Nzj Nxj ;
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which implies that

cT
BB�1b C NzT

N x0
N � cT

BB�1b C NzT
N NxN :

The preceding indicates that the objective value at x0 is no less than that at Nx,
therefore Nx is optimal. ut

Assume now that J is nonempty. Thus, a column index q can be determined by

q 2 arg max
j 2J

jNzj j:

Assuming q D jt , define vector

�x
4D

�
�xB

�xN

�
D sign.Nzq/

��B�1aq

et�m

�
; (7.22)

where eq�m is the .n� m/-dimensional unit vector with the .q � m/th component 1.

Proposition 7.4.1. �x satisfies

A�x D 0; cT�x > 0:

Proof. It is known by (7.22) that

A�x D B�xB C N�xN D sign.Nzq/.�aq C aq/ D 0:

From the first formula of (7.18) together with (7.4) and (7.22), it follows that

� cT�x D sign.Nzg/.aT
q B�1cB � cq/ D �sign.Nzq/Nzq D �.q/Nzq D �jNzqj < 0:

(7.23)
ut

The preceding Proposition says that ��x is a descent direction with respect to the
objective cTx.

Let ˛ � 0 be a stepsize from Nx along the direction. The new iterate is then

Ox D Nx � ˛�x: (7.24)

Thus, since Nx is feasible, it holds for any ˛ � 0 that

A Ox D A Nx � ˛.B; N /�x D A Nx D b:

The value of stepsize ˛ should be such that Ox satisfies l � Ox � u. Thereby the
largest possible stepsize is

˛ D minfuq � lq; minf˛i j i D 1; � � � ; mgg; (7.25)
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where

˛i D
8<
:

. Nxji � uji /=�xji ; if �xji < 0;

. Nxji � lji /=�xji ; if �xji > 0;

1; if �xji D 0;

i D 1; � � � ; m: (7.26)

There are the following two cases arising:

(i) ˛ D uq � lq . In this case, if Nxq D lq , then Oxq D uq; and if Nxq D uq , then
Oxq D lq . The new solution Ox is basic feasible, corresponding to the same basis.
Therefore, there is no need for any basis change.

(ii) ˛ < uq � lq . Determine row index p 2 f1; � � � ; mg such that

˛ D ˛p: (7.27)

Then Oxjp attains its lower bound ljp or upper bound ujp . In this case, the new
basis and nonbasis follows from B and N by exchanging jp and q. In addition,
it is verified that the new solution Ox is a basic solution, corresponding to the
new basis.

It is known from (7.23) and (7.24) that the new objective value is

Of D cT Ox D cT Nx � ˛cT�x D cT Nx � ˛jNzq j � cT Nx;

which strictly decreases if ˛ > 0. The preceding expression leads to the
recurrence formula of the objective value, i.e.,

Of D Nf � ˛jNzq j;

The preceding formula will not be used in each iteration in the following algorithm,
however; instead, the objective value will be computed at the end from the final
basis and original data.

Definition 7.4.1. A feasible solution is degenerate (with respective to a basis) if a
basic component of it is on one of its bounds.

Concerning stepsize ˛, the following two points should be noted.

(i) In case when a basic solution is degenerate, ˛ value would vanish, and the basic
solution remains unchanged even if the basis changes.

(ii) In practice, the problem should be deemed unbounded if the value of ˛ exceeds
some sufficiently large number.

From the discussions made above, the following conclusions are attained.

Lemma 7.4.3. Let Nx be a basic feasible solution. Then the new solution, determined
by (7.22), (7.24), (7.25) and (7.26), is a basis feasible solution. The corresponding
objective value does not increase, while strictly decreases if nondegeneracy is
assumed.
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The overall steps are put in the following algorithm.

Algorithm 7.4.1 (Generalized simplex algorithm). Initial: .B; N /; B�1 and
associated basic feasible solution Nx. This algorithm solves bounded-variable
problem (7.13).

1. Compute NzN D cN � N T Ny, where Ny D B�T cB .
2. Compute Nf D cT Nx, and stop if set J defined by (7.20) is empty.
3. Select column index q such that q 2 maxj 2J jNzj j.
4. Compute �xB D �sign.Nzq/B�1aq .
5. Determine stepsize ˛ by (7.25) and (7.26).
6. Update Nx by (7.24) and (7.22).
7. Go to step 1 if ˛ D uq � lq; else determine row index p 2 f1; � � � ; mg such that

˛ D ˛p .
8. Update B�1 by (3.23).
9. Update .B; N / by exchanging jp and q.

10. Go to step 1.

Theorem 7.4.1. Algorithm 7.4.1 generates a sequence of basic feasible solutions.
Assuming nondegeneracy throughout the solution process, it terminates at step 2,
giving a basic optimal solution.

Proof. Its validity comes from Lemmas 7.4.2 and 7.4.3.

Example 7.4.1. Solve the following problem by Algorithm 7.4.1:

min f D �x1 C 3x2;

s:t: 2 � 2x1 � 3x2 � 10;

1 � x1 � x2 � 5;

� x1 C 2x2 � 0;

0 � x1 � 6; �2 � x2:

Answer Introduce x3; x4; x5 to convert the preceding to

min f D x1 � 3x2;

s:t: �2x1 C3x2 Cx3 D 0;

�x1 C x2 Cx4 D 0;

x1 �2x2 Cx5 D 0;

0 � x1 � 6; �2 � x2 � 1; 2 � x3 � 10; 1 � x4 � 5; �1 � x5 � 0:

In the following, the unbounded variables will be handled as �1 or 1, upon which
only the determination of stepsize touches.

Initial: B D f3; 4; 5g; N D f1; 2g; B�1 D I; NxN D .0.�/; �2.�//
T; NxB D

.6; 2; �4/T, Nf D 6. The initial solution is basic feasible (with subscript “.�/” to
denote on the lower bound, and superscript “.C/” on the upper bound. The same
below).
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Iteration 1:

1. y D B�TcB D .0; 0; 0/T; NzN D .1; �3/T.
2. J D f2g.
3. maxJ jNzj j D 3; q D 2, x2 enters the basis.
4. Na2 D B�1a2 D .3; 1; �2/T:

5. ˛1 D .6 � 2/=3 D 4=3; ˛2 D .2 � 1/=1 D 1;

˛3 D .�4 � 0/= � 2 D 2; ˛ D minf1; 4=3; 1; 2g D 1.
6. NxB D .6; 2; �4/T � 1 � .3; 1; �2/T D .3; 1; �2/T;

NxN D .0.�/; �2/T � 1 � .0; �1/ D .0.�/; �1/T.
7. p D 2, x4 leaves the basis.

8. B�1 D
0
@ 1 �3

1

2 1

1
A.

9. B D f3; 2; 5g; N D f1; 4gI NxB D .3; �1; �2/T; NxN D .0.�/; 1T
.�//.

Iteration 2:

1. y D B�TcB D .0; �3; 0/T; NzN D cN � N Ty D .1; 0/T � .3; �3/T D .�2; 3/T.
2. J D f1g.
3. maxJ jNzj j D 2; q D 1, x1 enters the basis.
4. Na1 D B�1a1 D .1; �1; �1/T:

5. ˛1 D .3 � 2/=1 D 1; ˛2 D .�1 � 1/= � 1 D 1;

˛3 D .�2 � 0/= � 1 D 2, ˛ D minf6 � 0; 1; 1; 2g D 1.
6. NxB D .3; �1; �2/T � 1 � .1; �1; �1/T D .2; 0; �1/T,

NxN D .0; 1/T � 1 � .�1; 0/ D .1; 1/T.
7. p D 1, x3 leaves the basis.

8. B�1 D
0
@ 1

1 1

1 1

1
A

0
@ 1 �3

1

2 1

1
A D

0
@ 1 �3

1 �2

1 �1 1

1
A.

9. B D f1; 2; 5g; N D f3; 4gI NxB DD .1; 0; �1/T; NxN D .2.�/; 1.�//
T.

Iteration 3:

1. y D B�TcB D .�2; 3; 0/T; NzN D cN �N Ty D .0; 0/T � .�2; 3/T D .2; �3/T.
2. J D f4g.
3. maxJ jNzj j D 3; q D 4, x4 enters the basis.
4. Na4 D B�1a4 D .�3; �2; �1/T.
5. ˛1 D .1 � 6/= � 3 D 5=3; ˛2 D .0 � 1/= � 2 D 1,

˛3 D .�1 � 0/= � 1 D 1I ˛ D minf5 � 1; 5=3; 1; 1g D 1.
6. NxB D .1; 0; �1/T � 1 � .�3; �2; �1/T D .4; 2; 0/T,

NxN D .2; 1/T � 1 � .0; �1/ D .2; 2/T.
7. p D 3, x5 leaves the basis.

8. B�1 D
0
@ 1 �3

1 �2

�1

1
A

0
@ 1 �3

1 �2

1 �1 1

1
A D

0
@ �2 �3

�1 �2

�1 1 �1

1
A.

9. B D f1; 2; 4g; N D f3; 5gI NxB D .4; 2; 2/T; NxN D .2.�/; 0.C//T.
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Iteration 4:

1. y D B�TcB D .1; 0; 3/T; NzN D cN � N Ty D .0; 0/T � .1; 3/T D .�1; �3/T.
2. J D f3g.
3. maxJ jNzj j D 1; q D 3, x3 enters the basis.
4. Na3 D B�1a3 D .�2; �1; �1/T:

5. ˛1 D .4 � 6/= � 2 D 1; ˛2 D .2 � 1/= � 1 D 1,
˛3 D .2 � 5/= � 1 D 3I ˛ D minf10 � 2; 1; 1; 3g D 1.

6. NxB D .4; 2; 2/T � 1 � .�2; �1; �1/T D .6; 3; 3/T,
NxN D .2; 0/T � 1 � .�1; 0/ D .3; 0/T.

7. p D 1, x1 leaves the basis.

8. B�1 D
0
@ �1=2

�1=2 1

�1=2 1

1
A

0
@ �2 �3

�1 �2

�1 1 �1

1
A D

0
@ 1 3=2

�1=2

1 1=2

1
A.

9. NxB D .3; 3; 3/T; B D f3; 2; 4gI NxN D .6.C/; 0.C//T; N D f1; 5g:
Iteration 5:

1. y D B�T cB D .0; 0; 3=2/T;

NzN D cN � N Ty D .1; 0/T � .3=2; 3=2/T D .�1=2; �3=2/T.
2. J D ;. The basic optimal solution and associated objective value:

Nx D .6; 3; 3; 3; 0/T; Nf D 6 � 3 � 3 D �3:

As for the tableau version of Algorithm 7.4.1, the associated simplex tableau is
the same as the conventional, except there is no need for RHS column to display the
corresponding basic solution. We add three additional rows .u; Nx; l/, respectively,
listing upper bounds, variable values and lower bounds. The simplex tableau is of
the form below:

xT
B xT

N

I NN
NzN

u uT
B uT

N

Nx NxT
B NxT

N

l lT
B lT

N

Based on Table 3.1, Algorithm 7.4.1 can be revised to a tableau form. As Naq D
B�1aq , (7.26) should be replaced by

˛i D
8<
:

.uji � Nxji /=sign.Nzq/ Nai q; if sign.Nzq/ Nai q > 0;

.lji � Nxji /=sign.Nzq/ Nai q; if sign.Nzq/ Nai q < 0;

1; if Nai q D 0;

i D 1; � � � ; m: (7.28)
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Algorithm 7.4.2 (Generalized simplex algorithm: tableau form). Initial: feasi-
ble tableau of form (7.4), associated with Nx. This algorithm solves the bounded-
variable problem (7.13).

1. Compute Nf D cT Nx, and stop (optimality achieved) if J defined by (7.20) is
empty.

2. Select column index q such that q 2 maxj 2J jNzj j.
3. Determine stepsize ˛ by (7.25), where ˛i defined by (7.28).
4. Set Nxq D �sign.Nzq/˛, and update NxB D NxB C ˛sign.Nzq/ Naq if ˛ ¤ 0.
5. If ˛ D uq � lq , go to step 1; else, determine row index p 2 f1; � � � ; mg such that

˛ D ˛p .
6. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
7. Go to step 1.

Note The last three rows in the tableau should be updated in each iteration.

7.4.1 Generalized Phase-I

The following is devoted to generate an initial feasible tableau to Algorithm 7.4.2,
Assume that B and N are respectively basis and nonbasis at the current iteration,

associated with basic solution Nx. Introduce index set

I1 D fi D 1; � � � ; m j Nxji < lji g;
I2 D fi D 1; � � � ; m j Nxji > uji g;
I D f1; � � � ; mgn.I1 [ I2/:

If I1 [ I2 D ;, then Nx is feasible. In the other case, construct the following
auxiliary program:

min w D � P
i2I1

xji C P
i2I2

xji ;

s:t: BxB D b � NxN ;

lI � xI � uI ; lN � xN � uN ;

where the objective function is termed “infeasible-sum”.
The according tableau of the auxiliary program is manipulated by one iteration

of Algorithm 7.4.1 (in which the row pivot rule should be modified slightly, see
below). Then a new auxiliary program is formed, and so on, until I1 [ I2 becomes
empty, or infeasibility is detected.

Related discussions are similar to those with the infeasible-sum Phase-I method
for the standard LP problem (for details, see Sect. 13.1).
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7.5 Generalized Dual Simplex Method: Tableau Form

Let B and N are given by (7.15) and let (7.4) be the according simplex tableau.
Assume that the associated basic solution Nx are valued by

Nxj D lj or uj ; j 2 N;

and

NxB D Nb � NN NxN ; Nf D cT Nx:

Index sets � and … are defined by (7.19). If the following conditions hold:

Nz� � 0; Nz… � 0; (7.29)

the simplex tableau is said to be dual feasible. If, further, lB � xB � uB holds, Nx is
clearly a basic optimal solution.

Whether a simplex tableau of a bounded-variable problem is dual feasible
dependents on the values taken by nonbasic components of the solution. In principle,
in the case when components of l and u are finite, it is always possible to have
nonbasic components valued, such that the resulting solution be dual feasible,
though lB � xB � �B does not hold in general.

Introduce “bound-violation” quantities

�i D
8<
:

lji � Nxji ; if Nxji < lji ;

uji � Nxji ; if Nxji > uji ;

0; if lji � Nxji � uji ;

i D 1; � � � ; m; (7.30)

and determine row index p by the following rule:

p 2 arg maxfj�i j j i D 1; � � � ; mg: (7.31)

If �p D 0, optimality is achieved. Now assume that �p ¤ 0: �p > 0 indicates
that Nxp violates the lower bound while �p < 0 indicates that it violates the upper
bound. Introduce index set

J D fj 2 � j sign.�p/ Napj < 0g [ fj 2 … j sign.�p/ Napj > 0g: (7.32)

It is not difficult to show that the original problem is infeasible if J D ;; else, a
column index q and a step size ˇ are determined such that

ˇ D �Nzq=.sign.�p/ Napq/ D min
j 2J

�Nzj =.sign.�p/ Napj / � 0: (7.33)
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Takin Napq as the pivot, convert the simplex tableau by relevant elementary trans-
formations. Then the resulting simplex tableau corresponds to the new basis and
nonbasis below:

B D fj1; � � � ; jp�1; q; jpC1; � � � ; jmg; N D N nq [ fjpg:

It might be well to still use (7.4) to denote the new simplex tableau, Ox denote the
associated basic solution. As new tableau is equivalent to the old, Ox and Nx satisfy

NxB D � NN NxN ; OxB D � NN OxN : (7.34)

Now set the new nonbasic component Oxp to the violated bound, i.e.,

Oxjp D Nxjp C �p; (7.35)

and maintain other nonbasic components unchanged, i.e.,

Oxj D Nxj ; j 2 N; j ¤ jp:

Then from subtraction of the two equalities of (7.34), the updating formula of NxB

follows:

OxB D NxB � �p Najp : (7.36)

It is not difficulty to show that the new simplex tableau with such a Ox is still dual
feasible. The ˇ is actually the largest possible stepsize maintaining dual feasibility.

Noting that Nzjp D sign.�p/ˇ holds for the new tableau, the following recurrence
formula of the objective value can be derived from Ox and Nx satisfying (7.35) and the
equality associated with the bottom row of the tableau:

Of D Nf C Nzjp . Oxjp � Nxjp / D Nf C �p Nzjp D Nf C ˇ � Nf ;

which indicates that the objective value increases. If all components of NzN are
nonzero, the simplex tableau is said to be dual nondegenerate, and hence ˇ > 0,
so that the objective value strictly increases.

The overall steps are put into the following algorithm, in which the objective
value is calculated at the end.

Algorithm 7.5.1 (Generalized dual simplex algorithm: tableau form). Initial: a
dual feasible tableau of form (7.4), corresponding to Nx. This algorithm solves the
bounded-variable problem (7.13).

1. Select a row index p by (7.31) together with (7.30).
2. If �p D 0, compute Nf D cT Nx, and stop (optimality achieved).
3. Stop if J defined by (7.32) is empty (infeasible problem).
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4. Determine a column index q by (7.33).
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Update Nx by (7.35) and (7.36).
7. Go to step 1.

Note The last three rows in the simplex tableau should be updated in each
iteration.

The proof regrading meanings of the algorithm’s exits are delayed to the
derivation of its revised version.

Example 7.5.1. Solve the following problem by Algorithm 7.5.1:

min f D 2x1 � x2 C 3x3 � 6x4;

s:t: �2x1 C 3x2 � 4x3 C 2x4 C x5 D 14;

�3x1 C 4x2 � 5x3 C 6x4 C x6 D 16;

x1 � 2x2 C 2x3 � 7x4 C x7 D �15;

�15 � x1 � 30; �12 � x2 � 20; �17 � x3 � 10;

�8 � x4 � 15; �10 � x5 � 26; �13 � x6 � 34;

0 � x7 � 19:

Answer Initial tableau:

x1 x2 x3 x4 x5 x6 x7

�2 3 �4 2 1

�3 4* �5 6 1

1 �2 2 �7 1

2 �1 3 �6

u 30 20 10 15 26 34 19

Nx �15 20 �17 15 �174 �284 179

l �15 �12 �17 �8 �10 �13 0

Take

NxN D .�15.�/; 20.C/; �17.�/; 15.C//T.N D f1; 2; 3; 4g/;
NxB D Nb � NN NxN D .�174; �284; 179/T.B D f5; 6; 7g/; Nf D �191:

Iteration 1:

1. �1 D �10 � .�174/ D 164; �2 D �13 � .�284/ D 271;

�3 D 19 � 179 D �160. maxfj164j; j271j; j � 160jg D 271 ¤ 0; p D 2; j2 D 6.
3. J D f1; 2; 3; 4g ¤ ;.
4. minf�2=.�3/; �.�1/=4; �3=.�5/; �.�6/=6g D 1=4; q D 2.
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5. Multiply row 2 by 1=4, and then add �3; 2; 1 times of row 2 to rows 1,3,4,
respectively.

6. Nx6 D �284 C 271 D �13.
NxB D .�174; 20; 179/T � 271.�3=4; 1=4; 1=2; �1=4/T.

D .117=4; �191=4; 87=2/T; B D f5; 2; 7g.

x1 x2 x3 x4 x5 x6 x7

1=4 �1=4 �5=2 1 �3=4*

�3=4 1 �5=4* 3=2 1=4

�1=2 �1=2 �4 1=2 1

5=4 7=4 �9=2 1=4

u 30 20 10 15 26 34 19

Nx �15 �191=4 �17 15 117=4 �13 87=2

l �15 �12 �17 �8 �10 �13 0

Iteration 2:

1: �1 D 26 � 117=4 D �13=4; �2 D �12 � .�191=4/ D 143=4;

�3 D 19 � 87=2 D �49=2: maxfj � 13=4j; j143=4j; j � 49=2jg D 143=4 ¤ 0;

p D 2; j2 D 2:

3: J D f1; 3; 4g ¤ ;:

4. minf�.5=4/=.�3=4/; �.7=4/=.�5=4/; �.�9=2/=.3=2/g D 7=5; q D 3.
5. Multiply row 2 by �4=5, and then add 1=4; 1=2; �7=4 times of row 2 to rows

1,3,4, respectively.
6: Nx2 D �191=4 C 143=4 D �12;

NxB D .117=4; �17; 87=2/T � .143=4/.�1=5; �4=5; �2=5/T:

D .182=5; 58=5; 289=5/T; B D f5; 3; 7g:

x1 x2 x3 x4 x5 x6 x7

2=5 �1=5 �14=5 1 �4=5

3=5 �4=5 1 �6=5 �1=5

�1=5 �2=5 �23=5* 2=5 1

1=5 7=5 �12=5 3=5

u 30 20 10 15 26 34 19

Nx �15 �12 58=5 15 182=5 �13 289=5

l �15 �12 �17 �8 �10 �13 0

Iteration 3:

1. �1 D 26 � 182=5 D �52=5; �2 D 10 � 58=5 D �8=5;

�3 D 19 � 289=5 D �194=5. maxfj � 52=5j; j � 8=5j; j � 194=5jg
D 194=5 ¤ 0; p D 3; j3 D 7.

3. J D f4; 6g ¤ ;.
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4. minf�.�12=5/=.�23=5/; �.3=5/=.2=5/g D 12=23; q D 4.
5. Multiply row 3 by �5=23, and then add 14=5; 6=5; 12=5 times of row 3 to rows

1,2,4, respectively.
6. Nx7 D 289=5 � 194=5 D 19.

NxB D .182=5; 58=5; 15/T � .�194=5/.�14=23; �6=23; �5=23/T.
D .294=23; 34=23; 151=23/T; B D f5; 3; 4g.

x1 x2 x3 x4 x5 x6 x7

12=23 1=23 1 �24=23 �14=23

15=23 �16=23 1 �7=23 �6=23

1=23 2=23 1 �2=23 �5=23

7=23 37=23 9=23 �12=23

u 30 20 10 15 26 34 19

Nx �15 �12 34=23 151=23 294=23 �13 19

l �15 �12 �17 �8 �10 �13 0

Iteration 4:

1. �1 D �2 D �3 D 0. The basic optimal solution and optimal value are

Nx D .�15; �12; 34=23; 151=23; 294=23; �13; 19/T;

Nf D .2; �1; 3; �6/.�15; �12; 34=23; 151=23/T D �1;218=23:

7.5.1 Generalized Dual Phase-I

It is not difficult to generalize dual Phase-I methods (Chap. 14) for standard
problems to initiate the generalized dual simplex algorithm.

Using a generalized version of the most-obtuse-angle row rule (14.3), Koberstein
and Suhl (2007) designed a dual Phase-I procedure, named by PAN, for solving
generale problems. Taking MOPS1 as a platform, they tested several main dual
Phase-1 methods on 46 typical large-scale sparse problems, the largest among which
involves more than 500,000 constraints and 1,000,000 variables. The numerical
results show that for most of the tested problem, PAN required a small number of
iterations; only for few most difficult problems, the required iterations exceeded
an acceptable amount. In the latter cases, they turned to a version of the dual
infeasibility-sum Phase-I, named by SDI. It turned out that such a combination,
PAN + SDI, is the best among four commonly used Phase-I methods. Therefore,
PAN+SDI was taken as the default option for MOPS dual simplex algorithm.

1MOPS is a developed package by Suhl et al. of College of Production Information Economy and
Operations Research of Berlin Free University see Suhl (1994).
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In view of the preceding facts, the author suggests generalizing Rule 14.3.2 by
replacing (7.25) with

˛ D minfuq � lq; minf˛i j j Nai q j � ��; i D 1; � � � ; mgg; (7.37)

� D maxfj Nai qj j i D 1; � � � ; mg;

where 0 < � � 1, ˛i ; i D 1; � � � ; m, are defined by (7.28). The basic idea of such
doing is to restrict stepsizes to some extent.

This consideration leads to the following algorithm, yielding from modifying
Algorithm 7.4.2.

Algorithm 7.5.2 (Tableau generalized dual Phase-I: the most-obtuse-angle
rule). Given 0 < � � 1. Initial: a dual feasible simplex tableau of form (7.4),
associated with Nx. This algorithm solves the bounded-variable problem (7.13).

1. If J defined by (7.20) is empty, compute Nf D cT Nx, and stop (optimality
achieved).

2. Select column index q such that q 2 maxj 2J jNzj j.
3. Determine stepsize ˛ by (7.37).
4. Set Nxq D �sign.Nzq/˛, and update NxB D NxB C ˛sign.Nzq/ Naq if ˛ ¤ 0.
5. If ˛ D uq � lq , go to step 1; else, determine row index p 2 f1; � � � ; mg such that

˛ D ˛p .
6. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
7. Go to step 1.

7.6 Generalized Dual Simplex Method

According to Table 3.1, which gives the correspondence between entries of the
simplex tableau and the revised simplex tableau, it is easy to formulate the revised
version of Algorithm 7.5.1. However, we will not do so, but derive it based on
local duality (Sect. 25.5), revealing that such an algorithm actually solves the dual
bounded-variable problem.

Let B D fj1; � � � ; jmg and N D AnB be the current basis and nonbasis,
respectively, associated with primal basic solution Nx, i.e.,

Nxs D ls or us; s 2 N;

NxB D B�1b � B�1N NxN :
(7.38)

Notation �; …; are again defined by (7.19), and �i is defined by (7.30). Assume that
row index p has already been determined by (7.31).
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Consider the following local problem at Nx (25.5):

min f D cTx;

s:t: Ax D b;

l� � x�;

x… � u…;

ljp � Nxjp ; if �p > 0;

Nxjp � ujp ; if �p < 0:

(7.39)

Using notation

hp D
�

ljp ; If �p > 0;

ujp ; If �p < 0;
(7.40)

the local dual problem can be written

max bTy � uT
…v… C lT

� w� C hpzjp ;

s:t: BTy C zjp ep D cB ;

�Ty C w� D c�;

…Ty � v… D c…;

�pzjp ; v…; w� � 0:

Based on the equality constraints, eliminate variable v…; w� , and combine (7.19)
and (7.20) to reduce the objective function to

.b � …u… � �l�/Ty C hpzp D cT
… Nx… C cT

� Nx� C .b � … Nx… � � Nx�/Ty C hpzjp

D cT
N NxN C .b � N NxN /Ty C hpzjp : (7.41)

Then setting z� D w� ; z… D �v…, transform the local dual problem to the following
equivalent form:

max g.y; z/ D cT
N NxN C .b � N NxN /Ty C hpzjp ;

s:t: BTy C zjp ep D cB ;

N Ty C zN D cN ;

�pzjp � 0; z… � 0; z� � 0:

(7.42)

Now, define

Ny D B�TcB; (7.43)

NzN D cN � N T Ny; NzB D 0: (7.44)
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and assume that the following conditions hold:

Nz… � 0; Nz� � 0; (7.45)

under which it is not difficult to verify that the primal objective value at Nx and the
dual objective value at . Ny; Nz/ are equal, i.e., Nf D Ng. Using the preceding notation,
moreover, the following is valid.

Lemma 7.6.1. . Ny; Nz/ is a basic feasible solution to the local dual problem, which
exhibits complementarity with Nx.

Proof. It is clear that . Ny; Nz/ is the basic solutio to (7.42), satisfying the sign
constraints at the bottom. So, it is only needed to show

BT Ny C Nzjp ep D cB ; N T Ny C NzN D cN ; (7.46)

. Nx� � l�/TNz� D 0; .u… � Nx…/TNz… D 0; (7.47)

. Nxjp � ljp /Nzjp D 0; if �p > 0; (7.48)

. Nxjp � ujp /Nzjp D 0; if �p < 0: (7.49)

From (7.43) and the second expression of (7.44), the first expression of (7.45)
follows. By the first expression of (7.44), it holds that

…T Ny C Nz… D …T Ny C c… � …T Ny D c…: (7.50)

Similarly that

�T Ny C Nz� D c�: (7.51)

Therefore, (7.46) is valid.
By (7.19), on the other hand, it is clear that (7.47) holds; and it is known from

the second expression of (7.44) that (7.48) or (7.49) holds. ut
Setting

NvB D 0; NwB D 0; (7.52)

Nv… D �Nz…; Nw… D 0; (7.53)

Nv� D 0; Nw� D Nz�; (7.54)

it is not difficult to verify that . Ny; Nv; Nw/ is a basic feasible solution to dual problem
of (7.13), i.e.,

max bTy � uTv C lTw;

s:t: ATy � v C w D c; v; w; � 0;
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(see the last paragraph of Sect. 25.5). It and Nx satisfy complementarity condition. In
this sense, . Ny; Nz/ is called a dual feasible solution.

Lemma 7.6.2. If lB � NxB � uB holds, then Nx is a basic optimal solution.

Proof. When lB � NxB � uB holds, Nx is clearly a basic feasible solution to the
(full) problem (7.13), hence the same to the local problem (7.39). By Lemma 7.6.1,
it is known that . Ny; Nz/ is local dual feasible, exhibiting complementarity with Nx.
Therefore, the two are local primal and dual basic optimal solutions, respectively.
By Proposition 25.4.2, it is known that Nx is a basic optimal solution to (7.13). ut

Now we will find a new dual solution to improve the objective value. To this end,
define search direction

h D �sign.�p/B�Tep; 	jp D sign.�p/; (7.55)

	N D �N Th: (7.56)

Lemma 7.6.3. Under the preceding definition, the search direction satisfies the
following conditions:

BTh C 	jp ep D 0; N Th C 	N D 0; (7.57)

.b � N NxN /Th C hp	jp > 0: (7.58)

Proof. Its first half is easily verified, it is only needed to show (7.58).
From (7.55) and the second expression of (7.38), it follows that

hT.b � N NxN / C hp	jp D �sign.�p/eT
p.B�1b � B�1N NxN / C sign.�p/hp

D �sign.�p/.eT
p NxB � hp/:

Then from (7.14) and (7.40) it follows that the right-hand side of the preceding
equals

ljp � Nxjp > 0;

when �p > 0, while equals

Nxjp � ujp > 0:

when �p < 0 ut.

Consider the following line search scheme:

Oy D Ny C ˇh; Ozjp D Nzjp C ˇ	jp D sign.�p/ˇ; (7.59)

OzN D NzN C ˇ	N : (7.60)
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Introduce index set

J D fj 2 � j 	j < 0g [ fj 2 … j 	j > 0g: (7.61)

Assume that J ¤ ;. Then from (7.60) and sign conditions Oz… � 0 and Oz� � 0, it
is known that the largest possible stepsize ˇ and pivot column index q satisfy the
minimum-ratio test

ˇ D �Nzq=	q D min
j 2J

�Nzj =	j � 0: (7.62)

If all components of NzN are nonzero, then the solution is dual nondegenerate, hence
the determined stepsize is positive.

Lemma 7.6.4. If J ¤ ;, the new solution, determined by (7.59) and (7.60) together
with (7.62), is a basic feasible solution to the local dual problem. The according
objective value increases, and strictly increases if dual nondegeneracy is assumed.

Proof. From (7.59), the first expression of (7.57) and (7.43), it is known for any
ˇ � 0 that

BT Oy C Ozjp ep D BT Ny C ˇ.BTh C 	jp ep/ D BT Ny D cB : (7.63)

From the first expression of (7.59), (7.60), the second expression of (7.57) and
(7.44), it follows that

N T Oy C OzN D N T Ny C ˇN Th C NzN C ˇ	N D .N T Ny C NzN / C ˇ.N Th C 	N / D cN :

(7.64)

In addition, by (7.59), (7.60) and (7.57) is known that Ozjp ; Oz satisfies the sign
condition at the bottom of problem (7.42), hence the new solution is basic feasible
solution, associated with the objective value increasing to

Og D .b � N NxN /T Oy C hp Ozjp

D .b � N NxN /T Ny C ˇ..b � N NxN /Th C hp	jp /

� Ng; (7.65)

where the inequality comes from (7.58) and ˇ � 0. In the dual nondegeneracy
case, ˇ > 0, and hence the strict inequality holds, as implies strict increase of the
objective value. ut

When J is empty, (7.57) is not well-defined but the following is valid.

Lemma 7.6.5. If J D ;, then the original problem (7.13) is infeasible.

Proof. J D ; implies that

	… � 0; 	� � 0: (7.66)
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Combining the preceding two expressions together with Nz… � 0 and Nz� � 0 leads to

Oz… D Nz… C ˇ	… � 0; Oz� D Nz� C ˇ	� � 0; 8 ˇ > 0:

Similarly to the proof of Theorem 7.6.4, it can be shown that . Oy; Oz/ satisfies the other
constraints, with the objective value denoted again by (7.65). Thus, noting (7.58), it
is known that

Og ! 1 as ˇ ! 1;

Therefore, the local dual problem is unbounded. By Proposition 25.4.2, the original
problem is infeasible. ut

Now we need to determine a primal solution that is complementary with the dual
solution, based on the local problem (7.39). For the value of basic variable xp to
change from Nxp to the violated bound, it is necessary to let the value of nonbasic
variable xq change from Nxq accordingly by a range, i.e.,

�xq D
(

��p=j	qj; if Nxq D lq;

�p=j	qj; if Nxq D uq:
(7.67)

Therefore, the new values are

OxB D NxB � �xq Naq; Oxq D Nxq C �xq; Oxj D Nxj ; j 2 N; j ¤ q; (7.68)

where Naq D B�1aq , associated with the new objective value

Of D Nf C j�xq Nzqj � Nf : (7.69)

Note that all components of OxN are the same as those of NxN , except for Oxq . From
the first expression of (7.68) and the second expression of (7.59), it is known that
if �p > 0, then Oxjp D ljp and Oz � 0 hold, while if �p < 0, then Oxjp D ujp and
Ozjp � 0 hold. Therefore, after updating basis and nonbasis by exchanging p and q,
Ox and . Oy; Oz/ exhibit complementarity, and the latter satisfies according dual feasible
conditions, so that we are ready to go on the next iteration.

The overall steps are summarized into the following algorithm, a revision of
Algorithm 7.5.1.

Algorithm 7.6.1 (Generalized dual simplex algorithm). Initial: .B; N /; B�1;
Ny; Nz; Nx satisfying (7.38), (7.43) and (7.44). This algorithm solves the bounded-
variable problem (7.13).

1. Select a pivot row index p 2 arg maxfj�i j j i D 1; � � � ; mg, where �i is defined
by (7.30).

2. If �p D 0, compute Nf D cT Nx, and stop.
3. Compute 	N D �N Th, where h D �sign.�p/B�Tep .
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4. Stop if J defined by (7.61) is empty.
5. Determine ˇ and pivot column index q by (7.62).
6. Compute �xq by (7.67).
7. Compute Naq D B�1aq .
8. Update Nx by (7.68).
9. Update Ny; NzN ; Nzjp by (7.59) and (7.60).

10. Update B�1 by (3.23).
11. Update .B; N / by exchanging jp and q.
12. Go to step 1.

Theorem 7.6.1. Algorithm 7.6.1 generates a sequence of primal and of dual basic
solutions. Assuming nondegeneracy, it terminates either at

(i) Step 2, giving a pair of primal and dual basic optimal solutions; or at
(ii) Step 4, detecting infeasibility of the problem.

Proof. The validity comes from Lemmas 7.6.2, 7.6.4 and 7.6.5, and related
discussions, made preceding Algorithm 7.6.1. ut
Example 7.6.1. Solve the following problem by Algorithm 7.6.1:

min f D x1 C 2x2 � 2x3;

s:t: �2x1 C x2 C x3 C x4 D 0;

�x1 � x2 C x3 C x5 D 0;

x1 � x2 � 2x3 C x6 D 0;

1 � x1 � 5; �2 � x2 � 1; �3 � x3 � 0;

2 � x4 � 5; 0 � x5 � 6; �3 � x6 � 0:

Answer Initial:B D f4; 5; 6g; N D f1; 2; 3g; B�1 D I; NxN D .1.�/; �2.�/;

0.C//T, NxB D .4; �1; �3/T; Ny D .0; 0; 0/; NzN D .1; 2; �2/T; Nf D �3.

Iteration 1:

1. maxf0; j0 � .�1/j; 0g D 1; p D 2, x5 leaves the basis.
3: h D �sign.�2/B

�Te2 D .0; �1; 0/T; 	N D �N Th D .�1; �1; 1/T:

4: J D f1; 2; 3g ¤ ;:

5: ˇ D minf�1=.�1/; �2=.�1/; �.�2/=1g D 1; q D 1:

6: �x1 D �2=j	1j D 1:

7: Na1 D B�1a1 D .�2; �1; 1/T:

8: NxB D NxB � �x1 Na1 D .4; �1; �3/T � .�2; �1; 1/T D .6; 0; �4/T:

NxN D NxN C �x1e1 D .1; �2; 0/T C .1; 0; 0/T D .2; �2; 0/T:

9: Ny D Ny C ˇh D .0; �1; 0/T C 1 � .0; �1; 0/T D .0; �2; 0/T;

NzN D NzN C ˇ	N D .1; 2; �2/T C 1.�1; �1; 1/T D .0; 1; �1/T;

Nz5 D sign.�2/ˇ D 1:
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10. Update B�1 D
0
@ 1 �2

�1

1 1

1
A.

11. NxB D .6; 2; �4/T; B D f4; 1; 6g; NxN D .0.�/; �2.�/; 0.C//T; NzN D .1; 1; �1/T;

N D f5; 2; 3g.

Iteration 2:

1. maxfj5 � 6j; 0; .�3/ � .�4/g D 1; p D 1, x4 leaves the basis.
3: h D �sign.�1/B�Te1 D .1; �2; 0/T; 	N D �N Th D .2; �3; 1/T:

4: J D f2; 3g ¤ ;:

5: ˇ D minf�1=.�3/; �.�1/=1g D 1=3; q D 2:

6: �x2 D ��1=j	2j D 1=3:

7: Na2 D B�1a2 D .3; 1; �2/T:

8: NxB D .6; 2; �4/T � .1=3/.3; 1; �2/T D .5; 5=3; �10=3/T;

NxN D NxN C �x2e2 D .0; �2; 0/T C .0; 1=3; 0/T D .0; �5=3; 0/T:

9: Ny D Ny C ˇh D .0; �2; 0/T;

NzN D NzN C ˇ	N D .1; 1; �1/T C .1=3/.2; �3; 1/T D .5=3; 0; �2=3/T;

Nz4 D sign.�1/ˇ D �1=3:

10. Update B�1 D
0
@ 1=3

�1=3 1

2=3 1

1
A

0
@ 1 �2

�1

1 1

1
A D

0
@ 1=3 �2=3

�1=3 �1=3

2=3 �1=3 1

1
A.

11. B D f2; 1; 6g; N D f5; 4; 3g, NxB D .�5=3; 5=3; �10=3/T,
NxN D .0.�/; 5.C/; 0.C//T;

NzN D .5=3; �1=3; �2=3/T.

Iteration 3:

1. maxf0; 0; j.�3/ � .�10=3/jg D 1=3; p D 3, x6 leaves the basis.
3: h D �sign.�3/B�Te3 D .�2=3; 1=3; �1/T; 	N D �N Th

D .�1=3; 2=3; �5=3/T:

4: J D f1; 2g ¤ ;:

5: 2 D q 2 minf�.5=3/=.�1=3/; �.�1=3/=.2=3/g; ˇ D 1=2;

x4 enters the basis:
6: �x2 D �3=j	2j D �.1=3/=.2=3/ D �1=2:

7: Na2 D B�1a2 D .1=3; �1=3; 2=3/T:

8: NxB D .�5=3; 5=3; �10=3/T � .�1=2/.1=3; �1=3; 2=3/TD.�3=2; 3=2; �3/T;

NxN D NxN C �x2e2 D .0; 5; 0/T C .0; �1=2; 0/T D .0; 9=2; 0/T:

9: Ny D .0; �2; 0/T C .1=2/.�2=3; 1=3; �1/T D .�1=3; �11=6; �1=2/T;

NzN D NzN C ˇ	N D .5=3; �1=3; �2=3/T C .1=2/.�1=3; 2=3; �5=3/T

D .3=2; 0; �3=2/T;

Nz6 D sign.�3/ˇ D 1=2:

10. Update B�1 D
0
@ 1 �1=2

1 1=2

�3=2

1
A

0
@ 1=3 �2=3

�1=3 �1=3

2=3 �1=3 1

1
AD

0
@ �1=2 �1=2

�1=2 1=2

�1 1=2 �3=2

1
A.
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11. It is satisfied that lB � NxB � uB . The optimal solutio and value are

Nx D .3=2; �3=2; 0; 9=2; 0; �3/T; Nf D 3=2 C 2.�3=2/ D �3=2:

7.7 Bound Flipping

The so-called “bound-flipping” technique can improve the effect of the generalized
dual simplex method significantly. In fact, it might be the main cause for the dual
simplex method to outperform its primal counterpart at present (Kirillova et al.
1979; Koberstein and Suhl 2007; Kostina 2002; Maros 2003a).

Let . Ny; Nz/ be the current dual basic feasible solution and let Nx be the associate
primal solution. Assume that a row index p has been determined by (7.31) and that
a column index q determined by the minimum-ratio test (7.62). Let the nonbasic
variable xq change from the current value Nxq (going up or down) toward the other
bound, while keeping the other nonbasic variables unchanged. For the basic variable
xjp to attain the violated bound, the value of xq could fall either within the range
between the lower and upper bounds, or beyond the other bound. In the latter case,
it is favorable to adopt the “bound-flipping”: fix the value of xq on the other bound
and update values of basic variables accordingly; then find a new column index q

that attains the second minimum-ratio, and do the same thing again, until the value
of xjp will attain the violated bound if the current value of xq falls within the range
between its lower and upper bounds. Then, a normal dual step is taken by dropping
xjp from and enter xq to the basis, and updating the primal and dual solutions. It is
seen that the dual feasibility still maintains.

The bound-flipping technique is embedded in the following subalgorithm, which
is called in step 10 of Algorithm 7.7.2.

Algorithm 7.7.1 (Bound-flipping subalgorithm). This algorithm provide the
pivot column index q, dual stepsize ˇ, and carries out related computations.

1. Set j D 0; v D 0, and compute rj D �Nzj =	j ; 8j 2 J .
2. Set j D j C 1.
3. Set v D v C ıaq .

4. Set Nxq D
�

uq; if Nxq D lq;

lq; if Nxq D uq:

5. Update: �p D �p � jı	qj.
6. Determine q and rq such that rq D minj 2J rj .
7. Compute �xq by (7.67).
8. Update: J D J nfqg.
9. Go to step 13 if J D ;.

10. Compute ı D
�

uq � lq; if Nxq D lq;

lq � uq; if Nxq D uq:

11. Go to step 2 if j�xqj � jıj.
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12. Set ˇ D rq .
13. Compute u D B�1v, and update: NxB D NxB � u.
14. Return.

The following master algorithm is a slight modification of Algorithm 7.6.1.

Algorithm 7.7.2 (Generalized dual simplex algorithm: bound-flipping). Ini-
tial: .B; N /; B�1, Ny; Nz; Nx satisfying (7.38), (7.43) and (7.44). This algorithm solves
bounded-variable problem (7.13).

1. Select row index p by (7.31) together with (7.30).
2. Stop if �p D 0 (optimality achieved).
3. Compute 	N by (7.56) together with (7.55).
4. Stop if J defined by (7.61) is empty (dual unbounded or primal infeasible).
5. Determine column index q by (7.62).
6. Compute �xq by (7.67).
7. Set J D J nfqg.
8. If J D ;, go to step 12.

9. Compute ı D
�

uq � lq; if Nxq D lq;

lq � uq; if Nxq D uq:

10. If j�xqj � jıj, call Algorithm 7.7.1.
11. Compute Naq D B�1aq .
12. Update Nx by (7.68).
13. Update Ny; NzN ; Nzjp by (7.59) together with (7.60).
14. Update B�1 by (3.23).
15. Update .B; N / by exchanging jp and q.
16. Go to step 1.

The bound-flipping increases computational work associated therewith, in par-
ticular, involving an additional linear system (in step 13 of Algorithm 7.7.1). This is
inappreciable, however, if compared with profitable return. Since the associated dual
stepsize is usually much larger than that without bound-flipping, so is the increment
in objective value, especially when �p is large. As a result, the number of iterations
are usually decreased significantly. In fact, the bound-flipping has been unable to be
omitted in current dual simplex codes.

Example 7.7.1. Solve the following problem by Algorithm 7.7.2:

min f D �x1 C 2x3 C 3x4;

s:t: � 2x1 C x2 C x3 C x4 D �2;

x1 � x3 C x4 C x5 D 1;

x1 � 2x3 � 3x4 Cx6 D 0;

0 � x1 � 2; �6 � x2 � 10; 0 � x3 � 7;

1 � x4 � 5; 2 � x5 � 6; �1 � x6 � 6:
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Answer Initial: B D f2; 5; 6g; N D f1; 3; 4g; B�1 D I; NxN D
.2.C/; 0.�/; 1.�//

T, NxB D .1; �2; 1/T; Ny D .0; 0; 0/; NzN D .�1; 2; 3/T; Nf D 1.

Iteration 1:

1. maxf0; 2 � .�2/; 0g D 4; p D 2; x5 leaves the basis.
3: h D �sign.�2/B�Te2 D .0; �1; 0/T; 	N D �N Th D .1; �1; 1/T:

4: J D f1; 2g:
5: ˇ D minf�.�1/=1; �2= � 1g D 1; q D 1:

6: �x1 D ��2=j	1j D �4=1 D �4:

7: J D J nf1g D f2g ¤ ;:

9: ı D l1 � u1 D 0 � 2 D �2:

10. j�x1j > jıj, so call Algorithm 7.7.1.
.1/ j D 0; v D 0; r2 D �2= � 1 D 2I
.2/ j D j C 1 D 1I
.3/ v D v C ıa1 D .�2/.�2; 1; 1/T D .4; �2; �2/TI
.4/ Nx1 D l1 D 0I
.5/ �2 D �2 � jı	1j D 4 � 2 � 1 D 2I
.6/ q D 2I
.7/ �x2 D ��2=j	2j D �2=.�1/ D 2I
.8/ J D J nf2g D ;I

.12/ ˇ D r2 D 2I

.13/ u D B�1v D .4; �2; �2/TI
NxB D NxB � u D .1; �2; 1/T � .4; �2; �2/T D .�3; 0; 3/TI

(14) Return.
11: Na2 D B�1a2 D .1; �1; �2/T:

12: NxB D .�3; 0; 3/T � 2.1; �1; �2/T D .�5; 2; 7/T;

NxN D .0; 0; 1/T C .0; 2; 0/T D .0; 2; 1/T:

13: Ny D .0; 0; 0/T C 2.0; �1; 0/T D .0; �2; 0/T;

NzN D NzN C ˇ	N D .�1; 2; 3/T C 2.1; �1; 1/T D .1; 0; 5/T;

Nzj2 D sign.�2/ˇ D 2:

14: B�1 D
0
@ 1 1

�1

�2 1

1
A :

16: NxB D .�5; 2; 7/T; NxN D .0.�/; 2.�/; 1.�//
T; NzN D .1; 2; 5/T;

B D f2; 3; 6g; N D f1; 5; 4g:

Iteration 2:

1. maxf0; 0; 7 � 6g D 1; p D 3, x6 leaves the basis.
3. h D �sign.�3/B�Te3 D .0; �2; 1/T, 	N D �N Th D .1; 2; 5/T.
4. J D ;, hence dual unbounded or primal infeasible.

If bound-flipping had not been used, solving the preceding problem would
have required much more iterations.
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