Chapter 4
Duality Principle and Dual Simplex Method

The duality features a special relationship between a LP problem and another, both
of which involve the same original data (A4, b, ¢), located differently (except for
the self-duality, see below). The former is referred to as primal problem while the
latter as dual problem. It is important that there exists a close relationship between
their feasible regions, optimal solutions and optimal values. The duality together
with optimality conditions, yielding from it, constitute a basis for the LP theory.
On the other hand, an economic interpretation of duality features its applications to
practice. This chapter is devoted to these topics.

On the other hand, once any of primal and dual problems is solved, the problems
are both solved due to duality. Thereby, a so-called dual simplex method will be
derived by handling the dual problem in this chapter. Its tableau version will still
proceed with the same simplex tableau.

From now on, “primal” will be added as a prefix, if necessary, to the simplex
method and associated items to distinguish with their dual counterparts, introduced
in this chapter.

4.1 Dual LP Problem

If the standard LP problem (1.8), i.e.,

(P) min f =c’x,

4.1
s.t. Ax = b, x >0, @D
is referred to as “primal”, the following problem
D max g =bTy,
(D) §=b"y 4.2)
st. Aly+z=c¢, 7> 0,
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constructed with the same data (A4, b, ¢), is the “dual problem” of (4.1). There is 1-1
correspondence between variables of one of them and constraints of another.
Values of y, z, satisfying A7y + z = ¢, are called dual solution. Set

D={(2eR"xR"|ATy +z=1¢, >0}

is called dual feasible region, elements in which are dual feasible solutions.
It is clear that y = 0, z = c is a dual solution; if, in addition, ¢ > 0, it is a dual
feasible solution. Given basis B, setting zg = 0 in BT Yy + zp = cp gives

j=BTcg, z3=0 Zy=cy—NTy, (4.3)

called dual basic solution. 7 is just reduced costs; and y the simplex multiplier
(see Note on Algorithm 3.5.1). If zy > 0, (¥, 7) is a dual basic feasible solution,
corresponding to a vertex in D. For simplicity, thereafter zy alone is often said to
be dual basic solution.

The following alternative form of the dual problem (4.2):

(D)  max g=>b"y,

44
st. ATy <e, “H

is useful in some cases. Problems (4.2) and (4.4) will be regarded as the same.
As it can be converted to a standard one, any LP problem corresponds to a dual
problem. By introducing slack variables # > 0, e.g., the problem

max c¢x,

st. Ax <b, x>0, @.5)

can be turned to the standard problem

min —cTx,

st. Ax+4+u=b>b, x,u>0,
the dual problem of which is
max b7y,
5.t AT o (e
.t 1)V =0 )
Setting y = —y’ turns the preceding to (4.5)’s dual problem below:

min b7y,
st. ATy>c¢, y>o.
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Correspondence between primal and dual problems are summarized to the
following table:

Primal problem Dual problem
Objective function min Objective function max
Variables Nonnegative | Constraints <
nonpositive >
free =
Constraints > Variables Nonnegative
< nonpositive
= free

Note: In applications of the preceding table, sign restriction is not handled as a
constraint, but attributed to the associated variable

For example, the so-called “bounded-variable” LP problem

T

min c¢'Xx
’ 4.6
st. Ax=b, [ <x<u, (4.6)
can be transformed to
min ¢’ x,
S.t. Ax = b,
xX+s = u, 4.7)
—X +1t =,
s, t > 0.
According the preceding table, the dual problem of (4.6) is
T, .T T
max b'y—u'v+I["w, 4.8)

st.  ATy—v4+w=c, v,w>0.

The so-called self-duality referees to a special case when the dual problem of
an LP problem is just itself. Combining the primal problem (4.1) and the dual
problem (4.4), we construct the following problem:
min ¢Tx—-b7Ty,

s.t.  Ax =b, x >0, 4.9)
ATy <ec.
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According the preceding table, the dual problem of it is

max bTy 4+ cTv,
st. ATy <c,

By setting v = —x and handling the objective function properly, the preceding can
be transformed to the original problem (4.9). Therefore, (4.9) is a self-dual problem.

4.2 Duality Theorems

This section only focuses on the duality of (P) and (D), as obtained results are valid
for more general cases.

Theorem 4.2.1 (Symmetry). The dual problem of a dual problem is the primal
problem.

Proof. Introduce slack variable # > 0 to dual problem (D), and make a variable
transformation y = y; — y; to convert it to

max b7 (y; — y),
st AT(y1—y) 4+u=c, Y1, y2,u > 0,

or equivalently,
min (=b7, b7, 0)(yF, yI,u")7,
st. (AT =AT: DT T uDT =c. yiy2u>0.

The dual problem of the preceding is

max ¢! x’,
A -b
s.t. —A|x' < b1,
I 0
that is,
max c¢’x,
s.t.  Ax' = —b, x' <0,

which becomes (P) by setting x’ = —x. O
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The preceding says that any of the primal and dual problems is the dual problem
of the other. So, the two are symmetric in position. This is why any fact, holding for
one of the primal and dual problems, has its counterpart for the other. It is of great
importance that there is a close relationship between feasible or optimal solutions
of the pair.

Theorem 4.2.2 (Weak duality). If x and y are feasible solutions to primal and
dual problems, respectively, then ¢Tx > b7 y.

Proof. Premultiplyingc > ATy by x > 0 givesc”x > y7 Ax, substitutingh = Ax
to which leads to ¢”x > b7 y. ]

According to the preceding, if there are feasible solutions to both primal and dual
problems, any feasible value of the former is an upper bound of any feasible value
of the latter, whereas any feasible value of the latter is a lower bound of any feasible
value of the former.

Corollary 4.2.1. If any of the primal and dual problems is unbounded, there exists
no feasible solution to the other.

Proof. By contradiction. Assume that there is a feasible solution to the dual
problem. Then it follows from Theorem 4.2.2 that feasible values of the primal
problem is bounded below. Analogously, if the primal problem is feasible, the dual
problem is bounded above. O

Corollary 4.2.2. Let X and y be feasible solutions to the primal and dual problems,
respectively. If cT X = bT y, they are optimal solutions to the pair, respectively.

Proof. According to Theorem 4.2.2, for any feasible solution x to the primal
problem, it holds that ¢”x > 75 = ¢Tx, therefore X is an optimal solution to
the primal problem. Analogously, y is an optimal solution to the dual problem. 0O

Theorem 4.2.3 (Strong duality). If there exists an optimal solution to any of the
primal and dual problems, then there exists an optimal one to the other, and the
associated optimal values are equal.

Proof. Assume that there is an optimal solution to the primal problem. According
to Theorem 2.3.2, there is a basic optimal solution. Let B and N are optimal basis
and nonbasis, respectively. Then

el —cEB'N>0, B7'b>0.
Thus, setting
3 =B Tcp, (4.10)

leads to
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Therefore y is a feasible solution to the dual problem. By (4.10), on the other hand,
the basic feasible solution (X3 = B~'b, ¥y = 0) satisfies

"y =chip=chB b =0b"5.
By Corollary 4.2.2, therefore, X and y are respective optimal solutions to the
primal and dual problems with the same optimal value. Moreover, it is known by

Theorem 4.2.1 that if there is an optimal solution to the dual problem, so is to the
primal problem, with the same optimal value. O

Based on the strong duality, thereafter primal and dual optimal values will not be
distinguished.

It is clear that if there is an optimal solution to one of the pair of (4.1) and (4.4),
so is the self-dual problem (4.9). Moreover, the optimal value of the latter is
equal to zero, and the optimal solution of the latter gives the primal and dual
optimal solutions to the pair. A variation of it will be used to derive the so-called
“homogeneous and self-dual interior-point method” (Sect. 9.4.4).

In case when any of the primal and dual problems is infeasible, it can be asserted
that the other problem is infeasible or unbounded. The computation would be
finished in this case. In some applications, however, it would be needed to determine
which case the problem is. This can be resolved via the duality as follows.

Assume now that the primal problem (4.1) is infeasible. To determine whether
the dual problem (4.2) is infeasible or unbounded, consider

min c¢’x,

st. Ax =0, x>0, @10
which has a feasible solution x = 0. Solve the preceding program by the simplex
algorithm. If (4.11) is unbounded, then the program

min O,
st. ATy +z=c, z>0,

is infeasible (Corollary 4.2.1). Therefore, (4.2) is infeasible either. If an optimal
solution to (4.11) is reached, then there exists an optimal solution to the preceding
program (Theorem 4.2.3), as indicates that (4.2) is feasible; thereby, it can be further
asserted that (4.2) is unbounded.

Using the duality, now we are able to prove Farkas Lemma 2.1 concisely.

Lemma 4.2.1 (Farkas). Assume A € R™" and b € R"™. The feasible region P is
nonempty if and only if

Ty >0, Vye{yeR" | ATy > 0.
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Proof. Consider the following LP problem

min O,

4.12
st. Ax = b, x >0, (*-12)
the dual problem of which is
max b7y’
) 4.13
st. ATy’ <o. (@.13)

Note that y’ = 0 is a feasible solution to it, with feasible value 0.

Necessity. Assume that the feasible region P of (4.12) is nonempty, hence
all feasible solutions correspond to the same objective value 0. According to
Theorem 4.2.2, for any y’ € {y’ € R™ | ATy’ < 0} it holds that b7y’ < 0. By
setting y = —y’, it is known that 57y > O holds for y € {y e R™ | ATy > 0}.

Sufficiency. Assume that for any y € {y € R™ | ATy > 0} it holds that
bTy > 0. Then, for y' € {y’ € R™ | ATy’ <0} we have b”y’ < 0, hence there
is an optimal solution to (4.13). According to Theorem 4.2.3, therefore, there is an
optimal solution to (4.12), as implies nonempty of P. O

4.3 Optimality Condition

From duality theorems presented in the previous section, it is possible to derive a set
of conditions for primal and dual solutions to be optimal, as stands as a theoretical
basis for LP. We consider the standard LP problem first, and then more general LP
problems.

Assume that x and (y, z) are primal and dual (not necessarily feasible) solutions.

Definition 4.3.1. Difference ¢’ x — b7y between the primal and dual objective
values is duality gap between x and (y, z).

Definition 4.3.2. If x”z = 0, x and (y,z) are complementary; if x + z > 0, in
addition, the two are strictly complementary.

Quantity x”z is termed complementarity residual.

Lemma 4.3.1. The duality gap and complementarity residual of x and (y,z) are
equal; x and (y, z) are complementary if and only if their duality gap equals zero.

Proof. Since x and (y, z) satisfy the equality constrains, it is easy to derive that

cIx=bTy=xTc—A) Ty =xT(c—ATy) =x"2
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If it holds as an equality, an “>" or “<” type of inequality is said to be tightly
satisfied, and if it does as a strict inequality, it is said to be slackly satisfied.

In case when the nonnegative constraints are satisfied, the complementarity of x
and (y, z) is equivalent to satisfaction of

Xjz; =0, ¥ j=1,....n. 4.14)

It is clear that for j = 1,...,n, it holds that x; = 0 (or z; = 0)if z; > 0 (or
x; > 0). If a component of x (or z) slackly satisfies the associated nonnegativity
constraint, therefore, the corresponding component of z (or x) must satisfy the
associated nonnegativity constraint tightly.

Theorem 4.3.1 (Optimality conditions for the standard LP problem). x is an
optimal solution of the standard LP problem if and only if there exist y, z such that

i) Ax =b, x >0, (primal feasibility)
(i) ATy+z=rc, z>0, (dualfeasibility) (4.15)
(i) xTz=0. ((slackness) complementarity)

Proof. Note that for x and (y, z), zero duality gap is equivalent to complementarity
(Lemma 4.3.1).

Sufficiency. By Corollary 4.2.2 and the equivalence of zero duality gap and
complementarity, it follows from (4.15) that x and (y, z) are primal and dual optimal
solutions, respectively.

Necessity. If x is a primal optimal solution, then it satisfies condition (i). By
Theorem 4.2.3, in addition, there is a dual optimal solution (y,z) such that the
duality gap is zero, hence conditions (ii) and (iii) are satisfied. |

The following result is stated without proof (Goldman and Tucker 1956b).

Theorem 4.3.2 (Strict complementarity). If there exists a pair of primal and dual
optimal solutions, then there exists a strictly complementary pair of such solutions.

The significance of the optimal conditions speaks for itself. As for algorithm
research, any type of optimality criterions in various contexts must coincide with
these conditions. From them, it is understandable that LP algorithms always solve
the pair of problems at the same time. For instance, once the simplex algorithm
reaches primal optimal solution

¥p=B"'h, Xy=0,
it also gives a dual optimal solution

3 =B Tcp, 728 =0, Zy=cy—NT7.
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In view of the symmetry between primal and dual problems, moreover, it is not
surprising why LP algorithms often present in pair: if there is an algorithm for
solving the primal problem, there is an according algorithm for solving the dual
problem, and vise versa. As an example, the dual algorithm, presented in Sect. 4.5,
matches the simplex algorithm.

Interior-point methods often judge the degree of approaching optimality through
the complementarity residual: the smaller the residual is, the closer to optimality;
when it vanishes, primal and dual optimal solutions are attained respectively. It is
noticeable, moreover, that direct dealing with the optimal conditions as a system
of equalities and inequalities can lead to some interior-point algorithms (Sect. 9.4).
Such algorithms usually generate a strictly complementary pair of optimal solutions
in the limit, as is of importance for asymptotic analysis (Giiler and Ye 1993).

For the bounded-variable LP problem (4.6), we have the following result.

Theorem 4.3.3 (Optimal conditions for the bounded-variable problem). x is an
optimal solution of the bounded-variable LP problem if and only if there exist y, v, w
such that

(i) Ax =b, | <x<u, (primal feasibility)
(@) ATy—v+w=c, v,w,>0, (dual feasibility)
Gi)) (x=DTw=0, (u—x)v =0. ((slackness) complementarity)
(4.16)
Proof. Tt is derived from (4.6) to (4.8) and Theorem 4.3.1. ]
Finally, consider the general problem of form
min ¢’ x
’ 4.17
s.t. x e, ( )
where 2 C R" is a convex set.
Lemma 4.3.2. It is an optimal solution to (4.17) if and only if x* satisfies
clT(x—x*) >0, V xeQ (4.18)

Proof. Assume that x* is an optimal solution. If (4.18) does not hold, i.e., there is a
point X € € such that

cT(x—x* <o, (4.19)
then it holds that

cTx <eTx*, (4.20)
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which contradicts optimality of x*. Conversely, assume that (4.18) holds. If x* is
not optimal to (4.17), then there exists X € 2 satisfying (4.20), which implies (4.19),
as contradicts satisfaction of (4.18). O

It is noted from the proof that the preceding Lemma is actually valid for an
arbitrary set 2. Geometrically, it says that a sufficient and necessary condition for
x* to be an optimal solution to (4.17) is that the angle between the vector from x*
to any point x € 2 and the gradient of the objective function is no more than /2.

Vector x* € Q is termed local optimal solution if it is an optimal solution over
some spherical neighborhood of it; or more precisely, there exists y > 0 such that

cI'x* =min{c’x | x e (QN )}, T={xeR" | |x—x*| <y} @421)

Theorem 4.3.4. A vector is an optimal solution to (4.17) if and only if it is a local

optimal solution to it.

Proof. The necessity is clear. The sufficiency. Assume that x* is a local optimal

solution. So, there is y > 0 so that (4.21) holds. For any ¥ € Q with X # x*, define
xX'=x*+y/lIx - x*|(x —x¥). (4.22)

Then, ||x" — x*|| = y, hence x’ € Q N X. Thereby, it follows from (4.22) that
cTx" — T x* > 0 together with

(F —x") = & = x" | /ye’ (" = x¥),
gives
I(F—x") = I = x*||/ye" (2 —x7) 2 0.
According to Lemma 4.3.2, x* is an optimal to (4.17). O

4.4 Dual Simplex Method: Tableau Form

The dual simplex method is of great importance, as it can be even more efficient
than the simplex method, and serve as a basic tool to solve integer or mixed LP
problems. This section will derive its tableau version.

As was well-known, simplex tableaus created by a series of elementary transfor-
mations are equivalent in the sense that they represent problems equivalent to the
original one. No matter how pivots are selected, a resulting simplex tableau offers
a pair of complementary primal and dual solutions, which are optimal whenever
entries in the right-hand side and the objective row are all nonnegative, or in other



4.4 Dual Simplex Method: Tableau Form 111

words, both primal and dual feasibility achieved. Starting from a feasible simplex
tableau, e.g., the tableau simplex algorithm generates a sequence of feasible simplex
tableaus, until dual feasibility achieved.

Using an alternative pivot rule, the so-called “dual simplex algorithm” presented
in this section generates a sequence of dual feasible simplex tableaus, until primal
feasibility achieved. To do so, of course, it has to start from a dual feasible simplex
tableau.

Consider the standard LP problem (4.1). Let (3.18) be a current dual feasible
simplex tableau, satisfying zy > 0 butb # 0.

In contrast to the simplex method, we first determine pivot row rather than
column.

Rule 4.4.1 (Dual row rule) Select row index by
p €argmin{b; |i =1,...,m}.
It is clear that the preceding will drop the basic variable x;, from the basis, turning

it to primal feasible.

Lemma 4.4.1. Assume that Zy > 0 and l;p < 0. If column index set
J={jeN|a,; <0} (4.23)

is empty, then the LP problem is infeasible.

Proof. 7y > 0 indicates dual feasibility. Assume that the dual problem is bounded,
hence there is an optimal dual solution. According to the strong duality Theorem,
there is a optimal primal solution. Assume that X > 0 is such an optimal primal
solution, which satisfies the equality, corresponding to the pth row of the simplex
tableau, i.e.,

Rj, + Y apk; =b,.
jeNn

From (4.23) and X > 0, it follows that the left-side of the preceding is nonnegative,
as contradicts b, < 0. Therefore, the problem is dual unbounded, and hence
infeasible. O

Assume that p has been determined and (4.23) does not hold. Then the following
is well-defined.

Rule 4.4.2 (Dual column rule) Determine 8 and column index ¢ such that
B=-%/apy=min—z;/a,; = 0. (4.24)
j

B is referred to as dual stepsize.
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Once a pivot, say a,, is determined, perform elementary transformations to turn
it to 1 and eliminate all other nonzeros in the g-indexed column. Then adding
P times of the pth row to the objective row results in a new simplex tableau
(see (3.13)). It is not difficult to show that the new tableau remains dual feasible,
that is, its objective row remains nonnegative.

The objective value of the resulting tableau is then

—f=—F+8b,<—F. (4.25)

Therefore, f > f , indicating that the objective value does not decrease. When
Zv > 0, the objective value strictly increases, as is a case in which the simplex
tableau (or the dual feasible solution) is said to be dual nondegenerate.

The overall steps can be put in the following algorithm (Beale 1954; Lemke
1954).

Algorithm 4.4.1 (Dual simplex algorithm: tableau form). Initial: a dual feasible
simplex tableau of form (3.18). This algorithm solves the standard LP prob-
lem (1.7).

1. Select pivot row index p € argmin{b; | i = 1,...,m}.

2. Stopif b, > 0.

3. Stopif J ={j e N|a,; <0} =0.

4. Determined pivot column g € argmin;ey —Zz;/dp ;.

5. Convert a,, to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Go to step 1.

Theorem 4.4.1. Under the dual nondegenerate assumption, Algorithm 4.4.1 termi-
nates either at

(i) Step 2, achieving a pair of primal and dual optimal solutions; or at
(ii) Step 3, detecting infeasibility of the problem.

Proof. The proof on the termination is similar to the simplex algorithm. The
meanings of its exits come from Lemmas 3.2.1 and 4.4.1 and discussions preceding
the algorithm. O

If dual degeneracy presents, the dual simplex method would stall in solution
process, even fail to solve a problem due to cycling (Beale 1955). Despite the dual
degeneracy almost always occurs, the dual simplex method perform successfully in
practice, as is just in the primal simplex context.

Algorithm 4.4.1 starts from a dual feasible simplex tableau. In general, there is
a need for a dual Phase-I procedure to serve for this purpose. This topic will be
delayed to Chap. 14.
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Example 4.4.1. Solve the following LP problem by Algorithm 4.4.1:

min f = x; + 2x; + X3,

st 2x1 4+ x4+ x3 — x4 =1,
—x1 + 4x2 + X3 > 2,
X1 + 3x <4,

x; >0, j=1,...,4.
Answer Initial: turn the problem to the standard form by introducing slack
variables x5, x¢ > 0 in constrains. Then, premultiply the first two constraints by

—1 respectively:

min [ = x; 4+ 2x; + x3,

Sst. —2Xx1 — X2 — X3 + X4 = -1,
X1 — 4x) — X3 + X5 = -2,
X1+ 3x2 + x5 = 4,

)CjZO, jzl,...,6,

which corresponds to an available dual feasible simplex tableau, i.e.,

X1 Xo X3 X4 X5 X6 RHS

-2 -1 -1 1 -1
1 —4 —1 1 -2
1 3 1 4
1 2 1

Iteration 1:

.min{—1,-2,4} = -2<0, p=2.

. J ={2,3}.

. min{—2/(—4),—-1/(-1)} =1/2, g = 2.

. Multiply row 2 by —1/4, and then add 1, —3, —2 times of row 2 to rows 1,3,4,
respectively:

[, I SO I

X1 X2 X3 X4 X5 X6 RHS
—9/4%* -3/4 1 —1/4 —1/2
—1/4 1 1/4 —1/4 1/2

7/4 —3/4 3/4 1 5/2

3/2 1/2 1/2 —1
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Iteration 2:

1. min{—1/2,1/2,5/2} = —-1/2<0, p=1.

3. J ={1,3,5}.

4. min{—(3/2)/(=9/4).—(1/2)/(=3/4).—(1/2)/(-=1/4H} = 2/3, g = 1.

5. Multiply row 1 by —4/9, and then add 1/4,—7/4,—3/2 times of row 1 to rows
2,3,4, respectively:

X1 X X3 X4 X5 X6 RHS
1 1/3  —4/9 1/9 2/9
1 1/3  —=1/9 -=2/9 5/9
—4/3 7/9 5/9 1 19/9

2/3 1/3 —4/3

The right-hand side of the preceding is now nonnegative, hence obtained is an
optimal simplex tableau. The optimal solution and associated objective value are

% =1(2/9,5/9,0,0)7, f=4/3.

4.5 Dual Simplex Method

In the preceding section, the tableau dual simplex algorithm was formulated. In this
section, we first derive its revised version based on equivalence between the simplex
tableau and the revised simplex tableau, just as what we have done for deriving the
simplex method from its tableau version. Then, we derive it alternatively to reveal
the fact that it essentially solves the dual problem.

Like the simplex Algorithm 3.5.2, in each iteration the dual simplex algorithm
computes the objective row, the right-hand side, pivot column and row. The objective
row and/or the right-hand side can be computed in a recurrence manner (see (3.13)
and (3.14)). The pivot column and row can be computed through B~! and the
original data, just as in the simplex method.

If nonbasic entries in the pivot row are all nonnegative, i.e.,

(1>

015 e]f]\_/ = e;B_lN >0,
the dual problem is unbounded, hence the original problem is infeasible. B~ will
be updated in the same way as in the simplex method.

Based on Table 3.2, therefore, Algorithm 4.4.1 can be revised to the following
algorithm.

Algorithm 4.5.1 (Dual simplex algorithm). Initial: (B, N), B7l.Zzy >0, %p =
B~ 'b and f = c}Xp. This algorithm solves the standard LP problem (1.8).
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Select row index p € argmin{x;, |i =1,...,m}.
Stop if X;, > 0 (optimality achieved).
Compute oy = NTB_Te,,.
Stopif J ={j |0; <0, j € N} = @ (infeasible problem).
Determine  and column index ¢ such that
B =—-2,/0, =minje; —7;/0;.

M

6. Setz;, = B,and update zy = zy + Bon, f = f —BX;, if B #0.
7. Compute a, = B 'a,.

8. Update by Xp = Xp —ady, X, = o, where o = X;, /0,.

9. Update B~! by (3.23).
10. Update (B, N) by exchanging j, and gq.
11. Gotostep 1.

Alternatively, Algorithm 4.5.1 can be derived by solving the dual problem itself as
follows.
Consider the dual problem

(D) max g =>b"y,
st. ATy <e.

Given (B, N), B~'. It is easy to verify that } = B~ cp satisfies the dual
constraints, i.e.,

zg=cz— BTy =0, iv=cy—NTy>o0. (4.26)

y is a dual basic feasible solution, or geometrically a vertex in the dual feasible
region

D={y|A"y <c}.

In the primal simplex context, y is usually called “simplex multipliers”.
Consider the associated primal basic solution

xg=B""'b, xy=0.
If xp > 0, then X and (y, 7) satisfy the optimality condition, and are therefore a pair
of primal and dual basic optimal solutions.
Now assume that Xz = B~'b # 0. Determine row index p such that
Xj, =min{x; [i =1,...,m} <O0. (4.27)

Introduce vector

h=BTe,, (4.28)
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which with (4.27) gives
—b"h=-b"BTe, =€) (B7'b) =%, > 0. (4.29)

implying that —/ is an uphill direction, with respect to the dual objective function g.
Now consider the line search scheme below:

y =1y —Bh, (4.30)

where B is a dual stepsize to be determined. From (4.30), (4.28) and (4.26), it
follows that

2p = cp— BT) = cp— BY(j — Bh) = e, > 0, (4.31)
iv=cy—N"9 =cy —NT(5 — Bh) =zy + BNTh. (4.32)

If oy = NTh # 0, then it is seen from (4.32) that a too large 8 > 0 will lead to
Zy 7 0, as violates the dual feasibility. It is easy to determine the largest possible
and according column index ¢, subject to Zy > 0 (see step 5 of Algorithm 4.4.1).
Then, drop j, from and enter ¢ to the basis. It is easy to verify that y is just the dual

basic feasible solution, corresponding to the resulting basis.
The following is valid in the other case.

Proposition 4.5.1. Ifoy = NTh > 0, the dual problem is unbounded, and —h is
an uphill extreme direction in the dual feasible region D.

Proof. If oy > 0, it is seen from (4.26) and (4.31), (4.32) that
f=c—A"H>0, V>0,

implying feasibility of the new solution y given by (4.30). On the other hand, it is
known from (4.30) and (4.29) that the associated new objective value is

b5 =b"y - BX;,. (4.33)
which goes to oo, as f tends to co. Thus the dual problem is unbounded. This
means that —/ is a uphill unbounded direction of D. In fact, it is seen that —# is the
direction of 1-dimensional face or edge

{(yeR" | Ay <ciajy=cj,i=1,--,m,i#p}

and therefore a uphill extreme direction. O
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The preceding analysis is actually valid for any given negative X;,. Though far
from the best, Rule (4.27) is simple and easy to use, and the corresponding objective
increment is the largest possible for a unit stepsize. More efficient dual pivot rules
will be presented in Chap. 12.

Since the beginning of 1990s of the last century, successful applications of the
dual steepest-edge rule (Forrest and Goldfarb 1992), some of its approximations
and bound-flipping (Kirillova et al. 1979) have injected fresh vigoure to the dual
simplex method, so that it becomes one of the most powerful methods for solving
LP problems (Bixby 2002; Koberstein 2008).

Example 4.5.1. Solve the following problem by Algorithm 4.5.1:

min  f = x; 4+ 2x3 + x3,

S.t. =2X1 — X — X3 + X4 = -1,
X1 — 4x2 — x3 + X5 = =2,

X1 + 3x; + x¢ = 4,

Answer Initial: B = {4,5,6}, N = {1,2,3}, B~' =1,
v = (1,2, D)7, xp = (-1,-2, 47, f =0.

Iteration 1:

1. min{—1,-2,4} = =2 < 0, p = 2, x5 leaves the basis.
3. 08 = (1,—4, -7,
5.8 =min{2/4,1/1} = 1/2, g = 2, x,enters the basis.
6.y =(3/2,0,1/2)",z; =1/2, f =0—(1/2)(-2) = L.
7. a, = (—1,-4,3)".
8.0 =-2/—-4=1/2, %5=(-1.-2,4)" —(1/2)(-1,-4,3)"
=(-1/2,0,5/2)7, X =a = 1/2.

1 1/—4

9. B7! = 1/—4
3/4 1

10. B =1{4,2,6}, N ={1,5,3}, 2y = (3/2,1/2,1/2)T > 0, xp
=(-1/2,1/2,5/2)T.

Iteration 2:

1. min{—1/2,1/2,5/2} = —1/2 < 0, p = 1, x4 leaves the basis.

3. o8 = (—9/4,—1/4,-3/4)T.

5. 8 =min{(3/2)/(9/4),(1/2)/(1/4),(1/2)/(3/4)} = 2/3, ¢ = 1, x| enters
the basis.

6. zv = (3/2,1/2,1/2)T +(2/3)(=9/4,—1/4,-3/4)T = (0,1/3,0)".
zZ;, =2/3, f =1-(2/3)(-1/2) = 4/3.

7. a4, = (=9/4,—1/4,7/4)".
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8. a = (—1/2)/(=9/4) =2/9, xp=(—1/2,1/2,5/2)T
—(2/9)(—9/4,—1/4,7/4) = (0,5/9,19/9)7, ¥, =2/9.

—4/9 1 1/—4 —4/9  1/9
9.B7'=1-1/9 1 1/ —4 =|-1/9 -2/9
7/9 1 3/4 1 7/9  5/9 1

10. B ={1,2,6}, N = {4,5,3}, Zy = (2/3,1/3,0) > 0,
X5 =(2/9,5/9,19/9)7 > 0.
The optimal solution and objective value:

¥ =1(2/9,5/9,0,0,0,19/9)7,  f=4/3.

4.6 Economic Interpretation of Duality: Shadow Price

The dual problem is of an interesting economic interpretation. Assume that the
primal problem

is a plan model for a manufacturer to produce n products using m resources. The

available amount of resource i is b;, i = 1,...,m, units; producing an unit of

product j consumes a;; units of resource i. The profit of an unit of product j is

cj, j = 1,...,n.The goalis to achieve the highest profit with the limited resources.
The dual problems is

min b7y,
st. ATy>c¢, y>o.

Let x and y be primal and dual optimal solutions, respectively. According to the
strong duality Theorem, associated primal and dual optimal values are equal, i.e.,

v=clx =bTj.
Optimal value’s partial derivative with respect to b; is

v _

b Yi-
Therefore, y; is equal to the increment of the highest profit, created by adding one
unit of resource 7, and can be taken as manufacturer’s assessment for resource i, as
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is named shadow price by Paul Samuelson.! Shadow price y; is the upper price limit
that the manufacturer can afford to buy resource i . When market price of resource i
is lower than shadow price y;, the manufacturer should consider to buy it to expand
the production scale, whereas he should consider to sell it to reduce the production
scale in the other case. The manufacturer will not buy resource i any more, no
matter how low its price is, whenever the optimal solution X satisfies the i th primal
inequality constraint slackly, as implies that resource i is not fully used. In fact, the
shadow price y; vanishes in this case.

Let x and y be any primal and dual feasible solutions respectively, hence ¢
bT y holds according to the weak duality. Inequality

Ty <

cT'x < bTy,

implies that the total profit (output) of the plan is less than the available value (input)
of the resources. In economic terms, the input-output system is said “instable (non-
optimal)” in this case. It is a stable (optimal) system only when output is equal to
input.

Consider economic implication of the dual constraints. The manufacturer negoti-
ates with the supplier at price y; for resource i, as is calculated to purchase resources
b;,i = 1,...,m by overall payment bTy. For j = 1,...,n, on the other hand, the
supplier asks for resource prices to produce an unit product j being no less than the
profit of an unit of product j, as satisfies the jth dual constraint

m
E a;jyi = cj.

i=1

If the suppler asks for too high prices, that is, the dual optimal solution y satisfies
the jth dual constraint slackly, then X; vanishes, as implies that the manufacturer
should not arrange for producing product j at all, no matter how high the profit of
an unit of the product is.

4.7 Notes

The concept and theorems of duality were first proposed by famous mathematician
von Neumann. In October 1947, he made foundational discussions on the topic in
a talk with George B. Dantzig and in a working paper, finished a few weeks later.
In 1948, Dantzig provided a rigorous proof on the duality theorems in a report.
Subsequently, Gale et al. (1951) formulated the duality theorems and proved them

"Paul Samuelson (1915-2009), American economist, the winner of The Nobel Economics Prize
(1970), the first American winning this prize.



120 4 Duality Principle and Dual Simplex Method

using Farkas Lemma, independently. Goldman and Tucker (1956b) and Balinski and
Tucker (1969) discussed theoretical properties of the dual problem systematically.

As was stressed, the simplex tableau is just a concise expression of a LP problem
itself, and all such tableaus created by the primal or dual simplex algorithm are
equivalent in the sense of their representation of the LP problem. Then the following
question arises:

Are dual problems corresponding to the simplex tableaus equivalent?

Consider the dual problem, corresponding to tableau (3.18), i.e.,

max f + b7y,
1 Z, 0
s.t. (NT) Yy + (Zi) = (ZN) . g2y =0.

As their b, N, Zy are not the same, the dual problems corresponding to different
simplex tableaus are also different. However, such differences are not essential. In
fact, Making variable transformations y’ = BTy — ¢p, 7/ = z and noting

b=B7'"», N=B"'N, zy=cy—N"B ez, f=cLB7'b,
the dual problem can be converted to

max bTy,

BT B Cp
L. = ) s Z Os
S (NT) y+ (ZN . ZB> 32N

which is the original dual problem. Therefore, all the generated simplex tableaus
can be regarded as equivalent with respect to represented dual problems.

In summary, elementary transformations generate equivalent simplex tableaus.
On the primal side, the right-hand sides give primal basic solutions and the bottom
rows give primal reduced objective functions. On the dual side, the right-hand sides
render dual reduced objective functions and the bottom rows dual basic solutions.

Based on duality, the following is also valid.

Proposition 4.7.1. If it has a dual solution (y, z), the standard problem (4.1) is
equivalent to

max f=3y'b+7"x,

4.34
s.t.  Ax =b, x>0. (4.34)

Proof. (¥, 7) satisfies ATy + Z = ¢ or equivalently,

cl=53T4+7".



4.7 Notes 121

Substituting the preceding to the objective of the standard problem and noting the
constraint system gives the objective of (4.34), i.e.,

f=c"x=3"Ax+7x=3"b +7"x,

and vice versa. O

The preceding says that the cost vector ¢ in the standard problem can be replaced
by any dual solution z, with only a constant difference in objective value.
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