
Chapter 3
Simplex Method

The simplex method is an efficient and widely used LP problem solver. Since
proposed by George B. Dantzig in 1947, it has been dominating this area for more
than 60 years.

The basic idea behind the simplex method is quite simple. In geometric words, it
moves from a vertex to an adjacent vertex, while improving the objective value, until
reaching an optimal vertex. Such doing is based on Theorem 2.3.2, guaranteeing the
existence of a basic optimal solution if an optimal solution exists. It seems to be
natural to hunt for an optimal solution among vertices in the feasible region, as it
usually involves infinitely many point but only finitely many vertices (no more than
C m

n ). So, such a strategy shrinks the hunting scope from the whole feasible region
to a finite subset.

The idea may be traced back to as early as Fourier (1823). It was materialized
algebraically by Dantzig (1951a). In this chapter, the simplex method will be
presented in a tableau form first, then it is revised to a more applicable version.
Discussed will also be related topics, such as how to get the method started,
finiteness problem and finite pivot rules, and computational complexity. The last
section will comment on features of the method.

3.1 Simplex Tableau

We begin with introduction of the so-called “simplex tableau” for problem (1.10).
In Sect. 1.6, we already obtained the canonical form (1.11) of its constraint system,
without touching the objective function at all. Now we put the objective function in
the equation form

x1 C 2x2 � x4 C x5 � f D 0;

where f is called objective variable, at the bottom of the constraint system. The
according tableau is
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62 3 Simplex Method

x1 x2 x3 x4 x5 f RHS

1 2=11 �4=11 7=11

1 15=11 �19=11 14=11

1 1=11 9=11 9=11

1 2 �1 1 �1

Then we eliminate the nonzero entries, corresponding to pivot columns (associ-
ated with variables x1; x2; x3), in its bottom (objective) row. To do so, add �1 times
of the first row to the bottom row first:

x1 x2 x3 x4 x5 f RHS

1 2=11 �4=11 7=11

1 15=11 �19=11 14=11

1 1=11 9=11 9=11

2 �13=11 15=11 �1 �7=11

then add �2 times of row 2 to the bottom row:

x1 x2 x3 x4 x5 f RHS

1 2=11 �4=11 7=11

1 15=11 �19=11 14=11

1 1=11 9=11 9=11

�43=11 53=11 �1 �35=11

where the north-west corner is the unit matrix, corresponding to zero entries in the
bottom row. Thereby, the tableau offers not only a basic solution

x1 D 7=11; x2 D 14=11; x3 D 9=11; x4 D x5 D 0; (3.1)

but also a reduced form of the objective function over the feasible region. Note that
the solution is a basic feasible solution, associated with the objective value 35=11,
which is equal to the opposite number of the south-east corner entry.

The same tableau may be obtained otherwise by putting coefficients of the
constraint system and of the objective function together to form an initial tableau,
then applying the relevant Gauss-Jordan elimination.

Such a tableau is called simplex tableau, whose general form is as shown by
Table 3.11.

The associated terms coincide with those the same named for the canonical form
of the system Ax D b (Sect. 1.6):

1It is always possible to arrange the unit matrix at the north-west corner of the simplex tableau by
column exchanges. Practically, however, this is not needed, and the matrix corresponding to basic
variables is usually a permutation matrix.
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Table 3.1 Simplex tableau
xj1 xj2 � � � xjm xjmC1

� � � xjn f RHS

1 Na1 jmC1
� � � Na1 jn

Nb1

1 Na2 jmC1
� � � Na2 jn

Nb2

: : :
:
:
:

:
:
:

:
:
:

:
:
:

1 Nam jmC1
� � � Nam jn

Nbm

NzjmC1
� � � Nzjn �1 � Nf

Variables (components) corresponding to the unit matrix are basic variables
(components), and the rest are nonbasic variables (components). The basic and
nonbasic index sets

B D fj1; : : : ; jmg; and N D AnB:

are basis and nonbasis, respectively. The sets of basic and nonbasic variables are
also called basis and nonbasis. The importance of the simplex tableau lies in that it
gives a basic solution NxB D NbI NxN D 0. If NxB � 0, the solution and tableaus are
basic feasible solution and feasible (simplex) tableau, respectively. If the objective
function attains the minimum value over the feasible region, the solution and tableau
are said to be basic optimal solution and optimal (simplex) tableau.

In addition, NzN in the simplex tableau is termed reduced costs (coefficients).
The opposite number of the south-east corner entry gives the according objective
value Nf .

Throughout this book, it is stipulated that the bottom row of a simplex tableau
always corresponds to the objective function. It will be seen that the f column does
not change in solution process by the simplex method, and hence can be omitted.
However, it is indispensable in the context of the“reduced simplex method”,
presented in Chap. 15.

3.2 Simplex Method: Tableau Form

In the previous section, a simplex tableau of the LP problem (1.10) together with the
associated basic feasible solution (3.1) were obtained. But it can no not be asserted
that the solution is optimal, since the reduced cost of variable x4 is negative. As the
value of x4 increases from 0 while the value of x5 fixed at 0, in fact, the objective
function would decrease further, reaching a lower value than the current.

The new value of x4 should be as large as possible, so that the associated
objective value becomes as low as possible, subject to maintaining nonnegativity
of corresponding values of x1; x2; x3, satisfying

8
<

:

x1 D 7=11 � .2=11/x4 � 0;

x2 D 14=11 � .15=11/x4 � 0;

x3 D 9=11 � .1=11/x4 � 0;

(3.2)
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The preceding set of inequalities are equivalent to

8
<

:

x4 � 7=2

x4 � 14=15

x4 � 9

whose solution set is

x4 � minf7=2; 14=15; 9g D 14=15:

Thereby, Nx4 D 14=15 is the largest possible value taken by x4. Substituting it to (3.2)
gives the new feasible solution

Nx D .7=15; 0; 11=15; 14=15; 0/T ; (3.3)

corresponding to objective value Nf D �7=15 lower than 35=11.
The according new simplex tableau is obtained by taking entry 15=11 at row 2

and column 4 as the pivot. To this end, firstly multiply row 2 by 11=15 to turn the
pivot to 1, leading to

x1 x2 x3 x4 x5 f RHS

1 2=11 �4=11 7=11

11=15 1 �19=15 14=15

1 1=11 9=11 9=11

�43=11 53=11 �1 �35=11

Then add �2=11, �1=11 and 43=11 times of row 2 to rows 1, 3 and 4,
respectively, giving the new simplex tableau

x1 x2 x3 x4 x5 f RHS

1 �2=15 �2=15 7=15

11=15 1 �19=15 14=15

�1=15 1 14=15 11=15

43=15 �2=15 �1 7=15

which clearly corresponds to the new basic feasible solution (3.3).
As the reduced cost, associated with variable x5, in the objective line is negative,

still it cannot be asserted that the new solution is optimal. Similarly as in the previous
step, we consider the following set of inequalities to determine the new value of x5

that can be increased to and an associated pivot:

8
<

:

x1 D 7=15 C .2=15/x5 � 0

x4 D 14=15 C .19=15/x5 � 0

x3 D 11=15 � .14=15/x5 � 0
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Since coefficients of x5 in the first two inequalities are positive, the according values
of x1 and x4 remain nonnegative as x5 increases from 0, while x2 is fixed on zero. It
is therefore only needed to consider the third inequality, associated with the negative
coefficient of x5. Setting x3 D 0 in the third equation gives x5 D 11=14, leading to
the basic feasible solution

Nx D .4=7; 0; 0; 27=14; 11=14/T ; (3.4)

associated with objective value Nf D �4=7 lower than �7=15.
To obtain the associated simplex tableau, it is only needed to enter x5 to and drop

x3 from the basis by taking the entry 14=15 at row 3 and column 5 as the pivot.
Multiply row 3 by 15=14 gives

x1 x2 x3 x4 x5 f RHS

1 �2=15 �2=15 7=15

11=15 1 �19=15 14=15

�1=14 15=14 1 11=14

43=15 �2=15 �1 7=15

Then add 2=15, 19=15 and 2=15 times of row 3 to rows 1, 2 and 4, respectively,
leading to

x1 x2 x3 x4 x5 f RHS

1 �1=7 1=7 4=7

9=14 19=14 1 27=14

�1=14 15=14 1 11=14

20=7 1=7 �1 4=7

where reduced costs in the bottom row are all nonnegative. As will be proved a
little later, it is now can be asserted that the corresponding basic feasible solution is
optimal, which is just (3.4), and we are done.

Now turn to the general standard LP problem (1.7). Following the preceding
example, we describe an iteration by determining a pivot, and then updating the
tableau by relevant elementary transformations.

Assume at the current iteration that we are faced with the feasible Tableau 3.1,
the right-hand side of which gives the basic feasible solution

NxB D Nb � 0; NxN D 0; (3.5)

associated with the objective value Nf equal to the opposite number of the south-east
corner entry of the tableau.

Lemma 3.2.1. If reduced costs are all nonnegative, the feasible simplex tableau is
optimal, giving a basic optimal solution.
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Proof. The simplex tableau results from a series of elementary transformations, and
hence equivalent to the original problem. Its bottom row represents equality

f D Nf C NzT
N xN : (3.6)

Assume that Qx is any feasible solution, associated with objective value Qf . Substitut-
ing it to (3.6) leads to

Qf D Nf C NzN QxN � Nf ;

where the inequality is from NzN � 0 and Qx � 0. Therefore, Nx is a basic optimal
solution. ut

The reduced costs are often called check numbers, as their sign can be used to
jude the optimality of a simplex tableau. Usually, there are negative check numbers
in the tableau.

Lemma 3.2.2. Assuming that Nzq < 0 holds for some q 2 N , and that

Nai;q � 0; i D 1; : : : ; m; (3.7)

then the LP problem is (lower) unbounded.

Proof. The simplex tableau is associated with the constraint system

xji D Nbi �
X

j 2N

Nai j xj ; i D 1; : : : ; m:

Setting xj D 0; j 2 N; j ¤ q in the preceding and combining the result with the
nonnegative constrains gives

xji D Nbi � Nai qxq � 0; i D 1; : : : ; m: (3.8)

It is known from (3.7) that the set (3.8) of inequalities hold for all xq D ˛ � 0,
associated with feasible value

Of D Nf C ˛Nzq ; (3.9)

which, since Nzq < 0, can be arbitrarily low as ˛ increases. Therefore, the problem is
lower unbounded. ut

If (3.7) does not hold, then the value that the nonbasic variable xq takes on will
be restricted by the set (3.8) of inequalities. It is not difficulty to verify that the
following rule gives the largest possible value ˛ of xq subject to (3.8).

Rule 3.2.1 (Row pivot rule) Determine a row index p and stepsize ˛ such that

˛ D Nbp= Nap q D minf Nbi= Nai q j Nai q > 0; i D 1; : : : ; mg � 0: (3.10)

which is often called minimum-ratio test.
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Setting xq D ˛ in the equation part of (3.8) gives a new basic feasible
solution, i.e.,

Oxji D Nbi � ˛ Nai q; i D 1; : : : ; mI Oxj D 0; j 2 N; j ¤ qI Oxq D ˛:
(3.11)

Taking Nap q as the pivot, the according simplex tableau is obtained by multiplying
row p by 1= Nap q to convert the pivot to 1, adding �Nai q times of row p to rows
i D 1; : : : ; m; i ¤ p, and adding �Nzq times of row p to the objective row. Finally,
.B; N / is updated by exchanging jp and q, and an iteration is complete.

It is seen from (3.9) that the associated objective value decreases strictly if ˛ > 0;
no real decrement is made if ˛ D 0.

Definition 3.2.1. If some components of Nb is equal to zero, then the associated
basic feasible solution (or tableau) is degenerate.

A LP problems is said to be nondegenerate if all basic solutions are
nondegenerate.

In degeneracy case, the stepsize ˛ defined by (3.10) could vanish, and hence
the objective function remains unchanged (see (3.9)). That is to say, the associated
“new solution” (3.11) is actually the same as the old although the basis is
changed.

In general, there are multiple choices for q, as any q with negative Nzq is eligible
to be chosen. Dantzig’s original minimum reduced cost rule is as follows.

Rule 3.2.2 (Column pivot rule) Select a column index q such that

q 2 arg min
j 2N

Nzj : (3.12)

Thus, this rule selects the column with the most negative reduced cost as the pivot
column.2 For unit increment of the nonbasic variable xq , this choice leads to the
largest amount of decrease in the objective value.

The overall steps are summarized to the following algorithm (Dantzig 1947).

Algorithm 3.2.1 (Simplex algorithm: tableau form). Initial: a feasible simplex
tableau of the form Table 3.1. This algorithm solves the standard LP prob-
lem (1.7).

1. Determine a pivot column index q 2 arg minj 2N Nzj .
2. Stop if Nzq � 0.
3. Stop if I D fi D 1; : : : ; m j Nai q > 0g D ;.
4. Determine a pivot row index p 2 arg mini2I

Nbi = Naiq .
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Go to Step 1.

2Any choice is eligible if there is a tie when the number of the most negative reduced costs is more
than one. Similarly below.
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Theorem 3.2.1. Under the nondegeneracy assumption, the simplex algorithm ter-
minates either at

(i) Step 2, generating a basic optimal solution; or at
(ii) Step 3, detecting lower unboundedness of the problem.

Proof. Note that there are infinitely many basic feasible solutions. If is clear
that Algorithm 3.2.1 generates a sequence of basic feasible solutions, while the
associated objective value decreases, due to the nonnegative stepssize ˛. Under
the nondegeneracy assumption, the stepssize ˛ is positive, and hence the objective
value decreases strictly in each iteration. In the solution process, therefore, any
basic solution can only appear once at most. So, infiniteness of the solution process
implies that there are infinitely many basic feasible solutions, as is a contradiction.
Therefore, Algorithm 3.2.1 terminates.

The meanings of the exits of the Algorithm 3.2.1 comes from Lemmas 3.2.1
and 3.2.2. ut

It should be aware that the nondegeneracy assumption is beyond reality at all. As
practical problems are almost always degenerate, termination of the simplex Algo-
rithm 3.2.1 is actually not guaranteed. In other words, the possibility is not ruled out
that indices enter and leave the basis infinitely many times. In fact, few instances that
cannot be solved by the simplex algorithm had been constructed (we will handle this
topic in Sects. 3.6 and 3.7). Even so, the possibility for not terminating is very rare,
so as dose not matter to broad applications of the simplex algorithm.

A simplex tableau is nothing but a concise expression of a standard LP problem.
As they represent problems equivalent to the original problem itself, all the tableaus
created by the simplex algorithm are viewed as equivalent. Recursive formulas
between a simplex tableau and its predecessor are listed below:

1. The objective row

ˇ D �Nzq= Nap q;
Of D Nf � ˇ Nbp;

Ozj D Nzj C ˇ Nap j ; j 2 N;

Ozji D
�

ˇ i D p;

0 i D 1; : : : ; m; i ¤ p:

(3.13)

2. The right-hand side

˛ D Nbp= Nap q;

Obi D
� Nbi � ˛ Nai q i D 1; : : : ; m; i ¤ p;

˛ i D p:

(3.14)
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3. Entries of the constraint matrix

Oat;j D

8
ˆ̂
<

ˆ̂
:

0; t D 1; : : : ; m; t ¤ pI j D q:

1; t D pI j D q;

Nat j � . Nap j = Nap q/ Nat q; t D 1; : : : ; m; t ¤ pI j 2 N; j ¤ q;

Nap j = Nap q; t D pI j 2 N; j ¤ q:

Oat ji D

8
ˆ̂
<

ˆ̂
:

0; t D 1; : : : ; mI i D 1; : : : ; m; i ¤ pI i ¤ t;

1; t D i D 1; : : : ; mI i ¤ p;

�Nat q= Nap q; t D 1; : : : ; m; t ¤ pI i D p;

1= Nap q; t D i D p:

(3.15)

Example 3.2.1. Solve the following problem by Algorithm 3.2.1:

min f D �4x1 � 3x2 � 5x3;

s:t: 2x1 C x2 C 3x3 C x5 D 15;

x1 C x2 C x3 C x4 D 12;

�2x1 C x2 � 3x3 C x7 D 3;

2x1 C x2 Cx6 D 9;

xj � 0; j D 1; : : : ; 7:

Answer Initial: the following feasible simplex tableau can be directly obtained
from the problem:

x1 x2 x3 x4 x5 x6 x7 RHS

2 1 3* 1 15

1 1 1 1 12

�2 1 �3 1 3

2 1 1 9

�4 �3 �5

Iteration 1:

1. minf�4; �3; �5g D �5 < 0; q D 3.
3. I D f1; 2g ¤ ;.
4. minf15=3; 12=1g D 15=3; p D 1.
5. Take 3 in row 1 and column 3 as the pivot (marked by “*”, the same below).
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Multiply row 1 by 1=3, then add �1; 3; 5 times of row 1 to rows 2,3,5, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2=3 1=3 1 1=3 5

1=3 2=3 1 �1=3 7

2* 1 1 18

2 1 1 9

�2=3 �4=3 5=3 25

Iteration 2:

1. minf�2=3; �4=3; 5=3g D �4=3 < 0; q D 2.
3. I D f1; 2; 3; 4g ¤ ;.
4. minf5=.1=3/; 7=.2=3/; 18=2; 9=1g D 9=1; p D 3.
5. Multiply row 3 by 1=2, then add �1=3; �2=3; �1; 4=3 times of row 3 to rows

1,2,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2=3 1 1=6 �1=6 2

1=3 1 �2=3 �1=3 1

1 1=2 1=2 9

2* �1=2 1 �1=2 0

�2=3 7=3 2=3 37

Iteration 3:

1. minf�2=3; 7=3; 2=3g D �2=3 < 0; q D 1.
3. I D f1; 2; 4g ¤ ;.
4. minf2=.2=3/; 1=.1=3/; 0=2g D 0; p D 4.
5. Multiply row 4 by 1=2, then add �2=3; �1=3; 2=3 times of row 4 to rows 1,2,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=3 �1=3 2

1 �7=12 �1=6 �1=4 1

1 1=2 1=2 9

1 �1=4 1=2 �1=4

13=6 1=3 1=2 37

Now all reduced costs in the preceding tableau are nonnegative, and hence the
basic optimal solution and associated objective value are, respectively,

Nx D .0; 9; 2; 1; 0; 0; 0/T ; Nf D �37:
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It is seen from the preceding example that the tableau in the second iteration
already attained the basic optimal solution, but an additional iteration was per-
formed, due to the existence of a negative reduced cost. This occurred because of
degeneracy leading to a zero stepsize. So, the condition that reduced costs are all
nonnegative is sufficient but not necessary for optimality.

3.3 Start-Up of the Simplex Method

Algorithm 3.2.1 must start from a feasible simplex tableau. In Example 3.2.1,
there is a feasible simplex tableau available, as is not the case in general. A
so-called Phase-I procedure is usually carried out to provide an initial feasible
simplex tableau (if any), then Algorithm 3.2.1 is used to achieve optimality or
detect unboundedness of the problem. Thus, the simplex algorithm described in
the previous section is actually a “Phase-II” procedure. A standard LP problem is
usually solved by the two procedures in succession, referred to as two-phase simplex
method. In this section, a classical Phase-I procedure using artificial variables will
be presented first; described is then a closely related start-up method, the so-called
“big M”.

Assume that all components of the right-hand side are nonnegative, i.e.,

bi � 0; i D 1; : : : ; m:

If not so, multiply each constraint equation with negative right-hand side by �1

before hand. Then construct an auxiliary problem as follows.
For each i D 1; : : : ; m, introduce a nonnegative artificial variable xnCi to the

i th equation, and take the sum of all artificial variables as the auxiliary objective
function, i.e.,

f 0 D
mX

iD1

xnCi :

Using the constraint system, we eliminate all artificial variables from the auxiliary
objective, resulting in

min f 0 D Pm
iD1 bi � .

Pm
iD1 ai1/x1 � � � � � .

Pm
iD1 ain/xn;

s:t: a11x1 C a12x2 C � � � C a1nxn C xnC1 D b1;

a21x1 C a22x2 C � � � C a2nxn C xnC2 D b2;
:::

am1x1 C am2x2 C � � � C amnxn C xnCm D bm;

xj � 0; j D 1; : : : ; n C m:

(3.16)
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Clearly, there is an available feasible simplex tableau to the preceding auxiliary
program, corresponding to the basic feasible solution

x0 D .0; : : : ; 0
„ ƒ‚ …

n

; b1; : : : ; bm„ ƒ‚ …
m

/T � 0:

Thereby, the program can be solved by Algorithm 3.2.1.
Regarding the outcome, we have the following.

Theorem 3.3.1. The auxiliary program has an optimal solution, associated with a
nonnegative optimal value:

(i) If the optimal value is strictly greater than zero, the original problem is
infeasible;

(ii) If the optimal value is equal to zero, the first n components of the optimal
solution to the auxiliary program form a feasible solution to the original
problem.

Proof. Clearly, there exists a feasible solution to problem (3.16). Since artificial
components of all feasible solutions are nonnegative, all feasible values of the
auxiliary program are nonnegative too. Therefore, there exists an optimal solution,
associated with a nonnegative objective value:

(i) If the optimal value is strictly greater than zero, it can be asserted that
the original problem is infeasible, because if it had a feasible solution
Nxj � 0; j D 1; : : : ; n, then

Nx1; : : : ; Nxn; NxnC1 D � � � D NxnCm D 0

clearly satisfied constraints of (3.16), and hence was a feasible solution
to (3.16), corresponding to auxiliary objective value zero, as is a contradiction.

(ii) If the optimal value is zero, then artificial components of the optimal solution
are 0. From substituting it to the constraints of (3.16), it is therefore seen that
its first n components just satisfy the constraints of the original problem, and
hence constitute a feasible solution to the latter. ut

Corollary 3.3.1. The original problem is feasible if and only if the optimal value of
the auxiliary program vanishes.

Once a feasible solution to the original problem is obtained by the preceding
approach, a feasible simplex tableau can be yielded from the optimal auxiliary
tableau by the “following-up steps” below. These steps come from the fact that
setting all the artificial variables to zero in the system, corresponding to the auxiliary
optimal tableau, leads to a system equivalent to the original one.
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Following-up steps:

(A) Delete columns, associated to all nonbasic artificial variables (which can be
deleted once the corresponding artificial variable leaves the basis).

(B) Go to step D if there is no basic artificial variable.
(C) Delete the row, associated to a basic artificial variable, if all its nonbasic entries

are zero (see the Note below); otherwise, take a nonzero entry of it as pivot
to let the artificial variable become nonbasic, and then delete the associated
column. This is repeated until no artificial variable is basic.

(D) Cover the auxiliary objective row by the original costs, and then eliminate
all basic entries of this row, giving a feasible simplex tableau to the original
problem.

Note: In step C, the row is deleted because substituting 0 to the associated
artificial variable turns the corresponding equation to an identity, as reflects
dependence of the original constraint equations. So, the method can get rid of such
dependency.

The preceding can be put into the following algorithm.

Algorithm 3.3.1 (Phase-1: artificial variable). This algorithm finds a feasible
tableau.

1. Introduce artificial variables, and construct auxiliary program of form (3.16).
2. Call the simplex Algorithm 3.2.1.
3. If the optimal value of the auxiliary program is zero, create a feasible tableau via

“Following-up steps”.
4. The original problem is infeasible if the optimal value of the auxiliary program

is strictly greater than zero.

Note that if a constraint matrix includes some columns of the unit matrix, such
columns should be employed to reduce the number of artificial variables. The
preceding discussions are still valid, though the auxiliary objective function involves
artificial variables only.

Example 3.3.1. Find a feasible simplex tableau to the following problem:

min f D �x1 C x2 � 2x3;

s:t: x1 � 3x2 � 2x3 C x4 D �4;

x1 � x2 C 4x3 � x5 D 2;

�3x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; : : : ; 6:

Answer Construct auxiliary program: the first constraint equation is multiplied
by �1 to turn its right-hand side to nonnegative; as the coefficients of x6 give a unit
vector .0; 0; 1/T , only two artificial variables x7; x8 are introduced.
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min f 0 D x7 C x8;

s:t: �x1 C 3x2 C 2x3 � x4 C x7 D 4;

x1 � x2 C 4x3 � x5 C x8 D 2;

�3x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; : : : ; 8:

Put the preceding auxiliary program into the following tableau:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 3 2 �1 1 4

1 �1 4 �1 1 2

�3 1 1 1 8

1 1

Turn the preceding to a simplex tableau: eliminate nonzeros in x7 and x8 columns
at the bottom (objective) row by adding �1 times of row 1 and of row 2 to that row:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 3 2 �1 1 4

1 �1 4* �1 1 2

�3 1 1 1 8

�2 �6 1 1 �6

which is a feasible simplex tableau to the auxiliary program. Call Algorithm 3.2.1
to solve it:

Iteration 1:

1. minf0; �2; �6; 1; 1g D �6 < 0; q D 3.
3. I D f1; 2; 3g ¤ ;.
4. minf4=2; 2=4; 8=1g D 1=2; p D 2.
5. Multiply row 2 by 1=4, and then add �2; �1; 6 times of row 2 to rows 1,3,4,

respectively

(Erase x8 column after artificial variable x8 becomes nonbasic):

x1 x2 x3 x4 x5 x6 x7 RHS

�3=2 7=2* �1 1=2 1 3

1=4 �1=4 1 �1=4 1=2

�13=4 5=4 1=4 1 15=2

3=2 �7=2 1 �1=2 �3
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Iteration 2:

1. minf3=2; �7=2; 1; �1=2g D �7=2 < 0; q D 2.
3. I D f1; 3g ¤ ;.
4. minf3=.7=2/; .15=2/=.5=4/g D 6=7; p D 1.
5. Multiply row 1 by 2=7, and then add 1=4; �5=4; 7=2 times of row 1 to rows

2,3,4, respectively

(Erase x7 column after artificial variable x7 becomes nonbasic):
Now, all the artificial variables become nonbasic, hence reached is the optimal

objective value 0 of the auxiliary program.
Covering the bottom row by original costs leads to

x1 x2 x3 x4 x5 x6 RHS

�3=7 1 �2=7 1=7 6=7

1=7 1 �1=14 �3=14 5=7

�19=7 5=14 1=14 1 45=7

�1 1 �2

Adding �1 times of row 1 and 2 times of row 2 to the bottom row gives a feasible
tableau of the original problem, i.e.,

x1 x2 x3 x4 x5 x6 RHS

�3=7 1 �2=7 1=7 6=7

1=7 1 �1=14 �3=14 5=7

�19=7 5=14 1=14 1 45=7

�2=7 1=7 �4=7 4=7

Thus, the preceding can be taken as an initial feasible tableau to get Algo-
rithm 3.2.1 started to solve the original problem. Solving LP problems usually
requires two phases, both of which are carried out using the simplex algorithm.

On the other hand, it seems to be attractive to solve LP problems in a single
phase, as leads to the following so-called big-M method.

The according auxiliary program shares the same constraints as before
with (3.16), while its objective function is the sum of the original objective function
and M times of the sum of all the artificial variables, i.e.,

min f 0 D c1x1 C c2x2 C � � � C cnxn C M.xnC1 C xnC2 � � � C xnCm/;

s:t: a11x1 C a12x2 C � � � C a1nxn C xnC1 D b1;

a21x1 C a22x2 C � � � C a2nxn C xnC2 D b2;
:::

am1x1 C am2x2 C � � � C amnxn C xnCm D bm;

xj � 0; j D 1; : : : ; n C m:
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Artificial variables in the objective function are eliminated using the constraint
system. As a result, there will be a feasible simplex tableau to the auxiliary program,
which can be taken as an initial one to get the simplex algorithm started.

The reason for using such an auxiliary objective function is as follows. Its
artificial variable part may be regarded as a “penalty function”, where M serves
as a “penalty factor”, is a sufficiently large positive number (far larger than the
absolute value of any number involved in the computations). The big M inflicts
penalty on possible increase of values of artificial variables, consequently forcing
them minimized prior to the original objective.

It is difficult however to determine a suitable M in advance. Too large M could
lead to bad numerical stability, while too small M degrades method’s effect. It
depends not only on the problem to be solved, but also the computer used. A
practicable way is to take M as a parameter in the solution process.

To demonstrate, we again bring up Example 3.3.1. Its auxiliary program is of the
following form:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 3 2 �1 1 4

1 �1 4 �1 1 2

�3 1 1 1 8

�1 1 �2 M M

Add M times of row 1 and of row 2 to the objective row, giving

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 3 2 �1 1 4

1 �1 4* �1 1 2

�3 1 1 1 8

�1 1 � 2M �2 � 6M M M �6M

Thereby, we can get the simplex algorithm stated from the preceding tableau. In
selection of a pivot column index q, however, it should be noted that M is so large
that the sign of reduced costs depends upon coefficients of M only. In the preceding
tableau, e.g., x3 column is selected as the pivot column, as term M’s coefficients are
0; �2; �6; 1; 1 for costs of nonbasic variables x1 through x5 respectively, and

minf0; �2; �6; 1; 1g D �6; q D 3:

Row 2 is selected as the pivot row by the minimum-ratio test below:

minf4=2; 2=4; 8=1g D 1==2; p D 2:

Then elementary transformations are performed to make a corresponding basis
change, completing the first iteration.
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If the process continued, it can be found that sequences of iterates created by
Big M method and the two-phase simplex method are actually the same. This is
not surprising because, as mentioned previously, the big “penalty factor” M forces
values of artificial variables vanishing first before pursuing optimality of the original
problem–the two methods are essentially the same. Practically, however, the two-
phase method is certainly preferable to the big M method, as it involves no any
parameter, and easier to realize.

Nevertheless, the auxiliary programs, presented previously in this section, are
usually found in textbooks only. If the number m of rows is large, the scale of the
programs would become unacceptable large. A somehow practicable approach is to
use an auxiliary program with a single artificial variable as follows.

Introducing artificial variable xnC1, we consider the following auxiliary program
instead:

min f 0 D xnC1;

s:t: a11x1 C a12x2 C � � � C a1nxn C b1xnC1 D b1;

a21x1 C a22x2 C � � � C a2nxn C b2xnC1 D b2;
:::

am1x1 C am2x2 C � � � C amnxn C bmxnC1 D bm;

xj � 0; j D 1; : : : ; n C 1;

(3.17)

to which there is a feasible solution

x0 D .0; : : : ; 0
„ ƒ‚ …

n

; 1/T � 0:

Results similar to Theorem 3.3.1 and Corollary 3.3.1 hold to the preceding auxiliary
program. On the other hand, using the following auxiliary objective function leads
to an analogue to the big M method:

f 0 D c1x1 C c2x2 C � � � C cnxn C M xnC1:

A drawback of such auxiliary programs seems to be lack of a explicit feasible
simplex tableau. This will be seen not essential, however. In Sect. 13.2, we will
present other Phase-I methods as well as a more practicable single artificial variable
approach.

Now it is known that the answer to a LP problem must be one of the following
three cases:

(i) Infeasible problem: there exists no feasible solution;
(ii) Unbounded problem: there exists a feasible solution but the feasible value is

lower unbounded over the feasible region;
(iii) There exists an optimal basic solution.
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In principle, a two-phase simplex method can be used to solve any LP problem,
achieving an basic optimal solution, if any, or detecting infeasibility or unbounded-
ness, otherwise.

3.4 Revised Simplex Tableau

Simplex tableau is not an unique tool to implement the simplex method. In fact,
getting rig of the tableau can lead to a more compact variant of the simplex method.
For this purpose, we will employ vectors or matrices more from now on.

The standard LP problem (1.8) may be represented by the following tableau:

xT f RHS
A b

cT �1

Assume that through some elementary transformations, the preceding table becomes
the simplex tableau Table 3.1, which may be succinctly put into

xT
B xT

N f RHS

I NN Nb
NzT
N �1 � Nf

(3.18)

Unless specified otherwise, thereafter the associated basic and nonbasis index sets
are assumed to be

B D fj1; � � � ; jmg; N D AnB D fjmC1; � � � ; jng: (3.19)

Columns corresponding to B are said to be basic, and those to N nonbasic. Without
confusion, B and N will also be used to respectively denote submatrices consisting
of corresponding columns. The two submatrices are respectively called basis matrix
and nonbasis matrix, or basis and nonbasis for short. It is clear that B is an invertible
square matrix. The simplex tableau corresponds to the basic solution

NxB D Nb; NxN D 0:

If Nb � 0; NzN � 0, then the tableau is an optimal (simplex) tableau, giving an
basic optimal solution, and the according B and N are optimal basis and optimal
nonbasis, respectively.

On the other hand, if Ax D b is premultiplied by B�1, and some transposition
of terms is made, it follows that

xB C B�1NxN D B�1b:
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Table 3.2 Equivalence between the associated quantities

Quantity Simplex tableau Relation Revised simplex tableau

Objective row NzT
N D cT

N � cT
B B�1N

Pivot column Naq D B�1aq

Right-hand side Nb D B�1b

Pivot row eT
p

NN D eT
p B�1N

Substituting the preceding to

cT
B xB C cT

N xN � f D 0

gives

.cT
N � cT

B B�1N /xN � f D �cT
B B�1b;

which can put in

xT
B xT

N f RHS
I B�1N B�1b

cT
N � cT

B B�1N �1 �cT
B B�1b

(3.20)

corresponding to basic solution NxB D B�1b; NxN D 0 (hereafter NxB D B�1b

is often said basic solution for short). The preceding, representing a problem
equivalent to the original, is called revised simplex tableau, compared to the simplex
tableau (3.18).

For simplicity, xT
B and f columns in the preceding two tableaus may be omitted,

as they remain unchanged as basis changes.

Proposition 3.4.1. Any simplex tableau and revised simplex tableau, correspond-
ing to the same basis, are equivalent.

Proof. Denote by (3.18) and (3.20) the two tableaus, having the same basis B . Since
problems represented by them are equivalent, the corresponding entries of the two
tableaus are equal. ut

Based on the preceding Proposition, Table 3.2 gives equivalence correspondence
between quantities, involved in simplex steps, of tableaus (3.18) and (3.20):

In conventional simplex context, each iteration corresponds to a basis B (or its
inverse B�1), with which any entry in a simplex tableau can be calculated from the
original data .A; b; c/. Thereby, Table 3.2 will be used as a tool to derive common
simplex variants, such as the (revised) simplex algorithm in the next section and the
dual (revised) simplex algorithm in Sect. 4.5.

Notations in this section will be employed throughout this book.
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3.5 Simplex Method

A simplex tableau has to be calculated in each iteration by the tableau simplex
Algorithm 3.2.1. But its .mC1/�.nC1/ entries are not all useful in an iteration. In
fact, only the objective row is needed for the selection of a pivot column, while the
pivot column and right-hand side needed for the determination of a pivot row. Using
B�1, therefore, a variant without any simplex tableau can be derived by calculating
the first three items in Table 3.2.

Let us consider updating B�1. Assume that pivot column index q and row index
p are already determined. Putting the nonbasic column aq in place of B’s pth
column ajp gives the new basis below:

OB D .aj1 ; : : : ; ajp�1 ; aq; ajpC1
; : : : ; ajm/: (3.21)

It is now needed to compute OB�1 to go on the next iteration.
Note that Naq D B�1aq . Taking Napq as the pivot, the according elementary

transformations amount to premultiplying the first m rows of the tableau by m � m

elementary matrix

Ep D

0

B
B
B
B
B
B
B
B
B
B
B
@

1 �Na1 q= Nap q

: : :
:::

�Nap�1; q= Nap q

1= Nap q

�NapC1; q= Nap q

:::
: : :

�Nam q= Nap q 1

1

C
C
C
C
C
C
C
C
C
C
C
A

p (3.22)

p

which may also be obtained by executing the same elementary transformations on
the unit matrix. It is seen that such a matrix, which is the same as the unit matrix
except for the pth column, is determined only by Naq . Combining (3.21) and (3.22)
gives

EpB�1 OB D Ep.B�1aj1 ; : : : ; B�1ajp�1 ; B�1aq; B�1ajpC1
; : : : ; B�1ajm/

D Ep.e1; : : : ; ep�1; Naq; epC1; : : : ; em/

D .Epe1; : : : ; Epep�1; Ep Naq; EpepC1; : : : ; Epem/ D I;
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from which the update of the basis’ inverse follows, i.e.,

OB�1 D EpB�1: (3.23)

Based on the preceding discussions and the equivalence between the simplex
tableau and revised simplex tableau, we are able to revise Algorithm 3.2.1 to the
following version (Dantzig and Orchard-Hays 1953):

Algorithm 3.5.1 (Simplex algorithm 1). Initial: .B; N /; B�1; NxB D B�1b � 0

and Nf D cT
B NxB . This algorithm solves the standard LP problem (1.8).

1. Compute NzN D cN � N T Ny; Ny D B�T cB .
2. Determine pivot column index q 2 arg minj 2N Nzj .
3. Stop if Nzq � 0 (optimality achieved).
4. Compute Naq D B�1aq .
5. Stop if Naq � 0 (unbounded problem).
6. Determine stepsize ˛ and pivot row index p such that

˛ D Nxjp = Nap q D minf Nxji = Nai q j Nai q > 0I i D 1; : : : ; mg:
7. Set Nxq D ˛, and update NxB D NxB � ˛ Naq; Nf D Nf C ˛Nzq if ˛ ¤ 0.
8. Update B�1 by (3.23).
9. Update .B; N / by exchanging jp and q.

10. Go to step 1.

The preceding, usually called revised simplex algorithm, will be referred to as
simplex algorithm 1.

In step 1, vector Ny is calculated first, then it is used to compute reduced costs NzN ,
as is referred to as pricing. Ny is called simplex multipliers (vector), whose additional
meanings will be clear later.

See Sect. 3.3 for how to provide an initial basic feasible solution (or basis). This
topic will be handled further in Chap. 13.

Example 3.5.1. Solve the following problem by Algorithm 3.5.1:

min f D �4x1 � 3x2 � 5x3;

s:t: 2x1 C x2 C 3x3 C x5 D 15;

x1 C x2 C x3 C x4 D 12;

x2 � 3x3 C x7 D 3;

2x1 C x2 C x6 D 9;

xj � 0; j D 1; : : : ; 7:

Answer Initial: B D f5; 4; 7; 6g; N D f1; 2; 3g; B�1 D I;

NxB D .15; 12; 3; 9/T ; f D 0.

Iteration 1:

1. Ny D B�T cB D .0; 0; 0; 0/T ; NzN D cN � N T Ny D .�4; �3; �5/T .
2. minf�4; �3; �5g D �5 < 0; q D 3.
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4: Na3 D B�1a3 D .3; 1; �3; 0/T :

6: ˛ D minf15=3; 12=1g D 15=3 D 5; p D 1:

7: NxB D .15; 12; 3; 9/T � 5 � .3; 1; �3; 0/T D .0; 7; 18; 9/T ; x3 D 5;

f D 5 � .�5/ D �25:

8: B�1 D

0

B
B
@

1=3

�1=3 1

1 1

0 1

1

C
C
A :

9: B D f3; 4; 7; 6g; N D f1; 2; 5g; NxB D .5; 7; 18; 9/T :

Iteration 2:

1. Ny D .�5=3; 0; 0; 0/T ; NzN D .�4; �3; 0/T � .�10=3; �5=3; �5=3/T

D .�2=3; �4=3; 5=3/T .
2. minf�2=3; �4=3; 5=3g D �4=3 < 0; q D 2.

4: Na2 D .1=3; 2=3; 2; 1/T :

6: ˛ D minf15; 21=2; 9; 9g D 9; p D 3:

7: NxB D .5; 7; 18; 9/T � 9 � .1=3; 2=3; 2; 1/T D .2; 1; 0; 0/T ; x2 D 9;

f D �25 C 9 � .�4=3/ D �37:

8: B�1 D

0

B
B
@

1 �1=6

0 1 �1=3

0 1=2

0 �1=2 1

1

C
C
A

0

B
B
@

1=3

�1=3 1

1 1

0 1

1

C
C
AD

0

B
B
@

1=6 �1=6

�2=3 1 �1=3

1=2 1=2

�1=2 �1=2 1

1

C
C
A :

9: B D f3; 4; 2; 6g; N D f1; 7; 5g; NxB D .2; 1; 9; 0/T :

Iteration 3:

1. Ny D .�7=3; 0; �2=3; 0/T ; NzN D .�4; 0; 0/T � .�10=3; �2=3; �7=3/T

D .�2=3; 2=3; 7=3/T .
2. minf�2=3; 2=3; 7=3g D �2=3; q D 1.

4: Na1 D .2=3; 1=3; 0; 2/T :

6: ˛ D minf2=.2=3/; 1=.1=3/; 0=2g D 0; p D 4:

7: NxB D .2; 1; 9; 0/T ; x6 D 0; f D �37:

8: B�1 D

0

B
B
@

1 �1=3

0 1 �1=6

0 1 0

0 1=2

1

C
C
A

0

B
B
@

1=6 �1=6

�2=3 1 �1=3

1=2 1=2

�1=2 �1=2 1

1

C
C
AD

0

B
B
@

1=3 0 �1=3

�7=12 1 �1=4 �1=6

1=2 1=2 0

�1=4 �1=4 1=2

1

C
C
A :

9: B D f3; 4; 2; 1g; N D f6; 7; 5g; NxB D .2; 1; 9; 0/T :

Iteration 4:

1. Ny D .�13=6; 0; �1=2; �1=3/T ; NzN D .0; 0; 0/T � .�1=3; �1=2; �13=6/T D
.1=3; 1=2; 13=6/T � 0.
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2. The optimal basic solution and optimal value:

Nx D .0; 9; 2; 1; 0; 0; 0/T ; Nf D �37:

If some practicable pivot rule (Chap. 11) or pricing scheme (Sect. 25.3) is used
in the simplex method, there will be a need for computing row p. In order not to
increase the number of systems to be solved, modern LP codes are often based on the
following variant, where the objective row is computed in recurrence (see (3.13)).

Algorithm 3.5.2 (Simplex algorithm 2). Initial: .B; N /; B�1; NxB D B�1b � 0,
NzN D cN � N T B�T cB and Nf D cT

B NxB . This algorithm solves the standard LP
problem (1.8).

1. Determine pivot column index q 2 arg minj 2N Nzj .
2. Stop if Nzq � 0 (optimality achieved).
3. Compute Naq D B�1aq .
4. Stop if Naq � 0 (unbounded).
5. Determine stepsize ˛ and pivot row index p such that

˛ D Nxjp = Nap q D minf Nxji = Nai q j Nai q > 0I i D 1; : : : ; mg:
6. Set Nxq D ˛, and update NxB D NxB � ˛ Naq; Nf D Nf C ˛Nzq if ˛ ¤ 0.
7. Compute �N D N T v, where v D B�T ep.
8. Update by: NzN D NzN C ˇ�N ; Nzjp D ˇ, where ˇ D �Nzq= Nap q .
9. Update B�1 by (3.23).

10. Update .B; N / by exchanging jp and q.
11. Go to step 1.

Although they are equivalent in theory, the revised Algorithms differ from
the tableau algorithm numerically. For solving large-scale LP problems, they are
certainly superior to the latter (especially when m � n, see Sect. 3.8). In fact, it
serves as a basis for designing practicable simplex variants, though the formulation
of the latter is simpler, providing a suitable tool for illustration.

Algorithm 3.5.1 was previously derived based on the equivalence of the simplex
tableau and revised simplex tableau. It may be derived alternatively by taking a
downhill edge, emanating from a current vertex, as a search direction to form a line
search scheme, as follows.

Without loss of generality, let B D f1; : : : ; mg and N D fm C 1; : : : ; ng
be respectively the basis and nonbasis, associated with basic feasible solution Nx.
Assume that a pivot column index q 2 N has been determined such that

Nzq D cq � aT
q B�T cB < 0:

Introduce vector

�x D
�

B�1aq

�eq�m

�

; (3.24)
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where eq�m is the .n � m/-dimensional unit vector with the .q � m/th component
1. It is clear that

� cT �x D cq � aT
q B�T cB D Nzq < 0: (3.25)

Therefore, ��x is a downhill with respect to cT x. Taking it as search direction
gives the following line search scheme:

Ox D Nx � ˛�x; (3.26)

where ˛ � 0 is a stepsize to be determined.
Since Nx is feasible, it holds for any ˛ � 0 that

A Ox D A Nx � ˛ŒB; N ��x D A Nx D b:

Therefore, what should do is to maximize ˛ subject to OxB � 0. When B�1aq 6� 0,
such doing results in ˛ and p such that

˛ D Nxjp =.B�1ap q/ D minf Nxji =.B�1ai q/ j B�1ai q > 0; i D 1; : : : ; mg: (3.27)

It is clear that the according new solution Ox is still feasible. In fact, it is verified that
Ox is just the basic feasible solution, associated with the new basis resulting from the
old by exchanging jp and q.

The relation between the new and old basis matrices is

OB D B C .aq � ajp /eT
p :

In view of that ajp is the pth column of B and that B�1ajp D ep and B�1aq D
Naq hold, it is not difficult to derive the following result from Sherman-Morrison
formula (Golub and Van Loan 1989):

OB�1 D B�1 � B�1.aq � ajp /eT
p B�1

1 C eT
p B�1.aq � ajp /

D
 

I � . Naq � ep/eT
p

Napq

!

B�1; (3.28)

which may serve as an update of B�1. In fact, it is easily verified that the preceding
and (3.23) are actually equivalent.

The search direction ��x, defined by (3.24), can be further investigated
geometrically. Regarding set

E D fx 2 Rn j Ax D b; x � 0; xj D 0; q ¤ j 2 N g
D fx 2 Rn j xB D B�1b � xq.B�1aq/ � 0; xq � 0; xj D 0; q ¤ j 2 N g;

(3.29)

we have the following result.
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Proposition 3.5.1. Set E is a downhill edge, emanating from the current vertex Nx,
and ��x is its direction. If B�1aq � 0, then ��x is an (unbounded) extreme
direction.

Proof. It is clear that E is a half-line or edge, emanating from Nx. By (3.29), (3.27)
and (3.24), for any x 2 E � P it holds that

E D fx 2 Rn j xB D B�1b � xq.B�1aq/; 0 � xq � ˛; xj D 0; q ¤ j 2 N g
D fx 2 Rn j x D Nx � xq�x; xq 2 Œ0; ˛�g:

By (3.25), it is known that the associated objective value satisfies

f D cT x D cT Nx � xqcT �x D cT Nx C xq Nzq � cT Nx:

Note that (3.27) is well-defined when B�1aq 6� 0. If, in addition, Nxjp D 0, then
˛ D 0, and hence E degenerates to vertex Nx. If Nxjp > 0, hence ˛ > 0, then the
associated objective value strictly decreases with xq 2 Œ0; ˛�. Therefore, ��x is
a direction of the downhill edge E . When B�1aq � 0, it is clear that ˛ D C1
corresponds to the edge E 2 P , and hence ��x is an extreme direction. ut

Note that edge E , defined by (3.29), could degenerate to the current vertex Nx if
some component of B�1b vanishes and that the objective value is lower unbounded
over the feasible region if ��x is an extreme direction.

3.6 Degeneracy and Cycling

It was seen that a zero stepsize leads to the same basic feasible solution, and hence
the unchanged objective value. Thus, finiteness of the simple method is questionable
(see, e.g., Ryan and Osborne 1988; Wolfe 1963). Soon after its emerging, in fact,
the simplex method is found not to terminate in few cases. E.M.L. Beale (1955) and
A.J. Hoffman (1953) offered such instances independently. The following is due to
Beale.

Example 3.6.1. Solve the following problem by Algorithm 3.2.1:

min f D �3=4x4 C 20x5 � 1=2x6 C 6x7;

s:t: x1 C 1=4x4 � 8x5 � x6 C 9x7 D 0;

x2 C 1=2x4 � 12x5 � 1=2x6 C 3x7 D 0;

x3 C x6 D 1;

xj � 0; j D 1; : : : ; 7:



86 3 Simplex Method

Answer Initial: the following feasible tableau is available from the preceding:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=4* �8 �1 9

1 1=2 �12 �1=2 3

1 1 1

�3=4 20 �1=2 6

Iteration 1:

1. minf�3=4; 20; 1; �1=2; 6g D �3=4 < 0; q D 4.
3. I D f1; 2g ¤ ;.
4. minf0=.1=4/; 0=.1=2/g D 0; p D 1.
5. Multiply row 1 by 4, and then add �1=2; 3=4 times of row 1 to rows 2,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

4 1 �32 �4 36

�2 1 4* 3=2 �15

1 1 1

3 �4 �7=2 33

Iteration 2:

1. minf3; �4; �7=2; 33g D �4 < 0; q D 5.
3. I D f2g ¤ ;.
4. minf0=4g D 0; p D 2.
5. Multiply row 2 by 1=4, and then add 32; 4 times of row 2 to rows 1,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�12 8 1 8* �84

�1=2 1=4 1 3=8 �15=4

1 1 1

1 1 �2 18

Iteration 3:

1. minf1; 1; �2; 18g D �2 < 0; q D 6.
3. I D f1; 2; 3g ¤ ;.
4. minf0=8; 0=.3=8/; 1=1g D 0; p D 1.
5. Multiply row 1 by 1=8, and then add �3=8; �1; 2 times of row 1 to rows 2,3,4,

respectively:



3.6 Degeneracy and Cycling 87

x1 x2 x3 x4 x5 x6 x7 RHS

�3=2 1 1=8 1 �21=2

1=16 �1=8 �3=64 1 3=16*

3=2 �1 1 �1=8 21=2 1

�2 3 1=4 �3

Iteration 4:

1. minf�2; 3; 1=4; �3g D �3 < 0; q D 7.
3. I D f2; 3g ¤ ;.
4. minf0=.3=16/; 1=.21=2/g D 0; p D 2.
5. Multiply row 2 by 16=3, and then add 21=2; �21=2; 3 times of row 2 to rows

1,3,4, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2* �6 �5=2 56 1

1=3 �2=3 �1=4 16=3 1

�2 6 1 5=2 �56 1

�1 1 �1=2 16

Iteration 5:

1. minf�1; 1; �1=2; 16g D �1 < 0; q D 1.
3. I D f1; 2g ¤ ;.
4. minf0=2; 0=.1=3/g D 0; p D 1.
5. Multiply row 1 by 1=2, and then add �1=3; 2; 1 times of row 1 to rows 2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �3 �5=4 28 1=2

1=3* 1=6 �4 �1=6 1

1 1 1

�2 �7=4 44 1=2

Iteration 6:

1. minf�2; �7=4; 44; 1=2g D �2 < 0; q D 2.
3. I D f2g ¤ ;.
4. minf0=.1=3/g D 0; p D 2.
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5. Multiply row 2 by 3, and then add 3; 2 times of row 2 to rows 1,4, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=4 �8 �1

1 1=2 �12 �1=2 3

1 1 1

�3=4 20 �1=2 6

It is seen that stepsizes are equally zero in all the six iterations, and the last
tableau is the same as the first one, consequently. Therefore, continuing the process
must generate the same sequence of tableaus, as is a phenomena called cycling. So,
the simplex algorithm failed to solve Beale’s problem. It is clear that such a hated
infinite case to the simplex method could occur only when degeneracy presents.

At the early days of the simplex method, some scholars thought that degeneracy
hardly happens in practice, and up to now the nondegeneracy is still frequently
assumed in theory. However, it turns out that degeneracy almost always presents
when the simplex method is applied to solving real-world LP problems. Even so,
fortunately, cycling rarely occurs, except for few artificial instances, and the simplex
method has achieved great success in practice.

The real problem caused by degeneracy seems to be stalling, as it degrades
method’s performance seriously when a large number of iterations stay at a vertex
for too long a time before exiting it. It is especially a headache for highly degenerate
problems, where vanished basic components occupy a large proportion, as leads
to a huge number of iterations. But this hard problem is only with the simplex
method using the conventional pivot rule, not with variants using rules, presented
in Chap. 11.

3.7 Finite Pivot Rule

As was shown int the previous section, the finiteness of the simplex method is not
guaranteed in general. An approach or pivot rule that turns the simplex method to a
finite one is called finite.

Is there any finite approach or pivot rule?
The answer is positive. Charnes (1952) proposed a “perturbation approach” by

adding a perturbation term to the right-hand side of the initial feasible simplex
tableau, i.e.,

w D .�; �2; : : : ; �m/T ;

where � > 0 is a sufficiently small parameter (while still using Dantzig’s original
rule for pivot column selection).
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Theorem 3.7.1. The perturbation approach is finite.

Proof. The perturbation term added to the right-hand side can be put in the form
w D I w. In any iteration, the right-hand side can be written

v
4D Nb C U w;

where U is a permutation, resulting from performing elementary transformations on
I . Note that U and I have the same rank m, and every row of U is nonzero. Firstly,
it holds that Nb � 0, because if, otherwise, Nbi < 0 for some i 2 f1; : : : ; mg, then it
follows that vi < 0, as contradicts to problem’s feasibility. Further, it is clear that
vi > 0 holds for all row indices i , satisfying Nbi > 0; on the other hand, vi > 0

also holds for all row index i , satisfying Nbi D 0, because the first nonzero of the
i th row of U is positive (otherwise, it contradicts the feasibility). Therefore, v > 0

holds. Since each tableau corresponds to a nondegenerate basic feasible solution,
there is no any possibility of cycling, hence the process terminates within finitely
many iterations. Consequently, eliminating all parameter terms in the end tableau
leads to the final tableau of the original problem. ut

The order of two vectors, determined by their first different components, is
called lexicographic order. Equal vectors are regarded as equal in the lexicographic
order. .�1; : : : ; �t / 	 .�1; : : : ; �t / means that the former is less than the latter in
lexicographic order, that is, for the smallest subscript i , satisfying �i ¤ �i , it holds
that �i < �i . Similarly, “
” is used to denote “greater than” in lexicographic order.

Once a pivot column index q is determined, the perturbation approach amounts
to determining a pivot row index p by

p 2 arg minf. Nbi C ui 1� C ui 2�
2 C � � � C ui m�m/= Nai q j Nai q > 0I i D 1; : : : ; mg:

(3.30)

As � is sufficiently small, the preceding is equivalent to the following so-called
lexicographic rule (Dantzig et al. 1955):

p 2 arg minf. Nbi ; ui 1; ui 2; : : : ; ui m/= Nai q j Nai q > 0I i D 1; : : : ; mg; (3.31)

where ui j is the entry at the i th row and the j th column of U , and “min” is
minimization in the sense of lexicographic order.

Among existing finite rules, Bland (1977) rule draws great attention due to its
simplicity (also see Avis and Chvatal 1978).

Rule 3.7.1 (Bland rule) Among nonbasic variables, corresponding to negative
reduced costs, select the smallest-indexed one to enter the basis. When there are
multiple rows, attaining the same minimum-ratio, select the basic variable with the
smallest index to leave the basis.

Theorem 3.7.2. Bland rule is finite.
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Proof. Assume that cycling occurs with the simplex algorithm using Bland rule. If
some variable leaves the basis in a circle, it must enter the basis gain. Denote by T

the index set of such shuttling variables, and define

t D maxfj 2 T g:

Note that the stepsize is always equal to 0 in each iteration in the circle, and hence
leads to the same basic feasible solution; besides, the h-indexed component of the
basic feasible solution is 0 for any h 2 T .

Assume that xt is selected to enter the basis for simplex tableau

NA 0 Nb
NzT �1 Ň (3.32)

thus Nzt < 0, and Nzj � 0 for any reduced cost’s index j < t .
Assume that at another simplex tableau

OA 0 Ob
OcT �1 Ǒ (3.33)

basic variable xt in row p leaves and nonbasic variable xs enters the basis. Let
xj1 ; : : : ; xjm be basic variables (xjp � xt ). It follows that Ocs < 0, and Ocj � 0 for
any reduced cost’s index j < s. Note that pivot is positive, i.e., Oaps > 0; since
s 2 T , it holds that s < t .

Define vk; k D 1; : : : ; n; n C 1 as follows:

vk D

8
ˆ̂
<

ˆ̂
:

1; k D s;

�Oais ; k D ji ; i D 1; : : : ; m;

Ocs; k D n C 1;

0; otherwise:

(3.34)

Note that basic columns of OA constitute a permutation. Nonbasic components of
vector

v D .v1; : : : ; vn; vnC1/
T

are all 0, except for vs D 1. For i D 1; : : : ; m, on the other hand, the basic entries in
row i of OA, except for Oaiji D 1, are all zero; basic entries of Oc are all zero. Therefore
it holds that

� OA 0

OcT �1

�

v D

0

B
B
B
@

Oa1;s � Oa1;s

:::

Oam;s � Oam;s

Ocs � Ocs

1

C
C
C
A

D 0: (3.35)
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Since (3.32) can be obtained from (3.33) by premultiplying a series of elementary
matrices, it follows that

� NA 0

NzT �1

�

v D 0; (3.36)

where the last equality is

nX

kD1

Nzkvk � vnC1 D 0;

hence

nX

kD1

Nzkvk D vnC1 D Ocs < 0:

Therefore, there exists some index h < n C 1 such that

Nzhvh < 0; (3.37)

giving Nzh ¤ 0 and vh ¤ 0.
On the other hand, it is known by vh ¤ 0 and the definition of v that h 2

fj1; : : : ; jm; sg. Thus, there are only following three cases arising:

(i) h D s. vh D 1 in this case. Since xt is an entering variable for simplex
tableau (3.32) and h D s < t , hence Nzh > 0, it follows that Nzhvh D Nzh > 0,
contradicting (3.37).

(ii) h D jp D t . In this case, from Nzh D Nzt < 0 and vh D �Oaps < 0, it follows that
Nzhvh > 0, contradicting (3.37).

(iii) h D ji ¤ jp or h ¤ t . Now xh is a nonbasic variable of simplex tableau (3.32)
(otherwise, Nzh D 0); it is also a basic index of simplex tableau (3.33), hence
h 2 T . It follows that

Obi D 0; h < t; (3.38)

and hence Nzh > 0. Further, it holds that

vh D �Oai;s > 0;

since, otherwise, vh ¤ 0 gives Oai;s > 0, from which and (3.38) it follows that
xh, rather than xt , were selected to leave the basis for simplex tableau (3.33), as a
contradiction to (3.37). Therefore, Bland rule is finite. ut
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Chang (1979), Terlaky (1985) and Wang (1987) independently proposed a so-
called “criss-cross” finite variant of Bland rule, which is embedded in a somehow
different context, compared with the simplex method (see Chap. 18).

Unfortunately, it turns out that these finite rules are very slow in practice, not
be mentioned in the same breath with the conventional rule. This is not surprising,
however. For example, Rule 3.7.1 gives nonbasic variables with small index priority
to enter the basis, while we all know that basic variables of an optimal solution are
not necessarily small indexed.

Rule 3.7.1 actually uses a priority order, coinciding with decreasing indices,
for selection of an entering variable. It is clear that the “ideal” order, if any,
should enter the basic variables of an optimal solution to the basis. According to
the heuristic Proposition 2.5.1, inequality constraints with small pivoting-indices
should be satisfied as equations by an optimal solution, therefore the corresponding
variables would be better to be nonbasic (zero-valued). In other words, variables
with large pivoting-indices should have the priority to enter the basis (stipulation:
among variables with equal pivoting-indices, select one with the largest index).
Thus, we have the following variant of Bland rule (Pan 1990, 1992c).

Rule 3.7.2. Among nonbasic variables, corresponding to negative reduced costs,
select the largest pivoting-indexed one to enter the basis. When there are multiple
rows, attaining the same minimum-ratio, select the largest pivoting-indexed basic
variable to leave the basis. When multiple variables correspond to the same largest
pivoting-index, take the largest indexed one.

Theorem 3.7.3. Rule 3.7.2 is finite.

Proof. This rule is equivalent to Rule 3.7.1 if variables are re-given indices in
accordance with their pivoting-indices. ut

Preliminary computational experiments with small test problems showed that
performance of Rule 3.7.2 is much better than Bland’s Rule 3.7.1. It might be the
best among known finite rules. However, it is still inferior to the conventional rule,
as requiring more iterations than the latter in general (Pan 1990).

Bland’s Rule can be easily generalized to the following finite rule.

Rule 3.7.3. Given any order for variables. Among nonbasic variables, correspond-
ing to negative reduced costs, select one the smallest in this order to enter the basis.
When there are multiple rows attaining the same minimum-ratio, select the basic
variable smallest in the order to leave the basis.

In Example 3.6.1 (Beale problem), we have seen that cycling occurred with the
simplex algorithm. The situation will be different if Rule 3.7.2 is used in the place
of the conventional rule.
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Example 3.7.1. Solve Beale problem by Algorithm 3.2.1 using Rule 3.7.2:

min f D �3=4x4 C 20x5 � 1=2x6 C 6x7;

s:t: x1 C 1=4x4 � 8x5 � x6 C 9x7 D 0;

x2 C 1=2x4 � 12x5 � 1=2x6 C 3x7 D 0;

x3 C x6 D 1;

xj � 0; j D 1; : : : ; 7:

Answer As the coefficient matrix includes a unit matrix, it is easy to transform
the constraints to “�” type of inequalities:

min f D �3=4x4 C 20x5 � 1=2x6 C 6x7;

s:t: �1=4x4 C 8x5 C x6 � 9x7 � 0;

�1=2x4 C 12x5 C 1=2x6 � 3x7 � 0;

� x6 � �1;

xj � 0; j D 4; : : : ; 7:

Note that the first three constraints correspond to the original variables
x1; x2; x3, respectively; pivoting-indices of constraints may be regarded as those
for the associated variables.

The gradient of the objective function is c D .�3=4; 20; �1=2; 6/T . The gradient
of the first constraint is a1 D .�1=4; 8; 1; �9/T . The pivoting-index of this
constraint (or corresponding variable x1) is ˛1 D �aT

1 c=ka1k D �8:74. Similarly,
calculate all pivoting-indices and put them in the following table in decreasing order:

Variable Constraint ˛i

x4 x4 � 0 0:75

x6 x6 � 0 0:50

x3 �x6 � �1 �0:50

x7 x7 � 0 �6:00

x1 �1=4x4 C 8x5 C x6 � 9x7 � 0 �8:74

x5 x5 � 0 �20:00

x2 �1=2x4 C 12x5 C 1=2x6 � 3x7 � 0 �114:78

Now call Algorithm 3.2.1 with Rule 3.7.2.
Initial: The following feasible simplex tableau is obtained directly from the

preceding problem:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=4* �8 �1 9

1 1=2 �12 �1=2 3

1 1 1

�3=4 20 �1=2 6



94 3 Simplex Method

Iteration 1:

1. Among nonbasic variables x4 .˛4 D 0:75/ and x6 .˛6 D 0:50/ with negative
reduced costs, select the largest pivoting-indexed x4 to enter the basis, q D 4.

3. I D f1; 2g ¤ ;.
4. minf0=.1=4/; 0=.1=2/g D 0. Among basic variables in rows 1 and 2, select the

largest pivoting-indexed x1 .˛1 D �8:74 > �114:78 D ˛2/ to leave the basis,
p D 1.

5. Multiply row 1 by 4, and then add �1=2; 3=4 times of row 1 to rows 2,4,
respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

4 1 �32 �4 36

�2 1 4 3=2* �15

1 1 1

3 �4 �7=2 33

Iteration 2:

1. Among nonbasic variables x5 .˛5 D �20:00/ and x6 .˛6 D 0:50/ with negative
reduced costs, select the largest-pivoting-indexed x6 to enter the basis, q D 6.

3. I D f2; 3g ¤ ;.
4. minf0=.3=2/; 1=1g D 0, only x2 is eligible for leaving the basis, p D 2.
5. Multiply row 2 by 2=3, and then add 4; �1; 7=2 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�4=3 8=3 1 �64=3 �4

�4=3 2=3 8=3 1 �10

4=3 �2=3 1 �8=3 10* 1

�5=3 7=3 16=3 �2

Iteration 3:

1. Among nonbasic variables x1 .˛1 D �8:74/ and x7 .˛7 D �6:00/ with negative
reduced costs, select the largest-pivoting-indexed x7 to enter the basis, q D 7.

3. I D f3g ¤ ;.
4. Only x3 is eligible for leaving the basis, p D 3.
5. Multiply row 3 by 1=10, and then add 4; 10; 2 times of row 3 to rows 1,2,4,

respectively:
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x1 x2 x3 x4 x5 x6 x7 RHS

�4=5 12=5 2=5 1 �112=5 2=5

1 1 1

2=15* �1=15 1=10 �4=15 1 1=10

�7=5 11=5 1=5 24=5 1=5

Iteration 4:

1. Only nonbasic variable x1 is eligible for entering the basis, q D 1.
3. I D f3g ¤ ;.
4. Only x7 is eligible for leaving the basis, p D 3.
5. Multiply row 3 by 15=2, and then add 4=5; 7=5 times of row 3 to rows 1,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2 2=5 1 �24 6 1

1 1 1

1 �1=2 3=4 �2 15=2 3=4

3=2 5=4 2 21=2 5=4

All reduced costs are now nonnegative. The optimal solution and optimal value
are

Nx D .3=4; 0; 0; 1; 0; 1; 0/T ; Nf D �5=4:

Thus, Beale problem is solved without cycling.

3.8 Computational Complexity

The evaluation of an algorithm is concerned with the amount of required arithmetics
and storages, numerical stability and degree of difficulty for programming. In
this section, we will discuss the simplex method’s computational complexity,
including time complexity (estimate of the number of required four basic arithmetics
and comparisons), and storage complexity (estimate of the number of memory
locations).

Either time or storage complexity is closely related to the scale of the problem
handled: the larger the problem is, the higher the complexity. Therefore, analyzing
complexity must be done with fixed problem’s size. As for a standard LP problem,
it is convenient to use m and n to determine its size roughly. Further, problem’s
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size also depends on concrete values of .A; b; c/, as can be characterized by total
number L, called input length of binary digits of input data. For reaching a certain
solution precision, the amount of arithmetics is a function of m; n; L. If the number
of arithmetics required by solving some type of problems is bounded above by
some function �f .m; n; L/, the algorithm is said to have order O.f .m; n; L// of
(time) complexity, where � > 0 is a constant and f .m; n; L/ is complexity function.
If f .m; n; L/ is a polynomial in m; n and L, it is said to be of polynomial time
complexity. Usually, such algorithms are regarded as “good” ones, and the lower the
order of the polynomial is, the better the algorithm. On the other hand, if f .m; n; L/

is exponential in m; n or L, it is said to be of exponential time complexity. Such
algorithms are regarded as “bad”, as they can fail to solve larger problems by
consuming unacceptable amount of time. Note, however, that such complexity is
the worst case complexity, as the amount of arithmetics never exceeds �f .m; n; L/.

The following table lists numbers of arithmetics per iteration and storage
locations, required by tableau simplex Algorithm 3.2.1 vs. simplex Algorithm 3.5.1:

Algorithm 3.2.1 Algorithm 3.5.1

Multiplications .m C 1/.n � m C 1/ m.n C 2m/ C 2m C 1

Additions m.n � m C 1/ m.n C 2m/ � 2m C 1

Storages .m C 1/.n C 1/ .m C 1/.m C 2/

In the preceding table, the amount of storage locations required by Algorithm 3.2.1
excludes that for original data .A; b; c/, though these data should be stored, in
practice. In fact, both algorithms have to restart from scratch periodically after a
certain number of iterations (see Sect. 5.1), let alone Algorithm 3.5.1 utilizes a part
of them in each iteration. Therefore, storage requirement of the tableau simplex
algorithm is significantly high, relative to that of the revised version, especially
when n � m.

As iterative algorithms, their time complexity depends on the required number
of iterations, as well as that of arithmetics per iteration. As they are equivalent
theoretically, the two algorithms would require the same iterations in solving any
standard LP problem, if rounding errors are neglected. Thus, we only compare the
amount of arithmetics, mainly multiplications, in a single iteration. It is seen from
the table that Algorithm 3.5.1 is much superior to the tableau version if m � n.
In fact, the latter is not applied in practice, but only seen in textbooks. Note that all
listed in the table is for dense computations. As for sparse computations, the former
and its variants are even very much superior to the latter (see Chap. 5).

In addition, it is seen that the numbers of arithmetics per iteration are polynomial
functions in m; n. Therefore, required iterations are a key to their time complexity.
Note that each iteration corresponds to a basis, and the number of bases is no more
than C m

n . If n � 2m, then C m
n � .n=m/m � 2m, as indicates that the required

number of iterations could attain an exponent order. Indeed, Klee and Minty (1972)
offered an example, indicating that the simplex method using the conventional pivot
rule passes through all the 2m vertices. Thus, the conventional rule is not polynomial,
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in the sense that it does not turn the simplex method to a polynomial-time one.
Moreover, it turns out that Bland’s Rule 3.7.1, the “most improvement rule”, and
many other subsequent rules, like the steepest edge rule, are all not polynomial
(Chap. 11). Actually, it has not been clear whether there exists a polynomial rule
though such possibility seems to be very low, if any.

Computational experiences indicate that the conventional simplex algorithm
is slow for solving certain type of LP problems, such as some hard large-scale
problems or problems with combinatorial constraints; e.g., with zero or one
coefficients or those from “Krawchuk polynomials” (Schrijver 1986, p. 141; also
see Klee 1965). Nevertheless, its average efficiency is quite high. For solving small
or medium LP problems, in particular, it usually requires iterations no more than
4m to 6m (including Phase-1).

The fact that the non-polynomial-time simplex algorithm and its variants perform
very well in practice reveals that the worst case complexity is of limited reference
value, even could be misguiding. In fact, the worst case hardly happens in practice,
and complexity under some probability sense would be closer to reality. In this
aspect, Borgwardt (1982a,b) showed that an average complexity of the simplex
algorithm is polynomial. Specifically, for LP problem

min cT x;

s:t: Ax � b;

where A 2 Rm�n; b > 0, and components of c are random under certain
assumptions, he proved that the mathematical expectation of iterations, required by
the simplex algorithm using a special pivot rule, is

O.n3m1=.n�1//:

Using a different probability model and pivot rule, Smale (1983a,b) proved that
average complexity of the simplex algorithm when solving

min cT x;

s:t: Ax � b; x � 0;

is bounded above by

O..log n/m2Cm/;

which is not polynomial, but still better than Borgwardt’s result when m � n.
Combining Borgwardt’s pivot rule and a generalized Smale’s probability model,
Haimovich (1996) proved that the average complexity of iterations required is linear
polynomial. These theoretical results coincide with real situation.

Finally, we stress that algorithms’ evaluation is basically a practical issue. In a
word, practice is the unique touchstone: the value and vitality of an algorithm lie on
its performance only.
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3.9 On Features of the Simplex Method

In this final section of the chapter, we focuss on some features of the simplex
method.

It is interesting that the method’s prefix “simplex” came from a chat between
G.B. Dantzig and T. Motzkin (Dantzig 1991) in the early days of LP. The latter
indicated that the m columns of the basis matrix and the entering column just form
a “simplex” in the m-dimensional space. Thus, each iteration in Dantzig’s method
may be viewed as a movement from a simplex to an adjacent simplex. Dantzig
accepted his suggestion by consorting with the “simplex”.

Accordingly, the simplex method is pivotal and basis-based, as is closely related
to the linear structure of the LP model. Each iteration of it is characterized by
a basis: once a basis is determined, so is done the corresponding basic feasible
solution. If optimality cannot be asserted, a pivot is selected to make a basis change
to improve the solution, or unboundedness of the problem is detected. Consequently,
computational work per iteration, involved in the simplex method, is much less than
that required by the interior-point method (Chap. 9).

If an optimal basis is available, an LP problem can be handled by just solving
a single system of linear equations. Even if this is not the case, a basis close to
an optimal one is useful: less iterations are usually required starting from a basis,
yielded from a previously interrupted solution process. Such a so-called “warm
start” features a source of main bonus of the simplex method. For instance, it is
applied to sensitivity analysis and parametric programs (Chap. 6), the restarting
tactic used in implementation (Chap. 5), as well as the decomposition principle
(Sect. 25.6). In addition, the warm start is of great importance to the methodology
for solving ILP problems.

It is noted that each iteration of the simplex method consists of a pivot selection
and a basis change. Since it emerged, in fact, research on the method has not been
beyond the scope of the two aspects. On one side, the pivot rule used in it is, no
doubt, crucial to method’s efficiency. As a result, new pivot rules were suggested
from time to time, though Dantzig’s original rule, because of its simplicity, had
gained broad applications for a long time, as is a situation that has changed only
about 20 years ago. More efficient rules will be presented in Chap. 11. On the
other side, the computation related to pivot and basis change has been improved
continually. Related results will be presented in later chapters, especially in Part II
of this book.

As for concern whether an index enters and leaves the basis too many times, the
following property seems to be favorable.

Proposition 3.9.1. A leaving column in a simplex iteration does not enter the basis
in the next iteration.

Proof. Since an entering column corresponds to a negative reduced cost and the
pivot determined is positive (see (3.10)), a leaving column corresponds to a positive
reduced cost, after the associated elementary transformations carried out, and hence
never enters the basis in the next iteration. ut
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Nevertheless, it is not difficult to construct an instance, in which a column that
just entered the basis leaves it immediately.

As was known, nonnegativity of nonbasic reduced costs is not a necessary condi-
tion for optimality. The following indicates that it is necessary if the nondegeneracy
is ensured.

Proposition 3.9.2. If a basic optimal solution is nondegenerate, reduced costs in
the associated simplex tableau are all nonnegative.

Proof. Assume that there are negative reduced costs in the simplex Tableau 3.1.
Without loss of generality, assume Nzq < 0. If (3.7) holds, then unboundedness of
the problem follows from Theorem 3.2.2, as contradicts the existence of an optimal
solution; if, otherwise, (3.7) does not hold, it is known from the nondegeneracy
assumption that ˛ > 0, and hence there is a feasible value strictly less than the
optimal value, as is a contradiction. Therefore, reduced costs are all nonnegative.

ut
The preceding and Lemma 3.2.1 together imply that the condition of nonnegativ-

ity of nonbasic reduced costs is not only sufficient but also necessary to optimality
under the nondegeneracy assumption. The following result concerns presence of
multiple optimal solutions.

Proposition 3.9.3. If reduced costs are all positive, there is a unique optimal
solution to the LP problem. If a basic optimal solution is nondegenerate and there is
a zero-valued reduced cost, then there are infinitely many optimal solutions; in the
case when the feasible region is bounded, there are multiple basic optimal solutions.

Proof. We prove the first half first. Assume that reduced costs in an optimal tableau
are all positive, corresponding to the basic optimal solution Nx. For any feasible
solution Ox � 0 different from Nx, there is an index s 2 N such that Oxs > 0 (otherwise,
the two are the same). Therefore, substituting Ox to (3.6) leads to

Of D Nf C
X

j 2N

Nzj Oxj > Nf ;

which implies that Ox is not optimal, as is a contradiction. Therefore, there is an
unique optimal solution.

To prove the seconde half, assume that a tableau, say Table 3.1, gives a
nondegenerate basic optimal solution and has zero reduced costs. Without loss of
generality, assume Nzq D 0. If (3.7) holds, then inequalities of the right-hand side
of (3.8) hold for any xq D ˛ > 0, that is, there are infinitely many feasible solutions,
corresponding to the same optimal value � Nf (see (3.9)); if the feasible region is
bounded, then (3.7) does not hold, hence it is known from Nbp > 0 that the stepsize ˛,
defined by (3.10), is positive. Thus, for any value of xq in Œ0; ˛�, a feasible solution
can be determined by the equalities of (3.8), corresponding to optimal value � Nf .
Therefore, there are infinitely many optimal solutions. It is clear that entering xq to
and dropping xjp from the basis give a different basic optimal solution. ut
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The last half of the proof actually describes an approach to obtain multiple basic
optimal solutions by entering the nonbasic indices, corresponding to zero-valued
reduced costs, to the basis. With this respect, an approach to intercepting for the
optimal set will be described in Sect. 25.2.

As was mentioned in Sect. 2.4, the simplex method can be explained in terms of
the active set method. In each iteration, in fact, a vertex is determined by Ax D b

and xj D 0; j 2 N , corresponding to n active constraints. Since it has zero basic
components, a degenerate vertex is the intersection of superplanes, the number of
which is greater than n. At first glance, this case seems rarely to occur in practice.
Surprisingly, however, the situation is just the opposite: problems stemming from
practice are almost all degenerate.

The simplex tableau is essentially the canonical form of Ax D b (together with
reduced costs), which may be initially created by the Gauss-Jordan elimination.
Such a tableau was used to develop the simplex method previously, although the
same can be done alternatively via the triangular form, involving an upper triangular
submatrix rather than unit matrix. As it is associated with the Gauss elimination, in
fact, the latter should be more relevant to implementation (see also the last paragraph
of Sect. 1.6).

Finally, there are two issues that are not guaranteed by the simplex method.
As was well-known, the method is not a polynomial time one; even finiteness of

it is, in presence of degeneracy, not guaranteed in theory. Practically, however, this
might not be a serious problem, as the method performs well overall if implemented
properly although some authors do not agree with this point (see, e.g., Kotiah and
Steinberg 1978).

More seriously, the method in its very form is numerically unstable, because
the selected pivot may be arbitrarily small in module (see, e.g., Chan 1985; Maros
2003b; Ogryczak 1988). Refer to Rule 3.2.1 used in steps 4 of Algorithm 3.2.1.
The pivot Nap q , selected by the minimum-ratio test, could be too small to carry out
subsequent computations. Indeed, the simplex method in its very form can only
solve few (even very small) LP problems.

Instead of Rule 3.2.1, the following rule may serve as a remedy for solving highly
degenerate LP problems.

Rule 3.9.1 (Row rule) Define I D fi j Nai q > 0; i D 1; � � � ; mg; I1 D fi j Nbi D
0; i 2 I g. Determine pivot row index p and stepsize ˛ by

p 2
�

arg maxf Nai q j i 2 I1g; ˛ D 0; if I1 ¤ ;;

arg minf Nbi= Nai q j i 2 I g; ˛ D Nbp= Nap q; otherwise:
(3.39)

A more favorable and applicable remedy is Harris two-pass Rule 5.6.1 though
somehow cumbersome (see also Greenberg 1978). Even so, the stability problem
is still not overcome yet entirely, as is the source of many troubles encountered in
practice. With this aspect, alternative methods presented in Chaps. 15 and 16 might
be “terminators”.

There are analogues to the preceding issues and remedies for various simplex
variants, including the dual simplex method presented in the next chapter.
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