
Chapter 24
Pivotal Interior-Point Method

The simplex method and the interior-point method are two diverging and competi-
tive types of methods for solving LP problems. The former moves on the underlying
polyhedron, from vertex to adjacent vertex, along edges until an optimal vertex is
reached while the latter approaches an optimal point by moving across interior of
the polyhedron.

Although the basic ideas, motivations and development tracks of the two methods
appear quite different, attempts will be made in this chapter to combine the two
methods to take advantages of both, in a natural manner.

In view of that the interior-point method has been seriously restricted in
applications since it can not be “warmly started”, and provides only an approximate
optimal solution (see Sect. 9.5), three pivotal interior-point algorithms will be
derived. These algorithms yield from standard interior-point algorithms by adding
inner steps. Presented in the last section of this chapter, on the other hand, the so-
called “feasible-point simplex algorithm” is established along another line, which
might be the first simplex-like algorithm that acrosses the interior of the polyhedron.

24.1 Pivotal Affine Interior-Point Method

In this section, firstly an interior-point algorithms is designed by forming a search
direction based on affine-scaling. This search direction is equivalent to that used in
Dikin’s affine algorithm in theory. However, the new framework allows to introduce
inner pivotal steps to create a better interior-point algorithm.

Let Nx be the current interior-point. Consider the dual problem of (9.25), i.e.,

max g D bTy;

s:t: . NXAT
::: I /

�
y

z

�
D NXc; z � 0:

(24.1)
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Note that there is a 1-to-1 correspondence between columns of the unit matrix I and
indices of z.

At first, we will realize the “dual elimination” by orthogonal transformations
(Sect. 25.1.3). Since A is of full row rank, hence NXAT is of full column rank, there
exists the QR factorization

NXAT D .Q1; Q3/

�
R1

0

�
D Q1R1; (24.2)

where .Q1; Q3/ is orthogonal, partitioned as Q1 2 Rn�m and Q3 2 Rn�.n�m/, and
R1 2 Rm�m is nonsingular upper triangular.

The following result reveals that the search direction in x0-space, used in the
Dikin’s affine algorithm, can be obtained alternatively by using the matrix Q3.

Proposition 24.1.1. �x0, defined by (9.27), is equal to Q3Q
T
3

NXc.

Proof. Substituting (24.2) to (9.27) and noting QT
1 Q1 D I and Q1Q

T
1 CQ3Q

T
3 D I

gives

�x0 D .I � Q1R1.R
T
1 QT

1 Q1R1/
�1RT

1 QT
1 / NXc D .I � Q1Q

T
1 / NXc D Q3.Q

T
3

NXc/:

(24.3)
ut

Thereby, we are led to the following variant of the affine algorithm.

Algorithm 24.1.1 (Variant of Algorithm 9.2.1). The same as Algorithm 9.2.1,
except for its step 1 replaced by

1. Compute �x0 by (24.3).

As they differ only in the way to compute the same search direction, Algo-
rithm 24.1.1 and Dikin’s algorithm are equivalent. The computational efforts
involved in them depend on how to implement, the sparsity of A, and the number
n � m, compared with m, and etc. We will not go into details here because, after all,
what we are really interested in is not the algorithm itself but a variant, as derived
as follows.

As the affine method with long step turned out to be superior to that with short
step in practice, it is attractive to go further along this line by introducing inner
pivotal steps to decrease the objective value as much as possible, with reasonable
costs.

We begin with premultiplying the augmented matrix of the equality constraints
of (24.1) by QT D ŒQ1; Q3�

T. Such doing leads to a so-called triangular form, i.e.,

QT. NXAT ::: I j NXc/ D
�

R1 QT
1 j QT

1
NXc

0 QT
3 j QT

3
NXc

�
; (24.4)

which represents the linear system equivalent to the dual equality constraints. Based
on Proposition 24.1.1, it is known that the south-east submatrix .QT

3 j QT
3

NXc/ gives
the projection �x0, defined by (24.3), i.e.,
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�x0 D .I � Q1R1.R
T
1 QT

1 Q1R1/
�1RT

1 QT
1 / NXc D .I � Q1Q

T
1 / NXc D Q3.Q

T
3

NXc/:

(24.5)
Then, update Nx by (9.30), i.e.,

Ox D Nx � � NX�x0= max.�x0/; (24.6)

where � 2 .0; 1/ a stepsize. If it goes to the next iteration at this point, the resulting
is just the same as Algorithm 24.1.1.

On the contrary, we will carry out a series of inner iterations in x0-space, starting
from

N D ;; B D A

Assume that �x0
B D �x0 6� 0. Update the Nx0

B by the following formula:

Ox0
B D e � ��x0

B= max.�x0
B/;

and determine an index q such that

q D arg maxf�x0
j j j D 1; � � � ; ng:

It is not difficult to show that . NXAT
::: eq/ is of full column rank. If the QR

factorization of it is available, then the orthogonal projection of the objective
gradient NXc onto the null space of

 
A NX
eT

q

!

can be computed analogously as before, and it is thereby able to update the solution
once more in x0-space. Note that the q-indexed component of the projection equals
0, hence the q-indexed component of the solution remains unchanged.

Assume that after k < n � m inner iterations, there are index sets

N D f1; � � � ; kg; B D fk C 1; � � � ; ng:

Let the QR factorization . NXAT
::: IN / D QR be available. Premultiplying by QT the

augmented matrix of equality constraints of (24.1) gives

QT. NXAT ::: IN

::: IB j NXc/

D
0
@QT

1
NXAT QT

1 IN QT
1 IB j QT

1
NXc

QT
2

NXAT QT
2 IN QT

2 IB j QT
2

NXc

QT
3

NXAT QT
3 IN QT

3 IB j QT
3

NXc

1
AD

0
@R11 R12 QT

1 IB j QT
1

NXc

0 R22 QT
2 IB j QT

2
NXc

0 0 QT
3 IB j QT

3
NXc

1
A: (24.7)
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where the orthogonal matrix Q D .Q1; Q2; Q3/ is partitioned as Q1 2 Rn�m,
Q2 2 Rn�k and Q3 2 Rn�.n�m�k/, and R11 2 R.mCk/�.mCk/ is nonsingular upper
triangular. The preceding is the kth triangular form, whose south-east submatrix
gives projection

�x0
B D .QT

3 IB/T.QT
3

NXc/: (24.8)

Assume that �x0
B 6� 0. Since �x0

N D .QT
3 IN /T.QT

3
NXc/ D 0 and Nx0

N remains
unchanged, what only needs to do is updating by

Ox0
B D Nx0

B � �˛�x0
B: (24.9)

where

˛ D Nx0
q=�x0

q D minf Nx0
j =�x0

j j �x0
j > 0; j 2 Bg; (24.10)

which is the stepsize from the current solution to the nearest boundary. It is clear
that the new solution is again an interior point. Then move q from B to N , and go
to the .k C 1/th inner iteration.

The forgoing process terminates when k D n�m or QT
3

NXc D 0, hence the �x0
B

defined by (24.8) vanishes. In this case, substituting NzB D 0 to the dual equality
constraints, represented by (24.7), leads to the upper triangular system

�
R11 R12

0 R22

��
y

zN

�
D
�

QT
1

NXc

QT
2

NXc

�
: (24.11)

Assume that . Ny; NzN / is the solution to this system.
If NzN � 0, it is not difficult to show that Nx is the optimal solution to the following

problem:

min cTx;

s:t: Ax D b;

xB � 0; xN � NxN :

If � 2 .0; 1/ is sufficiently close to 1, then NxN can be arbitrarily close to 0, in
principle. If � is predetermined to be close to 1, therefore, Nx can be regarded as
an approximate optimal solution to the original problem, and the solution process
terminates.

In the other case when NzN 6� 0, the inner iterations are finished. The related
solution in the original space is computed by

Nx D NX Nx0;

and a new NX can be formed to be ready to go to the next outer iteration.
The trick of the algorithm lies in that the QR factors in each inner iteration can be

obtained via recurrence, need not to compute from scratch. In fact, the last n � m �
k � 1 components of the q-indexed column of (24.7) can be eliminated by Givens
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rotations. Assume that QQ 2 R.n�m�k/�.n�m�k/ is the product of Givens rotations
such that

QQQT
3 eq D �e1;

then OQT D ŒI
::: OQT�TQT is just the wanted factor for the .k C 1/th inner iteration.

It is then seen that the .k C 1/ and kth triangular forms are the same, except for the
submatrix, associated with Q3. On the other hand, nevertheless, at the beginning
of each round of outer iterations, it is necessary to compute the QR factors from
scratch since NX changed.

The overall steps can be summarized to the following algorithm.

Algorithm 24.1.2 (Pivotal affine interior-point algorithm). Given � 2 .0; 1/.
Initial: interior point Nx > 0. This algorithm solves the standard LP problem.

1. Set k D 0, and compute triangular form (24.4).
2. Compute �x0 D Q3.Q

T
3

NXc/.
3. Stop if �x0 � 0 (lower unbounded).
4. Determine ˛ and q such that

˛ D Nx0
q=�x0

q D minf Nx0
j =�x0

j j �x0
j > 0; j 2 Bg.

5. If ˛ ¤ 0, update: Nx0
B D Nx0

B � �˛�x0
B (24.9).

6. Set k D k C 1, and update .B; N / by bringing q from B to N .
7. Go to step 10 if k D n � m or QT

3
NXc D 0.

8. Eliminate the .m C k C 1/ to nth components of the q-indexed column of the
triangular form by Givens rotations.

9. Go to step 2.
10. Solve the upper triangular system (24.11).
11. Stop if NzN � 0 (approximate optimality achieved).
12. Set Nx D NX Nx0.
13. Go to step 1.

Note This Algorithm contains steps 2–9 as its inner steps.

The algorithm, developed by Pan (2013) is slightly different from the preceding
algorithm, as the former uses update

Ox0
B D Nx0

B � ˛�x0
B

rather than (24.9). Thereby, the resulting iterate is not interior but boundary point.
If the optimality condition is not satisfied after a round of inner iterations finished,
it goes back to a nearby interior point to start the next round of outer iterations as
follows.

Assume that Nx is the interior point at the beginning of the outer iteration, and Ox
is the end boundary point of the inner iterations. The interior point used for the next
outer iteration is determined by

Nx D Nx C �. Ox � Nx/;

where � 2 .0; 1/ (� D 0:95 is taken by Pan).
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Table 24.1 Iteration and
time ratios

AIP/VAIP AIP/PAIP

Problem Iterations Time Iterations Time
Set 1 (16) 0.98 0.32 6.32 1.47
Set 2 (10) 0.92 0.25 3.55 1.52

Average (26) 0.95 0.26 4.56 1.52

There is no available numerical results with Algorithm 24.1.2. As it is close to
Pan’s original algorithm, we cite his numerical results to give the reader a clue on
its performance.

The associated computational experiments were carried out on a Pentium III
550E PC with Windows 98 operating system, 168 MB inner storage and about 16
decimal precision. Visual Fortran 5.0 compiler was used. There were following three
dense codes involved:

1. AIP: affine Algorithm 9.2.1.
2. VAIP: Algorithm 24.1.1.
3. PAIP: Algorithm 24.1.2.

The preceding codes are tested on the 26 smallest (by m C n) Netlib standard
problems. The first set involves 16 smaller problems, and the second set are the rest
10 problems (Appendix B: Table B.4, problems AFIRO-DEGEN2).

Table 24.1 lists iterations and time ratios:
From the bottom line of the preceding Table, it is seen that total iteration and

time ratios of AIP to VAIP are 0.95 and 0.26, respectively. As expected, the latter
performs worse than the former. However, PAIP outperforms AIP significantly:
the total iteration and time ratios of AIP to PAIP are 4.56 and 1.52, respectively.
Therefore, the pivotal inner iterations appear effective.

It is not surprising that the time ratio of AIP to PAIP is much less than
their iteration ratio (1.52 vs. 4.56), since each iteration of the latter is more
time consuming, due to the use of the orthogonal transformation. Fortunately, the
so-called “dual elimination” allows to use the Gaussian elimination instead (see
Lemma 25.1.1). In particular, such doing is advantageous for sparse computations.
On the other hand, of course, the associated search direction will no longer be the
desired orthogonal projection. It is not known how such an algorithm will perform.

24.2 Pivotal Affine Face Interior-Point Method

In this section, two interior-point variants of the affine face method (Sect. 22.4) will
be derived. Firstly, an interior-point variant is designed by directly using the initial
search direction of the affine face method. Then, it is modified further by introducing
pivotal inner iterations.

Consider reduced problem (22.1). Introduce notation

NX D diag. Nx1; � � � ; Nxn; 1/: (24.12)
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The initial search direction is defined by (22.30) with k D n C 1 or B D A, or
denoted by

� D �enC1 C NX2AT Ny; .A NX2AT/ Ny D �emC1: (24.13)

which is downhill with respect to the objective function, as well as points to the
interior of the feasible region. It is suitable to be a search direction for designing an
interior-point algorithm. What is needed is just starting from an interior point and
taking � times of the original stepsize, where � is a positive number less than 1 (e.g.,
95–99 %).

Using the preceding notation, the overall steps can be put into the following
interior-point algorithm.

Algorithm 24.2.1 (Affine face interior-point algorithm). Given � 2 .0; 1/.
Initial: interior point Nx > 0. This algorithm approximately solves the reduced
problem (22.1).

1. Compute A NX2AT D LLT .
2. Solve LT Ny D �.1=�/emC1 for Ny, where � is the .m C 1/th diagonal of L.
3. Compute � D �enC1 C NX2AT Ny.
4. Stop if J D fj 2 A j �j < 0g D ; (lower unbounded).
5. Determine ˛ D � minj 2J � Nxj =�j .
6. Update: Nx D Nx C ˛�.
7. Go to step 1.

Was astonished, the author found that the preceding algorithm is the same as
Dikin’s affine algorithm (hence Algorithm 24.1.1), essentially. The only difference
lies in that the former solves the reduced problem while the latter solves the standard
problem. In fact, if Dikin handled the reduced rather than standard problem, he
would have derived Algorithm 24.2.1.

On the other hand, the two algorithms differ computationally. Algorithm 24.2.1
should be preferable, as it saves the computational effort by solving a triangular
system in each iteration. It is more than that. In fact, Algorithm 24.2.1 can be
improved by incorporate pivotal inner iterations.

The resulting algorithm can be obtained by modifying Algorithm 22.4.1 easily.

Algorithm 24.2.2 (Pivotal affine face interior-point algorithm). Given � 2
.0; 1/. Initial: interior point Nx > 0. This algorithm solves the reduced prob-
lem (22.1).

The same as Algorithm 22.4.1, except for step 7 replaced by

7. Update NxB D NxB C �˛�B .

It is not difficult to modify the preceding conformably by including some
termination criterion on precision.

Note that the vertex optimal solution can be computed by setting NxN D 0 at the
end of the solution precess, if needed.
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Example 24.2.1. Solve the following problem by Algorithm 24.2.2:

min f D x6;

s:t: �4x1 C 3x2 C x3 � 2x4 C 2x5 D 5;

3x1 � x2 C 2x3 � 3x4 � 4x5 D �8;

x1 C x2 C 2x3 C x4 C 3x5 D 12;

�2x1 C 3x3 C 2x4 C x5 � x6 D 0;

xj � 0; j D 1; � � � ; 6:

Set � D 99=100. Initial interior point: Nx D .1; 2; 1; 1; 2; �1/T.

Answer Iteration 1:

1. k D 6, B D f1; 2; 3; 4; 5; 6g, N D ;: NXB D diag.1; 2; 1; 1; 2; �1/T,
face matrix B and the Cholesky factor of B NX2

BBT are

B D

0
BB@

�4 3 1 �2 2

3 �1 2 �3 �4

1 1 2 1 3

�2 �3 2 1 �1

1
CCA ;

L D

0
BB@

1;399=134

�2;362=411 7;176=919

1;985=471 �1;327=373 916=207

1;181=822 �302=85 �800=331 815=672

1
CCA :

2: Ny D .�100=5;011; �2;485=5;193; �215=579; �1;219=1;793/T:

3: �B D .�583=1; 587; �2; 127=2; 168; 509=1; 591; �356=1; 393; 278=865;

� 1; 385=3; 339/T ¤ 0:

5: J D f1; 2; 4g ¤ ;:

6: ˛ D .99=100/ minf�1=.�583=1;587/; �2=.�2;127=2;168/; �1=

.�356=1;393/g
D .99=100/.1;745=856/ D 2;333=1;156; p D 2:

7: NxB D .1; 2; 1; 1; 2; �1/T

C .2; 333=1; 156/.�583=1; 587; �2; 127=2;168; 509=1;591;

� 356=1; 393; 278=865; �1; 385=3; 339/T

D .323=1; 249; 750=37; 499; 1; 593=968; 261=539; 2; 005=757; �2; 019=

1; 099/T:

8: B D f1; 3; 4; 5; 6g; N D f2g:

9: L D

0
BB@

882=145

�290=49 307=43

1;450=441 �959=279 3;244=737

145=98 �7;775=2;199 �1;184=473 2;500=2;447

1
CCA :

10: k D 5:
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Iteration 2:

2: Ny D .�361=1;907; �1;405=1;907; �1;039=1;907; �845=882/T:

3: �B D .�156=1;907; 232=1;907; 244=1;907; �184=1;907; �277=6;603/T ¤ 0:

5: J D f1; 5g ¤ ;:

6: ˛ D .99=100/ minf�.323=1; 249/=.�156=1; 907/; �.2; 005=757/=

.�184=1; 907/g
D .99=100/.7;761=2;455/ D 917=293; p D 1:

7: NxB D .323=1; 249; 1; 593=968; 261=539; 2; 005=757; �2; 019=1;099/TC.917=

293/.�156=1;907; 232=1;907; 244=1;907; �184=1;907; �277=6;603/T

D .109=42;149; 1;688=833; 583=659; 1;117=476; �5;360=2;723/T:

8: B D f3; 4; 5; 6g; N D f1; 2g:

9: L D

0
BB@

3;524=769

�1;435=274 1;211=172

1;435=274 �3;433=1;235 1;187=491

769=3;524 �2;201=577 �499=322 1

1
CCA :

10: k D 4 D m C 1:

11: NzN D .156=1;907; 717=1;907/T � 0:

12. The approximate basic optimal solution and optimal value are

Nx � .109=42;149; 750=37;499; 1;688=833; 583=659; 1;117=476/T;

Nx6 � �5;360=2;723:

The outcome is close to the exact basic optimal solution and optimal value, i.e.,

x� D .0; 0; 79=39; 34=39; 92=39/T; x�
6 D �77=99:

The error in components of the approximate optimal solution is about 0:01, while
that in the approximate optimal value is about 0:05.

24.3 Pivotal D-Reduced Gradient Interior-Point Method

In this section, we derive a pivotal interior-point algorithm with the deficient-basis
framework, without discussion on the related theoretical problems.

It is noted that the search direction, used in the D-reduced gradient method
(Sect. 21.5), is uphill with respect to the dual objective function, as well as points
to the interior of the feasible region. Thereby, the direction is suitable to be used
to design an interior-point algorithm by the known trick: starting from an interior
point, and cutting down the stepsize to � times of the original, where � is positive
number less than 1 (e.g., 0:95–0:999).

The according steps are put in the following algorithm.
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Algorithm 24.3.1 (D-reduced gradient interior-point algorithm). Given � >

0; � 2 .0; 1/; � > 0. Initial: interior point Nz > 0. This algorithm solves the
D-reduced problem (17.1).

1. Compute ! by (21.15).
2. Stop if J D fj 2 A j !j > 0g D ; (infeasible problem).
3. Compute ˇ D Nzq= N!q D minj 2J Nzj = N!j .
4. Stop if ˇ < � (approximate optimality achieved).
5. If ˇ ¤ 0, update Nz D Nz � �ˇ!.
6. Go to step 1.

Nevertheless, our preliminary test indicates that the preceding algorithm con-
verges quite slow (if does).

As in the previous two sections, we incorporate pivotal inner iterations to it. The
resulting algorithm can be obtained by modifying Algorithm 21.6.1 easily.

Algorithm 24.3.2 (Pivotal D-reduced gradient interior-point algorithm). Given
� > 0; � 2 .0; 1/. Initial: NzN > 0. This algorithm solves D-reduced problem (17.1).

The same as Algorithm 21.6.1, except for steps 4 and 5 replaced respec-
tively by

4. Determine ˇ and q such that ˇ D Nzq= N!q D min
j 2J

Nzj = N!j , and compute �ˇ.

5. If ˇ ¤ 0, update NzN D NzN � �ˇ N!N .

It is not difficult to modify the preceding algorithm by introducing some precision
tolerance.

Example 24.3.1. Solve the following problem by Algorithm 24.3.2:

min f D 2x1 C x2 C 3x3 C x4 C 2x5 C 4x6;

s:t: x1 C 3x2 � 2x3 C 3x4 � 4x5 C 2x6 D 0;

� 2x2 � x4 � 2x5 C x6 D 0;

�2x1 C x2 C 2x3 � 4x4 C 3x5 � 3x6 D 0;

C 2x2 C 3x3 � 2x5 � x6 D 1;

xj � 0; j D 1; � � � ; 6:

Answer For convenience of comparison, the related tableau will be given for each
iteration.

Initial tableau:

x1 x2 x3 x4 x5 x6 RHS

1 3 �2 3 �4 2

�2 �1 �2 1

�2 1 2 �4 3 �3

2 3 �2 �1 1

2 1 3 1 2 4



24.3 Pivotal D-Reduced Gradient Interior-Point Method 633

� D 95=100; � D 1. r D 4.

NR0 D
0
@ 1 3 �2 3 �4 2

0 �2 0 �1 �2 1

�2 1 2 �4 3 �3

1
A :

Iteration 1:

1: k D 0I B; RD;; N Df1; � � � ; 6g; R0 D f1; 2; 3g: NzN D .2; 1; 3; 1; 2; 4/T:

2: !N D .0; 2; 3; 0; �2; �1/T � N T
R0NR0.1=2; 1; 1=3; 1; 1=2; 1=4/T

D .�19=2; �191=12; 101=6; �325=12; 187=12; �41=3/T; N!N D !N :

x1 x2 x3 x4 x5 x6 RHS

1 3 �2 3 �4 2

�2 �1 �2 1

�2 1 2 �4 3 �3

�19=2 �191=12 101=6 �325=12 187=12 �41=3 1

2 1 3 1 2 4

3: J D f3; 5g:
4: ˇ D .95=100/ minf3=.101=6/; 2=.187=12/g D .95=100/.24=187/

D 114=935; q D 5:

5: NzN D .2; 1; 3; 1; 2; 4/T

� .114=935/.�19=2; �191=12; 101=6; �325=12; 187=12; �41=3/T:

6: Naq.R0/ D .�4; �2; 3/T:

7: Naq.R0/ ¤ 0:

8: p D 1; 	 D �1=4; OB�1
OR D .�1=4/:

9: k D 1; B D f5g; R D f1g:N D f1; 2; 3; 4; 6g; R0 D f2; 3g:
10: N!N D .�19=2; �191=12; 101=6; �325=12; �41=3/T

� .1; 3; �2; 3; 2/T.�1=4/.187=12/

D .�269=48; �203=48; 217=24; �739=48; �47=8/T:

x1 x2 x3 x4 x5 x6 RHS

�1=4 �3=4 1=2 �3=4 1 �1=2

�1=2 �7=2 1 �5=2

�5=4 13=4 1=2 �7=4 �3=2

�269=48 �203=48 217=24 �739=48 �47=8 1

1;696=537 644=219 886=935 1;609=374 1=10 5;298=935 �114=935

Iteration 2:

3: J D f3g:
4: ˇ D .95=100/ minf.886=935/=.217=24/g D .95=100/.875=8;349/

D 205=2;059; q D 3:
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5: NzN D .1;696=537; 644=219; 886=935; 1;609=374; 5;298=935/T

� .205=2;059/.�269=48; �203=48; 217=24; �739=48; �47=8/T

D .1;349=363; 9;359=2;784; 47=992; 4;102=703; 2;513=402/T:

6: Naq.R/ D .�1=4/.�2/ D 1=2; Naq.R0/ D .0; 2/T � .�2; 3/T.�2/ D .�4; 8/T:

7: Naq.R0/ ¤ 0:

8: p D 3; 	 D .2 � 3.1=2//�1 D 2; v D �2.1=2/ D �1; d T

D �2.3/.�1=4/ D 3=2:

U D .�1=4/ � .�1/3.�1=4/ D �1; OB�1
OR D

��1 �1

3=2 2

�
:

9: k D 2; B D f5; 3g; R D f1; 3g:N D f1; 2; 4; 6g; R0 D f2g:
10: N!N D .�19=2; �191=12; �325=12; �41=3/T

�
�

1 3 3 2

�2 1 �4 �3

�T ��1 �1

3=2 2

�T

.187=12; 101=6/T

D .17; �63; 65=4; 85=4/T:

x1 x2 x3 x4 x5 x6 RHS

1 �4 1 1 1

2 �10 1 3

�5=2 13=2 1 �7=2 �3

17 �63 65=4 85=4 1

1;349=363 9;359=2;784 47=992 4;102=703 1=10 2;513=402 �905=4;086

Iteration 3:

3: J D f1; 4; 6g:
4: �ˇ D .95=100/ minf.1;696=537/=17;.4;102=703/=.65=4/;.2;513=402/=

.85=4/g
D .95=100/.473=2;546/ D 473=2;680; q D 1:

5: NzN D .1;349=363; 9;359=2;784; 4;102=703; 2;513=402/T

� .473=2;680/.17; �63; 65=4; 85=4/T

D .577=806; 9;398=649; 1;528=515; 1;608=643/T:

6: Naq.R/ D
��1 �1

3=2 2

��
1

�2

�
D
�

1

�5=2

�
;

Naq.R0/ D 0 � .�2; 0/.1; �2/T D 2:

7: Naq.R0/ ¤ 0:

8: p D 2: 	 D .0 � .�2; 0/.1; �5=2/T/�1 D 1=2:

v D �.1=2/.1; �5=2/T D .�1=2; 5=4/T:

d T D �.1=2/..�2; 0/B�1
R / D �.1=2/.2; 2/ D .�1; �1/:

U D
��1 �1

3=2 2

�
� .�1=2; 5=4/T.2; 2/ D

�
0 0

�1 �1=2

�
;
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OB�1
OR D

0
@ 0 0 �1=2

�1 �1=2 5=4

�1 �1 1=2

1
A :

9: k D 2; B D f5; 3; 1g; R D f1; 3; 2g:N D f2; 4; 6g; R0 D ;:

10: N!N D .�191=12; �325=12; �41=3/T

�
0
@ 3 3 2

1 �4 �3

�2 �1 1

1
A

T0
@ 0 0 �1=2

�1 �1=2 5=4

�1 �1 1=2

1
A

T

.187=12; 101=6; �19=2/T

D .22; 31=4; �17=4/T:

x1 x2 x3 x4 x5 x6 RHS

1 1=2 1 �1=2

1 �5 1=2 3=2

�6 1 �9=4 3=4

22 31=4 �17=4 1

577=806 9;398=649 47=992 1;528=515 1=10 1;608=643 �1;143=2;872

Iteration 4:

3. J D f2; 4g.
4. �ˇ D .95=100/ minf.8;645=597/=22; .1;528=515/=.31=4/g

D .95=100/.1;557=4;067/ D 559=1;537; q D 4.
5. NzN D .9;398=649; 1;528=515; 1;608=643/T � .559=1;537/.22; 31=4; �17=4/T

D .6; 460=997; 301=2; 029; 3; 395=839/T.

x1 x2 x3 x4 x5 x6 RHS

1 1=2 1 �1=2

1 �5 1=2 3=2

�6 1 �9=4 3=4

22 31=4 �17=4 1

577=806 6;460=997 47=992 301=2;029 1=10 3;395=839 �636=835

6. Naq.R/ D
0
@ 0 0 �1=2

�1 �1=2 5=4

�1 �1 1=2

1
A
0
@ 3

�4

�1

1
A D

0
@ 1=2

�9=4

1=2

1
A.

7. Naq.R0/ D 0.
11. maxf1=2; �9=4; 1=2g D 1=2 > 0; s D 1; p D 1.
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Iteration 5:

1: k D 0I B; R D ;; N D f1; � � � ; 6g; R0 D f1; 2; 3g:
2: !N D .0; 2; 3; 0; �2; �1/T

� N T
R0NR0.806=577; 997=6;460; 992=47; 2;029=301;10; 839=3;395/T

D .9;606=67; 1;965=23; �22;001=110; 22;051=69; �23;926=57;

6;767=25/T;

N!N D !N :

x1 x2 x3 x4 x5 x6 RHS

1 3 �2 3 �4 2

�2 �1 �2 1

�2 1 2 �4 3 �3

9;606=67 1;965=23 �22;001=110 22;051=69 �23;926=57 6;767=25 1

577=806 6;460=997 47=992 301=2;029 1=10 3;395=839 �636=835

3: J D f1; 2; 4; 6g:
4: �ˇ D .95=100/ minf.577=806/=.9; 606=67/; .6; 460=997/=.1; 965=23/;

.301=2; 029/=.22; 051=69/; .3; 395=839/=.6; 767=25/g
D .95=100/.37=79; 707/ D 8=18; 141; q D 4:

5: NzN D .577=806; 6; 460=997; 47=992; 301=2; 029; 1=10; 3; 395=839/T

� .8=18; 141/.9; 606=67; 1; 965=23; �22; 001=110; 22; 051=69;

� 23; 926=57; 6; 767=25/T

D .295=452; 1; 604=249; 189=1; 394; 104=14; 021; 1; 074=3; 767; 1;

347=343/T:

6: Naq.R0/ D .3; �1; �4/T:

7: Naq.R0/ ¤ 0:

8: p D 3: 	 D �1=4: OB�1
OR D .�1=4/:

9: k D 1; B D f4g; R D f3g:N D f1; 2; 3; 5; 6g; R0 D f1; 2g:
10: N!N D .9; 606=67; 1; 965=23; �22; 001=110; �23; 926=57; 6; 767=25/T

� .�2; 1; 2; 3; �3/T.�1=4/.22; 051=69/

D .�25; 331=1; 543; 15; 045=91; �10; 457=260; �7; 743=43; 6;

478=209/T:

x1 x2 x3 x4 x5 x6 RHS

�1=2 15=4 �1=2 �7=4 �1=4

1=2 �9=4 �1=2 �11=4 7=4

1=2 �1=4 �1=2 1 �3=4 3=4

�25;331=1;543 15;045=91 �10;457=260 �7;743=43 6;478=209 1

295=452 1;604=249 189=1;394 104=14;021 1;074=3;767 1;347=343 �1;022=1;341
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Iteration 6:

3: J D f2; 6g:
4: ˇ D .95=100/ minf.1;604=249/=.15;045=91/; .1;347=343/=.6;478=209/g

D .95=100/.239=6;134/ D 311=8;402; q D 2:

5: NzN D .295=452; 1;604=249; 189=1;394; 1;074=3;767; 1;347=343/T

� .311=8;402/.�25;331=1;543; 15;045=91; �10;457=260;

� 7;743=43; 6;478=209/T

D .1;893=1;502; 439=1;363; 2;019=1;243; 1;821=262; 1;957=704/T:

6: Naq.R/ D .�1=4/.1/ D �1=4; Naq.R0/ D .3; �2/T � .3; �1/T.�1=4/D.15=4;

� 9=4/T:

7: Naq.R0/ ¤ 0:

8: p D 1; 	 D .3 � 3.�1=4//�1 D 4=15; v D �.4=15/.�1=4/ D 1=15;

d T D �.4=15/.3/.�1=4/ D 1=5:

U D .�1=4/ � .1=15/3.�1=4/ D �1=5; OB�1
OR D

��1=5 1=15

1=15 4=15

�
:

9: k D 2; B D f4; 2g; R D f3; 1g:N D f1; 3; 5; 6g; R0 D f2g:
10: N!N D .9;606=67; �22;001=110; �23;926=57; 6;767=25/T

�
��2 2 3 �3

1 �2 �4 2

�T��1=5 1=15

1=15 4=15

�T

.22;051=69;1;965=23/T

D .1;570=279; �1;763=97; �9;777=95; 14;664=349/T:

x1 x2 x3 x4 x5 x6 RHS

�2=15 1 �2=15 �7=15 �1=15

1=5 �4=5 �19=5 8=5

7=15 �8=15 1 �13=15 11=15

1;570=279 �1;763=97 �9;777=95 14;664=349 1

1;893=1;502 439=1;363 2;019=1;243 104=14;021 1;821=262 1;957=704 �553=692

Iteration 7:

3: J D f1; 6g:
4: �ˇ D .95=100/ minf.1;893=1;502/=.1;570=279/; .1;957=704/=

.14;664=349/g
D .95=100/.426=6;439/ D 436=6;937; q D 6:

5: NzN D .1;893=1;502; 2;019=1;243; 1;821=262; 1;957=704/T

� .436=6;937/.1;570=279; �1;763=97; �9;777=95; 14;664=349/T

D .437=482; 3;118=1;127; 5;287=394; 113=813/T:

6: Naq.R/ D
��1=5 1=15

1=15 4=15

���3

2

�
D
�

11=15

�1=15

�
;

Naq.R0/ D 1 � .�1; �2/.11=15; �1=15/T D 8=5:

7: Naq.R0/ ¤ 0:
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8: p D 2; 	 D .1 � .�1; �2/.11=15; �1=15/T/�1 D 5=8:

v D �.5=8/.11=15; �1=15/T D .�11=24; 1=24/T:

d T D �.5=8/..�1; �2/B�1
R / D �.5=8/.�1=5; �3=5/ D .1=8; 3=8/:

U D
��1=5 1=15

1=15 4=15

�
� .�11=24; 1=24/T.�1=5; �3=5/

D
��7=24 �5=24

5=24 7=24

�
:

OB�1
OR D

0
@�7=24 �5=24 �11=24

5=24 7=24 1=24

1=8 3=8 5=8

1
A :

9: k D 2; B D f4; 2; 6g; R D f3; 1; 2g:N D f1; 3; 5g; R0 D ;:

10: N!N D .9;606=67; �22;001=110; �23;926=57/T

�
0
@�2 2 3

1 �2 �4

0 0 �2

1
A

T 0
@�7=24 �5=24 �11=24

5=24 7=24 1=24

1=8 3=8 5=8

1
A

T

� .22;051=69;

1;965=23; 6;767=25/T

D .515=1;373; 25;888=9;137; �9;428=3;017/T:

x1 x2 x3 x4 x5 x6 RHS

�1=8 1 �1=6 �5=8

1=8 �1=2 �19=8 1

3=8 �1=6 1 7=8

515=1;373 25;888=9;137 �9;428=3;017 1

437=482 439=1;363 3;118=1;127 104=14;021 5;287=394 113=813 �1;755=2;036

Iteration 8:

3. J D f1; 3g.
4. �ˇ D .95=100/ minf.437=482/=.515=1;373/; .3;118=1;127/=.25;888=9;137/g

D .95=100/.2;780=2;847/ D 500=539; q D 3.
5. NzN D .437=482; 3;118=1;127; 5;287=394/T

�.500=539/.515=1;373; 25;888=9;137; �9;428=3;017/T

D .733=1;312; 214=1;547; 9;350=573/T.

x1 x2 x3 x4 x5 x6 RHS

�1=8 1 �1=6 �5=8

1=8 �1=2 �19=8 1

3=8 �1=6 1 7=8

515=1;373 25;888=9;137 �9;428=3;017 1

733=1;312 439=1;363 214=1;547 104=14;021 9;350=573 113=813 �2;450=1;369
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6. Naq.R/ D
0
@�7=24 �5=24 �11=24

5=24 7=24 1=24

1=8 3=8 5=8

1
A
0
@ 2

�2

0

1
A D

0
@�1=6

�1=6

�1=2

1
A.

7. R0 D ;.
11. maxf�1=6; �1=6; �1=2g � 0.
13. Setting Nx3 D 9;137=25;888 gives

NxB D .9;137=25;888/.1=6; 1=6; 1=2/T

D .9;137=155;328; 9;137=155;328; 9;137=51;776/T:

Thus, the approximate basic optimal solution and optimal value are

Nx � .0; 9;137=155;328; 9;137=25;888; 9;137=155;328; 0; 9;137=51;776/T;

Nf � .1; 3; 1; 4/.9;137=155;328; 9;137=25;888; 9;137=155;328; 9;137=

51;776/T D 9;137=4;854:

On the other hand, the exact basic optimal solution and optimal value are

x� D .0; 1=17; 6=17; 1=17; 0; 3=17/T; f � D 32=17:

The errors are less than 10�5, which are accumulated from the computation
of N!.

24.4 Feasible-Point Simplex Method

On the conventional simplex framework, the method presented in this section will
utilize a new pivot rule to generates a sequence of feasible points, which are not
necessarily vertices or interior points. If the initial is an interior point, however, it
becomes an interior-point algorithm. It might be the first simplex-like method that
may go across the interior of the feasible region.

We are concerned with the bounded-variable problem (7.13), i.e.,

min cT x

s:t Ax D b; l � x � u;
(24.14)

where A 2 Rm�n.m < n/I rank A D m. The values of components of l and u
are assumed to be finite, hence the problems is bounded. For problems with infinite
bounds, one may use numbers in large enough module instead.

Let B be the current (standard) basis and N the associated nonbasis, defined by

B D f1; � � � ; mg; N D AnB:
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24.4.1 Column Pivot Rule and Optimality Condition

Let Nx be current feasible solution, whose nonbasic components are not necessarily
on either lower or upper bound. The reduced costs are

NcB D 0; NcN D cN � N T Ny; BT Ny D cB : (24.15)

Introduce nonbasic index sets

N1 D fj 2 N j Ncj < 0g; N2 D fj 2 N j Ncj > 0g: (24.16)

Recall that Algorithm 7.4.1 selects an entering index based on Nc only. In contrast,
we not only consider Nc, but also take into account the possible ranges the nonbasic
components of the current feasible solution are allowed to change. To this end,
introduce notation

ıj D
8<
:

uj � Nxj ; j 2 N1;

Nxj � lj ; j 2 N2;

minfuj � Nxj ; Nxj � lj g j 2 N n N1 [ N2:

(24.17)

So, ıj is the distance from Nxj to one of the associated its bounds that will be violated
if Nxj changes to decrease the objective value.

Then the following rule is applicable.

Rule 24.4.1 (Column pivot rule) Select a nonbasic index q such that

j Ncqjıq D max f j Ncj jıj j j 2 N g: (24.18)

Under the preceding rule, the objective value will decrease the most (by amount
j Ncqjıq), ignoring presence of broking basic variables.

In this context, the following optimal condition is relevant.

Proposition 24.4.1. Nx is an optimal solution if it holds that

j Ncj jıj D 0; 8 j 2 N: (24.19)

Proof. Note that quantities j Ncj jıj .j 2 N / are upper bounds of the amount
by which the objective value can decrease as the value of xj changes. Thus,
condition (24.19) implies that the objective value can not decrease any further, and
the proposition is valid. ut

Furthermore, it is clear that Nx is a basic optimal solution if

ıj D 0; 8 j 2 N: (24.20)

The preceding optimality condition might be suitable for applications when a vertex
solution is required.
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24.4.2 Search Direction

If the optimality condition is not fulfilled, it is possible to decrease the objective
value.

Assume that a nonbasic index q has been selected to enter the basis. For a search
direction, consider vector �x defined by

�xB D sign. Ncq/ Naq; B Naq D aq: (24.21)

�xj D
8<
:

0; j 2 N I j ¤ q

�sign. Ncq/; j D q:

(24.22)

We have the following Lemma, ensuring the eligibility of �x to be a search
direction.

Lemma 24.4.1. Assume that q is determined by (24.18). Vector �x is a downhill
with respective to the objective in the null of A.

Proof. Note that Ncq ¤ 0, since, otherwise, j Ncq jıq D 0 implies that the optimality
condition (24.19) holds, as leading to a contradiction.

From (24.21) and (24.22), it follows that

A�x D sign. Ncq/BB�1aq � sign. Ncq/aq D 0 (24.23)

Thus, �x is in the null of A.
Further, it holds by (24.15) that

Ncq D cq � cT
B B�1aq;

which together with (24.21), (24.22), (24.18) and (24.16) gives

cT �x D �sign. Ncq/cq C sign. Ncq/cT
B B�1aq

D �sign. Ncq/.cq � cT
B B�1aq/

D �sign. Ncq/ Ncq

< 0: (24.24)

Therefore, �x is downhill with respect to the objective function. ut
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24.4.3 Stepsize and Row Pivot Rule

Using �x as a search direction, we are led to the line search scheme below:

Ox D Nx C ˛�x;

or equivalently,

OxB D NxB C ˛�xB; (24.25)

Oxq D Nxq � sign. Ncq/˛; (24.26)

Oxj D Nxj ; j 2 N I j ¤ q; (24.27)

where stepsize ˛ is to be determined.
Introduce notation


i D
8<
:

.ui � Nxi /=�xi if �xi > 0; and i 2 B;

.li � Nxi /=�xi if �xi < 0; and i 2 B;

(24.28)

Then the largest possible value of ˛ is derived subject to l � Ox � u, i.e.,

N̨ D min fıq; minf
i j �xi ¤ 0; i 2 Bgg: (24.29)

However, the algorithm will not take ˛ itself as a stepsize, but a smaller one instead,
i.e.,

˛ D � N̨ ; 0 < � < 1: (24.30)

Therefore, a new solution Ox can be computed via (24.25)–(24.30).
There are two cases arising:

(i) ˛ D ıq . It is then clear that there is no need for any basis change.
(ii) ˛ < ıq . A basis change is performed. The following row rule is used to

determine a leaving index to match the entering index q.

Rule 24.4.2 (Row pivot rule) Select a basic index p such that


p D ˛; p 2 B; �xp ¤ 0: (24.31)

Lemma 24.4.2. Ox defined by (24.25)–(24.27) with ˛ given by (24.28)–(24.30) is a
feasible solution.

Proof. Firstly, it is easy to verify that Ox defined by (24.25)–(24.27) satisfies the
equality constraints A Ox D b for any real number ˛. In addition, by the feasibility of
Nx, (24.25)–(24.27), and (24.30), Ox satisfies l � Ox � u, and is hence feasible. ut
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However, if ˛ vanishes, Ox is not really new but the same as Nx. This happens only
when the current solution is degenerate (see Definition 7.4.1).

Theorem 24.4.3. If feasible solution Nx is nondegenerate, then the associated
stepsize is positive, and the new iterate Ox is a nondegenerate feasible solution,
associated with a strictly lower objective value than the old.

Proof. From Lemma 24.4.2, it is clear that the new iterate Ox is a feasible solution.
Note that ıq is positive, since, otherwise, j Ncqjıq D 0 implies that the optimality

condition (24.19) holds. Moreover, the nondegeneracy assumption implies that

i , defined by (24.28), are positive for all i 2 B with �xi ¤ 0. These along
with (24.29) and (24.30) leads to 0 < ˛ < ˛. For Ox defined by (24.25)–(24.27),
therefore, the basic components are still not on their bounds, no matter whether the
basis change is performed (˛ < ıq) or not.

Furthermore, by ˛ > 0, (24.25)–(24.27) and Lemma 24.4.1 it holds that cT Ox <

cT Nx, which completes the proof. ut

24.4.4 Formulation of the Algorithm

Some computational considerations should be incorporated in the implementation
of the algorithm. In practice, for instance, what required is often an approximate
optimal solution only. Therefore, the algorithm will use the following condition in
place of (24.19) instead.

Definition 24.4.1. Nx is an �-optimal solution if

j Ncj j � �1 or ıj � �2; 8 j 2 N; (24.32)

where �1 > 0 and �2 > 0 are predetermined tolerances.

Accordingly, index sets N1 and N2, defined by (24.16), are now redefined by

N1 D fj 2 N j Ncj < ��1g; N2 D fj 2 N j Ncj > �2g: (24.33)

The overall steps can be put into the following algorithm.

Algorithm 24.4.1 (Feasible-point simplex algorithm). Given 0 < � < 1,
�1; �2 > 0 and M � 1. Initial: basis B , associated with feasible solution Nx. This
algorithm solves the bounded-variable problem.

1. Solve BT Ny D cB for Ny.
2. Compute NcN D cN � N T Ny.
3. Compute ıj ; j 2 N by (24.17).
4. Stop if (24.32) is satisfied.
5. Determine index q such that j Ncq jıq D maxf j Ncj jıj j j 2 N g.
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6. Solve B Naq D aq for Naq .
7. Compute �x by (24.21) and (24.22).
8. Determine N̨ D min fıq; minf
i j �xi ¤ 0; i 2 Bgg.
9. Compute ˛ D � N̨ .

10. Stop if ˛ > M .
11. Update Nx by (24.25)–(24.27).
12. Go to Step 1 if ˛ D ıq .
13. Determine index p such that 
p D ˛; p 2 B; �xp ¤ 0.
14. Update basis B by replacing its p-th column with q-th column.
15. Go to step 1.

Theorem 24.4.4. Assume termination of Algorithm 24.4.1. It terminates at either

(i) step 4, achieving an �-optimal basic solution; or
(ii) step 10, declaring lower unboundedness.

The meanings of the exits of the preceding Algorithm is clear. At this stage,
however, it has not been possible to rule out the possibility of infiniteness. As
it solved a large number of test problems in our computational experiments (see
below), we claim that Algorithm 24.4.1 should be regarded as finite practically, just
like the standard simplex algorithm.

Even if it is still open whether Algorithm 24.4.1 is finite or not, on the other hand,
the following result is valid.

Theorem 24.4.5. Assume that the initial feasible solution is nondegenerate. Then
all subsequent stepsizes are positive, and hence iterates are all nondegenerate
feasible solutions.

Proof. It is enough to consider a current iteration.
By Lemma 24.4.2, the new iterate Ox satisfies A Ox D b. From the feasibility of

Nx, (24.25)–(24.27), and (24.30), it follows that Nx satisfies l � Ox � u, and hence is a
feasible solution.

By (3.3), moreover, ıq is positive, since, otherwise, the iteration would have
terminated at Step 3(3). In addition, the nondegeneracy assumption implies that 
i ,
defined by (24.28), are positive for all i 2 B satisfying �xi ¤ 0. This fact along
with (24.29) and (24.30) gives 0 < ˛ < ˛. Consequently, from (24.25)–(24.27) it
follows that Ox is again nondegenerate.

Furthermore, by ˛ > 0, (24.25)–(24.27) and Lemma 24.4.1, it holds that cT Ox <

cT Nx. This completes the proof. ut
If the initial feasible solution is nondegenerate, Theorem 24.4.5 implies that the

objective value strictly decreases in the solution process. Moreover, the algorithm
has the following feature.

Proposition 24.4.2. Assume that the initial feasible solution is nondegenerate. An
on-bound component of Nx could become an interior component; but any interior
component never becomes an on-bound component.
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The preceding implies that Algorithm 24.4.1 is an interior-point algorithm
if an initial interior-point is used. On the other hand, solutions generated by
Algorithm 24.4.1 are not vertices in general, even if the initial one is. Consequently,
the algorithm goes across the interior of the feasible region.

Finally, we introduce the concept of an approximate optimal basic solution in
place of (24.20), alternatively:

Definition 24.4.2. Nx is an �-optimal basic solution if

ıj < �; 8 j 2 N; (24.34)

where � > 0 is a predetermined tolerance.

It is noted that if condition (24.34) is used as termination criterion, Ncq D 0 could
holds, and hence the associated �x is not downhill. In this case, the algorithm
continues using �x to move to an optimal basic solution, even if optimality has
already been achieved (see Proposition 24.4.1).

24.4.5 Phase-1 and Purification

Any Phase-I approach for the bounded-variable problem can be used to provide an
initial feasible solution. If one wants the algorithm starting from an interior point,
the approach described at the end of Sect. 7.4 applies.

As for obtaining an exact optimal basic solution, the following simple purifica-
tion can be incorporated to Algorithm 24.4.1.

Assume that Algorithm 24.4.1 terminates at step 4 with an �-optimal basic
solution. The purification is done by moving nonbasic components of the solution
onto their respective nearest bounds with the basic components unchanged. If the
resulting solution, say x0, satisfies Ax0 D b within some tolerance, it is clearly an
optimal basic solution. In the other case, a standard two-phase simplex algorithm
can be used to attain a basic optimal solution, hopefully within few iterations.

24.4.6 Computational Results

Computational experiments have been performed to gain an insight into the behavior
of Algorithm 24.4.1. A summary of the associated numerical results are offered in
this subsection.

Implemented, and compared are the following three codes:

1. MINOS: MINOS 5.51 with full pricing.
2. FPS: Two-Phase code based on Algorithm 24.4.1.
3. FPSP: Two-Phase code based on Algorithm 24.4.1 with the purification.
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Table 24.2 Ratio MINOS/FPSP MINOS/FPS FPSP/FPS
Problem Itns Time Itns Time Itns Time
Kennington(16) 6.6 3.2 9.0 3.5 1.4 1.1
BPMPD(15) 2.8 3.4 9.5 9.0 3.3 2.6
Average(31) 3.3 3.4 9.4 6.6 2.8 2.0

The first set of test problems included all 16 problems from Kennington and
the second included all 17 problems from BPMPD that were more than 500KB in
compressed form (Appendix B: Tables B.2–B.3).

In Table 24.2, a comparison between the three codes is made.
From the table, it is seen that FPSP and FPS outperformed MINOS remarkably,

with average iteration ratios 6:6 and 9:0, and time ratios 3:2 and 3:5 for the 16
Kennington problems. They outperformed MINOS, by average iterations ratios 2:8

and 9:5, and time ratios 3:4 and 9:0 for BPMPD problems. For the entire set of the
31 test problems, FPSP and FPS defeated MINOS by average iterations ratios 3:3

and 9:4, and time ratios 3:4 and 6:6.
In summary, the feasible-point simplex algorithm is significantly superior to the

standard simplex algorithm with the test set (see Appendix E for more details).
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