
Chapter 2
Geometry of the Feasible Region

Feasible region is of a basic significance to optimization. Due do the linear structure
of the standard LP problem (1.8), the feasible region P , defined by (1.9), has special
features. In this chapter, we explore this theme from a geometric point of view.

Denote the n-dimensional Euclidean space by Rn, as usual. Points or column
vectors are the basic geometrical elements. Denote a point, or the vector from the
origin to this point by

x D .x1; : : : ; xn/T 2 Rn;

whose components (coordinates) are x1; : : : ; xn. Thereafter, points and vectors will
not be distinguished. Denote by ej ; j D 1; : : : ; n the j th coordinate vector, i.e.,
the unit vector with its j th component 1, and denote by e the vector of all ones.
The reader is referred to related literature for basic concepts and operations in
Euclidean space, such as linear dependency and independency, set of points and
its boundedness and unboundedness, the inner product xT y of vectors x; y 2 Rn,
cos < x; y >D xT y=.kxkkyk/ of the angle between them, their orthogonality
x ? y or xT y D 0, i.e., < x; y >D �=2, the Euclidean module or norm
kxk D p

xT x of vector x, and so on.
Involved in the standard LP problem, both c and x may be viewed as vectors

in Rn, columns aj ; j D 1; : : : ; n of A as vectors in Rm, b as a vector in Rm,
and the feasible region P as a closed polyhedral in Rn in general (as will be
clear a little later), though P could be degenerate, or even empty. The following
lemma, proposed by Farkas (1902), renders a sufficient and necessary condition for
nonempty P (the proof is delayed to at the end of Sect. 4.2).

Lemma 2.1 (Farkas). Assume A 2 Rm�n and b 2 Rm. The feasible region P is
nonempty if and only if

bT y � 0; 8 y 2 fy 2 Rm j AT y � 0g:
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Fig. 2.1 A geometrical
explanation for Farkas lemma

Fig. 2.1 serves as a geometric explanation for the preceding Lemma, where
a1; a2; a3 are columns of A 2 R2�3. Y is the set of all vectors which forms with
every column of A an angle no more than �=2 (corresponding to the shaded area
between vectors v and w in the figure). b1 forms with each y 2 Y an angle no more
than �=2 but b2 does not. Thereby, P is nonempty when b D b1, whereas empty
when b D b2.

In addition to rank A D m, discussions in this chapter will be based on the
following.

Assumption. The feasible region P is nonempty and infinite.

2.1 Polyhedral Convex Set and the Feasible Region

For any given two points x; y 2 Rn, set

S D f˛x C .1 � ˛/y j ˛ 2 Rg

is a straight line; if 0 < ˛ < 1, it is an open segment with end points x and y,
denoted by .x; y/; if 0 � ˛ � 1, it is a closed segment, denoted by Œx; y�. Hereafter
so-called “segment” will be all closed.

Definition 2.1.1. … is an affine set if, whenever it includes any two points, it
includes the whole straight line passing through them. The smallest affine set
including a set is the affine hull of the latter.

Straight lines in R2 and planes in R3 are instances of affine sets. The whole space
Rn is an affine set. An empty set and a single point set are viewed as affine sets. It
is clear that the intersection of affine sets is an affine set.

For any given ˛i ; i D 1; : : : ; k satisfying
Pk

iD1 ˛i D 1, point

x D
kX

iD1

˛i x
i
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is called an affine combination of x1; : : : ; xk . It is easy to show that the set of all
such affine combinations, i.e.,

(
kX

iD1

˛kxi j
kX

iD1

˛i D 1; ˛i 2 R; i D 1; : : : ; k

)

is an affine set, called affine hull of these points. The two points in Definition 2.1.1
can be generalized to multiple points: it is easy to show that … is an affine set if and
only if the affine hull of any finitely many points within … belongs to ….

Set L is a subspace of Rn if it is closed for all linear operations, that is, for any
x; y 2 L and ˛; ˇ 2 R it holds that ˛xCˇy 2 L. An affine set is an affine subspace
if it is a subspace.

Theorem 2.1.1. An affine set is an affine subspace if and only if it includes the
origin.

Proof. The necessity is clear. Sufficiency. Let … be an affine set including the origin.
Then for any x 2 … and ˛ 2 R, it holds that

˛x D ˛x C .1 � ˛/0 2 …:

On the other hand, it holds for any x; y 2 … that

x C y

2
D 1

2
x C .1 � 1

2
/y 2 …:

Therefore, … is closed for linear operations, and is thus an affine subspace. ut
Theorem 2.1.2. For any nonempty affine set …, there exists vector p so that

L D fx C p j x 2 …g

is an affine subspace, and such subspace is unique.

Proof. According to Theorem 2.1.1, … is an affine subspace if 0 2 …. Note that
L D … corresponds to p D 0. Assume that 0 62 …. Since … ¤ ;, there exists
0 ¤ y 2 …. Letting p D �y, it is clear that

L D fx C p j x 2 …g

is an affine set including the origin, and is hence an affine subspace.
Now let us show the uniqueness. Assume that L1; L2 are affine subspaces such

that

L1 D fy C p1 j y 2 …g; L2 D fy C p2 j y 2 …g:
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It is clear that

… D fx � p1 j x 2 L1g:

If p D �p1 C p2, therefore, it holds that

L2 D fx C p j x 2 L1g;

from which it follows that x Cp 2 L2 for any x 2 L1. Since 0 2 L1, p 2 L2 holds.
Further, since L2 is a subspace, x D .x C p/ � p 2 L2 holds. Therefore, L1 � L2.
L2 � L1 can be similarly derived. So it can be asserted that L1 D L2. ut

Geometrically, the affine subspace L may be viewed as a parallelism of affine set
… along vector p. It is therefore called parallel subspace of …. The dimension of
L is said to be that of …, which is equal to the number of independent components
(coordinates) of elements in …. It is clear that an affine set with one or more than
one dimension is unbounded.

Let a be a nonzero vector and let � be a real number. Set

H D fx 2 Rn j aT x D �g

is called superplane, whose normal vector is a (a ? H ); in fact, for any two points
x; y 2 H , it holds that

aT .x � y/ D aT x � aT y D � � � D 0:

It is easy to show that any superplane is an affine set.
Any straight line in R2 and any plane in R3 are instances of superplane.
The “signed” distance from any point Nx to superplane H is defined by r=kak,

where r is the residual

r D aT Nx � �:

If r D 0, point Nx is within H . It might be well to assume � > 0. Then, if r < 0, the
origin and Nx are in the same side of H ; if r > 0, the two points are in different sides
of H .

Superplanes associated with the objective function are of significance to LP.
Regarding objective value f as a parameter, the sets

H.f / D fx 2 Rn j cT x D f g

are a family of contour surfaces of the objective function. The gradient rf D c

of the objective function is the common normal vector of all the contour surfaces,
pointing to the increasing side of objective value f .

The following gives a mathematical expression of an affine set.
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Theorem 2.1.3. Set … is an affine set if and only if there exists W 2 Rk�n and
h 2 Rk such that

… D fx j W x D hg: (2.1)

Proof. It might be well to rule out the trivial case when … is empty or the whole
space.

Sufficiency. Let … is defined by (2.1). For any x; y 2 … and ˛ 2 R1, it holds
that

W.˛x C .1 � ˛/y/ D ˛W x C .1 � ˛/Wy D ˛h C .1 � ˛/h D h;

leading to ˛x C .1 � ˛/y 2 …. Therefore, … is an affine set.
Necessity. Let … be an affine set. Assume that L is a parallel affine subspace, and

w1; : : : ; wk are basis of the orthogonal complementary space of it. Then, it follows
that

L D fy j .wi /T y D 0; i D 1; : : : ; kg 4D fy j Wy D 0g;

where rows of W 2 Rk�n are .w1/T ; : : : ; .wk/T . Introduce notation h D Wp. Since
L is a parallel subspace of …, there exists a vector p such that

L D fx � p j x 2 …g:

Thus, for any x 2 …, it holds that x � p 2 L; and W.x � p/ D 0 means that x 2
fx j W x D hg. If x 2 fx j W x D hg, conversely, then W x � Wp D W.x � p/ D 0,
hence from x � p 2 L it follows that x 2 …. So, … has expression (2.1). ut

The preceding Theorem says that a set is affine set if and only if it is the
intersection of finitely many superplanes. It is easy to show that the dimension of
the affine set is equal to n � rank.W /. In particular, the solution set

� D fx j Ax D bg

of the constraint system of the standard LP problem is an affine set. Since rank A D
m, � ¤ ; and dim � D n � m.

Definition 2.1.2. C is a convex set if it includes the whole segment whenever it
includes its two end points. The smallest convex set including a set is the convex
hull of the latter.

Any disks and the first quadrant in R2 and spheres in R3 are instances of convex
sets. Clearly, segments and the whole space are convex sets too. Empty sets and
single point sets are regarded as convex sets. Intersections of convex sets are convex.
Any affine set is convex, but a convex set is not an affine set in general; e.g., disks
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and spheres are not affine sets. It is clear that any convex set has an affine hull. The
dimension of the latter is said to be the dimension of the former. Hereafter, so-called
“convex set” is a closed convex set.

For any ˛i � 0; i D 1; : : : ; k satisfying
P

iD1 ˛i D 1, the point

x D
kX

iD1

˛kxi

is called convex combination of points x1; : : : ; xk . It is easy to show that the set of
all such convex combinations, i.e.,

(
kX

iD1

˛kxi j
kX

iD1

˛i D 1I ˛i � 0; i D 1; : : : ; k

)

is the convex hull of these points. It is easy to show that C is a convex set if and
only if the convex hull of any finitely many points within C belongs C .

Any superplane H divides the whole space to two closed half spaces, i.e.,

HL D fx j aT x � �g; and HR D fx j aT x � �g: (2.2)

The intersection of infinitely many closed half spaces is called polyhedral, and
bounded polyhedral called polyhedron. It could degenerate to a segment or point,
or even empty set.

It is clear that a half space is convex. Therefore, a polyhedral or polyhedron is
convex, as termed polyhedral convex set.

A convex set C is called polyhedral convex cone if ˛x 2 C holds for any x 2 C

and ˛ � 0. It is easy to show that a set is a polyhedral convex cone if and if it is
the intersection of finitely many closed half spaces passing through the origin, as
expressed fx 2 Rn j Ax � 0g.

The nonnegative constraints x � 0 in the standard problem correspond to the
positive octant, which is the intersection of the n closed half spaces with the
coordinate planes as its boundary. Therefore, the feasible region P is the intersection
of the affine set � and the positive octant. As any superplane aT x D � may be
viewed as the intersection of two closed half spaces (2.2), P may be also viewed
as the intersection of finitely many closed half spaces. Therefore, we make the
following statement.

Proposition 2.1.1. The feasible region P is a polyhedral convex set.

Such a set could be degenerate, however. The following result concerns the
dimension of P .

Proposition 2.1.2. Define index set

J 0 D fj 2 A j xj D �j ; x 2 P g; (2.3)
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where �j ; j 2 A are nonnegative constants and denote by IJ 0 the coefficient matrix
of system xj D �j ; j 2 J 0. Then it holds that

n � minfm C jJ 0j; ng � dim P D n � r � n � maxfm; jJ 0jg; (2.4)

where

r D rank

�
A

IJ 0

�

:

Proof. Note that rank A D m and P is a nonempty infinite set, according to the
basic assumption.

It is clear that jJ 0j � r and

P D fx 2 Rn j Ax D b; x � 0I xj D �j ; j 2 J 0g:

IF jJ 0j D r , then xj D �j ; j 2 J 0 is a canonical form of system

Ax D bI xj D �j ; j 2 J 0:

If jJ 0j < r , besides xj j 2 J 0, there are additional r�jJ 0j basic variables, and hence
a canonical form of the preceding system. It is to say that there exists a canonical
form, whose n � r nonbasic variables do not belong to J 0. Therefore, it holds that
dim P D n � r . Hence (2.4) follows from minfm C jJ 0j; ng � r � maxfm; jJ 0jg.

ut
In particular, dim P D n � m if J 0 D ;.
The special case of �j D 0 is of significance to the standard LP problem.

Introduce sets

J D fj 2 A j xj D 0; x 2 P g; NJ D AnJ; (2.5)

where J is said to be index set of zero components.
According to the preceding definition, it is clear that P � P 0, and in addition

xj D 0; 8 j 2 J; x 2 P: (2.6)

If x 2 P and xj > 0, then j 2 NJ .
If J ¤ ;, the feasible region P has no interior point in the normal sense, as

is often the case for real problems. For convenience of applications, the following
concept is introduced instead.

Definition 2.1.3. Assume Nx 2 P . If there exists ı > 0 such that a neighborhood of
Nx is included in P , i.e.,

�.ı/ D fx 2 � j xj D 0; j 2 J I kx � Nxk < ıg � P; (2.7)

then Nx is an interior point of P ; otherwise, it is a boundary point.
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The set of all interior points of P is called its interior, denoted by int P . P and its
interior have the same dimension.

For sake of distinguishing, the point is said to be relative interior point when
J ¤ ;. The set of relative interior points is relative interior, while (strict) interior
point or interior stands for the case of J D ;.

Theorem 2.1.4. Assume Nx 2 P . Then Nx 2 int P if and only if

Nxj > 0; j 2 NJ : (2.8)

Proof. Sufficiency. Let point Nx 2 P satisfy (2.8). Using

ı D min
j 2 NJ

Nxj > 0; (2.9)

and

�.ı/ D fx 2 � j xj D 0; j 2 J I kx � Nxk < ıg;

then for any x 2 �.ı/, it holds that

x 2 � and xj D 0; j 2 J:

Moreover, sine

kx � Nxk D
v
u
u
t

nX

j D1

.xj � Nxj /2 < ı;

it holds that

j Nxj � xj j � kx � Nxk < ı; j 2 NJ ;

which and (2.9) together give

xj > Nxj � ı � 0; j 2 NJ :

Thus x 2 P . Therefore �.ı/ � P , and Nx is an interior point of P .
Necessity. Assuming Nx 2 int P , then there is ı > 0 such that �.ı/ � P ; also

there is p 2 NJ such that Nxp D 0. According to the definition of NJ , there is x0 2 P

such that x0
p > 0. It is clear that for any ˛ > 0 there exists

x D �˛x0 C .1 C ˛/ Nx D Nx C ˛. Nx � x0/ 2 �: (2.10)
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Hence, when ˛ is sufficiently small, it holds that

kx � Nxk D ˛k Nx � x0k < ı:

In addition, it is clear that x0
j ; Nxj D 0; j 2 J , and hence xj D 0; j 2 J . Therefore

x 2 �.ı/. On the other hand, from (2.10), Nxp D 0 and ˛ > 0; x0
p > 0 it follows

that

xp D �˛x0
p C .1 C ˛/ Nxp D �˛x0

p < 0;

which contradicts �.ı/ � P . Therefore, (2.8) holds if Nx 2 int P . ut
Proposition 2.1.3. If dim P � 1, then P has a relative interior point.

Proof. The assumption of the proposition implies NJ ¤ ;, because otherwise it holds
that J D A and hence dim P D 0, leading to contradiction. On the other hand, for
any j 2 NJ there exists x 2 P such that xj > 0; hence from the convexity of P , it
follows that there is x 2 P satisfying xj > 0; j 2 NJ . According to Theorem 2.1.4,
it is known that x 2 int P ¤ ;. ut
Example 2.1.1. Investigate the interior of the feasible region of the following
problem:

min x1 C x2 C x3 C x4 C x5;

s:t: x1 � x3 C x4 C x5 D 6;

x2 � x3 � x4 � x5 D 0;

�x2 C 3x3 C x4 C x5 D 0;

xj � 0; j D 1; : : : ; 5:

Answer Adding the second constraint equality to the third gives

2x3 D 0:

It is clear that the feasible region is nonempty, and the x3 component of all feasible
points equals 0. Eliminating x3 from the problem leads to

min x1 C x2 C x4 C x5;

s:t: x1 C x4 C x5 D 6;

x2 � x4 � x5 D 0;

xj � 0; j D 1; 2; 4; 5;

the interior of the feasible region of which is clearly nonempty, corresponding to the
relative interior of the feasible region of the original problem.
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2.2 Geometric Structure of the Feasible Region

This section will discuss the geometric structure of the feasible region P . Actually,
most results in this section are also valid for general polyhedral convex sets.

Definition 2.2.1. Let P 0 be a nonempty convex subset of P . It is a face of P if for
any x 2 P 0, satisfying x 2 .y; z/ � P , it holds that y; z � P 0.

The preceding means that a face includes the whole segment if it includes a interior
point of any segment of P .

The following renders a mathematical expression of P .

Theorem 2.2.1. A nonempty convex subset P.Q/ of P is its face if and only if there
exists index set Q � A such that

P.Q/ D fx 2 Rn j Ax D b; x � 0I xj D 0; j 2 Qg: (2.11)

Proof. Sufficiency. Let ; ¤ P.Q/ � P be defined by (2.11). If v 2 P.Q/ is an
interior point of segment .y; z/ and y; z 2 P , then there exists 0 < ˛ < 1 such that

v D ˛y C .1 � ˛/z:

Hence from ˛ > 0; 1 � ˛ > 0; y; z � 0 and

vj D ˛yj C .1 � ˛/zj D 0; j 2 Q;

it follows that

yj ; zj D 0; j 2 Q;

Therefore, y; z 2 P.Q/, and hence P.Q/ is a face of P .
Necessity. Let P.Q/ ¤ ; be a face of P . Introduce notation

Q D fj 2 A j xj D 0; x 2 P.Q/g: (2.12)

Now we show that P.Q/ is equivalent to

P.Q/0 D fx 2 Rn j Ax D b; x � 0I xj D 0; j 2 Qg: (2.13)

It is clear that P.Q/ � P.Q/0 � P .
If P.Q/ includes the origin 0 only, it follows that b D 0 and Q D A. And

P.Q/0 clearly includes 0, hence P.Q/ D P.Q/0. Now assuming that P.Q/ does
not include 0, we will show P.Q/0 � P.Q/.

Assume x 2 P.Q/0. If x D 0 (b D 0), then for any 0 ¤ v 2 P.Q/ and

y D 2v
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it holds that

v D y

2
C 0

2
;

which means that v 2 .y; 0/. Since P.Q/ is a face and y; 0 2 P , we have x D 0 2
P.Q/. On the other hand, if x ¤ 0, i.e.,

S D fj 2 A j xj > 0g

is nonempty, then from x 2 P.Q/0 and (2.13), it is known that j 62 Q for any
j 2 S . Therefore there exists u 2 P.Q/ such that uj > 0. If S includes two
or more indices, then u; w 2 P.Q/ satisfy ui ; wj > 0 for any i; j 2 S , hence
z D u=2 C w=2 2 P.Q/ satisfies zi ; zj > 0. This means that there exists v 2 P.Q/

such that vj > 0 for all j 2 S . As for the relation between x and v, there are the
following two cases only:

(i) fj 2 S j xj > vj g D ;. It is clear that

z D 2v � x D v C .v � x/ 2 P:

Since P.Q/ is a face of P , and v D z=2Cx=2 2 .x; z/, it holds that x 2 P.Q/.
(ii) fj 2 S j xj > zj g ¤ ;. Define

z D x C ˇ.v � x/; ˇ D minfxj =.xj � vj / j xj � vj > 0; j 2 Sg > 1:

It is easy to verify that z 2 P , and

v D ˛z C .1 � ˛/x 2 .x; z/; 0 < ˛ D 1=ˇ < 1:

In addition, P.Q/ is a face of P , hence x 2 P.Q/. Therefore P.Q/0 � P.Q/.
ut

Clearly, P itself is a face (Q D ;). If a face P.Q/ ¤ P , it is called a proper face.
It is easy to show that face P.Q/ is a proper face if and only if dim P.Q/ < dim P .
From the proof of Proposition 2.1.2, it is know that dim P.Q/ � n � maxfm; jQjg.
Face of face is a face.

If dim P.Q/ D dim P � 1, face P.Q/ is called facet of P . An 1-dimensional
face is also called edge; an 0-dimensional face is called vertex or extreme point.

It is clear that the feasible region P has infinitely many faces. In fact, it is known
that the number of .n � m � k/-dimensional faces of P is no more than C k

n (k D
1; : : : ; n � m); in particular, there exist, at most, an .n � m/-dimensional face (that
is P itself), C mC1

n edges and C n�m
n D C m

n vertices.
“Vertex” can also be defined by the following alternatively.
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Definition 2.2.2. x is a vertex of P if x 2 Œy; z� leads to x D y or x D z for any
y; z 2 P .

The preceding implies that a vertex is not an interior point of any segment of P . It is
clear that a vertex of face is a vertex of P , and that the origin is a vertex if it belongs
to P .

Vertex has its distinctive algebraical attribute.

Lemma 2.2.1. A point x 2 P is a vertex if and only if columns of A corresponding
to its positive components are linearly independent.

Proof. It might be well to let the first s components of x be great than 0 and let the
rest be 0. Assume that Nx is the subvector consisting of the first s components of x

and NA is the submatrix consisting of the first s columns of A. Then NA Nx D b.
Necessity. Let x be a vertex of P . If columns of NA are linearly dependent, there

is a nonzero vector Nv such that NA Nv D 0. Introduce notation

Ny D Nx C ˛ Nv; Nz D Nx � ˛ Nv:

It is clear that for any real ˛ it holds that

NA Ny D NANz D b:

Take sufficiently small ˛ > 0, such that Ny; Nz � 0. Construct vectors y and z, so
that the first s components of them respectively constitute Ny and Nz, and the others
are 0. Then it is clear that y; z 2 P and x D y=2 C z=2. Thus x is not a vertex
of P , as leads to a contradiction. Therefore, columns corresponding to all positive
components of x are linear independent if x is a vertex of P .

Sufficiency. Assume that columns of NA are linearly independent. If x 2 P is not
a vertex, there are two points y; z 2 P and a real ˛ 2 .0; 1/ such that

x D ˛y C .1 � ˛/z;

from which it is known that the last n � s components of y and z are both 0.
Therefore, v D x � y ¤ 0 and

NA Nv D Av D Ax � Ay D b � b D 0;

which means that columns of NA are linearly dependent, as a contradiction. Therefore
x is a vertex if columns of NA are linearly independent. ut

In view of rank.A/ D m, the preceding theorem implies that the number of
positive components of a vertex of P is no more than m.

Lemma 2.2.2. Nx is a vertex of the feasible region if and only if it is a basic feasible
solution.

Proof. It is from Theorem 1.6.2 and Lemma 2.2.1. ut
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The preceding Lemma says that vertex and basic feasible solution of P are the
same; thus, the two may be regarded as geometrical and algebraical names of the
same mathematical item. It is usually difficult to determine if a point is a vertex
based on the definition itself, while a basic feasible solution can be conveniently
determined algebraically. Recall that every canonical form of the constraint system
Ax D b corresponds to a basic solution, which is a basic feasible solution if it is
nonnegative (Sect. 1.6).

Lemma 2.2.3. Nonempty feasible region has a vertex.

Proof. It is clearly the case when P is a single point set. Let P be infinite set,
and Nx 2 P . If Nx is not a vertex, there are two distinct points y; z 2 P and a real
N̨ 2 .0; 1/ such that

Nx D N̨y C .1 � N̨ /z D z C N̨ .y � z/:

Thus, a component of Nx is 0 if and only if the corresponding components of both
y; z are 0. Introduce

T D fj 2 A j Nxj > 0g:

Then T ¤ ;, since T D ; implies that Nx D 0 is a vertex. It might be well to assume
that for some i 2 f1; : : : ; ng it holds that zi > yi , and hence i 2 T . This means that

fj 2 T j zj � yj > 0g ¤ ;:

It is easy to show that redefined

Nx D ˛1yC.1�˛1/z; ˛1 D zq=.zq�yq/ D minfzj =.zj �yj / j zj �yj > 0; j 2 T g

satisfies Nx 2 P and Nxq D 0. Thus jT j for the new Nx is less than that for the old by 1,
at least. Repeating no more than n times, therefore, the preceding process terminates
at a vertex. ut

The above proof produces a series of feasible points, corresponding to faces,
each of which is a proper face of its predecessor, until reaching a 0-dimensional
face (vertex). Such a technique for shifting to faces of lower dimensions will often
be used.

For any given point x and vector d ¤ 0, set fx C ˛d j ˛ � 0g is said to be ray
(or half-line), emanating from x along the direction of d . It is clear that a ray is an
infinite set.

Definition 2.2.3. A nonzero vector d is an unbounded direction if P includes rays,
emanating from all x 2 P along d .

Two unbounded directions having the same direction are regarded as the same.
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Theorem 2.2.2. Vector d is an unbounded direction of the nonempty feasible
region if and only if

Ad D 0; d ¤ 0; d � 0: (2.14)

Proof. Sufficiency. With the assumptions, it is easy to verify that for any given x 2
P and ˛ � 0 it holds that x C ˛d 2 P , therefore d ¤ 0 is an unbounded direction.

Necessity. Let d ¤ 0 be an unbounded direction. Thus, there is x 2 P , satisfying
xC˛d 2 P for any ˛ � 0. Hence, from Ax D b and A.xC˛d/ D b, it follows that
Ad D 0. In addition, d � 0 holds, because, otherwise, d has a negative component,
and hence the corresponding component of x C ˛d is negative whenever ˛ > 0

becomes sufficiently large, as contradicts x C ˛d 2 P . ut
Corollary 2.2.1. A nonzero vector d is a unbounded direction if P includes the
ray, emanating from some x 2 P along d .

It is clear that any nonnegative linear combination of finitely many unbounded
directions is an unbounded direction if the combination coefficients are not all zero.
Note that “unbounded direction” is meaningless to an empty P .

Theorem 2.2.3. The feasible region is unbounded if and only if it has an unbounded
direction.

Proof. Sufficiency is clear, it is only needed to show necessity.
If v 2 P , then the translation of P , i.e.,

C D fx � v j x 2 P g

clearly includes the origin, and P is unbounded if and only if C is unbounded. It
might be well to assume that 0 2 P .

Let S 0 D fxkg 2 P be an unbounded sequence of points. Without loss of
generality, assume that

kxkk ! 1 as k ! 1:

Then the sequence

S 00 D fxk=kxkkg

on the unit sphere is bounded, hence has a cluster point. Letting x be its cluster
point, then S 00 includes a subsequence converging to x. It might be well to assume

xk=kxkk ! x:

Now it should be shown that x is an unbounded direction of P . Let M be a given
positive number. Since kxkk ! 1, there is a positive integer K such that kxkk >

M or M=kxkk < 1 when k � K . Introduce
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d1

d3P

d2

Fig. 2.2 d1; d2; d3 are
unbounded directions. d1; d2

are extreme directions, but d3

not

yk D .M=kxkk/xk; k D K; K C 1; : : : :

Since P is convex, we have 0; xk 2 P and yk 2 .0; xk/, and hence yk 2 P and
yk ! M x when k � K . As P is closed, it can be asserted that M x 2 P . ut
Definition 2.2.4. An unbounded direction of P is extreme direction if it can not be
expressed by a positive linear combination of two distinct unbounded directions.

According to the preceding, that d is an extreme direction means that if there
are unbounded directions d 0; d 00 and positive number �1; �2 > 0, satisfying d D
�1d

0 C �2d 00, then there must be d 0 D �d 0, where � > 0. Two extreme directions
having the same direction are regarded as the same.

In Fig. 2.2, d 1; d 2; d 3 are unbounded directions of P . d 1 and d 2 are extreme
directions, but d 3 is not.

Theorem 2.2.4. An unbounded direction is extreme direction if and only if the rank
of columns, corresponding to its positive components, is less than the number of
columns by 1.

Proof. It might be well to assume that k positive components of unbounded
direction d correspond to the set of columns a1; : : : ; ak . The satisfaction of Ad D 0

implies that the columns are linearly dependent. Denote the rank of the set by is r ,
then it is clear that r < k. Without loss of generality, assume that the first r columns
are linear independent. Introduce B D .a1; : : : ; ar /. It is clear that

rank B D r � rank A D m:

Note that k � 2, because if k D 1, otherwise, then from Ad D 0 it follows that
a1 D 0, as leads to a contradiction.
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Necessity. Assume that d is an extreme direction, but r ¤ k � 1, that is,
a1; : : : ; ak�1 are linearly dependent. Thus, there exists point

y D .y1; : : : ; yk�1; 0; : : : ; 0/T ¤ 0

such that

Ay D
k�1X

j D1

yj aj D 0:

Clearly, for sufficiently small ı > 0, it holds that

0 ¤ d 0 D d C ıy � 0; 0 ¤ d 00 D d � ıy � 0;

and Ad 0 D Ad 00 D 0. Therefore, d 0; d 00 are unbounded directions of P , and hence
not of the same direction. But d D .d 0 C d 00/=2, as contradicts that d is an extreme
direction. It therefore holds that r D k � 1.

Sufficiency. Assume r D k � 1. If there exist unbounded directions d 0; d 00 and
�1; �2 > 0 such that

d D �1d 0 C �2d 00;

then zero components of d clearly correspond to zero components of d 0 and d 00. So,
the last n � k components of d 0 and d 00 are all zero. In addition, since d 0; d 00 are
unbounded directions, it holds that Ad 0 D Ad 00 D 0 (Theorem 2.2.2), and hence
that

Bd 0
B C d 0

kak D 0; Bd 00
B C d 00

k ak D 0:

Note that d 0
k; d 00

k > 0; because if d 0
k D 0, otherwise, then d 0

B D 0, and hence d 0 D 0,
as is a contradiction. Premultiplying the two sides of the preceding two equalities
by BT gives

BT Bd 0
B C d 0

kBT ak D 0; BT Bd 00
B C d 00

k BT ak D 0;

from which it follows that

d 0
B D �d 0

k.BT B/�1BT ak; d 00
B D �d 00

k .BT B/�1BT ak:

Therefore, it holds that

d 00 D .d 00
k =d 0

k/d 0;
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which means that unbounded directions d 0 and d 00 have the same direction, and
hence d is an extreme direction. ut

The extreme direction and 1-dimensional face (edge) have close relationship.

Theorem 2.2.5. A vector is an extreme direction if and only if it is the unbounded
direction of a edge.

Proof. Necessity. Assume that d is an extreme direction. Based on Theorem 2.2.4,
assume that columns corresponding to its positive components are

a1; : : : ; ar ; amC1;

where the first r � m columns are linearly independent. Thus

d1; : : : ; dr ; dmC1 > 0; drC1; : : : ; dm; dmC2; : : : ; dn D 0: (2.15)

Since the rank of A is m, there are m � r columns which together with a1; : : : ; ar

form a basis when r < m. Without loss of generality, assume that the first m

columns of A constitute a basis, i.e.,

B D .a1; : : : ; ar ; arC1; : : : ; am/; N D famC1; : : : ; ang: (2.16)

From (2.15) and Ad D 0, it is follows that

rX

iD1

di ai C dmC1amC1 D 0;

hence

amC1 D �
rX

iD1

.di=dmC1/ai :

Assume that basis B corresponds to the canonical form below:

xB D Nb � NN xN : (2.17)

Since its augmented matrix .I NN j Nb/ comes from .A j b/ D .B N j b/ by
elementary transformations, and amC1 is a linear combination of a1; : : : ; ar , the last
m � r components of column NamC1 in the canonical form are all zero.

Let Nx belong to P . If NxN D 0, then Nx is the basic feasible solution corresponding
to basis B . Now assume, otherwise, that NxN ¤ 0. We will create a new basis B

associated with a basic feasible solution by a series of elementary transformations
and some solution updating.
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Assume that Nxj > 0 holds for some j 2 N; j ¤ m C 1. Reducing Nxj and
keep the other nonbasic components unchanged, we determine the corresponding
value of NxB such that Nx satisfies (2.17), resulting in a new solution Nx. For the
column corresponding to Nxj , of the canonical form (2.17), there are only two cases
arising:

(i) Naj � 0.
It is clear that Nxj may decrease to 0 and associated NxB remains nonnegative.
Thus, setting Nxj D 0 gives a new feasible solution Nx.

(ii) Naj 6� 0.
If the first r components of Naj are nonnegative, one of the last m�r components
of NxB decreases to 0 first (so-called “blocking”) as Nxj decreases. Assume that
the blocking is component i (r C 1 � i � m). Set Nxj to the according value,
and interchange aj and ai to update B and N . By exchanging their indices at
the same time, the nonbasic component Nxj of the new solution Nx becomes 0.
If some of the first r components of Naj are negative, then we can determine a
� > 0 such that the first r basic components of

Nx WD Nx C �d

are sufficiently large and all the nonbasic components remain unchanged,
except for NxmC1, such that no broking happens to the first r components of NxB

as Nxj decreases. If no broking happens to the last m � r components either, we
set Nxj D 0. If broking happens to component r C 1 � i � m, we set Nxj to the
according value, and interchange aj and ai to updated B and N . Consequently,
by exchanging their indices, the nonbasic component Nxj of the new solution Nx
is now equal to 0.

As such, we can transform all Nxj ; j 2 N; j ¤ m C 1 to 0, without affecting the
first r indices of B . Then, if NxmC1 D 0, we are done.

If NxmC1 > 0, we reduce it and keep the other nonbasic components unchanged.
Since the last m � r components of NamC1 are zero, the corresponding components
of NxB remain unchanged, and there will be only two cases arising:

(i) The first r components of NamC1 are all nonnegative. Then it is clear that NxmC1

can decrease to 0 and according NxB remain nonnegative, thus we set NxmC1 D 0.
(ii) Some of the first r components of NamC1 are negative. If the according NxB

remains nonnegative as NxmC1 decreases to 0, we set NxmC1 D 0; otherwise,
if broking happens for component 1 � i � r of NxB , we set NxmC1 to the
associated value, and exchange amC1 and ai to update B and N . Then, by
exchanging their indices, the nonbasic component NxmC1 of the new Nx is equal to
zero.

Therefore, it might be well to assert that the basis B , defined by (2.16),
corresponds to basic feasible solution Nx.



2.2 Geometric Structure of the Feasible Region 45

Consider the following face

P 0 D fx 2 Rn j Ax D b; x � 0; xj D 0; j D m C 2; : : : ; ng
D fx 2 Rn j BxB C xmC1amC1 D b; xB; xmC1 � 0I

xj D 0; j D m C 2; : : : ; ng
D fx 2 Rn j xB C xmC1 NamC1 D Nb; xB; xmC1 � 0I (2.18)

xj D 0; j D m C 2; : : : ; ng:

It is clear that Nx 2 P 0. Hence, from (2.15) and

BdB C dmC1amC1 D 0; (2.19)

it is known that

Nx C ˛d 2 P 0; 8 ˛ � 0:

Therefore, d is a unbounded direction of P 0. It is now only needed to show
dim P 0 D 1.

For any x0 2 P 0 and x0 ¤ Nx, introduce d 0 D x0 � Nx. It is clear that

d 0
1; : : : ; d 0

r ; d 0
mC1 > 0; d 0

rC1; : : : ; d 0
m; d 0

mC2; : : : ; d 0
n D 0 (2.20)

and

Bd 0
B C d 0

mC1amC1 D 0: (2.21)

From (2.19) and (2.21) it follows respectively that

dB D �dmC1B
�1amC1; d 0

B D �d 0
mC1B

�1amC1;

Therefore, d 0 D .d 0
mC1=dmC1/d , where d 0

mC1=dmC1 > 0. This implies that
dim P 0 D 1. Therefore, P 0 is an 1-dimensional face or edge, and d is an unbounded
direction of it.

Sufficiency. Assume that d is an unbounded direction of edge P 0 (2.19), and
hence satisfies (2.19). If d is a positive linear combination of unbounded directions
d 0; d 00 of P , then there exists a correspondence between zero components of d and
of d 0; d 00, and hence d 0; d 00 are also unbounded directions of P 0. Since dim P 0 D
1, in addition, d 0 and d 00 have the same direction. Therefore, d is an extreme
direction. ut
Lemma 2.2.4. An unbounded direction that is not an extreme one is a positive
linear combination of two unparallel unbounded directions.



46 2 Geometry of the Feasible Region

Proof. Without loss of generality, assume that columns a1; : : : ; ak correspond to
positive components of an unbounded direction d , and the first r columns are
linearly independent. As d is not an extreme direction, it holds by Theorem 2.2.4
that r < k � 1, or

k � r � 2: (2.22)

Introduce matrix B1 D .a1; : : : ; ar /. Within the set of akC1; : : : ; an, determine m�r

columns, which might be assumed to correspond to B1 D .akC1; : : : ; akCm�r /, to
construct basis B D .B1; B1/ (it is clear that m � r � n � k). Then the nonbasic
matrix is N D .N1; N2/, where N1 D .arC1; : : : ; ak/; N2 D .akCm�rC1; : : : ; an/.
Assume that B corresponds to the canonical form xB D Nb � NN xN . Then d

satisfies

B1dB1 D � NN1dN1; dN2 D 0:

or equivalently,

dB1 D �.BT
1 B1/

�1BT
1

NN1dN1; dN2 D 0:

Introduce e 2 Rk�r and

d 0
B1

D �.BT
1 B1/

�1BT
1

NN1.dN1 C 	e/; d 00
B1

D �.BT
1 B1/

�1BT
1

NN1.dN1 � 	e/:

Letting 	 D .	1; : : : ; 	k�r /
T > 0, then vectors

d 0 D

0

B
B
@

d 0
B1

0

dN1 C 	

0

1

C
C
A ; d 00 D

0

B
B
@

d 00
B1

0

dN1 � 	

0

1

C
C
A

satisfy d D d 0=2 C d 00=2. It is clear that d 0; d 00 ¤ 0 and Ad 0 D 0; Ad 00 D 0. As
(2.22) holds, it is known that there exists a sufficiently small 	 such that d 0; d 00 � 0

are unparallel unbounded directions. ut
Theorem 2.2.6. If P has an unbounded direction, it has a extreme direction.

Proof. Let d be an unbounded direction. Assume that it has k positive components
and the rank of the corresponding columns is r � k � 1. If r D k � 1, then d

is an extreme direction (Theorem 2.2.4). Otherwise, by Lemma 2.2.4, d can be
expressed as

d D �1d 0 C �2d 00;
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where d 0; d 00 are unparallel unbounded directions, and �1; �2 > 0. Without loss of
generality, assume that d 00 has at least one component greater than the corresponding
component of d 0. Thus, the following vector

Od D d 00�˛.d 00�d 0/; ˛ D minfd 00
j =.d 00

j �d 0
j / j d 00

j �d 0
j > 0; j D 1; : : : ; ng > 0:

is well-defined. Consider

A Qd D 0; Qd � 0; Qd ¤ 0;

where the first two equalities clearly hold. If the third does not hold, then d 00 �
˛.d 00 � d 0/ D 0, as leads to

d 0 D ˛ � 1

˛
d 00;

implies that d 0; d 00 are parallel, as a contradiction. Therefore, the third equality also
holds, and hence Qd is an unbounded direction. In addition, it is known that the
number of zero components of Qd is less than that of d by 1, at least. Then set d D Qd
and repeat the preceding steps. It is clear that such a process can only repeat finitely
many times, and terminates at some extreme direction. ut

According to Theorem 2.2.5, extreme directions and unbounded edges of P are
1-to-1 correspondent (extreme directions having the same direction are viewed as
the same). As there are finitely many edges, the number of extreme directions are
finite.

It is now time to lay a theoretical basis to Dantzig-Wolfe decomposition method
for solving large-scale LP problems (Chap. 8).

Theorem 2.2.7 (Representation Theorem of the Feasible Region). Let P be
nonempty. Assume that fu1; : : : ; usg is the vertex set and fv1; : : : ; vt g the extreme
direction set. Then x 2 P if and only if

x D
sX

iD1

˛i u
i C

tX

j D1

ˇj vj ;

sX

iD1

˛i D 1; ˛i � 0; i D 1; : : : ; s; (2.23)

ˇj � 0; j D 1; : : : ; t:

Proof. When (2.23) holds, it is clear that x 2 P . So it is only needed to show
necessity. We use inductive method to dimensions.
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If dim P D 0, P is a single point set, including a vertex. The conclusion holds
clearly. Assume that it holds for dim P < k. We will show that it holds for dim P D
k � 1.

From Proposition 2.1.3, it follows that int P ¤ ;. Assume x 2 int P , and
consider

x0 D x � 
.u1 � x/: (2.24)

Note that u1 ¤ x. There are the following two cases arising:

(i) u1 � x 6� 0.

Determine 
 such that


 D xq=.u1
q � xq/ D minfxj =.u1

j � xj / j u1
j � xj > 0; j D 1; : : : ; ng > 0:

Then, it is easy to verify that x0, defined by (2.24), satisfies x0 2 P and x0
q D 0.

Therefore, x0 belongs to some proper face with its dimension less than k. According
to the assumption of induction, x0 can be expressed as the sum of a convex
combination of vertices and a nonnegative combination of extreme directions of
the proper face. Since vertices and extreme directions of a face are also that of P ,
therefore, x0 can be expressed as the sum of a convex combination of vertices and a
nonnegative combination of extreme directions of P , i.e.,

x0 D
s1X

iD1

˛0
i u

i C
t1X

j D1

ˇ0
j vj ;

s1X

iD1

˛0
i D 1; ˛0

i � 0; i D 1; : : : ; s1;

ˇ0
j � 0; j D 1; : : : ; t1;

where ui and vj are vertices and extreme directions of P , respectively. Substituting
the preceding into

x D 1

1 C 

x0 C .1 � 1

1 C 

/u1;

which is equivalent to (2.24), leads to the expression of the form of (2.23), i.e.,

x D
s1X

iD1

1

1 C 

˛0

i u
i C .1 � 1

1 C 

/u1 C

t1X

j D1

1

1 C 

ˇ0

j vj :
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(ii) u1 � x � 0.

Then x0, defined by (2.24), are all feasible points for any 
 � 0, hence �.u1 � x/

is an unbounded direction. According to Lemma 2.2.6, there is an extreme direction,
say v1. Now take a sufficiently large � such that

Qx D u1 C �v1

has at least one component greater than the corresponding component of x.
Consequently, the point defined by

x0 D x � 
. Qx � x/;


 D xq=. Qxq � xq/ D minfxj =. Qxj � xj / j Qxj � xj > 0; j D 1; : : : ; ng > 0:

is a feasible point, satisfying x0
q D 0. Therefore, this point belongs to some proper

face with dimension less than k, and hence can be expressed as the sum of a convex
combination of vertices and a nonnegative combination of extreme directions of P .
As a result, an expression of the form (2.23) can be obtained in an analogous manner
as case (i). ut

The preceding Theorem indicates that a feasible point is the sum of a convex
combination of vertices and a nonnegative combination of extreme directions, and
vice versa. In particular, the following is a direct corollary.

Corollary 2.2.2. Let the feasible region be bounded. A point is feasible if and only
if it is a convex combination of vertices.

2.3 Optimal Face and Vertex

We describe a basic result without proof (see, e.g., Rockafellar 1997).

Theorem 2.3.1 (Partition Theorem). Let Nx be a boundary point of convex set S .
Then there exists a superplane including Nx and partitioning the total space to two
half spaces, one of which includes S .

The superplane involved in the preceding Theorem is said to be supporting
superplane of S . That is to say, there is a supporting superplane through every
boundary point of a convex set. Although the result is applicable to any convex
set, we are only concerned with the feasible region P , in particular.

Supporting superplane of P is closely related to its face, as the following reveals.

Lemma 2.3.1. The intersection of P and a supporting superplane is a face.

Proof. Assume that H D fx 2 Rn j aT x D �g is the superplane of P , and P 0 D
P \ H . Without loss of generality, let aT x � � hold for all x 2 P .
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Assume that v 2 P 0 is an interior point of segment .y; z/, and y; z 2 P , i.e.,

v D ˛y C .1 � ˛/z; (2.25)

where 0 < ˛ < 1. Note that, P 0 is a nonempty convex set.
It is only needed to show y; z 2 H , as leads to y; z 2 P 0, hence P 0 is a face of P .
Assume y; z 62 H . Then it holds that

aT y < �; aT z < �:

Multiplying the preceding two formulas respectively by ˛ > 0 and 1 � ˛ > 0, and
then adding the results gives

aT .˛y C .1 � ˛/z/ < �˛ C �.1 � ˛/ D �;

combining which and (2.25) leads to v 62 H , and hence v 62 P 0. This contradicts
the assumption v 2 P 0. Therefore, at least one of y and z belongs to H .

Without loss of generality, assume z 2 H . Then, it follows from (2.25) that

y D .1=˛/v C .1 � 1=˛/z;

implying that y is in the straight line through v and z. Moreover, z; v 2 H and H is
a superplane, therefore y 2 H . ut
Lemma 2.3.2. Let Nf be the optimal value of the standard LP problem. Set F is the
set of optimal solutions if and only if it is the intersection of P and the objective
contour plane

NH D fx 2 Rn j cT x D Nf g: (2.26)

Proof. Assume F D P \ NH . It is clear that any optimal solution Nx 2 P satisfies
cT Nx D Nf , implying Nx 2 NH , hence Nx 2 F . Therefore, F is the set of optimal
solutions. If F is the set of optimal solutions, conversely, then cT Nx D Nf holds for
any Nx 2 F � P . Therefore Nx 2 NH , and hence Nx � P \ NH . ut

It is clear that NH is a supporting superplane of P , as is referred to as objective
supporting superplane.

A face is optimal if its elements are all optimal solutions. A vertex is optimal if
it is an optimal solution.

Lemma 2.3.3. If there exists an optimal solution, then there exists an optimal face.

Proof. According to Lemma 2.3.2, a nonempty set of optimal solutions is the
intersection of feasible region P and objective contour plane NH . Therefore it
is an optimal face, according to Lemma 2.3.1 and the definition of an optimal
face. ut
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Fig. 2.3 Graphic solution to Example 1.2.2

Theorem 2.3.2. If there exists a feasible solution, there exists a basic feasible
solution. If there is an optimal solution, there is a basic optimal solution.

Proof. By Lemmas 2.2.2 and 2.2.3, it is known that nonempty feasible region has
a basic feasible solution. By Lemma 2.3.3, if there is an optimal solution, there is
an optimal face, which is a nonempty polyhedral convex set, and hence having an
optimal convex or basic optimal solution. ut

In presence of optimal solution, there exists an optimal 0-dimensional face (or
vertex). In general, there could exist optimal faces of higher dimensions. It is clear
that the optimal face of the highest dimension is the set of all optimal solutions, as
is referred to as optimal set. After a LP problem is solved by the simplex method,
the optimal set can be obtained easily (Sect. 25.2).

2.3.1 Graphic Approach

A LP problem of 2-dimension can be solved via a graphic approach. To do so, let us
return to Example 1.2.2. The shaded area enclosed by polygon OABCD in Fig. 1.1
is the feasible region (ignore the straight line x C 2y D 10, at the moment). It is
required to determine a point over the area such that the objective function reaches
the highest value at the point (Fig. 2.3).

In the figure, the equation 2x C 5y D 0 of the contour line of the objection
function corresponds to the dashed line OE , going through the origin, all points on
which correspond to the same objective value 0. The line’s slope, i.e., the tangent
of the angle between it and x axis, is �2=5 D �0:4. Therefore, the corresponding
contour line shifts parallel to the upper-right side as the objective value increases
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from 0. Points in the intersection of the line and the area of OABCD are all feasible
points. The parallel shifting should be carried out as far as the intersection remains
nonempty to attain the biggest possible objective value. It is seen from the figure
that the contour line shifting the farthest is the dashed line BF though vertex B ,
that is, the “objective supporting plane”. The optimal set, i.e., the intersection of the
line and the feasible region includes a single vertex B , corresponding to the basic
optimal solution. Consequently, problem (1.2) is solved after measuring coordinates
of point B , and calculating the associated objective value.

If the figure or measurement is not relatively accurate, however, the end solution
would involve unacceptable errors. For a graphic approach, therefore, it would be
better to use coordinate paper, with the help of algebraic calculating. Once B is
known to be the optimal vertex, for instance, its coordinates can be obtained by
solving the following system of equations:

�
2x C 3y D 12

y D 3
(2.27)

from which the optimal basic solution Nx D 1:5; Ny D 3 to problem (1.2) follows,
with the optimal value f D 18. That is to say, the manufacturer should arrange
production of 1,500 laths and 3,000 sheep piles daily, gaining 18,000 dollars profit.

The graphic approach is not suitable for cases of n � 3, though it is simple. Even
for case of n D 2, in fact, its application is rare seen. However, it still offers some
inspiration, as is the topic of Sect. 2.5.

2.4 Feasible Direction and Active Constraint

Methods for solving mathematical problems fall into two categories: direct and
iterative methods. The latter produces a sequence of points by iterations, offering
an exact or approximate solution. Methods presented in this book belong to the
iterative category.

Line search is the mostly used iterative approach in optimization. At a current
point Nx, in each iteration, a new point Ox is determined along a ray starting from Nx
along a nonzero vector d , i.e.,

Ox D Nx C ˛d; (2.28)

where d is referred to as search direction, ˛ > 0 as stepsize. Once the two are
available, Ox can be calculated and then one iteration is complete. Repeating this
process yields a sequence of points, until a solution is reached. Formula (2.28) is
referred to as line search or iterative scheme.

The determination of a search direction is crucial. In presence of constraints,
d should be such that the intersection of the ray (2.28) and the feasible region is
nonempty. More precisely, we introduce the following concept:
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Fig. 2.5 d3; d4 are feasible
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Definition 2.4.1. Let P be the feasible region. Assume that Nx 2 P; d ¤ 0. If there
exists N̨ > 0 such that

Nx C ˛d 2 P; 8 ˛ 2 Œ0; N̨ �;

d is a feasible direction at Nx.

The preceding is relevant to general constrained optimization problems, includ-
ing the LP problem. The following are some instances, in conjunction with feasible
region P .

Example 2.4.1. In Fig. 2.4, Nx is an interior point of P , and hence any direction is
feasible at it.

Example 2.4.2. In Fig. 2.5, Nx is a boundary point of P . It is seen that d 3; d 4 are
feasible directions at Nx, but d 1; d 2 are not.

Example 2.4.3. In Fig. 2.6, Nx is a vertex of P . Any direction, e.g., d 4 or d 5, within
the angle area between d 6 and d 7 (which are respectively along two sides of P ) is
feasible at Nx. Vectors d 1; d 2; d 3 are not feasible.

Let d be a feasible search direction. It is possible to maintain feasibility of some
new iterate Ox. In order for Ox to be close to an optimal solution, it is needed to take
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into account the objective function. To this end, it might be well to consider the
following problem:

min f D cT x;

s:t: aT
i x � bi ; i D 1; : : : ; m;

(2.29)

where m > n, and whose feasible region is

P D fx 2 Rn j aT
i x � bi ; i D 1; : : : ; mg:

Definition 2.4.2. Vector d satisfying condition cT d < 0 is a descent direction. If
d is also a feasible direction at Nx 2 P , it is a feasible descent direction at Nx.

It is clear that d is a feasible descent direction at Nx if and only if it is a feasible
direction and forms an obtuse angle with the objective gradient c. Once such a
direction d is available, a stepsize ˛ > 0 can be determined, and hence a new iterate
Ox 2 P , obtained by (2.28), corresponding to a smaller objective value. Then, one
iteration is complete.

It is noticeable that not all constraints affect the determination of a feasible
descent direction at a current point.

Definition 2.4.3. A constraint which is violated, or satisfied as an equality, by the
current point is an active constraint.

Aimed at a feasible point, the “active” constraint is usually defined as one
satisfied as equality, or binding at the point. But it seems to be useful to include
infeasible point by regarding a constraint violated as active.

Let us bring up (2.29) as an example. If aT
i Nx D b, then aT

i x � b is active at
Nx; if, otherwise, aT

i Nx > b, then aT
i x � b is not active at that point. So, the current

point is on a boundary of an active constraint. From the simple instances given in
the preceding figures, it is seen that a feasible descent direction can be determined
by taking into account active constraints only.

In practice, the preceding definition for active constraint does not come up to
expectations, as a current point close to boundary could lead to too small stepsize,
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and hence insignificant progress. In view of this, Powell (1989) proposes the so-
called “	-active” constraint, where 	 is a small positive number. For example, if
aT

i Nx � b � 	, then aT
i x � b is an 	-active constraint at Nx; whereas it is not if

aT
i Nx � b > 	.

The LP problem can be solved by the so-called “active set method”, which is
usually used for solving nonlinear programming problems though some scholars
prefer it to be a LP problem solver (e.g., Fletcher 1981; Hager 2002). We outline the
method in conjunction with problem (2.29) in the remainder of this section.

Assume that the current vertex Nx is an unique solution to the linear system below:

aT
i x D bi ; i 2 A;

where A is called the active set (of constraints), consisting of n indices of (total or
part) active constraints, with linearly independent gradients ai . If Nx is judged to be
optimal under some criterion, we are done; otherwise, some index p 2 A is selected
such that the n � 1 equalities

aT
i x D bi ; i 2 Anfpg; (2.30)

determines a descent edge (1-dimensional face).
In fact, since the rank of the coefficient matrix of (2.30) is n � 1, the associated

homogeneous system

aT
i d D 0; i 2 Anfpg;

has a solution d such that

d ¤ 0; cT d < 0:

It is easily verified that for ˛ � 0, all points on the ray

Ox D Nx C ˛d;

satisfy (2.30). Under the condition that the objective value is lower bounded over
the feasible region, the following stepsize is well defined:

˛ D .bq � aT
q Nx/=aT

q d D minf.bi � aT
i Nx/=aT

i d j aT
i d < 0; i 62 Ag � 0:

In fact, such an ˛ is the largest stepsize possible to maintain feasibility of Ox. Since
aT

q Ox D bq , the aT
q x � bq is an active constraint at Ox.

Consequently, setting Nx D Ox and redefining A D Anfpg [ fqg completes an
iteration of the active set method. If ˛ > 0, the new vertex corresponds to a lower
objective value. Note however that if there are multiple active constraints at the
current vertex Nx, then ˛ defined by (2.30) would vanish, so that the descent edge
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degenerates to a vertex. That is to say, the “new vertex” actually coincides with the
old, though set A changes. Such a vertex is called degenerate. In Fig. 2.6, e.g., Nx is
a degenerate vertex, at which the three edges along respective d 3; d 6; d 7 intersect.

The simplex method can be viewed as a special scheme of the active set method,
as will be discussed in Sect. 3.9. In history, however, the former emerged before the
latter from another path by fully taking advantage of the linear structure.

2.5 Heuristic Characteristic of Optimal Solution

From the graphic approach demonstrated in Fig. 2.3, it is seen that the optimal
solution to the LP problem is attained at a vertex of the feasible region. It is
imaginable that if the feasible region has a side going through the vertex, which
is parallel to objective contour lines, then the whole side corresponds the optimal
set, associated with the same optimal value.

So, the solution key lies on how to determine lines intersecting at an optimal
vertex. In other words, it is only needed to know which inequalities are active at an
optimal solution. Once these active inequalities are known, what left to do is just to
solve an linear system; for the instance in Fig. 2.3, the optimal solution was quickly
calculated through solving the system (2.27).

Thereby, we make the observation that normal directions (pointing to the interior
of the feasible region) of lines AB and BC, intersecting at the optimal vertex B ,
form the largest angles with the parallel shifting direction of the contour line BF,
among all the lines.

Now turn to the more general minimization problem

min f D cT x;

s:t: Ax � b;
(2.31)

where A 2 Rm�n; c 2 Rn; b 2 Rm; m > 1. Note that constraints here are all
inequalities of “�” type.

We could imagine analogously in the space of multiple dimensions. Now
the constraint inequalities correspond to half spaces, and vertices correspond to
intersection points formed by half spaces. What we should do is to examine
angles between normal directions and parallel shifting direction of the contour
plane. For the minimization problem, the shifting direction is the negative gradient
direction of the objective function. This leads to the following plausible statement
(Pan 1990).

Proposition 2.5.1 (Heuristic characteristic of optimal solution). Gradients of
active constraints at an optimal solution of a minimization problem tend to form
the largest angles with the negative objective gradient.
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It is now needed to quantize magnitude of the angles. If we denote the i th row
vector of A by NaT

i , the cosine of the angle between the i th constraint gradient and
negative objective gradient is then

cos < Nai ; c >D �NaT
i c=.k Nai kkck/:

For simplicity, we ignore the constant factor 1=kck and introduce the following

Definition 2.5.1. The pivoting-index of the i th constraint is defined as

˛i D �NaT
i c=k Nai k: (2.32)

Then, we are able to compare the angles by pivoting-indices, and hence Proposi-
tion 2.5.1 may be reformulated as

Gradients of active constraints at an optimal solution tend to have the smallest
pivoting-indices.

Example 2.5.1. Investigate problem (1.2) via pivoting-indices:

min f D �2x � 5y;

s:t: � 2x � 3y � � 12;

� x � y � � 5;

� y � � 3;

x; y � 0:

(2.33)

Answer Calculate indices of the constraints, and put them in the following table
in the order of increasing pivoting-indices:

Constraints ˛i

�2x � 3y � �12 �5:26

�y � �3 �5:00

�x � y � �5 �4:95

x � 0 2:00

y � 0 5:00

From the preceding table, it is seen that �2x � 3y � �12 and �y � �3

are the two constraints with the smallest pivoting-indices. Thus, the two are active
constraints at an optimal solution. This immediately leads to solving system (2.27),
as coincides with the outcome from the graphic approach.

If Proposition 2.5.1 were true in general, solving the LP problem amounts
to solving a system of linear equations by O.m3/ basic arithmetics, in contrast
to existing iterative methods (see Sect. 3.8)! Unfortunately, the characteristic of
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(pointing to the interior of the
polyhedron) of planes ABC,
ABD and CBD form the most
obtuse three angles with the
negative objective gradient
�c. But the optimal vertex is
not their intersection B, but A,
the intersection of planes
ABC, ABD and (vertical) EAF

optimal solution is only heuristic. Counterexamples are easily constructed. If adding
a constraint x C 2y � 10 to (1.2) (see Fig. 2.3), e.g., it is then clear that the added
constraint is not active at the optimal solution, though its gradient forms the largest
angle with the objective gradient (with pivoting-index �5:37); in fact, added is a
redundant constraint, not affecting the feasible region at all. It is also not difficult
to construct counterexamples without redundant constraint. Someday in the Fall
of 1986 when the author was visiting the Mathematics Department of University
of Washington, after he talked with Professor Rockafellar about his idea on the
characteristic of an optimal solution, the latter quickly he showed a counterexample
by sketching on a piece of paper, as is seen in Fig. 2.7.

For all that, Proposition 2.5.1 might still offer some clue toward optimal solution,
shedding a light on LP research. Such a trick well be referred to as “the most-obtuse-
angle heuristics” in this book.

In some cases, in fact, it is possible to detect unboundedness of a problem simply
from signs of pivoting-indices.

Theorem 2.5.1. Assume that the feasible region is nonempty. If pivoting-indices of
constraints are all nonnegative, then problem (2.31) is unbounded.

Proof. By contradiction. Assume that the problem is bounded under the assump-
tions. It follows that

cT v � 0; 8 v 2 fv 2 Rn j Av � 0g: (2.34)

In fact, there is a vector v such that

Av � 0; cT v > 0: (2.35)

Thus, for any ˛ � 0 and feasible solution Nx, vector x D Nx C ˛v satisfies Ax � b,
that is, v is an unbounded direction. Further, it is known from (2.35) that
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Fig. 2.8 Unbounded problem

cT x D cT Nx C ˛cT v ! 1; .as ˛ ! 1/;

which contradicts that (2.31) is upper bounded. Therefore, (2.34) holds.
Thus, according to Farkas’ Lemma 2.1, there is y � 0 such that

�c D AT y;

premultiplying which by �cT gives

0 < cT c D �yT Ac:

Hence Ac � 0 follows from nonnegativeness of pivoting-indices. This implies that
the right-hand side of the preceding is less than or equal to 0, as is a contradiction.
Therefore, the problem is unbounded. ut

An alternative proof of the preceding Theorem is via showing �c to be an
unbounded direction of the feasible region. The following Corollary gives a
necessary condition for the existence of an optimal solution.

Corollary 2.5.1. If there is an optimal solution, then there is at least one constraint
bearing negative pivoting-index.
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Example 2.5.2. Investigate the following LP problem by pivoting-indices:

min f D �x � y ˛i

s:t: 2x � y � �3 0:71

�3x C 4y � 4 0:20

2x C 2:5y � 5 1:41

�2x C 4y � �8 0:45

y � 1:2 1:00

x � 0 1:00

y � 0 1:00

(2.36)

Answer Calculate indices of the constraints, and fill in the right-hand side of the
preceding table. According to Theorem 2.5.1, the problem is unbounded since all
indices are nonnegative (see Fig. 2.8).
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