
Chapter 15
Reduced Simplex Method

In this chapter and the following two chapters, some special forms of the LP
problem, introduced in Sect. 25.1, will be employed to design new LP methods.
In particular, this chapter will handle the so-called “reduced problem” (25.2), i.e.,

min xnC1;

s:t: .A
::: anC1/

�
x

xnC1

�
D b; x � 0;

(15.1)

where anC1 D �emC1. Note that the objective variable xnC1 is in the place of f

(thereafter the two will be regarded equal), and hence there is no sign restriction on
xnC1.

In the conventional simplex context, xnC1 appears as a dependent variable. In
each iteration, variation of the basic solution as well as the value of xnC1 comes
from variation of a chosen nonbasic variable, xq , corresponding to a negative cost.
In contrast, the key of the “reduced simplex method”, presented in this chapter, is
to use xnC1 as a special nonbasic variable, an argument, which decreases in each
iteration to push the associated basic solution toward optimality.

Effectiveness of algorithms derived in this chapter is to be investigated. There are
no related numerical results available at this stage.

15.1 Derivation

Consider the reduced problem (15.1). As it plays a particular role, the objective
variable xnC1 will be separated from the set of nonbasic variables.

Assume that the constraints of (15.1) are converted to the following equivalent
canonical form by a series of elementary transformations:

xB D Nb � NN xN � xnC1 NanC1 � 0; xN � 0; (15.2)
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358 15 Reduced Simplex Method

where NanC1 D �B�1emC1 ¤ 0, and

B D fj1; � � � ; jmC1g; N D AnB; n C 1 62 B: (15.3)

Lemma 15.1.1. If NanC1 � 0, then problem (15.1) is infeasible or unbounded below.

Proof. Assume that . Nx; NxnC1/ is a feasible solution to (15.1), satisfying

NxB D Nb � NN NxN � NxnC1 NanC1 � 0: (15.4)

Thus, for any ˛ � 0 and

OxN D NxN ; OxnC1 D NxnC1 � ˛;

it holds that

OxB D Nb � NN OxN � OxnC1 NanC1 D . Nb � NN NxN � NxnC1 NanC1/ C NanC1˛ � 0;

where the right-most inequality comes from (15.4), NanC1 � 0 and ˛ � 0. This
indicates that ( Ox; OxnC1) is a feasible solution, and

OxnC1 ! �1; as ˛ ! C1:

Therefore, the problem is unbounded below. ut
Setting xN D 0 in (15.2) leads to the following system of inequalities:

xB D Nb � xnC1 NanC1 � 0: (15.5)

Introduce the set of solutions to the system

ˆ.B/ D fxnC1 j Nb � xnC1 NanC1 � 0g:

If this set is nonempty, then (15.5) is said consistent, and (15.2) is a feasible
canonical form.

It is clear that any given xnC1 D NxnC1 corresponds to a solution to (15.1), i.e.,

0
BBB@

NxB

NxN

NxnC1

1
CCCA D

0
BB@

Nb � NxnC1 NanC1

0

NxnC1

1
CCA :

Using the above notation, we have the following result.
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Proposition 15.1.1. . Nx; NxnC1/ is a feasible solution to problem (15.1) if and only if
NxnC1 2 ˆ.B/.

Proof. Note that the constraints of (15.1) and (15.2) are equivalent. If NxnC1 2 ˆ.B/,
then . Nx; NxnC1/ clearly satisfies (15.2), hence is feasible. If, conversely, . Nx; NxnC1/ is
a feasible solution, then NxnC1 2 ˆ.B/ follows from (15.2). ut
Definition 15.1.1. If, for some p 2 f1; � � � ; m C 1g, it holds that

Nxjp D 0; Nap; nC1 ¤ 0; (15.6)

then . Nx; NxnC1/ is a basic solution; if, in addition,

Nxji � 0; i D 1; � � � ; m C 1; (15.7)

it is a basic feasible solution. If

Nxji > 0; 8 i D 1; � � � ; m C 1; Nai; nC1 < 0; (15.8)

the basic feasible solution is said to be nondegenerate.

The preceding definitions of basic solution and basic feasible solution coincide with
the same named items in the conventional simplex context. In fact, when (15.6)
holds, Nx is just the basic solution, associated with the conventional simplex tableau,
resulting from entering xnC1 to and dropping xjp from the basis; and if (15.7)
holds, then components of the basic solution are all nonnegative, hence it is feasible.
Therefore, the two will not be distinguished. It is noted however that the definition
of nondegeneracy here is somewhat different from the conventional.

If ˆ.B/ is nonempty, it is logical to find the basic feasible solution, associated
with its greatest lower bound. To this end, the following rule applies.

Rule 15.1.1 (Row rule) Assume NanC1 6� 0. Select pivot row index

p 2 arg maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g: (15.9)

Let p be selected row index. Define

0
B@

OxB

OxN

OxnC1

1
CA D

0
BB@

Nb � . Nbp= Nap; nC1/ NanC1

0

Nbp= Nap; nC1

1
CCA : (15.10)

Using the preceding notation, we have the following result.

Lemma 15.1.2. Assume ˆ.B/ ¤ ;. If NanC1 6� 0, then OxnC1 is its greatest lower
bound, and ( Ox; OxnC1) is a basic feasible solution.

Proof. Note that condition NanC1 6� 0 ensures that (15.9) is well-defined.
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Introduce notation

I D fi D 1; � � � ; m C 1 j Nai; nC1 < 0g:

It is known from (15.9) and (15.10) that

OxnC1 � Nbi= Nai; nC1; i 2 I;

from which it follows that

Nbi � OxnC1 Nai; nC1 � 0; i 2 I:

Note that (15.9) implies

Nap; nC1 < 0: (15.11)

Now we show OxnC1 2 ˆ.B/. If, otherwise, it does not hold, then there is an
r 2 f1; � � � ; m C 1g such that

Nbr � OxnC1 Nar; nC1 < 0; Nar; nC1 � 0:

There are following two cases arising:

Case (i) Nar; nC1 D 0; Nbr < 0. It clearly holds in this case that ˆ.B/ D ;.
Case (ii) Nbr � OxnC1 Nar; nC1 < 0; Nar; nC1 > 0. Then, it is known that

Nbp= Nap; nC1 D OxnC1 > Nbr= Nar; nC1: (15.12)

We show that

Nbp � xnC1 Nap; nC1 � 0 (15.13)

and

Nbr � xnC1 Nar; nC1 � 0 (15.14)

are inconsistent, as leads to ˆ.B/ D ;. In fact, for any x0
nC1 satisfying (15.13), i.e.,

Nbp � x0
nC1 Nap; nC1 � 0;

it follows from (15.11) and (15.12) that

x0
nC1 � Nbp= Nap; nC1 > Nbr= Nar; nC1;
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hence it is known by Nar; nC1 > 0 that

Nbr � x0
nC1 Nar; nC1 < 0;

which indicates that x0
nC1 does not satisfy (15.14).

Since either of the two cases leads to ˆ.B/ D ;, contradicting the assumption,
it holds that Of 2 ˆ.B/.

For any x0
nC1 2 ˆ.B/, furthermore, it holds that

Nb � x0
nC1 NanC1 � 0;

hence

Nbi = Nai; nC1 � x0
nC1; i 2 I;

which together with (15.9) and (15.10) gives

OxnC1 � x0
nC1:

Therefore, OxnC1 is the greatest lower bound of ˆ.B/.
According the Lemma 15.1.1, on the other hand, . Ox; OxnC1/ is a feasible solution.

It is verified that

Oxjp D 0: (15.15)

Thus noting (15.11), it is known from Definition 15.1.1 that . Ox; OxnC1/ is a basic
feasible solution. ut

After row index p determined, the following column rule is relevant.

Rule 15.1.2 (Column rule) Determine pivot column index

q 2 arg min
j 2N

Nap j : (15.16)

Theorem 15.1.1. Assume ˆ.B/ ¤ ;. If Nap q � 0, then ( Ox; OxnC1) is a basic feasible
solution.

Proof. From Nap;q � 0 and (15.15), it is known that the pth row of NN is
nonnegative, i.e.,

eT
p

NN � 0: (15.17)

By Lemma 15.1.2, . Ox; Of / is a basic feasible solution to (15.1). Assume that it is
not optimal. Then there is a feasible solution, say . Qx; QxnC1/, satisfies QxnC1 < OxnC1.
Consequently, from (15.2) it follows that

Qxjp D Nbp � eT
p

NN QxN � Nap; nC1 QxnC1;
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combining which, QxN � 0, (15.11), (15.15) and (15.17) leads to

Qxjp < Nbp � Nap; nC1 OxnC1 D Oxjp D 0;

as contradicts that Qx is a feasible solution. Therefore Ox is a basic feasible solution.
ut

Now assume Nap;q < 0. Carry out the basis change by dropping jp from and
entering q to the basis. Assume that the new basis is

OB D fj1; � � � ; jp�1; q; jpC1; � � � ; jmC1g; ON D An OB;

where q is the pth index of OB . The according elementary transformations turn (15.2)
to a new canonical form, setting x ON D 0 in which gives the following system of
inequalities:

x OB D Ob � xnC1 OanC1 � 0: (15.18)

Theorem 15.1.2. Assume that the solution set ˆ. OB/ D fxnC1 j Ob �xnC1 OanC1 � 0g
to (15.18) is nonempty, and that OxnC1 2 ˆ. OB/. If ˆ. OB/ is bounded below, then the
largest lower bound of ˆ. OB/ is less than or equal to OxnC1.

Proof. Ax C xnC1anC1 D b and x OB � 0 together are equivalent to

x OB D Ob � ON x ON � xnC1 OanC1 � 0:

By Lemma 15.1.2, Ox defined by (15.10) is a basic feasible solution, hence satisfying
the preceding expression. Substituting it to the preceding and noting (15.15) gives

Ox OB D Ob � OxnC1 OanC1 � 0;

Therefore it holds that OxnC1 2 ˆ. OB/. That ˆ. OB/ is bounded below implies OanC1 6�
0, because it is unbounded below by Lemma 15.1.1, otherwise.

By Lemma 15.1.2, the greatest lower bound of ˆ. OB/ is

� D Obp0= Oap0 ; nC1 D maxf Obi= Oai; nC1 j Oai; nC1 < 0; i D 1; � � � ; m C 1g: (15.19)

Therefore, � � OxnC1.
OanC1 can expressed in term of NanC1 as follows (see the first expression of (3.15)):

Oai; nC1 D
� Nai; nC1 � . Nap; nC1= Napq/ Naiq; i D 1; � � � ; m C 1; i ¤ p;

Nap; nC1= Napq; i D p;
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Hence, from (15.15) and Napq < 0, it follows that

Oap; nC1 D Nap; nC1= Napq > 0:

In addition, it is known from (15.19) that

Oap0 ; nC1 < 0; (15.20)

Therefore p0 ¤ p. From (15.19) and Ox satisfying the p0th expression of (15.18), it
follows that

OxnC1 D . Obp0 � Oxjp0
/= Oap0 ; nC1 D � � Oxjp0

= Oap0 ; nC1;

combining which, p0 ¤ p, (15.7) and (15.20) leads to � � OxnC1. ut
According to the preceding Theorem, such an iteration results in a new feasible

canonical form, with objective value not increasing. It will be shown in Sect. 16.1
that under the nondegeneracy assumption, the objective value strictly monotonically
decreases, and hence the solution process terminates in finitely many iterations,
achieving optimality or detecting unboundedness of the problem.

15.2 Reduced Simplex Method

Based on the previous derivation, this section formulates the algorithm first, and
then formulates its revised version.

Assume that via a series of elementary transformations, the initial tableau .A
::: �

emC1 j b/ of the reduced problem (15.1) becomes

xT
B xT

N xnC1 RHS
I NN NanC1

Nb (15.21)

which is termed reduced (simplex) tableau. If the system of inequalities

Nb � xnC1 NanC1 � 0

is consistent with respect to variable xnC1, tableau (15.21) is said to be feasible.
Thereby, the overall steps described in Sect. 15.1 can be put in the following

algorithm.

Algorithm 15.2.1 (Reduced simplex algorithm: tableau form). Initial: feasible
reduced simplex tableau of form (15.21). This algorithm solves reduced prob-
lem (15.1).

1. Stop if NanC1 � 0.



364 15 Reduced Simplex Method

2. Determine row index p such that

NxnC1 D Nbp= Nap; nC1 D maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g:

3. Determine column index q 2 arg minj 2N Nap j .
4. If Nap q � 0, then compute NxB D Nb � NxnC1 NanC1, and stop.
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Go to step 1.

Theorem 15.2.1. Assume termination of Algorithm 15.2.1. It terminates at

(i) Step 1, detecting unboundedness of the problem; or at
(ii) Step 4, providing a basic feasible solution Nx.

Proof. The validity is shown by Theorems 15.1.2, 15.1.1 and 15.1.1, as well as
related discussions in Sect. 15.1. ut
Note It is possible to start solution process directly from a conventional feasible
simplex tableau. To do so, assume availability of the following conventional simplex
tableau, with f replaced by xnC1:

xT
B xT

N xnC1 RHS
I NN Nb

NzT
N �1

where Nb � 0. Starting from it, the first iteration of Algorithm 15.2.1 needs to be
replaced by the following steps:

1. NanC1 D �emC1 6� 0.
2. NxnC1 D 0=.�1/ D 0.
3. q 2 arg minj 2N Nzj .
4. Optimality is achieved if Ncq � 0.
5. Carry out elementary transformations to obtain a feasible reduced tableau by

taking the entry in the bottom row and xq column as the pivot.
6. Go to step 1.

Example 15.2.1. Solve the following problem by Algorithm 15.2.1:

min x10 D �2x1 C 4x2 C 3x3 � 3x4 � 4x5;

s:t: �2x1 � 6x2 C 1x3 � 3x4 � x5 C x6 D 4;

�x1 � 9x2 � 6x3 C 2x4 C 3x5 C x7 D 3;

8x1 � 6x2 C 3x3 C 5x4 C 7x5 C x8 D 2;

3x1 � 2x2 � 4x3 � x4 � 2x5 C x9 D 1;

xj � 0; j D 1; � � � ; 9:
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Answer The problem has the following initial tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�2 �6 1 �3 �1 1 4

�1 �9 �6 2 3 1 3

8 �6 3 5 7 1 2

3 �2 �4 �1 �2 1 1

�2 4 3 �3 �4* �1

The right-hand side .3; 7; 4; 5/T of which is nonnegative. Call Algorithm 15.2.1.
Iteration 1:

1. Na10 6� 0.
2. Nx10 D maxf0=.�1/g D 0, p D 5.
3. minf�2; 4; 3; �3; �4g D �4, q D 5.
5. Multiply row 5 by �1=4, and then add 1; �3; �7; 2 times of row 5 to rows 1,2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�3=2 �7 1=4 �9=4 1 1=4 4

�5=2 �6 �15=4 �1=4 1 �3=4 3

9=2 1 33=4 �1=4* 1 �7=4 2

4 �4 �11=2 1=2 1 1=2 1

1=2 �1 �3=4 3=4 1 1=4

Iteration 2:

1. Na10 6� 0.
2. Nx10 D maxf3=.�3=4/; 2=.�7=4/g D 2=.�7=4/ D �8=7; p D 3.
3. minf9=2; 1; 33=4; �1=4g D �1=4; q D 4.
5. Multiply row 3 by �4, and then add 9=4; 1=4; �1=2; �3=4 times of row 3 to

rows 1,2,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�42 �16 �74 1 �9 16 �14

�7 �7 �12 1 �1 1 1

�18 �4 �33 1 �4 7 �8

13 �2 11 2 1 �3 5

14 2 24 1 3 �5 6
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Table 15.1 Equivalence
between the associated
quantities

Quantity Reduced Relation Revised reduced
Objective column NanC1 D �B�1emC1

The righ-hand side Nb D B�1b

Pivot row eT
p

NN D eT
pB�1N

Pivot column Naq D B�1aq

Iteration 3:

1: Na10 6� 0:

2: Nx10 D maxf5=.�3/; 6=.�5/g D �6=5; p D 5:

3: minf14; 2; 24; 3g � 0:

4: Nx10 D �6=5;

NxB D Nb � Nx10 NanC1 D .�14; 1; �8; 5; 6/T � .�6=5/.16; 1; 7; �3; �5/T

D .26=5; 11=5; 2=5; 7=5; 0/T:

B D f6; 7; 4; 9; 5g:
Basic optimal solution and according objective value are

Nx D .0; 0; 0; 2=5; 0; 26=5; 11=5; 0; 7=5/T; Nx10 D �6=5:

Now let us derive the revised version of Algorithm 15.2.1.
Let (15.21) be the current reduced tableau, associated with basis and nonbasis

matrices B; N . Premultiplying .A
::: � emC1jb/ by B�1 gives a so-called “revised

reduced tableau”, as written

xT
B xT

N xnC1 RHS

I B�1N B�1 NanC1 B�1b
(15.22)

Like in the conventional simplex context, reduced and revised reduced tableaus,
associated with the same basis are equivalent; that is, their associated entries are
equal. Based on such equivalence, it is easy to transform any reduced tableau to a
revised version, and vice versa. As for the implementation of the reduced simplex
method, the reduced tableau as a whole is not indispensable, and only a part of its
entries are needed. Table 15.1 indicates equivalence relationship between quantities
in reduce tableau (15.21) and revised reduced tableau (15.22).

Based on Table 15.1, Algorithm 15.2.1 can be revised as follows, in which Nb and
NanC1 are generated recursively (see (17.13) and (17.15)).

Algorithm 15.2.2 (Reduced simplex algorithm). Initial: .B; N /; B�1; Nb D
B�1.bT; 0/T; NanC1 D �B�1emC1, and consistent Nb � f NanC1 � 0. This algorithm
solves the reduced problem (15.1).

1. Stop if NanC1 � 0 (Unbounded).
2. Determine NxnC1 and row index p such that

NxnC1 D Nbp= Nap; nC1 D maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g:
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3. Compute �N D N TB�Tep .
4. Determine column index q 2 arg minj 2N �j .
5. If �q � 0, then compute NxB D Nb � NxnC1 NanC1, and stop (optimality achieved).
6. Compute Naq D B�1aq , � D �Nap; nC1=�q , and � D � Nbp=�q .
7. If � ¤ 0, update NanC1 D NanC1 C �. Naq � ep/.
8. If � ¤ 0, update Nb D Nb C �. Naq � ep/.
9. Update B�1 by (3.23).

10. Update .B; N / by exchanging jp and q.
11. Go to step 1.

It is noted that the preceding algorithm is practicable, compared with its tableau
form, though the former is preferred in illustration in this book.

15.3 Reduced Phase-I: Single-Artificial-Variable

In general, an initial reduced simplex tableau is not feasible, from which the reduce
simplex algorithm cannot get started. However, the algorithm can get started from a
conventional feasible simplex tableau (see Note after Algorithm 15.2.1), and hence
any conventional Phase-I method is applicable. In particular, the single-artificial-
variable method, presented in Sect. 13.2, deserves attention, as the associated
auxiliary program, involving a single artificial variable, is amenable to be solved
by the reduced simplex method.

Assume Nb D B�1b 6� 0; NN D B�1N . Given some m-dimensional vector OxB �
0, and set NanC1 D Nb � OxB . Based on the canonical form of the constraint system, an
auxiliary program of form (13.16) can be constructed, i.e.,

min xnC1;

s:t: xB D Nb � NanC1xnC1 � NN xN ;

x; xnC1 � 0:

The preceding program is lower bounded, associated with the feasible solution

OxB D OxB; OxN D 0; OxnC1 D 1:

As the according auxiliary tableau of form (13.18) is itself a feasible reduce simplex
tableau, it can be solved by the following slight variant of the reduced simplex
algorithm.

Algorithm 15.3.1 (Tableau reduced Phase-I: single-artificial-variable). Initial:
reduced simplex tableau of form (13.18). NanC1 D Nb � OxB; OxB � 0. This algorithm
finds a feasible reduced simplex tableau.

1. Determine NxnC1 and row index p such that

NxnC1 D Nbp= Nap; nC1 D maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; mg:
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2. Select column index q 2 arg minj 2N Nap j .
3. Stop if Nap q � 0 (infeasible problem).
4. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
5. If Nb � 0, restore the original objective column, and stop (feasibility achieved).
6. Go to step 1.

Example 15.3.1. Solve that following problem, using Algorithm 15.3.1 as reduced
Phase-I:

min x10 D �2x1 C 4x2 C 3x3 � 3x4 � 4x5;

s:t: �2x1 � 6x2 C 1x3 � 3x4 � x5 C x6 D �3;

�x1 � 9x2 � 6x3 C 2x4 C 3x5 C x7 D �7;

8x1 � 6x2 C 3x3 C 5x4 C 7x5 C x8 D 4;

3x1 � 2x2 � 4x3 � x4 � 2x5 C x9 D �5;

xj � 0; j D 1; � � � ; 9:

Answer Phase-I: To turn to Phase-II conveniently, it might be well still put the
original objective row at the bottom of the tableau, but which will not take a part
in pivoting in Phase-I. Set OxB D .1; 1; 0; 1/T, Na10 D .�4; �8; 0; �6/T, and take x10

column as the auxiliary objective column. Then the initial auxiliary tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�2 �6 1 �3 �1 1 �4 �3

�1 �9* �6 2 3 1 �8 �7

8 �6 3 5 7 1 4

3 �2 �4 �1 �2 1 �6 �5

�2 4 3 �3 �4 �

The auxiliary program has feasible solution NxB D .1; 1; 0; 1/T; Nx10 D 1.
Phase-I: Call Algorithm 15.3.1.

Iteration 1:

1. maxf�3= � 4; �7= � 8; �5= � 6g D 7=8; p D 2.
2. minf�1; �9; �6; 2; 3g D �9 < 0; q D 2.
4. Multiply row 2 by �1=9, and then add 6; 6; 2; �4 times of row 2 to rows 1,3,4,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�4=3 5 �13=3 �3 1 �2=3 4=3 5=3

1=9 1 2=3 �2=9 �1=3 �1=9 8=9 7=9

26=3 7 11=3 5 �2=3 1 16=3 26=3

29=9 �8=3 �13=9* �8=3 �2=9 1 �38=9 �31=9

�22=9 1=3 �19=9 �8=3 4=9 � �28=9
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Iteration 2:

1. maxf.�31=9/=.�38=9/g D 31=38; p D 4.
2. minf29=9; �8=3; �13=9; �8=3; �2=9g D �8=3 < 0; q D 4.
4. Multiply row 4 by �9=13, and then add 13=3; 2=9; �11=3; 19=94 times of row 4

to rows 1,2,3,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�11 13 5 1 �3 14 12

�5=13 1 14=13 1=13 �1=13 �2=13 20=13 17=13

219=13 3=13 �23=13* �16=13 1 33=13 �70=13 �1=13

�29=13 24=13 1 24=13 2=13 �9=13 38=13 31=13

�93=13 55=13 16=13 10=13 �19=13 � 25=13

Iteration 3:

1. maxf.�1=13/=.�70=13/g D 1=70; p D 3.
2. minf219=13; 3=13; �23=13; �16=13; 33=13g D �23=13 < 0; q D 5.
4. Multiply row 3 by �13=23, and then add �5; �1=13; �24=13; �16=13 times of

row 3 to rows 1,2,4,5, respectively:
5. Nb � 0, Take the original objective column to overwrite the current x10 column,

resulting in a feasible reduced tableau below:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

842=23 314=23 1 �80=23 65=23 96=23 271=23

8=23 1 25=23 �3=23 1=23 �1=23 30=23

�219=23 �3=23 1 16=23 �13=23 �33=23 1=23

353=23 48=23 1 �26=23 24=23 45=23 53=23

105=23 101=23 �2=23* 16=23 7=23 �1 43=23

Phase-II: Call Algorithm 15.2.1.

Iteration 4:

1. Na10 6� 0.
2. Nx10 D maxf.43=23/=.�1/g D �43=23; p D 5.
3. minf105=23; 101=23; �2=23; 16=23; 7=23g D �2=23 < 0; q D 7.
5. Multiply row 5 by �23=2, and then add 80=23; 3=23; �16=23; 26=23 times of

row 5 to rows 1,2,3,4, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�146 �162 1 �25 �8 40 �63

�13=2 1 �11=2 �1 �1=2 3=2 �3=2

27 35 1 5 1 �8 15

�44 �55 1 �8 �2 13 �22

�105=2 �101=2 1 �8 �7=2 23=2 �43=2



370 15 Reduced Simplex Method

Iteration 5:

2. Nx10 D maxf15=.�8/g D �15=8; p D 3.
3. minf27; 35; 5; 1; g D 1 � 0.
4. Basic optimal solution and according objective value:

Nx D .0; 21=16; 0; 19=8; 0; 12; 1=16; 0; 0/T; Nx10 D �15=8:

15.4 Dual Reduced Simplex Method

This section describes a dual version of Algorithm 15.2.2, still using notations in
the previous two sections. To this end, firstly established are optimality conditions
and related properties in the reduced simplex context.

Theorem 15.4.1. .x; xnC1/, where xB D Nb � xnC1 NanC1; xN D 0, is an optimal
solution to (15.1) if the following conditions are satisfied:

(i) Nb � xnC1 NanC1 � 0; Nbp � xnC1 Nap; nC1 D 0, (primal feasibility)
(ii) eT

p
NN � 0; Nap; nC1 < 0. (dual feasibility)

Proof. The validity comes from Theorems 15.1.2, 15.1.1 and 15.1.1, as well as
related discussions in Sect. 15.1. ut

The pth row of the reduced simplex tableau, giving the according objective value,
is called objective row.

Lemma 15.4.1. Assume that

eT
p

NN � 0; p 2 f1; � � � ; m C 1g: (15.23)

If Nap; nC1 D 0 and Nbp < 0, then there is no feasible solution to (15.1).
If Nap; nC1 ¤ 0 and NxnC1 satisfies

Nbp � NxnC1 Nap; nC1 D .</ 0;

then for any feasible value x0
nC1 (if any), the following hold:

(i) x0
nC1 � .</ NxnC1 when Nap; nC1 > 0.

(ii) x0
nC1 � .>/ NxnC1 when Nap; nC1 < 0.

Proof. The pth equality constraint of (15.2) is

xp D Nbp � eT
p

NN xN � Nap; nC1xnC1:
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Let Qx � 0 be a feasible solution, associated with objective value x0
nC1. Substituting

it to the preceding gives

Qxp D Nbp � eT
p

NN QxN � Nap; nC1x
0
nC1: (15.24)

In addition, from (15.21) and Qx � 0, it follows that

� eT
p

NN QxN � 0: (15.25)

Condition Nap; nC1 D 0 and Nbp < 0 together with (15.25) leads to negativity of the
right-hand side of (15.24), as contradicts the nonnegative lett-hand side. Therefore,
there is no feasible solution to (15.1).

(i) When Nap; nC1 > 0 and x0
nC1 > .�/ NxnC1, it holds that

Nbp � Nap; nC1x
0
nC1 < .�/ Nbp � Nap; nC1 NxnC1 D .</0; (15.26)

combining which and (15.25) leads to negativeness of the right-hand side
of (15.24), as contradicts the nonnegative lett-hand side. Therefore, x0

nC1 �
.</ NxnC1.

(ii) When Nap; nC1 < 0 and x0
nC1 < .�/ NxnC1, (15.26) still holds, as also leads

to negativity of the right-hand side of (15.24), leading to a contradiction.
Therefore, x0

nC1 � .>/ NxnC1. ut
As was shown, the reduced simplex method pursues dual feasibility while main-

taining primal feasibility. Conversely, pursuing primal feasibility while maintaining
dual feasibility will lead to its dual version.

Assume now that the dual feasibility condition (ii) holds. Define Nx as follows:

NxnC1 D Nbp= Nap; nC1; NxB D NbB � NxnC1 NanC1; NxN D 0: (15.27)

It is clear that Nxjp D 0.
If NxB � 0 holds, then the primal feasibility condition (i) is satisfied. Thus, Nx is an

optimal solution to (15.1). Assume NxB 6� 0. Then the following rule is applicable.

Rule 15.4.1 (Dual row rule) Select row index r such that

Nxjr D minf Nxji j i D 1; � � � ; m C 1g < 0:

If eT
r

NN 6� 0, in addition, the following rule is well-defined:

Rule 15.4.2 (Dual column rule) Select column index q such that

ˇ D �Napq= Narq D minf�Napj = Narj j Narj < 0; j 2 N g � 0:

If ˇ > 0, the reduced simplex tableau is said to be dual nondegenerate.
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Once a pivot is determined, a basis change is executed to drop xr from and enter
xq to the basis. It is not difficult to show that the resulting pth row still satisfies
eT

p
NN � 0. If Nap; nC1 < 0, then go to the next iteration.
The solution steps are summarized to the following algorithm.

Algorithm 15.4.1 (Dual reduced simplex algorithm: tableau form). Initial:
Reduced simplex tableau of form (15.21), where eT

p
NN � 0; Nap; nC1 < 0. This

algorithm solves the reduced problem (15.1).

1. Compute NxnC1 D Nbp= Nap; nC1.
2. Compute NxB D Nb � NxnC1 NanC1.
3. Select row index r 2 arg minf Nxji j i D 1; � � � ; m C 1; i ¤ pg.
4. Stop if Nxjr � 0.
5. If J D fj 2 N j Narj < 0g D ;, set p D r and go to step 8.
6. Determine ˇ and column index q such that ˇ D �Napq= Narq D minj 2J �Napj = Narj :

7. Convert Narq to 1, and eliminate the other nonzeros in the pivot column by
elementary transformations.

8. Go to step 1 if Nap; nC1 < 0.
9. Stop.

Theorem 15.4.2. Assuming dual nondegeneracy, Algorithm 15.4.1 terminates
either at

(i) Step 4, achieving a basic optimal solution Nx; or at
(ii) Step 9, detecting infeasibility of the problem.

Proof. Termination is shown first. Assume that it does not terminate at the current
iteration. It is known from steps 1 and 2 that the basic solution Nx is associated with
objective value

NxnC1 D Nbp= Nap; nC1:

And Nxjr < 0 implies that

Nbr � NxnC1 Nar; nC1 < 0: (15.28)

From the preceding two expressions and Nap; nC1 < 0, it follows that

Nbr Nap; nC1 � Nbp Nar; nC1 > 0: (15.29)

There are the following two cases only:

(i) Passing from step 7 to step 8 to go to the next iteration. The new entry in the
pth row and n C 1 column yielded from the basis change in step 7 satisfies

Oap; nC1 D Nap; nC1 C ˇ Nar; nC1 < 0: (15.30)
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and the pth component of the new right-hand side is equal to

Obp
Nbp C ˇ Nbr : (15.31)

In step 1 of the next iteration, the objective value calculated from the preceding
two impressions is then

OxnC1 D
Obp

Oap; nC1

D
Nbp C ˇ Nbr

Nap; nC1 C ˇ Nar; nC1

;

The difference between the new and old objective values is

OxnC1 � NxnC1 D
Nbp Nap; nC1 C ˇ Nbr Nap; nC1 � Nbp Nap; nC1 � ˇ Nbp Nar; nC1

Nap; nC1. Nap; nC1 C ˇ Nar; nC1/

D ˇ. Nbr Nap; nC1 � Nbp Nar; nC1/

Nap; nC1. Nap; nC1 C ˇ Nar; nC1/
:

It is known from Nap; nC1 < 0 and (15.30) that the denominator in the preceding
expression is positive, whereas it is known from ˇ � 0 and (15.29) that the
numerator is nonnegative, therefore the objective value never decreases. Under
the dual nondegeneracy assumption, the objective value strictly increases.

(ii) Passing from step 5 to step 8 to go to the next iteration. It is noted that Nar; nC1 <

0 holds in this case. The difference between the new and old objective values is

Nbr

Nar; nC1

�
Nbp

Nap; nC1

D
Nbr Nap; nC1 � Nbp Nar; nC1

Nar; nC1 Nap; nC1

;

where the denominator is clearly positive whereas, by (15.29), the numerator is
also positive. Therefore, the objective value strictly increases.

If the algorithm does not terminate, then under the dual nondegeneracy assump-
tion, the objective value strictly increases monotonically, hence no cycling occurs.
This means that there are infinitely many basic solutions, as is a contradiction.
Therefore, the algorithm terminates.

Note that eT
p

NN � 0 always holds for the algorithm. By Lemma 15.4.1, optimality
is achieved while termination occurs at step 4. Now assume that it occurs at step 9,
hence the new entry in the pth row and n C 1 column satisfies

Oap; nC1 D Nap; nC1 C ˇ Nar; nC1 � 0: (15.32)

Since Nap; nC1 < 0, in this case the ˇ, determined in step 6, is positive. Assume there
is a feasible solution, associated with objective value x0

nC1. It is clear that the NxnC1,
determined in step 1, satisfies
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Nbp � NxnC1 Nap; nC1 D 0; (15.33)

and Nap; nC1 < 0. Thus it holds by Lemma 15.4.1 that

x0
nC1 � NxnC1: (15.34)

In case when passing through steps 7 ! 8 ! 9, on the other hand, it follows
from (15.31), (15.32), (15.33), (15.28) and ˇ > 0 that

Obp� NxnC1 Oap; nC1D. Nbp� NxnC1 Nap; nC1/Cˇ. Nbr� NxnC1 Nar; nC1/Dˇ. Nbr� NxnC1 Nar; nC1/ < 0:

(15.35)

If Oap; nC1 > 0, then it is know by Lemma 15.4.1 that

x0
nC1 < NxnC1;

which contradicts (15.34), therefore there is no feasible solution; if Oap; nC1 D 0, then

it is known by (15.35) that Obp < 0; consequently, there is still no feasible solution,
by Lemma 15.4.1. In case when passing through steps 5 ! 8 ! 9,

eT
r

NN � 0; Nar; nC1 � 0

and (15.28) hold. Then it can be similarly shown that there is no feasible solution.
ut

Example 15.4.1. Solve the following problem by Algorithm 15.4.1:

min x10 D x1 C 4x2 C 3x3 C 2x4 C 9x5;

s:t: � x1 C 5x2 � 4x4 � 2x5 C x6 D �1;

� 3x1 � 2x2 � 6x3 C x4 � x5 C x7 D �7;

� x2 C 4x3 � 6x4 C 4x5 C x8 D 4;

5x1 C 3x2 � 3x3 C 3x4 C 5x5 C x9 D 0;

xj � 0; j D 1; � � � ; 9:

Answer The initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�1 5 �4 �2 1 �1

�3 �2 �6 1 �1 1 �7

�1 4 �6 4 1 4

5 3 �3 3 5 1

1* 4 3 2 9 �1
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Iteration 1:
To convert it to a reduced simplex tableau, take the smallest, 1, among the first 5
entries in the bottom row (in x1 column) as pivot. Add 1; 3; �5 times of row 5 to
rows 1,2,4, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

9 3 �2 7 1 �1 �1

10 3 7 26 1 �3 �7

�1 4 �6 4 1 4

�17 �18* �7 �40 1 5

1 4 3 2 9 �1

which is a dual feasible reduced tableau with p D 5.
Call Algorithm 15.4.1.

Iteration 2:

1: Nx10 D 0=.�1/ D 0:

2: NxB D .�1; �7; 4; 0; 0/T:

3: minf�1; �7; 4; 0; 0g D �7 < 0; r D 2:

5: J D ;; p D 2:

8: Na2;10 D �3 < 0:

Iteration 3:

1: Nx10 D .�7/=.�3/ D 7=3:

2: NxB D .�1; �7; 4; 0; 0/T�.7=3/.�1; �3; 0; 5; �1/T D.4=3; 0; 4; �35=3; 7=3/T:

3: minf4=3; 4; �35=3; 7=3g D �35=3 < 0; r D 4:

5: J D f2; 3; 4; 5g ¤ ;:

6: ˇ D minf�10=.�17/; �3=.�18/; �7=.�7/; �26=.�40/g D 3=18; q D 3:

7: Multiply row 4 by � 1=18; and then add � 3; �3; �4; 3 times of row 4 to rows
1; 2; 3; 5; respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

37=6 �19=6* 1=3 1 1=6 �1=6 �1

43=6 35=6 58=3 1 1=6 �13=6 �7

�43=9 �68=9 �44=9 1 2=9 10=9 4

17=18 1 7=18 20=9 �1=18 �5=18

1 7=6 5=6 7=3 1=6 �1=6

8: Na2;10 D �13=6 < 0:
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Iteration 4:

1: Nx10 D .�7/=.�13=6/ D 42=13:

2: NxB D .�1; �7; 4; 0; 0/T � .42=13/.�1=6; �13=6; 10=9; �5=18; �1=6/T

D .�6=13; 0; 16=39; 35=39; 7=13/T:

3: minf�6=13; 16=39; 35=39; 7=13g D �6=13 < 0; r D 1:

5: J D f4g ¤ ;:

6: ˇ D minf�.35=6/=.�19=6/g D 35=19; q D 4:

7: Multiply row 1 by � 6=19; and add � 35=6; 68=9; �7=18; �5=6 times of row 1
to rows 2; 3; 4; 5; respectively W

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�37=19 1 �2=19 �6=19 �1=19 1=19 6=19

352=19 379=19 35=19 1 9=19 �47=19 �168=19

�1;111=57 �108=19 �136=57 1 �10=57 86=57 364=57

97=57 1 43=19 7=57 �2=57 �17=57 �7=57

1 53=19 46=19 5=19 4=19 �4=19 �5=19

8: Na2;10 D �47=19 < 0:

Iteration 5:

1. Nx10 D .�168=19/=.�47=19/ D 168=47.
2. NxB D .6=19; �168=19; 364=57; �7=57; �5=19/T

�.168=47/.1=19; �47=19; 86=57; �17=57; �4=19/T

D .6=47; 0; 140=141; 133=141; 23=47/T � 0.
4. Basic optimal solution and according objective value:

Nx D .23=47; 0; 133=141; 6=47; 0; 0; 0; 140=141; 0/T; Nx10 D 168=47:

Based on the equivalence between the reduced tableau (15.21) and the revised
tableau (15.22), it is not difficult to transfer Algorithm 15.4.1 to its revision.

Algorithm 15.4.2 (Dual reduced simplex algorithm). Initial: .B; N /; B�1; Nb D
B�1b; NanC1 D �B�1emC1: �N D eT

pB�1N � 0; Nap; nC1 < 0. This algorithm
solves the reduced problem (15.1).

1. Compute NxnC1 D Nbp= Nap; nC1.
2. Compute NxB D Nb � NxnC1 NanC1.
3. Determine row index r 2 arg minf Nxji j i D 1; � � � ; m C 1; i ¤ pg.
4. Stop if Nxjr � 0 (optimality achieved).
5. Compute !N D N TB�Ter .
6. If J D fj 2 N j !j < 0g D ;, set p D r; �N D !N , and go to step 14.



15.4 Dual Reduced Simplex Method 377

7. Determine ˇ and column index q such that ˇ D ��q=!q D minj 2J ��j =!j .
8. Solve B Naq D aq for Naq , and compute � D �Nar; nC1=!q and � D � Nbr=!q

9. Update: NanC1 D NanC1 C �. Naq � er/, where.
10. Update: Nb D Nb C �. Naq � er/, where.
11. Update B�1 by (3.23) (p D r).
12. Update .B; N / by exchanging jp and q.
13. Solve BTh D ep and compute �N D N Th.
14. Go to step 1 if Nap; nC1 < 0.
15. Stop (infeasible problem).

It is possible to improve the dual reduced method by replacing the row
Rule 15.4.1. Analogous to the dual largest-distance rule (Sect. 12.3), some rule
based on how much the point . NxN ; Nf / violates the constraints seems to be attractive
as derived as follows.

Introduce a set of row vectors

.wi /T D eT
i B�1.N j anC1/; i D 1; � � � ; m C 1:

For any i D 1; : : : ; m C 1, the signed distance from point . NxN ; Nf / to the boundary
(associated with the i th row of the canonical form)

.B�1b/i � .wi /T.xT
N ; f /T D 0

is defined by (see Sect. 2.1)

Nxji =kwi k:

Rule 15.4.3 (Dual row rule: largest-distance) Select pivot row index r such that

Nxjr D minf Nxji =kwi k j i D 1; � � � ; m C 1g:

The recurrence formulas of kwi k2; i D 1; � � � ; m are the same as (12.13)
and (12.14).

Alternatively, the following approximate formulas may be used to simplify
computations.

Rule 15.4.4 (Dual row rule: approximate largest-distance) Select pivot row
index r such that

Nxjr D minf Nxji =j Nai; nC1j j i D 1; � � � ; m C 1g:

It is promising if the other rules, described in Chaps. 11 and 12, are adapted
within the reduce simplex framework.
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15.5 Dual Reduced Phase-I: The Most-Obtuse-Angle

Algorithm 15.4.1 requires availability of a dual feasible reduced tableau. Dual
Phase-I methods presented in Chap. 14 may be applied to provide a conventional
dual feasible simplex tableau of (15.1). Then, letting the objective variable xnC1

leave the basis gives a dual feasible reduced tableau. However, it would be more
direct and effective to achieve the goal in the reduced simplex context based on the
most-obtuse-angle heuristics.

The procedure can be written as follows.

Algorithm 15.5.1 (Tableau dual reduced Phase-I: the most-obtuse-angle). Ini-
tial: Reduced simplex tableau of form (15.21). This algorithm finds a dual feasible
reduced simplex tableau.

1. Select pivot row index p 2 arg minf Nai; nC1 j i D 1; � � � ; m C 1g.
2. Stop if Nap; nC1 � 0.
3. Select pivot column index q 2 arg minj 2N Napj .
4. Stop if Nap q � 0.
5. Convert Nap q to 1, and eliminate the other nonzeros in the pivot column by

elementary transformations.
6. Go to step 1.

Theorem 15.5.1. Assume finiteness of Algorithm 15.5.1. It terminates either at

(i) Step 2, detecting infeasibility or lower unboundedness of the problem; or at
(ii) Step 4, obtaining a dual feasible reduced simplex tableau.

Proof. When it terminates at step 4, dual feasibility condition is satisfied clearly.
Assume that termination occurs at step 2. If Nx is a feasible solution to the problem,
then it satisfies

xB D Nb � NN xN � xnC1 NanC1 � 0; xN � 0:

Since �NanC1 � 0, the preceding expression holds for all xnC1 satisfying xnC1 �
NxnC1, therefore the problem is unbound below. ut

The preceding Algorithm is used as a dual Phase-1 procedure in the following
three examples. In the first example, the infeasibility of the problem will be detected
after dual Phase-1. In the second, an optimal solution will be found at the end of
the dual Phase-I. In the third, an optimal solution will be achieved after the first
iteration of Phase-II.
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Example 15.5.1. Solve the following problem by two-phase dual reduced simplex
method:

min x7 D x1 � x2 � 2x3;

s:t: �x1 C x2 C x3 C x4 D 0;

x1 � 2x2 C x3 C x5 D 1;

x1 C 2x2 � 2x3 C x6 D �8;

xj � 0; j D 1; � � � ; 6:

Answer Dual Phase-I: Initial tableau is

x1 x2 x3 x4 x5 x6 x7 RHS

�1 1 1 1

1 �2 1 1 1

1 2 �2 1 �8

1 �1 �2* �1

Iteration 1: To drop x7 from the basis, take p D 4. minf0; �1; �2g D �2; q D 3.
Multiply row 4 by �1=2, and add �1; �1; 2 times of row 4 to rows 1,2,3,

respectively, obtaining the following reduced simplex tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

�1=2* 1=2 1 �1=2

3=2 �5=2 1 �1=2 1

3 1 1 �8

�1=2 1=2 1 1=2

Phase-I: Call Algorithm 15.5.1.

Iteration 2:

1. minf�1=2; �1=2; 1; 1=2g D �1=2 < 0; p D 1.
3. minf�1=2; 1=2g D �1=2; q D 1.
5. Multiply row 1 by �2, and add �3=2; 1=2 times of row 1 to rows 2,4,

respectively:
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x1 x2 x3 x4 x5 x6 x7 RHS

1 �1 �2 1

�1* 3 1 �2 1

3 1 1 �8

1 �1 1

Iteration 3:

1. minf1; �2; 1; 1g D �2; p D 2.
3. minf�1; 3g D �1; q D 2.
5. Multiply row 2 by �1, and add 1; �3 times of row 2 to rows 1,2, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �5 �1 3 �1

1 �3 �1 2 �1

9 3 1 �5 �5

1 �1 1

Iteration 4:

1. minf3; 2; �5; 1g D �5; p D 3.
3. minf9; 3g D 3 > 0.
4. Dual feasibility achieved.

Dual Phase-II: Call Algorithm 15.4.1.

Iteration 5:

1: Nx7 D .�5/=.�5/ D 1:

2: NxB D .�1; �1; �5; 0/T � 1 � .3; 2; �5; 1/T D.�4; �3; 0; �1/T; B Df1; 2; 6; 3g:
3: minf�4; �3; 0; �1g D �4; r D 1:

6: ˇ D minf�9=.�5/; �3=.�1/g D 9=5; q D 4:

7. Multiply row 1 by �1=5, and add 3; �9; 1 times of row 1 to rows 2,3,4,
respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�1=5 1 1=5 �3=5 1=5

�3=5 1 �2=5 1=5 �2=5

9=5 6=5 1 2=5 �34=5

�1=5 1 1=5 2=5 1=5

8. Na3;7 D 2=5 > 0.
9. Stop, detecting infeasibility of the problem.
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Example 15.5.2. Solve the following problem by two-phase dual reduced simplex
method:

min x7 D x1 � 2x2 � 5x3;

s:t: �2x1 C x2 C x3 Cx4 D 1;

2x1 � 3x2 C x3 Cx5 D �1;

x1 C 2x2 � x3 Cx6 D 2;

xj � 0; j D 1; � � � ; 6:

Answer Initial tableau is

x1 x2 x3 x4 x5 x6 x7 RHS

�2 1 1 1 1

2 �3 1 1 �1

1 2 �1 1 2

1 �2 �5 �1

Iteration 1: p D 4; minf1; �2; �5g D �5; q D 3.
Multiply row 4 by �1=5, and add �1; �1; 1 times of row 4 to rows 1,2,3,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�9=5* 3=5 1 �1=5 1

11=5 �17=5 1 �1=5 �1

4=5 12=5 1 1=5 2

�1=5 2=5 1 1=5

Dual Phase-I: Call Algorithm 15.5.1.

Iteration 2:

1. minf�1=5; �1=5; 1=5; 1=5g D �1=5; p D 1.
3. minf�9=5; 3=5g D �9=2; q D 1.
5. Multiply row 1 by �5=9, and add �11=5; �4=5; 1=5 times of row 1 to rows 2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �1=3 �5=9 1=9 �5=9

�8=3* 11=9 1 �4=9 2=9

8=3 4=9 1 1=9 22=9

1=3 1 �1=9 2=9 �1=9
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Iteration 3:

1. minf1=9; �4=9; 1=9; 2=9g D �4=9; p D 2.
3. minf�8=3; 11=9g D �8=3; q D 2.
5. Multiply row 2 by �3=8, and add 1=3; �8=3; �1=3 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �17=24 �1=8 1=6 �7=12

1 �11=24 �3=8 1=6 �1=12

5=3 1 1 �1=3 8=3

1 1=24 1=8 1=6 �1=12

minf1=6; 1=6; �1=3; 1=6g D �1=3; p D 3I minf5=3; 1g > 0, dual feasibility
achieved.

Dual Phase-II: Call Algorithm 15.4.1.

Iteration 4:

1. Nx7 D .8=3/=.�1=3/ D �8.
2. NxB D .�7=12; �1=12; 8=3; �1=12/T � .�8/.1=6; 1=6; �1=3; 1=6/T

D .3=4; 5=4; 0; 5=4/T � 0.
4. Basic optimal solution and according objective value:

Nx D .3=4; 5=4; 5=4; 0; 0; 0/T; Nx7 D �8:

Example 15.5.3. Solve the following problem by two-phase dual reduced simplex
method:

min x9 D �2x1 � x2 C 2x3 C 4x4;

s:t: x1 � 2x2 C 4x3 � x4 C x5 D 4;

2x1 � 3x2 � x3 C x4 C x6 D �6;

x1 C x3 C x4 C x7 D 2;

2x1 C x2 � x3 � 4x4 C x8 D �1;

xj � 0; j D 1; � � � ; 8:

Answer Initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 �2 4 �1 1 4

2 �3 �1 1 1 �6

1 1 1 1 2

2 1 �1 �4 1 �1

�2* �1 2 4 �1
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Iteration 1:
To drop objective variable x9 from the basis, take p D 5; minf�2; �1; 2; 4g D

�2; q D 1.
Multiply row 5 by �1=2, and add �1; �2; �1; �2 times of row 5 to rows 1,2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�5=2 5 1 1 �1=2 4

�4* 1 5 1 �1 �6

�1=2 2 3 1 �1=2 2

1 1 �1 �1

1 1=2 �1 �2 1=2

Dual Phase-I: Call Algorithm 15.5.1.

Iteration 2:

1. minf�1=2; �1; �1=2; �1; 1=2g D �1; p D 2.
3. minf�4; 1; 5g D �4; q D 2.
5. Multiply row 2 by �1=4, and add 5=2; 1=2; �1=2 times of row 2 to rows 1,3,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

35=8 �17=8 1 �5=8 1=8 31=4

1 �1=4 �5=4 �1=4 1=4 3=2

15=8 19=8 �1=8 1 �3=8 11=4

1 1 �1 �1

1 �7=8 �11=8* 1=8 3=8 �3=4

Iteration 3:

1. minf1=8; 1=4; �3=8; �1; 3=8g D �1; p D 4.
3. minf1; 0; 0g � 0. Dual feasibility achieved.

Dual Phase-II: Call Algorithm 15.4.1.
Iteration 3:

1. Nx9 D .�1/=.�1/ D 1.
2. NxB D .31=4; 3=2; 11=4; �1; �3=4/T � .1=8; 1=4; �3=8; �1; 3=8/T

D .61=8; 5=4; 25=8; 0; �9=8/T.
3. minf61=8; 5=4; 25=8; 0; �9=8g D �9=8 < 0; r D 5.
5. J D f3; 4g ¤ ;.
6. minf�1=.�7=8/; 0=.�11=8/g D 0; 0 � .�1/=.�3=8/; q D 4.
7. Multiply row 5 by �8=11, and add 17=8; 5=4; �19=8 times of row 5 to rows

1,2,3, respectively:



384 15 Reduced Simplex Method

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�17=11 63=11 1 �9=11 �5=11 98=11

�10=11 1 6=11 �4=11 �1=11 24=11

19=11 4=11 1=11 1 3=11 16=11

1 1 �1 �1

�8=11 7=11 1 �1=11 �3=11 6=11

Iteration 4:

1. Nx9 D .�1/=.�1/ D 1.
2. NxB D .98=11; 24=11; 16=11; �1; 6=11/T�.1/.�5=11; �1=11; 3=11; �1; �3=11/T

D .103=11; 25=11; 13=11; 0; 9=11/T � 0.
4. Basic optimal solution and according objective value are

Nx D .0; 25=11; 0; 9=11; 103=11; 0; 13=11; 0/T; Nx9 D 1:

15.6 Notes

The reduced simplex method can be traced back to the publication of the “bisection
simplex method” (Pan 1991, 1996a), which bisections an interval, including the
optimal value, iteration by iteration until achieving optimality. Pan wrote (1991,
p. 724).

Finally, we indicate that justifications of . . . in fact describes an approach to improving
feasible solutions with dual type of canonical form,1 in a manner similar to that in the
conventional method. We are not interested in on this line though, and will develop another
method. . .

At that time, the reduced simplex method seemed ready to come out at one’s call.
But unfortunately it had been overlooked by not regarding its prospects favorably
until recently drawing attention again from the author.

Although there are no numerical results available at present, the method is
promising for the following reasons, at least:

Firstly, while its computational effort per iteration is about the same as the
conventional simplex method, a novel pivot rule is employed. Consequently, the
resulting search direction corresponds to the negative reduced objective gradient
as a whole (since the objective function involves a single variable), as seems
to be advantageous to the conventional search direction which corresponds to a
negative component only. In each iteration, as a result, the decrement in the objective
variable’s value is just equal to decrement in the original objective value (see also
Vemuganti 2004).

1It is noting but the reduced simplex tableau.
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Secondly, as was mentioned in Sect. 3.9, the numerical stability of the con-
ventional simplex method is actual not good enough, since it could select a too
small pivot in magnitude. Occasionally, it must restart from scratch to handle
the troublesome case when the basis matrix is close to singularity (Sect. 5.1). In
contrast, the reduced simplex method is numerically stable, since it tends to select
a large pivot in magnitude. Consequently, the risk of using the restarting remedy
is significantly reduced, if not avoided completely. In the stability point of view,
therefore, Harris practicable row rule becomes unnecessary, although it would
remain useful in the sense of the most-obtuse-angle heuristics (see Sect. 5.6).

Thirdly, a variant of the reduced simplex method shows a bright application
outlook, as it seems to be a desirable framework for the implementation of the
so-called “controlled-branch method” for solving ILP problems; favorably the
associated LP relaxation subprograms can be handled without increasing their sizes
at all (see Sect. 25.7).

Finally, the reduced simplex method would become more powerful if the basis is
generalized to allow the so-called “deficient-basis” (Sect. 20.6). Moreover, a method
for generating an initial deficient-basis and an associated Phase-I method can be
derived using the reduced simplex framework (Sect. 20.7). These methods seems to
be simple as well as efficient.

As for sparsity, on the other hand, a large amount of fill-ins could yield from
transforming the conventional simplex tableau to a reduced one if nonzero costs
in the original problem occupy a high proportion (see Sect. 15.2). In this case, the
column, firstly selected to enter the basis, should be as sparse as possible. It would be
a good idea to obtain a reduced simplex tableau directly from some crash procedure
(Sect. 5.5) (excluding the objective variable from the set of basic variables).

On the other hand, some particular scaling should be applied with respect to the
objective function, as the reduced simplex method would be sensitive to it.
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