
Chapter 13
Simplex Phase-I Method

The tableau simplex algorithm requires a feasible simplex tableau to get itself
started, whereas the revised simplex algorithm starts from a feasible basis or its
inverse. The task of a Phase-I method is to provide such a starting point to Phase-II
for achieving optimality. Such a two-Phase methodology has been successful in
practice, compared with one-Phase, like the big-M.

Not have been used in practice, the artificial-variable method, presented in
Sect. 3.3, is usually seen in textbooks only, because it is so rigid that there is no much
choice for an initial basis, as the basis has to involve all the artificial variables, let
alone expending problem’s scale. Moreover, some cumbersome treatment has to be
carried out subsequently after zero optimal value of the auxiliary program is attained
but there are still artificial variables remanning basic.

This chapter will focus on practicable Phase-I methods, which are artificial
variable free, or involves a single artificial variable only (for further references, see
Pan 1994b; Pan and Li 2003; Pan et al. 2004).

For simplicity of exposition, the conventional pivot rule will be utilized in this
chapter. Nevertheless, it is preferable to use the nested largest-distance rule instead,
although all rules presented in Chap. 11 are applicable for Phase-I.

13.1 Infeasibility-Sum Method

The auxiliary objective function of this method only involves variables, associated
with negative components of the current basic solution. The method is widely used
in practice, as it is artificial variable free, and performs remarkably.

Assume that an initial simplex tableau of form (3.18) is available, associated with
basic solution

NxB D Nb; NxN D 0: (13.1)
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322 13 Simplex Phase-I Method

Introduce notation

I D fi D 1; � � � ; m j Nbi < 0g; NI D f1; � � � ; mgnI: (13.2)

Assume that I ¤ ;. Construct the following auxiliary program:

min � P
i2I xji ;

s:t: xB D Nb � NN xN ;

xji � 0; i 2 NI I xj � 0; j 2 N;

(13.3)

where the objective function, called “infeasibility-sum”, is the negative sum of
variables, associated with negative components of the basic solution. Note that the
constraint system of the auxiliary program is the same as that of the original prob-
lem, except the nonnegativity restriction is only imposed on variables, associated
with nonnegative components of the basic solution.

It is clear that solution (13.1) is feasible to the auxiliary program. The associated
feasible simplex tableau can be obtained by eliminating nonzero entries in the
objective row by relevant elementary transformations. Consequently, the reduced
objective function is

�
X

i2I

xji D w0 C NzT
N xN ; (13.4)

where

w0 D �
X

i2I

Nbi > 0; Nzj D
X

i2I

Nai;j ; j 2 N:

The positiveness of objective value w0 comes from (13.2).

Theorem 13.1.1 (Infeasibility test). If reduced costs of an auxiliary simplex
tableau are all nonnegative, the original problem is infeasible.

Proof. Assume that NzN � 0, and Qx � 0 is a feasible solution to the original problem.
Substitute Qx to (13.4) results in a system, whose left-hand side is clearly less than
or equal to zero, and, by w0 > 0 and NzN � 0, the right-hand side is strictly greater
than zero, as is a contradiction. Therefore, the statement is valid. ut

If there is a negative reduced cost, then any existing column rule applies. Assume
that a column index q was determined such that

Nzq D
X

i2I

Naiq < 0: (13.5)

As there is no nonnegativity restriction on current infeasible basic variables, the
auxiliary program could be unbounded even if the original problem itself bounded.
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In fact, it is the case when NI D ; or the following condition holds:

fi 2 NI j Naiq > 0g D ;: (13.6)

Thus, the conventional row rule is not applicable. To overcome this difficulty, it is
modified as follows.

Rule 13.1.1 (Auxiliary row rule) Determine a row index p such that

˛ D Nbp= Napq D
�

minf Nbi= Naiqj Naiq > 0; i 2 NI g; if fi 2 NI j Naiq > 0g 6D ;;

maxf Nbi= Naiqj Naiq < 0; i 2 I g; otherwise
(13.7)

It will be seen a little later the bonus, yielding from use of “max” in the second
expression of (13.7).

Lemma 13.1.2. Assume that the selected column index q satisfies (13.5). Then
rule 13.1.1 determines a row index p such that the simplex tableau, resulting from
the according basis change, is feasible to the auxiliary program.

Proof. First, it can be asserted that there is a row index t 2 I such that Natq < 0;
because otherwise from

Naiq � 0; 8i 2 I;

it follows that

X

i2I

Naiq � 0;

which contradicts the assumption (13.5). Therefore, the second expression of (13.7)
is always well-defined, hence so is the row rule.

Take Napq as the pivot. Executing according elementary transformations leads
to a new simplex tableau, whose right-hand side can be expressed in terms of its
predecessor’s entries (see (3.14)), i.e.,

Obi D Nbi � ˛ Naiq; i 2 NI ; i ¤ p;

Obp D ˛;

where ˛ is determined by (13.7). It is easy to verify that these components are all
nonnegative, hence the resulting simplex tableau is again feasible to the auxiliary
program. ut
Theorem 13.1.3. Assume feasibility of the original problem and nondegeneracy
throughout solution process. The number of basic infeasible variables strictly
decreases in finitely many iterations.
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Proof. It is seen from the proof of Lemma 13.1.2 that the second expression
of (13.7) is still well-defined if “max” there replaced by “min”, i.e.,

˛1
4D Nbs= Nasq D minf Nbi= Naiqj Naiq < 0; i 2 I g > 0: (13.8)

If, in some iteration, the stepsize ˛ is determined by the first expression of (13.7),
and it holds that

˛ � ˛1; (13.9)

then the component, associated with row index s, of the new solution satisfies

Oxjs D Nbs � ˛ Nasq � 0;

which implies that a basic infeasible variable becomes feasible, at least.
If, in some iteration, the second expression of (13.7) is used, then, for the new

solution, not only the basic components, associated with all row indices i 2 NI , are
feasible, but so are basic components, associated with row indices

s 2 fi 2 I j Naiq < 0g ¤ ;:

This is of course favorable.
Assume that the number of basic infeasible variables does not strictly decreases

forever. In each iteration, there is always a negative cost since the original problem
is feasible (Theorem 13.1.1), and the stepsize ˛ is determined by the first expression
of (13.7), which does not satisfy (13.9). But the number of basis is finite, hence there
are some bases appear infinitely, as cycling occurs. This is impossible because the
objective value of the auxiliary program strictly decreases under the nondegeneracy
assumption. Therefore the number of basic infeasible variables strictly decreases in
finitely many iterations. ut

When, after some iteration, the number of basic infeasible variables strictly
decreases, but does not vanish, a new auxiliary program is constructed, whose
objective function (infeasibility-sum) involves less variables than its predecessor,
and iterations are carried out, until infeasibility of the original problem is detected
or a feasible simplex tableau is reached. Involving a series of infeasibility-sums as
objective functions in general, this method is sometimes referred to as method with
piecewise sum of infeasibilities.

The overall steps is put in the following algorithm.

Algorithm 13.1.1 (Tableau Phase-I: infeasibility-sum). Initial: simplex tableau
of form (3.18). This algorithm finds a feasible simplex tableau by handling auxiliary
programs of form (13.3).

1. Stop if Nbi � 0; 8i D 1; � � � ; m (a feasible simplex tableau reached).
2. For all j 2 N , compute Nzj D P

i2I Nai;j , where I D fi D 1; � � � ; m j Nbi < 0g.
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3. Stop if NzN � 0 (the original problem is infeasible).
4. Form a simplex tableau to the auxiliary program (13.3).
5. Carry out a single iteration of simplex Algorithm 3.2.1, in which Rule 13.1.1 is

used for row pivoting instead.
6. Go to step 1.

Example 13.1.1. Solve the following problem by Algorithm 13.1.1 in Phase-I:

min f D �x1 C x2 � 2x3;

s:t: x1 � 3x2 � 2x3 C x4 D �4;

x1 � x2 C 4x3 � x5 D 2;

�3x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; � � � ; 6:

Answer Phase-I. Multiply the second equation by �1 to turn the coefficient of x5

to 1. Setting I D f1; 2g, construct auxiliary program

min f D �x4 � x5;

s:t: x1 � 3x2 � 2x3 C x4 D �4;

�x1 C x2 � 4x3 C x5 D �2;

�3x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; 2; 3; 6:

Its initial tableau is

x1 x2 x3 x4 x5 x6 RHS
1 �3 �2 1 �4

�1 1 �4 1 �2

�3 1 1 1 8

�1 �1

Respectively add the first and the second row to the objective row to eliminate
the nonzero basic entries, yielding simplex tableau

x1 x2 x3 x4 x5 x6 RHS
1 �3 �2 1 �4

�1 1 �4 1 �2

�3 1 1* 1 8

�2 �6 �6

Iteration 1:
q D 3I minf8=1g D 8; p D 3. So 1 in the x3 column and the third row is the

pivot. Add 2; 4; 5 times of row 3 to rows 1,2,4, respectively.
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x1 x2 x3 x4 x5 x6 RHS
�5 �1 1 2 12

�13 5 1 4 30

�3 1 1 1 8

�18 4 6 42

The right-hand side of the preceding tableau is nonnegative, hence Phase-I is
finished. To go to Phase-II, use coefficients of the original objective function to
cover the bottom (objective) row.

x1 x2 x3 x4 x5 x6 RHS
�5 �1 1 2 12

�13 5 1 4 30

�3 1 1 1 8

�1 1 �2

Add 2 times of row 3 to the bottom row to eliminate nonzero basic entries,
obtaining feasible simplex tableau

x1 x2 x3 x4 x5 x6 RHS
�5 �1 1 2 12

�13 5 1 4 30

�3 1 1 1 8

�7 3 2 16

Carry out Phase-II from the preceding tableau. By the conventional rule, x1

column is selected as the pivot column. All components of this column are
nonpositive, as detects unboundedness of the original problem.

In practice, used is usually the following revised version of Algorithm 13.1.1.

Algorithm 13.1.2 (Phase-I: infeasibility-sum). Initial: .B; N /; B�1; NxBDB�1b.
This algorithm finds a basic feasible solution to the standard LP problem by
handling auxiliary programs of form (13.3).

1. Stop if NxB � 0 (producing a basic feasible solution).

2. Construct cB :cji D
� �1, If Nxji < 0,

0, If Nxji � 0,
i D 1; � � � ; m:

3. Carry out a single iteration of Algorithm 3.5.1 (or 3.5.2), in which Rule 13.1.1 is
used for row pivoting.

4. Stop if it terminates as step 3 (or step 2) (the original problem is infeasible).
5. Go to step 1.
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13.2 Single-Artificial-Variable Method

Although the infeasible-sum method is artificial variable free, the row pivot rule
used in it is cumbersome, compared with the normal row rule. This section describes
a method, which uses the normal row rule and only involves a single artificial
variable.

Let .B; N / be basis and nonbasis of the standard problem (1.8). There are two
schemes for the method.

Scheme 1. The auxiliary program is based on the original data of the problem.
Given m-dimensional vector h � 0 such that b � Bh ¤ 0. Introducing artificial

variable xnC1 and normalized vector

anC1 D .b � Bh/=kb � Bhk; (13.10)

construct the following auxiliary program

min xnC1;

s:t: Ax C anC1xnC1 D b; x; xnC1 � 0:
(13.11)

It is easy to verify that

NxB D h; NxN D 0; NxnC1 D kb � Bhk

is a feasible solution to the program, though not necessarily a basic solution. For
instance, setting h D e > 0 seems to be helpful to avoid zero stepsize, though
according anC1 would loose sparsity.

The constraint system of the auxiliary program is equivalent to

xB D Nb � NanC1xnC1 � NN xN ; (13.12)

where

Nb D B�1b; NanC1 D B�1anC1; NN D B�1N: (13.13)

If Nb � 0, then xnC1 is clearly allowed to be zero. Thus, erasing the artificial variable
leads to a basic feasible solution to the original problem; otherwise, the following
applies.

Proposition 13.2.1. If Nb 6� 0, row index set fi D 1; � � � ; m j Nai;nC1 < 0; Nbi < 0g is
nonempty.

Proof. We show that if Nbi < 0 for some i 2 f1; � � � ; mg, then Nai;nC1 < 0. Assume it
is not the case, i.e.,

Nai;nC1 � 0:
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Then from the preceding, (13.10) and (13.13) it is known that

0 � Nai;nC1 D eT
i B�1anC1 D eT

i B�1.b � Bh/=kb � Bhk D . Nbi � hi /=kb � Bhk;

hence Nbi � hi � 0, as a contradiction. ut
Now assume Nb 6� 0. If NxN D 0 is fixed and the value of NxnC1 decreases from

kb � Bhk, then NxB changes from h accordingly. If Nbi < 0 for some i 2 f1; � � � ; mg,
the according inequality constraint may block-up the value of NxnC1 from decreasing
to zero. In fact, the smallest xnC1 value, satisfying inequalities

xB D Nb � NanC1xnC1 � 0; xnC1 � 0;

is

˛ D Nbr= Nar;nC1 D minf Nbi= Nai;nC1 j Nai;nC1 < 0; Nbi < 0; i D 1; � � � ; mg > 0: (13.14)

As the value of NxnC1 decreases, the according value of Nxjr hits 0 first. Let xj r leave
and xnC1 enter the basis, then the resulting basis corresponds to a basic feasible
solution to the auxiliary program, with its objective value strictly decreases. As it is
lower bounded, solving the auxiliary program will render its optimal solution.

It is not difficult to show that a basic feasible solution or basis to the original
problem can be obtained if the optimal value of the auxiliary program is equal to
zero (xnC1 leaves the basis). The original problems is infeasible if the optimal value
of the auxiliary program is positive.

Scheme 2. The auxiliary program is based on a canonical form of the constraint
system.

Assume that the canonical form, associated with basis B , is available and that
Nb D B�1b 6� 0. Giving m-dimensional vector h � 0, and defining

NanC1 D . Nb � h/=k Nb � hk; (13.15)

construct the following auxiliary program

min xnC1;

s:t: xB D Nb � NanC1xnC1 � NN xN ;

x; xnC1 � 0:

(13.16)

It is clear that there is a feasible solution to the program, i.e.,

NxB D h; NxN D 0; NxnC1 D k Nb � hk:

Thus, determining pivot column index q D nC1 and row index p satisfying (13.14),
one can obtain a feasible basis by performing according basis change. It is noticed
that Proposition 13.2.1 is still valid in this case.
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As for how to determine h, it is only required that h � 0, in principle. With
respect to practice, however, it is not proper for the associated k NanC1k being too
large. A simple choice is h D e > 0. Another choice is setting

ıi � 0; i D 1; � � � ; m:

and taking

hi D
�

ıi , if Nbi < ıi ,Nbi , otherwise,
i D 1; � � � ; m:

where ıi � 0; i D 1; � � � ; m are a set of constants, which are equal or close to zero.
Consequently, (13.15) becomes

Nai; nC1 D
� Nbi � ıi ; if Nbi < ıi

0; otherwise;
i D 1; � � � ; m: (13.17)

We prefer the latter because it is better for maintaining sparsity of NanC1.
More specifically, assume availability of a simplex tableau, say (3.18), of the

original problem. Inserting the artificial xnC1 column, we obtain the auxiliary
simplex tableau below:

xT
B xT

N xnC1 RHS

I NN NanC1
Nb

(13.18)

where the original objective row is excluded. Determine row index r by (13.14).
Then drop xjr from and enter xnC1 to the basis by elementary transformations,
so that xnC1 becomes the r th basic variable. Taking the r th row as the objective
row, the auxiliary program can be solved by the simplex method. If the optimal
value vanishes and xnC1 has left the basis, a feasible simplex tableau to the original
problem is obtained. If the optimal value is nonzero, the original problem is
infeasible.

The steps can be summarized to the following algorithm.

Algorithm 13.2.1 (Tableau Phase-I: single-artificial-variable). Initial: a simplex
tableau of form (13.18). This algorithm finds a feasible simplex tableau to the
standard LP problem.

1. Select a row index r 2 arg minf Nbi j i D 1; � � � ; mg.
2. Stop if Nbr � 0 (infeasible problem).
3. Determine row index r 2 arg minf Nbi= Nai;nC1j Nai;nC1 < 0; Nbi < 0; i D 1; � � � ; mg.
4. Carry out elementary transformation to convert Nar; nC1 to 1, and eliminate all

other nonzeros of the column.
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5. Determine column index q 2 arg maxj 2N Narj .
6. Stop if Narj � 0.
7. Determine row index p 2 I D arg minf Nbi= Nai qj Nai q > 0I i D 1; � � � ; mg.
8. Set p D r if r 2 I .
9. Carry out elementary transformations to convert Nap q to 1, and eliminate all

other nonzeros of the column.
10. Stop if p D r (feasibility achieved).
11. Go to step 5.

It is not difficult to transform Algorithm 13.2.1 to a revised version, as is
omitted here. We will see that the single-variable auxiliary program can be handled
in a relevant and favorable manner in the so-called “reduced simplex” context
(Sect. 15.3).

Example 13.2.1. Find a feasible simplex tableau to the following problem by
Algorithm 13.2.1:

min f D x1 C 3x2 � 2x3 C 6x4;

s:t: �x1 C x2 � x3 C x5 D �1;

�3x1 C x2 C 2x3 C x6 D 2;

x1 � 3x2 � 3x3 C x4 D �4;

xj � 0; j D 1; � � � ; 6:

Answer The constraint system is of a canonical form. Set ı1 D ı2 D 0.
Introducing artificial variable x7, construct an auxiliary program of form (13.16):

min x7;

s:t: �x1 C x2 � x3 C x5 � x7 D �1;

�3x1 C x2 C 2x3 C x6 D 2;

x1 � 3x2 � 3x3 C x4 � 4x7 D �4;

xj � 0; j D 1; � � � ; 7:

Its initial tableau is (we put the objective row of the original problem at the bottom
to turn to Phase-II conveniently when Phase-I is finished).

x1 x2 x3 x4 x5 x6 x7 RHS
�1 1 �1 1 �1* �1

�3 1 2 1 2

1 �3 �3 1 �4 �4

1 3 �2 6

Iteration 1:

1. minf�1; 2; �4g D �4 < 0.
3. maxf�1= � 1; �4= � 4g D 1; r D 1.
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4. Multiply row 1 by �1, then add 4 times of row 1 to row 3:

x1 x2 x3 x4 x5 x6 x7 RHS
1 �1 1 �1 1 1

�3 1 2 1 2

5* �7 1 1 �4

1 3 �2 6

5. maxf1; �1; 1; �1g D 1 > 0; q D 1.
7. minf1=1; 0=5g D 0; p D 3.
8. p ¤ 1.
9. Multiply row 3 by 1=5, then add �1; 3; �1 times of row 3 to rows 1,2,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2=5 4=5 �1=5 �1=5 1 1

�16=5 13=5 3=5 �12=5 1 2

1 �7=5 1=5* 1=5 �4=5

22=5 �11=5 29=5 4=5

Iteration 2:

5. maxf2=5; 4=5; �1=5; 1=5g D 4=5 > 0; q D 3.
7. minf1=.4=5/; 2=.13=5/; 0=.1=5/g D 0; p D 3.
8. p ¤ 1.
9. Multiply row 3 by 5, then add �4=5; �13=5; 11=5 times of row 3 to rows 1,2,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�4 6 �1 3 1 1

�13 15* �2 8 1 2

5 �7 1 1 �4

11 �11 8 �8

Iteration 3:

5. maxf�4; 6; �1; 3g D 6 > 0; q D 2.
7. minf1=6; 2=15g D 2=15; p D 2.
8. p ¤ 1.
9. Multiply row 2 by 1=15, then add �6; 7; 11 times of row 2 to rows 1,3,4,

respectively:
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x1 x2 x3 x4 x5 x6 x7 RHS

6=5* �1=5 �1=5 �2=5 1 1=5

�13=15 1 �2=15 8=15 1=15 2=15

�16=15 1 1=15 �4=15 7=15 14=15

22=15 95=15 �32=15 11=15 22=15

Iteration 4:

5. maxf5=6; �1=5; �1=5; �2=5g D 5=6 > 0; q D 1.
7. minf.1=5/=.11=5/g D 1=11; p D 1.
8. p D 1.
9. Multiply row 1 by 5=6, then add 13=15; 16=15; �6=5; �22=15 times of row 1 to

rows 2,3,4, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �1=6 �1=6 �1=3 5=6 1=6

1 �5=18 7=18 �2=9 13=18 5=18

1 �1=9 �4=9 1=9 8=9 10=9

61=9 �17=9 11=9 �11=9 11=9

As the artificial variable x7 has already left the basis, the resulting is a feasible
simplex tableau to the original problem.

It is noted that ı1 and ı2 above were all set to 0, consequently the first 3 iterations
made no progress due to degeneracy. Although parameters ıi ; i D 1; � � � ; m are
required to be nonnegative theoretically, therefore, they should be set to different
positive values practically. Moreover, it seems to be relevant to set ıi � 1 such that
k NanC1k is not too large.

13.3 The Most-Obtuse-Angle Column Rule

Surprisingly enough, the conventional pivot rule used in the dual simplex algorithm
was found to be useful, with favorable numerical results, for achieving primal
feasibility (Pan 1994a); it is to say that the rule is itself applicable even when
reduced costs are not nonnegative. This leads to a simple artificial-variable-free
variant involving no reduced cost, as turns out to be a counterpart of the most-
obtuse-angle row rule (Sect. 14.3).

Assume that a simplex tableau, say (3.18), is infeasible, and a pivot row index p

has been selected by the conventional rule

p 2 arg minf Nbi j i D 1; � � � ; mg: (13.19)

So it holds that Nbp < 0.
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The key of the presented Phase-I method is to use the following column rule.

Rule 13.3.1 (Most-obtuse-angle column rule) Determine pivot column index

q 2 arg min
j 2N

Nap j : (13.20)

In case of Nap q < 0, after the basis change, the basic infeasible variable xjp

becomes nonbasic (hence feasible), and the pth component of the right-hand side
of the tableau changes from negative to positive, that is, Obp D Nbp= Nap q > 0.

The steps are put in the following algorithm. A generalized version of it will be
derived alternatively in Sect. 20.7.

Algorithm 13.3.1 (Tableau Phase-I: the most-obtuse-angle column rule). Ini-
tial: simplex tableau of form (3.18). This algorithm finds a feasible simplex tableau
to the standard LP problem.

1. Select row index p 2 arg minf Nbi j i D 1; � � � ; mg.
2. Stop if Nbp � 0.
3. Determine column index q 2 arg minj 2N Nap j .
4. Stop if Nap q � 0.
5. Carry out elementary transformations to convert Nap q to 1, and eliminate all other

nonzeros of the column.
6. Go to step 1.

It is noted that only the right-hand side and the pivot row of the simplex tableau
are used in each iteration of the preceding Algorithm.

Theorem 13.3.1. Assume termination of Algorithm 13.3.1. It terminates either at

(i) Step 2, obtaining a basic feasible solution; or at
(ii) Step 4, detecting infeasibility of the problem.

Proof. When it terminates at step 2, it is clear that Nb � 0, hence a feasible simplex
tableau is achieved. In case of termination at step 4, it holds that Nbp < 0 and that
Nap j � 0; 8j 2 N . By Lemma 3.3.1, there is no feasible solution to the problem.

ut
The algorithm is not a monotone one, that is, the objective value would not

monotonically change in solution process. Finiteness of it is hence not guaranteed
even if nondegeneracy is assumed. Although Guerrero-Garcia and Santos-Palomo
(2005) offer a cycling instance for this algorithm, it may be still expected that
cycling hardly happens in practice.

Geometric meaning of the most-obtuse-angle column rule may be revealed by
investigating in the dual space. Let . Ny; Nz/ be the current dual basic solution. The
.m C n/-dimensional vector

d
4D

0

@
h

�N

�B

1

A D
0

@
�B�T

N TB�T

I

1

A ep (13.21)
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is an uphill direction. In fact, it is verified that d is in the null space of coefficient
matrix of the dual constraint equalities, satisfying

ATd C � D 0;

and forms an acute angle with the dual objective gradient, i.e.,

.bT; 0; 0/d D bTh D � Nxjp > 0:

The negative �q implies that d forms the largest possible obtuse angle with the
gradient emCq of the dual nonnegative constraint zq � 0. Therefore, if the uphill
direction is close to the dual objective gradient, then emCq tends to form the
most obtuse angle with the dual objective gradient. According to the heuristic
characteristic of optimal basis (Sect. 2.5), it is favorable to let the dual constraint
zq � 0 be satisfied as equality, accordingly entering xq to the basis.

We stress that the use of the conventional dual rule in step 1 is just for simplicity,
does not mean itself the best choice. In fact, it should be much better to use rules,
presented in Chap. 12 instead. From a geometric point of view, in fact, the most-
obtuse-angle column rule should be best matched by the dual steepest-edge rule II.

Nevertheless, Rule 13.3.1 does not employ information associated with the
objective function at all. Taking into account the extent to which the current vertex
violates dual constraints, we suggest the following variant.

Rule 13.3.2 (Variant of most-obtuse-angle column rule) Given constant 0 <

� � 1. Select pivot column index

q 2 arg minfNzj j Nap j � ��; j 2 N g; � D min
j 2N

Nap j < 0

In order to widen the range of choice, � should be close to 1, so that in the case
when NzN has negative components, the dual constraint inequality, that is violated the
most, will be satisfied as equality. It might be suitable to set � D 0:95, or so.

An advantage of this artificial-variable-free Phase-I method lie in its good numer-
ical stability and remarkable simplicity. Even though there are no related numerical
results available at present, it seems to be promising, as its dual counterpart performs
remarkably for solving large and sparse problems in computational experiments (see
Sect. 14.3).

Example 13.3.1. Find a feasible simplex tableau to the following problem by
Algorithm 13.3.1:

min f D 2x1 � x2;

s:t: 2x1 � x2 C x3 D �2;

x1 C 2x2 C x4 D 3;

�8x1 C x2 � x4 C x5 D �4;

xj � 0; j D 1; � � � ; 5:
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Answer Initial: Adding the second equality constraint to the third to eliminate x4.
Such doing results in the following simplex tableau.

x1 x2 x3 x4 x5 RHS
2 �1* 1 �2

1 2 1 3

�7 3 1 �1

2 �1

Iteration 1:

1. minf�2; 3; �1g D �2 < 0; p D 1.
3. minf2; �1g D �1 < 0; q D 2.
5. Multiply row 1 by �1, then add �2; �3; 1 times of row 1 to rows 2,3,4,

respectively:

x1 x2 x3 x4 x5 RHS
�2 1 �1 2

5 2 1 �1

�1* 3 1 �7

�1 2

Iteration 2:

1. minf2; �1; �7g D �7 < 0; p D 3.
3. minf�1; 3g D �1 < 0; q D 1.
5. Add 2; 5 times of row 3 to rows 1,2, respectively:

x1 x2 x3 x4 x5 RHS
1 �7 16

17 1 34

1 �3 �1 7

�1 2

The right-hand side of the above tableau is nonnegative, hence the obtained is a
feasible simplex tableau, from which Phase-II can get itself started.

In practice, usually used is the following revised version of the preceding
algorithm.

Algorithm 13.3.2 (Phase-I: most-obtuse-angle column rule). Initial: .B; N /;

B�1; NxB D B�1b. This algorithm finds a basic feasible solution to the standard
LP problem.

1. Select pivot row index p 2 arg minf Nxji j i D 1; � � � ; mg.
2. Stop if Nxjp � 0 (feasibility achieved).
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3. Compute h D B�Tep; �N D N Th.
4. Determine pivot column index q 2D arg minj 2N �j .
5. Stop if �q � 0 (infeasible problem).
6. Compute Naq D B�1aq and ˛ D Nxjp =�q .
7. Set Nxq D ˛, and update: NxB D NxB � ˛ Naq if ˛ ¤ 0.
8. Update B�1 by (3.23).
9. Update .B; N / by exchanging jp and q.

10. Go to step 1.

13.4 Perturbation of Reduced Costs

As a result of not involving reduced costs, the feasible solution, generated by
Algorithm 13.3.2, could be far from dual feasibility, and hence the number of
iterations subsequently required by Phase-II would be large. In this aspect, the
Phase-I method, presented in this section, seems to be advantageous (Pan 2000b,c).

It solves an auxiliary perturbed program. Let (3.18) be an infeasible simplex
tableau and let ıj � 0; j 2 N be predetermined perturbation parameters. The
auxiliary program results from perturbing reduced costs to nonnegative values. More
precisely, introduce index set

J D fj 2 N jNzj < ıj g: (13.22)

Replacing reduced costs Nzj in the simplex tableau by

Nz0
j D

�
ıj ; ifj 2 J;

Nzj ; ifj 2 N nJ;
(13.23)

leads to a dual feasible tableau, associated with a perturbed program. As a result,
the dual simplex algorithm can get itself started, until optimality of the perturbed
program is achieved, or dual unboundedness of it is detected.

Theorem 13.4.1. If the auxiliary perturbed program is dual unbounded, the origi-
nal problem is infeasible.

Proof. The perturbed program has the same constraints as the original problem.
Unboundedness of the former implies that there is no feasible solution to former.
and hence so to the latter. ut

Assume that optimality of the perturbed program is achieved. It might be well
to assume that (3.18) is again the final tableau, associated with basis B . The right-
hand side of it is now nonnegative. Consequently, computing OzN D cN � N TB�1cB

(restoring reduced costs of the original problem) and covering NzN with OzN leads to
a feasible simplex tableau to the original problem.
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The overall steps are put into the following algorithm.

Algorithm 13.4.1 (Tableau Phase-I: reduced cost perturbation). Given pertur-
bation parameters ıj � 0; j 2 N . Initial: simplex tableau of form (3.18). This
algorithm finds a feasible simplex tableau to the standard LP problem.

1. Perturb: Nzj D ıj , 8j 2 fj 2 N j Nzj < ıj g.
2. Call the dual simplex Algorithm 4.4.1.
3. Stop if it terminates at step 3 (infeasible problem).
4. If it terminates at step 2, compute NzN D cN � N TB�1cB .
5. Stop (feasibility achieved).

Note There exists a perturbation-free variant of the preceding algorithm: in each
iteration, one use Nz0

N determined by (13.23) in place of NzN for minimum-ratio test,
therefore saving computations for restoring reduced costs.

Algorithm 13.4.1 performed very well in preliminary computational experiments
(Pan 2000b). A reason seems to be that not all perturbed reduced costs affect the
final outcome. Sometimes, reduced costs restored in step 4 of Algorithm 13.4.1 are
themselves nonnegative, and hence there is no need for carrying out Phase-II. In fact,
it is verified that manipulations in step 2 amount to solving the following problem

min bTy;

s:t: ATy � Oc;

where

Ocj D
(

aT
j B�TcB C ıj , if j 2 J ,

Nzj , if j 2 N nJ .

That is to say, perturbing Nzj < ıj to Nzj D ıj amounts to slackening dual constraint
aT

j y � cj to

aT
j y � aT

j B�TcB C ıj D cj C .ıj � cj C aT
j B�TcB/ D cj C .ıj � Nzj /:

If slackened constraints are all inactive for dual optimal solutions, or in other words,
nonnegative constraints of primal variables, associated with perturbed reduced costs,
are active for primal optimal solutions, the primal and dual optimal solutions will
not be affected by such perturbations at all (for detailed analysis, see Pan 2000b).

Example 13.4.1. Solve the following problem using Algorithm 13.4.1 in Phase-I:

min f D x1 C x2 � 3x3;

s:t: �2x1 � x2 C 4x3 C x5 D �4;

x1 � 2x2 C x3 C x6 D 5;

�x1 C 2x3 C x4 D �3;

xj � 0; j D 1; � � � ; 6:
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Answer
Phase-I.
Initial: There is an available simplex tableau (B D f5; 6; 4g) to this problem. Perturb
negative reduced cost �3 to 0, so that it becomes dual feasible. As an illustration for
implementation, we add the perturbed reduced costs at the bottom (ı3 D 0).

x1 x2 x3 x4 x5 x6 RHS
�2* �1 4 1 �4

1 �2 1 1 5

�1 2 1 �3

1 1 �3

1 1

Taking the bottom row as objective row, execute the dual simplex Algo-
rithm 4.4.1. Note that the second (objective) bottom row does not take a part in
pivoting.

Iteration 1:

1. minf�4; 5; �3g D �4 < 0; p D 1.
3. J D f1; 2g ¤ ;.
4. minf�1=.�2/; �1=.�1/g D 1=2; q D 1.
5. Multiply row 1 by �1=2, then add �1; 1; �1; �1 times of row 1 to rows 2,3,4,5,

respectively:

x1 x2 x3 x4 x5 x6 RHS

1 1=2 �2 �1=2 2

�5=2 3 1=2 1 3

1=2 1 �1=2* �1

1=2 �1 1=2 �2

1=2 2 1=2 �2

Iteration 2:

1. minf2; 3; �1g D �1 < 0; p D 3.
3. J D f5g ¤ ;.
4. minf�.1=2/=.�1=2/g D 1; q D 5.
5. Multiply row 3 by �2, then add 1=2; �1=2; �1=2; �1=2 times of row 3 to rows

1,2,4,5, respectively:
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x1 x2 x3 x4 x5 x6 RHS
1 �2 �1 3

�2 3* 1 1 2

�1 �2 1 2

1 �1 1 �3

1 2 1 �3

Optimality of the perturbed tableau is achieved. Deleting the perturbed (bottom)
row gives a feasible simplex tableau of the original problem.

Phase-II.
Iteration 3: call the simplex Algorithm 3.2.1.
Select x3 column as pivot column and the second row as pivot row. Multiply row 2
by 1=3, then add 2; 1; �2 times of row 2 to rows 1,4,5, respectively:

x1 x2 x3 x4 x5 x6 RHS

1 �4=3 �1=3 2=3 13=3

�2=3 1 1=3 1=3 2=3

�1 �2 1 2

1=3 4=3 1=3 �7=3

The reduced costs are all nonnegative, optimality is hence achieved. Basic
optimal solution and associated objective value:

Nx D .13=3; 0; 2=3; 0; 2; 0/T; Nf D 7=3:

Although the perturbation parameter was set to 0 in the preceding example,
positive parameter value should be practically favorable for the sake of anti-
degeneracy. It seems to be suitable to use

ıj � � > 0;

where � is the feasibility tolerance (� D 10�6, or so). Computational experiences
indicate that the perturbation method is not sensitive to the magnitude of the
parameters though exceeding 10�1 seems to be inadvisable.
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