
Chapter 12
Dual Pivot Rule

In this book, pivot rules used in the dual simplex method are referred to as dual pivot
rule.1 Like in the primal simplex context, a dual pivot rule is crucial to algorithm’s
efficiency.

Assume that Nx D B�1b 6� 0. The dual Dantzig conventional rule selects a row
index p 2 B such that Nxp is the minimum among components of the basic solution.
Thus, the dual objective value will increase the most possible for a unit stepsize.
This rule is far from ideal, like its primal counterpart. From (4.24) and (4.25), it is
known that the increment of the dual objective value will be

Of � Nf D Nxjp .Nzq= Nap q/:

According to the “most-improvement” criterion, p and q are determined such
that preceding increment attains the largest possible. Unfortunately, the related
computational effort is too high to be practicable, just as its primal counterpart.

This chapter will address some very promising dual pivot rules, which can be
regarded as dual variants of those presented in the previous chapter.

For simplicity, assume again that the current basis matrix consists of the first m

columns of A, i.e.,

B D f1; � � � ; mg; N D fm C 1; � � � ; ng:

1It is referred to as row rule. After a pivot row is selected, there is a very limited choice of a column
pivot.
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312 12 Dual Pivot Rule

12.1 Dual Steepest-Edge Rule

Consider the dual problem

max g D bTy;

s:t: ATy � c:

Let Ny be the current dual basic feasible solution, satisfying

BT Ny D cB ; (12.1)

N T Ny � cN : (12.2)

Define

y.ˇ/ D Ny � ˇhi ;

hi D B�Tei ; i D 1; � � � ; m:

From the preceding two expressions and (12.1), for any i 2 f1; � � � ; mg and ˇ � 0

it holds that

aT
i y.ˇ/ D aT

i Ny � ˇ D ci � ˇ � ci ;

aT
k y.ˇ/ D aT

k Ny D ck; k D 1; � � � ; m; k ¤ i:

It is known that �hi ; i D 1; � � � ; m is a edge direction, emanating from the vertex Ny
of the feasible region fyjATy � cg. The determination of row index i implies that
the basic variable xi leaves the basis, so constraint aT

i y � ci may be satisfied as a
strict inequality. Since

�bThi D �eT
i B�1b D � Nxi ;

when Nxi < 0, the edge direction �hi forms an acute angle with the dual objective
gradient b, as is an uphill direction. Therefore, the objective value will never
decrease if a row index p 2 f1; � � � ; mg is selected such that Nxp < 0; it strictly
increase if dual nondegeneracy is assumed. In particular, the following rule selects
the edge that forms the smallest angle with b (Forrest and Goldfarb 1992).

Rule 12.1.1 (Dual steepest-edge row rule) Select pivot row index

p 2 arg minf Nxi =khi k j i D 1; � � � ; mg:

Like in the primal context, practicability of the preceding rule lies in computing

khi k2; i D 1; � � � ; m:

in a recurrence manner.
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Assume that xp is selected to leave and xq to enter the basis. Then the inverse of
the basis matrix is updated by (3.28), i.e.,

OB�1 D B�1 � . Naq � ep/eT
pB�1

Napq

;

where Naq D B�1aq . Premultiplying the preceding expression by eT
i and transposing

it leads to the recurrence for edge directions, i.e.,

Qhp D .1= Napq/hp; (12.3)

Qhi D hi � . Naiq= Napq/hp; i D 1; � � � ; m; i ¤ p: (12.4)

from which the recurrence formulas for squares of norms of edge directions follow:

k Qhpk2 D .1= Napq/2khpk2; (12.5)

k Qhik2 D khik2 � 2. Naiq= Napq/ui C . Naiq= Napq/2khpk2;

i D 1; � � � ; m; i ¤ p: (12.6)

where

BThp D ep; Bu D hp: (12.7)

Note that khpk2 D .hp/Thp can be directly calculated, because hp and Naq are
obtained otherwise independently.

Computations, involved in Rule 12.1.1, is usually cheaper than that in the
(primal) steepest-edge rule. They both solve an additional system (12.6), hence
Bu D hp. It is noted that formula (11.9) needs to solve BTv D Naq . Differing
from (11.9), which is expensive when pivot row eT

pB�1N is dense, there is no any
inner product involved in the middle term of (12.6). In practice, it is often the case of
n�m � m, in which initially computing squares of norms of edge directions in the
primal rule is cumbersome, compared with in the dual rule. As for taking advantage
of sparsity, handling B�1aj is also inferior to B�Tei .

Now let us turn to the dual problem of form

max g D bTy;

s:t: ATy C z D c; z � 0:
(12.8)

A new pivot rule can be derived if the steepest-edge direction is considered in .y; z/-
space.

It is clear that the dual basic feasible solution

. Ny; NzN ; NzB/ D .B�TcB ; cN � N TB�TcB; 0/
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is actually the unique solution to the .m C n/ � .m C n/ system

0
@

BT 0 I

N T I 0

0 0 I

1
A
0
@

y

zN

zB

1
A D

0
@

cB

cN

0

1
A

which is, geometrically, a vertex of the polyhedron

f.y; z/ 2 Rm � Rn j ATy C z D c; z � 0g:

The inverse of the coefficient matrix of the system is

0
@

B�T 0 �B�T

�N TB�T I N TB�T

0 0 I

1
A

It is easy to verify that the last m columns of the preceding are just edge directions,
emanating from the vertex, i.e.,

hi D
0
@

�B�T

N TB�T

I

1
A ei ; i D 1; � � � ; m: (12.9)

Recurrence formulas of these edge directions are of the form (12.3) and (12.4), and
squares of norms of them are of form (12.5) and (12.6), though (12.7) should be
replaced by

BTh D ep; Bu D h C
nX

j DmC1

�j aj ; (12.10)

where �j is the j th component of the pivot row vector, i.e.,

� D ATh: (12.11)

As � is computed while pricing, the following quantity

khpk2 D hTh C �T�: (12.12)

can be directly computed.
In this book, the pivot rule, based on (12.5)–(12.7), is referred to as dual steepest-

edge pivot rule I, and that based on (12.5), (12.6) and (12.10)–(12.12) referred to
as dual steepest-edge pivot rule II. Associated numerical results will be given in
Table 12.1 in the next section, in a comparison with according approximate rules
there.
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12.2 Approximate Dual Steepest-Edge Rule

Harris (1973) derived a dual variant of the Devex rule, as may be regarded as an
approximation of the dual steepest-edge rule II.

She constructed a “reference framework”, a set of m indices of components
of z. Assume that subvector Ohi consists of components, located on the reference
framework, of edge direction hi. Weights si ; i D 1; � � � ; m are endowed to Nxi to
approximate k Ohik.

Rule 12.2.1 (Dual Devex row rule) Select pivot row index

p 2 arg minf Nxi =si ji D 1; : : : ; mg;

where weights si ; i D 1; : : : ; m are determined as follows, so that the rule can
be regarded as an approximation of the steepest-edge rule under the reference
framework.

At the beginning, index set B is taken as the reference framework, and si are set
to 1 for all i D 1; : : : ; m (see (12.9)); So, the dual Devex rule is just the same as the
dual Dantzig rule in this case. Subsequently, si are updated iteration by iteration.
Assume that � is defined by (12.11), and components, located on the reference
framework, form subvector O� . As (12.3) and (12.4) are still valid when vectors in
them are replaced by subvectors, consisting of components located on the reference
framework, we have the following updates:

Nsp D maxf1; k O�k=j Napq jg;
Nsi D maxfsi ; j Naiq= Napq jk O�kg; i D 1; � � � ; m; i ¤ p;

the last of which comes from using the larger norm of vectors Ohi and �. Naiq= Napq/hp

instead of the norm of their sum (see (12.9)). In each iteration, Naq D B�1aq is
computed separately. As � is available, k O�k can be computed directly.

Similar to the (primal) Devex rule, when errors caused by repeatedly using of the
updating formulas accumulate too high, it is necessary to determine a new reference
framework and set all weights to 1 again. As weight Ntq is calculated directly, it is
convenient to monitor errors. It should be restarted when the calculated value differs
from the updated value by a relatively large margin, e.g., when the former exceeds
some times of the latter (Harris used double).

When errors, caused by repeatedly using of the updating formulas, accumulate
too much, it is necessary to determine a new reference framework and set all weights
to 1 again, just like the approximate steepest-edge rules. It is also possible to monitor
errors: the process should be restarted when the calculated value of k O�k differs from
the updated value sp by a relatively large margin.
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Table 12.1 CPU time and ratio

Steepest- Dynamic Projective Steepest-
Dual pivot rule Dantzig Devex edge II steepest-edge steepest-edge edge I
Hours 177.78 67.43 12.72 10.41 7.36 6.36
Time ratio 27.95 10.60 2.00 1.64 1.16 1.00

So-called dual projective steepest-edge rule results from using k Ohik rather than
Nsi . This rule also yields from modifying the dual steepest-edge rule under the
reference framework. In fact, replacing hi in (12.5) and (12.6) by Ohi leads to
recurrence formulas of k Ohik2, whereas u in (12.6) can be obtained by solving system

Bu D
nX

j DmC1

O�j aj :

A further variant of the dual steepest-edge rule results from expending the
reference framework whenever it is reset, that is, by adding the pivot column
index to the current reference framework if it is not in it already. Accordingly, the
recurrence formulas are modified slightly. Such a variant is called dual dynamic
steepest-edge rule.

We cite numerical results reported by Forrest and Goldfarb (1992) below. The
hardware and software environments as well as 20 test problems were the same as
those described for the primal case, presented in Sect. 11.3. Codes based on six dual
rules: Dantzig, Devex, steepest-edge II, dynamic steepest-edge, project steepest-
edge and steepest-edge I were tested. Table 12.1 gives total CPU times, required for
solving all the problems, in the first row, and time ratios of the first five rules to the
dual projective steepest-edge rule in the second row.

It is seen from the preceding table that the dual Dantzig rule is the slowest
whereas the dual steepest-edge rule I is the fastest, with time ratio as high as 27.95,
though the tests are favorable to the last four rules because they take advantages
of the structures of computer IBM RISC system/6000 in pricing and solving
systems.

In terms of reported numerical results, the dual rules appear to be inferior to
their primal counterparts slightly (see Tables 11.1 and 12.1). However, Forrest and
Goldfarb indicate that these data are unfair to the dual rules, because their primal
codes were optimized while the dual ones were not; the numbers of hours required
by the last four codes in Table 12.1 should be reduced by 10 % at least, though
decrements of the dual Dantzig and Devex are not as so much. Therefore, the dual
rules are actually efficient, compared to their primal counterparts.

The steepest-edge rule and Devex approximates as well as their dual variants are
superior over the standard rules with large margins, and are widely used in many
commercial codes, such as CPLEX.
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12.3 Dual Largest-Distance Rule

This section derive a dual variant of the largest-distance rule (Sect. 11.4). The basic
idea is to determine a leaving variable by finding an inequality constraint, mostly
violated by the current solution in the reduced space.

Let B D f1; � � � ; mg; N D AnB be the current basis and nonbasis of the
standard problem (1.8). Assume that the associated simplex tableau is dual but not
primal feasible, i.e., Nb D NxB 6� 0.

For some i 2 B , the inequality Nxi < 0 implies that the solution, NxN D 0, in the
reduced space violates constraint

Nbi � .wi /TxN � 0;

where Nb D B�1b and

wi D N TB�Tei :

The signed distance from point NxN D 0 to the boundary Nbi � .wi /TxN D 0 is
Nxi =kwi k, where any norm is allowed in principle though the Euclidean norm might
be preferable.

The dual Dantzig conventional rule is

p 2 arg minf Nxi ji D 1; � � � ; mg;

which does not necessarily correspond to the mostly violated inequality constraint,
since the according distance would be very small when kwpk is large, as the point
NxN D 0 may not far away from the boundary actually. So, it should not be expected
that this rule performs satisfactorily.

If one determines a leaving variable that corresponds to the mostly violated
inequality constraint, the following rule follows.

Rule 12.3.1 (Dual largest-distance row rule) Select a pivot row index

p 2 arg minf Nxi=kwi k j i D 1; � � � ; mg:

Involving kwi k, the preceding rule is cumbersome, compared with the (primal)
largest-distance rule. Like in the primal context, however, kwi k2; i D 1; � � � ; m can
be computed recursively, so that the rule would be still practicable.

Consider the set of n-dimensional vectors

�i D ATB�Tei ; i D 1; � � � ; m:

Note that wi is an .n � m/-subvector of �i for any i D 1; : : : ; m. Assume that
xp leaves and xq enters the basis, then it is not difficult to derive the following
recurrence relation:
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Q�p D .1= Napq/�p;

Q�i D �i � . Naiq= Napq/�p; i D 1; � � � ; m; i ¤ p:

where pivot column Naq D B�1aq is available. Further, recurrence formulas of
squares of their norms can be obtained, i.e.,

k Q�pk2 D .1= Napq/2k�pk2;

k Q�i k2 D k�i k2 � 2. Naiq= Napq/�iT
�p

C. Naiq= Napq/2k�pk2; i D 1; � � � ; m; i ¤ p;

combining which, �iT
�p D eT

i B�1N�p and k�i k2 D kwi k2 C 1 leads to the
required formulas

k Qwpk2 D .1= Napq/2.k.wpk2 C 1/ � 1; (12.13)

k Qwi k2 D kwi k2 � 2. Naiq= Napq/ui (12.14)

C. Naiq= Napq/2.kwpk2 C 1/; i D 1; � � � ; m; i ¤ p;

where

Bu D
nX

j DmC1

�j aj ;

and �j is the j th component of �p (i.e., the .j � m/th component of wp). Note
that components of wp are available entries of the pivot row, and hence kwpk2 D
.wp/Twp can be calculated directly.

12.4 Dual Nested Rule

This section derives a dual variant of the nested rule (Sect. 11.5). Regarding negative
components of the primal basic solution as elimination target, it focuses on the most
stubborn ones among them.

Let � > 0 be primal feasibility tolerance. At the beginning of an iteration, a set I1

of row indices is given the priority for associated basic indies to leave the basis. A
row index in I1, associated with the smallest component of NxB , is determined. If the
component is less than ��, then the corresponding basic index is selected to leave
the basis, and the I1 for the next iteration is born from the current I1 by including all
its row indices, associated with NxB ’s components less than ��. In the other case, do
the same as before with I2 D BnI1; if there is still no basic components less than
��, then optimality is attained.

The following is a nested variant of Dantzig conventional dual rule.
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Rule 12.4.1 (Dual nested row rule: Dantzig) Given primal tolerance � > 0. Set
I1 D B and I2 D ;.

1. Go to step 4 if I1 D fi 2 I1 j Nxi < ��g ¤ ;.
2. Go to step 4 if I1 D fi 2 I2 j Nxi < ��g ¤ ;.
3. Stop (optimality achieved).
4. Select a pivot row index p 2 arg min f Nxi j i 2 I1g.
5. Update: I1 D I1np; I2 D BnI1.

In the first iteration or iterations in which I2 is touched, the preceding rule
actually proceeds the same as the standard dual row rule. After such an iteration,
a series of iterations with nested pivoting follow, as might be called a “circle”,
where each I1 is a proper subset of its predecessor. In the kth iteration of a circle,
basic components associated with I1 are less than �� all the time. It is therefore
reasonable to select such a stubborn one to leave the basis.

It is possible to turn any full dual rule to a nested version. The dual nested
steepest-edge rule can be obtained from Rule 12.4.1 by using

p 2 arg min f Nxi =khi k j i 2 I1g

in step 4 of it instead, the dual nested Devex rule obtained by using

p 2 arg minf Nxi =si j i 2 I1g

and the dual nested largest-distance rule by using

p 2 arg minf Nxi=kwi k j i 2 I1g

(see relevant sections for notations).
In view of the performance of their primal counterparts, it might be expected that

the dual nested rules and the dual nested largest-distance rules perform satisfactorily.
The dual nested rules are easy to implement, fortunately. However, there is no any
computational experience at present.
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