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Preface

Linear programming (LP) (Dantzig 1948, 1951a,b,c) might be one of the most
well-known and widely used mathematical tools in the world. As a branch of
optimization, it serves as the most important cornerstone of operations research,
decision science, and management science.

This branch of study emerged when the American mathematician George B.
Dantzig proposed the LP model and the simplex method in 1947. The computer,
emerging around the same period, propelled the development of LP and the simplex
method toward practical application. As a basic branch of study, LP orchestrated
the birth of a number of new fields, such as nonlinear programming, network flow
and combinatorial optimization, stochastic programming, integer programming, and
complementary theory, and invigorated the whole field of operations research.

An outstanding feature of LP is its broad applications. Closely related to LP, a
number of people have made pioneering contributions in their respective areas. In
the area of economics, in particular, in 1973, Russian-American economist Wassily
Leontief took the Nobel Economic Prize for his epoch-making contribution on
quantitative analysis of economic activities. The academician L. V. Kantorovich
of the former Soviet Academy of Science and American economist Professor T. C.
Koopmans won the 1975 Nobel Prize for their optimal allocation theory of resources
using LP. The same prize was also given to Professors K. Arrow, P. Samuelson, H.
Simon, and L. Herwricz, several decades later when they paid close attention to LP
at the starting days of their professional careers. In practice, on the other hand, the
simplex method has achieved great success. Applications of the simplex method
to the areas such as economy, commerce, production, science and technology, and
defense and military affairs have brought about astonishing economic and social
benefits. It is recognized as one of The Ten Algorithms in the Twenty Century
(IEEE2002; see Cipra 2000).

Since W. Orchard-Hays worked out the first simplex-method-based commer-
cial software, his implementation techniques were used and developed by many
scholars, such as M. A. Saunders and R. E. Bixby. As a result, the simplex method
became a powerful practical tool. However, the method is shown to be a non-
polynomial-time one. In 1979, a former Soviet mathematician – L. G. Khachiyan
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proposed the first polynomial-time method, called “ellipsoid method.” But unfortu-
nately, it performed badly in computations and is not competitive with the simplex
method. In 1984, an Indian mathematician – N. Karmarkar proposed another
polynomial-time method. It is an interior-point method of lower polynomial order;
it performed remarkably well in computations. The ensuing surge of research in
interior-point methods has led to some very efficient interior-point algorithms for
solving large sparse LP problems. During the same period, due to contributions on
pivot rules made by P. M. J. Harris, J. J. H. Forest, and D. Goldfarb, among others,
the efficiency of the simplex method made great progress as well, leading to an
intense head-to-head competition between the two types of methods.

After more than 60 years since its birth, LP is now a relatively mature but
rapidly developing discipline. Nevertheless, it is still facing great challenges. The
importance of large-scale sparse LP models is nowadays enhanced further by the
globalization. Everyday practice calls upon the research community to provide more
powerful solution tools just to keep up with the ever-increasing problem size. This
book attempts to respond to this reality and reflect the state of the art of LP by
presenting the most valuable knowledge and results. It has been my long-lasting
belief that research results, in operations research/management science in particular,
should be of practical value, potentially at least. I therefore focus on theories,
methods, and implementation techniques that are closely related to LP computation
and hence applications.

This book consists of two parts. Part I mainly presents fundamental and
conventional materials, such as geometric of feasible region, the simplex method,
duality principle and dual simplex method, implementation of the simplex method,
sensitivity analysis and parametric LP, variants of the simplex method, decompo-
sition method, and interior-point method. In addition, integer linear programming
(ILP), differing from LP in nature, is also considered in this chapter, not only
because ILP models can be handled by solving a sequence of LP models but
because they are so rich in practice as form a major application area of LP
computation. Part II mainly covers the author’s recent published and unpublished
results, such as pivot rule, dual pivot rule, simplex phase-1 method, dual simplex
phase-I method, reduced simplex method, D-reduced simplex method, criss-cross
simplex method, generalized reduced simplex method, deficient-basis method, dual
deficient-basis method, face method, dual face method, and pivotal interior-point
method. The last chapter contains special topics, such as special forms of the LP
problem, approaches to intercepting for primal and dual optimal sets, practical
pricing schemes, relaxation principle, local duality, “decomposition principle,” and
ILP method based on the generalized reduced simplex framework.

To make materials easier to follow and understand, algorithms in this book
are formulated and accompanied with illustrative examples wherever possible. If
the book is used as a textbook for upper-level undergraduate or graduate course,
Chaps. 1 and 3–6 may be used as basic course material.
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Notation

In this book, in general, uppercase English letters are used to denote matrices,
lowercase English letters are used to denote vectors, and lowercase Greek letters
to denote reals. Set is designated by uppercase English or Greek letters. Unless
indicated otherwise, all vectors are column ones.

LP W Linear programming.
ILP W Integer linear programming.
Rn W Euclidean space of dimension n.
R W Euclidean space of dimension 1.
0 W Origin of Rn (or the zero vector).
ei W Unit vector with the i th component 1 (dimension will be clear from the

context; the same below).
e W Vector of all ones.
I W Unit matrix.
A W Coefficient matrix of the linear program; also stands for index set of

A’s columns, i.e., A D f1; : : : ; ng.
m W Number of rows of A.
n W Number of columns of A.
b W Right-hand side of the equality constraint.
c W Cost vector, i.e., coefficient vector of the objective function.
B W Basis (matrix). Also the set of basic indices.
N W Nonbasic columns of A. Also the set of nonbasic indices.
aj : The j th column of A.
ai j W The entry of the i th row and j th column of A.
vj W The j th component of vector v.
kvk W Euclidean norm of vector v.
max.v/ W The largest component of vector v.
AJ W Submatrix consisting of columns corresponding to index set J .
vI W Subvector consisting of components corresponding to row index set I .
AT W Transpose of A.
X W Diagonal matrix whose diagonal entries are components of vector x.
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xviii Notation

rf .x/ W Gradient of function f .x/.
˘ � � W ˘ is a subset of � .
˘ [ � W Union set, i.e., f� j � 2 ˘ or � 2 � g.
˘ \ � W Intersection set, i.e., f� j � 2 ˘; � 2 � g.
˘n� W Complementary set, i.e., f� j � 2 ˘; � 62 � g.
; W Empty set.
j W Such that. For example, fx j Ax D bg means the set of all x such that

Ax D b holds.
� .�/ W Far less(bigger) than.
O.˛/ W Implies a number � k˛, where k, a fixed constant independent of the

value of ˛, is meant to convey the notion that k is some small integer
value.

j� j W Absolute value of � if � is a real, or cardinality of � if � is a set.
range H W Column space of matrix H .
null H W Null space of matrix H .
dim � W Dimension of set � .
C m

n W Number of combinations of taking m from n elements.
int P W Interior of set P .
x˛y W The largest integer no more than ˛.
p˛q W The smallest integer no less than ˛.

This book involves the following two simplex FORTRAN codes:

RSA: The author’s code of Revised Simplex Algorithm 3.5.1, supported by
Algorithm 3.3.1 as Phase-I. Without exploiting sparsity, this code uses
Harris two-pass row Rule 5.6.1 in the place of Rule 3.2.1. tolpiv D
10�8 for pivot tolerance, and 10�6 for both primal and dual feasibility
tolerance.

MINOS: The sophisticated smooth optimization package developed by Bruce A.
Murtagh and Michael A. Saunders (1998) at Department of Manage-
ment Science and Engineering of Stanford University. Based on the
simplex method, the LP options of this sparsity-exploiting code are
used as the benchmark and platform for empirical evaluation of new
LP methods.



Chapter 1
Introduction

As intelligent creatures, human beings plan and carry out activities with pre-set
objectives. Early human ancestors relied on their experience, whereas their modern-
day descendants use scientific methods to aid their decision making in order to be
more efficient and effective.

The word “optimization” means to achieve the best result with minimum effort.
For example, how would one to allocate limited resources (labor, money, materials,
etc.) to maximize return, or to minimize cost while satisfying certain needs?
People gather information and data, and represent practical problems in appropriate
forms using mathematical language such as numbers, equations, and functions,
as is so-called “mathematical modeling” process. Then, mathematical methods
of optimization are applied to solve the resulting models, thereby providing a
quantitative basis for sound decision making. This process of formalizing a problem
and then solving it using mathematical methods has been further revolutionized by
the advent of the electronic computer.

The LP model is of very simple mathematical structure, which involves only
linear functions, equalities, and inequalities (Dantzig 1963). However, the scale
of the model can be tremendous, commonly comprising hundreds of thousands of
variables and equations, which renders the problem difficult to solve. Fortunately,
with the aid of computer, computational techniques for LP are capable solving
problems of very large scale; for example, R.E. Bixby et al. (1992) solved an LP
problem with 12,753,313 variables and found an optimal scheme for an airline crew
scheduling application. As the globalization intensifies, there is growing demand for
more powerful, more efficient algorithms and software that can solve increasingly
larger LP problems aiming at achieving optimal benefits over large systems as a
whole.

The aim of this book is to present from a practical point of view the theory,
methods, and implementation of LP, including not only the fundamentals and
conventional contents, but also reflections of newest research results and progress
in this area.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__1,
© Springer-Verlag Berlin Heidelberg 2014
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2 1 Introduction

1.1 Brief History of LP

It would be interesting, inspiring, and beneficial to briefly recall the origin and
development of LP.

LP can be traced back to as early as 1820s. French mathematician, J.B.J. Fourier
(well-known due to the mathematical series named after him) in 1823 and Belgian
mathematician V. Poussin in 1911 each wrote a paper related to LP. Unfortunately,
these isolated efforts went unnoticed. In 1939, the academician L.V. Kantorovich
(1960) of former Soviet Union academy of sciences published a book entitled
Mathematical Method of Production Management and Planning, concerning LP
models and their solution, but it was unfortunately neglected by the authority,
and had not been known by the academic communities. In 1941, F.L. Hitchcock’s
original paper on the transportation problem once again did not draw any attention,
until in the late 1940s and early 1950s when it was finally rediscovered after the
simplex method came around.

Indeed, human activities is the only source of all scientific theories and method-
ologies. Although the World War II led to devastating losses and casualties, the war
efforts thrust science and technology forward and hastened emergence of many new
branches of learning. In particular, Operations Research and Optimization are one
area that has greatly benefited from the war-time demand.

After receiving his Ph.D., young George B. Dantzig became a mathematical
advisor to the U.S. (Cottle et al. 2007) Air Force Controller in 1946. He was
challenged to mechanize the planning process such that a time-staged deployment,
training and logistical supply program can be more rapidly computed using desk
calculators. Using an active analysis approach, he formulated a model without an
objective function, and tried to solve it. Dantzig recalled the situation at that time
at the XI-th International Symposium on Mathematical Programming (held at the
University of Bonn, W. Germany, from August 23 to 27 in 1982), by giving the
following example:

How to assign 70 men to 70 jobs ?

It is required that each job must be filled and each man must be assigned. An “activ-
ity” is defined as a 1-to-1 correspondence between the men and the jobs. There are
70Š > 10100 activities. It is impracticable to determine the best among them by com-
paring all, because the number is too large even though being finite. Dantzig said:

Suppose we had an IBM 370-168 available at the time of the Big Bang 15 billion years
ago. Would it have been able to look at all the 70Š combinations by the year 1981? No!
Suppose instead it could examine 1 billion assignments per second? The answer is still no.
Even if the Earth were filled with such computers all working in parallel, the answer would
still be no. If, however, the were 1044 suns all filled with nano-second speed computers all
programmed in parallel from the time of the big bang until sum grows cold, then perhaps
the answer is yes.

This example illustrates the ordeals faced by decision makers before 1947.
Therefore, “experience”, “mature judgement”, and “rules-of-thumb” had to be relied
on to come up with an “acceptable” scheme, which was often far from the optimal.
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Dantzig proposed the simplex method in the summer of 1947, as marked the
birth of LP. On October 3rd, he visited one of the greatest scientists of the twentieth
century, J. von Neumann, and talked about his results. The latter immediately got
the basic idea behind the method, and indicated potential relationship between the
method and game theory which he was working on. In 1948, Dantzig attended
a conference of the Econometric Society in Wisconsin, meeting well-known
statisticians, mathematicians and economists such as H. Hotelling, T. Koopmans,
J. von Newmann and many others who became famous later, but were just starting
their careers back then. After young Dantzig presented his simplex method and LP,
the chairman called for discussion. There was silence for a moment. Then, Hotelling
said, “But we all know the world is nonlinear.” When Dantzig was frantically trying
to properly reply, Von Neumann came to his rescue, “The speaker titled his talk
‘Linear Programming’ and he carefully stated his axioms. if you have an application
that satisfied the axioms, use it. If it does not, then don’t.” Of course, what Hotelling
said is right, the world is highly nonlinear; but, fortunately, the vast majority of
nonlinear relations encountered in practical planning can be approximated by linear
ones. As well-known now, subsequent development turned out to be entirely beyond
people’s imagination, even not expected by Dantzig himself.

The electronic computer, born in the late 1940s, has changed the world fun-
damentally. Its milestone and revolutionary impact can never be overstated, as it
extended the capability of Man’s brain unprecedentedly. It has deeply changed, and
is changing visage of almost all branches of learning (including LP and the simplex
method) and is driving the development at an unprecedented speed.

Implementation of the simplex method began at National Bureau of Standards
in USA. Around 1952, a team led by A. Hoffman of National Bureau of Standards
tested the simplex method with some problems, and compared with T. Motzkin’s
method prevalent at that time. The former defeated the latter unambiguously. In
1953–1954, W. Orchard-Hays (1954) started his pioneer work. He worked out
the first simplex-method-based commercial software, performed on a primitive
computer by today’s standard. Subsequently, his implementation techniques were
used and enhanced by many scholars, such as M.A. Saunders and R.E. Bixby, et al.
As a result, the simplex method became a powerful practical tool. If the simplex
method is used, the assignment problem mentioned above can be solved in 1 s on
IBM370-168, which is even not the fastest computer at that time when Dantzig told
his story.

A number of Nobel Economic Prizes awarded in the past are related to LP.
Russian-American economist Wassily Leontief took the Nobel Economic Prize in
1973 for developing the input-output model, representing the interdependencies
between different branches of a national economy or different regional economies.
Kantorovich and Koopmans shared Nobel Economic prize in 1975 for their
contribution of resources allocation theory based on LP. The award was also given
to Professors K. Arrow, P. Samuelson, H. Simon, and L. Herwricz et al., several
decades later when they paid close attention to LP during the early days of their
professional career. On the practice side, applications of LP and the simplex method
have brought about enormous economic and social benefits in the past. The simplex
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method was selected as one of the “Top Ten Algorithms of the Century.” Highlighted
in the January/February 2000 issue of Computing in Science & Engineering, a joint
publication of the American Institute of Physics and the IEEE Computer Society,
the ten algorithms were regarded as algorithms with the greatest influence on the
development and practice of science and engineering in the twentieth century. Again
and again, history confirms that it is practice that spawns theories and methods that
are deep-rooted and exuberant.

Nevertheless, the simplex method has exponential time computational complex-
ity (Klee and Minty 1972), while a “good” method is thought to be a polynomial
time one. Furthermore, even finiteness of the simplex method is not guaranteed; in
other words, the process may not terminate in finitely many iterations (Beale 1955;
Hoffman 1953). Along another line, a break-though was made by a former Soviet
Union mathematician L.G. Khachiyan (1979) who proposed a first polynomial time
LP solver, the ellipsoid algorithm. Unfortunately, it performed poorly, and is not
competitive with the simplex method. This is because the so-called “polynomial-
time complexity” is only the worst case complexity, and such a case may hardly
occur in practice.

Soon Indian mathematician N. Karmarkar (1984) published an interior-point
algorithm, which is not only of lower order of polynomial time complexity than the
ellipsoid algorithm, but also appeared promisingly fast in practice. The algorithm
initiated an upsurge of interior-point algorithms. Some implementations of such type
of algorithms are so efficient that many scholars thought the interior-point method to
be superior to the simplex method in solving large-scale sparse LP problems. Unlike
simplex methods, however, interior-point methods cannot be “warmly” started, and
hence not applicable for solving integer linear programming (ILP) problems. Since
interior-point methods cannot produce an optimal basic solution, moreover, there is
a need for an additional purification process if a vertex solution is required (see, e.g.,
Mehrotra 1991; Tapia and Zhang 1991).

Meanwhile, the art of the simplex method did not stand still, but rather, was
developing and improving. For example, P.M.J. Harris (1973) proposed, and tested
approximate steepest-edge pivot rules successfully; J.J.H. Forrest and D. Goldfarb
(1992) described several variants of the steepest-edge pivot rule and reported very
favorable numerical results with their recurrence formulas. Consequently, simplex
methods and interior-point methods were neck-and-neck in competition.

As for computational complexity, the worst case complexity does not reflect
real experience well. The average time complexity might be more relevant with
this respect. K.-H. Borgwardt (1982a,b) was able to show that on the average
the simplex method has a polynomial time complexity in a ceratin probabilistic
model, and using a certain pivot rule. S. Smale (1983a,b) offered a similar
result. These results coincide with the remarkable performance of the simplex
method.

Essentially, the evaluation of a method is a practical issue, and rigidly adhering
to theory is not wise. The merit of a method, its efficiency, precision, and reliability
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and/or stability is ultimately determined by its performance in practice. In this
respect, method’s finiteness or complexity is even misleading contingently. After all,
finite or polynomial time methods usually perform far worse than infinite or non-
polynomial time ones overall. In fact, the latter rather than the former, plays a major
role in applications. In view of this, the book draws its material from a practical point
of view, focusing on practically effective methods, theories and implementations
closely related to LP computations and hence applications.

1.2 From Practical Issue to LP Model

In practice, there are usually many schemes to be chosen for decision makers, and
different schemes may lead to widely divergent results, as is of vital importance
in keen competitions. This situation provides a wide stage for decision makers’
intelligence and wisdom to play. Making decisions just based on experience can
not be mentioned in the same breath with through mathematical tools.

Formation of a mathematical model is the first step toward the application of LP.
Using full and reliable data gathered, a good model comes from one’s knowledge,
skill, experience and wisdom. It is beyond the scope of this book to handle this topic
in detail. This section only gives the reader a taste by simple examples.

Example 1.2.1. A manufacturer who has 1,100 ton of log is committed by contract
to supply 470 ton of lath to a company. There is a 6 % loss in log when it is
processed into lath. In addition, the production costs have risen since the signing of
the contract, but the selling price of lath remains the same. In fact, he can make more
profit by selling the log as raw material to another firm. What can the manufacturer
do to have the maximum profit while still honoring the contract?

This problem can be solved algebraically. Let x be the number of ton of log the
manufacturer can sell as raw material and let y be the number of log available to
produce lath. It is clear that

x C y D 1;100:

where x should be maximized to gain the largest profit. On the other hand, since
6 % out of y is lost during the manufacturing process, the actual amount of lath
produced is

y � 0:06y;

which, associated to the contract, must be equal to 470 ton, i.e.,

y � 0:06y D 470:
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Consequently, we have the following system of linear equations:

�
y � 0:06y D 470

1;100 � y D x
(1.1)

which has a unique solution

x D 600; y D 500:

Therefore, the manufacturer should sell 600 ton log as raw material, and use the rest
500 ton for production of lath.

In the preceding, the manufacturer has a unique scheme. For most problems,
however, there are usually multiple or even infinitely many choices facing the
decision maker, as is the following example:

Example 1.2.2. A manufacturer produces lath and sheet piles. Profit per lath is
2 dollars and that per sheet pile is 5 dollars. The equipment capability of the
manufacturer can at most produce 6,000 lath or 4,000 sheet piles per day. According
to the sales contract, he can sell 3,000 sheep piles at most, and the sales volume of
laths and sheet piles can not excess 5,000 per day. How should he arrange to produce
lath and sheep piles to gain a maximum profit?

Let x be the amount of lath and let y be that of sheep piles to be produced per
day (in 1,000 as unit). For values of each pair variables .x; y/ corresponding to a
decision, the associated profit is f .x; y/ D 2x C 5y 1,000 dollars. So, what the
manufacturer want to do is to maximize the function value of f .x; y/.

It is clear that the yielded profit would be infinitely large if there was no
any restriction on the production. It is not the case, of course. According to the
equipment capability, the average rate of producing lath and sheet piles is 6,000 and
4,000 per day, respectively. Therefore, variables x and y should satisfy inequality
x=6 C y=4 � 1, or equivalently,

2x C 3y � 12:

According to the selling limitation, in addition, there is another inequality

x C y � 5;

and finally,

y � 3:

In addition, the amount of output should be certainly nonnegative integers. As the
amount is large, we use restriction x; y � 0 instead for simplicity, and finally obtain
integer results by rounding.
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Fig. 1.1 The feasible region of Example 1.2.2

Preceding analysis can be summarized into the following problem:

max f .x; y/ D 2x C 5y;

s:t: �2x � 3y � �12;

�x � y � �5;

� y � �3;

x; y � 0;

(1.2)

which is a mathematical model for Example 1.2.2. x and y are so-called “decision
variables”, and f .x; y/ is so-called “objective function”. The inequalities are
“constraints”. .x; y/ satisfying constraints is “feasible solution”, and the set of
all feasible solutions is “feasible region”. Solving a model is to find its “optimal
solution”, a feasible solution maximizing the objective function over the feasible
region.

In contrast with Example 1.2.1 that has a single feasible solution, and hence no
any optimization method is needed, Example 1.2.2 involves infinitely many feasible
solutions. In fact, the problem has the following feasible region:

P D f.x; y/ j 2x C 3y � 12; x C y � 5; y � 3; x � 0; y � 0g:

Since there is a 1-to-1 correspondence between pairs of real numbers and points
in a rectangular coordinate system, the feasible region P can be represented
geometrically by the shaded area of Fig. 1.1, where x (thousand) represents the
amount of laths and y (thousand) that of sheep piles, and where each boundary
is labeled by an equality corresponding to a closed half plane. The feasible region
P is just the intersection of these half planes, each point within which corresponds
to a feasible solution.
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Therefore, the problem now is how to find a point in P , corresponding to the
largest possible value of function 2x C 5y. Since there are infinitely many points in
P , it is impossible to pick up and compare them one by one, not to mention much
more challenging large-scale problems with hundreds of thousands of variables
and constraints. Beyond doubt, powerful mathematical solvers, like the well-known
simplex method, are essential and indispensable.

1.3 Illustrative Applications

LP has a very wide range of applications, as touch upon almost all areas related
to decision making and management. This section only brings up a few illustrative
instances. Strictly speaking, some of these instances involve variables of nonnega-
tive integer value, and hence belong to so-called ILP or mixed ILP models, though
the “integer” requirement is ignored here for simplicity.

Example 1.3.1 (Production planning). A factory produces furniture A, B, C. Each
furniture production goes through three procedures: component processing, elec-
troplating and assembling. The production capacity of each procedure per day is
converted into effective working hours. Below are the required effective working
hours and getatable profit for each piece of the furniture.

Procedure Hours per piece Available hours per day
Product A Product B Product C

Component processing 0.025 0.05 0.3 400
Electrofacing 0.20 0.05 0.1 900
Assembling 0.04 0.02 0.20 600

Profit (dollars/piece) 1.25 1.5 2.25

How can the factory achieve the highest profit?

Answer Let x1; x2 and x3 be respectively the amount of furniture A,B,C, and
let f be the total profit. To determine values of these decision variables to gain the
highest profit, construct the following mathematical model:

max f D 1:25x1 C 1:5x2 C 2:25x3;

s:t: 0:025x1 C 0:05x2 C 0:3x3 � 400;

0:20x1 C 0:05x2 C 0:1x3 � 900;

0:04x1 C 0:02x2 C 0:20x3 � 600;

x1; x2; x3 � 0:
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An optimal solution obtained by the simplex method is

x1 D 2;860; x2 D 6;570; x3 D 0;

and the associated objective function value is f D 13;430. That is to say, the factory
should produce 2;860 pieces of product A, 6;570 pieces of product B and no piece
of product C, with the highest profit 13;430 dollars.

Example 1.3.2 (Transportation). A company has 8;800; 7;200 and 5;700 containers
at ports A, B, C, respectively. These containers should be transported to plants 1, 2,
3, 4, 5, whose working ability is respectively 3;200; 5;300; 4;100; 6;200 and 2;900

containers. The following table lists the freight rate (dollars/container) of transport
service from the ports to the plants:

Port 1 2 3 4 5
A 55 150 78 38 90
B 25 60 25 43 35
C 102 80 52 74 60

How should the company arrange to achieve the least total freight charges.

Answer This is a “balanced” transportation problem, as the total number of
containers at all the three ports is equal to the total number of containers the five
plants can handle, i.e.,

8;800 C 7;200 C 5;700 D 3;200 C 5;300 C 4;100 C 6;200 C 2;900 D 21;700

Let xij ; i D 1; 2; 3I j D 1; : : : ; 5 be the number of containers which are
transported from port A, B, C to plant 1–5 and let f be the total freight charges
to be minimized. The model is as follows:

min f D 55x11 C 150x12 C 78x13 C 38x14 C 90x15

C 25x21 C 60x22 C 25x23 C 43x24 C 35x25

C 102x31 C 80x32 C 52x33 C 74x34 C 60x35;

s:t: x11 C x12 C x13 C x14 C x15 D 8;800;

x21 C x22 C x23 C x24 C x25 D 7;200;

x31 C x32 C x33 C x34 C x35 D 5;700;

x11 C x21 C x31 D 3;200;

x12 C x22 C x32 D 5;300;

x13 C x23 C x33 D 4;100;

x14 C x24 C x34 D 6;200;

x15 C x25 C x35 D 2;900;

xij � 0; i D 1; 2; 3I j D 1; : : : ; 5:
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An optimal solution obtained by the simplex method is

x11 D 2;600; x14 D 6;200; x21 D 600; x23 D 4;100; x25 D 2;500; x32

D 5;300; x35 D 400;

and all the other variables take value 0. Then the company pays the minimum total
freight 1;031;600 dollars.

Example 1.3.3 (Burdening). Someone feeds animals, as need 30 g of mineral, 700 g
of protein and 100 mg of vitamin per day, at least. There are five types of feed to
purchase, the nutrition and price per kilogram for each are as follows:

Fodder Mineral(g) Protein(g) Vitamin(mg) Price(dollars/kg)
A 0.5 18.0 0.8 0.8
B 2.0 6.0 2.0 0.3
C 0.2 1.0 0.2 0.4
D 0.5 2.0 1.0 0.7
E 1.0 3.0 0.5 0.2

Find a purchasing scheme to achieve a minimum cost to serve animals’ needs.

Answer Let xj .kg/ j D 1; : : : ; 5 be the purchase quantities of the five type of
feed, respectively, and let f be the total cost. The goal is to determine values of these
decision variables corresponding to the minimum cost. The model is as follows:

min f D 0:8x1 C 0:3x2 C 0:4x3 C 0:7x4 C 0:2x5;

s:t: 0:5x1 C 2:0x2 C 0:2x3 C 0:5x4 C x5 � 30;

18:0x1 C 6:0x2 C x3 C 2:0x4 C 0:3x5 � 700;

0:8x1 C 2:0x2 C 0:2x3 C x4 C 0:5x5 � 100;

xj � 0; j D 1; : : : ; 5:

An optimal solution is obtained by the simplex method, i.e.,

x1 D 25:6; x2 D 39:7; x3 D x4 D x5 D 0;

and the associated objective function value is f D 32:28. So, he should purchase
25:6 kg of feed A, 39:7 kg of feed B, and none of the other three types of feed, with
the lowest cost 32:28 dollars.

Example 1.3.4 (Human resource arrangement). A round-the-clock supermarket
arranges salespersons. Every day falls into six time intervals, 4 h each. Every
salesperson starts work at the beginning of the intervals, and then continuously
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works for 8 h. The required numbers of salesperson for each of the intervals are
as follows:

Interval 1 2 3 4 5 6
2–6 o’clock 6–10 o’clock 10–14 o’clock 14–18 o’clock 18–22 o’clock 22–2 o’clock

Number 7 15 25 20 30 7

How to arrange to achieve the least number of salespersons per day.

Answer Let xj ; j D 1; : : : ; 6 be the number of assistants who start work at the
beginning of interval j and let f be the total number of salespersons. The goal is to
determine variable values to achieve the minimum number of salespersons working
per day. The model is as follows:

min f D x1 C x2 C x3 C x4 C x5 C x6;

s:t: x1 C x6 � 7;

x1 C x2 � 15;

x2 C x3 � 25;

x3 C x4 � 20;

x4 C x5 � 30;

x5 C x6 � 7;

xj � 0; j D 1; : : : ; 6:

An optimal solution obtained by the simplex method is

x2 D 25; x4 D 30; x6 D 7; x1 D x3 D x5 D 0;

and the associated objective function value is f D 62. So, the business should
arrange 25 salespersons working from 6 o’clock, 30 ones working from 14 o’clock,
and 7 from 22 o’clock. This scheme requires only 62 salespersons.

Example 1.3.5 (Laying-off). A shop is asked to make 450 steel frames. Each frame
needs an 1:5, an 2:1 and an 2:9 m long angle steel. Each raw material is 7:4 m long.
Find the optimum laying-off way.

Answer A direct way is to make a frame using a raw material to get the three
types of angle steel. If so, there would be a need for 450 raw materials, each of
which would leave an 0:9 m long offcut. To obtain the optimum way, consider the
following schemes, each of which would leave an offcut of no more than 0:9 m long.
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Length (m) Scheme

A B C D E F

2.9 1 2 0 1 0 1

2.1 0 0 2 2 1 1

1.5 3 1 2 0 3 1

Total 7.4 7.3 7.2 7.1 6.6 6.5

Biscuit 0.0 0.1 0.2 0.3 0.8 0.9

These schemes should be mixed and matched to gain the minimum total length
of offcuts. Let xj ; j D 1; : : : ; 6 be numbers of raw materials laying-off according
to schemes A; B; C; D; E; F , respectively, and let f be the total length of offcuts.
Construct the following model:

min f D 0:1x2 C 0:2x3 C 0:3x4 C 0:8x5 C 0:9x6;

s:t: x1 C 2x2 C x4 C x6 D 450;

2x3 C 2x4 C x5 C x6 D 450;

3x1 C x2 C 2x3 C 3x5 C x6 D 450;

xj � 0; j D 1; : : : ; 6:

The optimal solution obtained by the simplex method is

x1 D 135; x2 D 45; x4 D 225; x3 D x5 D x6 D 0;

with objective function value f D 72. This is to say that the shop should lay-off
135 raw materials of scheme A, 45 of scheme B and 225 of scheme D, with length
72 m of all offcuts. Consequently, the minimum total number of used raw materials
is 405.

The size of the preceding problems are very small,1 by which the reader should
have a taste about LP applications. Nowadays, real world problems are often much
larger. Hereafter, however, small problems will still be utilized to convey ideas and
show computational steps illustratively.

1.4 Errors of Floating Point Arithmetic

As a basic tool for modern numerical computation, a computer is indispensable.
LP without it is not imaginable. In using a computer, however, numerical errors are
unavoidable, because it can only represent a proper subset F of real numbers, and

1In this book, m C n is taken as an index for problem size.
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as a result data can only stored and calculated in finite digits. On one hand, primary
data may be out of F , and expressed approximately; on the other hand, numerical
results yielded from subsequent operations of arithmetic may have to be rounded.
Errors arising therefrom are called rounding errors.

The system F of floating point represented by a computer is characterized by
four positive integers: the base ˇ, precision (mantissa digits) t , exponent range
ŒL; U � (Forsythe et al. 1977, pp. 10–29). More precisely, a computer can represent
all nonzero numbers of the following form:

f l.x/ D ˙:˛1 � � � ˛t ˇe; 0 � ˛i < ˇ; i D 1; : : : ; t; ˛1 ¤ 0I L � e � U;

(1.3)

which together with 0 constitute F , and where ˛1 � � � ˛t is called mantissa part, ˇe

is exponent part. Nowadays, a computer usually uses the binary system, i.e., ˇ D 2.
It is clear that taking notation

m D ˇL�1 M D ˇU .1 � ˇ�t /;

then for any floating point number f l.x/ 2 F , it holds that m � jxj � M . Thus, F

is a set of non-uniformly distributed rational numbers. Define set

S D fx 2 R j m � jxj � M g:

Then, for any 0 ¤ x 2 S , the approximate number f l.x/, yielded from the
computer, only holds mantissa of t digits, via the following two ways:

(i) Rounding method: is based on the .t C 1/th figure of the mantissa of x. The
figures at this position and after are all taken off if the figure is less than a half
of ˇ; in the other case, these figures are taken off after a unit is added to the
previous figure, and the associated absolute error bound is therefore

jf l.x/ � xj � 1

2
ˇe�t : (1.4)

(ii) Truncation method: The .t C 1/th figure and after are all taken off. Thereby,
f l.x/ is the floating point number nearest to x in those of F , whose the absolute
values are no more than jxj, and hence the associated absolute error bound is

jf l.x/ � xj � ˇe�t : (1.5)

The t is a key quantity to numerical computations. To see this, define

� D
�

1
2
ˇ1�t runding
ˇ1�t Truncating

(1.6)
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Then, from either (1.4) or (1.5) it follows that

jf l.x/ � xj � �ˇe�1:

Since

jxj � :˛1ˇe > 0;

it holds that
ˇ̌
ˇ̌f l.x/ � x

x

ˇ̌
ˇ̌ � �ˇe�1

:˛1ˇe
D �=˛1 � �;

that is

f l.x/ D x.1 C ı/; jıj � �:

Therefore, � is just a relative error bound of the approximate number f l.x/. Called
machine precision, � is the smallest positive value in F , satisfying

f l.1 C �/ ¤ 1;

based on which one may get to know the precision of a computer.
Assume a; b 2 F , and denote any of the four arithmetic operation C; �; 	; =

by �. It is clear that if a�b 62 S , then the computer can not handle, and display
overflow (when ja�bj > M ) or underflow (when 0 < ja�bj < m), and
terminate the computation (some computer and compiler place value 0 in the case
of underflow). In the normal cases, for a�b’s computed value f l.a�b/, it is clear
that

f l.a�b/ D .a�b/.1 C ı/; jıj < �;

Therefore, the relative error bound for a single arithmetic operation is �, a small
number. Unfortunately, the situation may be entirely contrary when executing an
algorithm or a series of operations.

Usually, algorithm’s performance may be affected by rounding or truncation
errors greatly. Due to error accumulations, final results obtained could be entirely
meaningless, as they could be far from its theoretical value. It is therefore important
to take care of effects of numerical errors in computations. In this aspect, the
following simple rules should be followed:

1. Avoid using a number close to 0 as denominator or divisor.
2. Avoid subtracting a number from another that is close to it.
3. Avoid operating numbers with very different order of magnitude so that “the

large swallows the small”.
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4. Avoid results close to m or M .
5. Reduce the number of operations, especially multiplications or divisions.

When ı � 1, for instance, calculating according to the right-hand side of one
of the following equalities result in a more accurate result than according to its left-
hand side.

p
x C ı � p

x D ı=.
p

x C ı C p
x/;

cos.x C ı/ � cos x D �2 sin.x C ı=2/ sin.ı=2/:

Due to different errors introduced in computations, algorithms which are equiva-
lent theoretically are often not equivalent numerically. An algorithm is said to be of
good (numerical) stability if resulting numerical errors are under control, and hence
affecting results not much. An algorithm of bad stability is unreliable.

Usually, it is not a easy task to accurately evaluate error bound of computational
results, obtained from executing an algorithm. Instead, the so-called backward error
analysis method is applied for such purpose. Interested readers are referred to
Wilkinson (1971).

1.5 The Standard LP Problem

Some of LP problems in Sect. 1.3 seeks for maximizing the objective function val-
ues, while others for minimizing. Besides, some of their constraints are equalities,
while others are inequalities with “�” or “�”. For convenience of handling, we
introduce the following problem of form:

min f D c1x1 C c2x2 C � � � C cnxn;

s:t: a11x1 C a12x2 C � � � C a1nxn D b1;

a21x1 C a22x2 C � � � C a2nxn D b2;
:::

am1x1 C am2x1 C � � � C amnxn D bm;

xj � 0; j D 1; : : : ; n;

(1.7)

which is termed “standard (LP) problem”.
As shown as follows, all kinds of LP problems can be transformed to standard

forms:

1. Since maximizing a quantity is equivalent to minimizing its negative, any
maximization problem can be transformed to a minimization problem.

Using f D �f 0, e.g.,

max f 0 D c1x1 C c2x2 C � � � C cnxn
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can be replaced by

min f D �c1x1 � c2x2 � � � � � cnxn:

Clearly, this does not matter to the optimal solution but changes the sign of the
optimal value only.

2. Any inequality can be transformed to an equality by introducing an extra
nonnegative variable.

Introducing a so-called slack variable xkC1 � 0, e.g., the “�” type of
inequality

˛1x1 C ˛2x2 C � � � C ˛kxk � ˇ

can be transformed to equality

˛1x1 C ˛2x2 C � � � C ˛kxk C xkC1 D ˇ;

and “�” type of inequality

˛1x1 C ˛2x2 C � � � C ˛kxk � ˇ

can be transformed to equality

˛1x1 C ˛2x2 C � � � C ˛kxk � xkC1 D ˇ:

3. A standard LP problem involves the nonnegative constraints, as is usually the
case in practice. In exceptional cases, the problem can be handled by introducing
auxiliary variables.

Using variable transformation x0
k D �xk , e.g., non-positive constraint x0

k � 0 is
turned to xk � 0. “free variable” (without any sign restriction) can be denoted as the
difference of two nonnegative variables; e.g., the free variable x0

k can be eliminated
by the following variable substitution:

x0
k D xk � xkC1; xk; xkC1 � 0

In convention, theories and methods are usually developed only for the standard
problem, though they are essentially applicable to all LP problems.

Example 1.5.1. Transform the following LP problem to standard form:

max f 0 D �2x1 C x2 � 5x0
3;

s:t: �3x1 C x2 C x0
3 � 2;

x1 � 7x2 C 4x0
3 � �3;

x1 � 3x2 � 2x0
3 � 1;

x1; x2 � 0:
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Answer Maximizing f 0 is transformed to minimizing f D �f 0. The free
variable x0

3 is substituted by x0
3 D x3 � x4; x3; x4 � 0. In addition, the first three

inequalities are transformed to equalities by introducing slack variables x5; x6; x7

into them, respectively. Consequently, we obtain the following standard problem:

min f D 2x1 � x2 C 5x3 � 5x4;

s:t: �3x1 C x2 C x3 � x4 C x5 D 2;

x1 � 7x2 C 4x3 � 4x4 � x6 D �3;

x1 � 3x2 � 2x3 C 2x4 C x7 D 1;

xj � 0; j D 1; : : : ; 7:

Using vector and matrix notation A D .aij /

x D .x1; : : : ; xn/T ; c D .c1; : : : ; cn/T ; b D .b1; : : : ; bm/T ;

the standard problem (1.7) can be put into the compact form below:

min f D cT x;

s:t: Ax D b; x � 0;
(1.8)

where A 2 Rm�n; c 2 Rn; b 2 Rm; m < n. Speaking for itself, each row or
column of the coefficient matrix A does not vanish. Without confusion, thereafter
symbol A will also be used to denote the set of column indices of the coefficient
matrix, i.e.,

A D f1; � � � ; ng:

f D cT x is called objective function, the first row of the problem indicates
minimization of it. c is called price (cost) vector, components of which are called
prices (costs). The other rows called constraints (conditions): Ax D b called
constraint system; “x � 0” nonnegative constraints. The left-hand side functions
of the constraints are constraint functions.

A solution fulfilling all constraints is a feasible solution, and the set of all feasible
solutions, i.e.,

P D fx 2 Rn j Ax D b; x � 0g (1.9)

is feasible region. Objective function value corresponding to a feasible solution is
feasible value. The minimum value of the objective function over the feasible region
is (global) optimal value, and the associated feasible solution is optimal solution.
The set of all optimal solutions is optimal (solution) set. The problem is said (lower)
unbounded if the objective value can be arbitrarily small over the feasible region,
hence there exists no optimal solution to the problem.
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1.6 Canonical Form of Ax = b

The standard LP problem, introduced in the preceding section, involves a system
Ax D b of equations as a part of its constraints. Neglecting the nonnegative
constraints, we will handle the system Ax D b alone at the moment. Note that
Ax D b is a so-called “underdetermined” system, as the number of equalities is
less that of involved unknowns. We will see that this system has infinitely many
solutions if any.

The set of all solutions is called system’s solution set. Systems are equivalent
if they have the same solution set. There are two types of basic equivalent
transformations to linear systems. With this respect, the validity of the following
propositions is evident.

Proposition 1.6.1. A system, resulting from multiplying any equality by a nonzero,
is equivalent to the original.

Proposition 1.6.2. A system, resulting from adding a multiple of any equality to
another, is equivalent to the original.

Any of the preceding operations is called an elementary (row) transformation.
The second type of elementary transformation is especially important, as it can elim-
inate a nonzero entry of the coefficient matrix. Via a series of such transformations,
e.g., the Gauss-Jordan elimination converts a linear system to a so-called canonical
form that is readily solvable.

Let us bring up an example of 3 
 5 standard LP problem:

min f D x1 C 2x2 � x4 C x5;

s:t: 2x1 C x2 C 3x3 C 2x4 D 5;

x1 � x2 C 2x3 � x4 C 3x5 D 1;

x1 � 2x3 � 2x5 D �1;

xj � 0; j D 1; : : : ; 5:

(1.10)

For simplicity of expression, the coefficients are peeled off from the system, and
filled in the following tableau:

x1 x2 x3 x4 x5 RHS

2 1 3 2 5

1 �1 2 �1 3 1

1 �2 �2 �1

where blank spaces stand for value 0 (the same below). From comparing between
the preceding tableau and the related constraint system, it is seen that the coefficients
of the system form the first five columns of the tableau, that is, the 3 
 5 coefficient
matrix. The right-hand side of the system forms the sixth column. All together, the
six columns constitute a 3 
 6 augmented matrix of the system. The head of the
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tableau only indicates the positions of entries of the matrix; e.g., x1 indicates that
the related column contains the coefficients of variable x1, and RHS marks the
right-hand side of the system.

Carrying out elementary transformations with the tableau amounts to doing the
same with the system itself, and hereafter, therefore, the system and the tableau will
be regarded as the same.

A pivot is a nonzero entry of the coefficient matrix, which determines a certain
series of elementary transformations. As an example, it might be well to take the
first entry 2 of the first column as a pivot. Multiply by 1=2 the first (pivot) row of
the augmented matrix to turn the entry to 1, obtaining the following tableau:

x1 x2 x3 x4 x5 RHS

1 1=2 3=2 1 5=2

1 �1 2 �1 3 1

1 �2 �2 �1

Then add the �1 times of the first row to the second and third (non-pivot) rows, so
that all the components of the first column becomes 0 except for the first, obtaining
the following tableau:

x1 x2 x3 x4 x5 RHS

1 1=2 3=2 1 5=2

�3=2 1=2 �2 3 �3=2

�1=2 �7=2 �1 �2 �7=2

Thereby, the first column becomes a unit vector with the first component 1. Now
take the second entry of the second row as the next pivot. Multiply by �2=3 the
second row of the augmented matrix to turn the entry to 1, leading to the following
tableau:

x1 x2 x3 x4 x5 RHS

1 1=2 3=2 1 5=2

1 �1=3 4=3 �2 1

�1=2 �7=2 �1 �2 �7=2

Now respectively add the �1=2 and 1=2 times of the second row to the first and
the third row, so that all the components of the second column becomes 0, except
for the second, giving the following tableau:

x1 x2 x3 x4 x5 RHS

1 5=3 1=3 1 2

1 �1=3 4=3 �2 1

�11=3 �1=3 �3 �3
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So, the second column becomes a unit vector with the second component 1. Then,
take the third entry of the third row as the next pivot. Multiply by �3=11 the third
row of the augmented matrix to turn the entry to 1, leading to the following tableau:

x1 x2 x3 x4 x5 RHS

1 5=3 1=3 1 2

1 �1=3 4=3 �2 1

1 1=11 9=11 9=11

Finally, respectively add the �5=3 and 1=3 times of the third row to the first and
the second row, so that all the components of the third column becomes 0, except
for the third, giving the following tableau:

x1 x2 x3 x4 x5 RHS

1 2=11 �4=11 7=11

1 15=11 �19=11 14=11

1 1=11 9=11 9=11

Consequently, the tableau includes a 3 
 3 unit matrix, and Gauss-Jordan
elimination is completed. The corresponding so-called “canonical” system can be
written

8̂<
:̂

x1 D 7=11 � .2=11/x4 C .4=11/x5

x2 D 14=11 � .15=11/x4 C .19=11/x5

x3 D 9=11 � .1=11/x4 � .9=11/x5

(1.11)

which is equivalent to the original (Propositions 1.6.1 and 1.6.2 ). Nevertheless, the
preceding is so simple that itself can be regarded as a explicit expression of the
general solutions of the system. In fact, x4 and x5 there can be taken as parametric
variables; by giving any values to them, one can calculate the corresponding values
of x1 and x2 easily, obtaining a special solution of the system. Specifically, giving
zero to both x4 and x5 leads to

x1 D 7=11; x2 D 14=11; x3 D 9=11; x4 D x5 D 0;

which is called a basic solution (see below). Note that this solution can be directly
read from the RHS column of the last tableau.

It is noted that Gauss-Jordan elimination, described above, does not always go
smoothly. Taken as a denominator, each pivot in the process must be nonzero;
otherwise, the elimination procedure breaks off. In fact, even when all the pivots
are nonzero and the procedure can perform throughout, the final result may still
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be useless, as is distorted by outgrown numerical errors whenever the modulus of
some pivot is too small (Sect. 1.4). Therefore, practical Gauss-Jordan elimination
needs some kind of pivoting operations.

Let us turn to the so-called Gauss-Jordan elimination with complete pivoting in
general. Put the augmented coefficient matrix of the system Ax D b in the following
tableau:

x1 x2 � � � xn RHS

a11 a12 � � � a1n b1

a21 a22 � � � a2n b2

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

am1 am2 � � � amn bm

Every step of the procedure comprises two parts: selecting a nonzero pivot from
the coefficient matrix and performing eliminations to the whole augmented matrix.
The row and column, where a pivot located at, are called pivot row and pivot column,
respectively. The rows and columns other than pivot rows and columns are called
non-pivot (excluding RHS column). Once a pivot is determined, certain elementary
transformations are performed to turn the associated pivot column to a unit vector
with the component 1 at the pivotal position. To do so, the pivot row is multiplied
by the reciprocal of the pivot, and then relevant times of the pivot row are added to
the other rows to eliminate the other nonzeros in the pivot column.

Suppose that after r < m steps, the first r pivot columns become unit vectors, as
is shown below:

x1 x2 � � � xr xrC1 � � � xn RHS

1 Na1 rC1 � � � Na1 n
Nb1

1 Na2 rC1 � � � Na2 n
Nb2

: : :
:
:
:

:
:
:

:
:
:

:
:
:

1 Nar rC1 � � � Nar n
Nbr

NarC1 rC1 � � � NarC1 n
NbrC1

:
:
:

:
:
:

:
:
:

:
:
:

Nam rC1 � � � Nam n
Nbm

At step r C 1, a pivot Napq is determined such that

j Nap qj D maxfj Nai j j j i D r C 1; : : : ; mI j D r C 1; : : : ; ng: (1.12)

If Napq ¤ 0, it is taken as a pivot. It is noted that the pivot is selected from entries
within the current non-pivot rows and columns. Then, row p is multiplied by 1=ap q ,
and then �aj q times of the new row p is added to rows j D 1; : : : ; mI j ¤ p,
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Table 1.1 Canonical tableau
xj1 xj2 � � � xjr xjrC1

� � � xjn RHS

1 Nai1 jrC1
� � � Nai1 jn

Nbi1

1 Nai2 jrC1
� � � Nai2 jn

Nbi2

: : :
:
:
:

:
:
:

:
:
:

:
:
:

1 Nair jrC1
� � � Nair jn

Nbir

NbirC1

:
:
:

Nbim

respectively. Thereby, column q becomes a unit vector with the pth component 1,
while the first r pivot columns remain unchanged. Finally, step r C 1 is completed
by moving row p to the position of row r C1, and column q to that of column r C1

via row and column exchanges. Note that the row and column exchanges amount
to changing the order of equalities and variables, and therefore do not change the
solution set of the system.2

The elimination terminates when r D m, or, otherwise, r < m but Nap q D 0, i.e.,
all entries of the non-pivot rows and columns are zero.

The final tableau, resulting by Gauss-Jordan elimination, is called canonical.
Assume that the procedure terminates at step r . The tableau includes an r 
 r

permutation matrix, one that becomes a unit matrix by relevant row and column
exchanges. Such a permuted canonical tableau is of the following (standard) form:
where the north-west corner is the unit matrix and all the entries of the last m � r

(non-zero) rows are zero, except perhaps for the last m � r entries, Nbit ; t D
r C 1; : : : ; m, of the right-hand side RHS (when Nbit ; t D r C 1; : : : ; m vanish,
the identities, represented by the non-pivot rows, can be dropped from the system
actually). It is clear that any constraint system Ax D b has a canonical tableau.

The (ordered) index sets B D fj1; : : : ; jrg of pivot columns and N D AnB D
fjrC1; : : : ; jng of non-pivot columns are called basic and nonbasic, respectively.
Accordingly, variables corresponding to B and N are called basic and nonbasic.

From Canonical Tableau 1.1, it is easy to determine cases of solutions to system
Ax D b.

Theorem 1.6.1. System Ax D b .m < n/ has solutions if and only if r D m, or
r < m but all the entries in the non-pivot rows of RHS column vanish. If so, it has
infinitely many solutions.

According to linear algebra, such a key positive integer r is equal to the rank
of A. Elementary transformations change neither the rank of A or .Ajb/ nor the
solution set to Ax D b. The preceding theorem equivalently says that Ax D b has
infinitely many solutions if and only if the rank of A and that of .Ajb/ are equal. In

2The row and column exchanges is not really necessary in practice if one uses two integer arrays
to record labels of pivot rows and columns.
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convention, the following assumption is made to rule out the case of nonexistence
of solution to Ax D b.

Assumption. The rank of the coefficient matrix is equal to the number of its rows,
i.e., rank A D m.

Unless specified otherwise, we will always discuss under this assumption,
especially in Part I of this book. Including an m 
 m permutation matrix, therefore,
a canonical tableau corresponds to a general expression of solutions to Ax D b, i.e.,

�
xB D Nb � NN xN ;

xN D xN ;

where the nonbasic variables xN in the right-hand side is viewed as parametric.

Definition 1.6.1. The solution, resulting from the canonical form by setting the
non-basic variables to zero, is a basic solution. If its basic components are all
nonnegative, it is a basic feasible solution.

So, the canonical tableau corresponds to basic solution

NxB D Nb; NxN D 0;

which is a basic feasible solution if Nb � 0.

Theorem 1.6.2. A feasible solution is a basic feasible solution if and only if
columns of A corresponding to its positive components are linearly independent.

Proof. Necessity. It is clear that all positive components of a basic feasible solution
are basic ones, and hence correspond to linearly independent columns.

Sufficiency. Assume that a feasible solution has s positive components corre-
sponding to linearly independent columns. Since rank A D m, it holds that s � m.
If s D m, then the feasible solution is clearly a basic solution. If, otherwise, s < m,
there exist additional m � s columns of A, which and the s columns together
constitute a linearly independent set of columns. Clearly, the solution is just the
basic one associated with the canonical form, corresponding to the set taken as basic
columns. ut
Definition 1.6.2. A nonsingular m 
 m submatrix of A is a basis (matrix).

By Gauss-Jordan elimination with column and row exchanges, any given basis
can be converted to the m 
 m unit matrix, so that .Ajb/ converted to a canonical
tableau. It is to say, a basis corresponds to a canonical tableau, and hence an
unique basic solution. But it is not an 1-to-1 correspondence: a basic solution could
correspond multiple bases, as is closely related to so-called “degeneracy” in the
simplex method (Sect. 3.6).

A basis is called feasible basis if the corresponding basic solution is feasible.
Such type of basis (or solution) plays a central role in the simplex method.
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For sparse computations, (1.12) used to determine the pivot should be loosened
by requiring j Nap qj appropriately large to widen the range of selection. Such doing
enables one to take into account sparsity of basis matrix in pivoting (see Sect. 5.5).
It is noted however that different choices of pivots lead to different canonical forms
and basic solutions, despite solution sets of these canonical forms are the same.

Carrying out an elementary transformation on a matrix amounts to premulti-
plying it by a Gauss transformation (or elementary) matrix. So, the Gauss-Jordan
elimination turns Ax D b to a canonical form, involving an unit submatrix in its
coefficient matrix, by premultiplying a series of Gauss transformations.

Alternatively, the Gauss elimination turns Ax D b to a triangular form,
involving an upper triangular submatrix in the coefficient matrix, which is easy
to solve to gain a basic solution. Also, the triangularization of a system can be
realized via premultiplying by a series of elementary orthogonal matrices, such
as Householder matrices and Givens rotations or reflections (for more details, see
Golub and Van Loan 1989). As conventional, we will use the canonical form for the
development of the simplex method to solve LP problems, though the goal can be
achieved otherwise via the triangular form.
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Fundamentals



Chapter 2
Geometry of the Feasible Region

Feasible region is of a basic significance to optimization. Due do the linear structure
of the standard LP problem (1.8), the feasible region P , defined by (1.9), has special
features. In this chapter, we explore this theme from a geometric point of view.

Denote the n-dimensional Euclidean space by Rn, as usual. Points or column
vectors are the basic geometrical elements. Denote a point, or the vector from the
origin to this point by

x D .x1; : : : ; xn/T 2 Rn;

whose components (coordinates) are x1; : : : ; xn. Thereafter, points and vectors will
not be distinguished. Denote by ej ; j D 1; : : : ; n the j th coordinate vector, i.e.,
the unit vector with its j th component 1, and denote by e the vector of all ones.
The reader is referred to related literature for basic concepts and operations in
Euclidean space, such as linear dependency and independency, set of points and
its boundedness and unboundedness, the inner product xT y of vectors x; y 2 Rn,
cos < x; y >D xT y=.kxkkyk/ of the angle between them, their orthogonality
x ? y or xT y D 0, i.e., < x; y >D �=2, the Euclidean module or norm
kxk D p

xT x of vector x, and so on.
Involved in the standard LP problem, both c and x may be viewed as vectors

in Rn, columns aj ; j D 1; : : : ; n of A as vectors in Rm, b as a vector in Rm,
and the feasible region P as a closed polyhedral in Rn in general (as will be
clear a little later), though P could be degenerate, or even empty. The following
lemma, proposed by Farkas (1902), renders a sufficient and necessary condition for
nonempty P (the proof is delayed to at the end of Sect. 4.2).

Lemma 2.1 (Farkas). Assume A 2 Rm�n and b 2 Rm. The feasible region P is
nonempty if and only if

bT y � 0; 8 y 2 fy 2 Rm j AT y � 0g:

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__2,
© Springer-Verlag Berlin Heidelberg 2014
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Fig. 2.1 A geometrical
explanation for Farkas lemma

Fig. 2.1 serves as a geometric explanation for the preceding Lemma, where
a1; a2; a3 are columns of A 2 R2�3. Y is the set of all vectors which forms with
every column of A an angle no more than �=2 (corresponding to the shaded area
between vectors v and w in the figure). b1 forms with each y 2 Y an angle no more
than �=2 but b2 does not. Thereby, P is nonempty when b D b1, whereas empty
when b D b2.

In addition to rank A D m, discussions in this chapter will be based on the
following.

Assumption. The feasible region P is nonempty and infinite.

2.1 Polyhedral Convex Set and the Feasible Region

For any given two points x; y 2 Rn, set

S D f˛x C .1 � ˛/y j ˛ 2 Rg

is a straight line; if 0 < ˛ < 1, it is an open segment with end points x and y,
denoted by .x; y/; if 0 � ˛ � 1, it is a closed segment, denoted by Œx; y�. Hereafter
so-called “segment” will be all closed.

Definition 2.1.1. … is an affine set if, whenever it includes any two points, it
includes the whole straight line passing through them. The smallest affine set
including a set is the affine hull of the latter.

Straight lines in R2 and planes in R3 are instances of affine sets. The whole space
Rn is an affine set. An empty set and a single point set are viewed as affine sets. It
is clear that the intersection of affine sets is an affine set.

For any given ˛i ; i D 1; : : : ; k satisfying
Pk

iD1 ˛i D 1, point

x D
kX

iD1

˛i x
i
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is called an affine combination of x1; : : : ; xk . It is easy to show that the set of all
such affine combinations, i.e.,

(
kX

iD1

˛kxi j
kX

iD1

˛i D 1; ˛i 2 R; i D 1; : : : ; k

)

is an affine set, called affine hull of these points. The two points in Definition 2.1.1
can be generalized to multiple points: it is easy to show that … is an affine set if and
only if the affine hull of any finitely many points within … belongs to ….

Set L is a subspace of Rn if it is closed for all linear operations, that is, for any
x; y 2 L and ˛; ˇ 2 R it holds that ˛xCˇy 2 L. An affine set is an affine subspace
if it is a subspace.

Theorem 2.1.1. An affine set is an affine subspace if and only if it includes the
origin.

Proof. The necessity is clear. Sufficiency. Let … be an affine set including the origin.
Then for any x 2 … and ˛ 2 R, it holds that

˛x D ˛x C .1 � ˛/0 2 …:

On the other hand, it holds for any x; y 2 … that

x C y

2
D 1

2
x C .1 � 1

2
/y 2 …:

Therefore, … is closed for linear operations, and is thus an affine subspace. ut
Theorem 2.1.2. For any nonempty affine set …, there exists vector p so that

L D fx C p j x 2 …g

is an affine subspace, and such subspace is unique.

Proof. According to Theorem 2.1.1, … is an affine subspace if 0 2 …. Note that
L D … corresponds to p D 0. Assume that 0 62 …. Since … ¤ ;, there exists
0 ¤ y 2 …. Letting p D �y, it is clear that

L D fx C p j x 2 …g

is an affine set including the origin, and is hence an affine subspace.
Now let us show the uniqueness. Assume that L1; L2 are affine subspaces such

that

L1 D fy C p1 j y 2 …g; L2 D fy C p2 j y 2 …g:
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It is clear that

… D fx � p1 j x 2 L1g:

If p D �p1 C p2, therefore, it holds that

L2 D fx C p j x 2 L1g;

from which it follows that x Cp 2 L2 for any x 2 L1. Since 0 2 L1, p 2 L2 holds.
Further, since L2 is a subspace, x D .x C p/ � p 2 L2 holds. Therefore, L1 � L2.
L2 � L1 can be similarly derived. So it can be asserted that L1 D L2. ut

Geometrically, the affine subspace L may be viewed as a parallelism of affine set
… along vector p. It is therefore called parallel subspace of …. The dimension of
L is said to be that of …, which is equal to the number of independent components
(coordinates) of elements in …. It is clear that an affine set with one or more than
one dimension is unbounded.

Let a be a nonzero vector and let � be a real number. Set

H D fx 2 Rn j aT x D �g

is called superplane, whose normal vector is a (a ? H ); in fact, for any two points
x; y 2 H , it holds that

aT .x � y/ D aT x � aT y D � � � D 0:

It is easy to show that any superplane is an affine set.
Any straight line in R2 and any plane in R3 are instances of superplane.
The “signed” distance from any point Nx to superplane H is defined by r=kak,

where r is the residual

r D aT Nx � �:

If r D 0, point Nx is within H . It might be well to assume � > 0. Then, if r < 0, the
origin and Nx are in the same side of H ; if r > 0, the two points are in different sides
of H .

Superplanes associated with the objective function are of significance to LP.
Regarding objective value f as a parameter, the sets

H.f / D fx 2 Rn j cT x D f g

are a family of contour surfaces of the objective function. The gradient rf D c

of the objective function is the common normal vector of all the contour surfaces,
pointing to the increasing side of objective value f .

The following gives a mathematical expression of an affine set.
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Theorem 2.1.3. Set … is an affine set if and only if there exists W 2 Rk�n and
h 2 Rk such that

… D fx j W x D hg: (2.1)

Proof. It might be well to rule out the trivial case when … is empty or the whole
space.

Sufficiency. Let … is defined by (2.1). For any x; y 2 … and ˛ 2 R1, it holds
that

W.˛x C .1 � ˛/y/ D ˛W x C .1 � ˛/Wy D ˛h C .1 � ˛/h D h;

leading to ˛x C .1 � ˛/y 2 …. Therefore, … is an affine set.
Necessity. Let … be an affine set. Assume that L is a parallel affine subspace, and

w1; : : : ; wk are basis of the orthogonal complementary space of it. Then, it follows
that

L D fy j .wi /T y D 0; i D 1; : : : ; kg 4D fy j Wy D 0g;

where rows of W 2 Rk�n are .w1/T ; : : : ; .wk/T . Introduce notation h D Wp. Since
L is a parallel subspace of …, there exists a vector p such that

L D fx � p j x 2 …g:

Thus, for any x 2 …, it holds that x � p 2 L; and W.x � p/ D 0 means that x 2
fx j W x D hg. If x 2 fx j W x D hg, conversely, then W x � Wp D W.x � p/ D 0,
hence from x � p 2 L it follows that x 2 …. So, … has expression (2.1). ut

The preceding Theorem says that a set is affine set if and only if it is the
intersection of finitely many superplanes. It is easy to show that the dimension of
the affine set is equal to n � rank.W /. In particular, the solution set

� D fx j Ax D bg

of the constraint system of the standard LP problem is an affine set. Since rank A D
m, � ¤ ; and dim � D n � m.

Definition 2.1.2. C is a convex set if it includes the whole segment whenever it
includes its two end points. The smallest convex set including a set is the convex
hull of the latter.

Any disks and the first quadrant in R2 and spheres in R3 are instances of convex
sets. Clearly, segments and the whole space are convex sets too. Empty sets and
single point sets are regarded as convex sets. Intersections of convex sets are convex.
Any affine set is convex, but a convex set is not an affine set in general; e.g., disks
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and spheres are not affine sets. It is clear that any convex set has an affine hull. The
dimension of the latter is said to be the dimension of the former. Hereafter, so-called
“convex set” is a closed convex set.

For any ˛i � 0; i D 1; : : : ; k satisfying
P

iD1 ˛i D 1, the point

x D
kX

iD1

˛kxi

is called convex combination of points x1; : : : ; xk . It is easy to show that the set of
all such convex combinations, i.e.,

(
kX

iD1

˛kxi j
kX

iD1

˛i D 1I ˛i � 0; i D 1; : : : ; k

)

is the convex hull of these points. It is easy to show that C is a convex set if and
only if the convex hull of any finitely many points within C belongs C .

Any superplane H divides the whole space to two closed half spaces, i.e.,

HL D fx j aT x � �g; and HR D fx j aT x � �g: (2.2)

The intersection of infinitely many closed half spaces is called polyhedral, and
bounded polyhedral called polyhedron. It could degenerate to a segment or point,
or even empty set.

It is clear that a half space is convex. Therefore, a polyhedral or polyhedron is
convex, as termed polyhedral convex set.

A convex set C is called polyhedral convex cone if ˛x 2 C holds for any x 2 C

and ˛ � 0. It is easy to show that a set is a polyhedral convex cone if and if it is
the intersection of finitely many closed half spaces passing through the origin, as
expressed fx 2 Rn j Ax � 0g.

The nonnegative constraints x � 0 in the standard problem correspond to the
positive octant, which is the intersection of the n closed half spaces with the
coordinate planes as its boundary. Therefore, the feasible region P is the intersection
of the affine set � and the positive octant. As any superplane aT x D � may be
viewed as the intersection of two closed half spaces (2.2), P may be also viewed
as the intersection of finitely many closed half spaces. Therefore, we make the
following statement.

Proposition 2.1.1. The feasible region P is a polyhedral convex set.

Such a set could be degenerate, however. The following result concerns the
dimension of P .

Proposition 2.1.2. Define index set

J 0 D fj 2 A j xj D 	j ; x 2 P g; (2.3)
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where 	j ; j 2 A are nonnegative constants and denote by IJ 0 the coefficient matrix
of system xj D 	j ; j 2 J 0. Then it holds that

n � minfm C jJ 0j; ng � dim P D n � r � n � maxfm; jJ 0jg; (2.4)

where

r D rank

�
A

IJ 0

�
:

Proof. Note that rank A D m and P is a nonempty infinite set, according to the
basic assumption.

It is clear that jJ 0j � r and

P D fx 2 Rn j Ax D b; x � 0I xj D 	j ; j 2 J 0g:

IF jJ 0j D r , then xj D 	j ; j 2 J 0 is a canonical form of system

Ax D bI xj D 	j ; j 2 J 0:

If jJ 0j < r , besides xj j 2 J 0, there are additional r�jJ 0j basic variables, and hence
a canonical form of the preceding system. It is to say that there exists a canonical
form, whose n � r nonbasic variables do not belong to J 0. Therefore, it holds that
dim P D n � r . Hence (2.4) follows from minfm C jJ 0j; ng � r � maxfm; jJ 0jg.

ut
In particular, dim P D n � m if J 0 D ;.
The special case of 	j D 0 is of significance to the standard LP problem.

Introduce sets

J D fj 2 A j xj D 0; x 2 P g; NJ D AnJ; (2.5)

where J is said to be index set of zero components.
According to the preceding definition, it is clear that P � P 0, and in addition

xj D 0; 8 j 2 J; x 2 P: (2.6)

If x 2 P and xj > 0, then j 2 NJ .
If J ¤ ;, the feasible region P has no interior point in the normal sense, as

is often the case for real problems. For convenience of applications, the following
concept is introduced instead.

Definition 2.1.3. Assume Nx 2 P . If there exists ı > 0 such that a neighborhood of
Nx is included in P , i.e.,


.ı/ D fx 2 � j xj D 0; j 2 J I kx � Nxk < ıg � P; (2.7)

then Nx is an interior point of P ; otherwise, it is a boundary point.
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The set of all interior points of P is called its interior, denoted by int P . P and its
interior have the same dimension.

For sake of distinguishing, the point is said to be relative interior point when
J ¤ ;. The set of relative interior points is relative interior, while (strict) interior
point or interior stands for the case of J D ;.

Theorem 2.1.4. Assume Nx 2 P . Then Nx 2 int P if and only if

Nxj > 0; j 2 NJ : (2.8)

Proof. Sufficiency. Let point Nx 2 P satisfy (2.8). Using

ı D min
j 2 NJ

Nxj > 0; (2.9)

and


.ı/ D fx 2 � j xj D 0; j 2 J I kx � Nxk < ıg;

then for any x 2 
.ı/, it holds that

x 2 � and xj D 0; j 2 J:

Moreover, sine

kx � Nxk D
vuut nX

j D1

.xj � Nxj /2 < ı;

it holds that

j Nxj � xj j � kx � Nxk < ı; j 2 NJ ;

which and (2.9) together give

xj > Nxj � ı � 0; j 2 NJ :

Thus x 2 P . Therefore 
.ı/ � P , and Nx is an interior point of P .
Necessity. Assuming Nx 2 int P , then there is ı > 0 such that 
.ı/ � P ; also

there is p 2 NJ such that Nxp D 0. According to the definition of NJ , there is x0 2 P

such that x0
p > 0. It is clear that for any ˛ > 0 there exists

x D �˛x0 C .1 C ˛/ Nx D Nx C ˛. Nx � x0/ 2 �: (2.10)
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Hence, when ˛ is sufficiently small, it holds that

kx � Nxk D ˛k Nx � x0k < ı:

In addition, it is clear that x0
j ; Nxj D 0; j 2 J , and hence xj D 0; j 2 J . Therefore

x 2 
.ı/. On the other hand, from (2.10), Nxp D 0 and ˛ > 0; x0
p > 0 it follows

that

xp D �˛x0
p C .1 C ˛/ Nxp D �˛x0

p < 0;

which contradicts 
.ı/ � P . Therefore, (2.8) holds if Nx 2 int P . ut
Proposition 2.1.3. If dim P � 1, then P has a relative interior point.

Proof. The assumption of the proposition implies NJ ¤ ;, because otherwise it holds
that J D A and hence dim P D 0, leading to contradiction. On the other hand, for
any j 2 NJ there exists x 2 P such that xj > 0; hence from the convexity of P , it
follows that there is x 2 P satisfying xj > 0; j 2 NJ . According to Theorem 2.1.4,
it is known that x 2 int P ¤ ;. ut
Example 2.1.1. Investigate the interior of the feasible region of the following
problem:

min x1 C x2 C x3 C x4 C x5;

s:t: x1 � x3 C x4 C x5 D 6;

x2 � x3 � x4 � x5 D 0;

�x2 C 3x3 C x4 C x5 D 0;

xj � 0; j D 1; : : : ; 5:

Answer Adding the second constraint equality to the third gives

2x3 D 0:

It is clear that the feasible region is nonempty, and the x3 component of all feasible
points equals 0. Eliminating x3 from the problem leads to

min x1 C x2 C x4 C x5;

s:t: x1 C x4 C x5 D 6;

x2 � x4 � x5 D 0;

xj � 0; j D 1; 2; 4; 5;

the interior of the feasible region of which is clearly nonempty, corresponding to the
relative interior of the feasible region of the original problem.
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2.2 Geometric Structure of the Feasible Region

This section will discuss the geometric structure of the feasible region P . Actually,
most results in this section are also valid for general polyhedral convex sets.

Definition 2.2.1. Let P 0 be a nonempty convex subset of P . It is a face of P if for
any x 2 P 0, satisfying x 2 .y; z/ � P , it holds that y; z � P 0.

The preceding means that a face includes the whole segment if it includes a interior
point of any segment of P .

The following renders a mathematical expression of P .

Theorem 2.2.1. A nonempty convex subset P.Q/ of P is its face if and only if there
exists index set Q � A such that

P.Q/ D fx 2 Rn j Ax D b; x � 0I xj D 0; j 2 Qg: (2.11)

Proof. Sufficiency. Let ; ¤ P.Q/ � P be defined by (2.11). If v 2 P.Q/ is an
interior point of segment .y; z/ and y; z 2 P , then there exists 0 < ˛ < 1 such that

v D ˛y C .1 � ˛/z:

Hence from ˛ > 0; 1 � ˛ > 0; y; z � 0 and

vj D ˛yj C .1 � ˛/zj D 0; j 2 Q;

it follows that

yj ; zj D 0; j 2 Q;

Therefore, y; z 2 P.Q/, and hence P.Q/ is a face of P .
Necessity. Let P.Q/ ¤ ; be a face of P . Introduce notation

Q D fj 2 A j xj D 0; x 2 P.Q/g: (2.12)

Now we show that P.Q/ is equivalent to

P.Q/0 D fx 2 Rn j Ax D b; x � 0I xj D 0; j 2 Qg: (2.13)

It is clear that P.Q/ � P.Q/0 � P .
If P.Q/ includes the origin 0 only, it follows that b D 0 and Q D A. And

P.Q/0 clearly includes 0, hence P.Q/ D P.Q/0. Now assuming that P.Q/ does
not include 0, we will show P.Q/0 � P.Q/.

Assume x 2 P.Q/0. If x D 0 (b D 0), then for any 0 ¤ v 2 P.Q/ and

y D 2v
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it holds that

v D y

2
C 0

2
;

which means that v 2 .y; 0/. Since P.Q/ is a face and y; 0 2 P , we have x D 0 2
P.Q/. On the other hand, if x ¤ 0, i.e.,

S D fj 2 A j xj > 0g

is nonempty, then from x 2 P.Q/0 and (2.13), it is known that j 62 Q for any
j 2 S . Therefore there exists u 2 P.Q/ such that uj > 0. If S includes two
or more indices, then u; w 2 P.Q/ satisfy ui ; wj > 0 for any i; j 2 S , hence
z D u=2 C w=2 2 P.Q/ satisfies zi ; zj > 0. This means that there exists v 2 P.Q/

such that vj > 0 for all j 2 S . As for the relation between x and v, there are the
following two cases only:

(i) fj 2 S j xj > vj g D ;. It is clear that

z D 2v � x D v C .v � x/ 2 P:

Since P.Q/ is a face of P , and v D z=2Cx=2 2 .x; z/, it holds that x 2 P.Q/.
(ii) fj 2 S j xj > zj g ¤ ;. Define

z D x C ˇ.v � x/; ˇ D minfxj =.xj � vj / j xj � vj > 0; j 2 Sg > 1:

It is easy to verify that z 2 P , and

v D ˛z C .1 � ˛/x 2 .x; z/; 0 < ˛ D 1=ˇ < 1:

In addition, P.Q/ is a face of P , hence x 2 P.Q/. Therefore P.Q/0 � P.Q/.
ut

Clearly, P itself is a face (Q D ;). If a face P.Q/ ¤ P , it is called a proper face.
It is easy to show that face P.Q/ is a proper face if and only if dim P.Q/ < dim P .
From the proof of Proposition 2.1.2, it is know that dim P.Q/ � n � maxfm; jQjg.
Face of face is a face.

If dim P.Q/ D dim P � 1, face P.Q/ is called facet of P . An 1-dimensional
face is also called edge; an 0-dimensional face is called vertex or extreme point.

It is clear that the feasible region P has infinitely many faces. In fact, it is known
that the number of .n � m � k/-dimensional faces of P is no more than C k

n (k D
1; : : : ; n � m); in particular, there exist, at most, an .n � m/-dimensional face (that
is P itself), C mC1

n edges and C n�m
n D C m

n vertices.
“Vertex” can also be defined by the following alternatively.
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Definition 2.2.2. x is a vertex of P if x 2 Œy; z� leads to x D y or x D z for any
y; z 2 P .

The preceding implies that a vertex is not an interior point of any segment of P . It is
clear that a vertex of face is a vertex of P , and that the origin is a vertex if it belongs
to P .

Vertex has its distinctive algebraical attribute.

Lemma 2.2.1. A point x 2 P is a vertex if and only if columns of A corresponding
to its positive components are linearly independent.

Proof. It might be well to let the first s components of x be great than 0 and let the
rest be 0. Assume that Nx is the subvector consisting of the first s components of x

and NA is the submatrix consisting of the first s columns of A. Then NA Nx D b.
Necessity. Let x be a vertex of P . If columns of NA are linearly dependent, there

is a nonzero vector Nv such that NA Nv D 0. Introduce notation

Ny D Nx C ˛ Nv; Nz D Nx � ˛ Nv:

It is clear that for any real ˛ it holds that

NA Ny D NANz D b:

Take sufficiently small ˛ > 0, such that Ny; Nz � 0. Construct vectors y and z, so
that the first s components of them respectively constitute Ny and Nz, and the others
are 0. Then it is clear that y; z 2 P and x D y=2 C z=2. Thus x is not a vertex
of P , as leads to a contradiction. Therefore, columns corresponding to all positive
components of x are linear independent if x is a vertex of P .

Sufficiency. Assume that columns of NA are linearly independent. If x 2 P is not
a vertex, there are two points y; z 2 P and a real ˛ 2 .0; 1/ such that

x D ˛y C .1 � ˛/z;

from which it is known that the last n � s components of y and z are both 0.
Therefore, v D x � y ¤ 0 and

NA Nv D Av D Ax � Ay D b � b D 0;

which means that columns of NA are linearly dependent, as a contradiction. Therefore
x is a vertex if columns of NA are linearly independent. ut

In view of rank.A/ D m, the preceding theorem implies that the number of
positive components of a vertex of P is no more than m.

Lemma 2.2.2. Nx is a vertex of the feasible region if and only if it is a basic feasible
solution.

Proof. It is from Theorem 1.6.2 and Lemma 2.2.1. ut
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The preceding Lemma says that vertex and basic feasible solution of P are the
same; thus, the two may be regarded as geometrical and algebraical names of the
same mathematical item. It is usually difficult to determine if a point is a vertex
based on the definition itself, while a basic feasible solution can be conveniently
determined algebraically. Recall that every canonical form of the constraint system
Ax D b corresponds to a basic solution, which is a basic feasible solution if it is
nonnegative (Sect. 1.6).

Lemma 2.2.3. Nonempty feasible region has a vertex.

Proof. It is clearly the case when P is a single point set. Let P be infinite set,
and Nx 2 P . If Nx is not a vertex, there are two distinct points y; z 2 P and a real
N̨ 2 .0; 1/ such that

Nx D N̨y C .1 � N̨ /z D z C N̨ .y � z/:

Thus, a component of Nx is 0 if and only if the corresponding components of both
y; z are 0. Introduce

T D fj 2 A j Nxj > 0g:

Then T ¤ ;, since T D ; implies that Nx D 0 is a vertex. It might be well to assume
that for some i 2 f1; : : : ; ng it holds that zi > yi , and hence i 2 T . This means that

fj 2 T j zj � yj > 0g ¤ ;:

It is easy to show that redefined

Nx D ˛1yC.1�˛1/z; ˛1 D zq=.zq�yq/ D minfzj =.zj �yj / j zj �yj > 0; j 2 T g

satisfies Nx 2 P and Nxq D 0. Thus jT j for the new Nx is less than that for the old by 1,
at least. Repeating no more than n times, therefore, the preceding process terminates
at a vertex. ut

The above proof produces a series of feasible points, corresponding to faces,
each of which is a proper face of its predecessor, until reaching a 0-dimensional
face (vertex). Such a technique for shifting to faces of lower dimensions will often
be used.

For any given point x and vector d ¤ 0, set fx C ˛d j ˛ � 0g is said to be ray
(or half-line), emanating from x along the direction of d . It is clear that a ray is an
infinite set.

Definition 2.2.3. A nonzero vector d is an unbounded direction if P includes rays,
emanating from all x 2 P along d .

Two unbounded directions having the same direction are regarded as the same.
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Theorem 2.2.2. Vector d is an unbounded direction of the nonempty feasible
region if and only if

Ad D 0; d ¤ 0; d � 0: (2.14)

Proof. Sufficiency. With the assumptions, it is easy to verify that for any given x 2
P and ˛ � 0 it holds that x C ˛d 2 P , therefore d ¤ 0 is an unbounded direction.

Necessity. Let d ¤ 0 be an unbounded direction. Thus, there is x 2 P , satisfying
xC˛d 2 P for any ˛ � 0. Hence, from Ax D b and A.xC˛d/ D b, it follows that
Ad D 0. In addition, d � 0 holds, because, otherwise, d has a negative component,
and hence the corresponding component of x C ˛d is negative whenever ˛ > 0

becomes sufficiently large, as contradicts x C ˛d 2 P . ut
Corollary 2.2.1. A nonzero vector d is a unbounded direction if P includes the
ray, emanating from some x 2 P along d .

It is clear that any nonnegative linear combination of finitely many unbounded
directions is an unbounded direction if the combination coefficients are not all zero.
Note that “unbounded direction” is meaningless to an empty P .

Theorem 2.2.3. The feasible region is unbounded if and only if it has an unbounded
direction.

Proof. Sufficiency is clear, it is only needed to show necessity.
If v 2 P , then the translation of P , i.e.,

C D fx � v j x 2 P g

clearly includes the origin, and P is unbounded if and only if C is unbounded. It
might be well to assume that 0 2 P .

Let S 0 D fxkg 2 P be an unbounded sequence of points. Without loss of
generality, assume that

kxkk ! 1 as k ! 1:

Then the sequence

S 00 D fxk=kxkkg

on the unit sphere is bounded, hence has a cluster point. Letting x be its cluster
point, then S 00 includes a subsequence converging to x. It might be well to assume

xk=kxkk ! x:

Now it should be shown that x is an unbounded direction of P . Let M be a given
positive number. Since kxkk ! 1, there is a positive integer K such that kxkk >

M or M=kxkk < 1 when k � K . Introduce
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d1

d3
P

d2

Fig. 2.2 d1; d2; d3 are
unbounded directions. d1; d2

are extreme directions, but d3

not

yk D .M=kxkk/xk; k D K; K C 1; : : : :

Since P is convex, we have 0; xk 2 P and yk 2 .0; xk/, and hence yk 2 P and
yk ! M x when k � K . As P is closed, it can be asserted that M x 2 P . ut
Definition 2.2.4. An unbounded direction of P is extreme direction if it can not be
expressed by a positive linear combination of two distinct unbounded directions.

According to the preceding, that d is an extreme direction means that if there
are unbounded directions d 0; d 00 and positive number �1; �2 > 0, satisfying d D
�1d

0 C �2d 00, then there must be d 0 D �d 0, where � > 0. Two extreme directions
having the same direction are regarded as the same.

In Fig. 2.2, d 1; d 2; d 3 are unbounded directions of P . d 1 and d 2 are extreme
directions, but d 3 is not.

Theorem 2.2.4. An unbounded direction is extreme direction if and only if the rank
of columns, corresponding to its positive components, is less than the number of
columns by 1.

Proof. It might be well to assume that k positive components of unbounded
direction d correspond to the set of columns a1; : : : ; ak . The satisfaction of Ad D 0

implies that the columns are linearly dependent. Denote the rank of the set by is r ,
then it is clear that r < k. Without loss of generality, assume that the first r columns
are linear independent. Introduce B D .a1; : : : ; ar /. It is clear that

rank B D r � rank A D m:

Note that k � 2, because if k D 1, otherwise, then from Ad D 0 it follows that
a1 D 0, as leads to a contradiction.
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Necessity. Assume that d is an extreme direction, but r ¤ k � 1, that is,
a1; : : : ; ak�1 are linearly dependent. Thus, there exists point

y D .y1; : : : ; yk�1; 0; : : : ; 0/T ¤ 0

such that

Ay D
k�1X
j D1

yj aj D 0:

Clearly, for sufficiently small ı > 0, it holds that

0 ¤ d 0 D d C ıy � 0; 0 ¤ d 00 D d � ıy � 0;

and Ad 0 D Ad 00 D 0. Therefore, d 0; d 00 are unbounded directions of P , and hence
not of the same direction. But d D .d 0 C d 00/=2, as contradicts that d is an extreme
direction. It therefore holds that r D k � 1.

Sufficiency. Assume r D k � 1. If there exist unbounded directions d 0; d 00 and
�1; �2 > 0 such that

d D �1d 0 C �2d 00;

then zero components of d clearly correspond to zero components of d 0 and d 00. So,
the last n � k components of d 0 and d 00 are all zero. In addition, since d 0; d 00 are
unbounded directions, it holds that Ad 0 D Ad 00 D 0 (Theorem 2.2.2), and hence
that

Bd 0
B C d 0

kak D 0; Bd 00
B C d 00

k ak D 0:

Note that d 0
k; d 00

k > 0; because if d 0
k D 0, otherwise, then d 0

B D 0, and hence d 0 D 0,
as is a contradiction. Premultiplying the two sides of the preceding two equalities
by BT gives

BT Bd 0
B C d 0

kBT ak D 0; BT Bd 00
B C d 00

k BT ak D 0;

from which it follows that

d 0
B D �d 0

k.BT B/�1BT ak; d 00
B D �d 00

k .BT B/�1BT ak:

Therefore, it holds that

d 00 D .d 00
k =d 0

k/d 0;
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which means that unbounded directions d 0 and d 00 have the same direction, and
hence d is an extreme direction. ut

The extreme direction and 1-dimensional face (edge) have close relationship.

Theorem 2.2.5. A vector is an extreme direction if and only if it is the unbounded
direction of a edge.

Proof. Necessity. Assume that d is an extreme direction. Based on Theorem 2.2.4,
assume that columns corresponding to its positive components are

a1; : : : ; ar ; amC1;

where the first r � m columns are linearly independent. Thus

d1; : : : ; dr ; dmC1 > 0; drC1; : : : ; dm; dmC2; : : : ; dn D 0: (2.15)

Since the rank of A is m, there are m � r columns which together with a1; : : : ; ar

form a basis when r < m. Without loss of generality, assume that the first m

columns of A constitute a basis, i.e.,

B D .a1; : : : ; ar ; arC1; : : : ; am/; N D famC1; : : : ; ang: (2.16)

From (2.15) and Ad D 0, it is follows that

rX
iD1

di ai C dmC1amC1 D 0;

hence

amC1 D �
rX

iD1

.di=dmC1/ai :

Assume that basis B corresponds to the canonical form below:

xB D Nb � NN xN : (2.17)

Since its augmented matrix .I NN j Nb/ comes from .A j b/ D .B N j b/ by
elementary transformations, and amC1 is a linear combination of a1; : : : ; ar , the last
m � r components of column NamC1 in the canonical form are all zero.

Let Nx belong to P . If NxN D 0, then Nx is the basic feasible solution corresponding
to basis B . Now assume, otherwise, that NxN ¤ 0. We will create a new basis B

associated with a basic feasible solution by a series of elementary transformations
and some solution updating.
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Assume that Nxj > 0 holds for some j 2 N; j ¤ m C 1. Reducing Nxj and
keep the other nonbasic components unchanged, we determine the corresponding
value of NxB such that Nx satisfies (2.17), resulting in a new solution Nx. For the
column corresponding to Nxj , of the canonical form (2.17), there are only two cases
arising:

(i) Naj � 0.
It is clear that Nxj may decrease to 0 and associated NxB remains nonnegative.
Thus, setting Nxj D 0 gives a new feasible solution Nx.

(ii) Naj 6� 0.
If the first r components of Naj are nonnegative, one of the last m�r components
of NxB decreases to 0 first (so-called “blocking”) as Nxj decreases. Assume that
the blocking is component i (r C 1 � i � m). Set Nxj to the according value,
and interchange aj and ai to update B and N . By exchanging their indices at
the same time, the nonbasic component Nxj of the new solution Nx becomes 0.
If some of the first r components of Naj are negative, then we can determine a
� > 0 such that the first r basic components of

Nx WD Nx C �d

are sufficiently large and all the nonbasic components remain unchanged,
except for NxmC1, such that no broking happens to the first r components of NxB

as Nxj decreases. If no broking happens to the last m � r components either, we
set Nxj D 0. If broking happens to component r C 1 � i � m, we set Nxj to the
according value, and interchange aj and ai to updated B and N . Consequently,
by exchanging their indices, the nonbasic component Nxj of the new solution Nx
is now equal to 0.

As such, we can transform all Nxj ; j 2 N; j ¤ m C 1 to 0, without affecting the
first r indices of B . Then, if NxmC1 D 0, we are done.

If NxmC1 > 0, we reduce it and keep the other nonbasic components unchanged.
Since the last m � r components of NamC1 are zero, the corresponding components
of NxB remain unchanged, and there will be only two cases arising:

(i) The first r components of NamC1 are all nonnegative. Then it is clear that NxmC1

can decrease to 0 and according NxB remain nonnegative, thus we set NxmC1 D 0.
(ii) Some of the first r components of NamC1 are negative. If the according NxB

remains nonnegative as NxmC1 decreases to 0, we set NxmC1 D 0; otherwise,
if broking happens for component 1 � i � r of NxB , we set NxmC1 to the
associated value, and exchange amC1 and ai to update B and N . Then, by
exchanging their indices, the nonbasic component NxmC1 of the new Nx is equal to
zero.

Therefore, it might be well to assert that the basis B , defined by (2.16),
corresponds to basic feasible solution Nx.
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Consider the following face

P 0 D fx 2 Rn j Ax D b; x � 0; xj D 0; j D m C 2; : : : ; ng
D fx 2 Rn j BxB C xmC1amC1 D b; xB; xmC1 � 0I

xj D 0; j D m C 2; : : : ; ng
D fx 2 Rn j xB C xmC1 NamC1 D Nb; xB; xmC1 � 0I (2.18)

xj D 0; j D m C 2; : : : ; ng:

It is clear that Nx 2 P 0. Hence, from (2.15) and

BdB C dmC1amC1 D 0; (2.19)

it is known that

Nx C ˛d 2 P 0; 8 ˛ � 0:

Therefore, d is a unbounded direction of P 0. It is now only needed to show
dim P 0 D 1.

For any x0 2 P 0 and x0 ¤ Nx, introduce d 0 D x0 � Nx. It is clear that

d 0
1; : : : ; d 0

r ; d 0
mC1 > 0; d 0

rC1; : : : ; d 0
m; d 0

mC2; : : : ; d 0
n D 0 (2.20)

and

Bd 0
B C d 0

mC1amC1 D 0: (2.21)

From (2.19) and (2.21) it follows respectively that

dB D �dmC1B
�1amC1; d 0

B D �d 0
mC1B

�1amC1;

Therefore, d 0 D .d 0
mC1=dmC1/d , where d 0

mC1=dmC1 > 0. This implies that
dim P 0 D 1. Therefore, P 0 is an 1-dimensional face or edge, and d is an unbounded
direction of it.

Sufficiency. Assume that d is an unbounded direction of edge P 0 (2.19), and
hence satisfies (2.19). If d is a positive linear combination of unbounded directions
d 0; d 00 of P , then there exists a correspondence between zero components of d and
of d 0; d 00, and hence d 0; d 00 are also unbounded directions of P 0. Since dim P 0 D
1, in addition, d 0 and d 00 have the same direction. Therefore, d is an extreme
direction. ut
Lemma 2.2.4. An unbounded direction that is not an extreme one is a positive
linear combination of two unparallel unbounded directions.
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Proof. Without loss of generality, assume that columns a1; : : : ; ak correspond to
positive components of an unbounded direction d , and the first r columns are
linearly independent. As d is not an extreme direction, it holds by Theorem 2.2.4
that r < k � 1, or

k � r � 2: (2.22)

Introduce matrix B1 D .a1; : : : ; ar /. Within the set of akC1; : : : ; an, determine m�r

columns, which might be assumed to correspond to B1 D .akC1; : : : ; akCm�r /, to
construct basis B D .B1; B1/ (it is clear that m � r � n � k). Then the nonbasic
matrix is N D .N1; N2/, where N1 D .arC1; : : : ; ak/; N2 D .akCm�rC1; : : : ; an/.
Assume that B corresponds to the canonical form xB D Nb � NN xN . Then d

satisfies

B1dB1 D � NN1dN1; dN2 D 0:

or equivalently,

dB1 D �.BT
1 B1/

�1BT
1

NN1dN1; dN2 D 0:

Introduce e 2 Rk�r and

d 0
B1

D �.BT
1 B1/

�1BT
1

NN1.dN1 C �e/; d 00
B1

D �.BT
1 B1/

�1BT
1

NN1.dN1 � �e/:

Letting � D .�1; : : : ; �k�r /
T > 0, then vectors

d 0 D

0
BB@

d 0
B1

0

dN1 C �

0

1
CCA ; d 00 D

0
BB@

d 00
B1

0

dN1 � �

0

1
CCA

satisfy d D d 0=2 C d 00=2. It is clear that d 0; d 00 ¤ 0 and Ad 0 D 0; Ad 00 D 0. As
(2.22) holds, it is known that there exists a sufficiently small � such that d 0; d 00 � 0

are unparallel unbounded directions. ut
Theorem 2.2.6. If P has an unbounded direction, it has a extreme direction.

Proof. Let d be an unbounded direction. Assume that it has k positive components
and the rank of the corresponding columns is r � k � 1. If r D k � 1, then d

is an extreme direction (Theorem 2.2.4). Otherwise, by Lemma 2.2.4, d can be
expressed as

d D �1d 0 C �2d 00;
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where d 0; d 00 are unparallel unbounded directions, and �1; �2 > 0. Without loss of
generality, assume that d 00 has at least one component greater than the corresponding
component of d 0. Thus, the following vector

Od D d 00�˛.d 00�d 0/; ˛ D minfd 00
j =.d 00

j �d 0
j / j d 00

j �d 0
j > 0; j D 1; : : : ; ng > 0:

is well-defined. Consider

A Qd D 0; Qd � 0; Qd ¤ 0;

where the first two equalities clearly hold. If the third does not hold, then d 00 �
˛.d 00 � d 0/ D 0, as leads to

d 0 D ˛ � 1

˛
d 00;

implies that d 0; d 00 are parallel, as a contradiction. Therefore, the third equality also
holds, and hence Qd is an unbounded direction. In addition, it is known that the
number of zero components of Qd is less than that of d by 1, at least. Then set d D Qd
and repeat the preceding steps. It is clear that such a process can only repeat finitely
many times, and terminates at some extreme direction. ut

According to Theorem 2.2.5, extreme directions and unbounded edges of P are
1-to-1 correspondent (extreme directions having the same direction are viewed as
the same). As there are finitely many edges, the number of extreme directions are
finite.

It is now time to lay a theoretical basis to Dantzig-Wolfe decomposition method
for solving large-scale LP problems (Chap. 8).

Theorem 2.2.7 (Representation Theorem of the Feasible Region). Let P be
nonempty. Assume that fu1; : : : ; usg is the vertex set and fv1; : : : ; vt g the extreme
direction set. Then x 2 P if and only if

x D
sX

iD1

˛i u
i C

tX
j D1

ˇj vj ;

sX
iD1

˛i D 1; ˛i � 0; i D 1; : : : ; s; (2.23)

ˇj � 0; j D 1; : : : ; t:

Proof. When (2.23) holds, it is clear that x 2 P . So it is only needed to show
necessity. We use inductive method to dimensions.
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If dim P D 0, P is a single point set, including a vertex. The conclusion holds
clearly. Assume that it holds for dim P < k. We will show that it holds for dim P D
k � 1.

From Proposition 2.1.3, it follows that int P ¤ ;. Assume x 2 int P , and
consider

x0 D x � �.u1 � x/: (2.24)

Note that u1 ¤ x. There are the following two cases arising:

(i) u1 � x 6� 0.

Determine � such that

� D xq=.u1
q � xq/ D minfxj =.u1

j � xj / j u1
j � xj > 0; j D 1; : : : ; ng > 0:

Then, it is easy to verify that x0, defined by (2.24), satisfies x0 2 P and x0
q D 0.

Therefore, x0 belongs to some proper face with its dimension less than k. According
to the assumption of induction, x0 can be expressed as the sum of a convex
combination of vertices and a nonnegative combination of extreme directions of
the proper face. Since vertices and extreme directions of a face are also that of P ,
therefore, x0 can be expressed as the sum of a convex combination of vertices and a
nonnegative combination of extreme directions of P , i.e.,

x0 D
s1X

iD1

˛0
i u

i C
t1X

j D1

ˇ0
j vj ;

s1X
iD1

˛0
i D 1; ˛0

i � 0; i D 1; : : : ; s1;

ˇ0
j � 0; j D 1; : : : ; t1;

where ui and vj are vertices and extreme directions of P , respectively. Substituting
the preceding into

x D 1

1 C �
x0 C .1 � 1

1 C �
/u1;

which is equivalent to (2.24), leads to the expression of the form of (2.23), i.e.,

x D
s1X

iD1

1

1 C �
˛0

i u
i C .1 � 1

1 C �
/u1 C

t1X
j D1

1

1 C �
ˇ0

j vj :
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(ii) u1 � x � 0.

Then x0, defined by (2.24), are all feasible points for any � � 0, hence �.u1 � x/

is an unbounded direction. According to Lemma 2.2.6, there is an extreme direction,
say v1. Now take a sufficiently large 	 such that

Qx D u1 C 	v1

has at least one component greater than the corresponding component of x.
Consequently, the point defined by

x0 D x � �. Qx � x/;

� D xq=. Qxq � xq/ D minfxj =. Qxj � xj / j Qxj � xj > 0; j D 1; : : : ; ng > 0:

is a feasible point, satisfying x0
q D 0. Therefore, this point belongs to some proper

face with dimension less than k, and hence can be expressed as the sum of a convex
combination of vertices and a nonnegative combination of extreme directions of P .
As a result, an expression of the form (2.23) can be obtained in an analogous manner
as case (i). ut

The preceding Theorem indicates that a feasible point is the sum of a convex
combination of vertices and a nonnegative combination of extreme directions, and
vice versa. In particular, the following is a direct corollary.

Corollary 2.2.2. Let the feasible region be bounded. A point is feasible if and only
if it is a convex combination of vertices.

2.3 Optimal Face and Vertex

We describe a basic result without proof (see, e.g., Rockafellar 1997).

Theorem 2.3.1 (Partition Theorem). Let Nx be a boundary point of convex set S .
Then there exists a superplane including Nx and partitioning the total space to two
half spaces, one of which includes S .

The superplane involved in the preceding Theorem is said to be supporting
superplane of S . That is to say, there is a supporting superplane through every
boundary point of a convex set. Although the result is applicable to any convex
set, we are only concerned with the feasible region P , in particular.

Supporting superplane of P is closely related to its face, as the following reveals.

Lemma 2.3.1. The intersection of P and a supporting superplane is a face.

Proof. Assume that H D fx 2 Rn j aT x D �g is the superplane of P , and P 0 D
P \ H . Without loss of generality, let aT x � � hold for all x 2 P .
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Assume that v 2 P 0 is an interior point of segment .y; z/, and y; z 2 P , i.e.,

v D ˛y C .1 � ˛/z; (2.25)

where 0 < ˛ < 1. Note that, P 0 is a nonempty convex set.
It is only needed to show y; z 2 H , as leads to y; z 2 P 0, hence P 0 is a face of P .
Assume y; z 62 H . Then it holds that

aT y < �; aT z < �:

Multiplying the preceding two formulas respectively by ˛ > 0 and 1 � ˛ > 0, and
then adding the results gives

aT .˛y C .1 � ˛/z/ < �˛ C �.1 � ˛/ D �;

combining which and (2.25) leads to v 62 H , and hence v 62 P 0. This contradicts
the assumption v 2 P 0. Therefore, at least one of y and z belongs to H .

Without loss of generality, assume z 2 H . Then, it follows from (2.25) that

y D .1=˛/v C .1 � 1=˛/z;

implying that y is in the straight line through v and z. Moreover, z; v 2 H and H is
a superplane, therefore y 2 H . ut
Lemma 2.3.2. Let Nf be the optimal value of the standard LP problem. Set F is the
set of optimal solutions if and only if it is the intersection of P and the objective
contour plane

NH D fx 2 Rn j cT x D Nf g: (2.26)

Proof. Assume F D P \ NH . It is clear that any optimal solution Nx 2 P satisfies
cT Nx D Nf , implying Nx 2 NH , hence Nx 2 F . Therefore, F is the set of optimal
solutions. If F is the set of optimal solutions, conversely, then cT Nx D Nf holds for
any Nx 2 F � P . Therefore Nx 2 NH , and hence Nx � P \ NH . ut

It is clear that NH is a supporting superplane of P , as is referred to as objective
supporting superplane.

A face is optimal if its elements are all optimal solutions. A vertex is optimal if
it is an optimal solution.

Lemma 2.3.3. If there exists an optimal solution, then there exists an optimal face.

Proof. According to Lemma 2.3.2, a nonempty set of optimal solutions is the
intersection of feasible region P and objective contour plane NH . Therefore it
is an optimal face, according to Lemma 2.3.1 and the definition of an optimal
face. ut
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Fig. 2.3 Graphic solution to Example 1.2.2

Theorem 2.3.2. If there exists a feasible solution, there exists a basic feasible
solution. If there is an optimal solution, there is a basic optimal solution.

Proof. By Lemmas 2.2.2 and 2.2.3, it is known that nonempty feasible region has
a basic feasible solution. By Lemma 2.3.3, if there is an optimal solution, there is
an optimal face, which is a nonempty polyhedral convex set, and hence having an
optimal convex or basic optimal solution. ut

In presence of optimal solution, there exists an optimal 0-dimensional face (or
vertex). In general, there could exist optimal faces of higher dimensions. It is clear
that the optimal face of the highest dimension is the set of all optimal solutions, as
is referred to as optimal set. After a LP problem is solved by the simplex method,
the optimal set can be obtained easily (Sect. 25.2).

2.3.1 Graphic Approach

A LP problem of 2-dimension can be solved via a graphic approach. To do so, let us
return to Example 1.2.2. The shaded area enclosed by polygon OABCD in Fig. 1.1
is the feasible region (ignore the straight line x C 2y D 10, at the moment). It is
required to determine a point over the area such that the objective function reaches
the highest value at the point (Fig. 2.3).

In the figure, the equation 2x C 5y D 0 of the contour line of the objection
function corresponds to the dashed line OE , going through the origin, all points on
which correspond to the same objective value 0. The line’s slope, i.e., the tangent
of the angle between it and x axis, is �2=5 D �0:4. Therefore, the corresponding
contour line shifts parallel to the upper-right side as the objective value increases
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from 0. Points in the intersection of the line and the area of OABCD are all feasible
points. The parallel shifting should be carried out as far as the intersection remains
nonempty to attain the biggest possible objective value. It is seen from the figure
that the contour line shifting the farthest is the dashed line BF though vertex B ,
that is, the “objective supporting plane”. The optimal set, i.e., the intersection of the
line and the feasible region includes a single vertex B , corresponding to the basic
optimal solution. Consequently, problem (1.2) is solved after measuring coordinates
of point B , and calculating the associated objective value.

If the figure or measurement is not relatively accurate, however, the end solution
would involve unacceptable errors. For a graphic approach, therefore, it would be
better to use coordinate paper, with the help of algebraic calculating. Once B is
known to be the optimal vertex, for instance, its coordinates can be obtained by
solving the following system of equations:

�
2x C 3y D 12

y D 3
(2.27)

from which the optimal basic solution Nx D 1:5; Ny D 3 to problem (1.2) follows,
with the optimal value f D 18. That is to say, the manufacturer should arrange
production of 1,500 laths and 3,000 sheep piles daily, gaining 18,000 dollars profit.

The graphic approach is not suitable for cases of n � 3, though it is simple. Even
for case of n D 2, in fact, its application is rare seen. However, it still offers some
inspiration, as is the topic of Sect. 2.5.

2.4 Feasible Direction and Active Constraint

Methods for solving mathematical problems fall into two categories: direct and
iterative methods. The latter produces a sequence of points by iterations, offering
an exact or approximate solution. Methods presented in this book belong to the
iterative category.

Line search is the mostly used iterative approach in optimization. At a current
point Nx, in each iteration, a new point Ox is determined along a ray starting from Nx
along a nonzero vector d , i.e.,

Ox D Nx C ˛d; (2.28)

where d is referred to as search direction, ˛ > 0 as stepsize. Once the two are
available, Ox can be calculated and then one iteration is complete. Repeating this
process yields a sequence of points, until a solution is reached. Formula (2.28) is
referred to as line search or iterative scheme.

The determination of a search direction is crucial. In presence of constraints,
d should be such that the intersection of the ray (2.28) and the feasible region is
nonempty. More precisely, we introduce the following concept:
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x̄

P

Fig. 2.4 Any direction is
feasible at Nx

d1

d2 d4

d3

x̄
P

Fig. 2.5 d3; d4 are feasible
at Nx, but d1; d2 not

Definition 2.4.1. Let P be the feasible region. Assume that Nx 2 P; d ¤ 0. If there
exists N̨ > 0 such that

Nx C ˛d 2 P; 8 ˛ 2 Œ0; N̨ �;

d is a feasible direction at Nx.

The preceding is relevant to general constrained optimization problems, includ-
ing the LP problem. The following are some instances, in conjunction with feasible
region P .

Example 2.4.1. In Fig. 2.4, Nx is an interior point of P , and hence any direction is
feasible at it.

Example 2.4.2. In Fig. 2.5, Nx is a boundary point of P . It is seen that d 3; d 4 are
feasible directions at Nx, but d 1; d 2 are not.

Example 2.4.3. In Fig. 2.6, Nx is a vertex of P . Any direction, e.g., d 4 or d 5, within
the angle area between d 6 and d 7 (which are respectively along two sides of P ) is
feasible at Nx. Vectors d 1; d 2; d 3 are not feasible.

Let d be a feasible search direction. It is possible to maintain feasibility of some
new iterate Ox. In order for Ox to be close to an optimal solution, it is needed to take
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x̂

d3 d6

d7
d5

d1 d4

d2 x̄

P

Fig. 2.6 d4; d5, d6; d7 are
feasible at Nx, but d1; d2; d3

not

into account the objective function. To this end, it might be well to consider the
following problem:

min f D cT x;

s:t: aT
i x � bi ; i D 1; : : : ; m;

(2.29)

where m > n, and whose feasible region is

P D fx 2 Rn j aT
i x � bi ; i D 1; : : : ; mg:

Definition 2.4.2. Vector d satisfying condition cT d < 0 is a descent direction. If
d is also a feasible direction at Nx 2 P , it is a feasible descent direction at Nx.

It is clear that d is a feasible descent direction at Nx if and only if it is a feasible
direction and forms an obtuse angle with the objective gradient c. Once such a
direction d is available, a stepsize ˛ > 0 can be determined, and hence a new iterate
Ox 2 P , obtained by (2.28), corresponding to a smaller objective value. Then, one
iteration is complete.

It is noticeable that not all constraints affect the determination of a feasible
descent direction at a current point.

Definition 2.4.3. A constraint which is violated, or satisfied as an equality, by the
current point is an active constraint.

Aimed at a feasible point, the “active” constraint is usually defined as one
satisfied as equality, or binding at the point. But it seems to be useful to include
infeasible point by regarding a constraint violated as active.

Let us bring up (2.29) as an example. If aT
i Nx D b, then aT

i x � b is active at
Nx; if, otherwise, aT

i Nx > b, then aT
i x � b is not active at that point. So, the current

point is on a boundary of an active constraint. From the simple instances given in
the preceding figures, it is seen that a feasible descent direction can be determined
by taking into account active constraints only.

In practice, the preceding definition for active constraint does not come up to
expectations, as a current point close to boundary could lead to too small stepsize,
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and hence insignificant progress. In view of this, Powell (1989) proposes the so-
called “�-active” constraint, where � is a small positive number. For example, if
aT

i Nx � b � �, then aT
i x � b is an �-active constraint at Nx; whereas it is not if

aT
i Nx � b > �.

The LP problem can be solved by the so-called “active set method”, which is
usually used for solving nonlinear programming problems though some scholars
prefer it to be a LP problem solver (e.g., Fletcher 1981; Hager 2002). We outline the
method in conjunction with problem (2.29) in the remainder of this section.

Assume that the current vertex Nx is an unique solution to the linear system below:

aT
i x D bi ; i 2 A;

where A is called the active set (of constraints), consisting of n indices of (total or
part) active constraints, with linearly independent gradients ai . If Nx is judged to be
optimal under some criterion, we are done; otherwise, some index p 2 A is selected
such that the n � 1 equalities

aT
i x D bi ; i 2 Anfpg; (2.30)

determines a descent edge (1-dimensional face).
In fact, since the rank of the coefficient matrix of (2.30) is n � 1, the associated

homogeneous system

aT
i d D 0; i 2 Anfpg;

has a solution d such that

d ¤ 0; cT d < 0:

It is easily verified that for ˛ � 0, all points on the ray

Ox D Nx C ˛d;

satisfy (2.30). Under the condition that the objective value is lower bounded over
the feasible region, the following stepsize is well defined:

˛ D .bq � aT
q Nx/=aT

q d D minf.bi � aT
i Nx/=aT

i d j aT
i d < 0; i 62 Ag � 0:

In fact, such an ˛ is the largest stepsize possible to maintain feasibility of Ox. Since
aT

q Ox D bq , the aT
q x � bq is an active constraint at Ox.

Consequently, setting Nx D Ox and redefining A D Anfpg [ fqg completes an
iteration of the active set method. If ˛ > 0, the new vertex corresponds to a lower
objective value. Note however that if there are multiple active constraints at the
current vertex Nx, then ˛ defined by (2.30) would vanish, so that the descent edge
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degenerates to a vertex. That is to say, the “new vertex” actually coincides with the
old, though set A changes. Such a vertex is called degenerate. In Fig. 2.6, e.g., Nx is
a degenerate vertex, at which the three edges along respective d 3; d 6; d 7 intersect.

The simplex method can be viewed as a special scheme of the active set method,
as will be discussed in Sect. 3.9. In history, however, the former emerged before the
latter from another path by fully taking advantage of the linear structure.

2.5 Heuristic Characteristic of Optimal Solution

From the graphic approach demonstrated in Fig. 2.3, it is seen that the optimal
solution to the LP problem is attained at a vertex of the feasible region. It is
imaginable that if the feasible region has a side going through the vertex, which
is parallel to objective contour lines, then the whole side corresponds the optimal
set, associated with the same optimal value.

So, the solution key lies on how to determine lines intersecting at an optimal
vertex. In other words, it is only needed to know which inequalities are active at an
optimal solution. Once these active inequalities are known, what left to do is just to
solve an linear system; for the instance in Fig. 2.3, the optimal solution was quickly
calculated through solving the system (2.27).

Thereby, we make the observation that normal directions (pointing to the interior
of the feasible region) of lines AB and BC, intersecting at the optimal vertex B ,
form the largest angles with the parallel shifting direction of the contour line BF,
among all the lines.

Now turn to the more general minimization problem

min f D cT x;

s:t: Ax � b;
(2.31)

where A 2 Rm�n; c 2 Rn; b 2 Rm; m > 1. Note that constraints here are all
inequalities of “�” type.

We could imagine analogously in the space of multiple dimensions. Now
the constraint inequalities correspond to half spaces, and vertices correspond to
intersection points formed by half spaces. What we should do is to examine
angles between normal directions and parallel shifting direction of the contour
plane. For the minimization problem, the shifting direction is the negative gradient
direction of the objective function. This leads to the following plausible statement
(Pan 1990).

Proposition 2.5.1 (Heuristic characteristic of optimal solution). Gradients of
active constraints at an optimal solution of a minimization problem tend to form
the largest angles with the negative objective gradient.
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It is now needed to quantize magnitude of the angles. If we denote the i th row
vector of A by NaT

i , the cosine of the angle between the i th constraint gradient and
negative objective gradient is then

cos < Nai ; c >D �NaT
i c=.k Nai kkck/:

For simplicity, we ignore the constant factor 1=kck and introduce the following

Definition 2.5.1. The pivoting-index of the i th constraint is defined as

˛i D �NaT
i c=k Nai k: (2.32)

Then, we are able to compare the angles by pivoting-indices, and hence Proposi-
tion 2.5.1 may be reformulated as

Gradients of active constraints at an optimal solution tend to have the smallest
pivoting-indices.

Example 2.5.1. Investigate problem (1.2) via pivoting-indices:

min f D �2x � 5y;

s:t: � 2x � 3y � � 12;

� x � y � � 5;

� y � � 3;

x; y � 0:

(2.33)

Answer Calculate indices of the constraints, and put them in the following table
in the order of increasing pivoting-indices:

Constraints ˛i

�2x � 3y � �12 �5:26

�y � �3 �5:00

�x � y � �5 �4:95

x � 0 2:00

y � 0 5:00

From the preceding table, it is seen that �2x � 3y � �12 and �y � �3

are the two constraints with the smallest pivoting-indices. Thus, the two are active
constraints at an optimal solution. This immediately leads to solving system (2.27),
as coincides with the outcome from the graphic approach.

If Proposition 2.5.1 were true in general, solving the LP problem amounts
to solving a system of linear equations by O.m3/ basic arithmetics, in contrast
to existing iterative methods (see Sect. 3.8)! Unfortunately, the characteristic of
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Fig. 2.7 The normal vectors
(pointing to the interior of the
polyhedron) of planes ABC,
ABD and CBD form the most
obtuse three angles with the
negative objective gradient
�c. But the optimal vertex is
not their intersection B, but A,
the intersection of planes
ABC, ABD and (vertical) EAF

optimal solution is only heuristic. Counterexamples are easily constructed. If adding
a constraint x C 2y � 10 to (1.2) (see Fig. 2.3), e.g., it is then clear that the added
constraint is not active at the optimal solution, though its gradient forms the largest
angle with the objective gradient (with pivoting-index �5:37); in fact, added is a
redundant constraint, not affecting the feasible region at all. It is also not difficult
to construct counterexamples without redundant constraint. Someday in the Fall
of 1986 when the author was visiting the Mathematics Department of University
of Washington, after he talked with Professor Rockafellar about his idea on the
characteristic of an optimal solution, the latter quickly he showed a counterexample
by sketching on a piece of paper, as is seen in Fig. 2.7.

For all that, Proposition 2.5.1 might still offer some clue toward optimal solution,
shedding a light on LP research. Such a trick well be referred to as “the most-obtuse-
angle heuristics” in this book.

In some cases, in fact, it is possible to detect unboundedness of a problem simply
from signs of pivoting-indices.

Theorem 2.5.1. Assume that the feasible region is nonempty. If pivoting-indices of
constraints are all nonnegative, then problem (2.31) is unbounded.

Proof. By contradiction. Assume that the problem is bounded under the assump-
tions. It follows that

cT v � 0; 8 v 2 fv 2 Rn j Av � 0g: (2.34)

In fact, there is a vector v such that

Av � 0; cT v > 0: (2.35)

Thus, for any ˛ � 0 and feasible solution Nx, vector x D Nx C ˛v satisfies Ax � b,
that is, v is an unbounded direction. Further, it is known from (2.35) that
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Fig. 2.8 Unbounded problem

cT x D cT Nx C ˛cT v ! 1; .as ˛ ! 1/;

which contradicts that (2.31) is upper bounded. Therefore, (2.34) holds.
Thus, according to Farkas’ Lemma 2.1, there is y � 0 such that

�c D AT y;

premultiplying which by �cT gives

0 < cT c D �yT Ac:

Hence Ac � 0 follows from nonnegativeness of pivoting-indices. This implies that
the right-hand side of the preceding is less than or equal to 0, as is a contradiction.
Therefore, the problem is unbounded. ut

An alternative proof of the preceding Theorem is via showing �c to be an
unbounded direction of the feasible region. The following Corollary gives a
necessary condition for the existence of an optimal solution.

Corollary 2.5.1. If there is an optimal solution, then there is at least one constraint
bearing negative pivoting-index.
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Example 2.5.2. Investigate the following LP problem by pivoting-indices:

min f D �x � y ˛i

s:t: 2x � y � �3 0:71

�3x C 4y � 4 0:20

2x C 2:5y � 5 1:41

�2x C 4y � �8 0:45

y � 1:2 1:00

x � 0 1:00

y � 0 1:00

(2.36)

Answer Calculate indices of the constraints, and fill in the right-hand side of the
preceding table. According to Theorem 2.5.1, the problem is unbounded since all
indices are nonnegative (see Fig. 2.8).



Chapter 3
Simplex Method

The simplex method is an efficient and widely used LP problem solver. Since
proposed by George B. Dantzig in 1947, it has been dominating this area for more
than 60 years.

The basic idea behind the simplex method is quite simple. In geometric words, it
moves from a vertex to an adjacent vertex, while improving the objective value, until
reaching an optimal vertex. Such doing is based on Theorem 2.3.2, guaranteeing the
existence of a basic optimal solution if an optimal solution exists. It seems to be
natural to hunt for an optimal solution among vertices in the feasible region, as it
usually involves infinitely many point but only finitely many vertices (no more than
C m

n ). So, such a strategy shrinks the hunting scope from the whole feasible region
to a finite subset.

The idea may be traced back to as early as Fourier (1823). It was materialized
algebraically by Dantzig (1951a). In this chapter, the simplex method will be
presented in a tableau form first, then it is revised to a more applicable version.
Discussed will also be related topics, such as how to get the method started,
finiteness problem and finite pivot rules, and computational complexity. The last
section will comment on features of the method.

3.1 Simplex Tableau

We begin with introduction of the so-called “simplex tableau” for problem (1.10).
In Sect. 1.6, we already obtained the canonical form (1.11) of its constraint system,
without touching the objective function at all. Now we put the objective function in
the equation form

x1 C 2x2 � x4 C x5 � f D 0;

where f is called objective variable, at the bottom of the constraint system. The
according tableau is

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__3,
© Springer-Verlag Berlin Heidelberg 2014
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62 3 Simplex Method

x1 x2 x3 x4 x5 f RHS

1 2=11 �4=11 7=11

1 15=11 �19=11 14=11

1 1=11 9=11 9=11

1 2 �1 1 �1

Then we eliminate the nonzero entries, corresponding to pivot columns (associ-
ated with variables x1; x2; x3), in its bottom (objective) row. To do so, add �1 times
of the first row to the bottom row first:

x1 x2 x3 x4 x5 f RHS

1 2=11 �4=11 7=11

1 15=11 �19=11 14=11

1 1=11 9=11 9=11

2 �13=11 15=11 �1 �7=11

then add �2 times of row 2 to the bottom row:

x1 x2 x3 x4 x5 f RHS

1 2=11 �4=11 7=11

1 15=11 �19=11 14=11

1 1=11 9=11 9=11

�43=11 53=11 �1 �35=11

where the north-west corner is the unit matrix, corresponding to zero entries in the
bottom row. Thereby, the tableau offers not only a basic solution

x1 D 7=11; x2 D 14=11; x3 D 9=11; x4 D x5 D 0; (3.1)

but also a reduced form of the objective function over the feasible region. Note that
the solution is a basic feasible solution, associated with the objective value 35=11,
which is equal to the opposite number of the south-east corner entry.

The same tableau may be obtained otherwise by putting coefficients of the
constraint system and of the objective function together to form an initial tableau,
then applying the relevant Gauss-Jordan elimination.

Such a tableau is called simplex tableau, whose general form is as shown by
Table 3.11.

The associated terms coincide with those the same named for the canonical form
of the system Ax D b (Sect. 1.6):

1It is always possible to arrange the unit matrix at the north-west corner of the simplex tableau by
column exchanges. Practically, however, this is not needed, and the matrix corresponding to basic
variables is usually a permutation matrix.
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Table 3.1 Simplex tableau
xj1 xj2 � � � xjm xjmC1

� � � xjn f RHS

1 Na1 jmC1
� � � Na1 jn

Nb1

1 Na2 jmC1
� � � Na2 jn

Nb2

: : :
:
:
:

:
:
:

:
:
:

:
:
:

1 Nam jmC1
� � � Nam jn

Nbm

NzjmC1
� � � Nzjn �1 � Nf

Variables (components) corresponding to the unit matrix are basic variables
(components), and the rest are nonbasic variables (components). The basic and
nonbasic index sets

B D fj1; : : : ; jmg; and N D AnB:

are basis and nonbasis, respectively. The sets of basic and nonbasic variables are
also called basis and nonbasis. The importance of the simplex tableau lies in that it
gives a basic solution NxB D NbI NxN D 0. If NxB � 0, the solution and tableaus are
basic feasible solution and feasible (simplex) tableau, respectively. If the objective
function attains the minimum value over the feasible region, the solution and tableau
are said to be basic optimal solution and optimal (simplex) tableau.

In addition, NzN in the simplex tableau is termed reduced costs (coefficients).
The opposite number of the south-east corner entry gives the according objective
value Nf .

Throughout this book, it is stipulated that the bottom row of a simplex tableau
always corresponds to the objective function. It will be seen that the f column does
not change in solution process by the simplex method, and hence can be omitted.
However, it is indispensable in the context of the“reduced simplex method”,
presented in Chap. 15.

3.2 Simplex Method: Tableau Form

In the previous section, a simplex tableau of the LP problem (1.10) together with the
associated basic feasible solution (3.1) were obtained. But it can no not be asserted
that the solution is optimal, since the reduced cost of variable x4 is negative. As the
value of x4 increases from 0 while the value of x5 fixed at 0, in fact, the objective
function would decrease further, reaching a lower value than the current.

The new value of x4 should be as large as possible, so that the associated
objective value becomes as low as possible, subject to maintaining nonnegativity
of corresponding values of x1; x2; x3, satisfying

8<
:

x1 D 7=11 � .2=11/x4 � 0;

x2 D 14=11 � .15=11/x4 � 0;

x3 D 9=11 � .1=11/x4 � 0;

(3.2)
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The preceding set of inequalities are equivalent to

8<
:

x4 � 7=2

x4 � 14=15

x4 � 9

whose solution set is

x4 � minf7=2; 14=15; 9g D 14=15:

Thereby, Nx4 D 14=15 is the largest possible value taken by x4. Substituting it to (3.2)
gives the new feasible solution

Nx D .7=15; 0; 11=15; 14=15; 0/T ; (3.3)

corresponding to objective value Nf D �7=15 lower than 35=11.
The according new simplex tableau is obtained by taking entry 15=11 at row 2

and column 4 as the pivot. To this end, firstly multiply row 2 by 11=15 to turn the
pivot to 1, leading to

x1 x2 x3 x4 x5 f RHS

1 2=11 �4=11 7=11

11=15 1 �19=15 14=15

1 1=11 9=11 9=11

�43=11 53=11 �1 �35=11

Then add �2=11, �1=11 and 43=11 times of row 2 to rows 1, 3 and 4,
respectively, giving the new simplex tableau

x1 x2 x3 x4 x5 f RHS

1 �2=15 �2=15 7=15

11=15 1 �19=15 14=15

�1=15 1 14=15 11=15

43=15 �2=15 �1 7=15

which clearly corresponds to the new basic feasible solution (3.3).
As the reduced cost, associated with variable x5, in the objective line is negative,

still it cannot be asserted that the new solution is optimal. Similarly as in the previous
step, we consider the following set of inequalities to determine the new value of x5

that can be increased to and an associated pivot:

8<
:

x1 D 7=15 C .2=15/x5 � 0

x4 D 14=15 C .19=15/x5 � 0

x3 D 11=15 � .14=15/x5 � 0
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Since coefficients of x5 in the first two inequalities are positive, the according values
of x1 and x4 remain nonnegative as x5 increases from 0, while x2 is fixed on zero. It
is therefore only needed to consider the third inequality, associated with the negative
coefficient of x5. Setting x3 D 0 in the third equation gives x5 D 11=14, leading to
the basic feasible solution

Nx D .4=7; 0; 0; 27=14; 11=14/T ; (3.4)

associated with objective value Nf D �4=7 lower than �7=15.
To obtain the associated simplex tableau, it is only needed to enter x5 to and drop

x3 from the basis by taking the entry 14=15 at row 3 and column 5 as the pivot.
Multiply row 3 by 15=14 gives

x1 x2 x3 x4 x5 f RHS

1 �2=15 �2=15 7=15

11=15 1 �19=15 14=15

�1=14 15=14 1 11=14

43=15 �2=15 �1 7=15

Then add 2=15, 19=15 and 2=15 times of row 3 to rows 1, 2 and 4, respectively,
leading to

x1 x2 x3 x4 x5 f RHS

1 �1=7 1=7 4=7

9=14 19=14 1 27=14

�1=14 15=14 1 11=14

20=7 1=7 �1 4=7

where reduced costs in the bottom row are all nonnegative. As will be proved a
little later, it is now can be asserted that the corresponding basic feasible solution is
optimal, which is just (3.4), and we are done.

Now turn to the general standard LP problem (1.7). Following the preceding
example, we describe an iteration by determining a pivot, and then updating the
tableau by relevant elementary transformations.

Assume at the current iteration that we are faced with the feasible Tableau 3.1,
the right-hand side of which gives the basic feasible solution

NxB D Nb � 0; NxN D 0; (3.5)

associated with the objective value Nf equal to the opposite number of the south-east
corner entry of the tableau.

Lemma 3.2.1. If reduced costs are all nonnegative, the feasible simplex tableau is
optimal, giving a basic optimal solution.
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Proof. The simplex tableau results from a series of elementary transformations, and
hence equivalent to the original problem. Its bottom row represents equality

f D Nf C NzT
N xN : (3.6)

Assume that Qx is any feasible solution, associated with objective value Qf . Substitut-
ing it to (3.6) leads to

Qf D Nf C NzN QxN � Nf ;

where the inequality is from NzN � 0 and Qx � 0. Therefore, Nx is a basic optimal
solution. ut

The reduced costs are often called check numbers, as their sign can be used to
jude the optimality of a simplex tableau. Usually, there are negative check numbers
in the tableau.

Lemma 3.2.2. Assuming that Nzq < 0 holds for some q 2 N , and that

Nai;q � 0; i D 1; : : : ; m; (3.7)

then the LP problem is (lower) unbounded.

Proof. The simplex tableau is associated with the constraint system

xji D Nbi �
X
j 2N

Nai j xj ; i D 1; : : : ; m:

Setting xj D 0; j 2 N; j ¤ q in the preceding and combining the result with the
nonnegative constrains gives

xji D Nbi � Nai qxq � 0; i D 1; : : : ; m: (3.8)

It is known from (3.7) that the set (3.8) of inequalities hold for all xq D ˛ � 0,
associated with feasible value

Of D Nf C ˛Nzq ; (3.9)

which, since Nzq < 0, can be arbitrarily low as ˛ increases. Therefore, the problem is
lower unbounded. ut

If (3.7) does not hold, then the value that the nonbasic variable xq takes on will
be restricted by the set (3.8) of inequalities. It is not difficulty to verify that the
following rule gives the largest possible value ˛ of xq subject to (3.8).

Rule 3.2.1 (Row pivot rule) Determine a row index p and stepsize ˛ such that

˛ D Nbp= Nap q D minf Nbi= Nai q j Nai q > 0; i D 1; : : : ; mg � 0: (3.10)

which is often called minimum-ratio test.
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Setting xq D ˛ in the equation part of (3.8) gives a new basic feasible
solution, i.e.,

Oxji D Nbi � ˛ Nai q; i D 1; : : : ; mI Oxj D 0; j 2 N; j ¤ qI Oxq D ˛:
(3.11)

Taking Nap q as the pivot, the according simplex tableau is obtained by multiplying
row p by 1= Nap q to convert the pivot to 1, adding �Nai q times of row p to rows
i D 1; : : : ; m; i ¤ p, and adding �Nzq times of row p to the objective row. Finally,
.B; N / is updated by exchanging jp and q, and an iteration is complete.

It is seen from (3.9) that the associated objective value decreases strictly if ˛ > 0;
no real decrement is made if ˛ D 0.

Definition 3.2.1. If some components of Nb is equal to zero, then the associated
basic feasible solution (or tableau) is degenerate.

A LP problems is said to be nondegenerate if all basic solutions are
nondegenerate.

In degeneracy case, the stepsize ˛ defined by (3.10) could vanish, and hence
the objective function remains unchanged (see (3.9)). That is to say, the associated
“new solution” (3.11) is actually the same as the old although the basis is
changed.

In general, there are multiple choices for q, as any q with negative Nzq is eligible
to be chosen. Dantzig’s original minimum reduced cost rule is as follows.

Rule 3.2.2 (Column pivot rule) Select a column index q such that

q 2 arg min
j 2N

Nzj : (3.12)

Thus, this rule selects the column with the most negative reduced cost as the pivot
column.2 For unit increment of the nonbasic variable xq , this choice leads to the
largest amount of decrease in the objective value.

The overall steps are summarized to the following algorithm (Dantzig 1947).

Algorithm 3.2.1 (Simplex algorithm: tableau form). Initial: a feasible simplex
tableau of the form Table 3.1. This algorithm solves the standard LP prob-
lem (1.7).

1. Determine a pivot column index q 2 arg minj 2N Nzj .
2. Stop if Nzq � 0.
3. Stop if I D fi D 1; : : : ; m j Nai q > 0g D ;.
4. Determine a pivot row index p 2 arg mini2I

Nbi = Naiq .
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Go to Step 1.

2Any choice is eligible if there is a tie when the number of the most negative reduced costs is more
than one. Similarly below.
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Theorem 3.2.1. Under the nondegeneracy assumption, the simplex algorithm ter-
minates either at

(i) Step 2, generating a basic optimal solution; or at
(ii) Step 3, detecting lower unboundedness of the problem.

Proof. Note that there are infinitely many basic feasible solutions. If is clear
that Algorithm 3.2.1 generates a sequence of basic feasible solutions, while the
associated objective value decreases, due to the nonnegative stepssize ˛. Under
the nondegeneracy assumption, the stepssize ˛ is positive, and hence the objective
value decreases strictly in each iteration. In the solution process, therefore, any
basic solution can only appear once at most. So, infiniteness of the solution process
implies that there are infinitely many basic feasible solutions, as is a contradiction.
Therefore, Algorithm 3.2.1 terminates.

The meanings of the exits of the Algorithm 3.2.1 comes from Lemmas 3.2.1
and 3.2.2. ut

It should be aware that the nondegeneracy assumption is beyond reality at all. As
practical problems are almost always degenerate, termination of the simplex Algo-
rithm 3.2.1 is actually not guaranteed. In other words, the possibility is not ruled out
that indices enter and leave the basis infinitely many times. In fact, few instances that
cannot be solved by the simplex algorithm had been constructed (we will handle this
topic in Sects. 3.6 and 3.7). Even so, the possibility for not terminating is very rare,
so as dose not matter to broad applications of the simplex algorithm.

A simplex tableau is nothing but a concise expression of a standard LP problem.
As they represent problems equivalent to the original problem itself, all the tableaus
created by the simplex algorithm are viewed as equivalent. Recursive formulas
between a simplex tableau and its predecessor are listed below:

1. The objective row

ˇ D �Nzq= Nap q;
Of D Nf � ˇ Nbp;

Ozj D Nzj C ˇ Nap j ; j 2 N;

Ozji D
�

ˇ i D p;

0 i D 1; : : : ; m; i ¤ p:

(3.13)

2. The right-hand side

˛ D Nbp= Nap q;

Obi D
� Nbi � ˛ Nai q i D 1; : : : ; m; i ¤ p;

˛ i D p:

(3.14)
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3. Entries of the constraint matrix

Oat;j D

8̂
<̂
ˆ̂:

0; t D 1; : : : ; m; t ¤ pI j D q:

1; t D pI j D q;

Nat j � . Nap j = Nap q/ Nat q; t D 1; : : : ; m; t ¤ pI j 2 N; j ¤ q;

Nap j = Nap q; t D pI j 2 N; j ¤ q:

Oat ji D

8̂̂
<
ˆ̂:

0; t D 1; : : : ; mI i D 1; : : : ; m; i ¤ pI i ¤ t;

1; t D i D 1; : : : ; mI i ¤ p;

�Nat q= Nap q; t D 1; : : : ; m; t ¤ pI i D p;

1= Nap q; t D i D p:

(3.15)

Example 3.2.1. Solve the following problem by Algorithm 3.2.1:

min f D �4x1 � 3x2 � 5x3;

s:t: 2x1 C x2 C 3x3 C x5 D 15;

x1 C x2 C x3 C x4 D 12;

�2x1 C x2 � 3x3 C x7 D 3;

2x1 C x2 Cx6 D 9;

xj � 0; j D 1; : : : ; 7:

Answer Initial: the following feasible simplex tableau can be directly obtained
from the problem:

x1 x2 x3 x4 x5 x6 x7 RHS

2 1 3* 1 15

1 1 1 1 12

�2 1 �3 1 3

2 1 1 9

�4 �3 �5

Iteration 1:

1. minf�4; �3; �5g D �5 < 0; q D 3.
3. I D f1; 2g ¤ ;.
4. minf15=3; 12=1g D 15=3; p D 1.
5. Take 3 in row 1 and column 3 as the pivot (marked by “*”, the same below).
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Multiply row 1 by 1=3, then add �1; 3; 5 times of row 1 to rows 2,3,5, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2=3 1=3 1 1=3 5

1=3 2=3 1 �1=3 7

2* 1 1 18

2 1 1 9

�2=3 �4=3 5=3 25

Iteration 2:

1. minf�2=3; �4=3; 5=3g D �4=3 < 0; q D 2.
3. I D f1; 2; 3; 4g ¤ ;.
4. minf5=.1=3/; 7=.2=3/; 18=2; 9=1g D 9=1; p D 3.
5. Multiply row 3 by 1=2, then add �1=3; �2=3; �1; 4=3 times of row 3 to rows

1,2,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2=3 1 1=6 �1=6 2

1=3 1 �2=3 �1=3 1

1 1=2 1=2 9

2* �1=2 1 �1=2 0

�2=3 7=3 2=3 37

Iteration 3:

1. minf�2=3; 7=3; 2=3g D �2=3 < 0; q D 1.
3. I D f1; 2; 4g ¤ ;.
4. minf2=.2=3/; 1=.1=3/; 0=2g D 0; p D 4.
5. Multiply row 4 by 1=2, then add �2=3; �1=3; 2=3 times of row 4 to rows 1,2,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=3 �1=3 2

1 �7=12 �1=6 �1=4 1

1 1=2 1=2 9

1 �1=4 1=2 �1=4

13=6 1=3 1=2 37

Now all reduced costs in the preceding tableau are nonnegative, and hence the
basic optimal solution and associated objective value are, respectively,

Nx D .0; 9; 2; 1; 0; 0; 0/T ; Nf D �37:
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It is seen from the preceding example that the tableau in the second iteration
already attained the basic optimal solution, but an additional iteration was per-
formed, due to the existence of a negative reduced cost. This occurred because of
degeneracy leading to a zero stepsize. So, the condition that reduced costs are all
nonnegative is sufficient but not necessary for optimality.

3.3 Start-Up of the Simplex Method

Algorithm 3.2.1 must start from a feasible simplex tableau. In Example 3.2.1,
there is a feasible simplex tableau available, as is not the case in general. A
so-called Phase-I procedure is usually carried out to provide an initial feasible
simplex tableau (if any), then Algorithm 3.2.1 is used to achieve optimality or
detect unboundedness of the problem. Thus, the simplex algorithm described in
the previous section is actually a “Phase-II” procedure. A standard LP problem is
usually solved by the two procedures in succession, referred to as two-phase simplex
method. In this section, a classical Phase-I procedure using artificial variables will
be presented first; described is then a closely related start-up method, the so-called
“big M”.

Assume that all components of the right-hand side are nonnegative, i.e.,

bi � 0; i D 1; : : : ; m:

If not so, multiply each constraint equation with negative right-hand side by �1

before hand. Then construct an auxiliary problem as follows.
For each i D 1; : : : ; m, introduce a nonnegative artificial variable xnCi to the

i th equation, and take the sum of all artificial variables as the auxiliary objective
function, i.e.,

f 0 D
mX

iD1

xnCi :

Using the constraint system, we eliminate all artificial variables from the auxiliary
objective, resulting in

min f 0 D Pm
iD1 bi � .

Pm
iD1 ai1/x1 � � � � � .

Pm
iD1 ain/xn;

s:t: a11x1 C a12x2 C � � � C a1nxn C xnC1 D b1;

a21x1 C a22x2 C � � � C a2nxn C xnC2 D b2;
:::

am1x1 C am2x2 C � � � C amnxn C xnCm D bm;

xj � 0; j D 1; : : : ; n C m:

(3.16)
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Clearly, there is an available feasible simplex tableau to the preceding auxiliary
program, corresponding to the basic feasible solution

x0 D .0; : : : ; 0„ ƒ‚ …
n

; b1; : : : ; bm„ ƒ‚ …
m

/T � 0:

Thereby, the program can be solved by Algorithm 3.2.1.
Regarding the outcome, we have the following.

Theorem 3.3.1. The auxiliary program has an optimal solution, associated with a
nonnegative optimal value:

(i) If the optimal value is strictly greater than zero, the original problem is
infeasible;

(ii) If the optimal value is equal to zero, the first n components of the optimal
solution to the auxiliary program form a feasible solution to the original
problem.

Proof. Clearly, there exists a feasible solution to problem (3.16). Since artificial
components of all feasible solutions are nonnegative, all feasible values of the
auxiliary program are nonnegative too. Therefore, there exists an optimal solution,
associated with a nonnegative objective value:

(i) If the optimal value is strictly greater than zero, it can be asserted that
the original problem is infeasible, because if it had a feasible solution
Nxj � 0; j D 1; : : : ; n, then

Nx1; : : : ; Nxn; NxnC1 D � � � D NxnCm D 0

clearly satisfied constraints of (3.16), and hence was a feasible solution
to (3.16), corresponding to auxiliary objective value zero, as is a contradiction.

(ii) If the optimal value is zero, then artificial components of the optimal solution
are 0. From substituting it to the constraints of (3.16), it is therefore seen that
its first n components just satisfy the constraints of the original problem, and
hence constitute a feasible solution to the latter. ut

Corollary 3.3.1. The original problem is feasible if and only if the optimal value of
the auxiliary program vanishes.

Once a feasible solution to the original problem is obtained by the preceding
approach, a feasible simplex tableau can be yielded from the optimal auxiliary
tableau by the “following-up steps” below. These steps come from the fact that
setting all the artificial variables to zero in the system, corresponding to the auxiliary
optimal tableau, leads to a system equivalent to the original one.
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Following-up steps:

(A) Delete columns, associated to all nonbasic artificial variables (which can be
deleted once the corresponding artificial variable leaves the basis).

(B) Go to step D if there is no basic artificial variable.
(C) Delete the row, associated to a basic artificial variable, if all its nonbasic entries

are zero (see the Note below); otherwise, take a nonzero entry of it as pivot
to let the artificial variable become nonbasic, and then delete the associated
column. This is repeated until no artificial variable is basic.

(D) Cover the auxiliary objective row by the original costs, and then eliminate
all basic entries of this row, giving a feasible simplex tableau to the original
problem.

Note: In step C, the row is deleted because substituting 0 to the associated
artificial variable turns the corresponding equation to an identity, as reflects
dependence of the original constraint equations. So, the method can get rid of such
dependency.

The preceding can be put into the following algorithm.

Algorithm 3.3.1 (Phase-1: artificial variable). This algorithm finds a feasible
tableau.

1. Introduce artificial variables, and construct auxiliary program of form (3.16).
2. Call the simplex Algorithm 3.2.1.
3. If the optimal value of the auxiliary program is zero, create a feasible tableau via

“Following-up steps”.
4. The original problem is infeasible if the optimal value of the auxiliary program

is strictly greater than zero.

Note that if a constraint matrix includes some columns of the unit matrix, such
columns should be employed to reduce the number of artificial variables. The
preceding discussions are still valid, though the auxiliary objective function involves
artificial variables only.

Example 3.3.1. Find a feasible simplex tableau to the following problem:

min f D �x1 C x2 � 2x3;

s:t: x1 � 3x2 � 2x3 C x4 D �4;

x1 � x2 C 4x3 � x5 D 2;

�3x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; : : : ; 6:

Answer Construct auxiliary program: the first constraint equation is multiplied
by �1 to turn its right-hand side to nonnegative; as the coefficients of x6 give a unit
vector .0; 0; 1/T , only two artificial variables x7; x8 are introduced.
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min f 0 D x7 C x8;

s:t: �x1 C 3x2 C 2x3 � x4 C x7 D 4;

x1 � x2 C 4x3 � x5 C x8 D 2;

�3x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; : : : ; 8:

Put the preceding auxiliary program into the following tableau:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 3 2 �1 1 4

1 �1 4 �1 1 2

�3 1 1 1 8

1 1

Turn the preceding to a simplex tableau: eliminate nonzeros in x7 and x8 columns
at the bottom (objective) row by adding �1 times of row 1 and of row 2 to that row:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 3 2 �1 1 4

1 �1 4* �1 1 2

�3 1 1 1 8

�2 �6 1 1 �6

which is a feasible simplex tableau to the auxiliary program. Call Algorithm 3.2.1
to solve it:

Iteration 1:

1. minf0; �2; �6; 1; 1g D �6 < 0; q D 3.
3. I D f1; 2; 3g ¤ ;.
4. minf4=2; 2=4; 8=1g D 1=2; p D 2.
5. Multiply row 2 by 1=4, and then add �2; �1; 6 times of row 2 to rows 1,3,4,

respectively

(Erase x8 column after artificial variable x8 becomes nonbasic):

x1 x2 x3 x4 x5 x6 x7 RHS

�3=2 7=2* �1 1=2 1 3

1=4 �1=4 1 �1=4 1=2

�13=4 5=4 1=4 1 15=2

3=2 �7=2 1 �1=2 �3
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Iteration 2:

1. minf3=2; �7=2; 1; �1=2g D �7=2 < 0; q D 2.
3. I D f1; 3g ¤ ;.
4. minf3=.7=2/; .15=2/=.5=4/g D 6=7; p D 1.
5. Multiply row 1 by 2=7, and then add 1=4; �5=4; 7=2 times of row 1 to rows

2,3,4, respectively

(Erase x7 column after artificial variable x7 becomes nonbasic):
Now, all the artificial variables become nonbasic, hence reached is the optimal

objective value 0 of the auxiliary program.
Covering the bottom row by original costs leads to

x1 x2 x3 x4 x5 x6 RHS

�3=7 1 �2=7 1=7 6=7

1=7 1 �1=14 �3=14 5=7

�19=7 5=14 1=14 1 45=7

�1 1 �2

Adding �1 times of row 1 and 2 times of row 2 to the bottom row gives a feasible
tableau of the original problem, i.e.,

x1 x2 x3 x4 x5 x6 RHS

�3=7 1 �2=7 1=7 6=7

1=7 1 �1=14 �3=14 5=7

�19=7 5=14 1=14 1 45=7

�2=7 1=7 �4=7 4=7

Thus, the preceding can be taken as an initial feasible tableau to get Algo-
rithm 3.2.1 started to solve the original problem. Solving LP problems usually
requires two phases, both of which are carried out using the simplex algorithm.

On the other hand, it seems to be attractive to solve LP problems in a single
phase, as leads to the following so-called big-M method.

The according auxiliary program shares the same constraints as before
with (3.16), while its objective function is the sum of the original objective function
and M times of the sum of all the artificial variables, i.e.,

min f 0 D c1x1 C c2x2 C � � � C cnxn C M.xnC1 C xnC2 � � � C xnCm/;

s:t: a11x1 C a12x2 C � � � C a1nxn C xnC1 D b1;

a21x1 C a22x2 C � � � C a2nxn C xnC2 D b2;
:::

am1x1 C am2x2 C � � � C amnxn C xnCm D bm;

xj � 0; j D 1; : : : ; n C m:
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Artificial variables in the objective function are eliminated using the constraint
system. As a result, there will be a feasible simplex tableau to the auxiliary program,
which can be taken as an initial one to get the simplex algorithm started.

The reason for using such an auxiliary objective function is as follows. Its
artificial variable part may be regarded as a “penalty function”, where M serves
as a “penalty factor”, is a sufficiently large positive number (far larger than the
absolute value of any number involved in the computations). The big M inflicts
penalty on possible increase of values of artificial variables, consequently forcing
them minimized prior to the original objective.

It is difficult however to determine a suitable M in advance. Too large M could
lead to bad numerical stability, while too small M degrades method’s effect. It
depends not only on the problem to be solved, but also the computer used. A
practicable way is to take M as a parameter in the solution process.

To demonstrate, we again bring up Example 3.3.1. Its auxiliary program is of the
following form:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 3 2 �1 1 4

1 �1 4 �1 1 2

�3 1 1 1 8

�1 1 �2 M M

Add M times of row 1 and of row 2 to the objective row, giving

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 3 2 �1 1 4

1 �1 4* �1 1 2

�3 1 1 1 8

�1 1 � 2M �2 � 6M M M �6M

Thereby, we can get the simplex algorithm stated from the preceding tableau. In
selection of a pivot column index q, however, it should be noted that M is so large
that the sign of reduced costs depends upon coefficients of M only. In the preceding
tableau, e.g., x3 column is selected as the pivot column, as term M’s coefficients are
0; �2; �6; 1; 1 for costs of nonbasic variables x1 through x5 respectively, and

minf0; �2; �6; 1; 1g D �6; q D 3:

Row 2 is selected as the pivot row by the minimum-ratio test below:

minf4=2; 2=4; 8=1g D 1==2; p D 2:

Then elementary transformations are performed to make a corresponding basis
change, completing the first iteration.
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If the process continued, it can be found that sequences of iterates created by
Big M method and the two-phase simplex method are actually the same. This is
not surprising because, as mentioned previously, the big “penalty factor” M forces
values of artificial variables vanishing first before pursuing optimality of the original
problem–the two methods are essentially the same. Practically, however, the two-
phase method is certainly preferable to the big M method, as it involves no any
parameter, and easier to realize.

Nevertheless, the auxiliary programs, presented previously in this section, are
usually found in textbooks only. If the number m of rows is large, the scale of the
programs would become unacceptable large. A somehow practicable approach is to
use an auxiliary program with a single artificial variable as follows.

Introducing artificial variable xnC1, we consider the following auxiliary program
instead:

min f 0 D xnC1;

s:t: a11x1 C a12x2 C � � � C a1nxn C b1xnC1 D b1;

a21x1 C a22x2 C � � � C a2nxn C b2xnC1 D b2;
:::

am1x1 C am2x2 C � � � C amnxn C bmxnC1 D bm;

xj � 0; j D 1; : : : ; n C 1;

(3.17)

to which there is a feasible solution

x0 D .0; : : : ; 0„ ƒ‚ …
n

; 1/T � 0:

Results similar to Theorem 3.3.1 and Corollary 3.3.1 hold to the preceding auxiliary
program. On the other hand, using the following auxiliary objective function leads
to an analogue to the big M method:

f 0 D c1x1 C c2x2 C � � � C cnxn C M xnC1:

A drawback of such auxiliary programs seems to be lack of a explicit feasible
simplex tableau. This will be seen not essential, however. In Sect. 13.2, we will
present other Phase-I methods as well as a more practicable single artificial variable
approach.

Now it is known that the answer to a LP problem must be one of the following
three cases:

(i) Infeasible problem: there exists no feasible solution;
(ii) Unbounded problem: there exists a feasible solution but the feasible value is

lower unbounded over the feasible region;
(iii) There exists an optimal basic solution.
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In principle, a two-phase simplex method can be used to solve any LP problem,
achieving an basic optimal solution, if any, or detecting infeasibility or unbounded-
ness, otherwise.

3.4 Revised Simplex Tableau

Simplex tableau is not an unique tool to implement the simplex method. In fact,
getting rig of the tableau can lead to a more compact variant of the simplex method.
For this purpose, we will employ vectors or matrices more from now on.

The standard LP problem (1.8) may be represented by the following tableau:

xT f RHS
A b

cT �1

Assume that through some elementary transformations, the preceding table becomes
the simplex tableau Table 3.1, which may be succinctly put into

xT
B xT

N f RHS

I NN Nb
NzT
N �1 � Nf

(3.18)

Unless specified otherwise, thereafter the associated basic and nonbasis index sets
are assumed to be

B D fj1; � � � ; jmg; N D AnB D fjmC1; � � � ; jng: (3.19)

Columns corresponding to B are said to be basic, and those to N nonbasic. Without
confusion, B and N will also be used to respectively denote submatrices consisting
of corresponding columns. The two submatrices are respectively called basis matrix
and nonbasis matrix, or basis and nonbasis for short. It is clear that B is an invertible
square matrix. The simplex tableau corresponds to the basic solution

NxB D Nb; NxN D 0:

If Nb � 0; NzN � 0, then the tableau is an optimal (simplex) tableau, giving an
basic optimal solution, and the according B and N are optimal basis and optimal
nonbasis, respectively.

On the other hand, if Ax D b is premultiplied by B�1, and some transposition
of terms is made, it follows that

xB C B�1NxN D B�1b:
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Table 3.2 Equivalence between the associated quantities

Quantity Simplex tableau Relation Revised simplex tableau

Objective row NzT
N D cT

N � cT
B B�1N

Pivot column Naq D B�1aq

Right-hand side Nb D B�1b

Pivot row eT
p

NN D eT
p B�1N

Substituting the preceding to

cT
B xB C cT

N xN � f D 0

gives

.cT
N � cT

B B�1N /xN � f D �cT
B B�1b;

which can put in

xT
B xT

N f RHS
I B�1N B�1b

cT
N � cT

B B�1N �1 �cT
B B�1b

(3.20)

corresponding to basic solution NxB D B�1b; NxN D 0 (hereafter NxB D B�1b

is often said basic solution for short). The preceding, representing a problem
equivalent to the original, is called revised simplex tableau, compared to the simplex
tableau (3.18).

For simplicity, xT
B and f columns in the preceding two tableaus may be omitted,

as they remain unchanged as basis changes.

Proposition 3.4.1. Any simplex tableau and revised simplex tableau, correspond-
ing to the same basis, are equivalent.

Proof. Denote by (3.18) and (3.20) the two tableaus, having the same basis B . Since
problems represented by them are equivalent, the corresponding entries of the two
tableaus are equal. ut

Based on the preceding Proposition, Table 3.2 gives equivalence correspondence
between quantities, involved in simplex steps, of tableaus (3.18) and (3.20):

In conventional simplex context, each iteration corresponds to a basis B (or its
inverse B�1), with which any entry in a simplex tableau can be calculated from the
original data .A; b; c/. Thereby, Table 3.2 will be used as a tool to derive common
simplex variants, such as the (revised) simplex algorithm in the next section and the
dual (revised) simplex algorithm in Sect. 4.5.

Notations in this section will be employed throughout this book.
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3.5 Simplex Method

A simplex tableau has to be calculated in each iteration by the tableau simplex
Algorithm 3.2.1. But its .mC1/
.nC1/ entries are not all useful in an iteration. In
fact, only the objective row is needed for the selection of a pivot column, while the
pivot column and right-hand side needed for the determination of a pivot row. Using
B�1, therefore, a variant without any simplex tableau can be derived by calculating
the first three items in Table 3.2.

Let us consider updating B�1. Assume that pivot column index q and row index
p are already determined. Putting the nonbasic column aq in place of B’s pth
column ajp gives the new basis below:

OB D .aj1 ; : : : ; ajp�1 ; aq; ajpC1
; : : : ; ajm/: (3.21)

It is now needed to compute OB�1 to go on the next iteration.
Note that Naq D B�1aq . Taking Napq as the pivot, the according elementary

transformations amount to premultiplying the first m rows of the tableau by m 
 m

elementary matrix

Ep D

0
BBBBBBBBBBB@

1 �Na1 q= Nap q

: : :
:::

�Nap�1; q= Nap q

1= Nap q

�NapC1; q= Nap q

:::
: : :

�Nam q= Nap q 1

1
CCCCCCCCCCCA

p (3.22)

p

which may also be obtained by executing the same elementary transformations on
the unit matrix. It is seen that such a matrix, which is the same as the unit matrix
except for the pth column, is determined only by Naq . Combining (3.21) and (3.22)
gives

EpB�1 OB D Ep.B�1aj1 ; : : : ; B�1ajp�1 ; B�1aq; B�1ajpC1
; : : : ; B�1ajm/

D Ep.e1; : : : ; ep�1; Naq; epC1; : : : ; em/

D .Epe1; : : : ; Epep�1; Ep Naq; EpepC1; : : : ; Epem/ D I;
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from which the update of the basis’ inverse follows, i.e.,

OB�1 D EpB�1: (3.23)

Based on the preceding discussions and the equivalence between the simplex
tableau and revised simplex tableau, we are able to revise Algorithm 3.2.1 to the
following version (Dantzig and Orchard-Hays 1953):

Algorithm 3.5.1 (Simplex algorithm 1). Initial: .B; N /; B�1; NxB D B�1b � 0

and Nf D cT
B NxB . This algorithm solves the standard LP problem (1.8).

1. Compute NzN D cN � N T Ny; Ny D B�T cB .
2. Determine pivot column index q 2 arg minj 2N Nzj .
3. Stop if Nzq � 0 (optimality achieved).
4. Compute Naq D B�1aq .
5. Stop if Naq � 0 (unbounded problem).
6. Determine stepsize ˛ and pivot row index p such that

˛ D Nxjp = Nap q D minf Nxji = Nai q j Nai q > 0I i D 1; : : : ; mg:
7. Set Nxq D ˛, and update NxB D NxB � ˛ Naq; Nf D Nf C ˛Nzq if ˛ ¤ 0.
8. Update B�1 by (3.23).
9. Update .B; N / by exchanging jp and q.

10. Go to step 1.

The preceding, usually called revised simplex algorithm, will be referred to as
simplex algorithm 1.

In step 1, vector Ny is calculated first, then it is used to compute reduced costs NzN ,
as is referred to as pricing. Ny is called simplex multipliers (vector), whose additional
meanings will be clear later.

See Sect. 3.3 for how to provide an initial basic feasible solution (or basis). This
topic will be handled further in Chap. 13.

Example 3.5.1. Solve the following problem by Algorithm 3.5.1:

min f D �4x1 � 3x2 � 5x3;

s:t: 2x1 C x2 C 3x3 C x5 D 15;

x1 C x2 C x3 C x4 D 12;

x2 � 3x3 C x7 D 3;

2x1 C x2 C x6 D 9;

xj � 0; j D 1; : : : ; 7:

Answer Initial: B D f5; 4; 7; 6g; N D f1; 2; 3g; B�1 D I;

NxB D .15; 12; 3; 9/T ; f D 0.

Iteration 1:

1. Ny D B�T cB D .0; 0; 0; 0/T ; NzN D cN � N T Ny D .�4; �3; �5/T .
2. minf�4; �3; �5g D �5 < 0; q D 3.
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4: Na3 D B�1a3 D .3; 1; �3; 0/T :

6: ˛ D minf15=3; 12=1g D 15=3 D 5; p D 1:

7: NxB D .15; 12; 3; 9/T � 5 
 .3; 1; �3; 0/T D .0; 7; 18; 9/T ; x3 D 5;

f D 5 
 .�5/ D �25:

8: B�1 D

0
BB@

1=3

�1=3 1

1 1

0 1

1
CCA :

9: B D f3; 4; 7; 6g; N D f1; 2; 5g; NxB D .5; 7; 18; 9/T :

Iteration 2:

1. Ny D .�5=3; 0; 0; 0/T ; NzN D .�4; �3; 0/T � .�10=3; �5=3; �5=3/T

D .�2=3; �4=3; 5=3/T .
2. minf�2=3; �4=3; 5=3g D �4=3 < 0; q D 2.

4: Na2 D .1=3; 2=3; 2; 1/T :

6: ˛ D minf15; 21=2; 9; 9g D 9; p D 3:

7: NxB D .5; 7; 18; 9/T � 9 
 .1=3; 2=3; 2; 1/T D .2; 1; 0; 0/T ; x2 D 9;

f D �25 C 9 
 .�4=3/ D �37:

8: B�1 D

0
BB@

1 �1=6

0 1 �1=3

0 1=2

0 �1=2 1

1
CCA
0
BB@

1=3

�1=3 1

1 1

0 1

1
CCAD

0
BB@

1=6 �1=6

�2=3 1 �1=3

1=2 1=2

�1=2 �1=2 1

1
CCA :

9: B D f3; 4; 2; 6g; N D f1; 7; 5g; NxB D .2; 1; 9; 0/T :

Iteration 3:

1. Ny D .�7=3; 0; �2=3; 0/T ; NzN D .�4; 0; 0/T � .�10=3; �2=3; �7=3/T

D .�2=3; 2=3; 7=3/T .
2. minf�2=3; 2=3; 7=3g D �2=3; q D 1.

4: Na1 D .2=3; 1=3; 0; 2/T :

6: ˛ D minf2=.2=3/; 1=.1=3/; 0=2g D 0; p D 4:

7: NxB D .2; 1; 9; 0/T ; x6 D 0; f D �37:

8: B�1 D

0
BB@

1 �1=3

0 1 �1=6

0 1 0

0 1=2

1
CCA
0
BB@

1=6 �1=6

�2=3 1 �1=3

1=2 1=2

�1=2 �1=2 1

1
CCAD

0
BB@

1=3 0 �1=3

�7=12 1 �1=4 �1=6

1=2 1=2 0

�1=4 �1=4 1=2

1
CCA :

9: B D f3; 4; 2; 1g; N D f6; 7; 5g; NxB D .2; 1; 9; 0/T :

Iteration 4:

1. Ny D .�13=6; 0; �1=2; �1=3/T ; NzN D .0; 0; 0/T � .�1=3; �1=2; �13=6/T D
.1=3; 1=2; 13=6/T � 0.



3.5 Simplex Method 83

2. The optimal basic solution and optimal value:

Nx D .0; 9; 2; 1; 0; 0; 0/T ; Nf D �37:

If some practicable pivot rule (Chap. 11) or pricing scheme (Sect. 25.3) is used
in the simplex method, there will be a need for computing row p. In order not to
increase the number of systems to be solved, modern LP codes are often based on the
following variant, where the objective row is computed in recurrence (see (3.13)).

Algorithm 3.5.2 (Simplex algorithm 2). Initial: .B; N /; B�1; NxB D B�1b � 0,
NzN D cN � N T B�T cB and Nf D cT

B NxB . This algorithm solves the standard LP
problem (1.8).

1. Determine pivot column index q 2 arg minj 2N Nzj .
2. Stop if Nzq � 0 (optimality achieved).
3. Compute Naq D B�1aq .
4. Stop if Naq � 0 (unbounded).
5. Determine stepsize ˛ and pivot row index p such that

˛ D Nxjp = Nap q D minf Nxji = Nai q j Nai q > 0I i D 1; : : : ; mg:
6. Set Nxq D ˛, and update NxB D NxB � ˛ Naq; Nf D Nf C ˛Nzq if ˛ ¤ 0.
7. Compute �N D N T v, where v D B�T ep.
8. Update by: NzN D NzN C ˇ�N ; Nzjp D ˇ, where ˇ D �Nzq= Nap q .
9. Update B�1 by (3.23).

10. Update .B; N / by exchanging jp and q.
11. Go to step 1.

Although they are equivalent in theory, the revised Algorithms differ from
the tableau algorithm numerically. For solving large-scale LP problems, they are
certainly superior to the latter (especially when m � n, see Sect. 3.8). In fact, it
serves as a basis for designing practicable simplex variants, though the formulation
of the latter is simpler, providing a suitable tool for illustration.

Algorithm 3.5.1 was previously derived based on the equivalence of the simplex
tableau and revised simplex tableau. It may be derived alternatively by taking a
downhill edge, emanating from a current vertex, as a search direction to form a line
search scheme, as follows.

Without loss of generality, let B D f1; : : : ; mg and N D fm C 1; : : : ; ng
be respectively the basis and nonbasis, associated with basic feasible solution Nx.
Assume that a pivot column index q 2 N has been determined such that

Nzq D cq � aT
q B�T cB < 0:

Introduce vector

�x D
�

B�1aq

�eq�m

�
; (3.24)
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where eq�m is the .n � m/-dimensional unit vector with the .q � m/th component
1. It is clear that

� cT �x D cq � aT
q B�T cB D Nzq < 0: (3.25)

Therefore, ��x is a downhill with respect to cT x. Taking it as search direction
gives the following line search scheme:

Ox D Nx � ˛�x; (3.26)

where ˛ � 0 is a stepsize to be determined.
Since Nx is feasible, it holds for any ˛ � 0 that

A Ox D A Nx � ˛ŒB; N ��x D A Nx D b:

Therefore, what should do is to maximize ˛ subject to OxB � 0. When B�1aq 6� 0,
such doing results in ˛ and p such that

˛ D Nxjp =.B�1ap q/ D minf Nxji =.B�1ai q/ j B�1ai q > 0; i D 1; : : : ; mg: (3.27)

It is clear that the according new solution Ox is still feasible. In fact, it is verified that
Ox is just the basic feasible solution, associated with the new basis resulting from the
old by exchanging jp and q.

The relation between the new and old basis matrices is

OB D B C .aq � ajp /eT
p :

In view of that ajp is the pth column of B and that B�1ajp D ep and B�1aq D
Naq hold, it is not difficult to derive the following result from Sherman-Morrison
formula (Golub and Van Loan 1989):

OB�1 D B�1 � B�1.aq � ajp /eT
p B�1

1 C eT
p B�1.aq � ajp /

D
 

I � . Naq � ep/eT
p

Napq

!
B�1; (3.28)

which may serve as an update of B�1. In fact, it is easily verified that the preceding
and (3.23) are actually equivalent.

The search direction ��x, defined by (3.24), can be further investigated
geometrically. Regarding set

E D fx 2 Rn j Ax D b; x � 0; xj D 0; q ¤ j 2 N g
D fx 2 Rn j xB D B�1b � xq.B�1aq/ � 0; xq � 0; xj D 0; q ¤ j 2 N g;

(3.29)

we have the following result.



3.6 Degeneracy and Cycling 85

Proposition 3.5.1. Set E is a downhill edge, emanating from the current vertex Nx,
and ��x is its direction. If B�1aq � 0, then ��x is an (unbounded) extreme
direction.

Proof. It is clear that E is a half-line or edge, emanating from Nx. By (3.29), (3.27)
and (3.24), for any x 2 E � P it holds that

E D fx 2 Rn j xB D B�1b � xq.B�1aq/; 0 � xq � ˛; xj D 0; q ¤ j 2 N g
D fx 2 Rn j x D Nx � xq�x; xq 2 Œ0; ˛�g:

By (3.25), it is known that the associated objective value satisfies

f D cT x D cT Nx � xqcT �x D cT Nx C xq Nzq � cT Nx:

Note that (3.27) is well-defined when B�1aq 6� 0. If, in addition, Nxjp D 0, then
˛ D 0, and hence E degenerates to vertex Nx. If Nxjp > 0, hence ˛ > 0, then the
associated objective value strictly decreases with xq 2 Œ0; ˛�. Therefore, ��x is
a direction of the downhill edge E . When B�1aq � 0, it is clear that ˛ D C1
corresponds to the edge E 2 P , and hence ��x is an extreme direction. ut

Note that edge E , defined by (3.29), could degenerate to the current vertex Nx if
some component of B�1b vanishes and that the objective value is lower unbounded
over the feasible region if ��x is an extreme direction.

3.6 Degeneracy and Cycling

It was seen that a zero stepsize leads to the same basic feasible solution, and hence
the unchanged objective value. Thus, finiteness of the simple method is questionable
(see, e.g., Ryan and Osborne 1988; Wolfe 1963). Soon after its emerging, in fact,
the simplex method is found not to terminate in few cases. E.M.L. Beale (1955) and
A.J. Hoffman (1953) offered such instances independently. The following is due to
Beale.

Example 3.6.1. Solve the following problem by Algorithm 3.2.1:

min f D �3=4x4 C 20x5 � 1=2x6 C 6x7;

s:t: x1 C 1=4x4 � 8x5 � x6 C 9x7 D 0;

x2 C 1=2x4 � 12x5 � 1=2x6 C 3x7 D 0;

x3 C x6 D 1;

xj � 0; j D 1; : : : ; 7:
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Answer Initial: the following feasible tableau is available from the preceding:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=4* �8 �1 9

1 1=2 �12 �1=2 3

1 1 1

�3=4 20 �1=2 6

Iteration 1:

1. minf�3=4; 20; 1; �1=2; 6g D �3=4 < 0; q D 4.
3. I D f1; 2g ¤ ;.
4. minf0=.1=4/; 0=.1=2/g D 0; p D 1.
5. Multiply row 1 by 4, and then add �1=2; 3=4 times of row 1 to rows 2,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

4 1 �32 �4 36

�2 1 4* 3=2 �15

1 1 1

3 �4 �7=2 33

Iteration 2:

1. minf3; �4; �7=2; 33g D �4 < 0; q D 5.
3. I D f2g ¤ ;.
4. minf0=4g D 0; p D 2.
5. Multiply row 2 by 1=4, and then add 32; 4 times of row 2 to rows 1,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�12 8 1 8* �84

�1=2 1=4 1 3=8 �15=4

1 1 1

1 1 �2 18

Iteration 3:

1. minf1; 1; �2; 18g D �2 < 0; q D 6.
3. I D f1; 2; 3g ¤ ;.
4. minf0=8; 0=.3=8/; 1=1g D 0; p D 1.
5. Multiply row 1 by 1=8, and then add �3=8; �1; 2 times of row 1 to rows 2,3,4,

respectively:
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x1 x2 x3 x4 x5 x6 x7 RHS

�3=2 1 1=8 1 �21=2

1=16 �1=8 �3=64 1 3=16*

3=2 �1 1 �1=8 21=2 1

�2 3 1=4 �3

Iteration 4:

1. minf�2; 3; 1=4; �3g D �3 < 0; q D 7.
3. I D f2; 3g ¤ ;.
4. minf0=.3=16/; 1=.21=2/g D 0; p D 2.
5. Multiply row 2 by 16=3, and then add 21=2; �21=2; 3 times of row 2 to rows

1,3,4, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2* �6 �5=2 56 1

1=3 �2=3 �1=4 16=3 1

�2 6 1 5=2 �56 1

�1 1 �1=2 16

Iteration 5:

1. minf�1; 1; �1=2; 16g D �1 < 0; q D 1.
3. I D f1; 2g ¤ ;.
4. minf0=2; 0=.1=3/g D 0; p D 1.
5. Multiply row 1 by 1=2, and then add �1=3; 2; 1 times of row 1 to rows 2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �3 �5=4 28 1=2

1=3* 1=6 �4 �1=6 1

1 1 1

�2 �7=4 44 1=2

Iteration 6:

1. minf�2; �7=4; 44; 1=2g D �2 < 0; q D 2.
3. I D f2g ¤ ;.
4. minf0=.1=3/g D 0; p D 2.
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5. Multiply row 2 by 3, and then add 3; 2 times of row 2 to rows 1,4, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=4 �8 �1

1 1=2 �12 �1=2 3

1 1 1

�3=4 20 �1=2 6

It is seen that stepsizes are equally zero in all the six iterations, and the last
tableau is the same as the first one, consequently. Therefore, continuing the process
must generate the same sequence of tableaus, as is a phenomena called cycling. So,
the simplex algorithm failed to solve Beale’s problem. It is clear that such a hated
infinite case to the simplex method could occur only when degeneracy presents.

At the early days of the simplex method, some scholars thought that degeneracy
hardly happens in practice, and up to now the nondegeneracy is still frequently
assumed in theory. However, it turns out that degeneracy almost always presents
when the simplex method is applied to solving real-world LP problems. Even so,
fortunately, cycling rarely occurs, except for few artificial instances, and the simplex
method has achieved great success in practice.

The real problem caused by degeneracy seems to be stalling, as it degrades
method’s performance seriously when a large number of iterations stay at a vertex
for too long a time before exiting it. It is especially a headache for highly degenerate
problems, where vanished basic components occupy a large proportion, as leads
to a huge number of iterations. But this hard problem is only with the simplex
method using the conventional pivot rule, not with variants using rules, presented
in Chap. 11.

3.7 Finite Pivot Rule

As was shown int the previous section, the finiteness of the simplex method is not
guaranteed in general. An approach or pivot rule that turns the simplex method to a
finite one is called finite.

Is there any finite approach or pivot rule?
The answer is positive. Charnes (1952) proposed a “perturbation approach” by

adding a perturbation term to the right-hand side of the initial feasible simplex
tableau, i.e.,

w D .�; �2; : : : ; �m/T ;

where � > 0 is a sufficiently small parameter (while still using Dantzig’s original
rule for pivot column selection).
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Theorem 3.7.1. The perturbation approach is finite.

Proof. The perturbation term added to the right-hand side can be put in the form
w D I w. In any iteration, the right-hand side can be written

v
4D Nb C U w;

where U is a permutation, resulting from performing elementary transformations on
I . Note that U and I have the same rank m, and every row of U is nonzero. Firstly,
it holds that Nb � 0, because if, otherwise, Nbi < 0 for some i 2 f1; : : : ; mg, then it
follows that vi < 0, as contradicts to problem’s feasibility. Further, it is clear that
vi > 0 holds for all row indices i , satisfying Nbi > 0; on the other hand, vi > 0

also holds for all row index i , satisfying Nbi D 0, because the first nonzero of the
i th row of U is positive (otherwise, it contradicts the feasibility). Therefore, v > 0

holds. Since each tableau corresponds to a nondegenerate basic feasible solution,
there is no any possibility of cycling, hence the process terminates within finitely
many iterations. Consequently, eliminating all parameter terms in the end tableau
leads to the final tableau of the original problem. ut

The order of two vectors, determined by their first different components, is
called lexicographic order. Equal vectors are regarded as equal in the lexicographic
order. .�1; : : : ; �t / � .	1; : : : ; 	t / means that the former is less than the latter in
lexicographic order, that is, for the smallest subscript i , satisfying �i ¤ 	i , it holds
that �i < 	i . Similarly, “�” is used to denote “greater than” in lexicographic order.

Once a pivot column index q is determined, the perturbation approach amounts
to determining a pivot row index p by

p 2 arg minf. Nbi C ui 1� C ui 2�
2 C � � � C ui m�m/= Nai q j Nai q > 0I i D 1; : : : ; mg:

(3.30)

As � is sufficiently small, the preceding is equivalent to the following so-called
lexicographic rule (Dantzig et al. 1955):

p 2 arg minf. Nbi ; ui 1; ui 2; : : : ; ui m/= Nai q j Nai q > 0I i D 1; : : : ; mg; (3.31)

where ui j is the entry at the i th row and the j th column of U , and “min” is
minimization in the sense of lexicographic order.

Among existing finite rules, Bland (1977) rule draws great attention due to its
simplicity (also see Avis and Chvatal 1978).

Rule 3.7.1 (Bland rule) Among nonbasic variables, corresponding to negative
reduced costs, select the smallest-indexed one to enter the basis. When there are
multiple rows, attaining the same minimum-ratio, select the basic variable with the
smallest index to leave the basis.

Theorem 3.7.2. Bland rule is finite.
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Proof. Assume that cycling occurs with the simplex algorithm using Bland rule. If
some variable leaves the basis in a circle, it must enter the basis gain. Denote by T

the index set of such shuttling variables, and define

t D maxfj 2 T g:

Note that the stepsize is always equal to 0 in each iteration in the circle, and hence
leads to the same basic feasible solution; besides, the h-indexed component of the
basic feasible solution is 0 for any h 2 T .

Assume that xt is selected to enter the basis for simplex tableau

NA 0 Nb
NzT �1 Ň (3.32)

thus Nzt < 0, and Nzj � 0 for any reduced cost’s index j < t .
Assume that at another simplex tableau

OA 0 Ob
OcT �1 Ǒ (3.33)

basic variable xt in row p leaves and nonbasic variable xs enters the basis. Let
xj1 ; : : : ; xjm be basic variables (xjp  xt ). It follows that Ocs < 0, and Ocj � 0 for
any reduced cost’s index j < s. Note that pivot is positive, i.e., Oaps > 0; since
s 2 T , it holds that s < t .

Define vk; k D 1; : : : ; n; n C 1 as follows:

vk D

8̂̂
<
ˆ̂:

1; k D s;

�Oais ; k D ji ; i D 1; : : : ; m;

Ocs; k D n C 1;

0; otherwise:

(3.34)

Note that basic columns of OA constitute a permutation. Nonbasic components of
vector

v D .v1; : : : ; vn; vnC1/
T

are all 0, except for vs D 1. For i D 1; : : : ; m, on the other hand, the basic entries in
row i of OA, except for Oaiji D 1, are all zero; basic entries of Oc are all zero. Therefore
it holds that

� OA 0

OcT �1

�
v D

0
BBB@

Oa1;s � Oa1;s

:::

Oam;s � Oam;s

Ocs � Ocs

1
CCCA D 0: (3.35)
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Since (3.32) can be obtained from (3.33) by premultiplying a series of elementary
matrices, it follows that

� NA 0

NzT �1

�
v D 0; (3.36)

where the last equality is

nX
kD1

Nzkvk � vnC1 D 0;

hence

nX
kD1

Nzkvk D vnC1 D Ocs < 0:

Therefore, there exists some index h < n C 1 such that

Nzhvh < 0; (3.37)

giving Nzh ¤ 0 and vh ¤ 0.
On the other hand, it is known by vh ¤ 0 and the definition of v that h 2

fj1; : : : ; jm; sg. Thus, there are only following three cases arising:

(i) h D s. vh D 1 in this case. Since xt is an entering variable for simplex
tableau (3.32) and h D s < t , hence Nzh > 0, it follows that Nzhvh D Nzh > 0,
contradicting (3.37).

(ii) h D jp D t . In this case, from Nzh D Nzt < 0 and vh D �Oaps < 0, it follows that
Nzhvh > 0, contradicting (3.37).

(iii) h D ji ¤ jp or h ¤ t . Now xh is a nonbasic variable of simplex tableau (3.32)
(otherwise, Nzh D 0); it is also a basic index of simplex tableau (3.33), hence
h 2 T . It follows that

Obi D 0; h < t; (3.38)

and hence Nzh > 0. Further, it holds that

vh D �Oai;s > 0;

since, otherwise, vh ¤ 0 gives Oai;s > 0, from which and (3.38) it follows that
xh, rather than xt , were selected to leave the basis for simplex tableau (3.33), as a
contradiction to (3.37). Therefore, Bland rule is finite. ut
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Chang (1979), Terlaky (1985) and Wang (1987) independently proposed a so-
called “criss-cross” finite variant of Bland rule, which is embedded in a somehow
different context, compared with the simplex method (see Chap. 18).

Unfortunately, it turns out that these finite rules are very slow in practice, not
be mentioned in the same breath with the conventional rule. This is not surprising,
however. For example, Rule 3.7.1 gives nonbasic variables with small index priority
to enter the basis, while we all know that basic variables of an optimal solution are
not necessarily small indexed.

Rule 3.7.1 actually uses a priority order, coinciding with decreasing indices,
for selection of an entering variable. It is clear that the “ideal” order, if any,
should enter the basic variables of an optimal solution to the basis. According to
the heuristic Proposition 2.5.1, inequality constraints with small pivoting-indices
should be satisfied as equations by an optimal solution, therefore the corresponding
variables would be better to be nonbasic (zero-valued). In other words, variables
with large pivoting-indices should have the priority to enter the basis (stipulation:
among variables with equal pivoting-indices, select one with the largest index).
Thus, we have the following variant of Bland rule (Pan 1990, 1992c).

Rule 3.7.2. Among nonbasic variables, corresponding to negative reduced costs,
select the largest pivoting-indexed one to enter the basis. When there are multiple
rows, attaining the same minimum-ratio, select the largest pivoting-indexed basic
variable to leave the basis. When multiple variables correspond to the same largest
pivoting-index, take the largest indexed one.

Theorem 3.7.3. Rule 3.7.2 is finite.

Proof. This rule is equivalent to Rule 3.7.1 if variables are re-given indices in
accordance with their pivoting-indices. ut

Preliminary computational experiments with small test problems showed that
performance of Rule 3.7.2 is much better than Bland’s Rule 3.7.1. It might be the
best among known finite rules. However, it is still inferior to the conventional rule,
as requiring more iterations than the latter in general (Pan 1990).

Bland’s Rule can be easily generalized to the following finite rule.

Rule 3.7.3. Given any order for variables. Among nonbasic variables, correspond-
ing to negative reduced costs, select one the smallest in this order to enter the basis.
When there are multiple rows attaining the same minimum-ratio, select the basic
variable smallest in the order to leave the basis.

In Example 3.6.1 (Beale problem), we have seen that cycling occurred with the
simplex algorithm. The situation will be different if Rule 3.7.2 is used in the place
of the conventional rule.
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Example 3.7.1. Solve Beale problem by Algorithm 3.2.1 using Rule 3.7.2:

min f D �3=4x4 C 20x5 � 1=2x6 C 6x7;

s:t: x1 C 1=4x4 � 8x5 � x6 C 9x7 D 0;

x2 C 1=2x4 � 12x5 � 1=2x6 C 3x7 D 0;

x3 C x6 D 1;

xj � 0; j D 1; : : : ; 7:

Answer As the coefficient matrix includes a unit matrix, it is easy to transform
the constraints to “�” type of inequalities:

min f D �3=4x4 C 20x5 � 1=2x6 C 6x7;

s:t: �1=4x4 C 8x5 C x6 � 9x7 � 0;

�1=2x4 C 12x5 C 1=2x6 � 3x7 � 0;

� x6 � �1;

xj � 0; j D 4; : : : ; 7:

Note that the first three constraints correspond to the original variables
x1; x2; x3, respectively; pivoting-indices of constraints may be regarded as those
for the associated variables.

The gradient of the objective function is c D .�3=4; 20; �1=2; 6/T . The gradient
of the first constraint is a1 D .�1=4; 8; 1; �9/T . The pivoting-index of this
constraint (or corresponding variable x1) is ˛1 D �aT

1 c=ka1k D �8:74. Similarly,
calculate all pivoting-indices and put them in the following table in decreasing order:

Variable Constraint ˛i

x4 x4 � 0 0:75

x6 x6 � 0 0:50

x3 �x6 � �1 �0:50

x7 x7 � 0 �6:00

x1 �1=4x4 C 8x5 C x6 � 9x7 � 0 �8:74

x5 x5 � 0 �20:00

x2 �1=2x4 C 12x5 C 1=2x6 � 3x7 � 0 �114:78

Now call Algorithm 3.2.1 with Rule 3.7.2.
Initial: The following feasible simplex tableau is obtained directly from the

preceding problem:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=4* �8 �1 9

1 1=2 �12 �1=2 3

1 1 1

�3=4 20 �1=2 6
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Iteration 1:

1. Among nonbasic variables x4 .˛4 D 0:75/ and x6 .˛6 D 0:50/ with negative
reduced costs, select the largest pivoting-indexed x4 to enter the basis, q D 4.

3. I D f1; 2g ¤ ;.
4. minf0=.1=4/; 0=.1=2/g D 0. Among basic variables in rows 1 and 2, select the

largest pivoting-indexed x1 .˛1 D �8:74 > �114:78 D ˛2/ to leave the basis,
p D 1.

5. Multiply row 1 by 4, and then add �1=2; 3=4 times of row 1 to rows 2,4,
respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

4 1 �32 �4 36

�2 1 4 3=2* �15

1 1 1

3 �4 �7=2 33

Iteration 2:

1. Among nonbasic variables x5 .˛5 D �20:00/ and x6 .˛6 D 0:50/ with negative
reduced costs, select the largest-pivoting-indexed x6 to enter the basis, q D 6.

3. I D f2; 3g ¤ ;.
4. minf0=.3=2/; 1=1g D 0, only x2 is eligible for leaving the basis, p D 2.
5. Multiply row 2 by 2=3, and then add 4; �1; 7=2 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�4=3 8=3 1 �64=3 �4

�4=3 2=3 8=3 1 �10

4=3 �2=3 1 �8=3 10* 1

�5=3 7=3 16=3 �2

Iteration 3:

1. Among nonbasic variables x1 .˛1 D �8:74/ and x7 .˛7 D �6:00/ with negative
reduced costs, select the largest-pivoting-indexed x7 to enter the basis, q D 7.

3. I D f3g ¤ ;.
4. Only x3 is eligible for leaving the basis, p D 3.
5. Multiply row 3 by 1=10, and then add 4; 10; 2 times of row 3 to rows 1,2,4,

respectively:
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x1 x2 x3 x4 x5 x6 x7 RHS

�4=5 12=5 2=5 1 �112=5 2=5

1 1 1

2=15* �1=15 1=10 �4=15 1 1=10

�7=5 11=5 1=5 24=5 1=5

Iteration 4:

1. Only nonbasic variable x1 is eligible for entering the basis, q D 1.
3. I D f3g ¤ ;.
4. Only x7 is eligible for leaving the basis, p D 3.
5. Multiply row 3 by 15=2, and then add 4=5; 7=5 times of row 3 to rows 1,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2 2=5 1 �24 6 1

1 1 1

1 �1=2 3=4 �2 15=2 3=4

3=2 5=4 2 21=2 5=4

All reduced costs are now nonnegative. The optimal solution and optimal value
are

Nx D .3=4; 0; 0; 1; 0; 1; 0/T ; Nf D �5=4:

Thus, Beale problem is solved without cycling.

3.8 Computational Complexity

The evaluation of an algorithm is concerned with the amount of required arithmetics
and storages, numerical stability and degree of difficulty for programming. In
this section, we will discuss the simplex method’s computational complexity,
including time complexity (estimate of the number of required four basic arithmetics
and comparisons), and storage complexity (estimate of the number of memory
locations).

Either time or storage complexity is closely related to the scale of the problem
handled: the larger the problem is, the higher the complexity. Therefore, analyzing
complexity must be done with fixed problem’s size. As for a standard LP problem,
it is convenient to use m and n to determine its size roughly. Further, problem’s
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size also depends on concrete values of .A; b; c/, as can be characterized by total
number L, called input length of binary digits of input data. For reaching a certain
solution precision, the amount of arithmetics is a function of m; n; L. If the number
of arithmetics required by solving some type of problems is bounded above by
some function �f .m; n; L/, the algorithm is said to have order O.f .m; n; L// of
(time) complexity, where � > 0 is a constant and f .m; n; L/ is complexity function.
If f .m; n; L/ is a polynomial in m; n and L, it is said to be of polynomial time
complexity. Usually, such algorithms are regarded as “good” ones, and the lower the
order of the polynomial is, the better the algorithm. On the other hand, if f .m; n; L/

is exponential in m; n or L, it is said to be of exponential time complexity. Such
algorithms are regarded as “bad”, as they can fail to solve larger problems by
consuming unacceptable amount of time. Note, however, that such complexity is
the worst case complexity, as the amount of arithmetics never exceeds �f .m; n; L/.

The following table lists numbers of arithmetics per iteration and storage
locations, required by tableau simplex Algorithm 3.2.1 vs. simplex Algorithm 3.5.1:

Algorithm 3.2.1 Algorithm 3.5.1

Multiplications .m C 1/.n � m C 1/ m.n C 2m/ C 2m C 1

Additions m.n � m C 1/ m.n C 2m/ � 2m C 1

Storages .m C 1/.n C 1/ .m C 1/.m C 2/

In the preceding table, the amount of storage locations required by Algorithm 3.2.1
excludes that for original data .A; b; c/, though these data should be stored, in
practice. In fact, both algorithms have to restart from scratch periodically after a
certain number of iterations (see Sect. 5.1), let alone Algorithm 3.5.1 utilizes a part
of them in each iteration. Therefore, storage requirement of the tableau simplex
algorithm is significantly high, relative to that of the revised version, especially
when n � m.

As iterative algorithms, their time complexity depends on the required number
of iterations, as well as that of arithmetics per iteration. As they are equivalent
theoretically, the two algorithms would require the same iterations in solving any
standard LP problem, if rounding errors are neglected. Thus, we only compare the
amount of arithmetics, mainly multiplications, in a single iteration. It is seen from
the table that Algorithm 3.5.1 is much superior to the tableau version if m � n.
In fact, the latter is not applied in practice, but only seen in textbooks. Note that all
listed in the table is for dense computations. As for sparse computations, the former
and its variants are even very much superior to the latter (see Chap. 5).

In addition, it is seen that the numbers of arithmetics per iteration are polynomial
functions in m; n. Therefore, required iterations are a key to their time complexity.
Note that each iteration corresponds to a basis, and the number of bases is no more
than C m

n . If n � 2m, then C m
n � .n=m/m � 2m, as indicates that the required

number of iterations could attain an exponent order. Indeed, Klee and Minty (1972)
offered an example, indicating that the simplex method using the conventional pivot
rule passes through all the 2m vertices. Thus, the conventional rule is not polynomial,
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in the sense that it does not turn the simplex method to a polynomial-time one.
Moreover, it turns out that Bland’s Rule 3.7.1, the “most improvement rule”, and
many other subsequent rules, like the steepest edge rule, are all not polynomial
(Chap. 11). Actually, it has not been clear whether there exists a polynomial rule
though such possibility seems to be very low, if any.

Computational experiences indicate that the conventional simplex algorithm
is slow for solving certain type of LP problems, such as some hard large-scale
problems or problems with combinatorial constraints; e.g., with zero or one
coefficients or those from “Krawchuk polynomials” (Schrijver 1986, p. 141; also
see Klee 1965). Nevertheless, its average efficiency is quite high. For solving small
or medium LP problems, in particular, it usually requires iterations no more than
4m to 6m (including Phase-1).

The fact that the non-polynomial-time simplex algorithm and its variants perform
very well in practice reveals that the worst case complexity is of limited reference
value, even could be misguiding. In fact, the worst case hardly happens in practice,
and complexity under some probability sense would be closer to reality. In this
aspect, Borgwardt (1982a,b) showed that an average complexity of the simplex
algorithm is polynomial. Specifically, for LP problem

min cT x;

s:t: Ax � b;

where A 2 Rm�n; b > 0, and components of c are random under certain
assumptions, he proved that the mathematical expectation of iterations, required by
the simplex algorithm using a special pivot rule, is

O.n3m1=.n�1//:

Using a different probability model and pivot rule, Smale (1983a,b) proved that
average complexity of the simplex algorithm when solving

min cT x;

s:t: Ax � b; x � 0;

is bounded above by

O..log n/m2Cm/;

which is not polynomial, but still better than Borgwardt’s result when m � n.
Combining Borgwardt’s pivot rule and a generalized Smale’s probability model,
Haimovich (1996) proved that the average complexity of iterations required is linear
polynomial. These theoretical results coincide with real situation.

Finally, we stress that algorithms’ evaluation is basically a practical issue. In a
word, practice is the unique touchstone: the value and vitality of an algorithm lie on
its performance only.
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3.9 On Features of the Simplex Method

In this final section of the chapter, we focuss on some features of the simplex
method.

It is interesting that the method’s prefix “simplex” came from a chat between
G.B. Dantzig and T. Motzkin (Dantzig 1991) in the early days of LP. The latter
indicated that the m columns of the basis matrix and the entering column just form
a “simplex” in the m-dimensional space. Thus, each iteration in Dantzig’s method
may be viewed as a movement from a simplex to an adjacent simplex. Dantzig
accepted his suggestion by consorting with the “simplex”.

Accordingly, the simplex method is pivotal and basis-based, as is closely related
to the linear structure of the LP model. Each iteration of it is characterized by
a basis: once a basis is determined, so is done the corresponding basic feasible
solution. If optimality cannot be asserted, a pivot is selected to make a basis change
to improve the solution, or unboundedness of the problem is detected. Consequently,
computational work per iteration, involved in the simplex method, is much less than
that required by the interior-point method (Chap. 9).

If an optimal basis is available, an LP problem can be handled by just solving
a single system of linear equations. Even if this is not the case, a basis close to
an optimal one is useful: less iterations are usually required starting from a basis,
yielded from a previously interrupted solution process. Such a so-called “warm
start” features a source of main bonus of the simplex method. For instance, it is
applied to sensitivity analysis and parametric programs (Chap. 6), the restarting
tactic used in implementation (Chap. 5), as well as the decomposition principle
(Sect. 25.6). In addition, the warm start is of great importance to the methodology
for solving ILP problems.

It is noted that each iteration of the simplex method consists of a pivot selection
and a basis change. Since it emerged, in fact, research on the method has not been
beyond the scope of the two aspects. On one side, the pivot rule used in it is, no
doubt, crucial to method’s efficiency. As a result, new pivot rules were suggested
from time to time, though Dantzig’s original rule, because of its simplicity, had
gained broad applications for a long time, as is a situation that has changed only
about 20 years ago. More efficient rules will be presented in Chap. 11. On the
other side, the computation related to pivot and basis change has been improved
continually. Related results will be presented in later chapters, especially in Part II
of this book.

As for concern whether an index enters and leaves the basis too many times, the
following property seems to be favorable.

Proposition 3.9.1. A leaving column in a simplex iteration does not enter the basis
in the next iteration.

Proof. Since an entering column corresponds to a negative reduced cost and the
pivot determined is positive (see (3.10)), a leaving column corresponds to a positive
reduced cost, after the associated elementary transformations carried out, and hence
never enters the basis in the next iteration. ut
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Nevertheless, it is not difficult to construct an instance, in which a column that
just entered the basis leaves it immediately.

As was known, nonnegativity of nonbasic reduced costs is not a necessary condi-
tion for optimality. The following indicates that it is necessary if the nondegeneracy
is ensured.

Proposition 3.9.2. If a basic optimal solution is nondegenerate, reduced costs in
the associated simplex tableau are all nonnegative.

Proof. Assume that there are negative reduced costs in the simplex Tableau 3.1.
Without loss of generality, assume Nzq < 0. If (3.7) holds, then unboundedness of
the problem follows from Theorem 3.2.2, as contradicts the existence of an optimal
solution; if, otherwise, (3.7) does not hold, it is known from the nondegeneracy
assumption that ˛ > 0, and hence there is a feasible value strictly less than the
optimal value, as is a contradiction. Therefore, reduced costs are all nonnegative.

ut
The preceding and Lemma 3.2.1 together imply that the condition of nonnegativ-

ity of nonbasic reduced costs is not only sufficient but also necessary to optimality
under the nondegeneracy assumption. The following result concerns presence of
multiple optimal solutions.

Proposition 3.9.3. If reduced costs are all positive, there is a unique optimal
solution to the LP problem. If a basic optimal solution is nondegenerate and there is
a zero-valued reduced cost, then there are infinitely many optimal solutions; in the
case when the feasible region is bounded, there are multiple basic optimal solutions.

Proof. We prove the first half first. Assume that reduced costs in an optimal tableau
are all positive, corresponding to the basic optimal solution Nx. For any feasible
solution Ox � 0 different from Nx, there is an index s 2 N such that Oxs > 0 (otherwise,
the two are the same). Therefore, substituting Ox to (3.6) leads to

Of D Nf C
X
j 2N

Nzj Oxj > Nf ;

which implies that Ox is not optimal, as is a contradiction. Therefore, there is an
unique optimal solution.

To prove the seconde half, assume that a tableau, say Table 3.1, gives a
nondegenerate basic optimal solution and has zero reduced costs. Without loss of
generality, assume Nzq D 0. If (3.7) holds, then inequalities of the right-hand side
of (3.8) hold for any xq D ˛ > 0, that is, there are infinitely many feasible solutions,
corresponding to the same optimal value � Nf (see (3.9)); if the feasible region is
bounded, then (3.7) does not hold, hence it is known from Nbp > 0 that the stepsize ˛,
defined by (3.10), is positive. Thus, for any value of xq in Œ0; ˛�, a feasible solution
can be determined by the equalities of (3.8), corresponding to optimal value � Nf .
Therefore, there are infinitely many optimal solutions. It is clear that entering xq to
and dropping xjp from the basis give a different basic optimal solution. ut
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The last half of the proof actually describes an approach to obtain multiple basic
optimal solutions by entering the nonbasic indices, corresponding to zero-valued
reduced costs, to the basis. With this respect, an approach to intercepting for the
optimal set will be described in Sect. 25.2.

As was mentioned in Sect. 2.4, the simplex method can be explained in terms of
the active set method. In each iteration, in fact, a vertex is determined by Ax D b

and xj D 0; j 2 N , corresponding to n active constraints. Since it has zero basic
components, a degenerate vertex is the intersection of superplanes, the number of
which is greater than n. At first glance, this case seems rarely to occur in practice.
Surprisingly, however, the situation is just the opposite: problems stemming from
practice are almost all degenerate.

The simplex tableau is essentially the canonical form of Ax D b (together with
reduced costs), which may be initially created by the Gauss-Jordan elimination.
Such a tableau was used to develop the simplex method previously, although the
same can be done alternatively via the triangular form, involving an upper triangular
submatrix rather than unit matrix. As it is associated with the Gauss elimination, in
fact, the latter should be more relevant to implementation (see also the last paragraph
of Sect. 1.6).

Finally, there are two issues that are not guaranteed by the simplex method.
As was well-known, the method is not a polynomial time one; even finiteness of

it is, in presence of degeneracy, not guaranteed in theory. Practically, however, this
might not be a serious problem, as the method performs well overall if implemented
properly although some authors do not agree with this point (see, e.g., Kotiah and
Steinberg 1978).

More seriously, the method in its very form is numerically unstable, because
the selected pivot may be arbitrarily small in module (see, e.g., Chan 1985; Maros
2003b; Ogryczak 1988). Refer to Rule 3.2.1 used in steps 4 of Algorithm 3.2.1.
The pivot Nap q , selected by the minimum-ratio test, could be too small to carry out
subsequent computations. Indeed, the simplex method in its very form can only
solve few (even very small) LP problems.

Instead of Rule 3.2.1, the following rule may serve as a remedy for solving highly
degenerate LP problems.

Rule 3.9.1 (Row rule) Define I D fi j Nai q > 0; i D 1; � � � ; mg; I1 D fi j Nbi D
0; i 2 I g. Determine pivot row index p and stepsize ˛ by

p 2
�

arg maxf Nai q j i 2 I1g; ˛ D 0; if I1 ¤ ;;

arg minf Nbi= Nai q j i 2 I g; ˛ D Nbp= Nap q; otherwise:
(3.39)

A more favorable and applicable remedy is Harris two-pass Rule 5.6.1 though
somehow cumbersome (see also Greenberg 1978). Even so, the stability problem
is still not overcome yet entirely, as is the source of many troubles encountered in
practice. With this aspect, alternative methods presented in Chaps. 15 and 16 might
be “terminators”.

There are analogues to the preceding issues and remedies for various simplex
variants, including the dual simplex method presented in the next chapter.



Chapter 4
Duality Principle and Dual Simplex Method

The duality features a special relationship between a LP problem and another, both
of which involve the same original data .A; b; c/, located differently (except for
the self-duality, see below). The former is referred to as primal problem while the
latter as dual problem. It is important that there exists a close relationship between
their feasible regions, optimal solutions and optimal values. The duality together
with optimality conditions, yielding from it, constitute a basis for the LP theory.
On the other hand, an economic interpretation of duality features its applications to
practice. This chapter is devoted to these topics.

On the other hand, once any of primal and dual problems is solved, the problems
are both solved due to duality. Thereby, a so-called dual simplex method will be
derived by handling the dual problem in this chapter. Its tableau version will still
proceed with the same simplex tableau.

From now on, “primal” will be added as a prefix, if necessary, to the simplex
method and associated items to distinguish with their dual counterparts, introduced
in this chapter.

4.1 Dual LP Problem

If the standard LP problem (1.8), i.e.,

.P / min f D cT x;

s:t: Ax D b; x � 0;
(4.1)

is referred to as “primal”, the following problem

.D/ max g D bT y;

s:t: AT y C z D c; z � 0;
(4.2)

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__4,
© Springer-Verlag Berlin Heidelberg 2014
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constructed with the same data .A; b; c/, is the “dual problem” of (4.1). There is 1–1

correspondence between variables of one of them and constraints of another.
Values of y; z, satisfying AT y C z D c, are called dual solution. Set

D D f.y; z/ 2 Rm 
 Rn j AT y C z D c; z � 0g

is called dual feasible region, elements in which are dual feasible solutions.
It is clear that Ny D 0; Nz D c is a dual solution; if, in addition, c � 0, it is a dual

feasible solution. Given basis B , setting zB D 0 in BT y C zB D cB gives

Ny D B�T cB; NzB D 0; NzN D cN � N T Ny; (4.3)

called dual basic solution. Nz is just reduced costs; and Ny the simplex multiplier
(see Note on Algorithm 3.5.1). If NzN � 0, . Ny; Nz/ is a dual basic feasible solution,
corresponding to a vertex in D. For simplicity, thereafter NzN alone is often said to
be dual basic solution.

The following alternative form of the dual problem (4.2):

.D/ max g D bT y;

s:t: AT y � c;
(4.4)

is useful in some cases. Problems (4.2) and (4.4) will be regarded as the same.
As it can be converted to a standard one, any LP problem corresponds to a dual

problem. By introducing slack variables u � 0, e.g., the problem

max cT x;

s:t: Ax � b; x � 0;
(4.5)

can be turned to the standard problem

min �cT x;

s:t: Ax C u D b; x; u � 0;

the dual problem of which is

max bT y0;

s:t:

�
AT

I

�
y0 �

��c

0

�
:

Setting y D �y0 turns the preceding to (4.5)’s dual problem below:

min bT y;

s:t: AT y � c; y � 0:
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Correspondence between primal and dual problems are summarized to the
following table:

Primal problem Dual problem
Objective function min Objective function max
Variables Nonnegative Constraints �

nonpositive �
free D

Constraints � Variables Nonnegative
� nonpositive
D free

Note: In applications of the preceding table, sign restriction is not handled as a
constraint, but attributed to the associated variable

For example, the so-called “bounded-variable” LP problem

min cT x;

s:t: Ax D b; l � x � u;
(4.6)

can be transformed to

min cT x;

s:t: Ax D b;

x C s D u;

�x C t D �l;

s; t � 0:

(4.7)

According the preceding table, the dual problem of (4.6) is

max bT y � uT v C lT w;

s:t: AT y � v C w D c; v; w � 0:
(4.8)

The so-called self-duality referees to a special case when the dual problem of
an LP problem is just itself. Combining the primal problem (4.1) and the dual
problem (4.4), we construct the following problem:

min cT x � bT y;

s:t: Ax D b; x � 0;

AT y � c:

(4.9)
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According the preceding table, the dual problem of it is

max bT y C cT v;

s:t: AT y � c;

Av D �b; v � 0:

By setting v D �x and handling the objective function properly, the preceding can
be transformed to the original problem (4.9). Therefore, (4.9) is a self-dual problem.

4.2 Duality Theorems

This section only focuses on the duality of (P) and (D), as obtained results are valid
for more general cases.

Theorem 4.2.1 (Symmetry). The dual problem of a dual problem is the primal
problem.

Proof. Introduce slack variable u � 0 to dual problem (D), and make a variable
transformation y D y1 � y2 to convert it to

max bT .y1 � y2/;

s:t: AT .y1 � y2/ C u D c; y1; y2; u � 0;

or equivalently,

min .�bT ; bT ; 0/.yT
1 ; yT

2 ; uT /T ;

s:t: .AT
::: � AT

::: I /.yT
1 ; yT

2 ; uT /T D c; y1; y2; u � 0:

The dual problem of the preceding is

max cT x0;

s:t:

0
@ A

�A

I

1
Ax0 �

0
@�b

b

0

1
A ;

that is,

max cT x0;
s:t: Ax0 D �b; x0 � 0;

which becomes (P) by setting x0 D �x. ut
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The preceding says that any of the primal and dual problems is the dual problem
of the other. So, the two are symmetric in position. This is why any fact, holding for
one of the primal and dual problems, has its counterpart for the other. It is of great
importance that there is a close relationship between feasible or optimal solutions
of the pair.

Theorem 4.2.2 (Weak duality). If x and y are feasible solutions to primal and
dual problems, respectively, then cT x � bT y.

Proof. Premultiplying c � AT y by x � 0 gives cT x � yT Ax, substituting b D Ax

to which leads to cT x � bT y. ut
According to the preceding, if there are feasible solutions to both primal and dual

problems, any feasible value of the former is an upper bound of any feasible value
of the latter, whereas any feasible value of the latter is a lower bound of any feasible
value of the former.

Corollary 4.2.1. If any of the primal and dual problems is unbounded, there exists
no feasible solution to the other.

Proof. By contradiction. Assume that there is a feasible solution to the dual
problem. Then it follows from Theorem 4.2.2 that feasible values of the primal
problem is bounded below. Analogously, if the primal problem is feasible, the dual
problem is bounded above. ut
Corollary 4.2.2. Let Nx and Ny be feasible solutions to the primal and dual problems,
respectively. If cT Nx D bT Ny, they are optimal solutions to the pair, respectively.

Proof. According to Theorem 4.2.2, for any feasible solution x to the primal
problem, it holds that cT x � bT Ny D cT Nx, therefore Nx is an optimal solution to
the primal problem. Analogously, Ny is an optimal solution to the dual problem. ut
Theorem 4.2.3 (Strong duality). If there exists an optimal solution to any of the
primal and dual problems, then there exists an optimal one to the other, and the
associated optimal values are equal.

Proof. Assume that there is an optimal solution to the primal problem. According
to Theorem 2.3.2, there is a basic optimal solution. Let B and N are optimal basis
and nonbasis, respectively. Then

cT
N � cT

B B�1N � 0; B�1b � 0:

Thus, setting

Ny D B�T cB; (4.10)

leads to

AT Ny � c D
�

BT

N T

�
Ny �

�
cB

cN

�
�
�

0

0

�
:
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Therefore Ny is a feasible solution to the dual problem. By (4.10), on the other hand,
the basic feasible solution . NxB D B�1b; NxN D 0/ satisfies

cT Nx D cT
B NxB D cT

B B�1b D bT Ny:

By Corollary 4.2.2, therefore, Nx and Ny are respective optimal solutions to the
primal and dual problems with the same optimal value. Moreover, it is known by
Theorem 4.2.1 that if there is an optimal solution to the dual problem, so is to the
primal problem, with the same optimal value. ut

Based on the strong duality, thereafter primal and dual optimal values will not be
distinguished.

It is clear that if there is an optimal solution to one of the pair of (4.1) and (4.4),
so is the self-dual problem (4.9). Moreover, the optimal value of the latter is
equal to zero, and the optimal solution of the latter gives the primal and dual
optimal solutions to the pair. A variation of it will be used to derive the so-called
“homogeneous and self-dual interior-point method” (Sect. 9.4.4).

In case when any of the primal and dual problems is infeasible, it can be asserted
that the other problem is infeasible or unbounded. The computation would be
finished in this case. In some applications, however, it would be needed to determine
which case the problem is. This can be resolved via the duality as follows.

Assume now that the primal problem (4.1) is infeasible. To determine whether
the dual problem (4.2) is infeasible or unbounded, consider

min cT x;

s:t: Ax D 0; x � 0;
(4.11)

which has a feasible solution x D 0. Solve the preceding program by the simplex
algorithm. If (4.11) is unbounded, then the program

min 0;

s:t: AT y C z D c; z � 0;

is infeasible (Corollary 4.2.1). Therefore, (4.2) is infeasible either. If an optimal
solution to (4.11) is reached, then there exists an optimal solution to the preceding
program (Theorem 4.2.3), as indicates that (4.2) is feasible; thereby, it can be further
asserted that (4.2) is unbounded.

Using the duality, now we are able to prove Farkas Lemma 2.1 concisely.

Lemma 4.2.1 (Farkas). Assume A 2 Rm�n and b 2 Rm. The feasible region P is
nonempty if and only if

bT y � 0; 8 y 2 fy 2 Rm j AT y � 0g:
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Proof. Consider the following LP problem

min 0;

s:t: Ax D b; x � 0;
(4.12)

the dual problem of which is

max bT y0;
s:t: AT y0 � 0:

(4.13)

Note that y0 D 0 is a feasible solution to it, with feasible value 0.
Necessity. Assume that the feasible region P of (4.12) is nonempty, hence

all feasible solutions correspond to the same objective value 0. According to
Theorem 4.2.2, for any y0 2 fy0 2 Rm j AT y0 � 0g it holds that bT y0 � 0. By
setting y D �y0, it is known that bT y � 0 holds for y 2 fy 2 Rm j AT y � 0g.

Sufficiency. Assume that for any y 2 fy 2 Rm j AT y � 0g it holds that
bT y � 0. Then, for y0 2 fy0 2 Rm j AT y0 � 0g we have bT y0 � 0, hence there
is an optimal solution to (4.13). According to Theorem 4.2.3, therefore, there is an
optimal solution to (4.12), as implies nonempty of P . ut

4.3 Optimality Condition

From duality theorems presented in the previous section, it is possible to derive a set
of conditions for primal and dual solutions to be optimal, as stands as a theoretical
basis for LP. We consider the standard LP problem first, and then more general LP
problems.

Assume that x and .y; z/ are primal and dual (not necessarily feasible) solutions.

Definition 4.3.1. Difference cT x � bT y between the primal and dual objective
values is duality gap between x and .y; z/.

Definition 4.3.2. If xT z D 0, x and .y; z/ are complementary; if x C z > 0, in
addition, the two are strictly complementary.

Quantity xT z is termed complementarity residual.

Lemma 4.3.1. The duality gap and complementarity residual of x and .y; z/ are
equal; x and .y; z/ are complementary if and only if their duality gap equals zero.

Proof. Since x and .y; z/ satisfy the equality constrains, it is easy to derive that

cT x � bT y D xT c � .Ax/T y D xT .c � AT y/ D xT z:

ut
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If it holds as an equality, an “�” or “�” type of inequality is said to be tightly
satisfied, and if it does as a strict inequality, it is said to be slackly satisfied.

In case when the nonnegative constraints are satisfied, the complementarity of x

and .y; z/ is equivalent to satisfaction of

xj zj D 0; 8 j D 1; : : : ; n: (4.14)

It is clear that for j D 1; : : : ; n, it holds that xj D 0 (or zj D 0) if zj > 0 (or
xj > 0). If a component of x (or z) slackly satisfies the associated nonnegativity
constraint, therefore, the corresponding component of z (or x) must satisfy the
associated nonnegativity constraint tightly.

Theorem 4.3.1 (Optimality conditions for the standard LP problem). x is an
optimal solution of the standard LP problem if and only if there exist y; z such that

.i/ Ax D b; x � 0; .primal feasibility/

.ii/ AT y C z D c; z � 0; .dual feasibility/

.iii/ xT z D 0: ..slackness/ complementarity/

(4.15)

Proof. Note that for x and .y; z/, zero duality gap is equivalent to complementarity
(Lemma 4.3.1).

Sufficiency. By Corollary 4.2.2 and the equivalence of zero duality gap and
complementarity, it follows from (4.15) that x and .y; z/ are primal and dual optimal
solutions, respectively.

Necessity. If x is a primal optimal solution, then it satisfies condition (i). By
Theorem 4.2.3, in addition, there is a dual optimal solution .y; z/ such that the
duality gap is zero, hence conditions (ii) and (iii) are satisfied. ut

The following result is stated without proof (Goldman and Tucker 1956b).

Theorem 4.3.2 (Strict complementarity). If there exists a pair of primal and dual
optimal solutions, then there exists a strictly complementary pair of such solutions.

The significance of the optimal conditions speaks for itself. As for algorithm
research, any type of optimality criterions in various contexts must coincide with
these conditions. From them, it is understandable that LP algorithms always solve
the pair of problems at the same time. For instance, once the simplex algorithm
reaches primal optimal solution

NxB D B�1b; NxN D 0;

it also gives a dual optimal solution

Ny D B�T cB; NzB D 0; NzN D cN � N T Ny:
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In view of the symmetry between primal and dual problems, moreover, it is not
surprising why LP algorithms often present in pair: if there is an algorithm for
solving the primal problem, there is an according algorithm for solving the dual
problem, and vise versa. As an example, the dual algorithm, presented in Sect. 4.5,
matches the simplex algorithm.

Interior-point methods often judge the degree of approaching optimality through
the complementarity residual: the smaller the residual is, the closer to optimality;
when it vanishes, primal and dual optimal solutions are attained respectively. It is
noticeable, moreover, that direct dealing with the optimal conditions as a system
of equalities and inequalities can lead to some interior-point algorithms (Sect. 9.4).
Such algorithms usually generate a strictly complementary pair of optimal solutions
in the limit, as is of importance for asymptotic analysis (Güler and Ye 1993).

For the bounded-variable LP problem (4.6), we have the following result.

Theorem 4.3.3 (Optimal conditions for the bounded-variable problem). x is an
optimal solution of the bounded-variable LP problem if and only if there exist y; v; w
such that

.i/ Ax D b; l � x � u; .primal feasibility/

.ii/ AT y � v C w D c; v; w; � 0; .dual feasibility/

.iii/ .x � l/T w D 0; .u � x/v D 0: ..slackness/ complementarity/
(4.16)

Proof. It is derived from (4.6) to (4.8) and Theorem 4.3.1. ut
Finally, consider the general problem of form

min cT x;

s:t: x 2 
;
(4.17)

where 
 � Rn is a convex set.

Lemma 4.3.2. It is an optimal solution to (4.17) if and only if x� satisfies

cT .x � x�/ � 0; 8 x 2 
 (4.18)

Proof. Assume that x� is an optimal solution. If (4.18) does not hold, i.e., there is a
point Nx 2 
 such that

cT . Nx � x�/ < 0; (4.19)

then it holds that

cT Nx < cT x�; (4.20)
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which contradicts optimality of x�. Conversely, assume that (4.18) holds. If x� is
not optimal to (4.17), then there exists Nx 2 
 satisfying (4.20), which implies (4.19),
as contradicts satisfaction of (4.18). ut

It is noted from the proof that the preceding Lemma is actually valid for an
arbitrary set 
. Geometrically, it says that a sufficient and necessary condition for
x� to be an optimal solution to (4.17) is that the angle between the vector from x�
to any point x 2 
 and the gradient of the objective function is no more than �=2.

Vector x� 2 
 is termed local optimal solution if it is an optimal solution over
some spherical neighborhood of it; or more precisely, there exists  > 0 such that

cT x� D min fcT x j x 2 .
 \ †/g; † D fx 2 Rn j kx�x�k � g: (4.21)

Theorem 4.3.4. A vector is an optimal solution to (4.17) if and only if it is a local
optimal solution to it.

Proof. The necessity is clear. The sufficiency. Assume that x� is a local optimal
solution. So, there is  > 0 so that (4.21) holds. For any Nx 2 
 with Nx ¤ x�, define

x0 D x� C =k Nx � x�k. Nx � x�/: (4.22)

Then, kx0 � x�k D  , hence x0 2 
 \ †. Thereby, it follows from (4.22) that
cT x0 � cT x� � 0 together with

. Nx � x�/ D k Nx � x�k=cT .x0 � x�/;

gives

cT . Nx � x�/ D k Nx � x�k=cT .x0 � x�/ � 0:

According to Lemma 4.3.2, x� is an optimal to (4.17). ut

4.4 Dual Simplex Method: Tableau Form

The dual simplex method is of great importance, as it can be even more efficient
than the simplex method, and serve as a basic tool to solve integer or mixed LP
problems. This section will derive its tableau version.

As was well-known, simplex tableaus created by a series of elementary transfor-
mations are equivalent in the sense that they represent problems equivalent to the
original one. No matter how pivots are selected, a resulting simplex tableau offers
a pair of complementary primal and dual solutions, which are optimal whenever
entries in the right-hand side and the objective row are all nonnegative, or in other
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words, both primal and dual feasibility achieved. Starting from a feasible simplex
tableau, e.g., the tableau simplex algorithm generates a sequence of feasible simplex
tableaus, until dual feasibility achieved.

Using an alternative pivot rule, the so-called “dual simplex algorithm” presented
in this section generates a sequence of dual feasible simplex tableaus, until primal
feasibility achieved. To do so, of course, it has to start from a dual feasible simplex
tableau.

Consider the standard LP problem (4.1). Let (3.18) be a current dual feasible
simplex tableau, satisfying NzN � 0 but Nb 6� 0.

In contrast to the simplex method, we first determine pivot row rather than
column.

Rule 4.4.1 (Dual row rule) Select row index by

p 2 arg minf Nbi j i D 1; : : : ; mg:

It is clear that the preceding will drop the basic variable xjp from the basis, turning
it to primal feasible.

Lemma 4.4.1. Assume that NzN � 0 and Nbp < 0. If column index set

J D fj 2 N j Nap j < 0g (4.23)

is empty, then the LP problem is infeasible.

Proof. NzN � 0 indicates dual feasibility. Assume that the dual problem is bounded,
hence there is an optimal dual solution. According to the strong duality Theorem,
there is a optimal primal solution. Assume that Ox � 0 is such an optimal primal
solution, which satisfies the equality, corresponding to the pth row of the simplex
tableau, i.e.,

Oxjp C
X
j 2N

Napj Oxj D Nbp:

From (4.23) and Ox � 0, it follows that the left-side of the preceding is nonnegative,
as contradicts Nbp < 0. Therefore, the problem is dual unbounded, and hence
infeasible. ut

Assume that p has been determined and (4.23) does not hold. Then the following
is well-defined.

Rule 4.4.2 (Dual column rule) Determine ˇ and column index q such that

ˇ D �Nzq= Nap q D min
j 2J

�Nzj = Nap j � 0: (4.24)

ˇ is referred to as dual stepsize.
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Once a pivot, say Napq , is determined, perform elementary transformations to turn
it to 1 and eliminate all other nonzeros in the q-indexed column. Then adding
ˇ times of the pth row to the objective row results in a new simplex tableau
(see (3.13)). It is not difficult to show that the new tableau remains dual feasible,
that is, its objective row remains nonnegative.

The objective value of the resulting tableau is then

� Of D � Nf C ˇ Nbp � � Nf ; (4.25)

Therefore, Of � Nf , indicating that the objective value does not decrease. When
NzN > 0, the objective value strictly increases, as is a case in which the simplex
tableau (or the dual feasible solution) is said to be dual nondegenerate.

The overall steps can be put in the following algorithm (Beale 1954; Lemke
1954).

Algorithm 4.4.1 (Dual simplex algorithm: tableau form). Initial: a dual feasible
simplex tableau of form (3.18). This algorithm solves the standard LP prob-
lem (1.7).

1. Select pivot row index p 2 arg minf Nbi j i D 1; : : : ; mg.
2. Stop if Nbp � 0.
3. Stop if J D fj 2 N j Nap j < 0g D ;.
4. Determined pivot column q 2 arg minj 2J �Nzj = Nap j .
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Go to step 1.

Theorem 4.4.1. Under the dual nondegenerate assumption, Algorithm 4.4.1 termi-
nates either at

(i) Step 2, achieving a pair of primal and dual optimal solutions; or at
(ii) Step 3, detecting infeasibility of the problem.

Proof. The proof on the termination is similar to the simplex algorithm. The
meanings of its exits come from Lemmas 3.2.1 and 4.4.1 and discussions preceding
the algorithm. ut

If dual degeneracy presents, the dual simplex method would stall in solution
process, even fail to solve a problem due to cycling (Beale 1955). Despite the dual
degeneracy almost always occurs, the dual simplex method perform successfully in
practice, as is just in the primal simplex context.

Algorithm 4.4.1 starts from a dual feasible simplex tableau. In general, there is
a need for a dual Phase-I procedure to serve for this purpose. This topic will be
delayed to Chap. 14.
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Example 4.4.1. Solve the following LP problem by Algorithm 4.4.1:

min f D x1 C 2x2 C x3;

s:t: 2x1 C x2 C x3 � x4 D 1;

�x1 C 4x2 C x3 � 2;

x1 C 3x2 � 4;

xj � 0; j D 1; : : : ; 4:

Answer Initial: turn the problem to the standard form by introducing slack
variables x5; x6 � 0 in constrains. Then, premultiply the first two constraints by
�1 respectively:

min f D x1 C 2x2 C x3;

s:t: �2x1 � x2 � x3 C x4 D �1;

x1 � 4x2 � x3 C x5 D �2;

x1 C 3x2 C x6 D 4;

xj � 0; j D 1; : : : ; 6;

which corresponds to an available dual feasible simplex tableau, i.e.,

x1 x2 x3 x4 x5 x6 RHS

�2 �1 �1 1 �1

1 �4* �1 1 �2

1 3 1 4

1 2 1

Iteration 1:

1. minf�1; �2; 4g D �2 < 0; p D 2.
3. J D f2; 3g.
4. minf�2=.�4/; �1=.�1/g D 1=2; q D 2.
5. Multiply row 2 by �1=4, and then add 1; �3; �2 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 x6 RHS

�9=4* �3=4 1 �1=4 �1=2

�1=4 1 1=4 �1=4 1=2

7=4 �3=4 3=4 1 5=2

3=2 1=2 1=2 �1
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Iteration 2:

1. minf�1=2; 1=2; 5=2g D �1=2 < 0; p D 1.
3. J D f1; 3; 5g.
4. minf�.3=2/=.�9=4/; �.1=2/=.�3=4/; �.1=2/=.�1=4/g D 2=3; q D 1.
5. Multiply row 1 by �4=9, and then add 1=4; �7=4; �3=2 times of row 1 to rows

2,3,4, respectively:

x1 x2 x3 x4 x5 x6 RHS

1 1=3 �4=9 1=9 2=9

1 1=3 �1=9 �2=9 5=9

�4=3 7=9 5=9 1 19=9

2=3 1=3 �4=3

The right-hand side of the preceding is now nonnegative, hence obtained is an
optimal simplex tableau. The optimal solution and associated objective value are

Nx D .2=9; 5=9; 0; 0/T ; Nf D 4=3:

4.5 Dual Simplex Method

In the preceding section, the tableau dual simplex algorithm was formulated. In this
section, we first derive its revised version based on equivalence between the simplex
tableau and the revised simplex tableau, just as what we have done for deriving the
simplex method from its tableau version. Then, we derive it alternatively to reveal
the fact that it essentially solves the dual problem.

Like the simplex Algorithm 3.5.2, in each iteration the dual simplex algorithm
computes the objective row, the right-hand side, pivot column and row. The objective
row and/or the right-hand side can be computed in a recurrence manner (see (3.13)
and (3.14)). The pivot column and row can be computed through B�1 and the
original data, just as in the simplex method.

If nonbasic entries in the pivot row are all nonnegative, i.e.,

�T
N

4D eT
p

NN D eT
p B�1N � 0;

the dual problem is unbounded, hence the original problem is infeasible. B�1 will
be updated in the same way as in the simplex method.

Based on Table 3.2, therefore, Algorithm 4.4.1 can be revised to the following
algorithm.

Algorithm 4.5.1 (Dual simplex algorithm). Initial: .B; N /; B�1. NzN � 0, NxB D
B�1b and Nf D cT

B NxB . This algorithm solves the standard LP problem (1.8).
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1. Select row index p 2 arg minf Nxji j i D 1; : : : ; mg.
2. Stop if Nxjp � 0 (optimality achieved).
3. Compute �N D N T B�T ep .
4. Stop if J D fj j �j < 0; j 2 N g D ; (infeasible problem).
5. Determine ˇ and column index q such that

ˇ D �Nzq=�q D minj 2J �Nzj =�j .
6. Set Nzjp D ˇ, and update NzN D NzN C ˇ�N ; Nf D Nf � ˇ Nxjp if ˇ ¤ 0.
7. Compute Naq D B�1aq .
8. Update by NxB D NxB � ˛ Naq; Nxq D ˛, where ˛ D Nxjp =�q .
9. Update B�1 by (3.23).

10. Update .B; N / by exchanging jp and q.
11. Go to step 1.

Alternatively, Algorithm 4.5.1 can be derived by solving the dual problem itself as
follows.

Consider the dual problem

.D/ max g D bT y;

s:t: AT y � c:

Given .B; N /; B�1. It is easy to verify that Ny D B�T cB satisfies the dual
constraints, i.e.,

NzB D cB � BT Ny D 0; NzN D cN � N T Ny � 0: (4.26)

Ny is a dual basic feasible solution, or geometrically a vertex in the dual feasible
region

D D fy j AT y � cg:

In the primal simplex context, Ny is usually called “simplex multipliers”.
Consider the associated primal basic solution

NxB D B�1b; NxN D 0:

If NxB � 0, then Nx and . Ny; Nz/ satisfy the optimality condition, and are therefore a pair
of primal and dual basic optimal solutions.

Now assume that NxB D B�1b 6� 0. Determine row index p such that

Nxjp D minf Nxji j i D 1; : : : ; mg < 0: (4.27)

Introduce vector

h D B�T ep; (4.28)
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which with (4.27) gives

� bT h D �bT B�T ep D �eT
p .B�1b/ D Nxjp > 0; (4.29)

implying that �h is an uphill direction, with respect to the dual objective function g.
Now consider the line search scheme below:

Oy D Ny � ˇh; (4.30)

where ˇ is a dual stepsize to be determined. From (4.30), (4.28) and (4.26), it
follows that

OzB D cB � BT Oy D cB � BT. Ny � ˇh/ D ˇep � 0; (4.31)

OzN D cN � N T Oy D cN � N T. Ny � ˇh/ D NzN C ˇN Th: (4.32)

If �N D N T h 6� 0, then it is seen from (4.32) that a too large ˇ > 0 will lead to
OzN 6� 0, as violates the dual feasibility. It is easy to determine the largest possible ˇ

and according column index q, subject to OzN � 0 (see step 5 of Algorithm 4.4.1 ).
Then, drop jp from and enter q to the basis. It is easy to verify that Oy is just the dual
basic feasible solution, corresponding to the resulting basis.

The following is valid in the other case.

Proposition 4.5.1. If �N D N T h � 0, the dual problem is unbounded, and �h is
an uphill extreme direction in the dual feasible region D.

Proof. If �N � 0, it is seen from (4.26) and (4.31), (4.32) that

Oz D c � AT Oy � 0; 8ˇ � 0;

implying feasibility of the new solution Oy given by (4.30). On the other hand, it is
known from (4.30) and (4.29) that the associated new objective value is

bT Oy D bT Ny � ˇ Nxjp ; (4.33)

which goes to 1, as ˇ tends to 1. Thus the dual problem is unbounded. This
means that �h is a uphill unbounded direction of D. In fact, it is seen that �h is the
direction of 1-dimensional face or edge

fy 2 Rm j ATy � cI aT
ji

y D cji ; i D 1; � � � ; m; i ¤ pg;

and therefore a uphill extreme direction. ut
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The preceding analysis is actually valid for any given negative Nxjp . Though far
from the best, Rule (4.27) is simple and easy to use, and the corresponding objective
increment is the largest possible for a unit stepsize. More efficient dual pivot rules
will be presented in Chap. 12.

Since the beginning of 1990s of the last century, successful applications of the
dual steepest-edge rule (Forrest and Goldfarb 1992), some of its approximations
and bound-flipping (Kirillova et al. 1979) have injected fresh vigoure to the dual
simplex method, so that it becomes one of the most powerful methods for solving
LP problems (Bixby 2002; Koberstein 2008).

Example 4.5.1. Solve the following problem by Algorithm 4.5.1:

min f D x1 C 2x2 C x3;

s:t: �2x1 � x2 � x3 C x4 D �1;

x1 � 4x2 � x3 C x5 D �2;

x1 C 3x2 C x6 D 4;

xj � 0; j D 1; : : : ; 6:

Answer Initial:B D f4; 5; 6g; N D f1; 2; 3g; B�1 D I ,
NzN D .1; 2; 1/T ; NxB D .�1; �2; 4/T ; f D 0.

Iteration 1:

1. minf�1; �2; 4g D �2 < 0; p D 2; x5 leaves the basis.
3: �N D .1; �4; �1/T :

5: ˇ D minf2=4; 1=1g D 1=2; q D 2; x2enters the basis.
6: NzN D .3=2; 0; 1=2/T ; Nzjp D 1=2; Nf D 0 � .1=2/.�2/ D 1:

7: Naq D .�1; �4; 3/T :

8: ˛ D �2= � 4 D 1=2; NxB D .�1; �2; 4/T � .1=2/.�1; �4; 3/T

D .�1=2; 0; 5=2/T ; Nx2 D ˛ D 1=2:

9: B�1 D
0
@1 1= � 4

1= � 4

3=4 1

1
A :

10: B D f4; 2; 6g; N D f1; 5; 3g; NzN D .3=2; 1=2; 1=2/T � 0; NxB

D .�1=2; 1=2; 5=2/T :

Iteration 2:

1. minf�1=2; 1=2; 5=2g D �1=2 < 0; p D 1, x4 leaves the basis.
3: �N D .�9=4; �1=4; �3=4/T :

5: ˇ D minf.3=2/=.9=4/; .1=2/=.1=4/; .1=2/=.3=4/g D 2=3; q D 1; x1 enters
the basis.

6: NzN D .3=2; 1=2; 1=2/T C .2=3/.�9=4; �1=4; �3=4/T D .0; 1=3; 0/T :

Nzjp D 2=3; Nf D 1 � .2=3/.�1=2/ D 4=3:

7: Naq D .�9=4; �1=4; 7=4/T :
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8: ˛ D .�1=2/=.�9=4/ D 2=9; NxBD.�1=2; 1=2; 5=2/T

� .2=9/.�9=4; �1=4; 7=4/T D .0; 5=9; 19=9/T ; Nx1 D 2=9:

9: B�1 D
0
@�4=9

�1=9 1

7=9 1

1
A
0
@1 1= � 4

1= � 4

3=4 1

1
A D

0
@�4=9 1=9

�1=9 �2=9

7=9 5=9 1

1
A :

10: B D f1; 2; 6g; N D f4; 5; 3g; NzN D .2=3; 1=3; 0/T � 0;

NxB D .2=9; 5=9; 19=9/T � 0:

The optimal solution and objective value:

Nx D .2=9; 5=9; 0; 0; 0; 19=9/T ; Nf D 4=3:

4.6 Economic Interpretation of Duality: Shadow Price

The dual problem is of an interesting economic interpretation. Assume that the
primal problem

max f D cT x;

s:t: Ax � b; x � 0;

is a plan model for a manufacturer to produce n products using m resources. The
available amount of resource i is bi ; i D 1; : : : ; m; units; producing an unit of
product j consumes aij units of resource i . The profit of an unit of product j is
cj ; j D 1; : : : ; n. The goal is to achieve the highest profit with the limited resources.

The dual problems is

min bT y;

s:t: AT y � c; y � 0:

Let Nx and Ny be primal and dual optimal solutions, respectively. According to the
strong duality Theorem, associated primal and dual optimal values are equal, i.e.,

v D cT Nx D bT Ny:

Optimal value’s partial derivative with respect to bi is

@v

@bi

D Nyi :

Therefore, Nyi is equal to the increment of the highest profit, created by adding one
unit of resource i , and can be taken as manufacturer’s assessment for resource i , as
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is named shadow price by Paul Samuelson.1 Shadow price Nyi is the upper price limit
that the manufacturer can afford to buy resource i . When market price of resource i

is lower than shadow price Nyi , the manufacturer should consider to buy it to expand
the production scale, whereas he should consider to sell it to reduce the production
scale in the other case. The manufacturer will not buy resource i any more, no
matter how low its price is, whenever the optimal solution Nx satisfies the i th primal
inequality constraint slackly, as implies that resource i is not fully used. In fact, the
shadow price Nyi vanishes in this case.

Let x and y be any primal and dual feasible solutions respectively, hence cT x �
bT y holds according to the weak duality. Inequality

cT x < bT y;

implies that the total profit (output) of the plan is less than the available value (input)
of the resources. In economic terms, the input-output system is said “instable (non-
optimal)” in this case. It is a stable (optimal) system only when output is equal to
input.

Consider economic implication of the dual constraints. The manufacturer negoti-
ates with the supplier at price yi for resource i , as is calculated to purchase resources
bi ; i D 1; : : : ; m by overall payment bT y. For j D 1; : : : ; n, on the other hand, the
supplier asks for resource prices to produce an unit product j being no less than the
profit of an unit of product j , as satisfies the j th dual constraint

mX
iD1

ai;j yi � cj :

If the suppler asks for too high prices, that is, the dual optimal solution Ny satisfies
the j th dual constraint slackly, then Nxj vanishes, as implies that the manufacturer
should not arrange for producing product j at all, no matter how high the profit of
an unit of the product is.

4.7 Notes

The concept and theorems of duality were first proposed by famous mathematician
von Neumann. In October 1947, he made foundational discussions on the topic in
a talk with George B. Dantzig and in a working paper, finished a few weeks later.
In 1948, Dantzig provided a rigorous proof on the duality theorems in a report.
Subsequently, Gale et al. (1951) formulated the duality theorems and proved them

1Paul Samuelson (1915–2009), American economist, the winner of The Nobel Economics Prize
(1970), the first American winning this prize.
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using Farkas Lemma, independently. Goldman and Tucker (1956b) and Balinski and
Tucker (1969) discussed theoretical properties of the dual problem systematically.

As was stressed, the simplex tableau is just a concise expression of a LP problem
itself, and all such tableaus created by the primal or dual simplex algorithm are
equivalent in the sense of their representation of the LP problem. Then the following
question arises:

Are dual problems corresponding to the simplex tableaus equivalent?
Consider the dual problem, corresponding to tableau (3.18), i.e.,

max Nf C NbTy0;

s:t:

�
I
NN T

�
y0 C

�
z0
B

z0
N

�
D
�

0

NzN

�
; z0

B; z0
N � 0:

As their Nb; NN ; NzN are not the same, the dual problems corresponding to different
simplex tableaus are also different. However, such differences are not essential. In
fact, Making variable transformations y0 D BTy � cB; z0 D z and noting

Nb D B�1b; NN D B�1N; NzN D cN � N TB�TcB ; Nf D cT
BB�1b;

the dual problem can be converted to

max bTy;

s:t:

�
BT

N T

�
y C

�
zB

zN

�
D
�

cB

cN

�
; zB; zN � 0;

which is the original dual problem. Therefore, all the generated simplex tableaus
can be regarded as equivalent with respect to represented dual problems.

In summary, elementary transformations generate equivalent simplex tableaus.
On the primal side, the right-hand sides give primal basic solutions and the bottom
rows give primal reduced objective functions. On the dual side, the right-hand sides
render dual reduced objective functions and the bottom rows dual basic solutions.

Based on duality, the following is also valid.

Proposition 4.7.1. If it has a dual solution . Ny; Nz/, the standard problem (4.1) is
equivalent to

max f D NyT b C NzT x;

s:t: Ax D b; x � 0:
(4.34)

Proof. . Ny; Nz/ satisfies AT Ny C Nz D c or equivalently,

cT D NyT A C NzT :
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Substituting the preceding to the objective of the standard problem and noting the
constraint system gives the objective of (4.34), i.e.,

f D cT x D NyT Ax C NzT x D NyT b C NzT x;

and vice versa. ut
The preceding says that the cost vector c in the standard problem can be replaced

by any dual solution Nz, with only a constant difference in objective value.



Chapter 5
Implementation of the Simplex Method

All algorithms formulated in this book, such as the simplex algorithm and the dual
simplex algorithm, are theoretical or conceptional, and can not be put to practical
use via programming directly. Softwares, resulting by following the algorithms, step
by step naively, would only solve textbook instances, involving only few variables
and constraints, not real-world problems, especially large-scale sparse problems.
Experiences indicate that implementation details are crucial to algorithms’ success
(Orchard-Hays 1954; Tomlin 1974; Todd 1982, 1983; Bixby 1994).

This chapter will highlight effective implementation techniques, without which
the simplex algorithm will become useless. The issue is mainly two-fold: one is to
improve numerical stability and the other to reduce involved computational efforts.
Only limited sparse techniques will be touched, as a full treatment of sparsity is
beyond the scope of this book.

In view of the complexity disadvantage of the tableau version (Sect. 3.8), this
chapter will handle the topic based on the (revised) simplex algorithm. We stress
that materials presented here are of general value, as also fit other simplex variants,
perhaps with some relevant modifications.

Based on the simplex algorithm, implementation techniques may lead to different
codes. In particular, MINOS is the main reference in writing this chapter (see
Notation).

5.1 Miscellaneous

As rounding errors affect computational procedures and results (see Sect. 1.4),
restricting such effects to improve the numerical stability is important to imple-
mentation of the simplex algorithm.

Firstly, theoretical 0 or 1 involved in the algorithm should be treated properly
by giving tolerances, in accordance with the computer precision used. Based on

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__5,
© Springer-Verlag Berlin Heidelberg 2014
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MINOS, for instance, main parameters are list below, where the computer precision
is assumed to be

� D 2�52 � 2:22 
 10�16

Introduce notation

�0 D �0:8 � 3:00 
 10�13;

�1 D �0:67 � 3:25 
 10�11;

featol D 10�6;

plinfy D 1020;

where

• Quantities in solution process, whose absolute values are no more than �0, are
treated as machine 0.

• Quantities, whose absolute values are more than plinfy, are treated as 1.
• tolpiv D �1 is used to avoid a too small pivot; e.g., the minimum-ratio test (3.10)

is actually replaced by

˛ D Nbp= Nap q D minf Nbi= Nai q j Nai q > tolpiv; i D 1; � � � ; mg � 0: (5.1)

Thereby, any pivot chosen satisfies Nap q > tolpiv. The problem is regarded as
unbounded if no such a pivot is found.

The magnitude of a pivot seriously affects the numerical stability of the
algorithm. Determination of a numerical nonzero pivot should not only depend on
the computer precision, but also the problem to be solved. It is difficult to give a
“best” tolpiv. Some value between �1 and 10�7 seems to be feasible, though still
far from satisfactory. This topic will be discussions further in Sect. 5.6.

• featol is a primal and dual feasibility tolerance. For j D 1; � � � ; n, xj � �featol
is used to replace the nonnegativity condition xj � 0 (for primal feasibility).
For j 2 N , in optimality test, Nzj � �featol is used to replace Nzj � 0 (for dual
feasibility). Thus, the column rule (3.12) is replaced by

q 2 arg minfNzj j Nzj < �featol; j 2 N g: (5.2)

If there is no such an q found, i.e., Nzj � �featol; 8j 2 N , then optimality is
declared.

In solution process, however, it is not easy to ensure all iterates to keep within the
feasibility tolerance, let alone degeneracy being intertwined with this. Solution of
large-scale LP problems usually involves a large number of iterations. After many
iterations, due to accumulated errors, intermediate results could be too inaccurate
to be used. It is therefore necessary to perform a so-called “restarting strategy”:
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rebooting the process from scratch by recomputing (from original data) inverse
B�1 or the LU factorization of the current basis. It might be well to restart
every 100 iterations. In addition, residuals of equality constraints with respect to
iterates should be monitored in solution process: the restarting strategy is carried
out whenever residuals are found to exceed some tolerance. Practically, it is
also necessary to predetermine an upper bound for the number of iterations to
limit running time. Once iterations exceed such a bound, the solution process is
terminated after information of the end basis is recorded for a possible later “warm
start”.

Real-world demand is a powerful pushing force for implementation techniques
for solving large-scale LP problems. Nowadays, LP problems yielding from practice
become larger and larger. Very large problems appear frequently. Solution of such
type of problems is very challenging: required storage would be too large to meet;
even the internal memory of a computer is enough, running time consumed by
solution process would still be too high to afford.

Like many other models, fortunately, most of large-scale LP problems are
sparse, i.e., data A; b; c involve large amount of zeros. Usually, the proportion
of nonzero entries of A is no more than 1 %, hardly 5 %. This is so because
variables, involved in large systems, usual belong to different groups (corresponding
to different regions, departments or properties, and so on), and constraints mainly
reflect relations within interior of a group, so that each variable would appear in
few constraints. With the help of sparse matrix techniques, which are quite mature
nowadays, it is possible to proceed without storing and manipulating zeros at all.
Thereby, the key for solving large-scale sparse problems lies in taking advantage
of sparsity to reduce storage and arithmetics requirements. For many professional
optimization packages, original nonzero data are expressed in a so-called “MPS
format” in an input data file (see Appendix A).

As for special methods for solving large-scale LP problems, some decomposition
techniques have been proposed in the past (Chap. 8). The so-called “decomposition
principle” will be presented in Sect. 25.6.

5.2 Preprocessing: Scaling

Large magnitude differences within original data affect computational results
significantly, as is related with accumulation of rounding errors. To reduce such
differences, original data should be preprocessed before hand by some so-called
scaling technique (Fulkerson and Wolfe 1962; Hamming 1971; Curtis and Reid
1972; Tomlin 1975).

Adjusting measurement unit is a common scaling method. It amounts to perform-
ing variable transformation x D D1x0, where D, called scaling factor, is a diagonal
square matrix with positive diagonals. For instance, simply taking
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D1 D

0
BBB@

1=ka1k
1=ka2k

: : :

1=kank

1
CCCA (5.3)

converts the standard LP problem to

min f D .cTD1/x0;
s:t: .AD1/x

0 D b; x0 � 0;
(5.4)

where each column of AD1 is of norm 1, so that magnitude differences between
columns are balanced. Then once an optimal solution Nx0 to (5.4) is obtained, the
according optimal solution of the original is readily available, i.e., Nx D D1 Nx0.

The preceding scaled problem is usually amenable to be solved, compared to
the original. We will see that such doing enhances the pivot column selection,
consequently reducing the number of required iterations (Sect. 11.4).

An analogous scaling is to balance magnitude differences among rows. If d T
i is

used to denote row i of A and

D2 D

0
BBB@

1=kd1k
1=kd2k

: : :

1=kdmk

1
CCCA ; (5.5)

then the standard LP problem is equivalent to

min f D cTx;

s:t: .D2A/x D D2b; x � 0;
(5.6)

where each row of the coefficient matrix D2A is of norm 1.
Professional codes for handling large-scale sparse problems usually use more

sophisticated scaling methods, based on nonzero data only. MINOS applies an
iterative procedure based on Fourer (1979), which alternately balances nonzeros of
rows and columns for obtaining scaling factors by geometric mean. After the scaled
problem is solved, relevant transformations are carried out to recover an optimal
solution of the original. More precisely, the main steps are put in the following
algorithm.

Algorithm 5.2.1 (Scaling). Given a scaling tolerance scltol < 1. In the following,
ai;j is nonzero entry of A.

1. Compute aratio D maxj fmaxi jai;j j= mini jai;j jg.
2. Divide rows i D 1; � � � ; m of Ax D b by

p
minj jai;j j 
 maxj jai;j j.
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3. Divide columns i D 1; � � � ; n of

�
A

cT

�
by
p

mini jai;j j � maxi jai;j j.
4. Compute sratio by formula in step 1.
5. If sratio � scltol � aratio, return; else, go to step 1.

As for more general LP problems, scaling factors for bounded variables (i.e.,
there are constraints: lj � xj � uj ; j D 1; : : : ; n), free or fixed variables should
be determined differently, as is omitted here.

The simplex method is not invariant to different scaling methods. Effects of
scaling are problem-dependent, and difficult to make a theoretical analysis, as is
not clear what kind of scaling is the best. At any events, scaling is indispensable
in real applications. Even simple scaling would improve algorithm’s performance
significantly. Without scaling, in fact, only few real-world problems can be handled.

5.3 LU Factorization of Basis

For large-scale sparse computations, it is important to maintain sparsity of matrices
and vectors in solution process (see. e.g., Gay 1978; George and Liu 1981). To this
end, in this section we firstly present a product form of the inverse of basis matrix,
and then turn to the LU factorization of basis matrix, as well as its sparsity version
in particular.

The simplex Algorithms 3.5.1 or 3.5.2 utilizes an explicit expression of the
inverse of the basis matrix, and updates it iteration by iteration. Such doing is
just for convenience of composition, not suitable for sparse computations, because
the inverse would be very dense even though the basis matrix itself is sparse. The
following instance was given by Orchard-Hays (1971).

Example 5.3.1. It is verified that the inverse of matrix

B D

0
BBBBB@

1 1

1 1

1 1

1 1

1 1

1
CCCCCA

is

B�1 D

0
BBBBB@

1 1 �1 1 �1

�1 1 1 �1 1

1 �1 1 1 �1

�1 1 �1 1 1

1 �1 1 �1 1

1
CCCCCA

;

all entries of which are nonzero.
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That an original zero entry becomes nonzero is said to be fill-in. In the preceding
instance, a large proportion of fill-ins lead to the inverse losing sparsity completely.
An approach to bypassing this difficulty is to express inverse in product form of
elementary matrices (Dantzig and Orchard-Hays 1953).

As was known, the Gauss-Jordan elimination turns a basis B to the unite matrix.
Such doing amounts to premultiplying B by a sequence of Gauss transformation
(elementary) matrices E1; � � � ; Em such that

Em � � � E1B D I:

Thereby, the product form of B�1 follows, i.e.,

B�1 D Em � � � E1:

Then, all manipulations involving B�1 can be carried out through the factors
smoothly. Instead of B�1 itself, consequently, there is only a need for storing
elementary matrix factors, which is usually sparse, relative to B�1. Note that only a
single vector needs to be stored for each factor, as an elementary matrix differs from
the unit matrix only by a column.

The preceding approach was considered in early days of the simplex algorithm.
We will not go into details here, but turn to a desirable and commonly used
alternative, the LU factorization.

5.3.1 Use of LU Factorization

As far as computations in the simplex algorithm are concerned, the inverse itself
is not its goal (Bartels and Golub 1969). In fact, what really needed are only
vectors

Naq D B�1aq; and Ny D B�TcB ;

which can be obtained by solving the following two systems, respectively:

B Naq D aq; and BT Ny D cB: (5.7)

It is well known that a linear system can be solved through the LU factorization of
the coefficient matrix efficiently. In particular, sparse matrix techniques are available
for solving very large-scale sparse systems.

Assume that the LU factorization B D LU is available, where L is an unit lower
triangular matrix (with all diagonals 1), and U is an upper triangular matrix. Then,
the first system of (5.7) is converted to the following two triangular systems:

Lu D aq; U Naq D u: (5.8)
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and the second to the two triangular systems below:

U Tv D cB ; LT Ny D v: (5.9)

It is a easy task to solve such a system, as only m2=2 multiplications are required
(for dense computations).

Matrix factorization is closely related to elimination. The LU factorization of
a matrix can be obtained by Gauss elimination. In each step, Gauss elimination
zeros nonzeros below the diagonal, as amounts to premultiplying by a Gauss
transformation.

Assume that at the end of the .k � 1/th step .k < m/, there are Gauss
transformations G1; � � � ; Gk�1 such that the entries below the diagonal of the first
k � 1 columns are all zero, i.e.,

B.k�1/ D Gk�1 � � � G1B D
 

B
.k�1/
11 B

.k�1/
12

B
.k�1/
22

!
; (5.10)

where B
.k�1/
11 is upper triangular of order k � 1. Assume that

B
.k�1/
22 D

0
B@

b
.k�1/

kk � � � b
.k�1/

km
:::

:::

b
.k�1/

mk � � � b
.k�1/
mm

1
CA ; (5.11)

and that b
.k�1/

kk ¤ 0. Thus, the following factors are well defined:

lik D b
.k�1/

ik =b
.k�1/

kk ; i D k C 1; � � � ; m: (5.12)

It is clear that Gauss transformation

Gk D I � h.k/eT
k ; h.k/ D .0; � � � ; 0„ ƒ‚ …

k

; lkC1;k; � � � ; lm;k/T (5.13)

satisfies

B.k/ D GkB.k�1/ D
 

B
.k/
11 B

.k/
12

B
.k/
22

!
;

where B
.k/
11 is upper triangular of order k. Thus, the kth step of Gauss elimination is

complete, provided the kth diagonal (pivot) is nonzero. In such a manner, a sequence
G1; � � � ; Gm�1 of Gauss transformations can be determined such that matrix

B.m�1/ D Gm�1 � � � G1B
4D U

is an upper triangular with nonzero diagonals.
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It is easy to verify that G�1
k D I Ch.k/eT

k . Thereby, the LU factorization follows:

B D LU;

where

L D G�1
1 � � � G�1

m�1 D
m�1Y
kD1

.I Ch.k/eT
k / D I C

m�1X
kD1

h.k/eT
k D I C.h.1/ � � � ; h.m�1/; 0/

is a unit lower triangular matrix. The preceding LU factorization may be of a
practicable form, i.e.,

L�1B D U; L�1 D Gm�1 � � � G1: (5.14)

Consequently, (5.8) becomes

U Naq D Gm�1 � � � G1aq; (5.15)

and (5.9) becomes

U Tv D cB; Ny D GT
1 � � � GT

m�1v: (5.16)

Thereby, there is no need for an explicit expression of L�1, but holding Gauss
factors Gk; k D 1; � � � ; m � 1 is enough.

It is often the case when L�1 is dense even though the Gauss factors are sparse.
Expressing L�1 in product form is therefore suitable for sparse computations. The
required storage of Gk is not high, as only nonzeros of vector hk are stored. In dense
computations, these nonzeros are usually stored in the lower triangular part of the
matrix while U stored in the upper triangular part.

It is noticeable that the LU factorization is not always a clear road. The existence
condition for the LU factorization of a matrix is that the principal submatrices are
all nonsingular, as guarantees a nonzero pivot in each step (see Golub and Van Loan
1989); e.g., there is no LU factorization for the following simple nonsingular matrix:

�
1

1 1

�
:

because its first diagonal is 0, not eligible to be a pivot.
Fortunately, there exists the LU factorization for a matrix, resulting from properly

rearranging rows and columns, and such doing does not matter essentially, but
amounts to exchanging the order of equations and variables.
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5.3.2 Sparse LU Factorization

On the other hand, rearranging rows and columns does affect sparsity of the LU
factors significantly. Let us bring up a simple example.

Example 5.3.2. Use Gauss elimination to convert matrix

B D
0
@ 2 4 2

3

�1 1

1
A

to upper triangular.

Answer

G1 D
0
@ 1

�3=2 1

1=2 1

1
A �! G1B D

0
@2 4 2

�6 �3

2 2

1
A ;

G2 D
0
@1

1

1=3 1

1
A �! G2G1B D

0
@2 4 2

�6 �2

1

1
A 4D U:

The right-hand side U is already upper triangular. Vectors h1; h2, related to the
Gauss transformations, may be stored in the lower triangular part of U :

0
@ 2 4 2

�3=2 �6 �2

1=2 1=3 1

1
A :

It is seen that the resulting matrix is full filled with nonzeros. Let us now rearrange
rows and columns, according to the order of row indices 2; 3; 1 and of column
indices 1; 3; 2 as follows first:

NB D
0
@ 3

�1 1

2 2 4

1
A :

Then carry normal eliminations in order:

NG1 D
0
@ 1

1=3 1

�2=3 1

1
A �! NG1

NB D
0
@3

1

2 4

1
A ;
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NG2 D
0
@1

1

�2 4

1
A �! NG2

NG1
NB D

0
@3

1

4

1
A 4D NU :

Vectors Nh1; Nh2 related to the Gauss transformations is stored in the lower triangular
part of NU , i.e.,

0
@ 3

1=3 1

�2=3 �2 4

1
A :

It is seen that the resulting matrix involves three zeros, just as the original B; in
other words, no fill-in is introduced. This is the case because the rearranged matrix
is lower triangular, as is amenable to Gauss elimination.

For the instance below, the left side is the original matrix (where nonzeros
are denoted by “
”). If classical Gauss elimination is carried out, its sparsity is
completely lost. But if rows and columns are rearranged as the matrix on the right
hand side, then no any fill-in results at all.

0
BBBBBBB@


 
 
 
 
 


 


 


 


 


 


1
CCCCCCCA

�!

0
BBBBBBB@


 


 



 


 



 


 
 
 
 
 


1
CCCCCCCA

:

Note that the right-hand side matrix is close to lower triangular, with the bratty bump
in the right-most column.

So-called “preassigned pivot procedure .P 3/” and “partitioned preassigned
pivot procedure .P 4/” describe how to rearrange rows and columns toward lower
triangular (Hellerman and Rarick 1971, 1972). Subsequently, a stable revision, P 5,
of P 4 was proposed (Duff et al. 1986). All such type of approaches provide the LU
factorization of some permuted version of a matrix, i.e.,

L�1PBQ D U; L�1 D Gm�1 � � � G1; (5.17)

where P and Q are permutation matrices (resulting from the unit matrix by
permutation). By (5.17), it is easy to convert the two systems in (5.7) to the
equivalent forms

U w D Gm�1 � � � G1P aq; Naq D Qw (5.18)
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and

U Tv D QTcB; Ny D P TGT
1 � � � GT

m�1v: (5.19)

Combination of such approaches and the classical Gauss elimination perform very
well in practice. We will not go into details here though, interested readers are
referred to related literature.

We prefer another approach selecting pivots in elimination process rather than
preassigned. In this aspect, Markowitz rule (1957) is especially successful in
practice.

Assume that at the end of step k � 1, Gauss elimination generates (5.10) and
(5.11). Currently, only the .m � k C 1/.m � k C 1/ submatrix at the south-east
corner of the matrix is “active”, the elimination process proceeds only within it
without touching the other part. At step k, the standard Gauss elimination would
take b

.k�1/

kk as the pivot, provided it is nonzero.

Denote by rk
i the number of nonzeros of row i of B

.k�1/
22 , by ck

j the number

of nonzeros of column j . Markowitz selects a pivot, within nonzeros of B
.k�1/
22 ,

such that .rk
i � 1/.ck

j � 1/ is minimized. The pivot chosen is then moved to the
kth diagonal’s position by row and column permutations, and step k is complete.
It is noted that here .rk

p � 1/.ck
q � 1/ rather than rk

p ck
q is used, thereby a row or

column involving only a single nonzero is certainly selected, if any, so as no any
fill-in occurs at step k.

Nevertheless, so-called “zero” or “nonzero” is only of theoretical sense, as a
pivot too close to zero could lead to computational failure. Considering numerical
stability, the pivot chosen should not be too small, compared with other nonzeros.
There is a contradiction between sparsity and stability. In the following rule, the two
aspects are balanced to some extent.

Rule 5.3.1 (Markowitz pivot rule) Given constant 0 < � � 1, select the pivot
b

.k�1/
pq such that

.rk
p �1/.ck

q �1/ D minf.rk
i �1/.ck

j �1/ j jb.k�1/
ij j � ��; i; j D k; � � � ; mg; (5.20)

where

� D maxfjb.k�1/
ij j j i; j D k; � � � ; mg: (5.21)

It is clear that large � value contributes to stability, while small one contributes
sparsity. Value � D 0:5 or so seems to be suitable. In order to avoid going through
every nonzero of the active submatrix, on the other hand, some variants of the
preceding rule is designed, in which only part of rows or/and columns are involved.
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Such kind of approaches actually lead to the following LU factorization:

Gm�1Pm�1 � � � G1P1BQ1 � � � Qm�1 D U; (5.22)

where Pi ; Qi ; i D 1; : : : ; m � 1 are permutations. Setting

P D Pm�1 � � � P1; Q D Q1 � � � Qm�1;

then it is known from (5.22) that pivot determinations and row and column permu-
tations, carried out alternately, are of the same effects as according prepermutations
followed by the standard factorization, i.e.,

L�1PBQ D U; L�1 D Gm�1Pm�1 � � � G1P1P
T:

Therefore, the two systems in (5.7) can still be respectively converted to

U w D Gm�1Pm�1 � � � G1P1aq; Naq D Qw;

and

U Tv D QTcB; Ny D P T
1 � � � GT

1 � � � P T
m�1G

T
m�1v:

For either row and column prepermutations, or permutations in the process, there
is no need for actually moving around related entries in computations, as two integer
arrays are enough to record the positions of pivot rows and columns, respectively.

The LU factorization of a basis requires large amount of operations, com-
pared with those in a simplex iteration. Nevertheless, there is no need for such
doing in each iteration. After an initial basis matrix is factorized, LU factors
of subsequent bases can be obtained by recurrence or updating methods. A
basis matrix are refactorized only when the number of iterations exceeds some
predetermined upper bound so that LU factors are unacceptably inaccurate or dense,
or the list of related Gauss transformation matrices are too long to store (see
Sect. 5.1).

5.4 Updating LU Factors

As only one column of the basis is different from that of its predecessor, it is possible
to obtain LU factors by updating old ones cheaply. In this section, we will present
updating approaches commonly used in practice.
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Assume that the LU factorization of the current basis is

L�1B D U; L�1 D GsPs � � � G1P1: (5.23)

and that a pivot column index q and row index p have been determined.
The first updating approach, proposed by Bartels and Golub (1969), drops the

pth column ajp from B , then moves the p C1 through mth columns forward by one
column space, and adds aq at the end as the mth column, as results in the new basis

OB D .aj1 ; � � � ; ajp�1 ; ajpC1
; � � � ; ajm; aq/:

Consider matrix

H
4D L�1 OB D .L�1aj1 ; � � � ; L�1ajp�1 ; L�1ajpC1

; � � � ; L�1ajm; L�1aq/:

Note that the last column Qaq D L�1aq of the new basis is available, as it was
computed as an intermediate result when solving B Naq D aq . It is also seen that
H may result from dropping the pth column from the upper triangular matrix U ,
moving forward the p C 1 through mth columns by one column space, and putting
Qaq as the last column. Therefore, H is an upper-Hessenberg matrix with nonzero
subdiagonals in the p through (m � 1)th columns, the patten of which looks like:

H D

0
BBBBBBBBBBBBBBB@


 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 



 
 
 
 
 
 
 


 
 
 
 
 
 


	 	 	 	 	 	

 
 
 
 
 



 
 
 
 


 
 
 



 
 


 


1
CCCCCCCCCCCCCCCA

:

Then eliminating H ’s nonzero sub-diagonals in the p through m � 1th columns,
in turn, by elementary transformations to lead to upper triangular. However, this
process is impossible when some diagonals are zero. Bartels-Golub’s approach
overcomes this difficulty by exchanging rows: in the elimination process it takes
a diagonal as pivot whenever its absolute value is large enough, compared with the
according subdiagonal; otherwise, it exchanges the two rows where the diagonal
and subdiagonal are located. Such doing leads to better numerical stability, though
exchanging rows frequently could degrade efficiency.
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As a variant of Bartels-Golub approach, Forrest-Tomlin (1972) moves the pth
row of H (marked by 	) to the bottom (the p through (m � 1)th rows are moved
up by one row space). The resulting matrix differs from upper triangular only in p

through .m � 1/-indexed possible nonzeros in row m:

QH D QP H D

0
BBBBBBBBBBBBBBB@


 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 



 
 
 
 
 
 
 


 
 
 
 
 
 



 
 
 
 
 


 
 
 
 



 
 
 


 
 



 

	 	 	 	 	 	

1
CCCCCCCCCCCCCCCA

Such doing amounts to premultiplying H by a permutation, say QP . Assume that the
resulting matrix is QH D QP H , in which the first nonzero in row m is p-indexed, i.e.,
Qhmp ¤ 0. Then, taking diagonals in the p through .m � 1/th columns as pivots, we
eliminate nonzeros in row m, in turn, by elementary transformations. This results
in an upper triangular matrix QU . As all diagonals are nonzero in this case, no any
row exchange is needed theoretically. For sake of numerical stability, however, if
the ratio of the nonzero in the mth row to the associated diagonal is greater than �

in magnitude, exchange the mth row and the row in which the diagonal is located
before eliminating. For this purpose, � D 10 or so seems to be suitable.

It might be well to assume that there is no need for such a row exchange. Take
elimination of Qhmp as an example. Such doing amounts to premultiplying QH by
elementary matrix

QGp D I � hpeT
p; hp D .0; � � � ; 0„ ƒ‚ …

m�1

; Qhmp= Qhp/T; (5.24)

Thus, the LU factorization of the new basis OB follows, i.e.,

QL�1 OB D QU ; QL�1 D QGm�1 � � � QGp
QP L�1: (5.25)

In view of that the lower end components of vector Qaq is often zero in sparse
computations, Reid (1982) suggests not putting Qaq as the last column of the new
basis, but inserting it to as the .t �1/th column instead, if its first nonzero component
(counting from the end) is in row t ( Nat; q ¤ 0):
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p t

H D

0
BBBBBBBBBBBBBBB@


 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 



 
 
 
 
 
 
 


 
 
 
 
 
 


	 	 	 	 	 	

 
 
 
 
 



 
 
 
 


 
 
 



 




1
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p

t

After that, remove the pth row, then move the p C1 through t th row up a row space,
and put the original pth row in as the new t th row, i.e.,

p t

H D

0
BBBBBBBBBBBBBBB@


 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 



 
 
 
 
 
 
 


 
 
 
 
 
 



 
 
 
 
 


 
 
 
 



 
 
 

	 	 	 	 	 	


 




1
CCCCCCCCCCCCCCCA

p

t

Finally, eliminating nonzeros in the p through (t �1)th columns of the t th row leads
to the wanted upper triangular matrix.

At present, Forrest-Tomlin approach and its variants, such as Reid tactics, are
commonly used for updating LU factors in practice. Suhl and Suhl (1993) give some
detailed considerations on the implementation. Interested readers are referred to
related literature (see also Tomlin 1972; Saunders 1973, 1976; Gill et al. 1987).

5.5 Crashing for Initial Basis

The simplex method and its variants require an initial basis, which is usually neither
primal nor dual feasible, to get them started. It turns out that the quality of an initial
basis greatly affects required storage, the number of iterations and running time.
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There are a number of so-called “crash” procedures for determination of an initial
basis, which are based on some criterions, mainly toward a sparser initial basis,
which tentatively reduces subsequent iterations required (see, e.g., Bixby 1992).

Let us bring up the crash procedure of MINOS, designed for solving general
linear and nonlinear programming problems. Once data were input, it introduces
a so-called “logical variable” to each equality of the constraint system to convert
the problem to a bounded-variable one with a zero right-hand side. As a result, the
coefficient matrix of logical variables form an unit matrix, which is taken by a crash
option of MINOS as an initial basis, though not very commonly used in practice.

Considering that an initial basis will be LU-factorized, other crash options of
MINOS select basic columns to form a nearly-lower triangular matrix to limit the
number of subsequent fill-ins. A standard option of crash includes five stages. At
the first stage, all free logical variables are entered the basis, corresponding to unit
vectors, the number of which is usually less than m. At the second stage, other free
variables (or those with very wide bounds) are entered. At the third stage, columns
having only a single nonzero in the active submatrix are entered. At the fourth stage,
columns having two nonzeros are entered. Finally, yet selected logical variables are
selected to form the basis relevantly, if the number of basic columns is still less than
m after the previous four stages.

On the other hand, an optimal basis, if any, is clearly an ideal choice if
considering the number of required iterations. If B is optimal, e.g., what is needed to
do is only to solve system BxB D b, without any subsequent iterations at all. This is
of course impossible in general. What could be expected is to create a matrix close
to optimal in some sense. With this respect, it seems to be favorable to determine
an initial basis by the most-obtuse-angle heuristics. According to Proposition 2.5.1,
inequality constraints with lower pivoting-indices tend to be satisfied as equalities
by an optimal solution, that is, the associated (slack) variables should be taken as
nonbasic variables. In other words, variables with larger pivoting-indices be taken
as basic ones. Let us illustrate by the instance below.

Example 5.5.1. Determine an initial basis by the most-obtuse-angle heuristics:

min f D 3x1 � 2x2 C x3;

s:t: x1 C 2x2 � x3 � x4 D 1;

x1 C x2 � x3 C x5 D 3;

�x1 C x2 C x3 C x6 D 2;

xj � 0; j D 1; � � � ; 6:

Answer The problem can be converted to

min f D 3x1 � 2x2 C x3;
s:t: x4 D �1 C x1 C 2x2 � x3 � 0;

x5 D 3 � x1 � x2 Cx3 � 0;
x6 D 2 C x1 � x2 � x3 � 0;

x1; x2; x3 � 0:
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The following table lists pivoting-indices ˛i for variables.

Variable Constraints ˛j

x1 x1 � 0 �3:00

x6 x1 � x2 � x3 � �2 �2:31

x3 x3 � 0 �1:00

x5 � x1 � x2 C x3 � �3 0:00

x4 x1 C 2x2 � x3 � 1 1:63

x2 x2 � 0 2:00

The first three pivoting-indices are the smallest, corresponding to constraints
whose gradients form the most-obtuse angles with the negative objective gradient.
Accordingly, x1; x3; x6 are therefore taken as nonbasic variables, thus

B D f2; 4; 5g; N D f1; 3; 6g:B�1 D
0
@2 �1 0

1 0 1

1 0 0

1
A

�1

D
0
@ 0 0 1

�1 0 2

0 1 �1

1
A ;

Ny D B�TcB D
0
@ 0 0 1

�1 0 2

0 1 �1

1
A

T0
@�2

0

0

1
A D

0
@0

2

0

1
A ;

NzN D cN � N T Ny D
0
@3

1

0

1
A �

0
@ 1 �1 0

1 �1 0

�1 1 1

1
A

T0
@0

2

0

1
A D

0
@ 1

3

0

1
A � 0;

NxB D B�1b D
0
@ 0 0 1

�1 0 2

0 1 �1

1
A
0
@1

3

2

1
A D

0
@ 2

3

1

1
A � 0:

Then, it is seen that the according primal and dual solutions are both feasible,
and exhibit complementarity. Consequently, the primal basic optimal solution and
associated objective value are

Nx D .0; 2; 0; 3; 1; 0/T; Nf D cT
B NxB D .�2; 0; 0/.2; 3; 1/T D �4:

Therefore, determined is just an optimal basis, and there is hence no need for any
iteration.

Of course, we can not expect that such a favorable case always happens. It is
interesting however that an optimal basis can often be obtained by the approach
for small textbook instances; even when it is not the case, only few iterations are
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required subsequently to achieve optimality. It is noted that the approach produces a
little effect if differences between pivoting-indices are insignificant. For large-scale
LP problems, there is a serious conflict between following the most-obtuse-angle
heuristics and pursuing sparsity, as is not easy to balance. Interested readers are
referred to related literatures (see, e.g., Gould and Reid 1989; Hu 2007; Hu and Pan
2006; Li 2004; Pan 2008a).

5.6 Harris Rule and Tolerance Expending

For success of the simplex algorithm, control of pivot’s magnitude is not only
important, but also cumbersome. A code based on the standard row rule (see step 6
of Algorithm 3.5.1) is not practicable. It can solve few very small textbook problems
only, because such a pivot could be too close to zero to ensure numerical stability.

It is therefore necessary to impose restriction on the magnitude of the pivot. It
should be no more than a parameter tolpiv such that

�1 � 10�11 < tolpiv < 10�7 (5.26)

(see Sect. 5.1). It is still not enough though. In fact, tolpiv D 10�11 is too small
for many problems while tolpiv D 10�7 is often too large. It is difficult to find a
tolpiv value that is suitable for all LP problems. In this aspect, Harris (1973) rule
with tolpiv satisfying (5.26) seems to be feasible overall.

She designed a so-called two pass procedure, which passes m rows twice in each
iteration. In the first pass, a prospective stepsize ˛1 is determined by tolerating
bounds being violated by ı ( 0 < ı � 1 ), which is equal to current feasible
tolerance (this will be clear a little later). In the second pass, a pivot row is chosen
from rows, corresponding to real stepsizes no more than ˛1. The rule may be
formulated as follows.

Rule 5.6.1 (Harris two-pass row rule) Firstly, determine

˛1 D minf. Nbi C ı/= Nai q j Nai q > tolpivI i D 1; � � � ; mg; (5.27)

then select pivot row index

p 2 arg maxf Nai q j Nbi = Nai q � ˛1; Nai q > tolpivI i D 1; � � � ; mg: (5.28)

The preceding rule widens the scope of pivot row candidates, so that a pivot with
larger magnitude is chosen to improve numerical stability. Moreover, geometrically
the gradient of the nonnegative constraint xjp � 0 and the descent edge indexed
by q form a larger angle, as is conformable with the heuristic characteristic of
optimal solution (Sect. 2.5). Harris two-pass rule performs well in practice, and is at
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present an indispensable part of modern LP codes. However, the stability difficulty
still presents occasionally. Methods presented in Chaps. 15 and 16 might be good
remedies with this respect.

On the other hand, the theoretical stepsize ˛ D Nbp= Nap q seems to be another
source of troubles. Even if pivot Nap q is of a normal magnitude, there is still
a somewhat sticky problem when Nbp is numerically less than zero, as leads to
the objective value increasing. Essentially, this is a result of degeneracy or near
degeneracy. To guarantee a positive stepsize, and hence a strict decrease in objective
value, Gill et al. (1989) suggest a tactic termed tolerance expanding.

In each iteration, the current feasible tolerance ı is increased by a tiny amount,
say � , i.e.,

ı D ı C �:

Assuming that upper-bound featol of ı is set to 10�6 (see Sect. 5.1), and initial value
is set to

ı0 D 0:5 
 10�6;

then the increment

� D .0:99 � 0:5/ 
 10�6

10;000
D 0:49 
 10�10

seems to be appropriate. A positive stepsize is then set by

˛ D maxf Nbp= Nap q; �= Nap qg: (5.29)

After every 10;000 times of iterations, ı D ı0 is reset, the basis matrix is refactor-
ized, and the associated solution is recalculated. Of course, Phase-1 procedure will
be carried out again if the solution becomes infeasible. After optimality achieved, in
addition, the entire process has to be restarted by setting ı D ı0 to guarantee quality
of the final optimal solution.



Chapter 6
Sensitivity Analysis and Parametric LP

In some applications, after a LP problem was solved by the simplex method, there is
a need for solving a new problem, resulting from changing some part of the solved
problem, e.g., adding or dropping variables or constraints. This chapter discusses
how to deal with such problems efficiently. As concerned with solution changes
caused by problem changes, this topic belongs to so-called sensitivity analysis.

Sensitivity analysis is of diverging application background. For solving widely
used integer or mixed ILP problems (yielding from LP models by confining
variables, or a part of variables, to integers), e.g., present common methods usually
involve a large number of correlating LP problems. In this chapter, we consider
changes associated with the standard LP problem (1.8), and then handle closely
related parametric problems.

A desirable strategy to resolve such problems is the “warm start” of the simplex
method, as will be employed through out this chapter. As was mentioned in Sect. 3.9,
even for a new problem differing significantly from the old problem, it is often
a shortcut to start from the final basis, yielded from solving the old. Indeed, it is
imaginable that the optimal basis would even remain unchanged if the problem
changes within a sufficiently small range, as is a case in which a basic optimal
solution to the resulting problem is readily available.

Let (3.18) be an optimal simplex tableau, corresponding to the following pair of
primal and dual optimal solutions

NxB D Nb D B�1b � 0; NxN D 0I
NzB D 0; NzN D cN � N T Ny � 0; Ny D B�TcB:

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__6,
© Springer-Verlag Berlin Heidelberg 2014
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6.1 Change in Costs

Assume that c is changed to c0.
For the resulting problem, the primal and dual basic solutions corresponding to

the basis B are, respectively,

x0
B D B�1b D NxB � 0; z0

N D c0
N � N Ty0; y0 D B�Tc0

B:

As the primal basic solution does not change at all, primal feasibility remains. If
z0
N � 0, therefore, the pair is just primal and dual basic optimal solutions to the new

problem.
Now assume that z0

N 6� 0. In case when changes in costs are slight, corresponding
changes in the dual basic solution should be slight too; therefore, it could be
expected that the number of requited iterations for solving the new problem is low
if starting from B . In particular, changes in nonbasic costs only cause changes in
associated reduced costs. Specifically, assume that

c0
j D cj C �cj ; j 2 T � N:

In this case, it is clear that y0 D Ny, and hence only the following reduced costs need
to be computed:

z0
j D c0

j � aT
j Ny D Nzj C �cj ; j 2 T:

If they are all nonnegative, then optimality is already achieved; otherwise, simplex
steps are carried out from this point.

In some applications, it is needed to determine a change range to maintain the
optimality of B with changes in costs. More precisely, assume that

c0 D c C ��c; (6.1)

where �c ¤ 0 is a given vector and � is a scalar to be determined.
It is clear that B is an optimal basis to the resulting problem if the new reduced

costs are nonnegative, i.e.,

z0
N D cN C ��cN � N TB�T.cB C ��cB/ D NzN C ��zN � 0; (6.2)

where

�zN D �cN � N TB�T�cB: (6.3)

Introducing

ˇ D minf�Nzj =�zj j �zj < 0; j 2 N g;
˛ D minfNzj =�zj j �zj > 0; j 2 N g;
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then nonnegative values of � , satisfying inequality (6.2), is determined by

� � ˇ;

while nonpositive values of � satisfying it is determined by

j� j � ˛:

Consequently, it is known that the optimal basis or solution remains optimal when
� satisfies

� ˛ � � � ˇ: (6.4)

Example 6.1.1. Find the change range of the cost, corresponding to x1, such that
the optimal solution remains optimal:

min f D �4x1 � 3x2 � 5x3;

s:t: 2x1 C x2 C 3x3 C x5 D 15;

x1 C x2 C x3 C x4 D 12;

�2x1 C x2 � 3x3 C x7 D 3;

2x1 C x2 C x6 D 9;

xj � 0; j D 1; : : : ; 7:

Answer Example 3.2.1 already gives an optimal simplex tableau to this problem,
i.e.,

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=3 �1=3 2

1 �7=12 �1=6 �1=4 1

1 1=2 1=2 9

1 �1=4 1=2 �1=4

13=6 1=3 1=2 37

The optimal basis and nonbasis are B D f3; 4; 2; 1g; N D f5; 6; 7g, cor-
responding to the optimal solution and objective value Nx D .0; 9; 2; 1; 0; 0; 0/T;
Nf D �37I c D .�4; �3; �5; 0; 0; 0; 0/T; NzN D .13=6; 1=3; 1=2/T:

Setting �c D .1; 0; 0; 0; 0; 0; 0/T, then �cB D .0; 0; 0; 1/T; �cN D .0; 0; 0/T.
By (6.3), it holds that

�zN D
0
@0

0

0

1
A �

0
BB@

1 0 0

0 0 0

0 0 1

0 1 0

1
CCA

T 0
BB@

3 0 1 2

1 1 1 1

�3 0 1 �2

0 0 1 2

1
CCA

�T 0
BB@

0

0

0

1

1
CCA D

0
@ 1=4

�1=2

1=4

1
A :

˛ D minf.13=6/=.1=4/; .1=2/=.1=4/g D 2; ˇ D minf�.1=3/=.�1=2/g D 2=3:
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By (6.4), the optimal solution remains optimal for

�2 � � � 2=3:

Further, from (6.1) and �c D .1; 0; 0; 0; 0; 0; 0/T, it is known that the optimal
solution remains optimal while the cost c1 of x1 satisfies

�4 � 2 D �6 � c0
1 � �4 C 2=3 D �10=3:

For instance, when the cost of x1 is set to the lower bound �6, it holds by (6.2) that

z0
N D .13=6; 1=3; 1=2/T C .�2/.1=4; �1=2; 1=4/T D .5=3; 4=3; 0/T � 0;

and the optimal simplex tableau is then

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=3 �1=3 2

1 �7=12 �1=6 �1=4 1

1 1=2 1=2 9

1 �1=4 1=2 �1=4

5=3 4=3 37

6.2 Change in the Right-Hand Side

Let the right-hand vector b become

b0 D b C ��b; (6.5)

where � is a scalar, and �b is a given vector.
Corresponding to basis B , the primal and dual basic solutions of the resulting

problem are

x0
B DB�1.bC��b/D NxBC�B�1�b; z0

N D cN �N T Ny D NzN � 0; Ny D B�TcB :

(6.6)

It is clear that the dual solution remains unchanged, so does the dual feasibility. If
x0

B � 0, then the primal solution is also feasible, and hence the two are just a pair
of primal and dual optimal solutions for the resulting problem.

Now assume that x0
B 6� 0. When j�j is small, the change in x0

B is small too, it
can be expected to solve the resulting problem quickly by the dual simplex method,
starting from B . In fact, B is an optimal basis for the resulting problem if � satisfies
the following condition
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NxB C �v � 0; v D B�1�b; (6.7)

The nonpositive values of �, satisfying the preceding inequality, are determined
by

j�j � ˛ D minf Nxi=vi j vi > 0; i D 1; : : : ; mg;
while nonnegative values of � are determined by

� � ˇ D minf� Nxi =vi j vi < 0; i D 1; : : : ; mg:
Therefore, (6.6) gives primal and dual basic optimal solutions of the new problem
when � satisfies

�˛ � � � ˇ:

Example 6.2.1. Find the change range of the first component of the right-hand side
such that the optimal basis remains optimal:

min f D x1 C 2x2 C x3;

s:t: �2x1 � x2 � x3 C x4 D �1;

x1 � 4x2 � x3 C x5 D �2;

x1 C 3x2 C x6 D 4;

xj � 0; j D 1; : : : ; 6:

Answer Example 4.4.1 gives the following optimal simplex tableau to the
preceding program:

x1 x2 x3 x4 x5 x6 RHS

1 1=3 �4=9 1=9 2=9

1 1=3 �1=9 �2=9 5=9

�4=3 7=9 5=9 1 19=9

2=3 1=3 �4=3

which corresponds to the optimal solution and objective value Nx D .2=9; 5=9; 0; 0; 0;

19=9/T; Nf D 4=3.
The optimal basis and nonbasis are B D f1; 2; 6g; N D f3; 4; 5g.
Set �b D .1; 0; 0/T. By the second expression of (6.7), it holds that

v D
0
@�2 �1 0

1 �4 0

1 3 1

1
A

�10
@1

0

0

1
A D

0
@�4=9

�1=9

7=9

1
A ;

˛D minf.19=9/=.7=9/gD19=7; ˇD minf�.2=9/=.�4=9/; �.5=9/=.�1=9/gD1=2:



148 6 Sensitivity Analysis and Parametric LP

Therefore, the optimal solution remains optimal whenever

�19=7 � � � 1=2:

Further, from (6.5) and �b D .1; 0; 0/T, it is known that the optimal basis remains
optimal whenever the first component b0

1 of the right-hand side satisfies

�1 � .19=7/ D �26=7 � b0
1 � �1 C 1=2 D �1=2:

If setting b0
1 D �1=2, then it holds by (6.6) that

x0
B D .2=9; 5=9; 19=9/T C .1=2/.�4=9; �1=9; 7=9/T D .0; 1=2; 5=2/T � 0:

The optimal simplex tableau to the new program is accordingly

x1 x2 x3 x4 x5 x6 RHS

1 1=3 �4=9 1=9 0

1 1=3 �1=9 �2=9 1=2

�4=3 7=9 5=9 1 5=2

2=3 1=3 �1

6.3 Change in Coefficient Matrix

There will be several cases to be discussed separately.

6.3.1 Dropping a Variable

Assume that the basic variable xp , in row p, is to be dropped. It is clear that if
the component Nxp of the optimal solution is equal to zero, deleting it just gives an
optimal solution to the new problem.

Now assume that Nxp > 0. Thus, it holds that

Nxp D Nbp D eT
pB�1b > 0:

Consider the nonbasic entries in row p, i.e.,

Nap j D eT
pB�1aj ; j 2 N:
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Proposition 6.3.1. The new program is infeasible if

J 0 D fj 2 N j Napj > 0g D ;:

Proof. The feasibility of the new program implies that the original program has
a feasible solution with the pth component vanishing. Assume that the feasible
solution is Ox � 0; Oxp D 0. Then it satisfies the equality, corresponding to row
p of the optimal tableau of the original program, i.e.,

Oxp C
X
j 2N

Nap j Oxj D Nbp;

the left-side of which is less than or equal to 0, but the right-side of which is strictly
greater than 0, as is a contradiction. Therefore, the new program is infeasible. ut

If J 0 is nonempty, determine column index q such that

q 2 arg min
j 2J 0

Nzj = Nap j ;

where Nzj ; j 2 J 0 are reduced costs of the optimal simplex tableau of the original
program. So Nap q is the pivot. Carry out elementary transformations to drop p from
and enter q to the basis. Then deleting the column, corresponding to the nonbasic
variable xp , results in a dual feasible simplex tableau to the new problem, so as can
be solved by the dual simplex method.

Example 6.3.1. Consider problem

min f D x1 C x2 � 3x3;

s:t: �2x1 � x2 C 4x3 C x5 D �4;

x1 � 2x2 C x3 C x6 D 5;

�x1 C 2x3 C x4 D �3;

xj � 0; j D 1; : : : ; 6;

(6.8)

to which there is the optimal simplex tableau below:

x1 x2 x3 x4 x5 x6 RHS

1 �4=3 �1=3 2=3 13=3

�2=3 1 1=3 1=3 2=3

�1 �2 1 2

1=3 4=3 1=3 �7=3

Solve the problem, resulting from (6.8) by dropping variable x1.
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Answer From the optimal tableau, it is known that Nx1 D 13=3 > 0; J 0 D f6g ¤
;; minf.1=3/=.2=3/g D 1=2; q D 6.

The following dual feasible simplex tableau is obtained by multiply row 1 by
3=2, and then adding �1=3; �1=3 times of row 1 to rows 2,4, respectively:

x2 x3 x4 x5 x6 RHS

�2 �1=2 1 13=2

0 1 1=2 �3=2

�1 �2 1 2

1 3=2 �9=2

Call dual simplex Algorithm 4.4.1.

Iteration 1:

1. minf13=2; �3=2; 2g D �3=2 < 0; p D 2.
3. J D ;, detecting dual unboundedness. Therefore, the new problem is infeasible.

6.3.2 Adding a Variable

Assume that variable xnC1 is to be added. Let cnC1 and anC1 be the associated cost
and column, respectively. The new program is then

min cTx C cnC1xnC1;

s:t: Ax C anC1xnC1 D b; x; xnC1 � 0:

It is clear that B is a feasible basis to the new program, corresponding to the
basic feasible solution

� Nx
NxnC1

�
D
� Nx

0

�
:

Since variable xnC1 is nonbasic, the preceding is actually a basic optimal solution if
according reduced cost

NznC1 D cnC1 � aT
nC1 Ny

is nonnegative. If this not the case, solve the new program by the simplex method,
starting from B .
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Example 6.3.2. It is known that to program

min f D �x1 � 2x2 � 4x4 C 3x5;

s:t: 2x1 C x3 D 3;

x1 C x4 D 2;

� x2 C x5 D 0;

xj � 0; j D 1; : : : ; 5;

there is the optimal simplex tableau below:

x1 x2 x3 x4 x5 RHS

2 1 3

1 1 2

�1 1

3 1 8

Solve the problem, resulting from the program by adding variable x6, with a6 D
.1; �2; 3/T; c6 D �2.

Answer The optimal basis for the original program is B D f3; 4; 5g. Na6 D
B�1a6 D .1; �2; 3/T, Ny D B�TcB D .0; �4; 3/T, Nz6 D �2 � .1; �2; 3/

.0; �4; 3/T D �19.
We solve the new program by the tableau simplex algorithm. The initial simplex

tableau is obtained by modifying the optimal tableau to the original program, i.e.,

x1 x2 x3 x4 x5 x6 RHS
2 1 1 3

1 1 �2 2

�1 1 3*
3 1 �19 8

Call Algorithm 3.2.1.

Iteration 1:

1. minf3; 1; �19g D �19 < 0; q D 6.
3. I D f1; 3g ¤ ;.
4. minf3=1; 0=3g D 0; p D 3.
5. Multiply row 3 by 1=3, then add �1; 2; 19 times of row 3 to rows 1,2,4,

respectively:
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x1 x2 x3 x4 x5 x6 RHS

2 1=3* 1 �1=3 3

1 �2=3 1 2=3 2

�1=3 1=3 1

3 �16=3 19=3 8

Iteration 2:

1. minf3; �16=3; 19=3g D �16=3 < 0; q D 2.
3. I D f1g ¤ ;.
4. minf3=.1=3/g; p D 1.
5. Multiply row 1 by 3, then add 2=3; 1=3; 16=3 times of row 1 to rows 2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 RHS

6 1 3 �1 9

5 2 1 8

2 1 1 3

35 16 1 56

Iteration 3:

1. minf35; 16; 1g � 0. The basic optimal solution and objective value:

Nx D .0; 9; 0; 8; 0; 3/T; Nf D �56:

6.3.3 Dropping a Constraint

The problem, yielding from dropping some constraints of an LP problem is the so-
called “relaxation problem” (Sect. 25.4). According to Proposition 25.4.1, in case
when dropped constraints are inactive at an optimal solution to the original problem,
it remains optimal to the relaxation problem, hence nothing is needed to do in this
case. Now assume that dropped is an active constraint.

We solve the relaxation problem from the basis if the optimal basis to the original
problem is still a basis to the relaxation problem. Even this is not the case, it is
advantageous to form an initial basis based on the original optimal basis as much as
possible.

The preceding idea can be taken as a basis to develop a class of variants of the
simplex method. We will handle this topic further in Sect. 25.4.
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Example 6.3.3. Drop the third equality constraint from problem

min f D �2x1 � x2;

s:t: x1 � x2 C x3 D 2;

x1 C 2x2 C x4 D 8;

� x1 � x2 C x5 D �3;

� 3x1 � 4x2 C x4 C 3x5 D �14;

xj � 0; j D 1; : : : ; 5;

and solve the resulting problem.

Answer The tableau below is from the relaxation problem.

x1 x2 x3 x4 x5 RHS

1 �1 1 2

1 2* 1 8

�3 �4 1 3 �14

�2 �1

It is known from Example 6.3.5 that the final basis for the original problem is
B D f5; 2; 1; 3g. Taking f5; 2; 3g as the initial basis for the relaxation problem,
we convert the tableau to a simplex one by multiplying row 2 by 1=2, and then
adding 1; 4; 1 times of row 2 to rows 1,3,4, respectively:

x1 x2 x3 x4 x5 RHS

3=2 1 1=2 6

1=2 1 1=2 4

�1 3 3 2

�3=2 1=2 4

Multiplying row 3 by 1=3 leads to

x1 x2 x3 x4 x5 RHS

3=2* 1 1=2 6

1=2 1 1=2 4

�1=3 1 1 2=3

�3=2 1=2 4

which is a feasible simplex tableau to the relaxation problem. Call Algorithm 3.2.1.
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Iteration 1:

1. minf�3=2; 1=2g D �3=2; q D 1.
3. I D f1; 2g.
4. minf6=.3=2/; 4=.1=2/g D 4; p D 1.
5. Multiply row 1 by 2=3, then add �1=2; 1=3; 3=2 times of row 1 to rows 2,3,4,

respectively:

x1 x2 x3 x4 x5 RHS

1 2=3 1=3 4

1 �1=3 1=3 2

2=9 10=9 1 2

1 1 10

Optimality achieved. The basic optimal solution and associate objective value are

Nx D .4; 2; 0; 0; 2/T; Nf D �10:

6.3.4 Adding a Constraint

In this case, the old problem can be viewed as a relaxation of the new problem. If the
optimal solution Nx to the old problem is feasible to the new problem, therefore, it is
also optimal to the new problem. In other words, that Nx satisfies the added constraint
is a sufficient optimal condition to the new problem.

Assume now that the optimal condition is not fulfilled. Then, there are two cases
arising:

(i) Adding an inequality constraint vTx � � such that vT Nx D vT
B NxB > �.

Introduce slack variable xnC1 to turn the added inequality to equality, i.e.,

vT
BxB C vT

N xN C xnC1 D �:

Inserting the according data to the optimal simplex tableau to the old problem as
row m C 1 gives the following tableau for the new problem:

xT
B xT

N xnC1 f RHS

I NN Nb
vT

B vT
N 1 �

NzT
N �1 � Nf
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For i D 1; : : : ; m, add relevant times of row i to row m C 1 to eliminate vT
B . The

resulting simplex tableau is of form

xT
B xT

N xnC1 f RHS
I NN Nb

NvT
N 1 N�

NzT
N �1 � Nf

(6.9)

It is noted that only row m C 1 changed. Thus, the preceding is a dual feasible
tableau to the new problem, and can be taken to get Algorithm 4.4.1 started. Note
that only component N� D NxnC1 of the right-hand side is negative, since the infeasible
solution,

. Nx; NxnC1 D � � vT
B NxB < 0/;

to the new problem satisfies the equality associated with row m C 1.

Example 6.3.4. Solve the problem, yielding from adding constraint �2x1 C x3 �
3x4 C 2x6 � �25 to Example 6.3.1.

Answer Example 6.3.1 gives the basic optimal solution Nx D .13=3; 0; 2=3; 0; 2;

0/T, which does not satisfy the added constraint, because

�2 
 .13=3/ C 2=3 D �24=3 > �25:

Introduce slack variable x7 to the added constraint, and insert a row in accordance
with the resulting equality to the optimal simplex tableau of the old problem, i.e,

x1 x2 x3 x4 x5 x6 x7 RHS

1 �4=3 �1=3 2=3 13=3

�2=3 1 1=3 1=3 2=3

�1 �2 1 2

�2 1 �3 2 1 �25

1=3 4=3 1=3 �7=3

Add 2 times of row 1 to row 4:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �4=3 �1=3 2=3 13=3

�2=3 1 1=3 1=3 2=3

�1 �2 1 2

�8=3 1 �11=3 10=3 1 �49=3

1=3 4=3 1=3 �7=3
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5. Add �1 times of row 2 to row 4:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �4=3 �1=3 2=3 13=3

�2=3 1 1=3 1=3 2=3

�1 �2 1 2

�2* �4 3 1 �17

1=3 4=3 1=3 �7=3

Now the preceding is a dual feasible simplex tableau to the new problem. Call
dual simplex Algorithm 4.4.1.

Iteration 1:

1. minf13=3; 2=3; 2; �17g D �17 < 0; p D 4.
3. J D f2; 4g ¤ ;.
4. minf�.1=3/= � 2; �.4=3/= � 4g D 1=6; q D 2.
5. Multiply row 4 by �1=2, then add 4=3; 2=3; 1; �1=3 times of row 4 to rows

1,2,3,5, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 7=3 �4=3 �2=3 47=3

1 5=3 �2=3 �1=3 19=3

1 �3=2 �1=2 21=2

1 2 �3=2 �1=2 17=2

2=3 5=6 1=6 �31=6

Iteration 2:

1. minf47=3; 19=3; 21=2; 17=2g � 0. The basic optimal solution and associated
objective value:

Nx D .47=3; 17=2; 19=3; 0; 21=2; 0; 0/T; Nf D 31=6:

(ii) Adding an equality constraint vTx D � such that vT Nx ¤ �. It might be well
to assume

vT Nx < �: (6.10)

Consider the auxiliary program, yielding from adding constraint vTxCxnC1 D �

to the old problem. Just as in case (i), a dual feasible simplex tableau, say (6.9), to
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the auxiliary problem can be obtained. Since Nx; NxnC1 D � � vT
B NxB > 0 satisfies the

equality, associated with added row m C 1, it holds that

N� D NxnC1 > 0: (6.11)

Therefore, the tableau (6.9) is optimal to the auxiliary program.

Proposition 6.3.2. Assume that (6.10) holds and that NvT
N are nonbasics in row mC1

of tableau (6.9). If

J 0 D fj 2 N j Nvj > 0g

is empty, then the new problem is infeasible.

Proof. That there is a feasible solution to the new problem implies that there is
a feasible solution to the auxiliary program, whose .n C 1/-indexed component
vanishes. Assume that . Ox � 0; OxnC1 D 0/ is such a feasible solution, satisfying the
equality, associated with row m C 1 of (6.9), i.e.,

OxnC1 C
X
j 2N

Nvj Oxj D N�:

Since J 0 D ; and OxN ; OxnC1 � 0, the left-hand side of the preceding equality is
less than or equal to zero. But it is known by (6.11) that the right-hand side of the
preceding is positive, as a contradiction. Therefore, the new problem is infeasible.

ut
Assume now that J 0 is nonempty. Select column index q such that

q 2 arg min
j 2J 0

Nzj = NamC1 j :

Taking NamC1 q as the pivot, we manipulate tableau (6.9) by elementary transforma-
tions to drop n C 1 from and enter q to the basis. It is clear that deleting the column,
associated with xnC1, in the resulting tableau leads to a feasible simplex tableau to
the new problem. Consequently, the dual simplex method can get itself start from it.

Example 6.3.5. It is known that to problem

min f D �2x1 � x2;

s:t: x1 � x2 C x3 D 2;

x1 C 2x2 C x4 D 8;

�x1 � x2 C x5 D �3;

xj � 0; j D 1; : : : ; 5;
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there is the following optimal tableau:

x1 x2 x3 x4 x5 RHS

1=3 2=3 1 3

1 �1=3 1=3 2

1 2=3 1=3 4

1 1 10

Solve the problem, resulting from the preceding problem by adding constraint
�3x1 � 4x2 C x4 C 3x5 D �14.

Answer The optimal solution Nx D .4; 2; 0; 0; 3/T to the preceding problem does
not satisfies the added constraint, because

�3 
 4 � 4 
 2 C 3 
 3 D �11 > �14:

Inserting row 4, associated with 3x1 C 4x2 � x4 � 3x5 C x6 D 14, to the optimal
tableau gives the following tableau to the auxiliary program:

x1 x2 x3 x4 x5 x6 RHS

1=3 2=3 1 3

1 �1=3 1=3 2

1 2=3 1=3 4

3 4 �1 �3 1 14

1 1 10

Executing relevant elementary transformations gives the simplex tableau below,
corresponding to basis B D f5; 2; 1; 6g:

x1 x2 x3 x4 x5 x6 RHS

1=3 2=3 1 3

1 �1=3 1=3 2

1 2=3 1=3 4

1=3* �4=3 1 3

1 1 10

J 0 D f3g ¤ ;, minf1=.1=3/g D 3; q D 3. Multiply row 4 by 3, then
add �1=3; 1=3; �2=3; �1 times of row 4 to rows 1,2,3,5, respectively:
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x1 x2 x3 x4 x5 x6 RHS

2 1 �1

1 �1 1 5

1 3 �2 �2

1 �4 3 9

5 �3 1

Deleting the column associated with x6 from the preceding leads to a dual
feasible simplex tableau to the new problem, i.e.,

x1 x2 x3 x4 x5 RHS
2 1

1 �1 5

1 3 �2

1 �4 9

5 1

Call Algorithm 4.4.1.

Iteration 1:

1. minf0; 5; �2; 9g D �2 < 0; p D 3.
3. J D ;, detecting infeasibility of the new problem.

6.3.5 Replacing a Row or Column

In case when a row of the coefficient matrix of a problem is replaced by a new row,
the problem can be handled in two phases.

The first phase is to solve the problem, obtained by dropping the associated
equality constraint. The second phase is to solve the new problem, obtained by
adding the wanted constraint to the previous problem. Techniques presented in the
previous two sections are applicable to each phase.

A problem, resulting from replacing a column of the coefficient matrix, may be
handled by dropping and adding the associated columns in two phases similarly. In
the rest of this section, a direct approach to such a problem will be presented.

Assume that column ak is replaced by a0
k .

If k 2 N , then the basis B , and hence the related basic solution are not affected,
but reduced costs become

z0
k D ck � .a0

k/T Ny; Ny D B�TcB:
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If z0
k � 0, it is clear that the optimal solution and basis remains optimal to the new

problem.
If, otherwise, k 2 B , we solve the following auxiliary program:

min xnC1;

s:t: a1x1 C � � � ; ak�1xk�1 C a0
kxk C akC1xkC1 C � � � C anxn C akxnC1 D b;

x; xnC1 � 0:
(6.12)

It is clear that the new problem has a feasible solution if and only if the optimal
objective value to the auxiliary program is equal to 0. Moreover, the optimal basis
B to the old problem is feasible to the auxiliary program, and hence can be taken as
an initial basis to get the simplex method started.

Example 6.3.6. From Example 4.5.1, an optimal basis B D f1; 2; 6g is known to
problem

min f D x1 C 2x2 C x3;

s:t: �2x1 � x2 � x3 C x4 D �1;

x1 � 4x2 � x3 C x5 D �2;

x1 C 3x2 C x6 D 4;

xj � 0; j D 1; : : : ; 6:

Solve the problem, resulting from replacing the first column of the coefficient matrix
by .1; 1; �2/T.

Answer The according auxiliary program of form (6.12) has the following
tableau (keep the original objective row, while put the auxiliary objective row at
the bottom).

Firstly, find the simplex tableau, corresponding to basis B D f7; 2; 6g.

1. Multiply row 1 by �1=2, then add �1; �1; �1 times of row 1 to rows 2,3,5,
respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �1 �1 1 �2* �1

1 �4 �1 1 1 �2

�2 3 1 1 4

1 2 1

1
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x1 x2 x3 x4 x5 x6 x7 RHS

�1=2 1=2 1=2 �1=2 1 1=2

3=2 �9=2* �3=2 1=2 1 �5=2

�3=2 5=2 �1=2 1=2 1 7=2

1 2 1

1=2 �1=2 �1=2 1=2 �1=2

2. Multiply row 2 by �2=9, then add �1=2; �5=2; �2; 1=2 times of row 2 to rows
1,3,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�1=3 1=3* �4=9 1=9 1 2=9

�1=3 1 1=3 �1=9 �2=9 5=9

�2=3 �4=3 7=9 5=9 1 19=9

5=3 1=3 2=9 4=9 �10=9

1=3 �1=3 4=9 �1=9 �2=9

Call Algorithm 3.2.1.

Iteration 1:

1. minf1=3; �1=3; 4=9; �1=9g D �1=3 < 0; q D 3.
3. I D f1; 2g ¤ ;.
4. minf.2=9/=.1=3/; .5=9/=.1=3/g D 2=3; p D 1.
5. Multiply row 1 by 3, then add �1=3; 4=3; �1=3; 1=3 times of row 1 to rows

2,3,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�1 1 �4=3 1=3 3 2=3

1 1=3 �1=3 �1 1=3

�2 �1 1 1 4 3

2 2=3 1=3 �1 �4=3

1

It is seen that the optimal value of the auxiliary program vanishes. Thus, deleting
x7 column and the bottom row gives a feasible simplex tableau to the new problem,
i.e.,
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x1 x2 x3 x4 x5 x6 RHS

�1 1 �4=3 1=3 2=3

1 1=3 �1=3 1=3

�2 �1 1 1 3

2 2=3 1=3 �4=3

As the objective row is nonnegative, the preceding is optimal to the new problem.
The basic optimal solutio and objective value are

Nx D .0; 1=3; 2=3; 0; 0; 3/T; Nf D 4=3:

6.4 Parametric LP

If original data of an LP program include parameters, it is called parametric
program (see, e.g., Gass and Saaty 1955). Only the case will be considered when a
parameter, say � , emerges in linear form, and varies in some interval. The parametric
program is solved for some fixed value of � first, usually for an end of the interval;
then a range of � is determined, within which the optimal basis remains optimal,
and so on.

6.4.1 Parameterized Cost

Given a vector c0. Consider the following parametric variant of the standard LP
problem (1.8):

min f D .c C �c0/T x;

s:t: Ax D b; x � 0:
(6.13)

Without loss of generality, we are assumed to solve the preceding program for
� 2 Œ0; C1/ because the case of � 2 Œ�1; 0/ can be handled by setting c0 WD
�c0 instead. It is noted that the parameter has nothing to do with feasibility of the
program.

We begin with the following example:

Example 6.4.1. Solve the following program for parameter � 2 Œ0; C1/:

min �.3 C 2�/x1 � .5 � �/x2;

s:t: 3x1 C 2x2 C x5 D 18;

2x2 C x4 D 12;

x1 Cx3 D 4;

xj � 0; j D 1; : : : ; 5:
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Answer The parametric program with t D 0 is solved with Algorithm 3.2.1 first.
The following is the optimal simplex tableau, with parameter terms added as the
bottom row afterward:

x1 x2 x3 x4 x5 RHS

1 �1=3 1=3 2

1 1=2 6

1 1=3 �1=3 2

3=2 1 36

�2� �

Eliminate parameter entries, corresponding to the basis, by elementary transfor-
mations to convert the preceding to the simplex tableau below:

x1 x2 x3 x4 x5 RHS

1 �1=3 1=3 2

1 1=2 6

1 1=3� �1=3 2

3=2 1 36

�7=6� 2=3� �2�

To be optimal to the parametric program, nonbasic reduced costs have to be
nonnegative, i.e.,

Nz4 D 3=2 � 7=6� � 0; Nz5 D 1 C 2=3� � 0:

As coefficient 2=3 of � in the second expression is nonnegative, Nz5 maintains
nonnegative as � increases from 0. But coefficient �7=6 of � in the first is negative,
the increase of � is restricted for Nz4 to be nonnegative. The largest � value is
.3=2/=.7=6/ D 9=7. Therefore the simplex tableau remains optimal while

� 2 Œ0; 9=7�;

corresponding to the same basis B D f1; 2; 3g and basic optimal solution Nx D
.2; 6; 2; 0; 0/T .

That Nz4 < 0 when � > 9=7 indicates that x4 should enter the basis (q D 4). To
maintain primal feasibility, perform the minimum-ratio test:

minf2=.1=3/; 6=.1=2/g D 6; p D 3:

Thus x3 is determined to leave the basis. Carrying out the according elementary
transformations results in
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x1 x2 x3 x4 x5 RHS

1 1 0 4

1 �3=2 1=2* 3

3 1 �1 6

�9=2 5=2 27

7=2� �1=2� 5�

Now consider inequalities Nz3 D �9=2 C 7=2� � 0; Nz5 D 5=2 � 1=2� � 0: The
largest value of � is only determined by the second inequality, that is 5. Therefore,
the tableau maintains optimal for

� 2 Œ9=7; 5�;

corresponding to the same basis B D f1; 2; 4g and basic optimal solution Nx D
.4; 3; 0; 6; 0/T .

That Nz5 < 0 when � > 5 suggests entering x5 to the basis (q D 5). From
minimum-ratio test minf3=.1=2/g; p D 2, x2 is determined to leave the basis. Then
associated elementary transformations leads to

x1 x2 x3 x4 x5 RHS

1 0 1 4

2 �3 1 6

2 1 12

�5 3 12

� 2� 8�

It is clear that Nz2 D �5 C � � 0; Nz3 D 3 C 2� � 0 holds for all
� > 5, corresponding to optimal basis B D f1; 4; 5g and basic optimal solution
Nx D .4; 0; 0; 12; 6; /T . In summary, the results are put in the following table:

Range of � Basic optimal solution Optimal value

Œ0; 9=7� .2; 6; 2; 0; 0/T �36 C 2�

.9=7; 5� .4; 3; 0; 6; 0/T �27 � 5�

.5; C1/ .4; 0; 0; 12; 6/T �12 � 8�

It is seen from the preceding table that there are three ranges of � , each of which
corresponds to a fixed basic optimal solution and a varying optimal value in linear
function of � . It can be shown that the optimal value of the program is a continuous
piecewise linear convex function of � , in general.
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From the preceding illustration, it is not difficult to describe a formal (revised)
algorithm for solving the program with parameterized costs. Starting with a basic
optimal solution for � D 0, the resulting algorithm uses a different column rule to
clarify program’s optimality over the whole interval .0; C1/, section by section,
from the left to the right.

Algorithm 6.4.1. Initial: .B; N /; B�1 are optimal for � D �1 D 0. Nb D B�1b � 0.
This algorithm solves parametric program (6.13).

1. Compute NzN D cN � N T Ny � 0, where Ny D B�T cB and Nz0
N D c0

N � N T Ny0,
where Ny0 D B�T c0

B .
2. Stop if Nz0

N � 0. (the current basis is optimal for � 2 .�1; C1/).
3. Determine q and �2 such that

�2 D �Nzq= Nc0
q D minf�Nzj =Nz0

j j Nz0
j < 0; j 2 N g:

(the current basis is optimal for � 2 .�1; �2�)
4. Compute Naq D B�1aq .
5. Stop if Naq � 0 (unbounded for � 2 Œ�1; C1/).
6. Determine stepsize ˛ and pivot row index p such that

˛ D Nbp= Nap q D minf Nbi= Nai q j Nai q > 0I i D 1; : : : ; mg:

7. Update B�1 by (3.23).
8. Update .B; N / by exchanging jp and q and set �1 D �2.
9. Compute Nb D B�1b.

10. Go to step 1.

Proofs for finiteness of the preceding algorithm under nondegeneracy and for
meanings of its exits are omitted.

For more understandable, take a look at the only parameterized part, the objective
function

f D .c C �c0/T x;

which is a positive combination of cT x and c0T x. As weight � increases, the
program shifts to minimizing c0T x subject to the same constraints. For large enough
� , therefore, the optimal basis coincides with that to the latter, if any, or the program
is unbounded otherwise. If c0 D c, in particular, the optimal basis for � D 0 are also
optimal for � 2 Œ0; C1/, but the associated optimal values are not constant.

It is seen that three linear systems have to be solved in each iteration of the
preceding Algorithm, compared with two systems solved by conventional simplex
algorithms. As they share the same coefficient matrix, however, systems BT y D cB

and BT y0 D c0
B can be solved more efficiently.
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6.4.2 Parameterized Right-Hand Side

Consider the following program with parameterized right-hand side:

min f D cT x;

s:t: Ax D b C �b0; x � 0;
(6.14)

where b0 2 Rm, and parameter � 2 Œ0; C1/. The case of � 2 Œ�1; 0/ can be
handled by setting b0 D �b0.

Again, we begin with an example.

Example 6.4.2. Solve the following program for parameter � 2 Œ0; C1/:

min �2x1 � 3x2;

s:t: x1 � x2 C x4 D 6 � 2�;

�x1 C 4x2 C x3 D 3;

�3x1 C 2x2 x5 D �2 C �;

xj � 0; j D 1; : : : ; 4:

Answer Put the program into the following tableau, where a combination of the
last two columns gives the right-hand side of the parametric program:

x1 x2 x3 x4 x5
Nb �

1 �1 1 6 �2

�1 4 1 3

�3 2 1 �2 1

�2 �3

The program for � D 0 is solved by Algorithm 3.2.1, resulting in the optimal
simplex tableau below:

x1 x2 x3 x4 x5
Nb �

1 1=3 4=3 9 �8=3

1 1=3 1=3 3 �2=3

1=3 10=3 1 19 �17=3

5=3 11=3 27 �22=3

The increase of � should maintain nonnegativity of the right-hand side, i.e.,

Nb1 D 9 � 8=3� � 0; Nb2 D 3 � 2=3� � 0 Nb3 D 19 � 17=3� � 0:

The largest � value is determined by

minf�9=.�8=3/; �3=.�2=3/; �19=.�17=3/g D �19=.�17=3/ D 57=17; p D 3:
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Therefore, the current basis and solution is optimal for � 2 Œ0; 57=17�.
That Nb3 < 0 when � > 57=17 suggests that x5 should leave the basis (p D 3).

But the nonbasic entries in row 3 are all nonnegative, detecting dual unboundedness
or primal infeasibility of the program for � 2 .57=17; C1/.

The results are put in the table below:

Range of � Basic optimal solution Optimal value
Œ0; 57=17� .9 � 8=3�; 3 � 2=3�; 0; 0; 19 � 17=3�/T �27 C 22=3�

.57=17; C1/ infeasible �

We formulate the following algorithm for solving the parametric program. It can
be viewed as a variant of the dual simplex Algorithm. But it starts from an optimal
basis for � D 0, and uses a different row rule.

Algorithm 6.4.2. Initial: .B; N /; B�1, NzN � 0, Nb D B�1b � 0 and Nb0 D B�1b0.
This algorithm solves parametric program (6.14).

1. Stop if Nb0 � 0. (the current basis is optimal for � 2 .�1; C1/)
2. Determine p and �2 such that

�2 D � Nbp= Nb0
p D minf� Nbi = Nb0

i j Nb0
i < 0; i D 1; : : : ; mg:

(the current basis is optimal for � 2 .�1; �2�)
3. Compute �N D N T B�T ep .
4. Stop if J D fj 2 N j �j < 0g D ; (infeasible for � 2 Œ�1; C1/).
5. Determine ˇ and column index q such that

ˇ D �Nzq=�q D min
j 2J

�Nzj =�j :

6. Update : NzN D NzN C ˇ�N ; Nzjp D ˇ.
7. Compute Naq D B�1aq .
8. Update B�1 by (3.23).
9. Update .B; N / by exchanging jp and q.

10. Compute Nb D B�1b and Nb0 D B�1b0, and set �1 D �2.
11. Go to step 1.

Discussions can be made, analogously to those for Algorithm 6.4.1. For �

large enough, for instance, the program amounts to minimizing the same objective
function with constraint system Ax D b0 (in terms of the same optimal basis, if any,
or program’s unboundedness otherwise).

Although the previous two Algorithms handle parametric programs by starting
from the left-hand end, 0, of the interval of � , it is of course possible, without any
essential difficulty, to start from the other end if the interval is finite (see Sect. 7.2).



Chapter 7
Variants of the Simplex Method

Besides the simplex method and dual simplex method, a number of their variants
have been proposed in the past. To take advantages of both types, attempts were
made to combine them. At first, two important variants will be presented in
the following two sections respectively, both of which prefixed by “primal-dual”
because they execute primal as well as dual simplex steps, though they are based on
different ideas. More recent variants of such type will be presented later in Chap. 18.

In the other sections, the primal and dual simplex methods are generalized to
handle bounded-variable LP problems, which are commonly used in practice.

7.1 Primal-Dual Simplex Method

The primal-dual method (Dantzig et al. 1956) will be presented in this section,
which is an extension of the same named method (Ford and Fulkerson 1956) for
solving transportation problems.

Just like the dual simplex method, this method proceeds toward primal feasibility
while maintaining dual feasibility and complementarity. However, they pursue
primal feasibility in different ways. The former attempts to fulfil x � 0 while
maintaining Ax D b, whereas the latter attempts to get rid of artificial variables
in the auxiliary Phase-I program to fulfil Ax D b while keeping x � 0.

We are concerned with the standard LP problem (1.8), whose dual problem is
(4.2). Let . Ny; Nz/ be the current dual feasible solution, satisfying AT Ny C Nz � c.

To obtain a primal solution matching . Ny; Nz/, consider the auxiliary program
(3.16), written as

min � D eT xa;

s:t: Ax C xa D b; x; xa � 0;
(7.1)

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__7,
© Springer-Verlag Berlin Heidelberg 2014
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where xa D .xnC1; : : : ; xnCm/T is an artificial variable vector. It would be well to
assume b � 0. Introducing index set

Q D fj 2 A j Nzj D 0g; (7.2)

define the so-called “restricted program”:

min � D eT xa;

s:t: Ax C xa D b; xa � 0;

xj � 0; j 2 Q;

xj D 0; j 62 Q:

(7.3)

Since b � 0, it is clear that the feasible region of the preceding program is nonempty,
and hence there is an optimal solution to it. The restricted program may be viewed
as one formed by all artificial columns and columns indexed by j belonging to Q.

Assume that . Nx; Nxa/ is an optimal solution to (7.3) with optimal value N�, and that
Nw is the associated optimal simplex multiplier.

Theorem 7.1.1. If the optimal value N� vanishes, Nx and . Ny; Nz/ are a pair of primal
and dual optimal solutions.

Proof. N� D eT Nxa D 0 and Nxa � 0 together imply that Nxa D 0. Thus, Nx is a feasible
solution to the original problem (4.1). By the definition of Q, moreover, it holds that
NxT Nz D 0, as exhibits complementarity. Therefore, Nx and . Ny; Nz/ are a pair of primal
and dual optimal solutions. ut

When N� > 0, otherwise, Nx could be regarded as the closest one to feasibility
among all those complementary with . Ny; Nz/. Nevertheless, the Nx is not feasible to
the original problem because it does not satisfy Ax D b, but x � 0 only. In other
words, it should be possible to improve . Ny; Nz/ by increasing the associated dual
objective value. To do so, consider the dual program of (7.3) in the form

min bT w;

s:t: aT
j w C sj D 0; sj � 0; j 2 Q;

w � e:

(7.4)

Since the simplex multiplier vector Nw is just an optimal solution to the preceding
program, it follows from the duality that

bT Nw D N� > 0;

which implies that Nw is an uphill with respect to the objective bT y of the dual
problem (4.2). This leads to the following line search scheme for updating . Ny; Nz/:

Oy D Ny C ˇ Nw; Oz D c � AT Oy: (7.5)
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For being an improved dual feasible solution, it must satisfy the dual constraints for
some ˇ > 0, i.e.,

Oz D c � AT . Ny C ˇ Nw/ D Nz C ˇ Ns � 0; Ns D �ˇAT Nw: (7.6)

Since Nz � 0, and Nw satisfies the constrains of (7.4), it is known that

Nsj D �aT
j Nw � 0; 8j 2 Q:

Therefore, if index set

J D fj 2 AnQ j Nsj D �aT
j Nw < 0g (7.7)

is empty, then (7.6) holds for all ˇ � 0, giving a class of dual feasible solutions.
Since N� > 0, the associated dual objective value

bT Oy D bT Ny C ˇbT Nw D bT Ny C ˇ N�

tends to C1 as ˇ infinitely increases. This implies dual unboundedness or primal
infeasibility.

If, otherwise, there is some j 2 AnQ such that Nsj D �aT
j Nw < 0, then (7.6)

holds for the largest possible stepsize ˇ such that

ˇ D � Nzq

Nsq

D min

�
� Nzj

Nsj

j Nsj < 0; j 2 AnQ

�
> 0: (7.8)

Thus, the resulting dual solution is feasible, corresponding to a strictly larger dual
objective value. It is then used for the next iteration.

Let B be the optimal basis of the restricted program. If a column of B is not
artificial, it must be indexed by some j 2 Q such that Nzj D 0. Since the associated
reduced cost is zero, i.e., Nsj D 0 � aT

j Nw D 0, it holds that

Ozj D Nzj C ˇ Nsj D 0;

implying that the j also belongs to the next Q. Therefore, the optimal basis of the
restricted program can be used as a starting basis for the next iteration. In addition, it
is seen from (7.8) that there is at least one index (e.g., q) in AnQ belongs to the next
Q, and the associated reduced cost is negative, i.e., Nsq < 0. In other words, there
exist new candidates to enter the basis in the next iteration. Therefore, the restricted
program in each iteration can be solved by applying primal simplex method to the
original auxiliary program (7.1) itself, except the choice of columns entering the
basis is restricted to those indexed by j 2 Q \ N . Once an artificial variable leaves
the basis, it is dropped from the auxiliary program immediately.

It is clear that optimality of the restricted program is achieved if Q \ N D ;.
In case when the initial set Q is empty, for instance, all the artificial columns just
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form an optimal basis and the optimal multiplier is Nw D e; so, no any simplex step
is needed for the first iteration.

The steps can be summarized into the following algorithm, the meanings of
whose exists are clear.

Algorithm 7.1.1 (Primal-dual simplex algorithm). Initial: a dual feasible solu-
tion . Ny; Nz/, and associated Q defined by (7.2). B D fn C 1; : : : ; n C mg; N D
f1; : : : ; ng. This algorithm solves the standard LP problem (1.8).

1. Carry out simplex steps to solve the restricted auxiliary program (7.1).
2. Stop if the optimal value of the restricted program vanishes (optimality achieved).
3. Stop if J defined by 7.7 is empty. (infeasible problem)
4. Compute ˇ by (7.8).
5. Update . Ny; Nz/ by (7.5).
6. Update Q by (7.2)
7. Go to step 1.

Although the simplex method was used to solve the restricted program, any
method for solving it will apply. The primal-dual simplex method seems to be
amenable to certain network flow problems, in particular, since the labeling method
solves the restricted program more efficiently and an initial dual feasible solution is
easy to obtain (Papadimitriou and Steiglitz 1982).

It is noted that the objective value, corresponding to the dual feasible solution,
increases monotonically iteration by iteration. Therefore, the primal-dual method
will terminate if each restricted program encountered is solved in finitely many
subiterations, It is however not the case as the simplex method is utilized.

Example 7.1.1. Solve the following problem by Algorithm 7.1.1:

min 2x1 C 5x2 C x3 C 4x4 C 8x5;

s:t: �x1 C 4x2 � 2x3 C 2x4 � 6x5 D �1;

x1 C 2x2 C 2x3 � 4x5 D 8;

�x1 C x2 C 2x4 C 2x5 D 2;

xj � 0; j D 1; : : : ; 5:

Answer Construct the auxiliary program below:

min � D x6 C x7 C x8;

s:t: x1 � 4x2 C 2x3 � 2x4 C 6x5 C x6 D 1;

x1 C 2x2 C 2x3 � 4x5 C x7 D 8;

�x1 C x2 C 2x4 C 2x5 C x8 D 2;

xj � 0; j D 1; : : : ; 8:

Initial: B D f6; 7; 8g; N D f1; : : : ; 5g. Since the costs of the original problem are
positive, a feasible dual solution . Ny D .0; 0; 0/T ; Nz D .2; 5; 1; 4; 8/T / is available,
with Q D ;.
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Iteration 1:

1. Since Q D ;, no simplex step is needed.
2. The optimal value of the restricted program is positive, and the optimal simplex

multiplier is Nw D .1; 1; 1/T .
3: NsJ D .�1; �4; �4/T ; J D f1; 3; 5g ¤ ;:

4: NzJ D .2; 1; 8/T ; � D minf2=1; 1=4; 8=4g D 1=4; q D 3:

5: Ny D .0; 0; 0/T C 1=4.1; 1; 1/T D .1=4; 1=4; 1=4/T ;

NzN D

0
BBBBB@

2

5

1

4

8

1
CCCCCA

�
0
@ 1 �4 2 �2 6

1 2 2 �4

�1 1 2 2

1
A

T 0
@1=4

1=4

1=4

1
A D

0
BBBBB@

7=4

21=4

0

4

7

1
CCCCCA

:

6: Q D f3g:
Iteration 2:

1. Carry out restricted simplex steps of Algorithm 3.5.1:
Subiteration 1:

(2) Column selection is restricted to Q \ N D f3g:x3 enters the basis.
.4/ Na3 D a3 D .2; 2; 0/T 6� 0:

.6/ NxB D .1; 8; 2/T ; ˛ D minf1=2; 8=2g D 1=2; p D 1; x6 leaves the basis;
and is dropped:

.7/ NxB D .1; 8; 2/T � 1=2.2; 2; 0/T D .0; 7; 2/T : Nx3 D 1=2:

.8/ B�1 D
0
@ 1=2

�1 1

1

1
A :

.9/ B D f3; 7; 8g; N D f1; 2; 4; 5g:
Subiteration 2:

.1/ Nw D
0
@ 1=2

�1 1

1

1
A

T 0
@ 0

1

1

1
A D

0
@�1

1

1

1
A ;

NsN D �
0
@ 1 �4 �2 6

1 2 �4

�1 1 2 2

1
A

T 0
@�1

1

1

1
A D

0
BB@

1

�7

�4

8

1
CCA :

.2/ Q \ N D f3g \ f1; 2; 4; 5g D ;:

2. The optimal value of the restricted program is positive.
3: NsJ D f�7; �4/T ; J D f2; 4g ¤ ;:

4: NzJ D .21=4; 4/T ; ˇ D minf.21=4/=7; 4=4g D 21=28; q D 2:

5: Ny D .1=4; 1=4; 1=4/T C 21=28.�1; 1; 1/T D .�1=2; 1; 1/T :
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NzN D

0
BB@

2

5

4

8

1
CCA �

0
@ 1 �4 �2 6

1 2 �4

�1 1 2 2

1
A

T 0
@�1=2

1

1

1
A D

0
BB@

5=2

0

1

13

1
CCA :

6: Q D f3; 2g:
Iteration 3:

1. Carry out simplex steps of Algorithm 3.5.1 restricted:
Subiteration 1:

(2) Column selection is restricted to Q \ N D f2g. x2 enters the basis.

.4/ Na2 D
0
@ 1=2

�1 1

1

1
A
0
@�4

2

1

1
A D

0
@�2

6

1

1
A 6� 0:

.6/ NxB D .1=2; 7; 2/T ; ˛ D minf7=6; 2=1g D 7=6; p D 2; x7 leaves the
basis; and is dropped:

.7/ NxB D .1=2; 7; 2/T � 7=6.�2; 6; 1/T D .17=6; 0; 5=6/T ; Nx2 D 7=6:

.8/ B�1 D
0
@1 1=3

1=6

�1=6 1

1
A
0
@ 1=2

�1 1

1

1
A D

0
@ 1=6 1=3

�1=6 1=6

1=6 �1=6 1

1
A :

.9/ B D f3; 2; 8g; N D f1; 4; 5g:
Subiteration 2:

.1/ Nw D
0
@ 1=6 1=3

�1=6 1=6

1=6 �1=6 1

1
A

T 0
@0

0

1

1
A D

0
@ 1=6

�1=6

1

1
A ;

NsN D �
0
@ 1 �2 6

1 �4

�1 2 2

1
A

T 0
@ 1=6

�1=6

1

1
A D

0
@ 1

�5=3

�11=3

1
A :

.2/ Q \ N D f3; 2g \ f1; 4; 5g D ;:

2. The optimal value of the restricted program is positive.
3: sJ D .�5=3; �11=3/T ; J D f4; 5g ¤ ;:

4: NzJ D .1; 13/T ; ˇ D minf1=.5=3/; 13=.11=3/g D 3=5; q D 4:

5: Ny D .�1=2; 1; 1/T C 3=5.1=6; �1=6; 1/T D .�2=5; 9=10; 8=5/T ;

NzN D
0
@2

4

8

1
A �

0
@ 1 �2 6

1 �4

�1 2 2

1
A

T 0
@�2=5

9=10

8=5

1
A D

0
@31=10

0

54=5

1
A :

6: Q D f3; 2; 4g:
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Iteration 4:

1. Carry out simplex steps of Algorithm 3.5.1 restricted:
Subiteration 1:

(2) Column selection is restricted to Q \ N D f3; 2; 4g \ f1; 4; 5g. x4 enters the
basis.

(4) Na4 D
0
@ 1=6 1=3

�1=6 1=6

1=6 �1=6 1

1
A
0
@�2

0

2

1
A D

0
@�1=3

1=3

5=3

1
A 6� 0.

(6) NxB D .17=6; 7=6; 5=6/T ; ˛ D minf.7=6/=.1=3/; .5=6/=.5=3/g D 1=2;

p D 3; x8 leaves the basis, and dropped.
(7) NxB D .17=6; 7=6; 5=6/T � 1=2.�1=3; 1=3; 5=3/T D .3; 1; 0/T , Nx4 D 1=2.

(8) B�1 D
0
@ 1 1=5

�1=5

1 3=5

1
A
0
@ 1=6 1=3

�1=6 1=6

1=6 �1=6 1

1
AD

0
@ 1=5 3=10 1=5

�1=5 1=5 �1=5

1=10 �1=10 3=5

1
A.

(9) B D f3; 2; 4g; N D f1; 5g.

2. The optimal value of the restricted program is zero, optimality achieved.
The optimal solution and objective value are

Nx D .0; 1; 3; 1=2; 0/T ; Nf D 10:

7.2 Self-Dual Parametric Simplex Method

Based on discussions made in Sect. 6.4, it is not difficult to go over to a method for
solving problems with the costs and the right-hand side both parameterized, i.e.,

min f D .c C �c0/T x;

s:t: Ax D b C �b0; x � 0:
(7.9)

In this section, we will solve the standard LP program via handling the preceding
parametric program. This method is closely related to Orchard-Hays’ work (1956),
and has been used by Smale (1983b) for investigating the worst-case complexity of
the simplex method.

The method belongs to a more general approach, so-called “homotopy”, which
generates a continuous deformation, converting a given problem to a related but
trivially solved one, and then proceeds backwards from the latter to the original by
solving all the problems in between. It is seen that the standard problem (1.8) is just
the parametric program (7.9) with � D 0.

Assume availability of a simplex tableau to the standard LP problem, which
is neither primal nor dual feasible. It is a simple matter to determine a value
� D �2 > 0 such that the objective row and the right-hand side both become
nonnegative after adding it relevantly. Such doing amounts to adding some terms
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�c0 and �b0 respectively to the costs and the right-hand side of the original problem,
corresponding to � D �1 D 0. Then, � is decreased from �2 down to 0 while
maintaining optimality. If primal feasibility is violated first in this process, a row
index p and a new �2 are determined; then a column index q is determined by the
dual simplex ratio test. If, otherwise, dual feasibility violated first, a column index
q and a new �2 are determined; a row index p is determined by the primal simplex
ratio test. Subsequent operations in the iteration are just for a normal basis change.

Assume that the current simplex tableau is optimal to � D �2, i.e.,

xT
B xT

N RHS

I NN Nb C Nb0�
NzT
N C N.z0/T

N � � Nf

(7.10)

The procedure is put into the following algorithm, where the parametric program
with � D 0 corresponds to the original problem.

Algorithm 7.2.1 (Self-dual parametric algorithm: tableau form). Given �2 > 0.
Initial: a simplex tableau of the form (7.10), which is optimal for � D �2. This
algorithm solves the standard LP problem.

1. If Nz0
N � 0, set ˇ D 0; else, determine q and ˇ such that

˛ D �Nzq= Nc0
q D maxf�Nzj =Nz0

j j Nz0
j > 0; j 2 N g:

2. If Nb0 � 0, set ˛ D 0; else, determine p and ˛ such that

ˇ D � Nbp= Nb0
p D maxf� Nbi= Nb0

i j Nb0
i > 0; i D 1; : : : ; mg:

3. If ˛ � ˇ, do the following

(1) If ˛ � 0, set �2 D 0 and stop (optimality achieved);
(2) Stop if Naq � 0 (unbounded );
(3) Determine row index p such that

. Nbp C Nb0
p�/= Napq D minf. Nbi C Nb0

i �/= Naiq j Naiq > 0; i D 1; : : : ; mg;

where � is close to �2;
else
(4) If ˇ � 0, set �2 D 0, and stop (optimality achieved);
(5) Stop if J D fj 2 N j Napj < 0g (infeasible );
(6) Determine column index q such that

�.Nzq C Nz0
q�/= Napq D min

j 2J
�.Nzj C Nz0

j �/= Napj ;

where � is close to �2.



7.2 Self-Dual Parametric Simplex Method 177

4. If ˛ � ˇ, set �2 D ˛ else set �2 D ˇ.
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Go to step 1.

An advantage of the preceding Algorithm is that it can solve problems in a
single phase by starting from any basis. It is sometimes describe as “criss-cross”
because of its shuttling between primal and dual sides, depending on which of
˛ and ˇ is larger (see step 3). Therefore, it seems critical to scale the costs and
the right-hand side for equilibrium of their magnitudes before hand. On the other
hand, the algorithm requires more computational effort per iteration, compared with
the simplex algorithm. As a homotopy algorithm, it seems to be more suitable for
solving hard problems. At least, it stands good as a tool for handling the parametric
program (7.9) itself.

Discussions concerning the preceding Algorithm can be made similarly to
Algorithms 6.4.1 and 6.4.2. The revised version of it is omitted.

Example 7.2.1. Solve the following problem by Algorithm 7.2.1:

min �2x1 � 3x2;

s:t: x1 C 2x2 C x4 D 2;

�2x1 � x2 C x3 D �1;

�3x1 C 4x2 x5 D �3;

xj � 0; j D 1; : : : ; 4:

Answer Put the program into the following tableau with the costs and the right-
hand side both parameterized

x1 x2 x3 x4 x5 RHS
1 2 1 2

�2 �1 1 �1 C �

�3 4* 1 �3 C �

�2 C � �3 C �

Given �2 D 4 > 0.

Iteration 1:

1. ˛ D maxf�.�2/=1; �.�3/=1g D 3; q D 2.
2. ˇ D maxf�.�1/=1; �.�3/=1g D 3; p D 3.
3. ˛ � ˇ.

(3) minf.�3 C �/=4g D .�3 C �/=4; p D 3, where � is close to 4.

4. Set �2 D 3.
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5. Taking q D 2; p D 3, according basis change leads to

x1 x2 x3 x4 x5 RHS

5=2 1 �1=2 7=2 � 1=2�

�11=4 1 1=4 �7=4 C 5=4�

�3=4* 1 1=4 �3=4 C 1=4�

�17=4 C 7=4� 3=4 � 1=4� �9=4 C 3=2� � 1=4�2

Iteration 2:

1. ˛ D maxf�.�17=4/=.7=4/g D 17=7; q D 1.
2. ˇ D maxf�.�7=4/=.5=4/; �.�3=4/=.1=4/g D 3; p D 3.
3. ˛ 6� ˇ.

(6) minf�.�17=4 C 7=4�/=.�3=4//g D �17=3 C 7=3�; q D 1, where � is
close to 3.

4. Set �2 D 3 (a degenerate step).
5. Taking p D 3; q D 1, according basis change leads to

x1 x2 x3 x4 x5 RHS

10=3* 1 1=3 1 C 1=3�

�11=3 1 �2=3 1 C 1=3�

1 �4=3 �1=3 1 � 1=3�

�17=3 C 7=3� �2=3 C 1=3� 2 � 5=3� C 1=3�2

Iteration 3:

1. ˛ D maxf�.�17=3/=.7=3/; �.�2=3/=.1=3/g D 17=7; q D 2.
2. ˇ D maxf�1=.1=3/; �1=.1=3/g D �3; p D 1 .
3. ˛ > ˇ.

(3) minf.1 C 1=3�/=.10=3//g; p D 1, where � is close to 3.

4. Set �2 D 17=7.
5. Taking q D 2; p D 1, according basis change leads to

x1 x2 x3 x4 x5 RHS

1 3=10 1=10* 3=10 C 1=10�

1 11=10 �3=10 21=10 C 7=10�

1 2=5 �1=5 7=5 � 1=5�

17=10 � 7=10� �1=10 C 1=10� 37=10 � 9=5� C 1=10�2
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Iteration 4:

1. ˛ D maxf�.�1=10/=.1=10/g D 1; q D 5.
2. ˇ D maxf�.3=10/=.1=10/; �.21=10/=.7=10/g D �3; p D 1.
3. ˛ > ˇ.

(3) minf.3=10 C 1=10�/=.10=3//g; p D 1, where � is close to 17=7.

4. Set �2 D 1.
5. Taking q D 5; p D 1 as pivot, according basis change leads to

x1 x2 x3 x4 x5 RHS

10 3 1 3 C �

3 1 2 3 C �

1 2 1 2

1 � � 2 � � 4 � 2�

Iteration 5:

1. ˛ D 0.
2. ˇ D maxf�3=1; �3=1g D �3; p D 1.
3. ˛ > ˇ.

(1) �2 D 0. The basic optimal solution and associated objective value:

Nx D .2; 0; 3; 0; 3/T ; Nf D �4:

7.3 General LP Problems

Sa far we have presented methods for solving standard LP problems. Nevertheless,
models from practice are various, as can be put in a more general from below:

min f D cTx;

s:t: a � Ax � b;

l � x � u;

(7.11)

where A 2 Rm�n; c; l; u 2 Rn; a; b 2 Rm; m < n; rank A D m, and a; b; l; u
are all given vectors. Such type of problems have not only upper and lower bounds
on variables, but also ranges, i.e., variation range of Ax. This type of problems are
usually referred to as problems with ranges and bounds.
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Ranges involved in the problems can be eliminated by introducing new variables.
Setting w D Ax, in fact, the preceding problem is converted to

min f D cTx;

s:t: Ax � w D 0;

l � x � u;

a � w � b:

(7.12)

Components of x are said to be structural variables, whereas those of w said to be
logical variables.

We will focus on the following bounded-variable problem:

min f D cTx;

s:t: Ax D b; l � x � u;
(7.13)

where A 2 Rm�n; c; l; u 2 Rn; b 2 Rm; rank A D m; m < n. Unless indicated
otherwise, it is assume that l; u are finite, and lj < uj . Infinite upper or lower
bounds can be represented by sufficiently large or small reals. Thereby, the standard
LP problems (1.8) can be regarded as a special case of the preceding problem.

Clearly, such a problem can be converted to the standard form by variable
transformations though such doing increases problem’s scale. In the following
sections, we will generalize the simplex method and dual simplex method to solve
the bounded-variable problem directly.

In the sequel, the following sign function will be useful:

sign.t/ D
8<
:

1; if t > 0;

�1; if t < 0;

0; if t D 0:

(7.14)

Assume that the current basis and nonbasis are

B D fj1; � � � ; jmg; N D AnB: (7.15)

7.4 Generalized Simplex Method

Almost all terms for the standard LP problem are applicable for the bounded-
variable problem. A solution to Ax D b is said to be basic if nonbasic components
of it attain one of the associated upper and lower bounds. It is clear that basic
solution, associated with a basis, is not necessarily unique, in contrast to basic
solution in the standard LP problem context.

The following results are similar to those for the standard problem, as are stated
in the sequel without proofs.
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Lemma 7.4.1. If there exists a feasible solution to the bounded-variable problem,
so does a basic feasible solution; if there exists an optimal solution to it, so does a
basic optimal solution.

Therefore, it is possible to find a basic optimal solution among basic feasible
solutions, as is a basis for the generalized simplex algorithm.

Let Nx be a basic feasible solution, associated with B:

Nxj D lj or uj ; j 2 N; (7.16)

lB � NxB D B�1b � B�1N NxN � uB: (7.17)

The according reduced costs and objective value are

NzN D cN � N TB�T cB; Nf D cT
BB�1b C NzT

N NxN : (7.18)

Define index set

� D f j 2 N j Nxj D lj g; … D f j 2 N j Nxj D uj g: (7.19)

So it holds that

� [ … D N; � \ … D ;:

Without confusion, thereafter � and … are also used to respectively denote
submatrices, consisting of columns indexed by their elements.

Lemma 7.4.2. A feasible solution Nx is optimal if the following set is empty:

J D fj 2 � j Nzj < 0g [ fj 2 … j Nzj > 0g: (7.20)

Proof. Let x0 be any feasible solution. Thus it holds that

lj � x0
j � uj ; j 2 N:

It is known by the assumption that

Nzj � 0; j 2 �I Nzj � 0; j 2 …:

Hence for any j 2 N , there two cases arising:

(i) j 2 � . It follows from x0
j � lj D Nxj that

Nzj x0
j � Nzj Nxj I (7.21)

(ii) j 2 …. From x0
j � uj D Nxj again (7.21) follows. Therefore

X
j 2N

Nzj x0
j �

X
j 2N

Nzj Nxj ;
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which implies that

cT
BB�1b C NzT

N x0
N � cT

BB�1b C NzT
N NxN :

The preceding indicates that the objective value at x0 is no less than that at Nx,
therefore Nx is optimal. ut

Assume now that J is nonempty. Thus, a column index q can be determined by

q 2 arg max
j 2J

jNzj j:

Assuming q D jt , define vector

�x
4D
�

�xB

�xN

�
D sign.Nzq/

��B�1aq

et�m

�
; (7.22)

where eq�m is the .n� m/-dimensional unit vector with the .q � m/th component 1.

Proposition 7.4.1. �x satisfies

A�x D 0; cT�x > 0:

Proof. It is known by (7.22) that

A�x D B�xB C N�xN D sign.Nzq/.�aq C aq/ D 0:

From the first formula of (7.18) together with (7.4) and (7.22), it follows that

� cT�x D sign.Nzg/.aT
q B�1cB � cq/ D �sign.Nzq/Nzq D 	.q/Nzq D �jNzqj < 0:

(7.23)
ut

The preceding Proposition says that ��x is a descent direction with respect to the
objective cTx.

Let ˛ � 0 be a stepsize from Nx along the direction. The new iterate is then

Ox D Nx � ˛�x: (7.24)

Thus, since Nx is feasible, it holds for any ˛ � 0 that

A Ox D A Nx � ˛.B; N /�x D A Nx D b:

The value of stepsize ˛ should be such that Ox satisfies l � Ox � u. Thereby the
largest possible stepsize is

˛ D minfuq � lq; minf˛i j i D 1; � � � ; mgg; (7.25)
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where

˛i D
8<
:

. Nxji � uji /=�xji ; if �xji < 0;

. Nxji � lji /=�xji ; if �xji > 0;

1; if �xji D 0;

i D 1; � � � ; m: (7.26)

There are the following two cases arising:

(i) ˛ D uq � lq . In this case, if Nxq D lq , then Oxq D uq; and if Nxq D uq , then
Oxq D lq . The new solution Ox is basic feasible, corresponding to the same basis.
Therefore, there is no need for any basis change.

(ii) ˛ < uq � lq . Determine row index p 2 f1; � � � ; mg such that

˛ D ˛p: (7.27)

Then Oxjp attains its lower bound ljp or upper bound ujp . In this case, the new
basis and nonbasis follows from B and N by exchanging jp and q. In addition,
it is verified that the new solution Ox is a basic solution, corresponding to the
new basis.

It is known from (7.23) and (7.24) that the new objective value is

Of D cT Ox D cT Nx � ˛cT�x D cT Nx � ˛jNzq j � cT Nx;

which strictly decreases if ˛ > 0. The preceding expression leads to the
recurrence formula of the objective value, i.e.,

Of D Nf � ˛jNzq j;

The preceding formula will not be used in each iteration in the following algorithm,
however; instead, the objective value will be computed at the end from the final
basis and original data.

Definition 7.4.1. A feasible solution is degenerate (with respective to a basis) if a
basic component of it is on one of its bounds.

Concerning stepsize ˛, the following two points should be noted.

(i) In case when a basic solution is degenerate, ˛ value would vanish, and the basic
solution remains unchanged even if the basis changes.

(ii) In practice, the problem should be deemed unbounded if the value of ˛ exceeds
some sufficiently large number.

From the discussions made above, the following conclusions are attained.

Lemma 7.4.3. Let Nx be a basic feasible solution. Then the new solution, determined
by (7.22), (7.24), (7.25) and (7.26), is a basis feasible solution. The corresponding
objective value does not increase, while strictly decreases if nondegeneracy is
assumed.
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The overall steps are put in the following algorithm.

Algorithm 7.4.1 (Generalized simplex algorithm). Initial: .B; N /; B�1 and
associated basic feasible solution Nx. This algorithm solves bounded-variable
problem (7.13).

1. Compute NzN D cN � N T Ny, where Ny D B�T cB .
2. Compute Nf D cT Nx, and stop if set J defined by (7.20) is empty.
3. Select column index q such that q 2 maxj 2J jNzj j.
4. Compute �xB D �sign.Nzq/B�1aq .
5. Determine stepsize ˛ by (7.25) and (7.26).
6. Update Nx by (7.24) and (7.22).
7. Go to step 1 if ˛ D uq � lq; else determine row index p 2 f1; � � � ; mg such that

˛ D ˛p .
8. Update B�1 by (3.23).
9. Update .B; N / by exchanging jp and q.

10. Go to step 1.

Theorem 7.4.1. Algorithm 7.4.1 generates a sequence of basic feasible solutions.
Assuming nondegeneracy throughout the solution process, it terminates at step 2,
giving a basic optimal solution.

Proof. Its validity comes from Lemmas 7.4.2 and 7.4.3.

Example 7.4.1. Solve the following problem by Algorithm 7.4.1:

min f D �x1 C 3x2;

s:t: 2 � 2x1 � 3x2 � 10;

1 � x1 � x2 � 5;

� x1 C 2x2 � 0;

0 � x1 � 6; �2 � x2:

Answer Introduce x3; x4; x5 to convert the preceding to

min f D x1 � 3x2;

s:t: �2x1 C3x2 Cx3 D 0;

�x1 C x2 Cx4 D 0;

x1 �2x2 Cx5 D 0;

0 � x1 � 6; �2 � x2 � 1; 2 � x3 � 10; 1 � x4 � 5; �1 � x5 � 0:

In the following, the unbounded variables will be handled as �1 or 1, upon which
only the determination of stepsize touches.

Initial: B D f3; 4; 5g; N D f1; 2g; B�1 D I; NxN D .0.�/; �2.�//
T; NxB D

.6; 2; �4/T, Nf D 6. The initial solution is basic feasible (with subscript “.�/” to
denote on the lower bound, and superscript “.C/” on the upper bound. The same
below).
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Iteration 1:

1. y D B�TcB D .0; 0; 0/T; NzN D .1; �3/T.
2. J D f2g.
3. maxJ jNzj j D 3; q D 2, x2 enters the basis.
4. Na2 D B�1a2 D .3; 1; �2/T:

5. ˛1 D .6 � 2/=3 D 4=3; ˛2 D .2 � 1/=1 D 1;

˛3 D .�4 � 0/= � 2 D 2; ˛ D minf1; 4=3; 1; 2g D 1.
6. NxB D .6; 2; �4/T � 1 
 .3; 1; �2/T D .3; 1; �2/T;

NxN D .0.�/; �2/T � 1 
 .0; �1/ D .0.�/; �1/T.
7. p D 2, x4 leaves the basis.

8. B�1 D
0
@1 �3

1

2 1

1
A.

9. B D f3; 2; 5g; N D f1; 4gI NxB D .3; �1; �2/T; NxN D .0.�/; 1T
.�//.

Iteration 2:

1. y D B�TcB D .0; �3; 0/T; NzN D cN � N Ty D .1; 0/T � .3; �3/T D .�2; 3/T.
2. J D f1g.
3. maxJ jNzj j D 2; q D 1, x1 enters the basis.
4. Na1 D B�1a1 D .1; �1; �1/T:

5. ˛1 D .3 � 2/=1 D 1; ˛2 D .�1 � 1/= � 1 D 1;

˛3 D .�2 � 0/= � 1 D 2, ˛ D minf6 � 0; 1; 1; 2g D 1.
6. NxB D .3; �1; �2/T � 1 
 .1; �1; �1/T D .2; 0; �1/T,

NxN D .0; 1/T � 1 
 .�1; 0/ D .1; 1/T.
7. p D 1, x3 leaves the basis.

8. B�1 D
0
@1

1 1

1 1

1
A
0
@1 �3

1

2 1

1
A D

0
@1 �3

1 �2

1 �1 1

1
A.

9. B D f1; 2; 5g; N D f3; 4gI NxB DD .1; 0; �1/T; NxN D .2.�/; 1.�//
T.

Iteration 3:

1. y D B�TcB D .�2; 3; 0/T; NzN D cN �N Ty D .0; 0/T � .�2; 3/T D .2; �3/T.
2. J D f4g.
3. maxJ jNzj j D 3; q D 4, x4 enters the basis.
4. Na4 D B�1a4 D .�3; �2; �1/T.
5. ˛1 D .1 � 6/= � 3 D 5=3; ˛2 D .0 � 1/= � 2 D 1,

˛3 D .�1 � 0/= � 1 D 1I ˛ D minf5 � 1; 5=3; 1; 1g D 1.
6. NxB D .1; 0; �1/T � 1 
 .�3; �2; �1/T D .4; 2; 0/T,

NxN D .2; 1/T � 1 
 .0; �1/ D .2; 2/T.
7. p D 3, x5 leaves the basis.

8. B�1 D
0
@1 �3

1 �2

�1

1
A
0
@1 �3

1 �2

1 �1 1

1
A D

0
@�2 �3

�1 �2

�1 1 �1

1
A.

9. B D f1; 2; 4g; N D f3; 5gI NxB D .4; 2; 2/T; NxN D .2.�/; 0.C//T.
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Iteration 4:

1. y D B�TcB D .1; 0; 3/T; NzN D cN � N Ty D .0; 0/T � .1; 3/T D .�1; �3/T.
2. J D f3g.
3. maxJ jNzj j D 1; q D 3, x3 enters the basis.
4. Na3 D B�1a3 D .�2; �1; �1/T:

5. ˛1 D .4 � 6/= � 2 D 1; ˛2 D .2 � 1/= � 1 D 1,
˛3 D .2 � 5/= � 1 D 3I ˛ D minf10 � 2; 1; 1; 3g D 1.

6. NxB D .4; 2; 2/T � 1 
 .�2; �1; �1/T D .6; 3; 3/T,
NxN D .2; 0/T � 1 
 .�1; 0/ D .3; 0/T.

7. p D 1, x1 leaves the basis.

8. B�1 D
0
@�1=2

�1=2 1

�1=2 1

1
A
0
@�2 �3

�1 �2

�1 1 �1

1
A D

0
@1 3=2

�1=2

1 1=2

1
A.

9. NxB D .3; 3; 3/T; B D f3; 2; 4gI NxN D .6.C/; 0.C//T; N D f1; 5g:
Iteration 5:

1. y D B�T cB D .0; 0; 3=2/T;

NzN D cN � N Ty D .1; 0/T � .3=2; 3=2/T D .�1=2; �3=2/T.
2. J D ;. The basic optimal solution and associated objective value:

Nx D .6; 3; 3; 3; 0/T; Nf D 6 � 3 
 3 D �3:

As for the tableau version of Algorithm 7.4.1, the associated simplex tableau is
the same as the conventional, except there is no need for RHS column to display the
corresponding basic solution. We add three additional rows .u; Nx; l/, respectively,
listing upper bounds, variable values and lower bounds. The simplex tableau is of
the form below:

xT
B xT

N

I NN
NzN

u uT
B uT

N

Nx NxT
B NxT

N

l lT
B lT

N

Based on Table 3.1, Algorithm 7.4.1 can be revised to a tableau form. As Naq D
B�1aq , (7.26) should be replaced by

˛i D
8<
:

.uji � Nxji /=sign.Nzq/ Nai q; if sign.Nzq/ Nai q > 0;

.lji � Nxji /=sign.Nzq/ Nai q; if sign.Nzq/ Nai q < 0;

1; if Nai q D 0;

i D 1; � � � ; m: (7.28)
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Algorithm 7.4.2 (Generalized simplex algorithm: tableau form). Initial: feasi-
ble tableau of form (7.4), associated with Nx. This algorithm solves the bounded-
variable problem (7.13).

1. Compute Nf D cT Nx, and stop (optimality achieved) if J defined by (7.20) is
empty.

2. Select column index q such that q 2 maxj 2J jNzj j.
3. Determine stepsize ˛ by (7.25), where ˛i defined by (7.28).
4. Set Nxq D �sign.Nzq/˛, and update NxB D NxB C ˛sign.Nzq/ Naq if ˛ ¤ 0.
5. If ˛ D uq � lq , go to step 1; else, determine row index p 2 f1; � � � ; mg such that

˛ D ˛p .
6. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
7. Go to step 1.

Note The last three rows in the tableau should be updated in each iteration.

7.4.1 Generalized Phase-I

The following is devoted to generate an initial feasible tableau to Algorithm 7.4.2,
Assume that B and N are respectively basis and nonbasis at the current iteration,

associated with basic solution Nx. Introduce index set

I1 D fi D 1; � � � ; m j Nxji < lji g;
I2 D fi D 1; � � � ; m j Nxji > uji g;
I D f1; � � � ; mgn.I1 [ I2/:

If I1 [ I2 D ;, then Nx is feasible. In the other case, construct the following
auxiliary program:

min w D �Pi2I1
xji CP

i2I2
xji ;

s:t: BxB D b � NxN ;

lI � xI � uI ; lN � xN � uN ;

where the objective function is termed “infeasible-sum”.
The according tableau of the auxiliary program is manipulated by one iteration

of Algorithm 7.4.1 (in which the row pivot rule should be modified slightly, see
below). Then a new auxiliary program is formed, and so on, until I1 [ I2 becomes
empty, or infeasibility is detected.

Related discussions are similar to those with the infeasible-sum Phase-I method
for the standard LP problem (for details, see Sect. 13.1).
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7.5 Generalized Dual Simplex Method: Tableau Form

Let B and N are given by (7.15) and let (7.4) be the according simplex tableau.
Assume that the associated basic solution Nx are valued by

Nxj D lj or uj ; j 2 N;

and

NxB D Nb � NN NxN ; Nf D cT Nx:

Index sets � and … are defined by (7.19). If the following conditions hold:

Nz� � 0; Nz… � 0; (7.29)

the simplex tableau is said to be dual feasible. If, further, lB � xB � uB holds, Nx is
clearly a basic optimal solution.

Whether a simplex tableau of a bounded-variable problem is dual feasible
dependents on the values taken by nonbasic components of the solution. In principle,
in the case when components of l and u are finite, it is always possible to have
nonbasic components valued, such that the resulting solution be dual feasible,
though lB � xB � 	B does not hold in general.

Introduce “bound-violation” quantities

�i D
8<
:

lji � Nxji ; if Nxji < lji ;

uji � Nxji ; if Nxji > uji ;

0; if lji � Nxji � uji ;

i D 1; � � � ; m; (7.30)

and determine row index p by the following rule:

p 2 arg maxfj�i j j i D 1; � � � ; mg: (7.31)

If �p D 0, optimality is achieved. Now assume that �p ¤ 0: �p > 0 indicates
that Nxp violates the lower bound while �p < 0 indicates that it violates the upper
bound. Introduce index set

J D fj 2 � j sign.�p/ Napj < 0g [ fj 2 … j sign.�p/ Napj > 0g: (7.32)

It is not difficult to show that the original problem is infeasible if J D ;; else, a
column index q and a step size ˇ are determined such that

ˇ D �Nzq=.sign.�p/ Napq/ D min
j 2J

�Nzj =.sign.�p/ Napj / � 0: (7.33)
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Takin Napq as the pivot, convert the simplex tableau by relevant elementary trans-
formations. Then the resulting simplex tableau corresponds to the new basis and
nonbasis below:

B D fj1; � � � ; jp�1; q; jpC1; � � � ; jmg; N D N nq [ fjpg:

It might be well to still use (7.4) to denote the new simplex tableau, Ox denote the
associated basic solution. As new tableau is equivalent to the old, Ox and Nx satisfy

NxB D � NN NxN ; OxB D � NN OxN : (7.34)

Now set the new nonbasic component Oxp to the violated bound, i.e.,

Oxjp D Nxjp C �p; (7.35)

and maintain other nonbasic components unchanged, i.e.,

Oxj D Nxj ; j 2 N; j ¤ jp:

Then from subtraction of the two equalities of (7.34), the updating formula of NxB

follows:

OxB D NxB � �p Najp : (7.36)

It is not difficulty to show that the new simplex tableau with such a Ox is still dual
feasible. The ˇ is actually the largest possible stepsize maintaining dual feasibility.

Noting that Nzjp D sign.�p/ˇ holds for the new tableau, the following recurrence
formula of the objective value can be derived from Ox and Nx satisfying (7.35) and the
equality associated with the bottom row of the tableau:

Of D Nf C Nzjp . Oxjp � Nxjp / D Nf C �p Nzjp D Nf C ˇ � Nf ;

which indicates that the objective value increases. If all components of NzN are
nonzero, the simplex tableau is said to be dual nondegenerate, and hence ˇ > 0,
so that the objective value strictly increases.

The overall steps are put into the following algorithm, in which the objective
value is calculated at the end.

Algorithm 7.5.1 (Generalized dual simplex algorithm: tableau form). Initial: a
dual feasible tableau of form (7.4), corresponding to Nx. This algorithm solves the
bounded-variable problem (7.13).

1. Select a row index p by (7.31) together with (7.30).
2. If �p D 0, compute Nf D cT Nx, and stop (optimality achieved).
3. Stop if J defined by (7.32) is empty (infeasible problem).
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4. Determine a column index q by (7.33).
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Update Nx by (7.35) and (7.36).
7. Go to step 1.

Note The last three rows in the simplex tableau should be updated in each
iteration.

The proof regrading meanings of the algorithm’s exits are delayed to the
derivation of its revised version.

Example 7.5.1. Solve the following problem by Algorithm 7.5.1:

min f D 2x1 � x2 C 3x3 � 6x4;

s:t: �2x1 C 3x2 � 4x3 C 2x4 C x5 D 14;

�3x1 C 4x2 � 5x3 C 6x4 C x6 D 16;

x1 � 2x2 C 2x3 � 7x4 C x7 D �15;

�15 � x1 � 30; �12 � x2 � 20; �17 � x3 � 10;

�8 � x4 � 15; �10 � x5 � 26; �13 � x6 � 34;

0 � x7 � 19:

Answer Initial tableau:

x1 x2 x3 x4 x5 x6 x7

�2 3 �4 2 1

�3 4* �5 6 1

1 �2 2 �7 1

2 �1 3 �6

u 30 20 10 15 26 34 19

Nx �15 20 �17 15 �174 �284 179

l �15 �12 �17 �8 �10 �13 0

Take

NxN D .�15.�/; 20.C/; �17.�/; 15.C//T.N D f1; 2; 3; 4g/;
NxB D Nb � NN NxN D .�174; �284; 179/T.B D f5; 6; 7g/; Nf D �191:

Iteration 1:

1. �1 D �10 � .�174/ D 164; �2 D �13 � .�284/ D 271;

�3 D 19 � 179 D �160. maxfj164j; j271j; j � 160jg D 271 ¤ 0; p D 2; j2 D 6.
3. J D f1; 2; 3; 4g ¤ ;.
4. minf�2=.�3/; �.�1/=4; �3=.�5/; �.�6/=6g D 1=4; q D 2.
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5. Multiply row 2 by 1=4, and then add �3; 2; 1 times of row 2 to rows 1,3,4,
respectively.

6. Nx6 D �284 C 271 D �13.
NxB D .�174; 20; 179/T � 271.�3=4; 1=4; 1=2; �1=4/T.

D .117=4; �191=4; 87=2/T; B D f5; 2; 7g.

x1 x2 x3 x4 x5 x6 x7

1=4 �1=4 �5=2 1 �3=4*

�3=4 1 �5=4* 3=2 1=4

�1=2 �1=2 �4 1=2 1

5=4 7=4 �9=2 1=4

u 30 20 10 15 26 34 19

Nx �15 �191=4 �17 15 117=4 �13 87=2

l �15 �12 �17 �8 �10 �13 0

Iteration 2:

1: �1 D 26 � 117=4 D �13=4; �2 D �12 � .�191=4/ D 143=4;

�3 D 19 � 87=2 D �49=2: maxfj � 13=4j; j143=4j; j � 49=2jg D 143=4 ¤ 0;

p D 2; j2 D 2:

3: J D f1; 3; 4g ¤ ;:

4. minf�.5=4/=.�3=4/; �.7=4/=.�5=4/; �.�9=2/=.3=2/g D 7=5; q D 3.
5. Multiply row 2 by �4=5, and then add 1=4; 1=2; �7=4 times of row 2 to rows

1,3,4, respectively.
6: Nx2 D �191=4 C 143=4 D �12;

NxB D .117=4; �17; 87=2/T � .143=4/.�1=5; �4=5; �2=5/T:

D .182=5; 58=5; 289=5/T; B D f5; 3; 7g:

x1 x2 x3 x4 x5 x6 x7

2=5 �1=5 �14=5 1 �4=5

3=5 �4=5 1 �6=5 �1=5

�1=5 �2=5 �23=5* 2=5 1

1=5 7=5 �12=5 3=5

u 30 20 10 15 26 34 19

Nx �15 �12 58=5 15 182=5 �13 289=5

l �15 �12 �17 �8 �10 �13 0

Iteration 3:

1. �1 D 26 � 182=5 D �52=5; �2 D 10 � 58=5 D �8=5;

�3 D 19 � 289=5 D �194=5. maxfj � 52=5j; j � 8=5j; j � 194=5jg
D 194=5 ¤ 0; p D 3; j3 D 7.

3. J D f4; 6g ¤ ;.
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4. minf�.�12=5/=.�23=5/; �.3=5/=.2=5/g D 12=23; q D 4.
5. Multiply row 3 by �5=23, and then add 14=5; 6=5; 12=5 times of row 3 to rows

1,2,4, respectively.
6. Nx7 D 289=5 � 194=5 D 19.

NxB D .182=5; 58=5; 15/T � .�194=5/.�14=23; �6=23; �5=23/T.
D .294=23; 34=23; 151=23/T; B D f5; 3; 4g.

x1 x2 x3 x4 x5 x6 x7

12=23 1=23 1 �24=23 �14=23

15=23 �16=23 1 �7=23 �6=23

1=23 2=23 1 �2=23 �5=23

7=23 37=23 9=23 �12=23

u 30 20 10 15 26 34 19

Nx �15 �12 34=23 151=23 294=23 �13 19

l �15 �12 �17 �8 �10 �13 0

Iteration 4:

1. �1 D �2 D �3 D 0. The basic optimal solution and optimal value are

Nx D .�15; �12; 34=23; 151=23; 294=23; �13; 19/T;

Nf D .2; �1; 3; �6/.�15; �12; 34=23; 151=23/T D �1;218=23:

7.5.1 Generalized Dual Phase-I

It is not difficult to generalize dual Phase-I methods (Chap. 14) for standard
problems to initiate the generalized dual simplex algorithm.

Using a generalized version of the most-obtuse-angle row rule (14.3), Koberstein
and Suhl (2007) designed a dual Phase-I procedure, named by PAN, for solving
generale problems. Taking MOPS1 as a platform, they tested several main dual
Phase-1 methods on 46 typical large-scale sparse problems, the largest among which
involves more than 500,000 constraints and 1,000,000 variables. The numerical
results show that for most of the tested problem, PAN required a small number of
iterations; only for few most difficult problems, the required iterations exceeded
an acceptable amount. In the latter cases, they turned to a version of the dual
infeasibility-sum Phase-I, named by SDI. It turned out that such a combination,
PAN + SDI, is the best among four commonly used Phase-I methods. Therefore,
PAN+SDI was taken as the default option for MOPS dual simplex algorithm.

1MOPS is a developed package by Suhl et al. of College of Production Information Economy and
Operations Research of Berlin Free University see Suhl (1994).
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In view of the preceding facts, the author suggests generalizing Rule 14.3.2 by
replacing (7.25) with

˛ D minfuq � lq; minf˛i j j Nai q j � ��; i D 1; � � � ; mgg; (7.37)

� D maxfj Nai qj j i D 1; � � � ; mg;

where 0 < � � 1, ˛i ; i D 1; � � � ; m, are defined by (7.28). The basic idea of such
doing is to restrict stepsizes to some extent.

This consideration leads to the following algorithm, yielding from modifying
Algorithm 7.4.2.

Algorithm 7.5.2 (Tableau generalized dual Phase-I: the most-obtuse-angle
rule). Given 0 < � � 1. Initial: a dual feasible simplex tableau of form (7.4),
associated with Nx. This algorithm solves the bounded-variable problem (7.13).

1. If J defined by (7.20) is empty, compute Nf D cT Nx, and stop (optimality
achieved).

2. Select column index q such that q 2 maxj 2J jNzj j.
3. Determine stepsize ˛ by (7.37).
4. Set Nxq D �sign.Nzq/˛, and update NxB D NxB C ˛sign.Nzq/ Naq if ˛ ¤ 0.
5. If ˛ D uq � lq , go to step 1; else, determine row index p 2 f1; � � � ; mg such that

˛ D ˛p .
6. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
7. Go to step 1.

7.6 Generalized Dual Simplex Method

According to Table 3.1, which gives the correspondence between entries of the
simplex tableau and the revised simplex tableau, it is easy to formulate the revised
version of Algorithm 7.5.1. However, we will not do so, but derive it based on
local duality (Sect. 25.5), revealing that such an algorithm actually solves the dual
bounded-variable problem.

Let B D fj1; � � � ; jmg and N D AnB be the current basis and nonbasis,
respectively, associated with primal basic solution Nx, i.e.,

Nxs D ls or us; s 2 N;

NxB D B�1b � B�1N NxN :
(7.38)

Notation �; …; are again defined by (7.19), and �i is defined by (7.30). Assume that
row index p has already been determined by (7.31).
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Consider the following local problem at Nx (25.5):

min f D cTx;

s:t: Ax D b;

l� � x�;

x… � u…;

ljp � Nxjp ; if �p > 0;

Nxjp � ujp ; if �p < 0:

(7.39)

Using notation

hp D
�

ljp ; If �p > 0;

ujp ; If �p < 0;
(7.40)

the local dual problem can be written

max bTy � uT
…v… C lT

� w� C hpzjp ;

s:t: BTy C zjp ep D cB ;

�Ty C w� D c�;

…Ty � v… D c…;

�pzjp ; v…; w� � 0:

Based on the equality constraints, eliminate variable v…; w� , and combine (7.19)
and (7.20) to reduce the objective function to

.b � …u… � �l�/Ty C hpzp D cT
… Nx… C cT

� Nx� C .b � … Nx… � � Nx�/Ty C hpzjp

D cT
N NxN C .b � N NxN /Ty C hpzjp : (7.41)

Then setting z� D w� ; z… D �v…, transform the local dual problem to the following
equivalent form:

max g.y; z/ D cT
N NxN C .b � N NxN /Ty C hpzjp ;

s:t: BTy C zjp ep D cB ;

N Ty C zN D cN ;

�pzjp � 0; z… � 0; z� � 0:

(7.42)

Now, define

Ny D B�TcB; (7.43)

NzN D cN � N T Ny; NzB D 0: (7.44)
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and assume that the following conditions hold:

Nz… � 0; Nz� � 0; (7.45)

under which it is not difficult to verify that the primal objective value at Nx and the
dual objective value at . Ny; Nz/ are equal, i.e., Nf D Ng. Using the preceding notation,
moreover, the following is valid.

Lemma 7.6.1. . Ny; Nz/ is a basic feasible solution to the local dual problem, which
exhibits complementarity with Nx.

Proof. It is clear that . Ny; Nz/ is the basic solutio to (7.42), satisfying the sign
constraints at the bottom. So, it is only needed to show

BT Ny C Nzjp ep D cB ; N T Ny C NzN D cN ; (7.46)

. Nx� � l�/TNz� D 0; .u… � Nx…/TNz… D 0; (7.47)

. Nxjp � ljp /Nzjp D 0; if �p > 0; (7.48)

. Nxjp � ujp /Nzjp D 0; if �p < 0: (7.49)

From (7.43) and the second expression of (7.44), the first expression of (7.45)
follows. By the first expression of (7.44), it holds that

…T Ny C Nz… D …T Ny C c… � …T Ny D c…: (7.50)

Similarly that

�T Ny C Nz� D c�: (7.51)

Therefore, (7.46) is valid.
By (7.19), on the other hand, it is clear that (7.47) holds; and it is known from

the second expression of (7.44) that (7.48) or (7.49) holds. ut
Setting

NvB D 0; NwB D 0; (7.52)

Nv… D �Nz…; Nw… D 0; (7.53)

Nv� D 0; Nw� D Nz�; (7.54)

it is not difficult to verify that . Ny; Nv; Nw/ is a basic feasible solution to dual problem
of (7.13), i.e.,

max bTy � uTv C lTw;

s:t: ATy � v C w D c; v; w; � 0;
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(see the last paragraph of Sect. 25.5). It and Nx satisfy complementarity condition. In
this sense, . Ny; Nz/ is called a dual feasible solution.

Lemma 7.6.2. If lB � NxB � uB holds, then Nx is a basic optimal solution.

Proof. When lB � NxB � uB holds, Nx is clearly a basic feasible solution to the
(full) problem (7.13), hence the same to the local problem (7.39). By Lemma 7.6.1,
it is known that . Ny; Nz/ is local dual feasible, exhibiting complementarity with Nx.
Therefore, the two are local primal and dual basic optimal solutions, respectively.
By Proposition 25.4.2, it is known that Nx is a basic optimal solution to (7.13). ut

Now we will find a new dual solution to improve the objective value. To this end,
define search direction

h D �sign.�p/B�Tep; �jp D sign.�p/; (7.55)

�N D �N Th: (7.56)

Lemma 7.6.3. Under the preceding definition, the search direction satisfies the
following conditions:

BTh C �jp ep D 0; N Th C �N D 0; (7.57)

.b � N NxN /Th C hp�jp > 0: (7.58)

Proof. Its first half is easily verified, it is only needed to show (7.58).
From (7.55) and the second expression of (7.38), it follows that

hT.b � N NxN / C hp�jp D �sign.�p/eT
p.B�1b � B�1N NxN / C sign.�p/hp

D �sign.�p/.eT
p NxB � hp/:

Then from (7.14) and (7.40) it follows that the right-hand side of the preceding
equals

ljp � Nxjp > 0;

when �p > 0, while equals

Nxjp � ujp > 0:

when �p < 0 ut.

Consider the following line search scheme:

Oy D Ny C ˇh; Ozjp D Nzjp C ˇ�jp D sign.�p/ˇ; (7.59)

OzN D NzN C ˇ�N : (7.60)
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Introduce index set

J D fj 2 � j �j < 0g [ fj 2 … j �j > 0g: (7.61)

Assume that J ¤ ;. Then from (7.60) and sign conditions Oz… � 0 and Oz� � 0, it
is known that the largest possible stepsize ˇ and pivot column index q satisfy the
minimum-ratio test

ˇ D �Nzq=�q D min
j 2J

�Nzj =�j � 0: (7.62)

If all components of NzN are nonzero, then the solution is dual nondegenerate, hence
the determined stepsize is positive.

Lemma 7.6.4. If J ¤ ;, the new solution, determined by (7.59) and (7.60) together
with (7.62), is a basic feasible solution to the local dual problem. The according
objective value increases, and strictly increases if dual nondegeneracy is assumed.

Proof. From (7.59), the first expression of (7.57) and (7.43), it is known for any
ˇ � 0 that

BT Oy C Ozjp ep D BT Ny C ˇ.BTh C �jp ep/ D BT Ny D cB : (7.63)

From the first expression of (7.59), (7.60), the second expression of (7.57) and
(7.44), it follows that

N T Oy C OzN D N T Ny C ˇN Th C NzN C ˇ�N D .N T Ny C NzN / C ˇ.N Th C �N / D cN :

(7.64)

In addition, by (7.59), (7.60) and (7.57) is known that Ozjp ; Oz satisfies the sign
condition at the bottom of problem (7.42), hence the new solution is basic feasible
solution, associated with the objective value increasing to

Og D .b � N NxN /T Oy C hp Ozjp

D .b � N NxN /T Ny C ˇ..b � N NxN /Th C hp�jp /

� Ng; (7.65)

where the inequality comes from (7.58) and ˇ � 0. In the dual nondegeneracy
case, ˇ > 0, and hence the strict inequality holds, as implies strict increase of the
objective value. ut

When J is empty, (7.57) is not well-defined but the following is valid.

Lemma 7.6.5. If J D ;, then the original problem (7.13) is infeasible.

Proof. J D ; implies that

�… � 0; �� � 0: (7.66)
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Combining the preceding two expressions together with Nz… � 0 and Nz� � 0 leads to

Oz… D Nz… C ˇ�… � 0; Oz� D Nz� C ˇ�� � 0; 8 ˇ > 0:

Similarly to the proof of Theorem 7.6.4, it can be shown that . Oy; Oz/ satisfies the other
constraints, with the objective value denoted again by (7.65). Thus, noting (7.58), it
is known that

Og ! 1 as ˇ ! 1;

Therefore, the local dual problem is unbounded. By Proposition 25.4.2, the original
problem is infeasible. ut

Now we need to determine a primal solution that is complementary with the dual
solution, based on the local problem (7.39). For the value of basic variable xp to
change from Nxp to the violated bound, it is necessary to let the value of nonbasic
variable xq change from Nxq accordingly by a range, i.e.,

�xq D
(

��p=j�qj; if Nxq D lq;

�p=j�qj; if Nxq D uq:
(7.67)

Therefore, the new values are

OxB D NxB � �xq Naq; Oxq D Nxq C �xq; Oxj D Nxj ; j 2 N; j ¤ q; (7.68)

where Naq D B�1aq , associated with the new objective value

Of D Nf C j�xq Nzqj � Nf : (7.69)

Note that all components of OxN are the same as those of NxN , except for Oxq . From
the first expression of (7.68) and the second expression of (7.59), it is known that
if �p > 0, then Oxjp D ljp and Oz � 0 hold, while if �p < 0, then Oxjp D ujp and
Ozjp � 0 hold. Therefore, after updating basis and nonbasis by exchanging p and q,
Ox and . Oy; Oz/ exhibit complementarity, and the latter satisfies according dual feasible
conditions, so that we are ready to go on the next iteration.

The overall steps are summarized into the following algorithm, a revision of
Algorithm 7.5.1.

Algorithm 7.6.1 (Generalized dual simplex algorithm). Initial: .B; N /; B�1;
Ny; Nz; Nx satisfying (7.38), (7.43) and (7.44). This algorithm solves the bounded-
variable problem (7.13).

1. Select a pivot row index p 2 arg maxfj�i j j i D 1; � � � ; mg, where �i is defined
by (7.30).

2. If �p D 0, compute Nf D cT Nx, and stop.
3. Compute �N D �N Th, where h D �sign.�p/B�Tep .
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4. Stop if J defined by (7.61) is empty.
5. Determine ˇ and pivot column index q by (7.62).
6. Compute �xq by (7.67).
7. Compute Naq D B�1aq .
8. Update Nx by (7.68).
9. Update Ny; NzN ; Nzjp by (7.59) and (7.60).

10. Update B�1 by (3.23).
11. Update .B; N / by exchanging jp and q.
12. Go to step 1.

Theorem 7.6.1. Algorithm 7.6.1 generates a sequence of primal and of dual basic
solutions. Assuming nondegeneracy, it terminates either at

(i) Step 2, giving a pair of primal and dual basic optimal solutions; or at
(ii) Step 4, detecting infeasibility of the problem.

Proof. The validity comes from Lemmas 7.6.2, 7.6.4 and 7.6.5, and related
discussions, made preceding Algorithm 7.6.1. ut
Example 7.6.1. Solve the following problem by Algorithm 7.6.1:

min f D x1 C 2x2 � 2x3;

s:t: �2x1 C x2 C x3 C x4 D 0;

�x1 � x2 C x3 C x5 D 0;

x1 � x2 � 2x3 C x6 D 0;

1 � x1 � 5; �2 � x2 � 1; �3 � x3 � 0;

2 � x4 � 5; 0 � x5 � 6; �3 � x6 � 0:

Answer Initial:B D f4; 5; 6g; N D f1; 2; 3g; B�1 D I; NxN D .1.�/; �2.�/;

0.C//T, NxB D .4; �1; �3/T; Ny D .0; 0; 0/; NzN D .1; 2; �2/T; Nf D �3.

Iteration 1:

1. maxf0; j0 � .�1/j; 0g D 1; p D 2, x5 leaves the basis.
3: h D �sign.�2/B

�Te2 D .0; �1; 0/T; �N D �N Th D .�1; �1; 1/T:

4: J D f1; 2; 3g ¤ ;:

5: ˇ D minf�1=.�1/; �2=.�1/; �.�2/=1g D 1; q D 1:

6: �x1 D �2=j�1j D 1:

7: Na1 D B�1a1 D .�2; �1; 1/T:

8: NxB D NxB � �x1 Na1 D .4; �1; �3/T � .�2; �1; 1/T D .6; 0; �4/T:

NxN D NxN C �x1e1 D .1; �2; 0/T C .1; 0; 0/T D .2; �2; 0/T:

9: Ny D Ny C ˇh D .0; �1; 0/T C 1 
 .0; �1; 0/T D .0; �2; 0/T;

NzN D NzN C ˇ�N D .1; 2; �2/T C 1.�1; �1; 1/T D .0; 1; �1/T;

Nz5 D sign.�2/ˇ D 1:
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10. Update B�1 D
0
@1 �2

�1

1 1

1
A.

11. NxB D .6; 2; �4/T; B D f4; 1; 6g; NxN D .0.�/; �2.�/; 0.C//T; NzN D .1; 1; �1/T;

N D f5; 2; 3g.

Iteration 2:

1. maxfj5 � 6j; 0; .�3/ � .�4/g D 1; p D 1, x4 leaves the basis.
3: h D �sign.�1/B�Te1 D .1; �2; 0/T; �N D �N Th D .2; �3; 1/T:

4: J D f2; 3g ¤ ;:

5: ˇ D minf�1=.�3/; �.�1/=1g D 1=3; q D 2:

6: �x2 D ��1=j�2j D 1=3:

7: Na2 D B�1a2 D .3; 1; �2/T:

8: NxB D .6; 2; �4/T � .1=3/.3; 1; �2/T D .5; 5=3; �10=3/T;

NxN D NxN C �x2e2 D .0; �2; 0/T C .0; 1=3; 0/T D .0; �5=3; 0/T:

9: Ny D Ny C ˇh D .0; �2; 0/T;

NzN D NzN C ˇ�N D .1; 1; �1/T C .1=3/.2; �3; 1/T D .5=3; 0; �2=3/T;

Nz4 D sign.�1/ˇ D �1=3:

10. Update B�1 D
0
@ 1=3

�1=3 1

2=3 1

1
A
0
@1 �2

�1

1 1

1
A D

0
@ 1=3 �2=3

�1=3 �1=3

2=3 �1=3 1

1
A.

11. B D f2; 1; 6g; N D f5; 4; 3g, NxB D .�5=3; 5=3; �10=3/T,
NxN D .0.�/; 5.C/; 0.C//T;

NzN D .5=3; �1=3; �2=3/T.

Iteration 3:

1. maxf0; 0; j.�3/ � .�10=3/jg D 1=3; p D 3, x6 leaves the basis.
3: h D �sign.�3/B�Te3 D .�2=3; 1=3; �1/T; �N D �N Th

D .�1=3; 2=3; �5=3/T:

4: J D f1; 2g ¤ ;:

5: 2 D q 2 minf�.5=3/=.�1=3/; �.�1=3/=.2=3/g; ˇ D 1=2;

x4 enters the basis:
6: �x2 D �3=j�2j D �.1=3/=.2=3/ D �1=2:

7: Na2 D B�1a2 D .1=3; �1=3; 2=3/T:

8: NxB D .�5=3; 5=3; �10=3/T � .�1=2/.1=3; �1=3; 2=3/TD.�3=2; 3=2; �3/T;

NxN D NxN C �x2e2 D .0; 5; 0/T C .0; �1=2; 0/T D .0; 9=2; 0/T:

9: Ny D .0; �2; 0/T C .1=2/.�2=3; 1=3; �1/T D .�1=3; �11=6; �1=2/T;

NzN D NzN C ˇ�N D .5=3; �1=3; �2=3/T C .1=2/.�1=3; 2=3; �5=3/T

D .3=2; 0; �3=2/T;

Nz6 D sign.�3/ˇ D 1=2:

10. Update B�1 D
0
@ 1 �1=2

1 1=2

�3=2

1
A
0
@ 1=3 �2=3

�1=3 �1=3

2=3 �1=3 1

1
AD

0
@ �1=2 �1=2

�1=2 1=2

�1 1=2 �3=2

1
A.
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11. It is satisfied that lB � NxB � uB . The optimal solutio and value are

Nx D .3=2; �3=2; 0; 9=2; 0; �3/T; Nf D 3=2 C 2.�3=2/ D �3=2:

7.7 Bound Flipping

The so-called “bound-flipping” technique can improve the effect of the generalized
dual simplex method significantly. In fact, it might be the main cause for the dual
simplex method to outperform its primal counterpart at present (Kirillova et al.
1979; Koberstein and Suhl 2007; Kostina 2002; Maros 2003a).

Let . Ny; Nz/ be the current dual basic feasible solution and let Nx be the associate
primal solution. Assume that a row index p has been determined by (7.31) and that
a column index q determined by the minimum-ratio test (7.62). Let the nonbasic
variable xq change from the current value Nxq (going up or down) toward the other
bound, while keeping the other nonbasic variables unchanged. For the basic variable
xjp to attain the violated bound, the value of xq could fall either within the range
between the lower and upper bounds, or beyond the other bound. In the latter case,
it is favorable to adopt the “bound-flipping”: fix the value of xq on the other bound
and update values of basic variables accordingly; then find a new column index q

that attains the second minimum-ratio, and do the same thing again, until the value
of xjp will attain the violated bound if the current value of xq falls within the range
between its lower and upper bounds. Then, a normal dual step is taken by dropping
xjp from and enter xq to the basis, and updating the primal and dual solutions. It is
seen that the dual feasibility still maintains.

The bound-flipping technique is embedded in the following subalgorithm, which
is called in step 10 of Algorithm 7.7.2.

Algorithm 7.7.1 (Bound-flipping subalgorithm). This algorithm provide the
pivot column index q, dual stepsize ˇ, and carries out related computations.

1. Set j D 0; v D 0, and compute rj D �Nzj =�j ; 8j 2 J .
2. Set j D j C 1.
3. Set v D v C ıaq .

4. Set Nxq D
�

uq; if Nxq D lq;

lq; if Nxq D uq:

5. Update: �p D �p � jı�qj.
6. Determine q and rq such that rq D minj 2J rj .
7. Compute �xq by (7.67).
8. Update: J D J nfqg.
9. Go to step 13 if J D ;.

10. Compute ı D
�

uq � lq; if Nxq D lq;

lq � uq; if Nxq D uq:

11. Go to step 2 if j�xqj � jıj.
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12. Set ˇ D rq .
13. Compute u D B�1v, and update: NxB D NxB � u.
14. Return.

The following master algorithm is a slight modification of Algorithm 7.6.1.

Algorithm 7.7.2 (Generalized dual simplex algorithm: bound-flipping). Ini-
tial: .B; N /; B�1, Ny; Nz; Nx satisfying (7.38), (7.43) and (7.44). This algorithm solves
bounded-variable problem (7.13).

1. Select row index p by (7.31) together with (7.30).
2. Stop if �p D 0 (optimality achieved).
3. Compute �N by (7.56) together with (7.55).
4. Stop if J defined by (7.61) is empty (dual unbounded or primal infeasible).
5. Determine column index q by (7.62).
6. Compute �xq by (7.67).
7. Set J D J nfqg.
8. If J D ;, go to step 12.

9. Compute ı D
�

uq � lq; if Nxq D lq;

lq � uq; if Nxq D uq:

10. If j�xqj � jıj, call Algorithm 7.7.1.
11. Compute Naq D B�1aq .
12. Update Nx by (7.68).
13. Update Ny; NzN ; Nzjp by (7.59) together with (7.60).
14. Update B�1 by (3.23).
15. Update .B; N / by exchanging jp and q.
16. Go to step 1.

The bound-flipping increases computational work associated therewith, in par-
ticular, involving an additional linear system (in step 13 of Algorithm 7.7.1). This is
inappreciable, however, if compared with profitable return. Since the associated dual
stepsize is usually much larger than that without bound-flipping, so is the increment
in objective value, especially when �p is large. As a result, the number of iterations
are usually decreased significantly. In fact, the bound-flipping has been unable to be
omitted in current dual simplex codes.

Example 7.7.1. Solve the following problem by Algorithm 7.7.2:

min f D �x1 C 2x3 C 3x4;

s:t: � 2x1 C x2 C x3 C x4 D �2;

x1 � x3 C x4 C x5 D 1;

x1 � 2x3 � 3x4 Cx6 D 0;

0 � x1 � 2; �6 � x2 � 10; 0 � x3 � 7;

1 � x4 � 5; 2 � x5 � 6; �1 � x6 � 6:
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Answer Initial: B D f2; 5; 6g; N D f1; 3; 4g; B�1 D I; NxN D
.2.C/; 0.�/; 1.�//

T, NxB D .1; �2; 1/T; Ny D .0; 0; 0/; NzN D .�1; 2; 3/T; Nf D 1.

Iteration 1:

1. maxf0; 2 � .�2/; 0g D 4; p D 2; x5 leaves the basis.
3: h D �sign.�2/B�Te2 D .0; �1; 0/T; �N D �N Th D .1; �1; 1/T:

4: J D f1; 2g:
5: ˇ D minf�.�1/=1; �2= � 1g D 1; q D 1:

6: �x1 D ��2=j�1j D �4=1 D �4:

7: J D J nf1g D f2g ¤ ;:

9: ı D l1 � u1 D 0 � 2 D �2:

10. j�x1j > jıj, so call Algorithm 7.7.1.
.1/ j D 0; v D 0; r2 D �2= � 1 D 2I
.2/ j D j C 1 D 1I
.3/ v D v C ıa1 D .�2/.�2; 1; 1/T D .4; �2; �2/TI
.4/ Nx1 D l1 D 0I
.5/ �2 D �2 � jı�1j D 4 � 2 
 1 D 2I
.6/ q D 2I
.7/ �x2 D ��2=j�2j D �2=.�1/ D 2I
.8/ J D J nf2g D ;I

.12/ ˇ D r2 D 2I

.13/ u D B�1v D .4; �2; �2/TI
NxB D NxB � u D .1; �2; 1/T � .4; �2; �2/T D .�3; 0; 3/TI

(14) Return.
11: Na2 D B�1a2 D .1; �1; �2/T:

12: NxB D .�3; 0; 3/T � 2.1; �1; �2/T D .�5; 2; 7/T;

NxN D .0; 0; 1/T C .0; 2; 0/T D .0; 2; 1/T:

13: Ny D .0; 0; 0/T C 2.0; �1; 0/T D .0; �2; 0/T;

NzN D NzN C ˇ�N D .�1; 2; 3/T C 2.1; �1; 1/T D .1; 0; 5/T;

Nzj2 D sign.�2/ˇ D 2:

14: B�1 D
0
@1 1

�1

�2 1

1
A :

16: NxB D .�5; 2; 7/T; NxN D .0.�/; 2.�/; 1.�//
T; NzN D .1; 2; 5/T;

B D f2; 3; 6g; N D f1; 5; 4g:

Iteration 2:

1. maxf0; 0; 7 � 6g D 1; p D 3, x6 leaves the basis.
3. h D �sign.�3/B�Te3 D .0; �2; 1/T, �N D �N Th D .1; 2; 5/T.
4. J D ;, hence dual unbounded or primal infeasible.

If bound-flipping had not been used, solving the preceding problem would
have required much more iterations.



Chapter 8
Decomposition Method

Solving large-scale LP problems is a challenging task, putting forward high
requirements on algorithms’ efficiency, storage and numerical stability.

It is noticeable that the objective function and nonnegativity constraints are
variable-separable, i.e., can be separated to several independent groups. If, in
addition, the system of constraint equations are also variable-separable, then the
large-scale problems can be handled through solving smaller problems. Let us bring
up the following example:

min f D .c1/Tx1 C � � � C .ck/Txk;

s:t: D1x
1 D h1;

D2x
2 D h2;
: : :

:::

Dkxk D hk;

x1; � � � ; xk � 0;

(8.1)

where the coefficient matrix is of block diagonal structure: orders of submatrices
Dj and dimensions of subvectors cj ; xj ; hj ; j D 1; � � � ; k are consistent, that is,
each pair of cj and xj share a same dimension, equal to the number of columns of
Dj , and the dimension of bj is equal to the number of rows of Dj .

The feasible region of the problem is

P 0 D f..x1/T; � � � ; .xk/T/T j Dj xj D hj ; xj � 0; j D 1; � � � ; kg;

or, otherwise, denoted in the form of “Cartesian product”:

P 0 D P 1 
 � � � 
 P k I P j D fxj j Dj xj D hj ; xj � 0g; j D 1; � � � ; k:

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__8,
© Springer-Verlag Berlin Heidelberg 2014
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As variables and constraints of the problem can be separated to independent k sets,
the problem comes down to solving k smaller problems, i.e.,

min .cj /Txj ;

s:t: Dj xj D hj ; xj � 0;
j D 1; � � � ; k:

If there is a basic feasible solution Nxj , associated objective value Nf j , to each of
the small problems, there is a basic feasible solution, associated with according
objective value, to the original problem, i.e.,

Nx D .. Nx1/T; � � � ; . Nxk/T/T; Nf D Nf 1 C � � � C Nf k: (8.2)

The same is valid with basic optimal solutions and objective values. On the other
hand, if some of the small problems is unbounded, the original is unbounded too;
if required, it is not difficult to determine the associated descent extreme direction
(Proposition 3.5.1).

Although such type of problems would not be encountered in practice very often,
problems of partially separable structure are not unusual, as would be amenable to
be solved by decomposition methods, presented in this chapter.

8.1 D-W Decomposition

Dantzig-Wolfe (D-W) decomposition (1960) partitions constraints to two sets, and
handle a “master program” and a subprogram alternately to solve the original
problem. The master program is expressed in terms of vertices and extreme
directions of the feasible region, associated with one of the sets. Throughout solution
process, the subprogram takes this set as its constraints, while its objective function
varies iteration by iteration. It is solved to determine a column of the master
program to enter the basis, or assert optimality of the original problem. In such a
manner, the original problem is solved via handling two smaller programs. Further
decomposition is possible if the set of constraints of the subprogram are of separable
structure.

By partitioning the constraints to two sets, the standard LP program can be
written

min f D cTx;

s:t: Ax D b;

Hx D h; x � 0;

(8.3)

where A 2 Rm�n; H 2 Rm1�n; b 2 Rm; h 2 Rm1.
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Introduce polyhedral convex set

P D fx 2 Rn j Hx D h; x � 0g:

Let P be nonempty, and possess the following sets of vertices and extreme
directions respectively:

U D fu1; � � � ; usg; V D fv1; � � � ; vt g;

According to the Representation Theorem 2.2.7, it holds that

P Dfx j xD
sX

iD1

˛i u
iC

tX
j D1

ˇj vj I
sX

iD1

˛iD1; ˛i �0; iD1; � � � ; s; ˇj �0; j D1; � � � ; tg:

Substituting the expression of x to minfcTx j Ax D bg, convert (8.3) to the
standard problem with respect to variables ˛i ; ˇj , i.e.,

min˛i ;ˇj f D
sX

iD1

.cTui /˛i C
tX

j D1

.cTvj /ˇj ;

s:t:
sX

iD1

.Aui /˛i C
tX

j D1

.Avj /ˇj D b;

sX
iD1

˛i D 1;

˛i ; ˇj � 0; i D 1; � � � ; s; j D 1; � � � ; t;

(8.4)

which is called master program.
The relation between feasible solutions to the master program and to the original

program is determined by

x D
sX

iD1

˛i u
i C

tX
j D1

ˇj vj ; (8.5)

corresponding to equal feasible values. Respectively, feasible and optimal solutions
of the master program correspond to those of the original program. In general,
however, the latter is not a basic solution even if the former is.

Let us focus on the master program side. The difficulty seems that the number sC
t of columns of the master program is usually far larger than the number mC1 of its
rows, despite the number of rows would be far less than the number mCm1 of rows
of the original program; moreover, vertices and extreme directions of P are used in
expression of the coefficient matrix and costs of the master program. Fortunately, a
simplex iteration only needs an entering and a leaving column available, provided
that the current basis is known. As D-W composition generates an entering column
in each iteration, it is sometimes called column generation method.
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Without loss of generality, assume that the current basis matrix is

B D
�

Au1 � � � Aus0

Av1 � � � Avt 0

1 � � � 1 0 � � � 0

�
; (8.6)

where the number of columns of B is s0 C t 0 D m C 1. The basic components of
the current feasible solution are defined by system

B.˛1; � � � ; ˛s0 ; ˇ1; � � � ; ˇt 0/T D
�

b

1

�
:

Denote the feasible solution by

N̨ i � 0; i D 1; � � � ; s0I Ň
j ; j D 1; � � � ; t 0:

Then the according feasible solution and objective value of the original program is

Nx D
s0X

iD1

N̨i u
i C

t 0X
j D1

Ň
j vj ; Nf D

s0X
iD1

.cTui / N̨ i C
t 0X

j D1

.cTvj / Ň
j ; (8.7)

The simplex multipliers . Ny; N/, corresponding to the first m rows and the bottom
row, are defined by system

BT
�

y



�
D OcB; (8.8)

where OcB consists of costs of the master program, corresponding to basic columns.
The reduced costs are then

cTui � .Aui /T Ny � N; i D 1; � � � ; s;

cTvj � .Avj /T Ny; j D 1; � � � ; t:

If reduced costs are all nonnegative, then optimality of the original program is
achieved, and (8.7) gives its optimal solution and objective value; otherwise, some
nonbasic column corresponding to a negative reduced cost is selected to enter the
basis.

To avoid computing all the reduced costs, D-W decomposition solves a subpro-
gram with P as its feasible region instead, i.e.,

min � D .c � .A/T Ny/Tx � N;

s:t: Hx D h; x � 0;
(8.9)

where constant N in the objective may be omitted, practically.
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Let us examine the relation between the subprogram and the master and the
original programs. If the feasible region P of the subprogram is empty, the master
and the original programs are infeasible. Otherwise, we have the following result.

Lemma 8.1.1. Let f � be the optimal value of the original program. If Nf is the
current objective value of the master program, and �� is the optimal value of the
subprogram, then it holds that

Nf C �� � f � � Nf : (8.10)

Proof. It is clear that f � � Nf , it is only needed to show

Nf C �� � f �: (8.11)

Let x� be an optimal solution of the original program. Since it is also a feasible
solution to the subprogram, we have

.c � .A/T Ny/Tx� � N � ��:

In view of that B�1.hT; 1/T is a basic solution, from the preceding expression,
Ax� D b and . Ny; N/ satisfying system (8.8), it follows that

f � D cTx� � NyTAx� C N C�� D . NyThC N/C�� D OcT
BB�1

�
b

1

�
C�� D Nf C��;

which gives (8.11). ut
In each iteration, therefore, it is possible to estimate the optimal value of the

original program by giving a lower and an upper bounds by (8.10). It holds by (8.11)
that

Nf � f � � ���:

If Nf is taken as an approximate optimal value of the original program, therefore, the
according absolute error bound is ���. If Nf ¤ 0, it follows further that

. Nf � f �/=j Nf j � ���=j Nf j;
the right-hand side of which gives the relative error bound.

Theorem 8.1.1. If the optimal value of the subprogram vanishes, optimality of the
original program is achieved.

Proof. By Lemma 8.1.1 and Nf � f � � 0, it is known that �� � 0, that is, the
optimal value of the subprogram is less than or equal to 0. If it is equal to zero, then
Nf � f � � Nf , which implies that optimality of the master and hence of the original

program is achieved. ut
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If the feasible region P of the subprogram is nonempty, consequently, solving it
by the simplex method leads to one of the following two cases:

(i) A vertex optimal solution, say u�, of the subprogram is reached.
If the optimal value vanishes, optimality of the original program is achieved,

and we are done; otherwise, a column

w0 D
�

Au�
1

�
: (8.12)

is generated to enter the basis.
(ii) It is detected that the subprogram is unbounded via Proposition 3.5.1. In this

case, a descent extreme direction, say v� 2 V , of P can be determined such
that (see Proposition 3.5.1)

.c � .A/T Ny/Tv� < 0;

implying that the according reduced costs of the master program is negative.
Then, a column

w0 D
�

Av�
0

�
(8.13)

is generated to enter the basis. To avoid repetition, other simplex steps, such as
the determination of a leaving column, and etc. will not be described here.

The overall steps are summarized to the following algorithm.

Algorithm 8.1.1 (Dantzig-Wolfe Decomposition). Initial: basis matrix B of the
master program, basic components N̨ i ; Ň

j of the basic feasible solution and
associated objective value Nf . This algorithm solves LP problem (8.3).

1. Solve system (8.8) for . Ny; N/.
2. Call the simplex algorithm to solve subprogram (8.9).
3. If an optimal solution u� of the subprogram is obtained, then

(1) if the associated optimal value �� < 0, generate a new basic column w0
by (8.12), and go to step 5;

otherwise,
(2) compute the optimal solution and objective value of the original program

by (8.7), and stop.

4. If it is detected that the subprogram is unbounded, generate a new basic column
w0 by (8.13).

5. Solve system Bw D w0 for Nw.



8.2 Start-Up of D-W Decomposition 211

6. Stop if Nw � 0. (the original program is unbounded).
7. Determine a stepsize ˛ and leaving column by the minimum-ratio test.
8. Update B , N̨i ; Ň

j and Nf .
9. Go to step 1.

Note When the optimal value �� of the subprogram is close to 0, terminating the
preceding algorithm gives an approximate optimal solution to the original program
(Lemma 8.1.1).

It is clear that the algorithm terminates if nondegeneracy is assumed.

8.1.1 Generalization of D-W Decomposition

To generalize Algorithm 8.1.1, introduce the following concept.

Definition 8.1.1. A program consisting of K.mC2 � K � s C t/ columns of rank
m C 1 of the master program is a restricted subprogram.

The new reduced cost, corresponding to a leaving column, is always greater
than 0 (see Proposition 3.9.1 and its proof). In each iteration of Algorithm 8.1.1,
therefore, actually solved is a restricted master program with

K D m C 2

columns, consisting of basic columns and the entering column. It can be generalized
to allow a restricted master program includes more columns.

Algorithm 8.1.2 (Generalized Dantzig-Wolfe decomposition). The same as
Algorithm 8.1.1, except the restricted master program is solved before updating
it (via determining new entering and leaving columns).

There are ways to construct an initial restricted master program. For example,
take any m C 1 independent columns to form an initial basis first. Then add new
entering columns successively until the number of columns attains K; or after the
number of columns is still less than K but close to computer’s storage limit, add the
nonbasic columns, corresponding to the smallest K � m � 1 reduced costs.

8.2 Start-Up of D-W Decomposition

This section is devoted to the Phase-I issue of D-W decomposition.
At first, find a vertex, say u1, of P D fx 2 Rn j Hx D h; x � 0g. If it does

not exist, the original program is clearly infeasible. Then, employ u1 and introduce
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m artificial variables �l ; l D 1; � � � ; m to construct the following auxiliary Phase-I
master program:

min�l ;˛i ;ˇj w D
mX

lD1

�l ;

s:t:
mX

lD1

˙el�l C
sX

iD1

.Aui /˛i C
tX

j D1

.Avj /ˇj D b;

sX
iD1

˛i D 1;

�l ; ˛i ; ˇj � 0; l D 1; � � � ; m; i D 1; � � � ; s; j D 1; � � � ; t;

(8.14)

where for l D 1; � � � ; m, if bl � .Au1/l � 0, Cel is taken; else, �el taken. Thus, ˛1

together with �l ; l D 1; � � � ; m, constitute a set of basic variables. Basic components
of the basic feasible solution are

N̨1 D 1; N�l D jbl � .Au1/l j � 0; l D 1; � � � ; m:

Then Algorithm 8.1.1 can get itself started from the initial basis consisting of
columns, associated with these basic components.

Is is clear that there exists an optimal solution, corresponding to a nonnegative
optimal value, to the auxiliary program: if the optimal value is greater than zero, the
original program is infeasible; if, otherwise, the optimal value vanishes, a feasible
solution of the master program is yielded by deleting all artificial components
from the auxiliary optimal solution, resulting a basic feasible solution to the master
program, as hence can be taken as an initial one for Phase-II of D-W decomposition,
if artificial components are all nonbasic. In the case when there are some artificial
variables being basic, additional iterations are needed to force them leave the basis.
These are analogous to “following-up steps” described in Sect. 3.3.

8.3 Application of D-W Decomposition

Theoretically, D-W decomposition is able to handle general standard LP problems,
and the bisection of constraints can be arbitrary. In terms of effectiveness, never-
theless, its performance varies with problems of different structures. In fact, many
problems coming from practice are often of structures (partially) that are amenable
to D-W decomposition.

Some models, involving block structure, may belong to this category, as illus-
trated by the example below.
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Example 8.3.1. Solve the following program by the D-W decomposition:

min f D �x2 C x3 � 2x4 � 3x5 C x6 � x7 C x8;

s:t: x1 � 3x2 � x3 C x4 C 2x5 C x6 � x7 � 3x8 D 2;

x1 C 4x3 C x4 D 1;

x2 C x3 � x4 D 4;

x5 C 3x7 � x8 D 1;

x6 C x7 � 3x8 D 2;

xj � 0; j D 1; � � � ; 8:

Answer The first equality constraint is a coupling one, corresponding to a master
program of form (8.19), while the others correspond to a subproblem of form (8.21).

The second and third equality constraints are

x1 C 4x3 C x4 D 1;

x2 C x3 � x4 D 4; xj � 0; j D 1; � � � ; 4;

which has a basic solution x1 D 1; x2 D 4; x3 Dx4 D0, and the fourth and fifth are

x5 C 3x7 � x8 D 1;

x6 C x7 � 3x8 D 2; xj � 0; j D 5; � � � ; 8;

which has a basic solution x5 D1; x6 D2; x7 D x8 D 0. Therefore, there is a basic
feasible solution u1 D .1; 4; 0; 0; 1; 2; 0; 0/T to the subprogram.

Accordingly,

b1
1�.Au1/1 D 2�.1; �3; �1; 1; 2; 1; �1; �3/.1; 4; 0; 0; 1; 2; 0; 0/T D 2C7 D 9 � 0:

Thereby, we construct an auxiliary master program of form (8.14), i.e.,

min �1;

s:t: �1 � 7˛1 C
sX

iD2

.Aui /˛i C
tX

j D1

.Avj /ˇj D 2;

sX
iD1

˛i D 1;

�1; ˛i ; ˇj � 0; i D 1; � � � ; s; j D 1; � � � ; t;

(8.15)

where A D .1; �3; �1; 1; 2; 1; �1; �3/.
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The basis matrix is B D
�

1 �7

0 1

�
: Solving

B.�1; ˛1/T D .2; 1/T

leads to the associated basic feasible solution, whose basic components are� N�1

N̨1

�
D
�

9

1

�
; with auxiliary objective value Nw D 1.

Phase-I: Call D-W Decomposition Algorithm 8.1.1 to solve the auxiliary master
program (8.15).

Iterations 1:

1. Solving BT.y; /T D .1; 0/T gives simplex multipliers . Ny; N/ D .1; 7/.
2. The objection function of the subprogram is

� D .c � .A/T Ny/Tx � N
D ..0; �1; 1; �2; �3; 1; �1; 1/ � .1; �3; �1; 1; 2; 1; �1; �3//x � 7

D .�1; 2; 2; �3; �5; 0; 0; 4/x � 7:

To be solved separately, the subprogram is decomposed to the following two
smaller programs:

(i)
min �x1 C 2x2 C 2x3 � 3x4;

s:t: x1 C 4x3 C x4 D 1;

x2 C x3 � x4 D 4; xj � 0; j D 1; � � � ; 4:

Taking basis and nonbasis B D f1; 2g; N D f3; 4g. B�1 D I , then the
associated basic feasible solution is
NxB D.1; 4/T �0; NxN D .0; 0/T;

and the reduced costs are

NzN D cN � N TB�1cB D
�

2

�3

�
�
�

4 1

1 �1

�T ��1

2

�
D
�

4

0

�
:

minf4; 0g D 0 � 0: Therefore, an optimal vertex solution and optimal value
are obtained, i.e.,
. Nx1; Nx2; Nx3; Nx4/T D .1; 4; 0; 0/T; �1 D 7:

(ii)
min �5x5 C C4x8;

s:t: x5 C 3x7 � x8 D 1;

x6 C x7 � 3x8 D 2; xj � 0; j D 5; � � � ; 8:

Taking basis and nonbasis B Df5; 6g; N Df7; 8g. B�1 DI ,
the associated basic feasible solution is
NxB D.1; 2/T �0; NxN D .0; 0/T;
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and the reduced costs are

NzN D cN � N TB�1cB D
�

0

4

�
�
�

3 �1

1 �3

�T ��5

0

�
D
�

15

�1

�
:

minf15; �1g D �1 < 0; q D 8: Since B�1a8 D .�1; �3/T � 0, the
subprogram is unbounded.

4. The feasible region of the subprogram has a descent extreme direction
v1 D .0; 0; 0; 0; 1; 3; 0; 1/T:

Generate an entering column w0 D .2; 0/T by (8.13).
5. Nw D .2; 0/T 6� 0.
7. ˛ D minf9=2g; p D 1.
8. . N�1; N̨1/T D .9; 1/T � .9=2/.2; 0/T D .0; 1/T.

B D
�

2 �7

0 1

�
. . Ň

1; N̨1/T D .9=2; 1/T,

Nf D .0; �1; 1; �2; �3; 1; �1; 1/.0; 0; 0; 0; 1; 3; 0; 1/T.9=2/

C.0; �1; 1; �2; �3; 1; �1; 1/.1; 4; 0; 0; 1; 2; 0; 0/T D �1=2.

The only artificial variable �1 leaved the basis, hence Phase-I is finished.
Phase-II: Call D-W Decomposition Algorithm 8.1.1 to solve the master program.

Iterations 2:

1. OcB D .cTv1; cTu1/T D .1; �5/T.
Solve BT.y; /T D .1; �5/T for the simplex multipliers . Ny; N/ D

.1=2; �3=2/.
2. The objective function of the subprogram is

� D .c � .A/T Ny/Tx � N
D ..0; �1; 1; �2; �3; 1; �1; 1/ � .1; �3; �1; 1; 2; 1; �1; �3/.1=2//x C 3=2

D .�1=2; 1=2; 3=2; �5=2; �4; 1=2; �1=2; 5=2/x C 3=2:

(i)
min �1=2x1 C 1=2x2 C 3=2x3 � 5=2x4;

s:t: x1 C 4x3 C x4 D 1;

x2 C x3 � x4 D 4; xj � 0; j D 1; � � � ; 4;

has an optimal vertex solution . Nx1; Nx2; Nx3; Nx4/T D .0; 5; 0; 1/T and optimal
value �1 D 0.

(ii)
min �4x5 C 1=2x6 � 1=2x7 C 5=2x8;

s:t: x5 C 3x7 � x8 D 1;

x6 C x7 � 3x8 D 2; xj � 0; j D 5; � � � ; 8;

has an optimal vertex solution . Nx5; Nx6; Nx7; Nx8/
T D .1; 2; 0; 0/T and optimal

value �1 D �3.
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Thereby, the subprogram has an optimal solution and optimal value
u2 D .0; 5; 0; 1; 1; 2; 0; 0/T; �� D 0 � 3 C 3=2 D �3=2 < 0:

3(1). �� < 0. Generate the entering column w0 D .�10; 1/T by (8.12).

5. Nw D .�3=2; 1/T 6� 0.
7. ˛ D minf1=1g; p D 2.

8. . Ň
1; N̨1/

T D .9=2; 1/T � .�3=2; 1/T D .6; 0/T. B D
�

2 �10

0 1

�
,

. Ň
1; N̨2/

T D .6; 1/T, Nf D Nf C ˛�� D �1=2 � 3=2 D �2.

Iterations 3:

1. OcB D .cTv1; cTu2/T D .1; �8/T.
Solve BT.y; /T D .1; �8/T for simplex multipliers . Ny; N/ D .1=2; �3/.

2. The objective function of the subprogram is

� D .c � .A/T Ny/Tx � N
D ..0; �1; 1; �2; �3; 1; �1; 1/ � .1; �3; �1; 1; 2; 1; �1; �3/.1=2//x C 3

D .�1=2; 1=2; 3=2; �5=2; �4; 1=2; �1=2; 5=2/x C 3:

(i) The program is the same as that in the previous iteration, with optimal vertex
solution and objective value

. Nx1; Nx2; Nx3; Nx4/T D.0; 5; 0; 1/T; �1 D 0.
(ii) The program is the same as that in the previous iteration, with optimal vertex

solution. Nx5; Nx6; Nx7; Nx8/TD.1; 2; 0; 0/T and optimal value �1 D �3.

The optimal vertex solution and optimal value to the subprogram are

u3 D .0; 5; 0; 1; 1; 2; 0; 0/T; �� D 0 � 3 C 3 D 0:

3(2). �� D 0, an optimal solution and optimal value to the original program are
obtained, i.e.,

x� D .0; 0; 0; 0; 1; 3; 0; 1/T.6/ C .0; 5; 0; 1; 1; 2; 0; 0/T

D .0; 5; 0; 1; 7; 20; 0; 0/T; f � D Nf D �2:

Another amenable program is of staircase structure close to block, and can
be solved by the D-W decomposition in a nested manner, as is shown with the
following example:
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min f D .c1/Tx1 C .c2/Tx2 C .c3/Tx3 C .c4/Tx4;

s:t: D11x
1 D h1;

A21x
1 C D22x2 D b2;

A32x
2 C D33x3 D b3;

A43x
3 C D44x4 D b4;

x1; x2; x3; x4 � 0;

(8.16)

where xj ; j D 1; 2; 3; 4 are vectors of appropriate dimensions consistent with the
preceding matrices.

Partition equality constraints of the above program into two parts, denoted by
ft D 1g and ft D 2; 3; 4g respectively. Let fuig and fvj g be respectively the vertex
set and extreme direction set of the feasible region of the latter part ft D 2; 3; 4g,
i.e.,

A21x
1 C D22x2 D b2;

A32x
2 C D33x3 D b3;

A43x
3 C D44x4 D b4;

x1; x2; x3; x4 � 0:

According to the Representation Theorem 2.2.7, the solution to the preceding can
be expressed

x D
sX

iD1

˛i u
i C

tX
j D1

ˇj vj ;

sX
iD1

˛i D 1; ˛i ; ˇj � 0; i D 1; � � � ; s; j D 1; � � � ; t:

(8.17)
Introduce according partition

x D

0
BB@

x1

x2

x3

x4

1
CCA I ui D

0
BB@

ui1

ui2

ui3

ui4

1
CCA ; i D 1; � � � ; sI vj D

0
BB@

vj1

vj 2

vj 3

vj 4

1
CCA ; j D 1; � � � ; t:

Substituting (8.17) to the first part ft D 1g leads to D-W master program

min˛i ;ˇj f D
sX

iD1

..c1/Tui1 C .c2/Tui2 C .c3/Tui3 C .c4/Tui4/˛i

C
tX

j D1

..c1/Tvj1 C .c2/Tvj 2 C .c3/Tvj 3 C .c4/Tvj 4/ˇj ;
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s:t:
sX

iD1

D11ui1˛i C
tX

j D1

D11vj1ˇj D b1;

sX
iD1

˛i D 1;

˛i ; ˇj � 0; i D 1; � � � ; s; j D 1; � � � ; t:

Assume that the current restricted master program has been solved, and . Ny1; N1/ are
the optimal simplex multipliers. The constructed subprogram

min .c1 � .D11/
T Ny1/

Tx1 C .c2/Tx2 C .c3/Tx3 � N1;

s:t: A21x
1 C D22x2 D b2;

A32x
2 C D33x3 D b3;

A43x
3 C D44x4 D b4;

x1; x2; x3; x4 � 0;

just likes the original program, but the stairs are reduced by 1. Then apply the D-W
decomposition again by partitioning it to two parts, ft D 2g and ft D 3; 4g, and do
as previously, until the stairs reduced to 1, and the subprogram is easily solved.

8.4 Economic Interpretation of D-W Decomposition

D-W decomposition can be interpreted differently, depending on various practical
backgrounds. It is a typical instance to employ D-W decomposition to realize
optimal allocation of limited resources.

Assume that a company has k plants. It is required to determine an output
vector xj for each plant j , whose production activities depend on restrictions upon
available limited resources, such as manpower, facilities, materials, storage, etc., but
not on inner restrictions of the other plants. In mathematical terms, xj should satisfy
constraints

Dj xj D hj ; xj � 0; j D 1; � � � ; k;

where Dj 2 Rmj �nj .mj < nj / is termed consumption matrix, reflecting
consumption for yielding an unit product; hj is an available resource vector. This
part of constraints are of block structure, where variables and constraints are
separable. In addition, there are common resources to be shared by the k plants,
as can be expressed by a set of so-called coupling constraints:

A1x
1 C � � � C Akxk D b;

where Aj 2 Rm�nj ; j D 1; � � � ; k.
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In order to minimize the total cost of production, we are required to solve the
following LP model:

min f D .c1/Tx1 C � � � C .ck/Txk;

s:t: A1x
1 C � � � C Akxk D b;

Dj xj D hj ; xj � 0; j D 1; � � � ; k:

(8.18)

Use of the D-W decomposition is advantageous if the preceding model is of
large-scale, especially when there are a large number of plants associated with
large consumption matrices: the company can focus on a changing small program
to realize an optimal allocation of resources without going to details of inner
restrictions on the plants.

For simplicity, it might be well to assume that the feasible regions

P j �D fxj j Dj xj D hj ; xj � 0g; j D 1; � � � ; k;

corresponding to the plants, are all bounded (actually, available resources are always
limited). Using notation

A D .A1; � � � ; Ak/; H D

0
B@

D1

: : :

DK

1
CA ; h D

0
B@

h1

:::

hk

1
CA ;

it is clear that

P
�D fx 2 Rn j Hx D h; x � 0g D P 1 
 � � � 
 P k

is bounded. Denote the vertex set of P by U D fu1; � � � ; usg. Based on Representa-
tion Theorem 2.2.7, we obtain the following master program:

min˛i f D
sX

iD1

.cTui /˛i ;

s:t:
sX

iD1

.Aui /˛i D b;

sX
iD1

˛i D 1;

˛i � 0; i D 1; � � � ; s:

(8.19)

The number of rows of the preceding is less than the number of rows of the original
program, but the number of its columns would be quite large, compared with the
original problem, letting alone unrealistic computation of the whole vertex set U .
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Nevertheless, the company can deal with a restricted master program instead,
involving only some K (m C 2 � K � s) columns (with rank m C 1) of the
master program, ignoring most of inner restrictions of the plants. Now denote by
OU the vertex set, resulting from U by deleting vertices corresponding to the K

columns.
Assume that optimality of the restricted master program was achieved and that

. Ny; N/ is the optimal simplex multipliers, associated with the first m rows and the
bottom row of the constraint system. In economic terms, . Ny; N/ are shadow price
of the resources (Sect. 4.6), from which the reduced costs corresponding to set OU
follows, i.e.,

cTui � .Aui /T Ny � N D .c � .A/T Ny/Tui � N; ui 2 OU ; (8.20)

A negative reduced cost implies that increasing the associated nonbasic variable
from 0 results in decrease of the total cost of production. Conventionally, the most
negative reduced cost should be determined. The difficulty lies in that computing the
reduced costs directly by (8.20) requires all vertices of P available, but the company
does not know inner details of the plants.

The trick out of the difficulty is to solve the following subprogram by the simplex
algorithm, i.e.,

min � D .c � .A/T Ny/Tx � N;

s:t: x 2 P;
(8.21)

where the objective function is related to shadow price . Ny; N/.
Since P is bounded, solving (8.21) renders an optimal vertex solution, say u�,

associated with the optimal value, say ��, equal to the minimum reduced cost of
the restricted master program. If �� � 0, optimality of the master program, and
hence the original program is achieved, so is a wanted optimal allocation scheme of
resources. If, otherwise, �� < 0, then u� corresponds to the wanted most negative
reduced cost, hence the restricted master program may be updated by entering
the master program’s column, corresponding to u� to the basis and dropping the
column, determined by the minimum-ratio test, from the basis, as an iteration is
complete.

It is important that subprogram (8.21) can be further decomposed to k smaller
programs, i.e.,

min .cj � AT
j Ny/Txj � N;

s:t: xj 2 P j ;
j D 1; � � � ; k:

If Nxj ; Nf j ; j D 1; � � � ; k; are basic optimal solutions and associated optimal values
to these programs, an optimal vertex solution, of form (8.2), to subprogram (8.21)
is readily available.
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8.5 Benders Decomposition

The D-W decomposition presented in Sect. 8.1 converts a LP program to two smaller
ones by partitioning its rows to two parts. In contrast, Benders (1962) converts a
program to two smaller ones by partitioning its columns (variables) to two parts,
one of which is a LP program, and the other may belong to another category. It can
be used to solve large-scale mixed LP programs, especially mixed ILP programs.
Subsequently, Benders decomposition is widely applied to dealing with stochastic
programming programs, and is further generalized to handle nonlinear programming
programs (Geoffrion 1972).

Consider

max�;y f .�/ C bTy;

s:t: F .�/ C ATy � c;

� 2 …;

(8.22)

where A 2 Rm�n; c 2 Rn; b 2 Rm. Scalar function f .�/ and vector-valued
function F.�/ 2 Rn and their domain … � Rm will be clarified later.

For any fixed � , (8.22) is a LP program with respect to variable y. Therefore,
Benders decomposition firstly deems � as a parameter to realize a partition of
variables.

Lemma 8.5.1. Program (8.22) is equivalent to the following program:

max� f .�/ C maxy fbTy j ATy � c � F.�/g;
s:t: � 2 … \ S;

(8.23)

where

S D f� j ATy C F.�/ � cg:

Proof. It is clear that (8.22) is infeasible, unbounded and has an optimal solution if
and only if (8.23) is infeasible, unbounded and has an optimal solution accordingly.

For any fixed � , an objective value of program (8.23) is equal to the sum of f .�/

and the optimal value of the following subprogram:

D.�/ W maxy bTy;

s:t: ATy � c � F.�/:

Let . N�; Ny/, O� and Oy be an optimal solution to (8.22), (8.23) and D. O�/,
respectively. Then it is clear that . Oy; O�/ is a feasible solution to (8.22), and therefore

f . O�/ C bT Oy � f . N�/ C bT Ny: (8.24)
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On the other hand, it is known that

f . O�/ C bT Oy � f . N�/ C max
y

fbTy j ATy � c � F. N�/g;

and Ny is clearly an optimal solution to D. N�/. Therefore, it holds that

f . N�/ C max
y

fbTy j ATy � c � F. N�/g D f . N�/ C bT Ny:

Combining the previous two formulas leads to

f . O�/ C bT Oy � f . N�/ C bT Ny;

from which and (8.24), it follows that

f . O�/ C bT Oy D f . N�/ C bT Ny:

Therefore programs (8.22) and (8.23) share the same optimal solutions and optimal
value, if any. ut

Thereby, program (8.22) is decomposed to two smaller programs D.�/

and (8.23), respectively involving p and q variables. Nevertheless, they are defined
in implicit expressions, and difficult to handle practically. To go further, consider
the dual program of D.�/, i.e.,

P.�/ W minx � D .c � F.�//Tx;

s:t: Ax D b; x � 0:

Proposition 8.5.1. If the feasible region

X D fx 2 Rn j Ax D b; x � 0g

of P.�/ is empty, then (8.22) is infeasible or unbounded.

Proof. X D ; means that P.�/ is infeasible for any � 2 Rp . According to the
duality theory, program D.�/ is infeasible or unbounded, hence (8.22) is infeasible
or unbounded. ut

In case when X D ;, one can solve

minx .c � F.�//Tx;

s:t: Ax D 0; x � 0;

by the simplex algorithm to determined whether (8.22) is infeasible or unbounded, if
needed. If the preceding is unbounded, it can be asserted that (8.22) is infeasible, and
if optimality is achieved, (8.22) is unbounded (see discussions made in Sect. 4.2).
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From now on, it is assume that X ¤ ;, whose vertex and extreme direction sets
are respectively denoted by

U D fu1; � � � ; usg; V D fv1; � � � ; vt g:
Using preceding notation, we have the following result.

Lemma 8.5.2. Given � . There is an optimal solution to program P.�/ if and only if

.c � F.�//Tvj � 0; vj 2 V: (8.25)

Proof. It is seen that (8.25) implies inexistence of a descent unbounded direction in
set X . Therefore, there exists an optimal solution to P.�/, as it is lower bounded.
According Theorem 2.3.2, there is an optimal vertex solution to it.

Conversely, that there is an optimal solution to P.�/ implies that (8.23) holds,
because if there is some vk 2 V such that

.c � F.�//Tvk < 0;

then vk is a descent extreme direction, hence P.�/ is unbounded below, as
contradicts to the presence of an optimal solution. ut

Define dual Benders master program by (it will be clear why prefixed by “dual”)

max�;g f .�/ C g;

s:t: g � .c � F.�//Tui ; ui 2 U;

.c � F.�//Tvj � 0; vj 2 V;

� 2 … \ S:

(8.26)

Theorem 8.5.1. . N�; Ny/ is an optimal solution to (8.22) if and only if Ny is an optimal
solution to D. N�/ while . N�; Ng/ is an optimal solution to the dual Benders master
program.

Proof. It is clear that there is an optimal solution to (8.22), if and only if there is an
optimal solution to the dual Benders master program.

According to Lemma 8.5.1, program (8.22) is equivalent to (8.23). On the other
hand, that there is an optimal solution to program (8.22) means that so is to D.�/.
By the strong dual theorem, there is an optimal solution to P.�/ with the same
optimal value, i.e.,

max
y

fbTx j ATy � c � F.�/g D min
x

f.c � F.�//Tx j Ax D b; x � 0g:

Substitute the preceding to (8.23) leads to

max� f .�/ C minx f.c � F.�//Tx j Ax D b; x � 0g;
s:t: � 2 … \ S:

(8.27)
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If there is an optimal solution to P.�/, by Theorem 2.3.2, there is a vertex optimal
solution to it. Therefore it holds that

min
x

f.c � F.�//Tx j Ax D b; x � 0g D min
ui 2U

.c � F.�//Tui : (8.28)

Substituting the preceding to (8.27) and applying Lemma 8.5.2 leads to

max� f .�/ C minui 2U .c � F.�//Tui ;

s:t: .c � F.�//Tvj � 0; vj 2 V;

� 2 … \ S;

which gives (8.26). These equivalent relations ensure validity of Theorem 8.5.1. ut
According to the preceding theorem, what to do next is to solve (8.26). However,

it is not realistic to handle (8.26) directly, because it requires availability of all
vertices and extreme directions of X , letting alone � 2 S being in implicit
impression. A possible approach is to handle a relaxation program, yielding from
ignoring some of the constraints. Its optimal solution is also an optimal solution to
the master program if it is a feasible solution to the latter; otherwise, the relaxation
program is updated by adding some constraints.

Assume that at some iteration, subsets of the vertex and extreme direction sets of
X are known as

U 0 � U; V 0 � V:

Define dual Benders restricted master program1 by

max�;g f .�/ C g;

s:t: g � .c � F.�//Tui ; ui 2 U 0;
.c � F.�//Tvj � 0; vj 2 V 0;

� 2 …:

(8.29)

Theorem 8.5.2. Let . N�; Ng/ be an optimal solution to the dual Benders restricted
master program.

If u� and �� are an optimal vertex solution and optimal value to the subprogram
P. N�/ respectively, then:

(i) If Ng > ��, then u� is a new vertex generated;
(ii) If Ng D ��, then . N�; Ng/ is an optimal solution to the dual Benders master

program.

If P. N�/ is unbounded, then a new extreme direction is given.

1The term by Dantzig-Wolfe is employed here.
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Proof. Since u� and �� are respectively an optimal vertex solution and optimal value
to the subprogram P. N�/, it holds that

�� D .c � F. N�//Tu� D minf.c � F. N�//Tui j ui 2 U g: (8.30)

Besides, N� satisfies

.c � F. N�//Tvj � 0; vj 2 V; (8.31)

because otherwise there is an ascent extreme direction in X , hence P. N�/ is
unbounded, as contradicts to the existence of an optimal solution. Moreover, it also
holds that

N� 2 … \ S: (8.32)

In fact, it is clear that N� 2 …; and if N� 62 S , then it is derived that D. N�/ is infeasible,
hence P. N�/ is either infeasible or unbounded, as contradicts the existence of an
optimal solution to P. N�/.

Since . N�; Ng/ is an optimal solution to (8.29), it is obtained from (8.30) that

f . N�/ C Ng D f . N�/ C minf.c � F. N�//Tui j ui 2 U 0g
� f . N�/ C minf.c � F. N�//Tui j ui 2 U g
D f . N�/ C ��;

hence Ng � ��.
Consequently, only the following two cases arise:

(i) Ng > ��.
In this case, from

Ng > �� D .c � F. N�//Tu�

and

Ng D minf.c � F. N�//Tui j ui 2 U 0g;

it follows that

.c � F. N�//Tu� < minf.c � F. N�//Tui j ui 2 U 0g;

implying that u� 62 U 0 is a new vertex.
(ii) Ng D ��.

Noting (8.30), it can be obtained in this case that

Ng D �� � .c � F. N�//Tui ; ui 2 U;
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which together with (8.31) and (8.32) implies that . N�; Ng/ is a feasible solution
to the dual Benders master program. It is actually optimal since it is optimal to
the relaxation program of the dual Benders master program.

If subprogram P. N�/ is unbounded, on the other hand, then an extreme direction
v� is at the same time determined such that (see Proposition 3.5.1)

.c � F. N�//Tv� < 0:

Thus, from that . N�; Ng/ satisfies the constraints of the master program, i.e.,

.c � F. N�//Tvj � 0; vj 2 V 0;

it is known that v� 62 V 0 is a new extreme direction. ut
Proposition 8.5.2. If the Benders restricted master program is infeasible, then
program (8.22) is infeasible.

Proof. If … D ;, (8.22) is clearly infeasible. If … ¤ ;, then infeasibility of the
Benders restricted master program implies that for any � 2 …, there is some vk 2
V 0 � V such that .c � F.�//Tvk < 0, hence for any � 2 …, program P.�/ is
unbounded and D.�/ is infeasible, the original program is therefore infeasible. ut

The dual Benders master program (8.26) can be converted to

max�;g f .�/ C g;

s:t: .ui /TF.�/ C g � .ui /Tc; ui 2 U;

.vj /TF.�/ � .vi /Tc; vj 2 V;

� 2 … \ S:

Accordingly, the dual Benders restricted master program (8.29) becomes

max�;g f .�/ C g;

s:t: .ui /TF.�/ C g � .ui /Tc; ui 2 U 0;
.vj /TF.�/ � .vi /Tc; vj 2 V 0;
f .�/ C g � M; .	/ � 2 …;

(8.33)

where the constraint, marked by 	, is added to rule out possibility of unboundedness,
and where M is a parameter large enough, so that such addition does not affect
vertices of the original feasible region. We call the added constraint “standby”,
because it is active only when the program is unbounded. The parameter M can
be dropped technically in real computations (see the example below).

Based on Theorem 8.5.2 and Proposition 8.5.2, we proceed somehow similarly
as in Sect. 8.3 as follows:

In each iterations, a Benders restricted master program of form (8.33) is handled.
If it is infeasible, the original program is infeasible; if an optimal solution . N�; Ng/
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is obtained, then an associated subprogram P. N�/ is solved. When the subprogram
is unbounded, a new extreme direction is generated (Proposition 3.5.1); when an
optimal vertex solution u� and optimal value �� are reached, it can be determined
whether . N�; Ng/ is an optimal solution to the Benders master program; if it is not, a
new vertex u� is generated; if it is, then . N�; Ny/ is an optimal solution to the original
program (8.22), where Ny is an optimal solution to D. N�/. Of course, there is no need
for solving D. N�/ actually, because Ny, as a dual solution associated with u�, can be
obtained at the same time.

In the case when optimality of (8.22) is not achieved, the restricted master
program is updated by adding a constraint, corresponding to the new vertex or
extreme direction, and the next iteration is carried out. In such an iteration, the
restricted master program has one more constraint, as is called row generation. Note
that subprogram P. N�/ is a standard LP problem, only its objective function varies
in the solution precess (with the constraints remaining unchanged).

The overall steps are summarized to the following algorithm.

Algorithm 8.5.1 (Benders Decomposition). Initial: dual Benders restricted mas-
ter program of form (8.33). This algorithm solves program (8.22).

1. Solve dual Benders restricted master program.
2. Stop if it is infeasible.
3. If its optimal solution . N�; Ng/ is obtained, solve subprogram P. N�/ by the simplex

algorithm.
4. If an optimal vertex solution u� and optimal value �� to P. N�/ are obtained,

then:

(1) Update (8.33) by adding the constraint, corresponding to the new vertex u�,
and go to step 1 if Ng > ��;

(2) Stop if Ng D ��.

5. If subprogram P. N�/ is unbounded, update (8.33) by adding the constraint,
associated with the generated new extreme direction.

6. Go to step 1.

Theorem 8.5.3. Assume that the dual Benders restricted master program either has
an optimal solution or is infeasible. If it and subprogram P. N�/ are solved in finitely
many iterations, Algorithm 8.5.1 terminates, at either

(i) Step 2, detecting that the original program is infeasible; or
(ii) Step 4(2), achieving an optimal solution . N�; Ny/ to the original program, where

Ny and u� are complementary.

Proof. The meaning of exit step 2 is directly from Proposition 8.5.2. According
to Theorem 8.5.2, termination at step 4(2) gives an optimal solution . N�; Ng/ to the
dual Benders master program; further, it is known by Theorem 8.5.1 that . N�; Ny/ is
an optimal solution to the original program, where Ny is the dual solution, associate
with u�. Thereby, it is only needed to show the termination of Algorithm 8.5.1.
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By Theorem 8.5.2, the restricted master program has one more added constraint,
associated with a vertex or extreme direction per iteration. Since vertices and
extreme directions in X are finite, the restricted master program must become the
full master program in finitely many iterations, if the solution process does not
terminate earlier. ut

Although the number of constraints of the dual Benders restricted master
program increases, fortunately, it hardly becomes the full dual Benders mas-
ter program. Usually, the process terminates while it is very far from the lat-
ter.

8.6 Application of Benders Decomposition

As for applications, efficiency of solving the dual Benders restricted master program
is crucial to Algorithm 8.5.1, as it depends on characteristic of f .�/ and the
algorithm used to solve it. At present, there are quite good algorithms for the
following cases, concerning (8.22):

(i) f .�/ D hT�; F.�/ D H T�; h 2 Rm; H 2 Rm�n, and … � Rm is a
(bounded) polyhedron.

In this case, the original program (8.22) is a linear program. If � is a free
variable (… D Rm), in fact, (8.22) is clearly a standard dual program. As
the dual restricted master program and subprogram are all linear, the simplex
algorithm is a desirable tool to be used.

(ii) The same as case (i), except for adding integer requirements to components
of � .

In this case, the original program (8.22) is a mixed ILP program, and hence
the dual restricted master program is a pure ILP program, except involving a
free variable g. Since one inequality constraint is added to the restricted master
program in each iteration, the cutting plane method (see, Sects. 10.3 and 10.5)
is amenable to be employed.

(iii) f .�/; F.�/ are continuously differentiable functions on a bounded and closed
convex set … � Rm.

In this case, the dual restricted master program is a smooth convex program,
to which efficient algorithms are available (see, e.g., Sun and Yuan 2006).

Cases (ii) and (iii) are beyond the scope of this book. The following discussions
are focused on case (i), related to LP.

As for how to construct an initial dual restricted master program, a direct way is
to start from the feasible region

X D fx 2 Rn j Ax D b; x � 0g
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of P. N�/. If X D ;, the original program is infeasible or unbounded (Proposi-
tion 8.5.1); otherwise, a feasible vertex, say u1 2 X , can be determined. Thereby,
letting

U 0 D fu1g; V 0 D ;;

leads to an initial dual restricted master program of form (8.33).
Benders decomposition is suitable for some programs, involving block diagonal

structures, such as

min hT� C .b1/Ty1 C � � � C .bk/Tyk;

s:t: AT
1 � C DT

1 y1 � c1;

AT
2 � C DT

2 y2 � c2;
:::

AT
k� C CDT

k yk � ck;

where orders of submatrices Di and dimensions of subvectors bi ; yi ; ci ; i D
1; � � � ; k are consistent, i.e., bi and yi are of the same dimension, equal to the number
of rows of Di , and ci is of dimension equal to the number of columns of Di ; � is of
dimension equal to the number of rows of Ai .

If one partitions the coefficient matrix as

H T D

0
BBB@

AT
1

AT
2
:::

AT
k

1
CCCA ; AT D

0
BBB@

DT
1

DT
2

: : :

DT
k

1
CCCA ;

then subprogram P. N�/ can be decomposed to k smaller programs, corresponding
to Dk . Let us bring up the following example.

Example 8.6.1. Solve the following program by Benders Decomposition Algo-
rithm 8.5.1:

max 2� C y1 C 4y2 C y3 C 2y4;

s:t: � C y1 � 0;

�3� C y2 � �1;

�� C 4y1 C y2 � 1;

� C y1 � y2 � �2;

2� C y3 � �3;

� C y4 � 1;

�� C 3y3 C y4 � �1;

�3� � y3 � 3y4 � 1:
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Answer Denote the program by

max�;y hT� C bTy;

s:t: H T� C ATy � c;

where
hT D .2/; b D .1; 4; 1; 2/T; c D .0; �1; 1; �2; �3; 1; �1; 1/T:

H D .1; �3; �1; 1; 2; 1; �1; �3/; A D

0
BB@

1 0 4 1 0 0 0 0

0 1 1 �1 0 0 0 0

0 0 0 0 1 0 3 �1

0 0 0 0 0 1 1 �3

1
CCA :

There is a vertex within the feasible region X D fx j Hx D b; x � 0g of
Subprogram P.�/, i.e.,

u1 D .1; 4; 0; 0; 1; 2; 0; 0/T:

.u1/TH T� D .1; 4; 0; 0; 1; 2; 0; 0/.1; �3; �1; 1; 2; 1; �1; �3/T� D �7�:

.ui /Tc D .1; 4; 0; 0; 1; 2; 0; 0/.0; �1; 1; �2; �3; 1; �1; 1/T D �5:

The associated initial restricted master program is

max�;g 2� C g;

s:t: �7� C g � �5;

2� C g � M; .	/

where (*) marks the “standby” constraint.

Iteration 1:

1. Solve the Benders restricted master program by the simplex algorithm.

Taking basis matrix B D
��7 2

1 1

�
; B�1 D

��1=9 2=9

1=9 7=9

�
results in the

dual feasible solution

� N�
Ng
�

D B�T

��5

M

�
D
�

5=9 C 1=9M

�10=9 C 7=9M

�
: (8.34)

The associated primal solution is feasible, i.e., B�1.2; 1/T D .0; 1/T � 0.
Thereby, optimality of the restricted master program is achieved.

3. The objective function of Subprogram P. N�/ is

.c � H T N�/T D .0; �1; 1; �2; �3; 1; �1; 1/

�.5=9 C 1=9M /.1; �3; �1; 1; 2; 1; �1; �3/

D .�5=9 � 1=9M; 2=3 C 1=3M; 14=9 C 1=9M; �23=9 � 1=9M;

�37=9 � 2=9M; 4=9 � 1=9M; �4=9 C 1=9M; 8=3 C 1=3M /:
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As parameter M is large enough, the terms without M in the preceding may
be omitted. For simplicity, the common factor M may be omitted too; in other
words, (8.34) may be replaced by

� N�
Ng
�

D B�T

�
0

1

�
:

Subprogram P. N�/ is decomposed to the following two program, as solved
separately:

(i)
min �1=9x1 C 1=3x2 C 1=9x3 � 1=9x4;

s:t: x1 C 4x3 C x4 D 1;

x2 C x3 � x4 D 4; xj � 0; j D 1; � � � ; 4:

Taking basis and nonbasis B1Df1; 2g; N1Df3; 4g. B�1
1 DI leading to basic

feasible solution NxB1D.1; 4/T �0; NxN1 D .0; 0/T.

Ny1 D B�T
1 cB1 D

��1=9

1=3

�
,

NzN1 D cN1 � N T
1 Ny1 D

�
1=9

�1=9

��
4 1

1 �1

�T ��1=9

1=3

�
D
�

2=9

1=3

�
.

minf2=9; 1=3g � 0:

The reduced costs are all nonnegative, optimality is thus achieved.
The vertex optimal solution is . Nx1; Nx2; Nx3; Nx4/T D .1; 4; 0; 0/T, with

optimal value �1 D 11=9.

(ii)
min �2=9x5 � 1=9x6 C 1=9x7 C 1=3x8;

s:t: x5 C 3x7 � x8 D 1;

x6 C x7 � 3x8 D 2; xj � 0; j D 5; � � � ; 8:

Take basis and nonbasis B1 D f5; 6g; N2 D f7; 8g. B�1
1 D I .

The basic feasible solution is
NxB1 D .1; 2/T � 0; NxN2 D .0; 0/T.

Ny2 D B�T
1 cB1 D

��2=9

�1=9

�
;

NzN2 D cN2 � N T
2 Ny2 D

�
1=9

1=3

�
�
�

3 �1

1 �3

�T ��2=9

�1=9

�
D
�

8=9

�2=9

�
:

The minimum reduced cost: minf8=9; �2=9g D �2=9; q D 8.
Na8 D B�1

1 .�1; �3/T D .�1; �3/T � 0, hence P. N�/ is unbounded. The
descent extreme direction is v� D .0; 0; 0; 0; 1; 3; 0; 1/T.
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5. .v�/TH T� D .0; 0; 0; 0; 1; 3; 0; 1/.1; �3; �1; 1; 2; 1; �1; �3/T� D 2�:

.v�/Tc D .0; 0; 0; 0; 1; 3; 0; 1/.0; �1; 1; �2; �3; 1; �1; 1/T D 1:

The restricted master program is then updated to

max�;g 2� C g;

s:t: �7� C g � �5;

2� � 1;

2� C g � M: .	/

Iteration 2:

1. Solve the restricted master program. The basis matrix B D
��7 2

1 0

�
;

B�1 D
�

0 1

1=2 7=2

�
, corresponds to dual feasible solution

� N�
Ng
�

D B�T
��5

1

�
D
�

1=2

�3=2

�
;

The associated primal solution is feasible, i.e. B�1.2; 1/T D .1; 9=2/T � 0,
hence optimality of the dual restricted master program is achieved.

3. The objective function of the subprogram P. N�/ is

.c � H T N�/T D .0; �1; 1; �2; �3; 1; �1; 1/ � .1=2/.1; �3; �1; 1; 2; 1; �1; �3/

D .�1=2; 1=2; 3=2; �5=2; �4; 1=2; �1=2; 5=2/:

P. N�/ can be decomposed to two programs, which are solved separately:

(i)
min �1=2x1 C 1=2x2 C 3=2x3 � 5=2x4;

s:t: x1 C 4x3 C x4 D 1;

x2 C x3 � x4 D 4; xj � 0; j D 1; � � � ; 4:

(1) Take basis and nonbasis B1 D f1; 2g; N1 D f3; 4g. B�1
1 D I .

The basic feasible solution is NxB1 D .1; 4/T � 0; NxN1 D .0; 0/T.

Ny1 D B�T
1 cB1 D

��1=2

1=2

�
;

NzN1 D cN1 � N T
1 Ny1 D

�
3=2

�5=2

�
�
�

4 1

1 �1

�T ��1=2

1=2

�
D
�

3

�3=2

�
:
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The minimum reduced cost: minf3; �3=2g D �3=2; q D 4.
Na4 D B�1

1 .1; �1/T D .1; �1/T; p D 1.
The minimum-ratio test:minf1=1g D 1; p D 1.

(2) Update basis and nonbasis:

B1 D f4; 2g; N1 D f3; 1g. B�1
1 D

�
1 0

�1 1

��1

D
�

1 0

1 1

�
.

The basic feasible solution:

NxB1 D B�1
1 .1; 4/T D .1; 5/T � 0; NxN1 D .0; 0/T:

Ny1 D B�T
1 cB1 D B�T

1

��5=2

1=2

�
D
��2

1=2

�
;

NzN1 D cN1 � N T
1 Ny1 D

�
3=2

�1=2

�
�
�

4 1

1 0

�T ��2

1=2

�
D
�

9

3=2

�
:

The minimum reduced cost: minf9; 3=2g � 0.
The optimal solution and associated objective value are
. Nx1; Nx2; Nx3; Nx4/T D .0; 5; 0; 1/T; �1 D .1=2/5 � 5=2 D 0:

(ii)
min �4x5 C 1=2x6 � 1=2x7 C 5=2x8;

s:t: x5 C 3x7 � x8 D 1;

x6 C x7 � 3x8 D 2; xj � 0; j D 5; � � � ; 8:

Take basis and nonbasis B1 D f5; 6g; N2 D f7; 8g. B�1
1 D I .

The basic feasible solution: NxB1 D .1; 2/T � 0; NxN2 D .0; 0/T.

Ny2 D B�T
1 cB1 D

��4

1=2

�
;

NzN2 D cN2 � N T
2 Ny2 D

��1=2

5=2

�
�
�

3 �1

1 �3

�T ��4

1=2

�
D
�

11

0

�
:

The minimum reduced cost: minf11; 0g � 0.
The optimal solution and associated objective value are
. Nx5; Nx6; Nx7; Nx8/T D .1; 2; 0; 0/T; �2 D �4 C .1=2/2 D �3:

Summarizing (i) and (ii) gives an optimal vertex solution and optimal
objective value to the subprogram below:

u� D .0; 5; 0; 1; 1; 2; 0; 0/T; �� D �1 C �2 D 0 C .�3/ D �3: (8.35)

4(1). Ng D �3=2 > �� D �3.
.u�/TH T� D .0; 5; 0; 1; 1; 2; 0; 0/.1; �3; �1; 1; 2; 1; �1; �3/T�D � 10�:

.u�/Tc D .0; 5; 0; 1; 1; 2; 0; 0/.0; �1; 1; �2; �3; 1; �1; 1/T D �8:
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Update the restricted master program as

max�;g 2� C g;

s:t: �7� C g � �5;

2� � 1;

�10� C g � �8;

2� C g � M: .	/

Iteration 3:

1. Solve the restricted master program.
Column .�10; 1/T enters the basis, q D 3.
B�1.�10; 1/T D .1; �3=2/T. The minimum-ratio test:minf1=1g D 1; p D 1.
The basis matrix is updated as

B D
��10 2

1 0

�
; B�1 D

�
0 1

1=2 5

�
,

corresponding to the dual feasible solution� N�
Ng
�

D B�T

��8

1

�
D
�

1=2

�3

�
;

The associated primal solution is also feasible: B�1.2; 1/T D .1; 6/T � 0. So
optimality of the restricted master program is achieved.

3. The objective function of the subprogram P. N�/ is

.c � H T N�/T D .0; �1; 1; �2; �3; 1; �1; 1/ � .1=2/.1; �3; �1; 1; 2; 1; �1; �3/

D .�1=2; 1=2; 3=2; �5=2; �4; 1=2; �1=2; 5=2/;

which is the same as that in Iteration 2, hence the optimal solution and associated
objective value are given by (8.35).

4(2). Ng D �� D �3, optimality of the Benders master program is achieved.
Consequently, the optimal solutio and objective value to the original program
are

N� D1=2; NyT D. NyT
1 ; NyT

2 /D.�2; 1=2; �4; 1=2/; Nf D �2:

8.7 Primal Benders Decomposition

The decomposition presented in Sect. 8.5 handles the dual program of a standard
program. Therefore, it may be termed dual Benders decomposition. It is also
possible to handle a standard program directly in a similar manner, resulting in a so-
called primal Benders decomposition. This section will offer related results without
detailed derivation.
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Partition variables of a problem to two parts, one of which are in linear form, i.e.,

minw;x f D f .w/ C cTx;

s:t: F .w/ C Ax D b;

w 2 W; x � 0;

(8.36)

where A 2 Rm�n; c 2 Rn; b 2 Rm. Real-valued function f .�/ and vector-valued
function F.�/ 2 Rn and their domain W � Rp satisfy certain conditions. If f .w/

and F.w/ are all linear, and W D fw 2 Rp j w � 0g, the preceding is clearly a
standard LP program.

Deeming w as a parameter, introduce subprogram

P.w/ W minx cTx;

s:t: Ax D b � F.w/; x � 0:

The dual program of the preceding is

D.w/ W maxy � D .b � F.w//Ty;

s:t: ATy � c:

Assume nonempty of the feasible region of D.w/, i.e.,

Y D fy j ATy � cg ¤ ;;

whose vertex and extreme direction sets are denoted by

U D fu1; � � � ; usg; V D fv1; � � � ; vt g:

Define primal Benders master program

minw;g f .w/ C g;

s:t: .ui /TF.w/ C g � .ui /Tb; ui 2 U;

.vj /TF.w/ � .vj /Tb; vj 2 V;

w 2 W \ T;

(8.37)

where

T D fw j F.w/ C Ax D b; x � 0g:

As for the relationship between the primal Benders master program and the
original program (8.36), the following result arises.
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Theorem 8.7.1. . Nw; Nx/ is an optimal solution to (8.36) if and only if Nx is an optimal
solution to P.w/ and . Nw; Ng/ is an optimal solution to the primal Benders master
program.

Thereby, one can solve program (8.36) by handling the primal Benders master
program (8.37). Now turn to a relaxation program yielded from dropping some
constraints. Assume that subsets of the vertex and extreme direction sets of Y are
known at some iteration, i.e.,

U 0 � U; V 0 � V:

Define primal Benders restricted master program as follows:

minw;g f .w/ C g;

s:t: .ui /TF.w/ C g � .ui /Tb; ui 2 U 0;
.vj /TF.w/ � .vj /Tb; vj 2 V 0;

w 2 W:

(8.38)

Note A “standby” constraint f .w/ C g � �M may be added to the preceding
program technically, where M is a number large enough.

Theorem 8.7.2. Let . Nw; Ng/ be an optimal solution to program (8.38).
If u� and �� are an optimal vertex solution and optimal value to subprogram

D. Nw/, then:

(i) If Ng < ��, u� is a new vertex generated;
(ii) If Ng D ��, . Nw; Ng/ is an optimal solution to the primal Benders master program.

If D. Nw/ is unbounded, then a new extreme direction is generated.

Proposition 8.7.1. If primal Benders restricted master program is infeasible, so is
program (8.36).

Algorithm 8.7.1 (Primal Benders Decomposition). Initial: primal Benders
restricted master program of form (8.38). This algorithm solves the restricted
master program (8.36).

1. Call the simplex algorithm to solve (8.38).
2. Stop if it is infeasible (the original program is infeasible).
3. If its optimal solution . Nw; Ng/ is obtained, solve subprogram D. Nw/.
4. If an optimal vertex solution u� and optimal value �� to D. Nw/ are obtained,

then:

(1) update (8.38) by adding the constraint, associated with u�, and go to step 1
if Ng < ��.

(2) stop if Ng D �� (. Nw; Nx/ is an optimal solution to (8.36), where Nx is
complementary to u�).
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5. If subprogram D. Nw/ is unbounded, update (8.38) by adding the constraint
associated with the new extreme direction.

6. Go to step 1.

We are interested in linear case only. So, consider a special case of primal
Benders decomposition with linear functions f .w/ and F.w/.

Letting

f .w/ D hTw; F .w/ D Hw; W D fw 2 Rn j w � 0g;
where H 2 Rm�n1; h 2 Rn1, then (8.36) becomes the standard LP program

minw;x f D hTw C cTx;

s:t: Hw C Ax D b;

w; x � 0:

(8.39)

Deeming w as a parameter, we handle subprogram

minw;x f D cTx;

s:t: Ax D b � Hw;

x � 0:

(8.40)

For simplicity, assume that set

Y D fy 2 Rm j ATy � cg ¤ ; (8.41)

is bounded, whose vertex set is denoted by

U D fu1; � � � ; usg: (8.42)

Thus, the primal Benders restricted master program (8.38) becomes

minw;g hTw C g;

s:t: .ui /THw C g � .ui /Tb; ui 2 U 0:
w � 0:

(8.43)

Assuming that there is an optimal solution . Nw; Ng/ to the preceding program, solve
associated subprogram

D.w/ W maxy � D .b � Hw/Ty;

s:t: y 2 Y:

If D.w/ has optimal value ��, test for optimality of the original program by the
following criterion:

Ng D ��:
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Another way to derive the primal Benders decomposition is to employ D-W
decomposition and duality by dealing with the dual program of (8.39):

max bTy;

s:t: H Ty � h;

ATy � c:

(8.44)

Let Y and U be defined by (8.41) and (8.42) respectively. Express y in a
convex combination of vertices in Y . Then, the D-W master program follows
from (8.44), i.e.,

max
sX

iD1

.bTui /˛i ;

s:t:
sX

iD1

.H Tui /˛i � h;

sX
iD1

˛i D 1;

˛i � 0; i D 1; � � � ; s:

(8.45)

Then the primal Benders decomposition results from solving its dual program,
which is noting but just the primal Benders restricted master program (8.43).

On the other hand, solving the dual program of the D-W master program of the
original program leads to the dual Benders decomposition.

Finally, let us turn to programs with staircase structure. Some of such programs
can be solved by the Benders decomposition in a nested manner. Let us take (8.16)
again to show the so-called “forward nested manner” of the primal Benders
decomposition.

Partition the variables to fx1g and fx2; x3; x4g. According to the primal Benders
decomposition, we need to solve the subprogram with x1 as its parameter:

min .c2/Tx2 C .c3/Tx3 C .c4/Tx4;

s:t: D22x2 D b2 � A21x
1;

A32x
2 C D33x3 D b3;

A43x
3 C D44x4 D b4;

x2; x3; x4 � 0:

(8.46)

So, we turn to solving the dual program of the preceding. It is easier to handle, as
only its objective function is related to parameter x1. In each iteration, the primal
Benders restricted master program is solved to provide a parameter value Nx1 to the
subprogram. Then (8.46) is of a staircase structure similar to that of the original
program (8.16), with stairs reduced by 1. So, the primal Benders decomposition
applies again. Such a process is repeated until only a single stair is left, and the
program is easily solved.



Chapter 9
Interior-Point Method

As was known, the simplex method moves on the underlying polyhedron, from
vertex to adjacent vertex along descent edges, until an optimal vertex is reached,
or unboundedness of the problem is detected. Nevertheless, it would go through
an exponential number of vertices of the polyhedron (Sect. 3.8), and even stall at a
vertex forever because of cycling along degenerate edges (Sect. 3.6).

On the other hand, an optimal point can be reached directly if one goes across the
interior of the polyhedron. In fact, there exists in the polyhedron a ray, emanating
from any point to an optimal vertex, if any (see the last paragraph of Sect. 4.3).
In other words, a single iteration is enough to solve the LP problem if the “right”
descent direction is available. Although unrealistic, this idea might be the motivation
of a class of so-called “interior-point methods”, which moves from interior point to
interior point to approach an optimal point.

Interior-point methods fall into three main categories: the potential function
methods, represented by Karmarkar algorithm, the affine methods, represented by
Dikin’s algorithm, and the path-following methods using log barrier function. This
chapter will be devoted to the most typical or efficient interior-point methods (see
also Hertog and Roos 1991).

Thereafter the following basic assumptions are made on the standard LP
programs:

A1: rank A D m.
A2: P C D fx 2 Rnj Ax D b; x > 0g ¤ ;.
A3: DC D f.y; z/ 2 Rm 
 Rn j ATy C z D c; z > 0g ¤ ;.
A4: c 62 range AT.

A4 is equivalent to the absence of a vector Ny such that c D AT Ny, as means
that the objective function is constant over the feasible region; and vice verse if the
feasible region is nonempty. Therefore, the optimal value can only be attained on
the boundary, if any.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__9,
© Springer-Verlag Berlin Heidelberg 2014
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9.1 Karmarkar Algorithm

Karmarkar algorithm (1984) would be the most well-known interior-point algo-
rithm, as it is the earliest one of polynomial-time complexity of the order lower
than Khachiyan’s ellipsoid algorithm. The basic idea behind Karmarkar algorithm
inspired birth of some very efficient algorithms of such type, so as changing the
state of the art of LP considerably.

Consider the so-called “Karmarkar standard problem”:

min f D cTx;

s:t: Ax D 0;

eTx D 1; x � 0;

(9.1)

where A 2 Rm�n; c 2 Rn; rank A D m; m < n; n � 2.
As a convex hull of n points e1; � � � ; en in the n-dimensional space, the polyhedral

� D
8<
:x 2 Rn

ˇ̌
ˇ̌̌ nX

j D1

xj D 1; xj � 0

9=
;

is an .n � 1/-dimensional regular simplex. It is noted that the n vertices of � lie in
symmetric positions, and its center is e=n. The radius of its inscribed sphere and
circumscribed sphere are respectively,

r D 1=
p

n.n � 1/ < 1; R D p
n � 1=

p
n < 1:

The feasible region of problem (9.1) is the intersection of the simplex � and the
null space, fx 2 Rn j Ax D 0g, of A. It is clear that there is an optimal solution if
the feasible region is nonempty.

Concerning problem (9.1), Karmarkar makes the following two assumptions:

1. Ae D 0. So the center e=n of the simplex is an interior point of the feasible
region.

2. The optimal solution, say x�, satisfies cTx� D 0, i.e. the optimal value is 0.

The preceding assumptions imply that cTx > 0 holds for all interior point x, in
particular, the “center” e=n.

It is not difficult to convert a standard LP problem to Karmarkar standard
problem, we will not go into details though. Interested readers are referred to related
literatures, e.g., Tomlin (1987), Gay (1987) and de Ghellinck and Vial (1986).
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9.1.1 Projective Transformation

Let Nx be an interior point, satisfying A Nx D 0; eT Nx D 1 and Nx > 0. Denote by NX
the diagonal matrix, whose diagonals are components of Nx, i.e.,

NX D diag. Nx1; � � � ; Nxn/:

Consider transformation

x0 D
NX�1x

eT NX�1x

4D T .x/; (9.2)

whose inverse transformation is

x D T �1.x0/ D
NXx0

eT NXx0 : (9.3)

T .x/, termed projective transformation, is an 1–1 mapping from � to � itself. In
fact, for any x 2 � , it holds that x0 D T .x/ 2 �; conversely, for any x0 2 � , it
holds that x D T �1.x0/ 2 � . Under T , in particular, each vertex ej (j D 1; � � � ; n)
of � corresponds to itself, and so does each edge; most importantly, Nx corresponds
to the center e=n of � , whereas any interior point corresponds to an interior point.

Using T , (9.1) is transformed to problem

min f D cT NXx0

eT NXx0
;

s:t: A NXx0 D 0;

eTx0 D 1; x0 � 0;

(9.4)

which is no longer a LP problem though, because its objective function is not
linear. However, it is known from (9.2) and eTx D 1 that when x is close to Nx,
the denominator in the objective function can approximately regarded as a positive
constant, i.e.,

eT NXx0 D eTx

eT NX�1x
D 1

,
nX

j D1

xj

Nxj

� 1=n:

Karmarkar thereby employs cT NXx0 to replace the objective function approximately.
Precisely, he used the following subproblem in each iteration:

min f D cT NXx0;
s:t: A NXx0 D 0;

eTx0 D 1; x0 � 0;

(9.5)

which and (9.4) share the same feasible region and an initial interior point e=n.
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Proposition 9.1.1. Let x� be an optimal solution to problem (9.1). Then for any
interior point Nx, there is an optimal solution .x�/0 D T .x�/, associated with
objective value zero, to subproblem (9.5).

Proof. Note that for any interior point Nx > 0 to (9.1) and any feasible point x0 � 0

to (9.4), it holds that

eT NXx0 D
nX

j D1

Nxj x0
j � eTx0 minf Nxj j j D 1; � � � ; ng > 0:

It is known from .x�/0 D T .x�/ and Assumption 2 that .x�/0 is an optimal solution
to (9.4), satisfying cT NX.x�/0 D 0. In other words, there is a feasible solution .x�/0,
associated with objective value zero, to (9.5). Assume that Qx0 is its feasible solution
with a negative objective value, i.e., cT NX Qx0 < 0. Then it follows that

cT NX Qx0

eT NX Qx0 < 0;

which contradicts that the optimal value of (9.4) is zero. Therefore, .x�/0 is an
optimal solution, associated with objective value zero, to (9.5). ut

9.1.2 Karmarkar Algorithm

Assume that a descent direction has been determined. If some of components of
Nx are close to zero, then the stepsize along the direction could be very small, and
the associated improvement (decrease) in the objective function would be potty.
Problem (9.5) helps get rid of such a situation, to some extent, as Nx’s image, Nx0 D
T . Nx/ D e=n, in x0 space is now at the center of the simplex, the distance from
which to each coordinate plane is the same. Of course, we do not really want to
solve (9.5) itself, but only use it as a subproblem to determine a “good” search
direction and associated stepsize (see, e.g., Anstreicher and Watteyne 1993; Hertog
and Roos 1991; Kalantari 1990; Turner 1991).

To this end, denote the coefficient matrix of subproblem (9.5) by

F D
0
@A NX

� � �
eT

1
A : (9.6)

Then the orthogonal projection matrix from x0 space to the null of F is

P D I � F T.FF T/�1F: (9.7)

Thus, the orthogonal projection of the objective gradient NXc is

�x D P NXc D .I � F T.FF T/�1F / NXc: (9.8)
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Proposition 9.1.2. Vector �x is nonzero, satisfying F�x D 0 and . NXc/T�x > 0.

Proof. Assume �x D 0. It is known from (9.8) that there is h 2 Rm; hmC1 such
that

NXc D F T.hT; hmC1/
T:

Therefore, for any feasible solution x0 � 0 to subproblem (9.5), it holds that

cT NXx0 D .hT; hmC1/F x0 D hTA NXx0 C hmC1e
Tx0 D hmC1:

In other words, the feasible value is constant. Note that this is the case for NX ,
constructed from any interior point Nx. In particular, for Nx D e=n, subproblem’s
objective value at the center e=n of the simplex is cTe=n2; on the other hand, it is
known from Proposition 9.1.1 that the optimal value is zero. Thus it follows that
cTe=n2 D 0, which implies that e=n is an optimal solution, as contradicts that any
interior point is not optimal. Therefore, �x ¤ 0. Then from (9.8) and P 2 D P

together with P T D P , both F�x D 0 and . NXc/T�x > 0 follow. ut
The preceding Proposition says that ��x ¤ 0 is a descent feasible direction.

Further, it is not difficult to show that ��x, which is within the null of F , forms
the largest possible angle with the objective gradient, that is, ��x is the steepest
descent feasible vector in the null. As a result, if the stepsize from the center of
the simplex along the direction is less than the radius of the inscribed sphere of the
simplex, then the new interior point in x0 space must lie in the interior of the feasible
region, hopefully leading to a satisfactory decrease in the objective value. In precise,
the new interior point in x0 space is determined by

Ox0 D e

n
� ˛�

�x

k�xk ; (9.9)

where ˛ 2 .0; 1/, � 2 .0; r�, and r is the radius of the inscribed sphere. Then
mapping it to the original x-space via the inverse transformation gives

Ox D NX Ox0=eT NX Ox0: (9.10)

Then, an iteration is complete.
The overall steps are summarized to the following algorithm.

Algorithm 9.1.1 (Karmarkar algorithm). Given tolerance � > 0. Initial: k D
1; Nx D e=n. This algorithm solves problem (9.1).

1. Compute �x D P NXc D .I � F T.FF T/�1F / NXc, where F is defined by (9.6).
2. Compute Ox0 D e=n � ˛��x=k�xk.
3. Compute Nx D NX Ox0=eT NX Ox0.
4. Stop if cT Nx < �.
5. Set k D k C 1.
6. Go to step 1.
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Karmarkar algorithm’s inspiration is perhaps more valuable than itself, as
stimulated coming out of some very successful algorithms of practical use. The
idea that determining a search direction in the image space, and then transforming it
back to the original space has influenced the development of interior-point methods
greatly. At present, search direction of a typical interior-point method is usually
a combination of a descent direction, stemming from the negative gradient, and a
centering direction, generated via some transformation. Such a combination, which
allows the algorithm to go farther in each iteration, is the real cause of the success of
interior-point methods. As a “by-product”, in addition, approaching to an optimal
solution by a sequence of interior points overcomes the troublesome degeneracy
encountered by the conventional simplex method.

9.1.3 Convergence

To analyze Algorithm 9.1.1, define the following potential function over � of
problem (9.1):

f .x/ D f .x; c/
4D n ln.cTx/ �

nX
j D1

ln xj D
nX

j D1

ln
cTx

xj

: (9.11)

The corresponding potential function over � of problem (9.5) is then

f 0.x0/ 4D f .x0; NXc/ D n ln.cT NXx0/ �
nX

j D1

ln x0
j D

nX
j D1

ln
cT NXx0

x0
j

: (9.12)

Proposition 9.1.3. The potential function values at any point x 2 � and at its
image x0 differ by a same constant, which is dependent on Nx.

Proof. From (9.3), (9.11) and (9.12), it follows that

f .x/ D f .T �1.x0// D
nX

j D1

ln
cT NXx0

x0
j

� ln.…n
j D1 Nxj / D f 0.x0/ � ln.…n

j D1 Nxj /:

ut
It is thereby seen that if a Ox0 is determined such that f 0. Ox0/ is less than f 0.e=n/

by a constant, then f . Ox/ is accordingly less than f . Nx/ by the same amount. We will
estimate

f 0. Ox0/ D n ln.cT NX Ox0/ �
nX

j D1

ln Ox0
j : (9.13)
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Lemma 9.1.1. If �x and Ox0 are respectively determined by (9.8) and (9.9), then

ln cT NX Ox0 � ln
cT NXe

n
� ˛�: (9.14)

Proof. By P 2 D P; P T D P and (9.8), it holds that

cT NX�x D cT NXP NXc D cT NXP 2 NXc D .P NXc/T.P NXc/ D k�xk2 > 0; (9.15)

which together with (9.9) gives

cT NX Ox0 D cT NXe

n
� ˛�

cT NX�x

k�xk D cT NXe

n
� ˛�k�xk: (9.16)

Now consider

min f D cT NXx0;
s:t: A NXx0 D 0;

eTx0 D 1;

kx0 � e=nk � R;

(9.17)

where R is the radius of the circumscribed sphere, i.e.,

R D p
n � 1=

p
n < 1:

Noting that ��x is the orthogonal projection of the negative objective gradient onto
the null of F , and

fx 2 Rn j kx0 � e=nk � Rg

is the spherical domain with the radius R at center of the simplex as its center, it is
not difficult to show that the optimal solution is

x0.R/ D e

n
� R

�x

k�xk :

On the other hand, since kx0 � e=nk � R is the circumscribed sphere of � , the
feasible region of (9.17) includes the feasible region of subproblem (9.5), therefore
the optimal value of the former is no more than the optimal value zero of the latter.
So, considering (9.15) leads to

cT NXx0.R/ D cT NXe

n
� Rk�xk � 0;
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or

�k�xk � �cT NXe

nR
;

combining which, (9.16), R < 1 and cT Nx > 0 gives

cT NX Ox0 � cT NXe

n
� ˛�

cT NXe

nR
D .1 � ˛�=R/

cT NXe

n
� .1 � ˛�/

cT NXe

n
:

Then, taking logarithm of the two slides of the preceding together with

ln.1 � ˛�/ � �˛�

leads to (9.14). ut
Lemma 9.1.2. If x0 2 � satisfies kx0 � e=nk � ˛�, then

�
nX

j D1

ln x0
j � �

nX
j D1

ln.1=n/ C .n˛�/2

2.1 � ˛n�/2
: (9.18)

Proof. Since kx0 � e=nk � ˛�, it holds that

1=n � ˛� � x0
j � 1=n C ˛�; j D 1; � � � ; n;

or

1 � ˛n� � nx0
j � 1 C ˛n�; j D 1; � � � ; n: (9.19)

Based on Taylor formula, ln.nx0
j / can be expressed as

ln.nx0
j / D ln 1 C .nx0

j � 1/ � 1

2�2
j

.nx0
j � 1/2;

where �j is between 1 and nx0
j , hence it is seen from (9.19) that �j � 1 � ˛n�.

Thereby, the following inequality holds:

ln.nx0
j / � .nx0

j � 1/ � 1

2.1 � ˛n�/2
.nx0

j � 1/2: (9.20)

In addition, it is known from the assumption that

nX
j D1

.nx0
j � 1/ D neTx0 � n D 0
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and

nX
j D1

.nx0
j � 1/2 D knx0 � ek2 D n2kx0 � e=nk2 � .˛n�/2:

Then, it follows from (9.20) that

nX
j D1

ln.nx0
j / � �.˛n�/2

2.1 � ˛n�/2
;

which implies (9.18). ut
Theorem 9.1.1. If � D 1=n < r; ˛ 2 .0; 1=2/, then the complexity of the number
of iterations, required by Karmarkar algorithm, is O.nL/, where L is the binary
digits of all input data.

Proof. Combining (9.13), (9.14) and (9.18) gives

f 0. Ox0/ � n ln
cT NXe

n
� ˛n� �

nX
j D1

ln.1=n/ C .˛n�/2

2.1 � ˛n�/2
D f 0.e=n/ � ı.n; �; ˛/;

(9.21)
where a lower bound of the decrement of the potential is

ı.n; �; ˛/ D ˛n� � .˛n�/2

2.1 � ˛n�/2
:

Substituting � D 1=n into the preceding gives a function, only related to ˛, i.e.,

ı.˛/ D ˛ � ˛2

2.1 � ˛/2
D ˛.˛ � 2/.˛ � 1=2/

.1 � ˛/2
; (9.22)

to which it is clear that

ı.˛/

8<
:

> 0; 0 < ˛ < 1=2;

D 0; ˛ D 1=2;

< 0; 1=2 < ˛ < 1:

Therefore, from the assumption of this Proposition, it follows that ı.˛/ > 0.
Let Ox be the original image of Ox0, determined by (9.10). It is known by

Proposition 9.1.3 that there is a constant 	, related to Nx, such that

f . Nx/ D f 0.e=n/ C 	; f . Ox/ D f 0. Ox0/ C 	;
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The preceding together with (9.21) gives

f . Ox/ � f . Nx/ D f 0. Ox0/ � f 0.e=n/ � �ı.˛/;

hence

f . Ox/ � f . Nx/ � ı.˛/;

as holds for each iteration. Note that the initial interior point is e=n. Therefore, if Ox
is the interior point, generated at iteration k D 1; 2; � � � (step 3 of Algorithm 9.1.1),
then

f . Ox/ � f .e=n/ � kı.˛/:

Consequently, it holds by (9.11) that

n ln.cT Ox/ �
nX

j D1

ln Oxj � n ln.cTe=n/ �
nX

j D1

ln.1=n/ � kı.˛/;

from which, Ox 2 � and that function
nX

j D1

ln xj attains the highest value at e=n over

� , it follows that

n ln.cT Ox/ � n ln.cTe=n/ � kı.˛/:

The preceding is equivalent to

cT Ox � e�kı.˛/=n.cTe=n/: (9.23)

Let � be a given tolerance on the optimal value, then it is clear that there is a � > 0

such that

2��L <
�

cTe=n
: (9.24)

Once the number k of iterations attains the smallest integer such that

k > .�=ı.˛//nL;

then considering (9.24) gives

e�kı.˛/=n � e��L < 2��L <
�

cTe=n
;
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which and (9.23) together lead to

cT Ox < �:

Under the assumption, therefore, the complexity of the number of iterations,
required by Karmarkar algorithm, is O.nL/. ut

As the computational complexity of a single iteration is O.n3/ for Karmarkar
algorithm, the overall computational complexity is O.n4L/. Karmarkar improves
complexity of a single iteration to O.n2:5/, hence the overall complexity reduces to
O.n3:5L/.

In principle, it is desirable to have a larger lower bound on the decrement of
the potential function. To this end, setting the derivative of (9.22) to 0 leads to its
maximum ˛� � 0:3177 and related value ı.˛/� � 0:2093. Therefore, taking ˛ D
0:3177 in Karmarkar algorithm seems to be a good choice. However, it is not the
case practically. As a lower bound on the decrement of the potential function, ı.˛/

could be very different from the real decrement. Practice indicates that an ˛ close
to 1 often accelerates convergence, despite the polynomial complexity can not be
guaranteed when ˛ � 1=2.

9.2 Affine Interior-Point Method

Because it is only amenable to the Karmarkar standard problem, Karmarkar algo-
rithm is not very convenient for practical use. To handle the standard LP problem
directly, subsequently the so-called “affine algorithm” was proposed as a variant
of Karmarkar algorithm (Barnes 1986; Cavalier and Soyster 1985; Karmarkar and
Ramakrishnan 1985; Vanderbei et al. 1986). However, it is found soon that the affine
algorithm was proposed by Dikin as early as in 1967 (without convergence proof),
but was not noted by the academic community, unfortunately.

Thereafter, concerned are the pair of the standard LP problems (4.1) and (4.2).

9.2.1 Formulation of the Algorithm

Let Nx be the current interior point. Again denote by NX the diagonal matrix, whose
diagonals are components of Nx. It is clear that affine transformation

x0 D NX�1x

maps the positive octant to itself, and Nx to its “center” e. This transformation turns
problem (4.1) to

min cT NXx0;
s:t: A NXx0 D b; x0 � 0:

(9.25)
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The orthogonal projection matrix from x0 space onto the null of A NX is

P D I � NXAT.A NX2AT/�1A NX; (9.26)

and the orthogonal projection of the objective gradient NXc is then

�x0 D P NXc D .I � NXAT.A NX2AT/�1A NX/ NXc: (9.27)

Lemma 9.2.1. Under the basic assumption A4, it holds that �x0 ¤ 0.

Proof. Equation (9.27) can be written

�x0 D NX.c � AT Ny/;

where

Ny D .A NX2AT/�1A NX2c:

Thus �x0 D 0 implies c D AT Ny, as contradicts assumption A4. Therefore
�x0 ¤ 0. ut

To determine a new interior point in x0 space, take ��x0 as a search direction:

Ox0 D e � 	�x0=k�x0k:

If 	 2 .0; 1/ is taken, then Ox0 lies within interior of the sphere with radius 1 at e.
The original image of Ox0 in x space is then

Ox D Nx � 	 NX�x0=k�x0k;

which is the “short stepsize” iteration scheme of the affine algorithm.
It is verified that the point

Ox D Nx � ˛ NX�x0 (9.28)

satisfies Ax D b for any ˛. In particular, for the short stepsize ˛ D 	=k�x0k > 0,
it holds that Ox > 0, hence the new iterate is again an interior point. Combing P D
P 2; P T D P and (9.27) leads to

cT Ox D cT Nx � ˛cT NXP NXc D cT Nx � ˛k�x0k2 < cT Nx; (9.29)

as implies that the objective value strictly decreases.
It is desirable to go further without violating constraints. In fact, it turns out that

letting the new interior point closer to boundary leads to bigger decrement of the
objective value, and significantly enhances the efficiency of the algorithm. To this
end, the following result should be noted first.
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Lemma 9.2.2. If �x0 � 0, the standard LP problem (4.1) is unbounded below.

Proof. Under the assumption, Ox defined by (9.28) is clearly an interior point for any
˛ > 0. It is seen from (9.29) that

cT Ox D cT Nx � ˛k�x0k2 ! �1 . ˛ ! 1/:

Therefore, the original problem is unbounded below. ut
Assume now that �x0 6� 0. In this case, the largest stepsize attaining the

boundary is 1= max.�x0/, hence leading to the following “long stepsize” iteration
scheme:

Ox D Nx � � NX�x0= max.�x0/; (9.30)

where � 2 .0; 1/ is a stepsize.
Accompanying the original interior point Nx, a dual estimate . Ny; Nz/ is expected.

If ignoring the nonnegative requirement for Nz but satisfying the complementarity
condition as much as possible, . Ny; Nz/ should be solves the following least squares
problem:

min .1=2/k NXzk2;

s:t: z D c � ATy:

It is not difficult to obtain the solution to the preceding, i.e.,

Ny D .A NX2AT/�1A NX2c; Nz D NX�1P NXc: (9.31)

Thus (9.27) can be written alternatively as

�x0 D NX.c � AT Ny/ D NX Nz; (9.32)

which reveals the relation between the search direction and the dual estimate. Note
that NX Nz is noting but the associated dual gap (see Sect. 4.3).

The overall steps with long stepsize is put into the following algorithm (without
generating dual estimates). It is known from (9.32) that the dual gap tens to zero as
the procedure converges. Therefore, optimality is achieved approximately whenever
k�x0k becomes small enough.

Algorithm 9.2.1 (Affine interior-point algorithm). Given � 2 .0; 1/; � > 0.
Initial: interior point Nx > 0. This algorithm solves the standard LP problem (4.1).

1. Compute �x0 D P NXc D .I � NXAT.A NX2AT/�1A NX/ NXc.
2. Stop if k�x0k < � (optimality achieved approximately).
3. Stop if �x0 � 0 (unbounded below).
4. Update by Nx D Nx � � NX�x0= max.�x0/.
5. Go to step 1.
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It is seen from (9.27) that the algorithm’s major work in each iteration is the
computation of projection �x0, concerning the solution of m 
 m system

.A NX2AT/y D A NX2c:

A normal way is to compute the coefficient matrix, carry out the Cholesky
factorization, and then solve the two triangular systems.

In contrast to Karmarkar algorithm, the affine algorithm is simpler, and yet
performs better. In fact, the latter is the earliest interior-point algorithm found to
possibly outperform the simplex method.

9.2.2 Convergence and Start-Up

Firstly, we state two convergence results without proofs. The first, given by Dikin
(1974), is under the nondegeneracy assumption (see also Gonzaga 1990; Vanderbei
and Lagarias 1990).

Theorem 9.2.1. Assume the existence of an optimal solution to the standard
problem (4.1). If all feasible solutions are nondegenerate, then the sequence of
interior points, generated by (9.30) .� 2 .0; 1//, and sequence of dual estimates,
generated by (9.31), respectively converge to relative interior points of the primal
and dual optimal faces.

If the range of � is restricted properly, the long stepsize affine algorithm
converges without the nondegeneracy assumption, as the following theorem says
(Tsuchiya and Muramatsu 1995).

Theorem 9.2.2. Assume the existence of an optimal solution to the standard
problem (4.1). Then the sequence of interior points, generated by (9.30) .� 2
.0; 2=3�/, converges to a relative interior point of the primal optimal face, and the
sequence of dual estimates, generated by (9.31), converges to the relative analytic
center of the dual optimal face, with asymptotic descent rate 1 � � for the objective
value.

When � > 2=3, however, convergence of the affine algorithm is not guaranteed.
In fact, counter-examples have been found, indicting that 2=3 is the largest value of
� for ensuring convergence (Hall and Vanderbei 1993; Mascarenhas 1997). As for
practice, nevertheless, the case is just contrary: it is faster and more reliable to take
a � value close to 1 (e.g., � 2 Œ0:9; 0:99�). On the other hand, it is shown that even if
� � 2=3, the algorithm solves Klee-Minty problem by traversing neighborhoods of
all the 2n vertices, and hence is not of polynomial complexity (Megiddo and Shub
1989).

Now turn to the Phase-1 to provide an initial interior point to the affine algorithm.
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Given any n-dimensional vector h > 0 such that b � Ah ¤ 0 (h D e seems to be
a good choice). Introducing an artificial variable xnC1 and a normalized vector

anC1 D .b � Ah/=kb � Ahk; (9.33)

construct the following auxiliary problem:

min xnC1;

s:t: Ax C anC1xnC1 D b; x; xnC1 � 0:
(9.34)

It is clear that there is an optimal solution to the preceding problem. Moreover,
Nx D h; NxnC1 D kb �Ahk is an interior point solution available. If the optimal value
is strictly greater than 0, then the original problem is infeasible.

Solve the auxiliary problem by the affine algorithm with � 2 .0; 2=3�. Assume
that the resulting sequence of interior points converges to x1 with objective value 0,
so that x1 is a relative interior point of the feasible region of the original problem.
Define

B D fj 2 A j x1
j > 0g; N D fj 2 A j x1

j D 0g:
Then, the original problem reduces to

min cT
BxB;

s:t: BxB D b; x � 0;

which has an interior point x1
B > 0 available. Consequently, the affine algorithm

can get itself started.

9.3 Dual Affine Interior-Point Method

In this section, the basic idea behind the affine method will be applied to the dual
problem to derive the dual version (Adler et al. 1989).

Consider the dual problem (4.2). Assume that . Ny; Nz/ is the current interior point,
satisfying dual constraints. Denote by NZ the diagonal matrix with components of Nz
as its diagonals. The affine transformation z D NZz0 turns the dual problem to

max bTy;

s:t: ATy C NZz0 D c; z0 � 0;

or equivalently,

max bTy;

s:t: NZ�1ATy C z0 D NZ�1c; z0 � 0:
(9.35)
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Note that affine transformation z D NZz0 maps the positive octant of z-space to itself,
and Nz to its “center” e. Since A is of full row rank, NZ�1AT if of full column rank.

Assume that the QR factorization of NZ�1AT is

NZ�1AT D ŒQ1; Q2�

�
R

0

�
D Q1R: (9.36)

where ŒQ1; Q2� is orthogonal, Q1 2 Rn�m and Q2 2 Rn�.n�m/, and R 2 Rm�m is
upper triangular.

Substituting (9.36) to the equality constraint of (9.35) gives

Q1Ry C z0 D NZ�1c:

Premultiplying the preceding by R�1QT
1 , noting QT

1 Q1 D I and rearranging
leads to

y D R�1QT
1

NZ�1c � R�1QT
1 z0;

by which and

Q1Q
T
1 C Q2Q

T
2 D I; QT

2 Q2 D I;

program (9.35) can be deduced to the following standard form with respect to z0:

min bTR�1QT
1 z0;

s:t: QT
2 z0 D QT

2
NZ�1c; z0 � 0;

(9.37)

where constant �bTR�1QT
1

NZ�1c was omitted from the objective function.

Proposition 9.3.1. The orthogonal projection of the objective gradient of (9.37) to
the null space of QT

2 is equal to

�z0 D NZ�1AT.A NZ�2AT/�1b: (9.38)

Proof. By QT
2 Q1 D 0, the orthogonal projection of the objective gradient to the

null becomes

�z0 D .I � Q2.Q
T
2 Q2/

�1QT
2 /Q1R

�Tb D Q1R
�Tb;

By QT
1 Q1 D I , the preceding is equal to

�z0 D Q1.RR�1/R�Tb D Q1R.RTR/�1b D Q1R.RTQT
1 Q1R/�1b;

which together with (9.36) gives (9.38). ut
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Thereby, ��z0 is a favorable search direction in z0-space. For a new iterate to
satisfy the equality constraint of (9.35), �z0 and the associated search direction �y

in y-space should fulfil condition

NZ�1AT�y C �z0 D 0;

premultiplying which by A NZ�1 and using (9.38) gives

�y D �.A NZ�2AT /�1A NZ�1�z0 D �.A NZ�2AT/�1b: (9.39)

Using z D NZz0, vector

�z0 D � NZ�1AT�y

can be transformed back to z-space, i.e.,

�z D �AT�y: (9.40)

The according long stepsize line search scheme is then

Oy D Ny � �ˇ�y; Oz D Nz � �ˇ�z; (9.41)

where � 2 .0; 1/, and

ˇ D minfNzj =�zj j �zj > 0; j D 1; � � � ; ng: (9.42)

In the case when �z � 0, the preceding scheme is not well-defined, and the dual
problem is unbounded or the primal problem is infeasible.

As for an estimate Nx of the associated primal solution, it can be determined
as follows. If ignoring the nonnegative requirements but attempting to satisfy
complementarity condition, the Nx should solve the following least squares problem:

min k NZxk;

s:t: A NZ�1. NZx/ D b:

The solution to which can be obtained by taking a look at the minimum 2-norm
solution to A NZ�1w D b and (9.39), i.e.,

Nx D NZ�2AT.A NZ�2AT/�1b D NZ�2�z:

Consequently, when Nx � 0 and dual gap cT Nx � bT Ny becomes sufficiently small, the
procedure, generating a sequence of dual interior points, can be terminated.

The overall steps are put into the following algorithm.
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Algorithm 9.3.1 (Dual affine algorithm). Given � 2 .0; 1/; � > 0. Initial: interior
point . Ny; Nz/. This algorithm solves the standard LP problem (4.1).

1. Compute .�y; �z/ by (9.39) and (9.40).
2. Stop if �z � 0 (dual unbounded or primal infeasible).
3. Compute Nx D NZ�2�z.
4. Stop if Nx � 0 and cT Nx � bT Ny < � (optimality achieved approximately).
5. Update . Ny; Nz/ by (9.41) and (9.42).
6. Go to step 1.

The preceding algorithm starts from a dual interior point. . Ny D 0; Nz D c/ is an
available one in case of c > 0. Otherwise, an approach analogous to that described
in the last half of Sect. 9.2.2 can be employed to generate an initial dual interior
point using the following auxiliary problem:

max �ymC1;

s:t: .AT
::: c � e/

�
y

ymC1

�
C z D c; z; ymC1 � 0;

which can be handled by the dual affine algorithm, as it is upper bounded and has
an interior point available, i.e.,

Ny D 0; NymC1 D 1I Nz D e:

We point out that primal and dual affine algorithms may be derived from each
another, and have similar convergence properties (Tsuchiya 1992) though the latter
is superior to the former computationally.

In addition, a sequence of dual interior points may be generated alternatively
by carrying out the (primal) affine algorithm. The trick is to turn to solving the
standard problem in dual variable z, obtained by the so-called “dual elimination”
(Sect. 25.1.3), though it is not known how well such an approach performs.

9.4 Path-Following Interior-Point Method

This type of methods perform remarkably in practice. It may be regarded as one
using a “homotopy strategy”, in which one creates a trivial problem, compared with
a hard problem to be solved, so that there is a continuum of problems between them,
and handles backwards from the trivial problem to the hard problem by solving the
problems in between (exactly or approximately).

Taking the standard LP problem (4.1) as the “hard” problem, we will construct
the “trivial” problem, whose optimal solution is an interior point.

As the border of the positive octant, coordinate planes xj D 0; j D 1; � � � ; n,
defining the scope of the feasible region, might well be deemed as “wall”. We have
seen that Karmarkar algorithm and/or the affine algorithm employe transformations
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to create a “centering force” to push the iterate leaving the wall. Combination of
the “centering force” and the “pushing force” along the direction of the negative
objective gradient gives a successful feasible downhill search direction. Another
approach for generating “centering force” is via logarithmic barrier function,
which was initially employed by Frisch (1955) to solve nonlinear problems. After
Karmarkar algorithm emerged, the logarithmic barrier function draws high attention
from the community, and is applied in the path-following method to construct the
“trivial’ problem.

As nonnegative constraints x � 0 are inactive for interior points, we remove
them, and add logarithmic barrier terms in the objective function to construct the
following problem:

.P	/ min f .x/ D cTx � 	

nX
j D1

ln xj ;

s:t: Ax D b;

(9.43)

where 	 > 0 is called barrier parameter. Implying x � 0, (9.43) characterizes a
class of problems with parameter 	 > 0. Because of the barrier terms, f ! C1 as
xj ! 0C, so that minimization of f “rebounds” iterates from the “wall” to prevent
them from leaving the interior of the feasible region.

Related to the “hard” problem by 	, the “trivial” problem (9.43) is nonlinear but
not difficult to handle. The gradient and Hassian matrix of the objective function
f .x/ are respectively

rf .x/ D c � 	X�1e; r2f .x/ D 	X�2;

where X D diag.x1; � � � ; xn/. It is clear that f .x/ is a strict convex function over
the region x > 0. The Lagrange function of problem .P	/ is then

L.x; y/ D cTx � 	

nX
j D1

ln xj � yT.Ax � b/:

Therefore, point x > 0 is an optimal solution of .P	/ if and only if there is a y 2 Rm

such that

Ax � b D 0; (9.44)

c � 	X�1e � ATy D 0: (9.45)

Using notation

z D c � ATy; Z D diag.z1; � � � ; zn/:
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the preceding conditions become the following system in variables x; y; z:

Ax D b; (9.46)

ATy C z D c; (9.47)

Xz D 	e: (9.48)

Megiddo (1989) show that:

(i) For each 	 > 0, problem .P	/ either has an unique optimal solution or is
unbounded below.

(ii) If there exists a solution x > 0 to the system for some 	 > 0, then so is a
solution x.	/ to the system for all 	 > 0, and x.	/ is a continuous curve. There
is a limit lim x.	/ as 	 ! 0C, which is an optimal solution to problem (P).

If the interior of the feasible region of (P) is nonempty and bounded, (9.46)–
(9.48) determine a unique path x.	/ to an optimal solution. x.	/ is termed central
path or trajectory. The common idea of various path-following algorithms is to find
an optimal solution by following the path approximately (see also Monteiro and
Adler 1989).

On the other hand, the central path can also be derived without the logarithmic
barrier function. In fact, we may handle the standard LP problem directly from the
optimality condition (4.15), deemed as a nonlinear system with respect to x; y; z,
subject to x; z � 0. To creates iterates, which across the interior of the feasible
region and approach an optimal solution on the boundary, it is only possible to
satisfy the complementarity condition approximately, by using Xz D v in place of
Xz D 0, where v > 0 is a parameter vector. The associated solution x.v/ to the
system is expected to tend to an optimal solution as v tends to 0. For symmetry
of xj zj D vj for all j D 1; � � � ; n, it is natural to let components of v be equal
by setting v D 	e, as leads to (9.46)–(9.48) consequently. So, the “hard” problem
is the optimality condition, while the “trivial” problem is system (9.46)–(9.48). Of
course, it is not possible to solve all the systems for a continuous 	, but for some
sequence f	kg instead, as will be seen in the next section.

9.4.1 Primal-Dual Method

A realization of the path-following strategy is to design a monotone descent
sequence f	kg with limit 0, and for every fixed parameter 	 D 	k; k D 1; � � � ,
solve system (9.46)–(9.48) for its solution x.	k/. In general, it is difficult to directly
obtain the exact solution to the nonlinear system (9.48). Instead, we employ the
Newton method to find an approximate one. Moreover, it is not necessary to pay
high cost on accuracy, since what we are interested in is not the solutions themselves
but their limit.
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Thus, only one Newton iteration is taken for obtaining an approximate solution,
and elements of the monotone descent sequence f	kg are generated one by one.

Assume that the interior point . Nx; Ny; Nz/ satisfies (9.46) and (9.47), and approx-
imately satisfies (9.48). We need to determine .��x; ��y; ��z/ such that . Nx �
�x; Ny � �y; Nz � �z/ is a new approximate solution, which satisfies (9.46)–(9.48),
i.e.,

A. Nx � �x/ D b;

AT. Ny � �y/ C .Nz � �z/ D c;

. NX � �X/.Nz � �z/ D 	e:

or equivalently,

A�x D A Nx � b; (9.49)

AT�y C �z D AT Ny C Nz � c; (9.50)

NZ�x C NX�z D NX Nz C �X�z � 	e: (9.51)

where �X D diag.�x1; : : : ; �xn/. It is known from the assumptions that the
right-hand sides of (9.49) and (9.50) are equal to zero. Then, omitting the second
order term �X�z of the right-hand side of (9.51) gives a so-called “Newton
equation”:

A�x D 0; (9.52)

AT�y C �z D 0; (9.53)

NZ�x C NX�z D NX Nz � 	e: (9.54)

Introduce notation

D D NZ�1 NX: (9.55)

Premultiplying (9.54) by A NZ�1 and noting (9.52) leads to

AD�z D ADNz � 	A NZ�1e;

and premultiplying (9.53) by A NZ�1 NX gives

ADAT�y C AD�z D 0:

From the preceding two equations, it follows that

�y D �.ADAT/�1A.DNz � 	 NZ�1e/: (9.56)
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By (9.53) and (9.54), on the other hand, it holds that

�z D �AT�y;

�x D D.Nz � �z/ � 	 NZ�1e:

The preceding three expressions together determine a Newton direction.
Considering that the Newton point, determined along the direction by taking

stepsize 1 probably violates the nonnegative conditions, instead the new iterate is
defined as

Ox D Nx � ˛�x; Oy D Ny � ˛�y; Oz D Nz � ˛�z; (9.57)

with the stepsize ˛ determined by

˛ D � minf˛p; ˛d g; (9.58)

where � 2 .0; 1/ (as a long stepsize performs better than a short stepsize, � D
0:99995 might be taken), and

˛p D minf Nxj =�xj j �xj > 0; j D 1; � � � ; ng;
˛d D minfNzj =�zj j �zj > 0; zj > 0; j D 1; � � � ; ng: (9.59)

Note that the new interior point satisfies conditions (9.46) and (9.47), but only
approximately satisfies (9.48).

Since the iterate is primal and dual feasible, the iteration process can be termi-
nated when the dual gap becomes sufficiently small, e.g., by using the following
criterion:

NxTNz=.1 C jbT Nyj/ < �;

where 0 < � � 1 is a precision tolerance. The end iterate is then regarded as an
approximate optimal solution,

As a key factor, the barrier parameter 	 affects the behavior of the algorithm
greatly, as it determines the magnitude of the “centripetal force”, compared with
that of the “pushing descent force”. It turns out that iterates too close to the central
path are unfavorable, and degrade computational efficiency. For each given 	, it
is only needed to go by one step along the Newton direction. As the bigger the 	

is, the more an iterate bounced back, so it is necessary to decrease 	 gradually as
iterates approach the optimal solution. It is difficult to find an “ideal” way to do so,
however. In this aspect, extensive research has been done, and a number of schemes
have been suggested. Some schemes make the algorithm be of polynomial time
complexity (e.g., Jansen et al. 1996; Kojima et al. 1989; Mizuno et al. 1993; Roos
and Vial 1992 offered an unified analysis).

The first practicable scheme is found in McShane et al. (1989), which decreases
	 monotonically according to the varying dual gap in solution process.
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From (9.57) it is follows that

cT Ox � bT Oy D cT Nx � bT Ny � ı;

So, the decrement of the dual gap is

ı D ˛.cT�x � bT�y/: (9.60)

It is known by A. Nx � �x/ D b that

bT. Ny � �y/ D . Nx � �x/TAT. Ny � �y/;

and by AT. Ny � �y/ C .Nz � �z/ D c that

cT. Nx � �x/ D . Ny � �y/TA. Nx � �x/ C .Nz � �z/T. Nx � �x/:

From the preceding two equalities, it follows that

cT. Nx ��x/�bT. Ny ��y/ D .Nz��z/T. Nx ��x/ D NzT Nx ��zT Nx � NzT�x C�zT�x:

In addition, by (9.54) it holds that

NzT�x C NxT�z D NxTNz � n	:

Combining the preceding two equalities gives

cT. Nx � �x/ � bT. Ny � �y/ D n	 C �zT�x;

which, by omitting the second order term, can be written

�.cT�x � bT�y/ � �cT Nx C bT Ny C n	:

Substituting the preceding to (9.60) leads to

ı � ˛.cT Nx � bT Ny � n	/:

In order for dual gap’s decrement to be positive, therefore, 	 should satisfy

	 < .cT Nx � bT Ny/=n;

at least. On the other hand, too big 	 is not suitable, as may cause numerical
instability. It might be well to take

	 D .cT Nx � bT Ny/=n2:

The overall steps are summarized to the following algorithm.
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Algorithm 9.4.1 (Primal-dual interior-point algorithm). Given 0 < � � 1; � 2
.0; 1/. Initial: interior point . Nx; Ny; Nz/. This algorithm solves the standard LP prob-
lem.

1. Stop if NxTNz=.1 C jbT Nyj/ < � (optimality achieved approximately).
2. Compute 	 D .cT Nx � bT Ny/=n2.
3. Solve system .ADAT/�y D �A.DNz � 	 NZ�1e/.
4. Compute �z D �AT�y; �x D D.Nz � �z/ � 	 NZ�1e.
5. Update Ny; Nz; Nx by (9.57), where ˛ is determined by (9.58) and (9.59).
6. Go to step 1.

Speaking for itself, the so-called “interior points” so far are all feasible ones. As
it is not easy to obtain such an initial one, the application of the primal-dual method
has been restricted, and soon a simple variant of it had been developed.

9.4.2 Infeasible Primal-Dual Method

Terms “infeasible interior point” and “interior point” differ only from that the former
does not necessarily satisfy primal and dual equality constraints. Infeasible primal-
dual (interior-point) method is proposed by Lustig (1990) and Tanabe (1990), who
modify the primal-dual (interior-point) method presented in the previous section,
so that it can get itself started from an infeasible interior point. The basic idea is
somehow like that behind the primal-dual simplex method (Sect. 7.1), but is realized
in different framework.

Assume that the current iterate . Nx; Ny; Nz/ be an infeasible interior point, satisfying
Nx; Nz > 0 but the residuals

rp D A Nx � b; rd D AT Ny C Nz � c

are not equal to 0, in general.
Omitting the second order term �X�z from (9.49) to (9.51) gives the Newton

equation

A�x D rp; (9.61)

AT�y C �z D rd ; (9.62)

NZ�x C NX�z D NX Nz � 	e: (9.63)

Using notation D defined by (9.55), the solution to Newton equation can be written

�y D .ADAT/�1.rp � AD.Nz � rd / C 	A NZ�1e/; (9.64)

�z D rd � AT�y; (9.65)

�x D D.Nz � �z/ � 	 NZ�1e: (9.66)
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In fact, the last two formulas can be derived from (9.62) and (9.63). In addition,
premultiplying (9.63) by A NZ�1 and noting (9.61) gives

A NZ�1 NX�z D �rp C A NZ�1. NX Nz � 	e/;

and premultiplying (9.62) by A NZ�1 NX leads to

A NZ�1 NXAT�y C A NZ�1 NX�z D A NZ�1 NXrd :

Then, (9.64) follows from the above two equations.
Except for different search directions, determination of the new iterate is the

same as that for the primal-dual method. The infeasible primal-dual method also
uses updating formula (9.57), where stepsize ˛ is determined by (9.58)–(9.59), with
� 2 .0; 1/ (usually, � D 0:99995 is taken).

The barrier parameter, determined by Lustig et al. (1991), is

	 D .cT Nx � bT Ny C M/=�.n/: (9.67)

where

 D kA Nx� bk= kAx0 � bk C kAT Ny C Nz � ck=kATy0 C z0 � ck; (9.68)

M D ��.n/ maxf n
max
j D1

jcj j; m
max
iD1

jbi jg; (9.69)

�.n/ D
�

n2; If n � 5;000;

n3=2; If n > 5;000:
(9.70)

An initial interior point (x0; y0; z0) and � are determined by another algorithm (see
discussions following Algorithm1 9.4.3).

The overall steps are put in the following algorithm.

Algorithm 9.4.2 (Infeasible primal-dual interior-point algorithm). Given 0 <

�; �p; �d � 1; � 2 .0; 1/. Initial:. Nx; Ny; Nz/ satisfying Nx; Nz > 0. This algorithm solves
the standard LP problem.

1. Compute rp D A Nx � b; rd D AT Ny C Nz � c.
2. Stop if NxTNz=.1 C jbT Nyj/ < �; rp < �p; rd < �d (optimality achieved

approximately).
3. Solve system .ADAT/�y D rp �AD.Nz�rd /C	A NZ�1e, where 	 is determined

by (9.67).
4. Compute �z D rd � AT�y; �x D D.Nz � �z/ � 	 NZ�1e.
5. Update Ny; Nz; Nx by (9.57), where ˛ is determined by (9.58) and (9.59).
6. Go to step 1.

Theoretically, convergence of the preceding algorithm is not guaranteed, and
there is no device to detect infeasibility or unboundedness either. Nevertheless, this
algorithm performs well, and leads to a even better variant.
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9.4.3 Predictor-Corrector Primal-Dual Method

The Newton equation (9.61)–(9.63), used in the infeasible primal-dual method, is
yielded from (9.49)–(9.51) by omitting the second order term �X�z. Mehrotra’s
(1992) predictor-corrector primal-dual method introduces an additional correction
step, involving the second order term, to improve the search direction (for simplicity,
the prefix “infeasible” will be omitted).

It is noted that the left-hand side of (9.49)–(9.51) is linear in �x; �y; �z,
only the right-hand side involves the second order term �X�z. The system can
therefore be regarded as a implicit one. Thus, one can determine a predictor solution
.�x0; �y0; �z0/ to approximate its solution first, then substitute it to the right-hand
side and solve the resulting system for a corrector solution.

Despite the Newton direction (9.64)–(9.66) is a clear choice for being predictor
solution, Mehrotra uses the solution to the linear system below:

A�x0 D rp;

AT�y0 C �z0 D rd ;

NZ�x0 C NX�z0 D NX Nz;

The only difference between the preceding and the Newton equation is that its right-
hand side no longer involves term �	e. It can be viewed as one derived from the
complementarity condition Xz D 0 rather than Xs D 	e. So, its solution can be
obtained easily from (9.64) to (9.66) by setting 	 D 0, i.e.,

�y0 D .ADAT/�1.rp � AD.Nz � rd //; (9.71)

�z0 D rd � AT�y0; (9.72)

�x0 D D.Nz � �z0/: (9.73)

Substituting �z0 and �x0 to the right-hand side of (9.51), we solve

A�x D rp;

AT�y C �z D rd ;

NZ�x C NX�z D NX Nz C �X 0�z0 � 	e;

to obtain a corrector solution. Only the right-hand sides of the preceding system
and (9.61)–(9.63) differ, hence the derivation of the corrector solution is similar to
that of (9.64)–(9.66), i.e.,

�y D �y0 � .ADAT/�1.A NZ�1�X 0�z0 � 	A NZ�1e/; (9.74)

�z D rd � AT�y; (9.75)

�x D D.Nz � �z/ C NZ�1�X 0�z0 � 	 NZ�1e: (9.76)
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The predictor solution may also be used to determine barrier parameter 	.
Mehrotra (1992) uses the following formula:

	 D .g0= NxTNz/2.g0=n/; (9.77)

where

g0 D . Nx � ˛0
p�x0/T.Nz � ˛0

d �z0/;

˛0
p D 0:99995 minf Nxj =�x0

j j �x0
j > 0; j D 1; � � � ; ng;

˛0
d D 0:99995 minfNzj =�z0

j j �z0
j > 0; j D 1; � � � ; ng:

It is noted that g0 is a predicted dual gap, whereas NxTNz is the current dual gap. Their
ratio (less than 1) may be regarded as a predicted improvement at that iteration. So,
a small 	 is taken when the predicted improvement is significant, while a large 	 is
taken in the other case. This is relevant because small improvement implies that the
tendency toward the “center” should be enhanced.

Mehrotra’s work draws attention of the community immediately. In order
to evaluate the predictor-corrector primal-dual method, compared with the pure
infeasible primal-dual method, Lustig et al. (1992) conducted further numerical
experiments, involving 86 Netlib standard test problems. Their numerical results
indicated that in terms of iteration counts, the former outperformed the latter with
85 out of the 86 problems; and most importantly, in terms of CPU time, the former
defeated the latter with 71 out of the 86, exceeding 82 %. Overall, it is well accepted
that the predictor-corrector primal-dual method is superior to the infeasible primal-
dual method. In order to avoid solving badly-conditioned problems and instability
when iterates are close to an optimal solution, they modified the determination of
the barrier parameter as follows:

Use (9.77) only when NxTNz � 1; otherwise, use

	 D NxTNz=�.n/; (9.78)

where �.n/ is still defined by (9.70).
The overall steps are put in the following algorithm.

Algorithm 9.4.3 (Predictor-corrector primal-dual algorithm). Given 0 <

�; �p; �d � 1; � 2 .0; 1/. Initial:. Nx; Ny; Nz/ satisfying Nx; Nz > 0. This algorithm
solves the standard LP problem.

1. Compute rp D A Nx � b; rd D AT Ny C Nz � c.
2. Stop if NxTNz=.1 C jbT Nyj/ < �; rp < �p; rd < �d (optimality achieved

approximately).
3. Compute 	 by (9.77) if NxTNz � 1; else, by (9.78).
4. Compute �z0; �x0 by (9.71)–(9.73).
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5. Compute �y; �z; �x by (9.74)–(9.76).
6. Update Ny; Nz; Nx by (9.57), where ˛ is determined by (9.58) and (9.59).
7. Go to step 1.

Now turn to how to obtain an initial point for infeasible primal-dual methods
(including the predictor-corrector variant).

An initial infeasible point seems to be quite free to choose. As dispenses
from satisfaction of constraint equalities, however, its quality affects algorithm’s
efficiency greatly. It is accepted that an initial point should be not only nearly primal
and dual feasible, but also as close to the “center” as possible. It turns out that even it
is close to an optimal solution, there is still troublesome with numerical difficulties
if not properly centered. In view of this, Mehrotra (1992) suggests obtaining an
initial point by solving a quadratic programming problem. Subsequently, Andersen
et al. (1996) derive a variant, handling the following convex quadratic programming
problem:

min cTx C .�=2/xTx;

s:t: Ax D b;

where � > 0 is a weight factor. The Lagrange function of the preceding problem is

L.x; w/ D cTx C .�=2/xTx � wT.Ax � b/:

An explicit expression of the solution to rL.x; w/ D 0 is

Nx D .1=�/.AT.AAT/�1Ac � c/:

To be an initial solution, Nx’s components less than some positive number ı is
modified to ı (e.g. ı D 1). An initial dual solution . Ny; Nz/ is determined similarly.

Despite it works well in practice, the above heuristic approach is scaling
dependent, and does not certainly generate a well centered initial point. For
Algorithm 9.4.3, moreover, it is assumed that there exists an optimal solution since
there is no reliable approach to detect infeasibility or unboundedness, as is a serious
drawback to practice.

9.4.4 Homogeneous and Self-Dual Method

The so-called “homogeneous and self-dual method” might be the most efficient
interior-point method at present. It overcomes the two drawbacks of the predictor-
corrector primal-dual algorithm, presented in the previous subsection, by a so-called
“homogeneous and self-dual model”. The model is based on “skew-symmetric
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self-dual artificial model”, introduced by Ye et al. (1994), though it was subse-
quently found that Goldman and Tucker (1956b) and Tucker (1956) studied such
type of models earlier. We will focus on main elements of it here in this subsection;
for more details, the reader is referred to related literatures (e.g., Jansen et al. 1994;
Xu and Ye 1995; Xu et al. 1996).

In stead of the original standard problem (4.1), we begin with the self-dual
problem (4.9), written as

min cT x � bT y;

s:t: Ax � b D 0; x � 0;

�AT y C c � z D 0; z � 0;

(9.79)

which is equivalent to the pair of primal and dual standard problems (4.1) and (4.2),
in the sense that they share the same optimal solutions. We attempt to modify
the preceding homogeneous and self-dual problem to a better “trivial” one, whose
solution is infeasible to the original.

As the expected iterates will satisfy the nonnegative but not the equality
constraints, we add

bT y � cT x � � D 0; � � 0;

to constraints and put the preceding problem to the following problem in variables
.x; y; z; �; �/:

min 0;

s:t: Ax � b� D 0;

�AT y C c� � z D 0;

bT y � cT x � � D 0;

x; z; �; � � 0;

(9.80)

which is related to (9.79) by �; � . According to Theorem 4.3.2, there exists a strictly
complementary optimal solution, say .x�; y�; z�; ��; ��/, to (9.80), which can be
shown to satisfy the following systems:

Xz D 0 �� D 0;

x C z > 0 � C � > 0;
(9.81)

The following can be shown:

(i) Case �� > 0. Then .x�=��/ and .y�=��; z�=��/ are a pair of strictly
complementary optimal solutions to (4.1) and (4.2).

(ii) Case �� D 0. This implies �� > 0, and hence bT y� � cT x� > 0. Thus, at least
one of bT y� > 0 and �cT x� > 0 holds: if bT y� > 0, the primal problem (4.1)
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is infeasible; if cT x� < 0, the dual problem (4.2) is infeasible, and if bT y� > 0

and cT x� < 0, then the pair problems are both infeasible.

The wanted strictly complementary optimal solution to (9.79) can be achieved in
the limit via solving a series of “trivial” problems, modified from (9.80).

To this end, introduce the feasibility and the average complementarity residual
functions:

rp D b� � Ax;

rd D AT y � c� C z;
rg D cT x � bT y C �;

	 D .xT z C ��/=.n C 1/:

(9.82)

Denote by “N�” quantities at a current iterate . Ny; Nx > 0; N� > 0; Nz > 0; N� >

0/. Problem (9.80) is modified by putting the complementarity residual functions
and logarithmic barrier terms in its objective, and laying current residuals in the
place of the right-hand side of the constraints. As in the primal-dual method, the
logarithmic barrier terms are for centering and keeping iterate’s positiveness. The
resulting problem is then

min zT x C �� � �	.0/

nX
j D1

.ln xj C ln zj / � �	.0/.ln � C ln �/;

s:t: Ax � b� D ��Nrp;

�AT y C c� � z D ��Nrd ;

bT y � cT x � � D ��Nrg;

(9.83)

where � 2 Œ0; 1� is called the path parameter. It is note that the current iterate is
feasible to (9.83).

The first optimality conditions for (9.83) is

Ax � b� D �Nrp;

�AT y C c� �z D �Nrd ;

bT y � cT x �� D �Nrg;

Xz D � N	e;

�� D � N	;

x; z; �; � > 0;

(9.84)

Similarly to the primal-dual method, the search direction is determined by
applying Newtons’s method to (9.84). Denoting by  2 Œ0; 1� a predetermined
reduction rate of the path parameter, the resulting Newton equation for the search
direction .�x; �y; �z; ��; ��/ can be written
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:

Setting  D 1 gives a pure centering direction, and setting  D 0 gives an
affine direction. Such a system is solved in each iteration, as constitutes the major
computational task in the method.

Once the Newton direction has been computed, a stepsize is determined by using
the same formulas as in the primal-dual method, so that the new iterates is strictly
positive. Of course, a stopping criteria should be also set conformably.

9.5 Notes

It is known so far that the earliest interior-point algorithm is proposed by famous
mathematician von Neumann in a talk with G.B. Dantzig in 1948 (Dantzig and
Thapa 2003). It is designed, without convergence proof, to generate a feasible
solution to a special LP problem (which turns out to be just Karmarkar standard
problem). An elegant proof was given by Dantzig in a latter to Neumann.

Originally, the logarithmic barrier function was used by Frisch (1955) to design
interior-point methods for solving nonlinear programming problems. Such a non-
linear tool was applied to LP only after publication of Karmarkar algorithm (1984),
inspiring a great upsurge of interior-point methods. It was utilized by the path-
following method to create a search direction, a combination of a descent direction
and a centering direction. In fact, the other interior-point methods presented in this
chapter can also be derived alternatively in such a way (Gill et al. 1985–1986;
Shanno and Bagchi 1990; for some alternatives, see Pan et al. 2006b; Zhang and
Pan 2008).

To explain, we begin with the nonlinear programming problem (9.43). The
gradient and Hassian matrix of its objective function at the current interior point
Nx are, respectively,

rf . Nx/ D c � 	 NX�1e; r2f . Nx/ D 	 NX�2:

It is noted that r2f . Nx/ is positive definite. Setting x D Nx � �x, the problem
becomes one with respect to �x, and the latter can be approximated by the
following strict convex quadratic programming problem:

min f . Nx/ � rf . Nx/T�x C .1=2/�xTr2f . Nx/�x;

s:t: A�x D 0:
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Thus, what needs to do is to find the stationary point of the following Lagrange
function:

L.�x; y/ D �rf . Nx/T�x C .1=2/�xTr2f . Nx/�x � yTA�x;

where y is the Lagrange multiplier vector, by solving system

	 NX�2�x � ATy D c � 	 NX�1e; (9.85)

A�x D 0: (9.86)

It holds by (9.85) that

�x D .1=	/. NX2ATy C NX2c � 	 NXe/; (9.87)

substituting which to (9.86) gives

y D �.A NX2AT/�1A NX. NXc � 	e/:

Then, substituting the preceding to (9.87) leads to

�x D .1=	/ NXP. NXc � 	e/; (9.88)

where P is the projection matrix, defined by (9.26). ��x is the Newton direction
of problem (9.43) at Nx. It is seen by comparing with (9.27) that the vector is just a
positive combination of NXP e and the search direction � NX�x0 D � NXP NXc, used
by the primal affine algorithm.

Assume that the feasible region of the original problem is nonempty. Consider
problem

min
nX

j D1

ln xj ;

s:t: Ax D b;

to which there is an unique optimal solution that can be regarded as the center of the
feasible region. It is not difficult to show that NXP e is just the Newton direction of the
preceding problem at Nx. Therefore, the search direction, defined by (9.88), reflects
a common effect of a “descent force” and a “centering force”. The module of the
barrier parameter determines the proportion of the two tendencies. Proper choices
of the parameter and stepsize lead to algorithms of polynomial-time complexity
(Gonzaga 1987). On the other hand, the search direction tends to the one, used by
the primal affine algorithm, as 	 tends to zero. The latter is not of polynomial-time
complexity.
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With the aid of the same logarithmic barrier function, it is possible to derive the
same search direction, used by Karmarkar algorithm, and the resulting algorithm
is actually equivalent to Karmarkar algorithm if a proper barrier parameter and
stepsize are taken.

As for the dual problem, construct the following nonlinear programming
problem:

max g.y/ D bTy C 	

nX
j D1

ln.cj � aT
j y/;

where aj denotes j -indexed column of A. Introduce

Nz D c � AT Ny:

The gradient and Hassian matrix of the objective function at the current point Ny are
respectively

rg. Ny/ D b � 	A NZ�1e; r2g. Ny/ D �	A NZ�2AT:

The Newton direction is then

�y D �.A NZ�2AT/�1.b=	 C A NZ�1e/;

which is a positive combination of �A NZ�1e and the search direction, used by the
dual affine algorithm, and the former is the Newton direction, somehow pointing
to the neighborhood of the “center” of the dual feasible region of the following
problem:

max
nX

j D1

ln.cj � aT
j y/:

Another nonlinear tool applicable to interior-point method is ordinary differential
equations (ODE). Let us bring up the affine algorithm. Its search direction

�X.I � XAT.AX2AT/�1AX/Xc

actually determines a vector field for the feasible region. Taking it as the right-hand
side, we construct the following autonomous (ODE) system:

dx.t/

dt
D �X.I � XAT.AX2AT/�1AX/Xc; x.0/ D Nx; (9.89)
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where Nx is the initial interior point. To realize the dual affine algorithm, Adler et al.
(1989) define an ODE trajectory, then use the power series numerical integration
of first and second order to gain an optimal solution approximately. They reported
remarkable numerical results.

ODE method is of general significance. For any linear or smooth nonlinear
programming methods, an associated ODE system can be introduced similarly.
Under mild conditions, there exists a trajectory to such a system, whose limit point
is an optimal solution (Pan 1982, 1992a). More precisely, let x.t/; 0 � t <  be the
right-hand half of (9.89)’s trajectory, starting from Nx, such that

x.t/ ! x� as t ! ;

where x� is the optimal solution. It is possible to solve it approximately by an
available numerical integration method.

According to the author’s knowledge, the earliest ODE method is proposed
by Arrow and Hurwicz (1956) for solving equality constraint nonlinear program-
ming problems. There were a number of related papers published subsequently
(e.g., Abadie and Corpentier 1969; Botsaris 1974; Evtushenko 1974; Fiacco and
Mccormick 1968; Tanabe 1977). A common belief seems that the computational
work related to ODE is high, compared with standard methods, such as SQP,
despite Brown and Bartholomew-Biggs (1987) reported very favorable numerical
results with the former. Based on the author’s positive experience with ODE (Pan
1982, 1992b), it is hard to understand why ODE methods fall into neglect in the
academic community. After all, normal line searches are only of the first order,
in certain sense. In fact, taking small stepsizes � in Algorithm 9.2.1 amounts to
carrying out numerical integration with the first order power series method or Euler
method. In particular, realizing a curve search by the second order power series
integration should be amenable to nonlinear programming problems. Based on this
idea, recently Shi and Pan (2011) derived a “higher order” iteration scheme, and the
according algorithms outperformed their conventional counterpart DFP, as well as
BFGS significantly in computational experiments.

Finally, we conclude this chapter with the following remarks.
The interior-point method is so successful that some scholars believe its supe-

riority to the simplex method for solving large-scale sparse LP problems. The
homogeneous and self-dual method has already been implemented in some com-
mercial codes, such as CPLEX (CPLEX ILOG 2007), and deemed as one of the
most powerful methods. Such type of methods can be well parallelized, compared
with the simplex method, parallelization of which is not very successful. Despite all
these points, the interior-point method has been seriously restricted in applications
due to its inherent weakness, as it provides only an approximate optimal solution,
hence needs for additional “purification” in applications requiring an optimal vertex
solution, and can not be “warmly” started, in contrast to the simplex methods, which
can achieve optimality quickly if starts from a final basis reached in a previous
solution process (see, e.g. Bixby and Saltzman 1992). Therefore, the interior-point
method is unamenable to handling ILP problems, as solving such type of problems
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by current methods yields a large amount of correlated linear programs, which can
only be left for the simplex method. As LP is mainly applied to handling integer
problems, consequently it is hard to shake the domination of the simplex method
(Bixby 1994, 2002; Nemhauser 1994).

At present, a race between the simplex method and the interior-point method
seems to continue. No any single method is amenable to all LP problems. As a
result, there are usually multiple options of methods in professional codes. To take
advantages of both types, some scholars first apply the interior-point method, and
then the simplex method (Bixby et al. 1992), though seeming to be too mechanically.
In Chap. 24, we will present recently developed pivotal interior-point methods along
this line in a natural manner.



Chapter 10
Integer Linear Programming (ILP)

The feasible region of the LP model is continuous in the sense that each variable is
restricted to over a continuous interval. If variables are further restricted to integer
values, it becomes an ILP model. As its feasible region consists of discrete points,
ILP model differs from LP model essentially. Seeing that such type of models can
be handled through a series of LP subprograms, and are so rich in practice as form
a major application area of LP computation, this topic is highlighted in this chapter.

Branch-and-bound and cutting-plane methods have been principle tools for
solving ILP models for more than half a century. Both of them deal with the
models by solving a sequence of LP problems by simplex methods. It will be clear
that only finitely many LP problems need to be solved by the former in principle,
whereas the same is proved for a cutting-plane method (Gomory 1958). However,
such finiteness is of theoretical value only. As well-known, the ILP problem is NP-
complete (Cook 1971) and hence generally believed not to be solved in polynomial
time. In practice, any of the methods alone is far from satisfaction, while the latter
is even not competitive to the former in general, despite a variety of cuts suggested
in the past. As a remedy, the so-called “branch-and-cut” scheme combining them is
now widely used to solve ILP problems. We will not go into details here.

In the next section, basic concepts are introduced and a graphic approach to
ILP is illustrated with a 2-dimensional instance. Then, the following two sections
present typical branch-and-bound and cutting-plane methods, respectively. In the
last two sections, new ILP methods, named controlled- branch and controlled-cut,
are developed without any available computational results. An advanced realization
of the former is delayed to Sect. 25.7.

It should be pointed out that the branch-bound and controlled-branch methods
are also applicable to mixed ILP problems, in which the integrity requirement is
only exerted on a part of variables. On the other hand, the presented cutting-plane
and controlled-cut methods are only applicable to pure ILP problems, since they use
so-called “fractional cuts”.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__10,
© Springer-Verlag Berlin Heidelberg 2014
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10.1 Introduction

Denote the largest integer no more than � by x�y and the smallest integer no less
than � by p�q.

A vector or point is called integer if all of its components are integer. The feasible
set of integer points is defined by constraints of the ILP model.

It is assumed that coefficients of the objective function to be minimized are all
integers. Therefore, objective values associated with integer solutions are integer.

Definition 10.1.1. LP relaxation is a LP problem, resulting from an ILP problem
by dropping the integrity requirement on all or part of variables.

Clearly, it is optimal to the ILP problem if an optimal solution to its LP relaxation
is integer. This is not the case in general, of course. Typically, an ILP method solves
the LP relaxation by dropping the integrity requirement on all variables first. If the
optimal solution is integer, then we are done. Otherwise, it solves a series of LP
relaxations associated with ILP subprograms, generated by adding “valid cuts”.

Definition 10.1.2. A valid cut is an inequality, satisfied by all feasible solutions to
the ILP problem but violated by an optimal solution to the associated LP relaxation.

It is noted that a valid cut is closely related to an optimal solution to the LP
relaxation. Adding valid cuts successively would yield iterates having more and
more integer components, and eventually lead to an integer feasible solution. The
Definition may be extended to a valid pair of cuts, used by the branch-and-bound
method.

Definition 10.1.3. A suspected-optimal value is an integral lower bound on the
optimal value of ILP problem.

Let f � be the optimal value of the ILP problem and let Nf be the optimal value of
the associated LP relaxation. It is clear that f � � Nf . Since f � is integer, moreover,
it holds that

f � � p Nf q � Nf :

Therefore, f C D p Nf q is a suspected-optimal value. Suppose that Nf is integral but
the associated solution is not. If the solution is an unique optimal solution, then
f C D Nf C 1 is a better suspected-optimal value, as it is a tighter integer lower
bound on the optimal value of the ILP problem. We introduce the following special
valid cut.

Definition 10.1.4. Objective cut is defined as inequality

cT x � f C;

where f C is a suspected-optimal value.



10.2 Branch-and-Bound Method 277

The use of an objective cut is the key to the proposed new methods. Such doing
is motivated by the observation that f � is often close to Nf , or in other words, there
would be a good chance for ILP problem’s optimal value being equal to f C.

10.1.1 Graphic Approach

The so-called “integer polyhedron” is defined as the convex hull of the feasible set
of the ILP problem. It can be shown that its vertices are integer. Therefore, solving
the ILP model is boiled down to solving the associated LP model over the integer
polyhedron.

We demonstrate by solving the following 2-dimensional example graphically:

min f D �2x1 � 5x2;

.ILP/ s:t: 2x1 C 3x2 � 12;

x1 C x2 � 5;

x2 � 3;

integer x1; x2 � 0:

(10.1)

The associated LP relaxation is just problem (1.2), which was solved graphically in
Sect. 2.3.1. As sketched in Fig. 10.1, the feasible region of the LP relaxation is the
area, enclosed by polygon OABCD. The dots constitute the feasible set of (10.1),
whose convex hull is the shaded area enclosed by polygon OAEFD. So, what should
be done is just to apply the LP graphic approach to the problem over the shaded area.

In the figure, the contour line, corresponding to �2x1 �5x2 D 0, of the objection
function passes through the origin. The objective value decreases from 0 as it shifts
parallel to the upper-right side. It is seen that the farthest possible position, with
respect to the shaded area, is the dashed line corresponding to �2x1 � 5x2 D
�17, passing through the integer vertex E . Thereby, the optimal solution to ILP
problem (10.1) is x�

1 D 1; x�
2 D 3; f � D �17.

As the determination of the integer polyhedron is only conceptional, however,
the graphic approach is impracticable to general ILP problems.

10.2 Branch-and-Bound Method

Integer cut is such an inequality that the associated supperplane passes through an
integer point in an axis and is perpendicular to the axis. For example, xj � 1 or
xj � 6 for some j is an integer cut. If a LP relaxation with feasible region P has
an optimal solution with fractional component Nxj , then integer cuts xj � x Nxj y and
xj � p Nxj q are said to be a valid pair of cuts (associated with xj ). Adding such a
pair of cuts leads to a pair of subprograms with

P \ fx j xj � x Nxj yg and P \ fx j xj � p Nxj qg
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x1

x2
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2x1 + 3x2 = 12
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B

C

x1 + x2 = 5

x2 = 3A E

F

−x1 − 5x2 = 0

−2x1 − 5x2 = −17

Fig. 10.1 Graphic solution to ILP problem (10.1)

as their feasible regions respectively, excluding the area x Nxj y < xj < p Nxj q while
including all feasible integer points. The xj is referred to as cutting variable.

The first branch-and-bound method was proposed by Land and Doig (1960). It
adds valid pairs of cuts successively toward yielding an integer feasible solution, as
described as follows:

Set an initial upper bound Of D C1 on the optimal value f � of the ILP problem.
Solve the associated LP relaxation. If the solution is integer, it is optimal to the ILP
problem. In the other case, add a valid pair of cuts to decompose the ILP problem
to a pair of ILP subprograms (branches): among their end solutions (if any), the one
with less objective value may be declared to be optimal to the original. To this end,
each ILP subprogram is treated in the same way as with the original, and so on.
Such doing yields a number of branches.

A branch is deemed to be fathomed, meaning that it need not be branched any
further because no any better feasible solution to the original ILP problem may be
yielded, as in one of the following cases:

(i) The associated LP relaxation, and hence the ILP subprogram itself, is
infeasible.



10.2 Branch-and-Bound Method 279

(ii) The solution to the associated LP relaxation is integer, and is hence feasible to
the original ILP problem. If the associated objective value, say Nf , is strictly
less than the upper bound, update the latter by Of D Nf .

(iii) It holds that p Nf q � Of , where Nf is the optimal value of the associated LP
relaxation.

The original ILP problem is solved when all branches of a so-called “enumerate
tree” are fathomed.

There are “breadth-oriented” and “depth-oriented” strategies to develop an
enumerate tree. Once a branch is found not fathomed, the former examines the
nearest pending branch (in the same level), whereas the latter decomposes the
branch further to two deeper branches, and examines one of them while leaving
the other pending. The two strategies may be combined in some manner.

Favoured by many authors, the depth-oriented strategy always examines one of
branches at a deeper level, while leaving the other branch pending, until reaching
one fathomed; then, the pending branches are handled one by one, from the nearest
(deepest) to the top level, until all branches are examined. This scheme would still
boom a enumerate tree with unacceptable large number of branches. In fact, it could
perform badly, or even fail to solve some (relatively small) ILP problems in practice.
It has not been possible to find a scheme to guarantee a reasonably good enumerate
tree in general.

The ILP problem (10.1) is used to show details by branch-and-bound method
with depth-orientation.

(1) Set Of D C1. As was known in Sect. 2.3.1, the solution to the associated
LP relaxation is Nx1 D 1 1

2
; Nx2 D 3; Nf D �18. As component Nx1 D 1 1

2
is

noninteger, we add the valid pair of cuts, x1 � 1 and x1 � 2 to generate the
following pair of ILP subprograms

min f D �2x1 � 5x2;

s:t: 2x1 C 3x2 � 12;

.ILP1/ x1 C x2 � 5;

x2 � 3;

x1 � 1;

integer x1; x2 � 0:

min f D �2x1 � 5x2;

s:t: 2x1 C 3x2 � 12;

.ILP 2/ x1 C x2 � 5;

x2 � 3;

x1 � 2;

integer x1; x2 � 0:

It is seen that the intersection of the feasible sets of the preceding pair of
ILP subprograms is empty, whereas the union of them equals the feasible set of
the original ILP problem. Figure 10.2 depicts the two feasible sets, where ILP1
and ILP2 indicate the feasible regions of the LP relaxations, associated with the
subprograms. It is noted that the solution B to the LP relaxation is excluded
from ILP1 \ ILP2.
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x1

x2

O D

+ B

C

x1 + x2 = 5

A E

ILP1 ILP2

Fig. 10.2 Feasible sets for the two ILP subprograms

Thereby, solving ILP problem (10.1) is boiled down to solving subprograms
(ILP1) and (ILP2), separately.

(2) Arbitrarily solve the LP relaxation associated with (ILP2) first (the dual simplex
method is a proper tool – this will be clear later), and let (ILP1) pend. The
solution yielded is Nx1 D 2; Nx2 D 2 2

3
; Nf D �17 1

3
. As Nx2 is noninteger, we use

valid pair of cuts x2 � 2 and x2 � 3 to generate from (ILP2) a deeper level of
two ILP subprograms: (ILP3) by adding x2 � 2, and (ILP4) by x2 � 3.

(3) Then, arbitrarily solve the LP relaxation associated with (ILP3) first, and let
(ILP4) pend. The solution is Nx1 D 3; Nx2 D 2; Nf D �16, which is integer,
and hence is optimal to (ILP3) (and feasible to the original ILP problem). Thus,
(ILP3) is fathomed. As �16 < Of , set Nf D �16.

(4) Solve the LP relaxation associated with pending (ILP4). It is found infeasible.
Therefore, (ILP4) itself is infeasible, and is hence fathomed.

The results of steps 3 and 4 together imply that (ILP2) is fathomed, with its
optimal solution Nx1 D 3; Nx2 D 2; Nf D �16.

(5) Solve the LP relaxation associated with pending (ILP1). The obtained solution
is Nx1 D 1; Nx2 D 3; Nf D �17, which is integer, and is hence optimal to (ILP1).

Finally, a comparison between the two optimal solutions to (ILP1) and (ILP2)
indicates that the latter solution is optimal to the original ILP problem.

Figure 10.3 gives the enumerate tree, showing the sequence of LP relaxations
(1)–(5) handled in the solution process.

The following realizes the according process via the simplex framework.
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(1)

x̄1 = 1 1
2 , x̄2 = 3

f̄ = −18

x1 ≥ 2
(2)

x̄1 = 2 , x̄2 = 2 2
3

f̄ = −171
3

x2 ≤ 2
(3)

x̄1 = 3, x̄2 = 2

f̄ = −16(fathomed)

x2 ≥ 3
(4)

infeasible

(fathomed)

x1 ≤ 1
(5)

x̄1 = 1, x̄2 = 3

f̄ = −17(optimal)

Fig. 10.3 The enumerate tree
to ILP problem (10.1)

Example 10.2.1. Solve ILP problem (10.1) by the branch-and-bound method.

Answer It is solved in tableau form in accordance with the enumerate tree in
Fig. 10.3. Set Of D C1. Convert the problem to the standard form by introduce
slack variable x3; x4; x5. The initial simplex tableau is

x1 x2 x3 x4 x5 RHS

2 3 1 12

1 1 1 5

1 1 3

�2 �5

1. Call simplex Algorithm 3.2.1, yielding

x1 x2 x3 x4 x5 RHS

1 1=2 �3=2 3=2

�1=2 1 1=2 1=2

1 1 3

1 2 18

2. Insert the row, corresponding to �x1 Cx6 D �2, to the preceding as the second
bottom row.
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x1 x2 x3 x4 x5 x6 RHS

1 1=2 �3=2 3=2

�1=2 1 1=2 1=2

1 1 3

�1 1 �2

1 2 18

Convert the preceding to simplex tableau, and call dual simplex Algorithm 4.4.1,
yielding

x1 x2 x3 x4 x5 x6 RHS

1 �1 2

�1=3 1 1=3 1=3

1 1=3 2=3 8=3

�1=3 1 �2=3 1=3

5=3 4=3 52=3

3. Insert the row corresponding to x2 C x7 D 2 to the preceding as the second
bottom row.

x1 x2 x3 x4 x5 x6 x7 RHS

1 �1 2

�1=3 1 1=3 1=3

1 1=3 2=3 8=3

�1=3 1 �2=3 1=3

1 1 2

5=3 4=3 52=3

Convert the preceding to simplex tableau, and call dual simplex Algorithm 4.4.1,
yielding

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=2 �3=2 3

�1=2 1 1=2

1 1 2

1 �1 1

1=2 1 �3=2 1

1 2 16
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which gives a feasible solution to the original ILP problem (fathomed). Set upper
bound Of D �16.

4. Insert the row, corresponding to �x2 C x7 D �3, to the end tableau of step 2 as
the second bottom row.

x1 x2 x3 x4 x5 x6 x7 RHS

1 �1 2

�1=3 1 1=3 1=3

1 1=3 2=3 8=3

�1=3 1 �2=3 1=3

�1 1 �3

5=3 4=3 52=3

Convert the preceding to a simplex tableau, and call dual simplex Algo-
rithm 4.4.1, yielding

x1 x2 x3 x4 x5 x6 x7 RHS

1 �1 2

�1=3 1 1=3 1=3

1 1=3 2=3 8=3

�1=3 1 �2=3 1=3

1=3 2=3 1 �1=3

5=3 4=3 52=3

which indicates that there is no feasible solution to the subprogram (fathomed).

5. Insert the row corresponding to x1 C x6 D 1 to the end tableau of step 1 as the
second bottom row.

x1 x2 x3 x4 x5 x6 RHS

1 1=2 �3=2 3=2

�1=2 1 1=2 1=2

1 1 3

1 1 1

1 2 18
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(1)

x̄1 = 11
2 , x̄2 = 3

f̄ = −18

x1 ≤ 1

(2)

x̄1 = 1, x̄2 = 3

f̄ = −17(optimal)

x1 ≥ 2

(3)

x̄1 = 2, x̄2 = 22
3

f̄ = −171
3(fathomed)

Fig. 10.4 Another enumerate
tree to ILP problem (10.1)

Convert the preceding to a simplex tableau, and call dual simplex Algo-
rithm 4.4.1, yielding

x1 x2 x3 x4 x5 x6 RHS

1 1 1

1 �1 �1 1

1 1 3

1 �3 �2 1

5 2 17

which give a feasible solution to the original ILP problem. A comparison between
it and that of step 3 indicates that it is an optimal solution to the original.

The enumerate tree is not unique. Multiple noninteger components of a current
solution implies multiple choices for a cutting variable (or valid pair of cuts),
and there is two choices for an integer cut once a cutting variable is determined.
Although any choice is eligible in principle, different choices may lead to very
different efficiency. For instance, first handling subprogram (ILP1) rather then
(ILP2) leads to another enumerate tree with less branches (see Fig. 10.4). The
solution Nx1 D 1; Nx2 D 3; Nf D �17 to the LP relaxation associated with (ILP1)
is integer, and hence (ILP1) is fathomed with setting upper bound Of D �17. On
the other hand, the solution to the LP relaxation associated with (ILP2) is reached
at Nx1 D 2; Nx2 D 2 2

3
; Nf D �17 1

3
. As the associated p Nf q � Of , (ILP2) is also

fathomed. Therefore, it is asserted that Nx1 D 1; Nx2 D 3; Nf D �17 is an optimal
solution to the original ILP problem.

Consequently, the ILP problem (10.1) is solved by three calls for LP solver, while
solved by five calls previously, as is a dramatic difference in efficiency. This theme
will be explored in conjunction with the controlled-branch method (Sect. 10.4).
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10.3 Cutting-Plane Method

The cutting-plane method presented in this section does not decompose the ILP
problem, but solves a series of LP relaxations associated with modifications of the
ILP problem. The modifications are made by successively adding valid cuts until
reaching an optimal solution to the original ILP problem.

So, the idea of the method is quite simple. The problem is how to generate good
cuts. Extensive research has been done in this respect. In this section, only so-called
“fractional” cuts are generated from constraints.

Let B D fj1; � � � ; jmg and N D AnB be optimal basis and nonbasis of the
LP relaxation, respectively. Assume that the associated basic optimal solution is
noninteger. Without loss of generality, consider the equation corresponding to i th
row of the optimal simplex tableau, i.e.,

xji C †j 2N Nai;j xj D Nbi ; (10.2)

where Nbi > 0 is noninteger. Introduce following quantities:

0 � ˛i;j D Nai;j � x Nai;j y; 0 < ˇi D Nbi � x Nbi y < 1;

by which, (10.2) can be written

xji C †j 2N .x Nai;j y C ˛i;j /xj D x Nbiy C ˇi > 0:

Converting the preceding by moving the terms with integer coefficients to the left-
hand side and those with fractions to the right-hand side gives

xji C †j 2N .x Nai;j y/xj � x Nbiy D ˇi � †j 2N ˛i;j xj :

For any integer feasible solution x, the left-hand side of the preceding equation is
an integer, hence so is its right-hand side. In addition, since

˛i;j � 0; xj � 0; 8j 2 N;

the right-hand is no more than 0 < ˇi < 1. Therefore, both sides must be an integer
less than and equal to 0, i.e.,

integer ˇi � †j 2N ˛i;j xj � 0: (10.3)

The associated basic optimal solution does not satisfy (10.3). In fact, if it is
substituted to (10.3), the left-hand side becomes ˇi > 0 since all its nonbasic
components are zero. Thus, (10.3) is a valid cut, as, in addition, it does not exclude
all integer feasible solutions.
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The ILP problem is modified by adding such a cut, and the associated LP
relaxation is solved then. If the yielded solution is still noninteger, a new valid cut
is determined, and added to the modified ILP problem, and so on until a yielded
solution is integer, and is hence optimal to the original ILP problem, or infeasibility
is detected.

Example 10.3.1. Solve ILP problem (10.4) by the cutting-plane method.

Answer Call simplex Algorithm 3.2.1, yielding

x1 x2 x3 x4 RHS

1 1=8 �3=8 1=4

1 1=8 5=8 25=4

11=8 7=8 131=4

Arbitrarily take the first row with noninteger right-hand side. The corresponding
equation is

x1 C 1=8x3 � 3=8x4 D 1=4;

or equivalently

x1 C 1=8x3 C .�1 C 5=8/x4 D 1=4:

The preceding can be written

x1 � x4 D 1=4 � 1=8x3 � 5=8x4;

from which the valid cut follows, i.e.,

1=4 � 1=8x3 � 5=8x4 � 0:

Insert the row corresponding to �1=8x3 � 5=8x4 C x5 D �1=4 to the preceding
tableau as the second bottom row, giving

x1 x2 x3 x4 x5 RHS

1 1=8 �3=8 1=4

1 1=8 5=8 25=4

�1=8 �5=8 1 �1=4

11=8 7=8 131=4

which is a dual feasible simplex tableau. Call the dual simplex Algorithm 4.4.1,
yielding
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x1 x2 x3 x4 x5 RHS

1 1=5 �3=5 2=5

1 0 1 6

1=5 1 �8=5 2=5

6=5 7=5 162=5

Arbitrarily take the third row with noninteger right-hand side. The corresponding
equation is

1=5x3 C x4 � 8=5x5 D 2=5;

or equivalently

1=5x3 C x4 C .�2 C 2=5/x5 D 2=5:

The preceding can be written

x4 � 2x5 D 2=5 � 1=5x3 � 2=5x5;

from which the valid cut follows, i.e.,

2=5 � 1=5x3 � 2=5x5 � 0:

Insert the row corresponding to �1=5x3 � 2=5x5 C x6 D �2=5 to the preceding
tableau as the second bottom row, giving

x1 x2 x3 x4 x5 x6 RHS

1 1=5 �3=5 2=5

1 0 1 6

1=5 1 �8=5 2=5

�1=5 �2=5 1 �2=5

6=5 7=5 162=5

which is a dual feasible simplex tableau. Call the dual simplex Algorithm 4.4.1,
yielding

x1 x2 x3 x4 x5 x6 RHS

1 1=2 �3=2 1

1 �1=2 5=2 5

1 1 �4 2

1=2 1 �5=2 1

1=2 7=2 31
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which give an integer solution, an optimal solution to the original ILP problem:

Nx1 D 1; Nx2 D 5; Nf D 31:

If there are multiple noninteger right-hand side of the optimal tableau to the LP
relaxation, so are there multiple choices for constructing a valid cut. Although we
did arbitrarily, it seems to be reasonable to form the cut that cuts deepest into the
feasible region of the LP relaxation.

Let I be the set of row index corresponding to noninteger right-hand side. For
any i 2 I ,

ˇi =
q

†j 2N ˛2
i;j

is the Euclidean distance from the associated solution to the LP relaxation to the
boundary of the area defined by (10.3) (see Sect. 2.1). Unfortunately, the associated
computations are cumbersome. Instead, we may use residuals approximately, as
leads to determining row index i 0 such that

i 0 2 arg max
i2I

ˇi :

10.4 Controlled-Branch Method

As was mentioned, the behavior of the branch-and-bound method is far from
satisfaction, although current commercial or professional ILP codes are all rooted
in it. Initially appeared unrelated and promising, the “additive” method proposed by
Balas (1965) turned out to be a special case of the branch-and-bound method. As an
endeavor to make progress, the method developed in this section uses the objective
cut cT x � f C to control the way in booming an enumerate tree. Recall that the
objective cut is a valid cut, because adding it does not affect the feasible set of the
ILP problem but cutting away the solution to the associated LP relaxation.

Assume that the initial LP relaxation of the ILP problem is solved, and
a suspected-optimal value f C is determined (see the paragraph after Defini-
tion 10.1.3). Adding cut cT x � f C leads to a modified ILP problem, whose LP
relaxation has a nonempty optimal set (see Sects. 2.3 and 25.2), with objective value
f C. The set is called valid set, and each point in it is called valid point. Since an
optimal solution to the initial LP relaxation is a valid point, it is optimal to the ILP
problem if it is integer.

Assume now that it is noninteger. The method determines, and adds a valid pair
of integer cuts to decompose the LP relaxation to two branches. Then, it solves one
of them, while let the other pend. If the obtained optimal solution, if any, is a valid
but noninteger point, it adds another pair of integer cuts to decompose the branch to
two deeper branches, and so on, until meeting one of the following cases:
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(1)

x̄1 = 3/2, x̄2 = 1/2

f̄ = −18

f ≥ −17

(2)

x̄1 = 9/4, x̄2 = 5/2

f̄ = −17

x2 ≥ 3

(3)

x̄1 = 1, x̄2 = 3

f̄ = −17(optimal)

x2 ≤ 2

(4)

(pending)

Fig. 10.5 The controlled
enumerate tree for ILP
problem (10.1)

(i) The optimal solution to the branch is found valid and integer, and hence is
optimal to the original ILP problem.

(ii) The current branch is infeasible, as deemed fathomed.
(iii) The optimal solution to the branch is not valid, i.e., the associated objective

value is strictly higher than f C. This case is deemed “stalled”, meaning that it
is not branched further at the moment.

Then the method solves the pending branches one by one, from the nearest
(deepest) to the top level, until all branches are examined if case (i) does not
occur. This implies that there exists no valid point with the f C. If all branches
are infeasible, so is the ILP problem. Otherwise, determine the solution associated
with the smallest objective value among minimums of the stalled branches. If it is
integer, the solution is optimal to the original ILP problem; otherwise, the suspected-
optimal value f C is updated in accordance with the objective value, and the new
objective cut is formed, and added to the associated branch, and so on, until an
optimal solution to the original ILP problem is found, or infeasibility is detected.

As for how to select a cutting variable and an integer cut to branch deeper, our
scheme is based on the magnitude of their contributions to the optima value, e.g, by
selecting the cutting variable xq such that q 2 arg maxj 2J jcj Nxj j, where J is index
set corresponding to noninteger components of the current solution.

Figure 10.5 gives the enumerate tree associated with ILP problem (10.1):

(1) The LP relaxation of the ILP problem is solved.
(2) From the optimal simplex tableau, it is known that its dual optimal solution

is nondegenerate. According to Corollary 25.2.1, therefore, Nx1 D 3=2; Nx2 D
1=2; Nf D �18 is the only optimal solution to the LP relaxation, as implies that
f � � �17. Set f C D �17 to form the initial objective cut, and add it. The
solution to the resulting LP relaxation is Nx1 D 9=4; Nx2 D 5=2; Nf D �17.
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(3) As j.�2/ 
 .9=4/j D 4:5 < j.�5/ 
 .5=2/j D 12:5, we select x2 as the cutting
variable, and arbitrarily add x2 � 3. The solution to the resulting LP relaxation
is an integer valid point, and is hence optimal to the original ILP problem.

(4) Let the subprogram related to x2 � 2 pend.

The following demonstrates the use of simplex methods in accordance with the
numerate tree in Fig. 10.5.

Example 10.4.1. Solve ILP problem (10.1) by the controlled-branch method.

Answer The optimal simplex tableau of the LP relaxation associated with
the (10.1) is cited from Example 10.2.1, i.e.,

(1)

x1 x2 x3 x4 x5 RHS

1 1=2 �3=2 3=2

�1=2 1 1=2 1=2

1 1 3

1 2 18

(2) Add the row corresponding to objective cut 2x1C5x2Cx6 D 17 to the preceding
as its second bottom row:

x1 x2 x3 x4 x5 x6 RHS

1 1=2 �3=2 3=2

�1=2 1 1=2 1=2

1 1 3

2 5 1 17

1 2 18

Call dual simplex Algorithm 4.4.1, yielding

x1 x2 x3 x4 x5 x6 RHS

1 5=4 �3=4 9=4

�3=4 1 1=4 1=4

1 �1=2 1=2 5=2

1=2 1 �1=2 1=2

0 1 17



10.4 Controlled-Branch Method 291

(3) Add �x2 C x7 D �3 to the preceding, giving

x1 x2 x3 x4 x5 x6 x7 RHS

1 5=4 �3=4 9=4

�3=4 1 1=4 1=4

1 �1=2 1=2 5=2

1=2 1 �1=2 1=2

�1 1 �3

0 1 17

Call dual simplex Algorithm 4.4.1, yielding

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=2 5=2 1

1 �1=2 �3=2 1

1 �1 3

1 1

1 �1 �2 1

1 17

which gives an integer valid point, and hence an optimal solution: Nx1 D 1;

Nx2 D 3; Nf D �17.

In the preceding Example, an optimal solution to the ILP problem is found in the
first valid set. This is not the case with the following ILP problem:

min f D �6x1 � 5x2;

s:t: 5x1 C 3x2 C x3 D 20;

�x1 C x2 C x4 D 6;

(10.4)

integer xj � 0; j D 1; � � � ; 4:

Figure 10.6 gives the enumerate tree created by the controlled-branch method, as
explained as follows:

(1) The optimal solution to the associated LP relaxation is noninteger. (2) The
solution to the LP relaxation, associated with the modification by adding objective
cut f � �32 is valid but noninteger. (3) As j.�6/ 
 .4=7/j < j.�5/ 
 .5 5

7
/j, cut

x2 � 6 is added, yielding a valid but noninteger point, with the branch generated
by adding x2 � 5 pending. (4) The further modification by adding cut x1 � 1 is
infeasible (fathomed). (5) Adding cut x1 � 0 to the ILP subprogram in (3), yielding
an invalid solution (stalled). (6) Adding cut x2 � 5 to the ILP subprogram in (2),
yielding an invalid solution (stalled).

The yielded solution with the smallest objective value among the stalled branches
is that from (6), i.e.,

Nx1 D 1; Nx2 D 5; Nf D �31;

which is integer, and is hence optimal to the original ILP problem.
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(1)

x̄1 = 1/4, x̄2 = 61
4

f̄ = −323
4

f ≥− 32

(2)

x̄1 = 4/7, x̄2 = 55
7

f̄ = −32

x2 ≥ 6

(3)

x̄1 = 1/3, x̄2 = 6

f̄ = −32

x1 ≥ 1

(4)

infeasible

(fathomed)

x1 ≤ 0

(5)

x̄1 = 0, x̄2 = 6

f̄ = −30(stalled)

x2 ≤ 5

(6)

x̄1 = 1, x̄2 = 5

f = −31(optimal)

Fig. 10.6 The controlled
enumerate tree for ILP
problem (10.4)

Once a cutting variable is determined, what to do next is to select an integer cut
from the valid pair of cuts, as is crucial to the method’s efficiency. Although we took
an arbitrary cut previously, it might be clever to select according to some plausible
criteria.

An alternative criteria is to select one that cuts deepest into the feasible region of
the LP relaxation. Assume that J is the index set of noninteger components of the
associated solution Nx. For any j 2 J , ˛j D Nxj � x Nxj y is the distance from Nx to
the boundary of fx j xj � x Nxj yg, and ˇj D p Nxj q � Nxj the distance from Nx to the
boundary of xj � p Nxj q (see Sect. 2.1). Determine j 0 such that

ıj 0 D maxfmax
j 2J

˛j ; max
j 2J

ˇj g:

Then take xj 0 as the cutting variable. If ıj 0 D ˛j 0 , add xj 0 � x Nxj 0y; otherwise, add
cut xj 0 � p Nxj 0q.

Based on the most-obtuse-angle heuristics, a preferable scheme is to select such
an integer cut that its normal direction (pointing to the interior of the half space)
forms the most obtuse angle with the negative objective gradient. More precisely,
it determines index j 0 D arg maxj 2J jcj j, and adds xj 0 � x Nxj 0y if cj < 0, and
xj 0 � p Nxj 0q if cj > 0; in case of a tie, turn to the deepest cutting or the largest Nxj

in module.
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10.5 Controlled-Cut Method

Assume that the optimal solution to the LP relaxation of the ILP problem is
noninteger and the suspected-optimal value is f C.

As in the controlled-branch method, the controlled-cut method firstly adds the
objective cut cT x � f C, and solves the LP relaxation of the modified ILP problem.
If it is integer, the solution is optimal to the ILP problem.

Assume now that the solution is noninteger. As in the cutting-plane method, a
fractional cut is formed and added, and the modified LP relaxation is solved. If the
obtained optimal solution is still noninteger, a fractional or objective cut is added,
depending on whether or not the current solution is a valid point: if it is valid, i.e.,
associated with an objective value equal to suspected-optimal value f C, a fractional
cut is formed and added; if, otherwise, the solution is associated with an objective
value strictly greater than f C, then f C is updated, and the new objective cut is
added. The resulting LP relaxation is solved, and so on, until an integer solution,
hence optimal solution to the original ILP problem attained, or infeasibility detected.

Example 10.5.1. Solve the following ILP problem by the controlled-cut method:

min f D �5x1 C x1;

s:t: �7x1 C x2 C x3 D 4;

2x1 C 5x2 C x4 D 7;

integer xj � 0; j D 1; � � � ; 4:

Answer

1. Call simplex Algorithm 3.2.1, yielding

x1 x2 x3 x4 RHS

37=2 1 7=2 57=2

1 5=2 1=2 7=2

27=2 5=2 35=2

2. Add the row corresponding to objective cut 5x1 �x2 Cx5 D 17 to the preceding
as its second bottom row:

x1 x2 x3 x4 x5 RHS

37=2 1 7=2 57=2

1 5=2 1=2 7=2

5 �1 1 17

27=2 5=2 35=2
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After converting the preceding to the simplex tableau, call dual simplex
Algorithm 4.4.1, yielding

x1 x2 x3 x4 x5 RHS

1 2=27 37=27 751=27

1 1=27 5=27 92=27

1 5=27 �2=27 1=27

1 17

3. Insert the row associated with the fractional cut �2=27x4 � 10=27x5 C x6 D
�22=27, constructed from the first row of the preceding, as the second bottom
row, leading to

x1 x2 x3 x4 x5 x6 RHS

1 2=27 37=27 751=27

1 1=27 5=27 92=27

1 5=27 �2=27 1=27

�2=27 �10=27 1 �22=27

1 17

Call dual simplex Algorithm 4.4.1, yielding

x1 x2 x3 x4 x5 x6 RHS

1 1 7=2 25

1 1=2 3

�1 1 �5=2 2

5 1 �1 1

1 5=2 15

The preceding gives an integer solution, which is an optimal solution to the
original ILP problem, i.e.,

Nx D .3; 0; 25; 1/T ; f � D �15:



Part II
Advanced Topics



Chapter 11
Pivot Rule

A pivot rule1 plays a crucial role in the simplex method for solving the standard LP
problem. Starting from a vertex of the feasible region, geometrically the method
moves from a vertex to adjacent vertex until reaching an optimal vertex. The
related “path” consists of a series of edges (which could vanish in the presence
of degeneracy), joining or be joined end to end. The number of edges, termed the
“length” of the path, is equal to the number of iterations taken by the simplex
method. It is the pivot rule that specifies a edge to move along in each iteration,
and hence determines the number of required iterations, theoretically. Indeed, the
pivot rule is the characteristic or spirit of the simplex method.

Had long been used in practice, Dantzig’s original rule selects a pivot column
index by

q 2 arg min
j 2N

Nzj :

In principle, however, any index associated with a negative reduced cost is eligible to
be chosen, that is, determining any column index q 2 N such that Nzq < 0. The latter
rule can also guarantee non-increase of the objective value, or strict decrease under
nondegeneracy. Multiple choices of a pivot column provide possibility to improve
the efficiency of the simplex algorithm.

As early as at the beginning of the simplex method, Dantzig noted that the
conventional rule was far from ideal, and hopefully devoted to a so-called “most-
improvement rule”. In fact, the decrement of objective value per iteration is not only
dependent on Nzq but also on stepsize ˛. If ˛ is too small, the decrement could be still
small, no matter how Nzq is. In particular, the decrement would even vanish in the

1It is referred to as column pivot rule. After a pivot column is selected, the choice of a row pivot is
very limited.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__11,
© Springer-Verlag Berlin Heidelberg 2014
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presence of degeneracy. In fact, it is known from (3.9) and (3.10) that the decrement
of the objective value is

Nf � Of D �Nzq. Nbp= Nap q/:

The most-improvement rule selects q; p such that the preceding decrement is the
largest possible. Although such a selection seems to be attractive, the related
computational effort is too high to realize. Subsequent numerical experiments
showed that the efficiency of this rule is far lower than that of the conventional rule,
even though the number of required iterations is reduced (Jeroslow 1973; Kuhn and
Quandt 1953).

It is desirable to pursue an “ideal” pivot rule, which specifies the shortest among
paths, joining a given initial vertex to an optimal one. As a hot research topic, pivot
rule has received great attention continuously since the simplex method emerged.
Various pivot rules have been proposed from time to time (see, e.g., Abel 1987;
Greenberg 1978; Pan 1996c; Pan and Ouiang 1993; Pan et al. 2004; Zlatev 1980).
However, all efforts failed to find the “ideal” rule, and it is even unknown whether
there exists such a rule that turns the simplex method to a polynomial-time one.
It seems to be related to the intrinsic characteristic of the simplex framework, as
Schrijver wrote (1986, pp. 141):

The main problem seems to be that the simplex method is ‘myopic’, cannot see ‘cut-off
paths’. It does not find a path which is locally bad but globally good.

It is worse in the presence of degeneracy when the number of superplanes, meeting
at a vertex, exceeds the dimension of the feasible region; consequently, some edges
emanating from the vertex vanish, and the algorithm stalls for too long a time before
exiting the vertex. Most of existing pivot rules, such as the conventional rule, the
most-improvement rule, and the steepest-edge rule presented later, and etc., are all
shown to be infinite, for which some cycling examples are found (see also Zörnig
2006).

Even so, infinite rather than finite rules are put in practical use actually. Judging
goodness of a pivot rule for the simplex method is basically a practical issue:
Rule’s vitality or value is only determined by its performance. Keeping this in
mind, in this chapter, more advantageous pivot rules are presented without touching
their theoretical aspects, such as finiteness and etc. These rules would be the most
powerful ones at present.

For simplicity, it is assumed that the current basis and nonbasis are

B D f1; : : : ; mg; N D fm C 1; : : : ; ng: (11.1)

that is, the basis matrix consists of the first m columns of A.

11.1 Partial Pricing

A normal approach to computing reduced costs used in pivoting is to solve system

BTy D cB (11.2)
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first, then use the solution Ny to calculate reduced costs (pricing), i.e.,

NzN D cN � N T Ny: (11.3)

Computing all components of NzN (full pricing) by the preceding formula requires
.n � m/m multiplications. Thereby, a large proportion of running time is usually
spent on pricing by the simplex method, especially so when n � m � m.

Such situation hastens variants of the conventional pivot rule by a so-called
partial pricing strategy, that is, only a part of components of NzN are calculated in
each iteration to determine a pivot column index. Pricing options in MINOS include
full pricing, sectional pricing and multiple pricing, the last two of which belong to
partial pricing category (see, e.g., Benichou et al. 1977; Chvatal 1983; Maros 2003b;
Nocedal and Wright 1999 and etc.).

As a typical partial pricing, sectional pricing partitions all column indices into
p (e.g., p D 20) sections having approximately equal number of indices. In order
to handle each index equally, the m indices, associated with logical variables, are
approximately equally distributed to the p sections. Started from the first index in
a section, which follows the section from which the previous pivot column index is
selected, pricing is done on the section (excluding basic variables) in each iteration.
If a reduced cost is found in the section that is lower than a dynamically changing
negative threshold, the related index is selected to enter the basis; otherwise, pricing
is continued similarly with the following section, and so on. If all the p sections are
priced and the minimum reduced cost is still greater than the threshold, optimality is
achieved numerically if it is greater than the negative optimality tolerance (normally
�10�6); otherwise, the index associated with the minimum reduced cost is selected
to enter the basis, and its magnitude is recorded. Thereafter, the threshold is
decreased (to, e.g., 0:1 times of itself) whenever the magnitude is not sufficiently
greater than (e.g., 1:1 times of) the threshold. An initial value of the threshold is set
to a very large value (e.g., 1020) by MINOS. So, full pricing is actually carried out
in the first iteration, at least.

Multiple pricing is another partial pricing. Firstly, it determines a small set,
consisting of nonbasic indices, associated with negative reduced costs. Then a pivot
index is determined by some rule, e.g., by choosing an index associated with the
minimum cost among them. If the cost is found is lower than some dynamically
changing negative threshold, enter the according index to the basis. In the next
iteration, computed are only the reduced costs associated with the rest indices in
the set, from which a pivot index is determined, and so on. When all reduced costs
associated with the set are greater than the negative optimal tolerance, a new set of
nonbasic indices is determined, and the preceding procedure is repeated. Optimality
is achieved if no such a set exists.

It is initially anticipated that partial pricing requires more iterations than
full pricing because, after all, the pivot column index, determined by the latter,
corresponds to a smaller cost than the former, and what is hence expected is only
that the overall efficiency is improved due to the reduction of computational effort
per iteration by partial pricing. Surprisingly enough, it turns out that the number of
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iterations, required by partial pricing, is reduced in general, so is the overall running
time (see, e.g., Harris 1973; Pan 1997, 2008c). Extensive numerical experiments
confirm the superiority of partial pricing to full pricing. This fact would suggest
searching for better pivot rules.

11.2 Steepest-Edge Rule

In the second half of the 1980s and the first half of 1990s of the twentieth century,
when interior-point methods were strongly developing, some scholars thought of
such type of methods being superior to simplex methods for solving large-scale
LP problems. During the same period, on the other hand, the simplex methods
got active strength with numerical results on the steepest edge pivot rules (Forrest
and Goldfarb 1992). Consequently, the two types of methods have been being
inextricably involved in a rat race (Bixby 2002; Nemhauser 1994).

As it is assumed that the current basis matrix B consists of the first m columns
of A, the n � m edge directions, emanating from the current vertex, are

d j D
��B�1aj

ej �m

�
; j 2 N; (11.4)

where ej �m 2 Rn�m is the unit vector with its .j � m/th component 1. For each
j 2 N , the reduced cost

Nzj D cj � cT
BB�1aj

is equal to the inner product of the objective gradient c and edge direction d j , i.e.,

Nzj D cTd j ; j 2 N:

If Nzj < 0, then d j is a descent edge direction (Proposition 3.5.1). Thus, Dantzig’s
original rule selects a column index

q 2 arg min
j 2N

Nzj ;

associated with a descent edge direction, along which the according decrement of
the objective value attains the largest for a unit increment in the entering variable.

The following pivot rule uses normalized reduced costs:

Rule 11.2.1 (Steepest-edge column rule) Select column index

q 2 arg minfNzj =kd j k j j 2 N g:
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Since for any j 2 N , Nzj =kd j k and the cosine of angle between c and d j

differ from the same constant factor 1=kck, the preceding rule actually selects a
descent edge direction that forms the largest angle with the objective gradient, as is
why the rule is prefixed by “steepest-edge”. While it is attractive. computing norms
kd j k; 8j 2 N of edge directions is too expensive to realize.

Goldfarb and Reid (1977) offered a scheme, in which kd j k2; j 2 N was
calculated by recurrence formulas in each iteration. Further, they gave several
variants of the rule and reported remarkable numerical results, obtained in extensive
experiments, as received wide attention from the academic community.

The recurrence formulas can be derived based on the basic change, i.e.,

Od p D �.1=�q/d q; (11.5)

Od j D d j � .�j =�q/d q; j 2 N; j ¤ q; (11.6)

where �j denotes entries in the pivot row, i.e.,

�j D aT
j B�Tep; j 2 N; (11.7)

combining which, (11.5) and (11.6) gives the following formulas:

k Od pk2 D .1=�2
q /kd qk2; (11.8)

k Od j k2 D kd j k2 � 2.�j =�q/aT
j v C .�j =�q/2kd qk2; j 2 N; j ¤ q; (11.9)

where

B Naq D aq; BTv D Naq: (11.10)

In fact, only the second system of the preceding is needed to solve because Naq was
already calculated. Moreover, Naq can also be employed to directly compute

kd qk2 D 1 C kNaqk2:

It is thereby seen that updating squares of norms of edge directions involves three
linear systems: besides the two typical systems, another system is

BTh D ep: (11.11)

As Algorithm 3.5.2 also involves B Naq D aq and (11.11), it is only needed to solve
an additional system

BTv D Naq:

In (11.9), in addition, only those inner products aT
j v that correspond to nonzero �j

is needed to calculate. Fortunately, most of �j often vanish in sparse computations.
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Table 11.1 CPU time and ratio

Dynamic Projective
Pivot rule Dantzig Devex Steepest-edge steepest-edge steepest-edge
Hours 110.19 7.76 4.90 4.08 3.89
Time ratio 28.33 1.99 1.26 1.05 1.00

The steepest-edge rule requires more computational effort per iteration but
usually much less iterations. Numerical results with this rule are listed in Table 11.1
(see the first paragraph on page 304 in conjunction with approximate steepest-edge
rules).

A shortcoming is that the rule has to compute squares of norms of edge
directions associated with all nonbasic indices initially. Due to the “restarting
strategy” (Sect. 5.1), such computation must be carried out periodically to avoid
overaccumulation of round errors. Consequently, the rule involves a considerable
amount of computational effort for large-scale problems, especially when it is not
possible to take advantages of computer structure (like Forrest and Goldfarb 1992),
to solve linear systems efficiently. Moreover, it is clear that the partial pricing
strategy is not amenable in such a context.

11.3 Approximate Steepest-Edge Rule

In this section, notations of the previous section will still be used to present three
approximate variants of the steepest-edge rule.

Enlightened on the graphic approach to solving LP problems of 2-dimension,
Harris (1973) proposes an idea of searching along an approximate steepest-edge.
Resulting Devex rule is simple, involving the pivot row and column only, and
performs remarkably in computational experiments (see also Swietanowaki 1998).

Given a set of n � m column indices, termed “reference framework”. For
j 2 N , assume that subvector Od j consists of components, located on the reference
framework; weight tj is endowed to the reduced cost Nzj , as an approximation of
k Od j k.

Rule 11.3.1 (Devex column rule) Select pivot column index

p 2 arg minfNzj =tj j j 2 N g;

where weights tj are determined as follows, so that the preceding rule may be
regarded as selecting the steepest-edge under the reference framework.

Initially, the set of current nonbasic indices is taken as a reference framework.
Set tj D 1 for all indices j in it. As a result, the Devex rule coincides with the
Dantzig’s original rule in the first iteration.
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Weights tj are updated in subsequent iterations. It is clear that (11.5) and (11.6)
are still valid if vectors involved in them are replaced by vectors, consisting of
components located only on the reference framework. Thus, we have the following
updating formulas:

Ntp D maxf1; k Od qk=j�qjg; (11.12)

Ntj D maxftj ; j�j =�qjk Od qkg; j 2 N; j ¤ q; (11.13)

where the last formula comes from using the larger module of vectors

Od j and � .�j =�q/ Od q

to replace the module of their sum

Od j � .�j =�q/ Od q:

Since Naq is obtained independent of weight updating in each iteration, k Od qk is easy
to compute as d q is available. When q does not belong to the reference framework,
on the other hand, k Od qk could become very small even though kd qk � 1. In this
aspect, (11.12) ensures that all weights tj are no less that 1. It is therefore clear that
their weights never decrease even if indices stay in nonbasis for a long time.

When errors, caused by repeatedly using of the updating formulas, accumulate
too high, it is necessary to determine a new reference framework and set all weights
to 1 again. As weight Ntq can be calculated directly, it is convenient to monitor errors
in the process, which should be restarted when the calculated value differs from
the updated value by a relatively large margin, e.g., when the former exceeds some
times of the latter (Harris uses double).

Another scheme is to directly use k Od j k themselves rather than their approxima-
tion Ntj . Since (11.5) and (11.6) are still valid if vectors d j in them are replaced by
subvectors Od j , recurrence formulas for squares of Od j ’s norms can be derived from
(11.8) and (11.9) by replacing d j by Od j . It is still possible to directly compute

k Od qk2 D ı C kNaqk2;

where ı is equal to 1 or 0, dependent on whether q belongs to the reference
framework or not. All Naj involved in the formulas should be regarded as subvectors,
corresponding to the reference framework. Pivot rules using such formulas are
termed projective steepest-edge rule.

A further variant of the projective steepest-edge rule is to expend the reference
framework when resetting it, by adding the index of the current leaving variable to
the reference framework if the index is not already in it. So, only minor changes
are needed in the recurrence formulas. The resulting pivot rule is termed dynamic
steepest-edge rule.
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In Table 11.1, cited are numerical results reported by Forrest and Goldfarb
(1992). There were 20 test problems involved in their tests, including all 14 Netlib
standard test problems that involve more than 10,000 nonzeros and 6 larger and
more difficult problems collected by the authors. CPU times required by five codes
based on Dantzig, Devex, the steepest-edge, dynamic steepest-edge and projective
steepest-edge to solve all the 20 problems are listed in the first row of the table
below. Time ratios of the first four rules to the projective steepest-edge rule are
listed in the bottom row.

It is seen from the preceding that Dantzig’s conventional rule is the slowest while
the projective steepest-edge rule is the fastest for solving these test problems: their
total time ratio is high as 28.33. However, the authors indicate that the tests are
favorable to the last three rules because they take advantages of the structures of
computer IBM RISC system/6000 in pricing and solving systems. These numerical
results firmly establish big superiority of the steepest-edge rule and approximate
steepest-edge rules, such as Devex etc, over the conventional rule.

11.4 Largest-Distance Rule

Like the steepest-edge rule or Devex rule, the so-call “largest-distance rule” is also
based on normalized reduced costs, though simpler and easier to realize.

We attacks from the dual side by investigating (primal) pivot rules from the dual
problem

max g D bT y;

s:t: AT y � c;

to gain some insight. In fact, a negative reduced cost

Nzj Dcj �aT
j B�TcB

implies that the current dual solution Ny D B�TcB violates dual constraint aT
j y �

cj . Entering the associated variable xj to the basis means forcing the violated
dual inequality constraint to be satisfied as a equality (binding), i.e., aT

j y D cj .
Therefore, it seems to be reasonable to enter the variable, associated with the mostly
violated dual constraint, to enter the basis.

It is not surprising that the conventional rule is unsatisfactory, as it takes the
nonbasic variable, associated with the most-negative reduced cost, to enter the
basis, but the variable does not necessarily correspond to the mostly violated dual
constraint. In fact, the signed distance of Ny to the boundary aT

j y D cj is (see
Sect. 2.1)

d D Nzj =kaj k:
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Table 11.2 Iteration and time ratios

Devex/SCL2 Devex/SCL1 SCL2/SCL1

Problem Iters Time Iters Time Iters Time
Netlib(47) 0.26 0.33 0.29 0.34 1.09 1.03
Kennington(16) 1.75 2.18 4.95 4.33 2.84 1.98
BPMPD(17) 1.29 2.33 1.88 3.64 1.46 1.56
Average(80) 1.00 2.06 1.43 3.24 1.43 1.58

Even if Nzj is the most negative, the absolute value of d may still be very small when
kaj k is large, so that the current dual solution is not far from the boundary.

The following rule selects the variable, associated with the mostly violated dual
constraint, to enter the basis (Pan 2008a).

Rule 11.4.1 (Largest-distance column rule) Select pivot column index

q 2 arg minfNzj =kaj kj j 2 N g:

The preceding actually represents a class of pivot rules if kaj k is regarded as any
norm of aj , though the Euclidean norm seems to be preferable.

The computation, associated with the largest-distance rule, is very simple. Norms
kaj k; j D 1; � � � ; n of columns of the coefficient matrix remains unchanged in
solution process. If these norms are calculated at the beginning, the number of
divisions required by the pivot rule will not exceed n � m in each iteration. It is
even better to normalize columns of A before hand, so that the largest-distance rule
is just the same as Dantzig’s rule because any reduced cost Nzj itself is equal to the
signed distance of Ny to the boundary.

In the following, we cite numerical results reported by Pan (2008a). Tests were
carried out on an IBM PC with Windows XP 2002 system, processor 1.86 GHz,
1.00 GB internal storage, about 16 digits precision, and visual Fortran 5.0 compiler.
There were three codes involved:

1. Devex: Devex rule.
2. SCL1: Euclidean norm largest-distance rule.
3. SCL2: 1-norm largest-distance rule.

MINOS 5.51 was used as a platform for the preceding three codes: only pivot
rules are different. All together, there were 3 sets of 80 large-scale sparse problems
were tested (see Appendix B: Tables B.1–B.3):

1. 47 (according to m C n) largest Netlib problems (SCRS8-STOCFOR3).
2. All 16 Kennington problems (KEN07-KEN18).
3. All 17 BPMPD problems larger than 500 KB (in compressed format) (RAT7A-

DBIC1).

Table 11.2 gives iteration and CPU time ratios of these codes:
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It is seen from the bottom row that the total iteration and CPU time ratios of
Devex to SCL1 are 1.43 and 3.24, respectively. Therefore, SCL1 outperformed
Devex significantly. It is more important that the margin of their CPU times required
are larger. SCL2 also defeated Devex with CPU time ratio 2.06. Moreover, it can be
expected that the largest-distance rule using partial pricing will perform better.

As for the two largest-distance rules, SCL1 outperformed SCL2 with iteration
ratio 1.43 and time ratio 1.58. Therefore, the rule using Euclidean norm seems to be
preferable.

Besides the remarkable performance of the largest-distance rule, the author
himself was astonished by the easy realization of it: SCL1 and SCL2 were yielded
from MINOS 5.51 by only inserting a single sentence for normalizing columns of
the coefficient matrix in its scaling subroutine.

11.5 Nested Rule

The nested pivot rule may be classified into the partial pricing category. In particular,
it would be somehow close to multiple pricing (Sect. 11.1). The key difference from
the latter is that the former focuses on, and eliminate the most stubborn nonbasic
indices that do not fulfil the optimality condition (in the sense within the dual
tolerance).

Let � > 0 be dual feasibility tolerance. At the beginning of each iteration, a set
N1 of nonbasic indices is given the priority to enter the basis. Pricing is carried out
on N1 to determine a column index, associated with a negative reduced cost, by,
e.g., the conventional column rule. If the associated reduced cost is less than ��,
then the index is selected to enter the basis, and the N1 for the next iteration is born
from the current N1 by including all its indices, associated with reduced costs less
than ��. In the other case, do the same thing with N2 D N nN1; if there is still no
reduced cost less than ��, then optimality is achieved.

As an instance, the nested variant counterpart of the conventional rule is
described below (Pan 2008b).

Rule 11.5.1 (Nested-Dantzig rule) Given a dual tolerance �. Set N1 D N and
N2 D ;.

1. Go to step 4 if N1 D fj 2 N1 j Nzj < ��g ¤ ;.
2. Go to step 4 if N1 D fj 2 N2 j Nzj < ��g ¤ ;.
3. Stop (optimality achieved).
4. Select a pivot column index q 2 arg minfNzj j j 2 N1g.
5. Update: N1 D N1nq; N2 D N nN1.

Such a rule is prefixed by “nested” because a current set N1, which undergoes
pricing with priority, is a proper subset of its predecessor N1. The idea behind it can
be explained further as follows.
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Table 11.3 Iteration and time ratios to N-Dantzig

Dantzig Devex P-Dantzig N-Devex

Problem Iters Time Iters Time Iters Time Iters Time
Netlib(47) 5.16 5.95 1.20 1.21 4.65 4.00 1.04 0.95
Kennington(16) 5.63 5.65 5.56 5.55 3.51 2.64 1.00 0.91
BPMPD(17) 8.29 12.86 3.83 6.54 5.04 5.20 1.18 1.22
Average(80) 6.78 9.75 3.48 5.73 4.57 4.20 1.10 1.09

In the initial iteration or iterations in which N2 is touched, a full pricing is carried
out. After that, a series of nested pricing’s follow, as might be called a “circle”. As
each N1 is a proper subset of its predecessor in a circle, computational effort for
pricing decreases monotonically iteration by iteration. In the kth iteration of a circle,
moreover, the reduced costs associated N1 are less than �� all the time. Therefore,
it is reasonable to enter such a “die-hard” nonbasic index to the basis.

In fact, the index set N1, yielding from the first iteration, corresponds to
nonnegativity constraints, gradients of which form acute angles with the negative
reduced gradient. Based on the most-obtuse-angle heuristics, one should put forth
effort to make these constraints inactive; in other words, he should give indices
associated with these constraints priority to enter the basis. (see Sects. 2.5 and 5.5).

Any standard pivot rule may be modified to a nested variant. The nested steepest-
edge rule can be obtained from Rule 11.5.1 by using

q 2 arg min fNzj =kd j k j j 2 N1g;

in step 4 of it instead, and the nested Devex rule obtained by using

q D arg min fNzj =tj j j 2 N1g;

(for notations, see Sects. 11.2 and 11.3, respectively).
Fortunately, nested pivot rules are easy to implement. Obtained numerical results

are associated with five codes (Pan 2008c):

1. Dantzig: MINOS 5.51 (full pricing option).
2. Devex: Devex rule.
3. P-Dantzig: MINOS 5.51 (default sectional pricing option).
4. N-Devex: Nested Devex rule.
5. N-Dantzig: Rule 11.5.1.

These codes are all based on MINOS 5.51 as a platform, only differing from
the pivot rule used. The software and hardware environments are the same as those
described in the previous section, as well as the same 80 test problems (Appendix B:
Tables B.1–B.3). Table 11.3 lists total iteration and CPU time ratios of the first four
codes to the fifth (N-Dantzig).

It is seen from the preceding table that for either iterations or CPU time, codes N-
Dantzig and N-Devex, based on the nested pivot rules, are significantly superior to
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the standard ones, and N-Dantzig is the best. N-Dantzig rule outperformed Devex
rule by total iteration ratio 3:48 and time ratio 5:73, and outperformed Dantzig’s
standard rule by total iteration ratio 6:78 and time ratio 9:75!

Further computational experiments were conducted with nested pricing.
Contained in Appendix C, associated numerical results can be outlined below:

For 77 test problems, the nested-Dantzig rule defeated the steepest-edge rule by
total time ratio as high as 25:22, even though the former required more iterations
(total iteration ratio is 0:34). Even the largest-distance rule was not comparable
with the nested-Dantzig rule. However, the nested steepest-edge rule was inferior
to the steepest-edge rule, since the former restarted from scratch too many times. It
should be pointed out that these tests were somehow unfair to steepest-edge rules,
as they neither use recurrence formulas (thus additional two systems were solved in
each iteration), nor take advantage of computer’s structure to solve systems more
efficiently.

In summary, nested pivot rules are superior to their standard counterparts by a
large margin (except for the nested steepest-edge rule), and the nested-Dantzig rule
is superior to the nested Devex rule.

11.6 Nested Largest-Distance Rule

Largest-distance rules can be improved further by incorporating the nestification
tactic, as is easy to realize (Pan 2008c).

Rule 11.6.1 (Nested largest-distance column rule) The same as Rule 11.5.1,
except for its step 4 using the following instead:

q 2 arg minfNzj =kaj kj j 2 N g:

Associated numerical results are as follows, where involved are the following
three codes (Pan 2010):

1. Devex: Devex rule.
2. LDN1: Nested largest-distance rule with Euclidean norm.
3. LDN2: Nested largest-distance rule with 1 norm.

The software and hardware environments are the same as those given in the
previous 2 sections, with the same 80 test problems (Appendix B: Tables B.1–B.3).
Table 11.4 lists total iteration and CPU time ratios.

It is seen that the nested largest-distance rules outperformed Devex rules
unambiguously in terms of either iterations or CPU time. As for the two nested
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Table 11.4 Iteration
and time ratios

Devex/LDN2 Devex/LDN1 LDN2/LDN1

Problem Iters Time Iters Time Iters Time
Netlib(47) 1.20 1.17 1.15 1.16 0.96 0.99
Kenningt(16) 5.63 5.42 7.83 5.77 1.39 1.06
BPMPD(17) 4.32 7.43 5.43 10.17 1.26 1.37
Average(80) 3.69 6.08 4.34 7.27 1.18 1.20

ones, the nested largest-distance rules with Euclidean norm is better, as defeated
Devex rule by iteration ratio 4:34 and time ratio 7:27. The margins are even larger
than that between the nested-Dantzig rule and Devex rule.

In view of comparability of numerical results, reported in Sects. 11.4–11.6, we
conclude that the nested largest-distance rules with Euclidean norm is much better
than all commonly used rules nowadays, at least in terms of the 80 tested problems.
We believe that this is the case in general.



Chapter 12
Dual Pivot Rule

In this book, pivot rules used in the dual simplex method are referred to as dual pivot
rule.1 Like in the primal simplex context, a dual pivot rule is crucial to algorithm’s
efficiency.

Assume that Nx D B�1b 6� 0. The dual Dantzig conventional rule selects a row
index p 2 B such that Nxp is the minimum among components of the basic solution.
Thus, the dual objective value will increase the most possible for a unit stepsize.
This rule is far from ideal, like its primal counterpart. From (4.24) and (4.25), it is
known that the increment of the dual objective value will be

Of � Nf D Nxjp .Nzq= Nap q/:

According to the “most-improvement” criterion, p and q are determined such
that preceding increment attains the largest possible. Unfortunately, the related
computational effort is too high to be practicable, just as its primal counterpart.

This chapter will address some very promising dual pivot rules, which can be
regarded as dual variants of those presented in the previous chapter.

For simplicity, assume again that the current basis matrix consists of the first m

columns of A, i.e.,

B D f1; � � � ; mg; N D fm C 1; � � � ; ng:

1It is referred to as row rule. After a pivot row is selected, there is a very limited choice of a column
pivot.
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12.1 Dual Steepest-Edge Rule

Consider the dual problem

max g D bTy;

s:t: ATy � c:

Let Ny be the current dual basic feasible solution, satisfying

BT Ny D cB ; (12.1)

N T Ny � cN : (12.2)

Define

y.ˇ/ D Ny � ˇhi ;

hi D B�Tei ; i D 1; � � � ; m:

From the preceding two expressions and (12.1), for any i 2 f1; � � � ; mg and ˇ � 0

it holds that

aT
i y.ˇ/ D aT

i Ny � ˇ D ci � ˇ � ci ;

aT
k y.ˇ/ D aT

k Ny D ck; k D 1; � � � ; m; k ¤ i:

It is known that �hi ; i D 1; � � � ; m is a edge direction, emanating from the vertex Ny
of the feasible region fyjATy � cg. The determination of row index i implies that
the basic variable xi leaves the basis, so constraint aT

i y � ci may be satisfied as a
strict inequality. Since

�bThi D �eT
i B�1b D � Nxi ;

when Nxi < 0, the edge direction �hi forms an acute angle with the dual objective
gradient b, as is an uphill direction. Therefore, the objective value will never
decrease if a row index p 2 f1; � � � ; mg is selected such that Nxp < 0; it strictly
increase if dual nondegeneracy is assumed. In particular, the following rule selects
the edge that forms the smallest angle with b (Forrest and Goldfarb 1992).

Rule 12.1.1 (Dual steepest-edge row rule) Select pivot row index

p 2 arg minf Nxi =khi k j i D 1; � � � ; mg:

Like in the primal context, practicability of the preceding rule lies in computing

khi k2; i D 1; � � � ; m:

in a recurrence manner.
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Assume that xp is selected to leave and xq to enter the basis. Then the inverse of
the basis matrix is updated by (3.28), i.e.,

OB�1 D B�1 � . Naq � ep/eT
pB�1

Napq

;

where Naq D B�1aq . Premultiplying the preceding expression by eT
i and transposing

it leads to the recurrence for edge directions, i.e.,

Qhp D .1= Napq/hp; (12.3)

Qhi D hi � . Naiq= Napq/hp; i D 1; � � � ; m; i ¤ p: (12.4)

from which the recurrence formulas for squares of norms of edge directions follow:

k Qhpk2 D .1= Napq/2khpk2; (12.5)

k Qhik2 D khik2 � 2. Naiq= Napq/ui C . Naiq= Napq/2khpk2;

i D 1; � � � ; m; i ¤ p: (12.6)

where

BThp D ep; Bu D hp: (12.7)

Note that khpk2 D .hp/Thp can be directly calculated, because hp and Naq are
obtained otherwise independently.

Computations, involved in Rule 12.1.1, is usually cheaper than that in the
(primal) steepest-edge rule. They both solve an additional system (12.6), hence
Bu D hp. It is noted that formula (11.9) needs to solve BTv D Naq . Differing
from (11.9), which is expensive when pivot row eT

pB�1N is dense, there is no any
inner product involved in the middle term of (12.6). In practice, it is often the case of
n�m � m, in which initially computing squares of norms of edge directions in the
primal rule is cumbersome, compared with in the dual rule. As for taking advantage
of sparsity, handling B�1aj is also inferior to B�Tei .

Now let us turn to the dual problem of form

max g D bTy;

s:t: ATy C z D c; z � 0:
(12.8)

A new pivot rule can be derived if the steepest-edge direction is considered in .y; z/-
space.

It is clear that the dual basic feasible solution

. Ny; NzN ; NzB/ D .B�TcB ; cN � N TB�TcB; 0/
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is actually the unique solution to the .m C n/ 
 .m C n/ system

0
@BT 0 I

N T I 0

0 0 I

1
A
0
@ y

zN

zB

1
A D

0
@ cB

cN

0

1
A

which is, geometrically, a vertex of the polyhedron

f.y; z/ 2 Rm 
 Rn j ATy C z D c; z � 0g:

The inverse of the coefficient matrix of the system is

0
@ B�T 0 �B�T

�N TB�T I N TB�T

0 0 I

1
A

It is easy to verify that the last m columns of the preceding are just edge directions,
emanating from the vertex, i.e.,

hi D
0
@ �B�T

N TB�T

I

1
A ei ; i D 1; � � � ; m: (12.9)

Recurrence formulas of these edge directions are of the form (12.3) and (12.4), and
squares of norms of them are of form (12.5) and (12.6), though (12.7) should be
replaced by

BTh D ep; Bu D h C
nX

j DmC1

�j aj ; (12.10)

where �j is the j th component of the pivot row vector, i.e.,

� D ATh: (12.11)

As � is computed while pricing, the following quantity

khpk2 D hTh C �T�: (12.12)

can be directly computed.
In this book, the pivot rule, based on (12.5)–(12.7), is referred to as dual steepest-

edge pivot rule I, and that based on (12.5), (12.6) and (12.10)–(12.12) referred to
as dual steepest-edge pivot rule II. Associated numerical results will be given in
Table 12.1 in the next section, in a comparison with according approximate rules
there.
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12.2 Approximate Dual Steepest-Edge Rule

Harris (1973) derived a dual variant of the Devex rule, as may be regarded as an
approximation of the dual steepest-edge rule II.

She constructed a “reference framework”, a set of m indices of components
of z. Assume that subvector Ohi consists of components, located on the reference
framework, of edge direction hi. Weights si ; i D 1; � � � ; m are endowed to Nxi to
approximate k Ohik.

Rule 12.2.1 (Dual Devex row rule) Select pivot row index

p 2 arg minf Nxi =si ji D 1; : : : ; mg;

where weights si ; i D 1; : : : ; m are determined as follows, so that the rule can
be regarded as an approximation of the steepest-edge rule under the reference
framework.

At the beginning, index set B is taken as the reference framework, and si are set
to 1 for all i D 1; : : : ; m (see (12.9)); So, the dual Devex rule is just the same as the
dual Dantzig rule in this case. Subsequently, si are updated iteration by iteration.
Assume that � is defined by (12.11), and components, located on the reference
framework, form subvector O� . As (12.3) and (12.4) are still valid when vectors in
them are replaced by subvectors, consisting of components located on the reference
framework, we have the following updates:

Nsp D maxf1; k O�k=j Napq jg;
Nsi D maxfsi ; j Naiq= Napq jk O�kg; i D 1; � � � ; m; i ¤ p;

the last of which comes from using the larger norm of vectors Ohi and �. Naiq= Napq/hp

instead of the norm of their sum (see (12.9)). In each iteration, Naq D B�1aq is
computed separately. As � is available, k O�k can be computed directly.

Similar to the (primal) Devex rule, when errors caused by repeatedly using of the
updating formulas accumulate too high, it is necessary to determine a new reference
framework and set all weights to 1 again. As weight Ntq is calculated directly, it is
convenient to monitor errors. It should be restarted when the calculated value differs
from the updated value by a relatively large margin, e.g., when the former exceeds
some times of the latter (Harris used double).

When errors, caused by repeatedly using of the updating formulas, accumulate
too much, it is necessary to determine a new reference framework and set all weights
to 1 again, just like the approximate steepest-edge rules. It is also possible to monitor
errors: the process should be restarted when the calculated value of k O�k differs from
the updated value sp by a relatively large margin.
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Table 12.1 CPU time and ratio

Steepest- Dynamic Projective Steepest-
Dual pivot rule Dantzig Devex edge II steepest-edge steepest-edge edge I
Hours 177.78 67.43 12.72 10.41 7.36 6.36
Time ratio 27.95 10.60 2.00 1.64 1.16 1.00

So-called dual projective steepest-edge rule results from using k Ohik rather than
Nsi . This rule also yields from modifying the dual steepest-edge rule under the
reference framework. In fact, replacing hi in (12.5) and (12.6) by Ohi leads to
recurrence formulas of k Ohik2, whereas u in (12.6) can be obtained by solving system

Bu D
nX

j DmC1

O�j aj :

A further variant of the dual steepest-edge rule results from expending the
reference framework whenever it is reset, that is, by adding the pivot column
index to the current reference framework if it is not in it already. Accordingly, the
recurrence formulas are modified slightly. Such a variant is called dual dynamic
steepest-edge rule.

We cite numerical results reported by Forrest and Goldfarb (1992) below. The
hardware and software environments as well as 20 test problems were the same as
those described for the primal case, presented in Sect. 11.3. Codes based on six dual
rules: Dantzig, Devex, steepest-edge II, dynamic steepest-edge, project steepest-
edge and steepest-edge I were tested. Table 12.1 gives total CPU times, required for
solving all the problems, in the first row, and time ratios of the first five rules to the
dual projective steepest-edge rule in the second row.

It is seen from the preceding table that the dual Dantzig rule is the slowest
whereas the dual steepest-edge rule I is the fastest, with time ratio as high as 27.95,
though the tests are favorable to the last four rules because they take advantages
of the structures of computer IBM RISC system/6000 in pricing and solving
systems.

In terms of reported numerical results, the dual rules appear to be inferior to
their primal counterparts slightly (see Tables 11.1 and 12.1). However, Forrest and
Goldfarb indicate that these data are unfair to the dual rules, because their primal
codes were optimized while the dual ones were not; the numbers of hours required
by the last four codes in Table 12.1 should be reduced by 10 % at least, though
decrements of the dual Dantzig and Devex are not as so much. Therefore, the dual
rules are actually efficient, compared to their primal counterparts.

The steepest-edge rule and Devex approximates as well as their dual variants are
superior over the standard rules with large margins, and are widely used in many
commercial codes, such as CPLEX.
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12.3 Dual Largest-Distance Rule

This section derive a dual variant of the largest-distance rule (Sect. 11.4). The basic
idea is to determine a leaving variable by finding an inequality constraint, mostly
violated by the current solution in the reduced space.

Let B D f1; � � � ; mg; N D AnB be the current basis and nonbasis of the
standard problem (1.8). Assume that the associated simplex tableau is dual but not
primal feasible, i.e., Nb D NxB 6� 0.

For some i 2 B , the inequality Nxi < 0 implies that the solution, NxN D 0, in the
reduced space violates constraint

Nbi � .wi /TxN � 0;

where Nb D B�1b and

wi D N TB�Tei :

The signed distance from point NxN D 0 to the boundary Nbi � .wi /TxN D 0 is
Nxi =kwi k, where any norm is allowed in principle though the Euclidean norm might
be preferable.

The dual Dantzig conventional rule is

p 2 arg minf Nxi ji D 1; � � � ; mg;

which does not necessarily correspond to the mostly violated inequality constraint,
since the according distance would be very small when kwpk is large, as the point
NxN D 0 may not far away from the boundary actually. So, it should not be expected
that this rule performs satisfactorily.

If one determines a leaving variable that corresponds to the mostly violated
inequality constraint, the following rule follows.

Rule 12.3.1 (Dual largest-distance row rule) Select a pivot row index

p 2 arg minf Nxi=kwi k j i D 1; � � � ; mg:

Involving kwi k, the preceding rule is cumbersome, compared with the (primal)
largest-distance rule. Like in the primal context, however, kwi k2; i D 1; � � � ; m can
be computed recursively, so that the rule would be still practicable.

Consider the set of n-dimensional vectors

�i D ATB�Tei ; i D 1; � � � ; m:

Note that wi is an .n � m/-subvector of �i for any i D 1; : : : ; m. Assume that
xp leaves and xq enters the basis, then it is not difficult to derive the following
recurrence relation:
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Q�p D .1= Napq/�p;

Q�i D �i � . Naiq= Napq/�p; i D 1; � � � ; m; i ¤ p:

where pivot column Naq D B�1aq is available. Further, recurrence formulas of
squares of their norms can be obtained, i.e.,

k Q�pk2 D .1= Napq/2k�pk2;

k Q�i k2 D k�i k2 � 2. Naiq= Napq/�iT
�p

C. Naiq= Napq/2k�pk2; i D 1; � � � ; m; i ¤ p;

combining which, �iT
�p D eT

i B�1N�p and k�i k2 D kwi k2 C 1 leads to the
required formulas

k Qwpk2 D .1= Napq/2.k.wpk2 C 1/ � 1; (12.13)

k Qwi k2 D kwi k2 � 2. Naiq= Napq/ui (12.14)

C. Naiq= Napq/2.kwpk2 C 1/; i D 1; � � � ; m; i ¤ p;

where

Bu D
nX

j DmC1

�j aj ;

and �j is the j th component of �p (i.e., the .j � m/th component of wp). Note
that components of wp are available entries of the pivot row, and hence kwpk2 D
.wp/Twp can be calculated directly.

12.4 Dual Nested Rule

This section derives a dual variant of the nested rule (Sect. 11.5). Regarding negative
components of the primal basic solution as elimination target, it focuses on the most
stubborn ones among them.

Let � > 0 be primal feasibility tolerance. At the beginning of an iteration, a set I1

of row indices is given the priority for associated basic indies to leave the basis. A
row index in I1, associated with the smallest component of NxB , is determined. If the
component is less than ��, then the corresponding basic index is selected to leave
the basis, and the I1 for the next iteration is born from the current I1 by including all
its row indices, associated with NxB ’s components less than ��. In the other case, do
the same as before with I2 D BnI1; if there is still no basic components less than
��, then optimality is attained.

The following is a nested variant of Dantzig conventional dual rule.
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Rule 12.4.1 (Dual nested row rule: Dantzig) Given primal tolerance � > 0. Set
I1 D B and I2 D ;.

1. Go to step 4 if I1 D fi 2 I1 j Nxi < ��g ¤ ;.
2. Go to step 4 if I1 D fi 2 I2 j Nxi < ��g ¤ ;.
3. Stop (optimality achieved).
4. Select a pivot row index p 2 arg min f Nxi j i 2 I1g.
5. Update: I1 D I1np; I2 D BnI1.

In the first iteration or iterations in which I2 is touched, the preceding rule
actually proceeds the same as the standard dual row rule. After such an iteration,
a series of iterations with nested pivoting follow, as might be called a “circle”,
where each I1 is a proper subset of its predecessor. In the kth iteration of a circle,
basic components associated with I1 are less than �� all the time. It is therefore
reasonable to select such a stubborn one to leave the basis.

It is possible to turn any full dual rule to a nested version. The dual nested
steepest-edge rule can be obtained from Rule 12.4.1 by using

p 2 arg min f Nxi =khi k j i 2 I1g

in step 4 of it instead, the dual nested Devex rule obtained by using

p 2 arg minf Nxi =si j i 2 I1g

and the dual nested largest-distance rule by using

p 2 arg minf Nxi=kwi k j i 2 I1g

(see relevant sections for notations).
In view of the performance of their primal counterparts, it might be expected that

the dual nested rules and the dual nested largest-distance rules perform satisfactorily.
The dual nested rules are easy to implement, fortunately. However, there is no any
computational experience at present.



Chapter 13
Simplex Phase-I Method

The tableau simplex algorithm requires a feasible simplex tableau to get itself
started, whereas the revised simplex algorithm starts from a feasible basis or its
inverse. The task of a Phase-I method is to provide such a starting point to Phase-II
for achieving optimality. Such a two-Phase methodology has been successful in
practice, compared with one-Phase, like the big-M.

Not have been used in practice, the artificial-variable method, presented in
Sect. 3.3, is usually seen in textbooks only, because it is so rigid that there is no much
choice for an initial basis, as the basis has to involve all the artificial variables, let
alone expending problem’s scale. Moreover, some cumbersome treatment has to be
carried out subsequently after zero optimal value of the auxiliary program is attained
but there are still artificial variables remanning basic.

This chapter will focus on practicable Phase-I methods, which are artificial
variable free, or involves a single artificial variable only (for further references, see
Pan 1994b; Pan and Li 2003; Pan et al. 2004).

For simplicity of exposition, the conventional pivot rule will be utilized in this
chapter. Nevertheless, it is preferable to use the nested largest-distance rule instead,
although all rules presented in Chap. 11 are applicable for Phase-I.

13.1 Infeasibility-Sum Method

The auxiliary objective function of this method only involves variables, associated
with negative components of the current basic solution. The method is widely used
in practice, as it is artificial variable free, and performs remarkably.

Assume that an initial simplex tableau of form (3.18) is available, associated with
basic solution

NxB D Nb; NxN D 0: (13.1)

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__13,
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Introduce notation

I D fi D 1; � � � ; m j Nbi < 0g; NI D f1; � � � ; mgnI: (13.2)

Assume that I ¤ ;. Construct the following auxiliary program:

min �Pi2I xji ;

s:t: xB D Nb � NN xN ;

xji � 0; i 2 NI I xj � 0; j 2 N;

(13.3)

where the objective function, called “infeasibility-sum”, is the negative sum of
variables, associated with negative components of the basic solution. Note that the
constraint system of the auxiliary program is the same as that of the original prob-
lem, except the nonnegativity restriction is only imposed on variables, associated
with nonnegative components of the basic solution.

It is clear that solution (13.1) is feasible to the auxiliary program. The associated
feasible simplex tableau can be obtained by eliminating nonzero entries in the
objective row by relevant elementary transformations. Consequently, the reduced
objective function is

�
X
i2I

xji D w0 C NzT
N xN ; (13.4)

where

w0 D �
X
i2I

Nbi > 0; Nzj D
X
i2I

Nai;j ; j 2 N:

The positiveness of objective value w0 comes from (13.2).

Theorem 13.1.1 (Infeasibility test). If reduced costs of an auxiliary simplex
tableau are all nonnegative, the original problem is infeasible.

Proof. Assume that NzN � 0, and Qx � 0 is a feasible solution to the original problem.
Substitute Qx to (13.4) results in a system, whose left-hand side is clearly less than
or equal to zero, and, by w0 > 0 and NzN � 0, the right-hand side is strictly greater
than zero, as is a contradiction. Therefore, the statement is valid. ut

If there is a negative reduced cost, then any existing column rule applies. Assume
that a column index q was determined such that

Nzq D
X
i2I

Naiq < 0: (13.5)

As there is no nonnegativity restriction on current infeasible basic variables, the
auxiliary program could be unbounded even if the original problem itself bounded.
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In fact, it is the case when NI D ; or the following condition holds:

fi 2 NI j Naiq > 0g D ;: (13.6)

Thus, the conventional row rule is not applicable. To overcome this difficulty, it is
modified as follows.

Rule 13.1.1 (Auxiliary row rule) Determine a row index p such that

˛ D Nbp= Napq D
�

minf Nbi= Naiqj Naiq > 0; i 2 NI g; if fi 2 NI j Naiq > 0g 6D ;;

maxf Nbi= Naiqj Naiq < 0; i 2 I g; otherwise
(13.7)

It will be seen a little later the bonus, yielding from use of “max” in the second
expression of (13.7).

Lemma 13.1.2. Assume that the selected column index q satisfies (13.5). Then
rule 13.1.1 determines a row index p such that the simplex tableau, resulting from
the according basis change, is feasible to the auxiliary program.

Proof. First, it can be asserted that there is a row index t 2 I such that Natq < 0;
because otherwise from

Naiq � 0; 8i 2 I;

it follows that

X
i2I

Naiq � 0;

which contradicts the assumption (13.5). Therefore, the second expression of (13.7)
is always well-defined, hence so is the row rule.

Take Napq as the pivot. Executing according elementary transformations leads
to a new simplex tableau, whose right-hand side can be expressed in terms of its
predecessor’s entries (see (3.14)), i.e.,

Obi D Nbi � ˛ Naiq; i 2 NI ; i ¤ p;

Obp D ˛;

where ˛ is determined by (13.7). It is easy to verify that these components are all
nonnegative, hence the resulting simplex tableau is again feasible to the auxiliary
program. ut
Theorem 13.1.3. Assume feasibility of the original problem and nondegeneracy
throughout solution process. The number of basic infeasible variables strictly
decreases in finitely many iterations.
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Proof. It is seen from the proof of Lemma 13.1.2 that the second expression
of (13.7) is still well-defined if “max” there replaced by “min”, i.e.,

˛1
4D Nbs= Nasq D minf Nbi= Naiqj Naiq < 0; i 2 I g > 0: (13.8)

If, in some iteration, the stepsize ˛ is determined by the first expression of (13.7),
and it holds that

˛ � ˛1; (13.9)

then the component, associated with row index s, of the new solution satisfies

Oxjs D Nbs � ˛ Nasq � 0;

which implies that a basic infeasible variable becomes feasible, at least.
If, in some iteration, the second expression of (13.7) is used, then, for the new

solution, not only the basic components, associated with all row indices i 2 NI , are
feasible, but so are basic components, associated with row indices

s 2 fi 2 I j Naiq < 0g ¤ ;:

This is of course favorable.
Assume that the number of basic infeasible variables does not strictly decreases

forever. In each iteration, there is always a negative cost since the original problem
is feasible (Theorem 13.1.1), and the stepsize ˛ is determined by the first expression
of (13.7), which does not satisfy (13.9). But the number of basis is finite, hence there
are some bases appear infinitely, as cycling occurs. This is impossible because the
objective value of the auxiliary program strictly decreases under the nondegeneracy
assumption. Therefore the number of basic infeasible variables strictly decreases in
finitely many iterations. ut

When, after some iteration, the number of basic infeasible variables strictly
decreases, but does not vanish, a new auxiliary program is constructed, whose
objective function (infeasibility-sum) involves less variables than its predecessor,
and iterations are carried out, until infeasibility of the original problem is detected
or a feasible simplex tableau is reached. Involving a series of infeasibility-sums as
objective functions in general, this method is sometimes referred to as method with
piecewise sum of infeasibilities.

The overall steps is put in the following algorithm.

Algorithm 13.1.1 (Tableau Phase-I: infeasibility-sum). Initial: simplex tableau
of form (3.18). This algorithm finds a feasible simplex tableau by handling auxiliary
programs of form (13.3).

1. Stop if Nbi � 0; 8i D 1; � � � ; m (a feasible simplex tableau reached).
2. For all j 2 N , compute Nzj D P

i2I Nai;j , where I D fi D 1; � � � ; m j Nbi < 0g.



13.1 Infeasibility-Sum Method 325

3. Stop if NzN � 0 (the original problem is infeasible).
4. Form a simplex tableau to the auxiliary program (13.3).
5. Carry out a single iteration of simplex Algorithm 3.2.1, in which Rule 13.1.1 is

used for row pivoting instead.
6. Go to step 1.

Example 13.1.1. Solve the following problem by Algorithm 13.1.1 in Phase-I:

min f D �x1 C x2 � 2x3;

s:t: x1 � 3x2 � 2x3 C x4 D �4;

x1 � x2 C 4x3 � x5 D 2;

�3x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; � � � ; 6:

Answer Phase-I. Multiply the second equation by �1 to turn the coefficient of x5

to 1. Setting I D f1; 2g, construct auxiliary program

min f D �x4 � x5;

s:t: x1 � 3x2 � 2x3 C x4 D �4;

�x1 C x2 � 4x3 C x5 D �2;

�3x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; 2; 3; 6:

Its initial tableau is

x1 x2 x3 x4 x5 x6 RHS
1 �3 �2 1 �4

�1 1 �4 1 �2

�3 1 1 1 8

�1 �1

Respectively add the first and the second row to the objective row to eliminate
the nonzero basic entries, yielding simplex tableau

x1 x2 x3 x4 x5 x6 RHS
1 �3 �2 1 �4

�1 1 �4 1 �2

�3 1 1* 1 8

�2 �6 �6

Iteration 1:
q D 3I minf8=1g D 8; p D 3. So 1 in the x3 column and the third row is the

pivot. Add 2; 4; 5 times of row 3 to rows 1,2,4, respectively.
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x1 x2 x3 x4 x5 x6 RHS
�5 �1 1 2 12

�13 5 1 4 30

�3 1 1 1 8

�18 4 6 42

The right-hand side of the preceding tableau is nonnegative, hence Phase-I is
finished. To go to Phase-II, use coefficients of the original objective function to
cover the bottom (objective) row.

x1 x2 x3 x4 x5 x6 RHS
�5 �1 1 2 12

�13 5 1 4 30

�3 1 1 1 8

�1 1 �2

Add 2 times of row 3 to the bottom row to eliminate nonzero basic entries,
obtaining feasible simplex tableau

x1 x2 x3 x4 x5 x6 RHS
�5 �1 1 2 12

�13 5 1 4 30

�3 1 1 1 8

�7 3 2 16

Carry out Phase-II from the preceding tableau. By the conventional rule, x1

column is selected as the pivot column. All components of this column are
nonpositive, as detects unboundedness of the original problem.

In practice, used is usually the following revised version of Algorithm 13.1.1.

Algorithm 13.1.2 (Phase-I: infeasibility-sum). Initial: .B; N /; B�1; NxBDB�1b.
This algorithm finds a basic feasible solution to the standard LP problem by
handling auxiliary programs of form (13.3).

1. Stop if NxB � 0 (producing a basic feasible solution).

2. Construct cB :cji D
� �1, If Nxji < 0,

0, If Nxji � 0,
i D 1; � � � ; m:

3. Carry out a single iteration of Algorithm 3.5.1 (or 3.5.2), in which Rule 13.1.1 is
used for row pivoting.

4. Stop if it terminates as step 3 (or step 2) (the original problem is infeasible).
5. Go to step 1.
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13.2 Single-Artificial-Variable Method

Although the infeasible-sum method is artificial variable free, the row pivot rule
used in it is cumbersome, compared with the normal row rule. This section describes
a method, which uses the normal row rule and only involves a single artificial
variable.

Let .B; N / be basis and nonbasis of the standard problem (1.8). There are two
schemes for the method.

Scheme 1. The auxiliary program is based on the original data of the problem.
Given m-dimensional vector h � 0 such that b � Bh ¤ 0. Introducing artificial

variable xnC1 and normalized vector

anC1 D .b � Bh/=kb � Bhk; (13.10)

construct the following auxiliary program

min xnC1;

s:t: Ax C anC1xnC1 D b; x; xnC1 � 0:
(13.11)

It is easy to verify that

NxB D h; NxN D 0; NxnC1 D kb � Bhk

is a feasible solution to the program, though not necessarily a basic solution. For
instance, setting h D e > 0 seems to be helpful to avoid zero stepsize, though
according anC1 would loose sparsity.

The constraint system of the auxiliary program is equivalent to

xB D Nb � NanC1xnC1 � NN xN ; (13.12)

where

Nb D B�1b; NanC1 D B�1anC1; NN D B�1N: (13.13)

If Nb � 0, then xnC1 is clearly allowed to be zero. Thus, erasing the artificial variable
leads to a basic feasible solution to the original problem; otherwise, the following
applies.

Proposition 13.2.1. If Nb 6� 0, row index set fi D 1; � � � ; m j Nai;nC1 < 0; Nbi < 0g is
nonempty.

Proof. We show that if Nbi < 0 for some i 2 f1; � � � ; mg, then Nai;nC1 < 0. Assume it
is not the case, i.e.,

Nai;nC1 � 0:
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Then from the preceding, (13.10) and (13.13) it is known that

0 � Nai;nC1 D eT
i B�1anC1 D eT

i B�1.b � Bh/=kb � Bhk D . Nbi � hi /=kb � Bhk;

hence Nbi � hi � 0, as a contradiction. ut
Now assume Nb 6� 0. If NxN D 0 is fixed and the value of NxnC1 decreases from

kb � Bhk, then NxB changes from h accordingly. If Nbi < 0 for some i 2 f1; � � � ; mg,
the according inequality constraint may block-up the value of NxnC1 from decreasing
to zero. In fact, the smallest xnC1 value, satisfying inequalities

xB D Nb � NanC1xnC1 � 0; xnC1 � 0;

is

˛ D Nbr= Nar;nC1 D minf Nbi= Nai;nC1 j Nai;nC1 < 0; Nbi < 0; i D 1; � � � ; mg > 0: (13.14)

As the value of NxnC1 decreases, the according value of Nxjr hits 0 first. Let xj r leave
and xnC1 enter the basis, then the resulting basis corresponds to a basic feasible
solution to the auxiliary program, with its objective value strictly decreases. As it is
lower bounded, solving the auxiliary program will render its optimal solution.

It is not difficult to show that a basic feasible solution or basis to the original
problem can be obtained if the optimal value of the auxiliary program is equal to
zero (xnC1 leaves the basis). The original problems is infeasible if the optimal value
of the auxiliary program is positive.

Scheme 2. The auxiliary program is based on a canonical form of the constraint
system.

Assume that the canonical form, associated with basis B , is available and that
Nb D B�1b 6� 0. Giving m-dimensional vector h � 0, and defining

NanC1 D . Nb � h/=k Nb � hk; (13.15)

construct the following auxiliary program

min xnC1;

s:t: xB D Nb � NanC1xnC1 � NN xN ;

x; xnC1 � 0:

(13.16)

It is clear that there is a feasible solution to the program, i.e.,

NxB D h; NxN D 0; NxnC1 D k Nb � hk:

Thus, determining pivot column index q D nC1 and row index p satisfying (13.14),
one can obtain a feasible basis by performing according basis change. It is noticed
that Proposition 13.2.1 is still valid in this case.
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As for how to determine h, it is only required that h � 0, in principle. With
respect to practice, however, it is not proper for the associated k NanC1k being too
large. A simple choice is h D e > 0. Another choice is setting

ıi � 0; i D 1; � � � ; m:

and taking

hi D
�

ıi , if Nbi < ıi ,Nbi , otherwise,
i D 1; � � � ; m:

where ıi � 0; i D 1; � � � ; m are a set of constants, which are equal or close to zero.
Consequently, (13.15) becomes

Nai; nC1 D
� Nbi � ıi ; if Nbi < ıi

0; otherwise;
i D 1; � � � ; m: (13.17)

We prefer the latter because it is better for maintaining sparsity of NanC1.
More specifically, assume availability of a simplex tableau, say (3.18), of the

original problem. Inserting the artificial xnC1 column, we obtain the auxiliary
simplex tableau below:

xT
B xT

N xnC1 RHS

I NN NanC1
Nb

(13.18)

where the original objective row is excluded. Determine row index r by (13.14).
Then drop xjr from and enter xnC1 to the basis by elementary transformations,
so that xnC1 becomes the r th basic variable. Taking the r th row as the objective
row, the auxiliary program can be solved by the simplex method. If the optimal
value vanishes and xnC1 has left the basis, a feasible simplex tableau to the original
problem is obtained. If the optimal value is nonzero, the original problem is
infeasible.

The steps can be summarized to the following algorithm.

Algorithm 13.2.1 (Tableau Phase-I: single-artificial-variable). Initial: a simplex
tableau of form (13.18). This algorithm finds a feasible simplex tableau to the
standard LP problem.

1. Select a row index r 2 arg minf Nbi j i D 1; � � � ; mg.
2. Stop if Nbr � 0 (infeasible problem).
3. Determine row index r 2 arg minf Nbi= Nai;nC1j Nai;nC1 < 0; Nbi < 0; i D 1; � � � ; mg.
4. Carry out elementary transformation to convert Nar; nC1 to 1, and eliminate all

other nonzeros of the column.
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5. Determine column index q 2 arg maxj 2N Narj .
6. Stop if Narj � 0.
7. Determine row index p 2 I D arg minf Nbi= Nai qj Nai q > 0I i D 1; � � � ; mg.
8. Set p D r if r 2 I .
9. Carry out elementary transformations to convert Nap q to 1, and eliminate all

other nonzeros of the column.
10. Stop if p D r (feasibility achieved).
11. Go to step 5.

It is not difficult to transform Algorithm 13.2.1 to a revised version, as is
omitted here. We will see that the single-variable auxiliary program can be handled
in a relevant and favorable manner in the so-called “reduced simplex” context
(Sect. 15.3).

Example 13.2.1. Find a feasible simplex tableau to the following problem by
Algorithm 13.2.1:

min f D x1 C 3x2 � 2x3 C 6x4;

s:t: �x1 C x2 � x3 C x5 D �1;

�3x1 C x2 C 2x3 C x6 D 2;

x1 � 3x2 � 3x3 C x4 D �4;

xj � 0; j D 1; � � � ; 6:

Answer The constraint system is of a canonical form. Set ı1 D ı2 D 0.
Introducing artificial variable x7, construct an auxiliary program of form (13.16):

min x7;

s:t: �x1 C x2 � x3 C x5 � x7 D �1;

�3x1 C x2 C 2x3 C x6 D 2;

x1 � 3x2 � 3x3 C x4 � 4x7 D �4;

xj � 0; j D 1; � � � ; 7:

Its initial tableau is (we put the objective row of the original problem at the bottom
to turn to Phase-II conveniently when Phase-I is finished).

x1 x2 x3 x4 x5 x6 x7 RHS
�1 1 �1 1 �1* �1

�3 1 2 1 2

1 �3 �3 1 �4 �4

1 3 �2 6

Iteration 1:

1. minf�1; 2; �4g D �4 < 0.
3. maxf�1= � 1; �4= � 4g D 1; r D 1.
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4. Multiply row 1 by �1, then add 4 times of row 1 to row 3:

x1 x2 x3 x4 x5 x6 x7 RHS
1 �1 1 �1 1 1

�3 1 2 1 2

5* �7 1 1 �4

1 3 �2 6

5. maxf1; �1; 1; �1g D 1 > 0; q D 1.
7. minf1=1; 0=5g D 0; p D 3.
8. p ¤ 1.
9. Multiply row 3 by 1=5, then add �1; 3; �1 times of row 3 to rows 1,2,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

2=5 4=5 �1=5 �1=5 1 1

�16=5 13=5 3=5 �12=5 1 2

1 �7=5 1=5* 1=5 �4=5

22=5 �11=5 29=5 4=5

Iteration 2:

5. maxf2=5; 4=5; �1=5; 1=5g D 4=5 > 0; q D 3.
7. minf1=.4=5/; 2=.13=5/; 0=.1=5/g D 0; p D 3.
8. p ¤ 1.
9. Multiply row 3 by 5, then add �4=5; �13=5; 11=5 times of row 3 to rows 1,2,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�4 6 �1 3 1 1

�13 15* �2 8 1 2

5 �7 1 1 �4

11 �11 8 �8

Iteration 3:

5. maxf�4; 6; �1; 3g D 6 > 0; q D 2.
7. minf1=6; 2=15g D 2=15; p D 2.
8. p ¤ 1.
9. Multiply row 2 by 1=15, then add �6; 7; 11 times of row 2 to rows 1,3,4,

respectively:
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x1 x2 x3 x4 x5 x6 x7 RHS

6=5* �1=5 �1=5 �2=5 1 1=5

�13=15 1 �2=15 8=15 1=15 2=15

�16=15 1 1=15 �4=15 7=15 14=15

22=15 95=15 �32=15 11=15 22=15

Iteration 4:

5. maxf5=6; �1=5; �1=5; �2=5g D 5=6 > 0; q D 1.
7. minf.1=5/=.11=5/g D 1=11; p D 1.
8. p D 1.
9. Multiply row 1 by 5=6, then add 13=15; 16=15; �6=5; �22=15 times of row 1 to

rows 2,3,4, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �1=6 �1=6 �1=3 5=6 1=6

1 �5=18 7=18 �2=9 13=18 5=18

1 �1=9 �4=9 1=9 8=9 10=9

61=9 �17=9 11=9 �11=9 11=9

As the artificial variable x7 has already left the basis, the resulting is a feasible
simplex tableau to the original problem.

It is noted that ı1 and ı2 above were all set to 0, consequently the first 3 iterations
made no progress due to degeneracy. Although parameters ıi ; i D 1; � � � ; m are
required to be nonnegative theoretically, therefore, they should be set to different
positive values practically. Moreover, it seems to be relevant to set ıi � 1 such that
k NanC1k is not too large.

13.3 The Most-Obtuse-Angle Column Rule

Surprisingly enough, the conventional pivot rule used in the dual simplex algorithm
was found to be useful, with favorable numerical results, for achieving primal
feasibility (Pan 1994a); it is to say that the rule is itself applicable even when
reduced costs are not nonnegative. This leads to a simple artificial-variable-free
variant involving no reduced cost, as turns out to be a counterpart of the most-
obtuse-angle row rule (Sect. 14.3).

Assume that a simplex tableau, say (3.18), is infeasible, and a pivot row index p

has been selected by the conventional rule

p 2 arg minf Nbi j i D 1; � � � ; mg: (13.19)

So it holds that Nbp < 0.
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The key of the presented Phase-I method is to use the following column rule.

Rule 13.3.1 (Most-obtuse-angle column rule) Determine pivot column index

q 2 arg min
j 2N

Nap j : (13.20)

In case of Nap q < 0, after the basis change, the basic infeasible variable xjp

becomes nonbasic (hence feasible), and the pth component of the right-hand side
of the tableau changes from negative to positive, that is, Obp D Nbp= Nap q > 0.

The steps are put in the following algorithm. A generalized version of it will be
derived alternatively in Sect. 20.7.

Algorithm 13.3.1 (Tableau Phase-I: the most-obtuse-angle column rule). Ini-
tial: simplex tableau of form (3.18). This algorithm finds a feasible simplex tableau
to the standard LP problem.

1. Select row index p 2 arg minf Nbi j i D 1; � � � ; mg.
2. Stop if Nbp � 0.
3. Determine column index q 2 arg minj 2N Nap j .
4. Stop if Nap q � 0.
5. Carry out elementary transformations to convert Nap q to 1, and eliminate all other

nonzeros of the column.
6. Go to step 1.

It is noted that only the right-hand side and the pivot row of the simplex tableau
are used in each iteration of the preceding Algorithm.

Theorem 13.3.1. Assume termination of Algorithm 13.3.1. It terminates either at

(i) Step 2, obtaining a basic feasible solution; or at
(ii) Step 4, detecting infeasibility of the problem.

Proof. When it terminates at step 2, it is clear that Nb � 0, hence a feasible simplex
tableau is achieved. In case of termination at step 4, it holds that Nbp < 0 and that
Nap j � 0; 8j 2 N . By Lemma 3.3.1, there is no feasible solution to the problem.

ut
The algorithm is not a monotone one, that is, the objective value would not

monotonically change in solution process. Finiteness of it is hence not guaranteed
even if nondegeneracy is assumed. Although Guerrero-Garcia and Santos-Palomo
(2005) offer a cycling instance for this algorithm, it may be still expected that
cycling hardly happens in practice.

Geometric meaning of the most-obtuse-angle column rule may be revealed by
investigating in the dual space. Let . Ny; Nz/ be the current dual basic solution. The
.m C n/-dimensional vector

d
4D
0
@ h

�N

�B

1
A D

0
@ �B�T

N TB�T

I

1
A ep (13.21)
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is an uphill direction. In fact, it is verified that d is in the null space of coefficient
matrix of the dual constraint equalities, satisfying

ATd C � D 0;

and forms an acute angle with the dual objective gradient, i.e.,

.bT; 0; 0/d D bTh D � Nxjp > 0:

The negative �q implies that d forms the largest possible obtuse angle with the
gradient emCq of the dual nonnegative constraint zq � 0. Therefore, if the uphill
direction is close to the dual objective gradient, then emCq tends to form the
most obtuse angle with the dual objective gradient. According to the heuristic
characteristic of optimal basis (Sect. 2.5), it is favorable to let the dual constraint
zq � 0 be satisfied as equality, accordingly entering xq to the basis.

We stress that the use of the conventional dual rule in step 1 is just for simplicity,
does not mean itself the best choice. In fact, it should be much better to use rules,
presented in Chap. 12 instead. From a geometric point of view, in fact, the most-
obtuse-angle column rule should be best matched by the dual steepest-edge rule II.

Nevertheless, Rule 13.3.1 does not employ information associated with the
objective function at all. Taking into account the extent to which the current vertex
violates dual constraints, we suggest the following variant.

Rule 13.3.2 (Variant of most-obtuse-angle column rule) Given constant 0 <

� � 1. Select pivot column index

q 2 arg minfNzj j Nap j � ��; j 2 N g; � D min
j 2N

Nap j < 0

In order to widen the range of choice, � should be close to 1, so that in the case
when NzN has negative components, the dual constraint inequality, that is violated the
most, will be satisfied as equality. It might be suitable to set � D 0:95, or so.

An advantage of this artificial-variable-free Phase-I method lie in its good numer-
ical stability and remarkable simplicity. Even though there are no related numerical
results available at present, it seems to be promising, as its dual counterpart performs
remarkably for solving large and sparse problems in computational experiments (see
Sect. 14.3).

Example 13.3.1. Find a feasible simplex tableau to the following problem by
Algorithm 13.3.1:

min f D 2x1 � x2;

s:t: 2x1 � x2 C x3 D �2;

x1 C 2x2 C x4 D 3;

�8x1 C x2 � x4 C x5 D �4;

xj � 0; j D 1; � � � ; 5:
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Answer Initial: Adding the second equality constraint to the third to eliminate x4.
Such doing results in the following simplex tableau.

x1 x2 x3 x4 x5 RHS
2 �1* 1 �2

1 2 1 3

�7 3 1 �1

2 �1

Iteration 1:

1. minf�2; 3; �1g D �2 < 0; p D 1.
3. minf2; �1g D �1 < 0; q D 2.
5. Multiply row 1 by �1, then add �2; �3; 1 times of row 1 to rows 2,3,4,

respectively:

x1 x2 x3 x4 x5 RHS
�2 1 �1 2

5 2 1 �1

�1* 3 1 �7

�1 2

Iteration 2:

1. minf2; �1; �7g D �7 < 0; p D 3.
3. minf�1; 3g D �1 < 0; q D 1.
5. Add 2; 5 times of row 3 to rows 1,2, respectively:

x1 x2 x3 x4 x5 RHS
1 �7 16

17 1 34

1 �3 �1 7

�1 2

The right-hand side of the above tableau is nonnegative, hence the obtained is a
feasible simplex tableau, from which Phase-II can get itself started.

In practice, usually used is the following revised version of the preceding
algorithm.

Algorithm 13.3.2 (Phase-I: most-obtuse-angle column rule). Initial: .B; N /;

B�1; NxB D B�1b. This algorithm finds a basic feasible solution to the standard
LP problem.

1. Select pivot row index p 2 arg minf Nxji j i D 1; � � � ; mg.
2. Stop if Nxjp � 0 (feasibility achieved).
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3. Compute h D B�Tep; �N D N Th.
4. Determine pivot column index q 2D arg minj 2N �j .
5. Stop if �q � 0 (infeasible problem).
6. Compute Naq D B�1aq and ˛ D Nxjp =�q .
7. Set Nxq D ˛, and update: NxB D NxB � ˛ Naq if ˛ ¤ 0.
8. Update B�1 by (3.23).
9. Update .B; N / by exchanging jp and q.

10. Go to step 1.

13.4 Perturbation of Reduced Costs

As a result of not involving reduced costs, the feasible solution, generated by
Algorithm 13.3.2, could be far from dual feasibility, and hence the number of
iterations subsequently required by Phase-II would be large. In this aspect, the
Phase-I method, presented in this section, seems to be advantageous (Pan 2000b,c).

It solves an auxiliary perturbed program. Let (3.18) be an infeasible simplex
tableau and let ıj � 0; j 2 N be predetermined perturbation parameters. The
auxiliary program results from perturbing reduced costs to nonnegative values. More
precisely, introduce index set

J D fj 2 N jNzj < ıj g: (13.22)

Replacing reduced costs Nzj in the simplex tableau by

Nz0
j D

�
ıj ; ifj 2 J;

Nzj ; ifj 2 N nJ;
(13.23)

leads to a dual feasible tableau, associated with a perturbed program. As a result,
the dual simplex algorithm can get itself started, until optimality of the perturbed
program is achieved, or dual unboundedness of it is detected.

Theorem 13.4.1. If the auxiliary perturbed program is dual unbounded, the origi-
nal problem is infeasible.

Proof. The perturbed program has the same constraints as the original problem.
Unboundedness of the former implies that there is no feasible solution to former.
and hence so to the latter. ut

Assume that optimality of the perturbed program is achieved. It might be well
to assume that (3.18) is again the final tableau, associated with basis B . The right-
hand side of it is now nonnegative. Consequently, computing OzN D cN � N TB�1cB

(restoring reduced costs of the original problem) and covering NzN with OzN leads to
a feasible simplex tableau to the original problem.
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The overall steps are put into the following algorithm.

Algorithm 13.4.1 (Tableau Phase-I: reduced cost perturbation). Given pertur-
bation parameters ıj � 0; j 2 N . Initial: simplex tableau of form (3.18). This
algorithm finds a feasible simplex tableau to the standard LP problem.

1. Perturb: Nzj D ıj , 8j 2 fj 2 N j Nzj < ıj g.
2. Call the dual simplex Algorithm 4.4.1.
3. Stop if it terminates at step 3 (infeasible problem).
4. If it terminates at step 2, compute NzN D cN � N TB�1cB .
5. Stop (feasibility achieved).

Note There exists a perturbation-free variant of the preceding algorithm: in each
iteration, one use Nz0

N determined by (13.23) in place of NzN for minimum-ratio test,
therefore saving computations for restoring reduced costs.

Algorithm 13.4.1 performed very well in preliminary computational experiments
(Pan 2000b). A reason seems to be that not all perturbed reduced costs affect the
final outcome. Sometimes, reduced costs restored in step 4 of Algorithm 13.4.1 are
themselves nonnegative, and hence there is no need for carrying out Phase-II. In fact,
it is verified that manipulations in step 2 amount to solving the following problem

min bTy;

s:t: ATy � Oc;

where

Ocj D
(

aT
j B�TcB C ıj , if j 2 J ,

Nzj , if j 2 N nJ .

That is to say, perturbing Nzj < ıj to Nzj D ıj amounts to slackening dual constraint
aT

j y � cj to

aT
j y � aT

j B�TcB C ıj D cj C .ıj � cj C aT
j B�TcB/ D cj C .ıj � Nzj /:

If slackened constraints are all inactive for dual optimal solutions, or in other words,
nonnegative constraints of primal variables, associated with perturbed reduced costs,
are active for primal optimal solutions, the primal and dual optimal solutions will
not be affected by such perturbations at all (for detailed analysis, see Pan 2000b).

Example 13.4.1. Solve the following problem using Algorithm 13.4.1 in Phase-I:

min f D x1 C x2 � 3x3;

s:t: �2x1 � x2 C 4x3 C x5 D �4;

x1 � 2x2 C x3 C x6 D 5;

�x1 C 2x3 C x4 D �3;

xj � 0; j D 1; � � � ; 6:
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Answer
Phase-I.
Initial: There is an available simplex tableau (B D f5; 6; 4g) to this problem. Perturb
negative reduced cost �3 to 0, so that it becomes dual feasible. As an illustration for
implementation, we add the perturbed reduced costs at the bottom (ı3 D 0).

x1 x2 x3 x4 x5 x6 RHS
�2* �1 4 1 �4

1 �2 1 1 5

�1 2 1 �3

1 1 �3

1 1

Taking the bottom row as objective row, execute the dual simplex Algo-
rithm 4.4.1. Note that the second (objective) bottom row does not take a part in
pivoting.

Iteration 1:

1. minf�4; 5; �3g D �4 < 0; p D 1.
3. J D f1; 2g ¤ ;.
4. minf�1=.�2/; �1=.�1/g D 1=2; q D 1.
5. Multiply row 1 by �1=2, then add �1; 1; �1; �1 times of row 1 to rows 2,3,4,5,

respectively:

x1 x2 x3 x4 x5 x6 RHS

1 1=2 �2 �1=2 2

�5=2 3 1=2 1 3

1=2 1 �1=2* �1

1=2 �1 1=2 �2

1=2 2 1=2 �2

Iteration 2:

1. minf2; 3; �1g D �1 < 0; p D 3.
3. J D f5g ¤ ;.
4. minf�.1=2/=.�1=2/g D 1; q D 5.
5. Multiply row 3 by �2, then add 1=2; �1=2; �1=2; �1=2 times of row 3 to rows

1,2,4,5, respectively:
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x1 x2 x3 x4 x5 x6 RHS
1 �2 �1 3

�2 3* 1 1 2

�1 �2 1 2

1 �1 1 �3

1 2 1 �3

Optimality of the perturbed tableau is achieved. Deleting the perturbed (bottom)
row gives a feasible simplex tableau of the original problem.

Phase-II.
Iteration 3: call the simplex Algorithm 3.2.1.
Select x3 column as pivot column and the second row as pivot row. Multiply row 2
by 1=3, then add 2; 1; �2 times of row 2 to rows 1,4,5, respectively:

x1 x2 x3 x4 x5 x6 RHS

1 �4=3 �1=3 2=3 13=3

�2=3 1 1=3 1=3 2=3

�1 �2 1 2

1=3 4=3 1=3 �7=3

The reduced costs are all nonnegative, optimality is hence achieved. Basic
optimal solution and associated objective value:

Nx D .13=3; 0; 2=3; 0; 2; 0/T; Nf D 7=3:

Although the perturbation parameter was set to 0 in the preceding example,
positive parameter value should be practically favorable for the sake of anti-
degeneracy. It seems to be suitable to use

ıj � � > 0;

where � is the feasibility tolerance (� D 10�6, or so). Computational experiences
indicate that the perturbation method is not sensitive to the magnitude of the
parameters though exceeding 10�1 seems to be inadvisable.



Chapter 14
Dual Simplex Phase-l Method

The mission of a dual Phase-I procedure is to provide an initial dual feasible simplex
tableau (or basis) to the dual simplex method.

In the dual simplex context, one can establish a dual Phase-I by introducing
n � m dual artificial variables, with or without penalty terms in the dual objective
function, as in the primal case. We will not touch such methods, because they are not
suitable for applications, just as the artificial variable method or big-M method for
the primal simplex method (interested readers are referred to associated literatures,
e.g., Padberg 1995). This chapter will address practicable dual Phase-I methods,
which may be regarded as dual counterparts of Phase-I methods, presented in the
previous chapter (for further references, see also Pan 1994d, 1995, 1996b).

For simplicity of exposition, the standard dual pivot rule will be utilized in this
chapter. We stress that it is preferable to use the dual nested rule instead, although
all rules presented in Chap. 12 are applicable.

14.1 Dual Infeasibility-Sum Method

This section will present a dual version of the infeasibility-sum method. Appearing
in early days, the basic idea of the method draws new attention, and is put into
effect in practice in recent years because of its remarkable performance (see, e.g.,
Koberstein and Suhl 2007; Maros 2003b).

Assume that dual basic solution

Ny D B�TcB I NzN D cN � N T Ny; NzB D 0 (14.1)

is infeasible, i.e., NzN 6� 0. Introduce index set

J D fj 2 N j Nzj < 0g; (14.2)

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__14,
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Taking the second term of the sum of dual infeasible variables, i.e.,

X
j 2J

zj D
X
j 2J

cj �
�X

j 2J

aj

�T
y:

as objective function, we construct the following auxiliary program

max �.
P

j 2J aj /Ty;

s:t: BTy C zB D cB;

N Ty C zN D cN ;

zB � 0I zj � 0; j 2 N=J;

(14.3)

whose nonnegativity constraints only impose on variables, associated with nonneg-
ative components of the dual basic solution.

Clearly, there is a basic solution to the primal program of the auxiliary program,
i.e.,

NxB D �B�1
X
j 2J

aj ; NxN D 0; (14.4)

where NxB it termed auxiliary right-hand side.

Theorem 14.1.1 (Dual infeasibility test). If NxB � 0, the original problem is
infeasible or unbounded.

Proof. Assume that y0 is a feasible solution to the original dual problem such that

z0 D cN � N Ty0 � 0:

Thus, it holds that

X
j 2J

z0
j D

X
j 2J

cj �
�X

j 2J

aj

�T
y0 � 0: (14.5)

On the other hand, it is known from the assumption that (14.4) gives a basic feasible
solution Nx to the primal program of (14.3), and (14.1) gives a complementary
feasible solution . Ny; Nz/ of (14.3), hence the two are a pair of optimal solutions. It
is clear that .y0; z0/ is a feasible solutio to (14.3), associated with objective value no
more than the optimal value, hence

X
j 2J

z0
j �

X
j 2J

Nzj < 0;

where the last inequality comes from (14.2). This contradicts (14.5). Therefore,
there is no feasible solution to the original dual problem when NxB � 0. According to
the duality principle, the original (primal) problem is infeasible or unbounded. ut
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In case when NxB 6� 0, carry out one dual simplex iteration with a modified
column pivot rule. To this end, assume that row index p has been determined such
that

Nxjp < 0: (14.6)

Consider the following scheme for updating dual solution:

Oy D Ny � ˇB�Tep; Oz D Nz C ˇv; v D ATB�Tep; (14.7)

where stepsize ˇ is defined by the rule below:

Rule 14.1.1 (Auxiliary column rule) Select pivot column index q such that

ˇ D �Nzq=vq D
�

minf�Nzj =vj j vj < 0; j 2 NJ g; if fj 2 N nJ j vj < 0g 6D ;;

maxf�Nzj =vj j vj > 0; j 2 J g; otherwise:
(14.8)

The following results are counterparts of Lemma 13.1.2 and Theorem 13.1.3 in
Sect. 13.1, proofs of which are therefore omitted.

Lemma 14.1.1. Let p be row index, satisfying (14.6). Then (14.8) is well-defined,
and the associated (14.7) gives a new basic feasible dual solution to the auxiliary
program.

Theorem 14.1.2. Assume that the original dual program is feasible. If dual feasible
variables are all nondegenerate, the number of dual infeasible variables strictly
decreases in finitely many iterations.

If the number of infeasible variables reduces but does not vanish after an iteration,
the process is carried out with a updated auxiliary dual program, until dual feasibility
is attained or dual infeasibility or unboundedness of the original problem is
detected.

The steps are put in the following algorithm.

Algorithm 14.1.1 (Dual Phase-I: Dual Infeasibility-sum). Initial: .B; N /; B�1;

Ny; Nz. This algorithm finds a dual feasible solution by handling auxiliary programs of
form (14.3).

1. If Nz � 0, compute NxB D B�1b, and stop (dual feasibility achieved).
2. Compute NxB D �B�1

P
j 2J aj , where J D fj 2 N j Nzj < 0g.

3. Stop if NxB � 0 (the original dual problem is infeasible or unbounded).
4. Carry out a single iteration of the dual simplex Algorithm 4.5.1 in which

Rule 14.1.1 is used for column pivoting instead.
5. Go to step 1.
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Example 14.1.1. Find a dual basic feasible solution of the following program by
Algorithm 14.1.1:

min f D �x1 C x2 � 2x3;

s:t: x1 � 3x2 � 2x3 C x4 D �4;

�x1 C x2 � 4x3 C x5 D �2;

�3x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; � � � ; 6:

Answer Taking J D f1; 3g, construct an auxiliary right-hand side NxB D
�.�1; �5; �2/T. Since components of it are all nonnegative, it is asserted that the
problem is infeasible or unbounded. In fact, the problem is just the same as that in
Example 13.1.1, where infeasibility of the problem is declared in Phase-II.

Example 14.1.2. Find a dual basic feasible solution to the following problem by
Algorithm 14.1.1:

min f D �5x1 � 7x2 C x4;

s:t: x1 C 2x2 C x3 D 3;

2x1 C x2 � x4 C x5 D �2;

�x1 C x2 C x4 C x6 D �1;

xj � 0; j D 1; � � � ; 6:

Answer Taking J D f1; 2g and N nJ D f3; 4; 5; 6g, construct the auxiliary
program. B D f3; 5; 6g; N D f1; 2; 4g; B�1 D I; NzN D .�5; �7; 1/T. The auxiliary
right-hand side is NxB D .�3; �3; 0/T.

Iteration 1: Carry out a single iteration of Algorithm 4.5.1, in which (14.8) is used
for column pivoting instead.

1: minf�3; �3; 0g D �3; p D 1; so x3 leaves the basis:
3: �N D N TB�Tep D .1; 2; 0/T:

5: ˇ D maxf�Nzj =�j j�j < 0; j D 1; 2; 3g D maxf5=1; 7=2g D 5; q D 1; so x1

enters the basis:
6: NzN D NzN C ˇ�N D .�5; �7; 1/T C 5 
 .1; 2; 0/T D .0; 3; 1/T; Nzjp D 5:

7: Naq D B�1aq D .1; 2; �1/T:

8: ˛ D Nxjp =�q D �3=1 D �3;

NxB D NxB � ˛ Naq D .�3; �3; 0/T � .�3/ 
 .1; 2; �1/T D .0; 3; �3/T;

Nx1 D ˛ D �3:

9: B�1 D
0
@ 1

�2 1

1 1

1
A :

10: B D f1; 5; 6g; N D f3; 2; 4g; NzN D .5; 3; 1/T; J D ;; NxB D B�1b D
.3; �8; 2/T: Dual feasibility attained:
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Algorithm 14.1.1 is easily to converted to its tableau version. Note only that the
pth row of the simplex tableau is vT D eT

pB�1A, xj column is equal to B�1aj , and
in step 2 the following formula is used instead:

NxB D �
X
j 2J

Naj ; J D fj 2 N jNzj < 0g:

We illustrate with the preceding example.

Example 14.1.3. Find a dual feasible simplex tableau for Example 14.1.2 by the
tableau version of Algorithm 14.1.1.

Answer Initial: Clearly, there is a simplex tableau to the problem, i.e.,

x1 x2 x3 x4 x5 x6 RHS
1* 2 1 3

2 1 �1 1 �2

�1 1 1 1 �1

�5 �7 1

Iteration 1:

J D f1; 2g; NJ D f4g; NxB D �..1; 2; �1/T C .2; 1; 1/T/ D .�3; �3; 0/T

p D 1I ˇ D maxf�.�5/=1; �.�7/=2g D 5; q D 1.

Respectively add �2; 1; 5 times of row 1 to rows 2,3,4, resulting in the following
tableau:

x1 x2 x3 x4 x5 x6 RHS
1* 2 1 3

�3 �2 �1 1 �8

3 1 1 1 2

3 5 1 15

which is dual feasible.

14.2 Dual Single-Artificial-Variable Method

In this section, the idea of the single-artificial-variable method, described in
Sect. 13.2, is applied to the dual problem to derive a dual Phase-I method. We
introduce an artificial variable to the dual program, so that the dual simplex method
can get started to produce a dual basic feasible solution to the original problem.
This method had been used as dual Phase-1 for the so-called “dual projective pivot
algorithm” (Pan 2005).
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As in the primal context, there are two schemes:

Scheme 1. The auxiliary dual program is based on the original data of the
problem.

Given any vector v � 0. Introducing artificial variable ymC1, construct the
following auxiliary dual program from constraints of the dual problem (4.2):

max ymC1;

s:t: ATy C .v � c/ymC1 C z D c; z � 0;
(14.9)

to which there is a feasible solution, i.e.,

� Oy
OymC1

�
D
�

0

�1

�
;

� Oz
OznC1

�
D
�

v

1

�

Theorem 14.2.1. There is an optimal solution, associated with a nonpositive
objective value, to the auxiliary dual program (14.9). If the optimal value is equal to
zero, then the (y, z) part of its basic optimal solution is basic feasible to the original
dual problem; otherwise, the latter is infeasible.

Proof. To the auxiliary dual program (14.9), there is a feasible solution with
objective value bounded above by 0, hence there is an optimal solution with
nonpositive optimal value. Let .y0; y0

mC1; z0; z0
nC1/ be its optimal solution, where

Nz0
B; Nz0

N � 0. Assume that the optimal value is equal to zero, i.e., y0
mC1 D 0. Since

the optimal solution satisfies equality constraints of (14.9), it holds that

0
@BT

N T

0

1
Ay0 C

0
@ z0

B

z0
N

z0
nC1

1
A D

0
@ cB

cN

0

1
A

Thus, .y0; z0/ is a basic feasible solutio to the original dual problem.
Assume now that the optimal value is less than 0, i.e., y0

mC1 < 0. If the original
dual problem has a feasible solution .y00; z00/, then .y00; z00/ together with y00

mC1 D
z00
nC1 D 0 is a feasible solutio to (14.9), thereby leading to y0

mC1 � y00
mC1 D 0,

which contradict y0
mC1 < 0. Therefore, the original dual problem is infeasible if the

optimal value of (14.9) is less than zero. ut
According to the preceding Theorem, if the dual simplex method is used to solve

the auxiliary dual problem, a dual basic feasible solution to the original problem can
be obtained, if any.

Scheme 2. The auxiliary dual program is based on an canonical form of the
constraint system.

Let .B; N / be basis and nonbasis of the standard LP problem, associated with a
simplex tableau, say (3.18). Given any OzN � 0. Introducing artificial variable xnC1,
construct the following auxiliary program:
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min f D Nf C NzT
N xN ;

s:t:

�
I NN 0

0 .OzN � NzN /T 1

�0@ xB

xN

xnC1

1
A D

�
0

1

�
; x � 0; xnC1 � 1;

(14.10)

where

NN D B�1N; NzN D cN � N TB�TcB; Nf D bTB�TcB:

Clearly, . Nx D 0; NxnC1 D 1/ is a solution to the preceding program. We are interested
in its dual program, i.e.,

max w D Nf C ymC1;

s:t:

0
@ zB

zN

znC1

1
A D

0
@ 0

NzN

0

1
A �

0
@ I 0

NN T OzN � NzN

0 1

1
A� y

ymC1

�
; z; znC1 � 0:

(14.11)

The above is just the auxiliary dual program we want, as it is much simpler
than (14.9), and has a feasible solution

� Oy
OymC1

�
D
�

0

�1

�
;

0
@ OzB

OzN

OznC1

1
A D

0
@ 0

OzN

1

1
A � 0: (14.12)

Like Theorem 14.2.1, it can be shown that if (14.11) is solved with a zero optimal
value, a dual basic feasible solution to the original problem is obtained; otherwise,
there is no dual feasible solution, or the original problem is infeasible or unbounded.
From the last equality constraint, znC1 D �ymC1, of (14.11), it is known that
max ymC1 and min znC1 are equal, if any.

Like the dual simplex method, it is also possible to solve (14.11) via the simplex
tableau. In fact, problem (14.10) has the following simplex tableau, which is not
dual feasible:

xT
B xT

N xnC1 f RHS

I NN
.OzN � NzN /T 1 1

NzT
N �1 � Nf

Adding the .m C 1/th row to the bottom row gives

xT
B xT

N xnC1 f RHS

I NN
.OzN � NzN /T 1 1

OzT
N OznC1 �1 � Nf C 1

(14.13)
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where OznC1 D 1. The preceding tableau, corresponding to the dual feasible solution
defined by (14.12), can be taken as an auxiliary initial tableau though not a simplex
one. To turn it to a simplex tableau, one more basic variable is required. To this end,
determine a dual stepsize

ˇ D Ozq=.Ozq � Nzq/ D minfOzj =.Ozj � Nzj / j Ozj � Nzj > 0; j 2 N g: (14.14)

If ˇ � 1, set ˇ D 1; q D n C 1. Converting the entry in the .m C 1/th row
and q column to 1, and eliminating all other nonzeros in the column by elementary
transformations, so that q-indexed becomes basic. If it happens that q D n C 1,
then deleting the .m C 1/th row and xnC1 column, and putting Nb in RHS column
gives a dual feasible simplex tableau to the original problem. In a general case of
q ¤ n C 1, obtained is only a dual feasible tableau to the auxiliary program, which
can be solved by the dual simple method.

Theoretically, any nonnegative vector OzN can be used to construct an auxiliary
program. A simple way is to set OzN D e. But another way would be more suitable
for sparse computations: for given ıj � 0; j 2 N . set

Ozj D
�

ıj ; if Nzj < ıj ;

0; otherwise;
j 2 N:

The associated steps can be summarized to the following algorithm.

Algorithm 14.2.1 (Tableau dual Phase-I: single-artificial-variable). Initial: aux-
iliary tableau of form (14.13). This algorithm finds a dual feasible tableau to the
standard LP problem.

1. Determine ˇ and q such that

ˇ D Ozq=.Ozq � Nzq/ D minfOzj =.Ozj � Nzj / j Ozj � Nzj > 0; j 2 N g:
2. If ˇ � 1, set ˇ D 1; q D n C 1.
3. Convert the entry in the .m C1/th row and q column to 1, and eliminate all other

nonzeros in the column by elementary transformations.
4. If q D nC1, delete the .mC1/th row and xnC1 column, and stop (dual feasibility

achieved).
5. Call the dual simplex Algorithm 4.4.1 (the .n C 1/-indexed column is taken as

nonbasic at the beginning).

Note In the initial tableau, the first mC1 components of xnC1 column and of RHS
column are equal. When carrying out the preceding algorithm, the .n C 1/-indexed
column may be also deemed as the auxiliary right-hand side, and the right-hand
side Nb of the original problem is filled in RHS column (but does not take a part in
pivoting). In this way, once xnC1 enters the basis, eliminating the .mC1/th row and
.n C 1/-indexed column gives a dual feasible tableau to the original problem. The
f column can be omitted, as it does not change at all in the solution process.

It is not difficult to transfer Algorithm 14.2.1 to its revised version, which is
omitted here.
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Example 14.2.1. Solve the following problem using Algorithm 14.2.1 as dual
Phase-I:

min f D 5x1 � 2x2 � x3 C x4;

s:t: 2x1 � x2 C x3 C x4 D 5;

�5x1 C 3x2 C 2x3 C x5 D �2;

�x1 C 2x2 � x3 C x6 D �1;

xj � 0; j D 1; � � � ; 6:

Answer From the first constraint equality, it follows that

x4 D 5 � 2x1 C x2 � x3;

Substitute it to the objective function to eliminate x4:

f D 5 C 3x1 � x2 � 2x3:

Setting Oz1 D 0; Oz2 D Oz3 D 1, construct the following auxiliary initial simplex
tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

2 �1 1 1 5

�5 3 2 1 �2

�1 2 �1 1 �1

�3 1 C 1 1 C 2* 1 1

1 1 1 �5 C 1

Phase-I: Call Algorithm 14.2.1. m C 1 D 4.
Iteration 1:

1. ˇ D minf1=.1 C 1/; 1=.1 C 2/g D 1=3 < 1; q D 3.
3. Multiply row 4 by 1=3, then add �1; �2; 1; �1 times of row 4 to rows 1,2,3,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

3 �5=3 1 �1=3 14=3

�3* 5=3 1 �2=3 �8=3

�2 8=3 1 1=3 �2=3

�1 2=3 1 1=3 1=3

1 1=3 2=3 �13=3

5. Call Algorithm 4.4.1. Note that x7 column also represents the auxiliary right-
hand side.
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Iteration 2:

1. minf�1=3; �2=3; 1=3; 1=3g D �2=3 < 0; p D 2.
4. minf�1=.�3/; .�2=3/=.�2=3/g D 1=3; q D 1.
5. Multiply row 2 by �1=3, then add �3; 2; 1; �1 times of row 2 to rows 1,3,4,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1 �1� 2

1 �5=9 �1=3 2=9 8=9

14=9 �2=3 1 7=9 10=9

1=9 1 �1=3 5=9 11=9

8=9 1=3 4=9 �47=9

Iteration 3:

1. minf�1; 2=9; 7=9; 5=9g D �1 < 0; p D 1.
4. minf�.4=9/=.�1/g D 4=9; q D 7.
5. Multiply row 1 by �1, then add �2=9; �7=9; �5=9; �4=9 times of row 1 to rows

2,3,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�1 �1 1 �2

1 �5=9 2=9 �1=9 4=3

14=9 7=9 1=9 1 8=3

1=9 1 5=9 2=9 7=3

8=9 4=9 7=9 �13=3

Optimality of the auxiliary program is achieved with the artificial variable x7

entering the basis. Deleting the first row and the seventh column leads to a dual
feasible simplex tableau to the original problem, i.e.,

x1 x2 x3 x4 x5 x6 RHS

1 �5=9 2=9 �1=9 4=3

14=9 7=9 1=9 1 8=3

1=9 1 5=9 2=9 7=3

8=9 4=9 7=9 �13=3

minf4=3; 8=3; 7=3g � 0. Optimality is achieved, hence there is no need for dual
Phase-II. The basic optimal solution and objective value are

Nx D .4=3; 0; 7=3; 0; 0; 8=3/T; Nf D 13=3:
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14.3 The Most-Obtuse-Angle Row Rule

This section will present a artificial-variable free dual Phase-I method, involving
neither minimum-ratio test, nor reduced costs.

Assume that the current dual solution is infeasible, and a pivot column index
q 2 N is selected (e.g., by the conventional column rule) such that

Nzq D cq � cT
BB�1aq < 0: (14.15)

Lemma 14.3.1. If (14.15) holds and B�1aq � 0, then the original problem is
infeasible or unbounded.

Proof. Assume that Nx is a feasible solution. Define

dB D �B�1aq I dq D 1I dj D 0; j 2 N; j ¤ q: (14.16)

Then vector

Ox D Nx C ˛d

is a feasible solution for any ˛ � 0; in fact, it holds that

A Ox D A Nx C ˛.BdB C NdN / D b;

and, since Nx � 0 and d � 0, it does that Ox � 0. In addition, it is known from (14.15)
that vector d satisfies

cTd D .cT
BdB C cT

N dN / D cq � cT
B Naq D Nzq < 0; (14.17)

hence corresponding feasible value tends to 1 as ˛ tends to 1, i.e.,

cT Ox D cT Nx C ˛cTd ! �1; ˛ ! 1;

as indicates lower unboundedness of the original problem. Therefore, the original
problem is either infeasible, or feasible but unbounded below. ut

The key of this dual Phase-I method is the following row rule (Pan 1994a, 1997).

Rule 14.3.1 (Most-obtuse-angle row rule) Select row index

p 2 arg maxf Nai q j i D 1; � � � ; mg: (14.18)

Assume that Nap q > 0. Taking Nap q as the pivot, carry out according elementary
transformations. As a result, the negative reduced cost, indexed by q, becomes zero,
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whereas the zero reduced cost, indexed by jp , becomes positive, i.e., �Nzq= Nap;q > 0

(see (3.13)).
These Phase-I steps can be summarized to the following algorithm.

Algorithm 14.3.1 (Dual Phase-I: the most-obtuse-angle row rule). Initial:
.B; N /; B�1. This algorithm finds a dual basic feasible solution to the standard
LP problem.

1. Compute NzN D cN � N T Ny, where Ny D B�TcB .
2. Select pivot column index q such that q 2 arg minj 2N Nzj .
3. If Nzq � 0, compute NxB D B�1b; NxN D 0, and stop.
4. Compute Naq D B�1aq .
5. Stop if Naq � 0.
6. Determine pivot row index p 2 arg maxf Nai q j i D 1; � � � ; mg.
7. UpdateB�1 by (3.23).
8. Update .B; N / by exchanging jp and q.
9. Go to step 1.

Theorem 14.3.1. If Algorithm 14.3.1 terminates at

(i) Step 3, then a dual basic feasible solution is obtained; or
(ii) Step 5, detecting infeasibility or lower unboundedness of the problem.

Proof. The termination at step 3 clear implies that the current solution is dual basic
feasible. When terminating at from step 5, then it holds that NzN < 0 and Naq � 0; by
Lemma 14.3.1, infeasibility or lower unboundedness of the problem is asserted. ut

Let us investigate the most-obtuse-angle row rule geometrically. For search
vector d defined by (14.16), it holds that �Nap q < 0, and d forms the most obtuse
angle with the gradient, ep, of the constraint xjp � 0. In addition, (14.17) indicates
that d is a downhill direction with respect to the objective function cTx. If d is
close to the negative objective gradient �c, therefore, then ep tends to form the most
obtuse angle with �c. By the heuristic characteristic of optimal basis (Sect. 2.5), it is
favorable to let the constraint xjp � 0 be satisfied as equality, accordingly dropping
xjp from the basis.

This dual Phase-I method is advantageous for its remarkable simplicity and
stability. Initially, it performed very well for solving a set of small test problems
(Pan 1994a). Taking MINOS 5.3 as a platform, subsequently a code based on it
outperformed MINOS 5.3 (with default options) on 48 Netlib test problems with
CPU time ratio 1:37 (Pan 1997).

Koberstein and Suhl (2007) extend this method to solve more general LP
problems. They reported extensive computational results, showing method’s striking
superiority over some commonly used dual Phase-1 methods. It is found however
that the method performed unsatisfactorily with few most difficult problems, as
might be due to neglecting of the current basic solution. Considering the extent to
which the current vertex violating nonnegative constraints, therefore, the following
variant is stated:
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Rule 14.3.2 (Variant of the most-obtuse-angle row rule) Given constant
0 < � � 1. Select pivot row index

p 2 arg minf Nxji j Nai q � ��; i D 1; � � � ; mg; � D maxf Nai q j i D 1; � � � ; mg > 0:

In case of � D 1, the preceding is just Rule 14.3.1 itself. Practically, it should
be close to 1 to expend the range of choices, so that when there exist negative
components of NxB , the nonnegative constraint that is violated the most is satisfied
as equality. It might be well to take � D 0:95, or so.

Though Algorithm 14.3.2 uses Dantzig conventional rule for column pivoting,
rules presented in Chap. 11 all apply. Although it has not been known which is the
best, the most-obtuse-angle row rule seems to be best matched by the steepest-edge
rule. But there are no numerical results available at this stage.

Finally, the objective value does not necessarily monotonically change in the
solution process. In addition, the finiteness of the algorithm is not guaranteed even
under the nondegeneracy assumption. In fact, Guerrero-Garcia and Santos-Palomo
(2005) offered a cycling example. Even so, cycling has not been reported so far in
practice.

Example 14.3.1. Find a dual feasible simplex basis by Algorithm 14.3.1:

min f D �5x1 � 7x2 C x4;

s:t: x1 C 2x2 C x3 D 3;

2x1 C x2 � x4 C x5 D �2;

�x1 C x2 C x4 C x6 D �1;

xj � 0; j D 1; � � � ; 6:

Answer Initial: B D f3; 5; 6g; N D f1; 2; 4g; B�1 D I .

Iteration 1:

1. Ny D B�TcB D .0; 0; 0/T; NzN D cN � N Ty D .�5; �7; 1/T.
2. minfNzj jj D 1; 2; 4g D minf�5; �7; 1g D �7; q D 2, hence x2 enters the basis.
4. Na2 D B�1a2 D .2; 1; 1/T.
6. maxf Nai 2ji D 1; 2; 3g D maxf2; 1; 1g D 1; p D 1, so x3 leaves the basis.

7. Update B�1 D
0
@ 1=2

�1=2 1

�1=2 1

1
A.

8. B D f2; 5; 6g; N D f1; 3; 4g.

Iteration 2:

1. Ny D .�7=2; 0; 0/T; NzN D .�5; 0; 1/T � .�7=2; �7=2; 0/T D .�3=2; 7=2; 1/T.
2. minf�3=2; 7=2; 1g D �3=2; q D 1, so x1 enters the basis.
4. Na1 D .1=2; 3=2; �3=2/T.
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6. maxf1=2; 3=2; �3=2g D 3=2; p D 2, so x5 leaves the basis.

7. B�1 D
0
@1 �1=3

0 2=3

0 1 1

1
A
0
@ 1=2

�1=2 1

�1=2 1

1
A D

0
@ 2=3 �1=3

�1=3 2=3

�1 1 1

1
A.

8. B D f2; 1; 6g; N D f5; 3; 4g.

Iteration 3:

1: Ny D .�3; �1; 0/T; NzN D .0; 0; 1/T � .�1; �3; 1/T D .1; 3; 0/T:

2: 3 D q 2 arg minf1; 3; 0g:
3: Nzj3 D 0; dual feasibility is achieved: According primal basic solution is

NxB D B�1b D .4=3; 1=3; �2/T; NxN D .0; 0; 0/T:

The tableau version of Algorithm 14.3.1 is of a simple form.

Algorithm 14.3.2 (Tableau Dual Phase-I: the most-obtuse-angle row rule).
Initial: simplex tableau of form (3.18). This algorithm finds a dual feasible simplex
tableau.

1. Select pivot column index q 2 arg minj 2N Nzj .
2. Stop if Nzq � 0 (dual feasibility achieved).
3. Stop if Naq � 0 (infeasibility or lower unbounded).
4. Determine pivot row index p 2 arg maxf Nai q j i D 1; � � � ; mg.
5. Carry out elementary transformations to convert Nap q to 1, and eliminate all other

nonzeros of the column.
6. Go to step 1.

14.4 Perturbation of the Right-Hand Side

The basic idea of this method is simple: the right-hand side of the initial simplex
tableau is perturbed to nonnegative; after the perturbed tableau is solved by the
simplex method, a dual feasible simplex tableau can be obtained by recomputing
the right-hand side from original data (Pan 1999a).

Assume that an initial simplex tableau is of form (3.18). Given perturbation
parameter

ıi � 0; i D 1; � � � ; m:

To weaken effect of degeneracy, ıi are suggested being positive values, different
from each other. The method takes

Nb0
i D

�
ıi ; if Nbi � ıi ;Nbi ; otherwise;

i D 1; � � � ; m (14.19)

to replace Nb, leading to a feasible simplex tableau.
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We have the following result, the proof of which is similar to that to Theo-
rem 7.4.1, and omitted.

Theorem 14.4.1. If the perturbed program is unbounded, the original problem is
infeasible or unbounded.

It might be well to denote again by (3.18) the final tableau of the perturbed
program, associated with basis B . Assume that the final tableau is optimal, i.e.,
Nzj � 0; j 2 N . To restore a simplex tableau to the original problem, compute
Nb D B�1b and Nf D �cT

B
Nb to cover the old Nb and Nf , resulting in

NA Nb
NzT � Nf

which is clearly a dual feasible tableau to the original problem.
The overall steps are put in the following algorithm.

Algorithm 14.4.1 (Tableau dual Phase I: right-hand side perturbation). Given
perturbation parameter ıi > 0; i D 1; � � � ; m, a simplex tableau of form (3.18). The
algorithm finds a dual feasible simplex tableau to the standard LP problem.

1. Perturbation: Nbi D ıi ; 8i 2 fi D 1; � � � ; m j Nbi � ıi g.
2. Call the simplex Algorithm 3.2.1.
3. Stop if termination occurs at step 3 (infeasible or unbounded).
4. Cover Nb; Nf by Nb D B�1b; Nf D �cT

B
Nb if termination occurs at step 2.

5. Stop (dual feasibility achieved).

Note A variant of this algorithm results from not perturbing the right-hand side,
but directly using Nb0, defined by (14.19), in place of Nb for the minimum-ratio test, as
thereby saves the restoration.

Geometrically, the perturbation of the right-hand side amounts to relaxing
nonnegativity restrictions on basic variables. If these constraints are inactive at the
optimal solution, then the perturbation does not matter to the determination of the
optimal solution. In some cases, a LP problem can be solved by Algorithm 14.4.1
alone. In fact, the following theorem holds (for proof, see Pan 1999a).

Theorem 14.4.2. Assume dual nondegeneracy of optimal solutions. If perturbed
components of the right-hand side correspond to optimal basic variables, Algo-
rithm 14.4.1 generates an optimal simplex tableau.

Example 14.4.1. Find a dual feasible tableau by Algorithm 14.4.1:

min f D �5x1 � 7x2 C x4;

s:t: x1 C 2x2 C x3 D 3;

2x1 C x2 � x4 C x5 D �2;

�x1 C x2 C x4 C x6 D �1;

xj � 0; j D 1; � � � ; 6:
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Answer Initial: A simplex tableau can be obtained from the problem. Take ı2 D
1=6; ı3 D 1=12, and put the perturbed right-hand side at the right end of the tableau.

x1 x2 x3 x4 x5 x6 RHS RHS1

1 2 1 3 3

2 1 �1 1 �2 1=6

�1 1* 1 1 �1 1=12

�5 �7 1

Call the simplex Algorithm 3.2.1.

Iteration 1:

1. minf�5; �7; 1g D �7 < 0; q D 2.
3. I D f1; 2; 3g ¤ ;.
4. minf3=2; .1=6/=1; .1=12/=1g D 1=12; p D 3.
5. Add �2; �1; 7 times of row 3 to rows 1,2,4, respectively:

x1 x2 x3 x4 x5 x6 RHS RHS1

3 1 �2 �2 5 17=6

3* �2 1 �1 �1 1=12

�1 1 1 1 �1 1=12

�12 8 7 �7 �

Iteration 2:

1. minf�12; 8; 7g D �12 < 0; q D 1.
3. I D f1; 2g ¤ ;.
4. minf.17=6/=3; .1=12/=3g D 1=36; p D 2.
5. Multiply row 2 by 1=3, then add �3; 1; 12 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 x6 RHS RHS1

1 �1 �1 6 11=4

1 �2=3 1=3 �1=3 �1=3 1=36

1 1=3 1=3 2=3 �4=3 1=9

4 3 �11 �

All reduced costs of the preceding tableau are nonnegative, so that a dual feasible
simplex tableau can be generated by deleting the end column.



Chapter 15
Reduced Simplex Method

In this chapter and the following two chapters, some special forms of the LP
problem, introduced in Sect. 25.1, will be employed to design new LP methods.
In particular, this chapter will handle the so-called “reduced problem” (25.2), i.e.,

min xnC1;

s:t: .A
::: anC1/

�
x

xnC1

�
D b; x � 0;

(15.1)

where anC1 D �emC1. Note that the objective variable xnC1 is in the place of f

(thereafter the two will be regarded equal), and hence there is no sign restriction on
xnC1.

In the conventional simplex context, xnC1 appears as a dependent variable. In
each iteration, variation of the basic solution as well as the value of xnC1 comes
from variation of a chosen nonbasic variable, xq , corresponding to a negative cost.
In contrast, the key of the “reduced simplex method”, presented in this chapter, is
to use xnC1 as a special nonbasic variable, an argument, which decreases in each
iteration to push the associated basic solution toward optimality.

Effectiveness of algorithms derived in this chapter is to be investigated. There are
no related numerical results available at this stage.

15.1 Derivation

Consider the reduced problem (15.1). As it plays a particular role, the objective
variable xnC1 will be separated from the set of nonbasic variables.

Assume that the constraints of (15.1) are converted to the following equivalent
canonical form by a series of elementary transformations:

xB D Nb � NN xN � xnC1 NanC1 � 0; xN � 0; (15.2)

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__15,
© Springer-Verlag Berlin Heidelberg 2014
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where NanC1 D �B�1emC1 ¤ 0, and

B D fj1; � � � ; jmC1g; N D AnB; n C 1 62 B: (15.3)

Lemma 15.1.1. If NanC1 � 0, then problem (15.1) is infeasible or unbounded below.

Proof. Assume that . Nx; NxnC1/ is a feasible solution to (15.1), satisfying

NxB D Nb � NN NxN � NxnC1 NanC1 � 0: (15.4)

Thus, for any ˛ � 0 and

OxN D NxN ; OxnC1 D NxnC1 � ˛;

it holds that

OxB D Nb � NN OxN � OxnC1 NanC1 D . Nb � NN NxN � NxnC1 NanC1/ C NanC1˛ � 0;

where the right-most inequality comes from (15.4), NanC1 � 0 and ˛ � 0. This
indicates that ( Ox; OxnC1) is a feasible solution, and

OxnC1 ! �1; as ˛ ! C1:

Therefore, the problem is unbounded below. ut
Setting xN D 0 in (15.2) leads to the following system of inequalities:

xB D Nb � xnC1 NanC1 � 0: (15.5)

Introduce the set of solutions to the system

ˆ.B/ D fxnC1 j Nb � xnC1 NanC1 � 0g:

If this set is nonempty, then (15.5) is said consistent, and (15.2) is a feasible
canonical form.

It is clear that any given xnC1 D NxnC1 corresponds to a solution to (15.1), i.e.,

0
BBB@

NxB

NxN

NxnC1

1
CCCA D

0
BB@

Nb � NxnC1 NanC1

0

NxnC1

1
CCA :

Using the above notation, we have the following result.
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Proposition 15.1.1. . Nx; NxnC1/ is a feasible solution to problem (15.1) if and only if
NxnC1 2 ˆ.B/.

Proof. Note that the constraints of (15.1) and (15.2) are equivalent. If NxnC1 2 ˆ.B/,
then . Nx; NxnC1/ clearly satisfies (15.2), hence is feasible. If, conversely, . Nx; NxnC1/ is
a feasible solution, then NxnC1 2 ˆ.B/ follows from (15.2). ut
Definition 15.1.1. If, for some p 2 f1; � � � ; m C 1g, it holds that

Nxjp D 0; Nap; nC1 ¤ 0; (15.6)

then . Nx; NxnC1/ is a basic solution; if, in addition,

Nxji � 0; i D 1; � � � ; m C 1; (15.7)

it is a basic feasible solution. If

Nxji > 0; 8 i D 1; � � � ; m C 1; Nai; nC1 < 0; (15.8)

the basic feasible solution is said to be nondegenerate.

The preceding definitions of basic solution and basic feasible solution coincide with
the same named items in the conventional simplex context. In fact, when (15.6)
holds, Nx is just the basic solution, associated with the conventional simplex tableau,
resulting from entering xnC1 to and dropping xjp from the basis; and if (15.7)
holds, then components of the basic solution are all nonnegative, hence it is feasible.
Therefore, the two will not be distinguished. It is noted however that the definition
of nondegeneracy here is somewhat different from the conventional.

If ˆ.B/ is nonempty, it is logical to find the basic feasible solution, associated
with its greatest lower bound. To this end, the following rule applies.

Rule 15.1.1 (Row rule) Assume NanC1 6� 0. Select pivot row index

p 2 arg maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g: (15.9)

Let p be selected row index. Define

0
B@

OxB

OxN

OxnC1

1
CA D

0
BB@

Nb � . Nbp= Nap; nC1/ NanC1

0

Nbp= Nap; nC1

1
CCA : (15.10)

Using the preceding notation, we have the following result.

Lemma 15.1.2. Assume ˆ.B/ ¤ ;. If NanC1 6� 0, then OxnC1 is its greatest lower
bound, and ( Ox; OxnC1) is a basic feasible solution.

Proof. Note that condition NanC1 6� 0 ensures that (15.9) is well-defined.
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Introduce notation

I D fi D 1; � � � ; m C 1 j Nai; nC1 < 0g:

It is known from (15.9) and (15.10) that

OxnC1 � Nbi= Nai; nC1; i 2 I;

from which it follows that

Nbi � OxnC1 Nai; nC1 � 0; i 2 I:

Note that (15.9) implies

Nap; nC1 < 0: (15.11)

Now we show OxnC1 2 ˆ.B/. If, otherwise, it does not hold, then there is an
r 2 f1; � � � ; m C 1g such that

Nbr � OxnC1 Nar; nC1 < 0; Nar; nC1 � 0:

There are following two cases arising:

Case (i) Nar; nC1 D 0; Nbr < 0. It clearly holds in this case that ˆ.B/ D ;.
Case (ii) Nbr � OxnC1 Nar; nC1 < 0; Nar; nC1 > 0. Then, it is known that

Nbp= Nap; nC1 D OxnC1 > Nbr= Nar; nC1: (15.12)

We show that

Nbp � xnC1 Nap; nC1 � 0 (15.13)

and

Nbr � xnC1 Nar; nC1 � 0 (15.14)

are inconsistent, as leads to ˆ.B/ D ;. In fact, for any x0
nC1 satisfying (15.13), i.e.,

Nbp � x0
nC1 Nap; nC1 � 0;

it follows from (15.11) and (15.12) that

x0
nC1 � Nbp= Nap; nC1 > Nbr= Nar; nC1;
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hence it is known by Nar; nC1 > 0 that

Nbr � x0
nC1 Nar; nC1 < 0;

which indicates that x0
nC1 does not satisfy (15.14).

Since either of the two cases leads to ˆ.B/ D ;, contradicting the assumption,
it holds that Of 2 ˆ.B/.

For any x0
nC1 2 ˆ.B/, furthermore, it holds that

Nb � x0
nC1 NanC1 � 0;

hence

Nbi = Nai; nC1 � x0
nC1; i 2 I;

which together with (15.9) and (15.10) gives

OxnC1 � x0
nC1:

Therefore, OxnC1 is the greatest lower bound of ˆ.B/.
According the Lemma 15.1.1, on the other hand, . Ox; OxnC1/ is a feasible solution.

It is verified that

Oxjp D 0: (15.15)

Thus noting (15.11), it is known from Definition 15.1.1 that . Ox; OxnC1/ is a basic
feasible solution. ut

After row index p determined, the following column rule is relevant.

Rule 15.1.2 (Column rule) Determine pivot column index

q 2 arg min
j 2N

Nap j : (15.16)

Theorem 15.1.1. Assume ˆ.B/ ¤ ;. If Nap q � 0, then ( Ox; OxnC1) is a basic feasible
solution.

Proof. From Nap;q � 0 and (15.15), it is known that the pth row of NN is
nonnegative, i.e.,

eT
p

NN � 0: (15.17)

By Lemma 15.1.2, . Ox; Of / is a basic feasible solution to (15.1). Assume that it is
not optimal. Then there is a feasible solution, say . Qx; QxnC1/, satisfies QxnC1 < OxnC1.
Consequently, from (15.2) it follows that

Qxjp D Nbp � eT
p

NN QxN � Nap; nC1 QxnC1;
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combining which, QxN � 0, (15.11), (15.15) and (15.17) leads to

Qxjp < Nbp � Nap; nC1 OxnC1 D Oxjp D 0;

as contradicts that Qx is a feasible solution. Therefore Ox is a basic feasible solution.
ut

Now assume Nap;q < 0. Carry out the basis change by dropping jp from and
entering q to the basis. Assume that the new basis is

OB D fj1; � � � ; jp�1; q; jpC1; � � � ; jmC1g; ON D An OB;

where q is the pth index of OB . The according elementary transformations turn (15.2)
to a new canonical form, setting x ON D 0 in which gives the following system of
inequalities:

x OB D Ob � xnC1 OanC1 � 0: (15.18)

Theorem 15.1.2. Assume that the solution set ˆ. OB/ D fxnC1 j Ob �xnC1 OanC1 � 0g
to (15.18) is nonempty, and that OxnC1 2 ˆ. OB/. If ˆ. OB/ is bounded below, then the
largest lower bound of ˆ. OB/ is less than or equal to OxnC1.

Proof. Ax C xnC1anC1 D b and x OB � 0 together are equivalent to

x OB D Ob � ON x ON � xnC1 OanC1 � 0:

By Lemma 15.1.2, Ox defined by (15.10) is a basic feasible solution, hence satisfying
the preceding expression. Substituting it to the preceding and noting (15.15) gives

Ox OB D Ob � OxnC1 OanC1 � 0;

Therefore it holds that OxnC1 2 ˆ. OB/. That ˆ. OB/ is bounded below implies OanC1 6�
0, because it is unbounded below by Lemma 15.1.1, otherwise.

By Lemma 15.1.2, the greatest lower bound of ˆ. OB/ is

	 D Obp0= Oap0 ; nC1 D maxf Obi= Oai; nC1 j Oai; nC1 < 0; i D 1; � � � ; m C 1g: (15.19)

Therefore, 	 � OxnC1.
OanC1 can expressed in term of NanC1 as follows (see the first expression of (3.15)):

Oai; nC1 D
� Nai; nC1 � . Nap; nC1= Napq/ Naiq; i D 1; � � � ; m C 1; i ¤ p;

Nap; nC1= Napq; i D p;
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Hence, from (15.15) and Napq < 0, it follows that

Oap; nC1 D Nap; nC1= Napq > 0:

In addition, it is known from (15.19) that

Oap0 ; nC1 < 0; (15.20)

Therefore p0 ¤ p. From (15.19) and Ox satisfying the p0th expression of (15.18), it
follows that

OxnC1 D . Obp0 � Oxjp0 /= Oap0 ; nC1 D 	 � Oxjp0 = Oap0 ; nC1;

combining which, p0 ¤ p, (15.7) and (15.20) leads to 	 � OxnC1. ut
According to the preceding Theorem, such an iteration results in a new feasible

canonical form, with objective value not increasing. It will be shown in Sect. 16.1
that under the nondegeneracy assumption, the objective value strictly monotonically
decreases, and hence the solution process terminates in finitely many iterations,
achieving optimality or detecting unboundedness of the problem.

15.2 Reduced Simplex Method

Based on the previous derivation, this section formulates the algorithm first, and
then formulates its revised version.

Assume that via a series of elementary transformations, the initial tableau .A
::: �

emC1 j b/ of the reduced problem (15.1) becomes

xT
B xT

N xnC1 RHS
I NN NanC1

Nb (15.21)

which is termed reduced (simplex) tableau. If the system of inequalities

Nb � xnC1 NanC1 � 0

is consistent with respect to variable xnC1, tableau (15.21) is said to be feasible.
Thereby, the overall steps described in Sect. 15.1 can be put in the following

algorithm.

Algorithm 15.2.1 (Reduced simplex algorithm: tableau form). Initial: feasible
reduced simplex tableau of form (15.21). This algorithm solves reduced prob-
lem (15.1).

1. Stop if NanC1 � 0.
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2. Determine row index p such that

NxnC1 D Nbp= Nap; nC1 D maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g:

3. Determine column index q 2 arg minj 2N Nap j .
4. If Nap q � 0, then compute NxB D Nb � NxnC1 NanC1, and stop.
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Go to step 1.

Theorem 15.2.1. Assume termination of Algorithm 15.2.1. It terminates at

(i) Step 1, detecting unboundedness of the problem; or at
(ii) Step 4, providing a basic feasible solution Nx.

Proof. The validity is shown by Theorems 15.1.2, 15.1.1 and 15.1.1, as well as
related discussions in Sect. 15.1. ut
Note It is possible to start solution process directly from a conventional feasible
simplex tableau. To do so, assume availability of the following conventional simplex
tableau, with f replaced by xnC1:

xT
B xT

N xnC1 RHS
I NN Nb

NzT
N �1

where Nb � 0. Starting from it, the first iteration of Algorithm 15.2.1 needs to be
replaced by the following steps:

1. NanC1 D �emC1 6� 0.
2. NxnC1 D 0=.�1/ D 0.
3. q 2 arg minj 2N Nzj .
4. Optimality is achieved if Ncq � 0.
5. Carry out elementary transformations to obtain a feasible reduced tableau by

taking the entry in the bottom row and xq column as the pivot.
6. Go to step 1.

Example 15.2.1. Solve the following problem by Algorithm 15.2.1:

min x10 D �2x1 C 4x2 C 3x3 � 3x4 � 4x5;

s:t: �2x1 � 6x2 C 1x3 � 3x4 � x5 C x6 D 4;

�x1 � 9x2 � 6x3 C 2x4 C 3x5 C x7 D 3;

8x1 � 6x2 C 3x3 C 5x4 C 7x5 C x8 D 2;

3x1 � 2x2 � 4x3 � x4 � 2x5 C x9 D 1;

xj � 0; j D 1; � � � ; 9:
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Answer The problem has the following initial tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�2 �6 1 �3 �1 1 4

�1 �9 �6 2 3 1 3

8 �6 3 5 7 1 2

3 �2 �4 �1 �2 1 1

�2 4 3 �3 �4* �1

The right-hand side .3; 7; 4; 5/T of which is nonnegative. Call Algorithm 15.2.1.
Iteration 1:

1. Na10 6� 0.
2. Nx10 D maxf0=.�1/g D 0, p D 5.
3. minf�2; 4; 3; �3; �4g D �4, q D 5.
5. Multiply row 5 by �1=4, and then add 1; �3; �7; 2 times of row 5 to rows 1,2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�3=2 �7 1=4 �9=4 1 1=4 4

�5=2 �6 �15=4 �1=4 1 �3=4 3

9=2 1 33=4 �1=4* 1 �7=4 2

4 �4 �11=2 1=2 1 1=2 1

1=2 �1 �3=4 3=4 1 1=4

Iteration 2:

1. Na10 6� 0.
2. Nx10 D maxf3=.�3=4/; 2=.�7=4/g D 2=.�7=4/ D �8=7; p D 3.
3. minf9=2; 1; 33=4; �1=4g D �1=4; q D 4.
5. Multiply row 3 by �4, and then add 9=4; 1=4; �1=2; �3=4 times of row 3 to

rows 1,2,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�42 �16 �74 1 �9 16 �14

�7 �7 �12 1 �1 1 1

�18 �4 �33 1 �4 7 �8

13 �2 11 2 1 �3 5

14 2 24 1 3 �5 6
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Table 15.1 Equivalence
between the associated
quantities

Quantity Reduced Relation Revised reduced
Objective column NanC1 D �B�1emC1

The righ-hand side Nb D B�1b

Pivot row eT
p

NN D eT
pB�1N

Pivot column Naq D B�1aq

Iteration 3:

1: Na10 6� 0:

2: Nx10 D maxf5=.�3/; 6=.�5/g D �6=5; p D 5:

3: minf14; 2; 24; 3g � 0:

4: Nx10 D �6=5;

NxB D Nb � Nx10 NanC1 D .�14; 1; �8; 5; 6/T � .�6=5/.16; 1; 7; �3; �5/T

D .26=5; 11=5; 2=5; 7=5; 0/T:

B D f6; 7; 4; 9; 5g:
Basic optimal solution and according objective value are

Nx D .0; 0; 0; 2=5; 0; 26=5; 11=5; 0; 7=5/T; Nx10 D �6=5:

Now let us derive the revised version of Algorithm 15.2.1.
Let (15.21) be the current reduced tableau, associated with basis and nonbasis

matrices B; N . Premultiplying .A
::: � emC1jb/ by B�1 gives a so-called “revised

reduced tableau”, as written

xT
B xT

N xnC1 RHS

I B�1N B�1 NanC1 B�1b
(15.22)

Like in the conventional simplex context, reduced and revised reduced tableaus,
associated with the same basis are equivalent; that is, their associated entries are
equal. Based on such equivalence, it is easy to transform any reduced tableau to a
revised version, and vice versa. As for the implementation of the reduced simplex
method, the reduced tableau as a whole is not indispensable, and only a part of its
entries are needed. Table 15.1 indicates equivalence relationship between quantities
in reduce tableau (15.21) and revised reduced tableau (15.22).

Based on Table 15.1, Algorithm 15.2.1 can be revised as follows, in which Nb and
NanC1 are generated recursively (see (17.13) and (17.15)).

Algorithm 15.2.2 (Reduced simplex algorithm). Initial: .B; N /; B�1; Nb D
B�1.bT; 0/T; NanC1 D �B�1emC1, and consistent Nb � f NanC1 � 0. This algorithm
solves the reduced problem (15.1).

1. Stop if NanC1 � 0 (Unbounded).
2. Determine NxnC1 and row index p such that

NxnC1 D Nbp= Nap; nC1 D maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g:
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3. Compute �N D N TB�Tep .
4. Determine column index q 2 arg minj 2N �j .
5. If �q � 0, then compute NxB D Nb � NxnC1 NanC1, and stop (optimality achieved).
6. Compute Naq D B�1aq , � D �Nap; nC1=�q , and � D � Nbp=�q .
7. If � ¤ 0, update NanC1 D NanC1 C �. Naq � ep/.
8. If � ¤ 0, update Nb D Nb C �. Naq � ep/.
9. Update B�1 by (3.23).

10. Update .B; N / by exchanging jp and q.
11. Go to step 1.

It is noted that the preceding algorithm is practicable, compared with its tableau
form, though the former is preferred in illustration in this book.

15.3 Reduced Phase-I: Single-Artificial-Variable

In general, an initial reduced simplex tableau is not feasible, from which the reduce
simplex algorithm cannot get started. However, the algorithm can get started from a
conventional feasible simplex tableau (see Note after Algorithm 15.2.1), and hence
any conventional Phase-I method is applicable. In particular, the single-artificial-
variable method, presented in Sect. 13.2, deserves attention, as the associated
auxiliary program, involving a single artificial variable, is amenable to be solved
by the reduced simplex method.

Assume Nb D B�1b 6� 0; NN D B�1N . Given some m-dimensional vector OxB �
0, and set NanC1 D Nb � OxB . Based on the canonical form of the constraint system, an
auxiliary program of form (13.16) can be constructed, i.e.,

min xnC1;

s:t: xB D Nb � NanC1xnC1 � NN xN ;

x; xnC1 � 0:

The preceding program is lower bounded, associated with the feasible solution

OxB D OxB; OxN D 0; OxnC1 D 1:

As the according auxiliary tableau of form (13.18) is itself a feasible reduce simplex
tableau, it can be solved by the following slight variant of the reduced simplex
algorithm.

Algorithm 15.3.1 (Tableau reduced Phase-I: single-artificial-variable). Initial:
reduced simplex tableau of form (13.18). NanC1 D Nb � OxB; OxB � 0. This algorithm
finds a feasible reduced simplex tableau.

1. Determine NxnC1 and row index p such that

NxnC1 D Nbp= Nap; nC1 D maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; mg:
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2. Select column index q 2 arg minj 2N Nap j .
3. Stop if Nap q � 0 (infeasible problem).
4. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
5. If Nb � 0, restore the original objective column, and stop (feasibility achieved).
6. Go to step 1.

Example 15.3.1. Solve that following problem, using Algorithm 15.3.1 as reduced
Phase-I:

min x10 D �2x1 C 4x2 C 3x3 � 3x4 � 4x5;

s:t: �2x1 � 6x2 C 1x3 � 3x4 � x5 C x6 D �3;

�x1 � 9x2 � 6x3 C 2x4 C 3x5 C x7 D �7;

8x1 � 6x2 C 3x3 C 5x4 C 7x5 C x8 D 4;

3x1 � 2x2 � 4x3 � x4 � 2x5 C x9 D �5;

xj � 0; j D 1; � � � ; 9:

Answer Phase-I: To turn to Phase-II conveniently, it might be well still put the
original objective row at the bottom of the tableau, but which will not take a part
in pivoting in Phase-I. Set OxB D .1; 1; 0; 1/T, Na10 D .�4; �8; 0; �6/T, and take x10

column as the auxiliary objective column. Then the initial auxiliary tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�2 �6 1 �3 �1 1 �4 �3

�1 �9* �6 2 3 1 �8 �7

8 �6 3 5 7 1 4

3 �2 �4 �1 �2 1 �6 �5

�2 4 3 �3 �4 �

The auxiliary program has feasible solution NxB D .1; 1; 0; 1/T; Nx10 D 1.
Phase-I: Call Algorithm 15.3.1.

Iteration 1:

1. maxf�3= � 4; �7= � 8; �5= � 6g D 7=8; p D 2.
2. minf�1; �9; �6; 2; 3g D �9 < 0; q D 2.
4. Multiply row 2 by �1=9, and then add 6; 6; 2; �4 times of row 2 to rows 1,3,4,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�4=3 5 �13=3 �3 1 �2=3 4=3 5=3

1=9 1 2=3 �2=9 �1=3 �1=9 8=9 7=9

26=3 7 11=3 5 �2=3 1 16=3 26=3

29=9 �8=3 �13=9* �8=3 �2=9 1 �38=9 �31=9

�22=9 1=3 �19=9 �8=3 4=9 � �28=9
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Iteration 2:

1. maxf.�31=9/=.�38=9/g D 31=38; p D 4.
2. minf29=9; �8=3; �13=9; �8=3; �2=9g D �8=3 < 0; q D 4.
4. Multiply row 4 by �9=13, and then add 13=3; 2=9; �11=3; 19=94 times of row 4

to rows 1,2,3,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�11 13 5 1 �3 14 12

�5=13 1 14=13 1=13 �1=13 �2=13 20=13 17=13

219=13 3=13 �23=13* �16=13 1 33=13 �70=13 �1=13

�29=13 24=13 1 24=13 2=13 �9=13 38=13 31=13

�93=13 55=13 16=13 10=13 �19=13 � 25=13

Iteration 3:

1. maxf.�1=13/=.�70=13/g D 1=70; p D 3.
2. minf219=13; 3=13; �23=13; �16=13; 33=13g D �23=13 < 0; q D 5.
4. Multiply row 3 by �13=23, and then add �5; �1=13; �24=13; �16=13 times of

row 3 to rows 1,2,4,5, respectively:
5. Nb � 0, Take the original objective column to overwrite the current x10 column,

resulting in a feasible reduced tableau below:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

842=23 314=23 1 �80=23 65=23 96=23 271=23

8=23 1 25=23 �3=23 1=23 �1=23 30=23

�219=23 �3=23 1 16=23 �13=23 �33=23 1=23

353=23 48=23 1 �26=23 24=23 45=23 53=23

105=23 101=23 �2=23* 16=23 7=23 �1 43=23

Phase-II: Call Algorithm 15.2.1.

Iteration 4:

1. Na10 6� 0.
2. Nx10 D maxf.43=23/=.�1/g D �43=23; p D 5.
3. minf105=23; 101=23; �2=23; 16=23; 7=23g D �2=23 < 0; q D 7.
5. Multiply row 5 by �23=2, and then add 80=23; 3=23; �16=23; 26=23 times of

row 5 to rows 1,2,3,4, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�146 �162 1 �25 �8 40 �63

�13=2 1 �11=2 �1 �1=2 3=2 �3=2

27 35 1 5 1 �8 15

�44 �55 1 �8 �2 13 �22

�105=2 �101=2 1 �8 �7=2 23=2 �43=2
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Iteration 5:

2. Nx10 D maxf15=.�8/g D �15=8; p D 3.
3. minf27; 35; 5; 1; g D 1 � 0.
4. Basic optimal solution and according objective value:

Nx D .0; 21=16; 0; 19=8; 0; 12; 1=16; 0; 0/T; Nx10 D �15=8:

15.4 Dual Reduced Simplex Method

This section describes a dual version of Algorithm 15.2.2, still using notations in
the previous two sections. To this end, firstly established are optimality conditions
and related properties in the reduced simplex context.

Theorem 15.4.1. .x; xnC1/, where xB D Nb � xnC1 NanC1; xN D 0, is an optimal
solution to (15.1) if the following conditions are satisfied:

(i) Nb � xnC1 NanC1 � 0; Nbp � xnC1 Nap; nC1 D 0, (primal feasibility)
(ii) eT

p
NN � 0; Nap; nC1 < 0. (dual feasibility)

Proof. The validity comes from Theorems 15.1.2, 15.1.1 and 15.1.1, as well as
related discussions in Sect. 15.1. ut

The pth row of the reduced simplex tableau, giving the according objective value,
is called objective row.

Lemma 15.4.1. Assume that

eT
p

NN � 0; p 2 f1; � � � ; m C 1g: (15.23)

If Nap; nC1 D 0 and Nbp < 0, then there is no feasible solution to (15.1).
If Nap; nC1 ¤ 0 and NxnC1 satisfies

Nbp � NxnC1 Nap; nC1 D .</ 0;

then for any feasible value x0
nC1 (if any), the following hold:

(i) x0
nC1 � .</ NxnC1 when Nap; nC1 > 0.

(ii) x0
nC1 � .>/ NxnC1 when Nap; nC1 < 0.

Proof. The pth equality constraint of (15.2) is

xp D Nbp � eT
p

NN xN � Nap; nC1xnC1:
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Let Qx � 0 be a feasible solution, associated with objective value x0
nC1. Substituting

it to the preceding gives

Qxp D Nbp � eT
p

NN QxN � Nap; nC1x
0
nC1: (15.24)

In addition, from (15.21) and Qx � 0, it follows that

� eT
p

NN QxN � 0: (15.25)

Condition Nap; nC1 D 0 and Nbp < 0 together with (15.25) leads to negativity of the
right-hand side of (15.24), as contradicts the nonnegative lett-hand side. Therefore,
there is no feasible solution to (15.1).

(i) When Nap; nC1 > 0 and x0
nC1 > .�/ NxnC1, it holds that

Nbp � Nap; nC1x
0
nC1 < .�/ Nbp � Nap; nC1 NxnC1 D .</0; (15.26)

combining which and (15.25) leads to negativeness of the right-hand side
of (15.24), as contradicts the nonnegative lett-hand side. Therefore, x0

nC1 �
.</ NxnC1.

(ii) When Nap; nC1 < 0 and x0
nC1 < .�/ NxnC1, (15.26) still holds, as also leads

to negativity of the right-hand side of (15.24), leading to a contradiction.
Therefore, x0

nC1 � .>/ NxnC1. ut
As was shown, the reduced simplex method pursues dual feasibility while main-

taining primal feasibility. Conversely, pursuing primal feasibility while maintaining
dual feasibility will lead to its dual version.

Assume now that the dual feasibility condition (ii) holds. Define Nx as follows:

NxnC1 D Nbp= Nap; nC1; NxB D NbB � NxnC1 NanC1; NxN D 0: (15.27)

It is clear that Nxjp D 0.
If NxB � 0 holds, then the primal feasibility condition (i) is satisfied. Thus, Nx is an

optimal solution to (15.1). Assume NxB 6� 0. Then the following rule is applicable.

Rule 15.4.1 (Dual row rule) Select row index r such that

Nxjr D minf Nxji j i D 1; � � � ; m C 1g < 0:

If eT
r

NN 6� 0, in addition, the following rule is well-defined:

Rule 15.4.2 (Dual column rule) Select column index q such that

ˇ D �Napq= Narq D minf�Napj = Narj j Narj < 0; j 2 N g � 0:

If ˇ > 0, the reduced simplex tableau is said to be dual nondegenerate.
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Once a pivot is determined, a basis change is executed to drop xr from and enter
xq to the basis. It is not difficult to show that the resulting pth row still satisfies
eT

p
NN � 0. If Nap; nC1 < 0, then go to the next iteration.
The solution steps are summarized to the following algorithm.

Algorithm 15.4.1 (Dual reduced simplex algorithm: tableau form). Initial:
Reduced simplex tableau of form (15.21), where eT

p
NN � 0; Nap; nC1 < 0. This

algorithm solves the reduced problem (15.1).

1. Compute NxnC1 D Nbp= Nap; nC1.
2. Compute NxB D Nb � NxnC1 NanC1.
3. Select row index r 2 arg minf Nxji j i D 1; � � � ; m C 1; i ¤ pg.
4. Stop if Nxjr � 0.
5. If J D fj 2 N j Narj < 0g D ;, set p D r and go to step 8.
6. Determine ˇ and column index q such that ˇ D �Napq= Narq D minj 2J �Napj = Narj :

7. Convert Narq to 1, and eliminate the other nonzeros in the pivot column by
elementary transformations.

8. Go to step 1 if Nap; nC1 < 0.
9. Stop.

Theorem 15.4.2. Assuming dual nondegeneracy, Algorithm 15.4.1 terminates
either at

(i) Step 4, achieving a basic optimal solution Nx; or at
(ii) Step 9, detecting infeasibility of the problem.

Proof. Termination is shown first. Assume that it does not terminate at the current
iteration. It is known from steps 1 and 2 that the basic solution Nx is associated with
objective value

NxnC1 D Nbp= Nap; nC1:

And Nxjr < 0 implies that

Nbr � NxnC1 Nar; nC1 < 0: (15.28)

From the preceding two expressions and Nap; nC1 < 0, it follows that

Nbr Nap; nC1 � Nbp Nar; nC1 > 0: (15.29)

There are the following two cases only:

(i) Passing from step 7 to step 8 to go to the next iteration. The new entry in the
pth row and n C 1 column yielded from the basis change in step 7 satisfies

Oap; nC1 D Nap; nC1 C ˇ Nar; nC1 < 0: (15.30)
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and the pth component of the new right-hand side is equal to

Obp
Nbp C ˇ Nbr : (15.31)

In step 1 of the next iteration, the objective value calculated from the preceding
two impressions is then

OxnC1 D
Obp

Oap; nC1

D
Nbp C ˇ Nbr

Nap; nC1 C ˇ Nar; nC1

;

The difference between the new and old objective values is

OxnC1 � NxnC1 D
Nbp Nap; nC1 C ˇ Nbr Nap; nC1 � Nbp Nap; nC1 � ˇ Nbp Nar; nC1

Nap; nC1. Nap; nC1 C ˇ Nar; nC1/

D ˇ. Nbr Nap; nC1 � Nbp Nar; nC1/

Nap; nC1. Nap; nC1 C ˇ Nar; nC1/
:

It is known from Nap; nC1 < 0 and (15.30) that the denominator in the preceding
expression is positive, whereas it is known from ˇ � 0 and (15.29) that the
numerator is nonnegative, therefore the objective value never decreases. Under
the dual nondegeneracy assumption, the objective value strictly increases.

(ii) Passing from step 5 to step 8 to go to the next iteration. It is noted that Nar; nC1 <

0 holds in this case. The difference between the new and old objective values is

Nbr

Nar; nC1

�
Nbp

Nap; nC1

D
Nbr Nap; nC1 � Nbp Nar; nC1

Nar; nC1 Nap; nC1

;

where the denominator is clearly positive whereas, by (15.29), the numerator is
also positive. Therefore, the objective value strictly increases.

If the algorithm does not terminate, then under the dual nondegeneracy assump-
tion, the objective value strictly increases monotonically, hence no cycling occurs.
This means that there are infinitely many basic solutions, as is a contradiction.
Therefore, the algorithm terminates.

Note that eT
p

NN � 0 always holds for the algorithm. By Lemma 15.4.1, optimality
is achieved while termination occurs at step 4. Now assume that it occurs at step 9,
hence the new entry in the pth row and n C 1 column satisfies

Oap; nC1 D Nap; nC1 C ˇ Nar; nC1 � 0: (15.32)

Since Nap; nC1 < 0, in this case the ˇ, determined in step 6, is positive. Assume there
is a feasible solution, associated with objective value x0

nC1. It is clear that the NxnC1,
determined in step 1, satisfies
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Nbp � NxnC1 Nap; nC1 D 0; (15.33)

and Nap; nC1 < 0. Thus it holds by Lemma 15.4.1 that

x0
nC1 � NxnC1: (15.34)

In case when passing through steps 7 ! 8 ! 9, on the other hand, it follows
from (15.31), (15.32), (15.33), (15.28) and ˇ > 0 that

Obp� NxnC1 Oap; nC1D. Nbp� NxnC1 Nap; nC1/Cˇ. Nbr� NxnC1 Nar; nC1/Dˇ. Nbr� NxnC1 Nar; nC1/ < 0:

(15.35)

If Oap; nC1 > 0, then it is know by Lemma 15.4.1 that

x0
nC1 < NxnC1;

which contradicts (15.34), therefore there is no feasible solution; if Oap; nC1 D 0, then

it is known by (15.35) that Obp < 0; consequently, there is still no feasible solution,
by Lemma 15.4.1. In case when passing through steps 5 ! 8 ! 9,

eT
r

NN � 0; Nar; nC1 � 0

and (15.28) hold. Then it can be similarly shown that there is no feasible solution.
ut

Example 15.4.1. Solve the following problem by Algorithm 15.4.1:

min x10 D x1 C 4x2 C 3x3 C 2x4 C 9x5;

s:t: � x1 C 5x2 � 4x4 � 2x5 C x6 D �1;

� 3x1 � 2x2 � 6x3 C x4 � x5 C x7 D �7;

� x2 C 4x3 � 6x4 C 4x5 C x8 D 4;

5x1 C 3x2 � 3x3 C 3x4 C 5x5 C x9 D 0;

xj � 0; j D 1; � � � ; 9:

Answer The initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�1 5 �4 �2 1 �1

�3 �2 �6 1 �1 1 �7

�1 4 �6 4 1 4

5 3 �3 3 5 1

1* 4 3 2 9 �1
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Iteration 1:
To convert it to a reduced simplex tableau, take the smallest, 1, among the first 5
entries in the bottom row (in x1 column) as pivot. Add 1; 3; �5 times of row 5 to
rows 1,2,4, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

9 3 �2 7 1 �1 �1

10 3 7 26 1 �3 �7

�1 4 �6 4 1 4

�17 �18* �7 �40 1 5

1 4 3 2 9 �1

which is a dual feasible reduced tableau with p D 5.
Call Algorithm 15.4.1.

Iteration 2:

1: Nx10 D 0=.�1/ D 0:

2: NxB D .�1; �7; 4; 0; 0/T:

3: minf�1; �7; 4; 0; 0g D �7 < 0; r D 2:

5: J D ;; p D 2:

8: Na2;10 D �3 < 0:

Iteration 3:

1: Nx10 D .�7/=.�3/ D 7=3:

2: NxB D .�1; �7; 4; 0; 0/T�.7=3/.�1; �3; 0; 5; �1/T D.4=3; 0; 4; �35=3; 7=3/T:

3: minf4=3; 4; �35=3; 7=3g D �35=3 < 0; r D 4:

5: J D f2; 3; 4; 5g ¤ ;:

6: ˇ D minf�10=.�17/; �3=.�18/; �7=.�7/; �26=.�40/g D 3=18; q D 3:

7: Multiply row 4 by � 1=18; and then add � 3; �3; �4; 3 times of row 4 to rows
1; 2; 3; 5; respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

37=6 �19=6* 1=3 1 1=6 �1=6 �1

43=6 35=6 58=3 1 1=6 �13=6 �7

�43=9 �68=9 �44=9 1 2=9 10=9 4

17=18 1 7=18 20=9 �1=18 �5=18

1 7=6 5=6 7=3 1=6 �1=6

8: Na2;10 D �13=6 < 0:
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Iteration 4:

1: Nx10 D .�7/=.�13=6/ D 42=13:

2: NxB D .�1; �7; 4; 0; 0/T � .42=13/.�1=6; �13=6; 10=9; �5=18; �1=6/T

D .�6=13; 0; 16=39; 35=39; 7=13/T:

3: minf�6=13; 16=39; 35=39; 7=13g D �6=13 < 0; r D 1:

5: J D f4g ¤ ;:

6: ˇ D minf�.35=6/=.�19=6/g D 35=19; q D 4:

7: Multiply row 1 by � 6=19; and add � 35=6; 68=9; �7=18; �5=6 times of row 1
to rows 2; 3; 4; 5; respectively W

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

�37=19 1 �2=19 �6=19 �1=19 1=19 6=19

352=19 379=19 35=19 1 9=19 �47=19 �168=19

�1;111=57 �108=19 �136=57 1 �10=57 86=57 364=57

97=57 1 43=19 7=57 �2=57 �17=57 �7=57

1 53=19 46=19 5=19 4=19 �4=19 �5=19

8: Na2;10 D �47=19 < 0:

Iteration 5:

1. Nx10 D .�168=19/=.�47=19/ D 168=47.
2. NxB D .6=19; �168=19; 364=57; �7=57; �5=19/T

�.168=47/.1=19; �47=19; 86=57; �17=57; �4=19/T

D .6=47; 0; 140=141; 133=141; 23=47/T � 0.
4. Basic optimal solution and according objective value:

Nx D .23=47; 0; 133=141; 6=47; 0; 0; 0; 140=141; 0/T; Nx10 D 168=47:

Based on the equivalence between the reduced tableau (15.21) and the revised
tableau (15.22), it is not difficult to transfer Algorithm 15.4.1 to its revision.

Algorithm 15.4.2 (Dual reduced simplex algorithm). Initial: .B; N /; B�1; Nb D
B�1b; NanC1 D �B�1emC1: �N D eT

pB�1N � 0; Nap; nC1 < 0. This algorithm
solves the reduced problem (15.1).

1. Compute NxnC1 D Nbp= Nap; nC1.
2. Compute NxB D Nb � NxnC1 NanC1.
3. Determine row index r 2 arg minf Nxji j i D 1; � � � ; m C 1; i ¤ pg.
4. Stop if Nxjr � 0 (optimality achieved).
5. Compute !N D N TB�Ter .
6. If J D fj 2 N j !j < 0g D ;, set p D r; �N D !N , and go to step 14.
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7. Determine ˇ and column index q such that ˇ D ��q=!q D minj 2J ��j =!j .
8. Solve B Naq D aq for Naq , and compute � D �Nar; nC1=!q and � D � Nbr=!q

9. Update: NanC1 D NanC1 C �. Naq � er/, where.
10. Update: Nb D Nb C �. Naq � er/, where.
11. Update B�1 by (3.23) (p D r).
12. Update .B; N / by exchanging jp and q.
13. Solve BTh D ep and compute �N D N Th.
14. Go to step 1 if Nap; nC1 < 0.
15. Stop (infeasible problem).

It is possible to improve the dual reduced method by replacing the row
Rule 15.4.1. Analogous to the dual largest-distance rule (Sect. 12.3), some rule
based on how much the point . NxN ; Nf / violates the constraints seems to be attractive
as derived as follows.

Introduce a set of row vectors

.wi /T D eT
i B�1.N j anC1/; i D 1; � � � ; m C 1:

For any i D 1; : : : ; m C 1, the signed distance from point . NxN ; Nf / to the boundary
(associated with the i th row of the canonical form)

.B�1b/i � .wi /T.xT
N ; f /T D 0

is defined by (see Sect. 2.1)

Nxji =kwi k:

Rule 15.4.3 (Dual row rule: largest-distance) Select pivot row index r such that

Nxjr D minf Nxji =kwi k j i D 1; � � � ; m C 1g:

The recurrence formulas of kwi k2; i D 1; � � � ; m are the same as (12.13)
and (12.14).

Alternatively, the following approximate formulas may be used to simplify
computations.

Rule 15.4.4 (Dual row rule: approximate largest-distance) Select pivot row
index r such that

Nxjr D minf Nxji =j Nai; nC1j j i D 1; � � � ; m C 1g:

It is promising if the other rules, described in Chaps. 11 and 12, are adapted
within the reduce simplex framework.
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15.5 Dual Reduced Phase-I: The Most-Obtuse-Angle

Algorithm 15.4.1 requires availability of a dual feasible reduced tableau. Dual
Phase-I methods presented in Chap. 14 may be applied to provide a conventional
dual feasible simplex tableau of (15.1). Then, letting the objective variable xnC1

leave the basis gives a dual feasible reduced tableau. However, it would be more
direct and effective to achieve the goal in the reduced simplex context based on the
most-obtuse-angle heuristics.

The procedure can be written as follows.

Algorithm 15.5.1 (Tableau dual reduced Phase-I: the most-obtuse-angle). Ini-
tial: Reduced simplex tableau of form (15.21). This algorithm finds a dual feasible
reduced simplex tableau.

1. Select pivot row index p 2 arg minf Nai; nC1 j i D 1; � � � ; m C 1g.
2. Stop if Nap; nC1 � 0.
3. Select pivot column index q 2 arg minj 2N Napj .
4. Stop if Nap q � 0.
5. Convert Nap q to 1, and eliminate the other nonzeros in the pivot column by

elementary transformations.
6. Go to step 1.

Theorem 15.5.1. Assume finiteness of Algorithm 15.5.1. It terminates either at

(i) Step 2, detecting infeasibility or lower unboundedness of the problem; or at
(ii) Step 4, obtaining a dual feasible reduced simplex tableau.

Proof. When it terminates at step 4, dual feasibility condition is satisfied clearly.
Assume that termination occurs at step 2. If Nx is a feasible solution to the problem,
then it satisfies

xB D Nb � NN xN � xnC1 NanC1 � 0; xN � 0:

Since �NanC1 � 0, the preceding expression holds for all xnC1 satisfying xnC1 �
NxnC1, therefore the problem is unbound below. ut

The preceding Algorithm is used as a dual Phase-1 procedure in the following
three examples. In the first example, the infeasibility of the problem will be detected
after dual Phase-1. In the second, an optimal solution will be found at the end of
the dual Phase-I. In the third, an optimal solution will be achieved after the first
iteration of Phase-II.
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Example 15.5.1. Solve the following problem by two-phase dual reduced simplex
method:

min x7 D x1 � x2 � 2x3;

s:t: �x1 C x2 C x3 C x4 D 0;

x1 � 2x2 C x3 C x5 D 1;

x1 C 2x2 � 2x3 C x6 D �8;

xj � 0; j D 1; � � � ; 6:

Answer Dual Phase-I: Initial tableau is

x1 x2 x3 x4 x5 x6 x7 RHS

�1 1 1 1

1 �2 1 1 1

1 2 �2 1 �8

1 �1 �2* �1

Iteration 1: To drop x7 from the basis, take p D 4. minf0; �1; �2g D �2; q D 3.
Multiply row 4 by �1=2, and add �1; �1; 2 times of row 4 to rows 1,2,3,

respectively, obtaining the following reduced simplex tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

�1=2* 1=2 1 �1=2

3=2 �5=2 1 �1=2 1

3 1 1 �8

�1=2 1=2 1 1=2

Phase-I: Call Algorithm 15.5.1.

Iteration 2:

1. minf�1=2; �1=2; 1; 1=2g D �1=2 < 0; p D 1.
3. minf�1=2; 1=2g D �1=2; q D 1.
5. Multiply row 1 by �2, and add �3=2; 1=2 times of row 1 to rows 2,4,

respectively:
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x1 x2 x3 x4 x5 x6 x7 RHS

1 �1 �2 1

�1* 3 1 �2 1

3 1 1 �8

1 �1 1

Iteration 3:

1. minf1; �2; 1; 1g D �2; p D 2.
3. minf�1; 3g D �1; q D 2.
5. Multiply row 2 by �1, and add 1; �3 times of row 2 to rows 1,2, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �5 �1 3 �1

1 �3 �1 2 �1

9 3 1 �5 �5

1 �1 1

Iteration 4:

1. minf3; 2; �5; 1g D �5; p D 3.
3. minf9; 3g D 3 > 0.
4. Dual feasibility achieved.

Dual Phase-II: Call Algorithm 15.4.1.

Iteration 5:

1: Nx7 D .�5/=.�5/ D 1:

2: NxB D .�1; �1; �5; 0/T � 1 
 .3; 2; �5; 1/T D.�4; �3; 0; �1/T; B Df1; 2; 6; 3g:
3: minf�4; �3; 0; �1g D �4; r D 1:

6: ˇ D minf�9=.�5/; �3=.�1/g D 9=5; q D 4:

7. Multiply row 1 by �1=5, and add 3; �9; 1 times of row 1 to rows 2,3,4,
respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�1=5 1 1=5 �3=5 1=5

�3=5 1 �2=5 1=5 �2=5

9=5 6=5 1 2=5 �34=5

�1=5 1 1=5 2=5 1=5

8. Na3;7 D 2=5 > 0.
9. Stop, detecting infeasibility of the problem.
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Example 15.5.2. Solve the following problem by two-phase dual reduced simplex
method:

min x7 D x1 � 2x2 � 5x3;

s:t: �2x1 C x2 C x3 Cx4 D 1;

2x1 � 3x2 C x3 Cx5 D �1;

x1 C 2x2 � x3 Cx6 D 2;

xj � 0; j D 1; � � � ; 6:

Answer Initial tableau is

x1 x2 x3 x4 x5 x6 x7 RHS

�2 1 1 1 1

2 �3 1 1 �1

1 2 �1 1 2

1 �2 �5 �1

Iteration 1: p D 4; minf1; �2; �5g D �5; q D 3.
Multiply row 4 by �1=5, and add �1; �1; 1 times of row 4 to rows 1,2,3,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�9=5* 3=5 1 �1=5 1

11=5 �17=5 1 �1=5 �1

4=5 12=5 1 1=5 2

�1=5 2=5 1 1=5

Dual Phase-I: Call Algorithm 15.5.1.

Iteration 2:

1. minf�1=5; �1=5; 1=5; 1=5g D �1=5; p D 1.
3. minf�9=5; 3=5g D �9=2; q D 1.
5. Multiply row 1 by �5=9, and add �11=5; �4=5; 1=5 times of row 1 to rows 2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �1=3 �5=9 1=9 �5=9

�8=3* 11=9 1 �4=9 2=9

8=3 4=9 1 1=9 22=9

1=3 1 �1=9 2=9 �1=9
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Iteration 3:

1. minf1=9; �4=9; 1=9; 2=9g D �4=9; p D 2.
3. minf�8=3; 11=9g D �8=3; q D 2.
5. Multiply row 2 by �3=8, and add 1=3; �8=3; �1=3 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �17=24 �1=8 1=6 �7=12

1 �11=24 �3=8 1=6 �1=12

5=3 1 1 �1=3 8=3

1 1=24 1=8 1=6 �1=12

minf1=6; 1=6; �1=3; 1=6g D �1=3; p D 3I minf5=3; 1g > 0, dual feasibility
achieved.

Dual Phase-II: Call Algorithm 15.4.1.

Iteration 4:

1. Nx7 D .8=3/=.�1=3/ D �8.
2. NxB D .�7=12; �1=12; 8=3; �1=12/T � .�8/.1=6; 1=6; �1=3; 1=6/T

D .3=4; 5=4; 0; 5=4/T � 0.
4. Basic optimal solution and according objective value:

Nx D .3=4; 5=4; 5=4; 0; 0; 0/T; Nx7 D �8:

Example 15.5.3. Solve the following problem by two-phase dual reduced simplex
method:

min x9 D �2x1 � x2 C 2x3 C 4x4;

s:t: x1 � 2x2 C 4x3 � x4 C x5 D 4;

2x1 � 3x2 � x3 C x4 C x6 D �6;

x1 C x3 C x4 C x7 D 2;

2x1 C x2 � x3 � 4x4 C x8 D �1;

xj � 0; j D 1; � � � ; 8:

Answer Initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 �2 4 �1 1 4

2 �3 �1 1 1 �6

1 1 1 1 2

2 1 �1 �4 1 �1

�2* �1 2 4 �1
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Iteration 1:
To drop objective variable x9 from the basis, take p D 5; minf�2; �1; 2; 4g D

�2; q D 1.
Multiply row 5 by �1=2, and add �1; �2; �1; �2 times of row 5 to rows 1,2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�5=2 5 1 1 �1=2 4

�4* 1 5 1 �1 �6

�1=2 2 3 1 �1=2 2

1 1 �1 �1

1 1=2 �1 �2 1=2

Dual Phase-I: Call Algorithm 15.5.1.

Iteration 2:

1. minf�1=2; �1; �1=2; �1; 1=2g D �1; p D 2.
3. minf�4; 1; 5g D �4; q D 2.
5. Multiply row 2 by �1=4, and add 5=2; 1=2; �1=2 times of row 2 to rows 1,3,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

35=8 �17=8 1 �5=8 1=8 31=4

1 �1=4 �5=4 �1=4 1=4 3=2

15=8 19=8 �1=8 1 �3=8 11=4

1 1 �1 �1

1 �7=8 �11=8* 1=8 3=8 �3=4

Iteration 3:

1. minf1=8; 1=4; �3=8; �1; 3=8g D �1; p D 4.
3. minf1; 0; 0g � 0. Dual feasibility achieved.

Dual Phase-II: Call Algorithm 15.4.1.
Iteration 3:

1. Nx9 D .�1/=.�1/ D 1.
2. NxB D .31=4; 3=2; 11=4; �1; �3=4/T � .1=8; 1=4; �3=8; �1; 3=8/T

D .61=8; 5=4; 25=8; 0; �9=8/T.
3. minf61=8; 5=4; 25=8; 0; �9=8g D �9=8 < 0; r D 5.
5. J D f3; 4g ¤ ;.
6. minf�1=.�7=8/; 0=.�11=8/g D 0; 0 � .�1/=.�3=8/; q D 4.
7. Multiply row 5 by �8=11, and add 17=8; 5=4; �19=8 times of row 5 to rows

1,2,3, respectively:
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x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�17=11 63=11 1 �9=11 �5=11 98=11

�10=11 1 6=11 �4=11 �1=11 24=11

19=11 4=11 1=11 1 3=11 16=11

1 1 �1 �1

�8=11 7=11 1 �1=11 �3=11 6=11

Iteration 4:

1. Nx9 D .�1/=.�1/ D 1.
2. NxB D .98=11; 24=11; 16=11; �1; 6=11/T�.1/.�5=11; �1=11; 3=11; �1; �3=11/T

D .103=11; 25=11; 13=11; 0; 9=11/T � 0.
4. Basic optimal solution and according objective value are

Nx D .0; 25=11; 0; 9=11; 103=11; 0; 13=11; 0/T; Nx9 D 1:

15.6 Notes

The reduced simplex method can be traced back to the publication of the “bisection
simplex method” (Pan 1991, 1996a), which bisections an interval, including the
optimal value, iteration by iteration until achieving optimality. Pan wrote (1991,
p. 724).

Finally, we indicate that justifications of . . . in fact describes an approach to improving
feasible solutions with dual type of canonical form,1 in a manner similar to that in the
conventional method. We are not interested in on this line though, and will develop another
method. . .

At that time, the reduced simplex method seemed ready to come out at one’s call.
But unfortunately it had been overlooked by not regarding its prospects favorably
until recently drawing attention again from the author.

Although there are no numerical results available at present, the method is
promising for the following reasons, at least:

Firstly, while its computational effort per iteration is about the same as the
conventional simplex method, a novel pivot rule is employed. Consequently, the
resulting search direction corresponds to the negative reduced objective gradient
as a whole (since the objective function involves a single variable), as seems
to be advantageous to the conventional search direction which corresponds to a
negative component only. In each iteration, as a result, the decrement in the objective
variable’s value is just equal to decrement in the original objective value (see also
Vemuganti 2004).

1It is noting but the reduced simplex tableau.
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Secondly, as was mentioned in Sect. 3.9, the numerical stability of the con-
ventional simplex method is actual not good enough, since it could select a too
small pivot in magnitude. Occasionally, it must restart from scratch to handle
the troublesome case when the basis matrix is close to singularity (Sect. 5.1). In
contrast, the reduced simplex method is numerically stable, since it tends to select
a large pivot in magnitude. Consequently, the risk of using the restarting remedy
is significantly reduced, if not avoided completely. In the stability point of view,
therefore, Harris practicable row rule becomes unnecessary, although it would
remain useful in the sense of the most-obtuse-angle heuristics (see Sect. 5.6).

Thirdly, a variant of the reduced simplex method shows a bright application
outlook, as it seems to be a desirable framework for the implementation of the
so-called “controlled-branch method” for solving ILP problems; favorably the
associated LP relaxation subprograms can be handled without increasing their sizes
at all (see Sect. 25.7).

Finally, the reduced simplex method would become more powerful if the basis is
generalized to allow the so-called “deficient-basis” (Sect. 20.6). Moreover, a method
for generating an initial deficient-basis and an associated Phase-I method can be
derived using the reduced simplex framework (Sect. 20.7). These methods seems to
be simple as well as efficient.

As for sparsity, on the other hand, a large amount of fill-ins could yield from
transforming the conventional simplex tableau to a reduced one if nonzero costs
in the original problem occupy a high proportion (see Sect. 15.2). In this case, the
column, firstly selected to enter the basis, should be as sparse as possible. It would be
a good idea to obtain a reduced simplex tableau directly from some crash procedure
(Sect. 5.5) (excluding the objective variable from the set of basic variables).

On the other hand, some particular scaling should be applied with respect to the
objective function, as the reduced simplex method would be sensitive to it.



Chapter 16
Improved Reduced Simplex Method

In contrast to the conventional simplex tableau, the reduced simplex tableau,
introduced in the preceding chapter, does not explicitly offer the associated basic
solution, which is computed from the last two columns of the tableau. Fortunately,
a slight modification of it eliminates this “fault”, leading to a more compact and
practicable variant.

16.1 Variation of the Reduce Simplex Method

The key to the variant lies in derivation of an updating formula for the basic solution.
To this end, let us turn to Algorithm 15.2.1.

Let .x0; x0
nC1/ be a basic feasible solution, satisfying

x0
B D Nb � x0

nC1 NanC1 � 0; x0
N D 0: (16.1)

The Algorithm determines a new basic feasible solution . Nx; NxnC1/ by

NxB D Nb � NxnC1 NanC1; NxN D 0; NxnC1 D Nbp= Nap; nC1; (16.2)

where

p 2 arg maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g: (16.3)

From Lemma 15.1.1, it is known that NxnC1 is the greatest lower bound of the solution
set ˆ.B/ to the inequality system (15.5). From (16.2) and (16.1), it follows that

NxBD Nb� NxnC1 NanC1D. Nb�x0
nC1 NanC1/C.x0

nC1� NxnC1/ NanC1Dx0
B C.x0

nC1� NxnC1/ NanC1:

(16.4)

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__16,
© Springer-Verlag Berlin Heidelberg 2014
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On the other hand, it is known from (16.1) that

�x0
ji

= Nai; nC1 D �. Nbi � x0
nC1 Nai; nC1/= Nai; nC1 D x0

nC1 � Nbi= Nai; nC1;

i D 1; � � � ; m C 1; Nai; nC1 ¤ 0;

by which it is seen that

arg minf�x0
ji

= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g
D arg maxf Nbi = Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g:

In addition, combining the third impression of (16.2) and (16.3) gives

˛
4D minf�x0

ji
= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g

D minfx0
nC1 � Nbi = Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g

D x0
nC1 � maxf Nbi= Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g

D x0
nC1 � NxnC1 � 0;

which together with (16.4) leads to

NxB D x0
B C ˛ NanC1; NxnC1 D x0

nC1 � ˛: (16.5)

It is clear that if .x0; x0
nC1/ satisfies nondegeneracy condition (15.8), i.e.,

x0
ji

> 0; 8 i D 1; � � � ; m C 1; Nai; nC1 < 0;

then ˛ > 0, hence NxnC1 < x0
nC1, indicating a positive decrement of the objective

value.
It is noted that the new Nap; nC1 will be positive after the basis change (by taking

Napq as pivot), even if Nxjp D 0. Thus, the entering variable xq will never leave the
basis immediately in the next iteration.

Thereby, the reduced simplex tableau (15.21) can be modified to the following
one, termed improved reduced (simplex) tableau, where there is no need for the
right-hand side but NxB :

xT
B xT

N xnC1 NxB

I NN NanC1 NxB

(16.6)

To avoid accumulating errors, introduced by the recurrence formula NxnC1 D
x0

nC1 � ˛, the final objective value may be computed directly from the original data
at the end alternatively.
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Based on the preceding discussions, we transfer Algorithm 15.2.1 to the
following one.

Algorithm 16.1.1 (Improved reduced simplex algorithm: tableau form).
Initial : improved reduced tableau of form (16.6), where NxB D Nb � NxnC1 NanC1 � 0.
This algorithm solves the reduced problem (15.1).

1. Stop if NanC1 � 0.
2. Determine ˛ and row index p such that

˛ D � Nxjp = Nap; nC1 D minf� Nxji = Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g:

3. If ˛ ¤ 0, add ˛ times of xnC1 column to NxB column and set NxnC1 D NxnC1 � ˛.
4. Determine column index q 2 arg minf Nap j j j 2 N g.
5. Stop if Nap q � 0.
6. Convert Nap q to 1, and eliminate the other nonzeros in the pivot column by

elementary transformations.
7. Go to step 1.

Note 1 The preceding Algorithm can get started from a conventional feasible
simplex tableau, using the right-hand side as the NxB column.

Note 2 Step 6 does not touch NxB column because the entry Nxjp of the pth row
of this column vanishes.

Theorem 16.1.1. Under the nondegeneracy assumption, Algorithm 16.1.1 termi-
nates either at

(i) Step 1, detecting infeasibility of the problem; or at
(ii) Step 5, offering a basic optimal solution Nx.

Proof. It is known from the discussions preceding it that Algorithms 16.1.1
and 15.2.1 generate the same sequence of basic feasible solutions. Under the
nondegeneracy assumption, the objective value decreases strictly, hence no cycling
occurs. Since there are only infinitely many basic feasible solutions, therefore, it
must terminate. The meanings of its exits are clear. ut
Example 16.1.1. Solve following problem by Algorithm 16.1.1:

min x10 D �x1 C 4x2 C 3x3 � 3x4 � 2x5;

s:t: �x1 � 9x2 � 6x3 C 2x4 C 4x5 C x6 D 1;

�2x1 � 6x2 C x3 � 3x4 � x5 C x7 D 4;

3x1 � 3x2 C 3x3 C 5x4 C 5x5 C x8 D 5;

5x1 � 2x2 � 4x3 � x4 � 2x5 C x9 D 2;

xj � 0; j D 1; � � � ; 9:
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Answer Initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

�1 �9 �6 2 4 1 1

�2 �6 1 �3 �1 1 4

3 �3 3 5 5 1 5

5 �2 �4 �1 �2 1 2

�1 4 3 �3* �2 �1

Iteration 1: NxB D .1; 4; 5; 2/T; Nx10 D 0.

2. ˛ D minf0=.�1/g D 0; p D 5.
4. minf�1; 4; 3; �3; �2g D �3; q D 4.
6. Multiply row 5 by �1=3, and add �2; 3; �5; 1 times of row 5 to rows 1,2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

�5=3 �19=3* �4 8=3 1 �2=3 1

�1 �10 �2 1 1 1 4

4=3 11=3 8 5=3 1 �5=3 5

16=3 �10=3 �5 �4=3 1 1=3 2

1=3 �4=3 �1 1 2=3 1=3

Iteration 2:

2. ˛ D minf�1=.�2=3/; �5=.�5=3/g D �1=.�2=3/ D 3=2; p D 1.
3. Add 3=2 times of x10 column to NxB column; Nx10 D �3=2.
4. minf�5=3; �19=3; �4; 8=3g D �19=3; q D 2.
6. Multiply row 1 by �3=19, and add 10; �11=3; 10=3; 4=3 times of row 1 to rows

2,3,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

5=19 1 12=19 �8=19 �3=19 2=19 0

31=19 82=19 �61=19 �30=19 1 39=19 11=2

7=19 108=19 61=19 11=19 1 �39=19 5=2

118=19 �55=19 �52=19 �10=19 1 13=19 5=2

13=19 �3=19 1 2=19 �4=19 9=19 1=2

Iteration 3:

2. ˛ D minf�.5=2/=.�39=19/g D 95=78; p D 3.
3. Add 95=78 times of x10 column to NxB column; Nx10 D �3=2�95=78 D �106=39.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

5=19 1 12=19 �8=19 �3=19 2=19 5=39

31=19 82=19 �61=19 �30=19 1 39=19 8

7=19 108=19 61=19 11=19 1 �39=19 0

118=19 �55=19 �52=19 �10=19 1 13=19 10=3

13=19 �3=19 1 2=19 �4=19 9=19 14=13

4. minf7=19;108=19; 61=19; 11=19g � 0.
5. Basic optimal solution and according objective value:

Nx D .0; 5=39; 0; 14=13; 0; 0; 8; 0; 10=3/T; Nx10 D �106=39:

Based on the equivalence between the reduced tableau (15.21) and the revised
tableau (15.22), the following revised version of Algorithm 16.1.1 is obtained.

Algorithm 16.1.2 (Improved Reduced Simplex Algorithm). Initial : .B; N /; B�1:

NxB D Nb � NxnC1 NanC1 � 0, where Nb D B�1b; NanC1 D �B�1emC1. This algorithm
solves the reduced problem (15.1).

1. Stop if NanC1 � 0 (unbounded problem).
2. Determine ˛ and row index p such that

˛ D � Nxjp = Nap; nC1 D minf� Nxji = Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g:

3. If ˛ ¤ 0, update NxB D NxB C ˛ NanC1; NxnC1 D NxnC1 � ˛.
4. Compute �N D N TB�Tep .
5. Determine column index q 2 arg minj 2N �j .
6. Stop if �q � 0 (optimality achieved).
7. Compute Naq D B�1aq .
8. Update NanC1 D NanC1 C �. Naq � ep/, where � D �Nap; nC1=�q .
9. Update B�1 by (3.23).

10. Update .B; N / by exchanging jp and q.
11. Go to step 1.

16.2 Phase-I for Improved Reduced Simplex Method

To provide a starting point, this section offers a Phase-I method for the improved
reduced simplex method.

Based on the most-obtuse-angle heuristics, the following tableau algorithm
results from modifying the dual Algorithm 16.3.1.

Algorithm 16.2.1 (Improved reduced Phase-I: tableau form). Initial : Improved
reduced tableau of form (16.6), where NxB D Nb � NxnC1 NanC1. This algorithm finds a
feasible improved reduced tableau.
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1. Determine row index p 2 arg minf Nxji j i D 1; � � � ; m C 1g.
2. Stop if Nxjp � 0 (feasibility achieved).
3. Determine column index q 2 arg minj 2N Nap j .
4. If Nap q < 0, convert Nap q to 1, and eliminate the other nonzeros of the column

by elementary transformations, and go to step 1.
5. Stop if Nap; nC1 D 0 (infeasible problem).
6. Compute ˛ D � Nxjp = Nap; nC1.
7. If ˛ ¤ 0, add ˛ time of xnC1 column to NxB column and set NxnC1 D NxnC1 � ˛.

10. Go to step 1.

Example 16.2.1. Solve the following problem using Algorithm 16.2.1 as Phase-I:

min x9 D 6x1 C 4x2 � 6x3 � 4x4;

s:t: 3x1 C x2 C 3x3 C 5x4 C x5 D 3;

�4x1 � x2 C 5x3 � 2x4 C x6 D 2;

�6x1 � 7x2 � x3 C 4x4 C x7 D �5;

x1 � 3x2 � 2x3 � x4 C x8 D �1;

xj � 0; j D 1; � � � ; 8:

Answer Phase-I: Initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

3 1 3 5 1 3

�4 �1 5 �2 1 2

�6 �7 �1 4 1 �5

1 �3 �2 �1 1 �1

6 4 �6* �4 �1

Iteration 1: NxB D .3; 2; �5; �1/T; Nx9 D 0.
Take p D 5, minf6; 4; �6; �4g D �6; q D 3. Multiply row 5 by �1=6, and
add �3; �5; 1; 2 times of row 5 to rows 1,2,3,4, respectively, to obtain an improved
reduced tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

6 3 3 1 �1=2 3

1 7=3 �16=3 1 �5=6 2

�7 �23=3* 14=3 1 1=6 �5

�1 �13=3 1=3 1 1=3 �1

�1 �2=3 1 2=3 1=6
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Phase-I: Call Algorithm 16.2.1.

Iteration 2:

1. minf3; 2; �5; �1; 0g D �5 < 0; p D 3.
3. minf�7; �23=3; 1=3g D �23=3 < 0; q D 2.
4. Multiply row 3 by �3=23, and add �3; �7=3; 13=3; 2=3 times of row 3 to rows

1,2,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

75=23 111=23 1 9=23 �10=23 24=23

�26=23 �90=23* 1 7=23 �18=23 11=23

21=23 1 �14=23 �3=23 �1=46 15=23

68=23 �53=23 �13=23 1 11=46 42=23

�9=23 1 6=23 �2=23 7=46 10=23

Iteration 3:

1. minf24=23; 11=23; 15=23; 42=23; 10=23g � 0.
2. A feasible improved reduced tableau is obtained.

Phase-II: Call Algorithm 16.1.1.

Iteration 4:

1. Na9 6� 0.
2. ˛ D minf�.24=23/=.�10=23/; �.11=23/=.�18=23/; �.15=23/=.�1=46/g

D .11=23/=.�18=23/ D 11=18; p D 2.
3. Add 11=18 times of x9 column to NxB column.
4. minf�26=23; �90=23; 7=23g D �90=23 < 0; q D 4.
6. Multiply row 2 by �23=90, and add �111=23; 14=23; 53=23; �6=23 times of

row 2 to rows 1,3,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

28=15 1 37=30 23=30 �7=5 7=9

13=45 1 �23=90 �7=90 1=5

49=45 1 �7=45 �8=45 1=10 23=36

163=45 �53=90 �67=90 1 7=10 71=36

�7=15 1 1=15 �1=15 1=10 19=36

Iteration 5:

1. Na9 6� 0.
2. ˛ D minf�.7=9/=.�7=5/g D 5=9; p D 1.
3. Add 5=9 times of x9 column to NxB column:
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x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

28=15 1 37=30 23=30 �7=5

13=45 1 �23=90 �7=90 1=5 1=9

49=45 1 �7=45 �8=45 1=10 25=36

163=45 �53=90 �67=90 1 7=10 85=36

�7=15 1 1=15 �1=15 1=10 7=12

4. minf28=15; 37=30; 23=30g � 0.
5. Basic optimal solution and according objective value:

Nx D .0; 25=36; 7=12; 1=9; 0; 0; 0; 85=36/T; Nx9 D �7=6:

The following is a revision of Algorithm 16.2.1.

Algorithm 16.2.2 (Improved reduced Phase-I). Initial : .B; N /; B�1: NxB D Nb �
NxnC1 NanC1, where Nb D B�1b; NanC1 D �B�1emC1. This algorithm finds a basic
feasible solution to (15.1).

1. Determine row index p 2 arg minf Nxji j i D 1; � � � ; m C 1g.
2. Stop if Nxjp � 0 (feasibility achieved).
3. Compute �N D N TB�Tep .
4. Determine column index q 2 arg minj 2N �j .
5. Go to 10 if �q < 0.
6. Stop if Nap; nC1 D 0 (infeasible problem).
7. Compute ˛ D � Nxjp = Nap; nC1.
8. Update : NxB D NxB C ˛ NanC1; NxnC1 D NxnC1 � ˛.
9. Go to step 1.

10. Compute Naq D B�1aq .
11. Update : NanC1 D NanC1 C �. Naq � ep/, where � D �Nap; nC1=�q .
12. Update : NxB D NxB C �. Naq � ep/, where � D � Nxjp =�q .
13. Update B�1 by (3.23).
14. Update .B; N / by exchanging jp and q.
15. Go to step 1

16.3 Dual Improved Reduced Simplex Method

Exploiting the improved reduced tableau of form (16.6), it is possible to pursue
primal feasibility while maintaining dual feasibility, until attaining optimality. To
realize this idea, we modify the dual reduced simplex Algorithm 15.4.1 as follows.

Algorithm 16.3.1 (Dual improved reduced simplex algorithm: tableau form).
Initial : improved reduced tableau of form (16.6), where eT

p
NN � 0; Nap; nC1 <

0; NxnC1 D Nbp= Nap; nC1; NxB D Nb � NxnC1 NanC1. This algorithm solves the reduced
problem (15.1).
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1. Determine row index r 2 arg minf Nxji j i D 1; � � � ; m C 1; i ¤ pg.
2. Stop if Nxjr � 0 (optimality achieved).
3. If J D fj 2 N j Narj < 0g D ;, set p D r , and go to step 6.
4. Determine ˇ and column index q such that ˇ D �Napq= Narq D minj 2J �Napj = Narj .
5. Convert Nar q to 1, and eliminate the other nonzeros of the column by elementary

transformations.
6. Stop if Nap; nC1 � 0 (infeasible problem).
7. Compute ˛ D � Nxjp = Nap; nC1.
8. If ˛ ¤ 0, add ˛ times of xnC1 column to NxB column and set NxnC1 D NxnC1 � ˛.
9. Go to step 1.

Theorem 16.3.1. Under dual nondegeneracy assumption, Algorithm 16.3.1 termi-
nates. It does at

(i) step 2, giving a basic optimal solution Nx; or at
(ii) step 6, detecting infeasibility of the problem.

Proof. Comparing this algorithm with Algorithm 15.4.1, it is known that the two
generates the same sequence of iterates. Thus, the result follows from Theo-
rem 15.4.2. ut

It might be well to take a closer look at the preceding Algorithm: ˇ resulting from
step 4 and the new Nxjp from basis change in step 5 are both nonnegative; ˛ coming
from step 7 is also nonnegative since the new Nap; nC1 is negative. Therefore, the new
objective value yielding from step 8 never decreases, and strictly increases under
the dual nondegeneracy (ˇ > 0). In case when it proceeds from step 3, moreover, ˛

is certainly positive, hence the objective value strictly increases.

Example 16.3.1. Solve the following problem by Algorithm 16.3.1:

min x10 D 4x1 C 2x2 C 3x3 C 8x4 C 5x5;

s:t: �x1 C 5x2 � 4x4 � 2x5 C x6 D �3;

�3x1 � 2x2 � 6x3 C x4 � x5 C x7 D �1;

� x2 C 4x3 � 6x4 C 4x5 C x8 D 5;

5x1 C 3x2 � 3x3 C 3x4 C 5x5 C x9 D 2;

xj � 0; j D 1; � � � ; 9:

Answer Initial tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

�1 5 �4 �2 1 �3

�3 �2 �6 1 �1 1 �1

�1 4 �6 4 1 5

5 3 �3 3 5 1 2

4 2* 3 8 5 �1
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Iteration 1:
To convert the preceding tableau to an improved reduced one, take the smallest 2

among the first 5 entries in the bottom row (in x2 column) as pivot. Multiply row 5
by 1=2, and add �5; 2; 1; �3 times of row 5 to rows 1,2,3,4, respectively.

Take p D 5, e5
NN � 0; Na5;10 D �1=2 < 0. NxB D .�3; �1; 5; 2; 0/T:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

�11 �15=2 �24* �29=2 1 5=2 �3

1 �3 9 4 1 �1 �1

2 11=2 �2 13=2 1 �1=2 5

�1 �15=2 �9 �5=2 1 3=2 2

2 1 3=2 4 5=2 �1=2

Call Algorithm 16.3.1.

Iteration 2:

1. minf�3; �1; 5; 2; 0g D �3 < 0; r D 1.
3. J D f1; 3; 4; 5g ¤ ;.
4. ˇ D minf�2=.�11/; �.3=2/=.�15=2/; �4= � 24; �.5=2/=.�29=2/g

D �4= � 24 D 1=6; q D 4.
5. Multiply row 1 by �1=24, and add �9; 2; 9; �4 times of row 1 to rows 2,3,4,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

11=24 5=16 1 29=48 �1=24 �5=48 1=8

�25=8 �93=16 �23=16 3=8 1 �1=16 �17=8

35=12 49=8 185=24 �1=12 1 �17=24 21=4

25=8 �75=16 47=16 �3=8 1 9=16 25=8

1=6 1 1=4 1=12 1=6 �1=12 �1=2

6. Na5;10 D �1=12 < 0.
7. ˛ D �.�1=2/=.�1=12/ D �6.
8. Add �6 times of x10 column to NxB column, Nx

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

11=24 5=16 1 29=48 �1=24 �5=48 3=4

�25=8 �93=16* �23=16 3=8 1 �1=16 �7=4

35=12 49=8 185=24 �1=12 1 �17=24 19=2

25=8 �75=16 47=16 �3=8 1 9=16 �1=4

1=6 1 1=4 1=12 1=6 �1=12
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Iteration 3:

1. minf3=4; �7=4; 19=2; �1=4g D �7=4 < 0; r D 2.
3. J D f1; 3; 5g ¤ ;.
4. ˇ D minf�.1=6/=.�25=8/; �.1=4/=.�93=16/; �.1=12/=.�23=16/g

D �.1=4/=.�93=16/ D 4=93; q D 3.
5. Multiply row 2 by �16=93, and add �5=16; �49=8; 75=16; �1=4 times of row 2

to rows 1,3,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

9=31 1 49=93 �2=93 5=93 �10=93 61=93

50=93 1 23=93 �2=31 �16=93 1=93 28=93

�35=93 192=31 29=93 98=93 1 �24=31 712=93

175=31 127=31 �21=31 �25=31 1 19=31 36=31

1=31 1 2=93 17=93 4=93 �8=93 �7=93

6. Na5;10 D �7=93 < 0.
7. ˛ D �.�7=93/=.�8=93/ D �7=8.
8. Add �7=8 times of x10 column to NxB column:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

9=31 1 49=93 �2=93 5=93 �10=93 3=4

50=93 1 23=93 �2=31 �16=93 1=93 7=24

�35=93 192=31 29=93 98=93 1 �24=31 25=3

175=31 127=31 �21=31 �25=31 1 19=31 5=8

1=31 1 2=93 17=93 4=93 �8=93

Iteration 4:

1. minf3=4; 7=24; 25=3; 5=8g � 0.
2. Basic optimal solution and according objective value:

Nx D .0; 0; 7=24; 3=4; 0; 0; 0; 25=3; 5=8/T; Nx10 D 3
 .7=24/8
 .3=4/ D 55=8:

Based on the equivalence between the reduced tableau (15.21) and the revised
tableau (15.22),the following revision of Algorithm 16.3.1 can be obtained.

Algorithm 16.3.2 (Dual improved reduced simplex algorithm). Initial : .B; N /;

B�1: � D eT
pB�1N � 0, Nap; nC1 < 0; NxnC1 D Nbp= Nap; nC1; NxB D Nb � NxnC1 NanC1 �

0, where Nb D B�1b; NanC1 D �B�1emC1. This algorithm solves the reduced
problem (15.1).

1. Determine row index r 2 arg minf Nxji j i D 1; � � � ; m C 1; i ¤ pg.
2. Stop if Nxjr � 0 (optimality achieved).
3. Compute !N D N TB�Ter .
4. If J D fj 2 N j !j < 0g D ;, set p D r; �N D !N , and go to step 11.
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5. Determine ˇ and column index q such that ˇ D ��q=!q D minj 2J ��j =!j .
6. Compute Naq D B�1aq .
7. Update : NanC1 D NanC1 C �. Naq � er/, where � D �Nar; nC1=!q .
8. Update : NxB D NxB C �. Naq � er /, where � D � Nxjr =!q .
9. Update B�1 by (3.23) (p = r).

10. Update .B; N / by exchanging jp and q.
11. Stop if Nap; nC1 � 0 (infeasible problem).
12. Compute ˛ D � Nxjp = Nap; nC1.
13. If ˛ ¤ 0, update NxB D NxB C ˛ NanC1; NxnC1 D NxnC1 � ˛.
14. Go to step 1.

16.4 Phase-I for the Dual Improved Reduced
Simplex Method

This section offers a Phase-I method for the dual improved reduced simplex method.
Based on the most-obtuse-angle heuristics, the tableau version below results from
modifying the primal Algorithm 16.1.1.

Algorithm 16.4.1 (Dual improved reduced Phase-I: tableau form). Initial :
improved reduced tableau of form (16.6), where NxB D Nb� NxnC1 NanC1. This algorithm
finds a dual feasible improved reduced tableau.

1. Determine row index p 2 arg minf Nai; nC1 j i D 1; � � � ; m C 1g.
2. Stop if Nap; nC1 � 0 (infeasible or unbounded problem).
3. Compute ˛ D � Nxjp = Nap; nC1.
4. If ˛ ¤ 0, add ˛ times of xnC1 column to NxB column and set NxnC1 D NxnC1 � ˛.
5. Determine column index q 2 arg minj 2N Nap j .
6. Stop if Nap q � 0 (dual feasibility achieved).
7. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
8. Go to step 1.

Note Step 7 does not touch NxB column because its pth component vanishes.

Example 16.4.1. Solve the following problem using Algorithm 16.4.1 as dual
Phase-I:

min x9 D �4x1 � 7x2 C 2x3 C 3x4;

s:t: �2x1 C 1x2 � 3x3 � x4 C x5 D �11;

3x1 C 3x2 C x3 C 5x4 C x6 D 35;

5x1 C 4x2 � x3 � 2x4 C x7 D 2;

�x1 C 6x2 � 7x3 C 4x4 C x8 D 7;

xj � 0; j D 1; � � � ; 8:
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Answer Initial tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�2 1 �3 �1 1 �11

3 3 1 5 1 35

5 4 �1 �2 1 2

�1 6 �7 4 1 7

�4 �7* 2 3 �1

where NxB D .�11; 35; 2; 7/T; Nx9 D 0.
Dual Phase-I: Call Algorithm 16.4.1.

Iteration 1:

1. minf0; 0; 0; 0; �1g D �1 < 0; p D 5.
3. ˛ D 0= � 1 D 0.
5. minf�4; �7; 2; 3g D �7 < 0; q D 2.
7. Multiply row 5 by �1=7, and add �1; �3; �4; �6 times of row 5 to rows 1,2,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�18=7 �19=7 �4=7 1 �1=7 �11

9=7 13=7 44=7 1 �3=7 35

19=7 1=7 �2=7 1 �4=7 2

�31=7 �37=7* 46=7 1 �6=7 7

4=7 1 �2=7 �3=7 1=7

Iteration 2:

1. minf�1=7; �3=7; �4=7; �6=7; 1=7g D �6=7 < 0; p D 4.
3. ˛ D �7=.�6=7/ D 49=6.
4. Add 47=6 times of x9 column to NxB column; Nx9 D �49=6.
5. minf�31=7; �37=7; 46=7g D �37=7 < 0; q D 3.
7. Multiply row 4 by �7=37, and add 19=7; �13=7; �1=7; 2=7 times of row 4 to

rows 1,2,3,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�11=37 �146=37 1 �19=37 11=37 �73=6

�10=37* 318=37 1 13=37 �27=37 63=2

96=37 �4=37 1 1=37 �22=37 �8=3

31=37 1 �46=37 �7=37 6=37

30=37 1 �29=37 �2=37 7=37 7=6
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Iteration 3:

1. minf11=37; �27=37; �22=37; 6=37; 7=37g D �27=37 < 0; p D 2.
3. ˛ D �.63=2/=.�27=37/ D 259=6.
4. Add ˛ times of x9 column to NxB column; Nx9 D �49=6 � 259=6 D �154=3.
5. minf�10=37; 318=37; 13=37g D �10=37 < 0; q D 3.
7. Multiply row 2 by �37=10, and add 11=37; �96=37; �31=37; �30=37 times of

row 2 to rows 1,3,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�67=5 1 �11=10 �9=10 11=10 2=3

1 �159=5 �37=10 �13=10 27=10

412=5 48=5 1 17=5 �38=5 �85=3

1 127=5 31=10 9=10 �21=10 7

1 25 3 1 �2 28=3

Iteration 4:

1. minf11=10; 27=10; �38=5; �21=10; �2g D �38=5 < 0; p D 3.
3. ˛ D �.�85=3/=.�38=5/ D �425=114.
3. Add ˛ times of x9 column to NxB column; Nx9 D �154=3 C 425=114 D

�1;809=38.
5. minf412=5; 48=5; 17=5g � 0.
6. Dual feasibility is achieved:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�67=5 1 �11=10 �9=10 11=10 �261=76

1 �159=5* �37=10 �13=10 27=10 �765=76

412=5 48=5 1 17=5 �38=5

1 127=5 31=10 9=10 �21=10 1;127=76

1 25 3 1 �2 319=19

Dual Phase-II: Call Algorithm 15.4.2.

Iteration 5:

1. minf�261=76; �765=76; 1;127=76; 319=19g D �765=76 < 0; r D 2.
3. J D f4; 6; 8g ¤ ;.
4. ˇ D minf�.412=5/=.�159=5/; �.48=5/=.�37=10/; �.17=5/=.�13=10/g

D .412=5/=.159=5/ D 412=159; q D 4.
5. Multiply row 2 by �5=159, and add 67=5; �412=5; �127=5; �25 times of row 2

to rows 1,3,4,5, respectively:
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x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�67=159 1 73=159 �56=159 �2=53 813=1;007

�5=159 1 37=318 13=318 �9=106 358=1;131

412=159 2=159 1 5=159 �32=53 �4;747=182

127=159 1 23=159 �22=159 3=53 4;311=635

125=159 1 29=318 �7=318 13=106 6;950=783

6. Na3;9 D �32=53 < 0.
7. ˛ D �.�4;747=182/=.�32=53/.
8. Add ˛ times of x9 column to NxB column:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�67=159 1 73=159 �56=159 �2=53 39=16

�5=159 1 37=318 13=318 �9=106 255=64

412=159 2=159 1 5=159 �32=53

127=159 1 23=159 �22=159 3=53 139=32

125=159 1 29=318 �7=318 13=106 229=64

Basic optimal solution and according objective value:

Nx D .0; 229=64; 139=32; 255=64; 39=16; 0; 0; 0/T;

Nx9 D �7 
 .229=64/ C 2 
 .139=32/ C 3 
 .255=64/ D �141=32:

The following is a revision of Algorithm 16.4.1.

Algorithm 16.4.2 (Dual Improved Reduced Phase-I). Initial : .B; N /; B�1.
NxB D Nb � NxnC1 NanC1, where Nb D B�1b; NanC1 D �B�1emC1. This algorithm
finds a dual feasible basis to (15.1).

1. Determine row index p 2 arg minf Nai; nC1 j i D 1; � � � ; m C 1g.
2. Stop if Nap; nC1 � 0 (infeasible or unbounded problem).
3. Compute ˛ D � Nxjp = Nap; nC1.
4. If ˛ ¤ 0, update NxB D NxB C ˛ NanC1; NxnC1 D NxnC1 � ˛.
5. Compute �N D N TB�Tep .
6. Determine column index q 2 arg minj 2N �j .
7. Stop if �q � 0 (dual feasibility achieved).
8. Compute Naq D B�1aq .
9. Update NanC1 D NanC1 C �. Naq � ep/, where � D �Nap; nC1=�q .

10. Update B�1 by (3.23).
11. Update .B; N / by exchanging jp and q.
12. Go to step 1.
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16.5 Bisection Reduced Simplex Method

In some applications, not only there exists an optimal solution to the LP problem,
but the optimal value can be estimated. In this case, it would be possible to speed
up solution process by taking advantage of information of the optimal value. If the
optimal value is known in priori to be  , e.g., after adding a new constraint cTx D  ,
any feasible solution to the modified problem is clearly an optimal solution to the
original problem. Consequently, only a Phase-I procedure is enough to solve the
problem, in principle. Although this is not the case in general, it would be possible
to determine some interval, including the optimal value there within.

An interval including the optimal value is referred to as (optimal value) existence
interval. It is contracted by at least a half of the length in each iteration, until
optimality achieved. This idea motivated the bisection simplex method for solving
standard LP problems, as was initially expected to help bypass degenerate vertices
(Pan 1991, 1994c, 1996a, Yan and Pan 2001). It may be more fitly implemented in
reduced simplex context. The reader is referred to the related references for detailed
theoretical results and discussions, associated with the algorithm designed in this
section.

The approach to determining an existence interval is novel. Firstly, the improved
reduced Phase-1 method (Sect. 16.2) is applied to generate a feasible solution, if
any; the associated objective value, which is an upper bound of the optimal value,
is set to 	. Then, the dual improved reduced Phase-I method (Sect. 16.4) is applied
to generate a dual feasible solution, if any; the associated objective value, which a
lower bound of the optimal value, is set to �. Thus, if it holds that � D 	, then a
pair of dual and primal basic optimal solutions is already reached, though which are
not necessarily complementary. Assume that this is not the case.

Each iteration will correspond to an existence interval Œ�; 	�. It is divided by the
optimal value into two sections: the left-hand and right-hand sections are comprised
of dual and primal feasible values, respectively; as a common point, the optimal
value itself is primal as well as dual feasible. A subalgorithm is utilized to find a
primal feasible solution with the objective value NxnC1 D .� C 	/=2. The outcome
will be one of the following:

(i) A primal feasible solution is found, hence NxnC1 is a feasible objective value.
Switch such value down to one, associated with a basic feasible solution. If
the reached solution does not satisfy the optimality condition, the according
objective value is a new upper bound on the optimal value, and set it to 	.

(ii) There is no such a primal feasible solution, hence NxnC1 is a dual feasible value.
Switch it up to a value, associated with a basic solution. If it does not satisfy
the optimality condition, the according objective value is a new lower bound on
the optimal value, and set it to �.

It is clear that the resulting Œ�; 	� is again an existence interval, contracting by a
half of its length, at least.

The subalgorithm can be obtained by modifying Algorithm 16.2.1 as follows.
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Algorithm 16.5.1 (Bisection subalgorithm: tableau form). Initial: improved
reduced tableau of form (16.6), where NxB D Nb � NxnC1 NanC1. This procedure attempts
to find a feasible solution with objective value NxnC1, and then makes switching.

1. Determine row index p 2 arg minf Nxji j i D 1; � � � ; m C 1; i ¤ pg.
2. Go to step 7 if Nxjp < 0.
3. Determine ˛ and row index p such that

˛ D � Nxjp = Nap; nC1 D minf� Nxji = Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g:

4. If ˛ > 0, add ˛ times of xnC1 column to NxB column, and set NxnC1 D NxnC1 � ˛.
5. Return if Napj � 0; 8 j 2 N (optimality achieved).
6. Set 	 D NxnC1, and return.
7. Determine column index q 2 arg minj 2N Napj .
8. Go to 13 if Napq < 0.
9. Compute ˛ D � Nxjp = Nap; nC1.

10. Add ˛ times of xnC1 column to NxB column, and set NxnC1 D NxnC1 � ˛.
11. Return if NxB � 0 (optimality achieved).
12. Set � D NxnC1, and return.
13. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
14. Go to step 1.

Note This subalgorithm is applicable whenever a existence interval Œ�; 	� is
available. Step 3 is always well-defined because, otherwise, Nxp � 0, hence NanC1 6� 0

leads to unboundedness of the original problem follows, as is a contradiction. Step
9 is also always well-defined because, otherwise, Nap;nC1 < 0 leads to infeasibility
of the original problem, as is a contradiction.

Regarding the preceding subalgorithm, the following result is cited without proof
(Pan 1991).

Theorem 16.5.1. Assume that no cycling occurs. If the length of a existence
interval is short enough, Subalgorithm 16.5.1 generates a basic optimal solution.

Associated overall steps are put into the following master algorithm.

Algorithm 16.5.2 (Bisection reduced simplex algorithm: tableau form). Initial :
improved reduced tableau of form (16.6), where NxB D Nb� NxnC1 NanC1. This algorithm
solves the reduced problem (15.1).

1. Call Algorithm 16.2.1 to achieve primal feasibility:

(1) Stop when returning from step 5 (infeasible problem);
(2) When returning from step 2, then: if nonbasic entries in the pth row are all

positive, set 	 D NxnC1; else stop (optimality achieved).

2. Call Algorithm 16.4.1 to achieve dual feasibility:

(1) Stop when returning from step 2 (infeasible problem);
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(2) When returning from step 6: if NxB 6� 0, set � D NxnC1; otherwise, stop
(optimality achieved).

3. Stop if � D 	 (optimality achieved).
4. Compute ˛ D .	 � �/=2; if NxnC1 D �, set ˛ D �˛.
5. Update NxnC1 D NxnC1 � ˛, and add ˛ times of xnC1 column to NxB column.
6. Call Subalgorithm 16.5.1.

(1) Stop when returning from step 5 or 11 (optimality achieved).
(2) Go to step 5 when returning from step 6 or 8.

The associated proof of the preceding algorithm is omitted.
Under the nondegeneracy assumption, Subalgorithm 16.5.1 either achieves

optimality or contracts the existence interval by a half, at least. Based on The-
orem 16.5.1, therefore, it is known that Algorithm 16.5.2 generates an optimal
solution, if any, in finitely many iterations. Steps 1 and 2 generate a existence
interval, or detects infeasibility or unboundedness of the problem.

Example 16.5.1. Solve the following problem by Algorithm 16.5.2:

min x10 D 3x1 � 4x2 C 8x3 C x4;

s:t: x1 C 2x2 C x3 C 5x4 C x5 D 3;

3x1 C 4x2 � 7x3 � x4 C x6 D 20;

�2x1 � x2 C x3 C 2x4 C x7 D �5;

�x1 C x2 � 2x3 � x4 C x8 D �2;

�6x1 C 8x2 � 16x3 � 2x4 C x9 D 50;

xj � 0; j D 1; � � � ; 9:

Answer
Step 1. Call Algorithm 16.2.1 to achieve primal feasibility.

Initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

1 2 1 5 1 3

�3 4 �7 �1 1 20

�2 �1 1 2 1 �5

�1 1 �2 �1 1 �2

�6 8 �16 �2 1 50

3 �4* 8 1 �1

Iteration 1:
Transform the preceding to an improved reduced tableau: taking p D 6;
minf3; �4; 8; 1g D �4, q D 2; Multiplying row 6 by �1=4, and add
�2; �4; 1; �1; �8 times of row 6 to rows 1,2,3,4,5, respectively:
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

5=2 5 11=2 1 �1=2 3

0 1 0 1 �1 20

�11=4* �1 7=4 1 1=4 �5

�1=4 0 �3=4 1 �1=4 �2

0 0 0 1 �2 50

�3=4 1 �2 �1=4 1=4

Iteration 2:

1. minf3; 20; �5; �2; 50; 0g D �5; p D 3.
3. minf�11=4; �1; 7=4g D �11=4; q D 1.
4. Multiply row 3 by �4=11, and add �5=2; 1=4; 3=4 times of row 3 to rows

1,4,6, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

45=11 78=11 1 10=11 �3=11 �17=11

1 1 �1 20

1 4=11 �7=11 �4=11 �1=11 20=11

1=11 �10=11 �1=11 1 �3=11 �17=11

1 �2 50

1 �19=11 �8=11 �3=11 2=11 15=11

Iteration 3:

1. minf�17=11; 20; 20=11; �17=11; 50; 15=11g D �17=11; p D 1.
3. minf45=11; 78=11; 10=11g � 0.
5. Na1;10 D �3=11 < 0.
6. ˛ D �.�17=11/=.�3=11/ D �17=3.
7. Add �17=3 times of x10 column to NxB column:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 NxB

45=11 78=11 1 10=11 �3=11

1 1 �1 77=3

1 4=11 �7=11 �4=11 �1=11 7=3

1=11 �10=11 �1=11 1 �3=11

1 �2 184=3

1 �19=11 �8=11 �3=11 2=11 1=3
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Iteration 4:

1. minf0; 17=3; 7=3; 0; 184=3; 1=3 � 0.
2. Nx10 D 3 
 .7=3/ � 4 
 .1=3/ D 17=3, feasibility achieved.

Step 1(2). .45=11; 78=11; 10=11/ > 0, 	 D 17=3.
Step 2. Call Algorithm 16.4.1 to achieve dual feasibility.

Iteration 5:

1. minf�3=11; �1; �1=11; �3=11; �2; 2=11g D �2 < 0, p D 5.
3. ˛ D �.184=3/=.�2/ D 184=6.
4. Nx10 D 17=3 � 184=6 D �25; add 184=6 times of x10 column to NxB

column.
5. minf0; 0; 0g � 0.
6. Dual feasibility is achieved.

Step 2(2). Basic optimal solution and according objective value:

Nx D .7=3; 1=3; 0; 0; 0; 77=3; 0; 0; 184=3/T; Nx10 D 17=3:

In the preceding example, there was no need for bisection carried out on the
initial existence interval Œ�; 	�. It is of course not the case in general, though we
failed to construct one requiring bisection. It would be different if tested with larger
problems.

We state a revisions of Algorithms 16.5.1 and 16.5.2 below.

Algorithm 16.5.3 (Bisection subalgorithm). Initial : .B; N /; B�1. NxB D Nb �
NxnC1 NanC1, where Nb D B�1b; NanC1 D �B�1emC1. This procedure attempts to find
a feasible solution with objective value NxnC1, and switch.

1. Determine row index p 2 arg minf Nxji j i D 1; � � � ; m C 1; i ¤ pg.
2. Go to step 9 if Nxjp < 0.
3. Determine ˛ and row index p such that

˛ D � Nxjp = Nap; nC1 D minf� Nxji = Nai; nC1 j Nai; nC1 < 0; i D 1; � � � ; m C 1g:

4. If ˛ > 0, update NxB D NxB C ˛ NanC1, and set NxnC1 D NxnC1 � ˛.
5. Compute �N D N TB�Tep .
6. Determine column index q 2 arg minj 2N �j .
7. Return if �q � 0 (optimality achieved).
8. Set 	 D NxnC1, and return.
9. Determine column index q 2 arg minj 2N �j .

10. Go to step 15 if �q < 0.
11. Compute ˛ D � Nxjp = Nap; nC1.
12. Update NxB D NxB C ˛ NanC1, and set NxnC1 D NxnC1 � ˛.
13. Return if NxB � 0 (optimality achieved).
14. Set � D NxnC1, and return.
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15. Compute Naq D B�1aq .
16. Update NanC1 D NanC1 C �. Naq � ep/, where � D �Nap; nC1=�q .
17. Update B�1 by (3.23).
18. Update .B; N / by exchanging jp and q.
19. Go to step 1.

Algorithm 16.5.4 (Bisection reduced simplex Algorithm). Initial : .B; N /; B�1.
NxB D Nb � NxnC1 NanC1, where Nb D B�1b; NanC1 D �B�1emC1. This algorithm solves
the reduced problem (15.1).

1. Call Algorithm 16.2.2 to achieve primal feasibility:

(1) Stop when returning from step 6 (infeasible problem);
(2) When returning from step 2, then: if �N < 0, set 	 D NxnC1; else stop

(optimality achieved).

2. Call Algorithm 16.4.2 to achieve dual feasibility:

(1) Stop when returning from step 2 (unbounded primal problem);
(2) When returning from step 7, then: if NxB < 0, set � D NxnC1; else stop

(optimality achieved).

3. Stop if � D 	 (optimality achieved).
4. Compute ˛ D .	 � �/=2; set ˛ D �˛ if NxnC1 D �.
5. Update NxnC1 D NxnC1 � ˛; NxB D NxB C ˛ NanC1.
6. Call Subalgorithm 16.5.3.

(1) Stop when returning from step 7 or 13 (optimality achieved).
(2) Go to step 8 when returning from step 8 or 14.



Chapter 17
D-Reduced Simplex Method

Consider the so-called “D-reduced problem” (25.3), i.e.,

min cTx;

s:t: Ax D er ; x � 0:
(17.1)

The associated dual problem is of an objective function involving a single variable.
A so-called “D-reduced simplex method” will be developed to solve the preceding
problem.

As it will play a specially role in the presented method, the r-indexed row will
be separated off to handle. Therefore, we introduce the following column and row
index sets:

B D fj1; � � � ; jm�1g; N D AnB; R D f1; � � � ; mgnfrg D fi1; � � � ; im�1g:
(17.2)

17.1 D-Reduced Simplex Tableau

Let I 2 R.m�1/�.m�1/ be the unit matrix. Assume that the initial tableau of problem
(17.1) is converted to the following so-called “D-reduced (simplex ) tableau” by the
Gaussian-Jordan elimination with row and column exchanges:

xT
B xT

N f RHS

I NNR

N!T
N 1

NzT
N �1 � Nf

(17.3)

where the mth (r-indexed) row is called datum row. Of course, a D-reduced tableau
represents the original problem itself, just as a conventional simplex tableau, though
now the RHS column alone does not give the basic solution explicitly.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__17,
© Springer-Verlag Berlin Heidelberg 2014

409



410 17 D-Reduced Simplex Method

It is noted that the datum row represents equation

N!T
N xN D 1: (17.4)

whereas the bottom (objective) row represents equation

NzT
N xN � f D � Nf : (17.5)

Lemma 17.1.1. If nonbasic entries in the datum row are no more than zero, there
is no feasible solution.

Proof. Since N!N � 0, if Ox � 0 is a feasible solution, then it follows that the left side
of (17.4) is less than or equal to 0, as contradicts the right-hand side 1. Therefore,
there is no feasible solution. ut

Denote by Naq.R/ the subvector of Naq , associated with row index set R.

Definition 17.1.1. If it holds that

N!q ¤ 0; Nzq D 0; (17.6)

the qth column is a datum column of the D-reduced tableau (17.3).

Proposition 17.1.1. The D-reduced tableau with the qth datum column gives the
basic solution

NxB D � Nxq Naq.R/; Nxq D 1= N!q; Nxj D 0; q ¤ j 2 N; (17.7)

associated with objective value Nf .

Proof. The D-reduced tableau (17.3) corresponds to problem

max f D Nf C NzT
N xN ;

s:t: xB C NNRxN D 0;

N!T
N xN D 1; xB; xN � 0:

(17.8)

Substituting Nxj D 0; q ¤ j 2 N; Nxq D 1= N!q to the equality constraint gives
(17.7). Carrying out elementary transformations, by taking N!q as pivot, will convert
(17.3) to a conventional simplex tableau, associated with a basic solution, which is
just that given by (17.7). If Nzq D 0, the bottom row remains unchanged, and hence
the according objective value of the solution is equal to Nf . ut

It is seen that a D-reduced tableau could give multiple basic solutions, as its
datum column would be specified differently.

D-reduced tableau satisfying

Nzq D 0; N!q > 0I Naiq � 0; i 2 R; (17.9)
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is called feasible, and that satisfying

NzN � 0; (17.10)

is called dual feasible.

Lemma 17.1.2. A feasible D-reduced tableau corresponds to a basic feasible
solution. A dual feasible D-reduced tableau satisfying (17.6) corresponds to a dual
basic feasible solution.

Proof. Consider the conventional simplex tableau, resulting from the basis change
by taking N!q ¤ 0 as pivot. If (17.9) holds, then the basic solution Nx � 0, defined
by (17.7), is clearly a feasible solution. If (17.6) and (17.10) both hold, the tableau
corresponds to a dual basic feasible solution NzB D 0; NzN � 0. ut
Lemma 17.1.3. A D-reduced tableau, satisfying

N!q > 0; Naiq � 0; i 2 R; (17.11)

Nzq D 0; NzN � 0; (17.12)

corresponds to a pair of primal and dual basic optimal solutions.

Proof. Under the assumption, conditions (17.9) and (17.10) are both satisfied. By
Lemma 17.1.2, the D-reduced tableau corresponds to a primal and a dual basic
feasible solution, which are complementary. ut
Lemma 17.1.4. Let (17.3) be a feasible D-reduced tableau. If, for some q0 2 N , it
holds that

Nzq0 < 0; Nai; q0 � 0; i 2 R; N!q0 � 0;

then the problem is lower unbounded.

Proof. The feasibility of the D-reduced tableau implies satisfaction of (17.9) for
some q 2 N . Carrying out elementary transformations, with N!q > 0 as pivot,
will lead to a feasible simplex tableau with the sigh of the q0 column remaining
unchanged; there is no change to the objective row, and hence to Nzq0 < 0. Therefore
the problem is lower unbounded (Lemma 3.2.2). ut
Lemma 17.1.5. If a D-reduced tableau satisfies

Nzq < 0I Naiq � 0; i 2 R; (17.13)

then the problem has no feasible solution, or has no dual feasible solution with
objective value Nf .



412 17 D-Reduced Simplex Method

Proof. Consider the dual problem, represented by D-reduced tableau (17.3), i.e.,

max Nf C g;

s:t:

�
I
NN T

R N!N

��
y

g

�
C
�

zB

zN

�
D
�

0

NzN

�
; zB; zN � 0;

(17.14)

where the objective function involves a single variable g. Setting g D 0 turns this
problem to

max Nf ;

s:t:

�
I
NN T

R

�
y C

�
zB

zN

�
D
�

0

NzN

�
; zB; zN � 0;

(17.15)

where the objective value equals Nf . On the other hand, deleting the mth row of the
tableau gives a (conventional) simplex tableau of (17.15). Since (17.13) holds, by
Lemma 14.3.1 the problem either has a feasible solution or is lower unbounded. If
there is no feasible solution, the D-reduced tableau has no feasible solution; if lower
unbounded, then (17.15) has no feasible solution, hence there is no dual feasible
solution, associated with objective value Nf . ut

A D-reduced tableau corresponds to a dual problem with objective function
involving a single variable. It will be seen a little later that the datum row
corresponds to the dual reduced gradient, and basis changes carried out on the D-
reduced tableau only touch rows associated with R, not objective value Nf . Desired
changes in objective value will be realized by adding appropriate times of the datum
row to the bottom row.

Alternatively, an initial D-reduced tableau may be obtained from a (conventional)
simplex tableau as follows. If Nbr of the right-hand side is nonzero, multiplying the
r-indexed row by 1= Nbr , and then adding appropriate times of the row to the other
rows respectively gives a D-reduced tableau with the r-indexed row being datum
row. The jr -indexed column can be taken as datum column, as it becomes nonbasic,
i.e.,

Oar; jr D 1= Nbr I Oai; jr D � Nbi = Nbr ; i 2 R;

corresponding to zero reduced cost. Further, if the conventional tableau is feasible,
i.e., Nb � 0, then the resulting is a feasible D-reduced tableau.

17.2 Dual D-Reduced Simplex Method

Starting from a dual feasible D-reduced tableau, the method presented in this section
generates a sequence of such tableaus to achieve primal feasibility, and obtain a pair
of primal and dual basic optimal solutions.
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Let (17.3) be a dual feasible D-reduced tableau and let (17.10) hold. It is noted
by Preposition 17.1.1 that the objective value of the basic solution Nx is Nf , which is
equal to the opposite number of the south-eastern entry of the tableau.

If entries in the datum row are all less than or equals 0, the problem has no
feasible solution (Lemma 17.1.1). This is usually not the case, and hence the
following rule is well-defined.

Rule 17.2.1 (Dual column rule) Determine ˇ and column index q such that

ˇ D Nzq= N!q D minfNzj = N!j j N!j > 0; j 2 N g � 0; (17.16)

where ˇ is termed dual stepsize. If ˇ ¤ 0, add �ˇ times of the datum row to the
bottom row to convert Nzq to 0, then apply the following row rule.

Rule 17.2.2 (Dual row rule) Select row index

p 2 arg max
i2R

Naiq:

Since N!q > 0, an optimal D-reduced tableau is already obtained if Napq � 0 (by
taking column q as datum column); otherwise, convert it to 1, and eliminate the
other nonzeros of column q by elementary transformations. Thus, an iteration is
complete; consequently, column q enters the basis, whereas column jp leaves the
basis, becoming a new datum column.

The resulting tableau remains dual feasible. In fact, Rule 17.2.2 ensures a largest
possible stepsize ˇ subject to dual constraints. Now the south-eastern entry of the
tableau becomes � Nf C ˇ, so the increment of the objective value is just ˇ � 0. If
ˇ > 0, the D-reduced tableau is said to be dual nondegenerate, a case in which the
objective value strictly increases. In degenerate case of ˇ D 0, the objective value
will remain unchanged.

Repeat the preceding steps until optimality achieved or infeasibility is detected.
It is not difficult to show that, the leaving column jp will not enter the basis
immediately, and the entering column q not leave the basis immediately either. In
addition, the basis change will not touch the objective value, whereas only adding
some times of the datum row to the bottom row changes it. As the f column does
not vary in the process at all, it can be omitted.

The overall steps can be put into the following model.

Algorithm 17.2.1 (Dual D-reduced simplex algorithm: tableau form). Initial:
dual feasible D-reduced tableau of form (17.3). This algorithm solves the D-reduced
problem (17.1).

1. Stop if J D fj 2 N j N!j > 0g D ;.
2. Determine ˇ and column index q such that ˇ D Nzq= N!q D minj 2J Nzj = N!j .
3. If ˇ > 0, add �ˇ times of datum row to the bottom row.
4. Determine row index p 2 arg maxi2R Nai q .
5. If Nap q � 0, compute Nxq D 1= N!q; NxB D � Nxq Naq.R/, and stop.
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6. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

7. Go to step 1.

Theorem 17.2.1. Under dual nondegeneracy assumption, Algorithm 17.2.1 termi-
nates either at

(i) Step 1, detecting infeasibility of the problem; or at
(ii) Step 5, giving a basic optimal solution.

Proof. The proofs of termination under dual nondegeneracy is the same as in the
conventional simplex context. Meanings of the exits come from Lemmas 17.1.1
and 17.1.3, as well as discussion preceding the Algorithm ut

The preceding Algorithm may be viewed as solving the dual problem through
the tableau. To explain, return to the dual problem (17.14).

It is clear that there is the following solution to the dual problem:

y D 0; g D 0;

zB D 0; zN D NzN ;

which is feasible when NzN � 0. The reduced gradient of the objective function is
given by

�y D 0; �g D 1;

along which the objective value in the reduced space increases the fastest. The
associated vector in z space is then

�zB D 0; �zN D � N!N :

This leads to the following update:

OzN D NzN � ˇ N!N ; Og D ˇ: (17.17)

It is noted that the dual stepsize ˇ � 0 equals the according increment of
the objective value. If N!N 6� 0, the greatest possible value, maintaining dual
feasibility, is

ˇ D Nzq= N!q D minfNzj = N!j j N!j > 0; j 2 N g: (17.18)

It is then seen that the dual D-reduced simplex algorithm is a dual variant of
the reduced simplex algorithm, as it actually handles the dual problem by latter’s
train of thought. The sense of such doing lies in that the resulting search direction
in the former corresponds to the whole dual reduced gradient, while, in contrast,
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the search direction in the (conventional) dual simplex algorithm corresponds to a
single component of the dual reduced gradient only.

Example 17.2.1. Solve the following problem by Algorithm 17.2.1:

min 3x1 C 5x2 C 2x3 C 4x4;

s:t: 2x1 C 5x2 � 3x3 � 4x4 C x5 D �2;

�4x1 � 3x2 C 6x3 � 2x4 C x6 D 4;

�x1 � 4x2 � x3 C 2x4 C x7 D �5;

xj � 0; j D 1; � � � ; 7:

Answer Initial tableau

x1 x2 x3 x4 x5 x6 x7 RHS

2 5 �3 �4 1 �2

�4 �3 6 �2 1 4

�1 �4 �1 2 1 �5*

3 5 2 4

Iteration 1:
maxfj � 2j; j4j; j � 5jg D 5; r D 3, take the third row as datum row. Multiply row
3 by �1=5, and add 2; �4 times of row 3 to rows 1,2, respectively, resulting in the
following D-reduced tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

12=5 33=5* �13=5 �24=5 1 �2=5

�24=5 �31=5 26=5 �2=5 1 4=5

1=5 4=5 1=5 �2=5 �1=5 1

3 5 2 4

which is dual feasible, as the bottom line is nonnegative.
Call Algorithm 17.2.1.

Iteration 2:

1. J D f1; 2; 3g ¤ ;.
2. ˇ D minf3=.1=5/; 5=.4=5/; 2=.1=5/g D 5=.4=5/; q D 2.
3. Add �5=.4=5/ times of row 3 to the bottom row.
4. maxf33=5; �31=5g D 33=5 > 0; p D 1.
6. Multiply row 1 by 5=33, and add 31=5; �4=5 times of row 1 to rows 2,3,

respectively:
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x1 x2 x3 x4 x5 x6 x7 RHS

4=11 1 �13=33 �8=11 5=33 �2=33

�28=11 91=33* �54=11 31=33 1 14=33

�1=11 17=33 2=11 �4=33 �5=33 1

7=4 3=4 13=2 5=4 �25=4

Iteration 3:

1. J D f3; 4g ¤ ;.
2. ˇ D minf.3=4/=.17=33/; .13=2/=.2=11/g D .3=4/=.17=33/; q D 3.
3. Add �.3=4/=.17=33/ times of row 3 to the bottom row.
4. maxf�13=33; 91=33g D 91=33 > 0; p D 2.
6. Multiply row 2 by 33=91, and add 13=33; �17=33 times of row 2 to rows 1,3,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �10=7 2=7 1=7

�12=13 1 �162=91 31=91 33=91 2=13

5=13 100=91 �27=91 �17=91 �3=13 1

32=17 106=17 3=17 25=17 �131=17

Iteration 4:

1. J D f1; 4g ¤ ;.
2. ˇ D minf.32=17/=.5=13/; .106=17/=.100=91/g D .32=17/=.5=13/; q D 1.
3. Add .32=17/=.5=13/ times of row 3 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �10=7 2=7 1=7

�12=13 1 �162=91 31=91 33=91 2=13

5=13 100=91 �27=91 �17=91 �3=13 1

6=7 57=35 32=35 13=5 �63=5

4. maxf�12=13; 0g � 0.
5. Nx1 D 13=5. The basic optimal solution and according objective value:

Nx D .13=5; 0; 12=5; 0; 0; 0; 0/T; Nf D 63=5:

Further, we give the revised version of Algorithm 17.2.1. Denote by BR the
submatrix consisting of entries associated with B; R (similarly below). Assume that
row r D m is datum row. It is not difficult to derive the following revised tableau
equivalent to the D-reduced tableau (17.3):
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xT
B xT

N f RHS

I B�1
R NR

eT
r N � eT

r BB�1
R NR 1

cT
N � cT

BB�1
R NR �1

(17.19)

Assume the column q enters the basis. Introduce Naq.R/ D B�1
R aq.R/, where

aq.R/ is aq’s subvector associated with row index set R. The formula for updating
the inverse of the basis matrix is similar to (3.23) i.e.,

OB�1
R D EsB

�1
R ; (17.20)

where

Ep D

0
BBBBBBBBBBB@

1 �Nai1 q= Nais ; q

: : :
:::

�Nais�1 q= Nap; q

1= Nais; q

�NaisC1 q= Nais; q

:::
: : :

�Naim�1; q= Nais ; q 1

1
CCCCCCCCCCCA

(17.21)

Based on equivalence between (17.3) and (17.19), a revised version of Algo-
rithm 17.2.1 is stated as follows.

Algorithm 17.2.2 (Dual D-reduced simplex algorithm). Initial: B; R; N defined
by (17.2). B�1

R and NzN � 0. This algorithm solves the D-reduced problem (17.1).

1. Compute N!N D N Tem � N T
RB�T

R BTem.
2. Stop if J D fj 2 N j N!j > 0g D ; (dual unbounded problem).
3. Determine ˇ and column index q such that ˇ D Nzq= N!q D minj 2J Nzj = N!j .
4. If ˇ > 0, update by NzN D NzN � ˇ N!N .
5. Compute Naq.R/ D B�1

R aq.R/.
6. Select p 2 arg maxi2R Nai q .p D is/.
7. If Nap; q � 0, compute

Nxq D 1= N!q; NxB D � Nxq Naq.R/; Nf D cq Nxq C cT
B NxB;

8. Stop (optimality achieved).
9. Update B�1

R by (17.20).
10. Update .B; N / by exchanging js and q.
11. Go to step 1.
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17.3 Dual D-Reduced Phase-I

The algorithms, described in the previous section, have to start from a dual feasible
tableau or solution. If NzN D cN � N T

RB�T
R cB � 0, such a starting point is readily

available; otherwise, there is a need for dual Phase-I procedure to provide it. An
initial dual feasible tableau for Algorithm 17.2.1 can be obtained by the following
modification of D-reduced simplex Algorithm 17.5.1.

Algorithm 17.3.1 (Dual D-reduced Phase-I: tableau form). Initial: D-reduced
tableau of form (17.3). This algorithm finds a dual feasible D-reduced tableau.

1. Determine column index q 2 arg minj 2N Nzj .
2. Stop if Nzq � 0.
3. If N!q ¤ 0, add ˇ D �Nzq= N!q times of the datum row to the bottom row.
4. Determine row index p 2 arg maxi2R Nai q .
5. Go to 7 if Nap q > 0.
6. Stop if N!q D 0.
7. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
8. Go to step 1.

Theorem 17.3.1. Assume termination of Algorithm 17.3.1. It terminates either at

(i) Step 2, giving a dual feasible D-reduced tableau; or at
(ii) Step 6, detecting infeasibility or lower unboundedness.

Proof. Validity of the meaning of exit 2 is clear. Assume that it returns from exit 6.
Then Nzq < 0, Naq � 0 and N!q D 0 hold. If the problem is feasible, by Lemma 17.1.1
there is q0 2 N such that N!q0 > 0. Taking N!q0 as pivot, a (conventional) simplex
tableau is obtained by carrying out elementary transformations, without changing
the q column. As components of the column are positive, the problem is infeasible
or lower unbounded, by Lemma 14.3.1. ut
Example 17.3.1. Solve following problem using Algorithm 17.3.1 as Phase-I:

min �3x1 � 5x2 C 4x3 C 8x4;

s:t: 6x1 � 2x2 C 3x3 C 2x4 C x5 D 2;

�2x1 C 4x2 � x3 � 8x4 C x6 D �4;

4x1 C 5x2 C 2x3 C x4 C x7 D 6;

xj � 0; j D 1; � � � ; 7:
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Answer Initial tableau

x1 x2 x3 x4 x5 x6 x7 RHS

6 �2 3 2 1 2

�2 4 �1 �8 1 �4*

4 5 2 1 1 6

�3 �5 4 8

Iteration 1:
Arbitrarily take row 2 to be as the datum row. Multiply the row by �1=4, and add
�2; �6 times of it to rows 1,3, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

5 5=2 �2 1 1=2

1=2 �1 1=4 2 �1=4 1

1 11* 1=2 �11 3=2 1

�3 �5 4 8

Dual Phase-I: Call Algorithm 17.3.1. r D 2.

Iteration 2:

1. minf�3; �5; 4; 8g D �5 < 0; q D 2.
3. Add ˇ D �.�5/=.�1/ D �5 times of row 2 to the bottom row.
4. maxf0; 11g D 11 > 0; p D 3.
7. Add 1=11 times of row 3 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 RHS

5* 5=2 �2 1 1=2

13=22 13=44 1 �5=44 1=11 1

1=11 1 1=22 �1 3=22 1=11

�11=2 11=4 �2 5=4 �5

Iteration 3:

1. minf�11=2; 11=4; �2; 5=4; 0g D �11=2 < 0; q D 1.
3. Add ˇ D �.�11=2/=.13=22/ times of row 2 to the bottom row.
4. maxf5; 1=11g D 5 > 0; p D 1.
7. Multiply row 1 by 1=5, and add �13=22; �1=11 times of row 1 to rows 2,3,

respectively:
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x1 x2 x3 x4 x5 x6 x7 RHS

1 1=2 �2=5 1=5 1=10

68=55 �13=110 �19=110 1=11 1

1 �53=55 �1=55 7=55 1=11

11=2 95=13 5=26 11=13 56=13

Iteration 4:

1. minf11=2; 95=13; 0; 5=26; 11=13g � 0; q D 1.
2. Dual feasibility is achieved.

Dual Phase-II: Call Algorithm 17.2.1: r D 2; q D 2.

Iteration 5:

1. J D f4; 7g.
2. ˇ D maxf�.95=13/=.68=55/; �.11=13/=.1=11/g D �.95=13/=.68=55/; qD4.
3. Add ˇ times of row 2 to the bottom row.

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=2 �2=5 1=5 1=10

68=55 �13=110 �19=110 1=11 1

1 �53=55 �1=55 7=55 1=11

11=2 95=136 165=136 21=68 �109=68

4. maxf�2=5; �53=55g � 0.
5. Take Nx4 D 55=68. Basic optimal solution and according objective value:

Nx D .11=34; 53=68; 0; 55=68; 0; 0; 0; 1/T; Nf D 109=68:

Based on equivalence between the reduced tableau (17.3) and the revised tableau
(17.19), the tableau Algorithm 17.3.1 can be turn to the following revision.

Algorithm 17.3.2 (Dual D-reduced Phase-I). Initial: B; R; N defined by (17.2).
B�1

R I NzN D cN �N T
RB�T

R cB . This algorithm finds a dual feasible D-reduced basis.

1. Determine column index q 2 arg minj 2N Nzj .
2. Return if Nzq � 0 (dual feasibility achieved).
3. Compute N!N D N Tem � N T

R.B�T
R Bem/.

4. If N!q ¤ 0, update NzN D NzN C ˇ N!N , where ˇ D �Nzq= N!q .
5. Compute Naq.R/ D B�1

R aq.R/.
6. Determine p 2 arg maxi2R Nai q .p D is/.
7. Go to 9 if Nap; q > 0.
8. Return if N!q D 0 (infeasible or lower unbounded).
9. Update B�1

R by (17.20).
10. Update .B; N / by exchanging js and q.
11. Go to step 1.
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There are no any numerical results with the algorithms, described in this section.
It seems to be better to obtain a (conventional) dual feasible simplex tableau (basis)
first, and then to convert it to a D-reduced tableau (basis).

17.4 Dual D-Reduced Phase-I: Single-Artificial-Variable

This section describes another dual D-reduced Phase-I method, which may be
regarded as a variant of the dual single-artificial-variable method (Sect. 14.2),
where a (conventional) dual feasible tableau is generated via solving auxiliary dual
program (14.9) or (14.11). As the objective function only involves a single variable,
in fact, the auxiliary programs are amenable to be solved by the dual D-reduced
method.

A tableau version will be derived by handling (14.11). To this end, turn to an
initial auxiliary tableau of form (14.13) (f column is omitted), i.e.,

xT
B xT

N xnC1 RHS

I NN
.OzN � NzN /T 1 1

OzT
N OznC1 � Nf C 1

(17.22)

where OzN � 0 is some given vector, and OznC1 D 1.
As the tableau itself is a dual feasible D-reduced tableau with the .m C 1/th row

as the datum row, Algorithm 17.2.1 is applicable. As the artificial variable xnC1 is
nonbasic at the beginning, we set

N WD N [ fn C 1g:

When optimality of the auxiliary program is achieved, xnC1 enters the basis (OznC1

becomes 0), then delete the .mC1/th row and xnC1 column to gain a (conventional)
dual feasible tableau, which can be further transformed to a dual feasible D-reduced
tableau; otherwise, it is detected that there exists no dual feasible solution.

The last column of (17.22) can be omitted in operations, as the first m C 1

components of the last two columns are the same (associated with emC1), and
not touched by subsequent row elementary transformations at all; that is to say,
xnC1 column will also play the role of the right-hand side column of the auxiliary
program. In the following example, the right-hand side Nb of the original problem
is put in RHS column, so that it is convenient to turn to Phase-II when Phase-I is
finished.

Example 17.4.1. Solve Example 17.3.1 by the two-phase dual D-reduced method,
by starting Phase-I from a single-artificial-variable auxiliary tableau of form (17.22).
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Answer Taking Oz1 D Oz2 D 1; Oz3 D Oz4 D 0, construct auxiliary initial tableau

x1 x2 x3 x4 x5 x6 x7 x8 RHS

6 �2 3 2 1 2

�2 4 �1 �8 1 �4

4 5* 2 1 1 6

1 C 3 1 C 5 �4 �8 1 1

1 1 1 1

Dual Phase-I: Call Algorithm 17.2.1. The artificial variable x8 column is also
deemed as the right-hand side of the auxiliary program. The fourth row is datum
row: r D m C 1 D 4.

Iteration 1:

1. J D f1; 2; 8g ¤ ;.
2. ˇ D maxf�1=4; �1=6; �1=1g D �1=6; q D 2.
3. Add �1=6 times of row 4 to the bottom row.
4. maxf�2; 4; 5g D 5 > 0; p D 3.
6. Multiply row 3 by 1=5, and add 2; �4 � 6 times of row 3 to rows 1,2,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

38=5 19=5 12=5 1 2=5 22=5

�26=5 �13=5 �44=5 1 �4=5 �44=5

4=5 1 2=5 1=5 1=5 6=5

�4=5 �32=5 �46=5 �6=5 1 �31=5

1=3 2=3 4=3 5=6 5=6

Iteration 2:

1. J D f8g ¤ ;.
2. ˇ D maxf�.5=6/=1g D �5=6; q D 8.
3. Add �5=6 times of row 4 to the bottom row.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

38=5 19=5 12=5 1 2=5 22=5

�26=5 �13=5 �44=5 1 �4=5 �44=5

4=5 1 2=5 1=5 1=5 6=5

�4=5 �32=5 �46=5 �6=5 1 �31=5

1 6 9 1 6
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4. maxf0; 0; 0g � 0.
5. Delete the fourth row and x8 column:

x1 x2 x3 x4 x5 x6 x7 RHS

38=5 19=5 12=5 1 2=5 22=5

�26=5 �13=5 �44=5 1 �4=5 �44=5*

4=5 1 2=5 1=5 1=5 6=5

1 6 9 1 6

Iteration 3:
Take row r D 2 as datum row. Multiply the row by �5=44, and add �22=5; �6=5

times of it to rows 1,3, respectively, resulting in a dual feasible D-reduced tableau
of the original problem:

x1 x2 x3 x4 x5 x6 x7 RHS

5* 5=2 �2 1 1=2

13=22 13=44 1 �5=44 1=11 1

1=11 1 1=22 �1 3=22* 1=11

1 6 9 1 6

Dual Phase-II: Call Algorithm 17.2.1. r D 2.

Iteration 4:

1. J D f1; 3; 4; 7g ¤ ;.
2. ˇ D maxf�1=.13=22/; �6=.13=44/; �9=1; �1=.1=11/g D �1=.13=22/ ¤ 0;

q D 1.
3. Add �22=13 times of row 2 to the bottom row.
4. maxf5; 1=11g D 5 > 0; p D 1.
6. Multiply row 1 by 1=5, and add �13=22; �1=11 times of row 1 to rows 2,3,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=2 �2=5 1=5 1=10

68=55 �13=110 �19=110 1=11 1

1 �53=55 �1=55 7=55 1=11

11=2 95=13 5=26 11=13 56=13

Iteration 5:

1. J D f4; 7g ¤ ;.
2. ˇ D maxf�.95=13/=.68=55/; �.11=13/=.1=11/g D �.95=13/=.68=55/; qD4.
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3. Add �.95=13/=.68=55/ row 2 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 RHS

1 1=2 �2=5 1=5 1=10

68=55 �13=110 �19=110 1=11 1

1 �53=55 �1=55 7=55 1=11

11=2 95=136 165=136 21=68 �109=68

5. Take Nx4 D 55=68. Basic optimal solution and according objective value are

Nx D .11=34; 53=68; 0; 55=68; 0; 7; 1/T; Nf D 109=68:

17.5 D-Reduced Simplex Method

Starting from a feasible D-reduced tableau, the so-called “D-reduced simplex
algorithm”, described in this section, proceeds toward dual feasibility, iteration by
iteration, while maintaining primal feasibility.

Let (17.3) be a feasible D-reduced tableau with column q as datum column,
satisfying conditions (17.6) and (17.9). Column pivoting is carried out first.

Rule 17.5.1 (Column rule) Select column index

q0 2 arg minfNzj j j 2 N; j ¤ qg: (17.23)

If Nzq0 � 0, it is clear that optimality is already achieved. Now assume that

Nzq0 < 0: (17.24)

According to whether

Naiq0 � 0; i 2 R (17.25)

holds or not, one of the following two cases is handled:

(i) Condition (17.25) holds.
If N!q0 � 0, the problem is lower unbounded (Lemma 17.1.4); If N!q0 > 0,

then set q D q0, compute

ˇ D �Nzq= N!q: (17.26)

and add ˇ times of the datum row to the bottom row, so that Nzq is converted to
zero. Taking column q as the new datum column, it is clear that the D-reduced
tableau is still feasible, thus an iteration is complete. As ˇ > 0, the objective
value Nf , associated with the tableau, strictly decreases.
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(ii) Condition (17.25) does not hold.
Then the following rule is well-defined:

Rule 17.5.2 (Row rule) Determine row index p such that

˛ D �Napq= Napq0 D minf�Naiq= Naiq0 j Naiq0 > 0; i 2 Rg: (17.27)

It is known from (17.9) and (17.27) that

Napq � 0; Napq0 > 0: (17.28)

Therefore, ˛ � 0. When the strict inequality in (17.9) holds, the D-reduced tableau
is said to be nondegenerate. In this case, ˛ > 0.

Lemma 17.5.1. Assume that (17.24), (17.6) and (17.9) hold, and q0 and p

are determined by (17.23) and (17.27), respectively. Then the problem is lower
unbounded if

N!q0 < 0; ˛ � � N!q= N!q0 : (17.29)

Proof. Multiply the datum row of the D-reduced tableau by 1= N!q , then for i 2 R,
add �Naiq times of the datum row to the i th row. The resulting is a (conventional)
feasible simplex tableau. The q0 column’s component at the datum row of this
tableau is

Q!q0 D N!q0= N!q < 0; (17.30)

where the inequality comes from the first expression of (17.6) and of (17.29).
Besides, the other components of q0 column are

Qaiq0 D Naiq0 � Naiq. N!q0= N!q/; i 2 R: (17.31)

If Naiq0 � 0; i 2 R, then from (17.9), (17.30) and (17.31), it is known that Qaiq0 � 0;
and if Naiq0 > 0; i 2 R, from the seconde expression of (17.29) and (17.27), it
follows that

� Naiq= Naiq0 � � N!q= N!q0 > 0; i 2 R; (17.32)

where the strict inequality is from the first expression of (17.6) and of (17.29). From
Naiq0 > 0 and (17.29), it follows that Naiq < 0 and

�Naiq0= Naiq � � N!q0= N!q;

multiply which by �Naiq > 0 and combining the resulting expression with (17.31)
gives Qaiq0 � 0. Thus, it was shown that the q0 column of the feasible simplex tableau
is less than or equals zero. By Lemma 3.2.2, the problem is lower unbounded. ut
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Now assume that (17.29) does not hold. Execute elementary transformations on
the feasible D-reduced tableau to convert Nap q0 to 1, and eliminate the other nonzeros
in the column (including those in the bottom row ). Thus, xjp leaves and xq0 enters
the basis. As p 2 R, the objective value Nf remains unchanged. If the q-indexed
entry of the resulting bottom row is nonzero, add appropriate times of the datum
row to the bottom row to eliminate it. For the resulting tableau, the following result
stands good.

Proposition 17.5.1. Assume that (17.24), (17.6) and (17.9) hold, and q0 and p are
determined by (17.23) and (17.27), respectively. If N!q0 � 0, or

N!q0 < 0; ˛ < � N!q= N!q0 ; (17.33)

then the new tableau is a feasible D-reduced tableau, with column q as the datum
column. The according objective value never increases, and strictly decreases under
nondegeneracy assumption.

Proof. Mark entries of the new tableau byO. Validity of the following inequality will
be shown first:

Oaiq � 0; i 2 R: (17.34)

The p .¤ r/th component of the q column of the new tableau is

Oapq D Napq= Napq0 � 0; (17.35)

where the inequality follows from (17.9) and the first expression of (17.28). The
other components of the column are

Oaiq D Naiq � Naiq0. Napq= Napq0/; i 2 R; i ¤ p: (17.36)

For i 2 R; i ¤ p, if Naiq0 � 0, then by (17.9), (17.35) and (17.36), it is known that
Oaiq � 0; and if Naiq0 > 0, by (17.27) and (17.36), it is known that Oaiq � 0. Therefore,
(17.34) hold.

On the other hand, the q column’s component at the datum row of the new
tableau is

O!q D N!q � N!q0. Napq= Napq0/: (17.37)

If N!q0 � 0, from the first expression of (17.6), (17.35) and (17.37), it follows that

O!q > 0: (17.38)

If, otherwise, (17.33) holds, from the second expression of (17.6) and (17.27), it
follows that

�Napq= Napq0 < � N!q= N!q0 :
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Multiplying the preceding by N!q0 < 0 gives

� N!q0 . Napq= Napq0/ > � N!q;

combining which and (17.37) leads to (17.38).
Note that Nzq D 0. After a basis change by taking Napq0 as pivot, the bottom row’s

entry at the q column equals

� D Nzq0˛ � 0:

where the inequality follows from (17.27) and (17.35). If � D 0, then it is
known by (17.34) and (17.38) that resulting is a feasible D-reduced tableau with
q column as the datum one, and the according objective value does not increase. If
nondegeneracy is assumed, then ˛ > 0 and � < 0. Add ��= O!q times of the datum
row of the current tableau to the bottom row to eliminate its entry at the q column,
the right-hand side entry at the bottom row becomes

�. Nf C �= O!q/:

Thus, from � < 0 and O!q > 0, it is known that the according objective value strictly
decreases. ut

The preceding steps are repeated until an optimal tableau obtained or lower
unboundedness of the problems detected. The overall steps are put into the following
algorithm.

Algorithm 17.5.1 (D-reduced simplex algorithm: tableau form). Initial: feasi-
ble D-reduced tableau of form (17.3) with q-indexed column as the datum one. This
algorithm solves D-reduced problem (17.1).

1. Select column index q0 2 arg minfNzj j j 2 N; j ¤ qg.
2. If Nzq0 � 0, set Nxq D 1= N!q; NxB D � Nxq Naq.R/; i 2 R, and stop.
3. Go to step 6 if I D fi 2 R j Nai q0 > 0g ¤ ;.
4. Stop if N!q0 � 0.
5. Set q D q0, and go to step 9.
6. Determine ˛ and row index p such that ˛ D �Nap q= Nap q0D minf�Nai q= Nai q0 j Nai q0

> 0; i 2 Rg.
7. Stop if N!q0 < 0 and ˛ � � N!q= N!q0 .
8. Convert Nap q0 to 1 and eliminate the other nonzeros in the column by elementary

transformations.
9. Add ˇ D �Nzq= N!q times of the datum row to the bottom row.

10. Go to step 1.

Theorem 17.5.1. Under nondegeneracy assumption, Algorithm 17.5.1 terminates
either at

(i) Step 2, giving a basic optimal solution; or at
(ii) Step 4 or 7, detecting lower unboundedness of the problem.
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Proof. The proof of the termination of the Algorithm under nondegeneracy assump-
tion is the same as that in the conventional context. Meanings of its exits follow
from Lemmas 17.1.3, 17.1.4 and 17.5.1, as well as the discussions preceding the
Algorithm. ut
Example 17.5.1. Solve the following problem by Algorithm 17.5.1:

min 5x1 � 4x2 C 7x3 � x4;

s:t: �3x1 � 2x2 C 5x3 � 4x4 C x5 D 4;

�6x1 � 4x2 C 3x3 C 2x4 C x6 D 2;

x1 C 5x2 � 4x3 C x4 C x7 D 3;

xj � 0; j D 1; � � � ; 7:

Answer Initial tableau

x1 x2 x3 x4 x5 x6 x7 RHS

�3 �2 5 �4 1 4*

�6 �4 3 2 1 2

1 5 �4 1 1 3

5 �4 7 �1

Iteration 1:
maxfj4j; j2j; j3jg D 4; r D 1, Take the first row as pivot row. Multiply the row by
1=4, and add �2; �3 times of it to rows 2,3, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�3=4 �1=2 5=4 �1 1=4 1

�9=2 �3 1=2 4 �1=2 1

13=4 13=2* �31=4 4 �3=4 1

5 �4 7 �1

x5 becomes a nonbasis variable. For the tableau, Na1;5 D 1=4 > 0; Na2;5 D �1=2 �
0; Na3;5 D �3=4 � 0, hence it is a feasible D-reduced tableau.

Call Algorithm 17.5.1. r D 1; q D 5.

Iteration 2:

1. minf5; �4; 7; �1g D �4 < 0; q0 D 2.
3. I D f3g ¤ ;.
6. ˛ D minf�.�3=4/=.13=2/g D 3=26; p D 3.
7. Na1;2 D �1=2 < 0; ˛ D 3=26 < �.1=4/=.�1=2/ D 1=2.
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8. Multiply row 3 by 2=13, and add 1=2; 3; 4 times of row 3 to rows 1,2,4,
respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�1=2 17=26 �9=13 5=26 1=13 1

�3 �40=13 76=13 �11=13 1 6=13

1=2 1 �31=26 8=13 �3=26 2=13

7 29=13 19=13 �6=13 8=13

9. Add ˇ D �.�6=13/=.5=26/ times of row 1 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 RHS

�1=2 17=26 �9=13 5=26 1=13 1

�3 �40=13 76=13* �11=13 1 6=13

1=2 1 �31=26 8=13 �3=26 2=13

29=5 19=5 �1=5 4=5 12=5

Iteration 3:

1. minf29=5; 19=5; �1=5; 4=5g D �1=5 < 0; q0 D 4.
3. I D f2; 3g ¤ ;.
6. ˛ D minf�.�11=13/=.76=13/; �.�3=26/=.8=13/g

D �.�11=13/=.76=13/ D 11=76; p D 2.
7. Na1;4 D �9=13 < 0; ˛ D 11=76 < �.5=26/=.�9=13/ D 5=18.
8. Multiply row 2 by 13=76, and add 9=13; �8=13; 1=5 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�65=76 11=38 7=76 9=76 5=38 1

�39=76 �10=19 1 �11=76 13=76 3=38

31=38 1 �33=38 �1=38 �2=19 2=19

433=76 351=95 �11=380 13=380 31=38 12=5

9. Add ˇ D �.�11=380/=.7=76/ times of row 1 to the bottom row.

x1 x2 x3 x4 x5 x6 x7 RHS

�65=76 11=38 7=76 9=76 5=38 1

�39=76 �10=19 1 �11=76 13=76 3=38

31=38 1 �33=38 �1=38 �2=19 2=19

38=7 53=14 1=14 6=7 19=7
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Iteration 4:

1. minf38=7; 53=14; 1=14; 6=7g � 0.
2. Set Nx5 D 76=7. Basic optimal solution and according objective value:

Nx D .0; 2=7; 0; 11=7; 76=7; 0; 0; 1/T; Nf D �19=7:

A revised version of Algorithm 17.5.1 can be obtained by deriving the according
search direction using the inverse of the basis matrix, as done for derivation of the
(conventional ) revised simplex algorithm. But, for simplicity, here we directly apply
the equivalence between the D-reduced tableau (17.3) and revised tableau (17.19).

Denoting aq’s subvector, associated with R, by aq.R/, and so on, a revised
version of Algorithm 17.5.1 can be described as follows.

Algorithm 17.5.2 (D-reduced simplex algorithm). Initial: B; R; N defined by
(17.2). B�1

R I NzN D cN � N T
RB�T

R cB; N!N D N Tem � N T
R.B�T

R Bem/. Naq.R/ D
B�1

R aq.R/ � 0; N!q > 0; Nzq D 0. This algorithm solves the D-reduced problem
(17.1).

1. Determine column index q0 2 arg minfNzj j j 2 N; j ¤ qg.
2. If Nzq0 � 0, compute

Nxq D 1= N!q; NxB D � Nxq Naq.R/; Nf D cq Nxq C cT
B NxB;

3. Stop (optimality achieved).
4. Compute Naq0.R/ D B�1

R aq0.R/.
5. Go to step 7 if I D fi 2 R j Nai q > 0g ¤ ;.
6. Stop if N!q0 � 0 (infeasible problem).
7. Set q D q0, and go to step 12.
8. Determine ˛ and p such that ˛ D �Nap q= Nap q0 D mini2I �Nai q= Nai q0 (p D is).
9. Stop if N!q0 < 0 and ˛ � � N!q= N!q0 (unbounded problem).

10. Compute �N D N T
RB�T

R es .
11. Update N!N D N!N C ��N ; N!jp D �, where � D � N!q0=�q0 .
12. Update NzN D NzN C ˇ1�N ; Nzjp D ˇ1, where ˇ1 D �Nzq0=�q0 .
13. Update NzN D NzN C ˇ2 N!N , where ˇ2 D �Nzq= N!q .
14. Update B�1

R by (17.20).
15. Update .B; N / by exchanging js and q.
16. Go to step 1.

It has not been known at present how the method, derived in this section,
performs, though it seems to be inferior to the dual D-reduced simplex method
(Sect. 17.2).
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17.6 D-Reduced Phase-I: The Most-Obtuse-Angle

As usual, the D-reduced simplex method, described in the previous section, is
actually only a Phase-II procedure. Any conventional Phase-I method can be sightly
modified to generate a start point (Chap. 13). Dropping the initial condition NzN � 0,
in addition, the dual Algorithm 17.2.1 can be directly used to achieve primal
feasibility.

According to the analysis made at the last half of Sect. 17.2, the reduce gradient
of the dual objective function corresponds to the negative datum row in z-space.
Based on the most-obtuse-angle heuristics, the dual nonnegativity constraint (e.g.,
zq � 0), whose gradient and the negative datum row form the most obtuse
angle, should be binding, that is, the according index be chosen to enter the basis.
Based on this idea, the following algorithm can be obtained by modifying the dual
Algorithm 17.2.1.

Algorithm 17.6.1 (Tableau D-reduced Phase-I: the most-obtuse-angle). Initial:
D-reduced tableau of form (17.3). This algorithm finds a feasible D-reduced
tableau.

1. Determine column index q 2 arg maxj 2N N!j .
2. Stop if N!q � 0.
3. Add ˇ D �Nzq= N!q times of the datum row to the bottom row.
4. Determine row index p 2 arg maxf Naiq j i 2 Rg.
5. Stop if Nap;q � 0.
6. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
7. Go to step 1.

Theorem 17.6.1. Assume termination of Algorithm 17.6.1. It terminates at

(i) Step 2, detecting infeasibility of the problem; or at
(ii) Step 5, giving a feasible D-reduced tableau.

Proof. It follows from Lemmas 17.1.1 and 17.2.1. ut
Example 17.6.1. Solve following problem using Algorithm 17.6.1 as Phase-I:

min f D �x1 C 5x2 � 3x3 � x4;

s:t: x1 C 1x2 C 2x3 C 5x4 C x5 D 3;

�7x1 C 3x2 C 4x3 � x4 C x6 D �5;

�2x1 � x2 C x3 � x4 C x7 D �2;

�5x1 � 6x2 C 8x3 � 2x4 C x8 D 6;

xj � 0; j D 1; � � � ; 8:



432 17 D-Reduced Simplex Method

Answer Initial tableau

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 1 2 5 1 3*

�7 3 4 �1 1 �5

�2 �1 1 �1 1 �2

�5 �6 8 �2 1 6

�1 5 �3 �1

Iteration 1:
Arbitrarily take the first row to be as the datum row. Multiply the row by 1=3, and
add 5; 2; �6 times of it to rows 2,3,4, respectively, yielding the following D-reduced
tableau:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1=3 1=3 2=3 5=3 1=3 1

�16=3 14=3 22=3 22=3* 5=3 1

�4=3 �1=3 7=3 7=3 2=3 1

�7 �8 4 �12 �2 1

�1 5 �3 �1 1=5

Phase-I: Call Algorithm 17.6.1. r D 1.

Iteration 2:

1. maxf1=3; 1=3; 2=3; 5=3; 1=3g D 5=3 > 0; q D 4.
3. Add ˇ D �.�1/=.5=3/ D 3=5 times of row 1 to the bottom row.
4. maxf22=3; 7=3; �12g D 22=3 > 0; p D 2.
6. Multiply row 2 by 3=22, and add �5=3; �7=3; 12 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

17=11 �8=11 �1 �1=22 �5=22 1

�8=11 7=11 1 1 5=22 3=22

4=11* �20=11 3=22 �7=22 1

�173=11 �4=11 16 8=11 18=11 1

�4=5 26=5 �13=5 1=5 3=5

Iteration 3:

1. maxf17=11; �8=11; �1; �1=22; �5=22g D 17=11 > 0; q D 1.
3. Add ˇ D �.�4=5/=.17=11/ times of row 1 to the bottom row.
4. maxf�8=11; 4=11; �173=11g D 4=11 > 0 ; p D 3.
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6. Multiply row 3 by 11=4, and add �17=11; 8=11; 173=11 times of row 3 to rows
1,2,4, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

7 �1 �5=8 9=8 �17=4 1

�3 1 1 1=2 �1=2 2

1 �5 3=8 �7=8 11=4

�79 16 53=8 �97=8 173=4 1

82=17 �53=17 3=17 �2=17 19=17

Iteration 4:

1. maxf7; �1; �1; �5=8; 9=8; �17=4g D 7 > 0; q D 2.
3. Add ˇ D �.82=17/=7 times of row 1 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

7 �1 �5=8 9=8 �17=4 1

�3 1* 1 1=2 �1=2 2

1 �5 3=8 �7=8 11=4

�79 16 53=8 �97=8 173=4 1

�17=7 17=28 �25=28 41=14 3=7

4. maxf�3; �5; �79g � 0.
5. Feasibility is achieved.

Phase-II: Call Algorithm 17.5.1. r D 1; q D 2.

Iteration 5:

1. minf�17=7; 17=28; �25=28; 41=14g D �17=7 < 0; q0 D 3.
3. I D f2; 4g ¤ ;.
6. ˛ D minf�.�3/=1; �.�79=16/g D 3; p D 2.
7. Na1;3 D �1 < 0; ˛ D 3 < �7=.�1/ D 7.
8. Add 1; �6; 17=7 times of row 2 to rows 1,4,5, respectively.
9. Add �.�51=7/=4 times of row 1 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

4 1 �1=8 5=8 �9=4 1

�3 1 1 1=2 �1=2 2

1 �5 3=8 �7=8 11=4

�31 �16 �11=8 �33=8 45=4 1

17=4 51=32 �31=32 59=16 9=4
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Iteration 6:

1. minf17=4; 51=32; �31=32; 59=16g D �31=32 < 0; q0 D 6.
3. I D ;.
4. 5=8 > 0.
5. q D 6.
9. Add �.�31=32/=.5=8/ times of row 1 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

4 1 �1=8 5=8 �9=4 1

�3 1 1 1=2 �1=2 2

1 �5 3=8 �7=8 11=4

�31 �16 �11=8 �33=8 45=4 1

31=5 29=5 7=5 1=5 19=5

Iteration 7:

1. minf31=5; 29=5; 7=5; 1=5g � 0.
2. Basic optimal solution and according objective value are

Nx D .7=5; 0; 4=5; 0; 0; 8=5; 0; 33=5/T; Nf D �19=5:

Based on equivalence between the reduced tableau (17.3) and the revised
tableau (17.19), a revised version of Algorithm 17.6.1 can be stated, as matches
Algorithm 17.5.2.

Algorithm 17.6.2 (D-reduced Phase-I). Initial: B; R; N defined by (17.2).
B�1

R I NzN D cN � N T
RB�T

R cB � 0. This algorithm finds a feasible D-reduced
basis.

1. Compute N!N D N Tem � N T
R.B�T

R Bem/.
2. Determine column index q 2 arg maxj 2N N!j .
3. Stop if N!q � 0 (infeasible problem).
4. Update NzN D NzN C ˇ N!N , where ˇ D �Nzq= N!q .
5. Compute Naq.R/ D B�1

R aq.R/.
6. Determine p 2 arg maxi2R Nai q .p D is/.
7. Stop if Nap; q � 0 (feasible D-reduced basis BR obtained).
8. Update B�1

R by (17.20).
9. Update .B; N / by exchanging js and q.

10. Go to step 1.
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17.7 Dual Bisection D-Reduced Simplex Method

In Sect. 16.5, the bisection reduced simplex algorithm is described, where an
existence interval Œ�; 	�, containing the optimal value, is contracted by at least a
half of the length in each iteration, until reaching an optimal solution. Following
the same train of thought, Shen and Pan (2006) proposed a dual bisection simplex
algorithm. In this section, we will present a variant based on the D-reduced simplex
framework fitly.

Let Œ�; 	� be an existence interval. If a dual feasible solution is found with
objective value Nf D .� C 	/=2, the value is switched up to one associated with a
dual basic feasible solution; if the latter does not satisfy the optimality condition, the
according objective value is a new lower bound on the optimal value, and hence set
it to �. If there exists no dual feasible solution with objective value Nf D .� C	/=2,
the value must be primal feasible. The value is switched down to one associated
with a dual basic solution; if the latter does not satisfy the optimality condition, the
according value is a new upper bound on the optimal value, and the value is then set
to 	. Consequently, the resulting Œ�; 	� is again an existence interval, contracted by
a half of its length, at least.

The contracting procedure is realized by following algorithm.

Algorithm 17.7.1 (Dual subalgorithm: tableau form). Initial: D-reduced tableau
of form (17.3). This algorithm finds a dual feasible D-reduced tableau with objective
value Nf , and does switching.

1. Determine column index q 2 arg minj 2N Nzj .
2. Go to step 7 if Nzq < 0.
3. Determine ˇ and column index q such that ˇ D �Nzq= N!q D maxf�Nzj = N!j j N!j >

0; j 2 N g.
4. If ˇ ¤ 0, add ˇ times of row r to the bottom row.
5. Return if Nai q � 0; i 2 R (optimality achieved).
6. Set � D Nf , and return.
7. Determine row index p 2 arg maxi2R Nai q .
8. Go to step 12 if Nap q > 0.
9. Add ˇ D �Nzq= N!q times of row r to the bottom row.

10. Return if NzN � 0 (optimality achieved).
11. Set 	 D Nf , and return.
12. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
13. Go to step 1.

Theorem 17.7.1. Given an existence interval Œ�; 	�, and Nf D .� C 	/=2.
Algorithm 17.7.1 returns from

(i) Step 5 or 10, gives a basic optimal solution; or from
(ii) Step 6, gives a new left end of the existence interval; of from

(iii) Step 11, gives a new right end of it.
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In one of cases (ii) and (iii), the existence interval contracts by a half of length,
at least.

Proof. It is noted that there exists an optimal solution to the problem under the
assumption, and Nf is either primal or dual feasible if it is not optimal. If returning
from step 5, then not only dual feasibility is achieved, but for q, determined at step
3, it holds that N!q > 0 and

Naiq � 0; i 2 R: (17.39)

thus primal feasibility is also achieved, therefore so is optimality. When returning
from step 6, dual feasibility is achieved, hence Nf is a new lower bound of the optimal
value. If returning from step 10, then optimality is attained because in addition to
dual feasibility achieved, from Nzq < 0 and (17.39) and Lemma 17.1.5, it is asserted
that primal feasibility is achieved. In the case when returning from step 11, primal
feasibility is achieved and Nf is a new upper bound of the optimal value. It is clear
that the resulting existence interval contracts by a half of the length, at least. ut

The master algorithm uses the D-reduced Phase-I Algorithm 17.6.1 to produce
an upper bound 	 of the optimal value, and the dual D-reduced Phase-I Algorithm
(Sect. 17.4) to produce a lower bound �. Then it call Subalgorithm 17.7.1 in each
iteration to bisection the interval, until optimality is achieved. The overall steps are
put into the following algorithm.

Algorithm 17.7.2 (Bisection D-reduced simplex algorithm: tableau form). Ini-
tial: D-reduced tableau of form (17.3). This algorithm solves the D-reduced problem
(17.1).

1. Call Algorithm 17.6.1 to pursue primal feasibility:

(1) Stop if returning from (2) (infeasible problem);
(2) Returning from (5): if NzN < 0, set 	 D Nf ; else stop (optimality achieved).

2. Call Algorithm 17.3.1 to pursue dual feasibility:

(1) Stop if returning from step 6 (infeasible or lower unbounded problem);
(2) If returning from step 2, determine ˇ and column index q such that

ˇ D �Nzq= N!q D maxf�Nzj = N!j j N!j > 0; j 2 N g:

3. If ˇ ¤ 0, add ˇ times of the datum row to the bottom row.
4. Stop if N!q > 0I Naiq � 0; i 2 R (optimality achieved).
5. Set � D Nf .
6. Stop if � D 	 (optimality achieved).
7. Add ˇ D .� � 	/=2 times of the datum row to the bottom row.
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8. Call Algorithm 17.7.1.

(1) If returning from step 6, set ˇ D .� � 	/=2 and go to step 7;
(2) If returning from step 11, set ˇ D .	 � �/=2 and go to step 7;
(3) Stop if returning from step 5 or 10 (optimality achieved).

Proofs about meanings of the exits of the preceding algorithm are omitted
(interested readers is referred to Yuan Shen and P.-Q. Pan 2006)

Example 17.7.1. Solve following problem by Algorithm 17.7.2:

min f D 10=7 � 5x1 C 7x2 � 6x3 C 5x4;

s:t: 2x1 C 5x2 � 3x3 C 5x4 C x5 D 1;

�4x1 � 3x2 C 8x3 � 2x4 C x6 D �1;

x1 � x2 C x3 C 6x4 C x7 D 6;

�7x1 C 3x2 C 4x3 � 2x4 C x8 D �2;

xj � 0; j D 1; � � � ; 8:

Answer Initial tableau

x1 x2 x3 x4 x5 x6 x7 x8 RHS

2 5 �3 5 1 1

�4 �3 8 �2 1 �1

1 �1 1 6 1 6

�7 3 4 �2 1 �2*

�5 7 �6 5 �10=7

Iteration 1:
Arbitrarily take the fourth row as the datum row. Multiply the row by �1=2, and add
�1; 1; �6 times of it to rows 1,2,3, respectively, resulting in D-reduced tableau:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�3=2 13=2 �1 4 1 1=2

�1=2 �9=2 6 �1 1 �1=2

�20 8 13 1 3

7=2 �3=2 �2 1 �1=2 1

�5 7 �6 5 �10=7
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Step 1. Call Algorithm 17.6.1 to pursue primal feasibility. r D 4.
Iteration 2:

1. maxf7=2; �3=2; �2; 1; �1=2g D 7=2 > 0; q D 1.
3. Add ˇ D �.�5/=.7=2/ D 10=7 times of row 4 to the bottom row.
4. maxf�3=2; �1=2; �20g D �1=2 � 0.
5. Primal feasibility achieved:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�3=2 13=2 �1 4 1 1=2

�1=2 �9=2 6 �1 1 �1=2

�20 8 13* 1 3

7=2 �3=2 �2 1 �1=2 1

34=7 �62=7 45=7 �5=7

Step 1(2) 	 D 0.
Step 2. Call Algorithm 17.3.1 to pursue dual feasibility: r D 4.

Iteration 3:

1. minf0; 34=7; �62=7; 45=7; �5=7g D �62=7 < 0; q D 3.
3. Add ˇ D �.�62=7/=.�2/ times of row 4 to the bottom row.
4. maxf�1; 6; 13g D 13 > 0; p D 3.
7. Multiply row 3 by 1=13, and add 1; �6; 2 times of row 3 to rows 1,2,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�79=26 185=26 4 1 1=13 19=26

227=26* �213=26 �1 1 �6=13 �49=26

�20=13 8=13 1 1=13 3=13

11=26 �7=26 1 2=13 �1=26 1

�31=2 23=2 2 3=2 �31=7

Iteration 4:

1. minf�31=2; 23=2; 2; 0; 3=2g D �31=2 < 0; q D 1.
3. Add ˇ D �.�31=2/=.11=26/ times of row 4 to the bottom row.
4. maxf�79=26; 227=26; �20=13g D 227=26 > 0; p D 2.
7. Multiply row 2 by 26=227, and add 79=26; 20=13; �11=26 times of row

2 to rows 1,3,4, respectively:
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x1 x2 x3 x4 x5 x6 x7 x8 RHS

968=227 829=227 1 79=227 �19=227 17=227

1 �213=227 �26=227 26=227 �12=227 �49=227

�188=227 1 �40=227 40=227 �1=227 �23=227

29=227 238=227 �11=227 40=227 12=227 1

18=11 425=11 62=11 1=11 2;480=77

Iteration 5:

1. minf18=11; 425=11; 0; 62=11; 1=11g � 0.
2. Returned.

Step 2(2) ˇ D maxf�.18=11/=.29=227/; �.425=11/=.238=227/; �.62=11/=

.40=227/; �.1=11/=.12=227/g D �.1=11/=.12=227/; q D 8.
Step 3. Add ˇ D �.1=11/=.12=227/ times of row 4 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

968=227 829=227 1 79=227 �19=227 17=227

1 �213=227 �26=227 26=227 �12=227 �49=227

�188=227 1 �40=227 40=227 �1=227 �23=227

29=227 238=227 �11=227 40=227 12=227 1

17=12 221=6 1=12 16=3 2;561=84

Step 4. Na4;8 D 12=227 > 0; Na1;8 D 17=227 > 0.
Step 5. � D �2;561=84.
Step 7. Add ˇ D .�2;561=84 � 0/=2 D �2;561=168 times of row 4 to the bottom

row:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

968=227 829=227 1 79=227 �19=227 17=227*

1 �213=227 �26=227 26=227 �12=227 �49=227

�188=227 1 �40=227 40=227 �1=227 �23=227

29=227 238=227 �11=227 40=227 12=227 1

�491=925 1;814=87 3;164=3;849 1;583=598 �1;432=1;777 2;561=168

Step 8. Call Algorithm 17.7.1.
Iteration 6:

1. minf�491=925; 1; 814=87; 3; 164=3; 849; 1; 583=598; �1; 432=

1; 777g D �1;432=1;777 < 0; q D 8.
7. maxf17=227; �49=227; �23=227g D 17=227 > 0; p D 1.

12. Multiply row 1 by 227=17, and add 49=227; 23=227; �12=227;

1; 432=1; 777 times of row 1 to rows 2,3,4, respectively:
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x1 x2 x3 x4 x5 x6 x7 x8 RHS

968=17 829=17 227=17 79=17 �19=17 1

1 193=17 177=17 49=17 19=17 �5=17

84=17 1 81=17 23=17 11=17 �2=17

�49=17 �26=17 �12=17 �5=17 4=17 1

5;488=121 5;293=88 2;561=238 717=157 1;247=714 2;561=168

Iteration 7:

1. minf5;488=121; 5;293=88; 2;561=238; 717=157; 1;247=714g � 0.
3. ˇ D maxf�.1;247=714/=.4=17/g; q D 7.
4. Add �.1;247=714/=.4=17/ times of row 4 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

968=17 829=17 227=17 79=17 �19=17 1

1 193=17 177=17 49=17 19=17 �5=17

84=17 1 81=17 23=17 11=17 �2=17

�49=17 �26=17 �12=17 �5=17 4=17 1

267=4 143=2 16 27=4 219=28

5. Naq.R/ D .�19=17; �5=17; �2=17/T � 0. Setting Nx8 D 17=4, the basic
optimal solution and according objective value are

Nx D .5=4; 0; 1=2; 0; 0; 0; 17=4; 19=4; 1/T; Nf D �219=28:



Chapter 18
Criss-Cross Simplex Method

Methods perform very differently when solving a same problem. It is common that
a problem that is solved slowly by the simplex method would be solved fast by
the dual simplex method; and vise versa. Consequently, LP packages often include
multiple options to be chosen, as it seems to be impossible to predetermine which
method would be better to solve a given problem. Pursuing a method with features
of both the primal and dual methods, scholars have attempted to combine primal
and dual simplex methods for years. A class of resulting variants may be described
by “criss-cross” because of their switching between primal and dual iterations. The
primal-dual algorithm (Sect. 7.1) and the self-dual parametric simplex algorithm
(Sect. 7.2) may be also classified into this category.

Assume that the standard LP problem (1.8) has the following simplex tableau:

xT
B xT

N f RHS

I NN Nb
NzT
N �1 � Nf

(18.1)

Initially, Talacko and Rockefeller (1960), Balinski and Gomory (1963), and
Llewellyn (1964) suggested switching between primal and dual steps under a certain
mechanism, but not supported by numerical results.

Later, S. Zionts (1969) proposed a so-called “criss-cross” algorithm, carrying
out the primal and dual simplex iterations alternately. In a primal iteration, a pair of
column and row are selected by the primal pivot rule, then an according basis change
is carried out; in a dual iteration, a pair of row and column are selected by the dual
pivot rule, then an according basis change is carried out; in case when the minimum-
ratio is infinite in row (column) selection, it turns to a dual (primal) iteration, and so
on. If no any iteration can be carried out, it is asserted that there exists no optimal
solution; otherwise, if primal (dual) feasibility is achieved first, then the primal
(dual) simplex algorithm is executed subsequently to achieve optimality. So, the
algorithm is actually a primal or dual Phase-I method, depending on which type
of feasibility is attained first. Just like the standard simplex algorithm, finiteness of
Zionts algorithm is not guaranteed.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__18,
© Springer-Verlag Berlin Heidelberg 2014
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A decade later or more, Chang (1979), Terlaky (1985), and Wang (1987)
proposed a purely combinatorial criss-cross variant independently. Their algorithm
performs a primal or a dual iteration based on the following rule: it determines the
smallest among indices, associated with all negative components of NxB D Nb and
NzN . If the determined index is associated with NzN ( NxB D Nb), then a primal (dual)
iterations is carried out. Shown to be finite, the algorithm uses a criteria simpler
than that of Zionts algorithm to detect nonexistence of an optimal solution.

Unfortunately, the performance of all the above algorithms are far inferior to the
simplex algorithm. Also, Roos (1990) offered an instance for which the number of
iterations required by the finite rule is exponential in the number of variables and
constraints.

In this chapter, we present efficient or promising criss-cross simplex variants.
Like the simplex algorithm, finiteness of them is not guaranteed; even the objective
value may not change monotonically in solution process. But it can still be expected
that cycling rarely happens in practice.

18.1 Most-Obtuse-Angle Criss-Cross Method

As mentioned previously, Zionts method performs primal and dual iterations
alternately. A fault of such doing is that while performing the primal iteration,
reduced costs would already be nearly nonnegative while negative components of
the right-hand side are large in magnitude, in other words, a dual iteration should be
more relevant; and vice versa.

The criss-cross method (Yan and Pan 2009) applies the most-obtuse-angle
column rule (Sect. 13.3) and row rule (Sect. 14.3) in the primal and dual itera-
tions, respectively. Therefore, no any minimum-ratio test is involved. It does not
mechanically perform primal and dual iterations alternately, but instead, depending
on strength of current primal and dual infeasibility. To this end, a predetermined
threshold value is used to control switching between the two sides, so that a primal
(dual) iteration is taken if the primal (dual) infeasibility is in some sense stronger
than dual (primal) infeasibility.

A slight variant of the algorithm is formulated below, which achieves optimality
in a single Phase, and involves no threshold.

Algorithm 18.1.1 (Most-obtuse-angle criss-cross algorithm: tableau form).
Initial: the simplex tableau of form (18.1). This algorithm solves the standard
LP problem.

1. Determine column index q 2 arg minj 2N Nzj .
2. Determine row index p 2 arg minf Nbi j i D 1; � � � ; mg.
3. Compute 	 D minfNzq; Nbpg.
4. Stop if 	 � 0 (optimality achieved).
5. If 	 D Nzq , then:

(1) redetermine row index p 2 arg maxf Nai q j i D 1; � � � ; mgI
(2) stop if Nap q � 0 (infeasible or unbounded problem);
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else
(3) redetermine column index q 2 arg minj 2N Nap j ;
(4) stop if Nap q � 0 (infeasible problem).

6. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

7. Go to step 1.

Note As step 3 involves comparison between the right-hand side and reduced
costs, it is important to scale data before hand. If the data are not well scaled, it
would be better to set some suitable threshold value � > 0, and use

	 D minfNzq; � Nbpg
in step 3 instead.

For simplicity of description, we used conventional primal and dual rules in
steps 1 and 2 in Algorithm 18.1.1, respectively. In practice, however, it would
be much better to use the nested largest-distance Rule 11.6.1 and the dual nested
Rule 12.4.1, instead. In addition, although the most-obtuse-angle row and column
rules are respectively used in step 5(1) and 5(3), it should be better to utilize their
variants, Rules 14.3.2 and 13.3.2.

Cited from Yan and Pan (2009), the following numerical results roughly reflect
the behavior of Algorithm 18.1.1. The experiments were preliminary, only involving
the 25 smallest standard NETLIB problems (Appendix B: Table B.4: Problems
AFIRO-SCAGR25). The code, programmed in Fortran without exploiting sparse
structure, was compared with MINOS 5.51 only in terms of the number of required
iterations: it outperformed MINOS 5.51 with total iteration ratio 1:24. As there was
no minimum-ratio test involved in each iteration by the most-obtuse-angle criss-
cross algorithm, the margin between it and the simplex algorithm should be even
larger with respect to CPU time.

Example 18.1.1. Solve the following problem by Algorithm 18.1.1:

min f D �2x1 � x2;

s:t: x1 � x2 C x3 D 2;

x1 C 2x2 C x4 D 8;

�x1 � x2 C x5 D �3;

xj � 0; j D 1; � � � ; 5:

Answer Initial simplex tableau:

x1 x2 x3 x4 x5 RHS

1 �1 1 2

1 2 1 8

�1* �1 1 �3

�2 �1
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Iteration 1:

1. minf�2; �1g D �2 < 0; q D 1.
2. minf2; 8; �3g D �3 < 0; p D 3.
3. 	 D minf�2; �3g D �3.
5. Take p D 3, and carry out the dual iteration.

5(3) minf�1; �1g D �1; q D 1.
6. Multiply row 3 by �1, and then add �1; �1; 2 times of row 3 to rows 1,2,4,

respectively:

x1 x2 x3 x4 x5 RHS

�2 1 1* �1

1 1 1 5

1 1 �1 3

1 �2 6

Iteration 2:

1. minf1; �2g D �2 < 0; q D 5.
2. minf�1; 5; 3g D �1 < 0; p D 1.
3. 	 D minf�2; �1g D �2.
5. Take q D 5, and carry out the primal iteration.

5(1) maxf1; 1; �1g D 1; p D 1.
6. Add �1; 1; 2 times of row 1 to rows 2,3,4, respectively:

x1 x2 x3 x4 x5 RHS

�2 1 1 �1

3* �1 1 6

1 �1 1 2

�3 2 4

Iteration 3:

1. minf�3; 2g D �3 < 0; q D 2.
2. minf�1; 6; 2g D �1 < 0; p D 1.
3. 	 D minf�3; �1g D �3.
5. Take q D 2, and carry out the primal iteration.

5(1) maxf�2; 3; �1g D 3; p D 2.
6. Multiply row 2 by 1=3, and then add 2; 1; 3 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 RHS

1=3 2=3 1 3

1 �1=3 1=3 2

1 2=3 1=3 4

1 1 10
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The preceding simplex tableau is optimal. The basic optimal solution and optimal
value:

Nx D .4; 2; 0; 0; 3/T; Nf D �10:

The following is the revised version of Algorithm 18.1.1, where Rules 14.3.2
13.3.2 are used in steps 5(3) and 5(6), respectively.

Algorithm 18.1.2 (The most-obtuse-angle criss-cross algorithm). Given � > 0.
Initial: .B; N /; B�1; NxB D B�1b; NzN D cN � N TB�T cB and Nf D cT

B NxB . This
algorithm solves the standard LP problem.

1. Determine q 2 arg minj 2N Nzj .
2. Determine p 2 arg minf Nxji j i D 1; � � � ; mg.
3. Compute 	 D minf Nxjp ; Nzqg.
4. Stop if 	 � 0 (optimality achieved).
5. If 	 D Nzq , then:

(1) compute Naq D B�1aq ;
(2) stop if Naq � 0, (infeasible or unbounded problem);
(3) redetermine row index

p 2 arg minf Nxji j Naiq � ��; i D 1; � � � ; mg, where � D maxf Naiq j i D
1; � � � ; mg > 0.

else
(4) compute �N D N TB�T ep;
(5) stop if �N � 0 (infeasible problem);
(6) redetermine column index

q 2 arg minfNzj j Napj � ��; j 2 N g; where � D minj 2N Napj < 0:

6. Update NxB D NxB C˛ Naq , and set Nxq D ˛; Nf D Nf �˛Nzq , where ˛ D � Nxjp = Napq .
7. Update NzN D NzN C ˇ�N ; Nzjp D ˇ; Nf D Nf � ˇ Nxjp , where ˇ D �Nzq= Napq .
8. Update B�1 by (3.23).
9. Update .B; N / by exchanging jp and q.

10. Go to step 1.

18.2 Perturbation Simplex Method

Although degeneracy hardly causes cycling in practice, it often leads to stalling (i.e.,
staying at some vertex for too long a time before exiting it) and hence degrades
the conventional simplex algorithm’s efficiency. To get rid of this drawback,
perturbation algorithms (Pan 1999a, 2000b) are designed, which can get started
from any basis.

The basic idea of the perturbation algorithms is closely related to sensitivity
analysis. In fact, perturbing the current primal (dual) basic solution amounts to



446 18 Criss-Cross Simplex Method

accordingly perturbing the right-hand side b (costs c). In case when such doing
is not large enough for changing the optimal basis, that is, the perturbed problem
and the original problem have the same optimal basis, then the optimal solution to
the original problem can be readily obtained after an optimal basis to the perturbed
problem reached. Even this is not the case, a subsequent solution process would
achieve optimality easier.

The following algorithm can be obtained by combining the primal and dual
Phase-I perturbation approaches (Sects. 13.4 and 14.4).

Algorithm 18.2.1 (Perturbation simplex algorithm 1: tableau form). Initial: a
simplex tableau of form (18.1). Perturbation parameters ıj � 0; j D 1; � � � ; n and
�i � 0; i D 1; : : : ; m. This algorithm solve the standard LP problem.

1. Call the simplex Algorithm 3.2.1: before the minimum-ratio test, set
Nbi D �i ; i 2 fi D 1; : : : ; m j Nbi < �ig.

2. Stop if returning from step 3 (infeasible or unbounded problem).
3. If returning from step 2, then:

(1) set Nb D B�1b;
(2) stop if Nb � 0 (optimality achieved).

4. Call the dual simplex Algorithm 4.4.1: before the minimum-ratio test, set
Nzj D ıj ; j 2 fj 2 N j Nzj < ıj g.

5. Stop if returning from step 3 (infeasible problem).
6. If returning from step 2, then

(1) set NzN D cN � N T B�1cB ;
(2) stop if NzN � 0 (optimality achieved).

7. Go to step 1.

The resetting of the right-hand side in step 1 is to ensure primal feasibility as
well as nondegeneracy in primal simplex iterations. At the beginning of step 4, dual
feasibility is already achieved in principle, and the resetting of the reduced costs is
to ensure dual nondegeneracy in dual simplex iterations, as is designed for solving
large-scale and highly degenerate problems. In our preliminary tests, there are only
fewer switches between primal and dual iterations required.

The finiteness of the algorithm is not guaranteed, as the objective value does not
strictly monotonically changes in the primal and dual simplex iterations. However,
we believe that it is more difficult to construct cycling instances to perturbation
algorithms, if possible; moreover, there would be less possibility for the solution
process stalling. Based on our experience, we believe that degeneracy may not be a
problem if the search direction used is close to the direction of the negative objective
gradient.

The following algorithm is a variant of the preceding algorithm. It appears to be
simpler and attractive, as the perturbation parameters are just used in place of the
reduced costs (components of the right-hand side) for the primal (dual) minimum-
ratio test, if relevant. (see Note after Algorithm 13.4.1).



18.2 Perturbation Simplex Method 447

Algorithm 18.2.2 (Perturbation simplex algorithm 2: tableau form). Initial: a
simplex tableau of form (18.1). Perturbation parameters ıj � 0; j D 1; � � � ; n.
This algorithm solve the standard LP problem.

1. Call the simplex Algorithm 3.2.1: for the minimum-ratio test, use ıji in place of
Nbi if Nbi < ıji ; i D 1; : : : ; m.

2. Stop if returning from step 3 (infeasible or unbounded problem).
3. Stop if Nb � 0, when returning from step 2. (optimality achieved).
4. Call the dual simplex Algorithm 4.4.1: for the minimum-ratio test, use ıj in place

of Nzj if Nzj < ıj j 2 N .
5. Stop if returning from step 3 (infeasible problem).
6. Assume returning from step 2. Stop if NzN � 0 (optimality achieved).
7. Go to step 1.

Preliminary computational experiments have been done with Algorithms 18.2.1
vs. the conventional two-phase simplex algorithm (code RSA; see Notation). There
are more than 100 test problems involved, but these problems are small, involving
up to 22 decision variables and inequality constraints. In the tests, the conventional
code requires iterations about 2–3 times of those by Algorithms 18.2.1 (Pan 1999a,
2000b). Therefore, the perturbation algorithm is much more efficient than the
conventional, at least for small problems.

It might be possible to improve the perturbation algorithms by having the called
primal (dual) algorithm terminate easier, when optimality is yet far away. To do
so, primal (dual) feasibility tolerance should vary dynamically in solution process,
which should be larger while primal (dual) infeasibility is strong, and reduce
subsequently until some predetermined value reached. In addition, the termination
criteria of the called primal (dual) simplex algorithm should also vary conformably.

Example 18.2.1. Solve following problem by Algorithm 18.2.2:

min f D �2x1 � 5x2 C 4x3;

s:t: �2x1 C 3x2 � 5x3 C x4 D �17;

�4x1 C 8x2 � 2x3 C x5 D 1;

7x1 � 4x2 � x3 C x6 D �6;

xj � 0; j D 1; � � � ; 6:

Answer Set ıj D 1; j D 1; : : : ; 6. Initial simplex tableau:

x1 x2 x3 x4 x5 x6 RHS

�2 3 �5 1 �17

�4 8* �2 1 1

7 �4 �1 1 �6

�2 �5 4
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1. Call simplex Algorithm 3.2.1.

Iteration 1:

1. minf�2; �5; 4g D �5 < 0; q D 2.
4. In the minimum-ratio test, Nb1 is replaced by 1 ( Nb1 D �17 < 1): minf1=3; 1=8g D

1=8; p D 2.
5. Multiply row 2 by 1=8, and then add �3; 4; 5 times of row 2 to rows 1,3,4,

respectively:

x1 x2 x3 x4 x5 x6 RHS

�1=2 �17=4 1 �3=8 �139=8

�1=2 1 �1=4 1=8 1=8

5* �2 1=2 1 �11=2

�9=2 11=4 5=8 5=8

Iteration 2:

1. minf�9=2; 11=4; 5=8g D �9=2 < 0; q D 1.
4. Nb3 D �11=2 < 1 is replaced by 1:minf1=5g D 1=5; p D 3.
5. Multiply row 3 by 1=5, and then add 1=2; 1=2; 9=2 times of row 3 to rows 1,2,4,

respectively:

x1 x2 x3 x4 x5 x6 RHS

�89=20* 1 �13=40 1=10 �717=40

1 �9=20 7=40 1=10 �17=40

1 �2=5 1=10 1=5 �11=10

19=20 43=40 9=10 �173=40

1. minf19=20; 43=40; 9=10g � 0,
3. Returned from 2.
4. Call dual simplex Algorithm 4.4.1.

Iteration 3:

1. minf�717=40; �17=40; �11=10g D �717=40 < 0; p D 1.
4. minf�.19=20/=.�89=20/; �.43=40/=.�13=40/g

D �.19=20/=.�89=20/ D 19=89; q D 3.
5. Multiply row 1 by �20=89, and then add 9=20; 2=5; �19=20 times of row 1 to

rows 2,3,4, respectively:

x1 x2 x3 x4 x5 x6 RHS

1 �20=89 13=178 �2=89 717=178

1 �9=89 37=178 8=89 247=178

1 �8=89 23=178 17=89 91=178

19=89 179=178 82=89 �1;451=178
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Iteration 4:

1. minf717=178; 247=178; 91=178g � 0.
6. Returned from 2. NzN D .19=89; 179=178; 82=89/T � 0.

Basic optimal solution and optimal value:

Nx D .91=178; 247=178; 717=178; 0; 0; 0/T; Nf D 1;451=178:

The preceding problem was solved by calling the primal and dual simplex
algorithm once each. For large-scale and highly degenerate problems, modification
amounts in the minimum-ratio tests are usually large, and there would be more calls
required.

Perturbation parameters ıj are required to be nonnegative (e.g., ıj D 1 could
be taken in the preceding example). In practice, however, it seems to be relevant to
set them different from each other, and small (e.g., no more than 10�3); they should
become smaller and smaller while approaching optimality.

We formulate the revised version of Algorithm 18.2.2 below.

Algorithm 18.2.3 (Perturbation simplex algorithm 2). Given perturbation
parameter ıj � 0; j D 1; : : : ; n. Initial: .B; N /; B�1; NxB D B�1b,
NzN D cN � N TB�T cB . This algorithm solve the standard LP problem.

1. Call simplex Algorithm 3.5.1: for the minimum-ratio test, use ıji in place of
Nxji if Nxji < ıji ; i D 1; : : : ; m:

2. Stop if returning from step 5 (infeasible or unbounded problem).
3. Stop if NxB � 0, when returning from step 3. (optimality achieved).
4. Call the dual simplex Algorithm 3.5.2: for the minimum-ratio test, use ıj in place

of Nzj if Nzj < ıj ; j 2 N .
5. Stop if returning from step 4 (infeasible problem).
6. Stop if NzN � 0, when returning from step 2. (optimality achieved).
7. Go to step 1.

18.3 Criss-Cross Reduced Simplex Method

The same idea behind the most-obtuse-angle criss-cross method (Sect. 18.1) may
be implemented in the reduced simplex context. The resulting algorithm can be
obtained by combining Algorithms 16.4.1 and 16.2.1.

Algorithm 18.3.1 (Criss-cross reduced simplex algorithm: tableau form). Ini-
tial: improved reduced tableau of form (16.6), where NxB D Nb � NxnC1 NanC1. This
algorithm solves the reduced problem (15.1).

1. Determine row index p1 2 arg minf Nai; nC1 j i D 1; � � � ; m C 1g.
2. Stop if Nap1; nC1 � 0 (infeasible or unbounded problem).
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3. Determine row index p2 2 arg minf Nxji j i D 1; � � � ; m C 1g.
4. Compute 	 D minf Nap1; nC1; Nxjp g.
5. If 	 D Nap1; nC1, then:

(1) compute ˛ D � Nxjp1
= Nap1; nC1;

(2) if ˛ ¤ 0, add ˛ times of xnC1 column to NxB column and set NxnC1 D NxnC1�˛;
(3) determine column index q 2 arg minj 2N Nap1; j ;
(4) assuming Nap1; q � 0. Stop if NxB � 0 (optimality achieved); else go to step 3;
(5) convert Nap1; q to 1, and eliminate the other nonzeros in the column by

elementary transformations;
else

(6) determine column index q 2 arg minj 2N Nap2; j ;
(7) if Nap2; q < 0, convert Nap2; q to 1, and eliminate the other nonzeros in the

column by elementary transformations, then go to step 1;
(8) stop if Nap2; nC1 � 0 (infeasible problem);
(9) compute ˛ D � Nxjp2

= Nap2; nC1;
(10) add ˛ times of xnC1 column to NxB column.

6. Go to step 1.

Example 18.3.1. Solve the following problem by Algorithm 18.3.1:

min x9 D 2x1 C 7x2 � 4x3 C 5x4;

s:t: �3x1 C 3x2 C 5x3 C x4 C x5 D 13=30;

x1 � 2x2 � 1x3 � 3x4 C x6 D �11=30;

�6x1 C x2 � 4x3 7x4 C x7 D 1=2;

�4x1 � 5x2 C 2x3 C x4 C x8 D �17=30;

xj � 0; j D 1; � � � ; 8:

Answer Initial tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�3 3 5 1 1 13=30

1 �2 �1 �3 1 �11=30

�6 1 �4 7 1 1=2

�4 �5 2 1 1 �17=30

2 7 �4* 5 �1

Iteration 1: convert the preceding to a reduced tableau. Nx9 D 0. Set p D 5,
minf2; 7; �4; 5g D �4 < 0; q D 3.

Multiply row 5 by �1=4, then add �5; 1; 4; �2 times of row 5 to rows 1,2,3,4,
respectively:
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x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�1=2* 47=4 29=4 1 �5=4 13=30

1=2 �15=4 �17=4 1 1=4 �11=30

�8 �6 2 1 1 1=2

�3 �3=2 7=2 1 �1=2 �17=30

�1=2 �7=4 1 �5=4 1=4

Iteration 2:

1. minf�5=4; 1=4; 1; �1=2; 1=4g D �5=4 < 0; p1 D 1.
3. minf13=30; �11=30; 1=2; �17=30; 0g D �17=30; p2 D 4.
4. 	 D minf�5=4; �17=30g D �5=4.
5. 	 D �5=4.

(1) ˛ D �.13=30/=.�5=4/ D 26=75;
(2) add 26=75 times of x9 column to RHS column;
(3) minf�1=2; 47=4; 29=4g D �1=2 < 0; q D 1;
(5) multiply row 1 by �2, then add �1=2; 8; 3; 1=2 times of row 1 to rows

2,3,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 �47=2 �29=2 �2 5=2

8 3 1 1 �1 �7=25

�194 �114 �16 1 21 127=150

�72 �40 �6 1 7 �37=50

�27=2 1 �17=2 �1 3=2 13=150

Iteration 3:

1. minf5=2; �1; 21; 7; 3=2g D �1 < 0; p1 D 2.
3. minf0; �7=25; 127=150; �37=50; 13=150g D �37=50; p2 D 4.
4. 	 D minf�1; �37=50g D �1.
5. 	 D �1.

(1) ˛ D �.�7=25/=.�1/ D �7=25;
(2) add �7=25 times of x9 column to RHS column:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 �47=2 �29=2 �2 5=2 �7=10

8 3 1 1 �1

�194* �114 �16 1 21 �151=30

�72 �40 �6 1 7 �27=10

�27=2 1 �17=2 �1 3=2 �1=3
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(3) minf8; 3; 1g � 0;
(4) NxB 6� 0.

Iteration 4:

3. minf�7=10; 0; �151=30; �27=10; �1=3g D �151=30; p2 D 3.
4. 	 D minf�1; �151=30g D �151=30.
5. 	 ¤ �1.

(6) minf�194; �114; �16g D �194 < 0; q D 2;
(7) multiply row 3 by �1=194, then add 47=2; �8; 72; 27=2 times of row 3 to

rows 1,2,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 �67=97 �6=97 �47=388 �17=388 �306=3;389

�165=97 33=97 1 4=97 �13=97 �302=1;455

1 57=97 8=97 �1=194 �21=194 151=5;820

224=97 �6=97 �36=97* 1 �77=97 �807=970

1 �55=97 11=97 �27=388 15=388 197=11;640

Iteration 5:

1. minf�17=388; �13=97; �21=194; �77=97; 15=388g D �77=97 < 0; p1 D 4.
3. minf�306=3;389; �302=1;455; 151=5;820; �807=970; 197=11;640g

D �807=970; p2 D 4.
4. 	 D minf�77=97; �807=970g D �807=970.
5. 	 ¤ �77=97.

(6) minf224=97; �6=97; �36=97g D �36=97 < 0; q D 7;
(7) multiply row 4 by �97=36, then add 47=388; �4=97; 1=194; 27=388 times

of row 4 to rows 1,2,3,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 �13=9 �1=24 �47=144 31=144 29=160

�13=9* 1=3 1 1=9 �2=9 �3=10

1 5=9 1=12 �1=72 �7=72 3=80

�56=9 1=6 1 �97=36 77=36 269=120

1 �1 1=8 �3=16 3=16 83=480

Iteration 6:

1. minf31=144; �2=9; �7=72; 77=36; 3=16g D �2=9 < 0; p1 D 2.
3. minf29=160; �3=10; 3=80; 269=120; 83=480g D �3=10; p2 D 2.
4. 	 D minf�2=9; �3=10g D �3=10.
5. 	 ¤ �2=9.
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(6) minf�13=9; 1=3; 1=9g D �13=9 < 0; q D 4;
(7) multiply row 2 by �9=13, then add 13=9; �5=9; 56=9; 1 times of row 2 to

rows 1,3,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 �3=8 �1 �7=16 7=16 77=160

1 �3=13 �9=13 �1=13 2=13 27=130

1 11=52 5=13 3=104 �19=104 �81=1;040

�33=26 �56=13 1 �165=52 161=52 5;513=1;560

1 �11=104 �9=13 �55=208 71=208 475=1;248

Iteration 7:

1. minf7=16; 2=13; �19=104; 161=52; 71=208g D �19=104 < 0; p1 D 3.
3. minf77=160; 27=130; �81=1;040; 5;513=1;560; 475=1;248g D �81=1;040;

p2 D 3.
4. 	 D minf�19=104; �81=1;040g D �19=104.
5. 	 D �19=104.

(1) ˛ D �.�81=1;040/=.�19=104/ D �81=190;
(2) add �81=190 times of x9 column to RHS column;

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 �3=8 �1 � 7=16 7=16 28=95

1 �3=13 �9=13 �1=13 2=13 27=190

1 11=52 5=13 3=104 �19=104

�33=26 �56=13 1 �165=52 161=52 631=285

1 �11=104 �9=13 �55=208 71=208 67=285

(3) minf11=52; 5=13; 3=104g � 0;
(4) Optimal solution and optimal value are:

Nx D .28=95; 0; 67=285; 27=190; 0; 0; 631=285; 0/T;

Nx9 D 2.28=95/ � 4.67=285/ C 5.27=190/ D 41=114:

18.4 Perturbation Reduced Simplex Method

The same idea behind perturbation method (Sect. 18.2) can also be realized in the
reduced simplex context. Utilizing Algorithms 16.1.1 and 16.3.1 gives the following
algorithm.
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Algorithm 18.4.1 (Perturbation reduced simplex algorithm: tableau form).
Given perturbation parameters ıj D 1; j D 1; � � � ; n. Initial: improved reduced
tableau of form (16.6), where NxB D Nb � Nf NanC1. This algorithm solves the reduced
problem (15.1).

1. Call the improved reduced simplex Algorithm 16.1.1: for the minimum-ratio test,
use ıji in place of Nxji if Nxji < ıji ; i D 1; : : : ; m; though ˛ is computed by the
original formula.

2. Stop if returning from step 1 (infeasible problem).
3. If returning form step 5, then stop if NxB � 0 (optimality achieved).
4. Call the improved dual reduced simplex Algorithm 16.3.1: for the minimum-ratio

test, use ıj in place of Napj if Napj < ıj , though ˇ is computed by the original
formula.

5. Stop if returning from step 6 (infeasible problem).
6. Assume returning from step 2. Stop if Napj � 0; j 2 N (optimality achieved).
7. Go to step 1.

Example 18.4.1. Solve the following problem by Algorithm 18.4.1:

min x9 D �2x1 C 7x2 � 5x3 � 3x4;

s:t: �x1 C 4x2 � 5x3 � 2x4 C x5 D 12;

x1 � 3x2 C 3x3 5x4 C x6 D 2;

7x1 � 6x2 � x3 � 4x4 C x7 D �15;

�3x1 C x2 C 2x3 � x4 C x8 D �2;

xj � 0; j D 1; � � � ; 8:

Answer Set perturbation parameters ıj D 1; j D 1; � � � ; 8.

1. Call Algorithm 16.1.1. Start from the initial tableau: Nf D 0.

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�1 4 �5 �2 1 12

1 �3 3 5 1 2

7 �6 �1 �4 1 �15

�3 1 2 �1 1 �2

�2 7 �5* �3 �1

Iteration 1:

1. Na9 D �e5 6� 0.
2. ˛ D 0=.�1/ D 0; p D 5.
4. minf�2; 7; �5; �3g D �5 < 0; q D 3.
6. Multiply row 5 by �1=5, then add 5; �3; 1; �2 times of row 5 to rows 1,2,3,4,

respectively.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 �3 1 1 1 12

�1=5 6=5 16=5 1 �3=5 2

37=5 �37=5 �17=5 1 1=5 �15

�19=5* 19=5 �11=5 1 �2=5 �2

2=5 �7=5 1 3=5 1=5

Iteration 2:

2. Determine row index by replacing the right-hand side term �2 by 1:
minf�2=.�3=5/; �1=.�2=5/g D5=2; p D 4, ˛ D � .�2/=.�2=5/ D � 5.

3. Add �5 times of x9 column to RHS column.
4. minf�19=5; 19=5; �11=5g D �19=5 < 0; q D 1.
6. Multiply row 4 by �5=19, then add �1; 1=5; �37=5; �2=5 times of row 4 to

rows 1,2,3,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�2 8=19 1 5=19 17=19 7

1 63=19 1 �1=19 �11=19 5

�146=19* 1 37=19 �11=19 �16

1 �1 11=19 �5=19 2=19

�1 1 7=19 2=19 3=19 �1

Iteration 3:

2. Determine row index by replacing the right-hand side term �16 by 1:

minf�5=.�11=19/; �1=.�11=19/g D 19=11; p D 3I
˛ D �.�16/=.�11=19/ D �304=11I

3. Add �304=11 times of x9 column to RHS column.
4. minf0; �146=19; 37=19g D �146=19 < 0; q D 4.
6. Multiply row 3 by �19=146, then add �8=19; �63=19; �11=19; �7=19 times

of row 3 to rows 1,2,4,5, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�2 1 4=73 27=73 63=73 �195=11

1 1 63=146 115=146 �121=146 21

1 �19=146 �37=146 11=146

1 �1 11=146 �17=146 9=146 �32=11

�1 1 7=146 29=146 19=146 �59=11
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Iteration 4:

2. ˛ D minf�21=.�121=146/g D 3;066=121; p D 2.
3. Add 3;066=121 times of x9 column to RHS column.
4. minf1; 63=146; 115=146g � 0.
5. Returning with NxB 6� 0.

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�2 1 4=73 27=73 63=73 501=121

1 1 63=146 115=146 �121=146

1 �19=146 �37=146 11=146 21=11

1 �1 11=146 �17=146 9=146 �163=121

�1* 1 7=146 29=146 19=146 �250=121

4. Call Algorithm 16.3.1.

Iteration 5:

1. minf501=121; 0; 21=11; �163=121; �250=121g D �250=121 <0; r D 5.
3. J D f2g ¤ ;.
4. minf�1=.�1/g D 1; q D 2.
5. Multiply row 5 by �1, then add 2; �1; 1 times of row 5 to rows 1,2,4,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�2 1 �3=73 �2=73 44=73 91=11

1 1 35=73 72=73 �51=73 �250=121

1 �19=146 �37=146 11=146 21=11

1 �1 2=73 �23=73 �5=73 87=121

1 �1 �7=146 �29=146 �19=146 250=121

6. Na2;9 D �51=73 < 0.
7. ˛ D �.�250=121/=.�51=73/ D �1;943=657.
8. Add �1;943=657 times of x9 column to RHS column.

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS
�2 1 �3=73 �2=73 44=73 331=51

1 1 35=73 72=73 �51=73

1 �19=146 �37=146 11=146 86=51

1 �1 2=73 �23=73 �5=73 47=51

1 �1 �7=146 �29=146 �19=146 125=51
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Iteration 6:

1. minf331=51; 0; 86=51; 47=51; 125=51g � 0.
6. Returning from step 2, and Na2j � 0; j 2 N . Optimal solution and optimal

value:

Nx D .47=51; 125=51; 0; 86=51; 331=51; 0; 0; 0/T;

Nx9 D .�2; 7; �3/.47=51; 125=51; 86=51/T D 523=51:

Although the preceding problem was solved by calling the improved primal and
dual reduced simplex algorithms once each, there would be more calls required for
solving large-scale and highly degenerate problems.

18.5 Mixed Two-Phase Method

The conventional two-phase primal (dual) simplex method utilizes primal (dual)
iterations in both Phase-I and Phase-II. As was mentioned in Chaps. 13 and 14,
nevertheless, a primal rule could be used to attain dual feasibility whereas a dual
rule to attain primal feasibility. As differing from conventional ones, in other words,
it is possible to solve problems by dual (primal) Phase-I and primal (dual) Phase-II.
There are multiple ways to construct such mixed two-phase methods. In this section,
this idea will be illustrated by examples in the reduced simplex context only.

Primal-dual Scheme. The primal reduced simplex algorithm is used for Phase-I
whereas the dual reduced simplex algorithm for Phase-II. When primal feasibility
happens to be achieved in a Phase-I iteration, the problem is solved without Phase-II
at all, as is illustrated in the following example.

Example 18.5.1. Solve following problem by the Primal-dual Scheme:

min x8 D �3x1 � 2x2 C 4x3 C 2x4;

s:t: x1 C 2x2 � x3 C 2x4 C x5 D 4;

2x1 C 3x3 � 4x4 C x6 D 1;

�x1 C 2x2 � 3x4 C x7 D �3;

xj � 0; j D 1; � � � ; 7:

Answer Initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 RHS
1 2 �1 2 1 4

2 3 �4 1 1

�1 2 �3 1 �3

�3* �2 4 2 �1
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Phase-I: Call reduced simplex Algorithm 15.2.1.

Iteration 1:

1. Na8 6� 0.
2. Nx8 D 0; p D 4.
3. minf�3; �2; 4; 2g D �3; q D 1.
5. Multiply row 4 by �1=3, and add �1; �2; 1 times of row 4 to rows 1,2,3,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

4=3 1=3 8=3 1 �1=3 4

�4=3 17=3 �8=3* 1 �2=3 1

8=3 �4=3 �11=3 1 1=3 �3

1 2=3 �4=3 �2=3 1=3

which is a reduced simplex tableau.

Iteration 2:

1. Na8 6� 0.
2. Nx8 D maxf4=.�1=3/; 1=.�2=3/g D �3=2; p D 2.

As x7 D �3 � .�3=2/.1=3/ D �5=2 < 0, the associated basic solution is
infeasible; but Algorithm 15.2.1 is still carried out.

3. minf�4=3; 17=3; �8=3g D �8=3; q D 4.
5. Multiply row 2 by �3=8, and add �8=3; 11=3; 2=3 times of row 2 to rows

1,3,4, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

6 1 1 �1 5

1=2 �17=8 1 �3=8 1=4 �3=8

9=2 �73=8 �11=8 1 5=4 �35=8

1 1 �11=4 �1=4 1=2 �1=4

Iteration 3:

1. Na8 6� 0.
2. Nx8 D maxf5=.�1/g D �5; p D 1:

3. minf0; 6; 1g � 0.
4. xB D .5; �3=8; �35=8; �1=4/T�.�5/.�1; 1=4; 5=4; 1=2/T D .0; 7=8; 15=8;

9=4/T � 0.

Optimality is achieved. Basic optimal solution and optimal value:

Nx D .9=4; 0; 0; 7=8; 0; 0; 15=8/T; Nx8 D �5:
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It is noted that the problem was solved by the Primal-dual Scheme without
Phase II.

Dual-primal scheme. The dual reduced simplex algorithm is used for Phase-I
whereas the primal reduced simplex algorithm for Phase-II. When dual feasibility
happens to be achieved in some Phase-I iteration, the problem is solved without
Phase-II at all.

Example 18.5.2. Solve the Example 18.5.1 by the Dual-primal Scheme.

Answer Iteration 1: The reduced simplex tableau (the second one in the Example)
is obtained, i.e.,

x1 x2 x3 x4 x5 x6 x7 x8 RHS

4=3 1=3 8=3 1 �1=3 4

�4=3 17=3 �8=3 1 �2=3 1

8=3 �4=3 �11=3* 1 1=3 �3

1 2=3 �4=3 �2=3 1=3

Phase-I: Call dual reduced simplex Algorithm 15.4.1.

minf�1=3; �2=3; 1=3; 1=3g D �2=3; p D 2:

Iteration 2:

1. Nx8 D 1=.�2=3/ D �3=2.
2. NxB D .4; 1; �3; 0/T � .�3=2/.�1=3; �2=3; 1=3; 1=3/T D .7=2; 0;

�5=2; 1=2/T.
3. minf7=2; 0; �5=2; 1=2g D �5=2 < 0; r D 3.
5. J D f3; 4g ¤ ;.
6. minf�.17=3/=.�4=3/; .8=3/=.�11=3/g D �8=11; q D 4.
7. Multiply row 3 by �3=11, and add �8=3; 8=3; 2=3 times of row 3 to rows

1,2,4, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

36=11 �7=11 1 8=11 �1=11 20=11

�36=11* 73=11 1 �8=11 �10=11 35=11

�8=11 4=11 1 �3=11 �1=11 9=11

1 2=11 �12=11 �2=11 3=11 6=11

8. Na2;8 D �10=11 < 0.

Iteration 3:

1. Nx8 D .35=11/=.�10=11/ D �35=10.
2. NxB D .20=11; 35=11; 9=11; 6=11/T � .�35=10/.�1=11; �10=11; �1=11;

3=11/T D .3=2; 0; 1=2; 3=2/T � 0.
4. Primal feasibility achieved.
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Phase-II: Call reduced simplex Algorithm 15.2.1.

Iteration 4:

2. Nx8 D maxf.20=11/=.�1=11/; .35=11/=.�10=11/; .9=11/=.�1=11/g
D .35=11/=.�10=11/ D �7=2; p D 2.

3. minf�36=11; 73=11; �8=11g D �36=11; q D 2.
5. Multiply row 2 by �11=36, and add �36=11; 8=11; �2=11 times of row 2 to

rows 1,3,4, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

6 1 1 �1 5

1 �73=36 �11=36 2=9 5=18 �35=36

�10=9 1 �2=9 �1=9 1=9 1=9

1 �13=18 1=18 �2=9 2=9 13=18

Iteration 5:

2. Nx8 D maxf5=.�1/g D �5; p D 1.
3. minf6; 1; 0g � 0.
4. NxB D .5; �35=36; 1=9; 13=18/T � .�5/.�1; 5=18; 1=9; 2=9/T

D .0; 5=12; 2=3; 11=6/T � 0.

The basic optimal solution and associated objective value:

Nx D .11=6; 5=12; 0; 2=3; 0; 0; 0/T; Nx8 D �5:

This problem was solved by the Dual-Primal Scheme via 4 iterations and 3 basis
changes, as is slightly inefficient, compared to the Primal-dual Scheme. It seems to
be impossible to know which is more efficient for solving a given problem before
hands.



Chapter 19
Generalizing Reduced Simplex Method

In Sects. 7.3–7.7, the general LP problem in form (7.11) was converted to the
bounded-variable problem (7.13), and the latter was then solved by a generalized
primal or dual simplex method. In this chapter, the primal and dual reduced simplex
methods will be generalized to solve the bounded-variable problem. Some Phase-I
procedures will be developed to provide a starting point to get them started.

19.1 Generalized Reduced Simplex Method

The objective value will be again deemed as a variable, and denoted by xnC1.
Placing the objective function xnC1 D cTx in the constraint part, the bounded-
variable problem (7.13) can be transformed to the following form, equivalently:

min xnC1;

s:t: A

�
x

xnC1

�
D b; l � x � u;

(19.1)

where A 2 R.mC1/�.nC1/; b 2 RmC1; rank A D m C 1; m < n; Both l and u are
given vectors (may include infinite components). As its objective function involves
a single variable xnC1, this problem will be referred to as reduced bounded-variable
problem. Note that xnC1 is a free variable.

In this section, the reduced simplex method will be generalized to solve
problem (19.1).

Assume that the current basis and nonbasis are

B D fj1; � � � ; jmC1g; N D AnB; n C 1 62B:

Then, the constraints of (19.1) are equivalent to the following canonical form:

lB � xB D Nb � NN xN � NanC1xnC1 � uB; lN � xN � uN ;

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__19,
© Springer-Verlag Berlin Heidelberg 2014
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where

Nb D B�1b; NN D B�1N; NanC1 D B�1anC1:

If . Nx; NxnC1/ satisfies

Nxj D lj or uj ; j 2 N; (19.2)

lB � NxB D Nb � NN NxN � NanC1 NxnC1 � uB; (19.3)

it is called basic feasible solution; if, further, lB < NxB < uB , it is said to be
nondegenerate. It is clear that Lemma 7.4.1 is valid in this context, that is, if the
bounded-variable problem (7.13) has a feasible solution, it has a basic feasible
solution, and if it has an optimal solution, then it has a basic optimal solution.

Consider the following line search scheme:

OxB D NxB C ˛ NanC1; OxnC1 D NxnC1 � ˛; OxN D NxN ; (19.4)

where the stepsize ˛ is determined by the rule below.

Rule 19.1.1 (Row rule) Select stepsize ˛ and row index p such that

˛ D ˛p D minf˛i j i D 1; � � � ; m C 1g; (19.5)

where

˛i D
8<
:

.uji � Nxji /= Nai; nC1; if Nai; nC1 > 0;

.lji � Nxji /= Nai; nC1; if Nai; nC1 < 0;

1; if Nai; nC1 D 0;

i D 1; � � � ; m C 1: (19.6)

Lemma 19.1.1. If . Nx; NxnC1/ is a basic feasible solution, then the solution . Ox; OxnC1/,
defined by (19.4), is a basic feasible solution, associated with the objective value not
increasing, or strictly decreasing if Nx is nondegenerate.

Proof. Note that OxN D NxN . For any real number ˛, the new solution given by (19.4)
satisfies the equality constraints of (19.1); from . Nx; NxnC1/ satisfying the equality
constraint, in fact, it follows that

A. OxT; OxnC1/
T D B OxB C N OxN C OxnC1anC1

D B. NxB C ˛ NanC1/ C N NxN C . NxnC1 � ˛/anC1

D B NxB C N NxN C NxnC1anC1

D b:
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On the other hand, the ˛ determined by (19.5) is clearly nonnegative such that the
new solution Nx satisfies bound constraints l � Ox � u. Therefore . Ox; OxnC1/ is a basic
feasible solution. When Nx is nondegenerate, in addition, it is clear that ˛ > 0, and
hence

OxnC1 D NxnC1 � ˛ < NxnC1;

which implies that the objective value decreases. ut
It is noted that decrement of the objective value is equal to the stepsize. In fact,

the ˛, given by (19.6), is the largest possible stepsize to maintain feasibility of Ox.
In practice, the problem should be deemed as unbounded if ˛ is too large. Note that
the jp-indexed component of the new solution is equal to the related upper or lower
bound, i.e.,

Oxjp D
�

ujp ; if Nap; nC1 > 0;

ljp ; if Nap; nC1 < 0:
(19.7)

Introduce

�N D N TB�Tep: (19.8)

and set

J D fj 2 � j Nap; nC1�j > 0g [ fj 2 … j Nap; nC1�j < 0g; (19.9)

where � and … are defined by (7.19). Then the following is valid for the new
solution.

Lemma 19.1.2. If J is empty, the new solution . Ox; OxnC1/, defined by (19.4), is a
basic optimal solution.

Proof. By (19.5) and (19.6) it is known that Nap; nC1 ¤ 0. From the pth equation of
the canonical form xB D Nb � NN xN � NanC1xnC1, it follows that

xnC1 D . Nbp � �T
N xN � xjp /= Nap; nC1: (19.10)

Assuming that .x0; x0
nC1/ is any feasible solution, it holds that

lj � x0
j � uj ; j D 1; � � � ; n: (19.11)

If Nap; nC1 > 0, then J D ; implies that

�� � 0; �… � 0: (19.12)
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Thus, from the first expression of (19.12) and x0
� � l� D Nx� , it follows that

�T
� x0

� � �T
� Nx�;

and from the second expression of (19.12) and x0
… � u… D Nx…, it follows that

�T
…x0

… � �T
… Nx…:

Combining the preceding two expressions and Nap; nC1 > 0 gives

� .�T
N x0

N /= Nap; nC1 � �.�T
N NxN /= Nap; nC1 D �.�T

N OxN /= Nap; nC1: (19.13)

On the other hand, from (19.7), (19.11) and Nap; nC1 > 0, it follows that

� x0
jp

= Nap; nC1 � �ujp= Nap; nC1 D � Oxjp = Nap; nC1: (19.14)

Therefore, by . Ox; OxnC1/ and .x0; x0
nC1/ satisfying (19.10), (19.13) and (19.14), it

holds that

x0
nC1 D . Nbp � �T

N x0
N � x0

jp
/= Nap; nC1 � . Nbp � �T

N OxN � Oxjp /= Nap; nC1 D OxnC1:

Therefore, by considering Lemma 19.1.1, it is known that Ox is a basic optimal
solution.

It can be shown analogously that the statement is valid if Nap; nC1 < 0. ut
When J ¤ ;, the following rule is well-defined.

Rule 19.1.2 (Column rule) Select column index

q 2 arg max
j 2J

j�j j: (19.15)

Then after the associated basis change, when jp left from and q entered to the
basis, an iteration is complete. It is clear that the resulting basis corresponds to the
new solution . Ox; Ox/, given by (19.4) together with (19.5) and (19.6).

The overall steps can be put into the following algorithm.

Algorithm 19.1.1 (Generalized reduced simplex algorithm). Initial: .B; N /;

B�1; NanC1 D �B�1emC1; basic feasible solution Nx. This algorithm solves the
reduced bounded-variable problem (19.1).

1. Determine stepsize ˛ and row index p by (19.5) and (19.6).
2. If ˛ ¤ 0, update: NxB D NxB C ˛ NanC1; NxnC1 D NxnC1 � ˛

3. Compute �N D N TB�Tep .
4. Stop if J , defined by (19.9), is empty.
5. Determine column index q by (19.15).
6. Compute Naq D B�1aq and � D �Nap; nC1=�q .
7. If � ¤ 0, update NanC1 D NanC1 C �. Naq � ep/.
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8. Update B�1 by (3.23).
9. Update .B; N / by exchanging jp and q.

10. Go to step 1.

Theorem 19.1.1. Algorithm 19.1.1 produces a sequence of basic feasible solutions.
Assuming degeneracy, it terminates at step 4, offering a basic optimal solution.

Proof. The validity comes from Lemmas 19.1.1, 19.1.2 and the discussions preced-
ing Algorithm 19.1.1.

Example 19.1.1. Solve the following problem by Algorithm 19.1.1:

min x9 D �x1 � 3x2 � 2x3 C 4x4 � 5x5;

s:t: �2x1 C x2 � 3x3 � x4 C x5 C x6 D �52;

3x1 � 3x2 C x3 C 5x4 � 2x5 C x7 D 26;

x1 � 6x2 � 2x3 � 4x4 C 6x5 C x8 D 7;

2 � x1 � 10; �5 � x2 � 12; 1 � x3 � 15;

�4 � x4 � 27; �3 � x5 � 14; �9 � x6 � 18;

�7 � x7 � 13; �10 � x8 � 21:

Given a feasible solution: Nx D .2; �5; 15; �4; �3; 1; 4; 7/T; Nx9 D �18.

Answer The initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�2 1 �3 �1 1 1 �52

3 �3 1 5 �2 1 26

1 �6 �2 �4 6 1 7

�1* �3 �2 4 �5 �1

Iteration 1: Convert the preceding to a reduced tableau by taking p D 5; q D 1.

Multiply row 5 by �1, then add 2; �3; �1; 1 times of row 5 to rows 1,2,3,4,
respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

7 1 �9 11 1 2 �52

�12 �5 17 �17 1 �3 26

�9 �4 1 1 �1 7

1 3 2 �4 5 1

Taking the left-side of the preceding tableau as original data, call Algo-
rithm 19.1.1.

Initial: B D f6; 7; 8; 1g; N D f2; 3; 4; 5g; B�1 D I , NxN D .�5.�/; 15.C/;�4.�/;

�3.�//
T, NxB D .1; 4; 7; 2/T; Nx9 D �18. Na9 D .2;�3;�1; 1/T. The Nx is a basic feasible

solution.
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Iteration 2:

1: ˛ D minf.18 � 1/=2; .�7 � 4/=.�3/; .�10 � 7/=.�1/; .10 � 2/=.1/g
D minf17=2; 11=3; 17; 8g D 11=3; p D 2:

2: NxB D .1; 4; 7; 2/T C .11=3/.2; �3; �1; 1/T D .25=3; �7; 10=3; 17=3/T;

Nx9 D �18 � 11=3 D �65=3:

3: �N D N TB�Te2 D .�12; �5; 17; �17/T:

4: J D f2; 5g ¤ ;:

5: maxfj � 12j; j � 17jg D 17; q D 5:

6: Na5 D B�1a5 D .11; �17; 1; 5/T:

7: � D �.�3/=.�17/ D �3=17;

NanC1 D .2; �3; �1; 1/T C .�3=17/.11; �17 � 1; 1; 5/T

D .1=17; 3=17; �20=17; 2=17/T:

8: B�1 D

0
BB@

1 11=17

�1=17

1=17 1

5=17 1

1
CCA :

9: NxB D .25=3; �3; 10=3; 17=3/T; B D f6; 5; 8; 1g;
NxN D .�5.�/; 15.C/; �4.�/; �7.�//

T; N D f2; 3; 4; 7g:

Iteration 3:

1: ˛ D minf.18 � .25=3//=.1=17/; .14 � .�3//=.3=17/; .�10 � .10=3//=

.�20=17/; .10 � .17=3//=.2=17/g D minf493=3; 289=3; 34=3; 221=6g
D 34=3; p D 3:

2: NxB D .25=3; �3; 10=3; 17=3/T C .34=3/.1=17; 3=17; �20=17; 2=17/T

D .9; �1; �10; 7/T; Nx9 D �65=3 � 34=3 D �99=3:

3: �N D N TB�Te3 D .�165=17; �73=17; 1; 1=17/T:

4: J D f2g ¤ ;:

5: maxfj � 165=17jk D 165=17; q D 2:

6: Na2 D B�1a2 D .�13=17; 12=17; �165=17; �9=17/T:

7: � D �.�20=17/=.�165=17/ D �4=33;

NanC1 D .1=17; 3=17; �20=17; 2=17/T C .�4=33/.�13=17; 12=17; �165=17 � 1;

� 9=17/T D .5=33; 1=11; 4=33; 2=11/T:

8:

B�1 D

0
BB@

1 �13=165

1 4=55

�17=165

�3=55 1

1
CCA
0
BB@

1 11=17

�1=17

1=17 1

5=17 1

1
CCA

D

0
BB@

1 106=165 �13=165

�3=55 4=55

�1=165 �17=165

16=55 �3=55 1

1
CCA :



19.1 Generalized Reduced Simplex Method 467

9: NxB D .9; �1; �5; 7/T; B D f6; 5; 2; 1g;
NxN D .�10.�/; 15.C/; �4.�/; �7.�//

T; N D f8; 3; 4; 7g:

Iteration 4:

1: ˛ D minf.18 � 9/=.5=33/; .14 � .�1//=.1=11/; .12 � .�5//=.4=33/;

.10 � 7/=.2=11/g
D minf297=5; 165; 561=4; 33=2g D 33=2; p D 4:

2: NxB D .9; �1; �5; 7/T C .33=2/.5=33; 1=11; 4=33; 2=11/T

D .23=2; 1=2; �3; 10/T; Nx9 D �99=3 � 33=2 D �297=6:

3: �N D N TB�Te4 D .�3=55; 42=55; 52=55; 16=55/T:

4: J D f4; 7g ¤ ;:

5: maxfj52=55j; j16=55jg D f52=55; 16=55g D 52=55; q D 4:

6: Na4 D B�1a4 D .317=165; �51=55; �17=165; 52=55/T:

7: � D �.2=11/=.52=55/ D �5=26;

NanC1 D .5=33; 1=11; 4=33; 2=11/T C .�5=26/.317=165; �51=55; �17=165;

52=55 � 1/T D .�17=78; 7=26; 11=78; 5=26/T:

8:

B�1 D

0
BB@

1 �317=156

1 51=52

1 17=156

55=52

1
CCA
0
BB@

1 106=165 �13=165

�3=55 4=55

�1=165 �17=165

16=55 �3=55 1

1
CCA

D

0
BB@

1 2=39 5=156 �317=156

3=13 1=52 51=52

1=39 �17=156 17=156

4=13 �3=52 55=52

1
CCA :

9: NxB D .23=2; 1=2; �3; �4/T; B Df6; 5; 2; 4g;
NxN D .�10.�/; 15.C/; 10.C/; �7.�//

T; N D f8; 3; 1; 7g:

Iteration 5:

1: ˛ D minf.�9 � 23=2/=.�17=78/; .14 � .1=2//=.7=26/; .12 � .�3//=

.11=78/; .27 � .�4//=.5=26/g
D minf1;599=17; 351=7; 1;170=11; 806=5g D 351=7; p D 2:

2: NxB D .23=2; 1=2; �3; �4/T C .351=7/.�17=78; 7=26; 11=78; 5=26/T

D .4=7; 14; 57=14; 79=14/T; Nx9 D �297=6 � 351=7 D �1395=14:

3: �N D N TB�Te2 D .1=52; 19=26; 51=52; 3=13/T:

4: J D f8; 7g ¤ ;:

5: maxfj1=52j; j3=13jg D 3=13 > 0; q D 7:

6: Na7 D B�1a7 D .2=39; 3=13; 1=39; 4=13/T:

7: � D �.7=26/=.3=13/ D �7=6;

NanC1 D .�17=78; 7=26; 11=78; 5=26/T C .�7=6/.2=39; 3=13 � 1; 1=39; 4=13/T

D .�5=18; 7=6; 1=9; �1=6/T:
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8:

B�1 D

0
BB@

1 �2=9

13=3

�1=9 1

�4=3 1

1
CCA
0
BB@

1 2=39 5=156 �317=156

3=13 1=52 51=52

1=39 �17=156 17=156

4=13 �3=52 55=52

1
CCA

D

0
BB@

1 1=36 �9=4

1 1=12 17=4

�1=9

�1=12 �1=4

1
CCA :

9: NxB D .4=7; �7; 57=14; 79=14/T; B D f6; 7; 2; 4g;
NxN D .�10.�/; 15.C/; 10.C/; 14.C//T; N D f8; 3; 1; 5g:

Iteration 6:

1: ˛ D minf.�9 � 4=7/=.�5=18/; .13 � .�7//=.7=6/; .12 � .57=14//=.1=9/;

.�3 � .79=14//=.�1=6/g
D minf1;206=35; 120=7; 999=14; 363=7g D 120=7; p D 2:

2: NxB D .4=7; �7; 57=14; 79=14/T C .120=7/.�5=18; 7=6; 1=9; �1=6/T

D .�88=21; 13; 251=42; 39=14/T; Nx9 D �1395=14 � 120=7 D �1635=14:

3: �N D N TB�Te2 D .1=12; 19=6; 17=4; 13=3/T:

4: J D f8g ¤ ;:

5: maxfj1=12jg D 1=12 > 0; q D 8:

6: Na8 D B�1a8 D .1=36; 1=12; �1=9; �1=12/T:

7: � D �.7=6/=.1=12/ D �14;

NanC1 D .�5=18; 7=6; 1=9; �1=6/T C .�14/.1=36; 1=12 � 1; �1=9; �1=12/T

D .�2=3; 14; 5=3; 1/T:

8:

B�1 D

0
BB@

1 �4=13

12

4=3 1

1 1

1
CCA
0
BB@

1 1=36 �9=4

1 1=12 17=4

�1=9

�1=12 �1=4

1
CCA

D

0
BB@

1 �4=13 1=468 �185=52

12 1 51

4=3 17=3

1 4

1
CCA :

9: NxB D .�88=21; �10; 251=42; 39=14/T; B D f6; 8; 2; 4g;
NxN D .13.C/; 15.C/; 10.C/; 14.C//T; N D f7; 3; 1; 5g:

Iteration 7:

1: ˛ D minf.�9 � .�88=21//=.�2=3/; .21 � .�10//=14; .12 � .251=42//=

.5=3/; .27 � .39=14//=1g
D minf101=14; 31=14; 253=70; 339=14g D 31=14; p D 2:

2: NxB D .�88=21; �10; 251=42; 39=14/T C .31=14/.�2=3; 14; 5=3; 1/T

D .�17=3; 21; 29=3; 5/T; Nx9 D �1635=14 � 31=14 D �119:
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3: �N D N TB�Te2 D .1; 166; 51; 52/T:

4: J D ;: The basic optimal solution and optimal value W

Nx D .10; 29=3; 15; 5; 14; �17=3; 13; 21/T;

Nx9 D .�1; �3; �2; 4; �5/.10; 29=3; 15; 5; 14/T D �119:

Finally, we formulate the tableau version of Algorithm 19.1.1 based on
Table 15.1.

Algorithm 19.1.2 (Generalized reduced simplex algorithm: tableau form). Ini-
tial: improved reduced tableau of form (16.6), associated with . Nx; NxnC1/ with (19.2)
and (19.3) satisfied. This algorithm solves the reduced bounded-variable problem
(19.1).

1. Determine stepsize ˛ and row index p by (19.5) and (19.6).
2. If ˛ ¤ 0, add ˛ times of xnC1 column to NxB column NxnC1 D NxnC1 � ˛.
3. Stop if J D fj 2 � j Nap; nC1 Napj > 0g [ fj 2 … j Nap; nC1 Napj < 0g D ;

(optimality achieved).
4. Determine column index q 2 arg maxj 2J j Nap j j.
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations (see the Note below).
6. Go to step 1.

Note Manipulations in step 5 does not touch NxB column but replace its pth
component by Nxq .

When executing the preceding tableau algorithm, the solution Nx, not just NxB ,
should be traced iteration by iteration, e.g., via the tableau used in the next section.

19.2 Generalized Reduced Phase-I

As it is easy to turn the reduced and conventional simplex tableaus from each to
another, a Phase-I procedure for the generalized simplex method can be utilized to
get the generalized reduced method started, and vice versa. On the other hand, it is
not difficult to generalize Phase-I procedures for the standard LP problem (Chap. 13)
to get the generalized reduced method started.

Based on the most-obtuse-angle heuristics, the generalized dual reduced simplex
method can be modified to a Phase-I procedure. To this end, it is only needed to
modify steps 4 and 13 of Algorithm 19.6.1, as well as meanings of the exits.

Algorithm 19.2.1 (Generalized reduced Phase-I algorithm: tableau form). Ini-
tial: D-reduced tableau of form (19.6), q column as the datum column, associated
with solution Nx. This algorithm finds a feasible D-reduced tableau to the bounded-
variable problem (19.6).
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1. Determine �q by (19.28).
2. Go to step 8 if �q D 0.
3. Stop if N1 defined by (19.29) is empty (infeasible problem).
4. Determine ˇ and column index q0 such that q0 2 arg maxj 2N1 j N!j j; ˇ D

�Nzq0= N!q0 .
5. If ˇ ¤ 0, add ˇ times of the datum row to the bottom row.
6. Update Nxq; Nxq0 and NxB by (19.38), (19.40) and (19.41).
7. Set q D q0, and go to step 1.
8. Compute �jt ; t D 1; � � � ; m � 1 by (19.28), and determine s by (19.43).
9. If �js D 0, compute Nf D cT Nx, and stop (feasibility achieved).

10. Go to step 13 if Nais ; q D 0.
11. Convert Nais ; q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
12. Set q D js , and go to step 3.
13. Determine ˇ and column index q0 such that q0 2 arg maxj 2N2 j Nais ; j j; ˇ D

�Nzq0= Nais ; q0 .
14. Update Nxjs ; Nxq and NxB by (19.47)–(19.49).
15. Go to step 1.

Example 19.2.1. Solve the following problem by the two-phase generalized
reduced simplex algorithm, using Algorithm 19.2.1 in Phase-I:

min f D �7x1 C 6x2 C 3x3 � 4x4;

s:t: �2x1 � 3x2 C 7x3 � 5x4 C x5 D 2;

3x1 � 5x2 � 2x3 � x4 C x6 D �15;

�2x1 � 4x2 C 3x3 � 6x4 C x7 D 0;

�5x1 C 6x2 � 3x3 C 3x4 C x8 D 7;

�7 � x1 � 6; �3 � x2 � 9; �5 � x3 � 12;

�4 � x4 � 11; �7 � x5 � 5; �8 � x6 � 14;

�7 � x7 � 7; �6 � x8 � 10:

Answer Phase-I: Initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�2 �3 7 �5 1 2*

3 �5 �2 �1 1 �15

�2 �4 3 �6 1

�5 6 �3 3 1 7

�7 6 3 �4

Iteration 1:
Convert the preceding to a D-reduced tableau.

Set NxN D .�7.�/; 9.C/; 12.C/; �4.�//
T .N D f1; 2; 3; 4g/:

NxB D b � N NxN D .�89; 71; �38; �34/T .B D f5; 6; 7; 8g/:
�5 D �7 � .�89/ D 82; �6 D 14 � .71/ D �57; �7 D �7 � .�38/ D 31:

�8 D �6 � .�34/ D 28: maxfj82j; j � 57j; j31j; j28jg D 82; p D 1:
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To enter RHS column to the basis, multiply row 1 by 1=2, then add 15; �7 times
of it to rows 2,4, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 �3=2 7=2 �5=2 1=2 1

�12 �55=2 101=2 �77=2 15=2 1

�2 �4 3 �6 1

2 33=2 �55=2 41=2 �7=2 1

�7 6 3 �4

u 6 9 12 11 5 14 7 10

Nx �7 9 12 �4 �89 71 �38 �34

l �7 �3 �5 �4 �7 �8 �7 �6

The first row is its datum row (r D 1); x5 is its datum column (q D 5). NxB D
.71; �38; �34/T.B D f6; 7; 8g/. NxN D .�7.�/; 9.C/; 12.C/; �4.�/; �89/T .N D
f1; 2; 3; 4; 5g/.

Phase-I: Call Algorithm 19.2.1:

Iteration 2:

1: �5 D �7 � .�89/ D 82 ¤ 0:

3: sign.�5 Na1;5/ D 1; N1 D f1; 3; 4g ¤ ;:

4: maxfj � 1j; j7=2j; j � 5=2jg D 7=2; q0 D 3; ˇ D �3=.7=2/ D �6=7:

5: add � 6=7 times of row 1 to row 5:

6: Nx5 D �89 C 82 D �7I Nx3 D 12 � ..1=2/=.7=2//82 D 2=7I
NxB.r/ D .71; �38; �34/T � 82.�1=2; 15=2; 0; �7=2/T

� .2=7 � 12/.�7=2; 101=2; 3; �55=2/T

D .1; 333=7; �20=7; �484=7/T.B.r/ D f6; 7; 8g/:
7: q D 3:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 �3=2 7=2 �5=2 1=2 1

�12 �55=2 101=2 �77=2 15=2 1

�2 �4 3 �6 1

2 33=2 �55=2* 41=2 �7=2 1

�43=7 51=7 �13=7 �3=7 6=7

u 6 9 12 11 5 14 7 10

Nx �7 9 2=7 �4 �7 333=7 �20=7 �484=7

l �7 �3 �5 �4 �7 �8 �7 �6

Iteration 3:

1. �3 D 0.
8. �6 D 14 � 333=7 D �235=7 < 0; �7 D 0;

�8 D �6 � .�484=7/ D 442=7 > 0I s D 3; is D 4.
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10. Na4;3 D �55=2 ¤ 0.
11. multiply row 4 by �2=55, then add �7=2; �101=2; �3 times of row 4 to rows

1,2,3, respectively.
12. q D 8.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�41=55 3=5 6=55 3=55 7=55 1

�458=55 14=5 �47=55 59=55 1 101=55

�98=55 �11=5 �207=55 �21=55 1 6=55

�4=55 �3=5 1 �41=55 7=55 �2=55

�43=7 51=7 �13=7 �3=7 6=7

u 6 9 12 11 5 14 7 10

Nx �7 9 2=7 �4 �7 333=7 �20=7 �484=7

l �7 �3 �5 �4 �7 �8 �7 �6

Iteration 4:

3. sign.�8 Na1;8/ D 1; N1 D f1; 2g ¤ ;.
4. maxfj � 41=55j; j � 3=5jg D 41=55; q0 D 1; ˇ D �.�43=7/=.�41=55/.
5. add ˇ times of row 1 to row 5.
6. Nx8 D �484=7 C 442=7 D �6I Nx1 D �7 � ..7=55/=.�41=55//.442=7/

D 155=41.
NxB.r/ D .333=7; �20=7; 2=7/T�.442=7/.�7=55; 101=55; 6=55; �2=55/T

�.155=41 � .�7// .41=55; �458=55; �98=55; �4=55/T

D .1; 877=41; 388=41; 138=41/T .B D f6; 7; 3g/.
7. q D 1.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�41=55 3=5 6=55 3=55 7=55 1

�458=55* 14=5 �47=55 59=55 1 101=55

�98=55 �11=5 �207=55 �21=55 1 6=55

�4=55 �3=5 1 �41=55 7=55 �2=55

96=41 �113=41 �36=41 �43=41 373=41

u 6 9 12 11 5 14 7 10

Nx 155
41

9 138
41

�4 �7 877
41

388
41

�6

l �7 �3 �5 �4 �7 �8 �7 �6

Iteration 5:

1: �1 D 0:

8: �6 D 14 � 877=41 D �303=41 < 0; �7 D 7 � 388=41 D �101=41; �3 D 0I
s D 1; is D 2:

10: Na2;1 D �458=55 ¤ 0:
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11. multiply row 2 by �55=458, then add 41=55; 98=55; 4=55 times of row 2 to
rows 1,3,4, respectively.

12. q D 6.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

80=229 85=458 �19=458 �41=458 �17=458 1

1 �77=229 47=458 �59=458 �55=458 �101=458

�641=229 �820=229 �140=229 �49=229 1 �65=229

�143=229 1 �169=229 27=229 �2=229 �12=229

96=41 �113=41 �36=41 �43=41 373=41

u 6 9 12 11 5 14 7 10

Nx 155
41

9 138
41

�4 �7 877
41

388
41

�6

l �7 �3 �5 �4 �7 �8 �7 �6

Iteration 6:

3. sign.�6 Na1;6/ D 1; N1 D f2; 5; 8g ¤ ;.
4. maxfj�80=229j; j19=458j; j17=458jgD80=229; q0D2; ˇD�.96=41/=.80=229/.
5. add ˇ times of row 1 to row 5.
6: Nx6 D 877=41 � 303=41 D 14I

Nx2 D 9 � ..�41=458/=.80=229//.�303=41/ D 1;137=160I
NxB D .155=41; 388=41; 138=41/T � .�303=41/.41=458; �55=458; �49=229;

� 2=229/T�.1;137=160�9/.�80=229; �77=229; �641=229; �143=229/T

D .1; 361=160; 413=160; 339=160/T.B D f1; 7; 3g/:
7: q D 2:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

80=229 85=458 �19=458 �41=458 �17=458 1

1 �77=229 47=458 �59=458 �55=458 �101=458

�641=229 �820=229 �140=229 �49=229 1 �65=229

�143=229 1 �169=229 27=229 �2=229 �12=229

�4 �3=5 3=5 �4=5 491=205

u 6 9 12 11 5 14 7 10

Nx 361
160

1;137

160
339
160

�4 �7 14 413
160

�6

l �7 �3 �5 �4 �7 �8 �7 �6

Iteration 7:

1. �2 D 0;
8. �1 D �7 D �3 D 0; feasibility achieved.

The RHS column leaves and the datum column enters the basis (p D 1, q D 2):
multiply row 1 by 229=80, then add 77=229; 641=229; 143=229 times of row 1 to
row 2,3,4, respectively:
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Overwrite the RHS column by the f column.

x1 x2 x3 x4 x5 x6 x7 x8 f

1 17=32 �19=160 �41=160 �17=160

1 9=32 �27=160 �33=160 �41=160

�67=32 �151=160 �149=160 1 �93=160

1 �13=32 7=160 �27=160 �19=160

�4* �3=5 3=5 �4=5 �1

u 6 9 12 11 5 14 7 10

Nx 361
160

1;137

160
339
160

�4 �7 14 413
160

�6

l �7 �3 �5 �4 �7 �8 �7 �6

Iteration 8:
Take p D 5. maxfj � 4j; j � 3=5j; j3=5j; j � 4=5jg D 4; q D 4.

Multiply row 5 by �1=4, then add 17=32; �9=32; 67=32; 13=32 times of row 5
to rows 1,2,3,4, respectively:

and add NxB column, yielding a feasible improved reduced tableau (x9 and f

columns are equal):

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

1 127=640 113=640 17=80 17=128 1;137=160

1 �27=128 �21=128 �5=16 �9=128 361=160

�403=640 �797=640* 1 �13=80 67=128 413=160

1 67=640 �147=640 �3=80 13=128 339=160

1 3=20 �3=20 1=5 1=4 �4

u 6 9 12 11 5 14 7 10

Nx 361
160

1;137

160
339
160

�4 �7 14 413
160

�6

l �7 �3 �5 �4 �7 �8 �7 �6

Phase-II: Call Algorithm 19.1.2.

Iteration 9:

1. ˛1 D .�3 � 1;137=160/=.�17=128/ D 6;468=85,
˛2 D .�7 � 361=160/=.�9=128/ D 5;924=45,
˛3 D .7 � 413=160/=.67=128/ D 2;828=335,
˛4 D .12 � 339=160/=.13=128/ D 6;324=65,
˛5 D .11 � .�4//=.1=4/ D 60; p D 3; ˛ D 2;828=335.

3. Add ˛ times of x9 column to the NxB () column.
4. J D f6g ¤ ;.
6. maxfj � 797=640jg D 797=640; q D 6.
7. Multiply row 3 by �640=797, then add �113=640; 21=128; 147=640; 3=20 times

of row 3 to rows 1,2,4,5, respectively:
(Do not touch NxB column, except for its third component replace by Nx6 D 14).
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x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

1 87=797 113=797 151=797* 165=797 401=67

1 �102=797 �105=797 �232=797 �111=797 557=335

403=797 1 �640=797 104=797 �335=797 14

1 176=797 �147=797 �6=797 4=797 997=335

1 180=797 �96=797 175=797 149=797 �633=335

u 6 9 12 11 5 14 7 10

Nx 557
335

401
67

997
335

� 633
335

�7 14 7 �6

l �7 �3 �5 �4 �7 �8 �7 �6

Iteration 10:

1. ˛1 D .�3 � 401=67/=.�165=797/ D 13;758=317;

˛2 D .�7 � 557=335/=.�111=797/ D 35;516=571,
˛3 D .�8 � 14/=.�335=797/ D 7;537=144;

˛4 D .12 � 997=335/=.4=797/ D 219;357=122,
˛5 D .11 � .�633=335//=.149=797/ D 8;963=130; p D 1; ˛ D 13;758=317.

3. Add ˛ times of x9 column to the NxB column.
4. J D f5; 8g ¤ ;.
6. maxfj � 87=797j; j � 151=797jg D 151=797; q D 8.
7. Multiply row 1 by 797=151, then add 232=797; �104=797; 6=797; �175=797

times of row 1 to rows 2,3,4,5, respectively:
(Do not touch NxB column, except for its first component replace by Nx8 D �6).

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

797=151 �87=151 �113=151 1 �165=151 �6

1 �232=151 6=151 13=151 27=151 �241=55

104=151 65=151 1 �136=151 �85=151 �140=33

�6=151 1 34=151 �27=151 2=151 527=165

175=151 1 15=151 �43=151 �8=151 1;027=165

u 6 9 12 11 5 14 7 10

Nx � 241
55

�3 527
165

1;027

165
�7 � 140

33
7 �6

l �7 �3 �5 �4 �7 �8 �7 �6

Iteration 11:

1. ˛1 D .10 � .�6//=.165=151/ D 2;416=165;

˛2 D .6 � .�241=55//=.27=151/ D 2;845=49,
˛3 D .�8 � .�140=33//=.�85=151/ D 5;981=896;

˛4 D .12 � 527=165/=.2=151/ D 4;654=7,
˛5 D .�4 � 1;027=165/=.�8=151/ D 11;000=57; p D 3; ˛ D 5;981=896.
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3. Add ˛ times of x9 column to the NxB column:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

797=151 �87=151 �113=151 1 �165=151 22=17

1 �232=151 6=151 13=151 27=151 �271=85

104=151 65=151 1 �136=151 �85=151 �8

�6=151 1 34=151 �27=151 2=151 279=85

175=151 1 15=151 �43=151 �8=151 499=85

u 6 9 12 11 5 14 7 10

Nx � 271
85

�3 279
85

499
85

�7 �8 7 22
17

l �7 �3 �5 �4 �7 �8 �7 �6

4. J D ;. The optimal solution and optimal value:

Nx D .�271=85; �3; 279=85; 499=85; �7; �8; 7; 22=17/T;

Nf D .�7; 6; 3; �4/.�271=85; �3; 279=85; 499=85/T D �792=85:

19.3 Generalized Reduced Phase-I: Single-Artificial-Variable

The generalized Phase-I procedure described in Sect. 19.2 is based on D-reduced
simplex framework. In this section, another generalized Phase-I procedure, based
on the reduced simplex framework, is derived by generalizing the single-artificial-
variable method (Sect. 15.3).

Assume that Nx satisfies

Nxj D lj or uj ; j 2 N; (19.16)

but not

l � Nb � NN NxN � u:

For given NxB such that l � NxB � u, set the artificial column

NanC1 D Nb � NN NxN � NxB; NxnC1 D 1: (19.17)

Construct an auxiliary improved reduced tableau of form (16.6) (where three
additional rows are inserted to give u; Nx and l). It is clear this tableau is feasible,
from which the generalized reduced simplex method can get itself started. If the
optimal objective value vanishes, then a feasible improved reduced tableau of the
original problem is obtained, and hence it is ready to go to Phase-II.

The following algorithm results from slightly modifying Algorithm 19.1.2 to suit
the special requirement of the zero optimal value of the auxiliary program.
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Algorithm 19.3.1 (Tableau generalized reduced Phase-I: single-artificial-
variable). Initial: an improved reduced tableau of form (16.6). Nx; NanC1; NxnC1

satisfying (19.16) and (19.17). This algorithm find a feasible improved reduced
tableau for the bounded-variable problem (19.1).

1. Determine stepsize ˛ and row index p by (19.5) and (19.6).
2. If ˛ > NxnC1, set ˛ D NxnC1.
3. Set NxnC1 D NxnC1 � ˛.
4. If ˛ ¤ 0, add ˛ times of xnC1 column to the NxB .
5. Stop if NxnC1 D 0 (feasibility achieved).
6. Stop if

J D fj 2 � j Nap; nC1 Nap j > 0g [ fj 2 … j Nap; nC1 Nap j < 0g D ;;

(infeasible problem).
7. Determine column index q 2 arg maxj 2J j Napj j.
8. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations,
(without touching NxB column, only its pth component is replace by Nxq).

9. Go to step 1.

Example 19.3.1. Solve Example 19.2.1 by the two-phase generalized reduced
simplex algorithm, using Algorithm 19.3.1 in Phase-I.

Answer Set NxN D .�7.�/; 9.C/; 12.C/; �4.�//
T .N D f1; 2; 3; 4g/.

Given NxB D .0; 0; 0; 0/T.B D f5; 6; 7; 8g/. Na9 D .2; �15; 0; 7/T �
.91; �86; 38; 41/T D .�89; 71; �38; �34/T: Nx9 D 1.

Form the initial auxiliary tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�2 �3 7* �5 1 �89

3 �5 �2 �1 1 71

�2 �4 3 �6 1 �38

�5 6 �3 3 1 �34

�7 6 3 �4

u 6 9 12 11 5 14 7 10 1

Nx �7 9 12 �4 1

l �7 �3 �5 �4 �7 �8 �7 �6 0

Phase-I: Call Algorithm 19.3.1.

Iteration 1:

1. ˛ D minf.�7 � 0/=.�89/; .14 � 0/=.71/; .�7 � 0/=.�38/; .�6 � 0/=.�34/g;
D minf7=89; 14=71; 7=38; 3=17g D 7=89; p D 1.

2. 7=89 < 1.
3. Nx9 D 1 � 7=89 D 82=89 ¤ 0.



478 19 Generalizing Reduced Simplex Method

4. add 7=89 times of x9 column to the NxB column.
5. J D f1; 3; 4g ¤ ;.
6. maxfj � 2j; j7j; j � 5jg D 7; q D 3.
7. multiply row 1 by 1=7, then add 2; �3; 3; �3 times of row 1 to rows 2,3,4,5,

respectively:
(without touching NxB column, only its first component is replaced by Nx3D12).

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�2=7 �3=7 1 �5=7 1=7 �89=7 12

17=7 �41=7 �17=7 2=7 1 319=7 497=89

�8=7 �19=7 �27=7 �3=7 1 1=7 �266=89

�41=7* 33=7 6=7 3=7 1 �505=7 �238=89

�43=7 51=7 �13=7 �3=7

u 6 9 12 11 5 14 7 10 1

Nx �7 9 12 �4 �7 497=89 �266=89 �238=89 82=89

l �7 �3 �5 �4 �7 �8 �7 �6 0

Iteration 2:

1. ˛ D minf.�5�12/=.�89=7/; .14�497=89/=.319=7/; .7�.�266=89//=.1=7/,
.�6 � .�238=89//=.�505=7/g

D minf119=89; 306=1;657; 6;223=89; 107=2;321gD107=2;321; p D 4.
2. 107=2;321 < 82=89.
3. Nx9 D 82=89 � 107=2;321 D 442=505.
4. add 107=2;321 times of x9 column to the NxB column.
6. J D f1; 2g ¤ ;.
7. maxfj � 41=7j; j33=7jg D 41=7; q D 1.
8. multiply row 1 by �7=42, then add 2=7; �17=7; 8=7; 43=7 times of row 1 to rows

2,3,4,5, respectively:
(without touching NxB column, only its fourth component is replaced by

Nx1D � 7).

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�27=41 1 �31=41 5=41 �2=41 �377=41 5;764=505

�160=41* �85=41 19=41 1 17=41 642=41 3;881=505

�149=41 �165=41 �21=41 1 �8=41 583=41 �1;506=505

1 �33=41 �6=41 �3=41 �7=41 505=41 �7

96=41 �113=41 �36=41 �43=41

u 6 9 12 11 5 14 7 10 1

Nx �7 9 5;764
505

�4 �7 3;881
505

� 1;506
505

�6 442
505

l �7 �3 �5 �4 �7 �8 �7 �6 0
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Iteration 3:

1. ˛ D minf.�5 � 5;764=505/=.�377=41/; .14 � 3;881=505/=.642=41/,
.7 � .�1;506=505//=.583=41/; .6 � .�7//=.505=41/g

D minf1;171=656; 221=548; 245=349; 533=505g D 221=548; p D 2.
2. 221=548 < 442=505.
3. Nx9 D 442=505 � 221=548 D 101=214 ¤ 0.
4. add 221=548 times of x9 column to the NxB .
6. J D f2; 5; 8g ¤ ;.
7. maxfj � 160=41j; j19=41j; j17=41jg D 160=41; q D 2.
8. multiply row 2 by �41=160, then add 27=41; 149=41; 33=41; �96=41 times of

row 2 to rows 1,3,4,5, respectively:
(without touching NxB column, only its second component is replaced by

Nx2D9).

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

1 �13=32 7=160 �27=160 �19=160 �947=80 1;649=214

1 17=32 �19=160 �41=160 �17=160 �321=80 9

�67=32 �151=160 �149=160 1 �93=160 �29=80 3;834=1;393

1 9=32 �27=160 �33=160 �41=160 727=80 �3;169=1;559

�4 �3=5 3=5 �4=5

u 6 9 12 11 5 14 7 10 1

Nx � 3;169
1;559

9 1;649
214

�4 �7 14 3;834
1;393

�6 101
214

l �7 �3 �5 �4 �7 �8 �7 �6 0

Iteration 4:

1. ˛ D minf.�5 � 1;649=214/=.�947=80/; .�3 � 9/=.�321=80/,
.�7 � 3; 834=1; 393/=.�29=80/; .6 � .�3; 169=1; 559//=.727=80/g

D minf3;498=3;259; 320=107;3;605=134; 5;803=6;565gD5;803=6;565; pD2.
2. ˛ D 101=214.
3. Nx9 D 442=505 � 221=548 D 101=214 ¤ 0.
4. Add 101=214 times of x9 column to the NxB column.
5. Feasibility is achieved. Cover the artificial column by x9 column of the original

problem, giving the following feasible tableau.

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

1 �13=32 7=160 �27=160 �19=160 339=160

1 17=32 �19=160 �41=160 �17=160 1;137=160

�67=32 �151=160 �149=160 1 �93=160 4;845=1;877

1 9=32 �27=160 �33=160 �41=160 4;605=2;041

�4* �3=5 3=5 �4=5 �1

u 6 9 12 11 5 14 7 10

Nx 4;605

2;041

1;137

160
339
160

�4 �7 14
4;845

1;877
�6

l �7 �3 �5 �4 �7 �8 �7 �6
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Take p D 5. J D f4; 5; 6; 8g ¤ ;. maxfj�4j; j�3=5j; j3=5j; j�4=5jg D 4; q D
4. Multiply row 5 by �1=4, then add 13=32; �17=32; 67=32; �9=32 times of row 5
to rows 1,2,3,4, respectively (does not touch NxB column), leading to the following
feasible reduced tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

1 67=640 �147=640 �3=80 13=128 339=160

1 �127=640 �113=640 �17=80 �17=128 1;137=160

�403=640 �797=640* 1 �13=80 67=128 4;845=1;877

1 �27=128 �21=128 �5=16 �9=128 4;605=2;041

1 3=20 �3=20 1=5 1=4 �4

u 6 9 12 11 5 14 7 10

Nx 4;605

2;041

1;137

160
339
160

�4 �7 14
4;845

1;877
�6

l �7 �3 �5 �4 �7 �8 �7 �6

Phase-II: Call Algorithm 19.1.2.

Iteration 5:

1. ˛ D minf.12 � 339=160/=.13=128/; .�3 � 1;137=160/=.�17=128/,
.7 � 4;845=1;877/=.67=128/; .�7 � 4;605=2;041/=.�9=128/;

.11 � .�4//=.1=4/g
D minf6;324=65; 6;468=85; 3;191=378; 5;924=45; 60g D 3;191=378; p D 3.

3. Add 3;191=378 times of x9 column to the NxB column.
4. J D f6g ¤ ;.
5. maxfj � 797=640jg D 797=640; q D 6.
6. Multiply row 3 by �640=797, then add 147=640; 113=640; 21=128; 3=20 times

of row 3 to row 1,2,4,5, respectively:
(without touching NxB column, only its third component is replaced by Nx6D14).

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

1 176=797 �147=797 �6=797 4=797 997=335

1 �87=797 �113=797 �151=797* �165=797 401=67

403=797 1 �640=797 104=797 �335=797 14

1 �102=797 �105=797 �232=797 �111=797 1;252=753

1 180=797 �96=797 175=797 149=797 �2;857=1;512

u 6 9 12 11 5 14 7 10

Nx 1;252
753

401
67

997
335

� 2;857
1;512

�7 14 7 �6

l �7 �3 �5 �4 �7 �8 �7 �6
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Iteration 6:

1. ˛ D minf.12 � 997=335/=.4=797/; .�3 � 401=67/=.�165=797/,
.�8 � 14/=.�335=7;797/; .�7 � 1;252=753/=.�111=797/;

.11 � .�2;857=1;512//=.149=97/g
D minf219;357=7;122; 13;758=317; 7;537=144; 33;028=531; 11;514=167g
D 13;758=317; p D 2.

3. Add 13;758=317 times of x9 column to the NxB column.
4. J D f5; 8g ¤ ;.
5. maxfj � 87=797j; j � 151=797jg D 151=797; q D 8.
6. Multiply row 2 by �797=151, then add 6=797; �104=797; 232=797; �175=797

times of row 2 to rows 1,3,4,5, respectively:
(without touching NxB column, only its second component is replaced by

Nx8D � 6).

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�6=151 1 34=151 �27=151 2=151 527=165

�797=151 87=151 113=151 1 165=151 �6

104=151 65=151 1 �136=151 �85=151 �140=33

1 �232=151 6=151 13=151 27=151 �241=55

175=151 1 15=151 �43=151 �8=151 1;027=165

u 6 9 12 11 5 14 7 10

Nx � 241
55

�3 527
165

1;027
165

�7 � 140
33

7 �6

l �7 �3 �5 �4 �7 �8 �7 �6

Iteration 7:

1. ˛ D minf.12 � 527=165/=.2=151/; .10 � .�6//=.165=151/;

.�8 � .�140=33//=7.�85=151/, .6 � .�241=55//=.27=151/;

.�4 � 1;027=165/=.�8=151/g
D minf4;654=7; 2;416=165; 75;981=896; 2;845=49; 11;000=57g
D 5;981=896; p D 3.

3. Add 5;981=896 times of x9 column to the NxB column.

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�6=151 1 34=151 �27=151 2=151 279=85

�797=151 87=151 113=151 1 165=151 22=17

104=151 65=151 1 �136=151 �85=151 �8

1 �232=151 6=151 13=151 27=151 �271=85

175=151 1 15=151 �43=151 �8=151 499=85

u 6 9 12 11 5 14 7 10

Nx � 271
85

�3 279
85

499
85

�7 �8 7 22
17

l �7 �3 �5 �4 �7 �8 �7 �6



482 19 Generalizing Reduced Simplex Method

4. J D ;. The basic optimal solution and optimal value:

Nx D .�271=85; �3; 279=85; 499=85; �7; �8; 7; 22=17/T;

Nx9 D .�7; 6; 3; �4/.�271=85; �3; 279=85; 499=85/T D �792=85:

19.4 Generalized Dual Reduced Simplex Method

Generalized reduced Algorithm 19.1.2 pursues dual feasibility while maintaining
primal feasibility. Assume that an improved reduced simplex tableau is dual
feasible, i.e., for some row index p, it holds that

J D fj 2 � j Nap; nC1 Napj > 0g [ fj 2 … j Nap; nC1 Nap j < 0g D ; (19.18)

and Nxjp D ljp if Nap; nC1 < 0 whereas Nxjp D ujp if Nap; nC1 > 0. The
following algorithm is its dual version, derived via pursuing primal feasibility while
maintaining dual feasibility.

Algorithm 19.4.1 (Generalized dual reduced simplex algorithm: tableau form).
Initial: dual feasible improved reduced tableau of form (16.6). This algorithm solves
the bounded-variable problem (19.1).

1. Select row index r 2 arg maxfj�i j j i D 1; � � � ; m C 1; i ¤ pg; where �i is
defined by (25.48).

2. Stop if �r D 0 (optimality achieved).
3. Set p D r , and go to step 7 if

J D fj 2 � j sign.�r / Nar j < 0g [ fj 2 … j sign.�r / Nar j > 0g D ;:

4. Determine index q such that ˇ D j Nap q= Nar qj D minj 2J j Nap j = Nar j j.
5. Convert Nar q to 1, and eliminate the other nonzeros of the column by elementary

transformations (without touching the NxB column except for its r th component
replaced by the value of Nxq).

6. Update NxB D NxB � �r Najr ; Nxjr D Nxjr C �r .
7. Compute ˛ D ��p= Nap; nC1.
8. Stop if ˛ < 0 (dual unbounded or infeasible problem).
9. If ˛ ¤ 0, add �˛ times of xnC1 column to NxB column, and set NxnC1 D NxnC1C˛.

10. Go to step 1.

Practically, the bound flipping tactic should be incorporated into Algo-
rithm 19.4.1, with its revised version formed therewith.

Example 19.4.1. Solve the following problem by Algorithm 16.3.1:
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min x8 D x1 � 2x2 C 5x3 C x4;

s:t: 3x1 � 2x2 C x3 � 4x4 C x5 D �3;

6x1 C 3x2 � 3x3 C 6x4 C x6 D 4;

�5x1 � 4x2 � 6x3 C 2x4 C x7 D �7;

0 � x1 � 10; 1 � x2 � 10; �20 � x3 � 5;

�4 � x4 � 7; 0 � x5; x6; x7 � 15:

Answer B D f5; 6; 7g; N D f1; 2; 3; 4g. Set NxN D .0.�/; 10.C/; �20.�/; �4.�//
T,

then

NxB D b � NxN D
0
@�3

4

�7

1
A �

0
@ 3 �2 1 �4

6 3 �3 6

�5 �4 �6 2

1
A
0
BB@

0

10

�20

�4

1
CCA D

0
@ 21

�62

�79

1
A ;

Nx8 D .1; �2; 5; 1/.0; 10; �20; �4/T D �124.
Initial tableau:

x1 x2 x3 x4 x5 x6 x7 x8 NxB

3 �2 1 �4 1 21

6 3 �3 6 1 �62

�5 �4 �6 2 1 �79

1* �2 5 1 �1 124

u 10 10 5 7 15 15 15 C1
Nx 0 10 �20 �4 21 �62 �79 �124

l 0 1 �20 �4 0 0 0 �1

Iteration 1: Turn the preceding to an improved reduced tableau by taking Na4;1 at the
pivot.

Add �3; �6; 5 times of row 4 to rows 1,2,3, respectively (without touching the
NxB column but its fourth component is replaced by the value, 0, of Nx1).

x1 x2 x3 x4 x5 x6 x7 x8 NxB

4 �14 �7 1 3 21

15 �33 0 1 6 �62

�14 19 7 1 �5 �79

1 �2 5 1 �1 0

u 10 10 5 7 15 15 15 C1
Nx 0 10 �20 �4 21 �62 �79 �124

l 0 1 �20 �4 0 0 0 �1

which is a dual feasible reduced tableau with p D 4; p D 4.

Iteration 2:

1. �1 D 15 � 21 D �6; �2 D 0 � .�62/ D 62; �3 D 0 � .�79/ D 79.
maxfj � 6j; j62j; j79jg D 79; r D 3.
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3. J D ;; p D 3.
7. ˛ D �79=.�5/ > 0.
9. NxB D .21; �62; �79; 0/T �.79=5/.3; 6; �5; �1/T D.�132=5; �784=5; 0; 79=5/T

Nx8 D �124 C 79=5 D �541=5.

x1 x2 x3 x4 x5 x6 x7 x8 NxB

4 �14 �7 1 3 �132=5

15 �33* 0 1 6 �784=5

�14 19 7 1 �5 0

1 �2 5 1 �1 79=5

u 10 10 5 7 15 15 15 C1
Nx 79=5 10 �20 �4 �132=5 �784=5 0 �541=5

l 0 1 �20 �4 0 0 0 �1

Iteration 3:

1. �1 D 0 � .�132=5/ D 132=5; �2 D 0 � .�784=5/ D 784=5;

�4 D 10 � 79=5 D �29=5.
maxfj132=5j; j784=5j; j � 29=5jg D 784=5; r D 2.

3. J D f2; 3g.
4. minfj.�14/=15j; j19=.�33/jg D 19=33; q D 3.
5. Multiply row 2 by �1=33, and add 14; �19; �5 times of row 2 to rows 1,3,4,

respectively
(without touching the NxB column but its second component is replaced by the
value, �20, of Nx3).

6: NxB D .�132=5; �20; 0; 79=5/T � .784=5/.�14=33; �1=33; 19=33; 5=33/T

D .1;324=33; �2;516=165; �14;896=165; �1;313=165/T ; Nx6 D 0:

7: ˛ D �.14;896=165/=.�17=11/ D 5;199=89 > 0/:

9: NxB D .1;324=33; �2;516=165; �14;896=165; �1;313=165/T �.5;199=89/.5=11;

� 2=11; � 17=11; � 1=11/T D .502=37; �1;828=395;0; �1;771=669/T;

Nx8 D �541=5 C 5;199=89 D �846=17:

x1 x2 x3 x4 x5 x6 x7 x8 NxB

�26=11 �7 1 �14=33 5=11 502
37

�5=11 1 0 �1=33 �2=11 � 1;828

395

�59=11 7 19=33 1 �17=11 0

1 3=11* 1 5=33 �1=11 � 1;771

669

u 10 10 5 7 15 15 15 C1
Nx � 1;771

669
10 � 1;828

395
�4 502

37
0 0 � 846

17

l 0 1 �20 �4 0 0 0 �1
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Iteration 4:

1. �1; �2 D 0; �4 D 0 � .�1;771=669/ D 1;771=669,
maxfj � 1;771=669jg; r D 4.

3. J D f2g.
4. minfj.3=11/=.�59=11/jg; q D 2.
5. Multiply row 4 by 11=3, and add 26=11; 5=11; 59=11 times of row 4 to rows

1,2,3, respectively
(without touching the NxB column but its fourth component is replaced by the
value, 10, of Nx2).

6: NxB D .502=37; �1;828=395; 0; 10/T � .1;771=669/.26=3; 5=3; 59=3; 11=3/T

D .�8;822=941; �3;851=426; �15;046=289; 589=2;007/T ; Nx1 D 0:

7: ˛ D �.38;992=749/=.�10=3/ D 19;319=1;237 > 0/:

9: NxB D .�8;822=941; �3;851=426; �15;046=289; 589=2;007/T �.19;319=1;237/

.�1=3; �1=3; �10=3; �1=3/TD.�15;504=3;721; �2;166=565; 0; 11=2/T;

Nx8 D �846=17 C 19;319=1;237 D �205=6:

x1 x2 x3 x4 x5 x6 x7 x8 NxB

26=3 5=3 1 8=9 �1=3 � 97;125

25;337

5=3 1 5=3 2=9 �1=3 � 2;166

565

59=3 80=3 32=9 1 �10=3 0

11=3 1 11=3 5=9 �1=3 11
2

u 10 10 5 7 15 15 15 C1
Nx 0 11

2
� 2;166

565
�4 � 97;125

25;337
0 0 � 205

6

l 0 1 �20 �4 0 0 0 �1

Iteration 5:

1: �1 D 97;125=25;337; �2; �4 D 0: maxfj97;125=25;337jg; r D 1:

3: J D ;; p D 1:

7: ˛ D �.97;125=25;337/=.�1=3/ D 325;662=26;053 > 0:

9: NxB D .�15;504=3;721; �2;166=565; 0; 11=2/T�.325;662=26;053/

.�1=3; �1=3; �10=3; �1=3/T D .0; 1=3; 125=3; 29=3/T ;

Nx8 D �205=6 C 325;662=26;053 D �65=3:

x1 x2 x3 x4 x5 x6 x7 x8 NxB

26=3 5=3 1 8=9 �1=3 0

5=3 1 5=3 2=9 �1=3 1=3

59=3 80=3* 32=9 1 �10=3 125=3

11=3 1 11=3 5=9 �1=3 29=3

u 10 10 5 7 15 15 15 C1
Nx 0 29=3 1=3 �4 0 0 125=3 �65=3

l 0 1 �20 �4 0 0 0 �1
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Iteration 6:

1. �2; �2; �4 D 0; �3 D 15 � 125=3 D �80=3; r D 3.
3. J f1; 4; 6g ¤ ;.
4. minfj.26=3/=.59=3/j; j.5=3/=.80=3/j; j.8=9/=.32=9/jg D .5=3/=.80=3/;

q D 4.
5. Multiply row 3 by 3=80, and add �5=3; �5=3; �11=3 times of row 3 to rows

1,2,4, respectively (without touching the NxB column but its third component is
replaced by the value, �4, of Nx4).

6: NxB D .0; 1=3; �4; 29=3/T � .�80=3/.�1=16; �1=16; 3=80; �11=80/T

D .�5=3; �4=3; �3; 6/T ; Nx7 D 125=3 � 80=3 D 15:

7: ˛ D �.5=3/=.�1=8/ D 40=3 > 0/:

9: NxB D .�5=3; �4=3; �3; 6/T � .40=3/.�1=8; �1=8; �1=8; 1=8/T D .0; 1=3;

� 4=3; 13=3/T ; Nx8 D �65=3 C 40=3 D �25=3:

x1 x2 x3 x4 x5 x6 x7 x8 NxB

119=16 1 2=3 �1=16 �1=8 0

7=16 1 0 �1=16 �1=8 1=3

59=80 1 2=15 3=80 �1=8 �4=3

77=80 1 1=15 �11=80 1=8 13=3

u 10 10 5 7 15 15 15 C1
Nx 0 13=3 1=3 �4=3 0 0 15 �25=3

l 0 1 �20 �4 0 0 0 �1

Iteration 7:

1. �2; �3; �4 D 0.
2. Terminated with optimal solution and objective value:

Nx D .0; 13=3; 1=3; �4=3; 0; 0; 15/T; x8 D �25=3:

19.5 Generalized Dual Reduced Phase-I

When components of l and u are all finite, it is, in principle, possible to set values
of nonbasic variables such that the tableau is dual feasible. Numerically, however,
too large bound value is unacceptable, let alone magnitude of some components
of bounds may be infinite. Therefore, it is still required to provide an initial dual
feasible tableau or solution for the generalized dual reduced method.

A choice is to directly modify the reduced simplex Algorithm 19.1.2, ignoring
the requirement for the initial reduced tableau being feasible, as follows.

Algorithm 19.5.1 (Generalized dual reduced Phase-I: tableau form). Initial:
improved reduced tableau of form (16.6) and solution Nx. This algorithm finds a
dual feasible tableau to the bounded-variable problem (19.1).
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1. Determine stepsize ˛ and row index p by (19.5) and (19.6).
2. If ˛ ¤ 0, add ˛ times of xnC1 column to the NxB column.
3. Stop if J D fj 2 � j Nap; nC1 Napj > 0g [ fj 2 … j Nap; nC1 Nap j < 0g D ; (dual

feasibility achieved).
4. Determine column index q 2 arg maxj 2J j Nap j j.
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
(without touching NxB column, only its pth component is replace by Nxq).

6. Go to step 1.

Note Termination at step 3 gives a generalized dual feasible improved reduced
tableau. The tableau can be easily converted to a conventional dual feasible tableau,
used as a starting point for Algorithm 7.6.1: let xjp column leave and xnC1 column
enter the basis, and change the sign of entries of the pth row to be as the objective
function row; or, otherwise, is converted to a dual feasible D-reduced tableau used
for getting Algorithm 19.6.1 started.

Example 19.5.1. Find a dual feasible solution of the following problem by Algo-
rithm 19.5.1:

min x8 D 4x1 � 5x2 C 2x3 C x4;

s:t: 3x1 � 4x2 C x3 � 5x4 C x5 D �3;

�2x1 � 6x2 � 3x3 C 6x4 C x6 D 26;

�6x1 C 2x2 � 5x3 C 3x4 C x7 D 21;

�1 � x1 � 9; �7 � x2 � C1; �1 � x3 � 12;

0 � x4 � 8; 0 � x5 � 10; �5 � x6 � 6;

0 � x7 � C1:

Answer Set NxN D .9.C/; �7.�/; �1.�/; 0.�//
T .N D f1; 2; 3; 4g/. NxB D b �

N NxN D .�3; 26; 21/T � .54; 27; �63; 69/T D .�57; �1; 84/T B D f5; 6; 7g.
Initial: improved reduced tableau (where the RHS column is listed to be easier to

go to Phase-II):

x1 x2 x3 x4 x5 x6 x7 x8 RHS NxB

3 �4 1 �5 1 �3 �57

�2 �6 �3 6 1 26 �1

�6 2 �5 3 1 21 84

4 �5* 2 1 �1

u 9 1 12 8 10 6 1
Nx 9 �7 �1 0 �57 �1 84

l �1 �7 �1 0 0 �5 0

Iteration 1: Turn the preceding to a reduced tableau.
Take p D 4; J � f1; 2g ¤ ;. maxfj4j; j � 5jg D 5; q D 2.
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Multiply row 4 by �1=5, then add 4; 6; �2 times of row 4 to rows 1,2,3,
respectively

(without touching NxB column, only its fourth component is replaced by Nx2 D 7).

x1 x2 x3 x4 x5 x6 x7 x8 RHS NxB

�1=5 �3=5 �29=5 1 4=5 �3 �57

�34=5* �27=5 24=5 1 6=5 26 �1

�22=5 �21=5 17=5 1 �2=5 21 84

�4=5 1 �2=5 �1=5 1=5 �7

u 9 1 12 8 10 6 1
Nx 9 �7 �1 0 �57 �1 84

l �1 �7 �1 0 0 �5 0

Call Algorithm 19.5.1.

Iteration 2:

1. ˛ D minf.10 � .�57//=.4=5/; .6 � .�1//=.6=5/;

.0 � 84/=.�2=5/; .1 � .�7//=.1=5/g D 35=6; p D 2.
2. Add 35=6 times of x8 column to the NxB column.
3. J D f1; 4g ¤ ;.
4. maxfj � 34=5j; j24=5jg D 34=5; q D 1.
5. Multiply row 2 by �5=34, then add 1=5; 22=5; 4=5 times of row 2 to rows 1,3,4,

respectively
(Do not touch NxB column, except the second component of which is replace by
Nx1 D 9):

x1 x2 x3 x4 x5 x6 x7 x8 RHS NxB

�15=34 �101=17 1 �1=34 13=17 �64=17 �157=3

1 27=34 �12=17 �5=34 �3=17 �65=17 9

�12=17* 5=17 �11=17 1 �20=17 71=17 245=3

1 4=17 �13=17 �2=17 1=17 �52=17 �35=6

u 9 1 12 8 10 6 1
Nx 9 �35=6 �1 0 �157=3 6 245=3

l �1 �7 �1 0 0 �5 0

Iteration 3.

1. ˛ D minf.10 � .�157=3//=.13=17/; .�1 � 9/=.�3=17/,
.0 � 245=3/=.�20=17/; .1 � .�35=6//=.1=17/g D 833=12; p D 3.

2. Add 833=12 times of x8 column to the NxB column.
3. J D f3g ¤ ;.
4. maxfj � 12=17jg; q D 3.
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5. Multiply row 3 by �17=12, then add 15=34; �27=34; �4=17 times of row 3 to
rows 1,2,4, respectively:
(without touching NxB column, only its third component is replaced by Nx3D � 1).

x1 x2 x3 x4 x5 x6 x7 x8 RHS NxB

�49=8 1 3=8 �5=8 3=2* �51=8 3=4

1 �3=8 �7=8 9=8 �3=2 7=8 �13=4

1 �5=12 11=12 �17=12 5=3 �71=12 �1

1 �2=3 �1=3 1=3 �1=3 �5=3 �7=4

u 9 1 12 8 10 6 1
Nx �13=4 �7=4 �1 0 3=4 6 0

l �1 �7 �1 0 0 �5 0

Iteration 4:

1. ˛ D minf.10 � 3=4/=.3=2/; .�1 � .�13=4//=.�3=2/, .12 � .�1//=.5=3/;

.�7 � .�7=4//=.�1=3/g D 37=6; p D 1.
2. Add 37=6 times of x8 column to the NxB column.
3. J D ;.

Dual feasibility is achieved. Convert the end tableau to a conventional dual
feasible one: delete NxB column, and taking the entry at the first row and f column
as a pivot to carry out elementary transformations (such that the pivot becomes
�1). See the resulting tableau below (whose fourth row is now the objective row,
which was the previous first row).

x1 x2 x3 x4 x5 x6 x7 x8 RHS NxB

1 �13=2 1 �1=2 1=2 �11=2 �25=2

1 115=18 �10=9 1=2 �13=18 7=6 167=18

1 �73=36 2=9 �1=4 7=36 �37=12 �137=36

49=12 �2=3 �1=4 5=12 �1 17=4 10

u 9 1 12 8 10 6 1
Nx �25=2 �137=36 167=18 0 10 6 0

l �1 �7 �1 0 0 �5 0

�1; �2; �3 D 0. The basic optimal solution and optimal value:

Nx D .�25=2; �137=36; 167=18; 0; 10; 6; 0/T;

Nx8 D 4.�25=2/ � 5.�137=36/ C 2.167=18/ D �149=12:

The following algorithm is a variant of Algorithm 19.5.1, which matches
Algorithm 7.5.2.



490 19 Generalizing Reduced Simplex Method

Algorithm 19.5.2 (Tableau generalized dual reduced Phase-I algorithm: a vari-
ant of the most-obtuse-angle rule). Given 0 < � � 1. Initial: improved reduced
tableau of form (16.6) and solution Nx. This algorithm finds a dual feasible tableau
to the bounded-variable problem (19.1).

The same as Algorithm 19.5.1, except its step 1 replaced by

1. Determine stepsize ˛ and row index p such that

˛ D ˛p D minf˛i j j Nai; nC1j � ��; i D 1; � � � ; m C 1g;

where ˛i is defined by (19.6).

19.6 Generalized Dual D-Reduced Simplex Method

Consider the D-reduced bounded-variable problem below:

min f D cTx;

s:t: Ax D em; l � x � u:

In this section, the dual D-reduced simplex method (Sect. 17.2) is generalized to
solve this problem. A tableau version will be derived first, and then its revised
version will be formulated.

The key point is to update the objective row based on the datum row as far as
possible.

To trace solution Nx, three additional rows are listed at the bottom of
tableau (17.3), i.e.,

xT
B xT

N f RHS
I NNR

NwT
N 1

NzT
N �1 �f

u lT
B uT

N

Nx NxT
B NxT

N

l lT
B lT

N

where the associated sets B; N; R are defined by

B D fj1; � � � ; jm�1g; N D AnB;

R D f1; � � � ; mgnfrg D fi1; � � � ; im�1g; (19.19)

r 62 R; q column is the datum column, satisfying

N!q ¤ 0; Nzq D 0: (19.20)
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Let Nx be the basic solution, defined by (17.7), such that

Nxj D lj or uj ; j 2 N; j ¤ q (19.21)

NxB C NNR NxN D 0;
X
j 2N

N!j Nxj D 1: (19.22)

If xq enters the basis, Nx is clearly just the basic solution, associated with the new
basis in the conventional sense, with objective value

Nf D NzT
N NxN � NznC1: (19.23)

Define column index set

� D f j 2 N; j ¤ q j Nxj D lj g; … D f j 2 N; j ¤ q j Nxj D uj g: (19.24)

It is clear that � [ … D N nfqg; � \ … D ;.
The D-reduced tableau, satisfying the following conditions:

Nz� � 0; Nz… � 0; (19.25)

is called dual feasible D-reduced tableau. If components of l and u are all finite,
it is always possible to set the nonbasic variables to relevant bounds such that any
D-reduced tableau is dual feasible.

Proposition 19.6.1. The objective value Nf of the dual feasible D-reduced tableau
is a lower-bound of all feasible values.

Proof. Let x0 be an arbitrary feasible solution. Then, it is known from (19.24) that

Nx� D l� � x0
� ; x0

… � u… D Nx…;

which together with (19.25) gives

NzT
� Nx� � NzT

�x0
� ; NzT

…x0
… � NzT

… Nx…; NznC1 C NzT
N x0

N � NznC1 C NzT
N NxN D Nf : (19.26)

This indicates that the Nf is a lower-bound on all feasible values, if there exits a
feasible solution. ut

Provided that Nx is dual feasible, if, in addition, it satisfies

lq � Nxq � uq; lB � NxB � uB; (19.27)

then it is clearly a basic optimal solution. In the other case, a sequence of dual
feasible tableaus can be generated such that the related objective value increases
monotonically, until reaching a basic optimal solution or detecting primal infeasi-
bility.
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Introduce the “boundary violation amounts” as follows:

�j D
8<
:

lj � Nxj ; if Nxj < lj ;

uj � Nxj ; if Nxj > uj ;

0; if lj � Nxj � uj ;

j 2 f1; � � � ; ng: (19.28)

There will be the following two cases to be dealt with:

(1) Nxq violates boundary, i.e., �q ¤ 0.

Define set

N1 D fj 2 � j sign.�q N!q/ N!j < 0g [ fj 2 … j sign.�q N!q/ N!j > 0g; (19.29)

where the sign function sign.t/ is defined by (7.14).

Lemma 19.6.1. Assume �q ¤ 0. If N1 is empty, there no feasible solution exists.

Proof. In view of (19.24), the second expression of (19.22) can be written

N!q Nxq D 1 �
0
@X

j 2�

N!j lj C
X
j 2…

N!j uj

1
A : (19.30)

Assume that x0 is a feasible solution, hence it holds that

lj � x0
j � uj (19.31)

and that

N!qx0
q D 1 �

0
@X

j 2�

N!j x0
j C

X
j 2…

N!j x0
j

1
A : (19.32)

Consider the case of �q N!q > 0. In this case, N1 D ; implies

N!j � 0; 8 j 2 �; N!j � 0; 8 j 2 …;

combining which and (19.31) leads to

X
j 2�

N!j x0
j C

X
j 2…

N!j x0
j �

X
j 2�

N!j lj C
X
j 2…

N!j uj :
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Then from the preceding, (19.30) and (19.32), it follows that

N!qx0
q D 1 �

0
@X

j 2�

N!j x0
j C

X
j 2…

N!j x0
j

1
A

� 1 �
0
@X

j 2�

N!j lj C
X
j 2…

N!j uj

1
A

D N!q Nxq:

If N!q > 0; �q > 0, the preceding gives x0
q � Nxq < lq , as contradicts that x0 is a

feasible solution. If N!q < 0; �q < 0, on the other hand, it gives x0
q � Nxq > uq , also

contradicting that x0 is a feasible solution.
In the case of �q N!q < 0, a contradiction can be derived similarly. Therefore,

there no feasible solution exists. ut
Now assume that N1 ¤ ;. Determine ˇ1 and column index q0 such that

ˇ1 D jNzq0= N!0
qj D min

j 2N1

jNzj = N!j j; �1 D sign.�q N!q/ˇ1: (19.33)

If �1 ¤ 0, the associated D-reduced tableau is said to be dual nondegenerate.
Add �1 times of the datum row to the bottom row. It might be well to denote the

resulting tableau again by (19.6). Then it is clear that

Nzq D �1 N!q; (19.34)

and that N!q0 ¤ 0; Nzq0 D 0, where q0 column is taken as the datum column.
Let us determine the corresponding solution Ox and the associated objective value

Of . Since . Nx; Nf / and . Ox; Of / both are solutions to the system, presented by the new
tableau, it holds that

NxB D � NNR NxN ; OxB D � NNR OxN ; (19.35)X
j 2N

N!j Nxj D 1;
X
j 2N

N!j Oxj D 1; (19.36)

Nf D NzT
N NxN � NznC1; Of D NzT

N OxN � NznC1: (19.37)

Denote by Naj .R/ the j th column of NNR for any j 2 N .
Set Oxq to the violated bound, i.e.,

Oxq D Nxq C �q: (19.38)

Besides Oxq and Oxq0 , let the other nonbasic components of Ox be equal to those of Nx
correspondingly, i.e.,

Oxj D Nxj ; j 2 N; j ¤ q0; j ¤ q: (19.39)
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From (19.39) and subtracting the two equalities of (19.36), it follows that

N!q. Oxq � Nxq/ C N!q0. Oxq0 � Nxq0/ D 0:

combining which and (19.38) gives

Oxq0 D Nxq0 � . N!q= N!q0/�q: (19.40)

From subtracting the two equalities of (19.35) together with (19.38) and (19.39), the
updating formula follows, i.e.,

OxB D NxB � �q Naq.R/ � . Oxq0 � Nxq0/ Naq0.R/: (19.41)

It is easily verified that such a resulting Ox is a dual feasible solution, associated with
the new tableau.

Noting Nzq0 D 0, on the other hand, from (19.39), (19.38) and (19.33) together
with subtracting the two equalities of (19.37), it follows that

Of D Nf C �q Nzq D Nf C j�q N!q jˇ1 � Nf : (19.42)

Therefore, the objective value does not decreases, and strictly increases when the
D-reduced tableau is dual nondegenerate, i.e., ˇ1 > 0.

Set q D q0, and repeat the preceding steps. Under dual nondegeneracy
assumption, the procedure terminates in finitely many iterations, finally satisfying
lq � Nxq � uq , or detecting nonexistence of a feasible solution. Note that such
an iteration involves no basis change, but only updates the objective row while
maintaining the other part unchanged.

(2) Nxq is within the boundary, i.e., �q D 0.
Determine row index

s 2 arg max fj�jt j t D i; � � � ; m � 1g: (19.43)

If �js D 0, (19.27) clearly holds, and hence optimality is achieved.
Now assume that �js ¤ 0. Note that �js > 0 implies that Nxjs violates the lower-

bound, and �js < 0 implies that it violates the upper-bound. Only the following two
cases arise:

(i) Nais ; q ¤ 0.

Taking Nais ; q as pivot, convert it to 1, and eliminate the other nonzeros in the column
by elementary transformations. Thus, js column leaves from and q column enters
to the basis. Note that the bottom row remains unchanged since Nzq D 0. The bottom
component of jsth column is zero. Since the old N!q is nonzero, the new N!js must
be nonzero, therefore js th column becomes the new datum column, so set q D js .
As the solution Nx is unchanged, it is clear the new tableau maintains dual feasibility,
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though now the component, associated with the new datum column, violates the
boundary. Consequently, it becomes case (1) via such an iteration.

(ii) Nais ; q D 0.

Using set

N2 D fj 2 �k sign.�js / Nais; j < 0g [ fj 2 … j sign.�js / Nais ; j > 0g; (19.44)

determine column index q0 and ˇ2 such that

ˇ2 D jNzq0= Nais; q0 j D min
j 2N2

jNzj = Nais; j j; �2 D sign.�js /ˇ2: (19.45)

Then, convert Nais ; q0 to 1, and eliminate the other nonzeros in the column by
elementary transformations. The basis and nonbasis, associated with the resulting
tableau, are

B D fj1; � � � ; js�1; q0; jsC1; � � � ; jm�1g; N D N nq0 [ fjsg: (19.46)

Note that in this case, the according elementary transformations do not change the
qth column (which remains the datum column).

Similar to case (1), the Ox, associated with the resulting tableau, can be obtained
from (19.35) and (19.37) as follow. Set the nonbasic component Oxjs to the violated
bound, i.e.,

Oxjs D Nxjs C �js : (19.47)

Let all nonbasic components of Ox be the same as those of Nx, except for the q and
js-indexed ones. Thus, from (19.36) it follows that

N!q. Oxq � Nxq/ C N!js . Oxjs � Nxjs / D 0:

So the following updating formula follows

Oxq D Nxq � . N!js = N!q/�js : (19.48)

Then, from (19.35) it is obtained that

OxB D NxB � �js . Najs .R/ � . Oxq � Nxq/ Naq.R//: (19.49)

It is clear that the new tableau is dual feasible for Ox.
From that Nzjs D �2 holds for the new tableau, (19.37) and (19.45), it follows that

Of D Nf C �js Nzjs D Nf C �js �2 D Nf C j�js jˇ2 � Nf ; (19.50)
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which implies that the objective value does not decrease, and strictly increases when
the D-reduced tableau is dual nondegenerate.

The overall steps can be summarized to the following algorithm, where the
objective value is not updated by (19.50) iteration by iteration, but is computed
at the end of the algorithm instead.

Algorithm 19.6.1 (Generalized dual D-reduced simplex algorithm: tableau
form). Initial: dual feasible D-reduced tableau of form (19.6), qth column is the
datum column, associated with solution Nx. This algorithm solves the D-reduced
bounded-variable problem (19.6).

1. Go to step 7 if �q defined by (19.28) is 0.
2. Stop if N1 defined by (19.29) is empty.
3. Determine ˇ1 and column index q0 by (19.33).
4. If ˇ1 ¤ 0, add ˇ1 times of the datum row to the bottom row.
5. Update Nxq; Nxq0 and NxB by (19.38), (19.40) and (19.41).
6. Set q D q0, and go to step 1.
7. Determine s by (19.43).
8. If �js D 0, compute Nf D cT Nx, and stop.
9. Go to step 12 if Nais ; q D 0.

10. Convert Nais ; q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

11. Set q D js , and go to step 2.
12. Determine column index q0 by (19.45).
13. Convert Nais ; q0 to 1, and eliminate the other nonzeros in the column by

elementary transformations.
14. Update Nxjs ; Nxq and NxB by (19.47)–(19.49).
15. Go to step 1.

Theorem 19.6.1. Algorithm 19.6.1 creates a sequence of basic feasible solutions.
Under the dual nondegeneracy assumption, it terminates either at

(i) Step 2, detecting infeasibility of the problem; or at
(ii) Step 8, giving a basic optimal solution.

Proof. The validity comes from Lemma 19.6.1 and the analysis preceding Algo-
rithm 19.6.1.

Example 19.6.1. Solve the following problem by Algorithm 19.6.1:

min f D 2x1 � 4x2 � 7x3 C 5x4;

s:t: �3x1 C x2 C 3x3 C 5x4 C x5 D 5;

�6x1 C 2x2 � 4x3 � 4x4 C x6 D �20;

4x1 � x2 � 2x3 C 3x4 C x7 D �8;

�10 � x1 � 10; �8 � x2 � 20; 1 � x3 � 15;

�10 � x4 � 17; 0 � x5 � 15; �1 � x6 � 12;

�8 � x7 � 15:
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Answer Initial tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

�3 1 3 5 1 5

�6 2 �4 �4 1 �20*

4 �1 �2 3 1 �8

2 �4 �7 5

Iteration 1: Convert the preceding to a D-reduced tableau.
Take NxN D .�10.�/; 20.C/; 15.C/; �10.�//

T .N D f1; 2; 3; 4g/:
NxB D b � N NxN D .�40; �100; 112/T .B D f5; 6; 7g/:
�5 D 0 � .�40/ D 40; �6 D .�1/ � .�100/ D 99;

�7 D 15 � 112 D �97: maxfj � 40j; j � 99j; j97jg D 99; p D 2:

Enter the right-hand side to the basis: multiply row 2 by 1=20, then add 5; �8 times
of row 2 to rows 1,3, respectively:

x1 x2 x3 x4 x5 x6 x7 RHS

�9=2 3=2 2 4 1 1=4

3=10 �1=10 1=5 1=5 �1=20 1

32=5 �9=5 �2=5 23=5 �2=5 1

2 �4 �7 5

u 10 20 15 17 15 12 15

Nx �10 20 15 �10 �40 �100 112

l �10 �8 1 �10 0 �1 �8

The second row is the datum row, and x6 column is the datum column. NxB D
.�40; 112/T.B D f5; 7g/.

NxN D .�10.�/; 20.C/; 15.C/; �10.�/; �100/T .N D f1; 2; 3; 4; 6g/. Nf D �255

The resulting tableau is then dual feasible.
Call Algorithm 19.6.1: r D 2; q D 6.

Iteration 2:

1. �6 D �1 � .�100/ D 99 > 0.
2. sign.�6 Na2;6/ D �1, N1 D f1; 2; 4g ¤ ;.
3. ˇ1 D minfj2=.3=10/j; j � 4=.�1=10/j; j5=.1=5/jg D 20=3,

q0 D 1; �1 D �1.20=3/ D �20=3.
4. Add �20=3 times of row 2 to row 4.
5. Nx6 D �100 C 99 D �1. Nx1 D �10 � ..�1=20/=.3=10//99 D 13=2.

NxB D .�40; 112/T�99.1=4; �2=5/T � .13=2�.�10//.�9=2; 32=5/T

D .19=2; 46/T; B D f5; 7g.
6. q D 1.
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x1 x2 x3 x4 x5 x6 x7 RHS

�9=2 3=2 2 4 1 1=4

3=10 �1=10 1=5 1=5 �1=20 1

32=5* �9=5 �2=5 23=5 �2=5 1

�10=3 �25=3 11=3 1=3 �20=3

u 10 20 15 17 15 12 15

Nx 13=2 20 15 �10 19=2 �1 46

l �10 �8 1 �10 0 �1 �8

Iteration 3:

1: �1 D 0:

7: �5 D 0; �7 D 15 � .46/ D �31: i3 D 3; j3 D 7:

9: Na3;1 D 32=5 ¤ 0:

10. multiply row 3 by 5=32, then add 9=2; �3=10 times of row 3 to rows 1,2,
respectively.

11. q D 7.

x1 x2 x3 x4 x5 x6 x7 RHS

15=64 55=32 463=64 1 �1=32 45=64

�1=64 7=32 �1=64 �1=32 �3=64 1

1 �9=32 �1=16 23=32 �1=16 5=32

�10=3 �25=3 11=3 1=3 �20=3

u 10 20 15 17 15 12 15

Nx 13=2 20 15 �10 19=2 �1 46

l �10 �8 1 �10 0 �1 �8

Iteration 4:

1. �7 D 15 � 46 D �30 < 0.
2. sign.�7 Na2;7/ D 1; N1 D f3; 4; 6g ¤ ;.
3. ˇ1 D minfj.�25=3/=.7=32/j; j.11=3/=.�1=64/j; j.1=3/=.�1=32/jg D 32=3,

q0 D 6; �1 D �.�1/.32=2/ D 32=3.
4. Add 32=3 times of row 2 to row 4.
5. Nx7 D 46 C .�31/ D 15; Nx6 D �1 � ..�3=64/=.�1=32//.�31/ D 91=2;

NxB D .19=2; 13=2/T � .�31/.45=64; 5=32/T � .91=2 � .�1//.�1=32; �1=16/T

D .131=4; 57=4/T; B D f5; 1g.
6. q D 6.
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x1 x2 x3 x4 x5 x6 x7 RHS

15=64 55=32 463=64 1 �1=32 45=64

�1=64 7=32 �1=64 �1=32 �3=64 1

1 �9=32 �1=16 23=32 �1=16 5=32

�7=2 �6 7=2 �1=2 4

u 10 20 15 17 15 12 15

Nx 57=4 20 15 �10 131=4 91=2 15

l �10 �8 1 �10 0 �1 �8

Iteration 5:

1. �6 D 12 � 91=2 D �67=2 < 0.
2. sign.�6 Na2;6/ D 1; N1 D f3; 4g ¤ ;.
3. ˇ1 D minfj.�6/=.7=32/j; j.7=2/=.�1=64/jg D 192=7; q0 D 3; �1 D 192=7.
4. Add 192=7 times of row 2 to row 4.
5: Nx6 D 91=2 C .�67=2/ D 12I

Nx3 D 15 � ..�1=32/=.7=32//.�67=2/ D 143=14I
NxB D .131=4; 57=4/T � .�67=2/.�1=32; �1=16/T � .143=14 � .15//

.55=32; �1=16/T D .559=14; 83=7/T; B D f5; 1g:
6: q D 3:

x1 x2 x3 x4 x5 x6 x7 RHS

15=64 55=32* 463=64 1 �1=32 45=64

�1=64 7=32 �1=64 �1=32 �3=64 1

1 �9=32 �1=16 23=32 �1=16 5=32

�55=14 43=14 �6=7 �25=14 220=7

u 10 20 15 17 15 12 15

Nx 83=7 20 143=14 �10 559=14 12 15

l �10 �8 1 �10 0 �1 �8

Iteration 6:

1: �3 D 0:

7: �5 D 15 � 559=14 D �349=14; �1 D 10 � 83=7 D �13=7: i1 D 1; j1 D 5:

9: Na1;3 D 55=32 ¤ 0:

10. Add �7=32; 1=16 times of row 1 to rows 2,3, respectively:
11. q D 5.
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x1 x2 x3 x4 x5 x6 x7 RHS

3=22 1 463=110 32=55 �1=55 9=22

�1=22 �103=110* �7=55 �3=110 �3=22 1

1 �3=11 54=55 2=55 �7=110 2=11

�55=14 43=14 �6=7 �25=14 220=7

u 10 20 15 17 15 12 15

Nx 83=7 20 143=14 �10 559=14 12 15

l �10 �8 1 �10 0 �1 �8

Iteration 7:

1. �5 D 15 � 559=14 < 0.
2. sign.�5 Na2;5/ D 1, N1 D f4g ¤ ;.
3. ˇ1 D minfj.43=14/=.103=110/jg D 2;365=721; q0 D 4, �1 D 2;365=721.
4. Add 2;365=721 times of row 2 to row 4.
5: Nx5 D 559=14 C .�349=14/ D 15I

Nx4 D �10 � ..�7=55/=.�103=110//.�349=14/ D �681=103I
NxB D .143=14; 83=7/T � .�349=14/.32=55; 2=55/T

� .�681=103 � .�10//.463=110; 54=55/T

D .1;077=103; 972=103/T; B D f3; 1g:
6: q D 4:

x1 x2 x3 x4 x5 x6 x7 RHS

3=22 1 463=110 32=55 �1=55 9=22

�1=22 �103=110 �7=55 �3=110 �3=22 1

1 �3=11 54=55 2=55 �7=110 2=11

�420=103 �43=103 �195=206 �230=103 3;575=103

u 10 20 15 17 15 12 15

Nx 972=103 20 1;077=103 �681=103 15 12 15

l �10 �8 1 �10 0 �1 �8

Iteration 8:

1. �4 D 0.
7. �3 D �1 D 0. The optimal solution and optimal value are

Nx D .972=103; 20; 1;077=103; �681=103; 15; 12; 15/T;
Nf D .2; �4; �7; 5/.972=103; 20; 1;077=103; �681=103/T D �17;240=103:

Based on the equivalence between the D-reduced tableau (17.3) and the revised
tableau (17.19), the revised version of Algorithm 19.6.1 can be stated as follows.
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Algorithm 19.6.2 (Generalized dual D-reduced simplex algorithm). Initial:
B; R; N; B�1

R ; NzN D cN � N T
RB�T

R cB . Nx; Nf satisfying (19.21) and (19.25). This
algorithm solves the D-reduced bounded-variable problem (19.6).

1. Go to step 8 if �q , determined by (19.28), is equal to 0.
2. Compute N!N D N Tem � N T

R.B�T
R Bem/.

3. Stop if N1 D fj 2 � jsign.�q N!q/ N!j < 0g[fj 2 … j sign.�q N!q/ N!j > 0g D ;,
(infeasible problem).

4. Determine �1 and column index q0 such that ˇ1 D jNzq0= N!q0 j D minj 2N1 jNzj = N!j j;
�1 D sign.�q N!q/ˇ.

5. If �1 ¤ 0, update NzN D NzN C �1 N!N .
6. Update Nxq; Nxq0 and NxB by (19.38), (19.40) and (19.41).
7. Set q D q0, and go to step 1.
8. Determine s by (19.43).
9. If �js D 0, compute Nf D cT Nx, and stop (optimality achieved).

10. Compute �N D N T
RB�T

R es .
11. Go to step 15 if �q D 0.
12. Compute Naq.R/ D B�1

R aq.R/.
13. Update B�1

R by (17.20).
14. Set q D js , and go to step 2.
15. Determine column index q0 such that jNzq0=�q0 j D minj 2N2 jNzj =�j j.
16. Compute Naq0.R/ D B�1

R aq0.R/.
17. Update B�1

R by (17.20).
18. Update Nxjs ; Nxq0 and NxB by (19.47)–(19.49).
19. Update .B; N / by exchanging js and q0.
20. Go to step 1.



Chapter 20
Deficient-Basis Method

As was known, the nondegeneracy assumption is entirely contrary to reality. When
the simplex method is used to solve large-scale sparse problems, degeneracy or even
high degeneracy almost always presents. Therefore, finiteness of the simple method
is not guaranteed, and there are indeed few cycling instances (Sect. 3.6).

As a common belief, on the other hand, stalling caused by degeneracy degrades
performance of the conventional simplex method seriously, as a huge number of
iterations may stay at a vertex for too long a time before exiting it. In fact, stalling
has long been thought as a headache for solving large-scale and highly degenerate
problems, where vanished basic components occupy a large proportion (Hattersley
and Wilson 1988; Megiddo 1986b; Ryan and Osborne 1988).

To overcome drawbacks related to degeneracy, the conventional basis will be
generalized to allow deficient case. In the following two chapters, primal and dual
deficient-basis methods will be developed. It will be shown that it is possible to
take advantage of high degeneracy to reduce computational work significantly (Pan
1998b, 1999b, 2000a).

Consider the standard LP problem (1.8). Conventionally, the coefficient matrix
A is assumed to be of full row rank. In this chapter and thereafter, the generalized
assumption is made that b belongs to the column space of A, i.e.,

b 2 range.B/;

or equivalently, system Ax D b is consistent.

20.1 Deficient-Basis and Tableau

The concept “basis” has been the center of the simplex method for years. Since
it is a submatrix consisting of m linear independent columns of A, however, it
is unavoidable for some of basic solution’s components to vanish, whenever the

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__20,
© Springer-Verlag Berlin Heidelberg 2014
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right-hand side of the problem belongs to a proper subset of range.B/. To overcome
this difficulty, we redefine the basis concept.

Definition 20.1.1. Basis (matrix) is such a nonsingular square submatrix of A that
the subspace spanned by the associated columns includes b.

It is clear that there exists a basis of such type under the assumption of b 2
range.A/, and that a basis is actually a standard (full) basis if its order equals m,
whereas it is said to be deficient if the order is less than m. In addition, the associated
basic solution will have no zero components, if the deficient basis yields from
dropping columns corresponding to zero components of a standard basic solution.

Columns (rows), associated with a basis, are said to be basic, and the other
columns (rows) are nonbasic. Variables (components) are said to be basic and
nonbasic, conformably.

Let k be the order of a basis. Denote by B and R the index sets of basic columns
and rows, respectively by

B D fj1; � � � ; jkg; and R D fi1; � � � ; ikg: (20.1)

Denote the associated nonbasic column and row index sets, respectively by

N D AnB; and R0 D f1; � � � ; mgnR: (20.2)

Once B; R are given, so are N; R0. Note that R0 is empty when k D m whereas N is
always nonempty. Although 1 � k � m is usually assumed, it is sometimes useful
and easy to include the case k D 0, in which B and R are both empty.

Without confusion, the preceding set notations will also be utilized to denote
the submatrices or vectors, consisting of the associated columns and rows; e.g., the
submatrix consisting of basic columns is still denoted by B , and as well as

BR 2 Rk�k : basis, consisting of entries in basic columns and rows.
BR0 2 R.m�k/�k : submatrix consisting of entries in basic columns and

nonbasic rows.
NR 2 Rk�.n�k/: submatrix consisting of entries in nonbasic columns and

basic rows.
NR0 2 R.m�k/�.n�k/: submatrix consisting of entries in nonbasic columns and

rows.
bR 2 Rk : subvector consisting of basic components (in basic rows) of the

right-hand side.
bR0 2 Rm�k : subvector consisting of nonbasic components (in nonbasic

rows) of the right-hand side.
aq.R/ 2 Rk : the q-indexed column of NR.
aq.R0/ 2 Rm�k : the q-indexed column of NR0 .
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Since b 2 range.B/, an initial tableau of the standard LP problem, say

xT
B xT

N f RHS
BR NR bR

BR0 NR0 bR0

cT
B cT

N �1

(20.3)

can be converted to an equivalent form by elementary transformations with row and
columns exchanges, i.e.,

xT
B xT

N f RHS

I NNR
NbR

NNR0

NzT
N �1 � Nf

(20.4)

The preceding is referred to as deficient-basis tableau, where the unit matrix I

corresponds to basis BR, featured by basic columns and rows.
NzT
N is called reduced costs (coefficients). A solution to Ax D b, given by

NxB D NbR; NxN D 0;

is still called basic solution, as in case of the coefficient matrix of full row rank,
it is always possible to expand a deficient basis to a full one, associated with the
same solution, by entering some nonbasic columns. Note that the jt -indexed basic
variable Nxjt is in the it -indexed row of the tableau. Thus,

Nxjt D Nbit ; t D 1; � � � ; k:

The solution is feasible if NxB � 0, and optimal if, in addition, the associated
objective value attains the minimum value over the feasible region. The tableau
is said to be feasible or optimal, conformably.

There are results similar to those in the conventional simplex context.

Lemma 20.1.1. Assume that the deficient-basis tableau (20.4) is feasible. If its
reduced costs are all nonnegative, then it gives a pair of primal and dual basic
optimal solutions.

Proof. It is clear that the tableau gives a pair of complementary primal and dual
solutions, which are primal and dual feasible respectively, as satisfy the optimality
conditions. ut

20.2 Deficient-Basis Method: Tableau Form

Let us now discuss about how to transform a feasible deficient-basis tableau to a
new one while maintaining feasibility, and thereby derive a tableau version of the
so-called “deficient-basis method”.
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Assume that the current deficient-basis tableau of form (20.4) is feasible, i.e.,
NbR � 0, and that NzN 6� 0. We select a pivot column index q such that Nzq < 0, e.g.,
by the counterpart of Dantzig conventional rule below:

q 2 arg minfNzj j j 2 N g: (20.5)

Thus, it holds that Nzq < 0.
Denote the q-indexed columns of NNR and NNR0 by Naq.R/ and Naq.R0/, respectively.
The determination of a pivot row index depends on whether column Naq.R0/

vanishes, i.e., whether aq belongs to the column space of B . There are the following
two cases arising:

(i) Rank-increasing iteration: R0 ¤ ; and Naq.R0/ ¤ 0.

In this case, it is not allowed for Nxq to be taken on any nonzero value while
keeping the other nonbasic components of the current solution unchanged, as such
doing violates some of the equality constraints, associated with nonbasic rows. To
detor the difficulty, determine row index

p 2 arg max
i2R0

j Nai; qj: (20.6)

Then take Nap q as a pivot to carry out elementary transformations, so that the q-
indexed nonbasic column and p-index nonbasic row both becomes basic while the
basic columns and rows remain basic. Thus, the rank of the basis increases by 1, and
the iterations is complete. It is noted that the right-hand side remains unchanged.

(ii) Rank-remaining iteration: R0 D ; or Naq.R0/ D 0.

Increase Nxq from zero to decrease the objective value while keeping the other
nonbasic components of the current solution feasible. In the following case, such
decreasing will be unlimited.

Lemma 20.2.1. Assume that the deficient-basis tableau is feasible and that R0 D ;
or Naq.R0/ D 0. If Nzq < 0 and Naq.R/ � 0, the original problem is lower unbounded.

Proof. The proof is an analogue to that of Lemma 3.2.2. ut
If, otherwise, Naq.R/ 6� 0 does not hold, then there is a blocking variable,

associated with ˛ and s such that

˛ D Nbis = Nais; q D minf Nbit = Nait ; q j Nait ; q > 0; t D 1; � � � ; kg � 0; (20.7)

where stepsize ˛ will be used to update the basic feasible solution. Taking Nais q as the
pivot, carry out according elementary transformations. Consequently, the js-index
column leaves and q-index column enters the basis, while the basic rows remain
basic. So, the rank of the basis remains, and an iteration is complete. It is noted such
doing does not touch nonbasic rows at all (including entries in the right-hand side).

As Nzq is eliminated, both cases change components of the dual solution, locating
at the bottom row. Since Nbis D 0, a rank-increasing iteration does not change
tableau’s right-hand side, hence the solution and objective value. On the other hand,
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a rank-remaining iteration changes these quantities, in general; in fact, it is known
from (3.13) that the objective value becomes

Of D Nf C ˛Nzq � Nf ;

where the right-most inequality results from (20.7) and Nzq < 0. Therefore, the
objective value does not increase, and in case of nondegeneracy ( NbR > 0), ˛ is
positive, hence the objective value strictly decreases.

The overall procedure can be summarized as follows.

Algorithm 20.2.1 (Deficient-basis algorithm: tableau form). Initial: feasible
tableau of form (20.4) with B; N; R; R0; 1 � k � m. This algorithm solves the
standard LP problem.

1. Determine column index q 2 arg minj 2N Nzj .
2. Stop if Nzq � 0.
3. Go to step 7 if R0 D ; or Naq.R0/ D 0.
4. Determine p 2 arg maxi2R0 j Nai q j.
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Set k D k C 1, bring q from N to B and p from R0 to R, and go to step 1.
7. Stop if Naq.R/ � 0.
8. Determine s by (20.7).
9. Convert Nais ; q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
10. Update .B; N / by exchanging js and q.
11. Go to step 1.

Theorem 20.2.1. Assume that rank-remaining iterations are all nondegenerate.
Algorithm 20.2.1 terminates either at

(i) step 2, giving a basic optimal solution; or at
(ii) step 7, detecting lower unboundedness.

Proof. The proof on termination of Algorithm 20.2.1 is similar to that in the
conventional case. The meanings of its exits come from Lemmas 20.1.1 and 20.2.1
together with the related discussions preceding Algorithm 20.2.1. ut
Example 20.2.1. Solve the following problem by Algorithm 20.2.1:

min f D �2x1 C 3x2 � 4x3 C x4 C 2x7 � 3x8;

s:t: �x1 C x2 C x3 � x4 C x5 C x7 � 2x8 D 2;

2x1 � x2 C x3 C x4 C x6 � x7 C x8 D 1;

x1 � 2x2 � x4 � 3x8 D 0;

�x1 C x2 C x4 C x8 D 0;

2x1 � x2 C x4 � x8 D 0;

xj � 0; j D 1; � � � ; 8:
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Answer k D 2; B D f5; 6g; R D f1; 2g; N D f1; 2; 3; 4; 7; 8g; R0 D f3; 4; 5g.
Initial feasible deficient-basis tableau:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1 1 1 �1 1 1 �2 2

2 �1 1* 1 1 �1 1 1

1 �2 �1 �3

�1 1 1 1

2 �1 1 �1

�2 3 �4 1 2 �3

Iteration 1:

1. minf�2; 3; �4; 1; 2; �3g D �4 < 0; q D 3.
3. Naq.R0/ D 0.
7. Naq.R/ 6� 0.
8. minf2=1; 1=1g D 1; s D 2; is D 2.
9. add �1; 4 times of row 2 to rows 1,6, respectively.

10. B D f5; 3g; N D f1; 2; 4; 6; 7; 8g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�3 2 �2 1 �1 2* �3 1

2 �1 1 1 1 �1 1 1

1 �2 �1 �3

�1 1 1 1

2 �1 �2 �1

6 �1 5 4 �2 1 4

Iteration 2:

1. minf6; �1; 5; 4; �2; 1g D �2 < 0; q D 7.
3. Naq.R0/ D 0.
7. Naq.R/ 6� 0.
8. minf1=2g D 1=2; s D 1; is D 1.
9. Multiply row 2 by 1=2, then add 1; 2 times of row 2 to rows 2,6, respectively.

10. B D f7; 3g; N D f1; 2; 4; 5; 6; 8g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�3=2 1 �1 1=2 �1=2 1 �3=2 1=2

1=2 1 1=2 1=2 �1=2 3=2

1 �2 �1 �3*

�1 1 1 1

2 �1 �2 �1

3 1 3 1 3 �2 5
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Iteration 3:

1. minf3; 1; 3; 1; 3; �2g D �2 < 0; q D 8.
3. Naq.R0/ ¤ 0;
4. maxfj � 3j; j1j; j � 1jg D 3; p D 3.
5. Multiply row 3 by �1=3, then add �1; 1; 2 times of row 3 to rows 4,5,6,

respectively.
6. k D 3; B D f7; 3; 8g; R D f1; 2; 3g; N D f1; 2; 4; 5; 6g; R0 D f4; 5g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�2 2 �1=2 1=2 �1=2 1 1=2

1=3 1=3 1 1=6 1=2 1=2 3=2

�1=3 2=3 1=3 1

�2=3 1=3 2=3

5=3 �1=3 �5=3

7=3 7=3 11=3 1 3 5

Iteration 4:

1. minf7=3; 7=3; 11=3; 1; 3g � 0.
2. The basic optimal solution and optimal value are:

Nx D .0; 0; 3=2; 0; 0; 0; 1=2; 0/T; Nf D �5:

20.3 Deficient-Basis Method

In this section, we derive the revised version of Algorithm 20.2.1.
A deficient basis characterizes an iteration, just as a standard basis in the con-

ventional simplex context. All entries in a deficient-basis tableau can be expressed
using the inverse of the deficient-basis matrix.

Let BR be the basis matrix, associated with sets B; R, and let B�1
R be its inverse.

Then, it is known that

NbR0 D bR0 � BR0B�1
R bR D 0:

Thus, the revised tableau, corresponding to the deficient-basis tableau (20.4), is

xT
B xT

N f RHS
I B�1

R NR B�1
R bR

NR0 � BR0B�1
R NR

cT
N � cT

BB�1
R NR �1 �cT

BB�1
R bR

(20.8)
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Table 20.1 Equivalence between the associated quantities

Quantity Tableau Relation Revised tableau

Objective row NzN D cT
N � cT

BB�T
R NR

Basic components of pivot column Naq.R/ D B�1
R aq.R/

Nonbasic components of pivot column Naq.R0/ D aq.R0/ � BR0 B�1
R aq.R/

Basic components of the right-hand side NbR D B�1
R bR

Nonbasic entries of the pth basic row eT
p

NNR D eT
pB�1

R NR

Let q 2 N be the pivot column index selected by (20.5). The following tableau
offers correspondence between wanted quantities in the preceding tableau and
tableau (20.4) (see Table 20.1):

As for updating the inverse B�1
R of the deficient basis, the following two types of

iterations should be treated separately:

(i) Rank-increasing iteration: R0 ¤ ; and Naq.R0/ D aq.R0/ � BR0B�1
R aq.R/ ¤ 0.

Assume that pivot row index p 2 R0 was determined by (20.6). The new basis
matrix (increasing rank by 1) is of form

OB OR D
 

BR aq.R/

eT
pB ap q

!
k

1
(20.9)

k 1

where eT
pB denotes the pth row of B , ap q denotes the pth component of aq , and

aq.R/ corresponds to basic components of aq . It is easy to verify that the inverse is
of the following form:

OB�1
OR D

 
U v

d T �

!
k

1
(20.10)

k 1

where

hT D eT
pB;

� D 1=.ap q � hT Naq.R//;

v D �� Naq.R/;

d T D ��hTB�1
R ;

U D B�1
R � vhTB�1

R :
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(ii) Rank-remaining iteration: R0 D ; or Naq.R0/ D aq.R0/ � BR0B�1
R aq.R/ D 0.

Essentially, the updating in this case is the same as in the conventional simplex
context, only B�1

R is now of order less than m, in general. Assume that s 2
f1; � � � ; kg was determined by (20.7). The updating formula is similar to (3.23),
i.e.,

OB�1
R D EsB

�1
R ; (20.11)

where

Es D

0
BBBBBBBBBBB@

1 �. Naq.R//1=. Naq.R//s

: : :
:::

�. Naq.R//s�1=. Naq.R//s

1=. Naq.R//s

�. Naq.R//sC1=. Naq.R//s

:::
: : :

�. Naq.R//k=. Naq.R//s 1

1
CCCCCCCCCCCA

Based on Table 20.1, Algorithm 20.2.1 can be revised as follows.

Algorithm 20.3.1 (Deficient-basis algorithm). Initial: B; R; 1 � k � m, B�1
R ;

NxB D B�1
R bR � 0. This algorithm solves the standard LP problem.

1. Compute NzN D cN � N T
R Ny, where Ny D B�T

R cB .
2. Determine pivot column index q 2 arg minj 2N Nzj .
3. If Nzq � 0, compute Nf D cT

B NxB , and stop (optimality achieved).
4. Compute Naq.R/ D B�1

R aq.R/.
5. Go to step 9 if R0 D ; or Naq.R0/ D aq.R0/ � BR0 Naq.R/ D 0.
6. Determine row index p 2 arg maxi2R0 j Nai qj.
7. Update B�1

R by (20.10).
8. Set k D k C 1, bring q from N to B and p from R0 to R, and go to step 1.
9. Stop if Naq.R/ � 0 (lower unbounded problem).

10. Determine s and ˛ such that
˛ D Nxis = Nais; q D minf Nxit = Nait ; q j Nait ; q > 0; t D 1; � � � ; kg.

11. If ˛ ¤ 0, set Nxq D ˛ and update NxB D NxB � ˛ Naq.R/.
12. Update B�1

R by (20.11).
13. Update .B; N / by exchanging js and q.
14. Go to step 1.

The preceding algorithm involves solution of two linear systems in each iteration
(in steps 1 and 4, respectively), which are generally smaller than those in the
conventional simplex context, especially for large-scale and highly degenerate
problems. Moreover, a deficient basis is potentially better conditioned than a
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Table 20.2 Iteration and
time ratios of MINOS 5.3 to
PDBSA 1.0

Problem Iterations Time % degen

Small (20) 1.09 1.50 1.06

Medium (15) 0.96 1.30 0.85

Large (15) 1.08 1.41 0.87

Average (50) 1.07 1.41 0.93

Kennington (8) 1.51 2.07 0.61

BPMPD (4) 1.64 2.05 0.63

Average (12) 1.52 2.06 0.63

conventional one. More importantly, the associated search direction appears to be
better than that in the conventional context. These advantages are conformed by
computational experiments, as reported below:

Originally, the rectangular matrix B is defined as the “deficient basis”, as is
not compact, compared with BR. Numerical results, obtained from the related
experiments, are cited here, as these results still roughly reflect the behavior of
Algorithm 20.3.1 (Pan 1998b, 2008b).

These experiments were conducted on a Pentium II 550E PC, with Windows
98 operating system, 256 MB RAM and about 16 decimal point precision. Visual
Fortran 5.0 compiler was used.

There were two codes involved in the comparison:

1. MINOS 5.3.
2. PDBSA 1.0: is based on an algorithm close to Algorithm 20.3.1

Taking MINOS 5.3 as a platform, the second code used Phase-I procedure the
same as MINOS 5.3 (also with the same default options).

Total 65 standard test problems without bounds and ranges sections were tested,
which are classified into two groups: the first group includes 50 Netlib test problems
(Appendix B: Table B.4), classified to 3 sets according to increasing m C n: Small,
Medium and Large. The set Small includes 20 problems, Medium and Large include
15 each. The second group involves 15 larger problems, including 8 Kennington
problems (Appendix B: Table B.5), 4 BPMPD (Appendix B: Table B.6) and the
largest 3 Netlib problems (QAP12, MAROS-R7 and STOCFOR3).

Iteration and time ratios of MINOS 5.3 to PDBSA 1.0 are listed in the following
table (see Table 20.2), where the last column gives degenerate iterations percentage
ratio. The largest 3 Nelib problems are not included, because MINOS 5.3 failed to
solve them.

At first, it is seen from Table 20.2 that the new code clearly outperformed MINOS
5.3, overall: time ratios for the first and the second groups are 1:41 and 2:06,
respectively. It seems that the superiority of the new code is greater with large-scale
problems.

Secondly, the new code appeared to be more stable and reliable, as it solved
all the 65 test problems, including QAP12, MAROS-R7 and STOCFOR3, which
MINOS 5.3 failed to solve.
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It is noted that, the time ratios are significantly larger than iteration ratios. This
is the case because systems solved per iteration by the new code are small, compare
with those solved by MINOS 5.3, and the computational efforts are reduced,
consequently.

Finally, it is seen from the last column that except for the smallest 20 problems,
degenerate iteration ratios are less than 1, that is, the proportion of degenerate
iterations yielded by the new code is larger than that by MINOS 5.3. Even so, the
new code was still an unambiguous winner. Forrest and Goldfarb (1992) are right:
algorithm’s efficiency does not rest on the proportion of degenerate iterations.

Example 20.3.1. Solve Example 20.2.1 by Algorithm 20.3.1.

Answer Initial: k D 2; B D f5; 6g; R D f1; 2g. N D f1; 2; 3; 4; 7; 8g; R0 D
f3; 4; 5g. BR D I . NxB D .2; 1/T � 0.

Iteration 1:

1: NzN D .�2; 3; �4; 1; 2; �3/T:

2: minf�2; 3; �4; 1; 2; �3g D �4 < 0; q D 3:

4: Naq.R/ D
�

1

1

��
1

1

�
D
�

1

1

�
:

5: Naq.R0/ D
0
@0

0

0

1
A �

0
@0 0

0 0

0 0

1
A� 1

1

�
¤ 0:

9: Naq.R/ 6� 0:

10: ˛ D minf2=1; 1=1g D 1; s D 2; is D 2:

11: Nx3 D 1; NxB D .2; 1/T � 1.1; 1/T D .1; 0/T:

12: B�1
R D

�
1 �1

1

��
1

1

�
D
�

1 �1

1

�
:

13: B D f5; 3g; N D f1; 2; 4; 6; 7; 8g:
Iteration 2:

1: Ny D .0; �4/T;

NzN D .�2; 3; 1; 0; 2; �3/T�.�8; 4; �4; �4; 4; �4/TD.6; �1; 5; 4; �2; 1/T:
2: minf6; �1; 5; 4; �2; 1g D �2 < 0; q D 7:

4: Naq.R/ D
�

1 �1

1

��
1

�1

�
D
�

2

�1

�
:

5: Naq.R0/ D
0
@0

0

0

1
A �

0
@ 0 0

0 0

0 0

1
A� 2

�1

�
¤ 0:

9: Naq.R/ 6� 0:
10: ˛ D minf1=2g D 1=2; s D 1; is D 1:

11: Nx3 D 1=2; NxB D .1; 1/T � .1=2/.2; �1/T D .0; 3=2/T:

12: B�1
R D

�
1=2 0

1=2 1

��
1 �1

1

�
D
�

1=2 �1=2

1=2 1=2

�
:

13: B D f7; 3g; N D f1; 2; 4; 5; 6; 8g:



514 20 Deficient-Basis Method

Iteration 3:

1: Ny D .�1; �3/T;

NzN D .�2; 3; 1; 0; 0; �3/T � .�5; 2; �2; �1; �3; �1/TD.3; 1; 3; 1; 3; �2/T:

2: minf3; 1; 3; 1; 3; �2g D �2 < 0; q D 8:

4: Naq.R/ D
�

1=2 �1=2

1=2 1=2

���2

1

�
D
��3=2

�1=2

�
:

5: Naq.R0/ D
0
@�3

1

�1

1
A �

0
@0 0

0 0

0 0

1
A��3=2

�1=2

�
D
0
@�3

1

�1

1
A ¤ 0:

6: maxfj � 3j; j1j; j � 1jg D 3; s D 3; is D 3:

7: � D .�3 � .0; 0/.�3=2; �1=2/T/�1 D �1=3:

v D �.�1=3/.�3=2; �1=2/T D .�1=2; �1=6/T; d T D .0; 0/:

U D
�

1=2 �1=2

1=2 1=2

�
�
��1=2

�1=6

�
.0; 0/ D

�
1=2 �1=2

1=2 1=2

�
:

OB�1
OR D

0
@1=2 �1=2 �1=2

1=2 1=2 �1=6

0 0 �1=3

1
A :

8: k D 3; B D f7; 3; 8g; R D f1; 2; 3g; B�1
R D OB�1

OR ; Nx8 D 0:

Iteration 4:

1: Ny D .�1; �3; 2=3/T;

NzN D .�2; 3; 1; 0; 0/T � .�13=3; 2=3; �8=3; �1; �3/T D .7=3; 7=3; 11=3; 1; 3/T

� 0:

3. The basic optimal solution and optimal value:

Nx D .0; 0; 3=2; 0; 0; 0; 1=2; 0/T; Nf D .�4; 2/.3=2; 1=2/T D �5:

which coincides with the result in Example 20.2.1.

20.4 Phase-I: Single-Artificial-Variable

Standard Phase-I methods presented in Chap. 13 are applicable (or after slightly
modified) in the deficient-basis context. It is also possible to design new Phase-I
methods by taking advantage of deficient basis, as the method presented in this
section (Pan and Pan 2001).

Introducing an artificial variable xnC1, associated with column the same as the
right-hand side. The resulting auxiliary program is then

min f D xnC1;

s:t: Ax C bxnC1 D b; x; xnC1 � 0;
(20.12)
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which has the initial tableau below:

xT xnC1 f RHS

A b b

1 �1

Take the xnC1 column as the first basic column. Assuming br ¤ 0, take the r th row
as the first basic row, i.e.,

B D fn C 1g; R D frg:

Thus,

B D fn C 1g; N D A; R D frg; R0 D f1; � � � ; mgnR:

Carry out elementary transformations to turn the r-th component of the xnC1 column
to 1, and eliminate the other nonzeros in the column. By row and column exchanges,
the resulting deficient-basis tableau is of form

xT
B xT

N f RHS
1 NNR 1

NNR0

� NNR �1 �1

(20.13)

where NNR 2 R1�n; NNR0 2 R.m�1/�n are associated with the auxiliary feasible
solution NxnC1 D 1; NxN D 0 and objective value 1. It can be solved by the deficient-
basis Algorithm 20.2.1. If the optimal value of the auxiliary program vanishes, a
feasible solution to the original problem is obtained (when xnC1 leaves the basis);
otherwise, there is no feasible solution to the original problem.

It is important to maintain sparsity of the deficient-basis tableau (20.13).
Although, in theory, any row associated with a nonzero component of the right-
hand side can be taken as the first basic row, a clever choice is to select a row having
the minimum number of nonzeros, because a dense basic row would cause a lot of
fill-ins. Also, when the right-hand side is dense, the deficient-basis tableau would
become dense, as consequently looses the value of the deficient-basis method.

Practically, the f column can be omitted from the initial tableau. The xnC1

column can also be omitted because it is the same as the RHS column (except for the
bottom row). The objective row of the original problem may be placed in the tableau,
as it is convenient to go to Phase-II after Phase-I finishes. In addition, the auxiliary
objective row may be omitted too, as it differs from the basic row associated with
xnC1 just by a sign (except for entries in xnC1 column), though this is not done with
the following example, where it is placed at the bottom.
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Example 20.4.1. Solve the following problem by the two-phase deficient-basis
algorithm:

min f D �3x1 C 2x2 � x3 C 3x5 C 2x7 � 6x8;

s:t: �5x1 C x2 C 2x3 C x4 C x5 � 1x7 � 3x8 D �15;

� 3x2 C x3 C 3x4 � x5 � 2x6 C 2x7 C x8 D �11;

� 3x3 C 5x4 � 3x5 C x6 � 3x7 C 2x8 D 2;

C x3 C x5 � x8 D 0;

� x3 � x5 C 2x8 D 0;

xj � 0; j D 1; � � � ; 8:

Answer Phase-I: Auxiliary initial tableau (the RHS column also represents the
x9 column)

x1 x2 x3 x4 x5 x6 x7 x8 RHS(x9)

�5 1 2 1 1 �1 �3 �15

�3 1 3 �1 �2 2 1 �11

�3 5 �3 1 �3 2 2

1 1 �1

�1 �1 2

�3 2 �1 3 2 �6

1

Iteration 1:
Multiply row 1 by �1=15, then add 11; �2; �1 times of row 2 to rows 2,3,7,
respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS(x9)

1=3 �1=15 �2=15 �1=15 �1=15 1=15 1=5 1

11=3* �56=15 �7=15 34=15 �26=15 �2 41=15 16=5

�2=3 2=15 �41=15 77=15 �43=15 1 �47=15 8=5

1 1 �1

�1 �1 2

�3 2 �1 3 2 �6

�1=3 1=15 2=15 1=15 1=15 1=15 �1=5

The preceding auxiliary tableau is a feasible deficient-basis tableau:

s D 1; B D f9g; R D f1g; N D f1; 2; 3; 4; 5; 6; 7; 8g; R0 D f2; 3; 4; 5g:

Phase-I: Call Algorithm 20.2.1.

Iteration 2:

1. minf�1=3; 1=15; 2=15; 1=15; 1=15; 1=15; �1=5g D �1=3 < 0; q D 1.
3. Naq.R0/ D .11=3; �2=3; 0; 0/T ¤ 0.
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4. maxfj11=3j; j � 2=3jg D 11=3; is D 2.
5. Multiply row 2 by 3=11, then add �1=3; 2=3; 3; 1=3 times of row 2 to rows

1,3,6,7, respectively.
6. k D 2; B D f9; 1g; R D f1; 2g; N D f2; 3; 4; 5; 6; 7; 8g; R0 D f3; 4; 5g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS(x9)

3=11 �1=11 �3=11 1=11 2=11 �2=11 �1=11 1

1 �56=55 �7=55 34=55 �26=55 �6=11 41=55 48=55

�6=11* �31=11 61=11 �35=11 7=11 �29=11 24=11

1 1 �1

�1 �1 2

�58=55 �76=55 102=55 87=55 �18=11 233=55 �186=55

�3=11 1=11 3=11 �1=11 �2=11 2=11 1=11

Iteration 3:

1. minf�3=11; 1=11; 3=11; �1=11; �2=11; 2=11; 1=11g D �3=11 < 0; q D 2.
3. Naq.R0/ D .�6=11; 0; 0/T ¤ 0.
4. maxfj � 6=11j; 0; 0g D 6=11; is D 3.
5. Multiply row 3 by �11=6, then add �3=11; 56=55; 58=55; 3=11 times of row 3

to rows 1,2,6,7, respectively.
6. k D 3; B D f9; 1; 2g; R D f1; 2; 3g; N D f3; 4; 5; 6; 7; 8g; R0 D f4; 5g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS(x9)

�3=2 5=2* �3=2 1=2 �3=2 1 1

1 77=15 �146=15 82=15 �26=15 17=3 �16=5

1 31=6 �61=6 35=6 �7=6 29=6 �4

1 1 �1

�1 �1 2

61=15 �133=15 116=15 �43=15 28=3 �38=5

3=2 �5=2 3=2 �1=2 3=2 �1

Iteration 4:

1. minf3=2; �5=2; 3=2; �1=2; 3=2; �1g D �5=2 < 0; q D 4.
3. Naq.R0/ D .0; 0/T .
7. Naq.R/ 6� 0.
8. ˛ D minf1=.5=2/g D 2=5; s D 1; is D 1. x9 leaves the basis.
9. Multiply row 1 by 2=5, then add 146=15; 61=6; 133=15; 5=2 times of row 1 to

rows 2,3,6,7, respectively.
10. B D f4; 1; 2g; N D f3; 5; 6; 7; 8; 9g.
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x1 x2 x3 x4 x5 x6 x7 x8 RHS(x9)
�3=5 1 �3=5 1=5 �3=5 2=5 2=5

1 �53=75 �28=75 16=75 �13=75 52=75 292=75

1 �14=15 �4=15 13=15 �19=15 1=15 61=15

1 1 �1

�1 �1 2*
�94=75 181=75 �82=75 301=75 �304=75 266=75

1

As the artificial x9 column has already become nonbasic, the preceding tableau
is feasible. Delete the x9 column and the bottom row, then turn to Phase-II.

Phase-II: Call Algorithm 20.2.1.

Iteration 5:

1. minf�94=75; 181=75; �82=75; 301=75; �304=75g D �304=75 < 0; q D 8.
3. Naq.R0/ D .�1; 2/T ¤ 0.
4. maxfj � 1j; j2jg D 2; is D 5.
5. Multiply row 5 by 1=2, then add �2=5; �52=75; �1=15; 1; 304=75 times of row

5 to rows 1,2,3,4,6, respectively.
6. k D 4; B D f4; 1; 2; 8g; R D f1; 2; 3; 5g; N D f3; 5; 6; 7g; R0 D f4g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�2=5 1 �2=5 1=5 �3=5 2=5

1 �9=25 �2=75 16=75 �13=75 292=75

1 �9=10 �7=30 13=15 �19=15 61=15

1=2* 1=2

�1=2 �1=2 1

�82=25 29=75 �82=75 301=75 266=75

Iteration 6:

1. minf�82=25; 29=75; �82=75; 301=75g D �82=25 < 0; q D 3.
3. Naq.R0/ ¤ 0.
4. is D 4.
5. Multiply row 4 by 2, then add 2=5; 9=25; 9=10; 1=2; 82=25 times of row 4 to

rows 1,2,3,5,6, respectively.
6. k D 5; B D f4; 1; 2; 8; 3g; R D f1; 2; 3; 5; 4g; N D f5; 6; 7g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 1=5* �3=5 2=5

1 1=3 16=75 �13=75 292=75

1 2=3 13=15 �19=15 61=15

1 1

1

11=3 �82=75 301=75 266=75
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Iteration 7:

1. minf11=3; �82=75; 301=75g D �82=75 < 0; q D 6.
3. R0 D ;.
7. Naq.R/ 6� 0.
8. ˛ D minf1=.20=87/g D 87=20; s D 1; is D 1.
9. Multiply row 1 by 5, then add �16=75; �13=15; 82=75 times of row 1 to rows

2,3,6, respectively.
10. B D f6; 1; 2; 8; 3g; N D f4; 5; 7g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

5 1 �3 2

1 �16=15 1=3 7=15 52=15

1 �13=3 2=3 4=3 7=3

1 1

1

82=15 11=3 11=15 86=15

Iteration 8:

1. minf82=15; 11=3; 11=15g � 0.
2. The basic optimal solution and optimal value:

Nx D .52=15; 7=3; 0; 0; 0; 2; 0; 0/T; Nf D �86=15:

20.5 On Implementation

The deficient-basis algorithm may be regarded as a variant of the conventional
simplex method. According implementation issues, such as the LU factorization
of the basis matrix, L�1 stored in factors form, LU update in the rank-remaining
iteration, and etc., are analogous to those, presented in Chap. 5. Besides all,
one should pay close attention to take advantage of basis deficiency to reduce
computational work. In this section, only the following two aspects are discussed.

20.5.1 Initial Basis

It is known for the standard LP problem (1.8) that

rank A D rank .A j b/ � m:

The LU factorization of an initial basis matrix can be created by a crash procedure
like that presented in Sect. 5.5. In addition to balancing sparsity and stability,
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however, the resulting initial basis should be of order as low as possible. To this
end, some variant of Markowitz Rule 5.3.1 would be utilized.

Initially, set B D ;; R D ;. Suppose, for some k, Gauss elimination has been
carried out on matrix .A j b/ such that some k columns (excluding b) of the latter are
upper triangular; in other words, k basic columns and rows have been determined,
and the according NBR is an upper triangular k-order submatrix of . NA j Nb/.

If k D m, or if k < m but the following row index set is empty,

I 0 D fi 2 R0 j j Nbi j > �0g; (20.14)

where �0 > 0 is a threshold for numerical 0 (see Sect. 5.1), then the LU factorization
of an k-order basis matrix has already been obtained. Otherwise, the following rule
is utilized to determine the .k C 1/th basic column and row.

Rule 20.5.1. Given constant 0 < � � 1. Select column index q and row index p

such that

.rp � 1/.cq � 1/ D minf.ri � 1/.cj � 1/ j j Naij j � ��; i 2 I 0; j 2 N g; (20.15)

where ri denotes the number of nonzeros in the i th row and cj the number of
nonzeros in the j th column, and

� D maxfj Naij j j i 2 I 0; j 2 N g: (20.16)

Note that the preceding rule fails if

f.i; j / 2 I 0 
 N j j Naij j � ��g D ;:

In this case, Ax D b may be regarded numerically inconsistent.

20.5.2 LU Updating in Rank-Increasing Iteration

Updating LU factors in a rank-remaining iteration is essentially the same as that in
the conventional simplex context (Sect. 5.4). In contrast, updating LU factors in a
rank-increasing iteration is simpler.

Let L�1BR D U be the LU factorization of BR. From (20.9), it follows that

 
L�1

1

!
OB OR D

 
U L�1aq.R/

eT
is
B ais q

!
:

which is upper triangular, except for the bottom row. Premultiply a series of Gauss
matrices G1; � � � ; Gk to eliminate entries of the bottom row (except for the diagonal),
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it becomes an upper triangular matrix QU . The LU factorization of the new basis
matrix is then

QL�1 OB OR D QU ; QL�1 D Gk � � � G1

 
L�1

1

!
:

20.6 Deficient-Basis Reduced Method

In this section, the deficient basis will be embedded to the (improved) reduced
method (Chap. 16) to solve large-scale and highly degenerate problems. Thereby,
the related search direction corresponds to the entire objective gradient, and the
method is stable, compared with the standard deficient-basis method presented
previously.

We are concerned with the reduced problem (25.2), i.e.,

min xnC1;

s:t: ŒA
::: anC1�

�
x

xnC1

�
D b; x � 0:

(20.17)

Assume that B; R are basic columns and rows, denoted by (20.1) (the row index
m C 1 is the r th element of R); and N; R0 are nonbasic columns and rows, denoted
by (20.2). It’s initial tableau is then

xT
B xT

N xnC1 RHS
BR NR �er bR

BR0 NR0 bR0

(20.18)

where BR is the deficient basis, r 2 f1; � � � ; kg, and �er 2 Rk denotes the basic row
part of anC1 D �emC1. Note that xnC1 column is put alone as a special nonbasic
column. Let NxnC1 be given. Setting xnC1 D NxnC1 and NxN D 0, it can be determined
from the first k rows of (20.18) that

NxB D B�1
R bR C NxnC1B

�1
R er ; (20.19)

which determines a solution Nx to Ax D b, corresponding objective value NxnC1.
Then, if

BR0B�1
R er D 0; bR0 � BR0B�1

R bR D 0;
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then tableau (20.18) can be transformed to the so-called “(improved) deficient-basis
reduced tableau” of form

xT
B xT

N xnC1 NxB

I NNR Nw NxB

NNR0

(20.20)

If NxB � 0, then (20.20) is a feasible tableau, and hence ready to carry out a rank-
increasing or rank-remaining iteration (see Sect. 20.2). Note that rank-increasing
iteration does not change both xnC1 column and NxB column.

Based on preceding discussions, integrating steps of Algorithms 16.1.1
and 20.2.1 gives the following algorithm.

Algorithm 20.6.1 (Deficient-basis reduced algorithm: tableau form). Initial:
feasible deficient-basis reduced tableau of form (20.20) with B; R; N; R0; 1 �
k � m C 1. NxB; NxnC1. This algorithm solves the reduced problem (20.17).

1. Stop if Nw � 0 (unbounded problem).
2. Determine ˛ and s such that ˛ D � Nxjs = Nws D minf� Nxjt = Nwt j Nwt < 0; t D

1; � � � ; kg.
3. If ˛ ¤ 0, update NxB D NxB C ˛ Nw; NxnC1 D NxnC1 � ˛.
4. Determine column index q 2 arg minj 2N Nais ; j .
5. Stop if Nais ; q � 0 (optimality achieved).
6. Go to step 10 if R0 D ; or Naq.R0/ D 0.
7. Determine row index p 2 arg maxi2R0 j Nap qj.
8. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
9. Set k D k C 1, bring q from N to B and p from R0 to R, and go to step 4.

10. Convert Nais ; q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

11. Update .B; N / by exchanging js and q.
12. Go to step 1.

Note NxB column is not changed in steps 8 and 10.

Example 20.6.1. Solve the following problem by Algorithm 20.6.1:

min x8 D 3x2 C 2x4 C x5 � 4x6 � 2x7;

s:t: x1 � 2x2 C 3x4 C x5 � x6 � 2x7 D 4;

4x2 C x3 � 5x4 C 2x6 C 3x7 D 12;

6x2 � 2x5 D 0;

�5x2 � x7 D 0;

x2 � 3x5 C 4x7 D 0;

xj � 0; j D 1; � � � ; 7:
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Answer Initial: k D 2; B D f1; 3g; R D f1; 2g, and the feasible deficient-basis
tableau is

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 �2 3 1 �1 �2 4

4 1 �5 2 �3 12

6 �2

�5 �1

1 �3 4

3 2 1 �4* �2 �1

Nz6 D �4 < 0; Na6.R0/ D .0; 0; 0/T, Take q D 6. Multiply row 6 by �1=4, then
add 1; �2 times of row 6 to rows 1,2, respectively, obtaining the feasible deficient-
basis reduced tableau below:

x1 x2 x3 x4 x5 x6 x7 x8 NxB

1 �11=4 5=2 3=4 �3=2 1=4 4

11=2 1 �4* 1=2 �4 �1=2 12

6 �1=2

�5 �1

1 �3 4

�3=4 �1=2 �1=4 1 1=2 1=4

Call Algorithm 20.6.1: k D 3; B D f1; 3; 6g; R D f1; 2; 6g. N D
f2; 4; 5; 7g; R0 D f3; 4; 5g.

Iteration 1: NxB D .4; 12; 0/T ; Nx8 D 0

1. Nw D .14; �1=2; 1=4/T 6� 0.
2. ˛ D minf�.12/=.�1=2/g D 24; s D 2.
3. Add 24 times of x8 column to NxB column; Nx8 D �24.
4. minf11=2; �4; 1=2; �4g D �4 < 0; q D 4.
6. Naq.R0/ D 0.

10. Multiply row 2 by �1=4, then add �5=2; 1=2 times of row 2 to rows 1,6,
respectively.

11. B D f1; 4; 6g; R D f1; 2; 6g; N D f2; 3; 5; 7g; R0 D f3; 4; 5g.

x1 x2 x3 x4 x5 x6 x7 x8 NxB

1 11=16 5=8 17=16 �4 �1=16 10

�11=8 �1=4 1 �1=8 1 1=8

6 �1=2

�5 �1

1 �3 4*

�23=16 �1=8 �5=16 1 1 5=16 6
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Iteration 2:

1. Nw D .�1=16; 1=8; 5=16/T 6� 0.
2. ˛ D minf�.10/=.�1=16/g D 160; s; is ; js D 1.
3. Add 160 times of x8 column to NxB column; Nx8 D �24 � 160 D �184.
4. minf11=16; 5=8; 17=16; �4g D �4 < 0; q D 7.
6. Naq.R0/ D .0; �1; 4/T ¤ 0.
7. maxf0; j � 1j; j4jg D 4; p D 5.
8. Multiply row 5 by 1=4, then add 4; �1; 1; �1 times of row 5 to rows 1,2,4,6,

respectively.
9. k D 4; B D f1; 6; 4; 7g; R D f1; 2; 6; 5g; N D f2; 3; 5g; R0 D f3; 4g.

x1 x2 x3 x4 x5 x6 x7 x8 NxB

1 27=16 5=8 �31=16 �1=16

�13=8 �1=4 1 5=8 1=8 20

6 �1=2*

�19=4 �3=4

1=4 �3=4 1

�27=16 �1=8 7=16 1 5=16 56

Iteration 3:

4. minf27=16; 5=8; �31=16g D �31=16 < 0; q D 5.
6. Naq.R0/ D .�2; 3=4/T ¤ 0.
7. maxfj � 1=2j; j � 3=4jg D 3=4; p D 4.
8. Multiply row 4 by �4=3, then add 31=16; �5=8; 1=2; 3=4; �7=16 times of row 4

to rows 1,2,3,5,6, respectively.
9. k D 5; B D f1; 6; 4; 7; 5g; R D f1; 2; 4; 5; 6g; N D f2; 3g; R0 D f3g.

x1 x2 x3 x4 x5 x6 x7 x8 NxB

1 335=24 5=8 �1=16

�67=12 �1=4 1 1=8 20

55=6

19=3 1

5 1

�107=24 �1=8 1 5=16 56

Iteration 4:

4. minf335=24; 5=8g � 0.
5. The basic optimal solution and optimal value:

Nx D .0; 0; 0; 20; 0; 56; 0/T; Nx8 D �184:

As for the revised version of Algorithm 20.6.1, it posses features of both
deficient-basis and reduced simplex approaches; e.g., the updates (20.10)
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and (20.11) of the inverse of the basis still apply. Besides, updating of NxB column is
the same as in Algorithm 20.6.1, and updating xnC1 column is by the first expression
of (3.15).

Assume that BR is the deficient basis, then the revised deficient-basis reduced
tableau is

xT
B xT

N xnC1 NxB

I B�1
R NR �B�1

R er NxB

NR0 � BR0B�1
R NR

(20.21)

Based on equivalence between (20.20 and (20.21), it is easy to write the revised
version of Algorithm 20.6.1.

Algorithm 20.6.2 (Deficient-basis reduced algorithm). Initial: 1 � k � m C
1; B; R; B�1

R ; NxnC1; Nw D �B�1
R er ; NxB D B�1

R bR � NxnC1 Nw � 0. This algorithm
solves the reduced problem.

1. Stop if Nw � 0 (unbounded problem).
2. Determine ˛ and s such that ˛ D � Nxjs = Nws D minf� Nxjt = Nwt j Nwt < 0; t D

1; � � � ; kg.
3. If ˛ ¤ 0, update NxB D NxB C ˛ Nw; NxnC1 D NxnC1 � ˛.
4. Compute �N D N T

RB�T
R es .

5. Determine column index q 2 arg minj 2N �j .
6. Stop if �q � 0 (optimality achieved).
7. Compute Naq.R/ D B�1

R aq.R/.
8. Go to step 13 if R0 D ; or Naq.R0/ D aq.R0/ � BR0 Naq.R/ D 0.
9. Determine p 2 arg maxi2R0 j. Nai; qj.

10. Update B�1
R by (20.10).

11. Set k D k C 1; Nxq D 0; Nak; nC1 D 0, and bring q from N to B and p from R0
to R.

12. Go to step 4.
13. Compute N̨ D Nais ; nC1= Nais ; q .
14. If ˛ ¤ 0, set Nws D N̨ , and update Nw D Nw � N̨ Naq.R/.
15. Update B�1

R by (20.11).
16. Update .B; N / by exchanging js and q.
17. Go to step 1.

Example 20.6.2. Solve the following problem by the preceding algorithm:

min x8 D �3x1 C x4 C 4x5 � 2x6 C 2x7;

s:t: �3x1 C x3 � x4 � 2x5 C 4x6 � 2x7 D 9;

C x2 C 4x4 C 3x5 � 3x6 � 5x7 D 2;

6x1 � 6x4 � 2x5 D 0;

C 4x7 D 0;

x1 � x4 � x7 D 0;

xj � 0; j D 1; � � � ; 7:
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Answer The reduced problem is associated with the following tableau:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�3 1 �1 �2 4 �2 9

1 4 3 �3 �5 2

6 �6 �2

4

1 �1 �1

�3 1 4 �2 2 �1

Initial: The preceding is a feasible deficient-basis tableau. A feasible reduced
(deficient) basis is yielded by transforming the bottom row to a basic row and
x6 column to a basic column, i.e., k D 3; B D f3; 2; 6g; R D f1; 2; 6g,
N D f1; 4; 5; 7g; R0 D f3; 4; 5g.

BR D
0
@1 4

1 �3

�2

1
A ; B�1

R D
0
@1 2

1 �3=2

�1=2

1
A ;

NanC1 D �B�1
R e3 D

0
@�2

3=2

1=2

1
A : Nx8 D 0; NxB D B�1

R bR D
0
@9

2

0

1
A � 0:

Iteration 1:

1: Nw D .�2; 3=2; 1=2/T 6� 0:

2: ˛ D minf�9=.�2/g D 9=2; s D 1:

3: NxB D .9; 2; 0/T C .9=2/.�2; 3=2; 1=2/T D .0; 35=4; 9=4/T; Nx8 D �9=2:

4: �N D
0
@�3 �1 �2 �2

4 3 �5

�3 1 4 2

1
A

T 0
@1 2

1 �3=2

�1=2

1
A

T0
@ 1

0

0

1
A D

0
BB@

�9

1

6

2

1
CCA :

5: minf�9; 1; 6; 2g D �9 < 0; q D 1:

7: Naq.R/ D
0
@1 2

1 �3=2

�1=2

1
A
0
@�3

0

�3

1
A D

0
@�9

9=2

3=2

1
A :

8: Naq.R0/ D
0
@6

0

1

1
A �

0
@0 0 0

0 0 0

0 0 0

1
A
0
@ 6

�3

�2

1
A D

0
@6

0

1

1
A ¤ 0:

9: maxfj6j; 0; j1jg D 6; p D 3:

10: � D .6 � .0; 0; 0/.�9; 9=2; 3=2/T/�1 D 1=6:

v D �.1=6/.�9; 9=2; 3=2/T D .3=2; �3=4; �1=4/T:
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d T D �.1=6/.0; 0; 0/

0
@1 2

1 �3=2

�1=2

1
A D .0; 0; 0/:

U D
0
@1 2

1 �3=2

�1=2

1
A �

0
@ 3=2

�3=4

�1=4

1
A�0 0 0

	 D
0
@1 2

1 �3=2

�1=2

1
A :

OB�1
OR D

0
BB@

1 2 3=2

1 �3=2 �3=4

�1=2 �1=4

1=6

1
CCA :

11: k D 4; B D f3; 2; 6; 1g; R D f1; 2; 6; 3g; N D f4; 5; 7g;
R0 D f4; 5g; B�1

R D OB�1
OR : Nx1 D 0; Na4; nC1 D 0:

Iteration 2:

4: �N D

0
BB@

�1 �2 �2

4 3 �5

1 4 2

�6 �2

1
CCA

T0
BB@

1 2 3=2

1 �3=2 �3=4

�1=2 �1=4

1=6

1
CCA

T0
BB@

1

0

0

0

1
CCA D

0
@�8

3

2

1
A :

5: minf�8; 3; 2g D �13=2 < 0; q D 4:

7: Naq.R/ D

0
BB@

1 2 3=2

1 �3=2 �3=4

�1=2 �1=4

1=6

1
CCA
0
BB@

�1

4

1

�6

1
CCA D

0
BB@

�8

7

1

�1

1
CCA :

8: Naq.R0/ D
�

0

�1

�
�
�

0 0 0 0

0 0 0 1

�
0
BB@

�8

7

1

�1

1
CCA D

�
0

0

�
:

13: N̨ D �2= � 8 D 1=4:

14: Nw D .�2; 3=2; 1=2; 0/T � .1=4/.�8; 7; 1; �1/T D .0; �1=4; 1=4; 1=4/T;

Nw1 D 1=4:

15: OB�1
OR D

0
BB@

�1=8

7=8 1

1=8 1

�1=8 1

1
CCA
0
BB@

1 2 3=2

1 �3=2 �3=4

�1=2 �1=4

1=6

1
CCA D

0
BB@

�1=8 �1=4 �3=16

7=8 1 1=4 9=16

1=8 �1=4 �1=16

�1=8 �1=4 �1=48

1
CCA :

16: B D f4; 2; 6; 1g; N D f3; 5; 7g; B�1
R D OB�1

OR :

Iteration 3:

1: NanC1 D .1=4; �1=4; 1=4; 1=4/T 6� 0:

2: ˛ D minf�.35=4/=.�1=4/g D 35; s D 2:

3: NxB D .0; 35=4; 9=4; 0/TC35.1=4; �1=4; 1=4; 1=4/TD.35=4; 0; 11; 35=4/T;

Nx8 D �9=2 � 35 D �79=2:
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4: �N D

0
BB@

1 �2 �2

3 �5

4 2

�2

1
CCA

T0
BB@

�1=8 �1=4 �3=16

7=8 1 1=4 9=16

1=8 �1=4 �1=16

�1=8 �1=4 �1=48

1
CCA

T0
BB@

0

1

0

0

1
CCAD

0
@ 7=8

9=8

�25=4

1
A :

5: minf7=8; 9=8; �25=4g D �25=4 < 0; q D 7:

7: Naq.R/ D

0
BB@

�1=8 �1=4 �3=16

7=8 1 1=4 9=16

1=8 �1=4 �1=16

�1=8 �1=4 �1=48

1
CCA

T 0
BB@

�2

�5

2

0

1
CCA D

0
BB@

�1=4

�25=4

�3=4

�1=4

1
CCA :

8: Naq.R0/ D
�

4

�1

�
�
�

0 0 0 0

�1 0 0 1

�
0
BB@

�1=4

�25=4

�3=4

�1=4

1
CCA D

�
4

�1

�
:

9: maxfj4j; j � 1jg D 4; p D 4:

10: � D .4 � 0/�1 D 1=4;

v D �.1=4/.�1=4; �25=4; �3=4; �1=4/TD.1=16; 25=16; 3=16; 1=16/T:

d T D �.1=4/.0; 0; 0; 0/B�1
R D .0; 0; 0; 0/:

U D B�1
R � .1=16; 25=16; 3=16; 1=16/T.0; 0; 0; 0/ D B�1

R :

OB�1
OR D

0
BBBBB@

�1=8 �1=4 �3=16 1=16

7=8 1 1=4 9=16 25=16

1=8 �1=4 �1=16 3=16

�1=8 �1=4 �1=48 1=16

1=4

1
CCCCCA

:

11: k D 5; B D f4; 2; 6; 1; 7g; R D f1; 2; 6; 3; 4g; N D f3; 5g; R0 D f5g:
B�1

R D OB�1
OR : Nx7 D 0; Na5; nC1 D 0:

Iteration 4:

4. �N D

0
BBBBB@

1 �2

3

4

�2

1
CCCCCA

T0
BBBBB@

�1=8 �1=4 �3=16 1=16

7=8 1 1=4 9=16 25=16

1=8 �1=4 �1=16 3=16

�1=8 �1=4 �1=48 1=16

1=4

1
CCCCCA

T0
BBBBB@

0

1

0

0

0

1
CCCCCA

D
�

7=8

9=8

�
.

5. minf7=8; 9=8g � 0.
6. The basic optimal solution and optimal value:

Nx D .35=4; 0; 0; 35=4; 0; 11; 0/T; Nx8 D �79=2:

20.6.1 Starting-Up

The preceding method requires a feasible deficient-basis reduced tableau (or
solution) to get itself started. Such a reduced tableau may be converted from
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a feasible deficient-basis tableau, which can be generated by a single-artificial-
variable based approach (see Sects. 20.4 and 20.7).

Assume that a feasible deficient-basis tableau is available. If column index set

J D fj 2 N j Nzj < 0g

is empty, then optimality is already attained, and we are done. In the other case,
determine a pivot column index

q D arg min
j 2J

Nzj :

Taking the largest component of Naq.R0/ in module as pivot, perform a rank-
increasing iteration if R0 ¤ ; and Naq.R0/ ¤ 0.

These steps are repeated until J D ; or R0 D ; or Naq.R0/ D 0. In the latter two
cases, a wanted tableau can be created by performing elementary transformations
by taking Nzq as pivot (before that, NxB column should be in place of RHS column and
the value of the south-east corner be set to zero).

Alternatively, the index q 2 J may be selected such that Naq.R0/ has the minimum
number of nonzero components, if any.

20.7 Phase-I: The Most-Obtuse-Angle Column Rule

As was seen in Sect. 20.4, a feasible deficient-basis tableau can be created by solving
the auxiliary program (20.12) using the deficient-basis method. Since the program is
itself in reduced form, it is more attractive to use instead the deficient-basis reduced
method, presented in the previous section. Since the program has equal xnC1 column
and the right-hand side, the associated computation can be simplified considerably.

To explain, put the initial tableau of (20.12) in the following form:

xT xnC1 RHS

A b b

Take Nx D 0; NxnC1 D 1 as the initial solution. Assume that the current deficient-basis
tableau is

xT
B xT

N xnC1 RHS

I NNR
NbR

NbR

NNR0

where B D fj1; � � � ; jkg; R D fi1; � � � ; ikg. It represents equalities

xB C NNRxN D � NbRxnC1 C NbR; NNR0xN D 0:
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If set

S D ft j Nbit < 0; t D 1; : : : ; kg

is empty, then NxnC1 can be decreased from 1 until reaching 0, as leads to a feasible
solution to the original problem, i.e.,

NxB D NbR � 0; NxN D 0:

If S is nonempty, the deficient-basis reduced method determines a row index

s 2 arg min
t2S

� Nxjt =
Nbit :

In our case, there is usually a tie in selection of s, since Nxjt D 0; 8 t 2 S . As the
according stepsize vanishes, no solution updating should occur. For such a highly
degenerate case, we use the following rule instead:

s 2 arg min
t2S

Nbit :

This rule is not only stable, but also advantageous in the sense of the most-obtuse-
angle heuristics.

Thereby, the preceding tableau is simplified to

xT
B xT

N RHS

I NNR
NbR

NNR0

(20.22)

The subsequent steps are then the same as those in Algorithm 20.6.1. The
resulting algorithm turns out to be a generalized version of Algorithm 13.3.1.

Algorithm 20.7.1 (Deficient-basis Phase-I: the most-obtuse-angle column rule).
Initial: deficient-basis tableau of form (20.22) with B; R; N; R0; 1 � k � m. This
algorithm finds a feasible deficient-basis tableau.

The same as Algorithm 20.6.1 except for its steps 1–5 replaced by

1. Determine s 2 arg minf Nbit j t D 1; : : : ; kg.
2. Stop if Nbis � 0 (feasibility achieved).
3. Do nothing.
4. Determine q 2 arg minj 2N Nais ; j .
5. Stop if Nais ; q � 0 (infeasible problem).

To get the preceding Algorithm started, the procedure described in Sect. 20.5.1
may be utilized for creating an initial deficient-basis. For matching the Algorithm,
however, nothing would be compared with the following.
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Algorithm 20.7.2 (Initial basis: tableau form). Initial: . NA D A j Nb D b/; B D
;; R D ;; N D A; R0 D f1; � � � ; mg; k D 0. This algorithm finds a deficient-basis
tableau.

1. Determine p 2 arg maxi2R0 j Nbi j.
2. Stop if j Nbpj D 0 (deficient-basis attained).
3. Stop if J D fj j Nap j

Nbp > 0; j 2 N g D ; (infeasible problem).
4. Determine q 2 arg maxj 2J j Nap j j.
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
6. Set k D k C 1, bring q from N to B and p from R0 to R.
7. Go to step 1 if R0 ¤ ;.
8. Stop (full basis attained).

Example 20.7.1. Solve the following problem :

min f D 7x1 C 2x2 C 3x3 � 2x4 C 9x7 � 2x8;

s:t: �5x1 � x2 � 5x3 C 2x4 C x5 C x6 � 3x7 � 3x8 D �9;

2x1 C 2x2 � 2x3 C x4 C 3x5 � x6 C x7 � 2x8 D �9;

5x1 � 3x2 � 3x4 C 5x5 � 3x6 C 2x7 C x8 D 2;

3x2 C x4 C 3x7 D 0;

� 4x7 D 0:

Answer

(1) Call Algorithm 20.7.2 to determine an initial basis. The equality constraints can
be represented by the following tableau:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�5 �1 �5 2 1 1 �3 �3 �9

2 2 �2 1 3 �1 1 �2 �9

5 �3 �3 5 �3 2 1 2

3 1 3

�4

corresponding to B D ;; N D f1; � � � ; 8g; R D ;; R0 D f1; � � � ; 5g; k D 0.

Iteration 1:

1. max fj � 9j; j � 9j; j2jg D 9; p D 1.
4. max fj � 5j; j � 1j; j � 5j; j � 3j; j � 3jg D 5; q D 1.
5. Multiply row 1 by �1=5, then add �2; �5 times of row 1 to rows 2,3,

respectively.
6. k D 1; B D f1g; N D f2; � � � ; 8g; R D f1g; R0 D f2; � � � ; 5g.
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x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 1=5 1 �2=5 �1=5 �1=5 3=5 3=5 9=5

8=5 �4 9=5 17=5 �3=5 �1=5 �16=5 �63=5

�4 �5 �1 6 �2 �1 �2 �7

3 1 3

�4

Iteration 2:

1. max fj � 63=5j; j � 7jg D 63=5; p D 2.
4. max fj � 4j; j � 3=5j; j � 1=5j; j � 16=5jg D 4; q D 3.
5. Multiply row 2 by �1=4, then add �1; 5 times of row 2 to rows 1,3, respectively.
6. k D 2; B D f1; 3g; N D f2; 4; � � � ; 8g; R D f1; 2g; R0 D f3; 4; 5g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 3=5 1=20 13=20 �7=20 11=20 �1=5 �27=20

�2=5 1 �9=20 �17=20 3=20 1=20 4=5 63=20

�6 �13=4 7=4 �5=4 �3=4 2 35=4

3 1 3

�4

Iteration 3:

1. max fj35=4jg; p D 3.
4. max fj7=4j; j2jg D 2; q D 8.
5. Multiply row 3 by 1=2, then add 1=5; �4=5 times of row 3 to rows 1,2,

respectively.
6. k D 3; B D f1; 3; 8g; N D f2; 4; 5; 6; 7g; R D f1; 2; 3g; R0 D f4; 5g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 �11=40 33=40 �19=40 19=40 �19=40

2 1 17=20 �31=20 13=20 7=20 �7=20

�3 �13=8 7=8 �5=8 �3=8 1 35=8

3 1 3

�4

A deficient-basis attained

(2) Call Algorithm 20.7.1 to achieve feasibility.

Iteration 4:

1. min f�19=40; �7=20; 35=8g D �19=40; s D 1.
3. min f�11=40; �19=40g D �19=40; q D 6.
6. Naq.R0/ D 0.
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10. Multiply row 1 by �40=19, then add �13=20; 5=8 times of row 1 to rows 2,3,
respectively.

11. k D 3; B D f6; 3; 8g; N D f1; 2; 4; 5; 7g; R D f1; 2; 3g; R0 D f4; 5g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�40=19 11=19 �33=19 1 �1 1

26=19 2 1 9=19 �8=19 1 �1

�25=19 �3 �24=19 �4=19 �1 1 5

3 1 3

�4

Iteration 5:

1. min f1; �1; 5g D �1; s D 2.
3. min f�8=19g; q D 5.
6. Naq.R0/ D 0.

10. Multiply row 2 by �19=8, then add 33=19; 4=19 times of row 2 to rows 1,3,
respectively.

11. k D 3; B D f6; 5; 8g; N D f1; 2; 3; 4; 7g; R D f1; 2; 3g; R0 D f4; 5g,

Feasibility is attained: NxB D .41=8; 19=8; 11=2/T; NxN D 0. Add the objective
row at the bottom and f D x9 column, and add 2 times row 3 to the bottom line to
transform it to a feasible deficient-basis tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�31=4 �33=4 �33=8 �11=8 1 �41=8 41=8

�13=4 �19=4 �19=8 �9=8 1 �19=8 19=8

�2 �4 �1=2 �3=2 �3=2 1 11=2

3 1 3

�4

3 �6 2 �5 6 �1 11

with solution

Nx D .0; 0; 0; 0; 19=8; 41=8; 0; 11=2; 0/T ; Nx9 D �11: (20.23)

(3) Convert the preceding to a reduced tableau by the approach described in
Sect. 20.6.1.

Iteration 6:
J D f2; 4g; minf�6; �5g D �6; q D 2; Naq.R0/ ¤ 0.
Multiply row 4 by 1=3, then add 33=4; 19=4; 4; 6 times of row 6 to rows 1,2,3,6,
respectively.
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k D 4; B D f6; 5; 8; 2g; N D f1; 3; 4; 7g; R D f1; 2; 3; 4g; R0 D f5g.

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�31=4 �33=8 11=8 1 25=8 41=8

�13=4 �19=8 11=24 1 19=8 19=8

�2 �1=2 �1=6 5=2 1 11=2

0 1 0 1=3 1

0 0 �4

3 2 �3 12 �1 11

Iteration 7:
Put NxB column in place of RHS column (by zeroing the value 11 at the south-east
corner).
J D f4g; q D 4; NaqR0 D 0.
Multiply row 6 by �1=3, then add �11=8; �11=24; 1=6; �1=3 times of row 6 to
rows 1,2,3,4, respectively.

x1 x2 x3 x4 x5 x6 x7 x8 x9 NxB

�51=8 �77=24 1 69=8 �11=24 41=8

�67=24 �149=72 1 101=24 �11=72 19=8

�13=6 �11=18 11=6 1 1=18 11=2

1=3 1 2=9 7=3 �1=9

0 0 �4 0

�1 �2=3 1 �4 1=3

k D 5; B D f6; 5; 8; 2; 4g; N D f1; 3; 7g; R D f1; 2; 3; 4; 6g; R0 D f5g.

(4) Call Algorithm 20.6.1.

Iteration 7:

1. Nw D .�11=24; �11=72; 1=18; �1=9; 1=3/T 6� 0.
2. ˛ D 0; s D 4.
4. minf1=3; 2=9; 7=3g � 0.
5. Optimality achieved by solution (20.23).



Chapter 21
Dual Deficient-Basis Method

This chapter will attack the standard LP problem from the dual side. To achieve
optimality, the method presented in the previous chapter proceeds toward dual
feasibility while maintaining primal feasibility. In this chapter, will derived is
its dual version, achieving primal feasibility while maintaining dual feasibility
(Pan 1998a, 2004, 2005). In addition, some promising methods are developed by
combining the deficient-basis and D-reduced methods.

21.1 Dual Deficient-Basis Method: Tableau Form

Assume that deficient-basis tableau (20.4) is dual feasible, satisfying Nzj � 0. If
Nb � 0, optimality is already achieved; else, determine row index is such that

is 2 arg min
it 2R

Nbit < 0: (21.1)

Such doing will let the basic infeasible variable xjp leave the basis, hence become
feasible.

Lemma 21.1.1. Assume that NzN � 0 and Nbis < 0. If column index set

J D fj 2 N j Nais j < 0g

is empty, then problem is infeasible.

Proof. It is seen that since Nbis < 0, the isth row of the tableau actually gives
an upper-hill direction, with respect to the dual objective function. If the entries
of this row are all nonnegative, then the stepsize taken along this direction is
allowed arbitrarily large while maintaining dual feasibility. This means that the dual
problems of (1.8) is unbounded, hence there is no feasible solution to (1.8). ut

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__21,
© Springer-Verlag Berlin Heidelberg 2014
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Now assume that J ¤ ;. The largest possible stepsize that can be taken is

ˇ D �Nzq= Nais q D minf�Nzj = Nais j j Nais j < 0; j 2 J g � 0; (21.2)

where column index q corresponds to a dual constraint, broking increasing of the
dual objective value. Adding ˇ � 0 times of the isth row to the bottom (objective)
row updates the dual solution. Consequently, Nzq vanishes, and the south-east entry
of the tableau becomes

� Of D � Nf C ˇ Nbis � � Nf ;

which means that the objective value Of does not decrease, and strictly increases
under the dual nondegeneracy assumption (ˇ > 0).

There will be the following two cases to be handled differently:

(i) Rank-remaining iteration: R0 D ; or Naq.R0/ D 0.

Convert Nais ; q to 1, and eliminate the other nonzeros in the column by elementary
transformations. Consequently, the js-indexed basic column becomes nonbasic,
and the q-indexed nonbasic column becomes basic, while the basic rows remain
basic. So, the rank of the basis remains. Such doing turns Nbis to positive, but
does not touch nonbasic rows at all (including entries in the right-hand side).

(ii) Rank-increasing iteration: R0 ¤ ; and Naq.R0/ ¤ 0.

Determine row index p 2 arg maxi2R0 j Nai qj. Convert Nap; q to 1, and eliminate
the other nonzeros in the column by elementary transformations. Thus, while
all basic columns and rows remain basic, the q-indexed nonbasic column and
p-indexed nonbasic row becomes basic. Hence the rank of the basis matrix
increases by 1. Since the right-hand side remains unchanged, the same row
index is will be selected in the next iteration, until encountering a rank-
remaining iteration to turn Nbis positive.

The associated steps can be summarized to the following algorithm.

Algorithm 21.1.1 (Dual deficient-basis algorithm: tableau form). Initial : a dual
feasible deficient-basis tableau of form (20.4) with B; N; R; R0; 1 � k � m. This
algorithm solves the standard LP problem.

1. Determine s such that is 2 arg minit 2R
Nbit .

2. Stop if Nbis � 0.
3. Stop if J D fj 2 N j Nais j < 0g.
4. Determine column index q and stepsize ˇ by (21.2).
5. If ˇ ¤ 0, add ˇ times of the isth row to the bottom row.
6. Go to step 10 if R0 D ; or Naq.R0/ D 0.
7. Determine row index p 2 arg maxi2R0 j Nai qj.
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8. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

9. Set k D k C 1, bring q from N to B and p from R0 to R, and go to step 3.
10. Convert Nais q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
11. Update .B; N / by exchanging js and q.
12. Go to step 1.

Theorem 21.1.1. Under the dual nondegenerate assumption, Algorithm 21.1.1
terminates either at

(i) Step 2, reaching a basic optimal solution; or at
(ii) Step 3, detecting infeasibility of the problem.

Proof. The proof of finiteness of algorithm is similar to that in the conventional
simplex context. The meanings of its exits come from Lemmas 20.1.1 and 21.1.1,
as well as discussions preceding the algorithm. ut
Example 21.1.1. Solve the following problem by the Algorithm 21.1.1:

min f D 4x3 C x4 C 3x5 C x6 C 3x7 C 2x8;

s:t: x1 C 2x3 � x4 C x5 � x6 � 3x7 � 3x8 D �10;

C x2 C x3 C 2x4 � x5 C x6 � 2x7 C x8 D �7;

� 3x3 � x4 � 3x5 � x6 C 2x8 D 0;

C x3 C x4 C x5 C 3x6 � x8 D 0;

� x3 C x4 � x5 � 2x6 C 2x8 D 0;

xj � 0; j D 1; � � � ; 8:

Answer s D 2; B D f1; 2g; R D f1; 2g. N D f3; 4; 5; 6; 7; 8g; R0 D f3; 4; 5g.
The initial feasible dual deficient-basis tableau is

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 2 �1 1 �1 �3 �3 �10

1 1 2 �1 1 �2 1 �7

�3 �1 �3 �1 2*

1 1 1 3 �1

�1 1 �1 �2 2

4 1 3 1 3 2

Iteration 1:

1. minf�10; �7g D �10 < 0; s D 1; is D 1.
3. J D f4; 6; 7; 8g ¤ ;.
4. ˇ D minf�1=.�1/; �1=.�1/; �3=.�3/; �2=.�3/g D 2=3; q D 8.
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5. Add 2=3 times of row 1 to the bottom row.
6. Naq.R0/ D .2; �1; 2/T ¤ 0.
7. maxfj2j; j � 1j; j2jg D 2; p D 3.
8. Multiply row 3 by 1=2, then add 3; �1; 1; �2 times of row 3 to rows 1,2,4,5,

respectively.
9. k D 3; B D f1; 2; 8g; r D f1; 2; 3g; N D f3; 4; 5; 6; 7g; R0 D f4; 5g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 �5=2 �5=2 �7=2 �5=2 �3 �10

1 5=2 5=2 1=2 3=2 �2 �7

�3=2 �1=2 �3=2 �1=2 1

�1=2 1=2 �1=2 5=2

2 2* 2 �1

2=3 16=3 1=3 11=3 1=3 1 �20=3

Iteration 2:

3. J D f3; 4; 5; 6; 7g ¤ ;.
4. ˇ D minf�.16=3/=.�5=2/; �.1=3/=.�5=2/;�.11=3/=.�7=2/;�.1=3/=.�5=2/;

�1= � 3g D 2=15; q D 4.
5. Add 2=15 times of row 1 to the bottom row.
6. Naq.R0/ D .�1=2; 2/T ¤ 0.
7. maxfj1=2j; j2jg D 2; p D 5.
8. Multiply row 5 by 1=2, then add 5=2; �5=2; 1=2; �1=2; times of row 5 to rows

1,2,3,4, respectively.
9. k D 4; B D f1; 2; 8; 4g; R D f1; 2; 3; 5g; N D f3; 5; 6; 7g; R0 D f4g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 �1 �15=4 �3 �10

1 �2 11=4 �2 �7

�1 �1 �3=4 1

�1 �1 11=4*

1 1 1 �1=2

4=5 5 16=5 3=5 �8

Iteration 3:

3. J D f5; 6; 7g ¤ ;.
4. ˇ D minf�.16=5/=.�5=2/; 0=.�15=4/; �.3=5/=.�3/g D 0; q D 6.
6. Naq.R0/ D .11=4/ ¤ 0.
7. maxfj11=4jg D 11=4; p D 4.
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8. Multiply row 4 by 4=11, then add 15=4; �11=4; 3=4; 1=2 times of row 4 to rows
1,2,3, respectively.

9. k D 5; B D f1; 2; 8; 4; 6g; R D f1; 2; 3; 5; 4g; N D f3; 5; 7g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 �15=11 �26=11 �3* �10

1 1 �1 �2 �7

�14=11 �14=11 1

�4=11 �4=11 1

9=11 1 9=11

4=5 5 16=5 3=5 �8

Iteration 4:

3. J D f3; 5; 7g ¤ ;.
4. ˇ D minf�5=.�15=11/; �.16=5/=.�26=11/; �.3=5/= � 3g D 1=5; q D 7.
5. Add 1=5 times of row 1 to the bottom row.
6. R0 D ;.

10. Multiply row 1 by �1=3, then add 2; �3=5 times of row 1 to rows 2,6,
respectively.

11. B D f7; 2; 8; 4; 6g; N D f1; 3; 5g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1=3 5=11 26=33 1 10=3

�2=3* 1 21=11 19=33 �1=3

�14=11 �14=11 1

�4=11 �4=11 1

9=11 1 9=11

1 52=11 30=11 �10

Iteration 5:

1. minf10=3; �1=3g D �1=3 < 0; s D 2; is D 2.
3. J D f1g ¤ ;.
4. ˇ D minf�1=.�2=3/g D 3=2; q D 1.
5. Add 3=2 times of the second row to the bottom row.
6. R0 D ;.

10. Multiply row 2 by �3=2, then add 1=3; �1 times of row 2 to rows 1,6,
respectively.

11. B D f7; 1; 8; 4; 6g; N D f2; 3; 5g.
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x1 x2 x3 x4 x5 x6 x7 x8 RHS

�1=2 �1=2 1=2 1 7=2

1 �3=2 �63=22 �19=22 1=2

�14=11 �14=11 1

�4=11 �4=11 1

9=11 1 9=11

3=2 167=22 79=22 �21=2

Iteration 6:

1. minf7=2; 1=2g � 0.
2. The basic optimal solution and optimal value:

Nx D .1=2; 0; 0; 0; 0; 0; 7=2; 0/T; Nf D 21=2;

21.2 Dual Deficient-Basis Method

As all quantities involved in Algorithm 21.1.1 can be found in Table 20.1. It is a
easy task to write its revised version.

Algorithm 21.2.1 (Dual deficient-basis algorithm). Initial :B; N; R; R0; 1 �
k � m. B�1

R ; NzN D cN � N T
RB�T

R cB � 0I NzB D 0I NxB D B�1
R bR. This algorithm

solves the standard LP problem.

1. Determine s such that Nxjs D minf Nxjt j t D 1; � � � ; kg.
2. If Nxjs � 0, compute Nf D cT

B NxB , and stop (optimality achieved ).
3. Compute �N D N T

RB�T
R es .

4. Stop if J D fj 2 N j �j < 0g D ; (infeasible problem).
5. Determine ˇ and column index q such that ˇ D �Nzq=�q D minj 2J �Nzj =�j .
6. If ˇ ¤ 0, update NzN D NzN C ˇ�N ; Nzjs D Nzjs C ˇ.
7. Compute Naq.R/ D B�1

R aq.R/.
8. Go to step 12 if R0 D ; or Naq.R0/ D aq.R0/ � BR0 Naq.R/ D 0.
9. Determine row index p 2 arg maxi2R0 j Nai qj.

10. Update B�1
R by (20.10).

11. Update k D k C 1; Nxq D 0, bring q from N to B and p from R0 to R, and go
to step 3.

12. Compute ˛ D Nxjs = Nais ; q .
13. If ˛ ¤ 0, set Nxq D ˛, and update NxB D NxB � ˛ Naq.R/.
14. Update B�1

R by (20.11).
15. Update .B; N / by exchanging js and q.
16. Go to step 1.
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Table 21.1 Ratio of MINS
5.51 to RDPPA 1.10 Problem Iteration counts Time % degen

Small (20) 1.02 1.56 1.08

Medium (15) 1.10 1.06 0.89

Large (15) 1.44 1.25 1.07

Average (50) 1.37 1.24 1.02

Kennington (8) 5.68 2.83 0.30

BPMPD (5) 3.08 1.41 0.92

Netlib (2) 0.94 1.01 1.80

Average (15) 4.58 2.14 0.47

The preceding Algorithm needs a dual feasible tableau (solution) to get itself
started. The (conventional) dual simplex Phase-I methods (Chap. 14) are applicable
to this purpose, almost without any modification.

Originally proposed was an analogue to Algorithm 21.2.1, which uses the
rectangular matrix B as deficient basis (Pan 2005). As they roughly reflect the
behavior of Algorithm 21.2.1, the numerical results reported in the paper are cited
below.

The computational experiments were carried out on a Pentium III 550E PC
with Windows 98 operating system, 256 MB inner storage and about 16 decimal
precision. Visual Fortran 5.0 compiler was used. There were following two codes
involved:

1. MINOS 5.51.
2. RDPPA 1.10.

The second code was developed by modifying MINOS 5.5.1 as less as possible.
The test set of 65 standard LP problems were the same as those in Sect. 20.3,
classified to the same sets with negligible difference.

Table 21.1 lists iterations and time ratios (MINOS 5.51/RDPPA 1.10), in which
the last column gives degenerate iterations percentage ratios.

It is seen from Table 21.1 that the new code significantly outperformed MINOS
5.51 overall. For the first group of problems, the time ratio is 1:24, and for the
second group, the time ratio reaches 2:14. So, the superiority margin is higher with
large-scale sparse problems. Comparing these results with those listed in Sect. 20.3,
we conclude that the dual deficient-basis method appears to be better than its primal
counterpart.

From the last column of Table 21.1, it is seen that the degenerate iteration ratio
for the first group is 1:02, very close to 1, whereas that for the second group of larger
problems is significantly less than 1. Overall, the proportion of degenerate iterations
is high with the new method. Therefore, it is not true that degeneracy itself degrades
algorithm’s efficiency.
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Example 21.2.1. Solve the following problem by Algorithm 21.2.1:

min f D 4x3 C x4 C 3x5 C x6 C 5x7 C 2x8;

s:t: x1 C 2x3 � x4 C x5 � x6 � 3x7 � 3x8 D �9;

C x2 C x3 C 2x4 � x5 C x6 � 2x7 C x8 D �4;

� 3x3 � 3x5 C 2x8 D 0;

C x3 C x5 � x8 D 0;

� x3 � x5 C 2x8 D 0;

xj � 0; j D 1; � � � ; 8:

Answer Initial :s � 2; B D f1; 2g; R D f1; 2g. N D f3; 4; 5; 6; 7; 8g; R0 D
f3; 4; 5g. BR D I . NzN D .4; 1; 3; 1; 5; 2/T. NzB D 0; NxB D .�9; �4/T.

Iteration 1:

1: minf�9; �4g D �9 < 0; s D 1:

3: � D .2; �1; 1; �1; �3; �3/T:

4: J D f4; 6; 7; 8g ¤ ;:

5: ˇ D minf�1=.�1/; �1=.�1/; �5=.�3/; �2=.�3/g D 2=3; q D 8:

6: NzN D .4; 1; 3; 1; 5; 2/TC.2=3/.2; �1; 1; �1; �3; �3/T

D .16=3; 1=3; 11=3; 1=3; 3; 0/T:

N D f3; 4; 5; 6; 7; 8g; Nz1 D 0 C 2=3 D 2=3:

7: Naq.R/ D .�3; 1/T:

8: Naq.R0/ D .2; �1; 2/T ¤ 0:

9: maxfj2j; j � 1j; j2jg D 2; p D 3:

10: p D 3; � D .2 � .0; 0/.�3; 1/T/�1 D 1=2:

v D �.1=2/.�3; 1/T D .3=2; �1=2/T; d T D .0; 0/:

U D
�

1

1

�
�
�

3=2

1=2

� �
0 0

	 D
�

1

1

�
:

OB�1
OR D

0
@1 3=2

1 �1=2

1=2

1
A :

11: k D 3; B D f1; 2; 8g; R D f1; 2; 3g; Nx8 D 0; N D f3; 4; 5; 6; 7g;
R0 D f4; 5g:

Iteration 2:

3: s D 1; �N D
0
@ 2 �1 1 �1 �3

1 2 �1 1 �2

�3 �3 0

1
A

T 0
@1

0

3=2

1
AD.�5=2; �1; �7=2; �1; �3/T:

4: J D f3; 4; 5; 6; 7g ¤ ;:

5: ˇ D minf�.16=3/=.�5=2/; �.1=3/=.�1/; �.11=3/=.�7=2/; �.1=3/=.�1/;

� .3/=.�3/g D 1=3; q D 4:

6: NzN D .16=3; 1=3; 11=3; 1=3; 3/T C .1=3/.�5=2; �1; �7=2; �1; �3/T

D .9=2; 0; 5=2; 0; 2/T; N D f3; 4; 5; 6; 7g; Nz1 D 2=3 C 1=3 D 1:
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7: Naq.R/ D
0
@1 3=2

1 �1=2

1=2

1
A
0
@�1

2

0

1
A D

0
@�1

2

0

1
A ;

8: Naq.R0/ D
�

0

0

�
�
�

0 0 �1

0 0 2

�0@�1

2

0

1
A D

�
0

0

�
:

12: ˛ D .�9/=.�1/ D 9:

13: Nx4 D 9; NxB D .�9; �4; 0/T � 9.�1; 2; 0/T D .0; �22; 0/T:

14: B�1
R D

0
@�1

2 1

1

1
A
0
@1 3=2

1 �1=2

1=2

1
A D

0
@�1 �3=2

2 1 5=2

1=2

1
A :

15: B D f4; 2; 8g; N D f1; 3; 5; 6; 7g:
Iteration 3:

1: minf9; �22; 0g D �22 < 0; s D 2:

3: �N D
0
@1 2 1 �1 �3

1 �1 1 �2

�3 �3

1
A

T 0
@2

1

5=2

1
A D .2; �5=2; �13=2; �1; �8/T:

4: J D f3; 5; 6; 7g ¤ ;:

5: ˇ D minf�.9=2/=.�5=2/; �.5=2/=.�13=2/; 0=.�1/; �2=.�8/g D 0;

q D 6:

7: Naq.R/ D
0
@�1 �3=2

2 1 5=2

1=2

1
A
0
@�1

1

0

1
A D

0
@ 1

�1

0

1
A ; Naq.R0/ D

�
0

0

�
:

8: Naq.R0/ D 0:

12: ˛ D .�22/=.�1/ D 22:

13: NxB D .9; �22; 0/T � 22.1; �1; 0/T D .�13; 0; 0/T; Nx6 D 22:

14: B�1
R D

0
@1 1

�1

1

1
A
0
@�1 �3=2

2 1 5=2

1=2

1
A D

0
@ 1 1 1

�2 �1 �5=2

1=2

1
A :

15: B D f4; 6; 8g; N D f1; 2; 3; 5; 7g:
Iteration 4:

1: minf�13; 22; 0g D �13 < 0; s D 1:

3: �N D
0
@1 2 1 �3

1 1 �1 �2

�3 �3

1
A

T0
@1

1

1

1
A D .1; 1; 0; �3; �5/T:

4: J D f5; 7g ¤ ;:

5: ˇ D minf�.5=2/=.�3/; �2=.�5/g D 2=5; q D 7:

6: NzN D ..1; 0; 9=2; 5=2; 2/T C .2=5/.1; 1; 0; �3; �5/T

D .7=5; 2=5; 9=2; 13=10; 0/T; N D f1; 2; 3; 5; 7g;
Nz4 D 0 C 2=5 D 2=5:
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7: Naq.R/ D
0
@ 1 1 1

�2 �1 �5=2

1=2

1
A
0
@�3

�2

0

1
A D

0
@�5

8

0

1
A ; Naq.R0/ D

�
0

0

�
:

8: Naq.R0/ D 0:

12: ˛ D .�13/=.�5/ D 13=5:

13: NxB D .�13; 22; 0/T � .13=5/.�5; 8; 0/T D .0; 6=5; 0/T; Nx7 D 13=5:

14: B�1
R D

0
@�1=3

�2=3 1

1

1
A
0
@ 1 1 1

�2 �1 �5=2

1=2

1
A D

0
@�1=3 �1=3 �1=3

�8=3 �5=3 �19=6

1=2

1
A :

15: B D f7; 6; 8g; N D f1; 2; 3; 4; 5g:
Iteration 5:

1. minf13=5; 6=5; 0g � 0.
2. The basic optimal solution and optimal value:

Nx D .0; 0; 0; 0; 0; 6=5; 13=5; 0/T; Nf D .1; 5/.6=5; 13=5/T D 71=5:

21.3 Dual Deficient-Basis D-Reduced Method: Tableau Form

In this section, the deficient basis will be incorporated to the dual D-reduced
simplex method (Sect. 17.2). The resulting method is stable, compared with the
dual deficient-basis method, presented in the previous section, and the related search
direction corresponds to the entire dual objective gradient.

Consider the D-reduced problem (17.1). Assume that the order of the deficient
basis equals 1 � k � m � 1 and that the r-indexed row is the datum row (1 � r �
m). Sets B; R; N; R0 are defined by

B D fj1; � � � ; jkg; frg 62 R D fi1; � � � ; ikg; N D AnB;

R0 D f1; � � � ; mgn.R [ frg/: (21.3)

The initial tableau of (17.1) is

xT
B xT

N f RHS
BR NR

BR0 NR0

!T
B !T

N 1

cT
B cT

N �1

(21.4)

which can be converted to the following form by a series of elementary transforma-
tions:
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xT
B xT

N f RHS
I NNR

NNR0

N!T
N 1

NzT
N �1

(21.5)

The preceding is called deficient-basis D-reduced tableau, where the mth row is
the datum row, indexed by r 62 R; R0.

Assume that the current tableau is dual feasible, i.e., NzN � 0. If entries of the
datum row are no more than zero, then there is no feasible solution to the original
problem (Lemma 17.1.1). If this is not the case, determined ˇ and column index q

such that

ˇ D Nzq= N!q D minfNzj = N!j j N!j > 0; j 2 N g � 0:

Add �ˇ times of the datum row to the bottom row to turn Nzq to 0. Then the south-
east entry of the tableau becomes �ˇ, hence the largest possible increment of the
objective value just equals ˇ � 0. Under the nondegeneracy assumption, ˇ > 0,
hence the objective value strictly increases.

The determination of pivot row index depends on whether Naq.R0/ vanishes.

(i) Rank-remaining iteration:R0 D ; or Naq.R0/ D 0.

Determine s 2 arg maxf Nait ;q j t D 1; : : : ; kg. If Nais ; q � 0, it is clear by N!q > 0

that the tableau corresponds to a basic feasible solution, and hence optimality is
achieved (taking the q-indexed column as the datum column). If Nais ; q > 0, take
it as the pivot to make a basis change. In such an iteration, the rank of the basis
remains unchanged.

(ii) Rank-increasing iteration:R0 ¤ ; and Naq.R0/ ¤ 0.

Determine row index p 2 arg maxi2R0 j Nai q j. Take Nap q as the pivot to make a
basis change. Then the rank of the basis increases to k C 1.

In either iterations, the elementary transformations do not touch the datum
row, the bottom row and the right-hand side; so the resulting tableau is again a
dual feasible D-reduced tableau. Repeat these steps until optimality achieved,
or infeasibility of the problem detected.

The overall steps are summarized into the following algorithm.

Algorithm 21.3.1 (Dual deficient-basis D-reduced algorithm 1: tableau form).
Initial : dual feasible deficient-basis D-reduced tableau of form (21.5) with
B; R; N; R0; 1 � k � m � 1. This algorithm solves the D-reduced
problem (17.1).

1. Stop if J D fj 2 N j N!j > 0g D ; (infeasible problem).
2. Determine ˇ and column index q such that ˇ D Nzq= N!q D minj 2J Nzj = N!j .
3. If ˇ ¤ 0, add �ˇ times of the datum row to the bottom row.
4. Go to step 8 if R0 D ; or Naq.R0/ D 0.
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5. Determine row index p 2 arg maxi2R0 j Nai qj.
6. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
7. Set k D k C 1, bring q from N to B and p from R0 to R, and go to step 1.
8. Determine s 2 arg maxf Nait ;q j t D 1; : : : ; kg.
9. If Nais ; q � 0, compute Nxq D 1= N!q; NxB D � Nxq Naq.R/, and stop (optimality

achieved).
10. Convert Nais ; q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
11. Update .B; N / by exchanging js and q.
12. Go to step 1.

Example 21.3.1. Solve the following problem by Algorithm 21.3.1:

min f D 3x4 C 2x5 C x6 C 5x7 C 6x8;

s:t: x1 � 6x4 C x5 C 4x6 C 6x7 D 9;

C x2 C 2x4 � 7x6 � 8x7 C x8 D �6;

C x3 � 4x5 C 2x8 D 0;

C 3x4 C 2x5 C 3x7 D 3;

� x4 C 2x5 � 4x6 � 6x7 C 3x8 D 2;

xj � 0; j D 1; : : : ; 8:

Answer Initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 �6 1 4 6 9

1 2 �7 �8 1 �6

1 �4 2 0

3 2 3 0 3

�1 2 �4 �6 3 2*

3 2 1 5 6 0

Multiply row 5 by 1=2, then add �9; 6; �3 times of row 5 to rows 1,2,4,
respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 �3=2 �8 22 33 �27=2

1 �1 6 �19 �26 10

1 �4 2

9=2 �1* 6 12 �9=2

�1=2 1 �2 �3 3=2 1

3 2 1 5 6
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Iteration 1: k D 3, B D f1; 2; 3g; N D AnB; R D f1; 2; 3g; R0 D f4g.

1. J D f5; 8g.
2. ˇ D minf2=1; 6=.3=2/g D 2=1; q D 5.
3. Add �2 times of row 5 to the bottom row.
4. Naq.R0/ ¤ 0.
5. maxfj � 1jg; p D 4.
6. Multiply row 4 by �1, then add 8; �6; 4; �1 times of row 4 to rows 1,2,3,5,

respectively:
7. k D 4, B D f1; 2; 3; 5g; N D AnB; R D f1; 2; 3; 4g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 �75=2 �26 �63 45=2

1 26* 17 46 �17

1 �18 �24 �48 20

�9=2 1 �6 �12 9=2

4 4 9 �3 1

4 5 11 3 �2

Iteration 2:

1. J D f4; 6; 7g.
2. ˇ D minf4=4; 5=4; 11=9/g D 1; q D 4.
3. Add �1 times of row 5 to the bottom row.
4. R0 D ;.
8. maxf�75=2; 26; �18; �9=2g D 26 > 0; s D 2.

10. Multiply row 2 by 1=26, then add 75=2; 18; 9=2,�4 times of row 2 to rows
1,3,4,5, respectively:

11. k D 4, B D f1; 4; 3; 5g; N D AnB; R D f1; 2; 3; 4g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 75=52 �77=52 87=26 �105=52

1=26 1 17=26* 23=13 �17=26

9=13 1 �159=13 �210=13 107=13

9=52 1 �159=52 �105=26 81=52

�2=13 18=13 25=13 �5=13 1

1=9 11=18 113=18 �67=18

Iteration 3:

1. J D f6; 7g.
2. ˇ D 0; q D 6.
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4. R0 D ;.
8. maxf�77=52; 17=26; �159=13; �159=52g D 17=26 > 0; s D 2.

10. Multiply row 2 by 26=17, then add 77=52; 159=13; 159=52; �18=13 times of
row 2 to rows 1,3,4,5, respectively:

11. k D 4, B D f1; 4; 3; 5g; N D AnB; R D f1; 2; 3; 4g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 26=17 77=34 125=17 �7=2

1=17 26=17 1 46=17 �1

24=17 1 318=17 288=17 �4

6=17 159=34 1 72=17 �3=2

�4=17 �36=17 �31=17 1 1

1=9 11=18 113=18 �67=18

Iteration 4:

1. J D f8g.
2. ˇ D 113=18; q D 8.
4. R0 D ;.
8. maxf�7=2; �1; �4; �3:2g D �1 � 0; s D 2.
9. Nx8 D 1; NxB D .7=2; 1; 4; 3=2/T . The basic optimal solution:

Nx D .7=2; 0; 4; 0; 3=2; 1; 0; 1/T ; Nf D 10:

It might be accepted that if the same approach is used, the search direction
determined within a subspace of high dimension has better quality than that
within a subspace of lower dimension. Therefore, it should be attractive to get
Algorithm 21.3.1 started from k D 0. The according sets are

B; R D ;; N D A; R0 D f1; � � � ; r � 1; r C 1; � � � ; mg; (21.6)

and the basis matrix BR may be regarded as of 0-order. Subsequent steps are the
same as those in the usual case. The according tableau is called 0-order D-reduced
tableau; if it is still denoted by tableau (21.5), I and NNR should be viewed as
empty sets, NNR0 the submatrix of A after the r-indexed (datum) row deleted. If
the bottom row satisfies NzN � 0, it is called 0-order dual feasible D-reduced tableau.
Initially, therefore, a series of rank-increasing iterations are usually performed under
condition Naq.R0/ ¤ 0.

Example 21.3.2. Solve the following problem by Algorithm 21.3.1, starting from
the 0-order D-reduced tableau:
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min f D 2x1 C x2 C 2x3 C x4 C 4x5 C 5x6 C 2x7;

s:t: C 2x2 � 3x5 � 4x6 C 6x7 D 0;

�2x1 � 4x3 C x6 � x7 D �1;

C 3x2 � 2x4 C 4x5 D 8;

�3x1 C 2x3 � 4x4 � 2x6 D 0;

2x2 � x3 C 2x5 � 5x7 D �1;

xj � 0; j D 1; � � � ; 7:

Answer Initial tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

2 �3 �4 6

�2 �4 1 �1 �1

3 �2 4 8

�3 2 �4 �2

2 �1 2 �5 �1

2 1 2 1 4 5 2

Convert the preceding to the 0-order D-reduced tableau:maxfj � 1j; j8j; j � 1jg D
8; r D 3, Take the row 3 as the datum row (which also involves minimum nonzeros).

Multiply the datum row by 1=8, then add it to row 2 as well as row 5:

x1 x2 x3 x4 x5 x6 x7 RHS

2 �3 �4 6

�2 3=8 �4 �1=4 1=2 1 �1

3=8 �1=4 1=2 1

�3 2 �4 �2

19=8* �1 �1=4 5=2 �5

2 1 2 1 4 5 2

where k D 0; B D ;; R D ;; N D f1; � � � ; 7g; R0 D f1; 2; 4; 5g, datum row
r D 3.

Iteration 1:

1. J D f2; 5g ¤ ;.
2. ˇ D minf1=.3=8/; 4=.1=2/g D 8=3; q D 2.
3. Add �8=3 times of row 3 to the bottom row.
4. Naq.R0/ ¤ 0.
5. maxfj2j; j3=8j; j3=8j; j19=8jg D 19=8; p D 5.
6. Multiply row 5 by 8=19, then add �2; �3=8; �3=8; �1 times of row 5 to rows

1,2,3,6, respectively.
7. k D 1; B D f2g; R D R [ f5g D f5g; N D f1; 3; 4; 5; 6; 7g; R0 D f1; 2; 4g.
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x1 x2 x3 x4 x5 x6 x7 RHS

16=19 4=19 �97=19 �4 194=19*

�2 �73=19 �4=19 2=19 1 �4=19

3=19 �4=19 2=19 15=19 1

�3 2 �4 �2

1 �8=19 �2=19 20=19 �40=19

2 2 5=3 8=3 5 2 �8=3

Iteration 2:

1. J D f3; 5; 7g ¤ ;.
2. ˇ D minf2=.3=19/; .8=3/=.2=19/; 2=.15=19/g D 38=15; q D 7.
3. Add �38=15 times of row 3 to the bottom row.
4. Naq.R0/ ¤ 0.
5. maxfj194=19j; j � 4=19jg D 194=19; p D 1.
6. Multiply row 1 by19=194, then add 4=19; �15=19; 40=19; �2 times of row 1 to

rows 2,3,4,6, respectively.
7. k D 2; B D f2; 7g; R D f5; 1g; N D f1; 3; 4; 5; 6g; R0 D f2; 4g.

x1 x2 x3 x4 x5 x6 x7 RHS

8=97 2=97 �1=2 �38=97 1

�2 �371=97 �20=97 89=97

9=97 �22=97 1=2 30=97 1

�3 2 �4 �2

1 �24=97 �6=97 �80=97

2 8=5 11=5 12=5 5 �26=5

Iteration 3:

1. J D f3; 5; 6g ¤ ;.
2. ˇ D minf.8=5/=.9=97/; .12=5/=.1=2/; 5=.30=97/g D 24=5; q D 5.
3. Add �24=5 times of row 3 to the bottom row:

x1 x2 x3 x4 x5 x6 x7 RHS

8=97 2=97 �1=2 �38=97 1

�2 �371=97 �20=97 89=97

9=97 �22=97 1=2 30=97 1

�3 2 �4 �2

1 �24=97 �6=97 �80=97

2 112=97 319=97 341=97 �10

4. Naq.R0/ D 0.
8. maxf�1=2; 0g D 0 � 0.
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9. Nx5 D 2; NxB D .0; 1/T. The basic optimal solution and optimal value:

Nx D .0; 0; 0; 0; 2; 0; 1/T; Nf D 10:

After pivot column index q is determined, there may be choices for taking either
p 2 R0 or is 2 R as the pivot row index. In doing so, Algorithm 21.3.1 gives the
priority to R0. An alternative is to focus on numerical stability as follows. Define

� D maxf�1; �2g; �1 D j Nap qj D max
i2R0

j Nai qj �2 D Nais ;q D maxf Nait ;q j t D 1; : : : ; kg

(where �1 or �2 is set to zero if R0 or R is empty). Then, if � D �1, take p 2 R0; if
� D �2, take is 2 R.

Nevertheless, it seems to be preferable to keep the rank of the basis as low as
possible. To this end, the following variant gives the priority to R rather than R0.

Algorithm 21.3.2 (Dual deficient-basis D-reduced algorithm 2: tableau form).
Initial: dual feasible deficient-basis D-reduced tableau of form (21.5) with
B; R; N; R0; 1 � k � m � 1. This algorithm solves the D-reduced
problem (17.1).

1. Stop if J D fj 2 N j N!j > 0g D ; (infeasible problem).
2. Determine column index q and ˇ such that ˇ D Nzq= N!q D minj 2J Nzj = N!j .
3. If ˇ ¤ 0, add �ˇ times of the datum row to the bottom row.
4. Determine s 2 arg maxf Nait ;q j t D 1; : : : ; kg.
5. Go to step 8 if Nais ; q � 0.
6. Convert Nais ; q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
7. Update .B; N / by exchanging js and q, and go to step 1.
8. If R0 D ; or Naq.R0/ D 0, compute Nxq D 1= N!q; NxB D � Nxq Naq.R/, and stop

(optimality achieved).
9. Determine row index p 2 arg maxi2R0 j Nai qj.

10. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

11. Set k D k C 1, bring q from N to B and p from R0 to R.
12. Go to step 1

Example 21.3.3. Solve the problem in Example 21.3.1 by Algorithm 21.3.2:

min f D 2x1 C x2 � 2x3 C x4 � 3x5 C x6 C 2x7 � 2x8;

s:t: 2x1 � 3x2 C x3 � 6x4 C x5 C 4x6 C 6x7 D 0;

5x1 C 6x3 � 2x4 C 10x6 C 8x7 � x8 D 0;

�x1 C 8x2 � 4x5 C 2x8 D 0;

4x1 � 2x3 C 5x4 C 8x5 � 4x6 C 3x7 D 1;

xj � 0; j D 1; : : : ; 8:
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Answer Begin with the seconde tableau in the Answer, i.e.,

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 �3=2 �8 22 33 �27=2

1 �1 6 �19 �26 10

1 0 �4 0 0 2

9=2 �1 6 12 �9=2

�1=2 1 �2 �3 3=2 1

3 2 1 5 6

Iteration 1: k D 3, B D f1; 2; 3g; N D AnB; R D f1; 2; 3g; R0 D f4g.

1. J D f5; 8g.
2. ˇ D minf2=1; 6=.3=2/g D 2=1; q D 5.
3. Add �2 times of row 5 to the bottom row.
4. maxf�8; 6; �4g D 6; s D 2.
5. Nais ; q > 0

6. Multiply row 2 by 1=6, then add 8; 4; 1; �1 times of row 2 to rows 1,3,4,5,
respectively:

7. B D f1; 5; 3g; N D AnB; R D f1; 2; 3g; R0 D f4g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 4=3 �17=6 �10=3 �5=3 �1=6

1=6 �1=6 1 �19=6 �13=3 5=3

2=3 1 �2=3 �38=3 �52=3 26=3

1=6 13=3 17=6 23=3 �17=6

�1=6 �1=3 7=6 4=3 �1=6 1

0 4 5 11 3 �2

Iteration 2:

1. J D f6; 7g.
2. ˇ D minf5=.7=6/; 11=.4=3//g D 30=7; q D 6.
3. Add �30=7 times of row 5 to the bottom row.
4. maxf�10=3; �19=3; �38=3g � 0.
8. Naq.R0/ ¤ 0.
9. maxfj17=6jg; p D 4.

10. Multiply row 4 by 6=17, then add 10=3; 19=6; 38=3; �7=6 times of row 4 to
rows 1,2,3,5, respectively:

11. k D 4, B D f1; 5; 3; 6g; N D AnB; R D f1; 2; 3; 4g; R0 D ;.
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x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 26=17 77=34 125=17 �7=2

6=17 159=34 1 72=17 �3=2

24=17 1 318=17 288=17 �4

1=17 26=17 1 46=17 �1

�4=17 �36=17 �31=17 1 1

5=7 38=7 37=7 26=7 �44=7

Iteration 3:

1. J D f8g.
2. ˇ D 26=7; q D 8.
3. Add �26=7 times of row 5 to the bottom row.
4. maxf�7=2; �3=2; �4; �1g � 0.
8. R0 D ;. Nx8 D 1; NxB D .7=2; 3=2; 4; 1/T . The optimal solution and objective

value:

Nx D .7=2; 0; 4; 0; 3=2; 1; 0; 1/T ; Nf D 44=7 C 26=7 D 10:

21.4 Dual Deficient-Basis D-Reduced Method

Assume that the r-indexed row is the datum row. Denote by BR the basis matrix,
associated with basic column and row index sets B and R, and so on. It is not
difficult to show that the deficient-basis D-reduced tableau (21.5) is equivalent to
the following revised tableau:

xT
B xT

N f RHS
I B�1

R NR

NR0 � BR0 B�1
R NR

eT
mN � eT

mBB�1
R NR 1

cT
N � cT

BB�1
R NR �1

(21.7)

Based on such an equivalence, Algorithms 21.3.1 and 21.3.2 can be revised. But
only former’s revision is formulated here.

Algorithm 21.4.1 (Dual deficient-basis D-reduced algorithm 1). Initial: B; R; N;

R0; 1 � k � m � 1. B�1
R , NzN � 0. This algorithm solves the D-reduced

problem (17.1).

1. Compute N!N D N Tem � N T
RB�T

R BTem.
2. Stop if J D fj 2 N j N!j > 0g D ; (infeasible problem).
3. Determine column index q and ˇ such that ˇ D Nzq= N!q D minj 2J Nzj = N!j .
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4. If ˇ ¤ 0, update NzN D NzN � ˇ N!N .
5. Compute Naq.R/ D B�1

R aq.R/.
6. Go to step 10 if R0 D ; or Naq.R0/ D aq.R0/ � BR0 Naq.R/ D 0.
7. Determine row index p 2 arg maxi2R0 j Nai qj.
8. Update B�1

R by (20.10).
9. Set k D k C 1, bring q from N to B and p from R0 to R, and go to step 1.

10. Determine s 2 arg maxf Nait ;q j t D 1; : : : ; kg.
11. If Nais ; q � 0, compute Nxq D 1= N!q; NxB D � Nxq Naq.R/; Nf D cq Nxq C cT

B NxB , and
stop (optimality achieved).

12. Update B�1
R by (17.20).

13. Update .B; N / by exchanging js and q.
14. Go to step 1.

The Algorithm can get itself started if NzN D cN � N T
RB�T

R cB � 0. In the other
case, methods, presented in Sect. 17.3 or Chap. 14, can be utilized to provide an
initial dual feasible solution, if slightly modified.

We point out that the so-called “reduced dual elimination” (Sect. 25.1.4) is a
convenient tool to convert the dual problem to the D-reduced form. The resulting
problem can be solved by the dual method presented in this section by generating a
sequence of primal feasible solutions.

Example 21.4.1. Solve the following problem by Algorithm 21.4.1:

min f D x1 C 2x3 C 3x4 C 5x6 C 2x8;

s:t: x1 C x5 � 2x6 C 3x8 D 1;

�2x1 � 4x3 C 3x4 � 3x6 C x7 � x8 D 3;

� x3 C 4x8 D 0;

�2x1 C x2 C 2x3 � 4x4 C 4x6 D �2;

3x1 C 2x6 � 2x8 D 0;

xj � 0; j D 1; � � � ; 8:

Answer The initial tableau is

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1 1 �2 3 1

�2 �4 3 �3 1 �1 3

�1 4

�2 1 2 �4 �4 �2*

3 2 �2

1 2 3 5 2

which is a dual feasible deficient-basis tableau with B D f5; 7; 2g; R D f1; 2; 4g.
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Convert the preceding to a D-reduced tableau: It might be well to take row 3 is
the datum row. Multiply row 3 by �1=3, then add �4; 6 times of row 3 to rows 1,2,
respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

1=2 1 �2 1 3

�5 3=2 �1 �3 3 1 �1

�1 4

1 �1=2 �1 2 �2 1

3 2 �2

1 2 3 5 2

For this tableau, k D 2; B D f5; 7g; R D f1; 2g; N D f1; 2; 3; 4; 6; 8g; R0 D
f3; 5g, the datum row: r D 4. BR D I . NzN D .1; 0; 2; 3; 5; 2/T � 0.

Iteration 1:

1: N!N D .1; �1=2; �1; 2; �2; 0/T:

2: J D f1; 4g:
3: ˇ D minf1=1; 3=2g D 1; q D 1:

4: NzN D .1; 0; 2; 3; 5; 2/T � .1; �1=2; �1; 2; �2; 0/T D .0; 1=2; 3; 1; 7; 2/T:

5: Naq.R/ D .0; �5/T:

6: Naq.R0/ D .0; 3/T ¤ 0:

7: maxfj3jg D 3; p D 5:

8: � D 1=3; v D �.1=3/.0; �5/T D .0; 5=3/T; d T D .0; 0/; U D I:

OB�1
OR D

0
@1

1 5=3

1=3

1
A :

9: k D 3; B D f5; 7; 1g; R D f1; 2; 5g:N D f2; 3; 4; 6; 8g; R0 D f3g:
Iteration 2:

1: N!N D .�1=2; �1; 2; �2; 0/T �
0
@1=2 1 �2 3

3=2 �1 �3 3 �1

2 �2

1
A

T 0
@1

1 5=3

1=3

1
A

T0
@ 0

0

1

1
A

D .�1=2; �1; 2; �8=3; 2=3/T:

2: J D f4; 8g:
3: ˇ D minf1=2; 2=.2=3/g D 1=2; q D 4:

4: NzN D .1=2; 3; 1; 7; 2/T � .1=2/.�1=2; �1; 2; �8=3; 2=3/T

D .3=4; 7=2; 0; 25=3; 5=3/T:

5: Naq.R/ D
0
@1

1 5=3

1=3

1
A
0
@�2

�3

0

1
A D

0
@�2

�3

0

1
A :

6: Naq.R0/ D 0:
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10. maxf�2; �3; 0g � 0.
11. Nx4 D 1=2; NxB D �.1=2/.�2; �3; 0/T D .1; 3=2; 0/T. The basic optimal

solution and optimal value:

Nx D .0; 0; 0; 1=2; 1; 0; 3=2; 0/T; Nf D 3=2:

21.5 Deficient-Basis D-Reduced Gradient Method:
Tableau Form

It is noted that the search direction � N!N , used in Algorithms 21.3.1 or 21.4.1, is
independent of the current dual iterate. It is imaginable that if the current iterate
is close to boundary, the stepsize would become very small, so that the according
change in the dual objective value is negligible. In order to “go further”, in this
section the current iterate is exploited to modify the search direction, so that it is not
only uphill with respect to the dual objective, but also has a “centering” tendency to
leave the nearby boundary, pointing to interior of the dual feasible region. Such a
trick has been used to design interior-point methods in Chap. 9.

Let sets B; R; N; R0 be defined by (20.1) and (20.2). The according D-reduced
tableau (21.5) represents the following D-reduced problem:

max yr ;

s:t:

�
I 0 0
NN T

R
NN T

R0 N!N

�0@ yR

yR0

yr

1
AC

�
zB

zN

�
D
�

0

NzN

�
; zB; zN � 0:

(21.8)

Let .NzN � 0; NzB D 0/ be the current dual feasible solution. Setting 0 < ı � 1,
introduce notation

Qz�1
N D QZ�1

N e; Qzj D
� Nzj ; Nzj � ı;

ı; Nzj < ı;
j 2 N; (21.9)

where QZN is the diagonal matrix, whose diagonal entries are components of QzN .
In order to create a “centering” direction, we maximize the following auxiliary

function:

max .Qz�1
N /TzN ;

subject to constraints of (21.8). From the equality constraints, it follows that

.Qz�1
N /TzN D .n � k/ � . N!T

N Qz�1
N /yr � . NNRQz�1

N /TyR � . NNR0 Qz�1
j /TyR0 :

where the first term is constant. But, we do not want that the objective variable yr

be involved in the maximization of the auxiliary function. By constraints of (21.8),
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it is known that yR C zB D 0, hence if the value of zB does not change, the related
value of yR does not either. Thus, by neglecting the first three terms of the auxiliary
function, the problem comes down to the maximization of the following objective:

max �. NNR0 Qz�1
j /TyR0 ;

subject to constraints of (21.8). The reduced gradient of the preceding program is

�yR0 D � NNR0 Qz�1
N : (21.10)

If �yR; �yr D 0 is taken, the according direction in z-space is then

�zN D � NN T
R0�yR0 D NN T

R0
NNR0 Qz�1

N ;

�zB D 0:

Now it is logical to take

� Q!N D � N!N C 	 NN T
R0

NNR0 Qz�1
N ; (21.11)

� Q!B D 0 (21.12)

rather than � N!N as the search direction, where parameter 	 � 0 is a weight of the
modification.

Assume that Naj .R0/; j 2 N; is the subvector, associated with R0, of Naj . The
vector � Q!N , defined by (21.11) is of the following property.

Lemma 21.5.1. Given 	 > 0. Assume for some k 2 N it holds that

Nzk D 0; Nak.R0/ ¤ 0; and Nzj ¤ 0; 8 j 2 N; j ¤ k:

Then � Q!k > 0 if ı is sufficiently small.

Proof. From (21.9) and (21.11), it follows that

� Q!k D � N!k C 	. Nak.R0/T NNR0/Qz�1
N

D � N!k C 	 Nak.R0/T Nak.R0/=ı C 	
X

j 2N;j ¤k

Nak.R0/T Naj .R0/=Nzj : (21.13)

by which, it is known that when ı is small enough, the sign of � Q!k coincides with
that of

	k Nak.R0/k2=ı > 0:

ut
In addition, the following result can be shown similarly.
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Lemma 21.5.2. Given 	 > 0 and N 0 2 N . Assume that

Nzj D 0; 0 � Naj .R0/ ¤ 0; 8 j 2 N 0 and Nzj ¤ 0; 8 j 2 N nN 0:

Then � Q!k > 0 if ı is sufficiently small.

The preceding Lemma says that under certain conditions, a sufficiently small ı

enable the component, associated with Nzj D 0, of the new search direction � Q! is
strictly greater than zero to get rid of dual degeneracy’s effect.

It is seen from (21.11) and (21.12) that such a search direction yields from mul-
tiplying rows of R0 of the D-reduced tableau by according components of 	�yR0 ,
and adding the resulting rows to the datum row. Since the associated components of
the right-hand side are zero, the whole right-hand side remains unchanged. Besides,
the bottom row is not touched by these manipulations. Starting from such a D-
reduced tableau, proceeded is a so-called “outer iteration”, consisting of a series of
“inner” D-reduced rank-increasing iterations, and terminating whenever R0 D ; or
Naq.R0/ D 0; if the optimality conditions are not satisfied yet, i.e., Nzq D 0; N!q > 0

but Naq.R/ 6� 0, the next outer iteration is carried out.
An outer iteration may start from any dual feasible deficient-basis D-reduced

tableau, including the 0-order tableau, though it seems to be favorable to take the
D-reduced tableau associated with sets

B D Bnfjt j t 2 T g; R D Rnfit j t 2 T g; T D ft D 1; � � � ; k j Nait ; q > 0g:
(21.14)

Such doing will force rows and columns, associated with negative components of the
current primal feasible solution, to leave the basis. Another scheme to be chosen is to
let a part of them leave the basis, e.g., the rows and columns associated with negative
components of larger magnitude. In fact, under the assumption of Lemma 21.5.2,
� N!jt > 0 holds for all t 2 T if ı is small enough. Thus, Nzjt D 0 does not matter
with the determination of stepsize and the related index. However, in case when NzN

is degenerate, a positive stepsize is still not guaranteed, if Naq.R/ 6� 0 and it holds
for some j 2 N that Nzj D 0; N!j > 0.

The according algorithm can be obtained by modifying Algorithm 21.3.1.

Algorithm 21.5.1 (Deficient-basis D-reduced gradient algorithm: tableau
form). Given 	 > 0I ı > 0. Initial : dual feasible deficient-basis D-reduced
tableau of form (21.5), associated with B; R; N; R0; 1 � k � m � 1. This
algorithm solves the D-reduced problem (17.1).

1. Cover nonbasic components of the datum row by N!T
N D N!T

N �	.Nz�1
N /T NN T

R0
NNR0 .

2. Stop if J D fj 2 N j N!j > 0g D ; (infeasible problem).
3. Determine column index q and ˇ such that ˇ D Nzq= N!q D minj 2J Nzj = N!j .
4. If ˇ ¤ 0, add �ˇ times of the datum row to the bottom row.
5. Go to step 9 if R0 D ; or Naq.R0/ D 0.
6. Determine row index p 2 arg maxi2R0 j Nai qj.
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7. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

8. Set k D k C 1, bring q from N to B and p from R0 to R, and go to step 2.
9. Determine s 2 arg maxf Nait ;q j t D 1; : : : ; kg.

10. If Nais ; q > 0, update B; R by (21.14), and go to step 1.
11. Compute Nxq D 1= N!q; Nxjt D � Nxq Nait ; q ; t D 1; � � � ; k.
12. Stop (optimality achieved).

Note There are two layers of iterations in the preceding Algorithm. The inner one
consists of steps 2–7.

Example 21.5.1. Solve the following problem by Algorithm 21.5.1:

min f D x1 C 2x2 C x3 C 7x4 C 3x5 C x6;

s:t: �3x1 � x3 � 3x5 C 2x6 D �1;

�2x1 � x2 C x3 � 6x4 C 6x5 � x6 D �2;

C 3x2 � 2x3 C 8x5 C 4x6 D 0;

�6x1 C 9x4 � 3x5 D 3;

xj � 0; j D 1; � � � ; 6:

Answer 	 D 1 and ı D 1=10 are taken. Initial tableau:

x1 x2 x3 x4 x5 x6 RHS

�3 �1 �3 2 �1

�2 �1 1 �6 6 �1 �2

3 �2 8 4

�6 9 �3 3*

1 2 1 7 3 1

Convert the preceding to a D-reduced tableau:maxfj�1j; j�2j; j0j; j3jg D 3; r D 4,
take row 4 as the datum row.

Multiply row 4 by 1=3, then add 1; 2 times of row 4 to rows 1,2, respectively:

x1 x2 x3 x4 x5 x6 RHS

�5 �1 3 �4 2

�6 �1 1 4 �1

3 �2 8 4

�2 3 �1 1

1 2 1 7 3 1

Iteration 1:
k D 0. N D f1; � � � ; 6g; R0 D f1; 2; 3g.
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1. NNR0 D
0
@�3 �1 �3 �5 2

�2 �1 1 �6 6 �2 �1

3 �2 8 3 4

1
A.

Set N!T
N D .�2; 0; 0; 3; �1; 0/ � .1; 1=2; 1; 1=7; 1=3; 1/ NN T

R0
NNR0

D .�1;208=21; �71=3; 529=42; 124=7; �345=7; �841=42/

to as the left part of row 4:

x1 x2 x3 x4 x5 x6 RHS

�5 �1 3 �4 2

�6 �1 1* 4 �1

3 �2 8 4

�1;208=21 �71=3 529=42 124=7 �345=7 �841=42 1

1 2 1 7 3 1

2. J D f3; 4g ¤ ;.
3. ˇ D minf1=.529=42/; 7=.124=7/g D 1=.529=42/; q D 3.
4. Add �ˇ times of the datum row to the bottom row.
5. Naq.R0/ ¤ 0.
6. maxfj � 1j; j1j; j � 2jg D 2; p D 2.
7. Add 1; 2; �529=42; �1 times of row 2 to rows 1,3,4,5, respectively.
8. B D f3g; R D f2g; N D f1; 2; 4; 5; 6g; R0 D f1; 3g.

x1 x2 x3 x4 x5 x6 RHS

�11 �1 3 1

�6 �1 1 4 �1

�12* 1 16 2

379=21 �155=14 124=7 �299=3 �52=7 1

2;945=529 2;052=529 2;959=529 159=23 1;370=529 �42=529

Iteration 2:

2. J D f1; 4g ¤ ;.
3. ˇ D minf.2;945=529/=.379=21/; .2;959=529/=.124=7/g

D .2;945=529/=.379=21/; q D 1.
4. Add �ˇ times of the datum row to the bottom row.
5. Naq.R0/ ¤ 0.
6. maxfj � 11j; j � 12jg D 12; p D 3.
7. Multiply row 3 by �1=12, and add 11; 6; �379=21; �2;945=529 times of row 3

to rows 1,2,4,5, respectively.
8. B D f3; 1g; R D f2; 3g; N D f2; 4; 5; 6g; R0 D f1g.
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x1 x2 x3 x4 x5 x6 RHS

�23=12 3* �44=3 �5=6

�3=2 1 �4 �2

1 �1=12 �4=3 �1=6

�2;411=252 124=7 �4;763=63 �557=126 1

5;529=758 49=379 6;477=172 1;850=379 �147=379

Iteration 3:

2. J D f4g ¤ ;.
3. ˇ D .49=379/=.124=7/; q D 4.
4. Add �ˇ times of the datum row to the bottom row.
5. Naq.R0/ ¤ 0.
6. maxfj3jg; p D 1.
7. Multiply row 3 by 1=3, then add �124=7; �49=379 times of rows 4,5, respec-

tively.
8. B D f3; 1; 4g; R D f2; 3; 1g; N D f2; 5; 6g; R0 D ;.

x1 x2 x3 x4 x5 x6 RHS

�23=36 1 �44=9 �5=18

�3=2 1 �4 �2

1 �1=12 �4=3 �1=6

7=4 11 1=2 1

1;760=239 3;477=91 1;307=266 �49=124

Iteration 4:

2. J D f2; 5; 6g ¤ ;.
3. ˇ D minf.1; 760=239/=.7=4/; .3; 477=91/=11; .1; 307=266/=.1=2/g

D .3;477=91/=11; q D 5.
4. Add �ˇ times of the datum row to the bottom row.

x1 x2 x3 x4 x5 x6 RHS

�23=36 1 �44=9 �5=18

�3=2 1 �4 �2

1 �1=12 �4=3 �1=6

7=4 11 1=2 1

2;027=1;577 629=198 �383=99

5. Naq.R0/ D 0.
9. maxf�44=9; �4; �4=3g � 0.

11. Nx5 D 1=11; NxB D .1=11/.4; 4=3; 44=9/T D .4=11; 4=33; 4=9/T.
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12. The basic optimal solution and optimal value:

Nx D .4=33; 0; 4=11; 4=9; 1=11; 0/T; Nf D 383=99:

Example 21.5.2. Solve the following D-reduced problem by Algorithm 21.5.1:

min f D 3x4 C x6 C 2x7;

s:t: x1 � 2x4 C 5x5 � 5x6 C 2x7 D 0;

C x2 � 3x4 C 3x5 � 2x6 C x7 D 0;

C x3 C x4 � 4x5 C 6x6 � 3x7 D 0;

� 6x4 C 3x6 C x7 D 0;

C x4 C 4x5 C 2x6 � x7 D 1;

xj � 0; j D 1; � � � ; 7:

Answer 	 D 1 and ı D 1=10 are taken. Initial tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

1 �2 5 �5 2

1 �3 3 �2 1

1 1 �4 6 �3

�6 0 3 1

1 4 2 �1 1

3 0 1 2

Row 5 is the datum row: r D 5. B D f1; 2; 3g; R D f1; 2; 3g; N D
f4; 5; 6; 7g; R0 D f4g.

Column 5 is the datum: Na1;5 D 5 < 0; Na2;5 D 3 > 0; T D f1; 2g,
Reset B D f3g; R D f3g; N D f1; 2; 4; 5; 6; 7g; R0 D f1; 2; 4g.

Iteration 1:

1. NNR0 D
0
@1 �2 5 �5 2

1 �3 3 �2 1

�6 3 1

1
A.

Cover nonbasic components of row 5 by
N!T

N D .0; 0; 1; 4; 2; �1/ � .10; 10; 1=3; 10; 1; 1=2/ NN T
R0

NNR0

D .�166=3; �75=2; 1;399=6; �2;311=6; 2;095=6; �452=3/.

x1 x2 x3 x4 x5 x6 x7 RHS

1 �2 5 �5* 2

1 �3 3 �2 1

1 1 �4 6 �3

�6 0 3 1

�166=3 �75=2 1;399=6 �2;311=6 2;095=6 �452=3 1

3 0 1 2
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2. J D f4; 6g ¤ ;.
3. ˇ D minf3=.1;399=6/; 1=.2;095=6/g D 6=2;095; q D 6.
4. Add �ˇ times of the datum row to the bottom row.
5. Naq.R0/ ¤ 0.
6. maxfj � 5j; j � 2j; j3jg D 5; p D 1.
7. Multiply row 1 by �1=5, then add 2; �6; �3; �2;095=6; �1 times of row 1 to

rows 2,3,4,5,6, respectively.
8. B D f3; 6g; R D f3; 1g; N D f1; 2; 4; 5; 7g; R0 D f2; 4g.

x1 x2 x3 x4 x5 x6 x7 RHS

�1=5 2=5 �1 1 �2=5

�2=5 1 �11=5 1 1=5

6=5 1 �7=5 2 �3=5

3=5* �36=5 3 11=5

29=2 �75=2 187=2 �36 �11 1

332=2;095 45=419 1;397=599 1;102=999 5;094=2;095 �6=2;095

Iteration 2:

2. J D f1; 4g ¤ ;.
3. ˇ D minf.332=2;095/=.29=2/; .1;397=599/=.187=2/g

D .332=2;095/=.29=2/; q D 1.
4. Add �ˇ times of the datum row to the bottom row.
5. Naq.R0/ ¤ 0.
6. maxfj � 2=5j; j3=5jg D 3=5; p D4.
7. Multiply row 4 by 5=3, then add 1=5; 2=5; �6=5; �29=2; �332=2;095 times of

row 4 to rows 1,2,3,5,6, respectively.
8. B D f3; 6; 1g; R D f3; 1; 4g; N D f2; 4; 5; 7g; R0 D f2g.

x1 x2 x3 x4 x5 x6 x7 RHS

�2 1 1=3

1 �7* 3 5=3

1 13 �4 �5

1 �12 5 11=3

�75=2 535=2 �217=2 �385=6 1

15=29 38=29 217=145 74=29 �2=145

Iteration 3:

2. J D f4g ¤ ;.
3. ˇ D .38=29/=.535=2/; q D 4.
4. Add �ˇ times of the datum row to the bottom row.
5. Naq.R0/ ¤ 0.
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6. maxfj � 7jg; p D 2.
7. Multiply row 2 by �1=7, then add 2; �13; 12; �535=2; �38=29 times of row 2

to rows 1,3,4,5,6 respectively:
8. B D f3; 6; 1; 4g; R D f3; 1; 4; 2g; N D f2; 5; 7g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 RHS

�2=7 �6=7 1 �1=7

�1=7 1 �3=7 �5=21

13=7 1 11=7 �40=21

1 �12=7 �1=7 17=21

5=7 43=7 �10=21 1

75=107 217=107 920=321 �2=107

Iteration 4:

2. J D f2; 5g ¤ ;.
3. ˇ D minf.75=107/=.5=7/; .217=107/=.43=7/gD.217=107/=.43=7/; q D5.
4. Add �ˇ times of the datum row to the bottom row:

x1 x2 x3 x4 x5 x6 x7 RHS

�2=7 �6=7 1 �1=7

�1=7 1 �3=7 �5=21

13=7 1 11=7 �40=21

1 �12=7 �1=7 17=21

5=7 43=7 �10=21 1

20=43 130=43 �15=43

5. Naq.R0/ D 0.
9. maxf11=7; �6=7; �1=7; �3=7g D 11=7 > 0; s D 1.

10. T D f1g; B D f6; 1; 4g; R D f1; 4; 2g; N D f2; 3; 5; 7g; R0 D f3g.

Iteration 5:

1. NNR0 D .13=7; 1; 11=7; �40=2/. Cover nonbasic components of row 5 by
N!T

N D .5=7; 0; 43=7; �10=21/ � .43=20; 10; 10; 43=130/ NN T
R0

NNR0

D .�22;540=423; �12;067=415; �7;554=191; 15;649=285/.

x1 x2 x3 x4 x5 x6 x7 RHS

�2=7 �6=7 1 �1=7

�1=7 1 �3=7 �5=21

13=7 1 11=7 �40=21*

1 �12=7 �1=7 17=21

�22;540=423 �12;067=415 �7;554=191 15;649=285 1

20=43 130=43 �15=43
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2. J D f7g ¤ ;.
3. ˇ D .130=43/=.15;649=285/; q D 7.
4. Add �ˇ times of the datum row to the bottom row.
5. Naq.R0/ ¤ 0.
6. maxfj � 40=21jg; p D 3.
7. Multiply row 3 by �21=40, then add 1=7; 5=21; �17=21; �15;649=285; �130=43

times of row 3 to rows 1,2,4,5,6, respectively.
8. B D f6; 1; 4; 7g; R D f1; 4; 2; 3g; N D f2; 3; 5g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 RHS

�17=40 �3=40 �39=40 1

�3=8 �1=8 1 �5=8

�39=40 �21=40 �33=40 1

1 �37=40 17=40 21=40

100;463=401;851 �19;713=78;851 23=4 1

1;397=411 658=411 2;624=1;205 �767=1;899

Iteration 6:

2. J D f2; 5g ¤ ;.
3. ˇ D minf.1;397=411/=.100;463=401;851/; .2;624=1;205/=.23=4/g

D .2;624=1;205/=.23=4/; q D 5.
4. Add �ˇ times of the datum row to the bottom row.

x1 x2 x3 x4 x5 x6 x7 RHS

�17=40 �3=40 �39=40 1

�3=8 �1=8 1 �5=8

�39=40 �21=40 �33=40 1

1 �37=40 17=40 21=40

100;463=401;851 �19;713=78;851 23=4 1

76=23 39=23 �18=23

5. Naq.R0/ D 0.
9. maxf�39=40; 21=40; �5=8; �33=40g D 21=40 > 0; s D 2.

10. T D f2g; B D f6; 4; 7g; R D f1; 2; 3g; N D f1; 2; 3; 5g; R0 D f4g.

Iteration 7:

x1 x2 x3 x4 x5 x6 x7 RHS

�17=40 �3=40 �39=40 1

�3=8 �1=8 1 �5=8

�39=40 �21=40 �33=40 1

1 �37=40* 17=40 21=40

�3;379=222 4;571=319 �3;823=569 �3;498=1;561 1

76=23 39=23 �18=23
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2. J D f2g ¤ ;.
3. ˇ D .76=23/=.4;571=319/; q D 2.
4. Add �ˇ times of the datum row to the bottom row.
5. Naq.R0/ ¤ 0.
6. maxfj � 37=40jg; p D 4.
7. Multiply row 4 by �40=37, then add 17=40; 3=8; 39=40; �4;571=319; �76=23

times of row 4 to rows 1,2,3,5,6, respectively.
8. B D f6; 4; 7; 2g; R D f1; 2; 3; 4g; N D f1; 3; 5g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 RHS

�17=37 �10=37 �45=37 1

�15=37 �11=37 1 �31=37

�39=37 �36=37 �51=37 1

�40=37 1 �17=37 �21=37

3;957=14;641 �793=5;868 218=37 1

2;471=704 6;039=1;861 910=1;761 �997=984

Iteration 8:

2. J D f1; 5g ¤ ;.
3. ˇ D maxf.2;471=704/=.3;957=14;641/; .910=1;761/=.218=37/g

D .910=1;761/=.218=37/; q D 5.
4. Add �ˇ times of the datum row to the bottom row.

x1 x2 x3 x4 x5 x6 x7 RHS

�17=37 �10=37 �45=37 1

�15=37 �11=37 1 �31=37

�39=37 �36=37 �51=37 1

�40=37 1 �17=37 �21=37

3;957=14;641 �793=5;868 218=37 1

380=109 355=109 �120=109

5. Naq.R0/ D 0.
9. maxf�45=37; �31=37; �51=37; �21=37g � 0.

11. Nx5 D 37=218; NxB D .37=218/.45=37; 31=37; 51=37; 21=37/T

D .45=218; 31=218; 51=218; 21=218/T.
12. The basic optimal solution and optimal value:

Nx D .0; 21=218; 0; 31=218; 37=218; 45=218; 51=218/T; Nf D 120=109:
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21.6 Deficient-Basis D-Reduced Gradient Method

It is not easy to convert the tableau Algorithm 21.5.1 to the revised version because
of the difficulty to update B�1

R in step 10. The tableau Algorithm itself seems to
be of higher practical value. However, the situation will be different if each outer
iterations starts from the 0-order tableau instead. This idea is embodied in the
following algorithm.

Algorithm 21.6.1 (Deficient-basis D-reduced gradient algorithm). Given 	 >

0I ı > 0. Initial: Nz � 0. This algorithm solves the D-reduced problem (17.1).

1. Set k D 0 and give B; R; N; R0 by (21.6).
2. Compute !N D N Tem � 	N T

R0NR0 Nz�1
N /, and set N!N D !N .

3. Stop if J D fj 2 N j N!j > 0g D ; (infeasible problem).
4. Determine column index q and � such that � D Nzq= N!q D minj 2J Nzj = N!j .
5. If � ¤ 0, update NzN D NzN � � N!N .
6. Compute Naq.R/ D B�1

R aq.R/; Naq.R0/ D aq.R0/ � BR0 Naq.R/.
7. Go to step 12 if R0 D ; or Naq.R0/ D 0.
8. Determine row index p 2 arg maxi2R0 j Nai qj.
9. Update B�1

R by (20.10).
10. Set k D k C 1, bring q from N to B and p from R0 to R,
11. Compute N!N D !N � N T

R.B�T
R !B/, and go to step 3.

12. Determine s 2 arg maxf Nait ;q j t D 1; : : : ; kg.
13. Go to step 1 if Nais ; q > 0.
14. Compute Nxq D 1= N!q; NxB D � Nxq Naq.R/; Nf D cq Nxq C cT

B NxB .
15. Stop (optimality achieved ).

Note This Algorithm contains steps 3–11 as its inner steps.

An alternative way is to utilize, to a larger extent, current information to form the
datum row r . The first iteration starts from

! D ATem � 	AT
R0

NAR0 Nz�1; (21.15)

where AR0 denotes the matrix, resulting from A by deleting row r . Assume that at
the end of some subsequent inner iterations, the basic column and row index sets
are B and R, not satisfying the optimality condition; the datum row N! is

N!B D 0; N!N D !N � N T
R.B�T

R !B/;

and the basic row matrix NAR is

NBR D I; NNR D B�1
R NR:
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Then the datum row O! for the next outer iteration is formed by combining the
preceding two items as follows:

O!B D N!B � 	 NBT
R

NARNz�1 D �	.Nz�1
B C B�1

R NRNz�1
N /;

O!N D N!N � 	 NN T
R

NARNz�1

D !N � N T
RB�T

R !B � 	 NN T
R.Nz�1

B C B�1
R NRNz�1

N /

D !N � N T
RB�T

R .!B � O!B/:

Thereby, we have the following variant of Algorithm 21.6.1.

Algorithm 21.6.2 (Variant of the dual reduced gradient algorithm). The same
as Algorithm 21.6.1, except for steps 1 and 2 replaced, respectively, by

1. Compute ! by (21.15), and set N! D !.
2. Set N! D !; k D 0; B; R; N; R0 is determined by (21.6).

and steps 13–15 replaced by
13. If Nap; q � 0, compute Nxq D 1= N!q; NxB D � Nxq Naq.R/; Nf D cq Nxq C cT

B NxB , and
stop (optimality achieved).

14. Compute v D �Nz�1
B � B�1

R NRNz�1
N .

15. Compute !N D !N � N T
RB�T

R .!B � v/; !B D v.
16. Go to step 1.

It is noted that the preceding variant involves solution of additional two systems.
The behavior of it is not known yet so far.

21.7 Notes

The deficient-basis methods, presented in the previous two chapters might still be
viewed as variants of the simplex method. However, the solution process can not be
interpreted as a movement from simplex to simplex. As A is not of full row rank in
general, in fact, there is no correspondence between feasible deficient-basis tableaus
and vertices of the feasible region, though in case when A is of full row rank, it is
possible to expand a deficient basis to a full one by entering some nonbasic columns
to it, and hence associated with a vertex.

In Pan’s original work (1998–2008; see also Guerrero-Garcia and Santos-Palomo
2009), the conventional basis is generalized to a submatrix B of A, whose column
space includes b. As a result, deficient basis is rectangle rather than square. Besides
NxN D 0, in that context, conventional NxB D B�1b was essentially replaced by
NxB D BCb, where BC denotes the Moore-Penrose inverse (Pan and Ouyang 1994;
also see, e.g., He and Sun 1991); as more compact and efficient, it is replaced by
xB D B�1

R bR in current context.
The orthogonal transformation was used for triangularization of the basis in

some of the original deficient-basis algorithms. An advantage of such doing is that
the resulting search direction is an orthogonal projection of the negative objective
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gradient onto the associated null space. Thereby, such a direction forms the smallest
angle with the negative objective gradient among vectors in the null space, as
is attractive, compared with the reduced gradient approach. Unfortunately, the
orthogonal transformation may lead to a large amount of fill-ins, and may be suitable
only for solving dense problems. This is why the associated quite remarkable
computational results have not been cited so far in this book, despite many contents
in the previous two chapters can be handled based on the orthogonal transformation,
otherwise.

The deficient or full basis together with a pivot rule for basis change plays a
central role in the simplex-like methods. In particular, we all realize that the rule is
crucial to the success of such type of methods. It should be desirable to utilize some
analogue to rules presented in Chaps. 11 and 12, preferably the primal (dual) nested
largest-distance rule, though analogues to Dantzig’s original rule were employed in
previous chapters for sake of simplicity (see, e.g., Pan et al. 2006a).

As for the bounded-variable problem (7.13), the concept of basis can be
generalized as follows.

Definition 21.7.1. Let BR be the nonsingular square submatrix consisting of entries
associated with B; R, and let NxN be on bound. BR is a basis (matrix) if the range
space of B includes b � N NxN .

It is noted that such a basis is closely related to values taken on by nonbasic
variables. Based on this definition, it is not difficult to generalize the deficient-basis
algorithms established previously, though we will not go into details here.



Chapter 22
Face Method

Like the simplex method, the so-called “face method”, presented in this chapter,
also involves pivot choice. However, it does not use elementary but orthogonal
transformations to determine a search direction, and generates iterates that are
not necessarily vertices, but boundary points. It proceeds from face to face in the
feasible region, until reaching an optimal face together with a pair of primal and
dual optimal solutions. Therefore, in some sense, the face method may be regarded
as a generalization of the simplex method, which proceeds from 0-dimensional face
(vertex) to 0-dimensional face (vertex).

In this chapter, the face method is developed first. Then its Phase-I procedure is
described. A generalized version of the face method and a variant based on affine-
scaling are derived.

We are concerned with the reduced problem (15.1), i.e.,

min xnC1;

s:t: Ax D b; xj � 0; j D 1; � � � ; n;
(22.1)

where A 2 R.mC1/�.nC1/; b 2 RmC1; rank A D m C 1; m < n; anC1 D AenC1 D
�emC1. The assumption on the rank of A will be dropped later.

Assume that B 2 R.mC1/�k; N 2 R.mC1/�.n�kC1/ is a partition of A, where

rank B D m C 1; m C 1 � k � n C 1:

Respectively, B and N are called face matrix and nonface matrix; the associated
variables are called face variables and nonface variables. Without confusion,
denote the associated index sets by B and N , respectively, i.e.,

B D f1; � � � ; k � 1; n C 1g; N D f1; � � � ; n C 1gnB:

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__22,
© Springer-Verlag Berlin Heidelberg 2014
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To simplify computation, thereafter it is always arranged such that the kth (last)
column of the face matrix equals the .n C 1/th (last) column of A, i.e.,

Bek D �emC1: (22.2)

The face, associated with the face matrix B , is defined by

PB D fx 2 A j BxB D bI xs � 0; s D 1; � � � ; k � 1; xN D 0g: (22.3)

A point on the face is called face point. Thus, an 0-dimensional face has an unique
face point, vertex.

Definition 22.1. A face is level face if the objective value is constant over it. A
level face is an optimal face if the related objective value equals the optimal value.

The largest optimal face, i.e., that of the highest dimension, is the optimal set
(Sect. 2.3).

22.1 Face Method Using Cholesky Factorization

Assume that Nx is the current face point on PB , i.e., Nx 2 PB . As Nx is uniquely
determined by NxB , the two will not be strictly distinguished hereafter; for simplicity,
NxB 2 PB is often used in place of Nx 2 PB .

22.1.1 The Steepest Downhill

We determine a search direction firstly. Consider the following subprogram:

min xnC1;

s:t: BxB D b;

xj � 0; j 2 B; j ¤ n C 1;

(22.4)

which actually minimizes the objective over the face PB .
Introduce k 
 k orthogonal projection matrix, i.e.,

P D I � BT.BBT/�1B: (22.5)

Then, the orthogonal projection of the objective gradient, ek , of the subprogram onto
the null space of B is

�B D P ek D ek � BT Ny; BBT Ny D �emC1; (22.6)

and ��B is a desirable search direction. In fact, we have the following result.



22.1 Face Method Using Cholesky Factorization 573

Proposition 22.1.1. Vector �B satisfies B�B D 0.

Proof. By (22.6), it is easy to verify validity of the equality. ut
Proposition 22.1.2. The following statements are equivalent:

.i/ �B 6D 0I .i i/ �k > 0I .i i i/ ek 62 range.BT/:

Proof. Premultiply the first expression of (22.6) by �T
B . Then combining the result

and Proposition 22.1.1 gives

�T
B�B D �k:

So, statements (i) and (ii) are equivalent. If �B D 0, it is known by the first
expression of (22.6) that ek D BT Ny, i.e., ek 2 range.BT/, hence (iii) results in
(i). Conversely, if ek 2 range.BT/, then there is some vector u such that

ek D BTu: (22.7)

Premultiplying the preceding by B together with (22.2) gives

�emC1 D BBTu;

which, the second expression of (22.6) and B of full row rank lead to u D Ny. Thus,
it yields from (22.7) that ek D BT Ny, substituting which to the first expression of
(22.6) gives �B D 0. Therefore, it is shown that (i) and (iii) are equivalent. ut
Proposition 22.1.3. If �B 6D 0, then it holds that:

eT
k �B D �k > 0; (22.8)

� eT
k �B=k�Bk � eT

k v=kvk; 8 0 6D v 2 Null.B/: (22.9)

Proof. Expression (22.8) can be derived directly from Proposition 22.1.2. Note that
for P defined by (22.5), it holds that

P v D v ¤ 0; 8 0 ¤ v 2 Null.B/: (22.10)

It is obtained by Cauchy inequality that

.�P ek/T.P v/ � kP ekkkP vk;

multiplying which by 1=kP vk gives

.�P ek/T.P v/=kP vk � kP ekk;
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i.e.,

.�P ek/T.P v/=kP vk � .P ek/T.P ek/=kP ekk:

Combining the preceding expression, P 2 D P; P T D P , (22.10) and �B D P ek

gives (22.9). ut
According to Proposition 22.1.3, vector ��B ¤ 0 forms the most-obtuse-angle

in the null space of B with the objective gradient ek of the subprogram, and is hence
a steepest downhill. In this sense, taking the vector as a search direction is the “best”
choice.

It is noted that the computation of �B mainly lies on solving .m C 1/ 
 .m C 1/

system

BBTy D �emC1: (22.11)

Since B is of full row rank, there exists the Cholesky factorization (Golub and Van
Loan 1989)

BBT D LLT; (22.12)

where L is nonsingular lower triangular. Thereby, system (22.11) becomes

LLTy D �emC1; (22.13)

which can be put into the following two triangular systems:

Lv D �emC1; LTy D v:

The solution to the first system is readily available, i.e., v D �.1=�/emC1, where �

is the .m C 1/th diagonal of L. Consequently, there is only one triangular system
left to be solved, i.e.,

LTy D �.1=�/emC1 (22.14)

22.1.2 Updating Solution

The new iterate is defined by the following line search scheme:

OxB D NxB � ˛�B; (22.15)

where ˛ is a stepsize to be determined. If index set

J D fj 2 B j �j > 0; j ¤ n C 1g
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is nonempty, determine ˛ and p such that

˛ D Nxp=�p D min
j 2J

Nxj =�j � 0; (22.16)

which is the largest possible stepsize for the new iterate remaining within the
feasible region. If Nxj D 0 for some j 2 B; j ¤ n C 1, then face point Nx is
said to be degenerate. In this case, stepsize ˛ could vanish, and the resulting iterate
is actually not “new” but the same as the old. Note that whether Nx is degenerate only
depends upon the first k � 1 components of NxB .

Lemma 22.1.1. Assume that NxB 2 PB and �B ¤ 0.

(i) If J ¤ ;, then OxB 2 PB is a boundary point. The objective value does not
increase, and strictly decreases if NxB is nondegenerate.

(ii) If J D ;, the original problem is lower unbound.

Proof. (i) �B ¤ 0 and J ¤ ; together ensure that (22.16) is well-defined. As
NxB 2 PB , it is known from Proposition 22.1.1 that OxB 2 PB ; further, it is clear
that Oxp D 0, hence Ox is a boundary point, associated with the new objective
value

OxnC1 D NxnC1 � ˛�k: (22.17)

It is known from (22.16) that ˛ � 0. Besides, from �B ¤ 0 and Proposi-
tion 22.1.2, it follows that �k > 0, hence OxnC1 � NxnC1. If NxB is nondegenerate,
then ˛ > 0, leading to OxnC1 < NxnC1.

(ii) When J D ;, it is clear that OxB 2 PB holds for any ˛ > 0. It is known by
(22.17) that

OxnC1 ! �1; as ! 1:

Therefore the objective value is lower unbounded over PB , hence over the
feasible region. ut

22.1.3 Face Contraction

Assume that �B 6� 0 and the new iterate OxB was determined by (22.15) with Oxp D
0. Updating B and N accordingly gives the face and nonface index sets, associated
with the new iterate, i.e.,

MB D Bnfpg; MN D N [ fpg:

The associated face matrix MB 2 R.mC1/�.k�1/ results from the old B by dropping
the p-indexed column. Then we have the following result.
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Proposition 22.1.4. If rank B D m C 1, then rank MB D m C 1.

Proof. It is clear that rank MB � m C 1. It is known by (22.16) that �p 6D 0, and by
Proposition 22.1.1 that

X
j 2B

�j aj D B�B D 0;

thus

ap D �.1=�p/
X

j 2B;j ¤p

�j aj :

The above equality implies that ap 2 range MB . Thereby, rank MB < m C 1 leads to
rank B < m C 1, as contradicts the assumption. Therefore rank MB D m C 1. ut

The preceding Proposition implies that the new face matrix MB is again of full row
rank, and hence there exists the Cholesky factorization

MB MBT D ML MLT:

Proposition 22.1.5. W W T is independent of the ordering of the columns of W for
any matrix W .

Proof. The validity is verified by the fact that

.WQT /.WQT /T D W.QT Q/W T D W W T

holds for any column permutation QT . ut
Proposition 22.1.6. If Lu D ap , then 1 � kuk2 > 0.

Proof. According to Proposition 22.1.5, we may assume that B D . MB; ap/, and
hence

BBT D MB MBT C apaT
p ;

so that

MB MBT D BBT � apaT
p D LLT � apaT

p : (22.18)

It is clear that there exists v ¤ 0 such that LLT v D ap , which with (22.18) gives

MB MBT D LLT � LLT vvT LLT :
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From u D LT v and the positiveness of MB MBT , it follows that

vT MB MBT v D uT u � .uT u/2 D uT u.1 � uT u/ > 0;

which implies 1 � kuk2 > 0. ut
Saunders (1972) offers a procedure to obtain the new factor from its predecessor,

as is put into the following algorithm.

Algorithm 22.1.1 (Subalgorithm: contraction). Initial: the Cholesky factor L of
BBT. This algorithm finds the Cholesky factor ML of MB MBT.

1. Solves lower triangular system Lu D ap .
2. Compute  D p

1 � kuk2.
3. Determine Givens rotations JmC1; � � � ; J1, where Ji is in the .m C 2; i/-plane,

such that

J1 � � � JmC1

�
u


�
D
�

0

1

�
:

4. Compute J1 � � � JmC1

�
LT

0

�
D
 MLT

aT
p

!
; to obtain ML 2 R.mC1/�.mC1/.

5. Return.

It is noted that J1 � � � JmC1 in step 3 of the preceding are well-defined.
To see the output of the Subalgorithm is what we want, set

J1 � � � JmC1 , Q; Q

�
LT

0

�
,
� MLT

sT

�
;

where Q is orthogonal, ML is lower-triangular, and s is a vector. Then, it follows that

�
uT 

L 0

��
u LT

 0

�
D
�

uT 

L 0

�
QT Q

�
u LT

 0

�
D
�

0 1
ML s

��
0 MLT

1 sT

�

so that

uTu C 2 D 1; Lu D s; LLT D ML MLT C ssT:

The second equality of the preceding and Lu D ap together lead to s D ap , and
hence from the third equality and (22.18), it follows that

MB MBT D LLT � apaT
p D ML MLT:
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It is noted that ap is recomputed as the vector s, and thus a non-trivial discrepancy
between s and ap could imply significant numerical error in L, as provides us with
some sort of numerical check.

22.1.4 Optimality Test

In case of �B D 0, the search direction defined by (22.6) is useless. In particular, it
is the case when k D m C 1, and hence the projection matrix is null.

Lemma 22.1.2. Assume that �B is defined by (22.6). If �B vanishes, then PB is a
level face; and vice versa if 0 < NxB 2 PB .

Proof. Assume that Ny satisfies the second expression of (22.6). From �B D 0 and
the first expression of (22.6), it follows that

ek D BT Ny:

Transpose the two sides of the preceding equality, and premultiply the result by any
xB 2 PB to obtain

eT
k xB D NyTBxB;

combining which and BxB D b gives

xnC1 D NyTb:

This implies that the objective value is constant over PB , and hence PB is a level
face.

Now assume that PB is a level face and that 0 < NxB 2 PB with �B ¤ 0. In
case when �B � 0, it is known by (ii) of Lemma 22.1.1 that the objective value
is lower unbounded over PB , as contradicts that PB is a level face; when �B 6� 0,
since xB is nondegenerate, it is known from (i) of Lemma 22.1.1 that the objective
value, associated with OxB 2 PB given by (22.15) and (22.16), strictly decreases, as
also contradicts that PB is a level face. Therefore, �B vanishes. ut

Now consider the dual problem of (22.1)

max .bT; 0/Ty;

s:t:

�
BT

N T

�
y C

�
zB

zN

�
D
�

ek

0

�
; zB; zN � 0; znC1 D 0:

(22.19)

Lemma 22.1.3. Assume that NxB 2 PB and �B D 0. If NzN D �N T Ny � 0, then
. NxB; NxN / and .NzB; NzN ; Ny/ are a pair of primal and dual optimal solutions, where
NxN D 0; NzB D 0, and PB is an optimal face to (22.1).
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Proof. . NxB; NxN / . NxN D 0/ is clearly a feasible solution to (22.1). On the other hand,
combining (22.6) and �B D 0 gives BT Ny D ek. Thereby, it is easy to verify that
.NzB; NzN ; Ny/ is a feasible solution to (22.19), satisfying the complementarity condi-
tion, and hence are a pair of primal and dual optimal solutions. By Lemma 22.1.2,
�B D 0 implies that PB is a level face. It includes the optimal solution, hence is an
optimal face. ut

According to Proposition 22.1.2, �B D 0 if and only if �k D 0. Therefore
condition �B D 0 may be replaced by �k D 0 simply.

22.1.5 Face Expansion

Assume �B D 0 and NzN D �N T Ny 6� 0. In this case, optimality of the level face PB

can not be asserted, but a column index q can be determined such that

q 2 arg min
j 2N

Nzj :

Accordingly, update the face and nonface index sets by

OB D B [ fqg; ON D N nfqg: (22.20)

As a result, the number of columns of the face matrix will increase by 1.
Thus, the q-indexed column is added to the face matrix (as its second last

column). Denote the resulting new face matrix by OB 2 R.mC1/�.kC1/, which is
still of full row rank. The according updating of the Cholesky factor is quite simple
(Golub 1965), as stated as follows.

Algorithm 22.1.2 (Subalgorithm: expansion). Initial: the Cholesky factor L of
BBT. This algorithm finds Cholesky factor OL of OB OBT.

Determine Givens rotations J1; � � � ; JmC1, where Ji is in the .i; m C 2/-plane,
such that

JmC1 � � � J1

 
LT

aT
q

!
D
� OLT

0

�
;

which gives OL 2 R.mC1/�.mC1/.

The validity of the preceding Subalgorithm is verified by premultiplying the
above equality by its transpose:

OL OLT D LLT C aqaT
q D BBT C aqaT

q D OB OBT:
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Another scheme, seeming to be attractive, is to use

OB D B [ fj 2 N j Nzj < 0g; ON D An OB

rather than (22.20), though adding two columns to the face matrix will complicate
updating of the Cholesky factor.

22.1.6 Face Algorithm

Any A’s submatrix B 2 R.mC1/�k; mC1 � k � nC1 of full row rank can be taken
as an initial face matrix. But we prefer the largest one, i.e., k D n C 1; B D A.

Now drop the assumption that A is of full row rank. Assume that an orthogonal
matrix ŒQ1; Q2� 2 R.nC1/�.nC1/ and a permutation … 2 R.mC1/�.mC1/ have been
found such that

AT… D ŒQ1; Q2�

�
R T

0 0

�
;

where R 2 Rr�r is nonsingular upper triangular. Then L D RT is the initial
Cholesky factor. In fact, rank A D r , and the last m � r C 1 equations of
…TAx D …Tb is redundant; if the original notation is still used to denote the
problem, resulting from dropping these redundant rows, then AT D Q1R, and the
wanted Cholesky factorization is

AAT D RTQT
1 Q1R D LLT: (22.21)

The overall steps can be put into the following algorithm.

Algorithm 22.1.3 (Face algorithm). Initial: .B; N /; m C 1 � k � n C 1

(B includes n C 1 as its last index), feasible solution Nx and Cholesky factor L

of BBT. This algorithm solves the reduced problem (22.1).

1. Solves upper triangular system LT Ny D �.1=�/emC1, where � is the .m C 1/th
diagonal of L.

2. If k > m C 1, compute �B D ek � BT Ny.
3. Go to step 10 if k D m C 1 or �B D 0.
4. Stop if J D fj 2 B j �j > 0; j ¤ n C 1g D ;.
5. Determine stepsize ˛ and index p such that ˛ D Nxp=�p D minj 2J Nxj =�j .
6. If ˛ ¤ 0, update: NxB D NxB � ˛�B .
7. Update .B; N / by braining p from B to N .
8. Update L by Subalgorithm 22.1.1.
9. Set k D k � 1, and go to step 1.

10. Compute NzN D �N T Ny.
11. Stop if NzN � 0.
12. Determine index q 2 arg minj 2N Nzj .
13. Update L by Subalgorithm 22.1.2.
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14. Bring q from N to B as its second last index.
15. Set k D k C 1.
16. Go to step 1.

Theorem 22.1.1. Under the nondegeneracy assumption, Algorithm 22.1.3 termi-
nates either at

(i) Step 4, detecting lower unboundedness of (22.1); or at
(ii) Step 11, giving an optimal face together with a pair of primal and dual optimal

solutions.

Proof. Under the nondegeneracy assumption, the proof of the finiteness of Algo-
rithm 22.1.3 is the same as for the simplex algorithm. The meanings of the exits
come from Lemmas 22.1.1 and 22.1.3. ut

In a contraction iteration, the face algorithm solves two triangular systems
(including one involved in updating L by Subalgorithm 22.1.1), whereas it solve
only one in an expansion iteration, in contrast to the simplex algorithm that solves
four. Therefore, the former involves less computational effort than the latter per
iteration. Moreover, an explicit representation of L suffices, and there is no need
for any storage of the Givens rotations, used to create the Cholesky factorization
initially and to update Cholesky factors subsequently.

The dimension of the end optimal face produced by the Algorithm should be
more than 0, in general, though it would not be necessarily the optimal set.

Preliminary computational experiments were conducted. Compiled using the
Visual FORTRAN 5.0, test codes were run under a Windows XP system Home
Edition Version 2002 on an IBM PC with an Intel(R) Pentium(R) processor 1.00 GB
of 1.86 GHz memory, and about 16 digits of precision. The following two dense
codes in FORTRAN 77 are compared:

1. RSA: The simplex algorithm (see Notation).
2. FALP: Face Algorithm 22.1.3, supported by Algorithm 22.2.1 being as Phase-I.

Test set of problems are the 26 smallest Netlib problems (Appendix B: Table B.4:
AFIRO-DEGEN2). As code RSA failed to solve problem DEGEN2 within 10,000
iterations, only total ratios of RSA to FALP on the other 25 problems are given
below:

total iterations ratio: 1.51, total time ratio: 4.91.

It is indeed impressive that the face algorithm outperformed the simplex algo-
rithm with time ratio near 5 (see Appendix D for details).

Example 22.1.1. Solve the following problem by Algorithm 22.1.3:

min f D 2x1 � x3 � x5;

s:t: 2x1 � x3 D 1;

x1 � x3 C 3x4 D 0;

� x2 � x3 � 2x5 D �2;

xj � 0; j D 1; � � � ; 5:
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Answer It is noted that there is a feasible solution .1; 1; 0; 1; 1/T with objective
value 1 to the preceding problem. At first, convert the problem to the following
reduced form:

min f;

s:t: 2x1 � x3 D 2;

x1 � x3 C 3x4 D 4;

� x2 � x3 � 2x5 D �4;

2x1 � x3 � x5 � f D 0;

xj � 0; j D 1; � � � ; 5:

Initial: k D 6; B D f1; 2; 3; 4; 5; 6g, N D ;; initial feasible solution NxB D
.1; 1; 0; 1; 1; 1/T. Respectively, the face matrix B and the Cholesky factor of BBT

are

B D

0
BB@

2 �1

1 �1 3

�1 �1 �2

2 �1 �1 �1

1
CCA ;

L D

0
BB@

2;889=1;292

1;292=963 549=181

�181=183 679=303

2;889=1;292 606=679 848=773

1
CCA :

Iteration 1:

1: � D 848=773; Ny D .213=278; 15=139; 46=139; �231=278/T:

2: �B D .0; 0; 0; 0; 0; 1/T � .�3=139; �46=139; �6=139; �1=139; 47=278;

231=278/T D .3=139; 46=139; 6=139; 1=139; �47=278; 47=278/T ¤ 0:

4: J D f1; 2; 3; 4g ¤ ;:

5: ˛ D minf1=.3=139/; 1=.46=139/; 0=.6=139/; 1=.1=139/g D 0; p D 3:

7: B D f1; 2; 4; 5; 6g; N D f3g:

8: L D

0
BB@

2

1 3

�1 2;889=1;292

2 2;584=2;889 505=461

1
CCA :

9: k D 5:

Iteration 2:

1: � D 505=461; Ny D .7=9; 1=9; 1=3; �5=6/T:

2: �B D .0; 0; 0; 0; 1/T � .0; �1=3; 0; 131;910=791;459; 5=6/T

D .0; 1=3; 0; �131;910=791;459; 1=6/T ¤ 0:

4: J D f2g ¤ ;:
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5: ˛ D minf1=.1=3/g D 3; p D 2:

6: NxB D .1; 1; 1; 1; 1/T � 3.0; 1=3; 0; �131; 910=791; 459; 1=6/T

D .1; 0; 1; 3=2; 1=2/T:

7: B D f1; 4; 5; 6g; N D f2; 3g:

8: L D

0
BB@

2

1 3

�1 2

2 1 1

1
CCA :

9: k D 4:

Iteration 3:

1. � D 1, Ny D .11=12; 1=6; 1=2; �1/T.
2. �B D .0; 0; 0; 0; 1/T � .0; �1=3; 0; 131;910=791;459; 5=6/T

D .0; 1=3; 0; �131;910=791;459; 1=6/T ¤ 0.
10. NzN D .1=2; 1=12/T � 0.
11. The basic optimal solution and optimal value:

Nx D .1; 0; 0; 1; 3=2/T; Nf D 1=2:

22.2 Face Phase-I: Single-Artificial-Variable

Any Phase-I method can be utilized to provide a feasible solution to get the face
algorithm started. This section consider a Phase-I method involving only a single
artificial variable.

Assume that Ae ¤ b. The auxiliary program used is as follows:

min xnC1;

s:t: Ax C anC1xnC1 D b; x; xnC1 � 0;

where anC1 D b � Ae.
At the beginning of Phase-I, set

B D f1; � � � ; n; n C 1g; N D ;: (22.22)

Thus, the initial auxiliary feasible solution possesses all its components 1, and the
auxiliary program can be solved by a slight modification of Algorithm 22.1.3:

In step 1, two triangular systems are solved to obtain Ny. In step 5, n C 1 is taken
as a candidate for selection of row index p. Once it leaves B (while NxnC1 becomes
0), a feasible solution is obtained. In addition, step 4 should be dropped because the
auxiliary program is certainly lower bounded.
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The steps are put in the following algorithm.

Algorithm 22.2.1 (Face Phase-I: single-artificial-variable). Initial: B D
f1; � � � ; n; n C 1g; N D ;; k D n C 1; Nx D e; NxnC1 D 1I BBT D LLT.
This algorithm finds a feasible solution to (22.1).

The same as Algorithm 22.1.3, except for its steps 1–6 replaced by

1. Solve LLT Ny D �b.
2. If k > m C 1, compute �B D ek � BT Ny.
3. Go to step 10 if k D m C 1 or �B D 0.
4. Determine ˛ and index p such that ˛ D Nxp=�p D minf Nxj =�j j �j > 0;

j 2 Bg.
5. If ˛ ¤ 0, update: NxB D NxB � ˛�B .
6. Stop if NxnC1 D 0 (feasibility achieved).

Example 22.2.1. Solve the following problem by the two-phase face algorithm:

min x1 C 2x3 C 3x4;

s:t: 2x1 � x2 � 2x3 � x4 D �1;

C 2x2 � 2x4 C x5 D 1;

x1 � 2x2 � x5 D �2;

xj � 0; j D 1; � � � ; 5:

Answer Phase-I: Call Algorithm 22.2.1.
Initial: k D 6, B D f1; 2; 3; 4; 5; 6g, N D ;, Nx D e; a6 D .1; 0; 0/T. B and the

Cholesky factor of BBT:

B D
0
@2 �1 �2 �1 1

2 �2 1

1 �2 �1

1
A ; LD

0
@�1;257=379

�3

�2;394=1;985 5=3 �2;804=2;109

1
A:

Iteration 1:

1: Ny D .29=175; �4=35; �36=175/T:

2: �B D .�22=175; �3=175; 58=175; �11=175; �16=175; 146=175/T ¤ 0:

4: ˛ D minf1=.58=175/; 1=.146=175/g D 175=146; p D 6:

5: NxB D .1; 1; 1; 1; 1; 1/T � .175=146/.�22=175; �3=175; 58=175;

� 11=175; �16=175; 146=175/T

D .84=73; 149=146; 44=73; 157=146; 81=73; 0/T:

6: Nx6 D 0; return with
Nf D .1; 0; 2; 3; 0/.84=73; 149=146; 44=73; 157=146; 81=73/T D 815=146:

Phase-II: Call Algorithm 22.1.3.
Initial: k D 6, B D f1; 2; 3; 4; 5; 6g, N D ;, Nx D .84=73; 149=146; 44=73;

157=146; 81=73; 815=146/T. B and the Cholesky factor of BBT:

B D

0
BB@

2 �1 �2 �1

2 �2 1

1 �2 �1

1 2 3 0 �1

1
CCA; L D

0
BB@

�721=228

�3

�721=570 5=3 �740=581

721=456 2 905=3;458 �392=135

1
CCA:
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Iteration 2:

1: Ny D .�61=1;231; �114=1;231; �30=1;231; �146=1;231/T:

2: �B D .298=1;231; 107=1;231; 170=1;231; 149=1;231; 84=1;231; 1;085=1;231/T:

4: J ¤ ;:

5: ˛ D minf.84=73/=.298=1;231/;.149=146/=.107=1;231/.44=73/=.170=1;231/;

.157=146/=.149=1;231/; .81=73/=.84=1;231/.815=146/=.1;085=1;231/g
D 1;305=299; p D 3:

6: NxB D .84=73;149=146;44=73;157=146;81=73;815=146/T

� .1;305=299/.298=1;231; 107=1;231; 170=1;231; 149=1;231;

84=1;231; 1;085=1;231/T

D .1;211=12;867; 109=170; 0; 93=170; 69=85; 15;366=8;855/T:

7: B D f1; 2; 4; 5; 6g; N D f3g:

8: L D

0
BB@

�2;158=881

�3

�1;762=1;079 5=3 963=1;292

881=2;158 2 �2;889=1;292 524=387

1
CCA :

9: k D 5:

Iteration 3:

1: Ny D .1; �14=11; �18=11; �6=11/T:

2: �B D .2=11; 3=11; 1=11; �4=11; 83;204=183;049/T:

4: J ¤ ;:

5: ˛ D minf.1;211=12;867/=.2=11/; .109=170/=.3=11/;

.93=170/=.1=11/.15;366=8;855/=.83;204=183;049/g
D 1;203=2;324; p D 1:

6: NxB D .1;211=12;867; 109=170; 93=170; 69=85; 15;366=8;855/T

� .1;203=2;324/.2=11; 3=11; 1=11; �4=11; 83;204=183;049/T

D .0; 1=2; 1=2; 1; 3=2/T:

7: B D f2; 4; 5; 6g; N D f1; 3g:

8: L D

0
BB@

1;393=985

�3

1;393=985 5=3 �1;121=2;378

�2;378=1;121 2 985=1;393 �1

1
CCA :

9: k D 4:

Iteration 4:

1: Ny D .0; �3=2; �3=2; �1/T:

3: k D 4:

10: NzN D N T Ny D .5=2; 2/T � 0:

11. A 0-dimensional optimal face is obtained. The basic optimal solution and
optimal value:

Nx D .0; 1=2; 0; 1=2; 1; 3=2/T; Nx6 D 3=2:
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22.3 Generalizing the Face Method

In this section, we generalize Algorithm 22.1.3 to solve the bounded-variable
reduced problem, i.e.,

min xnC1;

s:t: Ax D b;

lj � xj � uj ; j D 1; � � � ; n;

(22.23)

where A; b are the same as in (22.1). The formula for computing the search direction
�B and the iteration scheme are also applicable here. As bound constraints are
added, however, (22.16) for determining the stepsize ˛ and index p has to be
replaced by

˛ D ˛p D minf˛j j j 2 B; j ¤ n C 1g; (22.24)

where

˛j D
8<
:

. Nxj � uj /=�j ; if �j < 0;

. Nxj � lj /=�j ; if �j > 0;

1; if �j D 0;

j 2 B; j ¤ n C 1: (22.25)

In addition, the optimality should be tested by examining whether the following set
is empty:

J 0 D fj 2 � j Nzj < 0g [ fj 2 … j Nzj > 0g (22.26)

where � and … are defined by (7.19).
The algorithm can be formulated as follows.

Algorithm 22.3.1 (Generalized face algorithm). Initial: .B; N /; m C 1 � k �
n C 1, feasible solution Nx and Cholesky factor L of BBT. This algorithm solves
bounded-variable reduced problem (22.23).

The same as Algorithm 22.1.3, except for steps 4,5,11 and 12, replaced respec-
tively by

4. Compute ˛j by (22.25).
5. Determine stepsize ˛ and index p by (22.24).

11. Stop if J 0, defined by (22.26), is empty (optimality achieved).
12. Determine index q 2 arg maxj 2J 0 jNzj j.
Example 22.3.1. Solve the following problem by Algorithm 22.3.1:

min f D x1 � x3 C 2x4;

s:t: C3x1 C x2 � 5x3 C x4 D 3;

�2x1 C 6x3 C x5 D 5;

�6x1 � 3x2 C 3x3 � 2x5 D �11;

1 � x1 � 9; �2 � x2 � 8;

0 � x3 � 12; 0 � x4 � 10; 0 � x5 � 15:
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Answer There is a feasible solution .1; 2; 1; 3; 1/T with objective value 6.
Initial:

k D 6; B D f1; 2; 3; 4; 5; 6g; N D ;;

feasible solution Nx D .1; 2; 1; 3; 1; 6/T. Face matrix B and the Cholesky factor of
BBT:

B D

0
BB@

3 1 �5 1

�2 6 1

�6 �3 3 �2

1 �1 2 �1

1
CCA ;

L D

0
BB@

�6

6 �2;889=1;292

6 2;279=637 549=181

�5=3 �2;584=2;889 1;267=915 �1;001=816

1
CCA :

Iteration 1:

1: � D �1;001=816; Ny D .772=623; 468=623; 27=89; �414=623/T:

2: �B D .24=89; �205=623; 71=623; 8=89; �90=623; 209=623/T ¤ 0:

4: ˛1;2;3;4;5 D ..1 � 1/=.24=89/; .8 � 2/=.�205=623/; .1 � 0/=.71=623/;

.3 � 0/=.8=89/; .1 � 10/=.�90=623//:

5: ˛ D 0; p D 1:

6: NxB D .1; 2; 1; 3; 1; 6/T:

7: B D f2; 3; 4; 5; 6g; N D f1g:

8: L D

0
BB@

�1;351=260

1;351=234 �1;057=552

1;351=390 1;057=506 �330=139

� 260=193 � 843=908 �2;128=1;401 �251=249

1
CCA :

9: k D 5:

Iteration 2:

1: � D �251=249; Ny D .124=63; 220=189; 17=27; �62=63/T:

2: �B D .�5=63; �1=63; 0; 2=21; 1=63/T ¤ 0:

4: ˛2;3;5 D ..2 � 8/=.�5=63/; .1 � 12/=.�1=63/; .1 � 0/=.2=21//:

5: ˛ D 21=2; p D 5:

6: NxB D .1; 2; 1; 3; 1; 6/T C .21=2/.5=63; 1=63; 0; �2=21; �1=63/T

D .17=6; 7=6; 3; 0; 35=6/T:

7: B D f2; 3; 4; 6g; N D f1; 5g:

8: L D

0
BB@

�1;351=260

1;351=234 �1;762=1;079

1;351=390 1;079=881 2;378=1;121

� 260=193 �749=688 1;393=985 �1

1
CCA :

9: k D 4:
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Iteration 3:

1. � D �1, Ny D .124=63; 220=189; 17=27; �62=63/T.
2. k D 4.

10. NzN D .4=3; 1=6/T.
11. J 0 D ;. The basic optimal solution and optimal value:

Nx D .1; 17=6; 7=6; 3; 0; 35=6/T; Nx6 D 35=6:

22.4 Affine Face Method

It is seen from (22.15) and (22.16) that in case when NxB is degenerate, ˛ would
vanish, and hence leading to a zero stepsize. It is more than that. It is known from
(22.17) that the difference between the new and old objective values is

OxnC1 � NxnC1 D �˛�k:

Therefore, even though the first k�1 components of NxB are positive in principle, the
stepsize would still be so small that the decrement of the objective value is negligible
if some components are too close to zero. Actually, this depends on relative
magnitudes of components. To avoid too small stepsizes, the affine interior-point
method (Sect. 9.2) exploits affine transformation to attain a relative equilibrium
between components. In this section, the affine transformation is employed to
modify the search direction, used in the face method, so that it is not only a downhill
but also points to the interior of the feasible region in some sense.

Assume that NxB is nondegenerate. Denote by NXB the k 
 k diagonal matrix,
whose diagonals are components of vector NxB , except for the kth diagonal 1, i.e.,

NXB D diag. Nx1; � � � ; Nxk�1; 1/: (22.27)

Consider affine transformation

xB D NXBx0
B: (22.28)

This transformation is invertible, and determines an 1–1 correspondence between
NxB and

Nx0
B D .1; � � � ; 1„ ƒ‚ …

k�1

; NxnC1/
T:

Despite some of the first k � 1 components of NxB may be close to zero, the
corresponding components of Nx0

B are all equal to 1, so that a line search along any
direction in Nx0

B -space will not lead to too small stepsize.
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By carrying out transformation (22.28), the subprogram (22.4) is converted to

min unC1;

s:t: .B NXB/x0
B D b;

uj � 0; j 2 B; j ¤ n C 1:

The projection matrix onto the null space of B NXB is then

P D I � NXBBT.B NX2
BBT/�1B NXB: (22.29)

Thereby, the orthogonal projection of the negative objective gradient onto the null
space is �P ek , corresponding to vector

�B D � NXBP ek

in xB -space. Thereby, combining

NXBek D ek; Bek D �emC1;

and (22.29) gives that search direction below:

�B D �ek C NX2
BBT Ny; .B NX2

BBT/ Ny D �emC1: (22.30)

If the Cholesky factorization B NX2
BBT D LLT is available, the Ny can be obtained by

solving an upper triangular system only, i.e.,

LT Ny D �.1=�/emC1;

where � is the .m C 1/the diagonal of L.
If Nx is degenerate, nevertheless, transformation (22.28) is not invertible, and

becomes useless. This difficulty may be overcome as follows. Let ı be a given small
positive number. Define

Oxj D
� Nxj ; If Nxj � ı;

1; If Nxj < ı;
j 2 B; j ¤ n C 1; (22.31)

Then construct an affine transformation with OxB in place of NxB , i.e., by using

NXB D diag. Ox1; � � � ; Oxk�1; 1/: (22.32)

instead of (22.27).
The difference between the resulting algorithm and the face algorithm lies in

search direction only. The following algorithm is obtained by slightly modifying
Algorithm 22.1.3.
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Algorithm 22.4.1 (Affine face algorithm). Given 0 < ı � 1. Initial: feasible
solution Nx. This algorithm solves the reduced problem (22.1).

1. Set k D nC1; B D A; N D ; and compute Cholesky factorization B NX2
BBT D

LLT, where NXB is defined by (22.32).
2. Solves LT Ny D �.1=�/emC1, where � is the .m C 1/th diagonal of L.
3. Compute �B D �ek C NX2

BBT Ny.
4. Go to step 11 if �B D 0.
5. Stop if J D fj 2 B j �j < 0; j ¤ n C 1g D ; (lower unbounded problem).
6. Determine stepsize ˛ and index p such that ˛ D � Nxp=�p D minj 2J � Nxj =�j .
7. If ˛ ¤ 0, update: NxB D NxB C ˛�B .
8. Update .B; N / by bringing p from B to N .
9. Update L by Algorithm 22.1.1.

10. Set k D k � 1; if k > m C 1, go to step 2.
11. Compute NzN D �N T Ny.
12. Stop if NzN � 0 (optimality achieved).
13. Go to step 1.

Note This Algorithm contains steps 2–10 as its inner steps.
To reduce effects of degeneracy in practice, it seems to be favorable to replace

(22.31) alternatively by

Oxj D
� Nxj ; if Nxj � ıj ;

ıj ; if Nxj < ıj ;
j 2 B; j ¤ n C 1:

where ıj > 0; n C 1 ¤ j 2 B are different small numbers conformable with
magnitude of the first k � 1 components of NxB .

Example 22.4.1. Solve the following problem by Algorithm 22.4.1, starting from
feasible solution .0; 0; 3; 2; 4/T:

min x1 C 5x2 � 2x4:

s:t: C 3x2 C x3 � x5 D �1;

�3x1 � x2 C 3x4 � 2x5 D �2;

x1 � 2x2 C 2x3 C x5 D 10;

xj � 0; j D 1; � � � ; 5:

Answer Take ı D 10�6. Initial: feasible solution Nx D .0; 0; 3; 2; 4; �4/T.

Iteration 1:

1. k D 6; B D f1; 2; 3; 4; 5; 6g; N D ;. NXB D diag.1; 1; 3; 2; 4; 1/T. Face
matrix B and the Cholesky factor of B NX2

BBT are respectively,
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B D

0
BB@

3 1 �1

�3 �1 3 �2

1 �2 2 1

1 5 �2 �1

1
CCA ;

L D

0
BB@

�2;449=420

�5;809=1;168 3;869=419

769=1;121 �4;313=1;346 �3;394=499

�1;402=545 �14;233=2;934 2;753=822 �1;941=1;519

1
CCA :

2: Ny D .827=1;382; �1;205=2;826; �269=892; �2;737=4;469/T:

3: �B D .451=1;235; �487=2;051; �35=822; �635=2;923; �576=763;

� 1;732=4;469/T ¤ 0:

5: J D f2; 3; 4; 5g ¤ ;:

6: ˛ D 0; p D 2:

8: B D f1; 3; 4; 5; 6g; N D f2g:

9: L D

0
BB@

�5

�32=5 3;019=366

�2=5 �2;682=589 �4;040=713

�1;653=505 3;573=1;456 2;273=2;022

1
CCA :

10: k D 5:

Iteration 2:

2: Ny D .1;977=2;944; �1;095=2;176; �73=213; �1;517=1;917/T:

3: �B D .80=213; �80=639; 560=1;917; �80=639; �400=1;917/T ¤ 0:

5: J D f3; 5g ¤ ;:

6: ˛ D minf�3=.�80=639/; �4=.�80=639/g D 1;917=80; p D 3:

7: NxB D .0; 3; 2; 4; �4/T C .1;917=80/.80=213; �80=639; 560=1;917;

� 80=639; �400=1;917/T D .9; 0; 9; 1; �9/T:

8: B D f1; 4; 5; 6g; N D f2; 3g:

9: L D

0
BB@

�4

�8 �2;207=329

4 1;292=2;889 2;584=2;889

1;292=321 �2;584=2;889 �1

1
CCA :

10: k D 4 D m C 1:

11: NzN D .1;097=1;456; 80=5;751/T � 0:

12. The 0-dimension optimal face (basic optimal solution) and optimal value:

Nx D .9; 0; 0; 9; 1; �9/T; Nx6 D �9:

22.5 Notes

The quality of an initial partition .B; N / seems to be important to the face algorithm.
Although initially setting B D A would be a convenient choice, a small B should be
favorable, ideally containing the right (unknown optimal) face columns. Therefore,
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it might be advisable to determine an initial B , whose cardinality is no more than
2m, especially for large-scale problems with n � m, by using a crash procedure
based on the most-obtuse-angle heuristics, balanced with sparsity considerations
(Sect. 5.5).

As was reported, the associated computational results with the face algorithm
are remarkable though preliminary. This outcome is not surprising because it uses
the steepest downhill as search direction, and involves less computational effort per
iteration mainly due to fewer linear systems involved than the simplex method.

Based on the “dual elimination” (Sect. 25.1.3), it is possible to design another
type of method in the following way. By a series of elementary transformations
with row exchanges, the standard dual problem (4.2) can be deduced to a problem
of form (25.6), i.e.,

min �g D � Ng C NxTz;
s:t: G2z D d2; z � 0;

(22.33)

together with Uy CG1z D d1. After the preceding standard problem is converted to
the reduced form, face Algorithm 22.1.3 and affine face Algorithm 22.4.1 become
applicable to achieve optimality by generating a sequence of dual feasible solutions.

Gill and Murray (1973) use the Cholesky factorization BBT D LLT , where B is
the usual square basis, to improve the numerical stability of the simplex algorithm.
Based on the fact that BBT and hence L is independent of the ordering of the
columns of B , Saunders (1972) proposes an approach to keep L sparse throughout
the solution process. It initially carries out row and column permutations to turn
the coefficient matrix A to a lower-triangular form as much as possible, and then
uses the resulting row permutation in subsequent iterations. This approach is clearly
applicable in the context of the face method.

Now let us turn to a just published result by Zhang et al. (2013), an alternative
approach to the face algorithm with favorable computational results. It updates
.BBT /�1 by the Sherman-Morrison formula to create the search directions. The
approach appears to be attractive for solving large-scale sparse problems, as it
bypasses updating of Cholesky factors, and hence involves no orthogonal transfor-
mations, except for the initial iteration.

In the following introduction, we will modify it sightly by computing the search
directions more directly.

Let B D .aj1 ; � � � ; ajk
/ be the face matrix. It is noted that BBT is invariant to

B’s column permutation.
Assume that B resulted from adding column ajt ; t 2 f1; � � � ; kg to the

predecessor face matrix B 0, in a face expansion iteration. Then it holds that

BBT D
X

rD1;��� ;k
ajr a

T
jr

D

0
BB@
X

rD1;��� ;k

r¤t

ajr a
T
jr

1
CCAC ajt a

T
jt

D B 0B 0T C ajt a
T
jt

:
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By Sherman-Morrison formula (See, e.g., Golub and Van Loan 1989), it follows
that

.BBT /�1 D .B 0B 0T /�1 � .B 0B 0T /�1ajt a
T
jt

.B 0B 0T /�1

1 C aT
jt

.B 0B 0T /�1ajt

D .B 0B 0T /�1 � hhT

1 C aT
jt

h
;

(22.34)
where

h D .B 0B 0T /�1ajt :

If, otherwise, B is yielded from B 0 by dropping column ajt in a face contraction
iteration, it is easily known that

.BBT /�1 D .B 0B 0T /�1 C hhT

1 � aT
jt

h
; (22.35)

Let B1 be the initial face matrix. For iterations l D 2; 3; � � � , denote again by ajt

the column entering or leaving the face matrix Bl�1. Based on (22.34) and (22.35),
the updating formula of .BlB

T
l /�1 can be written uniformly, i.e.,

.Bl B
T
l /�1 D .Bl�1BT

l�1/�1 � sign.�l�1/
hl�1h

T
l�1

1 C �l�1

; (22.36)

where

hl�1 D .Bl�1BT
l�1/�1ajt ; �l�1 D

(
aT

jt
hl�1 > 0 if ajt enters

�aT
jt

hl�1 < 0 if ajt leaves

From the preceding and the second formula of (22.6), the update formula follows:

Nyl D �.Bl B
T
l /�1emC1 D Nyl�1 C sign.�l�1/

hl�1;mC1hl�1

1 C �l�1

; (22.37)

where hl�1;mC1 denotes the .mC1/th component of hl�1. Assume that the first l �1

iterations were carried out, and hence fhi ; �i g; i D 1; � � � ; l �1 were available. After
Nyl is obtained via (22.37), consequently we are able to compute the search direction
by the first formula of (22.6), i.e.,

�Bl
D ek � BT

l Nyl : (22.38)
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Successively using (22.36) for l; � � � ; 2 leads to

.BlB
T
l /�1 D .Bl�2BT

l�2/�1 � sign.�l�2/
hl�2h

T
l�2

1 C �l�2

� sign.�l�1/
hl�1hT

l�1

1 C �l�1

:::

D .B1BT
1 /�1 �

l�1X
iD1

sign.�i /
hi h

T
i

1 C �i

:

If aq is selected to enter the face matrix at the current iteration, thereby, we can
compute

hl D .BlB
T
l /�1aq D .B1B

T
1 /�1aq �

l�1X
iD1

sign.�l�1/
.hT

l�1aq/hl�1

1 C �l�1

(22.39)

�l D
(

aT
q hl > 0 if aq enters

�aT
q hl < 0 if aq leaves

(22.40)

so that .hi ; �i / can be produced for i D 1; 2; � � � ; iteration by iteration, using the
same initial Cholesky factorization

B1B
T
1 D .LLT /:



Chapter 23
Dual Face Method

The same idea of the face method can be applied to the dual problem to derive a
dual variant. The resulting method seems to be even more efficient than its primal
counterpart.

23.1 Dual Face Method Using Cholesky Factorization

Using notation

A WD
�

A �b

0 1

�
; y WD

�
y

ymC1

�
; z WD

�
z

znC1

�
; c WD

�
c

0

�
;

we turn the standard dual problem to

max ymC1;

s:t: ATy C z D c; z � 0;
(23.1)

where A 2 R.mC1/�.nC1/; c 2 R.nC1/; rank A D m C 1; m < n, and

AenC1 D .�bT; 1/T; eT
mC1A D eT

nC1: (23.2)

Assume that this problem is feasible.
Let .B; N / be a partition of matrix A, where B 2 R.mC1/�k and

rank B D k; 1 � k � m C 1:

So, B is of full column rank. The related variables are respectively termed dual
face and dual nonface variables, and matrices termed dual face and dual nonface
matrices.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__23,
© Springer-Verlag Berlin Heidelberg 2014
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As znC1 D 0 is fixed throughout the solution process, it will be possible to keep
the .n C 1/th (last) column of A to be as the kth (last) column of B to simplify
computation, as was in the face algorithm. Thus, it holds that

Bek D .�bT; 1/T; eT
mC1B D eT

k ; eT
mC1N D 0: (23.3)

Partition .B; N / corresponds to dual face

DN D f.y; z/ 2 Rm 
 Rn j ATy C z D c; zB D 0; zN � 0g: (23.4)

A point on a dual face is termed (dual) face point. 0-dimensional face (k D m C 1)
has a unique dual face point – vertex. A face is said to be (dual) level face if the
(dual) objective value is constant over it, and said to be dual optimal if the constant
is equal to the optimal value.

For simplicity, thereafter .y; zN / 2 DN will often be used in place of .y; z/ 2
DN .

23.1.1 The Steepest Uphill

It might be well to assume that B D f1; � � � ; k � 1; n C 1g. Consider the following
subprogram:

max ymC1;

s:t: BTy D cB ;

N Ty C zN D cN ; zN � 0;

(23.5)

whose feasible region is face DN .
Using .m C 1/ 
 .m C 1/ projection

P D I � B.BTB/�1BT; (23.6)

the objective gradient, emC1, of the subprogram (23.5) is projected to the null of BT,
yielding the following search direction:

�y D P emC1 D emC1 � B NxB; BTB NxB D ek; (23.7)

�zN D �N T�y: (23.8)

Proposition 23.1.1. For �y defined by (23.7), it holds that BT�y D 0.

Proof. By (23.7), it is easy to verify the validity of this equation. ut
Proposition 23.1.2. The following statements are equivalent
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.i/ �y ¤ 0I .ii/ .�y/mC1 > 0I .iii/ emC1 62 range.B/:

Proof. Premultiplying the fist expression of (23.7) by �yT, then from Proposition
23.1.1 it follows that

0 � �yT�y D .�y/mC1;

which implies equivalence of (i) and (ii). If �y D 0, then it is known by the fist
expression of (23.7) that emC1 D B NxB , hence emC1 2 range.B/, so (iii) implies (i).
Conversely, if emC1 2 range.B/, then there is some vector u such that

emC1 D Bu: (23.9)

Premultiply the preceding equality by BT, then from (23.3) it follows that

ek D BTBu;

combining which and the second expression of (23.7) and B of full column rank
gives u D NxB . Thus, (23.9) implies

emC1 D B NxB:

Substituting the preceding equality to the fist expression of (23.7) leads to �y D 0.
So (i) implies (iii). Further, it can be asserted that (i) and (iii) are equivalent. ut
Proposition 23.1.3. If �y ¤ 0, then

eT
mC1�y D .�y/mC1 > 0; (23.10)

eT
mC1�y=k�yk � eT

mC1u=kuk; 8 0 ¤ u 2 Null.BT/: (23.11)

Proof. Equality (23.10) directly follows from Proposition 23.1.2. For P defined by
(23.6), it holds that

P u D u ¤ 0; 8 0 ¤ u 2 Null.BT/: (23.12)

It is known from Cauchy inequality that

kP emC1kkP uk � .P emC1/
T.P u/;

Multiplying the preceding inequality by 1=kP uk renders

kP emC1k � .P emC1/
T.P u/=kP uk;
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i.e.,

.P emC1/
T.P emC1/=kP emC1k � .P emC1/

T.P u/=kP uk;

combining which, P 2 D P; P T D P , (23.12) and �y D P emC1 leads to (23.11).
ut

The preceding Proposition implies that �y ¤ 0 forms the most acute angle with
objective gradient emC1 of the subprogram, in the null of BT. It is thereby termed
the steepest uphill. In this sense, taking it as a search direction in y-space is the
“best” choice.

To compute the search direction .�y; �zN /, defined by (23.7) and (23.8), it is
needed to solve k 
 k system

BTBxB D ek: (23.13)

Assume that the QR factorization of B is

B D QR1 D Q

�
LT

0

�
; (23.14)

where Q 2 R.mC1/�.mC1/ is orthogonal, L 22 Rk�k is nonsingular lower
triangular. Then it is verified that

BTB D LLT:

Thus, the L is just the Cholesky factor of BTB . Thereby, system (23.13) becomes

LLTxB D ek;

whose solution can be obtained by solving the following two triangular systems:

Lu D ek; LTxB D u:

As the solution to the first system is v D .1=	/ek, where 	 is the kth diagonal of
L, consequently only the following lower triangular system needs to be solved:

LTxB D .1=	/ek: (23.15)

23.1.2 Updating Dual Solution

Assume that . Ny; NzN / 2 DN and �y ¤ 0. The new dual solution is determined by
the following line search scheme:
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Oy D Ny C ˇ�y; OzN D NzN � ˇN T�y; (23.16)

where the largest possible stepsize, maintaining NzN � 0, is

ˇ D Nzq=.aT
q �y/ D minfNzj =.aT

j �y/ j aT
j �y > 0; j 2 N g � 0: (23.17)

If some components of NzN vanish, then dual face point . Ny; NzN / is said to be dual
degenerate, as is a case where stepsize ˇ vanishes, yielding a point the same as
the old.

Lemma 23.1.1. Assume that . Ny; NzN / 2 DN with �y ¤ 0.

(i) If N T�y 6� 0, then OzN is a boundary point, belonging to DN , The objective
value does not decrease, and strictly increases if . Ny; NzN / is nondegenerate.

(ii) If N T�y � 0, problem (23.1) is upper unbounded over DN .

Proof. (i) In this case, the new point . Oy; OzN / is well-defined. By . Ny; NzN / 2 DN ,
(23.17) and Proposition 23.1.1, it is known that . Oy; OzN / 2 DN . In addition, it is
clear that Ozq D 0, hence the new iterate is on the boundary, associated with the
objective value

OymC1 D NymC1 C ˇ.�y/mC1: (23.18)

Further, from ˇ � 0 and Proposition 23.1.2, it is known that .�y/mC1 > 0,
hence OymC1 � NymC1. If . Ny; NzN / is nondegenerate, then ˇ > 0, hence OymC1 >

NymC1, as indicates that the objective value increases strictly.
(ii) In this case, it is clear that . Oy; OzN / 2 DN 8ˇ > 0. It is then known by (23.18)

and Proposition 23.1.2 that the objective value tends to 1, as ˇ tends to 1. ut

23.1.3 Dual Face Contraction

Assume that N T�y 6� 0, in which case Ozp D 0. Update .B; N / by bring q from N

to B . Denoting the new face matrix by MB 2 R.mC1/�.kC1/, we have the following
result.

Proposition 23.1.4. If rank B D k, then rank MB D k C 1.

Proof. It is clear that k � rank MB � k C 1. Assume rank MB ¤ k C 1. Then, there
is a vector u ¤ 0 such that aq D Bu. Thus, it is known by Proposition 23.1.1 that
BT�y D 0, hence

aT
q �y D uTBT�y D 0:

Further, it follows from (23.17) that aT
q �y > 0, as is a contradiction. Therefore

rank MB D k C 1. ut
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According to the preceding Proposition, there exists the Cholesky factorization

MBT MB D ML MLT:

For sake of simplicity, it is advisable to insert aq as the second last column of MB 2
R.mC1/�.kC1/ (followed by the last column .�bT; 1/T). Then, the new Cholesky
factor can be computed by the following algorithm.

Algorithm 23.1.1. Assume that the QR factorization of B is given by (23.14). This
algorithm finds the Cholesky factor ML of MBT MB .

1. Compute v D QTaq .
2. Insert v before the last column of R1, yielding matrix H .
3. Determine Givens rotation JmC1; � � � ; JkC1, where Ji is in .k; i/-plane, such that

JkC1 � � � JmC1H D
� MLT

0

�
;

where ML 2 R.kC1/�.kC1/ is lower triangular.

Validity of Algorithm 23.1.1 can be verified as follows:
It is clear that

JkC1 � � � JmC1Q
T MB D JkC1 � � � JmC1Q

TŒa1; � � � ; ak�1; aq; anC1�

D JkC1 � � � JmC1H D
� MLT

0

�
:

By Proposition 23.1.4, it is known that ML 2 R.kC1/�.kC1/ is nonsingular. Thus, from
the preceding expression, it follows that

MBT MB D MBTQJ T
mC1 � � � J T

kC1JkC1 � � � JmC1Q
T MB D . ML; 0/

� MLT

0

�
D ML MLT:

It is seen from step 1 of Algorithm 23.1.1 that it is now required to store the
Givens rotations in product form, in contrast to the updating of the Cholesky factor
in the face algorithm. For large-scale problems, therefore, the dual face algorithm
should be restarted from scratch periodically.

23.1.4 Optimality Test

Assume that �y vanishes, and can not be used as a search direction, e.g., when
k D m C 1.

Lemma 23.1.2. Assume that �y is defined by (23.7). If �y D 0, then DN is a dual
level face; and vice versa if there is . Ny; NzN / 2 DN such that NzN > 0.
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Proof. Assume that NxB is the solution to BTBxB D ek. From �y D 0 and the first
expression of (23.7), it follows that

emC1 D B NxB:

Transposing the two sides of the preceding equality and postmultiplying the result
by y (for any .y; zN / 2 DN ) gives

eT
mC1y D NxT

BBTy;

combining which and BTy D cB leads to

ymC1 D NxT
BcB:

So the objective value is constant over DN . Therefore, DN is a level face.
Now assume that DN is a level face but �y ¤ 0. If N T�y � 0, it is known

by Lemma 23.1.1(ii) that the objective value is upper unbounded over DN , as
contradicts that it is a level face; if, otherwise, N T�y 6� 0, then since . Ny; NzN / is
nondegenerate, it is known from Lemma 23.1.1(i) that . Oy; OzN /, defined by (23.16)
and (23.17), belongs to DN , with a strictly increased objective value, as contradicts
that DN is a level face. Therefore �y D 0. ut

Now consider the primal problem of (23.1), i.e.,

min cTx;

s:t: Ax D emC1; x � 0:
(23.19)

Theorem 23.1.3. Assume that . Ny; Nzn/ 2 DN and that �y D 0 and NxB are
determined by (23.7). If NxB � 0, then Nx and . Ny; Nz/ are a pair of primal and dual
optimal solutions, and DN is a dual optimal face to (23.1), with NxN D 0; NzB D 0.

Proof. From (23.7) and �y D 0, it follows that emC1 D B NxB . Also, it is easy to
verify that Nx . NxN D 0/ is a feasible solution to (23.19). On the other hand, it is
clear that . Ny; Nz/ .NzB D 0/ is a feasible solution to (23.1). The two solutions exhibit
slackness complementarity. Therefore, they are a pair of primal and dual optimal
solutions. By Lemma 23.1.2, DN is a (dual) level face. In fact, it a (dual) optimal
face since including an optimal solution. ut

23.1.5 Dual Face Expansion

If �y D 0 but NxB 6� 0, then it can not be declared that the level dual face DN is
optimal. In this case, determine index

p 2 arg min
j 2B

Nxj ; (23.20)
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and update .B; N / by

OB D Bnfpg; ON D N [ fpg: (23.21)

Proposition 23.1.5. The index p determined by (23.20) is different from n C 1.

Proof. It is know by (23.15) that NxnC1 D .1=	2/ > 0. As minj 2B Nxj < 0, it is not
possible to select n C 1 to be as p. ut

Assume that OB 2 R.mC1/�.k�1/ is the matrix, resulting from dropping the pth
column of B . Clearly, it is still of full column rank. The associated Cholesky factor
can be obtained by the following steps.

Algorithm 23.1.2. Initial: Cholesky factorization BTB D LLT. This algorithm
generates the Cholesky factor OL of OB OBT.

1. Drop the pth column from R1, yielding Hessenberg matrix H .
2. Determine Givens rotations Jp; � � � ; Jk�1, where Ji is in .i; i C 1/-plane, such

that

Jk�1 � � � JpH D
� OLT

0

�
;

where OL 2 R.k�1/�.k�1/ is lower triangular.

Validity of Algorithm 23.1.2 can be verified simply: since

Jk�1 � � � JpQT OB D Jk�1 � � � JpQTŒa1; � � � ; ap�1; apC1; � � � ; anC1�

D Jk�1 � � � JpH D
� OLT

0

�
;

it holds that

OBT OB D OBTQJ T
p � � � J T

k�1Jk�1 � � � JpQT OB D . OL; 0/

� OLT

0

�
D OL OLT:

A seemingly attractive way to expand the face is to replace (23.21) by

OB D Bnfj 2 B j Nxj < 0g; ON D An OB:

Unfortunately, updating of the associated Cholesky factor becomes cumbersome.

23.1.6 Dual Face Algorithm

To be an initial dual face matrix, a submatrix B 2 R.mC1/�k; 1 � k � m C 1 with
small k seem to be preferable, though any one of full column rank is eligible.

The overall steps can be summarized into the following algorithm.
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Algorithm 23.1.3 (Dual face algorithm). Initial: B; N; 1 � k � m C 1; dual
feasible solution . Ny; NzN / and Cholesky factor L of BTB . This algorithm solves the
pair of reduced problems (23.1) and (23.19).

1. Solve LT NxB D �.1=	/ek for NxB , where 	 is the .m C 1/th diagonal of L.
2. Compute �y D emC1 � B NxB .
3. Go to step 10 if �y D 0.
4. Stop if N T�y � 0.
5. Determine index q and stepsize ˇ such that

ˇ D Nzq=.aT
q �y/ D minfNzj =.aT

j �y/ j aT
j �y > 0; j 2 N g:

6. If ˇ ¤ 0, update: Ny D Ny C ˇ�y; NzN D NzN � ˇN T�y.
7. Call Algorithm 23.1.1 to update L.
8. Bring q from N and to B as its second last index.
9. Set k D k C 1, and go to step 1.

10. Stop if NxB � 0.
11. Determine p 2 arg minj 2B Nxj .
12. Call Algorithm 23.1.2 to update L.
13. Update: B D Bnfpg; N D N [ fpg.
14. Set k D k � 1.
15. Go to step 1.

Note Initial B includes n C 1, which is the only index in case of k D 1.

Theorem 23.1.4. Assume dual nondegeneracy through out the solution process,
Algorithm 23.1.3 terminates either at

(i) step 4, detecting upper unboundedness of (23.1); or at
(ii) step 10, generating a (dual) optimal face together with a pair of primal and

dual optimal solutions.

Proof. Under the nondegeneracy assumption, the proof of finiteness of the Algo-
rithm is the same as that for the simplex method. The meanings of its exits are
derived from Lemma 23.1.1 and Theorem 23.1.3. ut

Preliminary computational experiments were carried out in the same software
and hardware environment, as described in Subsect. 22.1.6. The following two dense
codes in FORTRAN 77 are compared:

1. RSA: The simplex algorithm (see Notation).
2. DFA: Dual face Algorithm 23.1.3, supported by Algorithm 23.2.1 being as

Phase-I.
The test set are the same 26 smallest Netlib problems (Appendix B: Table B.4,

AFIRO-DEGEN2). The ratios of RSA to DFA are listed below: (excluding
DEGEN2, which code RSA failed to solve):

Total iteration ratio: 1.19, Total time ratio: 10.04.
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It is interesting to compare the performance of the dual face algorithm with the
face algorithm presented in Sect. 22.1.6. It is seen that iterations ratios of the two
codes are 1.51 and 1.19, respectively, and time ratios are as high as 4.91 and 10.04.
So both methods outperformed the simplex algorithm with large margins. As for a
comparison between the two face methods, the dual face method outperformed its
primal counterpart with time ration 2.04 (see Appendix D for details). It is certainly
advantageous that the dual face algorithm involves systems of order k, generally
much less than the order, m C 1, of the systems in the face algorithm.

23.2 Dual Face Phase-I

To provide a dual feasible solution to get Algorithm 23.1.3 started, any dual Phase-
I methods presented in Chap. 14 applies. Especially, the single-artificial-variable
method described in Sect. 14.2 fit. In this section, an auxiliary program, slightly
simpler than (14.9), is solved by the dual face algorithm.

Given any . Ny; Nz/ with Nz � 0. If AT Ny C Nz D c, then . Ny; Nz/ is already a dual feasible
solution. Now assume it is not the case.

Define

h D .Nz � c C AT Ny/=kNz � c C AT Nyk;

and introduce variable ymC1. Construct auxiliary program

max ymC1;

s:t: ATy C hymC1 C z D c; z � 0; ymC1 � 0:
(23.22)

It is clear that this program has a feasible solution . Ny; NymC1; Nz/, where

NymC1 D �kNz � c C AT Nyk;

and is upper bounded, hence there is an optimal solution. If its optimal value is equal
to 0, then the part .y; z/ of the optimal solution is a feasible solution to the original
dual problem; else the dual problem is infeasible.

In order to decrease the possibility of zero stepsize, it is inadvisable to have many
zero components of Nz. A possible way is to set Ny D 0; Nz D e, thus

h D .e � c/=ke � ck; (23.23)
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and there is the feasible solution

Ny D 0; NymC1 D �ke � ck; Nz D e; (23.24)

to the auxiliary program. Then by setting AT WD .AT
::: h/, the auxiliary program is

converted to a form, similar to (23.1). Consequently, the following Phase-I algorithm
yields by modifying Algorithm 23.1.3 slightly.

Algorithm 23.2.1 (Dual face Phase-I algorithm). Initial: B D ;; N D A; k D
0; Ny D ke � ckemC1; NzN D e. This algorithm finds a feasible solution to (23.1).

1. Set �y D emC1, and go to step 4.
2. Solves LLT NxB D BTemC1, where 	 is the .m C 1/th diagonal of L.
3. Compute �y D emC1 � B NxB .
4. Go to step 10 if �y D 0.
5. If N T�y 6� 0, then:

(1) determine q and ˇ1 such that

ˇ1 D Nzq=.aT
q �y/ D minfNzj =.aT

j �y/ j aT
j �y > 0; j 2 N gI

(2) compute ˇ D minf� Nym C 1=�ymC1; ˇ1g;
else

(3) compute ˇ D � NymC1=�ymC1.

6. Update: Ny D Ny C ˇ�y; NzN D NzN � ˇN T�y.
7. Stop if NymC1 D 0 (dual feasibility achieved).
8. Update L by Algorithm 23.1.1.
9. Update .B; N / by bringing q from N to B .

10. Set k D k C 1, and go to step 2.
11. Stop if NxB � 0 (dual infeasible problem).
12. Determine p 2 arg minj 2B Nxj .
13. Update L by Algorithm 23.1.2.
14. Update .B; N / by bringing p from B to N .
15. Set k D k � 1.
16. Go to step 2.

Example 23.2.1. Solve the following problem by the two-phase dual face
algorithm:

min 4x1 � x2 C 2x3;

s:t: 2x1 C x2 C x3 C x4 D 2;

x1 � x2 � x3 � x5 D �1;

2x1 � x3 C x5 D 0;

xj � 0; j D 1; � � � ; 5:
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Answer The dual problem is

max 2y1 � y2;

s:t: 2y1 C y2 C 2y3 C z1 D 4;

y1 � y2 C z2 D �1;

y1 � y2 � y3 C z3 D 2;

y1 C z4 D 0;

� y2 C y3 C z5 D 0;

zj � 0; j D 1; � � � ; 5:

Construct the following auxiliary program (kc � ek D 4):

max y4;

s:t: 2y1 C y2 C 2y3 � .3=4/y4 C z1 D 4;

y1 � y2 C .1=2/y4 C z2 D �1;

y1 � y2 � y3 � .1=4/y4 C z3 D 2;

y1 C .1=4/y4 C z4 D 0;

� y2 C y3 C .1=4/y4 C z5 D 0;

zj � 0; j D 1; � � � ; 5:

Phase-I: Call Algorithm 23.2.1.
Initial: k D 0, B D ;, N D f1; 2; 3; 4; 5g, Ny D .0; 0; 0; �4/T, Nz D

.1; 1; 1; 1; 1/T.

Iteration 1:

1: �y D .0; 0; 0; 1/T:

4: �y ¤ 0:

5: N T�y D .�3=4; 1=2; �1=4; 1=4; 1=4/T 6� 0:

.1/ ˇ1 D minf1=.1=2/; 1=.1=4/; 1=.1=4/g D 2; q D 2:

.2/ ˇ D minf4=1; 2g D 2:

6: Ny D .0; 0; 0; �4/T C 2.0; 0; 0; 1/T D .0; 0; 0; �2/T:

NzN D .1; 1; 1; 1; 1/T � 2.�3=4; 1=2; �1=4; 1=4; 1=4/T

D .5=2; 0; 3=2; 1=2; 1=2/T:

7: Ny4 D �2 ¤ 0:

8: L D Œ3=2�:

9: B D f2g; N D f1; 3; 4; 5g:
10: k D 1:

Iteration 2:

2: NxB D .2=9/:

3: �y D .0; 0; 0; 1/T � .1; �1; 0; 1=2/T.2=9/ D .�2=9; 2=9; 0; 8=9/T:
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4: �y ¤ 0:

5: N T�y D .�8=9; �2=3; 0; 0/T � 0:

.3/ ˇ D �.�2/=.8=9/ D 9=4:

6: Ny D .0; 0; 0; �2/T C .9=4/.�2=9; 2=9; 0; 8=9/T D .�1=2; 1=2; 0; 0/T:

NzN D .5=2; 3=2; 1=2; 1=2/T � .9=4/.�8=9; �2=3; 0; 0/T

D .9=2; 3; 1=2; 1=2/T:

7: Ny4 D 0; achieves dual feasible:

Convert the dual problem to a form of (23.1):

max y4;

s:t: 2y1 C y2 C 2y3 C z1 D 4;

y1 � y2 C z2 D �1;

y1 � y2 � y3 C z3 D 2;

y1 C z4 D 0;

� y2 C y3 C z5 D 0;

�2y1 C y2 C y4 C z6 D 0;

zj � 0; j D 1; � � � ; 6:

(23.25)

Phase-II: Call Algorithm 23.1.3.
Initial: k D 2, B D f2; 6g; N D f1; 3; 4; 5g Ny D .�1=2; 1=2; 0; �3=2/T,

NzN D .9=2; 3; 1=2; 1=2/T, L D
� p

2 0

�.3
p

2/=2
p

3=2

�
.

Iteration 3:

1: NxB D .1; 2=3/T:

2: �y D

0
BB@

0

0

0

1

1
CCA �

0
BB@

1 �2

�1 1

0 0

0 1

1
CCA
�

1

2=3

�
D

0
BB@

1=3

1=3

0

1=3

1
CCA :

3: �y ¤ 0:

4: N T�y D

0
BB@

2 1 2 0

1 �1 �1 0

1 0 0 0

0 �1 1 0

1
CCA
0
BB@

1=3

1=3

0

1=3

1
CCA D

0
BB@

1

0

1=3

�1=3

1
CCA :

5: ˇ D minf.9=2/=1; .1=2/=.1=3/g D 3=2; q D 4:

6: Ny D .�1=2; 1=2; 0; �3=2/T C .3=2/.1=3; 1=3; 0; 1=3/T D .0; 1; 0; �1/T:

7: L D
0
@

p
2 0 0p

2=2
p

2=2 0

�3=
p

2 �p
2=2 1

1
A :

8: B D f2; 4; 6g; N f1; 3; 5g:
9: k D 3:
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Iteration 4:

1. NxB D .1; 1; 1/T.

2. �y D

0
BB@

0

0

0

1

1
CCA �

0
BB@

1 1 �2

�1 0 1

0 0 0

0 0 1

1
CCA
0
@1

1

1

1
A D

0
BB@

0

0

0

0

1
CCA.

3. �y D 0.
10. NxB � 0. The optimal solution and optimal value to (23.25):

Ny D .0; 1; 0; �1/T; Nz D .3; 0; 3; 0; 1; 0/T;

with the related optimal face

y1 D 0; y2 D 1; �3 � y3 � 1; y4 D �1:

Finally, the optimal solution and optimal value to the original problem are

Nx D .0; 1; 0; 1; 0/T; Nf D �1;

and dual optimal solution is

Ny D .0; 1; 0/T; Nz D .3; 0; 3; 0; 1/T:

23.3 Dual Face Method Using Gauss-Jordan Elimination

In Algorithm 23.1.3, the QR factorization is used to produce the Cholesky factor
L of BT B initially, and Givens notations used to update L in each iteration.
Such manipulations by orthogonal matrices would not be amenable to sparse
computations, however. In this section, dual face algorithms using the Gauss-Jordan
elimination will be derived to remedy the situation.

We are concerned with the D-reduced problem (25.3), whose dual problem is

max g D yr

s:t: AT y C z D Nz; z � 0:
(23.26)

Let a dual feasible solution . Ny; Nz/ be available.
As the steepest uphill, the gradient er of the dual objective is taken as the search

direction in y-space. Such doing leads to

�y D er ; �z D �AT er  �!:
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The new dual feasible solution is then determined by the following line search
scheme:

Oy D Ny C ˇer; Oz D Nz � ˇ!; (23.27)

where the largest possible stepsize maintaining Nz nonnegative is

ˇ D Nzq=!q D minfNzj =!j j !j > 0; j 2 Ag � 0:

The related computations can be arranged in a tableau form as follows.
Based on Proposition 4.7.1, we turn to the following problem instead of (25.3),

equivalently.

min f D Nyr C NzT x;

s:t: Ax D er ; x � 0:
(23.28)

Denote by !T the so-called “datum” (r th) row of A, and by AR the matrix consisting
A’s rows other than the datum row. The the initial tableau of (23.28) is then

xT f RHS
AR

!T 1

NzT �1 � Nyr

According to the second formula of (23.27), add �ˇ times of the datum row of
the preceding tableau to its bottom line, giving the new Nz ( Ny can be computed at the
end if required). For the moment, assume that the q-indexed column, aq.R/, of AR

is nonzero, and ap q is the largest in module among all its components. Taken as the
pivot, ap q , is converted to 1 and the other nonzeros in the column is eliminated by
elementary transformations. The q-indexed entry of the new datum row vanishes.
The pivot entry 1 is moved to the position in the first row and first column by row
and column exchanges, and the first iteration is then complete. It is noted that the
first column of the resulting tableau is a unit vector with the first component 1.

In general, we initially set

B D ;; N D A; R D ;; R0 D f1; � � � ; mg: (23.29)

Assume that at some iteration, faced are

B D fj1; � � � ; jkg; N D AnBI R D fi1; � � � ; ikg; R0 D f1; � � � ; mgnR;



610 23 Dual Face Method

and the following tableau:

xT
B xT

N f RHS
I NNR

NNR0

N!T
N 1

NzT
N �1 � Nf

(23.30)

where the north-west corner is the unit k
k matrix with 0 � k � m, generated from
elementary transformations, The tableau corresponds to the following dual program
(see Sect. 4.7 for the relation between the dual problems associated with the initial
and subsequent tableaus):

max yr

s:t:

�
I 0 0
NN T

R
NN T

R0 N!N

�0@ yR

yR0

yr

1
AC

�
zB

zN

�
D
�

0

NzN

�
; zB; zN � 0;

from which it is seen that �y D er is the steepest uphill in y-space, associated with
the search direction in z-space, i.e.,

�z D �
�

0

N!N

�
:

It is clear that the dual feasible solution . Ny; Nz/, given by the bottom line of tableau
(23.30), and search direction .�y; �z/ are both in the dual face

DN D f.y; z/ 2 Rm 
 Rn j ATy C z D c; zB D 0; zN � 0g:

Define

J D fj 2 N j N!j > 0g:

If J D ;, the dual problem is unbounded, and hence the original problem is
infeasible. Otherwise, the dual feasible solution Nz and associated objective value
Ng are updated by the following line search scheme (the associated Ny is not needed if
only a primal optimal solution is wanted; it can be computed at the end if required):

NzB D 0; OzN D NzN � ˇ N!N ; Og D Ng C ˇ: (23.31)

where ˇ is the largest possible stepsize such that

ˇ D Nzq=!q D min
j 2J

Nzj =!j � 0:
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But we will use the following instead:

q 2
�

arg maxf N!j j j 2 J1g; ˇ D 0; if J1 ¤ ;;

arg minfNzj = N!j j j 2 J g; ˇ D Nzq= N!q; otherwise;
(23.32)

where J1 D fj j Nzj D 0; j 2 J g. The according new objective value is Nf C ˇ.
These new quantities can be generated by adding �ˇ times of the ! row to the
bottom in tableau (23.30).

Let Naq.R0/ be the q-indexed column of NNR0 and let Naq.R/ be that of NNR. There
will be the following two cases handled separately:

(i) R0 ¤ ; and Naq.R0/ ¤ 0.
Determine row index p D arg maxi2R0 j Nai qj. Convert Nap q to 1 and eliminate
the other nonzeros in the column by elementary transformations. Then bring
column index q from N to B and row index p from R0 to R. This is a face
contraction iteration.

(ii) R0 D ; or Naq.R0/ D 0.
Determine row index s 2 arg maxf Nait ;q j t D 1; : : : ; kg. If Nais q � 0 hence
Naq.R/ � 0, achieved is then the basic optimal solution, with following basic
components:

Nxq D 1= N!q � 0; NxB D � Nxq Naq.R/ � 0: (23.33)

In this case, a so-called “dual level face” is reached. In fact, if N!q were deduced
to 1 and the other nonzeros in the column were eliminated by elementary
transformations, the tableau would become a normal simplex tableau, just
giving the basic optimal solution (23.33). If row index sets I1 and I2 are
defined to correspond to zero and nonzero basic components, respectively, then
a dual face is determined over which the dual objective value is constant (see
the last half of Sect. 25.2). It is an optimal dual face if Nais q � 0. Otherwise,
convert Nais q to 1 and eliminate the other nonzeros in the column by elementary
transformations. Then exchange column indices js and q to complete an
iteration.

The overall steps can be formulated as follows.

Algorithm 23.3.1 (Dual face algorithm using Gauss-Jordan elimination). Ini-
tial: tableau of form (23.30) with B; N; R; R0; k D 0. This algorithm solves the
D-reduced problem (25.3).

1. Stop if J D fj 2 N j N!j > 0g D ; (infeasible problem).
2. Determine column index q and ˇ by (23.32).
3. If ˇ ¤ 0, add �ˇ times of the datum row to the bottom row.
4. If k D 0, go to step 10.
5. Determine s 2 arg maxf Nait ;q j t D 1; : : : ; kg.
6. Go to step 9 if Nais ; q � 0.
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7. Convert Nais ; q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

8. Update .B; N / by exchanging js and q, and go to step 1.
9. Go to step 13 if R0 D ; or Naq.R0/ D 0.

10. Determine row index p 2 arg maxi2R0 j Nai qj.
11. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
12. Set k D k C 1, bring q from N to B and p from R0 to R, and go to step 1.
13. Convert !q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
14. Stop (optimality achieved).

Example 23.3.1. Solve the following LP problem by Algorithm 23.3.1, supported
by a Phase-I using auxiliary program (23.22):

min f D 2x1 C x2 � 2x3 C x4 � 3x5 C x6 C 2x7 � 2x8

s:t: 2x1 � 3x2 C x3 � 6x4 C x5 C 4x6 C 6x7 D 0;

5x1 C 6x3 � 2x4 C 10x6 C 8x7 � x8 D 0;

�x1 C 8x2 � 4x5 C 2x8 D 0;

4x1 � 2x3 C 5x4 C 8x5 � 4x6 C 3x7 D 1;

xj � 0; j D 1; : : : ; 8:

Answer Phase-I: Denote by c and A the costs and the coefficient matrix,
respectively. Set

h D .e � c/=ke � ck D .�1; 0; 3; 0; 4; 0; �1; 3/T =6

D .�1=6; 0; 1=2; 0; 2=3; 0; �1=6; 1=2/T;

where e is the vector with all ones. Then the Phase-I auxiliary dual program is of
form below:

max y5;

s:t: ATy C hy5 C z D c; z � 0; y5 � 0;
;

which has the feasible solution

Ny D 0; Ny5 D �ke � ck D �6; Nz D e;

associated with auxiliary objective value �6. Based on Proposition 4.7.1, solve the
according primal program

min eT x � 6;

s:t: Ax D 0;

hT x D 1; x � 0;

;
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by Algorithm 23.3.1, where set J includes index 9 (associated with the auxiliary
right-hand side RHS1), as the auxiliary objective value is less then and equal to
zero.

Initial tableau ( the right-hand side e4 of the original problem is put as the last
column to get the Phase-II start easier): k D 0; B D ;; N D A; R D ;; R0 D
f1; 2; 3; 4g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS1 RHS

2 �3 1 �6 1 4 6

5 6 �2 10 8 �1

�1 8 �4 2

4 �2 5 8* �4 3 1

�1=6 1=2 2=3 �1=6 1=2 1

1 1 1 1 1 1 1 1 6

Iteration 1:

1. J D f3; 5; 8; 9g ¤ ;.
2. J1 D ;, ˇ D minf1=.1=2/; 1=.2=3/; 1=.1=2/; 6=1g D 3=2; q D 5.
3. Add �3=2 times of row 5 to the bottom row.
4. k D 0.

10. maxfj1j; 0; j � 4j; j8jg D 8 > 0; p D 4.
11. Multiply row 4 by 1=8, then add �1; 4; �2=3 times of row 4 to rows 1,3,5,

respectively:
12. k D 1, B D f5g; N D AnB; R D f4g; R0 D f1; 2; 3g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS1 RHS

3=2 �3 5=4 �53=8 9=2 45=8 �1=8

5 6* �2 10 8 �1

1 8 �1 5=2 �2 3=2 2 1=2

1=2 �1=4 5=8 1 �1=2 3=8 1=8

�1=2 2=3 �5=12 1=3 �5=12 1=2 1 �1=12

5=4 1 1=4 1 1 5=4 1=4 9=2

Iteration 2:

1. J D f3; 6; 8; 9g ¤ ;.
2. J1 D ;; ˇ D minf.1=4/=.1=2/; 1=.1=3/; .1=4/=.1=2/; .9=2/=1g D 3=8;

q D 3.
3. Add �3=8 times of row 5 to the bottom row.
5. maxf�1=4g � 0.
9. Naq.R0/ ¤ 0.
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10. maxfj5=4j; j6j; j � 1jg D 6 > 0; p D 2.
11. Multiply row 2 by 1=6, then add �5=4; 1; 1=4; �2=3 times of row 2 to rows

1,3,4,5 respectively:
12. k D 2, B D f5; 3g; N D AnB; R D f4; 2g; R0 D f1; 3g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS1 RHS

11=24 �3 �149=24 29=12 95=24 5=24 �1=8

5=6 1 �1=3 5=3 4=3 �1=6

11=6 8 13=6 �1=3 17=6 11=6* 1=2

17=24 13=24 1 �1=12 17=24 �1=24 1=8

�19=18 �7=36 �7=9 �47=36 11=18 1 �1=12

23=16 1 37=32 7=8 45=32 1=16 33=8 1=32

Iteration 3:

1. J D f8; 9g ¤ ;.
2. J1 D ;. ˇ D minf.1=16/=.11=18/; .33=8/=1g D .1=16/=.11=18/; q D 8.
3. Add �ˇ times of row 5 to the bottom row.
5. maxf�1=6; �1=24g � 0.
9. Naq.R0/ ¤ 0.

10. maxfj5=24j; j11=6jg D 11=6 > 0; p D 3.
11. Multiply row 3 by 6=11, then add �5=24; 1=6; 1=24; �11=18 times of row 2 to

rows 1,2,4,5 respectively:
12. k D 3, B D f5; 3; 8g; N D AnB; R D f4; 2; 3g; R0 D f1g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS1 RHS

1=4 �43=11 �71=11 27=11 40=11 �2=11

1 8=11 1 �3=22 18=11 35=22 1=22

1 48=11 13=11 �2=11 17=11 1 3=11

3=4 2=11 13=22 1 �1=11 17=22 3=22

�5=3 �8=3 �11=12 �2=3 �9=4 1 �1=4

17=11 1 207=176 21=22 271=176 177=44 7=176

Iteration 4:

1. J D f9g.
2. J1 D ;. ˇ D .177=44/=1; q D 9.
3. Add �177=44 times of row 5 to the bottom row. The auxiliary objective value

vanishes.
Phase-I terminates with the bottom row giving the dual feasible solution to

the original problem. Obtain a dual feasible tableau to the original problem by
dropping the second bottom row, and the RHS1 column:
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x1 x2 x3 x4 x5 x6 x7 x8 RHS

1=4 �43=11 �71=11 27=11 40=11 �2=11

1 8=11 1 �3=22 18=11 35=22 1=22

1 48=11 13=11 �2=11 17=11 1 3=11

3=4 2=11 13=22 1 �1=11 17=22 3=22*

33=4 129=11 2;107=22 40=11 233=22 23=22

Phase-II (1):

Iteration 5:

To deduced the preceding tableau to a D-reduced one, multiply row 4 by 22=3, and
add 2=11; �1=22; �3=11 times of row 4 to rows 1,2,3, respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

5=4 �11=3 �17=3 4=3* 7=3 14=3

3=4 2=3 1 �1=3 �1=3 5=3 4=3

�1=2 4 �2 1

11=2 4=3 13=3 22=3 �2=3 17=3 1

33=4 129=11 107=22 40=11 233=22 23=22

k D 2, B D f3; 8g; N D AnB; R D f2; 3g; R0 D f1g.

Iteration 6:

1. J D f1; 2; 4; 5; 7g.
2. J1 D f5g. ˇ D 0; q D 5.
5. maxf�1=3; �2g � 0.
9. Naq.R0/ ¤ 0.

10. maxfj4=3jg; p D 1.
11. Multiply row 1 by 3=4, then add 1=3; 1=6; 2; �22=31=24 times of row 1 to rows

2,3,4, respectively:
12. k D 3, B D f3; 8; 5g; N D AnB; R D f4; 2; 3; 1g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

15=16 �11=4 �17=4 1 7=4 7=2

17=16 �1=4 1 �7=4 9=4 5=2

11=8 �3=2 �17=2 7=2 7 1

�11=8 43=2 71=2* �27=2 �20 1

33=4 129=11 107=22 40=11 233=22 23=22
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Iteration 7:

1. J D f2; 4g.
2. J1 D ;. ˇ D f.129=11/=.43=2/; .107=22/=.71=2/g D .107=22/=.71=2/;

q D 4.
3. Add �ˇ times of row 5 to the bottom row.
5. maxf�17=4; �7=4; �17=2g � 0.
9. R0 D ;.

13. Multiply row 4 by 2=71, then add 17=4; 7=4; 17=2 times of row 4 to rows 1,2,3,
respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

439=568 �25=142 1 19=142 157=142 17=142

565=568 115=142 1 225=142 215=142 7=142

297=284 259=71 19=71 157=71 1 17=71

�11=284 43=71 1 �27=71 �40=71 2=71

4;793=568 1;247=142 779=142 1;893=142 129=142

14. The basic optimal solution:

Nx D .0; 0; 7=142; 2=71; 17=142; 0; 0; 17=71/T ; Nf D �129=142:

Phase-II (2):
Alternatively, Phase-II can start from the original data, except for the

resulting bottom and datum rows (or the original datum row). The following
tableau uses the original datum row: B D ;; N D A; R D ;; R0 D f1; 2; 3g

x1 x2 x3 x4 x5 x6 x7 x8 RHS

2 �3 1 �6 1 4 6

5 6 �2 10 8 �1

�1 8 �4* 0 2

4 �2 5 8 �4 3 1

33=4 129=11 107=22 40=11 233=22 23=22

Iteration 5:

1. J D f1; 4; 5; 7g.
2. J1 D f5g. ˇ D 0; q D 5.
5. maxf�17=4; �7=4; �17=2g � 0.
4. k D 0.

10. maxfj1j; 0; j � 4jg D 4; p D 3.
11. Multiply row 3 by �1=4, then add �1; �8 times of row 3 to rows 1,4,

respectively:
12. k D 1, B D f5g; N D AnB; R D f3g; R0 D f1; 2g.
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x1 x2 x3 x4 x5 x6 x7 x8 RHS

7=4 �1 1 �6 4 6 1=2

5 6 �2 10 8 �1*

1=4 �2 1 �1=2

2 16 �2 5 �4 3 4 1

33=4 129=11 107=22 40=11 233=22 23=22

Iteration 6:

1. J D f1; 2; 4; 7; 8g.
2. J1 D f8g. ˇ D 0; q D 8.
5. maxf�1=2g � 0.
9. Naq.R0/ ¤ 0.

10. maxfj1=2j; j � 1jg D 1; p D 2.
11. Multiply row 2 by �1, then add �1=2; 1=2; �4 times of row 2 to rows 1,3,4,

respectively:
12. k D 2, B D f5; 8g; N D AnB; R D f3; 2g; R0 D f1g.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

17=4 �1 4* �7 9 10

�5 �6 2 �10 �8 1

�9=4 �2 �3 1 1 �5 �4

22 16 22 �3 36 35 1

33=4 129=11 107=22 40=11 233=22 23=22

Iteration 7:

1. J D f1; 2; 3; 6; 7g.
2. J1 D f3g. ˇ D 0; q D 3.
5. maxf�6; �3g � 0.
9. Naq.R0/ ¤ 0.

10. maxfj4j; j � 1jg; p D 1.
11. Multiply row 1 by 1=4, then add 6; 3; �22 times of row 1 to rows 2,3,4,

respectively:
12. k D 2, B D f5; 8; 3g; N D AnB; R D f3; 2; 1g; R0 D ;.

x1 x2 x3 x4 x5 x6 x7 x8 RHS

17=16 �1=4 1 �7=4 9=4 5=2

11=8 �3=2 �17=2 7=2 7 1

15=16 �11=4 �17=4 1 7=4 7=2

�11=8 43=2 71=2* �27=2 �20 1

33=4 129=11 107=22 40=11 233=22 23=22
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Iteration 8:

1. J D f2; 4g.
2. J1 D ;. ˇ D minf.129=11/=.43=2/; .107=22/=.71=2/g D .107=22/=.71=2/;

q D 4.
5. maxf�7=4; �17=2; �17=4g D �7=4 � 0.
9. R0 D ;.

13. Multiply row 4 by 2=71, then add 7=4; 17=2; 17=4 times of row 4 to rows 1,2,3,
respectively:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

565=568 115=142 1 225=142 215=142 7=142

297=284 259=71 19=71 157=71 1 17=71

439=568 �25=142 1 19=142 157=142 17=142

�11=284 43=71 1 �27=71 �40=71 2=71

4;793=568 1;247=142 779=142 1;893=142 129=142

14. Obtained is the same basic optimal solution as from Phase-II (1).

23.4 Variant of the Dual Face Algorithm

This section offers a variant of the dual face algorithm by updating .BT B/�1 rather
than Cholesky factor. It is originally motivated by the idea of being amenable to
large-scale sparse problems by getting rid of orthogonal transformations. Surpris-
ingly, the variant turns out to be so simple that there is no need for solving any
linear system though might be less stable than the dual face algorithm.

Firstly, we consider how to update the inverse in the contraction iteration.

Lemma 23.4.1. Let B 2 R.mC1/�k; 1 � k < m C 1 be a face matrix. If 0 ¤ aq 2
RmC1 satisfies aq 62 range B , then 	 is well-defined such that

	 D .aT
q aq � aT

q B.BT B/�1BT aq/�1: (23.34)

Proof. Since B is of full column rank k, .BT B/�1 2 Rk�k is well-defined.
Condition aq 62 range B implies that the orthogonal projection of aq onto the
orthogonal complement space of range B does not vanish, i.e.,

aq � B.BT B/�1BT /aq D .I � B.BT B/�1BT //aq ¤ 0;

hence it holds that

aT
q aq � aT

q B.BT B/�1BT aq D aT
q .I � B.BT B/�1BT /aq ¤ 0:

Thus, (23.34) is well-defined. ut
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Theorem 23.4.1 Let B 2 R.mC1/�k; 1 � k < m C 1 be a face matrix and let

.BT B/�1 be available. If MB D .B
::: aq/, then it holds that

. MBT MB/�1 D
 

.BT B/�1 C 	.BT B/�1BT aqaT
q B.BT B/�1 �	.BT B/�1BT aq

�	aT
q B.BT B/�1 	

!
;

(23.35)
where 	 is defined by (23.34).

Proof. Proposition 23.1.4 implies that aq 62 range B . According to Lemma 23.4.1,
therefore, 	 (23.34) is well-defined. Then, in view of

MBT MB D
 

BT

aT
q

!�
B aq

	 D
 

BT B BT aq

aT
q B aT

q aq

!
;

the validity of (23.35) is easily verified. ut
From the preceding Theorem, the formula for updating .BT B/�1 follows, i.e.,

. MBT MB/�1 D
�

D v

vT 	

�
; (23.36)

where

u D BT aq; w D .BT B/�1u; 	 D .aT
q aq � uT w/�1; v D �	w;

D D .BT B/�1 � vwT : (23.37)

Nevertheless, the column aq should be inserted before the last column of B .
So, the new face matrix OB may be obtained from MB by interchanging its last two
columns. Denote the according column permutation matrix by P T . Then, it follows
that

. OBT OB/�1 D .. MBP T /T . MBP T //�1 D P. MBT MB/�1P T :

Therefore, the wanted inverse can be obtained by interchanging the last two columns
and rows of matrix (23.35).

Let us turn to the case of the expansion iteration. Let B 2 R.mC1/�k; 1 < k �
m C 1 be current face matrix and let OB be the new face matrix, resulting from
dropping column ap from B . Then, there is a column permutation QT such that

BQT D . OB ::: ap/
4D MB;
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from which it follows that

. MBT MB/�1 D ..BQT /T .BQT //�1 D Q.BT B/�1QT :

As .BT B/�1 is available, therefore, . MBT MB/�1 is easily obtained.

Theorem 23.4.2 If . MBT MB/�1 is of form (23.36), then it holds that

. OBT OB/�1 D D � 	�1vvT : (23.38)

Proof. From (23.36) and Theorem 23.4.1, it is known that

v D �	. OBT OB/�1 OBT ap; D D . OBT OB/�1 C 	. OBT OB/�1 OBT apaT
p

OB. OBT OB/�1;

from which, (23.38) follows. ut
In practice, an integer vector is enough to record positions of columns to avoid

moving them all around. The overall steps can be put into the following algorithm.

Algorithm 23.4.1. (Dual face algorithm: inverse updating) Initial : B; N; 1 �
k � m C 1, .BT B/�1, dual feasible solution . Ny; NzN /. This algorithm solves the pair
of reduced problems (23.1) and (23.19).

1. Compute NxB D .BT B/�1ek .
2. Compute �y D emC1 � B NxB .
3. Go to step 11 if �y D 0.
4. Stop if N T�y � 0 (problem (23.1) is upper unbounded).
5. Determine index q and stepsize ˇ such that

ˇ D Nzq=.aT
q �y/ D minfNzj =.aT

j �y/ j aT
j �y > 0; j 2 N g:

6. If ˇ ¤ 0, update: Ny D Ny C ˇ�y; NzN D NzN � ˇN T�y.
7. Update .BT B/�1 by (23.36) with adding permutation.
8. Bring q from N and insert before the last column of B .
9. Set k D k C 1, and go to step 1.

10. Stop if NxB � 0 (optimality achieved).
11. Determine p 2 arg minj 2B Nxj .
12. Update .BT B/�1 by (23.38) with dropping permutation
13. Update: B D Bnfpg; N D N [ fpg.
14. Set k D k � 1.
15. Go to step 1.

It is seen that no linear system has to be solved in the solution process if k D 1

and B D .anC1/ are set initially.
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Example 23.4.1. Solve the following problem by Algorithm 23.4.1:

min f D 5x1 C x2 C 3x4 C 6x6 C 2x7;

s:t: 3x1 � 7x3 C 5x4 � 4x5 � 6x6 � 5x7 D �18;

1=3x1 C 2x2 C 1=3x3 C � 2=3x5 C 2x7 D 0;

� 5x2 C 11x3 � 7x4 � 3x5 C 4x6 D 9;

xj � 0; j D 1; � � � ; 7:

Answer
The problem is transformed to the following one in tableau form:

x1 x2 x3 x4 x5 x6 x7 x8 RHS

3 �7 5 �4 �6 �5 18

1=3 2 1=3 �2=3 2

�5 11 �7 �3 4 �9

1 1

5 1 3 6 2

k D 1; B D a8 D .18; 0; �9; 1/T ; N D AnBI .BT B/�1 D .1=406/;

Ny D .0; 0; 0; 0/T ; Nz D .5; 1; 0; 3; 0; 6; 2; 0/T .

Iteration 1:

1: NxB D .1=406/:

2: �y D .�9=203; 0; 9=406; 405=406/T :

4: N T �y D .�27=203; �45=406; 225=406; �153=406; 45=406; 72=203;

45=203/T 6� 0:

5: ˇ D minf0=.225=406/; 0=.45=406/; 6=.72=203/; 2=.45=203/g D 0;

q D 3:

aq D .�7; 1=3; 11; 0/T :

7: .BT B/�1 D
�

179=8130 91=7458

91=7458 517=56043

�
:

8: B D

0
BB@

�7 18

1=3

11 �9

1

1
CCA ; N D

0
BB@

3 5 �4 �6 �5

1=3 2 �2=3 2

�5 �7 �3 4

1
CCA :

9: xB D .91=7458; 517=56043/T :

Iteration 2:

2: �y D .�227=2815; �53=13031; �294=5743; 537=542/T 6� 0:

4: N T �y D .�642=2639; 314=1267; �84=1873; 781=1631; 1541=5522;

4977=12598/T :
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5: ˇ D minf1=.314=1267/; 0=.781=1631/; 6=.1541=5522/;

2=.4977=12598/g D 0; q D 5:

aq D .�4; �2=3; �3; 0/T :

7: .BT B/�1 D
0
@1027=977 420=271 2223=2947

420=271 1447=620 827=740

2223=2947 827=740 1049=1927

1
A :

8: B D

0
BB@

�7 �4 18

1=3 �2=3

11 �3 �9

1

1
CCA ; N D

0
BB@

3 5 �6 �5

1=3 2 2

�5 �7 4

1
CCA :

9: xB D .2223=2947; 827=740; 1049=1927/T :

Iteration 3:

2: �y D .�125=2599; 733=1485; �134=2941; 878=1927/T 6� 0:

4: N T �y D .325=16051; 1893=1558; 51=650; 37=348; 1224=997/T :

5: ˇ D minf5=.325=16051/; 1=.1893=1558/; 3=.51=650/; 6=.37=348/;

2=.1224=997/g D 1=.1893=1558/; q D 2:aq D .0; 2; �5; 0/T :

6: Ny D .�217=5482; 13765=33883; �1165=31067; 33364=88971/T;

NzN D .299=60; 0; 1591=542; 11689=1977; 1709=1727/T:

7: .BT B/�1 D

0
BB@

2271=1000 1559=559 684=1115 2371=1581

1559=559 2407=670 1217=1953 778=415

684=1115 1217=1953 1106=3585 298=795

2371=1581 778=415 298=795 5281=5282

1
CCA :

8: B D

0
BB@

�7 �4 18

1=3 �2=3 2

11 �3 �5 �9

1

1
CCA ; N D

0
BB@

3 5 �6 �5

1=3 2

�7 4

1
CCA :

9: NxB D .2371=1581; 778=415; 298=795; 5281=5282/TD .1:4997; 1:8747;

0:3748; 0:9998/T :

Iteration 4:

2. �y � 0.
11. Optimal solution and value:

Nx D .0; 0:3748; 0; 1:4997; 0; 1:8747; 0/T � 0; Nf D cT
B NxB D 0:3748.

In a comparison, the optimal solution obtained by MALIB is
x� D .0; 0:3750; 0; 1:5000; 0; 1:8750; 0/; f � D 0:3750.



Chapter 24
Pivotal Interior-Point Method

The simplex method and the interior-point method are two diverging and competi-
tive types of methods for solving LP problems. The former moves on the underlying
polyhedron, from vertex to adjacent vertex, along edges until an optimal vertex is
reached while the latter approaches an optimal point by moving across interior of
the polyhedron.

Although the basic ideas, motivations and development tracks of the two methods
appear quite different, attempts will be made in this chapter to combine the two
methods to take advantages of both, in a natural manner.

In view of that the interior-point method has been seriously restricted in
applications since it can not be “warmly started”, and provides only an approximate
optimal solution (see Sect. 9.5), three pivotal interior-point algorithms will be
derived. These algorithms yield from standard interior-point algorithms by adding
inner steps. Presented in the last section of this chapter, on the other hand, the so-
called “feasible-point simplex algorithm” is established along another line, which
might be the first simplex-like algorithm that acrosses the interior of the polyhedron.

24.1 Pivotal Affine Interior-Point Method

In this section, firstly an interior-point algorithms is designed by forming a search
direction based on affine-scaling. This search direction is equivalent to that used in
Dikin’s affine algorithm in theory. However, the new framework allows to introduce
inner pivotal steps to create a better interior-point algorithm.

Let Nx be the current interior-point. Consider the dual problem of (9.25), i.e.,

max g D bTy;

s:t: . NXAT
::: I /

�
y

z

�
D NXc; z � 0:

(24.1)

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__24,
© Springer-Verlag Berlin Heidelberg 2014
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Note that there is a 1-to-1 correspondence between columns of the unit matrix I and
indices of z.

At first, we will realize the “dual elimination” by orthogonal transformations
(Sect. 25.1.3). Since A is of full row rank, hence NXAT is of full column rank, there
exists the QR factorization

NXAT D .Q1; Q3/

�
R1

0

�
D Q1R1; (24.2)

where .Q1; Q3/ is orthogonal, partitioned as Q1 2 Rn�m and Q3 2 Rn�.n�m/, and
R1 2 Rm�m is nonsingular upper triangular.

The following result reveals that the search direction in x0-space, used in the
Dikin’s affine algorithm, can be obtained alternatively by using the matrix Q3.

Proposition 24.1.1. �x0, defined by (9.27), is equal to Q3Q
T
3

NXc.

Proof. Substituting (24.2) to (9.27) and noting QT
1 Q1 D I and Q1Q

T
1 CQ3Q

T
3 D I

gives

�x0 D .I � Q1R1.R
T
1 QT

1 Q1R1/
�1RT

1 QT
1 / NXc D .I � Q1Q

T
1 / NXc D Q3.Q

T
3

NXc/:

(24.3)
ut

Thereby, we are led to the following variant of the affine algorithm.

Algorithm 24.1.1 (Variant of Algorithm 9.2.1). The same as Algorithm 9.2.1,
except for its step 1 replaced by

1. Compute �x0 by (24.3).

As they differ only in the way to compute the same search direction, Algo-
rithm 24.1.1 and Dikin’s algorithm are equivalent. The computational efforts
involved in them depend on how to implement, the sparsity of A, and the number
n � m, compared with m, and etc. We will not go into details here because, after all,
what we are really interested in is not the algorithm itself but a variant, as derived
as follows.

As the affine method with long step turned out to be superior to that with short
step in practice, it is attractive to go further along this line by introducing inner
pivotal steps to decrease the objective value as much as possible, with reasonable
costs.

We begin with premultiplying the augmented matrix of the equality constraints
of (24.1) by QT D ŒQ1; Q3�

T. Such doing leads to a so-called triangular form, i.e.,

QT. NXAT ::: I j NXc/ D
�

R1 QT
1 j QT

1
NXc

0 QT
3 j QT

3
NXc

�
; (24.4)

which represents the linear system equivalent to the dual equality constraints. Based
on Proposition 24.1.1, it is known that the south-east submatrix .QT

3 j QT
3

NXc/ gives
the projection �x0, defined by (24.3), i.e.,
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�x0 D .I � Q1R1.R
T
1 QT

1 Q1R1/
�1RT

1 QT
1 / NXc D .I � Q1Q

T
1 / NXc D Q3.Q

T
3

NXc/:

(24.5)
Then, update Nx by (9.30), i.e.,

Ox D Nx � � NX�x0= max.�x0/; (24.6)

where � 2 .0; 1/ a stepsize. If it goes to the next iteration at this point, the resulting
is just the same as Algorithm 24.1.1.

On the contrary, we will carry out a series of inner iterations in x0-space, starting
from

N D ;; B D A

Assume that �x0
B D �x0 6� 0. Update the Nx0

B by the following formula:

Ox0
B D e � ��x0

B= max.�x0
B/;

and determine an index q such that

q D arg maxf�x0
j j j D 1; � � � ; ng:

It is not difficult to show that . NXAT
::: eq/ is of full column rank. If the QR

factorization of it is available, then the orthogonal projection of the objective
gradient NXc onto the null space of

 
A NX
eT

q

!

can be computed analogously as before, and it is thereby able to update the solution
once more in x0-space. Note that the q-indexed component of the projection equals
0, hence the q-indexed component of the solution remains unchanged.

Assume that after k < n � m inner iterations, there are index sets

N D f1; � � � ; kg; B D fk C 1; � � � ; ng:

Let the QR factorization . NXAT
::: IN / D QR be available. Premultiplying by QT the

augmented matrix of equality constraints of (24.1) gives

QT. NXAT ::: IN

::: IB j NXc/

D
0
@QT

1
NXAT QT

1 IN QT
1 IB j QT

1
NXc

QT
2

NXAT QT
2 IN QT

2 IB j QT
2

NXc

QT
3

NXAT QT
3 IN QT

3 IB j QT
3

NXc

1
AD

0
@R11 R12 QT

1 IB j QT
1

NXc

0 R22 QT
2 IB j QT

2
NXc

0 0 QT
3 IB j QT

3
NXc

1
A: (24.7)
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where the orthogonal matrix Q D .Q1; Q2; Q3/ is partitioned as Q1 2 Rn�m,
Q2 2 Rn�k and Q3 2 Rn�.n�m�k/, and R11 2 R.mCk/�.mCk/ is nonsingular upper
triangular. The preceding is the kth triangular form, whose south-east submatrix
gives projection

�x0
B D .QT

3 IB/T.QT
3

NXc/: (24.8)

Assume that �x0
B 6� 0. Since �x0

N D .QT
3 IN /T.QT

3
NXc/ D 0 and Nx0

N remains
unchanged, what only needs to do is updating by

Ox0
B D Nx0

B � �˛�x0
B: (24.9)

where

˛ D Nx0
q=�x0

q D minf Nx0
j =�x0

j j �x0
j > 0; j 2 Bg; (24.10)

which is the stepsize from the current solution to the nearest boundary. It is clear
that the new solution is again an interior point. Then move q from B to N , and go
to the .k C 1/th inner iteration.

The forgoing process terminates when k D n�m or QT
3

NXc D 0, hence the �x0
B

defined by (24.8) vanishes. In this case, substituting NzB D 0 to the dual equality
constraints, represented by (24.7), leads to the upper triangular system

�
R11 R12

0 R22

��
y

zN

�
D
�

QT
1

NXc

QT
2

NXc

�
: (24.11)

Assume that . Ny; NzN / is the solution to this system.
If NzN � 0, it is not difficult to show that Nx is the optimal solution to the following

problem:

min cTx;

s:t: Ax D b;

xB � 0; xN � NxN :

If � 2 .0; 1/ is sufficiently close to 1, then NxN can be arbitrarily close to 0, in
principle. If � is predetermined to be close to 1, therefore, Nx can be regarded as
an approximate optimal solution to the original problem, and the solution process
terminates.

In the other case when NzN 6� 0, the inner iterations are finished. The related
solution in the original space is computed by

Nx D NX Nx0;

and a new NX can be formed to be ready to go to the next outer iteration.
The trick of the algorithm lies in that the QR factors in each inner iteration can be

obtained via recurrence, need not to compute from scratch. In fact, the last n � m �
k � 1 components of the q-indexed column of (24.7) can be eliminated by Givens
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rotations. Assume that QQ 2 R.n�m�k/�.n�m�k/ is the product of Givens rotations
such that

QQQT
3 eq D �e1;

then OQT D ŒI
::: OQT�TQT is just the wanted factor for the .k C 1/th inner iteration.

It is then seen that the .k C 1/ and kth triangular forms are the same, except for the
submatrix, associated with Q3. On the other hand, nevertheless, at the beginning
of each round of outer iterations, it is necessary to compute the QR factors from
scratch since NX changed.

The overall steps can be summarized to the following algorithm.

Algorithm 24.1.2 (Pivotal affine interior-point algorithm). Given � 2 .0; 1/.
Initial: interior point Nx > 0. This algorithm solves the standard LP problem.

1. Set k D 0, and compute triangular form (24.4).
2. Compute �x0 D Q3.Q

T
3

NXc/.
3. Stop if �x0 � 0 (lower unbounded).
4. Determine ˛ and q such that

˛ D Nx0
q=�x0

q D minf Nx0
j =�x0

j j �x0
j > 0; j 2 Bg.

5. If ˛ ¤ 0, update: Nx0
B D Nx0

B � �˛�x0
B (24.9).

6. Set k D k C 1, and update .B; N / by bringing q from B to N .
7. Go to step 10 if k D n � m or QT

3
NXc D 0.

8. Eliminate the .m C k C 1/ to nth components of the q-indexed column of the
triangular form by Givens rotations.

9. Go to step 2.
10. Solve the upper triangular system (24.11).
11. Stop if NzN � 0 (approximate optimality achieved).
12. Set Nx D NX Nx0.
13. Go to step 1.

Note This Algorithm contains steps 2–9 as its inner steps.

The algorithm, developed by Pan (2013) is slightly different from the preceding
algorithm, as the former uses update

Ox0
B D Nx0

B � ˛�x0
B

rather than (24.9). Thereby, the resulting iterate is not interior but boundary point.
If the optimality condition is not satisfied after a round of inner iterations finished,
it goes back to a nearby interior point to start the next round of outer iterations as
follows.

Assume that Nx is the interior point at the beginning of the outer iteration, and Ox
is the end boundary point of the inner iterations. The interior point used for the next
outer iteration is determined by

Nx D Nx C 	. Ox � Nx/;

where 	 2 .0; 1/ (	 D 0:95 is taken by Pan).
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Table 24.1 Iteration and
time ratios

AIP/VAIP AIP/PAIP

Problem Iterations Time Iterations Time
Set 1 (16) 0.98 0.32 6.32 1.47
Set 2 (10) 0.92 0.25 3.55 1.52

Average (26) 0.95 0.26 4.56 1.52

There is no available numerical results with Algorithm 24.1.2. As it is close to
Pan’s original algorithm, we cite his numerical results to give the reader a clue on
its performance.

The associated computational experiments were carried out on a Pentium III
550E PC with Windows 98 operating system, 168 MB inner storage and about 16
decimal precision. Visual Fortran 5.0 compiler was used. There were following three
dense codes involved:

1. AIP: affine Algorithm 9.2.1.
2. VAIP: Algorithm 24.1.1.
3. PAIP: Algorithm 24.1.2.

The preceding codes are tested on the 26 smallest (by m C n) Netlib standard
problems. The first set involves 16 smaller problems, and the second set are the rest
10 problems (Appendix B: Table B.4, problems AFIRO-DEGEN2).

Table 24.1 lists iterations and time ratios:
From the bottom line of the preceding Table, it is seen that total iteration and

time ratios of AIP to VAIP are 0.95 and 0.26, respectively. As expected, the latter
performs worse than the former. However, PAIP outperforms AIP significantly:
the total iteration and time ratios of AIP to PAIP are 4.56 and 1.52, respectively.
Therefore, the pivotal inner iterations appear effective.

It is not surprising that the time ratio of AIP to PAIP is much less than
their iteration ratio (1.52 vs. 4.56), since each iteration of the latter is more
time consuming, due to the use of the orthogonal transformation. Fortunately, the
so-called “dual elimination” allows to use the Gaussian elimination instead (see
Lemma 25.1.1). In particular, such doing is advantageous for sparse computations.
On the other hand, of course, the associated search direction will no longer be the
desired orthogonal projection. It is not known how such an algorithm will perform.

24.2 Pivotal Affine Face Interior-Point Method

In this section, two interior-point variants of the affine face method (Sect. 22.4) will
be derived. Firstly, an interior-point variant is designed by directly using the initial
search direction of the affine face method. Then, it is modified further by introducing
pivotal inner iterations.

Consider reduced problem (22.1). Introduce notation

NX D diag. Nx1; � � � ; Nxn; 1/: (24.12)
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The initial search direction is defined by (22.30) with k D n C 1 or B D A, or
denoted by

� D �enC1 C NX2AT Ny; .A NX2AT/ Ny D �emC1: (24.13)

which is downhill with respect to the objective function, as well as points to the
interior of the feasible region. It is suitable to be a search direction for designing an
interior-point algorithm. What is needed is just starting from an interior point and
taking � times of the original stepsize, where � is a positive number less than 1 (e.g.,
95–99 %).

Using the preceding notation, the overall steps can be put into the following
interior-point algorithm.

Algorithm 24.2.1 (Affine face interior-point algorithm). Given � 2 .0; 1/.
Initial: interior point Nx > 0. This algorithm approximately solves the reduced
problem (22.1).

1. Compute A NX2AT D LLT .
2. Solve LT Ny D �.1=�/emC1 for Ny, where � is the .m C 1/th diagonal of L.
3. Compute � D �enC1 C NX2AT Ny.
4. Stop if J D fj 2 A j �j < 0g D ; (lower unbounded).
5. Determine ˛ D � minj 2J � Nxj =�j .
6. Update: Nx D Nx C ˛�.
7. Go to step 1.

Was astonished, the author found that the preceding algorithm is the same as
Dikin’s affine algorithm (hence Algorithm 24.1.1), essentially. The only difference
lies in that the former solves the reduced problem while the latter solves the standard
problem. In fact, if Dikin handled the reduced rather than standard problem, he
would have derived Algorithm 24.2.1.

On the other hand, the two algorithms differ computationally. Algorithm 24.2.1
should be preferable, as it saves the computational effort by solving a triangular
system in each iteration. It is more than that. In fact, Algorithm 24.2.1 can be
improved by incorporate pivotal inner iterations.

The resulting algorithm can be obtained by modifying Algorithm 22.4.1 easily.

Algorithm 24.2.2 (Pivotal affine face interior-point algorithm). Given � 2
.0; 1/. Initial: interior point Nx > 0. This algorithm solves the reduced prob-
lem (22.1).

The same as Algorithm 22.4.1, except for step 7 replaced by

7. Update NxB D NxB C �˛�B .

It is not difficult to modify the preceding conformably by including some
termination criterion on precision.

Note that the vertex optimal solution can be computed by setting NxN D 0 at the
end of the solution precess, if needed.
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Example 24.2.1. Solve the following problem by Algorithm 24.2.2:

min f D x6;

s:t: �4x1 C 3x2 C x3 � 2x4 C 2x5 D 5;

3x1 � x2 C 2x3 � 3x4 � 4x5 D �8;

x1 C x2 C 2x3 C x4 C 3x5 D 12;

�2x1 C 3x3 C 2x4 C x5 � x6 D 0;

xj � 0; j D 1; � � � ; 6:

Set � D 99=100. Initial interior point: Nx D .1; 2; 1; 1; 2; �1/T.

Answer Iteration 1:

1. k D 6, B D f1; 2; 3; 4; 5; 6g, N D ;: NXB D diag.1; 2; 1; 1; 2; �1/T,
face matrix B and the Cholesky factor of B NX2

BBT are

B D

0
BB@

�4 3 1 �2 2

3 �1 2 �3 �4

1 1 2 1 3

�2 �3 2 1 �1

1
CCA ;

L D

0
BB@

1;399=134

�2;362=411 7;176=919

1;985=471 �1;327=373 916=207

1;181=822 �302=85 �800=331 815=672

1
CCA :

2: Ny D .�100=5;011; �2;485=5;193; �215=579; �1;219=1;793/T:

3: �B D .�583=1; 587; �2; 127=2; 168; 509=1; 591; �356=1; 393; 278=865;

� 1; 385=3; 339/T ¤ 0:

5: J D f1; 2; 4g ¤ ;:

6: ˛ D .99=100/ minf�1=.�583=1;587/; �2=.�2;127=2;168/; �1=

.�356=1;393/g
D .99=100/.1;745=856/ D 2;333=1;156; p D 2:

7: NxB D .1; 2; 1; 1; 2; �1/T

C .2; 333=1; 156/.�583=1; 587; �2; 127=2;168; 509=1;591;

� 356=1; 393; 278=865; �1; 385=3; 339/T

D .323=1; 249; 750=37; 499; 1; 593=968; 261=539; 2; 005=757; �2; 019=

1; 099/T:

8: B D f1; 3; 4; 5; 6g; N D f2g:

9: L D

0
BB@

882=145

�290=49 307=43

1;450=441 �959=279 3;244=737

145=98 �7;775=2;199 �1;184=473 2;500=2;447

1
CCA :

10: k D 5:
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Iteration 2:

2: Ny D .�361=1;907; �1;405=1;907; �1;039=1;907; �845=882/T:

3: �B D .�156=1;907; 232=1;907; 244=1;907; �184=1;907; �277=6;603/T ¤ 0:

5: J D f1; 5g ¤ ;:

6: ˛ D .99=100/ minf�.323=1; 249/=.�156=1; 907/; �.2; 005=757/=

.�184=1; 907/g
D .99=100/.7;761=2;455/ D 917=293; p D 1:

7: NxB D .323=1; 249; 1; 593=968; 261=539; 2; 005=757; �2; 019=1;099/TC.917=

293/.�156=1;907; 232=1;907; 244=1;907; �184=1;907; �277=6;603/T

D .109=42;149; 1;688=833; 583=659; 1;117=476; �5;360=2;723/T:

8: B D f3; 4; 5; 6g; N D f1; 2g:

9: L D

0
BB@

3;524=769

�1;435=274 1;211=172

1;435=274 �3;433=1;235 1;187=491

769=3;524 �2;201=577 �499=322 1

1
CCA :

10: k D 4 D m C 1:

11: NzN D .156=1;907; 717=1;907/T � 0:

12. The approximate basic optimal solution and optimal value are

Nx � .109=42;149; 750=37;499; 1;688=833; 583=659; 1;117=476/T;

Nx6 � �5;360=2;723:

The outcome is close to the exact basic optimal solution and optimal value, i.e.,

x� D .0; 0; 79=39; 34=39; 92=39/T; x�
6 D �77=99:

The error in components of the approximate optimal solution is about 0:01, while
that in the approximate optimal value is about 0:05.

24.3 Pivotal D-Reduced Gradient Interior-Point Method

In this section, we derive a pivotal interior-point algorithm with the deficient-basis
framework, without discussion on the related theoretical problems.

It is noted that the search direction, used in the D-reduced gradient method
(Sect. 21.5), is uphill with respect to the dual objective function, as well as points
to the interior of the feasible region. Thereby, the direction is suitable to be used
to design an interior-point algorithm by the known trick: starting from an interior
point, and cutting down the stepsize to � times of the original, where � is positive
number less than 1 (e.g., 0:95–0:999).

The according steps are put in the following algorithm.
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Algorithm 24.3.1 (D-reduced gradient interior-point algorithm). Given 	 >

0; � 2 .0; 1/; � > 0. Initial: interior point Nz > 0. This algorithm solves the
D-reduced problem (17.1).

1. Compute ! by (21.15).
2. Stop if J D fj 2 A j !j > 0g D ; (infeasible problem).
3. Compute ˇ D Nzq= N!q D minj 2J Nzj = N!j .
4. Stop if ˇ < � (approximate optimality achieved).
5. If ˇ ¤ 0, update Nz D Nz � �ˇ!.
6. Go to step 1.

Nevertheless, our preliminary test indicates that the preceding algorithm con-
verges quite slow (if does).

As in the previous two sections, we incorporate pivotal inner iterations to it. The
resulting algorithm can be obtained by modifying Algorithm 21.6.1 easily.

Algorithm 24.3.2 (Pivotal D-reduced gradient interior-point algorithm). Given
	 > 0; � 2 .0; 1/. Initial: NzN > 0. This algorithm solves D-reduced problem (17.1).

The same as Algorithm 21.6.1, except for steps 4 and 5 replaced respec-
tively by

4. Determine ˇ and q such that ˇ D Nzq= N!q D min
j 2J

Nzj = N!j , and compute �ˇ.

5. If ˇ ¤ 0, update NzN D NzN � �ˇ N!N .

It is not difficult to modify the preceding algorithm by introducing some precision
tolerance.

Example 24.3.1. Solve the following problem by Algorithm 24.3.2:

min f D 2x1 C x2 C 3x3 C x4 C 2x5 C 4x6;

s:t: x1 C 3x2 � 2x3 C 3x4 � 4x5 C 2x6 D 0;

� 2x2 � x4 � 2x5 C x6 D 0;

�2x1 C x2 C 2x3 � 4x4 C 3x5 � 3x6 D 0;

C 2x2 C 3x3 � 2x5 � x6 D 1;

xj � 0; j D 1; � � � ; 6:

Answer For convenience of comparison, the related tableau will be given for each
iteration.

Initial tableau:

x1 x2 x3 x4 x5 x6 RHS

1 3 �2 3 �4 2

�2 �1 �2 1

�2 1 2 �4 3 �3

2 3 �2 �1 1

2 1 3 1 2 4
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� D 95=100; 	 D 1. r D 4.

NR0 D
0
@ 1 3 �2 3 �4 2

0 �2 0 �1 �2 1

�2 1 2 �4 3 �3

1
A :

Iteration 1:

1: k D 0I B; RD;; N Df1; � � � ; 6g; R0 D f1; 2; 3g: NzN D .2; 1; 3; 1; 2; 4/T:

2: !N D .0; 2; 3; 0; �2; �1/T � N T
R0NR0.1=2; 1; 1=3; 1; 1=2; 1=4/T

D .�19=2; �191=12; 101=6; �325=12; 187=12; �41=3/T; N!N D !N :

x1 x2 x3 x4 x5 x6 RHS

1 3 �2 3 �4 2

�2 �1 �2 1

�2 1 2 �4 3 �3

�19=2 �191=12 101=6 �325=12 187=12 �41=3 1

2 1 3 1 2 4

3: J D f3; 5g:
4: ˇ D .95=100/ minf3=.101=6/; 2=.187=12/g D .95=100/.24=187/

D 114=935; q D 5:

5: NzN D .2; 1; 3; 1; 2; 4/T

� .114=935/.�19=2; �191=12; 101=6; �325=12; 187=12; �41=3/T:

6: Naq.R0/ D .�4; �2; 3/T:

7: Naq.R0/ ¤ 0:

8: p D 1; � D �1=4; OB�1
OR D .�1=4/:

9: k D 1; B D f5g; R D f1g:N D f1; 2; 3; 4; 6g; R0 D f2; 3g:
10: N!N D .�19=2; �191=12; 101=6; �325=12; �41=3/T

� .1; 3; �2; 3; 2/T.�1=4/.187=12/

D .�269=48; �203=48; 217=24; �739=48; �47=8/T:

x1 x2 x3 x4 x5 x6 RHS

�1=4 �3=4 1=2 �3=4 1 �1=2

�1=2 �7=2 1 �5=2

�5=4 13=4 1=2 �7=4 �3=2

�269=48 �203=48 217=24 �739=48 �47=8 1

1;696=537 644=219 886=935 1;609=374 1=10 5;298=935 �114=935

Iteration 2:

3: J D f3g:
4: ˇ D .95=100/ minf.886=935/=.217=24/g D .95=100/.875=8;349/

D 205=2;059; q D 3:
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5: NzN D .1;696=537; 644=219; 886=935; 1;609=374; 5;298=935/T

� .205=2;059/.�269=48; �203=48; 217=24; �739=48; �47=8/T

D .1;349=363; 9;359=2;784; 47=992; 4;102=703; 2;513=402/T:

6: Naq.R/ D .�1=4/.�2/ D 1=2; Naq.R0/ D .0; 2/T � .�2; 3/T.�2/ D .�4; 8/T:

7: Naq.R0/ ¤ 0:

8: p D 3; � D .2 � 3.1=2//�1 D 2; v D �2.1=2/ D �1; d T

D �2.3/.�1=4/ D 3=2:

U D .�1=4/ � .�1/3.�1=4/ D �1; OB�1
OR D

��1 �1

3=2 2

�
:

9: k D 2; B D f5; 3g; R D f1; 3g:N D f1; 2; 4; 6g; R0 D f2g:
10: N!N D .�19=2; �191=12; �325=12; �41=3/T

�
�

1 3 3 2

�2 1 �4 �3

�T ��1 �1

3=2 2

�T

.187=12; 101=6/T

D .17; �63; 65=4; 85=4/T:

x1 x2 x3 x4 x5 x6 RHS

1 �4 1 1 1

2 �10 1 3

�5=2 13=2 1 �7=2 �3

17 �63 65=4 85=4 1

1;349=363 9;359=2;784 47=992 4;102=703 1=10 2;513=402 �905=4;086

Iteration 3:

3: J D f1; 4; 6g:
4: �ˇ D .95=100/ minf.1;696=537/=17;.4;102=703/=.65=4/;.2;513=402/=

.85=4/g
D .95=100/.473=2;546/ D 473=2;680; q D 1:

5: NzN D .1;349=363; 9;359=2;784; 4;102=703; 2;513=402/T

� .473=2;680/.17; �63; 65=4; 85=4/T

D .577=806; 9;398=649; 1;528=515; 1;608=643/T:

6: Naq.R/ D
��1 �1

3=2 2

��
1

�2

�
D
�

1

�5=2

�
;

Naq.R0/ D 0 � .�2; 0/.1; �2/T D 2:

7: Naq.R0/ ¤ 0:

8: p D 2: � D .0 � .�2; 0/.1; �5=2/T/�1 D 1=2:

v D �.1=2/.1; �5=2/T D .�1=2; 5=4/T:

d T D �.1=2/..�2; 0/B�1
R / D �.1=2/.2; 2/ D .�1; �1/:

U D
��1 �1

3=2 2

�
� .�1=2; 5=4/T.2; 2/ D

�
0 0

�1 �1=2

�
;
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OB�1
OR D

0
@ 0 0 �1=2

�1 �1=2 5=4

�1 �1 1=2

1
A :

9: k D 2; B D f5; 3; 1g; R D f1; 3; 2g:N D f2; 4; 6g; R0 D ;:

10: N!N D .�191=12; �325=12; �41=3/T

�
0
@ 3 3 2

1 �4 �3

�2 �1 1

1
A

T0
@ 0 0 �1=2

�1 �1=2 5=4

�1 �1 1=2

1
A

T

.187=12; 101=6; �19=2/T

D .22; 31=4; �17=4/T:

x1 x2 x3 x4 x5 x6 RHS

1 1=2 1 �1=2

1 �5 1=2 3=2

�6 1 �9=4 3=4

22 31=4 �17=4 1

577=806 9;398=649 47=992 1;528=515 1=10 1;608=643 �1;143=2;872

Iteration 4:

3. J D f2; 4g.
4. �ˇ D .95=100/ minf.8;645=597/=22; .1;528=515/=.31=4/g

D .95=100/.1;557=4;067/ D 559=1;537; q D 4.
5. NzN D .9;398=649; 1;528=515; 1;608=643/T � .559=1;537/.22; 31=4; �17=4/T

D .6; 460=997; 301=2; 029; 3; 395=839/T.

x1 x2 x3 x4 x5 x6 RHS

1 1=2 1 �1=2

1 �5 1=2 3=2

�6 1 �9=4 3=4

22 31=4 �17=4 1

577=806 6;460=997 47=992 301=2;029 1=10 3;395=839 �636=835

6. Naq.R/ D
0
@ 0 0 �1=2

�1 �1=2 5=4

�1 �1 1=2

1
A
0
@ 3

�4

�1

1
A D

0
@ 1=2

�9=4

1=2

1
A.

7. Naq.R0/ D 0.
11. maxf1=2; �9=4; 1=2g D 1=2 > 0; s D 1; p D 1.
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Iteration 5:

1: k D 0I B; R D ;; N D f1; � � � ; 6g; R0 D f1; 2; 3g:
2: !N D .0; 2; 3; 0; �2; �1/T

� N T
R0NR0.806=577; 997=6;460; 992=47; 2;029=301;10; 839=3;395/T

D .9;606=67; 1;965=23; �22;001=110; 22;051=69; �23;926=57;

6;767=25/T;

N!N D !N :

x1 x2 x3 x4 x5 x6 RHS

1 3 �2 3 �4 2

�2 �1 �2 1

�2 1 2 �4 3 �3

9;606=67 1;965=23 �22;001=110 22;051=69 �23;926=57 6;767=25 1

577=806 6;460=997 47=992 301=2;029 1=10 3;395=839 �636=835

3: J D f1; 2; 4; 6g:
4: �ˇ D .95=100/ minf.577=806/=.9; 606=67/; .6; 460=997/=.1; 965=23/;

.301=2; 029/=.22; 051=69/; .3; 395=839/=.6; 767=25/g
D .95=100/.37=79; 707/ D 8=18; 141; q D 4:

5: NzN D .577=806; 6; 460=997; 47=992; 301=2; 029; 1=10; 3; 395=839/T

� .8=18; 141/.9; 606=67; 1; 965=23; �22; 001=110; 22; 051=69;

� 23; 926=57; 6; 767=25/T

D .295=452; 1; 604=249; 189=1; 394; 104=14; 021; 1; 074=3; 767; 1;

347=343/T:

6: Naq.R0/ D .3; �1; �4/T:

7: Naq.R0/ ¤ 0:

8: p D 3: � D �1=4: OB�1
OR D .�1=4/:

9: k D 1; B D f4g; R D f3g:N D f1; 2; 3; 5; 6g; R0 D f1; 2g:
10: N!N D .9; 606=67; 1; 965=23; �22; 001=110; �23; 926=57; 6; 767=25/T

� .�2; 1; 2; 3; �3/T.�1=4/.22; 051=69/

D .�25; 331=1; 543; 15; 045=91; �10; 457=260; �7; 743=43; 6;

478=209/T:

x1 x2 x3 x4 x5 x6 RHS

�1=2 15=4 �1=2 �7=4 �1=4

1=2 �9=4 �1=2 �11=4 7=4

1=2 �1=4 �1=2 1 �3=4 3=4

�25;331=1;543 15;045=91 �10;457=260 �7;743=43 6;478=209 1

295=452 1;604=249 189=1;394 104=14;021 1;074=3;767 1;347=343 �1;022=1;341
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Iteration 6:

3: J D f2; 6g:
4: ˇ D .95=100/ minf.1;604=249/=.15;045=91/; .1;347=343/=.6;478=209/g

D .95=100/.239=6;134/ D 311=8;402; q D 2:

5: NzN D .295=452; 1;604=249; 189=1;394; 1;074=3;767; 1;347=343/T

� .311=8;402/.�25;331=1;543; 15;045=91; �10;457=260;

� 7;743=43; 6;478=209/T

D .1;893=1;502; 439=1;363; 2;019=1;243; 1;821=262; 1;957=704/T:

6: Naq.R/ D .�1=4/.1/ D �1=4; Naq.R0/ D .3; �2/T � .3; �1/T.�1=4/D.15=4;

� 9=4/T:

7: Naq.R0/ ¤ 0:

8: p D 1; � D .3 � 3.�1=4//�1 D 4=15; v D �.4=15/.�1=4/ D 1=15;

d T D �.4=15/.3/.�1=4/ D 1=5:

U D .�1=4/ � .1=15/3.�1=4/ D �1=5; OB�1
OR D

��1=5 1=15

1=15 4=15

�
:

9: k D 2; B D f4; 2g; R D f3; 1g:N D f1; 3; 5; 6g; R0 D f2g:
10: N!N D .9;606=67; �22;001=110; �23;926=57; 6;767=25/T

�
��2 2 3 �3

1 �2 �4 2

�T��1=5 1=15

1=15 4=15

�T

.22;051=69;1;965=23/T

D .1;570=279; �1;763=97; �9;777=95; 14;664=349/T:

x1 x2 x3 x4 x5 x6 RHS

�2=15 1 �2=15 �7=15 �1=15

1=5 �4=5 �19=5 8=5

7=15 �8=15 1 �13=15 11=15

1;570=279 �1;763=97 �9;777=95 14;664=349 1

1;893=1;502 439=1;363 2;019=1;243 104=14;021 1;821=262 1;957=704 �553=692

Iteration 7:

3: J D f1; 6g:
4: �ˇ D .95=100/ minf.1;893=1;502/=.1;570=279/; .1;957=704/=

.14;664=349/g
D .95=100/.426=6;439/ D 436=6;937; q D 6:

5: NzN D .1;893=1;502; 2;019=1;243; 1;821=262; 1;957=704/T

� .436=6;937/.1;570=279; �1;763=97; �9;777=95; 14;664=349/T

D .437=482; 3;118=1;127; 5;287=394; 113=813/T:

6: Naq.R/ D
��1=5 1=15

1=15 4=15

���3

2

�
D
�

11=15

�1=15

�
;

Naq.R0/ D 1 � .�1; �2/.11=15; �1=15/T D 8=5:

7: Naq.R0/ ¤ 0:
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8: p D 2; � D .1 � .�1; �2/.11=15; �1=15/T/�1 D 5=8:

v D �.5=8/.11=15; �1=15/T D .�11=24; 1=24/T:

d T D �.5=8/..�1; �2/B�1
R / D �.5=8/.�1=5; �3=5/ D .1=8; 3=8/:

U D
��1=5 1=15

1=15 4=15

�
� .�11=24; 1=24/T.�1=5; �3=5/

D
��7=24 �5=24

5=24 7=24

�
:

OB�1
OR D

0
@�7=24 �5=24 �11=24

5=24 7=24 1=24

1=8 3=8 5=8

1
A :

9: k D 2; B D f4; 2; 6g; R D f3; 1; 2g:N D f1; 3; 5g; R0 D ;:

10: N!N D .9;606=67; �22;001=110; �23;926=57/T

�
0
@�2 2 3

1 �2 �4

0 0 �2

1
A

T 0
@�7=24 �5=24 �11=24

5=24 7=24 1=24

1=8 3=8 5=8

1
A

T

� .22;051=69;

1;965=23; 6;767=25/T

D .515=1;373; 25;888=9;137; �9;428=3;017/T:

x1 x2 x3 x4 x5 x6 RHS

�1=8 1 �1=6 �5=8

1=8 �1=2 �19=8 1

3=8 �1=6 1 7=8

515=1;373 25;888=9;137 �9;428=3;017 1

437=482 439=1;363 3;118=1;127 104=14;021 5;287=394 113=813 �1;755=2;036

Iteration 8:

3. J D f1; 3g.
4. �ˇ D .95=100/ minf.437=482/=.515=1;373/; .3;118=1;127/=.25;888=9;137/g

D .95=100/.2;780=2;847/ D 500=539; q D 3.
5. NzN D .437=482; 3;118=1;127; 5;287=394/T

�.500=539/.515=1;373; 25;888=9;137; �9;428=3;017/T

D .733=1;312; 214=1;547; 9;350=573/T.

x1 x2 x3 x4 x5 x6 RHS

�1=8 1 �1=6 �5=8

1=8 �1=2 �19=8 1

3=8 �1=6 1 7=8

515=1;373 25;888=9;137 �9;428=3;017 1

733=1;312 439=1;363 214=1;547 104=14;021 9;350=573 113=813 �2;450=1;369
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6. Naq.R/ D
0
@�7=24 �5=24 �11=24

5=24 7=24 1=24

1=8 3=8 5=8

1
A
0
@ 2

�2

0

1
A D

0
@�1=6

�1=6

�1=2

1
A.

7. R0 D ;.
11. maxf�1=6; �1=6; �1=2g � 0.
13. Setting Nx3 D 9;137=25;888 gives

NxB D .9;137=25;888/.1=6; 1=6; 1=2/T

D .9;137=155;328; 9;137=155;328; 9;137=51;776/T:

Thus, the approximate basic optimal solution and optimal value are

Nx � .0; 9;137=155;328; 9;137=25;888; 9;137=155;328; 0; 9;137=51;776/T;

Nf � .1; 3; 1; 4/.9;137=155;328; 9;137=25;888; 9;137=155;328; 9;137=

51;776/T D 9;137=4;854:

On the other hand, the exact basic optimal solution and optimal value are

x� D .0; 1=17; 6=17; 1=17; 0; 3=17/T; f � D 32=17:

The errors are less than 10�5, which are accumulated from the computation
of N!.

24.4 Feasible-Point Simplex Method

On the conventional simplex framework, the method presented in this section will
utilize a new pivot rule to generates a sequence of feasible points, which are not
necessarily vertices or interior points. If the initial is an interior point, however, it
becomes an interior-point algorithm. It might be the first simplex-like method that
may go across the interior of the feasible region.

We are concerned with the bounded-variable problem (7.13), i.e.,

min cT x

s:t Ax D b; l � x � u;
(24.14)

where A 2 Rm�n.m < n/I rank A D m. The values of components of l and u
are assumed to be finite, hence the problems is bounded. For problems with infinite
bounds, one may use numbers in large enough module instead.

Let B be the current (standard) basis and N the associated nonbasis, defined by

B D f1; � � � ; mg; N D AnB:



640 24 Pivotal Interior-Point Method

24.4.1 Column Pivot Rule and Optimality Condition

Let Nx be current feasible solution, whose nonbasic components are not necessarily
on either lower or upper bound. The reduced costs are

NcB D 0; NcN D cN � N T Ny; BT Ny D cB : (24.15)

Introduce nonbasic index sets

N1 D fj 2 N j Ncj < 0g; N2 D fj 2 N j Ncj > 0g: (24.16)

Recall that Algorithm 7.4.1 selects an entering index based on Nc only. In contrast,
we not only consider Nc, but also take into account the possible ranges the nonbasic
components of the current feasible solution are allowed to change. To this end,
introduce notation

ıj D
8<
:

uj � Nxj ; j 2 N1;

Nxj � lj ; j 2 N2;

minfuj � Nxj ; Nxj � lj g j 2 N n N1 [ N2:

(24.17)

So, ıj is the distance from Nxj to one of the associated its bounds that will be violated
if Nxj changes to decrease the objective value.

Then the following rule is applicable.

Rule 24.4.1 (Column pivot rule) Select a nonbasic index q such that

j Ncqjıq D max f j Ncj jıj j j 2 N g: (24.18)

Under the preceding rule, the objective value will decrease the most (by amount
j Ncqjıq), ignoring presence of broking basic variables.

In this context, the following optimal condition is relevant.

Proposition 24.4.1. Nx is an optimal solution if it holds that

j Ncj jıj D 0; 8 j 2 N: (24.19)

Proof. Note that quantities j Ncj jıj .j 2 N / are upper bounds of the amount
by which the objective value can decrease as the value of xj changes. Thus,
condition (24.19) implies that the objective value can not decrease any further, and
the proposition is valid. ut

Furthermore, it is clear that Nx is a basic optimal solution if

ıj D 0; 8 j 2 N: (24.20)

The preceding optimality condition might be suitable for applications when a vertex
solution is required.
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24.4.2 Search Direction

If the optimality condition is not fulfilled, it is possible to decrease the objective
value.

Assume that a nonbasic index q has been selected to enter the basis. For a search
direction, consider vector �x defined by

�xB D sign. Ncq/ Naq; B Naq D aq: (24.21)

�xj D
8<
:

0; j 2 N I j ¤ q

�sign. Ncq/; j D q:

(24.22)

We have the following Lemma, ensuring the eligibility of �x to be a search
direction.

Lemma 24.4.1. Assume that q is determined by (24.18). Vector �x is a downhill
with respective to the objective in the null of A.

Proof. Note that Ncq ¤ 0, since, otherwise, j Ncq jıq D 0 implies that the optimality
condition (24.19) holds, as leading to a contradiction.

From (24.21) and (24.22), it follows that

A�x D sign. Ncq/BB�1aq � sign. Ncq/aq D 0 (24.23)

Thus, �x is in the null of A.
Further, it holds by (24.15) that

Ncq D cq � cT
B B�1aq;

which together with (24.21), (24.22), (24.18) and (24.16) gives

cT �x D �sign. Ncq/cq C sign. Ncq/cT
B B�1aq

D �sign. Ncq/.cq � cT
B B�1aq/

D �sign. Ncq/ Ncq

< 0: (24.24)

Therefore, �x is downhill with respect to the objective function. ut
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24.4.3 Stepsize and Row Pivot Rule

Using �x as a search direction, we are led to the line search scheme below:

Ox D Nx C ˛�x;

or equivalently,

OxB D NxB C ˛�xB; (24.25)

Oxq D Nxq � sign. Ncq/˛; (24.26)

Oxj D Nxj ; j 2 N I j ¤ q; (24.27)

where stepsize ˛ is to be determined.
Introduce notation

i D
8<
:

.ui � Nxi /=�xi if �xi > 0; and i 2 B;

.li � Nxi /=�xi if �xi < 0; and i 2 B;

(24.28)

Then the largest possible value of ˛ is derived subject to l � Ox � u, i.e.,

N̨ D min fıq; minfi j �xi ¤ 0; i 2 Bgg: (24.29)

However, the algorithm will not take ˛ itself as a stepsize, but a smaller one instead,
i.e.,

˛ D � N̨ ; 0 < � < 1: (24.30)

Therefore, a new solution Ox can be computed via (24.25)–(24.30).
There are two cases arising:

(i) ˛ D ıq . It is then clear that there is no need for any basis change.
(ii) ˛ < ıq . A basis change is performed. The following row rule is used to

determine a leaving index to match the entering index q.

Rule 24.4.2 (Row pivot rule) Select a basic index p such that

p D ˛; p 2 B; �xp ¤ 0: (24.31)

Lemma 24.4.2. Ox defined by (24.25)–(24.27) with ˛ given by (24.28)–(24.30) is a
feasible solution.

Proof. Firstly, it is easy to verify that Ox defined by (24.25)–(24.27) satisfies the
equality constraints A Ox D b for any real number ˛. In addition, by the feasibility of
Nx, (24.25)–(24.27), and (24.30), Ox satisfies l � Ox � u, and is hence feasible. ut
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However, if ˛ vanishes, Ox is not really new but the same as Nx. This happens only
when the current solution is degenerate (see Definition 7.4.1).

Theorem 24.4.3. If feasible solution Nx is nondegenerate, then the associated
stepsize is positive, and the new iterate Ox is a nondegenerate feasible solution,
associated with a strictly lower objective value than the old.

Proof. From Lemma 24.4.2, it is clear that the new iterate Ox is a feasible solution.
Note that ıq is positive, since, otherwise, j Ncqjıq D 0 implies that the optimality

condition (24.19) holds. Moreover, the nondegeneracy assumption implies that
i , defined by (24.28), are positive for all i 2 B with �xi ¤ 0. These along
with (24.29) and (24.30) leads to 0 < ˛ < ˛. For Ox defined by (24.25)–(24.27),
therefore, the basic components are still not on their bounds, no matter whether the
basis change is performed (˛ < ıq) or not.

Furthermore, by ˛ > 0, (24.25)–(24.27) and Lemma 24.4.1 it holds that cT Ox <

cT Nx, which completes the proof. ut

24.4.4 Formulation of the Algorithm

Some computational considerations should be incorporated in the implementation
of the algorithm. In practice, for instance, what required is often an approximate
optimal solution only. Therefore, the algorithm will use the following condition in
place of (24.19) instead.

Definition 24.4.1. Nx is an �-optimal solution if

j Ncj j � �1 or ıj � �2; 8 j 2 N; (24.32)

where �1 > 0 and �2 > 0 are predetermined tolerances.

Accordingly, index sets N1 and N2, defined by (24.16), are now redefined by

N1 D fj 2 N j Ncj < ��1g; N2 D fj 2 N j Ncj > �2g: (24.33)

The overall steps can be put into the following algorithm.

Algorithm 24.4.1 (Feasible-point simplex algorithm). Given 0 < � < 1,
�1; �2 > 0 and M � 1. Initial: basis B , associated with feasible solution Nx. This
algorithm solves the bounded-variable problem.

1. Solve BT Ny D cB for Ny.
2. Compute NcN D cN � N T Ny.
3. Compute ıj ; j 2 N by (24.17).
4. Stop if (24.32) is satisfied.
5. Determine index q such that j Ncq jıq D maxf j Ncj jıj j j 2 N g.
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6. Solve B Naq D aq for Naq .
7. Compute �x by (24.21) and (24.22).
8. Determine N̨ D min fıq; minfi j �xi ¤ 0; i 2 Bgg.
9. Compute ˛ D � N̨ .

10. Stop if ˛ > M .
11. Update Nx by (24.25)–(24.27).
12. Go to Step 1 if ˛ D ıq .
13. Determine index p such that p D ˛; p 2 B; �xp ¤ 0.
14. Update basis B by replacing its p-th column with q-th column.
15. Go to step 1.

Theorem 24.4.4. Assume termination of Algorithm 24.4.1. It terminates at either

(i) step 4, achieving an �-optimal basic solution; or
(ii) step 10, declaring lower unboundedness.

The meanings of the exits of the preceding Algorithm is clear. At this stage,
however, it has not been possible to rule out the possibility of infiniteness. As
it solved a large number of test problems in our computational experiments (see
below), we claim that Algorithm 24.4.1 should be regarded as finite practically, just
like the standard simplex algorithm.

Even if it is still open whether Algorithm 24.4.1 is finite or not, on the other hand,
the following result is valid.

Theorem 24.4.5. Assume that the initial feasible solution is nondegenerate. Then
all subsequent stepsizes are positive, and hence iterates are all nondegenerate
feasible solutions.

Proof. It is enough to consider a current iteration.
By Lemma 24.4.2, the new iterate Ox satisfies A Ox D b. From the feasibility of

Nx, (24.25)–(24.27), and (24.30), it follows that Nx satisfies l � Ox � u, and hence is a
feasible solution.

By (3.3), moreover, ıq is positive, since, otherwise, the iteration would have
terminated at Step 3(3). In addition, the nondegeneracy assumption implies that i ,
defined by (24.28), are positive for all i 2 B satisfying �xi ¤ 0. This fact along
with (24.29) and (24.30) gives 0 < ˛ < ˛. Consequently, from (24.25)–(24.27) it
follows that Ox is again nondegenerate.

Furthermore, by ˛ > 0, (24.25)–(24.27) and Lemma 24.4.1, it holds that cT Ox <

cT Nx. This completes the proof. ut
If the initial feasible solution is nondegenerate, Theorem 24.4.5 implies that the

objective value strictly decreases in the solution process. Moreover, the algorithm
has the following feature.

Proposition 24.4.2. Assume that the initial feasible solution is nondegenerate. An
on-bound component of Nx could become an interior component; but any interior
component never becomes an on-bound component.
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The preceding implies that Algorithm 24.4.1 is an interior-point algorithm
if an initial interior-point is used. On the other hand, solutions generated by
Algorithm 24.4.1 are not vertices in general, even if the initial one is. Consequently,
the algorithm goes across the interior of the feasible region.

Finally, we introduce the concept of an approximate optimal basic solution in
place of (24.20), alternatively:

Definition 24.4.2. Nx is an �-optimal basic solution if

ıj < �; 8 j 2 N; (24.34)

where � > 0 is a predetermined tolerance.

It is noted that if condition (24.34) is used as termination criterion, Ncq D 0 could
holds, and hence the associated �x is not downhill. In this case, the algorithm
continues using �x to move to an optimal basic solution, even if optimality has
already been achieved (see Proposition 24.4.1).

24.4.5 Phase-1 and Purification

Any Phase-I approach for the bounded-variable problem can be used to provide an
initial feasible solution. If one wants the algorithm starting from an interior point,
the approach described at the end of Sect. 7.4 applies.

As for obtaining an exact optimal basic solution, the following simple purifica-
tion can be incorporated to Algorithm 24.4.1.

Assume that Algorithm 24.4.1 terminates at step 4 with an �-optimal basic
solution. The purification is done by moving nonbasic components of the solution
onto their respective nearest bounds with the basic components unchanged. If the
resulting solution, say x0, satisfies Ax0 D b within some tolerance, it is clearly an
optimal basic solution. In the other case, a standard two-phase simplex algorithm
can be used to attain a basic optimal solution, hopefully within few iterations.

24.4.6 Computational Results

Computational experiments have been performed to gain an insight into the behavior
of Algorithm 24.4.1. A summary of the associated numerical results are offered in
this subsection.

Implemented, and compared are the following three codes:

1. MINOS: MINOS 5.51 with full pricing.
2. FPS: Two-Phase code based on Algorithm 24.4.1.
3. FPSP: Two-Phase code based on Algorithm 24.4.1 with the purification.
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Table 24.2 Ratio MINOS/FPSP MINOS/FPS FPSP/FPS
Problem Itns Time Itns Time Itns Time
Kennington(16) 6.6 3.2 9.0 3.5 1.4 1.1
BPMPD(15) 2.8 3.4 9.5 9.0 3.3 2.6
Average(31) 3.3 3.4 9.4 6.6 2.8 2.0

The first set of test problems included all 16 problems from Kennington and
the second included all 17 problems from BPMPD that were more than 500KB in
compressed form (Appendix B: Tables B.2–B.3).

In Table 24.2, a comparison between the three codes is made.
From the table, it is seen that FPSP and FPS outperformed MINOS remarkably,

with average iteration ratios 6:6 and 9:0, and time ratios 3:2 and 3:5 for the 16
Kennington problems. They outperformed MINOS, by average iterations ratios 2:8

and 9:5, and time ratios 3:4 and 9:0 for BPMPD problems. For the entire set of the
31 test problems, FPSP and FPS defeated MINOS by average iterations ratios 3:3

and 9:4, and time ratios 3:4 and 6:6.
In summary, the feasible-point simplex algorithm is significantly superior to the

standard simplex algorithm with the test set (see Appendix E for more details).



Chapter 25
Special Topics

In this final chapter, we highlight an assortment of several topics. Firstly, several
special forms of the LP problem are introduced in the next section. Then, approaches
to intercepting for primal and dual optimal sets are given in Sect. 25.2. Practical
pricing schemes for computing reduced costs used by pivot rules are presented in
Sect. 25.3. The relaxation principle and two algorithms based on it are described
in Sect. 25.4. Local duality is introduced in Sect. 25.5. A decomposition principle
and related two LP algorithms are highlighted in Sect. 25.6. Finally, an ILP method
based on the reduced simplex framework is developed in Sect. 25.7.

All algorithms presented in this chapter are unpublished yet, except for the
pricing schemes. The discussions made in the last three sections apply not only to
LP problems but also more generale optimization problems, e.g., those with linear
objective function and convex feasible region.

25.1 Special Forms of the LP Problem

In this section, we introduce several special forms of the LP problem, which can
be more advantageous than the standard LP problem in some cases, although
conventional algorithms are usually designed with respect to the latter.

Assume that vector c of the standard LP problem is not a linear combination of
rows of A. Such an assumption is appropriate, as the problem is trivial otherwise:
if the feasible region is nonempty, then there exists a vector y such that c D ATy,
leading to

cTx D yTAx D yTb;

which implies that the objective function is constant over the feasible region.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3__25,
© Springer-Verlag Berlin Heidelberg 2014
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25.1.1 Reduced Problem

This special form can be obtained by regarding f as a variable and taking f D cTx

as a constraint, i.e.,

min f;

s:t:

�
A 0

cT �1

��
x

f

�
D
�

b

0

�
; x � 0:

(25.1)

It might be well to introduce

A WD
�

A

cT

�
; b WD

�
b

0

�
:

Thereafter f is indexed by nC1, and deemed the same as xnC1, So, anC1 D �emC1,
and the problems can be written as a so-called “reduced problem”:

min f;

s:t:
�
A

::: anC1

��
x

f

�
D b; x � 0;

(25.2)

where .A anC1/ 2 R.mC1/�.nC1/; b 2 RmC1; rank .A amC1/ D mC1; m < n. Note
that the reduced problem is of a standard from, but its objective function involves
only a single (free) objective variable f .

Computations can be somehow simplified with the reduced problem, compared
with the standard problem. Consider the use of the simplex algorithm to solve (25.2).
Taking f as the .m C 1/th basic variable, the reduced cost vector is

NzN D N T Ny; BT Ny D emC1:

If B D LU is available, the second system of the preceding can be converted to two
triangular systems below:

U Tv D emC1; LT Ny D v:

The solution to the first system is readily available, i.e., v D .1=	/emC1, where 	

is the .m C 1/th diagonal of U . Thereby, only a single triangular system

LT Ny D .1=	/emC1:

needs to be solved to obtain the simplex multiplier Ny. In other words, only three
triangular systems are solved in each iteration, compared with the four solved in the
conventional simplex algorithm.

In fact, handling the reduced problem is not really new. Some LP codes, such
as MINOS, have already adopted this approach. More important applications of the
reduced problem can be found in Chaps. 15 and 16.
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25.1.2 D-Reduced Problem

This form yields from applying the idea behind the reduced form, presented in the
forgoing section, to the dual side.

Assume that br ¤ 0. Multiplying the r th equality by 1=br , then adding
appropriate multiple of it to the other equalities converts the right-hand side of the
system to the unit vector er . If the coefficient matrix of the resulting system is still
denoted by A, it becomes the so-called “D-reduced problem” below:

min cTx;

s:t: Ax D er ; x � 0:
(25.3)

The objective function of the associated dual problem involves a single variable.
There are multiple choices for row index r . Although any row index, associated

with a nonzero component, can be taken as r , too small one is certainly not
attractive. It seems natural to take a component equaling 1, if any. Considering
numerical stability, however, it is reasonable to take the largest in magnitude. On
the other hand, a row index that involves minimum nonzeros should be chosen to
reduce fill-ins. Numerical stability and sparsity have to be balanced in large-scale
sparse computations.

Finally, it is favorable to move the chosen row to as the mth row to simplify
computations. If B D LU is known, e.g., solving BxB D em is converted to solving
a single triangular system only. It is more than that. A more important use of the
reduced problem of such type can be found in Chap. 17.

25.1.3 Dual Elimination

This form results from the standard dual problem via elimination. If the standard
problem is of a coefficient matrix close to square, i.e., n � m � m, it would be
favorable to turn to such a form, an .n � m/ 
 m standard problem, with respect
to dual variable z. It will be realized with Gauss elimination though the orthogonal
triangularization also applies.

Consider the tableau of the dual problem (4.2), with max g D bTy replaced by
min �g D �bTy:

yT zT g RHS
AT I c

�bT 1

n

1

(25.4)

Assume that A is of full row rank. Through the Gauss elimination with row
exchanges, the preceding can be converted to a tableau of the form
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yT zT g RHS
U G1 d1

G2 d2

NxT 1 Ng

m

n�m

1

(25.5)

where U 2 Rm�m is nonsingular upper triangular, G1 2 Rm�n; G2 2 R.n�m/�n.
The preceding corresponds to an equivalent form of the dual problem, i.e.,

min �g D � Ng C NxTz;
s:t: G2z D d2; z � 0;

Uy C G1z D d1;

(25.6)

where rank G2 D n � m. Therefore, it is only needed to solve an .n � m/ 
 n

standard problem with respect to variable z, corresponding to the last n � m C 1

rows of tableau (25.5), i.e.

zT g RHS
G2 d2

NxT 1 Ng
(25.7)

Starting from the preceding tableau, problem (25.6) (hence the original problem)
can be solved by the two-phase primal or dual tableau simplex algorithm. In case
when n � m � m, handling the tableau with n � m rows is much cheaper than
handling the original problem with m rows. When an dual optimal solution Nz is
obtained, solving triangular system

Uy D d1 � G1Nz

gives the related Ny. When a non-tableau algorithm is used, the involved systems are
of small order .n � m/ 
 .n � m/, compared with original order m 
 m.

In addition, the associated primal basic optimal solution is readily available. To
explain, let us give the following result first.

Lemma 25.1.1. Let matrix A 2 Rm�n; m < n, be of full row rank. If there is a
nonsingular matrix G 2 Rn�n such that

GAT D
�

U

0

�
; (25.8)

where U 2 Rm�m is nonsingular upper triangular, then the range space of GT
2 is

just the null space of A, where G2 consists of the last n � m rows of G.
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Proof. Assume that G1 consists of the first m rows of G. It follows from (25.8) that

�
AGT

1

::: AGT
2

�
D A

�
GT

1

::: GT
2

�
D AGT D

�
U T ::: 0

�
; (25.9)

hence leading to AGT
2 D 0. Since G is nonsingular, it holds that rank G2 D n � m.

Therefore, the range space of GT
2 is the null space of A. ut

It is easy to generalize Lemma 25.1.1 to allow the case when A is not of full row
rank. Also, we stress that the Lemma is valid for any n 
 n nonsingular matrix G.
In particular, performing Gauss elimination with row exchanges on (25.4) amounts
to premultiplying the first n rows by

G D QGmPm � � � QG1P1;

where QGi 2 Rn�n; i D 1; � � � ; m are Gauss transformations, and Pi 2 Rn�n; i D
1; � � � ; m are permutations.

Theorem 25.1.1. If there is an optimal tableau to (25.7), then its bottom row gives
an basic optimal solution to the primal problem.

Proof. Let (25.7) be an optimal simplex tableau. It is known that it is equivalent to

zT g RHS
G2 G2c

bTU �1G1 1 bTU �1d1

(25.10)

from which it is obtained that

Nx D GT
1 U �Tb:

Thus, it holds by (25.9) that

A Nx D .AGT
1 /U �Tb D U TU �Tb D b:

Therefore, the bottom row of (25.5) gives a primal solution. By Lemma 25.1.1, in
addition, the range space of GT

2 gives the null space of A. This is true for all GT
2 ’s

in the successive tableaus, generated in the process, and each bottom row comes
from its predecessor plus a multiple of some row of a GT

2 . Therefore, bottom rows
of all these simplex tableaus give primal solutions. Since the bottom row of the
optimal simplex tableau is nonnegative, and exhibits complementarity with the dual
basic optimal solution, it corresponds to a basic optimal solution to the original
problem. ut
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Example 25.1.1. Solve the following LP problem by the preceding approach:

min f D 3x1 � x2 C 2x3 � x4 C x5 � x7 � 2x8;

s:t: x1 C x3 � x6 � 2x8 D �2;

� x2 C 4x4 C 2x6 � 3x8 D 9;

C x3 � x5 C x6 � 2x7 D �5;

2x1 � 5x4 � x8 D �18;

C x2 � 3x5 C x7 D 3;

�2x1 � x3 C 4x5 C 2x6 � 7x8 D �13;

xj � 0; j D 1; � � � ; 8:

Answer Construct an initial tableau of form (25.4).

y1 y2 y3 y4 y5 y6 z1 z2 z3 z4 z5 z6 z7 z8 RHS
1 2 �2 1 3

�2 1 1 �1

1 1 �1 1 2

4 �5 1 �1

�1 �3 4 1 1

�1 2 1 2 1

�2 1 1 �1

2 �3 �1 �7 1 �2

2 �9 5 18 �3 13

Use the Gauss elimination to turn the first six columns to upper triangular. The
resulting tableau, consisting of the first six rows, and the tableau of form (25.7) are
respectively as follows:

y1 y2 y3 y4 y5 y6 z1 z2 z3 z4 z5 z6 z7 z8 RHS

1 2 �2 1 3

�2 1 1 �1

1 �2 1 �1 1 �1

�5 2 0 2 1 �3

�19=5 5 �1 �4=5 1 �2=5 1 6=5

46=19 25=19 39=19 �6=19 10=19 13=19 1 27=19

z1 z2 z3 z4 z5 z6 z7 z8 RHS

�5=2 �5=2 2 �1 �1=2 �1=2 1 �3=2

761=92 867=92* �36=23 143=46 289=92 433=92 1 947=92

�513=92 �723=92 �58=23 63=46 �333=92 �561=92 �1;739=92
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There are only three rows in the preceding tableau. Here we use a two-phase dual
simplex method.

Phase-I: Call Algorithm 14.3.2.

Iteration 1:

1. minf�513=92; �723=92; �58=23; 63=46; �333=92; �561=92g D �723=92;

q D 2.
4. maxf�5=2; 867=92g D 867=92; p D 2.
5. Multiply row 2 by 92=867, then add 5=2; 723=92 times of row 2 to rows 1,3,

respectively:

z1 z2 z3 z4 z5 z6 z7 z8 RHS

�265=867 458=289* �152=867 1=3 649=867 1 230=867 1;067=867

761=867 1 �48=289 286=867 1=3 433=867 92=867 947=867

382=289 �1;106=289 1;145=289 �1 �628=289 241=289 �2;982=289

Iteration 2:

1. minf382=289; �1;106=289; 1;145=289; �1; �628=289; 241=289g D
�1;106=289; q D 3.

4. maxf458=289; �48=289g D 458=289; p D 1.
5. Multiply row 1 by 289=458, then add 48=289; 1;106=289 times of row 1 to rows

2,3, respectively:

z1 z2 z3 z4 z5 z6 z7 z8 RHS

�265=1;374 1 �76=687 289=1;374 649=1;374 289=458 115=687 1;067=1;374

581=687 1 214=687 253=687 397=687* 24=229 92=687 839=687

401=687 2;431=687 �134=687 �251=687 553=229 1;013=687 �2;057=280

Iteration 3:

1. minf401=687; 2;431=687; �134=687; �251=687; 553=229; 1;013=687g D
�251=687; q D 6.

4. maxf649=1;374; 397=687g D 397=687; p D 2.
5. Multiply row 2 by 687=397, then add �649=1;374; 251=687 times of row 2 to

rows 1,3, respectively:

z1 z2 z3 z4 z5 z6 z7 z8 RHS

�351=397 �649=794 1 �145=397 �36=397* 433=794 23=397 �88=397

581=397 687=397 214=397 253=397 1 72=397 92=397 839=397

444=397 251=397 1;483=397 15=397 985=397 619=397 �2;610=397
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Phase-II: Call dual simplex Algorithm 4.4.1.

Iteration 4:

1. minf�88=397; 839=397g D �88=397; p D 1.
4. minf�.444=397/=.�351=397/; �.251=397/=.�649=794/; �.1;483=397/=

.�145=397/; �.15=397/=.�36=397/g D 5=12.
5. Multiply row 1 by �397=36, then add �253=397; �15=397 times of row 1 to

rows 2,3, respectively:

z1 z2 z3 z4 z5 z6 z7 z8 RHS

39=4 649=72 �397=36 145=36 1 �433=72 �23=36 22=9

�19=4 �289=72 253=36 �73=36 1 289=72 23=36 5=9

3=4 7=24 5=12 43=12 65=24 19=12 �20=3

Optimal basic solution and related objective value:
Nx D .3=4; 7=24; 5=12; 43=12; 0; 0; 65=24; 19=12/T; Ng D �20=3.
Associated dual basic optimal solution:
Nz D .0; 0; 0; 0; 22=9; 5=9; 0; 0/T.
If the related Ny is needed, substituting Nz to the triangular system, associated with

the second tableau of this example, leads to

0
BBBBBBB@

1 2 �2

�2 1

1 �2 1

�5 2

�19=5 5

46=19

1
CCCCCCCA

0
BBBBBBB@

y1

y2

y3

y4

y4

y6

1
CCCCCCCA

D

0
BBBBBBB@

3

�1

�1

�3

6=5

27=19

1
CCCCCCCA

�.22=9/

0
BBBBBBB@

0

0

0

0

1

13=19

1
CCCCCCCA

0
BBBBBBB@

0

0

0

0

0

5=9

1
CCCCCCCA

;

Then solving the preceding gives the wanted Ny D .11=9; 4=9; 4=9; 5=9; �1=9;

�1=3/T.
The dual tableau (25.4) is of .n C 1/ 
 .m C n C 1/ order, which is larger than

.m C 1/ 
 .n C 1/, the order of the primal tableau. At a first glance, the approach
described above seems to be impracticable.

It is different if one takes a closer look at it. In fact, the triangularization of the
former amounts to performing LU-factorization of

�
AT

�bT

�

(with row exchanges, except for the bottom row). Contents in Sect. 5.3 are still valid
in this context. When n � m � m, the associated additional cost is not as much,
but the return is great, as the scale of the linear systems, involved in subsequent
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iterations, is reduced considerably. As for obtaining (25.5), it is only needed to
accumulate Gauss transformation and permutation factors on (25.4). For obtaining
Ny, it is only needed to accumulate rows, associated with tableau (25.7), hence only
touching upon corresponding components of factors. Alternatively, these factors can
be stored, and wanted vectors can be calculated from them and original data in
subsequent simplex iterations. Note that G2 includes the .n � m/ 
 .n � m/ unit
matrix, corresponding to zeros in the bottom row. Therefore, there is no need for
computing the associated n � m columns. Taking the unit matrix as an initial basis,
one can get a two-phase primal or dual simplex algorithm started directly.

25.1.4 Reduced Dual Elimination

This form results from combining the previous two approaches, that is, carrying out
dual elimination with the reduced problem.

Consider the dual of the reduced program (25.2). Replacing objective row
max g D bTy by min �g D �bTy, its tableau form becomes

yT zT znC1 g RHS
AT I

�eT
mC1 1 1

� bT 1

n

1

1

Since rank A D m C 1, performing Gauss elimination with row exchanges converts
the submatrix, corresponding to yT, to upper triangular (without touching the last
two rows, hence the last three columns). Assume that the resulting tableau is

yT zT znC1 g RHS
U G1

G2

d T 1 1

NxT 1

m C 1

n�m�1

1

1

where U 2 R.mC1/�.mC1/ is nonsingular upper triangular, G1 2 R.mC1/�n; G2 2
R.n�m�1/�n. Then what next to do is to solve the following .n�m/
.nC1/ standard
problem with respect to z, associated with a tableau of form

zT znC1 g RHS
G2

d T 1 1

NxT 1

(25.11)
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If the simplex algorithm is applied, only a single triangular system needs to be
solved to obtain NxB . Moreover, since G2 involves the .n� m � 1/ 
 .n� m � 1/ unit
submatrix, and the right-hand side is the unit vector en, the tableau can be handled
directly by D-reduced simplex method or deficient-basis D-reduced method.

25.2 Intercepting of Optimal Set and Bilevel LP

In some applications, there may be a need for not only a primal or dual optimal
solution, but also the set of primal or dual optimal solutions (see, e.g., Megiddo
1989). It is shown in this section that it is not difficult to achieve this if an optimal
simplex tableau (or basic optimal solution) is available. Firstly, an approach to
intercepting for the primal optimal set is described, and then for the dual optimal
set.

Let B D fj1; : : : ; jmg and N D AnB be respectively optimal basis and nonbasis.
Assume that the associated basic optimal solution is

NxB D B�1b � 0; NxN D 0;

with optimal value Nf D cT
B NxB , and that the reduced costs and the simplex

multipliers are

NzB D 0; NzN D cN � N T Ny � 0; Ny D B�T cB;

which are actually dual optimal solutions, as was shown in Sect. 4.1.
The original problem can be written

min NzT
N xN ;

s:t: xB C B�1NxN D NxB; xB; xN � 0:
(25.12)

Section the nonbasis N to .N1; N2/, defined as

N1 D fj 2 N j Nzj D 0g; N2 D fj 2 N j Nzj > 0g: (25.13)

Then the reduced objective function can be written

f D Nf C NzT
N2

xN2 ; (25.14)

and the original constraint system is equivalent to

xB D NxB � B�1N1xN1 � B�1N2xN2 :

Using the preceding notations, we have the following result.
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Theorem 25.2.1. The optimal set is

F D fx 2 Rn j xB D B�1b � B�1N1xN1 ; xB; xN1 � 0; xN2 D 0g
D fx 2 Rn j BxB C N1xN1 D b; xB; xN1 � 0; xN2 D 0g: (25.15)

Proof. According to Lemma 2.3.2, F is the set of optimal solutions if and only if

F D P \ fx 2 Rn j cT x D Nf g:

Since (25.14) is a reduced objective function, it holds that

cT x D Nf C NzT
N2

xN2 ; x 2 P;

which combined with (25.14) and the second expression of (25.13) leads to the first
equality in (25.15), i.e.,

F D fx 2 Rn j Ax D b; x � 0I cTx D Nf g
D fx 2 Rn j xB D B�1b � B�1N1xN1 � B�1N2xN2 ; x � 0I NzT

N2
xN2 D 0g

D fx 2 Rn j xB D B�1b � B�1N1xN1 � B�1N2xN2 ; x � 0I xN2 D 0g
D fx 2 Rn j xB D B�1b � B�1N1xN1 ; xB ; xN1 � 0I xN2 D 0g:

The second equality is obvious. ut
Set F is actually the largest optimal face of the problem, whose dimension is

dependent on jN1j (or jN2j) (Proposition 2.1.2). If any index q 2 N1 is selected
to enter the basis, a row index p can be determined to leave the basis, just as in the
simplex context. For the resulting basis B , system xB D B�1b �B�1N1xN1 renders
a new basic optimal solution, which is truly new if its predecessor is nondegenerate.
This method can be used to obtain multiple basic optimal solutions. It is clear that
the number of all such solutions is no more than C m

mCjN1j.

Corollary 25.2.1. If N1 is empty, there exists an unique optimal solution or basis
to the LP problem.

The preceding implies that a primal optimal solution is unique if the associated
dual optimal solution is nondegenerate, as coincides to Proposition 3.9.3.

As an application, consider the special bilevel LP problem below:

min f1 D cT
1 x;

min f2 D cT
2 x;

s:t: Ax D b; x � 0:

(25.16)

The first level is to attain the optimal set to the problem with the first objective
function f1 subject to the constraints, and the second level minimizes the second
objective f2 over the optimal set.
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Example 25.2.1. Solve the following bilevel LP problem:

min f1 D �3x5 C 5x6;

min f2 D �x1 � 4x2 C 2x3 � 6x4 C x5 C 2x6;

s:t: �3x1 � x2 C x3 C 6x4 � 4x6 C x7 D 1;

5x1 � 2x3 C x4 � x5 C x8 D 4;

2x2 C 3x5 C x6 C x9 D 3;

xj � 0; j D 1; : : : ; 9:

Answer The initial feasible simplex tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�3 �1 1 6 �4 1 1

5 �2 1 �1 1 4

2 3* 1 1 3

�1 �4 2 �6 1 2

�3 5

where the bottom and second bottom rows correspond to the first and second
objective functions, respectively.

Call Algorithm 3.2.1 to solve the first level problem.

Iteration 1:

1. minf0; 0; 0; 0; �3; 5; 0; 0; 0g D �3; q D 5.
3. I D f3g ¤ ;.
4. minf3=3g; p D 3.
5. Multiply row 3 by 1=3, and then add 1; �1; 3 times of row 3 to rows 2,4,5,

respectively:

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�3 �1 1 6* �4 1 1

5 2=3 �2 1 1=3 1 1=3 5

2=3 1 1=3 1=3 1

�1 �6 2 �6 1 �1 �1

2 6 1 3

Iteration 2:

1. minf0; 2; 0; 0; 6; 1g � 0. Therefore, the first level problem is minimized with
optimal value f1 D �3 (N1 D f1; 3; 4g; N2 D f2; 6; 9g). The second objective
value equals to f2 D 1. Dropping columns corresponding to N2 and the bottom
row gives the feasible simplex tableau to the second level problem, i.e.,
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x1 x3 x4 x5 x7 x8 RHS

�3 1 6* 1 1

5 �2 1 1 5

1 1

�1 2 �6 �1

Call Algorithm 3.2.1.

Iteration 3:

1. minf�1; 2; �6g D �6; q D 4.
3. I D f1; 2g ¤ ;.
4. minf1=6; 5=1g D 1=6; p D 1.
5. Multiply row 1 by 1=6, and then add �1; 6 times of row 1 to rows 2,4,

respectively:

x1 x3 x4 x5 x7 x8 RHS

�1=2 1=6 1 1=6 1=6

11=2* �13=6 �1=6 1 29=6

1 1

�4 3 1

Iteration 4:

1. minf�4; 3; 1g D �4; q D 1.
3. I D f2g ¤ ;.
4. minf.29=6/=.11=2/g; p D 2.
5. Multiply row 2 by 2=11, and then add 1=2; 4 times of row 2 to rows 1,4,

respectively:

x1 x3 x4 x5 x7 x8 RHS

�1=33 1 5=33 1=11 20=33

1 �13=33 �1=33 2=11 29=33

1 1

47=33 29=33 8=11 116=33

Iteration 5:

1. minf47=33; 29=33; 8=11g � 0.
2. The second level problem is solved with the basic optimal solution Nx D

.29=33; 0; 0; 20=33; 1; 0; 0; 0; 0/T , corresponding to the first and second objec-
tive values f1 D �3 and f2 D �116=33, respectively.
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On the other hand, the dual optimal set can be obtained in an analogous manner
as follows.

Without loss of generality, assume that B D f1; � � � ; mg; N D AnB and that

Nxi D 0; i D 1; � � � ; t;

Nxi > 0; i D t C 1; � � � ; m:

Define row index sets

I1 D f1; � � � ; tg; I2 D ft C 1; � � � ; mg:

Bisection rows of NN D B�1N such that

NN D
 NN T

I1NN T
I2

!
;

Then, the dual problem of (25.12) can be written

max NxT
I2

yI2 ;

s:t:

�
yI1

yI2

�
C
�

zI1

zI2

�
D 0;

. NNI1;
NNI2/

�
yI1

yI2

�
C zN D NzN ;

zB; zN � 0:

Setting yI2 ; zI2 D 0 in the constraints of the preceding program gives the set of
dual optimal solutions.

Using these notations, we state the following result, the proof of which is omitted.

Theorem 25.2.2. The dual optimal set is

G D f.y; z/ 2 Rm 
Rn j zN D NzN � NNI1yI1 � 0I zI1 D �yI1 � 0I yI2 ; zI2 D 0g:

25.3 Pricing Scheme

All pivot rules are closely related to reduced costs. In fact, knowledge of all or part
of reduced costs is a prerequisite for determination of a pivot in the simplex context.
This section is devoted to approaches toward pricing.

Still assume that the current basis is B D f1; � � � ; mg, and nonbasis is N D
fm C 1; � � � ; ng. The standard formulas for computing reduced costs are

BTy D cB; zN D cN � N Ty: (25.17)

We will present several alternative schemes, some of which are being used in
practice.
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Assume that a pivot column index q 2 N and pivot row index p 2 B have been
determined. In this section, the new basis and other associated quantities are denoted
by a prime. Thus,

B 0 D .Bnp/ [ q; N 0 D .N nq/ [ p: (25.18)

The relation between the current basis and the new basis can be expressed as

B 0 D B C .aq � ap/eT
p; (25.19)

and y0 satisfies

B 0Ty0 D cB0 : (25.20)

If h denotes the solution to the following system:

BTh D ep; (25.21)

then h0 satisfies

B 0Th0 D ep: (25.22)

Thereby, the following recurrence formulas can be proved:

y0 D y C zqh0; (25.23)

h D Nap;qh0; (25.24)

z0
N 0 D zN 0 � zqN 0Th0; (25.25)

D zN 0 � .zq= Nap;q/N 0Th; (25.26)

where Nap;q is the pivot, i.e., the pth component of the solution to B Naq D aq , as can
be calculated independent of pricing. Note that zp D 0 in the preceding formulas.

As an alternative scheme, reduced costs may be calculated based on (25.25) or
(25.26). Zoutendijk (1960) uses formula (25.25) and (25.22). Bixby (1994) uses
(25.26) and (25.21). An advantage of the latter lies in that the solution h or h0 to
(25.21) or (25.22) is usually much sparser than y, and especially suitable for the
steepest-edge rule, which also needs to solve (25.21) or (25.22) (see (11.11)), so
does the dual simplex algorithm (see step 3 of Algorithm 4.5.1).

However, recurrence formulas are not suitable for partial pricing. In contrast to
the preceding schemes, Tomlin uses (25.23) and (25.22) to compute the simplex
multipliers in a recurrence manner, as is clearly amenable to partial pricing.

As in the standard formulas, the preceding schemes need to solve two triangular
systems. Assume that the LU factorization with row and column exchanges of the
current basis matrix B is

PBQ D LU; (25.27)
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where L is unit lower triangular, U is nonsingular upper triangular, and P and
Q are permutations. Recall that each system involved in simplex iterations can be
converted to two triangular systems. For B Naq D aq , e.g., one may solve

Lv D P aq; U u D v; (25.28)

and set Naq D Qu. It is similar to solve (25.21) or (25.22).
Hu and Pan (2008b) modified Tomlin’s scheme, so that only a single triangular

system needs to be solved for pricing. It is found latter that Goldfarb (1977) pro-
posed the same approach along another line earlier without offering any numerical
results.

In the following, we will focus on this scheme, and report favorable results,
obtained in extensive computational experiments. To this end, firstly we derive the
Bartels-Golub update in a way, slightly different from that in Sect. 5.4 (Forrest-
Tomlin’s variant).

From (25.19) and (25.27) it follows that

PB 0Q D LU C P.aq � ap/eT
pQ;

D L.U C .L�1P aq � L�1P ap/eT
pQ/:

By (25.27) and Bep D ap it holds that

P ap D PBep D LUQTep:

Besides, it is clear that there is an integer 1 � r � m such that

er D QTep: (25.29)

Denote by v the solution to the first triangular system of (25.28). Then, combining
the preceding three expressions leads to

PB 0Q D L.U C .L�1P aq � UQTep/eT
pQ/ D LR; (25.30)

where the matrix

R D U C .v � Uer/e
T
r

is upper triangular, except for the r th column, as it results from U by replacing
the r the column by v. Move the r th column backward to the end position and the
.r C1/ to mth columns forward one column. Then put the r th row to the bottom row
and the .r C 1/ to mth rows up one row. If OQ denotes the according permutation,
then the resulting matrix OQTR OQ is upper triangular, except for entries in the r to
(m�1)th columns in the mth row perhaps being nonzero (m � 2). These entries can
be eliminated by a series of Gauss transformations; while proceeding, exchange the
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mth row and the row at which the diagonal locates whenever a diagonal is too small
in module, compared with the according nonzero entry. Thus, there are permutations
Pi and lower triangular matrices Li ; i D 1; � � � ; s.1 � s � m � r/ such that

L�1
s Ps � � � L�1

1 P1
OQTR OQ 4D U 0 (25.31)

is nonsingular upper triangular. On the other hand, it is clear that

L0 D L OQP T
1 L1 � � � P T

s Ls (25.32)

is lower triangular with row exchanges. From (25.31), (25.32) and (25.30), it is
verified that the new basis matrix B 0 has the following LU factorization with row
and column exchanges:

P 0B 0Q0 D L0U 0; (25.33)

where

P 0 D P; Q0 D Q OQ: (25.34)

Fortunately, this process leads to simplification of computation of simplex
multipliers.

Theorem 25.3.1. Let y be the solution to BTy D cB and zq be the reduced cost,
related to the pivot column index q. If w0 is the solution to

L0TP w0 D .1=u0
mm/em; (25.35)

where u0
mm is the mth diagonal of U 0, then y0 D y C zqw0 is the solution to (25.20).

Proof. Based on relationship between quantities, related to the old and new bases,
it is only required to prove that w0 is the solution to (25.22).

Premultiplying (25.35) by U 0T gives

U 0TL0TP w0 D .1=u0
mm/U 0Tem;

combining which, (25.33),(25.34) and U 0Tem D u0
mmem leads to

OQTQTB 0Tw0 D em:

Then by (25.29) and the definition of permutation OQ, it is known that

eT
pQ OQ D eT

r
OQ D eT

m:
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Table 25.1 Iteration and time ratios of MINOS 5.51 to NEW

Small Medium Large Ken. BPMPD Total average
Problem (38) (41) (17) (16) (17) (129)
Iterations 1.00 1.01 1.12 1.05 1.12 1.10
Time 1.03 1.17 1.28 1.28 1.23 1.24

Finally, it follows from the preceding two expressions that

B 0Tw0 D Q OQem D Q OQ OQTQTeT
p D ep:

ut
This theorem says that after new LU factors are obtained by Forrest-Tomlin

update, one may solve triangular system (25.35) for w0, calculate the new simplex
multipliers y0, and then compute new reduced costs by (25.25).

Our numerical experiments involve the following two codes (Hu and Pan 2008b):

1. MINOS 5.51.
2. NEW: MINOS 5.51 with the presented approach for pricing.

The preceding codes both adopted default sectional pricing option (partial
price 10).

There were 129 Netlib, Kennington and BPMPD test problems involved
(Appendix B: Tables B.1–B.3). All the 96 Netlib problems fall into three 3 sets:
Small (38), Medium (41), Large (17) (in the order of increasing m C n). Table 25.1
lists total iteration and time ratios of MINOS 5.51 to NEW.

From the table, it is seen that the presented pricing scheme outperformed the
standard scheme with each set of problems (except for small Netlib problems), in
terms of either iterations or running time. The overall iteration and average time
ratios attain 1:10 and 1:24, respectively.

25.4 Relaxation Principle

Problem obtained by dropping some constraints of a problem is called relaxation
problem of the latter. Feasibility or optimality of the two problems is closely related.

Proposition 25.4.1. Any feasible solution to the original problem is feasible to the
relaxation problem, and an optimal solution to the former is optimal to the latter if
dropped constraints are inactive at it.

Proof. Since the feasible region of the original problem is a subset of that of the
relaxation problem, the first half of the Proposition is clear. If dropped constraints
are inactive at an optimal solution to the original, the solution is a local optimal
solution to the relaxation problem. According to Theorem 4.3.4, it is a (global)
optimal solution to the latter. ut
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It is favorable for solving the original problem if a relaxation problem of it was
solved.

Proposition 25.4.2. If the relaxation problem is infeasible, so is the original
problem. If an optimal solution to the relaxation problem is feasible to the original
problem, it is also optimal to the latter.

Proof. The statement is easily drawn from the fact that the feasible region of the
original problem is a subset of that of the relaxation problem. ut

These results form a basis of the so-called “relaxation principle”: a relaxation
problem is solved first, which is usually easier to solve. If the obtained optimal
solution satisfies the dropped constraints, then it is also optimal to the original; if not
so, or unboundedness of the relaxation problem is detected, part or all of the dropped
constraints are added to the relaxation problem, and the latter is then solved again.
Since there are only finitely many constrains, the original problem can be solved in
finitely many iterations, if each relaxation problem is solved finitely.

The relaxation principle may be applied in various ways, such as sensitivity
analysis (Chap. 6), and the active set method (Sect. 2.4), including the simplex
method itself, even ILP solvers, like branch-bound and cutting-plane methods.

25.4.1 Illustrative Application: Partial Pricing

It is possible to design various relaxation algorithms by dropping and adding
constraints according to different criterions. In the following, we only bring up two
algorithms, as they can be realized conveniently via partial pricing.

Assume that a feasible simplex tableau is available. For a given threshold � � 0,
section the nonbasis N as follows:

N1 D fj 2 N j Nzj < ��g; N2 D N nN1: (25.36)

Giving a priority to indices in N1 in column selection leads to the following
algorithm.

Algorithm 25.4.1 (Relaxation simplex algorithm: partial pricing). Given � �
0. Initial: feasible simplex tableau of form (3.18), .N1; N2/ defined by (25.36). This
algorithm solves the standard LP problem.

1. Select pivot column index q 2 arg minj 2N1 Nzj .
2. Go to step 5 if Nzq < 0.
3. Select pivot column index q 2 arg minj 2N2 Nzj .
4. Stop if Nzq � 0 (optimality achieved).
5. Stop if I D fi D 1; � � � ; m j Nai q > 0g D ; (unbounded problem).
6. Determine pivot row index p 2 arg mini2I

Nbi= Nai q .
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7. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

8. If q 2 N1, set N1 D N1nfqg [ fjpg; else, if q 2 N2, set

N1 D fj 2 N2 j Nzj < ��g n fqg [ fjpg; N2 D N n fqg n N1:

9. Go to Step 1.

In fact, the preceding algorithm solves the dual relaxation program featured by
N1 firstly, ignoring dual nonnegative constrains associated with N2. Once achieving
optimality, it selects indices, associated with violated constraints, from N2 to form a
new N1, and then does the same thing, again and again. Despite an initial .N1; N2/

can be an arbitrary section of N , it seems to be preferable to form N1, associated
with dual nonnegative constraints, violated by current dual solution; if � D 0, e.g.,
N1 corresponds to all violated ones.

Example 25.4.1. Solve the following problem by Algorithm 25.4.1:

min f D �5x1 � 2x3 � 3x7 � x8 C 4x9;

s:t: �2x1 C 4x3 C x6 � 8x7 � 5x8 C 6x9 D 1;

�4x1 C x2 C 5x3 � 3x7 � x8 � x9 D 3;

2x1 � 3x3 C x5 C 6x7 C 3x8 � 3x9 D 4;

�3x1 C 8x3 C x4 � 6x7 � 4x8 C 5x9 D 5;

xj � 0; j D 1; � � � ; 9:

Answer Set � D 0. Initial tableau

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�2 4 1 �8 �5 6 1

�4 1 5 �3 �1 �1 3

2* �3 1 6 3 �3 4

�3 8 1 �6 �4 5 5

�5 �2 �3 �1 4

Iteration 1: N1 D f1; 3; 7; 8g; N2 D f9g.

1. minf�5; �2; �3; �1g D �5 < 0; q D 1.
5. I D f3g ¤ ;.
6. minf4=2g D 2; p D 3.
7. Multiply row 3 by 1=2, then add 2; 4; 3; 5 times of row 3 to rows 1,2,4,5,

respectively:
8. N1 D f3; 7; 8; 5g; N2 D f9g.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 1 1 �2 3 5 5

1 �1 2 9 �7 11 11

1 �3=2 1=2 3 �3=2 2 2

7=2* 1 3=2 3 1=2 11 11

�19=2 5=2 12 �7=2 10 10

Iteration 2:

1. minf�19=2; 12; �7=2; 5=2g D �19=2; q D 3.
5. I D f1; 4g ¤ ;.
6. minf5=1; 11=.7=2/g D 22=7; p D 4.
7. Multiply row 4 by 2=7, then add �1; 1; 3=2; 19=2 times of row 4 to rows 1,2,3,5,

respectively:
8. N1 D f7; 8; 5; 4g; N2 D f9g.

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�2=7 4=7 1 �20=7 �15=7 20=7* 13=7

1 2=7 17=7 69=7 36=7 �48=7 99=7

1 3=7 8=7 30=7 12=7 �9=7 47=7

1 2=7 3=7 6=7 1=7 1=7 22=7

19=7 46=7 141=7 55=7 �15=7 279=7

Iteration 3:

1. minf141=7; 55=7; 46=7; 19=7g � 0.
3. minf�15=7g < 0; q D 9.
5. I D f1; 4g ¤ ;.
6. minf.13=7/=.20=7/; .22=7/=.1=7/g D .13=7/=.20=7/; p D 1.
7. Multiply row 1 by 7=201=3, then add 48=7; 9=7; �1=7; 15=7 times of row 1 to

rows 2,3,4,5, respectively.
8. N1 D f6g; N2 D f4; 5; 7; 8g.

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

�1=10 1=5 7=20 �1 �3=4 1 13=20

1 �2=5 19=5 12=5 3 93=5

1 3=10 7=5 9=20 3 3=4 151=20

1 3=10 2=5 �1=20 1 1=4 61=20

5=2 7 3=4 18 25=4 165=4

Iteration 4:

1. minf3=4g � 0.
3. minf5=2; 7; 18; 25=4g � 0.
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4. Optimality achieved. The basic optimal solution and related objective value are

Nx D .151=20; 93=5; 61=20; 0; 0; 0; 0; 0; 13=20/T; Nf D �165=4:

On the other hand, a relaxation dual simplex algorithm can be derived analo-
gously. Given an initial dual feasible simplex tableau. For any threshold  � 0,
section row indices as follows:

I1 D fi D 1; � � � ; m j Nbi < �g; I2 D f1; � � � ; mgnI1: (25.37)

If the associated constraints are written

Nb �
X
j 2N

NxN � 0; xN � 0;

then selecting a row index firstly from I1 means ignoring inequalities, associated
with I2 in the first formula. This leads to the following algorithm.

Algorithm 25.4.2 (Relaxation dual simplex algorithm: partial pricing). Given
 � 0. Initial: dual feasible simplex tableau of form (3.18), .I1; I2/ are defined by
(25.37). This algorithm solves the standard LP problem.

1. Select pivot row index p 2 arg mini2I1
Nbi .

2. Go to step 5 if Nbp < 0.
3. Select pivot row index p 2 arg mini2I2

Nbi .
4. Stop if Nbp � 0 (optimality achieved).
5. Stop if N 0 D fj 2 N j Nap j < 0g D ; (dual unbounded or primal infeasible).
6. Determine pivot column index q 2 arg minj 2N 0 �Nzj = Nap j .
7. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
8. If p 2 I2, set I2 D fi 2 I2 j Nbi < �g and I1 D f1; � � � ; mgnI2.
9. Go to step 1.

As there is no numerical results available at this stage, however, it is not yet clear
how preceding two algorithms perform. However, some relaxation simplex variants,
resulting from embedding the most-obtuse-angle heuristics to criterion dropping and
adding constraints, performed favorably in preliminary computational tests (Yang
and Pan 2006; Zhou et al. 2009).

25.5 Local Duality

This section is devoted to localization of the optimality condition and a related LP
solution strategy.
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A relaxation problem, resulting from dropping all inactive constraints at a current
iterate, is termed local problem. Thus, constraints of a local problem are the set of
active constraints, which are binding or violated at the iterate (Sect. 2.4).

Proposition 25.5.1. A current iterate is an optimal solution to the original problem
if and only if it is optimal to the associated local problem.

Proof. If it is an optimal solution to the associated local problem, the current iterate
is optimal to the original problem since it is feasible to the latter, according to
Proposition 25.4.2. Conversely, if the iterate is an optimal solution to the original
problem, it is optimal to the local problem since the dropped constraints are inactive
at it, according to Proposition 25.4.1. ut

As a relaxation problem, a local problem is simple and easy to handle, compared
to the original. As constraints of a local problem is a subset of those of the original
problem, the associated optimality condition, termed local, involves less formulas
than that for the original problem. If the iterate fulfil the local optimality condition,
then we are done. Otherwise, a feasible downhill is determined as a search direction
with respect to the local problem. Then a new iterate is created by taking a step from
the iterate along the direction, subject to constraints of the original problem. These
steps are repeated until achieving optimality. So, such a local duality strategy and
the active set approach converge (Sect. 2.4).

In practice, it should be favorable to use �-active constraints to form the local
problem (Powell 1989).

Example 25.5.1. Assume that the following bounded-variable problem

min cTx;

s:t: Ax D b; (25.38)

0 � x � u; (25.39)

has a basic solution Nx such that NxN D 0, but NxB may not fulfil (25.39). Consider the
local problem below:

min cTx;

s:t: Ax D b; x � 0;

which is a standard problem.
Let x� and .y�; z�/ be primal and dual optimal solutions to the preceding

program, respectively. If it satisfies (25.39), then x� is an optimal solution to the
original problem. In this case, optimality is actually achieved, since x� and .y�; z�/

fulfil optimal condition (4.16) with w� D 0 and l D 0.

Based on local duality, the generalized dual simplex algorithm was derived for
solving the bounded-variable problem, in Sect. 7.6.
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25.6 Decomposition Principle

As well-known, any LP problem can be handled via solving only a system of
equations if an optimal basis is available. Unfortunately, it seems to be impossible to
get an optimal basis directly. Proposition 2.5.1 is only heuristics, and the associated
crash procedure is very unbelievable to provide an optimal basis (Sect. 5.5).
Therefore, LP problems are only solved by iterative methods.

Have long been a challenging task, solving large-scale LP problems may require
huge amount of iterations and storage. To solve such problems, as a result, it is
natural to turn to decomposition methods, such as Dantzig-Wolfe decomposition and
Benders decomposition. Unfortunately, applications of these methods are restricted
to a certain type of structured problems. In fact, very large problems can not be
handled at present, despite advance of computer’s hardware.

On the reality side, interestingly, some decomposition arrangement for big events
has been put into effect successfully for many years. For instance, World Cup
actually follows a “parallel decomposition” competition system: firstly preliminary
selection contest is undertaken in each of the six continents; then, winners take
part in the final, and the champion stands out. In contrast, an arena contest actually
follows a “serial decomposition” competition system: the champion is produced
through a series of matches between interim winner and challenger in succession.
Without a doubt, it is impossible to organize any big event without decomposition.

A close analogy with very large-scale optimization can be made. Belonging to the
“arena contest” category, the so-called “decomposition principle” presented in this
section finds an optimal solution (or basis) to a large-scale LP problem by solving
a series of small LP problems, as would hopefully be applicable to more general
optimization problems.

25.6.1 Subprograms and Algorithms

Firstly, we show that the standard problem can be solved by handling two smaller
subprograms in succession.

Let B0 be an initial feasible basis, associated with basic feasible solution Nx.
Partition nonbasis N to two sections .N1; N 2/. Denote the according sections of
c by .cB0 ; cN1 ; cN2/. The first subprogram is of the following form:

min cT
B0

xB0 C cT
N1

xN1 ;

s:t: B0xB0 C N1xN1 D b; xj � 0; j 2 B0 [ N1;
(25.40)

whose optimal basis (basic solution or value) is termed suboptimal with respect to
the original problem. Based on the resulting suboptimal basis, say B1, we construct
a second subprogram as follows:

min cT
B1

xB1 C cT
N2

xN2 ;

s:t: B1xB1 C N2xN2 D b; xj � 0; j 2 B1 [ N2:
(25.41)
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It is clear that if either of the subprograms is lower unbounded, so is the original
problem. Assume that it is not the case. Then each suboptimal solution corresponds
to a basic feasible solution to the original problem; e.g., after the first subprogram
is solved, the components, associated with B0 [ N1, of the feasible solution Nx,
change to new values of the suboptimal solution, while the other components remain
unchanged. Note that all nonbasic components of the suboptimal solutions are of
default value zero, so are those of the corresponding feasible solutions to the original
problem.

It will be shown that optimality of the original problem is achieved if the
suboptimal values of the two subprograms are equal. Otherwise, take the suboptimal
basis, obtained from solving the second subprogram, as a new B0 to repeat the
previous steps.

The preceding can be generalized by partitioning the nonbasis to multiple
sections. Let B0 be the initial feasible basis, and let .N1; � � � ; Ns/; s � 2 be a
partition of the nonbasis. The t th subprogram (t D 1; : : : ; s) to be solved is of form

min cT
Bt�1

xBt�1 C cT
Nt

xNt ;

s:t: Bt�1xBt�1 C Nt xNt D b; xj � 0; j 2 Bt�1 [ Nt;
(25.42)

where Bt�1 is a suboptimal basis, yielding from solving the .t � 1/th subprogram
(t D 2; � � � ; s).

This scheme can be organized into the following model.

Algorithm 25.6.1 (Decomposition algorithm 1). Given integer s � 2. Initial:
feasible basis B0. This algorithm solves the standard LP problem.

1. Partition AnB0 to .N1; � � � ; Ns/.
2. Set t D 0.
3. Set t D t C 1.
4. Solve subprogram (25.42) by the simplex Algorithm 3.5.1:

(1) stop if lower unbounded;
(2) if t < s, go to step 3 with the suboptimal basis Bt and objective value Nft ;

5. Stop if Nfs D Nf1;
6. Set B0 D Bs

7. Go to step 1.

Iterations associated with t D 1; : : : ; s form a “circle” (solving s subprograms).
The solution process involves a series of circles, in general.

Lemma 25.6.1. Algorithm 25.6.1 generates a sequence of feasible bases, with
objective values decreasing (not necessarily strictly) monotonically.

Proof. It might be well to assume that the algorithm terminates at the end of the
second circle. Take the first circle. As the initial basis B0 is feasible to the original
problem, the suboptimal bases Bt are well-defined (t D 1; � � � ; s). It is clear that
each basis Bt and associated objective value Nft are not only optimal to the t th
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subprogram but also feasible to the original problem. Since each Nft is optimal to
the t th subprogram and feasible to the .t C 1/th subprogram, the objective values
decrease (not necessarily strictly) monotonically. Likewise, it can be shown that the
objective values decrease monotonically within the second circle; therefore, so do
all the objective values since B0 for the second circle is just the end suboptimal basis
Bs of the first circle. ut
Theorem 25.6.1. Under the nondegeneracy assumption, Algorithm 25.6.1 termi-
nates either at

(i) step 4(1), detecting lower unboundedness of the original problem (1.8); or at
(ii) step 5, generating an optimal basis to the original problem.

Proof. Assume at the moment that the algorithm terminates. By Lemma 25.6.1, the
condition Nfs D Nf1 implies that all the feasible values are equal.

It is clear that termination at step 4(1) implies lower unboundedness of the
original problem. Assume that the process terminates at step 5. We show (ii) by
induction on the number s of sections.

Consider for s D 1. Since B1 is an optimal basis to the first subprogram, the
according optimal dual solution, say . Qy; Qz/, satisfies

QzB0[N1 D cB0[N1 � .B0 [ N1/
T Qy � 0; Qy D B�T

1 cB1 : (25.43)

As A D fB0; N1; N2g, it is therefore only needed to show that

QzN2 D cN2 � N T
2 Qy � 0: (25.44)

Since Nf2 D Nf1, B1 is also optimal to the second subprogram. If (25.44) does not
hold, then it follows from NxB1 D B�1

1 b > 0 (nondegeneracy assumption) that the
B1 is not optimal to the second subprogram (Lemma 3.9.2), as is a contradiction.
Therefore, (25.44) holds, which and (25.43) together imply that B1 is an optimal
basis to the original problem.

Assume that (ii) is valid for 1 � s � t; t � 1, we will show its validity for
s D t C 1. Since NftC1 D Nf1, it holds that Nft D Nf1 (Lemma 25.6.1). According to
the assumption of induction, therefore, B1 is an optimal basis to problem

min cT
B0

xB0 C cT
N 0xN 0 ;

s:t: B0xB0 C N 0xN 0 D b; xj � 0; j 2 B0 [ N 0;
(25.45)

where N 0 D N1 [ N2 [ � � � [ Nt . If we take a look at partition .B0; N 0; NtC1/ of the
original problem, and note that the statement is valid for s D 2, it is asserted that B1

is an optimal basis to the original problem.
Let us turn to termination of Algorithm 25.6.1. All associated subprograms are

feasible, hence the simplex algorithm utilized to solve them terminates under the
nondegeneracy assumption. Thus, it does not terminate only if there are infinite
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many circles, and Nfs < Nf1 holds for each. This implies that there are infinitely many
bases, as leads to a contradiction. Therefore, Algorithm 25.6.1 terminates. ut

A drawback of subprogram (25.40) (or (25.42)) is that the entering set N1 (or Nt )
is predetermined without considering the associated reduced costs at all. This may
be remedied as follows.

Let � be the optimality tolerance. Given a real number � > � > 0 and an integer,
say m0 � m. Denote by B0 the current feasible basis and by N the candidate
indices from which to choose the entering set N1. Initially, just take the nonbasis
as N , i.e., N D AnB0. Assume that NzN is the nobasic reduced costs. Then, N1 is
determined by

N1 D fj 2 N j Nzj � ��g; (25.46)

subject to jN1j � m0. So the number of indices in N1 is no more than m. If jN1j > 0,
subprogram (25.40) is solved. Then we set N D An.B0 [ N1/ for the next iteration.
In the solution process, � is decreased by a percentage � to maintain jN1j reasonably
large whenever jN1j < m0. Assuming jN1j D 0, optimality of the original problem
is achieved if � D �; or N1 is determined by (25.46) again with a reduced � if
� > �, and so on.

The preceding discussions lead to a variant of Algorithm 25.6.1, as formulated
as follows.

Algorithm 25.6.2 (Decomposition algorithm 2). Given optimality tolerance 0 <

� � 1, 0 < � < 1 and integer m0 � m. Initial: � > �; feasible basis B0 and
nonbasis N . This algorithm solves the standard LP problem.

1. Compute NzN D cN � N T Ny; BT
0 Ny D cB0 .

2. Determine set N1 D fj 2 N j Nzj � ��g.
3. If jN1j < m0, set � D maxf�; ��g.
4. Go to step 7 if jN1j > 0.
5. Stop if � D � (optimality achieved).
6. Go to step 2.
7. Solve subprogram (25.40) by the simplex Algorithm 3.5.1:

(1) stop if lower unbounded;
(2) set N D An.B0 [ N1/, and then set the yielding suboptimal basis to B0.

8. Go to step 1.

25.6.2 The Basic Idea: “arena contest”

The preceding decomposition algorithms work as if some “arena contest” is
organized to produce the “team champion” via a series of “matches”.
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The number of players (columns) in the whole area (coefficient matrix) is too
huge to match in the limited sports facilities (available hardware) to produce a team
champion (optimal basis). Therefore, a system is formulated and executed to govern
the competition (optimization), so that a series of relatively small matches can be
proceeded in the limited facilities. Specific ideas behind the two decomposition
algorithms may be explained as follows, respectively:

(i) Algorithm 25.6.1:
At the beginning, an initial team (basis B0) is selected from players (columns)
of the area (coefficient matrix A) under some criterion. The other players
(nonbasic columns N ) are divided to s teams (.N1; � � � ; Ns/). The first match
takes place in the facilities among the initial team and the first team (.B0; N1/),
producing a first winner team (suboptimal basis B1). Then, the second match
takes place among the first winner and the second team (.B1; N2/), and so on.
Once the sth match is finished, the last winner team (suboptimal basis Bs) is
declared as the ultimate champion (“optimal” basis) if it has the same record
(suboptimal value) as the first winner; otherwise, the next round of matches are
carried out by taking the last winner as a new initial team (setting B0 D Bs).

(ii) Algorithm 25.6.2:
After an interim winner team (B0) is selected, a challenging team (N1) is
determined in a tryout among all the other players (N ) under a criterion,
which will be relaxed whenever the member of the challenging team is less
than a threshold. Then a match takes place among the interim winner and the
challenging team (.B0; N1/), producing a new interim winner team (setting the
last suboptimal basis to B0), and repeat. If no player wins out in the tryout
under the criterion of the lowest standard (NzN � ��), the last winner team (the
end suboptimal basis) is declared as the ultimate team champion (“optimal”
basis).

The decomposition principle and the relaxation principle (Sect. 25.4) converge
in certain sense, as both may be embedded into partial pricing. By carefully
considering steps of the tableau simplex method, it is seen that Algorithms 25.6.1
and 25.6.2 are, in theory, respectively equivalent to the following two variants of
Algorithm 3.2.1, with relevant partial pricing, though they are entirely different from
the decomposition Algorithms both conceptually and computationally.

Algorithm 25.6.3 (Simplex algorithm: partial-pricing 1). Initial: a feasible sim-
plex tableau of form 3.1.1, associate with basis B . Given positive integer s � 2.
This algorithm solves the standard LP problem.

1. Partition nonbasis N to .N1; � � � ; Ns/.
2. Set t D 0 and set Nf1 D Nf .
3. Set t D t C 1.
4. Determine column index q 2 arg minj 2Nt Nzj .
5. Go to step 9 if Nzq < 0.
6. Go to step 3 if t < s.
7. Stop if Nf D Nf1 (optimality achieved).
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8. Go to step 1.
9. Stop if I D fi D 1; : : : ; m j Nai q > 0g D ; (lower unbounded).

10. Determine row index p 2 arg mini2I
Nbi = Naiq .

11. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary
transformations.

12. Go to step 4.

Note Nt at step 4 denotes the current nonbasis of the t th subprogram (25.42).

It turned out that the preceding algorithm with s D 2 is the same as Algo-
rithm 25.4.2 essentially.

Algorithm 25.6.4 (Simplex algorithm: partial-pricing 2). Given optimality tol-
erance 0 < � � 1, 0 < � < 1 and integer m0 � m. Initial: � > �; feasible simplex
tableau of form 3.1.1, associate with basis B and nonbasis N . This algorithm solves
the standard LP problem.

1. Determine N1 D fj 2 N j Nzj � ��g,
2. If jN1j < m0, set � D maxf�; ��g.
3. Go to step 6 if jN1j > 0.
4. Stop if � D � (optimality achieved).
5. Go to step 1.
6. Determine a column index q 2 arg minj 2N1 Nzj .
7. Go to step 10 if Nzq < 0.
8. Set N D An.B [ N1/.
9. Go to step 1.

10. Stop if I D fi D 1; : : : ; m j Nai q > 0g D ; (lower unbounded).
11. Determine row index p 2 arg mini2I

Nbi = Naiq .
12. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations.
13. Go to step 6.

Note N1 at steps 6 and 8 denotes a current nonbasis of the subprogram (25.40).

25.6.3 Practical Remarks

Many large-scale LP problems involve a large number of variables, compared with
the number of constraint equations (m � n). In this case, it should be favorable to
form subprograms involving columns fewer than m or less. Moreover, in case when
n � m � m, the problem can be converted by the “dual elimination” (Sect. 25.1.3)
to an .n�m/
n standard LP problem, so that a large-scale problem can be handled
by solving small programs with the decomposition algorithm.

The partition .N1; � � � ; Ns/ involved in Algorithm 25.6.1 is not unique. Of course,
we hope an optimal basis be contained in the first few sections, in particular, in N1

ideally; so is in Algorithm 25.6.2. How to achieve this is worth further investigating.
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It might be favorable to give the nonbasic indices an order by modifying the
pivoting-index (Sect. 2.5) by taking sparsity into account, so that sparser columns
are in front of the line to have priority to enter N1.

It is noted that both Algorithms 25.6.1 and 25.6.2 require an initial feasible basis
to get started. So a two-phase procedure is needed for solving general LP problems.
Any available Phase-I approach can be used to provide an initial feasible basis,
though it is preferable to handle some Phase-I (e.g., the conventional artificial-
variable) auxiliary program by the decomposition principle.

It should be pointed out that feasibility of the initial basis is not necessary. In
fact, it suffices to ensure that the initial subprogram is itself feasible.

The potential use of the decomposition principle would be of great importance.
In fact, Algorithms 25.6.1 and 25.6.2 could be generalized along the following two
lines:

(i) Instead of the simplex algorithm, other basis-based pivotal algorithms, such
as the dual simplex algorithm, the reduced simplex algorithm and etc, might
be used as a subalgorithm, perhaps with slight modifications. Even the face
algorithm, producing an optimal face, applies. But primal algorithms seem to
be amenable, compared with dual algorithms.

(ii) Some hard optimization problems could be handled if they have linear con-
straints and separable variables; e.g., large integer or mixed ILP problems
would be approximately solved by the Algorithms, supported by the branch-
bound or controlled-branch algorithm amenable to small such problems. Fur-
ther investigation is expected in this aspect.

Algorithms 25.6.1 and 25.6.2 are designed for solving standard LP problems,
where all nonbasic components of solutions are of default value 0, and hence may
be omitted in solution process. For other problems, such as the bounded-variable
problem, a basic feasible solution should be available initially. In each iteration,
the components, associated with the current subprogram, of the solution is updated
while the other components remain unchanged. For integer or mixed LP problems
(see Example 7.5.1), an initial feasible integer solution is certainly preferable, but
not necessary. A feasible solution to the associated relaxed LP problem can be taken
as an initial solution to get some variant of Algorithms 25.6.1 or 25.6.2 started,
though there is a need for existence of an optimal solution to the initial integer
subprogram. Of course, it is favorable to start from an optimal solution to the
associated relaxed LP problem.

Finally, it should be pointed out that a parallel decomposition can be realized by
some sort of imitation of parallel competition system.

25.6.4 Illustration on the Standard LP Problem

In this subsection, an instance is offered for illustration of the decomposition
principle on a standard problem.



25.6 Decomposition Principle 677

Example 25.6.1. Solve the following LP problem by Algorithm 25.6.1 with s D 2:

min f D �2x1 C x2 C 3x3 � 5x4 � 3x6 � 7x7 � 4x8 � 2x9;

s:t: � 3x2 � 2x3 C x4 C 4x7 C � 2x9 D 1;

3x1 C 4x3 C x5 C 2x7 C x8 C 5x9 D 2;

�x1 C x2 C x3 C x6 C 8x7 � 6x8 C 3x9 D 8;

xj � 0; j D 1; : : : ; 9:

Answer Initial feasible basis and nonbasis: B0 D f4; 5; 6g; N D f1; 2; 3; 7; 8; 9g.
Outer iteration 1:
Subiteration 1:

1. N1 D f1; 2; 3g; N2 D f7; 8; 9g.
2. t D 0.
3. t D 0 C 1 D 1.
4. Call Algorithm 3.5.1 to solve the first subprogram (B0 D f4; 5; 6g; N1 D

f1; 2; 3g)

min �2x1 C x2 C 3x3 � 5x4 � 3x6;

s:t: � 3x2 � 2x3 C x4 D 1;

3x1 C 4x3 C x5 D 2;

�x1 C x2 C x3 C x6 D 8;

xj � 0; j D 1; : : : ; 6:

6. The resulting optimal basis: B0 D f1; 2; 4g, associated with NxB0 D
.2=3; 26=3; 27/T (ignoring nonbasic components. the same below) with objective
value Nf1 D .�2; 1; �5/.2=3; 26=3; 27/T D �383=3.
t D 1 < s.

Subiteration 2:

3. t D 1 C 1 D 2.
4. Call Algorithm 3.5.1 to solve the second subprogram (B0 D f1; 2; 4g; N2 D

f7; 8; 9g)

min �2x1 C x2 � 5x4 � 7x7 � 4x8 � 2x9;

s:t: � 3x2 C x4 C 4x7 � 2x9 D 1;

3x1 C 2x7 C x8 C 5x9 D 2;

�x1 C x2 C 8x7 � 6x8 C 3x9 D 8;

xj � 0; j D 1; 2; 4; 7; 8; 9:

6. The resulting optima basis: B1 D f2; 4; 8g, associated with NxB1 D .20; 61; 2/T

with Nf2 D .1; �5; �4/.20; 61; 2/T D �293.
t D s
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7. Nf2 ¤ Nf1.
8. B0 D f2; 4; 8g; N D f1; 3; 5; 6; 7; 9g.

Outer iteration 2: Set B0 D B1 D f2; 4; 8g.
Subiteration 1:

1. N1 D f1; 3; 5g; N2 D f6; 7; 9g.
2. t D 0.
3. t D 0 C 1 D 1.
4. Call Algorithm 3.5.1 to solve the first subprogram

min �2x1 C x2 C 3x3 � 5x4 � 4x8;

s:t: � 3x2 � 2x3 C x4 D 1;

3x1 C 4x3 C x5 C x8 D 2;

�x1 C x2 C x3 � 6x8 D 8;

xj � 0; j D 1; 2; 3; 4; 5; 8:

6. The resulting suboptimal basis is B0 D f2; 4; 8g, associated with NxB0 D
.20; 61; 2/T with Nf1 D �293.
t < s.

Subiteration 2:

3. t D 1 C 1 D 2.
4. Call Algorithm 3.5.1 to solve the second subprogram (B0 D f2; 4; 8g; N2 D

f6; 7; 9g)

min x2 � 5x4 � 3x6 � 7x7 � 4x8 � 2x9;

s:t: �3x2 C x4 C 4x7 � 2x9 D 1;

2x7 C x8 C 5x9 D 2;

x2 C x6 C 8x7 � 6x8 C 3x9 D 8;

xj � 0; j D 2; 4; 6; 7; 8; 9:

6. The resulting suboptimal basis is B1 D f2; 4; 8g, associated with NxB1 D
.20; 61; 2/T with Nf2 D .1; �5; �4/.20; 61; 2/T D �293.
t D s

7. Nf2 D Nf1. The optimal solution and optimal value:

Nx D .0; 20; 0; 61; 0; 0; 0; 2; 0/T ; Nf D �293;

which can be verified by solving the original problem as a whole by the simplex
algorithm.
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25.6.5 Illustration on the Bounded-Variable LP Problem

Algorithm 25.6.1 can be modified to solve general LP problems, e.g., the bounded-
variable problem, if the simplex algorithm called from step 4 is replace by a
bounded-variable problem solver.

Example 25.6.2. Solve the following bounded-variable problem by a modified
Algorithm 25.6.1 with s D 2, using Algorithm 7.4.1 as the subalgorithm:

min f D 2x1 � x2 C 3x3 � 6x4;

s:t: �2x1 C 3x2 � 4x3 C 2x4 C x5 D 14;

�3x1 C 4x2 � 5x3 C 6x4 C x6 D 16;

x1 � 2x2 C 2x3 � 7x4 C x7 D �15;

�15 � x1 � 30; �12 � x2 � 20; �17 � x3 � 10;

�8 � x4 � 15; �200 � x5 � 26; �200 � x6 � 34;

0 � x7 � 200:

Answer Initial feasible basis and nonbasis: B0 D f5; 6; 7g; N D f1; 2; 3; 4g.
Outer iteration 1:
Subiteration 1:

1. N1 D f1; 2g; N2 D f3; 4g.
2. t D 0.
3. t D 0 C 1 D 1.
4. Construct the first subalgorithm with B0 D f5; 6; 7g; N1 D f1; 2g by setting

NxN2 D .�17; 15/T , where the right-hand side is changed to

b � N2 NxN2 D
0
@ 14

16

�15

1
A �

0
@�4 2

�5 6

2 �7

1
A��17

15

�
D
0
@ �84

�159

124

1
A,

that is

min 2x1 � x2;

s:t: �2x1 C 3x2 C x5 D �84;

�3x1 C 4x2 C x6 D �159;

x1 � 2x2 C x7 D 124;

�15 � x1 � 30; �12 � x2 � 20; �200 � x5 � 26;

�200 � x6 � 34; 0 � x7 � 200:

Call Algorithm 7.4.1 to solve the preceding program.
6. The resulting suboptimal basis is B0 D f2; 5; 7g, associated with the basic

solution and objective value

Nx D .�15; �1; �17; 15 � 111; �200; 137/T ;

Nf1 D .2; �1; 3; �6; 0; 0; 0/ Nx D �170

t D 1 < s.
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Subiteration 2:

3. t D 1 C 1 D 2.
4. Construct the second subalgorithm with B0 D f2; 5; 7g; N2 D f3; 4g by setting

. Nx1; Nx6/ D .�15; �200/, where the right-hand side is changed to

b � N2 NxN2 D
0
@ 14

16

�15

1
A �

0
@�2 0

�3 1

1 0

1
A� �15

�200

�
D
0
@�16

171

0

1
A,

yielding

min �x2 C 3x3 � 6x4;

s:t: 3x2 � 4x3 C 2x4 C x5 D �16;

4x2 � 5x3 C 6x4 D 171;

�2x2 C 2x3 � 7x4 C x7 D 0;

�12 � x2 � 20; �17 � x3 � 10;

�8 � x4 � 15; �200 � x5 � 26; 0 � x7 � 200:

Call Algorithm 7.4.1 to solve the preceding program.
6. The resulting suboptimal basis B1 D f2; 5; 7g is equal to B0.

t D s.
7. The optimal solution and optimal value are therefore:

Nx D .�15; �1; �17; 15 � 111; �200; 137/T ;

Nf2 D .2; �1; 3; �6; 0; 0; 0/ Nx D �170;

which can be verified by solving the original problem as a whole by Algorithm 7.4.1.

25.6.6 Illustration on the ILP Problem

It is possible to handle large-scale ILP problems by some variant of Algo-
rithm 25.6.1 if there is an optimal solution to the initial ILP subprogram. In general,
however, this approach may not produce an optimal solution to the ILP problem, but
an approximate one only. Starting from such a point, however, methods presented
in Chap. 10, in particular the realization presented in the next section, is applicable
for reaching an exact optimal solution. Besides, it is straightforward to extend the
approach to solving large-scale mixed LP problems.

To start-up, one would solve the associated relaxed LP problem first, and then to
construct an initial subprogram, based on the resulting optimal basis, if any. But we
will do otherwise with the following instance.

Example 25.6.3. Solve the following ILP problem by a modified Algorithm 25.6.1
with s D 2, supported by some ILP solver:
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min f D x1 � 3x2 C 2x3 � 5x4 C x5;

s:t: 2x1 C x2 � x3 C 3x4 � 2x5 C x6 D 7;

4x1 � 3x2 � 5x4 � 4x5 C x7 D 2;

�3x1 C 2x2 C x3 C 2x4 C x5 C x8 D 8;

integer xj � 0; j D 1; � � � ; 8:

Answer Initial feasible basis and nonbasis: B0 D f6; 7; 8g; N D f1; 2; 3; 4; 5g.
Outer iteration 1:
Subiteration 1:

1. N1 D f1; 2g; N2 D f3; 4; 5g.
2. t D 0.
3. t D 0 C 1 D 1.
4. Solve the first subalgorithm with B0 D f6; 7; 8g; N1 D f1; 2g, formed by setting

NxN2 D .0; 0; 0/, i.e.,

min x1 � 3x2;

s:t: 2x1 C x2 C x6 D 7;

4x1 � 3x2 C x7 D 2;

�3x1 C 2x2 C x8 D 8;

integer xj � 0; j D 1; 2; 6; 7; 8:

6. The resulting suboptimal basis is B0 D f1; 2; 7g, associated with the solution and
objective value

Nx.1/ D .1; 5; 0; 0; 0; 0; 13; 1/T ; Nf1 D .1; �3; 0; 0; 0; 0; 0; 0/ Nx.1/ D �14

t D 1 < s.

Subiteration 2:

3. t D 1 C 1 D 2.
4. Construct the second subalgorithm with B0 D f1; 2; 7g; N2 D f3; 4; 5g by

setting NxN1 D .0; 1/T , where the right-hand side is changed to

b � N1 NxN1 D
0
@7

2

8

1
A �

0
@1 0

0 0

0 1

1
A�0

1

�
D
0
@7

2

7

1
A,

yielding

min x1 � 3x2 C 2x3 � 5x4 C x5;

s:t: 2x1 C x2 � x3 C 3x4 � 2x5 D 7;

4x1 � 3x2 � 5x4 � 4x5 C x7 D 2;

�3x1 C 2x2 C x3 C 2x4 C x5 D 7;

integer xj � 0; j D 1; 2; 3; 4; 5; 7:

Solve the preceding ILP subprogram.
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6. The resulting suboptimal basis is B1 D f4; 5; 7g.
7. The optimal solution and optimal value of the subprogram are

Nx.2/ D .0; 0; 0; 3; 1; 0; 21; 1/T ; Nf2 D .1; �3; 2; �5; 1; 0; 0; 0/ Nx.2/ D �14

t D s.
7. Nf2 D Nf1 D �14. Nx.1/ or Nx.2/ would be an acceptable solution to the original ILP

problem.

The exact optimal solution to the original problem are

x� D .3; 0; 0; 5; 7; 0; 43; 0/T f � D �15:

25.7 ILP: Based on the Reduced Simplex Framework

As was shown, the ILP methods may be implemented via the dual simplex
framework (Chap. 10). At first, each method solves the LP relaxation of the ILP
problem by the simplex method. If the solution is noninteger, it handles a sequence
of LP relaxations by the dual simplex method. Since each LP relaxation yields from
its predecessor by adding a cut, the number of constraints increases in solution
process, as is unfavorable for solving large-scale ILP problems.

The drawback can be purged if the branch-and-bound method is realized via
the generalized simplex framework. But the latter is not very consistent with the
controlled-branch method (Sect. 10.4) which allows the actualization of adding an
integer cut by simply changing the associated bound. Fortunately, the generalized
reduced simplex framework turns out to be desirable for this purpose.

Consider the variable-bounded ILP problem

min xnC1;

s:t: A

�
x

xnC1

�
D b; l � integer x � u;

(25.47)

which yields from the variable-bounded LP problem (19.1) by adding the integrality
requirement.

To grow branches of its enumerate tree, the controlled-branch method carries out
a depth-oriented step if a valid point (see Sect. 10.4) is found noninteger, whereas
takes on a breadth-oriented step if absence of such a solution is, with current branch.
To do so, we pursue primal feasibility with fixed NxnC1 D f C (while maintaining
dual feasibility) via the generalized dual reduced simplex methodology (Sect. 19.4).

Let Nx be the current solution with NxnC1 D f C, where f C is a suspected-optimal
value. Denote the associated dual feasible reduced tableau by (16.6). If the “bound
violation” defined by (7.30), i.e.,

�i D
8<
:

lji � Nxji ; if Nxji < lji ;

uji � Nxji ; if Nxji > uji ;

0; if lji � Nxji � uji ;

i D 1; � � � ; m C 1; (25.48)



25.7 ILP: Based on the Reduced Simplex Framework 683

are all zero, then Nx is a valid point to the current branch. Note however that a branch
is usually generated from the solved predecessor by adding a valid cut, and therefore
only a single constraint is violated at first.

To handle a branch, we describe the following subalgorithm in tableau form,
which is yielded by a generalized modification of Algorithm 16.5.1.

Algorithm 25.7.1 (ILP subalgorithm: tableau form). Initial: Suspected-optimal
value f C and NxnC1 D f C. An improved reduced tableau of form (16.6), with basic
solution . Nx; NxnC1/. This procedure pursues a valid point of the branch.

1. Select row index

p 2 arg maxfj�i j j i D 1; � � � ; m C 1g;
where �i is defined by (25.48).

2. Return if �p D 0.
3. Go to step 8 if

J D fj 2 � j sign.�p/ Nap j < 0g [ fj 2 … j sign.�p/ Nap j > 0g D ;:

where � and ˘ are defined by (7.19)
4. Determine column index q 2 arg maxj 2J j Nap j j.
5. Convert Nap q to 1, and eliminate the other nonzeros in the column by elementary

transformations (without touching the NxB column except for its pth component
replaced by the value of Nxq).

6. Update NxB D NxB � �p Najp ; Nxjp D Nxjp C �p .
7. Go to step 1.
8. Compute ˛ D ��p= Nap; nC1.
9. Return if ˛ < 0.

10. If ˛ D 0, set ˛ D 1; otherwise, set ˛ D p˛q.
11. Add �˛ times of xnC1 column to NxB column, and set NxnC1 D NxnC1 C ˛.
12. Return.

The preceding Subalgorithm has the following three exits:

Step 2: The end Nx is a valid point. If it is integer, an optimal solution to the
ILP problem is reached (corresponding to the so-called “integer basis”). If it is
noninteger, execute the Subalgorithm on a deeper branch, yielded from adding
an integer cut.
Step 9: The branch is infeasible, and so fathomed.
Step 12: There is no valid point to the branch, and stalled. The end Nx is dual
feasible with integer objective value NxnC1 > f C.

If the Subalgorithm returns from step 9 or 12, handle the nearest pending branch.

Assume that an integer valid point is not attained in the process eventually. If
all the branches are infeasible, so is the original ILP problem. In the other case,
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determine the solution associated with the smallest value, say NxnC1, among end
objective values of the stalled branches. If it is integer, the solution is optimal to
the original ILP problem; otherwise, add the objective cut with f C D NxnC1 to the
branch, and execute the Subalgorithm, and so on, until an optimal solution to the
original ILP problem is found, or infeasibility is detected.

The following is an illustrative instance:

Example 25.7.1. Solve the following ILP problem:

min x6 D �5x1 C 8x2 � x3;

s:t: 4x1 � 5x2 C x3 C x4 D 5;

�3x1 C 7x2 � 2x3 C x5 D 2;

0 � integer xj � 6; j D 1; � � � ; 5:

(25.49)

Answer

(1) Initial tableau:

x1 x2 x3 x4 x5 x6 NxB

4 �5 1 1 5

�3 7 �2 1 2

�5* 8 �1 �1 0

u 6 6 6 6 6 C1
Nx 0 0 0 5 2 0

l 0 0 0 0 0 �1

Iteration 1:
Convert the preceding to reduced simplex tableau by pivoting on the entry in
row 3 and column 1, and call generalized reduced simplex Algorithm 19.1.1,
yielding an optimal reduced simplex tableau to the LP relaxation:

x1 x2 x3 x4 x5 x6 NxB

7=5 1=5 1 �4=5 0

11=5 �7=5 1 3=5 23=4

1 �8=5 1=5 1=5 5=4

u 6 6 6 6 6 C1
Nx 5=4 0 0 0 23=4 �25=4

l 0 0 0 0 0 �1

with p D 1 and NxnC1 D �6 1
4
.

(2) Change the lower bound on the objective variable x6 to the suspected-
optimal value �6 in the tableau. Increase the objective value to �6 by giving
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increment 1=4, and accordingly update the solution by NxB D .023=45=4/T �
.1=4/.�4=53=51=5/T D .1=5; 28=5; 6=5/T .

x1 x2 x3 x4 x5 x6 NxB

7=5 1=5 1 �4=5 1=5

11=5 �7=5 1 3=5 28=5

1 �8=5* 1=5 1=5 6=5

u 6 6 6 6 6 C1
Nx 6=5 0 0 1=5 28=5 �6

l 0 0 0 0 0 Œ�6�

Call Subalgorithm 25.7.1. It returns from step 2 with a feasible tableau with the
objective value Nx6 D �6.

(3) As 6=5c1 > 1=5c4 D 28=5c5 D 0, select x1 as the cutting variable (1 < Nx1 D
6=5 < 2). Add integer cut x1 � 2 by changing the lower bound on x1 to 2

(while let the subprogram associated with x1 � 1 pend).
Call Subalgorithm 25.7.1.

Iteration 2:

1. p D 3; �3 D 2 � 6=5 D 4=5.
3. J D f2g.
4. q D 2.
5. Multiply row 3 by �5=8, and then add �7=5; �11=5 times of row 3 to rows 1

and 2, respectively (without touching the NxB column but its third component
is replaced by value, 0, of Nx2).

6. NxB D .1=5; 28=5; 0/T � .4=5/.7=8; 11=8; �5=8/T D .�1=2; 9=2; 1=2/T .

x1 x2 x3 x4 x5 x6 NxB

7=8 3=8 1 �5=8 �1=2

11=8 �6=8 1 7=8 9=2

�5=8 1 �1=8 �1=8 1=2

u 6 6 6 6 6 C1
Nx 2 1=2 0 �1=2 6=2 �6

l Œ2� 0 0 0 0 Œ�6�

Iteration 3:

1: p D 1; �1 D 1=2; jp D 4:

3: J D ;:

8: ˛ D �.1=2/=.�5=8/ D 4=5:

10: ˛ D 1:

11: NxB D .�1=2; 9=2; 1=2/T � .�5=8; 7=8; �1=8/T D .1=8; 29=8; 5=8/T I
NxnC1 D �6 C 1 D �5:

Returned from step 12. The ILP subprogram is stalled.
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(4) Handle the pending ILP subprogram with adding cut x1 � 1 to the end tableau
of (2). Change the upper bound on x1 to 1.
Call Subalgorithm 25.7.1.

Iteration 4:

1. p D 3; �3 D 1 � 6=5 D �1=5.
3. J D f3g.
4. q D 3.

x1 x2 x3 x4 x5 f NxB

7=5 1=5 1 �4=5 1=5

11=5 �7=5 1 3=5 28=5

1 �8=5 1=5* 1=5 6=5

u Œ1� 6 6 6 6 C1
Nx 6=5 0 0 1=5 28=5 �6

l 0 0 0 0 0 Œ�6�

5. Multiply row 3 by 5, and then add �1=5; 7=5 times of row 3 to rows 1

and 2, respectively (without touching the NxB column but is third component
replaced by the value, 0, of Nx3. (6) NxB D .1=528=50/T C.1=5/.�1; 7; 5/T D
.0; 7; 1/T .

x1 x2 x3 x4 x5 x6 NxB

�1 3 1 �1 0

7 �9 1 2 7

5 �8 1 1 1

u Œ1� 6 6 6 6 C1
Nx 1 0 1 0 7 �6

l 0 0 0 0 0 Œ�6�

Iteration 5:

1. p D 2; �2 D 6 � 7 D �1; jp D 5.
3. J D ;.
8. ˛ D 1=2.

10. ˛ D 1.
11. NxB D .0; 7; 1/T � .�1; 2; 1/T D .1; 5; 0/T ; NxnC1 D �6 C 1 D �5.

Returned from step 12. The ILP subprogram is stalled.
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x1 x2 x3 x4 x5 x6 NxB

�1 3 1 �1 1

7 �9 1 2 5

5 �8 1 1 0

u Œ1� 6 6 6 6 C1
Nx 1 0 0 1 5 �5

l 0 0 0 0 0 Œ�5�

It is seen that (3) and (4) give the same lower objective bound �5. We finally grasp
the end solution of (4) since it is feasible integer, and hence optimal to the original
ILP problem, i.e.,

x� D .1; 0; 0; 1; 5/T ; f � D �5:

On the other hand, more iterations would be required if a bad suspected-optimal
value is used. See that following instance with binary (0 or 1) variables.

Example 25.7.2. Solve the following 0-1 LP problem:

min f D 4x1 C 2x2 C 3x3 C 3x4 C 2x5;

s:t: 3x1 � 4x2 � 7x3 � 3x4 � �2;

x1 C 2x2 � x3 � x4 � x5 � 1;

� 3x2 C 11x3 � 3x4 � 6x5 � �1;

xj 2 f0; 1g; j D 1; � � � ; 5:

Answer Replacing xj 2 f0; 1g by 0 � integer xj � 1, the 0-1 problem is
converted to an ILP problem, to which the controlled-branch method applies.

Solve its LP relaxation. Introduce slack variables xj ; j D 6; 7; 8.
Initial tableau: Nx D .0; 1; 0; 0; 1; 2; 0; 8/T ; Nx9 D 4

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

3 �4 �7 �3 1 2

1 2 �1 �1 �1 1 0

�3 11 �3 �6 1 8

4 2* 3 3 2 �1

u 1 1 1 1 1 C1 C1 C1 C1
Nx 0 1 0 0 1 2 0 8 4

l 0 0 0 0 0 0 0 0 �1

Transfer the tableau to reduced one by multiplying row 4 by 1=2, and adding
4; �2; 3 times of row 4 to rows 1,2,3, respectively (without touching the last
column–only its fourth component changed accordingly).
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x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

11 �1 3 4* 1 �2 2

�3 �4 �4 �3 1 1 0

6 31=2 3=2 �3 1 �3=2 8

2 1 3=2 3=2 1 �1=2 1

u 1 1 1 1 1 C1 C1 C1 C1
Nx 0 1 0 0 1 2 0 8 4

l 0 0 0 0 0 0 0 0 �1

(1) Call generalized reduced simplex Algorithm 19.1.1.

Iteration 1:

1: ˛ D 1; p D 1:

2: NxB D .2; 0; 8; 1/T C 1 
 .�2; 1; �3=2; �1=2/ D .0; 1; 13=2; 1=2/T ;

Nx9 D 4 � 1 D 3:

4: q D 5

5. Multiplying row 1 by 1=4, and adding 3; 3; �1 times of row 1 to rows 2,3,4,
respectively (without touching the NxB column but its first component replaced by
the value, 1, of Nx5).

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

11=4 �1=4* 3=4 1 1=4 �1=2 1

21=4 �19=4 �7=4 3=4 1 �1=2 1

57=4 59=4 15=4 3=4 1 �3 13=2

�3=4 1 7=4 3=4 �1=4 0 1=2

u 1 1 1 1 1 C1 C1 C1 C1
Nx 0 1=2 0 0 1 0 1 13=2 3

l 0 0 0 0 0 0 0 0 �1

Iteration 2:

1: ˛ D 2; p D 1:

2: NxB D .1; 1; 13=2; 1=2/T C 2 	 .�1=2; �1=2; �3; 0/ D .0; 0; 1=2; 1=2/T ;

Nx9 D 3 � 2 D 1:

4: q D 3:

5. Multiplying row 1 by �4, and adding 19=4; �59=4; �7=4 times of row 1 to
rows 2,3,4, respectively (without touching the NxB column but its first component
replaced by the same value, 0, of Nx3).

It is clear that the optimal value of the LP relaxation is strictly greater than 0.
Therefore, the current solution is valid with suspected-optimal value, Nx9 D 1. So,
add objective cut x9 � f C D 1. Change the lower bound on the objective variable
x9 to the suspected-optimal value 1 in the tableau.
(2) Take x2 as the cutting variable. Add cut x2 � 1 and let x2 � 0 pend, as the
gradient of the former forms the obtuse angle with the negative objective gradient.
Change the lower bound on x2 to 1 in the tableau.
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x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

�11 1 �3 �4 �1 2 0

�47 �16 �19 �4 1 9 0

353=2 48 59 31=2 1 �65=2 1=2

37=2 1 6 7 3=2 �7=2 1=2

u 1 1 1 1 1 C1 C1 C1 C1
Nx 0 1=2 0 0 0 0 0 1=2 1

l 0 Œ1� 0 0 0 0 0 0 Œ1�

Call Subalgorithm 25.7.1 .f C D 1; x2 � 1/.

Iteration 3:

1: p D 4; �4 D 1 � 1=2 D 1=2; jp D 2:

3: J D ;:

8: ˛ D �.1=2/=.�7=2/ D 1=7 > 0:

10: ˛ D p1=7q D 1:

11: NxB D .0; 0; 1=2; 1=2/T � 1 
 .2; 9; �65=2; �7=2/T D .�2; �9; 33; 4/T

Nx9 D 1 C 1 D 2 > f C D 1:

This branch is stalled.

(3) Handle the pending branch, created by adding x2 � 0. Change the upper bound
on x2 to 0 in the tableau.

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

�11 1 �3 �4 �1 2 0

�47 �16 �19 �4 1 9 0

353=2 48 59 31=2 1 �65=2 1=2

37=2* 1 6 7 3=2 �7=2 1=2

u 1 Œ0� 1 1 1 C1 C1 C1 C1
Nx 0 1=2 0 0 0 0 0 1=2 1

l 0 0 0 0 0 0 0 0 Œ1�

Call Subalgorithm 25.7.1 .f C D 1; x2 � 0/.

Iteration 4:

1. p D 4; �4 D 0 � 1=2 D �1=2; jp D 2.
3. J D f1; 4; 5; 6g.
4. q D 1; maxfj37=2j; j6j; j7j; j3=2jg D 37=2.
5. Multiply row 4 by 2=37, and then add 11; 47; �353=2 times of row 4 to

rows 1; 2; 3, respectively (without touching the NxB column but its fourth
component is replaced by value, 0, of Nx1).

6. NxB D .0; 0; 1=2; 0/T C .1=2/.22=37; 94=37; �353=37; 2=37/T

D .11=37; 47=37; �158=37; 1=37/T

Nx2 D 1=2 C .�1=2/ D 0.
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x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

22=37 1 21=37 6=37 �4=37 �3=37 11=37

94=37 �28=37 �45=37 �7=37 1 4=37 47=37

�353=37 �342=37* �288=37 44=37 1 33=37 �158=37

1 2=37 12=37 14=37 3=37 �7=37 1=37

u 1 Œ0� 1 1 1 C1 C1 C1 C1
Nx 1=37 0 11=37 0 0 0 47=37 �158=37 1

l 0 0 0 0 0 0 0 0 Œ1�

Iteration 5:

1. p D 3; �3 D 0 � .�158=37/ D 158=37; jp D 8.
3. J D f4; 5g.
4. q D 4; maxfj � 342=37j; j6j; j � 288=37jg D 342=37.
5. Multiply row 3 by �37=342, and then add �21=37; 28=37; �12=37 times of

row 3 to rows 1; 2; 4, respectively (without touching the NxB column but its
second component is replaced by value, 0, of Nx4).

6. NxB D .11=37; 47=37; 0; 1=37/T � .158=37/.7=114; �14=171;

�37=342; 2=57/T D .2=57; 277=171; 79=171; �7=57/T;

Nx8 D �158=37 C 158=37 D 0.

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

1=114 1 �6=19 �2=57 7=114 �1=38 2=57

568=171 �11=19 �49=171 1 �14=171 2=57 277=171

353=342 1 16=19 �22=171 �37=342 �11=114 79=171

1 �16=57 2=19 7=57 2=57 �3=19 �7=57

u 1 Œ0� 1 1 1 C1 C1 C1 C1
Nx �7=57 0 2=57 79=171 0 0 277=171 0 1

l 0 0 0 0 0 0 0 0 Œ1�

Iteration 6:

1. p D 4; �4 D 0 � .�7=57/ D 7=57; jp D 1.
3. J D ;.
8. ˛ D �.7=57/=.�3=19/ D 7=9 > 0.

10. ˛ D p7=9q D 1.
11. NxB D.2=57;277=171;79=171; � 7=57/T �1 
 .�1=38; 2=57; �11=

114; �3=19/T D .7=114; 271=171; 191=342; 2=57/T;

Nx9 D 1 C 1 D 2 > f C D 1.

The branch is stalled.
Comparing the end objective values reached in branches (2) and (3) gives a new
suspected-optimal value f C D 2.
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(4) We continue to handle (2) by adding objective cut x9 � f C D 2 first. Change
the lower bound on x9 to 2 and the lower bound on x2 to 1.

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

�11 1 �3 �4 �1 2 �2

�47 �16 �19 �4 1 9 �9

353=2 48 59 31=2 1 �65=2 33

37=2* 1 6 7 3=2 �7=2 4

u 1 1 1 1 1 C1 C1 C1 C1
Nx 0 4 �2 0 0 0 �9 33 2

l 0 Œ1� 0 0 0 0 0 0 Œ2�

Call Subalgorithm 25.7.1 .f C D 2; x2 � 1/.

Iteration 7:

1. p D 4; �3 D 1 � 4 D �3; jp D 2.
3. J D f1; 4; 5; 6g. (4) q D 1; maxfj37=2j; j6j; j7j; j3=2jg D 37=2.
5. Multiply row 4 by 2=37, and then add 11; 47; �353=2 times of row 4 to

rows 1; 2; 3 respectively (without touching the NxB column but its second
component is replaced by value, 0, of Nx1).

6. NxB D .�2; �9; 33; 0/T C 3.22=37; 94=37; �353=37; 2=37/T

D .�8=37; �51=37; 162=37; 6=37/T; Nx2 D 4 C .�3/ D 1.

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

22=37 1 21=37 6=37 �4=37 �3=37 �8=37

94=37 �28=37 �45=37* �7=37 1 4=37 �51=37

�353=37 �342=37 �288=37 44=37 1 33=37 162=37

1 2=37 12=37 14=37 3=37 �7=37 6=37

u 1 1 1 1 1 C1 C1 C1 C1
Nx 6=37 1 �8=37 0 0 0 �51=37 162=37 2

l 0 Œ1� 0 0 0 0 0 0 Œ2�

Iteration 8:

1. p D 2; maxfj0 � .�8=37/j; j0 � .�51=37/jg D 51=37; �2 D 51=37;

jp D 7.
3. J D f4; 5; 6g.
4. q D 5; maxfj � 28=37j; j � 45=37j; j � 7=37jg D 45=37.
5. Multiply row 2 by �37=45, and then add �6=37; 288=37; �14=37 times of

row 2 to rows 1; 3; 4, respectively (without touching the NxB column but its
second component is replaced by value, 0, of Nx5).

6. NxB D .�8=37; 0; 162=37; 6=37/T�.51=37/.2=15; �37=45; �32=5; 14=45/T

D .�2=5; 17=15; 66=5; �4=15/T; Nx7 D 0.
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x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

14=15 1 7=15 �2=15* 2=15 �1=15 �2=5

�94=45 28=45 1 7=45 �37=45 �4=45 17=15

�129=5 �22=5 12=5 �32=5 1 1=5 66=5

1 38=45 4=45 1=45 14=45 �7=45 �4=15

u 1 1 1 1 1 C1 C1 C1 C1
Nx �4=15 1 �2=5 0 17=15 0 0 66=5 2

l 0 Œ1� 0 0 0 0 0 0 Œ2�

Iteration 9:

1. p D 1; maxfj0� .�2=5/j; j1� .17=15/j; j0� .�4=15/jg D 2=5; �1 D 2=5;

jp D 3.
3. J D f6g. (4) q D 6.
5. Multiply row 1 by �15=2, and then add �7=45; �12=5; �1=45 times of row

1 to rows 2; 3; 4, respectively (without touching the NxB column but its first
component is replaced by value, 0, of Nx6).

6. NxB D .0; 17=15; 66=5; �4=15/T � .2=5/.�15=2; 7=6; 18; 1=6/T

D .3; 2=3; 6; �1=3/T ; Nx3 D 0.

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

�7 �15=2 �7=2 1 �1 1=2 3

�1 7=6 7=6 1 �2=3 �1=6 2=3

�9 18 4 �4 1 �1 6

1 1 1=6 1=6 1=3 �1=6 �1=3

u 1 1 1 1 1 C1 C1 C1 C1
Nx �1=3 1 0 0 2=3 3 0 6 2

l 0 Œ1� 0 0 0 0 0 0 Œ2�

Iteration 10:

1: p D 4; �4 D 1=3; jp D 1:

3: J D ;:

8: ˛ D �.1=3/=.�1=6/ D 2 > 0:

10: ˛ D 2:

11: NxB D .3; 2=3; 6; �1=3/T � 2.1=2; �1=6; �1; �1=6/T D .2; 1; 8; 0/T ;

Nx9 D 2 C 2 D 4 > f C D 2:

This branch is stalled.
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(5) We continue to handle (3) by adding objective cut x9 � f C D 2. Change the
lower bound on x9 to 2 and the upper bound on x2 to 0 in the tableau of (3).

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

1=114 1 �6=19 �2=57 7=114 �1=38 7=114

568=171 �11=19 �49=171 1 �14=171 2=57 271=171

353=342 1 16=19 �22=171 �37=342 �11=114 191=342

1 �16=57 2=19 7=57 2=57 �3=19 2=57

u 1 Œ0� 1 1 1 C1 C1 C1 C1
Nx 2=57 0 7=114 191=342 0 0 271=171 0 2

l 0 0 0 0 0 0 0 0 Œ2�

Call Subalgorithm 25.7.1 .f C D 2; x2 � 0/.

Iteration 11:

1. �i D 0; i D 1; 2; 3; 4. Returning from step (2) gives a valid point:
j D arg maxf4.2=57/; 3.7=114/; 3.191=342/g D 3.
Add cut x4 � 1 and let the program with x4 � 0 pend. Change the lower
bound on x4 to 1 in the tableau.

Call Subalgorithm 25.7.1 .f C D 2; x2 � 0; x4 � 1/.

Iteration 12:

1. p D 3; �3 D 151=342; jp D 4.
3. J D f6; 8g. (4) q D 6; maxfj � 22=171j; j � 37=342jg D 22=171.
5. Multiply row 3 by �171=22, and then add 2=57; 49=171; �7=57 times of row

3 to rows 1; 2; 4, respectively (without touching the NxB column but its third
component is replaced by value, 0, of Nx6).

6. NxB D .7=114; 271=171; 0; 2=57/T � .151=342/.�3=11; �49=22; �171=22;

21=22/T D .2=11; 113=44; 151=44; �17=44/T ; Nx4 D 1.

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

�3=11 1 �3=11 �6=11 1=11 0 2=11

45=44 �49=22 �27=11 1 7=44 1=4 113=44

�353=44 �171=22 �72=11 1 37=44 3=4 151=44

1 31=44 21=22 10=11 �3=44* �1=4 �17=44

u 1 Œ0� 1 1 1 C1 C1 C1 C1
Nx �17=44 0 2=11 1 0 151=44 113=44 0 2

l 0 0 0 Œ1� 0 0 0 0 Œ2�

Iteration 13:

1. p D 4; �4 D 17=44; jp D 1.
3. J D f8g.
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4. q D 8.
5. Multiply row 4 by �44=3, and then add �1=11; �7=44; �37=44 times of row

4 to rows (1; 2; 3, respectively without touching the NxB column but its fourth
component is replaced by value, 0, of Nx8).

6. NxB D .2=11; 113=44; 151=44; 0/T � .17=44/.4=3; 7=3; 37=3; �44=3/T

D .�1=3; 5=3; �4=3; 17=3/T ; Nx1 D 0.

x1 x2 x3 x4 x5 x6 x7 x8 x9.f / NxB

4=3 2=3 1 1 2=3 �1=3 �1=3

7=3 8=3 0 �1=3 1 �1=3 5=3

37=3 2=3 4 14=3 1 �7=3 �4=3

�44=3 �31=3 �14 �40=3 1 11=3 17=3

u 1 Œ0� 1 1 1 C1 C1 C1 C1
Nx 0 0 �1=3 1 0 �4=3 5=3 17=3 2

l 0 0 0 Œ1� 0 0 0 0 Œ2�

Iteration 14:

1: p D 3; �3 D 4=3; jp D 6:

3: J D ;:

8: ˛ D �.4=3/=.�7=3/ D 4=7 > 0:

10: ˛ D 1:

11: NxB D .�1=3; 5=3; �4=3; 17=3/T � 1 
 .�1=3; �1=3; �7=3; 11=3/T

D .0; 2; 1; 2/T ; Nx9 D 2 C 1 D 3 > f C D 2:

This branch is stalled.
(6) The end objective value 3 reached by branch (5) is less than value 4 by branch
(4). So f C D 3 is a new suspected-optimal value. Continue to handle (5) by adding
objective cut x9 � f C D 3. Change the lower bound on x9 to 3.
Call Subalgorithm 25.7.1.

1. �j D 0; j D 1; 2; 3; 4. Since it is integer, the valid point is optimal to the
original 0-1 problem:

x� D .0; 0; 0; 1; 0/T ; f � D 3:

In contrast, it is simpler to solve the 0-1 problem by the following “implicit
enumeration” approach. First, Nx D .0; 0; 0; 0; 0/T is ruled out to be optimal
because it is infeasible. Then, compare objective values associated with solutions
having only a single 1-valued component, i.e., the coefficients, 4; 2; 3; 3; 2, of the
objective function. Corresponding to value minf4; 2; 3; 3; 2g D 2, both solutions
.0; 1; 0; 0; 0/T and .0; 0; 0; 0; 1/T are ignored since they are infeasible. So, turn to
.0; 0; 1; 0; 0/T and .0; 0; 0; 1; 0/T , corresponding to the second minimum 3. It is then
clear that the later is the only optimal solution to the 0-1 problem.
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A good initial suspected-optimal value f C is important to the controlled-branch
method; it is even desirable if the true optimal value of the ILP problem is available.
If the initial f C had been set to 2 or 3 in the preceding Example, e.g., there would
have been a short cut to the solution. This is of significance, as for certain type of
ILP problems, like 0-1 problem, it would be possible to determine a tight integral
lower bound on the optimal value in priori.



Appendix A
MPS File

MPS (Mathematical Programming System) is a kind of data file format, used to
represent LP problems and mixed ILP problems. It is widely applied in academic as
well as commercial optimization codes.

There exists several expansions of MPS format. This appendix presents the MPS
format based on that used in MINOS (Murtagh and Saunders 1998). Nevertheless,
we are only concerned here with the part of liner programming only, though MINOS
is also used to handle nonlinear programming problems.

In the MPS format, data of the problem to be solved have to appear in specific
columns. A MPS file is sectioned under several items as follows:

NAME
ROWS
.
COLUMNS
.
RHS
.
RANGES (optional)
.
BOUNDS (optional)
.
ENDDATA

Each item must start from the first column. Symbols “.” under an item are of the
following form:

Column 2–3 5–12 15–22 25–36 40–47 50–61
Content Key Name0 Name1 Value1 Name2 Value2

where note rows can be inserted, with symbol “*” at the first column, and any
characters at the 2–22th columns.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3,
© Springer-Verlag Berlin Heidelberg 2014
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1. NAME of the problem

Example A.1. NAME row
1. . . . . . 4 15. . . . . . .22
NAME AFIRO

the name row is usually the first row of a MPS file.
Characters NAME are in the first to fourth columns. The name of the problem is

filled in the 15–22th columns, which can be 1–8 any characters or blank spaces. The
name may also be used to indicate outputs, at the first row of each output basis.

2. ROWS Section

Example A.2. ROWS
2 5. . . ..12
ROWS
E ROW4
G ROW1
L ROW7
N COST

This section lists given names of all (linear) constraints (e.g., ROW4,ROW1,
ROW7, etc.), one row for each constraint, where a single character under Key gives
the types of constraints, placed in columns 2–3. Name0 gives a name of 8 characters,
placed in columns 5–12. The types are

Key Row-type
E D
G �
L �
N Objective
N Free

Symbols E, G, and L respectively specify constraint types of “equal to”, “greater
than or equal to” and “less than or equal to”; N indicates “free” or without
restriction.

3. COLUMNS Section

Example A.3. COLUMNS section
1 5. . . ..12 15. . . .22 25. . . . . . .36 40. . . .47 50. . . . . . ..61
COLUMNS

X1 ROW2 2.3 ROW3 �2.4
X1 ROW1 �6.7 ROW6 5.22222
X1 ROW7 15.88888
X2 ROW2 1.0 ROW4 �4.1
X2 ROW5 2.6666666

For each variable xj , COLUMNS section gives names and lists nonzeros aij of
the according columns of the coefficient matrix. Nonzero components of the first
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column must be listed before those of the seconde column, and so on. In case when
there are multiple nonzeros in a column, these components are allowed to appear in
any order.

Usually, Key is blank (except for comment line), Name0 is the name of a
column and Name1, Value1 give the name of a row and the nonzero value of some
component of the column. The name of another row of the same column and value
can be listed in Name2, Value2 of the same line, or put in the next row. Name1 or
Name2 can be blank.

In the preceding example, the variable named by X1 has 5 nonzero components
located respectively at rows ROW2, ROW3, ROW1, ROW6, ROW7.

4. RHS Section

Example A.4. RHS section
1 5. . . ..12 15. . . .22 25. . . . . . .36 40. . . .47 50. . . . . . ..61
RHS

RHS1 ROW1 �3.5 ROW3 1.1111
RHS1 ROW4 11.33333 ROW7 �2.4
RHS1 ROW2 2.6
RHS2 ROW4 17.3 ROW2 �5.6
RHS2 ROW1 1.9

This section lists nonzeros of the right-hand side of the constraint system, with
the same format as the COLUMN section. If components of the right-hand side
are all zero, then only line RHS appears in the section. This section may include
multiple right-hand sides. But only the first will be used unless indicated otherwise
in the SPECS file.

5. RANGES Section (optional)

Example A.5. RANGES section
1 5. . . ..12 15. . . .22 25. . . . . . .36 40. . . .47 50. . . . . . ..61
ROWS
E ROW2
G ROW4
L ROW5
E ROW1
.

COLUMNS
.

RHS
RHS1 ROW5 2.0 ROW3 2.0

.
RANGES

RANGE1 ROW1 3.0 ROW3 4.5
RANGE2 ROW2 1.4 ROW5 6.7
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RANGES section expresses constraints of form

l � aT x � u;

where l and u both are finite values. The range of the constraint is r D u � l . This
section only gives r , not l or u. The according l or u will be determined by the row
type of the constraint and the sign of r :

Type of row Sign of r Lower bound l upper bound u
E C b b C jr j
E � b � jr j b

G C or � b b C jr j
L C or � b � jr j b

The format is the same as the COLUMN section, where Name0 gives the name
of a range.

6. BOUNDS Section (optional)

Example A.6. BOUNDS section
1 5. . . ..12 15. . . .22 25. . . . . . .36
BOUNDS
UP BOUND1 X1 10.5
UP BOUND1 X2 6.0
LO BOUND1 X3 �5.0
UP BOUND1 X3 4.5

Default bounds of all variables xj (except for slack variables) are 0 � xj � 1.
If necessary, the default values 0 and 1 can be modified to l � xj � u via LOWER
and UPPER in the SPECS file.

In this section, Key gives the type of bounds (UP and LO respectively indicate
upper and lower bounds) Name0 gives the name of the bound set, and Name1 and
Value1 list the name of column and the value of bound, respectively.

Example A.7. The model of human arrangement problem in Example 1.3.4 is

min f D 0:1x2 C 0:2x3 C 0:3x4 C 0:8x5 C 0:9x6

s:t: x1 C x6 � 7

x1 C x2 � 15

x2 C x3 � 25

x3 C x4 � 20

x4 C x5 � 30

x5 C x6 � 7

xj � 0; j D 1; : : : ; 6:
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The MPS file is as follows:

1 5. . . .12 15. . . .22 25. . . .36 40. . . .47 50. . . .61
NAME ASSIGN.
ROWS
G TEAM1
G TEAM2
G TEAM3
G TEAM4
G TEAM5
G TEAM6
N HANDS
COLUMNS

X1 TEAM1 1.0 TEAM2 1.0
X2 TEAM2 1.0 TEAM3 1.0
X2 HANDS 0.1
X3 TEAM3 1.0 TEAM4 1.0
X3 HANDS 0.2
X4 TEAM4 1.0 TEAM5 1.0
X4 HANDS 0.3
X5 TEAM5 1.0 TEAM6 1.0
X5 HANDS 0.8
X6 TEAM1 1.0 TEAM6 1.0
X6 HANDS 0.9

RHS
RHS1 TEAM1 7.0 TEAM2 15.0
RHS1 TEAM3 25.0 TEAM4 20.0
RHS1 TEAM5 30.0 TEAM6 7.0

ENDDATA



Appendix B
Test LP Problems

In this Appendix, test problems (Gay 1985) are listed according to increasing mCn

order.
Source:

NETLIB (http://www.netlib.org/lp/data)
Kennington (http://www-fp.mcs.anl.gov/otc/Guide/TestProblems/LPtest/)
BPMPD (http://www.sztaki.hu/meszaros/bpmpd/).

Notations in the tables:

m: the number of rows of the coefficient matrix.
n: the number of columns of the coefficient matrix.
Nonzeros: the number of nonzeros of the coefficient matrix.
BR: indicates whether there are BOUNDS and RANGES sections.
Optimal value: optimal values given by the file.

Table B.1 96 Netlib problems

No. Name m C n m n Nonzeros BR Optimal value
1 AFIRO 60 28 32 88 �4.6475314286E + 02
2 KB2 85 44 41 291 B �1.7499001299E + 03
3 SC50B 99 51 48 119 �7.0000000000E + 01
4 SC50A 99 51 48 131 �6.4575077059E + 01
5 ADLITTLE 154 57 97 465 2.2549496316E + 05
6 BLEND 158 75 83 521 �3.0812149846E + 01
7 SHARE2B 176 97 79 730 �4.1573224074E + 02
8 SC105 209 106 103 281 �5.2202061212E + 01
9 STOCFOR1 229 118 111 474 �4.1131976219E + 04
10 SCAGR7 270 130 140 553 �2.3313897524E + 06
11 RECIPE 272 92 180 752 B �2.6661600000E + 02
12 BOEING2 310 167 143 1; 339 BR �3.1501872802E + 02
13 ISRAEL 317 175 142 2; 358 �8.9664482186E + 05

(continued)
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Table B.1 (continued)

No. Name m C n m n Nonzeros BR Optimal value
14 SHARE1B 343 118 225 1; 182 �7.6589318579E + 04
15 VTP.BASE 402 199 203 914 B 1.2983146246E + 05
16 SC205 409 206 203 552 �5.2202061212E + 01
17 BEACONFD 436 174 262 3; 476 3.3592485807E + 04
18 GROW7 442 141 301 2; 633 B �4.7787811815E + 07
19 LOTFI 462 154 308 1; 086 �2.5264706062E + 01
20 BRANDY 470 221 249 2; 150 1.5185098965E + 03
21 E226 506 224 282 2; 767 �1.1638929066E + 01
22 BORE3D 549 234 315 1; 525 B 1.3730803942E + 03
23 FORPLAN 583 162 421 4; 916 BR �6.6421896127E + 02
24 CAPRI 625 272 353 1; 786 B 2.6900129138E + 03
25 AGG 652 489 163 2; 541 �3.5991767287E + 07
26 BOEING1 736 352 384 3; 865 BR �3.3521356751E + 02
27 SCORPION 747 389 358 1; 708 1.8781248227E + 03
28 BANDM 778 306 472 2; 659 �1.5862801845E + 02
29 SCTAP1 781 301 480 2; 052 1.4122500000E + 03
30 SCFXM1 788 331 457 2; 612 1.8416759028E + 04
31 AGG3 819 517 302 4; 531 1.0312115935E + 07
32 AGG2 819 517 302 4; 515 �2.0239252356E + 07
33 STAIR 824 357 467 3; 857 B �2.5126695119E + 02
34 SCSD1 838 78 760 3; 148 8.6666666743E + 00
35 TUFF 921 334 587 4; 523 B 2.9214775747E � 01
36 GROW15 946 301 645 5; 665 B �1.0687094129E + 08
37 SCAGR25 972 472 500 2; 029 �1.4753433061E + 07
38 DEGEN2 979 445 534 4; 449 �1.4351780000E + 03
39 FIT1D 1; 051 25 1; 026 14; 430 B �9.1463780924E + 03
40 ETAMACRO 1; 089 401 688 2; 489 B �7.5571521687E + 02
41 FINNIS 1; 112 498 614 2; 714 B 1.7279096547E + 05
42 FFFFF800 1; 379 525 854 6; 235 5.5567967533E + 05
43 GROW22 1; 387 441 946 8; 318 B �1.6083433648E + 08
44 PILOT4 1; 411 411 1; 000 5; 145 B �2.5809984373E + 03
45 STANDATA 1; 435 360 1; 075 3; 038 B 1.2576995000E + 03
46 SCSD6 1; 498 148 1; 350 5; 666 5.0500000078E + 01
47 STANDMPS 1; 543 468 1; 075 3; 686 B 1.4060175000E + 03
48 SEBA 1; 544 516 1; 028 4; 874 BR 1.5711600000E + 04
49 STANDGUB 1; 546 362 1; 184 3; 147 B 1.2576995000E + 03
50 SCFXM2 1; 575 661 914 5; 229 3.6660261565E + 04
51 SCRS8 1; 660 491 1; 169 4; 029 9.0430601463E + 02
52 GFRD-PNC 1; 709 617 1; 092 3; 467 B 6.9022359995E + 06
53 BNL1 1; 819 644 1; 175 6; 129 1.9776292440E + 03
54 SHIP04S 1; 861 403 1; 458 5; 810 1.7987147004E + 06
55 PEROLD 2; 002 626 1; 376 6; 026 B �9.3807477973E + 03
56 MAROS 2; 290 847 1; 443 10; 006 B �5.8063743701E + 04
57 FIT1P 2; 305 628 1; 677 10; 894 B 9.1463780924E + 03

(continued)
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Table B.1 (continued)

No. Name m C n m n Nonzeros BR Optimal value
58 MODSZK1 2; 308 688 1; 620 4; 158 B 3.2061972906E + 02
59 SHELL 2; 312 537 1; 775 4; 900 B 1.2088253460E + 09
60 SCFXM3 2; 362 991 1; 371 7; 846 5.4901254550E + 04
61 25FV47 2; 393 822 1; 571 11; 127 5.5018458883E + 03
62 SHIP04L 2; 521 403 2; 118 8; 450 1.7933245380E + 06
63 QAP8 2; 545 913 1; 632 8; 304 2.0350000002E + 02
64 WOOD1P 2; 839 245 2; 594 70; 216 1.4429024116E + 00
65 PILOT.JA 2; 929 941 1; 988 43; 220 B �6.1130535369E + 03
66 SCTAP2 2; 971 1; 091 1; 880 8; 124 1.7248071429E + 03
67 GANGES 2; 991 1; 310 1; 681 7; 021 B �1.0958577038E + 05
68 SCSD8 3; 148 398 2; 750 11; 334 9.0499999993E + 02
69 PILOTNOV 3; 148 976 2; 172 13; 129 B �4.4972761882E + 03
70 SHIP08S 3; 166 779 2; 387 9; 501 1.9200982105E + 06
71 SIERRA 3; 264 1; 228 2; 036 9; 252 B 1.5394392927E + 07
72 DEGEN3 3; 322 1; 504 1; 818 26; 230 �9.8729400000E + 02
73 PILOT.WE 3; 512 723 2; 789 9; 218 B �2.7201037711E + 06
74 NESM 3; 586 663 2; 923 13; 988 BR 1.4076065462E + 07
75 SHIP12S 3; 915 1; 152 2; 763 10; 941 1.4892361344E + 06
76 SCTAP3 3; 961 1; 481 2; 480 10; 734 1.4240000000E + 03
77 STOCFOR2 4; 189 2; 158 2; 031 9; 492 �3.9024408538E + 04
78 CZPROB 4; 453 930 3; 523 14; 173 B 2.1851966989E + 06
79 CYCLE 4; 761 1; 904 2; 857 21; 322 B �5.2263930249E + 00
80 SHIP08L 5; 062 779 4; 283 17; 085 1.9090552114E + 06
81 PILOT 5; 094 1; 442 3; 652 14; 706 B �5.5728790853E + 02
82 BNL2 5; 814 2; 325 3; 489 16; 124 1.8112404450E + 03
83 SHIP12L 6; 579 1; 152 5; 427 21; 597 1.4701879193E + 06
84 D6CUBE2 6; 600 416 6; 184 43; 888 3.1473177974E + 02
85 D6CUBE 6; 600 416 6; 184 43; 888 B 3.1549166667E + 02
86 PILOT87 6; 914 2; 031 4; 883 73; 804 B 3.0171261980E + 02
87 D2Q06C 7; 339 2; 172 5; 167 35; 674 1.2278421653E + 05
88 GREENBEA 7; 798 2; 393 5; 405 31; 499 B �7.2461393630E + 07
89 WOODW 9; 504 1; 099 8; 405 37; 478 1.3044763331E + 00
90 FIT2D 10; 526 26 10; 500 138; 018 B �6.8464293007E + 04
91 QAP12 12; 049 3; 193 8; 856 44; 244 5.2289435056E + 02
92 80BAU3B 12; 062 2; 263 9; 799 29; 063 B 9.8724313086E + 05
93 MAROS-R7 12; 545 3; 137 9; 408 151; 120 1.4971851665E + 06
94 FIT2P 16; 526 3; 001 13; 525 60; 784 B 6.8464293232E + 04
95 DFL001 18; 302 6; 072 12; 230 41; 873 B 1.1266503030E + 07
96 STOCFOR3 32; 371 16; 676 15; 695 74; 004 �3.9976256537E + 04
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Table B.2 16 Kennington problems

No. Name m C n m n Nonzeros BR Optimal value
1 KEN-07 6; 029 2; 427 3; 602 11; 981 B �6.7952044338E + 08
2 CRE-C 6; 747 3; 069 3; 678 16; 922 2.5275116141E + 07
3 CRE-A 7; 584 3; 517 4; 067 19; 054 2.3595410589E + 07
4 PDS-02 10; 489 2; 954 7; 535 21; 252 B 2.8857862010E + 10
5 OSA-07 25; 068 1; 119 23; 949 167; 643 5.3572251730E + 05
6 KEN-11 36; 044 14; 695 21; 349 70; 354 B �6.9723822625E + 09
7 PDS-06 38; 537 9; 882 28; 655 82; 269 B 2.7761037600E + 10
8 OSA-14 54; 798 2; 338 52; 460 367; 220 1.1064628448E + 06
9 PDS-10 65; 322 16; 559 48; 763 140; 063 B 2.6727094976E + 10
10 KEN-13 71; 292 28; 633 42; 659 139; 834 B �1.0257394789E + 10
11 CRE-D 78; 907 8; 927 69; 980 312; 626 2.4454969898E + 07
12 CRE-B 82; 096 9; 649 72; 447 328; 542 2.3129640065E + 07
13 OSA-30 104; 375 4; 351 100; 024 700; 160 2.1421398737E + 06
14 PDS-20 139; 603 33; 875 105; 728 304; 153 B 2.3821658640E + 10
15 OSA-60 243; 247 10; 281 232; 966 1; 630; 758 4.0440725060E + 06
16 KEN-18 259; 827 105; 128 154; 699 512; 719 B �5.2217025287E + 10

Table B.3 17 BPMPD problems

No. Name m C n m n Nonzeros BR Optimal value
1 RAT7A 12; 545 3; 137 9; 408 275; 180 2.0743714157E + 06
2 NSCT1 37; 883 22; 902 14; 981 667; 499 �3.8922436000E + 07
3 NSCT2 37; 985 23; 004 14; 981 686; 396 �3.7175082000E + 07
4 ROUTING 44; 818 20; 895 23; 923 210; 025 B 5.9416502767E + 03
5 DBIR1 46; 160 18; 805 27; 355 1; 067; 815 �8.1067070000E + 06
6 DBIR2 46; 262 18; 907 27; 355 1; 148; 847 �6.1169165000E + 06
7 T0331-4L 47; 580 665 46; 915 477; 897 B 2.9730033352E + 04
8 NEMSEMM2 49; 077 6; 944 42; 133 212; 793 B 6.2161463095E + 05
9 SOUTHERN 54; 160 18; 739 35; 421 148; 318 B 1.8189401971E + 09
10 RADIO.PRIM 66; 919 58; 867 8; 052 265; 975 B 1.0000000000E + 00
11 WORLD.MOD2 67; 393 35; 665 31; 728 220; 116 B 4.3648258595E + 07
12 WORLD 68; 245 35; 511 32; 734 220; 748 B 6.9133457165E + 07
13 RADIO.DUAL 74; 971 8; 053 66; 918 328; 891 B �1.0000000000E + 00
14 NEMSEMM1 75; 359 3; 946 71; 413 1; 120; 871 B 5.1442135978E + 05
15 NW14 123; 483 74 123; 409 1; 028; 319 B 6.1844000000E + 04
16 LPL1 164; 952 39; 952 125; 000 462; 127 B 6.7197548415E + 10
17 DBIC1 226; 436 43; 201 183; 235 1; 217; 046 B �9.7689730000E + 06
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Table B.4 53 Netlib problems without bounds and ranges

No. Name m C n m n Nonzeros Optimal value
1 AFIRO 60 28 32 88 �4.6475314286E + 02
2 SC50B 99 51 48 119 �7.0000000000E + 01
3 SC50A 99 51 48 131 �6.4575077059E + 01
4 ADLITTLE 154 57 97 465 2.2549496316E + 05
5 BLEND 158 75 83 521 �3.0812149846E + 01
6 SHARE2B 176 97 79 730 �4.1573224074e + 02
7 SC105 209 106 103 281 �5.2202061212E + 01
8 STOCFOR1 229 118 111 474 �4.1131976219E + 04
9 SCAGR7 270 130 140 553 �2.3313897524E + 06
10 ISRAEL 317 175 142 2; 358 �8.9664482186E + 05
11 SHARE1B 343 118 225 1; 182 �7.6589318579E + 04
12 SC205 409 206 203 552 �5.2202061212E + 01
13 BEACONFD 436 174 262 3; 476 3.3592485807E + 04
14 LOTFI 462 154 308 1; 086 �2.5264706062E + 01
15 BRANDY 470 221 249 2; 150 1.5185098965E + 03
16 E226 506 224 282 2; 767 �1.1638929066E + 01
17 AGG 652 489 163 2; 541 �3.5991767287E + 07
18 SCORPION 747 389 358 1; 708 1.8781248227E + 03
19 BANDM 778 306 472 2; 659 �1.5862801845E + 02
20 SCTAP1 781 301 480 2; 052 1.4122500000E + 03
21 SCFXM1 788 331 457 2; 612 1.8416759028E + 04
22 AGG3 819 517 302 4; 531 1.0312115935E + 07
23 AGG2 819 517 302 4; 515 �2.0239252356E + 07
24 SCSD1 838 78 760 3; 148 8.6666666743E + 00
25 SCAGR25 972 472 500 2; 029 �1.4753433061E + 07
26 DEGEN2 979 445 534 4; 449 �1.4351780000E + 03
27 FFFFF800 1,379 525 854 6; 235 5.5567967533E + 05
28 SCSD6 1,498 148 1,350 5; 666 5.0500000078E + 01
29 SCFXM2 1,575 661 914 5; 229 3.6660261565E + 04
30 SCRS8 1,660 491 1,169 4; 029 9.0430601463E + 02
31 BNL1 1,819 644 1,175 6; 129 1.9776292440E + 03
32 SHIP04S 1,861 403 1,458 5; 810 1.7987147004E + 06
33 SCFXM3 2,362 991 1,371 7; 846 5.4901254550E + 04
34 25FV47 2,393 822 1,571 11; 127 5.5018458883E + 03
35 SHIP04L 2,521 403 2,118 8; 450 1.7933245380E + 06
36 QAP8 2,545 913 1,632 8; 304 2.0350000002E + 02
37 WOOD1P 2,839 245 2,594 70; 216 1.4429024116E + 00
38 SCTAP2 2,971 1,091 1,880 8; 124 1.7248071429E + 03
39 SCSD8 3,148 398 2,750 11; 334 9.0499999993E + 02
40 SHIP08S 3,166 779 2,387 9; 501 1.9200982105E + 06
41 DEGEN3 3,322 1,504 1,818 26; 230 �9.8729400000E + 02
42 SHIP12S 3,915 1,152 2,763 10; 941 1.4892361344E + 06
43 SCTAP3 3,961 1,481 2,480 10; 734 1.4240000000E + 03
44 STOCFOR2 4,189 2,158 2,031 9; 492 �3.9024408538E + 04
45 SHIP08L 5,062 779 4,283 17; 085 1.9090552114E + 06

(continued)
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Table B.4 (continued)

No. Name m C n m n Nonzeros Optimal value
46 BNL2 5,814 2,325 3,489 16,124 1.8112404450E + 03
47 SHIP12L 6,579 1,152 5,427 21,597 1.4701879193E + 06
48 D6CUBE2 6,600 416 6,184 43,888 3.1473177974E + 02
49 D2Q06C 7,339 2,172 5,167 35,674 1.2278421653E + 05
50 WOODW 9,504 1,099 8,405 37,478 1.3044763331E + 00
51 QAP12 12,049 3,193 8,856 44,244 5.2289435056E + 02
52 MAROS-R7 12,545 3,137 9,408 151,120 1.4971851665E + 06
53 STOCFOR3 32,371 16,676 15,695 74,004 �3.9976256537E + 04

Table B.5 Kennington problems without bounds and ranges

No. Name m C n m n Nonzeros Optimal value
1 CRE-C 6,747 3,069 3,678 16,922 2.5275116141E + 07
2 CRE-A 7,584 3,517 4,067 19,054 2.3595410589E + 07
3 OSA-07 25,068 1,119 23,949 167,643 5.3572251730E + 05
4 OSA-14 54,798 2,338 52,460 367,220 1.1064628448E + 06
5 CRE-D 78,907 8,927 69,980 312,626 2.4454969898E + 07
6 CRE-B 82,096 9,649 72,447 328,542 2.3129640065E + 07
7 OSA-30 104,375 4,351 100,024 700,160 2.1421398737E + 06
8 OSA-60 243,247 10,281 232,966 1,630,758 4.0440725060E + 06

Table B.6 BPMPD problems without bounds and ranges

No. Name m C n m n Nonzeros Optimal value
1 RAT7A 12,545 3,137 9,408 275,180 2.0743714157E + 06
2 NSCT1 37,883 22,902 14,981 667,499 �3.8922436000E + 07
3 NSCT2 37,985 23,004 14,981 686,396 �3.7175082000E + 07
4 DBIR1 46,160 18,805 27,355 1,067,815 �8.1067070000E + 06
5 DBIR2 46,262 18,907 27,355 1,148,847 �6.1169165000E + 06



Appendix C
Empirical Evaluation of Nested Pricing

This appendix offers detailed numerical results, obtained from our extensive
computational experiments on nested pricing.

Compiled using Visual Fortran 5.0, all codes were run under a Windows XP
system Home Edition Version 2002 on an IBM PC with an Intel(R) Pentium(R)
processor 1.00 GB of 1.86 GHz memory, and about 16 digits of precision.

The test sets included three types of problems from Netlib, Kennington and
BPMPD test sets (see Appendix B). These problems are ordered by their sizes,
in terms of m C n, where m and n are the numbers of rows and columns of the
constraint matrix, excluding slack variables.

In results listed below, all reported CPU times were measured in seconds with
utility routine CPU_TIME, excluding the time spent on preprocessing and scaling.
Final objective values reached are not listed. All runs were terminated within the
primal and dual feasibility tolerance 10�6.

MINOS was used as the testing benchmark and platform. To compare easy and
fairly, each rule is implemented within MINOS 5.51, the latest version of MINOS
at that time. Actually, all resulting codes are the same as MINOS 5.51, except for
its pivot rule replaced by relevant ones. All codes used the default options, except
for Rows 200,000; Columns 300,000; Elements 5,000,000; Iterations 20,000,000;
Scale yes; Solution no; Log frequency 0; Print level 0.

(1) We first report results associated with the following five codes and make
comparisons between one another:

1. Dantzig: MINOS 5.51 with the full pricing option.
2. Devex: Devex rule.
3. P-Dantzig: MINOS 5.51 with the default partial pricing option.
4. N-Devex: Nested-Devex Rule.
5. N-Dantzig: Rule 11.5.1.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3,
© Springer-Verlag Berlin Heidelberg 2014
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(A) Results for 48 Netlib problems
The first set of test problems included the 48 largest Netlib problems.
Associated results are listed in Table C.1, where total iterations and time
required for solving each problem are listed in columns labeled Iters and
Time for the five codes. The totals listed in the second bottom line are for
the 47 problems, excluding QAP15, as it is too time consuming to solve
QAP15 with Dantzig and P-Dantzig, and results with the other three codes
would heavily dominate the entire computations. Results associated with
QAP15 are listed separately in the bottom row of the table.

To serve as a comparison between the codes, Table C.2 lists iterations
and run time ratios of the first four codes to N-Dantzig. From the
second bottom line, it is seen that N-Dantzig and N-Devex outperformed
all the standard codes, in terms of both iterations and run time. N-
Devex performed slightly better than N-Dantzig with time ratio 0:95. On
the other hand, code Dantzig performed worst on this set with largest
iterations ratio 5:16 and time ratio 6:00. It is also noted that Devex
performed better than P-Dantzig.

(B) Results for 16 Kennington problems
The second set of problems includes all 16 problems in Kennington test
set. These problems are larger than problems in sets 1, overall. Associated
numerical results are listed in Table C.3 and compared in Table C.4. From
the bottom line of the latter, it is seen that N-Dantzig and N-Devex again
defeated all the standard codes in terms of both iterations and run time.
N-Devex performed a little better again than N-Dantzig with time ratio
0:91. Code Dantzig performed worst on this set with largest iterations
ratio 5:63 and time ratio 5:65. In contrast to with the first set, however,
Devex performed worse than P-Dantzig with this set.

(C) Results for 17 BPMPD problems
The third set consists of the 17 largest BPMPD problems, in terms of
more than 500 KB in compressed form. Associated numerical results are
listed in Table C.5 and compared in Table C.6. From the bottom line of
Table C.6, it is observed that the codes performed similarly to with the
first two sets. Even with larger margins, N-Dantzig and N-Devex defeated
the standard codes in terms of both iterations and run time. In fact, N-
Dantzig performed best with this set while code Dantzig did worst with
iterations ratio 8:29 and time ratio 12:86!

(D) A summary
Table C.7 offers ratios of the first four codes to N-Dantzig for each test
set and for all (excluding QAP15). It is seen that the codes performed
consistently with the three sets, overall. Further, N-Dantzig and N-Devex
defeated the standard codes in terms of both total iterations and run time.
N-Dantzig even outperformed Devex rule with total iterations ratio 3:48

and average time ratio 5:73. It can be asserted that N-Dantzig performed
best overall while code Dantzig did worst with iterations ratio 6:78 and
time ratio 9:75.
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Table C.2 Ratio to N-Dantzig for 48 Netlib problems

Dantzig Devex P-Dantzig N-Devex

Problem Iters Time Iters Time Iters Time Iters Time
SCRS8 1.28 1.00 0.67 0.50 1.27 1.00 0.91 0.50
GFRD-PNC 0.94 1.00 0.85 1.00 0.94 1.00 1.06 1.00
BNL1 0.88 1.25 0.62 1.00 0.82 1.00 1.10 1.00
SHIP04S 0.68 1.00 0.66 1.00 0.74 1.00 1.02 1.00
PEROLD 0.64 0.78 0.46 0.61 0.80 0.78 0.98 1.00
MAROS 0.51 0.62 0.45 0.54 0.74 0.69 0.77 0.69
FIT1P 0.94 1.00 0.59 0.60 0.89 0.80 0.97 0.80
MODSZK1 0.78 1.33 0.66 0.67 1.05 1.00 0.97 1.00
SHELL 0.93 1.00 0.92 1.00 1.24 1.00 1.00 1.00
SCFXM3 0.66 0.83 0.66 0.83 0.78 0.83 0.96 0.83
25FV47 1.19 1.59 0.62 0.85 1.18 1.26 0.88 0.89
SHIP04L 0.66 1.00 0.67 1.00 0.76 1.00 1.01 1.00
QAP8 1.01 1.08 0.53 0.57 0.99 0.97 0.85 0.81
WOOD1P 0.65 1.29 0.58 1.29 0.78 0.86 0.78 0.86
PILOT.JA 1.04 1.33 0.51 0.70 1.00 1.00 1.06 1.12
SCTAP2 0.90 1.00 1.00 1.33 1.05 1.00 1.04 1.00
GANGES 0.82 1.00 0.84 1.00 1.03 1.00 1.06 1.00
PILOTNOV 0.62 0.79 0.47 0.64 0.74 0.71 1.01 1.07
SCSD8 0.73 1.17 0.82 1.33 1.19 1.17 0.98 0.83
SHIP08S 0.97 2.00 0.91 2.00 0.99 1.00 1.02 1.00
SIERRA 1.04 1.40 0.95 1.20 0.91 1.00 1.01 1.00
DEGEN3 2.22 2.82 0.89 1.06 1.80 1.91 0.87 0.88
PILOT.WE 0.95 1.32 0.35 0.55 0.71 0.73 1.07 1.09
NESM 0.45 0.71 0.44 0.71 0.47 0.43 1.24 1.24
SHIP12S 0.91 1.50 0.90 1.50 0.99 1.00 1.01 1.00
SCTAP3 0.83 1.00 0.92 1.20 1.01 1.00 0.99 0.80
STOCFOR2 0.41 0.48 0.38 0.44 0.53 0.56 0.90 0.88
CZPROB 1.05 1.60 0.73 1.20 1.13 1.20 1.06 1.20
CYCLE 0.75 1.00 0.67 0.87 0.82 0.87 0.94 0.96
SHIP08L 0.76 1.00 0.75 1.00 0.74 0.67 1.00 1.00
PILOT 0.60 0.78 0.40 0.55 0.76 0.81 0.98 0.89
BNL2 1.02 1.38 0.71 0.96 0.87 0.91 0.95 0.93
SHIP12L 0.91 1.40 0.93 1.40 0.95 0.80 1.04 1.00
D6CUBE 5.58 13.57 1.54 4.07 7.75 7.66 1.28 1.24
D6CUBE2 4.61 10.85 0.83 2.09 5.41 5.14 0.89 0.83
PILOT87 0.77 1.15 0.39 0.58 0.78 1.02 1.03 0.89
D2Q06C 2.62 3.78 0.61 0.87 2.48 2.60 1.22 1.17
GREENBEA 2.14 2.92 1.01 1.39 1.84 1.86 1.07 1.05
WOODW 0.74 1.52 0.58 1.28 0.70 0.83 1.04 1.07
TRUSS 2.32 4.95 0.67 1.48 0.93 1.00 1.02 0.98

(continued)
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Table C.2 (continued)

Dantzig Devex P-Dantzig N-Devex

Problem Iters Time Iters Time Iters Time Iters Time
FIT2D 2.02 9.80 0.45 2.41 1.39 0.95 0.97 1.12
QAP12 2.45 2.53 0.45 0.48 1.49 1.35 0.99 0.92
80BAU3B 1.09 1.89 0.61 1.07 0.79 0.83 1.02 0.96
MAROS-R7 0.33 0.44 0.36 0.50 0.33 0.37 1.19 1.09
FIT2P 0.97 1.21 0.65 0.69 1.14 1.18 1.02 0.91
DFL001 15.95 22.58 3.32 4.22 14.80 16.48 1.14 1.08
STOCFOR3 0.77 1.02 0.78 0.99 0.91 0.98 1.00 0.97
Average 5.16 6.00 1.20 1.21 4.65 4.00 1.04 0.95
QAP15 – – 0.95 0.87 – – 0.98 0.91

The ratio of the number of iterations required by a code to the number of
rows and columns should be an indicator for problem’s difficulty with respect
to the code: the smaller the ratio is, the easier the problem solved by the
code. Following Forrest and Goldfarb (1992), we therefore list in Tables C.8
and C.9 normalized iterations required by the five codes for the Kennington
and BPMPD test sets, respectively. From the bottom line of Table C.8 for
Kennington problems, it is seen that the ratio of average normalized iterations
required by Dantzig to N-Dantzig is 2:24=0:40 D 5:60, whereas the ratio by
Devex to N-Devex is 2:21=0:40 D 5:53. From the bottom line of Table C.9
for BPMPD problems, it is seen that the ratio of average normalized iterations
by Dantzig to N-Dantzig is 6:74=0:81 D 8:32, whereas the ratio by Devex to
N-Devex is 3:11=0:96 D 3:24.

Overall, normalized iterations require by N-Dantzig and N-Devex are quite
stable for the problems, while those required by their conventional counterparts
fluctuate. This can be seen intuitively from associated plots in Figs. C.1 and C.2.

There is no doubt that nested pricing rules are amenable to the test sets, as is
a case may be expected in general.

(2) Further testing
The forgoing performance comparison involves neither the steepest-edge and
largest decrease rules nor their nested variants. We only offer results associated
with the steepest-edge and its nested variant because, according to our experi-
ence, the largest decrease rule is out of the line of competitors.

We make a comparison between the following three codes:

1. Steepest-Edge(Stp): the Steepest-edge rule.
2. N-Steepest(N-Stp): Nested-steepest-edge rule.
3. N-Dantzig(N-D): Rule 11.5.1.

Results associated with Netlib, Kennington and BPMPD problems are
contained in Tables C.10–C.15. The first two codes failed to solve QAP15 in
Netlib, KEN-18 in Kennington, and LPL1 and DBIC1 in BPMPD within 48 h.
So, we report results, excluding the four problems.
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Table C.4 Ratio to N-Dantzig for 16 Kennington problems

Dantzig Devex P-Dantzig N-Devex

Problem Iters Time Iters Time Iters Time Iters Time
KEN-07 1:00 1:31 0:96 1:15 1.06 1.08 1.00 1.00
CRE-C 0:94 1:18 0:72 0:93 0.98 0.98 1.03 1.00
CRE-A 0:96 1:20 0:71 0:90 0.86 0.86 1.00 0.98
PDS-02 2:43 3:67 1:69 2:56 1.49 1.56 0.96 0.94
OSA-07 1:17 3:67 1:17 4:00 1.28 1.27 0.99 1.07
KEN-11 1:00 1:34 0:96 1:25 1.15 1.18 1.01 1.01
PDS-06 4:54 7:55 2:48 4:19 1.99 2.01 1.00 1.00
OSA-14 1:19 4:15 1:16 4:52 1.28 1.23 1.05 1.17
PDS-10 7:36 12:04 4:36 7:37 3.23 3.28 1.25 1.32
KEN-13 1:08 1:40 0:88 1:05 1.42 1.47 1.00 0.93
CRE-D 5:13 10:98 5:65 13:27 4.02 3.37 0.96 1.10
CRE-B 5:15 11:40 5:70 13:83 2.96 2.62 0.99 1.06
OSA-30 1:26 4:47 1:18 4:70 1.37 1.28 1.03 1.25
PDS-20 16:74 26:35 17:08 27:81 8.85 9.10 0.96 0.94
OSA-60 1:18 4:09 1:18 4:51 1.24 1.12 1.02 1.13
KEN-18 1:14 1:53 0:93 1:04 1.44 1.53 1.00 0.87
Average 5:63 5:65 5:56 5:55 3.51 2.64 1.00 0.91

Table C.16 offers ratios for each test set and for all the 77 problems as a
whole. It is seen that N-Dantizig outperformed Steepest-Edge with average time
ratio as high as 25:22 despite it required more total iterations (with iterations
ratio 0:34). It is also noted that Nested-Steepest-Edge was inferior to Steepest-
Edge.

In summary, nested pricing rules are unambiguously superior to standard
ones, and the nested Dantzig rule is the best among nested rules tested.
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Table C.6 Ratio to N-Dantzig for 17 BPMPD problems

Dantzig Devex P-Dantzig N-Devex

Problem Iters Time Iters Time Iters Time Iters Time
RAT7A 0:20 1:88 0.26 0:32 0.19 0.46 0.94 0.63
NSCT1 0:24 0:49 0.18 0:42 0.24 0.29 0.65 0.70
NSCT2 1:96 3:95 1.06 2:06 2.08 2.41 1.06 1.03
ROUTING 8:53 13:63 3.07 4:87 3.34 3.41 0.84 0.85
DBIR1 0:19 0:52 0.15 0:55 0.14 0.20 0.97 1.06
DBIR2 5:31 13:57 1.63 4:12 6.72 7.77 0.96 0.91
T0331-4L 1:25 2:26 0.49 0:89 1.50 0.98 0.91 0.98
NEMSEMM2 2:27 5:15 1.65 3:94 2.25 2.45 1.34 1.45
SOUTHERN 1:25 1:36 0.71 0:74 0.97 1.00 1.01 0.99
RADIO.PR 1:00 1:00 1.00 1:00 2.50 1.07 1.00 1.00
WORLD.MD 6:38 7:75 1.94 2:41 5.63 5.87 0.99 0.97
WORLD 9:44 11:86 1.80 2:24 7.84 8.15 0.94 0.92
RADIO.DL 1:00 1:00 1.00 1:11 2.33 1.11 1.00 1.00
NEMSEMM1 1:43 6:73 1.11 5:46 1.37 1.95 1.34 1.35
NW14 0:55 1:75 0.54 1:83 1.29 1.10 1.06 1.13
LPL1 12:76 19:96 8.92 13:43 4.00 3.92 1.70 1.64
DBIC1 7:98 13:02 5.59 9:36 4.38 3.80 1.31 1.45
Average 8:29 12:86 3.83 6:54 5.04 5.20 1.18 1.22

Table C.7 A ratio summary

Dantzig Devex P-Dantzig N-Devex

Problem Iters Time Iters Time Iters Time Iters Time
Netlib(47) 5.16 5.95 1.20 1.21 4.65 4.00 1.04 0.95
Kennington(16) 5.63 5.65 5.56 5.55 3.51 2.64 1.00 0.91
BPMPD(17) 8.29 12.86 3.83 6.54 5.04 5.20 1.18 1.22
Average(80) 6.78 9.75 3.48 5.73 4.57 4.20 1.10 1.09

Table C.8 Normalized iterations for 16 kennington Problems

No Problem Dantzig Devex P-Dantzig N-Devex N-Dantzig
1 KEN-07 0:29 0:27 0.30 0.29 0.28
2 CRE-C 0:60 0:46 0.63 0.66 0.64
3 CRE-A 0:54 0:39 0.48 0.56 0.56
4 PDS-02 0:49 0:34 0.30 0.19 0.20
5 OSA-07 0:07 0:07 0.08 0.06 0.06
6 KEN-11 0:37 0:36 0.43 0.37 0.37
7 PDS-06 1:54 0:84 0.68 0.34 0.34
8 OSA-14 0:07 0:07 0.08 0.06 0.06
9 PDS-10 2:72 1:61 1.20 0.46 0.37
10 KEN-13 0:50 0:41 0.66 0.46 0.46
11 CRE-D 4:78 5:27 3.75 0.90 0.93
12 CRE-B 4:00 4:42 2.30 0.77 0.78
13 OSA-30 0:07 0:07 0.08 0.06 0.06
14 PDS-20 11:16 11:38 5.90 0.64 0.67
15 OSA-60 0:07 0:07 0.07 0.06 0.06
16 KEN-18 0:61 0:49 0.76 0.53 0.53

Average 2:24 2:21 1.40 0.40 0.40
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Table C.9 Normalized iterations for 17 BPMPD Problems

No Problem Dantzig Devex P-Dantzig N-Devex N-Dantzig
1 RAT7A 0:32 0:42 0:30 1.50 1.60
2 NSCT1 0:06 0:04 0:06 0.15 0.24
3 NSCT2 0:30 0:16 0:32 0.16 0.16
4 ROUTING 4:25 1:53 1:66 0.42 0.50
5 DBIR1 0:05 0:04 0:04 0.26 0.26
6 DBIR2 0:92 0:28 1:16 0.17 0.17
7 T0331-4L 1:31 0:51 1:57 0.95 1.05
8 NEMSEMM2 0:48 0:35 0:48 0.28 0.21
9 SOUTHERN 0:55 0:31 0:43 0.44 0.44
10 RADIO.PR 0:00 0:00 0:00 0.00 0.00
11 WORLD.MD 20:85 6:35 18:42 3.23 3.27
12 WORLD 38:50 7:34 31:98 3.83 4.08
13 RADIO.DL 0:00 0:00 0:00 0.00 0.00
14 NEMSEMM1 0:18 0:14 0:17 0.17 0.13
15 NW14 0:00 0:00 0:01 0.01 0.01
16 LPL1 20:27 14:17 6:35 2.70 1.59
17 DBIC1 2:76 1:93 1:51 0.45 0.35

Average 6:74 3:11 4:10 0.96 0.81
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Fig. C.1 Comparison of normalized iterations for 16 Kennington problems
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Fig. C.2 Comparison of normalized iterations for 17 BPMPD problems

Table C.10 Statistics for 47 Netlib problems

Stp N-Stp N-D

Problem Iters Time Iters Time Iters Time
SCRS8 6,372 567.4 486 0:4 579 0:2

GFRD-PNC 626 0.3 722 0:4 713 0:2

BNL1 624 0.8 958 1:0 1,509 0:4

SHIP04S 145 0.2 146 0:2 228 0:1

PEROLD 1,638 2.0 2,772 3:3 4,751 1:8

MAROS 1,115 1.8 1,725 2:7 3,194 1:3

FIT1P 396 0.6 804 1:1 945 0:5

MODSZK1 596 1.1 748 1:0 980 0:3

SHELL 232 0.2 244 0:2 275 0:1

SCFXM3 715 1.0 947 1:2 1,408 0:6

25FV47 1,577 3.0 3,716 6:6 6,018 2:7

SHIP04L 223 0.3 223 0:3 344 0:1

QAP8 3,315 9.9 4,351 13:9 11,161 10:7

WOOD1P 763 3.2 775 2:9 1,050 0:7

PILOT.J 1,862 3.8 4,114 8:0 6,567 3:3

SCTAP2 612 1.2 845 1:5 733 0:3

GANGES 571 0.6 727 0:8 699 0:3

PILOTN 1,108 2.6 2,256 5:0 2,762 1:4

(continued)
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Table C.10 (continued)

Stp N-Stp N-D

Problem Iters Time Iters Time Iters Time
SCSD8 751 1.1 1,634 2.4 2,330 0.6
SHIP08S 237 0.6 267 0.6 258 0.1
SIERRA 1,005 2.0 1,018 2.0 1,221 0.5
DEGEN3 1,854 6.7 2,887 10.1 4,064 3.3
PILOT.W 1,339 3.3 3,736 8.2 5,953 2.2
NESM 2,200 4.0 5,558 10.5 6,917 2.1
SHIP12S 393 1.1 446 1.2 418 0.2
SCTAP3 771 2.2 960 2.7 907 0.5
STOCF.2 1,429 3.9 2,119 5.3 3,651 2.5
CZPROB 900 2.5 1,189 2.8 1,420 0.5
CYCLE 1,125 4.7 3,004 12.3 3,288 2.4
SHIP08L 408 1.8 538 1.8 594 0.3
PILOT 19,344 251.7 15,765 319.5 22,138 38.3
BNL2 2,032 11.3 3,118 17.0 5,356 4.5
SHIP12L 813 4.4 912 4.6 875 0.5
D6CUBE 7,793 40.9 9,387 45.0 13,792 5.8
D6CUBE2 9,585 48.8 12,911 62.4 25,157 11.1
PILOT87 9,224 304.4 19,541 759.1 25,615 97.2
D2Q06C 5,986 62.9 10,970 117.3 18,784 20.5
GREENBE 7,210 63.6 11,242 98.9 13,032 13.2
WOODW 2,524 21.5 3,907 33.1 5,331 2.9
TRUSS 8,877 83.0 12,743 118.7 14,259 8.5
FIT2D 5,970 33.0 11,558 57.3 23,077 8.5
QAP12 29,494 3,055.0 70,841 7,583.5 170,669 1,454.1
80BAU3B 4,565 48.1 8,006 95.1 13,263 9.0
MAROSR7 6,029 232.6 7,598 409.5 7,615 36.2
FIT2P 6,645 197.5 12,138 418.3 14,081 37.0
DFL001 24,704 1,020.6 52,010 2,153.4 136,487 398.6
STOCF.3 10,628 1,082.6 15,703 1,612.0 15,603 78.8
Total(47) 196,325 7,195.9 328,265 14,015.0 600,071 2,264.7

Table C.11 Ratio for 47 Netlib problems

Stp/N-Stp Stp/N-D N-Stp/N-D

Problem m n Iters Time Iters Time Iters Time
SCRS8 491 1,169 13.11 1,383.93 11.01 3,546.31 0.84 2:56

GFRDP 617 1,092 0.87 0.89 0.88 2.00 1.01 2:24

BNL1 644 1,175 0.65 0.74 0.41 1.70 0.63 2:32

SH04S 403 1,458 0.99 1.00 0.64 2.13 0.64 2:13

PEROL 626 1,376 0.59 0.61 0.34 1.14 0.58 1:86

MAROS 847 1,443 0.65 0.66 0.35 1.39 0.54 2:10

FIT1P 628 1,677 0.49 0.55 0.42 1.26 0.85 2:28

MODS1 688 1,620 0.80 1.09 0.61 4.04 0.76 3:70

(continued)
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Table C.11 (continued)

Stp/N-Stp Stp/N-D N-Stp/N-D

Problem m n Iters Time Iters Time Iters Time
SHELL 537 1,775 0.95 1.00 0.84 2.75 0.89 2:75

SCFX3 991 1,371 0.76 0.79 0.51 1.76 0.67 2:24

25F47 822 1,571 0.42 0.46 0.26 1.10 0.62 2:41

SH04L 403 2,118 1.00 0.94 0.65 2.82 0.65 3:00

QAP8 913 1,632 0.76 0.71 0.30 0.93 0.39 1:30

WOOD1 245 2,594 0.98 1.10 0.73 4.40 0.74 4:00

PIL.J 941 1,988 0.45 0.47 0.28 1.14 0.63 2:42

SCTA2 1,091 1,880 0.72 0.78 0.83 4.30 1.15 5:48

GANGE 1,310 1,681 0.79 0.81 0.82 2.03 1.04 2:52

PLTNO 976 2,172 0.49 0.51 0.40 1.83 0.82 3:56

SCSD8 398 2,750 0.46 0.44 0.32 1.89 0.70 4:32

SH08S 779 2,387 0.89 1.04 0.92 4.46 1.03 4:31

SIERR 1,228 2,036 0.99 1.01 0.82 3.94 0.83 3:88

DEGE3 1,504 1,818 0.64 0.66 0.46 2.01 0.71 3:03

PIL.W 723 2,789 0.36 0.41 0.22 1.53 0.63 3:77

NESM 663 2,923 0.40 0.38 0.32 1.85 0.80 4:90

SH12S 1,152 2,763 0.88 0.88 0.94 4.91 1.07 5:59

SCTA3 1,481 2,480 0.80 0.82 0.85 4.74 1.06 5:79

STCF2 2,158 2,031 0.67 0.73 0.39 1.54 0.58 2:12

CZPRO 930 3,523 0.76 0.90 0.63 4.77 0.84 5:28

CYCLE 1,904 2,857 0.37 0.39 0.34 1.95 0.91 5:06

SH08L 779 4,283 0.76 1.00 0.69 7.24 0.91 7:24

PILOT 1,442 3,652 1.23 0.79 0.87 6.58 0.71 8:35

BNL2 2,325 3,489 0.65 0.67 0.38 2.51 0.58 3:77

SH12L 1,152 5,427 0.89 0.96 0.93 8.82 1.04 9:18

D6CUB 416 6,184 0.83 0.91 0.57 7.06 0.68 7:76

D6CU2 416 6,184 0.74 0.78 0.38 4.42 0.51 5:64

PIL87 2,031 4,883 0.47 0.40 0.36 3.13 0.76 7:81

D2Q06 2,172 5,167 0.55 0.54 0.32 3.07 0.58 5:73

GREEN 2,393 5,405 0.64 0.64 0.55 4.81 0.86 7:48

WOODW 1,099 8,405 0.65 0.65 0.47 7.38 0.73 11:32

TRUSS 1,001 8,806 0.70 0.70 0.62 9.76 0.89 13:96

FIT2D 26 10,500 0.52 0.58 0.26 3.88 0.50 6:74

QAP12 3,193 8,856 0.42 0.40 0.17 2.10 0.42 5:22

80BAU 2,263 9,799 0.57 0.51 0.34 5.36 0.60 10:59

MARR7 3,137 9,408 0.79 0.57 0.79 6.43 1.00 11:31

FIT2P 3,001 13,525 0.55 0.47 0.47 5.33 0.86 11:29

DFL00 6,072 12,230 0.47 0.47 0.18 2.56 0.38 5:40

STOO3 16,676 15,695 0.68 0.67 0.68 13.73 1.01 20:45

Ave. – – 0.60 0.51 0.33 3.18 0.55 6:19
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Table C.12 Statistics for 15 Kennington problems

Stp N-Stp N-D

Problem Iters Time Iters Time Iters Time
KEN-07 1,699 6.0 1,723 6.1 1,718 1.3
CRE-C 1,391 13.7 2,249 22.5 4,345 4.4
CRE-A 1,497 18.4 2,325 29.2 4,228 4.9
PDS-02 911 10.6 1,133 12.8 2,099 1.8
OSA-07 1,507 39.3 1,570 38.2 1,504 1.5
KEN-11 11,931 1,068.0 12,247 1,090.8 13,361 61.7
PDS-06 3,394 467.2 4,032 583.7 13,100 40.6
OSA-14 3,180 334.2 3,227 336.8 3,212 6.0
PDS-10 6,562 2,605.2 8,377 3,440.4 24,179 134.1
KEN-13 23,769 9,181.5 25,464 9,861.8 33,074 339.5
CRE-D 17,782 8,227.1 22,075 10,265.2 73,528 312.1
CRE-B 16,411 8,534.1 24,482 12,764.0 63,703 277.1
OSA-30 6,254 2,264.3 7,727 2,720.3 5,963 20.5
PDS-20 24,854 52,549.0 28,443 59,942.4 93,045 1,199.4
OSA-60 12,809 24,627.3 16,731 30,928.0 13,751 112.1
Total(15) 133,951 109,945.9 161,805 132,042.2 350,810 2,517.0

Table C.13 Ratio for 15 Kennington problems

Stp/N-Stp Stp/N-D N-Stp/N-D

Problem m n Iters Time Iters Time Iters Time
CRE-C 3,069 3,678 0.62 0.61 0.32 3.10 0.52 5.10
CRE-A 3,517 4,067 0.64 0.63 0.35 3.73 0.55 5.91
PDS-02 2,954 7,535 0.80 0.83 0.43 5.80 0.54 7.02
OSA-07 1,119 23,949 0.96 1.03 1.00 27.11 1.04 26.34
KEN-11 14,695 21,349 0.97 0.98 0.89 17.32 0.92 17.69
PDS-06 9,882 28,655 0.84 0.80 0.26 11.50 0.31 14.37
OSA-14 2,338 52,460 0.99 0.99 0.99 55.69 1.00 56.13
PDS-10 16,559 48,763 0.78 0.76 0.27 19.42 0.35 25.65
KEN-13 28,633 42,659 0.93 0.93 0.72 27.04 0.77 29.05
CRE-D 8,927 69,980 0.81 0.80 0.24 26.36 0.30 32.89
CRE-B 9,649 72,447 0.67 0.67 0.26 30.80 0.38 46.07
OSA-30 4,351 100,024 0.81 0.83 1.05 110.72 1.30 133.02
PDS-20 33,875 105,728 0.87 0.88 0.27 43.81 0.31 49.98
OSA-60 10,281 232,966 0.77 0.80 0.93 219.63 1.22 275.82
Average – – 0.83 0.83 0.38 43.68 0.46 52.46
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Table C.14 Statistics for 15 BPMPD problems

Stp N-Stp N-D

Problem Iters Time Iters Time Iters Time
RAT7A 6,372 567.4 11,779 1,498.3 20,074 296.8
NSCT1 1,956 541.1 1,981 573.0 9,090 65.1
NSCT2 3,867 1,023.8 4,211 1,126.5 5,908 42.8
ROUTING 7,956 2,350.6 8,350 2,459.9 22,336 124.5
DBIR1 2,544 1,134.8 2,443 1,090.4 12,209 82.9
DBIR2 1,980 801.3 2,085 839.6 8,012 60.4
T0331-4L 6,304 1,445.1 22,066 6,031.8 49,932 282.1
NEMSEMM2 11,680 2,485.7 9,282 1,913.5 10,392 30.0
SOUTHERN 16,472 4,008.5 21,608 5,491.0 23,771 318.1
RADIO.PR 2 29.7 2 29.7 2 1.4
WORLD.MD 74,418 92,591.3 111,230 132,327.3 220,329 3,077.7
WORLD 79,915 103,793.9 129,969 163,859.8 278,284 3,899.0
RADIO.DL 4 36.8 4 36.8 3 0.9
NEMSEMM1 7,459 2,374.7 7,215 2,275.8 9,514 30.9
NW14 215 12.8 313 14.2 736 5.2
Total(15) 221,144 213,197.3 332,538 319,567.4 670,592 8,317.8
Total(77) 551,420 330,339.1 822,608 465,624.6 1,621,473 13,099.5

Table C.15 Ratio for 15 BPMPD problems

Stp/N-Stp Stp/N-D N-Stp/N-D

Problem m n Iters Time Iters Time Iters Time
RAT7A 3,137 9,408 0.54 0.38 0.32 1.91 0.59 5:05

NSCT1 22,902 14,981 0.99 0.94 0.22 8.31 0.22 8:80

NSCT2 23,004 14,981 0.92 0.91 0.65 23.94 0.71 26:34

ROUTING 20,895 23,923 0.95 0.96 0.36 18.88 0.37 19:76

DBIR1 18,805 27,355 1.04 1.04 0.21 13.69 0.20 13:15

DBIR2 18,907 27,355 0.95 0.95 0.25 13.27 0.26 13:90

T0331-4L 665 46,915 0.29 0.24 0.13 5.12 0.44 21:38

NEMSEMM2 6,944 42,133 1.26 1.30 1.12 82.99 0.89 63:89

SOUTHERN 18,739 35,421 0.76 0.73 0.69 12.60 0.91 17:26

RADIO.PR 58,867 8,052 1.00 1.00 1.00 21.81 1.00 21:82

WORLD.MD 35,665 31,728 0.67 0.70 0.34 30.08 0.50 43:00

WORLD 35,511 32,734 0.61 0.63 0.29 26.62 0.47 42:03

RADIO.DL 8,053 66,918 1.00 1.00 1.33 38.68 1.33 38:75

NEMSEMM1 3,946 71,413 1.03 1.04 0.78 76.80 0.76 73:60

NW14 74 123,409 0.69 0.90 0.29 2.44 0.43 2:71

Average – – 0.67 0.67 0.33 25.63 0.50 38:42
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Table C.16 A second ratio summary

Stp/N-Stp Stp/N-D N-Stp/N-D

Problem Iters Time Iters Time Iters Time
Netlib(47) 0.60 0.51 0.33 3.18 0.55 6.19
Kennington(15) 0.83 0.83 0.38 43.68 0.46 52.46
BPMPD(15) 0.67 0.67 0.33 25.63 0.50 38.42
Average(77) 0.67 0.71 0.34 25.22 0.51 35.55



Appendix D
Empirical Evaluation of Face Methods

To give an insight into the behavior of face methods, the following three codes in
FORTRAN 77 were tested, and compared:

1. RSA: The simplex algorithm (see Notation).
2. FALP: Face Algorithm 22.1.3, supported by Algorithm 22.2.1, with components

of the initial Ox being all ones.
3. DFA: Dual face Algorithm 23.1.3, supported by Algorithm 23.2.1.

All the preceding were dense codes in the sense that they did not exploit sparsity
structure. Harris’ two-pass practical tactic was used. Number 10�6 was taken as
primal and dual feasibility tolerance, and 10�4 as equality relative tolerance. In
FALP, k�Bk1 < 10�8 was used in place of �B D 0, while in DFA, k�yk1 <

10�8 used in place of �y D 0.
Compiled using the Visual FORTRAN 5.0, all codes were run under a Windows

XP system Home Edition Version 2002 on an IBM PC with an Intel(R) Pentium(R)
processor 1.00 GB of 1.86 GHz memory, and about 16 digits of precision. All
reported CPU times were measured in seconds with utility routine CPU_TIME.

Tested was a set of 26 standard problems from NETLIB that do not have
BOUNDS and RANGES sections in their MPS files. Specifically, these were the first
26 such problems in the order of increasing sum of numbers of rows and columns of
the constraint matrix, before adding slack variables (see Table B.4 in Appendix B).

Test statistics obtained with RSA, FALP and DFA are listed in Tables D.1–D.3,
respectively. Total iterations and time, required for solution of each problem, are
displayed in columns labeled Itn and Time respectively, and those associated with
Phase-1 alone in columns labeled Itn1 and Time1. Percentages of total degenerate
iterations are listed in columns labeled % Deg; those associated with Phase-1 are in
the column labeled % Deg1. In the last column labeled k-m of Table D.2, listed are
the dimensions of the optimal face finally reached, whereas the column labeled m-k
in Table D.3 are dimensions of dual optimal faces. Objective values attained are not
listed—all runs were terminated within the feasibility tolerances except for problem

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3,
© Springer-Verlag Berlin Heidelberg 2014
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Table D.1 Statistics for Code RSA

Total Phase 1

Problem Itn Time %Deg Itn1 Time1 %Deg1
AFIRO 29 0.03 69:0 28 0.03 71:4

SC50B 57 0.06 80:7 50 0.06 90:0

SC50A 55 0.09 74:5 51 0.09 78:4

ADLITTLE 134 0.13 12:7 69 0.13 24:6

BLEND 115 0.17 40:0 90 0.17 51:1

SHARE2B 196 0.28 57:1 149 0.27 67:8

SC105 123 0.36 73:2 110 0.36 77:3

STOCFOR1 174 0.50 68:4 150 0.48 79:3

SCAGR7 181 0.67 34:3 146 0.64 42:5

ISRAEL 507 1.41 0:8 188 0.97 1:1

SHARE1B 309 1.67 7:1 190 1.58 11:6

SC205 255 2.23 66:7 211 2.16 80:1

BEACONFD 213 2.61 51:2 159 2.53 57:9

LOTFI 354 3.13 16:4 190 2.91 22:6

BRANDY 356 3.86 33:7 238 3.63 49:2

E226 615 5.50 23:7 394 4.94 32:7

AGG 639 13.64 6:4 571 12.89 7:0

SCORPION 405 16.64 61:0 380 16.47 64:5

BANDM 666 20.42 21:8 467 19.39 30:0

SCTAP1 481 23.11 36:6 349 22.44 44:4

SCFXM1 587 26.98 35:1 429 26.03 45:5

AGG2 824 39.47 5:5 629 36.70 5:6

AGG3 837 52.14 5:5 627 49.17 6:1

SCSD1 186 52.31 81:7 80 52.23 97:5

SCAGR25 922 64.52 34:1 596 60.42 44:5

Total(25) 9,220 331.93 39:9 6,541 316.69 47:3

DEGEN2 10,000 177.83 48:7 1,990 87.84 45:7

DEGEN2, which RSA failed to solve within 10,000 iterations, and the associated
results were listed separately, in the bottom lines of the tables.

(1) A comparison between RSA and FALP.
Table D.4 gives iteration and time ratios of RSA to FALP. From the second
bottom line, it is seen that the total iteration ratio with the 25 test problems
are 1:51, while the total time ratio is 4:91! As the time ratio with SCSD1
is exceptionally high (83:03), the bottom line lists total ratios with the 24
problems, excluding SCSD1. It is seen that the associated iterations and time
ratio are 1:69 and 4:17, respectively, as indicates that results with SCSD1 alone
do not dominate too much.

(2) A comparison between RSA and DFA.
Table D.5 gives iterations and time ratios of RSA to DFA. If is seen from the
second bottom line that the total iteration ratio with the 25 test problems are
1:19, while the total time ratio is as high as 10:04! As the time ratio with SCSD1
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Table D.2 Statistics for FALP

Total Phase 1

Problem Itn Time %Deg Itn1 Time1 %Deg1 k-m
AFIRO 26 0.02 0.0 7 0:00 0:0 9
SC50B 30 0.02 0.0 1 0:00 0:0 20
SC50A 32 0.02 0.0 1 0:00 0:0 20
ADLITTLE 175 0.13 0.0 40 0:03 0:0 15
BLEND 49 0.08 0.0 11 0:03 0:0 44
SHARE2B 85 0.06 0.0 55 0:03 0:0 14
SC105 65 0.06 0.0 1 0:02 0:0 45
STOCFOR1 66 0.09 0.0 23 0:03 0:0 63
SCAGR7 134 0.23 0.0 91 0:13 0:0 84
ISRAEL 294 0.67 0.3 79 0:16 0:0 0
SHARE1B 243 0.34 0.0 140 0:16 0:0 89
SC205 139 0.53 0.0 1 0:08 0:0 91
BEACONFD 135 0.44 3.0 60 0:16 5:0 144
LOTFI 353 0.73 0.6 198 0:30 0:0 95
BRANDY 246 0.91 1.2 76 0:23 0:0 142
E226 486 1.81 0.2 192 0:53 0:0 37
AGG 160 4.45 0.0 94 1:81 0:0 49
SCORPION 119 2.36 3.4 23 0:61 17:4 249
BANDM 410 5.02 0.0 167 1:55 0:0 305
SCTAP1 449 3.55 2.9 112 1:02 0:0 120
SCFXM1 528 6.23 0.2 383 3:78 0:0 191
AGG2 282 7.97 0.0 67 2:14 0:0 76
AGG3 290 8.25 0.0 86 2:50 0:0 76
SCSD1 736 0.63 9.8 1 0:03 0:0 77
SCAGR25 556 23.06 0.0 361 13:47 0:0 300
Total(25) 6,088 67.66 0.9 2,270 28:80 0:9 94
DEGEN2 452 11.13 0.0 190 3:94 0:0 219

is as exceptionally high (1046:20), the bottom line lists total ratios with the
other 24 problems: the associated iteration and time ratios are 1:17 and 8:47,
respectively.

Considering that the time ratio is the only indication for efficiency, we conclude
that the primal and dual face codes outperformed RSA unambiguously.

Such outcome might be astonishing, but not surprising:
On one hand, FALP solves a single triangular .m C 1/ 
 .m C 1/-system in each

iteration, compared with RSA solving four triangular m 
 m-systems.
On the other hand, it is seen from the last column of Table D.2 that all optimal

faces, finally reached by FALP, are not vertices, except for ISREAL, and that the
average dimensions of these faces is about 94. The ratio of average dimensions to
average rows is as low as 94=213 D 0:44. In general, a high-dimensional optimal
face is easier to achieve than an optimal vertex.
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Table D.3 Statistics for Code DFA

Total Phase 1

Problem Itn Time %Deg Itn1 Time1 %Deg1 m-k
AFIRO 30 0.00 20:0 22 0.00 0:0 3

SC50B 50 0.00 0:0 48 0.00 0:0 2

SC50A 53 0.00 0:0 47 0.00 0:0 1

ADLITTLE 164 0.03 15:2 29 0.02 0:0 0

BLEND 104 0.03 2:9 75 0.02 0:0 0

SHARE2B 142 0.03 11:3 69 0.02 1:4 0

SC105 110 0.03 0:0 102 0.02 0:0 1

STOCFOR1 152 0.08 0:0 127 0.05 0:0 0

SCAGR7 254 0.23 11:8 110 0.06 10:9 0

ISRAEL 321 0.36 12:8 140 0.11 0:0 0

SHARE1B 245 0.13 4:5 119 0.06 0:0 0

SC205 209 0.27 0:0 202 0.20 0:0 2

BEACONFD 136 0.06 27:9 1 0.00 0:0 50

LOTFI 264 0.27 8:3 137 0.13 0:0 0

BRANDY 556 0.89 36:7 1 0.00 0:0 16

E226 381 0.78 7:3 156 0.23 0:0 9

AGG 542 3.59 9:0 122 0.63 0:8 11

SCORPION 362 1.44 22:1 1 0.00 0:0 21

BANDM 558 2.75 0:7 294 1.22 0:3 0

SCTAP1 366 0.75 79:0 1 0.02 0:0 33

SCFXM1 713 3.30 5:6 216 0.70 0:5 1

AGG2 571 4.97 5:3 161 1.25 0:0 0

AGG3 588 5.14 5:1 151 1.14 0:0 0

SCSD1 78 0.05 35:9 1 0.00 0:0 0

SCAGR25 822 7.89 16:8 360 2.75 13:3 8

Total(25) 7,771 33.07 13:5 2,692 8.63 1:1 6

DEGEN2 1,627 18.09 6:0 434 3.53 0:2 4

As for a comparison between the two face codes, DFA is even superior to FALP,
partially due to that the former solves a smaller triangular k 
 k system in each
iteration, where k varies dynamically but never exceeds m. From the last column of
Table D.3, in fact, it is seen that k did not reach m for 14 out of the 26 test problems.
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Table D.4 Ratio of RSA to FALP

Total Phase 1

Problem m n m C n Itn Time Itn Time
AFIRO 28 32 60 1.12 1.50 4.00 300.00
SC50B 51 48 99 1.90 3.00 50.00 600.00
SC50A 51 48 99 1.72 4.50 51.00 900.00
ADLITTLE 57 97 154 0.77 1.00 1.73 4.33
BLEND 75 83 158 2.35 2.13 8.18 5.67
SHARE2B 97 79 176 2.31 4.67 2.71 9.00
SC105 106 103 209 1.89 6.00 110.00 18.00
STOCFOR1 118 111 229 2.64 5.56 6.52 16.00
SCAGR7 130 140 270 1.35 2.91 1.60 4.92
ISRAEL 175 142 317 1.72 2.10 2.38 6.06
SHARE1B 118 225 343 1.27 4.91 1.36 9.88
SC205 206 203 409 1.83 4.21 211.00 27.00
BEACONFD 174 262 436 1.58 5.93 2.65 15.81
LOTFI 154 308 462 1.00 4.29 0.96 9.70
BRANDY 194 249 443 1.45 4.24 3.13 15.78
E226 224 282 506 1.27 3.04 2.05 9.32
AGG 489 163 652 3.99 3.07 6.07 7.12
SCORPION 358 358 716 3.40 7.05 16.52 27.00
BANDM 306 472 778 1.62 4.07 2.80 12.51
SCTAP1 301 480 781 1.07 6.51 3.12 22.00
SCFXM1 331 457 788 1.11 4.33 1.12 6.89
AGG2 517 302 819 2.92 4.95 9.39 17.15
AGG3 517 302 819 2.89 6.32 7.29 19.67
SCSD1 78 760 838 0.25 83.03 80.00 1,741.00
SCAGR25 472 500 972 1.66 2.80 1.65 4.49
Average(25) 213 248 461 1.51 4.91 2.88 11.00
Average(24) 218 226 445 1.69 4.17 2.85 9.19
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Table D.5 Ratio of RSA to DFA

Total Phase 1

Problem m n m C n Itn Time Itn Time
AFIRO 28 32 60 0.97 – 1.27 –
SC50B 51 48 99 1.14 – 1.04 –
SC50A 51 48 99 1.04 – 1.09 –
ADLITTLE 57 97 154 0.82 4.33 2.38 6.50
BLEND 75 83 158 1.11 5.67 1.20 8.50
SHARE2B 97 79 176 1.38 9.33 2.16 13.50
SC105 106 103 209 1.12 12.00 1.08 18.00
STOCFOR1 118 111 229 1.14 6.25 1.18 9.60
SCAGR7 130 140 270 0.71 2.91 1.33 10.67
ISRAEL 175 142 317 1.58 3.92 1.34 8.82
SHARE1B 118 225 343 1.26 12.85 1.60 26.33
SC205 206 203 409 1.22 8.26 1.04 10.80
BEACONFD 174 262 436 1.57 43.50 159.00 –
LOTFI 154 308 462 1.34 11.59 1.39 22.38
BRANDY 194 249 443 0.64 4.34 238.00 –
E226 224 282 506 1.61 7.05 2.53 21.48
AGG 489 163 652 1.18 3.80 4.68 20.46
SCORPION 358 358 716 1.12 11.56 380.00 –
BANDM 306 472 778 1.19 7.43 1.59 15.89
SCTAP1 301 480 781 1.31 30.81 349.00 1,122.00
SCFXM1 331 457 788 0.82 8.18 1.99 37.19
AGG2 517 302 819 1.44 7.94 3.91 29.36
AGG3 517 302 819 1.42 10.14 4.15 43.13
SCSD1 78 760 838 2.38 1,046.20 80.00 –
SCAGR25 472 500 972 1.12 8.18 1.66 21.97
Average(25) 213 248 461 1.19 10.04 2.43 36.70
Average(24) 218 226 445 1.17 8.47 2.40 30.64



Appendix E
Empirical Evaluation of the Feasible-Point
Simplex Method

Computational experiments have been performed, involving the following three
codes:

1. MINOS: MINOS 5.51 with full pricing.
2. FPS: Two-Phase code based on Algorithm 24.4.1.
3. FPSP: Two-Phase code based on Algorithm 24.4.1 with the purification.

In both FPS and FPSP, �1 D 10�8 and �2 D 10�8 were used for Phase-1, and
�1 D 10�3 and �2 D 10�6 for Phase-2.

Codes FPS and FPSP were developed using MINOS 5.51 as a platform.
Therefore, the three codes shared such features as preprocessing, scaling, LUSOL
(Saunders, 87), etc. Only the Mi50lp module was replaced by programs written by
the author himself, with minor changes in few other modules. All codes used the
default options, except for those listed in Appendix C.

Compiled using Visual Fortran 5.0, all codes were run under a Microsoft Win-
dows XP Professional version 2002 on an ACER PC with an Intel(R) Pentium(R) 4
CPU 3.06 GHz, 1.00 GB memory, and about 16 digits of precision.

The first set of test problems included all 16 problems from Kennington and
the second included all 17 problems from BPMPD that were more than 500 KB in
compressed form (Appendix B: Tables B.2 and B.3).

In the tables, test problems are ordered by their sizes, in terms of m+n as before,
where m and n are the numbers of rows and columns of the constraint matrix,
excluding slack variables. All reported CPU times were measured in seconds with
utility routine CPU_TIME, excluding the time spent on preprocessing and scaling.
FPS and FPSP used 10�6 as the equality tolerance (for holding of Ax D b),
compared with MINOS, which used 10�4, as usual.

P.-Q. PAN, Linear Programming Computation, DOI 10.1007/978-3-642-40754-3,
© Springer-Verlag Berlin Heidelberg 2014
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Table E.1 Statistics for 16 Kennington problems

MINOS FPSP FPS

Problem Itns Time Itns Time Itns Time
KEN-07 1,724 1.97 1,754 2.02 1,750 2.02
CRE-C 4,068 6.81 7,487 11.89 2,751 4.66
CRE-A 4,066 7.67 8,972 16.77 4,069 8.09
PDS-02 5,110 9.06 1,171 1.84 1,025 1.61
OSA-07 1,767 7.16 1,949 8.00 1,204 5.02
KEN-11 13,327 111.39 13,549 113.67 13,542 113.59
PDS-06 59,521 433.67 8,860 57.41 6,317 40.36
OSA-14 3,821 33.48 3,581 32.16 1,747 16.19
PDS-10 177,976 2,253.64 11,191 122.13 7,110 75.47
KEN-13 35,709 637.92 35,301 629.66 35,162 627.05
CRE-D 377,243 4,796.42 28,042 358.75 1,144 13.23
CRE-B 328,160 4,406.19 32,228 430.81 1,422 17.91
OSA-30 7,536 126.30 5,886 101.59 2,778 49.33
PDS-20 1,557,953 44,803.02 88,068 2,258.83 64,777 1,643.14
OSA-60 16,278 638.50 10,976 449.45 4,714 199.36
KEN-18 157,224 19,395.88 155,355 19,315.88 154,801 19,253.55

Total 2,751,483 77,669.08 414,370 23,910.86 304,313 22,070.58

Numerical results obtained with Kennington and BPMPD problems are dis-
played, respectively, in Tables E.1 and E.2, where the total iterations and time
required for solving each problem are listed in the columns labeled Itns and Time
under MINOS, FPSP and FPS, separately. As MINOS solved problems RADIO.PR
and RADIO.DU in few iterations, results for the two problems are listed separately
in the bottom lines, and excluded from comparison with BPMPD set.

In Table E.3, a performance comparison between the three codes with Kenning-
ton set is made by giving iteration and time ratios of MINOS to FPSP, MINOS to
FPS and FPSP to FPS for each problem. It is seen from the bottom line that FPSP
and FPS outperformed MINOS remarkably, with average iterations ratios 6:6 and
9:0, and time ratios 3:2 and 3:5! It is noted that the difference between FPSP and
FPS is small (with iterations ratio 1:4 and time ratio 1:1).

In Table E.4, a comparison between the three codes with BPMPD set is made.
It is seen from the second bottom line that FPSP and FPS outperformed MINOS,
by average iterations ratios 2:8 and 9:5, and time ratios 3:4 and 9:0! The margins
between FPSP and FPS is smaller (with iterations ratio 3:3 and time ratio 2:6).
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Table E.2 Statistics for 17 BPMPD problems

MINOS FPSP FPS

Problem Itns Time Itns Time Itns Time
RAT7A 4,073 573.59 4,102 52.06 4,100 52.03
NSCT1 2,190 35.83 13,198 197.36 95 1.44
NSCT2 11,555 196.63 11,971 182.23 92 1.45
RIUTING 190,627 2,143.70 75,759 813.08 72,774 780.00
DBIR1 2,289 47.44 12,781 242.64 34 0.61
DBIR2 42,575 966.77 12,750 235.83 12,745 235.72
T0331-4L 62,333 789.83 108,780 1,330.63 108,575 1,328.14
NEMSEMM2 23,581 204.59 18,109 136.98 7,327 58.00
SOUTHERN 29,693 462.67 27,550 314.17 27,550 314.16
WORLD.MO 1,405,151 30,953.42 822,287 19,193.38 94,542 2,929.00
WORLD 2,627,208 61,340.78 1,260,355 27,315.31 165,045 4,132.83
NEMSEMM1 13,650 263.20 14,575 255.17 14,491 253.64
NW14 407 8.45 899 19.20 690 14.42
LPL1 3,343,112 127,379.39 203,967 7,214.02 2,414 104.41
DBIC1 624,907 33,335.58 377,655 18,746.17 375,734 18,679.69
Total 8,383,351 258,701.88 2,964,738 76,248.23 886,208 28,885.54
RADIO.PR 2 0.50 639,702 14,371.16 623,810 14,009.16
RADIO.DU 3 0.09 5,055 56.11 5,018 55.66

Table E.3 Ratio for 16 Kennington problems

MINOS/FPSP MINOS/FPS FPSP/FPS

Problem M N Itns Time Itns Time Itns Time
KEN-07 2,427 3,602 1.0 1:0 1:0 1:0 1.0 1:0

CRE-C 3,069 3,678 0.5 0:6 1:5 1:5 2.7 2:6

CRE-A 3,517 4,067 0.5 0:5 1:0 0:9 2.2 2:1

PDS-02 2,954 7,535 4.4 4:9 5:0 5:6 1.1 1:1

OSA-07 1,119 23,949 0.9 0:9 1:5 1:4 1.6 1:6

KEN-11 14,695 21,349 1.0 1:0 1:0 1:0 1.0 1:0

PDS-06 9,882 28,655 6.7 7:6 9:4 10:7 1.4 1:4

OSA-14 2,338 52,460 1.1 1:0 2:2 2:1 2.0 2:0

PDS-10 16,559 48,763 15.9 18:5 25:0 29:9 1.6 1:6

KEN-13 28,633 42,659 1.0 1:0 1:0 1:0 1.0 1:0

CRE-D 8,927 69,980 13.5 13:4 329:8 362:5 24.5 27:1

CRE-B 9,649 72,447 10.2 10:2 230:8 246:0 22.7 24:1

OSA-30 4,351 100,024 1.3 1:2 2:7 2:6 2.1 2:1

PDS-20 33,875 105,728 17.7 19:8 24:1 27:3 1.4 1:4

OSA-60 10,281 232,966 1.5 1:4 3:5 3:2 2.3 2:3

KEN-18 105,128 154,699 1.0 1:0 1:0 1:0 1.0 1:0

Ave.(16) – – 6.6 3:2 9:0 3:5 1.4 1:1
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Table E.4 Ratio for 15 BPMPD problems

MINOS/FPSP MINOS/FPS FPSP/FPS

Problem M N Itns Time Itns Time Itns Time
RAT7A 3,137 9,408 1.0 11:0 1.0 11.0 1.0 1.0
NSCT1 22,902 14,981 0.2 0:2 23.1 24.9 138.9 137.1
NSCT2 23,004 14,981 1.0 1:1 125.6 135.6 130.1 125.7
RIUTI 20,895 23,923 2.5 2:6 2.6 2.7 1.0 1.0
DBIR1 18,805 27,355 0.2 0:2 67.3 77.8 375.9 397.8
DBIR2 18,907 27,355 3.3 4:1 3.3 4.1 1.0 1.0
T0331 665 46,915 0.6 0:6 0.6 0.6 1.0 1.0
NEM.2 6,944 42,133 1.3 1:5 3.2 3.5 2.5 2.4
SOUTH 18,739 35,421 1.1 1:5 1.1 1.5 1.0 1.0
WOR.M 35,665 31,728 1.7 1:6 14.9 10.6 8.7 6.6
WORLD 35,511 32,734 2.1 2:2 15.9 14.8 7.6 6.6
NEM.1 3,946 71,413 0.9 1:0 0.9 1.0 1.0 1.0
NW14 74 123,409 0.5 0:4 0.6 0.6 1.3 1.3
LPL1 39,952 125,000 16.4 17:7 1,384.9 1,220.0 84.5 69.1
DBIC1 43,201 183,235 1.7 1:8 1.7 1.8 1.0 1.0
Ave.(15) – – 2.8 3:4 9.5 9.0 3.3 2.6
Ave.(31) – – 3.3 3:4 9.4 6.6 2.8 2.0

In the bottom line of Table E.4, listed are average ratios for the entire set of the 31
test problems. FPSP and FPS again defeated MINOS: the average iterations ratios
are 3:3 and 9:4, while the time ratios are 3:4 and 6:6.

In summary, the feasible-point simplex algorithm is significantly superior to the
standard simplex algorithm with the test sets.
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