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Abstract. We introduce the Group Total Variation (GTV) regularizer,
a modification of Total Variation that uses the �2,1 norm instead of the
�1 one to deal with multidimensional features. When used as the only
regularizer, GTV can be applied jointly with iterative convex optimiza-
tion algorithms such as FISTA. This requires to compute its proximal
operator which we derive using a dual formulation. GTV can also be
combined with a Group Lasso (GL) regularizer, leading to what we call
Group Fused Lasso (GFL) whose proximal operator can now be com-
puted combining the GTV and GL proximals through Dykstra algorithm.
We will illustrate how to apply GFL in strongly structured but ill-posed
regression problems as well as the use of GTV to denoise colour images.

Keywords: Group Fused Lasso, Group Total Variation, Group Lasso,
Fused Lasso, Total Variation.

1 Introduction

The irruption of big data, i.e., the need to study problems having very large
sample sizes or very large dimensions or both, has resulted in a renewed in-
terest in linear models, either because processing large samples with non-linear
models is computationally demanding, or because a large dimension yields rich
enough patterns so that methods enlarging pattern dimension such as the ker-
nel trick add marginal value. Among linear models, Mean Square Error is the
simplest fitting function, although it is well known that some regularizer has to
be added, either to ensure good generalization, or just because the initial prob-
lem may be ill-posed. Classic choices include ‖w‖22 (ridge regression) and ‖w‖1
(Lasso [8]), and recently more �1-based regularizers such as Group Lasso [10] or
Fused Lasso [9], have been introduced.

From a general point of view all these models can be stated as the problem
of finding a w∗ ∈ R

M which minimizes a certain functional f(w) = fL(w) +
fR(w) of the weights, with fR the regularization term which somehow bounds
the complexity of the model and fL the loss functional. In more detail, assume
a training set composed by P input patterns, {xp}Pp=1, with xp ∈ R

M , and their

corresponding targets {yp}Pp=1, y
p ∈ R. If X ∈ R

P×M is the matrix having input

patterns as rows and y ∈ R
P is the target vector, the overall problem for square

loss can be written as
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min
w∈RM

f(w) = min
w∈RM

fL(w) + λfR(w) = min
w∈RM

‖Xw − y‖22 + λfR(w), (1)

where λ is a parameter to control the strength of the regularizer.
Taking fR(w) = ‖w‖1 =

∑M
i=1 |wi| results in the Lasso approach (LA), which

enforces sparsity in the coefficients with an implicit feature selection, since only
those inputs corresponding to nonzero coefficients have an impact in the model.

In some problems the features can present a spatial structure which we may
want the models to capture. One way to do this is to enforce similarity among
the coefficients corresponding to nearby features. If we do not consider any mul-
tidimensional feature structure, this can be achieved using a Total Variation
(TV) regularizer TV1 (w) =

∑M
i=2 |wi − wi−1|, which penalizes the differences

between consecutive coefficients. Some sparsity may also be wanted and the over-
all regularizer to be used is then fR(w) = ‖w‖1 + λ̂TV1 (w) = ‖w‖1 + λ̂‖Dw‖1,
where D ∈ R

(M−1)×M is the differencing matrix with Di,i = −1, Di,i+1 = 1 and
Dij = 0 elsewhere. The resulting model is called the Fused Lasso (FL).

Neither LA nor FL do consider any possible group structure on the problem
features and, therefore, the resulting models will not reflect it even if it may
be present. Assume, however, that the pattern features x have such a group
structure. We may then see x as a collection of multidimensional features, that is,
x has NV components that come in N groups with V features each and therefore
x = (x1,1, x1,2, . . . , x1,V , x2,1, x2,2, . . . x2,V , . . . , xN,1, xN,2, . . . , xN,V )

� ∈ R
NV .

The first subscript in xn,v indicates the group (or the multidimensional feature)
and the second subscript the group feature so x is decomposed in N blocks
xn = (xn,1, . . . , xn,V )

� that contain V variables. The mixed �2,1 norm is possibly
the easiest and most natural regularizer in this framework. More precisely, for
a vector w with the above group structure, its �2,1 norm ‖w‖2,1 is defined as

‖w‖2,1 =
∑N

n=1 ‖wn‖2, which is just the �1 norm of the �2 group norms. This
leads to the Group Lasso model (GL) whose regularizer is then fR(w) = ‖w‖2,1.

In this work we will extend GL to a fused setting, introducing first a new
Group Total Variation regularizer (GTV) defined as:

GTV (w) =

N∑

n=2

√
√
√
√

V∑

v=1

(wn,v − wn−1,v)2,

and considering a full regularization functional that adds the GTV term to the
standard �2,1 regularizer of GL. We can write it in compact notation as

fR(w) = ‖w‖2,1 + λ̂‖D̄w‖2,1, with D̄ =

(−I I

. . .
. . .
−I I

)

. (2)

D̄ ∈ R
(N−1)V×NV is the group differencing matrix, and I ∈ R

V ×V stands for
the identity matrix. We call this model Group Fused Lasso (GFL). Notice that
if V = 1 we recover FL, and if V = M , i.e., there is a single group with M
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variables, GFL boils down to a variant of FL using a TV2 regularizer, also known
as �2-Variable Fusion [2].

We will solve the GFL optimization problem through convex proximal opti-
mization techniques. We will essentially apply a variant of the FISTA algorithm
which, in turn, requires that we can compute the proximal operator of the GFL
regularizer, something we will do in Sect. 2. We point out that GFL with only
the group ‖D̄w‖2,1 penalty has been introduced in [6]. However, its solution is
different from ours, as it reduces this GFL to a GL model that is then solved by
a group LARS algorithm. We believe our approach to be better suited to deal
with the full general GFL case. We shall illustrate the behaviour of GFL over
two examples in Sect. 3, and we will close the paper in Sect. 4 with a discussion
and pointers to further work.

2 Solving Group Fused Lasso with Proximal Methods

All the �1 regularizers of Sect. 1 lead to non-differentiable optimization problems,
which prevents solving them by standard gradient-based methods. However, they
fit very nicely under the paradigm of Proximal Methods (PMs) that we briefly
review next. Recall that the function to be minimized in (1) is fL(w) + fR(w),
where we include the penalty factor λ in fR(w).

Denote by ∂h(w) the subdifferential at w of a convex function h; since both
terms are convex and fL(w) is differentiable, w

∗ will be a minimum of fL(w) +
fR(w) iff 0 ∈ ∂(fL(w

∗) + fR(w
∗)) [3] or, by the Moreau–Rockafellar theorem,

0 ∈ ∇fL(w
∗) + ∂fR(w

∗). Equivalently, we have −γ∇fL(w
∗) ∈ γλ∂fR(w

∗) for
any γ > 0 and, also, w∗ − γ∇fL(w

∗) ∈ w∗ + γ∂fR(w
∗) = (I + γ∂fR)(w

∗). Thus,
the set function (I + γ∂fR)

−1 verifies

w∗ ∈ (I + γ∂fR)
−1 (w∗ − γ∇fL(w

∗)) . (3)

Now, if F is a convex, lower semicontinuous function, its proximal operator at
w with step γ > 0 is defined as

zw = proxγ;F (w) = arg min
z∈RM

{
1

2
‖z − w‖22 + γF (z)

}

.

Notice that then we have 0 ∈ zw−w+γ∂F (zw), that is, zw ∈ (I+∂F )−1(w). For a
general convex F , it can be shown [3] that ∂F is a monotone operator and, while
in principle (I+∂F )−1 would be just a set-function, it is actually uniquely valued.
Therefore, it defines a function for which proxγ;F (w) = zw = (I + ∂F )−1(w)
holds. Thus, going back to (3), it follows that w∗ = proxγ;fR (w∗ − γ∇fL(w

∗)),
which immediately suggests an iterative algorithm of the form

wk+1 = proxγ;fR
(
wk − γ∇fL(w

k)
)
.

This is at the heart of the well known proximal gradient method [7] and of
its ISTA and FISTA (Fast Iterative Shrinkage–Thresholding Algorithm) exten-
sions [4]. In particular, we will focus on FISTA, based on the pair of equations:

wk = prox 1
K ;fR

(

zk − 1

K
∇fL(z

k)

)

, zk+1 = wk +
tk − 1

tk+1
(wk − wk−1),
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where tk+1 = 1
2 (1+

√
1 + 4t2k) and K is a the Lipschitz constant for ∇fL. Notice

that these algorithms require at each step the computation of the proximal
operator at the current wk. We discuss next these operators for GFL.

Observe that to solve problem (2) for the complete GFL regularizer, we need
the proximal operator of the sum of the GTV and GL terms. Both regulariz-
ers are not separable, so their joint proximal operator cannot be built by the
usual expedient of applying consecutively the proximal operators of GTV and
GL. However, we can still solve the proximal problem by the Proximal Dykstra
(PD) [7] algorithm, which allows to compute the proximal operator of the sum of
several terms combining their individual proximal operators in an iterative fash-
ion. Therefore we can focus on computing each proximal operator separately.
In our case, the proximal operator of the GL regularizer is just the group soft-
thresholding [1] defined as proxγ;‖·‖2,1

(wn,v) = wn,v(1 − γ/‖wn‖2)+, and we will
derive now the proximal operator for GTV, following an analogous argument to
the one in [2] for TV. We have to solve

proxγ;GTV (w) = argminz∈RM

1

2
‖z − w‖22 + γ‖D̄z‖2,1, (4)

which is a particular case of the more general problem infz∈RM f(z) + γr(Bz),
where B ≡ D̄, r(·) ≡ ‖ · ‖2,1 and f(y) ≡ 1

2‖y − w‖22. In turn, this is equivalent

to infz,v f(z) + γr(v) s.t. v = Bz, with z ∈ R
M and v ∈ R

(N−1)V . Writing its
Lagrangian as L(z, v;u) = f(z) + γr(v) + u · (Bz − v) with u ∈ R

(N−1)V , we
can transform the equivalent saddle point problem infz,v supu L(z, v, u) into
the dual problem

inf
u

f∗(−B�u) + γr∗
(
1

γ
u

)

,

by means of the Fenchel Conjugate F ∗(x̂) = − infx {f(x)− x · x̂} [3]. Going back
to (4), it is easy to see that for f(z) = 1

2‖z−w‖22, we have f∗(s) = 1
2s · s+ s ·w.

The conjugate of the �2,1 norm can be derived using the definition of Fenchel
Conjugate and the conjugate of the �2 norm (the indicator function of the unitary
ball), obtaining that r∗(s) is the indicator function of the unitary balls for each
group, ι∧N−1

n=1 ‖sn‖2≤1. Therefore, the dual problem becomes:

min
u

{
1

2
‖D̄�u‖22 − u�D̄w + ι∧N−1

n=1 ‖un‖2≤γ

}

≡ min
u

{
1

2
‖D̄�u− w‖22

}

s.t. ‖un‖2 ≤ γ, 1 ≤ n ≤ N − 1,

(5)

where we have completed squares and changed the indicator function to a set
of constraints. Since problem (5) is quadratic with simple convex constraints, it
can be easily solved using projected gradient. After that, zw (i.e., the result of
the proximal operator) can be recovered from the dual solution u∗ through the
equality zw = w − D̄�u∗, which follows from 0 = ∇zL = zw − w +B�u∗.

To finish this section, we observe that the form of the �2,1 norm implic-
itly assumes a 1-dimensional spatial structure for the data. However, many
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problems of interest, such as image processing, present a natural multidimen-
sional structure that cannot be captured by the �2,1 penalty. Working only with
the GTV penalty, and as in [2], a solution for this is to combine several 1-
dimensional GTV penalties to obtain a multidimensional GTV. For example,
for problems with a 2-dimensional structure, we penalize changes in both row
and column-wise adjacent features. More precisely, denoting the i-th row by w[i,·]

and the j-th column by w[·,j], we can define the 2-dimensional GTV regularizer
as GTV2d (w) =

∑
i GTV

(
w[i,·])+

∑
j GTV

(
w[·,j]). This can be easily extended

to more than two dimensions but, again, notice that this multidimensional GTV
regularizer is the sum of 1-dimensional GTVs. Those corresponding to the same
dimension (for example, the terms GTV

(
w[i,·]) corresponding to the different

columns) apply over different variables, and are therefore separable, so the prox-
imal operator of the summation of a particular dimension can be computed just
by composing the individual proximal operators. Nevertheless, each complete
summation applies over all the variables, and they cannot be separated. In order
to combine the proximal operators of the different dimensions we can use once
again the PD algorithm. Similarly, for the case of a complete multidimensional
GFL linear model, we should use PD to compute the proximal operator of the
multidimensional GTV regularizer, and then combine the GTV and GL proximal
operators applying again PD.

3 Experiments

We will present next an application of the GFL model over a synthetic regression
example and the use of the GTV regularizer for colour image denoising.

We consider first a synthetic structured linear problem where pattern features
are divided into 100 3-dimensional groups, i.e., we have N = 100 and V = 3.
The optimal weights are structured in 4 consecutive segments of 25 groups with
constant values for the three group coordinates. This defines an optimal weight
w∗ = (w∗

1 , w
∗
2 , w

∗
3 , w

∗
4)

� with each w∗
i constant; w∗ is thus built in such a way

that it makes the features to be simultaneously either active or inactive and in
such a way that adjacent features have a block behaviour. The optimal w∗ is
then perturbed to obtain a weight vector of the form w̃n,v = w∗

n,v+ηn,v with η ∼
N (0, 0.1) Gaussian noise. Random independent patterns xp are then generated
by a N (0, 1) distribution, and the values yp = w̃ · xp + η̂p with η̂ ∼ N (0, 0.1)
then define a regression problem. Notice that the underlying spatial structure
of the weights imposes also an spatial structure on the yp values. Moreover,
if the number of generated x patterns is well below the problem dimension of
300, we will end up with an ill-posed problem. We will consider 600, 300, 100
and 50 training patterns and solve the regression problem using LA, GL, FL
and GFL. In the latter case, we apply the complete 1-dimensional GFL linear
model (with both the 1-dimensional GTV and the GL terms). The corresponding
regularization parameters are chosen so that the estimated weights are closest
to the generating weights in the �1 distance. Table 3 presents the corresponding
results in terms of the distances ‖w − w∗‖1 and ‖w − w∗‖2. As can be seen,
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Table 1. Distance to optimal weights for the considered structured linear regression
models as a function of the number of training samples (lower is better)

Mod
Training Size

600 300 100 50

LA 23.59 29.91 1016.60 1284.88
GL 23.70 30.75 1024.45 1304.23
FL 10.61 11.28 13 .88 29.60
GFL 9 .35 10 .93 15.57 26 .43

‖w −w∗‖1

Mod
Training Size

600 300 100 50

LA 1.74 2.21 96.28 126.47
GL 1.76 2.26 92.25 128.76
FL 0.86 0.97 1.26 2.40
GFL 0 .72 0 .92 1 .24 2 .05

‖w − w∗‖2

GFL achieves the lowest ‖w − w∗‖1 distance in all the cases but one, and the
lowest ‖w − w∗‖2 for all of them. Only FL is comparable, whereas LA and GL
values are clearly worse for the 600 and 300 pattern problems and markedly
fail when used with few training samples. As reference value, observe that the
distances of the perturbed weights to the original ones are ‖w̃ − w∗‖1 = 24.81
and ‖w̃ − w∗‖2 = 1.78, close to the FL and GFL values but far away from the
LA, GL ones. Moreover, Fig. 3 shows how GFL recovers quite well the inherent
structure of the problem.
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Fig. 1. Noisy weights (left) and weights recovered by GFL (right), using 600 patterns.
The three colours represent different variables of the same group.

We consider next how to apply GTV to denoise colour images. Notice that
images have a natural spatial structure, as pixels change smoothly and can be
considered nearly constant in nearby regions (except in objects borders). There-
fore, TV regularization has been extensively used for this task [5] on gray level
images, in the form of the denoising model minI

1
2‖I− Ĩ‖22+TV2d (I) for a noisy

image Ĩ and some bidimensional form of TV, whose block structure permits to
preserve the borders. When dealing with colour images a possible option is to
apply TV denoising independently to each of the three RGB layers. However,
we can also consider each pixel as a multi-valued (R,G,B) feature, making GTV
fit naturally into this problem using the whole of the problem structure. Specifi-
cally, we will use the 2-dimensional GTV proximal operator, which can be easily
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computed as explained in Sect. 2. We will work with two different colour images.
The first one (peppers) is perturbed by additive noise as Ĩ = I + n, with I the
original image and n ∼ N (0, 0.05). For the second image (Lena) we consider
speckle noise, i.e., multiplicative uniform noise, with Ĩ = I + uI, where u is uni-
form with 0 mean and variance 0.25. Our goal here is to compare the potential
advantages of GTV over 2-dimensional TV and for each model we select the
optimal GTV and TV penalties as the ones that give the best Improved Signal-
to-Noise Ratio (ISNR) over a single perturbed sample for each image. We then
test TV and GTV denoising over 10 other different perturbations for additive
and multiplicative noise. In all cases GTV performed better than TV, yielding
an average ISNR of 10.73± 0.36 for additive noise and of 12.24± 0.24 for mul-
tiplicative noise; on the other hand, the ISNR averages for TV are 8.68 ± 0.27
and 10.97± 0.41, respectively. Figure 3 contains an example of denoising for the
two different image and noise models described above.

Original. Noisy. TV-cleaned. GTV-cleaned.

Fig. 2. Denoising with additive (upper row) and multiplicative (lower row) noise

4 Conclusions

In this work we have proposed the Group Total Variation (GTV) regularizer,
combining the multidimensional group-sparse features of the Group Lasso reg-
ularizer with the block spatial structure of the Total Variation penalty used by
Fused Lasso. The GTV regularizer thus appears as a useful tool to reconstruct
multidimensional patterns with a spatial structure that reflects smooth changes
along the group features. Colour image denoising fits nicely in this framework
and we have shown that GTV performs better than applying 1-dimensional To-
tal Variation independently on each colour. Moreover, this GTV regularizer can
be merged with a Group Lasso (GL) term, leading to what we call Group Fused
Lasso (GFL). We have illustrated over a synthetic example how GFL effectively
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captures block structure when present, and makes use of it to address linear
ill-posed problems with a number of features much larger than the sample size.

This kind of spatial structure can be found in other real world problems,
particularly those for which the underlying data features are associated to ge-
ographical locations. Any sensible linear regression models for such problems
should assign similar weight values to spatially close features, which is exactly
the behaviour that GFL enforces. As further work we intend to study the ad-
vantages of GFL in such a kind of problems, which will require the use of the
complete 2-dimensional GFL model as explained at the end of Sect. 2, and also
to analyse the numerical complexity of the proposed models and possible ways
to improve it.
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