A Software Framework for Cognition,
Embodiment, Dynamics, and Autonomy
in Robotics: cedar

Oliver Lomp,! Stephan Klaus Ulrich Zibner,! Mathis Richter,!
Ifnaki Rafié,? and Gregor Schéner!s*

! Institut fiir Neuroinformatik, Ruhr-Universitit Bochum
Universitatsstr. 150, 44780 Bochum, Germany
{oliver.lomp, stephan.zibner,mathis.richter,
gregor.schoener}@ini.rub.de
http://www.ini.rub.de
2 Intelligent Systems Research Centre, University of Ulster
Northland Road, Derry, Northern Ireland BT48 J7L, UK
i.rano@ulster.ac.uk
http://isrc.ulster.ac.uk

Abstract. We present cedar, a software framework for the implemen-
tation and simulation of embodied cognitive models based on Dynamic
Field Theory (DFT). DFT is a neurally inspired theoretical framework
that integrates perception, action, and cognition. cedar captures the
power of DFT in software by facilitating the process of software devel-
opment for embodied cognitive systems, both artificial and as models of
human cognition. In cedar, models can be designed through a graphical
interface and interactively tuned. We demonstrate this by implementing
an exemplary robotic architecture.

Keywords: software framework, embodied cognition, neural dynamics,
Dynamic Field Theory, cognitive robotic models.

1 Introduction

As scientists from diverse fields recognize the critical importance of grounding
cognitive function in sensory-motor processes, the embodiment stance is becom-
ing a shared perspective in the study of both artificial and natural cognition [4].
Embracing embodiment has consequences for cognitive modeling. Models of hu-
man cognition that account for psychophysical or neural data must include motor
control and the associated sensory processes. Artificial cognitive systems have to
be implementable on robotic hardware so that intelligent behavior may be gen-
erated while the system is situated in the real world. This requires that cognitive

* The authors acknowledge the financial support of the European Union Seventh
Framework Programme FP7-ICT-2009-6 under Grant Agreement no. 270247—
NeuralDynamics. This work reflects only the authors’ views; the EC is not liable
for any use that may be made of the information contained herein.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 475-[82] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.ini.rub.de
http://isrc.ulster.ac.uk

476 O. Lomp et al.

models are linkable to real-time sensory inputs, capable of controlling effectors
in real time, and must accommodate updating and control in a closed loop. Em-
bodiment thus requires a theoretical framework suited to address these issues,
and its demands are mirrored in its implementation. These demands include
integration across sensory, motor, and cognitive processes, real-time linkage to
sensors and effectors, fast prototyping, operation in closed loop, and tools for
model evaluation.

This paper introduces cedar, a software framework for the design and evalua-
tion of embodied cognitive systems that builds on Dynamic Field Theory (DFT).
DFT is a neural dynamic theoretical framework for cognition [IT] that is tailored
to the embodiment paradigm. DFT has been used to model experimental data
from psychology (see, e.g., [6/12]) as well as to design cognitive robotic archi-
tectures [BJ9IT4]. DFT uses dynamic neural fields (DNFs) as universal building
blocks. A DNF represents a pattern of neural activation defined over continuous
metrical dimensions (e.g., visual space, feature space). Neural activation evolves
in time as described by a dynamical system (see Amari [I] for the mathematics).
DNFs form stable peaks of activation as attractor states of the neural dynam-
ics. These represent perceptual, motor, or cognitive decisions and emerge from
bifurcations, in which non-peak solutions become unstable. The bifurcations de-
marcate different dynamic regimes of a DNF that reflect cognitive functions
such as detection, selection, and working memory [I1]. The stability properties
of each DNF make it possible to build structurally complex architectures within
DFT [14]. Their design requires that a relatively small (compared to conventional
neural networks), but critical set of parameters be tuned to achieve the correct
regimes in all DNF's under the desired environmental and task conditions.

We define the following requirements for an integrated software framework for
DFT.

1. It must be possible to build architectures from common components, in par-
ticular, DNF's and their couplings, and to inspect these components visually.

2. Simulations must be real-time capable. Parameters must be changeable on-
the-fly, which allows to inspect their impact on any component.

3. Components of an architecture must be connectable to physical hardware
(sensors, effectors).

We take inspiration from software frameworks developed for related ap-
proaches to cognitive modeling that address different requirements. Parallel Dis-
tributed Processing [10], for instance, facilitates design through software such as
the ‘PDPTool’ for Matlab, while other strands of connectionism are supported
by tools implemented in C++ such as ‘iqr’ [2]. The large-scale spiking networks
based on the Neural Engineering Framework [5] become practical through the
efficient ‘Nengo’ simulator with its graphical user interface [13].

The integrated software framework cedar is our solution to fulfilling the re-
quirements listed above. cedar is open-source, developed in C++, and availabld]
for Linux, Mac OS, and Windows.

L cedar is available for download with extensive documentation at
http://cedar.ini.rub.de

http://cedar.ini.rub.de

The cedar Software Framework 477

O

OO0 0000
A NeuralField © A NeuralField ©

1 field 1 7> field 2

{

Fig. 1. Graphical notation of the interfaces of cedar. The figure contains two compo-
nents (‘field 1’ and ‘field 2’) and a looped trigger (large circle).

2 A Software Framework for Dynamic Field Theory

DFT models consist of interconnected dynamical systems, most prominently
dynamic neural fields (DNFs), that evolve continuously in time. The connections
between DNFs vary in complexity, from simple identity mappings to chains of
more complex operations that may include transformations such as mappings
between DNF's of different dimensionality. cedar provides a graphical interface
to build DFT models from a set of connectable core components. Models can be
simulated in real time by numerically approximating the underlying continuous
dynamical systems.

2.1 Dynamics and Processing Steps

An architecture in cedar is composed of processing steps. They update their out-
put based on a number of current inputs that originate from other components of
the architecture. Processing steps that implement dynamical systems are called
dynamics. In addition to the inputs, their updates depend on their inner state.
These inputs and outputs are formalized as sets of named input and output slots,
whereas the inner states of dynamics use internal slots called buffers. These input
and output slots are used to define connections from and to other components
of the architecture.

Slots of dynamics contain matrices which represent the neural activation fields
that are the inner state of the neural dynamics. In general, however, there are no
restrictions on the type of data stored in slots. This enables us to work within
the same framework when using neural dynamics as when we connect these
dynamics to components that are based on non-neural data, for instance, at the
interface to hardware devices.

Both dynamics and processing steps have adjustable parameters, which can
be displayed, manipulated online, and stored as part of the overall architecture.
This helps modelers to find suitable operational regimes for the dynamic neural
fields.

2.2 Timing

In implementation on a computer-controlled robot or in computer simulation,
the time courses of dynamical systems must be numerically approximated by
iterative, discrete time steps. In cedar, this approximation is based on a solver

478 O. Lomp et al.

of differential equations, using the forward Euler method. Although numerically
not very efficient, the forward Euler lends itself to working with stochastic dy-
namics as well as to real-time implementation [7]. Individual components of the
dynamics implement their update rule (i.e., the dynamics equation) based on
their current state. A special element, the looped trigger (see Fig.[I), is responsi-
ble for periodically invoking this update with one of the following user-selectable
timing schemes.

Fized time step: The user specifies a fixed duration for the time step, which
determines the minimum interval between iterations. If the duration of com-
putation in an iteration step exceeds this fixed time step, the trigger skips an
appropriate number of iterations or adapts its step size to the new duration.

Real time: Iterations are performed as often as possible and the time between
two consecutive iterations is used as the time step. This means that the time step
is determined by the amount of time it takes to update the overall architecture.

Simulated time: The trigger sends a fixed time step, regardless of how much
time passes between iterations. This mode can be used to perform simulations
that run faster than real time or to achieve numerical stability when other modes
fail to do so.

A separate, non-looped triggering mechanism invokes updates of non-dynamic
operations along the outgoing connections of dynamic components, thus creating
an ordered chain of updates.

2.3 Connections

When different components of an architecture are connected by the user, the
underlying framework checks the validity of these connections. They are valid if
the type and properties of the connected output match the expectations of the
receiving component. Potential semantic flaws result in a warning. Connections
are invalid if they cannot be handled by the receiving component.

2.4 Graphical Notation and User Interface

Fig. [illustrates how two components, each of which implementing a DNF, are
represented graphically. The small circles and diamonds attached to each com-
ponent represent the input (left), buffer (top), and output (right) slots. Outputs
from multiple other components may be connected to the diamond (for DNF's,
these inputs are summed up). Input slots drawn in light-gray indicate that the
components can be updated even when no input is connected. The green line
between the neural fields represents a valid connection of the output of one field
to the input of the other field (yellow lines would indicate warnings, red lines
errors). The large round circle represents a looped trigger; the light gray lines
originating from it indicate which updates it invokes.

cedar provides a graphical application (see Fig.[2) that offers tools for design-
ing architectures in a drag-and-drop manner using this graphical notation.

The ability to plot the data in the slots of components allows for online in-
spection. A suitable plot class is chosen automatically, but users may also choose

The cedar Software Framework 479

File Plugins Simulation Windows Help

® | pFT Image Processing = Math Utilities = Sinks | Sources | Triggers | Utilities

(€EIIES])oN] Camera Video NetReader Picture Boost Noise

Jarchitecture\, Properties D ®
B B Value

Elements @

(~] Property
cedar.dynamics.NeuralField 0x289a

3 name field 1
Q0000 [. o) E 0 threaded O
i .

N> (>Ef #&“Jime'd H 0 50 resting level [7
e e]

alobal inhibition | -0.0100

O activation (field 1.acti... ®

»|[<>][<]>]

Fig. 2. Components of the graphical user interface. The pool of all available components
is placed on top (A). It contains components available in cedar and the loaded plugins,
grouped by theme. Desired components can be dragged onto the architecture canvas
(B). Two display modes are demonstrated here: icon-only (left component) and icon-
and-text (“field 17). The current state of the neural field—the activation—is plotted
in a separate window (C). The parameters of the field can be inspected and altered in
the property pane (D).

other plot classes manually, e.g., for plotting matrices either as images or surface
plots. New plot classes can be loaded at runtime via a plug-in structure.

Users may also inspect other properties of a component, for instance, the
dimensionality and size of matrices. Online manipulation of parameters is acces-
sible in the user interface as well.

The user interface provides the designer with feedback. Faulty connections
and components that are in an erroneous state are highlighted in different col-
ors. Additional features make the process of designing architectures more com-
fortable. When connecting components, for instance, all available end-points are
highlighted and the validity of the potential connections is shown.

2.5 The DFT Toolbox

cedar provides essential components for DFT architectures, ordered into the-
matic groups.

The group ‘DFT’ includes the core building blocks for architectures. The
‘neural field’ component provides a single-layer neural field of arbitrary dimen-
sionality with lateral interactions [I]. ‘Preshape’ implements a memory trace
for neural layers, which adapts to a given input over time, taking into account
time scales for build-up and decay. Two processing steps, ‘rate-to-space-code’
and ‘space-to-rate-code’, transform population-based neural dynamics into rate-
coded neural activity [I4] and vice versa. These mechanisms are used to connect
to the motor surface and proprioception. The processing step ‘rate-matrix-to-
space-code’ interprets a matrix of rate-coded neurons along a space code metric.

480 O. Lomp et al.

output (turning rate ®
e-puck camera ® activation (celor sp... B & 0s

camera 015
| asak § 0.1
= —i task input oe
6 [}
Lg O -0.05
l l o .o o[gg|o*° Q O O
5 @ 11 000
LA
Q000!
40

L — 0 20 s e 050 e} le]
© T
=] i A
O—p-Of O+ OFEg|0+0) O->-Of Q- POET 10O @IC O d 0

visual preprocessing DNF robot control

Fig. 3. Screenshot of an exemplary architecture created using the graphical user inter-
face of cedar (groupings, e.g., ‘task input’, have been added manually). This DFT-based
architecture controls an e-puck robot equipped with a color camera and makes it drive
toward objects of specific colors, in this case the red block. The selection decision
regarding the target is stabilized over time by a dynamic neural field.

All components in the group sources feed sensory input into architectures.
cedar currently supports camera devices, video files, and images. Moreover, cedar
includes artificially generated inputs, e.g., a homogeneous ‘boost’, a localized
‘Gaussian input’, and ‘noise’. While noise is inherent in physical sensory inputs to
an architecture, it is also an important tool during the tuning of an architecture,
e.g., to test the stability of a system for various levels of noise. The source ‘net
reader’ provides matrices that are sent by another process using a network-
transparent protocol. The complementary component, ‘net writer’, is found in
the group sinks. The current implementation uses YARP [§] to transfer these
matrices between processes and workstations.

The group ‘utilities’ offers solutions for connecting components of different
dimensionality and granularity [I4], for configuring the connection strength via
scalar multiplication or arbitrary convolution of outputs, and general mathemat-
ical operations such as ‘sum’, ‘component-wise multiplication’, and ‘coordinate
transformation’.

cedar provides a group ‘“mage processing’ with basic operations for closing
the gap between image sources and population dynamics. It comprises a channel
split and a color space conversion. More image processing operations (and other
special-interest components) have been implemented in plugins which can be
loaded at runtime. This keeps the core of cedar focused on modeling neural
architectures with DFT.

3 Case Study

As an illustration, we implement a cognitive architecture in cedar and connect it
to an e-puck, a small robot equipped with a differential drive and a color camera.
The architecture is based on a model that selects a target by a given color cue
(see Fig.Bl). This paradigm is derived from a more complex phonotaxis robot [3].

The cedar Software Framework 481

The core element of the model is its decision mechanism, a dynamic neural
field (DNF). It receives input from the visual sensory system about the location
of salient target objects. Additionally, it receives an input that biases its decision
toward a target of a specific color. The DNF selects one of the targets, stabilizes
that decision against sensory fluctuations, and tracks the location of the target
over time. The generated motor output orients the robot so that the selected
object is centered in the camera image.

We implemented this model in the graphical user interface of cedar, composing
the architecture from available elements by drag-and-drop (see Fig.[B) and tuning
all parameters online. The resulting architecture consists of four parts: first, the
visual preprocessing of the camera image; second, the task input that selects the
range of colors the robot is attracted to; third, the DNF, which receives input
from both the preprocessing and the task input; and fourth, the connection
from the DNF to the robotic hardware. Please note that the architecture works
in a closed loop through the environment in which the robot is embedded, even
though this is not directly apparent from the figure. The sensory data impacts
on the motor commands of the robot and vice versa.

The visual preprocessing consists of a sequence of image processing steps. They
convert the camera’s RGB-color images to saliency-based activation values which
are then input to the DNF. The activation is defined over a two-dimensional
space spanned by the horizontal viewing angle of the robot and a color metric.
High activation values thus represent an object of a certain color at a certain
horizontal location. The task input enters the DNF as a ridge of activation along
the horizontal viewing angle (see, e.g., [I4]) and biases the selection of objects
toward a particular color. Once the DNF has formed a peak and thereby selected
a target object, that peak controls the robot. The position of the peak along the
horizontal axis is translated into rate-coded neural activation that indicates the
direction of the colored object relative to the robot’s current orientation. It is
directly used as a turning rate of the robot, essentially turning the robot toward
the object [3]. By adding a constant forward speed, the robot is able to drive
toward the object. When presented with several targets, the robot selects the
most salient one of the specified color and successfully drives toward it.

4 Conclusion

In the case study (Section [3)), we illustrated cedar with an exemplary architec-
ture derived from a simple cognitive model. The implementation of this model
demonstrated how cedar addresses the key requirements on software that we
identified in Section[Il Fase of implementation is achieved by using a graphical
drag-and-drop interface for the assembly of architectures. This interface can also
be used when connecting physical devices such as robots, to cognitive architec-
tures. Architectures can be simulated, inspected, and parameterized in real time,
enabling us to quickly assess the interdependence of regimes of different DNF's
and the embodiment of cognitive architectures.

482 O. Lomp et al.

Adding new hardware devices is currently done individually for each new
device. In our next major release, we plan to offer a more principled approach
that reduces this overhead.

We also aim to further enhance the ease-of-use and scalability in future ver-
sions. Groups, which enable users to combine a set of components into reusable
modules are planned as part of this effort, as are global parameters which can
change multiple parameters simultaneously according to user-defined relations.

References

1. Amari, S.-I.: Dynamics of pattern formation in lateral-inhibition type neural fields.
Biological Cybernetics 27, 77-87 (1977)

2. Bernardet, U., Verschure, P.F.M.J.: iqr: A tool for the construction of multi-level
simulations of brain and behaviour. Neuroinformatics 8(2), 113-134 (2010)

3. Bicho, E., Mallet, P., Schoner, G.: Target representation on an autonomous vehicle
with low-level sensors. International Journal of Robotics Research 19(5), 424-447
(2000)

4. Clark, A.: An embodied cognitive science? Trends in Cognitive Sciences 3(9),
345-351 (1999)

5. Eliasmith, C., Anderson, C.H.: Neural engineering: Computation, representation,
and dynamics in neurobiological systems. MIT Press (2004)

6. Erlhagen, W., Schoner, G.: Dynamic Field Theory of movement preparation. Psy-
chological Review 109(3), 545-572 (2002)

7. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations,
2nd edn. Springer (1999)

8. Metta, G., Fitzpatrick, P., Natale, L.: YARP: Yet another robot platform. Inter-
national Journal on Advanced Robotics Systems 3(1), 43-48 (2006)

9. Richter, M., Sandamirskaya, Y., Schoner, G.: A robotic architecture for action
selection and behavioral organization inspired by human cognition. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 2457-2464. IEEE
Press (2012)

10. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations
in the microstructure of cognition. Foundations, vol. 1. MIT Press, Cambridge
(1986)

11. Schoéner, G.: Dynamical systems approaches to cognition. In: Cambridge Handbook
of Computational Cognitive Modeling, pp. 101-126. Cambridge University Press
(2008)

12. Schutte, A.R., Spencer, J.P., Schoner, G.: Testing the Dynamic Field Theory:
Working memory for locations becomes more spatially precise over development.
Child Development 74, 1393-1417 (2003)

13. Stewart, T.C., Tripp, B., Eliasmith, C.: Python scripting in the Nengo simulator.
Frontiers in Neuroinformatics 3 (2009)

14. Zibner, S.U., Faubel, C., Iossifidis, I., Schéner, G.: Dynamic Neural Fields as build-
ing blocks for a cortex-inspired architecture of robotic scene representation. IEEE
Transactions on Autonomous Mental Development 3(1) (2011)

	A Software Framework for Cognition, Embodiment, Dynamics, and Autonomy in Robotics: $
cedar$
	1 Introduction
	2 A Software Framework for Dynamic Field Theory
	2.1 Dynamics and Processing Steps
	2.2 Timing
	2.3 Connections
	2.4 Graphical Notation and User Interface
	2.5 The DFT Toolbox

	3 Case Study
	4 Conclusion
	References

