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Abstract. Reservoir computing has been successfully applied in difficult
time series prediction tasks by injecting an input signal into a spatially
extended reservoir of nonlinear subunits to perform history-dependent
nonlinear computation. Recently, the network was replaced by a single
nonlinear node, delay-coupled to itself. Instead of a spatial topology,
subunits are arrayed in time along one delay span of the system. As a
result, the reservoir exists only implicitly in a single delay differential
equation, numerical solving of which is costly. We derive here approx-
imate analytical equations for the reservoir by solving the underlying
system explicitly. The analytical approximation represents the system
accurately and yields comparable performance in reservoir benchmark
tasks, while reducing computational costs by several orders of magni-
tude. This has important implications with respect to electronic realiza-
tions of the reservoir and opens up new possibilities for optimization and
theoretical investigation.

1 Introduction

Predicting future behavior and learning temporal dependencies in time series of
complex natural systems remains a major goal in many disciplines. In Reservoir
Computing, the issue is tackled by projecting input time series into a recurrent
network of nonlinear subunits [2, 4]: Recurrency provides memory of past in-
puts, while the nonlinear subunits expand their informational features. History-
dependent nonlinear computations are then achieved by simple linear readouts
of the network activity.

In a recent advancement, the recurrent network was replaced by a single non-
linear node delay-coupled to itself [1]. Such a setup is formalized by a delay
differential equation which can be interpreted as an “infinite dimensional” dy-
namical system. Whereas classical reservoirs have an explicit spatial representa-
tion, a delay-coupled reservoir (DCR) uses temporally extended sampling points
across the span of its delayed feedback, termed virtual nodes. The main advan-
tage of such a setup is that it allows for easy realization in optical and electronic
hardware [8].

A drawback of this approach is the fact that the actual reservoir computer is
always only implicit in a single delay differential equation. Consequently, in many
implementations the underlying system has to be solved numerically. This leads
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to a computational bottleneck and creates practical limitations for reservoir size
and utility. The lack of reservoir equations also presents problems for applying
optimization procedures.

To overcome this, we present here a recursive analytical solution used to de-
rive approximate virtual node equations. The solution is assessed in its computa-
tional capabilities as DCR and compared against numerical solvers in nonlinear
benchmark tasks. We show that while computational performance is compara-
ble, the analytical approximation leads to considerable savings in computation
time, allowing the exploration of exceedingly large setups. Finally, we discuss
the perspectives of this approach regarding optimization schemes in the fashion
of previous work by the authors [9].

2 Methods

2.1 Single Node Delay-Coupled Reservoirs

In a DCR, past and present information undergoes nonlinear mixing via injection
into a nonlinear node with delayed feedback. Formally, these dynamics can be
modeled by a delay differential equation

dx(t)

dt
= −x(t) + f(x(t− τ), J(t)), (1)

where τ is the delay time, J is the input driving the system, and f is a nonlinear
function. For a DCR, system (1) can be operated in a simple regime that is
governed by a single fixed point in case J(t) = const.

Injecting a signal into the reservoir is achieved by multiplexing it in time:
The DCR receives a single constant input u(t̄) in each reservoir time step t̄ =
� t
τ �, corresponding to one τ -cycle of the system. During each τ -cycle, the input

is again linearly transformed by a mask that is piecewise constant for short
periods θi, representing the spacing between sampling points of i = 1, ..., N
virtual nodes along the delay line. Here, the mask M is chosen to be binary
with random mask bits Mi ∈ {−0.1, 0.1}, so that node i receives a weighted
input Miu(t̄). The masking procedure effectively prevents the driven dynamics of
the underlying system from saturating. Accordingly, the sampling point spacing
satisfies

∑N
i=1 θi = τ.

A sample is read out at the end of each θi, yielding N predictor variables (vir-
tual nodes) xi(t̄) per time step t̄. Computations are performed on the predictors
using a linear regression model for some scalar target time series y, given by
ŷ(t̄) =

∑N
i=1 αixi(t̄), where xi, i = 1, ..., N denote the DCR’s virtual nodes (see

eq. (4)), and the αi are the coefficients determined by regression, e.g. using the
least squares solution minimizing the sum of squared errors,

∑
t̄(y(t̄)− ŷ(t̄))2.

2.2 Approximate Virtual Node Equations

In the following, we discuss a recursive analytical solution to equation (1), known
as method of steps. The resulting formulas are used to derive a piecewise solution
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scheme for sampling points across τ that correspond to the reservoir’s virtual
nodes. Finally, we use the trapezoidal rule for further simplification, hereby de-
riving approximate virtual node equations, the temporal dependencies of which
only consist of other virtual nodes. As will be shown in the remainder of this
article, the resulting closed-form solutions allow reservoir computation without
significant loss of performance as compared to a system obtained by explicit
numerical solutions, e.g. Heun’s method ((1,2) Runge-Kutta).

First, we discuss a simple application of the method of steps. For better read-
ability, the argument J(t) of the nonlinearity f is omitted in this part of the
derivation. If system (1) is evaluated at (i− 1)τ ≤ t ≤ iτ (say ti = iτ), where a
continuous function φi ∈ C[(i−2)τ,(i−1)τ ] is the solution for x(t) on the previous
τ -interval, we can replace x(t− τ) by φi(t− τ). Consequently, elementary vari-
ation of parameters is applicable and yields directly the solution to the initial
value problem in (1) with initial value x(t0 = (i− 1)τ) = φi(ti−1), given by

x(t) = φi(ti−1)e
ti−1−t + eti−1−t

∫ t

(i−1)τ

f(φi(s− τ))es−ti−1ds

= φi(ti−1)e
ti−1−t + eti−1−t

∫ t−τ

(i−2)τ

f(φi(u))e
u−(i−2)τdu. (2)

Further, we use the cumulative trapezoidal rule [5]
∫ b

a
g(x)dx = h

2 g(χ0 = a) +

h
∑n−1

j=1 g(χj) +
h
2 g(χn = b) to interpolate the integral in (2) piece-wise linearly

along a uniform grid (i − 2)τ = χ0 < ... < χN = t − τ , where χj+1 − χj = h.
With g(χj) = eχj−(i−2)τf(φi(χj)), this yields

x(t) ≈ φi(ti−1)e
ti−1−t + eti−1−t h

2
f(φi(χ0))

+ eti−1−th

2

⎛

⎝eχN−(i−2)τf(φi(χN )) + 2

N−1∑

j=1

eχj−(i−2)τf(φi(χj))

⎞

⎠ . (3)

We are now interested in 1 ≤ k ≤ N single node equations xk(t̄), where t̄ =
i denotes discrete reservoir time step i in case (i − 1)τ ≤ t ≤ iτ. Assuming
equidistant virtual nodes where τ = Nθ and N the number of virtual nodes, we
choose a uniform grid χj = (i − 2)τ + jθ with j = 0, ..., N (i.e. h = θ). To get
an expression for xk(t̄), we now have to evaluate equation (3) at the sampling
point t = (i − 1)τ + kθ, which results in

xk(t̄) = x((i − 1)τ + kθ)

≈ e−kθφi((i− 2)τ +Nθ) +
θ

2
e−kθf [φi((i − 3)τ +Nθ)]

+
θ

2
f [φi((i− 2)τ + kθ)] + θ

N−1∑

j=1

e(j−k)θf [φi((i − 2)τ + jθ)]
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= e−kθxN (t̄− 1) +
θ

2
e−kθf [xN (t̄− 2), JN(t̄− 1)]

+
θ

2
f [xk(t̄− 1), Jk(t̄)]

+

k−1∑

j=1

θe(j−k)θ
︸ ︷︷ ︸

ckj

f [xj(t̄− 1), Jj(t̄)]. (4)

Here Jj(t̄) denotes the masked input Mju(t̄) ∈ R (see sec. 2.1) to node j at reser-
voir time step t̄, which was omitted as an argument to f during the derivation
to avoid cluttering. Note that equation (4) only has dependencies on sampling
points corresponding to other virtual nodes. An exemplary coupling coefficient
is indicated by ckj , weighting a nonlinear coupling from node j to node k. We
use this to derive weight matrices that allow simultaneous computation of all
nodes in one reservoir time step t̄ by a single vector operation, hereby dramati-
cally reducing the computation time of simulating the system by several orders
of magnitude as compared to an explicit second order numerical solver.

3 Results

We compare the analytical approximation of the system, derived in the previous
section, to a numerical solution obtained using Heun’s method with a stepsize of
0.1. The latter is chosen due to the relatively low computational cost and provides
sufficient accuracy in the context of DCR computing. As a reference for absolute
accuracy, we use numerical solutions obtained with dde23 [7], an adaptive (2,3)
Runge-Kutta based method for delay differential equations. The nonlinearity
f is chosen according to the Mackey-Glass equation for the remainder of this
paper, such that the system is given by

ẋ(t) = −x(t) +
η(x(t − τ) + γJ(t))

1 + (x(t − τ) + γJ(t))p
, (5)

where η, γ and p are metaparameters, τ the delay length, and J(t) is the tem-
porally stretched input u(t̄), multiplexed with a binary mask M .

Note that the trapezoidal rule used in the analytical approximation, as well
as Heun’s method, are both second order numerical methods that should yield a
global truncation error of the same complexity class. As a result, discrepancies
originating from different step sizes employed in the two approaches (e.g. 0.2 in
the analytical approximation and 0.1 in the numerical solution) may be remedied
by simply decreasing θ in the analytical approximation, for example by increasing
N while keeping a fixed τ (see sec. 3.4).

3.1 Trajectory Comparison

In a first step, we wish to establish the general accuracy of the analytical ap-
proximation in a DCR relevant setup. Figure 1 shows a comparison of reservoir
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Fig. 1. Comparison between analytical approximation and numerical solution for an
input-driven Mackey-Glass system with parameters η = 0.4, γ = 0.05 and p = 1,
sampled at the temporal positions of virtual nodes, with a distance θ = 0.2

trajectories computed with equation (4) (red) against trajectories computed nu-
merically using dde23 (blue) with relative error tolerance 10−3 and absolute error
tolerance 10−6. The systems received uniformly distributed input u(t̄) ∼ U[0,0.5].
The sample points correspond to the activities of N = 400 virtual nodes with
a temporal distance of θ = 0.2, and τ = 80 accordingly. Given 4000 samples
(corresponding to 10 reservoir time steps t̄), the mean squared error between
the trajectories is MSE = 5.4 × 10−10. As can be seen in the figure, the tra-
jectories agree very well in the fixed point regime of the system (autonomous
case). Although it is expected that the MSE would increase in more complex
dynamic regimes (e.g. chaos), the latter are usually not very suitable for a DCR
for various reasons. The following results also show a high task performance of
the analytical approximation when used for DCR computing.

3.2 NARMA-10

A widely used benchmark in reservoir computing is the capacity of the DCR
to model a nonlinear autoregressive moving average system y in response to
uniformly distributed scalar input u(k) ∼ U[0,0.5]. The NARMA-10 task requires
the DCR to compute at each time step k a response

y(k + 1) = 0.3y(k) + 0.05y(k)

9∑

i=0

y(k − i) + 1.5u(k)u(k − 9) + 0.1.

Thus, NARMA-10 requires modeling of quadratic nonlinearities and shows a
strong history dependence that challenges the DCR’s memory capacity. We mea-
sure performance in this task using the correlation coefficient r(y, ŷ) ∈ [−1, 1]
between the target time series y and the DCR output ŷ in response to u. Here,
the DCR is trained (see sec. 2.1) on 3000 data samples, while r(y, ŷ) is com-
puted on an independent validation data set of size 1000. Figure 2A summarizes



An Analytical Approach to Delay-Coupled Reservoir Computing 31

the performance of 50 different trials for a DCR computed using the analytical
approximation (see eq. 4), shown in red, as compared to a DCR simulated with
Heun’s method, shown in blue. Both reservoirs consist of N = 400 virtual nodes,
evenly spaced with a distance θ = 0.2 along a delay line τ = 80. Both systems
show a comparable performance across the 50 trials, with a median correlation
coefficient between r(y, ŷ) = 0.96 and 0.97, respectively.

3.3 5-Bit Parity

As a second benchmark, we chose the delayed 5-bit parity task [6], requiring the
DCR to handle binary input sequences on which strong nonlinear computations
have to be performed with arbitrary history dependence. Given a random input
sequence u with u(k) ∈ {−1, 1}, the DCR has to compute at each time step k the
parity pδm(k) =

∏m
i=0 u(k − i − δ) ∈ {−1, 1}, for δ = 0, ...,∞. The performance

φm is then calculated on n data points as φm =
∑∞

δ=0 κ
δ
m, where Cohen’s Kappa

κδ
m =

1
n

∑n
k=1 max(0, pδm(k)ŷ(k))− pc

1− pc
∈ {0, 1}

normalizes the average number of correct DCR output parities ŷ by the chance
level pc = 0.5. We used 3000/1000 data points in training and validation set
respectively. To compare performance between analytical approximation and
numerical solution of the DCR, we chose m = 5 and truncated φm at δ = 7,
such that φ5 ∈ [0, 7]. For parameters η = 0.24, γ = 0.32 and p = 1, and a
DCR comprised of 400 neurons (τ = 80), figure 2B shows that performance φ5

is comparable for both versions of the DCR, with median performances between
4.3 and 4.5. across 50 different trials of this task. As the performance is far from
the ideal value of 7 and the model suffers slightly from overfitting (not shown),
it is clear that the delayed 5-bit parity task is a hard problem which leaves much
space for improvement.

3.4 Large Setups

We repeated the tasks in larger network setups where the computational cost of
the numerical solver becomes prohibitive. In addition to increasing the number of
virtual nodesN one can also decrease the node distance θ, thus fitting more nodes
into the same delay span τ . Although too small θ may affect a virtual node’s
computation negatively, decreasing θ increases the accuracy of the analytical
approximation.

NARMA-10. We illustrate this by repeating the NARMA-10 task with N =
2000 virtual nodes and τ = 200. This results in θ = 0.1, corresponding to the step
size used in the numerical solution before. Note that this hardly increases the
computational cost of the analytical approximation since the main simulation
loop along reservoir time steps t̄ (τ -cycles) remains unchanged. L2-regularization
is employed to manage the large number of predictors. The results are summa-
rized for 50 trials in figure 2C (right boxplot). The median correlation coefficient



32 J. Schumacher, H. Toutounji, and G. Pipa

Fig. 2. Comparison on nonlinear tasks between analytical approximation and numer-
ical solution for an input-driven Mackey-Glass system, sampled at the temporal posi-
tions of virtual nodes with a distance θ = 0.2. Mackey-Glass parameters are η = 0.4,
γ = 0.05 and p = 1 (NARMA-10) and η = 0.24, γ = 0.32 and p = 1 (5-bit parity), re-
spectively. Results are reported for 400 neurons (τ = 80) on data sets of size 3000/1000
(training/validation) in figures 2A and 2B, size 3000/1000 in 2C (right plot), as well as
for data sets of size 10000/10000 in figure 2C (left plot). Each plot is generated from
50 different trials. The plots show median (black horizontal bar), 25th/75th percentiles
(boxes), and most extreme data points not considered outliers (whiskers).

increased significantly to nearly 0.98 while the variance across trials is notably
decreased (compare fig. 2A).

5-Bit Parity. For the 5-bit parity task, we addressed the task complexity by
increasing both, training and validation sets, to a size of 10000. Second, we
increased once more the virtual network size to N = 2000 virtual nodes and
τ = 200. The performance of the resulting DCR setup, computed across 50 trials
using the analytical approximation, is summarized in figure 2C (left boxplot).
The model no longer suffers as much from overfitting and the performance on
the validation set increased dramatically to a median value of 6.15, which is now
close to the theoretical limit of 7. While the computation to produce figure 2C
took only few minutes with the analytical approximation, it is estimated that
the use of the numerical solver for the same computation would have exceeded
2 days, despite the large step size of 0.1.

4 Discussion

In summary, we have developed analytical alternatives to evaluate and approxi-
mate solutions of delay differential equations that can be used for delay-coupled
reservoir computing. It is shown that the resulting update equations in principle
lose neither accuracy with respect to the system dynamics nor computational
power in DCR benchmark tasks. Using the analytical approximation reduces
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computational costs considerably. This enabled us to study larger networks of
delay-coupled nodes, yielding a dramatic increase in nonlinear benchmark per-
formance. These results can lead to serious improvement regarding the imple-
mentation of DCRs on electronic boards.

Moreover, the approachyields an explicit handle on the DCR components which
are otherwise implicit in equation (1). This creates new possibilities to investigate
delay-coupled reservoirs and provides the basis for optimization schemes, a crucial
necessity prior to any hardware implementation. Together with the reduction in
computation time, this makes the use of supervised batch-update algorithms feasi-
ble to directly optimize model metaparameters (see eq. (5)) instead of conducting
costly parameter scans. In addition, the optimization may include unsupervised
gradient descent schemes on DCR parameters (e.g. θ, τ , N) with respect to infor-
mation theoretic objectives. It is also straight forward to extend eq. (4) to account
for nonuniform node spacings θi, subject to individual optimization (compare [9]).
Continuing this line of thought, it is now possible to modify the update equations
directly according to self-organizing homeostatic principles, inspired, for example,
by neuronal plasticity mechanisms (e.g. [3]). We intend to explore these possibil-
ities further in future work to maximize the system’s computational power and
render it adaptive to information content in task-specific setups.
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