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Abstract. Brain-Computer Interfaces (BCIs) can be used to give par-
alyzed patients a means for communication. But so far, only supervised
methods have been used for calibration of an online BCI. In this paper
we present a method that allows to calibrate a BCI online and unsuper-
vised. Based on offline data we show that the unsupervised calibration
method works and validate the results in an online experiment with 8
subjects, who were able to control the BCI with an average accuracy
of 85 %. We thereby have shown for the first time that an online unsu-
pervised calibration of a BCI is possible and allows for successful BCI
control.
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1 Introduction

A Brain-Computer Interface (BCI) is a device that enables a user to control a
computer by pure brain activity, which is usually recorded by electroencephalog-
raphy (EEG). The main application for BCIs is to give paralyzed people a means
to communicate, but so far, there are no reports for successful BCI control in
complete locked-in patients [I].

Recently, we could show a BCI based on code-modulated visual evoked poten-
tials (c-VEPs) to achieve very high communication speeds that made it possible
for subjects to spell an average of 21.3 error-free letters per minute [2]. While
this BCI used an unsupervised online adaptation, it still depended on a super-
vised calibration, for which labeled data is needed to calibrate the BCI on the
users brain activity. When looking at BClIs that use other paradigms like motor
imagery or P300, there are also different unsupervised adaptation methods [3],
but they all depend on a supervised calibration, which needs labeled data.

So far, Eren et al. [4] are the only ones, who have shown that a BCI can be
calibrated completely unsupervised without the need for labeled training data.
Using Gaussian Mixture Models, they have shown in an offline analysis of motor
imagery BCI data that their method works for 3 out of 6 subjects.

In this paper, we present a method for completely unsupervised calibration
of a ¢-VEP BCI and show it to work for all our subjects in an online study.
We further discuss how unsupervised calibration might be useful for complete
locked-in patients, for whom supervised calibration does not work [I].
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2 Methods

The ¢-VEP BCI that we used is based on the system we described in previ-
ous publications [25]. It consists of 32 visual stimuli (called targets), which are
modulated by a pseudo-random code with a length of 63 bit. Each target is
modulated with the same code, but the code is circular-shifted by a different
number of bits for each target. When the subject is looking at one of the stimuli,
a c-VEP can be found in the EEG signals. Based on multiple trials, the average
¢-VEP waveform can be extracted. By circular-shifting the average c-VEP wave-
form, a template for each target can be obtained, which represents the average
c-VEP waveform that is expected when the subject looks at the corresponding
target. To identify which of the targets the user wants to select, the EEG-signal
is compared to all templates and the template which is closest to the measured
EEG signal is chosen.

While the previous system with supervised calibration used 32 targets, we
only used two targets (J and W) for the unsupervised calibration. Regardless
of the number of targets used for calibration, the system can be tested and used
with 32 targets after calibration is finished.

To achieve an unsupervised calibration of the ¢-VEP BCI, the first step is to
perform an unsupervised channel selection to find the EEG channel on which
the c-VEP is strongest. If that channel is found, the templates can be generated
in an unsupervised manner, as described below.

2.1 Unsupervised Channel Selection

The goal of the unsupervised channel selection is to find the channel for which
the ¢-VEP is strongest, which means finding the channel for which the c-VEP
has the lowest variance.

Since only two shifts are possible (20 bit and 46 bit, representing targets J
and W), a new dataset is created that contains each trial of the calibration
dataset twice, one shifted by -20 bit and the other by -46 bit. By doing this, the
data should contain 3 clusters: one cluster containing the data that is shifted
with the correct shift, one cluster for data with a true shift of 20 bit that was
shifted by -46 bit, and one cluster with a true shift of 46 bit that was shifted
by -20 bit. Since the cluster with the data shifted by the correct number of bits
should contain twice the number of trials than each of the other 2 clusters, a
one-class Support Vector Machine (OCSVM) [6] can be trained to reject the
smaller clusters as outliers.

Therefore, the data for each channel is normalized to have a mean of zero
and a variance of 1. The normalized data is used to train a OCSVM with a
linear kernel and v = 0.4 to find a hyperplane which separates the one large
cluster from the two small ones. The size of the margin can then be used as an
approximation of the variance. A larger margin means a smaller variance of the
c¢-VEP data and thereby a stronger c-VEP response. The channel for which the
margin is largest is then chosen for the unsupervised template generation.



226 M. Spiiler, W. Rosenstiel, and M. Bogdan

2.2 Unsupervised Template Generation

When the channel with the strongest c-VEP is found, the k-means algorithm
[7] is applied on the calibration dataset using the respective channel to find two
clusters that represent the data for the two targets. Since the k-means algorithm
is only used to find clusters, it is unknown, which cluster represents which class.
To assign classes to both clusters, two leave-one-out estimations are performed,
in which both of the two possible assignments are tested (Cluster A -> Class A
or Cluster A -> Class B). For each of the n folds of the leave-one-out estimation,
templates are generated using the calibration data of n-1 trials (with the labels
associated with one of the possible assignments), and the remaining trial is
classified by choosing the template which has the highest correlation. Due to the
circular-shift property of the c-VEP BCI, templates were generated for 32 classes
with each class having an additional 2 bit shift (total length of modulating code
was 63 bit). For the classification of the remaining trial, also 32 possible classes
were used.

Since templates for all 32 classes are generated, but only data containing 2
classes is used for the calibration, and the difference in the shift of both classes
is uneven depending on the direction of the shift (46-20 = 26 bit or 20-46 = (-26
mod 63) = 37 bit), the assignment with the highest estimated accuracy is the
one that assigns the correct class to each cluster.

Thereby class labels are available for each target. Although the unsupervised
channel selection is an important step for the unsupervised template generation
to work, we empirically found a subsequent channel selection based on the esti-
mated labels to further improve the results. Therefore, leave-one-out estimations
are performed for all channels to find the channel that yields optimal results.

After class labels and the best channel for classification are known, templates
and spatial filter can be generated as explained in our previous publication [5].

2.3 Offline Analysis

To evaluate the unsupervised calibration method, data recorded from a previous
c-VEP study [2] was used for an offline analysis, in which an online experiment
was simulated. The first 64 trials (used for supervised calibration in the previous
online study) were used for unsupervised calibration. Since the data was recorded
with the subjects attending each of the 32 targets 2 times, the trials were shifted
in a way that half of the trials had a shift corresponding to target letter J with
a shift of 20 bit and the other half corresponding to target letter W with a shift
of 46 bit.

The remaining 576 trials of the session were used to estimate the accuracy.
Two different approaches were tested: One approach, in which the shift of the
trials did not change and thereby all 32 classes were present in the data. For the
other approach, the trials were shifted similar to the calibration data to simulate
the use of a 2-class c-VEP BCI system.

In addition, the benefit of the unsupervised channel selection was evaluated
by replacing the unsupervised channel selection with a fixed selection of either
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electrode P4 or PO3, which are the electrodes where the c-VEP is strongest on
average.

Since the signal-to-noise ratio of the signal may be too low to allow for un-
supervised calibration, tests were run in which multiple trials were averaged,
similar to the method using multiple sequences in the popular P300 BCI speller.
x subsequent trials were averaged to generate one new trial, thereby decimating
the total number of trials by a factor of x. While still the first 64 trials of the
new dataset were used for calibration, the number of test trials varied depending
on x.

2.4 Online Experiment

To validate the results from the offline analysis, another online experiment was
conducted, in which a ¢-VEP BCI with 2 targets was calibrated unsupervised
and tested afterwards. Eight subjects (mean age 25, 2 female) participated in
this experiment, with none of them having previous BCI experience.

Calibration was done in a co-adaptive manner, in which the first 64 trials were
used for unsupervised calibration and the classifier was updated after every trial,
so that feedback could be given also during the unsupervised calibration. The
subjects were instructed to decide freely, which of the two targets to attend, but
not to switch the target consistently every time and not to attend one target for
more than 5 consecutive trials.

After calibration was finished, the accuracy of the calibrated c-VEP BCI was
tested in another 128 trials. For testing the BCI with 2 targets, the subjects
were instructed to alternate between both targets.

Calibration and testing were done two times. One time without averaging over
trials and one time with averaging 2 trials.

Since the subjects could freely decide what targets to attend during the cali-
bration, the data could not be used to simulate a supervised adaptation. Instead,
another experiment was run with the same subjects, in which a supervised cali-
bration [5] was used with 2 targets and 64 trials. To test the accuracy, the BCI
was run with 2 targets for another 128 trials. This experiment was only done
once without averaging for each subject.

3 Results

3.1 Offline Analysis

The accuracies obtained during a simulated online session with 2 targets after
an unsupervised calibration are displayed in table [Il for a different number of
trials averaged. Table 2 shows the obtained results for a simulated online session
with 32 targets.

While for 2 classes, without averaging multiple trials, a mean accuracy of
90.85 % could be reached, averaging of 2 trials reached a mean accuracy of
97.4 % which is significantly better than without averaging trials (p = 0.0051,
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paired t-test). Looking at the results with a higher number of averages, the use
of 3 or more averages is not significantly better than its preceding number of
averages (p > 0.1).

For 32 classes, a mean accuracy of 76.43 % could be reached, while averaging
over 2 trials yields a mean accuracy of 92.61 %, which is significantly higher
(p < 0.001). Again the use of more than 2 averages does not yield a significant
improvement (p > 0.1) compared to its preceding number of trials averaged.

Table 1. Offline results for unsupervised calibration with 2 targets and different num-
ber of trials used for averaging

Number of trials averaged
1 2 3 4 5
AA  87.81 % 100.00 % 100.00 % 100.00 % 100.00 %
AB 65.94 % 81.25 % 69.81 % 85.00 % 85.94 %
AC  100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
AD  100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
AE 65.94 % 82.50 % 95.28 % 98.75 % 100.00 %
AF 96.56 % 100.00 % 100.00 % 100.00 % 100.00 %
AG  100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
AH 78.75 % 90.62 % 80.19 % 77.50 % 85.94 %
Al 70.31 % 99.38 % 99.06 % 100.00 % 100.00 %
BA 97.50 % 99.38 % 100.00 % 100.00 % 100.00 %
BB 98.44 % 100.00 % 100.00 % 100.00 % 100.00 %
BC  100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BD  100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BE 95.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BF 99.06 % 100.00 % 100.00 % 100.00 % 100.00 %
BG  100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BH 81.25 % 100.00 % 100.00 % 100.00 % 100.00 %
BI 98.75 % 100.00 % 100.00 % 100.00 % 100.00 %
mean 90.85 % 97.40 % 96.91 % 97.85 % 98.44 %

To estimate the benefit of the unsupervised channel selection, the results for
the comparison of the unsupervised channel selection with channels PO3 and P4
is shown in table[3 and table[dl When pooling the results for all tested number of
averages, the unsupervised channel selection in the simulated ¢c-VEP BCI with 2
targets performs significantly better than a fixed selection of channel PO3 (p <
0.0005, paired t-test) and significantly better than a selection of P4 (p < 0.05).
When simulating the use of a ¢-VEP BCI with 32 targets, the unsupervised
channel selection still performs significantly better than PO3 (p < 0.005) and
P4 (p = 0.01).

3.2 Online Experiment with 2 Targets

The results from the online experiment are shown in table Bl The results show
that the BCI worked well for all subjects after unsupervised calibration with an
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Table 2. Offline results for unsupervised calibration with different number of trials
used for averaging. While calibration was done on data from 2 targets, data with 32
targets was used for performance evaluation.

Number of trials averaged supervised
1 2 3 4 5 1

AA 75.94 % 99.38 % 100.00 % 100.00 % 100.00 % 96.88 %
AB 21.56 % 46.88 % 53.77 % 70.00 % 85.94 % 80.03 %
AC 98.44 % 99.38 % 100.00 % 100.00 % 100.00 % 98.61 %
AD 99.69 % 100.00 % 100.00 % 100.00 % 100.00 % 98.96 %
AE 18.75 % 58.13 % 87.74 % 97.50 % 100.00 % 60.24 %
AF 86.88 % 98.75 % 100.00 % 100.00 % 98.44 % 97.74 %
AG 99.69 % 100.00 % 100.00 % 100.00 % 100.00 % 99.83 %
AH 4188 % 73.75 % 69.81 % 68.75 % 76.56 % 72.72 %
Al 43.75 % 99.38 % 99.06 % 98.75 % 100.00 % 96.18 %
BA 88.12 % 98.75 % 100.00 % 100.00 % 100.00 % 94.44 %
BB 87.19 % 96.25 % 92.45 % 100.00 % 96.88 % 97.48 %
BC 96.88 % 99.38 % 100.00 % 100.00 % 100.00 %  98.09
BD  100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BE 86.88 % 100.00 % 100.00 % 100.00 % 100.00 % 99.31 %
BF 92.81 % 98.12 % 99.06 % 100.00 % 100.00 % 94.97 %
BG 98.75 % 100.00 % 100.00 % 100.00 % 100.00 % 98.96 %
BH 55.00 % 98.75 % 100.00 % 100.00 % 100.00 % 86.98 %
BI 83.44 % 100.00 % 100.00 % 100.00 % 100.00 % 94.79 %
mean 76.43 % 92.61 % 94.55 % 96.39 % 97.66 % 92.57 %

average accuracy of 85.06 % and that averaging over 2 trials improves classifi-
cation accuracy for all subjects. During the supervised calibration the subjects
achieved an average accuracy of 94.43 %.

4 Discussion

In this paper, we have shown that an unsupervised calibration of a ¢c-VEP BCI
is possible and that all subjects were able to control the BCI online with an
average accuracy of 85 %. Thereby it was shown for the first time that an online
BCI can be calibrated in an unsupervised manner.

While the online study used a BCI with only 2 targets, we have shown in
the offline analysis that a BCI with 32 targets can successfully be used after
an unsupervised calibration on 2 targets. By averaging over multiple trials the
accuracy can further be increased.

Although it was shown that an unsupervised calibration works well and can be
used to calibrate a BCI, it does not perform better than a supervised calibration.
Therefore the use of an unsupervised calibration method needs to be discussed.

So far, there are no reports of BCI working online in complete locked-in (CLIS)
patients, who do not have any residual muscle control. With the transition into
CLIS, the last possibility to move any muscle is lost. Thereby the patient loses
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Table 3. Offline results with 2 targets and different methods for channel selection.
Different number of trials were used for averaging. Unsupervised channel selection was
compared to a fixed selection of channel PO3 or P4, respectively.

Number of trials averaged

1 2 3 4 5
PO3 86.58 % 89.41 % 91.88 % 90.69 % 92.62 %
P4 87.81 % 92.78 % 94.24 % 94.79 % 94.53 %

unsupervised 90.85 % 97.40 % 96.91 % 97.85 % 98.44 %

Table 4. Offline results for different methods for channel selection using data with
32 targets. Different number of trials were used for averaging. Unsupervised channel
selection was compared to a fixed selection of channel PO3 or P4, respectively.

Number of trials averaged

1 2 3 4 5
PO3 72.87 % 81.95 % 85.43 % 85.83 % 87.24 %
P4 70.21 % 86.70 % 89.94 % 90.63 % 90.89 %

unsupervised 76.43 % 92.61 % 94.55 % 96.39 % 97.66 %

Table 5. Accuracies during the online experiment for different calibration methods:
unsupervised calibration without averaging, unsupervised calibration with averaging
over 2 trials, supervised calibration without averaging

unsupervised supervised
Subject no averaging average over 2 trials
CL 64.06 % 78.13 % 95.31 %
CM 85.94 % 99.22 % 100 %
CN 78.13 % 87.50 % 92.19 %
CcO 85.16 % 92.19 % 89.06 %
CP 89.84 % 95.31 % 82.81 %
CQ 93.75 % 80.47 % 100 %
CR 89.84 % 83.59 % 96.09 %
CS 93.75 % 85.94 % 100 %
mean 85.06 % 87.79 % 94.43 %

the last possibility to interact with the environment and he has no longer any
means to follow his plans or goals. Since there is no possibility to achieve any
goals, the goal-directed thinking is assumed to be extinct [I] and thereby the
patient would not be able to follow any instructions that are necessary when
calibrating a BCI in a supervised manner.

Unsupervised calibration might solve this problem, since it allows to calibrate
a BCI and give the user feedback without the need for any goal-directed action
[8]. Although it is still speculation if patients without eye-movement control can
use a ¢-VEP BCI, it might be possible with a modified stimulus presentation (as
it was already done for SSVEP BCIs [9/10]). Thereby the patient could influence
his environment again and may regain the ability for goal-directed thinking,
since he has now a means to communicate and achieve potential goals.
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Conclusion

In this paper we have presented a method that allows for an unsupervised cali-
bration of a ¢-VEP BCI. In an online study we have shown that all subjects were
able to control the BCI with an average accuracy of 85 % after an unsupervised
calibration. Although the accuracy is lower than for a supervised calibration,
unsupervised methods could be used to establish communication in complete
locked-in patients, for whom supervised methods does not work.
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