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Abstract. We present a model of a bidirectional three-layer neural
network with sigmoidal units, which can be trained to learn arbitrary
mappings. We introduce a bidirectional activation-based learning algo-
rithm (BAL), inspired by O’Reilly’s supervised Generalized Recirculation
(GeneRec) algorithm that has been designed as a biologically plausible
alternative to standard error backpropagation. BAL shares several fea-
tures with GeneRec, but differs from it by being completely bidirectional
regarding the activation propagation and the weight updates. In pilot ex-
periments, we test the learning properties of BAL using three artificial
data sets with binary patterns of increasing complexity.
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1 Introduction

The standard error backpropagation learning algorithm [8] is known to be bi-
ologically implausible because it requires the mechanism of error propagation
and it does not use locally available, activation-based variables. With this in
mind, O’Reilly [4] designed Generalized Recirculation (GeneRec) algorithm that
avoids the computation of error derivatives, yet can lead to error minimization.
GeneRec was designed as an extension of Hinton and McClelland’s model based
on recirculation [2] between two layers of units (visible and hidden) with sym-
metric weights, which was restricted to autoassociation. To make it work, they
used a four-stage activation update process. Unlike the recirculation algorithm,
GeneRec is applied to a three-layer network using bidirectional interaction (only)
between two layers of units (hidden and output) in a two-phase activation up-
date process. In his work, O’Reilly experimented with several modifications of
GeneRec, determined by weight update rules. For instance, he showed that the
symmetry-preserving version of GeneRec (i.e. with symmetric hidden-to-output
weights and symmetric weight update), combined with the so-called midpoint
method, is equivalent to Contrastive Hebbian learning (CHL) for training Boltz-
mann machines (both in stochastic and deterministic versions) [4]. Both GeneRec
and CHL are based on differences between two activation phases. Forward (mi-
nus) phase involves activation propagation from inputs toward outputs produc-
ing the network estimate of the output values. Subsequent backward (plus) phase
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flows in the opposite direction propagating the desired output throughout the
network (see Sec. 2). We propose a bidirectional activation-based learning (BAL),
which is based on the GeneRec model, but is completely symmetrical regarding
the activation propagation and the weight update rules (Sec. 3). Our motivation
for designing the BAL model was to implement it in our robotic mirror neuron
system model, that is assumed to require the bidirectional mapping between
high-level sensory and motor representations [7]. The behavior of BAL is tested
in three preliminary experiments (Sec. 4).

2 GeneRec Model

The GeneRec model is a three-layer network with full connectivity between layers
whose activation rules are described in Table 1, following [4]. The model has re-
ciprocal connectivity between hidden and output layer with symmetric weights.
The activation flow starts in minus phase, when the stimulus si is presented. Note
that the net input term at the hidden layer includes the input from both visible
layers before applying the sigmoid activation function σ(η) = 1/(1 + exp(−η)).
Output units produce activations o−k in minus phase but can also be clamped
to target activations o+k at the onset of plus phase. Input units can only deliver
stimuli si at the onset of minus phase. This model was developed in the Leabra
framework [3], which uses dynamic units approximating the behavior of biolog-
ical neurons. O’Reilly [4] has shown that, under certain conditions, GeneRec
computes the same error derivatives as Almeida-Pineda recurrent backpropaga-
tion [1,6].

Table 1. Equilibrium network variables in GeneRec model

Layer Phase Net Input Activation

Input (s) − - si = stimulus input

Hidden (h) − η−
j =

∑
i wijsi +

∑
k wkjo

−
k h−

j = σ(η−
j )

+ η+
j =

∑
i wijsi +

∑
k wkjo

+
k h+

j = σ(η+
j )

Output (o) − η−
k =

∑
j wjkhj o−k = σ(η−

k )

+ - o+k = target output

The basic weight update rule in GeneRec is:

Δwpq = λ a−p (a
+
q − a−q ) (1)

where a−p denotes the presynaptic and a−q denotes the postsynaptic unit ac-
tivation in minus phase, a+p is the presynaptic activation from plus phase (in
output-to-hidden direction) and λ denotes the learning rate. The learning rule
given in Eq. 1 is applied to both input-hidden and hidden-output weights. Due
to the lack of space, the reader is left to consult the original paper [4] regarding
the underlying math behind the derivation of the GeneRec learning rule.
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3 Bidirectional Activation-based Learning

Bidirectional Activation-based Learning algorithm (BAL) shares with GeneRec
the phase-based activations and unit types, but differs from it by the connectivity
that allows completely bidirectional associations to be established (GeneRec
focuses on input-to-output mapping). Unlike GeneRec, BAL uses two pairs of
weight matrices for each activation phase. In addition, in BAL we do not use
dynamical settling process but compute the activations in one step as described
in Table 2.

Table 2. Activation phases and states in BAL model

Layer Phase Net Input Activation

x F - xF
i = stimulus

h F ηF
j =

∑
i w

IH
ij xF

i hF
j = σ(ηF

j )

y F ηF
k =

∑
j w

HO
jk hF

j yF
k = σ(ηF

k )

y B - yB
k = stimulus

h B ηB
j =

∑
k w

OH
kj yB

k hB
j = σ(ηB

j )

x B ηB
i =

∑
j w

HI
ji hB

j xB
i = σ(ηB

i )

We avoid input-output notation of layers as used in GeneRec, because in our
case not only output can be evoked by input presentation, but also vice versa.
Hence, we label the two outer (visible) layers x and y and the hidden layer h.
Let forward activation be denoted by subscript F, backward activation denoted
by subscript B. Then during the forward pass, the x units are clamped to xF

and we get the activations xF → hF → yF. During the backward pass, the y
units are clamped to yB and we get the activations yB → hB → xB.

The mechanism of weights update partially matches that of GeneRec. Each
weight in BAL network (i.e. belonging to one of the four weight matrices) is
updated using the same learning mechanism, according to which the weight
difference is proportional to the product of the presynaptic (sending) unit ac-
tivation ap and the difference of postsynaptic (receiving) unit activations aq,
corresponding to two activation phases (F and B, in particular order). Namely,
weights in x-to-y direction (belonging to h and y units) are updated as

ΔwF
pq = λ aFp (a

B
q − aFq ), (2)

where, as in the GeneRec algorithm, aFp denotes the presynaptic activity, aFq
is the postsynaptic activity, and aBq denotes the postsynaptic activity from the
opposite phase (y-to-h). Analogically, the weights in y-to-x direction (belonging
to h and x units) are updated as

ΔwB
pq = λ aBp (a

F
q − aBq ) (3)

All units have trainable thresholds (biases) that are updated in the same way
as regular weights (being fed with a constant input 1).
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4 Experiments

We test the learning properties of BAL on three experiments with artificial bi-
nary data that differ in dimensionality, size of the training set and mapping
complexity. We chose binary data because they simplify the assessment of net-
work accuracy and they have properties of discrete sparse patterns (used in our
intended application). For assessing the network performance, we used three
quantitative measures (separately for F and B directions): (1) pattern success
(patSucc), which indicates the proportion of output patterns that completely
match targets, (2) bit success (bitSucc), the proportion of units matching their
target, and (3) mean squared error (MSE) per neuron. Based on earlier exper-
iments, we initialize the weights in all tests to small values from the normal
distribution N (0; 1/

√
nI + 1), where nI denotes the input data dimension.

4.1 4-2-4 Encoder

To compare the performance of BAL with GeneRec, we ran tests using the well-
known 4-2-4 encoder task, following O’Reilly [4]. We investigated the convergence
of BAL and the number of required training epochs as a function of the learning
rate. Fig. 1 shows the convergence success for 100 networks and the average
numbers of epochs needed. The simulations showed that convergence of BAL
depends on the learning rate, with the highest number of 65% successful runs
achieved for λ = 0.9. For comparison, O’Reilly [4] reports 90% success for basic
GeneRec algorithm and 56% for a symmetric modification of GeneRec and its
modification equivalent to CHL. In sum, probability of BAL convergence is lower
than that of basic GeneRec rule, but comparable to its symmetric versions. We
expect that the smaller number of successful runs is in both cases influenced by
the bidirectional nature of the weight update.
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Fig. 1. 4-2-4 encoder: results for 100 nets, number of successful runs (left), average
number of training epochs needed for convergence (right), both as a function of λ.
Details for critical values are shown in inset plots.

BAL was observed to require a higher number of training epochs than Gene-
Rec, with very high variability (and skewed distribution), ranging from 100
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Fig. 2. Encoder 4-2-4: Development of network convergence (50 successful nets).

to thousands of epochs. On the contrary, O’Reilly reports only 418 epochs
for GeneRec to converge, and less than 100 epochs for symmetric versions of
GeneRec. An interesting property of BAL is that convergence probability sharply
drops to zero beyond certain range of values of the learning rate, for 4-2-4 task
at λ = 2. BAL convergence in 4-2-4 task and sensitivity to learning rate deserves
further investigation. Fig. 2 illustrates the learning process of 50 successful net-
works during 5000 epochs using λ = 0.9. We conclude that MSE drops to mini-
mum values satisfying error-free performance of the network as indicated by all
success-based measures (converging to one) in both directions. If the network
converges, it masters the encoder task perfectly.

4.2 Simple Binary Vector Associations

We created a sparse binary data set with high dimensionality, which resembles
sensory-motor patterns from our related work. The motivation for using sparse
representations comes from considering the mapping between two domains that
could lend itself to generalization and robustness. In biological networks, such
representations are typically achieved by lateral inhibition. As a computational
shortcut, we use the k-WTA (winner-takes-all) mechanism [5]. This mechanism
sets k maximally responding units to one and resets the remaining units to
zero. In our related work, we apply this mechanism to output maps from two
lower level modules consisting of self-organizing maps, which are then associated
using the BAL algorithm. Data used in this experiment are 144-dimensional
binary vectors with k = 12 active units. Two sets of 100 vectors are arbitrarily
associated to form one-to-one mapping. Similarly to the previous experiment, we
tested the network performance with various values of learning rate using 144–
120–144 architecture. Fig. 3 displays the results. The network learns the mapping
well up to a certain value of the learning rate (λ = 0.3), beyond which it is again
observed to quickly deteriorate (Fig. 3 left). Subsequently, using the estimated
optimal learning rate (λ = 0.2), we also tested selected sizes of the hidden layer
nH (Fig. 3 right). We can conclude that nH has significant influence only on the
amount of training epochs needed to reach 100% success (inset figure).
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Fig. 3. Bidirectional associator: network performance as a function of λ (on the left,
detail for critical values in the inset plot) and nH (on the right, with the number of
epochs needed in the inset plot).
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Fig. 4. Bidirectional associator: development of network performance over time (50
nets). All nets reliably converge after 1500 epochs.

To demonstrate the network training process, we computed performance mea-
sures for 50 nets trained for 2500 epochs using optimized parameters λ = 0.2
and nH = 120. Results in Fig. 4 show that the networks reliably converge to
successful mappings between sparse patterns. To understand the network behav-
ior we also examined the hidden layer. We observed that hF and hB activations
have a tendency to move closer to each other, as could be expected from BAL
(and also from GeneRec) learning rule. Interestingly, activations of h units in
both directions converged roughly to 0.5, so no tendency towards binary inter-
nal representations was observed. This property of internal coding is also worth
further investigation.

4.3 Complex Binary Vector Associations

We evaluated the network performance on n–to–1 data associations, motivated
by the sensory-motor mappings between distributed patterns. For this purpose
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Fig. 5. Bidirectional associator with complex data: network performance as a function
of λ (left) and nH (right).

we created low-dimensional sparse binary codes, 16-dimensional vectors (4×4
map) with k = 3 active units with n = 4. For each target (y), these four
patterns (x) were assumed to have nonzero overlap. Again, we searched for
optimal λ and nH (Fig. 5). The best performance was achieved using λ ≈ 1. We
can observe that the ambiguity in the data association causes the network to
produce errors in B direction. For the best λ the networks yielded patSuccB ≈
4% and bitSuccB ≈ 86%, which means that the networks made small errors in
most patterns. This could be expected since the network cannot know which of
the four (x) patterns is to be reconstructed. It is known, that a network trained
to associate more binary target patterns with one pattern tends to produce a
mesh of outputs, weighed by their frequency of occurrence in the training set.
Examples of network outputs are illustrated in Fig. 6.

Fig. 6. Bidirectional associator with complex data: active units are filled with color,
black = target–estimate match, gray = target only, gray with a cross = false-positive
estimate.

5 Conclusion

We presented a new training algorithm BAL for bidirectional mappings derived
from biologically plausible GeneRec model. Unlike the original GeneRec model,
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our model is used with standard multi-layer perceptron network without ac-
tivation settling dynamics, and it learns a bidirectional mapping rather than
input-output mapping. BAL also differs from the original model in the design of
weight matrices, the learning rule, and partially also in the activation flow in the
two activation phases. Our preliminary experiments have shown that using an
appropriate learning rate, the BAL model can converge, albeit requiring more
training epochs than GeneRec. In particular, for 4-2-4 encoder task the conver-
gence is not guaranteed, which was observed also in the GeneRec model. The
next step in our research should be to investigate the reasons for these perfor-
mance discrepancies. Our experiments also revealed that hidden unit activations
tend to converge to similar values for F and B phases. They do not tend to bina-
rize, which is probably not necessary for learning the task. Further experiments
and a more detailed analysis of BAL are required to better understand this bio-
logically motivated bidirectional learning algorithm that will be exploited in our
robotic mirror neuron system model.
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