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Abstract. This paper is dedicated to the long-term, or multi-step-ahead, time 
series prediction problem. We propose a novel method for training feed-forward 
neural networks, such as multilayer perceptrons, with tapped delay lines. 
Special batch calculation of derivatives called Forecasted Propagation Through 
Time and batch modification of the Extended Kalman Filter are introduced. 
Experiments were carried out on well-known timeseries benchmarks, the 
Mackey-Glass chaotic process and the Santa Fe Laser Data Series. Recurrent 
and feed-forward neural networks were evaluated. 
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1 Introduction 

Time series forecasting is a current scientific problem that has many applications in 
control theory, economics, medicine, physics and other domains. Neural networks are 
known as an effective and friendly tool for black-box modeling of plant’s dynamics 
[1]. Usually, neural networks are trained to perform single-step-ahead (SS) 
predictions, where the predictor uses some available input and output observations to 
estimate the variable of interest for the time step immediately following the latest 
observation [2-4]. However, recently there has been growing interest in multi-step-
ahead (MS) predictions, where the values of interest must be predicted for some 
horizon in the future. Knowing the sequence of future values allows for estimation of 
projected amplitudes, frequencies, and variability, which are important for modeling 
predictive control [5], flood forecasts [6] and fault diagnostics [7]. Generally 
speaking, the ability to perform MS predictions is frequently treated as the “true” test 
for the quality of a developed empirical model. In particular, well-known echo state 
machine neural networks (ESNs) became popular because of their ability to perform 
good long-horizon )84( =H  multistep predictions [8]. 

The most straightforward approach to perform MS prediction is to train the SS 
predictor first and then use it in an autonomous “closed-loop” mode. The predictor’s 
output is fed  back to the input for a finite number of time steps. However, this simple 
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method frequently shows poor results because of the accumulation of errors on 
difficult data points [4]. Recurrent neural networks (RNNs) such as NARX and Elman 
networks usually show better results. They are based on the calculation of special 
dynamic derivatives called Backpropagation Through Time (BPTT). The underlying 
idea of BPTT is to calculate derivatives by propagating the errors back across the 
RNN, which is unfolded through time. This penalizes the predictor for accumulating 
errors in time and therefore provides better MS predictions. Nonetheless, RNNs have 
some disadvantages. First, the implementation of RNNs is harder than feed-forward 
neural networks (FFNNs) in industrial settings. Second, training the RNNs is a 
difficult problem because of their more complicated error surfaces and vanishing 
gradient effects [9]. Third, the internal dynamics of RNNs make them less friendly for 
stability analysis. All of the above reasons prevent RNNs from becoming widely 
popular in industry. Meanwhile, RNNs have inspired a new family of methods for 
training FFNNs to perform MS predictions called direct methods [4]. Accumulated 
error is backpropagated through an unfolded through time FFNN in BPTT style that 
causes minimization of the MS prediction error. Nevertheless, the vanishing gradient 
effect still occurs in all multilayer perceptron-based networks with sigmoidal 
activation functions. 

We propose a new, effective method for training the feed-forward neural models to 
perform MS prediction, called Forecasted Propagation Through Time (FPTT), for 
calculating the batch-like dynamic derivatives that minimize the negative effect of 
vanishing gradients. We use batch modification of the EKF algorithm which naturally 
deals with these batch-like dynamic derivatives for training the neural network. 

2 Modeling Time Series Dynamics 

We consider modeling time series in the sense of dealing with generalized nonlinear 
autoregression (NAR) models. In this case, time series behavior can be captured by 
expressing the observable value )1( +ky  as a function of N  previous values 

)1(),...,( +− Nkyky : 

)),1(),...,1(),(()1( +−−=+ NkykykyFky  (1) 

where k  is the time step variable and )(⋅F  is an unknown function that defines the 

underlying dynamic process. The goal of training the neural network is to develop the 
empirical model of function )(⋅F  as closely as possible. If such a neural model )(~ ⋅F  

is available, one can perform iterated multi-step-ahead prediction: 

)),1(),...,1(),((~)1(~ +−−=+ NkykykyFky  (2) 

…  

)),1(~),...,1(~),(~(~)1(~ +−+−++=++ NHkyHkyHkyFHky  (3) 

where y~  is the neural network’s output and H  is the horizon of prediction. 
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measurement noise IR η=  and dynamic training noise IQ μ=  are set. Matrix R  has 

size ww LL × , matrix Q  has size ,ww NN ×  where wL  is the number of output 

neurons, and wN  is the number of the network’s weight coefficients. Coefficient η  is 

the training speed, usually 42 10...10~ −−η , and coefficient μ  defines the 

measurement noise, usually 84 10...10~ −−μ . Also, the identity covariance matrix P  

of size ww NN ×  and zero observation matrix H  of size ww NL ×  are defined. The 

following steps must be performed for all elements of the training dataset: 
 

1) Forward pass: the neural network’s output )1(~ +ky  is calculated. 

2) Backward pass: Jacobians 
w

y

∂
∂~

 are calculated using backpropagation. Observation 

matrix )(kH  is filled: 

.
)1(~

...
)1(~)1(~

)(
21 












∂
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∂
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wNw

ky

w

ky
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kH   (4) 

3) Residual matrix )(kE  is filled: 

[ ].)1()( += kekE  (5) 

4) New weights )(kw  and correlation matrix )1( +kP  are calculated: 

,])()()([)()()( 1−+= RkHkPkHkHkPkK TT  (6) 

,)()()()()1( QkPkHkKkPkP +−=+ (7) 

).()()()1( kEkKkwkw +=+ (8) 

2.2 Training NARX Networks Using BPTT and EKF 

Nonlinear Autoregression with eXternal Inputs. The NARX neural network 
structure is shown in Fig. 1. It is equipped with both a tapped delay line at the input 
and global recurrent feedback connections, so the input vector 

,])(~...)(~)(...)([)( TLkykyNkykykx −−=
 
where N  is the order of the 

input tapped delay and L  is the order of the feedback tapped delay line. 
 

Calculation of BPTT Derivatives. Jacobians  are calculated according to the BPTT 
scheme  [1, p. 836], [4], [7]. After calculating the output )1(~ +ky ,  the NARX  

network is unfolded back through time. The recurrent neural network is presented as 
an FFNN with many layers, each corresponding to one retrospective time step 1−k ,

2−k ,  , hk − , where h  is a BPTT truncation depth. The set of static Jacobians 

w

nky

∂
−∂ )(~

 are calculated for each of the unrolled retrospective time steps. Finally, 
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neural network. Finally, FPTT does not average derivatives, it calculates a set of 
formally independent errors and a set of formally independent derivatives for future 
time steps instead. By doing this, we leave the question about contributions of each 
time step to the total MS error to the Batch EKF Algorithm. 

Batch Extended Kalman Filter Method for Training DMLP Using FPTT. The 
EKF training algorithm also has a batch form [11]. In this case, a batch size of H  
patterns and a neural network with wL  outputs is treated as training a single shared-

weight network with HLw ×  outputs, i.e.
 

H data streams which feed H networks 

constrained to have identical weights are formed from the training set. A single 
weight update is calculated and applied equally to each stream's network. This 
weights update is sub-optimal for all samples in the batch. If streams are taken from 
different places in the dataset, then this trick becomes equivalent to a Multistream 
EKF [7], [10], a well-known technique for avoiding poor local minima. However, we 
use it for direct minimization of accumulated error H  steps ahead. Batch observation 
matrix )(~ kH  and residual matrix )(~ kE  now becomes: 
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[ ].)1(...)2()1()(~ ++++= HkekekekE (10) 

The size of matrix R~  is )()( HLHL ww ××× , the size of matrix )(~ kH  is 

ww NHL ×× )( , and the size of matrix )(~ kE  is 1)( ×× HLw . The remainder is 

identical to regular EKF. In (9)-(10) we assume 1=wL , if 1>wL  the method works 

for vector-valued time series of dimensionality wL . However, the proposed method 

requires at least H  more calculations at each time step in comparison classic one. 
Experimental research to establish it's computational cost is needed. 

3 Experiments 

3.1 Mackey-Glass Chaotic Process 

The Mackey-Glass chaotic process is a famous benchmark for time series predictions. 
The discrete-time equation is given by the following difference equation (with delays): 

,,...1,,
)(1

)1(
101 +=

+
+−=

−

−
+ ττ

τ

τ t
x

x
axbx

t

t
tt  (11) 

where 1≥τ  is an integer. We used the following parameters: 1.0=a , 2.0=b , 
17=τ   as in [4]. 500 values were used for training; the next 100 values were used for 

testing.  
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Meanwhile, the best instance trained using Batch EKF+FPTT shows 10 times 
better accuracy than the best instance  trained using the traditional approach. 

4 Conclusions 

We considered the multi-step-ahead prediction problem and discussed neural network 
based approaches as a tool for its solution. Feed-forward and recurrent neural models 
were considered, and advantages and disadvantages of their usage were discussed. A 
novel direct method for training feed-forward neural networks to perform multi-step-
ahead predictions was proposed, based on the Batch Extended Kalman Filter. This 
method  is considered to be useful from a technological point of view because it uses 
existing multi-step-ahead prediction functionality for calculating special FPTT 
dynamic derivatives which require a slight modification of the standard EKF 
algorithm. Our method demonstrates doubled long-term accuracy in comparison to 
standard training of the dynamic MLPs using the EKF due to direct minimization of 
the accumulated multi-step-ahead error.  
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