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Abstract. Several variants of Nonnegative Matrix Factorization (NMF)
have been proposed for supervised classification of various objects. Graph
regularized NMF (GNMF) incorporates the information on the data ge-
ometric structure to the training process, which considerably improves
the classification results. However, the multiplicative algorithms used for
updating the underlying factors may result in a slow convergence of the
training process. To tackle this problem, we propose to use the Spec-
tral Projected Gradient (SPG) method that is based on quasi-Newton
methods. The results are presented for image classification problems.
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1 Introduction

Nonnegative Matrix Factorization (NMF) [I] decomposes a nonnegative matrix
into lower-rank factor matrices that have nonnegative entries and usually some
physical meaning. When NMF is applied to the matrix of training samples, we
obtain sparse nonnegative feature vectors and coefficients of their nonnegative
combination. The vectors of the coefficients lie in a low-dimensional latent com-
ponent space. Hence, NMF is often regarded as a dimensionality reduction tech-
nique, and it has been widely applied for classification of various objects [2Hf].

As reported in [7], the factor matrices obtained with NMF are generally non-
unique. Several attempts have been done to additionally constrain them to satisfy
a certain degree of sparsity, smoothness, uncorrelatedness, or orthogonality [2].
Cai et al. [89] noticed that the projection from the high-dimensional observa-
tion space to the low-dimensional space should preserve the data geometrical
structure. That is, any training samples forming one class should, after being
projected, belong to the same class in the latent component space. Thus, they
proposed Graph regularized NMF (GNMF) [8] that constrains one of the factor
matrices with the information on the data geometric structure encoded in the
nearest-neighbor graph of the training samples. This constraint was imposed to
NMF by a specifically designed regularization term in the objective function
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that was then minimized with the standard multiplicative algorithm [2]. Guan
et al. [I0] considerably accelerated the convergence of GNMF by using additive
gradient descent updates.

In this paper, we propose to improve the convergence rate of GNMF up-
dates even more, by applying another Newton-based methods that provide the
estimates according to the Karush-Kuhn-Tucker (KKT) optimality conditions.
First, we formulate the Quadratic Programming (QP) problems for minimiz-
ing the penalized objective function. The QP problems can be efficiently solved
with many numerical algorithms. To tackle large-scale classification problems, we
suggest to use the modified Spectral Projected Gradient (SPG) method that be-
longs to the class of quasi-Newton methods. Moreover, we also propose to control
the penalty parameters iteratively by some schedule included in the alternating
update scheme.

The paper is organized in the following way. The next section discusses the
Graph-regularized NMF. Section B] is concerned with the optimization algo-
rithms. The numerical experiments for image classification problems are pre-
sented in Section Ml Finally, the conclusions are drawn in Section Bl

2 Graph-Regularized NMF

Let Y = [y;,...,y7] € RIXT, where y, € RL is the t-th training sample.
Applying NMF to Y, we get Y = AX, where the columns of the matrix A €
Rix‘] represent the feature vectors, and the columns of the matrix X € R_{_XT
are encoding vectors.

In several variants of NMF, the objective function can be expressed by the
quadratic function:

U(A, X) = ;HY —AXE+ Y (X XT) + O u(ATDaA), (1)

where Ly € RT*T and L, € R are symmetric weighting matrices. In super-
vised classification, the matrix Lx contains the information on assignments of
the training samples to their classes. In DNMF [4], it is determined by the matrix
of inner- and outer-class scattering. In GNMF [8], Lx is the graph Laplacian
matrix that represents a data geometrical structure in the observation space.
It takes form: Lx = D — W, where W = [wy,] € RIXT contains the entries
that determine the edges in the nearest neighbor graph of the observed points,

and D = diag (prl wnm) € RIXT. The edges can be determined by the hard

connections:

w — 17 if Yn € Np(ym)v or Y, € Np(yn)7 (2)
nm 0, otherwise

where N, (y,) is the p nearest neighbor of the sample y,. We can also use the
Heat kernel weighting:

exp d NY,-Y,.105 if eN,(y,,) No(y,)
wnm — p o 9 y'n P ym ’ or ym E P yn ) (3)
0, otherwise
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or the cosine measure:

w — yz;ym’ lf yn € Np(ym)ﬂ or ym € Np(yn)ﬂ (4)
nm 0, otherwise

The matrix L4 in () can enforce the smoothness in the feature vectors (the
column vectors in A) or other modality. We assumed the simplest approach to
the smoothness by setting L4 = I, where I} € Riﬂ is an identity matrix.

3 Algorithm

Since the matrix Lx in () is a symmetric and positive definite, the regularization
term tr(X Lx X7 can be reformulated as follows:

1 1
Uo(X) = to(XLx X") = [| XL = [[(Lk @ I)zll3 = =" (Lx @ L)z, (5)

where £ = vec(X) € R’7T is a vectorized form of X, and ® stands for the
Kronecker product.

Considering the function (&), the minimization problem: minx ¥ (A, X), s.t.
X > 0 can be expressed in terms of the Quadratic Programming (QP) problem:
ming ;mTQXm + c§m, s.t. x>0, where Qyx = It QATA+axLx®I; €
R/T*IT and ex = —vec(ATY) € R/T.

Similarly, the matrix A can be also computed by formulating the QP problem:
ming la”Q a+cha, st. a>0,wherea=vec(A”) e R’ Q,=(XX"+
aal;) @I € RIVXIT and ¢y = fvec(YXT) e R,

Since the function () is quadratic with respect to both arguments A and X
(but not jointly), the matrices Q 4, and @Q y are equivalent to the Hessian matrices
for A and X, respectively. When a4 > 0, the matrix @ 4 is positive definite.
Under the assumption of positive definiteness of the matrix Lx, the matrix Q
is also positive definite. Hence, both QP problems are strictly convex. To solve
such problems, we can use many numerical algorithms such as the Active-Set
(AS), Interior-Point (IP), and Spectral Projected Gradient (SPG) [11I]. These
algorithm are based on the Newton or quasi-Newton updates.

Note that the matrix @ 4 has a block-diagonal structure, and hence the up-
dates of A might be considerably accelerated by transforming the nonnegative
least-squares problem: mina>o 5||Y — AX||% + %*||A[|% to the normal equa-
tions X X7 AT = XY subject to the nonnegativity constraints A > 0. Then,
the solution can be efficiently searched with the FC-NNLS algorithm that was
proposed by Benthem and Keenan [I2], and then adapted to NMF problems
in [13].

The updates for X cannot be accelerated in the similar way, however, there
is still a possibility of applying some quasi-Newton method without formulating
the Hessian @y . Note that the matrix Qy is very large when the number of
training samples is large, and it is rather a dense matrix due to the matrix
Lx. One of these possibilities is to use the SPG method [I4] that combines the
standard gradient projection scheme with the nonmonotonic Barzilai-Borwein
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(BB) method [II]. It is used for minimization of convex functions subject to
box-constraints.

In the SPG method, the descent direction pgk) for updating the vector x; in
the k-th iteration is defined as follows:

pl"” = |2 — (@) Vo, r(a.a")] . (6)

for a,(fk) > 0 selected in such a way that the matrix agk)IJ approximates the

Hessian matrix.
In [2], this method was adopted to parallel processing of all column vectors
in X. Using this approach, we have the update rule:

x (k1) _ x (k) + ID(IC)Z(’f)7 (7)

where Z®) = diag{n®)}. The column vectors of P*) € R7*T and the entries
of the vector n¥) e RI are descent directions and steplengths for updating the

vectors {a,}, respectively. According to (@), the matrix P*) has the form:
k
pk — [X(m _ G;)D(k)L _xW, (8)
where G = Vxw(A, X®) € R/*T and D® = diag{(a{")~1} € RT*T,

The coefficients {agk)} can be obtained from the secant equation that is
given by S diag{agkﬂ)} =W® where §® = X+ _ x*) ang wk =
Vx¥(A, X*D) - vxw (X ®). For the minimization of the objective function
(@) with respect to X, the matrix W) takes the form: W*) = AT A5 4

axS® L. From [@ we have: sk — p®) zK®) 1, consequence, the secant
equation leads to:

diag {(S(k))TW(k)} diag {(S(k))TATAS(k) + aX(S(’“))TS(’“)LX}

o+ _
diag {(S(k))Ts(’f)} diag {(S(’f))Ts(k)}

diag { (P®)TATAP® 1 ax (PW)T PO Z® Ly (Z20) 1}
diag {(p(m)TP(k)}

17 [P(’“) ® (ATAPW + aXP(k)Z(k)LX(Z(’“))—l)]

- 15 [P 0 ) | Y

where ® stands for the Hadamard product, and the operation diag{ M} creates a

vector containing the main diagonal entries of a matrix M. Note that the matrix

ARET diagonal, so the product Z(k)LX(Z(k))*1 can be readily calculated.
The steplengths can be estimated by solving the minimization problem:

ngk) = arg m(lkr)ly'/ <A, xX® L p®) diag{n(k)}) . (10)
n
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If ax = 0, the problem (I0) can be expressed in a closed-form. Otherwise,
iterative updates must be used, e.g. the Armijo rule [I1].

The final form of the modified SPG algorithm is given by Algorithm [II
The final form of the NMF algorithm used in the training process is given by
Algorithm 2

Algorithm 1. SPG algorithm
Input :Y € RiXT, Ac Rix‘], xO© ¢ RJJFXT - initial guess, kmaqz - number of

iterations for SPG updates, amin > 0, Qmaz > 0, Vi : aﬁ‘” = éamax,
Output: X - estimated factor matrices,
1 for k=0,1,...,knes do
2 G =vxv(A,XP)=ATAXP® - V) + axXP Ly ; // Gradient
3 PF = [X(k> — G()?) diag{(&gk))fl}} — x®) ; // Descent direction
+
7® = max{0, min{1,n*}} ; // where n'®) is estimated with QD

X k+1) — x (k) + ) 21 diag{ﬁ(k)};
a* ) = max{amin, min{maz, «* 1} // vhere oV is set to @

In the training process, we obtain the nonnegative matrices A and X. The
column vectors of X contain the discriminant information. To classify the test
sample g, first we need to project it onto the subspace spanned by the column
vectors of the matrix A. As a result, we obtain & € Ri. This step can be carried
out with the SPG, assuming ax = 0. Then, the following problem is solved:
t. = argmini<i<r ||@ — @¢||2, which gives the index ¢, of the class to which the
sample g is classified.

4 Experiments

The experiments are carried out for classification of facial images taken from the
ORL databasdl. It contains 400 frontal facial images of 40 people (10 pictures
per person). We selected 8 training images randomly from each class, and the
remaining 2 images are used for testing.

We test the following NMF algorithms: MUE (standard multiplicative Lee-
Seung algorithm for the Euclidean distance) [I], GNMF [8], MD-NMF [I0], stan-
dard projected ALS [2], LPG (Lin’s Projected Gradient) [I5], IP (Interior-Point
NMF) [16], regularized FC-NNLS [13], SPG-NMF (Algorithm [2)). For the SPG
algorithm, we found the optimal parameters: ax = 107°, & = 1072, oy = 0.01,
and kpqe = min{k, 50}, where k is the alternating step in Algorithm Pl The
matrix Ly is determined using the hard connection criterion given by (2)). The
iterative process is terminated after 50 alternating steps.

! http://people.cs.uchicago.edu/~dinoj/vis/orl/
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Algorithm 2. SPG-NMF Algorithm

Input :Y € R™7T, J- lower rank, ao - initial regularization parameter,
Output: Factor matrices: A € Rﬂrx‘] and X € RiXT
1 Initialize: A and X with nonnegative random numbers;
2 Replace negative entries (if any) in Y with zero-value, k =0 ;
3 repeat
4 ( ) = max {a 2- ao} // Regularization parameter schedule
5 X(’““) =SPG(Y, A® X ®) ay);
k+1 k+1
6 1 ) _ Zt T ( )7

e diag { (a+0) _1} XE0 A0 AW diag {0 ]

7 AUTY —pomLs (YT, (X FEO)T (ACNHT o)y,
AG+TD — (A(k+1))T
0 c?(k+1) _ Zf ) a(k+1)

X+ diag {d(’““)} x(k+D) A (RFD) A<k+1>diag{(j(’°+1))_l}~
7 J 7

10 k< k+1;
11 until Stop criterion is satisfied;

The NMF algorithms are initialized with uniformly distributed random ma-
trices, and tested for various values of the related parameters. Fig. [[l presents the

mean recognition rate versus the number of components (parameter J) obtained
with different NMF algorithms.
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Fig. 1. Recognition rate obtained using various NMF algorithms versus the number of
components J



96 R. Zdunek, A.-H. Phan, and A. Cichocki

The normalized residual errors versus the number of iterations for the selected
NMF algorithms are plotted in Fig.
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Fig. 2. Normalized residual errors versus alternating iterations

5 Conclusions

The results presented in Fig. [[l demonstrate that the SPG-NMF algorithm out-
performs the other tested algorithms in terms of the recognition rate for J > 10.
Usually an increase in the factorization rank leads to a higher recognition rate.
The experiments also confirm that the NMF algorithms based on Newton-like
methods (SPG, IP, FC-NNLS and ALS) converge faster than the multiplica-
tive algorithms. This can be observed in Fig. Pl where the SPG-NMF algorithm
demonstrates a better convergence behavior than the others. Initially the pro-
jected ALS algorithm converges faster but it does not guarantee a monotonic
convergence. As observed in Fig. 2lthe residual error of the SPG-NMF decreases
monotonically with alternating steps. This behavior is also justified by the fact
that both SPG and FC-NNLS algorithms converge to the solution optimal ac-
cording to the KKT conditions. Moreover, the convergence of the SPG-NMF is
faster than for the multiplicative algorithms since the SPG is a quasi-Newton
method, i.e., the gradient direction is scaled using the information on the Hessian
approximation.

Summing up, the experiments showed that the proposed algorithm works very
efficiently for the facial classification problem. The usefulness of the proposed
algorithm in other applications of NMF will be analyzed in the further research.
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