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Abstract. This paper studies the exponential synchronization of RNNs.
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1 Introduction

In the last decade, there has been increasing interest in exploring of recurrent
neural networks (RNNs) since they have a wide range of applications, for in-
stance, signal processing, pattern recognition, associative memory and combi-
natorial optimization. In particular, different types of recurrent neural networks
(HNNs, CNNs) have been used and applied to study the qualitative properties
such as existence and oscillations of solutions ([2], [4], [5]). Hence, there have
been extensive results on the problem of the existence and synchronization of
RNNs with constant time delays and time-varying delays in the literature. How-
ever, there exist few results on the dynamical behaviors of RNNs with continu-
ously distributed delays. In particular, exponential synchronization of RNNs is of
paramount importance in a variety of complex physical, chemical, and biological
systems [13]. It is well known that such synchronization strategies have potential
applications in several areas such as secure communication ([11], [14]) biological
oscillators [3] and animal gaits [7]. It should be mentioned that there are different
notions of synchronization, such as phase synchronization [16], generalized syn-
chronization [17], lag synchronization [18], and identical synchronization [15]. In
this paper, motivated by the above discussions, we are concerned with the expo-
nential synchronization of a class of recurrent neural networks with varying-time
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coefficients and mixed delays. Thus, the goal in this paper is to design an ap-
propriate controller such that the coupled neural networks remain synchronized.
This paper is organized as follows. In Section 2, the synchronization problem
to be considered is formulated. In Section 3, a new sufficient condition for the
exponential synchronization is obtained. In Section 4, numerical simulations is
given to show the validity of theoretical result.

2 Exponential Synchronization Problem

The model of the delayed recurrent neural network considered in this paper is
described by the following state equations

ẋi (t) = −aixi(t) +
n∑

j=1

cij (t) fj(xj (t)) +
n∑

j=1

dij (t) fj(xj (t− τ))

+
n∑

j=1

pij (t)
t∫

t−σ

fj(xj(s))ds + Ji (t) ,

xi(t) = ψi(t), � ≤ t ≤ 0, 1 ≤ i ≤ n,

(1)

where n is the number of the neurons in the neural network, xi(t) denotes the
state of the ith neural neuron at time t, fj(xj(t)) is the activation function of
jth neuron at time t. The functions cij (·), dij (·) and pij (·) denote, respectively,
the connection weights, the discretely delayed connection weights, and the dis-
tributively delayed connection weights, of the jth neuron on the i neuron. Ji (·)
is the external bias on the ith neuron, ai denotes the rate with which the ith
neuron will reset its potential to the resting state in isolation when disconnected
from the network and external inputs. τ is the constant discrete time delay and
� = max (τ, σ) .

Now let us give the following notations and concepts used throughout this

paper. For x ∈ R
n, let ‖x‖ =

(
xTx

) 1
2 =

(
n∑

j=1

x2i

) 1
2

denote the Euclidean

vector norm, and for a matrix A ∈ Mn (R) , let ‖A‖ indicate the norm of

A induced by the Euclidean vector norm, i.e.,‖A‖ =
(
λmax

(
ATA

)) 1
2 , where

λmax (A) represents the maximum eigenvalue of matrix A and T denotes the
transpose of a matrix. We denote a vector solution of the above system as
x(t) = (x1(t), x2(t), . . . , xn(t))

T . The neural network (1) can be rewritten in
the following matrix-vector form

ẋ (t) = −Dx(t) + Cf(x (t)) +Df(x (t− τ)) + P
t∫

t−σ

f(x(s))ds+ J (t)

x(t) = ψ(t), � ≤ t ≤ 0.

(2)

Throughout this paper, we make the following assumptions:
(H1) For all 1 ≤ j ≤ n, there exist positive constant numbers Lj > 0 such

that for all x, y ∈ R

|fj(x) − fj(y)| < Lj |x− y| ,
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(H2) For all 1 ≤ i ≤ n, ai > 0 and τ, σ > 0,
Let us introduce the following controlled slave (or response) system:

żi (t) = −aizi(t) +
n∑

j=1

cij (t) fj(zj (t)) +
n∑

j=1

dij (t) fj(zj (t− τ))

+
n∑

j=1

pij (t)
t∫

t−σ

fj(zj(s))ds+ Ji (t) + ui

zi(t) = ϕi(t), � ≤ t ≤ 0, 1 ≤ i ≤ n,

(3)

in which ui(t) denotes the external control input that will be appropriately
designed for an certain control objective.

3 Exponential Synchronization of the RNNs

Definition 1. The systems (1) and the uncontrolled system (2) (i.e. ui = 0, ∀1 ≤
i ≤ n in (3)) are said to be exponentially synchronized if there exist constants
η ≥ 1 and α > 0 such that

|xi (t)− zi (t)| ≤ η |xi (0)− zi (0)| e−αt

for any t ≥ 0. Moreover, the constant α is defined as the exponential synchro-
nization rate.

From (1) and (3), the following error dynamics equation can be obtained:

ėi (t) = −aiei(t) +
n∑

j=1

cij (t)Fj(ej (t)) +
n∑

j=1

dij (t)Fj(ej (t− τ))

+
n∑

j=1

pij (t)
t∫

t−σ

Fj(ej(s))ds + ui, 1 ≤ i ≤ n,
(4)

where e (t) = x (t) − z (t) is the error term, and F (e (t)) = f (x (t)) − f (z (t));
F (e (t− τ)) = f (x (t− τ))− f (z (t− τ)).

As long as the control input stabilize the system, the error vector e (t) con-
verges to zero as time t goes to infinity i.e. lim

t→+∞ e (t) = lim
t→+∞x (t) − z (t) = 0.

If the state variables of the drive system are used to drive the response system,
then the control input vector with state feedback is designed as follows:

⎛

⎜
⎝

u1 (t)
...

un (t)

⎞

⎟
⎠ =M

⎛

⎜
⎝

x1 (t)− z1 (t)
...

xn (t)− zn (t)

⎞

⎟
⎠ =M

⎛

⎜
⎝

e1 (t)
...

en (t)

⎞

⎟
⎠ (5)

where M = (mij)n×n is the controller gain matrix and will be appropriately
chosen for exponentially synchronizing both drive system and response system.
It follows that the error dynamics can be expressed by the following compact
form:

ė (t) = −Ae(t) + CF (e (t)) +DF (e (t− τ)) + P

t∫

t−σ

F (e(s))ds+ u



Exponential Synchronization of a Class of RNNs 77

Lemma 1. ([1]) For all (n× n) real symmetric matrixM , one hasM is positive
definite if and only if all its eigenvalues are positive. Furthermore, for all x ∈ R

n

λmin (M) ‖x‖2 ≤ xTMx ≤ λmax (M) ‖x‖2

where λmin (M) (λmax (M)) represents the minimum (resp. the maximum) eigen-
value of the matrix M .

Lemma 2. (Halanay inequality lemma [9] ). Let ρ ≥ 0 be a constant, and V (·)
be a non-negative continuous function defined for [−ρ,+∞[ which satisfies

V̇ (t) ≤ −pV (t) + q

(

sup
t−ρ≤s≤t

V (s)

)

for t ≥ 0, where p and q are constants. If p > q > 0, then

V (t) ≤
(

sup
−ρ≤s≤0

V (s)

)

e−δt

for t > 0, where δ is a unique positive root of the equation δ = p− qeδτ .

Theorem 1. Suppose that the conditions (H1)−(H2) hold. If the controller gain
matrix M in (5) is real symmetric and positive definite satisfying

max
1≤i≤n

Li (2 ‖C‖+ ‖D‖+ σ ‖P‖)
2 min
1≤i≤n

ai + 2λmin (M)
< 1, (H3)

then the exponential error system (4) converges exponentially.

Proof. First, it is clear that in view of (H1)

‖F (e (t− τ))‖2 =

n∑

i=1

F 2
i (e (t− τ)) ≤

n∑

i=1

L2
i (e

2
i (t− τ))

≤ max
1≤i≤n

L2
i ‖e (t− τ))‖2 .

Similarly, ‖F (e (t))‖ ≤ max
1≤i≤n

L2
i ‖e (t))‖2 . In order to confirm that the origin

of (4) is globally exponential synchronization, let us consider the continuous

function, V defined as follows: V (t) = 1
2e (t)

T
e (t) = 1

2 ‖e‖2 . Calculating the
time derivative of V along the trajectory by using the vector norm, matrix norm
and from the inequalities above, we obtain immediately

V̇ (t) = −e (t)T Ae(t) + e (t)
T
CF (e (t)) + e (t)

T
DF (e (t− τ))

+e (t)
T
P

t∫

t−σ

K (t− s)F (e(s))ds− e (t)
T
Me (t)
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≤ −
n∑

i=1

aie
2
i + ‖e‖ ‖C‖ ‖F (e (t))‖+ ‖e‖ ‖D‖ ‖F (e (t− τ))‖

+ ‖e‖ ‖P‖
t∫

t−σ

‖F (e(s))‖ ds− λmin (M) ‖e (t)‖2

By Cauchy Shwartz inequality one can obtain

V̇ (t) ≤ − min
1≤i≤n

ai ‖e‖2 + ‖e (t)‖ ‖C‖ max
1≤i≤n

Li ‖e (t))‖+ max
1≤i≤n

Li ‖e (t)‖ ‖D‖ ‖e (t− τ))‖

+ max
1≤i≤n

Li ‖e (t)‖ ‖P‖
⎛
⎝

t∫

t−σ

ds

⎞
⎠

1
2
⎛
⎝

t∫

t−σ

‖e (s)‖2 ds
⎞
⎠

1
2

− λmin (M) ‖e (t)‖2

≤
(
− min

1≤i≤n
ai + ‖C‖ max

1≤i≤n
Li − λmin (M)

)
1

2
‖e (t)‖2 + max

1≤i≤n
Li ‖e (t)‖ ×

×‖D‖ ‖e (t− τ))‖ + max
1≤i≤n

Li ‖e (t)‖ ‖P‖√σ

⎛
⎝

t∫

t−σ

‖e (s)‖2 ds
⎞
⎠

1
2

≤
(
− min

1≤i≤n
ai + ‖C‖ max

1≤i≤n
Li − λmin (M)

)
‖e (t)‖2 +

1

2
‖D‖ ×

× max
1≤i≤n

Li

(
‖e (t)‖2 + ‖e (t− τ)‖2

)
+

√
σ max

1≤i≤n
Li ‖e (t)‖ ‖P‖√σ

(
max

t−σ≤s≤t
‖e (s)‖2

) 1
2

≤
(
− min

1≤i≤n
ai + ‖C‖ max

1≤i≤n
Li − λmin (M)

)
‖e (t)‖2 +

1

2
‖D‖ max

1≤i≤n
Li ×

×
(
‖e (t)‖2 + ‖e (t− τ)‖2

)
+

σ

2
max

1≤i≤n
Li ‖P‖

(
‖e (t)‖2 + max

t−σ≤s≤t
‖e (s)‖2

)

≤
(
−2 min

1≤i≤n
ai + 2 ‖C‖ max

1≤i≤n
Li + ‖D‖ max

1≤i≤n
Li − 2λmin (M) + σ max

1≤i≤n
Li ‖P‖

)
V (t)

+
1

2
‖D‖ max

1≤i≤n
Li ‖e (t− τ))‖2 +

σ

2
max

1≤i≤n
Li ‖P‖ max

t−σ≤s≤t
‖e (s)‖2

≤ −
(
2 min
1≤i≤n

ai − 2 ‖C‖ max
1≤i≤n

Li − ‖D‖ max
1≤i≤n

Li + 2λmin (M)− σ max
1≤i≤n

Li ‖P‖
)
V (t)

+ max
1≤i≤n

Li

(
‖D‖+

σ

2
‖P‖

)
max

t−ρ≤s≤t
V (s)

Now, in virtue of lemma 1 and (H3) it follows that V (t) ≤ (sup−ρ≤s≤t0 V (s)
)
e−δt

where

δ =

(

2 min
1≤i≤n

ai − max
1≤i≤n

Li (2 ‖C‖+ ‖D‖+ σ ‖P‖) + 2λmin (M)

)

− max
1≤i≤n

Li

(
‖D‖+ σ

2
‖P‖

)
eδρ.

Therefore, V (e(t)) converges to zero exponentially, which in turn implies that
e(t) also converges globally and exponentially to zero with a convergence rate of
δ
2 , i.e.‖e (t)‖ ≤ (sup−ρ≤s≤s ‖φ (s)− ψ (s)‖) e−δ t

2 .
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In other words, every trajectory zi(t) of (3) must synchronize exponentially
toward the xi(t) with a convergence rate of δ

2 . This completes the proof.

Remark 1. Clearly and from the above study, the sufficient condition for expo-
nential synchronization of systems (1) and (3) depends only on the continuous
delay but relies on the connection weights and the controller gain. Besides,
when for all 1 ≤ i, j ≤ n, pij = 0 and J (·) is constant, model (1) and (2) in
this paper become the models in [12]. On the other hand, in [6] under similar
hypothesis, authors derive exponential synchronization criteria for two chaotic
neural networks under the configuration of the master slave mode by applying
the Lyapunov stability approach and the Halanay inequality. However, the con-
ditions of Theorem 1 in this paper is easy to test in practice. So, the results in
[6] is a special case of the results in this paper. It should be mentioned that the
method in this paper is not as same as the method in [8] and [10].

4 An Illustrative Example

In order to illustrate some feature of our main results, in this section, we will ap-
ply our main results to some special three-dimensional systems and demonstrate
the efficiencies of our criteria.

Example 1. Let us consider the following delayed recurrent neural network

ẋi (t) = −aixi(t) +
3∑

j=1

cij (t) fj(xj (t)) +

3∑

j=1

dij (t) fj(xj (t− τ))

+
3∑

j=1

pij (t)

t∫

t−σ

fj(xj(s))ds + Ji (t) ,

and the response recurrent neural network is designed as follows:

żi (t) = −aizi(t) +
3∑

j=1

cij (t) fj(zj (t)) +

3∑

j=1

dij (t) fj(zj (t− τ))

+

3∑

j=1

pij (t)

t∫

t−σ

fj(zj(s))ds+ Ji (t) + ui (t)

ė (t) = −Ae(t) + CF (e (t)) +DF (e (t− τ)) + P

t∫

t−σ

F (e(s))ds+ u

Pose: a1 = 11, a2 = 17, a3 = 13, fj(x) = x, τ = 1, σ = 2 and

C =

⎛

⎝
1 −3 −2
0 −1 1
1 0 −1

⎞

⎠ , D =

⎛

⎝
2 −3 −1
0 −1 4
−1 0 2

⎞

⎠ , P =

⎛

⎝
0.5 −1.5 1
1 0 2
2 −0.5 1

⎞

⎠ ,M =

⎛

⎝
0 0 0
0 2 0
0 0 3

⎞

⎠
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So the condition (H3) is satisfied since

max
1≤i≤3

Li (2× 3. 840 8 + 4. 686 2 + 2× 3. 312 6)

2× 9 + 2× λmin (M)
= 0.86332 < 1

By using the matlab Toobox, one can obtain the graphical illustration Fig. 1

Fig. 1. The exponential synchronization error

5 Conclusion

By Constructing an appropriate linear feedback controller, this paper addresses
the problem of exponential synchronization of a class of recurrent neural net-
works with mixed delays. Based on the properties of a recurrent attractor, we
gave a new synchronization criterion for the considered system by using Lya-
punov method and the well known Halanay lemma. To demonstrate the effec-
tiveness of the proposed method, a numerical example is used.
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5. Chérif, F.: Existence and global exponential stability of pseudo almost periodic
solution for SICNNs with mixed delays. JAMC 39(1) (2011)

6. Cheng, C.-J., Liao, T.-L., Hwang, C.-C.: Exponential synchronization of a class of
chaotic neural networks. Chaos, Solitons and Fractals 24, 197–206 (2005)

7. Collins, J.J., Stewart, I.N.: Coupled nonlinear oscillators and the symmetries of
animal gaits. J. Nonlinear Sci. 3, 349–392 (1993)

8. Cui, B., Lou, X.: Synchronization of chaotic recurrent neural networks with time-
varying delays using nonlinear feedback control. Chaos, Solitons and Fractals 39,
288–294 (2009)

9. Gopalsamy, K.: Stability and oscillations in delay differential equations of popula-
tion dynamics. Kluwer Academic Publishers, The Netherlands (1992)

10. Huang, T., Chen, G., Kurths, J.: Synchronization of chaotic systems with time-
varying coupling delays. Discrete and Continuous Dynamical Systems, Series
B 16(4) (2011)

11. Itoh, M., Wu, C.W., Chua, L.O.: Communication systems via chaotic signals from
a reconstruction viewpoint. Int. J. Bifur. Chaos Appl. Sci. Eng. 7, 275–286 (1997)

12. Lu, H., van Leeuwen, C.: Synchronization of chaotic neural networks via output or
state coupling. Chaos, Solitons and Fractals 30, 166–176 (2006)

13. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Rev. Lett. 64, 1196–1199
(1990)

14. Parlitz, U., et al.: Transmission of digital signals by chaotic synchronization. Int.
J. Bifur. Chaos Appl. Sci. Eng. 2, 973–977 (1992)

15. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev.
Lett. 64, 821–824 (1990)

16. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic
oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996)

17. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized syn-
chronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51,
980–994 (1995)

18. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization
in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997)


	Exponential Synchronization of a Class of RNNs with Discrete and Distributed Delays
	1 Introduction
	2 Exponential Synchronization Problem
	3 Exponential Synchronization of the RNNs
	4 An Illustrative Example
	5 Conclusion
	References




