
Valeri Mladenov Petia Koprinkova-Hristova
Günther Palm Alessandro E.P. Villa
Bruno Appollini Nikola Kasabov (Eds.)

 123

LN
CS

 8
13

1

23rd International Conference on Artificial Neural Networks
Sofia, Bulgaria, September 2013
Proceedings

Artificial Neural Networks
and Machine Learning –
ICANN 2013

Lecture Notes in Computer Science 8131
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Valeri Mladenov Petia Koprinkova-Hristova
Günther Palm Alessandro E.P. Villa
Bruno Appollini Nikola Kasabov (Eds.)

Artificial Neural Networks
and Machine Learning –
ICANN 2013

23rd International Conference
on Artificial Neural Networks
Sofia, Bulgaria, September 10-13, 2013
Proceedings

13

Volume Editors

Valeri Mladenov
Technical University of Sofia
1000 Sofia, Bulgaria
E-mail: valerim@tu-sofia.bg

Petia Koprinkova-Hristova
Bulgarian Academy of Sciences
1113 Sofia, Bulgaria
E-mail: pkoprinkova@bas.bg

Günther Palm
University of Ulm
89075 Ulm, Germany
E-mail: guenther.palm@uni-ulm.de

Alessandro E.P. Villa
Université de Lausanne
1015 Lausanne, Switzerland
E-mail: alessandro.villa@unil.ch

Bruno Appollini
University of Milano
20135 Milano, Italy
E-mail: apolloni@di.unimi.it

Nikola Kasabov
Auckland University of Technology
Auckland 1010, New Zealand
E-mail: nkasabov@aut.ac.nz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40727-7 e-ISBN 978-3-642-40728-4
DOI 10.1007/978-3-642-40728-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946649

CR Subject Classification (1998): I.2, F.1, I.4, I.5, J.3, H.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings comprise all accepted papers presented during the Interna-
tional Conference on Artificial Neural Networks (ICANN) 2013. The conference
is the annual event of the European Neural Network Society (ENNS) that covers
all topics in the area of neural networks and their applications. Its scope is wide,
ranging from machine learning algorithms to models of real nervous systems.
The main goal of the conference is to bring together and to facilitate contacts
between researchers from information sciences and neurosciences and to provide
a high-level international forum for both the academic and the industrial com-
munities. The conference aims to address new challenges, share solutions, and
discuss future research directions in understanding neural and cognitive pro-
cesses in the brain and in the development of novel artificial neural networks,
learning systems, computational intelligence, and real-world intelligent artificial
system applications.

The ICANN conferences were founded in 1991 and through the years were
established as the flagship conferences of the ENNS. The organizers of the 23rd

issue of ICANN are three main Bulgarian scientific institutions, namely, the
Technical University of Sofia, the Institute of Information and Communication
Technologies at the Bulgarian Academy of Sciences, and the Union of Automatic
and Informatics. The conference was held during September 10–13, 2013, in the
Technical University of Sofia.

During the 23rd ICANN, six plenary talks were given by some of the most
internationally established researchers in the neural network community. This
year emphasis was also put on the recently announced mega-project of the EU
– the Human Brain Project (HBP) with a plenary talk given by Prof. Karlheinz
Meier, – a co-director of the project.

Stephen Grossberg, Professor of Cognitive and Neural Systems, Professor of
Mathematics, Psychology, and Biomedical Engineering, Director of the Center
for Adaptive Systems, Boston University, was another eminent plenary speaker
who traditionally attends ICANN events. A plenary talk was also given by the
Honorary Chair of ICANN 2013, Prof. Nikola Kasabov, who is Foundation Direc-
tor of KEDRI and a Chair of Knowledge Engineering at the School of Computer
and Information Sciences at AUT, Fellow of the Royal Society of New Zealand,
Fellow of IEEE and past president of the INNS. The past president of the ENNS
(1999–2001–2004), Prof. Erkki Oja, was also a plenary speaker. He is Professor
of Computer Science and Engineering at Aalto University, School of Science and
Technology, Director of the Computational Inference (COIN) Research Centre
at Aalto and Past Chairman of the Research Council for Natural Sciences and
Engineering of the Academy of Finland. The current president of the ENNS
Executive Committee, Alessandro E.P. Villa, Director of the Laboratory of Neu-
roheuristics and Neuroeconomics at the University of Lausanne, was also among

VI Preface

the distinguished plenary speakers. A plenary talk was also given by Prof. Gün-
ther Palm – an active member of the ENNS executive board. He is Professor in
Computer Science and Director of the Institute of Neural Information Processing
at the University of Ulm.

The total number of submitted papers to ICANN 2013 was 128. After a
thorough peer-review process, the Program Co-chairs selected 78 papers. All
papers passed several steps of a review process before being finally accepted The
selected papers were divided by subject into the following main topics: neural
network theory and models; machine learning and learning algorithms; brain–
machine interaction and bio-inspired systems; cognitive science and neuroscience;
pattern recognition and classification; applications in control, robotics, natural
language processing, and neuro-economics etc. Along with the regular and the
poster sessions, two tutorials were organized – by Prof. Bruno Apolloni from
the Department of Computer Science at the University of Milan, and by Prof.
Alexander Gegov from the School of Computing at Portsmouth University.

Presenting the recent results in neural network theory and important applica-
tions, the collected volume will be of interest to all researchers and postgraduate
students in the area of computational intelligence, applied mathematics, engi-
neering, neuroscience, and other related areas.

We would like to thank all the participants for their contribution to the
conference program and for their contribution to these proceedings. Many thanks
go to the Bulgarian organizers for their support and hospitality, which allowed all
foreign participants to feel at home. Our special thanks go to our colleague Prof.
Nikola Kasabov, who was the Honorary Chair of this conference and helped with
its organization. We also express our sincere thanks to all reviewers for their help
in the review procedures and their valuable comments and recommendations to
ensure the high quality of all contributions in this volume.

July 2013 Valeri Mladenov
Guenther Palm
Alessandro Villa
Bruno Apolloni

Petia Koprinkova-Hristova
Nikola Kasabov

Organization

Honorary Chair

Nikola Kasabov Auckland University of Technology,
New Zealand

General Co-chairs

Valeri Mladenov Technical University of Sofia, Bulgaria
Vassil Sgurev Bulgarian Academy of Sciences, Sofia, Bulgaria

Program Co-chairs

Guenther Palm Universtiyt of Ulm, Germany
Alessandro Villa UNIL, Switzerland
Bruno Apolloni University of Milano, Italy
Petia Koprinkova-Hristova Bulgarian Academy of Sciences, Sofia, Bulgaria
Mincho Hadjiski Bulgarian Academy of Sciences, Sofia, Bulgaria

Program Committee and Reviewers

Lúıs Alexandre UBI - Univ. Beira Interior, Portugal
Mauricio Alvarez Universidad Tecnológica de Pereira, Colombia
Yoshiyuki Asai Okinawa Institute of Science and Technology

Graduate University, Japan

Lubica Benuskova University of Otago, New Zealand
Ulysses Bernardet Simon Fraser University, Vancouver, Canada
Ivo Bukovsky Czech Technical University in Prague,

Czech Republic
Francesco Camastra University of Naples Parthenope, Italy
Angelo Cangelosi Plymouth University, UK
Ke Chen University of Manchester, UK
Jorg Conradt TU München, Germany
Alessandro Di Nuovo Plymouth University, UK
Jan Drugowitsch Ecole Normale Superieure, France
Lan Du Macquarie University, Sydney, Australia

Péter Érdi Kalamazoo College, USA
Pablo Estevez University of Chile, Chile
Igor Farkaš Comenius University in Bratislava, Slovakia
Mauro Gaggero National Research Council of Italy, Italy
Petia Georgieva University of Aveiro, Portugal
Tobias Glasmachers Ruhr-Universität Bochum, Germany

VIII Organization

Giorgio Gnecco University of Genova, Italy
Andre Gruning University of Surrey, UK
Barbara Hammer TU Clausthal, Germany
Stefan Heinrich Universität Hamburg, Germany
Tom Heskes Radboud University Nijmegen,

The Netherlands
Timo Honkela Aalto University, Finland
Amir Hussain University of Stirling, UK
Lazaros Iliadis Democritus University of Thrace, Greece
Yaochu Jin University of Surrey, UK
Juha Karhunen Aalto University, Finland
Dietrich Klakow University of Saarland, Germany
Mario Koeppen Kyushu Institute of Technology, Japan
Stefanos Kollias National Technical University of Athens,

Greece
Irena Koprinska University of Sydney, Australia
Vera Kurkova Institute of Computer Science, Academy of

Sciences of the Czech Republic
Giancarlo La Camera SUNY Stony Brook, NY, USA
Diego Liberati Politecnico di Milano, Italy
Aristidis Likas University of Ioannina, Greece
Teresa Ludermir Federal University of Pernambuco, Brazil
Mantas Lukoševičius Jacobs University, Germany
Zhiyuan Luo Royal Holloway, University of London, UK
Francesco Marcelloni Universita di Pisa, Italy
Thomas Martinetz University of Luebeck, Germany
Francesco Masulli University of Genova, Italy
George Mengov Sofia University, Bulgaria
Bjoern Menze ETH Zurich, Switzerland

Alessio Micheli Universita di Pisa, Italy
Kazushi Mimura Hiroshima City University
Claudio Mirasso Institute for Cross-Disciplinary Physics and

Complex Systems
Tetsuro Morimura IBM, Japan
Shinichi Nakajima Nikon Corporation, Japan
Heiko Neumann University of Ulm, Germany
Jose Nunez-Yanez University of Bristol, UK
Sebastian Pannasch TU Dresden, Germany
Charis Papadopoulos University of Ioannina, Greece
Jaakko Peltonen Aalto University, Finland
Tonatiuh Pena Centeno Universität Greifswald, Germany
Alfredo Petrosino Università degli Studi di Napoli, Italy
Vincenzo Piuri University of Milan, Italy
Novi Quadrianto University of Cambridge, UK
Marina Resta University of Genova, Italy
Achim Rettinger Karlsruhe Institute of Technology, Germany

Organization IX

Fabrice Rossi Université Paris 1 Panthéon-Sorbonne, France
Manuel Roveri Politecnico di Milano, Italy
Alessandro Rozza Università degli Studi di Napoli, Italy
Marcello Sanguineti University of Genova, Italy
Jorge Santos Instituto Superior de Engenharia do Porto,

Portugal
Sohan Seth Helsinki Institute for Information Technology,

Finland
Hiroshi Shimodaira University of Edinburgh, UK
Alessandro Sperduti University of Padova, Italy
Johan Suykens KU Leuven, Belgium
Athanasios Tsadiras Aristotle University of Thessaloniki, Greece
Giorgio Valentini University of Milan, Italy
Eleni Vasilaki University of Sheffield, UK
Vassilios Verykios Hellenic Open University, Greece
Carmen Vidaurre Berlin Institute of Technology, Germany
Nathalie Villa-Vialaneix Université Paris 1, France
Shinji Watanabe MERL, Cambridge, MA, USA
Roseli Wedemann Universidade do Estado do Rio de Janeiro,

Brazil
Thomas Wennekers Plymouth University, UK
Stefan Wermter University of Hamburg, Germany
Heiko Wersing Honda Research Institute Europe, Germany
Zhirong Yang Aalto University, Finland
Shanfeng Zhu Fudan University, China

Additional Reviewers

Angelo Alessandri University of Genova, Italy
Davide Bacciu Università di Pisa, Italy
Konstantinos Blekas University of Ioannina, Greece
Jérémie Cabessa UNIL, Switzerland
Claudio Ceruti Università degli Studi di Milano, Italy
Vasileios Chasanis University of Ioannina, Greece
Angelo Ciaramella University of Naples “Parthenope”, Italy
Alex Cope Sheffield University, UK
Federico Corradi University of Zurich and ETH Zurich,

Switzerland
Marco Frasca University of Milan, Italy
Samuele Grillo Politecnico di Milano, Italy
Guillaume Hennequin University of Cambridge, United Kingdom
Ziyuan Lin Aalto University, Finland
Danilo Macciò Istituto di Studi su Sistemi Intelligenti per

l’Automazione, Bari, Italy
Mario Manzo University of Naples “Parthenope”, Italy

X Organization

Michael Pfeiffer University of Zurich and ETH Zurich,
Switzerland

Elisabetta Punta CNR, Italy
Matteo Re Università degli Studi di Milano, Italy
Denis Sheynikhovich University Pierre & Marie Curie, France
Antonino Staiano University of Naples Parthenope, Italy
Peter Tino University of Birmingham, United Kingdom
Lorenzo Valerio CNR, Italy

Local Organizing Committee

Yancho Todorov Bulgarian Academy of Sciences, Sofia, Bulgaria
Georgi Tsenov Technical University of Sofia, Bulgaria
Agata Manolova Technical University of Sofia, Bulgaria
Stanislav Panev Technical University of Sofia, Bulgaria
Svetlin Antonov Technical University of Sofia, Bulgaria

Table of Contents

Neural Network Theory and Models

Hessian Corrected Input Noise Models . 1
Botond Attila Bócsi and Lehel Csató

Model-Based Clustering of Temporal Data . 9
Hani El Assaad, Allou Samé, Gérard Govaert, and Patrice Aknin

Fast Approximation Method for Gaussian Process Regression Using
Hash Function for Non-uniformly Distributed Data 17

Yuya Okadome, Yutaka Nakamura, Yumi Shikauchi, Shin Ishii, and
Hiroshi Ishiguro

An Analytical Approach to Single Node Delay-Coupled Reservoir
Computing . 26

Johannes Schumacher, Hazem Toutounji, and Gordon Pipa

Applying General-Purpose Data Reduction Techniques for Fast Time
Series Classification . 34

Stefanos Ougiaroglou, Leonidas Karamitopoulos, Christos Tatoglou,
Georgios Evangelidis, and Dimitris A. Dervos

Two-Layer Vector Perceptron . 42
Vladimir Kryzhanovsky, Irina Zhelavskaya, and
Juan Antonio Clares Tomas

Local Detection of Communities by Neural-Network Dynamics 50
Hiroshi Okamoto

The Super-Turing Computational Power of Interactive Evolving
Recurrent Neural Networks . 58

Jérémie Cabessa and Alessandro E.P. Villa

Group Fused Lasso . 66
Carlos M. Aláız, Álvaro Barbero, and José R. Dorronsoro

Exponential Synchronization of a Class of RNNs with Discrete and
Distributed Delays . 74

Farouk Chérif, Hajer Brahmi, Boudour Ammar, and Adel M. Alimi

Variational Foundations of Online Backpropagation 82
Salvatore Frandina, Marco Gori, Marco Lippi, Marco Maggini, and
Stefano Melacci

XII Table of Contents

GNMF with Newton-Based Methods . 90
Rafa�l Zdunek, Anh-Huy Phan, and Andrzej Cichocki

Improving the Associative Rule Chaining Architecture 98
Nathan Burles, Simon O’Keefe, and James Austin

Machine Learning and Learning Algorithms

A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 106
KyungHyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

A Low-Energy Implementation of Finite Automata by Optimal-Size
Neural Nets . 114

Jǐŕı Š́ıma

A Distributed Learning Algorithm Based on Frontier Vector
Quantization and Information Theory . 122

Diego Peteiro-Barral and Bertha Guijarro-Berdiñas

Efficient Baseline-Free Sampling in Parameter Exploring Policy
Gradients: Super Symmetric PGPE . 130

Frank Sehnke

Direct Method for Training Feed-Forward Neural Networks Using
Batch Extended Kalman Filter for Multi-Step-Ahead Predictions 138

Artem Chernodub

Learning with Hard Constraints . 146
Giorgio Gnecco, Marco Gori, Stefano Melacci, and
Marcello Sanguineti

Bidirectional Activation-based Neural Network Learning Algorithm 154
Igor Farkaš and Krist́ına Rebrová

A Neural Network Model for Online Multi-Task Multi-Label Pattern
Recognition . 162

Daisuke Higuchi and Seiichi Ozawa

Novel Feature Selection and Kernel-Based Value Approximation
Method for Reinforcement Learning . 170

Hunor Sandor Jakab and Lehel Csató

Learning of Lateral Interactions for Perceptual Grouping Employing
Information Gain . 178

Martin Meier, Robert Haschke, and Helge J. Ritter

On–Line Laplacian One–Class Support Vector Machines 186
Salvatore Frandina, Marco Lippi, Marco Maggini, and
Stefano Melacci

Table of Contents XIII

OSA: One-Class Recursive SVM Algorithm with Negative Samples
for Fault Detection . 194

Mikhail Suvorov, Sergey Ivliev, Garegin Markarian, Denis Kolev,
Dmitry Zvikhachevskiy, and Plamen Angelov

Brain-Machine Interaction and Bio-inspired Systems

EEG Dataset Reduction and Classification Using Wave Atom
Transform . 208

Ignas Martisius, Darius Birvinskas, Robertas Damasevicius, and
Vacius Jusas

Embodied Language Understanding with a Multiple Timescale
Recurrent Neural Network . 216

Stefan Heinrich, Cornelius Weber, and Stefan Wermter

Unsupervised Online Calibration of a c-VEP Brain-Computer Interface
(BCI) . 224

Martin Spüler, Wolfgang Rosenstiel, and Martin Bogdan

A Biologically Inspired Model for the Detection of External and
Internal Head Motions . 232

Stephan Tschechne, Georg Layher, and Heiko Neumann

Cortically Inspired Sensor Fusion Network for Mobile Robot Heading
Estimation . 240

Cristian Axenie and Jörg Conradt

Learning Sensorimotor Transformations with Dynamic Neural Fields . . . 248
Yulia Sandamirskaya and Jörg Conradt

Cognitive Sciences and Neuroscience

Learning Temporally Precise Spiking Patterns through Reward
Modulated Spike-Timing-Dependent Plasticity . 256

Brian Gardner and André Grüning

Memory Trace in Spiking Neural Networks . 264
Marta Castellano and Gordon Pipa

Attention-Gated Reinforcement Learning in Neural Networks—A
Unified View . 272

Tobias Brosch, Friedhelm Schwenker, and Heiko Neumann

Dynamic Memory for Robot Control Using Delay-Based Coincidence
Detection Neurones . 280

Francis Jeanson and Tony White

XIV Table of Contents

Robust Principal Component Analysis for Brain Imaging 288
Petia Georgieva and Fernando De la Torre

Phase Control of Coupled Neuron Oscillators . 296
Mayumi Irifune and Robert H. Fujii

Dendritic Computations in a Rall Model with Strong Distal
Stimulation . 304

Youwei Zheng and Lars Schwabe

Modeling Action Verb Semantics Using Motion Tracking 312
Timo Honkela and Klaus Förger

Evolution of Dendritic Morphologies Using Deterministic and
Nondeterministic Genotype to Phenotype Mapping 319

Parimala Alva, Giseli de Sousa, Ben Torben-Nielsen,
Reinoud Maex, Rod Adams, Neil Davey, and Volker Steuber

Sparseness Controls the Receptive Field Characteristics of V4 Neurons:
Generation of Curvature Selectivity in V4 . 327

Yasuhiro Hatori, Tatsuroh Mashita, and Ko Sakai

Pattern Recognition and Classification

Handwritten Digit Recognition with Pattern Transformations and
Neural Network Averaging . 335

Juan Manuel Alonso-Weber, M. Paz Sesmero, German Gutierrez,
Agapito Ledezma, and Araceli Sanchis

Echo State Networks in Dynamic Data Clustering . 343
Petia Koprinkova-Hristova and Kiril Alexiev

Self-Organization in Parallel Coordinates . 351
Marjan Trutschl, Phillip C.S.R. Kilgore, and Urška Cvek

A General Image Representation Scheme and Its Improvement
for Image Analysis . 359

Hui Wei, Qingsong Zuo, and Bo Lang

Learning Features for Activity Recognition with Shift-Invariant Sparse
Coding . 367

Christian Vollmer, Horst-Michael Gross, and Julian P. Eggert

Hearing Aid Classification Based on Audiology Data 375
Christo Panchev, Muhammad Naveed Anwar, and Michael Oakes

BLSTM-RNN Based 3D Gesture Classification . 381
Grégoire Lefebvre, Samuel Berlemont, Franck Mamalet, and
Christophe Garcia

Table of Contents XV

Feature Selection for Neural Network-Based Interval Forecasting
of Electricity Demand Data . 389

Mashud Rana, Irena Koprinska, and Abbas Khosravi

A Combination of Hand-Crafted and Hierarchical High-Level Learnt
Feature Extraction for Music Genre Classification . 397

Julien Martel, Toru Nakashika, Christophe Garcia, and
Khalid Idrissi

Exploration of Loneliness Questionnaires Using the Self-Organising
Map . 405

Krista Lagus, Juho Saari, Ilari T. Nieminen, and Timo Honkela

An Effective Dynamic Gesture Recognition System Based on the
Feature Vector Reduction for SURF and LCS . 412

Pablo V.A. Barros, Nestor T.M. Júnior,
Juvenal M.M. Bisneto, Bruno J.T. Fernandes,
Byron L.D. Bezerra, and Sérgio M.M. Fernandes

Feature Weighting by Maximum Distance Minimization 420
Jens Hocke and Thomas Martinetz

Training Computationally Efficient Smartphone–Based Human Activity
Recognition Models . 426

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and
Jorge Luis Reyes-Ortiz

A Novel Procedure for Training L1-L2 Support Vector Machine
Classifiers . 434

Davide Anguita, Alessandro Ghio, Luca Oneto,
Jorge Luis Reyes-Ortiz, and Sandro Ridella

Online Classification of Eye Tracking Data for Automated Analysis
of Traffic Hazard Perception . 442

Enkelejda Tafaj, Thomas C. Kübler, Gjergji Kasneci,
Wolfgang Rosenstiel, and Martin Bogdan

Neural Network Applications in Control and Robotics

Time-Series Forecasting of Indoor Temperature Using Pre-trained Deep
Neural Networks . 451

Pablo Romeu, Francisco Zamora-Mart́ınez,
Paloma Botella-Rocamora, and Juan Pardo

Recurrent Fuzzy-Neural Network with Fast Learning Algorithm
for Predictive Control . 459

Yancho Todorov, Margarita Terzyiska, and Michail Petrov

XVI Table of Contents

Real-Time Interface Board for Closed-Loop Robotic Tasks
on the SpiNNaker Neural Computing System . 467

Christian Denk, Francisco Llobet-Blandino, Francesco Galluppi,
Luis A. Plana, Steve Furber, and Jörg Conradt

A Software Framework for Cognition, Embodiment, Dynamics, and
Autonomy in Robotics: cedar . 475

Oliver Lomp, Stephan Klaus Ulrich Zibner, Mathis Richter,
Iñaki Rañó, and Gregor Schöner

Adaptive Critic Neural Network Solution of Optimal Control Problems
with Discrete Time Delays . 483

Tibor Kmet and Maria Kmetova

Emotion Generation System Considering Complex Emotion
Based on MaC Model with Neural Networks . 495

Tsubasa Takamatsu and Yuko Osana

Neuro-Optimal Controller for Robot Manipulators 503
Mohammed Boukens and Abdelkrim Boukabou

Learning to Walk Using a Recurrent Neural Network with Time
Delay . 511

Boudour Ammar, Naima Chouikhi, Adel M. Alimi, Farouk Chérif,
Nasser Rezzoug, and Philippe Gorce

The Imbalance Network and Incremental Evolution for Mobile Robot
Nervous System Design . 519

Paul Olivier and Juan Manuel Moreno Arostegui

Balancing of a Simulated Inverted Pendulum Using the NeuraBase
Network Model . 527

Robert Hercus, Kit-Yee Wong, and Kim-Fong Ho

Coordinated Rule Acquisition of Decision Making on Supply Chain
by Exploitation-Oriented Reinforcement Learning -Beer Game as an
Example- . 537

Fumiaki Saitoh and Akihide Utani

Other Applications of Neural Networks

Using Exponential Kernel for Word Sense Disambiguation 545
Tinghua Wang, Junyang Rao, and Dongyan Zhao

Independent Component Analysis Filtration for Value at Risk
Modelling . 553

Ryszard Szupiluk, Piotr Wojewnik, and Tomasz Z ↪abkowski

Table of Contents XVII

Wind Power Resource Estimation with Deep Neural Networks 563
Frank Sehnke, Achim Strunk, Martin Felder, Joris Brombach,
Anton Kaifel, and Jon Meis

Wavelet Neural Networks for Electricity Load Forecasting – Dealing
with Border Distortion and Shift Invariance . 571

Mashud Rana and Irena Koprinska

Interactive Two-Level WEBSOM for Organizational Exploration 579
Timo Honkela and Michael Knapek

Optimal Operation of Electric Power Production System without
Transmission Losses Using Artificial Neural Networks Based on
Augmented Lagrange Multiplier Method . 586

George J. Tsekouras, Fotis D. Kanellos, Nikos E. Mastorakis, and
Valeri Mladenov

An Echo State Network with Working Memories for Probabilistic
Language Modeling . 595

Yukinori Homma and Masafumi Hagiwara

Using the Analytic Feature Framework for the Detection of Occluded
Objects . 603

Marvin Struwe, Stephan Hasler, and Ute Bauer-Wersing

Boltzmann Machines for Image Denoising . 611
KyungHyun Cho

Comparison on Late Fusion Methods of Low Level Features for Content
Based Image Retrieval . 619

Nikolay N. Neshov

Vehicle Plate Recognition Using Improved Neocognitron Neural
Network . 628

Dmitry Kangin, George Kolev, and Plamen Angelov

Author Index . 641

Hessian Corrected Input Noise Models

Botond Attila Bócsi and Lehel Csató

Faculty of Mathematics and Informatics, Babeş-Bolyai University
{bboti,lehel.csato}@cs.ubbcluj.ro

Abstract. When the inputs of a regression problem are corrupted with
noise, integrating out the noise process leads to biased estimates. We
present a method that corrects the bias caused by the integration. The
correction is proportional to the Hessian of the learned model and to
the variance of the input noise. The method works for arbitrary regres-
sion models, the only requirement is two times differentiability of the
respective model. The conducted experiments suggest that significant
improvement can be gained using the proposed method. Nevertheless,
experiments on high dimensional data highlight the limitations of the
algorithm.

1 Introduction

In regression problems we find the optimal mapping that explains the relation-
ship between an input space and an output space. Along with the class from
where the model is taken, regression methods assume the presence of noise in
the data. Most regression methods assume output noise but neglect the pos-
sibility of the input noise due to analytical intractability or the fact that for
simple linear models the input noise is transferred to the output. In this paper,
we analyse regression methods with input noise assumption.

Input noise modelling is more difficult than modelling output or observational
noise: whilst the output noise is directly observable, the input noise can be
observed only through the input-output transformation that we inferred. In many
cases there are analytically tractable solutions for the output noise model, while
such solutions are extremely rare for the input noise, a notable exception is
the restrictive linear model. Furthermore, even when the input noise can be
integrated out analytically, the solution will be biased. As shown by [1], adding
noise to the inputs can be used for regularization, but for non-zero curvatures,
the estimated output is biased.

Consider for example the parabola in Figure 1, where the red circles on the
horizontal axis are the noisy measurement locations in the neighbourhood of zero
– Gaussian noise is assumed –, the blue stars are the regression values of the
measurements – without output noise for clarity reasons – and the green point
is the result of the Monte Carlo approximation of the integration. It is clear that
after integration the prediction at zero will be always below the true value of
the function, caused by the non-zero curvature of the function, e.g., for concave
functions the averaging over the noisy measurements pulls down the prediction.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 1–8, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 B.A. Bócsi and L. Csató

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Desired
Noisy Inputs
True Labels
Monte Carlo Integration

Fig. 1. The bias when estimating with in-
put noise: the predicted value at zero will
always be underestimated

The method proposed in this ar-
ticle improves regression with input
noise by removing the bias induced
by the input noise. We show that the
bias is proportional to the variance
of the noise and to the second order
derivative (Hessian) of the objective
function. The method can be used for
any regression algorithm as long as its
Hessian can be calculated.

1.1 Related Work

Most of the work with input noise has been done for specific models, e.g., Gaus-
sian processes (GP), neural networks (NN), that we discuss later. An exception
is [11] who showed that the regularization with input noise [1] is equivalent to
adding the L2 norm of the Hesse matrix of the objective function. Our method
is based on this insight with reversed goals, i.e., we do not want more regular-
ized models but better accuracy. In the GP framework a general idea is to use a
second GP to model the input noise process. Posteriors have been obtained via
Monte Carlo integration [6], variational learning [8], or EM-based methods [7].
Another approach is to use the Taylor expansion of the GP [5] and analytically
compute the posterior (e.g., for squared exponential kernels) [2]. The integration
of the input noise is intractable for NNs as well. To approximate the posterior,
[12] integrated over the uncertain input with a maximum likelihood estimation,
while [13] used Laplace approximation and Monte Carlo simulation to improve
on the prediction.

The above approaches do not report improvement in the accuracy of the
prediction, they focus instead on improved posterior variance estimates. Fur-
thermore, most of them were applied for one dimensional problems, with only a
few being used on real world data-sets with multidimensional inputs, e.g., [2,9,8].
We apply our method for both artificial problems and real-world data-sets.

2 Input Noise Correction

Let us be given a data-set D = {(xi, yi)}Ni=1, with inputs xi ∈ Rd and labels
yi ∈ R. A general assumption is that the labels are corrupted with additive
Gaussian noise, and we also assume that the inputs are also corrupted, i.e.,

y = ỹ + εy x = x̃+ εx,

where y is the observed label, ỹ is the true label, and εy ∼ N (0, σ2
y) is a noise

process; x is the observed input, x̃ is the true input, and εx ∼ N (0,Σ) is the
additive Gaussian input noise. We assume that the inputs are uncorrelated, i.e.,
Σ is a diagonal covariance matrix with σ2

i on the diagonal and σ denotes the

Hessian Corrected Input Noise Models 3

vector of individual variances. If we denote with f(·) the true data generating

function, with p(εx) the distribution of the input noise, and with f̂(·) the function
after integrating out the input noise, the relation between them is

f̂(x̃) =

∫
f(x̃+ εx) dp(εx), (1)

The estimate f̂(·) is biased even when the true generating function f(·) is known
[12]. We propose to use the second order Taylor expansion of f(·) around the
true input location x̃, with the averaging as

f̂(x̃) =

∫ (
f(x̃) + ε�x Jf (x̃) +

1

2
ε�x Hf (x̃)εx + . . .

)
dp(εx), (2)

where Jf (x) and Hf (x) are the Jacobian and the Hessian of f(x). The first
term does not depend on the noise; the Jacobian term vanishes since εx is has
zero mean; and the third term can be written as ε�x Hf (x̃)εx = tr(Hf (x̃) εxε

�
x),

leading to the following simplified expression:

f̂(x̃) � f(x̃) +
1

2
σ�Hf (x̃)σ � f(x) +

1

2
σ�Hf (x)σ, (3)

The true input location x̃ is unknown; we approximate it with the noisy location
x, i.e. f(x) = f(x̃) and Hf (x) = Hf (x̃). A similar assumption has been made
by [9] in the context of input noise GPs.

We consider two steps in approximating f̂(x̃): we first construct a function
g(·) based on D without the input noise assumption. In this first step we do not
make specific assumptions about the function, we assume that it can be arbitrary.
From Equation (3) follows that g(·) and the true data generating function f(·)
are related as follows:

g(x) = f(x) +
1

2
σ�Hf (x)σ. (4)

The second step is obtaining f(·) when g(·) and σ are known, i.e., solving the
partial differential equation from Equation (4). This equation does not have an
analytical solution [3] since it requires an integration over g(x) that is intractable
in most cases. A possible solution is to use numerical methods but these methods
time consuming and become unstable when noise is present. A more significant
drawback is the lack of good initial conditions for the differential equation. Note
that the initial conditions must contain both the values and the derivatives of the
function f(·) [3]. We tried the following approximations for the initial conditions

f(x) = g(x), Jf (x) = Jg(x) or f(xj) = yj, Jf (xj) = Jg(xj),

where (xj , yj) ∈ D but our experiments show that pure results can be obtained
based on these approximations. Next, we make further assumptions about f(·)
to approximate the solution of the partial differential equation (4).

4 B.A. Bócsi and L. Csató

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

Desired
GP
GP+H

(a) Example for f(x) = sinc(x).

2 4 6 8 10 12 14
−12

−10

−8

−6

−4

−2

0

2

Input dimension

lo
g(

d √
|d

et
(∇

2 f(
x)

)|)

(b) Curvature of the prediction.

Fig. 2. (a) Approximating with 800 training points and input noise with standard
deviation σ = 0.8 the standard GP (red) under- and overestimates the true prediction
(black) where the curvature is high. Our GP model corrected with the Hessian (green)
results in more accurate prediction. (b) The curvature of the predicted function tends
to zero exponentially when the dimension of the inputs increases.

2.1 Quadratic Approximation of the Partial Differential Equation

We approximate f(·) with a quadratic function at every input location x, i.e.
we assume that f(x) = x�Axx + x�b + c with its Hessian Hf (x) = 2Ax.
This is again similar to the approximation based on the Taylor series expansion
from Equation (2), and we assume that the expansion is at the current point of
interest x.

We substitute the local approximation into Equation (4), differentiate it two
times and obtain

Hg(x) = 2Ax. (5)

i.e. under the locally quadratic approximation of f(·), the Hessian of f(x) and
g(x) must be equal. Therefore, we can replace Hf (x) with Hg(x) from Equa-
tion (4), and obtain the following expression for f(x)

f(x) = g(x)− 1

2
σ�Hg(x)σ (6)

On the right side of Equation (6) every term is known, thus f(x) has an analytic
form. The interpretation of Equation (6) is the following: when dealing with
data corrupted with input noise, any regression model g(·) can be improved by
subtracting the Hessian of the model Hg(·) multiplied by the noise variance.
An other interpretation of the result in Equation (6) is that if we relax our
assumptions about the model, then we might replace the second derivatives of
the true function from Equation (4) with the approximating function g(·) and
this approximation is pursued in the rest of the paper.

Hessian Corrected Input Noise Models 5

3 Experiments

We conducted experiments to see how well the proposed method performs under
different conditions. We were interested how well it scales with the number of the
training examples, with the variance of the input noise, and with the dimension of
the input space. We did not compare the proposed method with the state-of-the-
art input noise models since the authors do not report significant improvement
on the accuracy of the prediction, rather they enhance the posterior variance
that is not desired in our framework.

3.1 Illustration for the Sinc(x) Function

We applied the proposed method on a toy example, to give an insight about
the induced improvement. For training inputs we generated 800 points on the
[−12, 12] interval corrupted with additive Gaussian noise with standard devia-
tion σ = 0.8. For training labels we transformed these point with the sinc(·)
function and added a Gaussian noise with standard deviation σy = 0.1 as out-
put noise. We used standard GPs to obtain prediction and also used the Hessian
corrected version (GP+H). Results are shown on Figure 2a. It can be seen that
the standard GP under- or overestimates the true sinc(·) function where the
curvature of the function is high. On the other hand, the Hessian corrected GP
results in an almost perfect prediction. Note that when the variance of the input
noise is not known, we can under- or over- correct the model using wrong values.

3.2 Synthetic Data

We generated synthetic data for different one dimensional functions, with results
in Figures 3. We used GPs and NNs for the regression models to learn these
functions and compared the accuracy with the Hessian corrected versions of the
respective methods (referred as GP+H and NN+H). The hyper-parameters of
the GP were obtained with evidence maximization while the parameters of the
NN were obtained using back-propagation.

For every function we investigated (1) how the improvement of the input noise
correction scales with increasing the standard deviation of the input noise, and
(2) how the improvement of the input noise correction scales with increasing the
number of the training examples with a fixed standard deviation. As a measure
of performance we used the mean square error (MSE) of the learned function on
the same interval where the training data was generated.

For the first type of experiments (first and third columns of Figures 3) we
generated 200 points from the interval [−4, 12] (or with the intersection where
the respective function was defined) and added a Gaussian output noise with
standard deviation σy = 0.1. The standard deviation of the input noise was
between 0.1 and 1.2. For the second type of experiments (second and fourth
columns of Figures 3) we generated points from the same interval as before,
added a Gaussian input noise with standard deviation σ = 0.8, and also added
Gaussian output noise with standard deviation σy = 0.1. The number of the

6 B.A. Bócsi and L. Csató

f(x) = sinc(x/π) f(x) = exp
(−x2

)

0.2 0.4 0.6 0.8 1 1.2

0.05

0.1

0.15

GP
GP+H
NN
NN+H

200 400 600 800 1000 1200

0.05

0.1

0.15

0.2

GP
GP+H
NN
NN+H

0.2 0.4 0.6 0.8 1 1.2

0.1

0.15

0.2

0.25

0.3

GP
GP+H
NN
NN+H

200 400 600 800 1000 1200

0.18

0.2

0.22

0.24

0.26

0.28

0.3

GP
GP+H
NN
NN+H

(a) (b)

f(x) = x f(x) = 0.2x2 tanh(cos(x/π))

0.2 0.4 0.6 0.8 1 1.2

0.05

0.1

0.15

GP
GP+H
NN
NN+H

200 400 600 800 1000 1200

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

GP
GP+H
NN
NN+H

0.2 0.4 0.6 0.8 1 1.2

0.02

0.03

0.04

0.05

0.06

0.07

GP
GP+H
NN
NN+H

200 400 600 800 1000 1200

0.04

0.06

0.08

0.1

0.12

0.14

GP
GP+H
NN
NN+H

(c) (d)

f(x) = 0.5 log(x2(sin(2x) + 2) + 1) f(x) = exp {−0.2x} sin(x/π)

0.2 0.4 0.6 0.8 1 1.2

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

GP
GP+H
NN
NN+H

200 400 600 800 1000 1200

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

GP
GP+H
NN
NN+H

0.2 0.4 0.6 0.8 1 1.2

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

GP
GP+H
NN
NN+H

200 400 600 800 1000 1200

0.04

0.06

0.08

0.1

0.12

0.14

0.16

GP
GP+H
NN
NN+H

(e) (f)

Fig. 3. Performance on artificial data: the left-side shows the evolution of the mean-
square error when increasing gradually the input noise level. Plots on the right side
show the errors when the size of the available data increases.

training points was between 20 and 1200 and all the shown results are averages
over 200 runs.

Synthesizing plots of the algorithm, in Figure 3, show that the Hessian cor-
rected version are almost always better than the standard GP or NN or at least
it is very close. There is one exception: the linear function from Figure 3.(c),
where the Hessian corrected version is significantly worse. The explanation is
that the true Hessian of a linear model is zero. Thus, small inaccuracies in the
standard regression model lead to non-zero Hessian, and therefore the prediction
will deteriorate.

The general trend with increasing the noise level is that as the standard
deviation of the input noise increases, the improvement induced by the Hessian
corrected methods is more significant.

Another important conclusion is that as the number of the training examples
grows, the MSE of the Hessian corrected estimation decreases (an exception is
again the linear function), thus, it is consistent in the sense that it converges to
the best model that the chosen function space contains.

Hessian Corrected Input Noise Models 7

Table 1. Results of experiments on real world data-sets (performance measured in
MSE). Boston housing ($1000s); Concrete (mega-pascal); Barrett WAM (millimetres);
CPU performance (benchmark points); Auto MPG (miles per gallon).

Data-set name GP GP+H NN NN+H Noise (σ) Dim. Set size

Boston housing ($1000s) 2.2271 2.2271 3.4819 3.4819 0.1 13 506

Concrete (MPa) 4.1281 4.1280 6.1865 6.1864 1 8 1030

Barrett WAM 1 (mm) 2.9272 2.9242 2.8726 2.8488 0.01 4 1000

Barrett WAM 2 (mm) 13.707 13.731 12.439 9.3524 0.1 4 1000

CPU performance 17.762 17.763 16.846 16.846 5 7 209

Auto MPG (mpg) 4.0301 4.0322 2.2990 2.2988 3 7 301

3.3 Real World Data-Sets

When trying the method for real data, we were interested in how significant the
Hessian corrected improvement is on higher-dimensional data where there is no
control over the noise of the function to be predicted either. The data-sets were
gathered from different domains with different features (input dimension, train-
ing set size) – Table 1 summarizes the data-sets. We used the (1) Boston housing
data-set [4] that concerns housing values in suburbs of Boston; (2) Concrete data-
set [14] that collected the compressive strength of the concrete; (3) Barrett whole
arm manipulator (WAM) data-set [10] that was generated by us on a simulated
Barrett WAM robot architecture while we learned the forward kinematics of
the robot arm [10]; (4) CPU performance data-set [4] that deals with the CPU
performance; (5) Auto MPG data-set [4] that collected fuel consumption of cars.

Results from Table 1 show the standard deviation of the input noise, the
dimension of the data-set, and the size of the data-set as well. The values were
obtained with 10-fold cross validation and are averages over 100 runs.

The improvement of the Hessian corrected methods is insignificant but it
is generally not worse. We believe that the explanation is the same as it was
for the linear functions in the previous section. In high dimensions we prefer
rather linear models (e.g., as a result of regularization) to avoid over-fitting. In
theory we prefer models with Hessians close to zero. Thus, the addition of the
approximated Hessian does not improve the prediction.

To illustrate this effect of high dimensional data on the Hesse matrix, we
experimented on a toy example. We approximated a d dimensional parabola
f(x) =

∑d
i=1 x

2
i using a GP. We generated 100 points uniformly distributed on

the interval [−2, 2]d and did not add any noise. Figure 2b shows that the curva-
ture of the prediction function tends to zero exponentially when the dimension
of the inputs increases. Note that this phenomena is independent of any of our
assumptions, it is rather a property of high dimensional data modeling.

4 Discussion

When the inputs of a data-set are corrupted with noise, integrating out the noise
process leads to biased estimates. We presented a method that corrects this bias.

8 B.A. Bócsi and L. Csató

The correction is proportional to the Hessian of the learned model and to the
variance of the input noise. The method works for arbitrary regression models.

The proposed method has limitations: it does not improve prediction for high-
dimensional problems, where the data are implicitly scarce. This is due to the
fact that the estimated Hessian is considerably flattened, leading to no significant
contribution to the overall output. To wisely choose when the Hessian correction
can be used with success, these limitations have to be taken into account.

An interesting further research direction is to further analyse our algorithm
specialised for the robotic Barrett WAM data. We believe that there are potential
improvement capabilities since the size of the data-set is large, the dimensionality
of the problem is reduced, and there is a real need for better approximation
methods. One could – for example – start from the approximation to the second
order PDE from Equation (6) and try to provide still approximating solutions
that would probably be more precise than the simple replacement of the true
function with its approximated based on noiseless inputs.

The authors acknowledge the support of the Romanian Ministry of Education,
grant PN-II-RU-TE-2011-3-0278.

References

1. Bishop, C.M.: Training with noise is equivalent to Tikhonov regularization. Neural
Computation 7(1), 108–116 (1995)

2. Dallaire, P., Besse, C., Chaib-draa, B.: An approximate inference with Gaussian
process to latent functions from uncertain data. Neuroc. 74(11), 1945–1955 (2011)

3. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics. Amer-
ican Mathematical Society (2010)

4. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

5. Girard, A., Murray-Smith, R.: Learning a Gaussian process model with uncertain
inputs. Tech. rep., University of Glasgow, Department of Computing Science (2003)

6. Goldberg, P.W., Williams, C.K.I., Bishop, C.M.: Regression with input-dependent
noise: A Gaussian process treatment. In: NIPS (1997)

7. Kersting, K., Plagemann, C., Pfaff, P., Burgard, W.: Most likely heteroscedastic
Gaussian process regression. In: ICML, pp. 393–400. ACM, New York (2007)

8. Lzaro-gredilla, M., Titsias, M.K.: Variational heteroscedastic Gaussian process re-
gression. In: ICML, pp. 841–848. ACM (2011)

9. McHutchon, A., Rasmussen, C.E.: Gaussian process training with input noise. In:
NIPS, pp. 1341–1349 (2011)

10. Nguyen-Tuong, D., Peters, J.: Incremental online sparsification for model learning
in real-time robot control. Neurocomputing 74(11), 1859–1867 (2011)

11. Rifai, S., Glorot, X., Bengio, Y., Vincent, P.: Adding noise to the input of a model
trained with a regularized objective. CoRR abs/1104.3250 (2011)

12. Tresp, V., Ahmad, S., Neuneier, R.: Training neural networks with deficient data.
In: NIPS, pp. 128–135. Morgan Kaufman Publishers (1994)

13. Wright, W.: Neural network regression with input uncertainty. In: Neural Networks
for Signal Processing VIII, pp. 284–293. IEEE (1998)

14. Yeh, I.C.: Modeling of strength of high performance concrete using artificial neural
networks. Cement and Concrete Research 28(12), 1797–1808 (1998)

http://archive.ics.uci.edu/ml

Model-Based Clustering of Temporal Data

Hani El Assaad1, Allou Samé1, Gérard Govaert2, and Patrice Aknin1

1 Université Paris-Est, IFSTTAR,
GRETTIA, F-77420 Champs-Sur-Marne, France

{hani.el-assaad,allou.same,patrice.aknin}@ifsttar.fr
2 Université de technologie de Compiègne,

UMR CNRS 7253 Heudiasyc, F-60205 Compiègne, France
gerard.govaert@utc.fr

Abstract. This paper addresses the problem of temporal data cluster-
ing using a dynamic Gaussian mixture model whose means are consid-
ered as latent variables distributed according to random walks. Its final
objective is to track the dynamic evolution of some critical railway com-
ponents using data acquired through embedded sensors. The parameters
of the proposed algorithm are estimated by maximum likelihood via the
Expectation-Maximization algorithm. In contrast to other approaches as
the maximum a posteriori estimation in which the covariance matrices
of the random walks have to be fixed by the user, the results of the sim-
ulations show the ability of the proposed algorithm to correctly estimate
these covariances while keeping a low clustering error rate.

Keywords: Clustering, dynamic latent variable model, mixture model,
EM algorithm, Kalman filter, time series clustering, maximum likelihood,
maximum a posteriori.

1 Introduction

Clustering, which consists of automatically identifying groups into data sets, re-
mains a central problem in many applications including web data mining, mar-
keting, bio-informatics, image segmentation. For mining independent numerical
data, the Gaussian mixture model [5,10], used conjointly with the Expectation-
Maximization [2], is now well known to provide an efficient clustering solution.
However, some challenges still remains for issues of clustering non stationary
data.

More particularly, this study was motivated by the characterization of the dy-
namic evolution of some critical railway components (point machines and doors
systems) using condition measurements acquired through embedded sensors. Its
final objective is to build a decision-aided support for their preventive mainte-
nance. One of the difficulties in achieving this goal is that, during their dynamic
evolution, these components may switch between different states due to vari-
ous operating contexts (different hygrometric conditions, different levels of train
inclinations).

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 9–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

10 H. El Assaad et al.

We propose to solve this problem by automatically extracting, from tempo-
ral data, clusters whose characteristics evolve over time. In this framework, the
clusters can be interpreted as the states within the operating contexts. This
dynamical clustering problem can be addressed by assuming that the data are
distributed according to a Gaussian mixture model whose centers evolve lin-
early with time [3, 11]. However, a linear evolution of the clusters may turn out
to be inefficient for complex non linear dynamics. A more appropriate mod-
eling consists in assuming that the cluster centers are themselves distributed
according to Gaussian random walks. Calabrese and Paninski [1] have proposed
a Bayesian estimation of such mixture model for tracking time-varying spike
shapes. In their formulation, the Gaussian random walks modeling the cluster
centers were treated as prior probability distributions and therefore, their vari-
ances, as smoothing hyperparameters, had to be chosen adequately.

A new model formulation, together with its maximum likelihood parameter
estimation through the EM algorithm, is introduced in this paper. Moreover,
one of the key points of this approach remain to be its capability to estimate the
random walks variances which control the temporal regularity of the clusters.

The rest of the paper is organized as follows. In Section 2, we formalize the dy-
namic model for clustering temporal data. We introduce the proposed maximum
likelihood (ML) approach for parameters estimation in Section 3. Our approach
is evaluated in Section 4 using simulated and real data. Conclusions and future
works are given in Section 5.

2 Dynamic Model for Temporal Data Clustering

The observed data sequence to be classified will be denoted as x = (x1, . . . ,xT)
wherext ∈ Rd, and the associatedunobserved class will be denoted as (z1, . . . , zT),
where zt ∈ {1, . . . ,K}. According to the proposed model, the observed data is
supposed to be sampled from K Gaussian distributions whose means evolve dy-
namically in the course of time. More formally, given the parameters vector Θ =

{(πk,μ
(k)
0 , v2k, σ

2
k); k = 1, . . . ,K} belonging to RK(d+3)−1, the data generation

scheme is the following:

– the class zt are independently drawn according to a multinomial distribution:
zt ∼M(1, π1, . . . , πK), with πk = P (zt = k) and

∑K
k=1 πk = 1;

– the time dependent cluster centers μ
(k)
t ∈ Rd are generated according to

Gaussian random walks with spherical covariance matrices v2k I, where I is
the identity matrix in Rd: μ(k)

t ∼ N (μ
(k)
t−1, v

2
k I),

– given the class zt and the means μ
(zt)
t , the observation xt is generated ac-

cording to a Gaussian distributions with mean μ
(zt)
t and covariance matrix

σ2
zt I: xt ∼ N (μ

(zt)
t , σ2

zt I).

The graphical representation associated to this dynamic model is displayed in
Figure 1. It should be noticed that this model is closely related to the switching

Model-Based Clustering of Temporal Data 11

z1 z2 zT

. . .

x1 x2 xT

μ
(1)
1

μ
(2)
1

...

μ
(K)
1

μ
(1)
2

μ
(2)
2

...

μ
(K)
2

μ
(1)
T

μ
(2)
T

...

μ
(K)
T

Fig. 1. Graphical model representation of dynamic mixture model

state-space model introduced by Ghahramani and Hinton [9]. The main dif-
ference between the two models lies in the Markov property on the sequence
(z1, . . . , zT), which is not assumed in our model.

3 Maximum Likelihood Estimation

In contrast to the maximum a posteriori estimation approach described in the
previous section, which assumes a prior distribution over the clusters centers,
we develop a new maximum likelihood approach which does not consider them
as parameters but rather as random variables. As it will be detailed, the pro-
posed approach is thus capable to estimate the variances v2k of the random walks
generating the cluster means.

We assume that the observed data is the sequence x = (x1, . . . ,xT), the
missing data consist of (a) the assignments z = (z1, . . . , zT) of the xt’s to the
mixture components and (b) the cluster centers μ = (μ

(k)
t). Therefore, the pa-

rameter vector Θ can be estimated by maximizing the log-likelihood function
LML defined as follows:

LML(Θ) = log p(x; θ) = log
∑
z

∫
μ

p(x,μ, z; θ)dμ. (1)

The maximization of this log-likelihood can be performed by the EM algorithm
[2,6]. The complete data log-likelihood, that will be denoted by LCML, is written
as:

LCML(Θ) =

T∑
t=1

K∑
k=1

ztk
(
log πk N (xt;μ

(k)
t , σ2

k I) + logN (μ
(k)
t ;μ

(k)
t−1, v

2
k I)

)
. (2)

The two steps of the EM algorithm are introduced in the following sections.

12 H. El Assaad et al.

3.1 E-Step

The expected complete log-likelihood can be written as:

Q(Θ;Θ(c)) = E(LCML(Θ)|x;Θ(c)) = Q1((πk)) +Q2

(
(μ

(k)
0 , v2k)

)
+Q3

(
(σ2

k)
)
, (3)

with

Q1 =

T∑
t=1

K∑
k=1

τ
(q)
tk log πk, (4)

Q2 = −
T∑

t=1

K∑
k=1

τ
(q)
tk

2

(
p log v2k +

1

v2k
E
(
‖μ(k)

t − μ
(k)
t−1‖2

∣∣ ztk = 1,x;Θ(q)
))

, (5)

Q3 = −
T∑

t=1

K∑
k=1

τ
(q)
tk

2

(
p log σ2

k +
1

σ2
k

E
(
‖xt − μ

(k)
t ‖2 ∣∣ ztk = 1,x;Θ(q)

))
. (6)

where τ
(q)
tk = P (ztk = 1|x1, . . . ,xT ;Θ

(q)) is the posterior probability that xt

originates from cluster k, given the parameter vector Θ(q). Unfortunately, the
posterior assignment probability τ

(q)
tk is not straightforward to compute. Indeed,

it requires successive integrals over mixture of normal distributions that become
intractable. We suggest approximating this probability by

τ
(q)
tk ≈ π

(q)
k N (xt; c

(k)
t , σ2(q)

k I)∑K
�=1 π

(q)
� N (xt; c

(�)
t , σ2(q)

� I)
, (7)

approximation that was found to work well on different synthetic data. To eval-
uate the quantities Q2 and Q3, let us define the expectations and the variances
c(q)tk = E(μ

(k)
t |x1, . . . ,xT , ztk = 1;Θ(q)), P

(q)
tk = var(μ

(k)
t |x1, . . . ,xT , ztk =

1;Θ(q)) and P
(q)
t,t−1,k = cov(μ

(k)
t ,μ

(k)
t−1|x1, . . . ,xT , ztk = 1;Θ(q)), which can

be computed using the following weighted Kalman filtering and smoothing
recursions [4, 8]:

– Forward (filtering): starting from m0k = (μ
(k)
0)

(q)
and M0k = 0, compute,

for t = 1, . . . , T ,

Ktk = (Mt−1,k + v2
(q)

k I)(Mt−1,k + v2
(q)

k I + (σ2(q)

k /τ
(q)
tk) I)−1,

mtk = mt−1,k +Ktk(xt −mt−1,k) and Mtk = (I −Ktk)(Mt−1,k + v2
(q)

k I).

– Backward (smoothing): starting from P
(q)
T,T−1,k = (I − KTk)MT−1,k and

c(q)Tk = mTk, compute, for t = T − 1, . . . , 1,

Jtk = Mtk(Mtk + v2
(q)

k I)−1,

c(q)
tk = mtk + Jtk(c(q)

t+1,k −mtk),

P
(q)
tk = Mtk + Jtk

(
P

(q)
t+1,k − (Mtk + v2

(q)

k I)
)
J ′
tk,

and compute for t = T − 1, . . . , 2,

P
(q)
t,t−1,k = Mtk J

′
t−1,k + Jtk(P

(q+1)
t+1,t,k −Mtk)J

′
t−1,k.

Model-Based Clustering of Temporal Data 13

Finally, we get:

Q2 = −
T∑

t=1

K∑
k=1

τ
(q)
tk

2

(
p logσ2

k +
1

σ2
k

(
‖xt − c(k)t ‖2 + tr(P

(k)
t)

))
, (8)

Q3 = −
K∑

k=1

τ
(q)
1k

2

(
p log v2k +

1

v2k

(
‖c(k)1 − μ

(k)
0 ‖2 + tr(P

(k)
1)

))

−
T∑

t=2

K∑
k=1

τ
(q)
tk

2

(
p log v2k +

1

v2k
‖c(k)t − c(k)t−1‖2

)

−
T∑

t=2

K∑
k=1

τ
(q)
tk

2v2k
tr

(
P

(k)
t − P

(k)
t,t−1 − (P

(k)
t,t−1)

′ + P
(k)
t−1

)
. (9)

3.2 M-Step

In the M-step, we have to separately maximize the quantities Q1, Q2 and Q3.
The updated parameters are then given by:

(μ
(k)
0)

(q+1)
= c(q)

1k , π
(q+1)
k =

∑T
t=1 τ

(q)
tk

T
(10)

σ2(q+1)

k =

∑T
t=1 τ

(q)
tk

(
‖xt − c(q)

tk ‖2 + tr(P
(q)
tk)

)
p
∑T

t=1 τ
(q)
tk

, (11)

v2
(q+1)

k =

∑T
t=2 τ

(q)
tk ‖c(q)

tk − c(q)
t−1,k‖2 + τ

(q)
1k tr(P

(q)
1k)

p
∑T

t=2 τ
(q)
tk

+

tr
(∑T

t=2 τ
(q)
tk

(
P

(q)
tk − P

(q)
t,t−1,k − (P

(q)
t,t−1,k)

′ + P
(q)
t−1,k

))
p
∑T

t=2 τ
(q)
tk

. (12)

4 Experimental Study

In this section, we began by testing the performances of EM-ML on several
example synthetic data sets. In this case, the knowledge of the ground truth
allowed us to compare our algorithm to others algorithms. We generated 50 data
sequences of length T = 500 according to the scheme described in section 2 with
K = 2 clusters. The parameters used are as follows: π1 = π2 = 1

2 , σ2
1 = σ2

2 = 1
4 ,

v21 = v22 = 1
16 , μ(1)

0 = 0 and μ
(2)
0 = 4. Initially, the clusters are well-separated

but their trajectories may cross after some time. Figure 2 shows an example of
data simulated according to this model.

The performance of the compared algorithms is measured using the mean
square error C = 1

KT

∑K
k=1

∑T
t=1(μ

(k)
t − μ̂

(k)
t)2, where μ

(k)
t , μ̂(k)

t are true and es-
timated cluster centers, which represents the error between the estimated means
and those simulated. Notice that, given the estimated parameters, the cluster
centers trajectories are computed via the filtering and smoothing recursions.

14 H. El Assaad et al.

0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

4

6

8

10

12

14

Temps

X
t

Simulated data

0 100 200 300 400 500
−6

−4

−2

0

2

4

6

8

10

12

14

X
t

Temps

Simulated data
Class 1
Class 2

Fig. 2. Example of simulated data set

4.1 Algorithms in Competition

The following algorithms configurations are compared:

– EM-ML: the proposed maximum likelihood approach via the EM algorithm
where the variances v2k are automatically estimated,

– EM-MAP(v2k): the EM algorithm of Calabrese and Paninski [1] based on
maximum a posteriori approach. This approach requires to set the value of
the variance v2k that we selected in S = {0.25; 0.15; 0.1; 0.05; 0.01},

– EM-ML(v2k): the proposed algorithm run with fixed values of the variances
v2k ∈ S. It should be noted here that this version of the EM-ML algorithm,
operating with fixed values of v2k, is only used to observe the performances
of our approach when it is placed in the same conditions as the EM-MAP
algorithm,

– theoretical: the EM-ML algorithm run using the true initial parameters.

For each simulated data set, these four algorithms were applied with the
correct number of clusters K = 2.

4.2 Results

Figure 3 displays the criterion C (averaged over the 50 data sets) for each of
the four algorithms configurations. The performances of EM-ML(v2k) and EM-
MAP(v2k) evolve as a function of v2k, while those of EM-ML which does not
depend on v2k are represented by a horizontal line. Not surprisingly, the best
results are obtained with the “theoretical” approach, which can thus be consid-
ered as the reference result. We observe that EM-ML(v2k) gives better results
than EM-MAP(v2k). Even if EM-ML is outperformed by both EM-ML(v2k) and
EM-MAP(v2k) for v2k near the true value 0.06, its results are globally correct
considering the fact that it automatically estimates the variances v2k.

Finally, we tested our method in terms of tracking the evolution of railway
components, using a database of real signals issued from the switch operations.

Model-Based Clustering of Temporal Data 15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

 v2
k

C

EM−ML (v2
k
)

EM−MAP (v2
k
)

EM−ML
Theoretical

Fig. 3. Criterion C in relation to v2k for the four algorithm configurations

More particularly, the goal will be to discover K = 2 operating context within
the data (e.g., different hygrometric and temperature conditions). We consider
a sequence of n = 850 real switch operation signals displayed on figure 4(a). The
specificity of the curves to be analyzed in this context is that they are subject
to five changes in regime (starting phase, unlocking phase, translation, point
locking and friction phase) as a result of five successive mechanical movements
of the physical components associated with the switch mechanism. Due to this
specificity, the first step of the process consists in automatically modelling and
segmenting each curve using a specific regression model [12]. In other words, this
step consists in representing each power consumption curve by a mixture of five
polynomial regression models (see [12] for more details). From this representa-
tion, each curve is summarized by the average value of its polynomial curves
over the unlocking, translation and locking segments. The proposed algorithm
has been run on the resulting time series described by figure 4(b) by setting
K = 2. The clustering results are displayed figure on 4(c).

0

200

400

600

800

1000

0
1

2
3

4
5

6

0

500

1000

1500

2000

2500

Curve number
Sampling time (second)

P
o

w
e

r
 (

W
a

tt
)

0 100 200 300 400 500 600 700 800 900
340

360

380

400

420

440

460

480

500

520

540

Time

X
t

True data

0 100 200 300 400 500 600 700 800 900
340

360

380

400

420

440

460

480

500

520

540

Time

X
t

True data
Class 1
Class 2

Fig. 4. (left) Examples of signals acquired during successive switch operations; (middle)
Real data without the trajectories; (right) Clustering results obtained with EM-ML for
the real data set.

16 H. El Assaad et al.

5 Conclusion and Future Work

A new approach dedicated to temporal data clustering is proposed in this arti-
cle. The dynamical model associated to this approach assumes that the cluster
centers are latent random variables which evolve in the course of time according
to random walks. Its parameters are learned by a maximum likelihood approach
through the EM algorithm. In contrast to other approaches as the one based
on a MAP estimation of parameters, the strength of our approach rely on its
capability to estimate the covariance matrix of the random walks.

The experimental study conducted on synthetic and real switch operation
signals data has shown encouraging results in terms of tracking the evolution
of railway components under different operating contexts. The proposed EM-
ML algorithm is capable to estimate the variances of the random walks while
keeping a low error rate regarding the difference between the estimated cluster
centers and those simulated. The main prospect of this work will be to apply
the proposed algorithm to real data from railway transportation systems whose
dynamic includes switching between various states related to operating contexts.
We also plan to test Gibbs sampling approach for the calculation of the posterior
assignment probability.

References

1. Calabrese, A., Paninski, L.: Kalman filter mixture model for spike sorting of non-
stationary data. Journal of Neurosciences Methods 196(1), 159–169 (2011)

2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society B 39, 1–38
(1977)

3. DeSarbo, W.S., Cron, W.L.: A maximum likelihood methodology for clusterwise
linear regression. Journal of Classification 5, 249–282 (1988)

4. Durbin, J., Koopman, S.J.: Time series analysis by state space methods. Oxford
University Press (2001)

5. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
6. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New

York (1997)
7. Jazwinski, A.H.: Stochastic Processes and Filtering Theory, pp. 201–217. Academic

Press, New York (1970)
8. Shumway, R.H., Stoffer, D.S.: Time series analysis and its applications. Springer

(2011)
9. Ghahramani, Z., Hinton, G.E.: Variational learning for switching state-space mod-

els. Neural Computation 12, 963–996 (1998)
10. Titterington, D.M., Smith, A.F., Makov, U.E.: Statistical Analysis of Finite Mix-

ture Distributions. Wiley, New York (1985)
11. Wedel, M., DeSarbo, W.S.: A maximum likelihood approach for generalized linear

models. Journal of Classification 12, 1–35 (1995)
12. Chamroukhi, F., Samé, A., Govaert, G., Aknin, P.: Time series modeling by a

regression approach based on a latent process. Neural Networks 22(5-6), 593–602
(2009)

Fast Approximation Method for Gaussian

Process Regression Using Hash Function
for Non-uniformly Distributed Data

Yuya Okadome1, Yutaka Nakamura1,3, Yumi Shikauchi2,3, Shin Ishii2,3,
and Hiroshi Ishiguro1

1 Graduate School of Engineering Science, Osaka University
2 Graduate School of Informatics, Kyoto University

3 ATR Cognitive Mechanisms Laboratories
{okadome.yuya,nakamura}@irl.sys.es.osaka-u.ac.jp,

yumi-s@sys.i.kyoto-u.ac.jp,
ishii@i.kyoto-u.ac.jp,

ishiguro@sys.es.osaka-u.ac.jp

Abstract. Gaussian process regression (GPR) has the ability to deal
with non-linear regression readily, although the calculation cost increases
with the sample size. In this paper, we propose a fast approximation
method for GPR using both locality-sensitive hashing and product of
experts models. To investigate the performance of our method, we apply
it to regression problems, i.e., artificial data and actual hand motion
data. Results indicate that our method can perform accurate calculation
and fast approximation of GPR even if the dataset is non-uniformly
distributed.

Keywords: Gaussian process regression, locality-sensitive hashing, prod-
uct of experts model.

1 Introduction

Since Gaussian process regression (GPR)[11][4] can readily deal with non-linear
regression and construct a prediction model flexibly, it has been studied in many
fields[7][8][15]. Applications of a non-parametric model had been difficult due to
high computational cost but they have become popular thanks to recent high per-
formance computers and computationally efficient algorithms[9][13][2]. Although
computational performance is improved, essential calculation cost increases dra-
matically for problems of processing datasets with large sample size.

Indyk et al. proposed a computationally efficient method for one of the non-
parametric models, i.e. k-nearest neighbors, called Locality-Sensitive Hashing
(LSH)[6][3], which is a technique for dividing the dataset into small subsets while
preserving the locality of the data using a hash-key composed of outputs of binary
threshold functions. The partition of the dataset can be done by calculating a
hash-key value, and only the samples possessing hash-keys identical to the query

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 17–25, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 Y. Okadome et al.

(a) Dataset (uniform) (b) Dataset (non-uniform)

Fig. 1. examples of dataset

input are used to find nearest neighbors. As a result, the calculation cost is
significantly reduced.

In this research, we derive a fast approximation method for GPR based on
the above idea. However, since the accuracy of approximation gets worse near
the borders between subspaces when the dataset is simply divided, we propose a
method based on a product-of-experts model[5] to combine multiple decomposed
GPR with different hash-keys. By compensating for the worse estimation of
decomposed GPR, the accuracy is expected to improve.

Since the calculation cost is proportional to O(n2), it is better to divide the
dataset into subsets with equal number of samples. In a naive application of
LSH, it is assumed that the samples are distributed uniformly in the input space
as shown in Fig. 1(a); however that is usually not the case in the distribution
of an actual dataset. Furthermore, a set of simple threshold functions does not
necessarily divide the dataset equally, especially when the distribution of samples
is not uniform, as shown in Fig 1(b). Therefore, we try to solve this problem by
using a tree-structured hash-key. We apply our method to the regression task
of function approximation (artificial data) and motion data of the human hand
(real data) and investigate its performance.

2 Gaussian Process Regression Approximated by the
Divided Dataset

It is assumed that a dataset D = (X,y),X = {xn|n = 1, . . . , N},y = {yn|n =
1, . . . , N} is given. The purpose of a regression problem is to estimate the predic-
tion function y = f(x) from this dataset. GPR assumes that the prior distribu-
tion over the function is a Gaussian distribution. Then, outputs
f = (f(x1), . . . , f(xN)) for input set X are defined as

Fast Approximation Method for GPR Using Hash Function 19

P (f |C,X) =
1

Z
exp

[
−1

2
f�C−1f

]
, (1)

where C denotes the covariance matrix whose elements are Cij = K(xi,xj) +
δijN(xi). K(·, ·) and N(·) denote a kernel function and a noise function, respec-
tively. When a query input x∗ is given, the output: y∗ = f(x∗) is calculated
as

P (y∗|x∗, D) =
1

Z
exp

(
−1

2

(y∗ − E[y∗])2

V [y∗]

)
. (2)

As a result, the expectation and variance of the output become E[y∗] = k�C−1y
andV [y∗] = K(x∗,x∗)−k�C−1k.k is definedask = (K(x1,x∗), . . . ,K(xN ,x∗)).

In order to calculate Eq. (2), it is necessary to calculate the matrix inverse
(∝ O(n3)) for the learning and the matrix multiplication (∝ O(n2)) for each
prediction. To reduce the calculation cost, we employ a hash-key to divide the
dataset into multiple subsets. The hash-key corresponds to the subspace to which
each subset belongs, and the calculation cost of this hash-value does not directly
depend on the sample size.

LSH is usually used for a nearest neighbor search problem. Since it may hap-
pen that some neighbor points do not belong to the selected subset, L different
hash-keys are used to reduce the number of such cases. In analogy with this idea,
we use multiple decomposed GPRs possessing different hash-keys, and the total
output is calculated using all the outputs of the decomposed GPR based on the
product-of-experts model (PoEs)[5].

2.1 Approximated Calculation of GPR

To divide the dataset, a B-bits binary hash-key composed of B binary hash
functions is used. All elements in each subset have an identical hash-key value.
Since the calculation of the hash-key value does not depend on the sample size,
the calculation cost for the partition is O(1).

In this research, we assume that the value of the kernel function K(xi,x∗)
between samples with different hash-key values (g(xi) �= g(x∗)) is small (e.g.
RBF kernel) enough to be approximated by 0. The value of the kernel functions,
k, for the query input x∗ is approximated as

k ≈ (0, 0, · · · ,K(xi,x∗),K(xi+1,x∗), · · ·︸ ︷︷ ︸
:=k′

, 0, 0, · · ·), (3)

where only samples with hash-key value identical to the query input have non-
zero values.

Similarly, the covariance matrix C can be approximated as a block diagonal
matrix:

Ĉ =

⎛
⎜⎝ Ĉ1 O

. . .

O Ĉ2B

⎞
⎟⎠ , (4)

20 Y. Okadome et al.

By using these equations, the expectation and variance of the prediction distribu-
tion of GPR are calculated as Ê[y∗] = k′�Ĉ−1

g(x∗)yg(x∗) and V̂ [y∗] = K(x∗,x∗)−
k′�Ĉ−1

g(x∗)k
′. Ĉg(x∗) and yg(x∗) are the covariance matrix and the output data

vector composed of samples whose hash-key value is g(x∗). Note that all Ĉg and
yg can be calculated before the query input is given.

Tree-structured hash-key When the dataset is divided into equal-size subsets, it
is expected that the calculation cost significantly reduces. However, if there are
some large subsets, the calculation cost is dominated by such subsets and the
computational efficiency can not be significantly improved. The naive LSH does
not necessarily divide the dataset into equal-size subsets, especially when the
distribution of the original data is non-uniform. We propose a tree structured
hash-key to make the sample size of each subset equal. In this research, we use
the random-projection tree[12] to generate a tree-structure hash-key.

2.2 Integration of Multiple Decomposed GPR by PoE

The precision in the border areas might decrease due to the shrinking of the
efficient sample size. Employing multiple GPRs with different boundaries, and
integrating their outputs to compensate each other seems to be a good way to
cope with this problem. In this research, the calculation of the total GPR is
performed on L independently decomposed GPRs with different hash-keys, i.e.,
different boundaries in the input space.

The prediction distribution of GPR (Eq. (1)) can be decomposed as

p(f |C,X) =
1

Z
exp

[
−1

2
f�L(LC)−1f

]
=

1

Z

L∏
l=1

exp

[
−1

2
f�(LC)−1f

]

≈ 1

Z

L∏
l=1

exp

[
−1

2
f�(LĈl)

−1f

]
, (5)

where Ĉl denotes the covariance matrix obtained by the l-th hash-key. Eq. (5)
becomes equivalent to the original probabilistic model when approximation by
decomposition does not produce any degradation.

The prediction distribution of y∗ for query x∗ is calculated as

p(y∗|x∗, D) ≈ 1

Z

L∏
l=1

p(y∗|x∗, Dgl(x∗))

=
1

Z
exp

(
−1

2

L∑
l=1

(y∗ − Ê[y∗]l)2

LV̂ [y∗]l

)
, (6)

where Dgl(x∗), Ê[y∗]l and V̂ [y∗]l denote the selected subset, the predicted mean
and the predicted variance using the l-th hash-key, respectively. The total mean

Fast Approximation Method for GPR Using Hash Function 21

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

x

y

Tree−LSH: L=1
Tree−LSH: L=2
Fulll−GPR
training data

(a) Regression result

1 2 3 4 5 6 7 8

indexes of subset

sa
m

pl
e

si
ze

0
10

0
20

0
30

0
40

0
50

0

Naive−LSH
Tree−LSH

(b) The sample size of each subset

Fig. 2. Regression experiment using artificial data

E[y∗] and variance V [y∗] can be calculated by

∑L
l=1 Ê[y∗]l 1

LV̂ [y∗]l∑
L
i=1

1
LV̂ [y∗]i

and 1∑
L
l=1

1
LV̂ [y∗]l

,

respectively.
The calculation cost of our method is O(L2B(N/2B)3) for inverse matrix

and O(L(N/2B)2) for prediction when the dataset is divided into equal size
subsets. Also, the required amount of memory is O(2B(N/2B)2) in our method,
as compared to O(N2) in a naive GP.

3 Performance Comparison

To investigate the performance of our method, we conducted a regression task
using both artificial and real data.

3.1 Artificial Data

The plus marks (+) in Fig. 2(a) show the training dat; the sample size is 1024.
The training data is distributed according to a Gaussian mixture and is concen-
trated to some small areas. The predictions are done by three types of GPR:
speeding up by tree-structured hash-key (Tree-LSH-GPR), speeding up by naive
LSH (Naive-LSH-GPR) and normal GPR (Full-GPR). The bit length of hash-
keys is B = 3 and the number of keys is L = 1, 2 when an LSH is used. The
accuracy of regression does not change when the number of hash-key becomes
L > 2.

The green line, black line and red line in Fig. 2(a) show the approximation
result of Full-GPR and Tree-LSH-GPR with L = 1 and L = 2, respectively.

22 Y. Okadome et al.

Table 1. Computational time of the function approximation

Prediction [ms] Inverse [s]

Full-GPR 45.3 ± 1.2 12.4

Naive-LSH-GPR: L = 1 3.88 ± 2.24 0.160

Naive-LSH-GPR: L = 2 11.5 ± 3.7 0.462

Tree-LSH-GPR: L = 1 0.87 ± 0.004 0.0395

Tree-LSH-GPR: L = 2 1.76 ± 0.05 0.0727

Table 2. nMSE and computational time of the regression

gp-map-1 [16] Full-GPR Tree-LSH-GPR

nMSE 0.036∗ 0.033 0.034

Time [s] N/A∗ 2.09 0.100

The sample size of gp-map-1 is 1024 and results (*) are adopted from [16].
In our method, the sample size of the training data is 7168 and the bit
length and the number of hash-key were 3 and 3.

Fig. 2(b) shows the sample size of each subset for Tree-LSH-GPR and Naive-
LSH-GPR. The red bar and blue bar show the divided result of Naive-LSH-
GPR and Tree-LSH-GPR. Tree-LSH-GPR can divide the dataset into equal-size
subsets. On the other hand, the sample sizes obtained by Naive-LSH-GPR are
quite different.

Table 1 shows the computational time for prediction and inverse matrix. Both
Naive-LSH-GPR and Tree-LSH-GPR can calculate faster than the Full-GPR.
Although the computational time by Naive-LSH-GPR with L = 1 was reduced
to 1/10 for prediction and 1/80 for inverse matrix compared to Full-GPR, it has
large variance. Tree-LSH-GPR further reduces the computational cost, and has
small variance. Since the accuracy of the prediction did not differ much from
that of Full-GPR, it can be said that Tree-LSH-GPR is more efficient. Note
that by tuning the bit length and the number of hash-keys, we can balance the
calculation cost and the accuracy.

Multi-dimensional Function Approximation. Table 2 shows the nMSE
and computational time for a benchmark test used in [16], Pumadyn-8nm. The
input dimensionality is 8 and the nonlinearity of the dataset is high. Due to the
complexity of the dataset, gp-map-1 is one of the highest performance models
among several supervised learning methods. Compared to this method with our
method, we can use a large amount of dataset for the training and the perfor-
mance can be improved, while the calculation time is reduced.

3.2 Regression Task with Real Data

We applied our method to a regression problem using actual experimental data,
i.e. hand motion data. In the experiment, 8 markers attached on the hand

Fast Approximation Method for GPR Using Hash Function 23

(a) data glove

number of keys

nM
S

E

10

0.
02

0.
04

0.
06

0.
08

0.
10

tim
e

(p
re

di
ct

io
n)

0.
00

1
0.

00
5

0.
05

0
0.

50
0

Bit=3(nMSE)
Bit=4(nMSE)
Bit=5(nMSE)
full GPR(nMSE)

Bit=3(time)
Bit=4(time)
Bit=5(time)
full GPR(time)

2 4 6 8

(b) nMSE and prediction time

Fig. 3. Regression experiments using hand motion data

(Fig. 3(a)) and finger joint are recorded at the same time, using an optical
motion capture system (Radish, Library) and a data glove (ShapeHand, Mea-
surand). In an actual situation, it is not guaranteed that all sensors are available,
so the purpose of the regression problem in this section is to predict the output
value of one sensor from the output value of the other sensors. Each dataset
sample consists of the input variable (positions of 5 markers attached on fingers,
whose coordinate system is defined by the remaining 3 markers) and the output
variable (the joint angle of the wrist).

The sample size of the dataset is 8192. We evaluate the performance by 8-fold
cross-validation (7168 training data and 1024 test data). We compare the normal
Gaussian process regression (Full-GPR) and the proposed method (Tree-LSH-
GPR-B-L, B = 3, 4, 5,L = 1, 2, .., 10). The kernel function used in this experi-
ment is a Gaussian kernel whose hyper-parameters are determined according to
the maximum likelihood[1].

Fig. 3(b) shows the normalized mean squared error (nMSE) of the regression
result and calculation time. The blue solid line, green solid line, red solid line and
black solid line in Fig. 3(b) show the regression results of Tree-LSH-GPR-3-L,
Tree-LSH-GPR-4-L, Tree-LSH-GPR-5-L and FULL-GPR, respectively.

nMSE is large when the number of hash-keys is small. However, the perfor-
mance of Tree-LSH-GPR gets close to the Full-GPR by increasing the number
of hash-keys. Error caused by dataset division can be reduced by increasing the
number of hash-keys. The computational time of prediction by LSH-GPR-3-10
is the highest in Tree-LSH-GPR, but takes only 1/6 of that used in Full-GPR.
The computational time of inverse matrix by LSH-GPR-5-1 is the lowest in
Tree-LSH-GPR and becomes smaller than 1/1000 of that used in Full-GPR.
The computational time of prediction is proportional to the number of hash-
keys. However, the calculations can be sped up by using a parallel computing
technique since each decomposed GPR can be performed independently.

24 Y. Okadome et al.

4 Conclusion

In this paper, we proposed a fast approximation method for Gaussian process
regression where a dataset is divided into small subsets and the outputs of the
redundant number of approximated GPRs are integrated using a product-of-
experts model. We applied our method to regression tasks using both artificial
and real data, and showed that the proposed method is computationally effi-
cient while the precision of the estimation is similar to previous method. In our
method, the sample size of a subset affects the precision. To develop a method
to determine the sample size of a subset for sufficient approximation is one of
our future projects.

Sparse GPR[9][13][14][10] is a well-known fast approximation method for
GPR. In this method, representative samples are extracted from the training
dataset to avoid the performance degradation. When all training samples affect
the entire input space, this method might work well. On the other hand, when
most of the training samples affect only a small area close to themselves, wasteful
calculations might emerge. This property is opposite to our method; to develop
a combination of these methods is also one of our future projects.

Acknowledgments. A part of this research was supported by a contract with
the Ministry of Internal Affairs and Communications entitled, ’Novel and inno-
vative R&D making use of brain structures’.

References

1. Bishop, C.M.: Pattern recognition and machine learning, 1st edn. corr. 2nd printing
edition. Springer (October 2006)

2. Bo, L., Sminchisescu, C.: Greedy block coordinate descent for large scale gaussian
process regression. Computing Research Repository (2012)

3. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 253–262 (2004)

4. Foster, L., Waagen, A., Aijaz, N., Hurley, M., Luis, A., Rinsky, J., Satyavolu, C.,
Way, M.J., Gazis, P., Srivastava, A.: Stable and efficient gaussian process calcula-
tions. Journal of Machine Learning Research 10, 857–882 (2009)

5. Hinton, G.E.: Training products of experts by minimizing contrastive divergence.
In: Neural Computation, vol. 14, pp. 1771–1800. MIT Press (2002)

6. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 604–613 (1998)

7. Ko, J., Fox, D.: Learning gp-bayesfilters via gaussian process latent variable models.
Autonomous Robots 30, 3–23 (2011)

8. Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian
process latent variable models. Journal of Machine Learning Research 6, 1783–1816
(2005)

9. Lawrence, N., Seeger, M., Herbrich, R.: Fast sparse gaussian process methods:
The informative vector machine. In: Advances in Neural Information Processing
Systems, vol. 15, pp. 609–616 (2003)

Fast Approximation Method for GPR Using Hash Function 25

10. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate
gaussian process regression. Journal of Machine Learning Research 6, 1939–1959
(2005)

11. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The
MIT Press (2006)

12. Sanjoy, D., Yoav, F.: Random projection trees and low dimensional manifolds.
In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pp. 537–546 (2008)

13. Smola, A.J., Bartlett, P.: Sparse greedy gaussian process regression. In: Advances
in Neural Information Processing Systems, vol. 13, pp. 619–625. MIT Press (2001)

14. Snelson, E., Ghahramani, Z.: Sparse gaussian processes using pseudo-inputs. In:
Advances in Neural Information Processing Systems, vol. 18, pp. 1257–1264. MIT
Press (2006)

15. Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D.J., Rasmussen, C.E.: Deriva-
tive observations in gaussian process models of dynamic systems. In: Advances in
Neural Information Processing Systems, vol. 15, MIT Press (2003)

16. Waterhouse, S.R.: Classification and regression using mixtures of experts. PhD
thesis. Citeseer (1997)

An Analytical Approach to Single Node

Delay-Coupled Reservoir Computing

Johannes Schumacher, Hazem Toutounji, and Gordon Pipa

Institute of Cognitive Science, University of Osnabrück, Germany
{joschuma,htoutounji,gpipa}@uos.de

Abstract. Reservoir computing has been successfully applied in difficult
time series prediction tasks by injecting an input signal into a spatially
extended reservoir of nonlinear subunits to perform history-dependent
nonlinear computation. Recently, the network was replaced by a single
nonlinear node, delay-coupled to itself. Instead of a spatial topology,
subunits are arrayed in time along one delay span of the system. As a
result, the reservoir exists only implicitly in a single delay differential
equation, numerical solving of which is costly. We derive here approx-
imate analytical equations for the reservoir by solving the underlying
system explicitly. The analytical approximation represents the system
accurately and yields comparable performance in reservoir benchmark
tasks, while reducing computational costs by several orders of magni-
tude. This has important implications with respect to electronic realiza-
tions of the reservoir and opens up new possibilities for optimization and
theoretical investigation.

1 Introduction

Predicting future behavior and learning temporal dependencies in time series of
complex natural systems remains a major goal in many disciplines. In Reservoir
Computing, the issue is tackled by projecting input time series into a recurrent
network of nonlinear subunits [2, 4]: Recurrency provides memory of past in-
puts, while the nonlinear subunits expand their informational features. History-
dependent nonlinear computations are then achieved by simple linear readouts
of the network activity.

In a recent advancement, the recurrent network was replaced by a single non-
linear node delay-coupled to itself [1]. Such a setup is formalized by a delay
differential equation which can be interpreted as an “infinite dimensional” dy-
namical system. Whereas classical reservoirs have an explicit spatial representa-
tion, a delay-coupled reservoir (DCR) uses temporally extended sampling points
across the span of its delayed feedback, termed virtual nodes. The main advan-
tage of such a setup is that it allows for easy realization in optical and electronic
hardware [8].

A drawback of this approach is the fact that the actual reservoir computer is
always only implicit in a single delay differential equation. Consequently, in many
implementations the underlying system has to be solved numerically. This leads

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 26–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Analytical Approach to Delay-Coupled Reservoir Computing 27

to a computational bottleneck and creates practical limitations for reservoir size
and utility. The lack of reservoir equations also presents problems for applying
optimization procedures.

To overcome this, we present here a recursive analytical solution used to de-
rive approximate virtual node equations. The solution is assessed in its computa-
tional capabilities as DCR and compared against numerical solvers in nonlinear
benchmark tasks. We show that while computational performance is compara-
ble, the analytical approximation leads to considerable savings in computation
time, allowing the exploration of exceedingly large setups. Finally, we discuss
the perspectives of this approach regarding optimization schemes in the fashion
of previous work by the authors [9].

2 Methods

2.1 Single Node Delay-Coupled Reservoirs

In a DCR, past and present information undergoes nonlinear mixing via injection
into a nonlinear node with delayed feedback. Formally, these dynamics can be
modeled by a delay differential equation

dx(t)

dt
= −x(t) + f(x(t− τ), J(t)), (1)

where τ is the delay time, J is the input driving the system, and f is a nonlinear
function. For a DCR, system (1) can be operated in a simple regime that is
governed by a single fixed point in case J(t) = const.

Injecting a signal into the reservoir is achieved by multiplexing it in time:
The DCR receives a single constant input u(t̄) in each reservoir time step t̄ =
	 t
τ
, corresponding to one τ -cycle of the system. During each τ -cycle, the input

is again linearly transformed by a mask that is piecewise constant for short
periods θi, representing the spacing between sampling points of i = 1, ..., N
virtual nodes along the delay line. Here, the mask M is chosen to be binary
with random mask bits Mi ∈ {−0.1, 0.1}, so that node i receives a weighted
input Miu(t̄). The masking procedure effectively prevents the driven dynamics of
the underlying system from saturating. Accordingly, the sampling point spacing
satisfies

∑N
i=1 θi = τ.

A sample is read out at the end of each θi, yielding N predictor variables (vir-
tual nodes) xi(t̄) per time step t̄. Computations are performed on the predictors
using a linear regression model for some scalar target time series y, given by
ŷ(t̄) =

∑N
i=1 αixi(t̄), where xi, i = 1, ..., N denote the DCR’s virtual nodes (see

eq. (4)), and the αi are the coefficients determined by regression, e.g. using the
least squares solution minimizing the sum of squared errors,

∑
t̄(y(t̄)− ŷ(t̄))2.

2.2 Approximate Virtual Node Equations

In the following, we discuss a recursive analytical solution to equation (1), known
as method of steps. The resulting formulas are used to derive a piecewise solution

28 J. Schumacher, H. Toutounji, and G. Pipa

scheme for sampling points across τ that correspond to the reservoir’s virtual
nodes. Finally, we use the trapezoidal rule for further simplification, hereby de-
riving approximate virtual node equations, the temporal dependencies of which
only consist of other virtual nodes. As will be shown in the remainder of this
article, the resulting closed-form solutions allow reservoir computation without
significant loss of performance as compared to a system obtained by explicit
numerical solutions, e.g. Heun’s method ((1,2) Runge-Kutta).

First, we discuss a simple application of the method of steps. For better read-
ability, the argument J(t) of the nonlinearity f is omitted in this part of the
derivation. If system (1) is evaluated at (i− 1)τ ≤ t ≤ iτ (say ti = iτ), where a
continuous function φi ∈ C[(i−2)τ,(i−1)τ] is the solution for x(t) on the previous
τ -interval, we can replace x(t− τ) by φi(t− τ). Consequently, elementary vari-
ation of parameters is applicable and yields directly the solution to the initial
value problem in (1) with initial value x(t0 = (i− 1)τ) = φi(ti−1), given by

x(t) = φi(ti−1)e
ti−1−t + eti−1−t

∫ t

(i−1)τ

f(φi(s− τ))es−ti−1ds

= φi(ti−1)e
ti−1−t + eti−1−t

∫ t−τ

(i−2)τ

f(φi(u))e
u−(i−2)τdu. (2)

Further, we use the cumulative trapezoidal rule [5]
∫ b

a
g(x)dx = h

2 g(χ0 = a) +

h
∑n−1

j=1 g(χj) +
h
2 g(χn = b) to interpolate the integral in (2) piece-wise linearly

along a uniform grid (i − 2)τ = χ0 < ... < χN = t − τ , where χj+1 − χj = h.
With g(χj) = eχj−(i−2)τf(φi(χj)), this yields

x(t) ≈ φi(ti−1)e
ti−1−t + eti−1−t h

2
f(φi(χ0))

+ eti−1−th

2

⎛
⎝eχN−(i−2)τf(φi(χN)) + 2

N−1∑
j=1

eχj−(i−2)τf(φi(χj))

⎞
⎠ . (3)

We are now interested in 1 ≤ k ≤ N single node equations xk(t̄), where t̄ =
i denotes discrete reservoir time step i in case (i − 1)τ ≤ t ≤ iτ. Assuming
equidistant virtual nodes where τ = Nθ and N the number of virtual nodes, we
choose a uniform grid χj = (i − 2)τ + jθ with j = 0, ..., N (i.e. h = θ). To get
an expression for xk(t̄), we now have to evaluate equation (3) at the sampling
point t = (i − 1)τ + kθ, which results in

xk(t̄) = x((i − 1)τ + kθ)

≈ e−kθφi((i− 2)τ +Nθ) +
θ

2
e−kθf [φi((i − 3)τ +Nθ)]

+
θ

2
f [φi((i− 2)τ + kθ)] + θ

N−1∑
j=1

e(j−k)θf [φi((i − 2)τ + jθ)]

An Analytical Approach to Delay-Coupled Reservoir Computing 29

= e−kθxN (t̄− 1) +
θ

2
e−kθf [xN (t̄− 2), JN(t̄− 1)]

+
θ

2
f [xk(t̄− 1), Jk(t̄)]

+

k−1∑
j=1

θe(j−k)θ︸ ︷︷ ︸
ckj

f [xj(t̄− 1), Jj(t̄)]. (4)

Here Jj(t̄) denotes the masked input Mju(t̄) ∈ R (see sec. 2.1) to node j at reser-
voir time step t̄, which was omitted as an argument to f during the derivation
to avoid cluttering. Note that equation (4) only has dependencies on sampling
points corresponding to other virtual nodes. An exemplary coupling coefficient
is indicated by ckj , weighting a nonlinear coupling from node j to node k. We
use this to derive weight matrices that allow simultaneous computation of all
nodes in one reservoir time step t̄ by a single vector operation, hereby dramati-
cally reducing the computation time of simulating the system by several orders
of magnitude as compared to an explicit second order numerical solver.

3 Results

We compare the analytical approximation of the system, derived in the previous
section, to a numerical solution obtained using Heun’s method with a stepsize of
0.1. The latter is chosen due to the relatively low computational cost and provides
sufficient accuracy in the context of DCR computing. As a reference for absolute
accuracy, we use numerical solutions obtained with dde23 [7], an adaptive (2,3)
Runge-Kutta based method for delay differential equations. The nonlinearity
f is chosen according to the Mackey-Glass equation for the remainder of this
paper, such that the system is given by

ẋ(t) = −x(t) +
η(x(t − τ) + γJ(t))

1 + (x(t − τ) + γJ(t))p
, (5)

where η, γ and p are metaparameters, τ the delay length, and J(t) is the tem-
porally stretched input u(t̄), multiplexed with a binary mask M .

Note that the trapezoidal rule used in the analytical approximation, as well
as Heun’s method, are both second order numerical methods that should yield a
global truncation error of the same complexity class. As a result, discrepancies
originating from different step sizes employed in the two approaches (e.g. 0.2 in
the analytical approximation and 0.1 in the numerical solution) may be remedied
by simply decreasing θ in the analytical approximation, for example by increasing
N while keeping a fixed τ (see sec. 3.4).

3.1 Trajectory Comparison

In a first step, we wish to establish the general accuracy of the analytical ap-
proximation in a DCR relevant setup. Figure 1 shows a comparison of reservoir

30 J. Schumacher, H. Toutounji, and G. Pipa

Fig. 1. Comparison between analytical approximation and numerical solution for an
input-driven Mackey-Glass system with parameters η = 0.4, γ = 0.05 and p = 1,
sampled at the temporal positions of virtual nodes, with a distance θ = 0.2

trajectories computed with equation (4) (red) against trajectories computed nu-
merically using dde23 (blue) with relative error tolerance 10−3 and absolute error
tolerance 10−6. The systems received uniformly distributed input u(t̄) ∼ U[0,0.5].
The sample points correspond to the activities of N = 400 virtual nodes with
a temporal distance of θ = 0.2, and τ = 80 accordingly. Given 4000 samples
(corresponding to 10 reservoir time steps t̄), the mean squared error between
the trajectories is MSE = 5.4 × 10−10. As can be seen in the figure, the tra-
jectories agree very well in the fixed point regime of the system (autonomous
case). Although it is expected that the MSE would increase in more complex
dynamic regimes (e.g. chaos), the latter are usually not very suitable for a DCR
for various reasons. The following results also show a high task performance of
the analytical approximation when used for DCR computing.

3.2 NARMA-10

A widely used benchmark in reservoir computing is the capacity of the DCR
to model a nonlinear autoregressive moving average system y in response to
uniformly distributed scalar input u(k) ∼ U[0,0.5]. The NARMA-10 task requires
the DCR to compute at each time step k a response

y(k + 1) = 0.3y(k) + 0.05y(k)

9∑
i=0

y(k − i) + 1.5u(k)u(k − 9) + 0.1.

Thus, NARMA-10 requires modeling of quadratic nonlinearities and shows a
strong history dependence that challenges the DCR’s memory capacity. We mea-
sure performance in this task using the correlation coefficient r(y, ŷ) ∈ [−1, 1]
between the target time series y and the DCR output ŷ in response to u. Here,
the DCR is trained (see sec. 2.1) on 3000 data samples, while r(y, ŷ) is com-
puted on an independent validation data set of size 1000. Figure 2A summarizes

An Analytical Approach to Delay-Coupled Reservoir Computing 31

the performance of 50 different trials for a DCR computed using the analytical
approximation (see eq. 4), shown in red, as compared to a DCR simulated with
Heun’s method, shown in blue. Both reservoirs consist of N = 400 virtual nodes,
evenly spaced with a distance θ = 0.2 along a delay line τ = 80. Both systems
show a comparable performance across the 50 trials, with a median correlation
coefficient between r(y, ŷ) = 0.96 and 0.97, respectively.

3.3 5-Bit Parity

As a second benchmark, we chose the delayed 5-bit parity task [6], requiring the
DCR to handle binary input sequences on which strong nonlinear computations
have to be performed with arbitrary history dependence. Given a random input
sequence u with u(k) ∈ {−1, 1}, the DCR has to compute at each time step k the
parity pδm(k) =

∏m
i=0 u(k − i − δ) ∈ {−1, 1}, for δ = 0, ...,∞. The performance

φm is then calculated on n data points as φm =
∑∞

δ=0 κ
δ
m, where Cohen’s Kappa

κδ
m =

1
n

∑n
k=1 max(0, pδm(k)ŷ(k))− pc

1− pc
∈ {0, 1}

normalizes the average number of correct DCR output parities ŷ by the chance
level pc = 0.5. We used 3000/1000 data points in training and validation set
respectively. To compare performance between analytical approximation and
numerical solution of the DCR, we chose m = 5 and truncated φm at δ = 7,
such that φ5 ∈ [0, 7]. For parameters η = 0.24, γ = 0.32 and p = 1, and a
DCR comprised of 400 neurons (τ = 80), figure 2B shows that performance φ5

is comparable for both versions of the DCR, with median performances between
4.3 and 4.5. across 50 different trials of this task. As the performance is far from
the ideal value of 7 and the model suffers slightly from overfitting (not shown),
it is clear that the delayed 5-bit parity task is a hard problem which leaves much
space for improvement.

3.4 Large Setups

We repeated the tasks in larger network setups where the computational cost of
the numerical solver becomes prohibitive. In addition to increasing the number of
virtual nodesN one can also decrease the node distance θ, thus fitting more nodes
into the same delay span τ . Although too small θ may affect a virtual node’s
computation negatively, decreasing θ increases the accuracy of the analytical
approximation.

NARMA-10. We illustrate this by repeating the NARMA-10 task with N =
2000 virtual nodes and τ = 200. This results in θ = 0.1, corresponding to the step
size used in the numerical solution before. Note that this hardly increases the
computational cost of the analytical approximation since the main simulation
loop along reservoir time steps t̄ (τ -cycles) remains unchanged. L2-regularization
is employed to manage the large number of predictors. The results are summa-
rized for 50 trials in figure 2C (right boxplot). The median correlation coefficient

32 J. Schumacher, H. Toutounji, and G. Pipa

Fig. 2. Comparison on nonlinear tasks between analytical approximation and numer-
ical solution for an input-driven Mackey-Glass system, sampled at the temporal posi-
tions of virtual nodes with a distance θ = 0.2. Mackey-Glass parameters are η = 0.4,
γ = 0.05 and p = 1 (NARMA-10) and η = 0.24, γ = 0.32 and p = 1 (5-bit parity), re-
spectively. Results are reported for 400 neurons (τ = 80) on data sets of size 3000/1000
(training/validation) in figures 2A and 2B, size 3000/1000 in 2C (right plot), as well as
for data sets of size 10000/10000 in figure 2C (left plot). Each plot is generated from
50 different trials. The plots show median (black horizontal bar), 25th/75th percentiles
(boxes), and most extreme data points not considered outliers (whiskers).

increased significantly to nearly 0.98 while the variance across trials is notably
decreased (compare fig. 2A).

5-Bit Parity. For the 5-bit parity task, we addressed the task complexity by
increasing both, training and validation sets, to a size of 10000. Second, we
increased once more the virtual network size to N = 2000 virtual nodes and
τ = 200. The performance of the resulting DCR setup, computed across 50 trials
using the analytical approximation, is summarized in figure 2C (left boxplot).
The model no longer suffers as much from overfitting and the performance on
the validation set increased dramatically to a median value of 6.15, which is now
close to the theoretical limit of 7. While the computation to produce figure 2C
took only few minutes with the analytical approximation, it is estimated that
the use of the numerical solver for the same computation would have exceeded
2 days, despite the large step size of 0.1.

4 Discussion

In summary, we have developed analytical alternatives to evaluate and approxi-
mate solutions of delay differential equations that can be used for delay-coupled
reservoir computing. It is shown that the resulting update equations in principle
lose neither accuracy with respect to the system dynamics nor computational
power in DCR benchmark tasks. Using the analytical approximation reduces

An Analytical Approach to Delay-Coupled Reservoir Computing 33

computational costs considerably. This enabled us to study larger networks of
delay-coupled nodes, yielding a dramatic increase in nonlinear benchmark per-
formance. These results can lead to serious improvement regarding the imple-
mentation of DCRs on electronic boards.

Moreover, the approachyields an explicit handle on the DCR components which
are otherwise implicit in equation (1). This creates new possibilities to investigate
delay-coupled reservoirs and provides the basis for optimization schemes, a crucial
necessity prior to any hardware implementation. Together with the reduction in
computation time, this makes the use of supervised batch-update algorithms feasi-
ble to directly optimize model metaparameters (see eq. (5)) instead of conducting
costly parameter scans. In addition, the optimization may include unsupervised
gradient descent schemes on DCR parameters (e.g. θ, τ , N) with respect to infor-
mation theoretic objectives. It is also straight forward to extend eq. (4) to account
for nonuniform node spacings θi, subject to individual optimization (compare [9]).
Continuing this line of thought, it is now possible to modify the update equations
directly according to self-organizing homeostatic principles, inspired, for example,
by neuronal plasticity mechanisms (e.g. [3]). We intend to explore these possibil-
ities further in future work to maximize the system’s computational power and
render it adaptive to information content in task-specific setups.

References

[1] Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre,
J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single
dynamical node as complex system. Nature Communications 2, 468 (2011)

[2] Herbert Jäger. The “ echo state ” approach to analysing and training recurrent
neural networks. Technical report (2001)

[3] Lazar, A., Pipa, G., Triesch, J.: SORN: a self-organizing recurrent neural network.
Frontiers in Computational Neuroscience 3 (2009)

[4] Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Computation 14(11), 2531–2560 (2002)

[5] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Texts in
Applied Mathematics, vol. 37. Springer, Berlin (2006)

[6] Schrauwen, B., Buesing, L., Legenstein, R.A.: On computational power and the
order-chaos phase transition in reservoir computing. In: Koller, D., Schuurmans,
D., Bengio, Y., Bottou, L. (eds.) NIPS, pp. 1425–1432. Curran Associates, Inc.
(2008)

[7] Shampine, L.F., Thompson, S.: Solving ddes in matlab. In: Applied Numerical
Mathematics, vol. 37, pp. 441–458 (2001)

[8] Soriano, M.C., Ort́ın, S., Brunner, D., Larger, L., Mirasso, C.R., Fischer, I., Pes-
quera, L.: Optoelectronic reservoir computing: tackling noise-induced performance
degradation. Optics Express 21(1), 12–20 (2013)

[9] Toutounji, H., Schumacher, J., Pipa, G.: Optimized Temporal Multiplexing for
Reservoir Computing with a Single Delay-Coupled Node. In: The 2012 International
Symposium on Nonlinear Theory and its Applications, NOLTA 2012 (2012)

Applying General-Purpose Data Reduction

Techniques for Fast Time Series Classification

Stefanos Ougiaroglou1,�, Leonidas Karamitopoulos2, Christos Tatoglou2,
Georgios Evangelidis1, and Dimitris A. Dervos2

1 Department of Applied Informatics, University of Macedonia, 156 Egnatia St,
GR-54006 Thessaloniki, Greece

{stoug,gevan}@uom.gr
2 Information Technology Department, Alexander TEI of Thessaloniki,

GR-57400 Sindos, Thessaloniki, Greece
{lkaramit,dad}@it.teithe.gr, xtatty@gmail.com

Abstract. The one-nearest neighbour classifier is a widely-used time
series classification method. However, its efficiency depends on the size
of the training set as well as on data dimensionality. Although many
speed-up methods for fast time series classification have been proposed,
state-of-the-art, non-parametric data reduction techniques have not been
exploited on time series data. This paper presents an experimental study
where known prototype selection and abstraction data reduction tech-
niques are evaluated both on original data and a dimensionally reduced
representation form of the same data from seven time series datasets.
The results show that data reduction, even when applied on dimension-
ally reduced data, can in some cases improve the accuracy and at the
same time reduce the computational cost of classification.

Keywords: time series classification, nearest neighbor, data reduction.

1 Introduction

Classification methods based on similarity search have been proven to be effec-
tive approaches for time series data. More specifically, the one-Nearest Neighbour
(1NN) classifier is a widely-used method. It works by assigning to an unclassi-
fied time series the class label of its most similar training time series. The main
drawback of similarity-based classifiers is that all similarities between an unclas-
sified time series item and the training time series items must be estimated. For
large and high dimensional time series training sets, the high computational cost
renders the application of such classifiers prohibitive. Time series classification
can be sped-up using indexing, representation and/or data reduction.

Indexing can speed-up classification tremendously, but works well only in low
dimensions. Thus, one must first use a dimensionality reduction technique to
acquire a representation of the original data in lower dimensions. A representa-
tion may be considered as a transformation technique that maps a time series

� S. Ougiaroglou is supported by the State Scholarships Foundation of Greece (I.K.Y.)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 34–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Applying General-Purpose DRTs for Fast Time Series Classification 35

from the original space to a feature space, retaining the most important features.
There have been several time series representations proposed in the literature,
mainly for the purpose of reducing the intrinsically high dimensionality of time
series [5].

The main goal of data reduction is to reduce the computational cost of the
kNN classifier and the storage requirements of the Training Set (TS). Data
Reduction Techniques (DRTs)1 try to build a small representative set of the
initial training data. This set is called the Condensing Set (CS) and has the
benefits of low computational cost and storage requirements while maintaining
the classification accuracy at high levels. DRTs can be divided into two algorithm
categories: (i) Prototype Selection (PS) [6], and, (ii) Prototype Abstraction (PA)
(or generation) [11]. Although both categories have the same motivation, they
differ on the way they build the CS. PS algorithms select some TS items and use
them as representatives, whereas, PA algorithms generate representative items
by summarizing similar TS items.

Data reduction has been recently exploited for fast time series classification.
More specifically, [3] and [12] propose PS algorithms for speeding-up 1NN time
series classification. The disadvantage of these methods is that they are para-
metric. The user must define the CS size through trial-and-error procedures.

The present work has been motivated by the following observations.To the
best of our knowledge, state-of-the-art non-parametric PS and PA algorithms
have not been evaluated neither on original time series nor on their reduced di-
mensionality representations. Also, a PA algorithm we have previously proposed
(RHC [9]) has not been evaluated on time series data. The contribution of this
paper is the experimental evaluation of two PS algorithms, namely, CNN-rule [7]
and IB2 [2,1], and two PA algorithms, namely, RSP3 [10] and RHC [9] both on
original time series data and a reduced dimensionality representation of the same
data. Our study adopts the Piecewise Aggregate Approximation (PAA) [8,13]
time series representation method. The goal is to test how classification is af-
fected when applying data reduction on dimensionally reduced time series. PAA
is a very simple dimensionality reduction technique that segments a time series
into h consecutive sections of equal-width and calculates the corresponding mean
for each one. The series of these means is the new representation of the original
data.

The rest of the paper is organized as follows. Section 2 discusses the details of
the four aforementioned DRTs. Section 3 describes the experimental study and
the obtained results, and Section 4 concludes the paper.

2 Data Reduction Techniques

In this section, we present the four DRTs we use in our experimentation. They
are based on a simple idea: Data items that do not define decision boundaries
between classes are useless for the classification process. Therefore, they can be

1 One can claim that dimensionality reduction is also data reduction. However, we
consider DRTs only from the item reduction point of view.

36 S. Ougiaroglou et al.

discarded. DRTs try to select or generate a sufficient number of items that lie in
data areas close to decision boundaries. The DRTs we deal with in this Section
are non-parametric. They automatically determine the size of CS based on the
level of noise and the number of classes in the data (the more the classes, the
more boundaries exist and, thus, the more items get selected or generated).

2.1 Prototype Selection Algorithms

Hart’s Condensing Nearest Neighbour Rule (CNN-Rule). The CNN-
rule [7] is the earliest and the best known PS algorithm. It uses two sets, S and T .
Initially, a TS item is placed in S, while all the other TS items are placed in
T . Then, CNN-rule tries to classify the content of T by using the 1NN classifier
on the content of S. When an item is misclassified, it is considered to lie in a
data area close to decision boundaries. Thus, it is transferred from T to S. The
algorithm terminates when there are no transfers from T to S during a complete
pass of T . The final instance of set S constitutes the CS. The multiple passes on
data ensure that the remaining items in T are correctly classified by applying
the 1NN classifier on CS. The algorithm is based on the following simple idea:
items that are correctly classified by 1NN, are considered to lie in a central-class
data area and thus, they are ignored. In contrast, items that are misclassified,
are considered to lie in a close-class-border data area, and thus, they are placed
in CS. The weak point of the CNN-rule is that the resulting CS depends on the
order of items in TS. This means that different CSs are build by examining the
same data in a different order.

IB2 Algorithm. IB2 belongs to the well-known family of IBL algorithms [2,1].
It is based on CNN-rule. Actually, IB2 is a simple one pass variation of CNN-
rule. Each TS item x is classified using 1NN on the current CS. If x is classified
correctly, it is discarded. Otherwise, x is transferred to CS. Contrary to CNN-
rule, IB2 does not ensure that all discarded items can be correctly classified
by the final content of CS. However, since it is a one-pass algorithm, it is very
fast. In addition, IB2 builds its CS incrementally. New TS items can be taken
into consideration after the CS creation. Thus, IB2 is appropriate for dynamic
(streaming) environments where new TS items may gradually arrive. Also, con-
trary to CNN-rule and many other DRTs, IB2 does not require that all TS data
reside into the main memory. Therefore, it can be applied in devices whose mem-
ory is insufficient for storing all the TS data. Like CNN-rule, IB2 is a data order
dependent algorithm.

2.2 Prototype Abstraction Algorithms

RSP3 Algorithm. The RSP3 algorithm belongs to the popular family of Re-
duction by Space Partitioning (RSP) algorithms [10]. This family includes three
PA algorithms. All of them are based on the idea of the early PA algorithm of
Chen and Jozwik (CJ algorithm) [4] that works as follows: First, it retrieves the
most distant items A and B of TS that define its diameter. Then, it divides the

Applying General-Purpose DRTs for Fast Time Series Classification 37

TS into two sets, SA and SB. SA includes TS items that are closer to A, while
SB includes TS items that are closer to B. CJ proceeds by selecting to divide the
set with the larger diameter. This procedure continues until the number of sets
becomes equal to a user defined number. In the end, for each set S, CJ averages
the items that belong to the most common class in S and creates a mean item.
The created mean items constitute the final CS.

RSP1 is a simple variation of CJ that for each final set creates as many mean
items as the number of distinct classes in the set. RSP2 differs on how it se-
lects the next set that will be divided. Instead of the criterion of the largest
diameter, RSP2 uses the criterion of overlapping degree. RSP3 is based on the
concept of homogeneity. A set is homogeneous when it includes items of only
a specific class. The algorithm continues dividing the created sets until all of
them became homogeneous. Considering RSP3, we observe that the algorithm
generates more prototypes for the close borders data areas and fewer for the “cen-
tral” data areas. RSP3 is the only non-parametric algorithm of the RSP family
(CJ included). All these algorithms do not depend on the ordering of the data
items in TS.

Reduction through Homogeneous Clusters (RHC) Algorithm. RHC [9]
is also based on the concept of homogeneity. Initially, the whole TS is considered
as a non-homogeneous cluster C. RHC begins by computing a mean item for
each class (class centroid) in C. Then, it applies k-means clustering on C using
the class centroids as initial means. The clustering procedure builds as many
clusters as the number of classes in C. The aforementioned clustering procedure
is applied recursively on each non-homogeneous cluster. In the end, the centroids
of the homogeneous clusters are stored in CS. By using the class centroids as
initial means for the k-means clustering, the algorithm attempts to quickly find
homogeneous clusters and achieve high reduction rates. RHC is independent on
the ordering of data in TS. The results of the experimental study in [9] show
that RHC achieves higher reduction rates (smaller CSs) and is faster than RSP3
and CNN-rule, while the classification accuracy remains at high levels.

3 Experimental Study

3.1 Experimental Setup

The four presented DRTs were evaluated on seven time series datasets dis-
tributed by the UCR time-series classification/clustering website2. Table 1 sum-
marizes the datasets used. All datasets are available in a training/testing form.
We merged the training and testing parts and then we randomized the result-
ing datasets. No other data transformation was performed. All algorithms were
coded in C and as a similarity measure we used the Euclidean distance.

2 http://www.cs.ucr.edu/∼eamonn/time series data/

38 S. Ougiaroglou et al.

Table 1. Time-series datasets description

Time-series dataset Size (time-series) Length (Attr.) Classes

Synthetic Control (SC) 600 60 6

Face All (FA) 2250 131 14

Two-Patterns (TP) 5000 128 4

Yoga (YG) 3300 426 2

Wafer (WF) 7164 152 2

Sweadish Leaf (SL) 1125 128 15

CBF 930 128 3

We report on the experiment we conducted with a certain value for the pa-
rameter of the PAA representation due to space limitations. We applied the PAA
representation on time series by setting the number of dimensions equal to twelve
(h=12). Most of the research work provides experimental results with values of
h ranging from 2 to 20. We found that lower values of h have a negative effect on
the classification accuracy, whereas higher values give time series that cannot be
efficiently indexed by multi-dimensional indexing methods. In our future work,
we plan to further investigate the effect the dimensionality of time series has on
the performance of classification.

All experiments were run twice, once on the original time series and once on
their 12-dimensional representations. We wanted to test how the combination
of data reduction and dimensionality reduction affects the performance of 1NN
classification.

We evaluated the four DRTs by estimating four measurements, namely, ac-
curacy (ACC), classification cost (CC), reduction rate (RR), and, preprocessing
cost (PC). Cost measurements were estimated by counting the distance compu-
tations multiplied by the number of time series attributes (time series length).
Of course, the RR and CC measurements relate to each other: the lower the RR,
the higher the CC. However, CC measurements can express the cost introduced
by the data dimensionality. We report the average values of these measurements
obtained via five-cross-fold validation.

3.2 Comparisons

Table 2 presents the experimental results. The table includes two parts, one for
the original datasets and one for the datasets obtained after applying PAA on
them. Both table parts include the measurements obtained by applying the 1NN
classifier on the non-reduced data (conventional 1NN). Each table cell includes
the four measurements obtained by first applying a DRT on the original or 12-
dimensional time series datasets (preprocessing step) and then by using 1NN
on the resulting CS (classification step). The cost measurements are in million
(M) distance computations. The PC measurements do not include the small cost
overhead introduced by PAA.

Applying General-Purpose DRTs for Fast Time Series Classification 39

Table 2. Experimental results on accuracy, classification cost, reduction rate and
preprocessing cost

Dataset
Original dimensionality 12 dimensions

Conv.
CNN IB2 RSP3 RHC

Conv.
CNN IB2 RSP3 RHC

1NN 1NN

SC

Acc (%): 91.67 90.17 89.00 98.33 98.67 98.50 97.00 95.83 98.83 98.17
CC (M): 3.46 0.67 0.53 1.38 0.09 0.69 0.06 0.05 0.12 0.03
RR (%): - 80.50 84.67 60.08 97.29 - 90.75 93.13 82.96 95.75
PC (M): - 7.77 1.31 16.22 2.39 - 0.89 0.13 3.45 0.52

FA

Acc (%): 95.07 91.60 91.02 95.46 93.02 87.91 83.78 82.31 87.07 84.49
CC (M): 106.11 19.87 18.38 51.65 12.93 9.72 2.89 2.53 4.80 2.08
RR (%): - 81.28 82.68 51.32 87.81 - 70.23 74.01 50.58 78.59
PC (M): - 216.36 48.96 533.70 140.41 - 30.36 5.95 50.91 13.16

TP

Acc (%): 98.50 94.68 93.60 98.10 93.72 97.56 93.52 91.38 96.66 94.34
CC (M): 512.00 85.66 76.83 243.51 55.50 48.00 8.22 6.86 20.42 6.69
RR (%): - 83.27 85.00 52.44 89.16 - 82.89 85.72 57.45 86.06
PC (M): - 1.169.75 205.95 2085.42 150.49 - 103.86 17.34 196.00 17.63

YG

Acc (%): 93.76 91.58 89.55 92.85 90.94 92.36 90.39 88.03 91.03 90.03
CC (M): 742.26 138.56 108.92 229.82 93.85 20.91 4.41 3.50 6.71 3.13
RR (%): - 81.33 85.33 69.04 87.36 - 78.91 83.26 67.90 85.02
PC (M): - 1854.74 254.41 4072.30 162.61 - 52.23 8.04 110.56 4.26

WF

Acc (%): 99.87 99.69 99.62 99.82 99.55 99.79 99.62 99.51 99.40 99.25
CC (M): 1248.30 13.59 11.72 26.88 9.37 98.55 1.21 1.01 1.86 1.01
RR (%): - 98.91 99.06 97.85 99.25 - 98.77 98.97 98.11 98.97
PC (M): - 165.88 31.42 7196.75 63.69 - 15.63 2.57 495.63 4.64

SL

Acc (%): 52.36 49.87 48.18 52.00 52.80 52.62 49.07 48.62 51.20 51.20
CC (M): 25.92 15.94 14.80 19.00 12.80 2.43 1.54 1.37 1.78 1.32
RR (%): - 38.51 42.89 26.69 50.60 - 36.76 43.67 26.69 45.69
PC (M): - 112.17 31.39 1537.07 57.01 - 11.33 2.86 56.00 4.99

CBF

Acc (%): 98.39 98.17 97.63 99.78 98.60 100.00 99.57 99.35 99.68 99.57
CC (M): 17.71 1.29 1.15 1.97 0.40 1.66 0.06 0.06 0.12 0.04
RR (%): - 92.74 93.49 88.87 97.74 - 96.34 96.56 92.63 97.47
PC (M): - 15.06 3.50 78.48 7.26 - 0.66 0.19 7.32 0.70

Avg

Acc (%): 89.94 87.97 86.94 90.91 89.62 89.82 87.57 86.43 89.12 88.15
CC (M): 379.40 39.37 33.19 82.03 26.42 25.99 2.63 2.20 5.12 2.04
RR (%): - 79.51 81.87 63.76 87.03 - 79.24 82.19 68.05 83.94
PC (M): - 505.96 82.42 2217.13 83.37 - 30.71 5.30 131.44 6.56

40 S. Ougiaroglou et al.

At a glance, we observe that 1NN classification on the 12-dimensional datasets
is very fast. In most cases, the preprocessing and classification cost are extremely
low, while classification accuracy remains at high, acceptable levels. Therefore,
we conclude that one can obtain efficient time series classifiers by combining
prototype selection or abstraction algorithms with time-series dimensionality
reduction representations.

It is worth mentioning that, in three datasets, the two PA algorithms, RSP3
and RHC, achieved higher classification accuracy than the conv-1NN. In the
case of SC dataset, the accuracy improvements were very high. Almost in all
cases, RSP3 achieved the highest accuracy. However, it is the slowest method in
terms of both preprocessing and classification (RSP3 had the lowest reduction
rates). The high PC measurements are attributed to the costly procedure for
finding the most distant items in each created subset (see Subsection 2.2 or [10]
for details).

RHC and IB2 had much lower preprocessing cost than the other two meth-
ods. This happened because IB2 is a one-pass algorithm and RHC is based on
a version of k-Means that is sped-up by the class centroid initializations (see
Subsection 2.2 or [9] for details). In addition, RHC builds the smallest CSs. In
all cases, RHC achieved higher reduction rates than the other DRTs. Thus, the
corresponding classifiers had the lowest classification costs. The classification ac-
curacy achieved by RHC was usually higher than IB2 and CNN-rule. In some
cases, RHC achieved accuracy even higher than RSP3. Considering the above,
one may safely conclude that RHC is an efficient speed-up method that can deal
with all comparison criteria.

No DRT can be considered as the best speed-up choice. If classification accu-
racy is the most critical criterion, RSP3 may be preferable. On the other hand,
if fast classification and/or fast construction of the CS are more critical than
accuracy, RHC may be a better choice.

4 Conclusions

Fast time series classification is a crucial data mining issue. This paper proposed
the use of non-parametric state-of-the-art prototype selection and abstraction
algorithms for fast time series classification.

The experimental study has shown that by combining prototype selection or
abstraction algorithms with dimensionality reduction, one can obtain accurate
and very fast time series classifiers. In addition, our study has shown that the
abstraction algorithms can achieve even higher accuracy than the conventional
1NN classifier.

References

1. Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms. Int. J. Man-Mach. Stud. 36(2), 267–287 (1992)

2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.
Learn. 6(1), 37–66 (1991)

Applying General-Purpose DRTs for Fast Time Series Classification 41

3. Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: INSIGHT: Efficient and effective
instance selection for time-series classification. In: Huang, J.Z., Cao, L., Srivastava,
J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 149–160. Springer, Heidelberg
(2011)

4. Chen, C.H., Jóźwik, A.: A sample set condensation algorithm for the class sensitive
artificial neural network. Pattern Recogn. Lett. 17, 819–823 (1996)

5. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and distance
measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

6. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: Taxonomy and empirical study. IEEE Trans. Pattern Anal.
Mach. Intell. 34(3), 417–435 (2012)

7. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Informa-
tion Theory 14(3), 515–516 (1968)

8. Keogh, E.J., Pazzani, M.J.: A simple dimensionality reduction technique for fast
similarity search in large time series databases. In: Terano, T., Liu, H., Chen,
A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 122–133. Springer, Heidelberg
(2000)

9. Ougiaroglou, S., Evangelidis, G.: Efficient dataset size reduction by finding homo-
geneous clusters. In: Proceedings of the Fifth Balkan Conference in Informatics,
BCI 2012, pp. 168–173. ACM, New York (2012)

10. Sánchez, J.S.: High training set size reduction by space partitioning and prototype
abstraction. Pattern Recognition 37(7), 1561–1564 (2004)

11. Triguero, I., Derrac, J., Francisco Herrera, S.G.: A taxonomy and experimental
study on prototype generation for nearest neighbor classification. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C 42(1), 86–100 (2012)

12. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series
classification using numerosity reduction. In: Proceedings of the 23rd International
Conference on Machine Learning, ICML 2006, pp. 1033–1040. ACM, New York
(2006)

13. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary lp norms. In:
Proceedings of the 26th International Conference on Very Large Data Bases, VLDB
2000, pp. 385–394. Morgan Kaufmann Publishers Inc., San Francisco (2000)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 42–49, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Two-Layer Vector Perceptron

Vladimir Kryzhanovsky1, Irina Zhelavskaya1, and Juan Antonio Clares Tomas2

1 Center of Optical Neural Technologies of Scientific Research Institute for System Analysis,
Russian Academy of Sciences, Vavilova st., 44/2, 119333 Moscow, Russia
2 Institute of Secondary Education: IES SANJE, Alcantarilla, Murcia, Spain

Vladimir.Krizhanovsky@gmail.com, winjei@ya.ru,
juanantonio.clares@murciaeduca.es

Abstract. A new model – two-layer vector perceptron – is offered. Though,
comparing with a single-layer perceptron, its operation needs slightly more
(by 5%) calculations and more effective computer memory, it excels in a much
lower error rate (four orders of magnitude as lower).

Keywords: vector neural networks, Potts model.

1 Introduction

The Potts model [1-2] is the first and most-known vector neural net. The model still
draws much attention of researchers from such fields as physics, medicine, image
segmentation and neural networks. Later the parametric neural net [3] was offered and
thoroughly studied by a small team of the Institute of Optical Neural Technologies of
RAS (the Center of Optical Neural Technologies of the System Research Institute of
RAS today). A similar model (CMM) was developed independently and is still
investigated at York University [4]. V.M. Kryzhanovsky’s thesis introduces a vector
neural net model with a proximity measure between neuron states. This kind of neural
net generalizes all above-mentioned models. Researchers studied both fully connected
and perceptron-like architectures. Various vector-net learning rules were studied [6].
The results prove the high efficiency of vector nets.

The perceptron is most suitable for associative memory-based applications (in our
case this is the vector perceptron). However, it has a major drawback: even one output
neuron taking a wrong state results in an input vector not being recognized. To
overcome this, one has to raise the reliability of each neuron by increasing the net
redundancy or decreasing the loading of the net. Putting it in other words, the vector
perceptron consists of “reliable” neurons that can’t make mistakes, which contradicts
the whole philosophy of the neural net.

The alternative approach is to use weak neurons. With similar requirements for
RAM, a collection of weak neurons proves more effective than a small number of
reliable neurons. The trick is to supply the vector perceptron with an additional layer
of one neuron the number of states of which is equal to the number of stored patterns.
Its aim is to accumulate the information from the preceding layer and to identify the
input pattern. The approach is close to the idea offered in papers [7, 8].

 Two-Layer Vector Perceptron 43

Fig. 1. The general arrangement of the double-layer vector perceptron

Ideologically, the paper consists of three parts: formal description of the model,
qualitative description with a simple example that helps to understand the point of the
approach, experimental results. Due to the limitation on the printed material, the
authors give only most interesting experimental results.

2 Setting the Problem

Let us consider a q-digit vector X (its components can take one of q discrete values)
which is the result of distortion of one of reference vectors (q≥2). The goal is to build
a system that allows us to find reference vector Xm whose Hemming distance to input
vector X is smallest. For simplicity let us turn to binary reference vectors (i.e. q = 2)
for which the distortion is just a swapping of the components.

3 Formal Description of the Model

3.1 Describing the Model

Let us consider a double-layer architecture (Fig. 1). The input layer has N scalar
neurons each of which can take two states xi = ±1, i=1,2,…,N. The first (inner) layer
consists of n vector neurons. Each of these has 2q fictive states and is described by
basis vectors of a q-dimensional space 1 2{ , ,..., }i q∈ ± ± ±y e e e

, where

(0,...,0,1,0,...,0)k =e

 is the unit vector whose k-th digit is unit. The states being

fictive means that when learnt, the neurons of the second layer have 2q discrete states,
and in operation the neurons are regarded as simple adders. This is done to simplify
the description of the model. The second (output) layer has one vector neuron which
can take on M states and is described by basis vectors of the M-dimensional space

1 2{ , ,..., }M∈O o o o

.

44 V. Kryzhanovsky, I. Zhelavskaya, and J.A.C. Tomas

The state of the perceptron can be described by three vectors:

1) the input layer is described by a N-dimensional binary vector 1 2(, ,...,)Nx x x=X

 where

xi=±1;

2) the first (inner) layer by n-dimensional 2q-digit vector 1 2(, ,...,)n=Y y y y

, where

1 2{ , ,..., }i q∈ ± ± ±y e e e

, (0,...,0,1,0,...,0)k =e

 is the q-dimensional unit vector whose k-th

digit is unit;

3) the second (output) layer by M-digit vector 1 2{ , ,..., }M∈O o o o

, where

(0,...,0,1,0,...,0)r =o

 is the M-dimensional unit vector holding unit in the r-th digit.

Each reference pattern Xm is associated uniquely to vector Ym. In turn, each vector
Ym is associated uniquely to vector om. Each component of vector Ym is generated so
that on the one hand Ym is a unique vector, and on the other hand possible states

1 2{ , ,..., }qe e e

 are distributed evenly among reference vectors, i.e.

(1,1,...,1)M
i qμμ

≡ y

. If the last condition is not satisfied, the error rate grows by

several orders of magnitude. So we build a neural net that stores association:

m m m⇔ ⇔X Y o

. (1)

3.2 Learning Procedure

The synaptic connections of the vector perceptron are computed using generalized
Hebb’s rule:

1

M
m m

ji j i
m

x
=

=W y

 and
1

ˆ
M

T m
j m j

m=

=J o y

, (2)

where Wji is the q-dimensional vector describing the connection between the i-th
neuron of the input layer and the j-th neuron of the second layer; Jj is the M×q matrix
responsible for the connection between the j-th neuron of the second layer and the

sole output neuron; 1,i N= , 1,j n= .

3.3 Identification Process

Let a vector X arrive at the network input. Let us compute the response of the net O.
To this end let us first compute the local fields around the second-layer neurons:

1

N

j ji i
i

x
=

=h W

. (3)

Since the second-layer neurons act as simple adders during recognition, the signal
hj goes to the output neuron without any changes. That is why the local field around
the output neuron has the form:

 Two-Layer Vector Perceptron 45

1

ˆ
n

T
j j

j=

=H J h

. (4)

The final output O is computed in the following manner. The number of the
greatest component of the local field H is determined. Let it be number r. Then the
output of the perceptron is O = or, in other words, the input of the perceptron receives
the distorted variant of the r-th reference pattern. And the greater (H,or) is, the
statistically more reliable the response of the net is. Moreover, if we arrange the
numbers of the components in the increasing order, the resulting list will tell how
input vector X is close to corresponding vectors in terms of Hemming vicinity.

4 Qualitative Description of the Model

4.1 The General Idea

Each vector neuron corresponds to a unique partition of the whole set of reference
patterns into q subsets. For instance, Fig. 2 shows two partition of the whole set into q=4
subsets (M=12). For either partition we can calculate q “probabilities” (the components
of the vector of local fields i

jmh) of the input pattern belonging to one of q subsets. Each

vector neuron is in fact a kind of solver that picks a subset of highest “probability” (in
Fig. 3 it is subset No.1 in the first partition and subset No.1 in the second partition). The
intersection of the subsets chosen by all solvers determines the output of a single-layer
perceptron. Calculation of the “probabilities” may be accompanied by errors caused by
the statistical nature of the calculation. So, a solution found by picking “highest-
probability” subsets may be untrue. Mistaking a “winning” subset in at least one
partition is enough to get an incorrect solution (Fig. 3).

Fig. 2. Partition of a set of objects in two different ways

Fig. 3. Intersection of winning subsets from partition 1 and 2 results in a null subset

46 V. Kryzhanovsky, I. Zhelavskaya, and J.A.C. Tomas

The goal of the method we offer is to overcome this drawback. The idea is to take
interim decisions by accumulating probability information over all partitions rather
than using only “probabilities” of one partition (and cutting off possible solutions by
doing so). The “probabilities” obtained for each subset of all partitions will be

regarded as statistical indicators of any pattern from a subset j
iA of particular

partition jA matching input pattern X. After “probabilities” are evaluated for all
partitions, each pattern Xm can be associated with a set of such statistical indicators
– one from each partition:

, , 1, , 1, .i j
m jm m ih A j n i q← ∈ = =X X

 . (5)

(It should be noted once again that here the “probability” is understood as a
certain statistical quantity – a component of local field i

jmh , to be exact. The higher

the probability of an input pattern being a pattern from a subset corresponding to this
local field, the greater the amplitude of the component is.)

4.2 Example

Let us exemplify the idea. Fig. 2 shows two different partitions of one set of 12 letter-
denoted patterns into 4 subsets (n = 2). Let distorted pattern B arrive at the input. In
the figure each subset goes with a number which is the computed “probability” of the
input pattern being a pattern of this particular subset.

Table 1. Probability that the input pattern belongs to a particular subset

Partition 1 Partition 2

Subset
number Objects Probability*

Subset
number Objects Probability*

1 M, K, B 0.70 1 D,E,F 0.38
2 D, J, C 0.10 2 A, B, C 0.37
3 L, E, A 0.15 3 J, H, K 0.20
4 H, I, F 0.05 4 I, L, M 0.05

*Probability - chances that the input pattern belongs to the subset.

When a single-layer perceptron is used for recognition, subset No.1 is the
“winning” subset in the first partition, and it really holds the input pattern. In the
second partition the “winner” is also subset No.1, yet it does not have the input
pattern. The intersection of the two subsets gives a null subset (Fig. 3), which means
that the net can’t identify the input pattern. Clear that the failure of one neuron causes
the failure of the whole system. At the same time, we see that for the second partition
the probabilities of the input pattern belonging to subset 1 or subset 2 are almost equal
– the difference is just 0.01 (1%) (Table 1). That is to say, it is almost equiprobable
for the input pattern to belong to either the first or second subset. Our model takes this
fact into account, and for each pattern the decision is made by using probabilities
from both partitions (Table 2). The pattern that corresponds to the greatest summary
“probability” is chosen as the response of the system. The result is a correct
identification of the input pattern by the net.

 Two-Layer Vector Perceptron 47

Table 2. Recognition probabilities computed for either partition and their sum for each pattern

Pattern Probability for
partition 1

Probability for
partition 2

Summary probability

A 0.15 0.37 0.52

B 0.70 0.37 1.07
C 0.10 0.37 0.47
D 0.10 0.38 0.48
E 0.15 0.38 0.53
F 0.05 0.38 0.43

5 Details of the Algorithm

 Single layer Two layers Ratio*

Computational burden (number of operations) 2Nnq 2Nnq+(n+1)M 1.025

Necessary amount of RAM, bytes 4Nnq 4Nnq+4nM 1.033

* - the ratio is taken for M = 100; N = 100; q = 300; n = 2.

It is seen from the table that the algorithm we offer requires just 4% more
computational resources (CPU, RAM) than the single-layer perceptron.

6 Experimental Results

This section deals with a computer simulation of single- and double-layer perceptron
operation and gives the comparison of the results. In Figure 4 and 5 the Y-axis of the
plots is the recognition failure probability P (the perceptron fails to recognize a
distorted reference vector). In both Figures the curves corresponding to the single-
layer perceptron are drawn in thin line with rhombic marks (the curves are above the
others). The other curves refer to the double-layer perceptron. The plots are drawn for
different n and q.

If the number of patterns M, their dimensionality N and noise parameter a (the
probability of a component of an input binary vector being distorted) are determined
by the conditions of a problem to be solved, the number of q-digit neurons of the
inner layer and the number of their states can be varied to get satisfactory reliability.

Let us first consider how the recognition failure probability varies with M and N
given constant n and q (Fig. 4a and 4b). As expected, the growing dimensionality N of
stored patterns or a decrease of their number M result in an exponential fall of
probability P. It is also seen that the introduction of another layer allows a more than
an order of magnitude (two orders and over) decrease of P. The lower the probability
P for the original single-layer net, the more significantly P falls for the double-layer
system.

The noise-resistance of the double-layer net is also higher – the rhomb-marked
curve lies noticeably higher than the other curve (Fig. 5a, parameters M=1000,
N=100, q=200).

48 V. Kryzhanovsky, I. Zhelavskaya, and J.A.C. Tomas

Fig. 4a. Probability P versus the number of
stored patterns M. Parameters N=100, q=100,
n=2.

Fig. 4b. Probability P versus dimensionality
N. Parameters M=1000, q=50, n=3

Fig. 5a shows a few dependences of two-layer net error probability P on noise level a
for different combinations of n and q (given nq = const). The upper dashed curve refers
to n=40, q=10, the curve below corresponds to n=8 and q=50. Still lower goes the curve
for n=4 and q=100. The combination of n=2 and q=200 (thick solid line) demonstrates
the lowest P. So we see that from the reliability viewpoint it is better to use a small
number of reliable (redundant) neurons for the two-layer system. However, this sort of
networks can’t boast of high resistance to a failure of the net itself. The data (dashed
line) shown in Fig. 5a proves that reliable and failure-resistant neural systems can be
made up of unreliable elements having a considerable parameter spread.

Fig. 5a. Recognition failure probability
P versus noise level a. M=1000, N=100

Fig. 5b. Recognition failure probability
P versus nq. M=1000, N=100, a=0

The net with n=40 and q=10 differs from the net with n=2 and q=200 by the
principles securing correct recognition. In the first case the second layer accumulating
information from a large number of unreliable elements plays the key role (for a
single-layer perceptron with given parameters the recognition probability is zero). In
the latter case the second layer corrects the errors of the first layer only occasionally
(thin marked line in Fig. 5a).

Fig. 5b shows how P depends on inner-layer parameters n and q. The thick line
corresponds to probability P of a two-layer net with n=2 and q=200÷500, and n =2÷5
and q=200 (triangular marks). The both nets have the same computational burden and
requirements for RAM. The simulation shows that 1) the growth of both parameters
leads to an exponential decrease of P; 2) the both nets has the same probability P for
nq < 800 (an unexpected enough result), which once again says for the conclusion
drawn above.

 Two-Layer Vector Perceptron 49

The algorithm has yet another useful property, which a single-layer perceptron
does not have. If we arrange patterns in decreasing order according to the components
of their local field H (table 2, column “sum”), the order will tell us how close a
pattern is to the input vector, a pattern in the first place being regarded as the response
of the system. However, we can raise the reliability of the system still more if we
compute scalar products of the input vector and first K patterns and define the final
response by the maximum of this product. In Fig. 5b the dashed line corresponds to
the results of simulation for K = 2. Clear that the trick allows us to further decrease P
by another two orders of magnitude (see nq = 800).

7 Conclusion

In this work we investigate how properties of one layer vector perceptron change if an
additional layer is overbuilt to perceptron output. This layer is added to accumulate
statistical information about each pattern separately, i.e. to calculate estimations of
Hemming distance between input vector and each pattern. This gives us several
advantages. Firstly, it is the compensation statistical overswings which lead to
incorrect work of one layer networks. Indeed, using as a system answer the pattern
with minimum distance in computer simulations shows that the error probability
decreases over than 3 orders of magnitude. Secondly, the additional layer allows us to
select a few likely candidates with smallest distance estimations and then directly
compare them with the input vector. In this case, computation complexity is
negligibly increased, at the same time the reliability increases essentially. For
example, choosing two best candidates and direct calculating Hemming distances
decrease the error probability over than 4 orders of magnitude.

The research is supported by projects ONIT RAN 1.8 and 2.1.

References

1. Wu, F.Y.: The Potts model. Review of Modern Physics 54, 235–268 (1982)
2. Kanter, I.: Potts-glass models of neural networks. Physical Review A 37(7), 2739–2742

(1988)
3. Kryzhanovsky, B., Mikaelyan, A.: Doklady Mathematics. On the Recognition Ability of a

Neural Network on Neurons with Parametric Transformation of Frequencies 65(2),
286–288 (2002)

4. Austin, J., Turner, A., Lees, K.: Chemical Structure Matching Using Correlation Matrix
Memories. In: International Conference on Artificial Neural Networks, IEE Conference
Publication 470, Edinburgh, UK, September 7-10. published by IEE, London (1999)

5. Kryzhanovsky, V.M.: Ph.D. Thesis, Research into Binary-Synaptic-Coefficient Vector
Neural Nets for Data Processing and Decision Making Problems, System Research Institute
of the Russian Academy of Sciences (2010)

6. Kryzhanovskiy, V., Zhelavskaya, I., Fonarev, A.: Vector Perceptron Learning Algorithm
Using Linear Programming. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G.
(eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 197–204. Springer, Heidelberg (2012)

7. Podolak, I.T., Biel, S., Bobrowski, M.: Hierarchical classifier. In: Wyrzykowski, R.,
Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911,
pp. 591–598. Springer, Heidelberg (2006)

8. Podolak, I.T.: Hierarchical classifier with overlapping class groups. Expert Systems with
Applications 34(1), 673–682 (2008)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 50–57, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Local Detection of Communities
by Neural-Network Dynamics

Hiroshi Okamoto1,2

1 Research & Development Group, Fuji Xerox Co., Ltd.
6-1 Minatomirai, Nishi-ku, Yokohama-shi, Kanagawa 220-8668, Japan

2 RIKEN Brain Science Institute
2-1 Hirosawa, Wako, Saitama 351-0198, Japan
hiroshi.okamoto@fujixerox.co.jp

Abstract. Community structure is a hallmark of a variety of real-world
networks. Here we propose a local method for detecting communities in
networks. The method is described as ‘local’ because it is intended to find the
community to which a given source node belongs without knowing all the
communities in the network. We have devised this method inspired by possible
mechanisms for stable propagation of neuronal activities in neural networks. To
demonstrate the effectiveness of our method, local detection of communities in
synthetic benchmark networks and real social networks is examined. The
community structure detected by our method is perfectly consistent with the
correct community structure of these networks.

Keywords: Complex network, Community detection, Markov chain, Spreading
activation, Neural network.

1 Introduction

In literature of network science, ‘community’ refers to a group of nodes that are
densely connected within this group but are sparsely connected with nodes outside
this group. Community structure is a hallmark of a variety of social, biological and
engineering networks. Development of algorithms to detect communities in networks
has been a focus of network science in the last decade [1, 2].

Many algorithms for community detection have already been proposed.
Nevertheless, most of them are intended to exhaustively detect all the communities in
the network. This type of community detection is computationally infeasible
especially for large and dynamically evolving networks such as the World Wide Web
or Facebook networks.

Another strategy of community detection, for which entire structure of the network
is unnecessary to know, has drawn much interest recently. Algorithms based on this
strategy are intended to find the community to which a source node belongs [3-8].
Starting from a given source node, one explores the network crawling links;
exploration is continued until certain criteria are satisfied; the explored region, or a
part of it, is then judged as the community to which the source node belongs. This

 Local Detection of Communities by Neural-Network Dynamics 51

type of community detection is described as ‘local’ because it requires knowledge
only about the explored region of the network.

In this study we propose a novel method for local detection of communities. This
method makes use of the dynamics that models stable propagation of neuronal
activities in neural networks. The effectiveness of this method is examined using
synthetic benchmark networks and real social networks.

2 Methods

2.1 Neural-Network Dynamics

Let () (), 1, ,nmA n m N= =A be the adjacency matrix of a network from which we

wish to detect communities. Here, N is the number of nodes comprising the
network. If nodes n and m are connected, 1nm mnA A= = ; otherwise 0nm mnA A= = .

In the present study we consider only networks having undirected links.
Now we define the ‘potential’ and the ‘activity’ for each node. Let ()np t be the

potential of node n at time t . Then the activity is given by

()() ()
()()()1 exp

n
n

n

p t
f p t

p tβ θ
=

+ − −
. (1)

As x increases, ()y f x= sigmoidally rises and then asymptotically approaches

y x= (Fig. 1). This relationship between x and ()f x is well known as the

relationship between the membrane potential and the mean firing rate of a neuron [9].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

 y

Fig. 1. As x increases, () ()()()1 expy f x xx β θ= = + − − (black line) sigmoidally rises and

then asymptotically approaches y x= (grey line). For this illustration we have chosen 10β =
and 1 / 34θ = .

52 H. Okamoto

We suppose that activities propagate from nodes to nodes along links in an analogy
to propagation of neuronal activities in networks of neurons. Additionally we

postulate that throughout the propagation the sum, ()1

N

nn
p t

= , is kept constant with

time. This condition will keep the network from falling into pathological states such
as flare-up or burning-out of activities. Without loss of generality we set

()1
1n

N

n
p t

=
= . (2)

We assume that the propagation of activities is described by the equation

() ()() ()()
()() ()()1 1

1

1
1 1

1
1n nm m m

N Nn

Nm

m m
m

p t
p t T p t p t

p

f
f f

tf= =

=

− = − + −
 −

−

 (3)

where
' 1nm nm

N

n n mT A A ′=
= . One can easily verify that condition (2) is derived from

equation (3). The first term on the right-hand side of (3) means that the potential of
node n is partly given by the sum of activities propagating from nodes that link to

node n . If the right-hand side has this term only, ()1

N

nn
p t

= would decrease from

()1
1

N

n np t
=

− by () ()()1 1
1 1nn n

N N

n
p t f p t

= =
− − − . The second term is added to

compensate for this decrease so that condition (2) is held; the decrement

()()1
1 1

m m

N
f p t

=
− − is redistributed to each node in such a way that the distribution

to node n is proportional to its activity ()()1nf p t − . Thus, equation (3) can be

viewed as phenomenological description of stable propagation of neuronal activities
kept from falling into flare-up or burning-out.

It is instructive to give another interpretation to equation (3). In the limit 0θ →
and β → ∞ , equation (3) becomes

() ()1
1n nm m

N

m
p t T p t

=
= − , (4)

which is just the Markov-chain equation [10-12]. Hence one can suppose a ‘random
walker’ who is wandering in the network; ()np t is then interpreted as the probability

that the random walker stays at node n at time t . For 0θ > and finite β , ()np t

can no longer be interpreted as the probability for a single random walker. Instead one
can suppose many random walkers; ()np t is now the population density of node n

at time t . A random walker staying at node m at time 1t − monitors the population

density of this node. With probability ()()()()1 1 exp 1mpr tβ θ= + − − − he/she selects

one of the nodes linked from node m and then moves to the selected node at time t ;
with probability 1 r− the random walker jumps to any node. For the latter, to which
node he/she jumps is determined by the relative amplitude of the activity; namely,

he/she jumps to node n with probability ()() ()()1
1 1

N

mmnf p t f p t
=

− − .

 Local Detection of Communities by Neural-Network Dynamics 53

2.2 Local Detection of Communities

The community to which a given source node (say, node l) belongs is detected by
our algorithm as follows. First we set the initial condition

() () ()0 1, 0 0l np p ln= = ≠ . (5)

As time passes activities, initially concentrated at the source node, spread in the
network according to equation (3). Activities preferentially propagate within the
community to be detected, where nodes are densely connected. Potentials of nodes at
peripheral regions of the community are small because these nodes have less links
than those centrally located in the community. Because of the sigmoidal rise of ()f x

at small x , activities of nodes at peripheral regions rapidly decay. Thus activities no
more spread far beyond the peripheral regions. In the steady state of activity
propagation, therefore, activities are localized within the community.

Iterative calculation of equation (3) with initial condition (5) eventually leads to the
steady-state distribution of potentials, { }(stead) (stead) (stead)

1 ,, Nppp = . This steady-state

distribution represents the community to which the source node belongs. The (stead)
np

has a graded value ranging from 0 to 1, which expresses the rank or the level of
relative importance of node n in the detected community.

If the link density is almost uniform everywhere in the explored portion of the
network, the potential of each node would be ~ 1 eN where eN is the number of

nodes in the explored portion. If the network has community structure, the potential of
a node belonging to the community within which activities are localized will be

1 eN> . We can therefore appropriately set 1 eNθ = . Since the size of networks

examined in this paper is not so large (N = 200 or 34), we set eN N= .

Our algorithm detects a community as an attractor of neural-network dynamic.
Arenas et al. [13, 14] have also proposed to detect communities in networks by
coupled-oscillator dynamics. In their approach community structure emerges as
temporally evolving synchronization patterns, whereas a community locally detected
by our algorithm is represented by a static pattern.

3 Results

3.1 Local Detection of Communities from a Synthetic Benchmark Network

First we evaluate the effectiveness of local detection of communities by our algorithm
using synthetic benchmark networks. Lancichinetti et al. have developed a method for
synthesizing networks that have community structure [15, 16]. The number of
communities and their sizes can be controlled by adjusting the parameter values. Here
we have synthesized a network of 200N = nodes that has six communities. The
parameter values used for synthesizing this network and the statistics of the
communities are given in Appendix.

For each of the 200 nodes we have detected the community using our algorithm.
For each node taken as a source, the steady state distribution falls into any of K

54 H. Okamoto

patterns, with K being the number of patterns for detected communities. We assume
that each pattern corresponds to the community to which the source node belongs.

The number of communities K depends on β (Fig. 2). For a wide range of β
the correct number (six) of communities is obtained. The detected community for
each node taken as a source and the correct community to which this node belongs are
compared in Fig. 3, which shows that local detection of communities in the
synthesized benchmark network by our algorithm is perfect.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

log β

Th
e

nu
m

be
r

of
 c

om
m

un
iti

es

Fig. 2. The number of communities found in the synthesized benchmark network by our
algorithm depends on β . Note that for a wide range of β the correct number of communities

(six, indicated by broken line) is stably obtained.

Fig. 3. Local detection of communities in the synthetic benchmark network. The color (red,
blue, green, yellow, orange or purple) of each icon indicates the community detected by our
algorithm for this node taken as a source. The shape (vertically long ellipse, horizontally long
ellipse, vertically long box, horizontally long box, triangle or diamond) of each node indicates
the correct community to which this node belongs. Note that nodes that have the same shape
also have the same color. Here, we have chosen 5eβ = .

 Local Detection of Communities by Neural-Network Dynamics 55

3.2 Local Community Detection from the Zachary Karate-Club Network

The Zachary karate-club network [17] is a famous benchmark network that has been
used by researchers developing algorithms for detection of social sub-groups. This is
a real social network of 34N = nodes with each representing a member of a karate
club at a US university observed by Zachary. Each link indicates social interaction
between two members. During the period of observation by Zachary, a dispute
between the head teacher and the administrator had developed, which resulted in
factional separation of the club into two groups with one led by the head teacher and
the other led by the administrator. The goal of our task is to predict to which group
each member belongs after the breakdown of the club.

log β

Th
e

nu
m

be
r

of
 c

om
m

un
iti

es

0 1 2 3 4
0

1

2

3

4

Fig. 4. The number of communities detected by our algorithm depends on β . Note that for a
certain range of β the correct number of communities (two, indicated by broken line) is

obtained.

Fig. 5. Local detection of community structure in the Zachary karate-club network. The color
(red or blue) of each icon indicates the community detected by our method for this node taken
as a source. The shape (circle or box) of each node indicates the correct group to which the
member corresponding to this node belongs. Note that nodes that have the same shape also
have the same color. Here, we have chosen 1.5eβ = .

56 H. Okamoto

The number of communities detected by our algorithm depends on β (Fig.4). For
a wide range of β the correct number (two) of communities is obtained. The
detected community for each node taken as a source and the correct group to which
the member corresponding to this node belongs are compared in Fig. 5, which
indicates that our algorithm perfectly predicts the groups to which individual
members belong after factional separation of the club.

4 Discussion

We have proposed a novel method for uncovering local community structure in
networks, which is inspired by possible mechanisms of stable propagation of neuronal
activity in networks of neurons. We have shown that the local communities in the
synthesized benchmark network can be detected correctly by our algorithm (Fig. 3).
Application of this algorithm to a real social network, the Zachary karate club
network, has perfectly replicated the factional separation of this club (Fig. 5). These
results demonstrate the effectiveness of local detection of communities by our
method.

The computational cost of local detection of communities by previously proposed
algorithms is ()3~ eO N or ()2~ eO N k< > [3, 4], where eN is the number of nodes

in the explored portion of the network and k< > is the mean number of links
attached to individual nodes. On the other hand the cost of computation by our
algorithm basically scales with the number of links within the explored region. This
suggests that our algorithm is computationally more efficient than previously
proposed ones, which will be more quantitatively examined in the forthcoming study.

The algorithm has parameters β and θ , and the number of detected communities
depends on the values of these parameters (Fig. 2 and Fig. 4). In this study we have
determined these values in a heuristic way. Introduction of some kind of measure to
estimate the goodness of community detection, such as the ‘modularity’ [4, 18], might
be useful for developing more principled ways of determining the values of these
parameters.

 Networks dealt with in the present study are restricted to those having undirected
links. Local detection of communities in networks having directed links is an
important issue to be addressed in the next step of our study. For this, introduction of
random jump from sink nodes to any other nodes, the prescription used for calculation
of the PageRank values in the World Wide Web [19], might be useful.

Acknowledgments. This study was partly supported by KAKENHI (23500379) and
KAKENHI (23300061).

References

1. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
2. Newman, M.E.J.: Communities, modules and large-scale structure in networks. Nature

Phys. 8, 25–31 (2012)

 Local Detection of Communities by Neural-Network Dynamics 57

3. Bagrow, J.P., Bollt, E.M.: Local method for detecting communities. Phys. Rev. E 72,
046108 (2005)

4. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72, 026132
(2005)

5. Luo, F., Wang, J., Promislow, E.: Exploring local community structures in large networks.
Web Intelligence and Agent Systems 6, 387–400 (2008)

6. Chen, J., Zaïane, O., Goebel, R.: Local community identification in social networks. In:
International Conference on Advances in Social Network Analysis and Mining (ASONAM
2009), pp. 237–242 (2009)

7. Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the overlapping and hierarchical
community structure in complex networks. New J. Phys. 11, 033015 (2009)

8. Chen, Q., Wu, T.-T., Fang, M.: Detecting local community structures in complex networks
based on local degree central nodes. Physica A 392, 529–537 (2013)

9. Tuckwell, H.: Introduction to theoretical neurobiology: vol. 2 nonlinear and stochastic
theories. Cambridge University Press (1988)

10. Collins, A.M., Loftus, E.F.: Spreading-Activation Theory of Semantic Processing.
Psychological Review 82, 407–428 (1975)

11. Okamoto, H.: Topic-dependent document ranking: citation network analysis by analogy to
memory retrieval in the brain. In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791,
pp. 371–378. Springer, Heidelberg (2011)

12. Branting, L.K.: Context-sensitive detection of local community structure. Soc. Netw. Anal.
Min. 2, 279–289 (2012)

13. Arenas, A., Diaz-Guilera, A., Perez-Vicente, C.J.: Synchronization reveals topological
scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)

14. Arenas, A., Diaz-Guilera, A., Perez-Vicente, C.J.: Synchroization processes in complex
networks. Physica D 224, 27–34 (2006)

15. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community
detection algorithms Phys. Rev. E 78, 046110 (2008)

16. http://santo.fortunato.googlepages.com/benchmark.tgz
17. Zachary, W.W.: An information flow model for conflict and fission in small groups. J.

Anthropol. Res. 33, 291–473 (1977)
18. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.

Phys. Rev. E 69, 026113 (2004)
19. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing

Order to the Web. Stanford Digital Library Technologies Project (1998),
http://google.stanford.edu/~backrub/pageranksub.ps

Appendix: Synthetic Benchmark Network

The benchmark network used in 3.1 was synthesized using the software downloaded
from [16] under the following settings: Number of nodes 200; average degree 10;
maximum degree 30; exponent for the degree distribution 2; exponent for the
community size distribution 1; mixing parameter 0.2; minimum for the community
sizes 20; maximum for the community sizes 50. The synthesized network has six
communities having 23, 24, 36, 37, 38 and 42 nodes.

The Super-Turing Computational Power

of Interactive Evolving Recurrent
Neural Networks

Jérémie Cabessa and Alessandro E.P. Villa

Department of Information Systems
University of Lausanne

CH-1015 Lausanne, Switzerland

Abstract. Understanding the dynamical and computational capabili-
ties of neural models represents an issue of central importance. Here, we
consider a model of first-order recurrent neural networks provided with
the possibility to evolve over time and involved in a basic interactive and
memory active computational paradigm. In this context, we prove that
the so-called interactive evolving recurrent neural networks are compu-
tationally equivalent to interactive Turing machines with advice, hence
capable of super-Turing potentialities. We further provide a precise char-
acterisation of the ω-translations realised by these networks. Therefore,
the consideration of evolving capabilities in a first-order neural model
provides the potentiality to break the Turing barrier.

Keywords: recurrent neural networks, neural computation, interactive
computation, analog computation, Turing machines with advice, super-
Turing.

1 Introduction

Unerstanding the dynamical and computational capabilities of neural models
represents an issue of central importance to assess the performances at reach by
neural networks. In this context, much interest has been focused on comparing
the computational capabilities of diverse theoretical neural models to those of
abstract computing devices [7,14,6,9,8,11,12,10]. As a consequence, the compu-
tational power of neural networks has been shown to be intimately related to
the nature of their synaptic weights and activation functions, hence capable to
range from finite state automata up to super-Turing capabilities.

However, in this global line of thinking, the neural models which have been
considered fail to capture some essential biological features that are significantly
involved in the processing of information in the brain. In particular, the plastic-
ity of biological neural networks as well as the interactive nature of information
processing in bio-inspired complex systems have only recently started to be in-
vestigated [2,3].

The present paper falls within this perspective and concerns the computa-
tional capabilities of a model of interactive evolving recurrent neural networks.
This work is a direct extension of previous results by Cabessa [1]. More precisely,

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 58–65, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Super-Turing Computational Power 59

we consider a model of evolving recurrent neural networks where the synaptic
strengths of the neurons can change over time rather than staying static, and we
study the computational capabilities of such networks in a basic context of in-
teractive computation, in line with the framework proposed by van Leeuwen and
Wiedermann [15,17]. In this context, we prove that rational- and real-weighted
interactive evolving recurrent neural networks are both computationally equiva-
lent to interactive Turing machines with advice, hence capable of super-Turing
capabilities. Moreover, we provide a precise mathematical characterisation of the
ω-translations realised by these neural models. These results support the idea
that some intrinsic feature of biological intelligence might be beyond the scope
of the current state of artificial intelligence, and that the concept of evolution
might be strongly involved in the computational capabilities of biological neu-
ral networks. They also show that the nature of the synaptic weights has no
influence on the computational power of interactive evolving neural networks.

2 Preliminaries

Given some finite alphabet Σ, we let Σ∗, Σ+, Σn, and Σω denote respectively
the sets of finite words, non-empty finite words, finite words of length n, and
infinite words, all of them over alphabet Σ. We also let Σ≤ω = Σ∗ ∪Σω be the
set of all possible words (finite or infinite) over Σ. The empty word is denoted
by λ.

For any x ∈ Σ≤ω, the length of x is denoted by |x| and corresponds to the
number of letters contained in x. If x is non-empty, we let x(i) denote the (i+1)-
th letter of x, for any 0 ≤ i < |x|. The prefix x(0) · · ·x(i) of x is denoted by x[0:i],
for any 0 ≤ i < |x|. For any x ∈ Σ∗ and y ∈ Σ≤ω, the fact that x is a prefix
(resp. strict prefix) of y is denoted by x ⊆ y (resp. x � y). If x ⊆ y, we let
y − x = y(|x|) · · · y(|y| − 1) be the suffix of y that is not common to x (we have
y − x = λ if x = y). Moreover, the concatenation of x and y is denoted by x · y
or sometimes simply by xy. The word xn consists of n copies of x concatenated
together, with the convention that x0 = λ.

A function f : Σ∗ → Σ∗ is called monotone if the relation x ⊆ y implies
f(x) ⊆ f(y), for all x, y ∈ Σ∗. It is called recursive if it can be computed by
some Turing machine over Σ. Furthermore, throughout this paper, any function
ϕ : Σω → Σ≤ω will be referred to as an ω-translation.

Note that any monotone function f : Σ∗ → Σ∗ induces in the limit an ω-
translation fω : Σω → Σ≤ω defined by

fω(x) = lim
i≥0

f(x[0:i])

where limi≥0 f(x[0:i]) denotes the smallest finite word that contains each word of
{f(x[0:i]) : i ≥ 0} as a finite prefix if limi→∞ |f(x[0:i])| <∞, and limi≥0 f(x[0:i])
denotes the unique infinite word that contains each word of {f(x[0:i]) : i ≥ 0} as
a finite prefix if limi→∞ |f(x[0:i])| =∞. Note that the monotonicity of f ensures

60 J. Cabessa and A.E.P. Villa

that the value fω(x) is well-defined for all x ∈ Σω. Intuitively, the value fω(x)
corresponds to the finite or infinite word that is ultimately approached by the
sequence of growing prefixes 〈f(x[0:i]) : i ≥ 0〉.

An ω-translation ψ : {0, 1}ω → {0, 1}≤ω will be called continuous if there
exists a monotone function f : {0, 1}∗ → {0, 1}∗ such that fω = ψ; it will be
called recursive continuous if there exists a monotone and recursive function
f : {0, 1}∗ → {0, 1}∗ such that fω = ψ.

3 Interactive Computation

3.1 The Interactive Paradigm

Interactive computation refers to the computational framework where systems
may react or interact with each other as well as with their environment dur-
ing the computation [5]. This paradigm was theorised in contrast to classical
computation [13] which rather proceeds in a closed-box fashion and was argued
to “no longer fully corresponds to the current notions of computing in modern
systems” [17]. Interactive computation also provides a particularly appropriate
framework for the consideration of natural and bio-inspired complex information
processing systems [15,17].

The general interactive computational paradigm consists of a step by step
exchange of information between a system and its environment. In order to
capture the unpredictability of next inputs at any time step, the dynamically
generated input streams need to be modeled by potentially infinite sequences of
symbols (the case of finite sequences of symbols would necessarily reduce to the
classical computational framework) [18,17].

Throughout this paper, we consider a basic interactive computational sce-
nario where at every time step, the environment sends a non-empty input bit
to the system (full environment activity condition), the system next updates
its current state accordingly, and then either produces a corresponding output
bit, or remains silent for a while to express the need of some internal computa-
tional phase before outputting a new bit, or remains silent forever to express the
fact that it has died. Consequently, after infinitely many time steps, the system
will have received an infinite sequence of consecutive input bits and translated
it into a corresponding finite or infinite sequence of not necessarily consecu-
tive output bits. Accordingly, any interactive system S realises an ω-translation
ϕS : {0, 1}ω → {0, 1}≤ω.

3.2 Interactive Turing Machines

An interactive Turing machine (I-TM) M consists of a classical Turing machine
yet provided with input and output ports rather than tapes in order to process
the interactive sequential exchange of information between the device and its
environment [15]. According to our interactive scenario, it is assumed that at
every time step, the environment sends a non-silent input bit to the machine

The Super-Turing Computational Power 61

and the machine answers by either producing a corresponding output bit or
rather remaining silent (expressed by the fact of outputting the λ symbol).

An interactive Turing machine with advice (I-TM/A) M consists of an in-
teractive Turing machine provided with an advice mechanism which comes in
the form of an advice function α : N → {0, 1}∗ [15]. Moreover, the machine M
uses two auxiliary special tapes, an advice input tape and an advice output tape,
as well as a designated advice state. During its computation, M can write the
binary representation of an integer m on its advice input tape, one bit at a time.
Yet at time step n, the number m is not allowed to exceed n. Then, at any chosen
time, the machine can enter its designated advice state and then have the finite
string α(m) be written on the advice output tape in one time step, replacing
the previous content of the tape. The machine can repeat this extra-recursive
calling process as many times as it wants during its infinite computation.

According to this definition, for any infinite input stream s ∈ {0, 1}ω, we
define the corresponding output stream os ∈ {0, 1}≤ω ofM as the finite or infinite
subsequence of (non-λ) output bits produced byM after having processed input
s. In this manner, any machine M naturally induces an ω-translation ϕM :
{0, 1}ω → {0, 1}≤ω defined by ϕM(s) = os, for each s ∈ {0, 1}ω. Finally, an
ω-translation ψ : {0, 1}ω → {0, 1}≤ω is said to be realisable by some interactive
Turing machine with advice iff there exists some I-TM/AM such that ϕM = ψ.

Interactive Turing machines with advice are strictly more powerful than in-
teractive Turing machines (without advice) [15], and were shown to be compu-
tationally equivalent to several others other non-uniform models of interactive
computation, like sequences of interactive finite automata, site machines, and
web Turing machines [15].

4 Interactive Evolving Recurrent Neural Networks

An evolving recurrent neural network (Ev-RNN) consists of a synchronous net-
work of neurons (or processors) related together in a general architecture. The
network contains a finite number of neurons (xi)

N
i=1, M parallel input lines

(ui)
M
i=1, and P designated output neurons among the N . Furthermore, the synap-

tic connections between the neurons are assumed to be time dependent rather
than static. At each time step, the activation value of every neuron is updated
by applying a linear-sigmoid function to some weighted affine combination of
values of other neurons or inputs at previous time step.

Formally, given the activation values of the internal and input neurons (xj)
N
j=1

and (uj)
M
j=1 at time t, the activation value of each neuron xi at time t+1 is then

updated by the following equation

xi(t+ 1) = σ

⎛
⎝ N∑

j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)

⎞
⎠ (1)

for i = 1, . . . , N , where all aij(t), bij(t), and ci(t) are time dependent values
describing the evolving weighted synaptic connections and weighted bias of the

62 J. Cabessa and A.E.P. Villa

network, and σ is the classical saturated-linear activation function defined by
σ(x) = 0 if x < 0, σ(x) = x if 0 ≤ x ≤ 1, and σ(x) = 1 if x > 1.

In order to stay consistent with our interactive scenario, we need to define the
notion of an interactive evolving recurrent neural network (I-Ev-RNN) which ad-
heres to a rigid encoding of the way input and output are interactively processed
between the environment and the network.

First of all, we assume that any I-Ev-RNN is provided with a single binary
input line u whose role is to transmit to the network the infinite input stream of
bits sent by the environment. We also suppose that any I-Ev-RNN is equipped
with two binary output lines, a data line yd and a validation line yv. The role of
the data line is to carry the output stream of the network, while the role of the
validation line is to describe when the data line is active and when it is silent.
Accordingly, the output stream transmitted by the network to the environment
will be defined as the (finite or infinite) subsequence of successive data bits that
occur simultaneously with positive validation bits.

Hence, if N is an I-Ev-RNN with initial activation values xi(0) = 0 for
i = 1, . . . , N , then any infinite input stream s = s(0)s(1)s(2) · · · ∈ {0, 1}ω trans-
mitted to input line u induces via Equation (1) a corresponding pair of infinite
streams (yd(0)yd(1)yd(2) · · · , yv(0)yv(1)yv(2) · · ·) ∈ {0, 1}ω×{0, 1}ω. The output
stream ofN according to input s is then given by the finite or infinite subsequence
os of successive data bits that occur simultaneously with positive validation bits,
namely os = 〈yd(i) : i ∈ N and yv(i) = 1〉 ∈ {0, 1}≤ω. It follows that any I-Ev-
RNN N naturally induces an ω-translation ϕN : {0, 1}ω → {0, 1}≤ω defined by
ϕN (s) = os, for each s ∈ {0, 1}ω. An ω-translation ψ : {0, 1}ω → {0, 1}≤ω is
said to be realisable by some I-Ev-RNN iff there exists some I-Ev-RNN N such
that ϕN = ψ.

Finally, throughout this paper, two models of interactive evolving recurrent
neural networks are considered according to whether their underlying synap-
tic weights are confined to the class of rational or real numbers. Rational- and
real-weighted interactive evolving recurrent neural network will be dented by
I-Ev-RNN[Q] and I-Ev-RNN[R], respectively. Note that since rational numbers
are included in real numbers, every I-Ev-RNN[Q] is also a particular I-Ev-
RNN[R] by definition.

5 The Computational Power of Interactive Evolving
Recurrent Neural Networks

The following result states that interactive evolving recurrent neural networks
are computationally equivalent to interactive Turing machine with advice, irre-
spective of whether their synaptic weights are rational or real. A precise mathe-
matical characterisation of the ω-translations realised by these networks is also
provided. It directly follows that interactive evolving neural networks are capable
super-Turing computational potentialities.

Theorem 1. Let ψ : {0, 1}ω → {0, 1}≤ω be an ω-translation. The following
conditions are equivalent:

The Super-Turing Computational Power 63

1. ψ is realisable by some I-TM/A;
2. ψ is realisable by some I-Ev-RNN[Q];
3. ψ is realisable by some I-Ev-RNN[R];
4. ψ is continuous.

Proof (sketch). (1) ⇒ (2): We will use the fact that every Turing machine can
be simulated by some rational-weighted recurrent neural network [12]. LetM be
some I-TM/A with advice function α : N → {0, 1}∗. We show that there exists
an I-Ev-RNN[Q] N which realises the same ω-translation as M. First, for each
i > 0, let qi be a rational number encoding in a recursive manner the sequence of
successive advice values 〈α(0), . . . , α(i)〉. Note that such an encoding is indeed
possible since by definition of α every α(i) is a finite word. Now, consider the
following description of an I-Ev-RNN[Q] N . The network N contains a specific
evolving synaptic connection which takes as evolving weights the successive val-
ues qi’s defined above, for all i > 0. The network N also contains a non-evolving
rational-weighted part which is designed is order to simulateM as follows: every
recursive computational step of M is simulated by N in the classical way, as
described in [12]; moreover, for every extra-recursive call to some advice value
α(m) performed byM at some time t ≥ m, N first waits for the synaptic weight
qt to occur, then stores the synaptic weight qt in its memory, then decodes the
specific string α(m) from the rational value qt (which is possible since t ≥ m),
and then pursues the simulation of the next recursive steps ofM in the classical
way [12]. In this manner, N realises the same ω-translation as M.

(2)⇒ (3): Note that every I-Ev-RNN[Q] is also an I-Ev-RNN[R] by definition.
Hence, if ψ is an ω-translation realised by some I-Ev-RNN[Q] N , then ψ is also
realised by some I-Ev-RNN[R], namely by N itself.

(3) ⇒ (4): Let ϕN be an ω-translation realised by some I-Ev-RNN[R] N . We
show that ϕN is continuous. For this purpose, consider the function f : {0, 1}∗ →
{0, 1}∗ which maps every finite word u to the unique corresponding finite word
output by N after precisely |u| steps of computation, when u · x is provided
as input bit by bit, for any possible suffix x ∈ {0, 1}ω. The definition of our
interactive scenario ensures that f is well-defined (i.e., that f(u) is independent
of the suffix x), and that f is monotone. We can prove that the function ϕN
realised by N corresponds precisely to the limit of the monotone function f
as defined in Section 2, or in other words, that ϕN = fω. Therefore, ϕN is
continuous.

(4) ⇒ (1): Let ψ : {0, 1}ω → {0, 1}≤ω be some continuous ω-translation.
Then, by definition, there exists some monotone function f : {0, 1}∗ → {0, 1}∗
such that fω = ψ. For each i ≥ 0, let (zi,j)

2i

j=1 be the lexicographic enumeration
of all binary words of length i. Let α : N → {0, 1}∗ be the advice function such
that α(i) represents some recursive encoding of the successive values f(zi,j)
separated by �’s, for j = 1, . . . , 2i (for instance, α(2) is a binary encoding of
�f(00)�f(01)�f(10)�f(11)�). Now, consider the I-TM/A M with advice α work-
ing on every infinite input s = s(0)s(1)s(2) · · · ∈ {0, 1}ω as follows: for each
new input bit s(i + 1), M calls its advice value α(i + 1), decodes the specific
value f(s(0) · · · s(i+1)) from it, checks if f(s(0) · · · s(i+1)) strictly extends the

64 J. Cabessa and A.E.P. Villa

previous decoded value f(s(0) · · · s(i)), and if this is the case, outputs this exten-
sion bit by bit. We can show that the function ϕM realised byM in this manner
corresponds precisely to the limit of the monotone function f as defined in Sec-
tion 2, or in other words, that ϕM = fω. Yet since fω = ψ, one has ϕM = ψ,
meaning that ψ is realised by the I-TM/A M. ��

6 Discussion

The present paper provides a complete mathematical characterisation of the
computational power of evolving recurrent neural networks involved in a basic
context of interactive and memory active computation. It is shown that inter-
active evolving neural networks are computationally equivalent to interactive
machines with advice, hence capable of super-Turing potentialities, irrespective
of whether their underlying synaptic weights are rational or real.

These results show that the consideration of evolving capabilities in a first-
order neural model provides the potentiality to break the Turing barrier.
The super-Turing computational equivalence between I-Ev-RNN[Q]s and I-Ev-
RNN[R]s reveals two important considerations. First, the incorporation of the
power of the continuum in the model does not increase further the computa-
tional capabilities of the networks. This feature supports the extension of the
Church-Turing Thesis to the context of interactive computation stated by van
Leeuwen and Wiedermann [16]:

“Any (non-uniform interactive) computation can be described in terms
of interactive Turing machines with advice.”

Second and most importantly, the super-Turing computational capabilities can
be achieved without the need of a framework based on the power of the contin-
uum – in the case of the Ev-RNN[Q] model. This feature is particularly mean-
ingful, since while the power of the continuum is a pure conceptualisation of
the mind, the evolving capabilities of the networks are, by contrast, really ob-
servable in nature. However, note that such super-Turing capabilities can only
be achieved in cases where the evolving synaptic patters are themselves non-
recursive (i.e., non Turing-computable). The question of the existence in nature
of such non-recursive patterns of evolution remains beyond the scope of this
paper. We refer to Copeland’s extensive work for deeper philosophical consider-
ations about hypercomputation in general [4].

From a general perspective, we believe that such theoretical studies about
the computational power of bio-inspired neural models might ultimately bring
further insight to the understanding of the intrinsic natures of both biological
as well as artificial intelligences. We also think that foundational approaches
to alternative models of computation might in the long term not only lead to
relevant theoretical considerations, but also to important practical applications.
Similarly to the theoretical work from Turing which played a crucial role in the
practical realisation of modern computers, further foundational considerations
of alternative models of computation will certainly contribute to the emergence

The Super-Turing Computational Power 65

of novel computational technologies and computers, and step by step, open the
way to the next computational era.

References

1. Cabessa, J.: Interactive evolving recurrent neural networks are super-turing. In:
Filipe, J., Fred, A.L.N. (eds.) ICAART (1), pp. 328–333. SciTePress (2012)

2. Cabessa, J., Siegelmann, H.T.: Evolving recurrent neural networks are super-
turing. In: IJCNN, pp. 3200–3206. IEEE (2011)

3. Cabessa, J., Siegelmann, H.T.: The computational power of interactive recurrent
neural networks. Neural Computation 24(4), 996–1019 (2012)

4. Jack Copeland, B.: Hypercomputation. Minds Mach. 12(4), 461–502 (2002)
5. Goldin, D., Smolka, S.A., Wegner, P.: Interactive Computation: The New

Paradigm. Springer-Verlag New York, Inc., Secaucus (2006)
6. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-

non, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press, Princeton (1956)

7. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysic 5, 115–133 (1943)

8. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., En-
glewood Cliffs (1967)

9. von Neumann, J.: The computer and the brain. Yale University Press, New Haven
(1958)

10. Siegelmann, H.T.: Neural networks and analog computation: beyond the Turing
limit. Birkhauser Boston Inc., Cambridge (1999)

11. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theor.
Comput. Sci. 131(2), 331–360 (1994)

12. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J.
Comput. Syst. Sci. 50(1), 132–150 (1995)

13. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. 2(42), 230–265 (1936)

14. Turing, A.M.: Intelligent machinery. Technical report, National Physical Labora-
tory, Teddington, UK (1948)

15. van Leeuwen, J., Wiedermann, J.: Beyond the Turing Limit: Evolving Interactive
Systems. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234,
pp. 90–109. Springer, Heidelberg (2001)

16. van Leeuwen, J., Wiedermann, J.: The Turing machine paradigm in contemporary
computing. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited - 2001 and
Beyond. LNCS, pp. 1139–1155. Springer, Heidelberg (2001)

17. Wiedermann, J., van Leeuwen, J.: How we think of computing today. In: Beckmann,
A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 579–593.
Springer, Heidelberg (2008)

18. Wegner, P.: Interactive foundations of computing. Theor. Comput. Sci. 192,
315–351 (1998)

Group Fused Lasso

Carlos M. Aláız, Álvaro Barbero, and José R. Dorronsoro

Dpto. Ingenieŕıa Informática & Inst. Ingenieŕıa del Conocimiento,
Universidad Autónoma de Madrid, 28049 Madrid, Spain

{carlos.alaiz,alvaro.barbero,jose.dorronsoro}@uam.es

Abstract. We introduce the Group Total Variation (GTV) regularizer,
a modification of Total Variation that uses the 	2,1 norm instead of the
	1 one to deal with multidimensional features. When used as the only
regularizer, GTV can be applied jointly with iterative convex optimiza-
tion algorithms such as FISTA. This requires to compute its proximal
operator which we derive using a dual formulation. GTV can also be
combined with a Group Lasso (GL) regularizer, leading to what we call
Group Fused Lasso (GFL) whose proximal operator can now be com-
puted combining the GTV and GL proximals through Dykstra algorithm.
We will illustrate how to apply GFL in strongly structured but ill-posed
regression problems as well as the use of GTV to denoise colour images.

Keywords: Group Fused Lasso, Group Total Variation, Group Lasso,
Fused Lasso, Total Variation.

1 Introduction

The irruption of big data, i.e., the need to study problems having very large
sample sizes or very large dimensions or both, has resulted in a renewed in-
terest in linear models, either because processing large samples with non-linear
models is computationally demanding, or because a large dimension yields rich
enough patterns so that methods enlarging pattern dimension such as the ker-
nel trick add marginal value. Among linear models, Mean Square Error is the
simplest fitting function, although it is well known that some regularizer has to
be added, either to ensure good generalization, or just because the initial prob-
lem may be ill-posed. Classic choices include ‖w‖22 (ridge regression) and ‖w‖1
(Lasso [8]), and recently more �1-based regularizers such as Group Lasso [10] or
Fused Lasso [9], have been introduced.

From a general point of view all these models can be stated as the problem
of finding a w∗ ∈ RM which minimizes a certain functional f(w) = fL(w) +
fR(w) of the weights, with fR the regularization term which somehow bounds
the complexity of the model and fL the loss functional. In more detail, assume
a training set composed by P input patterns, {xp}Pp=1, with xp ∈ RM , and their

corresponding targets {yp}Pp=1, y
p ∈ R. If X ∈ RP×M is the matrix having input

patterns as rows and y ∈ RP is the target vector, the overall problem for square
loss can be written as

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 66–73, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Group Fused Lasso 67

min
w∈RM

f(w) = min
w∈RM

fL(w) + λfR(w) = min
w∈RM

‖Xw − y‖22 + λfR(w), (1)

where λ is a parameter to control the strength of the regularizer.
Taking fR(w) = ‖w‖1 =

∑M
i=1 |wi| results in the Lasso approach (LA), which

enforces sparsity in the coefficients with an implicit feature selection, since only
those inputs corresponding to nonzero coefficients have an impact in the model.

In some problems the features can present a spatial structure which we may
want the models to capture. One way to do this is to enforce similarity among
the coefficients corresponding to nearby features. If we do not consider any mul-
tidimensional feature structure, this can be achieved using a Total Variation
(TV) regularizer TV1 (w) =

∑M
i=2 |wi − wi−1|, which penalizes the differences

between consecutive coefficients. Some sparsity may also be wanted and the over-
all regularizer to be used is then fR(w) = ‖w‖1 + λ̂TV1 (w) = ‖w‖1 + λ̂‖Dw‖1,
where D ∈ R(M−1)×M is the differencing matrix with Di,i = −1, Di,i+1 = 1 and
Dij = 0 elsewhere. The resulting model is called the Fused Lasso (FL).

Neither LA nor FL do consider any possible group structure on the problem
features and, therefore, the resulting models will not reflect it even if it may
be present. Assume, however, that the pattern features x have such a group
structure. We may then see x as a collection of multidimensional features, that is,
x has NV components that come in N groups with V features each and therefore
x = (x1,1, x1,2, . . . , x1,V , x2,1, x2,2, . . . x2,V , . . . , xN,1, xN,2, . . . , xN,V)

� ∈ RNV .
The first subscript in xn,v indicates the group (or the multidimensional feature)
and the second subscript the group feature so x is decomposed in N blocks
xn = (xn,1, . . . , xn,V)

� that contain V variables. The mixed �2,1 norm is possibly
the easiest and most natural regularizer in this framework. More precisely, for
a vector w with the above group structure, its �2,1 norm ‖w‖2,1 is defined as

‖w‖2,1 =
∑N

n=1 ‖wn‖2, which is just the �1 norm of the �2 group norms. This
leads to the Group Lasso model (GL) whose regularizer is then fR(w) = ‖w‖2,1.

In this work we will extend GL to a fused setting, introducing first a new
Group Total Variation regularizer (GTV) defined as:

GTV (w) =

N∑
n=2

√√√√ V∑
v=1

(wn,v − wn−1,v)2,

and considering a full regularization functional that adds the GTV term to the
standard �2,1 regularizer of GL. We can write it in compact notation as

fR(w) = ‖w‖2,1 + λ̂‖D̄w‖2,1, with D̄ =

(−I I

. . .
. . .
−I I

)
. (2)

D̄ ∈ R(N−1)V×NV is the group differencing matrix, and I ∈ RV ×V stands for
the identity matrix. We call this model Group Fused Lasso (GFL). Notice that
if V = 1 we recover FL, and if V = M , i.e., there is a single group with M

68 C.M. Aláız, Á. Barbero, and J.R. Dorronsoro

variables, GFL boils down to a variant of FL using a TV2 regularizer, also known
as �2-Variable Fusion [2].

We will solve the GFL optimization problem through convex proximal opti-
mization techniques. We will essentially apply a variant of the FISTA algorithm
which, in turn, requires that we can compute the proximal operator of the GFL
regularizer, something we will do in Sect. 2. We point out that GFL with only
the group ‖D̄w‖2,1 penalty has been introduced in [6]. However, its solution is
different from ours, as it reduces this GFL to a GL model that is then solved by
a group LARS algorithm. We believe our approach to be better suited to deal
with the full general GFL case. We shall illustrate the behaviour of GFL over
two examples in Sect. 3, and we will close the paper in Sect. 4 with a discussion
and pointers to further work.

2 Solving Group Fused Lasso with Proximal Methods

All the �1 regularizers of Sect. 1 lead to non-differentiable optimization problems,
which prevents solving them by standard gradient-based methods. However, they
fit very nicely under the paradigm of Proximal Methods (PMs) that we briefly
review next. Recall that the function to be minimized in (1) is fL(w) + fR(w),
where we include the penalty factor λ in fR(w).

Denote by ∂h(w) the subdifferential at w of a convex function h; since both
terms are convex and fL(w) is differentiable, w

∗ will be a minimum of fL(w) +
fR(w) iff 0 ∈ ∂(fL(w

∗) + fR(w
∗)) [3] or, by the Moreau–Rockafellar theorem,

0 ∈ ∇fL(w
∗) + ∂fR(w

∗). Equivalently, we have −γ∇fL(w
∗) ∈ γλ∂fR(w

∗) for
any γ > 0 and, also, w∗ − γ∇fL(w

∗) ∈ w∗ + γ∂fR(w
∗) = (I + γ∂fR)(w

∗). Thus,
the set function (I + γ∂fR)

−1 verifies

w∗ ∈ (I + γ∂fR)
−1 (w∗ − γ∇fL(w

∗)) . (3)

Now, if F is a convex, lower semicontinuous function, its proximal operator at
w with step γ > 0 is defined as

zw = proxγ;F (w) = arg min
z∈RM

{
1

2
‖z − w‖22 + γF (z)

}
.

Notice that then we have 0 ∈ zw−w+γ∂F (zw), that is, zw ∈ (I+∂F)−1(w). For a
general convex F , it can be shown [3] that ∂F is a monotone operator and, while
in principle (I+∂F)−1 would be just a set-function, it is actually uniquely valued.
Therefore, it defines a function for which proxγ;F (w) = zw = (I + ∂F)−1(w)
holds. Thus, going back to (3), it follows that w∗ = proxγ;fR (w∗ − γ∇fL(w

∗)),
which immediately suggests an iterative algorithm of the form

wk+1 = proxγ;fR
(
wk − γ∇fL(w

k)
)
.

This is at the heart of the well known proximal gradient method [7] and of
its ISTA and FISTA (Fast Iterative Shrinkage–Thresholding Algorithm) exten-
sions [4]. In particular, we will focus on FISTA, based on the pair of equations:

wk = prox 1
K ;fR

(
zk − 1

K
∇fL(z

k)

)
, zk+1 = wk +

tk − 1

tk+1
(wk − wk−1),

Group Fused Lasso 69

where tk+1 = 1
2 (1+

√
1 + 4t2k) and K is a the Lipschitz constant for ∇fL. Notice

that these algorithms require at each step the computation of the proximal
operator at the current wk. We discuss next these operators for GFL.

Observe that to solve problem (2) for the complete GFL regularizer, we need
the proximal operator of the sum of the GTV and GL terms. Both regulariz-
ers are not separable, so their joint proximal operator cannot be built by the
usual expedient of applying consecutively the proximal operators of GTV and
GL. However, we can still solve the proximal problem by the Proximal Dykstra
(PD) [7] algorithm, which allows to compute the proximal operator of the sum of
several terms combining their individual proximal operators in an iterative fash-
ion. Therefore we can focus on computing each proximal operator separately.
In our case, the proximal operator of the GL regularizer is just the group soft-
thresholding [1] defined as proxγ;‖·‖2,1

(wn,v) = wn,v(1 − γ/‖wn‖2)+, and we will
derive now the proximal operator for GTV, following an analogous argument to
the one in [2] for TV. We have to solve

proxγ;GTV (w) = argminz∈RM

1

2
‖z − w‖22 + γ‖D̄z‖2,1, (4)

which is a particular case of the more general problem infz∈RM f(z) + γr(Bz),
where B ≡ D̄, r(·) ≡ ‖ · ‖2,1 and f(y) ≡ 1

2‖y − w‖22. In turn, this is equivalent

to infz,v f(z) + γr(v) s.t. v = Bz, with z ∈ RM and v ∈ R(N−1)V . Writing its
Lagrangian as L(z, v;u) = f(z) + γr(v) + u · (Bz − v) with u ∈ R(N−1)V , we
can transform the equivalent saddle point problem infz,v supu L(z, v, u) into
the dual problem

inf
u

f∗(−B�u) + γr∗
(
1

γ
u

)
,

by means of the Fenchel Conjugate F ∗(x̂) = − infx {f(x)− x · x̂} [3]. Going back
to (4), it is easy to see that for f(z) = 1

2‖z−w‖22, we have f∗(s) = 1
2s · s+ s ·w.

The conjugate of the �2,1 norm can be derived using the definition of Fenchel
Conjugate and the conjugate of the �2 norm (the indicator function of the unitary
ball), obtaining that r∗(s) is the indicator function of the unitary balls for each
group, ι∧N−1

n=1 ‖sn‖2≤1. Therefore, the dual problem becomes:

min
u

{
1

2
‖D̄�u‖22 − u�D̄w + ι∧N−1

n=1 ‖un‖2≤γ

}
≡ min

u

{
1

2
‖D̄�u− w‖22

}
s.t. ‖un‖2 ≤ γ, 1 ≤ n ≤ N − 1,

(5)

where we have completed squares and changed the indicator function to a set
of constraints. Since problem (5) is quadratic with simple convex constraints, it
can be easily solved using projected gradient. After that, zw (i.e., the result of
the proximal operator) can be recovered from the dual solution u∗ through the
equality zw = w − D̄�u∗, which follows from 0 = ∇zL = zw − w +B�u∗.

To finish this section, we observe that the form of the �2,1 norm implic-
itly assumes a 1-dimensional spatial structure for the data. However, many

70 C.M. Aláız, Á. Barbero, and J.R. Dorronsoro

problems of interest, such as image processing, present a natural multidimen-
sional structure that cannot be captured by the �2,1 penalty. Working only with
the GTV penalty, and as in [2], a solution for this is to combine several 1-
dimensional GTV penalties to obtain a multidimensional GTV. For example,
for problems with a 2-dimensional structure, we penalize changes in both row
and column-wise adjacent features. More precisely, denoting the i-th row by w[i,·]

and the j-th column by w[·,j], we can define the 2-dimensional GTV regularizer
as GTV2d (w) =

∑
i GTV

(
w[i,·])+∑

j GTV
(
w[·,j]). This can be easily extended

to more than two dimensions but, again, notice that this multidimensional GTV
regularizer is the sum of 1-dimensional GTVs. Those corresponding to the same
dimension (for example, the terms GTV

(
w[i,·]) corresponding to the different

columns) apply over different variables, and are therefore separable, so the prox-
imal operator of the summation of a particular dimension can be computed just
by composing the individual proximal operators. Nevertheless, each complete
summation applies over all the variables, and they cannot be separated. In order
to combine the proximal operators of the different dimensions we can use once
again the PD algorithm. Similarly, for the case of a complete multidimensional
GFL linear model, we should use PD to compute the proximal operator of the
multidimensional GTV regularizer, and then combine the GTV and GL proximal
operators applying again PD.

3 Experiments

We will present next an application of the GFL model over a synthetic regression
example and the use of the GTV regularizer for colour image denoising.

We consider first a synthetic structured linear problem where pattern features
are divided into 100 3-dimensional groups, i.e., we have N = 100 and V = 3.
The optimal weights are structured in 4 consecutive segments of 25 groups with
constant values for the three group coordinates. This defines an optimal weight
w∗ = (w∗

1 , w
∗
2 , w

∗
3 , w

∗
4)

� with each w∗
i constant; w∗ is thus built in such a way

that it makes the features to be simultaneously either active or inactive and in
such a way that adjacent features have a block behaviour. The optimal w∗ is
then perturbed to obtain a weight vector of the form w̃n,v = w∗

n,v+ηn,v with η ∼
N (0, 0.1) Gaussian noise. Random independent patterns xp are then generated
by a N (0, 1) distribution, and the values yp = w̃ · xp + η̂p with η̂ ∼ N (0, 0.1)
then define a regression problem. Notice that the underlying spatial structure
of the weights imposes also an spatial structure on the yp values. Moreover,
if the number of generated x patterns is well below the problem dimension of
300, we will end up with an ill-posed problem. We will consider 600, 300, 100
and 50 training patterns and solve the regression problem using LA, GL, FL
and GFL. In the latter case, we apply the complete 1-dimensional GFL linear
model (with both the 1-dimensional GTV and the GL terms). The corresponding
regularization parameters are chosen so that the estimated weights are closest
to the generating weights in the �1 distance. Table 3 presents the corresponding
results in terms of the distances ‖w − w∗‖1 and ‖w − w∗‖2. As can be seen,

Group Fused Lasso 71

Table 1. Distance to optimal weights for the considered structured linear regression
models as a function of the number of training samples (lower is better)

Mod
Training Size

600 300 100 50

LA 23.59 29.91 1016.60 1284.88
GL 23.70 30.75 1024.45 1304.23
FL 10.61 11.28 13 .88 29.60
GFL 9 .35 10 .93 15.57 26 .43

‖w −w∗‖1

Mod
Training Size

600 300 100 50

LA 1.74 2.21 96.28 126.47
GL 1.76 2.26 92.25 128.76
FL 0.86 0.97 1.26 2.40
GFL 0 .72 0 .92 1 .24 2 .05

‖w − w∗‖2

GFL achieves the lowest ‖w − w∗‖1 distance in all the cases but one, and the
lowest ‖w − w∗‖2 for all of them. Only FL is comparable, whereas LA and GL
values are clearly worse for the 600 and 300 pattern problems and markedly
fail when used with few training samples. As reference value, observe that the
distances of the perturbed weights to the original ones are ‖w̃ − w∗‖1 = 24.81
and ‖w̃ − w∗‖2 = 1.78, close to the FL and GFL values but far away from the
LA, GL ones. Moreover, Fig. 3 shows how GFL recovers quite well the inherent
structure of the problem.

1 25 50 75 100

0

10

20

Group

W
ei
g
h
t

1 25 50 75 100

0

10

20

Group

W
ei
g
h
t

Fig. 1. Noisy weights (left) and weights recovered by GFL (right), using 600 patterns.
The three colours represent different variables of the same group.

We consider next how to apply GTV to denoise colour images. Notice that
images have a natural spatial structure, as pixels change smoothly and can be
considered nearly constant in nearby regions (except in objects borders). There-
fore, TV regularization has been extensively used for this task [5] on gray level
images, in the form of the denoising model minI

1
2‖I− Ĩ‖22+TV2d (I) for a noisy

image Ĩ and some bidimensional form of TV, whose block structure permits to
preserve the borders. When dealing with colour images a possible option is to
apply TV denoising independently to each of the three RGB layers. However,
we can also consider each pixel as a multi-valued (R,G,B) feature, making GTV
fit naturally into this problem using the whole of the problem structure. Specifi-
cally, we will use the 2-dimensional GTV proximal operator, which can be easily

72 C.M. Aláız, Á. Barbero, and J.R. Dorronsoro

computed as explained in Sect. 2. We will work with two different colour images.
The first one (peppers) is perturbed by additive noise as Ĩ = I + n, with I the
original image and n ∼ N (0, 0.05). For the second image (Lena) we consider
speckle noise, i.e., multiplicative uniform noise, with Ĩ = I + uI, where u is uni-
form with 0 mean and variance 0.25. Our goal here is to compare the potential
advantages of GTV over 2-dimensional TV and for each model we select the
optimal GTV and TV penalties as the ones that give the best Improved Signal-
to-Noise Ratio (ISNR) over a single perturbed sample for each image. We then
test TV and GTV denoising over 10 other different perturbations for additive
and multiplicative noise. In all cases GTV performed better than TV, yielding
an average ISNR of 10.73± 0.36 for additive noise and of 12.24± 0.24 for mul-
tiplicative noise; on the other hand, the ISNR averages for TV are 8.68 ± 0.27
and 10.97± 0.41, respectively. Figure 3 contains an example of denoising for the
two different image and noise models described above.

Original. Noisy. TV-cleaned. GTV-cleaned.

Fig. 2. Denoising with additive (upper row) and multiplicative (lower row) noise

4 Conclusions

In this work we have proposed the Group Total Variation (GTV) regularizer,
combining the multidimensional group-sparse features of the Group Lasso reg-
ularizer with the block spatial structure of the Total Variation penalty used by
Fused Lasso. The GTV regularizer thus appears as a useful tool to reconstruct
multidimensional patterns with a spatial structure that reflects smooth changes
along the group features. Colour image denoising fits nicely in this framework
and we have shown that GTV performs better than applying 1-dimensional To-
tal Variation independently on each colour. Moreover, this GTV regularizer can
be merged with a Group Lasso (GL) term, leading to what we call Group Fused
Lasso (GFL). We have illustrated over a synthetic example how GFL effectively

Group Fused Lasso 73

captures block structure when present, and makes use of it to address linear
ill-posed problems with a number of features much larger than the sample size.

This kind of spatial structure can be found in other real world problems,
particularly those for which the underlying data features are associated to ge-
ographical locations. Any sensible linear regression models for such problems
should assign similar weight values to spatially close features, which is exactly
the behaviour that GFL enforces. As further work we intend to study the ad-
vantages of GFL in such a kind of problems, which will require the use of the
complete 2-dimensional GFL model as explained at the end of Sect. 2, and also
to analyse the numerical complexity of the proposed models and possible ways
to improve it.

Acknowledgement. With partial support from Spain’s grant TIN2010-21575-
C02-01 and the UAM–ADIC Chair for Machine Learning. The first author is
supported by the FPU–MEC grant AP2008-00167.

References

1. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Convex Optimization with
Sparsity-Inducing Norms (2011), http://www.di.ens.fr/~fbach/opt_book.pdf

2. Barbero, A., Sra, S.: Fast newton–type methods for total variation regularization.
In: Proceedings of the 28th International Conference on Machine Learning (ICML
2011), New York, NY, USA, pp. 313–320 (2011)

3. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer (2011)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

5. Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new twist: Two-step iterative shrink-
age/thresholding algorithms for image restoration. IEEE Transactions on Image
Processing 16(12), 2992–3004 (2007)

6. Bleakley, K., Vert, J.P.: The group fused Lasso for multiple change-point detection.
ArXiv e-prints (2011)

7. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing.
Recherche 49, 1–25 (2009)

8. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Statist.
Soc. Ser. B 58(1), 267–288 (1996)

9. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smooth-
ness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 67(1), 91–108 (2005)

10. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society – Series B: Statistical Method-
ology 68(1), 49–67 (2006)

http://www.di.ens.fr/~fbach/opt_book.pdf

Exponential Synchronization of a Class of RNNs

with Discrete and Distributed Delays�

Farouk Chérif1, Hajer Brahmi2, Boudour Ammar2, and Adel M. Alimi2

1 ISSATS, Laboratory of Math Physics; Specials Functions and Applications,
LR11ES35, Ecole Supérieure des Sciences et de Technologie, 4002- Sousse- Tunisia
2 REGIM: REsearch Groups on Intelligent Machines, University of Sfax, National

Engineering School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia
faroukcheriff@yahoo.fr, {boudour.ammar,adel.alimi}@ieee.org

Abstract. This paper studies the exponential synchronization of RNNs.
The investigations are carried out by means of Lyapunov stability method
and the Halanay inequality lemma. Finally, a numerical example with
graphical illustrations is given to illuminate the presented synchroniza-
tion scheme.

Keywords: Recurrent Neural Networks, Exponential synchronization,
Stability.

1 Introduction

In the last decade, there has been increasing interest in exploring of recurrent
neural networks (RNNs) since they have a wide range of applications, for in-
stance, signal processing, pattern recognition, associative memory and combi-
natorial optimization. In particular, different types of recurrent neural networks
(HNNs, CNNs) have been used and applied to study the qualitative properties
such as existence and oscillations of solutions ([2], [4], [5]). Hence, there have
been extensive results on the problem of the existence and synchronization of
RNNs with constant time delays and time-varying delays in the literature. How-
ever, there exist few results on the dynamical behaviors of RNNs with continu-
ously distributed delays. In particular, exponential synchronization of RNNs is of
paramount importance in a variety of complex physical, chemical, and biological
systems [13]. It is well known that such synchronization strategies have potential
applications in several areas such as secure communication ([11], [14]) biological
oscillators [3] and animal gaits [7]. It should be mentioned that there are different
notions of synchronization, such as phase synchronization [16], generalized syn-
chronization [17], lag synchronization [18], and identical synchronization [15]. In
this paper, motivated by the above discussions, we are concerned with the expo-
nential synchronization of a class of recurrent neural networks with varying-time

� This work is supported in part by grants from General Direction of Scientific Re-
search (DGRST), Tunisia, under the ARUB program.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 74–81, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Exponential Synchronization of a Class of RNNs 75

coefficients and mixed delays. Thus, the goal in this paper is to design an ap-
propriate controller such that the coupled neural networks remain synchronized.
This paper is organized as follows. In Section 2, the synchronization problem
to be considered is formulated. In Section 3, a new sufficient condition for the
exponential synchronization is obtained. In Section 4, numerical simulations is
given to show the validity of theoretical result.

2 Exponential Synchronization Problem

The model of the delayed recurrent neural network considered in this paper is
described by the following state equations

ẋi (t) = −aixi(t) +
n∑

j=1

cij (t) fj(xj (t)) +
n∑

j=1

dij (t) fj(xj (t− τ))

+
n∑

j=1

pij (t)
t∫

t−σ

fj(xj(s))ds + Ji (t) ,

xi(t) = ψi(t), � ≤ t ≤ 0, 1 ≤ i ≤ n,

(1)

where n is the number of the neurons in the neural network, xi(t) denotes the
state of the ith neural neuron at time t, fj(xj(t)) is the activation function of
jth neuron at time t. The functions cij (·), dij (·) and pij (·) denote, respectively,
the connection weights, the discretely delayed connection weights, and the dis-
tributively delayed connection weights, of the jth neuron on the i neuron. Ji (·)
is the external bias on the ith neuron, ai denotes the rate with which the ith
neuron will reset its potential to the resting state in isolation when disconnected
from the network and external inputs. τ is the constant discrete time delay and
� = max (τ, σ) .

Now let us give the following notations and concepts used throughout this

paper. For x ∈ Rn, let ‖x‖ =
(
xTx

) 1
2 =

(
n∑

j=1

x2
i

) 1
2

denote the Euclidean

vector norm, and for a matrix A ∈ Mn (R) , let ‖A‖ indicate the norm of

A induced by the Euclidean vector norm, i.e.,‖A‖ =
(
λmax

(
ATA

)) 1
2 , where

λmax (A) represents the maximum eigenvalue of matrix A and T denotes the
transpose of a matrix. We denote a vector solution of the above system as
x(t) = (x1(t), x2(t), . . . , xn(t))

T . The neural network (1) can be rewritten in
the following matrix-vector form

ẋ (t) = −Dx(t) + Cf(x (t)) +Df(x (t− τ)) + P
t∫

t−σ

f(x(s))ds+ J (t)

x(t) = ψ(t), � ≤ t ≤ 0.

(2)

Throughout this paper, we make the following assumptions:
(H1) For all 1 ≤ j ≤ n, there exist positive constant numbers Lj > 0 such

that for all x, y ∈ R

|fj(x) − fj(y)| < Lj |x− y| ,

76 F. Chérif et al.

(H2) For all 1 ≤ i ≤ n, ai > 0 and τ, σ > 0,
Let us introduce the following controlled slave (or response) system:

żi (t) = −aizi(t) +
n∑

j=1

cij (t) fj(zj (t)) +
n∑

j=1

dij (t) fj(zj (t− τ))

+
n∑

j=1

pij (t)
t∫

t−σ

fj(zj(s))ds+ Ji (t) + ui

zi(t) = ϕi(t), � ≤ t ≤ 0, 1 ≤ i ≤ n,

(3)

in which ui(t) denotes the external control input that will be appropriately
designed for an certain control objective.

3 Exponential Synchronization of the RNNs

Definition 1. The systems (1) and the uncontrolled system (2) (i.e. ui = 0, ∀1 ≤
i ≤ n in (3)) are said to be exponentially synchronized if there exist constants
η ≥ 1 and α > 0 such that

|xi (t)− zi (t)| ≤ η |xi (0)− zi (0)| e−αt

for any t ≥ 0. Moreover, the constant α is defined as the exponential synchro-
nization rate.

From (1) and (3), the following error dynamics equation can be obtained:

ėi (t) = −aiei(t) +
n∑

j=1

cij (t)Fj(ej (t)) +
n∑

j=1

dij (t)Fj(ej (t− τ))

+
n∑

j=1

pij (t)
t∫

t−σ

Fj(ej(s))ds + ui, 1 ≤ i ≤ n,
(4)

where e (t) = x (t) − z (t) is the error term, and F (e (t)) = f (x (t)) − f (z (t));
F (e (t− τ)) = f (x (t− τ))− f (z (t− τ)).

As long as the control input stabilize the system, the error vector e (t) con-
verges to zero as time t goes to infinity i.e. lim

t→+∞ e (t) = lim
t→+∞x (t) − z (t) = 0.

If the state variables of the drive system are used to drive the response system,
then the control input vector with state feedback is designed as follows:⎛

⎜⎝ u1 (t)
...

un (t)

⎞
⎟⎠ = M

⎛
⎜⎝ x1 (t)− z1 (t)

...
xn (t)− zn (t)

⎞
⎟⎠ = M

⎛
⎜⎝ e1 (t)

...
en (t)

⎞
⎟⎠ (5)

where M = (mij)n×n is the controller gain matrix and will be appropriately
chosen for exponentially synchronizing both drive system and response system.
It follows that the error dynamics can be expressed by the following compact
form:

ė (t) = −Ae(t) + CF (e (t)) +DF (e (t− τ)) + P

t∫
t−σ

F (e(s))ds+ u

Exponential Synchronization of a Class of RNNs 77

Lemma 1. ([1]) For all (n× n) real symmetric matrix M , one has M is positive
definite if and only if all its eigenvalues are positive. Furthermore, for all x ∈ Rn

λmin (M) ‖x‖2 ≤ xTMx ≤ λmax (M) ‖x‖2

where λmin (M) (λmax (M)) represents the minimum (resp. the maximum) eigen-
value of the matrix M .

Lemma 2. (Halanay inequality lemma [9]). Let ρ ≥ 0 be a constant, and V (·)
be a non-negative continuous function defined for [−ρ,+∞[which satisfies

V̇ (t) ≤ −pV (t) + q

(
sup

t−ρ≤s≤t
V (s)

)

for t ≥ 0, where p and q are constants. If p > q > 0, then

V (t) ≤
(

sup
−ρ≤s≤0

V (s)

)
e−δt

for t > 0, where δ is a unique positive root of the equation δ = p− qeδτ .

Theorem 1. Suppose that the conditions (H1)−(H2) hold. If the controller gain
matrix M in (5) is real symmetric and positive definite satisfying

max
1≤i≤n

Li (2 ‖C‖+ ‖D‖+ σ ‖P‖)
2 min
1≤i≤n

ai + 2λmin (M)
< 1, (H3)

then the exponential error system (4) converges exponentially.

Proof. First, it is clear that in view of (H1)

‖F (e (t− τ))‖2 =

n∑
i=1

F 2
i (e (t− τ)) ≤

n∑
i=1

L2
i (e

2
i (t− τ))

≤ max
1≤i≤n

L2
i ‖e (t− τ))‖2 .

Similarly, ‖F (e (t))‖ ≤ max
1≤i≤n

L2
i ‖e (t))‖2 . In order to confirm that the origin

of (4) is globally exponential synchronization, let us consider the continuous

function, V defined as follows: V (t) = 1
2e (t)

T
e (t) = 1

2 ‖e‖2 . Calculating the
time derivative of V along the trajectory by using the vector norm, matrix norm
and from the inequalities above, we obtain immediately

V̇ (t) = −e (t)
T
Ae(t) + e (t)

T
CF (e (t)) + e (t)

T
DF (e (t− τ))

+e (t)
T
P

t∫
t−σ

K (t− s)F (e(s))ds− e (t)
T
Me (t)

78 F. Chérif et al.

≤ −
n∑

i=1

aie
2
i + ‖e‖ ‖C‖ ‖F (e (t))‖+ ‖e‖ ‖D‖ ‖F (e (t− τ))‖

+ ‖e‖ ‖P‖
t∫

t−σ

‖F (e(s))‖ ds− λmin (M) ‖e (t)‖2

By Cauchy Shwartz inequality one can obtain

V̇ (t) ≤ − min
1≤i≤n

ai ‖e‖2 + ‖e (t)‖ ‖C‖ max
1≤i≤n

Li ‖e (t))‖+ max
1≤i≤n

Li ‖e (t)‖ ‖D‖ ‖e (t− τ))‖

+ max
1≤i≤n

Li ‖e (t)‖ ‖P‖
⎛
⎝

t∫

t−σ

ds

⎞
⎠

1
2
⎛
⎝

t∫

t−σ

‖e (s)‖2 ds
⎞
⎠

1
2

− λmin (M) ‖e (t)‖2

≤
(
− min

1≤i≤n
ai + ‖C‖ max

1≤i≤n
Li − λmin (M)

)
1

2
‖e (t)‖2 + max

1≤i≤n
Li ‖e (t)‖ ×

×‖D‖ ‖e (t− τ))‖ + max
1≤i≤n

Li ‖e (t)‖ ‖P‖√σ

⎛
⎝

t∫

t−σ

‖e (s)‖2 ds
⎞
⎠

1
2

≤
(
− min

1≤i≤n
ai + ‖C‖ max

1≤i≤n
Li − λmin (M)

)
‖e (t)‖2 +

1

2
‖D‖ ×

× max
1≤i≤n

Li

(
‖e (t)‖2 + ‖e (t− τ)‖2

)
+

√
σ max

1≤i≤n
Li ‖e (t)‖ ‖P‖√σ

(
max

t−σ≤s≤t
‖e (s)‖2

) 1
2

≤
(
− min

1≤i≤n
ai + ‖C‖ max

1≤i≤n
Li − λmin (M)

)
‖e (t)‖2 +

1

2
‖D‖ max

1≤i≤n
Li ×

×
(
‖e (t)‖2 + ‖e (t− τ)‖2

)
+

σ

2
max

1≤i≤n
Li ‖P‖

(
‖e (t)‖2 + max

t−σ≤s≤t
‖e (s)‖2

)

≤
(
−2 min

1≤i≤n
ai + 2 ‖C‖ max

1≤i≤n
Li + ‖D‖ max

1≤i≤n
Li − 2λmin (M) + σ max

1≤i≤n
Li ‖P‖

)
V (t)

+
1

2
‖D‖ max

1≤i≤n
Li ‖e (t− τ))‖2 +

σ

2
max

1≤i≤n
Li ‖P‖ max

t−σ≤s≤t
‖e (s)‖2

≤ −
(
2 min
1≤i≤n

ai − 2 ‖C‖ max
1≤i≤n

Li − ‖D‖ max
1≤i≤n

Li + 2λmin (M)− σ max
1≤i≤n

Li ‖P‖
)
V (t)

+ max
1≤i≤n

Li

(
‖D‖+

σ

2
‖P‖

)
max

t−ρ≤s≤t
V (s)

Now, in virtue of lemma 1 and (H3) it follows that V (t) ≤ (
sup−ρ≤s≤t0 V (s)

)
e−δt

where

δ =

(
2 min
1≤i≤n

ai − max
1≤i≤n

Li (2 ‖C‖+ ‖D‖+ σ ‖P‖) + 2λmin (M)

)
− max

1≤i≤n
Li

(
‖D‖+ σ

2
‖P‖

)
eδρ.

Therefore, V (e(t)) converges to zero exponentially, which in turn implies that
e(t) also converges globally and exponentially to zero with a convergence rate of
δ
2 , i.e.‖e (t)‖ ≤

(
sup−ρ≤s≤s ‖φ (s)− ψ (s)‖) e−δ t

2 .

Exponential Synchronization of a Class of RNNs 79

In other words, every trajectory zi(t) of (3) must synchronize exponentially
toward the xi(t) with a convergence rate of δ

2 . This completes the proof.

Remark 1. Clearly and from the above study, the sufficient condition for expo-
nential synchronization of systems (1) and (3) depends only on the continuous
delay but relies on the connection weights and the controller gain. Besides,
when for all 1 ≤ i, j ≤ n, pij = 0 and J (·) is constant, model (1) and (2) in
this paper become the models in [12]. On the other hand, in [6] under similar
hypothesis, authors derive exponential synchronization criteria for two chaotic
neural networks under the configuration of the master slave mode by applying
the Lyapunov stability approach and the Halanay inequality. However, the con-
ditions of Theorem 1 in this paper is easy to test in practice. So, the results in
[6] is a special case of the results in this paper. It should be mentioned that the
method in this paper is not as same as the method in [8] and [10].

4 An Illustrative Example

In order to illustrate some feature of our main results, in this section, we will ap-
ply our main results to some special three-dimensional systems and demonstrate
the efficiencies of our criteria.

Example 1. Let us consider the following delayed recurrent neural network

ẋi (t) = −aixi(t) +

3∑
j=1

cij (t) fj(xj (t)) +

3∑
j=1

dij (t) fj(xj (t− τ))

+
3∑

j=1

pij (t)

t∫
t−σ

fj(xj(s))ds + Ji (t) ,

and the response recurrent neural network is designed as follows:

żi (t) = −aizi(t) +

3∑
j=1

cij (t) fj(zj (t)) +

3∑
j=1

dij (t) fj(zj (t− τ))

+

3∑
j=1

pij (t)

t∫
t−σ

fj(zj(s))ds+ Ji (t) + ui (t)

ė (t) = −Ae(t) + CF (e (t)) +DF (e (t− τ)) + P

t∫
t−σ

F (e(s))ds+ u

Pose: a1 = 11, a2 = 17, a3 = 13, fj(x) = x, τ = 1, σ = 2 and

C =

⎛
⎝1 −3 −2

0 −1 1
1 0 −1

⎞
⎠ , D =

⎛
⎝ 2 −3 −1

0 −1 4
−1 0 2

⎞
⎠ , P =

⎛
⎝0.5 −1.5 1

1 0 2
2 −0.5 1

⎞
⎠ ,M =

⎛
⎝0 0 0

0 2 0
0 0 3

⎞
⎠

80 F. Chérif et al.

So the condition (H3) is satisfied since

max
1≤i≤3

Li (2× 3. 840 8 + 4. 686 2 + 2× 3. 312 6)

2× 9 + 2× λmin (M)
= 0.86332 < 1

By using the matlab Toobox, one can obtain the graphical illustration Fig. 1

Fig. 1. The exponential synchronization error

5 Conclusion

By Constructing an appropriate linear feedback controller, this paper addresses
the problem of exponential synchronization of a class of recurrent neural net-
works with mixed delays. Based on the properties of a recurrent attractor, we
gave a new synchronization criterion for the considered system by using Lya-
punov method and the well known Halanay lemma. To demonstrate the effec-
tiveness of the proposed method, a numerical example is used.

References

1. Allen, L., Bridges, T.J.: Numerical exterior algebra and the compound matrix
method. Numerische Mathematik 92, 197–232 (2002)

2. Ammar, B., Chérif, F., Alimi, M.A.: Existence and Uniqueness of Pseudo Almost
Periodic Solutions of Recurrent Neural Networks with Time-Varying Coefficients
and Mixed Delays. IEEE Transactions on Neural Networks and Learning Sys-
tems 23(1), 109–118 (2012)

3. Bazhenov, M., Huerta, R., Rabinovich, M.I., Sejnowski, T.: Cooperative behavior
of a chain of synaptically coupled chaotic neurons. Phys. D 116, 392–400 (1998)

4. Cao, J.D., Wang, J.: Global exponential stability and periodicity of recurrent neural
networks with time delay. IEEE Trans. Circ. Syst. I 52(5), 920–931 (2005)

Exponential Synchronization of a Class of RNNs 81

5. Chérif, F.: Existence and global exponential stability of pseudo almost periodic
solution for SICNNs with mixed delays. JAMC 39(1) (2011)

6. Cheng, C.-J., Liao, T.-L., Hwang, C.-C.: Exponential synchronization of a class of
chaotic neural networks. Chaos, Solitons and Fractals 24, 197–206 (2005)

7. Collins, J.J., Stewart, I.N.: Coupled nonlinear oscillators and the symmetries of
animal gaits. J. Nonlinear Sci. 3, 349–392 (1993)

8. Cui, B., Lou, X.: Synchronization of chaotic recurrent neural networks with time-
varying delays using nonlinear feedback control. Chaos, Solitons and Fractals 39,
288–294 (2009)

9. Gopalsamy, K.: Stability and oscillations in delay differential equations of popula-
tion dynamics. Kluwer Academic Publishers, The Netherlands (1992)

10. Huang, T., Chen, G., Kurths, J.: Synchronization of chaotic systems with time-
varying coupling delays. Discrete and Continuous Dynamical Systems, Series
B 16(4) (2011)

11. Itoh, M., Wu, C.W., Chua, L.O.: Communication systems via chaotic signals from
a reconstruction viewpoint. Int. J. Bifur. Chaos Appl. Sci. Eng. 7, 275–286 (1997)

12. Lu, H., van Leeuwen, C.: Synchronization of chaotic neural networks via output or
state coupling. Chaos, Solitons and Fractals 30, 166–176 (2006)

13. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Rev. Lett. 64, 1196–1199
(1990)

14. Parlitz, U., et al.: Transmission of digital signals by chaotic synchronization. Int.
J. Bifur. Chaos Appl. Sci. Eng. 2, 973–977 (1992)

15. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev.
Lett. 64, 821–824 (1990)

16. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic
oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996)

17. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized syn-
chronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51,
980–994 (1995)

18. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization
in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997)

Variational Foundations

of Online Backpropagation

Salvatore Frandina, Marco Gori, Marco Lippi, Marco Maggini,
and Stefano Melacci

Department of Information Engineering and Mathematical Sciences,
University of Siena, Italy

{frandina,marco,lippi,maggini,mela}@diism.unisi.it

Abstract. On-line Backpropagation has become very popular and it
has been the subject of in-depth theoretical analyses and massive exper-
imentation. Yet, after almost three decades from its publication, it is still
surprisingly the source of tough theoretical questions and of experimen-
tal results that are somewhat shrouded in mystery. Although seriously
plagued by local minima, the batch-mode version of the algorithm is
clearly posed as an optimization problem while, in spite of its effective-
ness, in many real-world problems the on-line mode version has not been
given a clean formulation, yet. Using variational arguments, in this pa-
per, the on-line formulation is proposed as the minimization of a classic
functional that is inspired by the principle of minimal action in analytic
mechanics. The proposed approach clashes sharply with common inter-
pretations of on-line learning as an approximation of batch-mode, and
it suggests that processing data all at once might be just an artificial
formulation of learning that is hopeless in difficult real-world problems.

Keywords: on-line Backpropagation, principle of least action, regular-
ization, local minima, dissipative systems.

1 Introduction

In classical statistics, sum-minimization problems arise in least squares and
in maximum-likelihood estimation (for independent observations). The general
class of estimators that arise as minimizers of sums are called M-estimators.
Backpropagation [8] was proposed to efficiently compute the gradient of the cost
function associated with a supervised neural network. Importance traces of the
idea behind the algorithm can be found mostly in [9], but also in [2]. In spite
of the plain numerical computation of the gradient, in many cases, it makes it
possible to break the barrier that enables many applications of neural networks
to real-world problems. Unfortunately, the convergence of the algorithm is se-
riously plagued by the presence of local minima in the error function [5]. In
many cases, instead of performing a classic gradient descent scheme, the gra-
dient computation for single examples (on-line mode) has been profitably used
by updating directly the parameters, without accumulating those contributions
for all the training set. The on-line scheme is especially adequate to real-world

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 82–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Variational Foundations of Online Backpropagation 83

Table 1. Links between machine learning and analytic mechanics

Links with Analytic Mechanics

variable machine learning analytic mechanics

wi weight particle position

ẇi weight variation particle velocity

V loss temporal derivative potential energy

T temporal smoothness kinetic energy

L = T − V Cognitive Lagrangian Mechanical Lagrangian

S =
∫ te
0

L dt Cognitive Action Mechanical Action

problems where the examples are streamed continuously in time. There is plenty
of evidence that such a stochastic gradient descent has been very effective in the
case of large-scale problems [1]. Amongst others, the Backpropagation on-line
training scheme is often regarded as a way to get around shallow local minima
of the cost function, but like for the batch-mode scheme, it is quite hard to
understand the conditions of convergence, apart from relatively simple cases [4].

After almost three decades from its publication, on-line Backpropagation is
still surprisingly the source of tough theoretical questions, and it has not received
a fully satisfactory formulation, yet. Using variational arguments, in this paper,
the on-line formulation is proposed as the minimization of a classic functional
that is inspired by the principle of least action in analytic mechanics. However,
the classic Lagrangian is replaced with a time-variant function that is responsi-
ble of a dissipative behavior that plays a major role in any learning process. We
prove that a “strong dissipation” transforms the continuous time differential law
coming from the Euler-Lagrange equation into the classic on-line Backpropaga-
tion with its stochastic gradient numerical computation. The proposed approach
clashes sharply with common interpretations of on-line learning as an approx-
imation of batch-mode. On the other hand, differently from what is generally
assumed, it suggests that processing data all at once might be just an artificial
formulation of learning that is hopeless in difficult real-world problems.

2 On-Line Backpropagation Revisited

We consider a feedforward neural network as a function which transforms a given
input x ∈ IRd into a real number, that is f : (x,w) ∈ X ×W → IR, being w the
vector of weights and x the input. The analysis carried out in this paper does
not make any hypothesis on the network structure and, consequently, on f(x,w),
but we like to think of it in terms of feedforward networks mostly because of
their universal approximation capabilities and their biological inspiration [7].

potential energy
Now we introduce the loss function V (f, y), along with the set of supervised pairs

P = {(xκ, yκ)}�κ=1. For example, V (f, y) can be the hinge function – typical for

84 S. Frandina et al.

classification – or the quadratic function (f(xκ) − yκ)
2 – typical of regression.

Let ζ be a mollifier. As an example, we can choose

ζε(τ) =

{
Zε · exp

(
1− ε2/(ε2 − τ2)

)
if |τ | < ε

0 if |τ | ≥ ε,

where Zε is taken in such a way that
∫ +∞
−∞ ζ(τ)dτ = 1. A nice property of

mollifiers is their weak convergence to the Dirac distribution, that is

lim
ε→0

ζ(τ) = δ(τ).

Let [0, te] be the time interval, t0 = 0 with te > 01. Now, let tκ be the time
instant at which the pair (xk, yk) becomes available, let tκ < te, and consider
the functional

V(w) =
∫ te

0

ψ(t)V (w(t))dt

where

V (w(t)) =

�∑
κ=1

ζ(t− tκ) · V (f(x(t), w(t)), y(t))).

and ψ ∈ C∞([0, te], IR
+) is a monotone increasing function which, in this paper,

is chosen as ψ(t) = eβt. As it will be shown later, this is related to energy
dissipation and plays a crucial role for the establishment of the learning process.
Basically, it prescribes a growing weight of the loss as time evolves. Now, let
us assume w ∈ IRm. We start to regard it as the Lagrangian coordinates of a
virtual mechanical system. The learning problem defined by the supervised pairs
P , for a given choice of weights w(t) at time t, defines a function V (w(t)) that,
throughout this paper, is referred to as the potential energy of the system (neural
network) defined by Lagrangian coordinates w. In machine learning, we look for
trajectories w(t) that possibly lead to configurations with small potential energy.
The classic supervised learning is given a more adequate interpretation as ε →
0, which leads to replace the mollifiers with correspondent Dirac distributions
δ(t− tκ). When choosing the quadratic loss, we get

V (w(t)) =

�∑
κ=1

δ(t− tκ) · (y(t)− f(x(t), w(t)))
2
.

The learning process in this case is only expected to reduce the error cor-
responding to the supervision points. For binary classification problems with
y(t) ∈ {−1, 1}, however, if we adopt the hinge function

V (w(t)) =
�∑

κ=1

δ(t− tκ) ·max {γ − y(t) · f(x(t), w(t)), 0}

1 It is of interest to consider also the case in which te = ∞.

Variational Foundations of Online Backpropagation 85

being γ > 0 a proper threshold, we can promptly see that the learning process
can led to the perfect match (zero loss) on some of the examples of the training
set.

Now, following the duality with mechanics, we introduce the kinetic energy.

kinetic energy
Let μi > 0 be the mass of each particle defined by the position wi(t) and velocity
ẇi. Then, let us consider the kinetic energy

T (t) =
1

2

m∑
i=1

μiẇ
2
i (t). (1)

It gives a glimpse of the converge of the process of learning, since its end corre-
sponds with T = 0. Like for the potential energy, in this paper we are interested
in the accumulation

∫ te
0

eβtT (t)dt over [0, te], which reflects the smoothness of
the velocities of the particles. Moreover, also for the kinetic energy, we provide
a growing account as time evolves which, as already stated, will be shown to be
the basis of a dissipative behavior. The introduction of the exponential factor in
both the potential and kinetic energy has been proposed in analytic mechanics
as a way of introducing dissipation processes that are not present within the
pure Hamiltonian framework [6].

variational formulation of learning
Let us introduce the Lagrangian

L := T − V

The problem of online learning can be formulated as that of finding

w� = arg min
w∈W

∫ te

0

eβtL(w(t))dt (2)

3 Backprop from Euler-Lagrange Equations

The solution of the online learning problem can be obtained by finding stationary
points of (2).

Theorem 1. The solution of online learning stated by (2) satisfies

ẅ�
i + βẇ�

i +
1

μi
V ′
wi

= 0, (3)

where V ′
wi

=
∑�

κ=1 V
′
wi

δ(t− tκ).

Proof. We have

d

dt

∂

∂ẇi

(
eβtL) = d

dt

∂

∂ẇi

(
eβtT

)
= μi

d

dt

(
eβtẇi

)
= μi

(
eβtẅi + βeβtẇi

)

86 S. Frandina et al.

and
∂

∂wi

(
eβtL) = −eβt

∂V

∂wi
= −eβtV ′

wi
.

Then the thesis follows when applying the Euler-Lagrange equation of (2). QED.

Notice that, since this theorem comes from the Euler-Lagrange equations, like for
the action in analytic mechanics, the solution of the equations is not necessarily
the absolute minimum. In general, it is a stationary point which is typically a
saddle point. Interestingly, as shown in Section 4, like for other physical laws,
this stationary point has nice minimization properties on the potential energy,
which is exactly what we look for also in learning. Now let us assume that the
system evolve from null Cauchy’s conditions wi(0) = ẇi(0) = 0 and let us use

the notation gi,κ := V
′
wi
(wi(tκ)). The following theorem holds true

Theorem 2. The evolution from null Cauchy’s condition follows the differential
equation

dw�
i

dt
+ βw�

i = − 1

μi

�∑
κ=1

gi,κ · 1(t− tκ). (4)

Proof. From Theorem 1 we have∫ t

0

d

dθ

(
dw�

i

dθ
+ βw�

i

)
dθ = − 1

μi

�∑
κ=1

∫ t

0

V
′
wi
· δ(θ − tκ) dθ

= − 1

μi

�∑
κ=1

gi,κ · 1(t− tκ).

Now, the thesis follows when considering that w�
i (0) = 0 and ẇ�

i (0) = 0. QED.

Now, let us consider the answer to the first stimulus (supervised pair) coming
at t = t1 from the initial conditions wi(0) = ẇi(0) = 0. We have

dw�
i

dt
+ βw�

i = −gi,1
μi

.

If wi(0) = 0 then

w�
i (t) =

−gi,1
βμi

(
1− e−β(t−t1)

)
,

which indicates an asymptotic evolution to

w�
i = lim

t→∞w�
i (t) =

−gi,1
βμi

Now we have |w�
i (5/β) − w�

i |/|w�
i | < 0.01, which means that with large values

of β – or equivalently, small time constant 1/β – the weights are updated2 from
w�

i (0) = w�
i |0 = 0 to w�

i (1) = w�
i |1 by

w�
i (1) � w�

i |1 = −ηi · gi,1 = − 1

βμi
gi,1,

2 We use the notation w�
i |t to indicate the corresponding discrete updating that are

used in the on-line Backpropagation algorithm.

Variational Foundations of Online Backpropagation 87

where ηi := 1/(βμi) is the classic learning rate. From now on, the notation �
is used to indicate the above stated approximation of the asymptotic value w�

i .
Interestingly, the required high value for β corresponds with small learning rate,
which is also kept small when considering particles with large mass μi. Beginning
from this remark, now we establish the connection between the formulated con-
tinuous framework of learning with the classic on-line Backpropation algorithm.

Theorem 3. Given P = {xκ, yκ}�κ=1, where the supervised pairs (xκ, yκ) comes
at t = tκ, let us β such that ∀κ = 1, . . . , � we have

τ := 10/β ≤ tκ − tκ−1. (5)

Then
w�

i (tk + τ) � w�
i (tκ − τ)− ηigi,κ, (6)

which corresponds with the discrete counterpart

w�
i |κ � w�

i |κ−1 − ηigi,κ, (7)

commonly referred to as the on-line Backpropagation algorithm.

Proof. We have∫ tκ+τ

tk−τ

d

dθ

(
dw�

i

dθ
+ βw�

i

)
dθ = − 1

μi

�∑
κ=1

∫ tκ+τ

tk−τ

V
′
wi
(w(t)) · δ(θ − tκ)dθ,

from which we derive(
dw�

i

dθ
+ βw�

i

)
tκ+τ

−
(
dw�

i

dθ
+ βw�

i

)
tκ−τ

= − 1

μi
1(t− tκ)gi,κ.

Now, because of the strong damping hypothesis (5)(
dw�

i

dθ

)
tκ−τ

� 0 and w�
i (tκ − τ) � w�

i |κ−1

and, therefore, for t > tκ we get

dw�
i

dθ
|tκ+τ + βw�

i |tκ+τ − βw�
i |κ−1 � − 1

μi
gi,κ.

Finally, the thesis follows when invoking again the strong damping hypothe-
sis (5). QED.

4 Learning as a Dissipative Hamiltonian Process

Now we can establish a conservation principles that is related to dissipative
systems3. From Theorem 1, if we multiply by ẇi and accumulate over the weights,
we get

m∑
i=1

μi

(
ẇiẅi + βẇ2

i

)
+

�∑
κ=1

m∑
i=1

V
′
wi
(wi(t)) ẇi δ(t− tκ) = 0.

3 For the sake of simplicity, in the following we drop the symbol
.

88 S. Frandina et al.

Now we have
dV (w(θ))

dθ
=

m∑
i=1

V
′
wi
(wi(t)) ẇi.

If we accumulate over [ta, tb] we get

∫ tb

ta

d

dθ

(
1

2

m∑
i=1

μiẇ
2
i

)
dθ +

∫ tb

ta

dV (w(θ))

dθ
·

�∑
κ=1

δ(θ − tκ) dθ +

∫ tb

ta

β

m∑
i=1

μiẇ
2
i dθ = 0.

Now, if we define

D(t) :=

∫ t

0

β
m∑
i=1

μiẇ
2
i dθ =

1

ηi

m∑
i=1

∫ t

0

ẇ2
i dθ,

then, we get ∫ tb

ta

d

dθ

(
T + V

�∑
κ=1

δ(θ − tκ) +D

)
dθ = 0.

Now, we use a notation overloading to denote by T (t) the kinetic energy at t
and we assume that q ≤ � supervised examples have been presented in [0, t],
being t ∈ [ta, tb]. If ∃κ = 1, . . . , � : tκ ∈ [ta, tb] the above equation turns into the
conservation equation

E(t) = T (t) + V

q∑
κ=1

1(t− tκ) +D(t) = c (8)

being c the constant energy of the extremes of the interval [ta, tb]. The overall en-
ergy E(t) is conserved in all intervals in which there is no supervision. Whenever
a supervised example is presented in the interval, the energy increases by

V

q∑
κ=1

(1(tκ)− 1(tκ−1)) ,

where 1(·) is the Heaviside function. It turns out that the energy is injected by
any supervised pairs, which yield new potential energy that is partly transformed
into kinetic energy and partly dissipated. It is in fact the strong dissipation hy-
pothesis given in terms of β which is responsible of producing stochastic gradient
descent and which ensures the convergence of the learning process.

5 Conclusions

This paper gives a clean foundation of on-line Backpropagation in a variational
framework by emphasizing strong connections with analytic mechanics. This
approach can be thought of as the temporal counterpart of the study on regu-
larization in the feature space given in [3]. It is shown that learning is in fact a
dissipative process and that if the damping parameter β is large enough then we

Variational Foundations of Online Backpropagation 89

end up into the classic stochastic gradient descent scheme of on-line Backprop-
agation. This formulation might be of interest for exploring the new frontiers
of lifelong learning models, in which we abandon learning processes based on
training sets and consider intelligent agents living in their own environments. To
this purpose, we have given natural laws expressed by second-order differential
equations that obey an intriguing principle of energy conservation.

While all this quenches the desire of giving Backpropagation a formulation
that resembles that of classic laws of Nature, the most attracting picture emerges
when forcing small values of β, namely small dissipation in the learning pro-
cess. In so doing, we depart significantly from stochastic gradient descent, and
our preliminary connections with Statistical Mechanics indicate that if we learn
with small dissipation we can gain more chance to get optimal solutions with
respect to the traps that typically plague gradient descent. Intuitively, this is
quite simple; the weights become particles whose behavior is that of a damping
oscillation system, which is very well-suited to escape from local minima traps.
Further research is needed to provide theoretical and experimental evidence of
this intuition.

Acknowledgements. The research has been supported under the PRIN 2009
grant “Learning Techniques in Relational Domains and Their Applications”.

References

1. Bottou, L., Bousquet, O.: The tradeoffs of large-scale learning. Advances in Neural
Information Processing Systems 20, 161–168 (2008)

2. Bryson, A., Ho, Y.C.: Applied optimal control: optimization, estimation, and con-
trol. Blaisdell Publishing Company (1969)

3. Gnecco, G., Gori, M., Sanguineti, M.: Learning with boundary conditions. Neural
computation 25(4), 1029–1106 (2013)

4. Gori, M., Maggini, M.: Optimal convergence of on-line backpropagation. IEEE
Transactions on Neural Networks 7(1), 251–254 (1996)

5. Gori, M., Tesi, A.: On the problem of local minima in backpropagation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 14(1), 76–86 (1992)

6. Herrera, L., Nunez, L., Patino, A., Rago, H.: A variational principle and the classical
and quantum mechanics of the damped harmonic oscillator. American Journal of
Physics 53(3), 273 (1985)

7. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural
Networks 4(2), 251–257 (1991)

8. Rumelhart, D.E., Hintont, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

9. Werbos, P.J.: Prediction and analysis in the behavioral sciences. Tech. rep., Harvard
University (1974)

GNMF with Newton-Based Methods

Rafa�l Zdunek1, Anh-Huy Phan2, and Andrzej Cichocki2,3,4

1 Department of Electronics, Wroclaw University of Technology,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

rafal.zdunek@pwr.wroc.pl
2 Laboratory for Advanced Brain Signal Processing

RIKEN BSI, Wako-shi, Japan
3 Warsaw University of Technology, Poland

4 Systems Research Institute, Polish Academy of Science (PAN), Poland

Abstract. Several variants of Nonnegative Matrix Factorization (NMF)
have been proposed for supervised classification of various objects. Graph
regularized NMF (GNMF) incorporates the information on the data ge-
ometric structure to the training process, which considerably improves
the classification results. However, the multiplicative algorithms used for
updating the underlying factors may result in a slow convergence of the
training process. To tackle this problem, we propose to use the Spec-
tral Projected Gradient (SPG) method that is based on quasi-Newton
methods. The results are presented for image classification problems.

Keywords: NMF, Graph-regularized NMF, SPG, Image classification.

1 Introduction

Nonnegative Matrix Factorization (NMF) [1] decomposes a nonnegative matrix
into lower-rank factor matrices that have nonnegative entries and usually some
physical meaning. When NMF is applied to the matrix of training samples, we
obtain sparse nonnegative feature vectors and coefficients of their nonnegative
combination. The vectors of the coefficients lie in a low-dimensional latent com-
ponent space. Hence, NMF is often regarded as a dimensionality reduction tech-
nique, and it has been widely applied for classification of various objects [2–6].

As reported in [7], the factor matrices obtained with NMF are generally non-
unique. Several attempts have been done to additionally constrain them to satisfy
a certain degree of sparsity, smoothness, uncorrelatedness, or orthogonality [2].
Cai et al. [8, 9] noticed that the projection from the high-dimensional observa-
tion space to the low-dimensional space should preserve the data geometrical
structure. That is, any training samples forming one class should, after being
projected, belong to the same class in the latent component space. Thus, they
proposed Graph regularized NMF (GNMF) [8] that constrains one of the factor
matrices with the information on the data geometric structure encoded in the
nearest-neighbor graph of the training samples. This constraint was imposed to
NMF by a specifically designed regularization term in the objective function

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 90–97, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

GNMF with Newton-Based Methods 91

that was then minimized with the standard multiplicative algorithm [2]. Guan
et al. [10] considerably accelerated the convergence of GNMF by using additive
gradient descent updates.

In this paper, we propose to improve the convergence rate of GNMF up-
dates even more, by applying another Newton-based methods that provide the
estimates according to the Karush-Kuhn-Tucker (KKT) optimality conditions.
First, we formulate the Quadratic Programming (QP) problems for minimiz-
ing the penalized objective function. The QP problems can be efficiently solved
with many numerical algorithms. To tackle large-scale classification problems, we
suggest to use the modified Spectral Projected Gradient (SPG) method that be-
longs to the class of quasi-Newton methods. Moreover, we also propose to control
the penalty parameters iteratively by some schedule included in the alternating
update scheme.

The paper is organized in the following way. The next section discusses the
Graph-regularized NMF. Section 3 is concerned with the optimization algo-
rithms. The numerical experiments for image classification problems are pre-
sented in Section 4. Finally, the conclusions are drawn in Section 5.

2 Graph-Regularized NMF

Let Y = [y1, . . . ,yT] ∈ RI×T
+ , where yt ∈ RI

+ is the t-th training sample.
Applying NMF to Y , we get Y ∼= AX, where the columns of the matrix A ∈
RI×J

+ represent the feature vectors, and the columns of the matrix X ∈ RJ×T
+

are encoding vectors.
In several variants of NMF, the objective function can be expressed by the

quadratic function:

Ψ(A,X) =
1

2
||Y −AX||2F +

αX

2
tr(XLXXT) +

αA

2
tr(ATLAA), (1)

where LX ∈ RT×T and LA ∈ RI×I are symmetric weighting matrices. In super-
vised classification, the matrix LX contains the information on assignments of
the training samples to their classes. In DNMF [4], it is determined by the matrix
of inner- and outer-class scattering. In GNMF [8], LX is the graph Laplacian
matrix that represents a data geometrical structure in the observation space.
It takes form: LX = D −W , where W = [wnm] ∈ RT×T

+ contains the entries
that determine the edges in the nearest neighbor graph of the observed points,

and D = diag
(∑T

m=1 wnm

)
∈ RT×T

+ . The edges can be determined by the hard

connections:

wnm =

{
1, if yn ∈ Np(ym), or ym ∈ Np(yn),
0, otherwise

(2)

where Np(yt) is the p nearest neighbor of the sample yt. We can also use the
Heat kernel weighting:

wnm =

{
exp

{
− ||y

n
−y

m
||22

σ

}
, if yn ∈ Np(ym), or ym ∈ Np(yn),

0, otherwise
(3)

92 R. Zdunek, A.-H. Phan, and A. Cichocki

or the cosine measure:

wnm =

{
yT
nym, if yn ∈ Np(ym), or ym ∈ Np(yn),
0, otherwise

(4)

The matrix LA in (1) can enforce the smoothness in the feature vectors (the
column vectors in A) or other modality. We assumed the simplest approach to
the smoothness by setting LA = II , where II ∈ RI×I

+ is an identity matrix.

3 Algorithm

Since the matrixLX in (1) is a symmetric and positive definite, the regularization
term tr(XLXXT) can be reformulated as follows:

Ψr(X) = tr(XLXXT) = ||XL
1
2

X ||2F = ||(L 1
2

X ⊗ IJ)x||22 = xT (LX ⊗ IJ)x, (5)

where x = vec(X) ∈ RJT is a vectorized form of X, and ⊗ stands for the
Kronecker product.

Considering the function (5), the minimization problem: minX Ψ(A,X), s.t.
X ≥ 0 can be expressed in terms of the Quadratic Programming (QP) problem:
minx

1
2x

TQXx+ cTXx, s.t. x ≥ 0, where QX = IT ⊗ATA+ αXLX ⊗ IJ ∈
RJT×JT and cX = −vec(ATY) ∈ RJT .

Similarly, the matrixA can be also computed by formulating the QP problem:
mina

1
2a

TQAa+cTAa, s.t. a ≥ 0, where a = vec(AT) ∈ RIJ , QA = (XXT +

αAIJ)⊗ II ∈ RIJ×IJ and cA = −vec(Y XT) ∈ RIJ .
Since the function (1) is quadratic with respect to both arguments A and X

(but not jointly), the matricesQA andQX are equivalent to the Hessian matrices
for A and X, respectively. When αA > 0, the matrix QA is positive definite.
Under the assumption of positive definiteness of the matrix LX , the matrix QX

is also positive definite. Hence, both QP problems are strictly convex. To solve
such problems, we can use many numerical algorithms such as the Active-Set
(AS), Interior-Point (IP), and Spectral Projected Gradient (SPG) [11]. These
algorithm are based on the Newton or quasi-Newton updates.

Note that the matrix QA has a block-diagonal structure, and hence the up-
dates of A might be considerably accelerated by transforming the nonnegative
least-squares problem: minA≥0

1
2 ||Y −AX||2F + αA

2 ||A||2F to the normal equa-

tions XXTAT = XY T subject to the nonnegativity constraints A ≥ 0. Then,
the solution can be efficiently searched with the FC-NNLS algorithm that was
proposed by Benthem and Keenan [12], and then adapted to NMF problems
in [13].

The updates for X cannot be accelerated in the similar way, however, there
is still a possibility of applying some quasi-Newton method without formulating
the Hessian QX . Note that the matrix QX is very large when the number of
training samples is large, and it is rather a dense matrix due to the matrix
LX . One of these possibilities is to use the SPG method [14] that combines the
standard gradient projection scheme with the nonmonotonic Barzilai-Borwein

GNMF with Newton-Based Methods 93

(BB) method [11]. It is used for minimization of convex functions subject to
box-constraints.

In the SPG method, the descent direction p
(k)
t for updating the vector xt in

the k-th iteration is defined as follows:

p
(k)
t =

[
x
(k)
t − (α

(k)
t)−1∇xt

Ψ(A,x
(k)
t)

]
+
− x

(k)
t , (6)

for α
(k)
t > 0 selected in such a way that the matrix α

(k)
t IJ approximates the

Hessian matrix.
In [2], this method was adopted to parallel processing of all column vectors

in X. Using this approach, we have the update rule:

X(k+1) = X(k) + P (k)Z(k), (7)

where Z(k) = diag{η(k)}. The column vectors of P (k) ∈ RJ×T and the entries
of the vector η(k) ∈ RT

+ are descent directions and steplengths for updating the

vectors {xt}, respectively. According to (6), the matrix P (k) has the form:

P (k) =
[
X(k) −G

(k)
X D(k)

]
+
−X(k), (8)

where G
(k)
X = ∇XΨ(A,X(k)) ∈ RJ×T and D(k) = diag{(α(k)

t)−1} ∈ RT×T .

The coefficients {α(k)
t } can be obtained from the secant equation that is

given by S(k) diag{α(k+1)
t } = W (k), where S(k) = X(k+1) −X(k) and W (k) =

∇XΨ(A,X(k+1))−∇XΨ(X(k)). For the minimization of the objective function

(1) with respect to X, the matrix W (k) takes the form: W (k) = ATAS(k) +

αXS(k)LX . From (7) we have: S(k) = P (k)Z(k). In consequence, the secant
equation leads to:

α(k+1) =
diag

{
(S(k))TW (k)

}
diag

{
(S(k))TS(k)

} =
diag

{
(S(k))TATAS(k) + αX(S(k))TS(k)LX

}
diag

{
(S(k))TS(k)

}

=
diag

{
(P (k))TATAP (k) + αX(P (k))TP (k)Z(k)LX(Z(k))−1

}
diag

{
(P (k))TP (k)

}

=
1T
J

[
P (k) �

(
ATAP (k) + αXP (k)Z(k)LX(Z(k))−1

)]
1T
J

[
P (k) � P (k)

] , (9)

where � stands for the Hadamard product, and the operation diag{M} creates a
vector containing the main diagonal entries of a matrix M . Note that the matrix
Z(k) is diagonal, so the product Z(k)LX(Z(k))−1 can be readily calculated.

The steplengths can be estimated by solving the minimization problem:

η
(k)
∗ = argmin

η(k)
Ψ
(
A,X(k) + P (k) diag{η(k)}

)
. (10)

94 R. Zdunek, A.-H. Phan, and A. Cichocki

If αX = 0, the problem (10) can be expressed in a closed-form. Otherwise,
iterative updates must be used, e.g. the Armijo rule [11].

The final form of the modified SPG algorithm is given by Algorithm 1.
The final form of the NMF algorithm used in the training process is given by
Algorithm 2.

Algorithm 1. SPG algorithm

Input : Y ∈ RI×T
+ , A ∈ RI×J

+ , X(0) ∈ RJ×T
+ - initial guess, kmax - number of

iterations for SPG updates, αmin > 0, αmax > 0, ∀t : ᾱ(0)
t = 1

2
αmax,

Output: X̂ - estimated factor matrices,
1 for k = 0, 1, . . . , kmax do

2 G
(k)
X = ∇XΨ(A,X(k)) = AT (AX(k) − Y) + αXX(k)LX ; // Gradient

3 P (k) =
[
X(k) −G

(k)
X diag{(ᾱ(k)

t)−1}
]
+
−X(k) ; // Descent direction

4 η̄(k) = max{0,min{1,η(k)}} ; // where η(k) is estimated with (10)

5 X(k+1) = X(k) +P (k) diag{η̄(k)};
6 ᾱ(k+1) = max{αmin,min{αmax,α

(k+1)}}; // where α(k+1) is set to (9)

In the training process, we obtain the nonnegative matrices A and X. The
column vectors of X contain the discriminant information. To classify the test
sample ỹ, first we need to project it onto the subspace spanned by the column
vectors of the matrix A. As a result, we obtain x̃ ∈ RJ

+. This step can be carried
out with the SPG, assuming αX = 0. Then, the following problem is solved:
t∗ = argmin1≤t≤T ||x̃− xt||2, which gives the index t∗ of the class to which the
sample ỹ is classified.

4 Experiments

The experiments are carried out for classification of facial images taken from the
ORL database1. It contains 400 frontal facial images of 40 people (10 pictures
per person). We selected 8 training images randomly from each class, and the
remaining 2 images are used for testing.

We test the following NMF algorithms: MUE (standard multiplicative Lee-
Seung algorithm for the Euclidean distance) [1], GNMF [8], MD-NMF [10], stan-
dard projected ALS [2], LPG (Lin’s Projected Gradient) [15], IP (Interior-Point
NMF) [16], regularized FC-NNLS [13], SPG-NMF (Algorithm 2). For the SPG
algorithm, we found the optimal parameters: αX = 10−5, ᾱ = 10−12, α0 = 0.01,
and kmax = min{k, 50}, where k is the alternating step in Algorithm 2. The
matrix LX is determined using the hard connection criterion given by (2). The
iterative process is terminated after 50 alternating steps.

1 http://people.cs.uchicago.edu/∼dinoj/vis/orl/

GNMF with Newton-Based Methods 95

Algorithm 2. SPG-NMF Algorithm

Input : Y ∈ RI×T , J - lower rank, α0 - initial regularization parameter,
Output: Factor matrices: A ∈ RI×J

+ and X ∈ RJ×T
+

1 Initialize: A and X with nonnegative random numbers;
2 Replace negative entries (if any) in Y with zero-value, k = 0 ;
3 repeat

4 α
(k)
A = max

{
ᾱ, 2−kα0

}
; // Regularization parameter schedule

5 X(k+1) = SPG(Y ,A(k),X(k), αX);

6 d̄
(k+1)
j =

∑T
t=1 x

(k+1)
jt ,

X(k+1) ← diag

{(
d̄
(k+1)
j

)−1
}
X(k+1), A(k) ← A(k)diag

{
d̄
(k+1)
j

}
;

7 Ā
(k+1)

= FCNNLS(Y T , (X(k+1))T , (A(k))T , α
(k)
A);

8 A(k+1) = (Ā
(k+1)

)T ;

9
¯̄d
(k+1)
j =

∑I
i=1 a

(k+1)
ij ,

X(k+1) ← diag
{
¯̄d
(k+1)
j

}
X(k+1), A(k+1) ← A(k+1)diag

{(
¯̄d
(k+1)
j

)−1
}
;

10 k ← k + 1;

11 until Stop criterion is satisfied;

The NMF algorithms are initialized with uniformly distributed random ma-
trices, and tested for various values of the related parameters. Fig. 1 presents the
mean recognition rate versus the number of components (parameter J) obtained
with different NMF algorithms.

10 15 20 25 30 35 40
65

70

75

80

85

90

95

100

Rank J

R
e
c
o
g
n
it
io

n
ra

te
[%

]

MUE
GNMF
MD-NMF
ALS
LPG
IP
FC-NNLS
SPG

Fig. 1. Recognition rate obtained using various NMF algorithms versus the number of
components J

96 R. Zdunek, A.-H. Phan, and A. Cichocki

The normalized residual errors versus the number of iterations for the selected
NMF algorithms are plotted in Fig. 2.

10 20 30 40 50 60 70 80 90 100
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Iterations: k

||
Y

-
A

(k
) X

(k
) || F

/|
|Y

|| F

SPG
MD-NMF
GNMF
MUE
ALS

Fig. 2. Normalized residual errors versus alternating iterations

5 Conclusions

The results presented in Fig. 1 demonstrate that the SPG-NMF algorithm out-
performs the other tested algorithms in terms of the recognition rate for J > 10.
Usually an increase in the factorization rank leads to a higher recognition rate.
The experiments also confirm that the NMF algorithms based on Newton-like
methods (SPG, IP, FC-NNLS and ALS) converge faster than the multiplica-
tive algorithms. This can be observed in Fig. 2 where the SPG-NMF algorithm
demonstrates a better convergence behavior than the others. Initially the pro-
jected ALS algorithm converges faster but it does not guarantee a monotonic
convergence. As observed in Fig. 2 the residual error of the SPG-NMF decreases
monotonically with alternating steps. This behavior is also justified by the fact
that both SPG and FC-NNLS algorithms converge to the solution optimal ac-
cording to the KKT conditions. Moreover, the convergence of the SPG-NMF is
faster than for the multiplicative algorithms since the SPG is a quasi-Newton
method, i.e., the gradient direction is scaled using the information on the Hessian
approximation.

Summing up, the experiments showed that the proposed algorithm works very
efficiently for the facial classification problem. The usefulness of the proposed
algorithm in other applications of NMF will be analyzed in the further research.

References

1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401, 788–791 (1999)

GNMF with Newton-Based Methods 97

2. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley and Sons (2009)

3. Qin, L., Zheng, Q., Jiang, S., Huang, Q., Gao, W.: Unsupervised texture classi-
fication: Automatically discover and classify texture patterns. Image and Vision
Computing 26(5), 647–656 (2008)

4. Zafeiriou, S., Tefas, A., Buciu, I., Pitas, I.: Exploiting discriminant information in
nonnegative matrix factorization with application to frontal face verification. IEEE
Transactions on Neural Networks 17(3), 683–695 (2006)

5. Guillamet, D., Vitria, J.: Classifying faces with nonnegative matrix factorization.
In: Proc. 5th Catalan Conference for Artificial Intelligence, Castello de la Plana,
Spain, pp. 24–31 (2002)

6. Benetos, E., Kotti, M., Kotropoulos, C.: Musical instrument classification using
non-negative matrix factorization algorithms and subset feature selection. In: Proc.
of 2006 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2006), Toulouse, France (2006)

7. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a
correct decomposition into parts? In: Thrun, S., Saul, L., Schölkopf, B. (eds.)
Advances in Neural Information Processing Systems (NIPS), vol. 16. MIT Press,
Cambridge (2004)

8. Cai, D., He, X., Wu, X., Han, J.: Nonnegative matrix factorization on manifold.
In: Proc. 8-th IEEE International Conference on Data Mining (ICDM), pp. 63–72
(2008)

9. Cai, D., He, X., Han, J., Huang, T.: Graph regularized nonnegative matrix fac-
torization for data representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 33(8), 1548–1560 (2011)

10. Guan, N., Tao, D., Luo, Z., Yuan, B.: Manifold regularized discriminative nonneg-
ative matrix factorization with fast gradient descent. IEEE Transactions on Image
Processing 20(7), 2030–2048 (2011)

11. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations
Research. Springer, New York (1999)

12. Benthem, M.H.V., Keenan, M.R.: Fast algorithm for the solution of large-scale
non-negativity-constrained least squares problems. Journal of Chemometrics 18,
441–450 (2004)

13. Kim, H., Park, H.: Non-negative matrix factorization based on alternating non-
negativity constrained least squares and active set method. SIAM Journal in Matrix
Analysis and Applications 30(2), 713–730 (2008)

14. Birgin, E.G., Martnez, J.M., Raydan, M.: Nonmonotone spectral projected gradient
methods on convex sets. SIAM Journal on Control and Optimization 10, 1196–1211
(2000)

15. Lin, C.J.: Projected gradient methods for non-negative matrix factorization. Neural
Computation 19(10), 2756–2779 (2007)

16. Zdunek, R.: Spectral signal unmixing with interior-point nonnegative matrix fac-
torization. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN
2012, Part I. LNCS, vol. 7552, pp. 65–72. Springer, Heidelberg (2012)

Improving the Associative

Rule Chaining Architecture

Nathan Burles, Simon O’Keefe, and James Austin

Advanced Computer Architectures Group,
Department of Computer Science,

University of York,
York, YO10 5GH, UK

{nburles,sok,austin}@cs.york.ac.uk

http://www.cs.york.ac.uk

Abstract. This paper describes improvements to the rule chaining ar-
chitecture presented in [1]. The architecture uses distributed associative
memories to allow the system to utilise memory efficiently, and superim-
posed distributed representations in order to reduce the time complexity
of a tree search to O(d), where d is the depth of the tree. This new work
reduces the memory required by the architecture, and can also further
reduce the time complexity.

Keywords: rule chaining, correlation matrix memory, associative mem-
ory, distributed representation, parallel distributed computation.

1 Introduction

Rule chaining is a common problem in the field of artificial intelligence; searching
a tree of rules to determine if there is a path from the starting state to the goal
state. The Associative Rule Chaining Architecture (ARCA) [1] uses correlation
matrix memories (CMMs)—a simple associative neural network [2]—to perform
rule chaining. We present an improvement to the original ARCA architecture
that reduces the memory required, and can also reduce the time complexity.

Rule chaining includes both forward and backward chaining. In this work we
describe the use of forward chaining, working from the starting state towards
the goal state, although there is no reason that backward chaining could not be
used with this architecture.

In forward chaining, the search begins with an initial set of conditions that
are known to be true. Each of the rules is then checked in turn, to find one for
which the antecedents match these conditions. The consequents of that rule are
then added to the current state, which is checked to decide if the goal has been
found. If it has not, then the search continues by iterating—if no further rules
are found to match then the search results in failure.

This is essentially a tree search, and so classical algorithms such as depth-first
search are commonly used. The time complexity of such an algorithm is O(bd),
where b is the branching factor and d is the depth of the tree. Reducing this to
O(d) therefore represents a potentially significant improvement.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 98–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.york.ac.uk

Improving the Associative Rule Chaining Architecture 99

1.1 Correlation Matrix Memories (CMMs)

The CMM is a simple, fully connected, associative neural network consisting of
a single layer of weights. Despite their simplicity, associative networks are still
an active area of research (e.g. [3,4]). In this work we use a sub-class of CMMs,
where these weights are restricted to binary values, known as binary CMMs [5].

Binary CMMs use simple Hebbian learning [6]. Learning to associate pairs of
binary vectors is thus an efficient operation, requiring only local updates to the
CMM. This learning is formalised in Equation 1, where M is the resulting CMM
(matrix of binary weights), x is the set of input vectors, y is the set of output
vectors, n is the number of training pairs, and

∨
indicates the logical OR of

binary vectors or matrices.
M =

∨n
i=1 xiy

T
i (1)

A recall operation may be performed as shown in Equation 2. A matrix mul-
tiplication between the transposed input vector and the CMM results in a non-
binary output vector, to which a threshold function f must be applied in order
to produce the final output vector.

y = f(xTM) (2)

It is possible to greatly optimise this recall operation, using the fact that the
input vector contains only binary components. For the jth bit in the output,
the result of a matrix multiplication is the vector dot product of the transposed
vector xT and the jth column of matrix M. In turn the vector dot product is
defined as

∑n
i=1 xiMj,i, where Mj,i is the value stored in the jth column of

the ith row of the CMM M. Given the binary nature of x it is clear that this
dot product is equal to the sum of all values Mj,i where xi = 1, formalised in
Equation 3.

yj = f(
∑

i(xi=1) Mj,i) (3)

There are various options as to which threshold function, f , may be applied
during recall. The choice of function depends on the application, and on the
data representation used. ARCA uses superposition of vectors, so the selection
is limited to Willshaw thresholding, where any output bit with a value at least
equal to the (fixed) trained input weight is set to one [5].

1.2 Associative Rule Chaining

The Associative Rule Chaining Architecture stores multiple states superimposed
in a single vector using a distributed representation [7], which also helps to
provide more efficient memory use and a greater tolerance to faults than a local
representation [8]. For example, the superposition of two vectors {0 0 1 0 0}
and {1 0 0 0 0} is the vector {1 0 1 0 0}.

ARCA performs rule chaining using superimposed representations, hence re-
ducing the time complexity of a tree search. The main challenge overcome by the

100 N. Burles, S. O’Keefe, and J. Austin

architecture is to maintain the separation of each superimposed state throughout
the search, without needing to separate out the distributed patterns or revert to
a local representation.

To solve this challenge, each rule is assigned a unique “rule vector” which
exists in a separate vector space to those used for the antecedent and consequent
tokens. ARCA stores the antecedents and consequents of rules in two separate
CMMs, connected by the rule vector [1], described further in Section 2.

2 Improving the ARCA Architecture

In the original architecture, two CMMs are used to separate the antecedents and
consequents of rules. When storing a rule, for example a → b, a unique “rule
vector” must be generated. This is essentially a label for the rule, but can be
considered as our example rule becoming a→ r0 → b.

The first CMM is used to store the associations between the superimposed
antecedents of a rule (a) and the assigned rule vector (r0). This results in the
rule firing if the tokens in the head of each rule are contained within a presented
input, i.e. a→ r0.

When training the second CMM, a slightly more complex method is required.
Initially, a tensor product (TP) is formed between the superimposed consequents
of a rule (b) and the rule vector (r0); this TP is “flattened” in row-major order
to form a vector (b : r0). The associations between the rule vector and this TP
are then stored in the second CMM. This means that when a rule fires from
the antecedent CMM, the consequent CMM will produce a TP containing the
output tokens bound to the rule that caused them to fire, i.e. r0 → (b : r0).
These tokens can then be added to the current state in order to iterate.

2.1 Using a Single CMM

In ARCA the separation of superimposed states during the recall process is
actually performed by the rule vector, rather than through the use of two CMMs.
We propose that this is unnecessary and we can use a single CMM mapping
directly from the antecedents to the consequents, reducing both the memory
required to store the rules and the time required to perform a recall operation.

To train this reduced ARCA requires a similar operation as originally used
when training the second CMM. Every rule is still assigned a unique rule vector,
which is used to form a TP with the superimposed consequents of the rule (b : r0).
The single CMM is now trained using the superimposed antecedents of the rule
as an input and this TP as an output, i.e. a→ (b : r0). Upon presentation of an
input containing the tokens in the head of a rule, the CMM will produce a TP
containing the output tokens bound to the rule that caused them to fire.

2.2 Recall

Fig. 1 shows a recall process performed on the reduced ARCA. To initialise the
recall, an input state TPin is created by forming the TP of any initial tokens

Improving the Associative Rule Chaining Architecture 101

TPin

r0

b

r1

c

r0

b

r1

c

2 ∗ TPout1

A
R
C
A

r2

p

r2

p

R
ec
a
ll
fr
o
m 2 ∗ TPout2

r3

q

r3

q

TPoutput

S
u
m

th
en

th
re
sh
o
ld

r2

p

r3

q

r2 + r3

p+ q

Fig. 1. A visualisation of the recall process within the reduced ARCA. The tensor
products (TPs) contain different token vectors bound to rule vectors. Each column is
labelled at the top with the tokens contained within the column. The position of each
column is defined by the positions of the bits set to one in the rule vector to which the
token is bound, labelled at the base of the column. The remainder of the TP consists
solely of zeros. The vector weight is 2, and hence each column appears twice.

with a rule vector. In the diagram we assume that the vector weight is 2, and
we initialise the search with two separate, but superimposed, inputs—b : r0 and
c : r1.

The recall process can now begin, by recalling each column of TPin from
the CMM in turn. The result of each column recall is an entire TP of equal
dimensions to the original input (TPoutx) containing the consequents of a rule,
bound to the rule that fired them. In our diagram each of these output TPs is
recalled twice, once for each column in TPin.

We need to combine these to form a single TP to allow the system to iterate.
As can be seen in the diagram, any antecedents will appear in TPin a number of
times equal to the weight of a rule vector. Thus, the consequents will appear in
the same number of TPouts, bound to the rule that caused them to fire. When
these are summed, the weight of a rule vector can therefore be used as a threshold
to obtain the final output—a single binary TP, TPoutput.

Before the system iterates, we need to check whether the search has com-
pleted. Firstly we can check whether the search should continue. If TPoutput

consists solely of zeros, then no rules have been matched and hence the search
is completed without finding a goal state.

If TPoutput is not empty, then we must check whether a goal state has been
reached. This is achieved by treating TPoutput as a CMM. The superposition
of the goal tokens is used as an input to this CMM, and the threshold set to
the combined weight of these superimposed goal tokens. If the resulting binary

102 N. Burles, S. O’Keefe, and J. Austin

vector contains a rule vector, then this indicates that this rule vector was bound
to the goal token and we can conclude that the goal state has been reached.

2.3 Time Complexity of the Reduced ARCA

We have previously shown [1] that ARCA is able to search multiple branches of
a tree in parallel, while maintaining separation between them. This reduces the
time complexity of a search to O(d), where d is the depth of the tree. Contrasted
with a depth-first approach with a time complexity of O(bd), where b is the
branching factor, this is a notable improvement.

In order to compare the worst case time complexity of the original and the
reduced ARCA, we now perform a more detailed analysis. When binary matrices
and vectors are stored sparsely, the time complexity of a simple CMM recall
operation depends on the weight of the input vector wx and the number of bits
set in each row of the matrix wM[i]. In the worst case, wM[i] will be equal to the
length of the output vector ly.

Using Equation 3, applied to all columns, the time complexity is found as the
time to sum each row M[i] where xi = 1, plus a linear scan through the output
vector to apply the final threshold. This is given in Equation 4.

TCrecall = wxly + ly (4)

In applying Equation 4 to the ARCA, we must consider the lengths and
weights of vectors used to represent tokens and rules as potentially different,
resulting in four terms: lt, wt, lr, and wr—representing the lengths and weights
of tokens and rules respectively.

It is also important to remember that this equation calculates the time com-
plexity of the recall of a single vector, where in ARCA every column of an input
TP is recalled in turn. As both the original and the reduced ARCA operate in the
same fashion, this multiplier can be ignored for the purpose of this comparison.

The worst case time complexity of recalling a single vector from the original
ARCA and the reduced ARCA can now be derived to find Equations 5 and 6
respectively.

TCoriginal = CMM1 + CMM2

= (wtlr + lr) + (wrltlr + ltlr)

= lr(wt + 1 + lt(wr + 1)) (5)

TCreduced = wtltlr + ltlr

= lrlt(wt + 1) (6)

In order to find the relative parameters for which the reduced ARCA becomes
more efficient than the original ARCA we equate 5 and 6 and simplify as far as
possible, as in Equation 7.

lr(wt + 1 + lt(wr + 1)) = lrlt(wt + 1)

1 + ltwr = wt(lt − 1) (7)

Improving the Associative Rule Chaining Architecture 103

This equation shows that in the worst case, if the weight of both rule and
token vectors is equal, that the original and the reduced ARCA will perform
essentially equally. If the weight of rule vectors is greater than that of token
vectors, then the reduced ARCA will outperform the original.

In reality, the worst case is not possible—if all of the rows of the matrix were
completely full, then it would be impossible to successfully recall any vector that
was originally stored. Rather than attempting to time a comparison, as this is
unlikely to provide accurate or fair results, we instead compare the memory
requirements experimentally.

2.4 Comparison of Memory Requirements

The time complexity of a recall operation is dependent on the number of bits
set in each row of the matrix. As such, a comparison of the memory required
by the original and the reduced ARCA also provides a good indication of any
improvement in the time complexity.

In order to compare the memory required, both variants of ARCA have been
applied to the same randomly generated problems. For each experiment a tree
of rules was generated with a given depth d and maximum branching factor b,
using the same procedure as detailed in previous work [1]. These rules were then
learned by both systems, and rule chaining was performed on them.

In all experiments, we fixed the vector weight for both rules and tokens to be 4.
This value results in sparse vectors over the range of vector lengths investigated,
and should provide good performance in the CMMs [9].

Given our analysis of the time complexity, using the same weight in both types
of vector would also be expected to result in very similar memory requirements
in both systems, and so any deviation from this will indicate a difference between
the worst case and expected times.

The experiments have been performed over a range of values for d, b, and the
vector length. In order to further test our time complexity analysis we also varied
the token vector and rule vector lengths independently, on the expectation that
the comparative memory requirement would not vary.

The graphs in Fig. 2 are 3D scatter plots showing the memory requirement
of the reduced ARCA as a percentage of the memory required of the original
ARCA. The results clearly demonstrate that varying the relative token and rule
lengths has very little effect on the comparative memory requirement.

It is also clear that the memory required by the reduced ARCA tends towards
around 80% of that required by the original ARCA, which implies that the time
complexity in the expected case is likely to be similarly improved.

Where the colour of a point is black, then the recall success rate for both
architectures was at least 99%. As the colour of a point tends towards white (for
the shortest vector lengths), it indicates that the reduced ARCA continued to
achieve at least 99% recall success, but the original ARCA had a lower success
rate. In no cases was the recall success rate of the original ARCA higher than
that of the reduced ARCA, and so it can be concluded that the reduced ARCA
improves the storage capacity of the network, even while reducing the memory

104 N. Burles, S. O’Keefe, and J. Austin

Fig. 2. 3D scatter plots showing the memory requirement of the reduced ARCA as
a percentage of the memory requirement of the original ARCA. In the top plot, the
length of token and rule vectors are equal. In the middle plot, the length of token
vectors is double that of rule vectors. In the bottom plot, the length of rule vectors
is double that of token vectors. For all points, the recall success rate for the reduced
ARCA was at least 99%. As the colour tends from black to white, the recall success
rate for the original ARCA moves from ≥99% towards 0%.

Improving the Associative Rule Chaining Architecture 105

requirement. We chose to show the points at which recall success was at least
99%, as the nature of neural networks is that they may introduce a small amount
of uncertainty. This cut-off, however, could be selected at any point—including
100%—with the trade-off that higher accuracy results in lower network capacity.

3 Conclusions and Further Work

This paper has described further improvements to the ARCA, with a simplified
architecture which will aid in understanding, as well as reducing the memory
requirements, the execution time, and improving the capacity.

Our analysis indicated that the performance of the original and the reduced
architectures should be similar, if the token and rule vector weights are chosen
to be equal. Our experimentation, on the other hand, clearly demonstrated that
the reduced ARCA offers a 20% improvement over the original. This is due to
the limitations of the worst case complexity, as previously explained. In order
to improve the analysis, further work is required to create a better model of
the interactions between vector pairs stored in a CMM. With such a model,
the expected case could be analysed, based additionally on the number of rules
stored in the system. This analysis will improve the theoretical basis for the
application of ARCA to real rule-chaining problems.

References

1. Austin, J., Hobson, S., Burles, N., O’Keefe, S.: A Rule Chaining Architecture Using a
Correlation Matrix Memory. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm,
G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 49–56. Springer, Heidelberg
(2012)

2. Kohonen, T.: Correlation Matrix Memories. IEEE Transactions on Computers,
353–359 (1972)

3. Gorodnichy, D.O.: Associative Neural Networks as Means for Low-Resolution Video-
Based Recognition. IJCNN 2005, 3093–3098 (2005)

4. Ju, Q., O’Keefe, S., Austin, J.: Binary Neural Network Based 3D Facial Feature
Localization. IJCNN 2009, 1462–1469 (2009)

5. Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic Associa-
tive Memory. Nature 222, 960–962 (1969)

6. Ritter, H., Martinetz, T., Schulten, K., Barsky, D., Tesch, M., Kates, R.: Neural
Computation and Self-Organizing Maps: An Introduction. Addison Wesley, Red-
wood City (1992)

7. Austin, J.: Parallel Distributed Computation in Vision. IEE Colloquium on Neural
Networks for Image Processing Applications, 3/1–3/3 (1992)

8. Baum, E.B., Moody, J., Wilczek, F.: Internal Representations for Associative Mem-
ory. Biol. Cybernetics 59, 217–228 (1988)

9. Palm, G.: On the Storage Capacity of Associative Memories. In: Neural Assemblies,
an Alternative Approach to Artificial Intelligence, pp. 192–199. Springer, New York
(1982)

A Two-Stage Pretraining Algorithm
for Deep Boltzmann Machines

KyungHyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

Department of Information and Computer Science
Aalto University School of Science, Finland
{firstname.lastname}@aalto.fi

Abstract. A deep Boltzmann machine (DBM) is a recently introduced Markov
random field model that has multiple layers of hidden units. It has been shown
empirically that it is difficult to train a DBM with approximate maximum-
likelihood learning using the stochastic gradient unlike its simpler special case,
restricted Boltzmann machine (RBM). In this paper, we propose a novel pretrain-
ing algorithm that consists of two stages; obtaining approximate posterior distri-
butions over hidden units from a simpler model and maximizing the variational
lower-bound given the fixed hidden posterior distributions. We show empirically
that the proposed method overcomes the difficulty in training DBMs from ran-
domly initialized parameters and results in a better, or comparable, generative
model when compared to the conventional pretraining algorithm.

Keywords: Deep Boltzmann Machine, Deep Learning, Pretraining.

1 Introduction

Deep Boltzmann machine (DBM), proposed in [14], is a recently introduced variant of
Boltzmann machines which extends widely used restricted Boltzmann machines (RBM)
to a model that has multiple hidden layers. It differs from the popular deep belief net-
work (DBN) [5] in that every edge in the DBM model is undirected. In this way, DBMs
facilitate propagating uncertainties across multiple layers of hidden variables.

Although it is straightforward to derive a learning algorithm for DBMs using a varia-
tional approximation and stochastic maximum likelihood method, recent research (see,
for example, [14,4]) has shown that learning the parameters of DBMs is not trivial. Es-
pecially the generative performance of the trained model, commonly measured by the
variational lower-bound of log-probabilities of test samples, tends to degrade as more
hidden layers are added.

In [14] a greedy layer-wise pretraining algorithm was proposed to be used to initial-
ize parameters of DBMs, and it was shown that it largely overcomes the difficulty of
learning a good generative model.

Along this line of research, we propose another way to approach pretraining DBMs
in this paper. The proposed scheme is based on an observation that training DBMs
consists of two separate stages; approximating a posterior distribution over hidden units
and updating parameters to maximize the lower-bound of log-likelihood given those
states.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 106–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 107

Based on this observation, our proposed method pretrains a DBM in two stages.
During the first stage we train a simpler, directed deep model such as DBNs or stacked
denoising autoencoders (sDAE) to obtain an approximate posterior distribution over
hidden units. With this fixed approximate posterior distribution, we train an RBM that
learns a distribution over a combination of data samples and their corresponding poste-
rior distributions of hidden units. Finetuning the model is then trivial as one only needs
to free hidden variables from the approximate posterior distribution computed during
the first stage.

We show that the proposed algorithm helps learning a good generative model which
is empirically comparable to the pretraining method proposed in [14]. Furthermore, we
discuss the potential degrees of freedom in extending the proposed approach.

2 Deep Boltzmann Machines

We start by describing deep Boltzmann machines (DBM) [14]. A DBM with L layers
of hidden neurons is defined by the following energy function:

−E(v,h | θ) =
Nv∑
i

vibi +

Nv∑
i

N1∑
j

vih
(1)
j wi,j +

N1∑
j

h
(1)
j c

(1)
j +

L∑
l=2

⎛
⎝ Nl∑

j

h
(l)
j c

(l)
j +

Nl∑
j

Nl+1∑
k

h
(l)
j h

(l+1)
k u

(l)
j,k

⎞
⎠ , (1)

where v = [vi]i=1...Nv
and h(l) =

[
h
(l)
j

]
j=1...Nl

are Nv binary visible units and Nl

binary hidden units in the l-th hidden layer. W = [wi,j] is the set of weights between

the visible neurons and the first layer hidden neurons, while U(l) =
[
u
(l)
j,k

]
is the set of

weights between the l-th and l + 1-th hidden neurons. bi and c
(l)
j are a bias to the i-th

visible neuron and the j-th hidden neuron in the l-th hidden layer, respectively. We use
θ to denote a set of all these parameters.

With the energy function, a DBM can assign a probability to each state vector x =
[v;h(1); · · · ;h(L)] using a Boltzmann distribution p(x | θ) = 1

Z(θ) exp {−E(x | θ)} .
Based on this property the parameters can be learned by maximizing the log-likelihood
L =

∑N
n=1 log

∑
h p(v(n),h | θ) given N training samples {v(n)}n=1,...,N , where

h =
[
h(1); · · · ;h(L)

]
.

The gradient computed by taking the partial derivative of the log-likelihood function
with respect to each parameter is used in most cases with a mini-batch per update. It
is then used to update the parameters, effectively forming a stochastic gradient ascent
method. A standard way of computing gradient results in the following update rule for
each parameter θ:

∇θ =

〈
−∂E(v(n),h | θ)

∂θ

〉
d

−
〈
−∂E(v,h | θ)

∂θ

〉
m

, (2)

where 〈·〉d and 〈·〉m denote the expectation over the data distribution P (h | {v(n)}, θ)
and the model distribution P (v,h | θ), respectively [3].

108 K. Cho et al.

3 Training Deep Boltzmann Machines

Although the update rules in Eq. (2) are well defined, it is intractable to compute them
exactly. Hence, an approach that uses variational approximation together with Markov
chain Monte Carlo (MCMC) sampling was proposed in [14].

First, the variational approximation is used to compute the expectation over the data
distribution. It starts by approximating p(h | v, θ), which is intractable unless L = 1,

by a factorial distribution Q(h) =
∏L

l=1

∏Nl

j=1 μ
(l)
j . The variational parameters μ(l)

j can
then be estimated by the following fixed-point equation:

μ
(l)
j ← f

⎛
⎝Nl−1∑

i=1

μ
(l−1)
i w

(l−1)
ij +

Nl+1∑
k=1

μ
(l+1)
k w

(l)
kj + c

(l)
j

⎞
⎠ , (3)

where f(x) = 1
1+exp{−x} . Note that μ(0)

i = vi and the update rule for the top layer
does not contain the second summation term, that is NL+1 = 0.

This variational approximation provides the values of variational parameters that
maximize the following lower-bound with respect to the current parameters:

p(v | θ) ≥ EQ(h) [−E(v,h)] +H(Q)− logZ(θ), (4)

where

H(Q) = −
L∑

l=1

Nl∑
j=1

(
μ
(l)
j logμ

(l)
j + (1− μ

(l)
j) log(1− μ

(l)
j)

)

is an entropy functional. Hence, each gradient update step does not increase the exact
log-likelihood but its variational lower-bound.

Second, the expectation over the model distribution is computed by persistent sam-
pling. The simplest approach is to use Gibbs sampling.

This approach closely resembles variational expectation-maximization (EM) algo-
rithm (see, for example, [2]). Learning proceeds by alternating between finding the
variational parameters μ and updating the DBM parameters to maximize the given vari-
ational lower-bound using the stochastic gradient method. However, it has been known
and will be shown in the experiments in this paper that training a DBM using this ap-
proach starting from randomly initialized parameters is not trivial [14,4].

Hence, in [14] a pretraining algorithm to initialize the parameters of DBMs was
proposed. The pretraining algorithm greedily trains each layer of a DBM by considering
each layer as an RBM, following a pretraining approach used for training deep belief
networks (DBN) [5]. However, due to the undirectedness of edges in DBMs it has been
proposed to use the first layer RBM with two duplicate copies of visible units with tied
weights and the last layer RBM with two duplicate copies of hidden units with tied
weights. Once one layer has been trained, another layer can be trained on the aggregate
posterior distribution of the hidden units of the lower layer to extend the depth. After
the pretraining, learned weights are used as initializations of weights of DBMs.

A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 109

v

h(2)

h(4)

Q(h(2))

(a) Stage 1

v

h(1)

h(3)

Q(h(2))

Q(h(4))

(b) Stage 2

v

h(1)

h(2)

h(3)

h(4)

(c) Finetuning

Fig. 1. Illustration of the two-stage pretraining algorithm followed by finetuning of all parameters.
Shaded nodes indicate clamped variables whereas white nodes are free variables.

4 A Two-Stage Pretraining Algorithm

In this paper, we propose an alternative way of initializing parameters of a DBM com-
pared with the one described at the end of Section 3. We employ an approach that
separately obtains posterior distributions over hidden units and initializes parameters.

Before proceeding to the description of the proposed algorithm, we first divide the
hidden layers of a DBM into two sets. Let us denote a vector of hidden units in the
odd-numbered layers as h+ and the respective vector in the even-numbered layers as
h−. In this sense we may define μ+ and μ− as variational parameters of the hidden
units in the odd-numbered layers and the even-number layers, respectively.

Stage 1: We focus on finding a good set of variational parametersμ− of Q(h−) that has
a potential to give a reasonably high variational lower-bound in Eq. (4). In other words,
we propose to first find a good posterior distribution over hidden units given a visible
vector regardless of parameter values of a DBM. Although it might sound unreasonable
to find a good set of variational parameters without any fixed parameter values, we can
do this by borrowing posterior distributions over latent variables from other models.

DBNs and sDAE’s, described in [5] and [16], are natural choices to find a good
approximate posterior distribution over units in the even-numbered hidden layers. One
justification for using either of them is that they can be trained efficiently and well (see,
e.g., [1] and references therein). It becomes a trivial task as one can iteratively train each
even-numbered layer as either an RBM or a DAE on top of each other, as is a common
practice when a DBN or a sDAE is trained.

Stage 2: Once a set of initial variational parameters μ− is found from a DBN or an
sDAE, we train a model that has predictive power of the variational parameters given a
visible vector. It can be simply done by letting an RBM learn a joint distribution of v
and μ−.

The structure of the RBM can be directly derived from the DBM such that its visible
layer corresponds to the visible layer and the even-numbered hidden layers of the DBM
and its hidden layer to the odd-numbered hidden layers of the DBM. The connections
between them can also follow those of the DBM. This corresponds to finding a set of
DBM parameters that fit the variational parameters obtained in the first stage.

Once an RBM has been trained, we can use the learned parameters as initializations
for training the DBM, which corresponds to freeing h− from its variational posterior
distribution obtained in the first stage.

A simple illustration of the two-stage pretraining algorithm is given in Fig. 1.

110 K. Cho et al.

4.1 Discussion

It is quite easy to see that the proposed algorithm has high degree of freedom to plug in
alternative algorithms and models in both stages.

The most noticeable flexibility can be found in Stage 1. Any other machine learning
model that gives reasonable posterior distributions over multiple layers of binary hidden
units can be used instead of RBMs or DAEs. Also, instead of stacking each layer at a
time, one could opt to train deep autoencoders at once using advanced backpropagation
algorithms (see, for instance, [10]).

In Stage 2, one may opt to use a DAE instead of an RBM. It will make learning
faster and therefore leave more time for finetuning the model afterward. Also, the use
of different algorithms for training an RBM can be considered. For quicker pretraining,
one may use contrastive divergence [6] , or for better initial models, advanced MCMC
sampling methods could be used.

Another obvious possibility is to utilize the conventional pretraining algorithm pro-
posed in [14] during the first stage. This approach gives approximate posterior distribu-
tions over all hidden units as well as initial values of the parameters. In this way, one
may use either an RBM or a fully visible BM (FVBM) during the second stage starting
from the initialized parameters. When an RBM is used in the second stage, one could
simply discard μ+.

One important point of the proposed algorithm is that it provides another research
perspective in training DBMs. The existing pretraining scheme developed in [14,11]
was based on the observation that under certain assumptions the variational lower-
bound could be increased by learning weight parameters layer wise. However, the suc-
cess of the proposed scheme suggests that it may not be the set of parameters that need
to be directly pretrained, but the set of variational parameters that determine how tight
the variational lower-bound is and their corresponding parameters.

5 Experiments

In the experiments, we train DBMs on two datasets which are a handwritten digit dataset
(MNIST) [7] and Caltech-101 Silhouettes dataset [8]. We used the MNIST and Caltech-
101 Silhouettes datasets because experimental results of using DBMs for both datasets
are readily available for direct comparison [13,12,9].

We train DBMs with varying numbers of units in the hidden layers; 500-1000, 500-
500-1000, 500-500-500-1000. The first two architectures were used in [13,12], which
enables us to directly compare our proposed algorithm with the conventional pretraining
algorithm.

For learning algorithms, we extensively tried various combinations. They are pre-
sented in Table 1. In summary, a DBMstage1

stage2 denotes a deep Boltzmann machine in
which its superscript and subscript denote the algorithms used during the first and sec-
ond stages, respectively.

We used contrastive divergence (CD) to train RBMs in the first stage, and the persis-
tent CD [15] with coupled adaptive simulated annealing (CAST) was used in the second
stage. DAEs were trained using stochastic backpropagation algorithm.

A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 111

500-1000

−100 −95 −90 −85 −80 −75

10
−1.9

10
−1.8

10
−1.7

10
−1.6

C
la

ss
ifi

ca
tio

n
E

rr
or

Lower-bound

500-500-1000

−100 −95 −90 −85 −80 −75

10
−1.9

10
−1.8

10
−1.7

10
−1.6

C
la

ss
ifi

ca
tio

n
E

rr
or

Lower-bound

500-500-500-1000

−100 −95 −90 −85 −80 −75

10
−1.9

10
−1.8

10
−1.7

10
−1.6

C
la

ss
ifi

ca
tio

n
E

rr
or

Lower-bound
(a) MNIST

−145 −140 −135 −130 −125 −120 −115 −110 −105

10
−0.59

10
−0.57

10
−0.55

10
−0.53

10
−0.51

10
−0.49

C
la

ss
ifi

ca
tio

n
E

rr
or

Lower-bound
−145 −140 −135 −130 −125 −120 −115 −110 −105

10
−0.59

10
−0.57

10
−0.55

10
−0.53

10
−0.51

10
−0.49

C
la

ss
ifi

ca
tio

n
E

rr
or

Lower-bound
−145 −140 −135 −130 −125 −120 −115 −110 −105

10
−0.59

10
−0.57

10
−0.55

10
−0.53

10
−0.51

10
−0.49

C
la

ss
ifi

ca
tio

n
E

rr
or

Lower-bound
(b) Caltech-101 Silhouettes

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H
RBMDBMS&H

FVBMDBMS&H

Fig. 2. Performance of the trained DBMs. Best performing models are in bottom right corners of
each plot.

When a DBM was finetuned, we estimated the variational parameters by running at
most 30 mean-field fixed-point updates. The model statistics, the negative part of the
gradient, was computed by CAST.

Table 1. Algorithms used in the experiment.
(S) – the pretraining algorithm from [14]

Stage 1 Stage 2 Finetuning

DBM × × DBM
DBMsDAE

RBM sDAE RBM DBM
DBMDBN

RBM DBN RBM DBM
DBMS&H (S) × DBM
DBMS&H

RBM (S) RBM DBM
DBMS&H

FVBM (S) FVBM DBM

We evaluated the resulting models with
the variational lower-bound of log-
probabilities and the classification error of
test samples. The variational lower-bounds
reflect the generative performance of the
model. The classification accuracy com-
puted from a linear support vector machine
(SVM) tells us the discriminative property of
the hidden units. We trained a linear SVM
for each hidden layer l using μl as its fea-
tures. This is expected to show how much

information about input samples is captured by each hidden layer of the model.
All models were trained five times starting from different random initializations. We

report medians over these random trials.

5.1 Result and Analysis

Fig. 2 presents the result using both the lower-bound of log-probabilities and the clas-
sification error of the test samples. As has already been expected, none of the models

112 K. Cho et al.

500-1000

1 2

10
−1

C
la

ss
ifi

ca
tio

n
E

rr
or

Hidden Layer

500-500-1000

1 2 3

10
−1

C
la

ss
ifi

ca
tio

n
E

rr
or

Hidden Layer

500-500-500-1000

1 2 3 4

10
−1

C
la

ss
ifi

ca
tio

n
E

rr
or

Hidden Layer
(a) MNIST

1 2
10

−0.6

10
−0.5

10
−0.4

C
la

ss
ifi

ca
tio

n
E

rr
or

Hidden Layer
1 2 3

10
−0.6

10
−0.5

10
−0.4

C
la

ss
ifi

ca
tio

n
E

rr
or

Hidden Layer
1 2 3 4

10
−0.6

10
−0.5

10
−0.4

C
la

ss
ifi

ca
tio

n
E

rr
or

Hidden Layer
(b) Caltech-101 Silhouettes

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H
RBMDBMS&H

FVBMDBMS&H

Fig. 3. Layer-wise Discriminative Performance. Lower is better.

trained without pretraining have been able to perform well enough to be presented in-
side the boundaries of the boxes in Fig. 2.

It is clear from the figures that the proposed two-stage pretraining algorithm out-
performs, in all cases, the conventional pretraining algorithm (DBMS&H). On MNIST,
the DBMs pretrained with the proposed algorithm using the conventional pretraining
algorithm in the first stage achieved the best performance. In the case of Caltech-101
Silhouettes, DBMsDAE

RBM was able to achieve superior performance in both generative and
discriminative modeling. It is notable that without any pretraining (DBM) we were not
able to achieve any reasonable performance.

Fig. 3 presents layer-wise classification errors. It is clear from the significantly lower
accuracies in the higher hidden layers of the DBMs trained without pretraining that
pretraining is essential to allow upper layers to capture structures of data. DBMDBN

RBMand
DBMS&H

RBMwere most effective in ensuring the upper hidden layers to have better dis-
criminative property.

6 Conclusions

The experimental success of the proposed two-stage pretraining algorithm in training
DBMs suggests that the difficulty of DBM learning might be due to the fact that the es-
timated variational lower-bound at the initial stage of learning is too crude, or too loose.
Once one initializes the variational parameters well enough by utilizing another deep
hierarchical model, the parameters of a DBM can be fitted to give a tighter variational
lower-bound which facilitates jointly estimating all parameters.

A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 113

The proposed two-stage pretraining algorithm provides a general framework in which
many hierarchical deep learning models can be used. It even makes possible to include
the conventional pretraining algorithm as a part of the proposed algorithm and improve
upon it. This is a significant step in developing and improving a training algorithm for
DBMs, as it allows us to fully utilize other learning algorithms that have been exten-
sively studied previously.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation Learning: A Review and New Perspec-
tives. arXiv:1206.5538 [cs.LG] (June 2012)

2. Bishop, C.M.: Pattern Recognition and Machine Learning, corrected 2nd printing edn.
Springer (2007)

3. Cho, K.: Improved Learning Algorithms for Restricted Boltzmann Machines. Master’s thesis,
Aalto University School of Science (2011)

4. Desjardins, G., Courville, A., Bengio, Y.: On training deep Boltzmann machines.
arXiv:1203.4416 [cs.NE] (March 2012)

5. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

6. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Com-
putation 14, 1771–1800 (2002)

7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE (11), 2278–2324

8. Marlin, B.M., Swersky, K., Chen, B., de Freitas, N.: Inductive principles for restricted Boltz-
mann machine learning. In: Proc. of the 13th Int. Conf. on Artificial Intelligence and Statis-
tics (AISTATS 2010), pp. 509–516 (2010)

9. Montavon, G., Müller, K.-R.: Deep Boltzmann machines and the centering trick. In: Mon-
tavon, G., Orr, G.B., Müller, K.-R. (eds.) NN: Tricks of the Trade, 2nd edn. LNCS, vol. 7700,
pp. 621–637. Springer, Heidelberg (2012)

10. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transformations in
perceptrons. In: Proc. of the 15th Int. Conf. on Artificial Intelligence and Statistics (AISTATS
2012), La Palma, Canary Islands, Spain (April 2012)

11. Salakhutdinov, R., Hinton, G.E.: A Better Way to Pre-Train Deep Boltzmann Machines. In:
Advances in Neural Information Processing Systems (2012)

12. Salakhutdinov, R.: Learning deep Boltzmann machines using adaptive MCMC. In:
Fürnkranz, J., Joachims, T. (eds.) Proc. of the 27th Int. Conf. on Machine Learning (ICML
2010), pp. 943–950. Omnipress, Haifa (2010)

13. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines.
Tech. Rep. MIT-CSAIL-TR-2010-037, MIT (August 2010)

14. Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann machines. In: Proc. of the Int. Conf. on
Artificial Intelligence and Statistics (AISTATS 2009), pp. 448–455 (2009)

15. Tieleman, T., Hinton, G.E.: Using fast weights to improve persistent contrastive divergence.
In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML
2009, pp. 1033–1040. ACM, New York (2009)

16. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research 11, 3371–3408 (2010)

A Low-Energy Implementation of Finite

Automata by Optimal-Size Neural Nets

Jǐŕı Š́ıma�

Institute of Computer Science, Academy of Sciences of the Czech Republic,
P.O. Box 5, 18207 Prague 8, Czech Republic

sima@cs.cas.cz

Abstract. Recently, a new so-called energy complexity measure has
been introduced and studied for feedforward perceptron networks. This
measure is inspired by the fact that biological neurons require more en-
ergy to transmit a spike than not to fire and the activity of neurons
in the brain is quite sparse, with only about 1% of neurons firing. We
investigate the energy complexity for recurrent networks which bounds
the number of active neurons at any time instant of a computation. We
prove that any deterministic finite automaton with m states can be simu-
lated by a neural network of optimal size s = Θ(

√
m) with time overhead

O(s/e) per one input bit, using the energy O(e), for any e = Ω(log s) and
e = O(s), which shows the time-energy tradeoff in recurrent networks.

1 Introduction

In biological neural networks the energy cost of a firing neuron is relatively high
while energy supplied to the brain is limited and hence the activity of neurons in
the brain is quite sparse, with only about 1% of neurons firing [4]. This is in con-
trast to artificial neural networks in which on average every second unit fires dur-
ing a computation. This fact has recently motivated the definition of a new com-
plexity measure for feedforward perceptron networks (threshold circuits), the so-
called energy complexity [11] which is the maximum number of units in the net-
work which output 1, taken over all the inputs to the circuit. The energy has been
shown to be closely related by tradeoff results to other complexity measures such
as the network size (i.e., the number of neurons) [13, 15], the circuit depth (i.e.,
parallel computational time) [12, 13], and the fan-in (i.e., the maximum number
of inputs to a single unit) [10] etc. In addition, energy complexity has found its
use in circuit complexity, e.g. as a tool for proving the lower bounds [14] etc.

In this paper, we investigate for the first time energy complexity for recurrent
neural networks which we define to be the maximum number of neurons out-
putting 1 at any time instant, taken over all possible computations. It has been
known for a long time that the computational power of binary-state recurrent
networks corresponds to that of finite automata since the network of size s units
can reach only a finite number (at most 2s) different states [8]. A simple way of
simulating a given deterministic finite automaton A with m states by a neural

� Research was supported by the projects GA ČR P202/10/1333 and RVO: 67985807.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 114–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Low-Energy Optimal-Size Neural Automata 115

network N of size O(m) is to implement each of the 2m transitions of A (having
0 and 1 transitions for each state) by a single unit in N which checks whether
the input bit agrees the respective type of transition [6]. Clearly, this simple
linear-size implementation of finite automata requires only a constant energy.

Much effort was given to reducing the size of neural automata (e.g. [1–3, 9]),
and indeed, neural networks of size Θ(

√
m) implementing a given deterministic

finite automaton with m states were proposed and proven to be size-optimal [2,
3]. A natural question arises: what is the energy consumption when simulating
finite automata by optimal-size neural networks? We answer this question by
proving the tradeoff between the energy and the time overhead of the simulation.
In particular, we prove that an optimal-size neural network of s = Θ(

√
m)

units can be constructed to simulate a deterministic finite automaton with m
states using the energy O(e) for any e = Ω(log s) and e = O(s), while the time
overhead for processing one input bit is O(s/e). For this purpose, we adapt the
asymptotically optimal method of threshold circuit synthesis due to Lupanov [5].

This paper is organized as follows. In Section 2, the main result is formulated
after a brief review of the basic definitions. The subsequent two sections are
devoted to the technical proof: Section 3 deals with a decomposition of the
transition function and Section 4 describes the construction of low-energy neural
automata. Section 5 concludes with some remarks on lower bounds on the energy
complexity of neural network automata.

2 Neural Networks as Finite Automata

We will first specify the model of a recurrent neural network N . The network
consists of s units (neurons), indexed as V = {1, . . . , s}, where s is called the
network size. The units are connected into an oriented graph representing the
architecture of N , in which each edge (i, j) leading from unit i to j is labeled with
an integer weight w(i, j). The absence of a connection within the architecture
corresponds to a zero weight between the respective neurons, and vice versa.

The computational dynamics of N determines for each unit j ∈ V its binary

state (output) y
(t)
j ∈ {0, 1} at discrete time instants t = 0, 1, 2, We say that

neuron j is active (fires) at time t if y
(t)
j = 1, while j is passive for y

(t)
j = 0. This

establishes the network state y(t) = (y
(t)
1 , . . . , y

(t)
s) ∈ {0, 1}s at each discrete

time instant t ≥ 0. At the beginning of a computation, N is placed in an initial
state y(0). At discrete time instant t ≥ 0, an excitation of any neuron j ∈ V

is defined as ξ
(t)
j =

∑s
i=1 w(i, j)y

(t)
i − h(j) including an integer threshold h(j)

local to unit j. At the next instant t + 1, the neurons j ∈ αt+1 from a selected

subset αt+1 ⊆ V update their states y
(t+1)
j = H(ξ

(t)
j) in parallel by applying the

Heaviside function H(ξ) which is defined to be 1 for ξ ≥ 0 and 0 for ξ < 0. The

remaining units j ∈ V \αt+1 do not change their outputs, that is y
(t+1)
j = y

(t)
j for

j �∈ αt+1. In this way, the new network state y(t+1) at time t+ 1 is determined.
We define the energy complexity of N to be the maximum number of active units∑s

j=1 y
(t)
j at any time instant t ≥ 0, taken over all computations of N .

116 J. Š́ıma

The computational power of recurrent neural networks has been studied anal-
ogously to the traditional models of computations so that the networks are ex-
ploited as acceptors of formal languages L ⊆ {0, 1}∗ over the binary alphabet.
For the finite networks that are to recognize regular languages, the following
input/output protocol has been used [1–3, 7–9]. A binary input word (string)
x = x1 . . . xn ∈ {0, 1}n of arbitrary length n ≥ 0 is sequentially presented to the
network bit by bit via an input neuron in ∈ V . The state of this unit is exter-
nally set (and clamped) to the respective input bits at prescribed time instants,
regardless of any influence from the remaining neurons in the network, that is,

y
(τ(i−1))
in = xi for i = 1, . . . , n where an integer parameter τ ≥ 1 is the period or

time overhead for processing a single input bit. Then, an output neuron out ∈ V
signals at time τn whether the input word belongs to underlying language L,

that is, y
(τn)
out = 1 for x ∈ L, whereas y

(τn)
out = 0 for x �∈ L.

Now, we can formulate our main result concerning a low-energy implementa-
tion of finite automata by optimal-size neural nets:

Theorem 1. A given deterministic finite automaton A with m states can be
simulated by a neural network N of optimal size s = Θ(

√
m) neurons with time

overhead O(s/e) per one input bit, using the energy O(e), where e is any function
satisfying e = Ω(log s) and e = O(s).

Proof. A set Q of m states of a given deterministic finite automaton A can be ar-
bitrarily enumerated so that each q ∈ Q is binary encoded using p = 	logm
+ 1
bits including one additional bit which indicates the final states. Then, the re-
spective transition function δ : Q × {0, 1} −→ Q of A, producing its new state
qnew = δ(qold, x) ∈ Q from the old state qold ∈ Q and input bit x ∈ {0, 1}, can be
viewed as a vector Boolean function f : {0, 1}p+1 −→ {0, 1}p in terms of binary
encoding of states. In the following two sections we will adapt the asymptotically
optimal method of threshold circuit synthesis due to Lupanov [5] to implement
f by a low-energy recurrent neural network.

3 The Transition Function Decomposition

The p + 1 arguments of vector function f(u,v, z) are split into three groups
u = (u1, . . . , up1), v = (v1, . . . , vp2), and z = (z1, . . . , zp3), respectively, where
p1 = �(p + 1 − log p − log(p + 1 − log p))/2�, p3 = �log(p + 1 − log p) − 2�, and
p2 = p + 1 − p3 − p1. Then, each function element fk : {0, 1}p+1 −→ {0, 1}
(1 ≤ k ≤ p) of vector function f = (f1, . . . , fp) is decomposed to

fk(u,v, z) =
∨

c∈{0,1}p3

⎛
⎝fk(u,v, c) ∧

p3∧
j=1

�cj (zj)

⎞
⎠ , (1)

where the respective literals are defined as �c(z) = z for c = 1 and �c(z) = ¬z
for c = 0. Furthermore, we define vector functions gk : {0, 1}p1+p2 −→ {0, 1}p1

for k = 1, . . . , p as

gk(u,v) = (fk(u,v, [0]
p3), fk(u,v, [1]

p3), . . . , fk(u,v, [2
p3 − 1]p3), 0, . . . , 0) (2)

Low-Energy Optimal-Size Neural Automata 117

where [j]n = c = (c1, . . . , cn) ∈ {0, 1}n denotes an n-bit binary representation
of integer j ≥ 0, that is, j = 〈c〉 = ∑n

i=1 2
i−1ci. The vector produced by gk in

(2) has p1 elements out of which the first 2p3 items are defined using fk for all
possible values of argument z ∈ {0, 1}p3, while the remaining ones are 0s, which
is a correct definition since 2p3 < p1 for sufficiently large p.

Denote r = p1 − 1. For each gk (1 ≤ k ≤ p), we will construct four vector
functions ga

k : {0, 1}r+p2 −→ {0, 1}p1 and ha
k : {0, 1}r+p2 −→ {0, 1}p1 for a ∈

{0, 1} such that
gk(a,u

′,v) = ga
k(u

′,v)⊕ ha
k(u

′,v) (3)

for any a ∈ {0, 1}, u′ ∈ {0, 1}r, and v ∈ {0, 1}p2, where ⊕ denotes a bitwise
parity (i.e., z = x⊕y ∈ {0, 1}n is defined for vectors x = (x1, . . . , xn) ∈ {0, 1}n,
y = (y1, . . . , yn) ∈ {0, 1}n, and z = (z1, . . . , zn) ∈ {0, 1}n as zi = 1 iff xi �= yi for
every i = 1, . . . , n) which is an associative operation. In addition, the construc-
tion will guarantee that for any a ∈ {0, 1}, v ∈ {0, 1}p2, and u′

1,u
′
2 ∈ {0, 1}r,

if u′
1 �= u′

2 , then ga
k(u

′
1,v) �= ga

k(u
′
2,v) and ha

k(u
′
1,v) �= ha

k(u
′
2,v) . (4)

For any v ∈ {0, 1}p2, the function values of ga
k are defined inductively as

ga
k([i]

r,v) ∈ {0, 1}p1 \Ga
k(i,v) is chosen arbitrarily for i = 0, . . . , 2r − 1 where

Ga
k(i,v) = {ga

k([j]
r ,v) ,

gk(a, [i]
r,v) ⊕ gk(a, [j]

r,v) ⊕ ga
k([j]

r,v) | j = 0, . . . , i− 1} , (5)

and functions ha
k are defined so that equation (3) is met:

ha
k(u

′,v) = gk(a,u
′,v)⊕ ga

k(u
′,v) . (6)

Note that ∅ = Ga
k(0,v) ⊆ Ga

k(1,v) ⊆ · · · ⊆ Ga
k(2

r − 1,v) and |Ga
k(i,v)| ≤

2i according to (5), which implies |Ga
k(i,v)| ≤ |Ga

k(2
r − 1,v)| ≤ 2(2r − 1).

Hence, |{0, 1}p1 \Ga
k(i,v)| ≥ 2p1 − 2(2r − 1) = 2, which ensures that ga

k(u
′,v)

is correctly defined for all arguments u′ ∈ {0, 1}r. Moreover, condition (4) is
satisfied because for any i, j ∈ {0, . . . , 2r − 1} such that i > j, definition (5)
secures ga

k([i]
r,v) �= ga

k([j]
r ,v) and ha

k([i]
r,v) = gk(a, [i]

r,v) ⊕ ga
k([i]

r,v) �=
gk(a, [i]

r,v)⊕gk(a, [i]
r,v)⊕gk(a, [j]

r,v)⊕ga
k([j]

r,v) = ha
k([j]

r ,v) by using (6)
and the fact that x⊕ x⊕ y = y.

We further decompose ga
k and ha

k by using the functions ϕa
k : {0, 1}r+p2 −→

{0, . . . , 2p1 − 1} and ψa
k : {0, 1}r+p2 −→ {0, . . . , 2p1 − 1} as

ga
k(u

′,v) = [ϕa
k(u

′,v)]p1 and ha
k(u

′,v) = [ψa
k(u

′,v)]p1 , (7)

respectively, which satisfy for any a ∈ {0, 1}, v ∈ {0, 1}p2, and u′
1,u

′
2 ∈ {0, 1}r,

if u′
1 �= u′

2 , then ϕa
k(u

′
1,v) �= ϕa

k(u
′
2,v) and ψa

k(u
′
1,v) �= ψa

k(u
′
2,v) (8)

according to (4). Now, we can plug (2), (3), and (7) into (1) which results in

fk(a,u
′,v, z) =

∨
c∈{0,1}p3

(
(gk(a,u

′,v))〈c〉 ∧
p3∧
i=1

�ci(zi)

)

118 J. Š́ıma

=
∨

c∈{0,1}p3

(((
[ϕa

k(u
′,v)]p1

)
〈c〉 ∧ ¬

(
[ψa

k(u
′,v)]p1

)
〈c〉 ∧

p3∧
i=1

�ci(zi)

)

∨
(
¬ (

[ϕa
k(u

′,v)]p1
)
〈c〉 ∧

(
[ψa

k(u
′,v)]p1

)
〈c〉 ∧

p3∧
i=1

�ci(zi)

))
, (9)

where (x)i denotes the ith element of vector x.

4 The Finite Automaton Implementation

In this section, we will describe the construction of low-energy recurrent neural
network N simulating a given finite automaton A. In particular, set of neurons
V is composed of four disjoint layers V = ν0 ∪ ν1 ∪ ν2 ∪ ν3. A current state of A
and an input bit are stored using p+1 neurons which constitute layer ν0. Thus,
set ν0 includes the input neuron in ∈ ν0 and the output neuron out ∈ ν0 which
saves the bit (in the state encoding) that indicates the final states. We will
implement formula (9) in N for evaluating the transition function f in terms
of binary encoding of states in order to compute the new state of A. Layer
ν0 = {in}∪ ν01 ∪ ν02 ∪ ν03 is disjointly split into four parts corresponding to the
partition of arguments of f(a,u′,v, z), respectively, that is, ν01 = {u1, . . . , ur},
ν02 = {v1, . . . , vp2}, and ν03 = {z1, . . . , zp3}.

The next layer ν1 = ν11 ∪ ν12 consists of 2p2 neurons in ν11 = {μ〈b〉 |b ∈
{0, 1}p2} for computing all possible monomials

∧p2

i=1 �bi(vi) over input variables
v, and two control units in ν12 = {κ0

0, κ
1
0} which indicate the input bit value.

This is implemented by weights w(vi, μ〈b〉) = 2bi − 1 for i = 1, . . . , p2, and
threshold h(μ〈b〉) =

∑p2

i=1 bi, for any b = (b1, . . . , bp2) ∈ {0, 1}p2 so that μ〈b〉
fires iff b = v. In addition, we define w(in, κ1

0) = −w(in, κ0
0) = 1 and h(κ1

0) = 1,
h(κ0

0) = 0, which ensures that yin = 1 iff κ1
0 fires iff κ0

0 is passive.

Furthermore, layer ν2 = ν21 ∪ ν22 where ν21 = {γϕa
kj , λ

ϕa
kj , γ

ψa
kj , λ

ψa
kj | 1 ≤ k ≤

p , a ∈ {0, 1} , j = 0, . . . , 2p1 − 1}, and ν22 = {κa
i | a ∈ {0, 1} , i = 1, . . . , d + 1}

with d = 	2p2p1/e
, serves for a low-energy computation of functions ϕa
k(u

′,v)
and ψa

k(u
′,v). We will first show how to implement functions ϕa

k(u
′,v) for any

1 ≤ k ≤ p and a ∈ {0, 1} with no constraints on energy by using the outputs of
neurons from ν01 and ν11. In particular, 2p1 pairs of neurons γϕa

kj , λ
ϕa
kj ∈ ν21 for

j = 0, . . . , 2p1 − 1 are employed having zero thresholds for now (their thresholds
will be defined below for the low-energy implementation) and weights w(ui, γ

ϕa
kj)

= −w(ui, λ
ϕa
kj) = 2i−1 for i = 1, . . . , r and w(μ〈b〉, λ

ϕa
kj) = −w(μ〈b〉, γ

ϕa
kj) =

dϕab
kj ∈ {0, . . . , 2r − 1} such that j = ϕa

k([d
ϕab
kj]r,b) ∈ {0, . . . , 2p1 − 1} for b ∈

{0, 1}p2. Note that dϕab
kj is uniquely defined according to (8). It follows that for

given u′ ∈ {0, 1}r and v ∈ {0, 1}p2, neuron γϕa
kj fires iff

∑r
i=1 w(ui, γ

ϕa
kj)yui

+
∑

b∈{0,1}p2 w(μ〈b〉, γ
ϕa
kj)yμ〈b〉 ≥ 0 iff

∑r
i=1 2

i−1u′
i − dϕav

kj ≥ 0 iff 〈u′〉 ≥ dϕav
kj ,

since yμ〈b〉 = 1 iff b = v. Similarly, neuron λϕa
kj is active iff 〈u′〉 ≤ dϕav

kj . Hence,

both neurons γϕa
kj and λϕa

kj fire at the same time iff 〈u′〉 = dϕav
kj iff j = ϕa

k(u
′,v),

which implements function ϕa
k(u

′,v). Functions ψa
k(u

′,v) for any 1 ≤ k ≤ p and

Low-Energy Optimal-Size Neural Automata 119

a ∈ {0, 1} are implemented analogously (replace ϕ by ψ above) using 2p1 pairs

of neurons γψa
kj , λ

ψa
kj ∈ ν21 for j = 0, . . . , 2p1 − 1, that is, both units γψa

kj and λψa
kj

are active iff j = ψa
k(u

′,v).
We employ control units κa

i ∈ ν12 ∪ ν22 for a ∈ {0, 1} and i = 0, . . . , d + 1,
for synchronizing the computation of functions ϕa

k(u
′,v), ψa

k(u
′,v) by neurons

from ν21 so that their energy consumption is bounded by e+2. For this purpose,
we split set ν21 = ν021 ∪ ν121 into two parts νa21 = {γϕa

kj , λ
ϕa
kj , γ

ψa
kj , λ

ψa
kj | 1 ≤ k ≤

p , j = 0, . . . , 2p1 − 1} of size 4p2p1 according to a ∈ {0, 1}, and each such part

is further partitioned into d blocks of size at most 2e, that is νa21 =
⋃d

i=1 β
a
i

where |βa
i | ≤ 2e. In addition, we require for every i = 1, . . . , d, if γϕa

kj ∈ βa
i ,

then λϕa
kj ∈ βa

i , and if γψa
kj ∈ βa

i , then λψa
kj ∈ βa

i . For any 1 ≤ i ≤ d and
a ∈ {0, 1}, the neurons in block βa

i are activated by control unit κa
i−1 using the

weights w(κa
i−1, j) = W for all j ∈ βa

i , while all neurons j ∈ ν21 are blocked by
thresholds h(j) = W where W = 2r if there is no support from a corresponding
control unit. For current input bit yin = a ∈ {0, 1}, the control units κa

0 , . . . , κ
a
d+1

fire successively one by one, which is achieved by weights w(κa
i , κ

a
i+1) = 1 for

i = 0, . . . , d, w(κa
i , κ

a
0) = −1 for i = 0, . . . , d + 1, and thresholds h(κa

i) = 1 for
i = 1, . . . , d+1. This ensures that only the neurons from one block βa

i of size at
most 2e can fire at the same time. In fact, we know that just one unit of each
pair γϕa

kj , λ
ϕa
kj ∈ βa

i or γψa
kj , λ

ψa
kj ∈ βa

i is active except for the special pairs of both

firing units γϕa
kjϕ

, λϕa
kjϕ

and γψa
kjψ

, λψa
kjψ

such that ϕa
k(u

′,v) = jϕ and ψa
k(u

′,v) =
jψ, respectively. Hence, the energy consumption of ν21 is bounded by e + 2.
Finally, we must also guarantee that the resulting function values ϕa

k(u
′,v) = jϕ,

ψa
k(u

′,v) = jψ are stored, that is, neurons γϕa
kjϕ

, λϕa
kjϕ

, γψa
kjψ

, λψa
kjψ

remain active
without any support from corresponding control units until all blocks perform
computation which is indicated by control unit κa

d+1. Neuron κa
d+1 then resets all

neurons in ν21 before becoming itself passive. This is implemented by symmetric
weights w(γϕa

kj , λ
ϕa
kj) = w(λϕa

kj , γ
ϕa
kj) = w(γψa

kj , λ
ψa
kj) = w(λψa

kj , γ
ψa
kj) = W for

a ∈ {0, 1}, k = 1, . . . , p, j = 0, . . . , 2p1 − 1, and w(κa
d+1, j) = −W for all j ∈ ν21.

Finally, layer ν3 = {πk〈c〉, �k〈c〉 | 1 ≤ k ≤ p , c ∈ {0, 1}p3} is composed of 2p3

pairs of neurons πk〈c〉, �k〈c〉 for each k = 1, . . . , p which compute ([ϕa
k(u

′,v)]p1)〈c〉
∧¬([ψa

k(u
′,v)]p1)〈c〉 ∧

∧p3

i=1 �ci(zi) and ¬([ϕa
k(u

′,v)]p1)〈c〉 ∧ ([ψa
k(u

′,v)]p1)〈c〉 ∧∧p3

i=1 �ci(zi) from (9), respectively, for current input yin = a ∈ {0, 1} by using

the states of neurons from ν03 and the outputs of units γϕa
kj , λ

ϕa
kj , γ

ψa
kj , λ

ψa
kj ∈ ν21

for j = 0, . . . , 2p1 − 1 after κa
d+1 fires. For c ∈ {0, 1}p3, we define weights

w(γϕa
kj , πk〈c〉) = w(λϕa

kj , πk〈c〉) = −w(γψa
kj , πk〈c〉) = −w(λψa

kj , πk〈c〉) =

−w(γϕa
kj , �k〈c〉) = −w(λϕa

kj , �k〈c〉) = w(γψa
kj , �k〈c〉) = w(λψa

kj , �k〈c〉) = ([j]p1)〈c〉
for a ∈ {0, 1}, j = 0, . . . , 2p1 − 1, and w(zi, πk〈c〉) = w(zi, �k〈c〉) = 2ci − 1 for
i = 1, . . . , p3, and threshold h(πk〈c〉) = h(�k〈c〉) = 1 +

∑p3

i=1 ci. Hence, neuron
πk〈c〉 is active iff ([ϕa

k(u
′,v)]p1)〈c〉 = 1 and ([ψa

k(u
′,v)]p1)〈c〉 = 0 for yin = a,

and yzi = ci for i = 1, . . . , p3, since only one pair of neurons γϕa
kjϕ

, λϕa
kjϕ

for

0 ≤ jϕ ≤ 2p1 − 1 fires such that jϕ = ϕa
k(u

′,v) and only one pair of units

γψa
kjψ

, λψa
kjψ

for 0 ≤ jψ ≤ 2p1 − 1 is active such that jψ = ψa
k(u

′,v), while the
remaining units in v21 are passive after κa

d+1 fires. Analogously, neuron �k〈c〉

120 J. Š́ıma

fires iff ([ϕa
k(u

′,v)]p1)〈c〉 = 0 and ([ψa
k(u

′,v)]p1)〈c〉 = 1 for yin = a, and yzi = ci
for i = 1, . . . , p3.

It follows that for any 1 ≤ k ≤ p, at most one unit among πk〈c〉, �k〈c〉 ∈
ν3 for c ∈ {0, 1}p3 is active, which determines the value of fk(a,u

′,v, z) for
yin = a according (9). Thus, a binary encoding f(a,u′,v, z) of the new state
of automaton A is computed as disjunctions (9) for k = 1, . . . , p by units from
ν0\{in} (which rewrite the old state of A) using the recurrent connections leading
from neurons of ν3. After re-indexing the units in layer ν0 \ {in} = {1, . . . , p}
properly, for each k = 1, . . . , p, we define weights w(πk〈c〉 , k) = w(�k〈c〉, k) = 1
for every c ∈ {0, 1}p3, and threshold h(k) = 1.

Now we specify the computational dynamics of neural network N simulating
the finite automaton A. At the beginning, the states of neurons from ν0 \ {in}
are placed in an initial state of A. Each bit xi (1 ≤ i ≤ n) of input word
x = x1, . . . , xn, which is read by input neuron in ∈ ν0 at time instant τ(i − 1)

(i.e. y
(τ(i−1))
in = xi), is being processed by N within the desired period of τ =

d + 4 = O(p2p1/e) = O(
√
2p/e) = O(

√
m/e) time steps. The states of neurons

in N are successively updated in the order following the architecture of layers.
Thus, we define sets αt of units updated at time instants t ≥ 1 as ατ(i−1)+1 = ν1,
ατ(i−1)+j+1 = ν12 ∪ ν2 for j = 1, . . . , d + 1, ατ(i−1)+d+3 = ν12 ∪ ν2 ∪ ν3, and
ατi = ν0 \ {in}, for i = 1, . . . , n. Eventually, the output neuron out ∈ ν0 signals
at time instant τn whether input word x belongs to underlying language L, that

is, y
(τn)
out = 1 iff x ∈ L.

The size of N simulating the finite automaton A with m states can be ex-
pressed as s = |ν0|+ |ν1|+ |ν2|+ |ν3| = p+1+2p2 +2+8p2p1 +2(d+1)+p2p3 =
O(
√
2p) = O(

√
m) in terms of m, which matches the known lower bound [2, 3].

Finally, the energy consumption can be bounded for particular layers as follows.
Layer ν0 can possibly require all p+1 units to fire for storing the binary encoding
of a current automaton state. Moreover, there is only one active unit among neu-
rons in ν11 which serve for evaluating all possible monomials over input variables
v, and also only one control unit from ν12∪ν22 fires at one time instant. In addi-
tion, we know that the energy consumption by ν21 is at most e+2, and at most
p neurons among πk〈c〉, �k〈c〉 from ν3 fire (one for each k = 1, . . . , p). Altogether,
the global energy consumption ofN is bounded by e+2p+5 = O(e+log s) = O(e)
as e = Ω(log s) is assumed. This completes the proof of the theorem. ��

5 Conclusions

We have, for the first time, applied the energy complexity measure to recur-
rent neural nets. This measure has recently been introduced and studied for
feedforward perceptron networks. The binary-state recurrent neural networks
recognize exactly the regular languages so we have investigated their energy
consumption of simulating the finite automata with the asymptotically optimal
number of neurons. We have presented a low-energy implementation of finite
automata by optimal-size neural nets with the tradeoff between the time over-
head for processing one input bit and the energy varying from the logarithm

Low-Energy Optimal-Size Neural Automata 121

to the full network size. In the full paper, we will also present lower bounds
on the energy complexity of neural network automata. In particular, for time
overhead τ = O(1), the energy satisfies e ≥ sε for some real constant ε such that
0 < ε < 1, and for infinitely many s, while for τ = O(logε s), we have shown
that e = Ω∞(slog log s/ logη s) for any η > ε. An open problem remains for further
research whether these bounds can be improved.

References

1. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by
neural nets. Journal of the ACM 14(2), 495–514 (1991)

2. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)

3. Indyk, P.: Optimal simulation of automata by neural nets. In: Mayr, E.W., Puech,
C. (eds.) STACS 1995. LNCS, vol. 900, pp. 337–348. Springer, Heidelberg (1995)

4. Lennie, P.: The cost of cortical computation. Current Biology 13(6), 493–497 (2003)
5. Lupanov, O.: On the synthesis of threshold circuits. Problemy Kibernetiki 26,

109–140 (1973)
6. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood

Cliffs (1967)
7. Siegelmann, H.T., Sontag, E.D.: Computational power of neural networks. Journal

of Computer System Science 50(1), 132–150 (1995)
8. Š́ıma, J., Orponen, P.: General-purpose computation with neural networks: A sur-

vey of complexity theoretic results. Neural Computation 15(12), 2727–2778 (2003)
9. Š́ıma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1),

155–178 (1998)
10. Suzuki, A., Uchizawa, K., Zhou, X.: Energy and fan-in of threshold circuits comput-

ing Mod functions. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648,
pp. 154–163. Springer, Heidelberg (2011)

11. Uchizawa, K., Douglas, R., Maass, W.: On the computational power of threshold
circuits with sparse activity. Neural Computation 18(12), 2994–3008 (2006)

12. Uchizawa, K., Nishizeki, T., Takimoto, E.: Energy and depth of threshold circuits.
Theoretical Computer Science 411(44-46), 3938–3946 (2010)

13. Uchizawa, K., Takimoto, E.: Exponential lower bounds on the size of constant-
depth threshold circuits with small energy complexity. Theoretical Computer Sci-
ence 407(1-3), 474–487 (2008)

14. Uchizawa, K., Takimoto, E.: Lower bounds for linear decision trees via an energy
complexity argument. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS,
vol. 6907, pp. 568–579. Springer, Heidelberg (2011)

15. Uchizawa, K., Takimoto, E., Nishizeki, T.: Size-energy tradeoffs for unate circuits
computing symmetric Boolean functions. Theoretical Computer Science 412(8-10),
773–782 (2011)

A Distributed Learning Algorithm Based on
Frontier Vector Quantization and Information Theory

Diego Peteiro-Barral" and Bertha Guijarro-Berdiñas

Dept. of Computer Science, University of A Coruña,
Campus de Elviña s/n, 15071 A Coruñn, Spain

{dpeteiro,cibertha}@udc.es

http://www.lidiagroup.com

Abstract. In this paper, we propose a novel distributed learning algorithm built
upon the Frontier Vector Quantization based on Information Theory (FVQIT)
method. The FVQIT is very effective in classification problems but it shows poor
training time performance. Thus, distributed learning is appropriate here to speed
up training. One of the most promising lines of research towards learning from
distributed data sets is separated learning and model integration. Separated learn-
ing avoids moving raw data around the distributed nodes. The integration of local
models is implemented in this research using a genetic algorithm. The results
obtained from twelve classification data sets demonstrate the efficacy of the pro-
posed method. In average, the distributed FVQIT performs 13.56 times faster
than the FVQIT and improves classification accuracy by 5.25%.

Keywords: Machine learning, distributed learning, FVQIT, neural networks,
genetic algorithms.

1 Introduction

Distributed learning has become in a short time a fascinating area for many researchers
in machine learning to address scalability of algorithms. Data sets have grown from
few thousands of samples to several millions. In recent years, learning is limited by
computational resources rather than availability of data. The current trend of reducing
speed of processors in favor of multi-core processors and computer clusters leads to a
suitable context for implementing distributed learning algorithms. The use of distributed
partitions of data in learning may be significantly faster than traditional, batch learning.

In this research, we plan to distribute a classification method called FVQIT. The
FVQIT uses techniques based on Information Theoretic Learning (ITL) [1]. ITL is a
framework able to model information extracted from data through the expression of
classical information theory concepts such as divergence, mutual information, etc. in

" This research has been economically supported in part by the Secretarı́a de Estado de Inves-
tigación of the Spanish Government through the research projects TIN2009-10748 and TIN
2012-37954; and by the Consellerı́a de Industria of the Xunta de Galicia through the research
projects CN2011/007 and CN2012/211; all of them partially funded by FEDER funds of the
European Union. Diego Peteiro-Barral acknowledges the support of Xunta de Galicia under
Plan I2C Grant Program.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 122–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.lidiagroup.com

A Distributed Learning Algorithm Based on FVQIT 123

terms of Renyis entropy and nonparametric probability density function estimators. The
goal of the FVQIT [2] is to place a set of process elements (PEs) on the frontier between
the classes, in such a way that each PE will represent a local model (see Figure 1). The
philosophy of local models consists of splitting up the input space in several subspaces
and adjusting a local model for each of these subspaces [3]. Each sub-problem is sup-
posed to be simpler than the original and may be solved with simpler classification
models. Thus, the FVQIT builds a piecewise representation of the borderline between
classes in a classification problem. The FVQIT algorithm has proven to be effective
in classification [2,4,5] in comparison with other methods such as SVM. However, the
time the algorithm takes to train grows exponentially with respect to the number of
input samples and PEs. This makes the FVQIT unsuitable for large data sets, and/or
complex data sets in which a large number of PEs is required.

In this context, we can take advantage of the distributed paradigm to speed up the
training process of the FVQIT. One of the most promising lines of research towards
learning from distributed data sets is separated learning and model integration (Map/
Reduce paradigm [6]). In the first stage, learners are trained on independent subsets of
data (ideally, in parallel). Then, in the second stage, learners are integrated in some man-
ner. Separated learning and model integration is appropriate in the case of the FVQIT.
It is much faster on smaller training sets with smaller number of PEs. Moreover, sepa-
rated learning avoids moving raw data around the distributed nodes, preserves privacy,
and minimizes communication cost. Finally, the integration of local models is not a
straightforward process. In this research, we propose to use a genetic algorithm (GA) to
optimize the integration of local models. In the next section, local learning and model
integration will be discussed in depth.

2 Distributed FVQIT (DFVQIT)

In this formulation, we assume that data is scattered across several nodes. In the first
stage, an instance of the FVQIT algorithm is trained in every node.

2.1 Separated Learning

The FVQIT minimizes the energy function that calculates the divergence between the
Parzen estimator of the distribution of data samples and the estimator of the distribution
of the PEs. In this context, the Parzen density estimators of the distribution of data
samples f (x) and PEs g(x) are:

f (x) = 1
N ∑N

i=1 G
(

x− xi,σ2
f

)
g(x) = 1

M ∑M
j=1 G

(
x− c j,σ2

g

) (1)

where N is the number of data samples, M is the number of PEs, G is a Gaussian
kernel, σ2

f and σ2
g are the variances of the kernel functions, x ∈ ℜn are data samples,

and c j ∈ ℜn are the positions associated to the PEs. The function of energy J(c) that
calculates the divergence between the Parzen estimators is:

J (c) = log
∫

f 2 (x)dx + 2 log
∫

f+ (x)g(x)dx−
−2 log

∫
f− (x)g(x)dx+ log

∫
g2 (x)dx

(2)

124 D. Peteiro-Barral and B. Guijarro-Berdiñas

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Class 1
Class 2
PEs

Fig. 1. Example of operation of FVQIT. Local models and frontier between classes. The division
in local models is shown with dotted lines and the solid lines depict the decision regions.

where f+ (x) and f− (x) are the estimators of the distributions of data for each of the
two classes. In the multi-class version, the two nearest classes are chosen. According to
[7], the first term of Eq. (2) is the information potential among data. For stationary data,
this term will be zero. The second and third terms are the crossed correlations between
the distributions of data and nodes. Finally, the fourth term is the information potential
of the nodes. Assuming this formulation, when the PEs are placed on the minimum
of the energy function J (w), they are situated on a frontier area. Therefore, we utilize
the gradient descent method to move the PEs toward such situation. The algorithm is
summarized as follows

1. Initialize the positions ci, i = 1, . . . ,M of the PEs randomly.
2. Compute the Euclidean distance from each PE to every data sample. Then, compute

which class repels the PE and which class attracts it using the k-nearest neighbor
rule [8]. For each PE ci,
(a) Sort the data samples by increasing Euclidean distance to the PE.
(b) Take the classes of the k closest points and calculate its mode. The mode will

be the repelling class (+) for that PE.
(c) Take the classes of the k closest points to each PE that do not belong to the

repelling class and calculate its mode. The mode will be the attracting class
(−) for that PE.

3. Compute the cross information potential C+ between each PE and the samples from
the repelling class, the cross information potential C− between each PE and the data
from the attracting class, and the entropy V between PEs. A physical interpretation
of this premise leads to consider both data samples and PEs two kinds of particles
with a potential field associated. These fields induce repulsive and attractive forces
between particles. Additionally, a third force of repulsion between the PEs favors a
better distribution, avoiding the accumulation of PEs on a point.

4. Update the positions of each PE through gradient descent,

ci(n+ 1) = ci(n)−η
(

∇V
V

+
∇C+

C+
− ∇C−

C−

)
, i = 1, . . . ,M (3)

where n is the iteration and η is the step size.

A Distributed Learning Algorithm Based on FVQIT 125

5. Reduce the learning rate η by annealing rate ηdec, and σ f and σg by σdec.
6. Repeat from 2 until the maximum number of iterations is reached.

Ideally, the PEs will find themselves well distributed on the frontiers between classes.
Figure 1 shows a simple two-class bi-dimensional example for illustrative purposes.
Each PE defines a region in the feature space. Those models are defined by proximity:
the local model associated to each PE is composed of the nearest samples according to
Euclidean distance in the feature space. At this moment, the goal is to construct a classi-
fier for each local model. The FVQIT utilizes one-layer neural networks, a lightweight
classifier trained with the efficient algorithm proposed in [9]. This algorithm allows
rapid supervised training and requires less computational resources than classic meth-
ods. This classifier will be in charge of classifying samples in the region assigned to its
local model and will be trained only with the points of the training set in this region
(see Figure 1).

2.2 Model Integration

The integration of the distributed, partial solutions of the FVQIT in a comprehensive,
global solution is not a straightforward process. A simple idea may be to combine every
PE from every node but this approximation may lead to redundant, crowded areas in
the input space. Figure 2 shows an example of the combination of the PEs from two
different nodes. As can be seen, especially in the bottom part several PEs are too close
one each other. This will affect the predictive ability of the model in the presence of
noise.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Class 1
Class 2
Node 1
Node 2

Fig. 2. Example of integration of two nodes of DFVQIT

In order to overcome this difficulty, we plan to exploit the advantages of the learning
algorithm proposed in [9]. The key idea of the algorithm is to measure the error prior
to the nonlinear activation functions. In this manner, the weights w of the ANN can be
easily computed by solving a system of linear equations,

A ·w = b (4)

126 D. Peteiro-Barral and B. Guijarro-Berdiñas

where

A = x ·xT

b = f−1(d) ·x (5)

x being the input samples, d the desired outputs, and f the nonlinear activation function.
The advantage of this method is its ability to learn in an incremental fashion. Note that
the solution to the previous equations is computed in terms of a sum. Thus, if we assume
that data set 1∪2 contains the union of data sets 1 and 2, the following relation holds

A1∪2 ·w = b1∪2 ⇔ (A1 +A2) ·w = b1 +b2 (6)

Based on this relation, we propose to implement a genetic algorithm (GA) [10] as in-
tegration method. The hypothesis is that the GA will optimize the initial population by
pruning the crowded areas in the input space. Moreover, it is expected that including
some global knowledge by means of a GA, will expand the search space and obtain a
simpler and more general classifier. The challenge here is the encapsulation of a candi-
date solution. The piecewise representation of the FVQIT leads to complex crossover
operators between nodes. Thus, we turn to consider each PE as an individual of the
population in order to have a simple yet powerful method. This change in approach will
cause that the optimization process will be driven by fitness-maximization of the pop-
ulation rather than best individual. Under these conditions, the GA we propose in this
research will be implemented as follows. Note that in the FVQIT, each individual (PE)
is defined by its location in the input space and its decision boundary.

– The fitness function will become the class accuracy of the entire population because
of the piecewise representation of the FVQIT.

– Selection is the step in which individuals are chosen from the population for breed-
ing. Note that individuals are usually selected based on their fitness but, in this
implementation, the fitness function comprehend the entire population. However,
we can take advantage of the locality of the FVQIT in order to propose an effectual
selection method. In this research, the population is selected using roulette-wheel
selection [10] by pairwise Euclidean distance between PEs; the closer the PEs the
larger the probability of being selected for breeding.

– The crossover operator defines how two individuals of the population are combined
together to produce the offspring. The crossover operator is computed as follows:
the two parents generate a child which its location is the midpoint of their loca-
tions cchild = (cparent1 + cparent2)/2 and its decision boundary is the sum of their
matrices of coefficients Achild = Aparent1 +Aparent2 , and bchild = bparent1 +bparent2

which exploits the incremental features of the algorithm described above. Due to
the incremental nature of the crossover operator, the child is expected to substitute
both parents if this improves the fitness function.

– The mutation operator defines how an individual is altered to produce a new indi-
vidual. In this research, small random disturbances are used to change the location
c and the matrices of coefficients A and b of the individuals.

A Distributed Learning Algorithm Based on FVQIT 127

3 Experimental Study

In this section, we compare the distributed method with a similar batch scheme that uses
in a comprehensive manner the entire set of samples. The pruning method is evaluated
in both original and distributed FVQIT algorithm.

3.1 Materials and Methods

The algorithms are evaluated to classify twelve data sets of diverse kinds of tasks. Table
1 summarizes the number of input features, samples, and output classes of the data sets.
A more detailed description of the twelve data sets can be found in [11].

Table 1. Brief description of the data sets

Name Feats Samples Class Name Feats Samples Class
Abalone 8 4,177 28 Magic 10 19,020 2
Adult 33 30,162 2 Mushroom 22 8,124 2
Chess 6 28,056 18 Nursery 16 12,960 5
Connect4 42 67,557 3 Poker 10 25,010 10
Forest 54 101,241 7 Shuttle 9 43,500 7
Letter 16 20,000 26 Waveform 21 5,000 3

In distributed scenarios, training data have been scattered across 5 different nodes in
which each node contains 10 PEs. In batch scenarios, the learning algorithm uses the
entire data set in which the number of PEs is set to 50. The evaluation of the methods has
been done using holdout, 90% for training, 10% for testing. When pruning is enabled,
10% of the training data have been used for validation. Experiments were run 10 times
with random partitions of the data set. We use the Kruskal-Wallis test to check if there
are significant differences, then we apply a multiple comparison procedure to find the
methods which are not significantly different.

3.2 Results and Discussion

Table 2 shows the training time of the four implementations. The best result, or those
not significantly different from the best one, are underlined for each data set. In average,
DFVQIT performs 13.56 times faster than FVQIT. Furthermore, the larger the data set
the larger the difference. In Connect4 and Forest data sets, DFVQIT is 19.24 and 22.72
times faster. If the genetic algorithm is used, pruned DFVQIT trains 4.26 and 4.63 times
faster than the original FVQIT and the pruned FVQIT, respectively.

Table 3 presents the number of PEs at the end of training. In average, only the
36.63% and the 20.51% of the PEs are retained after pruning in the original FVQIT
and DFVQIT, respectively. Note that the FVQIT algorithm is parametrized with the
maximum number of PEs. If a PE do not cover any training sample, it will be deleted. It
is important to remark that a smaller number of PEs is related with better generalization
performance and faster execution.

128 D. Peteiro-Barral and B. Guijarro-Berdiñas

Table 2. Trainnig time (s)

Data set Original
FVQIT

Pruned
FVQIT

DFVQIT Pruned
DFVQIT

Abalone 9.82±0.08 13.77±0.82 1.10±0.00 6.41±0.51
Adult 96.06±1.16 103.61±2.56 6.33±0.38 11.58±2.00
Chess 24.39±0.12 44.60±1.21 2.15±0.01 17.23±1.61
Connect4 275.92±5.08 294.09±7.85 14.34±0.10 33.80±8.66
Forest 388.78±9.41 517.17±9.42 17.11±0.40 142.67±8.97
Letter 25.81±0.13 57.88±0.57 2.13±0.01 32.41±1.49
Magic 33.24±2.32 41.68±2.21 2.62±0.17 7.51±0.75
Mushroom 37.44±3.16 32.80±3.12 3.90±0.30 7.63±0.37
Nursery 25.96±0.68 30.13±1.51 2.13±0.08 7.69±0.76
Poker 38.06±0.52 34.28±2.00 3.15±0.19 5.43±2.11
Shuttle 52.60±0.84 55.94±1.38 3.17±0.05 15.89±0.69
Waveform 27.42±3.77 26.93±2.51 2.72±0.48 5.27±0.58

Table 3. Number of PEs

Data set Original
FVQIT

Pruned
FVQIT

DFVQIT Pruned
DFVQIT

Abalone 47.10±0.99 7.60±2.22 49.90±0.32 7.00±1.70
Adult 49.90±0.32 4.10±2.47 50.00±0.00 2.40±1.35
Chess 49.90±0.32 34.50±2.92 50.00±0.00 13.30±2.54
Connect4 50.00±0.00 6.70±2.06 50.00±0.00 2.40±1.65
Forest 50.00±0.00 35.89±2.62 50.00±0.00 17.89±1.90
Letter 50.00±0.00 48.40±0.70 50.00±0.00 27.40±2.99
Magic 49.90±0.32 9.80±2.39 49.90±0.32 7.10±1.66
Mushroom 34.20±2.70 13.50±2.76 46.10±1.45 11.30±1.25
Nursery 41.60±0.52 16.80±3.39 48.40±0.70 9.80±2.44
Poker 43.80±1.81 1.60±0.70 50.00±0.00 1.50±0.71
Shuttle 44.20±1.48 21.40±2.59 49.00±0.67 15.10±2.56
Waveform 49.80±0.42 6.21±3.26 49.80±0.42 6.20±1.32

Table 4. Test error (%)

Data set Original
FVQIT

Pruned
FVQIT

DFVQIT Pruned
DFVQIT

Abalone 84.00±2.01 79.23±2.49 82.37±1.24 77.06±2.58
Adult 24.24±1.06 17.03±0.66 25.18±1.39 17.25±0.83
Chess 62.95±1.01 64.68±1.51 73.27±1.43 68.39±1.17
Connect4 30.65±0.41 25.99±0.64 32.23±0.79 25.96±0.82
Forest 37.89±1.27 36.31±1.24 37.64±1.14 34.87±0.75
Letter 13.14±1.01 14.31±0.67 22.45±0.96 22.84±1.16
Magic 20.94±0.83 15.79±0.70 19.79±1.65 15.69±0.83
Mushroom 17.14±2.29 11.53±1.22 16.15±2.57 11.34±0.78
Nursery 7.24±0.89 7.54±1.09 8.74±0.90 8.31±0.87
Poker 72.74±0.90 50.26±1.01 72.71±0.91 51.60±1.13
Shuttle 0.51±0.30 0.32±0.13 1.92±1.35 0.54±0.12
Waveform 20.88±2.09 16.14±2.18 18.10±1.86 17.16±1.73

A Distributed Learning Algorithm Based on FVQIT 129

Finally, Table 4 shows the test error. The pruned algorithms obtain the best result, or
not significantly different from the best one, in 10 out of 12 data sets (when compared
to DFVQIT) and 12 out of 12 (when compared to FVQIT). The original FVQIT is only
competitive with the proposed algorithms in 4 out of 12 data sets. In average, prun-
ing improves classification accuracy by 5.43% and 5.96% with respect to the original
FVQIT and plain DFVQIT, respectively.

4 Conclusions

In this research, we proposed a distributed algorithm DFVQIT that exploits the sep-
arated learning and model integration paradigm. If the time complexity of a learning
algorithm is worse than linear, as is the case of the FVQIT, then processing smaller
subsets of data concurrently can make it linear. Experimental results have demonstrated
that the DFVQIT outperforms the original FVQIT not just in terms of training time,
but also in the number of PEs and test accuracy. Moreover, the pruning method imple-
mented has been proven effective in both FVQIT and DFVQIT.

For future work, we plan to extend this research to a more realistic scenario: distribu-
tions with data skew. Moreover, the evaluation of the effectiveness of several distributed
algorithms will be evaluated in terms of scalability. Finally, it is an open question if it
is worth it to use higher complexity classifiers as local models.

References

1. Principe, J.C.: Information theoretic learning: Renyi’s entropy and kernel perspectives.
Springer (2010)

2. Porto-Dı́az, I., Martı́nez-Rego, D., Alonso-Betanzos, A., Fontenla-Romero, O.: Information
theoretic learning and local modeling for binary and multiclass classification. In: Progress in
Artificial Intelligence, pp. 1–14 (2012)

3. Dasarathy, B.V., Sheela, B.V.: A composite classifier system design: concepts and method-
ology. Proceedings of the IEEE 67(5), 708–713 (1979)

4. Martı́nez-Rego, D., Fontenla-Romero, O., Porto-Dı́az, I., Alonso-Betanzos, A.: A new su-
pervised local modelling classifier based on information theory. In: International Joint Con-
ference on Neural Networks (IJCNN), pp. 2014–2020 (2009)

5. Porto-Dıaz, I., Alonso-Betanzos, A., Fontenla-Romero, O.: A multiclass classifier based on
local modeling and information theoretic learning. In: Conference of the Spanish Association
for Artificial Intelligence (CAEPIA) (2011)

6. Chu, C., Kim, S.K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce
for machine learning on multicore. In: Advances in Neural Information Processing Systems,
vol. 19, p. 281 (2007)

7. Principe, J.C., Xu, D., Zhao, Q., Fisher, J.W.: Learning from Examples with Information
Theoretic Criteria. The Journal of VLSI Signal Processing 26(1), 61–77 (2000)

8. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information
Theory 13(1), 21–27 (1967)

9. Castillo, E., Fontenla-Romero, O., Guijarro-Berdiñas, B., Alonso-Betanzos, A.: A Global
Optimum Approach for One-Layer Neural Networks. Neural Computation 14(6), 1429–1449
(2002)

10. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning (1989)
11. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

Efficient Baseline-Free Sampling in Parameter

Exploring Policy Gradients:
Super Symmetric PGPE

Frank Sehnke

Zentrum für Sonnenenergie- und Wasserstoff-Forschung,
Industriestr. 6, Stuttgart, BW 70565 Germany

Abstract. Policy Gradient methods that explore directly in parame-
ter space are among the most effective and robust direct policy search
methods and have drawn a lot of attention lately. The basic method from
this field, Policy Gradients with Parameter-based Exploration, uses two
samples that are symmetric around the current hypothesis to circumvent
misleading reward in asymmetrical reward distributed problems gath-
ered with the usual baseline approach. The exploration parameters are
still updated by a baseline approach - leaving the exploration prone to
asymmetric reward distributions. In this paper we will show how the
exploration parameters can be sampled quasi symmetric despite having
limited instead of free parameters for exploration. We give a transforma-
tion approximation to get quasi symmetric samples with respect to the
exploration without changing the overall sampling distribution. Finally
we will demonstrate that sampling symmetrically also for the exploration
parameters is superior in needs of samples and robustness than the orig-
inal sampling approach.

1 Introduction

Policy Gradient (PG) methods that explore directly in parameter space have
some major advantages over standard PG methods, like described in [1,2,3,4,5,6]
and [7] and have therefore drawn a lot of attention in the last years. The ba-
sic method from the field of Parameter Exploring Policy Gradients (PEPG) [8],
Policy Gradients with Parameter-based Exploration (PGPE) [1], uses two sam-
ples that are symmetric around the current hypothesis to circumvent misleading
reward in asymmetrical reward distributed problems, gathered with the usual
baseline approach. [4] shows that Symmetric Sampling (SyS) is superior even
to the optimal baseline. The exploration parameters, however, are still updated
by a baseline approach - leaving the exploration prone to asymmetric reward
distributions. While the optimal baseline improved this issue substantially, like
shown again by [4], it is likely that removing the baseline altogether by a SyS
wrt. the exploration parameters will be again superior. Because the exploration
parameters are standard deviations that are bounded between zero and infin-
ity, there exist no correct symmetric samples wrt. the exploration parameters.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 130–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Super Symmetric PGPE 131

We will, however, show how the exploration parameters can be sampled quasi
symmetric. We give therefore a transformation approximation to get quasi sym-
metric samples without changing the overall sampling distribution significantly,
so that the PGPE assumptions based on normal distributed samples still hold.
Finally we will demonstrate via experiments that sampling symmetrically also
for the exploration parameters is superior in needs of samples and robustness
compared to the original sampling approach, if confronted with search spaces
with significant amounts of local optima.

2 Method

In this section we derive the super-symmetric sampling (SupSyS) method. We
show how the method relates to SyS and sampling with a baseline, thereby
summarizing the derivation from [1] for SyS and baseline sampling PGPE.

2.1 Parameter-Based Exploration

To stay conform with the nomenclature of [1] and [4], we assume a Markovian
environment that produces a cumulative reward r for a fixed length episode,
history, trajectory or roll-out. In this setting, the goal of reinforcement learning
is to find the optimal policy parameters θ that maximize the agent’s expected
reward

J(θ) =

∫
H

p(h|θ)r(h)dh. (1)

An obvious way to maximize J(θ) is to estimate ∇θJ and use it to carry out
gradient ascent optimization. The probabilistic policy used in standard PG is
replaced with a probability distribution over the parameters θ for PGPE. The
advantage of this approach is that the actions are deterministic, and an entire
history can therefore be generated from a single parameter sample. This reduc-
tion in samples-per-history is what reduces the variance in the gradient estimate
(see [1] for details).

We name the distribution over parameters in accordance with [1] ρ. The
expected reward with a given ρ is

J(ρ) =

∫
Θ

∫
H

p(h, θ|ρ)r(h)dhdθ. (2)

Differentiating this form of the expected return with respect to ρ and apply-
ing sampling methods (first choosing θ from p(θ|ρ), then running the agent to
generate h from p(h|θ)) yields the following gradient estimator:

∇ρJ(ρ) ≈ 1

N

N∑
n=1

∇ρ log p(θ|ρ)r(hn). (3)

Assuming that ρ consists of a set of means {μi} and standard deviations {σi}
that determine an independent normal distribution for each parameter θi in

132 F. Sehnke

θ gives the following forms for the derivative of the characteristic eligibility
log p(θ|ρ) with respect to μi and σi

∇μi log p(θ|ρ) =
(θi − μi)

σ2
i

, ∇σi log p(θ|ρ) =
(θi − μi)

2 − σ2
i

σ3
i

, (4)

which can be substituted into Eq. (3) to approximate the μ and σ gradients.

2.2 Sampling with a Baseline

Given enough samples, Eq. (3) will determine the reward gradient to arbitrary
accuracy. However each sample requires rolling out an entire state-action his-
tory, which is expensive. Following [9], we obtain a cheaper gradient estimate
by drawing a single sample θ and comparing its reward r to a baseline reward
b given e.g. by a moving average over previous samples. Intuitively, if r > b we
adjust ρ so as to increase the probability of θ, and r < b we do the opposite. If,
as in [9], we use a step size αi = ασ2

i in the direction of positive gradient (where
α is a constant) we get the following parameter update equations:

Δμi = α(r − b)(θi − μi), Δσi = α(r − b)
(θi − μi)

2 − σ2
i

σi
. (5)

Usually the baseline is realized as decaying or moving average baseline of the
form:

b(n) = γr(hn−1) + (1 − γ)b(n− 1) or b(n) =
N∑

n=N−m

r(hn)/m (6)

[4] showed recently that an optimal baseline can be achieved for PGPE and the
algorithm converges significantly faster with an optimal baseline of the form:

b∗ =
E[r(h)||∇ρ log p(θ|ρ)||2]
E[||∇ρ log p(θ|ρ)||2] . (7)

2.3 Symmetric Sampling

While sampling with a baseline is efficient and reasonably accurate for most
scenarios, it has several drawbacks. In particular, if the reward distribution is
strongly skewed then the comparison between the sample reward and the baseline
reward is misleading. A more robust gradient approximation can be found by
measuring the difference in reward between two symmetric samples on either
side of the current mean. That is, we pick a perturbation ε from the distribution
N (0,σ), then create symmetric parameter samples θ+ = μ+ ε and θ− = μ− ε.
Defining r+ as the reward given by θ+ and r− as the reward given by θ−. We
can insert the two samples into Eq. (3) and make use of Eq. (4) to obtain

∇μiJ(ρ) ≈
εi(r

+ − r−)
2σ2

i

, (8)

Super Symmetric PGPE 133

Fig. 1. Normal distribution and the final
approximation of the ’mirrored’ distribu-
tion

Fig. 2. Normal distribution and the re-
gions that are transfered into each other
by ’reflecting’ the samples on the other
side of the median deviation

which resembles the central difference approximation used in finite difference
methods. Using the same step sizes as before gives the following update equation
for the μ terms

Δμi =
αεi(r

+ − r−)
2

. (9)

The updates for the standard deviations are more involved. As θ+ and θ− are
by construction equally probable under a given σ, the difference between them

cannot be used to estimate the σ gradient. Instead we take the mean r++ r−
2 of

the two rewards and compare it to the baseline reward b. This approach yields

Δσi = α

(
r+ + r−

2
− b

)(
ε2i − σ2

i

σi

)
(10)

SyS removes the problem of misleading baselines, and therefore improves the μ
gradient estimates. It also improves the σ gradient estimates, since both samples
are equally probable under the current distribution, and therefore reinforce each
other as predictors of the benefits of altering σ. Even though symmetric sampling
requires twice as many histories per update, [1] and [4] have shown that it gives
a considerable improvement in convergence quality and time.

2.4 Super-Symmetric Sampling

While SyS removes the misleading baseline problem for the μ gradient estimate,
the σ gradient still uses a baseline and is prone to this problem. On the other
hand there is no correct symmetric sample with respect to the standard devi-
ation, because the standard deviation is bounded on the one side to 0 and is
unbounded on the positive side. Another problem is that 2

3 of the samples are
on one side of the standard deviation and only 1

3 on the other - mirroring the

134 F. Sehnke

samples to the opposite side of the standard deviation in some way, would there-
fore deform the normal distribution so much, that it would no longer be a close
enough approximation to fulfill the assumptions that lead to the PGPE update
rules.

We therefore chose to define the normal distribution via the mean and the
median deviation φ. The median deviation is due to the nice properties of the
normal distribution simply defined by: φ = 0.67449 · σ. We can therefore draw
samples from the new defined normal distribution: ε ∼ Nm(0,φ).

The median deviation has by construction an equal amount of samples on
either side and solves therefore the symmetry problem of mirroring samples.
The update rule Eq. (9) stays unchanged while Eq. (10) is only scaled by 1

0.67449
(the factor that transforms φ in σ) that can be substituted in ασ.

While the update rules stay the same for normal distributed sampling using
the median deviation (despite a larger ασ), the median deviation is still also
bounded on one side. Because the mirroring cannot be solved in closed form we
resort to approximation via a polynomial that can be transfered to an infinite
series. We found a good approximation for mirroring samples by:

ai =
φi− | εi |

φi
, ε∗i = sign(εi) · φi ·

{
e
c1

|ai|3−|ai|
log(|ai|) +c2|ai| if ai ≤ 0

eai/(1.− a3i)
c3ai if ai > 0,

(11)

with the following constants: c1 = −0.06655, c2 = −0.9706, c3 = 0.124. This mir-
rored distribution has a standard deviation of 1.002 times the original standard
deviation and looks like depicted in Fig. 1. Fig. 2 shows the regions of sam-
ples that are transfered into each other while generating the quasi symmetric
samples.

Additional to the symmetric sample with respect to the mean hypothesis, now
we also can generate two quasi symmetric samples with respect to the median
deviation. We named this set of four samples super symmetric samples (SupSyS-
samples). They allow for completely baseline free update rules, not only for the
μ update but also for the σ updates.

Therefore the two symmetric sample pairs are used to update μ according
to Eq. (9). σ is updated in a similar way by using the mean reward of each
symmetric sample pair, there r++ is the mean reward of the original symmetric
sample pair and r−− is the mean reward of the mirrored sample pair. The SupSyS
update rule for the σ update is given by:

Δσi =
α

ε2i−σ2
i

σi
(r++ − r−−)

2
. (12)

3 Experiments and Results

We use the square function as search space instance with no local optima and
the Rastrigin function (see Fig. 8) as search space with exponentially many local
optima, to test the different behavior of SupSyS- and SyS-PGPE. The two meta-
parameters connected with SyS-PGPE as well as with SupSyS-PGPE, namely

Super Symmetric PGPE 135

Fig. 3. Convergence plots of PGPE and
SupSyS-PGPE on the 100 dimensional
square function. The mean and standard
deviation of 200 independent runs are
shown.

Fig. 4. Convergence plots of PGPE and
SupSyS-PGPE on the 10 dimensional Ras-
trigin function. The mean and standard
deviation of 200 independent runs are
shown.

the step sizes for the μ and σ updates, were optimized for every experiment via
a grid search. The Figures 3 to 6 show the means and standard deviations of
200 independent runs each. It can be seen in Fig. 3 that for a search space with
no local optima SupSyS-PGPE shows no advantage over standard SyS-PGPE.
However, despite using 4 samples per update the performance is also not reduced
by using SupSyS-PGPE — the two methods become merely equivalent. The
situation changes drastically if the Rastrigin function is used as test function.
Not only needs SupSyS-PGPE about half the samples compared to PGPE, the
effect seems also to become stronger the higher dimensional the search space

Fig. 5. Convergence plots of PGPE,
PGPE with 4 samples (PGPE4smp),
conditional SupSyS-PGPE (SupIf-PGPE)
and SupSyS-PGPE on the 100 dimen-
sional Rastrigin function. The mean and
standard deviation of 200 independent
runs are shown.

Fig. 6. Convergence plots of PGPE and
SupSyS-PGPE on the 1000 dimensional
Rastrigin function. The mean and stan-
dard deviation of 200 independent runs
are shown.

136 F. Sehnke

Fig. 7. Optimal meta-parameters for the
multi-dimensional Rastrigin function for
PGPE and SupSyS-PGPE

Fig. 8. Visualization of the 2D Rastrigin
function

gets (see Fig. 4 to Fig. 6). We also added SupSyS-PGPE plots with the for SyS-
PGPE optimal (less greedy) meta parameters to show that the effect is not only
due to the more aggressive meta parameters. This runs were also more efficient
than for PGPE, the effect was however not so distinct.

In Fig. 5 we also show a standard PGPE experiment with 4 samples (2 SyS
samples — PGPE4smp) instead of 2 to show that the improved performance
is not due to the different samples per update. Fig. 5 additionally shows an
experiment (SupIf-PGPE) there symmetric samples are only drawn if the first
sample(s) result in worse reward than a decaying average baseline. The intuitive
idea behind symmetric samples was initially that changing the parameters away
from the current sample if the sample resulted in lower than average reward may
move the mean hypothesis still in a worse region of the parameter space. Search
spaces like the one given in the Rastrigin function can visualize this problem.
For SupIf-PGPE one Sample is drawn. If the reward is larger than the baseline
then an update is done immediately. If not, a symmetric sample is drawn. Is
the mean reward connected with both samples better than the baseline an SyS-
PGPE update is done. If also this mean reward is worse than the baseline, a
full SupSyS-PGPE update with 2 additional SyS samples is performed. As can
be seen in Fig. 5 the performance is worse by some degree — the difference is
however small enough that maybe the optimal baseline approach would improve
this method enough to be challenging to SupSyS-PGPE (see also Sec. 4).

The optimal meta-parameters are an exponential function of the search space
dimension, like to expect, so that we observe a line in the loglog-plot of Fig. 7.
For SupSyS-PGPE the meta-parameters are about 2 times larger than for SyS-
PGPE. This is partly because SupSyS-PGPE uses four samples per update in-
stead of two. But the optimal meta-parameters are also larger than for the
PGPE4smp experiment so that the symmetric nature of the four SupSyS sam-
ples obviously brings additional stability in the gradient estimate than a pure
averaging over 4 samples would.

Super Symmetric PGPE 137

4 Conclusions and Future Work

We introduced SupSyS-PGPE, a completely baseline free PGPE that uses quasi-
symmetric samples wrt. the exploration parameters. We showed that on the
Rastrigin function, as example for a test function with exponentially many lo-
cal optima, this novel method is clearly superior to standard SyS-PGPE and
that both methods become equivalent in performance if the search space lack
distracting local optima.

For future work we want to highlight that SupSyS-PGPE can be easily com-
bined with other extensions of PGPE. Multi-modal PGPE [10] can be equipped
straight forward with SupSyS sampling. Also the natural gradient used for PGPE
in [3] can be defined over the SupSyS gradient instead over the vanilla gradient.
If the full 4 super symmetric sample set is only used if the first samples are worse
than a baseline (like described as SupIf-PGPE in Sec. 3) a combination with the
optimal baseline (described for PGPE in [4]) can yield a superior method to both
SupSyS-PGPE and optimal baseline PGPE. Also importance mixing introduced
for PGPE by [5] is applicable to SupSyS-PGPE.

Finally a big open point for future work is the validation of the mere theoret-
ical findings on real world problems, e.g. robotic tasks, for SupSyS-PGPE and
its combination with other PGPE extensions.

References

1. Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., Schmidhuber, J.:
Parameter-exploring policy gradients. Neural Networks 23(4), 551–559 (2010)

2. Rückstieß, T., Sehnke, F., Schaul, T., Wierstra, D., Sun, Y., Schmidhuber, J.: Ex-
ploring parameter space in reinforcement learning. Paladyn. Journal of Behavioral
Robotics 1(1), 14–24 (2010)

3. Miyamae, A., Nagata, Y., Ono, I.: Natural Policy Gradient Methods with
Parameter-based Exploration for Control Tasks. In: NIPS, pp. 1–9 (2010)

4. Zhao, T., Hachiya, H., Niu, G., Sugiyama, M.: Analysis and improvement of pol-
icy gradient estimation. Neural networks: the Official Journal of the International
Neural Network Society, 1–30 (October 2011)

5. Zhao, T., Hachiya, H., Tangkaratt, V., Morimoto, J., Sugiyama, M.: Efficient sam-
ple reuse in policy gradients with parameter-based exploration. arXiv preprint
arXiv:1301.3966 (2013)

6. Stulp, F., Sigaud, O.: Path integral policy improvement with covariance matrix
adaptation. arXiv preprint arXiv:1206.4621 (2012)

7. Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.: Natural evolution strategies.
In: Evolutionary Computation, CEC 2008, pp. 3381–3387. IEEE (2008)

8. Sehnke, F.: Parameter exploring policy gradients and their implications
9. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning 8, 229–256 (1992)
10. Sehnke, F., Graves, A., Osendorfer, C., Schmidhuber, J.: Multimodal parameter-

exploring policy gradients. In: 2010 Ninth International Conference on Machine
Learning and Applications (ICMLA), pp. 113–118. IEEE (2010)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 138–145, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Direct Method for Training Feed-Forward Neural
Networks Using Batch Extended Kalman Filter

for Multi-Step-Ahead Predictions

Artem Chernodub

Institute of Mathematical Machines and Systems NASU, Neurotechnologies Dept.,
Glushkova 42 ave., 03187 Kyiv, Ukraine

a.chernodub@gmail.com

Abstract. This paper is dedicated to the long-term, or multi-step-ahead, time
series prediction problem. We propose a novel method for training feed-forward
neural networks, such as multilayer perceptrons, with tapped delay lines.
Special batch calculation of derivatives called Forecasted Propagation Through
Time and batch modification of the Extended Kalman Filter are introduced.
Experiments were carried out on well-known timeseries benchmarks, the
Mackey-Glass chaotic process and the Santa Fe Laser Data Series. Recurrent
and feed-forward neural networks were evaluated.

Keywords: multi-step-ahead prediction, Batch Extended Kalman Filter,
Forecasted Propagation Through Time.

1 Introduction

Time series forecasting is a current scientific problem that has many applications in
control theory, economics, medicine, physics and other domains. Neural networks are
known as an effective and friendly tool for black-box modeling of plant’s dynamics
[1]. Usually, neural networks are trained to perform single-step-ahead (SS)
predictions, where the predictor uses some available input and output observations to
estimate the variable of interest for the time step immediately following the latest
observation [2-4]. However, recently there has been growing interest in multi-step-
ahead (MS) predictions, where the values of interest must be predicted for some
horizon in the future. Knowing the sequence of future values allows for estimation of
projected amplitudes, frequencies, and variability, which are important for modeling
predictive control [5], flood forecasts [6] and fault diagnostics [7]. Generally
speaking, the ability to perform MS predictions is frequently treated as the “true” test
for the quality of a developed empirical model. In particular, well-known echo state
machine neural networks (ESNs) became popular because of their ability to perform
good long-horizon)84(=H multistep predictions [8].

The most straightforward approach to perform MS prediction is to train the SS
predictor first and then use it in an autonomous “closed-loop” mode. The predictor’s
output is fed back to the input for a finite number of time steps. However, this simple

 Direct Method for Training Feed-Forward Neural Networks 139

method frequently shows poor results because of the accumulation of errors on
difficult data points [4]. Recurrent neural networks (RNNs) such as NARX and Elman
networks usually show better results. They are based on the calculation of special
dynamic derivatives called Backpropagation Through Time (BPTT). The underlying
idea of BPTT is to calculate derivatives by propagating the errors back across the
RNN, which is unfolded through time. This penalizes the predictor for accumulating
errors in time and therefore provides better MS predictions. Nonetheless, RNNs have
some disadvantages. First, the implementation of RNNs is harder than feed-forward
neural networks (FFNNs) in industrial settings. Second, training the RNNs is a
difficult problem because of their more complicated error surfaces and vanishing
gradient effects [9]. Third, the internal dynamics of RNNs make them less friendly for
stability analysis. All of the above reasons prevent RNNs from becoming widely
popular in industry. Meanwhile, RNNs have inspired a new family of methods for
training FFNNs to perform MS predictions called direct methods [4]. Accumulated
error is backpropagated through an unfolded through time FFNN in BPTT style that
causes minimization of the MS prediction error. Nevertheless, the vanishing gradient
effect still occurs in all multilayer perceptron-based networks with sigmoidal
activation functions.

We propose a new, effective method for training the feed-forward neural models to
perform MS prediction, called Forecasted Propagation Through Time (FPTT), for
calculating the batch-like dynamic derivatives that minimize the negative effect of
vanishing gradients. We use batch modification of the EKF algorithm which naturally
deals with these batch-like dynamic derivatives for training the neural network.

2 Modeling Time Series Dynamics

We consider modeling time series in the sense of dealing with generalized nonlinear
autoregression (NAR) models. In this case, time series behavior can be captured by
expressing the observable value)1(+ky as a function of N previous values

)1(),...,(+− Nkyky :

)),1(),...,1(),(()1(+−−=+ NkykykyFky (1)

where k is the time step variable and)(⋅F is an unknown function that defines the

underlying dynamic process. The goal of training the neural network is to develop the
empirical model of function)(⋅F as closely as possible. If such a neural model)(~ ⋅F

is available, one can perform iterated multi-step-ahead prediction:

)),1(),...,1(),((~)1(~ +−−=+ NkykykyFky (2)

…

)),1(~),...,1(~),(~(~)1(~ +−+−++=++ NHkyHkyHkyFHky (3)

where y~ is the neural network’s output and H is the horizon of prediction.

140 A. Chernodub

2.1 Training Traditiona

Dynamic Multilayer Perc
most popular neural netwo
networks consist of multila
(Fig. 1, left).

Fig. 1. DMLP n

The neural

....)1()([)(kykykx −=

((()1(~)2(=+
j i

j fwgky

and output layers and)(⋅f

layers.

Calculation of BP Derivat

procedure are calculated us

constant value 1=OUTδ a

error (~)1(−+= kyktOUTδ

gradients
w

kE

∂
∂)(

 because
∂

Extended Kalman Filter M
[10] is usually associated
parameterized model. Train
may be considered a stat
network that provides zero
weights)(kw and

)1(~)1()1(+−+=+ kyktke

al Multilayer Perceptrons Using EKF for SS Predictio

ceptron. Dynamic multilayer perceptrons (DMLP) are
ork architectures for time series prediction. Such neu
ayer perceptrons with added tapped delay line of order

neural network (left), NARX neural network (right)

network receives an input vec

,)](TNky − and calculates the out

),)))1(iji xw

where)1(w and)2(w are weights of the hid

and)(⋅g are activation functions of the hidden and out

tives. The Jacobians
w

y

∂
∂~

 for the neural network’s train

ing a standard backpropagation technique by propagatin

at each backward pass instead of propagating the resid

)1+ which calculates Jacobians
w

ky

∂
∂)(~

 instead of er

w

y
ke

w

ke

w

kE

∂
∂+=

∂
+∂=

∂
∂

)1(2
])1([)(2

.

Method for Training DMLP. Although EKF training
d with RNNs it can be applied to any differentia
ning the neural network using an Extended Kalman Fi
te estimation problem of some unknown “ideal” neu
o residual. In this case, the states are the neural networ

the residual is the current training er

. During the initialization step, covariance matrices

ons

the
ural

N

ctor

tput

dden

tput

ning

ng a

dual

rror

[7],
able
ilter
ural
rk’s
rror

s of

 Direct Method for Training Feed-Forward Neural Networks 141

measurement noise IR η= and dynamic training noise IQ μ= are set. Matrix R has

size ww LL × , matrix Q has size ,ww NN × where wL is the number of output

neurons, and wN is the number of the network’s weight coefficients. Coefficient η is

the training speed, usually 42 10...10~ −−η , and coefficient μ defines the

measurement noise, usually 84 10...10~ −−μ . Also, the identity covariance matrix P

of size ww NN × and zero observation matrix H of size ww NL × are defined. The

following steps must be performed for all elements of the training dataset:

1) Forward pass: the neural network’s output)1(~ +ky is calculated.

2) Backward pass: Jacobians
w

y

∂
∂~

 are calculated using backpropagation. Observation

matrix)(kH is filled:

.
)1(~

...
)1(~)1(~

)(
21

∂
+∂

∂
+∂

∂
+∂=

wNw

ky

w

ky

w

ky
kH (4)

3) Residual matrix)(kE is filled:

[].)1()(+= kekE (5)

4) New weights)(kw and correlation matrix)1(+kP are calculated:

,])()()([)()()(1−+= RkHkPkHkHkPkK TT (6)

,)()()()()1(QkPkHkKkPkP +−=+ (7)

).()()()1(kEkKkwkw +=+ (8)

2.2 Training NARX Networks Using BPTT and EKF

Nonlinear Autoregression with eXternal Inputs. The NARX neural network
structure is shown in Fig. 1. It is equipped with both a tapped delay line at the input
and global recurrent feedback connections, so the input vector

,])(~...)(~)(...)([)(TLkykyNkykykx −−=

where N is the order of the

input tapped delay and L is the order of the feedback tapped delay line.

Calculation of BPTT Derivatives. Jacobians are calculated according to the BPTT
scheme [1, p. 836], [4], [7]. After calculating the output)1(~ +ky , the NARX

network is unfolded back through time. The recurrent neural network is presented as
an FFNN with many layers, each corresponding to one retrospective time step 1−k ,

2−k , , hk − , where h is a BPTT truncation depth. The set of static Jacobians

w

nky

∂
−∂)(~

 are calculated for each of the unrolled retrospective time steps. Finally,

142 A. Chernodub

dynamic BPTT Jacobians

feed-forward layers.

Extended Kalman Filter M
an EKF algorithm is accom
above. The only difference

derivatives
)1(

)(~

w

kyBPTT

∂
∂

 and

2.3 Direct Method of
Using FPTT and Ba

Calculation of FPTT D
calculating the dynamic d
Through Time (Fig. 3).

Fig. 2. Calculation of d

1) At each time step
times using Eqs. (2
step-ahead predic

(~),...,1(~ ++ kyky

2) For each of
()1(+=++ kthke

3) The set of indepen

standard backprop

each copy of the u

There are three main d
BPTT. First, BPTT unfolds
the neural network recur
technological point of view
predictions anyway. Secon
through the whole unfolde

w

kyBPTT

∂
∂)(~

 are averaged static derivatives obtained for

Method for Training NARX. Training the NARXs us
mplished in the same way as training the DMLPs descri

is that the observation matrix H is filled by the dynam

d
)2(

)(~

w

kyBPTT

∂
∂

, which contain temporal information.

Training Multilayer Perceptrons for MS Predicti
atch EKF

Derivatives. We propose a new batch-like method
derivatives for the FFNNs called Forecasted Propagat

dynamic FPTT derivatives for feedforward neural networks

the neural network is unfolded forward through time
2)-(3) in the same way as it is performed for regular mu
ction, where H is a horizon of prediction. Outp

)1+H are calculated.

H forecasted time steps, prediction err
)1(~)1 ++−++ hkyh , Hh ,...,1= are calculated.

ndent derivatives

∂
+∂

W

hky)(~
, 1,...,1 += Hh , using

pagation of independent errors { })(hke +

are calculated

nfolded neural network.

differences between the proposed FPTT and traditio
s the neural network backward through time; FPTT unfo
rsively forward through time. This is useful from
w because this functionality must be implemented for
nd, FPTT does not backpropagate the accumulated er
ed structure. It instead calculates BP for each copy of

the

sing
ibed
mic

ions

of
tion

H
ulti-
puts

rors

the

d for

onal
olds
m a
MS
rror
the

 Direct Method for Training Feed-Forward Neural Networks 143

neural network. Finally, FPTT does not average derivatives, it calculates a set of
formally independent errors and a set of formally independent derivatives for future
time steps instead. By doing this, we leave the question about contributions of each
time step to the total MS error to the Batch EKF Algorithm.

Batch Extended Kalman Filter Method for Training DMLP Using FPTT. The
EKF training algorithm also has a batch form [11]. In this case, a batch size of H
patterns and a neural network with wL outputs is treated as training a single shared-

weight network with HLw × outputs, i.e.

H data streams which feed H networks

constrained to have identical weights are formed from the training set. A single
weight update is calculated and applied equally to each stream's network. This
weights update is sub-optimal for all samples in the batch. If streams are taken from
different places in the dataset, then this trick becomes equivalent to a Multistream
EKF [7], [10], a well-known technique for avoiding poor local minima. However, we
use it for direct minimization of accumulated error H steps ahead. Batch observation
matrix)(~ kH and residual matrix)(~ kE now becomes:

,
)1(~

...
)1(~)1(~

............

)1(~
...

)1(~)1(~

)(~

21

21

∂
++∂

∂
++∂

∂
++∂

∂
+∂

∂
+∂

∂
+∂

=

w

w

N

N

w

Hky

w

Hky

w

Hky

w

ky

w

ky

w

ky

kH (9)

[].)1(...)2()1()(~ ++++= HkekekekE (10)

The size of matrix R~ is)()(HLHL ww ××× , the size of matrix)(~ kH is

ww NHL ××)(, and the size of matrix)(~ kE is 1)(×× HLw . The remainder is

identical to regular EKF. In (9)-(10) we assume 1=wL , if 1>wL the method works

for vector-valued time series of dimensionality wL . However, the proposed method

requires at least H more calculations at each time step in comparison classic one.
Experimental research to establish it's computational cost is needed.

3 Experiments

3.1 Mackey-Glass Chaotic Process

The Mackey-Glass chaotic process is a famous benchmark for time series predictions.
The discrete-time equation is given by the following difference equation (with delays):

,,...1,,
)(1

)1(
101 +=

+
+−=

−

−
+ ττ

τ

τ t
x

x
axbx

t

t
tt (11)

where 1≥τ is an integer. We used the following parameters: 1.0=a , 2.0=b ,
17=τ as in [4]. 500 values were used for training; the next 100 values were used for

testing.

144 A. Chernodub

First, we trained 100 D
tangent activation function
parameters for EKF were s

the hidden layer was varied
5=N , and the initial weig

trained for 50 epochs. After
data was performed to sele
the test sequence to achie
DMLP networks with the
technique together with FPT
Third, we trained 100 NAR
using EKF and BPTT d
experiments are presented
used for the quality estimati

Table 1. Mackey-Glass proble

 H=

DMLP EKF BP 0.0

DMLP BEKF FPTT 0.0

NARX EKF 0.0

3.2 Santa-Fe Laser Dat

In order to explore the capa
training method, we tested
dataset consisted of laser
divided to training (1000 va
goal for training was to per
time delay line was set to N
experiment. The obtained
DMLP EKF BP (classic m
method). NARX networks s

Fig. 3. The best results of the
DMLPs trained using different

DMLP networks with one hidden layer and hyperbo
ns using traditional EKF and BP derivatives. The train
set as 310−=η and 810−=μ . The number of neuron

d from 3 to 8, the order of input tapped delay line was
ghts were set to small random values. Each network w
r each epoch, MS prediction on horizon 14=H on train
ect the best network. This network was then evaluated
eve the final MS quality result. Second, we trained
e same initial weights using the proposed Batch E
TT derivatives and evaluated their MS prediction accura
RX networks (orders of tapped delay lines: 5=N , =L

derivatives to make comparisons. The results of th
in Table 1. Normalized Mean Square Error (NMSE) w
ions.

em: mean NMSE errors for different prediction horizon value

=1 H=2 H=6 H=8 H=10 H=12 H=1

006 0.0014 0.013 0.022 0.033 0.044 0.05

017 0.0022 0.012 0.018 0.022 0.027 0.03

010 0.0014 0.012 0.018 0.023 0.028 0.03

ta Series

ability of the global behavior of DMLP using the propo
d it on the laser data from the Santa Fe competition. T

intensity collected from the real experiment. Data w
alues) and testing (100 values) subsequences. This time
rform long-term (H=100) MS prediction. The order of

25=N as in [2], the rest was the same as in the previ
average NMSE for 100 DMLP networks was 0.175

method) versus 0.082 for DMLP BEKF FPTT (propo
shows NMSE 0.131 in average.

closed-loop long-term predictions (H=100) on testing data u
t methods

olic
ning
s in

 set
was
ning
d on
100

EKF
acy.

5=)
hese
was

s H

14

52

30

32

osed
The
was
the
the

ious
for

osed

sing

 Direct Method for Training Feed-Forward Neural Networks 145

Meanwhile, the best instance trained using Batch EKF+FPTT shows 10 times
better accuracy than the best instance trained using the traditional approach.

4 Conclusions

We considered the multi-step-ahead prediction problem and discussed neural network
based approaches as a tool for its solution. Feed-forward and recurrent neural models
were considered, and advantages and disadvantages of their usage were discussed. A
novel direct method for training feed-forward neural networks to perform multi-step-
ahead predictions was proposed, based on the Batch Extended Kalman Filter. This
method is considered to be useful from a technological point of view because it uses
existing multi-step-ahead prediction functionality for calculating special FPTT
dynamic derivatives which require a slight modification of the standard EKF
algorithm. Our method demonstrates doubled long-term accuracy in comparison to
standard training of the dynamic MLPs using the EKF due to direct minimization of
the accumulated multi-step-ahead error.

References

1. Haykin, S.: Neural Networks and Learning Machines, 3rd edn., p. 936. Prentice Hall, New
York (2009)

2. Giles, L.L., Horne, B.G., Sun-Yan, Y.: A delay damage model selection algorithm for
NARX neural networks. IEEE Transactions on Signal Processing 45(11), 2719–2730
(1997)

3. Parlos, A.G., Raisa, O.T., Atiya, A.F.: Multi-step-ahead prediction using dynamic
recurrent neural networks. Neural Networks 13(7), 765–786 (2000)

4. Bone, R., Cardot, H.: Advanced Methods for Time Series Prediction Using Recurrent
Neural Networks. In: Recurrent Neural Networks for Temporal Data Processing, ch. 2,
pp. 15–36. Intech, Croatia (2011)

5. Qina, S.J., Badgwellb, T.A.: A survey of industrial model predictive control technology.
Control Engineering Practice 11(7), 733–764 (2003)

6. Toth, E., Brath, A.: Multistep ahead streamflow forecasting: Role of calibration data in
conceptual and neural network modeling. Water Resources Research 43(11) (2007),
doi:10.1029/2006WR005383

7. Prokhorov, D.V.: Toyota Prius HEV Neurocontrol and Diagnostics. In: Neural Networks,
vol. (21), pp. 458–465 (2008)

8. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks.
Technical ReportGMDReport 148, German National Research Center for Information
Technology (2001)

9. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets:
the difficulty of learning long-term dependencies. In: A Field Guide to Dynamical
Recurrent Neural Networks, p. 421. IEEE Press (2001)

10. Haykin, S.: Kalman Filtering and Neural Networks, p. 304. John Wiley & Sons (2001)
11. Li, S.: Comparative Analysis of Backpropagation and Extended Kalman Filter in Pattern

and Batch Forms for Training Neural Networks. In: Proceedings on International Joint
Conference on Neural Networks(IJCNN 2001), Washington, DC, July 15-19, vol. 1,
pp. 144–149 (2001)

Learning with Hard Constraints

Giorgio Gnecco1, Marco Gori2, Stefano Melacci2, and Marcello Sanguineti1

1 DIBRIS
University of Genoa, Genova, Italy

{giorgio.gnecco,marcello.sanguineti}@unige.it
2 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche

University of Siena, Siena, Italy
{marco,mela}@dii.unisi.it

Abstract. A learning paradigm is proposed, in which one has both clas-
sical supervised examples and constraints that cannot be violated, called
here “hard constraints”, such as those enforcing the probabilistic nor-
malization of a density function or imposing coherent decisions of the
classifiers acting on different views of the same pattern. In contrast,
supervised examples can be violated at the cost of some penalization
(quantified by the choice of a suitable loss function) and so play the
roles of “soft constraints”. Constrained variational calculus is exploited
to derive a representation theorem which provides a description of the
“optimal body of the agent”, i.e. the functional structure of the solution
to the proposed learning problem. It is shown that the solution can be
represented in terms of a set of “support constraints”, thus extending
the well-known notion of “support vectors”.

Keywords: Learning from constraints, learning with prior knowledge,
multi-task learning, support constraints, constrained variational calculus.

1 Introduction

Examples of constraints in machine learning come out naturally regardless of
the context: for instance, constraints may represent prior knowledge provided by
an expert (e.g., a physician in the case of a medical application: in such a case
constraints may be expressed in the form of rules which help in the detection of a
disease [8]). The expressive power of constraints becomes particularly significant
when dealing with a specific problem, like vision, control, text classification,
ranking in hyper-textual environment, and prediction of the stock market.

Table 1 provides some examples of constraints that are often encountered in
practical problems arising in different domains. The first example (i) describes
the simplest case in which we handle several pairs (xi, yi) provided for super-
vised learning in classification, where yi ∈ {−1, 1}. If f(·) is the function that the
agent is expected to compute, the corresponding real-valued representation of
the constraint, which is reported in column 3, is just the translation of the clas-
sic “robust” sign agreement between the target and the function to be learned.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 146–153, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Learning with Hard Constraints 147

Table 1. Examples of constraints from different environments

linguistic description real-valued representation

i. i-th supervised pair for classification yi · f(xi)− 1 ≥ 0
ii. normalization of a density function

∫
X f(x)dx = 1, and ∀x ∈ X : f(x) ≥ 0

iii. coherence constraint (two classes) ∀x ∈ X : f1(S1x) · f2(S2x) > 0
iv. brightness invariance - optical flow ∂E

∂x
u+ ∂E

∂y
v + ∂E

∂t
= 0

Example ii is the probabilistic normalization of a density function, while exam-
ple iii imposes the coherence between the decisions (in a binary classification
problem) taken on S1x and S2x, for the object x, where S1 and S2 are matrices
used to select two different views of the same object x (see [9]). In the example iv
we report a constraint from computer vision coming from the classic problem of
determining the optical flow. It consists of finding the smoothest solution for the
velocity field under the constraint that the brightness of any point in the move-
ment pattern is constant. If u(x, y, t) and v(x, y, t) denote the components of the
velocity field and E(x, y, t) denotes the brightness of any pixel (x, y) at time t,
then the velocity field satisfies the linear constraint indicated in Table 1 [6].

Unlike the classic framework of learning from examples, the beauty and the
elegance of simplicity behind the parsimony principle - for which simple expla-
nations are preferred to complex ones - has not been profitably used yet for the
formulation of systematic theories of learning in a constrained-based environ-
ment. In those cases, most solutions are essentially based on hybrid systems,
in which there is a mere combination of different modules that are separately
charged of handling the prior knowledge on the tasks and of providing the in-
ductive behavior naturally required in some tasks. In the paper, instead, we
propose the study of parsimonious agents interacting simultaneously with exam-
ples and constraints in a multi-task environment with the purpose of developing
the simplest (smoothest) vectorial function in a set of feasible solutions.

More precisely, we think of an intelligent agent acting on a subset X of the
perceptual space Rd as one implementing a vectorial function f := [f1, . . . , fn]

′ ∈
F , where F is a space of functions from X to Rn. Each function fj is referred
to as a task of the agent. As it is usual in supervised learning, we are also given
a supervised learning set

{
(xκ, yκ), xκ ∈ Rd, yκ ∈ Rn, κ ∈ Nmd

}
.

In addition, we assume that additional prior knowledge is available, modeled
by the exact fulfillment of constraints that are expressed either as

∀x ∈ Xi⊆X : φi(x, f(x)) = 0, i = 1, . . . ,m, (1)

or as

∀x ∈ Xi⊆X : φ̌i(x, f(x)) ≥ 0, i = 1, . . . ,m, (2)

where the sets Xi are open and φi, φ̌i are scalar-valued functions. We denote by
C the collection of constraints (1) or (2). Following the terminology in variational
calculus, we call (1) hard bilateral holonomic constraints and (2) hard unilateral

148 G. Gnecco et al.

holonomic constraints. Such constraints are called hard since they cannot be vi-
olated; constraints that can be violated (at the cost of some penalization) play
the role of soft constraints (e.g., usually, the ones associated with the super-
vised pairs of the learning set). Examples of learning problems with holonomic
constraints are given, e.g., in [2,5], where the constraints arise by a suitable func-
tional representation of prior knowledge expressed in terms of first-order-logic
clauses. In the paper, we investigate theoretically the problem of learning in a
constrained-based environment that takes into account at the same time both
the examples and constraints of holonomic type.

The paper is organized as follows. In Section 2 we formalize the problem
of learning from examples with hard constraints. A representer theorem for the
solution is derived in Section 3. Section 4 is devoted to the concepts of reactions of
the constraints and support constraint machines. Section 5 is a short discussion.

2 Formulation of the Learning Problem

In the following, we assume X to be either the whole Rd, or an open, bounded
and connected subset of Rd, with strongly local Lipschitz continuous bound-
ary [1]. In particular, we consider the case in which, ∀j ∈ Nn := {1, . . . , n}
and some positive integer k, the function fj : X → R belongs to the Sobolev
space Wk,2(X), i.e., the subset of L2(X) whose elements fj have weak partial
derivatives up to the order k with finite L2(X)-norms. So,

F :=Wk,2(X) × . . .×Wk,2(X)︸ ︷︷ ︸
n times

.

Finally, we assume k > d
2 since, by the Sobolev Embedding Theorem (see,

e.g., [1, Chapter 4]), for k > d
2 each element of Wk,2(X) has a continuous repre-

sentative, on which the constraints (1) and (2) can be evaluated unambiguously.
We can introduce a seminorm ‖ f ‖P,γ on F by the pair (P, γ), where

P := [P0, . . . , Pl−1]
′

is a suitable (vectorial) finite-order differential operator of order k with l com-
ponents, and γ ∈ Rn is a fixed vector of positive components. Let

< Pfj, Pfj >=‖ fj ‖2P=
l−1∑
r=0

∫
X
(Prfj(x)Prfj(x))dx ,

V (·) := 1
2 (·)2 denote the quadratic loss function, μ ≥ 0 be a fixed constant, and

Ls(f) := ‖ f ‖2P,γ +
μ

md

md∑
l=1

n∑
j=1

V (yi,j − fj(x))

=

n∑
j=1

γj < Pfj , Pfj > +
μ

md

md∑
l=1

1

2

n∑
j=1

(yi,j − fj(x))
2, (3)

the objective functional to be minimized. We state the following problem.

Learning with Hard Constraints 149

Problem LHC (Learning from examples with Hard Constraints). Let
FC ⊆ F be the subset of functions that belong to the given functional space F
and are compatible with a given collection C of hard holonomic constraints. The
problem of determining a constrained (local or global) minimizer fo of Ls over
FC is referred to as learning from the soft constraints induced by the supervised
examples and the square loss, and the hard holonomic constraint collection C.

So, Problem LHC is a problem of learning from examples with hard holo-
nomic constraints. Of course, generalizations of this problem can be considered,
in which other combinations of the constraints and other kinds of constraints
are considered [3]. If we choose for P the form used in Tikhonov’s stabilizing
functionals [11], for n = 1 and l = k + 1 we get

‖ f ‖2P =

∫
X

k∑
r=0

ρr(x) (Drf(x))
2
dx ,

where the function ρr(x) is nonnegative, Pr :=
√

ρr(x)Dr, and Dr denotes a dif-
ferential operator with constant coefficients and containing only partial deriva-
tives of order r. An interesting case corresponds to the choice ρr(x) ≡ ρr ≥ 0
and

D2r = Δr = ∇2r , (4)

D2r+1 = ∇∇2r , (5)

where Δ denotes the Laplacian operator and ∇ the gradient, with the additional
condition D0f = f (see [10, 12]). According to (3), when n > 1 the operator P
acts separately on all the components of f , i.e.,

Pf := [Pf1, Pf2, . . . , Pfn]
′ .

Note that in this case we have overloaded the notation and used the symbol P
for both the vector differential operator and the scalar ones that constitute its
components. We focus on the case in which the operator P is invariant under
spatial shift and has constant coefficients. We use the following notation. For a
function u and a multiindex α with d nonnegative components αj , we write D

αu

to denote ∂|α|

∂x
α1
1 ...∂x

αd
d

u, where |α| := ∑d
j=1 αj . So, the generic component Pi of

the operator P has the expression

Pi =
∑
|α|≤k

bi,αD
α ,

where the bi,α’s are suitable real coefficients. Then, the formal adjoint of P is
defined as the operator P � = [P �

0 , . . . , P
�
l−1]

′ whose i-th component P �
i has the

form
P �
i =

∑
|α|≤k

(−1)|α|bi,αDα .

Finally, we define the operator L := (P �)′P and, using again an overloaded
notation, the one γL := [γ1L, . . . , γnL]

′.

150 G. Gnecco et al.

3 The Representer Theorem for Learning with
Constraints

Given a set of m holonomic constraints (defined, in general, on different open
subsets Xi), we denote by m(x) the number of constraints that are defined in the
same point x of the domain. By X̂ we denote any open subset of X where the
same subset of constraints is defined in all its points, in such a way that m(x) is
constant on the same X̂ . For every set Xi, by “cl(Xi)” we denote the closure of
Xi in the Euclidean topology. Finally, for two vector-valued functions h1 and h2

of the same dimension, h1 ⊗ h2 denotes the vector-valued function v whose first
component is the convolution of the first components of h1 and h2, the second
component is the convolution of the second components of h1 and h2, and so on,
i.e., vi = (h1 ⊗ h2)i = h1,i ⊗ h2,i, for each index i. A constraint φ̌i(x, f(x)) ≥ 0
is said to be active in x0 at local optimality iff φ̌i(x0, f

o(x0)) = 0, otherwise it
is inactive in x0 at local optimality. Recall that a free-space Green’s function g
associated an operator O is a solution to the distributional differential equation
Og = δ, where δ is the Dirac distribution, centered on the origin.

The next theorem prescribes the functional representation of a local solution
to Problem LHC. It is stated for a constrained local minimizer fo. Its proof can
be obtained as a variation of the one of [3, Theorem 15].

Theorem 1 (Representer Theorem for Problem LHC). Let us consider
Problem LHC in the case of m < n bilateral constraints of holonomic type, which
define the subset

Fφ := {f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φi(x, f(x)) = 0}

of the functional space F , where ∀i ∈ Nm : φi ∈ C∞(cl(Xi)× Rm). Let fo ∈ FC

be any constrained local minimizer of the functional (3). Let us assume that for
any X̂ and for every x0 in the same X̂ we can find two permutations σf and σφ

of the indexes of the n functions fj and of the m constraints φi, such that the
Jacobian matrix

∂(φσφ(1), . . . , φσφ(m(x0)))

∂(fo
σf (1)

, . . . , fo
σf (m(x0))

)
, (6)

evaluated in x0, is not singular. Suppose also that (6) is of class C∞(X̂ ,Rn).
Then, the following hold.

(i) There exists a set of distributions λi defined on X̂ , i ∈ Nm, such that, in
addition to the above constraints, fo satisfies on X̂ the Euler-Lagrange equations

γLfo(x) +
m∑
i=1

λi(x)1Xi(x) · ∇fφi(x, f
o(x)) +

1

md

md∑
κ=1

(fo(x)− yκ)δ(x− xκ) = 0,

(7)
where γL := [γ1L, . . . , γnL]

′ is a spatial-invariant operator and ∇fφi is the
gradient w.r.t. the second vector argument f of the function φi.

Learning with Hard Constraints 151

(ii) Let γ−1g := [γ−1
1 g, . . . , γ−1

n g]′. If for all i one has Xi = X = Rd and g is
a free-space Green’s function of L, then fo has the representation

fo(·) =
m∑
i=1

γ−1g(·) $⊗ φi(·, fo(·))− 1

md

md∑
κ=1

(fo(xκ)− yκ)γ
−1g(· − xκ) , (8)

where g $⊗ φi := g ⊗ ωi and ωi(·) :=↑ φi(·, fo(·)) := −λi(·)1Xi(·)∇fφi(·, fo(·)).
(iii) For the case of m < n unilateral constraints of holonomic type, which

define the subset Fφ̌ :=
{
f ∈ F : ∀i ∈ Nm∀x ∈ Xi ⊆ X , φ̌i(x, f(x)) ≥ 0

}
of the

functional space F , (i) and (ii) still hold (with every occurrence of φi replaced
by φ̌i) if one requires the nonsingularity of the Jacobian matrix (see (6)) to hold
when restricting the constraints defined in x0 to the ones that are active in x0

at local optimality. Moreover, each Lagrange multiplier λi(x) is nonpositive and
equal to 0 when the correspondent constraint is inactive in x at local optimality.

4 Support Constraint Machines

4.1 Reactions of the Constraints

The next definition formalizes a concept that plays a basic role in the following
developments.

Definition 1. The distribution ωi in Theorem 1 is called the reaction of the i-th
constraint and ω :=

∑m
i=1 ωi is the overall reaction of the given constraints.

We emphasize the fact that the reaction of a constraint is a concept associated
with the constrained local minimizer fo. In particular, two different constrained
local minimizers fo may be associated with different reactions. A similar remark
holds for the overall reaction of the constraints. Loosely speaking, under the
assumptions of Theorem 1, the reaction of the i-th constraint provides the way
under which such constraint contributes to the expansion of fo. For instance,
under the assumptions of Theorem 1 (ii), one has the expansion

fo =

m∑
i=1

γ−1g ⊗ ωi = γ−1g ⊗ ω ,

which emphasizes the roles of ωi and ω in the expansion of fo. So, solving
Problem LHC is reduced to finding the reactions of the constraints.

4.2 Support Constraints

Starting from the concept of the reaction of a constraint, we now introduce the
following two concepts.

Definition 2. A support constraint is a constraint associated with a reaction
that is different from 0 at least in one point of the domain X .

152 G. Gnecco et al.

Definition 3. A support constraint machine is any machine capable of finding
a (local or global) solution for which the representer theorem (see Theorem 1)
holds.

So, under the assumptions of the Theorem 1, a constrained local minimizer fo

for Problem LHC can be obtained by the knowledge of the reactions associated
merely with the support constraints. This motivates the use of the terminology
“support constraints” as an extension of the concept of “support vectors”. In-
terestingly, support vectors are particular cases of support constraints [3]. The
connection with kernel methods arise also because, under certain conditions, the
free-space Green’s function g associated with the operator L is a kernel of a
reproducing kernel Hilbert space (see, e.g., [4] and the references therein).

The emergence of constraints whose reaction is identically 0 at local optimality
(thus, of constraints that are not support constraints) is particularly evident for
the case of hard unilateral constraints. For instance, under the assumptions of
Theorem 1 (iii), a constraint that is inactive at local optimality for all x ∈ X
is associated with a Lagrange multiplier distribution λi(·) that is identically 0,
so its reaction is identically 0, too. Therefore, such a constraint is not a support
constraint.

It is interesting to discuss the case of a problem of learning from hard con-
straints in which one of the constraints is redundant, in the sense that the fulfill-
ment of the other constraints guarantees its fulfillment, too. Of course, without
loss of generality, such a redundant constraint can be discarded from the prob-
lem formulation and, provided that the assumptions of Theorem 1 hold, one still
has the representation (8), for the constrained local minimizer fo, where the
Lagrange multiplier associated with the redundant constraint is 0 (hence, also
the reaction from that constraint is 0). Therefore, we can say that the redundant
constraint is not a support constraint.

4.3 Computational Issues

Although Problem LHC is reduced to finding the reactions of the constraints, a
serious issue in the application of this recipe is that it is requires the knowledge
of the Lagrange multipliers λi(·). Indeed, in addition to the fact that fo has to
satisfy (7), the constraints ∀x ∈ X , ∀i ∈ Nm : φi(x, f(x)) = 0 must be verified,
too. Such an implicit dependence makes it hard to solve the problem directly,
unless special assumptions are satisfied (e.g., the linearity of the constraints,
for which one obtains closed-form solutions [3]). The functional representation
given by Theorem 1 (i) (see formula (8)) is a non-linear version of the classic
functional equation known as the “Fredholm Equation of the II Kind”. There are
a number of theoretical and numerical studies on this equation, and particular
attention has been devoted to the linear case [7]. In the general case, approximate
reactions of the constraints can be obtained by discretizing the constraints, e.g.,
using unsupervised examples [3].

Learning with Hard Constraints 153

5 Discussion

In the paper, we have introduced a general theoretical framework of learning
that involves agents acting in a constrained-based environment, for constraints of
holonomic type. Our study focus on the open issue of designing intelligent agents
with effective learning capabilities in complex environments where sensorial data
are combined with knowledge-based descriptions of the tasks. Extensions of this
work to other kinds of constraints, a general theory of learning from constraints,
and specific examples are discussed in [3].

Acknowledgement. This research was partially supported by the research
grant PRIN2009 “Learning Techniques in Relational Domains and Their Appli-
cations” (2009LNP494) from the Italian MURST.

References

1. Adams, R.A., Fournier, J.F.: Sobolev spaces. Academic Press (2003)
2. Diligenti, M., Gori, M., Maggini, M., Rigutini, L.: Bridging logic and kernel ma-

chines. Machine Learning 86, 57–88 (2012), 10.1007/s10994-011-5243-x
3. Gnecco, G., Gori, M., Melacci, S., Sanguineti, M.: Foundations of support con-

straint machines. Technical report, DII-UNISI (2013)
4. Gnecco, G., Gori, M., Sanguineti, M.: Learning with boundary conditions. Neural

Computation 25, 1029–1106 (2013)
5. Gori, M., Melacci, S.: Constraint verification with kernel machines. IEEE Trans.

Neural Netw. Learning Syst. 24(5), 825–831 (2013)
6. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1-

3), 185–203 (1981)
7. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley & Sons

(1989)
8. Kunapuli, G., Bennett, K.P., Shabbeer, A., Maclin, R., Shavlik, J.: Online

knowledge-based support vector machines. In: Balcázar, J.L., Bonchi, F., Gionis,
A., Sebag, M. (eds.) ECML PKDD 2010, Part II. LNCS, vol. 6322, pp. 145–161.
Springer, Heidelberg (2010)

9. Melacci, S., Maggini, M., Gori, M.: Semi–supervised learning with constraints for
multi–view object recognition. In: Alippi, C., Polycarpou, M., Panayiotou, C., El-
linas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 653–662. Springer,
Heidelberg (2009)

10. Poggio, T., Girosi, F.: A theory of networks for approximation and learning. Tech-
nical report. MIT (1989)

11. Tikhonov, A.N., Arsenin, V.Y.: Solution of ill-posed problems. W.H. Winston,
Washington, D.C. (1977)

12. Yuille, A.L., Grzywacz, N.M.: A mathematical analysis of the motion coherence
theory. Int. J. of Computer Vision 3, 155–175 (1989)

Bidirectional Activation-based Neural Network

Learning Algorithm

Igor Farkaš and Krist́ına Rebrová

Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava
{farkas,rebrova}@fmph.uniba.sk

Abstract. We present a model of a bidirectional three-layer neural
network with sigmoidal units, which can be trained to learn arbitrary
mappings. We introduce a bidirectional activation-based learning algo-
rithm (BAL), inspired by O’Reilly’s supervised Generalized Recirculation
(GeneRec) algorithm that has been designed as a biologically plausible
alternative to standard error backpropagation. BAL shares several fea-
tures with GeneRec, but differs from it by being completely bidirectional
regarding the activation propagation and the weight updates. In pilot ex-
periments, we test the learning properties of BAL using three artificial
data sets with binary patterns of increasing complexity.

Keywords: bidirectional network, error-driven learning, activation
states, binary codes association, biological plausibility.

1 Introduction

The standard error backpropagation learning algorithm [8] is known to be bi-
ologically implausible because it requires the mechanism of error propagation
and it does not use locally available, activation-based variables. With this in
mind, O’Reilly [4] designed Generalized Recirculation (GeneRec) algorithm that
avoids the computation of error derivatives, yet can lead to error minimization.
GeneRec was designed as an extension of Hinton and McClelland’s model based
on recirculation [2] between two layers of units (visible and hidden) with sym-
metric weights, which was restricted to autoassociation. To make it work, they
used a four-stage activation update process. Unlike the recirculation algorithm,
GeneRec is applied to a three-layer network using bidirectional interaction (only)
between two layers of units (hidden and output) in a two-phase activation up-
date process. In his work, O’Reilly experimented with several modifications of
GeneRec, determined by weight update rules. For instance, he showed that the
symmetry-preserving version of GeneRec (i.e. with symmetric hidden-to-output
weights and symmetric weight update), combined with the so-called midpoint
method, is equivalent to Contrastive Hebbian learning (CHL) for training Boltz-
mann machines (both in stochastic and deterministic versions) [4]. Both GeneRec
and CHL are based on differences between two activation phases. Forward (mi-
nus) phase involves activation propagation from inputs toward outputs produc-
ing the network estimate of the output values. Subsequent backward (plus) phase

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 154–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Bidirectional Activation-based Learning Algorithm 155

flows in the opposite direction propagating the desired output throughout the
network (see Sec. 2). We propose a bidirectional activation-based learning (BAL),
which is based on the GeneRec model, but is completely symmetrical regarding
the activation propagation and the weight update rules (Sec. 3). Our motivation
for designing the BAL model was to implement it in our robotic mirror neuron
system model, that is assumed to require the bidirectional mapping between
high-level sensory and motor representations [7]. The behavior of BAL is tested
in three preliminary experiments (Sec. 4).

2 GeneRec Model

The GeneRec model is a three-layer network with full connectivity between layers
whose activation rules are described in Table 1, following [4]. The model has re-
ciprocal connectivity between hidden and output layer with symmetric weights.
The activation flow starts in minus phase, when the stimulus si is presented. Note
that the net input term at the hidden layer includes the input from both visible
layers before applying the sigmoid activation function σ(η) = 1/(1 + exp(−η)).
Output units produce activations o−k in minus phase but can also be clamped
to target activations o+k at the onset of plus phase. Input units can only deliver
stimuli si at the onset of minus phase. This model was developed in the Leabra
framework [3], which uses dynamic units approximating the behavior of biolog-
ical neurons. O’Reilly [4] has shown that, under certain conditions, GeneRec
computes the same error derivatives as Almeida-Pineda recurrent backpropaga-
tion [1,6].

Table 1. Equilibrium network variables in GeneRec model

Layer Phase Net Input Activation

Input (s) − - si = stimulus input

Hidden (h) − η−
j =

∑
i wijsi +

∑
k wkjo

−
k h−

j = σ(η−
j)

+ η+
j =

∑
i wijsi +

∑
k wkjo

+
k h+

j = σ(η+
j)

Output (o) − η−
k =

∑
j wjkhj o−k = σ(η−

k)

+ - o+k = target output

The basic weight update rule in GeneRec is:

Δwpq = λ a−p (a
+
q − a−q) (1)

where a−p denotes the presynaptic and a−q denotes the postsynaptic unit ac-
tivation in minus phase, a+p is the presynaptic activation from plus phase (in
output-to-hidden direction) and λ denotes the learning rate. The learning rule
given in Eq. 1 is applied to both input-hidden and hidden-output weights. Due
to the lack of space, the reader is left to consult the original paper [4] regarding
the underlying math behind the derivation of the GeneRec learning rule.

156 I. Farkaš and K. Rebrová

3 Bidirectional Activation-based Learning

Bidirectional Activation-based Learning algorithm (BAL) shares with GeneRec
the phase-based activations and unit types, but differs from it by the connectivity
that allows completely bidirectional associations to be established (GeneRec
focuses on input-to-output mapping). Unlike GeneRec, BAL uses two pairs of
weight matrices for each activation phase. In addition, in BAL we do not use
dynamical settling process but compute the activations in one step as described
in Table 2.

Table 2. Activation phases and states in BAL model

Layer Phase Net Input Activation

x F - xF
i = stimulus

h F ηF
j =

∑
i w

IH
ij xF

i hF
j = σ(ηF

j)

y F ηF
k =

∑
j w

HO
jk hF

j yF
k = σ(ηF

k)

y B - yB
k = stimulus

h B ηB
j =

∑
k w

OH
kj yB

k hB
j = σ(ηB

j)

x B ηB
i =

∑
j w

HI
ji hB

j xB
i = σ(ηB

i)

We avoid input-output notation of layers as used in GeneRec, because in our
case not only output can be evoked by input presentation, but also vice versa.
Hence, we label the two outer (visible) layers x and y and the hidden layer h.
Let forward activation be denoted by subscript F, backward activation denoted
by subscript B. Then during the forward pass, the x units are clamped to xF

and we get the activations xF → hF → yF. During the backward pass, the y
units are clamped to yB and we get the activations yB → hB → xB.

The mechanism of weights update partially matches that of GeneRec. Each
weight in BAL network (i.e. belonging to one of the four weight matrices) is
updated using the same learning mechanism, according to which the weight
difference is proportional to the product of the presynaptic (sending) unit ac-
tivation ap and the difference of postsynaptic (receiving) unit activations aq,
corresponding to two activation phases (F and B, in particular order). Namely,
weights in x-to-y direction (belonging to h and y units) are updated as

ΔwF
pq = λ aFp (a

B
q − aFq), (2)

where, as in the GeneRec algorithm, aFp denotes the presynaptic activity, aFq
is the postsynaptic activity, and aBq denotes the postsynaptic activity from the
opposite phase (y-to-h). Analogically, the weights in y-to-x direction (belonging
to h and x units) are updated as

ΔwB
pq = λ aBp (a

F
q − aBq) (3)

All units have trainable thresholds (biases) that are updated in the same way
as regular weights (being fed with a constant input 1).

Bidirectional Activation-based Learning Algorithm 157

4 Experiments

We test the learning properties of BAL on three experiments with artificial bi-
nary data that differ in dimensionality, size of the training set and mapping
complexity. We chose binary data because they simplify the assessment of net-
work accuracy and they have properties of discrete sparse patterns (used in our
intended application). For assessing the network performance, we used three
quantitative measures (separately for F and B directions): (1) pattern success
(patSucc), which indicates the proportion of output patterns that completely
match targets, (2) bit success (bitSucc), the proportion of units matching their
target, and (3) mean squared error (MSE) per neuron. Based on earlier exper-
iments, we initialize the weights in all tests to small values from the normal
distribution N (0; 1/

√
nI + 1), where nI denotes the input data dimension.

4.1 4-2-4 Encoder

To compare the performance of BAL with GeneRec, we ran tests using the well-
known 4-2-4 encoder task, following O’Reilly [4]. We investigated the convergence
of BAL and the number of required training epochs as a function of the learning
rate. Fig. 1 shows the convergence success for 100 networks and the average
numbers of epochs needed. The simulations showed that convergence of BAL
depends on the learning rate, with the highest number of 65% successful runs
achieved for λ = 0.9. For comparison, O’Reilly [4] reports 90% success for basic
GeneRec algorithm and 56% for a symmetric modification of GeneRec and its
modification equivalent to CHL. In sum, probability of BAL convergence is lower
than that of basic GeneRec rule, but comparable to its symmetric versions. We
expect that the smaller number of successful runs is in both cases influenced by
the bidirectional nature of the weight update.

0 1 2 3

0

20

40

60

learning rate

ne
ts

su
cc

es
sf

ul

2 2.1 2.2
0

20

40

0 1 2 3

0

1,000

2,000

3,000

learning rate

ep
oc

hs

2 2.1 2.2
0

500

1,000

1,500

Fig. 1. 4-2-4 encoder: results for 100 nets, number of successful runs (left), average
number of training epochs needed for convergence (right), both as a function of λ.
Details for critical values are shown in inset plots.

BAL was observed to require a higher number of training epochs than Gene-
Rec, with very high variability (and skewed distribution), ranging from 100

158 I. Farkaš and K. Rebrová

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

epoch

ne
tw

or
k

pe
rf

or
m

an
ce patSuccF

patSuccB

bitSuccF

bitSuccB

mseF

mseB

Fig. 2. Encoder 4-2-4: Development of network convergence (50 successful nets).

to thousands of epochs. On the contrary, O’Reilly reports only 418 epochs
for GeneRec to converge, and less than 100 epochs for symmetric versions of
GeneRec. An interesting property of BAL is that convergence probability sharply
drops to zero beyond certain range of values of the learning rate, for 4-2-4 task
at λ = 2. BAL convergence in 4-2-4 task and sensitivity to learning rate deserves
further investigation. Fig. 2 illustrates the learning process of 50 successful net-
works during 5000 epochs using λ = 0.9. We conclude that MSE drops to mini-
mum values satisfying error-free performance of the network as indicated by all
success-based measures (converging to one) in both directions. If the network
converges, it masters the encoder task perfectly.

4.2 Simple Binary Vector Associations

We created a sparse binary data set with high dimensionality, which resembles
sensory-motor patterns from our related work. The motivation for using sparse
representations comes from considering the mapping between two domains that
could lend itself to generalization and robustness. In biological networks, such
representations are typically achieved by lateral inhibition. As a computational
shortcut, we use the k-WTA (winner-takes-all) mechanism [5]. This mechanism
sets k maximally responding units to one and resets the remaining units to
zero. In our related work, we apply this mechanism to output maps from two
lower level modules consisting of self-organizing maps, which are then associated
using the BAL algorithm. Data used in this experiment are 144-dimensional
binary vectors with k = 12 active units. Two sets of 100 vectors are arbitrarily
associated to form one-to-one mapping. Similarly to the previous experiment, we
tested the network performance with various values of learning rate using 144–
120–144 architecture. Fig. 3 displays the results. The network learns the mapping
well up to a certain value of the learning rate (λ = 0.3), beyond which it is again
observed to quickly deteriorate (Fig. 3 left). Subsequently, using the estimated
optimal learning rate (λ = 0.2), we also tested selected sizes of the hidden layer
nH (Fig. 3 right). We can conclude that nH has significant influence only on the
amount of training epochs needed to reach 100% success (inset figure).

Bidirectional Activation-based Learning Algorithm 159

0.1 0.2 0.3 0.4 0.5

0

0.5

1

learning rate

ne
tw

or
k

pe
rf

or
m

an
ce

bitSuccF bitSuccB

patSuccF patSuccB

0.3 0.32 0.34

0

0.5

1

80 100 120 140 160 180
0.94

0.96

0.98

1

hidden layer size

ne
tw

or
k

pe
rf

or
m

an
ce

bitSuccF bitSuccB

patSuccF patSuccB

100 150

1,000

2,000

3,000

epcs

Fig. 3. Bidirectional associator: network performance as a function of λ (on the left,
detail for critical values in the inset plot) and nH (on the right, with the number of
epochs needed in the inset plot).

0 500 1,000 1,500 2,000 2,500

0

0.5

1

epoch

ne
tw

or
k

pe
rf

or
m

an
ce patSuccF

patSuccB

bitSuccF

bitSuccB

MSEF

MSEB

Fig. 4. Bidirectional associator: development of network performance over time (50
nets). All nets reliably converge after 1500 epochs.

To demonstrate the network training process, we computed performance mea-
sures for 50 nets trained for 2500 epochs using optimized parameters λ = 0.2
and nH = 120. Results in Fig. 4 show that the networks reliably converge to
successful mappings between sparse patterns. To understand the network behav-
ior we also examined the hidden layer. We observed that hF and hB activations
have a tendency to move closer to each other, as could be expected from BAL
(and also from GeneRec) learning rule. Interestingly, activations of h units in
both directions converged roughly to 0.5, so no tendency towards binary inter-
nal representations was observed. This property of internal coding is also worth
further investigation.

4.3 Complex Binary Vector Associations

We evaluated the network performance on n–to–1 data associations, motivated
by the sensory-motor mappings between distributed patterns. For this purpose

160 I. Farkaš and K. Rebrová

0 0.5 1 1.2

0

0.5

1

learning rate

n
et

w
o
rk

p
er

fo
rm

a
n
ce

bitSuccF bitSuccB

patSuccF patSuccB

10 15 20 25

0

0.5

1

hidden size

n
et

w
o
rk

p
er

fo
rm

a
n
ce

patsuccF patsuccB

bitsuccF bitsuccB

Fig. 5. Bidirectional associator with complex data: network performance as a function
of λ (left) and nH (right).

we created low-dimensional sparse binary codes, 16-dimensional vectors (4×4
map) with k = 3 active units with n = 4. For each target (y), these four
patterns (x) were assumed to have nonzero overlap. Again, we searched for
optimal λ and nH (Fig. 5). The best performance was achieved using λ ≈ 1. We
can observe that the ambiguity in the data association causes the network to
produce errors in B direction. For the best λ the networks yielded patSuccB ≈
4% and bitSuccB ≈ 86%, which means that the networks made small errors in
most patterns. This could be expected since the network cannot know which of
the four (x) patterns is to be reconstructed. It is known, that a network trained
to associate more binary target patterns with one pattern tends to produce a
mesh of outputs, weighed by their frequency of occurrence in the training set.
Examples of network outputs are illustrated in Fig. 6.

Fig. 6. Bidirectional associator with complex data: active units are filled with color,
black = target–estimate match, gray = target only, gray with a cross = false-positive
estimate.

5 Conclusion

We presented a new training algorithm BAL for bidirectional mappings derived
from biologically plausible GeneRec model. Unlike the original GeneRec model,

Bidirectional Activation-based Learning Algorithm 161

our model is used with standard multi-layer perceptron network without ac-
tivation settling dynamics, and it learns a bidirectional mapping rather than
input-output mapping. BAL also differs from the original model in the design of
weight matrices, the learning rule, and partially also in the activation flow in the
two activation phases. Our preliminary experiments have shown that using an
appropriate learning rate, the BAL model can converge, albeit requiring more
training epochs than GeneRec. In particular, for 4-2-4 encoder task the conver-
gence is not guaranteed, which was observed also in the GeneRec model. The
next step in our research should be to investigate the reasons for these perfor-
mance discrepancies. Our experiments also revealed that hidden unit activations
tend to converge to similar values for F and B phases. They do not tend to bina-
rize, which is probably not necessary for learning the task. Further experiments
and a more detailed analysis of BAL are required to better understand this bio-
logically motivated bidirectional learning algorithm that will be exploited in our
robotic mirror neuron system model.

Acknowledgments. This work was supported by grants 1/0439/11 from Slo-
vak Grant Agency for Science (VEGA), and Comenius University UK/631/2013
(K.R.).

References

1. Almeida, L.: A learning rule for asynchronous perceptrons with feedback in a com-
binatorial environment. In: Proceedings of the IEEE First International Conference
on Neural Networks, San Diego, CA (1987)

2. Hinton, G.E., McClelland, J.L.: Learning representations by recirculation. In: Neural
Information Processing Systems, pp. 358–366. American Institute of Physics, New
York (1988)

3. O’Reilly, R.: The Leabra model of neural interactions and learning in the neocortex.
Ph.D. thesis, Carnegie Mellon University (1996)

4. O’Reilly, R.: Biologically plausible error-driven learning using local activation differ-
ences: The generalized recirculation algorithm. Neural Computation 8(5), 895–938
(1996)

5. O’Reilly, R., Munakata, Y., Frank, M., Hazy, T.: Computational Cognitive Neuro-
science, 2nd edn. Wiki Book (2012)

6. Pineda, F.: Generalization of back-propagation to recurrent neural networks. Physics
Review Letters 59, 2229–2232 (1987)

7. Rebrová, K., Pecháč, M., Farkaš, I.: Towards a robotic model of the mirror neu-
ron system. In: The 3rd Joint IEEE International Conference on Development and
Learning and on Epigenetic Robotics (2013)

8. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error
propagation, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

A Neural Network Model for Online Multi-Task

Multi-Label Pattern Recognition

Daisuke Higuchi and Seiichi Ozawa

Graduate School of Engineering, Kobe University
1-1 Rokko-dai, Nada-ku, Kobe 657-8501, Japan

Abstract. This paper presents a new sequential multi-task learning
model with the following functions: one-pass incremental learning, task
allocation, knowledge transfer, task consolidation, learning of multi-label
data, and active learning. This model learns multi-label data with incom-
plete task information incrementally. When no task information is given,
class labels are allocated to appropriate tasks based on prediction errors;
thus, the task allocation sometimes fails especially at the early stage. To
recover from the misallocation, the proposed model has a backup mecha-
nism called task consolidation, which can modify the task allocation not
only based on prediction errors but also based on task labels in training
data (if given) and a heuristics on multi-label data. The experimental
results demonstrate that the proposed model has good performance in
both classification and task categorization.

Keywords: multi-task learning, incremental learning, neural networks,
multi-label recognition.

1 Introduction

In general, the description of an object is not unique. For example, when we look
at a person’s face, we might answer the parson’s name. In some cases, however,
we might answer gender and/or age. The object recognition with such different
descriptions has often been treated as different tasks; that is, the recognition
task to identify persons is called person identification, the recognition tasks to
answer the gender and the age are called gender recognition and age recogni-
tion, respectively. Recently, the learning of multiple tasks have attracted great
attentions as multi-task learning (MTL) [1], and it has been applied to pattern
recognition called multi-task pattern recognition (MTPR).

Let us consider another example that a supervisor communicates with a robot
to train interactively: “This person is twenty-year-old male” or “This person’s
age is twenty”. In the first case, two class labels (twenty-year-old and male) are
given by the supervisor, while no task information (age and gender) is given.
Instead, in the second case, a task label (gender) is given with its class label
(male). Therefore, in real situations, the class information of an object might
be provided as multiple labels with/without task information. Furthermore, the
tasks to be learned could be switched depending on how a supervisor gives

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 162–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Neural Network Model 163

instructions to a robot. This implies that the learning should be adaptively
performed with regards to how the task and class information is given.

To deal with the abovementioned learning environments, we proposed an MTL
model called Resource Allocating Network for Multi-Task Pattern Recognition
(RAN-MTPR) [2]. In RAN-MTPR, however, it is assumed that each training
data has a single class label; that is, only one recognition task is handled at
a time. To alleviate this limitation, we have extended RAN-MTPR [3] such
that it can learn multi-label data incrementally even when task information
is not explicitly given. When no task information is given in a training data,
our previous RAN-MTPR allocates the class label to the most appropriate task
based on the prediction errors; thus, the task allocation sometimes fails.

In this paper, to recover from the abovementioned task misallocation, we fur-
ther extend our previous RAN-MTPR so that it has a backup function called
task consolidation which can modify the task allocation based on prediction er-
rors, task labels in training data (if given), and the following heuristics: classes
in a multi-label data belong to different tasks. In addition, the proposed RAN-
MTPR has the following functions: one-pass incremental learning, task alloca-
tion, knowledge transfer, learning of multi-label data, and active learning. In Sec-
tion 2, the main functions of the proposed RAN-MTPR are explained. Section
3 shows the experimental results on the performance evaluation using several
self-defined multi-task multi-label data sets, which are originally provided as
single-task problems. In Section 4, we conclude this work.

2 Extended RAN-MTPR

2.1 Learning Environments

Assume that training data of multiple tasks are given as a data stream and
discarded after learning; that is, we assume one-pass incremental learning [4]
and sequential multi-task learning [5]. In addition, we deal with the learning and
the recognition of multi-label data under a supervised setting for class prediction.
On the other hand, we assume that task information could sometimes be missing;
that is, a semi-supervised setting is assumed for task allocation.

Let (x, {dl, sl}Ll=1) be a training data with L class labels, where x, dl, and
sl are an input vector, the lth class label, and its task label, respectively. If the
task label sl for class dl is given, the training data would be learned as task sl
by using a conventional supervised learning algorithm. On the other hand, if the
task information is missing, class dl should be allocated to an appropriate task
and associated with a task label sl. The task to be allocated might be an existing
task; in some cases, however, no appropriate task might be found for class dl. In
this case, the learning should be suspended until an appropriate task is found.

2.2 Network Structure

Figure 1 illustrates the network structure of RAN-MTPR, which consists of the
following three components: (1) RAN classifier, (2) long-term memory (LTM),

164 D. Higuchi and S. Ozawa

RAN Classifier

Section 1 Section m Section M

Input

:Training data

Long-Term
Memory (LTM)

Learn

Store

Create & Store

Recall
&

Learn

1x 2x Ix

1c 2c Jc
1y Jy

)1(
11w

)(M
JKw

)1(
1z

)1(
Kz)(

1
Mz)(

1
mz)(m

Kz)(M
Kz

),(dx

)~,...,~,~()(
1

)1(
11

Mddx

)~,...,~,~()()1(M
LLL ddx

)
1

Queue

,(jtjt dx −−
,...,0 −= qj

RBF Units

Fig. 1. Network structure of RAN-MTPR

and (3) queue. The RAN classifier is constructed with Resource Allocating Net-
work with Long-Term Memory (RAN-LTM) [6], which learns connection weights
incrementally and adds new RBF units automatically based on Resource Allo-
cating Network (RAN) [7]. Each output section is responsible for a specific task;
thus, if RAN-MTPR learns M tasks correctly, M output sections are created
(see Fig. 1). LTM is the place to store representative training data called memory
items, which are utilized for suppressing catastrophic forgetting in neural network
learning. When a new data is given, some memory items are retrieved from LTM
and learned them together with the new data. As seen in Fig. 1, RAN-MTPR
shares all RBFs among different tasks; thus, the internal representation is shared
as inductive bias of different tasks [1,5]. The queue corresponds to a short-term
memory to store the data whose associated tasks are unknown. If the number of
data in the queue reaches its capacity q and the average error is larger than a
threshold, RAN-MTPR creates a new output section to learn the queued data.

RAN-MTPR has the following functions: (1)one-pass incremental learning,
(2) knowledge transfer, (3) task allocation, (4) learning of multi-label data, (5)
task consolidation, and (6) active learning. Due to the space limitation, we only
explain knowledge transfer and active learning. See [2,3] for the details.

2.3 One-Pass Incremental Learning

Let x = {x1, · · · , xI}T and y = {y1, · · · , yJ}T be inputs and RBF outputs in
RAN classifier where I and J are respectively the number of inputs and that

of RBFs (see Fig. 1). And let z(m) = {z(m)
1 , · · · , z(m)

K }T (m = 1, · · · ,M) be the

outputs in the mth output section. Here, z
(m)
k and K are the kth output and

the number of outputs (i.e. classes) in the mth output section, respectively.
Assume that a multi-label data (x, {dl, sl}Ll=1) is given, where L (≤M) is the

number of labels, dl is the class label, and sl is the task label. In some case, task
labels sl may not be given (sl = 0 in this case). When a task label is given, the
association between dl and sl is represented by a function: sl = g(dl).

A Neural Network Model 165

For the data with a task label sl or an associated task label sl = g(dl), RBF
outputs y and the outputs z(sl) of RAN classifier are calculated by

yj(x) = exp

(
−‖x− cj‖2

2σ2

)
(j = 1, · · · , J) (1)

z
(sl)
k (x) =

J∑
j=1

w
(sl)
kj yj(x) + ξ

(sl)
k (k = 1, · · · ,K) (2)

where cj = {cj1, · · · , cjI}T is the jth RBF center, σ is the RBF width, w
(sl)
kj is

the connection weight from the jth RBF to the kth output in the slth output

section, and ξ
(sl)
k is the bias of the kth output.

The learning is conducted by minimizing the error between z(sl) and the target

vector d(sl) = {d(sl)1 , · · · , d(sl)K }T which represents class dl in the binary encoding.
To suppress the catastrophic forgetting of RAN classifier, representative training
data are stored in LTM as memory items Ω = (x̃n, {d̃nl, s̃nl}Ln

l=1)
N
n=1, and some

memory items are retrieved and learned with a training data (x, {dl, sl}Ll=1). Let
Ω(x) be the index set of memory items retrieved from x. Then, the total error
to be minimized is shown as follow:

E(sl)(x) = ‖d(sl) − z(sl)(x)‖2 +
∑

n∈Ω(x)

‖d̃(s̃l)

n − z(s̃l)(x̃n)‖2 (3)

where d̃
(s̃l)

n and z(s̃l)(x̃n) are the target vector representing class dl in the binary
encoding and the output for x̃n in the slth output section, respectively.

In RAN-MTPR, the connection weights w
(sl)
kj and the thresholds ξ

(sl)
k are

learned based on the conventional gradient descent algorithm. Since all the out-
put sections share the same RBFs, RBF centers and widths should not be mod-
ified because the learning of a certain output section may cause unexpected
forgetting for other output sections.

2.4 Task Allocation and Learning of Multi-Label Data

When a multi-label data (x, {dl, sl}Ll=1) is given, it is separated into L pairs of
input and class label (x, dl) (l = 1, · · · , L), and the learning is carried out at
the following two stages. At the first stage, for all pairs (x, dl) (l = 1, · · · , L)
whose task label is provided in the training data or associated with the given
class label dl (i.e. sl = g(dl) is already defined), they are learned at the output
sections corresponding to sl.

At the second stage, for the other (x, dl) (i.e. data without task labels), x is
given to RAN classifier, and the error is calculated at the output sections which
were not learned at the first stage. If there exists an output section sl whose error
is smaller than (1−θ)2, associate the class label dl with sl (i.e. sl = g(dl)); then,
a new output unit for dl is created and learned at the output section. Here, θ is
a predefined threshold (typically 0.5). If the squared error is larger than (1−θ)2,
the pair (x, dl) is stored in the queue.

166 D. Higuchi and S. Ozawa

When queued data reaches its capacity q and the mean square error is larger
than 1 + θ2, the average squared error for the queued data is calculated at all
the output sections. If there exists the output section whose average squared
error is smaller than 1 + θ2, the queued data are learned at the output section.
Otherwise, a new output section is created and the queued data are learned.

2.5 Knowledge Consolidation

Unless task labels are given, the association between class and task labels relies
on the prediction accuracy of RAN classifier. Therefore, there is no guarantee
that the task allocation is always correct. In case that a class label is wrongly
associated with a different task, RAN-MTPR should modify the wrong associ-
ation by reallocating output units to different output sections. This process is
called task consolidation.

The task consolidation is evoked when more than two outputs (conflict classes)
are activated in the same output section. Then, the consolidation process is
performed as follows. For each conflict class, the prediction errors are calculated
for the memory items of conflict classes at every output sections. If there is an
output section where the squared error is smaller than (1− θ)2, the output unit
is reallocated to the section. Otherwise, a new output section is created and the
output unit is allocated. On the other hand, if a task label is given in a training
data, conflict classes should be reallocated to other sections. This reallocation is
also conducted based on the prediction errors.

Finally, we introduce a new consolidation mechanism using a heuristics on
multi-label data: the classes in a multi-label data belong to different tasks. When
a multi-label data (x, {dl, sl}Ll=1) is given, the class labels dl (l = 1, · · · , L) should
be allocated in different output sections; that is, dl (l = 1, · · · , L) are conflict
classes. To keep the information on conflict classes, a conflict table is adopted.
Figure 2 illustrates an example of conflict table after the six multi-label data
(shown in the right-hand side) are given. For example, if a conflict class is ‘class
3’, the output unit for ‘class 3’ should not be reallocated to the output sections
for ‘class 7’ and ‘class 10’.

3 Experiments

3.1 Experimental Setup

The performance of the extended RAN-MTPR is evaluated for the five data sets
in Table 1: three data sets from the UCI Machine Learning Repository [8], COIL-
100 [10], and ORL face [9]. Since all the data sets are provided as single-task
problems, we redefine the data sets as multi-task problems by adding different
sets of class labels. Task 1 is defined by the original classification problems.
As seen in Table 1, Segmentation consists of 8 classes for Task 1, and Task 2
and 3 respectively consist of 2 and 3 classes, which are redefined new tasks by
combining class regions in the original task (for example, classes 1-4 in Task 1 are
merged into class 8 in Task 2, and classes 5-7 in Task 1 are merged into class 9 in

A Neural Network Model 167

Fig. 2. An example of conflict table

Table 1. Evaluated data sets

#Data #Attrib. #Task #Class Task 1 Task 2 Task 3 Task 4 Task 5

Segmentation 210 19 3 12 7 2 3 - -

Vowel Context 3772 10 3 15 11 2 2 - -

Vehicle 188 18 3 8 4 2 2 - -

COIL 100 200 317 5 43 20 5 7 2 9

ORL Face 400 24 3 44 40 2 2 - -

Task 2). For COIL-100, the five tasks are defined: object name (20 classes), shape
(5 classes), color (7 classes), food/non-food (2 classes), and material properties
(9 classes). For ORL face, the three classification tasks are defined: person’s
name (40 classes), male/female (2 classes), and young/old (2 classes).

In a learning session, 720 training data are sequentially given to learn, and
some data include multiple class labels and/or task labels; that is, training data
always have class labels, but they might not have task label (the percentages of
both multi-label data and task labels are fixed at 10%). To remove the perfor-
mance dependency on data/task sequences, we perform 25 sessions and evaluate
the average performance.

3.2 Experimental Results

In the experiments, we examine the effects of the new functions: learning of multi-
label data, task consolidation, and active learning. For a comparative purpose,
we set up two baseline models: RAN-MTPR [2] (no multi-label handling, error-
base consolidation, and no active learning) and RAN-LTM (no task detection,
no multi-label handling, no consolidation, no active learning). Since the two
baseline models cannot handle multi-label data, only single-label data are trained
(i.e. we set pm = 0). Through the comparison with the first baseline model,
the effect of introducing the heuristic consolidation and the active learning is
discussed. However, the final classification performance can also depend on the
task detection accuracy. Therefore, we decided to compare with RAN-LTM under

168 D. Higuchi and S. Ozawa

Table 2. Performance comparisons with the two baseline models (RAN-MTPR and
RAN-LTM) in (a) classification accuracy [%] and (2) task categorization [%]

(a) Classification [%]

Model RAN-MTPR RAN-LTM Extended RAN-MTPR

pm [%] 0 0 0 10 20

Segmentation 82.9±1.8 83.4±1.5 84.7±1.6 84.9±1.5 84.9±1.6

Vowel Context 72.7±4.4 73.9±2.1 81.4±2.1 81.8±2.2 82.2±2.2

Vehicle 74.0±1.4 74.6±1.4 77.6±1.5 77.7±1.4 77.9±1.5

COIL 100 96.6±2.1 97.0±2.0 98.6±1.8 98.6±1.7 98.7±1.7

ORL Face 65.3±12.9 79.0±1.4 88.3±1.2 88.6±1.0 88.9±1.0

(b) Task Categorization [%]

Model RAN-MTPR RAN-LTM Extended RAN-MTPR

pm [%] 0 0 0 10 20

Segmentation 92 - 100 100 100

Vowel Context 72 - 100 100 100

Vehicle 100 - 100 100 100

COIL 100 80 - 100 100 100

ORL Face 20 - 100 100 100

the condition that task information is always given to training data; that is, this
provides RAN-LTM a good advantage in task detection against the extended
RAN-MTPR.

Tables 2(a)(b) show the classification accuracies and the task categorization
accuracies in RAN-MTPR, RAN-LTM, and the extended RAN-MTPR. For the
extended RAN-MTPR, the probabilities of multi-label data pm are set to 0,
10 or 20 % (0% means a single-label setting). The output-margin threshold in
the active learning is set to 0.25; that is, if the output margin in an output
section is less than 0.25, the extended RAN-MTPR requires training data of the
corresponding task to a supervisor.

As seen in Tables 2(a)(b), the extended RAN-MTPR outperforms RAN-
MTPR in both average classification accuracy and average task categorization
accuracy for all data sets (the difference in the average performances has statis-
tical significance in the Welch’s t test). The performance degradation in RAN-
MTPR mainly originates from the low-performance task categorization (see Ta-
ble 2(b)). Especially for the ORL face data, the task categorization accuracy
in RAN-MPTR is only 20% because the error-based consolidation tends not to
work well when the number of classes is large (40 classes in Task 1). Even in
this case, the extended RAN-MTPR retains high task categorization accuracy,
which leads to high classification accuracy. This indicates that the heuristic con-
solidation and the active learning work well. On the other hand, the extended
RAN-MTPR also outperforms RAN-LTM in classification accuracy for all data
sets. Since the task information is explicitly given to RAN-LTM, it is considered
that this improvement comes from the introduction of the active learning and
the knowledge transfer.

A Neural Network Model 169

As seen in Table 2(a), in the extended RAN-MTPR, we cannot recognize sta-
tistical significance in classification accuracies for different percentages of multi-
label data. This implies that the performance enhancement by introducing the
active learning dominates over the effectiveness of learning multi-label data.

4 Conclusions

In this paper, we extend a sequential multi-task learning model called Resource
Allocating Network for Multi-Task Pattern Recognition (RAN-MTPR) to multi-
label classification problems. In the original RAN-MTPR, it is assumed that a
training data includes only one class label at a time (i.e. a training data comes
from only one task) under the condition that task information could be missing.
Even if no task information is given in a training data, the extended RAN-MTPR
can allocate a class label to the corresponding task based on the prediction errors;
thus, the task allocation can fail in some cases. To recover the misallocation of
tasks, the extended RAN-MTPR has a function called task consolidation which
can modify the task allocation based on prediction errors, task labels in training
data (if given), and a heuristics on multi-label data. In addition, the extended
RAN-MTPR has a function of active learning which can make a query about
unsure class predictions autonomously.

The experimental results demonstrate that the extended RAN-MTPR works
well to enhance both the recognition accuracy and the task allocation accuracy.

References

1. Caruana, R.: Multitask Learning. Machine Learning 28, 41–75 (1997)
2. Nishikawa, H., Ozawa, S.: Radial Basis Function Network for Multitask Pattern

Recognition. Neural Processing Letters 33(3), 283–299 (2011)
3. Takata, T., Ozawa, S.: A Neural Network Model for Learning Data Stream with

Multiple Class Labels. In: International Conference on Machine Learning and Ap-
plications, vol. 2, pp. 35–40 (2011)

4. Kasabov, N.: Evolving Connectionist Systems: Methods and Applications in Bioin-
formatics, Brain Study and Intelligent Machines. Springer (2002)

5. Silver, D.L., Mercer, R.E.: The Task Rehearsal Method of Life-long Learning:
Overcoming Impoverished Data. In: Cohen, R., Spencer, B. (eds.) AI 2002. LNCS
(LNAI), vol. 2338, pp. 90–101. Springer, Heidelberg (2002)

6. Ozawa, S., Toh, S.L., Abe, S., Pang, S., Kasabov, N.: Incremental Learning
of Feature Space and Classifier for Face Recognition. Neural Networks 6(5-6),
575–584 (2005)

7. Platt, J.: A Resource Allocating Network for Function Interpolation. Neural Com-
putation 3, 213–225 (1991)

8. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository, UC, Irvine, School
of Info. and Comp. Sci. (2007)

9. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

10. http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

Novel Feature Selection and Kernel-Based Value
Approximation Method for Reinforcement Learning

Hunor Sandor Jakab and Lehel Csató

Babeş-Bolyai University, Faculty of Mathematics and Computer Science

Abstract. We present a novel sparsification and value function approximation
method for on-line reinforcement learning in continuous state and action spaces.
Our approach is based on the kernel least squares temporal difference learning
algorithm. We derive a recursive version and enhance the algorithm with a new
sparsification mechanism based on the topology maps represented by proximity
graphs. The sparsification mechanism – speeding up computations – favors data-
points minimizing the divergence of the target-function gradient, thereby also
considering the shape of the target function. The performance of our sparsifica-
tion and approximation method is tested on a standard benchmark RL problem.

Keywords: reinforcement learning, kernel methods, function approximation.

1 Introduction

Approximate reinforcement learning (RL) methods are algorithms dealing with real-
world problems that are characterized by continuous, high dimensional state-action
spaces and noisy measurements. In this article value functions for a given policy in
continuous RL problems are estimated, also called policy evaluation. Linear regression
models with non-linear features have been preferred [1,6] for approximate policy eval-
uation, due to their good convergence properties and relatively easy to analyze. Their
main drawback is the necessity to carefully design problem-specific feature functions
and we address this design issue by a nonlinear extension of the algorithm using “ker-
nelization”.1 Kernelization in turn raises the problem of complexity, over-fitting, and
increased computational cost. To avoid these problems, different sparsification mech-
anisms are employed. The sparsification procedure influences the accuracy and the
generalization capability of the function approximator. In model free reinforcement
learning, the accuracy of value functions around decision boundaries is extremely im-
portant, we thus introduce a proximity-graph based sparsification mechanism which
takes into account the shape of the target function. We also present a recursive version
of kernel least squares temporal difference learning (KLSTD) that uses the
sparsification mechanism mentioned above.

2 Notation and Background

In RL data acquisition is defined by interacting with the environment in which we
want to learn: the commands and their associated rewards defines the data base. The

1 A survey of kernelized value function approximation methods can be found in [10]

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 170–177, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Feature Selection in Approximate RL 171

background is the Markov decision process (MDP) [7], commonly used for modeling
in reinforcement learning problems. An MDP is a quadrupleM (S,A, P,R), whereS is
the (possibly infinite) set of states, A is the set of actions, P (s′|s, a) : S×S×A→ [0, 1]
describes the usually unknown transition probabilities, and R(s, a) : S ×A→ R is the
instantaneous reward function defining the feedback to the learner. The decision mak-
ing mechanism is modeled with an action selection policy: π : S × A → [0, 1] is
the conditional probability distribution – π(a|s) – of taking action a in state s. The
solution to the reinforcement learning problem is the optimal policy π∗ maximizing
the expected discounted cumulative reward: π∗ = argmaxπEπ [

∑∞
t=0 γ

tRt]. An im-
portant element of many RL algorithm is a representation of the utility of the state or
state-action pairs as value Vπ(s) = Eπ [

∑∞
t=0 γ

tRt|s0 = s] or action-value functions
Qπ(s, a) = Eπ [

∑∞
t=0 γ

tRt|s0 = s, a0 = a]. Value functions express the expected long
term discounted reward received when starting from a given state or state-action pair
and following a given policy π. Value-based RL algorithms use the state-action value
function Q(·, ·) to determine an optimal greedy action selection policy.

Since this paper focuses on value approximation, we consider the action selection
policy to be fixed. This restriction gives rise to a so-called Markov Reward process [9]
which we will refer to as MRP. Throughout the rest of this paper for ease of exposition
we will omit the policy from the notation and we will use state value functions V (·) but
the presented algorithms equally apply for state-action value functions as well.

3 Kernel Least Squares Value Approximation

As a basis of our value approximation framework we make use of the least squares
temporal difference learning algorithm (LSTD) introduced in [2]. The LSTD method is
based on a generalized linear approximation to the value function using the set of feature
vectorsφφφ(s) = [φ1(s), . . . , φd(s)]

T : Ṽ (s) = φφφ(s)Twww, wherewww = [w1, . . . , wd]
T is the

vector of parameters and d is the feature space dimension.
The basis of temporal difference learning methods is the incremental update of the

value function based on the temporal difference error: δt+1 = Rt+1 + γṼt(st+1) −
Ṽt(st) = Rt+1 − (φ(st)− γφ(st+1))

T www and the parameter update is:

wwwt+1 = wwwt + αt (δt+1)φ(st).

In the limit of infinite updates, the algorithm leads to a parameter vectorwww that satisfies
E[φφφ(st)δt+1] = 0 [9]. Using a finite-size approximation with the sample average, we
get the expression 1

n

∑n
t=0 φφφ(st)δt+1 = 0 and substituting δt+1 into the equation:

Ãwww = b̃, where Ã =
1

n

n∑
t=0

φφφ(st) (φφφ(st)− γφφφ(st+1))
T
, and b̃ =

1

n

n∑
t=0

φφφ(st)Rt.

When Ã is invertible there is a direct solution for www, as stated in [2]. The matrix Ã
is a sum of individual matrices the size of the feature space, and can be calculated
incrementally. In [12] a kernelized version of the algorithm was presented, eliminating

172 H.S. Jakab and L. Csató

the need for manual feature construction. They employ the representer theorem and the
kernel trick to reformulate the calculation of www with kernel functions:

www∗ = Ã−1b̃, where Ã =
1

n

n∑
t=0

kkk(st)
[
kkkT (st)− γkkkT (st+1)

]
, b̃ =

1

n

n∑
t=0

kkk(st)Rt.

We used k(·, ·) to denote a valid kernel function and kkk(s) =
[
k(s, s1) . . . k(s, sn)

]T
to denote the vector of kernel values evaluated on the data-point s and the training
data-points si i = 1, n. The expression for the approximated value function becomes:

Ṽ (s) =

n∑
i=0

www∗
i k(si, st) s ∈ S (1)

The inversion of Ã is problematic: in an on-line setting inverting Ã at each step is im-
practical; the computation time is cubic. In the next section we present a new type of
sparsification mechanism to keep the matrix Ã at a small fixed size. Since the sparsifica-
tion depends on the values of the inputs, we need a “good” subset, the criteria presented
on the next section. To speed up online learning, we use the Sherman-Woodbury for-
mula and express the inverse of Ã−1 = C recursively [3]:

Ct+1 = Ct − Ct

kkk(st)
[
kkkT (st)− γkkkT (st+1)

]
1 +

[
kkkT (st)− γkkkT (st+1)

]
Ctkkk(st)

Ct (2)

The optimal coefficients at time-step t+ 1 can be obtained as: w∗
t+1 = Ct+1b̃, see [6].

4 Sparsification of the Representation

Sparsification reduces the computational cost of kernel-based algorithms by finding a
small set of data-points called dictionary, which will be used as basis set for subse-
quent computation. Common sparsification methods [4] use approximate linear inde-
pendence (ALD) as a criterion for discarding data-points: a new point is approximated
by the linear combination of dictionary points if the approximation error, defined as
minα ‖

∑d
i=1 αiφφφ(si)−φφφ(s∗)‖2, is below a predefined threshold ν (s∗ is the new data

point and αi are the variational coefficients). The drawback of the ALD-based sparsifi-
cation is that it ignores the target function (the function to be estimated) therefore also
ignoring the data-points relevance in estimating it.

As a major contribution of this paper we present a sparsification where the spec-
tral information contained in the Laplacian of an on-line constructed similarity graph is
used when deciding on the inclusion or removal of a new data-point to the dictionary.
We start by defining the unnormalized graph Laplacian as: L = D−A, where A is the
weighted adjacency matrix of a proximity graph G(E ,V) with E and V denoting the set
of edges and vertices respectively.Di,i =

∑
j �=i Ai,j is a diagonal matrix containing the

node degrees on the diagonal. Let us assume that the graph approximates the geodesic

Feature Selection in Approximate RL 173

Fig. 1. Dictionary points (black stars) obtained after processing 5 roll-outs (≈ 450 data-points)
– red dots – for the mountain-car control problem using different sparsification techniques. Fig-
ure (a): ALD sparsification. Figure (b) our proximity graph-based sparsification. The maximum
number of dictionary points was set to 100, KLSTD approximation used.

distances2 between data-points (details on constructing proximity graphs on-line are
explained in Section 5). An interesting property of the graph Laplacian is that it is
symmetric, positive semi-definite, and it gives rise to the discrete Laplacian operator
Δ: for every f : V → R : Δf(si) =

∑n
j=1 Aij [f(si)− f(sj)] and Δf = Lf where

f = [f(s1) . . . f(sn)]
T [11].

Let us denote the approximated function f and the neighbor set of a vertex si as
neig(si) = {sj ∈ V|Ai,j �= 0}. The vertices of the graph G(E ,V) are samples from
the target function. To obtain a sparse dictionary we introduce a score function μ(·) for
a vertex si ∈ V as the weighted sum of the squared differences between target func-
tion values of si and its neighboring vertices: μ(si ∈ V) = ∑

vj∈neig(si)
Aij [f(si)−

f(sj)]
2. Summing up the individual vertex scores gives an overall measure about the

quality of the dictionary set:

∑
si∈V

μ(si) =
n∑

i,j=1

Aij [f(si)− f(sj)]
2 = fTLf (3)

This means that we apply the discrete Laplacian operator for the value function, giving
the divergence of the gradient of the target functions.

Whenever the size of the dictionary reaches a maximum predefined value, we com-
pare the quality of the dictionary set with and without a new data-point using (3)
and eliminate the data-point which reduces the quality the most. Figure 1 illustrates
the differences between approximate linear dependence-based sparsification and our
Laplacian-based method. Performing sparsification based on the maximization of the
score from (3) leads to a higher sample-density in regions where f changes rapidly
while at the same time keeping sufficient number of data-points in slowly changing
regions to obtain good approximation accuracy.

2 Geodesic distance is the distance between states along the manifold determined by the transi-
tion dynamics of the MRP.

174 H.S. Jakab and L. Csató

5 On-Line Proximity Graph Construction

The information contained in the sequential nature of the training data in RL can be
used to acquire models that reflect the transitions of the underlying MDP and the true
distance between training data-points. To store this information we use so-called prox-
imity graphs encountered in dimensionality reduction and surface reconstruction meth-
ods from point-cloud sets. Let G(E ,V), V ⊂ S be a proximity graph that is the
representation of a manifold upon which the training data-points are located. Existing
work [8], [11] on graph construction has focused on treating training data as either i.i.d
or batch data. Since the approximation algorithm proposed by us operates on-line we
present iterative versions of two well-known edge construction methods, the k nearest
neighbor(kNN) and the extended sphere of influence (ε-SIG) methods.

The kNN edge construction strategy connects a node si to its k nearest neighbors sj ∈
knn(si) by an edge length equal to their spatial distance esi,sj = ‖si−sj‖2. To achieve
symmetry in the obtained proximity graph, we use undirected edges. As a consequence,
when creating edges between data-points si and sj we update the adjacency matrix as
follows: Ai,j = Aj,i = ‖si − sj‖2.

Extended Sphere of Influence Graphs (eSIG): The extended sphere of influence graph
produces a good description of non-smooth surfaces and better accommodates varia-
tions in the point sample density [8]. In this approach, edges are constructed between
vertices with intersecting spheres of influence: esi,sj = ‖si − sj‖2 if R(si) +R(sj) >
‖si − sj‖, where R(si) = ‖si − sk‖2 and sk is the k-th nearest neighbor of si. The
sphere of influence of a graph vertex is the sphere centered at the point, with radius given
by its distance to the nearest neighbor. Disconnected components can appear with this
construction, however by raising the sphere of influence radius (to be the length of the
distance to the 2nd or 3rd netarest neighbor) this can be eliminated.

5.1 Updating the Graph Structure

The deletion of a vertex from the graph G(E ,V) also removes the edges connecting it
to its neighbors. In order to keep the information contained in the original edges about
the topology we use the following pruning algorithm: Let us denote the vertex which is
to be removed by s∗. After removal of s∗ we get a new graph structure G′(V ′, E ′) with
the following components: V ′ = V \{s∗} and E ′ = E \{e(s∗, s)|s ∈ neig(s∗)}∪Enew

where e(s∗, s) denotes an edge between the vertices s∗ and s of the graph G(E ,V).
The set Enew = {e(si, sj) = ‖si, s∗‖ + ‖sj, s∗‖|si, sj ∈ neig(s∗), e(si, sj) �∈ E}
contains the new edges between former neighbors of s∗ with weights equal to the sum
of the edge weights that connected them to s∗. Figure 2 illustrates the removal procedure
on a sample graph structure obtained after interacting for 400 steps with the mountain-
car environment.

The addition of the new edges serves two purposes: First the connected property of
the graph is maintained, secondly it can be shown that using the previously defined
update the shortest path distance matrix of the graph will remain the same except for
removing the row and column corresponding to the index of s∗. In consequence the
geodesic distances between the remaining graph nodes are preserved.

Feature Selection in Approximate RL 175

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

Fig. 2. Dictionary points (black dots) and graph structure (blue lines) before and after node re-
moval. Figure (a) shows the node to be removed (red circle), its neighbors (red circles with dots)
and the removable edges (red lines). On (b) we see the resulting graph with the newly created
edges shown in red.

6 Performance Evaluation

To measure the performance of our policy evaluation framework in a continuous Markov
reward process we make use of two quality measures: the Bellman Error (BE) and
the mean absolute error with respect to the true value function. BE(Ṽ (s)) = R(s) +
γ
∫
s′∈S P (s′|s, a) ∫a∈A π(a|s)Ṽ (s′)dads′−Ṽ (s) The Bellman error expresses the abil-

ity of the approximator to predict the value of the next state based on the current
state’s approximated value. It also indicates how well the function approximator has
converged, and according to [10] it gives an upper bound on the approximation error:

‖V − Ṽ ‖∞ ≤ ‖BE(Ṽ)‖∞
1−γ The true value function V used as a baseline in our experi-

ments is calculated in all experimental settings using exhaustive Monte Carlo approx-
imation and can be considered very close to the actual value function induced by the
policy π. For testing we use the well-known benchmark problems: the mountain-car [13]
where the state space is two dimensional (position, and velocity), continuous, and the
actions are scalars from the continuous interval [-4 , 4]. To demonstrate the benefits
of our Laplacian-based sparsification mechanism for the approximation accuracy we
performed 15 experiments each having 150 episodes consisting of 350 steps (∼45000
training-points) on the mountain-car problem. For action selection policy π we used a

Gaussian policy with a fixed linear controller: π(a|s) = 1
2πσ exp(− ‖c(s)−a‖2

2σ2) where
σ is a small noise term and c(s) = θT s is the controller with fixed parameter vector
θ. We also introduced stochasticity into the dynamics of the system by adding a small
Gaussian noise term with 0.02 variance to the state transitions. To see the effects of
the sparsification on the approximation accuracy, we performed the same experiments
for a number of different maximum dictionary sizes. Figure 3(a) shows the obtained
mean absolute errors with respect to the true value function. According to our experi-
ments our Laplacian-based sparsification mechanism leads to a lower approximation er-
ror than standard ALD for all maximum dictionary sizes. The approximation accuracy
even increases slightly when the dictionary size is drastically reduced as opposed to
ALD where having fewer dictionary points raises the approximation error. This may be
attributed to the better placement of data-points into regions of the state-space where the
target function changes more rapidly. Figure 3(b) shows the evolution of the Bellman
error from the same perspective. It can be seen that the Laplacian-based sparsification

176 H.S. Jakab and L. Csató

357 245 188 164 134 114 105 91 83 63 43

0.3

0.31

0.32

0.33

0.34

0.35

0.36

Nr. of dictionary points

m
ea

n
sq

ua
re

d
ab

so
lu

te
 e

rr
or

ALD
LAP
ε−SIG

356 241 186 156 130 113 103 94 75 62 41
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Nr. of dictionary points

m
ea

n
sq

ua
re

d
Be

llm
an

 e
rr

or

ALD
LAP
ε−SIG

(a) (b)

Fig. 3. Evolution of the mean absolute error for different maximum dictionary sizes averaged over
15 experiments, in case of standard ALD sparsification, and our Laplacian based sparsification
with knn and ε − SIG proximity graphs. The horizontal axis represents the maximum number
of dictionary points, the vertical axis on figure (a) shows the mean squared absolute error while on
figure (b) the mean squared Bellman error. Measurement of the errors was done on 3600 equally
distributed points from the state space.

10
0

10
1

10
2

0.1

0.2

0.3

0.4

0.5

0.6

Nr. of roll−outs

M
ea

n
Be

llm
an

 E
rr

or

ALD
LAP
ε−SIG

357 245 188 164 134 114 105 91 83 63 43

3

4

5

6

7

8

9

10

11

Nr. of dictionary points

Di
ct

io
na

ry
 c

al
cu

la
tio

n
tim

e

ALD
LAP
ε−SIG

(a) (b)

Fig. 4. (a) Mean Bellman error as a function of training data set size. (b)Time required for the
computation of the dictionary from approximately 45000 data-points using ALD and Laplacian
based sparsification with knn and ε − SIG proximity graphs.

mechanism with knn or ε − SIG proximity graphs performs better at low dictionary
sizes than ALD, the difference becoming more obvious as the dictionary size is further
decreased. Figure 4(a) illustrates the evolution of the mean Bellman error as a function
of the number of training points used for the estimation of the approximation parameters
www from section 3. We calculated the dictionary beforehand based on a fixed training data
set using each of the three sparsification methods. When small number of training data
is used, the three dictionaries perform similarly. However when the training-data size
increases the dictionary obtained by ALD leads to unstable value estimates, whereas
using the dictionary obtained by our Laplacian based sparsification we obtain more ac-
curate and stable values. The computational complexity of the presented approximation
framework is influenced by the nearest neighbor search in case of graph expansion and
the search for vertices with minimal score in case of the sparsification mechanism. The
calculation of the individual scores of each graph vertex vi ∈ V has a computational

Feature Selection in Approximate RL 177

complexity of O(0) since the scores can be stored and updated on-line for each vertex.
Compared to the cost of approximate linear independence test our methods are slower
as it can be seen from 4(b), but not by orders of magnitude, the difference becomes
significant only by large dictionary sizes. The better approximation accuracy and faster
convergence rates compensate for the higher computational requirements.

7 Conclusion

In this paper we presented an on-line algorithm with sparsification mechanism appli-
cable to kernel-based value approximation. Our method can adjust the density of the
dictionary set according to the characteristics of the target function, potentially lead-
ing to better approximation accuracy and faster convergence rates. The use of prox-
imity graphs in the sparsification enables the extension of our methods with different
distance-substitution kernels operating on graphs and opens up ways to different explo-
ration strategies like probabilistic road-maps or rapidly exploring random trees, direc-
tions that we plan to investigate in the future.

The authors acknowledge the support of the Romanian Ministry of Education and
Research via grant PN-II-RU-TE-2011-3-0278.

References

1. Boyan, J.A.: Technical update: Least-squares temporal difference learning. Machine Learn-
ing 49(2-3), 233–246 (2002)

2. Bradtke, S.J., Barto, A.G., Kaelbling, P.: Linear least-squares algorithms for temporal differ-
ence learning. In: Machine Learning, pp. 22–33 (1996)

3. Csató, L., Opper, M.: Sparse On-Line Gaussian Processes. In: Neural Computation, vol.
14(3), pp. 641–668 (2002)

4. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least squares algorithm. IEEE Transac-
tions on Signal Processing 52, 2275–2285 (2003)

5. Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Rasmussen,
C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175,
pp. 220–227. Springer, Heidelberg (2004)

6. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res. 4,
1107–1149 (2003)

7. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York (1994)

8. Ruggeri, M.R., Saupe, D.: Isometry-invariant matching of point set surfaces. In: Eurograph-
ics Workshop on 3D Object Retrieval (2008)

9. Szepesvári, C.: Algorithms for Reinforcement Learning. Morgan & Claypool (2011)
10. Taylor, G., Parr, R.: Kernelized value function approximation for reinforcement learning. In:

Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009,
pp. 1017–1024. ACM, New York (2009)

11. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4) (2007)
12. Xu, X., Hu, D., Lu, X.: Kernel-based least squares policy iteration for reinforcement learning.

IEEE Transactions on Neural Networks, 973–992 (2007)
13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)

Learning of Lateral Interactions for Perceptual

Grouping Employing Information Gain

Martin Meier, Robert Haschke, and Helge J. Ritter�

Neuroinformatics Group, Bielefeld University, 33501 Bielefeld, Germany
{mmeier,rhaschke,helge}@techfak.uni-bielefeld.de

Abstract. Perceptual Grouping is an important aspect in the under-
standing of sensory input. One of the major problems there is, how fea-
tures can form meaningful groups while segregating from non relevant
informations. One solution can be to couple features by attracting and
repelling interactions and let neural dynamics decide the assignment of
features to groups. In this paper, we present a modification of a learning
approach to find these couplings, which explicitly incorporates the infor-
mation gain of feature pairs, increasing the overall grouping quality of
the original technique. The new approach is evaluated with an oscillator
network and compared to the original work.

1 Introduction

Perceptual grouping describes the human ability to intuitively group similar fea-
tures from an arbitrary domain together. These groups then have a higher level
meaning. For example, in image processing, the organization of single elements
in an edge filtered image to contours and shapes is an easy task from a human
perspective but demanding from a computational point of view. One of the main
problems that arises is how to generate “good” groups, which is closely related
to the Binding Problem (see [7] for an overview).

An approach to tackle this problem is the introduction of attraction and
repelling interactions between features and employ the recurrent dynamics of a
neural network to yield robust grouping results, which is, for example, realized
in the Competitive Layer Model (CLM) [6]. The key idea there is, that the
compatibility and therefore the attraction of these features to the same group,
is given by a compatibility function, which, in the easiest form, decides if the
coupling is attracting or repelling in a binary fashion. This approach has been
proven feasible for a broad spectrum of perceptual grouping tasks (see [9] for
an overview). However, the interaction functions have to be handcrafted for
each scenario and are rather complex. Also the generalization ability of these
interaction functions can be poor, because the design process may be restricted
to a specific detail of the problem. However, often it is simply infeasible to find
an analytic description of the grouping properties.

� This work has been conducted within and funded by the German collaborative re-
search center “SFB 673: Alignment in Communication” granted by DFG.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 178–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Learning of Lateral Interactions 179

To overcome these problems, the approach in [8] is to replace these hand-
crafted interaction functions with a set of basis functions, which in turn are
learned from labeled examples and simple distance measures. The basis func-
tions in this case are estimated with a vector quantization variant, the Activity
Equilibrium Vector Quantization (AEV) [1], in the space of the distance mea-
sures. The attracting respectively repelling interaction weights are obtained by
incorporating the labels from the examples. Although this approach achieves
good results for different perceptual grouping problems, it does not incorpo-
rate the mutual information of the elements in the proximity space, leading to
a sub optimal approximation of the interaction function. To gain a better ap-
proximation, we propose to use a vector quantization variant which explicitly
incorporates information theoretic principles, the ITVQ algorithm [4].

To this end, we will shortly introduce two networks for perceptual grouping
tasks in the following section. First the CLM, for which the original learning al-
gorithm was developed and later on a network composed of Kuramoto oscillators
which was presented in [3] and which can achieve similar grouping results more
efficient. Building on the topological properties of the CLM, the original learn-
ing algorithm is outlined in section 3 and our proposed modifications, including
an abstract of the ITVQ algorithm, are stated. Following the theoretical part,
we evaluated the presented techniques within a perceptual grouping scenario
from [8].

2 Artificial Networks for Perceptual Grouping

In this section, we shortly introduce the architecture of two recurrent networks
for perceptual grouping. At first we introduce the Competitive Layer Model,
for which learning of interaction functions was originally developed. The other
network utilized in the evaluation is composed of Kuramoto Oscillators [2] and
was first presented in [3].

2.1 Competitive Layer Model

The CLM consists of N × L neurons which are arranged in L layers. Neurons
are indexed column wise with r = 1, . . . , N denoting the feature index within
each layer and α = 1, . . . , L denoting the layer index. A single neuron’s activ-
ity is therefore denoted as xrα. The neurons in each layer are coupled with a
symmetric interaction function f(vr, vr′) = f(vr′ , vr) = frr′ which describes the
compatibility between two features vr and vr′ . They are additionally coupled
with a winner takes all (WTA) circuit in each column to assure that only one
neuron in each column becomes active. Therefore, a single input feature vr is
represented by a column composed of L neurons xrα. Combining the lateral
interaction and columnar WTA circuit, the recurrent CLM dynamics can be
written as:

ẋrα = −xrα + σ(J(hr −
L∑

β=1

xrβ) +

N∑
r′=1

frr′xr′α) . (1)

180 M. Meier, R. Haschke, and H.J. Ritter

Here J(hr−
∑

β xrβ) represents the WTA competition weighted by the constant
J , hr encodes the importance of feature vr – which is set to 1 for each feature in
the upcoming evaluation, because all features are equally important – and σ(·) is
a linear threshold function. The lateral interaction is expressed as

∑
r′ frr′xr′α,

which calculates the support for the feature r from all other features r′ in a given
layer α. For a more comprehensive overview, we refer to [8,9].

2.2 Coupled Kuramoto Oscillators

The oscillator model has a topology similar to the CLM, but replaces the L
neurons in each column with a single oscillator of the Kuramoto type [2], where
an oscillator Or is described by its phase θr and frequency ωr. Additionally to
the global coupling constant K, these oscillators are coupled individually by a
symmetric matrix Mrr′ ≡ f(vr, vr′). Thus, the phases θr of the oscillators evolve
according to the following update rule:

θ̇r = ωr +
K

N

N∑
r′=1

f(vr, vr′) · sin(θr′ − θr). (2)

The interaction function f is limited to the interval [−1, 1], where −1 and +1
represent strongest dissimilarity resp. similarity of features.

The oscillator frequencies are limited to discrete values ωα = α · ω0, where
α∈ {1, . . . , L} denotes the group index – following the CLM notation where α
denotes the group/layer index. This discretization will further allow a very simple
analysis of the grouping result. To cluster similar features to the same frequency
ωα, the frequency ωr of each oscillator is updated employing the cosine similarity
between the phases of the oscillators. This similarity measure is mapped to the
interval [0, 1], which is crucial to preserve the sign of the interaction function
f(vr, vr′). Therefore, the frequencies are updated according to:

ωr = ω0 · argmax
α

(∑
r′∈N (α)

f(vr, vr′) · 1
2

(
cos(θr′ − θr) + 1

))
, (3)

where N (α) denotes the set of oscillators with frequency index α, i.e. forming
the current perceptual group indexed by α. This updates the frequency of an
oscillator Or to the frequency index α, whose corresponding oscillators provide
most support in terms of f-weighted phase similarity. This update ensures that
oscillators representing similar features will both phase-lock and converge to
identical frequencies. Eq. (3) also boosts the phase-locking process, because syn-
chronized phases do not tend to desynchronize anymore. Contrarily, oscillators
representing dissimilar features will spread both in phase and frequency. The
final grouping result is determined by oscillator subsets N (α) having common
frequency indices α. In terms of the CLM topology, an an oscillator Or can
represent a whole column of neurons, because it possesses two degrees of free-
dom. The phase θr represents the lateral interaction over all layers whilst the
frequency ωr acts as the layer assignment.

Learning of Lateral Interactions 181

3 Learning Lateral Interactions

Handcrafting compatibility functions for lateral interactions can be difficult and
error prone, resulting in reduced generalization abilities of these functions. To
circumvent these problems, the concept in [8] is to learn these functions from
labeled examples and to replace the handcrafted compatibility function by a dis-
tance function drr′ = (d1(vr , vr′), . . . , dn(vr , vr′)) in a n−dimensional proximity
space D. This transformation assures that the required symmetry is preserved.
Another important aspect of this distance function is, that it is not longer re-
quired to be one dimensional, as frr′ in Eq. (1). The set of distance vectors
obtained from all training feature pairs is represented by a small set of represen-
tive prototypes by means of vector quantization.

The attracting respectively repelling interactions frr′ are created in a second
step which incorporates the labels of the training data. To this end, the number
of compatible and incompatible feature pairs from the training set is counted
for each associated prototype. (Features are compatible if they share a com-
mon label.) These counts are finally used to determine the interaction weight
ci assigned to the prototype. For a comprehensive derivation please refer to [8],
we will outline some implementation details and our proposed changes in the
following sections.

3.1 Original Learning Algorithm with AEV

The vector quantization in [8] used Activity Equilibrium VQ (AEV) [1] to esti-
mate a set of d̃i, i = 1, . . . , N prototypes for the distance space D. In contrast
to standard vector quantization, AEV measures the activity of each prototype
based on the number of data points from the input it describes. If a prototype
only represents a smaller subset of the input data than the remaining proto-
types, it is repositioned in an exploration step, otherwise it is locally adapted.
Combined with simulated annealing, this technique should avoid idle prototypes
and place them uniformly distributed in regions of the feature space where input
data is present.

After the vector quantization phase, feature pairs are sampled randomly and
their labels are examined. If a feature pair shares the same label, a positive
interaction c+i is counted for the closest prototype d̃i. In the case of different
labels, the interaction counts as repelling and is therefore stored as negative
interaction c−i . After a sufficient amount of random samples, the positive and
negative interactions are summed up to create the interaction coefficient

ci = c+i − λc−i (4)

for each of the i = 1, · · · , N prototypes. Here λ is a weighting parameter to
account for the fact, that typically more incompatible feature pairs exist. Finally,
the coefficients are normalized by the coefficient with the biggest value.

182 M. Meier, R. Haschke, and H.J. Ritter

3.2 Learning Algorithm with ITVQ

Although the original learning algorithm based on AEV already yields good
results, the uniform distribution of the prototypes has some drawbacks. It is de-
sirable to find prototypes, which reflect the structure of the underlying grouping
problem. To this end, we propose to replace the AEV clustering in the original
algorithm with a vector quantization variant which explicitly incorporates the in-
formation density of the feature space [4]. The main idea there is to minimize the
Cauchy-Schwartz (CS) divergence between the input data and the prototypes.
The CS divergence measures the “distance” between two probability density
functions p(x) and q(x) as

DCS(p, q) = −log

∫
p(x)q(x)dx√∫

p2(x)dx
∫
q2(x)dx

(5)

Following the derivation in [4] by using Renyi’s quadratic entropy [5] for a dataset
X

H(X) = −log
(
V (X)

)
= −log

(∫
p2(x)dx

)
(6)

and the cross entropy between two datasets X and X0

H(X,X0) = −log
(∫

p(x)q(x)dx
)
, (7)

the CS divergence can be estimated by

DCS = 2H(X,X0)−H(X)−H(X0). (8)

Given the datasets X0, which represents the original data, and the set X of
prototypes, the goal is to find the dataset X which minimize the cost function

J(X) = min
X

DCS(X,X0). (9)

Differentiating J(X) with respect to xi and using the Parzen window technique
for the dataset X = (xi), i = 1, . . . , N with

p(x) =
1

N

N∑
i=1

Gσ′(x− xi), (10)

where Gσ′(t) = e−
t2

2σ′2 is a Gaussian kernel to estimate the pdfs of the input
data, we get a simple fixed point update rule:

xt+1
i =

∑N0

j=1 Gσ(x
t
i − x0j)x0j∑N0

j=1 Gσ(xt
i − x0j)

−c

∑N
j=1 Gσ(x

t
i − xt

j)x
t
j∑N0

j=1 Gσ(xt
i − x0j)

+c

∑N
j=1 Gσ(x

t
i − xt

j)∑N0

j=1 Gσ(xt
i − x0j)

xt
i

(11)

With c = N0

N
V (X,X0)
V (X) . For a more comprehensive derivation please refer to [4].

Learning of Lateral Interactions 183

(a) Oriented edge features. (b) “Easy” problem. (c) “Hard” problem.

Fig. 1. A sketch of the parameter of the distance function is shown in 1a. Figures 1b and
1c show examples for an easy grouping task and a hard one, respectively. In the hard
example, the overlapping lines in the center and on the left are nearly indistinguishable.

C+
C-

Reference

C+
C-

Reference

ITVQ Prototypes AEV Prototypes

Fig. 2. Example of learned prototypes for circular training data. Red edges show at-
tracting and blue edges represent repelling prototypes. The length of the edges encodes
the interaction strength. All prototypes are positioned relative to the black feature.
Although the prototypes are hard to inspect visually, ITVQ generates more positive
prototypes which represent different radii of the input data. This can be seen in the
zoomed part of the images. (best viewed in color)

Replacing the AEV algorithm with ITVQ for the learning of interaction pro-
totypes while keeping the same estimation of interaction coefficients from Eq. (4)
should lead to better perceptual grouping capabilities of the two networks de-
scribed in section 2. We will evaluate the proposed changes with a contour group-
ing scenario from [8] and compare the grouping quality to the original approach
in the following section.

4 Evaluation

As an evaluation scenario, we resemble the original contour grouping task from
[8], where an interaction function is learned for oriented edge features. The dis-
tance between two oriented edges d(vr , vr′) = (||pr − pr′ ||, θ1, θ2, θ3)T is defined
by their Euclidean distance and the three angles θ1−3, as shown in Fig. 1a.

184 M. Meier, R. Haschke, and H.J. Ritter

0

0.2

0.4

0.6

0.8

1
G
ro
u
p
in
g
Q
u
a
li
ty

AEV CLM
AEV Oscillators

ITVQ CLM
ITVQ Oscillators

50 Prototypes 100 Prototypes 150 Prototypes 200 Prototypes

Fig. 3. This plot shows the mean grouping quality Q with standard deviation for each
combination of learning algorithm and perceptual grouping network, each over 200
trials. The value is the average over all three types of shapes.

For three types of shapes, namely triangles, squares and circles, interaction func-
tions are learned with AEV and ITVQ clustering for different numbers of pro-
totypes. According to the findings from [8], the λ parameter from Eq. (4) is set
to 2 in all trials.

In Fig. 2, 100 prototypes learned with ITVQ and AEV are shown for circular
shapes composed of oriented edge features (as depcited in Fig. 1). Although the
prototypes can only be evaluated qualitatively by visual inspection, the positive
interaction prototypes in the zoomed areas suggest, that the ITVQ variant is
more sensitive to different radii in the input data by generating more prototypes
for these cases.

For the quantitative part of the evaluation, we varied the number of proto-
types in steps of 50 starting with 50 for up to 200 prototypes. After learning
an interaction function from eight shapes with different orientations, positions
and sizes, each function was used in 200 trials to group randomly generated
inputs, each input consisting of five shapes with varying sizes, positions and
orientations. Because the oscillator network is less computationally demanding,
we employ the same measure for counting update steps as in [3]: A single step
is the update of each neuron in each layer for the CLM or the update of each
oscillator for the oscillator network, respectively. Based on the previous findings,
each trial was limited to a total of 500 steps. After each trial, we calculated the
grouping quality Q as

Q =
1

N2

N∑
r

N∑
r′

qrr′, qrr′ =

⎧⎨
⎩

1 if tr = tr′ and ar = ar′

1 if tr �= tr′ and ar �= ar′

0 else
(12)

where t is the target label and a the assignment generated by the perceptual
grouping network. This yields a value from 0 to 1, where 1 is a perfect grouping
result.

The results for this evaluation are shown in Fig. 3. Especially for a small
number of prototypes, the presented modification which uses ITVQ outperforms
the CLM with AEV learning by 27%. This difference decreases with an increasing

Learning of Lateral Interactions 185

number of prototypes, but the grouping is still 12% better with 200 prototypes.
Also, the oscillator network achieves a better grouping with both methods, which
is especially significant for the case with AEV learning. The variance of the
grouping results can be explained by the random generation of the shapes. Fig. 1b
shows an example of an easy grouping task, while Fig. 1c is way more demanding
because of largely overlapping features. Following up to the findings of [3], we also
calculated the average number of update steps for the CLM and the oscillator
network which are needed to achieve the maximal grouping quality in each trail.
The CLM takes an average of 88.7 steps to gain the maximal grouping quality
while the oscillator network reaches this goal within an average of 24.9 steps.

5 Conclusion

We presented a modification of the learning algorithm from [8], which increases
the grouping quality of perceptual networks. Evaluations with two perceptual
grouping networks, the Competitive Layer Model and an oscillator network,
revealed that the incorporation of ITVQ in the learning algorithm increases the
grouping quality of these networks in a contour grouping task. The grouping
quality is increased by more than 12% for a large number of learned prototypes.
This increase is even larger for less prototypes, with a maximum increase of
27%. Another interesting point is the performance of the oscillator network in a
more realistic setting than in [3]. Although the findings there suggested a good
performance in perceptual grouping tasks, we could now show that its grouping
capabilities exceed the CLM in the present task.

References

1. Heidemann, G., Ritter, H.: Efficient vector quantization using the wta-rule with
activity equalization. Neural Processing Letters 13(1), 17–30 (2001)

2. Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Dover (2003)
3. Meier, M., Haschke, R., Ritter, H.: Perceptual grouping through competition in

coupled oscillator networks. In: ESANN (2013)
4. Rao, S., Han, S., Principe, J.: Information theoretic vector quantization with fixed

point updates. In: International Joint Conference on Neural Networks, IJCNN 2007,
pp. 1020–1024 (August 2007)

5. Rényi, A.: Some fundamental questions of information theory. Selected Papers of
Alfred Renyi 2(174), 526–552 (1976)

6. Ritter, H.: A spatial approach to feature linking. In: INNC (1990)
7. Treisman, A., et al.: The binding problem. Current Opinion in Neurobiology 6(2),

171–178 (1996)
8. Weng, S., Wersing, H., Steil, J., Ritter, H.: Learning lateral interactions for fea-

ture binding and sensory segmentation from prototypic basis interactions. IEEE
Transactions on Neural Networks 17(4), 843–862 (2006)

9. Wersing, H., Steil, J., Ritter, H.: A competitive-layer model for feature binding and
sensory segmentation. Neural Computation 13(2), 357–387 (2001)

On–Line Laplacian One–Class

Support Vector Machines

Salvatore Frandina, Marco Lippi, Marco Maggini, and Stefano Melacci

Department of Information Engineering and Mathematical Sciences,
University of Siena, Italy

{frandina,lippi,maggini,mela}@diism.unisi.it

Abstract. We propose a manifold regularization algorithm designed to
work in an on–line scenario where data arrive continuously over time and
it is not feasible to completely store the data stream for training the clas-
sifier in batch mode. The On–line Laplacian One–Class SVM (OLapOC-
SVM) algorithm exploits both positively labeled and totally unlabeled
examples, updating the classifier hypothesis as new data becomes avail-
able. The learning procedure is based on conjugate gradient descent in
the primal formulation of the SVM. The on–line algorithm uses an ef-
ficient buffering technique to deal with the continuous incoming data.
In particular, we define a buffering policy that is based on the current
estimate of the support of the input data distribution. The experimental
results on real–world data show that OLapOCSVM compares favorably
with the corresponding batch algorithms, while making it possible to be
applied in generic on–line scenarios with limited memory requirements.

Keywords: On–line learning, One–Class SVM, RKHS, Manifold Regu-
larization, Semi–supervised learning.

1 Introduction

Nowadays, many applications, ranging from computer vision (e.g. a camera
mounted on a moving robot) to sensor networks (e.g. the measurement data
collected by a sensor network), have access to a huge amount of data. In partic-
ular, many scenarios are typically on–line, where the data arrive continuously in
time and an intelligent decision system must analyze them and take its conse-
quent actions in synchrony with the input flow. In these cases, the capabilities
of the standard batch machine learning algorithms are limited by the available
resources both in terms of time and memory. Much attention has been paid
to on–line machine learning algorithms that are able to work in an incremen-
tal and never ending learning scenario [8]. As new data becomes available, the
current learned hypothesis must be continuously improved by efficiently exploit-
ing the data seen up to the current time step and the training process must
be able to adapt to eventual drifts in the data distribution. Moreover, most
of the real–world problems are naturally semi–supervised, since there is only a
limited quantity of labeled data and an abundant quantity of unlabeled points

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 186–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On–Line Laplacian One–Class Support Vector Machines 187

[2]. Goldberg et al. [5] have proposed an on–line approach to Laplacian SVMs,
extending the original idea of on–line SVMs [8] to the semi–supervised setting.
Different strategies are proposed to control the time and memory requirements
of the algorithm.

In many real-world problems, there is an intrinsic asymmetry in the data
labeling process. In general, only a few examples can be clearly and easily labeled
as belonging to a given class, whereas it may be costly to provide a label for all the
available data or to specify all the relationships of each example and each class.
For instance, in anomaly detection tasks the evident and detected anomalies can
be tagged, while most of the events will not have a clear classification. Similarly,
in multi–class classification both the number of classes and their relationships
(eventual intersections, inclusions and exclusions) may not be explicitly defined.
Hence, we consider a setting where a classifier has to be learned only from
the positive examples that describe the class to be modeled. In the context of
kernel machines, this problem has been faced by One–Class SVM (OCSVM), that
is essentially a density estimation algorithm sometimes referred to as novelty
detection algorithm [14]. In this scenario, OCSVM tries to estimate the class
distribution only from the available positive examples [11]. Two straightforward
on–line extensions of the density estimation algorithm are proposed in [8,6].

This paper proposes an approach referred to as On–line Laplacian One–Class
SVM (OLapOCSVM), that extends the Laplacian SVM (LapSVM) algorithm
[9] to the one–class setting considering an on–line framework. In details, the
continuous stream of data is efficiently bufferized by means of a pruning strategy
that decides if a new example has to be added to the buffer depending on the
current estimate of the support of the input data distribution. Such strategy
allows us to guarantee the convergence of the learning algorithm and to exploit
standard convex programming techniques, instead of a stochastic adjustment of
the parameters with exponentially decaying learning rates [3,5], that may be
harder to tune. In particular, we focus on the conjugate gradient descent in the
primal formulation of the SVM problem [9]. The proposed buffering technique
is quite general and can be applied to any semi–supervised learning algorithm.

The paper is organized as follows. The next section introduces the learning
algorithms and the buffer management techniques. Then, section 3 reports the
experimental comparison of the proposed algorithm with the batch approach.
Finally, section 4 draws the conclusions and delineates the future developments.

2 On–Line Laplacian One–Class SVM

The considered learning scenario consists in a stream of data for which super-
visions are provided only for some examples belonging to a class of interest.
Hence the goal of the training algorithm is to develop the class model on–line
while the data is made available, taking advantage of both the supervised and
the unsupervised samples. The first aspect to be taken into account is that only
positive examples are provided by the supervisions. OCSVM learning has been
devised to approach this task when a batch of positive examples is available.

188 S. Frandina et al.

The learning goal is defined by the minimization of the following functional with
respect to the function f : X → IR in a given RKHS H and the bias b ∈ IR,

Eoc[f, b] = λr ‖f‖H +
1

|L+|
∑

xs∈L+

max (0, 1− f(xs)− b) + b , (1)

where L+ is the set of supervised positive examples, and λr > 0 weights the
regularization contribution. Once the function f is estimated, an input example
x ∈ X is assigned to the modeled class if f(x) + b ≥ 1 − ξ, where ξ ∈ [0, 1] is a
tolerance parameter1.

In an on–line setting the data are incrementally made available in time and the
classifier should be able to provide its predictions at each time step t. Hence, the
learning algorithm must be designed to yield an optimal solution at each t, given
the data seen up to that instant. However, since the horizon may potentially be
infinite, it is unfeasible to collect all the data up to t and to train the classifier on
them. In fact, this approach would require an unbounded amount of memory and
increasingly longer training times for the classifier. Moreover, the memorization
of all the data history may degrade the performances in those cases in which
there is a drift in the data distribution. A classical approach to on–line learning
is to exploit a finite size buffer that collects only part of the incoming data [8,5].
This technique requires to define an appropriate policy to manage the buffer
overflow. Depending on the specific task, when a new example has to be added to
the buffer different criteria can be taken into account, especially when the buffer
is full and the new example should eventually replace a memorized one. In the
case of replacement, a simple criterion is to remove the oldest stored example,
thus implementing a sliding window on the input stream. A better solution is
to consider also the significance of the examples for training the classifier [5].
More advanced methods try to estimate the impact of each buffer replacement
operation on the accuracy of the estimated classifier [12].

The proposed method is based on a pruning strategy that decides if the new
example is to be added to the buffer depending on the current estimate of the
support of the input data distribution. Given a tolerance ε > 0, the example at
time t, xt, is added to the buffer Bt only if the condition

∀(xb ∈ Bt−1) : ‖xt − xb‖p > ε (2)

is satisfied, otherwise Bt = Bt−1. The norm used to compute the data similarity
can be chosen given the specific characteristics of the input space X (e.g. for
high–dimensional spaces p ≤ 1 may be considered instead of the Euclidean
norm with p = 2 [1]). This solution allows us to provide a stable coverage of
the support of the input data distribution with a given resolution depending
on the parameter ε. Clearly, a better approximation of the support is obtained
for smaller values of ε, at the cost of a larger amount of needed memory space.

1 This is a slightly modified formulation of the original OCSVM. The offset of 1 in
the hinge loss is added to enforce a larger value of f when evaluated on the training
examples and then the decision function is relaxed by ξ.

On–Line Laplacian One–Class Support Vector Machines 189

The pruning technique can be combined with replacement criteria as those listed
before, when a maximum buffer size is set. In the experimental settings, we
employed a buffer whose insertions are managed by the pruning technique defined
by the rule of eq. (2) without limitations on its maximum size. Notice that the
proposed technique allows us to filter out also potential replicates of already
processed data points.

Finally, the unsupervised examples from the input stream can be exploited
to provide additional information on the data distribution. By following the
Laplacian SVM approach [2,9] we can add a manifold regularization term to the
objective function. First, given a set of unsupervised points xu ∈ U , we build
the Laplacian graph L = D −W associated to the set M = L+ ∪ U . W is the
data adjacency matrix, whose entry wij measures the similarity of the examples
xi and xj in M, and D is the diagonal matrix with the degree of each node, i.e.

dii =
∑|M|

j=1 wij . The manifold regularization term is defined as

Eg[f] = ‖f‖2M =
∑

xi,xj∈M
i�=j

wij (f(xi)− f(xj))
2
. (3)

In general, several choices of ‖f‖2M are possible and, in the considered case,

‖f‖2M = fTLf , as it can be easily derived from eq. (3) [2].
Since we are considering a one–class approach, the manifold construction is

modified accordingly. In particular, the graph Laplacian must contain only the
connections among the positive examples and the unsupervised ones that are
most similar to them. This choice is motivated by the fact that the goal of
the one–class SVM algorithm is to model the support of the distribution only
for the positive samples and the presence of out–of–class–distribution data may
hinder the class modeling. The unsupervised examples that have no connections
in the Laplacian graph will be neglected in the learning process. We avoid using
the k-NN rule to build W (as frequently done in Laplacian SVMs [2]) since it
would result in connecting at least k neighbors of each point xi of M, even if
some of them are far away from xi. Moreover the k–NN rule is known to suffer
from several problems in high dimensional spaces [13]. In this work, we add a
connection between two examples xj and xi only if ‖xi − xj‖p < εL, for a given
tolerance εL. The connection weight wij is then computed using an exponential
decay wij = exp(−‖xi − xj‖p/(2σL)), where σL is a hyper–parameter.

This choice also allows us to efficiently handle the on–line incremental building
of the adjacency matrix W . As a matter of fact, in the on–line setting W is
computed on the points of Bt, and it must be updated every time that Bt differs
from Bt−1. When a new point x is added to the buffer, we have already computed
its distance from the other points in Bt, due to the proposed buffering strategy
(2). Since we use the same distance ‖·‖p both to manage the buffer and to
build wij , no additional distance computations are needed to update the matrix
W . Using the k-NN rule would require to store information on the k nearest
neighbors of each point in M to update W .

190 S. Frandina et al.

Considering both the criteria of eq. (1) and eq. (3), the learning objective is
to minimize the following functional with respect to f and b

E[f, b] = Eoc[f, b] + λmEg[f] , (4)

where λm ≥ 0 weights the Laplacian contribution. By applying the Repre-
senter Theorem, the solution at the time step t can be written as f(x) =∑

xj∈Bt
αt
jK(xj ,x), where K(·, ·) is the kernel of the considered RKHS [9]. The

optimal parameters αt
j are determined by applying a conjugate gradient descent

technique given the convex objective function of eq. (4). Actually, the com-
putation is needed only when a change is applied to the buffer (insertion or
replacement) and the starting point for the gradient descent is chosen such that
αt
j = αt−1

j for those examples such that xj ∈ Bt ∩ Bt−1. Due to this “warm
start” of the optimization procedure between consecutive time instants, only a
few iterations are needed to converge to the minimum of eq. (4).

3 Experimental Results

The evaluation was performed on the MNIST and NSL–KDD datasets2 . MNIST
is a widely–used digit classification benchmark composed of 70,000 points, and
we considered the classification setting used in [5], based on two binary classifi-
cation problems (digit 0 vs. 1 and 1 vs. 2). The evaluation follows the one–class
approach, and, hence, the classifier is trained only on the positive class, that is,
digit 0 for 0 vs. 1, and digit 1 for 1 vs. 2. In the experiments, the original train-
ing and test sets were used without any preprocessing, except a normalization of
the gray–level value of each pixel. NSL–KDD is an anomaly detection dataset,
derived from the KDD Cup 1999 benchmark by removing several problems from
the original data [15]. This dataset consists of ≈ 95,000 examples describing
network traffic at different timestamps, each one labelled with one of following
classes: DoS, R2L, U2R, probing and normal (no attack). In the experiments, the
R2L class was neglected, as it contains too few examples (0.07% for the training
set and 0.37% for the test set). Each continuous attribute was discretized into
10 bins, by selecting the quantization thresholds using a maximum entropy prin-
ciple (each bin should contain roughly the same number of examples). Both the
datasets come divided into a training and a test split. The test split was used
to evaluate the classifier quality, whereas we divided the training split into two
portions. The first one (10% of the data) was used in an off–line setting to cross-
validate the hyper–parameters of the classifiers3. The second portion (90% of the
data) was streamed in an on–line fashion and processed by the proposed algo-
rithm. In both cases, only 10% of the points were supervised. A Gaussian kernel
was selected and its width σK was chosen in a discrete grid defined in [3, 21] with
step size 3; the regularization parameter λr was selected in {10−h|h = 1, . . . , 6};
2 http://yann.lecun.com/exdb/mnist/; http://iscx.ca/NSL-KDD/
3 Two thirds of the validation examples were exploited to train the classifier, whereas
one third of the validation examples were used to evaluate the classifier accuracy.

http://yann.lecun.com/exdb/mnist/
http://iscx.ca/NSL-KDD/

On–Line Laplacian One–Class Support Vector Machines 191

the Laplacian regularization parameter λm was chosen in {0, 10−h|h = 0, . . . , 6};
the width of the Gaussian for computing the Laplacian graph weights σL and
the distance tolerance εL were chosen in [3, 12] with a step of 3 for the MNIST
dataset, and in {0.5, 1, 1.5, 2, 3} for the NSL–KDD dataset.

The first experiment was aimed at evaluating different settings of the pruning
policy used for the buffer management. In particular, three different norms were
considered (i.e. p ∈ {0.5, 1, 2}) and the resulting size of the buffer was computed
by varying the resolution ε used to approximate the data distribution support.
Table 1 reports the total number of elements N of the streamed training set
that are stored into the buffer for the different norms and tolerance values. In
particular, the table shows that larger values of ε are needed for the L1 and
L0.5 norms to yield the same number of stored examples with respect to the
L2 norm. This behavior confirms the property that, when the norm index p
decreases, the average distances among the points tend to increase [1]. By an
appropriate choice of the combination of the norm and the related tolerance ε,
three different settings were defined for the following experiments. In particular,
in Online setting 1 the tolerance is chosen such that roughly the 15% of the
streamed examples are stored in the buffer for training the classifier; in Online
setting 2 the buffer contains about the 10% of the data, whereas in Online setting
3 only the 5% of the available examples is memorized into the buffer.

Table 1. Number of examples N stored into the buffer with respect to the norm (L2,L1

and L0.5) and the tolerance parameter ε, for the MNIST and NSL–KDD datasets. The
pairs (norm,ε) define three different buffer configurations exploited in the evaluation
of the learning algorithm.

MNIST 0vs.1 MNIST 1vs.2 NSL–KDD
Buffer-Size

Norm ε N ε N ε N

L2 5.5 1712 6.3 1735 0.075 11195
Online setting 1
15% of the examples

L1 55 1620 64 1699 0.12 11049
L0.5 7700 1679 9000 1775 0.35 11087

L2 6 1105 6.7 1133 0.15 8000
Online setting 2
10% of the examples

L1 60 1165 70 1127 0.25 7723
L0.5 9000 1089 10500 1114 0.75 7987

L2 6.7 533 7.3 584 1 3850
Online setting 3
5% of the examples

L1 70 569 80 559 1.25 3920
L0.5 11000 574 13000 529 5 3837

Table 2 reports the classification performance of the OLapOCSVM algorithm
on the MNIST and NSL–KDD datasets using the F1 score. The first group of
results, referred to as Batch setting, corresponds to the (offline) batch training
of the classifier on all the available training data. In the case of the NSL–KDD
dataset it was not possible to train the classifier due to the large memory re-
quirements needed to manage all the data. As a matter of fact, the proposed
buffering strategy is not used and the training examples are not pruned. From a

192 S. Frandina et al.

Table 2. Accuracy of the OLapOCSVM algorithm on the MNIST and NSL–KDD
datasets measured by the F1 score for each norm and ε setting as defined in Table 1.
Batch setting corresponds to the (offline) batch training on the all the available data.

MNIST NSL–KDD
Norm 0vs.1 1vs.2 DoS U2R probing

Batch setting
L2 0.998 0.950 - - -
L1 0.943 0.992 - - -
L0.5 0.648 0.990 - - -

Online setting 1
L2 0.980 0.981 0.929 0.361 0.692
L1 0.954 0.987 0.923 0.353 0.716
L0.5 0.642 0.991 0.910 0.398 0.716

Online setting 2
L2 0.973 0.980 0.929 0.361 0.687
L1 0.933 0.989 0.924 0.564 0.713
L0.5 0.895 0.984 0.913 0.391 0.720

Online setting 3
L2 0.975 0.977 0.933 0.361 0.669
L1 0.965 0.974 0.930 0.413 0.712
L0.5 0.716 0.965 0.918 0.353 0.718

comparison of the results obtained in the three different on–line settings, it can
be noticed that the F1 score decreases when using a larger tolerance in the data
support approximation, but the performances degrade only slightly whereas the
memory requirements are considerably reduced. In particular, there is not a sig-
nificant performance difference with respect to the batch case, showing that the
applied buffer policy is able to accurately approximate the original data distri-
bution. Our results in the MNIST data are roughly comparable to the ones of
[5], even if [5] exploits both positive and negative supervisions. We also tried to
replicate the algorithm described in [5] using a OCSVM, but we were not able
to obtain satisfactory performances, maybe due to difficulties in choosing an
appropriate value for the learning rate used in the stochastic gradient descent.

The main advantage of the proposed approach is its capability to manage large
datasets with reasonable time and memory requirements without a significant
decrease of the performances. It does not require an accurate tuning of the
learning rate [5], even if it may be tricky to optimize the tolerance parameter ε
to have a good compromise between performance and resource requirements.

4 Conclusions

We presented On–line Laplacian One–Class SVM, a learning algorithm that
updates a one–class classifier while new training data becomes available. In par-
ticular, the proposed buffer management policy allows the use of the algorithm
both in on–line scenarios and in cases where a huge quantity of data is available.
The results on the MNIST and NSL–KDD datasets show encouraging perfor-
mances with a significant reduction of the storage requirements. Future work will
consider an extension to other on–line semi–supervised learning algorithms, such
as S3VM [7], SBRS [4], and the application of the buffering strategy to online

On–Line Laplacian One–Class Support Vector Machines 193

clustering by MEEs [10]. The proposed approach will be applied to computer
vision tasks in a continuous learning framework.

Acknowledgements. We thank Marco Gori for the fruitful discussions in the
development of the ideas presented in this paper. This research was partially
supported by the research grant PRIN2009 Learning Techniques in Relational
Domains and Their Ap- plications (2009LNP494) from the Italian MURST.

References

1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance
metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT
2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)

2. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. The Journal of Machine
Learning Research 7, 2399–2434 (2006)

3. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:
Compstat. pp. 177–186 (2010)

4. Diligenti, M., Gori, M., Maggini, M., Rigutini, L.: Bridging logic and kernel ma-
chines. Machine learning 86(1), 57–88 (2012)

5. Goldberg, A., Li, M., Zhu, X.: Online manifold regularization: A new learning
setting and empirical study, pp. 393–407. Springer (2008)

6. Gretton, A., Desobry, F.: On-line one-class support vector machines. an application
to signal segmentation. In: Proceedings of Acoustics, Speech, and Signal Processing,
vol. 2, pp. II–709. IEEE (2003)

7. Joachims, T.: Transductive inference for text classification using support vector
machines. In: Proceedings of ICML, pp. 200–209. Morgan Kaufmann (1999)

8. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE
Transactions on Signal Processing 52(8), 2165–2176 (2004)

9. Melacci, S., Belkin, M.: Laplacian Support Vector Machines Trained in the Primal.
Journal of Machine Learning Research 12, 1149–1184 (2011)

10. Melacci, S., Gori, M.: Unsupervised learning by minimal entropy encoding. IEEE
Transactions on Neural Networks and Learning Systems 23(12), 1849–1861 (2012)

11. Muñoz-Maŕı, J., Bovolo, F., Gómez-Chova, L., Bruzzone, L., Camp-Valls, G.:
Semisupervised one-class support vector machines for classification of remote sens-
ing data. IEEE Trans. on Geoscience and Remote Sensing 48(8), 3188–3197 (2010)

12. Orabona, F., Castellini, C., Caputo, B., Jie, L., Sandini, G.: On-line independent
support vector machines. Pattern Recognition 43(4), 1402–1412 (2010)

13. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular near-
est neighbors in high-dimensional data. The Journal of Machine Learning Re-
search 9999, 2487–2531 (2010)

14. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Es-
timating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

15. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd
cup 99 data set. In: Proceedings of the International Conference on Computational
Intelligence for Security and Defense Applications, pp. 53–58 (2009)

OSA: One-Class Recursive SVM Algorithm

with Negative Samples for Fault Detection

Mikhail Suvorov, Sergey Ivliev, Garegin Markarian,
Denis Kolev, Dmitry Zvikhachevskiy, and Plamen Angelov

School of Computing and Communications,
Lancaster University, LA14WA, United Kingdom

p.angelov@lancaster.ac.uk

Abstract. In this paper a novel one-class classification approach (called
OSA) is proposed. The algorithm is particularly suitable for fault de-
tection in complex technological systems, such as aircraft. This study
is based on the capability of one-class support vector machine (SVM)
method to classify correctly the observation and measurement data, ob-
tained during the exploitation of the system such as airborne aircraft
into a single class of ‘normal’ behavior and, respectively, leave data that
is not assigned to this class as suspected anomalies. In order to ensure
real time (in flight) application a recursive learning procedure of the
method is proposed. The proposed method takes into account both “pos-
itive”/“normal” and “negative”/“abnormal” examples of the base class,
keeping the overall model structure as an outlier-detection approach.
This approach is generic for any fault detection problem (for example
in areas such as process control, computer networks, analysis of data
from interrogations, etc.). The advantages of the new algorithm based
on OSA are verified by comparison with several classifiers, including the
traditional one-class SVM. The proposed approach is tested for fault de-
tection problem using real flight data from a large number of aircraft of
different make (USA, Western European as well as Russian).

Keywords: Flight Data Analysis, Fault Detection and Identification,
One-class SVM.

1 Introduction

In this paper we propose a new approach for one-class classification using sup-
port vector machines (SVM) principles [11]. One-class classification technique
represents a wide set of different machine learning approaches that assume a
single class solution of a (fault detection or other) problem containing majority
of the samples [14].

One-class classification method is widely applied for fault identification in
complex technical systems [14]. The “normal” system performance is defined as
a “base” class under the assumption that the data produced by the normally
functioning system have a more structured pattern as compared to a rather
random pattern of anomalies. It is also important to note that the set of all

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 194–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

OSA: One-Class Recursive SVM Algorithm 195

possible system faults is difficult, if possible at all, to obtain. Furthermore, even
if such a set is known, it is not realistic to expect it to be a structured one.
In reality, the number of all possible faults is huge and the system behavior in
case of a hypothetical combination of different faults is, generally, unpredictable.
Therefore, it is a real problem to generate a sample training set for the algorithm
that has a generalization capability for description of the faults. For that reason
one class classification problems are considered as an alternative.

Often, conventional data analysis algorithms of the technical systems (for
example, fault detection in flight data) are based on the set of predefined logical
rules (that use thresholds and conditions). For example, in flight data analysis
(FDA) systems such as express analysis, EA by SKAT [15] or Automated Ground
Station, AGS by Sagem [16] each possible event/fault is listed and special logical
condition is mapped to it. During the analysis process registered data is verified
for the appearance of such logical conditions. If any condition is satisfied, the
corresponding event is declared.

Usually, such logical conditions involve a limited subset of registered physical
variables (features) and a large number of thresholds, predefined by the air-
craft manufacturer (in the case of a FDA system). Such an approach has several
systemic drawbacks. The most significant one is the fact, that often manual fit-
ting of the rules thresholds is required in order to adapt the algorithm to the
corresponding machine/aircraft. A limited event list does not allow the detec-
tion of any novel event, interaction between features values are not taken into
account [17].

Additional requirement for the algorithm that can be essential for in-flight real
time fault detection is the “on-line” operation mode. This includes recursive
nature of the mathematical expressions with no need to store/memorize past
data but to accumulate instead the statistically aggregated information, and the
ability to update recursively the parameters of the algorithm itself [12].

One of the most popular approaches in one-class classification is support vec-
tor machine (SVM) algorithm [1]. Initially proposed as a linear classifier, it is
possible to introduce non-linearity in the algorithm using the well-known “ker-
nel trick” [11]. The algorithm provides analytically optimal solution for which an
incremental learning procedure can also be developed. The standard one-class
SVM method [6] is trained over the data set that contains only “base” class
examples (“normal”, not faulty one).

One-class classification problem can also be considered as outlier/anomaly de-
tection problem [4,6]. This type of approaches is convenient in the cases, when
most of the data can be associated with a single class. This subset of the data is
usually described as the “base” class (the class of “normality”). All other data
usually have too complex pattern or are not in large amount in the training sam-
ple. Typically, the one-class classifier [4,6,10] takes as an input a vector of the
data samples and produces as an output the label of that data sample/input fea-
tures vector. The output of the one-class classifier is more trivial and represents
a Boolean YES/NO (if the sample belongs to the “base” class or not) [6].

196 M. Suvorov et al.

In an offline scenario there is a training phase that precedes the classification
phase [12]. During the training phase correct labels are provided by an expert
or another system. In an online scenario the correct labels may be provided
one by one or all at once [12], e.g. after each flight of an aircraft if there was
no any fault all samples are marked as “normal”. Part of the training samples
may be negative (knowingly “abnormal”). In the proposed approach OSA we
use not only “normal” samples in the recursive one-class SVM, but also the
“abnormal”/“negative” ones. This is the main difference with the traditional
approach.

The remainder of the paper is organised as follows: in the next section the
problem formulation is provided, then, in section III, the traditional SVMmethod
is described as well as the incremental learning procedure and in section IV – the
proposed OSA approach is derived and detailed. Then, in section V we validate
the proposed OSA algorithm with several benchmark data sets and compare the
results of this algorithm with similar algorithms available in the public domain.
In section VI, the results of the performance of the algorithm are presented and
analyzed. Finally, in the Conclusion, we discuss the directions of the further
investigations.

2 Problem Formulation

In this paper a new approach for a single class SVM is proposed which is partic-
ularly suitable for (without being limited exclusively to) the well known problem
of fault detection (FD). In supervised classification problems it is typical to have
labels assigned to each data point/sample/vector, e.g. “faulty” or “normal”. In
all FD problems it is a typical situation to have imbalanced data sets with the
number of data for the “normal” behavior (so called “base” class) usually being
hugely larger than the number of “abnormal” data which are rare. This is also
the case of flight data analysis (FDA) and aviation industry where the safety
is one of the key points. In addition, it is practically impossible to describe
beforehand all possible faults.

For this reason, the problem can be formulated as a one-class classification [4]
in which the set of normal operation (flight) data (with no faults registered) is
considered as the “base” class. All significant deviations from the base class are
considered as an event/fault.

The currently used one-class classification algorithms could be separated into
two main groups:

– Support Vector Machine (SVM) -based one-class classification;
– One-class classification by the means of distribution density (membership)

restoration.

In this paper, the first group of methods will be investigated and tested on real
flight data from various aircraft producers.

OSA: One-Class Recursive SVM Algorithm 197

Another important characteristic of the approach is its applicability in real
time, online adaptation mechanisms in regards to its parameters to reflect the
dynamically changing data pattern. In the literature there are reported incre-
mental versions of the SVM approaches [4,5,9] including one class SVM [4,9].

All supervised learning algorithms have two stages of operation [12,13]: i)
training, and ii) classification or prediction. However, it is usually impossible to
collect the (flight) data, containing all possible operation modes. For this reason,
it is not acceptable to use the algorithms, which can not be adapted to the new
data sets after initial training. Ideally, it should be possible to adapt/evolve the
classifier (fault detector) itself in terms of its structure and mechanism to fit
the newly obtained data pattern especially if the changes are of a structural
nature [12].

In this paper we propose a new approach which is of the one-class incre-
mental SVM type [9]. The main innovation we propose is to use negative data
samples/vectors during the training. The standard representation of the data,
processed by machine learning algorithms is in the form of multidimensional
vectors [13] where the dimensionality is equal to the number of features (usually,
physical variables such as air speed, pitch angle, altitude, etc.).

In mathematical terms the data vector is represented as a set X = {x1, . . . ,
xT }, where T is the duration of the whole period of observation. A subset of
the observed data is supposed to be used as training set although in incremental
algorithms this training data set is updated by appending it with the new data
vectors [12]. In an extreme case, some classifiers can start ‘from scratch with the
very first data vector used as a model of the normality [2,12], but the classifica-
tion rate (and the precision, respectively) will only reach more meaningful and
useful values accumulating a larger number of data vectors. So, in this respect we
assume that the initial number of training data set, especially when we describe
a FDA system is more substantial.

For each time interval when a fault is detected and confirmed a label of “ab-
normal”/“faulty” can be added in real time (or as soon as the confirmation is
available, to be more precise).

The following quality measures are usually used to compare different fault
detection and identification methods:

– False positives (FP). This is defined as the ratio of the data vectors that are
marked as faulty by the method being interrogated to the total number of
non-faulty vectors, but in reality there is no fault or event.

– False negatives (FN). This is defined as a ratio of the data vectors that are
supposed not to be faulty by the method that is being interrogated to the
total number of faulty vectors, but an event actually took place.

– Total error (TE). This is the ratio of data vectors in which the identification
result of the method being interrogated differs from the reality.

In this study a legacy FDA system used in Russia called SKAT implementing
a method called express analysis, EA which is based on a very large number of
thresholds and expert rules [15] is used as ‘ground truth. The use of experts is
very expensive and this assumptions means that in some cases a fault may have

198 M. Suvorov et al.

taken place but not being noticed by the experts or vice versa. Therefore, the
comparison is with EA (used in SKAT) and not necessarily with the reality.

3 Method Description

The main idea of the popular SVM method is to solve the classification problem
by separating the data vectors in two groups by a hyper-plane [1]. This hyper-
plane is selected in such a way to maximize the “gap” between the classes. In
the case of linearly separable data vectors/samples it is possible to map the data
into a higher dimensionality space and to solve the classification problem there.
This technique is known as the “kernel trick” [12]:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2
‖w‖2 + 1

νm

m∑
i=1

ξi − ρ→ min
w,ξ,ρ

,

〈xi, w〉 − ρ � −ξi, i = 1, . . . ,m ,

ξi � 0 ,

(1)

where X = x1, . . . , xm denotes the sample data set;
w is the normal vector;
ξ measures the degree of misclassification;
ρ is a free term of the hyper-plane;
ν is the upper bound on the part of non-marginal support vetcors and a lower
limit on the fraction of support vectors.

The kernel is assumed to satisfy the Mercer’s conditions [4,11].
The easiest way to solve the main optimization problem is through the dual

problem: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W =
1

2

m∑
i=1

m∑
j=1

αiαj〈xi, xj〉+ ρ(1−
m∑
i=1

αi)→ min
w,ξ,ρ

,

0 � αi �
1

νm
, i = 1, . . . ,m ,

(2)

where α is the Lagrangian multiplier [7]. This property was proven in [9], and
is very useful in most of the practical cases as it gives information about the
asymptotic FP rate in one-class SVM methods. The optimal hyper-plane pa-
rameters that are solutions of (1) or, equivalently, (2) can be obtained as a
linear combination of the data:

w =

m∑
i=1

αixi . (3)

All points which are used for algorithm training and for which f(xi) � 0 are called

support vectors (SV). Here f(x) = sign(〈x,w〉 − ρ) = sign(
m∑
i=1

αi〈xi, x〉 − ρ).

OSA: One-Class Recursive SVM Algorithm 199

The proposed learning model is one-class SVM with a Gaussian kernel:

f(x) = sign(

m∑
i=1

αi exp(−γ‖xi − x‖2)− ρ) . (4)

One of the drawbacks of the proposed model is a problem to select optimal
parameter combination of ν and γ.

The optimization problem (2) is a quadratic one and it has a numerical solu-
tion which is described by so called Karush-Kuhn-Tucker (KKT) conditions [8],
which provide both necessary and satisfactory conditions for the optimization
problem (2) to have an optimal solution:

∂W

∂αi
= f(xi)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> 0, αi = 0

= 0, 0 < αi <
1

νm

< 0, αi =
1

νm
,

(5)

∂W

∂ρ
=

m∑
i=1

αi − 1 = 0 . (6)

It is always possible to divide the whole data set into the three separate (non-
overlapping) data sub-sets as follows:

1. Subset C (correct): Data vectors which were correctly classified by the
algorithm.

2. Subset M (marginal): Data vectors which are situated on the border line of
the “base” class.

3. Subset E (errors) Data vectors that are misclassified by the algorithm.

It is also possible to update the SVM classification (the hyper-plane) to ac-
commodate possible newly obtained data vectors [7]. Traditionally, SVM model
is trained in an offline mode, but analytically optimal solution can also be ob-
tained during online SVM parameters model update [9].

This method updates the SVM parameters with every new data vector, xc by
the following update rule which we provide without derivation (for more details,
please, see [9]):

αnew =

⎡
⎢⎢⎢⎣
αold
1
...

αold
m

αold
c

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
Δα1

...
Δαm

Δαc

⎤
⎥⎥⎥⎦ , (7)

ρnew = ρold +Δρ . (8)

The overall idea is to update the parameters of the model – the Lagrange
multipliers for all the previous data and set new multiplier for the newly obtained

200 M. Suvorov et al.

data as well as change the free term value. As a result of the changes, the solution
will still satisfy the KKT conditions.

If the newly obtained data vector is correctly classified, than no update is
needed, as corresponding αc value is supposed to be 0 and KKT conditions are
fulfilled. If the new data vector is misclassified by the algorithm, than it becomes
a support vector (SV) and its αc value is above 0. Initially set to 0, it is increased
by a special procedure. The changes are performed in the way that the function
f(xi) is still situated at 0 for all xi in the subset M (marginal cases).

The following expression describes this in mathematical terms [9]:

Qm

[−Δρ
ΔαM

]
= −

[
1

kM,c

]
Δαc , (9)

where

QM =

[
0 1T

1 KM

]
;

KM is the matrix of inner products between data vectors from the subset M;
kM,c — is the vector of inner products between the data vectors from the subset
M and the new vector xc;
ΔαM denotes the updates of Lagrange multipliers that correspond to the data
vectors from the subset M.

Δρ = −βρ(c)Δαc, Δαj = βρ(c)Δαc,

where we determine [
βρ(c)
βρ(M)

]
= −Q−1

M

[
1

kM,c

]
. (10)

Substituting this result in (9) we have:

Δfi = τi(c)Δαc, ∀i ∈ {1, . . . ,m}
⋃
{c} ,

where

τi(c) = 〈xi, xc〉+
∑

m∈M(α)

k(xi, xm)βm(c) + βρ(c), ∀i �∈M(α) ,

τi = 0, if i ∈M(α) .

The increase of αc proceeds until one of the following conditions is satisfied.

1. For one of the data vectors in the subset C the function f(x) obtains value
0. Then this data vector/point is moved to the subset M with α set to 0 and
αc is increased with the new structure of the data subsets.

2. For one of the data vectors in the subset E the function f(x) obtains value
0. Then this data vector/point is moved to the subset M with α set to 0 and
αc is increased with the new structure of the data subsets.

3. For one of the data vectors in the subset M the value of α gets value α = 1
νm .

Then this data vector/point is moved to the subset E with α set to 0 and
αc is increased with the new structure of the data subsets.

OSA: One-Class Recursive SVM Algorithm 201

4. For one of the data vectors in the subset M the value of α gets value 0. Then
this data vector/point is moved to the subset C with αc is increased with
the new structure of the data subsets.

5. αc = 1
νm . Then the new data vector is moved to the subset E and the

algorithm terminates.
6. f(xc) = 0. Then the new data vector is moved to data subset M with the

current αc and the algorithm terminates.

Due to the fact, that in the cases 1)-4) the structure of the sets E or/and M
is changed, the corresponding inner product matrices should be re-computed.
These operations could be speed-up by Woodberry matrix inverse formulas and
effective array management.

4 The Proposed Method OSA

If consider one-class classification techniques, they usually fit their own param-
eters in the way to reduce the FP rate (false alarms) primarily [3,4,6,9]. At the
same time, the FN rate (misses of real anomalies) is assumed to be low due to the
robust model selection (using a generic type of the classification model). But in
practice this approach causes high negative reactions, so the data vectors/points
that do not belong to the “base” class are classified incorrectly. In case of flight
data processing using statistical approaches one of the most significant problems
is the high FN rate (misses).

On the other hand, two-class classification methods [10] are not applicable
for fault identification problem. These approaches can identify the “fault” class
more precisely, but only the cases, represented in the training data set. However,
in reality it is impossible to collect (flight) data, in which all possible faults are
represented.

For this reason in the proposed approach OSA we take into account the fault
examples as well. The parameters of the classifier are fitted in such a way that
the SVM model can take into account not only the FP rate, but also the FN
rate. At the same time, the model structure is still one-class classification-type
incremental SVM.

The proposed modification concerns the regularization weights which are dif-
ferent and are applied for FP and FN errors separately. We assume the existence
of two classes which are labeled by 1 and −1, where 1 corresponds to the “base”
class ((flight) data with no faults), and −1 – to the “faulty” class. However, the
problem is still one-class classification type.

In mathematical terms, the proposed OSA method can be formulated as the
following optimization problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2
‖w‖2 + 1

ν1m1

m1∑
i=1

ξi[yi = 1] +
1

ν2m2

m2∑
i=1

ξi[yi = −1]− ρ→ min ,

yi(〈xi, w〉 − ρ) � −ξi, i = 1, . . . ,m ,

ξi � 0, i = 1, . . . ,m ,

(11)

202 M. Suvorov et al.

where m1 is the number of positive examples in the learning sample, m2 is the
number of negative examples. It can be regarded as one-class version of the
cost-sensitive SVM algorithm, described at [19].

Using standard Lagrange multipliers approach, the corresponding dual opti-
mization problem can be derived. The resulting dual optimization is represented
as follows:

−1

2

m∑
i=1

m∑
j=1

αiαj〈xi, xj〉 − ρ(1−
m∑
i=1

αiyi)→ max

w.r.t.0 < αi <
1

ν1m1
[yi = 1] +

1

ν2m2
[yi = −1] .

(12)

Here αi is a Lagrange multiplier that corresponds to correctness of data classi-
fication limitation. Resulting classification rule is as follows:

sign(

m∑
i=1

αiyi〈xi, x〉 − ρ) .

One can see that minor changes in the initial dual problem formulation enable
us to take into account examples of the “negative” (“faulty”) class with differ-
ent regularization weights. Thus, in this work it is proved that cost-sensitive
modification of one-class SVM with negative examples can be reduced to the
standard unbalanced nu-SVM [11]. Using the same approach as it was described
earlier; we propose an algorithm for the incremental update of the SVM model
to accommodate the newly obtained data vectors. The algorithm is otherwise
similar to the incremental SVM in respect to the parameters update, but upper
margin value is selected taking the corresponding class label into account. The
resulting algoritm can be represented as follows.

Algoritm OSA

Input: SVM model αold, ρold, data vector xc and its label lc

1. Evaluate f(x)
2. If f(x) > 0, no model update is needed, αc := 0
3. Else set αc := 0
4. Until one of conditions 1)-6) is satisfied

(a) Compute Δαc, ΔαM and Δρ using (7)-(9), taking into
account (11)

(b) Update C, M and E sets

Output: SVM model αnew , ρnew

5 Tests on Benchmark Data Sets

In this section results of algorithm validation on a number of benchmark data sets
are represented. As one-class classification data sets are not widely represented,

OSA: One-Class Recursive SVM Algorithm 203

the tests are performed over standard classification data sets, one of the classes
was selected as a base class with all the remaining classes considered as outliers.

The following tests were performed. The data were split into two subgroups:
training and testing subgroup respectively for each data set. The algorithm was
then trained using on the training subset and the performance was measured on
the testing subset. A Gaussian kernel function was selected with its parameter
γ determined by a cross-validation selecting the point with lower error in terms
of FN and FP as illustrated in Figures 1-2 using in effect a Pareto multicriteria
optimization; ν was fixed at 0.05, so the FP on the learning set were limited.
The error rates are provided in the Table 1.

Table 1. Total error on benchmark data sets, in %

Data set SVM eClass0 eClass1 C4.5 kNN OSA

Pima 31.03 30.62 23.36 26.37 25.55 26.33

Iris 10.52 10.53

Wine 5.77 7.56 2.78 7.87 3.06 5.77

One can see, that the algorithms performance is quite similar on the standard
datasets like Wine and Iris, which are assumed to be well-separable. However,
the OSA results on Pima dataset are slightly better, than the standard SVM
approach produces.

6 Tests on Real Flight Data

In this study Boeing 737-800 real flight data was used. The data was collected
from 138 real flights, represented in a binary format. Flight data was prepro-
cessed, in order to represent every flight as a multidimensional time series. For
this reason all parameters were re-sampled using a linear interpolation technique
resulting in some frequency time series. Then, a preliminary FDA analysis was
performed over the training data in order to detect the faults using flight data
and to be able to compare current FDA systems with the proposed one. Most
of the events, detected by the legacy systems are different kinds of pilot errors,
which are hardly separable in the data space.

Cross-validation was performed in order to identify the dependence of dif-
ferent error rates from parameters and of the SVM algorithm. For this case a
special flight data subset was selected. It was formed by data vectors, registered
during flight phases “approach” and “final approach”. This set was split into
two: “training” and “testing” subsets. Training procedures were performed on
the first one; the second one was again used to identify the quality of the algo-
rithm.. Further, for each pair of and values the algorithm was fitted on “training
set” and the quality was verified on “testing set”.

The FP and FN rates of the proposed algorithm on test data set as a function
of and is depicted in Figures 1 and 2.

204 M. Suvorov et al.

Fig. 1. FP rate as a function of ν and γ

Figure 1 represents the total error of the proposed algorithm OSA as a de-
pendence on the model parameters ν and γ. The axis Nu that represents the
ν-values; Gamma-axis represents γ-values.

The same dependence, but for FN rate of the proposed algorithm is depicted
in the Figure 2.

Fig. 2. FN rate as a function of ν and γ

As it can be seen from the plots in Figures 1 and 2, the dependence of the errors
from the algorithm parameters is close to linear. The dependences of FP and
FN from ν and γ is inverse, so any decrease of FN rate could be performed only
with additional FP rate growth. The impact of the change of the γ-parameter
is stronger in comparison to the ν-value.

OSA: One-Class Recursive SVM Algorithm 205

The parameter selection was performed as follows: the maximum acceptable
FP level was defined by flight safety experts. Then, all other algorithm param-
eters were adopted in order to decrease the FN rate with limited FP rate.

In order to have a comparison between standard SVM approach [5] and the
proposed OSA approach over the full available data set twenty flights were se-
lected as a “training” set, so both SVM models were fitted over that data. The
tests of the algorithm quality were applied over the 118 flights left.

The following parameters were used while testing:

ν1 = 2, ν2 = 0.1, γ = 0.3 .

Application of the incremental SVM approach is too hard computationally,
as the vector sets (Marginal, Error, Correct) are increasing at every iteration
of the algorithm. In order to reduce the computational complexity, the size of
the set, containing correctly classified samples is limited in size (1000 vectors
were selected for this purpose). In this way the model, fitted over several million
vectors contains only 3000 support vectors, which is acceptable for the available
computational resources.

The method performance is represented as ROC-curves in Figures 3 and 4.
The curve is built by varying of the threshold parameter ρ of each of the models.
Obtained plots are represented below.

Fig. 3. ROC-curve SVM

The horizontal axis represents the FP rate; the vertical axis represents the
true-negative rate, which can be calculated as 1 − FN. The same curve for the
proposed OSA method is represented in Figure 4.

Comparing the two figures, one can see, that the results for the modified one-
class SVM are significantly better in comparison with the standard approach.

206 M. Suvorov et al.

Fig. 4. ROC-curve OSA

A 5% limitation for the standard SVM approach allows to achieve 60% of correct
alarms, therefore 40% level of FN is obtained. The proposed approach OSA
allows for 5% FP limitation to get 85% of true-negative rate, therefore 15%
of FN.

7 Conclusion

In this paper a new type of incremental, online SVM approach (OSA) is pro-
posed. It builds upon recently reported online recursive one-class SVM ap-
proach [9] by generalizing to also include in considerations the “negative” (faulty)
data samples as well as the “normal” ones, but is still one-class classification type.
It was tested on a number of benchmark data sets as well as on real flight data.
Cross-validation procedure was used to identify the parameters of the SVM al-
gorithm. The results demonstrate improvement and are acceptable for this type
of problems. In the future work the main task will be to reduce the FN rate.
One of the perspective approaches to achieve this aim is to use autonomously
learning classifiers such as eClass [2,12,18].

Aknowledgements. The research led in this project has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement n◦ ACPO-GA-2010-265940, “SVETLANA”. Authors would like
to express gratitude to Dr. Pavel Laskov for his help at the initial stage of
algorithm investigation.

References

1. Vapnik, V., Golovich, S.E., Smola, A.: Support Vector Method for Function Ap-
proximation, Regression Estimation, and Signal Processing (1997)

2. Angelov, P.: Anomalous System State Identification. GB1208542.9, priority date
(May 15, 2012)

OSA: One-Class Recursive SVM Algorithm 207

3. Koppel, M., Schler, J.: Authorship Verification as a One-Class Classification Prob-
lem. Dept. of Computer Science Bar-Ilan University Ramat-Gan, Israel

4. Gretton, A., Desobry, F.: On-line one-class support vector machines an application
to signal segmentation. In: Proc. IEEE ICASSP, Hong Kong (2003)

5. Gâlmeanu, H., Andonie, R.: Implementation Issues of an Incremental and Decre-
mental SVM. In: Kůrková, V., Neruda, R., Koutńık, J. (eds.) ICANN 2008, Part
I. LNCS, vol. 5163, pp. 325–335. Springer, Heidelberg (2008)

6. Das, S., Oza, N.C.: Sparse Solutions for Single Class SVMs: A Bi-Criterion Ap-
proach. In: Proc. SDM, SIAM, pp. 816–827. Omnipress (2011)

7. Jensen, S.: An Introduction to Lagrange Multipliers,
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html

8. Gershwin, S.B.: KKT — Examples. MIT Open Course Ware (2010)
9. Tax, D.M.J., Laskov, P.: Online SVM learning: from classification to data descrip-

tion and back. Journal of Machine Learning Research 7, 1909–1936 (2006)
10. Hill, S.I., Doucet, A.: Adapting Two-Class Support Vector Classification Methods

to Many Class Problems. In: Proc. of the 22nd Intern. Conf. on Machine Learning,
ICML 2005, pp. 313–320 (2005)

11. Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high dimensional distribution. Neural Computation 13(7),
1443–1471 (2001)

12. Angelov, P.: Autonomous Learning Systems: From Data Streams to Knowledge in
Real time. Willey (December 2012) ISBN: 978-1-1199-5152-0

13. Bishop, C.: Machine Learning and Pattern Classification, 2nd edn. Springer (2009)
14. Stibor, T., Timmis, J., Eckert, C.: A Comparative study of real-valued negative

selection to statistical anomaly detection techniques. In: Jacob, C., Pilat, M.L.,
Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 262–275.
Springer, Heidelberg (2005)

15. TU-204-100 Aircraft Operations Manual. Tupolev ANTK (1998)
16. Analysis Ground Station (AGS), Sagem/SAFRAN, France,

http://www.sagem-ds.com/spip.php?rubrique230 (accessed November 8, 2012)
17. Kolev, D., Zvikhachevskiy, D., Angelov, P.: Safety (and maintenance) improvement

Through automated flight data analysis, Scale Focused Research Project for project
SVETLANA, Grant Agreement: ACPO-GA-2010-265940 (March 19, 2012)

18. Angelov, P., Zhou, X.: Evolving Fuzzy-Rule-based Classifiers from Data Streams.
IEEE Trans. on Fuzzy Systems 16(6), 1462–1475 (2008)

19. Brefeld, U., Geibel, P., Wysotzki, F.: Support vector machines with example de-
pendent costs. In: Proceedings of the European Conference on Machine Learning
(2003)

http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.sagem-ds.com/spip.php?rubrique230

EEG Dataset Reduction and Classification Using

Wave Atom Transform

Ignas Martisius, Darius Birvinskas, Robertas Damasevicius, and Vacius Jusas

Kaunas University of Technology, Software Engineering Department,
Studentu st. 50, Kaunas, Lithuania

Abstract. Brain Computer Interface (BCI) systems perform intensive
processing of the electroencephalogram (EEG) data in order to form con-
trol signals for external electronic devices or virtual objects. The main
task of a BCI system is to correctly detect and classify mental states in
the EEG data. The efficiency (accuracy and speed) of a BCI system de-
pends upon the feature dimensionality of the EEG signal and the number
of mental states required for control. Feature reduction can help improve
system learning speed and, in some cases, classification accuracy. Here
we consider Wave Atom Transform (WAT) of the EEG data as a feature
reduction method. WAT takes input data and concentrates its energy
in a few transform coefficients. WAT is used as a data preprocessing
step for feature extraction. We use artificial neural networks (ANNs)
for classification and perform research with varying number of neurons
in a hidden layer and different network training functions (Levenberg-
Marquardt, Conjugate Gradient Backpropagation, Bayesian Regulariza-
tion). The novelty of the paper is the application of WAT in the EEG
data processing. We conclude that the method can be successfully used
for feature extraction and dataset feature reduction in the BCI domain.

Keywords: EEG, Brain Computer Interface, Wave Atom Transform,
dimensionality reduction, classification.

1 Introduction

The EEG data is inherently complex. The signals are non-stationary, non-linear,
and thus difficult to analyse. Classifying EEG data requires, firstly, the reduction
of its high-dimensional feature space to identify fewer intrinsic feature dimensions
relevant to specific mental states of a subject. To perform classification, Artificial
Neural Network (ANN) is a good choice due to its ability to generalize and work
well with noisy data [1]. However, long training time is a well-known disadvantage
of ANN, especially when a BCI system must deal with real-time constraints [2].
Training time is important because the system classifier needs to be retrained
constantly in a real time BCI application. The subject’s mental state changes
in time, and the classifier must adapt to these changes. Also training must be
performed according to the control task at hand, i.e. different video game controls
require differently trained classifiers.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 208–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

EEG Dataset Reduction and Classification Using Wave Atom Transform 209

Presenting a network with a subset of a spectrogram as an input vector is the
obvious solution. Such a system has been used effectively to classify EEG data [3].
This technique, however, still has a high computational cost since large numbers
of weights must be updated in training. Classical signal transforms (such as
FFT or DCT) decompose time series into global sinusoidal components of fixed
amplitude. However, the Fourier methods may not give an efficient representation
of a signal. Wavelet transforms have uniform temporal resolution for all frequency
scales, but resolution is limited by the basic wavelet [4]. These transforms are
useful for characterizing gradual frequency changes.

Wave Atom Transform (WAT) has been recently proposed by Demanet and
Ying [4]. WAT performs a multi-resolutional analysis of a signal, i.e., decomposes
a signal into different frequency sub-bands. Wave atoms are a variant of wavelets
that have a sharp frequency localization and offer a sparser expansion for oscilla-
tory functions than wavelets. Wave atoms compose wave-fields as a superposition
of highly anisotropic, localized, and multi-scale waveforms and capture coher-
ence of pattern across and along oscillations. WAT has been previously used
mainly in image processing for image denoising [5], image watermarking, image
hashing, fingerprint recognition [6], signal analysis [7], as well as feature extrac-
tion [6], dimensionality reduction and numerical analysis [5]. To our knowledge,
wave atoms have not been applied to EEG signal processing. Similar research
included ECG (electrocardiogram) [8] and MRI (Magnetic Resonance Image) [9]
data. WAT is a promising approach for EEG processing because of its denoising
and feature extraction capabilities, and is particularly useful when the signal
has discontinuities and sharp spikes as is in case of EEG. We expect that WAT
coefficients extracted from EEG data samples can retain enough information
to permit correct classification, while feature reduction should reduce network
training and classification time.

We analyse and perform experimental research on the ANN training functions
to find the best combination of training speed and classification accuracy as
applied to the WAT coefficients of the EEG data.

The remaining parts of the paper are as follows. Section 2 provides a short
introduction into WAT. Section 3 overviews the ANNs and their training func-
tions. Section 4 describes a case study using an openly available dataset and
discusses experimental results. Finally, Section 5 presents the conclusions.

2 Wave Atom Transform

Wave atoms are a variant of 2D wavelet packets that retain an isotropic aspect
ratio. They are well suited for representing oscillatory patterns in a signal [5]. A
signal is regarded as an oscillatory pattern if it can be described as (1)

f(x) = sin(Ng(x))h(x) , (1)

where x is a coordinate, g and h are the C∞ scale function, N is a large con-
stant. WAT allows to obtain a sparser solution of the oscillatory pattern signal f
than that of other known transformations, as only O(N) wave atom coefficients

210 I. Martisius et al.

are sufficient to represent f to some given accuracy [6], while O(N2) wavelet
coefficients are needed in the same case.

The definition of wave atoms for 1D signal is as follows. Consider f(x) and

f̂(w) is a 1D Fourier transform pair, x, w corresponds to the coordinates in
time domain and frequency domain. Define wave atoms as φμ(x), in which μ =
(j;m;n). Then the indexed point (xμ;wμ) in phase-space is defined in (2).

xμ = 2−jm ; ωμ = π2jn . (2)

The definition is similar to that of wavelet packets, where j controls the resolution
scale, m and n control the location in time and frequency domain.

The elements of frame φμ are called wave atoms when:

|φ̂μ(ω)| ≤ CM2−j(1 + 2−j|ω − ωμ|)−M +

+ CM2−j(1 + 2−j|ω + ωμ|)−M ; (3)

|φμ(x)| ≤ CM2j(1 + 2j|x− xμ|)−M .

for all M > 0. The difference between wavelet packets and wave atoms are that
wave atoms obey the parabolic scaling wavelength: at scale 2−2j the essential
frequency support is of size 2j while at frequency 22j, the essential time support
is of size 2j [5]. Also, the basis function is different from a conventional wavelet
basis function. The frequency domain formula of a basis function is defined as (4).

Ψ̂0
m(ω) = e−iω/2[eiαmg(εm(ω − πκ)) + e−iαmg(εm+1(ω + πκ))] . (4)

where κ =
(
m+ 1

2

)
, εm = (−1)m and αm =

(
π
2 + 1

2

)
. The function g is an

appropriate real-valued function, compactly supported on an interval of length
2π, and chosen according to (5).∑

m

|Ψ̂0
m(ω)|2 = 1 . (5)

3 ANN and Training Functions

ANN is a mathematical model that tries to mimic functional aspects of a biologi-
cal neuron network. The ANN is comprised of interconnecting artificial neurons.
These neurons, sometimes called nodes or units, perform simple calculations.
The neuron receives input from other neurons or from external sources. Each
neuron has an associated weight, which is modified to simulate learning. A sin-
gle neuron is a relatively simple computational element, so a network of these
neurons is most often used for complex tasks. Two or more neurons can be com-
bined to form a layer. Each input of a layer is connected to inputs of the next
layer through neuron weights. Most ANNs have an input layer, an internal, or
hidden layer and an output layer.

The training of ANN’s is a numerical optimization of a nonlinear error func-
tion. There is no single best method for solving this problem. The training

EEG Dataset Reduction and Classification Using Wave Atom Transform 211

method must be chosen according to the characteristics of the problem to be
solved and the ANN configuration itself. For our experiment 3 different training
functions were chosen.

Levenberg-Marquardt Training Function (LM) provides a numerical so-
lution to the problem of minimizing a non-linear function. It is fast and has
stable convergence. In the artificial neural-networks field, this algorithm is suit-
able for training small- and medium-sized problems.The algorithm is an iterative
technique that locates the minimum of a multivariate function that is expressed
as the sum of squares of non-linear real-valued functions.

Fletcher-Powell Conjugate Gradient Backpropagation Training (CGF)
makes a search along the conjugate gradient direction to determine the step size,
which minimizes the performance function along that line. The algorithm starts
by searching in the steepest descent direction. A line search is then performed to
determine the optimal distance to move along the current search direction, then
the next search direction is determined so that it is conjugate to previous search
directions. The line search avoids the need to compute the Hessian matrix of
second derivatives, but it requires computing the error at multiple points along
the line. The general procedure is to combine the new steepest descent direction
with the previous search direction.

Bayesian Regularization Training Function (BR) updates the weight and
bias values according to Levenberg-Marquardt optimization. It minimizes a lin-
ear combination of squared errors and weights, and then determines the correct
combination so as to produce a network that generalizes well. The weights and
biases of the network are assumed to random variables with specified distribu-
tions, with prior and posterior probabilities.

4 Case Study

Data set Ia, provided by the University of Tübingen, from the BBCI com-
petition II (http://www.bbci.de/competition/) was used. Dataset contains
measurements of slow cortical potentials recorded in 6 channels (sampling rate
256 Hz, recording length 3.5 s) and interpreted as follows. Cortical positivity
means a downward movement, and cortical negativity means an upward move-
ment of the cursor on the screen [12]. This data set consists of 268 training
trials (135 trials belongs to class 0 and 133 trials belongs to class 1) and 293
testing trials. A separate testing and training dataset allows for more reliable
results.

Classification was performed using strictly feed-forward ANNs with one input
layer, one output layer and one hidden neuron layer, initialized with random val-
ues. A tangent sigmoid threshold function was used both in hidden and output
layers. A 15-fold cross validation was performed for every ANN hidden layer size

http://www.bbci.de/competition/

212 I. Martisius et al.

Fig. 1. Accuracy using Levenberg-Marquardt training of ANN

and average accuracy, F-measure and training time was calculated. For compar-
ison, raw EEG data, 50 DCT coefficients [3] and WAT 1st scale coefficients were
used as inputs.

In this paper classification accuracy was measured as a ratio of true results
and the total number of trials in percent. This helps to compare results to the
BBCI competition II. To further evaluate classification accuracy, F-measure (a
harmonic mean of precision and recall) was used. Training speed was evaluated
by an average time needed for one ANN training. A PC running Debian Linux
with an AMD Phenom II X4 (3.6 GHz) processor and 8GB RAM was used. Clas-
sification accuracy is presented in Fig.1-3. Training time comparison is presented
in Table 1.

Classification results using Levenberg-Marquardt training are shown in Fig.
1. Accuracy of 88% was achieved using 2 neurons in the hidden layer, with an
average training time of 0.49 s. WAT transform showed better results than DCT
or RAW with all network configurations.

As Fig. 2 shows, using Fletcher-Powell Conjugate Gradient Backpropagation
(CGF) training produced similar accuracy for all hidden layer sizes. Best clas-
sification result for WAT transform was an accuracy of 88%. This was achieved
with 1 neuron in the hidden layer with a network training time of 0.79 s. The
same accuracy (88%) was achieved with a hidden layer size of 5 neurons and
DCT transform (training time was 0.56 s).

Using Bayesian Regularization training showed best results in classification
accuracy (Fig. 3) and the best training speed improvement overall. Best clas-
sification result 90% was achieved with 2 neurons in the hidden layer with a
training time of 1.1 s. No results for hidden layer sizes of 10 and 15 neurons for
raw EEG data are presented because of high network training time.

EEG Dataset Reduction and Classification Using Wave Atom Transform 213

Fig. 2. Accuracy using Fletcher-Powell Conjugate Gradient Backpropagation training
of ANN

Experimental results are summarized in Table 1. Average training time and
classification accuracy for a neural network achieving best results are pre-
sented. Training time is dramatically decreased with the use of a reduced train-
ing dataset. WAT shows better training time and classification results using
Levenberg-Marquardt and Bayesian Regularization functions. The box chart for
F-measure results is presented in Fig. 4. Therefore, WAT has a great potential
for application in real-time BCI tasks.

As shown in Table 1 classification using WAT transform is most accurate with
all training functions. All classification quality results are in line with the best
results obtained in the BBCI competition II. Best accuracy of 90% is achieved
using Bayesian Regularization training, however it is the slowest. These results
show that the use of the Levenberg-Marquardt training reduces ANN training
time by half, with an negligible accuracy loss.

Table 1. Comparison of classification accuracy and network training time

Training function Features Neurons Accuracy, % F-measure Time, s

Levenberg-Marquardt
RAW 10 79 0.78 234.4
DCT 1 82 0.80 0.56
WAT 2 87 0.88 0.49

Fletcher-Powell
Conjugate Gradient
Backpropagation

RAW 10 87 0.87 0.93
DCT 5 88 0.88 0.56
WAT 1 88 0.88 0.79

Bayesian Regularization
RAW 5 84 0.84 11906
DCT 15 85 0.85 40
WAT 2 90 0.90 1.1

214 I. Martisius et al.

Fig. 3. Accuracy using Bayesian regularization training of ANN

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

R
A

W
 (

LM
)

R
A

W
 (

C
G

F
)

R
A

W
 (

B
R

)

D
C

T
 (

LM
)

D
C

T
 (

C
G

F
)

D
C

T
 (

B
R

)

W
A

T
 (

LM
)

W
A

T
 (

C
G

F
)

W
A

T
 (

B
R

)

Features (Training Function)

F
−

m
ea

su
re

Fig. 4. F-measure box diagram

5 Conclusions

We propose the use of Wave Atom Transform (WAT) for EEG feature extraction
and dataset reduction. Our results show this method to be effective for reducing
data size without the loss of important signal information. Data classification
was performed using artificial neural networks with various hidden layer sizes
and training functions. Results show a dramatic improvement of training speed
with a transformed dataset. The best improvement was achieved using Bayesian

EEG Dataset Reduction and Classification Using Wave Atom Transform 215

regularization training. This improvement would mostly benefit real-time BCI
applications.

Future research will include the use of WAT on self-recorded data for use in
a personal portable BCI system rather than publicly available datasets.

Acknowledgments. The work described in this paper has been carried out
within the framework the Operational Programme for the Development of Hu-
man Resources 2007-2013 of Lithuania Strengthening of capacities of researchers
and scientists project VP1-3.1-MM-08-K-01-018 Research and development of
Internet technologies and their infrastructure for smart environments of things
and services (2012- 2015), funded by the European Social Fund (ESF).

References
1. Subasi, A., Ercelebi, E.: Classification of EEG signals using neural network and

logistic regression. Computer Methods and Programs in Biomedicine 78(2), 87–99
(2005)

2. Martisius, I., Sidlauskas, K., Damasevicius, R.: Real-Time Training of Voted Per-
ceptron for Classification of EEG Data. International Journal of Artificial Intelli-
gence 10(S13), 41–50 (2013)

3. Birvinskas, D., Jusas, V., Martisius, I., Damasevicius, R.: EEG dataset reduction
and feature extraction using discrete cosine transform. In: Proc. of UKSim-AMSS
EMS 2012: 6th European Modelling Symposium on Mathematical Modeling and
Computer Simulation, Malta, November 14-16, pp. 186–191 (2012)

4. Addison, P.A.: Wavelet transforms and the ECG: a review. Physiological Measure-
ment 26, 155–199 (2005)

5. Demanet, L., Ying, L.: Wave atoms and sparsity of oscillatory patterns. Appl.
Comput. Harmon. Anal. 23(3), 368–387 (2007)

6. Mohammed, A.A., Jonathan Wu, Q.M., Sid-Ahmed, M.A.: Application of Wave
Atoms Decomposition and Extreme Learning Machine for Fingerprint Classifica-
tion. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010, Part II. LNCS, vol. 6112,
pp. 246–255. Springer, Heidelberg (2010)

7. Herrmann, F.J., Friedlander, M.P., Yilmaz, O.: Fighting the Curse of Dimensional-
ity: Compressive Sensing in Exploration Seismology. IEEE Signal Processing Mag-
azine 29(3), 88–100 (2012)

8. Aggarwal, V., Patterh, M.S.: ECG Compression using Wavelet Packet, Cosine
Packet and Wave Atom Transforms. Int. Journal of Electronic Engineering Re-
search 1(3), 259–268 (2009)

9. Rajeesh, J.: Rician noise removal on MRI using wave atom transform with his-
togram based noise variance estimation. In: IEEE Int. Conf. on Communication
Control and Computing Technologies (ICCCCT), October 7-9, pp. 531–535 (2010)

10. Geetika, D., Varun, R.: MRI Denoising Using Waveatom Shrinkage. Global Journal
of Researches in Engineering 12(4) (2012)

11. Martǐsius, I., Damaševičius, R.: Class-adaptive denoising for EEG data classifica-
tion. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 302–309.
Springer, Heidelberg (2012)

12. Birbaumer, N., Flor, H., Ghanayim, N., Hinterberger, T., Iverson, I., Taub, E.,
Kotchoubey, B., Kbler, A., Perelmouter, J.: A Brain-Controlled Spelling Device
for the Completely Paralyzed. Nature 398, 297–298

Embodied Language Understanding with

a Multiple Timescale Recurrent Neural Network

Stefan Heinrich, Cornelius Weber, and Stefan Wermter

University of Hamburg, Department of Informatics, Knowledge Technology
Vogt-Kölln-Straße 30, D - 22527 Hamburg, Germany

{heinrich,weber,wermter}@informatik.uni-hamburg.de

http://www.informatik.uni-hamburg.de/WTM/

Abstract. How the human brain understands natural language and
what we can learn for intelligent systems is open research. Recently, re-
searchers claimed that language is embodied in most – if not all – sensory
and sensorimotor modalities and that the brain’s architecture favours
the emergence of language. In this paper we investigate the characteris-
tics of such an architecture and propose a model based on the Multiple
Timescale Recurrent Neural Network, extended by embodied visual per-
ception. We show that such an architecture can learn the meaning of
utterances with respect to visual perception and that it can produce
verbal utterances that correctly describe previously unknown scenes.

Keywords: Embodied Language, MTRNN, Language Acquisition.

1 Introduction

Natural language is the cognitive capability that clearly distinguishes humans
from other living beings and often is called the key to intelligence. In the past re-
searchers have contributed valuable models to explain the binding of language to
experience, but also to ground language in embodied perception and action based
on recent neuroscientific data and hypotheses [3,6]. In addition early models cap-
tured the fusion of language and multi-modal perceptions or aimed at bridging
the gap between formal linguistics and bio-inspired systems [15,16].

However, due to the vast complexity of language, some models rely on well-
understood Chomskyan formal theories, which are difficult to maintain in the
light of recent neuroscientific findings, e.g. of non-infinite-recursive mechanisms
and the evident involvement of various – if not all – functional areas in the
human brain in language [1,2,14]. Other integrating or constructive models are
constrained to single words, neglecting the temporal aspect of language [10].

In a recent study Hinoshita et al. claimed that for human language acquisition
just an “appropriate” architecture is sufficient and provided a model based on
a Multiple Timescale Recurrent Neural Network (MTRNN) [11]. They found
that such a system composes language hierarchically in a self-organised way,
if the architecture includes dynamic interaction of components with different
characteristics, e.g. information processing on different timescales. Although the

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 216–223, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.informatik.uni-hamburg.de/WTM/

Embodied Language Understanding with an MTRNN 217

model was reproducing learned symbolic sentences quite well, generalisation was
not possible, because the generation of sentences was initiated by the internal
state of some neurons, which had to be trained individually for every sentence.

In this paper we incorporate embodied perception based on real world data
in an MTRNN model and show that such a novel system is able to generalise
to completely new situations by recomposing learned elements, and also self-
organises toward the meaning of the learned verbal utterances.

2 Extended MTRNN Model

For our proposed model we employ the MTRNN to process verbal utterances
over time [19], extended by several feed-forward layers to integrate embodied
perceptions during the processing of utterances. The MTRNN part is composed
of an Input- and Output layer (IO) and two context layers called Context fast
(Cf) and Context slow (Cs). In general, the MTRNN is an extended Elman
Recurrent Neural Network (ERNN) on the one hand and a special case of the
Plausibility Recurrent Neural Network (PRNN) on the other hand [5,18]. In
contrast to the ERNN, the MTRNN allows for full connectivity of neurons to all
neurons of the same and of adjacent layers, and introduces a mechanism forcing
neurons in the context layers to process information with different timescales.
Compared with the PRNN it restricts this concept of hysteresis to an increasing
slowness from the first to the last layer and also restricts the architecture to one
horizontal set of layers. Our extension part consists of an Embodied Input layer
(EI), an Embodied Fusion layer (EF), and an Embodied Controlling layer (EC).
Fig. 1 provides an overview of our architecture.

IO
Layer

Cf
Layer

Cs
Layer

t+1

=2
=5

=70

...

...

Phonemes

Shape

Colour

Position

EF
Layer EC

Layer

Verbal
Utterance

Embodied
Perception

EI
Layer

Csc
Units
Csc

Units
Csc
Units
Csc
Units
Csc

Units

...

...

...

Fig. 1. Architecture of a Multiple Timescale Recurrent Neural Network extended by
embodied perception from the scene. A sequence of phonemes (utterance) is processed
over time, while the perceived situated information is constantly present.

218 S. Heinrich, C. Weber, and S. Wermter

During learning of the system the MTRNN is trained with verbal utterances
and self-organises the neural activity and thereby the internal state values of
some of the neurons in the Cs layer (so called Context Controlling units (Csc)).
These self-organised values are then transferred to the EC layer and associated
with the present embodied perception. For training we use an adaptive mecha-
nism based on the resilient propagation algorithm [8]. During testing, the system
approximates EC values from the visual perception input that are transferred
to the Csc units, which in turn initiate the generation of a corresponding verbal
utterance.

A full formal description of the MTRNN architecture can be found in the work
of Yamashita and Tani [19]. In our model the MTRNN is specified by timescale
values of τ = 2, τ = 5, and τ = 70 for the IO, Cf, and Cs layers respectively,
based on previous studies [11,19] and preliminary experiments (not included),
which show that these settings work best for the language learning scenario.
For the IO layer we employ a soft-max function, while for the neurons in the
remaining layers we use the following modified logistic transfer function:

f(x) =
1.7159

1 + exp (−x · 0.92) − 0.35795 . (1)

The function is modulated in slope and range to capture the characteristics of
the synchronic transfer function that has been proposed by LeCun for faster
convergence in association tasks [13]. As error function on the IO layer we use
the Kullback–Leibler divergence:

E(W) =
∑
t

∑
i∈IIO

dt,i · log
(
dt,i
yt,i

)
, (2)

where W represents the weight matrix, y denotes the output of neuron i at time
step t, and d identifies the desired activity.

3 Scenario

Our scenario for this model is the interaction between a human teacher and a
robotic learner, which is supposed to learn language from scratch by grounding
speech acts in its embodied experience, but also is supposed to use its learned
language to describe novel situations. The robot is placed in a scene and receives
an utterance from the teacher, who describes the scene, e.g. “the apple has
colour green”. The system should learn, in a self-organised way, how to bind
the visual scene information with this verbal expression to be able to describe
another scene like “the banana has colour green” correctly. The focus of
this study is on generalisation using possibly learned components.

To control our setup, all verbal utterances stem from a small symbolic gram-
mar as presented in Fig. 2a. However, every symbolic sentence is transformed
into a phonetic utterance based on phonemes from the ARPAbet and four addi-
tional signs to express pauses and intonations in propositions, exclamations, and
questions: Σ = {’AA’, ..., ’ZH’}∪{’SIL’, ’PER’, ’EXM’, ’QUM’}, with size |Σ| = 44.

Embodied Language Understanding with an MTRNN 219

To encode an utterance u = (p1, . . . , pl) into neural activation over time, we
adapted the encoding scheme suggested by Hinoshita et al. [11], but we use a
phoneme-based instead of a symbol-based representation: The occurrence of a
phoneme pk is represented by a spike-like neural activity of a specific neuron at
relative time step r. In addition, some activity is spread backward in time (rising
phase) and some activity is spread forward in time (falling phase) represented
as a Gaussian over the interval [r − ω/2, . . . , r − 1, r, r + 1, . . . , r + ω/2]. All ac-
tivities of spike-like peaks are normalised by the soft-max function for every
absolute time step. A detailed description can be found in [11]. For our scenario
we set the constants accordingly to μ = 4, ω = 4, σ2 = 0.3, and υ = 2. The ideal
neural activation for an encoded sample utterance is visualised in Fig. 2b.

To encode the visual shape perception into sustained neural activity, we aimed
at capturing the salient features of the objects in the field of view, inspired by
saccadic eye movements of humans [9]. On an image taken by the NAO robot
we employ the mean shift algorithm for segmentation [4], and the Canny edge
detection as well as the contour finder for object discrimination. Subsequently,
we calculate the centre of mass and 16 distances to salient points around the
contour. Finally, we scale the distances by the square root of the object’s area and
order them clockwise – starting with the largest – to determine the characteristic
shape, which is scale and rotation invariant. Fig. 2e provides two example results
of this process and Fig. 2f visualises typical characteristics for all employed object
shapes (scaled to [0, 1]). Encoding of the perceived colour is realised by averaging
the three R, G, and B values of the shape, while the perceived position is encoded
by the two values of the centroid coordinate in the field of view.

S → INFORM
INFORM → POS is a OBJ.
INFORM → OBJ has colour COL.
OBJ → apple | banana | dice | phone
POS → above | below | left | right
COL → blue | green | red | yellow

(a) Grammar.

(b) Encoded utterance.

(c) Learner.

(d) Learner’s view.

(e) Perceived shapes.

1 6 11 16
0

0.5

1

Neuron number

N
eu

ra
l a

ct
iv

ity

dice
phone

apple
banana

(f) Shape representation.

Fig. 2. Representations and scenario of language learning in human-robot interaction.

220 S. Heinrich, C. Weber, and S. Wermter

4 Evaluation and Analysis

To test and analyse our model, we collected a data set consisting of all possible
scenes and their respective verbal description. From the grammar we obtained
32 different combinations, which we set up as scenes and in turn used for col-
lecting different examples. The corresponding verbal utterances were reasonably
complex sequences with a length of 32 to 46 time steps (compare Fig. 2b). Sub-
sequently, we ran a series of experiments for which we carefully, but randomly
divided the data into a training set and a test set (50:50) – making sure that
every scene is included only in one of these sets – and initialised a network. For
every setup we repeated this process 50 times with different random seeds. The
parameters of the network were mostly chosen based on the experience in [11]:
We used |IO| = 44 and |EC| = 21 constrained by the input representations, but
varied the sizes of Cf, Cs and EF to test for robustness. The size of EC depends
on and is equal to the size of Csc, which we determined with |Csc| = 	|Cs|/2
.
In addition, we used a feedback rate ϕ = 0.1 and initialised the weights in the
interval [−0.025, 0.025] and the initial Csc in the interval [−0.01, 0.01].

4.1 Generalisation

To be able to compare the generalisation capabilities, we use the standard mea-
sure F1-score determined by precision and recall, and defined as follows:

pprecision =
tp

tp+ fp
, precall =

tp

tp+ fn
, F1-score = 2 · pprecision · precall

pprecision + precall
, (3)

where we specify all correct and matching sentences as tp (true positives), all cor-
rect but not matching sentences as fp (false positives), and strictly all incorrect
sentences as fn (false negatives).

The results in Tab. 1 show that the system can be trained perfectly in most
cases, and also produces correct utterances for new scenes on a moderate level:
For a suitable parameter setting, networks reach an F1-score of up to 1.0 on the
training set and 0.545 on the test set, with an average over all random seeds of
0.999 on the training set and 0.136 on the test set.

Table 1. Comparison of F1-score for different network dimensions

|Cf |/|Cs| 40/11 40/11 40/11 80/23 80/23 80/23 160/47 160/47 160/47
|EF | 8 16 24 8 16 24 8 16 24

training set best 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

test set best 0.316 0.222 0.316 0.316 0.400 0.545 0.316 0.476 0.400

training set average 0.889 0.904 0.908 0.950 0.999 0.999 0.979 0.994 0.995

test set average 0.059 0.049 0.043 0.091 0.136 0.136 0.096 0.091 0.123

Note that due to the random selection, in several cases the system had to
describe a scene, for which it had not seen any aspect (shape, colour, or position)
before. This was intended to keep the scenario realistic and observe the effects.

Embodied Language Understanding with an MTRNN 221

4.2 Network Behaviour

To provide a better understanding of the system, we analysed the neural activity
of the Cf layer for the trained networks. We aimed to test, whether this layer had
organised itself to represent the words in the utterances (compare [11]). Using
principle component analysis (PCA) we reduced the dimensionality to visualise
trajectories over time for specific words. The starting and the end point of the
trajectory were defined as the first highest activity for the first phoneme and the
last highest activity for the last phoneme of the word in the IO layer.

The results reveal several characteristics (see Fig. 3 for the trajectories of a
typical network): First, the neural activity in the Cf layer is nearly identical for
the same words from trained utterances. Second, the same words from untrained
utterances have a quite similar activity pattern. Third, words of the same type
(shape, colour, or position words) have a very related activity pattern. From the
data we can observe, that the networks self-organise patterns for words about
shapes, colours, and positions. Forth, words with similar phonetic representation
have different activities, if the type of the word is different. Low correlation was
found of activity for phonetically similar but semantically different words.

−6 −4 −2 0 2 4
−4

−2

0

2

4

6

PC1

P
C

2

apple
banana
phone

below
left
right

blue
red
yellow

(a) Words of similar type.

−4 −2 0 2
−4

−2

0

2

4

PC1

P
C

2

(b) Words with similar phonetics.

Fig. 3. Comparison of neural activation in the Cf layer for different words. The di-
mensionality has been reduced from |Cf | to two dimensions (PC1 and PC2) and the
beginning (∗) as well as the end (◦) of the words have been marked. The dark/blue
lines represent words from utterances of the training set and the bright/red lines show
words from utterances of the test set. Arrows indicate the same phoneme “AH”.

In addition, we found the tendency that the activation of a word primes the
activation of other grammatically related words. In terms of trajectories it can
be observed that the end point of the word “colour” is close to the starting
point of all colour words, and the end point of a position word is close to the
starting point of “is a ...” (compare Fig. 3a and b).

222 S. Heinrich, C. Weber, and S. Wermter

5 Discussion

The combination of visual perception and an architecture that includes different
timescales in processing verbal sequences provides a system that self-organises
towards the meaning of learned utterances in a real world scenario. Our exper-
iments have shown that such a system apparently is able to understand verbal
utterances and describe novel scenes with the correct corresponding verbal utter-
ances. The analysis revealed that novel scenes are described by recomposing the
correct words, which have been grounded in the perception of different shapes,
colours, or positions.

For some incorrect sentences we observed both cases: Minor substitution er-
rors in terms of a single wrong phoneme or a pause that was too long (“SIL SIL”
instead of “SIL”), as well as no meaningful phoneme chains at all. In the first
case, listening humans would presumably consider this a normal inaccuracy and
automatically correct the recognition. The second case clearly shows that gen-
eralisation was sometimes difficult. It is open to clarify, whether this degree of
difficulty is inherent, e.g. if the error rate is comparable to certain learning stages
in young children during early language learning [12].

During training of the system, we found that the connection weights from the
Cf to the Cs layer as well as from the IO to the Cf layer converged towards zero in
many cases. This means that the highly dynamic networks organised themselves
towards a directed flow of information from the context to the phonetic output
instead of a mutual exchange of information. This is plausible in the light of
neuroscientific evidence [10], but for future experiments implies that the MTRNN
architecture might already be more complex than necessary and should be tested
with less initial connectivity. In addition we found that incorporating an adaptive
training mechanism and a novel transfer function already allowed to reduce the
complexity of the training itself.

Parameter exploration has shown that for this architecture a good balance
of the number of neurons and the number of training samples is important.
This is in line with experience from associator networks [13], but less desirable.
Further investigations should include the consideration of architectures that are
dynamic in connectivity as well as in size. In addition the architectures should
be tested with more complex scenes and verbal descriptions, including interrela-
tions of multiple objects and embodied experience of a broader set of real world
situations.

In conclusion, our study supports that the embodiment of language in percep-
tion and a hierarchical structure with different timescales are important aspects
of an appropriate architecture for language. For such an architecture a feasi-
ble constraint can be our mostly feedforward but compositional structure, also
suggested for the (visual) cortex [7]. In the future we need to further refine the
architectural characteristics to identify the most important building blocks for
natural language processing. The understanding of the brain’s architecture for
language can explain the humans’ most important cognitive capability, but also
can inform future software frameworks for service robots that should interact
with and understand humans.

Embodied Language Understanding with an MTRNN 223

Acknowledgments. The authors would like to thank A. Saleh and H. Vöcking
for support with the real world data acquisition as well as J. Dávila-Chacón and
S. Magg for critical and inspiring discussions.

References
1. Barsalou, L.W.: Grounded cognition. Annu. Rev. Psychol. 59, 617–645 (2008)
2. Borghi, A.M., Gianelli, C., Scorolli, C.: Sentence comprehension: effectors and

goals, self and others. An overview of experiments and implications for robotics.
Frontiers in Neurorobotics 4(3), 8 (2010)

3. Cangelosi, A.: Grounding language in action and perception: From cognitive agents
to humanoid robots. Physics of Life Reviews 7(2), 139–151 (2010)

4. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. IEEE Trans. on Pattern Anal. and Mach. Intell. 24(5), 603–619 (2002)

5. Elman, J.L.: Finding structure in time. Cognitive Science 14(2), 179–211 (1990)
6. Frank, S.L.: Strong systematicity in sentence processing by an echo state network.

In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS,
vol. 4131, pp. 505–514. Springer, Heidelberg (2006)

7. Friston, K.: A theory of cortical responses. Philosophical Transactions of the Royal
Society B 360, 815–836 (2005)

8. Heinrich, S., Weber, C., Wermter, S.: Adaptive learning of linguistic hierarchy in a
multiple timescale recurrent neural network. In: Villa, A.E.P., Duch, W., Érdi, P.,
Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 555–562.
Springer, Heidelberg (2012)

9. Henderson, J.M.: Human gaze control during real-world scene perception. Trends
in Cognitive Sciences 7(11), 498–504 (2003)

10. Hickok, G., Poeppel, D.: The cortical organization of speech processing. Nature
Reviews Neuroscience 8(5), 393–402 (2007)

11. Hinoshita, W., Arie, H., Tani, J., Okuno, H.G., Ogata, T.: Emergence of hierarchi-
cal structure mirroring linguistic composition in a recurrent neural network. Neural
Networks 24(4), 311–320 (2011)

12. Karmiloff, K., Karmiloff-Smith, A.: Pathways to language: From fetus to adoles-
cent. Harvard University Press (2002)

13. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Orr, G.B.,
Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer, Heidel-
berg (1998)

14. Pulvermüller, F., Fadiga, L.: Active perception: sensorimotor circuits as a cortical
basis for language. Nature Reviews Neuroscience 11, 351–360 (2010)

15. Rohde, D.L.T., Plaut, D.C.: Connectionist models of language processing. Cogni-
tive Studies 10(1), 10–28 (2003)

16. Roy, D.K., Pentland, A.P.: Learning words from sights and sounds: A computa-
tional model. Cognitive Science 26(1), 113–146 (2002)

17. Steels, L., Spranger, M., van Trijp, R., Höfer, S., Hild, M.: Emergent action lan-
guage on real robots. In: Language Grounding in Robots, ch. 13, pp. 255–276.
Springer, New York (2012)

18. Wermter, S., Panchev, C., Arevian, G.: Hybrid neural plausibility networks for
news agents. In: Proc. National Conference on Artificial Intelligence (AAAI 1999),
Orlando, US, pp. 93–98 (July 1999)

19. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale
neural network model: A humanoid robot experiment. PLoS Computational Biol-
ogy 4(11), e1000220 (2008)

Unsupervised Online Calibration of a c-VEP

Brain-Computer Interface (BCI)

Martin Spüler1, Wolfgang Rosenstiel1, and Martin Bogdan1,2

1 Wilhelm-Schickard-Institute for Computer Science,
University of Tübingen, Germany

2 Computer Engineering, University of Leipzig, Germany

Abstract. Brain-Computer Interfaces (BCIs) can be used to give par-
alyzed patients a means for communication. But so far, only supervised
methods have been used for calibration of an online BCI. In this paper
we present a method that allows to calibrate a BCI online and unsuper-
vised. Based on offline data we show that the unsupervised calibration
method works and validate the results in an online experiment with 8
subjects, who were able to control the BCI with an average accuracy
of 85 %. We thereby have shown for the first time that an online unsu-
pervised calibration of a BCI is possible and allows for successful BCI
control.

Keywords: Brain-Computer interface (BCI), unsupervised learning.

1 Introduction

A Brain-Computer Interface (BCI) is a device that enables a user to control a
computer by pure brain activity, which is usually recorded by electroencephalog-
raphy (EEG). The main application for BCIs is to give paralyzed people a means
to communicate, but so far, there are no reports for successful BCI control in
complete locked-in patients [1].

Recently, we could show a BCI based on code-modulated visual evoked poten-
tials (c-VEPs) to achieve very high communication speeds that made it possible
for subjects to spell an average of 21.3 error-free letters per minute [2]. While
this BCI used an unsupervised online adaptation, it still depended on a super-
vised calibration, for which labeled data is needed to calibrate the BCI on the
users brain activity. When looking at BCIs that use other paradigms like motor
imagery or P300, there are also different unsupervised adaptation methods [3],
but they all depend on a supervised calibration, which needs labeled data.

So far, Eren et al. [4] are the only ones, who have shown that a BCI can be
calibrated completely unsupervised without the need for labeled training data.
Using Gaussian Mixture Models, they have shown in an offline analysis of motor
imagery BCI data that their method works for 3 out of 6 subjects.

In this paper, we present a method for completely unsupervised calibration
of a c-VEP BCI and show it to work for all our subjects in an online study.
We further discuss how unsupervised calibration might be useful for complete
locked-in patients, for whom supervised calibration does not work [1].

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 224–231, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Unsupervised Online Calibration of a c-VEP BCI 225

2 Methods

The c-VEP BCI that we used is based on the system we described in previ-
ous publications [2,5]. It consists of 32 visual stimuli (called targets), which are
modulated by a pseudo-random code with a length of 63 bit. Each target is
modulated with the same code, but the code is circular-shifted by a different
number of bits for each target. When the subject is looking at one of the stimuli,
a c-VEP can be found in the EEG signals. Based on multiple trials, the average
c-VEP waveform can be extracted. By circular-shifting the average c-VEP wave-
form, a template for each target can be obtained, which represents the average
c-VEP waveform that is expected when the subject looks at the corresponding
target. To identify which of the targets the user wants to select, the EEG-signal
is compared to all templates and the template which is closest to the measured
EEG signal is chosen.

While the previous system with supervised calibration used 32 targets, we
only used two targets (J and W) for the unsupervised calibration. Regardless
of the number of targets used for calibration, the system can be tested and used
with 32 targets after calibration is finished.

To achieve an unsupervised calibration of the c-VEP BCI, the first step is to
perform an unsupervised channel selection to find the EEG channel on which
the c-VEP is strongest. If that channel is found, the templates can be generated
in an unsupervised manner, as described below.

2.1 Unsupervised Channel Selection

The goal of the unsupervised channel selection is to find the channel for which
the c-VEP is strongest, which means finding the channel for which the c-VEP
has the lowest variance.

Since only two shifts are possible (20 bit and 46 bit, representing targets J
and W), a new dataset is created that contains each trial of the calibration
dataset twice, one shifted by -20 bit and the other by -46 bit. By doing this, the
data should contain 3 clusters: one cluster containing the data that is shifted
with the correct shift, one cluster for data with a true shift of 20 bit that was
shifted by -46 bit, and one cluster with a true shift of 46 bit that was shifted
by -20 bit. Since the cluster with the data shifted by the correct number of bits
should contain twice the number of trials than each of the other 2 clusters, a
one-class Support Vector Machine (OCSVM) [6] can be trained to reject the
smaller clusters as outliers.

Therefore, the data for each channel is normalized to have a mean of zero
and a variance of 1. The normalized data is used to train a OCSVM with a
linear kernel and ν = 0.4 to find a hyperplane which separates the one large
cluster from the two small ones. The size of the margin can then be used as an
approximation of the variance. A larger margin means a smaller variance of the
c-VEP data and thereby a stronger c-VEP response. The channel for which the
margin is largest is then chosen for the unsupervised template generation.

226 M. Spüler, W. Rosenstiel, and M. Bogdan

2.2 Unsupervised Template Generation

When the channel with the strongest c-VEP is found, the k-means algorithm
[7] is applied on the calibration dataset using the respective channel to find two
clusters that represent the data for the two targets. Since the k-means algorithm
is only used to find clusters, it is unknown, which cluster represents which class.
To assign classes to both clusters, two leave-one-out estimations are performed,
in which both of the two possible assignments are tested (Cluster A -> Class A
or Cluster A -> Class B). For each of the n folds of the leave-one-out estimation,
templates are generated using the calibration data of n-1 trials (with the labels
associated with one of the possible assignments), and the remaining trial is
classified by choosing the template which has the highest correlation. Due to the
circular-shift property of the c-VEP BCI, templates were generated for 32 classes
with each class having an additional 2 bit shift (total length of modulating code
was 63 bit). For the classification of the remaining trial, also 32 possible classes
were used.

Since templates for all 32 classes are generated, but only data containing 2
classes is used for the calibration, and the difference in the shift of both classes
is uneven depending on the direction of the shift (46-20 = 26 bit or 20-46 = (-26
mod 63) = 37 bit), the assignment with the highest estimated accuracy is the
one that assigns the correct class to each cluster.

Thereby class labels are available for each target. Although the unsupervised
channel selection is an important step for the unsupervised template generation
to work, we empirically found a subsequent channel selection based on the esti-
mated labels to further improve the results. Therefore, leave-one-out estimations
are performed for all channels to find the channel that yields optimal results.

After class labels and the best channel for classification are known, templates
and spatial filter can be generated as explained in our previous publication [5].

2.3 Offline Analysis

To evaluate the unsupervised calibration method, data recorded from a previous
c-VEP study [2] was used for an offline analysis, in which an online experiment
was simulated. The first 64 trials (used for supervised calibration in the previous
online study) were used for unsupervised calibration. Since the data was recorded
with the subjects attending each of the 32 targets 2 times, the trials were shifted
in a way that half of the trials had a shift corresponding to target letter J with
a shift of 20 bit and the other half corresponding to target letter W with a shift
of 46 bit.

The remaining 576 trials of the session were used to estimate the accuracy.
Two different approaches were tested: One approach, in which the shift of the
trials did not change and thereby all 32 classes were present in the data. For the
other approach, the trials were shifted similar to the calibration data to simulate
the use of a 2-class c-VEP BCI system.

In addition, the benefit of the unsupervised channel selection was evaluated
by replacing the unsupervised channel selection with a fixed selection of either

Unsupervised Online Calibration of a c-VEP BCI 227

electrode P4 or PO3, which are the electrodes where the c-VEP is strongest on
average.

Since the signal-to-noise ratio of the signal may be too low to allow for un-
supervised calibration, tests were run in which multiple trials were averaged,
similar to the method using multiple sequences in the popular P300 BCI speller.
x subsequent trials were averaged to generate one new trial, thereby decimating
the total number of trials by a factor of x. While still the first 64 trials of the
new dataset were used for calibration, the number of test trials varied depending
on x.

2.4 Online Experiment

To validate the results from the offline analysis, another online experiment was
conducted, in which a c-VEP BCI with 2 targets was calibrated unsupervised
and tested afterwards. Eight subjects (mean age 25, 2 female) participated in
this experiment, with none of them having previous BCI experience.

Calibration was done in a co-adaptive manner, in which the first 64 trials were
used for unsupervised calibration and the classifier was updated after every trial,
so that feedback could be given also during the unsupervised calibration. The
subjects were instructed to decide freely, which of the two targets to attend, but
not to switch the target consistently every time and not to attend one target for
more than 5 consecutive trials.

After calibration was finished, the accuracy of the calibrated c-VEP BCI was
tested in another 128 trials. For testing the BCI with 2 targets, the subjects
were instructed to alternate between both targets.

Calibration and testing were done two times. One time without averaging over
trials and one time with averaging 2 trials.

Since the subjects could freely decide what targets to attend during the cali-
bration, the data could not be used to simulate a supervised adaptation. Instead,
another experiment was run with the same subjects, in which a supervised cali-
bration [5] was used with 2 targets and 64 trials. To test the accuracy, the BCI
was run with 2 targets for another 128 trials. This experiment was only done
once without averaging for each subject.

3 Results

3.1 Offline Analysis

The accuracies obtained during a simulated online session with 2 targets after
an unsupervised calibration are displayed in table 1 for a different number of
trials averaged. Table 2 shows the obtained results for a simulated online session
with 32 targets.

While for 2 classes, without averaging multiple trials, a mean accuracy of
90.85 % could be reached, averaging of 2 trials reached a mean accuracy of
97.4 % which is significantly better than without averaging trials (p = 0.0051,

228 M. Spüler, W. Rosenstiel, and M. Bogdan

paired t-test). Looking at the results with a higher number of averages, the use
of 3 or more averages is not significantly better than its preceding number of
averages (p > 0.1).

For 32 classes, a mean accuracy of 76.43 % could be reached, while averaging
over 2 trials yields a mean accuracy of 92.61 %, which is significantly higher
(p < 0.001). Again the use of more than 2 averages does not yield a significant
improvement (p > 0.1) compared to its preceding number of trials averaged.

Table 1. Offline results for unsupervised calibration with 2 targets and different num-
ber of trials used for averaging

Number of trials averaged
1 2 3 4 5

AA 87.81 % 100.00 % 100.00 % 100.00 % 100.00 %
AB 65.94 % 81.25 % 69.81 % 85.00 % 85.94 %
AC 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
AD 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
AE 65.94 % 82.50 % 95.28 % 98.75 % 100.00 %
AF 96.56 % 100.00 % 100.00 % 100.00 % 100.00 %
AG 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
AH 78.75 % 90.62 % 80.19 % 77.50 % 85.94 %
AI 70.31 % 99.38 % 99.06 % 100.00 % 100.00 %
BA 97.50 % 99.38 % 100.00 % 100.00 % 100.00 %
BB 98.44 % 100.00 % 100.00 % 100.00 % 100.00 %
BC 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BD 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BE 95.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BF 99.06 % 100.00 % 100.00 % 100.00 % 100.00 %
BG 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BH 81.25 % 100.00 % 100.00 % 100.00 % 100.00 %
BI 98.75 % 100.00 % 100.00 % 100.00 % 100.00 %
mean 90.85 % 97.40 % 96.91 % 97.85 % 98.44 %

To estimate the benefit of the unsupervised channel selection, the results for
the comparison of the unsupervised channel selection with channels PO3 and P4
is shown in table 3 and table 4. When pooling the results for all tested number of
averages, the unsupervised channel selection in the simulated c-VEP BCI with 2
targets performs significantly better than a fixed selection of channel PO3 (p <
0.0005, paired t-test) and significantly better than a selection of P4 (p < 0.05).
When simulating the use of a c-VEP BCI with 32 targets, the unsupervised
channel selection still performs significantly better than PO3 (p < 0.005) and
P4 (p = 0.01).

3.2 Online Experiment with 2 Targets

The results from the online experiment are shown in table 5. The results show
that the BCI worked well for all subjects after unsupervised calibration with an

Unsupervised Online Calibration of a c-VEP BCI 229

Table 2. Offline results for unsupervised calibration with different number of trials
used for averaging. While calibration was done on data from 2 targets, data with 32
targets was used for performance evaluation.

Number of trials averaged supervised
1 2 3 4 5 1

AA 75.94 % 99.38 % 100.00 % 100.00 % 100.00 % 96.88 %
AB 21.56 % 46.88 % 53.77 % 70.00 % 85.94 % 80.03 %
AC 98.44 % 99.38 % 100.00 % 100.00 % 100.00 % 98.61 %
AD 99.69 % 100.00 % 100.00 % 100.00 % 100.00 % 98.96 %
AE 18.75 % 58.13 % 87.74 % 97.50 % 100.00 % 60.24 %
AF 86.88 % 98.75 % 100.00 % 100.00 % 98.44 % 97.74 %
AG 99.69 % 100.00 % 100.00 % 100.00 % 100.00 % 99.83 %
AH 41.88 % 73.75 % 69.81 % 68.75 % 76.56 % 72.72 %
AI 43.75 % 99.38 % 99.06 % 98.75 % 100.00 % 96.18 %
BA 88.12 % 98.75 % 100.00 % 100.00 % 100.00 % 94.44 %
BB 87.19 % 96.25 % 92.45 % 100.00 % 96.88 % 97.48 %
BC 96.88 % 99.38 % 100.00 % 100.00 % 100.00 % 98.09
BD 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
BE 86.88 % 100.00 % 100.00 % 100.00 % 100.00 % 99.31 %
BF 92.81 % 98.12 % 99.06 % 100.00 % 100.00 % 94.97 %
BG 98.75 % 100.00 % 100.00 % 100.00 % 100.00 % 98.96 %
BH 55.00 % 98.75 % 100.00 % 100.00 % 100.00 % 86.98 %
BI 83.44 % 100.00 % 100.00 % 100.00 % 100.00 % 94.79 %
mean 76.43 % 92.61 % 94.55 % 96.39 % 97.66 % 92.57 %

average accuracy of 85.06 % and that averaging over 2 trials improves classifi-
cation accuracy for all subjects. During the supervised calibration the subjects
achieved an average accuracy of 94.43 %.

4 Discussion

In this paper, we have shown that an unsupervised calibration of a c-VEP BCI
is possible and that all subjects were able to control the BCI online with an
average accuracy of 85 %. Thereby it was shown for the first time that an online
BCI can be calibrated in an unsupervised manner.

While the online study used a BCI with only 2 targets, we have shown in
the offline analysis that a BCI with 32 targets can successfully be used after
an unsupervised calibration on 2 targets. By averaging over multiple trials the
accuracy can further be increased.

Although it was shown that an unsupervised calibration works well and can be
used to calibrate a BCI, it does not perform better than a supervised calibration.
Therefore the use of an unsupervised calibration method needs to be discussed.

So far, there are no reports of BCI working online in complete locked-in (CLIS)
patients, who do not have any residual muscle control. With the transition into
CLIS, the last possibility to move any muscle is lost. Thereby the patient loses

230 M. Spüler, W. Rosenstiel, and M. Bogdan

Table 3. Offline results with 2 targets and different methods for channel selection.
Different number of trials were used for averaging. Unsupervised channel selection was
compared to a fixed selection of channel PO3 or P4, respectively.

Number of trials averaged
1 2 3 4 5

PO3 86.58 % 89.41 % 91.88 % 90.69 % 92.62 %
P4 87.81 % 92.78 % 94.24 % 94.79 % 94.53 %
unsupervised 90.85 % 97.40 % 96.91 % 97.85 % 98.44 %

Table 4. Offline results for different methods for channel selection using data with
32 targets. Different number of trials were used for averaging. Unsupervised channel
selection was compared to a fixed selection of channel PO3 or P4, respectively.

Number of trials averaged
1 2 3 4 5

PO3 72.87 % 81.95 % 85.43 % 85.83 % 87.24 %
P4 70.21 % 86.70 % 89.94 % 90.63 % 90.89 %
unsupervised 76.43 % 92.61 % 94.55 % 96.39 % 97.66 %

Table 5. Accuracies during the online experiment for different calibration methods:
unsupervised calibration without averaging, unsupervised calibration with averaging
over 2 trials, supervised calibration without averaging

unsupervised supervised
Subject no averaging average over 2 trials

CL 64.06 % 78.13 % 95.31 %
CM 85.94 % 99.22 % 100 %
CN 78.13 % 87.50 % 92.19 %
CO 85.16 % 92.19 % 89.06 %
CP 89.84 % 95.31 % 82.81 %
CQ 93.75 % 80.47 % 100 %
CR 89.84 % 83.59 % 96.09 %
CS 93.75 % 85.94 % 100 %

mean 85.06 % 87.79 % 94.43 %

the last possibility to interact with the environment and he has no longer any
means to follow his plans or goals. Since there is no possibility to achieve any
goals, the goal-directed thinking is assumed to be extinct [1] and thereby the
patient would not be able to follow any instructions that are necessary when
calibrating a BCI in a supervised manner.

Unsupervised calibration might solve this problem, since it allows to calibrate
a BCI and give the user feedback without the need for any goal-directed action
[8]. Although it is still speculation if patients without eye-movement control can
use a c-VEP BCI, it might be possible with a modified stimulus presentation (as
it was already done for SSVEP BCIs [9,10]). Thereby the patient could influence
his environment again and may regain the ability for goal-directed thinking,
since he has now a means to communicate and achieve potential goals.

Unsupervised Online Calibration of a c-VEP BCI 231

5 Conclusion

In this paper we have presented a method that allows for an unsupervised cali-
bration of a c-VEP BCI. In an online study we have shown that all subjects were
able to control the BCI with an average accuracy of 85 % after an unsupervised
calibration. Although the accuracy is lower than for a supervised calibration,
unsupervised methods could be used to establish communication in complete
locked-in patients, for whom supervised methods does not work.

Acknowledgments. This study was partly granted by the German Federal
Ministry of Education and Research (BMBF, Grant UTü 01GQ0831) and the
European Union (ERC 227632-BCCI).

References

1. Kübler, A., Birbaumer, N.: Brain-computer interfaces and communication in paral-
ysis: Extinction of goal directed thinking in completely paralysed patients? Clinical
Neurophysiology 119(11), 2658–2666 (2008)

2. Spüler, M., Rosenstiel, W., Bogdan, M.: Online adaptation of a c-VEP Brain-
Computer Interface (BCI) based on Error-related potentials and unsupervised
learning. Plos One 7(12), e51077 (2012), doi:10.1371/journal.pone.0051077

3. Spüler, M., Rosenstiel, W., Bogdan, M.: Adaptive SVM-based classification in-
creases performance of a MEG-based Brain-Computer Interface (BCI). In: Villa,
A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I.
LNCS, vol. 7552, pp. 669–676. Springer, Heidelberg (2012)

4. Eren, S., Grosse-Wentrup, M., Buss, M.: Unsupervised classification for non-
invasive brain-computer-interfaces. In: Proc. Automed Workshop, Düsseldorf, Ger-
many, pp. 65–66 (2007)

5. Spüler, M., Rosenstiel, W., Bogdan, M.: One Class SVM and Canonical Corre-
lation Analysis increase performance in a c-VEP based Brain-Computer Interface
(BCI). In: Proceedings of 20th European Symposium on Artificial Neural Networks
(ESANN 2012), Bruges, Belgium, pp. 103–108 (April 2012)

6. Schölkopf, B., Platt, C.: Estimating the support of a High-Dimensional Distribu-
tion. Neural Computation (2001)

7. Hartigan, J.A.: Clustering Algorithms, 99th edn. John Wiley & Sons, Inc., New
York (1975)

8. Spüler, M., Rosenstiel, W., Bogdan, M.: Unsupervised BCI calibration as possibil-
ity for communication in CLIS patients? In: Proceedings of the Fifth International
Brain-Computer Interface Meeting (2013), doi:10.3217/978-3-85125-260-6-122

9. Kelly, S.P., Lalor, E.C., Reilly, R.B., Foxe, J.J.: Visual spatial attention tracking
using high-density SSVEP data for independent brain-computer communication.
IEEE TNSRE 13(2), 172–177 (2005)

10. Zhang, D., Maye, A., Gao, X., Hong, B., Engel, A.K., Gao, S.: An independent
brain-computer interface using covert non-spatial visual selective attention. Journal
of Neural Engineering 7(1), 016010 (2010)

A Biologically Inspired Model for the Detection

of External and Internal Head Motions

Stephan Tschechne, Georg Layher, and Heiko Neumann

Institute of Neural Information Processing, University of Ulm,
89069 Ulm, Germany

http://www.uni-ulm.de/in/neuroinformatik.html

Abstract. Non-verbal communication signals are to a large part con-
veyed by visual motion information of the user’s facial components (in-
trinsic motion) and head (extrinsic motion). An observer perceives the
visual flow as a superposition of both types of motions. However, when vi-
sual signals are used for training of classifiers for non-articulated commu-
nication signals, a decomposition is advantageous. We propose a
biologically inspired model that builds upon the known functional orga-
nization of cortical motion processing at low and intermediate stages to
decompose the composite motion signal. The approach extends previous
models to incorporate mechanisms that represent motion gradients and
direction sensitivity. The neural models operate on larger spatial scales to
capture properties in flow patterns elicited by turning head movements.
Center-surround mechanisms build contrast-sensitive cells and detect lo-
cal facial motion. The model is probed with video samples and outputs
occurrences and magnitudes of extrinsic and intrinsic motion patterns.

Keywords: Social Interaction, HCI, Motion Patterns, Cortical
Processing.

1 Introduction

The recent development of computers show a clear trend towards companion
properties [4,14]. Systems are demanded to improve the efficiency of human com-
puter interaction (HCI) by adapting to the user’s need, experience and moods.
To achieve this, those systems must be able to interpret non-verbal communica-
tion patterns that are signalled by the user [2,5]. These patterns are to a large
part contained in visual signals that can be captured by an interaction system,
from which they can automatically be derived [9]. Among these visual patterns
bodily and facial expressions contain important cues to emotionally relevant
information, whereas both types can be either of static or dynamic nature. Op-
tic flow has been investigated for emotion and facial analysis earlier [13,6,11,8].
However, when it comes to analysis of facial motion, extrinsic (head) and in-
trinsic (facial) movements are superpositioned and elicit a composite flow field
of respective patterns from the observer’s perspective (see Fig. 1). Subsequent
classification stages profit from a segregation of these patterns. In [13], an at-
tempt to decompose the facial optical flow into affine as well as higher-order

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 232–239, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.uni-ulm.de/in/neuroinformatik.html

A Model for the Detection of External and Internal Head Motions 233

flow patterns in order to segregate the facial motion has been proposed. In [3]
head-pose and facial expressions are estimated graphics and animation. Here, an
affine deformation with parallax is modelled to fit active contours using singular
value decomposition. In [1] the authors propose a multi-stage landmark fitting
and tracking method to derive face and head gestures.

In this paper we propose a novel mechanism to detect occurrences of basic
components of motion from optic flow. The method is studied on the example
of head movements and dynamic facial expressions which both cause optic flow
at the observer position. We model mechanisms of signal processing in early and
intermediate stages of visual cortex to provide robust automatic decomposition
of extrinsic and intrinsic facial motions. We demonstrate how occurrences of
extrinsic as well as intrinsic components are robustly derived from an optic flow
field. Our approach contrasts others by neither requiring face detection or a
previous learning phase. Additionally, processing of multiple persons comes at
no extra cost.

+ =

extrinsic intrinsic superposition

Fig. 1. Visual flow at the observer position is a superposition (right) of extrinsic (head,
left) and intrinsic (facial, middle) motion. Subsequent processing benefits from sepa-
rated processing of both sources.

2 Visual Representations of Head Movements

The instantaneous motion of a three-dimensional surface that is sensed by a sta-
tionary observer can be represented by the linear combination of its translational
and rotational motion components [10], as well as non-rigid motion caused by
object deformations. Any of these cause visual motion in the image plane. In
this paper we focus on the analysis of facial and head motion of an agent in
a communicative act by means of optic flow. This motion is composed of the
extrinsic (head) motion caused by translations and rotations and the superim-
posed internal motion of facial components (intrinsic motion). We assume that
any translational extrinsic motion of the head has been compensated to fixate
the head in the middle of the image so that the world coordinate system is cen-
tered in the moving head. We aim at spatial processing of the resulting patterns

234 S. Tschechne, G. Layher, and H. Neumann

to individually detect the extrinsic and intrinsic components. For a rotation of a
simple head model around the Y -axis, an arbitrary surface point P = (x, y, z)T

appears on a rotational path in space (see Fig.2) with frequency ω and periodic
length T . P is uniquely defined by its radius r and vertical component y at time
t, when a distance d to the observer is assumed:

P (t, r, y) = r ·
⎛
⎝cos ωt

y
sin ωt

⎞
⎠−

⎛
⎝0
0
d

⎞
⎠ ω =

2π

T
(1)

In the following we assume that y = 0 and r = 1. Application of the projection
model with x = f ·X/Z and y = f · Y/Z, given the focal length f of the camera
yields the projected coordinates Pproj in image plane for the observer:

Pproj(t, r) = f ·
(

r cos ωt
r sin ωt−d

0

)
(2)

If we assume constant angular speed, the apparent image speed of the projec-
tion of P is

∂Pproj(t, r)

∂t
=

(
rsinωt+d−1

r2sin2ωt−2dr sinωt+d2

0

)
(3)

which yields a characteristic motion pattern, see Fig. 2. The apparent motion
on the positive half circle, where the facial surface is oriented towards the ob-
server, leads to a generic speed pattern. For a frontal motion from right to left
the pattern is composed by an acceleration, followed by maximum frontal mo-
tion, and a symmetric deceleration patch. This pattern corresponds to the speed
gradients as investigated by [12] and is also depicted in Fig. 2. For symmetric
and bounded objects image patches of increasing and decreasing speeds are jux-
taposed reflecting appearance and disappearance of the surface markings on a
convex rotating body surface. In Sec. 2.1 we suggest a filtering mechanism for
these arrangements of speed gradients which is tuned to such symmetric arrange-
ments of image motions with symmetric speed changes.

Facial motion, on the other hand, is caused by actions of facial muscles, e.g.
during verbal communication, eye blinks, or while forming facial expressions.
These spatio-temporal changes occur as deformations on a smaller temporal and
spatial scale compared to the size of the face and are characterized by changes
in motion direction and/or speed relative to its coherent surrounding motion.
In order to analyze such intrinsic facial motions, we reasoned that a center-
surround mechanism for the filtering of motion patterns within the facial region
will indicate occurrences of intrinsic motions, see Sec. 2.2.

2.1 A Model of Cortical Motion Gradient Detection

In the following we describe the implementation details of our model cells for
detecting motion patterns that are characteristic for extrinsic motions corre-
sponding to rotations around the X- or Y -axis, respectively, namely patterns

A Model for the Detection of External and Internal Head Motions 235

rotation (radians)

proj. speed

proj. position

x

0 0.5 1 1.5 2

−0.2

0

0.15

0 0.5 1 1.5 2
−0.4

0

0.4

rotation (radians)

visible invisible visible invisible

speed gradient
(magn.)x

y

zz

P

Fig. 2. Left: Projection model of one point on a head’s surface and its trajectory in the
projection when the head is rotating. Middle: X-position over rotation angle of point
P . Right: One-periodical plot of speed over rotation angle (dashed) and speed gradient
(solid) of a point when rotating on a circular path around Y axis. Point P is closest at
position 1.0. Due to foreshortening effects, characteristic speed gradients occur where
the point approaches or retreats.

containing speed gradients. All presented detectors need a visual motion field
u which is transformed into a log-polar representation, the velocity space V.
In velocity space, motion is separably represented by speed sp = log ‖u‖ and
direction τp = tan−1(

uy

ux
). This representation allows selecting image locations

containing certain motion directions, speeds, or both, which will be fundamen-
tal features for the upcoming design of gradient cells. Filters for speed ψ and
direction θ with tuning widths σ are defined by

FS(μ, ν) = exp(− (μ− ψ)2

2σ2
ψ

) (4)

Fθ(μ, ν) = exp(− (ν − log(θ))2

2σ2
θ

) ∀(μ, ν) ∈ V. (5)

Gradient cells M
+/−
p at image position p respond when two conditions are

served, see Fig. 3: First, conjunctive input configurations need to match their
tunings for speed and directions, and second, an increase or decrease in speed
along an axes corresponding to their directional exists. This increase or decrease
is reflected in a simultaneous stimulation of two speed- and direction-tuned cells
that are spatially arranged to build the desired speed gradient. The speed- and
direction-tuned subcells Mp are derived from the given motion field by applying
a filter F in velocity space representation. Each cell response incorporates a
divise normalisation component in order to keep responses within bounds.

Mp = Vp · F (6)

M+
p = Mp−Δp ·Mp+Δp · (ε+Mp−Δp +Mp+Δp)

−1 (0 < ε(1) (7)

236 S. Tschechne, G. Layher, and H. Neumann

Responses to flow gradients of opposite polarity are subsequently combined
by AND -gating to build a curvature detector. These cells operate at spatially
juxtaposed locations with component offsets along their directional preference
depending on the spatial scale of the filter kernels.

Cp = M+
p+Δp ·M−

p−Δp · (ε+M+
p+Δp +M−

p−Δp)
−1 (8)

In order to make the response more robust and selective to motion direction
this curvature response is combined with the output of a motion integration cell
Mp. The final response is thus defined by

Rp = M+
p+Δp ·Mp ·M−

p−Δp · (ε+M+
p+Δp +Mp +M−

p−Δp)
−1 (9)

center

surround
position

ac
tiv

at
io

n

Fig. 3. Left : Gradient Cell Mp+. Middle: The full model cell circuit for detecting
rotational motion patterns. Oppositely tuned gradient cells are combined with cells
sensitive to uniform motion patterns. Right : Center-surround cell for motion disconti-
nuity detection with two centered subcells with different spatial tunings and integration
weights for center and surround cell.

2.2 Model Mechanisms for Motion Contrast Detection

Local facial motions can be accounted by mechanisms that operate on a smaller
scale within the facial projection into the image plane. To detect intrinsic motion,
we propose cells that are sensitive to local changes in speed and direction. These
motion patterns are produced in the facial plane while the person is talking
or during other facial actions. Here, we employ a center-surround interaction
mechanism of motion sensitive cells that are able to detect local variations in
visual flow, but won’t be sensitive to large uniform flow fields. Such a sensitivity
can be generated by cells with antagonistic center-surround motion sensitivity.
The input integration of velocity responses is defined by weighted kernels Ω
with different spatial scale dimensions operating on responses of motion and
speed selective filters. Integration over N directions yields the activation for a
direction-insensitive motion contrast cell.

Dsub
p,θ = Vp ∗ Fμ̄ (10)

Dp,θ =
max

(
0, Dsub

p,θ ∗Ωinner −Dsub
p,θ ∗Ωouter

)
ε+Dsub

p,θ ∗Ωinner +Dsub
p,θ ∗Ωouter

(11)

Dp =
∑
θ∈n

‖Dp,θ‖ n = {1, . . . , N} (12)

A Model for the Detection of External and Internal Head Motions 237

+ -

rotation

detected extrinsic motion

detected intrinsic motion

detected extrinsic motion

detected intrinsic motion

rotation

left
right

left
right

+ -

Extrinsic

frame# 1206030 90

B B B B B B B B

B B B B B B B B B B

Extrinsic

B=eyeblink label

B=eyeblink label

frame# 6030 90 120

B

Sequence 2

Sequence 1

B

rightleftExtrinsic Intrinsic

60°

-60°

60°

-60°

Intrinsic

Intrinsic

Fig. 4. Results for the processing of two interaction sequences with unconstrained head
motion. Top four images: Sequence snapshots and color-coded optic flow fields. Large
central part : Manually labeled head rotation and eye blinks (1st&4th plot), activa-
tion of rotation-selective cells (2nd&5th plot) and activation of cells for intrisic motion
(3rd&6th plot). Single processing snapshots are arranged on the left, their points of
reference are indicated by dotted lines. Bottom four images: Snapshot of synthesized
video with a test sequence containing two persons to demonstrate simultaneous pro-
cessing. In the selected snapshot the two persons rotate their head differently, which
is reflected in the activations of respective cells. The right person additionally blinks
with his eyes.

238 S. Tschechne, G. Layher, and H. Neumann

3 Results

Our model was probed with short video sequences containing extrinsic or intrin-
sic motion. Optic flow was generated from these scenes by using a high quality
estimation method [7], see top four images of Fig. 4. The optic flow was then
transformed into velocity space representation and presented to proposed model
cells. The middle section of Fig. 4 shows results for sequences of unconstrained
motion, where persons could move the head ad libitum. The persons were told
to blink with their eyes randomly to simulate small intrinsic motions. Head
rotation and eye blinks were manually annotated. Extrinsic motion was then
detected by the proposed model cells. Plots of the activations are also shown in
the figure. The rotation of the head is recovered and a differentiation is made be-
tween leftward and rightward motion. Also, detectors for intrinsic motion show
activations that correlate well with eye blink labels. Responses of model cells
were temporally filtered with a moving average operation to eliminate spurious
temporal artefacts due to errors in the flow estimation process. Note that the
detectors not only indicate the presence of an occurrence but also the position.
This also holds when a sequence with multiple persons is processed, see bottom
four images of Fig. 4.

4 Conclusion and Discussion

We propose a biologically inspired model of motion processing that is sensitive
to occurrences of motion patterns specifically produced by extrinsic or intrin-
sic head motions in user interaction scenarios. These movements are perceived
as composite motion signals by the observer. Correct interpretation regarding
user dispositions and non-verbal communication patterns from visual signals re-
quires segregated processing of both sources. We propose networks of cortical
motion processing to detect the individual occurrences of intrinsic and extrinsic
motion. The model incorporates a stage of detectors for rotations around X−
and Y− axes that include sensitivity to motion gradients and motion direction.
Center-surround mechanisms indicate intrinsic motions by detecting local con-
trasts that are produced by local motions of facial components. We probed the
model with realistic input sequences containing head rotations and eye blinks to
represent both motion components. Both proposed detectors work well on facial
images and segregate composite facial motion into their extrisinic and intrinsic
components. Our approach does not need training or face detection and can
process multiple persons in a sequence simultaneously. Subsequent processing
steps profit from the detection of occurrence and position of movement com-
ponents. In contrast to other approaches our proposed model is independent
from highly specialised models, tracking, learning from examples or large op-
timisation stages to derive the presented results. By this we demonstrate how
human-computer-interfaces profit from biologically inspired mechanisms of mo-
tion processing by detecting occurrences of specific motion patterns from an
optic flow field. Future work will include a validation of the approach for more
generic shape-from-motion tasks.

A Model for the Detection of External and Internal Head Motions 239

This work has been supported by grants from the Transregional Collaborative
Research Center SFB/TRR62 ’A Companion Technology for Cognitive Technical
Systems’ funded by the German Research Foundation (DFG).

References

1. Akakin, H.C., Sankur, B.: Robust Classification of Face and Head Gestures in
Video. Image and Vision Computing 29, 470–483 (2011)

2. Argyle, M.: Bodily Communication, vol. 2. Routledge, London (1988)
3. Bascle, B., Blake, A.: Separability of Pose and Expression in Facial Tracking and

Animation. In: Proc. Int. Conf. on Computer Vision, pp. 323–328 (1998)
4. Benyon, D.: Designing Interactive Systems, 2nd edn. Pearson, Addison–Wesley,

London (2010)
5. Benyon, D., Mival, O.: Landscaping Personification Technologies: From Interac-

tions to Relationships. In: CHI Ext. Abs. on Human Factors in Computing Sys-
tems, pp. 3657–3662 (2008)

6. Black, M., Yacoob, Y.: Recognizing Facial Expressions in Image Sequences Using
Local Parameterized Models of Image Motion. International Journal of Computer
Vision 25(1), 23–48 (1997)

7. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow
Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.)
ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

8. Donato, G., Bartlett, M.S., Hager, J.C., Ekman, P., Sejnowski, T.J.: Classify-
ing Facial Actions. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 21(10), 974–989 (1999)

9. Frith, C.D., Wolpert, D.M.: The Neuroscience of Social Interaction: Decoding,
imitating, and influencing the actions of others. Oxford University Press (2004)

10. Longuet-Higgins, H.C.: A Computer Algorithm for Reconstructing a Scene from
Two Projections. Nature 293, 133–135 (1981)

11. Niese, R., Al-Hamadi, A., Farag, A., Neumann, H., Michaelis, B.: Facial Expres-
sion Recognition Based on Geometric and Optical Flow Features in Colour Image
Sequences. IET Computer Vision, 1–11 (2011)

12. Orban, G.: Higher Order Visual Processing in Macaque Extrastriate Cortex. Phys-
iology Review 88(88), 59–89 (2008)

13. Rosenblum, M., Yacoob, Y., Davis, L.S.: Human Expression Recognition from Mo-
tion Using a Radial Basis Function Network Architecture. IEEE Transactions on
Neural Networks 7(5), 1121–1138 (1996)

14. Wendemuth, A., Biundo, S.: A Companion Technology for Cognitive Technical
Systems. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Müller,
V.C. (eds.) COST 2102. LNCS, vol. 7403, pp. 89–103. Springer, Heidelberg (2012)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 240–247, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cortically Inspired Sensor Fusion Network
for Mobile Robot Heading Estimation

Cristian Axenie and Jörg Conradt

Fachgebiet Neurowissenschaftliche Systemtheorie, Fakultät für Elektro- und
Informationstechnik, Technische Universität München, 80290 München, Germany

{cristian.axenie,conradt}@tum.de

Abstract. All physical systems must reliably extract information from their
noisily and partially observable environment, such as distances to objects.
Biology has developed reliable mechanisms to combine multi-modal sensory
information into a coherent belief about the underlying environment that caused
the percept; a process called sensor fusion. Autonomous technical systems
(such as mobile robots) employ compute-intense algorithms for sensor fusion,
which hardly work in real-time; yet their results in complex unprepared
environments are typically inferior to human performance. Despite the little we
know about cortical computing principles for sensor fusion, an obvious
difference between biological and technical information processing lies in the
way information flows: computer algorithms are typically designed as feed-
forward filter-banks, whereas in Cortex we see vastly recurrent connected
networks with intertwined information processing, storage, and exchange. In
this paper we model such information processing as distributed graphical
network, in which independent neural computing nodes obtain and represent
sensory information, while processing and exchanging exclusively local data.
Given various external sensory stimuli, the network relaxes into the best
possible explanation of the underlying cause, subject to the inferred reliability
of sensor signals. We implement a simple test-case scenario with a 4
dimensional sensor fusion task on an autonomous mobile robot and demonstrate
its performance. We expect to be able to expand this sensor fusion principle to
vastly more complex tasks.

Keywords: Cortical inspired sensor fusion, graphical network, local processing,
mobile robotics.

1 Introduction

Environmental perception enables a physical system to acquire and build an internal
representation of significant information within its environment. As an example of
such an internal state, accurate self-motion perception is an essential component for
spatial orientation, navigation and motor planning for both real and artificial systems.
A system can build its spatial knowledge using a combination of multiple sources of
information, conveyed from self-motion related signals (e.g. odometry or vestibular
signals), but also from static external environmental cues (e.g. visual or auditory) [1].

 Cortically Inspired Sensor Fusion Network for Mobile Robot Heading Estimation 241

In this paper we focus on one component of self-motion: heading estimation. The
key aspect in this problem is to minimize interference or conflicts between multiple
dynamic and static sources of perceived spatial information.

1.1 State-of-the-Art in Sensor Fusion Algorithms

Sensor fusion finds wide application in many areas of robotics, starting from object
recognition to environmental mapping and localization. Many of the state-of-the-art
sensor fusion methods are based on a probabilistic framework, typically using Bayes'
rule to optimally combine information [2-4]. This rule defines the way to compute the
posterior probability distribution of a state/quantity of interest from prior knowledge
about the state and a likelihood function (e.g. knowledge about how likely different
values of the state will give rise to observed sensory data). Incoming sensory data will
progressively push the belief “away” from the initial prior towards beliefs (posteriors)
that better reflect the data. Different methods translate the posterior into a quantity
[4-5], but need to balance the trade-off between algorithmic complexity and available
computing resources.

1.2 Brains Aim at Flexibility and Robustness versus Optimality

Engineering approaches for sensor fusion typically aim for optimal solutions, as
demonstrated in various amazing robotic demonstrators [6]. Handling dynamic and
complex features in real-world scenarios, however, engineered approaches typically
require intense modifications (in the form of hand tuning), and often lack the ability to
easily translate to new settings. With respect to flexibility and robustness neurobiology
demonstrates vastly superior performance over today’s engineered systems.

Building on principles known from information processing in the brain our proposed
model for sensor fusion migrates away from classical computing paradigms: tightly
coupled processing, storage and representation is replaced with a loosely interconnected
network of distributed computing units, each with local memory, processing and
interpretation abilities. Mutual influence among the different units that represent sensor
data implicitly performs the integration of multiple sensory information.

In this paper Section 2 provides a broad description of the proposed neural network
model. Following, Section 3 presents results from a simple real-world mobile robotic
scenario (heading estimation), and section 4 highlights the main features of the
developed model and presents ideas to extend the developed architecture.

2 Model Description

Large-scale cortical networks provide a framework to integrate evidence from neuro-
anatomical and neuro-physiological studies on distributed information processing in
the cerebral cortex. Elementary sensory processing functions are localized in discrete
recurrently interacting cortical areas, [7-8], whereas complex functions (e.g. cue
integration) are processed in parallel involving large parts of the brain [9].

242 C. Axenie and J. Conradt

Building up on such cortical architectural details we design a network model
capable of finding a consistent representation of self-motion using a distributed
processing scheme. Each unit in the network encodes a certain feature of self-motion,
while the connectivity determines mutual influence between the units, so that
information in each unit is consistent with each other. For the given task of heading
estimation different sensors encode the movement in their own coordinate system and
units. To extract a global motion estimate the network needs to learn correlations to
maintain all information in agreement.

2.1 Generic Network Architecture

The proposed model is based on a recurrent network with dynamics given by
information exchange between its nodes. Each node in the network internally stores a
representation of some perceived aspect of self-motion, which is a simplified form of
a more generic multi-dimensional map based representation and processing paradigm
successfully applied to fast visual scene interpretation in [10]. In this work a network
with multiple maps encoding various aspects of visual interpretations (e.g. light
intensity, optic flow, and camera rotation) found global mutual consistency, by each
map independently trying to be consistent with information in neighboring maps.
Such map based representation and processing paradigms are supported by results
from neuro-physiology and computational neuroscience, in terms of spatio-temporal
correlations used to learn topographic maps for invariant object recognition [8], [11].

Following these principles our proposed 4D sensor fusion network is composed of
four fully connected nodes, which mutually influence each other. Information stored
in each node is represented by a neural population code [13], in which each neuron
represents a preferred angular value. Nodes' mutual influence is characterized by the
physical / mathematical relationship between the four sensor representations.
Relationships between nodes can be interpreted as modulating neuronal connectivity
between the network’s different populations [13]. To minimize mismatch between
values encoded in the nodes, the network will push all representations towards an
equilibrium state in which simultaneously all relationships are - approximately -
satisfied. This resulting state shows the inferred quantities in each of the nodes'
representation with respect to both sensor connection and internal network belief.

2.2 Dynamics

Network dynamics is described by a random gradient descent update process at every
convergence step, so that the value in a selected node will take a small step towards
minimizing the mismatch with a relationship in which the node is involved. Each
node represents a single value in form of a neuronal population code. Relations
between the nodes in the network are arbitrary functions of v variables, fmi,mj,...,mv (t) =
0, where v<N (the number of nodes). The generic update rule for a node mi with
respect to the relationship with node mj in a network with N nodes, given E (the
mismatch between node mi and its relationship with mj) and the update rate η(t) is:

 Cortically Inspired Sensor Fusion Network for Mobile Robot Heading Estimation 243

 () () () ()tmmEtηtm=+tm
jiii ,1 ⋅− , () () ()tmmftm=tmmE

jiiji ,, − (1)

The convergence speed is determined by the update rate η(t). In every iteration the
update rate takes into account the external information from the sensor or the other
node respectively, and the network’s internal belief, to modulate the influence of that
sensor or node:

 () ()

{ }
()
()tmmEN

tmmE
η=+tη

ji

iN

=k
ki

ji,ji,
,

,
01

-

1

⋅
⋅

 (2)

Eq. 2 shows that the update rate η(t) adjusts itself proportionally to the mismatch from
the network’s belief (numerator) and penalizes the influence from a sensor or node if
the values it provides conflicts with the network’s belief.

2.3 Sensor Fusion Network

For our heading estimation scenario the four nodes in the network represent four
sources of information providing heading measurements. We consider inertial
heading (from gyroscope yaw axis, “SG”), magnetic heading (from compass, “SC”),
odometry heading (computed from wheel encoder information, “SW”) and vision
heading (from an on-board camera tracking a distal marker on the ceiling, “ST”); see
Fig. 1, gray outside boxes and Fig. 2 robot setup. Each of the sensors provides raw
data, which is preprocessed to align to a common unit (e.g. by integration,
shift/offset). After the preprocessing stage all sensors are connected to their respective
network node and data flows into the network. Each node in the network (G, C, T, W)
maintains an independent heading estimate. The network computes a global heading
estimate by balancing its internal belief and new sensor contributions. Every
convergence step each node's information is updated as given in eq. 1. For example,
the gyroscope representation update rules for the given network topology are:

 () ()() () () (),tCtη+tGtη=+tG CG,CG, ⋅⋅−11 (3)

 () ()() () () (),tWtη+tGtη=+tG WG,WG, ⋅⋅−11 (4)

 () ()() () () (),tTtη+tGtη=+tG TG,TG, ⋅⋅−11 (5)

 () ()() () () (),tSGtη+tGtη=+tG SGG,SGG, ⋅⋅−11 (6)

The network architecture used in our scenario is depicted in Fig. 1.

244 C. Axenie and J. Conradt

Fig. 1. The network architecture used in the 4 dimensional sensor fusion scenario

One can easily observe the recurrent flow of information within the network and
from sensors into the network. The chosen structure allows balancing contributions
from each sensor within the network, resulting in a global consistent representation.

2.4 Comparison with State-of-the-Art

Relating our method with state-of-the-art probabilistic sensory fusion mechanisms we
we address three key aspects: complexity, flexibility and robustness (Table 1).

Table 1. Comparison between state-of-the-art and our proposed model for sensor fusion

Criteria State-of-the-art approaches (Bayesian) Proposed model
Complexity
computational costs

large number of probabilities to apply
probabilistic inference [2].

compute multiple simple update
rules (similar to eq. 1).

Flexibility
possibility to add
further sensory
modalities

requires parameters adjustments for
additional sensory modalities;
adding sensors improves performance
but increases complexity [3].

sensor addition (adding more
update rules/constraints) is
straightforward and without
complexity increase.

Robustness
handling sensor
failures, conflicts,
and uncertainty

dedicated means to detect failures, not
generally applicable;
challenges in assigning probabilities
in an uncertain context [2].

abnormal sensor activity can be
detected and penalized by
adapting η (e.g. the influence of
that sensor in the global estimate).

3 Model Evaluation

We designed a test case scenario to evaluate the proposed model. This simple
scenario serves as proof-of-concept; we expect to extend the system within the same
framework to other (more complex!) scenarios. A customized omnidirectional mobile
robot (Fig. 2) equipped with inertial measurement unit (IMU, gyroscope and
compass), wheel encoders, and a vision sensor provides a minimalistic system for
heading estimation.

 P reproc es s ing

 S C
C ompas s

 P reproc es s ing

 P reproc es s ing

G
G yros cope

heading
repres entation

Network

 P reproc es s ing

 S G
 Gyros c ope

 P reproc es s ing

C ompas s
heading

repres entation

C

C amera
heading

repres entation

T
Odometry
heading

repres entation

 W

 Cortically Inspired Sensor Fusion Network for Mobile Robot Heading Estimation 245

Fig. 2. Test setup for the 4 dimensional sensor fusion network: omnidirectional mobile robot

Each sensor alone is unable to provide precise heading angle measurements, as
they all are affected by noise and systematic errors. The main challenge is computing
a global estimate of heading direction given all unreliable sources of information. The
test scenario is depicted in Fig. 3, left: the robot follows a simple predefined
rectangular trajectory from start to target (top down view). Both, raw sensor data and
inferred network data, are shown in Fig. 3, right.

Fig. 3. Robot trajectory, raw sensors data and inferred network representations

During operation the sensors’ raw data was preprocessed to align the sensors’
coordinate systems (square boxes in Fig. 1). As shown in the upper right diagram of

4 c m

Omnirob s ens ors

IMU:
3axis Gyros c ope
Magnetic C ompas s

Odometry:
Wheel enc oders

C eiling trac ker:
Vis ion s ens or

IMU

Odometry

C eiling trac ker

R obot referenc e trajec tory

R obot real trajec tory

0 10 20 30 40 50 60 70
-20

-10

0

10

20

30

40

50

c m

Network internal repres entations

S ens ory inputs

246 C. Axenie and J. Conradt

Fig. 3 data from different sensors describe the robot’s heading, but each sensor data
shows a different error. The preprocessed sensor data is fed into the network, which
tries to balance each sensor's contribution, as we see in the lower right diagram in
Fig. 3. The network “pulls” the represented values of the nodes towards a common
heading, thereby compensating for drifts and inaccuracies in individual sensor
readings. The update rate is adapted (refer to eq. 2), such that “plausible” values are
contributing stronger to the global estimate, while “implausible” values are penalized.
Fig. 4 displays the adaptation process of the update rate in detail: to allow relaxation
of the network, each sensor input data was presented for 100 network iterations. Each
node in the network is fully connected to all other nodes and to an individual sensor.

Fig. 4. Network analysis: inputs, inferred representations and learning rate adaptation

The network is able to infer which sources of information to trust by considering
the mismatch (Fig. 4, right side, panels G, C, T, and W) between each local
representation in a node and current representation in other nodes or its sensor. The
network continuously re-evaluates and balances contributions from each sensor, so
that the different representations in the network stay consistent with each other. As
there is no global ground truth data source, and each of the sensors might be affected
by noise and systematic errors, the network attempts to settle in a solution in which
each relationship in the network is satisfied as good as possible.

4 Conclusions and Future Work

By taking inspiration from cortical distributed processing principles the presented
implementation for real-world sensor fusion shows to be an alternative to state-of-the-art

S ens ory inputs

Network
repres entations L earning rate adaptation

G

C

T

W

 Cortically Inspired Sensor Fusion Network for Mobile Robot Heading Estimation 247

methods for sensor fusion, with advantages in terms of complexity, flexibility and
robustness. To improve the network architecture we are currently investigating
temporal relationships between different nodes in the network, allowing to remove a
preprocessing step and instead feeding raw sensor data directly into the network. Such
preprocessing (e.g. integration, differentiation of sensor signals) will then happen
inside the network as dual relations between two representations: one node
representing raw data and a further node representing the derived quantity. We will
extend the network to support sensors of different types (such as pure visual input in
relation to ego motion as shown here), which requires more complex relations and the
representation of multidimensional data. Finally, we envision learning the network
topology and thereby the underlying relations between represented quantities based
on consistent real-world sensory input obtained from mobile robot exploration tasks.

Acknowledgments. The authors would like to thank Matthew Cook of INI,
ETH/University Zürich for intense and fruitful discussions about map based
processing and networks of relations.

References

1. Arleo, A., Rondi-Reig, L.: Multimodal sensory integration and concurrent navigation
strategies for spatial cognition in real and artificial organisms. J. Integrative
Neuroscience 6(3), 327–366 (2007)

2. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Berlin (2008)
3. Hall, D.L., Llinas, J.: An Introduction to Multisensor Data Fusion. Proc. of the IEEE 85(1),

6–23 (1997)
4. Griffiths, T.L., Yuille, A.L.: A primer on probabilistic inference. Trends in Cognitive

Sciences 10(7) (2006)
5. Körding, K.P., et al.: Causal Inference in Multisensory Perception. PLoS ONE (2007)
6. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)
7. Bressler, S.L.: Understanding Cognition Through Large-Scale Cortical Networks. Current

Directions in Psychological Science 11(2), 58 (2002)
8. Swindale, N.V.: How different Feature Spaces may be Represented in Cortical Maps.

Network: Computation in Neural Systems 15 (2005)
9. Sporns, O.: Networks of the Brain. MIT Press (2011)

10. Cook, M., Gugelmann, L., Jug, F., Krautz, C., Steger, A.: Interacting maps for fast visual
interpretation. In: Proc. of International Joint Conference on Neural Networks,
pp. 770–776 (2011)

11. Michler, F., Eckhorn, R., et al.: Using Spatiotemporal Correlations to Learn Topographic
Maps for Invariant Object Recognition. J. of Neurophysiology 102, 955–964 (2009)

12. Carreira-Perpinan, M.A., Lister, R.J., et al.: A Computational Model for the Development
of Multiple Maps in Primary Visual Cortex. J. Cereb. Cortex 15, 1222–1233 (2005)

13. Averbeck, B.B., Latham, P.E., Pouget, A.: Neural correlations, population coding and
computation. Nature Review Neuroscience (7), 358–366 (2006)

Learning Sensorimotor Transformations

with Dynamic Neural Fields

Yulia Sandamirskaya1 and Jörg Conradt2

1 Institut für Neuroinformatik, RUB, Universitätstr. 150, Bochum, Germany
yulia.sandamirskaya@ini.rub.de

2 Inst. of Automatic Control Engineering, TUM, Karlstr. 45, Munich, Germany
conradt@tum.de

Abstract. The sensorimotor maps link the perceived states to actions,
required to achieve the goals of a behaving agent. These mappings de-
pend on the physics of the body of the agent, as well as the dynamics
and geometry of the environment, in which the behavior unfolds. Au-
tonomous acquisition and updating of the mappings is crucial for ro-
bust behavior in a changing real-world environment. Autonomy of many
architectures, which implement the learning and adaptation of sensori-
motor maps, is limited. Here, we present a neural-dynamic architecture
that enables autonomous learning of the sensorimotor transformation,
involved in looking behavior. The architecture is built using Dynamic
Neural Fields and is implemented on a robotic agent that consists of an
eDVS sensor on a pan-tilt unit.

1 Introduction

Behavior of a biological or artificial cognitive agent may be understood in terms
of the sensorimotor transformations, which map the perceived states of the en-
vironment and the agent’s body onto actions, leading to accomplishment of the
agent’s goals. These transformations, or mappings, may be segregated into more
or less independent modules based on the available sensory and motor modali-
ties, which can be organized according to different goals, pursued by the agent
[2]. Critically, the mappings between the sensory states and the actions change
constantly, because of the changes in the agent’s body, as in the case of a de-
veloping and aging human, or changes in the environment. Therefore, learning
and adaptation of the sensorimotor maps is essential for flexible and robust
generation of purposeful behavior in a real-world environment [9].

A possible mechanism to learn and update a mapping was introduces by
Kohonen early on in his work on Self-Organizing Maps (SOMs) [7]. Using the
mathematical mechanism of SOMs, several architectures have been introduced,
which enable learning of sensorimotor mappings, involved in modeling forward
and inverse models in robotic control [12,6,4,17]. Other architectures for adap-
tive control based on learning sensorimotor mappings use learning in multilayer
neural-networks [13], incremental memory-trace update on the map based on
experience [10], or error-driven learning rules (for a classical example, see [8]).

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 248–255, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Learning Sensorimotor Transformations 249

This and much more work on adaptive robotic control emphasize the impor-
tance and feasibility of learning and adaptation of the sensorimotor mappings.
However, all these methods share a subtle, but critical limitation, which is hin-
dering their application outside restricted scenarios. This limitation is the lack
of autonomy. For instance, in training a SOM or a neural network in an adaptive
controller, robotic actions are generated by sending random commands and ob-
serving sensory states when each action is finished. Both the command and the
sensory state are stored in a data vector, which is used – in most cases offline
– to drive the self-organization algorithm. The autonomy of the learning pro-
cess is limited here, because the mechanisms of autonomous selection, initiation,
monitoring, and termination of the actions are not included in the models. The
moments in time, when it is appropriate to update the map are not detected
autonomously from the sensory flow. These problems of coupling of the learning
processes to the perceptual and motor systems have to be solved in order to
enable learning along with behavior in a real-world robotic scenario.

Autonomy of cognitive processes and their development is central in the dy-
namical systems approach to modeling human cognition [16]. Dynamic Field
Theory (DFT) is a particular flavor of the dynamical systems approach, which
has been successful in application of the cognitive models to control of robotic
behavior [14,11,19]. The core element in this framework are the Dynamic Neu-
ral Fields (DNFs) – activation functions defined over topological spaces, which
characterize the state of the behaving agent and its representation of the envi-
ronment. Localized activity peaks emerge as stable solutions of the dynamics of
DNFs and represent salient characteristics of the perceived states, as well as the
goals of the upcoming motor actions.

Here, we demonstrate how the framework of DFT can be applied to learning
the sensory-motor transformations involved in looking behavior. We explore how
autonomous learning may be enabled in this framework along with autonomous
perception and action generation. The actions are initiated and terminated au-
tonomously based on emerging representations of intentional states. The learn-
ing process is triggered autonomously when a match between the intended and
the actual sensory state is perceived and its representation is stabilized in the
condition-of-satisfaction neural-dynamics. We present here an implementation
of the learning architecture in a robotic system using a pan-tilt camera unit.

2 Methods: Mathematical Framework and the Dynamical
Architecture

2.1 Dynamic Neural Fields

The dynamics of populations of biological neurons can be described by a continu-
ous differential equation, which abstracts away the discreteness and the spiking
nature of individual neurons, Eq. (1) [18,5,1]. Moreover, this equation can be
formulated not in the space of the network of physical neurons but, instead,
in the functional space of behavioral parameters, to which the neurons respond

250 Y. Sandamirskaya and J. Conradt

according to their tuning curves. In this formulation, an architecture of cou-
pled dynamic neural fields is still related to neural activity in real brains, but
expresses the dynamics of a neural system in functional, behavioral terms:

τu̇(x, t) = − u(x, t) + h+

∫
f(u(x′, t))ω(|x′ − x|)dx′ + I(x, t). (1)

In Eq. (1), u(x, t) is the activation of a dynamic neural field (DNF) at time t; x is
one or several behavioral parameters (e.g., color, pitch, space, or velocity), over
which the DNF is spanned; τ is the relaxation time-constant of the dynamics; h
is the negative resting level, which defines the activation threshold of the field;
f(·) is the sigmoidal non-linearity shaping the output of the neural field when it
is connected to other fields or self-connected; the latter connections are shaped
by the “Mexican hat” lateral interaction kernel, ω(|x′ − x|), with a shot-range
excitation and a long-range inhibition; I(x, t) is the external input to the DNF
from the sensory systems or other DNFs.

The dynamics of a DNF (Eq. (1)) has an attractor, determined by the ex-
ternal input, I(x, t), the resting level of the field, h, and the strength of lateral
interactions, specified by the kernel, ω(|x− x′|). A distinctive type the attractor
of a DNF is a localized activity peak, which may be “pulled up” by the lateral
interactions from a distributed input with inhomogeneities. Such peaks of ac-
tivation are units of representation in Dynamic Field Theory [15]. Because of
the stability and attractor properties of the DNF dynamics, cognitive models
formulated in DFT may be coupled to real robotic motors and sensors and were
shown to generate cognitive behavior in autonomous robots [14].

Intentionality in DFT. In order to enable autonomous activation and deac-
tivation of dynamical attractor states in DNF architectures, each behaviorally
relevant component consists of two dynamic neural fields: an intention and a
condition-of-satisfaction DNF. The intention DNF is coupled to motor systems
of the agent and drives its behavior by setting attractors in the low-level mo-
tor dynamics. The condition-of-satisfaction DNF receives a sub threshold input
from the intention DNF and is activated by the sensory input, which matches
the expected final state of the intended action. An active CoS field inhibits the
intention DNF and therewith terminates the current behavior. After a brief tran-
sition instability, in which the CoS field looses its activation, the next action is
selected driven by the external (bottom up) or internal (top-down) input to the
intention DNF [11].

Learning in DFT. The basic learning mechanism in the DFT is the formation
of memory traces of positive activation of a DNF. The memory trace is coupled
back to the DNF and facilitates its activation at previously activated locations.
Two DNFs may be coupled through a higher-dimensional memory structure,
similar to a weight matrix in the standard neural networks. In DFT, such weight
matrix is adapted through the mechanism of memory trace formation: similar to
the Hebbian learning process, the coupling is strengthen between locations in two

Learning Sensorimotor Transformations 251

eDVS sensorPan-Tilt-Yaw
motor unit

adaptive weights

motor CoS

motor intention
DNF

visual intention
DNF

perceptual DNF

visual CoS

Visual match DNF

p
.

p..

t
.

t..

eDVS on a pan-tilt unit

motor dynamics

Fig. 1. The DNF learning architecture: the eDVS provides a visual input to the per-
ceptual Dynamic Neural Field (DNF), which in its turn drives the visual intention
DNF, and, through an adaptive mapping, the motor intention DNF. Visual and motor
condition-of-satisfaction (CoS) nodes control the action-perception flow, and the visual
match DNF detects moments, when the mapping should be updated.

DNFs, which are activated simultaneously. The learning process is functionally
robust if the coupling is updated only when the behaviorally relevant states are
active. In the looking architecture, presented next, we combine the elements
of intentionality with learning dynamics to demonstrate autonomy of learning
processes in DFT.

2.2 The DFT Closed-Loop Looking Architecture

Fig. 1 shows the DNF architecture, which both generates the autonomous looking
behavior of the pan-tilt camera system and enables adaptation of the sensory-
motor mapping to produce correct motor commands that move the camera to-
ward visual targets. The architecture consists of the following dynamical
structural modules.

Visual System. In the architecture, an embedded dynamic vision sensor (eDVS)
[3] asynchronously generates events, which represent those pixels in the current
field of view, for which the observed temporal contrast changes, e.g. because
of moving objects in an otherwise static scene. Such events, generated by the
hardware, provide positive input to a perceptual DNF (pDNF), in which peaks
of suprathreshold activation are built at those locations where salient moving
pixels are concentrated. The pDNF is input-driven, i.e. activity peaks decay if
input ceases and are not sustained, new moving input induces new peak(s).

252 Y. Sandamirskaya and J. Conradt

The pDNF provides input to the visual intention DNF (viDNF), in which
self-sustained activity peaks may be formed. A peak in this field represents
the target for the next saccade and has to be sustained for the time of the
saccade, although the object representation moves in the visual field because of
the camera motion. The viDNF is inhibited by the visual CoS, which signals that
the saccadic movement is successfully accomplished. The viDNF is also inhibited
by the motor CoS to a weaker extent, so that a new peak may be built in this
field after an unsuccessful saccade, which failed to center the target.

Motor System. A peak of positive activation in the viDNF induces an activity
peak in the motor intention DNF (miDNF) through a matrix of adaptive weights,
which map locations in the viDNF to locations in the miDNF. The learning
mechanism, active in this coupling structure will be described in the section on
Sensorimotor transformation.

Activity peaks in the miDNF set attractors for the motor dynamics of the
looking behavior according to Eq. (2):

τ ¨pan(t) = − ˙pan(t) + ξpan(t), τ ¨tilt(t) = − ˙tilt(t) + ξtilt(t), (2)

where ξpan(t) and ξtilt(t) are attractors for the rate of change of the pan and the
tilt of the camera head unit, set according to Eq. (3):

ξpan(t) = c1

∫∫
kf(umot(k, l, t))dkdl,

ξtilt(t) = c2

∫∫
lf(umot(k, l, t))dkdl. (3)

Here, k and l are the two dimensions of the miDNF, which correspond to the
pan and tilt velocities, respectively. The ξpan and ξtilt are estimations of the
location of the activity peak in the miDNF along its two dimensions; c1 and c2
are scaling constants.

A peak in the miDNF sets a non-zero attractor for the pan and tilt velocities.
As long as the velocity variables approach this attractor, the camera moves.
When the attractor is reached, the motor CoS node, Eq. (4), is activated and
inhibits the miDNF. When activity in the miDNF ceases, the motor attractors
are set to zero (according to Eq. (3)).

τ v̇cos(t) = −vcos(t) + hcos + cexcf(vcos(t)) + cmf∫∫ (umot) + cafdiff . (4)

In Eq. 4, vcos(t) is activation of the motor CoS node for either pan or tilt move-
ment; f∫∫ (umot) =

∫∫
f(umot(k, l, t))dkdl is the peak-detector for the miDNF;

fdiff = f(0.5− |ξpan − ˙pan|) is a detector, activated when the state variable for
the pan or the tilt dynamics reaches the respective attractor; cm and ca are scal-
ing constants for these two contributions, cexc is the strength of self-excitation
of the motor CoS node.

Learning Sensorimotor Transformations 253

Following the dynamics of Eq. (2-4), the “saccades” are produced with differ-
ent horizontal and vertical amplitudes depending on the location of the activity
peak in the miDNF.

Sensorimotor Transformation. Initially, the coupling between the viDNF
and the miDNF is modeled by a random connectivity matrix. The coupling
structure is updated directly after a successful saccade, when the (still active)
location in the visual intention DNF and the (still active) location in the motor
intention DNF correspond to a correct mapping. The strength of the memory-
trace activation in the respective location in the coupling structure is updated
according to a simple Hebbian-like learning rule (“fire together – wire together”),
gated by the activity in the visual match DNF (vmDNF), Eq. (5).

τlṪ (x, y, k, l) = λ
∫
f(umatch(x, y))dxdy ·

·
(
− T (x, y, k, l) + f(uvis(x, y))× f(umot(k, l))

)
(5)

The coupling structure T (x, y, k, l) (time-dependence is omitted in the equation)
between the viDNF, uvis(x, y), defined over image coordinates (x, y), and the
miDNF, umot(k, l), defined over motor coordinates, k (pan) and l (tilt), retains
its values if the vmDNF, umatch(x, y), is salient. If there is a positive activation in
the vmDNF (i.e., the visual input from the target landed in the central part of the
pDNF, see Fig. 1), the integral before the learning term shunts the change in the
mapping to be non-zero. The learning equation sets an attractor for T (x, y, k, l)
at the values of positive correlation between the two intention DNFs, calculated
as a sum between the output of the viDNF, expanded along the dimensions of
the miDNF, and the output of the miDNF, expanded in the dimensions of the
viDNF, augmented with a sigmoidal threshold function (this neural-dynamic
operation is denoted by the × symbol in Eq. (5)).

3 The Learning Experiments

Fig. 2 (left) shows an exemplary time-course of the pan component of several
saccadic movements. The upper plot shows the time-course of the pan-velocity
variable, sent to the motors, and of the attractor for this variable. The middle
plot shows the respective pan trajectory. In the lower plot, activation of the
motor CoS is depicted. Fig. 2 (right) shows the sensorimotor mapping before
learning and after several successful saccades. The 4D mapping is shown here
as slices along the motor dimensions, arranged in the figure according to the
visual dimensions. Before learning, the mapping is initialized as random con-
nections tensor. After each successful saccade, one region in the 4D field, which
corresponds to the overlap between activity peaks in the viDNF and miDNF,
is updated (one such region is marked with the red circle; note the light-blue
dots in the tiles in this region). After only a few successful saccades (nine shown
here), a large portion of the 4D space of the mapping is learned (regions marked
by the red circle and the red arrows), because of the finite size of activity peaks
in the intention DNFs.

254 Y. Sandamirskaya and J. Conradt

Weights before learning

Weights after nine successful gazes

x, intention DNF

y,
 in

te
nt

io
n

D
N

F

pan, motor DNF

til
t,

m
ot

or
 D

N
F

Time-course of a learning session

Fig. 2. Left: Exemplary time-course of a learning session. Right: The mapping be-
tween the visual and the motor intention spaces before learning (top), and after several
successful “saccades” (bottom).

4 Discussion

In this paper, we have presented a neural-dynamics architecture that enables
autonomous learning of a sensory-motor mapping involved in looking behavior,
generated with an eDVS camera mounted on a pan-tilt unit. We have demon-
strated how learning accompanies autonomous generation of the looking actions
from the low-level sensory input in a closed behavioral loop. We have combined
stability of the Dynamic Neural Field representations with elements of the be-
havioral organization to enable autonomy of the learning process. This includes
autonomy of selection of the visual target, initiation of the motor action, termi-
nation of the motor action, and decision to trigger the learning dynamics. Such
autonomy is critical for implementation of algorithms for adaptation of senso-
rimotor mappings in real-world robotic scenarios, as well as for understanding
autonomy of learning processes in biological cognition.

Acknowledgement. The authors gratefully acknowledge the financial support
of DFG SPP Autonomous Learning, within Priority Program 1567 and the Tel-
luride Neuromorphic Cognition Engineering Workshop.

References

1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields.
Biological Cybernetics 27, 77–87 (1977)

2. Brooks, R.A.: New approches to robotics. Science 253, 1227–1232 (1991)

Learning Sensorimotor Transformations 255

3. Conradt, J., Berner, R., Cook, M., Delbruck, T.: An embedded aer dynamic vision
sensor for low-latency pole balancing. In: 2009 IEEE 12th International Conference
on Computer Vision Workshops (ICCV Workshops), pp. 780–785. IEEE (2009)

4. Gaskett, C., Cheng, G.: Online learning of a motor map for humanoid robot reach-
ing (2003)

5. Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architec-
tures. Neural Networks 1, 17–61 (1988)

6. Guilherme, G., Araújo, A.F., Ritter, H.J.: Self-organizing feature maps for mod-
eling and control of robotic manipulators. Journal of Intelligent & Robotic Sys-
tems 36(4), 407–450 (2003)

7. Kohonen, T.: Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics 43(1), 59–69 (1982)

8. Kuperstein, M.: Infant neural controller for adaptive sensory-motor coordination.
Neural Networks 4(2), 131–145 (1991)

9. Maes, P., Brooks, R.A.: Learning to coordinate behaviors. In: Proceedings of the
Eighth National Conference on Artificial Intelligence, pp. 796–802 (1990)

10. Metta, G., Sandini, G., Konczak, J.: A developmental approach to visually-guided
reaching in artificial systems. Neural Networks 12(10), 1413–1427 (1999)

11. Richter, M., Sandamirskaya, Y., Schöner, G.: A robotic architecture for action
selection and behavioral organization inspired by human cognition. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS (2012)

12. Ritter, H.J., Martinetz, T.M., Schulten, K.J.: Topology-conserving maps for learn-
ing visuo-motor-coordination. Neural Networks 2(3), 159–168 (1989)

13. Saegusa, R., Metta, G., Sandini, G., Sakka, S.: Active motor babbling for sensori-
motor learning. In: IEEE International Conference on Robotics and Biomimetics,
ROBIO 2008, pp. 794–799. IEEE (2009)

14. Sandamirskaya, Y., Zibner, S., Schneegans, S., Schöner, G.: Using dynamic field
theory to extend the embodiment stance toward higher cognition. New Ideas in
Psychology. Special Issue “Adaptive Behavior” (in press)

15. Schöner, G.: Dynamical systems approaches to cognition. In: Sun, R. (ed.) Cam-
bridge Handbook of Computational Cognitive Modeling, pp. 101–126. Cambridge
University Press, UK (2008)

16. Thelen, E., Smith, L.B.: A Dynamic Systems Approach to the Development of Cog-
nition and Action. The MIT Press, A Bradford Book, Cambridge, Massachusetts
(1994)

17. Toussaint, M.: A sensorimotor map: Modulating lateral interactions for anticipation
and planning. Neural Comput. 18(5), 1132–1155 (2006),
http://dx.doi.org/10.1162/089976606776240995

18. Wilson, H., Cowan, J.: A mathematical theory of the functional dynamics of cor-
tical and thalamic nervous tissue. Biological Cybernetics 13, 55–80 (1973)

19. Zibner, S.K.U., Faubel, C., Iossifidis, I., Schöner, G.: Dynamic neural fields as
building blocks for a cortex-inspired architecture of robotic scene representation.
IEEE Transactions on Autonomous Mental Development 3(1), 74–91 (2011)

http://dx.doi.org/10.1162/089976606776240995

Learning Temporally Precise Spiking Patterns

through Reward Modulated
Spike-Timing-Dependent Plasticity

Brian Gardner and André Grüning

Department of Computing, University of Surrey,
Guildford, Surrey, GU2 7XH, United Kingdom

{b.gardner,a.gruning}@surrey.ac.uk

Abstract. Precise neuronal spike timing plays an important role in
many aspects of cognitive processing. Here, we explore how a spiking neu-
ral network can learn to generate temporally precise spikes in response
to a spatio-temporal pattern, through spike-timing-dependent plasticity
modulated by a delayed reward signal. An escape noise neuron is imple-
mented as the readout to incorporate the effect of background noise on
spike timing. We compare the performance of two different escape rate
functions that drive spiking in the readout neuron: the Arrhenius & Cur-
rent (A&C) and Exponential (EXP) model. Our results show that the
network can learn to reproduce target spike patterns containing between
1 and 10 spikes with 10 ms temporal accuracy. We also demonstrate the
superior performance of the A&C model over the EXP model for the
parameters we consider, especially when reproducing a large number of
target spikes.

Keywords: Neuronal Plasticity, Stochastic Neuron, Synapses.

1 Introduction

Generating temporally precise sequences of spikes in response to synaptic in-
put is a fundamental process of neural activity [3]. Learning to generate such
responses is considered to take place in the brain through the modification of
synaptic strengths between neurons. A variety of synaptic processes are found
to drive short to longer term synaptic changes [13]. In particular, Spike-Timing-
Dependent Plasticity (STDP) seems to play a key role in learning: a process
experimentally observed in hippocampal neurons [2]. A method proposed by
Ponulak et al. [15], Remote Supervised learning Method (ReSuMe), demon-
strated how such an STDP process can be applied in teaching a network of
spiking neurons to map input patterns to arbitrary target spike trains. Further-
more, this method was extended to learning in multilayered networks [10,17].
However, whilst ReSuMe retains a good degree of biological plausibility through
the inclusion of STDP, it is uncertain how a feedback signal in the form of
a target spike train can realistically be communicated instantaneously during
learning.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 256–263, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Learning Temporally Precise Spiking Patterns 257

Reward modulated STDP has emerged as a more plausible hypothesis for
learning with spiking neurons, where time-dependent correlations in the spiking
activity drive synaptic strength modifications, subject to a global reward signal
[7,11,12]. For learning a target spike train, this corresponds to strengthening
synapses associated with triggering the correct firing times. Previous investiga-
tions have demonstrated how networks of spiking neurons learn to reproduce
temporally precise sequences of spikes with reward modulation [6,12,8,5]. Fur-
thermore, the importance of background noise has been indicated, where varying
neuronal spiking activity is essential for the exploration of reward space towards
discovering those spiking patterns that are desired.

In this paper, we implement a stochastic neuron model and investigate its
ability to learn a target spike train in response to a spatio-temporal spiking
pattern, through a reward-maximising STDP rule [8]. For biological plausibility,
only delayed reward signals are considered, where feedback on the correctness
of a response becomes available upon cessation of the input pattern. We also
consider two different forms for the escape rate to drive neuronal spiking and
compare their performance over a range of target spike trains.

2 Method

2.1 Single Neuron Model

We consider a two-layer feedforward neural network based on [14,18,9]. A single
readout neuron receives input from 1 ≤ j ≤ M presynaptic neurons. The spike
train received from the jth neuron is denotedXj , and the spatio-temporal spiking
pattern over all M inputs is X = {X1, ..., XM}. If the readout neuron generates
the output spike train Y in response to X, then its membrane potential at time
t is:

u(t|X, Y) := Urest +

M∑
j=1

wj

∑
s∈Xj

ε(t− s) +
∑
s∈Y

κ(t− s) , (1)

with Urest = −70 mV the resting membrane potential and wj the jth afferent
synaptic weight. We approximate the Postsynaptic Potential (PSP) kernel as
a double exponential: ε(s) = ε0(e

−s/τm − e−s/τs), and the reset kernel: κ(s) =
κ0e

−s/τm ; both kernels are set to 0 for s < 0. We set ε0 = 1.3 mV, such that
a synaptic weight wj = 1 evokes a PSP with an absolute amplitude close to 1
mV, and we set κ0 = −10 mV. The membrane time constant is set to τm = 10
ms and the synaptic time constant τs = 0.7 ms.

To account for background noise, we implement an escape noise model [9].
Spiking events are driven by an escape rate ρ(u(t)), that gives the instanta-
neous firing density for the readout neuron as a function of the time-dependent
membrane potential. We set the simulation time step δt = 1 ms.

In our simulations we consider two different functional forms for the escape
rate, the first being the Arrhenius & Current (A&C) [9]:

ρA&C(u, u̇) = 2

(
c1
τm

+
c2
σ
[u̇]+

)
exp

{− [u−ϑ]2

σ2

}
1 + erf

{− u−ϑ
σ

} , (2)

258 B. Gardner and A. Grüning

with the firing threshold set to ϑ = −55 mV. The parameter σ is the noise ampli-
tude, corresponding to the magnitude in the fluctuations of u due to background
stochastic spike arrival. We set σ = 5 mV, mimicking that measured from in vivo
experiments [4]. The parameters c1 and c2 are set to 0.72 and

1√
π
respectively [9].

The term [u̇]+ indicates that only positive gradients in the membrane potential
contribute to the firing density. The error function erf ensures a linear increase
in the firing density for u > ϑ.

The second simpler model, referred to as Exponential (EXP), is more com-
monly used [9]:

ρEXP(u) = k exp{β(u− ϑ)} . (3)

We set the stochasticity parameters k = 0.156 and β = 0.334, such that for
u < ϑ: ρEXP(u) ≈ ρA&C(u, u̇ = 0), giving comparable levels of noise between the
two models.

2.2 Learning Algorithm

A stochastic neuron model allows for the determination of the likelihood for
generating the set of output spikes Y in response to X. By the technique of
gradient ascent, the eligibility for the jth synapse can be found as [14,7]:

ej(t) =
ρ′(u)
ρ(u)

[Y(t)− ρ(u)]
∑
s∈Xj

ε(t− s) , (4)

where ρ′(u) = dρ(u)
du and Y(t) = ∑

s∈Y δ(t − s) is the spike train of the readout
neuron as a sum of δ functions. Weights are updated as ẇj(t) = ηRej(t), with
learning rate η and reward signal R. It is unrealistic however, to assume that
reward can be delivered instantaneously at every moment in time. Therefore,
ej(t) is low-pass filtered to provide a moving average called the synaptic eligibility
trace Ej(t) [7,18], given as:

τRĖj(t) = ej(t)− Ej(t) , (5)

where the time constant τR is matched to the duration of the input pattern
X. In our simulations, weights were updated only at the end of each episodic
presentation of X when reward became available, where we set the duration of
each episode T = 500 ms.

For the A&C model, we determined the eligibility as:

eA&C
j (t) = A(u) [Y(t) − ρA&C(u, u̇)]

∑
s∈Xj

ε(t− s) with (6)

A(u) =
2

σ

(
1√
π

exp
{− [u−ϑ]2

σ2

}
1 + erf

{− u−ϑ
σ

} − u− ϑ

σ

)
, (7)

Learning Temporally Precise Spiking Patterns 259

where we neglected terms containing higher order time derivatives of u̇. Pre-
liminary simulations showed that such contributions were minimal, having little
overall impact on learning. For the EXP model, the eligibility is simply given as:

eEXP
j (t) = β [Y(t)− ρEXP(u)]

∑
s∈Xj

ε(t− s) . (8)

2.3 Learning a Target Spike Train

We wish to teach the network to respond to a spatio-temporal spiking pattern X
with an output spike train Y out, matching an arbitrary target spike train Y ref .
Similar in approach to [6,5], we use the van Rossum Distance (vRD) [16] to mea-
sure the dissimilarity between Y out and Y ref , giving the metric D. We arbitrarily
set the coincidence time constant τc = 15 ms. To remove the dependence of the
vRD on the number of target spikes, D is normalized by setting DN = D/D0,
where D0 is the vRD from just Y ref . DN ∈ [0,∞) is then mapped to a reward
value R ∈ (0, 1] as R = exp (−αDN), where we set α = 4 such that reward
becomes negligible for distances DN > 1. Maximum reward R = 1 is attained
when DN = 0, corresponding to a perfect match between the spike trains Y out

and Y ref . DN is determined when the presentation of X to the network termi-
nates. We additionally set R = 0 when no output spikes are generated, since a
lack of firing activity would lead to stagnation in learning.

Rather than directly substitute R into the weight update rule, we implement
an adaptation of the Temporal Difference (TD) error rule, originally defined
in classical Reinforcement Learning [1]. Following [6], the TD error on the nth

episodic presentation of the input pattern is given as δR(n) = R(n)− 〈R〉, with
the moving average of reward updated as 〈R〉 ← 0.1R(n)+ 0.9 〈R〉. The update
for the jth synaptic weight after the nth presentation of X then becomes:

Δwj(n) = η δR(n)Ej(T) , (9)

where Ej(T) is the jth synaptic eligibility trace at the end of the nth episode,
with time t = T .

2.4 Plasticity Rules

For learning, we implement ‘additive’ STDP [13], where synaptic weight changes
Δwj are simply clipped if the absolute value |wj | moves outside of the range
[wmin, wmax]. We set wmin = 5× 10−3 and wmax = 5 as the minimum and
maximum attainable absolute synaptic weights respectively. In all cases, plastic-
ity takes place in both excitatory and inhibitory connections, where inhibitory
connections have negative values for wj .

To maintain a homeostatic firing rate and introduce competition between
afferent connections, a simplified adaptation of the synaptic scaling rule proposed
by [19] is used:

Δwscaling
j = γ |wj |

[
N ref −Nout

]
, (10)

260 B. Gardner and A. Grüning

where γ is the scaling strength, N ref the number of target spikes and Nout the
number of spikes generated by the readout neuron over the duration of each
learning episode. Weight changes from scaling are implemented ‘additively’ and
take place at the end of each learning episode, where we set the scaling strength
γ = 1× 10−3.

2.5 Network Setup and Learning Task

We implemented a two-layer fully-connected feedforward network, consisting of
500 neurons in the first layer and a single readout neuron in the second layer.
Either the A&C or EXP model defined the readout neuron. The input pattern
X consisted of an independent Poisson-distributed spike train for every input
neuron, each with a mean firing rate of 6 Hz. Synaptic weights between the
first layer and readout neuron were initialized by independently selecting each
value from a Gaussian distribution, with means 0.32 and 0.26 for A&C and
EXP respectively and the standard deviation 1/3 the mean. These values were
selected to drive the initial firing rate of the readout neuron to 6 Hz. The ratio
of excitatory to inhibitory weights was 4 : 1.

For each learning task the network had to learn to reproduce a target spike
train, with spikes selected from a uniform distribution over [50, T − 50]. For
multiple-spike target trains, target spikes were separated by a minimum of 2τc
to avoid confliction.

3 Results

We explored the capability of both the A&C and EXP model in learning to
reproduce an arbitrary target spike train in response to a fixed input pattern,
where the number of target spikes ranged from 1-10. In all simulations we set
the learning rate to η = 200 for both A&C and EXP readout neurons.

To characterise learning, we defined a performance measure p such that desir-
able responses by the network gave p = 100% and p = 0 otherwise. We considered
desirable responses to occur on those episodes where every target spike could be
paired to within Δt = 10 ms of an output spike, given that such values for Δt
between output and target spikes had the effect of reducing DN . We additionally
set the constraint that the output spike train must contain the same number of
spikes as its target, thereby disallowing spurious spiking. Since there were large
fluctuations in the output with each episode, we took the performance as a mov-
ing average. The average performance was updated on each episode according
to p̃(n) = (1−λ)p̃(n− 1)+λp(n) with λ = 0.004. p̃(n) measured the probability
of the network generating a desired response on the nth episode. To measure the
convergence in learning, we took a similar approach as Florian [7]: convergence
was considered to take place on episode number nc if p̃(n) did not become larger
than p̃(nc) for episode numbers between nc and nc + ν. The convergence obser-
vation period ν was set between 1000-5000 episodes, scaling with the number of
target spikes to be learnt.

Fig. 1 shows the performance and convergence speed of the A&C and EXP
escape rates when learning to reproduce 1-10 target spikes. We found that A&C

Learning Temporally Precise Spiking Patterns 261

1 5 10
0

25

50

75

100

Number of target spikes

Pe
rf

or
m

an
ce

 (
%

)

A&C
EXP

1 5 10
0

0.5

1

1.5

2

2.5
x 10

4

Number of target spikes

C
on

ve
rg

en
ce

 e
pi

so
de

s

A&C
EXP

Fig. 1. Each network learning to reproduce an arbitrary N-spike target train in response
to a fixed input pattern. (Left) Performance p̃ at convergent episode number nc for each
network. (Right) Number of episodes to convergence nc in the performance p̃ for each
network. Each point is the mean over between 10-20 independent learning tasks, where
error bars show the standard error of the mean.

consistently outperformed EXP, where the difference in p̃ between the two mod-
els approached 50 percentage points for 10 target spikes. A&C maintained a good
level of performance over the entire range of target spike trains we considered,
with a minimum of p̃ = 59±2% for 10 target spikes. By contrast, the performance
of EXP deteriorated rapidly, with p̃ = 9.6± 0.7% for 10 target spikes. In terms
of the convergence speed, A&C converged more rapidly than EXP from between
1 and 5 target spikes, although the reverse was found for target spikes greater
than 5, where the convergence time for EXP saturated. For A&C, there was an
indication of decreasing convergence rate from 8 target spikes. The decreased
number of convergence episodes for EXP reflected the relatively fast attainment
of poorer convergent performance.

For illustration, we show a typical spike raster for each escape rate when
learning to reproduce an 8-spike target train, shown in Fig. 2. Clearly, A&C
outperformed EXP, where we found A&C took just over 7500 episodes to attain
a performance of 50%, corresponding to a performance of ∼ 10% for EXP.
According to Fig. 1, the number of episodes to convergence in p̃ for 8 target
spikes were nc = (1.99± 0.08)× 104 and nc = (1.38± 0.07)× 104 for A&C
and EXP respectively. In relation to Fig. 2, these values for nc indicated those
episodes beyond which no further gains in performance were possible. Although
it might appear that performance converged earlier, especially for A&C, there
existed an intermediate period of ‘fine-tuning’, during which spurious spiking
was further reduced to allow for relatively smaller but significant gains in the
performance.

262 B. Gardner and A. Grüning

Fig. 2. Learning to reproduce an 8-spike target train in response to a fixed input pat-
tern. Both spike rasters reflect typical network responses. (Left) A&C model. (Right)
EXP model. Note the broader spread of the EXP model around the target spike times.

4 Discussion

We have explored the utility of a stochastic neuron model in learning to repro-
duce temporally precise spiking patterns through reward modulated STDP, a
process that might underpin learning in the brain. Furthermore, we have in-
vestigated two different escape rate functions to drive neuronal spiking, and
compared their performance over a range of target spike trains. We found using
an escape noise neuron model to be ideally suited to the task of reproducing
target spike trains by reinforcement, given that a degree of background noise
was essential in driving explorative spiking during learning. In terms of the es-
cape rate model, A&C performed consistently better than EXP for the set of
parameters considered, with the difference in performance being apparent for a
larger number of target spikes. We were, however, primarily motivated in ap-
plying the A&C rather than just the EXP model given its dependence on the
experimentally measurable noise amplitude parameter σ.

In our network we only included one readout neuron for simplicity. More real-
istically we can expect populations of neurons processing similar input patterns,
where the output can be “averaged over” (for example by a leaky integrator) to
produce a more deterministic response. Given that our simulations were limited
to learning single input-output pattern pairs, future work utilizing such popula-
tions would likely facilitate the learning of several such pattern pairs.

Acknowledgement. BG was fully supported by EPSRC grant EP/J500562/1.

References

1. Barto, A., Sutton, R.: Reinforcement learning: An introduction. MIT Press, Cam-
bridge (1998)

Learning Temporally Precise Spiking Patterns 263

2. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: depen-
dence on spike timing, synaptic strength, and postsynaptic cell type. The Journal
of Neuroscience 18(24), 10464–10472 (1998)

3. Bohte, S.: The evidence for neural information processing with precise spike-times:
A survey. Natural Computing 3(2), 195–206 (2004)

4. Chance, F., Abbott, L., Reyes, A.: Gain modulation from background synaptic
input. Neuron 35(4), 773–782 (2002)

5. El-Laithy, K., Bogdan, M.: A reinforcement learning framework for spiking net-
works with dynamic synapses. In: Computational Intelligence and Neuroscience
2011, vol. 4 (2011)

6. Farries, M., Fairhall, A.: Reinforcement learning with modulated spike timing de-
pendent synaptic plasticity. Journal of Neurophysiology 98(6), 3648–3665 (2007)

7. Florian, R.: Reinforcement learning through modulation of spike-timing-dependent
synaptic plasticity. Neural Computation 19(6), 1468–1502 (2007)

8. Frémaux, N., Sprekeler, H., Gerstner, W.: Functional requirements for reward-
modulated spike-timing-dependent plasticity. The Journal of Neuroscience 30(40),
13326–13337 (2010)

9. Gerstner, W., Kistler, W.: Spiking neuron models: Single neurons, populations,
plasticity. Cambridge University Press, Cambridge (2002)

10. Grüning, A., Sporea, I.: Supervised learning of logical operations in layered spiking
neural networks with spike train encoding. Neural Processing Letters 36(2), 117–
134 (2012)

11. Izhikevich, E.: Solving the distal reward problem through linkage of stdp and
dopamine signaling. Cerebral Cortex 17(10), 2443–2452 (2007)

12. Legenstein, R., Pecevski, D., Maass, W.: A learning theory for reward-modulated
spike-timing-dependent plasticity with application to biofeedback. PLoS Compu-
tational Biology 4(10), e1000180 (2008)

13. Morrison, A., Diesmann, M., Gerstner, W.: Phenomenological models of synaptic
plasticity based on spike timing. Biological Cybernetics 98(6), 459–478 (2008)

14. Pfister, J., Toyoizumi, T., Barber, D., Gerstner, W.: Optimal spike-timing-
dependent plasticity for precise action potential firing in supervised learning. Neu-
ral Computation 18(6), 1318–1348 (2006)

15. Ponulak, F., Kasinski, A.: Supervised learning in spiking neural networks with
resume: Sequence learning, classification, and spike shifting. Neural Computa-
tion 22(2), 467–510 (2010)

16. Rossum, M.: A novel spike distance. Neural Computation 13(4), 751–763 (2001)
17. Sporea, I., Grüning, A.: Supervised learning in multilayer spiking neural networks.

Neural Computation 25(2), 473–509 (2013)
18. Urbanczik, R., Senn, W.: Reinforcement learning in populations of spiking neurons.

Nature Neuroscience 12(3), 250–252 (2009)
19. Van Rossum, M., Bi, G., Turrigiano, G.: Stable hebbian learning from spike timing-

dependent plasticity. The Journal of Neuroscience 20(23), 8812–8821 (2000)

Memory Trace in Spiking Neural Networks

Marta Castellano and Gordon Pipa

Institute of Cognitive Sciences,
University of Osnabrueck, Germany

{mcastellano,gpipa}@uos.de

Abstract. Spiking neural networks have a limited memory capacity,
such that a stimulus arriving at time t would vanish over a timescale
of 200-300 milliseconds [1]. Therefore, only neural computations that re-
quire history dependencies within this short range can be accomplished.
In this paper, the limited memory capacity of a spiking neural network is
extended by coupling it to an delayed-dynamical system. This presents
the possibility of information exchange between spiking neurons and con-
tinuous delayed systems.

Keywords: spiking neural networks, memory trace, delayed-dynamical
systems, reservoir computing.

1 Introduction

Neurons communicate through action potentials, while the represented cognitive
processes operate at slower timescales. The neural system, then, must have some
way of storing the short term information required for the cognitive processes.

Classical paradigms for short-term memory state that memory arises through
persistent patterns of neural activity, which stabilize through synaptic modifica-
tion [3]. A relatively new paradigm proposes that spiking neural networks (SNN)
encode and store information in their transient dynamics, while computations
emerge through the continuous interaction of external stimulus with the internal
states of the network [2]. This concept is generalized within the reservoir com-
puting community: any non-linear dynamical system with fading memory, the
reservoir, can be used as a computational system that processes stimulus in its
transient trajectories [4,5].

If information is retained within neural trajectories, how quickly are those
traces forgotten? A spiking neural network, with no slow processes associated,
(such as adaptation or synaptic plasticity), has a memory trace of few ms, which
is on the same timescale of the intrinsic time constant of single neurons [6].
As a result, computations, that require information to be retained over longer
timescales, are not be solvable; for example motor preparation [7,8] or working
memory tasks [3].

Several studies have tried to overcome the limited memory trace. Through the
addition of feedback connections, [9] brought a generic spiking neural network
to develop high-dimensional attractor-like sub-manifolds that solved working

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 264–271, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Memory Trace in Spiking Neural Networks 265

memory tasks. Likewise, [10] extended the memory trace by introducing work-
ing memory units, neurons connected to the recurrent network by means of
plastic synapses that mark the presence of an event as on/off states, bringing
the network towards multiple point attractors.

While these two studies propose a model by which the memory trace of the
reservoir is extended by the interaction with adjacent neural units, we propose
a model by which the memory trace of the reservoir is extended by a non-linear
coupling of the network to an external delayed-dynamical system (DDS), which
is a general term for a dynamical system that change over time depends on its
current and past states.

Our proposal is based on two primary observations. First, delays are ubiq-
uitous in biological systems and including them within mathematical models
extend the range of dynamics observed in the system [11]. Second, DDSs can,
in a similar fashion, be used as a reservoir to solve computational tasks (first
proposed in the PHOCUS European project FP7-ICT-2009-C).

This paper is organized as follows. The method section presents SNN and
DDS, with emphasis on the methods of encoding and decoding used to esti-
mate computational performance and the memory trace. In the results section,
we first present both SNN and DDS dynamics, together with their computa-
tional performance and memory trace. Afterwhich, the results are compared to
the case, in which SNN is coupled to DDS, showing that the memory trace of
an SNN can be extended by the non-linear coupling with a delayed-dynamical
system.

2 Methods

Spiking Neural Network. The spiking neural network (SNN) is modeled with
the modeling toolbox CSIM [12]. In short, a set of Nn = 135 leaky integrate and
fire neurons are placed on a 3x3x15 grid and 20% of them are randomly selected
to be inhibitory. The membrane potential V i

m of a neuron i is described by:

τm
dV i

m

dt
= −(Vm − Erest) +Rm · (Iiin + Iisyn) (1)

with a membrane time constant τm = 30 ms, a resting potential Erest = 0
and an input resistance Rm = 1MΩ. The spiking threshold is set to 15 mV;
the absolute refractory period is 3 ms (excitatory) and 2 ms (inhibitory). The
membrane potential is reset to a voltage uniformly drawn from the interval [13.8
mV, 14.5 mV], same values used to initialize V i each simulation [12]. Iisyn is the

sum of recurrent connections currents that arrive at the membrane, while Iiin
are the sum of the stimulus currents. Numerical approximation is obtained by
the Euler’s method with fixed integration step (δt = 0.001) sec. The neurons are
randomly connected with a probability of connection c, which is different among
inhibitory (in) and excitatory (ex) neurons: 0.3 ex-ex, 0.2 ex-in, 0.4 in-ex and
0.1 in-in, leading to a total of 2325 synapses.

266 M. Castellano and G. Pipa

Delay-Dynamical System. A non-linear system with delayed feedback of the
general form ẋ(t) = f(x(t))+g(x(t− τ)), is here named delay-dynamical system
(DDS) and implemented by the Mackey-Glass equation [13,14]:

dx(t)

dt
= β

x(t− τ) + αIDDS(t)

1 + (x(t− τ) + αIDDS(t))n
− x(t) (2)

with β = 0.4 being the coupling factor of the feedback, n = 1 the non-
linearity exponent, α = 0.05 the history dependence, τ = 80 the delay time and
IDDS(t) receives the external stimuli. Numerical approximation of the delayed
differential equation is obtained by the Heun’s method with fixed integration
step (h = 0.001).

Stimulus to the Reservoir. The reservoir receives R = 2 dimensional time-
varying stimulus r1 and r2, an non-homogeneous Poisson process with uniformly
distributed rates λ = [10, 20, 40] Hz, so that at each point in time t the Poisson
process is drawn from ri(t) ≈ λ(t) ·δt with λ(t) being uniformly distributed from
the set [10, 20, 40], see Figure 2 A).

Encoding the Stimulus. The DDS encodes stimulus as follows: the delay term
τ is divided into M virtual nodes, i.e., a set of M points equidistant distributed
over the delay τ , see Figure 1. The virtual nodes are those time points that encode
the stimulus ri(t). The stimulus ri(t) is previously preprocessed, referred as the
masking procedure. Masking can be seen as a multiplication of the stimulus ri(t)
with the masking function m(t), so that the stimulus that each of the virtual

nodes receive IDDS(t), is defined as IDDS(t) =
∑R

i=1 ri(t) ·m(t), where m(t) is a
binary random vector so that m(t) ∈ [−1, 1]M . Masking the stimulus has three
goals: to multiplex the stimulus over the delay line, to ensure that every virtual
node of the delayed line receives a linear combination of different dimensions of
the stimulus R and ensures that the delayed dynamical system is constantly in
a transient regime. Furthermore, the encodign of the stimulus on the delay line
is modulated by the parameter k, here called encoding scheme, which reflects
the number of time steps t of the stimulus that are going to be encoded within
a delay line. In short, a delay line encodes 1/k time steps of the stimulus and
a time step t is projected onto Nin = 200 virtual nodes. In this way, the total
number of virtual nodes within a delay line scales by the parameter k so that
M = 1

k ·Nin.
The SNN encodes external stimulus by means of spike trains. The stimulus

r1(t) and r2(t) are time-varying firing rates from which Poisson spike trains
are drawn, and each of them is mapped to an independent subset of 8 neurons
j ∈ Nn. The spike probability on the interval δt is given by p(spike = 1(t−δt, t+
δt)) = ri(t)δt. The spike trains are converted into currents by the convolution
of the spikes with an exponential decay term, so that the current Iin resembles
an EPSP. Specifically Iin = W ∗ e−1/τs , where τs = 4 is the decay time of the
EPSP and W = 0.15 scales the EPSP amplitude.

Memory Trace in Spiking Neural Networks 267

Decoding the Stimulus. The reservoir activation z(t), which can be either the
SNN or the delayed-dynamical system, for N nodes and total simulation time Q
is denoted A, and the expected output signal of the reservoir (the target signal
to be approximated) as y(t) for t ∈ (t0, ..., tQ). The aim of the linear regression
(i.e. maximum likelihood with normal distributed residuals) is to find the set
of weights w that fulfill y = wA, obtained by applying the pseudo-inverse, so
that w = y(A)−1. The target signal is defined in this paper as the sum of the
two-dimensional stimulus, so that y(t) = r1(t)+ r2(t). Learning the weights w is
denoted as the training phase. Next, in the testing phase, the weights w are kept
fixed and an output u(t) is obtained from the network activity,so that u(t) = wA.
Finally, the accuracy of the linear regression is evaluated on the testing set as
described in the computational performance section. Intuitively, the weights w
of the readout can be trained in a task specific way, so that for every task, there
is a linear combination of nodes in the reservoir that can be used to approximate
the target signal y(t).

Fig. 1. Visualization of the non-linear coupling between DDS and SNN

Computational Task. The task of the reservoir consists in reconstructing a
time-dependent stimulus ri(t) by reading out the activity of the reservoir at later
times tlag.

Computational Performance and Memory Trace. Computational perfor-
mance CP (t) is defined as the correlation coefficient between target y(t) and
estimated output u(tlag) at time t = tlag, so that CP (tlag) = corr(y(t), u(tlag)).
Memory trace MT is defined as the maximum time at which the input can be
decoded from the network with a correlation coefficient higher than 0.5, so that
MT = max ρi, where ρi is the time lag tlag at which CP (tlag) becomes lower
than 0.5.

268 M. Castellano and G. Pipa

Coupling between Delayed-Dynamical System and Spiking Neural
Network. The non-linear coupling can be visualized in Figure 1. The SNN
encodes the signal of the DDS, x(t), by means of 16 analog synapses, repre-
sented in the I&F neurons as a current in the term Iin = WDDS · x(t), where
WDDS = 0.01.

3 Results

This section is divided in two different parts. First, we characterize both SNN
and DDS dynamics and present its computational performance and memory
trace, providing a qualitative and quantitative description of the two models.
Second, we compare the results to the case in which SNN is coupled to DDS,
showing that the memory trace of an SNN can be extended by the non-linear
coupling with a delayed-dynamical system.

3.1 Memory Trace of SNN and DDS

The dynamic responses of the two systems when processing the stimulus are
presented in Figure 2 B) and Figure 2 C). The system operates in a fixed point
regime (i.e. single fixed point, Figure 2 D, left), perturbed by external stimulus
(see Figure 2 D, right).

The computational performance at different time lags and the memory trace of
the SNN and DDS are quantified in Figure 2 E). The simulated SNN (parameter
specification in methods section) has a maximum computational performance of
0.9 at time lag zero and a memory trace of 0.11 sec, consistent with results
presented in [1].

The memory trace and computational performance of the DDS varies together
with the variation of the parameter k, which controls the projection of the stim-
ulus to the DDS (encoding scheme). At k = 1, δt = 1 ms of stimulus ri(t) is
mapped to the M = 200 virtual nodes contained in a delayed loop τ = 80. In
this encoding scheme, the DDS has a maximum computational performance of
0.87 at time lag zero and a memory trace of 0.067 sec. Increase of k leads to the
increase of the time steps δt of the stimulus that are mapped within the delay
line. The higher the k, the longer the memory trace of the DDS. Consider for
example the case where k = 0.04, where a single delay loop encodes 25 δt of the
stimulus in a total of 5000 virtual nodes (note that the number of virtual nodes
increases as 1/k · Nin). This encoding scheme has a maximum computational
performance of 0.93 at time lag zero and a memory trace of 0.27 sec.

The increase in memory trace observed by the increase of k cannot be ex-
plained by the increase on the number of virtual nodes: a DDS with an encoding
parameter k = 1 and M = 5000 virtual nodes has a maximum computational

Memory Trace in Spiking Neural Networks 269

performance of 0.9 at time lag zero and a memory trace of 0.07 sec. The results
obtained in this section are used as a baseline to compare the computational
performance and memory trace of the following simulations.

Fig. 2. A) Stimulus and target output for the reservoir. B) Spiking response of the
SNN. C) Response of the DDS within a delay line (see equation 2). D) Cobweb plot
of the DDS (left) and the DDS receiving external stimulus r1(t) and r1(t) (right). E)
Estimation of the computational performance at different time lags for the SNN (dotted
blue line) and the DDS, where k changes the encoding to the DDS.

3.2 Memory Trace of SNN Coupled to DDS

This section aims to estimate whether the SNN shows an increased memory trace
when coupled to the DDS. Accordingly, we performed two different simulations:
on the one hand, the SNN receives input from the DDS, and on the other hand,
the SNN receives input from both DDS and external stimulus.

270 M. Castellano and G. Pipa

Fig. 3. Computational performance and
memory trace of the coupled-SNN for dif-
ferent k, compared to the non-coupled SNN
(dotted line)

In the first case, the DDS encodes
stimulus r1 and r2 and the signal from
the DDS is sent to the SNN. With
this, we test whether the SNN ex-
tracts information from the stimulus
that is being processed by the DDS.
In this case, the computational perfor-
mance of the SNN at zero time lag is
lower compared to the baseline, while
the memory trace of the SNN is longer
than baseline as long as the DDS en-
codes the input at k > 0.5 (for in-
stance, at k = 0.04 CP (tlag=0) = 0.62
and MT = 0.16 sec).

In the second case, the SNN re-
ceives stimulus from both DDS and
external stimulus (r1 and r2), refer-
enced as coupled-SNN. With this sim-
ulation we aim to estimate whether
the SNN can integrate DDS signals to the ongoing stimulus processing. Results
presented in Figure 3 show that the coupling to the DDS does not change the
computational performance of the SNN at time lag zero. Nevertheless, as long
as the DDS encodes stimulus at k > 0.5, the coupled-SNN has longer memory
trace than the baseline SNN (0.11 sec baseline memory trace versus 0.14 sec
at k = 0.04). The gray shadow in Figure 3 indicates that the difference to the
non-coupled SNN is statistical significant (p = 1.7 · 10−16, one way ANOVA for
20 observations).

4 Discussion

Previous models for short-term memory in spiking neural networks (SNN) pro-
posed that low-dimensional attractors in the circuit dynamics store stimulus
information [3]. Here we explored a new paradigm, whereby short-term memory
is implemented in the transient dynamics. Within this framework, the memory
trace is limited by the length of the neural trajectory, modulated by features
such as intrinsic neuron time constants [6] or network topology [15]. We propose
a modification of the framework by which a SNN extends its memory trace by
a non-linear coupling with a delayed-dynamical system (DDS).

As a proof of principle, we defined a generic DDS and proposed a non-linear
coupling with the SNN, which lead to the increase of the memory trace of the
spiking neural network. This highlights an essential feature: including delayed
coupling within a spiking neural network extended the memory trace, which
could not be maintained by the spiking network alone.

The relevance of this finding relies upon neural systems being delayed dy-
namical systems. Often spiking neuron models are simplified up the point where

Memory Trace in Spiking Neural Networks 271

delays play no role. The addition of delays, not only increase the dynamic range
of mathematical models [11], but also increases the range of timescales at which
the system processes and retains stimulus.

Acknowledgments. This research was partially supported by the EU grant
PHOCUS European project FP7-ICT-2009-C. The authors declare that there is
no conflict of interests.

References

1. Maass, W., Natschläger, T., Markram, H.: Fading memory and kernel properties
of generic cortical microcircuit models. Journal of Physiology 98, 315–330 (2004)

2. Buonomano, D.V., Maass, W.: State-dependent computations: spatiotemporal pro-
cessing in cortical networks. Nature Reviews Neuroscience 10, 113–125 (2009)

3. Durstewitz, D., Seamans, J.K., Sejnowski, T.J.: Neurocomputational models of
working memory. Nature Neuroscience 3(suppl.), 1184–1191 (2000)

4. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Computation 14, 2531–2560 (2002)

5. Jäger, H.: The echo state approach to analysing and training recurrent neural
networks. GMD Report 147 (2001)

6. Mayor, J., Gerstner, W.: Signal buffering in random networks of spiking neurons:
Microscopic versus macroscopic phenomena. Physical Review E 72, 15 (2005)

7. Körding, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Na-
ture 427, 244–247 (2004)

8. Churchland, M.M., et al.: Neural population dynamics during reaching. Nature 487,
51–56 (2012)

9. Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural
circuits. PLoS Comput. Biol. 3, e165 (2007)

10. Pascanu, R., Jäger, H.: A Neurodynamical Model for Working Memory. Neural
Networks 1, 123 (2010)

11. Forde, J.E.: Delay Differential Equation Models in Mathematical Biology. PhD
Thesis

12. Natschläger, T., Markram, H., Maass, W.: Computer Models and Analysis Tools
for Neural Microcircuits. Neuro- Science Databases. A Practical Guide, 121–136
(2003)

13. Mackey, M.C., Glass, L.: Oscillation and Chaos in Phisiological Control Systems.
Science (1977)

14. Appeltant, L., et al.: Information processing using a single dynamical node as
complex system. Nature Communications 2, 468 (2011)

15. Ganguli, S., Huh, D., Sompolinsky, H.: Memory traces in dynamical systems.
PNAS 105, 18970–18975 (2008)

Attention-Gated Reinforcement Learning

in Neural Networks—A Unified View

Tobias Brosch, Friedhelm Schwenker, and Heiko Neumann

Institute of Neural Information Processing, University of Ulm,
89069 Ulm, Germany

{tobias.brosch,friedhelm.schwenker,heiko.neumann}@uni-ulm.de

Abstract. Learning in the brain is associated with changes of connec-
tion strengths between neurons. Here, we consider neural networks with
output units for each possible action. Training is performed by giving
rewards for correct actions. A major problem in effective learning is to
assign credit to units playing a decisive role in the stimulus-response
mapping. Previous work suggested an attentional feedback signal in com-
bination with a global reinforcement signal to determine plasticity at
units in earlier processing levels. However, it could not learn from de-
layed rewards (e.g., a robot could escape from fire but not walk through
it to rescue a person). Based on the AGREL framework, we developed a
new attention-gated learning scheme that makes use of delayed rewards.
Finally, we show a close relation to standard error backpropagation.

Keywords: Reinforcement Learning, Backpropagation, AGREL,
Delayed Rewards, Attention, Hebbian Learning.

1 Introduction

When investigating the plasticity of connection weights in a neural network in
tasks involving a reward signal, reinforcement learning was shown to be an ef-
fective tool. Depending on the underlying methodology its biological plausiblity
varies [16,14]. The proposed mechanisms range from detailed biological models
resembling functionalities of the basal ganglia [14,7,1,5] over models using Heb-
bian plasticity in neural networks [9,10,11] to machine learning models using
error backpropagation (BP) in neural networks [15,13,2,3]. While the latter are
very effective, they lack biological plausibility. Here, we focus on the model of [10]
utilizing a biologically plausible global learning signal with Hebbian plasticity
of connection weights that is gated by an attentional feedback signal to increase
plasticity of task relevant-neurons. This attention-gated reinforcement learning
(AGREL) [10] is, however, limited to tasks with immediate reward delivery. We
propose a novel learning scheme extending AGREL to also incorporate delayed
rewards (e.g., a robot walking through fire to rescue a person). Similarly to [11],
it also extends AGREL by learning an action-value function in the output layer.
We demonstrate that the new model also improves learning in the reduced case
of immediate rewards as studied in [10], and show a close relation to BP for
learning the connection weights in the employed network.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 272–279, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Attention Gated Reinforcement Learning (SAGREL) 273

2 Task and Network Design

We employ a three-layer neural network shown in Fig. 1 to simulate the selection
of one of C mutually exclusive actions depending on the presented state st
(c.f. [10]). The state is represented in the input layer with activities {Xi}i=1...N .
Connections weighted by vij propagate activity to a hidden layer with activities
{Yj}j=1...M . Post-synaptic activity depends on a nonlinear transfer function g
(we employ a logistic function like in [10]). Weights wij propagate activity from

X1
. . .

XN

YM

vij

wjk w′
aj

Z1 ZC

Y1 . . .

. . .

Input Layer

Hidden Layer

Output Layer
Winning Unit a

δ

Fig. 1. Three-layer neural network. An input pattern represented by N activities Xi

is propagated via weights vij to M hidden layer neurons of activities Yj (solid arrows).
Weights wjk propagate activity to the output layer with activities Zk in which neurons
engage in a competition (circular arrow heads). Activity of the winning unit a is prop-
agated back to the hidden-layer by feedback weights w′

aj (dashed arrows). Learning is
initiated by a global learning signal δ.

the hidden to the output layer. An essential part of AGREL is that neurons in
the output layer engage in a competition such that only one of C output neurons
gets activity Za = 1, where the probability depends on the presynaptic activity:

Yj = g(Y pre
j) , with Y pre

j =

N∑
i=0

vijXi , g(x) =
1

1 + exp(−x)
, (1)

P(Zk = 1) =
exp(Zpre

k /τ)∑C
k′=1 exp(Z

pre
k′ /τ)

, with Zpre
k =

M∑
j=0

wjkYj . (2)

Activity of the winning neuron can be propagated backwards by feedback weights
w′

aj to gate synaptic plasticity of task relevant neurons (attention gating) in ear-
lier layers. In order to incorporate delayed rewards (in contrast to [10]), we utilize
the presynaptic activity Zpre

k of the neural network output layer as function ap-
proximator for an action-value function Qπ(s, a) = Zpre

a (s). This maps a state s
and action a to the expected discounted return

Eπ{Rt|st = s, at = a} , Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γkrt+k+1 ,

(3)

274 T. Brosch, F. Schwenker, and H. Neumann

where π is the current policy of the agent (with π(s, a) denoting the probability
of selecting action a in state s), rt is the reward the agent receives at time t and
and 0 ≤ γ ≤ 1 is a discount factor (for γ close to 1, the agent becomes more
farsighted). The goal is to find an optimal policy π∗ that optimizes the expected
discounted return. The corresponding optimal action-value function is denoted
Q∗(s, a). To deal with delayed rewards, we will employ a Sarsa-style learning
signal from temporal difference (TD) methods for control problems. It encodes
the difference between the improved discounted return expectation (based on the
experienced reward) and the currently expected discounted return (see e.g. [13]
for more details). Because of the combination of a Sarsa-style learning signal and
AGREL, we will name our novel extended learning scheme SAGREL.

2.1 Learning in SAGREL

Neural plasticity in SAGREL—as well as in AGREL—depends on two signals
that jointly determine plasticity: First, the global reinforcement error signal δ
and second, an attentional feedback signal originating from the winning neuron
in the output layer and delivering a feedback signal along the connection of the
reverse hierarchy network to guide attentional resources. To incorporate learning
of delayed rewards, we adapt the definition of the global error signal δ. The
learning signal δ in AGREL is only defined for immediate rewards as (c.f. [10])

δAGREL =

{
1− P(Za = 1) , r = 1 , in successful trials,

−1 , r = 0 , otherwise.
(4)

In SAGREL we adopt a TD Sarsa-style learning signal (similarly to [11]) that
directly depends on the presynaptic activity of the output layer Zpre

a (s) = Q(s, a)

δSAGREL =
[
rt+1 + γZpre

at+1
(st+1)

]
− Zpre

at
(st) , (5)

where rt+1 ∈ R is the reward the agent receives after state st taking action
at, experiencing state st+1 and choosing action at+1 to perform in the next
step (see e.g. [13] for more details on Sarsa). Learning of delayed rewards is
achieved by incorporating the minuend rt+1+γZpre

at+1
(st+1) which provides a more

accurate measure of the expected discounted return (because it incorporates the
experienced reward rt+1) than the current estimation Zpre

at
(st). We adopt the

feedback signal and the neural plasticity mechanism of AGREL as described in
[10] which we briefly summarize in the following.

Weights are changed according to a variant of an Hebbian rule, where changes
depend upon the product of pre- and postsynaptic activity [8,6]. Weight changes
between the hidden and output layer are described by

Δwjk = β · f(δ) · Yj · Zk , (6)

where β is the learning rate and f is an expansive function increasing the effective
learning rate for unexpected rewards. In AGREL f is defined as f(δ) = δ/(1−δ)

Attention Gated Reinforcement Learning (SAGREL) 275

for δ ≥ 0 and f(δ) = −1 otherwise. In SAGREL f needs to be adjusted to the
range of the rewards of a given task but can also be generically set to f(δ) = δ,
the identity function. Note that Za = 1 and Zk = 0 for k �= a, such that only
connections wja to the winning neuron are adjusted. Weight changes between
the input and the hidden layer are also governed by Hebbian plasticity but
additionally gated by the factor fbYj representing feedback of the winning unit:

Δvij = β · f(δ) · fbYj ·Xi · Yj , fbYj = (1− Yj) ·
C∑

k=1

Zk · w′
kj , (7)

where the factor (1 − Yj) reduces the effect of feedback on the plasticity of the
connection weights of highly active units. After the competition Za = 1 and
Zk = 0 for k �= a and the equation reduces to

Δvij = β ·Xi · Yj · w′
aj · f(δ) · (1− Yj) . (8)

Cortical anatomy and neurophysiology suggests that feedforward and feedback
connections are reciprocal [4,12]. Thus, we set wjk = w′

kj (see [10], their sect.
5.4 for a study about deviations from exact reciprocity).

2.2 Comparison between AGREL and SAGREL

In the reduced case of single step tasks and immediate reward delivery (as stud-
ied in [10]) δSAGREL reduces to r − Zpre

a because the expected reward for the
next state Zpre

at+1
= 0 (epsiode ends after the first state). In rewarded trials

(r = 1) this reduces to δSAGREL = 1 − Zpre
a which is qualitatively the same

as δAGREL = 1 − P(Za = 1) because P(Za = 1) is a monotonically increasing
function of Zpre

a . In unrewarded trials (r = 0), δAGREL = −1 causes weights
to potentially diverge to −∞ because exploration keeps the agent encountering
each state in an infinite amount of trials. In SAGREL δSAGREL = −Zpre

a which
for Zpre

a ≥ 0 is qualitatively identical to AGREL but prevents weights from ap-
proaching −∞ because for Zpre

a < 0, δSAGREL becomes positive. To summarize,
the novel SAGREL can deal with delayed rewards tasks while maintaining the
computational complexity and allowing an unlimited range of rewards, i.e. r ∈ R.

2.3 Comparison to Standard Backpropagation in Function
Approximation Using Layered Neural Networks

We will now compare the attention-gated reinforcement mechanisms (see previ-
ous sections) against standard BP. We utilize the same network as sketched in
Fig. 1 but in standard BP, the competition is not modelled in the final layer but
carried out separately. Similarly to SAGREL, we interpret the presynaptic activ-
ity Zpre

k as function approximation of an action-value function Q(s, a) = Zpre
a .

For now we assume knowledge of the optimal action-value function Q∗. A com-
monly used L2 error function is (c.f. [13])

E =
1

2
δ2 =

1

2
(Q∗(st, at)−Qπt(st, at))

2
=

1

2

(
Q∗(st, at)− Zpre

at
(st)

)2
. (9)

276 T. Brosch, F. Schwenker, and H. Neumann

The derivative with respect to a parameter vector θ (here θ = (v,w) the con-
catenation of the weights vij and wjk) is then given by

∇θE =
(
Q∗(st, at)− Zpre

at
(st)

)∇θZ
pre
at

(st) = δ · ∇θZ
pre
at

(st) . (10)

Approximating Q∗ by the one-step Sarsa-style return, rt+1 + γQt(st+1, at+1) =
rt+1+γZpre

at+1
(st+1), results in the following gradient descent update in the three-

layer network in Fig. 1:

Δwjk = −β · ∂E
wjk

=

{
β · δ · Yj(s) , k = a

0 , k �= a
(11)

Δvij = −β · ∂E
vij

= β · δ · wja · g′
(
Y pre
j (s)

) ·Xi(s) , (12)

where δ = rt+1 + γZpre
at+1

(st+1) − Zpre
at

(st) and g′ denotes the derivative of the
transfer function g. We can now compare the weight updates of SAGREL and
BP. For weight updates between hidden and output layer, Δwjk, we compare
eqns. (11) and (6) which are identical if and only if f(δ) = δ, the identity function.
For weight updates for connections between input and hidden layer, Δvij , we
compare eqns. (12) and (8). When g is the logistic function, eqn. (1), wja = w′

aj

and f(δ) = δ, the identity function, we note that both equations are identical.
This is a remarkable result with respect to two properties. First, the result
implies that BP results in biologically plausible Hebbian plasticity in a paradigm
where the teacher signal is replaced by a reward deployment mechanism. Second,
attention-gated reinforcement learning employs the same efficient updates as the
mathematically motivated gradient descent BP. This also explains the empirical
observations of [10] that the average weight changes of AGREL are identical to
those of BP for instantaneous learning situations. Additionally, this result also
extends to [11] in the special case, when the tags (which mark previously active
and task relevant neurons) immediately decay (i.e. their λγ = 1).

3 Experimental Comparison of Modells

First, we compare AGREL with SAGREL in two different experiments presented
in [10]. Second, we demonstrate that SAGREL is capable to learn a delayed
rewards task. Similarly to [10], we equipped the network with additional degrees
of freedom by adding bias neurons with activities X0 = Y0 = 1, initialized
connection weights with values drawn uniformly from the interval [−0.25, 0.25]
and used the same performance criterion. The criterion for a successful learning
episode was that the probability of correct classification was at least 75% for
each of the input patterns.

3.1 Immediate Reward Tasks

Two tasks were used to compare the performance levels to the results in [10].

Exclusive-Or (XOR) Task. The exclusive-or task presents binary input pat-
terns to two input units, namely 01, 10, 11 and 00. The agent must activate one

Attention Gated Reinforcement Learning (SAGREL) 277

of two output units with the first one being active for 01, 10 and the second one
being active for 11, 00. The number of hidden neurons was 2 or 3.

Counting Task. In this task, the network must determine how many of N input
neurons are switched on. Consequently, the number of output units is N+1 (also
the number of hidden units). In one iteration of a learning trial all of the N + 1
different stimulus classes are presented. The specific units that are switched on
in each presentation are determined randomly (identical as in [10]).

3.2 Comparison of AGREL and SAGREL

Table 1 displays the minimal median number of iterations (one iteration equals
the presentation of all input patterns) required to reach the criterion when op-
timizing with respect to learning rate β (data for AGREL from [10]) for both
models. To compare our method to the results presented in [10], τ was set to
one. The data show that SAGREL indeed outperforms AGREL in both tasks
(though we used the simplest choice for the function f , the identity function).
Based on the investigation outlined in sect. 2.2, this is expected since SAGREL
utilizes a more distinct error signal. This demonstrates that our extended learn-
ing scheme not only incorporates learning of delayed rewards but also improves
the performance in the reduced case studied in AGREL.

Table 1. Comparison of AGREL and SAGREL in the XOR and Counting task (smaller
number of iterations is better). Values for AGREL are from [10]. Presented is the
median number of iterations (from 500 separate trials) required to reach the 75%
performance criterion optimized with respect to β. In SAGREL we determined the
minimal number of iterations by performing a grid-search for values of β in [0.3, 1] in
steps of 0.025. The data show that the new learning scheme (SAGREL) constantly
outperforms the original implementation (AGREL).

Task AGREL [10] SAGREL (new)
Iterations β Iterations β

XOR (2 hidden units) 535 0.35 422 0.475
XOR (3 hidden units) 474 0.45 297 0.6
Counting 2 inputs 157 0.4 30 0.875
Counting 3 inputs 494 0.25 148 0.325
Counting 4 inputs 1316 0.1 485 0.2

3.3 Delayed Rewards Task

To confirm that SAGREL can indeed learn tasks incorporating delayed rewards,
we tested it in a simple task. In this task, N input and output units are used.
It always starts with the first unit being active. In a correct trial, the agent
selects the same output neuron a as the active input neuron and experiences
the next state in which neuron a + 1 is active (only one input neuron is active
at a time). The agent always receives a negative reward, r = −0.1, except for
the last state, when neuron a = N is active and the agent selects neuron a.

278 T. Brosch, F. Schwenker, and H. Neumann

In this case the agent is rewarded with r = 1. Whenever a wrong action is
selected, the task is reset to the beginning. An episode ends, when the agent
gains a positive reward or exceeds a maximum of 30 trials in trying so. Learning
was performed for τ = 2 that was multiplied with τD ≤ 1 after each episode to
make the policy a bit more greedy. The employed performance criterion was that
the greedy policy with respect to the current action-value function represented
by the network (i.e. τ = 0) gained the maximum reward for 50 iterations in a
row. To identify the parameters that gain a minimal number of iterations to
reach the performance criterion (we measure the median number of iterations
in 500 learning task repetitions), we performed a grid search for the parameters
β ∈ [0.6, 1] in steps of 0.025 and τD ∈ [0.92, 1] in steps of 0.005. For N = 3,
the SAGREL algorithm needed a minimum median number of 190 iterations
for β = 0.7 and τD = 0.94 (note that AGREL is not able to solve this task
because it cannot deal with delayed rewards). In comparison, a Q-table Sarsa
implementation needed only 55 iterations for β = 0.625 and τD = 0.93. This
disadvantage can be accounted to the fact that the task is much easier for a Q-
table implementation, because there are onlyN different input states (in contrast
to an infinite number of possible input states in SAGREL).

To summarize, SAGREL can indeed learn tasks of delayed rewards and, as
such, extends the functionality of the AGREL framework.

4 Discussion

We presented a novel reinforcement learning algorithm for a three-layer neural
network to choose one of a finite number of actions based on an infinite number
of possible input states. The novel model we propose is based upon the work by
Roelfsema and colleagues in [10] and extends it to deal with the important group
of delayed rewards tasks. Similarly to [11], it learns Q-values in the output layer.
Unlike [11], this paper focuses on the Hebbian nature of the learning dynamics
and the connection to standard backpropagation (BP) in reinforcement learn-
ing. To do so, we did not explicitly model the transient neuron type used in [11]
(which does not change the underlying theoretic comparison to BP but makes it
harder to identify). As shown in [10], the model can easily be extended to actor-
critic architectures and more than three layers. Our theoretical results lead to
the prediction, that the novel learning scheme (and thus also [11]) is superior
to the previous framework presented in [10] which we confirmed in two differ-
ent experiments. Finally, we demonstrated that attention-gated reinforcement
learning is closely related and in some cases formally identical to standard error
backpropagation in the same neural network architecture. This is a remarkable
result since this proves that the biologically plausible mechanisms employed here
result in the same effective neural plasticity rule that aims at optimizing an error
energy function as in the mathematically motivated BP learning scheme. Addi-
tionally, this connection proves that whenever the network (seen as a function)
can describe the mapping of states to action values, SAGREL will succeed in
finding at least a local solution to the error minimization problem given small
enough learning rates.

Attention Gated Reinforcement Learning (SAGREL) 279

Acknowledgments. We thank P.R. Roelfsema for his helpful comments. TB
is supported by the Graduate School MAEIC at Ulm University and FS and HN
are supported in part by the SFB/TRR 62 funded by the DFG. HN was further
supported by a grant from the German BMBF, project 01GW0763.

References

1. Brown, J., Bullock, D., Grossberg, S.: How the Basal Ganglia Use Parallel Exci-
tatory and Inhibitory Learning Pathways to Selectively Respond to Unexpected
Rewarding Cues. Journal of Neuroscience 19(22), 10502–10511 (1999)

2. Faußer, S., Schwenker, F.: Learning a Strategy with Neural Approximated
Temporal–Difference Methods in English Draughts. In: ICPR, pp. 2925–2928. IEEE
(2010)

3. Faußer, S., Schwenker, F.: Ensemble Methods for Reinforcement Learning with
Function Approximation. In: Sansone, C., Kittler, J., Roli, F. (eds.) MCS 2011.
LNCS, vol. 6713, pp. 56–65. Springer, Heidelberg (2011)

4. Felleman, D.J., Van Essen, D.C.: Distributed Hierarchical Processing in the Pri-
mate Cerebral Cortex. Cerebral Cortex 1(1), 1–47 (1991)

5. Frank, M.J., Badre, D.: Mechanisms of Hierarchical Reinforcement Learning in
Corticostriatal Circuits 1: Computational Analysis. Cerebral Cortex 22, 509–526
(2011)

6. Gustafsson, B., Wigström, H.: Physiological mechanisms underlying long–term po-
tentiation. Trends in Neurosciences 11(4), 156–162 (1988)

7. Joel, D., Niv, Y., Ruppin, E.: Actor-Critic Models of the Basal Ganglia: New
Anatomical and Computational Perspectives. Neural Networks 15(4-6), 535–547
(2002)

8. Malinow, R., Miller, J.P.: Postsynaptic Hyperpolarization During Conditioning Re-
versibly Blocks Induction of Long–Term Potentiation. Nature 320, 529–530 (1986)

9. Pennartz, C.M.A.: Reinforcement Learning by Hebbian Synapses with Adaptive
Thresholds. Neuroscience 81(2), 303–319 (1997)

10. Roelfsema, P.R., van Ooyen, A.: Attention–Gated Reinforcement Learning of Inter-
nal Representations for Classification. Neural Computation 17, 2176–2214 (2005)

11. Rombouts, J.O., Bohte, S.M., Roelfsema, P.R.: Neurally Plausible Reinforcement
Learning of Working Memory Tasks. In: NIPS, pp. 1880–1888 (2012)

12. Salin, P.A., Bullier, J.: Corticocortical Connections in the Visual System: Structure
and Function. Physiological Reviews 75(1), 107–154 (1995)

13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
London (1998)

14. Vitay, J., Hamker, F.H.: A Computational Model of Basal Ganglia and its Role in
Memory Retrieval in Rewarded Visual Memory Tasks. Frontiers in Computational
Neuroscience 4(13), 1–18 (2010)

15. Williams, R.J.: On the Use of Backpropagation in Associative Reinforcement
Learning. In: ICNN, vol. 1, pp. 263–270 (1988)

16. Wörgötter, F., Porr, B.: Temporal Sequence Learning, Prediction, and Control: A
Review of Different Models and Their Relation to Biological Mechanisms. Neural
Computation 17(2), 245–319 (2005)

Dynamic Memory for Robot Control Using

Delay-Based Coincidence Detection Neurones

Francis Jeanson and Tony White

Springer-Verlag, Computer Science Editorial,
Tiergartenstr. 17, 69121 Heidelberg, Germany

francis jeanson@carleton.ca, arpwhite@scs.carleton.ca

http://www.springer.com/lncs

Abstract. This paper demonstrates the feasibility of dynamic memory
in transmission delay coincidence detection networks. We present a low
complexity, procedural algorithm for determining delay connectivity for
the control of a simulated e-puck robot to solve the t-maze memory
task. This work shows that dynamic memory modules need not undergo
structural change during learning but that peripheral structures could be
alternate candidates for this. Overall, this supports the view that delay
coincidence detection networks can be effectively coupled to produce
embodied adaptive behaviours.

Keywords: Dynamic Memory, Transmission Delays, Coincidence De-
tection, Spiking Neural Networks, Embodied Cognition.

1 Introduction

Spiking neural networks have gained significant attention in the past decade as
a promising implementation mechanism for complex adaptive agent control. De-
spite substantial progress in the understanding of both the physiological nature
of biological networks and techniques to model them formally, research remains
primarily focussed on their coding capacity, structure, and dynamics as they
relate to synaptic plasticity. Learning and memory, in particular, are primarily
attributed to the various functional mechanisms behind connection strength-
ening and weakening such as hebbian learning, spike time dependent plasticity
(STDP), and frequency tuning. While these are important mechanisms of neural
function for adaptive behaviour, alternative mechanisms should not be ignored.
Synaptic mechanisms elicit relatively slow metabolic processes (over 500ms) [12]
when compared to rapid stimulus encoding which can take place in the range
of 50ms [11]. The presence of active short-term mechanisms at the millisecond
time scale are suggested to account for scene segmentation, rapid categorization,
delayed responses, etc. [13]. In particular, mechanisms based on sustained neural
dynamics via re-entrant signalling have been proposed since the 1970’s [6] [15].
While a substantial amount of work has focussed on overall spike densities as
potential memory signatures, few researchers have investigated their potential
in realistic embodied agent tasks. Interestingly, a unique form of spatiotemporal

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 280–287, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.springer.com/lncs

Dynamic Memory for Robot Control 281

coding referred to as coincidence detection was introduced in 1982 by Abeles
[1]. Rather than behaving uniquely as frequency integrators, neurones have been
shown to behave as coincidence detectors for either biophysical reasons or under
specific dynamic constraints [5] [3]. A coincidence detection neurone emits a spike
only if a sufficient number of incoming spikes reach it within a narrow time win-
dow, i.e., quasi-coincidentally. Contemporary interest in coincidence detection
and transmission delays has led to a number of interesting findings with respect
to stability criteria [2], oscillatory dynamics [8], as well as neuronal logic circuits
[7]. However, little is known about distinctive dynamics that can be precisely
controlled for dynamic memory function and embodied adaptive agency.

The present work introduces a method for decoding the spatiotemporal dy-
namics of the spiking activity into the spatial domain such that coordinated
action with a sensory-motor network can enable a simulated e-puck robot to
solve the t-maze task.

2 Delay Networks for Dynamic Memory

Networks of coincidence detection neurones offer distinct dynamic and informa-
tional properties from standard integrate-and-fire cells. One of their most charac-
teristic traits comes in the form of ‘firing-chains’. These are time-locked patterns
of spikes that manifest as precise spatial (over cells) and temporal orders of spike
events for an arbitrary input pattern. Recent work by Jeanson & White, showed
that transmission delay coincidence detection networks (DCDNs) exhibit strong
synchronous firing responses in narrow delay conditions while broad delays led
to complex firing patterns [9]. Narrow delays were shown by Jeanson & White to
be more suitable for the reactive control of a two wheeled robot in a light-seeking
task. However, the broad delay regime with complex firing was hypothesized to
potentially serve more complex functions. Here we replicate the simple discrete
threshold model of coincidence detector spiking neurones with axonal delays
from Jeanson & White [9] and determine adequate network conditions which
lead to dynamic memory function. We then test this memory capacity in the
embodied t-maze task by developing a novel multi-network architecture which
enables robot coordination and memory driven control.

2.1 Stable Spiking

Self-sustained activity is reached reliably in these noiseless networks when sin-
gle spike inputs to at least 6 neurones is made within the maximum network
connection delay. By varying the connectivity in a DCD network of 25 neurones
with random delays between 20 to 40 time steps, we found that a low connec-
tivity ratio (60%) led to less predictable chaotic regimes while high connectivity
(100%) led to a stable limit-cycle attractor as shown in figure 1. In the following,
we make use of the limit-cycle regime to show how firing-chains can be used as
dynamic memories and decoded into spatial patterns for robot control.

282 F. Jeanson and T. White

Fig. 1. Unstable spikes at 60% connectivity (left plot), yet stable at 100% (right plot)

3 T-maze Memory Task

To test the dynamic memory capabilities of DCD networks we implemented a
simulated version of the T-maze memory task [14]. In this task the agent must
travel autonomously up the base of the T and make a left or right turn based on
the presentation of a context stimulus A or B, shortly followed by a cue stimulus
X or Y. When the combined stimuli AX are presented then a left turn should be
taken while a right turn is expected in the three other cases. This dual stimulus
paradigm is used to show that the agent’s memory network does indeed store
the context stimulus for at least the time period until the cue is presented.

3.1 Sensory-Motor Network

The Enki robot simulation library was used to implement an e-puck robot with
realistic noise, collision, and friction conditions [10]. A one-dimensional circular
camera with a 120◦ field of view was divided into a left visual field (lvf) and
right visual field (rvf). Visual field stimuli from either side activated a set of
5 spiking cells each. Sensory cells had refractory periods of 5 time steps (5ts)
to increase sensitivity of the input while motor cells had refractory periods of
10ts. Spikes were triggered when the normalized visual fields between 0.0 and
1.0 had values of 0.35 or less. Hence we used an inverse stimulation paradigm
where the absence of obstacles stimulated the agent’s visual sensors. Spikes then
propagated to the contra-lateral motor area which possessed 4 neurones for each
wheel. These connections were fixed with many-to-many projections from each
sensory cell to all motor cells in the contra-lateral sides using random delays
between 10ts and 20ts. This relatively narrow delay range was chosen based on
prior finding from Jeanson & White who showed that narrow delays could lead
to more stable reactive behaviour [9]. Contra-lateral projections were chosen
based on the successful avoidance behaviour suggested by Braitenberg vehicles
[4]. Motor neurones behaved as coincidence detectors with threshold 2; hence
two simultaneous spikes from sensory neurones had to reach a target motor
neurone for it to fire. Finally, activation of the four respective motor neurones
were summed and total activation was limited to a maximum value of 1.5 to
limit maximum motor speeds. The overall sensory-motor network (SM) can be
seen on the right-hand side of Figure 2.

Dynamic Memory for Robot Control 283

Fig. 2. Illustrated network model with Memory, Inhibitory, and Sensorimotor networks

3.2 Memory and Inhibitory Networks

The memory network (MEM) had 25 excitatory neurones which were fully con-
nected and assigned a random uniform distribution of broad delays between 20ts
and 40ts. Neurones in MEM had coincidence threshold 2 and refractory periods
of 10ts. A context stimulus A or B was presented to the network after 450 time
steps had gone by from the onset of a trial followed by a cue stimulus X or Y
after 350 time steps. Each stimulus type consisted of synchronously activating 6
individual cells for each pattern: cells 0 – 5 for A, 6 – 11 for B, 12 – 17 for X,
and 18 – 24 for Y. No other control was applied to the network during trials.

Memory network activity was projected (Proj1) from its excitatory neurones
to an inhibitory network (INH) which had purpose to decode the spatiotemporal
pattern in MEM and inhibit the appropriate cells in SM for correct maneuver-
ing. INH contained 72 neurones with no internal connections but simply spiked
when sufficient number of coincident signals from MEM reached a cell in INH.
This coincidence detection threshold was set to 8. These in turn projected their
inhibitory signal so that 1/4 of cells in INH projected to the left motor neurones
in SM while the other 3/4 projected to the right motor neurones in SM. Projec-
tions from INH to SM (Proj2) were created with a fixed many-to-many scheme
and had delays set randomly in the range 10ts to 20ts. Relatively narrow delays
were used so that the likelihood of coincidence on the SM motor cells would be
reliable enough to disrupt the stable wall avoidance behaviour and induce the
appropriate turning action. The overall network is illustrated in Figure 2.

Crucially, Proj1 connections were procedurally derived with respect to delay
value and connectivity based on prior runs of the memory network with each
of the four combined context and cue stimulus conditions (AX, AY, BX, BY).
We call this process ‘delay mapping’ which here results in Proj1 connections
serving the role of transforming spatiotemporal memory patterns in MEM into
spatial activation patterns in the INH network. We describe the delay mapping
procedure in the next sub-section.

3.3 Delay Mapping

To obtain the delay mapping we first generated a random memory network and
stimulated it with the four input conditions AX, AY, BX, and BY with fixed

284 F. Jeanson and T. White

intervals between context and cue. Because we were only interested in the stable
spatiotemporal firing pattern after the combined stimuli response had settled we
chose a sufficiently late offset spike time sto to mark the start of the region of
analysis (in our case sto = 1400). The limit-cycle period λ was determined from
the four spike patterns (λ = 11ts). For each pattern’s point process data we
recorded spikes in the temporal region sto to sto+λ. Furthermore neurones with
spike times which occurred at the same time for the same cells between lists were
ignored by removing their efferent connections to INH; we call this ‘collision re-
moval’. Figure 3 shows spike times for the individual patterns and crossed spikes
representing collision events between patterns. Collision removal ensured that
the renewal processes were unique for the individual input conditions. We then
selected an arbitrary reference time step tsr within the period interval. Using
tsr we generated lists of spike time ‘deltas’ which are the time step differences of
the spike time of a given cell from the reference tsr. We denote this set of deltas
for cell i of pattern ρ as Δρ

i . Figure 3 illustrates the reference time step from
which spike time deltas (black arrows) were calculated for pattern AY. Because
at most a single spike time stρi exists for a cell i for pattern ρ during period λ
we can simply compute deltas as:

Δρ
i = tsr − stρi . (1)

From these lists of deltas we then created a list of connections for each cell in
MEM to INH where connections projecting to the 1/4 of cells in INH had delays
determined from the list of deltas for the AX pattern. The remaining 3/4 cells
in INH had connections with delays derived from the delta lists for AY, BX, and
BY. A delay dijρ from cell i to cell j for pattern ρ is derived from the list of
deltas following the equation:

dijρ = Δρ
i + dbase. (2)

Where dbase is a base delay selected such that for refractory time R we would
have R + λ/2 < dbase. Here we chose dbase = 20. If we compare, for example,
ΔAY

24 to ΔAY
23 in Figure 3 (the two deltas at the top of the figure) we would

obtain delays d24jAY = 2+20 = 22 for cell 24 and obtain d23jAY = −2+20 = 18
for cell 23. Hence all targets in INH in the region dedicated to AY would receive
connections from cell 24 with delay 22ts and all connections from cell 23 with
delay 18ts.

Collision removal could lead to patterns having too few distinct neurones to
produce sufficient spikes for decoding by INH. However, these neurones can be
‘reinstated’ by assigning connections to INH with delays that do not fully coin-
cide with an existing delay mapping. By setting delays for these connections to
some arbitrary value (here 10ts), time-locked spikes in MEM could potentially
coincide with spikes belonging to the the weakened memory pattern. While this
process does not guarantee successful response, we observed overall improve-
ments in correct turning behaviour.

Dynamic Memory for Robot Control 285

Fig. 3. Derivation of deltas in the spiking period λ = 11ts. Mapping is shown here for
pattern AY (red dots only). Crossed dots are ignored collision spike times.

Fig. 4. Left: spike raster plot of activity in the INH network during presentation of
context stimulus A and cue stimulus X. Right: robot path in the AX stimulus condition.

3.4 Results

We generated 10 random memory networks (MEM) and derived their corre-
sponding projection connections (Proj1) to the inhibitory network. One hundred
trials were tested for a given MEM/Proj1 network pair. For each run, the initial
orientation of the agent was randomly set so that it would face left or right with
45◦ variation on either side. We also randomized the narrow delay ranges for
Proj2 and SM networks on each trial.

We first describe a sample trial for stimulus condition AX. We expected that
the INH network would fire such that a subset of cells detecting pattern AX
should be activated after the presentation of the context stimulus A and cue
stimulus X have settled. Figure 4 shows in the left raster plot the activity of the
INH network during a trial with context stimulus A presented at time step 450
and cue stimulus X presented at time step 800. From the raster plot we notice
that prior to time step 800 cells 18 – 35 corresponding to the recognition of
pattern AY were temporally activated. This suggests that activation of memory
A was sufficient to induce AY recognition. However, after the cue stimulus X
was presented at 800ts and a short period of stabilization (approximately 130ts)
cells 0 – 17 were activated which means memory AX was correctly decoded from
MEM by the projections Proj1. This led to sufficient inhibition of the left motor
neurones via projections Proj2 to the SM network. The graphic on the right

286 F. Jeanson and T. White

hand side of Figure 4 shows the path taken by the robot when moving up the t-
maze. In particular, we notice that soon after the presentation of the X stimulus
a leftward turn is initiated. This led to a correct left turn reaching the top left
corner of the t-maze. Similarly, correct right turns were obtained on most runs
for context/cue stimuli pairs AY, BX, and BY.

We ran 100 trials for 10 random memory networks to determine the effec-
tiveness of dynamic memory storage using the proposed delay mapping method.
Between trials, random delays for Proj2 and SM connections were reset leading
to slight variation for inhibition and sensorimotor control. For performance mea-
sure, we independently counted the number of correct left turns when AX was
presented (25% of times) and the number of correct right turns when all three
other stimuli pairs were presented (75% of times). Simulation results showed
that correct left turns were performed on 82% of AX trials and correct right
turns were performed on 84% of AY, BX, and BY trials leading to an overall
average success rate of 83%. An agent with no memory will have equal chance of
turning left or right at the end of the maze which would lead to a 50% success
rate. Similarly an agent biased towards left or right turns only will also have
an overall success rate of 50%. Hence agents performed the t-maze task more
effectively with the dynamic memory system than without any memory.

Investigation into the individual performance of memory networks revealed
that, despite collision removal and reinstating neurones, stimuli pairs could still
be occasionally ambiguously decoded. This could lead to conflicting inhibition
of the motor cells resulting in indecisive turning behaviour. This explained the
less than perfect success rate with dynamic memory. Here we used a coincidence
detection threshold of 8 for Proj1 connections for all generated memory net-
works. However, we believe greater memory pattern disambiguation could be
achieved in future work by identifying individual decoding thresholds for each
memory network that would be high enough to clearly disambiguate spatiotem-
poral memory patterns.

4 Conclusion

These results show that transmission delay coincidence detection neural net-
works can perform the role for dynamic memories whereby stimulus patterns are
stored differentially and reliably without requiring internal structural/metabolic
change. Importantly, this suggests that any random network which possesses
these characteristics could potentially be exploited by adjacent networks for dy-
namic memory. In addition, the short settling time into periodic attractors sug-
gests that this mechanism could subserve fast delay response integration, rapid
scene categorization, and other neural functions requiring millisecond timescale
exchanges. While we offer a procedural method to determine these delays, bi-
ological mechanisms from evolution, development, or other dynamical mech-
anisms could apply selective pressures on connections and delays leading to
dynamic memories of the kind presented here. While we have not yet explored
the ability for these networks to account for noise, future work will investi-
gate the relationship between decoding thresholds and spurious neural firing.

Dynamic Memory for Robot Control 287

Furthermore, accurate estimates with respect to pattern disambiguation should
provide an accurate indication as to the number of patterns that can be stored
in DCDNs. Overall, we hope that future computational assessments will pro-
vide additional support for the role of delay coincidence detection networks in
dynamic memory and other cognitive functions.

References

1. Abeles, M.: Corticonics: Neural circuits of the cerebral cortex. Cambridge Univer-
sity Press (1991)

2. Arik, S.: Stability analysis of delayed neural networks. IEEE Transactions on Cir-
cuits and Systems 47, 1089–1092 (2000)

3. Bernander, O., Douglas, R., Martin, K., Koch, C.: Synaptic background activity
deter- mines spatio-temporal integration in single pyramidal cells. Proceedings of
the National Acedemy of Sciences 88, 1569–1573 (1991)

4. Braitenberg, V.: Vehicles: Experiments in synthetic psychology. MIT Press, Cam-
bridge (1984)

5. Carr, C., Konishi, M.: A circuit for detection of interaural time differences in the
brain stem of the barn owl. Journal of Neuroscience 10, 3227–3246 (1990)

6. Cowan, J.: Stochastic models of neuroelectric activity. In: Ricce, S., Fread, K.,
Light, J. (eds.) Statistical Mechanics, pp. 181–182. University of Chicago (1972)

7. Fernando, C.: Symbol manipulation and rule learning in spiking neural networks.
Journal of Theoretical Biology 275, 29–41 (2011)

8. Izhikevich, E.M.: Polychronization: Computation with spikes. Neural Computa-
tion 18, 245–282 (2006)

9. Jeanson, F., White, A.: Evolving axonal delay neural networks for robot control. In:
Soule, T. (ed.) Proceedings of the Fourteenth International Conference on Genetic
and Evolutionary Computation Conference (GECCO 2012), pp. 121–128. ACM,
New York (2012)

10. Magnenat, S., Weibel, M., Bayeler, A.: Enki: The fast 2d simulator (2007),
http://home.gna.org/enki/ (last accessed: January 28, 2013)

11. Sperling, G.: The information available in brief visual presentations. Psychological
Monographs 74, 1–29 (1960)

12. Stevens, F., Wesseling, F.: Augmentation is a potentiation of the exocytotic pro-
cess. Neuron 22, 139–146 (1999)

13. Thorpe, S., Imbert, M.: Biological constraints on connectionist models. In: Con-
nectionism in Perspective, pp. 63–92. Elsevier Science Publishers (1989)

14. Ziemke, T., Thieme, M.: Neuromodulation of reactive sensorimotor mappings as a
short-term memory mechanism in delayed response tasks. Adaptive Behavior 10(3),
185–199 (2002)

15. Zipser, D., Kehoe, B., Littlewort, G., Fuster, J.: A spiking network model of short-
term active memory. The Journal of Neuroscience 12(8), 3406–3420 (1993)

 http://home.gna.org/enki/

Robust Principal Component Analysis

for Brain Imaging

Petia Georgieva1 and Fernando De la Torre2

1 University of Aveiro, Aveiro, Portugal
petia@ua.pt

2 Carnegie Mellon University, Pittsburgh, USA

Abstract. Discrimination of cognitive states from functional Magnetic
Resonance Images (fMRI) is a challenging task, particularly when across
subjects common representation of brain states is to be detected. Among
several difficulties, the huge number of features (voxels) is a major ob-
stacle for reliable discrimination of common patterns across brains. Prin-
cipal Component Analysis (PCA) is widely applied for learning of low
dimensional linear data models in image processing.The main drawback
of the traditional PCA is that it is a least-square technique that fails
to account for outliers. Previous attempts to make PCA robust have
treated the entire image as an outlier. However, the fMRIs may contain
undesirable artifacts due to errors related with the brain scanning pro-
cess, alignment errors or pixels that are corrupted by noise. In this paper
we propose a new dimensionality reduction approach based on Robust
Principal Component Analysis (RPCA) that uses an intra-sample outlier
process to account for pixel outliers. The RPCA improves classification
accuracy of two cognitive brain states across various subjects compared
to using conventional PCA or not performing dimensionality reduction.

Keywords: brain imaging, robust principal component analysis, func-
tional Magnetic Resonance Imaging.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a powerful technique for ana-
lyzing human brain activity. Neural activity implies consumption of oxygen. The
fMRI measures the level of oxygenation in the blood with respect to a control
baseline. If the flow of the oxygenated blood increases this is an indicator that
neural activity took place. There is a temporary increase in the ratio of oxy-
genated to the deoxygenated haemoglobin which affects the fMRI signal. The
fMRI scanner displays a sequence of 3 dimensional images. The cells in this 3D
image are called voxels (by analogy with the pixels in 2D images) and typi-
cally have a volume of a few cubic millimeters. One voxel contains hundreds of
thousands of neurons.

One of the most widely used method for analysand fMRI data is Statistical
Parameter Mapping (SPM) [1]. An advantage of SPM is that it produces maps

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 288–295, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

RPCA for Brain Imaging 289

describing the activation throughout the brain in response to particular stimuli.
However, SPM is massively univariate, performing independent statistical tests
for each voxel. Moreover SPM models and maps are strictly associated with
an individual subject. Mitchell et al. [2] have advanced the discrimination of
cognitive states from fMRI across subjects by developing probabilistic machine
learning (ML) algorithms. They have demonstrated that a classifier trained using
fMRI data from some people can successfully decode cognitive brain states of
other people, indicating that our different brains encode cognitive processes in
similar ways. In both approaches (SPM and probabilistic ML) the fMRI images
are transformed into a time sequence of voxels (points with 3D coordinates)and
the voxel patterns over time infer the brain states.

In this paper we propose an alternative approach to discriminate brain states
across subjects directly from the fMRI images applying general image processing
techniques. Our study is inspired by the work of Mitchell et al. [2], [3] for brain
states ML classifiers and the theory of Robust Principal Component Analysis
(RPCA) [4] for feature selection and dimensionality reduction. First, we apply
RPCA to construct low dimensional linear-subspace representations from the
noisy fMRI images and then perform standard classification. The intuition be-
hind the RPCA approach is that fMRI based brain study is a typical case of
high dimensional (huge number of voxels) but with few examples (trials) dataset,
therefore some form of dimensionality reduction may improve the classification.
The main candidate would be the Principal Component Analysis (PCA) that has
been widely used for learning of low-dimensional linear models in image process-
ing and computer vision. Traditional PCA constructs subspace approximation
to training data that is optimal in a least- squares sense. However, the least-
squares techniques fail to account for outliers. A typical form to overcome this
drawback is to pre-process the training data before applying PCA. For example
by manual elimination of bad images. Nevertheless, when automated learning is
applied to more realistic problems, and the amount of training data increases,
it becomes impractical to manually verify that all the data is ”good”. Previous
attempts to make PCA robust have treated the entire image as an outlier. How-
ever, the fMRIs may contain undesirable artifacts due to errors related with the
brain scanning process, alignment errors or pixels that are corrupted by noise.
It involves intra-sample outliers which effect some but not all of the pixels in
the image. In [4] a theory of Robust PCA (RPCA) is developed that uses an
intra-sample outlier process to account for pixel outliers.

In our previous work ([5]), RPCA was applied to extract features from
fMRI data associated with each subject and then individual Gaussian Naive
Bayes(GNB) classifiers were trained to discriminate among two cognitive brain
states. For each test case, the probability of the correct class was higher than
the probability of the incorrect class, thus a perfect binary classification was ob-
tained. In the present paper we consider the more general problem of cognitive
states discrimination across subjects. Based on integrated fMRI data from mul-
tiple subjects, we want to develop across subjects supervised learning of common
representations and prove that different brains encode cognitive processes in a

290 P. Georgieva and F. De la Torre

similar way. A feedforward Artificial Neural Network (ANN) with probabilistic
activation functions was applied as a classifier. The paper proceeds as follows.
Section 2 introduces RPCA formally, section 3 provides results on the applica-
tion of the RPCA-ANN to empirical fMRI dataset, and finally in section 4 a
discussion of the results is provided.

2 Robust Principal Component Analysis

PCA is a statistical technique that is useful for dimensionality reduction. Let
D = [d1d2...dn] be a matrix D ∈ IRd×n, where each column di = [d1i d

2
i ...d

d
i]

T

is an image, n is the number of training images, and d is the number of pix-
els in each image. We assume that training data is zero mean, otherwise the
mean of the entire data set is subtracted from each column di. Let the first k
principal components of D be B = [b1b2...bk] ∈)d×k. The column of B are
the directions of the maximum variation within the data. The principal compo-
nents maximize maxB

∑n
i=1 ‖BTdi‖22 = BTΓB with the constraint BTB = I,

where Γ = DDT =
∑

i did
T
i is the covariance matrix. The column of B form

a basis that spans the principal subspace. If the effective rank of D is much
less than d, we can approximate the column space of D with k << d principal
components. The data di can be approximated by the linear combination of the
principal components as drec

i = BBTdi where BTdi = ci are the linear coeffi-
cients obtained by projecting the training data onto the principal space; that is
C = [c1c2...cn] = BTD. In [4] the RPCA is formulated as minimization of the
following error function

Erpca(B,C, μ, σ) =

n∑
i=1

erpca(ei). (1)

where, erpca = eTi ei is the energy of the reconstruction error ei(di−μ−Bci, σ),
with mean (di − μ−Bci) and variance σ = [σ1σ2...σd] that specifies a scale pa-
rameter for each of the d pixel locations. In standard PCA, the number of bases
is usually selected to preserve the ratio between the energy of the reconstructed
vectors and the original ones larger than some percentage. In RPCA this crite-
rion is not straightforward to apply. The robust error erpca depends also on σ.
Therefore we first apply standard PCA to the data, and calculate the number of
bases which preserve the ratio between the energy of the reconstructed vectors
and the original ones larger than 0.55; With this initial number of bases, we
apply RPCA, minimizing (1), until convergence. At the end of this process we
have a matrix W that contains the weights of each pixel in the training data.
We detect outliers with this matrix and set values of W to 0 if wpi is above a
certain threshold and to wpi otherwise, obtaining W∗. We then incrementally
add additional basis and minimize E(B,C, μ) = ‖W∗ ◦ (D − μ − BC‖22 but
maintaining constant weights W∗. The iterative minimization of (1)starts with
an initial guess for B chosen to be the mean of D plus random Gaussian noise.
The RPCA formulation has an inherent scale parameter that determines what
is considered an outlier.

RPCA for Brain Imaging 291

3 Experiments and Results

The RPCA-ANN approach is demonstrated on the Star-Plus (SP) benchmark
fMRI data known from other studies [6], [2]. We used the SP dataset available for
public use [7] where six participants were presented with a sequence of 40 trials.
In half of the trials participants were shown first a picture (4 sec.) followed by a
blank screen (4 sec.), and then a sentence (4 sec.). The participants had to press
a button indicating whether the sentence correctly described the picture. Then
they rested before the next trial began. In the other half of the trials the sentence
was presented first and the picture second, using the same timing. Images were
collected every 500msec. Only a fraction of the brain of each subject was imaged.
The data is marked up with 25-30 anatomically defined regions called ”Regions
of Interest” (ROI).

The goal of the study was to train a classifier to distinguish whether the sub-
jects are viewing a picture or sentence. Therefore two brain states are considered:
state P related with the stimulus Picture that represents visually evoked brain
activity and state S associated with the stimulus Sentence and corresponds to
decision making brain state. In the rest of this paper, we will denote the data
related with each state as P dataset and S dataset respectively. For each subject
we have 80 trials in total (20 P1, 20 P2, 20 S1 and 20 S2 trials). The numbers
associated with the trials indicate if the picture/sentense was the first (P1/S1)
or the second (P2/S2) stimulus. Half of the trials of all six subjects were used
as training data and the rest of the trials of the subjects for testing.

For each trial of fMRI data we have a sequence of 16 volume (3 dimensional) im-
ages, one volume consists of 8 2D snapshots. The data matrix D has 128 columns
(16 × 8) that corresponds to the total number of 2D images and (64 × 64) lines
corresponding to the number of pixels in each image. Before applying the RPCA,
a test for data variability was performed by the Singular Values (SV) of matrixD.
The first nine SVs carrymore than 90%of the total signal energy (see Fig.1), there-
fore the number of bases (the principal components) was set to k = 9. RPCA is
applied for the fMRI images of all trials. If the optimization procedure to compute
the projectionmatrix is executed for each trial (unsupervised mode) the computa-
tional time would be rather high. Thereforewe apply the so called supervisedmode
where the optimal projection matrix is computed ones (for one trial) and applied
for the rest of the trials. The effect of applying RPCA for image samples from four
trials of one of the subjects is illustrated on Fig.2. The reconstructed images are
the inputs of the classifier. Our goal is to train a classifier with fMRI data from
n−1 subjects to automatically decode the cognitive states of the nth subject. The
ANN learns a class-conditional distribution model for each feature (each pixel of
the training images) over the 40 training trials from (n−1) subjects given the class
label (supervised learning). The ANN assigns the class for the test trials from the
nth subject applying theMaximumLikelihood Estimation (MLE). The procedure
is repeated for each subject. OnFig. 3, Fig. 4 andFig. 5 are depicted theMLEprob-
abilities related with the discriminated cognitive brain states (P and S) of all sub-
jects in the fMRI dataset over all (40) test trials. The first 20 trials on the figures,
correspond to the S state and the next 20 to the P state. Note that the proposed

292 P. Georgieva and F. De la Torre

0 50 100 150

0

1000

2000

3000

4000

S
V

SV index

S1 state

0 50 100 150

0

1000

2000

3000

4000

S
V

SV index

S2 state

0 50 100 150

0

2000

4000

6000

S
V

SV index

P1 state

0 50 100 150

0

1000

2000

3000

4000

S
V

SV index

P2 state

Fig. 1. Singular Values (SV) of fMRI image matrix (one trial)

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

Fig. 2. Subject 1: Top: Original images. Bottom: RPCA reconstructed images

classification technique RPCA-ANN assigns the correct class for almost all test tri-
als (Fig. 3). while two alternative approaches ANN (Fig. 4) and PCA-ANN (Fig.
5) demonstrate poor generalization properties.

The performance of the RPCA-ANN, ANN and PCA-ANN in terms of % of
correctly classified test trials for each of the 6 subjects is summarized on Table
1. The ANN attempts to directly classify the original fMRI data. The PCA-
ANN technique represents each image as a linear combination of k principal
components. However, pixel outliers in the images are not eliminated (see the
top images on Fig. 2) and their presence in the principal components degrade
the classification. The proposed RPCA-ANN technique first applies PCA, then
accounts for the pixel outliers and eliminate them by substituting the value of
W associated with that pixel with zero. The elimination of the pixel outliers
additionally reduce the feature dimension of each image and thus leads to a
better classification of the subject’s test trials.

RPCA for Brain Imaging 293

Table 1. % of correctly classified test trials

Subject ANN PCA-ANN RPCA-ANN

1 69 73 85

2 35 35 87

3 59 60 83

4 57 57 82

5 43 45 89

6 56 57 85

0 20 40

0

0.5

1

MLE (subject 1)

trial

0 20 40

0

0.5

1

MLE (subject 2)

trial

0 20 40

0

0.5

1

MLE (subject 3)

trial

0 20 40

0

0.5

1

MLE (subject 4)

trial

0 20 40

0

0.5

1

MLE (subject 5)

trial

0 20 40

0

0.5

1

MLE (subject 6)

trial

P state

S state

Fig. 3. Maximum Likelihood Estimation (MLE) with RPCA-ANN (test data)

0 20 40

0.97

0.98

0.99

1

1.01

MLE (subject 1)

trial

0 20 40

0.9

0.95

1

MLE (subject 2)

trial

0 20 40

0.96

0.98

1

1.02

MLE (subject 3)

trial

0 20 40

0.85

0.9

0.95

1

MLE (subject 4)

trial

0 20 40

0.94

0.96

0.98

1

MLE (subject 5)

trial

0 20 40

0.85

0.9

0.95

1

MLE (subject 6)

trial

P state

S state

Fig. 4. Maximum Likelihood Estimation (MLE) with ANN (test data)

294 P. Georgieva and F. De la Torre

0 20 40

0.8

0.85

0.9

0.95

1

MLE (subject 1)

trial

0 20 40

0.8

0.85

0.9

0.95

1

MLE (subject 2)

trial

0 20 40

0.9

0.95

1

MLE (subject 3)

trial

0 20 40

0.4

0.6

0.8

1

MLE (subject 4)

trial

0 20 40

0.85

0.9

0.95

1

MLE (subject 5)

trial

0 20 40

0.7

0.8

0.9

1

MLE (subject 6)

trial

P state

S state

Fig. 5. Maximum Likelihood Estimation (MLE) with PCA-ANN (test data)

4 Conclusions

In this paper is presented a method for robust PCA that improves the dis-
crimination of cognitive brain states from fMRI across subjects. The method is
illustrated on empirical data and shows that it improves classification accuracy
relative to using conventional PCA or not performing dimensionality reduction.
The results reported here are obtained with the combination of RPCA and an
ANN classifier. However, other classifiers like Gaussian Naive Bayes (GNB) and
Support Vector Machine (SVM) were also tested with similar conclusions. We
are aware that the hard binary decision where one out of two states is selected
could not be realistic scenario in most of the cases. However our goal is not to
exhaustively search for a technique to decode as many cognitive brain states as
possible. Instead, we want to clearly illustrate that brain states discrimination
across subjects can be significantly improved by RPCA.

Acknowledgements. This work was funded by the Portuguese Foundation for
Science and Technology (FCT) in the framework of the CMU-Portugal Faculty
Exchange program 2012 and partially funded by FEDER through the Opera-
tional Program Competitiveness Factors - COMPETE and by National Funds
through FCT in the context of the projects FCOMP-01-0124-FEDER-022682
(FCT reference PEst-C/EEI/UI0127/2011) and Incentivo/EEI/UI0127/2013.

References

1. Friston, K.J.: Introduction to statistical parametric mapping. In: Frackowiak, et al
(ed.) Human Brain Function (2003)

2. Mitchell, T., Hutchinson, R., Niculescu, R., Pereira, F., Wang, X.: Learning to
Decode Cognitive States from Brain Images. Machine Learning 57, 145–175 (2004)

RPCA for Brain Imaging 295

3. Hutchinson, R., Niculescu, R., Keller, T., Rustandi, I., Mitchell, T.: Modeling fMRI
data generated by overlapping cognitive processes with unknown onsets using Hid-
den Process Models. NeuroImage 46, 87–104 (2009)

4. De la Torre, F., Black, M.: Robust Principal Component Analysis for Computer
Vision. In: IEEE Int. Conf. on Computer Vision, Vancouver, Canada (2001)

5. Georgieva, P., Nuntal, N., De la Torre, F.: Robust Principal Component Analysis for
improving cognitive brain states discrimination from fMRI IbPRIA. In: 6th Iberian
Conference on Pattern Recognition and Image Analysis Madeira, Portugal, June 5-7
(accepted, 2013)

6. Keller, T., Just, M., Stenger, V.: Reading span and the time-course of cortical
activation in sentencepicture verification. In: Annual Convention of the Psychonomic
Society, Orlando, FL. (2001)

7. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 296–303, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Phase Control of Coupled Neuron Oscillators

Mayumi Irifune and Robert H. Fujii

Computer Systems Department, University of Aizu, Aizu Wakamatsu City,
Fukushima Prefecture, Japan
fujii@u-aizu.ac.jp

Abstract. The phase response of an Izhikevich neuron integrator/resonator
model based oscillator to a weak short-duration external input pulse is used to
determine the Izhikevich model dynamic parameter values needed to attain a
specified phase difference between coupled neuron oscillators working at the
same natural oscillation frequency. The design of a new type of neuron
oscillator-chain based artificial central pattern generator for the coordinated
four-legged animal walking movement is proposed as an application.

Keywords: Izhikevich neuron model, saddle-node bifurcation, Andronov-Hopf
bifurcation, integrator, resonator, stable limit cycle, phase difference, phase
response curve, weakly-coupled oscillators.

1 Introduction

Various synchronization phenomena exist in the biological world. For example, the
repetitive muscle movements in swimming and cardiac rhythmic movements [2] are
believed to result from a system composed of coupled oscillating neurons that act in
synchrony while maintaining various phase differences with respect to each other.

In this paper, the Izhikevich neuron model of a cortical neuron [5,6,7,8] is used to
model an integrator as well as a resonator type neuron acting with oscillatory
behavior. The Izhikevich neuron model has its roots in the Hodgkin-Huxley (HH)
neuron model [9] but it is a considerably simpler model; it approximates the action
potential function of the HH neuron model and captures the essence of the INa+ IK
ionic current dynamics that allow 2D dynamical system phase plane analysis and
numerical simulations of the neuron action potential as shown in Figs. 1(a) and (b)
respectively. The Izhikevich cortical neuron model [7] can be described by the
following equations:

 0.04 5 140 (1)

(2)

 if v > v peak , then {v← c

u← u+ d
.

The variable v represents
potential recovery variabl
activation of K ionic curren
describes a time scale value
sensitivity factor value for
reset voltage value for the
value of the recovery variab
portrait (solid curve with ar
shown in Fig. 1(a). The neu
1(b). Since the Izhikevich
not the downstroke action
potential when the membran

Fig. 1. Neuron beh

The resting state is equ
system of the neuron. A pe
the neuron limit cycle dyn
current I is changed, the ne
neuron parameter value(s
bifurcation is said to have o
that undergo saddle-node
bifurcations (resonator type

Both the integrator and r
specified natural frequency
[1,3] represents the amoun
magnitude) [8] input puls
oscillation) is applied at the
value is positive (negative)
saddle-node bifurcation neu
shown in Fig. 2(a) where th
represents the time relative
the input stimulus pulse was

Phase Control of Coupled Neuron Oscillators

s the action potential. The variables u represents the act
le that takes into account ionic currents, such as
nt and the inactivation Na ionic current. The parameter
e for the recovery variable u. The parameter 'b' describe
r the recovery variable u. The parameter 'c' describes
e action potential v. The parameter 'd' describes the re
ble u after an output spike has occurred. The neuron ph
rrow followed by dark dashed line) in the vu phase plan
uron action potential as a function of time is shown in F
model can generate the upstroke action potential (v2)
n potential, the Izhikevich model resets the membr
ne potential v exceeds vpeak.

avior: (a) vu plane and (b) action potential (v) vs. time

uivalent to the stable equilibrium point in the dynam
eriodic spiking state (i.e. oscillatory output) correspond
namics. When a neuron model parameter value such

euron state can shift states. When a smooth small change
) causes the neuron behavior to suddenly change
occurred. In this paper, the oscillatory behavior of neur

(integrator type) bifurcations [7] and Andronov-H
e) [7] are considered.
esonator model neurons can be made to oscillate with so

y. A phase response curve or phase resetting curve (PR
nt of phase shift that occurs when a weak (i.e. sm
e stimulus of short duration (relative to the period

e input of the oscillating neuron. If the phase resetting cu
, the phase is advanced (delayed). An example PRC fo

uron model with some constant output spiking oscillatio
he y-axis represents the amount of phase shift and the x-a
to the oscillator period (period = 40 ms. in the figure) w

s received. A PRC can be defined as follows:

.

297

tion
the

r 'a'
es a
the

eset
hase
ne is
Fig.
but

rane

mical
s to

h as
e in

e, a
rons

Hopf

ome
RC)
mall
d of
urve
or a
n is
axis

when

(3)

298 M. Irifune and R.H. Fujii

where the phase ⁄ with t denoting the time since the last output spike of the
oscillator and T denoting the oscillator neuron period. Tn denotes the time of nth spike
when no external stimulus is present (dotted line in Fig. 2(b)), and Tnew denotes the
time of the next spike after the external stimulus was received (solid line in Fig. 2
(b)). The overall phase shift over many periods is composed of the current phase of
the oscillator (relative to some absolute reference) and the phase shift due to the most
recent external stimulus pulse.

 (4)

θcurrent describes the phase of the oscillator at the instant when the input stimulus pulse
is received. Mod T stands for modulo T. T is the oscillator frequency. The Izhikevich
cortical neuron model Equations (1) and (2) were used to obtain the Phase response
Curve (PRC) shown in Fig. 2 (a).

Fig. 2. (a) Phase response curve for Izhikevich neuron model with a = 0.01, b = 0, c = - 60, d =
6, I = 35pA, and external input stimulus pulse strength of 0.05pA. (b) Phase shift due to
external stimulus. (c) Neuron membrane potential plot showing phase shift due to external
stimulus.

The goal of this research was to analyze how neuron oscillators could be made to
have absolute/traveling-wave phase differences between them. In order to do so, the
behavior of weakly coupled [8] integrator/resonator neuron oscillators operating at
identical natural frequencies was analyzed using PRCs under the assumption that each
oscillator had a stable limit cycle and that their coupling strengths were small.

2 Phase-Shift Analysis of Single Neuron Oscillators

Izhikevich model parameters a, b, c, d and the current I were selected appropriately so
that both the saddle-node and sub-critical Andronov-Hopf bifurcation neurons could
be made to oscillate.

θnew= θcurrent+ PRC (θcurrent) mod T.

Two example PRCs for
Hopf (AH) bifurcations w
pulses are shown in Fig. 3
and negative phase shift val

Fig. 3. PRC1 has

Fig. 4. (a) a = 0.01, b= -0.2,
from 3.5pA to 37.5pA in incr
0.02 in increments of 0.001. (d

PRCs for the Izhikevich
Fig. 4; when excitatory (
positive (negative) values [

Phase Control of Coupled Neuron Oscillators

r an Izhikevich neuron undergoing sub-critical Andron
while receiving excitatory external weak short stimu
. It should be noted that the AH PRCs have both posit
lues. The X-axis range is 0 - 2πradians.

s a = 0.07, b = 0.26 and PRC2 has a = 0.01, b = 0.20

c = -60, d = 6, and I = 17pA. (b) Input stimulus pulse streng
rements of 3.5pA applied. (c) Parameter ‘a’ varied from 0.0
d) Parameter ‘b’ varied from -0.2 to 0 in increments of 0.05.

neuron undergoing saddle-node bifurcations are shown
(inhibitory) stimulus pulses occur, the PRCs have o
[3]. As can be seen in Figs. 4 (b), (c), and (d), increas

299

nov-
ulus
tive

gths
1 to

n in
only
sing

300 M. Irifune and R.H. Fujii

parameters 'a', 'b', and/or external input stimulus pulse magnitude made the peak of
the PRC larger and shifted it to the left. The PRC y-axis represents the phase shift in
radians and the PRC x-axis represents the phase of the oscillator at the time the
external weak short pulse stimulus is received. The x-axis range is 0 to 2πradians.

3 Phase Analysis of Two-Coupled Oscillators

The behavior of two oscillating neurons whose outputs are mutually coupled to each
other can be described using phase shift equations [10,11].

 Ω . (5)

 Ω . (6)

In the above equations, i = 1 or 2 for the two neuron sytem, Ωi = natural oscillator i
frequency, ɛ1= coupling strength of output of oscillator 2 to oscillator 1, ɛ2 =
coupling strength of output of oscillator 1 to oscillator 2, Hij = shift in phase of
oscillator i due to input from oscillator j, θ1 - θ2 = phase of oscillator 1 when
oscillator 2 fires a pulse, θ2 - θ1 = phase of oscillator 2 when oscillator 1 fires a
pulse.

The following describes the phase difference between the two oscillators:

 . (7)

X = θ1-θ2, w = Ω1-Ω2, G(X) = ɛ1H12 (X) –ɛ
2
H21 (-X). Thus, G(X) is the graph

obtained as the difference between the PRC1 graph and the mirrored PRC2 graph.
Since the two oscillators have the same frequency, w = 0. A constant phase difference
between the two oscillators is achieved when dG(X)/dX is negative (stable
equilibrium) and dX/dt = G(X) = 0.

Oscillators that have different PRCs can be selected to achieve a desired constant
phase difference. Whether the phase difference is a constant absolute phase difference
or a constant traveling-wave type phase difference depends on the PRC values where
G(X) = 0 occurs. If the PRC values are 0 at G(X) = 0, a constant absolute phase
difference can be achieved otherwise, a traveling-wave type phase difference is
achieved. For sub-critical Andronov-Hopf (AH) bifurcation oscillators, the G(X) = 0
point usually corresponds to a point where the PRCs are not 0, thus a constant but
traveling wave-type phase difference between the two oscillators is achieved. Two
different G(X) graphs for sub-critical AH bifurcation oscillators are shown in Fig. 5.

Achievable phase difference ranges for a pair of coupled saddle-node/AH
bifurcation oscillators are shown in Tables 1 and 2. Phase difference ranges are larger
in Table 2 than in Table 1 because in Table 2 the a, b parameter values and the ɛ
values are varied instead of just varying the coupling strength ɛ value.

Fig. 5. Sub-critical AH oscilla
negative, the constant phase di

Table 1. Examples of achievab
node and AH bifurcation neu
values, but same/different coup

Both SN oscillators
a = 0.01, b = - 0.2

Both AH oscillators
a = 0.1, b= 0.26

Table 2. Achievable phase
oscillators. The coupled oscilla

a1=0.01, a2=0.01 to 0.1

b1=0.26, b2= 0.05 to 0.26

b1=0.20, b2= 0.05 to 0.26

b1=0.15, b2= 0.05 to 0.26

b1=0.10, b2= 0.05 to 0.26

b1=0.05, b2= 0.05 to 0.26

4 Chain of Oscilla

With a knowledge of the r
coupled oscillators, it is po

Phase Control of Coupled Neuron Oscillators

ators G(X) graphs. When PRCs ≠0 at G(X) = 0 and dG(X)/d
ifference is a traveling wave.

ble phase difference ranges for a pair of mutually coupled sad
uron oscillators. The coupled oscillators have the same a an
pling strength ɛ values.

ɛ1 = -1; ɛ2 = -1 to -3 ɛ1 = -1 to -3; ɛ2 = -1

3.14 to 4.21 radians 2.07 to 3.14 radians

3.14 to 3.178 radians 3.105 to 3.14 radians

difference for a pair of coupled sub-critical AH bifurca
ators have various a, b, and ɛ values.

ɛ
1
=ɛ

2
 = -0.1 ɛ

1
= -1, ɛ

2
=-0.3

2.7453 to 3.8401 radians 2.6742 to 3.9135 radians

2.6885 to 3.8231 radians 2.6681 to 3.9195 radians

2.6903 to 3.8058 radians 2.6637 to 3.9022 radians

2.6553 to 3.7892 radians 2.6529 to 3.8799 radians

2.4430 to 3.7751 radians 2.5312 to 3.8754 radians

ators

range of possible phase differences achievable with tw
ossible develop a chain of two-coupled oscillators that

301

dX=

ddle-
nd b

ation

wo-
can

302 M. Irifune and R.H. Fujii

be used to design an artificial central pattern generator [10,11] that mimics the
synchronized and phase shifted walking leg movements of a four-legged animal. A
new type of oscillator chain that can achieve such movements is shown in Fig. 6.

Fig. 6. Chained Oscillator System (COS) comprised of coupled oscillators 1 and 2 chained to
coupled oscillators 3 and 4

It is assumed that all oscillator neurons 1 - 4 are AH bifurcation oscillators. A
traveling-wave type constant phase shift between coupled oscillators 1 and 2 as well
as between coupled oscillators 3 and 4 can each be set to 3.883 rad. by a proper
selection of inhibitory (negative) ɛi (i= 1 or 2) values, and ai and bi parameter values
(see Table 2). The chaining of the coupled oscillators 1-2 to 3-4 is accomplished with
a positive ɛS (i.e. excitatory) coupling strength. The phase shift between oscillators 2
and 3 will be approximately 0 radians because the PRC for oscillator 3 has a negative
slope (i.e. a stable point) near 0 and 2π radians. The chaining between oscillators 2
and 3 is needed for synchronization.

Fig. 7. Outputs for chain of oscillators shown in Fig. 6. Top output is for oscillator 1 followed
by oscillator 2, oscillator 3, and bottom output for oscillator 4.

Thus, the constant phase difference (either absolute or a traveling-wave-type)
between oscillator 1 and oscillator 4 will be 1.5 radians (i.e. (3.883 radians + 3.883

1 2

ε2

ε1

3 4

εS ε2

ε1

 Phase Control of Coupled Neuron Oscillators 303

radians) mod. 2π) ≃1.5 radians ≃π/2). If the COS shown in Figure 6 is chained to
another COS of identical specification, another phase shift of approximatelyπ/2
radians can be achieved. Hence, to achieve the synchronized phase shifted walking
leg movements of a four-legged animal with each leg moving π/2 apart in time, three
COSs (12 neurons) will be needed. The phase shifted traveling wave-type of outputs
for the COS oscillators 1 (top) through 4 (bottom) in Fig. 6 are shown in Fig. 7. If
oscillator 3 was a SN bifurcation oscillator instead of an AH bifurcation oscillator, it
would not be possible to have a 0 phase shift difference between oscillators 2 and 3.

5 Conclusions

Phase response curves (PRCs) of Izhikevich neuron model based oscillators were
obtained through simulations. Using this database of PRCs, it was possible to
determine the range of constant absolute or traveling-wave type phase difference that
could be achieved between two mutually coupled oscillators. A manual search of the
appropriate neuron parameter values was carried out in order to apply the proposed
method for the coordinated walking movement of a four-legged animal. An
automated computer search and optimization algorithm that uses simulated PRC data
or numerically generated Malkin’s theorem [4,8] based PRC data can be developed.

References

1. Ermentraut, B.: Type I Membrane, Phase Resetting Curves and Synchrony. Neural
Computation 8, 979–1001 (1966)

2. Brodfuehrer, P.D., Debski, E.A., O’Gara, B.A., Friesen, W.O.: Neuronal Control of Leech
Swimming. J. of Neurobiology 27(3), 403–418 (1995)

3. Gutkin, B.S., Ermentrout, G.B., Reyes, A.D.: Phase-response Curves Give the Responses
of Neurons to Transient Input. J. of Neurophysiology 94, 1623–1635 (2005)

4. Malkin, I.J.: Some Problems in the Theory of Nonlinear Oscillations. Moscow (1956);
U.S. Atomic Energy Commission, translation AEC-tr-3766, Washington D.C (1959)

5. Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Trans. on Neural Networks 14,
1569–1572 (2003)

6. Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Trans. on
Neural Networks 15, 1063–1070 (2004)

7. Izhikevich, E.M.: Dynamical System in Neuroscience: The Geometry of Excitability and
Bursting. The MIT Press, Massachusetts (2007)

8. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New
York (1997)

9. Hodgkin, A.L., Huxley, A.F.: A Quantitative Description of Membrane Current and
Application to Conduction and Excitation, Nerve. J. of Physiology 117, 550–554 (1952)

10. Kopell, N.: Toward a Theory of Modeling Central Pattern Generators. In: Cohen, A.,
Grillner, S., Rossignol, S. (eds.) Neural Control of Rhythmic Movements in Vertebrates,
pp. 369–413. J. Wiley & Sons, New York (1988)

11. Rand, R.H., Cohen, A.H., Holmes, P.J.: System of Coupled Oscillators as Models of
Central Pattern Generators. In: Cohen, A., Grillner, S., Rossignol, S. (eds.) Neural Control
of Rhythmic Movements in Vertebrates, pp. 333–367. J. Wiley & Sons, New York (1988)

Dendritic Computations in a Rall Model

with Strong Distal Stimulation

Youwei Zheng and Lars Schwabe

Faculty of Computer Science and Electrical Engineering
Adaptive and Regenerative Software Systems

University of Rostock

Abstract. Rall’s work is the basis for investigating dendritic computa-
tions, but only recently the technology became available to study their
properties experimentally. Empirical evidence supports the idea that
synaptic inputs at distal dendritic locations set the context for recog-
nizing synaptic activation patterns of synapses proximal to the soma.
Such a context-dependence is fundamental for action selection and deci-
sion making. It is usually assumed that active channels in dendrites are
necessary. Here we investigate under which conditions of synaptic drive,
a passive dendrite model can realize such a context-dependence, and we
find that stronger distal than proximal activation, paired with delayed
inhibition, is sufficient to produce so-called up states. Testing the model
on a different protocol (selectivity to synaptic activation sequences: dis-
tal to proximal vs. proximal to distal) shows that it is more similar to
recent experimental findings than Rall’s original parameterization, and
similar to a model with active dendrites. Our results show that, given
stronger distal activation, context-dependent pattern recognition can be
implemented in passive dendrites. As a consequence, future experimen-
tal studies need to determine on a case-by-case basis the contribution of
active channels in dendrites (a single neuron property) vs. synaptic drive
(a network property) in context-dependent pattern recognition.

Keywords: Computational neuroscience, dendrites, pattern recognition,
classification.

1 Introduction

The pioneering exploration of the computational capabilities of dendrites by
Rall’s legacy has provided the theoretical framework for computational neuro-
science. Many of his works are classics, from modeling the complex branching
structures of dendritic trees to studying their contributions to the signal process-
ing in the nervous system. One landmark-paper is the Theoretical significance
of dendritic trees for neuronal input-output relations [4] published in 1964. It
was the first theoretical paper to demonstrate neurons as directionally sensitive
computational units, which are able to detect the spatiotemporal direction of
synaptic activation on the dendrites.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 304–311, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Dendritic Computations in a Rall Model with Strong Distal Stimulation 305

Rall showed that the farther the location of stimulation is away from the
soma, the lower and later the voltage peaks are observed at the soma. How-
ever, this prediction is not compatible with our current knowledge on dendritic
location-independence of unitary somatic EPSP [2]. Moreover, a recent work on
synaptically driven state transitions of striatal spiny neurons revealed a simi-
lar property and discovered that the somatic up state can be attributed to the
activation of a group of adjacent distal spines in a rapid succession [3]. Interest-
ingly, despite distinct up state durations, the peak somatic voltages do not show
location-dependent differences.

One functional role of such synaptically driven state transitions may be in per-
forming context-dependent pattern recognition, i. e. only in the up state patterns
are recognized while in the down state the neuron as a classifier is switched off.
In this paper, motivated by Rall’s work [4], which demonstrated rich computa-
tional capabilities of dendrites such as the direction selectivity without assuming
voltage-dependent channels, we explore conditions under which a Rall model pre-
dicts up states and direction sensitivity. All simulations were done on exactly
the model neuron used by Rall. Fig. 1 shows Rall’s model and our reproduction
of one of Rall’s results in [4], namely the somatic voltage response when pairs of
compartments at different distances from the soma receive excitatory stimula-
tion. In the rest of the paper we only change the stimulation of this model, but
not the model parameters.

We show that Rall’s model captures the key characteristics of up state transi-
tions triggered by the activation of distal dendrites such as in striatal spiny neu-
rons [3]. As expected from a Rall model, we predict that distal excitatory sites
need to be stimulated more strongly than proximal ones to achieve a location
independence of the somatic EPSP [5]. However, to be consistent with the exper-
imentally reported voltage decay from the up state we find balanced and delayed
inhibition to be necessary. We also show that Rall’s model, when stimulated with
the location-dependent excitatory inputs we applied, predicts direction-selective
responses closer to recent experimentally reported direction-selectivity [1] than
Rall’s original protocol [4]. Finally, we show that the location-dependent strength
of excitatory inputs leads to model predictions, where strong distal and proxi-
mal activation are required to depolarize the soma close to threshold; proximal
activation alone, or proximal activation paired with weak distal activations were
not sufficient.

2 Model Description

We used exactly the same model as in Rall’s original work. A full model descrip-
tion is omitted for the sake of brevity, however, for completeness we summarize
the main features of a Rall model as follows: 1) the dynamics of the membrane
potential Vm are calculated using an equivalent electrical circuit model. The
basic form of such a model is

Cm
dVm

dt
= −Gr(Vm − Er)−Ge(Ee − Er)−Gi(Ei − Er), (1)

306 Y. Zheng and L. Schwabe

1 2 3 4 5 6 7 8 9 10

soma

proximal distal

output action selection inputs context inputs

(2,3)

(4,5)

(6,7)

(8,9)

Fig. 1. Illustration of the Rall model: our reproduction of Fig. 6 from [4] shows the
effect of dendritic location upon excitatory E-pulse depolarization (ΔE = 1.0 and
Δt/τ = 0.25)

where Cm is the membrane capacitance, and Ge and Gi are synaptic conduc-
tances with corresponding reversal potentials Ee and Ei. The conductance Gr

and reversal potential Er model leak currents. We define two new variables E
and I,

E =
Ge

Gr
, I =

Gi

Gr
, (2)

which are unit-less ratios of excitatory and inhibitory synaptic conductances. 2)
Building upon the circuit model, Eq. 1, the compartmental model of a dendritic
tree is an equivalent cylinder consisting of a system of 10 differential equations,
each representing the dynamics of the membrane potential for one compartment.
The membrane potential V i

m for the i-th compartment satisfies

τm
dV i

m

dt
= −(1 + E i + Ii +ΔZ2)V i

m +ΔZ2(V i−1
m + V i+1

m) + E i, (3)

where the compartmental electrotonic distance ΔZ is set to 0.2 and the mem-
brane time constant is τm = Cm

Gr
. Boundary conditions are V i=0

m = V i=11
m = 0.

3 Simulation Results

3.1 Strong Distal Activation Evokes Up States

Recently, Plotkin et al. [3] used the technique of laser uncaging of glutamate
to stimulate dendrites at different distances from the soma. They investigated

Dendritic Computations in a Rall Model with Strong Distal Stimulation 307

under which conditions such dendritic stimulation, which mimics synaptic stim-
ulation, gives rise to up state transitions as recorded intracellularly at the soma
[7]. From their study we extracted four important observations: i) the so-
matically recorded membrane potentials triggered by both proximal and distal
stimulation were similar in amplitude, ii) the peak somatic potential triggered
by distal uncaging was delayed by approx. 50 ms compared to the peak triggered
by proximal uncageing, iii) the somatic potential at the soma decays back to the
resting voltage at almost the same time for both proximal and distal stimulation,
and iv) the duration of up state was longer when triggered by distal compared to
proximal stimulation (the time between the end of uncaging and a 50% voltage
fall; see Fig.1c,d in [3]).

We first consider observation i): How can the somatic membrane potential
rise to the same peak amplitude for both proximal and distal stimulation in a
Rall model? We determined the location-dependence of the strength of the exci-
tatory stimulation necessary to achieve this. Fig. 2a shows the somatic voltage
in response to a proximal (dashed line) and distal stimulation (solid line). The
strength of proximal stimulation was set to match experimental findings. In [3],
an amplitude of 20 mV was shown to be achieved by stimulating on average
25 spines, but the threshold for evoking a sustained somatic depolarization was
only about 11 spines from the distal region. Therefore, we selected 9 mV poten-
tial as the reference amplitude in this study, which is still consistent with the
threshold observation (Plotkin [3], personal correspondence). As expected from
a Rall model, the distal needs to obtain stronger stimulation than the proximal.
In Fig. 2a, a distal stimulation of approx. 10× the strength of the proximal was
required to reach the same peak amplitude at the soma (2.0 vs. 19.0).

While observation ii), the delayed peak of somatic potential, follows naturally
from the Rall model, it is not compatible with observation iii). The potential
decays later to rest for distal stimulation (Fig. 2a). Therefore, we determined
the inhibitory distal stimulation necessary so that the somatic voltage decays
back for distal stimulation at the same time as for the proximal one. Fig. 2b
shows the result when applying a strong distal inhibitory stimulation after the
somatic potential peaked. Thus, we have shown that key properties of up state
can be produced within a Rall model. Our proposal is therefore an alternative
to voltage-dependent channels in dendrites, but it requires a properly matched
inhibition at distal sites.

3.2 Revisiting Directional Sensitivity in the Rall Model

We argue that Rall’s most significant contribution in his 1964 paper [4] was the
discovery that a model neuron is sensitive to the temporal sequence of inputs
and can act as a device computing the direction of motion (distal to proximal
vs. proximal to distal). This phenomenon was then later explored by [6] and
very recently further supported experimentally by stimulation of dendrites [1].
Two important observations can be made from the study by Branco et al.

308 Y. Zheng and L. Schwabe

a b

Fig. 2. Rall’s model captures the key features of the up-state transition observed in
striatal spiny neurons. a) Somatic response evoked by placing on compartment 3 an E-
pulse with magnitude ΔEp = 2.0 (dashed line), and on compartment 10 an E-pulse with
magnitude ΔEd = 19.0 (solid line). The latter value was chosen such that the two peak
responses are the same (here: approx. −71 mV). These simulations are consistent with
observations i) and ii) but not observation iii). b) Same as in a), but with additional
delayed distal inhibition, which makes the model prediction consistent with all four
observations.

[1], which used so-called IN and OUT protocols1: v) The IN protocol produces a
larger maximal somatic peak potential than the OUT protocol (by about 35%).
vi) The somatic potential evoked by the OUT protocol is higher than for the IN
protocol in the decay phase.2

We first simulated IN and OUT sequences using Rall’s original protocol (re-
producing his Fig. 7 in [4]), shown in Fig. 3a. Here, the stimulation amplitude
at each compartment is the same. We observe that the peak potential in the IN
protocol is higher than in the OUT protocol, which constitutes the direction-
selectivity of Rall’s model, but the value is almost twice as high for OUT sequence
and not around 35%. Furthermore, the somatic voltage in the decay phase is not
higher in OUT protocol as observed experimentally [1].

We then simulated the Rall model, taking the strengths of the excitatory
stimulation so that the somatic peak amplitudes are the same for all stimulation
locations (Fig. 2a). We find that now the model predictions are in agreement
with observations v) and vi). More specifically, the IN protocol produces a larger
response at the soma peaking at −58.5 mV, which is 5.5 mV above the peak
potential obtained by the OUT protocol (−64 mV), well matching a 35% in-
crease. Furthermore, the OUT sequence now produces a larger potential in the

1 The two protocols represent the sequential activation of compartments from the
distal to the somatic (IN) or from the somatic to the distal (OUT) locations.

2 We continue the numbering from the observations i-iv) in Plotkin et al. [3].

Dendritic Computations in a Rall Model with Strong Distal Stimulation 309

decay phase than the IN sequence. This is due to the overall stronger excitatory
activation in our protocol. Note that we derived the location-dependence of the
stimulation strength to evoke the same peak amplitude at the soma (Fig. 2a),
and not to match the direction-selectivity reported in [1] (Fig. 3b).

a b

Fig. 3. Direction-selectivity in the Rall model. a) Stimulation protocol as used in Rall’s
original paper [4] (his Fig. 7). While this established dendrites as being able to compute
direction-selectivity, it is not consistent with the recent findings from [1], observations
v-vi). b) Simulations of IN and OUT sequences, but with stimulation strengths at each
compartment that would evoke the same somatic peak response when applied alone
(see Fig. 2a for the stimulation amplitudes for the two compartments 3 and 10). These
simulations are consistent with recent experimental findings[1], observations v-vi).

3.3 Background Depolarization Set by Distal Inputs

It was recently suggested that context-dependent pattern recognition can be re-
alised by synaptically driven state transitions, i. e. distal stimulation of dendrites
triggers a transition to an up state, where pattern recognition of activations at
proximal sites can be performed [3]. Here we explore if such a computation can
also be performed in a Rall model, when the distal activation is strong as we
deduced it to match properties of up state (Fig. 2a).

We simulated three scenarios (see Fig. 4): First, using the exact parameters
as in [4], two distal E-pulses were delivered before one proximal E-pulse (thin
solid line). The strength of all pulses was the same as in Rall’s original work
[4]. The obtained somatic peak potential is slightly above −70 mV (Fig. 4, thin
grey line), which is far from the voltage threshold for up state transition (−60
mV, see [7]). Second, three consecutive proximal E-pulses were applied, all of
them with the same strength as in the first scenario (dashed line). Interestingly,
the peak potential at the soma is only a few millivolts higher than in the first
case. Third, similar to the first scenario, we simulated two distals followed by a
proximal stimulation (thick solid line). Now, however, we used the stimulation

310 Y. Zheng and L. Schwabe

strengths we determined, namely with stronger activation for distal sites. This
gives rise to a much larger depolarization than in the previous two cases. The
soma is depolarized by 20 mV, close to the spike threshold −60 mV.

dist dist prox

proxproxprox

dist dist prox (Rall protocol)

Fig. 4. Effects of sequential distal/proximal depolarization on somatic response; prox
+ dist: first strong distal, then weak proximal stimulation (solid black line); prox
only: only weak proximal stimulation (dashed black line); Rall protocol: first weak
distal, then weak proximal stimulation (solid grey line)

4 Discussion

In this paper we re-investigated dendritic computations in a Rall model, i. e. with
passive dendrites. Extending Rall’s original work we considered the location-
dependence of synaptic activations as free parameters, which were determined
to match recorded somatic membrane potentials in striatal neurons undergoing
synaptically driven transitions to an up state.

We find that if distal is stronger than proximal activation, the Rall model
predicts key features of the up state, which so far have been hypothesized to

Dendritic Computations in a Rall Model with Strong Distal Stimulation 311

involve voltage-dependent channels in dendrites [3]. Assuming also a delayed and
strong distal inhibition further improves this match as now the decay to resting
voltage happens at the same time, independent of stimulation location. Besides
accounting for key features of the up state, and hence providing the substrate for
context-dependent pattern recognition, the strong distal activations also make
the Rall model’s predictions very similar to recent experimental findings on
direction selectivity as computed by dendrites [1].

Our results show that dendritic computations, previously thought to require
active dendrites, can be realized with passive dendrites. This shall not rule out
or even replace models with voltage-dependent dendritic channels. As a conse-
quence, future experimental studies have to determine on a case-by-case basis
the actual implementation of dendritic computations and distinguish between
the single-cell model with active channels, properly matched location-dependent
synaptic strengths, or a mixture of both.

Acknowledgement. We thank Dr. Joshua L. Plotkin for discussion on the
experimental data. This work is supported by German Research Foundation
(DFG).

References

1. Branco, T., Clark, B.A., Häusser, M.: Dendritic discrimination of temporal input
sequences in cortical neurons. Science 329(5999), 1671–1675 (2010)

2. Magee, J., Cook, E.: Somatic epsp amplitude is independent of synapse location in
hippocampal pyramidal neurons. Nat. Neurosci. 3(9), 895–903 (2000)

3. Plotkin, J.L., Day, M., Surmeier, J.D.: Synaptically driven state transitions in distal
dendrites of striatal spiny neurons. Nat. Neurosci. 14(7), 881–888 (2011)

4. Rall, W.: Theoretical significance of dendritic trees for neuronal input-ouput rela-
tions. In: Reiss, R., Alto, P. (eds.) Neural Theory and Modeling. Standford Univer-
sity Press (1964)

5. Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-
dendritic distributions of synaptic input. J. Neurophysiol. 30(5), 1138–1168 (1967)

6. Torre, V., Poggio, T.: A synaptic mechanism possibly underlying directional selec-
tivity to motion. Proc. R. Soc. Lond. 202(1148), 409–416 (1978)

7. Wilson, C.J., Kawaguchi, Y.: The origins of two-state spontaneous membrane poten-
tial fluctuations of neostriatal spiny neurons. J. Neurosci. 16(7), 2397–2410 (1996)

Modeling Action Verb Semantics
Using Motion Tracking

Timo Honkela1 and Klaus Förger2

1 Department of Information and Computer Science
2 Department of Media Technology

Aalto University School of Science, FI-00076 Aalto, Finland

Abstract. In this article, we consider how semantics of action verbs can be
grounded on motion tracking data. We present the basic principles and require-
ments for grounding of verbs through case studies related to human movement.
The data includes high-dimensional movement patterns and linguistic expres-
sions that people have used to name these movements. We discuss open issues and
possibilities related to symbol grounding. As a conclusion, we find the ground-
ing to be useful when reasoning about the meaning of words and relationships
between them within one language and potentially also between languages.

1 Introduction

The basic scientific question behind this article is how to computationally model the
interrelated processes of interpreting natural language and perceiving movement in
multimodal real world contexts. Namely, an important problem in natural language
processing and in computer science in general is that in most cases computer systems
processing symbols or language do not have access to the phenomena being referred
to. In contrast, humans can readily associate expressions with their non-linguistic ex-
periences and actions in the world. For instance, we know the different interpretations
of color red in expressions “red skirt”, “red skin” and “red wine” or the phrase “a long
jump” may refer to very different things depending on the context. As a direct conse-
quence, computational systems can only reason about the symbols themselves rather
than about the grounded meaning or external references of those symbols. However, if
we want machines to learn and use language as it is actually used by humans, we have
to take into account that language is fully understood only through its use in linguistic
and multimodal contexts [1].

In this article, we consider a seemingly simple domain of symbol grounding, naming
human movement. It is, however, complex enough to be a non-trivial case which is
also illustrated by the fact that different languages divide the space of body-related
expressions in different ways [2]. Moreover, people may have different interpretations
even regarding what they call “running”, “jogging” or “walking” in less prototypical
cases. Studying these differences is enabled by having access to the actual patterns of
movement.

Extracting semantic information from the statistical regularities in large text cor-
pora is nowadays commonplace. One obvious reason for using a statistical approach is

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 312–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Modeling Action Verb Semantics Using Motion Tracking 313

cost-effectiveness: models of language can be built with less human effort than when
traditional means are used. While statistical analysis of word occurrences and other lin-
guistic constructions in their textual contexts has proven to be useful, there is a limit
to how much can be inferred from texts only, and therefore obtaining data of words in
their multimodal contexts is an important research topic. This kind of external contex-
tualization is often referred to as symbol grounding [3].

Research on symbol grounding is multidisciplinary and multifaceted. Related to mo-
tion tracking, successful systems that achieve good classification results include iden-
tification of movement types [4], manners of moving [5] and the gender from walking
movements [6]. The issue is, of course, relevant in robotics [7,8]. In cognitive science,
symbol grounding and embodiment is an important theme (cf., e.g., [9,10,11,12,13]). In
a classical work, Bailey developed a computational model of the role of motor control
in the acquisition of action verbs [14].

We are aware of the breadth and depth of the underlying philosophical [15] and
methodological issues. In this article, we wish to address naming human movements
as a concrete, limited but non-trivial case related to multimodally grounded natural
language processing. In order to study how people name different human movements,
we have used motion tracking to obtain data in which skeletons move on the screen.
Using this data, we conducted two case studies. In the first study, we asked people to
classify movements to a limited number of categories. The results of this classification
task, serving as a feasibility study, are reported in the next section.

In the second case study, we asked people to describe these movements with their
own words. It was important that the question was open ended because we wished to
study the naming of movements which is different from classification. In naming, the
labels given typically follow a Zipfian distribution [16]. The results of this case study
are reported discussed in Section 3.

2 Grounding through Motion Capture

The motion tracking has been conducted using OptiTrack Motion Capture system and
the ARENA software, developed by NaturalPoint, Inc. We recorded 16 minutes of hu-
man motion which was manually annotated with the following labels: jump, sit down,
sitting, stand up, standing, turn left, turn right, walking and waving hand. The labels
were allowed to overlap as for example walking and waving hand can be done at the
same time.

Four types of features were extracted from the data (see Figure 1). The first type
was absolute values of velocities of all the body parts. The second type was distances
between the end parts of the limbs. The third was velocity vectors of the end parts of
the limbs. The last type was coordinate positions of the end parts of the limbs. To make
the velocity vectors and positions usable, we had to center the coordinate system to the
hips of the character and rotate the character to always face the same direction. This
resulted in 72 feature dimensions in the first case study. We averaged the values of the
features over 0.25 seconds to get the final values used in the classification.

Grounding verbs requires associating them with patterns of motion based features.
A good way to ensure that the used features are not only random numbers is to see how
well the features can be used in classifying previously unseen motions. To classify the

314 T. Honkela and K. Förger

a b c d

Fig. 1. The types of the features used
in the classification include absolute
velocities for each body part (a), dis-
tances between limb ends (b), velocity
vectors of limb ends (c), and positions
of limb ends (d)

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

jump

sit down

sitting

stand up

standing

walking

turn right

turn left

Fig. 2. Training samples used the classification plot-
ted along the first two principal components

data we used K nearest neighbors with a Euclidean distance metric. The classification
was tested on two minutes of motion that was not used in the training set with results
at the same level as obtained earlier by others [4,5,6]. In classification, the transition
motions between two verbs were the main problem. The classifier tried to forcible clas-
sify the motion when the most natural option would be not giving a class at all as the
transitions may not correspond to any verb. One reason for the good performance lies
in the well-selected features. When the training samples are plotted along the first two
principal components (see Figure 2), it becomes evident that many of the classes are
separated by the used features.

The features form a space where all individual frames of a motion can be projected.
As two consecutive frames of motion are always similar due to physical restrictions,
motions can be plotted as trajectories in the feature space. This is shown in Figure 3,
where a motion starting from sitting, going through standing up, standing and walking,
is plotted along the first two principal components of the feature space.

The separation by the two principal components is not complete as the data is inher-
ently high dimensional as can be seen in Figure 4. The figure shows that more than 10
principal components are needed in order to explain 90% of the variance in the data.

The fact that many labels can be valid for a motion simultaneously is a challenge for
using the features of the classification as distance measures. For example, waving hand
can be done while walking, sitting or standing. This is visible in the training samples
used for those classes in Figure 5. As ’waving hand’ appears in several separate clusters,
the mean distance between it and other labels does not reflect the real relations between
the labels. Therefore, the overlap between labels should be analyzed before similarity
of the labels.

3 Modeling Relations between Verbs

In order to have a fine-grained collection of movements, we asked actors to perform
walking, limping and running in various styles. These movements were blended in three
steps including alignment, time warping and interpolation. In time warping, the motions

Modeling Action Verb Semantics Using Motion Tracking 315

Fig. 3. On the left hand side, motion of a character (a) sitting, (b) standing up, (c) standing, (d)
turning left and (e) walking (left), and on the right hand side, the trajectory formed by the frames
plotted on the first and second principal component

0 20 40 60 80
20

30

40

50

60

70

80

90

100100

principal components

%
 o

f v
ar

ia
nc

e
ex

pl
ai

ne
d

Fig. 4. Variance explained by the principal
components plotted cumulatively

0 2 4 6 8
0.5

1

1.5

2

2.5

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

sitting

standing

walking

waving hand

Fig. 5. Training samples with label ’waving
hand’ and other samples with labels that can be
used simultaneously plotted along the first two
principal components

were synchronized. In the third step, the coordinates of the root joints were interpolated
linearly and the joint rotations were interpolated in a four-coordinate system [17]. The
blending enabled us to have a larger number of variations of the movements. The people
were asked to describe the movement with one verb or phrase. The task was to label 24
to 124 videos where the videos lasted from 3 to 12 seconds. Each video was portraying
a stick figure representation.

We analyzed the questionnaire results where 22 persons had named the movements in
Finnish language. We used the self-organizing map (SOM) [18] algorithm to conduct a
mapping from the 602-dimensional movement space into a 2-dimensional display. The
movement determines the map structure and structure of labels is obtained by including
them in the input vector with a small weight. To illustrate the outcome, we chose 12
verbs to be analyzed in more detail. This map of labels is shown Fig 6. With one excep-
tion, each verb is associated with a contiguous area on the map. For instance, the verb

316 T. Honkela and K. Förger

walk (kävellä) walk around (käveleksiä) run (juosta) jog (hölkätä)
kÃ¤velee_ kÃ¤veleksii_ juoksee_ hÃ¶lkkÃ¤Ã¤_

limp (ontua) limp (nilkuttaa) limp (linkuttaa) limp (klenkata)
ontuu_ nilkuttaa_ linkuttaa_ klenkkaa_

drag (raahautua) jump (hypähdellä) jump (hypellä) jump around (hyppelehtiä)
ontuu_ hypÃ¤htelee_ hyppelee_ hyppelehtii_

Fig. 6. The distribution of 12 verbs on a self-organizing map of movements. A light shade denotes
a high value of each verb.

mean acceleration
Hips

mean absolute
velocity Hips

mean absolute
velocity Ab

mean acceleration Hips mean absolute velocity Hips mean absolute velocity Ab

mean position
X LeftAnkle

standard deviation of
position X Ab

standard deviation of
velocity Y Neck

mean position X LeftAnkle standard deviation of position X Ab standard deviation of velocity Y Neck

Fig. 7. The distribution of 6 features out of 602 on the self-organizing map of movements. A light
shade denotes a high value of each feature.

“walk” is located on the upper side of the map and the verb “run” on the lower left cor-
ner. Fig 7 shows examples of underlying movement features that have determined the
organization of the map. The area for running in Fig 6 coincides with the feature “mean
acceleration of hips” in Fig 7. The union “running” and “jogging” coincides with the
distribution of features “mean absolute velocity of hips” and “mean absolute velocity
of abdomen”.

In many cases, the association between the labels and patterns of movement is not
one-to-one but require consideration of a reasonably large number of features. On the
other hand, the vector space for the associations is much lower in dimensionality than
the pixel patterns over time in the original videos. This is thanks to the motion tracking
system that compresses the original very high dimensional feature space into a large
number of meaningful variables. In the general case, it remains a challenge how to con-
duct the pattern recognition and dimensionality reduction in such a way that relevant
features are included for the associations. In many early studies the low-level represen-
tations were based on manually encoded structures (cf., e.g., [14]). In order to develop

Modeling Action Verb Semantics Using Motion Tracking 317

large scale solutions, the process should, however, be as automatic as possible. Due to
variety of applications that may require different kinds of feature sets for same domain,
the features extraction process needs to be task-dependent [19].

4 Conclusions and Discussion

We are interested in answering the scientific question of how to enable machines to have
a increasingly common ground with humans for associating language with perceptual
patterns. In the following, we discuss two symbol grounding themes.

4.1 Multimodally Grounded Language Technology

Through multimodally grounded language technology, more robust and correct manip-
ulation of linguistic data becomes possible, e.g., when resolving ambiguities or when
needing deeper inference. Application areas include building animations using linguis-
tic instructions and coaching of skills.

What centrally constrains communication is the dissimilarity of the conceptual sys-
tems of the discussants. An important aspect of better understanding of human expres-
sion is, we believe, capturing human conceptualizations of the environment in which
the co-operation is to take place. The subjective aspect of interpretation can be an-
alyzed when the use of symbols is considered in different contexts by a number of
individuals [20].

4.2 Multimodally Grounded Translation

It has earlier been demonstrated that the association with visual information can be used
even to find parallels between different languages [21]. An analysis of the similarities
in the visual appearance of some object can be used to find a conceptual link between
a word in one and another language. This is analogical to ostensive definition, based
on pointing out examples. In the future, we plan to collect labeled data in multiple lan-
guages. This enables developing a mapping function between action verbs in different
languages based on the common ground.

Acknowledgments. We gratefully acknowledge the financial support by Academy of
Finland for the Multimodally Grounded Language Technology project (254104) and
HeCSE graduate school that have made this research possible. We also wish to thank
our colleagues in the project who have helped in conducting the research in various
ways including Prof. Tapio Takala, Dr. Jorma Laaksonen, Dr. Markus Koskela, Dr. Harri
Valpola, Dr. K. Lagus, Ms. Xi Chen, Mr. Paul Wagner and Mr. Oskar Kohonen. The
insights in this area have also progressed thanks to collaborations with Prof. Peter Gär-
denfors (Lund University, Sweden) and Prof. Lars Kai Hansen (DTU, Denmark) and
their teams.

318 T. Honkela and K. Förger

References

1. Hörmann, H.: Meaning and Context. Plenum Press, New York (1986)
2. Choi, S., Bowerman, M.: Learning to express motion events in English and Korean: The

influence of language-specific lexicalization patterns. Cognition 41(1), 83–121 (1991)
3. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)
4. Pavlović, V., Rehg, J., MacCormick, J.: Learning switching linear models of human motion.

In: Advances in Neural Information Processing Systems 13, pp. 981–987 (2001)
5. Taylor, G.W., Hinton, G.E., Roweis, S.: Modeling human motion using binary latent vari-

ables. In: Advances in Neural Information Processing Systems 19, pp. 1345–1352 (2007)
6. Davis, J., Gao, H.: Gender recognition from walking movements using adaptive three-mode

PCA. In: Computer Vision and Pattern Recognition Workshop (2004)
7. Roy, D.: Grounding words in perception and action: computational insights. Trends in Cog-

nitive Sciences 9(8), 389–396 (2005)
8. Williams, M.A., McCarthy, J., Gärdenfors, P., Stanton, C., Karol, A.: A grounding frame-

work. Autonomous Agents and Multi-Agent Systems 19(3), 272–296 (2009)
9. Lakoff, G., Johnson, M.: Philosophy in the Flesh - The Embodied Mind and its Challenge to

Western Thought. John Wiley, New York (1999)
10. Glenberg, A.M., Robertson, D.A.: Symbol grounding and meaning: A comparison of high-

dimensional and embodied theories of meaning. Journal of Memory and Language 43(3),
379–401 (2000)

11. Sun, R.: Symbol grounding: a new look at an old idea. Philosophical Psychology 13(2),
149–172 (2000)

12. Vogt, P.: The physical symbol grounding problem. Cognitive Systems Research 3(3),
429–457 (2002)

13. Gärdenfors, P., Warglien, M.: Using conceptual spaces to model actions and events. Journal
of Semantics 29(4), 487–519 (2012)

14. Bailey, D.: When Push Comes to Shove: A Computational Model of the Role of Motor
Control in the Acquisition of Action Verbs. PhD thesis, UC Berkeley (1997)

15. Honkela, T.: Philosophical aspects of neural, probabilistic and fuzzy modeling of language
use and translation. In: Proceedings of IJCNN 2007, pp. 2881–2886 (2007)

16. Li, W.: Zipf’s law everywhere. Glottometrics 5, 14–21 (2002)
17. Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH Computer Graph-

ics 19(3), 245–254 (1985)
18. Kohonen, T.: Self-Organizing Maps. Springer (2001)
19. Ji, R., Yao, H., Liu, W., Sun, X., Tian, Q.: Task-dependent visual-codebook compression.

IEEE Transactions on Image Processing 21(4), 2282–2293 (2012)
20. Honkela, T., Raitio, J., Nieminen, I., Lagus, K., Honkela, N., Pantzar, M.: Using GICA

method to quantify epistemological subjectivity. In: Proc. of IJCNN 2012, pp. 2875–2883
(2012)

21. Sjöberg, M., Viitaniemi, V., Laaksonen, J., Honkela, T.: Analysis of semantic information
available in an image collection augmented with auxiliary data. In: Proc. of AIAI 2006,
Artificial Intelligence Applications and Innovations, pp. 600–608. Springer (2006)

Evolution of Dendritic Morphologies Using

Deterministic and Nondeterministic Genotype
to Phenotype Mapping

Parimala Alva1, Giseli de Sousa1,2, Ben Torben-Nielsen3, Reinoud Maex4,
Rod Adams1, Neil Davey1, and Volker Steuber1

1 STRI, University of Hertfordshire, Hatfield, UK
{p.alva2,r.g.adams,n.davey,v.steuber}@herts.ac.uk

2 Federal University of Santa Catarina, Brazil
3 École Polytechnique Fédérale de Lausanne, Switzerland

4 École Normale Supérieure, France

Abstract. In this study, two morphological representations in the geno-
type, a deterministic and a nondeterministic representation, are com-
pared when evolving a neuronal morphology for a pattern recognition
task. The deterministic approach represents the dendritic morphology
explicitly as a set of partitions in the genotype which can give rise to
a single phenotype. The nondeterministic method used in this study
encodes only the branching probability in the genotype which can pro-
duce multiple phenotypes. The main result is that the nondeterministic
method instigates the selection of more symmetric dendritic morpholo-
gies which was not observed in the deterministic method.

Keywords: pattern recognition, evolutionary algorithm.

1 Introduction

A variety of neurons are present in the brain and different types of neurons
exhibit distinct dendritic morphologies. Recent work has shown that dendritic
morphologies affect the back propagation of action potentials, synaptic integra-
tion and other aspects which have implications for the proper functioning of the
neuron[5,7]. However, a clear understanding of the computational implications
of dendritic structure does not exist. One approach to try to understand how the
dendritic structure is related to function is to optimize the dendritic morphology
of a neuronal model for a particular task using an Evolutionary Algorithm. The
best individuals produced as a result of the evolution can act as an indicator as
to which features of the dendritic morphology are important for that particular
function.

In previous work, de Sousa[2] presented an algorithm, hereafter referred to as
the de Sousa algorithm, where the dendritic morphology best suited for a pattern
recognition task was studied. The purpose of the present study is to verify if
the results obtained by the de Sousa algorithm are not merely a consequence

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 319–326, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

320 P. Alva et al.

of the way the algorithm is implemented and if they do indeed show general
properties of neurons which are best suited for pattern recognition. This is done
by applying a different algorithm, the Torben-Nielsen algorithm[1] which uses a
nondeterministic method of genotype to phenotype mapping as opposed to the
deterministic genotype to phenotype mapping used in the de Sousa algorithm, to
the same task of pattern recognition in neurons. It is interesting to see if the two
different methods for specifying morphology in the genotype highlight the same
features of a dendritic morphology as being important for pattern recognition.

2 Pattern Recognition in Neurons

The pattern recognition capability of neurons enables them to distinguish be-
tween learned and novel patterns. In this study, a simple one-shot Hebbian
Learning[9] has been used in the neuronal models: if the N binary patterns to be
learned are xμ (μ is 1..N), then the weight at synapse i is given by wi =

∑
μ
xμ
i .

In the recall phase, a set of novel patterns are presented along with the stored
patterns. As a consequence of the change in the synaptic weights, the neuronal
model produces a higher amplitude of Excitatory Post Synaptic Potentials (EP-
SPs) for the stored patterns than for the novel patterns (see [8]).

3 Methods

The steps followed by the two algorithms, the de Sousa algorithm and the modi-
fied Torben-Nielsen algorithm, are depicted in Fig. 1. We use the term ’modified’
because the original algorithm developed by Ben Torben-Nielsen to evolve neu-
ronal models for co-incidence detection could not be used as-is for comparison
with the results of the de Sousa algorithm. Some modifications were necessary to
ensure a fair comparison between the two algorithms. The modifications made
to the algorithm are listed here:

1. The algorithm was modified to generate fixed size trees. The number of
terminal nodes, length, diameter, tapering of the compartments, and other
parameters relating to the pattern recognition task were set to the values
used in the de Sousa algorithm.

2. In the original algorithm, the branch probability at every bifurcation point
was a function of the distance of the bifurcation point from the soma of the
neuronal model. This was changed and a new method (see Section 3.1) was
implemented to give us more variation in the genotypes produced.

3. The ability of the branch to bifurcate, extend or terminate at every branch
point was restricted to bifurcate or terminate in order to produce trees with
fixed sized compartments.

4. The original algorithm ensures that a single genotype maps to a single phe-
notype by fixing the random seed used in each optimization run. In the
modified version of the algorithm, a single genotype can map to a range of
phenotypes.

Deterministic Versus Nondeterministic Tree Optimization 321

Fig. 1. Steps of the evolutionary algorithm followed by the de Sousa Algorithm (a)
and the modified Torben-Nielsen algorithm (b). The de Sousa Algorithm represents
the morphology of the neuronal model as partitions in the genotype while the modified
Torben-Nielsen algorithm encodes only the branching probability in the genotype.

A detailed description of each step of the Evolutionary Algorithm pertain-
ing to the de Sousa algorithm and the modified Torben-Nielsen algorithm is
presented in the following sub-section.

3.1 Genotype Representation

The de Sousa algorithm encodes the exact branching pattern of the dendritic
tree in the genotype. The branching pattern of the phenotype is represented as
a set of partitions using the method proposed by Van Pelt and Verwer [3].

The modified Torben-Nielsen algorithm uses a nondeterministic method of
genotype to phenotype mapping. In this method, the morphology of the entire
dendritic tree is specified only by a branching probability, a number between 0
and 1, in the genotype. Other morphological parameters similar to the de Sousa
algorithm may also be encoded in the genotype but in the results presented here
we kept them fixed.

322 P. Alva et al.

Algorithm 1. The modified Torben-Nielsen Algorithm for genotype to pheno-
type mapping.

while(number of terminal nodes < 128)

{

traverse the bottom ply of the tree from left to right

for(each node visited)

{

bifurcate or terminate according to branching probability

}

if(no node chooses to bifurcate)

{

force the last node visited to bifurcate

}

}

3.2 Genotype to Phenotype Mapping

The genotype to phenotype mapping in the de Sousa algorithm is fairly straight-
forward. The partitions in the genotype dictate the morphology of the phenotype.
At every bifurcation point, a partition specifies the number of terminal nodes
in the right and left sub-tree. In the modified version of the Torben-Nielsen
algorithm, the branching probability which is part of the genotype affects the
morphology of the phenotype produced. For example, a branching probability
value of 0.75 means that at every branch point, the branch has 0.75 probability of
bifurcating and 0.25 probability of terminating. Different branching probabilities
give rise to different types of dendritic trees in terms of asymmetry and mean
depth. The asymmetry index as given by Van Pelt et al.[4] indicates the overall
shape while the mean depth metric [2] indicates the average distance between
the synapse and the soma of the neuronal model. Figure 2b shows the variation
of asymmetry index and mean depth of the phenotypes for sample branching
probability values of 0.25, 0.50, and 0.75. From this figure, we can observe that
the same branching probability, or the same genotype, can produce a range of
phenotypes that vary in terms of asymmetry index and mean depth. Algorithm
1 shows the detailed steps followed in the generation of the phenotype from the
genotype using the modified Torben-Nielsen algorithm.

Note that in Algorithm 1 the tree is likely to be skewed to the right, a desirable
feature because we wanted also to have asymmetrical trees in our population.
The higher frequency of dendritic trees having an asymmetry index of 0.99, as
shown in Fig. 2a, is also a result of the forced bifurcation of the last visited
node as shown in Algorithm 1. Figure 2b shows the variation of asymmetry
index and mean depth of the phenotypes for sample branching probability values
of 0.25, 0.50, and 0.75. The tree morphology which is a result of genotype to
phenotype mapping, in case of both algorithms, is converted into a neuronal
model using the NEURON simulator software[6]. The neuronal model has a
membrane capacitance (Cm) of 0.75 μF/cm2, an axial resistance(Ra) of 150Ωcm,

Deterministic Versus Nondeterministic Tree Optimization 323

Fig. 2. (a)Histogram showing the distribution of asymmetry indices of the dendritic
trees for a branching probability of 0.25 when the modified Torben-Nielsen algorithm
is used. (b) Mean and Standard Deviation Graphs showing the range of the asymmetry
index and mean depth for sample branching probabilities of 0.25, 0.50, 0.75.(c) Three
different tree structures, each having a different asymmetry index (the first row below
the tree) and mean depth (second row), produced from the same genotype having a
branching probability of 0.75.

a specific membrane resistance (Rm) of 30 kΩcm2 and a leak reversal potential
of Eleak=-70 mV. Each compartment of the neuronal model is of equal length
and diameter with no tapering. Since this study is limited to studying passive
neuronal models, active conductances are not applied to the model.

3.3 Fitness Function

Since the neuronal models used in this study are passive, the response of the neu-
ronal model to the pattern presented is measured by the amplitude of the EPSPs
produced in the soma. The ability of the neuron to distinguish between stored
and new patterns is determined by the signal to noise ratio of the amplitudes of
the EPSP produced by stored and novel patterns (see [8]).

3.4 Genetic Variation

In case of both algorithms, a process of selection is applied to the population to
select the best 10 % of the individuals to be propagated to the next generation.
As is normally the case, selection, crossover and mutation are applied to the
population to produce the next generation.

324 P. Alva et al.

4 Results

To evaluate the morphology of the dendritic tree best suited for pattern recogni-
tion, we observe the change of asymmetry index and mean depth of the dendritic
trees. Details of calculation of the metrics, asymmetry index and mean depth,
have been given in [2].

4.1 Results of the de Sousa Algorithm

The change of values of the fitness as well as the two morphological metrics
are observed over 60 generations of the de Sousa algorithm as shown in Fig.
3a. The initial population for this experiment is biased to consist mainly of
asymmmetric morphologies. However, a huge drop in the asymmetry index and
mean depth values are observed within the first few generations indicating that
neuronal models with more symmetrical morphologies and lower mean depth
perform better. However, this does not mean that the asymmetry index and
fitness are inversely correlated over the whole range of asymmetry indices. After
the dendritic trees achieve an asymmetry index of about 0.4, a further reduction
in asymmetry does not increase the fitness of the dendritic trees. When dendritic
trees with similar asymmetry index were binned together and their mean depth
values evaluated as shown in Fig. 3c, it was noticed that the dendritic trees with
asymmetry indices of about 0.4 and lower had very similar values of mean depth.
This may explain the plateau in the fitness value after an asymmetry index of
0.4 was reached, and it suggests that perhaps mean depth is a better indicator
of pattern recognition performance than asymmetry index.

4.2 Results of the Modified Torben-Nielsen Algorithm

The same experiment, where the initial population was biased to consist mainly
of asymmetric morphologies, was executed for the modified Torben-Nielsen al-
gorithm. As shown in Fig. 3b, the results of the experiment follow the same
pattern as for the de Sousa algorithm in the case of fitness and mean depth
values. The main difference was the change of the asymmetry index of the den-
dritic trees. In the de Sousa algorithm, the asymmetry index remains at a value
of about 0.4 and does not reduce further as this value of asymmetry index is
sufficient to produce the best individual for pattern recognition. However, with
the modified Torben-Nielsen algorithm, the asymmetry index of the dendritic
trees reduces to a value of around 0.2 at the end of 100 generations. This is a
consequence of the nondeterministic approach used in this study, which gener-
ates a new tree instantiation each time a new individual is passed to the next
generation. As shown in Fig. 2a and Fig. 2b, a single genotype can map to dif-
ferent phenotypes that vary in asymmetry index and mean depth. Since there
is a considerable variation in the type of phenotype produced by a single geno-
type, there is an additional pressure on the Evolutionary Algorithm to select a
genotype such that all resulting phenotypes perform well. This forces the algo-
rithm to select genotypes which produce, on average, more symmetrical trees

Deterministic Versus Nondeterministic Tree Optimization 325

0 10 20 30 40 50 60
5

50

30

s

/n

(a
v

g
 1

0
 t

ri
a

ls
)

0 10 20 30 40 50 60
0.4

0.7

0.99

a
s

y
m

 i
n

d
e

x

0 10 20 30 40 50 60
7

35

64

generations
(a)

m
e

a
n

 d
e

p
th

best individual
average population

0 20 40 60 80 100

16
33

58

s
\n

(a
v
g

 1
0
 t

ri
a
ls

)

0 20 40 60 80 100

0.2

0.6

0.99

a
s
y
m

 i
n

d
e
x

0 20 40 60 80 100
7

35

65

m
e
a
n

 d
e
p

th

generations
 (b)

best individual

average population

0 10 20 30 40 50 60 70
0.2

0.4

0.6

0.8

1

 mean depth
(bin size = 1)

(c)

a
s
y
m

 i
n

d
e
x

Fig. 3. (a) Change of fitness, asymmetry index and mean depth in the de Sousa algo-
rithm. (b) Change of fitness, asymmetry index and mean depth in the Torben-Nielsen
algorithm. (c) Mean depth vs asymmetry index for dendritic trees in the de Sousa
algorithm.

326 P. Alva et al.

than their counterparts which show mixed asymmetry values. The final outcome
of this experiment reinforces the results produced by the de Sousa algorithm
that symmetrical neuronal morphologies which have low mean depth values are
well suited for pattern recognition.

5 Conclusion

Previous work [2] has shown that a Genetic Algorithm will reduce the mean
depth of the dendritic tree in order to improve the pattern recognition per-
formance. Here we demonstrate that the same principle applies with a different
morphological specification, namely a nondeterministic mapping of the genotype
to the dendritic tree morphology. The nondeterministic method of genotype to
phenotype mapping showed that when a single genotype can map to an array
of phenotypes, the criterion for the selection of genotypes was more stringent,
which led to the selection of genotypes that gave rise to more symmetrical mor-
phologies. Symmetric morphologies have a smaller mean depth and therefore
lead to less variance in responses and a higher signal to noise ratio. However,
in real neurons we do not always find this symmetric morphology because the
morphology of a real neuron is governed by other factors such as the need to
form synaptic contacts in certain locations.

References

1. Torben-Nielsen, B., Stiefel, K.M.: An inverse approach for elucidating dendritic
function. Front. Comput. Neurosci. 4, 128 (2010)

2. de Sousa, G., Maex, R., Adams, R., Davey, N., Steuber, V.: Evolving dendritic mor-
phology and parameters in biologically realistic model neurons for pattern recog-
nition. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN
2012, Part I. LNCS, vol. 7552, pp. 355–362. Springer, Heidelberg (2012)

3. van Pelt, J., Verwer, R.: Growth models (including terminal and segmental branch-
ing) for topological binary trees. Bull. Math. Biol. 47, 323–326 (1985)

4. van Pelt, J., Uylings, H.B., Verwer, R.W., Pentney, R.J., Woldenberg, M.J.: Tree
asymmetry–A sensitive and practical measure for binary topological trees. Bull.
Math. Biol. 54, 759–784 (1992)

5. Spruston, N.: Pyramidal neurons: dendritic structure and synaptic integration. Nat.
Rev. Neurosci. 9, 206–221 (2008)

6. Carnevale, N.T., Hines, M.L.: The NEURON Book. Cambridge University Press,
Cambridge (2006)

7. Vetter, P., Roth, A., Häusser, M.: Propagation of Action Potentials in Dendrites
Depends on Dendritic Morphology. J. Neurophysiol. 85, 926–937 (2001)

8. Steuber, V., De Schutter, E.: Long-term depression and recognition of parallel fibre
patterns in a multi-compartmental model of a cerebellar Purkinje cell. Neurocom-
puting 38-40, 383–388 (2001)

9. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Compu-
tation. Addison-Wesley, Reading (1991)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 327–334, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Sparseness Controls the Receptive Field Characteristics
of V4 Neurons: Generation of Curvature Selectivity in V4

Yasuhiro Hatori1,2, Tatsuroh Mashita1, and Ko Sakai1

1 Graduate School of Information Engineering, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

{hatori,mashita}@cvs.cs.tsukuba.ac.jp, sakai@cs.tsukuba.ac.jp
2 Research Fellow of the Japan Society for the Promotion of Science

Abstract. Physiological studies have reported that the intermediate-level visual
area represents primitive shape by the selectivity to curvature and its direction.
However, it has not been revealed that what coding scheme underlies the con-
struction of the selectivity with complex characteristics. We propose that sparse
representation is crucial for the construction so that a sole control of sparseness
is capable of generating physiological characteristics. To test the proposal, we
applied component analysis with sparseness constraint to activities of model
neurons, and investigated whether the computed bases reproduce the characte-
ristics of the selectivity. To evaluate the learned bases quantitatively, we com-
puted the tuning properties of single bases and the population, as similar to the
physiological reports. The basis functions reproduced the physiological charac-
teristics when sparseness was medium (0.6-0.8). These results indicate that
sparse representation is crucial for the curvature selectivity, and that a sole con-
trol of sparseness is capable of constructing the representation.

Keywords: shape representation, curvature, sparse coding, computational model.

1 Introduction

The cortical representation of shape is crucial in shape perception and object recogni-
tion. Physiological studies have reported that the representation of shape is con-
structed in the ventral stream [1-4]. Carlson et al. have reported that V4 neurons are
selective to curvature and its direction, and their population activity is biased toward
acute curvature. However, it has not been clarified that what coding scheme explains
the characteristics of V4 neurons. Olshausen and Field have showed that learning
sparse code of the natural images produces receptive field properties of V1 neurons
that are (1) localized, (2) oriented, and (3) band-passed, as nicely approximated by
Gabor function [5]. They applied component analysis with sparseness constraint to
the natural images. Component analysis assumed that inputs can be described by li-
near superposition of basis functions with appropriate coefficients. The basis
functions and their coefficients were learned adaptively to realize the sparse code of
natural images. If V1 neurons represent natural images by sparse code, basis functions
were expected to show the receptive field properties of V1 neurons. Properties of the

328 Y. Hatori, T. Mashita, and K. Sakai

learned bases agreed with the characteristics of V1 neurons, suggesting that sparse-
ness is crucial for the characteristics of V1 neurons [5].

In the present study, we propose that the representation of V4 is sparse, sharing the
principle same as V1, because V4 receives ascending input from V1 and V2 [6]. The
fact enables us to propose that sparse representation is crucial for curvature selectivity
in V4. To test the proposal, we applied the component analysis with constraint of
sparseness to activities of model neurons driven by the stimuli from natural images,
and investigated whether sparse representation is capable of reproducing the characte-
ristics of V4 neurons. In order to study the dependence of computed bases on sparse-
ness, we changed systematically the sparseness and obtained the corresponding bases.
The computed bases appeared unstructured when sparseness was small (< 0.6). In
contrast, they showed localized structures that appear to represent the curvature, when
sparseness was larger (> 0.6). To evaluate whether these bases in fact reproduce the
receptive field properties of V4 neurons, we computed selectivity of each basis in
curvature and direction domain, and their population preference, in the same manner
as the physiological studies [3]. Each basis function showed tuning for curvature and
its direction, and population selectivity showed the bias toward acute curvature, when
sparseness was medium to large (0.6-0.8). These results indicate that sparse represen-
tation is crucial for the curvature selectivity in V4.

2 Methods

2.1 Stimuli

Stimuli were comprised by 80,000 patches whose size was 33x33 pixels. These
patches were part of natural images that were taken from Amsterdam Library of Ob-
ject Images [7]. The patches were made by following steps. All images were binarized
to focus solely on information of the shape. After that, we cut out small patches along
the contours of objects to assure that contour passed through the center of given patch.

2.2 The Model

Processing flow of the model was illustrated in Fig. 1. Component analysis with
sparseness constraint was applied to responses of model V2 neurons driven by the
natural images because V4 neurons receive ascending input from V2 [6]. Receptive
field properties of model V2 neurons were realized by the combination of two Gabor
filters, mimicking angle selectivity reported by physiological study [2].

The algorithm of the component analysis with sparseness constraint was the same
as Olshausen and Field [5]. In brief, it assumed that the inputs were represented by the
linear superposition of basis functions with appropriate coefficients. The goal of
sparse coding was to seek adaptively a set of basis functions that effectively describe
the original images with the strong activation of a small number of active bases.
Therefore, achieving the sparse code is equivalent to require the cost function com-
prised of (1) high sparseness of coefficient, as well as (2) low error in reconstruction.
The cost function was formulized as below [5]:

 Sparseness Controls the Receptive Field Characteristics of V4 Neurons 329

 cost ,

 ∑ , ∑ ,, , ∑ ⁄, (1)

, where, (x,y) represents the pixel of the image, Xj represents activity of model V2
neurons to jth image, represents the ith basis function, and sij represents coefficient
of ith basis function to jth image. S is the non-linear function which poses the higher
cost when activities are spread over many basis functions (i.e. almost all coefficient
have non-zero value). We choose 1 for · , following [5]. λ and σ are
positive constants that determine the contribution of second term in the cost function
(eq.1) and that scales the coefficients, respectively. Sparseness of the coding depends
on values of λ and σ. To investigate whether sparseness is crucial for the construction
of curvature selectivity in V4, we varied λ and σ systematically so as to alter sparse-
ness of the coding. λ and σ were chosen from the following set:

 λ 2.2 10 | 2, 1,0,1,2 , (2)

 σ 0.316 10 | 2, 1,0,1,2 . (3)

The values of λ 2.2 and σ 0.316 were used in Olshausen’s report [5]. Those
values were altered by a factor of ten. We used all 25 combinations of λ and σ, and
calculated sparseness of the coding to investigate quantitatively the relationship be-
tween sparseness and the characteristics of computed basis functions. Sparseness of
coefficient vector s = {sij} was defined in the same way as the physiological study [8]: sparseness 1 1 1⁄⁄ , (4)

 RD ∑ ∑ (5)

, where n is the number of basis functions (n = 64 in the present study). Sparseness is
ranged from 0 to 1; sparseness = 1 means that input images are described by a small
number of basis functions (i.e. represented by sparse code).

Fig. 1. Schematic illustration of processing flow of the model. Component analysis with
sparseness constraint was applied to activities of model V2 neurons that respond to natural
images. The receptive fields of model V2 neurons consist of combination of two Gabor filters.
The learned bases were predicted to show the receptive field properties of V4 neurons.

330 Y. Hatori, T. Mashita, and K. Sakai

2.3 Evaluation of the Basis Functions

To evaluate the selectivity of each basis function, we computed activity map in curva-
ture/direction domain in a way similar to the physiological study reported by Carlson
et al. [3] except for the cancelation of stimulus bias in population analysis. The stimu-
lus set used for the evaluation was comprised of a variety of curvature and its direc-
tion as examples shown in Fig. 2a. It was defined that a stimulus included a number
of distinct curvatures and their directions along its contour. The activity of a basis
function to a stimulus was computed by a convolution of the basis and the stimulus.
We plotted the activity to the map of curvature and its direction. The activity of a
basis to a stimulus was stored into the bins corresponding to the curvatures and direc-
tions of all points along the stimulus contour. This procedure was repeated for all
stimuli, and the activities were summed for each bin, and divided by the sample num-
ber of the bin to obtain a mean. Subsequently, the means were normalized so that they
range between 0 and 1.

To evaluate the population preference of 64 bases, we computed a mean of the 64
maps for a combination of λ and σ. Here, it should be noted that the stimulus set for
evaluation yields a bias in the population preference. The bias is caused by the facts
that the structure of bases was localized around the center of the patch, and that acute
curvature was localized around the center. Because of the localization of the basis
structure, though stimulus contours around the center were evaluated, those in peri-
phery were not taken into account for the evaluation. However, such localization is
not considered for the averaging (we simply divided the summed activity by the sam-
ple number for each bin), producing the bias toward acute curvatures that are loca-
lized around the center. Since the physiological study [3] reported a bias toward acute
curvature, we have cautiously considered this bias. Fig. 2b shows the sample number
of each bin in which we observe frequent samples in obtuse curvatures (around 0),
although they barely evoke response. To cancel out this bias, we subtracted baseline
activity from the population activity. The baseline was the mean activity of basis
functions that were learned by randomizing activities of model V2 neurons. After the
subtraction of the baseline, the population activity was normalized so that their values
range from 0 to 1. We chose this procedure rather than using random bases because a

Fig. 2. (a) Test stimuli used for computation of selectivity. Each of them had different curvature
and its direction. (b) Distribution of frequency of curvature and its direction in the test stimuli.
Obtuse curvature tended to be sampled frequently.

 Sparseness Controls the Receptive Field Characteristics of V4 Neurons 331

simple randomization appears to induce another bias due to the digitization within a
small patch of 33x33 pixels.

3 Results

We propose that the sparse representation is crucial for the construction of curvature
selectivity in V4. To test the proposal, we carried out the simulations of the model,
and compared the characteristics of single basis functions and their population with
those of V4 neurons [3].

3.1 Characteristics of Single Basis Functions

The computed basis functions were dependent on their sparseness (the range of rea-
lized sparseness was between 0.38 and 0.88). Fig. 3 showed examples of the basis

Fig. 3. Examples of basis functions learned with different sparseness. (a) Sparseness was 0.38.
No apparent structure was found in the bases. (b, c) Sparseness was 0.81 and 0.87, respectively.
They had localized structures that appear to represent the curvature and direction.

Fig. 4. Selectivity of the single basis function and actual V4 neuron were plotted in curvature and
direction domain. (a-c) Tuning function of one basis function from Fig. 3a, b, and c, respectively.
Small icon on right of tuning function indicated the basis function of which tuning was computed.
Sparseness of the code was 0.38 (a), 0.81 (b), and 0.87(c). (d) Selectivity of actual V4 neuron
reported by Carlson et al [3]. Single basis function showed selectivity for curvature and its direc-
tion as similar to the physiology when sparseness was medium to high (b, c).

332 Y. Hatori, T. Mashita, and K. Sakai

functions learned with different sparseness. Structures of bases seemed to be not or-
ganized when sparseness was low (0.38; Fig. 3a). In contrast, there were localized
structures that appear to represent the curvature and its direction, when sparseness
was medium to large (> 0.6; 0.81 for Fig. 3b, and 0.87 for Fig. 3c). To evaluate
whether the bases represent the curvature and its direction, we calculated selectivity
of each basis in curvature and direction domain. The tuning functions of one example
basis from Fig. 3a-c were plotted in Fig. 4a-c, respectively. Fig. 4d showed the selec-
tivity of actual V4 neuron reported by Carlson et al. [3] in which clear tuning for
curvature and its direction. A basis function showed no systematic selectivity for cur-
vature and its direction when sparseness was low (Fig. 4a). However, the bases
showed tuning for curvature and its direction when sparseness was medium to large
(Fig. 4b, c). These results indicate that sparse representation is crucial for the
construction of curvature selectivity in single V4 cells.

3.2 Characteristics of Population

We demonstrated that the basis functions were selective to curvature and its direction
when sparseness was medium to large (>0.6). In this section, we examined whether
population response of the bases reproduces the physiological characteristics. Carlson
et al. have reported that the population activity of V4 neurons showed a bias toward
acute curvature with uniform distribution along the direction ([3]; Fig. 5d). Fig. 5a, b,
and c show the population selectivity of 64 basis functions whose sparseness were
0.38, 0.81, and 0.87, respectively. The population activity showed the bias toward
acute curvature when sparseness was medium (0.6-0.8; e.g. 0.81 for Fig. 5b). In
contrast, the population activity did not reproduce the physiological result when
sparseness was not medium (Fig. 5a, c). These results indicate that middle to large
sparseness is crucial for the construction of the population characteristics of V4

Fig. 5. Population selectivity of the bases (a-c) and the physiology (d; [3]). (a-c) Population
activities of the bases mentioned in Fig. 4a-c were plotted. Population activity showed the bias
toward acute curvature only when sparseness was medium (0.81; b), corresponding to the
physiological study.

 Sparseness Controls the Receptive Field Characteristics of V4 Neurons 333

neurons. Combining the analyses of single basis and population, we are able to con-
clude that a sole control of sparseness generates the curvature selectivity reported in
V4, including tuning of single cells and characteristics in population.

4 Discussion

In the present study, we proposed that sparse representation is crucial for curvature
selectivity in V4. To test the proposal, we applied component analysis with sparseness
constraint to the activities of model V2 cells, and investigated whether the characteris-
tics of computed bases correspond to those of actual V4 neurons. The appearance of
the basis functions were differed depending on their sparseness. They had localized
structures that appear to represent curvature and direction when sparseness is medium
to large (>0.6; Fig. 3b, c). To investigate whether these basis functions truly represent
the curvature and its direction, we computed the selectivity of each basis functions.
The selectivity of single basis functions reproduced the physiological characteristics
in terms of tuning for curvature and its direction, when sparseness is medium to large
(> 0.6; Fig. 4b, c). Furthermore, we investigated whether population preference of the
bases showed the bias toward acute curvature. The population activity reproduced the
bias when sparseness was medium (0.6-0.8; Fig. 5b). These results indicate that
sparse representation is crucial for curvature selectivity in V4.

We compared the characteristics of the model with those of the actual neurons. Al-
though quantitative comparison of sparseness between the model and the physiologi-
cal study would provide validity of our proposal, we are unable to compare the
sparseness directly because sparseness of V4 cells has not been reported with the
stimuli same as our simulations. A physiological study using different stimuli has
reported that distribution of sparseness of V4 neurons shows a peak around 0.4 [9].
Although this peak sparseness is slightly small in comparison with that of the present
study, having a peak in middle range with symmetric tails appear consistent with our
results.

It should be noted that the establishment of the curvature selectivity observed in
V4 is not straightforward, e.g., it is difficult to design such connections by hand. Our
result is surprising in that the sparseness constrain was capable of generating the cur-
vature selectivity without other heuristic constraints. The implicit constrain in addi-
tion to the sparseness was the spatial structure (angle selectivity) inherent in the V2
model that feeds inputs to the V4 model. When we destroyed the spatial structure
(angle selectivity) in V2, the learned basis functions did not reproduce the curvature
selectivity observed in V4. These results suggest that the curvature selectivity is a
natural consequence of the sparse coding of natural images that passed through the
visual pathway up to V2.

Sparse representation has potential to explain selectivity of neurons in other cortic-
al regions not limited to the visual cortices because sparse coding is observed physio-
logically in other cortical regions and modalities (e.g., auditory cortex [10], olfactory
system [11], and hippocampus [12]). Theoretical studies have suggested that temporal
patterns embedded in sparse input trains are transmitted throughout cortical layers via

334 Y. Hatori, T. Mashita, and K. Sakai

feedforward connection together with synchronous firing (e.g. [13]). Our study was
focused mainly on rate-base neural coding (i.e. coefficients of the basis functions
correspond to activities of single neurons). It is expected that further studies on sparse
representation give insight in the principle of coding schemes in the cortices.

Acknowledgements. This work was supported by grant-in aids from JSPS
(KAKENHI 22300090, 24.3368), and grant-in aids for Scientific Research on Innova-
tive Areas "Shitsukan" (No.25135704) from MEXT, Japan.

References

1. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate
cortex. J. Physiol. 195, 215–243 (1968)

2. Ito, M., Komatsu, H.: Representation of angles embedded within contour stimuli in area
V2 of macaque monkeys. J. Neuroscience 24(13), 3313–3324 (2004)

3. Carlson, E.T., Rasquinha, R.J., Zhang, K., Connor, C.E.: A sparse object coding scheme in
area V4. Curr. Biol. 21, 288–293 (2011)

4. Yamane, Y., Carlson, E.T., Bowman, K.C., Wang, Z., Connor, C.E.: A neural code for
three-dimensional object shape in macaque inferotemporal cortex. Nat. Neurosci. 11(11),
1352–1360 (2008)

5. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learn-
ing a sparse code for natural images. Nature 381, 607–609 (1996)

6. Felleman, D.J., Van Essen, D.C.: Distributed Hierarchical Processing in the Primate Cere-
bral Cortex, Cereb. Cortex 1, 1–47 (1991)

7. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: Amsterdam Library of Objects
Images. Int. J. Comp. Vis. 61(1), 103–112 (2005)

8. Vinje, W.E., Gallant, J.L.: Natural stimulation of the nonclassical receptive field increases
information transmission efficiency in V1. Science 287, 1273–1276 (2000)

9. Rust, N.C., DiCarlo, J.J.: Balanced increases in selectivity and tolerance produce constant
sparseness along the ventral visual stream. J. Neurosci. 32(30), 10170–10182 (2012)

10. DeWeese, M.R., Wehr, M., Zador, A.M.: Binary spiking in auditory cortex. J. Neuros-
ci. 23(21), 7940–7949 (2003)

11. Jortner, R.A., Farivar, S.S., Laurent, G.: A simple connectivity scheme for sparse coding in
olfactory system. J. Neurosci. 27(7), 1659–1669 (2007)

12. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation
by single neuron in the human brain. Nature 435, 1102–1107 (2005)

13. Asai, Y., Villa, A.E.P.: Integration and transmission of distributed deterministic neural ac-
tivity in feed-forward networks. Brain Res. 1434, 17–33 (2012)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 335–342, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Handwritten Digit Recognition with Pattern
Transformations and Neural Network Averaging

Juan Manuel Alonso-Weber, M. Paz Sesmero,
German Gutierrez, Agapito Ledezma, and Araceli Sanchis

Computer Science and Engineering Department
Universidad Carlos III de Madrid

Avenida de la Universidad 30 Leganés 28911, Madrid (Spain)
jmaw@ia.uc3m.es, {msesmero,ggutierr,ledezma,masm}@inf.uc3m.es

Abstract. Recently there has been a considerable improvement in applications
related with isolated handwritten digit and letter recognition supported on the
use of deep and convolutional neural networks and other combinations which
make use of ensemble averaging. The proposal of the present work is based on
a relatively modest sized Neural Network trained with standard Back
Propagation and combined with a set of input pattern transformations. Applying
ensemble averaging on the trained Neural Networks gives an encouraging error
rate of 0.34% measured on the MNIST dataset.

Keywords: Artificial Neural Networks, Back Propagation, Ensembles, MNIST,
Handwritten Digit Recognition.

1 Introduction

Some recent works on Neural Networks applied to handwritten character recognition
show an interesting improvement driven by the use of new neural models.
Convolutional Neural Networks and Deep Neural Networks are both rather complex
structures, which allow reaching a highly respectable performance measured on the
popular MNIST Database [1][2]: 0.4% [3] and 0.35% [4]. Combining these
architectures with committees or integrating them with ensemble-like structures
allows to further improve down to 0.27% [5] or even 0.23% [6]. Using committees
with a traditional MLP displays an error rate of 0.39% [7]. Other interesting works
which are based on different approaches reach an error rate of 0.40% [8] and 0.32%
[9] respectively.

The present work, derived from [10][11], shows a promising approach which
advocates for the use of the standard Back Propagation learning algorithm with a
relatively modest sized Multilayer Perceptron (MLP). A specific alternative pattern
deformation is combined with other usual transformations (displacement and
rotation), with an input size reduction and an additive input noise schedule. This helps
to avoid local minima and stalling during the learning process.

336 J.M. Alonso-Weber et al.

The outcome is a creditable mean error rate of 0.46% tested on the MNIST
Database. Applying ensemble averaging on a collection of trained Neural Networks
helps to reduce the final error rate down to 0.34%.

2 Data Processing

The MNIST Database contains 70000 digitized handwritten numerals distributed in
ten different classes. The whole dataset is divided into 60000 images for training
purposes, and the remaining 10000 are reserved for the test set. The graylevel values
of each pixel are coded in this work in the [0,1] interval, using a 0 value for white
pixels and 1 for black ones.

An important point for managing a high performance in the learning process is the
construction of a useful training set. The 60000 different patterns contained in the
MNIST database can be seen as a rather generous set, but evidence shows that the
usual learning algorithms run into serious trouble for about one hundred or more of
the test set samples [10]. Therefore, some strategy is needed in order to increase the
training set cardinality and variability. Usual actions comprise geometric
transformations such as displacements, rotation, scaling and other distortions. Here a
specific set of transformations is combined with an image size reduction and an
additive input noise schedule. In this work displacements and rotations are combined
with an alternative deformation procedure that yields rather good results.

A problem with which the Back Propagation algorithm tackles is the relative high
input dimensionality for the original 28x28 sized digits. Using downsized images
helps to reduce the error rate in a small amount. Therefore, a second version of both
the training and test sets are generated where each pattern is downsized through
interpolation to 20x20 pixels.

Each digit is randomly shifted zero, one or two pixels both in the horizontal and in
the vertical axis. The final performance is rather sensible to the probability
distribution of the different displacements. Finding an optimal probability distribution
is a cumbersome task. An interesting possibility is to design different displacement
schemas in order to reduce the error correlation of the trained networks, which in turn
can induce an improvement with the ensemble averaging procedure. This is shown
further on in the Experimental Results Section.

The most important transformation relies on the so called deformation, which
involves pulling or pushing each of the four image corner pixels in a random amount
along the vertical and horizontal axis. The rest of the pixels are proportionally
displaced simulating an elastic behaviour. This leads to a combination of partial
stretching and/or compression of the image. Fig. 1 illustrates this process. For the full
sized images the displacement interval of the corner pixels is [-5, +5] (distance
measured as pixels). For the 20x20 sized images, the best results are achieved with
displacements in the order of [-4, +4] pixels. In parallel with the deformation, a
rotation is applied around the image center selecting a random angle between -0.15
and +0.15 radians. For technical reasons, the deformation and the rotation need to be
computed in an inverse way.

 Handwritten Digit Recognition with Pattern Transformations 337

Fig. 1. The deformation is shown as an inverse mapping, at the left the original digit, at the
right the deformed one

Finally, noise is added to each image previous to the training process. Noise
injection has been extensively related with other techniques such as weight decay, and
is known to provide a better generalization under certain circumstances [12][13].
Here, best results are obtained with a specific variant of input noise addition that uses
annealing: starting with high noise rates that are lowered at a small amount after each
learning cycle, and ending with a zero noise rate.

Including the descending input noise schedule improves the MLP precision, on
behalf of a longer learning process. A noiseless training requires about 500 cycles,
whereas adding the input noise extends the learning up to 1000 cycles. In this
circumstance, convergence is tempered down towards the end of the noise schedule.
Usually few improvements are achieved during the 100-200 last cycles, and virtually
none after the noise scheme is extinguished. The relation between these parameters is
R=N0/Tmax, where Tmax stands for the number of training cycles, R is the noise
reduction value and N0 is the initial noise value. Using an initial noise value of N0=1.0
adds to each pixel a uniform random value from the interval [-1, +1].

The noise addition and the geometrical transformations are applied to each pattern
for each Back Propagation training cycle. Hence, the MLP sees each pattern just once.

The construction of an ensemble with a set of trained Neural Networks is
performed with the averaging of the networks outputs which is a simple but effective
procedure [14]. For a better performance, it is desirable that the errors committed by
the MLPs should be uncorrelated, i.e. the networks should be at most precise and
diverse [15]. Inducing diversity through some random process, for example, training
networks with different weight initialization is a correct procedure [14] but has a
limited effectiveness [16]. A higher diversity can be accomplished through a guided
design of the ensemble [17][18] or inducing additional differentiation in the training
process [16], for example modifying the input space. Here both approximations are
tried out: a) with a ranked selection methodology, and b) with a set of displacement
schemas.

338 J.M. Alonso-Weber et al.

3 Experimental Setup

All the experimentation is built up around training at first a collection of Multilayer
Perceptrons, which are afterwards used to apply and evaluate the proposed ensemble
averaging.

The MLPs have a fixed size by default: 784×300×200×10, for the full sized image
database. The output class is coded in the usual way as a one-out-of-n schema. For the
downsized 20×20 images the only change is for the input layer, which needs 400
input units. The training process is performed using online Back Propagation, where
all patterns are presented to the input, structured in cycles. In this case, each pattern is
processed previously, applying the above mentioned geometrical transformations
combined with the noise addition. The weight initialization is restricted to the [-0.3,
+0.3] interval, and the Learning Rate is set to 0.03.

A subset of the training patterns (10000 out of 60000) is randomly removed for
validation purposes. This validation set can be used in several ways during the neural
network training facing the posterior ensemble averaging: at first, for determining the
stopping point of the learning process, and secondly as a criterion for establishing a
ranking inside a set of trained neural networks.

As already stated, including the descending input noise schedule improves the final
MLP precision, at the cost of a longer lasting learning process. As a rule, the
annealing scheme lasts Tmax=1000 cycles, and 100 noiseless cycles are added at the
final stage in order to ensure a stable convergence. The initial noise value is N0=1.0,
and the descending noise rate R=0.001.

The training process of the MLPs was performed on Intel Core i7 and equivalent
Xeon processors. Each processor allows to train up to 8 MLPs in parallel without a
noticeable loss of performance. Given the MLP size, the size of training set and the
needed cycles, the whole learning process lasts about 20 hours for the 20x20 images,
and 24 hours for the full sized images.

4 Experimental Results

This section presents the experiments performed at first with the full sized images,
and then with the downsized images that achieve a slightly better performance.

At first, a set of 90 MLPs are trained with 50000 images from the MNIST
database, leaving 10000 randomly chosen digits for validation. Applying ensemble
averaging on the whole MLP set gives an error rate of 0.39%. The drawback of this
procedure is that adding or deleting members of the ensemble can vary the results
within a range. Leaving out one member selected at random varies the final output
between 0.38% and 0.41%.

Following the idea behind the statement that “many could be better than all”
[17][18], a methodology for selecting then MLPs for the averaging procedure is
proposed: validation errors are used in order to establish a ranking for the trained
MLPs. The 20 best ranked MLPs are distributed into four subsets named p, q, r and s,
where p contains the five neural networks that perform best on the validation set, and

 Handwritten Digit Recognition with Pattern Transformations 339

s the worst. Several ensembles are then built starting with the best subset (p), and
progressively adding the subsets q, r and s. Table 1 shows the Test Errors committed
for these ensembles. Also shown is the evolution of the Mean Test Error for the
selected MLPs, which is lower for the better ranked ones. Experiments performed on
various MLP sets with different cardinalities suggest that using different seeds for
weight initialization derives in a limited differentiation, i.e. the individual MLPs have
highly correlated errors. The ensemble averaging tends to acquire the best
performance with nine to fifteen members.

In order to establish a reference for evaluating the heuristic, another procedure for
building ensembles is included: four K-sized ensembles (K=5, 10, 15, 20) whose
members are randomly selected on 1000 trials from the whole MLP set (i. e. 90
members). This allows establishing a mean value for reference. The results in Table 2
show that this value converges steadily to 0.39%. The ranked selection methodology
gives a slightly better performance at 0.36%.

Table 1. Test Errors (in %) for the ensembles built with the progressive addition of the MLPs
with the best validation values

 Ranked MLPs All
 (sub)set: P p,q p,q,r p,q,r,s 90

 Mean 0.488 0.485 0.495 0.492 0.51

MLPs Min 0.46 0.45 0.45 0.45 0.43

 Max 0.52 0.53 0.61 0.61 0.61

Ensembles 0.38 0.36 0.36 0.40 0.39

Table 2. Test Errors (in %) for 1000 ensembles built with K randomly selected MLPs

 Randomly selected MLPs All
 K = 5 10 15 20 90

 Mean 0.406 0.397 0.394 0.393 0.39
Ensembles Min 0.33 0.33 0.33 0.33 -

 Max 0.49 0.47 0.45 0.45 -

Whereas the MLPs trained on the original MNIST database achieve a mean error

rate of 0.51%, using the 20×20 downsized images allows for a slightly lower 0.46%.
The following experiment shows that using these MLPs for building ensembles
indeed improves the results.

Although the use of the continuous random deformations generates a training set
with a virtually unlimited number of patterns, in practice, leaving out a fraction of the
original pattern set for validation purposes leads to a descent in performance,
especially with the 20x20 sized image set. Therefore, in the following experiments the
whole original training set without any geometrical transformations is used for
validation purposes. The drawback is that this particular validation set does not allow
using the ranked selection method on the trained MLPs: the number of validation
errors seems to have low relation with the behaviour of the MLPs on the test set in the
averaging procedure.

340 J.M. Alonso-Weber et al.

In order to increase the diversity between the trained MLPs, different displacement
schemas are established: each image is shifted along the vertical and horizontal axis
combined with the remaining deformations, prior to the training process. Each schema
determines a different probability distribution of the possible displacements (shown in
Figure 2 and Table 3).

F E C E F

E D B D E

C B A B C

E D B D E

F E C E F

Fig. 2. Different displacement schemas. All the image pixels are displaced the same distance
and in the same direction from position A to position types B/C/D/E/F with a certain
probability (shown in Table 3). Destination A implies no displacement.

Table 3. Probability distribution of the displacement schemas

 Displacement Schema

Dest. D1 D2 D3 D4 D5 D6
A 0.43 0.27 0.22 0.20 0.16 0.11

B 0.57 0.49 0.45 0.32 0.41 0.30

C - 0.16 0.22 0.32 0.05 0.15

D - 0.08 0.11 0.16 0.31 0.20

E - - - - 0.08 0.18

F - - - - - 0.05

For this experiment 10 Neural Networks for each displacement schema were trained

(on 20×20 images). The Mean Test Errors for the six groups varies between 0.465% and
0.496% (shown in Table 4). Averaging each MLP group provides a decrease in the error
rates that varies between 0.36% and 0.41%. The full ensemble contains 60 members and
displays an error rate of 0.34%. For a more precise result, ensembles are generated with
the random deletion of 1 or 2 members of each displacement schema (on 1000 trials),
giving a mean error rate of 0.345% and 0.348% respectively.

Table 4. Ensembles built with six MLP sets trained each with a different displacement schema

 Displacement Schema

 D1 D2 D3 D4 D5 D6

MLPs 0.487% 0.468% 0.469% 0.465% 0.485% 0.496%
Ensembles 0.39% 0.36% 0.36% 0.36% 0.41% 0.36%

Full Ensemble 0.34%

 Handwritten Digit Recognition with Pattern Transformations 341

Averaging all the MLPs trained with the six different displacement schemas shows a
lower error rate than those committed by the best ensemble based on an individual
displacement schema.

5 Conclusions

This work shows that training traditional Neural Networks with the standard Back
Propagation algorithm in combination with an averaging procedure can provide fairly
low error rates that lie not too far away from other leading results that rely on rather
more complex neural models. The key issues are the generation of an adequate
training pattern set, and the use of an additive input noise schedule. For an increased
benefit in the ensemble averaging procedure, both a ranked selection methodology
and a set of displacement schemas have been presented.

Acknowledgement. This work has been supported by the Spanish Government under
projects TRA2011-29454-C03-03 and TRA2011-29454-C03-02.

References

1. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

2. LeCun, Y., Cortes, C.: THE MNIST DATABASE of handwritten digits,
http://yann.lecun.com/exdb/mnist/

3. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks
applied to visual document analysis. In: Seventh International Conference on Document
Analysis and Recognition, vol. 1, pp. 958–963 (2003)

4. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, Big, Simple Neural
Nets for Handwritten Digit Recogntion. Neural Computation 22(12), 3207–3220 (2010)

5. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Convolutional Neural
Network Committees for Handwritten Character Classification. In: International
Conference on Document Analysis and Recognition, vol. 10, pp. 1135–1139 (2011)

6. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column Deep Neural Networks for Image
Classification. In: IEEE Conf. on Computer Vision and Pattern Recognition, CVPR,
pp. 3642–3649 (2012)

7. Meier, U., Ciresan, D.C., Gambardella, L.M., Schmidhuber, J.: Better Digit Recognition
with a Committee of Simple Neural Nets. In: International Conference on Document
Analysis and Recognition, vol. 1, pp. 1250–1254 (2011)

8. Ranzato, A.M., Poultney, C., Chopra, S., LeCun, Y.: Efficient Learning of Sparse
Representations with an Energy-Based Model. In: Advances in Neural Information
Processing Systems 19, NIPS 2006 (2006)

9. Cruz, R., Cavalcanti, G., Ren, T.: Handwritten digit recognition using multiple feature
extraction techniques and classifier ensemble. In: International Conference on Systems,
Signals and Image Processing (IWSSIP), pp. 215–218 (2010)

342 J.M. Alonso-Weber et al.

10. Sesmero, M.P., Alonso-Weber, J.M., Gutiérrez, G., Ledezma, A., Sanchis, A.: A new
artificial neural network ensemble based on feature selection and class recoding. Neural
Computing and Applications 21(4), 771–783 (2010)

11. Alonso-Weber, J.M., Sanchis, A.: A Skeletonizing Reconfigurable Self-Organizing Model:
Validation Through Text Recognition. Neural Processing Letters 34(1), 39–58 (2011)

12. Matsuoka, K.: Noise Injection into Inputs in back-propagation learning. IEEE Transactions
on Systems, Man, and Cybernetics 22(3), 436–440 (1992)

13. An, G.: The Effects of Adding Noise During Backpropagation Training on a
Generalization Performance. Neural Computation 674, 643–674 (1996)

14. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial
Intelligence Research 11(1), 169–198 (1999)

15. Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems,
pp. 1–15 (2000)

16. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and
categorisation. Information Fusion 6(1), 5–20 (2005)

17. Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for hybrid
neural networks. In: Mammone, R.J. (ed.) Neural Networks for Speech and Image
Processing, ch. 10. Chapman-Hall (1993)

18. Sharkey, A.J.C., Sharkey, N.E., Gerecke, U., Chandroth, G.O.: The ‘Test and Select’
Approach to Ensemble Combination. In: Multiple Classifier Systems, pp. 30–44 (2000)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 343–350, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Echo State Networks in Dynamic Data Clustering

Petia Koprinkova-Hristova and Kiril Alexiev

Institute of Information and Communication Technologies
Bulgarian Academy of Sciences

Acad. G. Bonchev str. bl.25A, Sofia 1113, Bulgaria
{pkoprinkova,alexiev}@bas.bg

Abstract. The present paper follows the initial work on multidimensional static
data clustering using a novel neural network structure, namely Echo state net-
work (ESN). Here we exploit dynamic nature of these networks for solving of
clustering task of a multidimensional dynamic data set. The data used in this in-
vestigation are taken from an experimental set-up applied for tasting of visual
discrimination of complex dot motions. The proposed here model, although far
from complicated brain theories, can serve as a good basis for investigation of
humans perception.

Keywords: Echo state networks, dynamic data clustering, visual discrimination
of complex motions.

1 Introduction

In spite of numerous developments, clustering of multidimensional data sets is still a
challenging task [10]. There are different approaches for solving it that include variety
of intelligent techniques as fuzzy logic and neural networks.

Many well known types of recurrent neural networks (RNN) were successfully
used for data classification [1, 7, 8]. All of them rely on unsupervised learning proce-
dures minimizing given energy function in search of correspondent to data structure
adjustment of network equilibrium states. An extensively developed branch of RNN
called “reservoir computing” is targeted mainly to increasing of training speed of
these dynamic networks [13]. A representative member of this family is Echo state
network (ESN) [9]. It incorporates a randomly generated recurrent reservoir with
sigmoid nonlinearities of neurons outputs (usually hyperbolic tangent). There are
several works proposing methods for improvement of the ESN reservoir. Most of
them are related to entropy maximization [14, 16] and are motivated by known bio-
logical mechanisms of changing neural excitability in accordance with the distribution
of the input stimuli [15]. In all cases a bias term was used that moves the operating
point of the system in the desired direction. In [15] the authors proposed a gradient
method named Intrinsic Plasticity (IP) training for adjusting the biases as well as of an
additional gain term aimed at achieving the desired distribution of reservoir output. In
our previous work [11] it was shown that in fact IP training stabilizes even initially
unstable reservoirs. During investigations why and how IP reservoir improvement

344 P. Koprinkova-Hristova and K. Alexiev

influences its stability we observed another interesting effect: the reservoir neurons
equilibrium points are not only moved but also are concentrated in several regions.
Then question aroused: is it possible to use this effect for clustering purposes too?

In [17] for the first time it was proposed to use ESN in image classification to
“draw out” silent underlying features of the image data. These extracted features were
used further as inputs to a feedforward neural network classifier. In [12] we exploited
the same reservoir ability but looking from another perspective: we consider combina-
tions between steady states of each two neurons in the reservoir as numerous two-
dimensional projections of the original multidimensional data fed into ESN input.
These low dimensional projections can be used next for data clustering. It was shown
experimentally that together with improved stability the IP tuned ESN reservoirs pos-
sess also better clustering abilities that naturally opens the possibility to apply them
for multidimensional data clustering. Based on investigated effect of IP improvement
of ESN reservoir we propose a procedure for multidimensional data clustering. It
allows discovering multidimensional data structure without specification of the clus-
ters number in advance.

Here we proceed further exploiting the dynamic nature of ESN to reveal their abili-
ty to cluster multidimensional dynamic data too. The data used in this investigation
are taken from an experimental set-up applied for tasting of visual discrimination of
complex dot motions [2, 4]. The proposed here model, although far from complicated
brain theories, can serve as a good basis for investigation of humans perception.

2 Problem Formulation

2.1 Echo State Networks for Data Clustering

Figure 1 below represents the basic structure of an ESN as it was used in [12]. The
ESN reservoir dynamics is described as follows [9]:

 () () ()

 −+= 1krresWkuinWresfkr (1)

Fig. 1. ESN structure

r(k)

reservoir

Wres

Win Wout

u(k)

 Echo State Networks in Dynamic Data Clustering 345

The IP reservoir improvement proposed in [15, 16] is gradient descent procedure that
minimizes the Kullback-Leibler divergence:

 () ()() () ()
()

=

rdp

rp
rprdprpKLD log, (2)

DKL is a measure for the difference between the actual p(r) and the desired pd(r)
probability distribution of reservoir neurons output r. Since the commonly used trans-
fer function of neurons is the hyperbolic tangent, the proper target distribution that
maximizes the information at the output according to [15] is the Gaussian one. In order
to achieve those effects two additional reservoir parameters - gain a and bias b (both
vectors with nr size) - are introduced as follows:

 () () () () ()

 +−+= bkrresWadiagkuinWadiagresfkr 1 (3)

The IP training is procedure that adjusts vectors a and b using gradient descent.
The reservoir output after presenting given input ()ku for 10 −÷= nk is deter-

mined by the following recursive calculation:

() () () () ()

() () () () ()

() () () () ()

 ++=

 +−+−=−

 +−+−=

brresWadiaguinWadiagresfr

bnrresWadiagnuinWadiagresfnr

bnrresWadiagnuinWadiagresfnr

001

221

11

 (4)

In the previous work [12] we exploit the equilibrium state of the reservoir r(n) at
the last step achieved by presenting a constant input () cuku = for all 10 −÷= nk . In

[12] we showed that this equilibrium will differ for different input vectors and hence
its value can be exploited for clustering purposes of static data sets.

Since ESNs are recurrent structures, in case of non-constant input their current
state depends on the dynamic behavior of their inputs. Hence we decided to try to
exploit this property for clustering of dynamically changing inputs () ()kgku = for

10 −÷= nk , where g(k) could be some nonlinear function of k. Obviously the final
reservoir state r(n) will depend on the specific characteristics of the time series g(k)
presented on its input.

Finally, as it was described in [12], the two dimensional projections of all possible
combinations between final states of neurons in the reservoir were subjected to clus-
tering procedure in order to separate input data into number of classes.

2.2 Experimental Set-Up for Dynamic Data Generation

The present data set is received in a study that investigates the changes in visual mo-
tion perception in older people (mean age 73.9) [2]. Motion information is important

346 P. Koprinkova-Hristova and K. Alexiev

for many everyday tasks like navigation, collision avoidance, figure-ground segrega-
tion, three-dimensional shape recovery, etc. These tasks are of vital significance for
the survival of the individual. The experiments were focused on the age-related
changes in the sensitivity to motion direction of dynamic stimuli. The task of the ob-
servers was to indicate whether the mean direction of motion appeared to the left or to
the right of the vertical. A fixed proportion of moving elements translated in random
directions, while the direction of motion of the rest is taken from uniform distribution
centred slightly to the left or to the right from the vertical. In order to perform the task
the observers have to integrate the motion direction of multiple elements. However,
the task performance also depends on humans’ ability to ignore the irrelevant infor-
mation provided by the noisy elements.

In a typical experiment of this type the observers classify signals presented against
an additive background noise in a numerous number of trials. The noise present in the
correctly classified trials and in the incorrectly classified trials is analyzed in order to
reveal the perceptual “template” used for solving the task e.g. to infer the stimulus
features that determine the perceptual decisions. Our stimuli could be described as a
signal modulated by noise in the presence of background noise.

To analyze the results of the tests a procedure for objective scenario estimation is
realized [2]. In this classical framework of this procedure a trajectory detector esti-
mates and classifies useful statistics for each test. A special measure is proposed for
estimation of the temporal characteristics of the random scenario that determines the
correctness of observer’s decision. Two samples were used – frame statistics and
trajectory statistics. These statistics describe in some sense the objective reality i.e.
what the subjects see on the monitor. The processing of statistics data with joined data
of subjects’ answers gives us some knowledge about the elements motion information
processing and about the change in the cognitive processes with age.

Each observer took part in 5000 trials, the last 500 of which were the same as the
first 500. So, there are 4500 unique trials. The stimuli consisted of 25 frames movie
sequences showing 48 moving dots. An example of a frame is given on Figure 2. The
fused image of the scenario consisting of all 25 frames is given on Figure 3. The dots
moved in a circular aperture with radius of 7.0 deg, positioned in the middle of the
computer screen. The stimuli were generated and presented with the help of Psycho-
physics Toolbox [5], which is used for user controlled scenario visualization with
strict time constraints.

Due to the complexity of the problem an initial normalization of the participants in
the test is carried out aiming to reach one and the same level of correct responses in
participants’ answers of about 75%.

In our dynamic series data classification procedure we used all 48 dots trajectories
from the scenario generator [2]. Hence for every stimulus of 25 consecutive frames
we have 48 time series each consisting of consecutive coordinates for 25 time steps of
each dot. From each one of these 48 time series we obtain transformed time series
consisting of 24 motion direction angles. Then, following the model of human visual
perception from [3, 6], we adopt here the receptive fields of MST neurons as in [3] to
preprocess time series of our motion directions data.

 Echo State Networks in Dynamic Data Clustering 347

Fig. 2. Random dot motion screen presenting one frame

Fig. 3. Fused image of a scenario with 25 consecutive frames

Fig. 4. Receptive fields outputs

348 P. Koprinkova-Hristova and K. Alexiev

We used seven receptive fields distributed randomly in the range of moving angles
between –π/2 and +π/2. Finally, at the output of each one of the seven receptive fields
we have a time series consisting of 24 time steps for each one of the experiments.
Figure 3 represents the time trends of our seven dynamic inputs to the ESN for one of
the experiments. These responses are the dynamic 7-dimensional time series data that
was used in the role of dynamic input to our ESN clustering procedure.

3 Experimental Results and Discussion

We used 3599 experiments from successive human trails, each containing 25 con-
secutive screens. After pre-processing of these data using 7 receptive fields we obtain
3599 blocks of dynamical data containing receptive fields’ outputs like those on Fig-
ure 3, each for 24 time steps. The ESN in this case has 7 inputs. We tested reservoirs
with different size starting from 10 neurons up to 100 neurons. The clustering proce-
dure from [12] chooses a two dimensional projection with biggest number of clusters.
With increasing of reservoir size we discovered that we are able to discriminate big-
ger number of clusters. However, in the case of our experimental data, we need to
cluster data in two or three clusters since the human decision has three classes: left,
right and unclear.

Next we decided to investigate the number of two dimensional projections that
cluster the data into two, three, four etc. clusters. In this way an interesting behavior
was discovered: the majority of two dimensional projections have only three clusters.
Figure 5 presents the bar chart containing the number of projections with different
number of clusters for 10, 30, 50 and 100 neurons of ESN reservoir.

Fig. 5. Number of projections with respective number of clusters

 Echo State Networks in Dynamic Data Clustering 349

Our main conclusion is that since three clusters are closer to human perception in
this the investigated scenario, probably a better idea is to choose projections with
prevailing number of clusters. Next we decided to use this as a “voting” mechanism:
for each dynamic data block decisions form all two dimensional projections with
three clusters were collected and the maximal number of projections that put it into a
given cluster was determined; then the data are put to that cluster. In this way we were
able to derive dynamic data into three clusters like humans do: right, left and unde-
cided direction of dots movements. Another interesting fact was that approximately
30% of data fall into the “undecided” class like the results obtained in the experiments
with human decisions.

4 Conclusions

The investigated here application of ESN to multidimensional dynamic data cluster-
ing revealed that the algorithm form [12] works well in the case of dynamic data too.
During investigation of the results another way to interpret two dimensional projec-
tions was discovered: to use them in a “voting” mechanism and to decide on the basis
of majority of similar projections rather than to choose a single projection as it was
done in previous work. The developed model reveals also similarity to the decisions
to the dot motion discrimination task given by humans. Although this model is far
from the complicated brain theories like [3, 6] it can serve as a good basis for investi-
gation of human perception too. Our next step will be to compare proposed dynamical
data set clustering procedure with other time series clustering approaches.

Acknowledgments. The research work reported in the paper is partly supported by
the project AComIn "Advanced Computing for Innovation", grant 316087, funded by
the FP7 Capacity Programme (Research Potential of Convergence Regions).

References

1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann ma-
chines. Cognitive Science 9, 147–169 (1985)

2. Alexiev, K., Bocheva, N., Stefanov, S.: Assessment of age-related changes in global mo-
tion direction discrimination. In: International Conference Automatics and Informatics
2011, Sofia, Bulgaria, October 3-7, pp. B277–B280 (2011)

3. Beardsley, S.A., Ward, R.L., Vaina, L.M.: A neural network model of spiral–planar mo-
tion tuning in MSTd. Vision Research 43, 577–595 (2003)

4. Bocheva, N., Bojilov, L.: Neural network model for visual discrimination of complex mo-
tion. Comptes rendus de’l Academie bulgare des Sciences 65(10), 1379–1386 (2012)

5. Brainard, D.H.: The Psychophysics Toolbox. Spatial Vision 10, 433–436 (1997)
6. Grossberg, S., Pilly, P.K.: Temporal Dynamics of Decision-Making during Motion Percep-

tion in the Visual Cortex, Technical Report BU CAS/CNS TR-2007-001 (February 2008)
7. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural net-

works. Science 313(5786), 504–507 (2006)

350 P. Koprinkova-Hristova and K. Alexiev

8. Hopfield, J.J.: Neural networks and physical systems with emergent collective computa-
tional abilities. Proc. of National Academy of Sciences USA 79, 2554–2558 (1982)

9. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF
and the "echo state network" approach. GMD Report 159, German National Research Cen-
ter for Information Technology (2002)

10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Sur-
veys 31(3), 264–323 (1999)

11. Koprinkova-Hristova, P., Palm, G.: ESN intrinsic plasticity versus reservoir stability. In:
Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 69–76. Springer, Heidelberg
(2011)

12. Koprinkova-Hristova, P., Tontchev, N.: Echo state networks for multi-dimensional data
clustering. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012,
Part I. LNCS, vol. 7552, pp. 571–578. Springer, Heidelberg (2012)

13. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network
training. Computer Science Review 3, 127–149 (2009)

14. Ozturk, M., Xu, D., Principe, J.: Analysis and design of Echo state networks. Neural Com-
putation 19, 111–138 (2007)

15. Schrauwen, B., Wandermann, M., Verstraeten, D., Steil, J.J., Stroobandt, D.: Improving
reservoirs using intrinsic plasticity. Neurocomputing 71, 1159–1171 (2008)

16. Steil, J.J.: Online reservoir adaptation by intrinsic plasticity for back-propagation-
decoleration and echo state learning. Neural Networks 20, 353–364 (2007)

17. Woodward, A., Ikegami, T.: A reservoir computing approach to image classification using
coupled echo state and back-propagation neural networks. In: Proc. of 26th Int. Conf. on
Image and Vision Computing, Auckland, New Zealand, November 29-December 1,
pp. 543–458 (2011)

Self-Organization in Parallel Coordinates

Marjan Trutschl∗, Phillip C.S.R. Kilgore, and Urška Cvek�

LSU Shreveport, Computer Science Dept.
One University Place

Shreveport, LA, 71115 USA
{mtrutsch,pkilgore,ucvek}@lsus.edu

http://www.lsus.edu

Abstract. Parallel coordinates has shown itself to be a powerful method
of exploring and visualizing multidimensional data. However, applying
this method to large datasets often introduces clutter, resulting in reduced
insight of the data under investigation. We present a new technique that
combines the classical parallel coordinates plot with a synthesized dimen-
sion that uses topological proximity as an indicator of similarity. We re-
solve the issue of over-plotting and increase the utility of the widely-used
parallel coordinates visualization.

Keywords: Parallel Coordinates, Self-OrganizingMap, Visualization, Mul-
tidimensional Data.

1 Introduction

A large number of approaches to high-dimensional data span more than a cen-
tury and a half of work [6,9]. One early example which finds itself in use today is
the parallel coordinates plot, a collection of polylines (each representing a single
record). Parallel coordinates (PC) has been the subject of protracted discussion
in the literature and is accepted as a workable example of high-dimensional visu-
alization. Unfortunately, the nature of parallel coordinates renders it susceptible
to over-plotting, especially when the number of records in the data increases.
Severe over-plotting results in solid blocks caused by line segments intersecting
each other at varying slopes, resulting in diminished utility of the PC plot.

We first present a brief overview of PC, followed by our algorithm for self-
organized parallel coordinates (SOPC). We introduce two datasets that showcase
its advantages and utilization, and conclude with a summary.

2 Background and Related Work

It is instructive to have a formal definition for the visual components that make
up a given PC plot. For the sake of brevity,

�n
i=1 xi shall denote the concat-

enation of all 1-tuples (xi), or (x1, x2, ... , xn). Consider a dataset with n variables

� Additionally affiliated with Center for Molecular and Tumor Virology, LSU Health
Shreveport (LSUHSC-S), Shreveport, LA 71103 USA.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 351–358, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.lsus.edu

352 M. Trutschl, P.C.S.R. Kilgore, and U. Cvek

D ≡ �n
i=1Di. The plot consists of a list of n axes (such that axis i corresponds

to Di) and a list of polylines. Because the horizontal position xi at control point
i satisfies the condition xi ∝ i (by definition), it is convenient to express the
polylines as belonging to a domain Y ≡ �n

i=1 yi, for all 0 ≤ yi ≤ 1. For any given
record (or data point) r ∈ D, a polyline pr is obtained by con-catenation of the
min-max normalization of corresponding components (Eq. 1).

pr ∈ P ,→
n�

i=1

(
ri −minDi

maxDi −minDi

)
(1)

The shape, or profile, of a record can provide an observer with a global per-
spective of its properties; thus, one may reason that a set of records with similar
profiles constitute a single cluster. However, an extremely dense plot impedes
the detection of this relationship (Fig. 1). Since a significant portion of records
are constrained to a particular region, the profiles of these records become in-
creasingly obscured as density increases, leading to ambiguity.

1 2 3 4

Fig. 1. A dense PC plot can be difficult to interpret, as illustrated here. Many of the
records, despite having dramatically different profiles, are difficult to distinguish from
one another because of overlap.

Several authors investigated methods of clutter reduction. Dimension reorder-
ing is one approach investigated by Peng et al. [13] and XdmvTool [17], and
Yang presents a filter and focus+context technique called DOFSA [20]. Poly-
gons represent clusters in the parallel coordinate approach by Novotny [12] and
are combined with striped textures. Average shifted histograms visualize den-
sity plots with parallel coordinates [11,19] aiming to alleviate the problem with
dimension’s bins or frequency intervals. Fua, et al. [7] use hierarchical clustering
to generate variable-opacity regions depicting cluster membership.

Extensions of PC into the third dimension (3D) were studied by Wegenkittl
et al. [18], visualizing trajectories of high-dimensional dynamic systems and ”ex-
truding” PC by creating a third spatial axis and linking parallel planes to extend
into 3D. Falkman [4] extends the work and analyzes large amounts of clinical
data utilizing parallel planes. Barlow and Stuart [2] use the 3D display to alle-
viate the problem of coincidence or over-plotting. Parallel glyphs by Fanea, et
al. [5] are a 3D extension of PC, changing the axes into star glyphs; we found
this to be most similar to our work, with the main difference that star glyphs are
formed by ”unfolding” the original plot in a radial manner, while ours extrudes
the plot into the display medium.

Self-Organization in Parallel Coordinates 353

3 Algorithm

We first presented an application of a self-organized parallel coordinates (SOPC)
algorithm in [3], and here we present a detailed technique and algorithm study.
SOPC is an algorithm based on Kohonen’s self-organizing map (SOM) [10] that
pulls the records into the third dimension where two or more records can be visu-
ally inspected for similarity accross multiple dimensions. Like Kohonen’s SOM,
the process is characterized by a two-layer feed-forward neural network that
utilizes unsupervised learning. A key difference between SOPC and Kohonen’s
SOM is that the connection between the two layers in SOPC is not a complete
graph. We utilize multiple SOM-like grids of output nodes (one per common
axis), each associated with one dimension in the dataset. We aim to preserve the
presentation of the original PC plot while using a SOM-like approach to address
over-plotting/crowding due to high record count while preserving the topology
of the original visualization (Fig. 2.b).

3.1 Primary Mapping

The primary mapping determines the location for an input vector on the common
axes (one for each dimension in the dataset), which corresponds to a row of
output nodes from space O in the SOM-like grid (i.e., a self-organizing grid)
stretching into 3D. In other words, primary mapping is a function p′r in the
domain of primary mapping coordinate vectors (xp, yp). Its purpose is to map
the record to one of several bins in a Wp×Hp grid, where each cell is associated
with a slice of O. Recall that we previously obtained a list of normalized y values
for the record pr. These values are scaled by Hp to derive a new list of y′ values,
while the x values are based on the control point’s index i. (Eq. 2)

p′r =
n�

i=1

(i,
⌊
pr(i)Hp

⌋
) (2)

The dimensions of the primary grid are particularly important since they
direct the granularity of the SOM. Large primary grids are generally preferable
to smaller ones when dealing with denser data dimensions; however, they can
result in a significantly larger SOM requiring additional system resources. In
Fig. 2, we have provided a 4× 5 primary mapping.

3.2 Secondary Mapping

Secondary mapping determines a qualifying secondary node for an input vector
in the row of output nodes determined through primary mapping. The process
is repeated for each dimension. So, for a n-dimensional vector, we perform n sec-
ondary mappings. Each node on the self-organizing grid is a collection of random
weight vectors with cardinality ||dw|| equal to the number of dimensions from
the original dataset chosen to be used for mapping to a SOPC plot. Users can

354 M. Trutschl, P.C.S.R. Kilgore, and U. Cvek

d1 d2 d3

a)

d1 d2 d3

d)

d1 d2 d3

b)

d1 d2 d3

c)

z

y

y1 z1 y2 z2 y3 z3 d1 d2 d3
0 3 3 3 0 3 0.1 0.82 0.28
2 1 1 1 2 1 0.5 0.38 0.65
4 1 2 0 3 0 0.9 0.5 0.85
3 0 0 1 4 1 0.88 0.05 0.95
2 3 4 2 0 2 0.53 0.86 0.13

e)

Fig. 2. Basic Principle of a SOPC mapping. a) Primary mapping of input vectors to
their respective common axes. b) Mapping of an individual record to primary locations.
c) Qualifying secondary output nodes for the selected record. (red) d) Position of the
selected record after secondary mapping. e) Data used to construct the SOPC mapping,
where each input vector d corresponds to an output node (y,z) .

determine which dimensions to use for this mapping based on their knowledge
and interest in the relationships in the data (similar to the Kohonen SOM).
Only the output nodes in the same row as the primary location r are the quali-
fying secondary nodes for a record (Fig. 2.c). Therefore, the records can organize
within a row, instead of the whole grid.

Each output node in the secondary mapping grid is associated with its own n-
dimensional weight vector in the findWinner phase, which is initially generated
randomly such that it conforms to D. We perform this process on each individual
control point for a record, which yields an n-list of output nodes representing
the record. Using the primary mapping method mentioned above, we select the
primary grid cell for control point i as the ith element of p′r, and constrain
possible winning nodes to the subset ∀z ∈ [0, Ds], ∃o ∈ Ox,y : o ∈ Ox,y,z. We can
then generate a set of candidate winning nodes C as described by Eq. 3.

Cx,y ,→ ∀b ∈ Ox,y, ∃a ∈ Ox,y : d(a, r) ≤ d(b, r) (3)

Because two output nodes in Ox,y may share the same distance from r, C is
not a surjection. We solve this issue by applying a lexographical ordering to C
based on the output node’s coordinates. Then, finding the winning node for r
equals to choosing the infimum of C in order to determine the winning node. The
output for our small example is the dataset in Fig. 2.e. Dimensions r = (d1... dn)
represent an input record; for each di ∈ r, a corresponding (yi, zi) specifies the
selected output node, where yi is an approximation of the position of di on the
common axis. As the Hp approaches the range of Di, yi becomes proportional
to di.

Self-Organization in Parallel Coordinates 355

3.3 Principles of Self-Organization

The updateNeighborhood phase permits learning via error correction in a neigh-
borhood about each winning node for a given input vector r. In order to improve
the accuracy of the mapping, this step is repeated over a number of epochs tm.
During this time, weight vectors within a neighborhood of radius ρ are adjusted
based on learning rate λ. The current learning rate λ is a function influenced by
three quantities: the initial learning rate λi, the final learning rate λf , and the
current epoch t (Eq. 4). During each epoch, we also calculate ρ from t and ρ0,
the maximum neighborhood radius (Eq. 5).

λ(t) = λi · (λf/λi)
(t/tm) (4) ρ(t) = ρm(1/5ρ0)

(t/tm) (5)

After these calculations have been performed, the winning node has been
found. The output nodes within the neighborhood radius will be adjusted by a
factor ω, the neighborhood weight in relation to the winning node (Eq. 6). For
these output nodes (x, y, z), new values for each component of its weight vector
are derived while updating the neighborhood. For all components wi(x,y,z) in the
weight vector w(x,y,z), we perform error correction (Eq. 7).

ω(x, y, z, t) = λ(t)e
−x2y2z2

ρ(t)2 (6)

wi(x,y,z) ← wi(x,y,z) + ω(ri − wi(x,y,z)) (7)

4 Case Studies

While Fig. 2 serves as an example of what SOPC output might look like, it is
not terribly useful because it is not dense. Instead, we offer two substantially
larger datasets; a synthetic dataset which contains a known number of clusters,
and a dataset collected from real-world circumstances.

4.1 Synthetic Dataset

Our synthetic dataset is derived by constructing a dataset with l records ran-
domly distributed from a permutation of b divisions in d dimensions, which
yields bd total clusters. This method was chosen because the dataset it gener-
ates is visually noisy and is used as an example of a worse case scenario for a
parallel coordinates plot. We created a synthetic dataset using this method with
b, d and l set to 4, which yields a 4,096 records with 256 clusters. As one might
expect, perceptibility of individual profiles (let alone individual records) suffers
significantly (Fig. 3.a).

Even if we visualize and color the data by the cluster assignment dimension
(Fig. 3.b), we still have many clusters with varying profiles, and little insight is
gained. In order for SOPC to resolve this problem, it must be made apparent
that multiple clusters exist and be possible to separate clusters with divergent

356 M. Trutschl, P.C.S.R. Kilgore, and U. Cvek

(a) (b) (c) (d)

Fig. 3. a) A traditional PC plot exhibits exaggerated clutter. b) The introduction
of coloring by original cluster assignment and hiding unselected records does little
to resolve perceptual issues associated with (a). c) SOPC performs clutter reduction
by assigning records with proximate z values for similar profiles. d) User interaction
permits greater exploration of the target data.

properties. As demonstrated by the 4× 16× 32 plot in (Fig. 3.c), SOPC permits
this through its new, third dimension, which is calculated only using d dimensions
(and not the cluster assignment). We can identify several clusters within the data
that share similarities in how they were constructed. By interacting with this
visualization, its structure can be explored (Fig. 3.d). Upon further investigation
of a single ”column” in d0, we can see that clusters represent a permutation of
various intervals in each dimension and we can better identify the clusters.

4.2 Jiang-Rhoads Dataset

While the synthetic data gives us the advantage of investigating the worst-case
scenario, its evaluation carries some disadvantages with it. We know about clus-
ter count and assignment in the data, but this is rarely the case in real world
data. To demonstrate the efficacy of SOPC in this context, we chose a published
dataset by Jiang et al. representing microarray gene expression data for 9,298
C. elegans (roundworm) genes for each of its six developmental stages [15, 16].
Additional work by Trutschl et al. [16] adds polysomal classes which classify
each expression profile by it’s polysomal regulation.

When this dataset is visualized using a classic PC plot, pervasive over-plotting
is noticeable (Fig. 4.a). Color is mapped to the cluster class variable (Fig. 4.b).
One of the first things to note about the resulting visualization is that it high-
lights outliers, which in this case represent interesting (i.e., atypical) regulatory
profiles. For instance, we note a cluster most tightly coupled in the Adult stage
(Fig. 4.c), {W07B8.5, Y38H6C.1, F08G5.6}. W07B8.5 encodes cpr-5 (a cysteine
protease), and F08G5.6 is involved in defense response [1]. Little is known about
Y38H6C.1’s ontology, but it is hypothesized to prevent microbial infection, has
been shown to be a target gene for DAF-16, and may stimulate germline tu-
mors in C. elegans [1,14]. Because of their proximity to one another, hypotheses
regarding W07B8.5’s and F08G5.6’s developmental role with Y38H6C.1 (and
perhaps even it’s ontology) can be formulated.

Self-Organization in Parallel Coordinates 357

(a) (b) (c)

Fig. 4. a) Jiang-Rhoads data as it appears in a parallel coordinates plot, colored by
polysomal class. The sheer volume of records makes finding individual record profiles
difficult. b) the same data, but presented as a 6 × 25 × 25 SOPC plot. c) A selected
cluster from the data which contains a member for which little is known.

5 Conclusion

In this paper we present an extension to the parallel coordinate visualization
algorithm. The above test cases demonstrate that SOPC can be used to help
resolve ambiguity when presented with an extremely dense dataset. We show
that in cases such as these, SOPC may be leveraged to obtain greater insight
and clarity into the data. As an interactive visualization, SOPC permits visual
exploration that would be difficult in a classical PC plot. We presented two
datasets for which SOPC resolves individual clusters in at least two situations.
Its application to our synthetic dataset shows that it can deal with situations
involving mostly dissimilar record profiles that lead to clutter. Conversely, its
application to the Jiang-Rhoads dataset demonstrates its utility for exploratory
analysis since it can highlight records whose profiles are outliers.

We are currently investigating further methods of improving perceptibility,
such as the dimension reordering approach used by Hurley [8] to provide the
best permutations of the coordinates. We have also begun investigating bundling
methods via both Bezier curves and Catmull-Rom splines. Finally, we are inves-
tigating the usage of force-directed placement to accentuate dissimilar record
profiles.

Acknowledgment. Research reported in this publication was supported by an
Institutional Development Award (IDeA) and Centers of Biomedical Research
Excellence (COBRE) from the National Institute of General Medical Sciences
of the National Institutes of Health under grant numbers P20GM103424 and
P20GM103433.

References

1. Wormbase web site WS 220 (October 2010), http://www.wormbase.org
2. Barlow, N., Stuart, L.: Animator: a tool for the animation of parallel coordinates.

In: 8th International Conference on Information Visualization, pp. 725–730 (2004)

http://www.wormbase.org

358 M. Trutschl, P.C.S.R. Kilgore, and U. Cvek

3. Cvek, U., Trutschl, M., Stone, R., Syed, Z., Clifford, J., Sabichi, A.: Multidimen-
sional visualization tools for analysis of expression data. World Academy of Sci-
ences, pp. 281–289 (2009)

4. Falkman, G.: Information visualization in clinical ontology: multidimensional anal-
ysis and interactive data exploration. A.I. In: Med., 133–158 (2001)

5. Fanea, E., Carpendale, C., Isenberg, T.: An interactive 3d integration of parallel
coordinates and star glyphs. In: IEEE Symp. on Info. Vis., pp. 20–27 (2005)

6. Friendly, M., Walker, N.F.: The golden age of statistical graphics. Statistical Sci-
ence 23(4), 502–535 (2008)

7. Fua, Y., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for
exploration of large datasets. In: IEEE Vis., pp. 43–50 (1999)

8. Hurley, C.: Clustering visualizations of multidimensional data. J. Comp. and
Graph. Stat., 788–806 (2004)

9. Inselberg, A.: The plane with parallel coordinates. The Visual Computer, 69–92
(1985)

10. Kohonen, T.: Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics, 59–69 (1982)

11. Miller, J., Wegman, E.: Construction of line densities for parallel coordinates plots.
Computational Statistics and Graphics, 107–123 (1990)

12. Novotny, M.: Visually effective information visualization of large data. In: 8th
Central European Seminar on Computer Graphics, pp. 41–48 (2004)

13. Peng, W., Ward, M., Rudensteiner, E.: Clutter reduction in multi-dimensional data
visualization using dimension reordering. In: IEEE Symp. on Info. Vis., pp. 89–96
(2004)

14. Pinkston-Gosse, Kenyon, C.: DAF-16/FOXO targets genes that regulate tumor
growth in Caenorhabditis elegans. Nature Genetics 39(11), 197–204 (2007)

15. Trutschl, M., Ryu, J., Duke, K., Reinke, V., Kim, S.: Genomewide analysis of
developmental and sex-regulated gene expression profiles in caenorhabditis elegans.
In: Proceedings of the National Academy of Sciences, pp. 218–223 (2001)

16. Trutschl, M., Dinkova, T.D., Rhoads, R.E.: Application of machine learning and
visualization of heterogeneous datasets to uncover relationships between transla-
tion and development stage expression of C. elegans mRNAs. Physiological Ge-
nomics 21(2), 264–273 (2005)

17. Ward, M.: Xmdvtool: Integrating multiple methods for visualizing multivariate
data. In: IEEE Visualization 1994, pp. 326–333 (1994)

18. Wegenkittl, R., Löffelmann, H., Gröller, E.: Visualizing the behavior of higher
dimensional dynamic systems. In: 8th Conf. on Vis., pp. 119–125 (1997)

19. Wegman, E.: Hyperdimensional data analysis using parallel coordinates. J. Amer-
ican Stat. Assoc., 664–675 (1990)

20. Yang, J., Peng, W., Ward, M., Rudensteiner, E.: Interactive hierarchical dimension
ordering, spacing and filtering for exploration of high dimensional datasets. In:
IEEE Symposium on Information Visualization, pp. 14–21 (2003)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 359–366, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A General Image Representation Scheme
and Its Improvement for Image Analysis

Hui Wei*, Qingsong Zuo, and Bo Lang

Laboratory of Cognitive Model and Algorithm,
Department of Computer Science, Fudan University, Shanghai, China

weihui@fudan.edu.cn

Abstract. In this paper, a bio-inspired neural network is developed to represent
images and analysis features of images effectively. This model adopts schemes
of retinal ganglion cells (GC) working and GCs’ non-classical receptive fields
(nCRF) that can dynamically adjust their sizes/scales according to the visual
information. Extensive experiments are provided to value the effect of image
representing, and experimental results show that this neural network model can
represent images at a low cost and with a favor in improving both segmentation
and integration processing. Most importantly, the GC-array model provides a
basic infrastructure for image semantic extraction.

Keywords: nCRF, Image representation, Multi-scale, Contour detection.

1 Introduction

Efficient representation of visual information is a primary goal of human visual
system. The evolution and development of this system can enable human to
understand the environment around us quickly and efficiently. So the schemes of the
human visual system are studied and researched during the past decades. Efficiency of
a representation refers to the ability to capture significant information about an object
of interest from scene using a description with minimum cost. From this point, image
representation may be designed to rely on the specific constrains and knowledge
available for the restricted task at hand. It is widely assumed that a general-purpose
visual system must entail multiple types of representation which share data through a
variety of computation.

In biological visual systems, the classical receptive field (CRF) of GC is sensitive
to brightness and contrast. It demonstrates the attributes that has spatial summation
properties enabling the boundaries to be detected [1-4]. The expanded area around
CRF, it is referred to as the non-classical receptive field (nCRF), can compensate for
the loss of low-frequency information caused by the antagonistic center-surround
mechanism of CRF [5]. The receptive field (RF), including CRF and nCRF, is the
basic structural and functional unit of visual information processing. Any GC merges

* Corresponding author.

360 H. Wei, Q. Zuo, and B. Lang

all stimuli occurring in its RF, and report a composite signal upwards for further
processing [6-10]. By means of these dense and regular RFs, a GC-array can produce
a general representation of any external stimulus

Many studies have examined the representation of natural images. Previously
proposed methods of image representation range from color histograms to feature
statistics, from spatial frequency-based to region-based and from color-based to
topology-based approaches for an extensive review of image representation
techniques, see [6-8]. Another image representation scheme using a set of block
pattern models was developed by Yao and colleagues, in which each small block
satisfies certain intensity variation constraints [5]. Some studies have attempted to
construct models simulate GCs. Li et al [5]. constructed a 3-Gaussian model using it
to simulate spatial responses of GCs. Qiu et al.[9] reported a new model of the
mechanisms underlying mutual inhibition within disinhibitory nCRFs. A network
model is proposed by Qi et al.[10]consisting of neurons and interactive columns, to
simulate the integrative tuning curves of the nCRF, and demonstrate the functional
roles of the modulations in image processing. Ghosh et al.[11, 12]modeled the nCRF
as a combination of 3-Gaussian at three different scales and seeking to explain certain
brightness-contrast illusions. Hayashi et al.[13] formulated four topographic attentive
mapping networks with a multilayer structure of the nCRF. Kenyon et al.[14] reported
that the neural circuity of nCRF can account for the stimulus specificity of high-
frequency oscillatory potentials in response to both high and low contrast features.
Perrinet et al.[15] reported a model that represents the multi-scale contrast values of
images using an orthonormal wavelet transform. In particular, none of these models
specified the relationship between the disinhibitory nCRF and neural circuits in the
retina and did not take into account of the dynamic adjust nature of the RF of GCs.
They also did not propose mechanisms for joining pixels or organizing them
fragmentally for clustering an explicit and tentatively assembled representation.

In the computational network, for the purpose of integration, top-down control and
the neighborhood properties of input stimuli are taken into account. Our experimental
results revealed that RFs become smaller when local areas of images have details that
need to be distinguished, and simultaneously they tend to become larger when local
areas exhibit no obvious difference. From this point, the RF is considered as a
computational unit which is used to locate and represent borders and details of
objects.

2 The Design of Computational Model Based on nCRF of GC

We design a model where the response of GC is the convolution of 3-Gaussian
function with visual information [16, 17]. Based on the previous work, this section
mainly demonstrates the algorithm of computing scales of nCRF. From the
neurophysiological perspective, Receptor cells (RC) compose the center area of RF of
each bipolar cell (BC). Horizontal cells (HC) integrate the response of RFs, transfer
them to BC, inhibit the CRF center of BC, and form the peripheral zone of CRF. In
the same way, BCs transfer their response to a GC, and GC’s CRF with antagonistic
center-surround structure is constructed. Amacrine cells (AC) integrate the response

 A General Image Representation Scheme and Its Improvement for Image Analysis 361

of BC and transfer them to GC and inhibit the CRF surround of the GC, thus forming
the GC’s nCRF (extra-surroundl). Interplexiform cell (IC) exerts feedback control
over HC and BC, such that the cessation of the IC’s activity enhances the activity of
HC and BC. The number of HC and BC was increased, that form the CRF center and
surround of GC, in other words, increasing the size of Gc’s RF. conversely, an
increase in IC’s activity inhibits the activity of HC and BC, such that it decreases the
number of HC and BC that form the CRF center and surround of GC, reducing the
size of RF of GC. Based on the neurophysiological mechanisms of the GC’s RF, the
simplified neural circuit shown in Fig.1 was designed to enable the RF to be adjusted
automatically and dynamically.

Fig. 1. The computational model based on GC. (a) is a micro neural circuit for RF constitution,
where the solid lines represent forward transfer and feedback control, the hollow circle and
solid circle represents synapse of facilitation and inhibition, respectively. The simplified
computation model based on (a) is shown in (b).

The algorithm of RF adjustment adaptively is designed as follows:

1. At first stage, the photoreceptor cells (RCs)
 transform RGB values of pixels to wave length. The
 center zone, surround zone and nCRF have their initial
 sizes.
 2. All summed RGB information is transmitted upwards,
 through different channels of RF size controlling
 units.
 3. All information was integrated in GC layer (3-
 Gaussian computation unit). According to the output of
 GC, the upper layer send feedback signal to RF size
 controlling units and the RF can dynamically adjust
 their size. The general principles of RF adjust
 dynamically.

362 H. Wei, Q. Zuo, and B. Lang

3 Experiments Results

Based on the neural computational model and algorithm described above, we
conducted a number of experiments to test and evaluate the efficiency of our model.
The aims of these experiments are to test whether a representation using GC-array is
implemented, and, if so, whether it could facilitate subsequent advanced image
processing, such as segmentation, contour detection and feature extraction. Section
3.1 and 3.2 demonstrate the interesting result.

Fig. 2. Models of experiments. The left part is model of multiscale contour detector based on
nCRF. (A) Original image. (B) DRF which is computed by the algorithm—self-adaptive RF in
section 2.2. (C) Contour map at fine scale is computed by the algorithm in [20]. (D) Contour
map at medium scale. (E) Contour map at coarse scale. (F) Final contour map which is
combined by the series of contour maps at different scales. In the right part, the flow diagram
shows the experiment of promoting N-cut algorithm. (H) Original image. (I) Output of GC. (J)
N-cut result on GC Output.

The left part of Fig. 2 shows the schematic drawings illustrating the general
flowchart of the proposed model for multi-scale contour detection. In short, given an
original image (Fig. 2A), the darker pixels in Fig. 2B representing the finer scale,
similarly, the brighter the coarser. Contour detectors [20] with different scales are
used to extract a series of contour maps (Fig. 2C, D, E). A series of contour maps can
be extracted by the algorithm [20], and the next step is to combine the contour maps,
and details can be found in [16]. In the right part of the Fig. 2, GC can output the

 A General Image Representation Scheme and Its Improvement for Image Analysis 363

response to the original image. N-cut algorithm, as an outstanding segmentation
method, will produce better result on the GC output than on the original image. These
results both illustrate that the GC model based on nCRF is a general and admirable
representation scheme.

3.1 Promoting N-cut Algorithm

The N-cut algorithm [18] is a widely used method for image segmentation. We tested
the effects of running this algorithm on a GC array instead of pixels. Table 2 shows the
results. We applied this algorithm to BMP images and a GC-array, respectively, and
then compared the two resulting segmentations. The third column shows that the results
were improved relative to the use of the algorithm alone. The green circles mark the
specific places in which the segmentation was improved. Importantly, there was a
dramatic reduction in the required run-time. Thus, a good GC-based representation can
improve the efficiency of segmentation without sacrificing performance.

This advantage of the current method was likely related to the much smaller
dimensions of the GC-array compared to the original BMP image, which would be
expected to greatly reduce the complexity of the graph-based segmentation
algorithms. The computational complexity of the min-cut in time is represented by
O(n2logn), where n is the number of vertices of graph, and a near-optimal min-cut
algorithm’s computational complexity is O(2nm* log(n2/m)), where m is the number
of edges [19]. Thus, smaller dimensions must reduce the values of n and m.

Table 1. Facilitation of the N-cut algorithm by the GC-array

Original image N-cut on pixels
N-cut on GC-

array

Run time: 34.2777

Run time: 4.5071

Run time: 23.8193

Run time: 2.8363

Run time: 21.3145

Run time: 3.5533

Run time: 69.6711

Run time: 4.4497

364 H. Wei, Q. Zuo, and B. Lang

3.2 Promoting the Effects of Contour Detection

Contour detection is considered as a fundamental operation in the image processing
and computer vision. The paper [20] proposed a contour detection based on inhibition
mechanism of nCRF of neurons in V1. Due to the different size of GCs, we can
obtain the different scale information from image. The coarse scale equals to the GC
with large size, while fine scale equals to the GC with small size. On this basis, we
introduce the preprocessing role of GC in contour detection and extract the object’s
contour through the combination of multi-scale information. It can significantly
prompt the performance of contour detection compared with Grigorescu’s method
[20].

The evaluation method used was the same as that used by Grigorescu [20]. Fig. 3
shows comparative box-and-whisker plots for five of the images used in our
experiments. More details and results can be obtained from [17]. It is clear that,
from these plots, our model showed a significantly higher performance in almost all
cases.

Fig. 3. Contour detection performance comparisons. A: Contour detection performance of the
anisotropic model; I: the isotropic model from literature [15]; O: our model. Each lattice
represents the performance plots based on a similar image. In each plot, the horizontal red line
in the box shows the median value of the performance. The top and bottom lines of each box
denote the upper and lower quartiles.

Table 2 shows the results and revealed that the neglectable textures are removed
dramatically and the object’s contours are extracted effectively at some extent after
the preprocessing of GC. In this section, all real images used are downloaded from
http://www.cs.rug.nl/~imaging/.

 A General Image Representation Scheme and Its Improvement for Image Analysis 365

Table 2. GC-array facilitating contour detection

Images The anisotropy results of [20] The result on GC-array

4 Conclusion

To support a diversity of higher-level computations, an early visual representation
must make important information explicit and discard only redundant or perceptually
irrelevant information [21]. Selecting an appropriate representation method for visual
stimuli was an essential task for the evolution of sighted animals. Experiments on the
applications, including N-cut and contour detection, reveal that this novel
representation algorithm plays a very role in their performance. Our representation
model is different from other models merely perform segmentation. The properties of
GCs’ nCRF are adaptive, and nCRF can adjust its filter characteristics according to
the spatial frequency components of images. In additional, the nCRF is flexible under
conditions of changing contrast and brightness of stimulation. Along with the
changing image spatial properties, the nCRF sometimes turns into a high spatial
frequency filter and sometimes into a low one.

Overall, recent progress on exploring and researching the image understanding and
image retrieving is encouraging. Although, results on these fields can promote
practical application in daily life, there is a long way to enable computer to handle
and know well complex visual scene. In all probability, the mechanism applied by
human in understanding the world around us will serve to guide our thinking in the
exploration of higher challenging visual tasks.

366 H. Wei, Q. Zuo, and B. Lang

References

1. McIlwain, J.T.: Some evidence concerning the physiological basis of the periphery effect
in the cat’s retina. Exp. Brain Res. 1, 265–271 (1966)

2. Ikeda, H., Wright, M.J.: The outer disinhibitory surround of the retinal ganglion cell
receptive field. The Journal of Physiology 226, 511 (1972)

3. Krüger, J., Fischer, B.: Strong periphery effect in cat retinal ganglion cells. Excitatory
responses in ON-and OFF-center neurones to single grid displacements. Exp. Brain
Res. 18, 316–318 (1973)

4. Feghali, J.G., Jin, J.C., Odom, J.V.: Effect of short-term intraocular pressure elevation on
the rabbit electroretinogram. Invest. Ophth. Vis. Sci. 32, 2184–2189 (1991)

5. Shou, T., Wang, W., Yu, H.: Orientation biased extended surround of the receptive field of
cat retinal ganglion cells. Neuroscience 98, 207–212 (2000)

6. Fauqueur, J., Boujemaa, N.: Region-based image retrieval: Fast coarse segmentation and
fine color description. Journal of Visual Languages & Computing 15, 69–95 (2004)

7. Deng, Y., Manjunath, B.S., Kenney, C., Moore, M.S., Shin, H.: An efficient color
representation for image retrieval. IEEE Transactions on Image Processing 10, 140–147 (2001)

8. Saykol, E., Gudukbay, U., Ulusoy, O.: A histogram-based approach for object-based
query-by-shape-and-color in image and video databases. Image Vision Comput. 23,
1170–1180 (2005)

9. Chaoyi, Q.F.L.: Mathematical Simulation of Disinhibitory Properties of Concentric
Receptive Field. Acta Biophysica Sinica 11, 214–220 (1995)

10. Xianglin, Q., Xiaochuan, P., Yunjiu, W.: A mathematical model of integration field beyond
receptive field of cortical neuron. In: Proceedings of the 9th International Conference on Neural
Information Processing, ICONIP 2002, vol. 4, pp. 1694–1698 (2002)

11. Ghosh, K., Sarkar, S., Bhaumik, K.: A possible mechanism of zero-crossing detection
using the concept of the extended classical receptive field of retinal ganglion cells. Biol.
Cybern. 93, 1–5 (2005)

12. Ghosh, K., Sarkar, S., Bhaumik, K.: A possible explanation of the low-level brightness–
contrast illusions in the light of an extended classical receptive field model of retinal
ganglion cells. Biol. Cybern. 94, 89–96 (2006)

13. Hayashi, I., Maeda, T.: Structure Evaluation of Receptive Field Layer in TAM Network,
vol. 2, pp. 1541–1547. IEEE (2006)

14. Kenyon, G.T., Travis, B.J., Theiler, J., George, J.S., Stephens, G.J., Marshak, D.W.:
Stimulus-specific oscillations in a retinal model. IEEE Transactions on Neural
Networks 15, 1083–1091 (2004)

15. Perrinet, L., Samuelides, M., Thorpe, S.: Coding static natural images using spiking event times:
do neurons cooperate? IEEE Transactions on Neural Networks 15, 1164–1175 (2004)

16. Wei, H., Zuo, Q., Lang, B.: Multi-scale image analysis based on non-classical receptive
field mechanism. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part III. LNCS,
vol. 7064, pp. 601–610. Springer, Heidelberg (2011)

17. Wei, H., Lang, B., Zuo, Q.: Contour detection model with multi-scale integration based on
non-classical receptive field. Neurocomputing (2012)

18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22, 888–905 (2000)

19. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The
complexity of multiway cuts, pp. 241–251. ACM (1992)

20. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour detection based on nonclassical
receptive field inhibition. IEEE T. Image Process 12, 729–739 (2003)

21. Elder, J.H.: Are edges incomplete? Int. J. Comput Vision 34, 97–122 (1999)

Learning Features for Activity Recognition

with Shift-Invariant Sparse Coding

Christian Vollmer1, Horst-Michael Gross1, and Julian P. Eggert2

1 Ilmenau University of Technology,
Neuroinformatics and Cognitive Robotics Lab,

98684 Ilmenau, Germany
christian.vollmer@tu-ilmenau.de

2 Honda Research Institute Europe GmbH
63073 Offenbach/Main, Germany
julian.eggert@honda-ri.de

Abstract. In activity recognition, traditionally, features are chosen
heuristically, based on explicit domain knowledge. Typical features are
statistical measures, like mean, standard deviation, etc., which are tai-
lored to the application at hand and might not fit in other cases. However,
Feature Learning techniques have recently gained attention for build-
ing approaches that generalize over different application domains. More
conventional approaches, like Principal Component Analysis, and newer
ones, like Deep Belief Networks, have been studied so far and yielded
significantly better results than traditional techniques. In this paper we
study the potential of Shift-invariant Sparse Coding (SISC) as an addi-
tional Feature Learning technique for activity recognition. We evaluate
the performance on several publicly available activity recognition data
sets and show that classification based on features learned by SISC out-
performs other previously presented Feature Learning techniques.

Keywords: feature learning, activity recognition, sparse coding.

1 Introduction

Context-aware computing provides intelligent systems with the ability to per-
ceive the world from the user’s perspective and allows to provide smart assistance
where necessary. Human activity is an important cue for inferring the state and
context of a user. In recent years, activity recognition has gained increased at-
tention due to its usefulness and practical success in application domains such as
medical diagnosis, rehabilitation, elderly care, assembly-line work, and human
behavior modeling in general. As a result, a number of successful approaches
have been built for recognition of a wide range of activities.

In most cases, activities are recognized by their body movements, since they
are clearly defined by the motion and relative position of the user’s body parts.
Sensors, attached to the body or embedded into objects that are utilized through-
out the activities, are used to capture those movements. One of the main issues

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 367–374, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

368 C. Vollmer, H.-M. Gross, and J.P. Eggert

in activity recognition is that the sensor readings are typically noisy and often
ambiguous. By applying signal processing and pattern recognition techniques,
those data can be automatically analyzed, yielding a real-time classification of
the activities.

In activity recognition the goal is to detect and classify contiguous portions
of sensor data that contain the activities of interest. A widely adopted approach
is the sliding window technique, where overlapping frames of the incoming mul-
tidimensional signal stream are extracted and a set of features is computed over
each frame. The features are then categorized by means of some classifier. Popu-
lar features computed from the signal are mean, variance or standard deviation,
energy, entropy, correlation between axes or discrete FFT coefficients (see e.g.
[2] for a good comprehension). Common methods for classification based on the
extracted features include Naive Bayes, Decision Trees, K-Nearest-Neighbors,
and Support Vector Machines (see e.g. [6,7]).

As mentioned by Plötz et al. in [7], feature extraction is usually a heuristic
process that is driven by domain knowledge about the application at hand. This
process has to be repeated for every new application domain and sometimes even
for new sensor setups in the same domain. Thus, conventional approaches are
usually tailored to specific applications. One way to overcome this restriction
and build a general approach is to find methods to automatically discover useful
features in the data or, in other words, adapt the features to the data.

Activity recognition techniques are usually built of two main components: (i)
a feature extraction technique and (ii) a classifier. Most approaches are using
the above mentioned standard features. Only recently, first attempts have been
made in applying machine learning techniques to learn features from the data.
Plötz et al. [7] use two feature learning techniques, namely PCA and Deep Belief
Networks, to automatically discover features. By applying feature learning as
a preprocessing step, the authors argue, a universal feature representation is
created that captures the core characteristics of the data. The authors show
that classification based on the discovered features yields significantly better
results, then traditional techniques.

We would like to contribute to that line of research by investigating Shift-
invariant Sparse Coding as another technique for feature learning in the area of
activity recognition. The idea of Sparse Coding is that the data can be repre-
sented as a composition of sparsely distributed features. The data is imagined as
consisting of two hidden components, (i) the set of features and (ii) activations of
those features that mark, when a feature occurs in the data. The goal is to learn
the features as well as their activations from the data in an unsupervised man-
ner. The learning problem can be decomposed into two subproblems, the coding
problem and the dictionary learning problem. In the coding problem, the fea-
tures are assumed to be given and fixed. Here, the goal is to find a minimal set of
activations such that the input data is best reconstructed, i.e. the error between
input data and linear superposition of the features according to the activations
is minimized. In the dictionary learning problem, the activations are assumed to
be fixed and the goal is to adapt the features to the data given a known set of

Learning Features with Shift-Invariant Sparse Coding 369

activations. By initializing dictionary and activations randomly and alternating
the two steps iteratively, one can learn both components simultaneously.

In the domain of time series processing, Sparse Coding has been mainly used
for auditory signal coding. In [9], the authors aim at computing a sparse repre-
sentation of natural audio signals in form of spike trains, where the spikes mark
activations of a set of basis functions (or features), which are also learned, and
represent an optimal dictionary. The authors argue that such a representation
provides a very efficient encoding and uncovers the underlying event-like struc-
ture of the signal. More recently, Sparse Coding has been applied to find patterns
in movement data, like walking cycles of human legs [4].

We use an approach similar to that published in our earlier work [10], where
Sparse Coding has been utilized to learn features from handwriting data and
generate handwritten characters using the features and statistics of their typi-
cal occurrence. The contribution of this work is the use of that framework for
learning features from general activity data, which is much more diverse, and to
build a simple classifier using those features.

We compare our results to those published by Plötz et al. [7], where PCA and
Deep Belief Networks have been compared to conventional approaches for feature
extraction. The authors evaluate their approaches on four publicly available
activity recognition data sets. To be comparable, we will evaluate our approach
on the same data. The rest of this work is organized as follows. We describe our
approach in detail in Sec. 2. In Sec. 3, we compare our approach to previously
published approaches on a number of activity recognition data sets. Finally, we
discuss our work in Sec. 4 and give a brief outlook on its potential in activity
recognition.

2 Method

Feature Learning. We formalize Feature Learning as a Sparse Coding (SC) prob-
lem. In general, given an input signal, the goal in SC is to find features (or basis
vectors in SC terms) and a sparse set of feature occurrences (or activations in SC
terms) that, when linearly superimposed, reconstruct the input. We use a special
kind of SC formulation as a Non-negative Matrix Factorization (NMF) problem.
As detailed later, this problem can be solved by minimizing an energy function
on the error between reconstruction and input plus a penalty on the activations.
By imposing a non-negativity constraint, i.e. basis vectors and activations have
to be non-negative, and a sparseness constraint on the activations, the resulting
basis vectors are interpretable as features that constitute an alphabet underlying
the data [5]. We further use a variant of NMF called Shift-NMF [1]. Shift-NMF
introduces translation-invariant basis vectors. Thus, a basis vector can occur
anywhere in the input, which is necessary for temporal signals with reoccurring
features. In the following, we will give a formal description of the problem and
the update equations.

As mentioned earlier, consecutive, overlapping frames are extracted from the
input signal before feature extraction. Feature learning is then performed over

370 C. Vollmer, H.-M. Gross, and J.P. Eggert

all frames simultaneously. Let Vd ∈ RN×T denote the matrix of the N training
frames of frame length T , where d indexes the dimensions of the signal. For
ease of notation, we separate the dimensions of the signal into distinct matrices,
indexed by d. A single frame is denoted as Vd

n and the scalar elements by V d
n,t.

Let Wd ∈ RK×L be the matrix of K basis vectors of length L, with elements
W d

k,l. We denote the single basis vectors by Wd
k. Let H ∈ RN×K×T be the tensor

of activations Hn,k,t of the k-th basis vector at time t for frame n.
In NMF the input, basis vectors, and activations are constrained to be non-

negative. Thus, for NMF to be applicable, the input signal has to be made non-
negative. We do this by doubling the number of input dimensions and projecting
the negation of its negative parts to the new dimensions. The non-negative input

Ṽd̃ as used in the calculations below is then given by

Ṽ2d = max(Vd, 0), Ṽ2d+1 = max(−Vd, 0) . (1)

For ease of notation, we resubstitute Ṽd̃ with Vd again. However, please keep
in mind, that Vd denotes the non-negative input from now on.

We learn Wd and H with NMF by minimizing the following energy function

F =
1

2

∑
d

∥∥Vd −Rd
∥∥2

2
+ λ ‖H‖1 . (2)

The matrices Rd ∈ RN×T are the reconstructions of the frames by activation of
the basis vectors Wd through activations H, which can be formalized as

Rd
n,t =

∑
k

conv
Hn,k,W

d
k
(t) , (3)

where convX,Y (t) denotes temporal convolution ofX with filter Y at time t. Here,

we introduced normalized basis vectors W
d

k, where the normalization is done
jointly over all dimensions d. This normalization is necessary during learning to
avoid scaling problems as described in [1].

The energy function in eq. 2 formalizes the standard approximation scheme
commonly used for Sparse Non-negative Matrix Factorization. The first term is
the distance measure and the second term is a penalization of the overall sum of
activations, weighed by the sparseness weight λ. Due to lack of space, we refer
to a more detailed explanation in our earlier work [10].

This optimization problem can be solved by alternating the update of one of
the factors H or Wd, while holding the other fixed. Due to the non-negativity
of the two factors, the update can be formulated as an exponentiated gradient
descent with better convergence properties then pure gradient descent (see e.g.
[5]). For a detailed description of the optimization procedure, we refer to [10].

After applying NMF to the data, we have a representation of the input in
terms of learned basis vectors and activations. We interpret the basis vectors as
features and their corresponding activations as temporal occurrences of those
features. For illustrations of the resulting representation, we refer to [10] again.

Learning Features with Shift-Invariant Sparse Coding 371

The full procedure as described above is applied in the training phase for learn-
ing the features. During application phase, this optimization is applied again,
but the features are given and held fixed and only the activations are updated.
Thus only steps 1 to 3 have to be iterated and step 4 is left out.

Classification. As mentioned earlier, we compare our Feature Learning tech-
nique to the ones presented in Plötz et al. [7]. To compare the performance
of the different techniques, Plötz et al. use the K-Nearest-Neighbor algorithm
as a simple classifier. To get comparable results, we also adopt this technique.
The K-Nearest-Neighbor algorithm represents a simple but effective standard
approach that simply stores all feature vectors from a training set and assigns
to a new feature vector the label of the majority of its k nearest neighbors in the
feature space. We emphasize that we do not aim at presenting the best possible
classifier, but merely want to compare our feature extraction technique to the
ones presented earlier.

Applying the classifier to the activations for frame n Hn (which encodes the
temporal positions of features within the frame) directly would yield bad results,
because instances of the same class generally differ slightly in the temporal po-
sitions of features. Thus, to be temporally invariant within a frame, we sum
the activations over the temporal dimension of the frame, yielding the summed
activations for each feature as a feature vector that is passed to the classifier.

3 Experiments

Data Sets. We evaluate our method in comparison to the results presented Plötz
et al. [7]. The authors tested their methods on four publicly available data sets,
which will be described briefly in the following.

Pham et al. [6] describe the data set “Ambient Kitchen 1.0” (AK) consisting
of food preparation routines with sensor-equipped kitchen utensils. 20 Persons
either prepared a sandwich or a salad, using two kinds of knifes, a spoon, and a
scoop, the handle of each of which was equipped with a tri-axial accelerometer.
In total, the data consist of 4 hours of recording, sampled at 40Hz, where about
50% cover ten typical food preparation activities.

Huynh et al. [3] describe the dataset “Darmstadt Daily Routines” (DA) con-
sisting of 35 activities of daily living (e.g. brushing teeth, setting the table), cap-
tured by two tri-axial accelerometers (one wrist-worn, the other in the pocket)
in a lab-like environment. After preprocessing, they yield a sampling frequency
of 2.5Hz. In [7] only results for the pocket sensor are presented, hence we also
use only the pocket sensor.

Zappi et al. [11] describe the dataset “Skoda Mini Checkpoint” (Skoda) con-
sisting of activities of an assembly-line worker, wearing a number of accelerome-
ters on his arms, while performing ten tasks of quality checks for correct assembly
of car parts. The data consists of three hours of recording, sampled at 96Hz. As
in [7] we only use a single accelerometers at the right arm.

Roggen et al. [8] describe the dataset for the “Opportunity Gesture Challenge“
(Opp) consisting of activities of daily living in a kitchen environment, recorded

372 C. Vollmer, H.-M. Gross, and J.P. Eggert

with multiple accelerometers, body-worn or embedded into objects. Multiple
subjects have been recorded on different days. As in [7] we only consider the
data of the right arm of the subjects. Also as in [7] we only consider 10 low-level
activities and one unknown activity class. The data is sampled at 64Hz.

In [7] only a small excerpt of the data is used, consisting of recordings of
one subject, because the full data set was not published yet at the time of the
publication. Since we have the full data set and the subject used by [7] is left
unspecified, it is difficult to get a fair comparison. Thus, for the comparison to
[7] to be fairer, we evaluate our method on each single person separately and
present the minimum accuracy over all subjects in the dataset.

Before applying SISC, we normalized all datasets by PCA and resampled
them to 10Hz, which seemed to be sufficient for activity recognition.

Features. In Plötz et al., four feature extraction techniques are presented, namely
Statistical, FFT, PCA, RBM. Further a preprocessing technique based on the
empirical cumulative distribution function (ECDF) is used to normalize the
data. ECDF is combined with PCA and RBM and called PCA+ECDF and
RBM+ECDF. We will describe the methods very briefly here. Please refer to [7]
for a deeper explanation.

The method Statistical refers to the most commonly used feature extraction
method, which is to extract statistical measures, like mean, standard deviation,
energy, and entropy over the whole frame. For each sensor, Plötz et al. use x,
y, z, pitch, and roll and compute the statistics over each channel independently
plus the pairwise correlation between x, y, and z, resulting in a 23-D feature
vector for each frame.

The method FFT is also widely used and consists of computing for each chan-
nel independently the Fourier coefficients through the Discrete Fourier Transform
(DFT). Usually only a subset of the resulting Fourier coefficients is used. In [7]
the first 10 are used.

In the method PCA, features are learned by Principal Component Analysis
(PCA). The Eigenvectors corresponding to the largest Eigenvalues are kept as
features. In [7] the 30 largest Eigenvectors are used.

The method RBM refers to a technique based on Deep Belief Networks. Deep
Belief Networks are auto-encoders that use a hierarchy of Restricted Boltzman
Machines (RBM) for extracting useful features. It has been shown that Deep
Belief Networks can uncover features in the data, which, in turn, can be used
for classification. In [7] an architecture consisting of four layers with 1024 Units
in each hidden layer and 30 units in the output layer is used.

Additionally to the methods described above, we present results using Shift-
invariant Sparse Coding (SISC). For SISC a number of parameters have to be
chosen. We applied grid search to find a single set of parameters that gave the
highest average classification accuracy for all data sets. The final parameters
are as follows: the frame size T is 7 seconds, the width of the basis vectors L is
2.5 seconds (note however that the effective width, i.e. the part of the basis vector

Learning Features with Shift-Invariant Sparse Coding 373

that is actually used and above zero, can vary), the number of basis vectors K
is 20, and the sparseness parameter λ is 0.1.

In the classification stage of our method we used a K-Nearest-Neighbor clas-
sifier with K set to 5. Higher values had no significant impact on the results.

We validated our results by class-balanced 10-fold cross-validation. Regarding
computational performance, the learning phase takes up to half an hour on a
2.6GHz Quad-Core CPU for the larger data sets. The application phase takes
about 30 milliseconds per frame, which is well within real-time boundaries.

Results. We conducted one experiment devoted to the classification accuracy
using the respective feature extraction techniques. In Fig. 1 the classification
accuracies for the seven techniques are shown.

The results of the first six techniques are taken directly from [7]. The au-
thors state, that these results are comparable with those published earlier for
those data sets. The seventh technique SISC is our shift-invariant Sparse Coding
approach. Interestingly, SISC yields significantly better results on three of the
four data sets. We reason that this is mainly due to the shift-invariant nature of
this coding technique, which learns features independently of their position in a
particular frame and can, in turn, detect a feature even if it is shifted slightly
in a frame. Because when a pattern is slightly shifted in a frame, the sum over
activations, and hence the feature vector, does not change, which is not the case
for PCA and RBM.

In summary, one can use SISC to successfully learn features in an unsuper-
vised manner without prior domain knowledge. Further, SISC outperforms PCA
and Deep Belief Networks as a Feature Learning technique in some cases. The
caveat, however, is that PCA and Deep Belief Networks are faster during appli-
cation phase, since they can be applied by simple matrix multiplication, while in
SISC a few iterative steps have to be computed for each frame. But, for small
frames sizes of up to a few seconds the computational time lies well within real-
time boundaries.

Fig. 1. Classification accuracies of the seven approaches for the four datasets

4 Conclusion

We have presented Shift-invariant Sparse Coding (SISC) as a Feature Learn-
ing technique for activity recognition. We compared our method to traditional

374 C. Vollmer, H.-M. Gross, and J.P. Eggert

methods for feature extraction and to two recent approaches for Feature Learn-
ing, namely PCA and Deep Belief Networks. The evaluation was performed on
four publicly available data sets. The results show that SISC outperforms all
other methods on three of the four data sets. Thus, SISC has great potential for
application in activity recognition.

Plötz et al. [7] mention that Feature Learning techniques can potentially be
used for further sub-frame analysis, which is important if one wants, e.g., to
assess certain properties, like the quality of the activities performed. SISC is
particularly suited for that task, because the sparse nature of the representation
and the shift-invariance allows features to be well localized in time. Thus, the
exact position of the features or the relative positions of different features in a
frame can be used as a cue for sub-frame analysis.

References

1. Eggert, J., Wersing, H., Korner, E.: Transformation-invariant representation and
NMF. In: Proc. of the 2004 IEEE Int. Joint Conf. on Neural Networks, vol. 4,
pp. 2535–2539. IEEE (2004)

2. Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proc. of the
2005 Joint Conf. on Smart Objects and Ambient Intelligence (2005)

3. Huynh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models.
In: Proc. of the 10th Int. Conf. on Ubiquitous Computing, pp. 10–19. ACM Press,
New York (2008)

4. Kim, T., Shakhnarovich, G., Urtasun, R.: Sparse Coding for Learning Interpretable
Spatio-Temporal Primitives. In: Proc. Neural Inf. Process. Syst (NIPS), vol. 22
(December 2010)

5. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

6. Pham, C., Olivier, P.: Slice&Dice: Recognizing food preparation activities us-
ing embedded accelerometers. In: Tscheligi, M., de Ruyter, B., Markopoulus, P.,
Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009.
LNCS, vol. 5859, pp. 34–43. Springer, Heidelberg (2009)

7. Plötz, T., Hammerla, N.Y., Olivier, P.: Feature Learning for Activity Recognition
in Ubiquitous Computing. In: Proc. of the Twenty-Second Int. Joint Conf. on
Artificial Intelligence, pp. 1729–1734 (2011)

8. Roggen, D., et al.: Collecting complex activity datasets in highly rich networked
sensor environments. In: 2010 Seventh Int. Conf. on Networked Sensing Systems
(INSS), pp. 233–240 (June 2010)

9. Smith, E., Lewicki, M.S.: Efficient coding of time-relative structure using spikes.
Neural Computation 17(1), 19–45 (2005)

10. Vollmer, C., Eggert, J.P., Groß, H.-M.: Generating Motion Trajectories by Sparse
Activation of Learned Motion Primitives. In: Villa, A.E.P., Duch, W., Érdi, P.,
Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 637–644.
Springer, Heidelberg (2012)

11. Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Tröster,
G.: Activity recognition from on-body sensors: Accuracy-power trade-off by dy-
namic sensor selection. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913,
pp. 17–33. Springer, Heidelberg (2008)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 375–380, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Hearing Aid Classification Based on Audiology Data

Christo Panchev1, Muhammad Naveed Anwar2, and Michael Oakes1

1 Department of Computing, Engineering and Technology, University of Sunderland
St. Peters Campus, Sunderland SR6 0RD, United Kingdom

{christo.panchev,michael.oakes}@sunderland.ac.uk
2 Knowledge Media Institute, The Open University

Walton Hall, Milton Keynes MK7 6AA, United Kingdom
naveed.anwar@open.ac.uk

Abstract. Presented is a comparative study of two machine learning models
(MLP Neural Network and Bayesian Network) as part of a decision support
system for prescribing ITE (in the ear) and BTE (behind the ear) aids for people
with hearing difficulties. The models are developed/trained and evaluated on a
large set of patient records from major NHS audiology centre in England. The
two main questions which the models aim to address are: 1) What type of
hearing aid (ITE/BTE) should be prescribed to the patient? and 2) Which
factors influence the choice of ITE as opposed to BTE hearing aids? The
models developed here were evaluated against actual prescriptions given by the
doctors and showed relatively high classification rates with the MLP network
achieving slightly better results.

Keywords: Audiology Data Mining, Decision Support System, Multi-layer
Perceptron, Bayesian Network.

1 Introduction

There is a tremendous growth in the amount of data produced in the medical domain
[1] and many approaches, including statistical and neural approaches have been
proposed for medical data mining which produce information that helps in problem
solving and taking decisions [2,3,4].

The work presented here is based on the large data set of patient records from a
major British National Health Service (NHS) audiology centre in England containing
180,000 individual audiology records (from 23,000 patients). The decisions of
whether to prescribe an ITE or BTE hearing aid are typically made by audiology
technicians working in the out-patient clinics, on the basis of audiogram results and in
consultation with the patients. ITE hearing aids are not generally available on the
NHS in England, as they are more expensive than BTE hearing aids. However, both
types of aids are prescribed at the audiology centre providing the data. Usually the
choice is straightforward, but in some cases the technicians could benefit from a second
opinion (e.g one given by a decision support system) with an explanation/justification of
how that second opinion was arrived at.

376 C. Panchev, M.N. An

2 Data Pre-proces

The following attributes we

• Audiograms: the l
of frequencies: Ai
8000 Hz; and Bone

• Personal/diagnosti
Hearing aid.

• A set of keywords

The models presented here
all fields filled for the rig
thresholds, gender, age and
1433 records for test), of w
non-null entries for masker
782 records were given ITE
provides 54.6% agreement
only audiograms of patients

3 Bayesian Netwo

Figure 1 represents the di
network obtained from Wek

Fig. 1

nwar, and M. Oakes

ssing

ere extracted from the raw data:

owest decibel which the patient can hear across a num
ir conduction (AC) for 250, 500, 1000, 2000, 4000
e conduction (BC) for 250, 500, 1000, 2000 and 4000 H
ic data: Age, Gender, Diagnosis, Tinnitus Masker, Mou

from the doctor’s free text notes.

e were developed and evaluated on the records which
ght ear: AC (air conduction) and BC (bone conducti
d text keywords (5,736 records for training/validation
which 128 also had non-null entries for diagnosis, 98
r, and 3983 had non-null entries for mould. In the test
E aids, so simply assigning all the patients this type of
- referred to as the ZeroR baseline. Since, the data conta
s with ITE/BTE hearing, we do not consider 'no aid clas

ork for ITE/BTE Aids

irected acyclic graph for the ITE/BTE aid the Bayes
ka v3.4, where nodes represent the.

1. Directed acyclic graph for ITE/BTE aid

mber
and

Hz.
uld,

had
ion)
and
had

t set
aid

ains
ss'.

sian

 Hearing Aid Classification Based on Audiology Data 377

The learning of this network involves finding of edges, that is searching through
the possible sets of edges and for each set estimating the conditional probability tables
from the data.

The probability tables for ITE/BTE aid, Age and Gender obtained from the nodes
(in Figure 1) are given in Table 1 and Table 2. The probabilities for ITE/BTE aid are
calculated as 2663/ 5736 = 0.464 for BTE and 3073/ 5736 = 0.536 for ITE, where
2663 and 3073 are the number of instances of BTE and ITE respectively, and 5736
are the total number of instances of ITE/BTE aids.

Table 1. ITE/BTE aid probabilities

ITE BTE
0.536 0.464

In Table 2, the probability for gender=male, age<=60, and BTE aid, that is,
P(gender = 'male'/age ='<= 60', aid ='BTE') is calculated as (339 + 1)/(673 + 2) =
0.504, where 339 is the number of instances of “gender=male, age<=60, and BTE
aid”, 1 is the initial count for “gender=male, age<=60, and BTE aid”, 673 is the total
number of instances with “age<=60 and BTE aid”, and 2 is the count of different
values of gender (that is, male and female). Using the same method the probabilities
for the rest of the variables are calculated.

Table 2. Gender probabilities

ITE/BTE aid Age Gender
 Female Male
BTE <=60 0.496 0.504
BTE <=70 0.43 0.57
BTE <=78 0.555 0.445
BTE >78 0.71 0.29
ITE <=60 0.503 0.497
ITE <=70 0.403 0.597
ITE <=78 0.494 0.506
ITE >78 0.669 0.331

Testing of these Bayesian network showed that overall there was 93.2% agreement

between the predictions of this model and the actual hearing aid chosen by the
audiologist (as given in the “type” field) as shown in Table 3. The agreement rate was
higher for patients fitted with ITE aids (97.1%) than for those fitted with BTE aids
(88.5%).

Table 3. Confusion matrix of results of Bayesian network for ITE/BTE aids

 Human (expert) decision
Bayesian network ITE BTE Total
ITE 759 (97.1%) 75 (11.5%) 834
BTE 23 (2.9%) 576 (88.5%) 599
Total 782 651 1433 (93.2%)

378 C. Panchev, M.N. Anwar, and M. Oakes

Considering the ZeroR baseline of the data, which is 54.6%, the agreements found
for ITE and BTE provides a significant boost. The Bayesian network also includes
interaction of variables, for example, the variable gender was associated with
ITE/BTE aid (Figure 1) and also with age and the associated probabilities for gender
are calculated in Table 2. Similarly, other variables (such as, diagnosis, masker,
mould, AC250, BC250, etc.) were also found associated as shown in Figure 1.

4 Neural Network Model for ITE/BTE Aid

The second model that was deployed is based on a Multi Layer Perceptron. The
network had 21 input and 2 output neurons covering the data attributes (Table 4).
The network had 5 hidden neurons with hyperbolic tangent sigmoid activation
function and was trained using Levenberg-Marquardt backpropagation [5].

Table 4. Input and output attributes of the neural network

Attribute
Value
attribute

Values Output: Values

Age 0 - 78 ITE 0, 1

Gender
Male 0, 1 BTE 0, 1
Female 0, 1

Diagnosis -1, 0, 1

Mould

2107 0, 1
V1 0, 1
2107V1 0, 1
2112 0, 1
Other 0, 1

Frequency

AC250 0 - 75
AC500 0 - 75
AC1000 0 - 75
AC2000 0 - 75
AC4000 0 - 75
AC8000 0 - 75
BC250 0 - 75
BC500 0 - 75
BC1000 0 - 75
BC2000 0 - 75
BC4000 0 - 75

Mask 0, 1

Table 5 presents the confusion matrix of the results from the neural network.

Although the neural network shows slightly higher overall performance (93.7%), the
results between the two models are qualitatively the same. As in the Bayesian model,
the highest agreement between the neural network and the medical expert is for the
ITE aids (98.2%). The highest misclassification of the models is for the case where
the model suggests an ITE aid whereas the human decision was to prescribe the BTE
one (11.7%). This is a partially expected result since, as mentioned earlier in the

 Hearing Aid Classification Based on Audiology Data 379

Table 5. Confusion matrix of results of Neural network for ITE/BTE aids

 Human (expert) decision
Neural network ITE BTE Total
ITE 768 (98.2%) 76 (11.7%) 844
BTE 14 (1.8%) 575 (88.3%) 589
Total 782 651 1433 (93.7%)

paper, ITE aids are generally not available on NHS in England and doctors have the
tendency to bias their decisions toward the generally available BTE hearing aids.

5 Attribute Significance for ITE/BTE Classification

Following the results presented above, the importance of each of the input attributes
was evaluated for their relative contribution to the correct ITE/BTE decision. The
network trained with the full set of input features were evaluated in separate tests
where one of the input attributes was set to 0. The relative importance of an attribute
was calculated as proportional to the neural network’s misclassification error during
tests with the data of that factor being ignored. The output error was calculated over
the entire dataset (i.e. training, validation and test data). When a particular input factor
is removed, a higher output error will indicate that this attribute is more significant in
the performance of the model, i.e. higher importance/effect on ITE/BTE classification,
whereas a lower error would indicate relatively lesser degree of relevance.

Fig. 2. Relative attribute importance of the input attributes toward the ITE/BTE classification.
The base line is 6.0% misclassification error with all input attributes present.

The results presented in Figure 2 show that the Mould is the most significant factor
in determining the ITE/BTE aid. This is another expected result, since medically the
mould type is highly correlated to the hearing aid being used. Leaving the mould
aside, the other significant attributes which can be identified are the Age and Gender
causing increased misclassification errors of 12.6% and 11.5% respectively. On the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

B
as

…

A
ge

G
en

…

D
ia

g…

M
ou

ld

A
C

25
0

A
C

50
0

A
C

1…

A
C

2…

A
C

4…

A
C

8…

B
C

25
0

B
C

50
0

B
C

1…

B
C

2…

B
C

4…

M
as

k

M
is

cl
as

si
fic

at
io

n

380 C. Panchev, M.N. Anwar, and M. Oakes

frequencies range, the most significant attributes are shown to be the bone conduction
frequencies BC1000 and BC2000 increasing the error to 11.2% and 10.7%
respectively. These results are similar to [6] where using logistic regression Age was
not found significant factor associated with ITE/BTE hearing aids but Gender,
BC1000 and BC2000 were found significant.

6 Conclusions

We have presented two machine learning models for the classification of ITE/BTE
hearing aids based on audiology data. Both models provide qualitatively similar
results with the Neural Network having slightly better classification rate, indicating
that they are both viable for implementation into a real decision support system for
hearing aid prescriptions. In addition, the disagreement rate between the models and
the audiology experts could provide a quantifiable measure as to what percentage of
patients could have benefited from prescribing the appropriate hearing aid based
purely on diagnostic data rather than considering the availability and costs of the
devices. Furthermore, the discovery of significant attributes (factors) and relationships
in audiology data for hearing aid classification will provide supplementary
information for audiology experts.

References

1. Ananiadou, S.: Text mining for biomedicine. In: Prince, V., Roche, M. (eds.) Information
Retrieval in Biomedicine, Natural Language Processing for Knowledge Integration, Medical
Information Science Reference, pp. 1–9. IGI Global, Prince (2009)

2. Bakar, A.A., Othman, Z., Ismail, R., Zakari, Z.: Using the rough set theory for mining the
level of hearing loss diagnosis knowledge. In: International Conference on Electrical
Engineering and Informatics, Selangor, Malaysia, pp. 7–11 (August 2009)

3. Shalvi, D., DeClaris, N.: An unsupervised neural network approach to medical data mining
techniques. In: Proceedings of IEEE World Congress on Computational Inetelligence
Neural Networks, pp. 171–176 (1998)

4. Thompson, P., Zhang, X., Jiang, W., Ras, Z.W.: From mining tinnitus database to tinnitus
decision support system, initial study. In: IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pp. 203–206 (2007)

5. Hagan, M.T., Menhaj, M.: Training feed-forward networks with the Marquardt algorithm.
IEEE Transactions on Neural Networks 5(6), 989–993 (1999)

6. Anwar, M.N., Oakes, M.P.: Data Mining of Audiology Patient Records: Factors Influencing
the Choice of Hearing Aid Type. Journal of BMC Medical Informatics & Decision
Making 12(suppl. 1), S6 (2012)

BLSTM-RNN Based 3D Gesture Classification

Grégoire Lefebvre1, Samuel Berlemont1,2,
Franck Mamalet1, and Christophe Garcia2

1 Orange Labs, R&D, France
{firstname.surname}@orange.com

2 LIRIS, UMR 5205 CNRS, INSA-Lyon, F-69621, France
{firstname.surname}@liris.cnrs.fr

Abstract. This paper presents a new robust method for inertial MEM
(MicroElectroMechanical systems) 3D gesture recognition. The linear ac-
celeration and the angular velocity, respectively provided by the accele-
rometer and the gyrometer, are sampled in time resulting in 6D values
at each time step which are used as inputs for the gesture recognition
system. We propose to build a system based on Bidirectional Long Short-
Term Memory Recurrent Neural Networks (BLSTM-RNN) for gesture
classification from raw MEM data. We also compare this system to a ge-
ometric approach using DTW (Dynamic Time Warping) and a statistical
method based on HMM (Hidden Markov Model) from filtered and de-
noised MEM data. Experimental results on 22 individuals producing 14
gestures in the air show that the proposed approach outperforms classi-
cal classification methods with a classification mean rate of 95.57% and
a standard deviation of 0.50 for 616 test gestures. Furthermore, these
experiments underline that combining accelerometer and gyrometer in-
formation gives better results that using a single inertial description.

Keywords: LSTM-RNN,DTW,HMM,MEM, hand gesture recognition.

1 Introduction

Accelerometers and gyrometers are nowadays present in our everyday Smart-
phones. These sensors capture hand movements when users grasp their devices.
We can consider two main issues: posture recognition and symbolic gesture re-
cognition. In the first case, the user maintains a posture during a certain period
of time, describing for instance the fact that the device is upside down. In the
second situation, the user may produce a gesture to execute a system command,
like drawing a heart symbol in 3D space to call its favorite phone number. Dy-
namic gesture recognition based on inertial sensors is a very challenging task.
Algorithms are confronted to numerous factors causing errors in the recognition
process: dynamical differences (intensive versus phlegmatic gestures), temporal
differences (slow versus fast movements), physical constraints (device weight,
human body elasticity, left or right-handed, seated or standing up, on the move,
etc.), classification constraints (mono versus multi users, open or closed world
paradigm, etc.). Classically, several steps operate from signal data preprocessing

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 381–388, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

382 G. Lefebvre et al.

to gesture classification with some intermediate steps like data clustering and
gesture model learning. The preprocessing steps aim at reducing the input si-
gnals that characterize the corresponding gestures. Different methods can then
be applied: calibration, filtering, normalization or vectorization. Data clustering
is often applied to reduce the input space dimension and find class referent ges-
ture vectors. A learning phase of a gesture model follows this clustering step and
finally a decision rule or a specific classifier is built to label the input data as a
recognized gesture or an unknown gesture. In this article, we propose to learn
an efficient gesture classifier without any preprocessing method (i.e. from raw
MEM data) using a BLSTM-RNN model.

This paper is organized as follows. In Section 2, sensor-based gesture reco-
gnition is described with a survey. Section 3 presents our recognition method.
Section 4 describes the experimental results. Finally, conclusions are drawn.

2 Accelerometer Based 3D Gesture Recognition

3D gesture recognition using accelerometers has been studied in recent years,
and for gesture classification three main strategies stand out which are based on
statistics, on geometry or on boosting classifier approaches.

The first strategy has been deeply studied in the last decade with two main
approaches: discrete versus continuous HMM [6–8, 11]. Hofmann et al. [6] pro-
posed to use discrete HMM (dHMM) for recognizing dynamic gestures thanks
to their velocity profile. This approach consists of two levels and stages of reco-
gnition: a low-level stage essentially dividing the input data space into different
regions and assigning each of them (i.e. creation of a vector codebook), and a
high-level stage taking the sequences of vector indexes from the first stage and
classifying them with discrete HMM. The experiments are built using a training
set with 10 samples per gesture, each sample representing hand orientation, ac-
celeration data and finger joint angle. A vector codebook is obtained by an input
space clustering method (i.e. K-means algorithm). Clustering essentially serves
as an unsupervised learning procedure to model the shape of the feature vector
distribution in the input data space. Here, the number of HMM states vary from
1 to 10 and the observation alphabet size equals to 120. The comparison between
ergodic HMM and left-to-right HMM shows similar results with 95.6% correct
recognition rate for 100 gestures. Similar results are presented in [7, 8]. Kallio et
al. [7] use 5 HMM states and a codebook size of 8 for 16 gestures. The authors
highlight that the performances decrease when using 4 sequences for training the
system compared to 20 sequences. The recognition rate falls from 95% to 75%
even for this mono-user case study. In [8], a 37 multi-user case is studied with
8 gestures, evaluating the effect of vector quantization and sampling. A rate of
96.1% of correct classification is obtained with 5 HMM states and a codebook
size of 8. However, this study can be seen as biased since the K-means clustering
is performed from all the available data set and not only the training database.
In opposition to the previous studies, and to take into consideration that gesture
data are correlated in time, Pylvänäinen proposes in [11] to build a system based

3D Gesture Classification with BLSTM-RNN 383

on continuous HMM (cHMM). Again, the results are convincing, with 96.76%
on a dataset providing 20 samples for 10 gestures realized by 7 persons.

The second strategy for recognizing 3D gestures is based on geometric models
with distance computation. The goal is to provide a gallery of some gesture re-
ferences to model each gesture class and design a decision rule for a test gesture
regarding the respective distance to these referent instances. On the contrary to
the HMM strategy, no learning phase is needed but computational time is re-
quired for a test gesture to be compared to all referent instances. Consequently,
the main drawback of this approach is the necessity to find the most relevant
samples to represent a gesture class while keeping the number of these referents
low in order to minimize the final evaluation processing time. Wilson et al. in
[13] compare Linear Time Warping (LTW) and Dynamic Time Warping (DTW)
to the HMM based strategy. Their experiment with 7 types of gesture from 6
users shows an advantage for HMM with 90% in opposition to the score of LTW
and DTW of respectively 40% and 71%. Liu et al. experiment with more success
the DTW strategy in [9]. Gesture recognition and user identification are per-
formed with good recognition rates of respectively 93.5% and 88%. The authors
introduce an averaging window of 50 ms for reducing noise and erratic moves.
The gesture data, performed over multiple days, consists of 30 samples of 8
gestures for 8 individuals and the user recognition results are obtained from 25
participants. Likewise, in [2], Akl et al. use DTW and affinity propagation for di-
mension reduction for recognizing 3D gestures. 7 subjects participated producing
3700 gesture traces for a good classification rate of 90%.

The third strategy for recognizing 3D gestures is to learn a specific classifier.
Hoffman et al. (see [5]) improve 3D gesture recognition with a linear classifier
and Adaboost, inspired by the method proposed in [1] for 2D symbol writer
recognition. The experiments show an accuracy of 98% for 13 gestures made by
17 participants. Other studies focus on SVM (i.e. Support Vector Machine) like
in [14]. This study uses frame-based descriptors. Each gesture is divided into
segments where are computed to form descriptors: mean, energy, entropy, stan-
dard deviation and correlation. These descriptors constitute the feature vector
to be classified by a multi-class SVM. The obtained results are 95.21% of good
recognition for 12 gestures made by 10 individuals.

Consequently, many strategies are explored with different paradigms and spe-
cific data processing methods on different databases. Nevertheless, theses ap-
proaches suffer from finding automatically the relevant parameters (e.g. signal
processing, etc.) to deal with gesture variabilities. We develop hereafter our 3D
gesture recognition method based on BLSTM-RNN from raw input data and
compare it with classical methods on a common database.

3 The Proposed 3D Gesture Recognition Method

3.1 Bidirectional Long Short-Term Memory RNNs

Classical RNNs are a common learning technique for temporal analysis of data
since they are able to take into consideration the temporal context. This is

384 G. Lefebvre et al.

achieved by using recurrent connections within the hidden layer which allow the
network to remember a state representing the previous input values. However,
Hochreiter and Schmidhuber in [12] have shown that if RNNs can handle short-
time lags between inputs, the problem of exponential error decay prevent them
from tackling real-life long-term dependencies. They introduced thus the Long
Short Term Memory RNNs, that allows a constant error signal propagation
through time using a special node called constant error carousel (CEC) and
multiplicative gates (Fig 1.a). These gates are neurons that can set (input gate),
reset (forget gate) or hide (output gate) the internal value of the CEC according
to neuron input values and context.

LSTM-RNNs have proven their great ability to deal with temporal data in
many applications (e.g. phoneme classification [4], action classification [3]). In
this paper we consider gesture data using 6D input vectors through sampling
timestep. These data are correlated during the user gestural production, and time
lags between the beginning and the end of gesture can be long. For these reasons,
LSTM-RNN is chosen to classify the input MEM data sequence. Furthermore,
since gesture recognition, at a given timestep, may depend on past and future
context, we use Bidirectional LSTM-RNN (BLSTM-RNN), introduced in [4],
that consists in two separate hidden layers, the forward (resp. backward) layer
able to deal with past (resp. future) context. The output layer is connected to
both hidden layers in order to fuse past and future contexts.

(a) (b)

Fig. 1. (a) LSTM neuron. (b) BLSTM-RNN Architecture.

3.2 BLSTM-RNN Architecture, Training and Decision Rule

The proposed gesture classification scheme based on BLSTM-RNN is described
in Figure 1.b. First, the input layer consists in the concatenation of accelero-
meter and gyrometer information synchronized in time (i.e. 6 input values per
timestep). Notice that our system relies only on the raw MEMs data, without
any preprocessing in opposition to most of state-of-the-art methods. These data

3D Gesture Classification with BLSTM-RNN 385

are linearly normalized between -1 and +1 according to the maximum value
that sensors can provide. The forward and backward LSTM hidden layers are
fully connected to the input layer and consist in 100 LSTM neurons each with
full recurrent connections. The output layer has a size equals to the number
of gesture to classify. The SoftMax activation function is used for this layer to
give network responses between 0 and 1 at every timestep. Classically, these
outputs can be considered as posterior probabilities of the input sequence to
belong to a specific category at a given timestep. This network is learned using
classical on-line backpropagation through time with momentum (i.e. learning
rate 5e−4, momentum 0.2), as described in [12], on a training set, by targeting
the same corresponding gesture class at each time step for each input example.
For evaluation of a new gesture sequence, we use a majority voting rule over the
outputs along the sequence (i.e. keeping only the most probable class at each
time step) to determine the final gesture class.

4 Experimental Results

There is no public dataset for comparison of 3D gesture recognition. Therefore,
we have collected our 3D gesture dataset to compare classification methods.
Our dataset has been captured on an Android Nexus S Samsung device. 22
participants, from 20 to 55 years old, all right-handed, performed 5 times each of
the 14 symbolic gestures. This corresponds to 1540 temporal segmented gestures.
The sampling time for accelerometer and gyroscope capture is 40 ms. The 14
symbolic gestures are divided into 2 families: linear gestures (e.g. north, south,
east and west flicks, and up, down, pick and throw gestures) and curvilinear
gestures (e.g. alpha, heart, letter N, letter Z, clockwise and counter-clockwise).
These choices make the dataset difficult. There are classically confusions between
flick gestures and letter N and Z. Likewise, the clockwise movement is often
confused with alpha or heart symbols. Hereafter, we use temporal segmented
gestures where only useful data are efficient to classify the inputs.

We use 3 different configurations to compare our solution based on BLSTM-
RNN to 3 state-of-the-art solutions: DTW, dHMM and cHMM based methods.
The DTW solution uses a 5 nearest neighbor classification [10] and the HMM
solution uses the maximum of likelihood as a decision rule . In all experiments,
we use a filtered and vectorized gestural information for these methods and raw
MEM information for LSTM solution. In the following, we use a 3-fold cross
validation.

The first configuration (DB1) corresponds to the personalization paradigm,
where only one user is considered with few learning examples. For this configu-
ration we have used the 70 gestures of a single participant in the learning phase,
and ask him to process 16 more instances of each gesture for test (i.e. 224 ges-
tures). The second configuration (DB2) uses 3 instances of each gesture per user
for the learning phase: 924 gestures (i.e. 60% of all data) are used for the learn-
ing phase and 616 gestures (i.e. 40%) for the test phase. This case corresponds
to a multi-user system and a closed world paradigm. The third configuration

386 G. Lefebvre et al.

(DB3) is composed of all samples from 17 users (i.e. 1190 gestures) and the test
data uses the other available gestures (i.e. 350 gestures from unknown users).
This case is close to a real system trained with a few examples and having to
generalize to new users who want to use it without any personalization phase.
Here, the configuration represents the open world paradigm.

Table 1. Good classification rates on DB1, DB2 and DB3

Databases DB1 DB2 DB3

Methods Mean & Standard Deviation

DTW acc 99.40% ± 0.21% 92.59% ± 0.20% 90.29% ± 2.07%

DTW gyro 95.39% ± 0.56% 80.63% ± 2.39% 79.81% ± 1.72%

DTW acc+gyro 99.70% ± 0.42% 94.04% ± 0.15% 91.71% ± 1.46%

dHMM acc 77.14% ± 5.18% 64.09% ± 1.60% 63.81% ± 0.58%

dHMM gyro 57.50% ± 3.24% 43.13% ± 2.35% 49.05% ± 1.15%

dHMM acc+gyro 81.02% ± 3.72% 69.46% ± 2.11% 66.95% ± 1.87%

cHMM acc 99.02% ± 0.81% 83.99% ± 1.09% 80.09% ± 2.82%

cHMM gyro 95.05% ± 2.62% 70.92% ± 0.74% 70.76% ± 0.58%

cHMM acc+gyro 99.86% ± 0.02% 85.79% ± 0.67% 82.76% ± 1.41%

BLSTM-RNN acc 84.15% ± 0.67% 94.86% ± 1.23% 89.42% ± 2.45%

BLSTM-RNN gyro 68.90% ± 4.85% 83.39% ± 0.65% 74.19% ± 1.55%

BLSTM-RNN acc+gyro 86.75% ± 0.75% 95.57% ± 0.50% 92.57% ± 2.85%

Classification Results. Table 1 outlines the global performances of each clas-
sifier for configurations DB1, DB2 and DB3 coupling or not accelerometer and
gyrometer data. Considering coupled input data (accelerometer+gyroscope), this
table shows that our BLSTM-RNN based classifier gives the best results on DB2
and DB3, with respectively 95.57± 0.50% and 92.57± 2.85%.

In the three configurations, the dHMM solution provides lower performances
which is mainly due to the input data variability and the complexity to determine
an automatic discriminant codebook.

On two configurations (DB2 and DB3), the DTW solution achieves the second
best performance in mean recognition rate before the cHMM based one.

On DB1 configuration, DTW and cHMM achieve equivalent performances
while our BLSTM-RNN approach is less efficient. This is mainly due to the lack
of learning data which leads to the classical over-fitting issue. The attempts made
with smaller LSTM networks did not allow any improvement on generalization.

When comparing these methods using a single input MEM sensor (accelerome-
ter or gyroscope), we can see that using only gyroscope data is less efficient than
using single accelerometer data. Moreover, when these two information are com-
bined, the performances increase with respectively 99.70± 0.42%, 94.04± 0.15%
and 91.71± 1.46%, for instance, for the DTW based method on DB1, DB2 and
DB3 configurations.

Main conclusions of a deep analysis of confusion matrices (not provided here
due to lack of space) are the following. The main drawback for the cHMM based
method in this context is the incorrect classification of the N gestures with only

3D Gesture Classification with BLSTM-RNN 387

0.95% of correct classification. 62.86% of the N gestures are confused with the
pick gestures. A strong confusion appears with opposite gestures as pick and
throw or down and up gestures. Opposite gestures may be mis-classified when
some user anticipate a north flick gesture by slightly moving back the device
in the beginning of the production. On the contrary, the DTW based method
provide a good solution to classify linear gestures except for the throw gesture
which is often recognized as east and north flicks, which can be explained by
the similar nature of production of these three gesture types. Our BLSTM-RNN
approach have some issue to distinguish the east flick gesture from the letter Z
and the up gesture from the letter N, both sharing the same initial movement.
This may be due to the uniform learning target chosen (same class at each time
step), or the majority voting scheme in recognition phase.

Table 2. Computing time (in ms) to classify one unknown gesture

Databases DB1 DB2 DB3

Leaning samples 70 924 1190

Test samples 224 616 350

DTW accgyro 11.93 ±0.02 34.57 ±0.47 44.58±0.38

dHMM accgyro 18.31 ±0.17 24.84 ±0.32 16.18±0.32

cHMM accgyro 42.53 ±1.97 23.89±2.74 30.19±1.65

BLSTM-RNN accgyro 30.47± 0.23 31.12±0.57 29.56±0.48

Computing Times. Table 2 presents the computing times for all methods for
the 3 configurations in recognition phase executed on an Intel Core i5 CPU at
2.67 GHz with 3.42 Go of RAM. These experimental results show that the com-
puting time for the BLSTM-RNN and HMM based solutions is quite constant
regarding the tasks on the different database (i.e. around 30 ms for BLSTM-
RNN and 18 ms for dHMM to classify one input gesture for DB1). The learn-
ing process is built indeed off-line and consequently the recognition process is
fast. On the contrary, the DTW solution requires to compare the input gesture
with all learning reference samples. That is why the computing time increases
in mean from 11.93 ms for 70 learning samples to 44.58 ms for 1190 learning
samples. The DTW solution requires a small number of reference gestures and
which makes it hard to cover all user gesture variations. Consequently, the pro-
posed system, based on BLSTM-RNN, achieving the best result performances
in multi-user configuration with a recognition computing time independent of
training dataset size is a very challenging solution.

5 Conclusion and Perspectives

In this paper, we have presented a contribution based on BLSTM-RNN and a
comparison for inertial MEM based gesture recognition. This study about sym-
bolic gesture recognition compares our contribution to 3 classical pattern reco-
gnition methods: the geometric approach using DTW and the statistical method

388 G. Lefebvre et al.

based on dHMM and cHMM. We have shown that on multi-user configuration
our approach achieves the best mean classification rates, up to 95.57%, in a
closed world configuration. Main remaining confusions with the proposed solu-
tion are when two 3D trajectories are similar or share some initial movements,
as an east flick and a Z letter. New approach using a modified objective function,
such as Connectionist Temporal Classification [4], that permits to jointly learn
to localize and classify events in input sequences, might be used to overcome
this issue or to classify non segmented gestures.

References

1. A practical approach for writer-dependent symbol recognition using a writer-
independent symbol recognizer. IEEE Trans. PAMI 29(11), 1917–1926 (2007)

2. Akl, A., Valaee, S.: Accelerometer-based gesture recognition via dynamic-time
warping, affinity propagation, & compressive sensing. In: ICASSP (2010)

3. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Sequential deep
learning for human action recognition. In: Salah, A.A., Lepri, B. (eds.) HBU 2011.
LNCS, vol. 7065, pp. 29–39. Springer, Heidelberg (2011)

4. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural Networks (18), 5–6 (2005)

5. Hoffman, M., Varcholik, P., LaViola, J.: Breaking the status quo: Improving 3d
gesture recognition with spatially convenient input devices. In: Virtual Reality
Conference (VR), pp. 59–66 (2010)

6. Hofmann, F.G., Heyer, P., Hommel, G.: Velocity profile based recognition of dy-
namic gestures with discrete hidden markov models. In: Wachsmuth, I., Fröhlich,
M. (eds.) GW 1997. LNCS (LNAI), vol. 1371, pp. 81–95. Springer, Heidelberg
(1998)

7. Kallio, S., Kela, J., Mantyjarvi, J.: Online gesture recognition system for mobile
interaction. Systems, Man and Cybernetics 3, 2070–2076 (2003)

8. Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., Marca, D.:
Accelerometer-based gesture control for a design environment. Personal Ubiquitous
Comput. 10(5), 285–299 (2006)

9. Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uwave:
Accelerometer-based personalized gesture recognition and its applications. In:
IEEE PerCom, pp. 1–9 (2009)

10. Petit, E.: GRASP: Moteur de reconnaissance de gestes. Technical report, France
Télécom R&D (2007)

11. Pylvänäinen, T.: Accelerometer Based Gesture Recognition Using Continuous
HMMs. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005.
LNCS, vol. 3522, pp. 639–646. Springer, Heidelberg (2005)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computa-
tion (9), 1735–1780 (1997)

13. Wilson, D.H., Wilson, A.: Gesture recognition using the xwand. Technical Report
CMU-RI-TR-04-57, Robotics Institute (April 2004)

14. Wu, J., Pan, G., Zhang, D., Qi, G., Li, S.: Gesture recognition with a 3-D accele-
rometer. In: Zhang, D., Portmann, M., Tan, A.-H., Indulska, J. (eds.) UIC 2009.
LNCS, vol. 5585, pp. 25–38. Springer, Heidelberg (2009)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 389–396, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Feature Selection for Neural Network-Based Interval
Forecasting of Electricity Demand Data

Mashud Rana1, Irena Koprinska1, and Abbas Khosravi2

1 School of Information Technologies, University of Sydney, Sydney, Australia
{mashud,irena}@it.usyd.edu.au

2 Centre of Intelligent Systems Research, Deakin University, Geelong, Australia
abbas.khosravi@deakin.edu.au

Abstract. We consider feature selection for interval forecasting of time series
data. In particular, we study feature selection for LUBEX, a neural-network
based approach for computing prediction intervals and its application for
predicting future electricity demands from a time series of previous demands.
Our results show that the mutual information and correlation-based feature
selection methods are able to select a small set of lag variables that when used
with LUBEX construct valid and stable prediction intervals (coverage
probability of 97.44% and 96.68%, respectively, for confidence level of 90%).
In contrast, the popular partial autocorrelation feature selection method fails to
do this (coverage probability of 69.69%). Our evaluation was conducted using
one year of half-hourly Australian electricity demand data.

Keywords: Electricity demand forecasting, prediction intervals, neural
networks, feature selection.

1 Introduction

Forecasting future electricity demands is an important task for organizations
managing and operating electricity networks and electricity markets. In this paper we
consider interval forecasting for electricity demand data, i.e. at time t the task is to
predict an interval of values for time t+h with a certain probability. In contrast, point
forecasting aims to predict a single demand value for time t+h. More formally, our
task can be stated as follows: given a time series of n previous half-hourly electricity
demands X1, X2,…, Xn, forecast a Prediction Interval (PI) for the next value of the
series Xn+1. A PI consists of lower and upper bounds, L and U, between which the
future value is expected to lie with a minimum probability 1 100%. Thus,
a valid PI for 1+nX will satisfy the condition: P()(1+nXL ≤ 1+nX ≤)(1+nXU) ≥ .

The great majority of existing approaches for electricity demand forecasting are
concerned with point forecasting [1-3]. Although interval forecasting is very useful
for risk management in applications requiring balancing of demand and supply [4]
such as electricity markets, it still hasn’t received enough attention.

A method for predicting PIs using Neural Networks (NN), called LUBE, was
recently proposed in [5]. To predict PIs for new data, it uses the point forecasts for the
training data and a novel cost function that is minimized during training. LUBE was

390 M. Rana, I. Koprinska, and A. Khosravi

compared with other NN-based methods for PI construction such as delta [6], Baysian
[7] and bootstrap [8] and was shown to generate high quality and valid PIs, typically
outperforming the other methods. In [9] we proposed an extension of LUBE, called
LUBEX, which utilizes an ensemble of NNs instead of a single NN to reduce
sensitivity to NN architecture, weights initialization and perturbation during training.

The focus of this paper is feature selection for interval forecasting of electricity
demand data. The few existing methods for interval forecasting haven’t studied the
effect of feature selection on the quality of PIs. In this paper we investigate the
performance of three feature selection methods for time series – the widely used
Partial Autocorrelation (PA) and the novel Mutual Information (MI) and Correlation-
based Feature Selection (CFS) methods - used in conjunction with the interval
forecasting approach LUBEX. Our comprehensive evaluation, using Australian
electricity data, showed that MI and CFS were successful while PA was not. Thus,
our results confirm the importance of employing suitable feature selection methods in
order to construct reliable and informative PIs.

2 Data

We use half-hourly electricity demand data for the state of New South Wales (NSW)
in Australia for 2010. The data is publicly available at [10] and contains 8,760
samples. We study each month separately in 12 case studies, one for each month.

The data for each case study is divided into three non-overlapped subsets: training
Dtrain, validation Dvalid and testing Dtest. The split is 50%-30%-20% respectively. Dtrain
is used for feature selection and training of NNs, Dvalid is used to select the best
ensemble of NNs and Dtest is used for performance evaluation.

3 PI Quality Measures

Following [5] we use three measures to evaluate the quality of PIs: Prediction Interval
Coverage Probability (PICP), Prediction Interval Normalized Averaged Width
(PINAW) and their combination Coverage Width-Based Criterion (CWC). A high
quality PI will have a high coverage probability (greater than the predefined
confidence level) and small width.

PICP. Given a dataset of examples, PICP is the probability that the target value
of the i-th example will fall between the upper and lower bounds of the
prediction interval , averaged over all i. It is calculated empirically as: ∑ . 100 %, where 1, , 0,
PINAW. It measures the average width of the PIs, for all points in the dataset,

normalized by the range of the target values R: ∑

CWC. It combines PICP and PINAW using the parameters and : 1 , where
 0, 1,

 Feature Selection for Neural Network-Based Interval Forecasting 391

CWC is underpinned by two main principles: 1) If the coverage probability is
above the confidence threshold, CWC should depend only on the PI’s width. This is
achieved by setting to 0; CWC becomes equal to the width PINAW and has a low
value; 2) If the coverage probability is below the confidence threshold, i.e. the PIs are
not valid, CWC should have a high value, regardless of the width. This is achieved by
using a high value for in the exponential term and by setting to 1 to consider this
term. Due to the high value of the exponential term, the influence of PINAW is lost
and CWC becomes high. Thus, CWC balances the PI’s usefulness (narrow width) and
correctness (acceptable coverage probability). For more details about CWC, see [5].

4 The LUBEX Method

LUBEX is a recently proposed method [9] for computing PIs using an ensemble of
NNs. It is an extension of LUBE [5]. A single LUBE NN is a multilayer perceptron
with p input neurons, corresponding to the input variables of each example, two
output neurons corresponding to the lower and upper PI bounds for this example and
one or more hidden layers. A LUBE NN is trained to minimize CWC using the
simulated annealing algorithm which combines hill-climbing and random walk. Note
that the backpropagation algorithm cannot be applied as CWC is not differentiable.
During training, the two targets and of are both set to the target point
forecast . The trained NN is then used to predict the PIs for the testing data.

Single LUBE NNs are sensitive to the network architecture, random initialization
of weights and random perturbation of weights during training. To reduce this
sensitivity, LUBEX uses an ensemble method. It considers NNs with one hidden layer
and constructs 30 NN architectures A1,..,A30 by varying the number of hidden neurons
from 1 to 30. For each architecture Ai, it builds an ensemble Ei of m NNs (m=100 in
our experiments). The ensemble members of Ei have the same architecture Ai but are
initialized to different random weights. Each of them is trained on the training set. To
predict the PI for the new example i, Ei combines the predictions of its members by
taking the median of their lower and upper bounds: PIi =[median(Li1,..Lim), median
(Ui1,…,Uim)]. The ensembles are evaluated on the validation set, the best one is
selected (the one with smallest CWC) and use to predict the test data. In [9] we
showed that the use of ensemble is essential; without it LUBEX’s performance varied
considerably for multiple runs and the PICP was also not satisfactory in many cases.

5 Feature Selection for Constructing PIs

5.1 CFS

CFS [11] is a state-of-the-art filtering algorithm for feature subset selection. It selects

a subset S of k features that maximizes the heuristic: , is the

average feature-class variable correlation and is the average feature-feature
correlation. This heuristic favors subsets containing features that are good individual
predictors of the class variable and are also not correlated with each other.

392 M. Rana, I. Koprinska, and A. Khosravi

To conduct feature selection using CFS, we apply a 1-week sliding window to the
training data resulting in 336 half-hourly lag variables and then use CFS to select a
subset of these 336 variables. The selection is done separately for each case study and
the selected features are listed in Table 1, with their total number shown in brackets.

Table 1. Selected lag variables using CFS and MI to predict Pit+1

Case Study CFS MI
1 (Jan) 1,46,120,336 (4) 1-4,47-50,335-336 (10)
2 (Feb) 1-3,48,120,217,288,333-335 (10) 1-3,47-49,289,334-336 (10)
3 (Mar) 1,48,115,336 (4) 1-4,48,144,287-288,335-336 (10)
4 (Apr) 1-2,47,121,287,336 (6) 1-3,48-49,287-289,335-336 (10)
5 (May) 1,48,223,335-336 (5) 1-3,48-49,287-288,334-336 (10)
6 (Jun) 1-2,47,158,225,335 (6) 1-4,47-49,288,335-336 (10)
7 (Jul) 1,48,225,255,288,335 (6) 1-3,48-49,144,288,334-336 (10)
8 (Aug) 1,24,48,288,335 (5) 1-3,47-49,287-288,335-336 (10)
9 (Sep) 1,48,208,220,288,335 (6) 1-3,47-49,288,334-336 (10)
10 (Oct) 1-2,119,144,210,286,335 (7) 1-3,48,286-288,334-336 (10)
11 (Nov) 1-3,20,95,192,216,334-336 (10) 1-5,48,49,288,335-336 (10)
12 (Dec) 1-2,48,120,216,335 (6) 1-4,48,287-288,334-336 (10)

5.2 MI

MI measures the interdependence between two variables, both linear and non-linear.
If the two variables are independent, their MI is zero; if the two variables are
dependent, their MI is positive and the value reflects the strength of the dependency.

Computing MI for continuous variables is more difficult than for nominal variables
as it requires assumption about the data distribution. In this paper we apply a method
for MI estimation based on k-nearest neighbor distances [12]. This method has
minimal bias and was shown to be efficient and reliable.

Fig. 1. Feature ranking based on MI Fig. 2. PACF for case study 1

To conduct the feature selection using MI, we apply again a 1-week sliding
window to the training data, compute the MI scores of each of the resulting 336 half-
hourly lag variables and then rank these variables in decreasing order based on the MI
score. Fig. 1 shows the normalized MI scores for each variable in ranked order. We
can see that the graphs for all 12 case studies are very similar - the MI score sharply
drops at rank 10 and after that decreases very slowly. Based on these results, we select
the 10 highly ranked variables for each case study; they are listed in Table 1.

�
���
���
���
���

	
	��

	 	
 �� ��
	 	�

	�
�

	�

	�
�

	�
	

	

�	
�

��

�
�

��
	

��

��
�

��

�
�

����

�	 ��
�� ��
� ��
�� ��
�
 �	�
�		 �	�

 Feature Selection for Neural Network-Based Interval Forecasting 393

5.3 PA

PA is a popular feature selection method for time series data. The PA value between
two observations Xt and Xt-h in a time series is the linear correlation between them,
conditional on Xt-h+1, …, Xt-1, the set of observations that come between them. PA only
measures linear dependencies; a value close to 1/-1 shows a strong positive/negative
dependency while a value close to 0 shows no dependency.

To form a feature set, we compute the PA till lag 336 (1-week sliding window)
using the training data, for each case study separately. As an example, Fig. 2 shows
the Partial Autocorrelation Function (PACF) for the first 50 lags of case study 1. We
then select the lags with PA higher than the confidence threshold (shown with the two
parallel horizontal lines in Fig. 2). The selected features are not shown due to space
limitation. Their number varied between 39 for case study 3 and 68 for case study 6.

6 Results and Discussion

6.1 Convergence

We firstly investigate the LUBEX’s convergence on the training data. As an example,
the left parts of Fig. 3 show typical convergence of a LUBEX’s ensemble member
(single NN) using CFS, MI and PA, for case study 2 (February).

We can see that for this example CWC decreases quickly and converges after 100-
150 epochs for all feature selectors. However, a closer examination of the data for all
NNs and case studies shows that while LUBEX with CFS and MI always converged,
LUBEX with PA converged only in about half of the cases.

a) LUBEX with CFS

b) LUBEX with MI

Fig. 3. Convergence on training data for case study 2 (left) and variability of PICP (right) for
LUBEX with CFS (a), MI (b) and PA (c)

394 M. Rana, I. Koprinska, and A. Khosravi

c) LUBEX with PA

Fig. 3. (continued)

6.2 Quality of Constructed PIs

To evaluate the quality of the constructed PIs we compute the three performance
measures using the testing data: PICP, PINAW and CWC. Table 2 presents the results
for LUBEX with CFS, MI and PA.

To further reduce the variability of the NN performance due to the random weight
initialization and perturbation during training, for each case study we repeated the
experiments five times, i.e. we created and evaluated an NN ensemble five times. The
results in Table 2 are the average values over the five runs.

We first examine the coverage probability PICP. We can see that PICP for CFS
and MI is higher than the prescribed confidence level (μ=90%) for all case studies, i.e.
the constructed PIs are valid. The average PICP over all case studies and the standard
deviation are: 96.68±2.76% for CFS and 97.44±3.29% for MI; hence, the constructed
PIs considerably outperformed μ. For both CFS and MI, nine out of twelve cases
achieve PICP greater than 95% and the remaining three case studies (4, 6 and 12)
have PICP between 91.40% and 93.30%. Overall, the PICP is higher when using MI
than CFS. In contrast to CFS and MI, the PICP for PA is lower than the prescribed
confidence level for all case studies. The average PICP for PA is 69.69±9.45%, which
is considerably lower than μ. In summary, LUBEX with CFS and MI as feature
selection methods was able to construct PIs with high coverage probability while
LUBEX with PA failed to do this.

We now examine the interval width PINAW. We can see than LUBEX generates
narrow PIs with all feature selection methods. The average widths are: 6.16±1.29 for
PA, 11.86±2.24 for MI and 15.97±3.10 for CFS. Although the PI width for PA is the
narrowest, their coverage probability is unacceptable. By comparing CFS and MI we
can see that their coverage probabilities for case studies 2, 10 and 11 are very similar
but the interval widths for MI are smaller than for CFS. This indicates higher
uncertainty for LUBEX with CFS for these case studies.

We finally examine the CWC values. For CFS and MI, these values are the same
as the PINAW values. This follows from the definition of the CWC function: when
the coverage probability is higher than the prescribed confidence value,
CWC=PINAW. By contrast, the CWC values for PA are very high. This is also as

 Feature Selection for Neural Network-Based Interval Forecasting 395

expected and follows from the definition of CWC – when the PIs fail to satisfy the
required minimum coverage probability, they are invalid regardless of their width;
this results in high CWC values as CWC includes a heavy penalty for invalid PIs.

Table 2. PIs for testing data for LUBEX with CFS, MI and PA - performance measures

Case CFS MI PA
Study PICP

[%]
PINA

W
CWC PICP

[%]
PINAW CWC PICP

[%]
PINA

W
CWC

1 (Jan) 98.35 19.27 19.27 99.91 12.55 12.55 71.60 7.31 1.3x1016
2 (Feb) 100.0 19.64 19.64 100.0 17.04 17.04 68.61 9.03 6.4x1014
3 (Mar) 98.17 18.46 18.46 99.91 12.40 12.40 73.16 6.07 1.4x1012
4 (Apr) 91.81 13.76 13.76 91.40 10.33 10.33 70.23 6.54 2.1x1016
5 (May) 95.22 13.19 13.19 97.22 9.69 9.69 55.74 5.08 2.8x1014
6 (Jun) 92.49 11.13 11.13 91.95 8.84 8.84 57.39 4.55 1.5x1016
7 (Jul) 98.18 16.85 16.85 99.04 10.83 10.83 63.03 4.76 1.9x1014
8 (Aug) 98.27 20.55 20.55 99.65 14.06 14.06 84.42 6.82 6.4x1015
9 (Sep) 96.38 18.64 18.64 97.83 12.13 12.13 80.36 7.61 8.1x1015
10 (Oct) 99.22 15.82 15.82 99.30 13.25 13.25 79.57 6.51 5.9x1017
11 (Nov) 99.73 11.65 11.65 99.82 10.23 10.23 78.29 4.96 2.6x1011
12 (Dec) 92.29 12.71 12.71 93.30 11.01 11.01 53.85 4.70 8.3x1017
mean 96.68 15.97 15.97 97.44 11.86 11.86 69.69 6.16 1.2x1017
st.dev. 2.76 3.10 3.10 3.29 2.24 2.24 9.45 1.29 2.6x1017

6.3 Variability of PICP

We also compare the stability of the PICP results for the testing data. The right parts
of Fig. 3 show box plots of PICP for LUBEX with CFS, MI and PA, respectively, for
the five runs of each case study. Five important values are represented for each case
study: the edges of the box show the 25th and 75th percentiles, the whiskers of the box
show the minimum and maximum values not considered outliers and the crosses show
values that are considered outliers. Note the different scales on the y axes.

We can observe that the variation over the five runs is very small for CFS and MI
and very high for PA. Comparing CFS and MI, we can also see that CFS is slightly
more variable than MI but all variations are above the nominal confidence value. We
conclude that LUBEX with CFS and MI generated PIs that were stable over multiple
runs while LUBEX with PA generated highly unstable PIs.

7 Conclusion

In this paper we considered the task of constructing NN-based PIs for electricity
demand forecasting. We extended the interval forecasting method LUBEX by
studying the effect of three feature selection methods on the quality of the generated
PIs: the novel CFS and MI and the traditional PA. Our results showed that CFS and
MI were able to identify a small set of informative lag variables, that when used with
LUBEX resulted in fast convergence during training and high quality PIs for new
data. These PIs were valid as they satisfied the minimum coverage probability of 90%
(MI: PICP=97.44±3.29%, CFS: PICP=96.68±2.76%) and showed little variation for

396 M. Rana, I. Koprinska, and A. Khosravi

multiple runs of LUBEX. In contrast, LUBEX with PA did not always converge and
produced PIs that were invalid and highly variable (PICP=69.69±9.45%). In addition,
CFS and MI selected a considerably smaller set of features in comparison to PA, 4-10
versus 39-68, which means faster training of the NN component and faster prediction
for new instances. Overall, the best performance was achieved by LUBEX with MI.

Acknowledgement. Mashud Rana is supported by an Endeavour award and a NICTA
scholarship.

References

1. Taylor, J.W.: Triple Seasonal Methods for Short-Term Electricity Demand Forecasting.
European Journal of Operational Research 204, 139–152 (2010)

2. Koprinska, I., Rana, M., Agelidis, V.G.: Yearly and Seasonal Models for Electricity Load
Forecasting. In: International Joint Conference on Neural Networks (IJCNN), San Jose,
pp. 1474–1481. IEEE Press (2011)

3. Chen, Y., Luh, P.B., Guan, C., Zhao, Y., Michel, L.D., Coolbeth, M.A.: Short-Term Load
Forecasting: Similar Day-based Wavelet Neural Network. IEEE Transactions on Power
Systems 25, 322–330 (2010)

4. Chatfield, C.: Time-Series Forecasting. Chapman &Hall/CRC (2000)
5. Khosravi, A., Nahavandi, S., Creigton, D., Atiya, F.: Lower Upper Bound Estimation

Method for Construction of Neural Network-Based Prediction Intervals. IEEE
Transactions on Neural Networks 22(3), 337–346 (2011)

6. Hwang, J.T.G., Ding, A.A.: Prediction Intervals for Artificial Neural Networks. Journal of
the American Statistical Associatio 92(438), 2377–2387 (1997)

7. MacKay, D.J.C.: The Evidence Framework Applied to Classification Networks. Neural
Computation 4(5), 720–736 (1992)

8. Heskes, T.: Practical Confidence and Prediction Intervals. In: Mozer, T.P.M., Jordan, M.
(eds.) Neural Information Processing Systems. MIT Press (1997)

9. Rana, M., Koprinska, I., Khosravi, A., Agelidis, V.G.: Prediction Intervals for Electricity
Load Forecasting Using Neural Networks. In: International Joint Conference on Neural
Networks(IJCNN). IEEE Press, Dallas (2013)

10. AEMO (2013), http://www.aemo.com.au
11. Hall, M.A.: Correlation-based Feature Selection for Discrete and Numeric Class Machine

Learning. In: Int. Conference on Machine Learning (ICML), pp. 359–366 (2000)
12. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating Mutual Information. Physical

Review E 69 (2004)

A Combination of Hand-Crafted and

Hierarchical High-Level Learnt Feature
Extraction for Music Genre Classification

Julien Martel1, Toru Nakashika2, Christophe Garcia1, and Khalid Idrissi1

1 Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR 5205, France
firstname.name@insa-lyon.fr

2 Department of System Informatics, Kobe University, Japan
nakashika@me.cs.scitec.kobe-u.ac.jp

Abstract. In this paper, we propose a new approach for automatic mu-
sic genre classification which relies on learning a feature hierarchy with
a deep learning architecture over hand-crafted feature extracted from an
audio signal. Unlike the state-of-the-art approaches, our scheme uses an
unsupervised learning algorithm based on Deep Belief Networks (DBN)
learnt on block-wise MFCC (that we treat as 2D images), followed by
a supervised learning algorithm for fine-tuning the extracted features.
Experiments performed on the GTZAN dataset show that the proposed
scheme clearly outperforms the state-of-the-art approaches.

Keywords: music genre classification, high-level hierarchy feature ex-
traction, deep learning, deep belief networks.

1 Introduction

In the last decade, automatic music genre classification has become more im-
portant as the digital entertainment industry developed. Now audio files are
distributed over the world wide web and are available as digital content with
auxiliary-data also called meta-data. In order to search proper music from huge
databases, labels in meta-data have to be assigned to each piece beforehand. The
point in using a music genre classification system, is to assign them automatically
instead of spending lots of effort in manual annotation.

Feature extraction from an acoustic music signal is a significant step in auto-
matic music genre classification. Most systems in the early years mainly relied on
timbre features extracted from a windowed short signal, such as MFCC, STFT,
LPC, Filterbank Coefficients and Autoregressive Model [1]. Other methods em-
ployed statistical models of the timbre features such as histograms, means, vari-
ances, etc. [2]. These approaches, however, extract the features frame-by-frame
and do not capture any temporal information.

As mentioned in [3], spectral transition in short term is considered to be an
important factor for musical genre classification as well as timbre features of the
frame. Meanwhile, a block-wise approach, where a feature descriptor involves

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 397–404, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

398 J. Martel et al.

multiple frames of a few seconds, has been gathering more attention in recent
years [4]. One example can be found in [5], where 5 different block-wise features
are obtained from 10 or 25 frames and are used for genre classification. Costa et
al. attempted to extract texture features from a spectrogram of a few seconds,
inspired by works in image processing [6]. There, the system extracts 7 statistical
texture features after calculating a Gray Level Co-occurrence Matrix (GLCM)
[7] from each spectrogram, and classifies the music signals using SVMs.

Another notable block-wise method was proposed by Tom et al. [8], where they
adopted Convolutional Neural Networks (ConvNets) for bi-dimensional feature
extraction and genre classification. In their work, the ConvNets learn music
patterns given a bi-dimensional MFCC map and corresponding genre labels in
a supervised way.

Besides, other Deep Learning approaches were used as a way to build hier-
archical representations. One of the most well-known Deep Learning models is
the Deep Belief Network (DBN) [9], which stacks multiple Restricted Boltzmann
Machine (RBM) layers hierarchically. Hamel and Eck [10] adopted the DBN to
learn high level musical features. In [11], a Sparse Encoder Symmetric Machine
(SESM) was proposed by Ranzato et al. as another extension of DBN attempt-
ing to produce better representations in terms of sparseness. Since such deep
learning methods rely on unsupervised feature extraction, it is expected that
the models automatically extract more tractable and better-separated features
for the supervised classifier.

In this work, we propose and study a deep learning approach for musical genre
classification. We fed block-wise “hand-crafted” (by opposition to “learnt”) fea-
tures of MFCCs that are respectively inspired from [6] and [8] into a deep archi-
tecture in which we learn a higher level feature hierarchy with an unsupervised
learning algorithm and use a supervised learning algorithm for fine-tuning us-
ing a set of known labels of songs. Experimental results on the well-known 10
musical genre GTZAN database show the efficiency of our approach.

2 The Proposed Approach

The deep learning method that we propose rely on Deep Belief Networks. Our
architecture is based on the following functional blocks:
Hand-crafted features extraction: from the raw audio-file, we extract several
block-wise hand-crafted MFCC features;
High-level learnt features extraction: from these features, we extract a hierarchy
of high-level learnt features with an unsupervised learning algorithm;
High-level learnt features fine-tuning : we fine-tune these high-level “learnt” fea-
tures to adapt them to our classification task with a supervised learning algo-
rithm;
Classification: from this fine-tuned high-level hierarchy of features, we train a
classifier such that each of the blocks votes for a certain genre;
Voting scheme: we collect the votes in a given voting space (binary, probabilistic
scoring etc.) and output a genre associated to the whole music.

A Combination of Hand-Crafted and Hierarchical High-Level Features 399

Fig. 1. Examples of block-wise MFCC extracted from the GTZAN database

2.1 Hand-Crafted Feature Extraction with Block-Wise MFCC

The idea behind using hand-crafted features on the “raw” music signal is to
process it in a form that will be meaningful for the feature extractor we want to
learn in a next step. These hand-crafted features, like Mel-Frequency Cepstral
Coefficients (MFCCs) [12], capture a lot of engineering knowledge that has been
developed over the years to extract relevant information in audio frames.

We therefore built our block-wise MFCC by computing the cepstrum coef-
ficients over non-overlapping audio frames of 28 milliseconds. The quantized
values on the mel-scale (in 40 bins) obtained for a MFCC are concatenated in
a block with others computed in the next frame so that it constitutes a time-
MFCC domain that we can regard as a bi-dimensional structure (an image). In
our experiments, we chose to use 50 blocks so that the block-wise MFCC lasts
1.4 second. By using such block-wise MFCC, we aim at capturing temporal in-
formation (in the limit of the block size times the frame length) and timbral
information thanks to the MFCC transformation [13]. Some examples of the
MFCC blocks we obtain on audio files of the GTZAN database are shown in
Figure 1.

2.2 Learnt High-Level Hierarchy Feature Extraction

One of the originalities of this work resides in the way we extract our block-
wise features that can both capture timbre and temporal information. These
two pieces of information are represented on 2D maps and can be regarded as
“images” with a strong bi-dimensional structure. However, we do not directly
classify these features with any supervised learning algorithm like in [14] because
we know they extract relevant information but which is probably still “drown”
and highly hidden in these features. Our idea is to “capture the regularities”
in the music genre by first applying a powerful unsupervised learning algorithm
which can statistically find a hierarchical structure in the input data. Moreover,
one should see the design of these “hand-crafted” features as limited by the
complexity human people can possibly put in it and by what they think is
interpretable. This is legitimate to try to extract more from these features and
combine the resulting objects in a way human would not be able to. Contrary
to our method, other recent contributions directly worked on the audio signal
by learning Deep Belief Net on raw audio files or on spectrum [10]. Our strategy
that learns a hierarchy of features on the top of hand-crafted features performs
better than these methods also probably thanks to the use of these hand-crafted
features that consists in a first “rough-extraction” in the raw audio data.

400 J. Martel et al.

In conventional learning methods for neural networks like back-propagation,
problems arise when building deep architectures with many layers. If for certain
applications a few layers can be sufficient to learn patterns from data, this is
clearly not the case in audio especially in a genre classification task where the
intra-class variability is very high. The fundamental hope in the proposed deep
architecture is to better fit the underlying data with less hidden variables in
each layer, more layers allowing to learn intricate “correlation” between these
variables. Learning a good set of features, that is able to capture the main regu-
larities of the model without capturing too much noise or “irregularities” make
the parametrization of deep learning machines really challenging and subtle.
However, they proved in many applications to be able to learn extremely inter-
esting structures in features. In this work, we use an instance of deep learning
strategies: the Restricted Boltzmann Machines as a building block for unsuper-
vised learning stacked in Deep Belief Networks we then fine-tune in a supervised
fashion.

The Restricted Boltzmann Machine. A Restricted Boltzmann Machine
(RBM) is a type of Boltzmann Machine which is an instance of a probabilistic
graphical model with interesting properties making inference tractable. The sim-
plified connections result in a bidirectional bipartite graph composed of binary
(that can be extended to real valued) stochastic units. On one side, a set of
visible units v = {vi}V receive the sensory input data (our block-wise MFFC),
while, on the other side, hidden units h = {hj}H can be regarded as holding an
internal model representation. They are connected together by a set of weights
W = {wij}V×H under the assumption that the weights can be used symmet-
rically wij = wji ∀(i, j) ∈ V × H . Pairwise energies can be defined over the
so-formed network and result as an energy for the configuration of the different
units: E(v,h) = vTWh. This energy codes the correlation for any combination
of two given binary units (in this case) to be “on” or “off” together. Then, a
probability to be in a certain energy state (joint probability of the visible units)
can be derived using the Boltzmann-Gibbs Distribution and as an analogy to
statistical mechanics: p(v,h) = 1

Z e−
1
T E(v,h) where Z stands for the partition

function and T is an arbitrary temperature.
For RBMs, it is easy to analytically compute p(h|v) and p(v|h).
Two phases can be distinguished in the learning process: 1) a positive phase:

when the visible data is clamped to the visible units and produces the activation
of hidden units 2) a negative phase: with free visible units for which the hidden
units produce a reconstructed visible data (an hallucination of the model). One
possible learning procedure uses unsupervised learning and tries to minimize the
reconstruction error between its own input and the reconstruction fantasized
by the model. We use the so-called contrastive divergence: a simili negative-
log likelihood learning procedure, for which the weights update is Δwij = ε(<
vihj >+ − < vihj >−) where ε is the chosen learning rate and < · > is the
expectation — the frequency of having vi and hj ”on” together — computed
respectively during the positive (+) and negative (−) phase.

A Combination of Hand-Crafted and Hierarchical High-Level Features 401

Fig. 2. From right to left : randomly selected features in each layer 1-3 of the hierarchy
learnt on block-wise MFCC

Deep Architecture Used in the Experiment Set-up. We build a DBN
with three RBM layers stacked on the top of each other and a single layer Per-
ceptron. We clamp the block-wise MFCC on the 2000 units input layer and use
10 Perceptrons as outputs for classification. Concerning the hidden layer archi-
tecture we achieve dimensionality reduction by using two layers of 600 units in a
row, with a high sparse penalty so that it helps to converge towards interpretable
features with condensed information. The last hidden layer contains 2000 units
to help the Perceptrons with linear separability. We used Gaussian visible units
in the first RBM layer because we intend to use the real values provided by our
block-wise MFCC. Gaussian units have shown to be good at learning real val-
ued data and seem much better at properly modeling our problem than binary
ones. A corollary is that it then takes much more time to learn such units. Using
Gaussian units makes the learning signal theoretically unbounded; therefore the
whole learning procedure might diverge very fast. That is why we use a low
learning rate of 0.01 with a L2 regularizer through weight decay to prevent an
explosion in the weight values.

In Figure 2, we present some randomly selected features from the three layers
of the Deep Belief Network learnt on our block-wise MFCC. To be visualized the
feature intensities are shifted and scaled by a normalization process (centered
on zero and scaled by their dynamic). Features in the second and third layers
are back-projected in the first layer in order to be displayed.

2.3 High Level Learnt Feature Fine-Tuning and Voting Scheme

The fine-tuning step consists in using a supervised learning algorithm with the
labels to help the high-level features we extracted previously to converge toward
features specific to our classifier. The unsupervised learning procedure we run for
RBM, namely ”Contrastive-Divergence 1”, does not make use of any label. This
is a strength because it can be run over big-data for which labels have not been
set. In this step, there is no need that the whole data we used previously to be
labeled, as we might want to use only a fraction of it to fine-tune the classifier.
As we target a 10-genre classification, we use a single layer of 10 Perceptrons on
top of our high level feature hierarchy, each of them being set with a hyperbolic
tangent activation function which outputs a confidence between -1 (not confident
at all) and 1 (almost sure) for the associated audio genre.

402 J. Martel et al.

2.4 Voting Scheme

The final step in our music-genre classification pipeline is to collect the confidence
outputs of the Perceptrons for a single song given the different classification
scores for each of the high-level features we extracted from each of the block-
wise MFCC. We propose two very simple voting schemes.

One-shot Voting Strategy: In the first case, for each frame from which we
extract our features, we perform a max operation over the classifiers (Per-
ceptrons). The classifier with the most confident output for a certain genre
casts a (+1) in a voting space consisting of the various genres, the other
ones do not impact the vote. The genre which received the highest number
of votes is declared the “winner” for the song.

Scoring Strategy: In the second scheme, each classifier votes according to its
confidence in a genre. The confidence is scored by the output of the Percep-
trons. Analogously the genre receiving the highest confidence is chosen to be
the winner for the analyzed song. In our system, as the final Perceptrons are
set with hyperbolic tangent activation functions, their scores range between
-1 and 1 for each genre.

3 Experiments and Results

We conducted 10-musical-genre-classification experiments using the GTZAN
dataset [1], which is widely used in this task. The dataset contains 100 songs for
each of the following musical genres: Blues, Classical, Country, Disco, Hiphop,
Jazz, Metal, Pop, Reggae and Rock (1000 songs in total). Some of them, —and
we will experience it— are rather easily identifiable: it is usually the case of Reg-
gae, Classical and Hard-rock. They usually do not give a lot of false negatives
and have therefore a high recall rate. However, other genres are difficult to clas-
sify. For instance, the inter-class variability between rock and hard-rock is likely
to be small against their intra-class variability and many false-positives of rock
are recognized as hard-rock leading to a low precision. In GTZAN, each song
is recorded during 30 seconds with a sampling rate of 22050 Hz using 16 bits
quantization. We use a 10-fold cross validation for evaluating our method. For a
fold, we select 90 songs from each genre for the training set (in total 900 songs)
and the rest is used for the validation (100 songs). In order that all the songs are
once used for training and validation, we proceed in such a manner 10 times and
we average our results over the 10 trials. In table 1, we present the results of the
classification after the fine-tuning step and after the voting scheme. The results
clearly show that applying such a classification scheme provides very high classi-
fication rates: 96.0% of average recall rate on block-wise MFCC (before voting)
and 99.8% on entire songs after voting with the score voting strategy. Table 2
clearly shows the superiority of the proposed approach when compared to the
state-of-the-art approaches, with an important gap of 7.1% with the second best
method.

A Combination of Hand-Crafted and Hierarchical High-Level Features 403

Table 1. Per class statistics: Recall, Precision and F1-measure on the block-wise MFCC
after high-level features fine-tuning and Recall for the final voting scheme (2 strategies)
using the fused high-level features from block-wise MFCC

.
.
. Block-wise MFCC Fused features

Genres Recall Precision F1-measure One-shot Voting: Recall Score Voting: Recall

Blues 0.97 0.97 0.98 1.00 1.00
Classical 0.98 0.97 0.98 1.00 1.00
Country 0.96 0.94 0.95 1.00 1.00
Disco 0.96 0.97 0.96 0.99 1.00

HipHop 0.95 0.96 0.96 0.98 0.98
Jazz 0.97 0.97 0.97 1.00 1.00
Metal 0.97 0.96 0.96 0.99 0.99
Pop 0.93 0.97 0.95 1.00 1.00

Reggae 0.96 0.95 0.95 1.00 1.00
Rock 0.95 0.94 0.95 1.00 0.99

Avg. (%) 96.0 99.7 99.8

Table 2. Overall results: recall rates (%) on the GTZAN music-genre classification
problem, from [17] and completed with our results (in bold)

No Classifier Type of features Recall

1 Perceptrons Learnt using DBN on MFCC 99.8
2 CSC [15] Many features 92.70
3 SRC [16] Auditory cortical features 92
4 RBF-SVM [10] Learnt using DBN on spectrum 84.3
5 Linear SVM [17] Learnt using PSD on octaves 83.4
6 AdaBoost [4] Many features 83
7 Linear SVM [17] Learnt using PSD on frames 79.4
8 SVM [18] Daubechies-Wavelets 78.5
9 Log. Reg. [19] Spectral Covariance 77
10 LDA [14] MFCC + other 71
11 Linear SVM [16] Auditory cortical features 70
12 GMM [20] MFCC + other 61

4 Conclusion

In this paper, we have proposed a new approach for musical genre classification
which relies on learning a feature hierarchy over block-wise MFCC and outper-
forms the experiments that have been conducted until now. There are several
reasons that may explain such an improvement of the state-of-the-art results.
First, our strategy is based on MFCC that we tuned and customized to achieve
temporal and timbral extraction. We then produce a set of different features
which are of high-level and task specific thanks to the fine-tuning step. We also
make use of sparsity because it is probably a privileged process to be able to
learn such a number of features via the so called over-complete sparse represen-
tations. Concerning our classifier, we use a simple Single Layer Perceptron which
could be “compared” to a linear-SVM used in most methods but that can refine
the features previously found when fine-tuning with the back-propagation super-
vised learning. Unlike most approaches where each component may be trained
(or fixed) “independently”, our system is trained in a holistic way: each mod-
ule influences the other ones during the different learning phases, leading to a
powerful solution.

404 J. Martel et al.

References

1. Tzanetakis, G.: Musical genre classification of audio signals. IEEE Transactions on
Speech and Audio Processing 10(5), 293–302 (2002)

2. Lidy, T., Rauber, A.: Evaluation of feature extractors and psycho-acoustic trans-
formations for music genre classification. In: International Society for Music Infor-
mation Retrieval Conference, pp. 34–41 (2005)

3. Tsuji, Y., Akahori, K., Nishikata, A.: The estimation of music genre using neu-
ral network and its educational use. In: International Conference on Computer-
Assisted Instruction, pp. 158–162 (2000)

4. Bergstra, J., Kgl, B.: Aggregate features and adaboost for music classification.
Machine Learning 2(65), 473–484 (2006)

5. Seyerlehner, K., Schedl, M., Pohle, T., Knees, P.: Using block-level features for
genre classification, tag, classification and music similarity estimation. In: IMEX
(2010)

6. Costa, Y., Oliveira, L., Koerich, A., Gouyon, F.: Music genre recognition using
spectograms. In: WSSIP 2010, pp. 151–154 (2010)

7. Hua, B., Fu-long, M., Li-cheng, J.: Research on computation of glcm of image
texture (2006)

8. Li, T.L., Chan, A., Chun, A.: Automatic musical pattern feature extraction using
convolutional neural network. In: IMECS 2010 (2010)

9. Hinton, G.: To recognize shapes, first learn to generate images. Progress in Brain
Research 165, 535–547 (2006)

10. Hamel, P., Eck, D.: Learning features from music audio with deep belief networks.
In: International Society for Music Information Retrieval, pp. 339–344 (2010)

11. Ranzato, M., Boureau, Y.-L., Chopra, S., Lecun, Y.: A unified energy-based frame-
work for unsupervised learning. Journal of Machine Learning Research 2, 371–379
(2007)

12. Bridle, J., Brown, M.: An experimental word recognition system, jsru report no
1003. Joint Speech Research Unit, Ruislip, England, Tech. Rep. (1974)

13. Li, T.L., Chan, A.: Genre classification and the invariance of mfcc features to key
and tempo. In: International Conference on MultiMedia Modeling (2011)

14. Li, T.L., Tzanetakis, G.: Factors in automatic musical genre classification. In: IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (2003)

15. Chang, K., Jang, J., Ilioupoulos, C.: Music genre classification via compressive
sampling. In: International Society for Music Information Retrieval, pp. 387–392
(2010)

16. Panagakis, Y., Kotropoulos, C., Arce, G.: Music genre classification using locality
preserving non-negative tensor factorization and sparse representations. In: Inter-
national Society for Music Information Retrieval, pp. 249–254 (2009)

17. Henaff, M., Jarett, K., Kavukcuoglu, K., LeCun, Y.: Unsupervised learning of
sparse features for scalable audio classification. In: International Society for Music
Information Retrieval (2011)

18. Li, T.L., Ogihara, M., Li, Q.: A comparative study on content-based music genre
classification. In: ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (2003)

19. Bergstra, J., Mandel, M., Eck, D.: Scalable genre and tag prediction using spectral
covariance. In: International Society for Music Information Retrieval (2010)

20. Smith, E., Lewicki, M.: Efficient auditory coding. Nature (2006)

Exploration of Loneliness Questionnaires
Using the Self-Organising Map

Krista Lagus1, Juho Saari2, Ilari T. Nieminen1, and Timo Honkela1

1 Aalto University School of Science, Dep’t of Information and Computer Science
P.O. Box 15400, FI-00076 Aalto, Finland

2 University of Eastern Finland, Dep’t of Social Sciences
P.O. Box 1627, FI-70211 Kuopio, Finland

Abstract. Statistical machine learning methods can provide help when develop-
ing preventative services and tools that support the empowerment of individuals.
We explore how the self-organizing map could be utilized as a tool for ana-
lyzing, visualizing and browsing heterogeneous survey data on wellbeing that
contains both quantitative (numeric) and qualitative (text) data. There is system-
atic evidence implying that social isolation has drastic consequences for subjec-
tive well-being and health. It is important to obtain a deeper understanding of
the phenomenon. Analysis of loneliness questionnaire data (N=521) succeeds in
identifying profiles of loneliness as well as identifies crowd-sourced ideas for
improving social wellbeing among the different subgroups.

1 Introduction

Statistical machine learning methods are increasingly applied in understanding complex
questions related to human and social sciences (see, e.g., [1]). These phenomena are of-
ten very dynamic and involve a large number of variables with a substantial number of
feedback loops. Therefore, the use of traditional quantitative methods like hypothesis-
driven statistical analysis may lead to overly simplified conclusions. When there is a
large number of variables involved or when text data is analyzed along with numerical
data, dimensionality reduction and visualization methods are useful. The self-organizing
map (SOM) [2] is one of the most popular data visualization methods. It is particu-
larly useful hen the faithfulness of the mapping from a high-dimensional space into a
low-dimensional space is important [3]. The SOM is widely used for data analysis and
visualization, i.e., in biosciences [4], while relatively unknown within social sciences
and humanities. In the latter, it has substantial potential in helping to deal with complex
phenomena and in linking quantitative and qualitative research (see, e.g., [5,6]).

1.1 Support for Wellbeing Using Web Services and Data Mining

Research on human health is becoming an increasingly multidisciplinary and interdis-
ciplinary endeavor. In addition to the traditional view on health as a biological and
medical phenomenon, its cognitive, psychological, social and societal dimensions have
been acknowledged as well. A sign of this kind of broadening of research focus is the

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 405–411, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

406 K. Lagus et al.

use of the term “wellbeing” instead of the term “health”. Human health and wellbeing
is a dynamic phenomenon that is influenced by a number of physical, physiological,
psychological and social variables such as age, weight, education, family and social
relations, attitudes and habits [7].

The objective of our project called VirtualCoach has been to explore the development
of preventative services and tools that support the empowerment of individuals. Our aim
has been to apply statistical data analysis and machine learning methods and tools in the
area of wellbeing research. This research area can be called wellbeing informatics. In
practical applications, the methodological basis is closely intertwined with web-based
services and crowdsourcing. Wellbeing informatics can then be defined as the activity
where observations regarding individual wellbeing are collected and analysed using
methods suitable for finding value in large data sets. We define the final purpose of
wellbeing informatics as to identify and share socially such information to relevant
other individuals [8].

Earlier in our wellbeing informatics research, we have analyzed fitness data [9,8],
compared different visualization methods such as multidimensional scaling (MDS),
self-organising map, generative topographic mapping (GTM) and neighbour retrieval
visualiser (NeRV) in relation to stress data [10], developed means for finding wellbeing-
related stories that are relevant regarding their topic and suitable regarding their emotive
content [11], and studied how to analyze and visualize trajectories of the development
of wellbeing [8].

2 Loneliness Questionnaires as an Object of Study

In our research, the main underlying questions have been the following. (1) How to
conduct quantitative and qualitative analysis on survey data related to loneliness? (2)
Can the analysis uncover useful and non-trivial findings from experiences or reports of
loneliness? Can we detect paths leading to loneliness, or escape routes? (3) Is it possible
to transfer respectful encounters into a virtual forum? Can questionnaires serve as an
intervention? In this article, we focus on the first two questions and discuss the third in
the conclusions. In the following, we discuss loneliness as an object of study, describe
the collected data and the method used in the analysis.

Most individuals occasionally feel socially isolated. However, for some such a feel-
ing seems to be a quite permanent state of emotional affairs. Most surveys imply that
the proportion of permanently isolated varies between 10 - 20 % depending on the ways
of wording the surveys. Sometimes it is simply asked using different scales and time
frames, whether the responded feels lonely; in some other times, it is asked whether the
responded has somebody with whom they can share the most private issues. As a rule,
one finds that the stronger the rate of isolation, the higher the identity of lonely person.

While in some countries, there is some evidence on the increasing proportion of
population experiencing loneliness, there is no universal evidence on such a trend, con-
trary to the opinion of many social commentators who argue the opposite on the ba-
sis of sporadic evidence. Time series on the issue are scarce and further evidence is
clearly needed. Furthermore, the proportion of lonely persons seems to be the lowest in
small welfare states whereas the highest proportions of loneliness are found in transition
economies, like Bulgaria.

Exploration of Loneliness Questionnaires Using the Self-Organising Map 407

Regardless of its proportion, there is some systematic evidence implying that social
isolation has drastic consequences for subjective well-being (SWB) and health (SH). In
both cases, the co-efficient of variation is quite strong and universally statistically sig-
nificant. Furthermore, causally, there is some systematic evidence that isolation results
in numerous unwanted social and mental states.

It remains somewhat unclear, however, why social isolation has so drastic conse-
quences for SWB and SH. There are some tentative theoretical frames. An evolutionary
framework argues in favor of social animal hypothesis and argues that despite of selfish
genes we are co-operative animals who benefit from social interaction. Therefore, the
emotional pain resulting from social isolation has some evolutionary gains. Sociologi-
cally, social isolation reflects the degree of social solidarity in a society, more precisely,
the lack of it; in this context, social isolation is a way to measure anomie in a society.

Social isolation or loneliness can be defined as the subjective evaluation that the
number of relationships is smaller than the individual considers desirable or that the
intimacy that the individual wishes for has not been realized [12]. Social isolation is a
severe health risk both physically and mentally [13]. Those who suffer from loneliness
most include people who are ill, unemployed, or who are single parents [14]. Regarding
children, it has been found out that cohesive families exhibit the lowest levels of loneli-
ness and the highest levels of personal strengths [15]. There is a link between loneliness
and depression. Rumination mediates the relationship between peer-related loneliness
and depressive symptoms and moderates the relationship between parent-related lone-
liness and depressive symptoms [16]. Rumination refers to the habit of focusing on a
repetitive manner on symptoms of distress and on the possible causes and consequences
of these symptoms. When parents feel lonely, there are also consequences for the chil-
dren. Parental loneliness and a history of being bullied are each significant predictors
of young adult loneliness [17]. On the other hand, a family environment that supports
open communication is negatively correlated with loneliness of young adults [17]. It
has been found out that in the southern and central European countries, loneliness is
largely attributable to not being married, economic deprivation, and poor health [12].

2.1 Data Collection

We conducted a survey on loneliness in association with the Common Responsibility
Campaign (in Finnish “yhteisvastuukeräys”, see the web site yhteisvastuu.fi/en/ for de-
tails). The questionnaire was advertised at the web page of the campaign for 2.5 months
during Spring 2011. It was targeted to people who are lonely now or have sometimes ex-
perienced loneliness, and obtained 521 answers. Questionnaire design took place in the
framework of positive psychology [18] with the goal of extracting profiles and paths
using data analysis. The questionnaire included five open (text) questions, 23 closed
questions with Likert scale, a question on the loneliness type, and background ques-
tions related to the age, gender, and the geographical area and size of place of living.
The open questions were: (1) How did you become lonely? Please describe the circum-
stances. (2) How did it feel? How did it affect your mind and behaviour? (3) How did you
survive loneliness (or despite it)? Where did you find resources? What kind of survival
mechanisms did you develop? (4) Did people close to you know about your loneliness?
How did they react? (5) What would you like to say to others in a similar situation?

408 K. Lagus et al.

2.2 Methods

We used the self-organizing map (SOM) [2] to analyze the questionnaire data. Within
human and social sciences, the SOM has been used, for instance, in the analysis of vot-
ing patterns [19], religious conceptions [20], large text collections [21], and conceptual
similarities of words [22].

Fig. 1. Condition in the worst year of life. Dark
red marks the highest value for a variable.
Strong correlations are visible. Those worst off
are found in the upmost part.

Fig. 2. Condition during last month. The indi-
viduals with largest positive changes are found
in the middle and lower part of the map.

3 Results

Closed-class question data was analyzed using the SOM [2]. Each of the 521 individu-
als was treated as a data point, represented as a vector. The 23-dimensional vectors were
normalized, and ordered automatically on the two-dimensional lattice by the SOM algo-
rithm using SOM ToolBox for MATLAB1. A visualized map interface was developed
for browsing the text answers to facilitate qualitative analysis.

Figures 1 and 2 indicate the development of the persons’ condition from their worst
year to last month. There is a clear general positive tendency. The area related to neg-
ative conditions (loneliness, depression and sadness) has decreased significantly and
given room to positive conditions (being happy, accepted, content and calm). As ex-
pected, the positive as well as negative conditions correlate in the group to a large de-
gree. These first maps give rise to two important questions: (1) What can be said about
people whose condition has improved, and (2) What is characteristic of people whose
condition has remained problematic? The first question can be examined from by Fig-
ure 3 that indicates level of content regarding various aspects of life, and helps identify
the loneliness profiles that are then pointed out explicitly in Figure 4. Regarding the
second question, Figure 5 depicts an overview of the means of surviving loneliness that
the written responses in the “survivors” group revealed.

1 Euclidean geometry was applied for distance calculation since it was available in the tool,
however with categorical variables one might wish to consider other metrics [23].

Exploration of Loneliness Questionnaires Using the Self-Organising Map 409

Fig. 3. Levels of being content with different aspects of life. Here different sub-groups in the
“most lonely” upper part of the map can be identified. In particular, upper right corner contains
individuals who are delatively content with their family, relatives whereas upper left group is
discontent about all relationships.

Fig. 4. Profiles of loneliness among the chronically lonely

Fig. 5. Topics that the “survivors” related to positive developments

410 K. Lagus et al.

4 Conclusions and Discussion

From a methodological perspective, we show how the SOM or similar visualization
principle can be useful in the analysis of rather typical social sciences data - namely
questionnaires containing both closed-class questions and open text questions. The map
allows looking at correlations among several variables at once in a way that is richer
than correlations table, but less precise. The visualization allows the researcher to gain
an overview of the phenomenon and subsequently focus reading of the written accounts
to the most interesting part of the data set. The benefit is that the researcher can collect
a practically unrestricted amount of data, and still make useful conclusions about it.

On social isolation we can conclude that loneliness, depression and sadness are
highly correlated. An interesting finding are the different loneliness profiles based on
the different types of support that people experience and lean to, as well as the identi-
fication of the group of survivors. The latter group offers hope and crowdsourced ideas
on how to survive loneliness. Future applications include the possibility to design in-
terventions targeted to the different loneliness profiles. For example, the group in the
upmost part of the map appears to require more intensive professional help possibly
in several areas of health and social services. In contrast, the group in the right who
are extremely lonely but relatively happy with work and standard of living etc, might
benefit from a different type of support, such as social activities organized in the work
context, or ideas obtained from the survivors group.

The questionnaire was designed to be a positive intervention in the lives of the re-
spondents. Based on the unexpectedly large number of answers as well as the written
feedback, we tentatively conclude that questionnaires when designed from a respectful
encounters perspective can indeed be positive interventions. This is extremely important
from an ethical perspective, especially when researching individuals who are already in
a difficult situation and whose resources may be low - so as to not tax their resources
further, but instead to empower the individuals. We have also applied our approach
with success in the context of collecting data regarding stress and recovery, as well as
on studying breastfeeding experiences.

References

1. Castellani, B., Hafferty, F.: Sociology and Complexity Science: A New Field of Inquiry.
Springer (2009)

2. Kohonen, T.: Self-organizing maps. Springer (2001)
3. Venna, J., Kaski, S.: Local multidimensional scaling. Neural Networks 19(6), 889–899

(2006)
4. Nikkilä, J., Törönen, P., Kaski, S., Venna, J., Castrén, E., Wong, G.: Analysis and visualiza-

tion of gene expression data using self-organizing maps. Neural networks 15(8), 953–966
(2002)

5. Castellani, B., Castellani, J., Spray, S.L.: Grounded neural networking: Modeling complex
quantitative data. Symbolic Interaction 26(4), 577–589 (2003)

6. Janasik, N., Honkela, T., Bruun, H.: Text mining in qualitative research: Application of an
unsupervised learning method. Organizational Research Methods 12(3), 436–460 (2009)

Exploration of Loneliness Questionnaires Using the Self-Organising Map 411

7. Honkela, T., Koskinen, I., Koskenniemi, T., Karvonen, S.: Kohonen’s Self-Organizing Map
in Contextual Analysis of Data. In: Information Organization and Databases: Foundations of
Data Organization, pp. 135–148. Kluwer (2000)

8. Lagus, K., Vatanen, T., Kettunen, O., Heikkilä, A., Heikkilä, M., Pantzar, M., Honkela, T.:
Paths of wellbeing on self-organizing maps. In: Proc. of WSOM 2012, pp. 345–352 (2012)

9. Vatanen, T., Heikkilä, M., Honkela, T., Kettunen, O., Lagus, K., Pantzar, M.: Kuntotiedot
kartalle - erilaiset hyvä- ja huonokuntoisten ryhmät näkyviin. Liikunta & Tiede (Sports &
Science), 48–53 (2012)

10. Heikkilä, A.: Information visualisation in a peer support application. Master’s thesis, Aalto
University, Department of Information and Computer Science, Espoo, Finland (2012)

11. Honkela, T., Izzatdust, Z., Lagus, K.: Text mining for wellbeing: Selecting stories using
semantic and pragmatic features. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G.
(eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 467–474. Springer, Heidelberg (2012)

12. Fokkema, T., De Jong Gierveld, J., Dykstra, P.A.: Cross-national differences in older adult
loneliness. The Journal of psychology 146(1-2), 201–228 (2012)

13. Hagerty, B.M., Williams, A.: The effects of sense of belonging, social support, conflict, and
loneliness on depression. Nursing Research 48(4), 215–219 (1999)

14. Saari, J.: Yksinäisten yhteiskunta (The society of the lonely). WSOY (2009)
15. Sharabi, A., Levi, U., Margalit, M.: Children’s loneliness, sense of coherence, family climate

and hope: Developmental risk and protective factors. The Journal of Psychology 146(1-2),
61–83 (2012)

16. Vanhalst, J., Luyckx, K., Raes, F., Goossens, L.: Loneliness and depressive symptoms: The
mediating and moderating role of uncontrollable ruminative thoughts. The Journal of psy-
chology 146(1-2), 259–276 (2012)

17. Segrin, C., Nevarez, N., Arroyo, A., Harwood, J.: Family of origin environment and adoles-
cent bullying predict young adult loneliness. The Journal of Psychology 146(1-2), 119–134
(2012)

18. Seligman, M.E.: Positive psychology, positive prevention, and positive therapy. Handbook of
Positive Psychology 2, 3–12 (2002)

19. Pearson, P.T., Cooper, C.I.: Using self organizing maps to analyze demographics and swing
state voting in the 2008 U.S. Presidential election. In: Mana, N., Schwenker, F., Trentin, E.
(eds.) ANNPR 2012. LNCS, vol. 7477, pp. 201–212. Springer, Heidelberg (2012)

20. Pyysiäinen, I., Lindeman, M., Honkela, T.: Counterintuitiveness as the hallmark of religios-
ity. Religion 33(4), 341–355 (2003)

21. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM—self-organizing maps of docu-
ment collections. Neurocomputing 21, 101–117 (1998)

22. Lagus, K., Airola, A., Creutz, M.: Data analysis of conceptual similarities of Finnish verbs.
In: Proceedings of CogSci 2002, pp. 566–571 (2002)

23. Cottrell, M., Ibbou, S., Letremy, P.: Som-based algorithms for qualitative variables. Neural
Networks 17(8-9), 1149–1167 (2004)

An Effective Dynamic Gesture Recognition

System Based on the Feature Vector Reduction
for SURF and LCS

Pablo V.A. Barros, Nestor T.M. Júnior, Juvenal M.M. Bisneto,
Bruno J.T. Fernandes, Byron L.D. Bezerra, and Sérgio M.M. Fernandes

Polytechnics School - University of Pernambuco - Recife, Brazil
{pvab,ntmj,jmmb,bjtf,byronleite,smmf}@ecomp.poli.br

Abstract. Speed Up Robust Feature (SURF) and Local Contour Se-
quence(LCS) are methods used for feature extraction techniques for dy-
namic gesture recognition. A problem presented by these techniques is
the large amount of data in the output vector which difficult the clas-
sification task. This paper presents a novel method for dimensionality
reduction of the features extracted by SURF and LCS, called Convexity
Approach. The proposed method is evaluated in a gesture recognition
task and improves the recognition rate of LCS while SURF while de-
creases the amount of data in the output vector.

1 Introduction

Hand gesture recognition system provides a natural, user-friendly way of inter-
action with the computer which is more familiar to the human beings. Gesture
recognition has a wide area of application including human machine interac-
tion, sign language and video game technology. Most of the dynamic gesture
recognition systems are divided in two steps: feature extraction and pattern
classification. Several techniques are applied for feature extraction but many
of them might fall in dimensionality curse as show in the survey published by
Bilal et al[3]. The dimensionality curse says that the numerical approximation
of a function will require more computation as the number of active variables
grows [9].

Meena [11] uses the Local Contour Sequence (LCS) algorithm to calculate
the feature vector for gesture recognition. This technique generates an output
with many features by the calculation of the distance of all the points that
compound a hand posture, which can difficult the learning process. Bao et al.
[1] use the Speed Up Robust Features (SURF) to recognize gestures trough
tracking. In their work, they use the SURF points in adjacent frames to help
describing a hand trajectory. SURF generates many points, as it is applied in all
the image an returns the interest points based in different image transformations
and not in the observed object. Jiang et al. [8] describe full body gestures using
SURF and Bag of Video Worlds Model to normalize the interest points extracted
by SURF. This method uses a set of SURF descriptors for each interest point

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 412–419, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Effective Dynamic Gesture Recognition System 413

extracted. This descriptors are obtained summing the HAAR wavelets response
around the interest points and thus generates a large feature vector, containing
each description vector for all the interest points. Yao et al. [15] use SURF to
extract the key points of a hand posture and uses Adaboost to decrease the
computational cost for the training. Yao et al. method increase the classification
efficiency by using a hybrid classification model, but the feature vector still
contain the same amount of features, and it could be minimized.

This paper introduces a novel method to reduce the feature vector size. The
Convexity approach extends LCS and SURF and shows a better result in classi-
fication of dynamic gestures. A experiment in gesture recognition is performed
and demonstrate the efficiency and efficacy of the approach with three different
pattern classification methods: Dynamic Time Wrapper [13], Hidden Markov
Model [12] and Elman Recurrent Neural Network [7].

This paper is structured as follows: Section II describes the Convexity Ap-
proach algorithm. Section III presents the experimental results. Finally, in Sec-
tion IV, the conclusions and some future work are given.

2 Convexity Approach

The Convexity Approach reduces a feature vector, choosing the smallest group
of points that can represent the hand posture. This algorithm is applied in
Local Contour Sequence (LCS), created by Gupta [4], and in Speed Up Robust
Features (SURF) described by Bay [2] . The input for the Convexity Approach is
a set of points that represents the hand posture. The first step of the Convexity
Approach algorithm is to minimize the hand posture. The second step is to find
the convex hull of the previously selected points. The last step uses the points
that composes the convex hull for a feature calculation based on point distance.
Figure 1 shows the execution illustration of the Convexity Approach.

Fig. 1. Convexity Approach execution illustration

The Douglas-Peucker algorithm [6] is used in the first step to create an ap-
proximation curve of the external points, forming a minimized polygon for hand
posture. In this algorithm, the two extreme endpoints of a set of points are con-
nected with a straight line as the initial rough approximation of the polygon.
Then, it approximates the whole polygon by computing the distance from all in-
termediate polygons vertices to that line segment. If all these distances are less
than the specified tolerance T, then the approximation is good, the endpoints
are retained, and the other vertices are eliminated. However, if any of these
distances exceeds the T tolerance, then the approximation is not good enough.

414 P.V.A. Barros et al.

(a) Polygon Mini-
mization

(b) Convex Hull
and inner points
selection

Fig. 2. Outputs of step one (a) and two (b) of Convexity Approach

In this case, it chooses the point that is furthest away as a new vertex subdividing
the original set points into two set points. This procedure is repeated recursively
on these two shorter set points. If at any time, all of the intermediate distances
are less than the T threshold, then all the intermediate points are eliminated.
The routine continues until all possible points have been eliminated. Figure 2(a)
shows the output of this step.

The second step is to select the most significant points for the specifically
hand posture. We run the Sklankys [14] algorithm in the last step output.The
algorithm consists in the following sequence:

– The convex vertex of the polygon is found.
– The remaining n-1 vertexes are named in clockwise order starting at P0.
– Select P0, P1 and P2 vertices and call then “Back”, “Center” and “Front”

respectively
– Execute the follow algorithm:

• while “Front” is not on vertex P0 and “Back”, “Center” and “Front”
form a right turn do

if “Back”, “Center” and “Front” form a left turn or are collinear
vertex then

change “Back” to the vertex ahead of “Front”. Relabel “Back”
to “Front”, “Front” to “Center” and “Center” to “Back”.

else if “Back”, “Center” and “Front” turn left then
change “Center” to the vertex behind “Back”, Remove the ver-

tex and associated edges that “Center” was on and relabel “Center”
to “Back” and “Back” to “Center”

end if
end while

– For each pair of selected points the algorithm traces a line. The most distant
point of this line is selected as an inner point. Figure 2(b) shows the resultant
points of the algorithm in a input image.

An Effective Dynamic Gesture Recognition System 415

Fig. 3. Applying the Convexity Approach on LCS (a) produces a new output vector
(b). Applying the Convexity Approach on SURF (c) produces a new output vector (d).

The last step of convexity approach is the feature extraction based on distance
calculation. A line is formed by each pair of the external points chosen by step
two. The distance between this line and the closer inner point is calculated and
added to the output vector. Figure 3 shows the result obtained by LCS and SURF
and the application of Convexity Approach, respectively CLCS and CSURF.

For some classification techniques, such as Neural Networks, the feature vector
must be normalized. To solve this problem we propose a method. First, the
number of normalized distances is defined. Then if the image has fewer points
than the determined one, “0” are added in the feature vector until matches
the desired length. The outputs with more points than the desired length are
normalized using a selection algorithm. This algorithm consists in calculation of
a window, W, through the division of the output length for the desired length.
The output vector is traversed, and each W position is added to the new vector
of outputs. If the new output vector is smaller than the desired length, the
remaining positions are randomly visited and used to compose the new output
vector until the desired length is achieved.

3 Dynamic Gesture Recognition

The efficiency and effectiveness of the Convexity Approach applied to LCS and
SURF algorithms is evaluated in this task. We compare the results of the classifi-
cation of dynamic gestures using the original version of the LCS and SURF with
the extended one applying the Convexity Approach, called CLCS and CSURF,
respectively.

3.1 Methodological Protocol

The database used for this test is the RPPDI Gesture Database1. It contains a
set of four different gestures: Click, Grasp, No and Goodbye.

To test the algorithms a dynamic gesture recognition system is used and it
is composed by two modules: extraction and classification. Four methods for
feature extraction are evaluated: SURF, LCS, CSURF and CLCS. Three clas-
sification techniques are build: Dynamic Time Wrapper, Hidden Markov Model

1 Available at http://rppdi.ecomp.poli.br/gesture/database/

416 P.V.A. Barros et al.

Table 1. Best Techniques Configuration Combination with and without Convexity
Approach

Technique Parameters CLCS CSURF LCS SURF

Elman RNN Neurons Input Layer 140 210 5600 1400
Hidden Layers 12 14 75 37

Neurons Output Layer 4 4 4 4

Execution Average Time 21.843ms 27.953ms 72.662ms 76.543ms

Taining Average Time 210824ms 180351ms 400298ms 550221ms

HMM States 3 3 3 3
Baum-Welch Iterations 100 100 10 10

Features 10 10 5600 1400

Execution Average Time 181.959ms 276.724ms - -

Taining Average Time 0.446ms 0.690ms - -

DTW Features 140 210 5600 1400
Execution Average Time 45.743ms 164.964ms 640.713ms 1722.289ms

Taining Average Time 129.015ms 133.620ms 156.048ms 208.191ms

and an Elman Recurrent Neural Network. The experiments are evaluated with
the combination of each extraction technique with each classification technique.

The Recurrent Neural Network chosen for the classification module is the
Elman Recurrent Neural Network(Elman RNN). The Backprogation with Simu-
lated Annealing training strategy is used as it showed good results for dynamic
sequences training in the work of Zhang [16]. The Hidden Markov Model tech-
nique uses a K-Means Clustering [5] to find the best initial approximation. The
Baum-Welch algorithm [10] is used to train the HMM, resulting in a fast training
process.

All experiments are repeated 30 times in a database division containing 2/3
of the sequences in each gesture class for training and 1/3 for testing, randomly
chosen. The results present the mean among all repetitions. The best configura-
tion results are showed in Table 1.

3.2 Experimental Results

The 5600 features of the LCS are too excessive to calculate the HMM probabili-
ties, and it could not converge in a result. The same happens when using SURF.
The HMM used with CLCS and CSURF reached a recognition rate of 91%, for
both, as showed in Table 2.

Elman Recurrent Neural Network recognized 77% of the gestures using the
LCS. Using SURF the recognition rate dropped to 72%. The CLCS recognition
rate was 90% and the CSURF recognition rate was 92%. Table 3 shows the
confusion matrix of all the extraction techniques combined with the RNN.

An Effective Dynamic Gesture Recognition System 417

Table 2. Confusion Matrix using CLCS and CSURF as feature extraction technique
techniques and HMM as classification technique

CLCS CSURF
Gest. 1 Gest 2. Gest. 3 Gest. 4 Gest. 1 Gest 2. Gest. 3 Gest. 4

Gest. 1 0 1 4 0 Gest. 1 1 0 4 0
Gest. 2 1 6 1 0 Gest. 2 0 8 0 0
Gest. 3 0 0 11 0 Gest. 3 2 0 9 0
Gest. 4 0 0 0 6 Gest. 4 0 0 0 6

Table 3. Confusion Matrix using LCS, CLCS, SURF and CSURF as feature extraction
technique techniques and RNN as classification technique

LCS CLCS
Gest. 1 Gest 2. Gest. 3 Gest. 4 Gest. 1 Gest 2. Gest. 3 Gest. 4

Gest. 1 4 3 1 0 Gest. 1 7 1 0 0
Gest. 2 2 6 0 0 Gest. 2 1 7 0 0
Gest. 3 2 0 9 0 Gest. 3 1 0 10 0
Gest. 4 0 0 0 6 Gest. 4 0 0 0 6

SURF CSURF
Gest. 1 Gest 2. Gest. 3 Gest. 4 Gest. 1 Gest 2. Gest. 3 Gest. 4

Gest. 1 4 3 1 0 Gest. 1 7 0 1 0
Gest. 2 2 6 0 0 Gest. 2 0 8 0 0
Gest. 3 3 0 8 0 Gest. 3 2 0 9 0
Gest. 4 0 0 0 6 Gest. 4 0 0 0 6

Table 4. Confusion Matrix using LCS, CLCS, SURF and CSURF as feature extraction
technique techniques and DTW as classification technique

LCS CLCS
Gest. 1 Gest 2. Gest. 3 Gest. 4 Gest. 1 Gest 2. Gest. 3 Gest. 4

Gest. 1 12 3 0 0 Gest. 1 13 0 2 0
Gest. 2 2 11 0 3 Gest. 2 2 16 0 0
Gest. 3 5 0 14 2 Gest. 3 2 0 21 0
Gest. 4 0 0 0 12 Gest. 4 0 0 0 12

SURF CSURF
Gest. 1 Gest 2. Gest. 3 Gest. 4 Gest. 1 Gest 2. Gest. 3 Gest. 4

Gest. 1 12 3 0 0 Gest. 1 13 2 0 0
Gest. 2 2 11 0 3 Gest. 2 1 15 1 0
Gest. 3 5 0 13 3 Gest. 3 1 20 0 0
Gest. 4 0 0 0 12 Gest. 4 0 0 0 12

418 P.V.A. Barros et al.

Table 5. Classication rate resume for all the Feature Extraction/Classification tech-
niques combinations

Combination Clas(%) Combination Clas(%) Combination Clas(%)

HMM + LCS - RNN + LCS 77.0 DTW + LCS 77.0
HMM + SURF - RNN + SURF 72.0 DTW + SURF 75.0
HMM + CLCS 91.0 RNN + CLCS 90.0 DTW + CLCS 97.0
HMM + CSURF 91.0 RNN + CSURF 92.0 DTW + CSURF 93.0

Using DTW to classify the distances between the sequences provided by the
LCS technique generated a recognition rate of 77%. Using the SURF sequences
75% of the gestures were recognized correctly. Using CLCS the recognition rate
was 97% and CSURF got 93% of the correct gestures recognized. Table 4 shows
the confusion matrix.

Table 5 shows the resume of this session. The combinations of feature extrac-
tion techniques with classification techniques was evaluated. Except for LCS and
SURF in HMM because the amount of data was too excessive, a problem cor-
rected by Convexity Approach. It shows that the Convexity Approach obtained
a higher classification rate in all the combinations. The results shows the use
of Convexity Approach decreased the size of extracted feature vector and also
increased the recognition rate for all the classification techniques. It shows also
that the Convexity Approach lowered the classification and execution time for
all techniques.

4 Conclusion

The Convexity Approach creates a minimized feature vector for dynamic gesture
recognition. It uses a dynamic selection of points, based in the point significance
in the hand posture model, to reduce the total point given by a feature extraction
technique.

To evaluate the Convexity Approach in a gesture recognition task, it is used in
LCS and SURF, and the results used in two in two dynamic gesture recognition
system, one based on HMM and one based on DTW. The results are compared
and showed that Convexity Approach got better recognition rates.

The Future Works can be listed as: Apply the Convexity Approach to others
gesture feature extraction techniques and test the CLCS and CSURF in bench-
mark gesture recognition databases.

Acknowledgments. This work was partially supported by Brazilian agencies:
CNPq, CAPES and FACEPE. This project is possible due the FACEPE process
number APQ-0949-1.03/10 - ”Reconhecimento de gestos uma aplicação para
reconhecimento de sinais de surdos com dispositivos móveis”.

An Effective Dynamic Gesture Recognition System 419

References

1. Bao, J., Song, A., Guo, Y., Tang, H.: Dynamic hand gesture recognition based
on surf tracking. In: 2011 International Conference on Electric Information and
Control Engineering (ICEICE), pp. 338–341 (April 2011)

2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf).
Comput. Vis. Image Underst. 110(3), 346–359 (2008),
http://dx.doi.org/10.1016/j.cviu.2007.09.014

3. Bilal, S., Akmeliawati, R., El Salami, M., Shafie, A.: Vision-based hand posture
detection and recognition for sign language; a study. In: 2011 4th International
Conference on Mechatronics (ICOM), pp. 1–6 (2011)

4. Gupta, L., Ma, S.: Gesture-based interaction and communication: automated clas-
sification of hand gesture contours. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews 31(1), 114–120 (2001)

5. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Journal of the Royal
Statistical Society. Series C (Applied Statistics) 28, 100–108 (1979)

6. Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms
(1997)

7. Jain, L.: Recurrent Neural Networks, 1st edn. CRC Press (2001)
8. Jiang, X., Sun, T., Feng, B., Jiang, C.: A space-time surf descriptor and its

application to action recognition with video words. In: 2011 Eighth Interna-
tional Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 3,
pp. 1911–1915 (July 2011)

9. Kouiroukidis, N., Evangelidis, G.: The effects of dimensionality curse in high di-
mensional knn search. In: 2011 15th Panhellenic Conference on Informatics (PCI),
pp. 41–45 (2011)

10. Baum, L., Peterie, T., Souled, G., Weiss, N.: A maximization technique occurring in
the statistical analysis of probabilistic functions of markov chains. In: Proceedings
of Annals of Mathematical Statistics, vol. 41, pp. 164–171 (1995)

11. Meena, S.: A Study on Hand Gesture Recognition Technique. Master’s thesis, Na-
tional Institute of Technology, Rourkela,India (2011)

12. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. In: Readings in Speech Recognition, pp. 267–296. Morgan Kauf-
mann Publishers Inc., San Francisco (1990),
http://dl.acm.org/citation.cfm?id=108235.108253

13. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. In: Readings in Speech Recognition, pp. 159–165. Morgan Kauf-
mann Publishers Inc., San Francisco (1990),
http://dl.acm.org/citation.cfm?id=108235.108244

14. Sklansky, J.: Finding the convex hull of a simple polygon. Pattern Recogn.
Lett. 1(2), 79–83 (1982), http://dx.doi.org/10.1016/0167-8655(82)90016-2

15. Yao, Y., Li, C.-T.: Hand posture recognition using surf with adaptive boosting. In:
British Machine Vision Conference (2012)

16. Zhang, H., Wang, Y., Deng, C.: Application of gesture recognition based on sim-
ulated annealing bp neural network. In: 2011 International Conference on Elec-
tronic and Mechanical Engineering and Information Technology (EMEIT), vol. 1,
pp. 178–181 (August 2011)

http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dl.acm.org/citation.cfm?id=108235.108253
http://dl.acm.org/citation.cfm?id=108235.108244
http://dx.doi.org/10.1016/0167-8655(82)90016-2

Feature Weighting by Maximum Distance

Minimization

Jens Hocke and Thomas Martinetz

University of Lübeck - Institute for Neuro- and Bioinformatics
Ratzeburger Allee 160 23538 Lübeck - Germany

hocke@inb.uni-luebeck.de

Abstract. The k-NN algorithm is still very popular due to its simplic-
ity and the easy interpretability of the results. However, the often used
Euclidean distance is an arbitrary choice for many datasets. It is arbi-
trary because often the data is described by measurements from different
domains. Therefore, the Euclidean distance often leads to a bad classifi-
cation rate of k-NN. By feature weighting the scaling of dimensions can
be adapted and the classification performance can be significantly im-
proved. We here present a simple linear programming based method for
feature weighting, which in contrast to other feature weighting methods
is robust to the initial scaling of the data dimensions. An evaluation is
performed on real-world datasets from the UCI repository with compar-
ison to other feature weighting algorithms and to Large Margin Nearest
Neighbor Classification (LMNN) as a metric learning algorithm.

Keywords: feature selection, feature weighting, metric learning, k-
Nearest-Neighbor, Relief, Large Margin Nearest Neighbor Classification.

1 Introduction

In pattern recognition tasks data is often described by measurements from dif-
ferent domains. Thus the feature dimensions of the datasets have an arbitrary
scaling relative to each other. In many applications the k-Nearest-Neighbor clas-
sifier (k-NN) [1] is applied, because it is the simplest non-linear classifier and,
which is even more important, the classification decisions are easily interpretable.
The interpretability is due to the k nearest neighbors used for the classification
decision. By inspecting these nearest neighbors one can discern the causes for the
decision. However, the standard metric used for k-NN is the Euclidean metric,
which does not measure the distance according to the relevance of each data di-
mension but according to their arbitrary scaling. To archive a performance close
to state of the art classifiers, the dimensions need to be rescaled according to
their relevance. A similar problem is solved by relevance learning in the context
of LVQ classifiers [4].

An optimal rescaling has to minimize the classification error E(X) of the k-
NN algorithm. Often this problem is called the feature weighting problem. We
want to find a weight vector w ∈)D, wμ ≥ 0, μ = 1, ..., D for some given dataset

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 420–425, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Feature Weighting by Maximum Distance Minimization 421

X = {xi ∈)D, i = 1, ..., N} that helps the classifier to minimize E(X). In case
the Euclidean distance is used, the weighted distance between two data points
x,x′ becomes

d(x,x′) = ||x− x′||w =

√√√√ D∑
μ=1

wμ(xμ − x′
μ)

2, (1)

also called the weighted Euclidean distance. In case there are data dimensions ir-
relevant for the classification, the weights for these dimensions will be decreased
to zero and, through this process, the dimensionality of the data set is reduced.
Such a dimensionality reduction is desirable to increase generalization perfor-
mance and noise robustness.

Several methods for feature weighting have been proposed. Very well known
is the Relief algorithm by Kira and Rendell [5]. It iteratively updates a weight
vector based on the distance of a data point to the nearest neighbors of the same
and different label. This concept has been extended in the Simba algorithm
[3] by incorporating the weight vector into the distance measure for finding
the nearest neighbors. While both methods were developed for selecting the
most important dimensions, they use a weight vector to do so. Further feature
weighting methods are I-Relief [7], which also extends Relief, and the loss-margin
based algorithm (Lmba) [6], which was derived from the Large Margin Nearest
Neighbor Classification described in the next paragraph.

Feature weighting can be seen as a subclass of the metric learning problem.
In metric learning often a Mahalanobis distance

d(x,x′) = ||x− x′||W =
√
(x− x′)TW (x− x′) (2)

is optimized to improve the k-NN classification. Note that here an entire pos-
itive semidefinite matrix W is optimized. The problem becomes equivalent to
feature weighting, if W is restricted to a diagonal matrix. A well-known method
for metric learning is Large Margin Nearest Neighbor Classification (LMNN)
[8–11]. We will have a closer look at LMNN in the next section.

Here we present a simple linear programming approach for feature weighting.
It archives a robust rescaling of the feature dimensions by a minimization of
the maximum distance between data points of the same class under a minimal
distance constraint for differently labeled points. We therefore name it Maximum
Distance Minimization (MDM).

2 Methods

Before we introduce our approach, we first want to have a closer look at LMNN.
Even though it is a metric learning method, whereas we present feature weight-
ing, both methods are related by the goals they pursue to improve the k-NN
classification performance.

422 J. Hocke and T. Martinetz

2.1 LMNN

The LMNN algorithm is designed to optimize k-NN classification performance.
To increase the classification performance, it pursues two goals directly derived
from the k-NN. Since data points are classified by k-NN according to their k
nearest neighbors, it would be best if for every class the data points from the
same class are close together and points from different classes are far away.
More precisely, the k closest points to every data point should have the same
label. We name the k points xj closest to point xi and of the same class target
neighbors. Any differently labeled point xl which is closer than the most distant
target neighbor (plus some margin) we name impostor. Now every triple of (i)
data point, (ii) target neighbor and (iii) impostor is optimized. Additionally, the
distance between all datapoints from the same class is minimized. The entire
optimization can be done by the following positive-semidefinite program:

min (1− μ)
∑
i,j�i

||xi − xj ||2W + μ
∑

i,j�i,l

(1− yil)ξi,j,l s.t. (3)

||xi − xl||2W − ||xi − xj ||2W ≥ 1− ξi,j,l (4)

ξi,j,l ≥ 0 (5)

W - 0. (6)

The notation j � i means xj is a target neighbor of xi. To indicate that xi and
xl have the same label, yi,l is used, which equals one if that is the case and zero
otherwise. μ is a parameter for weighting the two terms, and ξi,j,l are the slack
variables. By restricting the matrix W to a diagonal matrix, the optimization
problem can be cast into a linear program.

There are a couple of problems with the above formulation. First, the target
neighbors need to be chosen prior to the optimization. This is usually done
based on the initial Euclidean distance. By this selection the final result of the
optimization depends on the initial scaling of the dimensions. Second, there are
many parameters to optimize due to the large number of slack variables. And
third, there is a large number of constraints to keep track of.

2.2 MDM

Our Maximum Distance Minimization (MDM) is a feature weighting method.
The objectives are not as closely linked to the concept of the k-NN as it is
the case for LMNN, but it avoids the target neighbor selection problem and has
much fewer parameters to optimize. With its very general objective it might also
be well suited as a preprocessing step for other classifiers. Like LMNN we try
to minimize the distance of data points of the same class. However, in our case
we do not look at local neighbors but try to minimize the maximum distance
between all pairs of data points of the same class, while keeping the pairwise
distance between data points of different classes large. This means that we aim
to get all data points of the same class as closely together as possible. This is

Feature Weighting by Maximum Distance Minimization 423

a very global optimization. Formally, we are solving the following constrained
optimization problem

||xi − xl||2w ≥ 1 ∀i, l : yi �= yl (7)

||xi − xj ||2w ≤ r ∀i, j : yi = yj (8)

min
w

r wμ ≥ 0 ∀μ, (9)

where yi, yl, and yj are the class labels of xi, xl, and xj .
The above problem can be formulated as a linear program1. For this formu-

lation the number of constraints grows quadratically with the number of data
points, but in contrast to LMNN we only have few parameters to optimize,
namely only the weights wμ. In contrast to LMNN, our optimization problem is
always solvable, even without slack variables. While LMNN uses triples of points
for optimization, here we only look at pairs. By summing the squared distances
of target neighbors, LMNN uses a soft penalty for large distances. MDM has a
hard penalty, which punishes only the most distant pairs. This may make MDM
more sensible to outliers and noisy data. However, in our experiments we did not
notice this problem. Of course softness can be added to MDM as well as target
neighborhoods, but thereby some of the advantages of MDM would be lost.

3 Experiments

We evaluated MDM on datasets from the UCI repository [2]. MDM was com-
pared with results based on standard Euclidean distance as well as obtained
with the feature weighting algorithms Relief, Simba and the diagonally restricted
LMNN (D-LMNN). As a reference, we also determined the result obtained with
the unrestricted LMNN as a metric learning method. The parameter μ was cho-
sen to be 0.5 for LMNN, because this was described by the authors to be a
good choice. For D-LMNN μ was set to one, because for lower values it tended
to reduce the dimensions too much. The datasets were split into 50% training
points and 50% test points. After optimizing the weight vectors on the training
data, the k-NN error rate was determined on the reweighted test data. Every
algorithm was trained and tested on 10 different splits of every dataset. Table
1 shows the results obtained without any preprocessing of the data. In Table 2
the dataset dimensions were rescaled in a preprocessing step so that for every
dimension the data points had a normalized distribution.

Without preprocessing (Table 1) MDM achieves the best error rates. It signif-
icantly improves the error rates of standard k-NN, while Relief and Simba often
even deteriorate the classification performance. For the normalized datasets the
results change drastically as it can be seen in Table 2. MDM is the only method
for which there is almost no change compared to Table 1. LMNN and D-LMNN
have a change in their results due to a different initial selection of target neigh-
bors. Obviously, this selection depends on the intial scaling and can be improved

1 A implementation is available at www.inb.uni-luebeck.de/tools-demos/mdm/mdm.m

424 J. Hocke and T. Martinetz

Table 1. Results for unpreprocessed data. The top entry is the average test error
followed by the variance in parentheses. Below the error rates the average rank, again
followed by the variance, is given. In case of the feature weighting methods, the rank
is equal to the non zero weights. The best results obtained with feature weighting are
indicated by bold face.

Euclidean MDM Relief Simba D-LMNN LMNN

Iris 3.33(1.81) 2.93(1.97) 3.60(2.18) 4.40(1.89) 3.33(1.44) 3.07(1.89)
4.00(0.00) 4.00(0.00) 4.00(0.00) 3.90(0.01) 4.00(0.00) 4.00(0.00)

Wine 31.00(4.52) 4.00(2.23) 34.67(3.05) 34.44(3.05) 4.33(1.99) 5.22(2.03)
13.00(0.00) 11.50(0.52) 13.00(0.00) 12.90(0.01) 13.00(0.00) 12.30(0.21)

Breast 39.68(2.21) 3.60(0.69) 36.05(11.54) 39.77(2.21) 4.44(0.99) 3.80(0.57)
Cancer 10.00(0.00) 9.50(0.25) 9.90(0.01) 9.90(0.01) 10.00(0.00) 9.00(0.00)

Pima 30.78(1.99) 28.49(1.87) 30.08(2.19) 30.86(1.68) 29.14(2.62) 29.14(2.33)
Diabetes 8.00(0.00) 8.00(0.00) 7.50(0.08) 7.50(0.52) 8.00(0.00) 8.00(0.00)

Table 2. Results for the preprocessed datasets. The data dimensions of each dataset
were normalized so that the data points have zero mean and a variance of one. The
notation and structure of this table is the same as in Table 1.

Euclidean MDM Relief Simba D-LMNN LMNN

Iris 3.60(1.41) 2.93(1.97) 2.53(1.33) 3.73(1.64) 4.27(1.38) 2.67(1.99)
4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00)

Wine 5.56(1.48) 4.00(2.23) 4.78(2.10) 4.56(2.06) 4.89(1.50) 2.67(1.90)
13.00(0.00) 12.70(0.05) 13.00(0.00) 13.00(0.00) 13.00(0.00) 13.00(0.00)

Breast 3.92(0.63) 3.54(0.67) 3.65(0.57) 4.80(1.29) 3.30(0.63) 3.57(0.49)
Cancer 10.00(0.00) 10.00(0.00) 10.00(0.00) 9.70(0.05) 10.00(0.00) 9.70(0.05)

Pima 27.76(1.44) 28.49(1.87) 28.20(1.91) 29.35(2.97) 28.49(2.08) 27.92(1.71)
Diabetes 8.00(0.00) 8.00(0.00) 7.60(0.07) 6.60(3.32) 8.00(0.00) 8.00(0.00)

by an appropriate preprocessing. Especially LMNN relies on it. Relief and Simba
work now as they are supposed to and become competitive. Even the standard
Euclidean distance is becoming a quite good choice. Nevertheless, for all datasets
except for the Pima Diabetes dataset the feature weighting and the metric learn-
ing methods perform best. MDM is still very competitive, but not clearly better
than the others anymore. So the main advantage is that MDM is independent of
the initial data scaling. Interestingly, LMNN performed significantly better than
the feature weighting methods only on the Wine dataset. This shows that often
the extra flexibility of learning the entire Mahalanobis distance is not needed.

4 Conclusion

We have presented a simple linear programming based method for feature weight-
ing. By reweighting the dimensions of the dataset, the scaling is changed so that
the classification performance of k-NN is improved significantly compared to us-
ing the standard Euclidean distance. However, if the dimensions of the datasets

Feature Weighting by Maximum Distance Minimization 425

are normalized according to their variance prior to testing, the performance
improvement drops since the other methods profit from this normalization. The
experiments on the UCI datasets show that feature weighting is for most datasets
competitive to the metric learning algorithm LMNN. This shows that the flexi-
bility of learning the entire Mahalanobis distance is often not needed. Therefore,
for very high dimensional datasets with few training points it is advisable to use
the simpler feature weighting methods.

The algorithm we presented uses hard boundaries. It does not apply softness
by using slack variables. This keeps the number of parameters to optimize low.
The missing softness had no negative effect on the datasets we tested, but very
noisy datasets with outliers might need some softness to yield robust results.
Also, it would be interesting to see the effect of using target neighborhoods in
MDM, which would adapt MDM more closely to the k-NN algorithm.

References

1. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13(1), 21–27 (1967)

2. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

3. Gilad-Bachrach, R., Navot, A., Tishby, N.: Margin based feature selection - theory
and algorithms. In: Proceedings of the Twenty-First International Conference on
Machine Learning, ICML 2004, pp. 43–50. ACM, New York (2004)

4. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization.
Neural Netw. 15(8-9), 1059–1068 (2002)

5. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proc. 9th
International Workshop on Machine Learning, pp. 249–256 (1992)

6. Li, Y., Lu, B.L.: Feature selection based on loss-margin of nearest neighbor classi-
fication. Pattern Recogn. 42(9), 1914–1921 (2009)

7. Sun, Y., Li, J.: Iterative relief for feature weighting. In: Proceedings of the 23rd
International Conference on Machine Learning, ICML 2006, pp. 913–920. ACM,
New York (2006)

8. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin near-
est neighbor classification. In: Advances in Neural Information Processing Systems
19. MIT Press, Cambridge (2006)

9. Weinberger, K.Q., Saul, L.K.: Fast solvers and efficient implementations for dis-
tance metric learning. In: Proceedings of the 25th International Conference on
Machine Learning, ICML 2008, pp. 1160–1167. ACM, New York (2008)

10. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

11. Weinberger, K., Sha, F., Saul, L.: Convex optimizations for distance metric learning
and pattern classification. Signal Processing Magazine 27, 146–158 (2010)

http://archive.ics.uci.edu/ml

Training Computationally Efficient

Smartphone–Based Human Activity
Recognition Models�

Davide Anguita1, Alessandro Ghio1, Luca Oneto1, Xavier Parra2,
and Jorge Luis Reyes-Ortiz1,2

1 DITEN – University of Genoa, Via Opera Pia 11A, Genova, I-16145, Italy
{Davide.Anguita,Alessandro.Ghio,Luca.Oneto}@unige.it

2 CETpD - Universitat Politècnica de Catalunya, Vilanova i la Geltrú 08800, Spain
{xavier.parra@upc.edu,jorge.luis.reyes@estudiant.upc.edu}

Abstract. The exploitation of smartphones for Human Activity Recog-
nition (HAR) has been an active research area in which the development
of fast and efficient Machine Learning approaches is crucial for preserv-
ing battery life and reducing computational requirements. In this work,
we present a HAR system which incorporates smartphone-embedded in-
ertial sensors and uses Support Vector Machines (SVM) for the clas-
sification of Activities of Daily Living (ADL). By exploiting a publicly
available benchmark HAR dataset, we show the benefits of adding smart-
phones gyroscope signals into the recognition system against the tradi-
tional accelerometer-based approach, and explore two feature selection
mechanisms for allowing a radically faster recognition: the utilization
of exclusively time domain features and the adaptation of the L1 SVM
model which performs comparably to non-linear approaches while ne-
glecting a large number of non-informative features.

Keywords: Smartphones, Human Activity Recognition, SVM, L1 SVM,
Feature Selection.

1 Introduction

Human Activity Recognition using wearable systems is attracting a growing in-
terest due to the recent advances in technology, which are making available a
wide range of microelectromechanical sensors and portable computing devices.
It has mainly addressed healthcare-related applications such as the develop-
ment of automated assisted living and ambulatory monitoring technologies for
people with disabilities, going through rehabilitation, or the elderly, partially
substituting the continuous supervision needed from caretakers or other fam-
ily members [25,16]. HAR systems facilitate to better understand different as-
pects of the individuals daily living to provide context information suitable for

� This work was supported in part by the Erasmus Mundus Joint Doctorate in Inter-
active and Cognitive Environments, which is funded by the EACEA Agency of the
European Commission under EMJD ICE FPA n 2010-0012.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 426–433, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Training Computationally Efficient Smartphone–Based HAR Models 427

a range of applications and services. This is commonly done through the use
of body sensors that measure various attributes derived from motion, location,
physiological signals and the environment (e.g. accelerometers, GPS, hear rate
monitors, microphones) and then by interpreting this sensory input data with
Machine Learning approaches such as Artificial Neural Networks (ANN), SVMs,
k-Nearest Neighbors (KNN) and the Decision Tree algorithm C4.5 [15,17].

Some recent HAR approaches have taken advantage of smartphones due to
their powerful processing capabilities and opportunistic sensing [23] from the
available embedded components. These smart devices have been massively pro-
duced integrating small scale and low cost inertial sensors aiming to enhance
human-computer interaction (e.g. for gaming and user interfaces). Research on
HAR exploiting smartphone motion sensors has mostly incorporated only ac-
celerometers [12,15], as they have been earlier introduced in 2007 [11].
Gyroscopes have been more recently included in 2010, though some less re-
cent approaches have considered special purpose devices for HAR purposes (e.g.
[2,13]). Recently, in [29] a hybrid accelerometer and gyroscope approach was
used for the classification of 9 activities using an iPhone 4. They showed insights
of the benefits of adding gyroscope signals into the recognition system achieving
improvements ranging from 3.1% to 13.4% in classification accuracy, though a
limited set of features from the gyroscope signals (signal mean, standard de-
viation and sum of signal magnitude in a sliding window) was used. A major
limitation for the smartphone implementation was due to the exploitation of a
KNN classifier, which could become inadequate in such applications due to its
demanding computations for prediction, particularly with large training sets.

Open rooms for improving smartphone-based HAR consequently exist: (i) the
benefits of introducing a larger set of gyroscope-based signals should be more
thoroughly evaluated; on the other hand, (ii) a proper selection of the most use-
ful features and simple (though effective) models should be carried out, so to
make HAR more suitable for devices with limited battery life and computational
restrictions. This paper targets both these two issues. Regarding point (i), we
exploit the HAR dataset [3], which contains gyroscope measures plus a large set
of previously suggested features in the time and frequency domain [5,14,1,9,8],
for our analyses. Concerning issue (ii), we resort to effective Support Vector Ma-
chine (SVM) classifiers [28] and we implement two feature selection mechanisms
to allow faster and computationally non-intensive recognition: on the one hand,
conversely to [18], we do not discriminate on proposed feature sets, but instead
on sensor type and domain; on the other hand, L1 SVM models [27] will be
implemented, allowing to perform an automatic selection of significant features
emerging from the training set while keeping the appealing classification perfor-
mance of conventional SVMs. However, one of the main drawbacks of L1 SVMs
consists in the impossibility of resorting to non-linearity to improve classification
accuracy through the kernel trick [28]: for targeting this issue, we compare the

428 D. Anguita et al.

use of conventional non-linear models with the one of linear classifiers in the
particular case of HAR, showing how the latter ones are characterized by better
performance/complexity ratios than the former ones.

2 HAR Dataset

The Human Activity Recognition Dataset [3], that will be used in the forthcom-
ing analyses and is available at [6], was developed by the authors for the exper-
imentation with smartphone inertial sensors and the classification of Activities
of Daily Living (ADL): standing, sitting, laying, walking, walking upstairs and
walking downstairs, that we respectively define A1-A6 for the sake of simplicity.

To create the dataset, a group of 30 volunteers followed a protocol of activi-
ties while carrying an Android OS smartphone attached to a belt on their waist.
The dataset includes 10299 patterns which have been divided in training and
test sets in a proportion of 70% to 30%. Each pattern is represented with a fea-
ture vector of 561 elements composed of time and the frequency domain features
extracted from the accelerometer and gyroscope signals. These were first prepro-
cessed for noise reduction and the removal of the gravitational component from
the acceleration signal. Then fixed-width sliding windows of 2.56 sec width and
50% overlap between them were extracted from the inertial signals. From each
window, a vector of features was calculated including features such as mean,
standard deviation, signal magnitude area, interquartile range, auto-regresion
coefficients, largest Fast Fourier Transform (FFT) power spectrum component
and correlation coefficients between signal pairs, etc. For further details, the
reader can also refer to [3].

3 An Effective Smartphone-Based Solution for HAR

Our target is to design a model, which can be effectively run on smartphones with
limited battery life and computational restrictions. We have thus to identify the
simplest possible classifier exploiting the smallest set of features that guarantees
the best performance/computational burden ratio. For these purposes, we peruse
the exploitation of linear models, which use only those selected inputs that are
crucial to attain sufficient classification accuracy. The following subsections are
devoted to describing the analyses, that have been performed on the previously
introduced dataset.

3.1 Non-linear vs. Linear SVMs

SVM is one of the most widely employed Machine Learning algorithms [28,26,7].
It allows to solve binary problems by deterministically finding a maximum-
margin hyperplane that separates the data. The effectiveness of SVM models
make them particularly appealing in several and heterogeneous real-world prob-
lems, including applications on smartphones [4].

Training Computationally Efficient Smartphone–Based HAR Models 429

Table 1. Confusion Matrix for the comparison of performance of linear and Gaussian
L2 SVM

Linear SVM Gaussian SVM

A1 A2 A3 A4 A5 A6 % A1 A2 A3 A4 A5 A6 %

A1 492 1 3 0 0 0 99.2 492 1 3 0 0 0 99.2
A2 18 451 2 0 0 0 95.7 18 451 2 0 0 0 95.7
A3 4 6 410 0 0 0 97.6 4 6 410 0 0 0 97.6
A4 0 2 0 434 55 0 88.4 0 2 0 432 57 0 88.0
A5 0 0 0 14 518 0 97.4 0 0 0 14 518 0 97.4
A6 0 0 0 0 0 537 100.0 0 0 0 0 0 537 100.0

% 95.7 98.0 98.8 96.9 90.4 100.0 96.4 95.7 98.0 98.8 96.9 90.1 100.0 96.4

Given a dataset {(x1, y1) , . . . , (xl, yl)}, xi ∈ Rm, and yi ∈ {±1}, an SVM
classifier f(x) = w ·x+b is found by solving the following primal problem, which
exploits an L2 regularization term to adjust the size of the class of functions [28]:

min
w,b,ξ

1

2
‖w‖22 + C1T

l ξ (1)

s.t. Y (Xw + bl) ≥ 1l − ξ, ξ ≥ 0l,

where ξi = max [0, (1− yif(xi))], X = [x1| . . . |xl]
T
, y = [y1| . . . |yl]T , Y =

diag(y) (Y is a diagonal matrix where the element on the diagonal are the
yi∈{1,...,n}), and ap is a vector of p elements all equal to a. By introducing
n Lagrange multipliers α we obtain the dual formulation of the conventional
SVM:

min
α

1

2
αTQα− 1T

l α (2)

s.t. 0l ≤ α ≤ Cl,y
Tα = 0,

where Q ∈ Rl×l and Qij = yiyjK (xi,xj), where K (·, ·) is the kernel function.
As we are targeting multiclass classification problems, generalization through
the One-Vs.-All (OVA) approach is exploited [22,20].

The first performed experiments aim at comparing the performance of SVM
models, based on linear and Gaussian kernels. The confusion matrices in Table 1
depict the classification results given the 6 ADL using the complete set of fea-
tures introduced in Section 2. The accuracies achieved with the two methods are
substantially identical, thus showing the equivalence between these two models.
The linear approach is consequently preferred for the prediction of activities,
more specifically for its application in limited resources devices: in fact, the pre-
diction phase is much faster than the kernelized approach and linear models
allow to exploit more sophisticated dimensionality reduction approaches, as will
be shown in the next sections. Results also show balanced precision and recall
measures for all the activities.

430 D. Anguita et al.

Table 2. Experiments with different feature subsets and conventional linear SVM
models

Acc Gyro Time Freq Feature groups N. Features Linear SVM

0 1 1 0 GT 108 78.0%
0 1 1 1 GTF 213 81.0%
1 0 1 0 AT 164 90.6%
1 0 1 1 ATF 348 91.2%
1 1 1 0 AGT 272 95.8%
1 1 1 1 AGTF 561 96.4%

3.2 Selection of Subsets of Features

The second set of analyses consists in evaluating the inputs available in the
dataset aiming at a reduction in the number of significant features. This is
achieved by separating the inputs in groups with respect to: the type of sensor
employed, namely Accelerometer (A) and Gyroscope (G); the domain, namely
Time (T) and Frequency (F).

In practice, we expect to balance the trade-off between the addition of mean-
ingful features and the removal of the ones that are redundant or that require
expensive computations for their estimation. For such purposes, we test all the
combinations of feature groups and compute the test error rate performed by a
linear SVM model, trained on the subset employed: Table 2 presents the results.
They suggest that the whole set of features (AGTF) should be exploited, al-
though frequency-related inputs are not strictly necessary for this application as
they do not largely affect recognition performance while, contrarily, requiring a
remarkable computational effort for their derivation. Results also allow to gather
some evidence of the benefits, which the addition of gyroscope signals bring into
the HAR system, thus counterbalancing the (limited) slowdown in prediction due
to the presence of these extra features. Note however that the models trained
with sets using only gyroscope features (GT, GTF) have a lower performance,
suggesting that the use of this sensor by its own is not appropriate for this ap-
plication, despite enhancing the recognition when exploited concurrently with
accelerometers.

3.3 Dimensionality Reduction with L1-SVM

As the conventional SVM does not perform any dimensionality reduction [10],
which is desirable in some practical applications to highlight relevant features
as well as to reduce the computational burden of performing the classification
of new samples, the replacement of the L2 term with an L1 Manhattan norm
based regularization has been proposed (L1 SVM) [27]:

min
w,b,ξ

‖w‖1 + C1T
l ξ, (3)

s.t. Y (Xw + bl) ≥ 1l − ξ, ξ ≥ 0l.

Training Computationally Efficient Smartphone–Based HAR Models 431

Table 3. Comparison of results using L2 and L1 SVM models

Feature groups N. Features L2 (linear) SVM L1 SVM N. Features L1 SVM ρ

AGT 272 95.8% 96.5% 174 64.0 %
AGTF 561 96.4% 96.5% 275 49.0 %

Note that the conventional kernel trick cannot be exploited in the previous for-
mulation, thus the effectiveness of linear models assumes an ever greater impor-
tance. This problem is a standard Linear Programming problem, for which many
tools have been developed throughout the years [19].

L1 SVM allows to perform dimensionality reduction thanks to the charac-
teristics of the Manhattan norm exploited, that is several weights wi will be
(generally) nullified during the learning procedure: this is in contrast with the
conventional (L2) SVM, where wi �= 0 ∀i = 1, ...,m in the final model. As we are
exploiting OVA for targeting multiclass classification, we will consider a feature
as filtered if the corresponding weight is null for all the (six) models learned for
the OVA approach.

Table 3 presents the comparison of linear (L2) SVMs and L1 SVMs, both in
terms of accuracy and number of selected features (remembering that L2 proce-
dures do not perform any dimensionality reduction). In particular, we considered
only the groups of features that showed to be necessary for HAR purposes, ac-
cording to the results derived in the previous section. It is worth noting that
L1 models perform comparably to (and, unexpectedly from literature, slightly
better than) L2 models, furthermore allowing to remarkably reduce the dimen-
sionality of the problem. The remarkable classification performance of L1 mod-
els is probably due to the filtering of noisy features, which negatively afflict L2
classifiers.

As a final remark, the results obtained with the L1 SVM algorithm also out-
perform the ones obtained at the ESANN 2013 HAR competition [21] in which
contestants were challenged to propose novel approaches for the recognition of
activities using the same HAR dataset. Linear and non linear Machine Learn-
ing methods were proposed, achieving a maximum classification accuracy of
96.4% with the work presented in [24], where an One-Vs.-One (OVO) SVM
classification approach [22] was employed for the recognition task.

4 Conclusions

In this paper, we showed the benefits of adding gyroscope information into a
human activity recognition system based on smartphone technology. We verify
that a set of common daily activities can be accurately classified when this sensor
is used along with the accelerometer. We explored three SVM algorithms includ-
ing linear (L1 SVM, conventional L2 linear SVM) and non-linear (L2 Gaussian
SVM) approaches on the HAR dataset and found a similar performance in terms
of accuracy, but our selection criterion was subject to prediction speed and the
possibility of applying them in devices with limited resources to provide less
computational complexity and energy consumption.

432 D. Anguita et al.

Linear approaches exhibited the best trade off between accuracy and predic-
tion speed, conferring distinctive benefits to the L1 SVM, which provides itself a
reduction of the effective number of features needed for the prediction of the ADL.
Furthermore, the study between different feature domains lead us to disregard
frequency domain features as they were not only marginally contributing to the
recognition performance but also adding expensive computations for their estima-
tion. The ideal model selected for our application was the AGT, which only takes
into account time domain features from the accelerometer and the gyroscope.

Future work will explore novel model selection approaches on the L1 SVM
algorithm, that can help to further reduce the number of effective features
by considering near-optimal hyperparameter models within the OVA binary
classifiers to increase the number of zero-valued weights matches.

References

1. Allen, F.R., Ambikairajah, E., Lovell, N.H., Celler, B.G.: Classification of a known
sequence of motions and postures from accelerometry data using adapted gaussian
mixture models. Physiological Measurement 27(10), 901–935 (2006)

2. Altun, K., Barshan, B.: Human activity recognition using inertial/Magnetic sensor
units. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS,
vol. 6219, pp. 38–51. Springer, Heidelberg (2010)

3. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain
dataset for human activity recognition using smartphones. In: European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, ESANN (2013)

4. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity
recognition on smartphones using a multiclass hardware-friendly support vector
machine. In: Bravo, J., Hervás, R., Rodŕıguez, M. (eds.) IWAAL 2012. LNCS,
vol. 7657, pp. 216–223. Springer, Heidelberg (2012)

5. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data.
In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17.
Springer, Heidelberg (2004)

6. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
7. Ghio, A., Anguita, D., Oneto, L., Ridella, S., Schatten, C.: Nested sequential mini-

mal optimization for support vector machines. In: Villa, A.E.P., Duch, W., Érdi, P.,
Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 156–163.
Springer, Heidelberg (2012)

8. Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Im-
plementation of a real-time human movement classifier using a triaxial accelerom-
eter for ambulatory monitoring. IEEE Transactions on Information Technology in
Biomedicine 10(1), 156–167 (2006)

9. Khan, A.M., Lee, Y.K., Lee, S., Kim, T.S.: Human activity recognition via an
accelerometer-enabled-smartphone using kernel discriminant analysis. In: IEEE In-
ternational Conference on Future Information Technology (2010)

10. Khan, N.M., Ksantini, R., Ahmad, I.S., Guan, L.: A sparse support vector machine
classifier with nonparametric discriminants. In: Villa, A.E.P., Duch, W., Érdi, P.,
Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 330–338.
Springer, Heidelberg (2012)

Training Computationally Efficient Smartphone–Based HAR Models 433

11. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A sur-
vey of mobile phone sensing. IEEECommunications Magazine 48(9), 140–150 (2010)

12. Lara, O., Labrador, M.: A survey on human activity recognition using wearable
sensors. IEEE Communications Surveys Tutorials 1(99), 1–18 (2012)

13. Lee, S.W., Mase, K.: Activity and location recognition using wearable sensors.
IEEE Pervasive Computing 1(3), 24–32 (2002)

14. Lovell, N., Wang, N., Ambikairajah, E., Celler, B.G.: Accelerometry based classi-
fication of walking patterns using time-frequency analysis. In: IEEE Annual Inter-
national Conference of the Engineering in Medicine and Biology Society (2007)

15. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human phys-
ical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)

16. Narayanan, M.R., Scalzi, M.E., Redmond, S.J., Lord, S.R., Celler, B.G., Lovell,
N.H.: A wearable triaxial accelerometry system for longitudinal assessment of falls
risk. In: Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (2008)

17. Nishkam, R., Nikhil, D., Preetham, M., Littman, M.L.: Activity recognition from
accelerometer data. In: Conference on Innovative Applications of Artificial Intelli-
gence (2005)

18. Preece, S.J., Goulermas, J.Y., Kenney, L.P., Howard, D.: A comparison of feature
extraction methods for the classification of dynamic activities from accelerometer
data. IEEE Transactions on Biomedical Engineering 56(3), 871–879 (2009)

19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes:
The art of scientific computing, 3rd edn. Cambridge University Press (2007)

20. Ramı́rez, F., Allende, H.: Dual support vector domain description for imbalanced
classification. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.)
ICANN 2012, Part I. LNCS, vol. 7552, pp. 710–717. Springer, Heidelberg (2012)

21. Reyes-Ortiz, J.L., Ghio, A., Anguita, D., Parra, X., Cabestany, J., Catal, A.: Hu-
man activity and motion disorder recognition: Towards smarter interactive cogni-
tive environments. In: European Symposium on Artificial Neural Networks, Com-
putational Intelligence and Machine Learning, ESANN (2013)

22. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. The Journal of Ma-
chine Learning Research 5, 101–141 (2004)

23. Roggen, D., Förster, K., Calatroni, A., Holleczek, T., Fang, Y., Tröster, G., Lukow-
icz, P., Pirkl, G., Bannach, D., Kunze, K., Ferscha, A., Holzmann, C., Riener, A.,
Chavarriaga, R., del, R., Millán, J.: Opportunity: Towards opportunistic activ-
ity and context recognition systems. In: Proc. 3rd IEEE WoWMoM Workshop on
Autononomic and Opportunistic Communications (2009)

24. Romera-Paredes, B., Aung, H., Bianchi-Berthouze, N.: A one-vs-one classifier en-
semble with majority voting for activity recognition. In: European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning,
ESANN (2013)

25. Ryder, J., Longstaff, B., Reddy, S., Estrin, D.: Ambulation: A tool for monitoring
mobility patterns over time using mobile phones. In: IEEE International Conference
on Computational Science and Engineering (2009)

26. Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines, regu-
larization, optimization, and beyond. MIT press (2001)

27. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 267–288 (1996)

28. Vapnik, V.: Statistical learning theory. Wiley-Interscience (1998)
29. Wu, W., Dasgupta, S., Ramirez, E.E., Peterson, C., Norman, G.J.: Classification

accuracies of physical activities using smartphone motion sensors. Journal of Med-
ical Internet Research 14(5), 105–130 (2012)

A Novel Procedure for Training L1-L2 Support
Vector Machine Classifiers

Davide Anguita1, Alessandro Ghio1, Luca Oneto1, Jorge Luis Reyes-Ortiz1,2,�,
and Sandro Ridella1

1 DITEN – University of Genoa, via Opera Pia 11A, Genova, I-16145, Italy
{Davide.Anguita,Alessandro.Ghio,Luca.Oneto,Sandro.Ridella}@unige.it

2 CETpD - Universitat Politècnica de Catalunya, Vilanova i la Geltrú 08800, Spain
jorge.luis.reyes@estudiant.upc.edu

Abstract. In this work we propose a novel algorithm for training L1-L2
Support Vector Machine (SVM) classifiers. L1-L2 SVMs allow to com-
bine the effectiveness of L2 models and the feature selection character-
istics of L1 solutions. The proposed training approach for L1-L2 SVM
requires a minimal effort for its implementation, relying on the exploita-
tion of well-known and widespread tools already developed for conven-
tional L2 SVMs. Moreover, the proposed method is flexible, as it allows
to train L1, L1-L2 and L2 SVMs, as well as to fine tune the trade-off
between dimensionality reduction and classification accuracy. This scope
is of clear importance in applications on resource-limited devices, such as
smartphones, like the one we consider to verify the main advantages of
the proposed approach: the UCI Human Activity Recognition real-world
dataset.

Keywords: Support Vector Machine, Sequential Minimal Optimization
algorithm, L1-L2 Regularization, Human Activity Recognition.

1 Introduction

The conventional L2-regularization Support Vector Machine (SVM) approach
[15,11] is considered as one of the state-of-the-art methods for classification,
and several effective techniques have been developed throughout the years for
training L2 SVM models [9,10,5]. While allowing to derive sparse classifiers (i.e.
models described by exploiting a limited subset of training patterns), L2 SVM
[15] does not perform any feature selection nor reduction, representing a limi-
tation for the analysis of the dataset and the interpretability of the informative
content of the inputs. On the other hand, an alternative approach for overcom-
ing this issue is the substitution of the L2 regularization term with the L1 [14],
which allows to introduce in the learning process an automatic dimensionality
reduction effect. However, despite being appealing, L1 SVMs are also character-
ized by some drawbacks: (i) no feature grouping effect characterizes L1 models,

� This work was supported in part by the Erasmus Mundus Joint Doctorate in Inter-
active and Cognitive Environments, which is funded by the EACEA Agency of the
European Commission under EMJD ICE FPA n 2010-0012.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 434–441, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Novel Procedure for Training L1-L2 Support Vector Machine Classifiers 435

i.e. clusters of highly cross-correlated inputs are usually not entirely selected by
the training procedure [12]; (ii) when the dimensionality of the dataset is re-
markably larger than the number of samples, L1 models are able to exploit only
a number of inputs at most equal to the cardinality of the training set, which
could be restrictive in some applications [16]; (iii) L1 SVMs require custom ad
hoc algorithms to be implemented for classifier training [8], which, despite being
effective, do not allow to exploit the know-how stockpiled for the conventional
L2 SVM learning problem in the last years (e.g. [9,10]).

In order to deal with points (i) and (ii) above, L1-L2 SVM has been proposed
[16]. It allows to enhance feature grouping effects in model training, to properly
balance sparsity and dimensionality reduction, and to combine the effectiveness
of the L2 approach and the feature selection characteristics of L1 SVMs. In this
paper we cope instead with issue (iii) and present a new training tool allowing to
deal with L1, L2 and L1-L2 SVMs, without requiring that any special purpose
custom optimization approach is developed. The proposal builds on the most
widespread solvers designed in the last decades for L2 SVM (e.g. [10,9]), and thus
can be implemented with a minimal effort. We test our algorithm on a Human
Activity Recognition (HAR) dataset [2], publicly available at the well-known UCI
repository [7] and conceived for the recognition of daily life activities of people
carrying smartphones. In this particular application, reducing the number of
features is important for understanding which are the most meaningful inputs,
so to reduce energy consumption on mobile devices and to allow the recognition
application running in background during the entire day.

2 L1-L2 SVM: Theory and Practice

In the framework of supervised learning, the goal is to approximate the relation-
ship between examples from a set X and outputs from a set Y: as we are target-
ing binary classification problems, we assume here that X ∈ Rd and Y ∈ {±1}.
The relationship between examples and outputs is encapsulated by a fixed, but
unknown, probability measure P . A training set Dn = {(x1, y1), . . . , (xn, yn)}
is sampled according to P . The learning algorithm maps Dn to f ∈ F with
f(x) = wTx + b (a linear separator in the original space) and the accuracy
in representing the hidden relationship P is measured with reference to a loss
function �(f(x), y).

In this framework, the hard loss function �H(f(x), y) = [1− y sign(f(x))] /2
seems the most natural choice, as it counts the number of misclassifications,
but unfortunately it is non–convex. For this reason the hinge loss function
�ξ(f(x), y) = [1− y f(x)]+ is exploited instead [15]. Thus by introducing an
L2 regularization term to adjust the size of the class, according to the Struc-
tural Risk Minimization (SRM) principle [15], we derive the primal formulation
of the L2 SVM:

min
w,b,ξ

1

2
‖w‖22 + C1T

nξ, s.t. Y (Xw + bn) ≥ 1n − ξ, ξ ≥ 0n, (1)

where ξi = �ξ(f(xi), yi), X = [x1| . . . |xn]
T
, y = [y1| . . . |yn]T , Y = diag(y) (Y is

a diagonal matrix where the element on the diagonal are the yi∈{1,...,n}), and ap

436 D. Anguita et al.

is a vector of p elements all equal to a. By introducing n Lagrange multipliers
α we obtain the dual formulation of L2 SVM:

min
α

1

2
αTY XXTYα− 1T

nα, s.t. yTα = 0, 0n ≤ α ≤ C1n, (2)

that is the conventional Convex Constrained Quadratic Problem (CCQP) of
SVM training where w =

∑n
i=1 αiyixi and b is the Lagrange multiplier of the

equality constraint. In order to solve Problem (2), many techniques have been
proposed [13]: for example, the well-known and widely used Sequential Minimal
Optimization (SMO) [10,9] consists in iteratively updating the two αi∈{1,...,n}
that mostly violate the Karush-Kuhn-Tucker (KKT) conditions until conver-
gence is reached.

As L2 SVM does not perform any dimensionality reduction, which is desirable
in some practical applications to highlight relevant features as well as to reduce
the computational burden of performing the classification of new samples, the
replacement of the L2 term with an L1 one has been proposed [14]:

min
w,b,ξ

‖w‖1 + C1T
nξ, s.t. Y (Xw + bn) ≥ 1n − ξ, ξ ≥ 0n, (3)

as L1 regularization introduces an automatic feature selection effect. Problem
(3) is a standard Linear Programming (LP) problem:

min
w+,w−,b,ξ

1T
d

(
w+ +w−)

+ C1T
nξ (4)

s.t. Y
[
X

(
w+ −w−)

+ bn
] ≥ 1n − ξ, ξ ≥ 0n, w+,w− ≥ 0d,

but the effective tools developed for the conventional L2 SVM cannot be applied
for solving it.

In order to combine the effectiveness of L2 solutions and the dimensionality
reduction capabilities of L1 models, L1-L2 SVM has been proposed [16]:

min
w,b,ξ

1

2
λ ‖w‖22 + (1− λ) ‖w‖1 + C1T

nξ (5)

s.t. Y (Xw + bn) ≥ 1n − ξ, ξ ≥ 0n,

where λ ∈ (0, 1] is a constant that balances sparsity characteristics with feature
selection ability. It is worth noting that, if λ→ 0, we derive the L1 SVM, while
λ = 1 leads to the conventional L2 SVM. We can introduce an identity matrix
I of size d× d and reformulate Problem (5) as:

min
w,b,ξ,η+,η−

1

2
λwTw + (1− λ)1T

d

(
η+ + η−)

+ C1T
nξ (6)

s.t. Y (Xw + bn) ≥ 1n − ξ, ξ ≥ 0n

Iw = η+ − η−, η+,η− ≥ 0d.

By introducing the Lagrange multipliers α ∈ Rn and β ∈ Rd, we obtain the dual
formulation of Problem (6):

min
α,β

1

2

[
α
β

]T [[
Y XXTY

]
[Y X][

XTY
]

[I]

] [
α
β

]
−

[√
λ1n

0d

]T [
α
β

]
(7)

A Novel Procedure for Training L1-L2 Support Vector Machine Classifiers 437

s.t.

[√
λy
0d

]T [
α
β

]
= 0,

[
0n

− (1−λ)√
λ

1d

]
≤

[
α
β

]
≤

[
C√
λ
1n

(1−λ)√
λ

1d

]
,

where w =
√
λ
λ

(
XTYα+ β

)
and b is the Lagrange multiplier of the equality

constraint (details are omitted due to space limits). Problem (5) is convex, so is
its dual formulation [4]. Therefore we can split Problem (7) in two subproblems
and solve them iteratively until the solution is reached [4]. In particular, we

can fix β to some constant value β̂ (satisfying the constrains) and reformulate
Problem (7) as follows:

α∗
t , bt : argmin

α
P1(α, β̂) =

1

2
αTY XXTYα+

(
XTY β̂ − 1T

n

)
α (8)

s.t.
√
λyTα = 0, 0n ≤ α ≤ C√

λ
1n,

where bt is derived analogously to the conventional L2 SVM approach. As a
matter of fact, Problem (8) is a simple reformulation of the conventional dual
formulation of L2 SVM, for solving which we can exploit any of the several ap-
proaches proposed in the last decades [13]. If, instead, we fix α to some constant
value α̂ (satisfying the constrains), we can reformulate Problem (7) as follows:

β∗
t : argmin

β
P2(β, α̂) =

1

2
βT Iβ +

(
α̂TY X

)
β (9)

s.t. − (1− λ)√
λ

1d ≤ β ≤ (1− λ)√
λ

1d.

Problem (9) has a closed form solution, as we have to identify the minimum of
a paraboloid (characterized by an identity Hessian matrix) in a box:

β∗
t = max

[
− (1− λ)√

λ
1d,min

[
(1− λ)√

λ
1d,

(
αT

t Y X
)T]]

. (10)

Consequently, a possible approach for solving Problem (7) is detailed in Algo-
rithm 1: solutions of Problems (8) and (9) are iteratively found, where, for the
former, any of the methods surveyed by [13] can be used. Though other opti-
mization techniques could be exploited (future works will cope with this issue),
Algorithm 2 focuses on the adoption of SMO [10,9] for solving Problem (8): in
fact, SMO is one of the most general and widespread optimization procedure,
and it also allows the extension to non-linear models through the exploitation
of the representer theorem and the kernel trick [15]. Note that, since, at every
optimization step, two αi coefficients are optimized by SMO, in order to bet-
ter balance the overall L1-L2 optimization procedure we can run n

2 iterations
(chosen accordingly to [4]) of SMO and, then, update βi∈{1,...,d}.

The proposed approach allows to solve L1-L2 problems by simply exploiting
optimization tools already developed for the conventional L2 SVM formulation.
Moreover, by simply tuning the value of λ, it is also possible to exploit the
proposed procedure for solving L1 (λ → 0), L2 (λ = 1) and L1-L2 (0 < λ < 1)
SVM training problems.

438 D. Anguita et al.

Algorithm 1. Algorithm for solving Problem (7)
Data: Dn, λ, C, ε and numerical precision ε
Result: w∗, b∗
t = 0, αt = 0n, βt = 0d;
repeat

αt+1, bt+1 = argminα P1(α,βt);

βt+1 = max

[
− (1−λ)√

λ
1d,min

[
(1−λ)√

λ
1d,

(
αT

t+1YX
)T

]]
;

t = t + 1;

until
[(

‖αt − αt−1‖2
2 +

∥∥βt − βt−1

∥∥2

2

)
< ε

]
;

return w∗ =
√

λ
λ

(
XTYαt + βt

)
, b = bt

Algorithm 2. Extended SMO (EX-SMO) algorithm for solving Problem
(7)

Data: Dn, λ, C, ε and numerical precision ε
Result: w∗, b∗
t = 0, αt = 0n, βt = 0d;
repeat

αt+1, bt+1 = argminα P1(α,βt) by running n
2 iteration of the SMO algorithm [9] ;

βt+1 = max

[
− (1−λ)√

λ
1d,min

[
(1−λ)√

λ
1d,

(
αT

t+1YX
)T

]]
;

t = t + 1;

until
[(

‖αt − αt−1‖2
2 +

∥∥βt − βt−1

∥∥2

2

)
< ε

]
;

return w∗ =
√

λ
λ

(
XTYαt + βt

)
, b = bt

3 Case Study: HAR on Smartphones

Our efforts are mainly targeted towards having a flexible approach, easy to im-
plement, allowing to seamlessly train L1, L1-L2 and L2 SVMs by simply tuning
a parameter, without requiring that ad hoc optimization approaches are real-
ized. This is of particular importance for SVM benchmarking in the framework
of Human Activity Recognition (HAR) using resource limited devices, such as
smartphones: in these cases, the accuracy of the classification must marry the
sparsity of the representation, so that computations are limited and battery
charge is spared. Thus, in order to test our approach, we used the HAR dataset
[2] downloadable from the UCI repository [7] and composed of 7352 training
and 2947 test samples. Six activities of daily living must be recognized from
values, gathered from a waist-mounted Samsung Galaxy S II smartphone: walk-
ing (A1), walking upstairs (A2), walking downstairs (A3), sitting (A4), standing
(A5), laying down (A6). In order to derive the experimental results, we replicated
the methodology adopted in [3], and we exploited a K–Fold Cross Validation [1]
approach with k = 10 for model selection purposes, by searching for the SVM
hyperparameter C in the range [10−4, 102] among 20 points equally spaced in a
logarithmic scale. In order to compare L1, L2 and L1-L2 SVM solutions, we set
λ ∈ {0.001, 0.005, 0.01, 0.1, 0.5, 1}.

Table 1 compares the training times for the EX-SMO described in Algorithm
2 against commonly used solvers for L1 (the Simplex Method for LP - SMLP
[6]) and L2 SVM (the conventional SMO [9]). EX-SMO performs comparably

A Novel Procedure for Training L1-L2 Support Vector Machine Classifiers 439

Table 1. Training times (in hours)

L1 SVM
L1-L2 SVM

L2 SVM
λ = 0.001 λ = 0.005 λ = 0.01 λ = 0.1 λ = 0.5 λ = 1

SMLP EX–SMO SMO
2.54 2.37 1.97 1.47 1.39 1.32 1.14 1.13

Table 2. Confusion matrices as λ is varied

L1 SVM

A
1

A
2

A
3

A
4

A
5

A
6

%
A1 494 1 1 0 0 0 99.6
A2 27 443 1 0 0 0 94.1
A3 2 5 412 1 0 0 98.1
A4 0 4 0 437 50 0 89.0
A5 1 0 0 11 520 0 97.7
A6 0 0 0 0 0 537 100.0
% 94.3 97.8 99.5 97.3 91.2 100.0 96.5

L1-L2 SVM λ = 0.001

A
1

A
2

A
3

A
4

A
5

A
6

%

A1 494 1 1 0 0 0 99.6
A1 27 443 1 0 0 0 94.1
A3 2 5 412 1 0 0 98.1
A4 0 4 0 437 50 0 89.0
A5 1 0 0 11 520 0 97.7
A6 0 0 0 0 0 537 100.0
% 94.3 97.8 99.5 97.3 91.2 100.0 96.5

L1-L2 SVM λ = 0.005

A
1

A
2

A
3

A
4

A
5

A
6

%

A1 494 1 1 0 0 0 99.6
A2 24 446 1 0 0 0 94.7
A3 2 5 412 1 0 0 98.1
A4 0 4 0 439 48 0 89.4
A5 1 0 0 11 520 0 97.7
A6 0 0 0 0 0 537 100.0
% 94.8 97.8 99.5 97.3 91.5 100.0 96.6

L1-L2 SVM λ = 0.01

A
1

A
2

A
3

A
4

A
5

A
6

%

A1 494 1 1 0 0 0 99.6
A2 24 446 1 0 0 0 94.7
A3 2 4 413 1 0 0 98.3
A4 0 4 0 442 45 0 90.0
A5 1 0 0 10 521 0 97.9
A6 0 0 0 0 0 537 100.0
% 94.8 98.0 99.5 97.6 92.0 100.0 96.8

L1-L2 SVM λ = 0.1

A
1

A
2

A
3

A
4

A
5

A
6

%

A1 494 1 1 0 0 0 99.6
A2 11 460 0 0 0 0 97.7
A3 2 4 414 0 0 0 98.6
A4 0 2 0 453 36 0 92.3
A5 0 0 0 7 525 0 98.7
A6 0 0 0 0 0 537 100.0
% 97.4 98.5 99.8 98.5 93.6 100.0 97.8

L1-L2 SVM λ = 0.5

A
1

A
2

A
3

A
4

A
5

A
6

%
A1 495 1 0 0 0 0 99.8
A2 15 455 1 0 0 0 96.6
A3 1 4 414 1 0 0 98.6
A4 0 3 0 460 28 0 93.7
A5 0 0 0 5 527 0 99.1
A6 0 0 0 0 0 537 100.0
% 96.9 98.3 99.8 98.7 95.0 100.0 98.0

L1-L2 SVM λ = 1

A
1

A
2

A
3

A
4

A
5

A
6

%

A1 496 0 0 0 0 0 100.0
A2 13 458 0 0 0 0 97.2
A3 1 1 417 1 0 0 99.3
A4 0 2 0 461 28 0 93.9
A5 1 0 0 7 524 0 98.5
A6 0 0 0 0 0 537 100.0
% 97.1 99.3 100.0 98.3 94.9 100.0 98.2

L2 SVM

A
1

A
2

A
3

A
4

A
5

A
6

%

A1 496 0 0 0 0 0 100.0
A2 13 458 0 0 0 0 97.2
A3 1 1 417 1 0 0 99.3
A4 0 2 0 461 28 0 93.9
A5 1 0 0 7 524 0 98.5
A6 0 0 0 0 0 537 100.0
% 97.1 99.3 100.0 98.3 94.9 100.0 98.2

Table 3. Accuracy, feature selection and grouping ability for the approaches

Method Algorithm % Accuracy % ρ % σ

L1 SVM SMLP 96.5 30.2 0.0
L1-L2 SVM λ = 0.001 EX–SMO 96.5 30.2 0.0
L1-L2 SVM λ = 0.005 EX–SMO 96.6 33.4 0.0
L1-L2 SVM λ = 0.01 EX–SMO 96.8 45.9 10.8
L1-L2 SVM λ = 0.1 EX–SMO 97.8 86.0 60.5
L1-L2 SVM λ = 0.5 EX–SMO 98.0 94.0 90.6
L1-L2 SVM λ = 1 EX–SMO 98.2 100.0 100.0
L2 SVM SMO 98.2 100.0 100.0

440 D. Anguita et al.

to SMO on L2 problems and outstrips SMLP on training L1 SVMs, albeit EX-
SMO effectiveness tends to decrease as λ→ 0: this is expected, as we are using
a QP tool to solve an (almost) LP problem. However, dimensionality reduction
considerations should not be neglected as well. As we exploit an OVA approach,
the final classification is carried out by contemplating the output of six models
f∗
i∈{1,...,6}(x) = w∗T

i x + b∗i : consequently, we can create a set S which includes

the indexes of the features j ∈ S : {wi,j = 0} , i = 1, ..., 6. In other words, we

can compute the fraction of selected features ρ = d−|S|
d , where |S| indicates the

cardinality of the set: broadly speaking, ρ will decrease (or increase) with λ.
Table 2 reports the confusion matrices for L1, L1-L2 and L2 SVMs, obtained

on the HAR dataset: we do not present results for different solvers as no dif-
ferences are shown in them. As expected, the accuracy tends to increase with
λ, that is L2 solutions are more effective than L1 ones. Though dimensional-
ity reduction capabilities are maximized for L1 SVMs, feature grouping effects,
namely the ability of the algorithm in selecting (or neglecting) clusters of highly
cross-correlated inputs, are usually absent as λ → 0, although they are desir-
able in order to have more insights on the informative content of each input
[12]. In order to evaluate whether L1-L2 SVMs are able to overcome these L1-
related issues, as expected from literature, we computed the correlation matrix
MC ∈ Rd×d of X and we created feature clusters by joining the 10 most cross-
correlated inputs. Our purpose was to verify the percentage σ of clusters features
selected (or neglected) by the different procedures (ranging from L1 to L2 SVM):
a high value for σ is obviously desirable. Results are shown in Table 3, where it
is thus worth noting that: a very small subset of features (L1 SVM) is necessary
to guarantee an acceptable classification performance, though grouping effects
are limited; by balancing the effects of L1 and L2 regularization terms, accuracy
is enhanced altogether with feature grouping; performance is maximized for L2
SVM, as also derived by the analysis of the confusion matrices. In the particular
case of HAR using smartphones, as we are targeting the minimization of the
computational burden to maximize battery duration and we are only partially
interested in having insights on information content of each input, L1-L2 SVMs
with (very) small values of λ are preferable, but this could not be, in general, the
best choice. The advantage of a very flexible solver that copes with L1, L1-L2
and L2 SVMs, as the one presented in this paper, consists in the possibility of
identifying the best application-dependent trade-off between performance and
dimensionality reduction, at the expense of a very small implementation effort.

4 Conclusions

We proposed in this paper a novel approach for training L1-L2 SVM classifiers.
The proposed method is characterized by two main advantages: (i) it is flexible,
as it allows to solve L1, L1-L2 and L2 SVM problems and to properly tune the
trade-off between dimensionality reduction and performance; (ii) it builds on
conventional solvers, thus can be implemented with a minimal effort. Tests on
a real-world problem, where sparsity must be carefully balanced with accuracy
depending on application-dependent constraints, allowed to highlight the use-
fulness of such a flexible solver in practice. Further more exhaustive tests are

A Novel Procedure for Training L1-L2 Support Vector Machine Classifiers 441

undergoing in order to assess the performance of the approach in a wider set
of problems settings, whose results could not be included in this paper due to
space constraints.

Acknowledgment. The authors would like to thank the anonymous reviewers
for their valuable and constructive comments and suggestions, which greatly
contributed to improving the quality and readability of our work.

References

1. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: In-sample and out-of-sample model
selection and error estimation for support vector machines. IEEE Transactions on
Neural Networks and Learning Systems 23(9), 1390–1406 (2012)

2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain
dataset for human activity recognition using smartphones. In: European Sympo-
sium on Artificial Neural Networks (2013)

3. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity
recognition on smartphones using a multiclass hardware-friendly support vector
machine. In: Bravo, J., Hervás, R., Rodŕıguez, M. (eds.) IWAAL 2012. LNCS,
vol. 7657, pp. 216–223. Springer, Heidelberg (2012)

4. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University (2004)
5. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large linear

classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)
6. Flannery, B.P., Press, W.H., Teukolsky, S.A., Vetterling, W.: Numerical recipes in

c. Press Syndicate of the University of Cambridge, New York (1992)
7. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
8. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear

models via coordinate descent. Journal of Statistical Software 33(1), 1 (2010)
9. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to

platt’s smo algorithm for svm classifier design. Neural Computation 13(3), 637–649
(2001)

10. Platt, J.: Sequential minimal optimization: A fast algorithm for training support
vector machines. Tech. Rep. msr-tr-98-14, Microsoft Research (1998)

11. Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines, regu-
larization, optimization, and beyond. MIT press (2001)

12. Segal, M.R., Dahlquist, K.D., Conklin, B.R.: Regression approaches for microarray
data analysis. Journal of Computational Biology 10(6), 961–980 (2003)

13. Shawe-Taylor, J., Sun, S.: A review of optimization methodologies in support vector
machines. Neurocomputing 74(17), 3609–3618 (2011)

14. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 267–288 (1996)

15. Vapnik, V.: Statistical learning theory. Wiley-Interscience (1998)
16. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 67(2), 301–320
(2005)

Online Classification of Eye Tracking Data

for Automated Analysis of Traffic Hazard
Perception

Enkelejda Tafaj1, Thomas C. Kübler1, Gjergji Kasneci2,
Wolfgang Rosenstiel1, and Martin Bogdan3

1 Department of Computer Engineering, University of Tübingen, Germany
2 Hasso-Plattner-Institute, Germany

3 Department of Computer Engineering, University of Leipzig, Germany

Abstract. Complex and hazardous driving situations often arise with
the delayed perception of traffic objects. To automatically detect whether
such objects have been perceived by the driver, there is a need for tech-
niques that can reliably recognize whether the driver’s eyes have fixated
or are pursuing the hazardous object (i.e., detecting fixations, saccades,
and smooth pursuits from raw eye tracking data). This paper presents
a system for analyzing the driver’s visual behavior based on an adap-
tive online algorithm for detecting and distinguishing between fixation
clusters, saccades, and smooth pursuits.

Keywords: classification, eye data, traffic hazard, perception.

1 Introduction

Driving is a complex task requiring proper visual functioning. According to Na-
gayama, more than 50% of collisions in road traffic occur due to missed or de-
layed hazard perception [10,18]. An effective way to avoid such collisions would
be to provide automated means for monitoring and analyzing the driver’s visual
behavior to detect entities that might have been overlooked.

According to the scanpath theory by Noton and Stark [11] a top-down inter-
nal cognitive model of what we see drives our eyes efficiently over a scene [13]
involving six types of eye movements: fixations, saccades, smooth pursuits, op-
tokinetic reflex, vestibulo-ocular reflex, and vergence [8]. As fixations, saccades,
and smooth pursuits are the most relevant while driving, we will focus on these
three types of eye movements. During a fixation the eye is kept relatively stable
on an area of interest (AOI), whereas saccades correspond to rapid eye move-
ments enabling the retinal part of sharpest vision (fovea) to fixate different ar-
eas of the scene [13]. Smooth pursuits occur whenever the eye follows a moving
target [3].

The continuous analysis of the driver’s visual behavior (i.e., in an online fash-
ion) and the reliable detection and distinction between fixation clusters, sac-
cades, and smooth pursuits is a crucial step towards the automated recognition

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 442–450, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Online Classification of Eye Data 443

of traffic hazards. Most prior research on the detection of fixations and saccades
has primarily focused on the offline detection of these types of eye movements.
Various approaches such as position, velocity or acceleration based algorithms,
methods based on minimum spanning trees, hidden Markov models or Kalman
filters have been proposed [1, 2, 4, 7, 9, 12, 14, 15, 17, 20]. Yet, these approaches
show two main drawbacks: (i) they either require several clustering parameters
as input, which makes them inadequate for online usage or (ii) they show poor
performance in the detection of fixations and saccades in dynamic scenes. A
further challenge arises when smooth pursuits have to be distinguished from
saccades and fixations. Although new methods have been proposed [6,19], their
applicability to the detection of smooth pursuits in dynamic scenes is unclear.

In order to identify whether a hazard was perceived by the driver, the driver’s
visual scanpath has to be analyzed in real time while considering all entities that
appear on the visual scene. If a relatively stable target was perceived, we would
expect the driver’s eye movements to be focused on that target, thus yielding a
cluster of fixation points. Any algorithm for clustering such fixation points needs
to work in an online fashion and be unparameterized with respect to the number
of clusters, as new entities may appear on the scene. Note that the system has
to know the driver’s AOIs at any point in time. Furthermore, as the viewing
behavior differs from person to person, an adaptive algorithm is needed.

In this work, we present a work-flow for the online analysis of hazard percep-
tion based on an adaptive online algorithm for the identification of and distinc-
tion between fixations, saccades and smooth pursuits.

2 Analysis of Driver’s Visual Behavior

2.1 Detection of Fixations and Saccades

In [16], we presented an effective online clustering algorithm, that could distin-
guish between fixations and saccades by considering only the Euclidean distance
between subsequent data points recorded by the eye tracker. The underlying
model was based on the intuition that distances between subsequent fixation
points will in general be shorter than distances between subsequent saccade
points; that is, distances between subsequent fixation points would be gener-
ated from a specific Gaussian distribution and those between subsequent sac-
cade points from another. This intuition gave rise to an online Bayesian mixture
model. Figure 1 depicts the belief network for the model, the joint probability
distribution of which is given by:

p(D, z|Θ) =

T−1∏
i=1

p(zi|π)p(di|μzi , βzi)

where z = {z1, ..., zT−1}, zi ∈ {1, 2}, contains the indices of the mixture compo-
nent chosen for distance di between subsequent points (i, i+1), and Θ represents
the model parameters with π = {π1, π2} ∼ Dir(λ) drawn from a symmetric

444 E. Tafaj et al.

Dirichlet distribution and denoting the set of mixture parameters μzi and βzi ,
i.e., the mean and precision of the Gaussian from which the distance di is drawn;
more specifically, di ∼ N(μzi , βzi). Note that both parameters are drawn from
corresponding conjugate priors, i.e., μzi ∼ N(m, τ) and βzi ∼ Gam(n, γ).

Fig. 1. Bayesian Mixture Model

The above Bayesian model comes with the great benefit that all parameters
are updated and learned in an online fashion as more and more data is observed.
More specifically, for every new data point, the priors of the parameters are sub-
stituted by the posteriors of the parameters. For practical purposes this means
that for every new user the algorithm needs a relatively small number of data
points to adjust to that user and learn user-dependent parameters.

For the specification of the model and inference in it we have used Infer.NET1

and its variational message passing implementation.

2.2 Detection of Smooth Pursuits

Reliably distinguishing fixations from saccades is an important first step towards
automated driving support and the prediction of hazardous situations. However,
in driving scenarios, objects are typically in motion relative to the driver. There-
fore it is crucial to automatically recognize objects that are being pursued by the
driver’s gaze and others that are not. To address this issue, we have extended
the above model to recognize smooth pursuits.

We first describe the general idea and then the details of the algorithm.
Let us assume that the last k gaze points were labeled by the above mixture

model as fixation points. The key question is whether these points are centered
around a relatively stable target or correspond to a moving object that is being
pursued by the user’s gaze. In the former case, the vector that represents the
highest variability in the k data points and the one representing the second
highest variability will have approximately similar lengths. In the latter case
there will be a notable difference in the lengths of the two vectors. Note that
these vectors correspond to the first and the second eigenvectors of the covariance
matrix of the data points. We rely on Principal Component Analysis [5] to
efficiently retrieve these vectors.

1 http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

Online Classification of Eye Data 445

More specifically, let M be the matrix holding the last k subsequent data
points that were all labeled as fixation points, such that the coordinates of the
(empirical) mean of their distribution are subtracted from the coordinates of
each point. Through singular value decomposition, M can be decomposed into
UΣV T , where U contains the orthonormal eigenvectors of the covariance matrix
MMT , Σ is a diagonal matrix containing the positive roots of the eigenvalues of
MMT , and V contains the orthonormal eigenvectors of MTM . This decomposi-
tion is unique up to different orderings of the values in Σ. This means that if the
values are ordered decreasingly (with the largest value in the upper-left corner
of the matrix) in Σ, then the first and the second column of U correspond to
the first and second eigenvector of MMT , respectively.

In order to decide whether the last k data points describe a smooth gaze
pursuit, we compute

σ2
2 · ‖u2‖

σ2
1 · ‖u1‖ =

σ2
2

σ2
1

≤ t

where t is an empirically established threshold, σ1 and σ2 are the largest and
the second largest values in Σ, respectively, and the ui the corresponding eigen-
vectors.

In preliminary experiments with data collected from driving simulations, this
extension of the algorithm performed reliably and gave promising results. An
example is depicted in Figure 2, where the hazardous situation arises from the
white car cutting into the lane from the right. Figure 2(a) shows the moment
when the driver’s attention is caught for the first time by the white car. The
black arrow shows the shift of visual attention in the most recent time frame
of 1000ms. Figure 2(b) depicts the situation 400ms later, when the driver has
come closer to the white car. During this time the driver’s gaze has pursued
the relative movement of the white car. According to the variability of the gaze
points, our algorithm has classified them as a smooth pursuit.

(a) (b)

Fig. 2. Smooth pursuit scenario

446 E. Tafaj et al.

3 Experimental Results

The presented method for the online analysis of the driver’s visual perception
was evaluated in a simulator study with 27 subjects. The experiment was con-
ducted in the moving-base driving simulator [21] shown in Figure 3(a) at the
Mercedes-Benz Technology Center in Sindelfingen, Germany. The facility allows
simulating acceleration forces in all directions, with up to 1g into the direction
of a twelve-meter long rail. The cabin contained a real car body (Mercedes S
class with automatic transmission) amidst a 360◦ projected virtual reality, Fig-
ure 3(b). The car body was oriented perpendicular to the rail. Thus curve and
lane changing movements were simulated most realistically, while acceleration
and braking resulted in a movement that was often described as “diving”. All
in all, acceleration, sound effects, and car environment contributed to a near-to-
reality driving experience.

(a) (b)

Fig. 3. Moving base driving simulator. The entire cabin is mounted on a hexapod,
moving along the 12m rail resulting in up to 1g acceleration force2.

The driving route of 37.5 km length contained ten hazardous situations. For
27 study subjects this would result in a total of 270 hazardous situations. How-
ever, some of the study participants aborted the session due to motion sickness,
resulting in a total of 184 hazardous situations. The course contained rural as well
as urban areas with different speed limits up to 100 km/h. Traffic hazards, e.g.,
pedestrians suddenly appearing behind parking cars and trying to cross the road
(Figure 4) and risky overtaking maneuvers, were induced at various positions of
the driving course. In case of an overseen hazard, the participants did not expe-
rience a crash. For example, it was not possible to run over pedestrians. Instead
pedestrians would leap backwards and overtakers would return to their original
lane to avoid crashes and subsequent psychological stress to the subjects.

Driver’s eye movements were recorded at 25Hz using a Dikablis mobile eye
tracker, whereas head movements were recorded by a LaserBird head tracker.

2 Figures were provided by http://www.daimler.com/

http://www.daimler.com/

Online Classification of Eye Data 447

Prior to the driving session each subject underwent a brief training session
of 5 km length, in order to adjust to the car and the driving environment. This
session served as an opportunity to learn an initial visual behavior model with
parameters adjusted to the current driver. The training session began with a
straight road and became more complex as oncoming traffic became successively
denser and traffic signs more frequent. Complex urban driving scenarios were
also part of this training session.

(a) (b)

Fig. 4. Scenes from the virtual reality: (a) a pedestrian intending to cross the road,
(b) and a white car coming from the right side

We evaluated our method on 184 hazardous situations. The spatial extent of
the traffic hazards was manually annotated using bounding boxes. The analysis
of the driver’s viewing behavior and the detection of fixations, smooth pursuits
and saccades was performed online using the algorithms presented in the previ-
ous section. A traffic hazard was considered as perceived, if a fixation or a smooth
pursuit cluster intersected the bounding box around it. The results are presented
in Table 1. In 169 situations, where the hazard was considered as perceived (i.e.,
an intersection between the fixation cluster and the bounding box occurred),
the driver reacted by performing a braking or obstacle avoidance maneuver. An
example of a successful intersection between the driver’s gaze and the bounding
box is shown in Figure 5. In 7 hazardous situations, the bounding box was not
intersected by a fixation or smooth pursuit cluster and no reaction to the situa-
tion happened (i.e., the target was missed). Note that in a real-world scenario,
these situations would have led to accidents. In 6 situations the bounding box
was not intersected but the driver reacted nevertheless. These hazards were per-
ceived, even though the driver did not explicitly look at them. In 2 situations,
where the bounding box was intersected by a fixation or smooth pursuit cluster,
the driver did not react. Although the driver looked at the targets, they were not
perceived. Again, in reality, such situations would result in accidents. In terms
of predicting the recognition of traffic hazards by the driver (using only raw eye-
tracking data), the algorithm showed an overall accuracy of 95,7%, a specificity
of 96,5%, and a sensitivity of 77,8%. These results highlight the overwhelming
reliability of the proposed method.

448 E. Tafaj et al.

Fig. 5. A car appears on the left of the driving scene and is about to cut the driver’s
way. The red bounding box around the approaching hazard and the driver’s fixation
cluster are shown. Once the bounding box is intersected by the fixation cluster, the
traffic hazard is marked as “perceived”, highlighted by the green bounding box.

In order to look into the detailed per-class performance of our algorithm
(i.e., the detection of fixations, saccades, and smooth pursuits), we randomly
picked the raw eye tracking data of one of the subjects. For a six-minute-long
driving sequence, two of our team members manually annotated the data points
as fixations, saccades, or smooth pursuits. Note that this annotation task is
very laborious, as the data has to be labeled frame-wise. Overall, there were
46 situations of the driver’s visual behavior that were labeled; 27 of these as
fixations, 8 as smooth pursuits, and 11 as saccades. Table 1 shows the per-class
true-positive and false-positive counts. While our algorithm detected all saccades
correctly, it classified two fixations as smooth pursuits and one smooth pursuit
as fixation. It correctly identified 7 out of 8 smooth pursuits and 26 out of 27
fixations. Although preliminary in nature, these results are very promising and
we plan to further evaluate the algorithm on larger labeled datasets.

Table 1. True and false positive counts for the detection of fixations, smooth pursuits,
and saccades

Eye movement type Annotation TP FP

Fixation clusters 27 26 1
Smooth pursuit clusters 8 7 2
Saccades 11 11 0

4 Conclusion

We presented an online adaptive, classification algorithm for detecting fixations,
saccades, and smooth pursuits in driving scenarios. This algorithm was primarily
evaluated with respect to its ability to detect hazardous traffic situations that
might have been overlooked by the driver. In a user study with a state-of-the-art
driving simulator, the method showed an impressive detection accuracy, which

Online Classification of Eye Data 449

we think can be mainly explained by the method’s ability to adjust the underly-
ing model to the driver’s visual behavior. A preliminary evaluation on the per-
class detection of fixations, saccades, and smooth pursuits hints at the method’s
ability to recognize and distinguish between different types of eye movements.
Apart from experiments on larger, labeled datasets, we also plan to investigate
physiological models, which take heart rate and skin conductance into account
to predict the driver’s stress levels. Such models could supplement models that
are based on gaze recordings to predict traffic hazard perception and the driver’s
ability to react.

Acknowledgment. The authors would like to thank Daimler AG and the driv-
ing simulator experts for the technical support during the whole experimental
study. This research work was funded by DFG Grant RO 1030/15-1.

References

1. Berger, C., Winkels, M., Lischke, A., Höppner, J.: GazeAlyze: a MATLAB toolbox
for the analysis of eye movement data. Behavior Research Methods 44(2), 404–419
(2012)

2. Camilli, M., Nacchia, R., Terenzi, M., Di Nocera, F.: Astef: A simple tool for
examining fixations. Behavior Research Methods 40, 373–382 (2008)

3. Duchowski, A.: Eye tracking methodology: Theory and practice. Springer, London
(2007)

4. Gitelman, D.R.: Ilab: a program for postexperimental eye movement analysis. Be-
havioral Research Methods, Instruments and Computers 34(4), 605–612 (2002)

5. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)

6. Komogortsev, O.V., Karpov, A.: Automated classification and scoring of smooth
pursuit eye movements in the presence of fixations and saccades. Behavior Research
Methods 45, 203–215 (2013)

7. Komogortsev, O.V., Gobert, D.V., Jayarathna, S., Koh, D., Gowda, S.: Standard-
ization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE
Transactions on Biomedical Engineering 57, 2635–2645 (2010)

8. Leigh, R.J., Zee, D.S.: The neurology of eye movements. Oxford University Press
(2006)

9. Munn, S.M., Stefano, L., Pelz, J.B.: Fixation-identification in dynamic scenes:
comparing an automated algorithm to manual coding. In: Proceedings of the 5th
Symposium on Applied Perception in Graphics and Visualization, APGV 2008,
pp. 33–42. ACM, New York (2008)

10. Nagayama, Y.: Role of visual perception in driving. IATSS Research 2, 64–73 (1978)

11. Noton, D., Stark, L.W.: Eye movements and visual perception. Scientific Ameri-
can 224(6), 34–43 (1971)

12. Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest:
Comparison with eye fixations. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 22(9), 970–982 (2000)

13. Privitera, C.M., Stark, L.W.: Scanpath theory, attention, and image processing
algorithms for predicting human eye fixations. In: Itti, L., Rees, G., Tsotsos, J.
(eds.) Neurobiology of Attention, pp. 269–299 (2005)

450 E. Tafaj et al.

14. Salvucci, D., Goldberg, J.: Identifying fixations and saccades in eye-tracking pro-
tocols. In: Proceedings of the Eye Tracking Research and Applications, pp. 71–78
(2000)

15. Santella, A., DeCarlo, D.: Robust clustering of eye movement recordings for quan-
tification of visual interest. In: Proceedings of the 2004 Symposium on Eye Tracking
Research & Applications, pp. 27–34 (2004)

16. Tafaj, E., Kasneci, G., Rosenstiel, W., Bogdan, M.: Bayesian online clustering of
eye movement data. In: Proceedings of the Symposium on Eye Tracking Research
and Applications, ETRA 2012, pp. 285–288. ACM, New York (2012)

17. Turano, K.A., Geruschat, D.R., Baker, F.H.: Oculomotor strategies for the direc-
tion of gaze tested with a real-world activity. Vision Research 43, 333–346 (2003)

18. Velichkovsky, B.M., Rothert, A., Kopf, M., Dornhöfer, S.M., Joos, M.: Towards an
express-diagnostics for level of processing and hazard perception. Transportation
Research Part F: Traffic Psychology and Behaviour 5(2), 145–156 (2002)

19. Vidal, M., Bulling, A., Gellersen, H.: Detection of smooth pursuits using eye move-
ment shape features. In: Proceedings of the Symposium on Eye Tracking Research
and Applications, ETRA 2012, pp. 177–180. ACM, New York (2012)

20. Wooding, D.S.: Fixation maps: quantifying eye-movement traces. In: Proceedings
of the Eye Tracking Research and Applications, pp. 31–36 (2002)

21. Zeeb, E.: Daimler’s new full-scale, high-dynamic driving simulator-a technical
overview. Actes INRETS, 157–165 (2010)

Time-Series Forecasting of Indoor Temperature

Using Pre-trained Deep Neural Networks

Pablo Romeu, Francisco Zamora-Mart́ınez,
Paloma Botella-Rocamora, and Juan Pardo

Embedded Systems and Artificial Intelligence Group
Escuela Superior de Enseñanzas Técnicas

Universidad CEU Cardenal Herrera
C/ San Bartolomé 46115 Alfara del Patriarca, Valencia, Spain

{pablo.romeu,francisco.zamora,paloma.botella,juan.pardo}@uch.ceu.es

Abstract Artificial neural networks have proved to be good at time-
series forecasting problems, being widely studied at literature. Tradi-
tionally, shallow architectures were used due to convergence problems
when dealing with deep models. Recent research findings enable deep ar-
chitectures training, opening a new interesting research area called deep
learning. This paper presents a study of deep learning techniques applied
to time-series forecasting in a real indoor temperature forecasting task,
studying performance due to different hyper-parameter configurations.
When using deep models, better generalization performance at test set
and an over-fitting reduction has been observed.

Keywords: Artificial neural networks, deep learning, time series, auto-
encoders, temperature forecasting, energy efficiency.

1 Introduction

Time series forecasting is the task of predicting some future values of a given
sequence, using historical data from the same signal (univariate forecasting), or
using historical data from several correlated signals (multivariate forecasting).
Artificial neural networks (ANNs) have been widely applied to this task [1,2,3].
Temperatures and energy consumption predictions could be applied to enhance
energy efficiency in domotic environments [4]. Nowadays, deep ANNs achieve
encouraging improvements over previous shallow ANN architectures.

Deep architectures, with many levels of non-linearity, have the ability of rep-
resent complex features from its inputs [5], yielding models with the theoretical
ability to learn these complex features, achieving better generalization. With the
exception of convolutional networks [6], deep ANN are difficult to train due to the
non-convex training criterion used in the gradient descent algorithm [5,7,8]. This
algorithm usually converges to different local minima, depending on the values of
the parameter initialization. Empirical work has demonstrated [9] that training
deep networks with more than 2 or 3 layers using random weights initialization
and supervised training provide worse results than training shallow architectures.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 451–458, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

452 P. Romeu et al.

Due to the difficulty of training deep architectures in an efficient manner, deep
networks have not been a trending topic in machine learning (also in time series
forecasting) since the introduction of pre-training techniques [10]. The training
is divided in two phases, unsupervised greedy layer-wise pre-training phase, and
a supervised training phase.

Previous work on deep networks pre-training focuses on dimensionality re-
duction [10] or classification [11]. Time series forecasting with deep learning
techniques becomes an interesting research area which needs to be studied. As
far as we know, few works are available at literature which study time series fore-
casting using deep networks [12,13], principally following Restricted Boltzmann
Machines (RBMs) approach proposed by [10]. This paper presents a study of
Stacked Denoising Auto-Encoders (SDAEs) [11], another kind of deep architec-
ture, and its ability to learn a real indoor temperature forecasting task [3]. An
analysis of different hyper-parameters is shown, obtaining small but promising
improvements using SDAEs. In the future it is expected that deep ANNs could
learn trend and seasonality of time series improving the overall efficiency of the
experimental framework.

2 Time Series Forecasting

Time series are data series with trend and pattern repetition through time. They
might be formalized as a sequence of scalars of a given variable observations:
s̄ = s0, . . . , si−1, si, si+1, . . ., denoting with sji a fragment from time i to j.

Depending on the size of future window (H) and how it is computed [2],
forecasting approaches are denoted as single-step-ahead forecasting (one future
prediction); multi-step-ahead iterative forecasting (iterative future window); and
multi-step-ahead direct forecasting [14] (large future window in one step). Follow-
ing this last approach, Multiple Input Multiple Output (MIMO) variation uses
one model to compute the full H future window. This paper follows MIMO using
ANNs due to their ability to learn discriminatively the mapping between inputs
and outputs. The forecasting model is formalized as a function F which receive
as inputs the interest variable with its past values until current time t (input
size I) and predicts a future window of size H following ŝt+H

t+1 = F (stt−I+1).
In this paper, Mean Absolute Error (MAE) and Root Mean Square Error

(RMSE) are used to compare the performance of the models. They are com-
puted comparing target values for the time series st+1, st+2, . . . , st+H and its
corresponding time-series prediction ŝt+1, ŝt+2, . . . , ŝt+H :

MAE(t) =
1

H

H∑
h=1

|ŝt+h − st+h| RMSE(t) =

√√√√ 1

H

H∑
h=1

(ŝt+h − st+h)
2 .

The results could be measured over all time series in a given dataset D as

MAE� = 1
|D|

∑|D|
t=1 MAE(t), being |D| the size of the dataset. In the same way

is possible to compute RMSE�.

Time-Series Forecasting of Indoor Temperature Using Pre-trained DNNs 453

3 Stacked Denoising Auto-Encoders

In order to solve deep architectures training problems, a greedy pre-training algo-
rithm is used, which in practice works as a regularization mechanism, preparing
the weights of the network so that the gradient descent reaches a better gener-
alization result [8]

In recent approaches to this issue, Stacked Denoising Auto-Encoders (SDAEs)
[9,11] have been proposed. By introducing small perturbations –i.e. noise– at
the input data of the pre-training task, each layer of the deep network needs to
recover a clean (denoised) input at the unsupervised phase. This approach tries
to extract useful high-level features, and hence, be able to generalize better.

The SDAE training consists in two phases. At the first phase (pre-training
phase) several auto-encoders (AEs) are trained, forcing each AE to reconstruct
the encoding computed at the hidden layer of previous AE, except the first
AE which is trained to reconstruct the input features of the task. SDAE [9,11]
introduces noise to the input data of the pre-training task as shown in Figure 1.
Therefore, the pre-trained layers extract robust features from data while trying
to reconstruct its inputs. Once all layers have been pre-trained, there is a second
supervised phase (fine-tuning phase) where the output layer is added and the
whole ANN is trained to solve a concrete task.

ẋ

h1

x̃ x̂

h(x̃) using W g(h(x̃)) using W T

x

GN(x)

MN(ẋ)

Fig. 1. Denoising Auto-Encoder with Gaussian (GN) and masking noisy (MN) inputs

Each AE computes its hidden layer activations, an encoded version of its in-
puts, as h(x) = softsign(b + Wx) being x the input, b the bias, and W the
weights of the AE. The activation function is softsign(x) = x

1+|x| [15]. A trans-

posed version of W weights matrix is used to decode hidden layer activations,
following g(h(x)) = softsign(c+WTh(x)), where c are the biases for the decod-
ing layer. As the input for each layer is not the clean input x, but a corrupted
version x̃, each pre-trained layer outputs g(h(x̃)) = softsign(c+WTh(x̃)). Then,
this AE is trained in order to g(h(x̃)) minimizes the mean square error (MSE)
between the clean input x and the output g(h(x̃)) = x̂. We define MSE of a

m-sized mini-batch of patterns as: MSE = 1
2m

∑m
j=1

∑n
i=1(x̂

(j)
i − x

(j)
i)2 , being

x
(j)
i the component i of the pattern j.
The types of noise added to the input data of each AE, following [11]), are:

454 P. Romeu et al.

– Gaussian noise (GN): GN(x) = ẋ = x+N (0, σ2I), where σ2 is the variance
of the amount of Gaussian noise added and I the identity matrix.

– Masking noise (MN): MN(x) = x̃, a percentage p of randomly chosen ele-
ments are forced to be 0 in case of inputs, and −1 for softsign activations.

4 Experimentation

Several experiments have been performed in order to study the effect of hyper-
parameters, pre-training technique, and different fine-tuning schemes.

4.1 Experimentation Framework

Input signal sequence is sampled at one minute period (indoor temperature
time series task presented at [3]), and pre-processed by a low-pass filter to
get the mean value of the current plus last 14 samples, introducing a delay
of 7 minutes in the predicted values. Hence, s′1s

′
2 . . . s

′
N are computed, where

s′i = (si + si−1 + si−2 + si−3 + . . .+ si−14)/15. In a second step, differences
are calculated between each two adjacent elements, to estimate the variation
of temperature within 15 minutes. Then s′′1 , s

′′
2 . . . s

′′
N−1 are calculated, being

s′′i = s′i − s′i+1.
Data is divided in three partitions: training (2 016 training patterns, 21 days),

validation (672 validation patterns, 7 days) used during training to avoid over-
fitting, and the last one for testing (672 test patterns, 7 days). The validation
partition is sequential with the training partition, but the test partition is one
week ahead from them.

Three types of training modes are compared among themselves. First mode
is Train Mode 0 (TM-0) where an ANN is trained to forecast the data without
pre-training. Train Mode 1 (TM-1) pre-trains an ANN using SDAE and fine-
tuning all the layers. Train Mode 2 (TM-2) pre-trains the ANN using SDAE but
fine-tuning only the last layer (forecasting layer).

Instead of using a grid search for hyper-parameter optimization, a combina-
tion of grid and random search is used. Compared to grid search, random search
has demonstrated [16] to be more efficient in finding good hyper-parameter con-
figurations within less trials and it is easier to parallelize. The Gaussian Noise
variance and number of forecasted values were set to 0.01 and H = 12 respec-
tively for all experiments. Mini-batch size was set to 32 in all cases. A grid with
the following hyper-parameters was built: the Train Mode (TM-0, TM-1, TM-
2); number of hidden layers (1, 2, 3); and Mask Noise percentage (0.02, 0.04,
0.10, 0.20). For each grid sweep 100 random trials have been performed sampling
different values for the following hyper-parameters:

– Input size (I): uniform distribution (12, 24, 36, 48, 60, 72, 84, 96).
– Learning rate: two hyper-parameters, one for pre-train and other the fine-

tuning, sampled uniformly and independently in range [10−3, 10−2].
– Momentum: one hyper-parameter for each phase, independently sampled
∼ N (10−3, 5× 10−3), avoiding negative values.

Time-Series Forecasting of Indoor Temperature Using Pre-trained DNNs 455

– Weight decay: in TM-0, weight decay is used at the ANN training. In TM-1
and TM-2, weight decay is used at the pre-training phase, but not at fine-
tuning. Uniformly sampled in the range [0, 10−5].

– Hidden layer sizes : uniformly distributed at range [4, 1024], but taken only
multipliers of 4 (to avoid memory alignment issues).

A minimum of 50 and maximum of 4 000 iterations over the training data are
used. Training stops if ever, at iteration k, the best validation performance was
observed before iteration k/2. In total 3 600 experiments were performed, all of
them using the April-ANN1 toolkit [17], which implements SDAE and efficient
ANN training algorithms.

4.2 Results

The first noticeable result which we observe is that for TM-0, deeper networks
were difficult to train. Approximately 58% of experiments for three layered
ANNs, and the 33% for two layered ANNs, achieve MAE� greater than 0.5.
This issue is not found for TM-1 and TM-2 experiments.

The Figure 2 shows validation MAE� results for different hyper-parameters.
The input size behavior for each training mode (Figure 2-a), shows similar shape
for TM-0 and TM-1, but worst results for TM-2. Best TM-0 and TM-1 results
are between 48 and 60 input sizes (12–15 hours). This is coherent with the
input signal observed frequency, where 12 hours past info seems to be enough
to forecast the slope of the function, and therefore, to restrict next forecasted
values to a short range. The lack of full fine-tuning harms the performance of
TM-2 while adding hidden layers. Encoding layer (the number of neurons at the
last hidden layer) results at Figure 2-b show consistently that rising the number
of hidden layers introduces instability to the prediction results on TM-2. TM-
0 and TM-1 remain more stable while increasing the number of hidden layers.
Figure 2-c shows that masking noise harms the performance of TM-0. Comparing
learning rates at fine-tuning phase, shown at Figure 2-d, we observe that TM-0
needed a higher learning rate to achieve good results, while for pre-trained TM-
1 it is not an important parameter. All four figures show that as more hidden
layers are added, the more unstable TM-2 is.

Test results in MAE� and RMSE� for the systems which perform better in
validation are shown at Figure 3. The systems were optimized separately follow-
ing the random search algorithm of [16]. The best system topologies, regarding
to validation set performance, are: for TM-0 60 inputs and two hidden layers of
756 and 60; for TM-1 48 inputs and three hidden layers of 648, 920 and 16; and
for TM-2 96 inputs and one hidden layer of 712. Non pre-trained ANNs TM-
0 achieve similar errors as pre-trained ANNs TM-1. Nevertheless, performance
measured at test error is better at full pre-trained ANNs TM-1. Pre-trained
ANNs TM-2 achieve worse error measures than TM-0 and TM-1. In order to
compare, an exponential smoothing model [18] was trained, denoted as ETS at
the table of Figure 3.

1 Developed by members of our research group in collaboration with members of Uni-
versitat Politècnica de València.

456 P. Romeu et al.

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

12 36 60 84

TM-0

12 36 60 84

TM-1

1 layer
2 layers
3 layers

12 36 60 84

TM-2

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0 300 600 900

TM-0

0 300 600 900

TM-1

0 300 600 900

TM-2

(a) input size (b) encoding layer size

0.12

0.13

0.14

0.15

0.16

0.17

0.02 0.10 0.18

TM-0

0.02 0.10 0.18

TM-1

0.02 0.10 0.18

TM-2

0.12

0.13

0.14

0.15

0.16

0.17

0 0.003 0.006 0.009

TM-0

0 0.003 0.006 0.009

TM-1

0 0.003 0.006 0.009

TM-2

(c) mask noise percentage (d) learning rate at fine-tuning phase

Fig. 2. Result plots of different hyper-parameters (x-axis) vs MAE� (y-axis). Only the
best model for each x value is represented. Second order polynomial fits are also shown.

0.115

0.120

0.125

0.130

0.135

0.140

TM-0 TM-1 TM-2

M
A

E
*

Validation
Test

0.135

0.140

0.145

0.150

0.155

0.160

0.165

0.170

TM-0 TM-1 TM-2

R
M

S
E

*

MAE�

Validation (μ ± σ) Test (μ± σ)

ETS 0.3004 0.3254

TM-0 0.1289± 0.0011 0.12482 ± 0.0010

TM-1 0.1287± 0.0033 0.1223± 0.0033

TM-2 0.1374 ± 0.0007 0.1279 ± 0.0011

RMSE�

Validation (μ ± σ) Test (μ± σ)

ETS 0.3648 0.3930

TM-0 0.1563± 0.0011 0.1511 ± 0.0012

TM-1 0.1565± 0.0040 0.1473± 0.0039

TM-2 0.1663 ± 0.0009 0.1538 ± 0.0013

Fig. 3. (Left) Box whiskers plot computed over 20 different random initializations for
each training mode (TM) and for the validation and test sets. (Right) Mean and stan-
dard deviation for MAE� & RMSE� computed over the same 20 random initializations.
Bolded numbers are best results. ETS is an exponential smoothing model.

Time-Series Forecasting of Indoor Temperature Using Pre-trained DNNs 457

0.010

0.014

0.019

0.025

0.034

0.046

0.063

0.086

0.117

0.159

0 200 400 600 800 1000 1200 1400

T
ra

in
in

g
M

S
E

 (
lo

g-
sc

al
ed

)

Epochs

TM-0
TM-1
TM-2

0.117

0.159

0.216

0.293

0.398

0 200 400 600 800 1000 1200 1400

T
es

t M
A

E
*

(lo
g-

sc
al

ed
)

Epochs

best val TM-0

best val TM-1
best val TM-2

TM-0
TM-1
TM-2

Fig. 4. Training detail for the best initialization (from the 20 random initializations
tested for Figure 3). (Left) Plot of MSE at each training epoch for best ANN of each
training mode. (Right) Plot of MAE� at each training epoch for best ANN of each
training mode. Arrows indicates stopping point due to validation stopping criteria.

To conclude, learning curve and test set generalization of the best confi-
gurations are shown at Figure 4. Left plot shows that as training epochs in-
crease, TM-2 stops learning at a certain epoch, while TM-0 and TM-1 keep
improving. Right plot shows that TM-0 ANN over-fits if it is trained during
too much epochs, while pre-trained networks remain close to its minimum error,
showing the benefits of pre-training as a regularization method.

5 Discussion and Conclusions

A study of deep learning applied to time-series forecasting has been presented.
Pre-training, denoising techniques, and random hyper-parameter optimization
were used to carry deep ANNs training, showing better generalization perfor-
mance at test set and a reduction in over-fitting, compared to an ANN without
pre-training. Fine-tuning phase of the whole deep model is needed to ensure good
results, as was shown by the comparison of TM-1 and TM-2. However, TM-1
obtained result is not overwhelming compared to deep learning improvements in
other tasks [11], but it is a promising preliminary result. The low dimensionality
of the task (univariate time-series forecasting using at most 96 inputs), and the
smoothness of the indoor temperature time-series, reduce the benefit of using
SDAE models, as was stated in [11]. Although RBMs and other deep techniques
are being applied for time series analysis [12,13], as far as we know, the approach
proposed in this paper has not been employed yet. Hence, a future work might be
to use a larger forecasting input window, combined with multivariate forecast-
ing (adding additional inputs as time, sun irradiance, and/or humidity), where
higher dimensional dependencies are expected to be learned by deep learning
techniques.

458 P. Romeu et al.

References

1. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:
The state of the art. International Journal of Forecasting 14(1), 35–62 (1998)

2. Ben Taieb, S., Bontempi, G., Atiya, A., Sorjamaa, A.: A review and comparison of
strategies for multi-step ahead time series forecasting based on the NN5 forecasting
competition. Expert Systems with Applications (2012) (preprint)

3. Zamora-Mart́ınez, F., Romeu, P., Pardo, J., Tormo, D.: Some empirical evaluations
of a temperature forecasting module based on Artificial Neural Networks for a
domotic home environment. In: IC3K – KDIR (2012)

4. Ferreira, P., Ruano, A., Silva, S., Conceição, E.: Neural networks based predictive
control for thermal comfort and energy savings in public buildings. Energy and
Buildings 55, 238–251 (2012)

5. Utgoff, P.E., Stracuzzi, D.J.: Many-layered learning. Neural Comput. 14(10),
2497–2529 (2002)

6. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1(4), 541–551 (1989)

7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. Journal of Machine Learning Research 9, 249–256 (2010)

8. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.:
Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11,
625–660 (2010)

9. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of
training deep architectures and the effect of unsupervised pre-training. Journal of
Machine Learning Research 5, 153–160 (2009)

10. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313(5786), 504–507 (2006)

11. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: Learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

12. Chao, J., Shen, F., Zhao, J.: Forecasting exchange rate with deep belief net-
works. In: The 2011 International Joint Conference on Neural Networks (IJCNN),
pp. 1259–1266 (2011)

13. Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M.: Time Series Forecasting
Using Restricted Boltzmann Machine. In: Huang, D.-S., Gupta, P., Zhang, X.,
Premaratne, P. (eds.) ICIC 2012. CCIS, vol. 304, pp. 17–22. Springer, Heidelberg
(2012)

14. Cheng, H., Tan, P., Gao, J., Scripps, J.: Multistep-ahead time series prediction. In:
Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI),
vol. 3918, pp. 765–774. Springer, Heidelberg (2006)

15. Bergstra, J., Desjardins, G., Lamblin, P., Bengio, Y.: Quadratic polynomials learn
better image features. Technical Report 1337, Département d’Informatique et de
Recherche Opérationnelle, Université de Montréal (April 2009)

16. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

17. Zamora-Mart́ınez, F., et al.: April-ANN toolkit, A Pattern Recognizer In Lua, Ar-
tificial Neural Networks module (2013), https://github.com/pakozm/april-ann

18. Taylor, J.: Exponential smoothing with a damped multiplicative trend. Interna-
tional Journal of Forecasting 19, 715–725 (2003)

https://github.com/pakozm/april-ann

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 459–466, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Recurrent Fuzzy-Neural Network with Fast Learning
Algorithm for Predictive Control

Yancho Todorov1, Margarita Terzyiska2, and Michail Petrov2

1 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences,

Acad. G. Bontchev st., bl. 2, 1113, Sofia, Bulgaria
yancho.todorov@iit.bas.bg

2 Technical University-Sofia, Branch Plovdiv,
25, Tsanko Dustabanov St., 4000, Plovdiv, Bulgaria,

terzyiska@gmail.com, mpetrov@tu-plovdiv.bg

Abstract. This paper presents a Takagi-Sugeno type recurrent fuzzy-neural
network with a global feedback. To improve the predictions and to minimize
the possible model oscillations, a hybrid learning procedure based on Gradient
descent and the fast converging Gauss-Newton algorithms, is designed. The
model performance is evaluated in prediction of two chaotic time series –
Mackey-Glass and Rossler. The proposed recurrent fuzzy-neural network is
coupled with analytical optimization approach in a Model Predictive Control
scheme. The potentials of the obtained predictive controller are demonstrated
by simulation experiments to control a nonlinear Continuous Stirred Tank
Reactor.

Keywords: recurrent fuzzy-neural networks, Takagi-Sugeno, predictive control,
optimization, Gradient descent, Gauss-Newton method, momentum learning.

1 Introduction

An important step in nonlinear control is the development of a nonlinear model.
Since, the most dynamical systems are complex and nonlinear, the task of selecting a
good model structure and performing identification and control imposes the
continuous research in this area.

In recent years, computational-intelligence techniques, such as neural networks,
fuzzy logic and combined fuzzy-neural networks have become very popular and
effective tools for identification and control of nonlinear plants. The problem of
identification consists of choosing an appropriate model and adjusting the parameters
such that the response of the model approximates the response of the real system to
the same input. For this purpose, a general fuzzy-neural network (FNN) approach
based on multiple Linear Time Invariant models (as ARMAX and e.t.c.) around
various function points has been proposed. Fuzzy-neural networks are well known as
a universal aproximators and different structures are developed for solving
identification and control problems, but the most widely used FNN is the

460 Y. Todorov, M. Terzyiska, and M. Petrov

Takagi-Sugeno (TS) inference. The TS approach is a convex polytopic representation,
which can be obtained either through mathematical transformation or through
achieved linearization around various operating points. The main advantage of the TS
model is the soft transition through any operating regions [1-2].

Many recent developments show that recurrent fuzzy-neural networks (RFNN) are
more suitable in describing complicate dynamical systems than the FNN, because
they can handle the time-varying inputs or outputs through its own natural temporal
operation. RFNNs have an internal feedback loop that allows them to capture the
dynamic response of a system with external feedback through delays. Due to its
dynamic characteristic and relatively simple architecture, the RFNNs are useful tools
for most real-time applications, such as predictive controllers. Stable predictive
controller based on RFNN model is described in [3]. In [4-5] are presented predictive
controllers based on RFNN where the feedback is after the fuzzyfication layer. A
novel Type-2 RFNNs with asymmetric membership functions are proposed in [6-7].
TSK-type RFNNs for modeling and control are described in [8-9]. These RFNNs
have additional inputs which increase the number of the fuzzy rules and the
computational burden, respectively.

This motivates us to propose a simple RFNN using a TS inference mechanism with
global feedback and a hybrid learning algorithm, combining the Newton and the
Gradient descent methods. The Newton approach is applied in notion to the fuzzy
rules consequents and provides a treat quickly convergence of the learning, while the
Gradient descent is used to schedule the rule premises in order to avoid potential
model oscillations. The proposed model structure is evaluated in modeling of two
common chaotic time series, as well as its potentials into nonlinear model predictive
control (MPC) scheme of a Continuous Stirred Tank Reactor (CSTR), are also studied
by simulation experiments.

2 Recurrent Takagi-Sugeno Fuzzy-Neural Network

Since the middle of the 1980s, TS fuzzy-neural models have attracted a great deal of
attention from industrial practitioners and academic researchers, especially because
they can effectively approximate a wide class of nonlinear systems. Thus, in discrete
time by using the NARX representation model (Nonlinear AutoregRessive model with
eXogenous inputs) can be derived:

 () (())yy k f x k= (1)

where the unknown nonlinear function fy can be approximated by Takagi-Sugeno type
fuzzy rules:

() ()() () () ()

1 1 1 2

() () ()() ()
1 2 0

: () (-1) (- 2) ...

(-) () (-1) ... (-)

i ii i i i
p p y m m

i i ii i
ny m y nu u

R if x is A and x is A then f k a y k a y k

a y k n b u k b u k b u k n b

= + +

+ + + + + +

 (2)

where (i)=1,2,…N denotes the number of the fuzzy rules R(i). Ai is an activated fuzzy
set defined in the universe of discourse of the input xi and the crisp coefficients a1,

Recurrent Fuzzy-Neural Network with Fast Learning Algorithm for Predictive Control 461

a2,...any, b1, b2,...bnu are the coefficients into the Sugeno function fy. The input vector x
contains regressors in notion the input/output history dependence. On Fig. 1 is shown
the schematic diagram of the proposed recurrent TS fuzzy-neural network.

Fig. 1. Schematic diagram of the proposed recurrent fuzzy-neural network

The identification of the proposed recurrent network requires the two main groups
of unknown parameters to be determined: the number of membership functions, their
shape and the parameters of the function fy in the consequent part of the rules. For this
purpose, in this work a simplified fuzzy-neural approach is applied [10-11].

2.1 Learning Algorithm for the Designed Recurrent TS Fuzzy Neural Network

A two step learning procedure based on minimization of an instant error measurement
function E=ε 2/2 and ε(k)=y(k)-ym(k) between the process output and the model
output, is implemented. During the learning process, two groups of parameters in the
fuzzy-neural architecture – premise and consequent parameters are under adaptation.
The consequent parameters are the coefficients a1, a2,...any, b1, b2,...bnu in the Sugeno
function fy and they are calculated by the following equations:

 () ()
0 0(1) () () () (), (1) () () ()j j

ij ij M y i j j M yk k y y k x k k k y y kβ β η μ β β η μ+ = + − + = + − (3)

Where η is the learning rate and βij is an adjustable i-th coefficient (ai or bi) in the
Sugeno function fy of the j-th activated rule. The premise parameters are the centre cij
and the deviation σij of a Gaussian fuzzy set defined as:

 ()()2() () exp 2i
ij i i i ix x cm s= - - (4)

The parameters of a fuzzy set are calculated by using the following equations:

() ()
2

3
() ()

2

[() ()]
ˆ(1) () () ()[()]

()

[() ()]
ˆ(1) () () ()[()]

()

i ijj i
ij ij M y y

ij

i ijj i
ij ij M y y

ij

x k c k
c k c k y y k f y k

c k

x k k
k k y y k f y k

k

η μ

σ
σ σ η μ

σ

−
+ = + − −

−
+ = + − −

 (5)

462 Y. Todorov, M. Terzyiska, and M. Petrov

2.2 Gauss-Newton Method for Hybrid Learning of the Network Parameters

To improve the efficiency of the proposed recurrent fuzzy-neural network, a Gauss-
Newton method for adjusting the rules consequent parameters, is applied. Since the
Newton method requires the computation of the second order derivative of the
defined error cost term, taking into account (3) it can be rewritten:

12 () ()E Eb b b

-é ùD = - ë û (6)

The Hessian and the Gradient of E(β) are expressed as:

 2 2
1

() () (), () () () () ()
NT T

j jj
E J e k E J J e k e kb b b b b

=
 = = + å (7)

where the dimension of the Jacobian matrix is (NxNp); N- the number of the training
samples and Np- is the number of adjustable parameters in the network. Using the
Newton approach the second term in (7) is assumed equal to zero. Therefore, the
update rule, according to (6) became:

1

() () () ()T TJ J J e kb b b b
-é ùD = -ë û (8)

where the Jacobian according to adjustable parameters is calculated as:

 () () () ()
0 0() , () , () , ()

T TT j j T j j
j y j y ij y i ij y iJ J J x J xb m b m b m b mé ù é ù= = = =ë û ë û (9)

Finally, the recurrent equations for the rule consequent parameters are derived as
follows:

 ()

()

1
() () ()

1
() () ()

0 0 0 0

(1) () () () () (() (1))

(1) () () () (() (1))

Tj j j
ij ij y i y i M y ij ij

Tj j j
j j y y M y j j

k k x k x k y y k k

k k y y k k k

β β η μ μ μ ζ β β

β β η μ μ μ ζ β β

−

−

 + = + − + − −

 + = + − + − −

 (10)

where the second term represents an introduced momentum ζ in notion to previous
increment of the adjusted parameter.

3 Model Predictive Control Policy

Using the designed recurrent TS fuzzy-neural model, the Optimization Algorithm
computes the future control actions at each sampling period, by minimizing the
following cost function:

 2 2 2
1 1

ˆ(, ()) (() ()) (1)uN N

i i
J k u k r k i y k i u k iρ= == + − + + Δ + − (11)

where ŷ is the predicted model output, r is the reference signal and u is the control

action. The tuning parameters of the stated predictive controller are: N1, N2, Nu and ρ.

Recurrent Fuzzy-Neural Network with Fast Learning Algorithm for Predictive Control 463

N1 and N2 are the minimum/maximum prediction horizons, Nu is the control horizon
and ρ is the weighting factor penalizing changes in the control actions. Since, the
criterion function is a quadratic one and there are no imposed constraints on the
control action, the minimization procedure is performed iteratively. If the criterion J
is minimized with respect to the future control moves u, then their optimal values can
be calculated by applying the condition ∇J[k,U(k)]=0. Thus, each element from the
gradient vector is calculated using the following equation:

ˆ ˆ[, ()] () ()ˆ ˆ2[() ()] 2 ()

() () ()
T TJ k U k Y k U k

R k Y k U k
U k U k U k

ρ ∂ ∂ ∂= − − + ∂ ∂ ∂
 (12)

It can be seen, that two partial derivatives have to be determined. The first one is
∂Ŷ(k)/∂U(k), and second one is ∂Û(k)/∂U(k). Each element from the first group of
partial derivatives is calculated by the following equations [10-12]:

() 2
1

() 2() ()
21

() 21 1
2

ˆ(1)
()ˆ ˆ() ()

() ()
() () ˆ(2)

()

i
N N

i i i
y y

ii i

y k N
a

u ky k y k N
b k k N

u k u k y k N
a

u k

μ μ
= =

∂ + − + ∂∂ ∂ += = +
∂ ∂ ∂ + − + ∂

 (13)

Since, Δu(k)=u(k)-u(k-1) the ∂Û(k)/∂U(k) represents matrix of zeros and ones. Thus,
the recurrent equations for calculation of the control actions along the horizon are
derived as:

 1 21
1 2

ˆ ˆ() ()
(1) () ... ()

(1) (1)u
u u

y k N y k N
u k N e k N e k N

u k N u k N
r-

é ù¶ + ¶ +
D + - = + + + +ê ú

¶ + - ¶ + -ê úë û
 (14)

 1 21
1 2

ˆ ˆ() ()
() (1) () ... ()

() ()
y k N y k N

u k u k e k N e k N
u k u k

r-
é ù¶ + ¶ +

D =D + + + + + +ê ú
¶ ¶ê úë û

 (15)

4 Results and Discussion

4.1 Recurrent TS Model Evaluation by Prediction of Chaotic Time Series

Chaos is a common dynamical phenomenon in various fields [13] and different
definitions as series representations exist. Chaotic time series are inherently nonlinear,
sensitive to initial conditions and difficult to be predicted. For that purpose, the
chaotic time series prediction based on measurement is a practical technique for
studying characteristics of complicated dynamics [14] and evaluation of the accuracy
of different types of nonlinear models as RNN’s. In this study, a two chaotic time
series, Mackey-Glass [15] and Rossler [16] are used to assess the performance
prediction of the proposed recurrent TS network, with chosen fixed momentum of
ζ=0.098. On Fig. 2 is demonstrated the model performance in prediction of the
Mickey-Glass chaotic times series, with the following parameters: a=0.2; b=0.1;
C=10; initial conditions x0=0.1 and τ= 17s. As it can be seen, the proposed model
structure predicts accurately the generated time series, with minimum prediction error
and fast transient response of the RMSE, reaching values closer to zero.

464 Y. Todorov, M. Terzyiska, and M. Petrov

Fig. 2. Model validation by using Mackey-Glass time series

On Fig. 3 are shown the obtained results in case of Rossler chaotic series prediction
with the following parameters: a=0.2; b=0.4; c=5.7; initial conditions x0=0.1; y0=0.1;
z0=0.1. The obtained results show again a good model performance with minimum error
prediction and fast transient response of the RMSE, approaching to zero.

Fig. 3. Model validation by using Rossler time series

4.2 Evaluation of the Proposed MPC with Recurrent TS Network

To evaluate the performance of the proposed MPC control policy a simplified model
of nonlinear CSTR plant is used for simulation experiments. The dynamic equations
of the nonlinear plant are given by:

 2 2
1 1 1 2 2 1

2 2
(1) exp , (1) (1) exp

1 / 1 /a a
x x

x x D x x x BD x u
x x

δ δφ φ
 = − + − = − + + − + + +

 (16)

where x1 and x2 represent the dimensionless reactant concentration and the reactor
temperature, respectively. The control action u is dimensionless cooling jacket
temperature. The physical parameters in the CSTR model equations are Da, φ, B and δ
which correspond to the Damkhler number, the activated energy, the heat of reaction

Recurrent Fuzzy-Neural Network with Fast Learning Algorithm for Predictive Control 465

and the heat transfer coefficient, respectively. Based on the nominal values of the
system parameters, Da=0.072, φ =20, B=8 and δ=0.69, the open-loop CSTR exhibits
three steady states (x1,x2)A=(0.144, 0.886), (x1,x2)B=(0.445, 2.75) and (x1,x2)C=(0.765,
4.705), where the upper and the lower steady states are stable, whereas the middle one
is unstable. The control objective here is to bring the nonlinear CSTR from the stable
equilibrium point (x1,x2)A to the unstable one (x1,x2)B [17]. On the Fig. 4 are
demonstrated the obtained results of CSTR control using the recurrent TS fuzzy-
neural network and different values of the penalty term ρ, as well as a comparison is
made with a predictive controller using the classical TS representation (non-recurrent
NARX representation). Both models have been coupled with a Gradient descent
algorithm as optimization approach into a MPC with the following set of horizons,
N1=1, N2=5 and Nu=3. As it can be seen, varying the penalty term when using the
recurrent TS implementation, leads to smooth controller operation with small system
overshoot. On the other hand, the performed comparative study on equal initial
conditions for the models show that the assumed recurrent TS representation leads to
more faster transient response of the system. Taking into account that, the most of the
real time processes under control, have a smooth nature and the instant samples for
model operation are relatively high, it can be concluded that the proposed recurrent
fuzzy-neural model may be a promising solution in a MPC scheme.

Fig. 4. Process responses in a MPC scheme compared to classical TS model

Conclusions: It was presented in this paper a recurrent implementation of a Takagi-
Sugeno fuzzy-neural network with a global feedback. The model performance has
been evaluated in prediction of two commonly used chaotic times series – Mackey-
Glass and Rossler. The obtained results show a minimal error prediction of the
chaotic series of different frequency and amplitude. The operation of the proposed
model is also studied into a MPC control scheme for a CSTR and compared to
classical TS non-recurrent implementation, on equal initial conditions. The results
show a faster controller response when using recurrent TS model with minimal
overshoot in case of changing reference. This makes the adopted modeling approach a
promising solution for designing different predictive controllers.

466 Y. Todorov, M. Terzyiska, and M. Petrov

Aknowlegment. The research work reported in the paper is partly supported by the
project AComIn "Advanced Computing for Innovation", grant 316087, funded by the
FP7 Capacity Programme (Research Potential of Convergence Regions).

References

1. Mendes, J.: Adaptive fuzzy generalized predictive control based on Discrete-Time T-S
fuzzy model. In: Proc. IEEE Conf. of Em. Tech. and Factory Automation, pp. 1–8 (2010)

2. Chaladi, M., Borne, P.: Multiple Models Approach in Automation: TS Fuzzy Systems.
Wiley (2012)

3. Chi-Huang, L., Chi-Ming, L.: Stable predictive control based on recurrent fuzzy neural
networks. In: Proceeding on 8th Asian Control Conf (ASCC), pp. 897–901 (2011)

4. Chi-Huang, L., Ching-Chih, T.: Generalized predictive control using recurrent fuzzy
neural networks for industrial processes. Journal of Process Control 17, 83–92 (2007)

5. Mendes, J., Sousa, N., Araujo, R.: Adaptive predictive control with recurrent fuzzy neural
network for industrial processes. In: 16th IEEE ETFA Conference, pp. 1–8 (2011)

6. Ching-Hung, L., Chang, H., Ting Kuo, C., Chieh Chien, J., Wei Hu, T.: A Novel Recurrent
Interval Type-2 Fuzzy neural Network for Nonlinear Channel Equilization. In: Proceeding
of the Int. MultiConf. of Eng. and Computer Sci., pp. 7–12 (2009)

7. Chia-Feng, J., Yang-Yin, L., I-Fang, C.: Dynamic System Identification Using A Type-2
Recurrent Fuzzy Neural Network. In: Proc. of the 7th Asian Control Conference (2009)

8. Chia-Feng, J., Chun-Feng, L., Po-Han, C.: Dynamic Plant Control Using Recurrent Fuzzy
Controller with Ant Colony Optimization in Real Space. In: Proc. of the International
IEEE Conference on Systems Man and Cybernetics, pp. 1134–1138 (2010)

9. Ya-Ling, C., Ching-Chih, T.: A TSK-Type Recurrent Fuzzy Neural Network Adaptive
Inverse Modeling Control for a Class of Nonlinear Discrete-Time Time-Delay Systems.
In: Proc. of SICE Annual Conference, pp. 2390–2393 (2010)

10. Terzyiska, M., Todorov, Y., Mitev, A., Petrov, M.: Nonlinear Model Based Predictive
Controller using a Fuzzy-Neural Hammerstein model. In: Proc. of the Int. Conf. ‘Modern
Trends in Control’, pp. 299–308 (2006)

11. Terzyiska, M., Todorov, Y., Petrov, M.: Nonlinear Model Predictive Controller with
Adaptive Learning rate Scheduling of an internal model. In: Proc. of the Int. Conf.
‘Modern Trends in Control’, pp. 289–298 (2006)

12. Todorov, Y., Tsvetkov, T.: Volterra Model Predictive Control of a Lyophilization plant.
In: Proc. of the 4th IEEE Conf. “Intelligent Systems”, vol. 3, pp. 13–18 (2008)

13. Yao, J., Mao, J., Zhang, W.: Application of Fuzzy Tree on Chaotic Time Series Prediction.
In: IEEE Proc. of Int. Conf. on Aut. and Logistics, pp. 326–330 (2008)

14. Lai, Y.: Recent developments in chaotic time series analysis. International Journal of
Bifurcation and Chaos 13(6), 1383–1422 (2003)

15. Diaconescu, E.: The use of NARX Neural Networks to predict Chaotic Time Series.
WSEAS Trans. on Computer Research 3(3), 182–191 (2008)

16. Archana, R., Unnikrishnan, A., Gopikakumari, R.: Bifurcation Analysis of Chaotic
Systems using a Model Built on Artificial Neural Networks. In: Proc. of Int. Conf. on
Comp. Tech. and Artificial Intelligence, pp. 198–202 (2013)

17. Ray, W.H.: Advanced Proceess Control. McGraw-Hill, New York (1981)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 467–474, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Real-Time Interface Board
for Closed-Loop Robotic Tasks

on the SpiNNaker Neural Computing System

Christian Denk1, Francisco Llobet-Blandino1, Francesco Galluppi2,
Luis A. Plana2, Steve Furber2, and Jörg Conradt1

1 Fachgebiet Neurowissenschaftliche Systemtheorie, Fakultät für Elektro- und
Informationstechnik, Technische Universität München, 80290 München, Germany

{christian.denk,llobetblandino,conradt}@tum.de
2 Advanced Processor Technologies Group, School of Computer Science,

University of Manchester, Manchester M13 9PL, UK
{francesco.galluppi,plana,sfurber}@cs.man.ac.uk

Abstract. Various custom hardware solutions for simulation of neural circuitry
have recently been developed, each focusing on particular aspects such as low
power operation, high computation speed, or biologically detailed simulations.
The SpiNNaker computing system has been developed to simulate large spiking
neural circuits in real-time in a network of parallel operating microcontrollers,
interconnected by a high-speed asynchronous interface. A potential application
area is autonomous mobile robotics, which would tremendously benefit from
on-board simulations of networks of tens of thousands of spiking neurons in
real-time. Currently, the SpiNNaker hardware circuit boards provide a single
Ethernet interface for booting, debug, and input and output of data, which
results in a severe bottleneck for sensory perception and motor control signals.
This paper describes a small and flexible real-time I/O-hardware interface to
connect external devices such as robotic sensors and actuators directly to the
fast asynchronous internal communication infrastructure of the SpiNNaker
neural computing system. We evaluate performance in terms of package
throughput and present a simple application demonstration of a closed loop
mobile robot interpreting visual data to approach the most salient stimulus.

Keywords: massively-parallel simulation of spiking neurons, SpiNNaker,
hardware interface board, mobile robotics.

1 Introduction and Related Work

In computational neuroscience research various customized computing systems for
the simulation of neuronal networks are under development, such as Facets/
BrainScales/ HBP [1], Neuro-grid [2], dedicated aVLSI computing chips [3], or the
SpiNNaker spiking network computing system [4]. All such hardware resembles brain
style information processing, which in contrast to traditional general purpose
computers offers various advantages, e.g. reduced power consumption or increased

468 C. Denk et al.

processing speed for elaborate or complex neural models. Most larger systems are
designed for “neuronal number crunching” (i.e. detailed neuronal modeling) and exist
in a closed computer rack with well controlled digital input and output channels. At
the other side of the spectrum, there are small scale test-case implementations of
neuromorphic functionality. Only very few such neuromorphic computing systems
have yet operated in real time on noisily perceived sensory data and produced
reasonable motor outputs to interact with the surrounding environment.

Engineers and robotics systems designers however can strongly benefit from
flexible instantiations of real-time neural information processing algorithms. Many
robotic research groups agree that the neuronal style of information processing is
advantageous for real time sensory processing and motor control, as this is what the
brain and especially cortex is largely devoted to do. Current applications of
neuromorphic hardware in closed loop systems typically keep a desktop computer in
the loop to acquire sensory data from a robot, translate it into “neural” form, and
provide it to the neuromorphic hardware and vice versa for motor output. Such a setup
faces various inherent drawbacks: (a) large size and power consumption, which defies
application on most mobile robots; (b) processing delays that might break real-time
control loops; (c) no autonomy, which limits the operation range as a connection to a
stationary computer is needed and (d) waste of resources, as the computer often only
“translates” data.

In this paper we present a standalone interface solution for a direct connection of
various types of external hardware to the SpiNNaker [4] neural computing system,
and present an application example that is autonomously executed in real-time on-
board a mobile robot. The developed board is compact in size, supports high data
transfer rates, requires little operating power (thereby allowing extended runtime on
batteries), operates autonomously, offers various connection options for existing
robots and sensors, and provides simple customizable extensions to additional sensors
and actuators (or other robots).

2 An Autonomous Mobile Robot with a Neuronal Computing
System

2.1 The SpiNNaker Neural Network Computing System

The SpiNNaker computing system [4] is designed for massively-parallel computations
of spiking neural networks. Each SpiNNaker chip consists of 16+2 generic ARM968
cores, a shared 128MByte SDRAM module, and an asynchronous high-speed
communication interface with six bi-directional links. The chips execute arbitrary code
in each of the 16 user accessible cores, but the overall system design is optimized for
simulations of large spiking neural networks (e.g. LIF or Izhikevich neurons). Current
SpiNNaker systems offer 4 chips (64 cores) or 48 chips (768 cores) with each core
simulating up to 1000 neurons in real time [5], thereby allowing networks of 64.000
(768.000) spiking neurons. The fast asynchronous communication interface is designed
to route neural action potentials from arbitrary neurons to a large number of other
neurons. Various options for neural network implementations exist, from API library
calls to interpreters of neural description languages such as PyNN [6] or NeNGO[7].

 Real-Time Interface Board for Closed-Loop Robotic Tasks 469

2.2 The Holonomic Mobile Robot Platform

The mobile robot used in this project (Figure 1, left) is an omni-directional platform
of 26cm diameter, with embedded low-level motor control and elementary sensors.
An embedded microcontroller obtains motion commands in x and y direction and
rotation through a UART interface, and continuously adapts three motor signals to
maintain requested velocities. The robot’s on-board sensors include wheel encoders, a
9 Degrees of Freedom (DOF) inertial measurement unit and a simple bump-sensor
ring to trigger binary contact switches upon contact with objects.

Fig. 1. Left: Autonomous mobile robot with on-board vision sensors, SpiNNaker hardware and
interface board. Right: exemplary robot task: select the strongest out of multiple visual stimuli.

2.3 The Embedded Dynamic Vision Sensor

The dynamic vision sensor (DVS) [9] used as spiking sensory input in this project is
an address-event silicon retina that responds to temporal contrast. Each output spike
represents a quantized change of log intensity at a particular pixel since the last event
from that pixel. All 128x128 pixels operate asynchronously and signal illumination
changes within a few microseconds after occurrence. We developed an embedded
DVS system (eDVS) [10] composed of a DVS chip connected to an ARM7
microcontroller that initializes the DVS and captures events. In this project the
microcontroller streams all obtained events over a UART port into the SpiNNaker
interface board (Section 3).

3 Design and Specifications of the Real-Time Interface Board

Distributed computing cores in SpiNNaker exchange data on an energy and speed
efficient asynchronous interface, which unfortunately is tedious to connect to external
hardware. This section presents our developed interface board that attaches to this
interface to send and receive native SpiNNaker packets, and to act as customizable
interpreter between external hardware and the SpiNNaker system.

�
�������	
���

���
��
��������
�
������
������

�	
�
��
�����
�����

��	
���
����� ��

�

!
�""#$

� %#$

470 C. Denk et al.

3.1 The SpiNNaker Inter-Chip Communication Protocol and Interface

Messages in the SpiNNaker system (typically neuronal “spikes”) are transferred as
40-bit packets, composed of an 8-bit header and a 32-bit routing key. Packets can also
carry an optional 32-bit payload. [5]. Communication between chips happens on two
unidirectional asynchronous interfaces composed of 7 data lines (plus acknowledge),
which are optimized for low energy consumption and fast data transfer rates: static
levels on the data lines are meaningless, only transitions of bits encode a value. Any
double bit flip on those 7 lines encodes the next nibble of the 40/72bits data word (“2-
of-7 code”), which needs to be acknowledged by toggling the signal on the respective
acknowledge line. This protocol is fast (allows up to 6M packets per second) and
energy efficient, but is difficult to implement for existing sensors and/or mobile
robots. Hence we developed a generic interface board that on one side follows the
communication protocol enforced in SpiNNaker, and on the other side offers various
generic options to connect external hardware.

Fig. 2. Left: Sketch of information flow SpiNNaker ↔ external hardware (e.g. eDVS, robot).
Right: SpiNN-3 system (4 chip board) with attached interface board.

3.2 The Developed SpiNNaker Interface Board

The Interface Board receives and transmits SpiNNaker data packets in the 2-of-7 bit
toggling format on one side (Figure 2, red connectors) and offers a variety of flexible
interfaces for sensors and/or actuators on the other side (Figure 2, purple connectors).
A fast on-board microcontroller (STM 32F407, 32bit ARM Cortex M4, 168MHz;
Figure 2, green) allows flexible customization of translation protocols between
SpiNNaker packets and sensor or actuators signals as described below. For efficiency
we added a CPLD (XILINX Coolrunner-II, XC2C64A; Figure 2, blue) in the
communication path, which translates between 2-of-7 bit-toggling codes and 9 bit
data bus level signals for the microcontroller (8 data bits and 1 handshaking signal).
All communication (SpiNNaker ↔ CPLD ↔ microcontroller) in both directions
generates appropriate handshake signals to guarantee lossless transmission of data.

The microcontroller consecutively retrieves all available data from SpiNNaker and
connected peripherals and translates the data into the respective other format. After
the translation, the data are forwarded to the respective devices as soon as possible
(e.g. the SpiNNaker and/or UART transmit ports free).

&'��

(&

���	

������	

���

)��	

���)��	

���

�*+�����

������������	�

��	
���
�����

&'��

,�������	��--
�

'
���.
�-����	�

�	.
��
	����	

������
���.���

��� /���	 000
���000

 �������1��.����(��
-
2
-3�.�4
����	���-

)���	���--
-�
���	���-

5

5

������������	�����
�	����
	��������
�

 Real-Time Interface Board for Closed-Loop Robotic Tasks 471

The presented interface board is easy to extend for upcoming system demands,
even for users inexperienced with electronic hardware and/or microcontroller
programming: the main-loop that continuously processes data is essentially a large
lookup-table, which makes it easy to include different sensors and actuators without
the need to be aware of SpiNNaker low-level programming (such as “2-of-7 bit
toggling”) or routines to communicate over UART, SPI, or TWI.

The developed interface board allows neural models running on SpiNNaker to
receive sensory input signals and to control actuators. Performance evaluation in
terms of number of sent / received packages is shown in Figure 3, left.

4 Application: Winner-Takes-All Network on Mobile Robot

We demonstrate the SpiNNaker robot platform equipped with a forward pointing
eDVS performing a simple closed loop robotic task: various visual stimuli (lights with
different flashing frequencies) are positioned at some distance of the robot. The
system should identify and approach the most active stimulus (Figure 1, right). In our
demonstration we implement a nonlinear robust “Winner Takes All (WTA)” [8]
(Figure 3 right) neuronal network on the visual input to identify the most salient
stimulus. All elements of this network are spiking neurons, which is well suited for
the SpiNNaker platform. We demonstrate and evaluate the performance of our
implementation in a closed-loop experiment.

IF IF IF IF IF IF IF- - - - - -
++++ + + +

Fig. 3. Left: Transfer rates for simultaneous transmission and reception of SpiNNaker packets
(32bit) in million packets per second. Right: Sketch of WTA network to process visual stimuli.

4.1 Winner Takes All Networks

The WTA network is a well-established computing principle [8] to sharpen spatially
and/or temporally related diffuse input signals. A WTA network can be described as a
robust max operation: instead of identifying the maximum of several inputs at each
time step, a WTA filter is a dynamical system that selects the maximum over a sliding
window in time and possibly space, implementing hysteresis and thereby generating
robust output [8].

Our implementation of the WTA network uses a layer of Integrate and Fire (IF)
neurons to which all eDVS events of one input column are propagated (Figure 3,

0.7 0.8 0.9 1 1.10

0.1

0.2

0.3

0.4

0.5
Data Throughput

Sp
in

na
ke

r
to

 In
te

rf
ac

e

Interface to SpiNNaker [MP/s]

[MP/s]

472 C. Denk et al.

right). These IF neurons compete for activation, but only the most active neuron will
reach its firing threshold and thereby is identified network winner. Such firing of a
winning neuron has two consequences: (a) inhibition of its competitors, and (b)
resetting/initializing itself to a non-zero membrane potential (self-excitation). This
recurrence generates the desired hysteresis as discussed in [8].

The sketch of a sub-region of the full 128-node network in Figure 3, right, depicts
event propagation and WTA implementation: the top grid shows a part of the eDVS’
pixel map. Our selection problem is essentially a one-dimensional task, as all pixels in
a column (y) for any given row (x) support the same driving direction. This grouping
results in a one-dimensional visual input vector of size 128, represented by the
activity levels in designated neurons. We apply a spatial low-pass distribution on the
input signal (green Gaussian in Figure 3, right) that produces strong excitation at the
center neuron and symmetrically decayed excitation at its neighbors.

100

80

60

40

20

120

20

40

60

80

100

120

S1 (100Hz)

S2 (125Hz)
S3 (85Hz)

S1,S3

S2

St
im

ul
us

 L
oc

at
io

n

Temporal
Activity:

WTA Stationary Input and Output
Visual input event

WTA winning neuron

Time [s]

S1,S3

S2

Neuron Potentials

0 5 10 15 20 25 30

20

40

60

80

100

120

29,00 29,0529,025

Magnified View

firing threshold reached

25 3020151050

N
eu

ro
n

In
de

x

St
im

ul
us

 L
oc

at
io

n

N
eu

ro
n

In
de

x

Fig. 4. Top Left: Stimulus activation (black bars) and corresponding evoked visual events over
time (red dots). Bottom Left: activation of WTA neurons. Right: time magnified view.

4.2 WTA Implementation on SpiNNaker Hardware

The developed interface board (Section 3) translates and propagates all eDVS visual
input events as native SpiNNaker packets, conveying the x-coordinate as source
address. These packets are injected at the lower left chip on the SpiNNaker board, and
distributed evenly among several other SpiNNaker chips and cores. For simplicity (as
this is a proof-of-concept implementation) each core implements only a single IF
neuron, who’s potential is augmented by incoming events according to the Gaussian
weighting function. Upon reaching firing threshold, an output spike causes all other
distributed neurons to decrease their respective potentials (see Figure 4, right).
Various dedicated motor neurons detect WTA output spikes and compute temporally
low-pass filtered rate-encoded driving signals, which are sent through the SpiNNaker
interface board to the robot.

 Real-Time Interface Board for Closed-Loop Robotic Tasks 473

4.3 Evaluation of the Demonstration System

We demonstrate our implementation of the WTA network in two different scenarios:
(a) stationary with multiple different alternating stimuli and (b) on an autonomous
robot driving towards partially occluded stimuli (Figure 1, right).

Fig. 5. Closed loop SpiNNaker-robot experiment: WTA alternatively identifying winner (blue)
out of all stimuli (red dots); robot continuously approaches (and centers) the respective winner

For scenario (a), we provide three distinct LED stimuli (S1-3), each flashing with a
particular frequency (see Figure 4, left). We position all stimuli so that the two low
frequency stimuli are at roughly similar x coordinates (around x=38), whereas the most
active stimulus is located elsewhere in the field-of-view (around x=110). The LED
stimuli are turned on according to the timeline (black bar) in Figure 4. The upper graph
shows input events (red dots) and WTA output spikes (blue dots). The lower graph
displays WTA neuron integrator activation over time (darker parts indicate higher
activation). Initially, with only S1 active, the WTA network identifies x=38 as center of
activation, and provides a unique, spatially stable output firing despite background noise
and a slightly broadened input signal distribution. After activation of S2 (with increased
activity compared to S1) at t=10s, the WTA network transitions to this stimulus as
winner; again identifying a spatially stable unique winning location. Additionally
activating S3, which has the lowest frequency of all, but is spatially co-located with S1,
yields a return to the first winning location, due to the Gaussian distribution of input
signals to neurons, which allows the two less active stimuli to surpass the most active
stimulus in sum. The magnified view (Figure 4, right) shows the neuronal activation
over time; note the spatially distributed increase of activation around stimuli, and global
inhibition and local self-excitation after a neuron fired.

In demonstration scenario (b), an autonomous mobile robot is controlled by the
WTA output (Figures 1 and 5). The WTA network focuses on the most active
stimulus, which causes the robot to continuously turn towards and approach that
stimulus. In the closed loop system, the winning stimulus approaches the center of the
vision sensor (pixel 64) as the robot turns (Figure 5; inset shows the robot’s trajectory
in top-down view). We repeatedly occlude the stronger stimulus (see activation bars
in Figure 5), which produces alternating robot motion towards the stronger stimulus,
thereby demonstrating switching behavior of the WTA network.

0

20

40

60

80

100

120

Stimulus 85Hz
Stimulus 100Hz

Time [s]

Se
ns

or
 P

ix
el

 X

0 20 40 60 80 100
−20

0

20

Robot X/Y Location [cm]

0 10 20 30 40 50 60 70

474 C. Denk et al.

5 Results and Discussion

The SpiNNaker computing system provides a powerful and easy to learn neuronal
computing infrastructure for computational modelers, which allows simulation of
large scale spiking neural system in real-time. However, scenarios with real-time
input/output currently require a PC in the loop or are custom developed FPGA chips
for a particular piece of hardware, because of the SpiNNaker internal communication
bus which is incompatible with existing sensors and/or robots.

In this project we presented a solution to flexibly interface various external
hardware (such as sensors and/or robots) to the SpiNNaker computing system. The
developed interface is small, allows high data transfer rates (sufficient even for visual
data), and is easily customizable for future additional sensors and actuators without
requiring in-depth knowledge about the SpiNNaker communication protocol. We
demonstrated the performance of the developed system in two example settings: (a)
stationary sensors with variable stimuli and (b) in an autonomous closed loop robotic
experiment. The presented application shall be viewed as a proof-of-principle, not as
an exhaustive evaluation of the board. In fact the demonstration only requires a small
subset of the implemented features (e.g. significantly higher data rates are possible,
refer to Figure 3, left). We are currently using the interface board in ongoing research
such as a stereo optic flow processing and a neural model of grid cells for navigation.

References
1. Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M.A., Schmuker, M.,

Brüderle, D., Schemmel, J., Meier, K.: Six Networks on a Universal Neuromorphic
Computing Substrate. Frontiers in Neuroscience 7 (2013)

2. Choudhary, S., Sloan, S., Fok, S., Neckar, A., Trautmann, E., Gao, P., Stewart, T.,
Eliasmith, C., Boahen, K.: Silicon Neurons That Compute. In: Villa, A.E.P., Duch, W.,
Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 121–128.
Springer, Heidelberg (2012)

3. Badoni, D., Giulioni, M., Dante, V., Del Giudice, P.: An Avlsi Recurrent Network of
Spiking Neurons with Reconfigurable and Plastic Synapses. In: IEEE (ISCAS),
pp. 1227–1230 (2006)

4. Khan, M., Lester, D., Plana, L.A., Rast, A., Jin, X., Painkras, E., Furber, S.B.: SpiNNaker:
Mapping Neural Networks onto a Massively-Parallel Chip Multiprocessor. In: IEEE
International Joint Conference on Neural Networks (IJCNN), pp. 2849–2856. IEEE (2008)

5. Plana, L.A., Bainbridge, J., Furber, S., Salisbury, S., Shi, Y., Wu, J.: An on-Chip and Inter-
Chip Communications Network for the SpiNNaker Massively-Parallel Neural Net
Simulator. In: 2nd ACM/IEEE NoCS, pp. 215–216. IEEE (2008)

6. Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L.A., Furber, S.: A Hierachical
Configuration System for a Massively Parallel Neural Hardware Platform. In: Proceedings
of the 9th conference on Computing Frontiers, pp. 183–192. ACM (2012)

7. Galluppi, F., Davies, S., Furber, S., Stewart, T., Eliasmith, C.: Real Time on-Chip
Implementation of Dynamical Systems with Spiking Neurons. In: IJCNN, pp. 1–8. IEEE
(2012)

8. Oster, M., Douglas, R., Liu, S.-C.: Computation with Spikes in a Winner-Take-All
Network. Neural Computation 21, 2437–2465 (2009)

9. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128× 128 120dB 15ms Latency Asynchronous
Temporal Contrast Vision Sensor. IEEE Solid-State Circuits 43, 566–576 (2008)

10. Conradt, J., Berner, R., Cook, M., Delbruck, T.: An Embedded AER Dynamic Vision
Sensor for Low-Latency Pole Balancing. In: IEEE ECV, pp. 780–785. IEEE (2009)

A Software Framework for Cognition,

Embodiment, Dynamics, and Autonomy
in Robotics: cedar

Oliver Lomp,1 Stephan Klaus Ulrich Zibner,1 Mathis Richter,1

Iñaki Rañó,2 and Gregor Schöner1,�

1 Institut für Neuroinformatik, Ruhr-Universität Bochum
Universitätsstr. 150, 44780 Bochum, Germany

{oliver.lomp,stephan.zibner,mathis.richter,

gregor.schoener}@ini.rub.de

http://www.ini.rub.de
2 Intelligent Systems Research Centre, University of Ulster
Northland Road, Derry, Northern Ireland BT48 J7L, UK

i.rano@ulster.ac.uk

http://isrc.ulster.ac.uk

Abstract. We present cedar , a software framework for the implemen-
tation and simulation of embodied cognitive models based on Dynamic
Field Theory (DFT). DFT is a neurally inspired theoretical framework
that integrates perception, action, and cognition. cedar captures the
power of DFT in software by facilitating the process of software devel-
opment for embodied cognitive systems, both artificial and as models of
human cognition. In cedar , models can be designed through a graphical
interface and interactively tuned. We demonstrate this by implementing
an exemplary robotic architecture.

Keywords: software framework, embodied cognition, neural dynamics,
Dynamic Field Theory, cognitive robotic models.

1 Introduction

As scientists from diverse fields recognize the critical importance of grounding
cognitive function in sensory-motor processes, the embodiment stance is becom-
ing a shared perspective in the study of both artificial and natural cognition [4].
Embracing embodiment has consequences for cognitive modeling. Models of hu-
man cognition that account for psychophysical or neural data must include motor
control and the associated sensory processes. Artificial cognitive systems have to
be implementable on robotic hardware so that intelligent behavior may be gen-
erated while the system is situated in the real world. This requires that cognitive

� The authors acknowledge the financial support of the European Union Seventh
Framework Programme FP7-ICT-2009-6 under Grant Agreement no. 270247—
NeuralDynamics. This work reflects only the authors’ views; the EC is not liable
for any use that may be made of the information contained herein.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 475–482, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ini.rub.de
http://isrc.ulster.ac.uk

476 O. Lomp et al.

models are linkable to real-time sensory inputs, capable of controlling effectors
in real time, and must accommodate updating and control in a closed loop. Em-
bodiment thus requires a theoretical framework suited to address these issues,
and its demands are mirrored in its implementation. These demands include
integration across sensory, motor, and cognitive processes, real-time linkage to
sensors and effectors, fast prototyping, operation in closed loop, and tools for
model evaluation.

This paper introduces cedar , a software framework for the design and evalua-
tion of embodied cognitive systems that builds on Dynamic Field Theory (DFT).
DFT is a neural dynamic theoretical framework for cognition [11] that is tailored
to the embodiment paradigm. DFT has been used to model experimental data
from psychology (see, e.g., [6,12]) as well as to design cognitive robotic archi-
tectures [3,9,14]. DFT uses dynamic neural fields (DNFs) as universal building
blocks. A DNF represents a pattern of neural activation defined over continuous
metrical dimensions (e.g., visual space, feature space). Neural activation evolves
in time as described by a dynamical system (see Amari [1] for the mathematics).
DNFs form stable peaks of activation as attractor states of the neural dynam-
ics. These represent perceptual, motor, or cognitive decisions and emerge from
bifurcations, in which non-peak solutions become unstable. The bifurcations de-
marcate different dynamic regimes of a DNF that reflect cognitive functions
such as detection, selection, and working memory [11]. The stability properties
of each DNF make it possible to build structurally complex architectures within
DFT [14]. Their design requires that a relatively small (compared to conventional
neural networks), but critical set of parameters be tuned to achieve the correct
regimes in all DNFs under the desired environmental and task conditions.

We define the following requirements for an integrated software framework for
DFT.

1. It must be possible to build architectures from common components, in par-
ticular, DNFs and their couplings, and to inspect these components visually.

2. Simulations must be real-time capable. Parameters must be changeable on-
the-fly, which allows to inspect their impact on any component.

3. Components of an architecture must be connectable to physical hardware
(sensors, effectors).

We take inspiration from software frameworks developed for related ap-
proaches to cognitive modeling that address different requirements. Parallel Dis-
tributed Processing [10], for instance, facilitates design through software such as
the ‘PDPTool’ for Matlab, while other strands of connectionism are supported
by tools implemented in C++ such as ‘iqr’ [2]. The large-scale spiking networks
based on the Neural Engineering Framework [5] become practical through the
efficient ‘Nengo’ simulator with its graphical user interface [13].

The integrated software framework cedar is our solution to fulfilling the re-
quirements listed above. cedar is open-source, developed in C++, and available1

for Linux, Mac OS, and Windows.

1 cedar is available for download with extensive documentation at
http://cedar.ini.rub.de

http://cedar.ini.rub.de

The cedar Software Framework 477

Fig. 1. Graphical notation of the interfaces of cedar. The figure contains two compo-
nents (‘field 1’ and ‘field 2’) and a looped trigger (large circle).

2 A Software Framework for Dynamic Field Theory

DFT models consist of interconnected dynamical systems, most prominently
dynamic neural fields (DNFs), that evolve continuously in time. The connections
between DNFs vary in complexity, from simple identity mappings to chains of
more complex operations that may include transformations such as mappings
between DNFs of different dimensionality. cedar provides a graphical interface
to build DFT models from a set of connectable core components. Models can be
simulated in real time by numerically approximating the underlying continuous
dynamical systems.

2.1 Dynamics and Processing Steps

An architecture in cedar is composed of processing steps. They update their out-
put based on a number of current inputs that originate from other components of
the architecture. Processing steps that implement dynamical systems are called
dynamics. In addition to the inputs, their updates depend on their inner state.
These inputs and outputs are formalized as sets of named input and output slots,
whereas the inner states of dynamics use internal slots called buffers. These input
and output slots are used to define connections from and to other components
of the architecture.

Slots of dynamics contain matrices which represent the neural activation fields
that are the inner state of the neural dynamics. In general, however, there are no
restrictions on the type of data stored in slots. This enables us to work within
the same framework when using neural dynamics as when we connect these
dynamics to components that are based on non-neural data, for instance, at the
interface to hardware devices.

Both dynamics and processing steps have adjustable parameters, which can
be displayed, manipulated online, and stored as part of the overall architecture.
This helps modelers to find suitable operational regimes for the dynamic neural
fields.

2.2 Timing

In implementation on a computer-controlled robot or in computer simulation,
the time courses of dynamical systems must be numerically approximated by
iterative, discrete time steps. In cedar , this approximation is based on a solver

478 O. Lomp et al.

of differential equations, using the forward Euler method. Although numerically
not very efficient, the forward Euler lends itself to working with stochastic dy-
namics as well as to real-time implementation [7]. Individual components of the
dynamics implement their update rule (i.e., the dynamics equation) based on
their current state. A special element, the looped trigger (see Fig. 1), is responsi-
ble for periodically invoking this update with one of the following user-selectable
timing schemes.

Fixed time step: The user specifies a fixed duration for the time step, which
determines the minimum interval between iterations. If the duration of com-
putation in an iteration step exceeds this fixed time step, the trigger skips an
appropriate number of iterations or adapts its step size to the new duration.

Real time: Iterations are performed as often as possible and the time between
two consecutive iterations is used as the time step. This means that the time step
is determined by the amount of time it takes to update the overall architecture.

Simulated time: The trigger sends a fixed time step, regardless of how much
time passes between iterations. This mode can be used to perform simulations
that run faster than real time or to achieve numerical stability when other modes
fail to do so.

A separate, non-looped triggering mechanism invokes updates of non-dynamic
operations along the outgoing connections of dynamic components, thus creating
an ordered chain of updates.

2.3 Connections

When different components of an architecture are connected by the user, the
underlying framework checks the validity of these connections. They are valid if
the type and properties of the connected output match the expectations of the
receiving component. Potential semantic flaws result in a warning. Connections
are invalid if they cannot be handled by the receiving component.

2.4 Graphical Notation and User Interface

Fig. 1 illustrates how two components, each of which implementing a DNF, are
represented graphically. The small circles and diamonds attached to each com-
ponent represent the input (left), buffer (top), and output (right) slots. Outputs
from multiple other components may be connected to the diamond (for DNFs,
these inputs are summed up). Input slots drawn in light-gray indicate that the
components can be updated even when no input is connected. The green line
between the neural fields represents a valid connection of the output of one field
to the input of the other field (yellow lines would indicate warnings, red lines
errors). The large round circle represents a looped trigger; the light gray lines
originating from it indicate which updates it invokes.

cedar provides a graphical application (see Fig. 2) that offers tools for design-
ing architectures in a drag-and-drop manner using this graphical notation.

The ability to plot the data in the slots of components allows for online in-
spection. A suitable plot class is chosen automatically, but users may also choose

The cedar Software Framework 479

Fig. 2. Components of the graphical user interface. The pool of all available components
is placed on top (A). It contains components available in cedar and the loaded plugins,
grouped by theme. Desired components can be dragged onto the architecture canvas
(B). Two display modes are demonstrated here: icon-only (left component) and icon-
and-text (“field 1”). The current state of the neural field—the activation—is plotted
in a separate window (C). The parameters of the field can be inspected and altered in
the property pane (D).

other plot classes manually, e.g., for plotting matrices either as images or surface
plots. New plot classes can be loaded at runtime via a plug-in structure.

Users may also inspect other properties of a component, for instance, the
dimensionality and size of matrices. Online manipulation of parameters is acces-
sible in the user interface as well.

The user interface provides the designer with feedback. Faulty connections
and components that are in an erroneous state are highlighted in different col-
ors. Additional features make the process of designing architectures more com-
fortable. When connecting components, for instance, all available end-points are
highlighted and the validity of the potential connections is shown.

2.5 The DFT Toolbox

cedar provides essential components for DFT architectures, ordered into the-
matic groups.

The group ‘DFT’ includes the core building blocks for architectures. The
‘neural field’ component provides a single-layer neural field of arbitrary dimen-
sionality with lateral interactions [1]. ‘Preshape’ implements a memory trace
for neural layers, which adapts to a given input over time, taking into account
time scales for build-up and decay. Two processing steps, ‘rate-to-space-code’
and ‘space-to-rate-code’, transform population-based neural dynamics into rate-
coded neural activity [14] and vice versa. These mechanisms are used to connect
to the motor surface and proprioception. The processing step ‘rate-matrix-to-
space-code’ interprets a matrix of rate-coded neurons along a space code metric.

480 O. Lomp et al.

Fig. 3. Screenshot of an exemplary architecture created using the graphical user inter-
face of cedar (groupings, e.g., ‘task input’, have been added manually). This DFT-based
architecture controls an e-puck robot equipped with a color camera and makes it drive
toward objects of specific colors, in this case the red block. The selection decision
regarding the target is stabilized over time by a dynamic neural field.

All components in the group sources feed sensory input into architectures.
cedar currently supports camera devices, video files, and images. Moreover, cedar
includes artificially generated inputs, e.g., a homogeneous ‘boost’, a localized
‘Gaussian input’, and ‘noise’. While noise is inherent in physical sensory inputs to
an architecture, it is also an important tool during the tuning of an architecture,
e.g., to test the stability of a system for various levels of noise. The source ‘net
reader’ provides matrices that are sent by another process using a network-
transparent protocol. The complementary component, ‘net writer’, is found in
the group sinks. The current implementation uses YARP [8] to transfer these
matrices between processes and workstations.

The group ‘utilities’ offers solutions for connecting components of different
dimensionality and granularity [14], for configuring the connection strength via
scalar multiplication or arbitrary convolution of outputs, and general mathemat-
ical operations such as ‘sum’, ‘component-wise multiplication’, and ‘coordinate
transformation’.

cedar provides a group ‘image processing’ with basic operations for closing
the gap between image sources and population dynamics. It comprises a channel
split and a color space conversion. More image processing operations (and other
special-interest components) have been implemented in plugins which can be
loaded at runtime. This keeps the core of cedar focused on modeling neural
architectures with DFT.

3 Case Study

As an illustration, we implement a cognitive architecture in cedar and connect it
to an e-puck, a small robot equipped with a differential drive and a color camera.
The architecture is based on a model that selects a target by a given color cue
(see Fig. 3). This paradigm is derived from a more complex phonotaxis robot [3].

The cedar Software Framework 481

The core element of the model is its decision mechanism, a dynamic neural
field (DNF). It receives input from the visual sensory system about the location
of salient target objects. Additionally, it receives an input that biases its decision
toward a target of a specific color. The DNF selects one of the targets, stabilizes
that decision against sensory fluctuations, and tracks the location of the target
over time. The generated motor output orients the robot so that the selected
object is centered in the camera image.

We implemented this model in the graphical user interface of cedar , composing
the architecture from available elements by drag-and-drop (see Fig. 3) and tuning
all parameters online. The resulting architecture consists of four parts: first, the
visual preprocessing of the camera image; second, the task input that selects the
range of colors the robot is attracted to; third, the DNF, which receives input
from both the preprocessing and the task input; and fourth, the connection
from the DNF to the robotic hardware. Please note that the architecture works
in a closed loop through the environment in which the robot is embedded, even
though this is not directly apparent from the figure. The sensory data impacts
on the motor commands of the robot and vice versa.

The visual preprocessing consists of a sequence of image processing steps. They
convert the camera’s RGB-color images to saliency-based activation values which
are then input to the DNF. The activation is defined over a two-dimensional
space spanned by the horizontal viewing angle of the robot and a color metric.
High activation values thus represent an object of a certain color at a certain
horizontal location. The task input enters the DNF as a ridge of activation along
the horizontal viewing angle (see, e.g., [14]) and biases the selection of objects
toward a particular color. Once the DNF has formed a peak and thereby selected
a target object, that peak controls the robot. The position of the peak along the
horizontal axis is translated into rate-coded neural activation that indicates the
direction of the colored object relative to the robot’s current orientation. It is
directly used as a turning rate of the robot, essentially turning the robot toward
the object [3]. By adding a constant forward speed, the robot is able to drive
toward the object. When presented with several targets, the robot selects the
most salient one of the specified color and successfully drives toward it.

4 Conclusion

In the case study (Section 3), we illustrated cedar with an exemplary architec-
ture derived from a simple cognitive model. The implementation of this model
demonstrated how cedar addresses the key requirements on software that we
identified in Section 1. Ease of implementation is achieved by using a graphical
drag-and-drop interface for the assembly of architectures. This interface can also
be used when connecting physical devices such as robots, to cognitive architec-
tures. Architectures can be simulated, inspected, and parameterized in real time,
enabling us to quickly assess the interdependence of regimes of different DNFs
and the embodiment of cognitive architectures.

482 O. Lomp et al.

Adding new hardware devices is currently done individually for each new
device. In our next major release, we plan to offer a more principled approach
that reduces this overhead.

We also aim to further enhance the ease-of-use and scalability in future ver-
sions. Groups, which enable users to combine a set of components into reusable
modules are planned as part of this effort, as are global parameters which can
change multiple parameters simultaneously according to user-defined relations.

References

1. Amari, S.-I.: Dynamics of pattern formation in lateral-inhibition type neural fields.
Biological Cybernetics 27, 77–87 (1977)

2. Bernardet, U., Verschure, P.F.M.J.: iqr: A tool for the construction of multi-level
simulations of brain and behaviour. Neuroinformatics 8(2), 113–134 (2010)

3. Bicho, E., Mallet, P., Schöner, G.: Target representation on an autonomous vehicle
with low-level sensors. International Journal of Robotics Research 19(5), 424–447
(2000)

4. Clark, A.: An embodied cognitive science? Trends in Cognitive Sciences 3(9),
345–351 (1999)

5. Eliasmith, C., Anderson, C.H.: Neural engineering: Computation, representation,
and dynamics in neurobiological systems. MIT Press (2004)

6. Erlhagen, W., Schöner, G.: Dynamic Field Theory of movement preparation. Psy-
chological Review 109(3), 545–572 (2002)

7. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations,
2nd edn. Springer (1999)

8. Metta, G., Fitzpatrick, P., Natale, L.: YARP: Yet another robot platform. Inter-
national Journal on Advanced Robotics Systems 3(1), 43–48 (2006)

9. Richter, M., Sandamirskaya, Y., Schöner, G.: A robotic architecture for action
selection and behavioral organization inspired by human cognition. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 2457–2464. IEEE
Press (2012)

10. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations
in the microstructure of cognition. Foundations, vol. 1. MIT Press, Cambridge
(1986)

11. Schöner, G.: Dynamical systems approaches to cognition. In: Cambridge Handbook
of Computational Cognitive Modeling, pp. 101–126. Cambridge University Press
(2008)

12. Schutte, A.R., Spencer, J.P., Schöner, G.: Testing the Dynamic Field Theory:
Working memory for locations becomes more spatially precise over development.
Child Development 74, 1393–1417 (2003)

13. Stewart, T.C., Tripp, B., Eliasmith, C.: Python scripting in the Nengo simulator.
Frontiers in Neuroinformatics 3 (2009)

14. Zibner, S.U., Faubel, C., Iossifidis, I., Schöner, G.: Dynamic Neural Fields as build-
ing blocks for a cortex-inspired architecture of robotic scene representation. IEEE
Transactions on Autonomous Mental Development 3(1) (2011)

Adaptive Critic Neural Network Solution

of Optimal Control Problems with Discrete
Time Delays

Tibor Kmet1 and Maria Kmetova2

1 Constantine the Philosopher University, Department of Informatics,
Tr. A. Hlinku 1, 949 74 Nitra, Slovakia

tkmet@ukf.sk

http://www.ukf.sk
2 Constantine the Philosopher University, Department of Mathematics,

Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
mkmetova@ukf.sk

Abstract. A neural network based optimal control synthesis is pre-
sented for solving optimal control problems with discrete time delays
in state and control variables subject to a control and state constraints.
The optimal control problem is transcribed into nonlinear programming
problem which is implemented with feed forward adaptive critic neural
network to find optimal control and optimal trajectory. The proposed
simulation methods is illustrated by the optimal control problem of ni-
trogen transformation cycle model with discrete time delay of nutrient
uptake. Results show that adaptive critic based systematic approach are
promising in obtaining the optimal control with discrete time delays in
state and control variables subject to control and state constraints.

Keywords: optimal control problem with delays, state and control con-
straints, recurrent neural network, adaptive critic synthesis, numerical
examples, nitrogen transformation cycle.

1 Introduction

Optimal control of nonlinear systems with discrete time delays in state and con-
trol variables is one of the most active subjects in control theory. There are rarely
analytical solutions [4] although several numerical computation approaches have
been proposed e.g. see [6], [7], [13], [17]. The most of the literature dealing with
numerical methods for the solution of general optimal control problems focuses
on algorithms for solving discretized problems. The basic idea of these methods
is to apply nonlinear programming techniques to the resulting finite dimensional
optimization problem [2], [6]. Then neural networks are used as universal func-
tion approximation to solve finite dimensional optimization problems forward in
time with ”adaptive critic designs” [11], [12], [18]. For the neural network, a feed
forward neural network with one hidden layer, a steepest descent error back-
propagation rule, a hyperbolic tangent sigmoid transfer function and a linear
transfer function were used.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 483–494, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ukf.sk

484 T. Kmet and M. Kmetova

The paper presented extends adaptive critic neural network architecture pro-
posed by [9] to the optimal control problems with discrete time delays in state
and control variables subject to control and state constraints. This paper is or-
ganized as follows. In Section 2, optimal control problems with delays in state
and control variables subject to control and state constraints are introduced.
We summarize the necessary optimality conditions, give a short overview of the
basic results including the iterative numerical methods. In Section 3, we discuss
the discretization methods for the given optimal control problem and formu-
late the resulting nonlinear programming problems. Section 4 presents a short
description of adaptive critic neural network synthesis for the optimal control
problem with delays in state and control variables subject to control and state
constraints. We also present a new algorithm to solve optimal control problems.
In Section 5, we present a description of the model of nitrogen transformation
cycle with discrete time delay in nutrients uptake. We apply the new proposed
methods to the model presented to compare short-term and long-term strategies
of nutrients uptake by phytoplankton. Numerical results are also given. Conclu-
sions are being presented in Section 6.

2 The Optimal Control Problem

We consider the nonlinear control problem with delays in state and control vari-
ables subject to control and state constraints. Let x(t) ∈ Rn and u(t) ∈ Rm de-
note the state and control variable, respectively in a given time interval [t0, tf].
The optimal control problem is to minimize

J (u) = g(x(tf)) +

∫ tf

t0

f0(x(t), x(t − τx), u(t), u(t− τu))dt (1)

subject to

ẋ(t) = f(x(t), x(t − τx), u(t), u(t− τu)),

x(t) = φs(t), u(t) = φc(t), t ∈ [t0 − τu, t0],

ψ(x(tf)) = 0, c(x(t), u(t)) ≤ 0, t ∈ [t0, tf],

where τx ≥ 0 and τu ≥ 0 are discrete time delay in the state and control
variable, respectively. The functions g : Rn → R, f0 : Rn+m → R, f :
Rn+m → Rn, c : Rn+m → Rq and ψ : Rn+m → Rr, 0 ≤ r ≤ n are assumed
to be sufficiently smooth on appropriate open sets and the initial conditions
φs(t), φc(t) are continuous functions. The theory of necessary conditions for the
optimal control problem of form (1) is well developed, see e.g. [6], [7], [14]. We
introduce an additional state variable

x0(t) =

∫ t

0

f0(x(s), x(s − τx), u(s), u(s− τu)ds

defined by the

ẋ0(t) = f0(x(t), x(t − τx), u(t), u(t− τu), x0(t) = 0, t ∈ [t0 − τx, t0].

Adaptive Critic Neural Network Solution 485

Then the augmented Hamiltonian function for problem (1) is

H(x, xτx , u, uτu, λ, μ) =

n∑
j=0

λjfj(x, xτx , u, uτu) +

q∑
j=0

μjcj(x, u),

where λ ∈ Rn+1 is the adjoint variable and μ ∈ Rq is a multiplier associated to
the inequality constraints. Assume that τx, τu ≥ 0, (τx, τu) �= (0, 0) and τx

τu
∈ Q

for τu > 0 or τu
τx

∈ Q for τx > 0. Let (x̂, û) be an optimal solution for (1.)

Then the necessary optimality condition for (1) implies [6] that there exist a
piecewise continuous and piecewise continuously differentiable adjoint function
λ : [t0, tf] → Rn+1, a piecewise continuous multiplier function μ : [t0, tf] →
Rq, μ̂(t) ≥ 0 and a multiplier σ ∈ Rr satisfying

λ̇j(t) = − ∂H
∂xj

(x̂(t), x̂(t − τx), û(t), û(t − τu), λ(t), μ(t)) − (2)

χ[t0,tf−τx]
∂H

∂xτxj
(x̂(t+ τx), x̂(t), û(t + τx), û(t − τu + τx), λ(t + τx), μ(t + τx)),

λj(tf) = gxj (x̂(tf)) + σψxj (x̂(tf)), j = 0, . . . , n, (3)

0 = − ∂H
∂uj

(x̂(t), x̂(t− τx), û(t), û(t − τu), λ(t), μ(t)) − (4)

χ[t0,tf−τu]
∂H

∂uτuj
(x̂(t + τu), x̂(t − τx + τu), û(t+ τu), û(t), λ(t + τu), μ(t + τu)),

j = 1, . . . ,m.

Furthermore, the complementary conditions hold, i.e. in t ∈ [t0, tf], μ(t) ≥ 0,
c(x(t), u(t)) ≤ 0 and μ(t)c(x(t), u(t)) = 0. Herein, the subscript x, xτx , u and
uτu denotes the partial derivative with respect to x, xτx , u and uτu , respectively.

3 Discretization of the Optimal Control Problem

The direct optimization methods for solving the optimal control problem are
based on a suitable discretization of (1), see e.g. [2], [6]. We assume that τu =
l τxk with l, k ∈ N. Defining hmax = τx

k gives the maximum interval length
for an elementary transformation interval that satisfies τx

hmax
= k ∈ N and

τu
hmax

= l ∈ N. The minimum grid point number for an equidistant discretiza-

tion mesh Nmin =
tf−t0
hmax

. Choose a natural number K ∈ N and set N =
KNmin. Let ti ∈ 〈t0, tf 〉, i = 0, . . . , N, be an equidistant mesh point with
ti = t0 + ih, i = 0, . . . , N , where h = b−a

N is a time step and tf = Nh + t0.
Let the vectors xi ∈ Rn+1, ui ∈ Rm, i = 0, . . . , N, be an approximation of the
state variable and control variable x(ti), u(ti), respectively at the mesh point
ti. Euler’s approximation applied to the differential equations yields xi+1 =
xi + hf(xi, xi−k, ui, ui−l), i = 0, . . . , N − 1. Choosing the optimal variable
z := (x0, x1, . . . , xN−1, u0, . . . , uN−1) ∈ RNs , Ns = (n + m)N, the optimal
control problem is replaced by the following discretized control problem in the
form of nonlinear programming problem with inequality constraints: Minimize

J (z) = G(xN) = g((x1, . . . , xn)
N) + xN

0 (5)

486 T. Kmet and M. Kmetova

subject to

xi+1 = xi + hf(xi, xi−k, ui, ui−l), i = 0, . . . , N − 1, (6)

x−i = φx(t0 − ih), i = k, . . . , 0, u−i = φu(t0 − ih), i = l, . . . , 0,

ψ(xN) = 0, c(xi, ui) ≤ 0, i = 0, . . . , N − 1.

In a discrete-time formulation we want to find an admissible control which min-
imizes objective function (5). Let us introduce the Lagrangian function for the
nonlinear optimization problem (5):

L(z, λ, σ, μ) =
N−1∑
i=0

λi+1(−xi+1 + xi + hf(xi, xi−k, ui, ui−l)) + G(xN) +

N−1∑
i=0

μic(xi, ui) + σψ(xN).

The first order optimality conditions of Karush-Kuhn-Tucker [13] for the problem
(5) are:

0 = Lxi(z, λ, σ, μ) = λi+1 − λi + hλi+1fxi(xi, xi−k, ui, ui−l) + (7)

hλi+k+1fxi
τx
(xi+k, xi, ui+k, ui−l+k) + μicxi(xi, ui),

i = 0, . . . , N − k − 1,

0 = Lxi(z, λ, σ, μ) = λi+1 − λi + hλi+1fxi(xi, xi−k, ui, ui−l) + μicxi(xi, ui),

i = N − k, . . . , N − 1,

0 = LxN (z, λ, σ, μ) = GxN (xN) + σψxN (xN)− λN , (8)

0 = Lui(z, λ, σ, μ) = hλi+1fui(xi, xi−k, ui, ui−l) +

hλi+l+1fui
τu
(xi+l, xi−k+l, ui+l, ui) + μicui(xi, ui),

i = 0, . . . , N − l − 1, (9)

0 = Lui(z, λ, σ, μ) = hλi+1fui(xi, xi−k, ui, ui−l) + μicui(xi, ui),

i = N − l, . . . , N − 1.

Eqs. (7)− (10) represent the discrete version of the necessary condition (2) - (4)
for optimal control problem (1).

4 Adaptive Critic Neural Network for an Optimal
Control Problem with Control and State Constraints

It is well known that a neural network can be used to approximate the smooth
time-invariant functions and the uniformly time-varying functions [3], [16]. Ex-
perience has shown that optimization of functionals over admissible sets of func-
tions made up of linear combinations of relatively few basis functions with a
simple structure and depending nonlinearly on a set of ”inner” parameters e.g.,
feedforward neural networks with one hidden layer and linear output activation

Adaptive Critic Neural Network Solution 487

x1

Input Layer Hidden Layer Output Layer

x2

x3

xn

y1

wjk

wj0

vki

vk0

y2

y3

ym

x =10

z =10

z Σ1 1 1=f v +vi 0xi()
i=1

n

z Σ2 i 20=f v +v2 xi()
i=1

n

zr i r0Σ=f v +vr xi()
i=1

n

y z wΣ w1 1 1=g +k 0k()
k=1

r

y z wΣ w2 k 20=g +2 k()
k=1

r

y w z wΣ3 30=g +3k k()
k=1

r

.

.

.

.

.

.

.

.

.

.

.

.

y z wΣ wm mk m0= +g k()
k=1

r

.

.

.

Fig. 1. Feed forward neural network topology with one hidden layer, vki, wjk are values
of connection weights, vk0, wj0 are values of bias, f(.), g(.) are activation functions

units often provides surprisingly good suboptimal solutions [1], [5], [10]. Fig. 1
shows a feed forward neural network with n inputs node, one hidden layer of
r units and m output units. Let x = [x1, . . . , xn]

′ and y = [y1, . . . , ym]′ be the
input and output vectors of the network, respectively. Let V = [v1, . . . , vr]

′ be
the matrix of synaptic weights between the input nodes and the hidden units,
where vk = [vk0, vk1 . . . , vkn]; vk0 is the bias of the kth hidden unit, and vki is
the weight that connects the ith input node to the kth hidden unit.

Let also W = [w1, . . . , wm]′ be the matrix of synaptic weights between the
hidden and output units, where wj = [wj0, wj1 . . . , wjr]; wj0 is the bias of the
jth output unit, and wjk is the weight that connects the kth hidden unit to
the jth output unit. The response of the kth hidden unit is given by zk =
tanh (

∑n
i=0 vkixi) , k = 1, . . . , r, where tanh(.) is the activation function for the

hidden units. The response of the jth output unit is given by yj =
∑r

k=0 wjkzk,
j = 1, . . . ,m. The multiple layers of neurons with nonlinear transfer functions al-
low the network to learn nonlinear and linear relationships between the input and
output vectors. The number of neurons in the input and output layers is given
by the number of input and output variables, respectively. The multi-layered
feed forward network shown in Fig. 2 is trained using the steepest descent error
backpropagation rule. Basically, it is a gradient descent, a parallel distributed
optimization technique to minimize the error between the network and the tar-
get output [15]. To solve the equations (9) we are concerned with the following
nonlinear projection equation (for detail description see [19]):

αF(PX(y)) + y − PX(y) = 0, (10)

where α > 0 is a constant, F : Rl → Rl, X = {y ∈ Rl | yimin ≤ yi ≤ yimax} and
PX : Rl → X is a projection operator defined by PX(y) = (PX(y1), . . . ,PX(yl))

488 T. Kmet and M. Kmetova

Action

Action

State Eq.
()6

State Eq.
()6

Costate Eq.
()7

Optimal Control
Eq. ()9

Critic

Critic

Critic

u ,
i,a

μ
i,a

u ,
i,t

u ,
i+j,a

x
i+j

x
i

x
i+j+1

j=0

μ
i,t

λ
i+l+

,
1,c l,a

x , u
i+l i+

μ
i+j,a

x
i+1

ε
c

ε
a

λ
i+1,c

λ
i+j+1,c

u
i
, λ

i
μ

i
,

λ
i,c

λ
i,t λ

i+k+1
, x

,c k,ai+ i+k
, u , μ

i,a

j=j+1while j<max(l,k)-

Signal line

Back-propagating Path

Fig. 2. Architecture of adaptive critic feed forward network synthesis, xi-input signal
to the action and critic network, ûi,a, μ̂i,a and λ̂i,c are output signal from action and
critic network, respectively and ûi,t, μ̂i,t and λ̂i,t are solutions of equation (9) and
co-state equation (7), respectively

PX(yi) =

⎧⎨
⎩

yimin : yi < yimin

yi : yimax ≤ yi ≤ yimax

yimax : yi > yimax,

which can be solved by the following dynamic model

ẏ(t) = −β(αF(PX(y)) + y − PX(y)). (11)

Note that yimin and yimax are lower and upper limits of yi, i = 1, . . . , l. Asymp-
totic and exponential stability of the present recurrent neural network (11) are
proven in [19]. The equilibrium points of (11) coincide with the solutions of (10).
We can state the algorithm to solve the optimal control problem using the adap-
tive critic and recurrent neural network. In the Pontryagin’s maximum principle
for deriving an optimal control law, the interdependence of the state, costate and
control dynamics is made clear. Indeed, the optimal control û and multiplier
μ̂ is given by Eq. (9), while the costate Eqs. (7) - (8) evolves backward in time
and depends on the state and control. The adaptive critic neural network [12]
is based on this relationship is shown in Fig. 2. It consists of two networks at
each node: an action network, the inputs for which are the current states and
its outputs are the corresponding control û and multiplier μ̂, and the critic net-
work for which the current states are inputs and current costates are outputs
for normalizing the inputs and targets (zero mean and standard deviations). For
detail explanation see [15]. Based on Fig. 2 the adaptive critic neural network
procedure of the optimal control problem is summarized in Algorithm 1.

Adaptive Critic Neural Network Solution 489

Algorithm 1. Algorithm to solve the optimal control problem.

Input: Choose t0, tf , N - number of steps, time step h, α > 0, β > 0, εa, εc
and εrnn - stopping tolerance for action, critic and recurrent neural
network, respectively, x−i = φs(t0 − ih), i = k, . . . , 0,
u−i = φc(t0 − ih), i = l, . . . , 0 -initial values.

Output: Set of final approximate optimal control û(t0 + ih) = ûi and optimal
trajectory x̂(t0 + (i+ 1)h) = x̂i+1, i = 0, . . . , N − 1, respectively

1 Set the initial weight Wa = (V a,W a), Wc = (V c,W c)
for i ← 0 to N − 1 do

2 while erra ≥ εa and errc ≥ εc do
3 for j ← 0 to max(k, l) do
4 Compute ui+j,a, μi+j,a and λi+j+1,c using action (Wa) and critic

(Wc) neural networks, respectively and xi+j+1 by Eq. (6)

5 Compute λi,t, ui,t, and μi,t using Eqs. (7), (9) and (11) with

X = {(ui, μi) ∈ Rm+q|μi ≥ 0},
F(ui, μi) = (Lui(z, λ, σ, μ),−c(xi, ui)) and stopping tolerance εrnn.

6 if i = N − 1 then
7 X = {(uN−1, μN−1, σ) ∈ Rm+q+r|μN−1 ≥ 0, },

F(uN−1, μN−1, σ) = (LuN−1(z, λ, σ, μ),−c(xN−1, uN−1),−ψ(xN))
with λN = GxN (xN) + σψxN (xN)

8 errc =‖ λi,t − λi,c ‖
9 erra =‖ (u, μ)i,t − (u, μ)i,a ‖

10 With the data set xi, λi,t update the weight parameters Wc

11 With the data set xi, (u, μ)i,t update the weight parameters Wa

12 Set λi,c = λi,t, (u, μ)i,a = (u, μ)i,t

13 Set λ̂i = λi,t, (ûi, μ̂i) = (u, μ)i,t

14 Compute x̂i+1 using Eq. (6) and ûi

15 return λ̂i, ûi, μ̂i, x̂i+1

In the adaptive critic synthesis, the action and critic network were selected
such that they consist of n+m subnetworks, respectively, each having n−3n−1
structure (i.e. n neurons in the input layer, 3n neurons in the hidden layer
and one neuron in the output layer). The training procedure for the action and
critic networks, respectively are given by [12]. From the free terminal condition
(ψ(x) ≡ 0) from Eqs. (7) - (8) we obtain that λi

0 = −1, i = N, . . . , 0 and
λN
j = 0, j = 1, . . . , N. We use this observation before proceeding to the actual

training of the adaptive critic neural network. Further discussion and detail
explanation of these adaptive critic methods can be found in [9], [11], [12] and
[15].

5 Nitrogen Transformation Cycle

The aerobic transformation of nitrogen compounds [8] includes: Specific groups
of microorganisms participate in transformation of nitrogen compounds.

490 T. Kmet and M. Kmetova

Heterotrophic bacteria (x1) assimilate and decompose the soluble organic ni-
trogen compounds DON (x6) derived from detritus (x5). Ammonium (x7),
one of the final decomposition products undergoes a biological transformation
into nitrate (x9). This is carried out by aerobic chemoautotrophic bacteria in
two stages: ammonia is first oxidized by nitrifying bacteria from the genus Ni-
trosomonas (x2) into nitrites (x8) that serve as an energy source for nitrating
bacteria mainly from the genus Nitrobacter (x3). The resulting nitrates may
be assimilated together with ammonia and soluble organic forms of nitrogen by
the phytoplankton (x4), whereby the aerobic transformation cycle of nitrogen
compounds is formed. The individual variables x1, . . . , x9 represent nitrogen
concentrations contained in the organic as well as in inorganic substances and
living organisms presented in a model. The following system of ordinary differ-
ential equations is proposed as a model for the nitrogen transformation cycle:

ẋi(t) = xi(t)Ui(x(t)) − xi(t)Ei(x(t)) − xi(t)Mi(x(t))), i = 1, 2, 3,

ẋ4(t) = x4(t− τ)(U4(x(t − τ)) − Ei(x(t− τ)) −Mi(x(t− τ))),

ẋ5(t) =

4∑
i=1

xiMi(x)−K5x5(t),

ẋ6(t) = K5x5(t)− x1(t)U1(x(t)) + x4(t)E4(x(t)) − x4(t)P6(x(t)),

ẋ7(t) = x1(t)E1(x(t)) − x2(t)U2(x(t)) − x4(t)P7(x(t)), (12)

ẋ8(t) = x2(t)E2(x(t)) − x3(t)U3(x(t)),

ẋ9(t) = x3(t)E3(x(t)) − x4(t)P9(x(t)),

where xi(t) are the concentration of the recycling matter in microorganisms,
the available nutrients and detritus, respectively. The constant τ stands for the
discrete time delay in uptake of nutrients by phytoplankton. Functions occur-
ring in the model are given in Table 1 in ecological and mathematical notation,
respectively. Three variables u = (u(1), u(2), u(3)) express the preference coeffi-
cients for update of x6, x7, x9. It can be expected that the phytoplankton will
employ control mechanisms in such a way as to maximize its biomass over a
given period tf of time:

J(u) =

∫ tf

0

x4(t)dt→ max (13)

under the constraint

C(x, u) := b1U4(x, u) + b2P6(x, u) + b3P9(x, u) + b4E4(x, u) ≤W (I), (14)

ui ∈ [0, uimax] for i = 1, 2, 3.

The last inequality expresses the fact that amount of energy used for ”living
expenses” (synthesis, reduction and excretion of nutrients) by phytoplankton
cannot exceed a certain value W (I) which depends on light intensity I (for
detail explanation see [8]). We are led to the following optimal control problems:
(1) instantaneous maximal biomass production with respect to u:

Adaptive Critic Neural Network Solution 491

Table 1. Description of functions occurring in the model

Ui(x) =
Kixi+5

1+gixi+5
, i = 1, 2, 3

p = u1x6 + u2x7 + u3x9

U4(x) = K4p
1+g4p

Ui - uptake rate

Li(x) =
a2i−1Ui(x)

1+a2iUi(x)
+ 1− a2i−1

a2i
Li - excretion activity

Mi(x) = g2i+3 + g2i+4Li(x) Mi - mortality rate
Ei(x) = Ui(x)Li(x), i = 1, . . . , 4 Ei - excretion rate

Pi(x) = K4uixi
1+g4p

, i = 6, 7, 9 Pi - uptake rate.

ẋ4 = x4(U4(x, u)− E4(x, u)−M4(x, u))→ max (15)

under the constraint C(x, u) ≤ W (I), for all t ∈ [t0, tf] and ui ∈ [0, uimax],
i=1,2,3 (To maximize (15) is equivalent to find the maximum of the function

p(u) = u1x6 + u2x7 + u3x9

under the constraint C(x, u) ≤W (I), ui ∈ [0, uimax] for i=1,2,3.),

(2) global maximal biomass production with respect to u:

J(u) =

∫ tf

t0

x4(t)dt→ max

(16)

under the constraint C(x, u) ≤ W (I), for all t ∈ [t0, tf] and ui ∈ [uimin, uimax]
for i=1,2,3. We introduce an additional state variable

x0(t) =

∫ t

0

x4(s)ds. (17)

We are led to the following optimal control problem: Maximize

x0(tf) (18)

under the constraints

c1(x, u) = C(x, u) −W (I),≤ 0

ci+1(x, u) = uimin − ui ≤ 0,

ci+4(x, u) = ui − uimax ≤ 0, i = 1, 2, 3.

Discretization of Eqs. (12) and (13) using Eqs. (7) − (8) and (5) leads to
minimize

−xN
0

492 T. Kmet and M. Kmetova

subject to

xi+1 = xi + hF (xi−k, xi, ui, ui−l), i = 0, . . . , N − 1,

λi = λi+1 + hλi+1Fxi(xi−k, xi, ui, ui−l) +

hλi+k+1Fxi
τx
(xi+k, xi, ui+k, ui−l+k) + μicxi(xi, ui), (19)

λi
0 = −1, i = 0, . . . , N − 1,

λN = (−1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (20)

0 = hλi+1Fui(xi−k, xi, ui, ui−l) +

hλi+l+1Fui
τu
(xi+l, xi−k+l, ui+l, ui) + μicui(xi, ui),

where the vector function F (x, u) = (−x4, F1(x, u), . . . , F9(x, u)) is given by Eq.
(13) and by right-hand side of Eq. (12).

5.1 Numerical Simulation

The solution of optimal control problem (18) with state and control constraints
using adaptive critic neural network and NLP methods are displayed in Fig. 3.
In the adaptive critic synthesis, the critic and action network were selected such

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Time

S
ho

rt
 T

er
m

 O
pt

im
al

 C
on

tr
ol

 u
(t

)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Time

O
pt

im
al

 C
on

tr
ol

 u
(t

)

u
2
(t)

u
2
(t)

u
1
(t)

u
1
(t)

u
3
(t)

u
3
(t)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Time

S
ho

rt
 T

er
m

 O
pt

im
al

 C
on

tr
ol

 u
(t

)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Time

O
pt

im
al

 C
on

tr
ol

 u
(t

)

u
3
(t)

u
1
(t)

u
2
(t)

u
1
(t)

u
2
(t)

u
3
(t)

Fig. 3. Adaptive critic neural network simulation of optimal control û(t) and ū(t)
with initial condition ψs(t) = (0.1, 0.1, 0.2, 0.8, 0.4, 0.5, 0.6, 0.7, .1) and ψc(0) =
(0.01, 0.01, 0.02, 0.08, 0.04, 0.05, 0.06, 0.07, .01), respectively for t ∈ [−1, 0]

that they consist of nine and four subnetworks, respectively, each having 9-27-1
structure (i.e. nine neurons in the input layer, twenty seven neurons in the hid-
den layer and one neuron in the output layer). The proposed neural network is
able to meet the convergence tolerance values that we choose, which led to satis-
factory simulation results. Simulations show that there is a very good agreement
between short-term and long-term strategy and proposed neural network is able
to solve nonlinear optimal control problem with state and control constraints.
The optimal strategy is the following. In the presence of high ammonium con-
centration, the uptake of DON and nitrate is stopped. If the concentration of

Adaptive Critic Neural Network Solution 493

ammonium drops below a certain limit value, phytoplankton start to assimilate
DON or nitrate dependently on values b2, b3. If the concentration of all three
forms of nitrogen are low, all of them are assimilated by phytoplankton at the
maximal possible rate, e.i. ûi(t) = uimax for all t ∈ [t0, tf] (Figure 3). Our re-
sults are quite similar to those obtained in [8] by using Pontriagin’s maximum
principle.

6 Conclusion

A single new network adaptive critic approach is presented for optimal control
synthesis with discrete time delay in state and control variables subject to con-
trol and state constraints. Using Euler’s methods the optimal control problem is
transcribed into a discrete-time high-dimensional nonlinear programming prob-
lem. Adaptive critic neural network and the iterative programming algorithm
were developed to seek for the state, costate and control variables of the con-
strained optimal control problem with time delay. These approach is applicable
to wide class of nonlinear systems. Simulation studies have demonstrated with
an optimal control problems related to nitrogen transformation cycle including
phytoplankton production. Using MATLAB, a simple simulation model based
on adaptive critic neural network was constructed. Numerical simulations have
shown that adaptive critic neural network is able to solve nonlinear optimal
control problem with discrete time delay and with control and state constraints.

Acknowledgment. The paper was worked out as a part of the solution of the
scientific project number KEGA 004UJS-4/2011 and VEGA 1/0699/12.

References

1. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory 39, 930–945 (1993)

2. Buskens, C., Maurer, H.: SQP-methods for solving optimal control problems with
control and state constraints: adjoint variable, sensitivity analysis and real-time
control. Journal of Computational and Applied Mathematics 120, 85–108 (2000)

3. Hornik, M., Stichcombe, M., White, H.: Multilayer feed forward networks are uni-
versal approximators. Neural Networks 3, 256–366 (1989)

4. Hrinca, I.: An Optimal Control Problem for the Lotka-Volterra System with Delay.
Nonlinear Analysis, Theory, Methods, Applications 28, 247–262 (1997)

5. Gnecco, A.: A Comparison Between Fixed-Basis and Variable-Basis Schemes for
Function Approximation and Functional Optimization. Journal of Applied Math-
ematics 2012, article ID 806945 (2012)

6. Gollman, L., Kern, D., Mauer, H.: Optimal control problem with delays in state
and control variables subject to mixed control-state constraints. Optim. Control
Appl. Meth. 30, 341–365 (2009)

7. Kirk, D.E.: Optimal Control Theory: An Introduction. Dover Publications, Inc.,
Mineola (1989)

494 T. Kmet and M. Kmetova

8. Kmet, T.: Material recycling in a closed aquatic ecosystem. I. Nitrogen transfor-
mation cycle and preferential utilization of ammonium to nitrate by phytoplankton
as an optimal control problem. Bull. Math. Biol. 58, 957–982 (1996)

9. Kmet, T.: Neural network solution of optimal control problem with control and
state constraints. In: Honkela, T. (ed.) ICANN 2011, Part II. LNCS, vol. 6792,
pp. 261–268. Springer, Heidelberg (2011)

10. Makozov, Y.: Uniform approximation by neural networks. Journal of Approxima-
tion Theory 95, 215–228 (1998)

11. Padhi, R., Unnikrishnan, N., Wang, X., Balakrishnan, S.N.: Adaptive-critic based
optimal control synthesis for distributed parameter systems. Automatica 37, 1223–
1234 (2001)

12. Padhi, R., Balakrishnan, S.N., Randoltph, T.: A single network adaptive critic
(SNAC) architecture for optimal control synthesis for a class of nonlinear systems.
Neural Networks 19, 1648–1660 (2006)

13. Polak, E.: Optimization Algorithms and Consistent Approximation. Springer, Hei-
delberg (1997)

14. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The
Mathematical Theory of Optimal Process. Nauka, Moscow (1983) (in Russian)

15. Rumelhart, D.F., Hinton, G.E., Wiliams, R.J.: Learning internal representation by
error propagation. In: Rumelhart, D.E., McClelland, D.E. (eds.) PDP Research
Group: Parallel Distributed Processing: Foundation, vol. 1, pp. 318–362. The MIT
Press, Cambridge (1987)

16. Sandberg, E.W.: Notes on uniform approximation of time-varying systems on finite
time intervals. IEEE Transactions on Circuits and Systems-1: Fundamental Theory
and Applications 45, 305–325 (1998)

17. Sun, D.Y., Huang, T.C.: A solutions of time-delayed optimal control problems by
the use of modified line-up competition algorithm. Journal of the Taiwan Institute
of Chemical Engineers 41, 54–64 (2010)

18. Werbos, P.J.: Approximate dynamic programming for real-time control and neural
modelling. In: White, D.A., Sofge, D.A. (eds.) Handbook of Intelligent Control:
Neural Fuzzy, and Adaptive Approaches, pp. 493–525 (1992)

19. Xia, Y., Feng, G.: A New Neural Network for Solving Nonlinear Projection Equa-
tions. Neural Network 20, 577–589 (2007)

Emotion Generation System Considering

Complex Emotion Based on MaC Model
with Neural Networks

Tsubasa Takamatsu and Yuko Osana

Tokyo University of Technology,
1404-1 Katakura Hachioji, Tokyo, Japan

osana@stf.teu.ac.jp

Abstract. In this paper, we propose an emotion generation system con-
sidering complex emotion based on MaC model using neural networks. In
the proposed system, the chaotic neural network and the Kohonen Fea-
ture Map (KFM) associative memory are used in the Emotion Generator
of the MaC model. The proposed system makes use of the probabilistic
association ability of the KFM associative memory in order to generate
different emotions for same external input. And, the proposed system
makes use of the dynamic association ability of the chaotic neural net-
work in order to generate emotions based on its history. Moreover, the
proposed model can deal with not only basic emotions but also complex
emotions.

Keywords: Emotion Generation System, Complex Emotion, MaC
Model, Chaotic Neural Network, Kohonen Feature Map Associative
Memory.

1 Introduction

In various digital mechanical pets and human interfaces, not only autonomous
actions but also emotions are introduced based on conceptual model. In most of
emotion systems, emotions are generated based on only external input. However,
internal emotions are not considered in these systems.

As the model which considers not only external input but also internal emo-
tions, the emotion generation system based on MaC (Mind and Consciousness)
model using neural networks[1] has been proposed. This model is based on the
MaC model[2] which is the conceptual model of mind and consciousness. The
MaC model has (1) mind mechanism which uses emotions for value judgment
and (2) consciousness mechanism which processes selective attention and reflec-
tion. However, the emotion generation system based on MaC model using neural
networks[1] can deal with only basic emotions.

In this paper, we propose the emotion generation system considering complex
emotion based on MaC model using neural networks. In the proposed system,
the chaotic neural network[3] and the Kohonen Feature Map (KFM) associative

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 495–502, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

496 T. Takamatsu and Y. Osana

memory[4] are used in the Emotion Generator of the MaC model. The proposed
system makes use of the probabilistic association ability of the KFM associative
memory (which is based on the self-organizing map[5]) in order to generate
different emotions for same external input. And, the proposed system makes
use of the dynamic association ability of the chaotic neural network in order to
generate emotions based on its history. Moreover, the proposed model can deal
with not only basic emotions but also complex emotions.

2 Emotion Generation System Considering Complex
Emotion Based on MaC Model with Neural Networks

2.1 Outline

In the proposed system, the chaotic neural network[3] and the Kohonen Feature
Map (KFM) associative memory[4] are used in the Emotion Generator of the
MaC model[2]. The proposed system makes use of the probabilistic association
ability of the KFM associative memory in order to generate different emotions
for same external input. And, the proposed system makes use of the dynamic
association ability of the chaotic neural network in order to generate emotions
based on its history. Moreover, the proposed model can deal with not only basic
emotions but also complex emotions.

Figure 1 shows the architecture of the proposed system.

2.2 Emotion Model

In the proposed system, the basic emotion model proposed by Plutchik[6] is used
as the emotion model. In this model, “anger”, “anticipation”, “joy”, “trust”,
“fear”, “surprise”, “sadness” and “disgust” are the basic emotions (See Fig.2). In
the proposed system, not only these basic emotions, but also complex emotions
such as “love”, “optimism”, “aggressiveness”, “contempt”, “remorse”, “disap-
proval”, “awe” and “submission” are also considered.

2.3 Emotion in Proposed System

In the proposed system, the emotion value for eight basic emotions at the time
t (Ee(t) (0 ≤ Ee(t))) and the emotion value for eight complex emotions at the
time t (Ec(t) (0 ≤ Ec(t))) are defined. Here, e and c are given by

e = {joy, anticipation, trust, anger, fear, sadness, disgust, surprise}(1)
c = {love, optimism, aggressiveness, contempt, remorse, disapproval,

awe, submission}.(2)
In the proposed system, the positive and negative moods Mp(t) and Mn(t)

are defined based on the eight basic emotions, and are given by

Mp(t) = (Ejoy(t− 1) + Eanticipation(t− 1) + Etrust(t− 1))/3 (3)

Mn(t) = (Eanger(t− 1) + Efear(t− 1) + Esadness(t− 1) + Edisgust(t− 1))/4.(4)

Emotion Generation System Considering Complex Emotion 497

Sensors Reflector Effectors

Perceptor Planner

Emotion
Generator

Goal Creator

Innate Goals

Long Term
Memory

Working
Memory

Fig. 1. Architecture of Proposed
System

rage

terroramazement

grief

loathing

admiration

ecstasy

vigilance

anger

disgust

sadness

surprise
fear

trust

joy

anticipation

serenity

love

acceptance

submission

apprehensive
awe

distraction

disapproval

pensiveness

remorse

boredom

contempt

annoyance

agressiveness

interest

optimism

Fig. 2. Plutchik’s Basic Emotion
Model

The emotion value for surprise Esuprise is not used in the calculation of moods
because surprise is not categorized into neither positive or negative. If the posi-
tive mood is large, the positive emotions (joy, anticipation, trust) become easy
to be generated. In contrast, if the negative mood is large, the negative emotions
(anger, fear, sadness, disgust) become easy to be generated.

2.4 Function of Each Module

(1) Sensors
The Sensors detect stimuli such as actions and words from the environment

to extract physical features. This module sends the information on the received
sensory input (I(t)) to the Reflector and the Receptor.
(2) Reflector

In the Reflector, whether the input has an urgency is judged. If the input
has an urgency, a reflex action (avoidance behavior) is generated. If the urgency
level D(t) is larger than the threshold, an avoidance behavior is generated as the
reflex action, and the information is sent to the Effectors.
(3) Receptor

In the Receptor, the input stimulus is recognized based on the input informa-
tion I(t).

In the proposed system, the external input is recognized as pain/pleasantness/
like/hate. The input information I(t) and the recognized strength of the stimulus
Ss(t) are sent to the Working Memory. Here, s is given by

s = {pain, pleasantness, like, hate}. (5)

(4) Innate Goals
In the proposed system, a desire to want to fill hungry stomach/recover from

fatigue/avoid from emergency is set as the innate goal. In the Innate Goals, the
desire level for the innate goal Gin(t) is calculated based on the previous actions
O(t− 1) and the urgency level D(t). Here, in is the innate goal and is given by

in = {hungry, fatigue, urgency}. (6)

498 T. Takamatsu and Y. Osana

(5) Goal Creator
In the Goal Creator, (a) empirical goal for external stimulus, (b) empirical

goal for emotion and (c) empirical goal for mood are calculated. From these
empirical goal and the desire level for the innate goal, the current goal is set.
(a) Empirical Goal for External Stimulus
As the empirical goal for the external stimulus, a desire to want to avoid

pain stimulus/get pleasantness/get favorite things/avoid hate is considered. The
desire level for the empirical goal gs on the external stimulus s at the time t,
Gs(t) is calculated based on the desire level for the stimulus s based on the
stimulus strength (GS

s (t)) and the desire level for the stimulus s based on the
long term memory (GLM

s (t)).
(b) Empirical Goal for Emotion
As the empirical goal for the emotion, a desire to want to each emotion is

considered. The desire level for the empirical goal ge on the emotion e at the
time t, Ge(t) is calculated based on the desire level for the emotion e (GE

e (t))
and the desire level based on the long term memory (GLM

e (t)).
(c) Empirical Goal for Mood
As the empirical goal for the mood, a desire to want to positive or negative

emotion is considered. The desire level for the empirical goal gM on the mood at
the time t, GM (t) is calculated based on the desire level for the mood (GM

M (t))
and the desire level based on the long term memory (GLM

M (t)).
(d) Goal Setting
The goal at the time t, g(t) is set based on the desire level for innate goals

and empirical goals.
(6) Emotion Generator

In the Emotion Generator, the emotion is generated by the chaotic neural
network[3] and the KFM associative memory[4], and the emotion value and
the mood are calculated. The proposed system makes use of the probabilistic
association ability of the KFM associative memory in order to generate different
emotions for same external input. And, the proposed system makes use of the
dynamic association ability of the chaotic neural network in order to generate
emotions based on its history.
(a) Calculation of Mood
Here, the mood is calculated based on the emotion value at the previous time.

The positive mood at the time t (Mp(t)) and the negative mood at the time t
(Mn(t)) are calculated by Eqs.(3) and (4). The mood at the time t (M(t)) is
given by

M(t) =

⎧⎨
⎩

Mp(t), (|Mp(t)−Mn(t)| > θM and Mp(t) > Mn(t))
0, (|Mp(t)−Mn(t)| ≤ θM)
−Mn(t), (|Mp(t)−Mn(t)| > θM and Mp(t) < Mn(t))

(7)

where θM is the threshold for the mood.

Emotion Generation System Considering Complex Emotion 499

(b) Calculation of Emotion Value
The emotion value for the emotion e at the time t, Ee(t) is given by

Ee(t) = fE

(
Ee(t− 1) +Me(t) +Ne(t)− Fe

+We(t)

(
Te(t)

(∑
in∈N

Gin(t) +
∑

{s,e,M}∈N

G{s,e,M}(t)
)))

(8)

Me(t) =

⎧⎨
⎩

T 1
ME

, (m(t) = p and e(t) = ep(t) or m(t) = n and e(t) = en(t))
T 2
ME

, (m(t) = p and e(t) = en(t) or m(t) = n and e(t) = ep(t))
0.0, (otherwise)

(9)

where p is the positive mood, n is the negative mood, ep(t) is the positive
emotion, en(t) is the negative emotion, and T 1

ME
(0 < T 1

ME
< 0.1) and T 2

ME

(−0.1 < T 2
ME

< 0) are the coefficients of mood for emotion generation. Ne(t) is
the coefficient for the emotion which is generated in the neural network at the
time t and is given by

Ne(t) = Ke(t) + Ce(t) (10)

where Ce(t) (0 < TCe(t) < 0.5) is the coefficient which is determined based on
the emotion generated in the chaotic neural network for the emotion generation.
And, Ke(t) is the coefficient which is determined based on the emotion generated
in the KFM associative memory for the emotion generation and is given by

Ke(t) =
∑
e

T e
K (11)

T e
K =

⎧⎨
⎩

Ee
k, (e = Ko)

−Ee
K/2, (e = Ko′)

0, (otherwise)
(12)

where Ko is the recalled emotion by the KFM associative memory, Ee
K is its

emotion value, and Ko′ is the emotion in the opposite position in the Plutchik
model.

And Fe is the inhibitory coefficient for the emotion e and is given by

Fe = fEc
e (Ee(t− 1)) (13)

fEc
e (u) =

⎧⎪⎪⎨
⎪⎪⎩

F 4
e , (θ3e ≤ u)

F 3
e , (θ2e ≤ u < θ3e)

F 2
e , (θ1e ≤ u < θ2e)

F 1
e , (u < θ1e)

(14)

where F 1
e , F

2
e , F

3
e and F 4

e (F 4
e > F 3

e > F 2
e > F 1

e) are the coefficients.
We(t) is the coefficient from the recalled emotion e by the neural network.

Te(t) is the coefficient for the emotion e and is given by

Te(t) = fET
e

(∑
n∈N

Gn(t)−Gn(t− 1), Ee(t− 1)

)
(15)

500 T. Takamatsu and Y. Osana

fET
e (u1, u2) =

⎧⎪⎪⎨
⎪⎪⎩

sgn(u1)T
4
e , (θ3e ≤ u2)

sgn(u1)T
3
e , (θ2e ≤ u2 < θ3e)

sgn(u1)T
2
e , (θ1e ≤ u2 < θ2e)

sgn(u1)T
1
e , (u2 < θ1e)

(16)

where θ1e , θ
2
e and θ3e are the thresholds, and T 1

e , T
2
e , T

3
e and T 4

e is update values
for the emotion e.

In Eq.(8), fE(·) is given by

fE(u) =

{
u, (u > 0)
0, (u ≤ 0).

(17)

(c) Output of Complex Emotions
The emotions is output based on the emotions which are recalled in the neural

networks and their emotion value calculated in (b).

Step 1 : If the output of the KFM associative memory corresponds to the
complex value c, c is set to the candidate of output emotion.

Step 2 : If the difference between emotion values of two adjacent basic emo-
tions in the Plutchik model[6] is smaller than the threshold, the
complex emotion c between these two basic emotions is is set to the
candidate of output emotion.

Step 3 : The complex emotion value Ec is calculated based on the emotion
value for the complex emotion selected in Step 1 and Step 2.

Step 4 : If the emotion value is larger than the threshold, the complex emo-
tion is generated.

(7) Planner
In the Planner, the action is selected based on the emotions as similar as in

the conventional system[1].
(8) Effector

In the Effector, the action which is selected in the Reflector or the Planner is
carried out.
(9) Long Term Memory Part

In the Long Term Memory, the information from the other modules are mem-
orized. Here, the input information, the emotions and their emotion values, the
complex emotions and their emotion values, the mood, the goal, the desire level
and the action are memorized.
(10) Working Memory

In the Working Memory, the information from the other modules are memo-
rized temporarily.

3 Experiment Results

3.1 Emotion Generation

Here, the emotions were generated by the proposed system, the method without
internal emotions and the method without mood.

As the stimuli which makes to generate the positive emotions,

Emotion Generation System Considering Complex Emotion 501

1.0

2.0

3.0

4.0

5.0

0.0

0 10 20 30 40 50 60
Time

E
m

ot
io

n
V

al
ue

trust

disgust

antici-
pationjoy anger

fear
sad-
ness suprise

(a) Proposed System.

1.0

2.0

3.0

4.0

5.0

0.0

0 10 20 30 40 50 60
Time

E
m

ot
io

n
V

al
ue

(b) Without Internal
Emotions

1.0

2.0

3.0

4.0

5.0

0.0

0 10 20 30 40 50 60
Time

E
m

ot
io

n
V

al
ue

(c) Without Mood

Fig. 3. Variation of Emotion Values

1. “Hello.” ⇒ 2. “Let’s play together.” ⇒ 3. show favorite thing ⇒ 4.
“Here you are.” ⇒ 5. “You are happy, aren’t you?” ⇒ 5. “Do you want
candies?” ⇒ 6. pat ⇒ 7. “Good.”

were given. And as the stimuli which males to generate the negative emotions,

a. back ⇒ b. “Bye bye.” ⇒ c. “Don’t come here.” ⇒ d. hit strong ⇒ e.
“Get away.” ⇒ f. show least favorite thing ⇒ g. “Are you sad?”

were given.

8
6
4

2
0

Robot A Robot B Robot C
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

T
he

 N
um

be
r

of
 S

ub
je

ct
s

[Q1] hostile ↔ friendly

8
6
4

2
0

Robot A Robot B Robot C
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

T
he

 N
um

be
r

of
 S

ub
je

ct
s

[Q2] action looks to have no aim ↔

action looks to have aim
8
6
4

2
0

Robot A Robot B Robot C
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

T
he

 N
um

be
r

of
 S

ub
je

ct
s

[Q3] unnatural ↔ natural

8
6
4

2
0

Robot A Robot B Robot C
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

T
he

 N
um

be
r

of
 S

ub
je

ct
s

[Q4] hard to communicate ↔ easy to
communicate

8
6
4

2
0

Robot A Robot B Robot C
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

T
he

 N
um

be
r

of
 S

ub
je

ct
s

[Q5] looks like machine ↔ looks like
creature

8
6
4

2
0

Robot A Robot B Robot C
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

T
he

 N
um

be
r

of
 S

ub
je

ct
s

[Q6] looks like non-human ↔ looks
like human

8
6
4

2
0

Robot A Robot B
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

T
he

 N
um

be
r

of
 S

ub
je

ct
s

[Q7] unnatural ↔ natural

8
6
4

2
0

Robot A Robot B
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

T
he

 N
um

be
r

of
 S

ub
je

ct
s

[Q8] looks like machine ↔

looks like creature

8
6
4

2
0

Robot A Robot B
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

T
he

 N
um

be
r

of
 S

ub
je

ct
s

[Q9] looks like non-human
↔ looks like human

Fig. 4. Questionnaire Results

502 T. Takamatsu and Y. Osana

Figure 3(a) shows the variation of emotion values in the proposed system and
(b) and (c) show the variation of emotion values in the method without internal
emotions and mood. In these figures, the numbers or characters at the top show
the action and words. From these results, we can see that the proposed system
can generate emotions naturally independent only external input.

3.2 Experiment Using Robot

Here, we examined using the robot based on the proposed system (Robot A), the
robot based on the system without internal emotions (Robot B) and the robot
operated manually (Robot C). We used the robot build of the LEGOmindstorms
NXT. In this experiment, subjects give some actions through sensors or words
through GUI and the robot actions to the input. We used the SD (semantic
differential) method and the subjects evaluated the behavior of the robot in 7
levels (−3 ∼ 3). (Q1∼6 for Robot’s actions, Q7∼ 9 for Generated Emotions)

[Q1] hostile ↔ friendly
[Q2] action looks to have no aim↔ action looks to have aim
[Q3][Q7] unnatural ↔ natural
[Q4] hard to communicate ↔ easy to communicate
[Q5][Q8] looks like machine ↔ looks like creature
[Q6][Q9] looks like non-human ↔ looks like human

4 Conclusions

In this paper, we have proposed the emotion generation system considering
complex emotion based on MaC model using neural networks. We carried out
computer experiments, and confirmed that the proposed system can realize au-
tonomous and human-like emotion generation. Moreover, we confirmed that the
robot based on the proposed system can decide actions as similar as in the robot
operated manually.

References

1. Hirozawa, K., Osana, Y.: Emotion generation system based on MaC model with
neural networks. In: Proceedings of IEEE International Conference on System, Man
and Cybernetics, San Antonio (2009)

2. Ushida, H., Hirayama, Y., Nakajima, H.: Emotion model for life-like agent and its
evaluation. In: Proc. AAAI 2008: Fifth National Conference on Artificail Intelli-
gence, Madison, pp. 62–69 (1998)

3. Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Physics Letter
A 144(6-7), 333–340 (1990)

4. Sato, H., Osana, Y.: Variable-sized Kohonen feature map probabilistic associative
memory. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN
2012, Part II. LNCS, vol. 7553, pp. 371–378. Springer, Heidelberg (2012)

5. Kohonen, T.: Self-Organizing Maps. Springer (1994)
6. Plutchik, R.: A general psychoevolutionary theory of emotion. In: Plutchik, R.,

Kellerman, H. (eds.) Emotion: Theory, Research, and Experience, pp. 3–33. Aca-
demic Press (1980)

Neuro-Optimal Controller

for Robot Manipulators

Mohammed Boukens and Abdelkrim Boukabou

Department of Electronics, Jijel University, 98 Ouled Aissa,
Jijel 18000, Algeria

Abstract. This paper presents an algorithm for continuous-time
quadratic optimization with neural compensation of motion control. A
simpler reformulation explicit solution to the Hamilton-Jacobi-Bellman
equation for optimal control of rigid robot motion is found by solving
an algebraic Riccati matrix equation. The system stability is investi-
gated according to Lyapunov function theory and it is shown that global
asymptotic stability holds in the case of known system model. It is also
shown how optimal control and neural control may act in concert in the
case of unknown system model. The neural algorithm is derived from
Lyapunov stability analysis, so that both system-tracking stability and
error convergence can be guaranteed in the closed-loop system. Exper-
imental and simulation results from a two-link robot manipulator show
the satisfactory performance of the proposed control scheme.

Keywords: Optimal control, neural networks, robotic control.

1 Introduction

Control of linear systems is now a well-proficient field. The tools of linear algebra
allow obtaining for these systems, control laws possessing properties of stability
and optimality. Over the last decade, a lot of research effort has been put into
the design of sophisticated control strategies for robots. A number of model-based
robot control methods have been proposed such as computed torque control and
PD with gravity compensation [1]. These methods require exact knowledge of the
nonlinear robot dynamics, which, in practice is generally not available. As the ma-
nipulator is a multivariable non-linear coupling dynamic system with uncertain-
ties, it is difficult to obtain an accurate mathematical model so that classical or
modern control laws can be applied. Thus, conventional controllers cannot effec-
tively control the motion of a robot due to complications of these nonlinear effects.

To solve this problem, during the last few years, it has emerged as a major
research area with ramifications in artificial intelligence. Fuzzy part with a set
of tunable parameters is employed to approximate lumped uncertainty due to
parameters variations, unmodeled dynamics and so on in robotic manipulators
[2]. Another solution is to use the universal approximation of nonlinear functions
by artificial neural networks, such as the approach proposed by Lewis [3], and
also discussed in [4], which allow approaching any nonlinear function. It is this
property that motivates their use for the production of nonlinear control systems.

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 503–510, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

504 M. Boukens and A. Boukabou

Perez et al. [5] proposed a trajectory tracking error using PID control law for two-
link robot manipulator. The neural network controller is trained by a training
rule developed to minimize a cost function.

In this paper, an optimal control strategy with neural compensation is pro-
posed in which plant dynamics is learned by a neural network. The online learned
neural network is used to adaptively estimate nonlinear uncertainties and im-
prove performance in the face of unknown nonlinearities by adding nonlinear
effects to the optimal controller, yielding a controller that can tolerate a wider
range of uncertainties. The proposed optimal controller adapts itself so that the
learning rate and the time parameter track the dynamical behavior. The real
time results showed the effectiveness of the proposed method with respect to
desired trajectory tracking and disturbance rejection.

The paper is organized as follows. In Section 2, robot dynamics and prob-
lem formulation is given. In Section 3, the proposed neuro-optimal controller
is detailed. In Section 4, an experimental example is realized that illustrates
a concrete implementation for the problem of trajectory tracking of a two-link
manipulator. Finally, conclusion is drawn in Section 5.

2 Robot Arm Dynamics and Problem Statement

The dynamics in joint space of a serial-chain n-link robot manipulator can be
written as

M(q)q̈ + C(q, q̇)q̇ +G(q) + τd = τ, (1)

where the position coordinates q(t) ∈ Rn with associated velocities q̇(t) and
accelerations q̈(t) are controlled with the external driving forces τ(t) ∈ Rn. The
moment of inertia M(q) ∈ Rn×n, the Coriolis/centripetal C(q, q̇) ∈ Rn×n and
gravitational forces G(q) ∈ Rn all vary along the trajectories. τd ∈ Rn represents
the external and unknown disturbances.

We assume that the positions q(t) and velocities q̇(t) are available for mea-
surement. Moreover, we assume that the external control torque τ(t) is available
as the control input and that the matrices M(q) and C(q, q̇) are of structure and
satisfy the following properties:

Property 1: The inertia matrix M(q) is symmetric positive, i.e., M(q) =
MT (q) > 0.

Property 2: The matrix N(q, q̇) = Ṁ(q) − 2C(q, q̇) is skew-symmetric, i.e.,
xTN(q, q̇)x = 0; ∀x ∈ Rn.

Given a desired trajectory qd(t) ∈ Rn, the tracking errors are defined as
e(t) = qd(t) − q(t) and ė(t) = q̇d(t) − q̇(t), or in the state space representation

as x(t) =
(
ėT (t) eT (t)

)T
.

We introduce the following state space transformation of x(t) :

z(t) = Tx(t) =

(
T1 T2

0n×n In×n

)(
ė(t)
e(t)

)
, (2)

where T > 0, T1, T2 ∈ Rn×n and z(t) ∈ R2n.

Neuro-Optimal Controller for Robot Manipulators 505

Now define a control-input torque as

τ(t) = M(q)(q̈d + T−1
1 T2ė) + C(q, q̇)(q̇d + T−1

1 T2e) +G(q)− T−1
1 Ru(t), (3)

with R = RT ∈ Rn×n positive definite and u(t) ∈ Rn an auxiliary control input
to be optimized. The closed-loop system (1) becomes

M(q)(T1ë(t) + T2ė(t)) = −C(q, q̇)(T1ė(t) + T2e(t)) +Ru(t). (4)

And the following augmented system is obtained:

ż(t) =

(−M−1(q)C(q, q̇) 0n×n

T−1
1 −T−1

1 T2

)
z(t) +

(
In×n

0n×n

)
M−1(q)Ru(t),

= A(q, q̇)z(t) +B(q)u(t), (5)

with A(q, q̇) ∈ R2n×2n, B(q) = B̂M−1(q)R ∈ R2n×2n and B̂ =

(
In×n

0n×n

)
.

The control problem is formulated as a quadratic optimization problem
J(z, u) =

∫∞
t0

L(z, u)dt with the Lagrangian L(z, u) = 1
2 (z

TQz + uTRu).

A necessary and sufficient condition for ū (t) to minimize (4) subject to (5)
is that there exists a function V (z, t) satisfying the following Hamilton-Jacobi-
Bellman (HJB) equation

− ∂V

∂t
= min

u

{
L(z, u) +

(
∂V

∂z

)T

ż

}
, (6)

where V (z, t) satisfies the partial differential equation

V̇ (t, z) =
∂V

∂t
+

(
∂V

∂z

)T

ż = −L(z, ū) = −1

2
(zTQz + ūTRū), (7)

with Q and R positive definite diagonal matrices and B̂T = (In×n 0n×n) . The
optimal feedback control law ū (t) that minimized J(z, u) is given by

ū(t) = −B̂T z(t) = − (T1 T2)x(t) = − (T1ė(t) + T2e(t)) . (8)

3 Neural-Law Design

Given x = [x1, x2, . . . , xN1]
T ∈ RN1 , a three-layer neural net has a net output

given by

yi =

N2∑
j=1

wij

[
ϕ

(
N1∑
k=1

vjkxk

)]
; i = 1, .., N3, (9)

with ϕ(·) the activation function, vjk the first-to-second layer interconnection
weights, wij the second-to-third layer interconnection weights and N2 the num-
ber of hidden-layer neurons. The proposed neuro-optimal controller scheme is
shown in Fig. 1.

506 M. Boukens and A. Boukabou

Fig. 1. Neuro-optimal controller scheme

The appropriate external torque to apply to the robotic system is calculated
according to the control input (3) as follows

τ(t) = f(x)− T−1
1 Rū(t) = f (x) +Rėr(t), (10)

where
f(x) = M(q)q̈r(t) + C(q, q̇)q̇r(t) +G(q), (11)

and we may define{
x =

[
eT ėT qTd q̇Td q̈Td

]T
, λ = T−1

1 T2 = Q−1
1 Q2,

q̈r = q̈d + λė , ėr = ė+ λe.
(12)

Then the nonlinear robot function f(x) can be assumed as the following model

f(x) = WTϕ(V Tx), (13)

where V T contains both the weights of the first-to-second layer connections, WT

contains both the weights of the second-to-third layer connection and ϕ(·) is the
nonlinear activation function chosen as ϕ(·) = tanh(·).

We will determine later the laws of weight adjustment NN from Lyapunov
stability analysis for estimating online the nonlinear function such that the closed
loop system is stable. The estimate f̂(x) of f(x) can be written as

f̂(x) = ŴTϕ(V̂ Tx), (14)

with Ŵ and V̂ represent the estimates of the target weight values. Thus, the
external torque (10) is now given by

τ(t) = ŴTϕ(V̂ Tx) +Rėr(t). (15)

The closed-loop error dynamics become

M(q)ër + (C(q, q̇) +R)ėr = WTϕ(V Tx)− ŴTϕ(V̂ Tx) + ε(x) + τd. (16)

Neuro-Optimal Controller for Robot Manipulators 507

It is important to note that the NN reconstruction error ε(x) = f (x)− f̂(x) and
the robot disturbances τd have exactly the same influence as disturbances in
the error system. Let us define the hidden-layer output error for a given x as
ϕ̃ = ϕ−ϕ̂ = ϕ(V Tx)−ϕ(V̂ Tx) and the weight estimation errors as W̃ = W−Ŵ ,
Ṽ = V − V̂ , then, the Taylor series expansion for a given x may be written as
ϕ(V Tx) = ϕ(V̂ Tx) + ϕ′(V̂ Tx)Ṽ Tx+O(Ṽ Tx)2 where ϕ′ is the Jacobean.

Setting ϕ̂′ = ϕ′(V̂ Tx), we have

ϕ̃ = ϕ̂′Ṽ Tx+O(Ṽ Tx)2. (17)

Substituting (17) into (16) gives

M(q)ër + (C(q, q̇) +R)ėr = W̃T (ϕ̂− ϕ̂′V̂ Tx) + ŴT ϕ̂′Ṽ Tx+ w, (18)

where the disturbances in the error system is w = W̃T ϕ̂′V Tx+WTO(Ṽ Tx)2 +
ε (x) + τd.

Theorem 1. Consider that the control action is provided by the optimal con-
troller ū (8), and that the gradient based training for neural network weights is
given by {

˙̂
W = F (ϕ̂− ϕ̂′V̂ Tx)ėTr − kF‖ėr‖Ŵ ,
˙̂
V = Gx(ϕ̂′T Ŵ ėr)

T − kG‖ėr‖V̂ ,
(19)

with k ∈ R+, F = FT > 0 and G = GT > 0.Then the errors e(t) and ė(t) are
uniformly ultimately bounded (UBB). Moreover, the errors can be made arbi-
trarily small by adjusting weighting matrices Ŵ and V̂ .

Proof. Consider the following Lyapunov function

L =
1

2
ėTr M(q)ėr +

1

2
tr(W̃TF−1W̃) +

1

2
tr(Ṽ TG−1Ṽ). (20)

where tr(·) is the trace operator. Computing the time derivative of the function,
we have

L̇ = ėTr M(q)ër +
1

2
ėTr Ṁ(q)ėr + tr(W̃TF−1 ˙̃W) + tr(Ṽ TG−1 ˙̃V), (21)

By substituting Eq. (18), the learning rule (19) and from property 2, then we
obtain

L̇ = −ėTr Rėr + k‖ėr‖trZ̃T
(
Z − Z̃

)
+ ėTr w, (22)

where Z̃ =

(
W̃ 0

0 Ṽ

)
. We know that

{
trZ̃T

(
Z − Z̃

)
= tr

(
Z̃, Z

)
− ‖Z̃‖2F ≤ ‖Z̃‖F ‖Z‖F − ‖Z̃‖2F ,

λmin {R} ‖ėr‖2 ≤ ėTr Rėr,
(23)

with ‖A‖F the Frobenius norm and λmin {R} the minimum eigenvalue. If R is
taken as a diagonal matrix, then λmin {R} is simply the smallest gain element.

508 M. Boukens and A. Boukabou

In addition, we consider that the target weights and the disturbance term are
bounded, i.e., ‖Z‖F ≤ Zb ∈ R+ and ‖w‖ ≤ wb ∈ R+, respectively. These
considerations will be true in every practical situation because the power into
the system is bounded. Hence, the time derivative of the Lyapunov function can
be rewritten by

L̇ ≤ −‖ėr‖
(
λmin {R} ‖ėr‖+ k‖Z̃‖F

(
‖Z̃‖F − Zb

)
− wb

)
, (24)

which is negative as long as the term in braces is positive. Thus

L̇ ≤ −‖ėr‖
[
λmin {R} ‖ėr‖+ k

(
‖Z̃‖F − Zb

2

)2

− k

4
Z2
b − wb

]
(25)

That is guaranteed negative as long as one of the two following inequalities holds

‖ėr‖ > 1

λmin {R}
(
k

4
Z2
b + wb

)
= be or ‖Z̃‖F >

Zb

2
+

√
Z2
b

4
+

wb

k
= bz, (26)

where be and bz are the convergence regions associated to ėr and Z̃, respectively.
Thus, L̇ is negative outside a compact set. Note that be can be kept small by
adjusting the design parameter λmin {R} which ensures that ėr(t) stays in the
compact set. We can choose λmin {R} 0 1.

According to the standard Lyapunov theorem extension, this demonstrates
the uniformly ultimate boundedness (UUB) of both ‖ėr‖ and ‖Z̃‖F . In both
cases, there is a convergence of tracking errors. This completes the proof.

4 Experimental Case Study

The robot manipulator of Fig. 2 is an experimental 2-DOF lightweight mechan-
ical construction moving in the horizontal plane. It consists of two aluminum
links, both actuated by a current-driven DC motor with gearbox. The robot
manipulator is connected to a control board based dsPIC (117MHz from Mi-
crochip), which constitutes the I/O interface to the robot. The experimental
results of the position tracking, the angular velocities, the errors e1(t), e2(t),
and the control signal τ1(t), τ2(t) are shown in Figs. 3 (a–h), respectively.

The control input is computed from the optimal-neural control laws (15) and
(19) with four neurons in hidden-layer and sampling time T = 1ms. From Fig.

Fig. 2. Experimental robot manipulator

Neuro-Optimal Controller for Robot Manipulators 509

0 1 2 3 4

- 40

- 30

- 20

- 10

0

Time (s ec)

q
1

 (
d

e
g

)

Ouput
R eferenc e

(a) Tracking position for joint 1.

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

Time (s ec)

q
2

 (
d

e
g

)

Ou tput

R eference

(b) Tracking position for joint 2.

0 0.5 1 1.5 2 2.5 3 3.5 4
- 60

- 40

- 20

0

20

40

60

Time (sec)

dq
1

(d
eg

/s
)

Output
Reference

(c) Tracking velocity for joint 1.

0 0.5 1 1.5 2 2.5 3 3.5 4

- 100

- 50

0

50

100

Time (sec)

dq
2

(d
eg

/s
)

Ouput
Reference

(d) Tracking velocity for joint 2.

0 1 2 3 4

- 0.6

- 0.4

- 0.2

0

0.2

0.4

0.6

Tim e (s ec)

e1
(d

eg
)

(e) Tracking error for joint 1.

0 1 2 3 4

- 0.6

- 0.4

- 0.2

0

0.2

0.4

0.6

Tim e (s ec)

e2
(d

eg
)

(f) Tracking error for joint 2.

0 1 2 3 4

- 6

- 4

- 2

0

2

4

6

Tim e (s ec)

u1
 (

vo
lt

)

(g) Control signal for joint 1.

0 1 2 3 4
- 10

- 5

0

5

10

Tim e (s ec)

u2
 (

vo
lt

)

(h) Control signal for joint 2.

Fig. 3. The tracking position, velocities and controls signals

510 M. Boukens and A. Boukabou

3 (e, f), it can be seen that the absolute maximum position tracking error for
joint 1 is about 0.6 deg (0.01 rad) and it is about 0.6 deg (0.01 rad) for joint 2.
Then, we conclude that the proposed control law gives outstanding performance
in terms of error with respect to the resolution of the sensors used (respectively
0.4 and 0.48 degree) and thus the algorithm is capable of compensating unknown
dynamics in the robotic manipulator with quite good results.

Remark 2. The weights Ŵ and V̂ may be initialized as zero takes the NN out
of the circuit and leaves only the outer tracking loop in Fig. 1. It is well known
that the optimal controller term in (20) can then stabilize the robot arm on an
interim basis until the NN begins to learn. This means that there is no off-line
learning phase for this NN controller. For practical purposes it is only necessary
to select λmin {R} large until obtaining a reasonable performance but not yet
acceptable in the tracking errors. Then, we can use the learning law for reduce
the tracking errors with a minimum of overshoot.

5 Conclusion

In this paper, an online neural network based optimal controller for a robot ma-
nipulator is designed. The main reason of using the proposed control scheme is
that many systems in practice, such that robot manipulators are not only nonlin-
ear, but also contain uncertainties due to tolerance variation in the manipulator-
link properties, unknown loads, and so on. The proposed neuro-optimal controller
avoided the need system’s model. The experimental results show that this control
law gives excellent tracking performance in terms of tracking error with respect
to the resolution of the sensors used.

References

[1] Kelly, R., Santibnez, V., Loria, A.: Control of robot manipulators in joint space.
Springer, London (2005)

[2] Song, Z., Xinchun, L.: A computed torque controller for uncertain robotic manip-
ulator systems: Fuzzy approach. Fuzzy Sets and Systems 154, 208–226 (2005)

[3] Lewis, F.L.: Neural network control of robot manipulators. Intelligent Systems and
their Applications IEEE Expert 11, 64–75 (1996)

[4] Ren, X., Lewis, F.L., Zhang, J.: Neural network compensation control for mechan-
ical systems with disturbances. Automatica 45, 1221–1226 (2009)

[5] Perez, J.P., Perez, J.P., Soto, R., Flores, A., Rodriguez, F., Meza, J.L.: Trajectory
tracking error using PID control law for two-link robot manipulator via adaptive
neural networks. Procedia Technology 3, 139–146 (2012)

[6] Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Pren-
tice Hall, New Jersey (1990)

Learning to Walk Using a Recurrent Neural Network
with Time Delay

Boudour Ammar1, Naima Chouikhi1, Adel M. Alimi1, Farouk Chérif2,
Nasser Rezzoug3, and Philippe Gorce3

1 REGIM: REsearch Groups on Intelligent Machines, University of Sfax, National Engineering
School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia
{boudour.ammar,adel.alimi}@ieee.org

2 ISSATS, Laboratory of Math Physics, Specials Functions and Applications, LR11ES35,
Ecole Supérieure des Sciences et de Technologie, 4002- Sousse- Tunisia

faroukcheriff@yahoo.fr
3 HandiBio Laboratory, EA 3162, Avenue de l’université, University of South Toulon-Var, BP

20132, 83957 La Garde cedex, France

Abstract. Walking based on gaits is one of the most approved methodologies for
walking robot. In this paper, we develop learning strategy for walking biped robot
or human based on a self made database using biomechanical capture. This sys-
tem is provided by a Recurrent Neural Network (RNN) with an internal discrete
time delay. The role of the proposed network is the training of human walking
data by giving an estimation of the biped’s next position at each time and achieve
a human-like natural walking. Different architectures of RNN are proposed and
tested. In Particular, a comparative study is given and the results of the RNN
mixed with extended Kalman filter are illustrated.

Keywords: Human walking, 3D human simulator, Recurrent Neural Network,
Biomechanics, e-kalman filter.

1 Introduction

In a few years, robotics has become an important science that is constantly evolving.
Within this issue, bipedal locomotion proposals [12] focus on different aspects of robot
control. In fact, robots have demonstrated an ability to try to mimic humans in achieving
activities in many fields such as industry, home automation, exploration, games and so
forth. In all these fields, robots need to displace and move in order to realize their
missions. The bipedal locomotion is supposed to be one of the best locomotion systems
according to small support surface [2].

Artificial Neural Networks (ANNs) are computational tools, based mainly on the
properties of biological neural systems as its network theory revolves around the idea
that certain properties of biological neurons can be extracted and applied to
simulations [14].

ANNs can be defined as an attempt to somehow imitate the neural network of a
human being in a simple way. Although the ANNs can learn in the presence of noisy
inputs, they cannot perform to react convincingly and dynamically to a real world sit-
uation. If we need to keep in memory the previous states of the network, it would be

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 511–518, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

512 B. Ammar et al.

better to choose the RNN architecture to perform complex tasks ([1] and [9]). Several
types of RNN have been used in the past years, for example: cellular neural networks,
Hopfield neural networks, Cohen-Grossberg neural networks, bidirectional associative
memory neural net-works. Besides, it is well known that there are time delays in the
information processing of neurons. So, the RNN with time delays has received much
more attention both in theory and in practice ([1], [18], [4]).

In addition, the use of the RNNs can be justified by their dynamism and powerful
algorithms of training.

Throughout this paper, we are, mainly, interested in the learning of the human gait to
a 3D biped simulator via a RNN. The main contributions of this paper are summarized
below:

– Preparation of human walking database based on biomechanic study
– Novel model and architecture of RNN with discrete time delay
– Comparison between some RNN architectures and RNN mixed with e-kalman

By the end of the training, the simulator is able to estimate in each time step the next
position during the gait trajectory. A simple comparison proves the effectiveness of a
RNN with time delay .

The plan of this paper is organized as follows: in section II, we give an overview
about the prepared database of gaits following biomechanic steps. We, also, introduce
the RNN model which can be used in the training algorithm and the walking learning
system. In Section III, the different architectures of RNN and results are given after
training and a comparative study is presented. Finally, section IV draws the conclusions
and provides suggestions for future work.

2 Training with RNN

The recurrent neural network is a class of neural network where connections between
the units form a cycle. This can lead to an internal dynamic temporal behavior ([10]
and [8]). As a Neural Network, the RNN has input, hidden and output layers where
each layer has a number of neurons. Besides, in our system, the learning process is
supervised and requires a training data set.

2.1 Training Data Set

The learning process consists of two main parts which are training and testing.
In fact, the data set is composed of five walking tests for six subjects. The test capture

saves the changes of the joint angles of the different articulations of the two legs.
To do so, a set of distinguishable markers (59 markers) are placed on six human body

landmarks. The scene is captured by an opto-electric system composed of a number of
calibrated and synchronized cameras [16].

The system of measure consists of some steps according to biomechanical study.
In order to establish a relation between the markers, a Human Body Model (HBM) is
defined and our own database of gaits is built. Markers are detected on all the camera
views and delivered as the input of a particle scheme where every particle encodes an
instance of the estimated position of the HBM [17].

Learning to Walk Using a Recurrent Neural Network with Time Delay 513

So, we save the human movements while walking and we extract the marker’s tra-
jectories. The joint trajectories are deducted from the markers position in each instance
using some implemented functions that follow a biomechanical study. We mention here
that not all the markers are used and only anatomical and technical markers in the lower
trunk are implemented because we are concerned up to now with the learning of biped
walking. To train the network, the database consists of 10 joint angles at instant t and
t+1 as inputs and outputs respectively. Once the database is finished, we can move to
the training and test phases.

2.2 The Proposed RNN Model

Many phenomena exhibit a great regularity without being periodic. This is modeled
using the notion of pseudo almost periodic functions which allows complex repetitive
phenomena to be represented as an almost periodic process plus an ergodic component.
Besides, it is well-known that there are time delays in the information processing of the
neurons due to various reasons. For instance, the time delays can be caused by the finite
switching speed of amplifier circuits in neural networks or deliberately introduced to
achieve tasks of dealing with motion-related problems.

The proposed NN model is studied with the aim of achieving human-like perfor-
mance, especially in the task of human walking. It is an application of the proposed
RNNs with time-varying coefficients and discrete delay detailed in [1]. Using the tech-
nique of the Euler discretization of the simplified continuous formulation, the approxi-
mation of the equation is:

Si(t + 1) = Si(t)+
n

∑
j=0

(ci, j(t) f j(S j(t))+ di, j(t)g j(S j(t− τ)))+ Ji. (1)

Where: n is the number of neurons in each network, Si(t) denotes the state of the ith
neuron at time t, f j and g j are the activation functions of the jth neuron at time t, c(i, j)(t)
and d(i, j)(t) are the connection weights of the jth neuron on the ith neuron, τ is constant
time delay and Ji (t) is the external bias on the ith neuron.

The proposed architecture of the RNN is composed of ten inputs, ten outputs and a
variable number of neurons in a hidden layer. We choose the joint angles at instant t, as
inputs and the joint angles at instant t+1, as outputs.

This network aims to obtain a human-like robot behavior and estimates the next
values of the different joints.

2.3 BPTT Training Algorithm

In this paper, we adopted the Back Propagation Through Time (BPTT) as a training
algorithm. In fact, the RNNs are unfolded in time; which means that they can be trans-
formed from the feedback structure to the feed forward structure [3].

Then, an error is calculated at each unfolding step beginning with the last layer and
retro-propagated to the previous layer which propagates its error forth until reaching
the first layer.

A database with ten inputs and ten outputs is introduced to the network. The angles of
the articulations of the lower trunk at instant (t) and (t+1) are respectively the inputs and

514 B. Ammar et al.

outputs. Then, the data set is divided into trained data set (2400 steps of 8 tests of human
subjects) and test data set (300 steps of 1 test of human subject). The last database is
used to calculate the performance of the RNN and the error is computed according
to equation 2. For predictive analytics, the error function is the sum-of-squared errors
[8]. This function is calculated by looking at the squared difference between what the
network predicts for each training pattern and the target value, or observed value, for
that pattern. The global error is, then, deduced from the equation 3.

Ek =
1
2
(Sd(t + k)− S(t+ k))2. (2)

Where: k is the index of the step or sample, Sd(t + k) and S(t + k) are respectively the
desired output vector and the output vector of the network in this step.

E =
1
N ∑Ek. (3)

Where: N is the number of samples.
Some parameters, which can be adjusted in the RNN, are increasing the iteration

number or/and adding new hidden layers or/and altering the number of neurons in each
hidden layer. The feedback between neurons from the input, hidden and output layers
is tested and explained below. The update of weights can be performed with e-kalman
filter. The last is an algorithm that uses a series of measurements observed over time,
containing noise (random variations) and other inaccuracies, and produces estimates of
weight that tend to be more precise than those based on BPTT algorithm alone [15].

Table 1. Error values of different architectures of NN with a variation of time delay

Characteristics of the NN Delay Error
Neural Network 0 1.7210−4

RNN1 1 8.910−5

RNN2 1 4.710−5

RNN3 1 3.910−5

RNN4 1 7.610−5

RNN5 0 3.310−3

RNN6 2 5.210−3

RNN7 1 2.2410−4

RNN8 1 1.510−4

RNN9 1 2.2310−4

RNN with e-kalman 1 1.8810−5

Where: RNN1 : RNN with connections between 5 neurons in hidden layer.
RNN2 : RNN with connections between 8 neurons in hidden layer.
RNN3 : RNN with connections between 10 neurons in hidden layer.
RNN4 : RNN with connections between 12 neurons in hidden layer.
RNN5 : RNN with connections between 10 neurons in hidden layer where delay=0.

Learning to Walk Using a Recurrent Neural Network with Time Delay 515

RNN6 : RNN with connections between 12 neurons in hidden layer where delay=2.
RNN7 : Elmann network with connections between 10 neurons in hidden layer and
input layer.
RNN8 : Output recurrent network with connections between the output layer and input
layer (10 neurons in hidden layer).
RNN9 : Recurrent neural network with connections between hidden (10 neurons) and
input layers and between output and input layers.

3 Tests and Evaluation

Neural architecture considered in this investigation is a recurrent and multi-layer neu-
ral network. This architecture is composed of three layers arranged in a feed-forward
model: The first layer is the input layer with a vector of 10 inputs, which are the joints
of the lower trunk at instant t (two joints of each hip, one joint of each knee and two
joints of each ankle). The second layer is the hidden layer where the number of neurons
is fixed after many tests. The Third layer is the output vector that contains the 10 joint
angles at instant t + 1.

In order to evaluate the performance of each RNN, we calculate and compare the
errors of many structures of the RNN. We start with the test of a simple NN. Then, we
change the number of interconnected neurons in hidden layer (RNN1 to RNN6). After
that, we add connections between neurons in different layers (RNN7 to RNN9). The
RNN with e-kalman is, also, tested. It is a RNN for EKF-BPTT training. So, the filter
of e-kalman are used in the BPTT algorithm and exactly in the step of update weights
[5]. The goal of this evaluation is to compare several architectures of the RNN when a
time delay is included in the dynamic equation.

So, table 1 gives a comparison between the error results of RNN with a variation of
feedback connections between neurons and the different time delays (delay=0, delay=1
and delay=2). Results are summarized in table 1 and presented in figure 2 which clearly
demonstrate the following:

1. The RNN with delay different to 1 have the worst performance. It reveals that
wrong delay that occured at the beginning of each recursion will accumulate and
propagate to the future when recursively, which will result in poor forecast accu-
racy.

2. RNN with ten neurons with connections in the hidden layer and a discrete delay
equal to 1, gives a good performance.

3. the RNN mixed with e-kalman gives the best performance. It is clear that the last
RNN is more important than the others. After computing, the error reached by
the end of the training (600 iterations) is equal to 1.8810−5. Figure 2 presents the
desired right knee angle (in green), the estimated output of RNN with ten neurons
with connections in the hidden layer (in red) and the output of the RNN mixed
with e-kalman filter(in blue *). The two last curves are superposed because, as it is
known, errors are in the order of 10−5.

This architecture is described in figure 1 and characterized by one feedback connection
which is a recursive connection between the neurons in the hidden layer. The numbers of

516 B. Ammar et al.

the processing neurons and layers determined above are identified the best by a number
of trials. In order to validate our RNN system, the output results are tested in a 3D
simulator of the human-like robot. In each time step during the test phase, the Center

Fig. 1. The proposed RNN architecture

Fig. 2. Comparison between the desired output (green line), the RNN output (red line) and the
output of RNN mixed with e-kalman (blue *)

Of Mass (COM) coordinates of the simulator are computed [13]. Then, the equations
of stability of the simulator are calculated in order to avoid the risk of falling on the
floor. When the simulator starts to walk, the stability can be controlled statically or
dynamically. In both control manners, the COM of the simulator is computed.

Compared to [6] and [7], they predict positions of the center of mass of the biped.
This prediction is controlled by the calculated ZMP stability. However, the COM coor-
dinates information is not enough to control all the joints positions or angles.

In our case, the prediction of angles of articulations is controlled by the real data of
the human subjects. The stability is controlled after the learning process.

Nakanishi et al report on their research for learning the biped locomotion from hu-
man demonstration. They choose to use database of walking joints of only one man

Learning to Walk Using a Recurrent Neural Network with Time Delay 517

from a book. Only the desired trajectories of the right leg are generated, while those
of the left are concluded by shifting the phase of the oscillator of the right leg by π .
The demonstrated trajectories are learned using locally weighted regression [11]. In
the dynamical movement primitives, kinematic movement plans are described in a set
of nonlinear differential equations with well-defined attractor dynamics. In our case,
no differential equations of walking is used. The human motion is learned using RNN
learning. The mentioned architecture of RNN using discrete delay is implemented with
the technique of Euler discretization of the simplified continuous equation [1], the ap-
proximated equation is computed in the novel RNN architecture. The results of the
proposed RNN are applied in 3D simulator.

The simulator is a geometric model similar to the human body. The 3D biped sim-
ulator has not only two legs and a pelvis but also a trunk, two hands and head. In our
project, the higher part is immobile ; only the lower part is considered in the gait.

4 Conclusions

In this paper, the learning system of the human walking is proposed. This system is
divided in two parts. The first is the building of the human walking model. A self made
biomechanical data set of HBM walking is prepared. Only 10 joint angles at different
instances are chosen from this data set. These joints are the inputs and the desired
outputs of the RNN.

Different network architectures are tested. The training error is computed and the
RNN with time delay and feedback connections in hidden layer and mixed with e-
kalman has a good performance.

The second part is the prediction of the next joint angles in function of the actual
joint angles. The role of the proposed RNN architecture is to obtain ”human-like robot
behavior and predict the next values of the joint articulations”, but the RNN presented
can only do prediction. To achieve control we, also, need other mechanisms (eg a PID
or fuzzy controller on the joints). We mention that this system lacks the link between
the learning step and the stability control.

As a future work, we attempt to expand the dynamic equation of the RNN by adding a
continuous delay so as to manage the lateness of the network. We, also, aim at exploiting
the described model to a Bidirectional Associative Memory (BAM) neural networks as
a learning system in humanoid robotics. Another interesting topic for future work is
by extending our approach with other databases of different motions (like: running,
jumping, etc.). Furthermore, it is also planned to use this proposed system to learn
elderly and handicapped persons.

Acknowledgment. The authors would like to acknowledge the financial support of this
work by grants from General Direction of Scientific Research (DGRST), Tunisia, under
the ARUB program.

References

1. Ammar, B., Chérif, F., Alimi, A.M.: Existence and Uniqueness of Pseudo Almost-Periodic
Solutions of Recurrent Neural Networks with Time-Varying Coefficients and Mixed Delays.
IEEE Transactions on Neural Networks and Learning System 23(1) (2012)

518 B. Ammar et al.

2. Azevedo, C., Poignet, P., Espinau, B.: Artificial locomotion control: from human to robots.
Robotics and Autonomous Systems 47, 203–204 (2004)

3. Baccour, N., Kaaniche, H., Chtourou, M., Ben Jemaa, M.: Recurrent Neural Network based
time series prediction: Particular design problems. In: International Conference on Smart
Systems and Devices, SSD (2007)

4. Bouaziz, S., Dhahri, H., Alimi, A.M.: Evolving Flexible Beta Operator Neural Trees
(FBONT) for Time Series Forecasting. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.)
ICONIP 2012, Part III. LNCS, vol. 7665, pp. 17–24. Springer, Heidelberg (2012)

5. Bousnina, S., Ammar, B., Baklouti, N., Alimi, M.A.: Learning system for mobile robot de-
tection and tracking. In: International Conference on Communications and Information Tech-
nology, ICCIT, pp. 384–389 (June 2012)

6. Concalves, J.B., Zampieri, D.E.: Recurrent neural network approaches for biped walking
robot based on zero-moment point criterion. J. Braz. Soc. Mech. Sci. and Eng. 25(1), 69–78
(2003)

7. Erbatur, K., Kurt, O.: Natural ZMP Trajectories for Biped Robot Reference Generation. IEEE
Transactions on Industrial Electronics 56(3), 835–845 (2009)

8. Huynh, T.Q., Reggia, J.A.: Symbolic Representation of Recurrent Neural Network Dynam-
ics. IEEE Transactions on Neural Networks and Learning Systems 23(10), 1649–1658 (2012)

9. Manabe, Y., Chakraborty, B., Fujita, H.: Structural learning of multilayer feed forward neural
networks for continuous valued functions. In: The 47th Midwest Symposium on Circuits and
Systems, vol. 3, pp. 77–80 (2004)

10. Mandic, D., Chambers, J.: Recurrent Neural Networks for Prediction: Learning Algorithms,
Architectures and Stability (2001)

11. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.: Learning
from demonstration and adaptation of biped locomotion. Robotics and Autonomous Sys-
tems 47(23), 79–91 (2004)

12. Rokbani, N., Ammar, B., Alimi, A.M.: Toward intelligent biped-humanoids gaits generation.
In: Humanoid Robots, pp. 259–271. I-Tech Education and Publishing, Vienna (2008)

13. Rokbani, N., Benbousaada, E., Ammar, B., Alimi, A.M.: Biped Robot Control Using Particle
Swarm Optimization. In: IEEE International Conference on Systems Man and Cybernetics,
SMC, pp. 506–512 (2010)

14. Stanton, C., Williams, M.-A.: Book Review: Robotics: State of the Art and Future Chal-
lenges. Artificial Intelligence (2008)

15. Welch, G., Bishop, G.: An introduction to the Kalman filter (1995)
16. Winter, D.A.: Biomechanics and motor control of human movement. John Wiley, USA

(1990)
17. Wu, G.: Isb recommendation and definitions of joint coordinate system of various joints for

the reporting of human joint motion. Part I: ankle, hip and Spine. Journal of Biomechanics 35
(2002)

18. Zhang, H., Liu, Z., Huang, G.: Novel Delay-Dependent Robust Stability Analysis for
Switched Neutral-Type Neural Networks With Time-Varying Delays via SC Technique.
IEEE Transactions on Systems, Man and Cybernetics -PART B: Cybernetics 40(6) (Decem-
ber 2010)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 519–526, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Imbalance Network and Incremental Evolution
for Mobile Robot Nervous System Design

Paul Olivier and Juan Manuel Moreno Arostegui

Universitat Politecnica de Catalunya, Department of Electronic Engineering, Campus Nord,
Building C4, c/Jordi Girona 1-3, 08034, Barcelona, Spain

paul.olivier@upc.edu

Abstract. Automatic design of neurocontrollers (as in Evoluationary Robotics)
utilizes incremental evolution to solve for more complex behaviors. Also ma-
nual design techniques such as task decomposition are employed. Manual de-
sign itself can benefit from focusing on using incremental evolution to add
more automatic design. The imbalance network is a neural network that inte-
grates incremental evolution with an incremental design process without the
need for task decomposition. Instead, the imbalance network uses the mechan-
ism of the equilibrium-action cycle to structure the network while emphasizing
behavior emergence. An example 11-step design (including a 5-step evolutio-
nary process) is briefly mentioned to help ground the imbalance network
concepts.

Keywords: imbalance network, equilibrium-action cycle, incremental evolu-
tion, emergence, task decomposition.

1 Introduction

Neuro-evolution, in particular, evolutionary robotics (ER), has no doubt shown the
power of artificial evolution in the design of robotic behavioral controllers [1]. In
particular, it offers a promising alternative to manual design in which each network
parameter (connection, weight, threshold, and element type) must be clearly unders-
tood in terms of its reason for being present in the network and its particular role in
one or more behaviors. ER utilizes the artificial neural network (ANN) as basis for
designing a neurocontroller (a popular term for an evolved ANN-based nervous sys-
tem for determining a robotic agent's behavior) and can be a single ANN or consist of
several subnetworks [2]. Being based on ANN's, the neurocontroller exhibits robust-
ness to noise as well as an inherent learning capacity that is promising when design-
ing for an uncertain dynamic environment in which sufficient modeling of the robot
and/or the environment is not viable. As particular advantage over manual design, the
designer is freed from the architectural details of how to define neuronal elements and
interconnect them since a suitable architecture can be automatically evolved by speci-
fying minimal details (an initial network topology (the topology itself can be evolved
[3]), the neuron model, input/output connections) [4]. Since ER uses an evolutionary
algorithm the conventional learning algorithm is replaced by a fitness function, which

520 P. Olivier and J.M.M. Arostegui

includes factors such as the environment and the robot’s morphology. As an addition-
al property, in the final neurocontroller each behavior's implementation is spread
across several nodes, which provides robustness against lesions and sensor inaccura-
cies [5]. However, ER research has for many years focused only on single-network
neurocontrollers and simple behaviors. Moving to more complex behavior (such as
wall-following, obstacle avoidance and predator-prey scenarios) has identified several
issues such as increased difficulty in fitness function design, and bootstrapping (the
evolutionary process cannot start because all individuals perform equally poorly)
[2][6]. This has lead to incremental evolution in which there are several stages of
evolution across which increased levels of difficulty are applied, for example, to the
desired behavior and the environmental complexity [6]. A complementary approach is
task decomposition by which the desired behavior is broken down into simpler beha-
vioral modules, with a separate subnetwork evolved (in a chaining or parallel way) for
each module as additional incremental steps [2]. As promising as the field of ER ap-
pears, it is important to see automatic and manual design as complementary instead of
opposing approaches. For example, more manual design such as task decomposition
is required as more complex behavior is being evolved. That said, some do advocate
using automatic methods for task decomposition [6]. A greater problem with task
decomposition is that it is a long-existing concept in manual design approaches such
as behavior-based robotics (in particular, the subsumption architecture) with reported
problems of scalability [4]. Furthermore, it is not always clear how to do this break-
down and layering of behavior from complex to simple. Instead of task decomposi-
tion, of greater importance is to identify a behavior-causing mechanism: The mapping
between neural mechanisms and the observed behavior is not as direct as implied by
task decomposition [7].

Due to behaviors being spread across many nodes of the ANN, and the unclear link
between a network parameter and one or more behaviors, the ER solution is suscepti-
ble to change. Here, “change” refers to a manual change by the designer (adding or
adjusting some network or algorithmic parameter to add new behavior or fix/enhance
existing behavior, followed by recompiling, programming and execution) as opposed
to a change resulting during the automatic design process. If in the end all the connec-
tion, node and weight decisions are included in the automatic process, then it will be
the setup/design of the automatic process that will experience these manual changes.
Where an experiment mostly consists of one to several design steps (that is, manual
changes), for a complete robot with a rich behavior repertoire it is better to imagine
hundreds of steps. Even if design is modularized and distributed across various design
teams, the final product is due to a large number of steps involving assembly, integra-
tion, improvements and bug fixing. Since automatic design uses more manual effort
in solving for complex behavior, so should manual design maximize any form of
automatic design. One way to do this is to use artificial evolution. There have been
attempts in the past to use evolution with manual design by replacing decomposed
low-level behavior modules with small ANN's, or evolving a high-level controller
acting upon hand-designed low-level behavior modules [8]. The approach in this ar-
ticle is to identify “uncertain” network parameters whose values are difficult to de-
termine a priori due to a lack of robot/environment models or due to environment

 The Imbalance Network and Incremental Evolution 521

complexity. The evolution process performs more adaptation rather than solving an
optimization problem, which is a focus also advocated for ER [9]. In addition to in-
creased automation, manual design should avoid overspecifying the implementation
of a behavior (a consequence of industrial robotics' controlled environment in which
every motion is designed). This requires manual design to maximize emergence,
which can be defined as novel high-level behavioral phenomena resulting from low-
level behavioral modules. Emergence requires focusing on the details of what must be
done instead of how to perform every motion of every behavior.

The remainder of this article discusses the imbalance network in terms of dealing
with the issues and challenges raised above for manual design. Section 2 reviews the
equilibrium-action cycle. Section 3 uses an example imbalance network design to
elucidate some of the key aspects, focusing on incremental evolution in the imbalance
network's design process. Section 4 gives a brief conclusion.

2 The Imbalance Network and Equilibrium-Action Cycle

The imbalance network is a dynamic parallel biologically-inspired neural network
sharing features with biological neural networks, dynamic recurrent neural networks
and behavior-based robotics [4]. The network is constructed using only neuron-like
nodes called imbalance elements. In spite of the features shared, an imbalance ele-
ment is not modeled after a neuron but after the concept of the equilibrium-action
cycle (EAC) [10]. The EAC plays the most fundamental role of all the imbalance
network principles in guiding the design of the imbalance network to be conducive to
change and evolutionary process integration. The EAC states that all action results
from cyclic neural processes and that the purpose of this action is particular to the
reestablishment of equilibrium. Particular stimuli (their presence or absence) maintain
the state of equilibrium and therefore to return to equilibrium the action has to rees-
tablish these equilibrium-causing stimuli (see Fig. 1). The EAC is completely generic:
Stimuli do not always refer to sensory input and are also internal signals generated
within the nervous system. Action is not always observable motion but could mean
“activation”, “filtered information” or “useful event/state”. The EAC, together with
inspiration from the neuron, was used to develop a computational element, called the
imbalance element, with which the complete imbalance network is constructed. The
output of the imbalance element is its imbalance state, which is connected to either a
motor output or an input of another element. The EAC applies to behavior at all le-
vels: from low- (reflexes) to high-level (the organism interacting as a motivated entity
upon its environment). This means all observed behavior results from these cycles but
with the distinction that the primary sense of each behavior lies in its role to reestab-
lish equilibrium in one or more imbalance elements. The imbalance network has a
single function which is to try and maintain balance from element level to network
level. It is in the strive for equilibrium that the imbalance network exhibits the neces-
sary dynamics for reaching and maintaining equilibrium between the robot and its
environment, a feat only achieved by a fit individual. The natural incorporation of
evolution into the design process stems from this link between a fit individual and an
imbalance network sufficiently able to maintain equilibrium during which the desired
behavior is achieved. From the designer’s point of view the ultimate goal is for the

522 P. Olivier and J.M.M. Arostegui

robot to show the desired behavior, that is, to perform some useful task. Yet, the de-
sign process concerns the definition and integration of EAC’s, not only for yielding
the desired observable behavior but also the “actions” (from perception to coordinat-
ing motor output) inside the imbalance network. In this indirect sense of behavior
design, it might appear simpler to apply conventional manual design. Via an EAC
focus the designer is freed from defining a priori particular behavior layers, topologies
or hierarchical structures, or figuring out the right task decomposition. The EAC is a
sufficient unified mechanism that inherently emphasizes emergence due to the indi-
rect way of specifying behavior (behavior is not specified per se but by its role in an
EAC). Fig. 1 shows two minimal one-element imbalance networks for a mobile robot
with a distance sensor at the front, highlighting the two basic modes of the imbalance
element: imbalance due to the presence of a stimulus/object (left), and due to the ab-
sence of a stimulus/object (right). Each imbalance consists of a value, with excitato-
ry/inhibitory input ports involved in increasing/decreasing the value, and with an
imbalance state and thresholds to determine its output. The value increases at a rate
determined by the total drive and rate-increase input and, whenever the total drive
input is zero, decreases at a rate determined by the total rate-decrease input. In each
case the robot is initially standing still because the imbalance element is in balance.

Fig. 1. Two one-element imbalance network examples. An object is moved closer to (left) or
further from (right) the distance sensor, causing imbalance (motor activation) and movement to
restore balance by moving away from (left) or closer to (right) the object. See text for details.

3 Example Design: Moving Down a Tunnel

To help elucidate the imbalance network, let us look at some aspects of an example
imbalance network design which simply has to get a robot to move down a narrow
tunnel without touching the walls. The robot used is the small, circular e-puck (16-bit
dsPIC microcontroller @ 40 MIPS, a ring of 8 infrared distance sensors (of which

 The Imbalance Network and Incremental Evolution 523

only the left, right and rear left sensors are used in this design) and LED's, two stepper
motors) [11]. The design consists of 11 steps, with evolution featuring in steps 1, 2, 9,
10 and 11. This means that evolution is inherently incremental since it forms part of
the incremental design process. The final design is shown in Fig. 2. Note that this is
the complete design instead of a high-level or functional description. This exact image
(the ports, elements, connections, weights and thresholds) is described in a script file,
from which the C code to execute on the robot is automatically built. Designing the
imbalance network involves no conventional programming. Each imbalance ele-
ment’s output is updated in parallel every 2ms (the network update cycle). The design
process for each step involves firstly using simulation (which could include using
sensory data sampled from the robot) for the functional design of new or modified
elements. This will be followed by trial runs on the real robot to confirm correct be-
havior. Whenever an “uncertain” parameter is defined, the design step will include
adaptation of this parameter using the evolutionary process (see further below). This
parameter can be seeded with good estimates obtained from simulation, or with values
that span the complete parameter’s value range. Due to space limitations, instead of a
full description, the comments below describe the issues discussed previously.

As an example of emergence, note that there are no turning or forward movement
modules. These motions are the result of the EAC’s designed for the Left Pressure
(L_PRSSR) and Right Pressure (R_PRSSR) elements. Left Pressure becomes unba-
lanced if the distance to the left wall (measured by the left sensor) is less than a
threshold, which is set by the inhibitory drive input. One action that will cause the
element to return to balance (that is, measure a distance more than the threshold) is to
turn the left wheel, thereby turning the robot away from the left wall. Thus, the Left
Pressure element’s output is connected to drive the Left Motor element (and hence the
left wheel) such that the left wheel will turn while Left Pressure is imbalanced. If we
add a complementary right side mechanism (the Right Pressure and Right Motor ele-
ments), and given we place the robot in the middle of a tunnel with walls just close
enough for both Left and Right Pressure elements to be imbalanced, then the emerg-
ing behavior is forward movement of the robot down the tunnel with corrective turn-
ing motion when the robot gets too close to any of the walls.

The detection threshold (realized by the inhibitory drive input’s weight) of Left
Pressure and Right Pressure are considered uncertain because of the need to take into
account sensor inaccuracies, ambient light conditions, robot morphology, environ-
mental characteristics and forward speed. Therefore, these two weights are evolved.
The evolutionary mechanism (selection, mutation, fitness evaluation) is completely
online, designed to use few memory and processing resources, based on a variable
with a gaussian distribution for mutations for asexual reproduction (no crossover),
with survival based on a true/false decision made either by an observer or pro-
grammed automatically into the code (that will expect a particular condition to serve
as true, that is, “survived”) [10]. Nonuniform mutation is realized by way of a muta-
tion weight that changes according to the number of survivors per generation. A larg-
er mutation weight means that mutational changes will be larger, and for a smaller
mutation weight that the changes will be smaller. For this design the gaussian variable
is a 6-bit signed value and the maximum mutation weight is 6 (meaning the mutation-
al change will be the gaussian variable shifted by 6 bits towards the most-significant

524 P. Olivier and J.M.M. Arostegui

bit). If no individual survived, then the mutation weight is increased by two, else it is
decreased by two. The population consisted of 16 individuals.

The evolutionary weight (distance threshold) for Left Pressure is evolved in step 1
(evolution step A), with the individuals seeded with values to cover the complete input
range. Step 2 (evolution step B) involves evolution of the evolutionary weight for Right
Pressure. However, its individuals are seeded with the results from step 1. During this
step, evolution is disabled for Left Pressure. Step 3 adds the Left Motor and Right Mo-
tor elements. In step 4 to 6 the corrective action’s details are designed, which includes
elements L_SPACE, L_SHCK_DET, L_SHCK_DLY, the complementary right side
elements, and LR_SHCK_DLY_RDEC. The strategy is to detect the moment when any
side stops detecting its wall, and then apply a corrective action for a specific duration or
until both walls are detected. The duration is fixed by the excitatory drive input’s weight
of LR_SHCK_DLY_RDEC, which is considered the third “uncertain” parameter and
that is evolved during step 9 (evolution step C). The individuals are initially assigned
values that span the full range. During this step evolution is disabled for the previously
evolved weights (steps 1 and 2). In addition, element LR_PRSSR_MEM halts the robot
after exiting the tunnel successfully (step 7) and element DAMP ensures that the start of
any movement by the robot after power-up requires manual indication by the user (step
8), which is to touch the left rear sensor. In step 10 (evolution step D) evolution is
enabled for all three evolved weights as a final stage of improving equilibrium between
the robot and its environment. In step 11 (evolution step E) the environment is changed
abruptly to test the current solution’s adaptive capacity.

Fig. 2. The complete imbalance network design for moving down a tunnel

 The Imbalance Network and Incremental Evolution 525

Fig. 3. The results from the evolution steps A to E

526 P. Olivier and J.M.M. Arostegui

As environmental change the tunnel width is reduced from 14,5cm to 11,5cm. The
results from the five evolution steps (A to E) are shown in Fig. 3. Together, all steps
only required 32 generations. The more restrictive environment of step E has de-
creased the solution space of each evolutionary parameter, which is in line with re-
sults from incremental evolution in ER [5]. The Left/Right Pressure evolutionary
weights show an increase (the wall detection distance is shorter), as can be expected
from the reduced tunnel width. From this example it is clear that the design is a
process of incremental network composition, building towards the desired behavior
without any clear task decomposition mapping and behavioral levels/hierarchy.

4 Conclusion

The imbalance network represents an alternative manual design methodology that
naturally integrates design-for-emergence and evolutionary stages in an incremental
design process. A brief description of an example design (a robot moving down a
tunnel) has tried to ground the main concepts, in particular the fundamental role of the
equilibrium-action cycle as a mechanism for structuring the imbalance network with-
out task decomposition and its associated mapping of behavior to network modules.

References

1. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A
survey and analysis. Robotics and Autonomous Systems 57(4), 345–370 (2009)

2. Duarte, M., Oliveira, S., Christensen, A.L.: Hierarchical evolution of robotic controllers
for complex tasks. In: 2012 IEEE International Conference on Development and Learning
and Epigenetic Robotics (ICDL), pp. 1–6. IEEE (November 2012)

3. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evo-
lutionary Intelligence 1(1), 47–62 (2008)

4. Harvey, I., Husbands, P., Cliff, D., Thompson, A., Jakobi, N.: Evolutionary robotics: the
Sussex approach. Robotics and Autonomous Systems 20(2), 205–224 (1997)

5. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Adap-
tive Behavior 5(3-4), 317–342 (1997)

6. Mouret, J.B., Doncieux, S.: Overcoming the bootstrap problem in evolutionary robotics us-
ing behavioral diversity. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp.
1161–1168. IEEE (May 2009)

7. Seth, A.K.: Evolving action selection and selective attention without actions, attention, or
selection. In: Proceedings of the Fifth International Conference on Simulation of Adaptive
Behavior on From Animals to Animats, vol. 5, pp. 139–146 (September 1998)

8. Togelius, J.: Evolution of a subsumption architecture neurocontroller. Journal of Intelligent
and Fuzzy Systems 15(1), 15–20 (2004)

9. Harvey, I.: Cognition is not computation; evolution is not optimisation. In: Gerstner, W.,
Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327,
pp. 685–690. Springer, Heidelberg (1997)

10. Olivier, P., Arostegui, J.M.M.: The Equilibrium-action cycle as a mechanism for design-
evolution integration in autonomous behavior design. In: 2012 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), pp. 190–197. IEEE (June 2012)

11. E-puck educational robot, http://www.e-puck.org/

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 527–536, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Balancing of a Simulated Inverted Pendulum
Using the NeuraBase Network Model

Robert Hercus, Kit-Yee Wong, and Kim-Fong Ho

Neuramatix Sdn Bhd, Kuala Lumpur, 59200 Malaysia
{Hercus,KitYee,kfho}@neuramatix.com

Abstract. This paper presents an alternative approach for the control and
balancing operations of a simulated inverted pendulum. The proposed method
uses a neuronal network called NeuraBase to learn the sensor events obtained
via a simulated rotary encoder and a simulated stepper motor, which rotates the
swinging arm. A neuron layer called the controller network will link the sensor
neuron events to the motor neurons. The proposed NeuraBase network model
(NNM) has demonstrated its ability to successfully control the balancing
operation of the pendulum, in the absence of a dynamic model and theoretical
control methods.

Keywords: Neural Network, Inverted Pendulum.

1 Introduction

The inverted pendulum is a classic problem in non-linear control. The dynamics of an
inverted pendulum form the basis of many diverse phenomena such as walking,
aircraft roll control and planar robot arm control. The inverted pendulum has been
widely used as a platform for testing the efficacy of various types of controllers [1-
12]. However, the controller design of an inverted pendulum is difficult due to its
multi-variability and inherent instability.

There are, generally, two categories of controllers namely dynamic modelling and
control and machine learning. In dynamic modelling and control, controllers using the
methods of Proportional-Integral-Derivative (PID), pole placement, Linear-Quadratic-
Regulator (LQR) and Linear-Quadratic-Gaussian (LQG), have been previously
applied to the control of inverted pendulum systems [1-4]. Although most of these
approaches achieved good balancing performance, an accurate mathematical
representation for the inverted pendulum is not easily formulated as extensive
knowledge of the system dynamics is required. Machine learning approaches such as
fuzzy logic, artificial neural networks, neuro-fuzzy, self-organizing maps, recurrent
neural networks, cerebellar model articulation controller (CMAC) and genetic
algorithms have also been studied extensively [5-12]. The capabilities of these
machine learning methods in mapping non-linearity and in dealing with uncertainties
in system parameters, eliminate the need for exact mathematical models.

In this paper, the balancing control of a simulated inverted pendulum using a
temporal-based neural network model named NeuraBase [13] is presented.

528 R. Hercus, K.-Y. Wong, and K.-F. Ho

This implementation is not intended to make direct comparisons with other pendulum
balancing methods, but to introduce an alternative and novel approach.

The NeuraBase generic toolbox can be downloaded at [14]. The dynamics of the
simulated inverted pendulum are adapted from [15]. The swing-up process necessary
to bring the pendulum to the balancing region of 0±10° at the outset was controlled
using a separate NeuraBase controller, and will not be discussed in this paper. As
shown in Figure 1, the rotary inverted pendulum consists of a pivot arm rotating in a
horizontal plane by means of a motor. At the other end of the arm, a pendulum is
mounted, rotating in a plane that is always perpendicular to the rotating arm.

Fig. 1. Drawing of the rotary inverted pendulum

This article is organized as follows. Section 2 of this paper describes the usage of
the NeuraBase Network Model (NNM) as a controller. Section 3 gives the simulation
set-up. Section 4 describes the learning logic used with the NNM, and section 5
presents the results and discussion.

2 NeuraBase Network Model (NNM)

The NNM is a network data structure that can store a sequence of events. As shown in
Figure 2 below, the neurons in a NNM can be associated temporally or spatially. The
basic unit is a neuron. Each neuron represents an event. Two neurons can be joined to
represent a sequence of sensor or motor events. The way events are constructed in the
NNM provides for fast searching and matching.

Fig. 2. The NeuraBase Network Model where t denotes time proximity and p denotes spatial
proximity

 Balancing of a Simulated Inverted Pendulum Using the NeuraBase Network Model 529

The proposed NNM controller for the inverted pendulum consists of three different
networks as shown in Figure 3. For the inverted pendulum, both the motor and
controller networks have a single level architecture and the sensor network has a
multilevel architecture.

Fig. 3. The architecture of the network of NeuraBase used in the balancing of the inverted
pendulum

These three networks store different types of events, namely a) sensor neurons and
events - input to the system (the pendulum position readout from the encoder); b)
motor neurons - outputs from the system (the motor velocity change for driving the
arm); c) controller neurons - associations between the sensor events and motor
neurons. Each type of event builds up an association of events in their respective
network. The sensor network, motor network and the controller network store sensor
neurons and events, motor neurons and events, and controller neurons respectively.
The simplified data structure of neurons used in NNM is described in Table 1. Each
neuron has a memory capacity of 40 bytes but not every one of the fields is necessary
for the inverted pendulum problem. More detailed descriptions of the sensor, motor
and controller neurons are provided in Section 3.

Table 1. Data structure of a neuron (simplified), * denotes fields only applicable to the
controller neuron

Field Data Type

Head unsigned int
Tail unsigned int
Successor unsigned int
Frequency/ Weight* signed int
Next
Overshoot/Undershoot Flags*

unsigned int
unsigned short

3 Simulation Setup

The NNM was used as the control system for the inverted pendulum. In contrast to
other control methods [1-4] which require knowledge of all four state variables i.e. the
pendulum position and velocity, the arm position and velocity, the NNM only needs
two variables, namely the pendulum position and the change in arm velocity.

530 R. Hercus, K.-Y. Wong, and K.-F. Ho

To further simplify the model, a segmentation scheme was used to represent the
defined range of angles on the pendulum positions. As shown in Figure 4 below, the
segments are defined by the pendulum's position with reference to the upright (0°)
position. The operating region for the balancing mode was thus set at ±10° from the
upright position of 0°. The angular measurement was divided into two symmetrical
sides, whereby, the right side was represented by positive segments and the left side
was represented by negative segments. There are, altogether, 21 segments; hence,
there are only 21 basic sensor neurons underlying a sequence of sensor events for the
inverted pendulum balancing model.

For motor neurons, the stepper motor rotation was controlled by changing the
velocity between two time samples. Each motor neuron M was represented as a unit
velocity change which is then applied to the arm rotation, where each unit
corresponded to a shift of 0.02πrad/s, with either a positive or negative sign
representing counter-clockwise or clockwise rotation, respectively. With a change
limit of πrad/s imposed in either direction (±M50), there were consequently 101 basic
motor neurons defined to represent these changes in arm velocity.

Fig. 4. The segmentation of angular positions of the inverted pendulum in the balancing zone

The controller neurons associate sensor events with motor neurons. The association
indicates the possible variables to control the pendulum through a learning process.
The inverted pendulum problem is proposed to be solved using the learning model -
given a sequence of angular positions (S) of the pendulum, a change in motor speed
or arm velocity (M) can be applied to move the pendulum to the desired balance
position. The relationship between the sensor events and the motor neurons are
associated (linked) via a controller neuron. At each 13ms interval, S was obtained and
stored in the sensor network, forming a sequence of position segments. Similarly,
each M defined for the motor was stored in the motor network.

 Balancing of a Simulated Inverted Pendulum Using the NeuraBase Network Model 531

Figure 5a depicts the neuron structure of a sample sensor event C within the sensor
network representing the sequence of positions C = {S6, S4, S1}. The neuron A (head
of C) represents the sensor sequence of {S6, S4} and the neuron B (tail of C)
represents the sensor sequence of {S4, S1}. Neuron D represents a set of successors
of C which can be a sequence of position segments {S6, S4, S1, S0} or D could be
controller neurons for C linking to a specific motor action.

Each motor neuron represents a unit velocity change to the arm rotation. Figure 5b
depicts the neuron structure of a sample controller neuron (E) within the controller
network. The neuron C (head of E) is the sensor event mentioned above and the
neuron F (tail of E) is a motor neuron.

 a b

Fig. 5. a) The structure of a sensor event; b) The structure of a controller neuron

4 Learning Logic

As mentioned in the previous section, the operating region of the NNM controller was
0±10° or [-S10, S10], beyond which, the pendulum is deemed uncontrollable and
control will be transferred over to the swing-up controller. Using the reinforcement
learning method, the goal of the NNM controller is to bring the pendulum into the
target region 0±1° or [-S1, S1] and maintain the pendulum in the target region for as
long as possible.

The direction of motor speed change applied in order to balance the pendulum was
based on the following learning rule: whenever the inverted pendulum falls out of the
target [-S1, S1] region, the NNM controller will attempt to predict the best motor
action to execute, by searching within the controller network for the strongest motor
actions exceeding a predefined weight, which will bring the pendulum into the target
area [-S1, S1]. The sensor sequence events have a fixed maximum length of n, which
was set to 5. For instance, given a sequence of sensor events {-S3, -S2, -S2, -S1, -S1},
there are three learned candidate controller neurons N3, N4, N5 which correspond to
motor neurons -2, -1, and 1, respectively. The strength of each controller neuron is
represented by its trained weight; hence, the controller neuron with the highest weight
will be the most reliable prediction because it is the accumulated result of learning,
using both positive and negative feedbacks from past trials.

The association of the sensor event (S) and motor neuron (M) in the controller
network is a reinforced learning process, whereby positive and negative feedbacks
dictate how the learning takes place by tuning the weight of the controller neurons.

532 R. Hercus, K.-Y. Wong, and K.-F. Ho

Based on a predefined learning goal, the positive and negative feedback rules were
defined based on evidence to determine whether the goal was achieved. The feedback
rule is constructed according to the strategy that, given a sequence of sensor events
collected using a fixed time interval (e.g. pendulum traversal path from S3 S1
S0 -S1 -S1) and a motor neuron effecting a change in speed (e.g. M3) has been
applied, the current sensor data is -S1. This represents the segment position of the
pendulum after the speed change (M3) has been applied.

A positive feedback is given if the pendulum managed to reach within the target
region of [-S1, S1], upon which, the weight of the controller neuron is incremented by
1. The more the controller neuron experiences positive feedbacks for its motor
predictions, the stronger the link coupling will be, thereby resulting in a stronger
positive memory of the respective motor action. A negative feedback is evoked if the
pendulum fails to reach the target region [-S1, S1], upon which, the weight of the
controller neuron is decremented by 1, thus reducing the coupling strength of that
link. Alternatively, the NNM controller will create a controller neuron linking the
sensor event to the motor neuron. Eventually, a network of almost all possible sensor
events associated with motor actions will be stored within NeuraBase, and the
controller neurons linking sensor events to the right motor actions will have higher
weights compared to those linking sensor events to incorrect motor actions.

In the case where there are no controller neurons with strength exceeding the
weight, which is common at the beginning of training, the controller will set the
sensor sequence to its tail (meaning checking recursively for the latest n-1, n-2,… 1
events for any matches). If none can be found even for the shortest sensor event, a
random number within a set range will be picked.

This motor range is bounded by motor neurons linked to previously used controller
neurons which have either been flagged as overshooting and/or undershooting
controller neurons according to the rules outlined in Table 2. Each time a controller
neuron’s overshoot/undershoot flag is set, the set range becomes smaller, with the
controller neuron’s linked motor neuron as the new upper or lower boundary of the
set. This method helps the controller narrow down its choices of approximately
correct motor actions for the sensor event more quickly, compared to the controller
having to attempt all motor neurons before finding a suitable one.

Table 2. Controller neuron overshoot/undershoot flagging rules

Pendulum position Flag

Before: [-S10,-S2] After: [S2,S10] Overshoot
Before: [S2, S10] After: [-S10,-S2] Overshoot
Before: [-S10,-S2] After: [-S10,-S2] Undershoot
Before: [-S10,-S2] After: [-S10,-S2] Undershoot
Before: [-S10,-S2] After: [-S1,S1] None
Before: [S2,S10] After: [-S1,S1] None

5 Results and Discussions

The experiment's conditions were defined when the inverted pendulum was trained
starting with a null NNM. In the first experiment, we fixed the initial position of the

 Balancing of a Simulated Inverted Pendulum Using the NeuraBase Network Model 533

pendulum at –S4 within the balancing mode operating region, that is, the pendulum is
falling out of –S4.

5.1 Learning from a Fixed Initial Position

Training was truncated when the balanced duration exceeded a certain period. This is
because in a simulation environment, the system dynamics are not expected to change
much and the pendulum should balance indefinitely. The sample experiment shown in
Figure 6, depicts the pendulum's average balancing time versus the number of trials).
The truncation point was set at 2 minutes. Figure 6 also shows the growth trend of the
neurons in the NNM, which correlates with the upward balancing trend, as shown in
the same figure. Initially, the motor actions are all random values, so the balancing
durations were generally less than 10 seconds. This was expected as the pendulum's
stability does not only depend on the immediate motor action but also on all past
motor actions, all of which, have not been learned extensively. After approximately
30 trials, the results showed that the NNM controller was able to balance the
pendulum up to the truncation point. The controller is able to learn relatively quickly
i.e. in 30 trials primarily due to the shrinking bounded range method introduced in
Section 4, whereby the controller narrows down to a correct motor action based on
knowledge of the existing controller neuron overshoot/undershoot flags. Also, this
apparent sudden jump in performance can be explained by the fact that, once the
NNM controller succeeded in bringing the pendulum into the target region and
maintaining it there for a few time steps, the controller was able to sustain its balance,
as the pendulum can be considered stable at that point.

At the commencement of training, the NNM did not contain any stored pattern,
hence, many of the new patterns (new neurons) were created in the initial trials. The
growth trend of NNM neurons approached saturation point after approximately 30
trials starting from position –S4. Once a good control pattern was achieved, it was
able to repeat the same actions consistently, which led to a saturation point in both the
balancing duration and neuron growth, as shown in Figure 6.

Fig. 6. Balancing time (in blue) and neuron count (in black) vs. number of trials

0

200

400

600

800

1000

1200

1400

1600

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 5 10 15 20 25 30 35 40

N
eu

ro
n

Co
un

t

Ba
la

nc
in

g
Ti

m
e

(m
in

ut
es

)

Trials

Balancing Time Balancing Controller Neuron Count

534 R. Hercus, K.-Y. Wo

5.2 Learning from Ran

As a form of variance, vari
chosen randomly. Figure 7a
to balance in 500 trials usin
start condition, the contro
register a first successful ba
was still about 20% lower
after 500 trials, but it contin
learning to cope with diffe
the observation of the conti

a

b

Fig. 7. a) Average balancing ti
and; b) Actual balancing times
number of trials for the NNM
and starting from different rand

5.3 Comparison with P

Furthermore, we compared
control method using the s
illustrate the performance co
shows oscillatory but satura

ong, and K.-F. Ho

ndom Initial Positions

ious different initial angles starting from [-10°, 10°] w
a shows the average balancing time of a pendulum trai
ng different initial angles. Due to the variance in the ini
ller took approximately 100 trials before it managed

alancing trial. It is observed that the average balancing ti
than the balancing time truncation point (set at 2 minu
nued to improve with time as the NNM controller was

erent starting conditions. The same reasoning is applied
nuous growth of neurons.

imes (blue line) and neuron count (black line) vs. number of tr
s per trial (blue scattered points) and neuron count (black line)

M controller trained using an initially empty balancing NeuraB
dom initial positions between [-10°, 10°]

PID

the balancing performance of NNM with the classical P
same initial pendulum segment of –S8. Figure 8a and
omparison between the two said methods. The PID met
ating pendulum angles from the –S8 segment to the tar

were
ined
itial
d to
ime

utes)
still
d to

rials
) vs.
Base

PID
d 8b
thod
rget

 Balancing of a Simulated In

region of [-S1, S1] (segmen
target of PID was set at the r
its parameters were tuned m
hand, the NNM does not re
after self-learning. Referring
S0 segment is the result of s
[-179°, 179°]. In terms of
pendulum must be maintain
control effort must be main
balance. As can be seen, bot

a

b

Fig. 8. a) The balancing perfo
controller; b) The balancing p
NNM controller

The NNM has uniqu
computational complexity,
and easy to understand.

nverted Pendulum Using the NeuraBase Network Model

ntation was applied to the PID method and hence the desi
region of [-S1, S1]), but PID is not a self-learning method
manually to achieve the optimal performance. On the ot
equire manual tuning and it is able to balance the pendul
g to Figure 8b, the alternating performance surrounding
setting the balancing zone between the segments [-S1, S1
f control effort, the arm velocity needed to balance
ned between [-0.1, 0.5] rad/sec. Using the PID method,
ntained between [1.1, 1.8] rad/sec in order to maintain
th models have very similar performance characteristics.

ormance and control effort of inverted pendulum using the
performance and control effort of inverted pendulum using

ue advantages in: simple computations, inexpens
fast learning and the application of the NNM is intuit

535

ired
d as
ther
lum
the
] or
the
the
the

PID
g the

sive
tive

536 R. Hercus, K.-Y. Wong, and K.-F. Ho

6 Conclusion

The self-learning NNM controller presented in this paper is a proof of concept that the
NNM can be easily adapted to handle the classic control problem for the balancing
operation of a simulated inverted pendulum. The experimental results show that the
NNM controller is comparable with the PID controller, however the former requires
lower control effort than the latter.

For future work, the same control model will be applied to a hardware model of the
inverted pendulum as well as control problems of higher complexity which involve
more parameters, such as, the self-balancing of a bipedal walking robot.

References

1. Mertl, J., Sobota, J., Schlegel, M., Badal, P.: Swing-up and Stabilization of Rotary
Inverted Pendulum. In: Proceedings of Process Control, pp. 1–6. Slovak University of
Technology (2005)

2. Sukontanakarn, V., Parnichkun, M.: Real-time Optimal Control for Rotary Inverted
Pendulum. American Journal of Applied Sciences 6(6), 1106–1115 (2009)

3. Astrom, K.J., Furuta, K.: Swinging up a Pendulum by Energy Control. Automatica 36(2),
287–295 (2000)

4. Nasir, A.N.K., Ahmad, M.A., Rahmat, M.F.: Performance Comparison between LQR and
PID Controller for an Inverted Pendulum System. In: Proceedings of International
Conference on Power Control and Optimization (2008)

5. Radhamohan, S.V., Subramaniam, M., Nigam, M.J.: Fuzzy Swing-up and Stabilization of
Real Inverted Pendulum using Single Rulebase. Journal of Theoretical and Applied
Information Technology, 43–50 (2005)

6. Minnaert, E., Hemmelman, B., Dolan, D.: Inverted Pendulum Design with Hardware Fuzzy
Logic Controller. Journal of Systemics, Cybernetics and Informatics 6(3), 34–39 (2008)

7. Hayashi, I., Nomura, H., Wakami, N.: Acquisition of inference rules by neural network
driven fuzzy reasoning. Japanese Journal of Fuzzy Theory and Systems 2(4), 453–469 (1990)

8. Zheng, Y., Luo, S., Lv, Z.: Control Double Inverted Pendulum by Reinforcement Learning
with Double CMAC Network. In: Proceedings of The 18th International Conference on
Pattern Recognition, vol. 4, pp. 639–642 (2006)

9. John, D.H., Fischer, J., Johnam, D.: A Neural Network Pole Balancer that Learns and
Operates on a Real Robot in Real Time. In: Proceedings of the MLC-COLT Workshop on
Robot Learning, pp. 73–80 (1994)

10. Tatikonda, R.C., Battula, V.P., Kumar, V.: Control of Inverted Pendulum using Adaptive
Neuro Fuzzy Inference Structure. In: IEEE Internal Symposium on Circuits and Systems,
pp. 1348–1351 (2010)

11. Tetsuya, M., Furukawa, T.: The Self-Organizing Adaptive Controller. International Journal
of Innovative Computing, Information and Control 7(4), 1933–1947 (2011)

12. Lin, C.J., Lee, C.Y.: Non-linear System Control using a Recurrent Fuzzy Neural Network
based on Improved Particle Swarm Optimisation. International Journal of Systems
Science 41(4), 381–395 (2010)

13. Hercus, R.G.: Neural networks with learning and expression capability. U. S. Patent
7412426 B2 (2008)

14. NeuraBase Generic Toolbox, http://neuramatix.com/
15. Cazzolato, B.S., Prime, Z.: On the Dynamics of the Furuta Pendulum. Journal of Control

Science and Engineering (2011)

Coordinated Rule Acquisition of Decision

Making on Supply Chain by
Exploitation-Oriented Reinforcement Learning

-Beer Game as an Example-

Fumiaki Saitoh1 and Akihide Utani2

1 Department of Industrial and Systems Engineering,
College of Science and Engineering, Aoyama Gakuin University
5-10-1 Fuchinobe, Chuo-ku, Sagamihara City, Kanagawa, Japan

saitoh@ise.aoyama.ac.jp
2 Department of Information and Communication Engineering,

Faculty of Knowledge Engineering, Tokyo City University
1-28-1, Tamadutumi, Setagaya-ku, Tokyo, Japan

Abstract. Product order decision-making is an important feature of
inventory control in supply chains. The beer game represents a typi-
cal task in this process. Recent approaches that have applied the agent
model to the beer game have shown. Q-learning performing better than
genetic algorithm (GA). However, flexibly adapting to dynamic envi-
ronment is difficult for these approaches because their learning algo-
rithm assume a static environment. As exploitation-oriented reinforce-
ment learning algorithm are robust in dynamic environments, this study,
approaches the beer game using profit sharing, a typical exploitation-
oriented agent learning algorithm, and verifies its result’s validity by com-
paring
performances.

Keywords: reinforcement learning, agent based modeling, supply chain
manegiment(SCM), beer game, exploitation-oriented learning.

1 Introduction

As markets and production continue to globalize, the importance of cooperative
decision-making among companies within supply chains increases. Adjusing in-
ventory order volumes from an upper process to a lower process often emerges
as a decision-making problem. In inventory control, the costs of manageing over
stock and the saless-opportunities lost through stock shortages generally have
a trade-off relationship. A supply chain is a complex system composed of many
companies that interact during decision-making. Thus, a mixture of partially
optimal solutions provided by supply chain’s components does not necessarily
result in an optimal global situation.

Many recents studies have shown that computational intelligence methodolo-
gies, such as agent learning offer effective appraches supply chain problems[1][2].

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 537–544, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

538 F. Saitoh and A. Utani

Reinforcement learning[3] is a particularly useful tool for global optimization of
supply chain models through agent behavior. The research[6][5] suggestes that
Q-learning[4] is superior to genetic algorithm (GA)[7],in assisting the optimiza-
tion of supply chain task agents.

Reinforcement learning algorithm are generally classified into exploitation-
oriented learning (such as Profit Sharing) and exploration-oriented learning (such
as Q-learning). An advantage of exploration-oriented learning is that the optimal
action rules can be acquired, through large amount of trial and error performed
in a static environment. A great deal of trial and error is necessary, however,
because these learning algorithm acquire rules through the identification of the
environments; furthermore, their robustness is low in dynamic environments. On
the other hand, exploitation-oriented learning algorism, which do not sacrifice
optimality, have two important advantages: they require little trial and error to
obtain semi-optimal action rules, and they are robust in dynamic environments.

Obviously, every company’s environment is dynamic. A supply chain system
not only features complex interactions among its components, but is also affected
by what is exterior to it. Despite this fact, previous supply chain management
studies have focused on Q-learning, an exploration-oriented learning weak in
dynamic environments.

This study proposes the methodology of cooperative policy acquisition through
exploitation-oriented reinforcement learning by employing the Beer Game, a well
known supply chain role-playing game,in an experiment. We also confirm the
effectiveness of our proposal through comparative experiments on exploitation-
oriented reinforcement learning and exploration-oriented reinforcement learning
using the game.

Fig. 1. A simple schematic diagram of a supply chain

2 Beer Game

2.1 Outline of the Beer Game

The Beer Game is a simple role-playing game designed to model the complexity
of logistical dynamics. Its difficulty is in its prohibition of information-sharing
among the players. When players who cannot share information make decisions
in a given sequence, information on market demand deteriorates as the game

Coordinated Rule Acquisition of Decision Making on Supply Chain 539

progresses. Furthermore, because each player’s decision-making results involve
the other player’s decision-making, the dynamics of the whole supply chain sys-
tem becomes very complex. A Beer Game session is played by four players. Each
player chooses a from among “retailer,” “wholesaler,” “distributor,” “factory.”A
schematic diagram of the game, showing the flow from the upper process of the
produced beer crates to the lower process, is shown in Fig.2.

Customer demand is determined when the retailer draws the card on which
the order volume is written. The player who receives the order with in the lower
process gives it to the player a single step above in the upper process. For exam-
ple, after noting the order quantity given by retailer, the wholesaler places an
order with the distributer, and the distributer then places an order with the fac-
tory. Throughout this process, communication between each player is inhibited,
and key information, such as inventory quantity is unknown. Therefore, players
must raise the profits of the whole supply chain, in spite of limited information.

Each player’s penalties are imposed on the volume of inventories and the
order backlog. The aim of the game is to minimize the total-cost of the supply
chain. In order to enhance the throughput of the whole system, players must
make decisions that do not generate an order backlog and allow them to hold a
minimum inventorys. A player decision-making step, such as an order or delivery,
is defined as one week. A game is terminated after all players have taken their
turns for 50 weeks.

2.2 The Cardinal Rule of the Beer Game

The purpose of the game is to make decisions that minimize the penalty imposed
on the whole supply chain. Since superfluous stock may weigh on management, a
cost of 0.5$/week is imposed per unit of stock as the “ginventory cost.” Moreover,
since a stock deficit leads to lost sales opportunities, a cost of 1.0$/week is
imposed per missing item as the “gshortage cost.” The total cost accrued by all
the players is the efficiency level of the whole supply chain.

Only the retailer knows the amount demanded of the customers. Other players
know only the volume of the orders coming up from a single step below them.
Therefore, the time lag by the time an order reaches a player is two weeks (see
Fig.2). In Fig.2, the pink dots in the large blue box are beer cases owned by each
player as stock. The pink dots in the small blue box are the shipped beer cases
before they have reach the next player; these are treated as product shipment
delays.

2.3 Procedure

The Beer Game proceeds as follows. In a week (a step), each player (agent)
carrieds out an order and shipment in the way described below:.

i) The product in a shipment delay is carried to the next box.
ii) A player turns over an order card, and the number of products written on

this card is shipped from the stock.

540 F. Saitoh and A. Utani

If an order backlog remains from the previous week, the player must ship
both the number written on the order card and backlog from last week. If
number of stocks is insufficient, only the existing stock will be shipped, and
the insufficiency will be noted as an order backlog

iii) The amount of inventory or order backlog at this time is recorded.
iv) The card of the number required is moved to the next square.
v) A player determines the number required based on the amount of the current

inventory, order backlog, or other amount.

Each player writes the number required on a card, turns it over, and passes it to
the following square as an order. Each player then records the number required.

Fig. 2. Schematic diagram of the Beer Game

3 Exploitation-Oriented Reinforcement Learning

Exploitation-oriented reinforcement learning attaches importance not to the
identification of an environment but to the efficiency of reward acquisition. We
will not describe Profit Sharing, one of most common algorithm of exploitation-
oriented reinforcement learning. State-action pairs used for each episode are
memorized and employed to update a rule series. The reinforcement value for
updating the rule set is calculated through the reinforcement function in Eq.(1).
The reinforcement value used to update the rules is attenuated by Eq.(1) based
on the oldness of the rule. The reinforcement function is usually expressed by
the equal ratio monotone decreasing function as follow shown below:

fn =
1

S
fn−1, (n = 1, 2, ...W − 1) (1)

where, W is the total number of steps in each episode, fi is the reward value
to the i-th rules, 1/S is the decreasing ratio, and S fulfills S ≥ L+ 1 when the
number of effective rules in the identical state is L. The value obtained from
subtracting 1 from the number of actions is generally sufficient as the value of L.

Coordinated Rule Acquisition of Decision Making on Supply Chain 541

When a reward is acquired, the rule’s weights are updated in Eq.(2), as below:

ω(si, ai)← ω(si, ai) + r × fi (2)

were, ω(si, ai) is the weight of the i-th rule in a rule series, si is the state in the
i-th step, and ai is the state in the i-th step.

As all rules are updated independently in Profit Sharing, it is easy to converge
the weight of the rules used frequently and contributeing to reward acquisition.
Therefore, in addition to having a fast learning speed, Profit Sharing is robust in
dynamic environments. Actions are selected based on the weight of the rule set
updated by Eq.(2). A probabilistic policy, such as Boltzmann or roulette wheel
selection is generally used.

4 Beer Game Optimization Using Exploitation-Oriented
Reinforcement Learning

We will now apply Profit Sharing a typical form of exploitation-oriented rein-
forcement learning, to a decision-making problem in the Beer Game. The set of
rules used in this task is constituted by state and action pairs. The objective
function, reward, and state sets and action constituting if-then rules were defined
as described below in order to formulate a task.

Action: The order quantity(Actq) is selected from six options calculated by
Eq.(3):

Actq = X ×Ordered + Y × 4 (3)

where X = (0, 1, 2),Y = (0, 1),and Ordered is order quantity.

States: the number of stocks and order backlogs for each player

Objective Function: As the purpose of the game is to minimizeing the supply
chain’s total cost, this task is formulated as follows:

Minimize : Cost =

n∑
t=1

4∑
i=1

[αhi(t) + βCi(t)] (4)

where hi(t) is quantity of stock and Ci(t) is quantity of order backlog.

hi(t) =

{
Si(t) if(Si > 0)
0 otherwise

(5)

Ci(t) =

{ |Si(t)| if(Si < 0)
0 otherwise

(6)

542 F. Saitoh and A. Utani

Reward: Here, we define the reward function as Eq.(7). It is important to
keep total cost down and increase the number of products shipped during each
episode. Therefore, reward is defined using total cost as follows:

r =

⎧⎨
⎩

Rew if(cost < μ)
−Rew if(cost > ν)

τp
cost otherwise

(7)

where r is reward in each episode, p the number of products shipped in that
episode, τ the parameter of the reward function, μ the desired value of cost, and
ν the upper limit value of cost. Reward value Rew is given to agents when the
cost reaches a desired value. When the cost exceeds nu, agents will be given a
negative reward as a penalty.

5 Experiment

The validity of the proposed method was confirmed through the computational
simulation, details of which are given below.

5.1 Experimental Settings

In the experiment, Beer Game players were transposed into agents, and the
performances of the two learning algorithm. Profit Sharing and Q-learning, were
compared. Agents traded once a week, which we defined as one step. The period
from the first to the fiftieth week was defined as one episode, We calculated
100,000 episode iterations on the computer. The volume of inventories and order
backlogs for each player were used to express the state in the “if -then” rule
showing the action. Roulette wheel selection was used to select the actions. In
each episode, each agent had an initial inventory volme of 12, and the initial
inventory volume in the shipment delay square wasfour.

Previous studise have used static data with little or no value changes to rep-
resent the customer demand number. As Poisson distribution is a well-known
demand distribution, we used a Poisson random number as the demand quan-
tity. The parameters used in the experiment are shown in Table1.

5.2 Experimental Results

The results of the experiments are summarized in Fig.3. The horizontal line
represents the number of episodes, and the vertical line, the number of total costs
per episode. To highligt the difference between the two algorithm, Fig.3 presents
a double-logarithmic chart. As the number of episodes increases, the degree of
the fluctuation seems to grow but not in the double-logarithmic chart. The task
performances for each method can be evaluated by comparing their total cost
transition. These lines express the average value of the results of the thirtieth
iteration To make the experimental result legible, all the lines are smoothed by
the moving average, the section width of which is 101 steps. In Fig.3, the learning
curve of Q-learning appears as the blue line, and that of Profit Sharing, as the
pink line.

Coordinated Rule Acquisition of Decision Making on Supply Chain 543

Table 1. List of parameters

Q-leaerning

Learning rateα 0.1
Discount factorγ 0.9
Number of states 21

Profit Sharing

Discount rate of reward1/S 0.5
Number of states 21

Poisson distribution

λ 3

Parameter of reward

μ 6000
ν 14000

Rew 1
τ 10

Fig. 3. Experimental result. The pink line is the learning curve of Profit Sharing, and
the blue line is the learning curve of Q-learning.

5.3 Discussion

First, comparing the learning curve of Q-learning with that of Profit Sharing
shows that the converging profit sharing on the value of the solution is better in
the latter.

Next, examining the result of Q-learning (the blue line) reveals that the Q-
learning solution did not converge easily; the number of states is insufficient, and
the learning algorithm is not suitable for a dynamic environment.

Finally, we consider the result of Profit Sharing (the pink line). As the cost
amount begins to decrease in the experiment’s early stages, the earliness of Profit
Sharing’s start can be confirmed. Despite the lack of other agents’ information,
Profit Sharing’s learning result in this dynamic Beer Game task converges on a

544 F. Saitoh and A. Utani

semi-optimal solution. These results indicate that exploitation-oriented learning
is superior to exploration-oriented learning in supply chain optimization.

We plan to perform a more detailed experiment an investigation of the param-
eter’s influence on the experimental result. We could also improve performance
by increasing the information used for the state variable. We believe that in-
formation’s state space construction affects the performance of reinforcement
learning in supply chain management.

6 Conclusions

This study, proposed that an agent-based decision making model for the Beer
Gamebe applied to the dynamics of the supply chain. The action acquisition
of exploration-oriented learning is not suitable for the Beer Game because of
its lack of robustness and slow learning speed. As an alternative, we have pro-
posed a methodology using the exploitation-oriented learning algorithm. The
effectiveness of our proposal was experimentally confirmed through a compar-
ison between Profit Sharing and Q-learning. The simulation result shows that
exploitation-oriented learning is superior to exploration-oriented learning in a
dynamic environment like a supply chain. Future research will address the de-
velopment of this algorithm and apply it to practical cases such as the tasks
involved in large and complicated supply chains.

References

1. Stockheim, T., Schwind, M., Koenig, W.: A Reinforcement Learning Approach for
Supply Chain Management. In: 1st Europian Workshop on Malti Agent Systems
(2003)

2. Kimbrough, S.O., Wu, D.J., Zhong, F.: Computer play the beer game-can artificial
agents manage supply chains? Decision Support Systems 33(3), 323–333 (2002)

3. Sutton, R., Barto, A.: Reinforcement Learning. MIT Press (1998)
4. Watkins, C.J.H., Dayan, P.: Technical note: Q-learning. Machine Learning 8, 55–68

(1992)
5. van Tongeren, T., Kaymak, U., Naso, D., van Asperen, E.: Q-Learning in a Com-

petitive Supply Chain. In: IEEE International Conference on Systems, Man and
Cybernetics, ISIC, pp. 1211–1216 (2007)

6. Kamal Chaharsooghi, S., Heydari, J., Hessameddin Zegordi, S.: A reinforcement
learning model for supply chain ordering management-An application to the beer
game. Decision Support Systems 45(4), 949–959 (2008)

7. Grefenstette, J.J.: Credit Assignment in Rule Discovery System Based on Genetic
Algorithms. Machine Learning 3, 225–245 (1988)

8. Arai, S., Miyazaki, K., Kobayashi, S.: Methodology in Multi-Agent Reinforce-
ment Learning: Approaches by Q-Learning and Profit Sharing. Transaction of the
Japanese Society for Artificial Intelligence 13(4), 609–618 (1998) (in Japanese)

9. Iyer, A., Seshadri, S., Vasher, R.: Toyotafs Supply Chain Management: A Strategic
Approach to Toyota’s Renowned System. McGraw-Hill Education (2009)

10. Ichikawa, M., Koyama, Y., Deguchi, H.: Human and Agent Playing the“Beer
Game”. Developments in Business Simulation and Experiential Learning 35,
231–237 (2008)

Using Exponential Kernel for Word Sense

Disambiguation

Tinghua Wang1,2, Junyang Rao1, and Dongyan Zhao1

1 Institute of Computer Science and Technology, Peking University,
Beijing 100871, China

{wangtinghua,raojunyang,zhaodongyan}@pku.edu.cn
2 School of Mathematics and Computer Science, Gannan Normal University,

Ganzhou 341000, China

Abstract. The success of machine learning approaches to word sense
disambiguation (WSD) is largely dependent on the representation of the
context in which an ambiguous word occurs. Typically, the contexts are
represented as the vector space using ”Bag of Words (BoW)” technique.
Despite its ease of use, BoW representation suffers from well-known limi-
tations, mostly due to its inability to exploit semantic similarity between
terms. In this paper, we apply the exponential kernel, which models se-
mantic similarity by means of a diffusion process on a graph defined
by lexicon and co-occurrence information, to smooth the BoW repre-
sentation for WSD. Exponential kernel virtually exploits higher order
co-occurrences to infer semantic similarities in an elegant way. The su-
periority of the proposed method is demonstrated experimentally with
several SensEval disambiguation tasks.

Keywords: Word sense disambiguation (WSD), Exponential kernel,
Support vector machine (SVM), Kernel method, Natural language
processing.

1 Introduction

Word sense disambiguation (WSD) refers to the task of identifying the correct
sense of an ambiguous word in a given context [1]. As a fundamental semantic
understanding task at the lexical level in natural language processing, WSD can
benefit many applications such as information retrieval and machine translation.
However, it has been very difficult to formalize the process of disambiguation,
which humans can do so effortlessly. Generally, there are two main kinds of meth-
ods to perform the task of WSD: knowledge-based approaches and corpus-based
approaches. The former disambiguate words by comparing their context against
information from the predefined lexical resources such as WordNet, whereas the
latter do not make use of any these resources for disambiguation [1]. Most of the
corpus-based approaches stem from the machine learning community, ranging
from supervised learning in which a classifier is trained for each distinct word
on a corpus of manually sense-annotated examples, to completely unsupervised

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 545–552, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

546 T. Wang, J. Rao, and D. Zhao

methods that cluster occurrence of words, thereby inducing senses. Moreover, in
recent years it seems very promising that applying kernel methods [2] such as
Support Vector Machine (SVM) [3–6] and Regularized Least-Squares Classifier
(RLSC) [7] to the WSD task. The advantage of using kernel methods is that
they offer a flexible and efficient way of defining application-specific kernels for
introducing background knowledge and modeling explicitly linguistic insights.

For the machine learning-based WSD, one of the key steps is the representa-
tion of the context of the target ambiguous word. In the commonly used ”Bag
of Words (BoW)” representation [2], contexts are represented by vectors whose
dimensions are indexed by different words or terms occurring in the contexts. De-
spite its ease of use, the BoW representation suffers from well-known limitations,
mostly due to its inability to exploit semantic similarity between terms: contexts
sharing terms that are different but semantically related will be considered as
unrelated. The lack of semantics in the BoW representation limits the effective-
ness of automatic WSD. To alleviate this shortage, a number of attempts have
been made to incorporate semantic knowledge into the BoW representation. For
example, the external semantic knowledge provided by word thesauri or ontol-
ogy was embedded into a semantic kernel, which is used to enrich the standard
BoW paradigm [5]. In the absence of external semantic knowledge, corpus-based
statistical methods, such as Latent Semantic Indexing (LSI) [8] can be applied
to capture semantic relations between terms [6,9]. However, such methods are
also limited in their flexibility and usually computationally expensive.

In this paper, we present and evaluate a semantically-enriched BoW repre-
sentation for WSD. We adopt the exponential kernel [10] to efficiently model
semantic similarity by means of a diffusion process on a graph defined by lexi-
con and co-occurrence information. The idea behind this method is that higher
order correlations between terms can affect the semantic similarities. Combined
with the use of SVM, this kernel shows a significant disambiguation improve-
ment over the standard BoW kernel. To the best of our knowledge, our work is
the first time to apply this kernel to the WSD application.

2 Kernels Based on BoW Representation

WSD can be viewed as a problem of classifying each word, according to its
surrounding context, to one of its senses. Therefore it is a classification problem
with a few classes. A key step in applying SVM to WSD is to choose an appropri-
ate kernel function. Up to now, most methods tried to represent the contextual
information in a vector, and then used some standard vector-based kernels. In
natural language processing, it is widely agreed that the linear kernel performs
better than other kernels [5,7]. In this section, we will discuss such vector-based
data representation and kernels used for WSD.

Let t denote a word to be disambiguated and d = (t−r, · · ·, t−1, t1, · · ·, ts)
be the context of t, where t−r, · · ·, t−1 are the words in the order they appear
preceding t, and correspondingly t1, · · ·, ts are the words that follow t in the
text. We also define a context span parameter τ to control the length of the

Using Exponential Kernel for Word Sense Disambiguation 547

context. For a fixed τ , we take always the largest context d so that r ≤ τ and
s ≤ τ . Note that if there exist τ words preceding and following the word to be
disambiguated, then r = s = τ , otherwise r < τ or s < τ . In addition, let n be
the size of the set of all distinct words of all the contexts in the training corpus.
The BoW model [2] of a context d is defined as follows:

φ : d→ φ(d) = (tf(t1,d), · · ·, tf(tn,d))T ∈ Rn (1)

where tf(ti,d), 1 ≤ i ≤ n, is the frequency of the occurrence of word ti in the
context d. The BoW kernel is given by:

k(di,dj) =< φ(di), φ(dj) >= φ(di)
Tφ(dj) (2)

In the BoW representation, the feature vectors are typically sparse with a
small number of non-zero entries for those words occurring in the contexts. Two
contexts that use semantically related but distinct words will therefore show
no similarity. Ideally, semantically similar contexts should be mapped to nearby
positions in the feature space. In order to address the semantic information of the
words in BoW, a transformation of the feature vector of the type φ̄(d) = Sφ(d)
is required, where S is a semantic matrix and indexed by pairs of terms with
the entry Si,j = Sj,i, 1 ≤ i, j ≤ n, indicating the strength of their semantic
similarity. Using this transformation, the semantic kernels take the form

k(di,dj) = φ̄(di)
Tφ̄(dj) = φ(di)

TSTSφ(dj) (3)

The semantic kernels correspond to representing a context as a less sparse vector,
Sφ(d), which has non-zero entries for all terms that are semantically similar to
those presented in context d.

3 Exponential Kernel Applied to WSD

As mentioned above, the key problem of a supervised WSD system based on
SVM is how to choose the appropriate kernel. In the framework of semantic
kernels, this problem reduces to how to choose the semantic matrix S. In this
section we will discuss a sophisticated method to solve this problem.

3.1 Exponential Kernel

The problem of how to infer semantic relations between terms from a corpus
remains an open issue. Kandola et al. [10] modeled semantic relations by means
of a diffusion process on a graph defined by lexicon and co-occurrence information
and derived a semantic diffusion kernel named exponential kernel given by:

K̃(λ) = K exp(λK) (4)

where K is the kernel matrix (Gram matrix) of the BoW kernel and λ is a decay
factor. Let D be feature example (term-by-context in the case of WSD) matrix
in the BoW kernel-induced feature space, then DTD gives the kernel matrix K.

548 T. Wang, J. Rao, and D. Zhao

Let G = DDT, it has been proved that K̃(λ) corresponds to a semantic matrix
exp(λG/2) [2,10], i.e.,

S = exp

(
λ

2
G

)
=

1

2

(
2I + λG+

λ2G2

2!
+ · · ·+ λθGθ

θ!
+ · · ·

)
(5)

In fact, noting that S is a symmetric matrix since G is symmetrical, we have

K̃(λ) = DTSTSD = DTS2D = DT exp(λG)D

= DTD + λDTGD +
λ2DTG2D

2!
+ · · ·+ λθDTGθD

θ!
+ · · ·

= K

(
I + λK +

λ2K2

2!
+ · · ·+ λθKθ

θ!
+ · · ·

)
= K exp(λK)

(6)

where I denotes the identity matrix.
The semantic matrix S essentially captures the higher order correlation be-

tween terms. Conceptually, if term t1 co-occurs with term t2 in some contexts,
we say t1 and t2 share a first-order correlation between them. If t1 co-occurs
with t2 in some contexts, and t2 with t3 in some others, then t1 and t3 are said
to share a second-order correlation through t2. Higher orders of correlation may
be similarly defined. Consider Figure 1(a) depicting three contexts d1, d2 and
d3, each containing two terms from t1, t2, t3 and t4. We can find that t1 and t4
share a third-order correlation through t2 and t3. When modeled as a graph as
shown in Figure 1(b), each higher order correlation defines a path between the
two vertices (terms). For the semantic matrix S, the entries in the matrix Gθ

are given by

Gθ
i,j =

∑
m1,···,mθ∈{1,···,n}
m1=i,mθ=j

θ−1∏
p=1

Gmp,mp+1 (7)

that is the number of θth-order co-occurrence paths between terms i and j.
Hence the semantic similarity between two terms is measured by the number of
the co-occurrence paths between them. Specifically, G indicates the first-order
correlation between features (terms) over the training corpus, G2 indicates the
second-order correlation between terms, and so forth, Gθ indicates the θth-order
correlation between terms. In addition, it should be noted that the identity
matrix I, which can be regarded as the indication of the zero-order correlation
between terms, means only the similarity between a term and itself equals 1
and 0 for other cases. Intuition shows that the higher the co-occurrence order
is, the less similar the semantics becomes. The semantic matrix S combines
all the order co-occurrence paths with exponentially decaying weights and the
parameter λ ∈ [0,+∞) is used to control the decaying speed for increasing
orders. Finally, it is easy to find that the exponential kernel is reduced to the
standard BoW kernel when λ = 0. In other words, the exponential kernel is just
a generalization of the BoW kernel.

Using Exponential Kernel for Word Sense Disambiguation 549

Fig. 1. Graphical representation of higher order co-occurrences

3.2 Discussion

Many current natural language processing systems rely on semantic knowledge
extracted from the data via machine learning methods. The main problem en-
countered by such systems is the sparse data problem, due to the small amount of
learning examples. Focusing on WSD, only a handful of occurrences with sense
tags are available per word. One possible solution to this problem is to utilize
higher order co-occurrences as a measure of semantic relation between terms.
The underlying idea is that humans do not necessarily use the same vocabulary
when writing about the same topic [11].

Several approaches in the past few years have been proposed to model term
similarity based on the concept of higher-order co-occurrence [12,13]. Perhaps
the most sophisticated and widely used method is LSI, which was originally ap-
plied to information retrieval. Given a term-by-context matrix D, the general
idea of LSI is to reduce D using Singular Value Decomposition (SVD) technique
which is thought to reduce the noise in the data and make relationships between
underlying concepts more clear. In fact, LSI takes advantage of implicit higher
order (or latent) structure in the association of terms and contexts [13]. LSI-
based kernels, such as latent semantic kernels [9] and domain kernels [6], have
also been investigated. Conceptually, the domain kernel estimates the similar-
ity between the domains of two texts, so to capture domain aspects of sense
distinction. It is a variation of the latent semantic kernel.

The main problem of LSI is its high computation complexity since computing
the SVD itself is not trivial. For a n× n matrix, the SVD computation requires
time proportional to n3. This is impractical for matrices with more than a few
thousand dimensions. In comparison with LSI, exponential kernel does not need

550 T. Wang, J. Rao, and D. Zhao

the heavy computational overhead of decomposition. In addition, exponential
kernel has the advantage of explicitly capturing the latent or higher order simi-
larities, as opposed to doing that implicitly as in LSI. Finally, it should be noted
that, more recently, there is increasing evidence that Independent Component
Analysis (ICA) is more efficient and accurate than LSI/SVD and used as the
first step in the text analysis [14]. ICA applied on word context data can give
distinct features which reflect linguistic categories.

4 Evaluation Results

This section provides an empirical study to show the benefits of the proposed
WSD system with several real corpora. Specifically, we compare the performance
for three methods: 1) MFS: a common baseline model that selects the most
frequent sense (MFS) in the training data as the answer. 2) SVM BoW: SVM
classifier with BoW kernel. 3) SVM EK: SVM classifier with exponential kernel.
We use the SVM since it has been shown to achieve the best results compared
to several supervised approaches [3].

We select the corpora for four words, namely interest, line, hard and serve,
which have been used in numerous comparative studies of WSD, from the Sen-
sEval website1. There are 2368 instances of interest with 6 senses, 4147 instances
of line with 6 senses, 4333 instances of hard with 3 senses, and 4333 instances
of serve with 4 senses. For each corpus, we partition it into a training set and
a test set by stratified sampling: 70% of the data set serves as training set and
30% as test set. For the training set, we first remove the words that are in a list
of stop words (for example: “is”, “a”, “the”). Words that contain no alphabetic
characters, such as punctuation symbols and numbers, are also discarded. We
then extract the surrounding words, which can be in the current sentence or
immediately adjacent sentences, in the ±5-word window (i.e., r = s = τ = 5)
context of an ambiguous word. The extracted words are finally converted to
their lemma forms in lower case. Each lemma is considered as one feature and
whose value is set to be the “term frequency (TF)”. For the test set, the similar
preprocessing is carried out but the features are the same as those extracted
from the training set (we directly eliminate those lemmas found in the test set
but not in the training set).

Once the training and test instances are represented as feature vectors, we
trains an SVM classifier for each word type with the training data and tests the
disambiguation performance of the learned model with the test data. The param-
eters of the SVM are optimized by five-fold cross-validation on the training set.
When using the BoW kernel, there is only one parameter C (the regularization
parameter used to impose a trade-off between the training error and generaliza-
tion in SVM) need to be optimized. We perform grid-search in one dimension
(i.e., a line-search) to choose this parameter from the set {2−2, 20, ···, 210}. When
using the exponential kernel, there are two parameters C and λ need to be opti-
mized. We perform grid-search over two dimensions, i.e., C = {2−2, 20, · · ·, 210}
1 http://www.senseval.org/

http://www.senseval.org/

Using Exponential Kernel for Word Sense Disambiguation 551

and λ = {20, 2−1, · · ·, 2−10}. In addition, the implementation of the SVM classi-
fier is achieved by the software LIBLINEAR2 [15], which is a simple but efficient
package for solving large-scale linear classification and regression problems.

Table 1. Disambiguation performances of three methods

Corpus
Classification accuracy (%)

MFS SVM BoW SVM EK

interest 52.8716 85.9598 87.3232
line 53.4844 82.9445 84.0881
hard 79.7369 83.6972 84.8374
serve 41.4344 86.2909 86.9956

We report the results in terms of the standard measure of classification ac-
curacy, which indicates the percentage of instances of an ambiguous word that
were correctly classified from the entire test set. The average accuracies over
10 trials are summarized in Tab. 1. We can see that both SVM BoW and
SVM EK achieve significantly better accuracies than the MFS baseline. More im-
portantly, SVM EK successfully outperforms SVM BoW: the accuracies increase
from 85.9598% to 87.3232%, 82.9445% to 84.0881%, 83.6972% to 84.8374% and
86.2909% to 86.9956% for disambiguating the word interest, line, hard and
serve, respectively. This demonstrates the effectiveness of the proposed SVM EK
method. It should be noted that the performance differences are statistically sig-
nificant (p>0.05) in light of the pairs t-tests on all four corpora.

5 Conclusion

We have explored the use of exponential kernel for improving the performance of
SVM classifier in word sense disambiguation. Geometrically, exponential kernel
models semantic similarities as a diffusion process in a graph whose nodes are the
terms and edges incorporate the first-order similarity. Diffusion efficiently takes
all the possible paths connecting two nodes into account, and propagates the
similarity between two remote terms. Empirical evaluation on several SensEval
tasks demonstrates that our approach successfully improves the disambiguation
performance compared to that using the standard BoW kernel. Moreover, in a
supervised WSD framework, we have class information of training data in addi-
tion to the co-occurrence information. An inherent limitation of the exponential
kernel is that it fails to exploit the class information of training data. It will be an
interesting future work to present new approaches or apply existing technologies
such as “sprinkling” [12] to refine the exponential kernel.

Acknowledgments. This work is supported in part by the National High Tech-
nology Research & Development Program of China (No. 2012AA011101), the
National Natural Science Foundation of China (No. 61202265), the China Post-
doctoral Science Foundation Funded Project (No. 2012M510275) and the Natu-
ral Science Foundation of Jiangxi Province of China (No. 20114BAB211021).

2 http://www.csie.ntu.edu.tw/~{}cjlin/liblinear

http://www.csie.ntu.edu.tw/~{}cjlin/liblinear

552 T. Wang, J. Rao, and D. Zhao

References

1. Navigli, R.: Word Sense Disambiguation: A Survey. ACM Computing Sur-
veys 41(2), 1–69 (2009)

2. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York (2004)

3. Lee, Y.K., Ng, H.T.: An Empirical Evaluation of Knowledge Sources and Learning
Algorithms for Word Sense Disambiguation. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, Philadelphia, USA, pp. 41–48
(2002)

4. Lee, Y.K., Ng, H.T., Chia, T.K.: Supervised Word Sense Disambiguation with
Support Vector Machines and Multiple Knowledge Sources. In: Proceedings of
Senseval–3: Third International Workshop on the Evaluation of Systems for the
Semantic Analysis of Text, Barcelona, Spain, pp. 137–140 (2004)

5. Jin, P., Li, F., Zhu, D., Wu, Y., Yu, S.: Exploiting External Knowledge Sources to
Improve Kernel-based Word Sense Disambiguation. In: Proceedings of IEEE Inter-
national Conference on Natural Language Processing and Knowledge Engineering,
Beijing, China, pp. 1–8 (2008)

6. Giuliano, C., Gliozzo, A., Strapparava, C.: Kernel Methods for Minimally Super-
vised WSD. Computational Linguistics 35(4), 513–528 (2009)

7. Popescu, M.: Regularized Least-squares Classification for Word Sense Disambigua-
tion. In: Proceedings of Senseval–3: Third International Workshop on the Evalua-
tion of Systems for the Semantic Analysis of Text, Barcelona, Spain, pp. 209–212
(2004)

8. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by Latent Semantic Analysis. Journal of the American Society for Information
Science 41(6), 391–407 (1990)

9. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent Semantic Kernels. Journal of
Intelligent Information Systems 18(2-3), 127–152 (2002)

10. Kandola, J., Shawe-Taylor, J., Cristianini, N.: Learning Semantic Similarity. In:
Advances in Neural Information Processing Systems, vol. 15, pp. 657–664 (2003)

11. Lemaire, B., Denhière, G.: Effects of High-order Co-occurrences on Word Semantic
Similarity. Current Psychology Letters 18(1) (2006)

12. Chakraborti, S., Wiratunga, N., Lothian, R., Watt, S.: Acquiring Word Similari-
ties with Higher Order Association Mining. In: Proceedings of the 7th International
Conference on Case-Based Reasoning: Case-Based Reasoning Research and Devel-
opment, Belfast, UK, pp. 61–76 (2007)

13. Kontostathis, A., Pottenger, W.M.: A Framework for Understanding Latent
Semantic Indexing (LSI) Performance. Information Processing and Manage-
ment 42(1), 56–73 (2006)

14. Honkela, T., Hyvärinen, A., Väyrynen, J.: WordICA-Emergence of Linguistic Rep-
resentations for Words by Independent Component Analysis. Natural Language
Engineering 16(3), 277–308 (2010)

15. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A Li-
brary for Large Linear Classification. Journal of Machine Learning Research 9,
1871–1874 (2008)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 553–562, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Independent Component Analysis Filtration
for Value at Risk Modelling

Ryszard Szupiluk1, Piotr Wojewnik1, and Tomasz Ząbkowski2

1 Warsaw School of Economics, Al. Niepodleglosci 162, 02-554 Warsaw, Poland
2 Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

rszupi@sgh.waw.pl, piotr.wojewnik@gmail.com,
tomasz_zabkowski@sggw.pl

Abstract. In this article we present independent component analysis (ICA)
applied to the concept of value at risk (VaR) modelling. The use of ICA
decomposition enables to extract components with particular statistical
properties that can be interpreted in economic terms. However, the
characteristic of financial time series, in particular the nonstationarity in terms
of higher order statistics, makes it difficult to apply ICA to VaR right away.
This requires using adequate ICA algorithms or their modification taking into
account the statistical characteristics of financial data.

Keywords: Value at Risk, Independent Component Analysis, financial time
series analysis.

1 Introduction

Risk modelling is one of the fundamental problems in the investment theory and
practice on financial markets [7]. One of the most popular methods is the concept of
value at risk (VaR) [6,9]. VaR over a given time horizon can be defined in the
following way:

where W is portfolio value at the end of analyzed period (random variable), 0W is present

portfolio value and α is risk level. For the return rates VaR can be determined as:

where αR is the quantile of return rates distribution at given risk level (probability of

risk). Although the concept itself is simple and intuitive, it is associated with
a fundamental problem of estimating the probability that a given financial instrument
will reach specific values in the future. As a result, VaR concept is quite closely
related to forecasting the future values of a financial instrument. In this area, one of

α=−≤)(0 VaRWWP , (1)

0WRVaR α−= , (2)

554 R. Szupiluk, P. Wojewnik, and T. Ząbkowski

the most commonly used approaches are these based on simulations [10]. They aim to
find the possibly best mathematical model for the instrument based on historical data,
and then performing predictive simulation. As a result, the whole issue boils down to
the choice of an adequate simulation model. This opens up a discussion on the
adequacy of model fitting to the empirical data.

According to the above, in case of predictive modelling based on historical data,
we can distinguish two dominant approaches. The first assumes that the data should
not be modified, because they interfere with the representation of the real phenomena.
The second approach allows for modification of underlying data to create predictive
models and simulations, especially when we are interested in main trends without
noisy fluctuations or unusual events. For instance, data modification can be motivated
by the fact that rare events like 2008 crash will not happen very often (they appear
occasionally by definition), and their presence in models may distort the reality.

In this research, using financial market data, we are primarily interested in the
separation of the components which are typical for well-functioning and effective
markets in contrast to the components related to noises or the specific rare events. As
separation method we apply Independent Component Analysis which is one of the
main methods used in Blind Source Separation (BSS) problem [3,8]. The typical
application ICA in VaR concept is based on performing risk analysis directly on
separated independent source components [2,18]. In our approach, we use ICA for
filtration and elimination of specific signals that may highly over-influence the data
analysis by some very untypical events.

However, this approach, based on the existing ICA, has some limitations related to
high instability of higher order statistics observed in many financial time series. In
this paper, we propose a way to solve this problem, along with a new version of
Natural Gradient algorithm, which we call Local Natural Gradient.

2 ICA Decomposition for Separation and Filtration

Independent component analysis can be considered as one of blind signal separation
methods, where the main aim is to find latent source signals hidden in their mixture
[1,8]. The standard model for BSS as well ICA is described as

where T
n1,...,xx][=x are observed signals, T

m1,...,ss][=s are hidden (unknown)

source signals, and mn×ℜ∈A is unknown matrix representing the mixing system.
The purpose of the ICA is proper separation (reconstruction, estimation) of the
observed signals x into source signals s, accepting the ambiguity according to the
scale and permutation of source signals. To find the solution we need such matrix W
that for

)()(tt Asx = , (3)

)()()()(tttt PDsWAxWxy === , (4)

 Independent Component Analysis Filtration for Value at Risk Modelling 555

where P is permutation matrix to define the order of estimated signals and D is a
diagonal scaling matrix [8].

The basic ICA method can be applied for filtration approach [17]. Under
assumption that the source signal vector contains certain constructive components jŝ ,

for pj ,...,1= and noises ls~ , for ql ,...,1= then we can write:

T
qppp

T
n tstststststst)](~)....,(~),(ˆ),...,(ˆ[)](),...,([)(111 ++==s . (5)

After separation of latent components we reject the destructive ones (replacing them
with zero 0~ =ls) to obtain improved version x̂ of observed signals x:

T
npp tttstst)](0)....,(0),(ˆ),...,(ˆ[)(ˆ 11 += Ax . (6)

Depending on the data characteristics and the chosen separation method a certain
set of assumptions should be adopted. In case of ICA, a fundamental premise assumes
the independence of the source signals, which means that the separated signals should
also be independent of each other. In practice, to extract independent components
from observed signals some additional assumptions are required: (i) the columns of
matrix A should be linearly independent; (ii) mn ≥ - number of observed signals
cannot be lower than the number of independent source signals; (iii) the signals are

modeled as random variables or stochastic white noises, where at most one signal is

has Gaussian distribution.
There are couple of methods that can achieve (4). The common feature linking

them is exploration of higher order statistics, in particular kurtosis. This is the case of
JADE, FASTICA, and Natural Gradient algorithms [1,3,8]. However, to perform ICA
decomposition, the optimal form of non-linearity in the ICA algorithms requires
knowledge of the signals distribution, which is, in practice, usually impossible. This
implies a certain set of surrogate actions, such as using models based on flexible
distributions or selection of the nonlinear concepts exploring empirical characteristics
of the data. One simple heuristic method for nonlinearity selection is based on the
observation that this type of non-linearity takes the form of the linear function for the
Gaussian distribution, which is growing faster for the super Gaussian (leptokurtic)
distribution and growing slower for sub Gaussian distribution. An extension of this
approach is parametric model for the separated signals, for which parameters and,
consequently, non-linear functions are selected in adaptive learning process. The main
problem of ICA methods applied to financial data is the fact that these time series are
often characterized by unstable kurtosis, see Fig. 1.

These properties of financial time series significantly reduce the effectiveness of
the ICA algorithms based on the typical nonlinearities. A possible solution to this
problem is the use of models more thoroughly exploring kurtosis and skewness. One
of the most general parametric models is the approach proposed by [12], which is
based on Extended Generalized Lambda Distribution (EGLD) system to model the
distributions with different kurtosis and skewness. EGLD system consists of two
distributions: Generalized Lambda Distribution (GLD) and Generalized Beta
Distribution (GBD) [11].

This non-linear model, although applicable for modelling signals with a wide range
of kurtosis and skewness, does not meet completely the expectations to the

556 R. Szupiluk, P. Wojewnik, and T. Ząbkowski

non-stability problem. In case of non-stability and non-stationarity of the signals a
reasonable approach could be on-line ICA algorithm [3]. However, in case of on-line
ICA algorithms, we should pay attention to another specific aspect of financial time
series which is kurtosis estimation based on the sample that is highly sensitive to
outliers (unusual) values.

0 200 400 600 800 1000
-0.3

-0.2

-0.1

0

0.1

0.2

si
gn

al

0 200 400 600 800 1000
0.5

1

1.5

2

2.5
x 10-3

va
ria

nc
e

number of observation in sample

0 200 400 600 800 1000
0

5

10

15

20

25

ku
rt

os
is

number of observation in sample
-1000 -500 0 500 1000

-0.2

0

0.2

0.4

0.6
au

to
co

rr
el

at
io

n
fu

nc
tio

n

0 200 400 600 800 1000
-0.3

-0.2

-0.1

0

0.1

0.2

si
gn

al

0 200 400 600 800 1000
0.5

1

1.5

2

2.5
x 10-3

va
ria

nc
e

number of observation in sample

0 200 400 600 800 1000
0

5

10

15

20

25

ku
rt

os
is

number of observation in sample
-1000 -500 0 500 1000

-0.2

0

0.2

0.4

0.6

0 200 400 600 800 1000
-0.3

-0.2

-0.1

0

0.1

0.2

si
gn

al

0 200 400 600 800 1000
0.5

1

1.5

2

2.5
x 10-3

va
ria

nc
e

number of observation in sample

0 200 400 600 800 1000
0

5

10

15

20

25

ku
rt

os
is

number of observation in sample
-1000 -500 0 500 1000

-0.2

0

0.2

0.4

0.6
au

to
co

rr
el

at
io

n
fu

nc
tio

n

Fig. 1. Characteristics of Warsaw Stock Exchange Index (WIG) calculated on logarithmic
return rates (including time interval from 04-01-2008 until 01-08-2012). Upper left figure is
original signal, lower left figure is kurtosis, upper right figure is variance, and lower right is
autocorrelation function.

However, while in case of typical technical signals (in engineering) outlier values
are usually the result of measurement problems or noises, whereas in case of financial
time series the abnormalities correspond to some important events appearing on the
financial markets. Such events are apparent not only at that moment in time, but they
influence the following values. As a result, we have some local dependencies, which
are neither global nor individual. In such case, to perform effective ICA we propose
following algorithm for matrix W finding

where

i

ii
ii y

yp
yf

∂

))((log∂
)(−= . (8)

The main idea of algorithm (7) is similar to spatio-temporal extensions of basic ICA
algorithm, which is addressed for data with temporal structure [3,5,14,16].

The internal term in (7) with the form of:

)()())(()()()1(
0

tkttfbttt
K

k

T
ii WyyIWW

 −−+=+
=

μ , (7)

)())((
~

0

kttfb
K

k

T
iiyy −=

=

yyR , (9)

 Independent Component Analysis Filtration for Value at Risk Modelling 557

can be interpreted as weighted local non-linear covariance matrix. The motivation for
this matrix application is similar to the approach in which time delay matrices
combination are applied in second order statistics algorithms for blind source
separation [4,13,15]. The main question is the choice of coefficients combination,
what determine matrix (9) characteristics. The coefficients ib choice may be based on

the following variability (volatility) measure (ksi):

where symbol (.)δ means zero indicator function introduced to avoid dividing by

zero (valued at 0 everywhere except 0, where the value of (.)δ is 1). Measure (10)

has straightforward interpretation: it is maximal when the changes in each step are
equal to range (maximal possible change during one period), and is minimal when
data are constant. The possible values vary from 0 to 1.

As a result, from (10) we can calculate the coefficients ib which have the form of:

K

y
b i

i

)(1 ξ−= . (11)

Proposed variability (volatility) measure can better capture the local nature of the time
series volatility what is presented in Fig. 2.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4
x 10

-3

ksi

va
r

a)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8
x 10

-3

ksi

va
r

b)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8
x 10

-3

ksi

va
r

c)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.002

0.004

0.006

0.008

0.01

ksi

va
r

d)

Fig. 2. Relations between the variance and ksi factor for: a) CAC40, b) Nikkei, c) BOVESPA,
d) HANGSENG

It can be seen that the volatility of particular financial instruments for different
time windows and different periods measured by (10) is distributed more evenly than
measured by variance which tends to be grouped. Uniform distribution of volatility

))min()(max()min()max(

)1()(
1

)(0

yyyy

ktykty
K

y

K

k

−+−

−−−−
=

=

δ
ξ , (10)

558 R. Szupiluk, P. Wojewnik, and T. Ząbkowski

allows for better interpretation and is not without significance when learning
separation system.

3 Practical Experiment

In this experiment we investigated the possibility to analyse relations among financial
time series with the blind signal separation methods. In particular, the application
included: common signals identification and Value at Risk computation for filtrated
signals.

Therefore, in our experiment we could distinct following steps illustrated in Fig. 3:
1. Collect the original time series into multivariate variable X;
2. Decompose the matrix X with ICA into signals S;
3. Extract specific signals that may over-influence the data analysis;
4. Eliminate the signals and mix the rest with system inverse to decomposition;
5. Calculate VaR on filtered time series.

Fig. 3. The scheme for Independent Component Analysis and its application for VaR

Common signals were identified among 16 signals on logarithmic rates of return,
based on 965 daily observations from 04-01-2008 until 01-08-2012 of: WIG, CAC40,
DAX, Nikkei, BOVESPA, FTSE100, SP500, BRLPLN, EURPLN, GBPPLN,
JPYPLN, USDPLN, HANGSENG, NASDAQ, BUX and HUFPLN, please see Fig. 4.
The horizontal axis presents 16 loads, and the vertical axis shows the value of the load
calculated as mixing matrix A multiplied by standard deviation of independent
signals.

After decomposition of 16 time series representing various international economies
and currencies we can obtain 16 independent signals. In Fig. 4 we can observe how
big the load of particular independent component is in real series. The load of
component js in series ix is measured as jija σ , where ija is an element of mixing

matrix and jσ is a standard deviation of signal js .

For the index of Warsaw Stock Exchange (WIG) we can observe that it consists
mainly from signals 7 and 14, where the signal 7 is important only to BUX

 Independent Component Analysis Filtration for Value at Risk Modelling 559

(Hungarian Stock Exchange) and the signal 14 is significant in CAC40, Bovespa,
Hangseng, FTSE100, and somehow also Nikkei and SP500. It seems that Polish stock
market follows two patterns. One is general condition of international markets and the
second is emerging markets in Central and Eastern Europe.

We can also observe that all of the currencies against Polish zloty have significant
load of 6th independent signal. It means that this component represents the state of
Polish currency.

Fig. 4. Loads of independent signals in financial time series calculated as mixing matrix A
multiplied by standard deviation of independent signals

In case of 1st signal it seems important for Asian stock markets (HangSeng and
Nikkei), and also Japan yen (JPY) and Brazilian market (Bovespa).

In general, we can conclude that ICA methods enable identification of common signals
that influence groups of markets, where the groups are constructed in concise way.

In the second part of the experiment we perform the analysis of Value at Risk 95.
Not to be concentrated on technical issues regarding risk measure calculation like
density estimation methods and autoregressive interdependencies we will
approximate the VaR95 of logarithmic rates of return with 5th percentile calculated
from historical data. We check how the filtration of source signals influences such
risk measure. In Fig. 5 we show the experiment results with two lines: wide and
narrow. The wide line shows changes in VaR95 if the signals with the growing load

560 R. Szupiluk, P. Wojewnik, and T. Ząbkowski

are filtered out. In particular, for each financial time series (e.g. WIG) we estimate
the load of particular components, and filter out groups of signals starting from the
lowest load. We can observe that filtering of the signals with the lowest loads does
not influence VaR95, and only including within the group the higher loads gives
significant change in risk measure – see convex wide line in Fig. 5. The narrow line
shows changes in VaR95 if the signals with the decreasing load are filtered out. In
particular, we can observe, that at the beginning the influence on VaR95 is significant
and later on the line becomes flat – see concave narrow line in Fig. 5.

Fig. 5. VaR approximated by 5th percentile for ICA filtrated time series. Wide line represents
level of VaR95 where the groups of signals with smallest load are removed. Narrow line -
groups of signals with largest load are removed.

While the resulting lines are legibly convex in case of increasing signal load and
concave in case of decreasing load we might conclude on the influence of resource
signal filtration to the risk measures. In particular, if ICA estimated components of
lower load (not significant for given economic time series, possible to be interpreted
as non-informative or noise) are filtered out, then the VaR is not influenced. If the
signals of significant load (informative components) are filtered out, then the risk
measures are significantly decreased.

 Independent Component Analysis Filtration for Value at Risk Modelling 561

4 Conclusions

In this paper, we showed that in an environment characterized by non-linearities and
non-Gaussianity, the ICA methodology can discover an underlying structure in
financial time series for the purpose of risk measurement. In our approach, ICA is
used to filter components with specific statistical properties enabling data
interpretation. In particular, this refers to the issue of handling the impact of rare
events. Rare events such as the sudden market breakdown cannot be regarded as a
statistical outlier, since its impact has long-term consequences. Depends on the
analysis context we can underline their occurrence or reduce their impact what
introduce flexibility to VaR modelling. The experiment conducted on historical data
confirmed the validity of this approach.

However, the characteristic of financial time series, in particular the nonstationarity
in terms of higher order statistics (3rd, 4th), make it difficult to apply typical ICA
algorithms right away and some modifications of algorithms are recommended. The
local version of Natural Gradient ICA algorithm proposed in this work can be
adjusted depending on the actual volatility of financial instruments, measured with
author’s variability measure. Along with the selection of non-linearity, based, for
instance, on Extended Generalized Lambda Distribution, we get the algorithm
exploring many important characteristics of time series such as variability (volatility),
skewness, kurtosis what brings us toward better financial market behaviour
understanding.

Acknowledgements. The work was funded by the National Science Center in Poland
based on decision number DEC-2011/03/B/HS4/05092.

References

[1] Cardoso, J.F.: High-order contrasts for independent component analysis. Neural
Computation 11(1), 157–192 (1999)

[2] Chen, Y., Hardle, W., Spokoiny, V.: Portfolio value at risk based on independent
component analysis. Journal of Computational and Applied Mathematics 205(1) (2007)

[3] Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley,
Chichester (2002)

[4] Choi, S., Cichocki, A., Belouchrani, A., Second, A.: order nonstationary source
separation. Journal of VLSI Signal Processing 32, 93–104 (2002)

[5] Georgiev, P., Cichocki, A.: Robust Independent Component Analysis via Time-Delayed
Cumulant Functions. IEICE Trans. Fundamentals E86-A (3), 573–579 (2003)

[6] Holton, G.: Value-at-Risk. Theory and Practice Academic Press (2003)
[7] Hull, J.: Risk Management and Financial Institutions. John Wiley (2012)
[8] Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley,

New York (2001)
[9] Jorion, P.: Value at Risk. McGraw-Hill (2006)

[10] Morgan, J.P.: Riskmetrics Technical Document, 3rd edn., New York (1995)
[11] Karian, Z.A., Zaven, A., Dudewicz, E.J.: Fitting statistical distributions: the Generalized

Lambda Distribution and Generalized Bootstrap methods. Chapman & Hall (2000)

562 R. Szupiluk, P. Wojewnik, and T. Ząbkowski

[12] Karvanen, J., Eriksson, J., Koivunen, V.: Adaptive Score Functions for Maximum
Likelihood ICA. VLSI Signal Processing 32, 83–92 (2002)

[13] Molgedey, L., Schuster, G.: Separation of a mixture of independent signals using time
delayed correlations. Physical Review Letters 72(23), 3634–3637 (1994)

[14] Müller, K.-R., Philips, P., Ziehe, A.: JADETD: Combining higher-order statistics and
temporal information for blind source separation (with noise). In: Cardoso, J.F., Jutten,
C., Loubaton, P. (eds.) ICA 1999, pp. 87–92 (1999)

[15] Pham, D.-T., Cardoso, J.-F.P.: Blind separation of instantaneous mixtures of
nonstationary sources. IEEE Transactions on Signal Processing 49(9), 1837–1848 (2001)

[16] Szupiluk, R., Wojewnik, P., Ząbkowski, T.: Multiplicative ICA algorithm for interaction
analysis in financial markets. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS,
vol. 7268, pp. 608–615. Springer, Heidelberg (2012)

[17] Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model Improvement by the Statistical
Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.)
ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004)

[18] Wu, E.H., Yu, P.L., Li, W.K.: Value at risk estimation using independent component
analysis-generalized autoregressive conditional heteroscedasticity (ICA-GARCH)
models. International Journal of Neural Systems 16(5), 371–382 (2006)

Wind Power Resource Estimation with Deep

Neural Networks

Frank Sehnke1, Achim Strunk2, Martin Felder1, Joris Brombach2,
Anton Kaifel1, and Jon Meis2

1 Zentrum für Sonnenenergie- und Wasserstoff-Forschung,
Industriestr. 6, 70565 Stuttgart, Germany

2 EWC Weather Consult GmbH,
Schönfeldstrae 8, 76131 Karlsruhe, Germany

Abstract. The measure-correlate-predict technique is state-of-the-art
for assessing the quality of a wind power resource based on long term
numerical weather prediction systems. On-site wind speed measurements
are correlated to meteorological reanalysis data, which represent the best
historical estimate available for the atmospheric state. The different vari-
ants of MCP more or less correct the statistical main attributes by mak-
ing the meteorological reanalyses bias and scaling free using the on-site
measurements. However, by neglecting the higher order correlations none
of the variants utilize the full potential of the measurements. We show
that deep neural networks make use of these higher order correlations.
Our implementation is tailored to the requirements of MCP in the con-
text of wind resource assessment. We show the application of this method
to a set of different locations and compare the results to a simple lin-
ear fit to the wind speed frequency distribution as well as to a standard
linear regression MCP, that represents the state-of-the-art in industrial
aerodynamics. The neural network based MCP outperforms both other
methods with respect to correlation, root-mean-square error and the dis-
tance in the wind speed frequency distribution. Site assessment can be
considered one of the most important steps developing a wind energy
project. To this end, the approach described can be regarded as a novel,
high-quality tool for reducing uncertainties in the long-term reference
problem of on-site measurements.

1 Introduction

Due to the strong inter-annual variability of wind velocities in most regions that
are interesting for wind power generation, reliable wind resource assessments
require long-term time series for every specific location. Many approaches use
data from meteorological reanalyses which represent the best historical estimate
for the atmospheric state on regular grids. Moreover, these data sets allow for
incorporating a sufficient length of the time series giving robust estimates in a
climate context. Virtual time series at site level are produced by downscaling
techniques, either using regional to local numerical model simulations including
Computational Fluid Dynamics (CFD), or statistical or parametric methods,

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 563–570, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

564 F. Sehnke et. al.

or combinations thereof. Finally these long-term time series are combined with
local observations or measurements from representative locations nearby using
a technique called Measure-Correlate-Predict (MCP).

MCP is described by [1] as: “MCP methods model the relationship between
wind data (speed and direction) measured at the target site, usually over a period
of up to a year, and concurrent data at a nearby reference site. The model is
then used with long-term data from the reference site to predict the long-term
wind speed and direction distributions at the target site.”

In recent years, however, meteorological reanalyses from Numerical Weather
Prediction (NWP) systems became increasingly available. The correlation be-
tween reanalysis data for the site and the measurements at the site are much
higher and so MCP is now used with NWP reanalyses but with the same tech-
niques described in [1]. These techniques range from standard deviation correc-
tion (to remove the overall scaling error) over wind speed ratio corrections (to
remove the overall bias) to vector regression and linear regression – the latter
being the standard and therefore heavily employed in industrial aerodynamics.

High quality MCPs enable reconstruction of the long-term historical wind re-
source using a limited number of observations while, at the same time, achieving
reduced uncertainties. Due to the cost of gathering observations at site level
and the need to have early, reliable estimates of future economic return, a state-
of-the-art MCP and high-end long-term time series are key aspects during the
initial phase of wind energy projects.

The standard MCP variants fail, however, to utilize high order correlations of
the long-term historical wind resource data with the limited number of observa-
tions.We show thatDeepNeuralNetworks (DNN) [2] apparentlymake use of these
higher order correlations. The implementation is fully tailored to the requirements
ofMCP in the context of wind resource assessment.We show the application of our
method to a set of different locations and compare the results to a simple linear fit
to the wind speed frequency distribution as well as to a standard linear regression
MCP. The neural network based MCP outperforms both other methods with re-
spect to correlation, root-mean-square error and the distance in the wind speed
frequency distribution. Site assessment can be considered one of the most impor-
tant steps developing a wind energy project. To this end, the approach described
can be regarded as a novel, high-quality tool for reducing uncertainties in the long-
term reference problem of on-site measurements.

In the following sections we will introduce the long-term data under consid-
eration as well as the observations used for this study. After a description of the
DNN setup, different MCP variants will be introduced and the results will be
compared to the method under consideration.

2 Method

2.1 Long-Term Data

EWC’s Wind Potential Analysis employs the reanalysis product from the
MERRA project [3], which covers the time range from 1979 to the present.

Wind Power Resource Estimation with Deep Neural Networks 565

A parametric downscaling approach, which bases on [4], is applied to the hourly
vertical wind profiles at a specific site. This approach takes into account, besides
others, local orography inferred from high resolution digital elevation models.
Using similarity theory, atmospheric stability and local vegetative roughness,
individual hourly vertical wind profiles are calculated. The resulting wind veloc-
ities and directions then serve as artificial wind time series at (wind turbine) hub
height. In this study the additional data sets of orography and land cover have
a global resolution of roughly 1×1 km2. The parametric downscaling approach
within EWC’s Wind Potential Analysis is constantly being evaluated by numer-
ous observational time series (e.g., [5]). In addition to resource assessment, this
approach is also successfully applied for wind power forecast services [6].

2.2 Observational Data

In the current study we present the application of the novel MCP to a number
of different locations. The hourly wind speed observations are either based on
nacelle anemometers at hub height or have been gathered on net masts. The
time periods of available measurement data are given in Table 1. The locations
have been chosen

– due to their moderate skill in the initial long-term time series, and
– aiming at representing different terrain characteristics ranging from off-shore

over near-shore flat to on-shore, complex and affected by forests.

Hub heights vary between about 60m and 120m above ground. In each of the
experiments discussed below, about 10% of the data was withdrawn from training
and used as test data.

Table 1. List of stations under consideration including their main characteristics. The
last column gives the number of net months used for testing.

Station Characteristics Area Height Observations Months test

1 on-shore, flat Germany 61m 2006/01 - 2009/06 4
2 offshore Europe 69m 2011/01 - 2012/05 2
3 on-shore, complex Germany 100m 2006/11 - 2009/06 3
4 near-shore, flat USA 118m 2006/09 - 2008/07 3
5 near-shore, complex Greece 80m 2008/05 - 2010/06 3
6 on-shore, forest France 78m 2006/11 - 2010/06 4

2.3 A Deep Neural Network Setup for MCP

The following DNN setup is used to build the MCP system.

1. The data is balanced to get an equal distribution over the targets, which are
the wind speeds. This first step is crucial for the MCP procedure to force
the DNN to conserve the target distribution. The wind speed distribution
in this context has more impact on the final resource assessment than the
root-mean-square error (RMSE) for wind speed, because the final resource
assessment is the sum of wind speeds seen at the specific wind power plants.

566 F. Sehnke et. al.

2. Feature selection is applied that uses input neuron pruning based on weight
strengths achieved under a L1 regularization [7]. Describing the exact feature
selection mechanism is out of scope for this work. It is based mainly on [8]
and identifies the problem relevant inputs that stem from the NWP.

3. The optimal network structure (depth of network and number of hidden
neurons per layer) is identified using the RMSE on the test set as quality
measure. Policy Gradients with Parameter-based Exploration (PGPE) [9,10]
is used for this optimization. The optimal DNN architectures range from two
hidden layers with 256 hidden neurons per layer up to four hidden layers with
512 hidden neurons, depending on the amount and quality of the data for
the different locations.

4. Training under L2 regularization is performed with RPROP [11]. Pre-training
with Restricted Boltzmann Machines (RBM) [12] was conducted for some
locations but yielded no further improvement, so that we omit these exper-
iments in the results section. Also, different weight initializations like the
sparse initialization technique from [13,14] did not yield any improvement
in convergence speed or final quality.

For all above steps we used the Learn-O-Matic framework [15] for fast Graphics
Processing Unit (GPU) training, based on Cudamat [16] and Gnumpy [17]. This
is also the reason for the number of hidden units per layer being restricted to
multiples of 128 – it makes the computation on the GPU much faster.

3 Results

In order to evaluate the performance of the DNN approach under consideration
(“NN-MCP”) different additional experiments have been carried out. First, the
bias has been removed from the original long-term time series over the training
period (“bias-free”). Additionally, a linear fit has been done targeting on the
best possible fit to the observed wind speed frequency distribution (“min. dist.
error”). Finally, a standard, linear regression MCP has been employed based
on 4 stability classes and 8 wind direction sectors as is the standard in the
field (“standard MCP”). Figure 1 summarizes the results in terms of main skill
scores: bias error, RMSE, correlation coefficient and the skill of the wind speed
frequency distribution. Compared to the original long-term time series, which
shows partly significant biases and for which these stations have been chosen for
this study, all other methods clearly reduce errors on the test data set. While
already providing high correlation coefficients at an hourly level, especially the
NN-MCP method is able to increase correlation and thus further reduce the
RMSE. This fact is additionally illustrated in Figure 2 which shows the scatter
diagrams for stations 5 and 6 for three different methods: the linear fit to the
frequency distribution (“min. dist. error”), the standard MCP and the NN-MCP.
Especially for low and high wind speeds the NN-MCP is able to better reproduce
the observed values leading to significantly increased correlation coefficients.

Wind Power Resource Estimation with Deep Neural Networks 567

Fig. 1. Error scores (bias, root-mean-square error, correlation coefficient and error in
the wind speed frequency distribution) on the test data for the original time series,
a bias free version of the original data, a linear fit to the frequency distribution, a
standard linear MCP method as well as for the neural network MCP

Evaluating generalization errors of the wind speed frequency distribution and
by that the effect on the expected energy yield, the L2-norm of the wind speed
frequency distribution error is also given for all methods and stations in Figure 1.
Except for station 4, the NN-MCP clearly outperforms the standard linear MCP,
which partly yield worse results than the simple linear fit of the frequency dis-
tribution. In order to stress this fact, Figure 3 shows histograms of the wind
speed frequency distribution of the test data for the linear fit to the distribu-
tion (“min. dist. error”), the“standard MCP” and the NN-MCP. In addition to
the general misfit discussed above, these graphs show the main characteristics
of the approaches. For station 5, the shape of the frequency distribution is al-
ready quite well captured by the original data set, such that the linear fit leads
to satisfying results. This healthy initial state is then deteriorated by the stan-
dard MCP, which fits each of the sector-stability combinations separately and
therefore modulates the distribution. In contrast, the NN-MCP method strongly
improves the wind speed frequency distribution on the test data set. For station 6
the initial distribution is of moderate quality and the standard MCP successfully
limits the overestimation of high wind speed occurrences above 15 m

s . This leads
to a satisfying frequency distribution between 5 m

s and 15 m
s , while the number of

small wind speeds remains underestimated. The NN-MCP fully reproduces the

568 F. Sehnke et. al.

Fig. 2. Wind speed scatter diagrams for the linear fit to the frequency distribution
(top), the standard MCP method (middle) and the neural network based MCP (bot-
tom). Diagrams are given for station 5 (left panel) and station 6 (right panel).

Fig. 3. Histograms of the wind speed frequency distribution for the linear fit (top),
the standard MCP method (middle) and the neural network based MCP (bottom).
Diagrams are given for station 5 (left panel) and station 6 (right panel).

frequency distribution for the test data set, leading to the small general misfit
mentioned above.

In order to assess the skill of the expected energy production with respect
to the methods under consideration, hourly wind speed values have been con-
verted to hourly production data by using a single power curve for each of the
stations. In this study we used a Nordex N117 (2.4MW) turbine at constant
air density. Results of the conversion are given in Table 2. The numbers stated
make use of the test set periods. Annual production estimates delivered by the
different techniques are compared to the observed ones calculated from hourly
values. Masking errors in the frequency distribution below cut-in speed and above

Wind Power Resource Estimation with Deep Neural Networks 569

full-load speed, the errors in the wind speed frequency distribution do not di-
rectly translate into errors in the energy yield. However, the NN-MCP gives the
lowest misfits in the annual production estimates. Averaging the absolute values
of relative differences for all stations shows the superior quality of the NN-MCP
compared to the standard MCP method in reconstructing wind speed frequency
distribution and annual production estimates.

Table 2. Comparison of the mean annual energy yields [GWh] (“Obs.”) wrt. the
methods employed. Differences to observed annual totals are given in per cent.

Station Obs. Min. dist. error Std. MCP NN MCP

1 5.00 5.35 +6.9% 4.64 -7.1% 5.10 +2.0%
2 14.53 14.99 +3.1% 14.92 +2.7% 14.71 +1.2%
3 5.83 6.34 +8.6% 5.24 -10.2% 5.75 -1.4%
4 10.25 10.52 +2.6% 10.07 -1.8% 10.09 -1.6%
5 7.81 7.96 +2.0% 8.36 +7.1% 7.91 +1.3%
6 11.00 11.61 +5.6% 10.82 -1.6% 10.83 -1.5%

mean abs misfit: 4.8% 5.08% 1.5%

4 Conclusions and Future Work

We have shown that the developments in neural computation of the last years,
namely deep neural networks, are well suited to cope with the requirements
of high quality wind power resource estimation. The only somewhat uncom-
mon preprocessing step for this data was a balancing of the target frequency
distribution.

Curiously, pre-training the deep structures with RBMs or greedy layer-wise
training, both of which have been found advantageous in the literature, yield no
advantage in this scenario despite the networks containing up to 4 hidden layers.
Likewise, sparse initialization and similar tricks of the trade led to no further
improvement.

The results obtained are far superior to what can be achieved by state-of-the-
art methods from the field of industrial aerodynamics. The system presented
will be available as a commercial product in the near future and hopefully help
the integration of renewable energies into the grid.

We see interesting future work in using ensembles of DNNs and dropout [18]
to gain additional improvements by using multiple models.

References

1. Rogers, A.L., Rogers, J.W., Manwell, J.F.: Comparison of the performance of four
measure–correlate–predict algorithms. Journal of Wind Engineering and Industrial
Aerodynamics 93(3), 243–264 (2005)

2. Bengio, Y.: Learning deep architectures for ai. Foundations and Trends R© in Ma-
chine Learning 2(1), 1–127 (2009)

570 F. Sehnke et. al.

3. Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E.,
Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.K., et al.: MERRA: NASA’s
modern-era retrospective analysis for research and applications. Journal of Cli-
mate 24(14), 3624–3648 (2011)

4. Howard, T., Clark, P.: Correction and downscaling of NWP wind speed forecasts.
Meteorological Applications 14(2), 105–116 (2007)

5. Meis, J., Kuntze, K.: Wind potential analysis for great heights with archived GFS
data. In: European Wind Energy Conference and Exhibition, vol. PO. ID 173
(2010)

6. Sack, J., Strunk, A., Meis, J., Sehnke, F., Felder, M.D., Kaifel, A.K.: From en-
sembles to probabilistic wind power forecasts - how crucial is the ensemble size?
In: Proceedings of the 2nd International Conference on Energy and Meteorology,
ICEM, Toulouse (2013)

7. Ng, A.Y.: Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In:
Proceedings of the Twenty-First International Conference on Machine Learning,
p. 78. ACM (2004)

8. Felder, M.D., Sehnke, F., Kaifel, A.K.: Automatic feature selection for combined
iasi/gome-2 ozone profile retrieval. In: Proceedings of the 2012 EUMETSAT Me-
teorological Satellite Conference (2012)

9. Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., Schmidhuber, J.:
Parameter-exploring policy gradients. Neural Networks 23(4), 551–559 (2010)

10. Sehnke, F., Graves, A., Osendorfer, C., Schmidhuber, J.: Multimodal parameter-
exploring policy gradients. In: 2010 Ninth International Conference on Machine
Learning and Applications, ICMLA, pp. 113–118. IEEE (2010)

11. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: The rprop algorithm. In: IEEE International Conference on Neural Net-
works 1993, pp. 586–591. IEEE (1993)

12. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for col-
laborative filtering. In: ACM International Conference Proceeding Series, vol. 227,
pp. 791–798 (2007)

13. Martens, J.: Deep learning via hessian-free optimization. In: Proceedings of the
27th International Conference on Machine Learning, ICML, vol. 951 (2010)

14. Sutskever, I.: Training Recurrent Neural Networks. PhD thesis, University of
Toronto (2013)

15. Sehnke, F., Felder, M.D., Kaifel, A.K.: Learn-o-matic: A fully automated machine
learning suite for profile retrieval applications. In: Proceedings of the 2012 EU-
METSAT Meteorological Satellite Conference (2012)

16. Mnih, V.: Cudamat: a cuda-based matrix class for python. Department of Com-
puter Science, University of Toronto. Tech. Rep. UTML TR 4 (2009)

17. Tieleman, T.: Gnumpy: an easy way to use gpu boards in python. Department of
Computer Science, University of Toronto (2010)

18. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 571–578, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Wavelet Neural Networks for Electricity Load
Forecasting – Dealing with Border Distortion

and Shift Invariance

Mashud Rana and Irena Koprinska

School of Information Technologies, University of Sydney,
Sydney, Australia

{mashud,irena}@it.usyd.edu.au

Abstract. We consider a wavelet neural network approach for electricity load
prediction. The wavelet transform is used to decompose the load into different
frequency components that are predicted separately using neural networks. We
firstly propose a new approach for signal extension which minimizes the border
distortion when decomposing the data, outperforming three standard methods.
We also compare the performance of the standard wavelet transform, which is
shift variant, with a non-decimated transform, which is shift invariant. Our
results show that the use of shift invariant transform considerably improves the
prediction accuracy. In addition to wavelet neural network, we also present the
results of wavelet linear regression, wavelet model trees and a number of
baselines. Our evaluation uses two years of Australian electricity data.

Keywords: electricity load forecasting, wavelet-based neural networks, shift
invariance, non-decimated wavelet transform, border distortion, linear
regression, model trees.

1 Introduction

Predicting future electricity loads (demands) from previous loads is required for the
efficient management of electricity networks. This includes optimal scheduling of
electricity generators, setting the minimum reserve, planning maintenance and
supporting the transactions of electricity companies in competitive electricity markets.
Accurate forecasting is needed to ensure reliable supply while keeping the costs low.

A number of load forecasting methods have been developed. The most prominent
methods include exponential smoothing and ARIMA [1], neural networks and linear
regression [2,3]. Recently, wavelet-based decomposition has been used in conjunction
with neural networks [4-7] and shown to produce highly accurate results. The key
idea is to decompose the load into different frequency components and predict them
separately. However, there are two main issues that have received very little attention
in previous work: 1) shift variance of the wavelet transform and 2) border distortion
when decomposing the signal.

To the best of our knowledge all previous wavelet neural network methods except
[7] use the standard Discrete Wavelet Transform (DWT). DWT has an important

572 M. Rana and I. Koprinska

drawback – it is shift variant. This means that the DWT of a signal and the DWT of a
shifted version of this signal will be different for the same points included in the
signal and its shifted version. This is a potential problem for forecasting applications
using a sliding window, such as electricity load forecasting, as the wavelet
coefficients of the same points included in different sliding windows will be different,
which may affect the pattern extraction and reduce prediction accuracy. There is no
previous study assessing the impact of the shift variance/invariance in electricity load
forecasting.

Real-time applications of DWT also require extending the signal at the boundaries
of the sliding window to reduce the border distortion during decomposition. With the
exception of [4], this problem hasn’t been dealt with in previous work.

In this paper, we consider wavelet-based neural networks for electricity load
forecasting and investigate two problems: 1) dealing with border distortion during the
wavelet decomposition and 2) the importance of using a shift invariant wavelet
transform. Firstly, in order to minimize border distortion we propose a new method
for signal extension that uses a machine learning technique. It shows superior
performance when compared with three standard methods. Secondly, we compare the
performance of shift-variant and shift-invariant wavelet approaches. To assess better
this impact, we consider not only wavelet neural networks, but also wavelet linear
regression and wavelet model trees. Our results show that the use of shift invariant
wavelet transform improves the accuracy in all cases.

2 Wavelet Transform and Shift Invariance

The wavelet transform decomposes the signal into a hierarchical set of low frequency
components called approximations and high frequency components called details.
The approximations represent the general trend of the signal while the details
represent the difference between two successive approximations. When the signal is
observed at discrete times, as in the electricity load data, we can apply the DWT. The
Mallat’s implementation of DWT [8] is widely used; it is based on filtering and is
computationally efficient.

The standard DWT is not shift invariant. The DWT of a signal is shift invariant if
the DWT coefficients of the signal values do not depend on the origin of the
transformation. Time series applications such as electricity load prediction use a
sliding window. Shift invariance is a desired property for them as without it the
wavelet coefficients of the same point will be different in different sliding windows.
This may affect the ability to recognize patterns in data and, hence, decrease the
prediction accuracy.

The DWT can be made shift invariant by removing the decimation step in the
wavelet decomposition. There are several algorithms to do this; we used the epsilon-
decimated algorithm [9]. The key idea is to compute and retain both the odd and even
coefficients at each decomposition level resulting in no loss of wavelet coefficients.
The resulting shift invariant DWT is called Non-Decimated Discrete Wavelet
Transform (NDWT).

 Wavelet Neural Networks for Electricity Load Forecasting 573

3 Data and Problem Statement

We consider 5-minute electricity load data for the state of New South Wales in
Australia, for the years 2006 and 2007, provided by Australian Energy Market
Operator [10]. Given a time series containing n observations X1, X2,…, Xn, our goal is
to forecast 1+nX , the value of the series one step ahead, using the data up to time n.

The 2006 data was used as training data (for feature selection and building prediction
models) and the 2007 data was used as testing data (for evaluating the performance of
these models). The training and testing sets contain 105,120 samples each.

4 Wavelet-Based Load Forecasting

Our wavelet-based approach for load forecasting consists of two main steps: 1) load
decomposition into several components, 2) conducting feature selection and building
a prediction model for each component, and then combining the individual
predictions into a final prediction.

4.1 Wavelet Decomposition of the Electricity Load

We apply both the classical DWT and the NDWT for multilevel decomposition of the
original electricity load data. Daubechies wavelet of order 4 (DB4) has been chosen
over other wavelet types as it is sufficiently regular and smooth for our dataset. After
an empirical evaluation of different decomposition levels we chose to decompose the
data up to level 3. This resulted in four components: A3, D3, D2 and D1.

Fig. 1. Electricity load series using NDWT

Fig. 1 shows these components for a subset of our data using NDWT. We can see
that the low frequency component is a smoother version of the original signal. The
high frequency component also contains useful information, e.g. relatively high

574 M. Rana and I. Koprinska

values after the peaks in . D2 and D1 are similar and show more irregular
fluctuations that are most probably due to random variations in the load caused by
fluctuations in residential load, weather changes and measurement errors.

The wavelet decomposition of training data is done offline for each training point
using a sliding window of size L. The decomposition of the testing data is done
online, for each testing point, again using a sliding window of size L. The value of L
is p+f, where p is the number of the previous points (3 previous weeks in our case,
3*2016=6048 points) and f is the number of future points needed to avoid border
distortion during decomposition (see the next section). These future points are
predicted before the wavelet decomposition is done using the method described in the
next section. The value of f depends on the decomposition level and is defined as:
f=flen*2l-1-1, where: flen is the filter length, flen=8 for our case as we use DB4; l is
the decomposition level and varies from 1 to 3 in our case. Hence, the number of
future points f and the length of the sliding window are: f=7 and L=6055 for l=1, f=17
and L=6165 for l=2 and f=31 and L= 6079 for l=3.

4.2 Dealing with Border Distortion

Before decomposing the signal, it is necessary to apply a method for reducing the
border distortion. Border distortion is one of the major problems in wavelet
decomposition of a finite length signal. It includes both distortion on the left and right
sides of the signal. In our task the distortion at the left side (least recent values) can be
avoided completely by using an extended window of previous values. The distortion
at the right side (most recent values) cannot be avoided as it is not possible to use
future values. Hence, our goal is to minimize the distortion at the right side by using
an appropriate method for signal extension.

The standard methods for dealing with border distortion extend the signal by
padding extra points at the boundaries. There are three main methods: 1) symmetric
extension (sym) which mirrors the points next to the boundary; 2) smooth padding
(spd) which extrapolates the signal using the first derivatives of the edges and 3)
periodic extension (ppd) which extends the signal periodically starting from the
beginning. These methods introduce discontinuity at the signal boundaries and may
lead to incorrect estimation of the wavelet coefficients.

We propose a new method for signal extension. It appends previous actual load
values at the left side (which are available in our task) and predicted load values at the
right side. To compute the predicted load values, we apply the following method:

1) Feature selection – Using the whole training data, we apply autocorrelation
analysis to select important lag variables. Autocorrelation is a popular and
suitable approach as the load data is highly linearly correlated. We first
identify the 7 highest autocorrelation spikes which were at: 1) lag 1 (previous
lag), 2) lag 2016 (1 week ago), 3) lag 288 (1 day ago), 4) lag 4032 (2 weeks
ago), 5) lag 1728 (6 days ago), 6) lag 6048 (3 weeks ago) and 7) lag 2304 (8
days ago). We then extract the lag variable at the spike and its two neighbors
(before and after). The first spike (at lag 1) is an exception as there are no lag
variables after it and also because it corresponds to the strongest linear
dependence; we extract its lag variable and the previous 10 lag variables. This
results in 1*11+6*3=29 extracted variables in total.

 Wavelet Neural Networks for Electricity Load Forecasting 575

2) Building a prediction model – Using the selected variables and the training
data, we build a prediction model to forecast the load value one step ahead. We
chose Linear Regression (LR) as the prediction model. Our previous work [11]
has shown that it is an accurate and fast prediction method.

3) Forecasting f future load values to extend the signal on the right side – The
trained prediction model in the previous step is used to forecast f future values
(f=7, 17 or 31 for decomposition levels 1, 2 and 3, respectively). We use an
iterative method: e.g. the value Xt+1 is predicted and appended, then this
predicted value is used to predict Xt+2, etc.

Fig. 2 compares our method for signal extension with the three standard methods
and the actual signal (ground truth, not available in practice). It presents the results for
the low frequency component A3 for NDWT. We can see that all standard methods
show substantial deviations from the actual signal – ppd is least accurate, followed by
sym and spd. In contrast, our method is able to follow the actual signal very closely.
Hence, our method completely avoids the distortion at the left border and significantly
reduces the distortion at the right border.

Fig. 2. Comparison of signal extension methods

4.3 Feature Selection and Wavelet Prediction Models

Good feature selection is essential for accurate prediction. We compute the
autocorrelation of each wavelet component and use it to select features for this
component. The autocorrelation function shows the linear correlation of the time
series with itself at different lags; spikes close to 1 and -1 correspond to strong
dependencies, and hence informative variables. We extract lag variables from the
areas of the 7 highest spikes. As the highest spike is the most important, we extract
more variables from its neighborhood. Likewise, as A3 is the most important wavelet
component, we extract more variables from it. The extracted features are:

• for A3 - the lag variables of the 7 highest spikes and their two neighbors
(before and after), except for the highest spike (at lag 1) where we extract the
10 previous lag variables: 1*11+6*3=29 variables.

• for D3, D2 and D1 - the lag variables of the 7 highest spikes and their two
neighbors, except for the highest spike, where we extract the 5 previous lag
variables: 1*6+6*3=24 variables.

The extracted features for each wavelet component are shown in Table 1.

6990

7490

7990

1 5 9 13 17 21

A
3

[M
W

]

Time Lag (1 lag = 5 mins)

sym
ppd
spd
actual values
our method

576 M. Rana and I. Koprinska

Table 1. Selected features

Series Selected variables to predict Xt+1 # Features (n)

A3 Xt-10 to Xt; XDt-1 to XDt+1; XD6t-1 to XD6t+1; XWt-1 to XWt+1; XD8t-1 to

XD8t+1; XW2t-1 to XW2t+1; XW3t-1 to XW3t+1

29

D3 Xt-5 to Xt; XDt-1 to XDt+1; XD2t-1 to XD2t+1; XD6t-1 to XD6t+1; XWt, to

XWt+1; XD8t-1 to XD8t+1; XW2t, to XW2t+1

24

D2 As D3 24

D1 Xt-5 to Xt; XDt-1 to XDt+1; XD2t-1 to XD2t+1; XD5t-1 to XD5t+1; XD6t-1 to

XD6t+1; XWt, to XWt+1; XD8t-1 to XD8t+1

24

Xt - load on forecast day at time t; XDt , XD2t, XD5t, XD6t XD8t - loads 1, 2, 5, 6 and 8 days before the

forecast day at time t; XWt, XW2t, XW3t- loads 1, 2 and 3 weeks before the forecast day at time t.

For each wavelet component we build a separate prediction model using the

selected features. The final prediction is generated by combining the individual
predictions with the inverse wavelet transform. Most of the existing wavelet-based
approaches for load forecasting use Backpropagation Neural Network (BPNN) as the
prediction algorithm. To better assess the impact of the shift invariant wavelet
transform, in addition to BPNN, we also use LR and Model Tree Regression (MTR).
While BPNN and LR are well known, MTR [12] is a newer method. It generates a
decision tree for regression tasks that is converted into a set of rules. MTR typically
produces a small set of rules that are easily understandable by humans, which is an
advantage over the LR and BPNN prediction methods.

5 Results and Discussion

To assess the impact of the shift invariant property of the wavelet transform, we
compare the results of our wavelet-based method for load forecasting using the
standard DWT and also the NDWT. Table 2 presents the predictive accuracy results
for these two cases, for the three different prediction algorithms.

To measure the predictive accuracy, we use two standard measures: Mean Absolute
Error (MAE) and Mean Absolute Percentage Error (MAPE) defined as follows:

[%]100
_

__1
,__

1

11

==

−
=−=

n

i i

ii
n

i
ii

actualL

forecastLactualL

n
MAPEforecastLactualL

n
MAE

where L_actuali and L_forecasti are the actual and forecasted electricity loads at
the 5-minute lag i and n is the total number of predicted loads.

From Table 2 we can see that the use of the NDWT for decomposition of
electricity load resulted in considerably higher accuracy than the use of DWT, for all
three prediction algorithms. The improvements in terms of MAE and MAPE,
respectively, are: 8.74% and 8.86% for BPNN, 14.40% and 14.16% for LR and
15.04% and 15.54% for MTR. All improvements are statistically significant at
p<=0.001. These improvements are due to the shift invariant property of the NDWT.

 Wavelet Neural Networks for Electricity Load Forecasting 577

In NDWT the wavelet coefficients for each data point remain the same for different
sliding windows which helps to extract patterns in data, reduce noise and build more
accurate prediction models.

Table 2. Comparison of DWT with NDWT

Pred.
algorithm

DWT NDWT
MAE [MW] MAPE [%] MAE [MW] MAPE [%]

BPNN 27.70 0.316 25.28 0.288

LR 29.17 0.332 24.97 0.285

MTR 29.73 0.337 25.26 0.288

We also compare the wavelet-based methods with a number of non-wavelet

baselines. The industry model is a typical prediction model used by industry
forecasters [3]. It uses 11 variables (previous loads from the same day and 7 days
ago), combined into 9 features with logarithmic transformation and differencing of
successive values, and BPNN as prediction algorithm. Naivemean simply predicts the
mean of the class variable in the training data. Naiveplag predicts the load from the
previous lag. Naivepday predicts the load from the previous day at the same time and
Naivepweek predicts the load from the previous week at the same time.

Table 3. Comparison with baselines

Pred. models MAE [MW] MAPE [%]

Industry 27.58 0.314
Naivemean 1159.42 13.484
Naiveplag 41.24 0.473
Naivepday 453.88 5.046
Naivepweek 451.03 4.940

The results for the baselines are shown in Table 3. All wavelet based methods,

regardless of the type of wavelet transform (NDWT or DWT), outperformed all naïve
baselines. NDWT also outperformed the industry model when used with any of the
three prediction algorithms. However, DWT was outperformed by the industry model
(similar accuracy for BPNN and lower for LR and MTR). The pairwise differences in
accuracy between all wavelet-based models and all baselines are statistically
significant at p<=0.001 except the difference between DWT with BPNN and the
industry model. This comparison shows again the importance of NDWT for building
accurate prediction models. Overall, the most accurate model was LR with NDWT
achieving MAPE of 0.285%.

6 Conclusion

In this paper we considered the problem of electricity load forecasting using a
wavelet-based approach. We studied two key issues: 1) how to deal with border
distortion and 2) the importance of using a shift invariant transform. Our study was

578 M. Rana and I. Koprinska

conducted using Australian electricity data for two years. Firstly, we proposed a new
method for dealing with border distortion. It completely eliminates the distortion at
the left side of the signal and shows minimal distortion on the right side in
comparison to three standard methods. Secondly, we compared the performance of
shift variant and shift invariant transforms in a wavelet-based prediction approach,
using three different prediction algorithms: BPNN, LR and MTR. Our results showed
that the application of NDWT (a shift invariant wavelet transform) resulted in
considerably higher predictive accuracy than the use of DWT (a standard shift variant
wavelet transform), for all three prediction algorithms. Hence, we recommend the
application of NDWT for wavelet-based prediction of electricity load data.

Acknowledgement. Mashud Rana is supported by an Endeavour award and a NICTA
scholarship.

References

1. Taylor, J.W.: An Evaluation of Methods for Very Short-Term Load Forecasting Using
Minite-by-Minute British Data. International Journal of Forecasting 24, 645–658 (2008)

2. Charytoniuk, W., Chen, M.-S.: Very Short-Term Load Forecasting Using Artificial Neutal
Networks. IEEE Transactions on Power Systems 15, 263–268 (2000)

3. Koprinska, I., Rana, M., Agelidis, V.G.: Yearly and Seasonal Models for Electricity Load
Forecasting. In: International Joint Conference on Neural Networks (IJCNN), San Jose,
pp. 1474–1481. IEEE Press (2011)

4. Reis, A.J.R., Alvis, A.P., da Silva, P.A.: Feature Extraction via Multiresolution Analysis
for Short-Term Load Forecasting. IEEE Transactions on Power Systems 20, 189–198
(2005)

5. Chen, Y., Luh, P.B., Guan, C., Zhao, Y., Michel, L.D., Coolbeth, M.A.: Short-Term Load
Forecasting: Similar Day-based Wavelet Neural Network. IEEE Transactions on Power
Systems 25, 322–330 (2010)

6. Bashir, A.A., El-Hawary, M.E.: Applying Wavelets to Short-Term Load Forecasting Using
PSO-Based Neural Network. IEEE Transactions on Power Systems 24, 20–27 (2009)

7. Zhang, B.-L., Dong, Z.-Y.: An Adaptive Neural-Wavelet Model for Short Term Load
Forecasting. Electric Power Systems Research 59, 121–129 (2001)

8. Mallat, S.: A Theory for Multiresolution Signal Decomposition: the Wavelet
Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11,
674–693 (1989)

9. Nason, G.P., Silverman, B.W.: The Stationary Wavelet Transform and Some Statistical
Applications. In: Lecture Notes in Statistics, pp. 281–300 (1995)

10. Australian Energy Market Operator (AEMO), http://www.aemo.com.au
11. Koprinska, I., Rana, M., Agelidis, V.G.: Electricity Load Forecasting: A Weekday-Based

Approach. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012,
Part II. LNCS, vol. 7553, pp. 33–41. Springer, Heidelberg (2012)

12. Holmes, G., Hall, M., Frank, E.: Generating Rule Sets from Model Trees. In: Foo, N.Y.
(ed.) AI 1999. LNCS, vol. 1747, pp. 1–12. Springer, Heidelberg (1999)

Interactive Two-Level WEBSOM
for Organizational Exploration

Timo Honkela1 and Michael Knapek1,2

1 School of Science, Department of Information and Computer Science
2 School of Arts, Design and Architecture, Department of Media

Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland

Abstract. Among the large number of applications of the self-organizing map
(SOM) algorithm, creating maps of document collections have become com-
monplace since the introduction of the WEBSOM system. This article presents
a novel development in WEBSOM research. The Interactive Two-Level WEB-
SOM, I2WEBSOM, includes two main components, a map of terms, and a dy-
namic map of documents. The map of terms is used to enable interactive feature
selection and weighting. The map of documents is calculated using terminology-
based feature vectors where their weights can be changed using the first-level
map. In the experimental part, we focus on the application of creating maps of
people based on their interest or competence profiles.

1 Introduction

We will describe in the following the classical WEBSOM method for information vi-
sualization, and how maps of people can be created using WEBSOM, for instance, to
facilitate competence management.

1.1 WEBSOM in Exploration of Text Collections

The WEBSOM method was developed to facilitate interactive visual exploration of large
document collections [1]. A central component of the WEBSOM is the self-organizing
map (SOM) [2] that has proven to be an efficient and reliable means for projecting high-
dimensional data into a low-dimensional space. The map consists of a number of model
vectors mi(t) that are organized typically into a regular two-dimensional grid. For input
data item x(t) updated value mi(t +1) is computed iteratively using the well known up-
date rule mi(t +1) = mi(t)+(t)hci(t)[x(t)mi(t)], where (t) is a scalar factor that defines
the size of the update, index i is the model vector under processing, c is the index of
the model that has the smallest distance from x(t), and the factor hci(t) is a smoothing
kernel, also called the neighborhood function [2]. It has been shown that the SOM is
a viable alternative to more recently developed methods that are based on information-
theoretical or probability-theory principles especially when the trustworthiness of the
visualization is used as the quality criterion [3].

The number of applications in analyzing and visualizing numerical data was already
substantial by the beginning of 1990s even though the popularity of the SOM has since

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 579–585, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

580 T. Honkela and M. Knapek

then grown to cover most areas of science and technology. The second important en-
abling step that led into the development of the WEBSOM method was the advent of
the self-organizing semantic maps or, in other words, maps of words [4]. It was shown
that the SOM can be used to create meaningful analysis of individual words based on
the contextual statistics of each word. The relative syntactic or semantic similarity of
two words can be detected by comparing the patterns of sentential contexts in which the
words appear in text. The more similar the context patterns, the closer the relationship
between the words is. This basic idea has been known already for a long time [5] and
has been applied extensively during the recent years [6]. In the seminal work, artificially
generated sentences were used [4]. The first map of words in written texts was based on
analyzing the English translations of the fairy tales by Grimm brothers [7].

The idea of maps of documents had been brought up in early 1990s [8] and the first
published experiments were based on the titles of documents [9]. The development of
the WEBSOM method started in 1995 with the idea of creating “maps on informa-
tion highways”. The underlying motivation was based on the experiences in building
a natural language database interface using traditional natural language processing and
knowledge representation methods [10] and in applying developed modules in infor-
mation retrieval [11]. A straightforward approach for creating maps of documents is to
take the words appearing in the documents (or usually a subset of them) and to create a
vector space in which each word corresponds to a dimension.

The first WEBSOM architecture had two levels: map of words was used to model
similarities between words so that each word would not give rise to a single dimension
but semantically related words could be grouped together [1]. The same kind of mo-
tivation is widely used in information retrieval applications that apply latent semantic
analysis (LSA) [12].

In the two-level WEBSOM architecture, each document is encoded based on a map
of words. A histogram of of the words in the document on the map is formed, and the
histogram is normalized. This histogram resembles the vectors used in the vector space
model but in this case the components of the vectors correspond to groups of words
instead of single words [13].

In the later developments of the WEBSOM method, the two-level architecture was
abandoned partly due to computational complexity issues. With the simplified architec-
ture it was possible to create a map of millions of patents abstracts in which the number
of connections between input and output layers was in the order of 1010 [14]. Since
then, the WEBSOM concept has been applied in a large body of research (see, e.g.,
[15,16,17]).

1.2 Maps of People

One early application of the WEBSOM was creation of maps of people. In WSOM’97
conference, the participants were mapped based on the contents of their abstracts [18].
The idea has been extended in competence analysis [19] which is a central task in
the area of human resource management (HRM). In HRM, data mining methods are
becoming increasingly popular [20].

In the following, a novel development in WEBSOM research is described. The two-
level architecture is re-introduced but based on a different approach in which the map of

Interactive Two-Level WEBSOM for Organizational Exploration 581

words is used for feature selection and weighting. Moreover, the user interface is built
to visualize also the organization process, not only the end result. This visualization is
based on another two-level process in which the map units are adapted according to the
SOM learning rule and the dynamics is shown as a movement of the data points on the
map.

2 Interactive Two-Level WEBSOM

In the original WEBSOM two-level architecture, the map of words was used to find
synonyms and otherwise closely related words [1,13]. This procedure helps in lowering
the dimensionality of the input vector for the document map and in finding relation-
ships between semantically related documents even when different words are used to
describe the same thing. The random projection method also proved to be feasible in
dimensionality reduction [13].

Since the early developments, much more powerful computational resources and au-
tomatic term selection methods have become available. Moreover, there is an increasing
number of Semantic Web based and other terminological resources. Therefore, in the
Interactive Two-Level WEBSOM (I2WEBSOM), the terminology is extracted or de-
fined beforehand. The map of words becomes effectively a map of terms in which each
term is related to the domain(s) of the application at hand. The I2WEBSOM has a two-
level architecture:

• The map of terms is calculated to enable interactive feature selection and weighting.
• The map of documents is calculated using terminology-based feature vectors where

their weights can be changed using the first-level map. In this paper, we focus on
the application of creating maps of people.

The I2WEBSOM prototype has been fully implemented in Javascript with a json
interface to the person database (people.aalto.fi). The profiles of the people in the sys-
tem consist currently of a subset of the staff in the six schools of Aalto University.
The descriptive documents are a concatenation of each person’s description, associated
terms, and titles of their publications. The I2WEBSOM architecture and a snapshot of
the functional system is shown in Fig. 1.

2.1 Maps of Words as a Feature Selection Tool

The WEBSOM method has also been used to support qualitative research [21]. It was
concluded that the utility of the SOM in improving inference quality follows from the
fact that the method can easily be used to generate multiple well-grounded perspec-
tives on the data. These perspectives are not a collection of random views but form
an organized whole [21]. In a map of documents, different points of view can be ob-
tained through different weightings of the terms. A seemingly neutral starting point is to
weight all features equally or to use a weighting scheme that is based only on statistical
criteria such as different variants of tf-idf.

The user often has preferences which makes some conceptual domains covered by
the text collection more relevant than the others. As one of the strengths of the maps of

582 T. Honkela and M. Knapek

Fig. 1. An Interactive WEBSOM interface with three main elements: (1) A term map for choosing
term weightings, (2) A dynamic people map, the order of which depends on the chosen term
weights, and (3) Person information that can be viewed by clicking a person on the people map

documents is the possibility to obtain an overall view, this question of relevance is not
related to individual queries but to the overall mapping function. Moreover, when the
number of terms is in hundreds or thousands, one may wish to change the weights of
groups of terms at once. A map of terms (Fig. 2) can be used to accomplish such task.
Contextual information gives rise to a map in which related terms are close to other and
groups of them form conceptual clusters. In an interactive interface, one can choose an
area on the map and apply a weight changing operation on the selected terms. For in-
stance, in relation to a map of university staff, one may choose to give increased weight
to terms, e.g., related to business and software engineering. The effect of the change is
such that the areas that contain persons working in these areas will be magnified.

2.2 Visualizing Map Organization

The vast majority of SOM-based data analysis and visualization tools are based on
the idea that only the end result, an organized map is given to the user. The dynamic
process of self-organization is typically shown only when the algorithm is demonstrated
in educational settings. In I2WEBSOM, the organization and re-organization of the
document map is shown to the user. The main motivation is to help the user in detecting
the effects of the weight changes and to provide an understanding of the nature of
dimensionality reduction.

The dynamic visualization of the organization process takes place by showing the
position of each input vector x j. The positions are changed based on the iterative updates
of the model vectors mi(t). If the change of the best-matching units would be visualized
straightforwardly, it would be impossible in practice to follow the process in sufficient
detail. Therefore, the changes in the locations of the data points, loci, are updated based
on the update rule loci(t + 1) = loci(t)+ β[BMUi(t)loci(t)]. For the parameter β, the
step size used in the visualization, the value 0.1 has been found to be appropriate. Due
to the limitations of a printed document, the organization process is not shown here but
examples can be found at htt p : //research.ics.aalto. f i/cog/websom/.

Interactive Two-Level WEBSOM for Organizational Exploration 583

supply

sales

stock

business

economicsfinance

market

investment

political

consumption

globalization

purchasing

reputation
responsibility

trust

stakeholder

competitivenesseconomy

strategic

corporate

governance

management
marketing

tourism

ethics

customer

leadership
consum

policy

environme

b

health

heritage

social

supply

sales

stock

business

economicsfinance

market

investment

political

consumption

globalization

purchasing

reputation
responsibility

trust

stakeholder

competitivenesseconomy

strategic

corporate

governance

management
marketing

tourism

ethics

customer

leadership
consum

policy

environme

b

health

heritage

social

Fig. 2. An example of a map of terms where a part of the map is shown. Each term is associated
with a slide bar that can be used to change the weight of the term. Also a group of terms can be
manipulated simultaneously. On the left hand side, a neutral weighting is in use, and on the right
hand side, the weights of a selected set of terms have been increased.

BjörkbomM

DuZ

FilpponenI

uovinenA

HyytiäE

JuntunenJ

JänttiR

KarhuK

KyyräJ

LehtonenM

LukyanenkoA
MallatJ

Nguyen

PeuhkuriM

PulakkaH
RajaramanS

uoriO

ToivolaJ

örmäP

VehkaperäM

VehtariA

VilliM

VuorimaaP

WallénH

XiaoY

Ylä-JääskiA

ZhengZ

ZoppeJ

AcharyaKAhlavuoM
AuvinenT
BeijarNBjörkbomM

BovermannTCorreiaN
DeanP

BergA

DharmawansaP

DuZ
EirolaEEloMFabritiusJ

FilpponenIFranssilaS
GeYGlereanE
GoddardCHakalaJHakulinenLHeikkiläV
HonkelaT

enA

HyyppäH

HyytiäE

HänninenJIhantolaP
Iltanen-TähkävuoriSItkonenJJokinenO

JoutselaM

JuhalaMJuhankoJ
JunnilaMJuntunenJ

JänttiR

JärveläJ

JärvinenH

JääskeläinenM
KaijalainenOKanervoJKarhilaR
KarhuKKauppinenT

KettulaKKiuruPKnuuttilaJ
KohtalaCKoistinenKKoskelaMKoskinenTKosunenM
KujalaS

KuosmanenTKyrkiV
KytöM

KyyräJ
KätsyriJ
LeinonenT
LeskinenR

LeväT

LukyanenkoA

LättiSLöyttyniemiM
MallatJ
MalmiLMannerJ

MannonenPMarisaSMarkkulaMMeriM
MikkolaM

anderJ

MyllärniemiVNelimarkkaMNguyen
NieminenM

NikunenH
NuikkaMNuutinenH
OjalaVOjanperäT
PatersonAPekkalaJPeuhkuriMPiekkariR
PulakkaHPurmaJ

PöyryE

RaikeA
RajaramanSRautiainenK
RinneMRuuttunenK
SalminenM
SalovaaraA

SanaksenahoP
Senishch-ChmilewskyA

SeppäläOSjöbergM
SmuraTSomervuoriO
SonkkilaT

SorvaJ
SuihkonenSSuominenOSuorantaS

SusiT
SöderbergO

SaarinenL

TahirogluK
TerhoSTeräsS
TikkanenV

ToikkanenT
ToiminenPToivolaJ
TuomolaMTurnquistM

TurunenM

TuunainenV

TörmäP

VehkaperäM

VehtariA
VilliMVirtanenJVuoriRVuorimaaP

WallénH

XiaoY

Yli-KauhaluomaS
YlikorpiT

YliriskuS

Ylä-JääskiA

ZhengZ

ZhouQ
ZoppeJ
AaltioIÅmanP

Fig. 3. Two versions of a zoomed map of people. The coloring of each node indicates the school
of the person. On the left hand side, the map has been created with a neutral weighting in which
each term has a similar weight. On the right hand side, the map has become restructured based on
reweighting of the terms. One notable effect is that those people whose interests are defined by
terms with a low weight are grouped tightly together. This helps in exploring the relevant parts of
the map.

The end result of the organization process is in this case a map of people where two
persons are close to each other if they have relatively similar interests or competences.
Fig. 3 shows two examples of an area of a map of people.

584 T. Honkela and M. Knapek

3 Conclusions and Discussion

In this article, a novel development related to using the self-organizing map in the vi-
sualization of document collections has been presented. Different points of view into
a document collection can be formed by the I2WEBSOM method. An interactive term
map can be used in changing the weights of terms and terms groups.

The usefulness of the SOM in data visualization has been shown in practice through
numerous applications as well as quantitatively [3]. There is also a large number of
applications of the WEBSOM and closely related methods, and their usefulness has
been shown in relation to information retrieval tasks [16]. The I2WEBSOM method
increases the users’ control over the organization of the document map and helps in
creating transparency between data and the end result.

A quantitative evaluation of the I2WEBSOM method in a traditional manner would
be extremely difficult as the motivation is to enable different points of view into the
same data, based on interactions with the user. Moreover, the method has not been
developed in one particular information retrieval task in mind but it can serve several
purposes simultaneously. One may wish to obtain an overall view on the people in an or-
ganization or look for people with a particular interest or competence profile. Therefore,
it remains a future task to determine what kind of user studies are needed to evaluate
in a detailed manner the method presented in this paper. These are naturally beyond
the scope of this paper. Instead, with this method we hope to indicate novel kinds of
future application possibilities for unsupervised neural network and machine learning
techniques.

Acknowledgments. We are grateful to Oliver Manner and Jan Fabritius who have de-
veloped the Aalto People web service and provided access to the data used in the exper-
iments. The support from Philip Dean and Juhani Tenhunen is gratefully acknowledged
as well as the collaboration with Jorma Laaksonen and Hannele Törrö in the earlier
stages of the project.

References

1. Honkela, T., Kaski, S., Lagus, K., Kohonen, T.: Newsgroup exploration with WEBSOM
method and browsing interface. Technical Report A32, Helsinki University of Technology,
Laboratory of Computer and Information Science, Espoo, Finland (1996)

2. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001)
3. Venna, J., Kaski, S.: Local multidimensional scaling. Neural Networks 19(6), 889–899

(2006)
4. Ritter, H., Kohonen, T.: Self-organizing semantic maps. Biological Cybernetics (1989)
5. Harris, Z.: Distributional structure. Word 10(23), 146–162 (1954)
6. Turney, P.D., Pantel, P.: From frequency to meaning: Vector space models of semantics. J. of

Artificial Intelligence Research 37, 141–188 (2010)
7. Honkela, T., Pulkki, V., Kohonen, T.: Contextual relations of words in Grimm tales analyzed

by self-organizing map. In: Proc. of ICANN 1995, Paris, EC2 et Cie, vol. 2, pp. 3–7 (1995)
8. Honkela, T., Vepsäläinen, A.M.: Interpreting imprecise expressions: Experiments with Ko-

honen’s self-organizing maps and associative memory. In: Proc. of ICANN 1991, vol. 1,
pp. 897–902 (1991)

Interactive Two-Level WEBSOM for Organizational Exploration 585

9. Lin, X., Soergel, D., Marchionini, G.: A self-organizing semantic map for information re-
trieval. In: Proc. of the 14th ACM SIGIR, pp. 262–269 (1991)

10. Jäppinen, H., Honkela, T., Hyötyniemi, H., Lehtola, A.: A multilevel natural language pro-
cessing model. Nordic Journal of Linguistics 11, 69–82 (1988)

11. Alkula, R., Honkela, T.: Development of text storage and information retrieval methods with
natural language processing components. Final report of the FULLTEXT project (in Finnish).
VTT, Espoo, Finland (1992)

12. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing
by latent semantic analysis. J. of the American Society of Information Science 41, 391–407
(1990)

13. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM–self-organizing maps of docu-
ment collections. Neurocomputing 21(1), 101–117 (1998)

14. Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., Saarela, A.: Self or-
ganization of a massive document collection. IEEE Transactions on Neural Networks 11(3),
574–585 (2000)

15. Ong, T.H., Chen, H., Sung, W.K., Zhu, B.: Newsmap: a knowledge map for online news.
Decision Support Systems 39(4), 583–597 (2005)

16. Saarikoski, J., Laurikkala, J., Järvelin, K., Juhola, M.: A study of the use of self-organising
maps in information retrieval. Journal of Documentation 65(2), 304–322 (2009)

17. Ding, Y., Fu, X.: The research of text mining based on self-organizing maps. Procedia Engi-
neering 29, 537–541 (2012)

18. Lagus, K.: Map of WSOM 1997 abstracts–alternative index. In: Proc. of WSOM 1997,
vol. 97, pp. 4–6 (1997)

19. Honkela, T., Nordfors, R., Tuuli, R.: Document maps for competence management. In: Proc.
of the Symposium on Professional Practice in AI, pp. 31–39 (2004)

20. Piazza, F., Strohmeier, S.: Domain-driven data mining in human resource management: A
review. In: Proc. of ICDMW 2011, pp. 458–465 (2011)

21. Janasik, N., Honkela, T., Bruun, H.: Text mining in qualitative research application of an
unsupervised learning method. Organizational Research Methods 12(3), 436–460 (2009)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 586–594, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Optimal Operation of Electric Power Production
System without Transmission Losses Using Artificial

Neural Networks Based on Augmented Lagrange
Multiplier Method

George J. Tsekouras1, Fotis D. Kanellos2, Nikos E. Mastorakis1,3,
and Valeri Mladenov4

1 Department of Electrical & Computer Science, Hellenic Naval Academy, Terma
Hatzikyriakou, 18539 Piraeus, Greece

2 Production Engineering & Management Department, Technical University of Crete, Technical
University Campus, 73100 Chania, Greece

3 English Language Faculty of Engineering, Technical University of Sofia,
8 St. Kl. Ohridski Blvd., 1000, Sofia Bulgaria

4 Department of Theoretical Electrical Engineering, Technical University of Sofia,
8 St. Kl. Ohridski Blvd., 1000, Sofia Bulgaria

tsekouras_george_j@yahoo.gr, kanellos@mail.ntua.gr,
mastor@wseas.org, valerim@tu-sofia.bg

Abstract. The optimal economic operation of a thermal electric power
production system without considering transmission losses is a critical problem
for ships, aircrafts, island power systems and it is usually solved with Lagrange
method. In this paper, an alternative solution method is proposed using artificial
neural networks (ANN) based on augmented Lagrange multiplier method with
equality and inequality constraints. The respective theoretical analysis is
presented, while a specific case study is studied. The advantages and
disadvantages of the method are discussed and compared with the classical
Lagrange method and ANN method based on external penalty functions.

Keywords: ANN, economic dispatch, thermal power system.

1 Introduction

Artificial neural networks (ANNs) have been applied to many power systems
problems such as, short-term load forecasting [1], midterm energy forecasting [2],
reliability analysis [3], dynamic security analysis [4], system protection [5], load
shedding [6], power quality [7], transformer iron losses estimation [8], generators
design optimization [9], estimation of insulators characteristics [10] etc. In previous
work [11] the authors have developed an artificial neural network based on external
penalty functions for the optimal operation of thermal electric power production
system without transmission losses [12-13].

 Optimal Operation of Electric Power Production System 587

The objective of this paper is to present an alternative method based on artificial
neural networks specialized in the solution of continuous, nonlinear constrained
optimization problems, exploiting augmented Lagrange multiplier method [14]. In
section 2 the mathematical base of the optimal operation of a thermal electric power
system is formed. In section 3 the mathematical base of the developed ANN based on
augmented Lagrange multiplier method is presented while in section 4 indicative case
studies are presented. Finally, in section 5 the advantages and the disadvantages of the
classic Lagrange technique, the ANN method based on external penalty functions [11]
and the presented method are commented.

2 Mathematical Base for Optimal Operation of All-Thermal
Power System without Transmission Losses

The optimal operation of the thermal and of the hydro-thermal continental power
systems with or without transmission losses, known as economic dispatch, has been
already analyzed in the literature [12-13]. In this section the respective mathematical
background of the optimal operation of an all-thermal power system without
transmission system losses is presented briefly. It is assumed that the thermal system
consists of N thermal generating units connected to the same bus. Let the jth unit
produces output active power PTHj, bounded by the technically minimum active
power, PminTHj, and the technically maximum active power PmaxTHj of the unit. The
respective constraints are formulated as:

min TH TH max THj j jP P P≤ ≤ for 1, 2,...,j N= (1)

The respective fuel cost of each unit is given by the function FTHj(PTHj), which is
usually a polynomial of second or third order of PTHj. This means that:

() 2 3
TH TH TH TH THj j j j j j j j jF P a b P c P d P= + ⋅ + ⋅ + ⋅ (2)

Where aj, bj, cj, dj are proper economic coefficients considered as known next.
For each time interval DT with constant load demand PD the total fuel cost Ftot of

the power system is the sum of the individual fuel costs of the units, and it is
calculated by the following multivariable continuous differential equation:

()TH TH

1

N

tot j j
j

F F P
=

= (3)

Active power balance without considering transmission losses can be written for
each time interval DT, as:

TH
1

N

j D
j

P P
=

= (4)

The target is to determine the generating levels of the units such that the total fuel
cost Ftot, is minimized and active power balance constraint is fulfilled. This means that

588 G.J. Tsekouras et al.

the total fuel cost Ftot should be minimized taking into consideration the respective
constraint of eq. (4). This problem can be solved by integrating eq. (4) in eq. (3) with
the use of an unknown Lagrange multiplier, i.e. λ. Then eq. (3) is modified as:

()TH TH TH
1 1

N N

tot j j j D
j j

L F P P Pλ
= =

= − ⋅ −

 (5)

Solving Lagrange equation with classic Gauss-Seidel technique the determination
of λ is achieved as it has been described in [11]. Afterwards the respective power
production of the jth unit is calculated.

3 Mathematical Base for Continuous, Nonlinear, Constrained
Optimization Process Using ANNs and Based on Augmented
Lagrange Multiplier Technique

3.1 General

A constrained minimization problem can be stated as the following one: “Find

()1 2, ,...,
T n

nx x x x= ∈ which minimizes the continuous, non-linear scalar function

() ()1 2, ,..., nf x f x x x=
 subject to the equality constraints () 0ih x =

 for 1,2,...,i p=

and the inequality constraints () 0ig x ≥
 for 1, 2,...,i p p m= + + ”. It is noted that

inequality constraint () 0w x ≤
 can be replaced by the inequality constraint

() 0w x− ≥
. The aforementioned problem can be transformed to an unconstrained

problem having the following pseudo-cost energy function:

() ()
() () ()

() ()

2

1

2 2
min_ min_

1

1

2
, ,

1

2 2

p

i i i i
i

m

i i i i i
i p

f x h x k h x

E x L x k
a

g x k g x

λ
λ

λ λ

=

= +

 + ⋅ + ⋅ ⋅ = =
 + ⋅ + ⋅ ⋅ − ⋅

 (6)

Where λi are the Lagrange multipliers (λi<0), ki are the multiplication penalty factors
(ki>0), a is the regularization parameter (a≥0) for the case of an ill-conditioned
problem and ()min_ ig x

 are the modified inequality functions defined by:

() ()min_ min , i
i i

i

g x g x
k

λ
= −

 for 1, 2,...,i p p m= + + (7)

If the first partial derivatives of the constraints ()ig x

 are continuous in n then

this will also happen for the modified inequality functions ()min_ ig x

 of eq. (10), as:

 Optimal Operation of Electric Power Production System 589

() ()min_ i i
i

j j

g x g x
S

x x

∂ ∂
= ⋅

∂ ∂

 (8)

Where Si is a proper step function:

()

()

0,

1,

i
i

i
i

i
i

i

if g x
k

S

if g x
k

λ

λ

 ≥ −=
 < −

 for 1, 2,...,i p p m= + + (9)

The minimization of the energy function is achieved by solving the following
system of differential equations:

()() ()

()() ()
1

1

p
i

i i i
ij jj

j m
i

i i i i
i p j

h xf
k h x

x xdx

dt g x
S k g x

x

λ
μ

λ

=

= +

∂ ∂ + + ⋅ ⋅ ∂ ∂ = − ⋅ ∂ + ⋅ + ⋅ ⋅ ∂

 for 1, 2,...,j n= & () ()00j jx x= (10)

()i
i i

d
h x

dt

λ ρ= ⋅
 for 1,2,...,i p= & () ()00i iλ λ= (11)

() 1
min ,i i

i i i i
i

d S
S g x a

dt k

λ ρ λ
 −

= ⋅ ⋅ − ⋅

 for 1,...,i p m= + & () ()00i iλ λ= (12)

Where:
 t is the auxiliary parameter of time,
 μj is the ANN learning rate for the variable xj upper limited by a constant

positive number μ0 defined by the following equation:

() , 0,
0,

max exp ,j init j j
j

t
t

Tμ

μ μ μ
 = ⋅ −

for 1, 2,...,j n= & , 0, 0,, , 0init j j jTμμ μ > (13)

 ki is the multiplication penalty factor lower limited by a constant positive
number k0 defined by the following equation:

() ,
0,min ,init i

i i

k
k t k

t

=

for 1,2,...,i m= & , 0,, 0init i ik k > (14)

 ρi is the ANN learning rate for the Lagrange variable λi lower limited by a
constant positive number ρ0 defined by the following equation:

() ,
0,min ,init i

i it
t

ρ
ρ ρ

=

for 1,2,...,i m= & , 0,, 0init i iρ ρ > (15)

590 G.J. Tsekouras et al.

3.2 Optimal Operation of All-Thermal Power System without Transmission
Losses

The target is to minimize the total fuel cost Ftot of the power system estimated in eq.
(3). In this minimization problem the unknown variable vector x

 consists of the

power generation levels of the units PTHj, while the function ()f x

 represents total

fuel cost function, Ftot:

()1 2 ,, ,...,
T N

TH TH TH Nx P P P= ∈ (16)

() ()2 3
TH TH TH

1

N

j j j j j j j
j

f x a b P c P d P
=

= + ⋅ + ⋅ + ⋅
 (17)

The unique active power balance equality without considering the losses of the
transmission system defined in eq. (4) is:

()1 TH
1

N

j D
j

h x P P
=

= −
, p=1 (18)

The technical constraints of the thermal units of eq. (1) are transformed to the
following inequalities:

()1 max TH TH 0i i ig x P P+ = − ≥
 for 1,2,...,i N= (19)

()1 TH min TH 0N i i ig x P P+ + = − ≥
 for 1,2,...,i N= (20)

Hence, for N thermal units 2·N inequality constraints are obtained.
The first partial derivatives of the minimization function and the constraints are the

following:

2
TH

TH

2 3j j THj j j
j

f
b c P d P

P

∂ = + ⋅ ⋅ + ⋅ ⋅
∂

 for 1, 2,...,j N= (21)

1

TH

1
j

h
P
∂ =

∂
 for 1, 2,...,j N= (22)

TH

1, 1

0, 1
i

j

j ig

j iP

− = −∂
= ≠ −∂

 for 2,3,..., 1i N= + , 1, 2,...,j N= (23)

TH

1, 1
0, 1

i

j

j i Ng
j i NP

= − −∂ =
≠ − −∂

 for 2, 3,..., 2 1i N N N= + + ⋅ + , 1, 2,...,j N= (24)

The ANN technique used in this study is an iterative process, where eq. (10)-(12)
can be easily transformed into the following iterative, discrete-time equations:

 Optimal Operation of Electric Power Production System 591

()

() ()
()()

() () () ()() ()

() () () () ()()()
()()

1
1 1 1

TH TH

2 1

2 TH

TH
1

TH

j j
j j

N i

j i i i i
i j

j

j

f x h x
k h x

P P

g x
S k g x

P

P

P

μ μ λ

μ λ
⋅ +

=

+

 ∂ ∂ − ⋅ − ⋅ + ⋅ ⋅
 ∂ ∂ =

∂
− ⋅ ⋅ + ⋅ ⋅

∂

for 1, 2,...,j N=

(25)

() () () ()()1 1 1 11 h xλ λ ρ+ = + ⋅ (26)

() () () () ()() () ()
()

1
1 min ,i

i i i i i i
i

S
S g x a

k
λ λ ρ λ

 − + = + ⋅ ⋅ − ⋅

for 2,3...,2 1i N= ⋅ +

(27)

Where, ℓ is the discrete variable for time or alternatively the “training epochs of
ANN technique”. The proposed ANN training process is terminated if one of the
following two stopping criterions is reached:

 the power generation levels of the units PTHj are stabilized (the variation between
two epochs should be smaller than convergence limit, "limit_convergence"),

 the maximum number of epochs is exceeded (larger than "max_ "epochs).

4 Application of the Proposed Method

A simple thermal electric power system without transmission losses is assumed. It
consists of three thermal units with the following fuel cost functions and technical
constraints:

() []2 4 3
TH,1 TH,1 TH,1 TH,1 TH,12700 100 0,03 10 m.u. hF P P P P−= + ⋅ + ⋅ + ⋅ (28)

() []2 5 3
TH,2 TH,2 TH,2 TH,2 TH,28760 75 0,1 5 10 m.u. hF P P P P−= + ⋅ + ⋅ + ⋅ ⋅ (29)

() []2 5 3
TH,3 TH,3 TH,3 TH,3 TH,34800 90 0,03 8 10 m.u. hF P P P P−= + ⋅ + ⋅ + ⋅ ⋅ (30)

Where []TH,1 TH,250 , 350 MWP P≤ ≤ , []TH,350 450 MWP≤ ≤ and “m.u.” is the

monetary unit. Two load levels are examined: 460 MW and 260 MW. The last one
activates the technical constraints of the thermal units. For ANN training the
following parameters values have been used, which have been chosen after a short
optimization process for each parameter separately:

3
, 10init jμ −= 0, 1.000jμ = 0, 200jTμ = for j=1, 2, 3

, 0.001init ik = 0, 1.000ik = , 0.001init iρ = 0, 1.000iρ = for i=1, …, 7

5limit_convergence 10−= max_ 10000epochs =

592 G.J. Tsekouras et al.

Power generation levels of the units are initialized as following:

()TH min TH max TH0.5j j jP P P= ⋅ + for 1,2,3j = (31)

In case of 460 MW demand load the generating levels of the units are obtained after
330 epochs, approximately. In Figures 1 and 2 the generating levels of the thermal units
and the total fuel cost with respect to the training epochs are presented. In case of 260
MW load demand the generating levels of the units are obtained after 1310 epochs,
approximately. In both cases the active power balance error is smaller than 0.01 MW.

In Table 1 the results of the generation levels of the thermal units, the power
balance error (difference between produced power by the units and load demand), the
epochs and the total operation cost of the system are registered for both of the
examined cases (460 MW and 260 MW of load demand) and for three minimization
techniques (classical Lagrange optimization method, ANN based on external penalty
functions [11], proposed ANN based on augmented Lagrange method).

It is concluded that:

 The three methods give practically the same results.
 Both ANN methods need significant more epochs for convergence than the

classical technique.
 The examined method exploiting ANN based on augmented Lagrange method

satisfies exactly the active power balance constraint.
 The ANN based on external penalty functions seems to be slightly superior to

the classical technique in terms of fuel cost minimization, which, however, is not
true. This happens because in both load levels the total power production of the
units is slightly smaller than total load demand.

Fig. 1. Case of demand load 460 MW: the generating levels of the thermal units with respect to
the number of epochs

 Optimal Operation of Electric Power Production System 593

Fig. 2. Case of demand load 460 MW: the total fuel cost with respect to the number of epochs

Table 1. Comparison of classical Lagrange optimization method, ANN based on external
penalty functions [11], proposed ANN based on augmented Lagrange method

Method Classic ANN
[11]

Proposed
ANN

Classic ANN
[11]

Proposed
ANN

Target Load 460 MW 260 MW

P
TH 1[MW] 110.58 110.97 110.58 50.00 49.99 49.99

P
TH 2[MW] 157.83 157.50 157.83 108.78 109.27 108.80

P
TH 3[MW] 191.58 190.80 191.58 101.22 100.52 101.21

Error [MW] 0.01 -0.73 0.01 0.00 -0.22 0.00
Epochs -

iterations [-]
8 12647 329 13 824 1310

Cost[m.u./h] 61252 61171 61252 40254 40232 40254

5 Conclusions

This paper presents an ANN based on augmented Lagrange method applied to a
thermal electric power system without considering transmission losses. The respective
results are satisfactory if the proper parameters of learning rate and penalty
multiplicative factors are properly selected. The proposed method is characterized by
one drawback as the number of iterations (epochs) needed is significant larger than
those required in classical Lagrange technique, while both methods are equivalent for
the rest results. However, the behavior of the proposed ANN is significantly better

594 G.J. Tsekouras et al.

than ANN based on external penalty functions [11], as active power balance
constraint is satisfied completely and the system marginal cost can be calculated
directly by the Lagrange multiplier λ1 of the respective equality constraint.

References

1. Tsekouras, G.J., Kanellos, F.D., Kontargyri, V.T., Tsirekis, C.D., Karanasiou, I.S., Elias,
C.N., Salis, A.D., Mastorakis, N.E.: A comparison of Artificial Neural Networks
algorithms for short term load forecasting in Greek intercontinental power system. In:
WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal
Processing (CSECS 2008), Puerto De La Cruz, Canary Islands, Spain (2008)

2. Tsekouras, G.J., Hatziargyriou, N.D., Dialynas, E.N.: An Optimized Adaptive Neural
Network for Annual Midterm Energy Forecasting. IEEE Transactions on Power
Systems 21, 385–391 (2006)

3. Amzady, N., Ehsan, M.: Evaluation of power systems reliability by an artificial neural
network. IEEE Transactions on Power Systems 14, 287–292 (1999)

4. Sobajic, D., Pao, Y.: Artificial Neural-Net based Dynamic Security Assessment for
Electric Power Systems. IEEE Tans. on Power Systems 4, 220–227 (1989)

5. Bachmann, B., Novosel, D., Hart, D., Hu, Y., Saha, M.M.: Application of Artificial Neural
Networks for Series Compensated Line Protection. In: Proc. of ISAP 1996, Orlando,
Florida (1996)

6. Novosel, D., King, R.L.: Using an Artificial Neural Network for Load Shedding to
alleviate overloaded lines. IEEE Tans. on Power Delivery 9, 425–433 (1994)

7. Mori, H., Itou, K., Uematsu, H., Tsuzuki, S.: An Artificial Neural Net Based Method for
Predicting Power System Voltage Harmonics. IEEE Tans. on Power Delivery 7, 402–409
(1992)

8. Georgilakis, P.S., Hatziargyriou, N.D., Doulamis, N.D., Doulamis, A.D., Kollias, S.D.:
Prediction of Iron Losses of Wound Core Distribution Transformers Based on Artificial
Neural Networks. Neurocomputing 23, 15–29 (1998)

9. Tsekouras, G., Kiartzis, S., Kladas, A.G., Tegopoulos, J.A.: Neural Network Approach
Compared to Sensitivity Analysis Based on Finite Element Technique for Optimization of
Permanent Magnet Generators. IEEE Transactions on Magnetics 37, 3618–3621 (2001)

10. Kontargyri, V.T., Gialketsi, A.A., Tsekouras, G.J., Gonos, I.F., Stathopoulos, I.A.: Design
of an Artificial Neural Network for the Estimation of the Flashover Voltage on Insulators.
Electrical Power Systems Research 77, 1532–1540 (2007)

11. Tsekouras, G.J., Kanellos, F.D., Tsirekis, C.D., Mastorakis, N.E.: Optimal Operation of
Thermal Electric Power Production System without Transmission Losses: An Alternative
Solution using Artificial Neural Networks based on External Penalty Functions. In: 12th
WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and
Databases (AIKED 2013), Cambridge, England (2013)

12. Momoh, J.A.: Electric Power System Applications of Optimization. Marcen Dekker Inc.,
New York (2001)

13. Saccomanno, F.: Electric Power Systems, Analysis and Control. Wiley Interscience, IEEE
Press, Piscataway, USA (2003)

14. Cichocki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing.
John Wiley & Sons, Stuttgart (1993)

An Echo State Network with Working Memories

for Probabilistic Language Modeling

Yukinori Homma and Masafumi Hagiwara

The Department of Information and Computer Science, Keio University,
Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223-8522 Japan

{homma,hagiwara}@soft.ics.keio.ac.jp

Abstract. In this paper, we propose an ESN having multiple timescale
layer and working memories as a probabilistic language model. The reser-
voir of the proposed model is composed of three neuron groups each with
an associated time constant, which enables the model to learn the hier-
archical structure of language. We add working memories to enhance
the effect of multiple timescale layers. As shown by the experiments, the
proposed model can be trained efficiently and accurately to predict the
next word from given words. In addition, we found that use of working
memories is especially effective in learning grammatical structure.

Keywords: Probabilistic language model, ESNs, working memory.

1 Introduction

Probabilistic language models are often used in natural language processing such
as machine translation, speech recognition and orthographic error correction.
These models are based on the Markov assumption, which means that they model
the conditional probability distribution of the next word from a given sequence
of words. For decades N -gram models are one of the most popular language
modeling approach due to their simplicity and good modeling performance[1].
However, they are criticized for they capture only superficial linguistic struc-
ture and have no notion of grammar at distances greater than N [2]. Moreover,
N -gram language modeling has the problems of data sparseness. The N -gram
matrix for any given training corpus is bound to have a very large number of
cases of putative zero probability N -grams[3].

Recently, several neural language models have been proposed[4][5][6]. Recur-
rent Neural Networks(RNN) are used as the basis of these models since Elman[7]
showed their representational power to learn language. They can take into ac-
count arbitrary long dependency between words and represent the context of a
sentence in their recurrent layer compactly. Therefore, RNN has ability to out-
perform N -gram models. In fact, MTRNN[5] model with a multiple timescale
layer has shown to have superior performance in the language model tasks.

Echo State Networks(ESNs) proposed by Jaeger[8] are a type of three-layered
RNN. They have the recurrent hidden layer whose connections are sparse, ran-
dom and fixed. Only connections leading to the output layer could be changed

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 595–602, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

596 Y. Homma and M. Hagiwara

during training. The main advantage of these approaches is the possibility of
exploiting the processing capability of an RNN structure and, at the same time,
of avoiding the difficulties associated with the RNN training process[9]. ESN
models outperformed classical fully trained RNNs in many tasks[10].

In this paper, we propose a novel ESN having multiple timescale layer and
working memories(WMs). Working memories provide mechanisms for storing,
maintaining, retrieving and deleting information[11]. They maximize the effect
of multiple timescale layers. We show that the working memories are effective
in fast and accurate learning. In addition, we found that use of several working
memories effectively contribute to acquiring the hierarchical structure in input
sentences.

This paper is organized as follows: Section 2 gives the proposed model based
on an ESN with working memories. Section 3 explains the experiments and the
results. Finally we conclude with the discussion on the results in section 4.

2 Model

In this section, we present an ESN model with multiple timescale layer and
working memories. ESNs are recent development in the field of recurrent nerural
networks. They are composed of three layers: an input layer u ∈ RK , a recurrent
layer x ∈ RN called reservoir, and an output layer y ∈ RL.

Fig. 1. The proposed model. The reservoir is composed of three neuron groups. The
IO, Cf and Cs neuron groups are shown each as round, pentagon and hexagon shaped
nodes. Connections with solid line are fixed while the others are trained.

The proposed model is shown in Fig. 1. The reservoir of the proposed model
is composed of three neuron groups, each with an associated time constant τ .

An Echo State Network with Working Memories 597

The three neuron groups consist of the input-output(IO)xio ∈ RNio , Fast
Context(Cf)xcf ∈ RNcf , and Slow Context(Cs)xcs ∈ RNcs(Nio+Nio+Nio = N).
We set τ = 2, 5, 70 for each IO, Cf, Cs neuron group in our experiments. These
values are the same as [12]. The number of IO, Cf, Cs neuron units is each 300,
400, 110. These values are just ten times as large as that of [12].

A working memory is obtained by a set of special output units. Please refer
to [11] for more information. We employed two working memories(m1 ∈ RM1 ,
m2 ∈ RM2) to the ESN model with multiple timescale layer. We make the one of
them(m1) store information of sentences and the other(m2) store that of words.

W in ∈ RN×K and W ∈ RN×N are the weights matrices for the input con-
nections and internal connections. W b1 ∈ RN×M1 and W b2 ∈ RN×M2 are the
matrices collecting the feedback weights from each of working memory units to
the reservoir. These matrices are fixed during training.

W in, W b1 and W b2 weights are non-zero with a probability of 0.4 and ran-
domly chosen to be either 0.5 or -0.5 with equal probability. W are non-zero
with a probability of 0.4 and uniformly sampled from [-1, 1]. The connections
between IO neuron and Cs neuron groups are set to zero. W are scaled to have
a spectral radius of 0.98.

Wm1 ∈ RM1×(N+K+M1), Wm2 ∈ RM2×(N+K+M1+M2) and
W out ∈ RL×(N+K+M1+M2) are the weights matrices for the 1st memory con-
nections, 2nd memory connections and output connections, respectively. These
three matrices can be trained in the learning steps.

The system update equations are the following.

z(t) = W inu(t) +Wx(t− 1) +W b1m1(t− 1) +W b2m2(t− 1). (1)

xi(t) =

⎧⎨
⎩

0. (t = 0 ∧ i /∈ ICsc)
Csci. (t = 0 ∧ i ∈ ICsc)
(1 − 1

τi
)xi(t− 1) + 1

τi
f(zi(t)). (otherwise)

(2)

m1(t) = fout(Wm1(u(t),x(t),m1(t− 1))). (3)

m2(t) = fout(Wm2(u(t),x(t),m1(t),m2(t− 1))). (4)

y(t) = fout(W out(u(t),x(t),m1(t),m2(t))). (5)

– z : internal state of reservoir(z ∈ RN)
– zi(t) : internal state of i th neuron at step t
– xi(t) : value of i th reservoir neuron at step t
– ICsc : neuron index set of Csc
– Csci : initial state of i th Csc neuron
– τi : time constant of i th neuron

598 Y. Homma and M. Hagiwara

Here, f and fout give the activation functions of the internal units. We use
the hyperbolic tangent as f and the sigmoid function as fout. We choose 60
neurons from Cs neurons to be used as the Controlling Slow Context(Csc), whose
initial states determine the network’s behavior. The Csc value is independently
prepared for each training sequence. We can recognize each of target sentences
because the value represents the target sequence. Please refer to [5] for the detail.

The memory connections(Wm1 ,Wm2), output connection(W out) and initial
states(Csc) are updated as follows.

v(t) = W inu(t) +Wx(t− 1) +W b1m1(t− 1). (6)

wm1

ij (t+ 1) = wm1

ij (t) + η(mtarget
1i (t)−m1i(t))f

′out(vi(t))xj(t)− λwm1

ij (t). (7)

wm2

ij (t+ 1) = wm2

ij (t) + η(mtarget
2i (t)−m2i(t))f

′out(zi(t))xj(t)− λwm2

ij (t). (8)

wout
ij (t+ 1) = wout

ij (t) + η(ytargeti (t)− yi(t))f
′out(zi(t))xj(t)− λwout

ij (t). (9)

Cscnewi = Cscoldi + ηf ′(xi(t))
∑
j∈y

wji(y
target
i (t)− yi(t)). (10)

– v : internal state of 1st memory units.

– wij : connection weight from j th to i th neuron

– η : learn constant number

– mtarget
i (t) : value of i th memory neuron at step t for target

– mi(t) : value of i th memory neuron at step t

– ytargeti (t) : value of i th neuron at step t for target sentence

– yi(t) : value of i th output neuron at step t

– λ : constant number for regularization

We introduce the penalty term for regularization in the learning. The regu-
larization term is used to penalize large wights. We can reduce the influence of
the over-fitting by adding this term.

The learning of proposed model is divided into 3 steps. At first, only Wm1

that is illustrated as longer dashed line in Fig. 1 is computed to estimate the
type of grammar. And then Wm2 as shorter dashed line in Fig. 1 is calculated
to estimate the part of speech. After learning of working memories, we compute
W out as dotted line in Fig. 1 to predict the next word as previously explained.
In all of these cases, the input sequences are generated in the same way.

An Echo State Network with Working Memories 599

Table 1. Lexicon

Category Nonterminal symbol Words

Verb (intransitive) V I jump, run, walk
Verb (transitive) V T kick, punch, touch
Noun N ball, box
Article ART a, the
Adverb ADV quickly, slowly
Adjective (size) ADJ S big, small
Adjective (color) ADJ C blue, red, yellow

Table 2. Regular grammar

Sentence Noun phrase Adverb phrase

S → V I NP → ART N ADJ → ADJ S
S → V I ADV NP → ART ADJ N ADJ → ADJ C
S → V T NP ADJ → ADJ S ADJ C
S → V T NP ADV

3 Experiments

3.1 Target Language

In this experiment, we used the same language set used in [5]. The language set
contains 17 words in 7 categories(Table 1) and a regular grammar consisting of
9 rules(Table 2). We used a set of characters(C) composed of the 26 letters in
the alphabet(’a’ to ’z’) and two other symbols(space, period). We defined each
character(ci ∈ C) as a character corresponding to the ith neuron(ui ∈ IIO). The
i th neuron has value 1 when the corresponding word is presented, 0.1 otherwise.
We madem1 andm2 memories learn the type of grammar and the part of speech.
We defined the type of grammar as 4 sentence rules in Table 2. We also defined
the type of part of speech as 7 categories in Table 1. These memory neurons are
encoded in the same way as input neurons. The model decides the next word
from the result of an arg-max function on the output layer.

In the experiments, we set the two constants as follows: η = 0.01, λ =
exp(−18). We generated 100 different sentences from the regular grammar. We
used 80 sentences to train the proposed model. The number of learning epochs is
2,000 for each memory connection, 10,000 for the output connection. We tested
the trained model’s capability using all of the 100 sentences. The testing proce-
dure was as follows.

(i) Recognition: Calculate Csc using a sentence.
(ii) Generation: Generate a sentence from the Csc gained in (i).
(iii) Comparison: Compare the original and generated sentence.

600 Y. Homma and M. Hagiwara

In the recognition step, we calculate Csc using a given sentence. We set Csc
as the one of the sentence that was the most similar to the given sentence in 80
training sentences.

3.2 Results

Table 3 shows the best result of sentence emulation task.

Table 3. Results of sentence emulation task

Model type Correct next word Correct sentences

Proposed model without WMs 0.98 (1891/1924) 72/100
Proposed model 0.99 (1910/1924) 88/100

As can be seen from Table 3, working memories contribute to obtain bet-
ter performance of the sentence emulation task. The percentage of calculating
next word is relatively high because there are only a few misspelled words in
a sentence. Although we used 80 sentences to train the model without working
memories, it could correctly emulate only 72 sentences. Table 3 implies that the
learning process in the model without working memories is insufficient.

Fig. 2. Squared errors between y and ytarget for the proposed model and the model
without working memories. The horizontal line shows the number of learning epochs.

Squared errors between y and ytarget for each model are illustrated in Fig. 2.
The squared error of model with working memories is larger than the model
without working memories in the beginning of learning because connections to

An Echo State Network with Working Memories 601

Fig. 3. Without WMs Fig. 4. With WMs

working memories have been already trained. Nevertheless, the value decreases
quickly with progression of learning compared to the other one. We can also see
that the squared error of the network with memories decreases to lower values
compared to the network without memories. Therefore working memories are
effective in learning to calculate the next word.

We analyzed the neural activation patterns when the proposed model gener-
ated sentences. We used the principle component analysis(PCA) to understand
the neural patterns. In Fig. 3 and 4, we can see transitions of Cs neuron group
activation for all of the words in 100 sentences.

Fig. 3 shows the neuron activation of the model without working memories.
Each segment looks like a line represents one of sentences. We can see that the
transitions of sentences are scattered randomly. There is little difference in the
types of grammar.

Fig. 4 shows the neuron activation of the proposed model. Compared to Fig.
3, sentences are clearly clustered based on their categories. The sentences in the
same category are represented in a similar way. We claim that the use of working
memories has heavy influence on the transitions of neuron activation. Working
memories work the reservoir to learn grammatical structures in input sentences.

4 Conclusion

In this paper, we proposed a probabilistic language model based on an ESN
with working memories. The proposed model has a reservoir composed of three
layers. Working memories have an effect to enhance the reservoir ability to store
information of the sentence structure. As the result of the experiments, it is
shown that the proposed model can be trained efficiently and accurately to
predict the next word from given words.

We also analyzed the neural activation patterns of the proposed model using
PCA. The results show that the sentences are clustered based on their gram-
matical structure. We conclude that use of working memories on ESN model is
effective in learning grammatical structure.

602 Y. Homma and M. Hagiwara

For our future work, we intend to apply the proposed model to the task to
learn larger grammatical structure. ESNs have potential to deal with large data
due to their learning ability. We expect the proposed model can generate more
natural sentences by learning from documents on the Web.

References

1. Arisoy, E., Sainath, T.N., Kingsbury, B., Ramabhadran, B.: Deep neural network
language models. In: Proceedings of the NAACL-HLT 2012 Workshop: Will We
Ever Really Replace the N-gram Model? On the Future of Language Modeling for
HLT, WLM 2012, Stroudsburg, PA, USA, pp. 20–28. Association for Computa-
tional Linguistics (2012)

2. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Pearson Education (2003)

3. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
1st edn. Prentice Hall PTR, Upper Saddle River (2000)

4. Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., Khudanpur, S.: Extensions of
recurrent neural network language model. In: 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5528–5531 (2011)

5. Hinoshita, W., Arie, H., Tani, J., Okuno, H.G., Ogata, T.: Emergence of hierarchi-
cal structure mirroring linguistic composition in a recurrent neural network. Neural
Networks 24(4), 311–320 (2011)

6. Tong, M.H., Bickett, A.D., Christiansen, E.M., Cottrell, G.W.: Learning grammat-
ical structure with Echo State Networks. Neural Networks 20(3), 424–432 (2007)

7. Elman, J.L.: Learning and development in neural networks: The importance of
starting small. Cognition 48(1), 71–99 (1993)

8. Jaeger, H.: The” echo state” approach to analysing and training recurrent neural
networks-with an erratum note, vol. 148. German National Research Center for
Information Technology GMD Technical Report, Bonn (2001)

9. Boccato, L., Lopes, A., Attux, R., Zuben, F.J.V.: An extended echo state network
using Volterra filtering and principal component analysis. Neural Networks 32,
292–302 (2012)

10. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Computer Science Review 3(3), 127–149 (2009)

11. Pascanu, R., Jaeger, H.: A neurodynamical model for working memory. Neural
Networks 24(2), 199–207 (2011)

12. Yamashita, Y., Tani, J.: Emergence of Functional Hierarchy in a Multiple Timescale
Neural Network Model: A Humanoid Robot Experiment. PLoS Comput. Biol. 4(11)
(2008)

Using the Analytic Feature Framework

for the Detection of Occluded Objects

Marvin Struwe1, Stephan Hasler2, and Ute Bauer-Wersing1

1 University of Applied Sciences Frankfurt am Main, Germany
2 Honda Research Institute Europe GmbH, Offenbach, Germany

{mstruwe,ubauer}@fb2.fh-frankfurt.de,
stephan.hasler@honda-ri.de

Abstract. In this paper we apply the analytic feature framework, which
was originally proposed for the large scale identification of segmented
objects, for object detection in complex traffic scenes. We describe the
necessary adaptations and show the competitiveness of the framework
on different real-world data sets. Similar to the current state-of-the-art,
the evaluation reveals a strong degradation of performance with increas-
ing occlusion of the objects. We shortly discuss possible steps to tackle
this problem and numerically analyze typical occlusion cases for a car
detection task. Motivated by the fact that most cars are occluded by
other cars, we present first promising results for a framework that uses
separate classifiers for unoccluded and occluded cars and takes their mu-
tual response characteristic into account. This training procedure can be
applied to many other trainable detection approaches.

Keywords: Object detection, Supervised learning, Occlusion handling.

1 Introduction

Despite extensive efforts the visual detection of objects in natural scenes is still
not robustly solved. The current best approaches usually extract unspecific local
features and apply a powerful classifier directly on top. So e.g. the combination
of Histograms of Oriented Gradients (HOG) [2] with a Support Vector Machine
(SVM) is reported to yield good performance in various detection benchmarks.
In contrast to this are methods that put effort in learning a more problem-specific
feature representation, on top of which a very simple classifier can be used for
discrimination. An example for such a method is the analytic feature architecture
proposed in [5], which showed high performance for large-scale identification of
segmented object views. In this paper we show that such an architecture can
also provide competitive results in detection tasks.

One main problem for systems acting in real world is that objects are often
occluded. This affects currently used object representations in different ways.
E.g. the methods that aggregate local features in a voting manner like [6,7] are
usually trained with unoccluded views. During recognition they can deal with
arbitrary occlusion patterns as long as sufficiently many features can still be

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 603–610, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

604 M. Struwe, S. Hasler, and U. Bauer-Wersing

detected. In contrast to this are the methods that train holistic object templates
in a discriminative manner like [2,5]. When training on unoccluded and testing
on occluded views these approaches show a much stronger relative decrease in
performance. The reason for this is the stronger specialization on the training
problem by focusing resources on differences between classes. However, in general
the voting methods perform worse than the discriminative ones, whenever test
and training set do not show such systematic differences, as discussed in [11,3].

To exploit the benefits of discriminative approaches also for occluded objects,
one could simply train them with occluded and unoccluded views. But this
will likely reduce the performance for unoccluded views during testing. So more
advanced processing is necessary.

One possibility is to exploit the relation between occluding and occluded ob-
ject, which for natural scenes usually shows rather systematic patterns. The
detection approach in [9] first searches for larger and thus more easily detectable
objects and later exploits spatial relations to improve the detection of smaller,
more difficult ones. This concept can be transferred to the occlusion problem.
So one could train special detectors for different types of occlusion and exploit
their mutual response characteristic in a scene.

Other approaches that make use of object-object relations are presented in
[10,4], where Markov-Random-Fields are used to infer if neighboring features
are consistent with a single detected instance or have to be assigned to different
ones. In this way both approaches can reason about relative depth of objects
and produce a coarse segmentation. However, in this paper we propose a more
directed search for occluded objects, instead of using such demanding iterative
processing over the full scene.

Also convolutional neural architectures were recently applied with great suc-
cess on current recognition [1] and segmentation benchmarks [8]. The problem of
occlusion, however, was not actively treated in these models so far. We propose
a particular training procedure for occluded and unoccluded detectors that can
be applied for these architectures similarly.

In Sec. 2 we outline how we adapted the analytic feature framework for de-
tection tasks. After a short description of the traffic scene data used in our
experiments, we evaluate the performance in Sec. 3. In Sec. 4 we propose a pos-
sible way to improve the detection of occluded cars and provide a first proof of
concept on segmented car images, before drawing the conclusion in Sec. 5.

2 Adaptation of Analytic Feature Framework

We base our appearance-based detector on the real-time object identification
framework in [5], which uses an attention mechanism to generate size normalized
segments of the input object. Over the gray-scale segment first SIFT descriptors
[7] are computed on a regular grid. Each descriptor is then matched to a set
of 421 analytic features which are the result of the supervised selection process
proposed in [5]. After this for each feature the global maximum is computed over
the segment, in this way removing all spatial information. Finally a Single Layer

Analytic Features for Object Detection 605

(a)

42
x4

2
90

x9
0

(b)

Fig. 1. (a) Analytic feature hierarchy. SIFT descriptors are computed on a regular grid
and matched to 96 analytic features. After a local maximum filter per feature the SLP
templates are used in a convolutional step. Maxima in the final response map denote
possible car locations. (b) Some analytic features for two template sizes.

Perceptron (SLP) is used to separate the 126 objects in the 421-dimensional
space. The approach is working robustly for full 3D rotation, even for untextured
objects which are notoriously difficult for the standard SIFT approach [7].

The application of the existing framework for full scene object detection re-
quires several adaptations. The rotation normalization of the SIFT descriptors is
switched off because cars usually occur only upright. To speed up processing only
96 analytic features are used, where only features of the car class and not the
background class were selected (see some examples in Fig. 1b). On the highest
layer the local SLP template is shifted over the input image. This convolutional
step is used to generate the car response map producing broad activation blobs
for a car. The reason for this was the global maximum operation over features
inside the template, which we had to replace with a local one to keep robustness
against small translations. The resulting feature architecture is shown in Fig. 1a.

To deal with cars at different distances, we train analytic features and SLPs
on three different segment sizes and use them on the largest image resolution,
while the largest template is also used on successively reduced resolutions. This
combined strategy improves detection performance because no compromise be-
tween minimal template size and most discriminative template size needs to be
found, which is a common drawback of other detection approaches.

3 Detection Results

We decided to use the detection framework proposed in this paper to locate cars
in real world traffic scenes. For this we equipped a car with a stereo camera and
acquired different streams with a total length of 45 minutes covering different
weather conditions (sunny, rainy, overcast) and scene types (city, rural, industry,
highway). For one frame per second we labeled typical traffic participants with
a ROI and also roughly estimated their percentage of occlusion.

606 M. Struwe, S. Hasler, and U. Bauer-Wersing

0 1 2 3 4 5

FP/IMAGE

0.0

0.2

0.4

0.6

0.8

1.0

R
E
C

A
L
L

Occlusion

 Default 0-40

 Non 0-0

 Medium 1-40

 High 41-80

(a) (b)

Fig. 2. (a) ROC for our car detection scenario. The performance decreases strongly
with the percentage of the cars’ occlusion. (b) ROC for pedestrian benchmark (un-
occluded, 50 pixels or taller). The analytic approach is on par with state-of-the-art
approaches.

To evaluate the car detection performance we split the image streams into
chunks of 30 seconds and used the odd chunks for the training of analytic fea-
tures and SLP templates and the even chunks for testing. We decided to exclude
car ROIs, whose width was more than twice their height (roughly 10% of the
data), from training. In this way the use of smaller and square SLP templates
was sufficient. So the templates were trained on segments of 42x42, 66x66, and
90x90 pixels (plus 18 pixels border at each side), into which the car was cen-
tered. Initially, the SLPs were trained to separate few thousand segments of
unoccluded cars from a larger set of randomly chosen non-car segments. During
5 bootstrapping steps more negative examples were generated.

Please note that we used the disparity information available for our image data
to reject implausible car candidates with simple hand-tuned rules on height-
above-ground and physical-size. Finally, a local competition removed further
weak hypotheses if they had a too strong overlap with more confident ones. For
the input images of size 800x600 the GPU implementation of our framework
runs with 10 frames per second on a mobile Geforce GTX580M.

The results for our car scenes are shown in Fig. 2a. We excluded cars with
a height below 35 pixels and used the common 50% mutual overlap criterion
between labels and detections. The curves reveal a strong dependency on the
percentage of the cars’ occlusion. For a false positive per image rate of 0.1 we
get 70% of the cars with an occlusion between 0-40%. This pure detection per-
formance is usually sufficient for a system that applies some kind of temporal
integration (tracking). However for higher percentages of occlusion the recall
drops severely, which can no longer be compensated at system level. In the next
section we propose a special approach for detection of occluded cars.

Analytic Features for Object Detection 607

Table 1. Counts of car occluders and occluded car parts for the ground truth data. In
total 8796 out of 15514 cars are occluded, most of them by other cars.

Occluding object #

Another car 7061
Image border 2137
Motor bike 82

Occluding object #

Pedestrian 70
Traffic sign 31
Other/non-labeled 1125

Occluded part #

Left 3730
Right 3124
Middle (only) 90

To get a comparison with state-of-the-art methods we decided to apply our
framework also to the pedestrian detection benchmark proposed in [3]. We eval-
uated the performance by doing 6-fold crossvalidation over the 6 streams and
averaged the results. In contrast to this the competitors in Fig. 2b used all
streams for testing and trained on other pedestrian data each. So the results
are not 100% comparable. However, because the streams are quite different from
each other and the overall label quality is not that high, there is no obvious
advantage in using the streams for training. So Fig. 2b roughly shows that we
are at least competitive to the popular HOG approach [2]. The main conceptual
difference to HOG is that it applies an SVM directly on top of the local gradi-
ent histograms, while we use an additional projection to the analytic features
and a simple SLP as classifier. Please note that because of the missing stereo
information only the mutual overlap heuristic was used here.

4 Occlusion Handling Using Object-Object Relations

In this section we propose a method to increase the detection performance for
occluded cars. Following our discussion in the introduction, for this we like to
exploit object-object relations. Taking into account that most cars are occluded
by other cars, as revealed by the analysis of the ground truth shown in Tab. 1,
we decided to implement following simple strategy: In order not to decrease
performance for unoccluded cars we will train a special classifier on occluded cars.
This new classifier will be applied in the vicinity of already detected cars only.
In a scene these initial car hypotheses are generated by the detection framework
described before using the classifiers trained on unoccluded cars. The conditional
application rule is necessary to avoid a strong increase of false positives (FP),
which would be the result of the independent usage of both classifiers.

For a fast proof of concept, we decided to first test this strategy on segmented
car and non-car views. So we generated data pairs i, each having a Foreground
segment F i containing the occluder and the corresponding Background segment
Bi containing something occluded. We refer to the set of all foreground/back-
ground segments with F = {F i} and B = {Bi} respectively. The types of pairs
that mimic all possible constellations in a scene are described in Fig. 3.

608 M. Struwe, S. Hasler, and U. Bauer-Wersing

F i Bi

car car

1. Car occluding car: The occluding car is inserted as positive
example to F and the occluded car as positive to B.

car no car

2. Car not occluding car: The car is put as positive to F and a
randomly chosen, car-free region in its vicinity as negative to B.

no car no car

3. Car-free pairs: In a real scene the initial detector will produce
false positives. The FPs of our detection framework are inserted
as negatives to F and a randomly chosen, car-free region next to
each FP as negative example to B.

Fig. 3. Segment pair types. Each pair has a foreground segment F i and a background
segment Bi. The positive examples (in gray) are generated from ground truth. For
simplification we only use samples with occlusion at the left side and mirror examples
with right occlusion to get more data. The classifier looks at the marked inner 42x42
pixel region of the segments into which the cars are fitted.

For the segment scenario we simply use the already trained SLP for a car size
of 42x42 as initial classifier, which will be referred to as CStd, and train the new
classifier COcc on the background segments B of same size using cars with an
occlusion up to 80%. The logic CCom combines CStd and COcc in a conditional
manner and predicts the labels LF i

and LBi
for each pair using the code:

LF i
= ’no car’

LBi
= ’no car’

if CStd(F i) ≥ TStd then

LF i
= ’car’

if CStd(Bi) ≥ TStd then

LBi
= ’car’

else if COcc(Bi) ≥ TOcc then

LBi = ’car’

So Bi is predicted as car, if either CStd or the new classifier COcc reaches its cor-
responding threshold, and only if a car was found in the foreground segment F i

already. We have chosen a low FPR of 0.1 to avoid disturbing false alarms, which
goes along with a recall of 0.84 (CStd = 0.37, COcc = 0.34). Some classification
examples are shown in Fig. 4.

To show the benefit of the combined logic, in Fig. 5a we compare the per-
formance of CCom with CStd and in Fig. 5b with COcc. Please note that the
combined approach depends on the two thresholds TStd and TOcc, and thus we
have to evaluate the performance of CCom for each combination of them. How-
ever, most of the resulting points in the ROC curve are dominated by a small
set of other points. We reduced the amount of the points and only show in the
plot a so called Pareto Front, which describes the set of optimal combinations.

Analytic Features for Object Detection 609

F i

Ground truth car car car no car car no car

CStd ≥ TStd yes yes no no yes yes

CCom result TP TP FN TN TP FP

Bi

Ground truth car car car no car no car no car

CStd ≥ TStd yes no no no no yes

COcc ≥ TOcc yes yes yes yes yes no

CCom result TP TP FN TN FP FP

TP - true positive

TN - true negative

FP - false positive

FN - false negative

Fig. 4. Pair classification examples. For each foreground sample F i we show the ground
truth label, the decision of CStd, and the result of the combined approach CCom. For
Bi we additionally show the decision of COcc because CCom depends on both classifiers
and on the result for F i. Dark gray is used for ’no car’ labels and responses below
threshold, light gray for the opposite. The conditional logic can correct FPs of COcc

(4th column), but in rare cases also prevents correct detections (3rd column). The
classifiers look at the marked inner 42x42 region.

0.0 0.2 0.4 0.6 0.8 1.0
FALSE POSITIVE RATE

0.0

0.2

0.4

0.6

0.8

1.0

R
E

C
A

LL

CStd on F
CStd on B
CStd on F B
CCom on F B

(a)

0.0 0.2 0.4 0.6 0.8 1.0
FALSE POSITIVE RATE

0.0

0.2

0.4

0.6

0.8

1.0

R
E

C
A

LL

COcc on F
COcc on B
COcc on F B
CCom on F B

(b)

Fig. 5. Comparison of CCom with CStd and COcc. (a) CStd shows a good performance
for the foreground segments F while the result for the occluded cars B is significantly
weaker. On the combined data set F ∪B, CCom is in general much better than CStd.
(b) COcc performs very good on B but has strong problems on the unfamiliar occluders
F . CCom also clearly outperforms COcc on F ∪B.

Figure 5a confirms again that CStd can cope substantially better with the
familiar foreground segments F than with the occluded segments in B. On the
combined data set F ∪ B the classification has some intermediate quality but
is clearly dominated by CCom. For example, at a recall of 0.8 CStd has a false
positive rate of 0.13, while that of the combined curve is 0.04. This is a threefold
reduction in the number of false positives.

610 M. Struwe, S. Hasler, and U. Bauer-Wersing

In Figure 5b, COcc shows a very good performance on the occluded segments
B, for which it was trained. However, the performance for the unoccluded cars in
F is much worse. One reason for this might be that COcc specialized too strongly
on the edge that is caused by the occluder and which is not present in the
unoccluded examples. Also in comparison to COcc, CCom shows a substantially
improved performance on the full data ensemble.

5 Conclusion

In this paper we presented a new object detection framework, which is based on
the analytic feature representation originally proposed for object identification.
We have shown the detection performance of the approach on a public pedestrian
detection benchmark and evaluated on our own benchmark how strong occlusion
effects the detection of cars. Motivated by these results and by an analysis of
typical occlusion causes we proposed a new combination of detectors that takes
the occlusion of cars by other cars into account. In a pre-study we successfully
showed the benefit of this approach on segmented car views. The next step
is to exploit the same principle also in full-scene detection and to other object
relations, like persons occluded by other objects, or more general occlusion cases.

References

1. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, Big, Sim-
ple Neural Nets for Handwritten Digit Recognition. Neural Computation 22(12),
3207–3220 (2010)

2. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In:
CVPR, pp. 886–893 (2005)

3. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian Detection: A Benchmark.
In: CVPR, pp. 304–311 (2009)

4. Gao, T., Packer, B., Koller, D.: A Segmentation-aware Object Detection Model
with Occlusion Handling. In: CVPR, pp. 1361–1368 (2011)

5. Hasler, S., Wersing, H., Kirstein, S., Körner, E.: Large-scale real-time object identi-
fication based on analytic features. In: Alippi, C., Polycarpou, M., Panayiotou, C.,
Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 663–672. Springer,
Heidelberg (2009)

6. Leibe, B., Schiele, B.: Interleaved Object Categorization and Segmentation. In:
BMVC, pp. 759–768 (2003)

7. Lowe, D.G.: Distinctive Image Features from Scale-invariant Keypoints.
IJCV 60(2), 91–110 (2004)

8. Schulz, H., Behnke, S.: Learning Object-Class Segmentation with Convolutional
Neural Networks. In: ESANN, pp. 151–156 (2012)

9. Torralba, A., Murphy, K.P., Freeman, W.T.: Contextual Models for Object Detec-
tion Using Boosted Random Fields. In: ICIP, pp. 653–656 (2011)

10. Winn, J., Shotton, J.D.J.: The Layout Consistent Random Field for Recognizing
and Segmenting Partially Occluded Objects. In: CVPR, pp. 37–44 (2006)

11. Yi-Hsin, L., Tz-Huan, H., Tsai, A., Wen-Kai, L., Jui-Yang, T., Yung-Yu, C.:
Pedestrian Detection in Images by Integrating Heterogeneous Detectors. In: ICS,
pp. 252–257 (2010)

Boltzmann Machines for Image Denoising

KyungHyun Cho

Department of Information and Computer Science
Aalto University School of Science, Finland
firstname.lastname@aalto.fi

Abstract. Image denoising based on a probabilistic model of local image patches
has been employed by various researchers, and recently a deep denoising autoen-
coder has been proposed in [2] and [17] as a good model for this. In this paper,
we propose that another popular family of models in the field of deep learning,
called Boltzmann machines, can perform image denoising as well as, or in certain
cases of high level of noise, better than denoising autoencoders. We empirically
evaluate these two models on three different sets of images with different types
and levels of noise. The experiments confirmed our claim and revealed that the
denoising performance can be improved by adding more hidden layers, especially
when the level of noise is high.

Keywords: Image Denoising, Deep Learning, Restricted Boltzmann Machine,
Deep Boltzmann Machine.

1 Introduction

Numerous approaches based on machine learning have been proposed for image de-
noising tasks over time. A dominant approach has been to perform denoising based on
local statistics of image patches. Under this approach, small image patches from a larger
noisy image are denoised and combined afterward to form a clean image.

For instance, in [9] independent component analysis (ICA) was used to estimate a
dictionary of sparse elements and compute the sparse code of image patches. Subse-
quently, a shrinkage nonlinear function is applied to the estimated sparse code elements
to suppress those elements with small absolute magnitude. These shrunk sparse codes
are then used to reconstruct a noise-free image patch. More recently, it was shown in
[5] that sparse overcomplete representation may be more useful in denoising images.

In essence, these approaches build a probabilistic model of natural image patches
using a single layer of sparse latent variables. The posterior distribution of each noisy
patch is either exactly computed or estimated, and the noise-free patch is reconstructed
as an expectation of a conditional distribution over the posterior distribution.

Some researchers have proposed very recently to utilize a model that has more than
one layers of latent variables for image denoising. It was shown in [2] that a deep
denoising autoencoder [16] that learns a mapping from a noisy image patch to its corre-
sponding clean version, can perform as good as the state-of-the-art denoising methods.
Similarly, a variant of a stacked sparse denoising autoencoder that is more effective in
image denoising was recently proposed in [17].

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 611–618, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

612 K. Cho

Along this line of research, we propose yet another type of deep neural networks for
image denoising, in this paper. A Gaussian-Bernoulli restricted Boltzmann machines
(GRBM) [6] and deep Boltzmann machines (GDBM) [13] are empirically shown to
perform well in image denoising, compared to stacked denoising autoencoders. Fur-
thermore, we evaluate the effect of the number of hidden layers of both Boltzmann
machines and denoising autoencoders. The empirical evaluation is conducted using dif-
ferent noise types and levels on three different sets of images.

2 Deep Neural Networks

We start by briefly describing Boltzmann machines and denoising autoencoders which
have become increasingly popular in the field of machine learning.

2.1 Boltzmann Machines

Originally proposed in 1980s, a Boltzmann machine (BM) [1] and especially its struc-
tural constrained version, a restricted Boltzmann machine (RBM) [14] have become
increasingly important in machine learning since it was shown that a deep multi-layer
perceptron can be trained easily by stacking RBMs on top of each other [6]. More re-
cently, another variant of a BM, called a deep Boltzmann machine (DBM), has been
proposed and shown to outperform other conventional machine learning methods in
many tasks (see, e.g., [12]).

We first describe a Gaussian-Bernoulli DBM (GDBM) that has L layers of binary
hidden units and a single layer of Gaussian visible units. A GDBM is defined by its
energy function

−E(v,h | θ) =
∑
i

− (vi − bi)
2

2σ2
+

∑
i,j

vi
σ2

h
(1)
j wi,j +

∑
j

h
(1)
j c

(1)
j

+

L∑
l=2

⎛
⎝∑

j

h
(l)
j c

(l)
j +

∑
j,k

h
(l)
j h

(l+1)
k u

(l)
j,k

⎞
⎠ , (1)

where v = [vi]i=1...Nv
and h(l) =

[
h
(l)
j

]
j=1...Nl

are Nv Gaussian visible units and Nl

binary hidden units in the l-th hidden layer. W = [wi,j] is the set of weights between

the visible neurons and the first layer hidden neurons, while U(l) =
[
u
(l)
j,k

]
is the set of

weights between the l-th and l + 1-th hidden neurons. σ2 is the shared variance of the
conditional distribution of vi given the hidden units.

With the energy function, a GDBM can assign a probability to each state vector x =
[v;h(1); · · · ;h(L)] using a Boltzmann distribution: p(x | θ)=exp {−E(x | θ)} /Z(θ).
Then, the parameters can be learned by maximizing the log-likelihood

L =

N∑
n=1

log
∑
h

p(v(n),h | θ)

given N training samples {v(n)}n=1,...,N , where h =
[
h(1); · · · ;h(L)

]
.

Boltzmann Machines for Image Denoising 613

Although the update rules based on the gradients of the log-likelihood function are
well defined, it is intractable to exactly compute them. Hence, an approach that uses
variational approximation together with Markov chain Monte Carlo (MCMC) sampling
was proposed in [13]. This approach is often used together with a pretraining algorithm
[13,4]. In this paper, we initialized GDBMs using the two-stage pretraining algorithm
recently proposed in [4].

A Gaussian-Bernoulli RBM (GRBM) is a special case of a GDBM, where the num-
ber of hidden layers is restricted to one, L = 1. Unlike GDBMs, it is possible to com-
pute the posterior distribution over the hidden units exactly and tractably by

p(hj = 1 | v, θ) = f

(∑
i

wij
vi
σ2

+ cj

)
, (2)

where f is a logistic sigmoid function, and we dropped the superscript (1) from hj for
simplicity.

This removes the need for the variational approximation in computing the gradient
and allows an efficient block Gibbs sampling. Based on this property many fast approx-
imate algorithms for training GRBMs, such as contrastive divergence [7], have been
proposed.

2.2 Denoising Autoencoders

A denoising autoencoder (DAE) [16] is a special form of multi-layer perceptron net-
work with 2L− 1 hidden layers and L− 1 sets of (tied) weights. A DAE tries to learn a
network that denoises an explicitly corrupted input vector by minimizing the following
cost function:

N∑
n=1

∥∥∥Wg(1) ◦ · · · ◦ g(L−1) ◦ f (L−1) ◦ · · · ◦ f (1)
(
η(v(n))

)
− v(n)

∥∥∥2

, (3)

where f (l) = φ(W(l)�h(l−1)) and g(l) = φ(W(l)h(2L−l)) are, respectively, encoding
and decoding functions for l-th layer with a component-wise nonlinearity function φ. η
stochastically adds noise to an input vector x at each update step. W(l) is the weights
between the l-th and (l + 1)-th layers and is shared by the encoder and decoder.

3 Image Denoising

Let us define a set of N binary matrices Dn ∈ Rp×d that extract a set of small image
patches given a large, whole image x ∈ Rd, where d = wh is the product of the width
w and the height h of the image and p is the size of image patches. Then, an image can
be denoised by

x =

(
N∑

n=1

D�
n rθ(Dnx̃)

)
1

(
N∑

n=1

D�
nDn1

)
, (4)

614 K. Cho

where1 is an element-wise division and 1 is a vector of ones. rθ(·) is an image denois-
ing function, parameterized by θ, that denoises each image patch Dnx.

In short, Eq. (4) extracts and denoises image patches from the input image. Then, it
combines them by taking an average of those overlapping pixels.

One of the popular choices for rθ(·) has been to construct a probabilistic model with
a set of latent variables that describe natural image patches (see, e.g., [8,5]). Under this
approach denoising can be considered as a two-step reconstruction. First, the posterior
distribution over the latent variables is computed given an image patch. Based on that,
the conditional distribution, or its mean, over the visible units is computed and used as
a denoised image patch.

3.1 Boltzmann Machines

We consider a BM with a set of Gaussian visible units v that correspond to the pixels
of an image patch and a set of binary hidden units h. Then, the goal of denoising can
be written as

p(v | ṽ) =
∑
h

p(v | h)p(h | ṽ) = Eh|ṽ [p(v | h)] , (5)

where ṽ is a noisy input patch. In other words, we find a mean of the conditional distri-
bution of the visible units with respect to the posterior distribution over the hidden units
given the visible units fixed to the corrupted input image patch.

However, since taking the expectation over the posterior distribution is usually not
tractable, it is often easier and faster to approximate it. We approximate the marginal
conditional distribution in (5) with p(v | ṽ) ≈ p(v | h)Q(h), where Q(h), parameter-
ized by μ = EQ(h) [h], is a fully-factorial (approximate) posterior distribution p(h | ṽ).

Given a noisy image patch ṽ, following this approach, a GRBM reconstructs a noise-
free patch by

v̂i =

Nh∑
j=1

wijE [h | ṽ] + bi.

The conditional distribution over the hidden units can be computed exactly from Eq. (2).
Unlike a GRBM, the posterior distribution of the hidden units of a GDBM is neither

tractably computable nor has an analytical form. Instead, we use a fully-factorial ap-
proximate posterior Q(h) =

∏L
l=1

∏
j μ

l
j , where the parameters μ(l)

j ’s can be estimated
by maximizing the variational lower-bound [13].

Once the variational parameters are converged, a GDBM reconstructs a noise-free
patch by

v̂i =

Nl∑
j=1

wijμ
(1)
j + bi.

The convergence of the variational parameters may take too much time in practice.
Hence, in the experiments, we initialize the variational parameters by the feed-forward
propagation using the doubled weights [13] and performing the fixed-point update for
at most five iterations only.

Boltzmann Machines for Image Denoising 615

Table 1. Descriptions of the test image sets

Set # of all images # of color images Min. Size Max. Size

Textures 64 0 512× 512 1024 × 1024
Aerials 38 37 512× 512 2250 × 2250

Miscellaneous 44 16 256× 256 1024 × 1024

3.2 Denoising Autoencoders

An encoder part of a DAE can be considered as performing an approximate inference of
a fully-factorial posterior distribution of top-layer hidden units, i.e. a bottleneck, given
an input image patch [16]. Hence, a similar approach can be applied to DAEs.

Firstly, the variational parameters μ(L) of the fully-factorial posterior distribution
Q(h(L)) =

∏
j μ

(L)
j are computed by

μ(L) = f (L−1) ◦ · · · ◦ f (1) (ṽ) .

Then, the denoised image patch can be reconstructed simply by propagating the varia-
tional parameters through the decoding nonlinearity functions g(l) such that

v̂ = g(1) ◦ · · · ◦ g(L−1)
(
μ(L)

)
.

4 Experiments

In the experiment, we test both GRBMs and GDBMs together with DAEs having vary-
ing numbers of hidden layers. These models are compared to each other on a blind
image denoising task, where no prior knowledge about target images nor the type or
level of noise is known when the models are trained. In other words, no separate train-
ing was done for different types or levels of noise injected to the test images. Unlike
this, for instance, in [17] each DAE was trained specifically for the target noise level
and type by changing η(·) accordingly.

4.1 Datasets

We used three sets of images, textures, aerials and miscellaneous, from the USC-SIPI
Image Database1 as test images. Tab. 1 lists the details of the image sets.

These datasets are, in terms of contents and properties of images, very different from
each other. For instance, most of the images in the texture set have highly repetitive
patterns that are not present in the images in the other two sets. Most images in the
aerials set have simultaneously both coarse and fine structures. Also, the sizes of the
images vary quite a lot across the test sets and across the images in each set.

As we are aiming to evaluate the performance of denoising a very general image, we
used a large separate data set of natural image patches to train the models. We used a

1 http://sipi.usc.edu/database/

616 K. Cho

large number of image patches randomly of sizes 4 × 4, 8 × 8 and 16 × 16 extracted
from CIFAR-10 dataset [10]. The same set of experiments was run with the models
trained on the patches from the Berkeley Segmentation Dataset [11], and the similar
results were observed.

4.2 Settings

We tried three different depth settings for both Boltzmann machines and denoising au-
toencoders; a single, two and four hidden layers. Each hidden layer had the same num-
ber of hidden units which was the constant factor 5 multiplied by the number of pixels
in an image patch, as suggested in [17].

We denote Boltzmann machines with one, two and four hidden layers by GRBM,
GDBM(2) and GDBM(4), respectively. Denoising autoencoders are denoted by DAE,
DAE(2) and DAE(4), respectively.

The GRBMs were trained using the enhanced gradient [3] and persistent contrastive
divergence (PCD) [15]. The GDBMs were trained by PCD after initializing the pa-
rameters with a two-stage pretraining algorithm [4]. DAEs were trained by a stochastic
backpropagation, and when there were more than one hidden layers, we pretrained each
pair of consecutive layers as a single-layer DAE with sparsity target set to 0.1.

Two types of noise have been tested; white Gaussian and salt-and-pepper. White
Gaussian noise simply adds zero-mean normal random value with a predefined variance
to each image pixel, while salt-and-pepper noise sets a randomly chosen subset of pixels
to either black or white. Three different noise levels (0.1, 0.2 and 0.4) were tested. In
the case of white Gaussian noise, they were used as standard deviations, and in the case
of salt-and-pepper noise, as a noise probability.

After noise was injected, each image was preprocessed by pixel-wise adaptive Wiener
filtering, following the approach of [9]. The width and height of the pixel neighborhood
were chosen to be small enough (3× 3) to avoid removing too much detail.

4.3 Results and Analysis

In Fig. 1, the performances of all the tested models trained on 8 × 8 image patches,
measured by the peak signal-to-noise ratio (PSNR), are presented. Those trained on the
patches of different sizes showed similar trend, and they are omitted here.

Interestingly, the GRBMs consistently performed comparably to much deeper DAEs
in most cases regardless of the level of noise. This indirectly suggests that learning a
good generative model might be important in image denoising. Considering that the
number of parameters of the GRBM is, for instance, only half compared to DAE(2),
training a model in a fully generative manner helps learning more compact representa-
tion of natural image patches that are more suitable for image denoising.

However, the GDBMs which are essentially deeper version of the GRBM were only
able to outperform the other models in the high noise regime. In the cases of the aerials
and miscellaneous sets, in the low noise regime, the GDBMs lag behind all the other
models. A possible explanation for this rather poor performance of the GDBMs in the
low noise regime is that the posterior distribution had to be approximated, whereas it

Boltzmann Machines for Image Denoising 617

White noise Salt-and-pepper noise

Aerials

0.4

16

18

20

22

24

26

P
S

N
R

Noise Level
0.1 0.2 0.4

16

18

20

22

24

26

P
S

N
R

Noise Level
0.1 0.2

Textures

0.4

16

18

20

22

24

26

28

P
S

N
R

Noise Level
0.1 0.2 0.4

16

18

20

22

24

26

28

P
S

N
R

Noise Level
0.1 0.2

Misc.

0.4
15

20

25

P
S

N
R

Noise Level
0.1 0.2 0.4

15

20

25

P
S

N
R

Noise Level
0.1 0.2

DAE DAE(2) DAE(4) GDBM(2) GDBM(4)GRBM

Fig. 1. The median PSNRs of grayscale images corrupted by different types and levels of noise

was computed exactly in the case of GRBMs. A better approximation strategy might
resolve this problem.

An important observation is that the deeper models significantly outperformed their
corresponding shallower models as the level of injected noise grew. In other words, the
power of the deep models became more evident as the difficulty of the task increased.

5 Discussion

In this paper, we proposed that, in addition to DAEs, Boltzmann machines (BM) can
also be used efficiently for denoising images. Boltzmann machines and DAEs were
empirically evaluated against each other in the blind image denoising task where no
prior knowledge about target images and their level of corruption was assumed.

The experimental results showed that Boltzmann machines (BM) are good, potential
alternatives to DAEs. BMs and DAEs performed comparably to each other in the low
noise regime, while BMs were able to, in many cases, outperform DAEs when the level
of injected noise was high. This suggests that BMs may be more robust to noise than
DAEs are.

More careful look at the experimental results clearly showed that, in the case of
DAEs, hidden layers do improve performance, especially when the level of noise is
high. This did not always apply to BMs, where we found that the GRBMs outperformed,
or performed as well as, the GDBMs in many cases. Regardlessly, in the high noise
regime, it was always beneficial to have more hidden layers, even for BMs.

618 K. Cho

References

1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines.
Cognitive Science 9, 147–169 (1985)

2. Burger, H., Schuler, C., Harmeling, S.: Image denoising: Can plain neural networks com-
pete with bm3d? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2392–2399 (June 2012)

3. Cho, K., Raiko, T., Ilin, A.: Enhanced gradient for training restricted Boltzmann machines.
Neural Computation 25(3), 805–831 (2013)

4. Cho, K., Raiko, T., Ilin, A., Karhunen, J.: A Two-Stage Pretraining Algorithm for Deep
Boltzmann Machines. In: NIPS 2012 Workshop on Deep Learning and Unsupervised Feature
Learning, Lake Tahoe (December 2012)

5. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image Processing 15(12), 3736–3745 (2006)

6. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

7. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Com-
putation 14, 1771–1800 (2002)

8. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis.
IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

9. Hyvärinen, A., Hoyer, P., Oja, E.: Image denoising by sparse code shrinkage. In: Intelligent
Signal Processing. IEEE Press (1999)

10. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep., Computer
Science Department, University of Toronto (2009)

11. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics.
In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)

12. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines.
Neural Computation 24, 1967–2006 (2012)

13. Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann machines. In: Proc. of the Int. Conf. on
Artificial Intelligence and Statistics (AISTATS 2009), pp. 448–455 (2009)

14. Smolensky, P.: Information processing in dynamical systems: foundations of harmony the-
ory. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
Foundations, vol. 1, pp. 194–281. MIT Press, Cambridge (1986)

15. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood
gradient. In: Proc. of the 25th Int. Conf. on Machine Learning (ICML 2008), pp. 1064–1071.
ACM, New York (2008)

16. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research 11, 3371–3408 (2010)

17. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In:
Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural
Information Processing Systems 25, pp. 350–358 (2012)

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 619–627, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Comparison on Late Fusion Methods of Low Level
Features for Content Based Image Retrieval

Nikolay N. Neshov

Department of Radio Communications and Video Technologies
Technical University of Sofia, Bul. Kl. Ohridsky 8, Sofia 1797, Bulgaria

nneshov@tu-sofia.bg

Abstract. Finding the right feature for image representation is an important key
to attaining successful Content Based Image Retrieval (CBIR) system. This
choice depends on the content of images to be searched. Today’s real world
image databases are heterogeneous and consist of images that can be described
appropriately using different feature types. One approach to deal with this is to
utilize late fusion methods. That is, the CBIR system must be able to fuse
multiple results produced by each feature. In this paper by experimental
comparison of output results achieved from eleven low-level features over three
image databases an appropriate several sets of features are selected and five late
fusion methods are applied over each set. By analysis of the results for all
methods it has been shown which ones reach the best performances and stable
retrieval accuracy among the investigated image databases and sets of features.

Keywords: Content Based Image Retrieval, Late Fusion, LIRe.

1 Introduction

With the rapid development of the Internet and amount of image capturing devices
such as scanners and digital cameras, the size of digital image databases is increasing
dramatically every day. Users and experts from various domains (crime prevention,
medicine, architecture, publishing, etc) need effective and efficient CBIR systems for
image browsing and searching. CBIR is well-known field of research that is engaged
in the organization of digital image archives by their visual content. That is, the
images are indexed using their low-level features (color, texture, shape) and
essentially no high-level semantic information (keywords, tags, labels, etc) takes
place in the retrieval process. Having user manually enter additional description to the
images is not always efficient because one may not capture every keyword that
describes the image. Thus a system that can filter images based only on their visual
content would provide better indexing and return more accurate results [1]. On the
other hand visual information captured in the low-level features differs from the high-
level semantic description that is near to users’ intention when they are looking for a
particular image. This is a common problem in the current CBIR systems and has
been discussed in the literature under the name of “semantic gap”. Thus disregarding
high-level concept would lead to inaccurate retrieval results.

620 N.N. Neshov

It has been proposed and investigated a large number of methods for improvement
of CBIR, but still no general satisfying approach has been found. Data fusion has the
potential to increase retrieval performance relying on the assumption that the
heterogeneity of multiple information sources allows cross-correction of some of the
errors leading to better results [2]. The response of effective fusion method of several
information sources should produce greater performance than that of its constituent
parts.

There are two main approaches to fusion, namely: early fusion, where multiple
image features are aggregated in a new feature prior indexing, and late fusion, where
result lists produced from distinctive features are combined in a new ranked list.

In general, the late fusion approaches are most widely used and developed [2].
They can be accomplished in one of two manners: score-based, that takes into account
the function of score (relevance, similarity or distance from the query) in each rank
list and rank-based, that deals with the function of position in which the results are
ordered in each rank list [3].

2 Related Work

There has been much work done in the area of combination of different sources of
evidence for CBIR. For example, authors in [4] compared six late fusion methods for
three features (Joint Composite Descriptor - JCD, Spatial Color Distribution
Descriptor - SpCD and Brightness and Texture Directionality Histogram - BTDH).
The JCD feature used in the analyses is based on early fusion approach combining
Color and Edge Directivity Descriptor (CEDD) and Fuzzy Color and Texture
Histogram (FCTH). It has been shown that JCD has better performance than both
CEDD and FCTH. Each late fusion method tested outperforms single feature
baselines. The authors in [5] combined six features to implement retrieval system.
However their experiments are based only on simple combination of scores reached
by each of the individual features. Dubey et al. [6] proposed a multi feature model for
CBIR by combining Color Histogram, Color Moment, Texture and Edge features.
The authors in [7] implemented two features. The first one is called Local Color Pixel
Classification (LCPC) that incorporates both color and spatial information. In addition
they proposed an extension of LCPC by including shape features. The authors in [8]
developed a combination method which captures local color and texture features in a
coarse segmentation framework of grids, and has a shape feature in terms of invariant
moments computed on the edge image.

The goals of this paper are as follows: comparing the retrieval performance of
eleven well known image features for CBIR and selecting the best ones; applying five
late fusion methods using different sets of the best features; determining which fusion
method and which set of features have the highest improvement of the retrieval
performance with respect to the performance obtained by the best performing image
feature over three popular image databases.

 Comparison on Late Fusion Methods of Low Level Features 621

In contrast to some of the previous works [5], [6] and [9] the results presented in
this article are measured over several different conditions i.e. sets of image features,
late fusion methods and databases. This is of vital importance when attempting to
build accurate CBIR system for heterogeneous image databases.

In order to compare the retrieval effectiveness of all tested runs we utilized the
commonly used and well known parameter – Mean Average Precision (MAP) [9].

All represented algorithms are developed with the help of Lucene Image Retrieval
(LIRe) [10], [11] - an open source Java library.

The paper is structured as follows: In Section 3 are presented the databases used in
the experiments; in Section 4 is explained which low-level features are utilized for the
combination algorithms; Section 5 gives more details about the late fusion methods
that we investigated; Section 6 describes how the sets of features are composed along
with the experimental results and Section 7 gives the conclusions of the current work.

3 Image Databases

For our experiments we used the following three image databases:
WANG [12] – Contains 1000 images manually divided in 10 classes of 100 images

each. Each image from the database is used as query in the process of performance
evaluation;

Uncompressed Color Image Dataset (UCID) [13] – Contains 1338 photos and a
ground truth where 262 images (queries) from the database have been manually
assigned to their similar ones;

Zurich Buildings Database for Image Based Recognition (ZuBuD) [14] – Consists
of two parts: query and training part. The training part depicts 201 buildings in Zurich
city. Each building is represented by five photos taken from different angles of view
or weather conditions. Thus the training part contains 1005 images. The query part is
formed from 115 images each of which represents one building from the training part.

4 Low Level Features

Based on our previous work of eleven low-level global features [9] (for UCID and
ZuBuD databases) and the investigations done by M. Lux [11] (for WANG database)

Table 1. MAP of the features with the best retrieval performance for the three databases

 MAP, %

Feature WANG UCID ZuBuD

Joint Composite Descriptor (JCD) (50,95) 47,07 71,78

Brightness Histogram (BH) 48,44 39,23 (74,60)
Auto Correlogram (AC) 47,51 (53,5) 69,44
Color Layout (CL) 43,88 26,13 59,53
DCT Histogram (DCTH) 44,55 25,9 1,49

622 N.N. Neshov

we selected the top four features (per database) that reached the best retrieval
performances. Table 1 summarizes the value of MAP for each feature. The highest
four values for each database are shown in bold and the best value is surrounded by
round brackets.

In Table 1 it can be seen that each database has its own best features. For example
Color Layout is in the top four features for the UCID database but it is not for the
WANG. Thus we have a total of five low-level features considered as a background in
this work.

5 Late Fusion Methods

The scenario of all fusion methods tested in this work begins with the following
baseline preprocessing. Using each examined feature j (Section 4) the CBIR system

have to produce a list of images jL arranged in ascending order with respect to their

distance to the query image. Having all lists of images the goal of each fusion method
is to create one final ranked list fL .

Let D be the set of all N images in the database and let i be an image from this set
(Di ∈). Let’s denote the score (distance to the query in our case) for image i in the
arranged list jL with)(iS j and its rank (position) with)(iRj .

Now we will discuss how the particular fusion methods differs each other. As
mentioned in Section 1 they can be classified as score-based and rank-based.

5.1 Score-Based Fusion Methods

First a final score)(iS f for each image needs to be calculated. Then all final scores are

arranged in ascending order with respect to)(iS f and the final list fL is generated.

Three score-based fusion methods are implemented. The first one is:
CombSUM without normalization (CombSUM) – The scores of each list j are

summed to obtain the final score [2]:

=

=
jN

j

jf iSiS
1

)()(, (1)

where jN is the number of features (number of lists jL) considered for combination;

In the method above the range of score values for each list jL may vary. In this way

the influence of result produced by each feature is not equal in the combination
process. This imposes the necessity of normalization before computation of the final
score. For this reason we applied the following two methods each of which includes
linear normalization technique:

CombSUM with Min-Max normalization (CombSUM Min-Max) – Let)(iS j be a

normalized score for image i from the list j . Using Min-Max normalization the value

of)(iS j is computed as follows:

 Comparison on Late Fusion Methods of Low Level Features 623

minmax

min)(
)(

jj

jj
j

SS

SiS
iS

−
−= , (2)

where max
jS and min

jS are the lowest and highest scores found in the list jL ;

CombSUM with Z-Score normalization (CombSUM Z-Score) – Z-Score
normalizes each score to its number of standard deviations that it is away from the
mean score. It is calculated like this:

σ

μ−=)(
)(

iS
iS j

j , (3)

where μ is the average value of the un-normalized scores, andσ is the typical

deviation [4].
For the two normalization methods described above, Equation 1 takes the form:

=

=
jN

j

jf iSiS
1

)()(. (4)

5.2 Rank-Based Fusion Methods

Borda Count – The Borda Count method is based on democratic election strategies.
The first (the most relevant) image in each ranked list jL gets the maximum Borda

Count points (votes). Each subsequent image gets one point less. Thus, the Borda
Count points)(iBC j of image i in the list jL are calculated like this:

)()(iRNiBC jj −= , (5)

where)(iR j takes integer value in the interval from 0 to 1−N .

Next for each image the total BC points are calculated just like in CombSUM on
ranks [2]:

=

=
jN

j

j iBCiBC
1

)()(, (6)

Finally the images are classified in descending order according to the BC points;
Inverse Ranking Position (IRP) - The IRP merges ranked lists by calculation of

IRP distance for each image)(iIRP :

=

=
jN

j j iR

iIRP

1)(

1

1
)(. (7)

where]1[)(NiRj ÷∈ . At the end of the process the images are ordered on the basis of

their IRP distance [4].

6 Experimental Results

With aim to investigate appropriate sets of features for fusion we recall the results
listed in Table 1 (Section 4). First we constructed all four possible sets by taking three

624 N.N. Neshov

of the best four features and one more set formed by all four features. Then each
fusion method (Section 5) is applied over each of the five sets of features. The
retrieval performance based on MAP for the particular databases is given in Table 2.

The best values with respect to the different fusion methods for each set of features
are shown in bold. The name of the fusion method and the names of its composed
features with the highest retrieval performance are also bolded. The value of MAP in
this case is shown in round brackets. In square brackets are surrounded these values of
MAP that are smaller than the MAP of the best individual feature.

Table 2. MAP [%] per fusion method and set of features, Average of MAP [%] and Standard
Deviation of MAP per fusion method (last two columns) for each database (the best values are
shown in bold)

WANG

 Set of Features

Fusion Method

JCD JCD JCD BH All
Four
Features

Aver.
of
MAP

St. Dev.
of
MAP

BH BH AC AC

AC DCTH DCTH DCTH

CombSUM 56,33 57,69 61,17 56,86 61,23 58,66 2,12

CombSUM Min-Max 56,44 57,94 61,18 60,19 60,71 59,29 1,81

CombSUM Z-Score 56,86 58,04 (61,43) 60,59 61,09 59,6 1,82

Borda Count 55,95 56 59,31 58,76 59,71 57,95 1,64

IRP 54,15 54,12 55,78 54,97 56,26 55,06 0,86
UCID

 Set of Features

Fusion Method

AC AC AC JCD All
Four
Features

Aver.
of
MAP

St. Dev.
of
MAP

JCD JCD BH BH

BH CL CL CL

CombSUM (60,59) 59,49 54,21 [47,83] 59,68 56,36 4,82

CombSUM Min-Max 56,53 58,43 [52,83] [50,39] 57,14 55,06 2,99
CombSUM Z-Score 58,2 59,39 54,11 [49,74] 57,63 55,81 3,51

Borda Count 54,56 [50,91] [48,22] [44,39] [51,48] 49,91 3,42

IRP 56,46 56,75 [52,77] [48,61] 56,39 54,2 3,15

ZuBuD

 Set of Features

Fusion Method

BH BH BH JCD All
Four
Features

Aver.
of
MAP

St. Dev.
of
MAP

JCD JCD AC AC

AC CL CL CL

CombSUM 83,95 [74,3] 79,64 83,72 83,95 81,1 3,78

CombSUM Min-Max 84,98 79,45 83,59 82,65 84,58 83,05 1,97

CombSUM Z-Score (85,26) 78,8 83,65 82,87 84,95 83,11 2,32

Borda Count 81,61 [74,28] 77,68 77,9 80,04 78,3 2,48

IRP 81,48 77,76 79,89 79,22 81,75 80,02 1,48

In order to accomplish the comparison of the retrieval performance of the fusion
methods regardless of the set of features the Average of MAP for each method is

 Comparison on Late Fusion Methods of Low Level Features 625

calculated. To estimate the stability of the retrieval performance the Standard
Deviation of MAP is also computed (Table 2).

Fig. 1. Graphical comparison on Average of MAP (in left) and Standard Deviation of MAP
(in right) per fusion method per database

Fig. 1 represents graphically the values of Average of MAP (left side) and
Standard Deviation of MAP (right side) for each method and database. In Table 3 are
displayed the highest values of MAP reached by the best fusion method and set of
features compared to the best individual feature for each database. The last column
shows the percentages of improvement of MAP.

Table 3. Comparison between the best baseline feature and the best fusion method

Database The Best Feature – MAP, % Fusion Method – MAP, % Improvement, %

WANG JCD – 50,95 CombSUM Z-Score – 61,43 20,57

UCID AC – 53,5 CombSUM – 60,59 13,25

ZuBuD BH – 74,6 CombSUM Z-Score – 85,26 14.29

In addition to our experimental scheme we also applied each late fusion method

over the ranking lists produced using only two of the considered image features by
taking each pair of all possible combinations (6 in total). In table 4 is shown the best
case along with its corresponding fusion method for each database.

Table 4. The highest performance obtained by late fusion of two of the considered image
features

Database The Best Set of Two Features – Fusion Method MAP, %

WANG (JCD and DCTH) – CombSUM 57,57

UCID (JCD and AC) – CombSUM Z-Score 60,46

ZuBuD (JCD and AC) – CombSUM 83,77

From table 3 (third column) and table 4 (last column) can be seen that the best case

of late fusion of three image features outperforms the best case of late fusion of two
image features.

626 N.N. Neshov

7 Conclusions and Future Work

From the experimental results it can be seen that in the most cases the fusion methods
outperformed the best baseline features (Table 2). The highest achieved
improvements of MAP along with the names of the fusion methods are shown in
Table 3. CombSUM Z-Score is the best fusion method for WANG and ZuBuB
databases and is on second place after CombSUM for UCID database. According to
this study the best features for fusion are JCD and AC in combination with BH (for
UCID and ZuBuD) and with JCD (for WANG).

IRP has the smallest value of Standard deviation of MAP for WANG and Zubud,
but its retrieval performance is rather bad (Fig. 1). CombSUM has the worst deviation
of MAP for all three databases (Table 2). Borda Count has the worst retrieval
performance for UCID and ZuBuD. The maximum value of MAP using the set of
four features for all databases is on second place after the method with the best
performance.

Our studies demonstrate improvement of the retrieval effectiveness compared to
some previous works. For example a combination technique presented in [15] (which
is based on correlation analysis of features described for the WANG database)
reaches a value of MAP equals to 55,7. In our experiments the best value of MAP for
WANG database is 61,43 (Table 3).

There have been conducted various studies in the area of data fusion which attempt
to understand when the combination of multiple systems (ranking lists in our case)
works. Most of them conclude that the best time to combine a pair of systems is when
one has reasonable performance and both return the same relevant documents and
different non relevant documents [16]. Our experimental studies over three image
databases show that the firs half of this hypothesis is likely to be correct for
combinations of three systems in terms of CBIR. However from Table 2 it can be seen
that there are only 12 cases (values of MAP in rounded brackets) of 75 cases (in total)
where the performances are worse than those produced by the individual features.
Hence the second part of the hypothesis needs further analyses such as evaluation of
statistical significance of the difference between the individual ranking lists.

Acknowledgments. This paper was supported by the Project of Technical University
of Sofia, Bulgaria, Research and Development Sector (2012): “Classification for
Content-based Image Similarity Search for Application in Education and Internet”,
121PD0053-07.

References

1. Seng, W.C., Mirisaee, S.H.: A Content-Based Retrieval System for Blood Cells Images.
In: International Conference on Future Computer and Communications (ICFCC 2009),
Kuala Lumpur, pp. 412–415 (2009)

2. Depeursinge, A., Muller, H.: Fusion techniques for combining textual and visual
information retrieval. In: ImageCLEF: Experimental Evaluation in Visual Information
Retrieval. Springer, Heidelberg (2010)

 Comparison on Late Fusion Methods of Low Level Features 627

3. Chatzichristofis, S.A., Zagoris, K., Boutalis, Y., Arampatzis, A.: A Fuzzy Rank-Based
Late Fusion Method for Image Retrieval. In: Schoeffmann, K., Merialdo, B., Hauptmann,
A.G., Ngo, C.-W., Andreopoulos, Y., Breiteneder, C. (eds.) MMM 2012. LNCS,
vol. 7131, pp. 463–472. Springer, Heidelberg (2012)

4. Chatzichristofis, S.A., Arampatzis, A., Boutalis, Y.: Investigating the Behavior of
Compact Composite Descriptors in Early Fusion, Late Fusion and Distributed Image
Retrieval. J. Radioengineering 19(4), 725–733 (2010)

5. Gan, R., Yin, J.: Using LIRe to Implement Image Retrieval System Based on Multi-feature
Descriptor. In: ICDMA, GuiLin, pp. 1014–1017 (2012)

6. Dubey, R.S., Choubey, R., Bhattacharga, J.: Multi Feature Content Based Image Retrieval
(IJCSE) International Journal on Computer Science and Engineering 2(6), 2145–2149
(2010)

7. Kimura, P.A.S., Cavalcanti, J.M.B., Saraiva, P.C., Torres, R., da, S., Gonçalves, M.A.:
Evaluating retrieval effectiveness of descriptors for searching in large image databases.
Journal of Information and Data Management 2(3), 305–320 (2011)

8. Hiremath, P.S., Pujari, J.: Content Based Image Retrieval based on Color, Texture and
Shape features using Image and its complement. International Journal of Computer
Science and Security 1(4), 25–35 (2007)

9. Popova, A.A., Neshov, N.N.: Image Similarity Search Approach Based On The Best
Features Ranking. Egyptian Computer Science Journal 37(1), 51–65 (2013)

10. Lux, M., Chatzichristofis, S.: LIRe: Lucene Image Retrieval – An Extensible Java CBIR
Library. In: Proceedings of the 16th ACM International Conference on Multimedia,
Vancouver, Canada, pp. 1085–1088 (2008)

11. Lux, M.: Content Based Image Retrieval with LIRE. In: Proceedings of the 19th ACM
International Conference on Multimedia, Scottsdale, Arizona, USA, pp. 735–738 (2011)

12. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-Sensitive Integrated Matching
for Picture LIbraries. The IEEE Trans. on Pattern Analysis and Machine
Intelligence 23(9), 947–963 (2001)

13. Schaefer, G., Stich, M.: UCID - An Uncompressed Colour Image Database. In: Proc.
SPIE, Storage and Retrieval Methods and Applications for Multimedia 2004, San Jose,
USA, pp. 472–480 (2004)

14. Shao, H., Gool, L.V.: Zubud-zurich Buildings Database for Image Based Recognition,
Swiss FI of Tech., Tech. report no. 260 (2003)

15. Deselaers, T., Keysers, D., Ney, H.: Features for Image Retrieval: An Experimental
Comparison. Information Retrieval 11(2), 77–107 (2008)

16. Vogt, C., Cottrell, G.: Predicting the Performance of Linearly Combined IR Systems. In:
21th Annual Intl ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pp. 190–196. ACM Press, New York (1998)

Vehicle Plate Recognition Using Improved

Neocognitron Neural Network

Dmitry Kangin1, George Kolev2, and Plamen Angelov1

1 InfoLab21, Lancaster University, Lancaster LA1 4WA United Kingdom
{d.kangin,p.angelov}@lancaster.ac.uk

2 Center of Coordination of International Scientific Education Programmes,
Russia, Moscow
mail@kolev.us

Abstract. This paper describes a novel vehicle plate recognition algo-
rithm based on text detection and improved neocognitron neural net-
work, similar to [1] and based on Fukushima’s neocognitron. The pro-
posed recognition algorithm allows us to improve the recognition speed
and accuracy comparing to both traditional neocognitron and some state-
of-art algorithms (multilayer perceptron, topological methods). It can be
used as a solution for image classification and analysis tasks. As an ex-
ample, the neocognitron can be utilized for symbols recognition [2]. We
propose several modifications comparing to the Fukushima’s modifica-
tion of the neocognitron: namely, layer dimensions adjustment, thresh-
old function and connection Gaussian kernel parameters estimation. The
patterns’ width and height are taken into account independently in order
to improve the recognition of patterns of slightly different dimensions.
The learning and recognition calculations are performed as FFT convo-
lutions in order to overcome the complexity of the neocognitron output
calculations. The algorithm was tested on low-resolution (360×288) video
sequences and gave more accurate results comparing to the state-of-the-
art methods for low-resolution test set.

Keywords: vehicle plates recognition, image segmentation, Chan-Vese
algorithm, neocognitron neural network.

1 Introduction

The vehicle identification is utilized in various applications:

– road traffic control systems;
– vehicle plate identification systems;
– parking control.

Most of state-of-the-art systems use vehicle plate recognition for vehicle iden-
tification. Systems used for vehicle plate recognition use one of two different
ways of implementation. Identification based on a vehicle photo uses motion
detection in order to obtain the object and takes a photo of moving object by

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 628–640, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Vehicle Plate Recognition Using Improved Neocognitron 629

high-resolution camera (2-5 MPix), when motion detector triggers. So, we cannot
track the vehicle plate in order to obtain the best result (according to some par-
ticular criteria) from sequential frames, but we have a higher image resolution.
Alternative way is to use video detectors in order to obtain the frame sequence
and form the result according several frames.

Typically, the vehicle plate recognition task is composed of several stages:
vehicle plates extraction, vehicle plates symbols extraction, and vehicle plates
symbols recognition. Various methods were implemented in order to realize each
stage of the algorithm.

Vehicle plates extraction can be implemented in different ways:

– based on line detection algorithms ([3]),
– based on template matching ([4]),
– based on text detection ([5]),
– morphological filtering-based candidate region extraction ([6]).

Vehicle plates symbols extraction methods are more wide-spread:

– binarization-based segmentation ([7]);
– based on text detection ([5]);
– watershed segmentation ([8]),
– segmentation based on functional minimization ([9]);
– feature-based segmentation ([10]).

However, this list is not exhaustive as various methods of segmentation were
developed during the last decades.

Vehicle plate symbol recognition methods are also widely described as it is a
particular case of a wide class of symbol recognition methods, based on neural
networks ([1], [2]), decision trees [11], support vector machines [12].

The proposed method is based on the neocognitron neural network that is a
convolution neural network using as input data the spatial representation of the
image. However, there are various convolution neural networks based on another
data, such as Bruna-Mallat wavelet scattering network [13]. Both these network
combine unsupervised learning with supervised one. Comparing to this network,
we work with spacial image, even using Fourier transform for convolution calcu-
lation, as will be shown in the modified neocognitron description.

Some authors use various frequency spaces or curvature space [14]. It gives a
possibility for invariance to rotation and translation, but have large issues with
distorted patterns due to even slight modifications in distortion can give a great
modification in curvature space. The same issue comes when using a topological
criteria [15]. For instance, using homology groups, we define an equivalence class
by the arbitrary continious transformations of the generating element. So, these
classes should measure a distance between these classes regarding geometrical
information as well as topological in order to classify patterns robustly, as it is
done for persistent homology [16].

630 D. Kangin, G. Kolev, and P. Angelov

The method, proposed in this article, contains several stages:

– text detection plate segmentation and plate symbols extraction;
– symbol text recognition using the neocognitron neural network.

The proposed neocognitron neural network is used for recognition and is similar
to the one reported in [17]. It is a slightly modified version compared to the
Fukushima’s neocognitron neural network [1].

2 Vehicle Plate Segmentation

The line extraction algorithm is widely used in vehicle number plate recognition
systems. First, Canny algorithm is used for edge detection [18] (Figure 1). This

Fig. 1. Canny edge detection and Hough line detection algorithm applied to vehicle
images

algorithm provides the edges as the input for Hough transformation algorithm
(Figure 1). At the next stage, the bounding rectangle, fitting to the lines, ex-
tracted by Hough algorithm in sense of function. The condition of fitting of the
rectangle can be written as

|LTy −Rt| < θ1, |LBy −Rb| < θ2, |LLx −Rl| < θ3, |LRx −Rr| < θ4. (1)

Here θi are constants depending on vehicle plate size,
LT = ((xLT1, yLT1), (xLT2, yLT2)) — the top line in the rectangle,
LB = ((xLB1, yLB1), (xLB2, yLB2)) — the bottom line in the rectangle,

Vehicle Plate Recognition Using Improved Neocognitron 631

LL = ((xLL1, yLL1), (xLL2, yLL2)) — the left line in the rectangle,
LR = ((xLR1, yLR1), (xLR2, yLR2)) – the right line of the rectangle,
Rt, Rb, Rl, Rr — the top, bottom, left and right coordinates of the rectangle,
L{B, T }y = 1/2(YL{B,T}1 + YL{B,T}2),
L{L,R}x = 1/2(XL{L,R}1 + XL{L,R}2). However, such algorithm has some

principal restrictions (Figure 4):

– it works only for contrasty plate frames (not for white plate with white
frame on white car, for example); however, the plate can be readable in such
conditions;

– it cannot handle some deformed plates.

3 Text Detection Algorithm

Text detection algorithm [5] can be applied to vehicle plate detection task with
some additional conditions over the sizes of such regions. This class of algorithms
has some advantages comparing with vehicle plate segmentation based on the
line detection algorithms:

– detection based not on heuristic thresholds, but on learning;
– possibility of detection vehicle plates without frames;
– possibility of detection dirty or curved vehicle plates.

However, if the text is corrupted or erased, the algorithm can miss the plate due
to using the text criteria instead of border criteria. According to [5], the text
extraction is performed in three stages:

– preliminary region detection by Extremal Regions algorithm;
– detection using region classifier (Real AdaBoost [19] used in [5]);
– region grouping in order to obtain chained text regions.

Let us assume the close subset Ω ⊂ R2 and two-dimensional image I : Ω →
[0, 1]. Let us also assume a region R ⊆ Ω to be a contiguous in sense of adjacency
relation Λ ⊂ Ω × Ω. In practical cases, we can determine contiguous region R
by conditions (4-connected adjacency relation):

Λ = {∀(x, y) ∈ Ω : {((x± 1, y), (x, y)), ((x, y ± 1), (x, y))} ∩Ω ×Ω} (2)

∀r ∈ R∃q : (r, q) ∈ Λ.

It can be easily seen, that this relation is symmetric. Extremal regions have to
meet the following conditions:

∀p ∈ R, q ∈ ∂R : I(Q) > θ � C(p), (3)

where θ denotes threshold value. An extremal region at threshold θ is formed as
a union of several ERs at threshold θ − δ and pixels of values (θ − δ, θ]. So, we
have an inclusion relation among extremal regions. This approach allows us to
obtain the regions for further processing. The computation technique of ER is
described in [5]. At the next stage, some descriptors are calculated in order to
select ERs containing text data. These features include:

632 D. Kangin, G. Kolev, and P. Angelov

– area of a region is a power of the pixel set, corresponding to the region;
– bounding box is described by top-right and bottom-left corners of the region;
– perimeter p is the length of the boundary ∂R of the region R;
– Euler number ν, determined as a difference between the number of connected

components and the holes;
– horizontal crossings of region R is a number of transitions between pixels

belonging to the region and not belonging to it for each of the region rows.

The second classifier stage incorporates more complicated parameters, such as

– convex envelope ratio as the ratio of the convex envelope to the area of the
region;

– the number of boundary inflexion points determined as the number of changes
of boundary convexity;

– hole area ratio is a ratio of count of pixels belonging to holes to the region
area.

The detector uses exhaustive search in order to glue up the different symbols
into whole number plates, described in [20].

4 Vehicle Plate Symbols Extraction

Vehicle plate symbol extraction can be derived from the text detection algorithm,
but it can also be performed separately by different algorithms of segmentation.
One of such symbol segmentation methods based on Canny edge detection algo-
rithm [18] (Figure 2).

Fig. 2. Vehicle plate edge detection

Fig. 3. Symbols envelope determination: envelope determination, non-relevant candi-
dates elimination, symbols segmentation

The method is based on the assumption, that the vehicle plate symbols has
a continious outer contour. Then each symbol is expected to have such contour.
The size of symbol candidates is thresholded as that the size of the pattern cannot
have size below specified value (such situation is regarded as noise) or exceed it.
So, the vehicle plate symbols extraction method consists of three stages:

Vehicle Plate Recognition Using Improved Neocognitron 633

1. Canny edge detection (Figure 2);
2. continious contours rectangular envelope determination (Figure 3);
3. non-relevant candidate elimination using size threshold criteria;

5 Chan-Vese Algorithm for Segmentation

Alternatively, segmentation can be performed using the Chan-Vese algorithm
[9]. The method resembles an active contour model [21], in which curve is moved
around the object till the stop condition on the boundary of the object occurs,
and generalizes Mumford-Shah functional to obtain the rule for production of
such boundary curve. According to the Chan-Vese algorithm, the task of image
segmentation for object detection is converted to the task of minimization of
a characteristic functional. Let us assume the close subset Ω ⊂ R2 and two-
dimensional image I : Ω → [0, 1]. Let us also denote a parametric curve ζ(s) :
[0, 1]→ R2, defining a boundary ∂ω of the open subset ω ⊂ Ω. Also some notions
are introduced in [9]:

inside(ζ) = ω, outside(ζ) = Ω \ ω, length(ζ)–the length of ζ curve,

area(inside(ζ)) – the area inside the ζ curve.

The Chan-Vese algorithm uses the energy functional

ψ(ζ) = μ · length(ζ) + ν · area(inside(ζ))+ (4)

+λ1

∫
inside(ζ)

|I(x, y)− c1(ζ)|2dxdy ++λ2

∫
outside(ζ)

|I(x, y)− c2(ζ)|2dxdy.

Here c1(ζ) = avg(inside(ζ)), c2(ζ) = avg(outside(ζ))

are functional parameters which depend on ζ curve, μ and ν are coefficients, λ1

and λ2 are Lagrangian multipliers. For calculation, the function φ is defined as

φ(x, y) = 0, (x, y) ∈ ζ, φ(x, y) > 0, (x, y) ∈ inside(ζ), φ(x, y) < 0, (x, y) ∈ outside(ζ).

Using the Heaviside function, it can be represented for convenience as a numeric
representation in the form

ψ(φ) = μ

∫
ω

δ(φ(x, y))|∇φ(x, y)|dxdy + ν

∫
ω

H(φ(x, y)))dxdy+

λ1

∫
ω

|I(x, y)− c1(φ(x, y))|2H(φ(x, y))dxdy+

λ2

∫
ω

|I(x, y) − c2(φ(x, y))|2[1−H(φ(x, y))]dxdy, (5)

This task can be regarded as Euler-Lagrange equation and can be solved by
finite differences scheme, detailed description of which is given in [9].

634 D. Kangin, G. Kolev, and P. Angelov

6 Modified Neocognitron Neural Network for Vehicle
Plates Symbols Recognition

The network contains several layers, connected sequentially:

– input layer U0;
– contrast extracting layer UG;
– four groups of stages US1−4 , UC1−4 , each containing sequentially connected

S- and C-cells layer.

The input layer U0 consists of one cell plane and is used for patterns input. The
next layer used for contrast extracting cells UG contains two cell planes: with
concentric and off-centre receptive fields. It is used for extraction of the contrast
from the images independently of the brightness mean.

S−layers contain several cells each and are used for feature extraction, while
C−layers are used for blurring of the S-layer output.

The first S−layer (US1) is used for edge component extraction for different
rotation angles.

The S-cells’ connections at stages US2 and US3 are trained by unsupervised
competitive learning as described in [1], [2], [22]. However, US4 layer is trained
by supervised competitive learning according to [1] and is used to provide the
recognition results.

For all S−cells, the resulting output is calculated according to the formulae

uSl
(−→n , k) =

Θl

1−Θl
φ	wSl

(−→n , k)− 1
, (6)

wSl
(−→n , k) =

1 +
∑KCl−1

ξ=1

∑
|ν|<ASl

aSl
uCl−1

(−→n +−→ν , ξ)

1 + θlbSl
(k)vl(

−→n)
, (7)

vl(
−→n) =

√√√√√KCl−1∑
ξ=1

∑
|−→ν |<ASl

cSl
(ν){uCl−1

(−→n +−→ν , ξ)}2, (8)

bSl
(k) =

√√√√√KCl−1∑
ξ=1

∑
|−→ν |<ASl

(aSl
)2

cSl
(
−→
ν))

. (9)

Here φ(x) = max(x, 0), ψ(x) = φ(x)/(1 + φ(x)).
Parameter −→n is a location of the cell plane, while k is the number of the

cell of the stage. The θl parameter is a threshold, resulting in selectivity of the
features. aSl

represents the fixed strength of the connection coming from the
preceding stage’s C-cells. Its size ASl

represents the summation range for the
input connections. KCl−1

represents the count of planes for the previous C-
layer. cSl

(ν) is a weight function affecting the vl output. The dimensions of this
functions are equal to aSl

dimensions.

Vehicle Plate Recognition Using Improved Neocognitron 635

For C−cells of layers UC1−3 the outputs are given by expressions

uCl
(−→n , k) = ψ{

∑
|ν|<ACl

aCl
(−→ν)uSl

(−→n +−→ν , k)}. (10)

The layer UC4 has the cells each corresponding to one pattern class. The
connections from layer US3 are transmitting the results to the layer UC4 . For
this stage, the C−cells are uniting the S−cells to the recognition result classes.
The competition amongst the S−cells are performed, so that no more than one
maximal recognition result may be transmitted to the next layer (UC4). The
modified neocognitron that we propose uses FFT [23] for input and connection
convolutions in order to provide the usage of standard devices performing FFT.

The calculation of the output values of the layers can be regarded as the
convolution of the input values and connections, that is a common approach in
different signal processing applications. Such interpretation gives us the ability
to use the convolution theorem:

F(f ⊗ h) = F(f)× F(h), (11)

where operator F denotes the discrete Fourier transform (DFT), operator ⊗ is
convolution, operator × refers to element-wise multiplication, and f , h — input
and connections matrices.

The layers are self-organized by competitive learning. The S-planes count is
not predefined, but is generated if no suitable planes are found according to the
”winner-takes-all” process.

In order to provide outputs calculation, the discrete convolution theorem is
used. However, the convolution is assumed to be cyclic, so that certain restric-
tions are applied to input and connection data. To exclude impact of the error
due to boundary conditions, we set the size of convolution, connection and input
matrices to

Nox = Nix +Ncx − 1, Noy = Niy +Ncy − 1, (12)

Nix, Niy are dimensions of the required output matrix, Ncx, Ncy denote dimen-
sions of the connection matrix. Both input and connection matrices are initially
filled by zeros.

The next step is the element-wise multiplication of input and connection FFT
matrices:

F(o) = F(f)× F(h), o = F−1(F(o)). (13)

Summing up, we can describe the sequence of the convolution calculation
consisting of the following steps:

1. input and convolution matrices FFT calculation;
2. element-wise input and FFT multiplication of connection matrices;
3. obtaining the resulting matrix inverse FFT;
4. S-cells thinning-out, performed over the matrix, obtained from the previous

step.

636 D. Kangin, G. Kolev, and P. Angelov

7 The Experimental Set Size Estimation

The experimental set size estimation is important for determination of bench-
marking accuracy. In this section we describe the initial assumptions on the test
set and the model, used for testing data set size, analogously to [24]. We assume
to consider as a separate pattern each symbol of the vehicle plate. We assume
that the data elements has a probability distribution:

P (pattern, class) = P (pattern)P (class|pattern). (14)

We can assume also, that the classes should contain all the variants of symbols.
Also we assume the binary events, corresponding to the tuple ”recognizer”, as
”1” for erroneous recognition and ”0” for correct recognition. Then we assume
that the number of errors is calculated by the binomial distribution:

P (k) = Ck
np

k(1− p)n−k, F (k) =

k∑
i=1

P (i). (15)

where error mean is np and variance is np(1 − p). A guaranteed estimator for
test set capacity states, that, with the probability (1 − α), error probability p
will not exceed p̂ = k/n more than ε(n, a) = βp :

Prob(p >= p̂+ ε(n, α)) = F (n) � 0. (16)

Using the estimation of binomial law by the Normal law, as it is described in
[24], we can obtain the test set size estimation as:

n =
−2 lnα
β2p

. (17)

Assuming α = 0.05, β = 0.2, p = 0.03 and a pessimistic bound, we obtain, that
the count of test set elements is n = 5000. The count of plates for vehicle plate
detection and segmentation algorithms estimation were chosen in the same way,
so that m = 5000 video fragments with vehicle plates depicted were chosen.

The video fragments have the following characteristics: black-and-white (in-
tensity depth 8 bit), frame size 320× 288 pixels, frame rate 25 fps. The vehicle
plate location and existance on each particular frame is not pre-defined as well
as the direction of vehicle motion.

8 Experimental Evaluations

The algorithm results are depicted in Table 1. For the first stage, the vehicle
plate detection algorithm, the results depict the ability of the algorithm for
proper vehicle detection. As we can see, line detection algorithm have a lot of
misses caused by low contrast or deformed of vehicle plate frame. The causes of
such low detection rate for this algorithm are shown in Figure 4. Common issue
for all of these algorithms is the inability to deal with vehicle plates with screened

Vehicle Plate Recognition Using Improved Neocognitron 637

Table 1. The results of experimental evaluations

Algorithm True recognition Miss False hit

Vehicle plate detection

Text detection 0.93 0.02 0.05

Line detection 0.65 0.30 0.05

Symbols segmentation

Text detection 0.85 0.12 0.03

Chan-Vese algorithm 0.83 0.14 0.03

Edge extraction algorithm 0.75 0.2 0.05

Vehicle plate symbols recognition

Neocognitron NN 0.96 - -

letters. However, the algorithm of text detection have the softest restriction as
only symbols, but no borders are required for vehicle plate detection. All of the
algorithms are restricted in rotation invariance. For this test set, the vehicle
plate rotation was varying up to ten degrees.

For the second stage, the vehicle plate detection algorithm, the results show
the possibility of the algorithm to determine the positions of each symbols on
the correctly extracted plate. Common issue for all of the described algorithms
of symbols detection is the inability to deal with glued or partly erased symbols
(Figure 5).

For the third stage, the symbol set was chosen as a subset of the results
of the previous algorithm. Tests for symbols recognition were performed using
one learning and one recognition set, each containing 5000 patterns, i.e. images
of various sizes up to 14 × 17 pixels, which depict the Russian vehicle plate
symbols. Although the recognition rate is dependent on the training patterns, the
proposed recognition demonstrated up to 96% recognition success rate, whereas
the learning set yielded 100% of recognition. The examples of the learning and
test pattern lists are shown in Figure 6.

Fig. 4. Canny edge detection over low contrast and deformed vehicle plate

638 D. Kangin, G. Kolev, and P. Angelov

Fig. 5. Glued and partly erased vehicle plate symbols

Fig. 6. Learning and test pattern examples

9 Conclusion

In the performed research, the novel method of vehicle plate recognition was
presented as well as comparison against existing vehicle plate recognition sys-
tems. The method of scene text detection showed a much better results (0.93
against 0.65 for line detecion algorithm) for vehicle plate detection as well as
for text symbols segmentation. For symbols recognition, the neocognitron neu-
ral network allowed to achieve 96% of correct symbols recognition. The results
of this work can be utilized in automatic vehicle plate recognition for parkings
and road traffic analysis systems. As the result, the proposed algorithm have
achieved better recognition results on low-resolution vehicle image data.

The proposed algorithm does not depend on video sequence data, but takes
into account only information on each video frame separately, that gives us a
possibility to generalize it for vehicle image data.

References

1. Fukushima, K.: Neocognitron for handwritten digit recognition. Neurocomput-
ing 51, 161–180 (2003)

2. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cybernet-
ics 36(4), 93–202 (1980)

Vehicle Plate Recognition Using Improved Neocognitron 639

3. Kamat, V., Ganesan, S.: An Efficient Implementation of the Hough Transform
for Detecting Vehicle License Plates Using DSPS. In: Proceedings of Real-Time
Technology and Applications, pp. 58–59 (1995)

4. Yohimori, S., Mitsukura, Y., Fukumi, M., Akamatsu, N., Pedrycz, W.: License plate
detection system by using threshold function and improved template matching
method. In: IEEE Annual Meeting Fuzzy Information Processing NAFIPS 2004,
vol. 1, pp. 357–362 (2004)

5. Neumann, L., Matas, J.: Real-Time Scene Text Localization and Recognition. In:
CVPR 2012, Providence, Rhode Island, USA (2012)

6. Ashoori-Lalimi, M., Ghofrani, S.: An Efficient Method for Vehicle License Plate
Detection in Complex Scenes. Circuits and Systems 2, 320–325 (2011)

7. Bar-Yosef, I., Beckman, I., Kedem, K., Dinstein, I.: Binarization, character extrac-
tion, and writer identification of historical Hebrew calligraphy documents. Springer
(2007), doi:10.1007/s10032-007-0041-5

8. Pratyusha, Y.S., Murthy, N.S., Sri RamaKrishna, K.: An Efficient Technique for
Segmentation of Characters of Vehicle Identification Number Using Watershed
Algorithm. International Journal of Advanced Engineering Sciences and Technolo-
gies 5(2), 187–194 (2011)

9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on
Image Processing 10(2) (February 2001)

10. Ying, H., Song, J., Ren, X.: Character segmentation for license plate by the sepa-
rator symbols frame of reference. In: 2010 International Conference on Information
Networking and Automation (ICINA), vol. 1, pp V1-438 - V1-442 (2010)

11. Drucker, H.: Fast Decision Tree Ensembles for Optical Character Recognition. In:
Fifth Annual Symposium on Document Analysis and Information Retrieval, April
15-17 (1996)

12. Malon, C., Uchida, S., Suzuki, M.: Support Vector Machines for Mathematical
Symbol Recognition. The institute of electronics, information and communication
engineers technical report of IEICE (2006)

13. Bruna, J., Mallat, S.: Invariant Scattering Convolution Networks. IEEE Trans. on
PAMI (to appear, 2013)

14. Kamvysselis, M.: Wavelet-based character recognition in curvature space. MIT
Machine Learning (6.891, Paul Viola) Final Project

15. Wylie, S., Hilton, P.J.: Homology theory. An introduction to algebraic topology.
Bull. Amer. Math. Soc. 70(3), 333–335 (1964)

16. Ghrist, R.: Barcodes: The Persistent Topology of Data. Bulletin (New Series) of
the American Mathematical Society 45(1), 61–75 (2008) S 0273-0979(07)01191-3

17. Kangin, D., Kolev, G., Vikhoreva, A.: Further Parameters Estimation of Neocog-
nitron Neural Network Modification with FFT Convolution. Journal of Telecom-
munication Electronic and Computer Engineering 4(2) (July-December 2012)

18. Canny, J.: A Computational Approach To Edge Detection. IEEE Trans. Pattern
Analysis and Machine Intelligence 8(6), 679–698 (1986)

19. Shapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37, 297–336 (1999)

20. Neumann, L., Matas, J.: Text localization in real world images based on conditional
random field. In: ICDAR-2011, pp. 687–691 (2011)

21. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzy, A.: Gradient
flows and geometric active contour models. In: Proc. Int. Conf. Computer Vision,
Cambridge, MA, pp. 810–815 (1995)

640 D. Kangin, G. Kolev, and P. Angelov

22. Kohonen, T.: Self-organizing maps. Springer, Heidelberg (2001)
23. Briggs, W.L., Henson, V.E.: The DFT: an owner’s manual for the discrete Fourier

transform, pp. 143–179. Society of Industrial and Applied Mathematics, PA (1995)
24. Guyon, I., Makhoul, J., Schwartz, R.M., Vapnik, V.: What Size Test Set Gives

Good Error Rate Estimates? IEEE Transactions on Pattern Analysis and Machine
Intelligence 20(1), 52–64 (1998)

Author Index

Adams, Rod 319
Aknin, Patrice 9
Aláız, Carlos M. 66
Alexiev, Kiril 343
Alimi, Adel M. 74, 511
Alonso-Weber, Juan Manuel 335
Alva, Parimala 319
Ammar, Boudour 74, 511
Angelov, Plamen 194, 628
Anguita, Davide 426, 434
Anwar, Muhammad Naveed 375
Austin, James 98
Axenie, Cristian 240

Barbero, Álvaro 66
Barros, Pablo V.A. 412
Bauer-Wersing, Ute 603
Berlemont, Samuel 381
Bezerra, Byron L.D. 412
Birvinskas, Darius 208
Bisneto, Juvenal M.M. 412
Bócsi, Botond Attila 1
Bogdan, Martin 224, 442
Botella-Rocamora, Paloma 451
Boukabou, Abdelkrim 503
Boukens, Mohammed 503
Brahmi, Hajer 74
Brombach, Joris 563
Brosch, Tobias 272
Burles, Nathan 98

Cabessa, Jérémie 58
Castellano, Marta 264
Chérif, Farouk 74, 511
Chernodub, Artem 138
Cho, KyungHyun 106, 611
Chouikhi, Naima 511
Cichocki, Andrzej 90
Clares Tomas, Juan Antonio 42
Conradt, Jörg 240, 248, 467
Csató, Lehel 1, 170
Cvek, Urška 351

Damasevicius, Robertas 208
Davey, Neil 319

De la Torre, Fernando 288
Denk, Christian 467
Dervos, Dimitris A. 34
de Sousa, Giseli 319
Dorronsoro, José R. 66

Eggert, Julian P. 367
El Assaad, Hani 9
Evangelidis, Georgios 34

Farkaš, Igor 154
Felder, Martin 563
Fernandes, Bruno J.T. 412
Fernandes, Sérgio M.M. 412
Förger, Klaus 312
Frandina, Salvatore 82, 186
Fujii, Robert H. 296
Furber, Steve 467

Galluppi, Francesco 467
Garcia, Christophe 381, 397
Gardner, Brian 256
Georgieva, Petia 288
Ghio, Alessandro 426, 434
Gnecco, Giorgio 146
Gorce, Philippe 511
Gori, Marco 82, 146
Govaert, Gérard 9
Gross, Horst-Michael 367
Grüning, André 256
Guijarro-Berdiñas, Bertha 122
Gutierrez, German 335

Hagiwara, Masafumi 595
Haschke, Robert 178
Hasler, Stephan 603
Hatori, Yasuhiro 327
Heinrich, Stefan 216
Hercus, Robert 527
Higuchi, Daisuke 162
Ho, Kim-Fong 527
Hocke, Jens 420
Homma, Yukinori 595
Honkela, Timo 312, 405, 579

642 Author Index

Idrissi, Khalid 397
Ilin, Alexander 106
Irifune, Mayumi 296
Ishiguro, Hiroshi 17
Ishii, Shin 17
Ivliev, Sergey 194

Jakab, Hunor Sandor 170
Jeanson, Francis 280
Jusas, Vacius 208

Kaifel, Anton 563
Kanellos, Fotis D. 586
Kangin, Dmitry 628
Karamitopoulos, Leonidas 34
Karhunen, Juha 106
Kasneci, Gjergji 442
Khosravi, Abbas 389
Kilgore, Phillip C.S.R. 351
Kmet, Tibor 483
Kmetova, Maria 483
Knapek, Michael 579
Kolev, Denis 194
Kolev, George 628
Koprinkova-Hristova, Petia 343
Koprinska, Irena 389, 571
Kryzhanovsky, Vladimir 42
Kübler, Thomas C. 442

Lagus, Krista 405
Lang, Bo 359
Layher, Georg 232
Ledezma, Agapito 335
Lefebvre, Grégoire 381
Lippi, Marco 82, 186
Llobet-Blandino, Francisco 467
Lomp, Oliver 475

Maex, Reinoud 319
Maggini, Marco 82, 186
Mamalet, Franck 381
Markarian, Garegin 194
Martel, Julien 397
Martinetz, Thomas 420
Martisius, Ignas 208
Mashita, Tatsuroh 327
Mastorakis, Nikos E. 586
Meier, Martin 178
Meis, Jon 563

Melacci, Stefano 82, 146, 186
Mladenov, Valeri 586
Moreno Arostegui, Juan Manuel 519

Nakamura, Yutaka 17
Nakashika, Toru 397
Neshov, Nikolay N. 619
Neumann, Heiko 232, 272
Nieminen, Ilari T. 405

Oakes, Michael 375
Okadome, Yuya 17
Okamoto, Hiroshi 50
O’Keefe, Simon 98
Olivier, Paul 519
Oneto, Luca 426, 434
Osana, Yuko 495
Ougiaroglou, Stefanos 34
Ozawa, Seiichi 162

Panchev, Christo 375
Pardo, Juan 451
Parra, Xavier 426
Peteiro-Barral, Diego 122
Petrov, Michail 459
Phan, Anh-Huy 90
Pipa, Gordon 26, 264
Plana, Luis A. 467

Raiko, Tapani 106
Rana, Mashud 389, 571
Rañó, Iñaki 475
Rao, Junyang 545
Rebrová, Krist́ına 154
Reyes-Ortiz, Jorge Luis 426, 434
Rezzoug, Nasser 511
Richter, Mathis 475
Ridella, Sandro 434
Ritter, Helge J. 178
Romeu, Pablo 451
Rosenstiel, Wolfgang 224, 442

Saari, Juho 405
Saitoh, Fumiaki 537
Sakai, Ko 327
Samé, Allou 9
Sanchis, Araceli 335
Sandamirskaya, Yulia 248
Sanguineti, Marcello 146

Author Index 643

Schöner, Gregor 475
Schumacher, Johannes 26
Schwabe, Lars 304
Schwenker, Friedhelm 272
Sehnke, Frank 130, 563
Sesmero, M. Paz 335
Shikauchi, Yumi 17
Š́ıma, Jǐŕı 114
Spüler, Martin 224
Steuber, Volker 319
Strunk, Achim 563
Struwe, Marvin 603
Suvorov, Mikhail 194
Szupiluk, Ryszard 553

Tafaj, Enkelejda 442
Takamatsu, Tsubasa 495
Tatoglou, Christos 34
Terzyiska, Margarita 459
T.M. Júnior, Nestor 412
Todorov, Yancho 459
Torben-Nielsen, Ben 319
Toutounji, Hazem 26
Trutschl, Marjan 351

Tschechne, Stephan 232
Tsekouras, George J. 586

Utani, Akihide 537

Villa, Alessandro E.P. 58
Vollmer, Christian 367

Wang, Tinghua 545
Weber, Cornelius 216
Wei, Hui 359
Wermter, Stefan 216
White, Tony 280
Wojewnik, Piotr 553
Wong, Kit-Yee 527

Z ↪abkowski, Tomasz 553
Zamora-Mart́ınez, Francisco 451
Zdunek, Rafa�l 90
Zhao, Dongyan 545
Zhelavskaya, Irina 42
Zheng, Youwei 304
Zibner, Stephan Klaus Ulrich 475
Zuo, Qingsong 359
Zvikhachevskiy, Dmitry 194

	Preface
	Organization
	Table of Contents
	Neural Network Theory and Models
	Hessian Corrected Input Noise Models
	1 Introduction
	1.1 Related Work

	2 Input Noise Correction
	2.1 Quadratic Approximation of the Partial Differential Equation

	3 Experiments
	3.1 Illustration for the Sinc(x) Function
	3.2 Synthetic Data
	3.3 Real World Data-Sets

	4 Discussion
	References

	Model-Based Clustering of Temporal Data
	1 Introduction
	2 Dynamic Model for Temporal Data Clustering
	3 Maximum Likelihood Estimation
	3.1 E-Step
	3.2 M-Step

	4 Experimental Study
	4.1 Algorithms in Competition
	4.2 Results

	5 Conclusion and Future Work
	References

	Fast Approximation Method for Gaussian Process Regression Using Hash Function for Non-uniformly Distributed Data
	1 Introduction
	2 Gaussian Process Regression Approximated by the Divided Dataset
	2.1 Approximated Calculation of GPR
	2.2 Integration of Multiple Decomposed GPR by PoE

	3 Performance Comparison
	3.1 Artificial Data
	3.2 Regression Task with Real Data

	4 Conclusion
	References

	An Analytical Approach to Single Node Delay-Coupled Reservoir Computing
	1 Introduction
	2 Methods
	2.1 Single Node Delay-Coupled Reservoirs
	2.2 Approximate Virtual Node Equations

	3 Results
	3.1 Trajectory Comparison
	3.2 NARMA-10
	3.3 5-Bit Parity
	3.4 Large Setups
	5-Bit Parity.

	4 Discussion
	References

	Applying General-Purpose Data Reduction Techniques for Fast Time Series Classification
	1 Introduction
	2 Data Reduction Techniques
	2.1 Prototype Selection Algorithms
	2.2 Prototype Abstraction Algorithms

	3 Experimental Study
	3.1 Experimental Setup
	3.2 Comparisons

	4 Conclusions
	References

	Two-Layer Vector Perceptron
	1 Introduction
	2 Setting the Problem
	3 Formal Description of the Model
	3.1 Describing the Model
	3.2 Learning Procedure
	3.3 Identification Process

	4 Qualitative Description of the Model
	4.1 The General Idea
	4.2 Example

	5 Details of the Algorithm
	6 Experimental Results
	7 Conclusion
	References

	Local Detection of Communities by Neural-Network Dynamics
	1 Introduction
	2 Methods
	2.1 Neural-Network Dynamics
	2.2 Local Detection of Communities

	3 Results
	3.1 Local Detection of Communities from a Synthetic Benchmark Network
	3.2 Local Community Detection from the Zachary Karate-Club Network

	4 Discussion
	References

	The Super-Turing Computational Power of Interactive Evolving Recurrent Neural Networks
	1 Introduction
	2 Preliminaries
	3 Interactive Computation
	3.1 The Interactive Paradigm
	3.2 Interactive Turing Machines

	4 Interactive Evolving Recurrent Neural Networks
	5 The Computational Power of Interactive Evolving Recurrent Neural Networks
	6 Discussion
	References

	Group Fused Lasso
	1 Introduction
	2 Solving Group Fused Lasso with Proximal Methods
	3 Experiments
	4 Conclusions
	References

	Exponential Synchronization of a Class of RNNs with Discrete and Distributed Delays
	1 Introduction
	2 Exponential Synchronization Problem
	3 Exponential Synchronization of the RNNs
	4 An Illustrative Example
	5 Conclusion
	References

	Variational Foundations of Online Backpropagation
	1 Introduction
	2 On-Line Backpropagation Revisited
	3 Backprop from Euler-Lagrange Equations
	4 Learning as a Dissipative Hamiltonian Process
	5 Conclusions
	References

	GNMF with Newton-Based Methods
	1 Introduction
	2 Graph-Regularized NMF
	3 Algorithm
	4 Experiments
	5 Conclusions
	References

	Improving the Associative Rule Chaining Architecture
	1 Introduction
	1.1 Correlation Matrix Memories (CMMs)
	1.2 Associative Rule Chaining

	2 Improving the ARCA Architecture
	2.1 Using a Single CMM
	2.2 Recall
	2.3 Time Complexity of the Reduced ARCA
	2.4 Comparison of Memory Requirements

	3 Conclusions and Further Work
	References

	Machine Learning and Learning Algorithms
	A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines
	1 Introduction
	2 Deep Boltzmann Machines
	3 Training Deep Boltzmann Machines
	4 A Two-Stage Pretraining Algorithm
	4.1 Discussion

	5 Experiments
	5.1 Result and Analysis

	6 Conclusions
	References

	A Low-Energy Implementation of Finite Automata by Optimal-Size Neural Nets
	1 Introduction
	2 Neural Networks as Finite Automata
	3 The Transition Function Decomposition
	4 The Finite Automaton Implementation
	5 Conclusions
	References

	A Distributed Learning Algorithm Based on Frontier Vector Quantization and Information Theory
	1 Introduction
	2 Distributed FVQIT (DFVQIT)
	2.1 Separated Learning
	2.2 Model Integration

	3 Experimental Study
	3.1 Materials and Methods
	3.2 Results and Discussion

	4 Conclusions
	References

	Efficient Baseline-Free Sampling in Parameter Exploring Policy Gradients: Super Symmetric PGPE
	1 Introduction
	2 Method
	2.1 Parameter-Based Exploration
	2.2 Sampling with a Baseline
	2.3 Symmetric Sampling
	2.4 Super-Symmetric Sampling

	3 Experiments and Results
	4 Conclusions and Future Work
	References

	Direct Method for Training Feed-Forward Neural Networks Using Batch Extended Kalman Filter for Multi-Step-Ahead Predictions
	1 Introduction
	2 Modeling Time Series Dynamics
	2.1 Training Traditional Multilayer Perceptrons Using EKF for SS Predictions
	2.2 Training NARX Networks Using BPTT and EKF
	2.3 Direct Method of Training Multilayer Perceptrons for MS Predictions Using FPTT and Batch EKF

	3 Experiments
	3.1 Mackey-Glass Chaotic Process
	3.2 Santa-Fe Laser Data Series

	4 Conclusions
	References

	Learning with Hard Constraints
	1 Introduction
	2 Formulation of the Learning Problem
	3 The Representer Theorem for Learning with Constraints
	4 Support Constraint Machines
	4.1 Reactions of the Constraints
	4.2 Support Constraints
	4.3 Computational Issues

	5 Discussion
	References

	Bidirectional Activation-based Neural Network Learning Algorithm
	1 Introduction
	2 GeneRec Model
	3 Bidirectional Activation-based Learning
	4 Experiments
	4.1 4-2-4 Encoder
	4.2 Simple Binary Vector Associations
	4.3 Complex Binary Vector Associations

	5 Conclusion
	References

	A Neural Network Model for Online Multi-Task Multi-Label Pattern Recognition
	1 Introduction
	2 Extended RAN-MTPR
	2.1 Learning Environments
	2.2 Network Structure
	2.3 One-Pass Incremental Learning
	2.4 Task Allocation and Learning of Multi-Label Data
	2.5 Knowledge Consolidation

	3 Experiments
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Conclusions
	References

	Novel Feature Selection and Kernel-Based Value Approximation Method for Reinforcement Learning
	1 Introduction
	2 Notation and Background
	3 Kernel Least Squares Value Approximation
	4 Sparsification of the Representation
	5 On-Line Proximity Graph Construction
	5.1 Updating the Graph Structure

	6 Performance Evaluation
	7 Conclusion
	References

	Learning of Lateral Interactions for Perceptual Grouping Employing Information Gain
	1 Introduction
	2 Artificial Networks for Perceptual Grouping
	2.1 Competitive Layer Model
	2.2 Coupled Kuramoto Oscillators

	3 Learning Lateral Interactions
	3.1 Original Learning Algorithm with AEV
	3.2 Learning Algorithm with ITVQ

	4 Evaluation
	5 Conclusion
	References

	On–Line Laplacian One–Class Support Vector Machines
	1 Introduction
	2 On–Line Laplacian One–Class SVM
	3 Experimental Results
	4 Conclusions
	References

	OSA: One-Class Recursive SVM Algorithm with Negative Samples for Fault Detection
	1 Introduction
	2 Problem Formulation
	3 Method Description
	4 The Proposed Method OSA
	5 Tests on Benchmark Data Sets
	6 Tests on Real Flight Data
	7 Conclusion
	References

	Brain-Machine Interaction and Bio-inspired Systems
	EEG Dataset Reduction and Classification Using Wave Atom Transform
	1 Introduction
	2 Wave Atom Transform
	3 ANN and Training Functions
	4 Case Study
	5 Conclusions
	References

	Embodied Language Understanding with a Multiple Timescale Recurrent Neural Network
	1 Introduction
	2 Extended MTRNN Model
	3 Scenario
	4 Evaluation and Analysis
	4.1 Generalisation
	4.2 Network Behaviour

	5 Discussion
	References

	Unsupervised Online Calibration of a c-VEP Brain-Computer Interface (BCI)
	1 Introduction
	2 Methods
	2.1 Unsupervised Channel Selection
	2.2 Unsupervised Template Generation
	2.3 Offline Analysis
	2.4 Online Experiment

	3 Results
	3.1 Offline Analysis
	3.2 Online Experiment with 2 Targets

	4 Discussion
	5 Conclusion
	References

	A Biologically Inspired Model for the Detection of External and Internal Head Motions
	1 Introduction
	2 Visual Representations of Head Movements
	2.1 A Model of Cortical Motion Gradient Detection
	2.2 Model Mechanisms for Motion Contrast Detection

	3 Results
	4 Conclusion and Discussion
	References

	Cortically Inspired Sensor Fusion Networkfor Mobile Robot Heading Estimation
	1 Introduction
	1.1 State-of-the-Art in Sensor Fusion Algorithms
	1.2 Brains Aim at Flexibility and Robustness versus Optimality

	2 Model Description
	2.1 Generic Network Architecture
	2.2 Dynamics
	2.3 Sensor Fusion Network
	2.4 Comparison with State-of-the-Art

	3 Model Evaluation
	4 Conclusions and Future Work
	References

	Learning Sensorimotor Transformations with Dynamic Neural Fields
	1 Introduction
	2 Methods: Mathematical Framework and the Dynamical Architecture
	2.1 Dynamic Neural Fields
	2.2 The DFT Closed-Loop Looking Architecture

	3 The Learning Experiments
	4 Discussion
	References

	Cognitive Sciences and Neuroscience
	Learning Temporally Precise Spiking Patterns through Reward Modulated Spike-Timing-Dependent Plasticity
	1 Introduction
	2 Method
	2.1 Single Neuron Model
	2.2 Learning Algorithm
	2.3 Learning a Target Spike Train
	2.4 Plasticity Rules
	2.5 Network Setup and Learning Task

	3 Results
	4 Discussion
	References

	Memory Trace in Spiking Neural Networks
	1 Introduction
	2 Methods
	3 Results
	3.1 Memory Trace of SNN and DDS
	3.2 Memory Trace of SNN Coupled to DDS

	4 Discussion
	References

	Attention-Gated Reinforcement Learning in Neural Networks—A Unified View
	1 Introduction
	2 TaskandNetworkDesign
	2.1 Learning in SAGREL
	2.2 Comparison between AGREL and SAGREL
	2.3 Comparison to Standard Backpropagation in Function

	3 Experimental Comparison of Modells
	3.1 Immediate Reward Tasks
	3.2 Comparison of AGREL and SAGREL
	3.3 Delayed Rewards Task

	4 Discussion
	References

	Dynamic Memory for Robot Control Using Delay-Based Coincidence Detection Neurones
	1 Introduction
	2 Delay Networks for Dynamic Memory
	2.1 Stable Spiking

	3 T-maze Memory Task
	3.1 Sensory-Motor Network
	3.2 Memory and Inhibitory Networks
	3.3 Delay Mapping
	3.4 Results

	4 Conclusion
	References

	Robust Principal Component Analysis for Brain Imaging
	1 Introduction
	2 Robust Principal Component Analysis
	3 Experiments and Results
	4 Conclusions
	References

	Dendritic Computations in a Rall Model with Strong Distal Stimulation
	1 Introduction
	2 ModelDescription
	3 Simulation Results
	3.1 Strong Distal Activation Evokes Up States
	3.2 Revisiting Directional Sensitivity in the Rall Model
	3.3 Background Depolarization Set by Distal Inputs

	4 Discussion
	References

	Modeling Action Verb Semantics Using Motion Tracking
	1 Introduction
	2 Grounding through Motion Capture
	3 Modeling Relations between Verbs
	4 Conclusions and Discussion
	4.1 Multimodally Grounded Language Technology
	4.2 Multimodally Grounded Translation

	References

	Evolution of Dendritic Morphologies Using Deterministic and Nondeterministic Genotype to Phenotype Mapping
	1 Introduction
	2 Pattern Recognition in Neurons
	3 Methods
	3.1 Genotype Representation
	3.2 Genotype to Phenotype Mapping
	3.3 Fitness Function
	3.4 Genetic Variation

	4 Results
	4.1 Results of the de Sousa Algorithm
	4.2 Results of the Modified Torben-Nielsen Algorithm

	5 Conclusion
	References

	Sparseness Controls the Receptive Field Characteristics of V4 Neurons: Generation of Curvature Selectivity in V4
	1 Introduction
	2 Methods
	2.1 Stimuli
	2.2 The Model
	2.3 Evaluation of the Basis Functions

	3 Results
	3.1 Characteristics of Single Basis Functions
	3.2 Characteristics of Population

	4 Discussion
	References

	Pattern Recognition and Classification
	Handwritten Digit Recognition with Pattern Transformations and Neural Network Averaging
	1 Introduction
	2 Data Processing
	3 Experimental Setup
	4 Experimental Results
	5 Conclusions
	References

	Echo State Networks in Dynamic Data Clustering
	1 Introduction
	2 Problem Formulation
	2.1 Echo State Networks for Data Clustering
	2.2 Experimental Set-Up for Dynamic Data Generation

	3 Experimental Results and Discussion
	4 Conclusions
	References

	Self-Organization in Parallel Coordinates
	1 Introduction
	2 Background and Related Work
	3 Algorithm
	3.1 Primary Mapping
	3.2 Secondary Mapping
	3.3 Principles of Self-Organization

	4 Case Studies
	4.1 Synthetic Dataset
	4.2 Jiang-Rhoads Dataset

	5 Conclusion
	References

	A General Image Representation Scheme and Its Improvement for Image Analysis
	1 Introduction
	2 The Design of Computational Model Based on nCRF of GC
	3 Experiments Results
	3.1 Promoting N-cut Algorithm
	3.2 Promoting the Effects of Contour Detection

	4 Conclusion
	References

	Learning Features for Activity Recognition with Shift-Invariant Sparse Coding
	1 Introduction
	2 Method
	3 Experiments
	4 Conclusion
	References

	Hearing Aid Classification Based on Audiology Data
	1 Introduction
	2 Data Pre-processing
	3 Bayesian Network for ITE/BTE Aids
	4 Neural Network Model for ITE/BTE Aid
	5 Attribute Significance for ITE/BTE Classification
	6 Conclusions
	References

	BLSTM-RNN Based 3D Gesture Classification
	1 Introduction
	2 Accelerometer Based 3D Gesture Recognition
	3 The Proposed 3D Gesture Recognition Method
	3.1 Bidirectional Long Short-Term Memory RNNs
	3.2 BLSTM-RNN Architecture, Training and Decision Rule

	4 Experimental Results
	5 Conclusion and Perspectives
	References

	Feature Selection for Neural Network-Based Interval Forecasting of Electricity Demand Data
	1 Introduction
	2 Data
	3 PI Quality Measures
	4 The LUBEX Method
	5 Feature Selection for Constructing PIs
	5.1 CFS
	5.2 MI
	5.3 PA

	6 Results and Discussion
	6.1 Convergence
	6.2 Quality of Constructed PIs
	6.3 Variability of PICP

	7 Conclusion
	References

	A Combination of Hand-Crafted and Hierarchical High-Level Learnt Feature Extraction for Music Genre Classification
	1 Introduction
	2 The Proposed Approach
	2.1 Hand-Crafted Feature Extraction with Block-Wise MFCC
	2.2 Learnt High-Level Hierarchy Feature Extraction
	2.3 High Level Learnt Feature Fine-Tuning and Voting Scheme
	2.4 Voting Scheme

	3 Experiments and Results
	4 Conclusion
	References

	Exploration of Loneliness Questionnaires Using the Self-Organising Map
	1 Introduction
	1.1 Support forWellbeing Using Web Services and DataMining

	2 Loneliness Questionnaires as an Object of Study
	2.1 Data Collection
	2.2 Methods

	3 Results
	4 Conclusions and Discussion
	References

	An Effective Dynamic Gesture Recognition System Based on the Feature Vector Reduction for SURF and LCS
	1 Introduction
	2 Convexity Approach
	3 Dynamic Gesture Recognition
	3.1 Methodological Protocol
	3.2 Experimental Results

	4 Conclusion
	References

	Feature Weighting by Maximum Distance Minimization
	1 Introduction
	2 Methods
	2.1 LMNN
	2.2 MDM

	3 Experiments
	4 Conclusion
	References

	Training Computationally Efficient Smartphone–Based Human Activity Recognition Models
	1 Introduction
	2 HARDataset
	3 An Effective Smartphone-Based Solution for HAR
	3.1 Non-linear vs. Linear SVMs
	3.2 Selection of Subsets of Features
	3.3 Dimensionality Reduction with L1-SVM

	4 Conclusions
	References

	A Novel Procedure for Training L1-L2 Support Vector Machine Classifiers
	1 Introduction
	2 L1-L2 SVM: Theory and Practice
	3 Case Study: HAR on Smartphones
	4 Conclusions
	References

	Online Classification of Eye Tracking Data for Automated Analysis of Traffic Hazard Perception
	1 Introduction
	2 Analysis of Driver’s Visual Behavior
	2.1 Detection of Fixations and Saccades
	2.2 Detection of Smooth Pursuits

	3 Experimental Results
	4 Conclusion
	References

	Neural Network Applications in Control and Robotics
	Time-Series Forecasting of Indoor Temperature Using Pre-trained Deep Neural Networks
	1 Introduction
	2 Time Series Forecasting
	3 Stacked Denoising Auto-Encoders
	4 Experimentation
	4.1 Experimentation Framework
	4.2 Results

	5 Discussion and Conclusions
	References

	Recurrent Fuzzy-Neural Network with Fast Learning Algorithm for Predictive Control
	1 Introduction
	2 Recurrent Takagi-Sugeno Fuzzy-Neural Network
	2.1 Learning Algorithm for the Designed Recurrent TS Fuzzy Neural Network
	2.2 Gauss-Newton Method for Hybrid Learning of the Network Parameters

	3 Model Predictive Control Policy
	4 Results and Discussion
	4.1 Recurrent TS Model Evaluation by Prediction of Chaotic Time Series
	4.2 Evaluation of the Proposed MPC with Recurrent TS Network

	References

	Real-Time Interface Board for Closed-Loop Robotic Taskson the SpiNNaker Neural Computing System
	1 Introduction and Related Work
	2 An Autonomous Mobile Robot with a Neuronal Computing System
	2.1 The SpiNNaker Neural Network Computing System
	2.2 The Holonomic Mobile Robot Platform
	2.3 The Embedded Dynamic Vision Sensor

	3 Design and Specifications of the Real-Time Interface Board
	3.1 The SpiNNaker Inter-Chip Communication Protocol and Interface
	3.2 The Developed SpiNNaker Interface Board

	4 Application: Winner-Takes-All Network on Mobile Robot
	4.1 Winner Takes All Networks
	4.2 WTA Implementation on SpiNNaker Hardware
	4.3 Evaluation of the Demonstration System

	5 Results and Discussion
	References

	A Software Framework for Cognition,Embodiment, Dynamics, and Autonomy in Robotics: $cedar$
	1 Introduction
	2 A Software Framework for Dynamic Field Theory
	2.1 Dynamics and Processing Steps
	2.2 Timing
	2.3 Connections
	2.4 Graphical Notation and User Interface
	2.5 The DFT Toolbox

	3 Case Study
	4 Conclusion
	References

	Adaptive Critic Neural Network Solution of Optimal Control Problems with DiscreteTime Delays
	1 Introduction
	2 The Optimal Control Problem
	3 Discretization of the Optimal Control Problem
	4 Adaptive Critic Neural Network for an Optimal Control Problem with Control and State Constraints
	5 Nitrogen Transformation Cycle
	5.1 Numerical Simulation

	6 Conclusion
	References

	Emotion Generation System Considering Complex Emotion Based on MaC Model with Neural Networks
	1 Introduction
	2 Emotion Generation System Considering Complex Emotion Based on MaC Model with Neural Networks
	2.1 Outline
	2.2 Emotion Model
	2.3 Emotion in Proposed System
	2.4 Function of Each Module

	3 Experiment Results
	3.1 Emotion Generation
	3.2 Experiment Using Robot

	4 Conclusions
	References

	Neuro-Optimal Controller for Robot Manipulators
	1 Introduction
	2 Robot Arm Dynamics and Problem Statement
	3 Neural-Law Design
	4 Experimental Case Study
	5 Conclusion
	References

	Learning toWalk Using a Recurrent Neural Network with Time Delay
	1 Introduction
	2 Training with RNN
	2.1 Training Data Set
	2.2 The Proposed RNN Model
	2.3 BPTT Training Algorithm

	3 Tests and Evaluation
	4 Conclusions
	References

	The Imbalance Network and Incremental Evolution for Mobile Robot Nervous System Design
	1 Introduction
	2 The Imbalance Network and Equilibrium-Action Cycle
	3 Example Design: Moving Down a Tunnel
	4 Conclusion
	References

	Balancing of a Simulated Inverted Pendulum Using the NeuraBase Network Model
	1 Introduction
	2 NeuraBase Network Model (NNM)
	3 Simulation Setup
	4 Learning Logic
	5 Results and Discussions
	5.1 Learning from a Fixed Initial Position
	5.2 Learning from Random Initial Positions
	5.3 Comparison with PID

	6 Conclusion
	References

	Coordinated Rule Acquisition of Decision Making on Supply Chain by Exploitation-Oriented Reinforcement Learning
	1 Introduction
	2 Beer Game
	2.1 Outline of the Beer Game
	2.2 The Cardinal Rule of the Beer Game
	2.3 Procedure

	3 Exploitation-Oriented Reinforcement Learning
	4 Beer Game Optimization Using Exploitation-Oriented Reinforcement Learning
	5 Experiment
	5.1 Experimental Settings
	5.2 Experimental Results
	5.3 Discussion

	6 Conclusions
	References

	Other Applications of Neural Networks
	Using Exponential Kernel for Word Sense Disambiguation
	1 Introduction
	2 Kernels Based on BoW Representation
	3 Exponential Kernel Applied to WSD
	3.1 Exponential Kernel
	3.2 Discussion

	4 Evaluation Results
	5 Conclusion
	References

	Independent Component Analysis Filtration for Value at Risk Modelling
	1 Introduction
	2 ICA Decomposition for Separation and Filtration
	3 Practical Experiment
	4 Conclusions
	References

	Wind Power Resource Estimation with Deep Neural Networks
	1 Introduction
	2 Method
	2.1 Long-Term Data
	2.2 Observational Data
	2.3 A Deep Neural Network Setup for MCP

	3 Results
	4 Conclusions and Future Work
	References

	Wavelet Neural Networks for Electricity Load Forecasting – Dealing with Border Distortion and Shift Invariance
	1 Introduction
	2 Wavelet Transform and Shift Invariance
	3 Data and Problem Statement
	4 Wavelet-Based Load Forecasting
	4.1 Wavelet Decomposition of the Electricity Load
	4.2 Dealing with Border Distortion
	4.3 Feature Selection and Wavelet Prediction Models

	5 Results and Discussion
	6 Conclusion
	References

	Interactive Two-Level WEBSOM for Organizational Exploration
	1 Introduction
	1.1 WEBSOM in Exploration of Text Collections
	1.2 Maps of People

	2 Interactive Two-Level WEBSOM
	2.1 Maps ofWords as a Feature Selection Tool
	2.2 Visualizing Map Organization

	3 Conclusions and Discussion
	References

	Optimal Operation of Electric Power Production System without Transmission Losses Using Artificial Neural Networks Based on Augmented Lagrange Multiplier Method
	1 Introduction
	2 Mathematical Base for Optimal Operation of All-Thermal Power System without Transmission Losses
	3 Mathematical Base for Continuous, Nonlinear, Constrained Optimization Process Using ANNs and Based on Augmented Lagrange Multiplier Technique
	3.1 General
	3.2 Optimal Operation of All-Thermal Power System without Transmission Losses

	4 Application of the Proposed Method
	5 Conclusions
	References

	An Echo State Network with Working Memories for Probabilistic Language Modeling
	1 Introduction
	2 Model
	3 Experiments
	3.1 Target Language
	3.2 Results

	4 Conclusion
	References

	Using the Analytic Feature Framework for the Detection of Occluded Objects
	1 Introduction
	2 Adaptation of Analytic Feature Framework
	3 Detection Results
	4 Occlusion Handling Using Object-Object Relations
	5 Conclusion
	References

	Boltzmann Machines for Image Denoising
	1 Introduction
	2 Deep Neural Networks
	2.1 Boltzmann Machines
	2.2 Denoising Autoencoders

	3 Image Denoising
	3.1 Boltzmann Machines
	3.2 Denoising Autoencoders

	4 Experiments
	4.1 Datasets
	4.2 Settings
	4.3 Results and Analysis

	5 Discussion
	References

	Comparison on Late Fusion Methods of Low Level Features for Content Based Image Retrieval
	1 Introduction
	2 Related Work
	3 Image Databases
	4 Low Level Features
	5 Late Fusion Methods
	5.1 Score-Based Fusion Methods
	5.2 Rank-Based Fusion Methods

	6 Experimental Results
	7 Conclusions and Future Work
	References

	Vehicle Plate Recognition Using Improved Neocognitron Neural Network
	1 Introduction
	2 Vehicle Plate Segmentation
	3 Text Detection Algorithm
	4 Vehicle Plate Symbols Extraction
	5 Chan-Vese Algorithm for Segmentation
	6 Modified Neocognitron Neural Network for Vehicle Plates Symbols Recognition
	7 The Experimental Set Size Estimation
	8 Experimental Evaluations
	9 Conclusion
	References

	Author Index

