
Maria Simonetta Balsamo
William J. Knottenbelt
Andrea Marin (Eds.)

 123

LN
CS

 8
16

8

10th European Workshop, EPEW 2013
Venice, Italy, September 2013
Proceedings

Computer
Performance Engineering

Lecture Notes in Computer Science 8168
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Maria Simonetta Balsamo
William J. Knottenbelt Andrea Marin (Eds.)

Computer
Performance Engineering
10th European Workshop, EPEW 2013
Venice, Italy, September 16-17, 2013
Proceedings

13

Volume Editors

Maria Simonetta Balsamo
Università Ca’ Foscari di Venezia
Dipartimento di Scienze Ambientali, Informatica e Statistica
via Torino 155, 30170 Venezia, Italy
E-mail: balsamo@dais.unive.it

William J. Knottenbelt
Imperial College London
Department of Computing
South Kensington Campus, London SW7 2AZ, UK
E-mail: wjk@doc.ic.ac.uk

Andrea Marin
Università Ca’ Foscari di Venezia
Dipartimento di Scienze Ambientali, Informatica e Statistica
via Torino 155, 30170 Venezia, Italy
E-mail: marin@dais.unive.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40724-6 e-ISBN 978-3-642-40725-3
DOI 10.1007/978-3-642-40725-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946648

CR Subject Classification (1998): C.4, D.2.7-9, C.2.1-2, C.2.4, I.6.3-6, J.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our great pleasure to present the proceedings of the 10th European Work-
shop on Performance Engineering (EPEW 2013) that took place in Venice. The
purpose of this workshop series is to gather academic and industrial researchers
working on all aspects of performance engineering. The program of EPEW 2013
comprises 16 full papers and 8 short papers selected from 33 submissions. Each
paper was peer reviewed by at least three reviewers from the International Pro-
gram Committee (IPC); after the collection of reviews the Program Committee
members carefully discussed the quality of the papers for one week before decid-
ing about the acceptance. We would like therefore to give a special thanks to all
the members of the IPC for the excellent work in the reviewing process and the
subsequent discussion panels during the selection process.

EPEW 2013 is honoured to have two distinguished keynote speakers: Vittorio
Cortellessa from the University of L’Aquila and Claudio Palazzi from the Uni-
versity of Padova. We would like to express our gratitude for their participation.

Finally we would like to thank the University Ca’ Foscari of Venice for hosting
the workshop, the EasyChair team for having allowed us to use their conference
system and Springer for the continued editorial support of this workshop series.

September 2013 Andrea Marin
Maria Simonetta Balsamo

William Knottenbelt

Organization

Program Committee

Gianfranco Balbo Università di Torino, Italy
Simonetta Balsamo Università Ca’ Foscari Venezia, Italy
Marta Beltran Rey Juan Carlos University, Spain
Marco Bernardo Università di Urbino, Italy
Jeremy Bradley Imperial College London, UK
Tadeusz Czachorski IITiS PAN, Polish Academy of Sciences, Poland
Dieter Fiems Ghent University, Belgium
Jean-Michel Fourneau Universite de Versailles St Quentin, France
Stephen Gilmore University of Edinburgh, UK
Richard Hayden Imperial College London, UK
Andras Horvath Università di Torino, Italy
Helen Karatza Aristotle University of Thessaloniki, Greece
William Knottenbelt Imperial College London, UK
Samuel Kounev Karlsruhe Institute of Technology (KIT),

Germany
Catalina M. Lladó Universitat Illes Balears, Spain
Andrea Marin Università Ca’ Foscari Venezia, Italy
Dorina Petriu Carleton University, Canada
Philipp Reinecke HP Labs, Bristol, UK
Sabina Rossi Università Ca’ Foscari Venezia, Italy
Markus Siegle Universität der Bundeswehr München,

Germany
Mark Squillante IBM Research, USA
Miklos Telek Budapest University of Technology and

Economics, Hungary
Nigel Thomas Newcastle University, UK
Mirco Tribastone Ludwig-Maximilians-Universität München,

Germany
Petr Tuma Charles University, Czech Republic
Maria Grazia Vigliotti Imperial College London, UK
Jean-Marc Vincent Laboratoire LIG, France
Katinka Wolter Freie Universitaet zu Berlin, Germany

Additional Reviewers

Angius, Alessio
Beccuti, Marco
Brosig, Fabian

Dei Rossi, Gian-Luca
Galmés, Sebastià
Gouberman, Alexander

VIII Organization

Guenther, Marcel
Jansen, David N.
Jones, Gareth
Krebs, Rouven
Milenkoski, Aleksandar
Noorshams, Qais

Riedl, Martin
Rota Bulò, Samuel
Shaw, Adrian L.
Tati, Bharath Siva Kumar
Tesei, Luca

Table of Contents

Invited Talks

Performance Antipatterns: State-of-Art and Future Perspectives 1
Vittorio Cortellessa

Online Game Performance Engineering . 7
Claudio E. Palazzi

Full Papers

Stochastic Bounds and Histograms for Network Performance
Analysis . 13

Farah Aı̈t-Salaht, Hind Castel-Taleb, Jean-Michel Fourneau, and
Nihal Pekergin

Analytic Performance Modeling and Optimization of Live
VM Migration . 28

Arwa Aldhalaan and Daniel A. Menascé

Towards Supervisory Control of Generally-Distributed Discrete-Event
Systems . 43

Jasen Markovski

Tackling Truncation Errors in CSL Model Checking through Bounding
Semantics . 58

Yang Zhao and Gianfranco Ciardo

Automatic Performance Model Generation for Java Enterprise Edition
(EE) Applications . 74

Andreas Brunnert, Christian Vögele, and Helmut Krcmar

Canonical Representation of Discrete Order 2 MAP and RAP 89
András Mészáros and Miklós Telek

Encoding Timed Models as Uniform Labeled Transition Systems 104
Marco Bernardo and Luca Tesei

A Fast EM Algorithm for Fitting Marked Markovian Arrival Processes
with a New Special Structure . 119

Gábor Horváth and Hiroyuki Okamura

PMIF+: Extensions to Broaden the Scope of Supported Models 134
Catalina M. Lladó and Connie U. Smith

X Table of Contents

Performance Regression Unit Testing: A Case Study 149
Vojtěch Horký, Frantǐsek Haas, Jaroslav Kotrč, Martin Lacina, and
Petr T̊uma

Phase-Type Fitting Using HyperStar . 164
Philipp Reinecke, Tilman Krauß, and Katinka Wolter

Towards the Quantitative Evaluation of Phased Maintenance
Procedures Using Non-Markovian Regenerative Analysis 176

Laura Carnevali, Marco Paolieri, Kumiko Tadano, and
Enrico Vicario

Performance Enhancement by Means of Task Replication 191
Peter G. Harrison and Zhan Qiu

Improving and Assessing the Efficiency of the MC4CSLTA Model
Checker . 206

Elvio Gilberto Amparore and Susanna Donatelli

End-to-End Performance of Multi-core Systems in Cloud
Environments . 221

Davide Cerotti, Marco Gribaudo, Pietro Piazzolla, and
Giuseppe Serazzi

Performance Analysis and Formal Verification of Cognitive Wireless
Networks . 236

Gian-Luca Dei Rossi, Lucia Gallina, and Sabina Rossi

Short papers

Sliding Hidden Markov Model for Evaluating Discrete Data 251
Tiberiu Chis

Using Queuing Models for Large System Migration Scenarios – An
Industrial Case Study with IBM System z . 263

Robert Vaupel, Qais Noorshams, Samuel Kounev, and Ralf Reussner

Performance Evaluation for Collision Prevention Based on a Domain
Specific Language . 276

Freek van den Berg, Anne Remke, Arjan Mooij, and
Boudewijn Haverkort

An Approximate Mean Value Analysis Approach for System
Management and Overload Control . 288

Vittoria De Nitto Personé and Andrea Di Lonardo

Table of Contents XI

Modeling and Timing Simulation of Agilla Agents for WSN Applications
in Executable UML . 300

Luca Berardinelli, Antinisca Di Marco, Stefano Pace,
Stefano Marchesani, and Luigi Pomante

Applying Model Differences to Automate Performance-Driven
Refactoring of Software Models . 312

Davide Arcelli, Vittorio Cortellessa, and Davide Di Ruscio

Reduction of Subtask Dispersion in Fork-Join Systems 325
Iryna Tsimashenka and William J. Knottenbelt

SAT-Based Bounded Model Checking for RTECTL and Simply-Timed
Systems . 337

Bożena Woźna-Szcześniak, Agnieszka Zbrzezny, and
Andrzej Zbrzezny

Author Index . 351

Performance Antipatterns:

State-of-Art and Future Perspectives

Vittorio Cortellessa

DISIM, University of L’Aquila, Italy
vittorio.cortellessa@univaq.it

Abstract. The problem of capturing performance problems is critical in
the software design, mostly because the results of performance analysis
(i.e. mean values, variances, and probability distributions) are difficult
to be interpreted for providing feedback to software designers. Support
to the interpretation of performance analysis results that helps to fill the
gap between numbers and design alternatives is still lacking. The aim
of this talk is to present the work that has been done in the last few
years on filling such gap. The work is centered on software performance
antipatterns, that are recurring solutions to common mistakes (i.e. bad
practices) affecting performance. Such antipatterns can play a key role in
the software performance domain, since they can be used in the investi-
gation of performance problems as well as in the formulation of solutions
in terms of design alternatives1.

Keywords: Software Model, Performance Evaluation, Antipatterns,
Feedback Generation, Design Alternatives.

1 The Context

The problem of interpreting the performance analysis results is still quite critical.
A large gap exists between the representation of performance analysis results and
the feedback expected by software architects. Additionally, the former usually
contains numbers (e.g. mean response time, throughput variance, etc.), whereas
the latter should embed architectural suggestions, i.e. design alternatives, useful
to overcome performance problems (e.g. split a software component in two com-
ponents and re-deploy one of them). Such activities are today exclusively based
on the analysts’ experience, and therefore their effectiveness often suffers of lack
of automation.

Figure 1 schematically represents the typical steps that are executed to con-
duct a model-based performance analysis process. Rounded boxes in the figure
represent operational steps whereas square boxes represent input/output data.
Vertical lines divide the process in three different phases: in the modeling phase,
an annotated software model is built; in the performance analysis phase, a per-
formance model is obtained through model transformation, and such model is

1 Most of the contents of this paper come from [1].

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 1–6, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 V. Cortellessa

��������	
�
������

��		�������
��������������

��������	�����������	
��������
����	������	

����� �����
!��	���������	

��������	
�
�����

������������	

"

#

$

%&�

%&�

'

�������	
������������������ ����������	

���������
������������

%&

Fig. 1. Model-based software performance analysis process

solved to obtain the performance results of interest; in the refactoring phase,
the performance results are interpreted and, if necessary, feedback is generated
as refactoring actions on the original software model.

The modeling and performance analysis phases (i.e. arrows numbered from
1 through 4) represent the forward path from a software model all the way
through the production of performance indices of interest. As outlined above,
while in this path well-founded model-driven approaches have been introduced
for inducing automation in all steps [2], there is a clear lack of automation in
the backward path that shall bring the analysis results back to the software
architecture.

The core step of the backward path is the shaded rounded box of Figure 1.
Here, the performance analysis results have to be interpreted in order to detect,
if any, performance problems. Once performance problems have been detected
(with a certain accuracy) somewhere in the model, solutions have to be applied
to remove those problems.

In Figure 1 the (annotated) software architectural model (label 5.a) and the
performance results (label 5.b) are both inputs to the core step that searches
problems in the model. The third input of this step represents the most promising
elements that can drive this search, i.e. performance antipatterns (label 5.c).
The main reference for performance antipatterns is the work done across the
years by Smith and Williams [3] that have ultimately defined fourteen notation-
independent antipatterns.

Figure 2 details the refactoring phase of Figure 1. In Figure 2, the core step of
the backward path is split in two steps: (i) detecting antipatterns that provides
the localization of the critical parts of software models, thus performing the
results interpretation step; (ii) solving antipatterns that suggests the changes to
be applied to the model under analysis, thus executing the feedback generation
step.

Performance Antipatterns: State-of-Art and Future Perspectives 3

��������	
�
�	�������	�

���������	
���������
����������������	��

����������������������
����������������������������

���� �

��

��� ���!����������������
������"��	 ��#�$���������

���������	
���������
����������������	��

%��	�	���

����������

�&�

��� ���

���������'
���

���

��� ���

����������

���
(����)����

�������

���

���������	
���������
����������������	��

%��	�	����&�

���

���������	
���������
����������������	��

%��	�	���'&�

���
���������	
���������
����������������	��

%��	�	���'&#

���

*�� ��� *��

Fig. 2. Details of the refactoring phase across different iterations

Several iterations can be conducted to find the software model that best fits
the performance requirements, since several antipatterns may be detected in a
model, and several refactoring actions may be available for solving each antipat-
tern. At each iteration, the refactoring actions (labels 6.1 . . . 6.h of Figure 2) aim
at building a new software model (namely Candidate) that replaces the analyzed
one. For example, Candidatei−j denotes the j-th candidate generated at the i-th
iteration. Then, the detection and solution approach can be iteratively applied
to all newly generated candidates to further improve the system, if necessary.

2 State-of-Art

A consistent amount of work has been done in the last few years around the man-
agement of performance antipatterns. For sake of space, the two most relevant
examples are mentioned here below.

Williams et al. in [4] introduced the PASA (Performance Assessment of Soft-
ware Architectures) approach. It aims at achieving good performance results
through a deep understanding of the architectural features. This is the approach
that firstly introduced the concept of antipatterns as support to the identifica-
tion of performance problems in software architectural models as well as in the
formulation of architectural alternatives. However, this approach is based on the
interactions between software architects and performance experts, therefore its
level of automation is still low.

Enterprise technologies and EJB performance antipatterns are analyzed by
Parsons et al. in [5]: antipatterns are represented as sets of rules loaded into an

4 V. Cortellessa

engine. A rule-based performance diagnosis tool, named Performance Antipat-
tern Detection (PAD), is presented. However, it deals with Component-Based
Enterprise Systems, targeting only Enterprise Java Bean (EJB) applications.
From the monitored data of running systems, it extracts the run-time system
design and detects EJB antipatterns by applying the defined rules to it. Hence,
the scope of [5] is restricted to such domain, and performance problems can
neither be detected in other technology contexts nor in the early development
stages.

Our research group has spent a quite large effort in the last few years around
the problems of representing, detecting and solving performance antipatterns
through model-driven techniques. Here below a summary of our main results.

The activity of representing antipatterns has been addressed in [6]: a struc-
tured description of the system elements that occur in the definition of antipat-
terns has been provided, and performance antipatterns have been modeled as
logical predicates.

The activities of detecting and solving antipatterns have been implemented by
defining the antipattern rules and actions with three modeling languages: (i) the
UML and MARTE profile notation in [7], (ii) the PCM notation in [8], and the
Aemilia notation in [9]. In [7] performance antipatterns have been automatically
detected in UML models using OCL [10] queries, but their solution was not yet
automated. In [8] a limited set of antipatterns has been automatically detected
and solved in PCM models through a benchmark tool. In [9] the application
of performance antipatterns to an ADL has been shown. These experiences led
to investigate the expressiveness of modeling languages and to classify antipat-
terns in three categories: (i) detectable and solvable; (ii) semi-solvable (i.e. the
antipattern solution is only achieved with refactoring actions to be manually
performed); (iii) neither detectable nor solvable.

Instead of blindly moving among the antipattern solutions without eventually
achieving the desired results, a technique to rank the antipatterns on the basis
of their guilt for violated requirements has been defined in [11] [12].

A Performance Antipattern Modeling Language (PAML), i.e. a metamodel
specifically tailored to describe antipatterns, has been introduced in [13,14],
where it has been discussed how advanced model-driven techniques can be used
to build an unifying notation-independent approach that addresses the problem
of embedding antipatterns management across different modeling notations.

3 Future Perspectives

The work performed around antipatterns in the last few years brings evidence to
the support they can provide to the identification and solution of performance
problems. This research direction, however, still contains open issues that shall
be addressed in the near future, as illustrated in what follows.

Accuracy of antipattern specification. The detection process may intro-
duce false positive/negative instances of antipatterns, mostly due to the presence
of thresholds in the antipattern specification. Potential sources to suitably tune

Performance Antipatterns: State-of-Art and Future Perspectives 5

the values of thresholds are: (i) the system requirements; (ii) the domain expert’s
knowledge; (iii) the evaluation of the system under analysis. However, threshold
values inevitably introduce a degree of uncertainty and extensive experimenta-
tion must be done in this direction.

No Strict Guarantee of Performance Improvements. The solution of one
or more antipatterns does not guarantee performance improvements in advance,
because the entire process is based on heuristic evaluations. Applying a refactoring
action results in a new softwaremodel, i.e. a candidate whose performance analysis
will reveal if the action has been actually beneficial for the system under study.

Dependencies of Performance Requirements. The application of antipat-
tern solutions leads the system to (probably) satisfy the performance require-
ments covered by such solutions. However, it may happen that a certain number
of other requirements get worse. Hence, the new candidate model must take into
account at each stage of the process all the requirements, also the previously
satisfied ones.

Conflicts between Antipattern Solutions. The solution of a certain num-
ber of antipatterns cannot be unambiguously applied in case of incoherencies
among their solutions. Even in cases of no explicit conflicts between antipattern
solutions, coherency problems can be raised from the order of application of so-
lutions. Criteria must be introduced to drive the application order of solutions
in these cases.

Lack of Model Parameters. The application of antipattern-based approaches
is not limited (in principle) along the software lifecycle, but it is obvious that an
early usage is subject to lack of information because the system knowledge im-
proves while the development process progresses. Both the software and the per-
formance models may lack of parameters needed to apply this type of approach.

Influence of Other Software Layers. Oftenly a performance model comes
from a (annotated) model that only contains information on the software ap-
plication and the hardware platform. However, between these two layers there
are other components, such as middleware and operating system, that should be
considered because they can contain performance antipatterns.

Limitations from Requirements. The application of antipattern solutions
can be restricted by functional or non-functional requirements. Example of func-
tional requirements may be legacy components that cannot be split and re-
deployed whereas the antipattern solution requires of these actions. Example
of non-functional requirements may be budget limitations that do not allow to
adopt an antipattern solution due to its extremely high cost.

Ambiguity in Formalization. Finally, note that the formalization of antipat-
terns reflects our interpretation of the informal literature. Different formaliza-
tions of antipatterns can be originated by relying on different interpretations.
This unavoidable gap is an open issue in this domain, and certainly requires a
wider investigation to consolidate the formal definition of antipatterns.

6 V. Cortellessa

Acknowledgments. This work has been supported by the European Office
of Aerospace Research and Development, Grant/Cooperative Agreement Award
no. FA8655-11-1-3055, on “Consistent evolution of software artifacts and
non-functional models”.

References

1. Cortellessa, V., Di Marco, A., Trubiani, C.: Software performance antipatterns:
Modeling and analysis. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.)
SFM 2012. LNCS, vol. 7320, pp. 290–335. Springer, Heidelberg (2012)

2. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance
Prediction in Software Development: A Survey. IEEE Trans. Software Eng. 30(5),
295–310 (2004)

3. Smith, C.U., Williams, L.G.: More New Software Antipatterns: Even More Ways
to Shoot Yourself in the Foot. In: International Computer Measurement Group
Conference, pp. 717–725 (2003)

4. Williams, L.G., Smith, C.U.: PASA(SM): An Architectural Approach to Fixing
Software Performance Problems. In: International Computer Measurement Group
Conference, Computer Measurement Group, pp. 307–320 (2002)

5. Parsons, T., Murphy, J.: Detecting Performance Antipatterns in Component Based
Enterprise Systems. Journal of Object Technology 7, 55–91 (2008)

6. Cortellessa, V., Di Marco, A., Trubiani, C.: Performance Antipatterns as Logi-
cal Predicates. In: Calinescu, R., Paige, R.F., Kwiatkowska, M.Z. (eds.) ICECCS,
pp. 146–156. IEEE Computer Society (2010)

7. Cortellessa, V., Di Marco, A., Eramo, R., Pierantonio, A., Trubiani, C.: Dig-
ging into UML models to remove performance antipatterns. In: ICSE Workshop
Quovadis, pp. 9–16 (2010)

8. Trubiani, C., Koziolek, A.: Detection and solution of software performance antipat-
terns in palladio architectural models. In: International Conference on Performance
Engineering (ICPE), pp. 19–30 (2011)

9. Cortellessa, V., de Sanctis, M., Marco, A.D., Trubiani, C.: Enabling performance
antipatterns to arise from an adl-based software architecture. In: WICSA/ECSA,
pp. 310–314 (2012)

10. Object Management Group (OMG): OCL 2.0 Specification, OMG Document
formal/May 01, 2006 (2006)

11. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: Towards the identification
of “Guilty” performance antipatterns. In: WOSP/SIPEW International Conference
on Performance Engineering, pp. 245–246 (2010)

12. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: A Process to Effectively
Identify “Guilty” Performance Antipatterns. In: Rosenblum, D.S., Taentzer, G.
(eds.) FASE 2010. LNCS, vol. 6013, pp. 368–382. Springer, Heidelberg (2010)

13. Cortellessa, V., Di Marco, A., Eramo, R., Pierantonio, A., Trubiani, C.:
Approaching the Model-Driven Generation of Feedback to Remove Software Per-
formance Flaws. In: EUROMICRO-SEAA, pp. 162–169. IEEE Computer Society
Press (2009)

14. Trubiani, C.: A model-based framework for software performance feedback. In:
Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 19–34. Springer,
Heidelberg (2011)

Online Game Performance Engineering

Claudio E. Palazzi

Department of Mathematics, University of Padova,
via Trieste 63, 35131 Padova, Italy

cpalazzi@math.unipd.it

Abstract. Interactive, massive online games are widely popular appli-
cations requiring specific solutions to ensure interactivity, consistency,
network fairness, and scalability. The wireless revolution has further com-
plicated this scenario by adding mobile players competing for network
resources with other users. It is hence crucial to provide holistic solutions
that enable a top quality online gaming experience regardless whether
the player is wired, wireless, or even mobile. To this aim, we analyze how
a high level of performance can be ensured through specific engineering
of the game architecture, synchronization scheme, and game gateway.

Keywords: Interactivity, Online Games, Mobility, Performance.

1 Introduction

Internet-based entertainment applications such as online games play a major
role in our everyday life with a persistent and accelerating growth that has now
reached tens of millions of subscribers around the world. From a research point
of view, they represent a very interesting and challenging topic especially when
considering highly interactive mobile games, played in wireless environments, and
involving a multitude of players simultaneously sharing the same virtual arena.
In this context, main requirements involve interactivity, consistency, network
fairness, and scalability; unfortunately, they are generally considered to be not
compatible with each other, thus forcing online game providers to privilege just
one or few of them when designing their game architecture. Instead, we show
how a performance engineering approach may be adopted to design an online
game architecture composed by holistic solutions able to simultaneously satisfy
all classic requirements and even to leverage on the satisfaction of some of them
to achieve the others as well.

In order to ensure optimal performance to players we need to split the problem
into sub-parts which requires specific solutions applied by different subjects. In
the following, with the help of Fig. 1, we explain the general division into sub-
parts and the corresponding suggested approaches.

The first sub-part regards the core of the network topology, which represents
the portion of the total connection path that can be handled by the online game
service provider. In particular, the approach is based on the adoption of a hybrid
architecture including solutions to support the communication and synchroniza-
tion among game servers. Instead, the second sub-part regards the edge of the

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 7–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

cpalazzi@math.unipd.it

8 C.E. Palazzi

Fig. 1. Considered architecture for online game

network topology and is concerned with the links between game servers and their
engaged players, thus including the last-mile wireless hop, which generally cor-
responds to the bottleneck of the connection and may be source of large queuing
delays. To obtain a holistic solution, a viable approach is to proceed through
successive steps and address the two sub-problems independently. Although the
solutions discussed in this paper generate the best performance results when
combined, they produce benefits even if singularly applied. In particular, for the
first sub-part we propose to exploit a hybrid architecture combining both the
advantages of client-server and peer-to-peer paradigms. This solution deploys
over the network a constellation of Game State Servers (GSSs) that have to
maintains a vision of the game state synchronized with each other [1]. Clearly,
this requires an efficient event synchronization scheme among GSSs in order to
guarantee a consistent and responsive evolution of the game state. To this aim,
the semantics of the game can be put to good use in order to increase the interac-
tivity degree provided to the player: discarding game events that are superseded
by others can free network resources thus speeding up the delivery of fresh game
events [2].

However, even if this scheme is proficient in maintaining a high degree of
responsiveness among game servers, still problems may arise at the edges of the
considered topology, where users in their homes or vehicles may be engaged in
an online game through a Game Gateway which separates the wireless network
from the rest of the Internet.

This represents the aforementioned second part of our problem. Concurrent
traffic may generate queues that build up at the last (or first) link of the con-
nection, thus delaying the game event delivery. This problem is worsened in case
of players relying on wireless connectivity, as the wireless medium is generally
shared by contemporary users who interfere with each other. In addition to the

Online Game Performance Engineering 9

problem discussed above, TCP-based elastic flows (e.g., file download) can harm
the performance of UDP-based real-time flows (e.g., online game) as TCP con-
tinuously probes the channel for more bandwidth, thus eventually generating
queues, and hence delays, on the connection [3].

To address this issue, a Game Gateway between the wireless (home or ve-
hicular) network and the game servers in Internet can take advantage of its
knowledge about available wireless network resources and the on-going traffic
in order to appropriately limit TCP’s advertised windows so as to smoothen
the network traffic progression and avoid queuing delays that would jeopardize
the interactivity of online game applications and, in general, of any real-time
application.

2 Main Requirements

Under a networking point of view, online games are characterized by main re-
quirements which are intrinsically correlated: interactivity, consistency, fairness,
and scalability. In particular, interactivity has a great impact even on the other
requirements.

Interactivity (or responsiveness) refers to the delay between the generation
of a game event in a node (i.e., a players’ client or a game server) and the
time at which other nodes receive that event. To ensure a pleasant experience
to the player, the time elapsed from the game event generation at a certain
node and its processing time at every other node participating in the same game
session must remain under a certain interactivity threshold [4]. Unfortunately,
variable congestion conditions in Internet may suddenly slow down the game
fluency on the screen. Moreover, players in the same virtual arena could be so
numerous that some game server may experience impulsive computational load
and loose interactivity. These problems are obviously amplified when plunged
into a wireless, mobile scenario.

Consistency regards having a simultaneous and homogeneous evolution of
the game state at any nodes belonging to the system. Clearly, the easiest way
to guarantee absolute consistency would be that of making the game proceed
through discrete locksteps. Having a single move allowed for each player and
synchronizing all the agents before moving toward the next round, for sure grants
absolute consistency but, on the other hand, impairs the system interactivity. A
trade-off between these two attributes needs thus to be found in order to develop
a proficient game platform.

Fairness, or (network fairness), ensures that any player has the same chances
of victory in the match, regardless of different network conditions. In this context,
relative delays have to be considered as important as absolute ones. Simultaneous
game evolution with identical speed should be guaranteed as much as possible
to all participants. Furthermore, it has recently been demonstrated how increas-
ing the interactivity degree of the game platform may lead also to improved
fairness [5].

10 C.E. Palazzi

Scalability is related to the capability of the system in providing efficient
support to a large community of players. Indeed, humans are social beings that
enjoy the presence of others and the competition against real adversaries. Be-
sides, it is primary interest of game companies to have huge revenues generated
by a very high number of customers. Yet, especially in the case of fast-paced
games, when the interactivity threshold cannot be met, scalability is sometimes
sacrificed by denying the access to some users depending on their experienced
delays. Therefore, by sustaining interactivity, one can also provide a higher scal-
ability degree in terms of both the number and the geographic dispersion of
players allowed to participate to the same virtual arena.

3 Smart Architecture: A Holistic Solution

In this section we describe in detail the main components of the proposed holistic
solution as anticipated in Fig. 1. For the sake of clarity, we name this holistic
solution Smart Architecture.

3.1 Fast Synchronization over a Hybrid Architecture

A mirrored game server architectures represents a hybrid solution efficiently em-
bracing the positive aspects of both centralized client-server and fully distributed
architectures [1]. Based on this approach, GSSs are interconnected in a peer-to-
peer fashion over the Internet and contain replicas of the same game state view.
Players communicate with their closest GSS through in a client-server fashion.
Each GSS gathers all game events of its engaged players, updates the game state,
and periodically forwards it to all its players and GSS peers.

The presence of multiple high performance GSSs helps in distributing the
traffic over the system and reduces the processing burden at each node [6].
Moreover, having each player connected to a close GSS reduces the impact of
the player-dependent access technology (e.g., dial-up, cable, DSL) on the total
experienced delay. In this case, in fact, the communication among players results
mainly deployed over links physically connecting GSSs, which can exploit the
fastest available technology (e.g., optical fibers) to reduce latency. As a result,
this architecture helps one in finding better solutions for the various tradeoff
among interactivity, consistency, fairness, scalability, and continuity.

Even if synchronization is still required to ensure the global consistency of
the game state held by the various servers, this requirement is made easier with
respect to fully distributed architectures thanks to the lower number of involved
nodes. Moreover smart solution can be devised to speed up this synchronization
process. Indeed, taking inspiration from the Active Queue Management approach
(e.g., RED, RIO [7]) in case of incipient congestion in best effort networks, the
synchronization mechanism among GSSs could exploit the semantics of the game
to discard few game packets to preempt interactivity loss when intense network
traffic or excessive computational load is slowing down some GSS.

Online Game Performance Engineering 11

Indeed, during a game session some events can lose their significance as time
passes, i.e., new actions may make the previous ones irrelevant. For example,
where there is a rapid succession of movements performed by a single agent in a
virtual world, the event representing the last destination supersedes the previous
ones.

Discarding superseded events for processing fresher ones may be of great help
for delay-affectedGSSs, achieving high interactivity degreewithout compromising
consistency.

For the sake of clarity, in the rest of the paper we refer to this synchronization
mechanism able to discard game events as Fast Synchronization (FS).

To ensure an adequate playability degree even to fast and furious class of
games a further dropping probability function is provided in order to discard
even non-superseded game events when dropping all the superseded ones is not
yet sufficient to maintain an adequate level of responsiveness. The two discard-
ing functions are featured with specific parameters; they work independently
one from the other and take action in sequence with the increasing of the game
event GTDs at the GSSs. Dropping non-superseded events can be done without
consistency-related consequences only for a category of games where little in-
consistencies are not highly deleterious for players’ fun (e.g., fast-paced games).

3.2 Game Gateway

Even when FS results proficient in maintaining a high degree of responsiveness
among game servers (i.e., GSSs), problems may still arise at the edges of the
considered topology, where users in their homes or along a street may be engaged
in an online game through a Game Gateway. Concurrent traffic may generate
queues that build up at the Game Gateway (or at the associated Access Point),
thus delaying the game event delivery and wasting all the interactivity patrimony
created by FS. The applications run in this context may vary and some of them
may be particularly harmful toward real-time flows generated by online games. In
particular, TCP-based FTP application for downloading files increases queuing
delays to such an extent that interactivity may be completely jeopardized [3].

To this aim, we modify our Game Gateway to achieve best performance trade-
off for both elastic and real-time applications. To do so, the trick is to appropri-
ately limit the advertised window for TCP flows so as to let them reach their
expected bandwidth, but not more than that so as to not generate queues. This
way, a solution to the tradeoff relationship existing between TCP throughput
and real-time application delays can be found.

Needless to say, a technique that exploited existing features of standard proto-
cols could be easily implemented in a real scenario. Moreover, an optimal tradeoff
between throughput and low delays could be achieved by maintaining the send-
ing rate (hence, the sending window) of TCP flows high enough to efficiently
utilize all available bandwidth but, at the same time, limited in its growth so as
to not utilize buffers. As a result, the throughput would be maximized by the
absence of packet loss, while the delay would be minimized by the absence of
queuing. This can be achieved through limiting the aggregate bandwidth utilized

12 C.E. Palazzi

by TCP flows just below the total capacity of the bottleneck link diminished by
the portion of the channel occupied by the simultaneous UDP-based real-time
traffic.

This upper bound can be enforced to all TCP flows sharing the same wire-
less link by having the corresponding AP exploiting to this aim the TCP’s
advertised window. Simply, the actual sending window of a TCP flow is de-
termined as the minimum between the congestion window and the advertised
window; thereby, having the AP appropriately modifying the advertised window
of passing-through TCP flows would limiting the factual sending rate of TCP
flows.

4 Conclusion

Interactive, massive online games are very popular applications. Yet they also
embody tough technical challenges related to interactivity, consistency, network
fairness, and scalability, which require specific solutions. We have discussed the
design of a holistic approach, including a hybrid game architecture, a synchro-
nization scheme and a game gateway, able to satisfy these requirements, and
ensure a top quality online gaming performance regardless whether the players
are wired, wireless, or even mobile.

Acknowledgments. This work is partially supported by the MIUR/PRIN
ALTERNET and the UNIPD/PRAT Web Squared projects.

References

1. Cronin, E., Kurc, A.R., Filstrup, B., Jamin, S.: An Efficient Synchronization Mech-
anism for Mirrored Game Architectures. Multimedia Tools and Applications 23,
7–30 (2004)

2. Palazzi, C.E., Ferretti, S., Cacciaguerra, S., Roccetti, M.: Interactivity-Loss Avoid-
ance in Event Delivery Synchronization for Mirrored Game Architectures. IEEE
Transactions on Multimedia 8, 847–879 (2006)

3. Palazzi, C.E., Ferretti, S., Roccetti, M., Pau, G., Gerla, M.: What’s in that Magic
Box? The Home Entertainment Center’s Special Protocol Potion, Revealed. IEEE
Transactions on Consumer Electronics 52, 1280–1288 (2006)

4. Pantel, L., Wolf, L.C.: On the Impact of Delay on Real-Time Multiplayer Games.
In: 12th International Workshop on Network and Operating Systems Support for
Digital Audio and Video, Miami, FL, USA (2002)

5. Palazzi, C.E., Ferretti, S., Cacciaguerra, S., Roccetti, M.: A RIO-like Technique
for Interactivity Loss Avoidance in Fast-Paced Multiplayer Online Games. ACM
Computers in Entertainment 3 (2005)

6. Safaei, F., Boustead, P., Nguyen, C.D., Brun, J., Dowlatshahi, M.: Latency Driven
Distribution: Infrastructure Needs of Participatory Entertainment Applications.
IEEE Communications Magazine 43, 106–112 (2005)

7. Clark, D.D., Fang, W.: Explicit Allocation of Best-Effort Packet Delivery Service.
IEEE/ACM Transactions on Networking 6, 362–373 (1998)

Stochastic Bounds and Histograms

for Network Performance Analysis

Farah Aı̈t-Salaht1, Hind Castel-Taleb2, Jean-Michel Fourneau1,
and Nihal Pekergin3

1 PRiSM, Univ. Versailles St Quentin, UMR CNRS 8144, Versailles France
{safa,jmf}@prism.uvsq.fr

2 SAMOVAR, UMR 5157, Télécom Sud Paris, Evry, France
hind.Castel@it-sudparis.eu

3 LACL, Univ. Paris Est-Créteil, France
nihal.pekergin@u-pec.fr

Abstract. Exact analysis of queueing networks under real traffic his-
tograms becomes quickly intractable due to the state explosion. In this
paper, we propose to apply the stochastic comparison method to derive
performance measure bounds under histogram-based traffics. We apply
an algorithm based on dynamic programming to derive bounding traf-
fic histograms on reduced state spaces. We indeed obtain easier bound-
ing stochastic processes providing stochastic upper and lower bounds on
buffer occupancy histograms (queue length distributions) for finite queue
models. We evaluate the proposed method under real traffic traces, and
we compare the results with those obtained by an approximative method.
Numerical results illustrate that the proposed method provides more ac-
curate results with a tradeoff between computation time and accuracy.
Moreover, the derived performance bounds are very relevant in network
dimensioning.

Keywords: Network QoS, Histogram-based traffic models, Stochastic
Comparison.

1 Introduction

Queueing-based models are very efficient modeling and evaluation tools for a
variety of practical situations in telecommunication and computer network sys-
tems. The stochastic behavior prediction of queues gives a theoretical insight
into the dynamics of these shared resources and how they can be designed to
provide better utilization. The probability theory in queueing analysis plays a
central role as it provides mathematical equations for performance measure com-
putations such as queue length, response time, and server utilization. Most of
the queueing theory is based on exponential assumption. However, this assump-
tion can be applied only for certain applications as in telephone networks. In the
Internet, several traffic traces are available, and are used to be approximated
by a theoretical probability distribution (for example, the phase distribution).

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 13–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 F. Aı̈t-Salaht et al.

Unfortunately, some problems arise: the accuracy of the model compared to the
traffic, and the difficulty to exploit the model when the number of parameters
is high. So most of the time, we must limit the number of parameters in the
detriment of precision. Moreover, the exact analysis of the queueing network
with the real traffic traces is in general impossible, as their sizes are too large to
be used directly.

There has been a several amount of works on the Histogram-based approach
for performance models. In the area of network calculus, the histogrammodel was
introduced by Skelly et al [11] to model the video sources, to predict buffer occu-
pancy distributions and cell loss rates for multiplexed streams. It was also applied
by Kweon and Shin [8] to propose an implementation of statistical real-time com-
munication in ATM networks using a modified version of the Traffic Controlled
Rate-Monotonic Priority Scheduling (TCRM). These works used an analysis
method based on a M/D/1/N queueing system. More recently, Hernández and
al.[5–7] have proposed a new performance analysis to obtain buffer occupancy
histograms. This new stochastic process called HBSP (Histogram Based Stochas-
tic Process) works directly with histograms using a set of specific operators. The
model is based on a basic histogram model (HD) as an input traffic which is
supplied through finite capacity buffers with deterministic (D) service time dis-
tribution under First Come First Served (FCFS) policy. Considering a single
node, the analysis method solves the HD/D/1/K queueing system, by reducing
the state space of traffic trace into n subintervals (classes or bins) in order to
avoid working with huge state spaces.

Another approach based on reducing the initial histogram in n subintervals
has been presented by Tancrez and al.[14] in a slightly different context. The
problem consists in building an upper (lower) bounding discrete distribution of
a continuous distribution which models the service duration in a production line.
They divide the support into n equal subintervals. Each of these subintervals of
the continuous distribution is associated with one single point of the discrete one.
This point is the upper limit (lower limit) of the interval and the probability
mass of the sub-interval is associated to that point. As the production lines
considered can be modeled by a decision free stochastic Petri-net, it is known
since the seminal work of Baccelli et al. [3] that bounding the distribution of
service times in the queues provides a bound on the end to end delay.

In this paper, we apply the stochastic bounding method for network perfor-
mance analysis under histogram-based traffic. The goal is to generate bounding
histograms with smaller sizes in order to make possible the analysis of the queue-
ing network. We use the strong stochastic ordering (denoted ≤st) [9]. We propose
to use algorithmic techniques developed in [2] to obtain optimal lower and upper
stochastic bounds of the buffer occupancy histogram. These algorithms allow to
control the size of the model and compute the most accurate bound with respect
to a given reward function. The bounding histograms are then used in the state
evolution equations to derive bounds for performance measures both for a single
queue and a tandem queueing network. To show the relevance of our work, we ana-
lyze systemswith real traffic traces.We compare our bounds with the results under

Stochastic Bounds and Histograms for Network Performance Analysis 15

exact traffic traces and those obtained from theHBSPapproximationmethod. The
proposed method provides the most accurate results for blocking probability and
mean buffer occupancy. Another important point is that HBSP only provides ap-
proximative results which are neither conservative nor optimistic. Our bounding
approach gives, at the same time, upper and lower performance measures which
could be used to check QoS constraints for network dimensioning.

This paper is organized as follows: in Section 2, we first describe the his-
togram traffic models, and the state evolution equations of the queuing model
under study. Then, we explain the Histogram Buffer Stochastic Process (HBSP)
method proposed by Hernandez and al. In Section 3, we introduce our approach
based on the stochastic bounds to derive performance measure bounds. Finally
in Section 4, we give numerical results based on real traffic measurements in
order to study the accuracy of the bounds, compared to the exact results and
those obtained by HBSP algorithm. These results are obtained for a single node
analysis and also for a tandem queueing network.

2 Queueing Model Description

2.1 Histogram Traffic Model

Here a histogram describe a discrete distribution and its graphical representa-
tion. Figure 1 shows a plot of MAWI traffic trace [12] corresponding to a 1-hour
trace of IP traffic of a 150 Mb/s transpacific line (samplepoint-F) for the 9th of
January 2007 between 12:00 and 13:00. This traffic trace has an average rate of
109 Mb/s. Using a sampling period of T = 40 ms (25 samples per second), the
resulting traffic trace has 90,000 frames (periods) and an average rate of 4.37Mb
per frame, the corresponding histogram is given in Figure 2.

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6

7

8
x 10

6

�������	�
��

��
��

��
��

��
�

���

�

��

Fig. 1. MAWI traffic trace Fig. 2. MAWI arrival load histogram

The arrival workload is characterized with the number of transmission units
produced by the corresponding traffic source during a pre-established time pe-
riod T = 40ms. Let A(k) be a discrete random variable representing the amount
of traffic entering to the system during the kth sampling interval (slot). We as-
sume that the traffic is stationary and independently and identically distributed

16 F. Aı̈t-Salaht et al.

(iid). So, all random variables A(k) follow the same distribution A characterized
by a couple (A, p(A)), where A is the support and p(A) is the corresponding
probabilities.

2.2 State Evolution Equations

We denote by Q(k) and D(k) respectively random variables corresponding to
buffer length and the output traffic (departure) during the kth slot (Figure 3).

Fig. 3. Input and output parameters of a queueing model

Let B be the buffer size and S be the transmission (service) rate. We assume
that the following sequence of events during a slot: acceptation of arrivals and
then service. The queue or buffer length Q(k) can be expressed with the following
recursive formula:

Q(k) = min(B, (Q(k − 1) + A(k)− S)+), k ∈ N. (1)

where operator (X)+ = max(X, 0). As we assume a Tail Drop policy, the
departure distribution is defined as follows:

D(k) = min(S, Q(k − 1)) + A(k)), k ∈ N. (2)

The transmission channel utilization is defined as ρ = E[A]
S , where E[A] is the

average traffic. Equation 1 defines a Markov chain in discrete time (DTMC) if
the arrivals (A(k)) are stationary and iid. As this chain is finite, it suffices to
verify that the arrival process makes the chain irreducible and aperiodic thus
ergodic. We give below some sufficient conditions to ensure both properties.

Proposition 1. If the following conditions are satisfied, then the DTMC is
ergodic:

1. there exists i < S in the support of A such that p(i) > 0,
2. there exists j > S in the support of A such that p(j) > 0,
3. j = S + 1 or i = S − 1.

Stochastic Bounds and Histograms for Network Performance Analysis 17

Proof. The first property implies that starting from state 0 we go back with a
probability greater than or equal to p(i). Indeed, if it arrives i customers, the
buffer length before the services is i, as i < S, we return to state 0 after the end
of service. So state 0 is aperiodic. In addition, the first property implies that the
buffer length can be reduced to 0 by a sequence of transitions from one arrival of
a batch of size i < S. So 0 is reachable from any states of the chain. Condition 2
implies that we can reach state B from state 0. Finally, the last condition implies
that we can reach all states from 0 or B by jumps with amplitude 1 that are
possible under assumptions 1 and 2.

We suppose in the following that the Markov chain is ergodic.
Let X (resp. Y) be a discrete random variable taking values in a set GX (resp.

GY) of size lX > 1 (resp. lY > 1).

Proposition 2. The computation of the convolution of the distributions of two
independent random variables generates a distribution with at most lX×lY states.
This computation requires O(lX × lY) operation (+) using a naive approach and
O((lX + lY)log(lX + lY)) for a Fast Fourier Transform (FFT) [10].

The computation complexity depends on the size of the distributions and thus
on the number of classes considered.

2.3 Histogram Reduction: HBSP Method

The Histogram Buffer Stochastic Process (HBSP) model is proposed by
Hernández and al. [5–7]. Since working with a huge distribution can be cum-
bersome, the method suggests to reduce this size using n classes or bins. Con-
sequently, if we have a range of I = [0, Nmax], then the interval size will be
lA = Nmax/n. Using these intervals we define a binned process {A(t)} that has
a reduced state space I ′ = {0, . . . (n − 1)}. A value a of I is mapped to i in I ′

such that i = � a
lA
�, which is also denoted by i = classA(a). Inversely, a value

i ∈ I ′ corresponds to the midpoint of interval i: a = lA . i + lA/2, a ∈ I.
The traffic is assumed to be stationary, A = A(t), ∀t, thus the time depen-

dence of A(t) is suppressed and replaced by a discrete random variable A which
is defined by a couple of attributes (A, p(A)). Each attribute is a vector of size
n, first vector is interval midpoints while the second gives the corresponding
probabilities.

A = (A, p(A))

{
A = {ai : i = 0 . . . n− 1},

p(A) = [pA(i) : i = 0 . . . n− 1].
The stochastic process of the evolution of HBSP model is based on the

following recurrence relation:

Q(k) = Φb̂
Ŝ
(Q(k − 1)⊗A). (3)

where, Ŝ = classA(S) (resp. b̂ = classA(B)), ⊗ is the convolution operator of
distributions. Q(k) denotes here the corresponding distribution and operator Φ
limits buffer lengths so that they can not become negative and cannot overflow

18 F. Aı̈t-Salaht et al.

the corresponding class of buffer length. This operator is defined as follows:

Φb
a(x) =

⎧⎨
⎩

0 , for x < a,
x , for a ≤ x ≤ b + a,
b , for x ≥ b + a.

(4)

Example 1. For the MAWI traffic trace with n = 10, the HBSP traffic is defined
by A = (A, p(A)) with A = {0.3933, 1.1799, 1.9666, 2.7532, 3.5398, 4.3265,
5.1131, 5.8997, 6.6864, 7.4730}Mb and p(A) = [0.0003, 0.0002, 0.0021, 0.0641,
0.2663, 0.3228, 0.2345, 0.0980, 0.0110, 0.0005] (Figure 4).

0 1 2 3 4 5 6 7 8

x 10
6

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

����������������
���

���

�

���
�

Fig. 4. Arrival workload histogram of MAWI traffic using 10 classes

3 Bounding Approach

We first present briefly the stochastic comparison method and we then present
the proposed bounding algorithm for the reduction of the number of classes
for a histogram. The application of this bounding approach for the network
performance analysis will be given in the next section.

3.1 Stochastic Comparison

We refer to Stoyan’s book ([9]) for theoretical issues of the stochastic comparison
method. We consider state space G = {1, 2, . . . , n} endowed with a total order
denoted as ≤. Let X and Y be two discrete random variables taking values
on G, with cumulative probability distributions FX and FY , and probability
mass functions d2 and d1 (d2(i) = Prob(X = i), and d1(i) = Prob(Y = i),
for i = 1, 2, . . . , n). We give different manners to define the strong stochastic
ordering ≤st for this case:

Definition 1. – generic definition: X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y),
for all non decreasing functions f : G → R+ whenever expectations exist.

– cumulative probability distributions:

X ≤st Y ⇔ FX(a) ≥ FY (a), ∀a ∈ G.

Stochastic Bounds and Histograms for Network Performance Analysis 19

– probability mass functions

X ≤st Y ⇔ ∀i, 1 ≤ i ≤ n,

n∑
k=i

d2(k) ≤
n∑

k=i

d1(k) (5)

Notice that we use interchangeably X ≤st Y and d2 ≤st d1.

Example 2. We consider G = {1, 2, . . . , 7}, and two discrete random variables
with d2 = [0.1, 0.2, 0.1, 0.2, 0.05, 0.1, 0.25], and d1 = [0, 0.25, 0.05, 0.1, 0.15,
0.15, 0.3]. We can easily verify that d2 ≤st d1: the probability mass of d1 is
concentrated to higher states such as the probability cumulative distribution of
d1 is always below the cumulative distribution of d2 (Figure. 5).

Fig. 5. d2 ≤st d1: Their pmf (left) and their cumulative distribution functions (right)

3.2 Bounding Histogram Reduction

In order to reduce the computation complexity of evolution equations, we pro-
pose to apply the bounding approach to diminish the number of classes. The
main advantage of this approach is the ability of computing bounds rather than
approximations. Unlike approximation, the bounds allow us to check if QoS are
satisfied or not. For a given distribution d , defined as a histogram with N classes,
we build two bounding distribution d1 and d2 which are defined as histograms
with n < N classes. Moreover, d1 and d2 are constructed to be the closest with
respect to a given reward function. Two algorithms are given in [2] to construct
such bounds. More formally, for a given distribution d defined on H (|H| = N),
we compute bounding distributions d1 and d2 defined respectively on Hu, Hl

(|Hu| = n, |Hl| = n) such that:

1. d2 ≤st d ≤st d1,
2.
∑

i∈H r(i)d(i)−
∑

i∈Hl r(i)d2(i) is minimal among the set of distributions
on n states that are stochastically lower than d ,

3.
∑

i∈Hu r(i)d1(i)−
∑

i∈H r(i)d(i) is minimal among the set of distributions
on n states that are stochastically upper than d .

d1 and d2 will be denoted as the optimal bounding distributions on n states
according to reward r . We now present the bounding algorithm that will be used
in this paper.

20 F. Aı̈t-Salaht et al.

Optimal Algorithm Based on Dynamic Programming. We will transform
our problem dealing with a discrete distribution into a graph theory problem.
First, we consider the weighted graph G = (V, E) such that:

– V is the set of vertices such that V = H ∪ {EndState} where EndState is a
new state larger than all the states in H.

– E is the set of arcs such that (u, v) ∈ E if and only if u < v or if v = EndState
and u ∈ H. The weight of arc e = (u, v), denoted by w(e), and it is defined

as follows: w(e) =

{∑
j∈H:u<j<v d(j)(r (j)− r(u)) if v ∈ H,∑
j∈H:u<j d(j)(r (j)− r(u)) otherwise.

where MinState denotes the minimal state of H. A distribution is associated
with a path. For the remaining, we focus on certain paths P provided with
distribution dP from state MinState to state EndState in graph G.

In fact, computing dP is equivalent to compute a shortest path in G from state
MinState to state EndState with n arcs. Such an algorithm based on dynamic
programming with complexity O(N2 n) is given in [4].

Example 3. LetA = (A, p(A)) be a discrete distributionwithA = {0, 2, 3, 5, 7}
and p(A) = [0.05, 0.3, 0.15, 0.2, 0.3]. We aim to reduce the state space to n = 3
states and the reward function r is defined as follows: ∀ ai ∈ A, r(ai) = ai. The
reward of the initial distribution, R[A] =

∑
ai∈A r(ai) pA(i) = 4.15. The com-

putation of the optimal upper bound (A) corresponds to explore all 3-hops paths
from EndState = 7 such that R[A] − R[A] is minimal (see Figure 6). This can
be done by applying the algorithm presented in [4]. The optimal upper bound is
A = (A, p(A)) with A = {2, 5, 7}, p(A) = [0.35, 0.35, 0.3] and R[A] = 4.55.

7

32 5

0 0 2 20 3

5.2 4.85 4.65 5.35 4.55 4.6R[A] =

Fig. 6. Optimal upper bound histogram for n = 3 classes

3.3 Performance Measure Bounds

In this section, we prove that performance measures of the single node with
bounding histograms provide bounds for exact performance measures. We com-
pare the buffer length under the exact traffic histogram with that obtained under

Stochastic Bounds and Histograms for Network Performance Analysis 21

the bounding traffic histogram. The buffer length at slot k (Q(k)) under an
input traffic A(k) is given by Equation 1. Similarly, the buffer length of the
same system under input arrival Ã(k), denoted by Q̃(k) is given as

Q̃(k) = min(B, (Q̃(k − 1) + Ã(k)− S)+), k ∈ N.

We have the following bounds, if the input arrivals are comparable in the
sense of the ≤st order.

Proposition 3. If A(k) ≤st Ã(k), ∀k ≥ 0, then Q(k) ≤st Q̃(k), ∀k ≥ 0.

Proof. The proof is by induction: we suppose that Q(k) ≤st Q̃(k). We apply
theorem 4.3.9 of Stoyan. As the function min is an increasing function, and
A(k) ≤st Ã(k), then we can deduce that Q(k + 1) ≤st Q̃(k + 1).

Similarly, it follows from Equation 2 that we have bounds on the departure
processes.

Proposition 4. If A(k) ≤st Ã(k), ∀k ≥ 0, then D(k) ≤st D̃(k), ∀k ≥ 0.

We can now give the main theorem, by assuming that input arrivals Ã(k) are
bounds built as explained in subsection 3.2. We give here only the upper bounding
case and the lower bounds can be similarly obtained.

Theorem 1. Let A (resp. Ã be the stationary exact (resp. upper bounding)
input histogram, and Q, D (resp. Q̃, D̃) be the stationary buffer length and the
departure processes under the exact A, (resp. upper bounding Ã) input arrival,
then we have:

Q ≤st Q̃ and D ≤st D̃.

Proof. By construction A ≤st Ã, and it follows from the above propositions that
we have comparisons for all k, thus also for stationary processes when k → ∞.
Remark that by construction Q and D exist (due to the ergodicity assumption).

In the case when we consider a node in a tandem network, we have the same
evolution equations as in the single node case, but the arrivals to a node are
either external arrivals or the arrivals from the other nodes. By construction
of histograms, we have bounding histograms for external arrivals. The internal
arrivals are indeed the departure histograms of other nodes which are bounds.
Therefore, we can also derive bounds for a node in a tandem network.

In order to compute the steady state distribution, we need an algorithm with
a proved convergence test. Note that computing the difference between two suc-
cessive distribution as [7] is not a correct test for convergence (see Stewart’s
book [13]). We propose the following algorithm based on the computation on a
stochastic envelope QL and QU to prove the convergence.

Theorem 2. Assume that the chain is ergodic and the steady state is π.
We have

QL(k) ≤st QL(k + 1) ≤st π ≤st QU (k + 1) ≤st QU (k).

Furthermore, the limit of QL(k) and QU (k) is π.

22 F. Aı̈t-Salaht et al.

Algorithm 1. State evolution algorithm

1: QU (0) = δB , (Dirac at state B).
2: QL(0) = δ0, (Dirac at state 0).
3: k = 0.
4: repeat
5: QU (k + 1) = f(QU (k)) = min(B, (QU(k) +A− S)+).
6: QL(k + 1) = f(QL(k)) = min(B, (QL(k) +A− S)+).
7: until ||QU (k + 1) −QL(k + 1)||∞ < ε.

Proof. Remember that, for any non decreasing function f if X ≤st Y then,
f(X) ≤st f(Y) [9]. Note that δ0 ≤st X is true for any distribution X defined on
{0..B}. Therefore, QL(0) ≤st QL(1) and f(QL(0)) ≤st f(QL(1)) because f is not
deceasing. Thus QL(1) ≤st QL(2). By induction, we have QL(k) ≤st QL(k + 1).
The proof for QU (k) is similar, noting that X ≤st δB is true for any X .

As QL(k) ≤st δB the sequence is bounded and increasing. Therefore, the limit
exists. Similarly, the sequence of QU (k) has a limit. Finally, by the ergodicity of
the chain, both limits are equal and the iteration of QL, QU converges. Checking
the difference between QL and QU provides a proved test of convergence.

4 Real Traffic Experiments

We compute the performance measures of interest under real traffic traces by
applying three methods: exact computation, HBSP method and our method.
We are interested in blocking probability, buffer occupancy histogram and mean
buffer occupancy. We first, consider a single finite buffer case and then study
a network of nodes. For all the experiments, we suppose that the stationarity
is reached according to Algorithm 1 for ε = 10−6, reward function is defined
by r(ai) = ai, ∀ ai ∈ A. Real traffics are generally defined with large number
of classes N . In order to accelerate the computation time of our bounds, we
propose to reduce the initial size to n classes in two steps. First, we apply
Tancrez’s approach [14] to obtain bounds on N ′ (n < N ′ < N) states. In the
following experiments we take N ′=4000. In the second step, we apply our method
to have bounding histograms on n states. The parameters considered in these
experiments are taken from [7] to compare results.

4.1 Single Node

We first consider the single node under the MAWI traffic traces (Figure 1). We
want to analyze the influence of the number of classes on the accuracy of the
results. We set the mean transmission rate to S = 110 Mb/s and the buffer size
to B = 1 Mb. We compute performance measures (Figure 7) for different number
of bins (varying from 10 to 200). In each figure, we give the results computed
by different methods: 1) exact result, 2) HBSP method, 3) Lower bound and 4)
Upper bound. Obviously, when the number of bins increases the results become

Stochastic Bounds and Histograms for Network Performance Analysis 23

20 40 60 80 100 120 140 160 180 200

0.2

0.25

0.3

0.35

0.4

0.45

0.5

���

��
��

���
���

��

�

��
��

Exact
HBSP method
Lower bound
Upper bound

(a) Blocking Probability

0 50 100 150 200
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

5

���

��
��

�

Exact
HBSP method
Lower bound
Upper bound

(b) Mean buffer occupancy

Fig. 7. Number of classes vs Accuracy: QoS parameters using MAWI traffic trace

more accurate. But we must notice that the results provided by our bounds are
very close to the exact ones.

We can remark that for small values of bins, HBSP method gives worse results.
Moreover, we see clearly from Figure 7.b that HBSP method does not provide
bounds. In Figure 8 we illustrate the cumulative probability distribution of buffer

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

	������� �

��
�

�

���
�

Exact
HBSP method
Lower bound
Upper bound

(a) bins=20

0 2 4 6 8 10

x 10
5

0.332

0.432

0.532

0.632

0.732

0.832

0.932
1

	������� �

��
�

�

���
�

Exact
HBSP method
Lower bound
Upper bound

(b) bins=100

Fig. 8. Cumulative probability (cdf) of buffer occupancy under MAWI traffic trace

occupancy by taking number of bins equal to 20 or 100. Again, we see the HBSP
method is not a bound and it does not provide a good approximation for small
values of bins (bins=20). For bins equal to 100 all methods provide better results
and our bounds are the most accurate ones. To get an idea of the execution times
of the considered methods, we give the times for number of bins equal to 100. We
find that the exact computations are obtained in 1897 seconds (s), the HBSP
method in 0.007 s, the lower and upper bounds are respectively obtained in

24 F. Aı̈t-Salaht et al.

0.35 s and 0.33 s. So, we remark that the HBSP method is the fastest one, but
our bounds remain faster than the exact computation.

The second experiment is based on the CAIDA OC-48 traffic trace [1] collected
in both directions of an OC48 link at the AMES Internet Exchange (AIX) on
the 24th of April, 2003. The collected trace is one hour long with an average
rate of 92Mb/s. For our experiment, we take 5-minutes of packet header trace.
Using a sampling period of T = 10 ms (100 samples per second), the resulting
traffic trace has 30,000 frames and E[A] = 1.2885 105 bits. We consider the rela-
tionship between buffer size and blocking probability (resp. mean buffer length)
for bounding histograms, HBSP model and the exact result. The performance
indices are calculated by varying the buffer size from 5. 103 bits to 105 bits.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

	������� �

��
��

���
���

��

�

��
��

Exact
HBsP method
Lower bound
Upper bound

(a) Blocking Probability

0 2 4 6 8 10

x 10
4

10
3

10
4

10
5

10
6

10
7

10
8

	������� �

��
��

�

Exact
HBSP method
Lower bound
Upper bound

(b) Mean buffer occupancy

Fig. 9. QoS parameters using CAIDA OC-48 traffic trace, bins=10

2 4 6 8 10

x 10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

	������� �

��
��

���
���

��

�

��
��

Exact
HBsP method
Lower bound
Upper bound

(a) Blocking Probability

2 4 6 8 10

x 10
4

10000

5000

20000

30000

3000

50000

	������� �

��
��

�

Exact
HBSP method
Lower bound
Upper bound

(b) Mean buffer occupancy

Fig. 10. QoS parameters using CAIDA OC-48 traffic trace, bins=100

Stochastic Bounds and Histograms for Network Performance Analysis 25

In Figure 9, we present the results with bins equal to 10 while Figure 10
presents the results with a number of bins equal to 100. When a number of
bins equal to 10, the results obtained by HBSP method for blocking probability
and mean buffer occupancy for small buffer sizes are not accurate. However,
we see that the bounds are closer to the exact values. When the number of bins
increases the accuracy of the HBSP method is improved and the bounds becomes
very tight.

(a) Exact vs. approximate and bounding results

(b) Exact vs. bounding results (c) Exact vs. HBSP results

Fig. 11. Blocking probability using CAIDA OC-48 traffic trace

In Figure 11, we give 3D representations to study the impact of the buffer size
and the number of bins on blocking probabilities. We see from Figure 11.a that
for small number of classes the HBSP method does not converge when buffer
size is approximately less than 3 .103 and gives less accurate results elsewhere.
However, our bounds let us to provide fairly good coverage on the exact results.
We notice also that when the number of classes increases, the used methods gives
a closer results to the exact ones. Moreover, Figure 11.c illustrates well that the
HBSP method does not provide bounds.

26 F. Aı̈t-Salaht et al.

4.2 Queueing Network

In this section, we study a tandem queueing network with the MAWI traffic trace
(Figure 2) as input arrival histogram. The network is defined by 3 service nodes
having the following deterministic service rate: S1=110Mb/s, S2=107.5Mb/s
and S3=106.5Mb/s. The buffers sizes are set to B1=2 Mb, B2=1 Mb and B3=1
Mb. The analysis of the network is performed for two reductions 100 and 500
respectively on the input histogram of each queue (see Table 1).

We study as performance measures: blocking probability (Prob(B)), mean
buffer length (E[Qi]i={1, 2, 3}) and throughput (expected value of the depar-
ture histogram) (E[Di]i={1, 2, 3}). We compute also mean transmission delays
(E[Ti]i={1...4}) in each queue by using Little’s theorem. In the last row, we
present the execution time for the whole network analysis. These examples show
that our method is fast even if it is slightly higher than HBSP. Moreover, we
derive bounds which are more accurate than the results given by HBSP.

Table 1. Numerical results for the network using MAWI Traffic trace

Bins 100 500

Exact Lower b. Upper b. HBSP Lower b. Upper b. HBSP

Prob(B) 0.1818 0.1714 0.1937 0.2147 0.1798 0.1846 0.1854

Queue 1 E[Q1] 938529 908137 969289 1019260 931778 945367 950271

E[D1] .106 4.26185 4.25076 4.27272 4.24416 4.25954 4.26416 4.26055

E[T1] 0.2202 0.2136 0.2269 0.2402 0.2188 0.2217 0.2230

Prob(B) 0.1735 0.1200 0.2052 0.1551 0.1481 0.1809 0.1559

Queue 2 E[Q2] 488719 425739 524331 468094 464797 497174 474322

E[D2] .106 4.24692 4.23377 4.25604 4.23441 4.24325 4.24903 4.24776

E[T2] 0.1151 0.1006 0.1232 0.1105 0.1095 0.1170 0.1117

Prob(B) 0.1635 0.0782 0.2379 1.18 .10−6 0.1286 0.1799 0.2223

Queue 3 E[Q3] 505240 388396 585229 39418.4 463092 524231 564428

E[D3] .106 4.2408 4.22816 4.24768 4.23441 4.23732 4.2425 4.23809

E[T3] 0.1191 0.0919 0.1378 0.0093 0.1093 0.1236 0.1332

Ex. Time (s) 21868 2.20 2.16 0.13 14.57 18.21 0.28

5 Conclusions

Performance analysis of communication networks under general traffic is very
difficult and sometimes impossible by simulation and queueing theory. We pro-
pose in this paper to develop a formalism based on stochastic bounds in order
to reduce the size of the traffic histograms. We apply an algorithm based on
dynamic programming to define bounding histograms. We analyze the perfor-
mance of tandem queueing networks. We consider real traffic traces and derive

Stochastic Bounds and Histograms for Network Performance Analysis 27

bounds on different performance measures as blocking probabilities and buffer
occupancy. We compare our results with the system under the exact traffic trace,
and those obtained from the HBSP approximation. We show clearly that our re-
sults are more accurate and can be obtained within very interesting execution
times. The more important point is the fact that we derive stochastic bounds
which provide guarantee for non decreasing rewards. We will extend the theory
in the near future to deal with non stationary flows.

References

1. Caida, traces of oc48 link at ames internet exchange (aix), accessed via datcat -
internet data measurement catalog (April 24, 2003), http://imdc.datacat.org

2. Aı̈t-Salaht, F., Cohen, J., Castel-Taleb, H., Fourneau, J.M., Pekergin, N.: Accuracy
vs. complexity: the stochastic bound approach. In: 11th International Workshop
on Disrete Event Systems, pp. 343–348 (2012)

3. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linear-
ity: An Algebra for Discrete Event Systems. Willey, New York (1992)

4. Guérin, R., Orda, A.: Computing shortest paths for any number of hops.
IEEE/ACM Trans. Netw. 10(5), 613–620 (2002)

5. Hernández-Orallo, E., Vila-Carbó, J.: Network performance analysis based on
histogram workload models. In: MASCOTS, pp. 209–216 (2007)

6. Hernández-Orallo, E., Vila-Carbó, J.: Web server performance analysis using
histogram workload models. Computer Networks 53(15), 2727–2739 (2009)

7. Hernández-Orallo, E., Vila-Carbó, J.: Network queue and loss analysis using
histogram-based traffic models. Computer Communications 33(2), 190–201 (2010)

8. Kweon, S.-K., Shin, K.G.: Real-time transport of mpeg video with a statisti-
cally guaranteed loss ratio in atm networks. IEEE Transactions on Parallel and
Distributed Systems, 12–4 (2001)

9. Muller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks.
Wiley, New York (2002)

10. Robertson, J.P.: The computation of aggregate loss distributions. In: Proceedings
of the Casualty Actuarial Society, pp. 57–133 (1992)

11. Skelly, P., Schwartz, M., Dixit, S.S.: A histogram-based model for video traffic
behavior in an atm multiplexer. IEEE/ACM Trans. Netw. 1(4), 446–459 (1993)

12. Sony, K.C., Cho, K.: Traffic data repository at the wide project. In: Proceedings of
USENIX 2000 Annual Technical Conference: FREENIX Track, pp. 263–270 (2000)

13. Stewart, W.J.: Introduction to the numerical Solution of Markov Chains. Princeton
University Press, New Jersey (1995)

14. Tancrez, J.-S., Semal, P., Chevalier, P.: Histogram based bounds and approxi-
mations for production lines. European Journal of Operational Research 197(3),
1133–1141 (2009)

http://imdc.datacat.org

Analytic Performance Modeling

and Optimization of Live VM Migration

Arwa Aldhalaan1 and Daniel A. Menascé2

1 Volgenau School of Engineering, George Mason University,
Fairfax, VA 22030, USA

aaldhala@gmu.edu
2 Department of Computer Science, George Mason University,

Fairfax, VA 22030, USA
menasce@gmu.edu

Abstract. Earlier virtual machine (VM) migration techniques consisted
of stop-and-copy: the VM was stopped, its address space was copied to
a different physical machine, and the VM was restarted at that machine.
Recent VM hypervisors support live VM migration, which allows pages
to be copied while the VM is running. If any copied page is dirtied (i.e.,
modified), it has to be copied again. The process stops when a fraction
α of the pages need to be copied. Then, the VM is stopped and the
remaining pages are copied. This paper derives a model to compute the
downtime, total number of pages copied, and network utilization due to
VM migration, as a function of α and other parameters under uniform
and non-uniform dirtying rates. The paper also presents a non-linear
optimization model to find the value of α that minimizes the downtime
subject to network utilization constraints.

Keywords: VMMigration, Live VM Migration, Performance Modeling,
Optimization.

1 Introduction

Cloud computing is based on largely distributed virtual environments that pro-
vide Infrastructure-as-a-Service (IaaS) services to consumers allowing them to
lease computing resources that scale to their needs. These services rely on virtu-
alization as an important technology that facilitates dynamic resource manage-
ment to meet Service Level Agreements (SLA) of disparate applications sharing
the same computing and networking platform. Virtualization platforms provide
support for entire virtual machines (VM) to be migrated from one physical ma-
chine to another should the need arise. Earlier techniques relied on stop-and-copy
approaches by which the VM was stopped and its address space copied over the
network to a different physical machine before the VM was restarted at the tar-
get machine. This technique could lead to long VM downtimes. More recently,
VM hypervisors started to offer live VM migration approaches that allow pages
of the address space to be copied while the VM is running. If any copied page

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 28–42, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Live VM Model and Optimization 29

is dirtied (i.e., modified), it has to be copied again. The process stops when a
fraction α of the pages need to be copied. Then, the VM is stopped and these
remaining pages are copied.

The main contributions of this paper are: (1) analytic performance models to
compute the VM downtime, the total number of pages copied during migration,
and network utilization due to VM migration, as a function of α and other system
parameters; (2) analytic performance models for the case in which a fraction of
the pages of the address space are hot pages (i.e., have a higher dirtying rate than
the other pages); and (3) a non-linear optimization model to find the value of α
that minimizes the VM downtime subject to constraints on network utilization.

The rest of the paper is organized as follows. Section 2 provides some back-
ground on VMmigration and introduces the problem statement. Then, sections 3
and 4 provide the analytic model for the cases in which all pages have the same
dirtying rate and the case in which some pages (“hot pages”) have a higher
dirtying rate than the rest of the pages. In section 6, the optimization problem
is described. The results of the experiments are discussed in Section 7. Section 8
discusses related work. Finally, Section 9 concludes the paper.

2 Background and Problem Statement

Live migration is the process of migrating the contents of a VM’s memory from
one physical host (source VM) to another (target VM), while the VM is execut-
ing. The goal is to minimize both the downtime (the period during which the
VM’s execution is stopped) and total migration time (the duration of end-to-end
migration, from the moment the migration is initiated until the source VM is
discarded) [1].

In contrast to live migration, stop and copy [1,2] is considered the simplest VM
migration technique, which involves suspending the source VM, copying all its
memory pages to the target VM, and then starting this new target VM. Although
this approach can be easy to implement and control, it can cause long periods
of VM downtime and total migration time especially with practical applications
and large memory size VMs. Thus, leading to performance degradation and
unacceptable VM outage.

The live migration approach discussed in this paper uses the pre-copy based
migration [1,3] in which memory pages are copied from the source VM to the
target VM iteratively. While the source VM continues to execute, the migration
process starts by copying all pages at the first round, and then copying at each
subsequent round i the modified or dirtied pages on round i − 1. Dirty pages
are memory pages that have been modified during the migration process while
the source VM is still running. The hypervisor tracks the dirty pages at each
iteration in order to re-send them. This iterative process continues for a fixed
number of iterations, or until a small working set size is reached. After that,
the source VM is stopped and the downtime phase starts in order to transfer
the remaining active memory contents of the source VM. However, since most of

30 A. Aldhalaan and D.A. Menascé

the source VM’s memory contents were already transferred during the pre-copy
phase, the downtime is significantly reduced, except for some special cases.

Current virtual machine software supports live migration of VMs that can be
migrated with very short downtimes (depending on the workload) ranging from
tens of milliseconds to a few seconds [4]. Examples of such support is present
in VMWare [5] and Xen [6], an open source virtual machine monitor (VMM)
allowing multiple commodity operating systems to share conventional hardware.

Many parameters can affect the performance of the live migration process such
as the size and number of memory pages, dirtying rate, and network bandwidth.
In this paper we analytically model and optimize the parameters of the problem
stated above. Our model quantitatively predicts the performance of this live mi-
gration process. The goal of our optimization is to minimize the VM’s downtime
subject to some resource constraint. In other words, the goal is to determine the
optimal point at which the pre-copy phase should stop to provide the lowest VM
downtime subject to the resource constraint. We also took into consideration the
concept of hot pages which is the set of pages that get updated very frequently.

3 Analytic Model of Live Migration with Uniform
Dirtying Rate

Let us define the following:

– Ps: number of memory pages currently on VM s (0 ≤ j ≤ Ps, j ∈ N).
– s: source VM selected to be migrated.
– t: the newly instantiated VM as target.
– B: available network bandwidth, in KB/sec, between source VM s and target

VM t.
– S: size of a page in KB.
– τ : time to transmit a page over the network. τ = S/B.
– n: last iteration number during which pages are migrated before downtime.

It is a threshold to stop the migration process. It can either be a fixed
number of iterations, or a number of iterations until a small working set size
is reached (0 ≤ i ≤ n, i ∈ N).

– D: memory dirtying rate in pages/sec.
– ρ: network utilization during live migration. ρ = D · τ .
– P (i): number of pages copied during iteration i. Note that P (0) = Ps because

the entire address space is copied during the first iteration.
– T (i): time spent in each iteration i. Note that T (0) = P (0) · τ = Ps · τ .
– Unet: utilization of the network due to VM migration.

The number of pages copied from VM s to VM t at a given iteration i is equal
to the number of pages dirtied during the previous iteration. Thus,

P (i) = D · T (i− 1). (1)

Live VM Model and Optimization 31

The time spent at iteration i is equal to the time spent transmitting the
number of pages that need to be transferred at that iteration. So,

T (i) = P (i) · τ. (2)

Using Eq. (1) in Eq. (2) we obtain the following recursive expression for T (i).

T (i) = T (i− 1) ·D · τ = T (i− 1) · ρ (3)

Solving the recursion in Eq. (3) and noting that T (0) = Ps · τ provides us with
the following closed form expression for T (i).

T (i) = Ps ·Di · τ i+1 = Ps · τ · ρi for i ≥ 0. (4)

Then, using Eq. (4) in Eq. (1) gives us a closed form expression for P (i):

P (i) = Ps · ρi for i ≥ 0. (5)

Because P (i) ≤ Ps for i ≥ 0, Eq. (5) implies that ρ ≤ 1. We will assume
throughout the paper that ρ < 1 as our steady state condition.

Pages will be copied while the source VM is live during iterations 0 to n.
Then, the VM is taken down and all pages that were dirtied during iteration n,
i.e., P (n + 1) pages have to be copied. Thus, using Eq. (5), the VM downtime,
defined as Tdown, can be computed as

Tdown = P (n + 1) · τ = Ps · τ · ρn+1. (6)

The time during which pages are being copied and the VM is up, Tpre−copy,
is

Tpre−copy =
n∑

i=0

T (i) =
n∑

i=0

Ps · τ · ρi = Ps · τ ·
1− ρn+1

1− ρ
. (7)

The total VM migration time is then the sum of the durations of all iterations
during the pre-copy phase (i.e., iterations from 0 to n) plus the downtime. Thus,

Ttotal = Tpre−copy + Tdown

= Ps · τ ·
1− ρn+1

1− ρ
+ Ps · τ · ρn+1 = Ps · τ ·

[
1− ρn+2

1− ρ

]
. (8)

If the value of the threshold n is defined as the number of iterations such that
at most αPs pages (with α < 1) need to be migrated, we can write that

P (n + 1) = Ps · ρn+1 ≤ αPs. (9)

Applying natural logarithms to both sides and noting that D · τ < 1, we obtain

n ≥
⌈
lnα

ln ρ
− 1

⌉
. (10)

32 A. Aldhalaan and D.A. Menascé

Given that we want to use the smallest number of iterations such that at most
αPs pages need to be migrated,

n =

⌈
lnα

ln ρ
− 1

⌉
. (11)

Since n must be ≥ 0, it follows that α ≤ ρ. Note that n is independent of the
size of the address space of the source VM.

The total number of pages migrated up to iteration i can be obtained as

NMP (i) = Ps

i∑
j=0

ρj = Ps ·
1− ρi+1

1− ρ
(12)

and the total number of pages migrated PTotalMig is then

PTotalMig = �NMP (n) + α · Ps� =
⌈
Ps

(
1− ρn+1

1− ρ
+ α

)⌉
. (13)

We now define the gain G in downtime as the ratio between the downtime
without live migration and with live migration. The downtime without live mi-
gration is equal to the time to copy the entire address space, i.e., Ps · τ . Thus,
using Eq. (6), we obtain

G =
Ps · τ
Tdown

=
Ps · τ

Ps · ρn+1 · τ =
1

ρn+1
. (14)

Because ρ < 1, G > 1, which means that the downtime without live migration
is higher than that using live migration by a factor equal to ρn+1. It is interesting
to note that the gain is independent of the size of the address space of the
source VM.

The utilization of the network, Unet, due to VM migration can be computed
as follows. During live copying, the network utilization is ρ. During the period in
which the VM is down, the network utilization due to the copying of αPs pages
is [α · Ps · (S/B)]/Tdown = (α · Ps · τ)/Tdown. The fraction of time live copying
is taking place is Tpre−copy/(Tdown + Tpre−copy) and the fraction of time copying
is taking place when the VM goes down is Tdown/(Tdown + Tpre−copy). Thus, the
average network utilization due to VM migration is

Unet = ρ · Tpre−copy

Tdown + Tpre−copy
+

α · Ps · τ
Tdown

· Tdown

Tdown + Tpre−copy
(15)

Using Eqs. (6) and (7) in Eq. (15) and doing some algebraic manipulation
provides

Unet =
ρ− ρn+2 + α(1 − ρ)

1− ρn+2
. (16)

Note that the utilization Unet does not depend on Ps.

Live VM Model and Optimization 33

4 Analytic Model of Live Migration with Hot Pages

Most programs exhibit a locality of reference such that a relatively small number
of pages have a much higher percentage of being modified than others. We call
them hot pages as in [1]. We define some additional notation for this case.

– β: fraction of hot pages in the address space of the source VM s.
– Dnh: dirtying rate of the non-hot pages.
– Dh: dirtying rate of the hot pages. Dh > Dnh.

We show in what follows how the model in the previous section can be
adapted for the following two situations: (1) Hot I: all pages, including hot pages,
are migrated during pre-copy and (2) Hot II: hot pages are not copied during
pre-copy; instead, they are copied when the VM is taken down.

Figure 1 shows how the ratio HG (for Hot page Gain) varies with β for three
values of α (10%, 40%, and 70%). This ratio is defined as the VM downtime
under Hot I divided by the VM downtime under Hot II. The curves show that
for the two smallest values of α, the VM downtime is smaller when hot pages
are migrated during pre-copy than when they are only migrated when the VM is
down. Also, the ratio decreases as β increases, i.e., as there are more hot pages
in the address space of the VM. For the large value of α (70%), the situation
reverses, i.e., the downtime for the case when hot pages are only copied when
the VM is down is always smaller then when hot pages are copied during pre-
copy. The intuitive explanation is that Hot I copies hot pages during pre-copy.
Thus, lower values of α imply in more iterations and more opportunities for the
hot pages to be copied during pre-copy, and consequently, less down-time. For
higher values of α, there will be less hot pages copied during pre-copy under
Hot I, and Hot II will have a smaller downtime. The two following subsections
provide models that quantify the tradeoffs between these two alternatives.

0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Beta

H
G

Alpha = 10%
Alpha = 40%
Alpha = 70%

Fig. 1. HG vs. β for three values of α (10% bottom, 40% center, and 70% top) and for
Ps = 4096 bytes

34 A. Aldhalaan and D.A. Menascé

4.1 Model of Copying Hot Pages during the Pre-copy Phase

In this case, we can just use the results derived in the previous section by
replacing D by the effective dirtying rate, Deffective.

Deffective = Dnh(1 − β) + Dh · β. (17)

We define ρeff as Deffective · τ . Then, Tdown becomes

Tdown = Ps · τ · ρn+1
eff . (18)

where

n =

⌈
lnα

ln ρeff
− 1

⌉
(19)

The duration of the pre-copy phase is

Tpre−copy = Ps · τ ·
1− ρn+1

eff

1− ρeff
. (20)

The total number of pages migrated is

PTotalMig =

⌈
Ps

(
1− ρn+1

eff

1− ρeff
+ α

)⌉
. (21)

Therefore, the gain G in this case is computed

G =
1

ρn+1
eff

. (22)

The network utilization due to VM migration is

Unet =
ρeff − ρn+2

eff + α(1 − ρeff)

1− ρn+2
eff

. (23)

Note that the utilization Unet depends on β through ρeff , which depends on
Deffective. Also, as in the uniform dirtying rate case, Unet does not depend on Ps.

4.2 Model of Copying Hot Pages during the Downtime Phase

In this case, we can adapt the results in the previous section as follows. The
value of Ps has to be replaced by Ps(1 − β) because only a fraction (1 − β) of
the address space participates in the live migration. The dirtying rate has to be
replaced by the dirtying rate of the non-hot pages, Dnh. When the VM is taken
down, the hot pages as well as the non-hot pages dirtied during iteration n have
to be copied. We define ρnh as Dnh · τ . Thus, Tdown becomes

Tdown = P (n + 1) · τ + Ps · β · τ (24)

= Ps · (1− β) · ρn+1
nh · τ + Ps · β · τ

= Ps · τ [(1 − β)ρn+1
nh + β] (25)

Live VM Model and Optimization 35

where

n =

⌈
lnα

ln ρnh
− 1

⌉
. (26)

The total time spent in the pre-copy phase is

Tpre−copy = Ps · (1− β) · τ · 1− ρn+1
nh

1− ρnh
. (27)

The total number of pages migrated is

PTotalMig = �P (n + 1) + (α + β)Ps�

=

⌈
Ps(1− β)

(
1− ρn+1

nh

1− ρnh

)
+ (α + β)Ps

⌉

=

⌈
Ps

[
(1− β)

(
1− ρn+1

nh

1− ρnh

)
+ (α + β)

]⌉
. (28)

Therefore, the gain G in this case is computed as

G =
Ps · τ
Tdown

=
Ps · τ

Ps · τ
[
(1− β)ρn+1

nh + β
] = 1

(1− β)ρn+1
nh + β

. (29)

The network utilization due to VMmigration is computed similarly to Eq. (15),
namely

Unet = ρnh
Tpre−copy

Tdown + Tpre−copy
+

(α + β) · Ps · τ
Tdown

Tdown

Tdown + Tpre−copy
(30)

Using Eqs. (25) and (27) in (30), we obtain

Unet =
(1− β)(ρnh − ρn+2

nh) + (α + β)(1 − ρnh)

(1− β)(1 − ρn+2
nh) + β(1 − ρnh)

. (31)

Note that, as expected, the above expression has the same form as that for
the uniform case when β = 0.

5 Summary of Results

Table 1 shows all the equations derived in the previous sections. These equations
allow us to draw some important conclusions. First, as α increases, n decreases,
and Tdown increases in all three cases. Second, Tdown increases with Ps in all cases.
Third, PTotalMig is not monotonically increasing or decreasing with α because
the terms 1− ρn+1, 1− ρn+1

eff , and 1− ρn+1
nh decrease as α increases (thus making

PTotalMig decrease) but the term α that appears as a multiplier of Ps makes
PTotalMig increase with α. The gain G is always greater than one and decreases
with α. The network utilization due to live migration does not depend on the
size of the source VM’s address space.

36 A. Aldhalaan and D.A. Menascé

6 Optimizing Live Migration Parameters

An interesting optimization problem is that of finding the value of α that mini-
mizes the VM downtime subject to some constraints such as keeping the network
utilization due to VMmigration below a certain limit. We note that Tdown = f(α)
and Unet = g(α) where the specific functions f and g for each of the three cases
are given by Table 1. Then, the optimization problem can be written as

Minimize Tdown = f(α)
subject to Unet(α) ≤ Umax

net .

This is a non-linear optimization problem that we solve using methods
included in MATLAB.

Table 1. Summary of performance model results

Uniform Dirtying Rate

ρ = D · τ
Tdown = Ps · τ · ρn+1; n =

⌈
lnα
ln ρ

− 1
⌉

PTotalMig =
⌈
Ps

(
1−ρn+1

1−ρ
+ α

)⌉

G = 1
ρn+1 ; Unet =

ρ−ρn+2+α(1−ρ)

1−ρn+2

Condition: α ≤ ρ < 1

Hot Pages Copied During the Pre-Copy Phase

Deffective = Dnh(1− β) +Dh · β
ρeff = Deffective · τ
Tdown = Ps · τ · ρn+1

eff ; n =
⌈

lnα
ln ρeff

− 1
⌉

PTotalMig =

⌈
Ps

(
1−ρn+1

eff
1−ρeff

+ α

)⌉

G = 1

ρn+1
eff

; Unet =
ρeff−ρn+2

eff
+α(1−ρeff)

1−ρn+2
eff

Conditions: α ≤ ρeff < 1, β < 1

Hot Pages Copied During the Downtime Phase

ρnh = Dnh · τ
Tdown = Ps · τ [(1− β)ρn+1

nh + β]; n =
⌈

lnα
ln ρnh

− 1
⌉

PTotalMig =

⌈
Ps

[
(1− β)

(
1−ρn+1

nh
1−ρnh

)
+ (α+ β)

]⌉

G = 1

(1−β)ρn+1
nh

+β
; Unet =

(1−β)(ρnh−ρn+2
nh

)+(α+β)(1−ρnh)

(1−β)(1−ρn+2
nh

)+β(1−ρnh)

Conditions: α ≤ ρnh < 1, β < 1

7 Numerical Results

Table 2 shows the parameters used in the experiments reported here. Figure 2(a)
shows the variation of the VM downtime in seconds, Tdown, with α for the four

Live VM Model and Optimization 37

Table 2. Parameter values used in the experiments

Parameter Value Parameter Value

Ps 4096, 8192, 16384, and 32768 Dnh 1.8 pages/sec

B 60 KB/sec Dh 4 pages/sec

S 16 KB β 10%

D 2 pages/sec Umax
net 40%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

500

1000

1500

2000

2500

Alpha

V
M

 D
ow

nt
im

e

Pv: 4096
Pv: 8192
Pv: 16384
Pv: 32768

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

Alpha

G
ai

n

Fig. 2. (a) Tdown in seconds vs. α for different values of Ps (4 KB, 8KB, 16KB, and
32KB); (b) Gain vs. α for the uniform dirtying rate case

values of Ps shown in Table 2 for the case of uniform dirtying rate. As predicted
by the equations, the downtime increases (or stays the same) with α because
more pages will have to be copied when the VM is taken down. The reason that
Tdown may not increase at times with α is that the increase in α may not be
enough to increase the number of pages to be copied. The figure shows that, for
the parameters used, larger values of α can create very large (and intolerable)
downtimes, especially for large address spaces. For example, if one wanted to keep
the downtime below 500 sec, one could use any of the values of α shown in the
figure for Ps = 4096 pages, α ∈ {0.05, 0.1, 0.15} for Ps ∈ {4096, 8192, 16384},
and α = 0.05 for Ps = 32768. Thus, the formulation presented in this paper
would allow a hypervisor to dynamically determine the value of the parameter
α for a given set of parameters.

Figure 2(b) shows the variation of the gain G with α. As predicted, the gain
decreases or stays the same as α increases. For a small value of α such as 0.05,
the downtime in the stop and copy case is 23 times higher than in live migration
for the parameters used.

Figure 3(a) shows the variation of the total number of pages migrated during
the entire VM migration copy including the pages copied while the VM is up and
those copied while the VM is down. Clearly, larger address spaces will generate
more pages being copied. As pointed out before, PTotalMig is not monotonically

38 A. Aldhalaan and D.A. Menascé

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7
x 10

4

Alpha

T
ot

al
 M

ig
ra

te
d

P
ag

es

Pv: 4096
Pv: 8192
Pv: 16384
Pv: 32768

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

200

400

600

800

1000

1200

1400

Alpha

V
M

 D
ow

nt
im

e

Pv: 4096 Hot I
Pv: 4096 Hot II
Pv: 16384 Hot I
Pv: 16384 Hot II

Fig. 3. (a) PTotalMig vs. α for different values of Ps (4 KB, 8KB, 16KB, and 32KB)
for the uniform dirtying rate; (b) Tdown in seconds vs. α for the two cases of hot pages
(hot pages copied during the pre-copy phase (case Hot I) and hot pages copied when
the VM is taken down (case Hot II)) for two values of Ps (4 KB and 16KB)

increasing or decreasing with α. This is because as α increases, more pages will
have to be copied when the VM goes down, but less iterations, and therefore
less pages will be copied when the VM is up. This effect is more pronounced for
the case of larger address spaces.

Figure 3(b) shows the variation of the VM down time, in seconds, versus α
for the two cases of hot page migration and for two sizes of the address space.
The figure shows that for the same type of hot page migration, the downtime
increases as the size of the address space increases. The figure also shows that,
for the parameters used, the VM downtime is smaller for the case in which hot
pages are migrated while the VM is up.

Figure 4(a) shows the variation of the gain G versus α for the two cases of
hot pages and for two values of Ps. In both cases, the gain decreases or stays
the same as α increases. However, for the parameters used, the gain is higher
when hot pages are migrated when the VM is up because this case has a lower
downtime as seen in Fig. 3(b).

Figure 4(b) shows the total number of migrated pages for the two cases of
hot page migration and two values of Ps. The figure shows that in the case in
which hot pages are copied while the VM is up, more pages end up being copied
resulting in more overall network traffic.

We ran the optimization problem described in section 6 for a network uti-
lization constraint Umax

net = 40% and for the three cases described above. The
results are shown in Table 3. The table shows the value of α that minimizes
the downtime Tdown and that does not violate Umax

net . For the same value of Ps

the uniform case provides a lower downtime than Hot I, which provides a lower
downtime than Hot II.

Live VM Model and Optimization 39

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

Alpha

G
ai

n

Hot I
Hot II

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Alpha

T
ot

al
 M

ig
ra

te
d

P
ag

es

Pv: 4096 Hot I
Pv: 4096 Hot II
Pv: 16384 Hot I
Pv: 16384 Hot II

Fig. 4. (a) Gain vs.α for the two cases of hot pages (hot pages copied during the pre-copy
phase (case Hot I) and hot pages copied when the VM is taken down (case Hot II)) for
two values of Ps (4 KB and 16KB); (b) PTotalMig vs. α for the two cases of hot pages (hot
pages copied during the pre-copy phase (case Hot I) and hot pages copied when the VM
is taken down (case Hot II)) for two values of Ps (4 KB and 16KB)

8 Related Work

Live migration has been an essential topic in cloud computing environments
which is studied in a variety of contexts. In particular, providing methods and
approaches to enhance the performance of live VM migration, and thus providing
a more reliable distributed virtual environments. In [1], the authors studied and
described the live migration of entire OS instances, and provided the design
issues involved in live migration including minimizing downtime, minimizing
total migration time, and ensuring that migration does not disrupt active services
in the network.

The authors in [7] carried out a performance analysis of virtualized envi-
ronments and examined the performance overhead in VMware ESX and Citrix
XenServer virtualized environments. They created regression-based models for
virtualized CPU and memory performance in order to predict the performance
when migrating applications. In [8], the authors provided a live migration per-
formance and energy model. The model’s primary goal is to determine which
VM should be migrated within a server farm with minimum migration cost. In
their experiment, they specify the most dirtied memory pages as hot pages for
their workloads. They use linear regression technology, and show that migration
is an I/O intensive application. Another performance model of concurrent live
migration is proposed in [9]. The authors experimentally collect performance of
a virtualized system. Then, they constructed a performance model representing
the performance characteristics of live migration using PRISM, a probabilistic
model checker. In [10], a self-adaptive resource allocation method based on on-
line architecture-level performance prediction models is proposed. Their method

40 A. Aldhalaan and D.A. Menascé

Table 3. Optimization Results

Ps Optimal α Tdown Unet

Uniform 4096 0.152 88 0.394

8192 0.152 177 0.394

16384 0.152 353 0.394

32768 0.152 707 0.394

Hot I 4096 0.156 92 0.399

8192 0.156 184 0.399

16384 0.156 368 0.399

32768 0.156 736 0.399

Hot II 4096 0.480 336 0.400

8192 0.480 671 0.400

16384 0.480 1340 0.400

32768 0.480 2690 0.400

takes considers cloud dynamics triggered by variations in application workload.
The authors of [11] propose a memory page selection in order to choose the
memory pages to transfer during VM live migration. Their approach is based
on the probability density function of the changes made by virtual machines on
memory pages. This approach can help reduce the live migration downtime.

The behavior of iterative pre-copy live migration for memory intensive appli-
cations has been studied in [12], which proposes an optimized pre-copy strategy
that dynamically adapts to the memory change rate in order to guarantee conver-
gence. Their proposed algorithm, which is implemented in KVM, detects memory
update patterns and terminates migration when improvements in downtime are
unlikely to occur. A simulator based on Xen’s migration algorithm is designed
in [13] to characterize the downtime and total migration time. However, their
simulation model is based on dynamic information collected during pre-copying
iterations. Thus, it is hard to use it for a prior migration decision before the mi-
gration begins. In [14], the authors propose a framework for automatic machine
scaling that meets consumer performance requirements and minimizes the num-
ber of provisioned virtual machines. This optimization reduces the cost resulting
from over-provisioning and the performance issues related to under-provisioning.

In contrast, none of the above works provide an optimization model with the
goal to minimize the VM’s downtime subject to constraints such as network
utilization. Our proposed model is a detailed analytical model of the pre-copy
based live VM migration, and includes the case of hot pages in the prediction
and estimation of VM’s downtime, total migration time, number of iterations
needed before downtime, gain, and network utilization.

9 Conclusion

This paper presented analytic models to estimate the time needed to perform
live migration of a VM machine. Three cases were considered: uniform page

Live VM Model and Optimization 41

dirtying rate, hot pages being copied during the pre-copy phase, and hot pages
copied only during the VM’s downtime. The pre-copy phase continues until no
more than a fraction α of the pages copied during the pre-copy phase need to be
copied. The value of α is an important parameter because as its value increases,
the VM’s downtime increases. However, at the same time, lower values of α
generate higher network utilization due to VM migration. The performance of
VMs not being migrated may be degraded due to high network utilization caused
by VM migration.

For that reason, the paper presents a non-linear optimization problem that
finds the value of α that minimizes the VM downtime subject to network utiliza-
tion constraints. As future work, this optimization model can be implemented
and tested in an open-source VMM hypervisor such as Xen. The analytic models
presented here can be used to predict the performance of a specific VM’s live
migration before starting the migration process. This way, a cloud provider can
select the VM with the least cost for migration in a large environment while
satisfying Service Level Agreements. The optimization model can be extended
by adding energy consumption constraints associated with the use of resources
during VM migration.

As part of future work, there are several ongoing research activities related to
this paper. The first, is to validate the model in an experimental setting. This
paper made some simplifying assumptions such as constant page dirtying rate
and a constant network bandwidth. Experiments with real systems will allow us
to assess the impact of these assumptions. Nevertheless, we believe that this is
the first paper to address this problem and the first to provide a closed form
solution to the problem. Secondly, we intend to extend the model to the case
in which more than one VM is being migrated at the same time. Related and
interesting problems include the optimal selection of which VM to migrate first
in order to minimize the impact on running applications while not exceeding
some thresholds in terms of maximum migration time and/or downtime.

Acknowledgements. The work of D. Menascé is partially supported by NIST
grant 70NANB12H277.

References

1. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: Proc. 2nd Symp. Networked
Systems Design & Implementation, vol. 2, pp. 273–286. USENIX Association
(2005)

2. Isci, C., Liu, J., Abali, B., Kephart, J., Kouloheris, J.: Improving server utilization
using fast virtual machine migration. IBM J. Research and Development 55(6),
4:1–4:12 (2011)

3. Theimer, M.M., Lantz, K.A., Cheriton, D.R.: Preemptable remote execution facil-
ities for the v-system. In: Proc. 10th ACM Symp. Operating System Principles,
pp. 2–12. ACM (1985)

42 A. Aldhalaan and D.A. Menascé

4. Hacking, S., Hudzia, B.: Improving the live migration process of large enter-
prise applications. In: Proc. 3rd Intl. Workshop on Virtualization Technologies in
Distributed Computing, pp. 51–58. ACM (2009)

5. Nelson, M., Lim, B.H., Hutchins, G.: Fast transparent migration for virtual ma-
chines. In: Proc. USENIX Annual Technical Conf. ATEC 2005, pp. 391–394.
USENIX Association (2005)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Operating
Systems Review 37(5), 164–177 (2003)

7. Huber, N., von Quast, M., Hauck, M., Kounev, S.: Evaluating and mod-
eling virtualization performance overhead for cloud environments. In: Intl.
Conf. Cloud Computing and Service Science (CLOSER 2011), Noordwijkerhout,
The Netherlands (2011)

8. Liu, H., Xu, C.Z., Jin, H., Gong, J., Liao, X.: Performance and energy modeling
for live migration of virtual machines. In: Proc. 20th Intl. Symp. High Performance
Distributed Computing, pp. 171–182. ACM (2011)

9. Kikuchi, S., Matsumoto, Y.: Performance modeling of concurrent live migration
operations in cloud computing systems using prism probabilistic model checker.
In: 2011 IEEE Intl. Conf. Cloud Computing, pp. 49–56. IEEE (2011)

10. Huber, N., Brosig, F., Kounev, S.: Model-based self-adaptive resource allocation in
virtualized environments. In: Proc. 6th International Symp. Software Engineering
for Adaptive and Self-Managing Systems, pp. 90–99. ACM (2011)

11. Moghaddam, F.F., Cheriet, M.: Decreasing live virtual machine migration down-
time using a memory page selection based on memory change pdf. In: 2010 Intl.
Conf. Networking, Sensing and Control, pp. 355–359. IEEE (2010)

12. Ibrahim, K.Z., Hofmeyr, S., Iancu, C., Roman, E.: Optimized pre-copy live migra-
tion for memory intensive applications. In: Proc. 2011 Intl. Conf. High Performance
Computing, Networking, Storage and Analysis, p. 40. ACM (2011)

13. Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A.: Predicting the per-
formance of virtual machine migration. In: 2010 IEEE Intl. Symp. Modeling,
Analysis & Simulation of Computer and Telecommunication Systems, pp. 37–46.
IEEE (2010)

14. Beltran, M., Guzman, A.: An automatic machine scaling solution for cloud systems.
In: 19th Intl. Conf. High Performance Computing (HiPC), pp. 1–10. IEEE (2012)

Towards Supervisory Control

of Generally-Distributed Discrete-Event Systems

Jasen Markovski�

Department of Mechanical Engineering,
Eindhoven University of Technology,

Den Dolech 2, 5612AZ, Eindhoven, The Netherlands
j.markovski@tue.nl

Abstract. We develop a process-theoretic approach for generally-dis-
tributed discrete-event systems with unrestricted nondeterminism that
is geared towards supervisory control. Supervisory control theory deals
with synthesis of models of supervisory controllers that ensure safe and
nonblocking behavior of the supervised system. The models are synthe-
sized based on a model of the uncontrolled system and a formalization
of the control requirements. Even though there exist extensions of super-
visory control theory for timed and Markovian discrete-event systems,
there are hardly any investigations of supervisory control of discrete-
event systems with generally-distributed delays. General distributions
provide for (convenient) modeling of important real-world phenomena
that cannot be consistently modeled by means of real time or Marko-
vian (exponentially-distributed) delays, like heavy-tail or uniformly dis-
tributed processes. Our theory relies on a behavioral preorder termed
partial bisimulation, for which we provide a suitable extension. Based
on the proposed theory we provide for an appropriate abstraction of the
stochastic behavior, which enables us to employ standard supervisory
controller synthesis tools. The synthesized supervisor can, thereafter, be
coupled with the stochastic model of the unsupervised system and ab-
stracted to a generalized semi-Markov process for the purpose of analysis
and simulation.

1 Introduction

Supervisory control theory deals with automated synthesis of models of super-
visory controllers that ensure safe functioning of the supervised system by coor-
dinating the discrete-event behavior of its distributed components [37,13]. The
theory was prompted by the ever-increasing complexity of control software for
high-tech systems and the difficulties experienced in applying traditional soft-
ware engineering methodology [27]. Namely, the control requirements that the
control software should implement change frequently during the design process,
leading to an excessive number of (re)coding-testing iterations, posing great
challenges for software developers.

� Supported by Dutch NWO project: ProThOS, no. 600.065.120.11N124.

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 43–57, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

44 J. Markovski

Supervisory controllers coordinate high level system behavior by receiving
sensor signals from ongoing activities, make a decision on allowed activities, and
send back control signals to the hardware actuators. A standard assumption is
that the controller reacts sufficiently fast on machine input, which enables the
modeling of the supervisory control feedback loop as a pair of synchronizing pro-
cesses [37,13]. The model of the supervisory controller is referred to as supervisor,
which is synthesized automatically based on formal models of the unsupervised
system, referred to as plant, and the model of the control requirements. The
synchronization of the plant and the supervisor, referred to as supervised plant,
models the supervisory control loop. The supervisor disables or enables events
in the plant by synchronizing or not synchronizing with them, respectively. In
addition, supervised plants must satisfy the control requirements, which model
the allowed (or safe) system behavior.

1.1 Generally-Distributed Delays

Like most formal approaches, supervisory control theory focused on qualitative
aspects of discrete-event systems, subsequently being extended with quantita-
tive aspects like time [8,39], probability [36,19], and Markovian delays [24,26].
In this paper, we focus on an extension with generally-distributed (continuous)
stochastic delays. Stochastic delays are a generalization of timed delays, as their
duration is obtained by sampling from some continuous probability distribu-
tion. We note that even though Markovian phase-type distributions [35] can be
employed to approximate many general distributions, for the most part this ap-
proach leads to large Markov processes and it is not compositional. Moreover,
important distributions, like heavy-tail, uniform, normal, and deterministic de-
lays cannot be satisfactorily approximated in most cases. The use of general
distributions is also prompted by the need to mix timed (deterministic) and
stochastic delays, as the former model timeouts, which are often employed in
modeling high-tech systems in order to raise exception, prevent failures, or vali-
date user input, whereas the latter are needed to model uncertainties in arrival
and processing times. Unfortunately, such combinations cannot be directly fitted
in any of the separate frameworks that deal with real or Markovian time.

The main issue when dealing with generally-distributed delays is the problem
of compositionality, which arises due to the fact that the generally-distributed de-
lays are not memoryless (unless they are exponentially-distributed) [23], i.e., the
distribution of the remainder of the stochastic delay changes as time progresses.
To this end, we adapt the approach of [16,11] to a supervisory control theory
setting, whereas the stochastic delays are represented by means of stochastic
clocks. The events can be guarded by sets of clocks, which need to expire before
the event becomes enabled.

We provide for start-termination semantics, introduced in [9] for general dis-
tributions, which allows for an interleaving (compositional) semantics of the
parallel composition. Let P and Q be two processes, guarded by the clocks
c and d, informally denoted by c : P and d : Q, such that the clocks are reset

Supervisory Control of Generally-Distributed Discrete-Event Systems 45

by c+ and d+ and expire on c− and d−, respectively. Intuitively, we can then
expand the parallel composition P ‖ Q of P and Q and represent it as:

c : P ‖ d : Q = c+.c−.P ‖ d+.d−.Q = {c+, d+}.(c−.P ‖ d−.Q),

where the events of setting (c+, d+) and expiration (c−, d−) of the clock guards
are interleaved. We note that this approach differs from the probabilistic pre-
selection policy for generalized semi-Markov processes of [21], which is not com-
positional in its original form, for suitable extensions see [9].

The proposed start-termination approach is, however, in accordance with
timed [4] and Markovian semantics [23], where a race condition is imposed and
the timed and stochastic delays, respectively. The induced race is won by the
delay with the minimal sample as it expires first. Unlike the standard Markovian
setting, which relies on the memoryless property of the exponential distribution,
in the setting with general distributions, we have to deal with the additional
complication of the residual samples of the stochastic clocks that do not expire.

1.2 Motivation and Contributions

The need and potential of supervisory control for generally-distributed discrete-
event systems has been recognized early [28], but little exists beyond this pre-
liminary investigation. We can distinguish between several approaches that deal
with Markovian delays, which is among the closest related work. Early ap-
proaches extend performance evaluation with control actions that can choose
between multiple future Markovian processes, leading to the development of
Markov decision processes [23]. The control problem there is to derive sched-
ulers of the control actions in order to satisfy some performance requirements,
typically executed by employing dynamic programming techniques [15]. Novel
approaches employ temporal logic specifications of the performance properties
and apply extensions of stochastic model checking algorithms [5,12] or stochas-
tic games [14]. In the supervisory control community, an orthogonal approach
is generally adopted, where existing language-based models are extended with
Markovian delays [19,26,36]. These approaches require redefinition of the per-
formance metrics in order to fit into the trace-based semantics.

We note that the roles of the supervisory control is to ensure safety of the su-
pervised system, whereas the role of the performance analysis is to determine or
validate the performance of the system. All of the above techniques attempt to do
this simultaneously or partially ignore one component. Recent approaches [33,30]
propose to decouple the ascertainment of safety properties from the performance
evaluation of the system. The work of [33] relies on the memoryless property of
the exponential delays in order to syntactically manipulate them without ruining
compositionality of Interactive Markov chains [22], which orthogonally extend
labeled transition systems with exponential delays. A more general approach
is adopted in [30], where discrete-time probabilistic (Markovian) delays are ab-
stracted from, enabling synthesis of pure discrete-event models using standard
synthesis tools [2]. The resulting model of the supervised system is thereafter an-
alyzed as a discrete-time Markov chain using probabilistic model checking [25].

46 J. Markovski

We find this work to be an appropriate basis to handle a more general setting
and, in this paper, we extend all of our previous work that depends on untimed
models, purely timed models, or models comprising memoryless distributions to
(continuous) generally-distributed delays.

To synthesize supervisory controllers for generally-distributed discrete-event
systems, we propose to first abstract from the stochastic behavior and to syn-
thesize a supervisor for the resulting nondeterministic discrete-event system. We
show that such a supervisor is also viable for the stochastic model of the sys-
tem, as the discrete-event supervisor does not make a decision based on passage
of time, but based on the history of observed events. To be able to support
unrestricted nondeterminism and to provide for suitable abstractions from the
stochastic behavior, we rely on a process-theoretic approach to supervisory con-
trol theory [3]. This approach advocates the use of the behavioral preorder par-
tial bisimulation, which is employed to characterize the notion of controllability,
which states when some process can be considered as a model of a supervisory
controller for a given unsupervised system. The notion is employed to provide a
refinement relation between the original and the supervised system. The latter
is a restriction of the former, where the restriction is implemented by the use of
a supervisor under several structural assumptions of supervisory control [37,13],
specified and discussed below in section 3. We provide for an appropriate exten-
sion of the behavioral preorder for the setting with generally-distributed stochas-
tic delays and make a proposal for a synthesis-centric model-based systems
engineering framework.

The remainder of this paper is structured as follows. Section 2 introduces an
extension of nondeterministic finite automata with generally-distributed stochas-
tic delays and defines a suitable notion of synchronous parallel composition. In
Section 3 we discuss the extension of partial bisimulation and its application
in supervisory control theory of generally-distributed discrete-event systems.
Thereafter, we abstract from the stochastic behavior and show that the result-
ing supervisory controllers are viable for control requirements that restrict the
discrete-event behavior of the system.

2 Stochastic Nondeterministic Finite Automata

We introduce the notion of stochastic (nondeterministic) finite automata that
can model generally-distributed discrete-event systems with unrestricted nonde-
terminism. These automata combine several approaches from prominent stochas-
tic process algebras with generally-distributed delays, like GSMPA [10],
SPADES [17], IGSMP [9], NMSPA [29], and MODEST [7], and they are geared
towards supervisory control theory.

With respect to the sampling of the stochastic clocks we can distinguish be-
tween two execution policies: A race condition [17,29,7], which enables the ac-
tion transitions guarded by the clocks that expire first, and (2) pre-selection
policy [10,9], which preselects the clocks by making a probabilistic choice. The
former is the policy that conforms to timed [4] and Markovian semantics [23],

Supervisory Control of Generally-Distributed Discrete-Event Systems 47

whereas the latter is the execution policy of generalized semi-Markov process-
es [21]. A combination of these execution policies is applied for generalized
stochastic Petri nets, which comprise exponential delays and immediate proba-
bilistic choices and where multiple transitions can be enabled and taken at the
same time [1]. In this paper, we opt for the race condition policy as we intend to
employ the generally-distributed delays to model both deterministic timed and
stochastic delays [32].

We implement the start-termination semantics [9] by employing resetting of
clocks and their expiration in the vein of [16], where transition guards depend
on the latter in order to implement the race condition. As we can no longer rely
on the memoryless property, we need a mechanism for keeping track of the clock
samples as the residual sample and distribution of the stochastic clocks depend
on the delay since the last clock reset. We decide to keep track of residual clock
lifetimes as we are dealing with delayable events that depend on the expiration
of the clocks that guard them.

2.1 Syntax

By E we denote the set of events that model the activities of the system. By G
we denote the set of generally-distributed stochastic clocks, where for each clock
c ∈ G, by Fc we denote its continuous probability distribution function with a
positive real support, i.e., the probability P (c ≤ t) for some t ∈ IR. We note that
we require that the support of the distribution is in the positive reals since we
are dealing with clocks that denote duration of time. By t ∈ Fc we denote that
t ∈ IR>0 is a sample from the distribution Fc, with cumulative probability Fc(t).
By Σ = IRG we denote the set of residual sample functions σ : G→ IR. We note
that the residual samples can become negative when the sample expires, but
the guard needs to wait for another sample with a longer duration if the guard
comprises multiple clocks. Initially, every sample is take from the respective clock
distribution.

Definition 1. A stochastic (nondeterministic) finite automaton A as a tuple
A = (S,E,C,−→, γ, ρ, (s0, σ0)), where S denotes a finite set of states; E ⊆ E
denotes a finite set of events; C ⊆ G denotes a finite set of clocks that guard
the transitions of the automaton; �−→ ∈ S × E × S is a transition relation
that is labeled by the events of E; γ : �−→ → 2C is a clock guard function that
specifies the guards of the transitions; ρ : 2S → C is the clock reset function; and
(s0, σ0) ∈ S ×Σ is the initial state.

We employ infix notation and write s
e�−→ s′ for (s, e, s′) ∈ �−→. If the set of

clocks of a stochastic finite automaton is empty, then it reduces to a standard
nondeterministic finite automaton as employed in supervisory control theory [13].
We emphasize, however, that the behavioral relation that we employ in this
paper does not rely solely on language inclusion or equality as in the original
setting of [37,13] and that the branching structure of the automaton is of equal
importance, as for (bi)simulation semantics [20]. If the transition relation is

48 J. Markovski

deterministic, i.e., for every e ∈ E and s, s′ ∈ S, it holds that if s
e�−→s′ and s

e�−→
s′′, then s′ = s′′, then stochastic finite automata specify a class of generalized
semi-Markov processes, where the pre-selection probabilistic choice is induced
by the race condition [21,23,32].

2.2 Operational Semantics

The dynamics of the stochastic finite automaton A is given by the instantiated
labeled transition relation −→ ⊆ (S×Σ)×E× IR>0× (S×Σ), where the clock
reset function ρ samples the clocks from their respective distributions with a
positive support. We note that initially all clocks receive a positive sample that
eventually expires. By (s, σ) we denote that the automaton is residing in state
s ∈ S, where the samples of the clocks are given by σ ∈ Σ.

We introduce some auxiliary notation. By dom(f) we denote the domain of
the function f , whereas by f |C we denote the restriction of the function f to
the domain C ⊆ dom(f), i.e., f |C = {x �→ f(x) | x ∈ dom(f) ∩ C}. Also,
we introduce the notation f{f1} . . . {fn}, where f : A → B and fi : A ⇀ B for
1 ≤ i ≤ n are partial functions with mutually disjoint domains, i.e., dom(fi) ∩
dom(fj) = ∅ for i �= j. For every x ∈ A, we have that f{f1} . . . {fn}(x) = fj(x), if
there exists some j such that 1 ≤ j ≤ n and x ∈ dom(fj), or f{f1} . . . {fn}(x) =
f(x), otherwise. Finally, by σ − d, we denote the function (σ − d)(c) = σ(c)− d
for σ ∈ Σ and d ∈ IR.

Now, we capture the dynamics of (s, σ) by the operational rule (1), coupled
with the probability distribution when sampling from the stochastic clocks, as
given below:

s
e�−→ s′, d ∈ IR>0, σ(c)− d ≤ 0 for all c ∈ γ(s, e, s′)

(s, σ)
e,d−→ (s′, (σ − d){{c �→ dc | dc ∈ Fc, c ∈ ρ(s′)}})

. (1)

Rule (1) states that an instantiated labeled transition is possible after a passage
of time of duration d ∈ IR>0, provided that all samples from the clocks guarding
that labeled transitions have expired. In that case, the residual samples of the
remaining clocks must be updated by decrementing them for d, with the excep-
tion of the clocks that are reset in the target state s′ ∈ S, identified by ρ(s′).
The stochastic clocks that are reset in the target state s′ sample from their re-
spective distributions with cumulative probability distribution

∏
c∈ρ(s′) Fc(dc),

where dc ∈ IR>0 for c ∈ ρ(s) are the fresh clocks samples. We note that in case
the automaton does not comprise any stochastic clocks, then the transition re-
lations −→ and �−→ coincide, where the (then unspecified) time duration in −→
denotes the waiting time of the delayable transition.

2.3 Synchronous Parallel Composition

We define a CSP-like synchronous composition of two stochastic finite automata
in the vein of [37,13] that synchronizes on transitions labeled with common events

Supervisory Control of Generally-Distributed Discrete-Event Systems 49

and interleaves on the other transitions. We note that, in general, the parallel
composition of systems with stochastic clocks can be defined as a composition
of dependent or independent systems [32,16]. The systems are considered as de-
pendent when the clocks with the same name in two different components must
admit the same samples, whereas independent systems with clocks with the same
name admit different samples (with probability 1 when their distributions are
continuous), but the samples are taken from the same probability distribution.
Both approaches can lead to conflicting situations that can spoil the composi-
tional semantics [32], but these conflicts can be promptly resolved by means of
α-conversion, i.e., consistent renaming of conflicting clock names in one of the
components [16]. For the sake of clarity and compactness of presentation, we do
not dwell on this issue, and we assume that components of the unsupervised sys-
tem have been correctly modeled and all potential conflicts have been resolved
by employing the techniques proposed in [16,32]. Moreover, the coupling of the
supervisory controller and the system cannot introduce any conflicts because the
supervisory controller does not comprise stochastic behavior, so this issue is not
of high importance for the setting of supervisory control.

Definition 2. Let Ai = (Si, Ei, Ci, �−→i, γi, ρi, (s0i, σ0i)) for i ∈ {1, 2} be two
stochastic finite automata such that σ01{σ02} = σ02{σ01}. The synchronous par-
allel composition of A1 and A2 is defined by the stochastic finite automaton
A1 ‖ A2 = (S1 × S2, E1 ∪ E2, C1 ∪ C2, �−→, γ, ρ, (s0, σ0)), where

– �−→ is given by (s1, s2)
e�−→

⎧⎨
⎩
(s′1, s2), if s1

e�−→1 s′1, e ∈ E1 \ E2

(s1, s
′
2), if s2

e�−→2 s′2, e ∈ E2 \ E1

(s′1, s
′
2), if s1

e�−→1 s′1, s2
e�−→2 s′2, e ∈ E1 ∩E2,

– γ(((s1, s2), e, (s
′
1, s

′
2))) =

⎧⎨
⎩

γ(s1, e, s
′
1), if e ∈ E1 \ E2

γ(s2, e, s
′
2), if e ∈ E2 \ E1

γ(s1, e, s
′
1) ∩ γ(s2, e, s

′
2), if e ∈ E1 ∩ E2,

– ρ((s1, s2)) = ρ(s1) ∪ ρ(s2),
– s0 = (s01, s02) and σ0 = σ01{σ02} = σ02{σ01}.

We note that Definition 2 of the synchronous composition of stochastic fi-
nite automata is given in terms of automata and not in terms of the underly-
ing labeled transition system, as in [34]. Moreover, it is not difficult to observe
that the same synchronization can be achieved on the level of labeled transition
systems by requiring that exhibited duration of the samples of the synchro-
nizing event coincides. This can also be observed in the operational rule (1),

as if (s, σ)
e,d−→ (s′, σ′), then there always exists d′ > d and s′′ ∈ Σ such that

(s, σ)
e,d′
−→ (s′, σ′′). The latter holds as an arbitrary passage of time is allowed to

pass due to the delayable labeled transitions, once the corresponding transitions
are enabled by successful evaluation of the transition guards that depend on
expiration of clocks. Finally, we note that the proposed parallel composition is
commutative and associative, which follows directly from the symmetry of the
definition and the associativity of the parallel composition of nondeterministic
finite automata [13].

50 J. Markovski

3 Controllability

Standardly, we model the activities of the unsupervised system by means of
events. Depending on the type of activities that these events model, the events
are traditionally split into controllable and uncontrollable events. The former
can be disabled by the supervisor to preclude potentially dangerous behavior
and they typically model interaction with actuators of the system. The latter
cannot be disabled by the supervisor and they usually model user interaction
or sensory information. Thus, we split the set of events E to sets of controllable
events W and uncontrollable events U, such that E = W ∪ U and W ∩ U = ∅.

3.1 Plant, Supervisor, and Supervised Plant

The plant is typically given by a set of concurrently running components. For the
purpose of the discussion in this section and without loss of generality, we can
assume that the composition of the plant components is modeled by stochastic
finite automaton P = (SP , EP , CP , �−→P , γP , ρP , (s0P , σ0P)), which defines its
complete behavior. We note that we employ this behavior to define the needed
notions, whereas some synthesis techniques employ modularity in the plant to
increase computation efficiency [13].

Unlike the plant, which may comprise stochastic behavior, the supervisor
should be given as a deterministic pure discrete-event process, i.e., a determin-
istic finite automaton [18,13,3]. The deterministic nature of the supervisor is
also insinuated by the role of the supervisory controller that sends unambigu-
ous control signals to the system under control based on the observed history
of activities [37]. As a consequence, the event set of the supervisor is included
in the event set of the plant, which is enforced by the proposed refinement re-
lation. Furthermore, the supervisor comprises no stochastic behavior, implying
that its transitions are not guarded by stochastic clocks. This leads to the fol-
lowing form of a supervisor S = (SS , ES , ∅, �−→S , ∅, ∅, (s0S, ∅)). We note that
if the supervisor is not monolithic, e.g., supervisors for distributed or hierar-
chical supervision [13], then it comprises multiple deterministic discrete-event
components, with the same form as S, which ultimately synchronize to form the
complete supervisor behavior, again with the same form as S.

The coupling of the plant and the supervisor is given by the parallel compo-
sition P ‖ S. We note that this parallel composition is always well-defined as
the supervisor does not comprise any stochastic behavior. It makes observations
with respect to the discrete-event plant behavior, typically relying on sensory
information. Based upon the observed history of events, it makes a decision on
which events are allowed to be carried out safely.

3.2 Partial Bisimulation

To capture that the uncontrollable events in the reachable states of the plant
cannot be disabled by the supervisor, we employ the behavioral relation termed

Supervisory Control of Generally-Distributed Discrete-Event Systems 51

partial bisimulation as a refinement between the original plant P and the su-
pervised plant P ‖ S. This relation was originally introduced in [38] to capture
the notion of controllability for languages formed by deterministic finite au-
tomata in a coalgebraic setting. It was lifted to a process theory for supervisory
control of nondeterministic discrete-event systems in [3]. Here, we extend this
notion for stochastic finite automata. Intuitively, partial bisimulation states that
the controllable events in the supervised plant should be simulated (in the sense
of [20]) in the original plant, implying that they existed in the first place and that
they have not been artificially introduced by the supervisor. The uncontrollable
events, however, must be bisimulated (again in the sense of [20]) meaning that
they have not been disabled by the supervisor, nor that additional events have
been introduced. Thus, this definition of controllability preserves the branching
behavior of the system up to (bi)simulation.

The relation is parameterized by a so-called bisimulation event set B ⊆ E. The
main idea is that the bisimulation event set plays the role of the uncontrollable
events that must always be enabled both in the original and the supervised plant
for all reachable states. We note that partial bisimulation sits on the top of the
spectrum as the finest preorder relation suitable to capture controllability of
nondeterministic systems [3]. For deterministic systems, controllability defined
by means of partial bisimulation reduces to the standard notion of language-
based controllability of [37,13]. The stochastic clocks can be treated modulo α-
conversion, i.e., renaming of clock names in different components with the same
distribution, along the lines of [32,16]. We note, however, that the supervisor
does not comprise any clocks, so we can directly relate the stochastic finite
automata that represent the original and the supervised plant, without having
to instantiate the underlying labeled transition systems. This provides for a
succinct and compact characterization of a supervisor.

Definition 3. Let Ai = (Si, Ei, Ci, �−→i, γi, ρi, (s0i, σ0i)) for i ∈ {1, 2} be two
stochastic finite automata. A relation R ⊆ S1 × S2 is said to be a stochastic
partial bisimulation with respect to a bisimulation action set B ⊆ E2, if for all
(s1, s2) ∈ R, it holds that:

1. if s1
e�−→ s′1 for some e ∈ E1 and s′1 ∈ S1, then there exists s′2 ∈ S2 such that

s2
e�−→ s′2, γ(s1, e, s

′
1) = γ(s2, e, s

′
2), and (s′1, s

′
2) ∈ R;

2. if s2
b−→ s′2 for some b ∈ B and s′2 ∈ S2, then there exists s′1 ∈ S1 such that

s1
b−→ s′1, γ(s1, b, s

′
1) = γ(s2, b, s

′
2), and (s′1, s

′
2) ∈ R; and

3. ρ(s1) = ρ(s2).

If R is a stochastic partial bisimulation relation such that (s01, s02) ∈ R and
σ01|(C1∩C2) = σ02|(C1∩C2), then A1 is partially bisimilar to A2 with respect to B,
and we write A1 ≤B A2. If A2 ≤B A1 holds as well, we write A1 =B A2.

We note that due to condition 1), it must hold that E1 ⊆ E2, whereas due to
condition 2) it holds that B ⊆ E1. It is not difficult to show that stochastic partial
bisimilarity is a preorder relation as partial bisimulation is a preorder relation [3]

52 J. Markovski

and the stochastic clocks are directly preserved. Moreover, it is shown that partial
bisimilarity is the greatest partial bisimulation preorder [38] and we obtain the
same result due to preservation of the stochastic clocks. We note that if B = E,
then stochastic partial bisimulation equivalence =E reduces to the bisimulation
of [16,32], where no α-conversion between clocks with the same distribution is
allowed. For exponential distributions =E, reduces to strong Markovian bisim-
ulation [22]. Furthermore, we note that when the finite automata comprise no
stochastic clocks, then stochastic partial bisimulation preorder and equivalence
reduce to partial bisimulation preorder and equivalence, respectively [3]. In that
case, partial bisimulation preorder and equivalence further reduce to (strong)
bisimulation equivalence [20], if B = E, and strong simulation preorder and
equivalence, respectively, if B = ∅.

3.3 A Process-Theoretic Approach

Now, we can express the notion of a supervisor from above by requiring that
the supervised plant is partially bisimulated by the original plant with respect
to the uncontrollable events, i.e., we require that

P ‖ S ≤U P (2)

where U = EP ∩U. If P is a deterministic non-stochastic discrete-event system,
then it can be straightforwardly shown, cf. [3], that (2) reduces to standard
language controllability of [37,13].

In addition to equation (2), the supervised plant must satisfy the control
requirements, i.e., its behavior must be within the allowed behavior. Here, we
separate the concerns of controllability and optimality, i.e., first we treat con-
trollability and after synthesizing a supervisor, we aim to choose the most op-
timal supervisor by scheduling controllable events, e.g., by employing dynamic
programming techniques from control theory for Markov decision processes or
discrete-event simulation [21].

To be able to relate the discrete-event control requirements and the stochastic
supervised plant, we need to abstract from the stochastic behavior in the latter.
For this purpose, given an automaton A = (S,E,C,−→, γ, ρ, (s0, σ0)), we define
the corresponding time-abstracted automatonA asA = (S,E, ∅,−→, ∅, ∅, (s0, ∅)).
It is straightforwardly observed that A = A and also for every non-stochastic fi-
nite automaton N it holds that N = N . The latter directly implies that for the
supervisor it holds that S = S. Intuitively, the time abstraction replaces the prob-
abilistic choices induced by the sampling of the stochastic clocks, with nondeter-
ministic choices of the enabled labeled transitions, removing the transition guards
and always enabling the labeled transitions, which eliminates all dependencies of
the observed passage of time and, thus, effectively abstracting from it.

Since we desire that the control requirements only concern the functional as-
pects of the stochastic plant, they are specified as a non-stochastic finite automa-
ton R = (SR, ER, ∅,−→R, ∅, ∅, (s0R, ∅)) that defines the allowed behavior of the
plant, implying that R = R. Again, the control requirements can be given as a

Supervisory Control of Generally-Distributed Discrete-Event Systems 53

set of parallel synchronizing processes, ultimately resulting in the non-stochastic
finite automaton R. Moreover, we have that ER is not necessarily related to EP

as event-based control requirements are typically specified separately from the
plant model, but for reasonable sets of control requirements it would hold that
ER ⊆ EP . To specify that the behavior of the time-abstracted supervised plant,
given by P ‖ S, is allowed by the control requirements, we employ the equiva-
lent of language inclusion for branching processes, i.e., simulation preorder [20].
Consequently, in addition to equation (2), we require that

P ‖ S ≤∅ R. (3)

Equation (3) states that the traces of the supervised plant are restricted by
the allowed traces of the control requirements, while preserving the branching
structure of the supervised plant. Together with equation (2), these conditions
characterize the notion of a supervisor for stochastic finite automata with respect
to a set of (functional) event-based control requirements.

4 Towards Supervisor Synthesis

In controllability condition expressed by equation (3), the relation between the
plant, the supervisor, and the control requirements is given in terms of time
abstracted processes. The following lemma states the compositionality of the
time abstraction.

Lemma 1. Let Ai = (Si, Ei, Ci, �−→i, γi, ρi, (s0i, σ0i)) for i ∈ {1, 2} be stochas-
tic finite automata. If σ01|(C1∩C2) = σ02|(C1∩C2), then A1 ‖ A2 = A1 ‖ A2.

Proof. By definition Ai = (Si, Ei, ∅, �−→i, ∅, ∅, (s0i, ∅)) for i ∈ {1, 2}. Then A1 ‖
A2 = (S1 × S2, E1 ∪ E2, �−→, ∅, ∅, ((s01, s02), ∅)) by Definition 2. Due to the as-
sumption that σ01|(C1∩C2) = σ02|(C1∩C2), we have thatA1 ‖ A2 is well-defined and
we obtain A1 ‖ A2 = (S1 × S2, E1 ∪E2, C1 ∪C2, �−→, γ, ρ, ((s01, s02), σ01{σ02})),
where �−→ is given by Definition 2. Now, A1 ‖ A2 = (S1 × S2, E1 ∪ E2, �−→, ∅, ∅,
((s01, s02), ∅)) coinciding with A1 ‖ A2.

Lemma 1 enables us to rewrite equation (3) as

P ‖ S ≤∅ R, (4)

by employing Lemma 1 to derive P ‖ S = P ‖ S and having in mind that
S = S. This insinuates that the supervisor S can be synthesized based on the
time-abstracted plant, instead of the original stochastic model.

4.1 Time-Abstracted Supervisors

It remains to be shown that every supervisor for the original plantP is a supervisor
for the time-abstracted plant P , and vice versa.

54 J. Markovski

Supervisor

Plant
Control

requirements

Supervised plant

Plant

Supervisor synthesis

Compositional consistent
translation to CIFDiscrete-event

simulation

Fig. 1. Core of the model-based systems engineering framework

Theorem 1. Let a stochastic plant P be given by P = (SP , EP , CP , �−→P , γP ,
ρP , (s0P , σ0P)) and S = (SS , ES , ∅, �−→S , ∅, ∅, (s0S, ∅)) be a deterministic super-
visor. Then, we have that P ‖ S≤U P if and only if P ‖ S≤U P for U = U∩EP .

Proof. By employing Lemma 1, we have that P ‖ S = P ‖ S = P ‖ S. As
P ‖ S ≤U P holds, there exists a stochastic partial bisimulation Q, such that
((s0P , s0S), s0P) ∈ Q. We show that Q is a (non)stochastic partial bisimulation
that relates P ‖ S and P . We note that the states and transitions of P and P
are the same, which makes Q a well-defined relation between the states of P
and S. Now, suppose that ((p, s), q) ∈ Q, where p, q ∈ SP and s ∈ SS . Let us

suppose that (p, s)
e�−→ (p′, s′) for some e ∈ E, p′ ∈ EP , and s′ ∈ ES . Then by

condition 1) for stochastic partial bisimulation, we have that q
e�−→P q′ for some

q′ ∈ SP such that γ(((p, s), e, (p′, s′))) = γ((q, e, q′)) and ((p′, s′), q′) ∈ Q. As P
and S are non-stochastic processes, implying that the γ functions are empty, and
the definition of the labeled transition of the parallel composition coincides, we
immediately obtain that condition 1) is satisfied for P ‖ S and P . Analogously,
we can show that condition 2) is satisfied as well. Condition 3) that relates
the reset functions is trivially satisfied as the reset functions are also empty.
For the other direction, the arguments are symmetrical, as we employ the same
stochastic partial bisimulation relation Q to relate the processes at hand, which
completes the proof.

Theorem 1 enables us to decouple the supervisory controller synthesis procedure
from the analysis or simulation of the underlying performance model, i.e., the
induced generalized semi-Markov process. A direct consequence is that we can
employ standard synthesis tools, like TCT [37] or Supremica [2] for supervisory
controller synthesis, effectively ensuring safety of the control design.

4.2 A Model-Based Systems Engineering Framework

We cast the proposal for supervisory control of generally-distributed discrete-
event systems in a model-based systems engineering framework, which core is

Supervisory Control of Generally-Distributed Discrete-Event Systems 55

depicted in Fig. 1. The proposed framework aims to extend previous frameworks
of [40,31] with stochastic modeling of the supervised plant. We refer to [40,31] for
details regarding the complete modeling process and formalization of the control
requirements. Here, we assume that the formalization of the control requirements
and the modeling and time abstraction of the stochastic plant are successfully
completed, by employing the results of Theorem 1.

We employ the synthesis tool Supremica [2] to synthesize a supervisory con-
troller based on the control requirements and time-abstracted plant model. By
coupling the synthesized supervisor and the stochastic plant we obtain the
stochastic supervised plant. We interface the synthesis tool Supremica with the
simulation environment of the modeling language CIF [6], which is capable of
modeling hybrid systems with stochastic clocks. We employ only a part of the
CIF language, most importantly: synchronizing actions, which behavior in the
parallel composition is CSP-like as given by Definition 2, stochastic clocks, which
are reset and expire in a compatible manner with respect to Definition 1, and
deterministic trajectories, which are extensions of timed delays to represent hy-
brid time, but we employ them only to keep track of passage of time as specified
by operational rule (1).

The framework depicted in Fig. 1 effectively decouples the synthesis of the
supervisor and the analysis of the stochastic behavior of the supervised system.
Thus, we are able to employ effective specialized tool for the corresponding tasks,
relying on the results of Theorem 1.

5 Concluding Remarks

We developed a process-theoretic approach towards supervisory control theory
for generally-distributed discrete-event systems. The proposed theory supports
unrestricted nondeterminism and it is based on a stochastic extension of the be-
havioral preorder partial bisimulation with general distributions. We decoupled
the treatment of controllability from the analysis of the underlying performance
model by abstracting from the stochastic behavior in the original system. The
result enables synthesis of supervisors for the time-abstracted variant of the sys-
tem using standard synthesis tools, effectively ensuring safe functioning of the
supervised system. Subsequently, we employ the synthesized supervisor to derive
a model of the supervised system, which quantitative behavior can be analyzed,
e.g., by employing discrete-event simulation. We casted the modeling processes
in a model-based systems engineering framework that employs state-of-the-art
tools for the specialized tasks. We employ Supremica to synthesize a supervi-
sor based on the time-abstracted model and the simulation environment of the
stochastic hybrid language CIF to provide for subsequent quantitative analysis.
As future work, we schedule extension of several industrial case studies with
generally-distributed delays, which were previously modeled either by timed or
Markovian discrete-event models. The introduction of general distribution should
provide for a more precise modeling of timeouts and general stochastic arrival
and processing times.

56 J. Markovski

References

1. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.:
Modelling with Generalized Stochastic Petri Nets. Wiley (1995)

2. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica - an integrated en-
vironment for verification, synthesis and simulation of discrete event systems.
In: Proceedings of WODES 2006, pp. 384–385. IEEE (2006)

3. Baeten, J.C.M., van Beek, D.A., Luttik, B., Markovski, J., Rooda, J.E.: A process-
theoretic approach to supervisory control theory. In: Proceedings of ACC 2011.
IEEE (2011), http://se.wtb.tue.nl

4. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Springer (2002)
5. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis

for probabilistic systems. In: Proceedings of IFIP TCS 2004, pp. 493–506. Kluwer
(2004)

6. van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Foundations of a
compositional interchange format for hybrid systems. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 587–600. Springer, Heidelberg
(2007)

7. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MODEST:
A compositional modeling formalism for hard and softly timed systems. IEEE
Transactions on Software Engineering 32, 812–830 (2006)

8. Brandin, B., Wonham, W.: Supervisory control of timed discrete-event systems.
IEEE Transactions on Automatic Control 39(2), 329–342 (1994)

9. Bravetti, M.: Specification and Analysis of Stochastic Real-time Systems. Ph.D.
thesis, Università di Bologna (2002)

10. Bravetti, M., Bernardo, M., Gorrieri, R.: From EMPA to GSMPA: Allowing for
general distributions. In: Proceedings of PAPM 1997, pp. 17–33. Enschede (1997)

11. Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: Concepts, discussions
and relations of stochastic process algebras with general distributions. In: Baier,
C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)

12. Brázdil, T., Forejt, V.: Strategy synthesis for Markov decision processes and
branching-time logics. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007.
LNCS, vol. 4703, pp. 428–444. Springer, Heidelberg (2007)

13. Cassandras, C., Lafortune, S.: Introduction to discrete event systems. Kluwer
Academic Publishers (2004)

14. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games.
In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113.
Springer, Heidelberg (2003)

15. Chen, T., Han, T., Lu, J.: On the markovian randomized strategy of controller for
markov decision processes. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.)
FSKD 2006. LNCS (LNAI), vol. 4223, pp. 149–158. Springer, Heidelberg (2006)

16. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems, part I: Stochastic
automata. Information and Computation 203(1), 1–38 (2005)

17. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems, part II: Process
algebra. Information and Computation 203(1), 39–74 (2005)

18. Fabian, M., Lennartson, B.: On non-deterministic supervisory control. Proceedings
of the 35th IEEE Decision and Control 2, 2213–2218 (1996)

19. Garg, V.K., Kumar, R., Marcus, S.I.: A probabilistic language formalism for
stochastic discrete-event systems. IEEE Transactions on Automatic Control 44(2),
280–293 (1999)

http://se.wtb.tue.nl

Supervisory Control of Generally-Distributed Discrete-Event Systems 57

20. Glabbeek, R.J.V.: The linear time–branching time spectrum I. In: Handbook of
Process Algebra, pp. 3–99 (2001)

21. Glynn, P.W.: A GSMP formalism for discrete event systems. Proceedings of the
IEEE 77(1), 14–23 (1989)

22. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer,
Heidelberg (2002)

23. Howard, R.A.: Dynamic Probabilistic Systems, vols. 1 & 2. John F. Wiley & Sons
(1971)

24. Kumar, R., Garg, V.K.: Control of stochastic discrete event systems: Synthesis.
In: Proceedings of CDC 1998, vol. 3, pp. 3299–3304. IEEE (1998)

25. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic model checking
for performance and reliability analysis. SIGMETRICS Performance Evaluation
Review 36(4), 40–45 (2009)

26. Kwong, R.H., Zhu, L.: Performance analysis and control of stochastic discrete event
systems. In: Francis, B.A., Tannenbaum, A.R. (eds.) Feedback Control, Nonlin-
ear Systems, and Complexity. LNCIS, vol. 202, pp. 114–130. Springer, Heidelberg
(1995)

27. Leveson, N.G.: The challenge of building process-control software. IEEE Soft-
ware 7(6), 55–62 (1990)

28. Lin, F., Yao, D.: Generalized semi-Markov process: a view through supervisory
control. In: Proceedings of CDC 1998, pp. 1075–1076. IEEE (1989)

29. López, N., Núñez, M.: NMSPA: A non-Markovian model for stochastic processes.
In: Proceedings of ICDS 2000, pp. 33–40. IEEE (2000)

30. Markovski, J.: Towards optimal supervisory control of discrete-time stochas-
tic discrete-event processes with data. In: Proceedings ACSD 2013. IEEE
(to appear, 2013)

31. Markovski, J., van Beek, D.A., Theunissen, R.J.M., Jacobs, K.G.M., Rooda,
J.E.: A state-based framework for supervisory control synthesis and verification.
In: Proceedings of CDC 2010. IEEE (2010) (to appear)

32. Markovski, J., D’Argenio, P.R., Baeten, J.C.M., Vink, E.P.: Reconciling real and
stochastic time: the need for probabilistic refinement. Formal Aspects of Comput-
ing 24, 497–518 (2012)

33. Markovski, J., Reniers, M.: Verifying performance of supervised plants. In:
Proceedings of ACSD 2012, pp. 52–61. IEEE (2012)

34. Miremadi, S., Akesson, K., Lennartson, B.: Extraction and representation of a
supervisor using guards in extended finite automata. In: Proceedings of WODES
2008, pp. 193–199. IEEE (2008)

35. Neuts, M.F.: Matrix-geometric solutions in stochastic models, an algorithmic
approach. John Hopkins University Press (1981)

36. Pantelic, V., Postma, S.M., Lawford, M.: Probabilistic supervisory control of prob-
abilistic discrete event systems. IEEE Transactions on Automatic Control 54(8),
2013–2018 (2009)

37. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

38. Rutten, J.J.M.M.: Coalgebra, concurrency, and control. SEN Report R-9921, Cen-
ter for Mathematics and Computer Science, Amsterdam, The Netherlands (1999)

39. Saadatpoor, A., Ma, C., Wonham, W.M.: Supervisory control of timed state tree
structures, pp. 477–482. IEEE (2008)

40. Schiffelers, R.R.H., Theunissen, R.J.M., Beek, D.A.V., Rooda, J.E.: Model-based
engineering of supervisory controllers using CIF. Electronic Communications of the
EASST 21, 1–10 (2009)

Tackling Truncation Errors in CSL Model

Checking through Bounding Semantics

Yang Zhao and Gianfranco Ciardo

Department of Computer Science and Engineering
University of California, Riverside

{zhaoy,ciardo}@cs.ucr.edu

Abstract. Model checking aims to give exact answers to queries about
a model’s execution but, in probabilistic model checking, ensuring exact
answers might be difficult. Numerical iterative methods are heavily used
in probabilistic model checking and errors caused by truncation may af-
fect correctness. To tackle truncation errors, we investigate the bounding
semantics of continuous stochastic logic for Markov chains. We first focus
on analyzing truncation errors for model-checking the time-bounded or
unbounded Until operator and propose new algorithms to generate lower
and upper bounds. Then, we study the bounding semantics for a subset
of nested CSL formulas. We demonstrate result on two models.

1 Introduction

To support dependability and performance analysis, model checking [3] has
been extended to address quantitative properties of probabilistic models such
as continuous-time Markov chains (CTMCs). While traditional model check-
ing studies the existence of counterexamples to given properties and provides a
“true” or “false” answer, probabilistic model checking needs to compute
real-valued probabilities of the temporal behaviors being investigated.

Continuous Stochastic Logic (CSL) [1] with semantics similar to Computa-
tional Tree Logic (CTL) [7], is the most widely discussed logic in probabilistic
model checking. Unlike CTL, where the result is obtained by exploring the state
space, the set of states corresponding to a CSL formula is generated by com-
paring real values obtained from a numerical analysis of a CTMC against some
given threshold. Errors and approximations in this analysis are inevitable, and
may propagate to the resulting set of states. For example, if we seek the set of
states with probability ≤ 0.5 (with respect to some condition) and the computed
probability on a state is between 0.49 and 0.51, it is not clear whether this state
belongs to the result. No matter how high a precision we request in the numerical
analysis, such cases can never be ruled out. Thus, the correctness of CSL results
may not be guaranteed due to numerical errors, especially under resource con-
straints (runtime, memory). In other words, the exact semantics of CSL, defined
as a resulting set of states, is not practically achievable even if CSL has been
shown to be decidable in principle (using rational number representations) [1].

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 58–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Tackling Truncation Errors in CSL Model Checking 59

Worse yet, due to the inability to compute an exact result for a given CSL
formula, nested CSL formulas are even more difficult to handle in the current
CSL model-checking framework. While a nested CTL formula can be evaluated
by simply following its syntax tree from leaf nodes to the root, the corresponding
approach for nested CSL formulas can only be proposed after we are able to
handle errors in CSL model checking.

We propose a solution to the above problems by defining the result of a CSL
formula using bounds (sets). The lower bound contains states that “must” satisfy
the threshold on the probability, while the upper bound also includes states that
“might” satisfy the threshold, based on the given precision of the numerical
analysis. We focus on the error introduced in the truncation of the iteration and
modify the CSL model checking algorithm to provide and support our new CSL
semantics with bounds. The proposed algorithms handle nested CSL formulas
by taking into account uncertainty in the subformulas.

Using lower and upper bounds to handle model checking uncertainty is not
a new idea. In the probabilistic setting, [8] and [11] discuss the application of
three-value logic, which reflects a similar idea as our lower and upper bounds.
The main difference between our paper and these previous works is the source of
uncertainty. In [8] and [11], uncertainty comes from abstracting models, while in
this paper we discuss the inherent uncertainty arising from the numerical analysis
employed in CSL model checking itself. The proposed bounding semantics and
techniques for nested CSL formulas also apply to the problem settings in [8] and
[11], where abstraction on Markov chains is carried out.

The rest of the paper is structured as follows. Section 2 reviews CTMCs, CSL,
and existing algorithms. Section 3 presents new algorithms to generate bounds
on the exact result. Section 4 introduces an approach to handle nested CSL
formulas. Section 5 applies our new techniques to two nontrivial cases. Section 6
concludes the paper and points to future work.

2 Preliminaries and Notation

A CTMC is a Markov process defined on a discrete state space.

Definition 1. A (labeled) CTMC M is a tuple (S,R, Init ,A, L) where:

- S is the state space (a set of states) which we assume finite. In the following,
X ,Y ⊆ S denote sets of states and s, i, j ∈ S denote states.

- R : S × S → R≥0 is the transition rate matrix, where ∀i, Ri,i = 0. If state i
is absorbing, the exit rate E(i) =

∑
j∈S Ri,j is 0, the CTMC cannot leave it.

Otherwise, M remains in i for a duration that is exponentially distributed
with rate E(i), then it moves to state j with probability Ri,j/E(i).

- Init : S → [0, 1] is the initial distribution. Init(i) is the probability that M
is state i at time 0, thus

∑
i∈S Init(i) = 1.

- A is a set of atomic propositions.
- L : S → 2A is a labeling. L(i) are the atomic propositions holding in state i.
In the following, φ, ψ denote propositions and we let Sat(φ)={i∈S|φ∈L(i)}.

- An ordinary CTMC is similarly defined, without the A and L components.

60 Y. Zhao and G. Ciardo

We then define vector π(t) : S → [0, 1] such that πi(t) is the probability that
M is in state i at time t ≥ 0, thus

∑
i∈S πi(t) = 1. The evolution of M is

described by the system of differential equations

dπ(t)/dt = π(t)Q with initial conditions ∀i ∈ S, πi(0) = Init(i), (1)

where the infinitesimal generator matrix Q satisfies Qi,j = Ri,j for i �= j and
Qi,i = −E(i). Since S is finite, there is a steady-state vector describing the
long-term behavior of M, π(∞) = limt→∞ π(t), which might depend on Init .

While π(t) describes the probability distribution of M at time t starting
from a given initial distribution at time t = 0, model checking often requires
us to “go backwards”: given a “target” state j, we need to compute vector
ν(j, t) : S → [0, 1], where νi(j, t) is the probability of reaching j at time t starting
from state i at time 0, so that, if Init(i) = 1, then νi(j, t) = πj(t). Note that ν(j, t)
is not a probability distribution but a vector of probabilities, i.e., its elements
do not sum to 1 in general. Finally, define ν(X , t) =

∑
j∈X ν(j, t).

Instead of solving Eq. 1, we often calculate π or ν using uniformization [10].

Definition 2. Given M = (S,R, Init) and a rate q ≥ max i∈S{E(i)}, the uni-
formization ofM is a discrete-time Markov chain (DTMC)Munif = (S,P, Init),
where Pi,j = Ri,j/q for i �= j and Pi,i = 1−

∑
j∈S\{i} Pi,j.

Then, π(t) =
∑∞

k=0 π(0)P
k · Poisson [k], where Poisson [k] = e−qt(qt)k/k! is

the kth element of the Poisson distribution with parameter qt (in the rest of
this paper, the parameter for Poisson is assumed to be qt). For ν(X , t), there is
instead the “backward solution” [12]: ν(X , t) =

∑∞
k=0 P

kδX · Poisson [k], where
δX : S → {0, 1} is the indicator vector satisfying δXi = 1 iff i ∈ X .

2.1 CSL

Continuous stochastic logic (CSL) [1] extends CTL to probability and timing
aspects. It has two temporal operators, U (“until”) and X (“next”), and it re-
places the CTL path quantifiers E and A with probabilistic operators referring
to the steady-state or transient behavior of the CTMC.

A run of M is an infinite timed path σ: (i0, t0) → (i1, t1) → · · · , where ik is
the state entered at time tk and t0 = 0. Let σ[k] be ik, and τ [k] = tk+1−tk be the
length of the kth sojourn time, in σ[k]. The state of M at time t is σ@t = σ[k]
iff tk ≤ t < tk+1.

In this paper, we focus on a subset of CSL. Let p ∈ [0, 1] be a probability, ��
be one of {≤, <,≥, >}, and I be a time interval of the following types:

– time-bounded: [0, t], t > 0;

– unbounded: [0,∞), so that X[0,∞) and U[0,∞) are simply written as X and U;
– point-interval: [t, t], t ≥ 0;
– general interval: [t, t′], t′ > t > 0.

Tackling Truncation Errors in CSL Model Checking 61

The syntax of this subset of CSL over the set of atomic propositions A is defined
inductively as follows:

– Each atomic proposition φ ∈ A is a CSL formula.
– If F1 and F2 are CSL formulas, so are the following formulas:

• ¬F1, F1 ∨F2, and F1 ∧F2,
• P��p(X

IF1),

• P��p(F1U
IF2).

Like in CTL, CSL formulas define properties for states, and we write i |= F
if state i satisfies CSL formula F . Given CSL formulas F1 and F2, X

IF2 and
F1U

IF2 are path formulas defining a set of paths as follows:

– σ |= XIF2 iff σ[1] |= F2 and τ [0] ∈ I.
– σ |= F1U

IF2 iff ∃t ∈ I.(σ@t |= F2 ∧ (∀t′ ∈ [0, t).σ@t′ |= F1).

Let Φ be a path formula and Prob(i, Φ) be the cumulative probability of all
paths in {σ |σ[0] = i∧σ |= Φ} (see [2, Sect. 2.3] for details about the probability
of a set of paths, the next subsection only describes how to compute it). Then,
i |= P��p(Φ) iff Prob(i, Φ) �� p. Again, we use bold letter notation Prob(Φ) to
denote the vector describing Prob(i, Φ) for each i ∈ S.

A CSL formula F evaluates to a set of states {i | i |= F} as follows:

– eval (ψ) = Sat(ψ)
– eval (¬F) = S\eval (F)
– eval (F1 ∧F2) = eval (F1) ∩ eval (F2)
– eval (F1 ∨F2) = eval (F1) ∪ eval (F2)
– eval (P��p(X

IF)) = P��pProb(XIF) � {i |Prob(i,XIF) �� p}
– eval (P��p(F1U

IF2)) = P��pProb(F1U
IF2) � {i |Prob(i,F1U

IF2) �� p}

Compared with the original definition of CSL [1], we do not allow “multiple
until” formulas of the form F1U

I1F2U
I2 · · ·Fk and only study “binary until”

formulas of the form F1U
IF2, like in [2]. Also, we do not consider the stationary

operator S��p, nor we discuss the XI operator (the algorithm for XI does not
result in truncation errors so that the exact solution, ignoring rounding errors,
is always available). We mainly focus on the time-bounded and unbounded until
operator since the other two types of interval for the until operator can be tackled
using a similar technique.

2.2 Model Checking CSL

We now review model checking algorithms for the until operator. The key step
is to calculate the vector Prob(φUIψ).

Define the conversion of M = (S,R, Init) into MX = (S,RX , Init), where
states in X are absorbing, and into the uniformized DTMCMX

unif =(S,PX, Init)
according to the uniformizing rate q, q > maxi∈S E(i), as follows:

62 Y. Zhao and G. Ciardo

ProbVector BoundedUntil (qt,StateSet Y,StateSet Z, float ε) is

1 Build P for MS0∪S1
unif with uniformizing rate q ; •S1 = Z,S0 = S\E(YUZ)

2 p, Lε, Rε ← FoxGlynn(qt, ε); •Poisson probability, left and right bound w.r.t ε
3 ν ← 0; b ← δZ • δZi = 1 iff i ∈ Z
4 for k = 0 to Rε do
5 if k ≥ Lε then ν ← ν + p[k] · b;
6 b ← P · b;
7 endfor;
8 return ν;

Fig. 1. Backward computation of the probability vector for YU[0,t]Z

RX
i,j = Ri,j and PX

i,j = Ri,j/q if i �= j else 1− E(i)/q if i /∈ X
RX

i,j = 0 and PX
i,j = 0 if i �= j else 01 if i ∈ X

(in the following, we write P instead of PX when X is clear from the context).
We first discuss the time-bounded until and the unbounded until operators.

Before numerical analysis, we partition S into three sets of states:

S1={i ∈ S | i |= ψ} S0={i ∈ S | i � EφUψ} S?={i ∈ S | i |= (EφUψ) \ S1}

where EφUψ is a CTL formula describing a set of states i0 from which there
exists a finite path i0 → i1 → · · · → ik where ik |= ψ and ∀l ≥ 0 ∧ l < k, il |= φ.
For states that do not satisfy EφUψ, the probability is 0 for sure, while for states
satisfying ψ, this probability is 1. Thus, we have

i ∈ S1 ⇒ ∀t > 0,Prob(i, φU[0,t]ψ) = 1; i ∈ S0 ⇒ ∀t > 0,Prob(i, φU[0,t]ψ) = 0

and we only need to calculate the probabilities for states in S?.
Computing the probability vector Prob(φU[0,t]ψ) onM is equivalent to com-

puting ν(S1, t) on MS0∪S1 , which we can do using transient analysis, if t < ∞,
or steady-state analysis, if t =∞, as follows.

Time-Bounded U. We can employ uniformization to calculate ν(S1, t). A
backward approach [12] (its pseudo-code is shown in Fig. 1) is more desirable,
as it directly returns the vector ν(S1, t).
Unbounded U. Prob(φUψ) = ν(S1) where ν(S1) = limt→∞ ν(S1, t) is the

solution of the linear system (where, from now on, we let δψ mean δSat(ψ)):

P · ν + δψ = ν. (2)

Given the potentially huge state space, direct methods, such as Gaussian
elimination, do not scale, thus iterative methods are normally employed. For
example, assuming some order “≺” on the states, the Gauss-Seidel iteration

ν
(k+1)
i =

(∑
j≺i Pi,jν

(k+1)
j +

∑
j�i Pi,jν

(k)
j + δψi

)
/(1− Pi,i) (3)

can be used to converge to a (numerically close) answer.

1 Pi,i should be 1 for absorbing state i, but we set it to 0 here to simplify Equation 2.

Tackling Truncation Errors in CSL Model Checking 63

Point-Interval and General Interval U. The algorithms for both operators
employ transient analysis, similar to that for time-bounded U. For P��p(φU

[t,t]ψ),
we redefine ψ as ψ∧φ, since the probability of moving from Sat(φ) to Sat(ψ∧¬φ)

exactly at time t is obviously 0. We can then generateMSat(¬φ)
unif and obtain the

desired Prob(φU[t,t]ψ) as the vector ν(Sat(ψ), t) computed for MSat(¬φ)
unif .

P��p(φU
[t,t′]ψ) requires two rounds of transient analysis: first we generate

MSat(¬φ∨ψ)
unif and compute ν last (Sat(ψ), t

′−t), the probability of reaching ψ states
within the last t′ − t time units starting from each state; then we

generateMSat(¬φ)
unif with P = PSat(¬φ) and compute:

Rε∑
k=Lε

Pkνlast (Sat(ψ), t
′−t) · Poisson [k]

which is a backward transient analysis similar to that in Fig. 1 but starting from
the probability vector νlast (Sat(ψ), t

′−t) instead of δψ.

3 Bounding the Probability in CSL Model Checking

We now introduce our numerical technique to tackle truncation errors and gen-
erate bounds when computing the UI operator. Sections 3.1 and 3.2 focus on
the time-bounded and unbounded U operators, respectively, and exploit the
monotonic property of the probability vector being computed. Section 3.3 briefly
introduces how to handle the point-interval and general interval U operators.

3.1 Time-Bounded Until

GivenM and formula P��p(φU
[0,t]ψ), we first compute the partition {S0,S1,S?},

then apply the conversion of Section 2.1 to obtain CTMCMS0∪S1 . Consequently,
Prob(φU[0,t]ψ) for M equals ν(S1, t) for MS0∪S1 . The following equality

ν(S?, t) + ν(S1, t) + ν(S0, t) = 1 where 1 is a vector of 1’s

holds at any time t ≥ 0, since the state of MS0∪S1 is in one of S1, S0, or S?.
From now on, let the l and u superscripts indicate lower and upper bounds on
the corresponding quantities, respectively. Then, if we can compute νl(S1, t),
νl(S?, t), and νl(S0, t), we can let νu(S1, t) = 1− νl(S?, t)− νl(S0, t).

In the traditional use of uniformization, ν(S1, t) is calculated by truncating
an infinite sum:

∞∑
k=0

Pkδψ · Poisson [k] ≈
Rε∑

k=Lε

Pkδψ · p[k].

We compute the approximate Poisson probability p[k] ≈ Poisson [k] for Lε ≤
k ≤ Rε using the Fox-Glynn algorithm [9], which first finds the left and right

64 Y. Zhao and G. Ciardo

{Lε, Rε, p
l[Lε, ..., Rε]} FoxGlynnLB (qt, ε) is

1 m ← �qt�;
2 Lε, Rε, w[m] ← Finder(λ, ε);
3 w[Lε, ..., Rε] ← ComputeWeight(Lε, Rε, w[m]);
4 W ← sumup(w[Lε, ..., Rε]);
5 W ← W/(1− ε); •Upper bound on overall weight
6 pl[Lε, ..., Rε] ← w[Lε, ..., Rε]/W ; • Lower bound on Poisson probabilities
7 return Lε, Rε, p

l[Lε, ..., Rε]

Fig. 2. Modified Fox-Glynn algorithm for lower bounds on Poisson probabilities

truncation points Lε and Rε that ensure
∑Rε

k=Lε
Poisson [k] ≥ 1 − ε, where ε

is the specified acceptable truncation error, then computes p[k] based on the
recurrence

p[k − 1] · qt = p[k] · k with normalization

Rε∑
k=Lε

p[k] = 1 (4)

which results in p[k] > Poisson [k]. To calculate a lower bound νl(S1, t), we first
need to obtain a lower bound pl[k] for the Poisson probability Poisson [k], thus
we substitute the normalization in Equation 4 with

Rε∑
k=Lε

pl[k] = 1− ε. (5)

Fig. 2 shows the pseudo-code of our modified Fox-Glynn algorithm generating
lower bounds for the Poisson probabilities. We then have

νl(S1, t) =
Rε∑

k=Lε

Pkδψ · pl[k] <
∞∑
k=0

Pkδψ · Poisson [k] = ν(S1, t).

We could compute νl(S?, t) and νl(S0, t) with the same technique, but for
νu(S1, t) we do not need to do that. Considering Eq. 5, we have

νl(S?, t)+νl(S1, t)+νl(S0, t) = (1−ε)·1 and νl(S?, t)+ν(S1, t)+νl(S0, t) ≤ 1,

which means that we can define the upper bound

νu(S1, t) = νl(S1, t) + ε · 1 = 1− νl(S?, t)− νl(S0, t) ≥ ν(S1, t).

By adjusting ε, we can obtain arbitrarily tight bounds.

3.2 Unbounded Until

Again, we first buildMS0∪S1 so that Prob(φUψ) inM equals ν(S1) (recall that
ν(S1) = limt→∞ ν(S1, t)) in MS0∪S1 . Eventually, MS0∪S1 will be absorbed in
S0 or S1, thus

ν(S1) + ν(S0) = 1.

Tackling Truncation Errors in CSL Model Checking 65

1− p

1− p

S1 S0

i

p/2
p/2 p/2

p/2

Fig. 3. An example of computing ν(S1)

Hence, as long as we obtain the lower bounds νl(S1) and νl(S0), we can define
the upper bound νu(S1) = 1− νl(S0).

ν(S1) is the solution ν of the linear system Pν+δψ = ν, which can be solved
using Gauss-Seidel (see Eq. 3). A practical criterion to terminate the iteration is
||ν(k+1)−ν(k)|| < ε, where ε is again a parameter expressing the error tolerance.
However, this criterion does not guarantee that the result is close to the actual
solution, thus the error is not predictable from ε. Fig. 3 shows a simple example,
S? contains two states and we compute νi(S1). It is clear that νi(S1)=0.5 for any
p, since the two top states are bisimilar. However, if p�ε, a näive convergence
test stops the iteration at νi(S1)=p/2, which is far from the actual result.

If we initialize ν(0) to be the zero vector, the following theorem holds (Theorem
5.8 in [4]).

Theorem: If ν(0) = 0, ν(k+1) ≥ ν(k) for all k ≥ 0.

This theorem holds for the most widely used iterative methods such as Power,
Jacobi, Gauss-Seidel, and SOR. It guarantees that the computed ν using one
of these iterative methods naturally gives a lower bound νl(S1). We can simi-
larly compute the lower bound νl(S0) with a second numerical solution, and let
νu(S1) = 1− νl(S0).

Unlike the case of time-bounded until, it is difficult to predict the distance
between νl(S1) and νu(S1), since there is no simple relation between ε and
||νu−νl||. However, ||νu−νl|| provides a much better criterion for convergence
check. Still, in the example of Fig. 3 with p� ε, a näive convergence test stops
the iteration at νi(S1) = p/2, and we obtain the bounds νl

i(S1) = p/2 and
νu
i (S1) = 1 − p/2, which alert us that there is still a huge uncertainty in the
result, thus the iteration should proceed further (with a smaller ε).

3.3 Point-Interval and General Interval Until

In both cases, we employ the analysis of Section 3.1. For P��p(φU
[t,t]ψ), where

ψ implies φ, we generateMSat(¬φ)
unif and compute [νl(Sat(ψ), t),νu(Sat(ψ), t)] as

the bounds for Prob(φU[t,t]ψ).

Bounding the probability for φU[t,t′]ψ requires multiple transient analysis

rounds. We first compute [νl
last(Sat(ψ), t

′−t),νu
last (Sat(ψ), t

′−t)] inMSat(¬φ∨ψ)
unif .

66 Y. Zhao and G. Ciardo

bound UntilBounds(interval I,StateSet Y,StateSet Z, float ε) is

1 if I = [0, t] then
2 Build P for MS0∪S1

unif for uniformizing rate q; •S1 = Z,S0 = S\E(YUZ)

3 νl = BoundedUntil (qt,Y,Z, ε); •Replace FoxGlynn by FoxGlynnLB in Fig. 2
4 νu = νl + ε · 1;
5 elseif I = [0,∞) then
6 Build P for MS0∪S1

unif for uniformizing rate q;

7 νl ← GaussSeidel (P, δS1 , ε); νu ← 1−GaussSeidel (P, δS0 , ε);
8 elseif I = [t, t] then

9 Build P for MS\Y
unif for uniformizing rate q;

10 νl = BoundedUntil (qt,Y,Z, ε); νu = νl + ε · 1;
11 elseif I = [t, t′] then
12 · · · •See Section 3.3
13 endif
14 return P��p[ν

l,νu];

Fig. 4. Model checking algorithm for UI generating bounds

Then in MSat(¬φ)
unif ,

Rε∑
k=Lε

Pkνl
last (Sat(ψ), t

′−t) · pl[k]

gives the bound Probl(φU[t,t′]ψ). The upper bound can be computed by
considering that any path is described by exactly one of these path formulas:

φU[0,t](¬φ) φU[t,t′]ψ φU[t,t′](¬ψ ∧ ¬φ) φU[t′,t′](φ ∧ ¬ψ)

so that we can obtain Probu(φU[t,t′]ψ) by

1− (Probl(φU[0,t](¬φ)) +Probl(φU[t,t′](¬ψ ∧¬φ)) +Probl(φU[t′,t′](φ∧¬ψ))).

To summarize the above discussion, Fig. 4 depicts the algorithm for UI , which
returns a pair of “lower and upper sets” [X l,X u] satisfying X l ⊆ X ⊆ X u, where
X is the set satisfying the until formula.

4 Semantics for CSL Formulas with Bounds

This section addresses nested CSL formulas under our semantics with bounds.
To accommodate the bounds generated by the above algorithms, we need to
redefine the semantics of CSL. Specifically, we replace the exact set of states
with the lower and upper bounds of this set.

Definition 3. The evaluation of a CSL state formula F returns a pair of state
sets [eval l(F),evalu(F)] satisfying eval l(F) ⊆ eval(F) ⊆ evalu(F).

– eval (ψ) = [Sat(ψ),Sat(ψ)]

Tackling Truncation Errors in CSL Model Checking 67

– eval (¬F) = [S\evalu(F),S\eval l(F)]
– eval (F1 ∧F2) = [eval l(F1) ∩ eval l(F2),eval

u(F1) ∩ evalu(F2)].
– eval (F1 ∨F2) = [eval l(F1) ∪ eval l(F2),eval

u(F1) ∪ evalu(F2)]
– eval (P≥p(X

IF)) = [P≥pProb(XIeval l(F)),P≥pProb(XIevalu(F))]

– eval (P≤p(X
IF)) = [P≤pProb[XIevalu(F)],P≤pProb(XIeval l(F))]

– eval (P≥p(F1U
IF2)) =

[P≥pProbl(eval l(F1)U
Ieval l(F2)),P≥pProbu(evalu(F1)U

Ievalu(F2))]

– eval (P≤p(F1U
IF2)) =

[P≤pProbu(evalu(F1)U
Ievalu(F2)),P≤pProbl(eval l(F1)U

Ieval l(F2))]

For the evaluation of nested formulas, we can still follow the syntax tree order
from leaves to the root, and always enforce a high precision (small ε) when
evaluating each subformula. The drawback of this approach is the potentially
high and unnecessary cost. Instead, we can start from a low precision, and, if
the resulting bounds are not tight enough, refine by incrementally increasing the
precision for evaluating each level of subformula. The merit of this approach is the
possibility of focusing the expensive numerical analysis efforts on the important
subformulas. However, depending on the order in which we refine subformulas,
this may result in unnecessarily going back and forth between the evaluation of
outer and inner subformulas.

We propose the framework in Fig. 5 to evaluate nested CSL formulas and we
only consider the evaluation of P��p(F1U

IF2) since the evaluation of P��p(X
IF)

can be simply reduced to that of F . Eval is the top-level function to evaluate the
UI operator, and all subformulas are assumed to be of the form P��p(F1U

IF2).
We first evaluate with an initial precision and invoke Function EvalError , which
evaluates the whole formula with error parameter ε. For the refinement, we
give two different orders: RefineTopDown and RefineBottomUp. The former first
increases the precision for evaluating the top-level formula, then, when it does
not further tighten the resulting bounds, it refines the results from subformulas;
the latter instead first refines subformulas, then the top-level formula. As the
following case studies show, these two orders of refinement generally result in
different costs to eventually reach sufficiently tight bounds.

5 Case Studies

For the experiments, we use our tool SmArT [5] (Stochastic Model checking Ana-
lyzer for Reliability and Timing). SmArT takes in a stochastic Petri net and gen-
erates the underlying CTMC. In our previous work, SmArT has been developed
as an analyzer and model checker [6] for stochastic Petri nets. Our recent work
extends the capability of SmArT to CSL model checking. The CSL model check-
ing engine in SmArT employs EV∗MDDs to store the rate matrix [16], and uses
a new two-phase symbolic algorithm to perform the Gauss-Seidel iteration [17].

We consider two models, for an embedded system and for the Advanced
Airspace Concept (AAC) system. The embedded system model is described
in [15] and also released as an example with PRISM [13]. The AAC system

68 Y. Zhao and G. Ciardo

bound Eval(P��p(F1U
I
F2)) is

1 ε← InitialValue;
2 [X l,Xu]← EvalError(P��p(F1U

I
F2), ε);

3 while |X u| − |X l| > acceptable do
4 [X l,Xu]← RefineTopDown/RefineBottomUp(F1U

I
F2);

5 endwhile;
6 return [X l,Xu];

bound EvalError(F , ε) is

1 if F in form P��p(F1U
I
F2);

2 [Y l,Yu]← EvalError(F1, ε); [Zl,Zu]← EvalError(F2, ε);
3 [X l,Xu]← bounds from UntilBounds(I,Y l,Zl, ε),UntilBounds(I,Yu,Zu, ε);
4 else if F in form φ or ¬φ • base case, atomic proposition
5 X l,Xu ← Sat(φ) or S\Sat(φ)
6 else if F in form F1 ∨F2 or F1 ∧F2

7 [Y l,Yu]← EvalError(F1, ε); [Zl,Zu]← EvalError(F2, ε);
8 [X l,Xu]← [Y l ∨ Zl,Yu ∨ Zu] or [Y l ∧ Zl,Yu ∧ Zu];
9 endif

10 Set [X l,Xu] and ε as CurrentResult and CurrentPrecision for F ;
11 return [X l,Xu];

bound RefineTopDown(P��p(F1U
I
F2)) is

1 ε← CurrentPrecision for P��p(F1U
I
F2);

2 Reduce ε;
3 [Y l,Yu]← CurrentResult for (F1);
4 [Zl,Zu]← CurrentResult for (F2);
5 oldbound ← CurrentResult for P��p(F1U

I
F2);

6 repeat
7 [X l,Xu]← bounds from UntilBounds(I,Y l,Zl, ε),UntilBounds(I,Yu,Zu, ε);
8 if oldbound = [X l,Xu] then
9 [Y l,Yu]← RefineTopDown(F1); [Zl,Zu]← RefineTopDown(F2);

10 else
11 oldbound ← [X l,Xu];
12 Reduce ε;
13 endif
14 until |X u| − |X l| ≤ acceptable;
15 Set [X l,Xu] and ε as CurrentResult and CurrentPrecision for F ;
16 return [X l,Xu];

bound RefineBottomUp(P��p(F1U
I
F2)) is

1 ε← CurrentPrecision for P��p(F1U
I
F2);

2 [Y l,Yu]← RefineBottomUp(F1); [Zl,Zu]← RefineBottomUp(F2);
3 oldbound ← CurrentResult for P��p(F1U

I
F2);

4 repeat
5 [X l,Xu]← bounds from UntilBounds(I,Y l,Zl, ε),UntilBounds(I,Yu,Zu, ε);
6 if oldbound = [X l,Xu] then
7 Reduce ε;
8 else
9 oldbound ← [X l,Xu];

10 [Y l,Yu]← RefineBottomUp(F1); [Zl,Zu]← RefineBottomUp(F2);
11 endif
12 until |X u| − |X l| ≤ acceptable;
13 Set [X l,Xu] and ε as CurrentResult and CurrentPrecision for F ;
14 return [X l,Xu];

Fig. 5. Algorithm for the evaluation of nested CSL formulas

Tackling Truncation Errors in CSL Model Checking 69

Fig. 6. Embedded system bounded until: size of lower and upper bound sets satisfying
the formula (left) and probability bounds for the initial state (right)

Fig. 7. Embedded system unbounded until: size of lower and upper bound sets satis-
fying the formula (left) and probability bounds for the initial state (right)

model describes the reliability in an airspace control protocol which was re-
cently proposed; [18] provides the details about this protocol and also discusses
the model-checking scheme for this system. We demonstrate the algorithms in
Section 3 for non-nested CSL formulas, then show preliminary results on nested
CSL formulas. Source code of the models and CSL formulas is available at [14].

Embedded System. This system consists of a main processor, an input pro-
cessor, an output processor, two actuators, and three sensors, each associated
with a failure rate. The main processor maintains a count of the number of re-
tries when receiving data from sensors or sending data to actuators and, if the
count exceeds a threshold, the entire system fails. More details about this model
are available in [15].

70 Y. Zhao and G. Ciardo

No
conflict

Auto-
Resolver

alert

TSAFE
alert

TCAS
alert

Alert rises

Conflict resolved

Fig. 8. High-level state transition of the AAC system

Table 1. Results for Formula 7 using top-down refinement

εd = εn |Dl| |Du| |X l| |X u| νl
s0 νu

s0

0.01 480 2160 224 1532 0.0439 0.0539
0.005 480 1392 224 1532 0.0441 0.0491
0.001 480 576 1532 1532 0.0443 0.0453
0.0005 480 576 1532 1532 0.0443 0.0448
0.0001 480 480 1532 1532 0.0443 0.0444

First, we check the time-bounded until property “the system runs without
failure until the count reaches threshold 3 within 12 hours”, written as:

[X l,X u] := P≤0.005[Normal U[0,12×3600] InOutFail].

For initial state s0, the calculated probability bounds are [νl
s0 ,ν

u
s0], In Fig. 6, the

horizontal axis represents the error parameter ε. The left of Fig. 6 shows the size
of X l and X u while the right shows νl

s0 and νu
s0 ; as we discussed, νu

s0 − νl
s0 = ε.

When ε ≤ 0.0013, we obtain an exact result for this formula, i.e., X l = X u.
We then check the unbounded until formula “the embedded system eventually

fails with probability ≤ 0.2”, written as:

[X l,X u] := P≤0.2[Normal U InOutFail].

Again, the left of Fig. 7 shows the size of X l and X u while the right shows νl
s0

and νu
s0 . In general νu

s0 − νl
s0 does not have a simple relation with ε, but, in this

case, it decreases almost linearly as ε decreases, which is desirable.

Advanced Airspace Concept (AAC). This model depicts conflict detection
and resolution between a pair of aircraft. To ensure safe separation between
aircraft, the AAC system provides three subsystems: AutoResolver, TSAFE,
and TCAS, which can detect and resolve potential future conflicts. To resolve a
detected conflict, a resolution is calculated automatically and sent to the pilot of
the involved aircraft. The pilot is then responsible for executing the most urgent
resolution first. Fig. 8 shows the high-level state transition in the AAC system
for a pair of aircraft.

First, we define “dangerous states” to be those where a TSAFE alert rises
and, with probability greater than 0.05 it will not be resolved within 3 minutes
(180 seconds). Dangerous states can be described using the CSL formula:

[Dl,Du] :=TSAFEalert ∧ P≤0.95[TSAFEalert U[0,180] ¬TSAFEalert]. (6)

Tackling Truncation Errors in CSL Model Checking 71

Table 2. Results for Formula 8

εd εn |Dl| |Du| |X l| |X u| νl
s0 νu

s0

0.1
0.1 432 2160 224 5453 0.000 0.1400
0.01 432 2160 5453 5453 0.000 0.0539

Then, we study the probability that, from a state without TSAFE alert on,
the system reaches dangerous states within 5 minutes (300 seconds).

[X l,X u] :=P≤0.01[¬TSAFEalert U[0,300] [Dl,Du]]. (7)

We use εd and εn to denote the error parameters for Formula 6 and 7, respec-
tively. For this experiment, we keep refining the bound [X l,X u] until X l = X u

(of course, in practice this might be neither achievable nor necessary). We first
try to evaluate Formula 7 employing top-down refinement, and obtain the re-
sults in Table 1. For each row, we also tried to refine by just reducing εn, but
this did not generate tighter bounds [X l,X u] than those listed. In the first two
rows, [Dl,Du] is too loose to obtain an exact result for the outer formula; from
the third row, instead, while there is still uncertainty in the result of the inner
subformula, [Dl,Du] is tight enough to generate an exact result for the nested
formula. Thus, the model checking procedure could stop at εd = εn = 0.001.

We also study the formula using a larger probability threshold:

[X l,X u] :=P≤0.1[¬TSAFEalert U[0,300] [Dl,Du]]. (8)

We start from εd = εn = 0.1 and refine. Using the bottom-up approach, we
should first refine the subformula to tighter bounds, then go back to the top level.
From Fig. 1, we know that εd = 0.0001 ensures an exact result for the subformula.
However, Table 2 shows, refining the top-level formula directly produces an exact
result, so it is in fact unnecessary to refine the subformula. This is because the
probability threshold P≤0.1 is so slack that a precise evaluation on the top-level
is sufficient to get an exact result even with very loose bounds on the subformula.

We can see that finding a scheme for nested formula requires us to identify the
“bottleneck” of the precision for the final result. For Formula 7, the bottleneck
lies in the inner formula, while for Formula 8 the bottleneck lies in the outer
formula. However, it is difficult to come up with the best general scheme without
several trials, thus finding good heuristics for efficient evaluation of nested CSL
formulas is an interesting future work.

6 Conclusion

Since iterative methods are widely utilized in CSL model checking, truncation
errors must be considered to ensure correctness of the results. In this paper, we
investigated a bounding semantics of CSL formulas with the UI operator. We
first improved the CSL model checking algorithm by providing lower and upper

72 Y. Zhao and G. Ciardo

bounds, to support the bounding semantics. Then, we applied the bounding se-
mantics to nested CSL formulas and studied approaches for their evaluations. We
demonstrated the new algorithms on two case studies. The results show that, for
nested CSL formulas, appropriately scheduling the precision on different subfor-
mulas could achieve tight bounds and even exact results, with less computational
cost. However, finding a “best” scheme is nontrivial. Thus we believe that finding
good heuristics to guide the evaluation of nested CSL formulas is a promising
future line of investigation.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102,
pp. 269–276. Springer, Heidelberg (1996)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)

4. Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences.
SIAM (1979)

5. Ciardo, G., Jones, R.L., Miner, A.S., Siminiceanu, R.: Logical and stochastic
modeling with SMART. Perf. Eval. 63, 578–608 (2006)

6. Ciardo, G., Zhao, Y., Jin, X.: Ten years of saturation: A Petri Net perspective.
In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Transactions on Petri Nets and Other
Models of Concurrency V. LNCS, vol. 6900, pp. 51–95. Springer, Heidelberg (2012)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

8. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg
(2006)

9. Fox, B.L., Glynn, P.W.: Computing Poisson Probabilities. Comm. ACM 31(4),
440–445 (1988)

10. Grassmann, W.K.: Finding transient solutions in Markovian event systems through
randomization. In: Numerical Solution of Markov Chains, pp. 357–371. Marcel
Dekker, Inc. (1991)

11. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-Valued abstraction for
continuous-time Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)

12. Katoen, J.-P., Kwiatkowska, M., Norman, G., Parker, D.: Faster and symbolic
CTMC model checking. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001,
PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 23–38. Springer,
Heidelberg (2001)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

14. Models in this paper, http://www.cs.ucr.edu/~zhaoy/EPEW2013.html

15. Muppala, J.K., Ciardo, G., Trivedi, K.S.: Stochastic reward nets for reliability
prediction. Communications in Reliability, Maintenability and Serviceability 1(2),
9–20 (1994)

http://www.cs.ucr.edu/~zhaoy/EPEW2013.html

Tackling Truncation Errors in CSL Model Checking 73

16. Wan, M., Ciardo, G., Miner, A.S.: Approximate steady-state analysis of large
Markov models based on the structure of their decision diagram encoding. Perf.
Eval. 68, 463–486 (2011)

17. Zhao, Y., Ciardo, G.: A two-phase Gauss-Seidel algorithm for steady-state solu-
tion of structured CTMCs encoded with EVMDDs. In: Proc. QEST, London, UK,
pp. 74–83. IEEE Comp. Soc. Press (September 2012)

18. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. In: Proc. AVoCS. Electronic
Communications of the EASST. European Association of Software Science and
Technology, vol. 53 (2012)

Automatic Performance Model Generation

for Java Enterprise Edition (EE) Applications

Andreas Brunnert1, Christian Vögele1, and Helmut Krcmar2

1 Fortiss GmbH, Guerickestrasse 25, 80805 München, Germany
{brunnert,voegele}@fortiss.org

2 Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
krcmar@in.tum.de

Abstract. The effort required to create performance models for enter-
prise applications is often out of proportion compared to their benefits.
This work aims to reduce this effort by introducing an approach to au-
tomatically generate component-based performance models for running
Java EE applications. The approach is applicable for all Java EE server
products as it relies on standardized component types and interfaces
to gather the required data for modeling an application. The feasibility
of the approach and the accuracy of the generated performance mod-
els are evaluated in a case study using a SPECjEnterprise2010 industry
standard benchmark deployment. Simulations based on a generated per-
formance model of this reference deployment show a prediction error of
1 to 20 % for response time and of less than 10 % for CPU utilization
and throughput.

Keywords: Performance Evaluation, Performance Modeling, Palladio
Component Model, Java Enterprise Edition, Enterprise Applications.

1 Introduction

Performance modeling of software systems has been a research topic for several
decades [1]. Even though the flexibility of a performance evaluation using per-
formance models would be beneficial for many industry software projects [2,3],
they are not in widespread use as of today [4,5]. One of the key challenges is the
effort required to create representative performance models that often outweighs
their benefits [6].

Many recently introduced performance modeling approaches focus on the eval-
uation of component-based software systems such as modern enterprise applica-
tions [4]. The performance evaluation of such enterprise applications is especially
challenging as they are used by several hundred or thousand users concurrently
with varying workloads. Component-based performance modeling languages [4]
have already simplified the modeling process because component-based enter-
prise applications can be represented in these models using the same compo-
nents they are composed of [7]. Additionally, different aspects that influence
the performance of a component (such as the deployment platform or the usage

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 74–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Performance Model Generation for Java EE Applications 75

profile) can be modeled separately. This is a huge step forward regarding the
applicability in practice compared to performance models using abstract nota-
tions such as layered queuing networks or queuing petri nets [1]. Tools emerged
for these component-based performance modeling languages that help to make
performance modeling a lot more accessible to practitioners [8]. Unfortunately,
there are still some challenging questions left during the model creation process
that need to be answered by researchers and practitioners alike:

1. Which components should be represented?
2. Which component relationships should be represented?
3. What data needs to be collected to parametrize a performance model?
4. How can the required data be collected?
5. How can the required data be processed and added to a performance model?

Answering these questions requires a lot of experience in the software engineer-
ing as well as in the performance modeling process. General guidelines to answer
these questions for different software development domains would therefore help
to simplify the modeling process. The automated performance model genera-
tion approach proposed in this work answers these questions for Java Enterprise
Edition (EE) applications. The Java EE specification [9] defines the component
types an application needs to be composed of and a runtime environment for
hosting Java EE applications that is consistently available across Java EE server
products. Therefore, the suggested performance model generation approach is
designed in a way that it can be applied for Java EE applications running on all
Java EE server products that are compliant with the specification.

2 Automatic Performance Model Generation

The performance model generation is executed in three different steps which are
shown in figure 1: First of all, the data to create a performance model is collected
from a running Java EE application (1.); afterwards the data is preprocessed
(2.) to aggregate the required information. Finally, the aggregated data is used
to generate a component-based performance model (3.). These three steps are
explained below.

1. Data Collection

Java EE Server

Analysis
DB

3. Model
Generation

2. Data
Aggregation

CSV
Files

Fig. 1. Performance Model Generation Process

2.1 Data Collection

One of the main challenges when representing enterprise applications in perfor-
mance models is choosing an appropriate level of detail for the model elements.

76 A. Brunnert, C. Vögele, and H. Krcmar

This decision directly influences the data required to create a performance model.
Wu and Woodside [7] suggest that software systems that are assembled by pre-
defined components should be represented using the same components in a
performance model. Following this suggestion, the approach presented in this
work uses component types defined in the Java EE specification to construct a
performance model. The Java EE specification [9] defines the main application
component types as Applets, Application Clients, Enterprise JavaBeans (EJB)
and web components (i.e. Servlets, JavaServer Pages (JSP)). Complex Java EE
applications are typically composed of a combination of such application com-
ponent types. As Applets and Application Clients are executed outside of a
Java EE server runtime, the remainder of this paper focuses on EJBs and web
components. Using this level of detail for modeling Java EE applications comes
along with the advantage that users of such performance models can easily map
their findings to real application components and thus solve performance issues
more easily. Furthermore, interfaces defined in the Java EE specification can be
used to collect the required performance model parameters automatically. To
parametrize a component-based performance model that contains all EJB and
web components of a Java EE application as model elements, the following data
needs to be collected:

1. EJB and web component names
2. EJB and web component operation names accessible to other components
3. EJB and web component relationships on the level of component operations
4. Resource demands for all EJB and web component operations

The data collection is described first for Servlets and JSPs. For these com-
ponent types the Java EE specification defines Servlet filters that are always
invoked before and after a Servlet or JSP is called [9]. Each request-response
cycle of a Servlet or JSP invocation is assigned to exactly one thread at a time.
This enables a very fine-grained data collection for all web components of an
application.

The basic logic of the Servlet filter for collecting the required data can be found
in listing 1. The doFilter method of the PerformanceMonitoringFilter is invoked
whenever a Servlet or JSP is called. Before forwarding the current request to
the Servlet or JSP (using chain.doFilter) the resource demand that the current
thread has consumed so far is stored in a temporary variable (startRD). Once the
request processing is completed, the updated resource demand for the current
thread is stored in the stopRD variable. By subtracting the corresponding stop
and start values, the resource demand for the current request can be calculated
afterwards. As of today, the PerformanceMonitoringFilter can be configured to
collect the central processing unit (CPU) demand in nanoseconds (ns) and the
allocated bytes in the heap for the current thread. By default, only the CPU
demand is collected. The storeDemand method stores the resource demands of
the current invocation in multiple comma-separated value (CSV) files (one file
per thread) for further analysis. Additionally, the Servlet path is stored as the
component name and a configurable request parameter that is passed to the JSP
or Servlet is stored as operation name for the current invocation.

Automatic Performance Model Generation for Java EE Applications 77

The CPU demand in nanoseconds (ns) for the current thread is collected us-
ing the getCurrentThreadCpuTime() method provided by the java.lang.manage-
ment.ThreadMXBean of the Java Virtual Machine (JVM). An approximation
of the bytes allocated in the Java heap by the current thread can be acquired
by using the getThreadAllocatedBytes() method of the com.sun.management.-
ThreadMXBean. It is important to note, that even though the returned values of
the getCurrentThreadCpuTime() method are of nanosecond precision, the accu-
racy of this method varies on different operating systems [10]. Typical Windows
operating systems provide an accuracy of 10 milliseconds (ms), whereas some
UNIX based operating systems provide an accuracy of 1 ns [10]. In consequence,
if a high accuracy is required, this measurement approach is only feasible on
these systems.

Listing 1. Basic Servlet filter logic

public class PerformanceMonitoringFilter implements Filter {

public void doFilter(req , res , chain){

ResourceDemand startRD = getCurrentThreadResourceDemand();

chain.doFilter (req , res);

ResourceDemand stopRD = getCurrentThreadResourceDemand();

storeDemand (startResourceDemand , stopResourceDemand);

}

}

Similar to a Servlet filter, an EJB interceptor can be applied to filter all calls to
specific or all EJBs of an application. Such an EJB interceptor is used to gather
the resource demand of single method invocations for different EJBs in a system
[11]. The basic logic of the EJB interceptor is similar to the one of the Servlet
filter: an intercept method is called for each invocation of an EJB method and
stores the resource demands of the request processing thread before and after
the invocation of the EJB method. Afterwards, the EJB interceptor also stores
the data in multiple CSV files (one file per thread) for further analysis. The EJB
class name is used as the component name and the called EJB method name
passed to the intercept method as component operation name.

Multiple nested Servlet filter and EJB interceptor invocations can occur within
one request-response cycle. It is therefore important to mention that the resource
demand measurements of the first filters (or interceptors) in the chain already
contain the resource demand measurements of the filters and interceptors that
get called afterwards. To differentiate these demands afterwards, a request in the
system needs to be uniquely identifiable. For that purpose, the filter or inter-
ceptor that gets called first, generates a unique transaction identifier (ID). The
transaction ID is used in subsequent filter or interceptor invocations in the same
thread to identify a request. Using this ID allows to track the resource usage of
different components for single transactions in the system. In addition to this
transaction ID, the Servlet filter and the EJB interceptor track the call-stack
depth. The call-stack depth defines the amount of filters and interceptors that
are nested within one request, to recreate the execution flow during the data
analysis. Using an additional call-order attribute for each operation invocation

78 A. Brunnert, C. Vögele, and H. Krcmar

during one thread execution, the different invocations can be ordered according
to their execution sequence. Therefore, each entry of the CSV files contains the
following information: transaction ID; call-order; call-stack depth; Servlet, JSP
or EJB name; EJB method name or the selected Servlet/JSP request parameter;
startCPUTime; stopCPUTime; startHeapByteAllocation; stopHeapByteAlloca-
tion; time stamp of the data collection. It is therefore possible to extract the
application components, their relationships as well as their resource demand
from this data.

The file operations are optimized by using different caches and output files
for each thread to reduce the Servlet filter and the EJB interceptor impact
on the monitored system. To assess the influence of the monitoring code on the
measurement results, test runs to collect the CPU demand for a reference system
are performed twice. In the first run only the CPU demands for components that
started transactions (without any sub-measurements) are collected. In the second
run the same values are measured while all Servlet filters or EJB interceptors are
active. Comparing the results shows that each Servlet filter or EJB interceptor
invocation results in a mean CPU demand overhead of 0.03 ms. This overhead
is always included in the CPU demand measurements of the calling component.

2.2 Data Aggregation

The CSV files that are generated during the data collection phase are used as
the input for a data aggregation component. The purpose of this component is
to pre-process the data to reduce the model generation time afterwards.

All the pre-processed data is stored in a relational database (DB) called anal-
ysis DB to allow for a more flexible access to the collected data. As explained
in the previous section, each entry in the CSV files represents a single compo-
nent invocation. Therefore, the first step in the data aggregation process is to
extract the existing components of the Java EE application from the CSV files.
The component names found in this data are stored in a specific table in the
database. At the same time, the existing component operations (EJB methods
or Servlet/JSP request parameters) are extracted from the data. Component
operations are stored in a separate database table. While searching for the ex-
isting components and their operations, the component invocations are stored
in another database table. The component invocations are associated with the
component names and operations they belong to. Additionally, the data aggrega-
tion component associates all component invocations with the transactions they
are involved in based on the transaction ID in the log files. This data model
simplifies the model generation process as component relationships can be easily
identified on the level of single component operations.

2.3 Model Generation

The data stored in the analysis DB is used to generate a component-based per-
formance model based on the available information. The Palladio Component
Model (PCM) is used as the meta model for the generated models. PCM is

Automatic Performance Model Generation for Java EE Applications 79

described by Reussner et al. [8] as a software component model for business
information systems to enable model-driven quality of service (QoS, i.e. perfor-
mance) predictions. A software system is represented in PCM by several model
types which can reference each other [8]. The most important model within
PCM is called repository model. This model contains the basic components of
a software system and their relationships. These components are assembled in a
system model to represent an application. The user interactions with the system
are described in a usage model. The other two models in PCM are the resource
environment and allocation models. The purpose of the resource environment
model is to specify available resource containers (i.e. servers) with their asso-
ciated hardware resources (i.e. CPU cores). The allocation model specifies the
mapping of components to resource containers. To take these different model
types into account, the model generation process is divided in three sub-tasks:

1. PCM repository model generation
2. Associating resource demands with the PCM repository model components
3. Generating the system, resource environment and allocation models

PCM Repository Model Generation. First of all, a PCM repository model
is generated to represent the Java EE application components and their rela-
tionships. The component relationships are represented in a repository model
using interfaces. Each component can provide an interface to offer operations to
other components and require interfaces from other components to access their
operations (see figure 2(a)). As the component relationships are stored in the
analysis DB on the level of single component operations, the generated com-
ponent interfaces contain all externally accessible operations of a component.
Internal component operations are not represented in the model.

The behavior of the component operations is specified in so called Resource
Demanding Service Effect Specifications (RDSEFF). RDSEFFs are behavior de-
scriptions of single component operations similar to activity diagrams in the Uni-
fied Modeling Language (UML) [12]. Input- or output-parameters of the compo-
nent operations are not represented to simplify the model and because they are
not available in the analysis DB. However, as these parameters can have great
influence on the component performance, the probabilities of different execution
flows (caused by different input- or output-parameters) are represented in the
individual RDSEFFs. These probabilities are represented as so called probability
branches in each RDSEFF [8]. An example for such a probability branch can be
found in figure 2(b). The RDSEFF of the operationA of ComponentA contains
a probability branch with two execution flows. One execution flow is executed
with 30 % probability whereas the second execution flow is executed with 70 %
probability.

To calculate the probability of each execution flow, the transactions in the
analysis DB are first of all grouped by the component operation that was in-
voked first (i.e. by the user or external systems). In a second step, the execution
flows that have been started by a specific component operation are grouped by
the order in which they call external component operations. The total amount

80 A. Brunnert, C. Vögele, and H. Krcmar

of transactions started by a specific component operation and the amount of
transactions for each external component operation call order allow to calculate
the probability of each execution flow. The second grouping does not consider
the amount of times an external component operation was called in a row. To
account for such invocation count variations, these values are represented as loop
probabilities in the corresponding execution flows. An example for such a loop
probability can be found in figure 2(b): In the execution flow with 70 % proba-
bility, the external operationC of ComponentB is called one time in 40 % of the
cases and two times in the other 60 %.

(a) Repository model example (b) RDSEFF of ComponentA.operationA

Fig. 2. PCM repository model elements

A component operation can be included in execution flows that have been
started by different component operations. To simplify the RDSEFFs, a new
interface operation and a corresponding RDSEFF is created for each execution
flow a component operation is involved in. The naming pattern for the new
operation is as follows: [operation name] [component initially called] [operation
name initially called]. For example, in figure 2(a), the operationC of Compo-
nentB is called in an execution flow started from operationA and also in a flow
started from operationB of ComponentA. The model generation code therefore
generates two services for this operation: operationC ComponentA operationA
and operationC ComponentA operationB.

Associating Resource Demands. The resource demand of a component op-
eration is also stored in the corresponding RDSEFF. As representing memory
is not directly supported by the PCM meta model without further extensions,
the model generation currently only uses the CPU demand logged in the data
collection step. As explained in section 2.1, the CPU demand of a component
invocation already contains the CPU demands of all sub-invocations. Therefore,
each transaction is processed in reverse order to calculate and remove the CPU
demand of all external calls from the current operation. As the external calls
vary between each execution flow, the CPU demand values are calculated sep-
arately for each of the flows in a probability branch. The mean CPU demand

Automatic Performance Model Generation for Java EE Applications 81

in ms for each execution flow is then assigned to the component operation. In
the example in figure 2(b), one execution flow of operationA consumes 0.315 ms
CPU time whereas the other flow consumes 0.173 ms.

Generating the Remaining PCM Models. When the repository model
generation is completed, a system model is generated to represent a Java EE ap-
plication that contains all repository model components. The automatic model
generation specifies all interfaces that are not required by other components as
externally accessible interfaces of the system. Thus, the model generation as-
sumes that end-users or external systems interacting with a Java EE application
have invoked the operations contained in these interfaces. Component opera-
tions that are not contained in these interfaces are not accessible outside of the
generated system (i.e. not accessible from the usage model).

The resource environment and the allocation models are also generated au-
tomatically. The resource environment model is generated to define a reference
system for the CPU demand values specified in the RDSEFFs. This is necessary
to ensure that the CPU demand values are interpreted as ms values. The allo-
cation model maps the system model components to the resource container in
the resource environment model. Currently, only one server (resource container)
with a single CPU core is generated in the resource environment and all compo-
nents are mapped to this resource container. The resource environment model
should therefore be configured according to the required setup (i.e. number of
CPU cores) before it is used for a performance evaluation. The only PCM model
that is not automatically generated is the usage model.

3 Evaluation

To evaluate the feasibility of the suggested performance model generation ap-
proach, a performance model for a SPECjEnterprise20101 industry standard
benchmark deployment is generated using a software prototype that implements
the approach [13]. SPECjEnterprise2010 specifies a Java EE application, a work-
load as well as a dataset that needs to be used for a performance test execu-
tion. The tests are therefore easily reproducible. Using the SPECjEnterprise2010
applications and predefined workloads performance tests are executed and a
performance model is derived. Afterwards, workloads using varying amounts of
users are executed both as a simulation using the performance model and on
a real system to compare the results. This quantitative validation ensures that
the automatically generated performance model provides a solid base for the
performance evaluation.

1 SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp.
(SPEC). The SPECjEnterprise2010 results or findings in this publication have not
been reviewed or accepted by SPEC, therefore no comparison nor performance in-
ference can be made against any published SPEC result. The official web site for
SPECjEnterprise2010 is located at http://www.spec.org/osg/Enterprise2010.

82 A. Brunnert, C. Vögele, and H. Krcmar

3.1 SPECjEnterprise2010 Industry Benchmark Deployment

The business case for the SPECjEnterprise2010 application is a scenario that
incorporates Supply Chain Management (SCM), Manufacturing and Customer
Relationship Management (CRM) for an automobile manufacturer [13]. Follow-
ing these key functional areas, the application is divided into three major parts:
the Supplier domain for the SCM, the Manufacturing domain and the Orders
domain for the CRM. The analysis in this paper focuses on the Orders domain.
The communication between the domains is also not examined in this paper.
The SPECjEnterprise2010 Orders domain is used as reference application for
the case study because it is fully compliant to the Java EE specification and
therefore portable across different application server products. This portability
is a rare characteristic for such a complex Java EE application that already uses
a lot of common technologies within the Java EE technology stack. Further-
more, the SPECjEnterprise2010 Orders domain is slightly different compared to
the other domains as it represents a complete application intended to be used
by end-users. The other two domains are mainly intended to be used by other
applications as (web-)services.

Application Architecture. The Orders domain is a Java EE web applica-
tion implemented using Servlets and JSPs [9] as key technologies. Apart from
these technologies the Orders domain uses stateless EJBs and the Java Persis-
tence API (JPA) [9] to implement an E-Commerce catalog and a shopping cart
for automobile dealers [13]. The setup for the Orders domain consists of a Sys-
tem Under Test (SUT) on which the Orders domain application components
are deployed and a Benchmark Driver used for generating load on the system
(see figure 3(a)). A relational DB is the persistence layer of the Orders domain
application. The automobile dealers access the web application over the Hyper-
text Transfer Protocol (HTTP) using their web browsers to order and sell cars.
The execution flow of the Orders domain application can be described in four
steps: Each HTTP request of the automobile dealers is processed by a Servlet
(1.) which determines the type of request and executes the business logic while
calling one or more stateless EJBs (2.). Afterwards, the request is forwarded to
a JSP to render the view (4.). The stateless EJBs interact with JPA Entities (3.)
which represent the application model that is persisted in a relational database.

System Topology. The SUT is deployed on a virtualized hardware environ-
ment exclusively used for the SPECjEnterprise2010 benchmarks performed for
this paper. Two IBM System X3755M3 servers with 256 gigabyte (GB) random-
access memory (RAM) and four AMD Opteron 6172 Processors with 12 cores
and a 2.1 GHz frequency each are virtualized using the VMWare ESXi 5.0.0
(build 469512) hypervisor. The SUT is represented by a single virtual machine
(VM) with four virtual CPU cores, 40 GB RAM and openSUSE 12.3 64 bit as
operating system. The runtime for the Orders domain application components
is a JBoss Application Server (AS) 7.1.1 in the Java EE 6.0 full profile and an

Automatic Performance Model Generation for Java EE Applications 83

System Under Test (SUT)

Java Application Server

Database

Benchmark Driver

Dealerships Orders Domain

Orders Domain

Java Server Pages (JSP)

JPA
Entities

Stateless
EJBs HTTP

JDBC

JDBC

HTTP

1. 2. 3.

4.

Servlet

(a) Orders domain

login

openVehicle
Catalog

browseVehicle
Catalog goHome

logout

addVehicles
ToCart

cleanup
Shoppingcart checkOut

show
Inventory

getAndCancel
OpenOrders

getAndSell
Vehicles

browse

purchase

manage

(b) DealerEntry business transactions

Fig. 3. SPECjEnterprise2010

Apache Derby DB in version 10.9.1.0 as persistence layer. The JBoss AS and the
Apache Derby DB are executed within a 64 bit Java OpenJDK Server VM in
version 1.7.0 (IcedTea7 2.3.8, build 23.7-b01). The database is therefore included
in the server JVM. A different virtual machine is used for the Benchmark Driver.
SPECjEnterprise2010 uses the Faban Harness and Benchmark Framework [14]
to generate load on the SUT. To avoid influences on the system performance by
the load generation, the Benchmark Driver VM is placed on a different hard-
ware server than the SUT VM. Both servers are connected by a gigabit ethernet
connection. The workloads that are generated by the Benchmark Driver will be
explained in the next section.

Workload Description. The automobile dealers can perform three different
business transactions: browse, manage and purchase. The dealers interact with
the Orders domain application by browsing the catalog of available cars (browse),
purchasing new cars (purchase) and managing their inventory by selling vehi-
cles or cancel orders (manage). The main steps for each of these transactions
are shown in figure 3(b). These transactions are implemented in the SPEC-
jEnterprise2010 benchmark by the DealerEntry application that executes the
corresponding transactions on the SUT [13]. This application specifies the prob-
ability for each transaction and its single steps during a single DealerEntry
execution. Each transaction starts with a login of an automobile dealer, whose
identity is randomly selected. While the automobile dealer is logged in, the user
can perform multiple browse, purchase and manage operations with a specific
probability. After a specified time interval the user logs out of the application.

3.2 Automatic Performance Model Generation

A moderate load (∼55 % CPU utilization) is generated on the SUT to gather
the required data for the model generation using the data collection approach
outlined earlier. The load is generated for 30 minutes while only data collected
between a five minute ramp up and a five minute ramp down phase is stored in
the analysis DB. As the database is included within the server JVM, these mea-
surements already contain the database CPU demands. Afterwards, a software

84 A. Brunnert, C. Vögele, and H. Krcmar

prototype that implements the performance model generation process is used to
generate a component-based performance model based on this data. The gen-
erated PCM repository model of the Orders domain application is shown in
figure 4. Following the application architecture, the generated model contains
a controller Servlet component (app), several EJB components (CustomerS-
ession, ItemBrowserSession, LargeOrderSenderSession and OrderSession) and
different JSP components to render the view (dealerinventory.jsp, error.jsp,
order.jsp, purchase.jsp, shoppingcart.jsp, SpecJhome.jsp and welcome.jsp). The
main entry point for the user is the app Servlet that dispatches the calls to the
other components. Which component operations are called by the different app
Servlet operations can be seen in the generated operation names of the other
components.

Fig. 4. Simplified performance model of the Orders domain application

In the generated resource environment model the CPU core count is set to
four according to the SUT configuration. The repository-, system- and allocation
models that are generated automatically are not changed manually. The usage
model is modeled manually following the DealerEntry application source code.

3.3 Measurement and Simulation Results in Comparison

PCM models can be taken as the input for a simulation engine to predict
and evaluate the application performance for different workloads or resource

Automatic Performance Model Generation for Java EE Applications 85

environments. The standard simulation engine for PCM models is SimuCom
which uses model-2-text transformations to translate PCM models into Java
code, that is compiled and executed to start a simulation [15]. To evaluate the
accuracy of the model introduced in the previous section this simulation engine
is used to predict the application performance from low (∼40 % CPU utiliza-
tion) to high load conditions (∼90 % CPU utilization). The simulation results
are compared with measurement data of the real system under the same load
conditions. To generate low load on the system, the different tests start with 500
parallel dealer clients and then gradually increase in steps of 100 until high load
conditions with 1100 parallel dealer clients are reached.

The comparison includes the throughput and response time of the browse,
manage and purchase transactions as well as the CPU utilization of the SUT.
The instrumentation to gather the CPU demand for the different application
components is removed from the real system for the tests. Each simulation and
test run on the real system lasted 30 minutes. To avoid influences of warm up
effects and varying user counts, only data between a five minute ramp up and
a five minute ramp down phase is included in the following comparison. The
measured and simulated values within this 20 minute phase are used for the
calculation of the mean response time and mean CPU utilization values without
further filtering. During the test the CPU demand of the real system is collected
using the system activity reporter (SAR). The throughput data for the different
business transactions is taken from the reports generated by the Faban harness
for each test run. Even though the Faban harness also reports response times
for the business transactions, they cannot be compared with the simulation
results as the network overhead between the Benchmark Driver VM and the
SUT VM is not represented in the automatically generated performance model.
Therefore, the response time values for the real system are gathered using a
Servlet filter by logging the response times for each of the operations processed by
the controller Servlet of the Orders domain application. The mean response times
for the different Servlet operations are used to calculate the business transaction
response time according to their distribution in the business transactions of the
DealerEntry application. This approach enables the comparison of the simulated
business transaction response times with those of the real system.

The measured and simulated results are shown in table 1. For each load con-
dition specified by the number of clients (C) the table contains the following
data per business transaction (T): Measured Mean Response Time (MMRT),
Simulated Mean Response Time (SMRT), Response Time Error (RTE), Mea-
sured Throughput (MT), Simulated Throughput (ST), Throughput Error (TE),
Measured (MCPU) and Simulated (SCPU) Mean CPU Utilization and the CPU
Utilization Error (CPUE). The simulation predicts the mean response time of
the business transactions with an error of mostly 7 to 17 %. Only the browse and
manage transactions have a prediction error of 20 % for a load of 1100 concurrent
dealer clients. As the performance model is solely based on the components CPU
demand, external effects like input/output operations are one possible reason for
the deviation in high load conditions. The throughput of the system is predicted

86 A. Brunnert, C. Vögele, and H. Krcmar

Table 1. Measured and simulated results

C T MMRT SMRT RTE MT ST TE MCPU SCPU CPUE

500
B 52.08 ms 57.49 ms 10.38 % 30,065 30,343 0.92 %

43.71 % 39.65 % 9.28 %M 12.27 ms 13.54 ms 10.34 % 15,081 15,099 0.12 %
P 22.18 ms 23.76 ms 7.13 % 15,105 14,991 0.75 %

600
B 52.94 ms 57.76 ms 9.10 % 36,325 36,349 0.07 %

51.93 % 47.50 % 8.52 %M 12.41 ms 13.62 ms 9.75 % 18,085 18,093 0.04 %
P 22.28 ms 24.06 ms 7.97 % 18,223 18,100 0.67 %

700
B 56.10 ms 60.49 ms 7.83 % 42,262 42,496 0.55 %

60.47 % 55.40 % 8.38 %M 12.42 ms 14.24 ms 14.70 % 21,381 21,194 0.87 %
P 23.18 ms 24.97 ms 7.72 % 21,131 20,923 0.98 %

800
B 59.55 ms 64.38 ms 8.11 % 48,623 48,243 0.78 %

68.78 % 63.11 % 8.25 %M 13.15 ms 15.21 ms 15.64 % 24,532 24,227 1.24 %
P 24.42 ms 26.67 ms 9.21 % 24,159 24,149 0.04 %

900
B 65.43 ms 65.74 ms 0.48 % 54,231 54,350 0.22 %

75.67 % 71.04 % 6.11 %M 14.08 ms 15.53 ms 10.32 % 27,487 27,171 1.15 %
P 26.33 ms 27.28 ms 3.60 % 26,752 27,085 1.24 %

1000
B 84.02 ms 80.54 ms 4.14 % 60,658 60,312 0.57 %

83.70 % 78.88 % 5.76 %M 16.20 ms 18.97 ms 17.12 % 30,231 30,203 0.09 %
P 32.57 ms 33.53 ms 2.95 % 29,938 30,049 0.37 %

1100
B 140.81 ms 113.02 ms 19.73 % 66,563 66,364 0.30 %

90.94 % 86.61 % 4.76 %M 22.32 ms 26.69 ms 19.57 % 33,269 33,146 0.37 %
P 51.90 ms 47.13 ms 9.20 % 33,384 32,820 1.69 %

with an error below 2 %. This high accuracy can be explained by the fact that
the average think time of 9.9 s between all dealer client requests is much higher
than the average execution time of a business transaction, which is at maximum
140.81 ms (see table 1). Therefore, prediction errors of the response times have
a low impact on the predicted number of executed transactions. A prediction
error of less than 10 % is achieved for the CPU utilization. The simulated mean
CPU utilization is constantly below the measured mean CPU utilization. This is
expected, as the simulated data represents the CPU utilization of the JBoss AS
process whereas the measured data represents the CPU utilization of the whole
system. Thus, the measured CPU utilization of the SUT also contains other
processes running on the operating system. Additionally, the CPU demand of
the garbage collector and other JVM activities that are not executed within the
request processing threads is not included in the model.

4 Related Work

Several approaches to evaluate the performance of Java EE (or similar
component-based) applications using performance models have already been dis-
cussed by Kounev [6]. Extending the previous work, Kounev [16] shows how to
apply model-based performance analysis to large-scale Java EE applications. Us-
ing the SPECjAppServer2002 [17] industrial benchmark, Kounev analyzes the

Automatic Performance Model Generation for Java EE Applications 87

applicability of analytical performance models for Java EE applications with
realistic complexity. The author extends his work in [6,18] by using Queuing
Petri Nets [19] to evaluate the performance of a SPECjAppServer2004 indus-
trial benchmark [17] deployment. In these works, Kounev models the system
manually as a number of server nodes without detailing single components of
the application or differentiating between single applications running within a
server. Therefore, the models can evaluate the performance of the whole system
but do not provide sufficient detail to evaluate an application or its components.

Brosig et al. [20] show that they are able to semi-automatically extract Pal-
ladio Component Models (PCM) for Java EE applications using a SPECjEnter-
prise2010 deployment as case study. The authors define methods for an auto-
matic identification of connections between single runtime components based on
monitoring data of a WebLogic Application Server. Unfortunately, the identifi-
cation of an appropriate granularity level for modeling the components is still
left to the user. Their approach also requires a manual calculation and distribu-
tion of the CPU demands to the application components based on the overall
utilization and throughput of the system.

5 Conclusion and Future Work

This paper introduced an approach to generate component-based performance
models for Java EE applications automatically. The approach is applicable for
Java EE applications running on server products that are compliant with the
Java EE specification. Using the approach does not require detailed knowledge
about the application architecture as the performance model components are
based on component types defined in the Java EE specification. It is also not
required to have detailed knowledge about the performance modeling process as
the generation process already answers the questions raised in the beginning.
These characteristics reduce the effort required to create performance models
and thus make them better applicable in practice.

Future work for this approach includes case studies for other applications
and Java EE server products. Additionally, the approach needs to be extended
to work with distributed systems. A key requirement for this extension is the
possibility to uniquely identify transactions across multiple server instances. Es-
pecially if the approach should work with Java EE components typically used as
back-ends such as web-services or message driven beans. Other external systems
should be represented using black box approaches to reduce the need to collect
data outside of Java EE runtime environments. Representing the heap demand
in the generated models is another challenge that needs to be addressed.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Transactions on Software
Engineering 30(5), 295–310 (2004)

88 A. Brunnert, C. Vögele, and H. Krcmar

2. Woodside, M., Franks, G., Petriu, D.C.: The future of software performance engi-
neering. In: Future of Software Engineering (FOSE), pp. 171–187 (2007)

3. Smith, C.U.: Introduction to software performance engineering: Origins and out-
standing problems. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486,
pp. 395–428. Springer, Heidelberg (2007)

4. Koziolek, H.: Performance evaluation of component-based software systems:
A survey. Performance Evaluation 67(8), 634–658 (2010)

5. Mayer, M., Gradl, S., Schreiber, V., Wittges, H., Krcmar, H.: A survey on per-
formance modelling and simulation of sap enterprise resource planning systems.
In: The 10th International Conference on Modeling and Applied Simulation,
pp. 347–352. Diptem Universitá di Genoa (2011)

6. Kounev, S.: Performance Engineering of Distributed Component-Based Systems
- Benchmarking, Modeling and Performance Prediction. Shaker Verlag. Ph.D.
Thesis, Technische Universität Darmstadt, Germany, Aachen, Germany (2005)

7. Wu, X., Woodside, M.: Performance modeling from software components.
SIGSOFT Softw. Eng. Notes 29(1), 290–301 (2004)

8. Reussner, R., Becker, S., Happe, J., Koziolek, H., Krogmann, K., Kuperberg, M.:
The Palladio component model. Universität Karlsruhe (2007)

9. Shannon, B.: Java platform, enterprise edition (java ee) specification, v5 (2006)
10. Kuperberg, M.: Quantifying and Predicting the Influence of Execution Platform

on Software Component Performance. The Karlsruhe Series on Software Design
and Quality. KIT Scientific Publishing, Karlsruhe (2011)

11. DeMichiel, L., Keith, M.: Jsr 220: Enterprise javabeans, version 3.0 - ejb 3.0
simplified api (2006)

12. Krogmann, K.: Reconstruction of Software Component Architectures and
Behaviour Models using Static and Dynamic Analysis. The Karlsruhe Series on
Software Design and Quality. KIT Scientific Publishing, Karlsruhe (2010)

13. SPEC: Specjenterprise2010 (2012),
http://www.spec.org/jEnterprise2010/ (accessed at April 07, 2012)

14. Faban: Faban harness and benchmark framework (2012),
http://java.net/projects/faban/ (accessed at September 17, 2012)

15. Becker, S.: Coupled Model Transformations for QoS Enabled Component-
Based Software Design. Karlsruhe Series on Software Quality. Universitätsverlag
Karlsruhe (2008)

16. Kounev, S., Buchmann, A.: Performance modeling and evaluation of large-scale
j2ee applications. In: Proceedings of the 29th International Conference of the Com-
puter Measurement Group on Resource Management and Performance Evaluation
of Enterprise Computing Systems (CMG), Dallas, Texas, USA, pp. 273–283 (2003)

17. SPEC: Spec jappserver development page (2002),
http://www.spec.org/osg/jAppServer/ (accessed at September 02, 2012)

18. Kounev, S.: Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. IEEE Transactions on Software Engineer-
ing 32(7), 486–502 (2006)

19. Bause, F.: ‘qn + pn= qpn’ - combining queueing networks and petri nets. Technical
report, Dept. of Computer Science, University of Dortmund (1993)

20. Brosig, F., Huber, N., Kounev, S.: Automated extraction of architecture-level per-
formance models of distributed component-based systems. In: 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 183–192
(2011)

http://www.spec.org/jEnterprise2010/
http://java.net/projects/faban/
http://www.spec.org/osg/jAppServer/

Canonical Representation of Discrete Order 2

MAP and RAP

András Mészáros1,3 and Miklós Telek1,2

1 Budapest University of Technology and Economics
2 MTA-BME Information Systems Research Group

3 Inter-University Center for Telecommunications and Informatics Debrecen
{meszarosa,telek}@hit.bme.hu

Abstract. Matrix-geometric distributions (MG) and discrete (time) ra-
tional arrival processes (DRAP) are natural extensions of discrete phase-
type distributions (DPH) and discrete Markov arrival processes (DMAP)
respectively. However, the exact relation of the Markovian classes and
their non-Markovian counterparts and the boundaries of these classes
are not known yet. It has been shown that for the order two case the
MG and DPH classes are equivalent. In this paper we prove that the
equivalence holds for the order two DMAPs and DRAPs as well. We
prove this equivalence by introducing a Markovian canonical form for
order two DRAPs and by showing, that this canonical form can indeed
be used to describe the whole order two DRAP class.

Keywords: discrete Markov arrival process, discrete rational arrival
process, canonical representation.

1 Introduction

Stochastic models with underlying Markov chains have been widely used since
the introduction of matrix analytic methods [1], which allow efficient numerical
analysis of such stochastic models. Relaxing the limitations of stochastic pro-
cesses with underlying Markov chains, non-Markovian generalizations of these
processes, matrix exponential distributions (ME) [2] and continuous rational ar-
rival processes (CRAP) [3], have been introduced. More recently it has turned
out that these non-Markovian generalizations inherit the applicability of the ef-
ficient numerical procedures for their analysis [4]. Due to the nice computational
properties, parameter estimation (fitting) and moments matching of CMAP and
CRAP processes have gained significant attention [5,6]. The order two models
(the lowest order non-trivial models) allow explicit analytical treatment. For
order two continuous processes the canonical representation and the moments
matching were investigated in [7]. It was shown that order two CMAP ≡ order
two CRAP. In this paper we investigate the discrete counterparts of these pro-
cesses and introduce a canonical representation for the order two DRAP class,
we prove that the order two DMAP ≡ order two DRAP relation also holds, and
we present explicit moments and correlation matching formulas.

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 89–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

90 A. Mészáros and M. Telek

The rest of the paper is organized as follows. In Section 2 we survey the
necessary definitions and essential properties of existing Markov chain driven
stochastic processes and their non-Markovian generalizations. Unfortunately, we
need to introduce a lot of concepts in this section, which makes it rather dense.
The next section focuses on the special properties of the order 2 class of these
processes. The main result of the paper, the canonical representation of order 2
DMAP and DRAP processes, is presented in Section 4. Finally, explicit moments
and correlation matching formulas are provided in Section 5.

2 Markov Chain Driven Point Processes in Discrete
and Continuous Time and Their Non-Markovian
Generalizations

The following subsections summarize the main properties of simple stochastic
models with a background discrete state Markov chain and their non-Markovian
generalizations. If the background chain is a discrete time Markov chain we
obtain discrete (time) stochastic models and if it is a continuous time Markov
chain we obtain continuous (time) stochastic models. The main focus of the
paper is on the discrete models, but some results are related to their continuous
counterparts and that is why we introduce both of them.

2.1 Discrete Phase Type and Matrix Geometric Distributions

The following stochastic models define discrete distributions on the positive in-
tegers.

Definition 1. Let X be a discrete random variable on N+ with probability mass
function (pmf)

PX (i) = Pr(X = i) = αAi−1(�−A�) ∀i ∈ N+, (1)

where α is a row vector of size n, A is a square matrix of size n× n, and � is
the column vector of ones of size n. If the pmf has this matrix geometric form,
then we say that X is matrix geometrically distributed with representation α,A,
or shortly, MG(α,A) distributed.

In this and the subsequent models the scalar quantity is obtained as a product
of a row vector, a given number of square matrices and a column vector. In the
sequel we refer to the row vector as initial vector and to the column vector as
closing vector. It is an important consequence of Definition 1 that α and A have
to be such that (1) is non-negative.

Definition 2. If X is an MG(α,A) distributed random variable, where α and
A have the following properties:

– αi ≥ 0,

Canonical Representation of Discrete Order 2 MAP and RAP 91

– Aij ≥ 0, A� ≤ �,

then we say that X is discrete phase type distributed with representation α,A,
or shortly, DPH(α,A) distributed.

The vector-matrix representations satisfying the conditions of Definition 2 are
called Markovian.

In this paper we focus on distributions on the positive integers, consequently,
α� = 1. The cumulative density function (cdf), the moment generating function,
and the factorial moments of X are

FX (i) = Pr(X ≤ i) = 1− αAi
�, (2)

FX (z) = E(zX) = zα(I − zA)−1(�−A�), (3)

fn = E(X (X −1) . . . (X −n+1)) =
dn

dzn
FX (z)|z=1 = n!α(I−A)−nAn−1

�. (4)

2.2 Discrete Markov Arrival Process and Discrete Rational Arrival
Process

Let X (t) be a point process on N+ with joint probability mass function of
inter-event times PX (x0, x1, . . . , xk) for k = 1, 2, . . . and x0, . . . , xk ∈ N+.

Definition 3. X (t) is called a rational arrival process if there exists a finite
(H0,H1) square matrix pair such that (H0 +H1)� = �,

π(I −H0)
−1H1 = π, π� = � (5)

has a unique solution and

PX (t)(x0, x1, . . . , xk) = πH0
x0−1H1H0

x1−1H1 . . .H0
xk−1H1�, (6)

In this case we say that X (t) is a discrete rational arrival process with
representation (H0,H1), or shortly, DRAP(H0,H1).

The size of the H0 and H1 matrices is also referred to as the order of the
associated process. An important consequence of Definition 3 is that H0 and
H1 have to be such that (6) is always non-negative.

Definition 4. If X (t) is a DRAP(H0,H1), where H0 and H1 are
non-negative, we say that X (t) is a Discrete Markov arrival process with
representation (H0,H1), or shortly, DMAP(H0,H1).

The matrix pairs satisfying the conditions of Definition 4 are called Markovian
and the matrix pairs violating Definition 4 are called non-Markovian.

Definition 5. The correlation parameter, γ, of a DRAP(H0,H1) is the
eigenvalue of (I −H0)

−1H1 with the second largest absolute value.

92 A. Mészáros and M. Telek

One of the eigenvalues of (I−H0)
−1H1 is 1, because (H0+H1)� = �, and the

other eigenvalues are on the unit disk. If γ is real, it is between −1 and 1. This
parameter is especially important in case of order 2 DRAPs, as their ρk lag-k
autocorrelation coefficient can be given as ρk = γkc0, where c0 depends only on
the stationary inter-arrival time distribution of the process.

In general, a DMAP has infinitely many different Markovian and non-
Markovian representations (matrix pairs, that fulfill (6)). One way to get
a different representation of a DMAP(D0,D1) with the same size is the
application of the similarity transformation

H0 = T−1D0T , H1 = T−1D1T , (7)

where T is an arbitrary non-singular matrix for which T� = �. The (stationary)
marginal distribution of the inter-event time of DRAP(H0,H1) is MG(π,H0),
where π is the unique solution of (5).

2.3 Continuous Phase Type and Matrix Exponential Distributions

The continuous counterparts of the above introduced models are defined as
follows.

Definition 6. Let X be a continuous random variable with support on R+ and
cumulative distribution function (cdf)

FX(x) = Pr(X < x) = 1− αeAx
�,

where α is a row vector of size n, A is a square matrix of size n× n, and � is
the column vector of ones of size n. In this case, we say that X is matrix expo-
nentially distributed with representation α,A, or shortly, ME(α,A) distributed.

Definition 7. If X is an ME(α,A) distributed random variable, where α and
A have the following properties:

– αi ≥ 0, α� = 1 (there is no probability mass at x = 0),
– Aii < 0, Aij ≥ 0 for i �= j, A� ≤ 0,

we say that X is phase type distributed with representation α,A, or shortly,
CPH(α,A) distributed.

The vector-matrix representations satisfying the conditions of Definition 7 are
called Markovian.

The probability density function (pdf), the Laplace transform, and the
moments of X are

fX (x) = −αeAxA�, (8)

f∗
X (s) = E(e−sX) = −α(sI −A)−1A�, (9)

μn = E(Xn) = n!α(−A)−n
�. (10)

Canonical Representation of Discrete Order 2 MAP and RAP 93

2.4 Continuous Markov Arrival Process and Continuous Rational
Arrival Process

Let X (t) be a point process on R+ with joint probability density function of
inter-event times f(x0, x1, . . . , xk) for k = 1, 2,

Definition 8. X (t) is called a rational arrival process if there exists a finite
(H0,H1) square matrix pair such that (H0 +H1)� = 0,

π(−H0)
−1H1 = π, π� = � , (11)

has a unique solution, and

f(x0, x1, . . . , xk) = πeH0x0H1e
H0x1H1 . . . eH0xkH1�. (12)

In this case we say that X (t) is a rational arrival process with representation
(H0,H1), or shortly, RAP(H0,H1).

Definition 9. If X (t) is a RAP(H0,H1), where H0 and H1 have the following
properties:

– H1ij ≥ 0,
– H0ii < 0, H0ij ≥ 0 for i �= j, H0� ≤ 0,

we say that X (t) is a Markov arrival process with representation (H0,H1), or
shortly, MAP(H0,H1).

Similar to the discrete case, the representations satisfying the conditions
of Definition 9 are called Markovian and similarity transformations generate
different representations of the same process.

3 Some Properties of Order 2 DPH and MG Distributions

In this section we summarize some recent results concerning the canonical rep-
resentation of order 2 DPH and MG distributions (DPH(2) and MG(2), respec-
tively) from [8], which are going to be utilized in the subsequent sections. Matrix
A of an order 2 MG distribution has two (not necessarily distinct) real eigen-
values, out of which at least one is positive. The cases when both eigenvalues
of A are positive can always be represented with an acyclic Markovian canon-
ical representation, whose properties are studied in [9]. The cases when one of
the eigenvalues is negative can always be represented with a cyclic Markovian
canonical representation as it is summarized below.

Theorem 1. [8] The pmf of an MG(2) distribution has one of the following two
forms

– different eigenvalues:
pi = a1s

i−1
1 + a2s

i−1
2 , (13)

where s1, s2 are real, 0 < s1 < 1, s1 > |s2|, a2 = (1− s2)
(
1− a1

1−s1

)
and a1

is such that

94 A. Mészáros and M. Telek

• if s2 > 0, then 0 ≤ a1 ≤ (1−s1)(1−s2)
s1−s2

and

• if s2 < 0, then (1−s1)(1−s2)s2
(1−s2)s2−(1−s1)s1

≤ a1 ≤ (1−s1)(1−s2)
s1−s2

,

– identical eigenvalues:

pi = (a1(i − 1) + a2)s
i−1, (14)

where s is real 0 < s < 1, and a1, a2 are such that 0 < a1 ≤ (1−s)2

s and

a2 = (1−s)2−a1s
1−s .

Theorem 2. [9] If X is MG(2) distributed with two distinct positive eigenvalues
(0 < s2 < s1 < 1), it can be represented as DPH(α,A), where

α =

[
a1(s1 − s2)

(s1 − 1)(s2 − 1)
,

a1 + a2

1− s2

]
, A =

[
s1 1−s1
0 s2

]
.

Theorem 3. [8] If X is MG(2) distributed with a dominant positive and a
negative eigenvalue (s2 < 0 < s1 < 1 and s1 + s2 > 0), it can be represented as
DPH(α,A), where

α =
[

a1s1+a2s2
(s1−1)(s2−1) ,

(a1+a2)(1−s1−s2)
(s1−1)(s2−1)

]
, A =

[
1− β1 β1

β2 0

]
,

β1 = 1− s1 − s2 and β2 = s1s2
s1+s2−1 .

Theorem 4. [9] If X is MG(2) distributed with two identical eigenvalues (0 <
s = s2 = s1 < 1), it can be represented as DPH(α,A), where

α =

[
a1s

(1 − s)2
,

a2

1− s

]
, A =

[
s 1−s
0 s

]
.

There are several interesting consequences of Theorem 1 – 4. First of all

DPH(2) ≡ MG(2),

that is all MG(2) can be represented with a Markovian vector-matrix pair.
Further more

ADPH(2) ≡ MG(2) with positive eigenvalues,

where ADPH(2) denotes the subclass of DPH(2) with acyclic matrix A.
The canonical representation of the stochastic models introduced in Section 2

is a convenient Markovian representation that takes Cumani’s acyclic canonical
form [10] if possible and contains the maximal number of zero elements. In
some cases these principles completely define the canonical representation, while
additional criteria are applied in other cases. The representations in Theorem 2
– 4 are recommended as canonical representations in [8,9].

The ADPH(2) canonical forms (Theorem 2 and 4) have an interesting relation
with the Cumani’s canonical form of CPH distributions. If MG(γ,G) is a MG(2)

Canonical Representation of Discrete Order 2 MAP and RAP 95

with positive eigenvalues then vector γ and matrix G − I define a ME(2) dis-
tribution, ME(γ,G− I). Let PH(δ,D) be the Cumani’s acyclic canonical form
of ME(γ,G− I), which always exists [9]. Vector δ and matrix D+ I define the
canonical representation of MG(γ,G) according to Theorem 2 or 4. That is

MG(γ,G)
D→C⇒ ME(γ,G− I) ≡ CPH(γT︸︷︷︸

δ

,T−1(G− I)T︸ ︷︷ ︸
D

)

C→D⇒ DPH(γT ,T−1(G − I)T + I) ≡ DPH(γT ,T−1GT), (15)

where the eigenvalues of G and T−1GT are between in (0, 1) and the eigenvalues
of D are in (−1, 0). Note that the similarity transformation T−1GT maintains
the eigenvalue structure of G.

4 Canonical Representation of DRAP(2) Processes

The main goal of this paper is to define Markovian canonical forms for order 2
DRAP processes.

The DRAP(2) processes are defined by 4 parameters [11], e.g. the first 3
factorial moments of the stationary inter-arrival time distribution, f1, f2, f3, and
the correlation parameter, γ. D0 and D1 of size 2× 2 has a total of 8 elements
(free parameters). The (D0 +D1)� = � constraint reduces the number of free
parameters to 6. If additionally, two elements of the representation are set to 0
then the obtained (canonical) representation characterizes the process exactly
with 4 parameters.

4.1 Canonical Forms of CMAP(2)

The last paragraph of the previous section discusses the relation of the discrete
and continuous distributions. We are going to utilize a similar relation between
DMAP(2) and CMAP(2). To this end we summarize the canonical representation
of CMAP(2) from [7].

Theorem 5. [7] If the correlation parameter of the order 2 CRAP(H0,H1) is

– non-negative, then it can be represented in the following Markovian canonical
form

D0 =

[
−λ1 (1− a)λ1

0 −λ2

]
, D1 =

[
aλ1 0

(1− b)λ2 bλ2

]
.

where 0 < λ1 ≤ λ2, 0 ≤ a, b ≤ 1, min{a, b} �= 1, γ = ab and the associated
embedded stationary vector is π =

[
1−b
1−ab

b−ab
1−ab

]
,

– negative, then it can be represented in the following Markovian canonical
form

D0 =

[
−λ1 (1− a)λ1

0 −λ2

]
, D1 =

[
0 aλ1

bλ2 (1 − b)λ2

]
,

where 0 < λ1 ≤ λ2, 0 ≤ a ≤ 1, 0 < b ≤ 1, γ = −ab and the associated
embedded stationary vector is π =

[
b

1+ab 1− b
1+ab

]
.

96 A. Mészáros and M. Telek

4.2 Canonical Forms of DMAP(2) with Positive Eigenvalues

Theorem 6. If the eigenvalues of H0 are positive and the correlation parameter
of the order 2 DRAP(H0,H1) is

– non-negative, then it can be represented in the following Markovian canonical
form

D0 =

[
1− λ1 (1− a)λ1

0 1− λ2

]
, D1 =

[
aλ1 0

(1− b)λ2 bλ2

]
. (16)

where 0 < λ1 ≤ λ2, 0 ≤ a, b < 1, γ = ab and the associated embedded
stationary vector is π =

[
1−b
1−ab

b−ab
1−ab

]
,

– negative, then it can be represented in the following Markovian canonical
form

D0 =

[
1− λ1 (1− a)λ1

0 1− λ2

]
, D1 =

[
0 aλ1

bλ2 (1− b)λ2

]
, (17)

where 0 < λ1 ≤ λ2, s1 = 1− λ1, s2 = 1−λ2, 0 ≤ a ≤ 1, 0 < b ≤ 1, γ = −ab
and the associated embedded stationary vector is π =

[
b

1+ab 1− b
1+ab

]
.

Proof. Practically the same approach is applied here as in (15). The detailed
proof of the theorem follows the same pattern as the proof of Theorem 5 in [7]
which we omit here because we focus on the proof of Theorem 7, the related
theorem with negative eigenvalues.

4.3 Canonical Forms of DMAP(2) with a Negative Eigenvalue

Theorem 7. If one eigenvalue of H0 is negative and the γ correlation
parameter of the order 2 DRAP(H0,H1) is

– non-negative, then it can be represented in the following Markovian canonical
form

D0 =

[
1− β1 aβ1
1
aβ2 0

]
,D1 =

[
(1 − a)β1 0
(1− 1

aβ2)b (1− 1
aβ2)(1− b)

]
, (18)

– negative, then it can be represented in the following Markovian canonical
form

D0 =

[
1− β1 aβ1
1
aβ2 0

]
,D1 =

[
0 (1− a)β1

(1− 1
aβ2)b (1− 1

aβ2)(1− b)

]
, (19)

where the eigenvalues are such that s2 < 0 < s1 < 1, s1 + s2 > 0, the relation of
the parameters and the eigenvalues is β1 = 1− s1 − s2, β2 = s1s2

s1+s2−1 , 0 ≤ b < 1

and β2 ≤ a ≤ min
(
1, b 1−s2

1−s1

)
in case of γ ≥ 0 or β2 ≤ a ≤ 1 in case of γ < 0,

The correlation parameter and the first coordinate of the embedded stationary
probability vectors (the unique solution of (5))

Canonical Representation of Discrete Order 2 MAP and RAP 97

– of (18) are

γ = (1− a)(1− b)

(
1 +

1− a

a

s1s2
1− s1 − s2 + s1s2

)
, (20)

π1 =
1− 1

1−aγ

1− γ
, (21)

– of (19) are

γ = −(1− a)b

(
1 +

1− a

a

s1s2
1− s1 − s2 + s1s2

)
, (22)

π1 = 1−
1 + a

1−aγ

1− γ
. (23)

We prove the theorem by considering the full flexibility of the DRAP(2) class
with a negative eigenvalue and showing that the canonical forms of Theorem 7
cover this whole set of processes. To this end we first investigate the flexibility
of the DRAP(2) class.

Constraints of the DRAP(2) Class. We investigate the flexibility of the
DRAP(2) class based on the following representation

H0 =

[
s1 0
0 s2

]
,H1 =

[
a1 + (1− a1 − s1)γ (1 − a1 − s1)(1 − γ)

a1(1−s2)(1−γ)
1−s1

(1−s2)(1−a1−s1+a1γ)
1−s1

]
, (24)

where s1 is the positive, s2 is the negative eigenvalue, γ is the correlation pa-
rameter and a1 is the parameter that characterizes the stationary inter-arrival
distribution together with the eigenvalues according to (13). With this represen-
tation the first coordinate of the embedded stationary vector is π1 = a1

1−s1
.

For a given pair of eigenvalues, s1 > 0 and s2 < 0, Theorem 1 defines the limits
of a1. According to these limits the first coordinate of any embedded vector of
DRAP(H0,H1) should be bounded by

(1− s2)s2
(1− s2)s2 − (1− s1)s1

≤ x ≤ (1− s2)(1 − s2)

s1 − s2
. (25)

Function Un(x) describes the effect of an n long inter-arrival period on the first
coordinate of the embedded vector.

Un(x) =
(x, 1 − x)H0

n−1H1

(x, 1 − x)H0
n−1H1�

(1, 0)T . (26)

If the embedded vector is (x, 1 − x) at an arrival instance and the next inter-
arrival is n time unit long, the embedded vector is going to be (Un(x), 1−Un(x))
at the next arrival instance. In case of DMAPs the embedded vector represents
the probability distribution of the background Markov chain at arrivals, but in

98 A. Mészáros and M. Telek

case of DRAPs it does not have any probabilistic interpretations. H0 and H1

has to be such that starting from the stationary embedded vector π for any series
of inter-arrival times the first coordinate of the embedded vector satisfy (25).
Based on this property we define simple constraints.

– long series of 1 time unit long inter-arrivals:
U1(x) = x has to have a real solution between the bounds in (25), because if
U1(x) would be larger (smaller) than x between the bounds then a series of
one time unit long inter-arrivals would increase (decrease) the first coordinate
above the upper (below the lower) limit (cf. Figure 1). This constraint results
in

γ ≤ (
√

c1 −
√

c2)
2

(c3 − a1s2)2
. (27)

– a long series of 1 time unit long inter-arrivals, then a 2 time unit long
inter-arrival:
If γ > 0, then U1(x) is a shifted negative hyperbolic function which increases
monotonously between the bounds in (25). If U1(x) = x has two solutions,
w1, w2 (w1 < w2), then w1 is stable and w2 is unstable, which means that
starting from x < w1 or w1 < x < w2 and having a long series of 1 time
unit long inter-arrivals the first coordinate converges to w1, while starting
from x > w2 and having a long series of 1 time unit long inter-arrivals the
first coordinate diverges. Consequently a long series of 1 time unit long inter-
arrivals and a 2 time unit long inter-arrival keep the first coordinate between
the bounds if U2(w1) ≤ w2 holds. This constraint results in

γ ≤ s1s2c2 − c1(1− s1 − s2)−
√

s1s2c1c2(s1 + s2)2

c4c5
. (28)

– long series of 2 time unit long inter-arrivals:
Similar to the first constraint U2(x) = x has to have a real solution which
results in

γ ≥
√

s1s2c2 +
√

c6)
2

c42
. (29)

– a long series of 1 time unit long inter-arrivals:
If γ < 0 then U1(x) is a shifted hyperbolic function which decreases
monotonously between the bounds in (25). U1(x) = x has to have a stable
real solution (w1) between the bounds in (25), which holds if d

dxU1(x)|x=w1 >
−1 (cf. Figure 2) (in case of a long series of 1 time unit long inter-arrivals
the first coordinate converge to w1). This constraint results in

γ ≥ s2(1− a1 − s1) + a1s1
(c3 − a1s1)2

. (30)

Canonical Representation of Discrete Order 2 MAP and RAP 99

0.8 0.9 1.0 1.1
x

1.0

1.2

1.4

U1�x�

Fig. 1. The U1(x) function when s1 =
0.8, s2 = −0.3, a1 = 0.19, γ = 0.17

0.8 0.9 1.0 1.1
x

0.7

0.8

0.9

1.0

1.1

U1�x�

Fig. 2. The U1(x) function when s1 =
0.8, s2 = −0.3, a1 = 0.19, γ = −0.012

0.16 0.18 0.20 0.22
a1

�0.15

�0.10

�0.05

0.05

0.10

0.15

Γlimits

Fig. 3. The upper and lower γ limits as a function of a1 when s1 = 0.8, s2 = −0.3

In the above expressions the auxiliary variables are

c1 = −a1(s1 − s2)
2(1− a1 − s1),

c2 = (1− s1)
3(1− s2),

c3 = 1− s1(2− a1 − s1),

c4 = s1(1− s1)(1− a1 − s1) + a1s2(1− s2),

c5 = (a1(s1 − s2) + s2(1 − s1)
2),

c6 = −a1(1− a1 − s1)(s1(1 − s1)− s2(1− s2))
2. (31)

We summarize the results of this subsection in the following theorem.

Theorem 8. For DRAP(H0,H1) defined in (24) with 0 < s1 < 1, −s1 < s2 <
0 and a1 satisfying Theorem 1 the correlation parameter satisfies the inequalities
(27) - (30).

Theorem 8 defines only some bounds of the set of DRAP(2) processes, but
the subsequent analysis of the canonical DMAP(2) proves that these bounds
are tight.

100 A. Mészáros and M. Telek

Constraints of the Set of Canonical DMAP(2) Processes. Having the
bounds of the DRAP(2) class from Theorem 8 we are ready to prove Theorem
7.

Proof. (Theorem 7) First we need to relate the variables of the canonical repre-
sentation with the parameters used for characterizing the DMAP(2) processes.
The relation of β1, β2 with s1, s2 is

s1,2 =
1

2
(1− β1 ±

√
(1− β1)2 + 4β1β2) (32)

The relation of s1, s2, a1, γ with a and b can be obtained from (20) and (21) for
the first canonical form and form (22) and (23) for the second canonical form.

If γ > 0, then

a =
g1 +

√
g21 − g2

2e1
, b = 1− aγ(1− s1 − s2 + s1s2)

(1− a)(a(1 − s1 − s2) + s1s2)
, (33)

where

e1 = (1 − s1)(1− s1 − s2)
2,

e2 = (1 − s1 − s2)(a1(s1 − s2)(1 − γ)− s1(1 − s1)),

e3 = γ(1− s1)
2,

g1 = e1 + e2 − e3(1− s1 − s2),

g2 = 4e1(e2 + e3s1) (34)

and if γ < 0, then

a =
g3 −

√
g23 + g4

g5
, b = 1− aγ(1− s1 − s2 − s1s2)

(1− a)(a(1 − s1 − s2) + s1s2)
, (35)

where

e6 = a1(s1 − s2)(1− γ),

e7 = (1 − s1)(s2(1 − γ)− (1− s1 − s2)γ),

e8 = (1 − s1 − s2)(1 − s1)s2,

g3 = −(1− s1 − s2)e6 + e7s1 − e8,

g4 = 4(e6 + e7)e8s1,

g5 = −2(1− s1 − s2)(e6 + e7). (36)

Based on these relations the constraints of the canonical DMAP(2) processes
can be obtained using the fact that all the elements of D0 and D1 have to be
non-negative real numbers. That is a is real, β2 ≤ a ≤ 1 and 0 ≤ b ≤ 1. a is real
when the expression under the square root sign in (33) for γ > 0 and in (33) for
γ < 0 is non-negative. All together these constrains result in 5 inequalities for
γ > 0 and 5 for γ < 0. Out of these the following ones are relevant.

Canonical Representation of Discrete Order 2 MAP and RAP 101

– Case γ > 0:
• a is real when g21 − g2 ≥ 0 which translates to (27),
• the inequality b ≤ 1 translates to (28),

– Case γ < 0:
• a is real when g23 + g4 ≥ 0 which translates to (29),
• the inequality b ≤ 0 translates to (30).

We neglect the details of the other derivations here.

5 Explicit Moments and Correlation Matching with the
Canonical Forms

One of the most important applications of the introduced canonical forms is
the moments and correlation matching of DMAP(2) processes. Using the differ-
ent canonical forms ((16) - (19)) we can obtain analytical formulas for their 4
characterizing parameters the first 3 factorial moments (f1, f2, f3) and the corre-
lation parameter (γ). Obviously, the different canonical forms result in different
equations.

The moments and correlation matching requires the inverse of the compu-
tation of these parameters, that is the appropriate canonical form and its pa-
rameters have to be found for a given f1, f2, f3 and γ. Unfortunately, based on
f1, f2, f3 it is not obvious how to decide if the eigenvalues are positive or one
of them is negative and consequently, it is not trivial to decide which canonical
form needs to be used. However, for any given set of f1, f2, f3 and γ parameters
at most one canonical form gives a Markovian representation. In the following
we present methods to obtain the different canonical DMAP(2) from f1, f2, f3
and γ. These methods consist of two steps. The first step is the calculation of the
representation of the stationary inter-arrival time, i.e., α and A of Theorem 2
and 3 using the first three factorial moments, the second step is the computation
of the parameters associated with γ.

Transformation to DMAP(2) Canonical Form with Positive Eigenval-
ues. As in the previous section we will first consider the DMAP(2) canonical
form with positive eigenvalues ((16) and (17)). In this case the first step is based
on Table 3 in [9]. the s1 and s2 elements of matrix A and vector α can be
calculated as

α = [p, 1− p] , p =
−z(h3 − 6f1h1) +

√
h4

zh3 +
√

h4

,

s1 = 1− h3 − z
√

h4

h2
, s2 = 1− h3 + z

√
h4

h2
,

where

h1 = 2f1
2 − 2f1 − f2, h2 = 3f2

2 − 2f1f3,

h3 = 3f1f2 − 6(f1 + f2 − f2
1)− f3, h4 = h2

3 − 6h1h2, z =
h2

|h2|
.

102 A. Mészáros and M. Telek

The second step is the calculation of a, b of Theorem 6. If γ = 0, then a = 1, b =
0. If γ > 0, then a and b can be computed using

a =
d1 −

√
d2

2(1− s1)
, b =

d1 +
√

d2
2(1− s2)

,

with

d1 = 1− s2 − p(1− s2)(1− γ) + (1− s1)γ, d2 = d21 − 4(1− s1)(1 − s2)γ.

If γ ≤ 0, then

a =
−γ(1− s2)

p(1− s2)(1 − γ)− γ(1− s1)
, b =

p(1− s2)(1 − γ)− γ(1− s1)

1− s2
.

Transformation to Canonical Form with a Negative Eigenvalue. For
the DMAP(2) canonical form with a negative eigenvalue the β1, β2 parameters
and the α vector can be calculated using

β1 =
12f2

1 − 3f2(4 + f2)− 2f3 + 2f1(−6 + 3f2 + f3)

(3f2
2 − 2f1f3)

β2 =
−3f2(2− 2f1 + f2) + 2(−1 + f1)f3

12f2
1 − 3f2(4 + f2)− 2f3 + 2f1(−6 + 3f2 + f3)

p =
β1 − f1β1 + β2 + f1β1β2

−1 + β2
, α = [p, 1− p] .

From β1 and β2 the eigenvalues s1 and s2 are obtained by (32). In the second
step a, b of Theorem 7 are calculated. If γ = 0 then a = 1, b = 0 stands again.
Otherwise

a =
k1 +

√
k2
1 − k2

2β1
, b = 1− aγ(1− β2)

(1 − a)(a− β2)
, if γ > 0,

a =
k3 +

√
k2
3 + 4β2k4

2k4
, b = − aγ(1− β2)

(1− a)(a− β2)
, if γ < 0,

where

k1 = (1− γ)(p + β1 + β2 − pβ2)− 1 + β1, k2 = 4β1(k1 − β1 + γ − β2γ),

k3 = (1− γ)(−p(1− β2)− 2β2)− γ(1− β1), k4 = k3 + β2 + γ − β2γ.

6 Conclusions

We have investigated the properties of order 2 DMAP and DRAP processes
and found that some of their properties are identical with the ones of order 2
CMAP and CRAP, specifically the subset of order 2 DMAP and DRAP processes
with positive eigenvalues can be mapped to the class of order 2 CMAP and

Canonical Representation of Discrete Order 2 MAP and RAP 103

CRAP, while the subset of order 2 DMAP and DRAP processes with one negative
eigenvalue differs from the order 2 CMAP and CRAP and requires a different
treatment. We showed that the whole set of order 2 DMAP and DRAP cannot
be represented with acyclic MarkovianD0 matrix, which was the case with order
2 CMAP and CRAP, but allowing cyclic representations as well the whole order
2 DRAP class can be represented with Markovian matrices.

We proposed a minimal (contains exactly 4 parameters) Markovian canonical
representation of order 2 DMAPs and DRAPs. This canonical representation can
be used efficiently for fitting, because the limits of the parameters are known a
priori. Additionally, we presented simple explicit procedures for moments and
correlation matching of canonical DMAP(2)s.

Acknowledgement. The authors gratefully acknowledge the support of the
TÁMOP-4.2.2C-11/1/KONV-2012-0001 and the OTKA K101150 projects.

References

1. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Dover (1981)

2. Bladt, M., Neuts, M.F.: Matrix-exponential distributions: Calculus and interpre-
tations via flows. Stochastic Models 19(1), 113–124 (2003)

3. Asmussen, S., Bladt, M.: Point processes with finite-dimensional conditional
probabilities. Stochastic Processes and their Application 82, 127–142 (1999)

4. Bean, N., Nielsen, B.: Quasi-birth-and-death processes with rational arrival process
components. Stochastic Models 26(3), 309–334 (2010)

5. Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and
their parameter fitting. Performance Evaluation 67(11), 1092–1106 (2010)

6. Mitchell, K., van de Liefvoort, A.: Approximation models of feed-forward g/g/1/n
queueing networks with correlated arrivals. Perform. Eval. 51(2-4), 137–152 (2003)

7. Bodrog, L., Heindl, A., Horváth, G., Telek, M.: A Markovian canonical form
of second-order matrix-exponential processes. European Journal of Operation
Research 190, 459–477 (2008)

8. Papp, J., Telek, M.: Canonical representation of discrete phase type distributions
of order 2 and 3. In: Proc. of UK Performance Evaluation Workshop, UKPEW
2013 (2013)

9. Telek, M., Heindl, A.: Matching moments for acyclic discrete and continuous
phase-type distributions of second order. International Journal of Simulation Sys-
tems, Science & Technology 3(3-4), 47–57 (2002); Special Issue on: Analytical &
Stochastic Modelling Techniques

10. Cumani, A.: On the canonical representation of homogeneous Markov processes
modelling failure-time distributions. Microelectronics and Reliability 22, 583–602
(1982)

11. Telek, M., Horváth, G.: A minimal representation of Markov arrival processes and
a moments matching method. Performance Evaluation 64(9-12), 1153–1168 (2007)

Encoding Timed Models

as Uniform Labeled Transition Systems�

Marco Bernardo1 and Luca Tesei2

1 Dipartimento di Scienze di Base e Fondamenti, Università di Urbino, Italy
2 Scuola di Scienze e Tecnologie, Università di Camerino, Italy

Abstract. We provide a unifying view of timed models such as timed
automata, probabilistic timed automata, and Markov automata. The
timed models and their bisimulation semantics are encoded in the frame-
work of uniform labeled transition systems. In this unifying framework,
we show that the timed bisimilarities present in the literature can be re-
obtained and that a new bisimilarity, of which we exhibit the modal logic
characterization, can be introduced for timed models including probabil-
ities. We finally highlight similarities and differences among the models.

1 Introduction

Several extensions of classical automata have been proposed in the last twenty
years to model timed aspects of the behavior of systems and to support the
verification of hard and soft real-time constraints. The first of these extensions
is given by timed automata (TA) [1]. They are equipped with clock variables that
measure the passage of time within states, while transitions are instantaneous,
may be subject to clock-based guards, and may reset the value of some clocks.

A subsequent extension is that of probabilistic timed automata (PTA) [12].
They are TA where the destination of every transition is a function that asso-
ciates with each state the probability of being the target state. This allows for
the representation both of nondeterministic choices and of probabilistic choices,
and enables the investigation of properties such as the probability of executing
certain activities within a given deadline is not lower than a given threshold.

The semantics of a TA/PTA can be defined in terms of a variant of labeled
transition system (LTS) [11] together with a notion of bisimulation [8]. The
characteristic of the underlying variant of LTS is that of having uncountably
many states, as any of these states essentially corresponds to a pair composed
of a TA/PTA state and a vector of clock values each taken from R≥0.

A more recent extension is constituted by Markov automata (MA) [7], in which
the probabilistic flavor of PTA transitions is retained, while temporal aspects
are described through exponentially distributed random variables rather than
deterministic quantities. Since exponential distributions enjoy the memoryless
property, an MA no longer needs clocks and hence can be directly viewed as a
variant of LTS whose states correspond to the MA states.

� Work partially supported by the MIUR-PRIN Project CINA and the European Com-
mission FP7-ICT-FET Proactive Project TOPDRIM (grant agreement no. 318121).

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 104–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Encoding Timed Models as Uniform Labeled Transition Systems 105

In order to emphasize similarities and differences among the various models,
in this paper we provide a unifying view of TA, PTA, and MA by encoding all
of them as uniform labeled transition systems (ULTraS) [4]. This is a recently
developed framework that has proven to be well suited for uniformly representing
different models – ranging from LTS models to discrete-/continuous-timeMarkov
chains and Markov decision processes without/with internal nondeterminism –
together with their behavioral equivalences.

The paper is organized as follows. In Sect. 2, we recall the notion of ULTraS
and we extend it in order to deal with uncountable state spaces. In Sect. 3, we
encode as ULTraS the variant of LTS underlying TA and we show that the
corresponding bisimilarity in [16,20] coincides with a suitable instance of the
bisimilarity for ULTraS. In Sect. 4, we reuse the same encoding to handle TA.
In Sect. 5, we encode as ULTraS the variant of LTS underlying PTA and we
show that two different bisimilarities can be defined: the one in [19] and a new
one for which we exhibit a modal logic characterization. In Sects. 6 and 7, we
reuse almost the same encoding to handle PTA and MA, respectively. Finally,
in Sect. 8 we draw some conclusions about the considered timed models.

2 Revisiting the Definition of ULTraS

The definition of ULTraS given in [4] was based on a set of states and a set of
transition-labeling actions that are at most countable. When dealing with TA
and PTA models whose time domain is R≥0, the underlying LTS models turn
out to have uncountably many states and actions. Therefore, we need to extend
the definition of ULTraS by admitting uncountable sets of states and actions,
in a way that preserves the results in [4].

Every ULTraS is parameterized with respect to a set D, whose values are
interpreted as different degrees of one-step reachability, and a preorder �D

equipped with minimum ⊥D, which denotes unreachability. In this paper, we
consider the set [S → D]cs of countable-support functions from a set S to D, i.e.,
the set of functions D : S → D whose support supp(D) = {s ∈ S | D(s) �= ⊥D}
is at most countable. As in [4], when S is a set of states, every element D of
[S → D]cs is interpreted as a next-state distribution function and supp(D) rep-
resents the set of reachable states.

Definition 1. Let (D,�D,⊥D) be a preordered set equipped with a minimum.
A uniform labeled transition system on (D,�D,⊥D), or D-ULTraS for short,
is a triple U = (S,A,−→) where S is a possibly uncountable set of states, A is a
possibly uncountable set of actions, and −→ ⊆ S×A× [S → D]cs is a transition
relation. We say that the D-ULTraS U is functional iff −→ is a total function
from S ×A to [S → D]cs.

Every transition (s, a,D) is written s
a−→D, where D(s′) is a D-value quan-

tifying the degree of reachability of s′ from s via that transition and D(s′) =
⊥D means that s′ is not reachable with that transition. If the D-ULTraS is
functional, we shall write Ds,a(s

′) to denote the same D-value.

106 M. Bernardo and L. Tesei

A D-ULTraS can be depicted as a directed graph-like structure in which
vertices represent states and action-labeled edges represent action-labeled tran-
sitions. Given a transition s

a−→D, the corresponding a-labeled edge goes from
the vertex representing s to a set of vertices linked by a dashed line, each of which
represents a state s′ ∈ supp(D) and is labeled with D(s′). Should D(s′) = ⊥D for
all states s′ – which may happen when the considered D-ULTraS is functional –
the transition would not be depicted at all. A B-ULTraS is shown on the right-
hand side of Fig. 1, where B = {⊥,!} is the support set of the Boolean algebra,
⊥ (false) denotes unreachability, ! (true) denotes reachability, and ⊥ �B !.

In [4], various equivalences were defined over ULTraS and shown to coin-
cide in most cases with those appeared in the literature of nondeterministic,
probabilistic, stochastic, and mixed models. Since in this paper we focus on
bisimilarity, we shall recall only the definition of bisimilarity for ULTraS. This
definition, like the one of the other equivalences, is parameterized with respect
to a measure function that expresses the degree of multi-step reachability of a set
of states in terms of values taken from a preordered set equipped with minimum.
In the following, we call trace an element α of A∗ and we denote by ε the empty
trace, by “| |” the operation that computes the length of a trace, and by “ ◦ ”
the operation that concatenates two traces.

Definition 2. Let U=(S,A,−→) be a D-ULTraS, n ∈ N, si ∈ S for 0 ≤ i ≤ n,

and ai ∈ A for 1 ≤ i ≤ n. We say that s0
a1−�→ s1

a2−�→ s2 . . . sn−1

an−�→ sn is a
computation of U of length n that goes from s0 to sn and is labeled with trace
a1 a2 . . . an iff for all i = 1, . . . , n there exists a transition si−1

ai−→Di such that
si ∈ supp(Di).

Definition 3. Let U = (S,A,−→) be a D-ULTraS and (M,�M ,⊥M) be a
preordered set equipped with a minimum. A measure function on (M,�M ,⊥M)
for U , or M -measure function for U , is a functionMM : S×A∗×2S →M such
that the value of MM (s, α, S′) is defined by induction on |α| and depends only
on the reachability of a state in S′ from state s through computations labeled
with trace α.

Definition 4. Let U = (S,A,−→) be a D-ULTraS andMM be an M -measure
function for U . An equivalence relation B over S is an MM -bisimulation iff,
whenever (s1, s2) ∈ B, then for all actions a ∈ A and groups of equivalence
classes G ∈ 2S/B it holds that:

MM (s1, a,
⋃
G) = MM (s2, a,

⋃
G)

where
⋃
G is the union of all the equivalence classes in G. We say that s1, s2 ∈ S

are MM -bisimilar, written s1 ∼B,MM s2, iff there exists an MM -bisimulation
B over S such that (s1, s2) ∈ B.

The preordered structure (M,�M ,⊥M) for multi-step reachability used in the
definition of the equivalence does not necessarily coincide with the preordered
structure (D,�D,⊥D) for one-step reachability used in the definition of the
model. In [4], various cases were illustrated that demonstrate the necessity of
keeping the two structures separate to retrieve certain equivalences.

Encoding Timed Models as Uniform Labeled Transition Systems 107

The definition of bisimilarity is given in the style of [14], i.e., it requires a bisim-
ulation to be an equivalence relation. However, it deals with arbitrary groups
of equivalence classes rather than only with individual equivalence classes. As
shown in [4], working with groups of equivalence classes provides an adequate
support to models in which nondeterminism and quantitative aspects coexist. In
particular, it gives rise to new probabilistic bisimulation equivalences that have
interesting logical characterizations (see the references in [4]).

3 Encoding Timed LTS Models

Timed processes can be represented as models enriched with timing information.
Following the orthogonal-time approach1 of [16], we consider an extension of LTS
called timed labeled transition system (TLTS). In this model, functional aspects
(i.e., process activities assumed to be instantaneous) are separate from temporal
aspects (i.e., time passing) by means of two distinct transition relations: one
labeled with actions and the other labeled with amounts of time. Since we are
interested in TLTS models obtained from TA, we shall consider R≥0 as time
domain and allow for uncountably many states and actions.

Definition 5. A timed labeled transition system (TLTS) is a quadruple (S,A,
−→,�) where S is a possibly uncountable set of states, A is a possibly
uncountable set of actions, and:

– −→ ⊆ S ×A× S is an action-transition relation such that for all s ∈ S and
a ∈ A it holds that {s′ ∈ S | (s, a, s′) ∈ −→} is at most countable.

– � ⊆ S × R≥0 × S is a time-transition relation satisfying (s, 0, s) ∈ �

[0-delay], (s, t, s′1) ∈� ∧ (s, t, s′2) ∈� =⇒ s′1 = s′2 [time determinism], and
(s, t1, s

′) ∈� ∧ (s′, t2, s′′) ∈� =⇒ (s, t1 + t2, s
′′) ∈� [time additivity].

Every action-transition (s, a, s′) is written s
a−→ s′ and means that s can reach

s′ by executing action a, whilst every time-transition (s, t, s′) is written s
t
� s′

and means that s can evolve into s′ after an amount of time equal to t.
Following [20], we can merge the two transition relations into a single one by

adding a special time-elapsing action ε(t) for every t ∈ R≥0. With this in mind,
it is immediate to see that a TLTS can be encoded as a functional B-ULTraS.

Definition 6. Let (S,A,−→,�) be a TLTS. Its corresponding functional
B-ULTraS U = (S,AU ,−→U) is defined by letting:

– AU = A ∪ {ε(t) | t ∈ R≥0}.
– s

a−→U Ds,a for all s ∈ S and a ∈ AU .

– Ds,a(s
′) =

{
! if a ∈ A and s

a−→ s′, or a = ε(t) and s
t
� s′

⊥ otherwise
for all s′ ∈ S.

1 As opposed to the integrated-time approach, in which process activities are assumed
to be durational: see [6,3] for an overview of both approaches in different settings.

108 M. Bernardo and L. Tesei

1a a2
1a a2

RAcorresponding ULT S

1a a2
ε t()

ε()t’

TLTS

cb d e b c e

t

t’ d

Fig. 1. Translation of a TLTS exhibiting both external and internal nondeterminism

If a TLTS state has a certain number of differently labeled outgoing action-
transitions, then those transitions are retained in the corresponding functional
B-ULTraS. In other words, external nondeterminism in the original model is
preserved by the resulting model. In contrast, internal nondeterminism is en-
coded within the target countable-support functions of the transitions of the
resulting model. Indeed, if a TLTS state has several identically labeled outgo-
ing action-transitions, then a single transition is generated in the corresponding
functional B-ULTraS, in which several states are assigned ! as reachability
value. The encoding of both forms of nondeterminism is exemplified in Fig. 1.

A notion of bisimilarity for timed processes was introduced in [16,20], where
the congruence property and an equational characterization were also studied.
The decidability of timed bisimilarity was established in [5].

Definition 7. Let (S,A,−→,�) be a TLTS. A relation B over S is a timed
bisimulation iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and amounts
of time t ∈ R≥0 it holds that:

– For each s1
a−→ s′1 (resp. s2

a−→ s′2) there exists s2
a−→ s′2 (resp. s1

a−→ s′1)
such that (s′1, s

′
2) ∈ B.

– For each s1
t
� s′1 (resp. s2

t
� s′2) there exists s2

t
� s′2 (resp. s1

t
� s′1) such

that (s′1, s
′
2) ∈ B.

We say that s1, s2 ∈ S are timed bisimilar, written s1 ∼TB s2, iff there exists a
timed bisimulation B over S such that (s1, s2) ∈ B.

Timed bisimilarity over TLTS models is captured by ∼B,MB
over the corre-

sponding functional B-ULTraS models, where measure function MB is defined
in Table 1. When α = a ◦ α′, the measure function considers each possible next
state s′ by examining whether it is reachable from s via a (Ds,a(s

′)) and it can
reach a state in S′ via α′ (MB(s

′, α′, S′)). If this is the case for at least one of the
possible next states s′, thenMB(s, α, S′) = !, otherwiseMB(s, α, S′) = ⊥. Note
that, for TLTS models, the preordered structure of the corresponding ULTraS
models coincides with the preordered structure of the measure function.

Theorem 1. Let (S,A,−→,�) be a TLTS and U = (S,AU ,−→U) be the
corresponding functional B-ULTraS. For all s1, s2 ∈ S:

s1 ∼TB s2 ⇐⇒ s1 ∼B,MB
s2

Encoding Timed Models as Uniform Labeled Transition Systems 109

Table 1.Measure function for functional B-ULTraSmodels representing TLTS models

MB(s, α, S
′) =

⎧⎪⎪⎨
⎪⎪⎩

∨
s′∈S

Ds,a(s
′) ∧MB(s

′, α′, S′) if α = a ◦ α′

� if α = ε and s ∈ S′

⊥ if α = ε and s /∈ S′

4 Encoding Timed Automata

Timed automata (TA) [1] extend classical automata by introducing clock vari-
ables, or simply clocks, that measure the passage of time. They all advance at
the same speed and take values in R≥0. A clock valuation ν ∈ VX over a finite
set of clocks X is a total function from X to R≥0. Given a valuation ν and a
delay t ∈ R≥0, we let ν + t denote the valuation mapping each clock x ∈ X into
ν(x) + t. A reset γ is a set of clocks in X whose value is set back to zero. For a
valuation ν and a reset γ, we let ν\γ(x) = 0 if x ∈ γ and ν\γ(x) = ν(x) if x �∈ γ.

In TA, time elapses in states, called locations, as long as invariant conditions
associated with the locations themselves hold. These are constraints on the values
of the clocks through which notions such as urgency or laziness of actions can
be expressed [9]. In contrast, the execution of an action transition is considered
instantaneous. Transitions are guarded, i.e., enabled/disabled, by constraints on
the values of the clocks, and can reset the value of some clocks.

The set ΨX of clock constraints over a finite set of clocks X is defined by the
following grammar: ψ ::= x # c | ψ ∧ ψ where x ∈ X , c ∈ N, and # ∈ {<,>,≤,
≥,=}. Clock constraints are assessed over clock valuations. The satisfaction of
a clock constraint ψ by a valuation ν, denoted by ν |= ψ, is defined as follows:
(i) ν |= x # c iff ν(x) # c, (ii) ν |= ψ1 ∧ ψ2 iff ν |= ψ1 and ν |= ψ2. The given
syntax for constraints is minimal; the so-called diagonal clock constraints of the
form x− y # c can be simulated by using more locations and the constraints of
the given form [2]. An invariant condition is a clock constraint with the property
of being past-closed, i.e., for all valuations ν and delays t ∈ R≥0 it holds that
ν + t |= ψ =⇒ ν |= ψ.

Definition 8. A timed automaton (TA) is a tuple (L,A,X , I,−→) where L
is a finite set of locations, A is a set of actions, X is a finite set of clocks,
I is a function mapping each location into an invariant condition, and −→ ⊆
L× ΨX ×A× 2X × L is a transition relation.

Every transition is written �
ψ,a,γ−→ �′ where � is the source location, ψ is the

guard, a is the action label, γ is the clock reset, and �′ is the target location.
The semantics of a TA is given in terms of a TLTS. Thus, it is natural to

encode a TA as a functional B-ULTraS generated by using the same conditions
defining the TA semantics.

Definition 9. Let (L,A,X , I,−→) be a TA. Its corresponding functional
B-ULTraS U = (S,AU ,−→U) is defined by letting:

110 M. Bernardo and L. Tesei

– S = {(�, ν) ∈ L× VX | ν |= I(�)}.
– AU = A ∪ {ε(t) | t ∈ R≥0}.
– (�, ν)

a−→U D(�,ν),a for all (�, ν) ∈ S and a ∈ AU .

– D(�,ν),a(�
′, ν′) =

⎧⎨
⎩
! if a ∈ A, �

ψ,a,γ−→ �′, ν |= ψ, ν′ = ν\γ, ν′ |= I(�′)
! if a = ε(t), �′ = �, ν′ = ν + t, ν′ |= I(�′)
⊥ otherwise

for all (�′, ν′) ∈ S.

Timed bisimilarity over TA models is defined in terms of the underlying TLTS
models. Therefore, we can reuse both Def. 7 and Table 1, so that Thm. 1 also
applies to functional B-ULTraS models corresponding to TA models.

5 Encoding Probabilistic Timed LTS Models

A probabilistic extension of the TLTS model (PTLTS) was introduced in [19].
Following the simple probabilistic automaton model of [18], the action-transition
relation is transformed into a probabilistic action-transition relation. This means
that a PTLTS action transition, instead of leading to a single target state, has
a probability distribution over target states assigning each such state the prob-
ability of being reached. Therefore, the choice among several outgoing action
transitions from the same state is nondeterministic, whereas the choice of the
target state for the selected transition is probabilistic. Given a possibly uncount-
able set S, we denote by Distrcs(S) the set of probability distributions D over S
whose support supp(D) = {s ∈ S | D(s) > 0} is at most countable.

While in [19] there is a single transition relation and hence each transition is
also labeled with the duration of the corresponding action, here we stick to the
orthogonal-time approach and hence keep using two transition relations: a prob-
abilistic one labeled with actions and a deterministic one labeled with amounts
of time. We prefer to do so for two reasons. Firstly, this allows us to use a consis-
tent notation and model structure throughout the paper. Secondly, separating
functional aspects from time aspects simplifies the development of weak behav-
ioral equivalences, as has been shown in the deterministic time case [20,17,13]
and in the stochastic time case [10,7].

Definition 10. A probabilistic timed labeled transition system (PTLTS) is a
quadruple (S,A,−→,�) where S is a possibly uncountable set of states, A is a
possibly uncountable set of actions, and:

– −→ ⊆ S ×A× Distrcs(S) is a probabilistic action-transition relation.
– � ⊆ S × R≥0 × S is a time-transition relation satisfying 0-delay, time

determinism, and time additivity.

Every action-transition (s, a,D) is written s
a−→D – which is already in the

ULTraS transition format – whilst every time-transition (s, t, s′) is written

s
t
� s′. As in the TLTS case, we can merge the two transition relations into a sin-

gle one by adding a special time-elapsing action ε(t) for every t ∈ R≥0, such that

Encoding Timed Models as Uniform Labeled Transition Systems 111

1a a2 a21a

RAcorresponding ULT S

1a a2 1a a2ε t()

ε()t’

PTLTS

eb eb

1 1 1

1 1 1

1

1

1

1

b

0.3

1

0.7

c

1

b

0.3

1

0.7

c

1

0.8

e

0.2

11

0.8

e

0.2

11

t

t’ d d

Fig. 2. Translation of a PTLTS exhibiting both external and internal nondeterminism

the target distributions of the transitions labeled with such actions concentrate
all the probability mass into a single state. At this point, it is straightforward
to encode a PTLTS as an R[0,1]-ULTraS, which relies on the usual ordering
for real numbers – with 0 denoting unreachability – and is not necessarily func-
tional due to the coexistence of probability and internal nondeterminism [4]. In
the following, given s ∈ S we denote by δs the Dirac distribution for s, where
δs(s) = 1 and δs(s

′) = 0 for all s′ ∈ S \ {s}.

Definition 11. Let (S,A,−→,�) be a PTLTS. Its corresponding R[0,1]-ULTraS
U = (S,AU ,−→U) is defined by letting:

– AU = A ∪ {ε(t) | t ∈ R≥0}.
– s

a−→U D for each s
a−→D.

– s
ε(t)−→U δs′ for each s

t
� s′.

Different from the TLTS encoding, both external nondeterminism and internal
nondeterminism in the original PTLTS are preserved in the corresponding R[0,1]-
ULTraS. This is exemplified in Fig. 2.

A notion of bisimilarity for probabilistic timed processes was introduced in [19],
where a modal logic characterization and a decision procedure were also studied.
Below, we reformulate the definition in the orthogonal-time framework and we
let D(C) =

∑
s∈C D(s) for D ∈ Distr cs(S) and C ⊆ S.

Definition 12. Let (S,A,−→,�) be a PTLTS. An equivalence relation B over S
is a probabilistic timed bisimulation iff, whenever (s1, s2) ∈ B, then for all actions
a ∈ A and amounts of time t ∈ R≥0 it holds that:L

– For each s1
a−→D1 there exists s2

a−→D2 such that for all equivalence classes
C ∈ S/B it holds that D1(C) = D2(C).

– For each s1
t
� s′1 there exists s2

t
� s′2 such that (s′1, s′2) ∈ B.

We say that s1, s2 ∈ S are probabilistic timed bisimilar, written s1 ∼PTB s2, iff
there exists a probabilistic timed bisimulation B over S such that (s1, s2) ∈ B.

It is relatively easy to see that the relation ∼PTB coincides with the following
bisimulation equivalence defined over R[0,1]-ULTraS models corresponding to

112 M. Bernardo and L. Tesei

Table 2. Measure function for R[0,1]-ULTraS models representing PTLTS models

M
2.
R[0,1] (s, α, S

′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⋃
s

a−→ D
{ ∑
s′∈S

D(s′) · ps′ | ps′ ∈ M
2.
R[0,1] (s

′, α′, S′)}
if α = a ◦ α′ and there exists s

a−→D
{1} if α = ε and s ∈ S′

{0} if α = a ◦ α′ and there is no s
a−→D

or α = ε and s /∈ S′

PTLTS models. The equivalence below is called group-distribution bisimilarity
because it compares entire distributions of reaching groups of equivalence classes.
Given two related states, for each transition of one of the two states there must
exist an equally labeled transition of the other state such that, for every group of
equivalence classes, the two transitions have the same probability of reaching a
state in that group. In other words, the two transitions must be fully matching,
i.e., they must match with respect to all groups.

Definition 13. Let U = (S,AU ,−→U) be the R[0,1]-ULTraS corresponding to a
PTLTS (S,A,−→,�). An equivalence relation B over S is a probabilistic timed
group-distribution bisimulation iff, whenever (s1, s2) ∈ B, then for all actions
a ∈ AU it holds that:

– For each s1
a−→U D1 there exists s2

a−→U D2 such that for all groups of

equivalence classes G ∈ 2S/B it holds that D1(
⋃
G) = D2(

⋃
G).

We say that s1, s2 ∈ S are probabilistic timed group-distribution bisimilar,
written s1 ∼PTB,dis s2, iff there exists a probabilistic timed group-distribution
bisimulation B over S such that (s1, s2) ∈ B.

Theorem 2. Let (S,A,−→,�) be a PTLTS and U = (S,AU ,−→U) be the
corresponding R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PTB s2 ⇐⇒ s1 ∼PTB,dis s2

The relation ∼PTB over PTLTS models has been expressed as ∼PTB,dis in
the ULTraS setting, but cannot be captured by any instantiation of the gen-
eral bisimilarity for ULTraS given in Def. 4. In the case of probabilistic timed
processes, a natural measure function is the one defined in Table 2. Denoting
by 2.R[0,1] the set of nonempty subsets of R[0,1], this measure function associates

a suitable element of 2.R[0,1] with every triple composed of a source state s, a
trace α, and a set of destination states S′. The setM

2.
R[0,1] (s, α, S′) contains for

each possible way of resolving nondeterminism the probability of performing a
computation that is labeled with trace α and leads to a state in S′ from state s.
It is worth pointing out that, while the considered ULTraS models are based on
the preordered structure (R[0,1],≤, 0), the measure function relies on the differ-

ent preordered structure (2.R[0,1] ,�, {0}) where R1 � R2 means inf R1 ≤ inf R2

and |R1| ≤ |R2| (the latter condition ensures {0} being the minimum).

Encoding Timed Models as Uniform Labeled Transition Systems 113

s1 s2~PTB,dis

~PTB,gbg

ε 1t() ε 1t() ε 1t() ε 1t()ε t2() ε t2()ε t()3 ε t()3ε t2() ε t()3 ε t2() ε t()3

a a
a

0.4 0.6 0.6 0.4

a a
a

0.6 0.4 0.4 0.6

1 1 1 1 1 1 1 1 1 1 1 1

0.60.4 0.6 0.4

Fig. 3. Counterexample showing that ∼PTB,gbg is strictly coarser than ∼PTB,dis

The resulting bisimilarity ∼B,M
2.
R[0,1]

captures the following equivalence that

we call group-by-group bisimilarity because it considers a single group of equiv-
alence classes at a time. Technically speaking, this amounts to anticipating the
quantification over groups (underlined in Def. 13) with respect to the quantifica-
tion over transitions. In this way, a transition departing from one of two related
states is allowed to be matched, with respect to the probabilities of reaching
different groups, by several different transitions departing from the other state.
In other words, partially matching transitions are allowed.

Definition 14. Let U = (S,AU ,−→U) be the R[0,1]-ULTraS corresponding to
a PTLTS (S,A,−→,�). An equivalence relation B over S is a probabilistic
timed group-by-group bisimulation iff, whenever (s1, s2) ∈ B, then for all actions
a ∈ AU and for all groups of equivalence classes G ∈ 2S/B it holds that:

– For each s1
a−→U D1 there exists s2

a−→U D2 such that D1(
⋃
G) = D2(

⋃
G).

We say that s1, s2 ∈ S are probabilistic timed group-by-group bisimilar, written
s1 ∼PTB,gbg s2, iff there exists a probabilistic timed group-by-group bisimulation
B over S such that (s1, s2) ∈ B.
Theorem 3. Let U = (S,AU ,−→U) be the R[0,1]-ULTraS corresponding to a
PTLTS (S,A,−→,�). For all s1, s2 ∈ S:

s1 ∼PTB,gbg s2 ⇐⇒ s1 ∼B,M
2.
R[0,1]

s2

In presence of internal nondeterminism, ∼PTB,gbg strictly contains ∼PTB,dis,
as shown in Fig. 3. Indicating states with the actions they enable, it holds
that s1 �∼PTB,dis s2 because the group distribution of the leftmost a-transition
of s1 – which assigns probability 1 to each group containing both the ε(t1)-
state and the ε(t2)-state, probability 0.4 to each group containing the ε(t1)-state
but not the ε(t2)-state, probability 0.6 to each group containing the ε(t2)-state
but not the ε(t1)-state, and probability 0 to any other group – is not matched
by the group distribution of any of the three a-transitions of s2. In contrast,
s1 ∼PTB,gbg s2. For instance, the leftmost a-transition of s1 is matched by the
leftmost a-transition of s2 with respect to every group containing both the ε(t1)-
state and the ε(t2)-state, the central a-transition of s2 with respect to every
group containing the ε(t1)-state but not the ε(t2)-state, and the rightmost a-
transition of s2 with respect to every group containing the ε(t2)-state but not
the ε(t1)-state.

114 M. Bernardo and L. Tesei

Theorem 4. Let U = (S,AU ,−→U) be the R[0,1]-ULTraS corresponding to a
PTLTS (S,A,−→,�). For all s1, s2 ∈ S:

s1 ∼PTB,dis s2 =⇒ s1 ∼PTB,gbg s2

We conclude by exhibiting a modal logic characterization of ∼PTB,gbg (and
hence of ∼B,M

2.
R[0,1]

). Unlike the characterization of ∼PTB (i.e., ∼PTB,dis) pro-

vided in [19], which relies on an expressive probabilistic extension of HML [8]
interpreted over state distributions, here it is sufficient to consider the interval-
based variant IPML of the probabilistic modal logic in [14] with the following
syntax: φ ::= true | ¬φ | φ∧φ | 〈a〉[p1,p2]φ where a ∈ AU and p1, p2 ∈ R[0,1] such
that p1 ≤ p2. A state s ∈ S belongs to the setM[[〈a〉[p1,p2]φ]] of states satisfying

〈a〉[p1,p2]φ iff there exists s
a−→U D such that p1 ≤ D(M[[φ]]) ≤ p2.

Theorem 5. Let U = (S,AU ,−→U) be the R[0,1]-ULTraS corresponding to
a PTLTS (S,A,−→,�). For all s1, s2 ∈ S it holds that s1 ∼PTB,gbg s2 iff
s1 and s2 satisfy the same formulae of IPML.

6 Encoding Probabilistic Timed Automata

Probabilistic timed automata (PTA) [12] extend TA with probabilities. While
the passage of time remains deterministic, the target of each action transition
becomes a probability distribution. The approach is exactly the one described
in Sect. 5 for moving from TLTS models to PTLTS models.

Definition 15. A probabilistic timed automaton (PTA) is a tuple (L,A,X , I,
−→) where L is a finite set of locations, A is a set of actions, X is a finite set
of clocks, I is a function mapping each location into an invariant condition, and
−→ ⊆ L× ΨX ×A×Distrcs(2

X × L) is a transition relation.

Every transition is written �
ψ,a−→D where D is the probability distribution

assigning each pair (γ, �′) the probability of being reached via that transition.
Like for TA, the semantics of a PTA is given in terms of a PTLTS. Following

the same approach used in Sect. 4, we thus encode a PTA as an R[0,1]-ULTraS
generated by using the same conditions defining the PTA semantics.

Definition 16. Let (L,A,X , I,−→) be a PTA. Its corresponding R[0,1]-ULTraS
U = (S,AU ,−→U) is defined by letting:

– S = {(�, ν) ∈ L× VX | ν |= I(�)}.
– AU = A ∪ {ε(t) | t ∈ R≥0}.
– (�, ν)

a−→U D for each �
ψ,a−→D′ such that ν |= ψ, where for all (�′, ν′) ∈ S

D(�′, ν′) =
∑

γ∈reset(ν,ν′)D′(γ, �′) with reset(ν, ν′) = {γ ∈ 2X | ν\γ = ν′}.
– (�, ν)

ε(t)−→U δ(�′,ν′) for �′ = �, ν′ = ν + t, ν′ |= I(�′).

Similar to TA models, probabilistic timed bisimilarity over PTA models is
defined in terms of the underlying PTLTS models. Therefore, we can reuse
Defs. 12, 13, and 14 as well as Table 2, so that Thms. 2, 3, 4, and 5 also apply to
R[0,1]-ULTraS corresponding to PTA models.

Encoding Timed Models as Uniform Labeled Transition Systems 115

7 Encoding Markov Automata

So far, we have considered timed models in which temporal aspects are described
as fixed amounts of time. In other words, in these models the passage of time is
represented deterministically. However, in many situations there are fluctuations
in the time that elapses between instantaneous activities. When these fluctua-
tions are quantifiable, the passage of time can be represented stochastically.

Due to the simplicity of their mathematical treatment, exponentially dis-
tributed random variables are mostly used for a stochastic representation of time.
Given one such variable X with parameter λ ∈ R>0, the probability that a du-
ration sampled from X is at most t ∈ R≥0 is given by Pr{X ≤ t} = 1 − e−λ·t.
The parameter λ is said the rate of X ; its reciprocal is the expected value of X .

If several alternative exponentially distributed delays can elapse from a state,
the race policy is adopted; the delay that elapses is the one sampling the least
duration. It can be shown that the following property RP holds in that state:
the sojourn time is exponentially distributed with rate given by the sum of the
rates of the various delays, with the probability of selecting each such delay being
proportional to its rate.

The recently introduced model of Markov automata (MA) [7] can be viewed as
a variant of PTAmodels in which time passing is described through exponentially
distributed random variables. An important property of any of these variables is
that it enjoys the memoryless property; even if we know that a certain amount
of time has already elapsed, the residual time is still quantified by the same
exponentially distributed random variable. As a consequence, in this setting
there is no need for clocks and hence Markov automata can actually be viewed
as a variant of PTLTS models, with exponentially distributed delays (uniquely
identified by their rates) in place of deterministic delays.

Definition 17. A Markov automaton (MA) is a quadruple (S,A,−→,�) where
S is a possibly uncountable set of states, A is a possibly uncountable set of
actions, and:

– −→ ⊆ S ×A× Distrcs(S) is a probabilistic action-transition relation.
– � ⊆ S × R>0 × S is a bounded time-transition relation, i.e., for all s ∈ S

it holds that {s′ ∈ S | ∃λ ∈ R>0. (s, λ, s′) ∈ � } is at most countable and∑
(s,λ,s′)∈� λ < ∞.

Similar to the PTLTS case, every action-transition (s, a,D) is written s
a−→D,

every time-transition (s, λ, s′) is written s
λ
� s′, and we can merge the two tran-

sition relations into a single one by adding a special time-elapsing action ε(λ) for
every λ ∈ R>0. Following the transformation sketched in [7], it is straightforward
to encode an MA as a not necessarily functional R[0,1]-ULTraS, in which the
race policy is represented based on RP . For each state having outgoing time-
transitions, we generate a single time-elapsing transition – instead of one such
transition for each original delay – such that its rate λ is the sum of the rates
identifying the original delays and its target distribution assigns to every state
a probability proportional to the rate at which that state can be reached.

116 M. Bernardo and L. Tesei

RAcorresponding ULT S

1a a2
λ2λ1

1a a2
ε()λ

λ1’ λ2’ λ1’ε() λ2’ε()

a21a1a a2
1p p2

MA

eb

1 1

1 1

eb

1 1

1 1
0.8

e

0.2

11

db

0.3

1

0.7

c

1

b

0.3

1

0.7

c

1

0.8

e

0.2

11

d

1 1

Fig. 4. Translation of an MA (λ = λ1 + λ2, p1 = λ1/λ, p2 = λ2/λ)

Definition 18. Let (S,A,−→,�) be an MA. Its corresponding R[0,1]-ULTraS
U = (S,AU ,−→U) is defined by letting:

– AU = A ∪ {ε(λ) | λ ∈ R>0}.
– s

a−→U D for each s
a−→D.

– s
ε(λ)−→U D for all s ∈ S having outgoing time-transitions, where λ =

∑
s

λ′
� s′

λ′

and D(s′) =
∑

s
λ′
� s′

λ′/λ for all s′ ∈ S.

Nondeterministic choices over actions, probabilistic choices over states, and
the race policy for exponentially distributed delays in the original MA are pre-
served in the corresponding R[0,1]-ULTraS. This is exemplified in Fig. 4.

A notion of bisimilarity for probabilistic exponentially-timed processes was
introduced in [7]. Below, we reformulate the definition in terms of the two distinct
transition relations.

Definition 19. Let (S,A,−→,�) be an MA. An equivalence relation B over S
is a probabilistic exponentially-timed bisimulation iff, whenever (s1, s2) ∈ B,
then for all actions a ∈ A and rates λ ∈ R>0 it holds that:

– For each s1
a−→D1 there exists s2

a−→D2 such that for all equivalence classes
C ∈ S/B it holds that D1(C) = D2(C).

– If s1 has outgoing time-transitions, then s2 has outgoing time-transitions too
and for all equivalence classes C ∈ S/B it holds that:∑

s1
λ
� s′1∈C

λ =
∑

s2
λ
� s′2∈C

λ

We say that s1, s2 ∈ S are probabilistic exponentially-timed bisimilar, written
s1 ∼PEB s2, iff there exists a probabilistic exponentially-timed bisimulation B
over S such that (s1, s2) ∈ B.

The relation ∼PEB over MA models coincides with the relation ∼PTB,dis over
R[0,1]-ULTraSmodels given in Def. 13. As a consequence, all the subsequent def-
initions and results in Sect. 5 also apply to R[0,1]-ULTraSmodels corresponding
to MA models.

Theorem 6. Let (S,A,−→,�) be an MA and U = (S,AU ,−→U) be the
corresponding R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PEB s2 ⇐⇒ s1 ∼PTB,dis s2

Encoding Timed Models as Uniform Labeled Transition Systems 117

8 Discussion and Conclusions

In this paper, widely used timed models such as TA [1] (together with their
underlying semantic model TLTS), PTA [12] (with their underlying PTLTS),
and MA [7] have been put in a unifying view by encoding them in the ULTraS
framework [4] and by examining their bisimulation semantics [16,20,19,7].

As immediate results of this work, we have been able to re-obtain the al-
ready existing timed bisimilarities and, most notably, to give new contributions.
In particular, by naturally instantiating the ULTraS general bisimilarity defi-
nition to the case of deterministically timed models – i.e., TLTS and TA – we
have retrieved the same timed bisimilarity introduced in the literature (Thm. 1).
Instead, when time is mixed with probability – i.e., for PTLTS, PTA, and MA
models – we have found that the bisimilarities present in the literature, although
expressible within the ULTraS framework (Thms. 2 and 6), are different from
the one that can be naturally obtained from ULTraS. This has led us to intro-
duce a new bisimilarity for those models (Def. 14 and Thm. 3), which we have
called group-by-group and shown to be coarser than the original one (Thm. 4).
Moreover, we have exhibited a modal logic characterization for the group-by-
group bisimilarity by using an interval-based variant of the logic in [14] (Thm. 5),
while the original bisimilarity needs a much more expressive logic [19].

The ULTraS-based encodings permit also more general considerations about
the studied models. Firstly, the transition relation of theULTraS corresponding
to a TA is functional and based on B, whilst in the case of a PTA/MA it is not a
function (because internal nondeterminism cannot be mixed with probabilities in
the target state distributions of transitions) and it is necessarily based on R[0,1].
This stresses the higher expressivity of PTA/MA compared to TA with regard
to describing state reachability. Furthermore, it evidences a structural analogy
between PTA and MA that has not been addressed so far in the literature.

Secondly, the quantitative information related to time in TA/PTA/MA can
be made disappear to a large extent, while quantitative information related to
probabilities in PTA/MA cannot be abstracted. This underlines an important
difference between time and probability. Time elapses independent of the occur-
rence of events and hence its passage can be viewed as an event in its own, which
can thus be represented like the other events. Probabilities, instead, are inher-
ently associated with the occurrence of events and must therefore be explicitly
represented as event attributes.

Indeed, in our encodings time passing has been represented through special
actions that encompass the duration/rate of delays. A purely qualitative rep-
resentation of time based on a single special action ε is also possible and was
used, for instance, in the construction of the region/zone graph and in the no-
tion of time-abstract bisimilarity [15]. This supports a compact description of
the state space of the ULTraS corresponding to a TA/PTA, which is uncount-
able while this is not necessarily the case for an MA. The reason is the inherent
difference between deterministic time, which needs the concrete representation
of all possible delays, and exponentially distributed time, for which a symbolic
representation based on rates is sufficient thanks to the memoryless property.

118 M. Bernardo and L. Tesei

A natural continuation of our work is to investigate trace and testing equiva-
lences by applying their general definitions in [4] to the considered timed models.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

2. Bérard,B.,Petit,A.,Diekert,V.,Gastin, P.:Characterization of the expressive power
of silent transitions in timed automata. Fundamenta Informaticae 36, 145–182 (1998)

3. Bernardo, M.: On the expressiveness of Markovian process calculi with durational
and durationless actions. In: Proc. of GANDALF 2010. EPTCS, vol. 25, pp. 199–
213 (2010)

4. Bernardo, M., De Nicola, R., Loreti, M.: A uniform framework for modeling non-
deterministic, probabilistic, stochastic, or mixed processes and their behavioral
equivalences. Information and Computation 225, 29–82 (2013)

5. Cerans, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993)

6. Corradini, F.: Absolute versus relative time in process algebras. Information and
Computation 156, 122–172 (2000)

7. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proc. of LICS 2010, pp. 342–351. IEEE-CS Press (2010)

8. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32, 137–162 (1985)

9. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Information and Computation 111, 193–244 (1994)

10. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg
(2002)

11. Keller, R.M.: Formal verification of parallel programs. Communications of the
ACM 19, 371–384 (1976)

12. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science 282, 101–150 (2002)

13. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Weak bisimulation for probabilistic
timed automata. Theoretical Computer Science 411, 4291–4322 (2010)

14. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94, 1–28 (1991)

15. Larsen, K.G., Yi, W.: Time abstracted bisimulation: Implicit specifications and
decidability. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes,
S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 160–176. Springer, Heidelberg (1994)

16. Moller, F., Tofts, C.: A temporal calculus of communicating systems. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer,
Heidelberg (1990)

17. Moller, F., Tofts, C.: Behavioural abstraction in TCCS. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 559–570. Springer, Heidelberg (1992)

18. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD Thesis (1995)

19. Sproston, J., Troina, A.: Simulation and bisimulation for probabilistic timed
automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS,
vol. 6246, pp. 213–227. Springer, Heidelberg (2010)

20. Yi, W.: CCS + Time = An Interleaving Model for Real Time Systems. In: Leach
Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510,
pp. 217–228. Springer, Heidelberg (1991)

A Fast EM Algorithm for Fitting Marked

Markovian Arrival Processes
with a New Special Structure

Gábor Horváth1,2,3 and Hiroyuki Okamura4

1 Budapest University of Technology and Economics
Department of Networked Systems and Services

2 MTA-BME Information Systems Research Group
3 Inter-University Center of Telecommunications and Informatics,

Debrecen 1521 Budapest, Hungary
ghorvath@hit.bme.hu

4 Department of Information Engineering
Graduate School of Engineering, Hiroshima University
1–4–1 Kagamiyama, Higashi-Hiroshima 739–8527, Japan

okamu@rel.hiroshima-u.ac.jp

Abstract. This paper presents an EM algorithm for fitting traces with
Markovian arrival processes (MAPs). The proposed algorithm operates
on a special subclass of MAPs. This special structure enables the efficient
implementation of the EM algorithm; it is more orders of magnitudes
faster than methods operating on the general MAP class while providing
similar or better likelihood values. An other important feature of the
algorithm is that it is able to fit multi-class traces with marked Markovian
arrival processes as well. Several numerical examples demonstrate the
efficiency of the procedure.

1 Introduction

Phase-type (PH) distributions and Markovian arrival processes (MAPs) play
an important role in the performance and reliability analysis as they allow to
describe a wide class of distributions and processes with Markovian techniques.
The solutions of various queueing systems, failure models, etc. incorporating PH
distributions and MAPs are typically numerically tractable.

However, the applicability of these models depends on how well the load of
the system is represented, thus, how efficient the PH fitting and/or MAP fitting
methods are when the empirical properties of the system are approximated.

Several fitting algorithms exist for PH distributions. As for correlated pro-
cesses, the maturity of MAP fitting methods is a bit behind to the maturity of
the PH fitting methods. There are several MAP fitting methods that aim to max-
imize the likelihood, all of them are based on the EM (expectation-maximization)
algorithm. However, EM based MAP fitting algorithms have some distinct draw-
backs that limit their practical usability. These algorithms suffer from slow con-
vergence, high per-iteration computational effort and the final result is overly

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 119–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

120 G. Horváth and H. Okamura

dependent on the initial guess. As in case of PH fitting methods, it turned out
that basing the fitting on a special MAP structure has a beneficial effect on both
the convergence speed and the per-iteration computational effort. It is even typ-
ical that results obtained by fitting with general MAP structures are worse than
those obtained by fitting with specialized structures [16].

The development of fitting procedures for the multi-type extension of MAPs,
called MMAPs (marked Markovian arrival processes) is in initial stages, only
a few solutions are available. In this paper we introduce a new special MMAP
structure which enables a fast implementation of the EM algorithm. This special
structure resembles to the ER-CHMM structure introduced for the single-class
case in [16], but it is more general.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions and basic properties of marked Markovian arrival processes. We provide an
overview on the available MAP and MMAP fitting methods in Section 3. The
proposed MMAP structure and the corresponding EM algorithm is presented in
Section 4. The numerical experiments are detailed in Section 5, finally, Section
6 concludes the paper.

2 Marked Markovian Arrival Processes

In a Markovian Arrival Process (MAP, [15]) there is a background process (also
referred to as phase process) given by a continuous time Markov chain with
generator matrix denoted by D. Some of the transitions in this Markov chain
are accompanied by an arrival event; the corresponding transition rates are the
entries of matrix D1. The transition rates of the background process not ac-
companied by an arrival event are the entries of matrix D0. For the sum of
these matrices we have D = D0+D1 (we assume that D defines an irreducible
Markov chain throughout this paper).

Marked Markovian arrival processes (MMAPs, [11]) are the multi-class ex-
tensions to MAPs, where the arrival events are tagged (marked) with the class
of the arrivals. A MMAP distinguishing C different classes of arrival events is
given by a set of matrices Dc, c = 0, . . . , C, where D0 describes the transition
rates not accompanied by an arrival and Dc the ones accompanied by a type c
arrival. The generator of the background Markov process is D =

∑C
c=0 Dc. Fur-

thermore, we can introduce the embedded phase process at arrivals and obtain
matrices P (c) = (−D0)

−1Dc whose i, jth entry is the joint probability of the
phase and the type of the next arrival given the phase at the previous arrival.
The stationary phase probability vector at arrival instants, π, is then the unique
solution of πP = π, π� = 1 with P =

∑C
c=1 P

(c) (� denotes a column vector of
ones of appropriate size).

Let us denote the random variable representing the inter-arrival time between
the i − 1th and ith arrivals by Xi, and the type of the ith arrival by Ci =
{1, . . . , C}. The joint probability density function (pdf) that the consecutive
inter-arrival times are x1, x2, . . . , xK and the corresponding arrival classes are
c1, c2, . . . , cK can be expressed by

A Fast EM Algorithm for Fitting Marked MAP 121

f(x1, c1, x2, c2, . . . , xK , cK) = πeD0x1Dc1e
D0x2Dc2 . . . eD0xKDcK�, (1)

which we will use several times in the sequel.

3 MAP and MMAP Fitting Methods

The MAP and MMAP fitting methods published in the literature can be clas-
sified to two categories. There are methods that are based on fitting statistical
quantities of the trace (like moments, auto-correlations, etc.), while other meth-
ods aim to maximize the likelihood.

A purely moment matching based solution is described in [19], where a rational
arrival process is constructed based on the marginal moments and the lag-1 joint
moments of the trace. The resulting rational arrival process is transformed to a
MAP in the second phase of the algorithm. This method has been generalized
to MMAPs in [12]. A drawback of this approach is that it may happen that
the result does not have a Markovian representation, or does not even define a
valid stochastic process. An other popular framework falling into this category
has been introduced in [13], where the MAP fitting is performed in two steps:
the fitting of the marginal distribution and the fitting of the correlations. For
the first step any PH fitting method can be applied, while for the second step
several different solutions appeared. In [13] the target of fitting is the lag-k auto-
correlation function, in [7] and [3] it is the lag-1 joint moments. The procedure
in [6] is a MMAP fitting method based on marginal and joint moment fitting.
The KPC procedure published in [8] follows a different approach, it achieves
impressive results by combining small MAPs for fitting the moments, the auto-
correlations and the bi-correlations of the trace.

Another family of MAP fitting methods aim to find a MAP or a MMAP that
maximizes the likelihood of the measurement trace. The EM algorithm ([9])
is an iterative framework, which is a popular choice to implement likelihood
maximization. Rydén [18] discussed an EM algorithm for a subclass of MAPs
called MMPP (Markov modulated Poisson process), and it could naturally be
extended to the general MAP parameter estimation. Buchholz [5] presented an
improved EM algorithm in terms of computation speed for the general MAP
class to analyze real trace data. The EM algorithms for the general MAP with
multiple arrival types (or batches), i.e., the general MMAPs, were proposed in [4]
and [14]. Okamura and Dohi [16] discussed the maximum likelihood estimation
for the generalized structure.

4 Fitting Traces with MMAPs Having a Special
Structure

4.1 Motivation

A major drawback of EM-algorithm based MAP fitting methods is that they are
slow if the number of measurements to fit is large. A large number of iterations

122 G. Horváth and H. Okamura

are required till convergence, and the per-iteration computational effort is also
significant.

In case of EM-algorithm based phase-type (PH) distribution fitting methods
the solution for this issue has been recognized for a long time. It turned out that
fitting with sub-classes of PH distributions like hyper-exponential [10], hyper-
Erlang [20], or acyclic PH distributions [17] is more efficient than fitting with
the general PH class [2].

The computational effort of EM-algorithm based MAP fitting methods can
be reduced in the same way, however identifying sub-classes of MAPs is far less
trivial than it was in case of PH distributions. A possible sub-class of MAPs
has been introduced in [13], where the proposed structure consists of a set of
component PH distributions and a transition probability matrix that determines
which component generates the next inter-arrival time given the current one, it
is a kind of Markov-modulated PH distributions. (The procedure itself combines
the moment matching and maximum likelihood estimation). Okamura and Dohi
[16] provided a fast EM-based MAP fitting algorithm for the same structure, and
found that it gives high likelihood values while the execution time is much lower
compared with fitting by general MAPs. They found the case when the com-
ponent PH distributions are Erlang distributions (called ER-CHMM) especially
beneficial.

In this paper, our aim is to improve the ER-CHMM structure based
EM-algorithm for fitting traces from several aspects:

– We generalize it to fit multi-type (marked) arrival processes as well.
– We introduce a structure that is more general than ER-CHMM, while the

computational complexity remains relatively low.
– We present an improved method to optimize the discrete (shape) parameters

of the structure.

4.2 The Definition of the Special Structure Used for Fitting

In this section we define the special MMAP structure on which our fitting pro-
cedure is based on.

This special MMAP process is a generalization of the ER-CHMM structure.
Similar to ER-CHMM, we have M branches with branch i consisting of ri states
connected in a row with the same transition rates λi. However, in our case these
branches do not represent Erlang distributions, as not all states of the branch
are traversed before generating an arrival. When a branch is selected to generate
the next inter-arrival time, the initial state of the branch is determined by a
probability vector.

Let us assign a two-dimensional identifier to the phases: phase (i, n) identifies
state n in branch i.

The parameters characterizing this process are

– the rate and the shape parameters of the branches, denoted by λi and ri,
i = 1, . . . ,M ,

∑M
i=1 ri = N , respectively;

A Fast EM Algorithm for Fitting Marked MAP 123

– probabilities p
(c)
i,(j,m) with c = 1, . . . , C, i, j = 1, . . . ,M, m = 1, . . . , rj .

p
(c)
i,(j,m) represents the probability that the next phase just after the arrival

is (j,m) given that the previous arrival has been generated by branch i
resulting in a type c arrival. Note that the ER-CHMM structure is obtained

if p
(c)
i,(j,m) = 0 for m > 1.

According to the definition matrix D0 is given by

D0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ1 λ1

. . .
. . .

−λ1

−λ2 λ2

. . .
. . .

−λ2

. . .

−λM λM

. . .
. . .

−λM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎫⎬
⎭ r1

⎫⎬
⎭ r2

⎫⎬
⎭ rM

(2)

and matrices Dc, c = 1, . . . , C are

Dc =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 . . . 0 0 . . . 0

λ1p
(c)

1,(1,1)
. . . λ1p

(c)

1,(1,r1)
λ1p

(c)

1,(2,1)
. . . λ1p

(c)

1,(2,r2)
. . . λ1p

(c)

1,(M,1)
. . . λ1p

(c)

1,(M,rM)

0 . . . 0 0 . . . 0 0 . . . 0

λ2p
(c)

2,(1,1)
. . . λ2p

(c)

2,(1,r1)
λ2p

(c)

2,(2,1)
. . . λ2p

(c)

2,(2,r2)
. . . λ2p

(c)

2,(M,1)
. . . λ2p

(c)

2,(M,rM)

.

.

.
.
.
.

.

.

.
.
.
.

0 . . . 0 0 . . . 0 0 . . . 0

λMp
(c)

M,(1,1)
. . .λMp

(c)

M,(1,r1)
λMp

(c)

M,(2,1)
. . .λMp

(c)

M,(2,r2)
. . . λMp

(c)

M,(M,1)
. . .λMp

(c)

M,(M,rM)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎫⎬
⎭ r1

⎫⎬
⎭ r2

⎫⎬
⎭ rM

(3)

By construction, the entries of matrix P (c) = [u
(c)
(i,n),(j,m), i, j = 1, . . . ,M, n =

1, . . . , ri,m = 1, . . . , rj] describing the transition probabilities of phases embed-
ded just after arrival instants corresponding to type c arrivals are given by

u
(c)
(i,n),(j,m) = p

(c)
i,(j,m). (4)

The stationary distribution of the phases right after arrivals is the unique
solution of the linear system

π = π

C∑
c=1

P (c), π� = 1, (5)

124 G. Horváth and H. Okamura

which can be partitioned according to the two-dimensional phase numbering as
π = [π(i,n), i = 1, . . . ,M, n = 1, . . . , ri].

Given that the MMAP is in state (i, n) just after arrivals the density of the
inter-arrival times is

f(i,n)(x) =
(λix)

ri−n

(ri − n)!
λie

−λix, (6)

from which the marginal distribution of the arrival process is obtained by
un-conditioning yielding

f(x) =

M∑
i=1

ri∑
n=1

π(i,n)f(i,n)(x). (7)

4.3 The EM Algorithm

Let us denote the trace data by X = {x1, c1, x2, c2 . . . , xK , cK}, where xk ∈ �
is the kth inter-arrival time and ck ∈ � is the type of the kth arrival. In this
section we assume that the shape parameters of the branches given by vector
r = (r1, . . . , rM) is fixed. Our goal is to maximize the likelihood for the trace
data

L(Θ(r)|X) = πeD0x1Dc1e
D0x2Dc2 . . . eD0xKDcK�, (8)

where the parameters defining our MAP are Θ(r) = {λi, pi,(j,m)}, from which
matrices Dc, c = 0, . . . , C are derived by (2) and (3).

Let the (i, n)th entry of row vector a[k] =
(
a(i,n)[k], i = 1, . . . ,M, n = 1, . . . , ri

)
denote the likelihood of phase (i, n) after observing x1, c1, x2, c2, . . . , xk, ck. This
vector will be referred to as forward likelihood vector in the sequel and can be
obtained recursively by

a[0] = π, a[k] = a[k − 1] · eD0xkDck . (9)

Similarly, we can define backward likelihood vectors b[k] =
(
b(i,n)[k]

)
as

b[K] = �, b[k] = eD0xkDckb[k + 1]. (10)

The likelihood is then given by

L(Θ(r)|X) = a[k] · b[k + 1], (11)

for any k = 0, . . . ,K − 1.
Due to the special structure the forward and backward likelihood vectors can

be expressed in a simpler way as

a(i,n)[k] =

M∑
j=1

rj∑
m=1

a(j,m)[k − 1] · f(j,m)(xk) · u(ck)
(j,m),(i,n), (12)

b(j,m)[k] =

M∑
i=1

ri∑
n=1

f(j,m)(xk) · u(ck)
(j,m),(i,n) · b(i,n)[k + 1]. (13)

A Fast EM Algorithm for Fitting Marked MAP 125

Note that as opposed to (9) and (10), (12) and (13) does not involve matrix
exponential operations, which will be a significant gain in speed.

According to the EM approach we consider the data X to be incomplete, and
assume that there is an unobserved dataY which, together withX , forms the com-
plete data. In our case the values of the unobserved data Y = {y1, z1 . . . , yK , zK}
inform us which branch generates the kth data item of X (yk ∈ {1, . . . ,M}) and
which was the initial state of branch yk when generating the kth inter-arrival time
(zk ∈ {1, . . . ryk

}).
Given the unobserved data Y, it is possible to obtain maximum likelihood

estimates (MLE) for λi and pij . Let us start with λi. Since the inter-arrival times
are independent given the unobserved data we can express the log-likelihood of
parameters λ1, . . . , λM as

logL(λ1, . . . , λM |X ,Y, r) =

K∑
k=1

log
(
f(yk,zk)(xk)

)
. (14)

To obtain MLE for λi we need to find the maximum of (14) by solving

∂

∂λi

K∑
k=1

I{yk=i} log

(
ri∑

n=1

I{zk=n}f(i,n)(xk)

)
= 0, (15)

that gives

λ̂i =

∑K
k=1

∑ri
n=1 n · I{yk=i,zk=n}∑K
k=1 xkI{yk=i}

. (16)

To obtain MLE for probabilities p̂
(c)
i,(j,m) we apply [1] yielding

p̂
(c)
i,(j,m) =

∑K−1
k=1 I{ck=c,yk=i,yk+1=j,zk+1=m}∑K−1

k=1 I{yk=i}
. (17)

In the E-step of the EM algorithm the expected values of the unobserved
variables are computed:

q
(c)
(i,n),(j,m)[k] = P (ck = c, yk = i, zk = n, yk+1 = j, zk+1 = m|Θ̂(r),X)

=
P (ck = c, yk = i, zk = n, yk+1 = j, zk+1 = m,X|Θ̂(r))

P (X|Θ̂(r))

=
a(i,n)[k − 1] · f(i,n)(xk) · u(c)

(i,n),(j,m) · b(j,m)[k + 1]

P (X|Θ̂(r))
,

(18)

q(i,n)[k] =
P (yk = i, zk = n,X|Θ̂(r))

P (X|Θ̂(r))
=

a(i,n)[k − 1] · b(i,n)[k]
P (X|Θ̂(r))

, (19)

where Θ̂(r) are the estimates of the parameters Θ(r).

126 G. Horváth and H. Okamura

Algorithm 1. Pseudo-code of the proposed EM algorithm

1: procedure HEM-Fit(xk, λi, ri, p
(c)
i,(j,m))

2: LogLi ← −∞
3: while (LogLi− oLogLi)/LogLi > ε do
4: Obtain vector π by (5)
5: for k = 1 to K do
6: Compute and store conditional densities f(i,n)(xk) by (6)
7: end for
8: for k = 0 to K do
9: Compute and store forward likelihood vectors a[k] by (12)
10: end for
11: for k = K downto 1 do
12: Compute and store backward likelihood vectors b[k] by (13)
13: end for
14: for i = 1 to M do
15: Compute new estimate for λi by (20)
16: end for
17: for c = 1 to C, i = 1 to M , j = 1 to M do
18: for m = 1 to rj do

19: Compute new estimate for p
(c)
i,(j,m) by (21)

20: end for
21: end for
22: oLogLi ← LogLi
23: LogLi ← π · b[0]
24: end while
25: return (λi, p

(c)
i,(j,m), i, j = 1, . . . ,M,m = 1, . . . , rj , c = 1, . . . , C)

26: end procedure

In the M-step the new estimates of Θ (denoted by Θ̂(r)) are computed which
maximize the expected likelihood function. From (17) it follows that

λ̂i =

∑K
k=1

∑ri
n=1 n · q(i,n)[k]∑K

k=1 xk

∑ri
n=1 q(i,n)[k]

=

∑K
k=1

∑ri
n=1 n · a(i,n)[k − 1] · b(i,n)[k]∑K

k=1 xk

∑ri
n=1 a(i,n)[k − 1] · b(i,n)[k]

, (20)

p̂
(c)
i,(j,m) =

∑K−1
k=1

∑ri
n=1 q

(c)
(i,n),(j,m)[k]∑K−1

k=1

∑ri
n=1 q(i,n)[k]

=

∑K−1
k=1

∑ri
n=1 a(i,n)[k − 1] · f(i,n)(xk) · u(c)

(i,n),(j,m) · b(j,m)[k + 1]∑K−1
k=1

∑ri
n=1 a(i,n)[k − 1] · b(i,n)[k]

.

(21)

The pseudo-code of the EM algorithm is depicted in Algorithm 1. The input

of the algorithm is the trace and the initial guesses for probabilities p
(c)
i,(j,m) and

the shape and rate parameters of the branches. The outputs of the algorithm
are the optimized values of these parameters.

For the initial guesses we apply the k-means algorithm as suggested in [16].

A Fast EM Algorithm for Fitting Marked MAP 127

4.4 Optimization of the Shape Parameters

To make the algorithm more user friendly, it is possible to optimize the shape
parameter vector r = (r1, . . . , rM) as well. In this case the user has to enter just a
single parameter: the size of the MAP he/she wants (N). The problem to deter-
mine the parameter N is addressed by statistical argument such as information
criterion, but this is out of scope of this report.

The set of possible r vectors is given by

HN =

{
(r1, . . . , rM);

M∑
m=1

ri = N, 1 ≤M ≤ N, 1 ≤ r1 ≤ · · · ≤ rM

}
, (22)

Note that the last condition 1 ≤ r1 ≤ · · · ≤ rM is based on the fact that each
pair of any two values ri and rj is commutative; for example, r = (1, 2, 1) and
r = (1, 1, 2) are supposed to be same.

Then the maximum likelihood estimates (MLEs) of shape parameters are
given by the solution of the following maximization problem:

r̂ = argmax
r∈HN

L(r, Θ̂(r)|X), (23)

Since the shape parameters are restricted to an integer, (23) is essentially an
integer programming, i.e., the combinational problem over a set HN .

A possible straight-forward solution of this optimization problem is to execute
the presented EM algorithm with all possible shape parameter vectors r ∈ HN ,
which can make the fitting very slow, since the cardinality of HN increases
exponentially as N grows.

Thummler et al. [20] presented a heuristic method that tries to predict promis-
ing combinations of shape parameters by doing a few iterations of the EM algo-
rithm which is called the progressive preselection. This method first considers all
vectors r ∈ HN . Then the EM algorithm is started for each of the vectors with
loose convergence conditions (ε = 10−2, usually requiring only a few iterations).
The results are sorted according to the likelihood values, and half of the vectors
(the worst performing ones) are dropped. Then further EM iterations are ap-
plied with the remaining vectors with tighter convergence conditions, the worst
performing ones are dropped, and so on, till only a single vector r remains. While
this approach is fast, it does not guarantee that it finds the optimal r at the end.
The reason is that the optimal r can be dropped during the pre-selection steps if
it converges slower to the optimum, which happened frequently in our numerical
investigations if the convergence conditions corresponding to the preselection
phases are not set adequately.

This paper presents an alternative approach to find the best combination of
shape parameters with an incremental approach. The idea behind the method is
to search only the neighborhood of a shape parameter vector. For a given sum
of shape parameters N , we consider the following sets:

H̃k =

{
(r1, . . . , rN);

N∑
m=1

ri = k, 0 ≤ r1 ≤ · · · ≤ rN

}
, k = 1, . . . , N. (24)

128 G. Horváth and H. Okamura

The set H̃k is essentially same as Hk in Eq. (22). Note that ri is allowed to be 0
in H̃k and that the length of all the elements of H̃k, k = 1, . . . , N , becomes N .
For all the elements in

⋃N
k=1 H̃k, we define the following distance:

D(ri, rj) =

N∑
n=1

|ri,n − rj,n|, ri, rj ∈
N⋃

k=1

H̃k, (25)

where ri = (ri,1, . . . , ri,N) and rj = (rj,1, . . . , rj,N). According to the above
distance, neighborhood of r is defined as follows.

N (r) =

{
r′;D(r, r′) = 1, r′ ∈

N⋃
k=1

H̃k

}
. (26)

For instance, if N = 4 the neighborhood of the vector r = (0, 0, 1, 2) is

N (r) = {(0, 0, 0, 2), (0, 0, 1, 1), (0, 1, 1, 2), (0, 0, 2, 2), (0, 0, 1, 3)}. (27)

Observe that if r ∈ H̃k, then a member of N (r) is a member of either H̃k−1

or H̃k+1.
Based on the above insights, we propose an algorithm based on the local

search to find the MLE of shape parameter vector in Algorithm 2. In the algo-
rithm, L(r) means the log-likelihood function of r. From the argument of degree
of freedom in statistics, the maximum of log-likelihood functions in H̃k is a
non-decreasing function with respect to k. Then the algorithm searches for the
maximum value in neighborhood with the direction from which k increases, and
provides the (local) maximum of log-likelihood functions in the set H̃N . If the
assumption that the neighborhood of the maximum of log-likelihood functions in
H̃k includes the shape parameter vector maximizing the log-likelihood function
in H̃k−1 holds, the algorithm finds the global maximum of log-likelihood func-
tions in H̃N . Although it is difficult to prove that this assumption holds for any
situation, the assumption is expected to hold for many practical situation. The
time complexity of Algorithm 2 is O(N1.5), because the maximum size of neigh-
borhood of N (r), r ∈ H̃k is proportional to a square of k. Since the size of HN

is given by a function of the factorial of N , the proposed method is applicable
even for a large N .

5 Numerical Experiments

In this section we present two numerical examples to examine how effective our
enhanced EM algorithm is.

5.1 Fitting Single-Class Trace

In the first example we intend to fit a well-known traffic trace, the BC-pAug89
trace1 that is frequently used as a benchmark in several papers. It consist of the

1 Downloaded from http://ita.ee.lbl.gov/html/contrib/BC.html

http://ita.ee.lbl.gov/html/contrib/BC.html

A Fast EM Algorithm for Fitting Marked MAP 129

Algorithm 2. Incremental search for the best shape parameters

1: r ← (0, . . . , 0, 1)
2: for k = 2 : N do
3: Lmax ← −∞
4: for r′ ∈ N (r)

⋂ H̃k do
5: if L(r′) > Lmax then
6: rmax ← r′

7: Lmax ← L(r′)
8: end if
9: end for
10: r ← rmax

11: end for

inter-arrival times of one million packet arrivals measured on an Ethernet net-
work. This trace does not distinguish multiple arrival types, thus we are applying
single-class MAP fitting in this example. We are investigating two questions:

– How capable the proposed special MAP structure is when fitting the trace
with the EM algorithm.

– How efficient the proposed heuristic method called ”Incremental” is in
optimizing the shape parameters r1, . . . , rM .

The following MAP fitting methods are involved into the comparison.

– The EM-algorithm introduced in [5]2.
– The EM-algorithm published in [16] which operates on the general class of

MAPs.
– The EM-algorithm operating on the ER-CHMM structure ([16]).
– The EM-algorithm operating on the special MAP structure proposed by this

paper.

The latter two procedures are included in our new MAP/MMAP fitting tool
called SPEM-FIT3. This open-source tool has been implemented in C++ and
is able to utilize the multiple cores of modern CPUs. It supports three different
methods to optimize the shape parameters, namely ”progressive preselection”
(referred to as ”PreSel” in the sequel), enumerating all possible configurations
and selecting the best one (referred to as ”All”), and the new incremental method
proposed in this paper (”Incr”).

The likelihood values obtained when fitting with MAPs of different sizes are
depicted in Figure 1. (The likelihood values in this section are all log-likelihoods
divided by the length of the trace). The corresponding execution times are shown
in Figure 2. We note that method ”Buchholz” and ”Okamura-Dohi” stopped
before convergence when the maximum number of iterations has been reached
(that is 1000 for ”Buchholz”, and 3000 for ”Okamura-Dohi”).

2 We would like to thank Peter Buchholz and Jan Kriege for providing the
implementation of the algorithm and for guidance on the usage.

3 It can be downloaded from https://bitbucket.org/ghorvath78/spemfit

https://bitbucket.org/ghorvath78/spemfit

130 G. Horváth and H. Okamura

When examining the execution times it is striking how slow the methods
operating on the general MAP class are. Observe that these methods pick a single
initial guess and apply several EM iterations on it, while in case of ER-CHMM
and the proposed structure the execution times include the optimization of the
shape parameters as well, they are still 1, 2, or even 3 orders of magnitudes faster.
While being faster, they are also able to achieve as high or higher likelihood
values than the EM algorithms working with general MAPs.

Table 1. Log-likelihood values obtained with different methods

Method 4 6 8 10 12

Buchhoz −0.8033 −0.7957 −0.7929 n/a n/a
Okamura-Dohi −0.8002 −0.76345 −0.75512 −0.728709 −0.725897

ER-CHMM (All) −0.80079 −0.77634 −0.74766 −0.72598 −0.715183
ER-CHMM (PreSel) −0.800787 −0.776342 −0.747659 −0.723873 −0.715183
ER-CHMM (Incr) −0.80079 −0.77936 −0.74766 −0.7314 −0.715183

Our (All) −0.80051 −0.76494 −0.74173 −0.72813 −0.71399
Our (PreSel) −0.800506 −0.764944 −0.741738 −0.727968 −0.713967
Our (Incr) −0.80051 −0.76494 −0.74173 −0.72813 −0.71402

Based on the numerical results it is possible evaluate how the different compo-
nents of our refined EM algorithm perform. With the proposed MAP structure
it is possible to obtain higher likelihood values in most of the cases, although
the execution time increases as well (which is straight forward as it has more
parameters to optimize than the ER-CHMM). Regarding the optimization of the
shape parameters we found that the ”Incremental” procedure was able to find
the optimum in the majority of the cases. With a small number of states ”All”
turned out to be faster than ”Incremental”, but from 8 states on ”Incremental”
catches up and the its speed advantage grows with increasing number of states.

Table 2. Fitting times obtained with different methods (in seconds)

Method 4 6 8 10 12

Buchhoz 33571 57703 103162 n/a n/a
Okamura-Dohi 11172 17407 32896 60726 82773

ER-CHMM (All) 24 213 388 795 1954
ER-CHMM (PreSel) 25 94 113 337 582
ER-CHMM (Incr) 34 103 331 596 867

Our (All) 98 247 1026 2434 6179
Our (PreSel) 91 234 328 982 2257
Our (Incr) 139 450 1040 1988 3415

Regarding the ”PreSel” heuristic, that does not guarantee finding the opti-
mum, performs very well in this example. We note however, that fine-tuning the
thresholds used by this method is a hard task. If the thresholds are too loose,

A Fast EM Algorithm for Fitting Marked MAP 131

the procedure will be fast but it may drop candidates prematurely, potentially
loosing the one that could provide the best result at the end. At the other hand,
too tight thresholds make the progressive pre-selection practically equivalent to
the ”All” method. We selected the appropriate thresholds based on a large num-
ber of numerical experiments with several traces, however, these thresholds are
not universal.

5.2 Fitting Multi-class Trace

To examine the behavior of the proposed enhancements further, we made a
multi-class trace from the BC-pAug89 trace according to the packet sizes. Ar-
rivals with packet sizes between 1 and 759 are marked as class-1 arrivals, while
arrivals of larger packets are considered as class-2 arrivals. As we do not have the
implementations of EM algorithms for MMAPs published in the past, we com-
pare the multi-class generalization of the ER-CHMM structure (our procedure

with p
(c)
i,(j,m) = 0 for m > 1) and the proposed more general MMAP structure in

this Section.

Table 3. Log-likelihood values obtained by using the two special structures

Vector r ER-CHMM Proposed

(1, 7) -1.29603 -1.35266
(2, 6) -1.51657 -1.21412
(3, 5) -1.70301 -1.21671
(4, 4) -1.72712 -1.51611

(1, 1, 6) -1.11458 -1.11355
(1, 2, 5) -1.18571 -1.12161
(1, 3, 4) -1.21068 -1.15472
(2, 2, 4) -1.19233 -1.17741
(2, 3, 3) -1.23412 -1.13608

(1, 1, 1, 5) -1.04259 -1.11015

Vector r ER-CHMM Proposed

(1, 1, 2, 4) -1.00136 -0.997126
(1, 1, 3, 3) -1.02608 -0.997745
(1, 2, 2, 3) -1.03497 -1.10369
(2, 2, 2, 2) -1.05739 -1.04147

(1, 1, 1, 1, 4) -1.05193 -1.05193
(1, 1, 1, 2, 3) -1.01446 -1.09347
(1, 1, 2, 2, 2) -1.05179 -1.03403

(1, 1, 1, 1, 1, 3) -1.0743 -1.06969
(1, 1, 1, 1, 2, 2) -1.04512 -1.09436

(1, 1, 1, 1, 1, 1, 2) -1.11112 -1.1638

Table 3 shows the log-likelihood values obtained by using the two special
structures with all possible shape parameter configurations providing 8 states
in total. Examining the results we can observe that the more general structure
is able to achieve a significant improvement if there are several branches having
a high shape parameter. If the shape parameter is low in most of the branches
(or in the dominating branches having high steady state probability), the ER-
CHMM performs better, as it has fewer parameters to optimize. In this particular
example the optimal shape parameter vector is (1, 1, 2, 4), where the proposed
new structure wins by a slight margin.

Finally, Figure 1 compares the best results obtained with various MMAP
sizes, showing that the EM algorithm with the proposed structure provides
slightly better log-likelihood values, but the difference is marginal. With other
traces, where the optimal shape parameters are higher, we expect the difference
to be higher.

132 G. Horváth and H. Okamura

8 10 12
Number of states

1.01

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

L
o
g
-l

ik
e
li
h
o
o
d
 /

 T
ra

c
e
 l
e
n
g
th ER-CHMM

Proposed

Fig. 1. Log-likelihood values obtained with different MMAP sizes

6 Conclusion

This paper presents several improvements on the EM algorithm based MAP
fitting methods. As recognized in numerous past papers, the key idea to make
MAP fitting efficient is to apply a special MAP structure instead of the general
MAP class. We followed the same path in this paper. We generalized the ER-
CHMM structure introduced in [16], developed a method to find the optimal
shape parameters of this structure, finally, our method is able to fit multi-class
traces as well. The proposed MAP structure is able to improve the log-likelihood
values of the results of fitting in most of the cases investigated in the numerical
experiments. The gain depends on the nature of the trace. In our numerical
example the improvement is slight, but, since the execution time of the fitting is
reasonable, it is still worth taking the advantage of this more general structure.
With the procedure introduced to find the optimal shape parameters it is possible
to avoid trying out all possible combinations, which is beneficial on the fitting
times as well.

Acknowledgment. This work was supported by the Hungarian Government
through the TAMOP-4.2.2C-11/1/KONV-2012- 0001 and the OTKA K101150
projects, and by the János BolyaiResearch Scholarship of the HungarianAcademy
of Sciences.

References

1. Anderson, T.W., Goodman, L.A.: Statistical inference about Markov chains. The
Annals of Mathematical Statistics, 89–110 (1957)

2. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the
EM algorithm. Scandinavian Journal of Statistics, 419–441 (1996)

3. Bause, F., Horváth, G.: Fitting Markovian Arrival Processes by Incorporating Cor-
relation into Phase Type Renewal Processes. In: 2010 Seventh International Con-
ference on the Quantitative Evaluation of Systems (QEST), pp. 97–106. IEEE
(2010)

A Fast EM Algorithm for Fitting Marked MAP 133

4. Breuer, L.: An EM algorithm for batch Markovian arrival processes and its compar-
ison to a simpler estimation procedure. Annals of Operations Research 112(1-4),
123–138 (2002)

5. Buchholz, P.: An EM-algorithm for MAP fitting from real traffic data. In: Kemper,
P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 218–236. Springer,
Heidelberg (2003)

6. Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and
their parameter fitting. Performance Evaluation 67(11), 1092–1106 (2010)

7. Buchholz, P., Kriege, J.: A heuristic approach for fitting MAPs to moments and
joint moments. In: Sixth International Conference on the Quantitative Evaluation
of Systems, QEST 2009, pp. 53–62. IEEE (2009)

8. Casale, G., Zhang, E.Z., Smirni, E.: KPC-toolbox: Simple yet effective trace fitting
using Markovian arrival processes. In: Fifth International Conference on Quanti-
tative Evaluation of Systems, QEST 2008, pp. 83–92. IEEE (2008)

9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1–38 (1977)

10. El Abdouni Khayari, R., Sadre, R., Haverkort, B.R.: Fitting world-wide web re-
quest traces with the EM-algorithm. Performance Evaluation 52(2), 175–191 (2003)

11. He, Q., Neuts, M.F.: Markov chains with marked transitions. Stochastic Processes
and their Applications 74, 37–52 (1998)

12. Horváth, A., Horváth, G., Telek, M.: A traffic based decomposition of two-class
queueing networks with priority service. Computer Networks 53(8), 1235–1248
(2009)

13. Horváth, G., Buchholz, P., Telek, M.: A MAP fitting approach with indepen-
dent approximation of the inter-arrival time distribution and the lag correlation.
In: Second International Conference on the Quantitative Evaluation of Systems,
pp. 124–133. IEEE (2005)

14. Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch
Markovian arrival process. Performance Evaluation 54(2), 149–173 (2003)

15. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochas-
tic modeling. Society for Industrial and Applied Mathematics, vol. 5 (1987)

16. Okamura, H., Dohi, T.: Faster maximum likelihood estimation algorithms for
Markovian arrival processes. In: Sixth International Conference on the Quanti-
tative Evaluation of Systems, QEST 2009, pp. 73–82. IEEE (2009)

17. Okamura, H., Dohi, T., Trivedi, K.S.: A refined EM algorithm for PH distributions.
Performance Evaluation 68(10), 938–954 (2011)

18. Rydén, T.: An EM algorithm for estimation in Markov-modulated Poisson pro-
cesses. Computational Statistics & Data Analysis 21(4), 431–447 (1996)

19. Telek, M., Horváth, G.: A minimal representation of Markov arrival processes and
a moments matching method. Performance Evaluation 64(9), 1153–1168 (2007)

20. Thummler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting
with the EM algorithm. IEEE Transactions on Dependable and Secure Comput-
ing 3(3), 245–258 (2006)

PMIF+: Extensions to Broaden

the Scope of Supported Models

Catalina M. Lladó1 and Connie U. Smith2

1 Universitat de les Illes Balears. Departament de Ciències Matemàtiques
i Informàtica. Ctra de Valldemossa, Km. 7.6, 07071 Palma de Mallorca, Spain

cllado@uib.es
2 Performance Engineering Services, P.O. Box 2640,

Santa Fe, New Mexico, 87504-2640 USA
www.spe-ed.com

Abstract. The performance model interchange format (PMIF) is a com-
mon representation for data that reduces the number of custom inter-
faces required to move performance models among modeling tools. In
order to manage the research scope, the initial version of PMIF was
limited to Queueing Network Models (QNM) that can be solved by effi-
cient, exact solution algorithms. The overall model interoperability ap-
proach has now been demonstrated to be viable. This paper broadens the
scope of PMIF to represent models that can be solved with additional
methods such as analytical approximations or simulation solutions. It
presents the extensions considered, shows alternatives for representing
them with a meta-model, describes the PMIF+ extended meta-model
and its validation.

1 Introduction

A Performance Model Interchange Format (PMIF) to move models among tools
that support the Queueing Network Model (QNM) paradigm was first proposed
in 1995 [20]. That version was subsequently revised (PMIF 2), implemented us-
ing XML, and many case studies established proof of concept [16]. Other model
interchange formats and extensions have been proposed. Examples include: CSM
- Core Scenario Model for representing Layered Queueing Network (LQN) mod-
els [22]; MARTE - Modeling and Analysis of Real Time Embedded Systems is a
profile associated with OMGs Unified Modeling Language (UML) and Systems
Modeling Language (SysML) containing a Performance Analysis Model (PAM)
for representing performance features in systems; S-PMIF - Software Perfor-
mance Model Interchange Format for exchanging information among software
design tools and software performance engineering tools [12]; Palladio Com-
ponent Model (PCM) - for representing software architecture with respect to
structure, behavior, resource usage, execution environment and usage profile [6];
KLAPER - Kernel Language for Performance and Reliability analysis of com-
ponent based models [9]; EX-SE - Experiment Schema Extension for specifying
the experiments to run with the models [18]. An extensive discussion of this and

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 134–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.spe-ed.com

PMIF+: Extensions to Broaden the Scope of Supported Models 135

other related work is covered in [15].1 We used this related work in determining
features to be included in these PMIF extensions.

MIFs require minor extensions to tool functions (import and export) or an
external translator to convert tool-specific file formats to/from interchange for-
mats. They enable easy comparison of results from multiple tools, and the
use of tools best suited to the task without laborious and error prone manual
translations.

The contents of the PMIF meta-model resulted from a taxonomy of the ter-
minology used for QNM in performance tools and performance textbooks, and
of the features provided by available tools for solving performance models [20].
A wide variety of features and terms were considered, as well as feedback from
researchers in the performance field, to ensure that PMIF adequately described
the information requirements.

The initial PMIF was restricted to QNM that can be solved by efficient, exact
solution algorithms; this scope let us explore the end-to-end process of creating
models, exchanging them among multiple tools, running experiments, and com-
paring solutions. PMIF and the overall model interoperability approach have
been demonstrated to be viable and it is time to broaden the scope to support
performance models that cannot be solved with efficient, exact solution algo-
rithms. This paper extends PMIF to represent models that can be solved with
additional methods such as analytical approximations or simulation solutions.
We call this version PMIF+.

The next section discusses the requirements for selecting features to be sup-
ported and the candidate extensions. Section 3 discusses the alternatives for
representing the extensions with a meta-model and the approach we selected.
Section 4 presents the PMIF+meta-model and how it represents the selected fea-
tures. Section 5 expounds the validation, and the final section presents
conclusions.

2 Requirements for the Selection of Extensions

Our earlier work examined representative QNM tools, meta-models, and tech-
niques, proposed a set of features to be added, and sought community feed-
back [17]. We examined features in tools and techniques that allow models to
be solved with approximate analytical and/or simulation techniques. A table
showed features supported by the following:

– Performance Engineering Book [19] - advanced model solution features for
Software Performance Engineering

– CSIM [3] - a powerful process-oriented simulation tool (also used by the
SPE-ED tool for advanced model solution features)

– Qnap [14] - a classic, full-featured QNM solver with both analytic and
simulation solution capabilities

1 This paper assumes familiarity with PMIF2 and QNM solution techniques.

136 C.M. Lladó and C.U. Smith

– Java Modelling Tools (JMT) [7] - a recent QNM tool that incorporates
features for modeling current systems

– CSM/LQN [4] - a formal definition of the information requirements for
Layered Queueing Networks

– KLAPER [10] - a metamodel and language for evaluating system
performance

The first requirement for the selection of PMIF Extensions is stability. MIFs
must be relatively stable to be viable; frequent changes would affect all tools
using the MIFs. On the other hand, MIFs must evolve with technology changes.
Changes to the PMIF meta-model should be infrequent and should limit the
affect on existing tools to the extent possible. The original PMIF was based
on concepts embodied in two earlier model interchange formats: the Electronic
Data Interchange Format (EDIF) for VLSI designs [2] and the Case Data Inter-
change Format (CDIF) for software design interchange (also based on EDIF) [5].
Creators of EDIF envisioned the need to extend the model interchange formats
(and thus the meta-models) and addressed it by providing for a concept of levels
that add functionality at each successive level. Tools can continue to support a
lower level without change, or may opt to modify interfaces to support additional
functionality and/or other changes. Future work should use the newest version,
even for the basic level. Tools may support different levels of the interchange
format by specifying the meta-model (i.e., name) they use.

Creators of EDIF also addressed stability by giving ownership to a standards
organization that managed changes. Using a standards organization to manage
the contents of performance model interchange formats should be considered
after stakeholders have established a viable version that meets essential needs.

For stability, the features we considered are those supported by commercial
tools or popular open source tools. We do not specifically address features of
more theoretical performance modeling results such as negative customers or
triggers. Theoretical features should be represented in a different meta-model
until they become well-established, are generally supported by tools, and are
regularly used by practitioners.

In selecting the features for this level, we sought to add functions in a way that
older models specified according to the PMIF would still be valid according to
the PMIF+ meta-model. This increases stability because older model instances
would not need to be updated.

Ideally the features selected for the PMIF extensions would include all the
features listed below; however, supporting some of these features can be difficult
depending on the modeling tools used. For example, classic techniques and tools
support primitives for modeling computer systems such as waiting for and set-
ting events. Events can then be used to model various types of synchronization
among workloads. More modern tools and techniques provide higher level con-
structs for features common in todays computer systems, such as getting and
putting data in buffers. There may not be a primitive called buffer in a clas-
sic tool; buffer behavior must be implemented using the lower-level primitives.

PMIF+: Extensions to Broaden the Scope of Supported Models 137

The PMIF extensions should support available features going forward, so we
sought a mechanism to address both the newer features and the classic ones.

The EDIF philosophy is to import/export everything and to make appropriate
substitutions for features that tools cannot handle. So tools can replace features
they do not support by mapping them onto their own primitives.

Best practices in Service Oriented Architectures as defined by [8] suggest
generalizing the definition of context dependent settings. In particular, the Val-
idation Abstraction pattern suggests replacing constraints in meta-models with
more general specifications. So, for example, rather than using an enumerated
type explicitly defining queue scheduling disciplines, the pattern suggests defin-
ing it as a string. That allows tools to defer attribute validation and makes
the interchange format evolution easier because meta-models do not have to be
changed for every new queue scheduling discipline. The downside is that tools
must be prepared to handle a situation when a feature is specified that the tool
does not support. For example, if an unsupported queue scheduling discipline
is specified, the tool could reject the model and return an error, or substitute
another supported queue scheduling discipline and report the substitution.

As a consequence, the features considered for extending the scope of models
supported by PMIF are as follows:

– Wait/Queue/Set Event - An Event may be Set or Cleared. Workloads may
Wait or Queue for an event to be Set. When an event is Set, all waiting
workloads and one queued workload may proceed.

– Allocate/Deallocate Resource - When access to a passive resource is re-
stricted, a workload may request access and wait in a queue until the resource
is Allocated. When access to the resource is no longer needed the workload
Deallocates the resource. A scheduling policy determines the next workload
to receive the Allocation.

– Create/Destroy Token - A Token is a special type of passive resource. In
addition to Allocate/Deallocate, it is possible to dynamically Create and
Destroy the token.

– Get/Put Buffer - A Buffer is another special type of passive resource, with
a specified initial size (therefore it uses Get/Put operations instead of Al-
locate/Deallocate). Get requests the specified quantity from the Buffer and
waits until it is available. Put adds the specified quantity to the Buffer and
waits if there is insufficient space.

– Send/Receive Message - A mailbox is a container for holding messages. A
workload can Send a message to a mailbox. A workload can Receive a mes-
sage from a mailbox; if the mailbox is empty, the workload waits until the
next message is Sent to that mailbox.

– Call/Accept/Return Synchronization Point - A workload may Call another
workload and wait for the called workload to signal that it has completed the
request; the called workload Accepts the request and Returns to the waiting
workload.

– Fork/Split/Join Workload - A workload may Fork or Split into one or more
child workloads that execute concurrently. Forked workloads later Join; the

138 C.M. Lladó and C.U. Smith

parent workload waits until all child workloads Join, then the parent work-
load resumes execution. Split workloads do not join, they eventually complete
and leave the system.

– Phase Change - A workload may have distinct execution characteristics such
as routing, resource consumption, or passive resource usage. A Phase iden-
tifier distinguishes the behavior specifications; phases may Change at spe-
cific execution points, and execution output metrics may be associated with
Phases.

– Priority - Workloads may have a Priority that controls queue scheduling. A
higher priority workload is ahead of a lower priority one. For equal priorities
the scheduling is usually first-come, first-served. Priorities may be changed
during execution.

– Allocate/Deallocate/Add Memory - Memory is a special kind of resource,
with an initial quantity. A workload can request allocation of a specific
amount of memory and may queue if it is not available. Allocate requests a
specified amount of a memory, the workload must wait if it is not available.
Deallocate releases the specified amount of the specified memory; the waiting
workloads which will fit are allocated, but a lower priority workload cannot
go ahead of a higher priority one. Add increases the amount of a specified
Memory.

– External Resource - represents resource usage outside the modeled sys-
tem. It is usually represented by a delay server if at all, needs no explicit
representation in the meta-model, and is not addressed further.

– Sub-model - represents a collection of queues/servers that may be grouped
together. It may represent hierarchy in the system where the collection is
represented at a higher level of detail by a single queue that represents
the behavior of the collection. Sub-models may be useful for approximate
solution techniques, and/or for aggregating execution output metrics.

– Compute - represents a point in execution where statistics may be calculated
and used in execution behavior specifications.

– User-written Subroutine - is a mechanism for specifying customized execu-
tion behavior in a tool-dependent manner. It is usually written in a language
recognized by a simulation tool or compiled code that may be called at a
specified point in execution.

– Interrupt - is a mechanism for halting the execution of a workload and
specifying alternate behavior.

– Arrival and Service Distributions - a broader set of stochastic distribu-
tions can be used when solving models with simulation and approximation
methods.

– Queue Scheduling Disciplines - additional disciplines can be used to
determine the next workload selected from a queue.

We have omitted several simulation run control features that were included in
our earlier proposal such as reset counters, re-running a simulation, specification
of stopping conditions, etc. We propose that these features logically belong in
the Experiment specifications [18]. Future work will augment the Experiment
and output specifications for the extended models.

PMIF+: Extensions to Broaden the Scope of Supported Models 139

Several features in the list are difficult to represent and implement. Compute
statements, User-written subroutines and Interrupt have no simple substitution
for tools without these capabilities. These features are not widely supported by
tools, and in our experience are used infrequently. Therefore, they are omitted
from this level of the PMIF+ meta-model. Sub-models are useful abstractions of
processing details. Some theoretical model approximations have been proposed in
the literature for solving sub-models with particular properties and substituting
the calculated solution in higher level models. Sub-models are not yet established
well enough to propose a general semantic that could be used in multiple tools.
We have also deferred sub-models for a future level of PMIF+.

3 Meta-model Representations of PMIF Extensions

We considered two approaches for representing the new features. The first ap-
proach is derived from Information Process Graphs (IPGs) [13,19], a graphical
representation of performance models. IPGs use special nodes to represent points
in execution where special behavior occurs such as waiting for an event. The sec-
ond approach defines service requests (ServiceRequestPlus) for the new features.
A combination of active and passive service requests can be made at any node.
The two approaches, their advantages and disadvantages are described first, then
the meta-model of the selected approach is presented in Section 4.

IPGs were first supported by performance modeling tools such as the Perfor-
mance Analyst Workbench (PAWS) developed by a company then called Sci-
entific and Engineering Software (both the tool and the company have since
changed names and ownership and that tool is no longer available). IPGs were
subsequently used to explain advanced modeling features for performance
engineering in [19].

The primary advantages of IPGs are: facilitating the visualization of per-
formance model details, and representing most of the performance aspects of
computer systems. Figure 1 shows an excerpt of a meta-model of the IPG-based
approach. It adds a SpecialServer abstract node that may be Phase change, Al-
locate, Release, Fork, Join, etc. A SpecialServiceRequest provides specifications
for the behavior at each of the nodes. Workloads can visit the SpecialServer with
normal routing specifications.

One disadvantage of this approach is that it is difficult to determine from the
textual representation (in xmi format) what the model represents, and what is
the sequence of processing steps. The model representation also tends to be ver-
bose because the extra nodes require extra specifications to route Workloads to
the SpecialServer nodes and then to regular Servers for normal processing. An-
other disadvantage of IPGs is that they do not explicitly represent some higher-
level features that are common in today’s computer systems such as buffers and
message passing. They do, however, provide low level primitives that allow the
representation of those features as well as more complex behavior.

The second approach does not require a SpecialServer for each of the new
features; Instead any Server may have one or more ServiceRequestPlus with an

140 C.M. Lladó and C.U. Smith

Fig. 1. IPG-based approach Fig. 2. ServiceRequestPlus approach

optional sequenceNumber that specifies the order of execution when ordering
is required. Figure 2 shows an excerpt of the meta-model for this approach.
With this approach PassiveService requests specify the Command such as al-
locate/deallocate, specify the quantity, and reference the PassiveEntity. Several
requests can be made at any node.

The primary advantage of this approach is that the extra features added with
PMIF+ do not invalidate models that were specified with the meta-model version
of the regular PMIF models. Thus it is not necessary to add an EDIF-like “level
of support” for these new features, the newer meta-model can be used for both
new and original features. Another advantage is that it is much easier to add
new features to support. It is usually only necessary to add new commands;
new features do not also need a new type of node with a new type of service
request for the node. We were able to add many new features such as buffers and
mailboxes that were not in the original IPGs. Also, multiple ServiceRequestPlus
can be combined without having to move to another type of node, and for those
cases it is easier to understand the processing steps in the model. The focus is
on the processing steps required rather than on the node where they occur. The
resulting model may also be less verbose.

The primary disadvantage is that there is no specified graphical depiction for
models that correspond to this meta-model. The purpose of the meta-model,
however, is not its depiction but the specification of semantic details sufficient
for its solution. A minor inconvenience also occurs in some models when it is
necessary to create a Server just to have a place to specify ServiceRequestPlus
when no ActiveService is required.

We adopted the second approach with the ServiceRequestPlus. The ease of
adding features and the ability to use the new meta-model for original models
outweigh the benefit of the graphical depiction of the other version of the meta-
model. Most of the extensions adopted in Section 2 have similar behavior: they
request a passive resource, may have to wait for it, then release it which may
cause it to be given to another waiting workload. The Fork/Join, however, causes
additional workloads to begin parallel execution and the parent workload needs
a place to wait for their completion that does not block the execution of other

PMIF+: Extensions to Broaden the Scope of Supported Models 141

workloads. Therefore we created a Fork/Join node for that purpose, but use the
ServiceRequestPlus approach for all the other extensions.

We have also developed specific enumerations of scheduling policies and prob-
ability distributions (shown in the next section) that we consider to be part of
PMIF+. For a specific implementation, it is possible to instead use the Valida-
tion Abstraction pattern [8] by substituting a “string” type rather than using
our SchedulingPolicy and Distribution types. We thought it is best to define in
the PMIF+ meta-model the options that could be in a PMIF+ model.

4 PMIF+ Meta-model

The PMIF+ meta-model for the approach adopted is in Figure 3. Elements that
are added for PMIF+ are yellow and original features are green (shaded gray if
viewed in black and white).

A QueueingNetworkModel2 is composed of: one or more Nodes, one or more
Workloads, one or more ServiceRequests, and zero or more PassiveEntities. Sev-
eral types of Nodes may be used in constructing a QueueingNetworkModel :

– Server represents a component of the execution environment that provides
some active processing service. A Server may be a WorkUnitServer that
executes a fixed amount of work (processing service) for each Workload that
makes a request for service.

– NonServerNode represents nodes that show topology of the model, but do
not provide service. The Server has an extended schedulingPolicy as shown
in Figure 3. There are three types of NonServerNodes
• SourceNode represents the origin of an OpenWorkload
• SinkNode represents the exit point of an OpenWorkload
• ForkJoin represents a component of the execution environment that han-
dles Fork and Join operations. When the willJoin attribute is true, it is a
Fork and the parent waits for all children (ForkWorkloads, see below) to
complete and return to the same node to do the Join. When willJoin is
false, it is a Split; the parent continues execution and the child workloads
exit the system upon completion.

A Server provides service for one or moreWorkloads. AWorkload represents a
collection of transactions or jobs that make similar ServiceRequests from Servers
and may have a priority. There are several types of Workloads :

– OpenWorkload represents a workload with a potentially infinite population
where transactions arrive from the outside world, receive service, and exit.
The population of the OpenWorkload at any point in time is variable.

– ClosedWorkload represents a workload with a fixed population that circu-
lates among the Servers. A closed workload has a ThinkDevice or indepen-
dent delay node characterized by its thinkTime (average interval of time that
elapses between the completion of a transaction or job and the submission
of the next transaction or job).

2 We opted not to change the name to QueueingNetworkModelPlus so that previous
models are still compatible with this meta-model.

142 C.M. Lladó and C.U. Smith

– ForkWorkload represents a child workload with a maximum population that
is created by its parent at a point in execution (at a ForkJoin node).

– Workload represents a different Phase for an already existing workload that
can be any of the above.

Upon arrival or creation, OpenWorkloads, ClosedWorkloads, and ForkWork-
loads transitFirst to other Nodes with a specified probability.

A service request associates the Workloads with Servers. A ServiceRequest
specifies the average TimeService, DemandService, WorkUnitService or a Ser-
viceRequestPlus provided for each Workload that visits the Server. The different
types of ServiceRequest are:

– TimeServiceRequest specifies the average service time and number of visits
provided for each Workload that visits the Server.

– DemandServiceRequest specifies the average service demand (service time
multiplied by number of visits) provided for each Workload that visits the
Server.

– WorkUnitServiceRequest specifies the average number of visits requested by
each Workload that visits a WorkUnitServer.

– ServiceRequestPlus specifies a combination of active and passive service re-
quests that can be made at any node with an optional sequenceNumber which
specifies the order of execution of these requests when ordering is required.

Note that sequence numbers are increasing but need not be consecutive.
PassiveService requests specify the command, the quantity, and reference the
PassiveEntity. Table 1 shows the different options for PassiveEntity with the
associated commands, as described in Section 2. Some of the commands are
shared with different PassiveEntities.

Note that PassiveService does not normally block the server, it only blocks
the workload. It has an optional attribute, blocksServer which is set to True
when the server needs also to be blocked. ActiveService requests specify a
service time similar to the TimeServiceRequest. They may use a special Prob-
abilityDistribution or a load dependent service time. The latter is specified
as a string which will be interpreted by the tool.

Table 1. ServiceRequestPlus attribute options

Pas. Entity Commands Pas. Entity Commands

timer start/stop event wait/queue/set/clear
mailbox send/receive buffer get/put/create/destroy
resource allocate/deallocate memory allocate/deallocate/add
token wait/queue/create/destroy syncpoint callreturn/accept/return

Upon completion of the ServiceRequest, the Workload Transits to other Nodes
with a specified probability. A Transit may be a TransitPlus that specifies that
the Workload changes to a newWorkload and/or specifies a type of dependent

PMIF+: Extensions to Broaden the Scope of Supported Models 143

F
ig
.
3
.
P
M
IF

+
m
et
a
-m

o
d
el

144 C.M. Lladó and C.U. Smith

routing (shown in Figure 3). The Phase change feature from Section 2 can be
represented by allowing workloads to change to another workload using the
newWorkload specification. This represents phase-change behavior with simpler
specifications. The newWorkload specification may also be used to change the
priority of a Workload.

The specification of aProbabilityDistribution different fromExponential (which
is the default) is allowed for arrivalRate of OpenWorkload, thinkTime of Closed-
Workload and serviceTime of ActiveService (so a SeviceRequestPlus needs to be
specified in this case). The ProbabilityDistribution specification indicates the dis-
tributionType and two parameters for the distribution values. There is also an
optional toolSpecification for the case of a tool specific distribution.

5 Validation

We have validated the PMIF+ meta-model by constructing test models of all
features, then creating and solving those models in two very different modeling
tools: Qnap [14], and SPE-ED [21]. We have also created and solved a more
complex model of an actual system that uses several of the new features in com-
bination and compared simulation results. This confirms that it is feasible to
represent and solve all the included features, that we have defined the features
correctly with all necessary data specified, and that it is feasible to automat-
ically translate models that conform to the PMIF+ meta-model into different
modeling tools. It is beyond the scope of this paper to cover all these examples.
Instead, we have selected two examples that require solutions with analytical ap-
proximations or simulation and illustrate common behavior patterns: requiring
exclusive access to a resource and waiting if it is not available, and a Fork/Join
example. The subsections below explain the examples, discuss implementation
differences in the two tools, and present results from the two tools for comparison
and validation.

5.1 Fork/Join Examples

We start with a simple Fork/Join example that has two versions. It has an open
workload, which does some work at CPUA and then Forks. Version 1 (V1) Forks
into 3 different workloads (1 child each), each of them going to a specific CPU
(CPU1, CPU2, CPU3), and when all finish the Join happens, and the parent
workload leaves the system. Version 2 (V2) Forks into 1 workload with 3 children
who go to CPU1, CPU2 or CPU3 with probability 1/3, and again when all 3
children finish the parent workload leaves the system.

The model conforming to the PMIF+ ecore meta-model is created in Eclipse [1]
with the Create Dynamic Instance command. This ensures that the model in-
stance conforms to the meta-model, that all required attributes are specified, and
that there is a way of specifying all necessary parameters. An excerpt of the xmi
specification for V1 is as follows (we include only one of the three ForkWorkloads,
only one of the Servers, and one of the ServiceRequests specifications since the
others are similar):

PMIF+: Extensions to Broaden the Scope of Supported Models 145

<workloads x s i : type=”csqnmm : OpenWorkload” name=”C1” ar r i va lRat e=” 1 . 0 ”
a r r i v e sAt=”//@nodes . 6 ” departsAt=”//@nodes . 5 ”>

<t r a n s i t F i r s t to=”//@nodes . 0 ” p r obab i l i t y=” 1 . 0 ”/>
</workloads>
<workloads x s i : type=”csqnmm : ForkWorkload ” name=”ForkC1” quant i ty=”1”

parent=”//@workloads . 3 ”>
<t r a n s i t F i r s t to=”//@nodes . 1 ” p r obab i l i t y=” 1 . 0 ”/>

</workloads> . . .
<nodes x s i : type=”csqnmm : Serve r ” name=”CPUA”/> . . .
<nodes x s i : type=”csqnmm : ForkJoin ” name=”ForkNode” forkWorkload=

”//@workloads . 0 //@workloads . 1 //@workloads . 2 ” w i l l J o i n=” true ”/>

<s e rv i c eReque s t s x s i : type=”csqnmm : TimeServiceRequest” s e rv e r=”//@nodes . 1 ”
workload=”//@workloads . 0 ” se rv i c eTime=” 0 . 4 ”> . . .

V2 needs only 1 forkWorkload specification, with 3 different Transits, each of
them equally likely. The complete specification of all the examples can be found
at dmi.uib.es/~cllado/mifs/.

The Fork/Join implementation in Qnap is fairly straightforward. Workloads
are translated to Classes and the ForkJoin node is translated into two queues
with infinite server scheduling and service time 0. The Fork happens at one queue
with a Qnap Split operation; and the Join happens at the other queue with a
Qnap Match.

The SPE-ED implementation uses a table-driven simulation using the process-
oriented CSIM [11] for the simulation engine. The Fork is implemented by creat-
ing new processes. They execute in a different address space than the parent, so
the create command passes a pointer to an event, and each child sets the event
to true when it reaches the Join point. The parent process waits until all child
processes have set the event then it proceeds.

The results for Qnap and SPE-ED are in Table 2. Note that in V2, even
though the child workloads are equally likely to visit CPU1-3, probabilistically
they will sometimes end up going to the same CPU, which is reflected in the
Response and Residence Time results. This difference lets us test both types of
Fork/Join and confirm that the models have been correctly implemented.

Table 2. Fork/Join Results

Example Response Residence Time Utilization
CPUA CPU1 CPU2 CPU3 CPUA CPU1 CPU2 CPU3

ForkJoinV1
Qnap 1.829 0.6696 0.6655 0.6673 0.6659 0.4011 0.3999 0.4001 0.4000

SPE-ED 1.827 0.6662 0.6647 0.6686 0.6667 0.4002 0.3994 0.4006 0.4001
ForkJoinV2

Qnap 2.182 0.6641 1.002 0.9961 1.004 0.4000 0.4002 0.3992 0.3999
SPE-ED 2.085 0.6676 0.8932 0.8901 0.8942 0.3996 0.4009 0.4004 0.4009

5.2 Buffer Example

This example represents the other general type of passive resource behavior: re-
questing a passive resource, possibly waiting, then releasing it which may sched-
ule another waiting workload. It uses two different ProbabilityDistributions, and
buffers for synchronization between processes, which is supported differently in
the two tools.

dmi.uib.es/~cllado/mifs/

146 C.M. Lladó and C.U. Smith

The example has a pipe and filter architectural style. Data arrives from an
external source at a constant arrival rate of 1 unit per second, it is processed
by the first (open) workload, GetIm, then put in a buffer. The second (closed)
workload, Spatial, after a thinkTime of 0, begins with a get from that buffer,
when the data arrives Spatial processes it, then puts it to another buffer, and the
cycle repeats. Three other “downstream” closed workloads, Temporal, Thresh-
old, Paths, do the same. Each workload executes on its own processor so the
workloads can execute in parallel. Workloads may have to wait on a get for data
to arrive in the buffer, or at a put if there is not space in the buffer because a
downstream process has not yet processed earlier data.

The following shows an excerpt of the xmi specification with a ServiceRequest-
Plus for one of the workloads at its CPU. The get/put commands are specified
(on different buffers) as PassiveServices as well as an ActiveService which is a
Normal service time distribution.

<s e rv i c eReque s t s x s i : type=”csqnmm : Serv i ceRequestP lus”
s e rv e r=”//@nodes . 4 ” workload=”//@workloads . 1 ”>

<t r an s i tNex t to=”//@nodes . 3 ” p rob ab i l i t y=” 1 . 0 ”/>
<s e r v i c e x s i : type=”csqnmm : Pas s i v eS e rv i c e ” sequenceNumber=”1”

command=” get ” pas s i v eEnt i t y=”// @pas s i v eEnt i t i e s . 0 ”/>
<s e r v i c e x s i : type=”csqnmm : Pas s i v eS e rv i c e ” sequenceNumber=”3”

command=”put” pa s s i v eEnt i t y=”// @pas s i v eEnt i t i e s . 1 ”/>
<s e r v i c e x s i : type=”csqnmm : Ac t i v eSe rv i c e” sequenceNumber=”2”>

<s e rv i c eT imeDi s t r i bu t i on d i s t r i bu t i onType=”normal”
parameter1=” 0.279 ” parameter2=” 1 . 0E−5”/> . . .

The Buffer implementation in Qnap is easily done with Semaphores, which
consist of a queue and a counter. The counter is the number of pass grants avail-
able if positive, and the number of customers waiting if negative. The workload
that puts data to the buffer produces a pass grant for the semaphore, and the
workload that gets data from the buffer asks the semaphore for a pass grant and
it waits if the value of the counter is ≤ 0.

The implementation in SPE-ED is also easy. CSIM has a buffer type that is
declared and a size specified; operations sendRequest and receiveRequest have
the desired semantics and CSIM manages the waiting/activation of processes
when appropriate. Both constant and normal probability distributions (and oth-
ers) are supported by CSIM.

The results are shown in Table 3. Because of the constant arrival rate, and
normal service time distribution, the results are identical except for the precision
reported thus confirming that the models have been correctly implemented.

Table 3. Buffer Results

Example Latency Response Time
GetIm Spatial Temporal Threshold Paths

Qnap 0,4864 0.0869 0.2792 0.1110 0.0090 0.0003
SPE-ED 0.486 0.087 0.279 0.111 0.009 0.000

PMIF+: Extensions to Broaden the Scope of Supported Models 147

6 Conclusions

This paper presents extensions to PMIF to relax the constraint that specified
models must be solvable with efficient, exact solution algorithms. It describes
the features that were considered, their semantics, and the requirements for the
selection of extensions. Most extensions are included and we provided reasons
for excluding some. Contributions of this work include:

– A powerful set of extensions that can represent and analyze the performance
of most if not all types of systems

– An easily extendable approach - it is easy to add passive entities and
commands for new behavior

– One meta-model that can be used for both efficient, exact solutions and
simulation or approximate solutions

– One meta-model that can be supported by both classic tools with model-
ing primitives (e.g., semaphores) and newer tools that directly support new
features (e.g., buffers)

– An approach that supports both automatic transformation (e.g., ATL/Ac-
celeo) of models to tool-specific input and automatic generation of code to
support the meta-model with an import/export interface

– A flexible approach that allows tools to select features that they will support,
when they will make substitutions for something similar they support, and
when they will not attempt to solve models because they include features
that they do not wish to handle (e.g., some dependent routing specifications)

– It is relatively easy to understand models that conform to PMIF+ (as
illustrated in the validation section).

Future work will implement and test additional case studies that combine
different sets of features. Then we will adapt the companion specifications for
output and experiments for PMIF+ and include additional simulation control
features in the experiment specification. We will also develop ATL transforma-
tions and/or import/export interfaces for Qnap, SPE-ED, and other tools. Fi-
nally, we also envision to work on a model to model transformation from PMIF+
to Petri Nets.

Acknowledgments. Thiswork is partially funded by the TIN2010-16345project
of the Ministerio de Educacion y Ciencia, Spain. Smith’s early participation was
sponsored by USAir Force Contract FA8750-11-C-0059; the contract ended before
this work was completed.

References

1. Eclipse modeling project, http://www.eclipse.org/modeling
2. EDIF, Electronic Design Interchange Format,

http://en.wikipedia.org/wiki/EDIF

3. Mesquite software, http://www.mesquite.com

http://www.eclipse.org/modeling
http://en.wikipedia.org/wiki/EDIF
http://www.mesquite.com

148 C.M. Lladó and C.U. Smith

4. Puma project: Core scenario model, http://www.sce.carleton.ca/rads/puma/
5. Electronics Industries Association. CDIF - CASE Data Interchange Format

Overview, EIA/IS-106 (1994)
6. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-

driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)
7. Bertoli, M., Casale, G., Serazzi, G.: Jmt: performance engineering tools for system

modeling. SIGMETRICS Perform. Eval. Rev. 36(4), 10–15 (2009)
8. Erl, T.: SOA Design Patterns. Prentice Hall (2009)
9. Grassi, V., Mirandola, R., Sabetta, A.: From design to analysis models: A kernel

language for performance and reliability analysis of component-based systems. In:
Proc. of the Fifth International Workshop on Software and Performance (WOSP),
pp. 25–36 (July 2005)

10. Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: Klaper: An intermediate
language for model-driven predictive analysis of performance and reliability. In:
Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component
Modeling Example. LNCS, vol. 5153, pp. 327–356. Springer, Heidelberg (2008)

11. Mesquite Software Inc., http://www.mesquite.com
12. Moreno, G.A., Smith, C.U.: Performance analysis of real-time component architec-

tures: An enhanced model interchange approach. Performance Evaluation, Special
Issue on Software and Performance 67, 612–633 (2010)

13. Neuse, D.M., Browne, J.C.: Graphical tools for software system performance engi-
neering. In: Proc. Computer Measurement Group, Washington, D.C. (1983)

14. Simulog. Modline 2.0 qnap2 9.3: Reference manual (1996)
15. Smith, C.U., Lladó, C.M.: Model interoperability for performance engineering: Sur-

vey of milestones and evolution. In: Hummel, K.A., Hlavacs, H., Gansterer, W.
(eds.) PERFORM 2010 (Haring Festschrift). LNCS, vol. 6821, pp. 10–23. Springer,
Heidelberg (2011)

16. Smith, C.U., Lladó, C.M., Puigjaner, R.: Performance Model Interchange Format
(PMIF 2): A comprehensive approach to queueing network model interoperability.
Performance Evaluation 67(7), 548–568 (2010)

17. Smith, C.U., Lladó, C.M., Puigjaner, R.: Pmif extensions: Increasing the scope of
supported models. In: Proc. of the 1st Joint WOSP/SIPEW International Confer-
ence on Performance Engineering (ICPE), pp. 255–256 (Jannuary 2010)

18. Smith, C.U., Lladó, C.M., Puigjaner, R.: Model interchange format specifications
for experiments, output and results. The Computer Journal (2011)

19. Smith, C.U.: Performance Engineering of Software Systems. Addison-Wesley (1990)
20. Smith, C.U., Williams, L.G.: A performance model interchange format. Journal of

Systems and Software 49(1), 63–80 (1999)
21. SPE-ED. LS Computer Technology Inc. Performance Engineering Services Divi-

sion, www.spe-ed.com
22. Woodside, C.M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.:

Performance by unified model analysis (PUMA). In: Proc. of the Fifth International
Workshop on Software and Performance (WOSP), pp. 1–12 (July 2005)

http://www.sce.carleton.ca/rads/puma/
http://www.mesquite.com
www.spe-ed.com

Performance Regression Unit Testing:

A Case Study

Vojtěch Horký, Frantǐsek Haas, Jaroslav Kotrč, Martin Lacina, and Petr Tůma

Department of Distributed and Dependable Systems
Charles University in Prague, Faculty of Mathematics and Physics

Malostranské náměst́ı 25, 118 00 Prague 1, Czech Republic
{horky,tuma}@d3s.mff.cuni.cz

Abstract. Including performance tests as a part of unit testing is
technically more difficult than including functional tests – besides the
usual challenges of performance measurement, specifying and testing the
correctness conditions is also more complex. In earlier work, we have pro-
posed a formalism for expressing these conditions, the Stochastic Perfor-
mance Logic. In this paper, we evaluate our formalism in the context of
performance unit testing of JDOM, an open source project for working
with XML data. We focus on the ability to capture and test developer
assumptions and on the practical behavior of the built in hypothesis
testing when the formal assumptions of the tests are not met.

Keywords: Stochastic Performance Logic, regression testing, perfor-
mance testing, unit testing, performance evaluation.

1 Introduction

Software testing is an established part of the software development process. Be-
sides functional testing, where the correctness of the implementation with respect
to functional requirements is assessed, it is also possible to employ performance
testing, that is, to assess the temporal behavior of the implementation. This
paper deals with performance testing during the software development process.

In general terms, the goal of performance testing is making sure that the
system under test executes fast enough. What exactly is fast enough, however,
depends on the context in which the performance testing is performed. When
evaluating the end-to-end performance of a complete software system or a rea-
sonably large component, the performance requirements are often derived from
the application function or from the user expectations. Examples of such require-
ments include the time limit for decoding a frame in a video stream, determined
from the frame rate, or the time limit for serving a web page in an interactive
application, determined from the studies of user attention span. Importantly,
these requirements can be naturally expressed in terms of absolute time limits.

The software development process, however, also employs testing before large
system components are available. In a process called unit testing, individual

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 149–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

150 V. Horký et al.

functions are evaluated alone. In this context, performance testing against abso-
lute time limits is much less practical. To begin with, it is difficult to determine
how fast an individual function or method should execute when the overall sys-
tem performance, rather than the unit performance, remains the ultimate crite-
rion. It is also difficult to scale the absolute time limits to reflect their platform
dependence. Hence, unit testing of performance requirements is rare.

Working on our long term goal of unit testing of performance, we have ar-
gued [2] that it is often reasonable to express performance requirements as rela-
tive time limits, using the execution time of similar functions or methods as the
baseline. For example, memory-bound methods can be compared with the mem-
ory copy operation. Analogously, processor-bound methods can be compared
with a baseline computation. In the same work, we have also introduced the
Stochastic Performance Logic (SPL), a mathematical formalism for expressing
and evaluating such performance requirements. Our previous work focused on
introducing the SPL formalism on a theoretical level, here we evaluate the use
of SPL for unit testing of performance on a case study.

The paper proceeds with Section 2, which introduces various aspects of our en-
vironment for unit testing of performance in Java – it outlines the formalism for
specifying the performance test criteria, explains the test construction, discusses
the test workload, and summarizes the implemented test tool features. Following
that, Section 3 introduces the case study we use to evaluate our environment.
Section 4 discusses detailed technical issues related to the case study, includ-
ing portability, sensitivity to execution time changes and overall test duration.
Section 5 presents the related work. Section 6 concludes the paper.

2 SPL Unit Testing Environment

As suggested in the introduction, absolute time limits are not suitable criteria
in unit testing of performance. The complexity of the contemporary software
development platforms all but prevents developers from estimating the expected
performance of individual functions or methods while coding. It is possible to
measure the implementation after initial coding and derive the time limit from
the observed performance, but such approach is evidently time consuming and
error prone.

Even if the absolute time limits were somehow deduced, their portability be-
comes an issue. Platform dependent factors such as processor speed or cache size
directly impact observed performance. A time limit that is tuned on a partic-
ular processor – that is, one loose enough to reliably accept the correct imple-
mentation but strict enough to be sensitive to performance regressions – would
likely trigger erroneous test failures on a slower platform and miss performance
regressions on a faster platform.

An alternative to the absolute time limits is comparing the performance of the
tested function to the performance of a reasonably similar baseline function [2].
Comparison to a properly chosen baseline function can be both more intuitive
and more portable – for example, the developer can relate the performance of

Performance Regression Unit Testing: A Case Study 151

a binary tree search function on a tree of certain size to the performance of
a linked list search function on a list of logarithmically smaller size. Working
with the assumption that the list search time is a linear function of the list size,
the developer thus asserts that the tree search time should be a logarithmic
function of the tree size, and that a single step in traversing the tree should
be similar to a single step in traversing the list. Both are reasonable assertions
that would be difficult to express using absolute time limits. Furthermore, the
performance of both the tree search and the list search is likely to change in
a similar manner when the test is carried over to a different platform, making
the comparison somewhat portable. Although such portability is certainly not
absolute, it represents an improvement over the absolute time limits as well.

The obvious challenge is choosing an appropriate baseline function. When
testing an initial implementation of a function, trial and error remains the ob-
vious – but not very efficient – method. In the context of unit testing, however,
tests are also constructed to detect regressions, in which case an earlier version
of the same function is an obvious baseline candidate. Using relative time limits,
the developer can easily assert that the current version of a function should not
be slower than an earlier version of known sufficient performance, or that the
current version of a function should be faster than an earlier version it is meant
to improve upon.

Because the performance of a function is likely to change between invocations,
a test must collect multiple observations. A time limit can then be interpreted in
multiple ways – for example, as a limit that no single invocation should exceed,
or as a limit that an average of all invocations should not exceed. To introduce
the necessary rigor into the interpretation of the criteria specification, we have
introduced the Stochastic Performance Logic (SPL) [2], a many-sorted first-order
logic with operators for comparing performance of multiple functions against
each other. Example (1) uses SPL to assert that the mean execution time of
the encryption function encrypt() will not exceed the mean execution time of
the memory copy function memcopy by more than a factor of 200 when used on
inputs of sizes 1024, 16384 and 65536.

∀n ∈ {1024, 16384, 65536} : Perf encrypt(n) <p(id,λx.200x) Perf memcopy(n) (1)

In the SPL notation, Perf (n) stands for the execution time on input of size
n, <p(id,λx.200x) denotes comparison after transforming the left operand by an
identity function and the right operand by a lambda function that multiplies the
execution time by a constant. An important property of SPL is that the execu-
tion times, Perf encrypt(n) and Perf memcopy(n) in Example (1), are not treated
as numbers but as random variables parametrized by the function argument
size. Evaluating an SPL formula then amounts to statistical hypothesis testing
on observations collected during testing. The proposed interpretation relies on
Welch’s t-test [17] for hypothesis testing, as discussed later.

For sake of brevity, we limit our introduction to SPL to this example. The
reader is invited to check [2] for additional details.

152 V. Horký et al.

2.1 Performance Test Construction

For unit testing to be efficient, the process of test construction must remain
simple. In functional testing, a test is often as simple as a method invocation
and a test assertion. Listing 1 illustrates that in performance testing, even a
simple test is more complex.

Random rnd = new Random();

long durations [] = new long[SAMPLE_COUNT];

for (long i = 0; i < SAMPLE_COUNT ; i++) {

int param = rnd.nextInt ();

long start = System.nanoTime ();

testedMethod (param);

long end = System.nanoTime ();

durations [i] = end - start;

}

assertMeanLessThan (durations , 3.5);

Listing 1. Hypothetical performance test

Although Listing 1 tests performance of a simple method with an argument of
a primitive type, the amount of boilerplate dealing with test iteration and time
measurement is fairly high. We therefore adopt a test construction approach
where the iteration and measurement code is provided by the environment and
the test code only specifies the method to be invoked and the assertion to be
tested.

As another concern, we want to keep the testing and the tested code close to
each other – we believe this simplifies maintenance especially when the tested
code changes and the testing code must follow suit. Our environment for unit
testing of performance allows tests to be specified in annotations of the tested
methods as illustrated in Listing 2 ; it is also possible to specify the test sepa-
rately if necessary.

Listing 2 uses a library method as a baseline for comparison. Besides com-
paring with another method in the same project, our environment also supports
comparing with methods from different versions of the same project and with
methods from different projects.

2.2 Performance Test Workload

To invoke the tested method, the test needs to provide it with input arguments,
which in essence define the workload to be tested. Depending on circumstances,
functional tests would use few typical inputs to assess method correctness under
common workload, and many additional inputs to assess handling of corner cases
or to test against repeated occurrence of earlier errors. In contrast, performance

Performance Regression Unit Testing: A Case Study 153

@SPL(

methods = "javaSort=java.util.Arrays#sort(long [])",

generators = "data=SPL:LongUniform (’0;1000’)",

formula = "for (i {100, 1000, 10000}) "

+ "SELF[data](i) <=(2, 1) javaSort [data](i)"

)

public void fasterSort (long [] data) {

// Tested method ...

}

The method specification identifies code to compare performance to. The generator
provides integer arrays to sort, as discussed later in text. The formula states that
fasterSort should be at least two times faster than javaSort.

Listing 2. Performance test specified in annotations

tests would focus on performance under common workload, which is usually
considered more important than performance in corner cases.

Another difference concerns the number of inputs required. Functional tests
can often test an assertion after a single method invocation. Performance tests re-
quire multiple method invocations to collect a representative set of observations.
Inputs to those invocations should be of similar properties to be perceived as one
workload, but at the same time, they should be randomized to avoid introducing
systematic measurement bias. Listing 2 provides an example of addressing this
requirement by using arrays of equal size but different random content for each
sort invocation.

Given the difference between input arguments to functional and performance
tests, we have decided to rely on separate input argument generators in our
environment. Each test specifies the generator to use, which can be a custom
generator or a predefined generator provided by our environment, such as the
random array generator.

2.3 Tool Features Overview

To conclude the overview of our environment for unit testing of performance,
we briefly list the features of the implemented tools, also available for download
at [16].

At the core of the tools is a command line utility to execute the tests. The
utility scans a given project and locates and executes the tests specified using
the annotations. The results are provided in the form of an HTML report with a
quick overview and a detailed information for each test including visualization of
measurements. An example report fragment is displayed in Figure 1. The utility
can cooperate with both Git and Subversion to fetch particular project versions
used as baselines, it can also use SSH to execute the measurements on a remote
host, which can help improve measurement stability.

154 V. Horký et al.

Fig. 1. Example screenshot of the HTML report

In addition to the core command line utility, we also provide plugins for
the Eclipse integrated development environment and the Hudson continuous
integration server. The Eclipse plugin provides project configuration, annotation
editor with content assist, and interactive results browser (Figure 2) also for
results from Hudson.

3 SPL Unit Testing Case Study

In our previous work on expressing performance requirements as relative time
limits [2], we have focused on introducing the basic ideas behind the requirements
specification formalism. Here, we want to put the ideas to the test by answering
practically motivated questions: How portable are the performance tests ? What
coverage can be achieved with reasonable testing duration ? What accuracy can
be achieved when some underlying test assumptions are not met ? Plus the
ultimate question – are the performance tests something the developers care
about ?

To answer these questions, we perform a retroactive case study – we pick an
existing software project, augment it with tests and evaluate the results. Our
project of choice is JDOM, a software package ”for accessing, manipulating,
and outputting XML data from Java code” [7] – with about 15000 LOC, it is of
reasonable size for an experiment that requires frequent compilation and manual
code inspection ; with over 1500 commits spread across 13 years of development,
it provides ample opportunity to observe performance regressions ; it also has
an open source license and a public source code repository [8].

Our performance tests focus on the SAX builder and the DOM converter as
two essential high level components of JDOM, and on the Verifier class as a

Performance Regression Unit Testing: A Case Study 155

Fig. 2. Example screenshot of the Eclipse plugin

low level component performance critical to JDOM [9]. By looking for keywords
such as ”performance”, ”refactor”, ”improve” or ”faster” in the commit log, we
have identified commits which the developers consider relevant to performance.
We have then written tests that express the developer assumptions about per-
formance, using data from the performance study [9] in the workload generators.
In all, we have 103 performance comparisons over 102 measurements in 58 tests
across 46 commits. All SPL formulas had the same general form as Example (1),
Figure 2 is taken from the case study results.

We report the results collected on an Intel Xeon machine running at 2.33 GHz,
32 kB L1 and 4 MB L2 caches, 8 GB RAM, running 64 bit Fedora 18 with
OpenJDK 1.7. Our portability experiments additionally use an Intel Pentium 4
machine running at 2.2 GHz, 8 kB L1 and 512 kB L2 caches, 512 MB RAM,
running 32 bit Fedora 18 with OpenJDK 1.7, and an Intel Atom machine running
at 1.6 GHz, 24 kB L1 and 512 kB L2 caches, 1 GB RAM, running 32 bit Windows
XP Service Pack 2 with Oracle HotSpot 1.7.1

In the following sections, we select three examples to illustrate the typical
developer assumptions we test. The measurement results for the examples are
given in Table 1.

1 Because our tools require Java 7, we have used it to measure even JDOM versions
created before Java 7 existed. The differences in the virtual machine could potentially
influence measurement results, we have therefore used the Retrotranslator tool [15]
to manually measure selected tests with Java 1.5. The results indicate no significant
difference.

156 V. Horký et al.

Table 1. Selected measurement results. The 10% Q and 90% Q columns show the 10%
and 90% quantiles.

Method Commit Median 10% Q 90% Q

SAXBuilder.build 6a49ef6 9.2ms 9.1ms 9.3ms
SAXBuilder.build 4e27535 11.2ms 11.1ms 11.3ms
Verifier.checkAttributeName 500f9e5 22.5ms 22.5ms 22.6ms
Verifier.checkAttributeName 4ad684a 20.0ms 19.9ms 20.1ms
Verifier.checkAttributeName e069d4c 21.4ms 21.3ms 21.5ms
Verifier.checkAttributeName 1a05718 25.2ms 25.2ms 25.4ms
Verifier.checkElementName e069d4c 31.6ms 28.6ms 31.7ms
Verifier.checkElementName 1a05718 42.6ms 41.3ms 42.8ms

3.1 Case I: Negative Improvement

The first example shows a situation where the developers believed a change will
improve performance significantly, when the opposite was actually true. The
change was introduced with this commit 4e27535 message: ”instead of using
the slow and broken PartialList to make lists live, we’ll be using a faster
and smarter FilterList mechanism . . . it should be faster and consume fewer
resources to traverse a tree” [8].

Table 1 shows the performance from this commit and the preceding commit
6a49ef6 for the build()method of SAX builder. Instead of the expected perfor-
mance improvement, the change actually increased the median execution time
by 22%.

3.2 Case II: Confirmed Improvement

The second example shows a successful performance improvement confirmed by
the performance test. Commit 4ad684a focused on improving performance of the
Verifier class after the developers made their own performance evaluation [9].
Comparison with the preceding commit 500f9e5 in Table 1 indicates the method
execution time decreased by 11%.

3.3 Case III: Measurement

The last example shows a somewhat creative use of a performance test. We fo-
cus on a situation where the developers actually expect a performance problem
and want to assess the magnitude. Such situations can arise for example when
the code is refactored for readability, possibly assuming that performance opti-
mizations would be applied later, or when more complex code replaces previous
implementation.

In the JDOM project, this happened for example between commit e069d4c
and commit 1a05718, where modifications bringing better standard confor-
mance were introduced: ”bringing the letter/digit checks in line with the spec

Performance Regression Unit Testing: A Case Study 157

. . . following the BNF productions more closely now” [8]. By adding a test that
refers to the execution time of a particular method in both versions, the de-
velopers obtain a report that helps assess the magnitude of the performance
change. Table 1 shows the execution times of the checkAttributeName() and
the checkElementName() methods, with the median execution time increasing
by 18% and 35% respectively. Note that the execution times refer to multi-
ple consecutive invocations, since one method invocation would be too short to
measure accurately.

Our experience with these and other examples suggests that unit testing of
performance would help the developers confront their assumptions with mea-
surements with relatively little effort. We have observed six cases where the
developer assumptions were refuted by the tests, which is about one tenth of
all examined assumptions – the retroactive character of our case study does not
allow to guess the developer reaction, however, we can still assume the devel-
opers would find the feedback helpful. For interested readers, we have made the
complete source of our tests and the complete measurement results available on
the web at [16].

4 SPL Case Study Lessons

After illustrating how unit testing of performance addresses realistic developer
concerns, we look at the technical issues related to the use of performance tests
in the case study.

4.1 Platform Portability

Among the features of SPL is the ability to compare performance of multiple
functions against each other. This feature is motivated by the need to make
the test criteria reasonably portable – while it is generally not possible to make
accurate conclusions about performance on one platform from measurements on
another, running the same test on similar platforms should ideally lead to similar
conclusions. In our case study, we therefore look at how the test results differ
between the three different platforms.

We define a metric that describes the relative difference between results of a
single test on two different platforms. Assuming a test condition that compares
performance of functions M and N on platforms 1 and 2, we compute the ra-
tio (M̄1/N̄1)/(M̄2/N̄2) or its reciprocal, whichever is greater, where X̄i denotes
the mean execution time of method X on platform i. A perfectly portable test
condition would preserve the ratio M̄/N̄ on all platforms, giving the portability
metric value of one.

Figure 3 shows a histogram of the portability metric values for all test and
platform pairs in our case study. Most portability metric values are very close
to one, with 96% of values smaller than two and no value greater than five. This
leads us to believe most tests in our case study are indeed reasonably portable.

158 V. Horký et al.

Portability metric value

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
50

10
0

15
0

Fig. 3. Histogram of portability metric values

4.2 Accuracy and False Alarms

Inherent to the nature of performance testing are the issues of accuracy. We
need tests that are sensitive to small changes in performance, however, we also
need to minimize the number of false alarms. The evaluation of SPL formulas is
based on statistical testing of hypotheses on collected measurements, we there-
fore phrase our accuracy requirements in statistical terms – we are interested in
the probability that a test fails to spot a performance change due to Type II
error and in the probability that a test reports a false alarm due to Type I error.

The need to evaluate the probability of test errors is exacerbated by the fact
that we do not meet the statistical test assumptions – the SPL interpretation
relies on Welch’s t-test [17], which assumes two sets of independent observations
of random variables with the same normal distribution. The tests, however, have
no control over the execution time of the tested functions, and therefore also no
control over meeting the statistical test assumptions. Real measurements are
neither normal nor independent.

To investigate the size of execution time changes we can detect, we pick four
functions with very different execution time distributions as examples whose
testing decidedly breaks the statistical test assumptions. The execution time
histograms of the four functions are given on Figure 4 – the distributions are
unimodal with a tail, bimodal with small and large coefficient of variation, and
quadrimodal. For each of the four functions, we calculate the sensitivity of the
performance test to a given change in execution time on a given number of
measurements.

Given a set2 of measurements M of function f , we calculate the sensitivity to
a change of scale s > 1 on n measurements as follows:

1. We use random sampling to split M in halves MX and MY , M = MX &MY .

2. We use random sampling with replacement to create sets of measurements
X and Y of size n, x ∈ X ⇒ x ∈MX , y ∈ Y ⇒ y ∈ MY .

3. We scale one of the sets of measurements by s, Z = {y · s : y ∈ Y }.

2 Strictly speaking, measurements are discrete, hence M is multiset.

Performance Regression Unit Testing: A Case Study 159

8.3 8.5 8.7 8.9

0
20

00
60

00
10

00
0

14
00

0

8.0 9.0 10.0 11.0

0
50

00
10

00
0

15
00

0
20

00
0

8 10 12 14 16 18 20

0
50

0
10

00
15

00
20

00
25

00

25 30 35 40 45 50

0
10

0
30

0
50

0
70

0

Method execution time [ms]

F
re

qu
en

cy

Fig. 4. Execution times of the four example functions

4. We see whether one sided Welch’s t-tests reject the null hypothesis X̄ = Z̄ in
favor of the alternative X̄ > Z̄ and the alternative Z̄ > X̄ with significance
α = 0.01.

The sets X and Z represent hypothetical measurements of f before and after a
change of scale s in execution time. We repeat the steps enough times to estimate
the probability that the tests correctly favor Z̄ > X̄ and the probability that the
tests incorrectly favor X̄ > Z̄, which together characterize the test sensitivity.

Figure 5 plots the test sensitivity, expressed as the two probabilities, for
s = 1.01. The results indicate that for the four functions, mere hundreds of mea-
surements are enough to keep the probability of incorrectly concluding X̄ > Z̄
close to zero, and tens of thousands of measurements are enough to make the
probability of correctly concluding Z̄ > X̄ reasonably high. To save space, we do
not show results for other values of s. These results indicate a test would require
an unreasonably high number of measurements to detect changes of 0.1%, while
changes of 10% are easily detected even from a small number of measurements.

1 10 100 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ● ● ●

1 10 100 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●
● ● ●

1 10 100 1000

0.
0

0.
2

0.
4

0.
6

●

●

●

●

●

●

●
●

●
● ● ● ● ●

●
●

●

●

●

1 10 100 1000

0.
0

0.
2

0.
4

0.
6

● ●● ●
● ● ● ● ● ● ● ● ●

●
●

●

●

Wrong reject
Correct reject

Number of observations

P
ro

ba
bi

lit
y

Fig. 5. Sensitivity to 1% execution time change on the four example functions

Robustness of statistical hypothesis testing on measurements that fail test
assumptions is but one element of accuracy achievable in practice. As explained
in [11], measurements collected in one execution of a program are not necessarily

160 V. Horký et al.

representative of the overall performance of that program – operations that
happen once per execution, such as certain program memory allocations, can
exert systematic influence over all measurements collected in that execution. In
another execution of the same program, this influence can be different, leading
to systematically different measurement results. Figure 6 illustrates this effect
by showing measurements collected in multiple executions of the SAX builder
unit test on the same revision and platform.

7.
5

7.
6

7.
7

7.
8

7.
9

E
xe

cu
tio

n
tim

e
[m

s]

Fig. 6. Measurements from multiple executions of the SAX builder unit test. The
outliers are not shown, whiskers are at 1.5 of inter-quartile range.

A robust solution to this effect requires multiple executions for each test [12],
something that can increase the test duration by an order of magnitude and
is therefore not practical in the unit testing context. A workable alternative is
to relax the tests so that the effect is ignored, an easy step given that the tests
should already include leeway for portability. In our case study, the magnitude of
the effect was about 5%, we would therefore relax the tests by the same amount.
Figure 7 shows the points in the project development history where the SAX
builder unit test would detect increase in execution time when ignoring changes
below 5%.

4.3 Test Duration and Coverage

An important issue in the unit testing context is the test duration. To test a
function, a performance test requires more invocations than a functional test. A
performance test therefore runs for much longer than a functional test of the same
code coverage ; for the sensitivity levels considered in our case study this can be
several orders of magnitude longer. In our case study, we have used performance
tests that cover about 18% of the code, in contrast with the functional tests
that cover almost 90% of the code, as reported by the Eclemma tool in Eclipse.
This yielded an average duration of 27 minutes for a checkout, build and test
of a single commit, compared to 58 seconds for a checkout and a build where
performance is not evaluated.

Another concern related to test duration is the accumulation of tests. If new
functions with new tests were added continuously throughout project develop-
ment, we would soon reach a point where the time needed to collect measure-
ments and evaluate performance would become much too long. Our environment

Performance Regression Unit Testing: A Case Study 161

0 100 200 300 400

8
9

10
12

14

Revisions

E
xe

cu
tio

n
tim

e
[m

s]

●

●

●

●

●

●

Fig. 7. Execution times of SAX builder with detected regressions marked. The markers
denote where tests detect a performance regression over 5%. Data comes from over 400
commits over the entire history, at most one commit per day.

helps alleviate this problem by caching past measurements – the cache records the
host used for measurement and the function and revision measured, preventing
repeated measurement of baseline functions from past revisions.

Besides measurement caching, we use simple guidelines for constructing per-
formance tests that help minimize the number of measurements needed by each
commit:

1. Performance unit tests should be written only for functions that are crucial
to the overall performance. Such functions can be identified for example by
profiling or other performance analysis tools. While it is recommended to
write a functional unit test for every function, writing a performance test
for every function is not reasonable.

2. Only very few performance unit tests – preferably those focused on the over-
all performance – should refer to functions without restricting revision. Other
tests should refer to specific revisions where possible, reducing the number
of tests per revision and making the past measurement cache effective.

3. Performance unit tests should be arranged in groups to allow manually
enabling or disabling test groups as necessary.

The experience collected in our case study indicates adhering to these guide-
lines maintains balance between test duration and coverage that is acceptable
for unit testing during software development. More comprehensive performance
measurements can be delegated to separate testing procedures.

5 Related Work

Related to our work are projects aimed at continuous testing. Among those, the
Skoll project [14] is a decentralized distributed platform for continuous quality
assurance. The execution is feedback-driven: each quality assurance activity is
represented by a task that is executed and once its results are analyzed, other

162 V. Horký et al.

tasks are scheduled as necessary. Multiple strategies for executing dependent
tasks are used to isolate individual problems.

The DataMill project [13] offers a heterogeneous environment for running tests
on different operating systems or on different hardware platforms. No analysis is
integrated in DataMill, instead, the goal is to allow testing software on different
platforms. This makes DataMill an important complement to many performance
testing approaches to resolve the issues related to repeatability of performance
measurements, researched in [12].

On system level, Foo et al. [4] stress the need for automated approach to per-
formance regression testing at system level. The proposed approach is based on
monitoring a set of performance metrics, such as the system load, and comparing
the measurements across different releases. Data-mining and machine-learning
techniques are used to correlate the collected metrics, creating performance
patterns that can indicate performance regressions.

Also on system level, Ghaith et al. [5] propose to use transaction profiles
to identify performance regressions. The profiles are constructed from resource
utilization and do not depend on workload. Comparison of transaction profiles
reveals the regression. In contrast, our approach captures workload dependent
performance, expecting the developers to provide application specific workload
generators.

The problem of identifying the change that caused a performance regression
is tackled in [6]. The authors use functional unit tests as a basic for monitoring
performance regressions. Commit history bisection is used to identify a particular
revision, measurement on individual levels of the call tree are used to locate the
regression in code. It is not yet clear to what extent the methodology can be
automated.

Among the tools targeted at performance unit testing, JUnitPerf [3] and Con-
tiPerf [1] are notable extensions of the JUnit [10] functional unit testing frame-
work. Both tools use absolute time limits to specify performance constraints
evaluated by the tests. Both JUnitPerf and ContiPerf support execution of the
function under test by multiple threads in parallel. Due to integration with JU-
nit, both tools are also supported by environments that support JUnit itself,
including Eclipse and Hudson.

6 Conclusion

The focus of our paper is the use of performance unit testing in an open source
project. We have introduced the concept of testing with relative time constraints
and described a tool suite that facilitates such testing, with the constraints
expressed using the Stochastic Performance Logic.

In a case study, we have used the tool suite to apply performance unit test-
ing to the JDOM open source project. We have extended the project with tests
that evaluate developer assumptions about performance expressed in the project
commit logs, showing that about one tenth of these assumptions was wrong. We
have also used the results to investigate the important questions of portability,

Performance Regression Unit Testing: A Case Study 163

sensitivity to execution time changes and overall test duration. We have shown
that changes in the range of tens of percent can be detected reliably even with
relatively short tests. We have also shown that relative time constraints detecting
such changes are reasonably portable between platforms. Finally, we have out-
lined guidelines to applying performance unit testing that balance test duration
and coverage.

The tool suite used in our case study, as well as all supplementary material,
is available at [16].

Acknowledgments. This work has been supported by EU project 257414
ASCENS, GACR project P202/10/J042FERDINAND and by Charles University
institutional funding SVV-2013-267312.

References

1. Bergmann, V.: ContiPerf 2 (2013), http://databene.org/contiperf.html
2. Bulej, L., Bures, T., Keznikl, J., Koubkova, A., Podzimek, A., Tuma, P.: Capturing

Performance Assumptions using Stochastic Performance Logic. In: Proc. ICPE
2012. ACM (2012)

3. Clark, M.: JUnitPerf (2013), http://www.clarkware.com/software/JUnitPerf
4. Foo, K., Jiang, Z.M., Adams, B., Hassan, A., Zou, Y., Flora, P.: Mining perfor-

mance regression testing repositories for automated performance analysis. In: Proc.
QSIC 2010. IEEE (2010)

5. Ghaith, S., Wang, M., Perry, P., Murphy, J.: Profile-based, load-independent
anomaly detection and analysis in performance regression testing of software sys-
tems. In: Proc. CSMR 2013. IEEE (2013)

6. Heger, C., Happe, J., Farahbod, R.: Automated root cause isolation of performance
regressions during software development. In: Proc. ICPE 2013. ACM (2013)

7. JDOM (2013), http://www.jdom.org
8. hunterhacker/jdom [Git] (2013), https://github.com/hunterhacker/jdom
9. hunterhacker/jdom: Verifier performance (2013),

https://github.com/hunterhacker/jdom/wiki/Verifier-Performance

10. JUnit (April 2013), http://junit.org
11. Kalibera, T., Bulej, L., Tůma, P.: Benchmark Precision and Random Initial State.

In: Proc. SPECTS 2005. SCS (2005)
12. Kalibera, T., Tůma, P.: Precise Regression Benchmarking with Random Effects:

Improving Mono Benchmark Results. In: Horváth, A., Telek, M. (eds.) EPEW
2006. LNCS, vol. 4054, pp. 63–77. Springer, Heidelberg (2006)

13. Oliveira, A., Petkovich, J.-C., Reidemeister, T., Fischmeister, S.: Datamill: Rigor-
ous performance evaluation made easy. In: Proc. ICPE 2013. ACM (2013)

14. Porter, A., Yilmaz, C., Memon, A.M., Schmidt, D.C., Natarajan, B.: Skoll: A pro-
cess and infrastructure for distributed continuous quality assurance. IEEE Trans.
Softw. Eng. 33(8), 510–525 (2007)

15. Puchko, T.: Retrotranslator (2013), http://retrotranslator.sourceforge.net
16. SPL Tools (2013), http://d3s.mff.cuni.cz/software/spl-java
17. Welch, B.L.: The Generalization of Student’s Problem when Several Different Pop-

ulation Variances are Involved. Biometrika 34(1/2), 28–35 (1947)

http://databene.org/contiperf.html
http://www.clarkware.com/software/JUnitPerf
http://www.jdom.org
https://github.com/hunterhacker/jdom
https://github.com/hunterhacker/jdom/wiki/Verifier-Performance
http://junit.org
http://retrotranslator.sourceforge.net
http://d3s.mff.cuni.cz/software/spl-java

Phase-Type Fitting Using HyperStar

Philipp Reinecke, Tilman Krauß, and Katinka Wolter

Freie Universität Berlin
Institut für Informatik

Takustraße 9
14195 Berlin, Germany

{philipp.reinecke,tilman.krauss,katinka.wolter}@fu-berlin.de

Abstract. In this paper we provide a hands-on discussion of the use of
the HyperStar phase-type fitting tool in common application scenarios.
HyperStar allows fitting Hyper-Erlang distributions to empirical data,
using a variety of algorithms and operation modes. We describe simple
cluster-based fitting, a new graphical method for refining the density
approximation, a new command-line interface, and the integration of
HyperStar with a Mathematica implementation of a fitting algorithm.
Furthermore, we describe the use of Hyper-Erlang distributions in sim-
ulation. Throughout our discussion we illustrate the concepts on a data
set which has been shown to be difficult to fit with a PH distribution.

Keywords: Phase-type fitting, Tool description, Case-study.

1 Introduction

Phase-type (PH) distributions [1] are a very flexible class of distributions for
modelling e.g. failure times or response times. As PH distributions have Marko-
vian representation, they can be used in analytical as well as in simulation ap-
proaches to system evaluation.

Phase-type distributions are typically applied to approximate empirical data
sets. In recent years several tools have been developed to help with the task of
fitting PH distributions to data: EMPHT [2] is a command-line tool that can
fit arbitrary phase-type distributions. PhFit [3] fits acyclic phase-type distribu-
tions (both discrete and continuous), offering both a graphical user-interface and
command-line tools. G-FIT [4] fits Hyper-Erlang distributions and runs on the
command-line.

In [5] we proposed a cluster-based fitting approach for fitting mixtures of
distributions, and in [6] we presented the HyperStar tool that implements this
approach. HyperStar complements the above set of tools in that its intuitive
user-interface helps domain-experts to apply PH distributions for data fitting;
furthermore, its user-interface can also be applied to existing tools and proto-
types, thus fostering the development of new fitting approaches. HyperStar is
implemented in Java and is available for download at [7].

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 164–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Phase-Type Fitting Using HyperStar 165

In this paper we provide a hands-on discussion of the use of HyperStar in
common fitting tasks. HyperStar implements several varieties of the fitting al-
gorithm described in [5] and also offers several operation modes. Our focus here
will be on illustrating the application of HyperStar in typical scenarios. We will
therefore focus on the simple mode and on the command-line mode, as these
are probably the modes that are used most of the time. Expert mode offers a
high degree of flexibility in parameterising different variants of the clustering
algorithm, and also supports the inclusion of existing tools, such as PhFit and
G-FIT for fitting the branch distributions. Although this allows the expert to
configure HyperStar in great detail when fitting, we have observed that in typi-
cal examples there are only minor improvements. We will therefore only describe
the Mathematica interface, as this interface has proved to be helpful in evaluat-
ing new fitting algorithms. With the Mathematica interface, the user only has
to implement the functionality of the fitting algorithm, which then seamlessly
integrates with the dataset manipulation and display of results of HyperStar.
Throughout the paper we first discuss the application and then provide some
details on the underlying algorithms.

The paper is structured as follows: In Section 2 we briefly introduce some
properties of phase-type distributions. We then describe the data set that we
use throughout this paper. In Section 4 we describe the simple mode of us-
ing HyperStar. This mode enables the user to fit a HyperErlang distribution
without requiring expert knowledge of PH distributions. Section 5 describes the
new peak-adjustment feature that allows the adjustment of the shape of the
fitted density using purely graphical means. In Section 6 we introduce the new
command-line mode, which automatically detects peaks before applying cluster-
based fitting. In Section 7 we give an example of how HyperStar can be inte-
grated with a Mathematica implementation of a PH-fitting algorithm using the
Mathematica interface of the expert mode. We complement our discussion of
phase-type fitting by a description of how to use Hyper-Erlang distributions in
simulation tools in Section 8, before concluding the paper with an outlook on
future work.

2 Phase-Type Distributions

Continuous phase-type (PH) distributions are defined as the distribution of time
to absorption in a Continuous-Time Markov Chain (CTMC) with one absorbing
state [1]. PH distributions are commonly represented by a vector-matrix tuple
(α,Q), where

α = (α1, . . . , αn) ∈ IRn and Q =

⎛
⎜⎝−λ11 · · · λ1n

...
. . .

...
λn1 · · · −λnn

⎞
⎟⎠ ∈ IRn×n (1)

with λij ≥ 0, λii > 0,Q1l ≤ 0, Q is non-singular, and α1l = 1, where 1l is the
column vector of ones of the appropriate size. α is referred to as the initial prob-
ability vector, and Q is the sub-generator matrix of the phase-type distribution.

166 P. Reinecke, T. Krauß, and K. Wolter

Definition 1. If (α,Q) is the representation of a phase-type distribution, then
the probability density function (PDF), cumulative distribution function (CDF),
and kth moment, respectively, are given by [1,3,8]:

f(t) = αeQt(−Q1l), (2)

F (t) = 1−αeQt1l, (3)

E
[
Xk
]
= k!α(−Q)−k1l.. (4)

HyperStar fits mixtures of m phase-type distributions, that is, the distri-
butions created by HyperStar have branch structure. Each branch has a sub-
generator matrix Q1, . . . ,Qm and an initial probability vector α1, . . . ,αm. The
mixture is then given by

Q =

⎛
⎜⎜⎜⎝
Q1 0

. . .
. . .

0
Qm

⎞
⎟⎟⎟⎠ and α = (α1, . . . ,αm). (5)

HyperStar is most commonly used to fit Hyper-Erlang distributions, i.e. mixtures
of Erlang distributions [4]. With Hyper-Erlang distributions, all block matrices
Q1, . . . ,Qm in (5) are of the form

Qi =

⎛
⎜⎜⎜⎝
−λi λi

. . .
. . .

λi

−λi

⎞
⎟⎟⎟⎠ , (6)

and only the first element in each initial probability vector αi, i = 1, . . . ,m is
non-zero.

3 The Data Set

Throughout this paper we use the data set shown in Figure 1. This data set
contains samples of the packet-delivery ratio in the DES testbed, a testbed for
wireless mesh networks deployed in different buildings across the campus of Freie
Universität Berlin [9]. Since the data is for packet-delivery ratios, which are in
the interval [0, 1], the density is 0 for samples outside this interval. The histogram
of the density shows three peaks, at 0, 0.75, and 1. Note that this data set is
very difficult to fit using a phase-type distribution; in particular, the density
of 0 for PDR values larger than 1 cannot be fitted exactly with any phase-
type distribution. We use this data set as an extreme example for showing the
potential of HyperStar for fitting difficult-to-fit data sets. For a more in-depth
evaluation and comparison to other fitting tools we refer the reader to [5].

Phase-Type Fitting Using HyperStar 167

Packet−Delivery Ratios

Packet−Delivery Ratio

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

Fig. 1. Histogram of the DES data set

4 Fitting a Data Set in Simple Mode

When started without parameters, HyperStar shows the user interface for simple
mode. Simple mode is probably the most commonly used mode of HyperStar
and allows the user to quickly and accuratly fit a Hyper-Erlang distribution to a
data set.

The user interface for simple mode is shown in Figure 2: The left-hand panel
displays the histogram and empirical CDF for the data set and, after fitting, the
fitted PDF and CDF. Furthermore, this panel also serves to control the fitting
algorithm. The panel on the top right guides the user through the steps necessary
to fit a PH distribution. The panel on the bottom right shows default quality
measures for the fitted distribution, as defined in [10].

In order to fit a PH distribution, we first have to load the data set from a file.
HyperStar expects an ASCII file with one sample per line, given in a common
numerical format. In the next step we can adjust the number of bars in the his-
togram, in order to get a better understanding of the shape of the density. In this
example we set the number of bars to 100, and we observe the peaks at 0, 0.75, and
1. We can then mark these peaks by clicking on them. In doing so, we create new
clusters for the clustering algorithm and define the initial cluster centres to be at
the location of the marker. Each cluster corresponds to an Erlang branch in the
final distribution, and thus the choice of cluster centres determines the number of

168 P. Reinecke, T. Krauß, and K. Wolter

Fig. 2. User interface in Simple Mode, with fitted distribution

branches in the result. We then start the fitting algorithm by clicking on the ‘Fit’
button. The resulting PDF and CDF are displayed in the left-hand panel, and the
bottom right panel shows various quality measures. The distribution can be fur-
ther refined by adding or removing clusters or by shifting peaks (see Section 5).
Once we are satisfied with the results, we save the distribution in a file. In simple
mode HyperStar exports the distribution in G-FIT output format, which is a sim-
ple text file that is both human-readable and easily parsable for further use [4].
G-FIT files specify the number of branches, the branch lengths, the rates, and the
initial branch probabilities, one value per line.

4.1 Algorithm

Simple mode uses the clustering algorithm with probabilistic re-assignment, as
described in [5] for fitting Hyper-Erlang distributions. In the first step, the sam-
ples in the data set are clustered using the k-means algorithm [11], starting with
the cluster centres specified by the user. Clustering aggregates similar samples in
the same cluster and thereby identifies the samples that correspond to individual
peaks of the density. The algorithm then fits each cluster’s samples with an Er-
lang distribution. The assignment of samples to clusters is refined iteratively until
either convergence is reached or a maximum number of 100 rounds has elapsed.

5 Refinement Using Peak Adjustment

Simple mode usually produces a PH distribution whose density is very close to
the empirical density. In some cases, however, the peaks of the fitted distribution
are not located exactly on the peaks of the empirical distribution. Then, the user

Phase-Type Fitting Using HyperStar 169

Fig. 3. User interface in Peak-Adjustment Mode

can try to improve the result by manually adjusting the branch distributions to
better fit the peaks.

Manual adjustment is performed by switching to ‘Peak Adjustment’ mode
after fitting. In this mode, HyperStar displays individual branch densities and
their modes, marked by a triangle atop the mode. By clicking on a triangle and
dragging the mouse to a different location, we can move the mode of this branch
distribution to a different location, typically to a peak nearby. The density is
adjusted accordingly, and a second click places the mode at the new location.

It should be noted that relocating the peaks of the distribution can lead to a
worse fit than the automatic fitting, according to the quality measures displayed
in the bottom right panel. On the other hand, iterative application of peak
adjustment and fitting can improve the results. Furthermore, peak adjustment
can be used to explore the impact of changes in the measurements. For instance,
with our data set we may be interested not only in a distribution that fits the
current peak placement well, but also in the effect of moving the middle peak
from 0.75 to other values. In this case, we would relocate this peak in the fitted
distribution and use the result in our evaluation.

5.1 Algorithm

After the user has moved the peak, the new mode of the distribution is read from
the graphical interface and a new rate λ is computed from the mode, 1

λ (k − 1),
as follows:

1. Let x be the new mode of the Erlang distribution with length k and rate λ.

2. Let λ′ = max
{

(k−1)
x , 1

}
3. Return (k, λ′)

170 P. Reinecke, T. Krauß, and K. Wolter

6 The Command-Line Interface

For fitting several data sets at once, one typically employs scripts that call the
fitting tool on each data set in turn. The new command-line interface (CLI) to
HyperStar enables the use of the tool in scripting.

In graphical mode, HyperStar relies on the user providing initial cluster cen-
tres. Since there is no user interaction in CLI mode, this mode identifies peaks
automatically, using one of two algorithms.

Command-line mode is initiated by specifying the -cli option upon startup
and providing -f, followed by a filename. By default, the fitted distribution
is written in G-FIT format to the file cbhe-result.txt. A different output
filename can be specified using the -of option. Table 1 lists additional options
to control the behaviour of the fitting algorithm. The default values have been
chosen based on experience.

Table 1. Parameters for command-line mode

Parameter Description (default value)

-cli Use command-line interface
-f Select input file
-of Select output file (cbhe-result.txt)

-bn Number of branches to be fitted (10)
-ip Initial Erlang lengths (10)
-lc Convergence threshold (10−10)
-mi Maximum number of iterations (10)
-qu Compute quality measures and append them to the

output file
-pd Peak-detection algorithm, either simple or hist

(simple)
-b Number of bars for hist peak detection.

6.1 Algorithm

Since there is no user interaction, the command-line mode requires a different
approach for finding initial cluster centres. Cluster centres should ideally be close
to peaks in the empirical density. Therefore, CLI mode first detects peaks and
then uses their locations as initial cluster centres.

We implemented two algorithms for peak detection. The first one, simple,
operates directly on the samples:

1. Let S = {s1, . . . , sN} be the set of samples, sorted in increasing order.
2. Let m be the number of branches.
3. d := N

m+1

4. Return initial cluster centres sd, s2d, . . . , srd.

Phase-Type Fitting Using HyperStar 171

The algorithm simply places equidistant peaks on the sorted data set. If there
are peaks in the empirical density, these are characterised by long stretches of
similar values and are likely to receive a cluster centre.

Our second approach explicitly detects peaks in the histogram:

1. Let hi, ci (i = 1, . . . ,M) be the height and centre of the ith bucket in the
histogram with M buckets.

2. Let m be the number of branches.
3. s0 := 2h0 − h1

4. sm−1 := 2hM−1 − hM−2

5. for i = 1, . . . ,M − 2: assign si := 2hi − hi−1 − hi+1.
6. Pick the m highest values of all of the si, and let i1, . . . , im be their indices.
7. Return initial cluster centres ci1 , ci2 , . . . , cim .

The basic assumption underlying this method is that a peak appears in the
histogram as a tall bucket surrounded by buckets of much smaller height. For
each bucket the algorithm computes the height difference to the surroundings
and then picks the buckets with the largest height differences.

There are clearly two application domains of these methods. If nothing is
known about the data, the simple method is more suitable. Observe that the
method does not yield good results if the number of branches m is small. With
a high value of m, the probability of guessing a value, which is near to a peak in
density, is high. If the dataset is well-known and one can easily detect peaks in
the histogram, it is likely that the same peaks are chosen by the hist approach.

7 The Mathematica Interface

So far, we have discussed modes of operation that aim at quickly fitting a phase-
type distribution to data. The Mathematica interface to HyperStar differs from
these in that its goal is mainly to support algorithm development, prototyping
and evaluation. It is often beneficial to first implement new PH-fitting algo-
rithms in Mathematica, before writing a dedicated tool, since Mathematica has
higher numerical stability and provides a large library of dedicated mathemat-
ical functions, which typically leads to more elegant programs than possible in
general-purpose languages. With the HyperStar Mathematica integration, the
HyperStar GUI can be used as a front-end to such implementations. The user
can then focus on the algorithm itself and evaluate the fitting quality using Hy-
perStar’s interface. In this mode, HyperStar does not apply clustering; instead,
it only forwards data into Mathematica and displays the results.

Mathematica integration requires the implementation of the following three
methods in the Mathematica script:

fit[Samples] : Fits a distribution to the sample set contained in the ar-
ray Samples. This function must return a compact representation of the
phase-type distribution (e.g. as fixed list of rules) that can be parsed by the
parameters[] function.

172 P. Reinecke, T. Krauß, and K. Wolter

Fig. 4. User interface in Mathematica interface mode

parameters[D] : This method is invoked with the return value of fit, in order
to convert the representation in D (which could be an arbitrary representation
used in the fitting algorithm) to a list of key-value pairs. The returned value
is the textual representation of the PH distribution.

ph[D] : Returns the (α,A) representation of the phase-type distribution in the
arbitrary description D. All methods (like moment- or density-computation)
within HyperStar use this representation. This method should return a list of
two rules, where α yields the vector-representation of the initial distribution
and Q yields the sub-generator matrix. Note that this method must return
a valid ph-distribution.

HyperStar redirects all output of the Print statement in Mathematica to the
standard output, in order to help with debugging the Mathematica code.

The following Mathematica code illustrates how to implement these functions
for a very simple fitting algorithm:

f i t [Samples] := lambda−>1/Mean [Samples] ;
parameters [D] := {{”lambda ” , lambda}} / . D;
ph [D] := {alpha −>{1.0} , A−>{{−lambda }}}/ . D;

The algorithm simply fits the mean of the data set using an exponential distri-
bution (i.e. a phase-type distribution of size 1). The result is shown in Figure 4.
As expected, the mean is fitted well, while the all other measures and the shapes
of the distribution and the density show large errors. For practical application,
the reader might want to implement a more sophisticated algorithm.

Phase-Type Fitting Using HyperStar 173

7.1 Technical Configuration

In order to configure HyperStar to use Mathematica mode, the following steps
have to be taken:

1. The KernelCommand entry in the file config.prop must be set to the full
path to the MathKernel executable. MathKernel is typically located in Math-
ematica’s root folder or in one of its sub-folders, depending on the operating
system.

2. The JLink.jar file must be added to the classpath for HyperStar.
3. The Mathematica script containing the algorithm must be made known to

HyperStar, as follows:

(a) Append the algorithm name (e.g. exp fit) to the property Algorithms.
(b) Introduce three new properties for the functions fit, ph and parameters

(e.g. exp fit.fit), which point to the respective functions in the script
(c) Include the filename by setting the property [algorithm].source (e.g.

exp fit.source) to the full path of the Mathematica script.

HyperStar can then be started with the -c option. When started with this
option, HyperStar will also test the configured algorithms with a fixed trace
before displaying the graphical user interface.

8 Simulation

The Hyper-Erlang distributions created with HyperStar are especially useful
to introduce phenomena of real systems in simulations without modelling the
underlying systems in detail. Unfortunately, common simulation tools such as
OMNeT++ or NS-2 [12,13] do not support Hyper-Erlang distributions as part
of their toolkits for random variates. In this section we describe the Libherd
library for generating random variates from Hyper-Erlang distributions.

The Libherd library has been developed as a simpler alternative to the Libph-
prng library in the Butools package [14,15]. It provides the same mechanisms
to interface to simulation tools, but is focussed on Hyper-Erlang distributions.
In contrast to Libphprng, Libherd does not support other classes of phase-type
distributions and does not provide the advanced techniques for optimising phase-
type distributions for efficient random-variate generation that are implemented
in Libphprng. These restrictions to the functionality resulted in a very small
codebase, which is often easier to integrate with specific simulation tools than
Libphprng.

Libherd is implemented in C++ as a shared library that must be linked
to the simulation framework, e.g. OMNeT++ or NS-2. The library provides
the class HerdGen. Each instance of this class generates random variates from
one Hyper-Erlang distribution specified by the user. In order to generate ran-
dom variates, the class requires a source of uniform random numbers in the
range (0, 1). Libherd uses the random-number generators that are provided by
the simulation tool. This requires the user to write a class implementing the

174 P. Reinecke, T. Krauß, and K. Wolter

RandomSourceWrapper interface and registering an instance of this class with
the HerdGen instance. The Libherd distribution includes wrappers for several
simulation frameworks and is available from the main HyperStar page [7].

In the following we illustrate how Libherd can be used to apply Hyper-Erlang
distributions fitted with HyperStar in discrete-event simulation. We assume that
we have fitted a Hyper-Erlang distribution to the DES data set and saved it in
the file des.gfit. We want to use this distribution to generate links with typical
packet-delivery ratios in a large network.

This requires the following steps:

1. Creation of a new HerdGen instance to store the distribution:
PhGen * prng = new HerdGen("des.gfit");

2. Creation of a wrapper object for the random-number stream from the simu-
lation. Assuming that we have a wrapper class called RSWrapper, we create
an instance of this class as
RSWrapper * ursw = new RSWrapper();

3. Registration of the uniform random number stream with the HerdGen object:
prng->setUniformRandomSource(ursw);

4. Drawing of random variates from the distribution:
double x;

while ((x = prng->getVariate()) > 1) {};
Note that with our example we need to ensure that the packet-delivery ratios
stay within the range [0, 1], and therefore we truncate the distribution to this
range.

9 Conclusion

In this paper we have illustrated the application of HyperStar in common fitting
tasks. We have introduced the manual peak adjustment and the command-line
interface as new features for HyperStar. These features required new algorithms
for the adjustment of the peaks and for the automatic detection of peaks in a
data set. Although HyperStar already gives good results in many cases, further
improvement of the fitting algorithms is certainly possible and will be studied
as part of future work. Furthermore, we are exploring the use of HyperStar, or
a similar approach, in fitting other stochastic processes.

Acknowledgements. We would like to thank Chris Guenther for his valuable
reports on various bugs and usability issues with HyperStar.

References

1. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models. An Algorithmic
Approach. Dover Publications, Inc., New York (1981)

2. Asmussen, S., Nerman, O., Olsson, M.: Fitting Phase-Type Distribution Via the
EM Algorithm. Scand. J. Statist. 23, 419–441 (1996)

Phase-Type Fitting Using HyperStar 175

3. Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: Field, T.,
Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp.
82–91. Springer, Heidelberg (2002)

4. Thümmler, A., Buchholz, P., Telek, M.: A Novel Approach for Phase-Type Fitting
with the EM Algorithm. IEEE Trans. Dependable Secur. Comput. 3(3), 245–258
(2006)

5. Reinecke, P., Krauß, T., Wolter, K.: Cluster-based fitting of phase-type distri-
butions to empirical data. Computers & Mathematics with Applications 64(12),
3840–3851 (2012); Special Issue on Theory and Practice of Stochastic Modeling

6. Reinecke, P., Krauß, T., Wolter, K.: HyperStar: Phase-Type Fitting Made Easy. In:
9th International Conference on the Quantitative Evaluation of Systems (QEST)
2012, pp. 201–202 (September 2012); Tool Presentation

7. Reinecke, P., Wolter, K., Krauß, T.: HyperStar Homepage (2013),
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/HyperStar

8. Telek, M., Heindl, A.: Matching Moments for Acyclic Discrete and Continous
Phase-Type Distributions of Second Order. International Journal of Simulation
Systems, Science & Technology 3(3-4), 47–57 (2002)

9. Blywis, B., Günes, M., Juraschek, F., Hahm, O., Schmittberger, N.: Properties and
Topology of the DES-Testbed (2nd Extended Revision). Technical Report TR-B-
11-04, Freie Universität Berlin (July 2011)

10. Lang, A., Arthur, J.: Parameter Approximation for Phase-Type Distributions.
Matrix-Analytic Methods in Stocastic Modells 183, 151–206 (1996)

11. Lloyd, S.P.: Least squares quantization in pcm. IEEE Transactions on Information
Theory 28(2), 129–136 (1982)

12. Varga, A.: The OMNeT++ Discrete Event Simulation System. In: Proceedings of
the European Simulation Multiconference, ESM 2001 (June 2001)

13. Various contributors: The Network Simulator ns-2,
http://www.isi.edu/nsnam/ns/ (last seen May 11, 2010)

14. Reinecke, P., Horváth, G.: Phase-type Distributions for Realistic Modelling in
Discrete-Event Simulation. In: Proceedings of the 5th International ICST Confer-
ence on Simulation Tools and Techniques, SIMUTOOLS 2012, Brussels, Belgium,
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), pp. 283–290 (2012)

15. Bodrog, L., Buchholz, P., Heindl, A., Horváth, A., Horváth, G., Kolossváry, I.,
Németh, Z., Reinecke, P., Telek, M., Vécsei, M.: Butools: Program packages for
computations with PH, ME distributions and MAP, RAP processes (October
2011), http://webspn.hit.bme.hu/~butools

http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/HyperStar
http://www.isi.edu/nsnam/ns/
http://webspn.hit.bme.hu/~butools

Towards the Quantitative Evaluation
of Phased Maintenance Procedures

Using Non-Markovian Regenerative Analysis

Laura Carnevali1, Marco Paolieri1, Kumiko Tadano2, and Enrico Vicario1

1 Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Italy
{laura.carnevali,marco.paolieri,enrico.vicario}@unifi.it

2 Service Platforms Research Laboratories, NEC Corporation, Kawasaki, Japan
k-tadano@bq.jp.nec.com

Abstract. The concept of Phased Mission Systems (PMS) can be used
to describe maintenance procedures made of sequential actions that use
a set of resources and may severely affect them, for instance opera-
tions that require outage of hardware and/or software components to
recover from a failure or to perform upgrades, tests, and configuration
changes. We propose an approach for modeling and evaluation of this
class of maintenance procedures, notably addressing the case of actions
with non-exponential and firmly bounded duration. This yields stochastic
models that underlie a Markov Regenerative Process (MRP) with multi-
ple concurrent timed events having a general (GEN) distribution over a
bounded support, which can be effectively analyzed through the method
of stochastic state classes. The approach allows evaluation of transient
availability measures, which can be exploited to support the selection of
a rejuvenation plan of system resources and the choice among different
feasible orderings of actions. The experiments were performed through a
new release of the Oris tool based on the Sirio framework.

Keywords: Phased mission systems, maintenance-induced failures,
transient availability measures, Markov regenerative processes,
stochastic state classes.

1 Introduction

Phased Mission Systems (PMS) perform multiple tasks with possibly different
requirements during non-overlapping phases of operation, typically achieving
the mission success only if each phase is completed without failure [8]. The
abstraction of PMS is fit by several critical applications, which notably include:
aircrafts flights comprising distinct steps from take-off to landing, command
sequences executed by aerospace systems, recovery operations performed to bring
back automated systems from the breakdown state to a recovery point, and
maintenance procedures requiring the safe shutdown and restart of hardware
(HW) and software (SW) subsystems [27,14,30].

Reliability analysis of PMS faces challenges concerned with the evaluation
of the success probability and the distribution of the completion time, for the

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 176–190, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards the Quantitative Evaluation of Phased Maintenance Procedures 177

overall mission or for intermediate phases. This often conflicts with the possible
failure and recovery of resources supporting the different steps. Steady state
analysis is usually applied to evaluate the system availability in the presence of
recurrent phased procedures, while transient analysis is more appropriate in the
case of one-shot operations where the focus is rather on the probability that the
procedure is completed within a given deadline.

Various modeling approaches have been proposed in the literature, and in par-
ticular different causes of failure and policies for error detection, rejuvenation,
and repair have been addressed. Methods based on state-space analysis address
PMS with complex behaviors deriving from fixed or random phase sequence,
deterministic or random phase duration, permanent or transient components
failures, and dependencies among components. Notable examples include: the
approach of [15], which leverages Markovian analysis to support the reliability
evaluation of PMS with deterministic sojourn time in each phase; the method
proposed in [18], where the Markov Renewal Theory [13,1,2] is tailored to the
evaluation of PMS with random phase sequence and duration, forcing a repeti-
tion or a premature completion of unfinished repair works at each phase end to
guarantee that phase completion times are regeneration points for the underlying
stochastic process; the methodology of [6] for performance evaluation of com-
posed web services, which derives steady state and transient measures through
WebSPN [5] by relying on the approximation of GEN timers with discrete phase
type distributions over unbounded supports.

If the events order does not affect the mission outcome, the problem of
state-space explosion can be circumvented by applying combinatorial solution
techniques, which achieve a lower computational complexity at the expense of
reducing the modeling expressivity. In this area, several approaches have been
developed on the structure of Binary Decision Diagrams (BDD) [31,28], also
encompassing phase uncovered failures that cause a mission failure [29]. More
recently, approaches that integrate methods based on state-space analysis and
combinatorial techniques have been proposed. The joint probability method of
[19] combines results obtained by independently solving static and dynamic sys-
tem components through BDD and Markovian analysis, respectively. In [26], a
hierarchical approach is presented which addresses PMS with repairable com-
ponents, modeling their aging process as a Continuous Time Markov Chain
(CTMC). The modular technique developed in [21] also encompasses the case of
unordered and ordered component states.

When the overall process duration is much shorter than the mean time be-
tween failures of used resources, concentrated failure or error probabilities in-
duced by the usage itself become more relevant in the evaluation of the overall
reliability. This is for instance the case of system level maintenance procedures,
where HW and SW resources are subject to operations exposed to various types
of faults, such as disk failures at shutdown and restart, or erroneous restoration
of exposed services in infrastructural SW components.

In this paper, we model such classes of phased missions as a sequence of non-
concurrent actions that may affect and downgrade a set of resources, evaluating

178 L. Carnevali et al.

the impact that the operations may have on the system availability in the tran-
sient regime. According to a two-mode failure scheme, resources may reach an
error state before incurring a breakdown. While quite onerous repair actions
are necessary to restore failed resources, lighter rejuvenation operations can be
performed to prevent failures of already flawed resources. Actions are subject to
a timeout mechanism that limits their repetitions due to subsequent resource
failures and to precedence constraints that restrain their feasible orderings.

As a salient trait of the contribution, we face the representation and analy-
sis of steps with non-exponential and firmly bounded duration, which may take
relevance in the synchronization of events. To this end, we leverage the method
of stochastic state classes [25,9,17], which supports the analysis of models with
multiple concurrent timed events having a non-Markovian distribution over a
possibly bounded support. This enables evaluation of transient availability mea-
sures that can be used to support the choice among the possible orderings of
actions and the selection of a rejuvenation plan. Computational experience is
reported on a case of real complexity to show the potentialities of the approach.
The experiments have been performed through a new release of the Oris tool
based on the Sirio framework [10,12,7].

The rest of the paper is organized as follows. In Section 2, we illustrate the
proposed modeling framework of maintenance procedures and we introduce a
running case study. In Section 3, we present an extension of stochastic Time
Petri Nets (sTPNs) that leaves unchanged their analysis complexity while largely
enhancing their modeling convenience, and we discuss the structure of the sTPN
model of maintenance procedures with reference to the running case study. In
Section 4, we briefly recall the main results of the solution technique of [17] for
transient analysis of non-Markovian models and we discuss the conditions that
must be satisfied to guarantee its applicability, referring the reader to [17] for
more details. In Section 5, we present the experimental results. Conclusions are
finally sketched in Section 6.

2 Problem Formulation

We address sequential maintenance procedures performing potentially critical
operations that require usage of system resources and may affect their status
(Section 2.1). This fits the class of PMS provided that adequate assumptions
are made to guarantee that the executed operations do not overlap. A running
example illustrates model specification (Section 2.2).

2.1 A General Class of Phased Maintenance Procedures: Stylized
Facts

We consider phased mission procedures intended to perform non-overlapping
operations that may severely affect a set of system resources. When the procedure
duration is much shorter than the mean time between age-related failures, then
the probability of maintenance-induced failures turns out to be prevailing for

Towards the Quantitative Evaluation of Phased Maintenance Procedures 179

Fig. 1. An UML class diagram representing the maintenance procedure model

the purposes of the evaluation of transient availability measures and can be
well accounted by concentrated failures or error probabilities. This in particular
fits the case of maintenance procedures requiring outage of HW and/or SW
components, for instance to recover from a failure or to perform upgrades, tests,
and configuration changes. Figure 1 illustrates involved concepts.

Actions and Resources. A procedure is a sequence of non-concurrent actions
subject to precedence constraints that restrict their possible orderings. An action
may need to use one or more system resources to perform its assigned task and
its execution may impact on some of them, possibly causing errors or failures.

Resource Failures. At the beginning of a procedure, all resources are in a
safe state. During the execution of a maintenance action, a resource may reach
an error state (from a safe state) or a failure state (either from an error state
or directly from a safe state). The switch probabilities that represent the state
transitions of resources may vary from action to action. While a resource is
being used by an action, if the resource reaches an error state then the action is
nevertheless successfully completed, whereas if the resource reaches a failure state
then the action also fails. The execution time of an action may vary depending
on whether the resources in use become flawed or failed. A resource can be
recovered from a failure through a repair operation.

Failure Management. If a resource fails while it is used by an action, then
the action is interrupted and a repair operation is started. When the resource
has been repaired, the action is restored. Repetitions of the same action due to
subsequent failures of its requested resources occur according to the Preemptive
Repeat Different (PRD) semantics , i.e., no memory is carried across repetitions.
Repetitions are also limited by a timeout, which is activated when the action is
started for the first time. When the timeout elapses, the action is stopped and the
overall procedure is restarted, possibly waiting for ongoing repair operations to
be completed. In a variant of this policy, when the timeout of an action expires,
the procedure is restarted from that action.

Policy at Action Completion. At the end of each action, a procedure waits for
the completion of ongoing repair operations and possibly performs a rejuvenation

180 L. Carnevali et al.

of system resources. Specifically, an error detection operation can be executed
to identify the flawed resources and a rejuvenation activity of failed resources
can be started to bring them back to the safe state. This can be performed
according to various schemes, e.g., every n executed actions or at the end of
selected actions. In a variant of this policy, the rejuvenation of flawed resources
that are not used by the remaining actions is avoided and performed only if the
procedure is repeated due to the failure of other resources.

2.2 An Example

A maintenance procedure can be specified by detailing its actions according to
the procedure model shown in Figure 1. As a running example, we consider a
procedure made of a sequence of 10 maintenance actions a1, a2, ..., a10 which
may affect a system resource r1. Table 1 shows a fragment of the specification of
such procedure, which pertains to the maintenance action a1 and to the repair,
error detection, and rejuvenation actions performed on r1. Action a1 may affect
r1 while performing its requested task. When a1 is in execution, if r1 is in a safe
state then it remains safe, reaches an error state, or fails with probability 0.75,
0.23, and 0.02, respectively, and the execution time of a1 is uniformly distributed
over [8, 10], [8, 10], and [2, 5] min, respectively. Conversely, if r1 is in an error
state, then it remains flawed or fails with probability 0.75 and 0.25, respectively,
and the time spent in the execution of a1 has a uniform distribution over [8, 10]
and [2, 5] min, respectively. The repair of r1 requires a uniformly distributed time
over [30, 45] min. Error detection is performed on r1 at the completion of a1 and
a6, triggering a subsequent rejuvenation if r1 is in an error state. The error
detection time and the rejuvenation time have a uniform distribution supported
over [0, 1] minutes and [12, 15] minutes, respectively.

Table 1. A fragment of the specification of a procedure (times expressed in minutes)

Maintenance actions

Act. Time Res. Safe2Safe Safe2Err Safe2Fail Err2Err Err2Fail Fail2Fail
Out Ex. time Ex. time Ex. time Ex. time Ex. time Ex. time

a1 60 r1
p = 0.75 p = 0.23 p = 0.02 p = 0.75 p = 0.25 p = 1

[8, 10], unif [8, 10], unif [2, 5], unif [8, 10], unif [2, 5], unif [2, 5], unif
Repair actions

Action Res. Execution time Triggering condition
rep1 r1 [30, 45], unif r1 failed

Error detection actions
Act. Res. Execution time Triggering condition
errd1 r1 [0, 1], unif a1 completed || a6 completed

Rejuvenation actions
Act. Res. Execution time Triggering condition
rej1 r1 [12, 15], unif r1 error detected

Towards the Quantitative Evaluation of Phased Maintenance Procedures 181

3 Modeling

The specification of a maintenance procedure can be translated into a formal
model that supports the deployment of a theory of analysis. We formulate the
model as an extension of stochastic Time Petri Nets (sTPN) [25,9] with en-
abling and flush functions, which change the enabling condition of transitions
and the rule according to which tokens are moved after each firing (Section 3.1).
This augments the modeling convenience by facilitating the representation of
dependent actions and decision-making activities, without restricting the model
expressivity or impacting on the subsequent analysis (Section 3.2). The proposed
sTPN extension is basically equivalent to SRNs [23].

3.1 An Extension of Stochastic Time Petri Nets

Syntax. An sTPN is a tuple 〈P ;T ;A−;A+; A·;m0;EFT s;LFT s;F ; C;E;L〉.
The first ten elements are the model of stochastic Time Petri Nets (sTPN)

[25,9]. Specifically, P is a set of places; T is a set of transitions disjoint from
P ; A− ⊆ P × T , A+ ⊆ T × P , and A· ⊆ P × T are the sets of precondition,
postcondition, and inhibitor arcs; m0 : P → N is the initial marking associat-
ing each place with an initial non-negative number of tokens; EFT s : T → Q+

0

and LFT s : T → Q+
0 ∪ {∞} associate each transition with a static Earliest

Firing Time and a (possibly infinite) static Latest Firing Time, respectively
(EFT s(t) ≤ LFT s(t) ∀ t ∈ T); C : T → R+ associates each transition with a
weight; F : T → F s

t associates each transition with a static Cumulative Distribu-
tion Function (CDF) supported over its static firing interval [EFT s(t), LFT s(t)].

As usual in Petri Nets, a place p is said to be an input, an output, or an inhibitor
place for a transition t if 〈p, t〉 ∈ A−, 〈t, p〉 ∈ A+, or 〈p, t〉 ∈ A·, respectively.
As typical in Stochastic Petri Nets, a transition t is called immediate (IMM) if
[EFT s(t), LFT s(t)] = [0, 0] and timed otherwise. A timed transition t is called
exponential (EXP) if F s

t (x) = 1 − eλx over [0,∞] for some rate λ ∈ R+
0 and

general (GEN) otherwise. A GEN transition t is called deterministic (DET) if
EFT s(t) = LFT s(t) > 0 and distributed otherwise (i.e., EFT s(t) �= LFT s(t)).
For each distributed transition t, we assume that F s

t is absolutely continuous
over its support [EFT s(t), LFT s(t)] and, thus, that there exists a Probability
Density Function (PDF) fs

t such that F s
t (x) =

∫ x

0
f s
t (y)dy.

E and L extend the model of sTPN with enabling and flush functions, re-
spectively. E : T → {true, false}NP

associates each transition t ∈ T with an
enabling function E(t) : NP → {true, false} that, in turn, associates each mark-
ing m : P → N with a boolean value; L : T → P(P)

N
P

associates each transition
t ∈ T with a flush function L(t) : NP → P(P) that, in turn, associates each
marking m : P → N with a subset of P , i.e., an element of the power set of P .

Semantics. The state of an sTPN is a pair 〈m, τ〉, where m : P → N is a
marking that associates each place with a non-negative number of tokens and
τ : T → R+

0 associates each transition with a (dynamic) real-valued time-to-fire.

182 L. Carnevali et al.

A transition t is enabled by marking m if: i) each of its input places contains
at least one token (i.e., m(p) ≥ 1 ∀ 〈p, t〉 ∈ A−), ii) none of its inhibitor places
contains any token (i.e., m(p) = 0 ∀ 〈p, t〉 ∈ A·), and iii) its enabling function
evaluates to true in marking m (i.e., E(t)(m) = true). An enabled transition t is
firable in state s = 〈m, τ〉 if its time-to-fire is not higher than that of any other
transition enabled by marking m (i.e., τ(t) ≤ τ(t′) ∀ t′ ∈ T e(m), where T e(m)
is the set of transitions that are enabled by m). When multiple transitions are
firable, one of them is selected as the firing transition according to the random
switch determined by C. Specifically, Prob{t is selected} = C(t)/

∑
ti∈T f (s) C(ti),

where T f(s) is the set of transitions that are firable in s.
The state of an sTPN evolves depending on the times-to-fire sampled by

transitions and the resolution of random switches according to the weights of
transitions. Specifically, when a transition t fires, the state s = 〈m, τ〉 is replaced
by a new state s′ = 〈m′, τ ′〉. Marking m′ is derived from marking m by: i)
removing a token from each input place of t and assigning zero tokens to the
places belonging to the subset L(t)(m) of P (identified by the value of the flush
function of t in m), which yields an intermediate marking mtmp, ii) adding
a token to each output place of t, which finally yields m′. Transitions that are
enabled both by mtmp and by m′ are said persistent, while those that are enabled
by m′ but not by mtmp or m are said newly-enabled. If the fired transition t is
still enabled after its own firing, it is always regarded as newly enabled [4,24].
For any transition tp that is persistent after the firing of t, the time-to-fire is
reduced by the time elapsed in the previous state s (which is equal to the time-
to-fire of t measured at the entrance in s), i.e., τ ′(tp) = τ(tp) − τ(t). For any
transition tn that is newly-enabled after the firing of t, the time-to-fire takes a
random value sampled in the static firing interval according to the static CDF
F s
tn , i.e., EFT s(tn) ≤ τ ′(tn) ≤ LFT s(tn), with Prob{τ ′(tn) ≤ x} = F s

tn(x).

3.2 Deriving an sTPN Model of Maintenance Procedures

The specification of a maintenance procedure can be translated into a corre-
sponding sTPN model, which is made of a submodel for each action and a
submodel for each resource that the actions may affect. The sTPN shown in
Figure 2 is a model fragment of the procedure introduced in Section 2.2, specif-
ically corresponding to action a1 and resource r1 specified in Table 1.

The IMM transition start models the outset of the overall procedure and its
output place is chained with the IMM transition a1start representing the be-
ginning of action a1. When a1start fires, a token arrives in a1timeout_start,
enabling the DET transition a1timeout which models the timeout of 60 min-
utes associated with a1. The firing of a1start also deposits a token in a1switch,
which is an input place for the 6 IMM transitions that model the concentrated
probabilities of error/failure affecting r1 as a consequence of the usage by a1.
Specifically, if r1 is safe, then it may remain safe or become either flawed or
failed with probability 0.75, 0.23, and 0.02, respectively. This is modeled by the
random switch among the IMM transitions a1r1safe2safe, a1r1safe2err, and

Towards the Quantitative Evaluation of Phased Maintenance Procedures 183

(a)

Transition Enabling function Flush function Weight
a1start r1rep_started==0 - 1

a1r1safe2safe r1safe>0 - 75
a1r1safe2err r1safe>0 - 23
a1r1safe2fail r1safe>0 - 2
a1r1err2err r1err>0 - 75
a1r1err2fail r1err>0 - 25
a1r1fail2fail r1fail>0 - 1
a1r1s2s_exec - {a1_timeout} 1
a1r1s2e_exec - {a1_timeout} 1
a1r1e2e_exec - {a1_timeout} 1
a1r1_repaired r1safe>0 - 1

a1timeout - {a1_switch, safe2safe, safe2err, safe2fail,
1err2err, err2fail, a1_r1repaired}

a2start r1errdet==0 - 1
r1safe2err safe2err>0 - 1
r1err2fail err2fail>0 - 1
r1safe2fail safe2fail>0 - 1
r1repstart a1r1rep>0 - 1

r1safe_errdet r1_errdet==1 {r1_errdet} 1
r1err_errdet r1_errdet==1 - 1

r1rej - {r1_errdet} 1

(b)

Fig. 2. An sTPN fragment of the example procedure of Section 2.2, representing the
action a1 and the resource r1 specified in Table 1 (a). A table that details the enabling
functions, the flush functions, and the weights of the transitions that appear in the
model fragment (b). The entire model of the procedure integrates the r1 submodel and
10 action submodels like the a1 submodel.

a1r1safe2fail, which are actually enabled if r1safe contains a token and have
a weight equal to 75, 23, and 2, respectively. In a similar manner, if r1 is flawed,
then it may remain flawed or become failed, which is represented by the random
switch between a1r1err2err and a1r1err2fail. Conversely, if r1 is failed, then
the only enabled transition of the 6 mentioned IMM transitions is a1r1fail2fail,
which models the fact that r1 remains failed until a repair operation is started.

184 L. Carnevali et al.

When the outcome of the random switch in the a1 submodel corresponds to
an r1 state transition, then the corresponding IMM transition in the r1 submodel
becomes firable. Specifically, if a1r1safe2err, a1r1safe2fail, or a1r1err2fail
fires, then a token arrives in a1r1s2e, a1r1s2f , or a1r1e2f , respectively, thus
making r1safe2err, r1safe2fail, or r1err2fail fireable, respectively.

The firing of a1r1safe2safe, a1r1safe2err, and a1r1err2err enables
a1r1s2s_exec, a1r1s2e_exec, and a1r1e2e_exec, respectively, which model the
execution time of a1 in the cases of successful completion. When one of the latter
transitions fires, a token is removed from a1timeout_start (i.e., the timeout is
stopped) and a token is added to a1ok. This enables a1r1errdet which triggers an
error detection operation on r1. Specifically, when a token arrives in r1errdet,
either r1safe_errdet or r1err_errdet (in the r1 submodel) becomes enabled
depending on whether r1 is safe or flawed, respectively: i) If r1 is safe, the firing
of r1safe_errdet simultaneously removes and adds a token to r1safe (in the
r1 submodel) and removes a token from r1errdet (in the a1 submodel), thus
enabling a1start which models the beginning of the subsequent action. ii) If r1
is flawed, the firing of r1err_errdet removes a token from r1err and deposits
a token in r1rej_started (in the r1 submodel), enabling r1rej which models a
rejuvenation. The firing of r1rej adds a token to r1safe (in the r1 submodel)
and removes a token from r1errdet (in the a1 submodel), thus enabling a2start.

The firing of a1r1safe2fail, a1r1err2fail, and a1r1fail2fail enables
a1r1s2f_exec, a1r1e2f_exec, and a1r1f2f_exec, respectively, which model
the execution time of a1 in the cases of unsuccessful completion. The firing of
one of the latter transitions adds a token to a1r1rep enabling r1rep_start (in
the r1 submodel), whose firing in turn enables r1repair which models a repair
operation performed on r1. When r1repair fires, a token is moved in r1safe,
enabling a1r1repaired (in the a1 submodel) whose firing brings a token back to
a1switch so that a1 is repeated.

If a1timeout fires before a token arrives in a1ok, then all the tokens in the a1

submodel are removed, a token is deposited in a1repwait, and a1start becomes
fireable as soon as r1repstarted contains no tokens (i.e., if the timeout elapses
before the successful completion of a1, then a1 is restarted, possibly waiting for
an on-going repair of r1 to be completed).

4 Quantitative Analysis

We discuss the conditions that guarantee the applicability of the solution tech-
nique of [17] to the analysis of procedure models that underlie a Generalized
Semi-Markov Process (GSMP) [20,1] (Section 4.1) or a Markov Regenerative
Process (MRP) [13,1,2] (Section 4.2). The approach is efficiently implemented
in the new release of the Oris tool based on the Sirio framework [10,12,7] un-
der the assumption that all timed transitions have expolynomial PDF. For space
limitations, the reader is referred to [17] for the details on the analysis technique.

Towards the Quantitative Evaluation of Phased Maintenance Procedures 185

4.1 Transient Analysis

The sTPN model derived in Section 3.2 includes multiple concurrent GEN tran-
sitions with bounded support, e.g., a repair action enabled together with the
timeout associated with a maintenance action. According to this, the model
underlies a GSMP [20,1] with equal-speed timers, for which a viable approach
to transient analysis within any given time bound is the solution technique of
[17]. The approach samples the state of the underlying GSMP after each transi-
tion firing, maintaining a timer τage that accounts for the absolute time elapsed
since the entrance in the initial state. This identifies an embedded Discrete Time
Markov Chain (DTMC) called transient stochastic graph. A state in the embed-
ded DTMC is named transient stochastic state class (transient class for short)
and provides the marking of the sTPN plus the joint support and PDF of τage
and the times-to-fire of the enabled transitions. The marginal PDF of τage per-
mits to derive the PDF of the absolute time at which the transient class can
be entered. This enables evaluation of continuous-time transient probabilities of
reachable markings within a given time horizon, provided that either the number
of transient classes that can be reached within that time interval is bounded (ex-
act analysis) or it can be truncated under the assumption of some approximation
threshold on the total unallocated probability (approximated analysis).

The number of transient classes enumerated within a given time bound is
guaranteed to be finite by Lemma 3.4 of [17] provided that the state class graph
of the underlying TPN model is finite and does not include a cycle that can be
executed in zero time. The state class graph of the underlying TPN model can
be regarded as a non-deterministic projection of the transient stochastic class
graph and its finiteness is assured under fairly general conditions by Lemma 3.2
of [17], which is not addressed here for the shortness of discussion.

If the state class graph of the underlying TPN model includes cycles that can
be executed in zero time, then the number of transient classes enumerated within
a given time bound is not finite. In this case, termination can be guaranteed in
probability by Lemma 3.5 of [17] if cycles that must be executed in zero time are
not allowed. This permits to stop the enumeration when the total probability
of reaching one of the discarded successor transient classes within a given time
bound is lower than a predefined threshold. In particular, approximated analysis
can be leveraged also when the number of transient classes enumerated within
a given time bound is theoretically finite but practically too large to afford the
enumeration within a reasonable computation time.

The complexity of the analysis actually grows with the number of enumerated
transient classes and, thus, with the time horizon. In the experiments performed
in this paper, approximated analysis turned out to be feasible with a computation
time lower than 5 minutes up to procedures made of 4-5 maintenance actions.

4.2 Transient Analysis of Markov Regenerative Processes

The issue of complexity can be overcome for models that underlie an MRP that
within a finite number of steps always reaches a regeneration point, which is a

186 L. Carnevali et al.

state where the future behavior of the stochastic process is independent from
the past behavior through which the state has been reached. In the approach
of [17], regeneration points can be identified as the transient classes where all
times-to-fire are either i) newly-enabled, or ii) exponentially distributed, or iii)
deterministic, or iv) bounded to take a deterministic delay with respect to a time-
to-fire satisfying any of the previous conditions. According to this, the sTPN
model derived in Section 3.2 is guaranteed to reach a regeneration point at the
completion of each action, since the subsequent action is not started until any
ongoing repair is completed. When the underlying stochastic process satisfies this
condition, the solution technique of [17] can be limited to the first regeneration
epoch and repeated from every regenerative point. This supports the derivation
of the local and global kernels that characterize the behavior of the MRP [13,1,2]
and enables the evaluation of the transient probabilities of reachable markings
at any time through the numerical integration of generalized Markov renewal
equations (regenerative exact analysis). Termination is guaranteed if the number
of transient classes reached within the first regeneration epoch is bounded. This
is assured by Lemma 4.1 of [17] if the state class graph of the underlying TPN
model is finite and every cycle that it contains visits at least one state class that
is a (non-deterministic) projection of a regenerative transient class. If the number
of transient classes reached within the first regeneration epoch is not finite or
practically too large, termination can be guaranteed in probability by Lemma 3.5
of [17] under the assumption of a time bound and an approximation threshold
on the total unallocated probability (approximated regenerative analysis).

In the experiments performed in this paper, regenerative analysis permitted
to afford cases of real complexity concerning procedure made of 10 or more
maintenance actions, and it seems to be a solid ground for future developments.

5 Computational Experience

We consider the procedure introduced in Section 2.2, which is made of 10 main-
tenance actions a1, a2, ..., a10 that use and may affect a resource r1. For the
simplicity of interpretation of experimental results, we adopt for each mainte-
nance action the specification given in Table 1. According to this, the sTPN
model of such procedure is a composition of the r1 submodel shown in Figure 2
with 10 action submodels equal to the a1 submodel shown in Figure 2. The switch
probabilities and the supports of the temporal parameters appearing in Table 1
were selected according to general experience at NEC Corporation [22], with the
aim of experimenting the approach on plausible data. The way how experimental
data are acquired and interpreted to derive not only the expected min-max du-
ration of temporal parameters but also their distribution is still matter of study.
In such cases, the principle of insufficient reason, or maximum entropy can be
advocated to motivate the assumption of a uniform distribution [3].

To illustrate the potentialities of the approach, the experimentation is finalized
to evaluate, for each maintenance action ai, the transient probability that ai is
completed and the subsequent action ai+i (if any) is still ongoing. Specifically,

Towards the Quantitative Evaluation of Phased Maintenance Procedures 187

this measure of interest is derived as the sum of the transient probabilities of
any marking such that: i) the submodel of any action that precedes ai or follows
ai+1 (if any) contains no tokens, and ii) aiok in the ai submodel contains a
token, or aiok and air1errdet in the ai+1 submodel contain no tokens. This
permits to derive the time at which a given action or the overall procedure
has been successfully completed with an assigned probability or, vice-versa, the
probability that a given action or the overall procedure has been successfully
completed within a given time bound. The considered performance measures
also permit to evaluate different strategies for error detection and rejuvenation,
also with respect to different feasible orderings of the maintenance actions.

The experiments were performed through the new release of the Oris tool
based on the Sirio framework [10,12,7]. Regenerative analysis with approximation
threshold equal to 0.01 and time bound equal to 300 minutes was repeated for
four different policies of error detection and rejuvenation. In all the cases, the
analysis took 1 s to enumerate transient classes and less than 4 minutes to solve
Markov renewal equations.

Error Detection and Rejuvenation Never Performed. Figure 3a shows
that the probability of successful completion of the overall procedure within 125,
150, and 175 minutes is nearly 0.29, 0.35, and 0.74, respectively, while the time
by which the procedure has been successfully completed with probability higher
than 0.99 is 293 minutes.

Error Detection and Rejuvenation Performed Every 5 Actions. Fig-
ure 3b shows that rejuvenation improves the probability of successful completion
of the overall procedure within 150 and 175 minutes to nearly 0.48 and 0.78, re-
spectively, while decreasing the probability of successful completion within 125
minutes to 0.136134. The time by which the procedure has been successfully
completed with probability higher than 0.99 is 269 minutes.

Error Detection and Rejuvenation Performed Every 3 Actions. Fig-
ure 3c shows that the probability of successful completion of the overall pro-
cedure within 150 minutes is increased to nearly 0.54, while the probability of
successful completion within 125 minutes is further decreased to 0.11 and the
probability of successful completion within 175 minutes is slightly reduced to
nearly 0.77. The time by which the procedure has been successfully completed
with probability higher than 0.99 is 267 minutes.

Error Detection and Rejuvenation Performed after Each Action. Fig-
ure 3d shows that the probability of successful completion of the overall proce-
dure within 125 minutes is nearly halved and it is equal to 0.06; the probability
of successful completion within 150 minutes is decreased to nearly 0.47, while the
probability of successful completion within 175 minutes is increased to 0.79. The
time by which the procedure has been successfully completed with probability
higher than 0.99 is 258 minutes.

188 L. Carnevali et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 25 50 75 100 125 150 175 200 225 250 275 300

pr
ob

ab
ili

ty

time

a1 done, a2 ongoing
a2 done, a3 ongoing
a3 done, a4 ongoing
a4 done, a5 ongoing
a5 done, a6 ongoing
a6 done, a7 ongoing
a7 done, a8 ongoing
a8 done, a9 ongoing

a9 done, a10 ongoing
a10 done

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 25 50 75 100 125 150 175 200 225 250 275 300

pr
ob

ab
ili

ty

time

a1 done, a2 ongoing
a2 done, a3 ongoing
a3 done, a4 ongoing
a4 done, a5 ongoing
a5 done, a6 ongoing
a6 done, a7 ongoing
a7 done, a8 ongoing
a8 done, a9 ongoing

a9 done, a10 ongoing
a10 done

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 25 50 75 100 125 150 175 200 225 250 275 300

pr
ob

ab
ili

ty

time

a1 done, a2 ongoing
a2 done, a3 ongoing
a3 done, a4 ongoing
a4 done, a5 ongoing
a5 done, a6 ongoing
a6 done, a7 ongoing
a7 done, a8 ongoing
a8 done, a9 ongoing

a9 done, a10 ongoing
a10 done

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 25 50 75 100 125 150 175 200 225 250 275 300

pr
ob

ab
ili

ty

time

a1 done, a2 ongoing
a2 done, a3 ongoing
a3 done, a4 ongoing
a4 done, a5 ongoing
a5 done, a6 ongoing
a6 done, a7 ongoing
a7 done, a8 ongoing
a8 done, a9 ongoing

a9 done, a10 ongoing
a10 done

(d)

Fig. 3. Transient probability that ai is completed and ai+i (if any) is ongoing for each
action ai of the procedure specified in Section 2.2, under the assumption that error
detection and rejuvenation are: never performed a), performed every 5 actions b),
performed every 3 actions c), and performed after each action (except a10) d)

6 Conclusions

We experimented with the approach of stochastic state classes [17] in quanti-
tative evaluation of maintenance procedures that may induce errors or failures
of system resources. To this end, we considered a general modeling framework,
including precedence and timeout constraints on maintenance actions, repair op-
erations of system resources, and strategies for error detection and rejuvenation
of resources. As a relevant aspect, the execution times of such actions may have
a non-Markovian distribution over a bounded support. This yields models that
underlie an MRP with multiple concurrently enabled GEN timers, which can
be effectively solved through the regenerative approach to transient analysis de-
veloped in [17]. The method permits to derive transient availability measures,
which can be used to support the selection of a rejuvenation plan and the choice
among feasible orderings of actions. Computational experience addresses a rela-
tively challenging case study that is able to fit the complexities of reality beyond

Towards the Quantitative Evaluation of Phased Maintenance Procedures 189

the enabling restriction. In so doing, a major contribution of this paper consists
in a proof of the applicability of the solution technique of [17], which seems to
be extremely promising for the analysis of models of higher complexity and size.
While applied to the solution of a specific problem pertaining to the evaluation
of critical maintenance procedures, the proposed approach is formulated as a
method for modeling and analysis of a more general class of critical applications
referred to the abstraction of PMS.

The proposed approach is amenable to integration within a model driven
development process where the results of quantitative analysis can be used to
support iterative feedback cycles [11,16]. Specifically, the temporal parameters
with unknown distribution are initially associated with a uniform distribution
or with a distribution guessed by analogy with previous implementations. Then,
they are progressively refined on the basis of quantitative measures and the
results of a profiling technique for the estimation of execution times.

Acknowledgments. We kindly thank Stefano Ballerini for his support in the
experimentation stage.

References

1. Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic pro-
cess underlying a stochastic Petri net. IEEE Trans. SW Eng. 20(7), 506–515 (1994)

2. Bobbio, A., Telek, M.: Markov regenerative SPN with non-overlapping activity cy-
cles. In: Int. Comp. Perf. and Dependability Symp. - IPDS 1995, pp. 124–133 (1995)

3. Bernardi, S., Campos, J., Merseguer, J.: Timing-failure risk assessment of UML
design using time Petri net bound techniques. IEEE Transactions on Industrial
Informatics 7(1), 90–104 (2011)

4. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. on SW Eng. 17(3), 259–273 (1991)

5. Bobbio, A., Puliafito, A., Scarpa, M., Telek, M.: WebSPN: a web-accessible Petri
net tool. In: Proc. Conf on Web-based Modeling and Simulation (1998)

6. Bruneo, D., Distefano, S., Longo, F., Scarpa, M.: Stochastic evaluation of QoS in
service-based systems. IEEE Trans. on Parallel and Distributed Systems (2012)

7. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verifica-
tion and evaluation of real-time systems. Int. Journal of SW Tools for Technology
Transfer 12(5), 391–403 (2010)

8. Burdick, L., Fussell, J.B.,Rasmuson,D.,Wilson, J.: Phasedmission analysis: a review
of new developments and an application. IEEE Trans. on Rel. 26(1), 43–49 (1977)

9. Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains
in the analysis of non-Markovian models. IEEE Trans. on SW Eng. 35(2), 178–194
(2009)

10. Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state
space analysis of non-Markovian models. In: Flammini, F., Bologna, S., Vittorini, V.
(eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg (2011)

11. Carnevali, L., Ridi, L., Vicario, E.: Putting preemptive time Petri nets to work in
a V-model SW life cycle. IEEE Trans. on SW Eng. 37(6) (November/December
2011)

190 L. Carnevali et al.

12. Carnevali, L., Ridi, L., Vicario, E.: Sirio: A framework for simulation and symbolic
state space analysis of non-Markovian models. In: 8th Int. Conf. on Quantitative
Evaluation of Systems (QEST 2011), pp. 153–154 (2011)

13. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets.
Perform. Eval. 20(1-3), 337–357 (1994)

14. Combacau, M., Berruet, P., Zamai, E., Charbonnaud, P., Khatab, A.: Supervision
and monitoring of production systems. In: Proc. IFAC Conf. on Management and
Control of Production and Logistics (2000)

15. Dugan, J.B.: Automated analysis of phased-mission reliability. IEEE Trans. on
Reliability 40(1), 45–52 (1991)

16. Dugan, J.B.: Galileo: A tool for dynamic fault tree analysis. In: Haverkort, B.R.,
Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 328–331.
Springer, Heidelberg (2000)

17. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian
models using stochastic state classes. Perf. Eval. 69(7-8), 315–335 (2012)

18. Mura, I., Bondavalli, A.: Markov regenerative stochastic Petri nets to model and
evaluate phased mission systems dependability. IEEE Trans. Comput. 50(12),
1337–1351 (2001)

19. Ou, Y., Dugan, J.B.: Modular solution of dynamic multi-phase systems. IEEE
Transactions on Reliability 53(4), 499–508 (2004)

20. Glynn, P.W.: A GSMP formalism for discrete-event systems. Proceedings of the
IEEE 77, 14–23 (1989)

21. Shrestha, A., Xing, L., Dai, Y.: Reliability analysis of multistate phased-mission
systems with unordered and ordered states. IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans 41(4), 625–636 (2011)

22. Tadano, K., Xiang, J., Kawato, M., Maeno, Y.: Automatic synthesis of SRN mod-
els from system operation templates for availability analysis. In: Flammini, F.,
Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 296–309.
Springer, Heidelberg (2011)

23. Trivedi, K.S.: Probability and statistics with reliability, queuing, and computer
science applications. John Wiley and Sons, New York (2001)

24. Vicario, E.: Static analysis and dynamic steering of time dependent systems using
time Petri nets. IEEE Trans. on SW Eng. 27(1), 728–748 (2001)

25. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative
evaluation of dense-time reactive systems. IEEE Trans. on SW Eng. 35(5), 703–719
(2009)

26. Wang, D., Trivedi, K.S.: Reliability analysis of phased-mission system with inde-
pendent component repairs. IEEE Trans. on Reliability 56(3), 540–551 (2007)

27. Weiss, K.A., Leveson, N., Lundqvist, K., Farid, N., Stringfellow, M.: An analysis of
causation in aerospace accidents. In: Digital Avionics Systems Conference (DASC),
vol. 1, pp. 4A3–4A1. IEEE (2001)

28. Xing, L., Dugan, J.B.: Analysis of generalized phased-mission system reliability,
performance, and sensitivity. IEEE Trans. on Reliability 51(2), 199–211 (2002)

29. Xing, L., Dugan, J.B.: A separable ternary decision diagram based analysis of
generalized phased-mission reliability. IEEE Trans. on Rel. 53(2), 174–184 (2004)

30. Yam, R., Tse, P., Li, L., Tu, P.: Intelligent predictive decision support system for
condition-based maintenance. Int. Journal of Advanced Manufacturing Technol-
ogy 17(5), 383–391 (2001)

31. Zang, X., Sun, N., Trivedi, K.S.: A BDD-based algorithm for reliability analysis of
phased-mission systems. IEEE Transactions on Reliability 48(1), 50–60 (1999)

Performance Enhancement by Means

of Task Replication

Peter G. Harrison and Zhan Qiu

Department of Computing, Imperial College London
Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK

{pgh,zq11}@doc.ic.ac.uk

Abstract. In order for systems in which tasks may fail to be fault-
tolerant, traditional methods deploy multiple servers as replicas to per-
form the same task. Further, in real time systems, computations have to
meet strict time-constraints, a delayed output being unacceptable, even
if correct. The effectiveness of sending task-replicas to multiple servers
simultaneously, and using the results from whichever one responds first,
is considered in this paper as a means of reducing response time and
improving fault-tolerance. Once a request completes execution in one
server successfully, it immediately cancels (kills) its replicas that remain
at other servers. We assume a Markovian system and use the generat-
ing function method to determine the Laplace transform of the response
time probability distribution, jointly with the probability that not all
replicas fail, in the case of two replicas. When the failure rate of each
task is greater than the service rate of the server, we make the approx-
imation that the queues are independent, each with geometric queue
length probability distributions at equilibrium. We compare our approx-
imation with simulation results as well as with the exact solution in a
truncated state space and find that for failure rates in that region, the
approximation is generally good. At lower failure rates, the method of
spectral expansion provides an excellent approximation in a truncated,
multi-mode, two-dimensional Markov process.

Keywords: Fault-tolerance, reliability, response time.

1 Introduction

Fault-tolerance has for long been a requirement of real-time (and other) systems
and is now particularly important in web services since the failure of a task
may have a serious impact on system performance and reliability. Web services
usually perform well when failure-rate is low and response time is fast and con-
sistent. However, in reality, the reliability of web services is uncertain and the
performance of the Internet is also unpredictable. Many performance metrics re-
lating to quality of service (QoS) are not attained consistently – often violating
SLA limits – such as long latency, high failure-rate and excessive energy con-
sumption [11]. Task completion is the fundamental usability metric of a website:

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 191–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

192 P.G. Harrison and Z. Qiu

if users can’t accomplish what they are trying to do, it’s unlikely they will return
or refer their friends favourably [10].

If redundancy in time (i.e. retrying) is not acceptable for meeting dependabil-
ity requirements, or if the delay is unacceptable, replicas may be used in systems
that deploy multiple servers to perform the same task [2]; for example, active
replication and backup/restart schemes [3]. For the active replication scheme,
several processors are scheduled simultaneously, and a task will succeed if at
least one of its replicas does not encounter a failure [7]. In real time systems,
outputs have to meet strict time-constraints, a delayed output being unaccept-
able even if correct. For instance, a delayed braking signal in the cruise control
system of a car may cause an accident and a delayed output in an industrial ap-
plication may lead to economic losses, environmental damage or even personal
injury [8]. Active replication facilitates a faster response to user actions.

It is mentioned in [4] that “A simple way to curb latency variability is to
issue the same request to multiple replicas and use the results from whichever
replica responds first”. This approach is equally applicable to response time
reduction and enhancement of system-dependability. This is precisely the repli-
cation scheme described above. In order to reduce unnecessary workload, servers
communicate updates on the status of their copies to each other. When a re-
quest completes execution, it immediately cancels (kills) its replicas that remain
at other servers. Systems using this approach are more likely to meet their SLA
requirements by ensuring high availability and low latency in time-critical ap-
plications, by using the results from whichever replica responds first.

We consider the situation where a task may encounter a failure during service,
such as in a parallel database search or in a system with mirroring, for example.
In this case, on a failure, only the task itself is lost, the server continues processing
the next task in its queue. The failure of a task during service can arise for various
reasons, such as an item being searched for not being found, software error or a
faulty disk sector.

2 Conditional Task-Response Time Distribution

We consider a pair of FCFS queues, each having independent and identical ex-
ponential service times with parameter μ, and a single Poisson arrival process of
rate λ that sends a task to both queues at an arrival instant. In addition, the task
in service is subject to failure, where its time to failure, once in service, is also
an exponential random variable with parameter α. When a task completes ser-
vice, it “kills” (removes) it’s partner-task (that was inserted in the other queue
at their arrival instant) if it is still there, including when it is currently being
served, defining a “join-operation” to match the “fork” at the arrival instant.
However, it may be that the partner-task had already failed, in which case no
action is taken on the service completion.

In conventional queueing terminology, we seek the joint probability that the
two customers in a tagged pair are not both killed, i.e. one completes service in
one of the queues, and that its response time W does not exceed a positive real

Performance Enhancement by Means of Task Replication 193

value t, conditioned on the numbers of customers ahead of each of the tagged
pair, A1 and A2, in each queue initially – e.g. at the tagged pair’s arrival instant.
If the tagged customers are both killed, W > t for all t > 0, so that W =∞ with
probability one. For integers m,n ≥ 0, we define Fmn(t) = IP (W ≤ t | A1 =
m,A2 = n) and obtain a recurrence formula for Fmn(t), which we solve via a
generating function of its Laplace transform. We then decondition against the
joint stationary distribution of A1 and A2 at the arrival instant of the tagged
pair. In section 3 we assume that A1 and A2 are distributed as the equilibrium
queue length random variables by appeal to the random observer property of
the Poisson process. Let fmn(t) be the derivative of Fmn(t) with respect to t
and Lmn(s) = (LF)(s) be the Laplace transform of Fmn(t) – not the Laplace-
Stieltjes transform (LST) of Fmn(t), which is the Laplace transform of fmn(t).

Noting that, Fmn(t) = Fnm(t) and Lmn(s) = Lnm(s) for all m,n ≥ 0 by

the symmetry of the two queues, let Gk(x) =
∞∑
n=1

Ln+k,nxn =
∞∑

n=1
Ln,n+kx

n for

k ≥ 0 and G−k(x) =
∞∑
n=1

Ln,n+k(s)x
n = Gk(x) for notational convenience. We

now define:

G(x, y) =
∞∑
n=1

∞∑
k=1

Ln+k,nxnyk =
∞∑

n=1

∞∑
k=1

Ln,n+kx
nyk =

∞∑
k=1

Gk(x)y
k

G(x, y) encodes all the information we need to obtain the Laplace transforms of
the required conditional response time distribution; and hence also unconditional
distributions once the initial queue length probabilities are known. Of course,
if these were to be geometric, the required result would follow by evaluating
G(x, y) at the values of the geometric parameters, as we shall see. We determine
G(x, y) through a series of lemmas and propositions below.

When one of the tagged pair of customers has been killed, the problem reduces
to a single queue and we define Fm,−1(t) = F−1,m(t) = IP (W ′ ≤ t | A1 = m) for
m ≥ 0, where W ′ is the response time random variable of queue 1 considered
in isolation when there are m customers ahead of a single tagged customer on
its arrival. Similarly to the previous notation, fm,−1(t) = F ′

m,−1(t) and Lm,−1 =
LFm,−1. We define the corresponding one-parameter generating functions:

H0(y) =

∞∑
m=1

Lm0y
m, H−1(y) =

∞∑
m=1

Lm,−1y
m (1)

Assuming that the tagged pair arrives at time 0, let A1(t), A2(t) be the numbers
of customers ahead of the tagged customers in queue 1 and queue 2 respectively
at time t. Then we have:

Fmn(t + h) = IP (W ≤ t + h | A1(0) = m,A2(0) = n)

=

∞∑
i,j=0

IP (W ≤ t + h | A1(0) = m,A2(0) = n,A1(h) = i, A2(h) = j)

× IP (A1(h) = i, A2(h) = j | A1(0) = m,A2(0) = n)

194 P.G. Harrison and Z. Qiu

by the law of total probability. The terms IP (A1(h) = i, A2(h) = j | A1(0) =
m,A2(0) = n) correspond to the possible events that can occur during the
interval (0, h] for h > 0, which we take to be infinitesimal.

Proposition 1. For |x| < 1, |y| < 1,

G(x, y) =
(αxy−1 + μx)H0(y) + (α + μ)yG0(x) − αxG1(x) − αxL1,0

2μ + 2α + s− μx− (α + μ)y − αxy−1
(2)

Proof. When m > n > 0, e.g. m = n+k with k ≥ 1, n ≥ 1, the possible events in
the interval (0, h] have the following probabilities, by the memoryless property
of the exponential random variable:

– a departure of the customer in service in queue 1, with probability μh+o(h)
if i = m− 1, j = n;

– a departure of the customer in service in queue 2, with probability μh+o(h)
if i = m − 1, j = n − 1, since the departure of the customer in the shorter
queue will kill its partner-task in the longer queue;

– a failure of the customer in service in queue 1, with probability αh+ o(h) if
i = m− 1, j = n;

– a failure of the customer in service in queue 2, with probability αh+ o(h) if
i = m, j = n− 1;

– no change to the states of the queues with probability 1− 2αh− 2μh+ o(h)
if i = m, j = n.

All other values of i and j give a second-order contribution as more than one
event in the interval (0, h] would be required. Thus, Fmn(t + h) satisfies:

Fmn(t + h) =

μhIP (W ≤ t + h | A1(0) = m,A2(0) = n,A1(h) = m− 1, A2(h) = n)

+ μhIP (W ≤ t + h | A1(0) = m,A2(0) = n,A1(h) = m− 1, A2(h) = n− 1)

+ αhIP (W ≤ t + h | A1(0) = m,A2(0) = n,A1(h) = m− 1, A2(h) = n)

+ αhIP (W ≤ t + h | A1(0) = m,A2(0) = n,A1(h) = m,A2(h) = n− 1)

+ (1− 2μh− 2αh)IP (W ≤ t + h | A1(0) = A1(h) = m,A2(0) = A2(h) = n)

+ o(h)

By the Markov property applied at time h and the residual life property of
exponential random variables, the remaining response time of the tagged pair
after time h, Wh = W − h say, is distributed as the full response time of a
hypothetical arrival-pair at time h conditioned on there being A1(h) and A2(h)
customers ahead in queues 1 and 2 respectively, c.f. [6]. The last conditional
probability (for instance) then simplifies to

IP (Wh ≤ t | Ah = m,Bh = n) = IP (W ≤ t | A0 = m,B0 = n) = Fmn(t)

Thus we have

Fmn(t + h) = μhFm−1,n(t) + μhFm−1,n−1(t) + αhFm−1,n(t) + αhFm,n−1(t)

+ (1− 2μh− 2αh)Fmn(t) + o(h)

Performance Enhancement by Means of Task Replication 195

Rearranging, dividing by h, taking the limit h → 0 and omitting the argument
t for brevity, we obtain

fmn = μFm−1,n + μFm−1,n−1 + αFm−1,n + αFm,n−1 − (2μ + 2α)Fmn

Taking the Laplace transform, noting that (Lfmn)(s) = sLmn(s) and writing
n + k for m, we obtain

(2μ + 2α + s)Ln+k,n = (α + μ)Ln+k−1,n + αLn+k,n−1 + μLn+k−1,n−1 (3)

Multiplying by xn and summing from n = 1 to ∞, we find

(2μ + 2α + s− μx)Gk(x) = (α + μ)Gk−1(x) + αxGk+1(x) + αxLk+1,0 + μxLk,0

Multiplying by yk, summing from k = 1 to ∞ and rearranging now gives

G(x, y) =
(αxy−1 + μx)H0(y) + (α + μ)yG0(x) − αxG1(x) − αxL1,0

2μ + 2α + s− μx− (α + μ)y − αxy−1

Lemma 1
L0,−1 =

μ

s(s + μ + α)
(4)

Proof. Proceeding as in the proof of Proposition 1, for m = 0, n = −1, we have

F0,−1 = μh · 1 + αhF−1,−1(t) + (1− μh− αh)F0,−1(t) + o(h)

The term μh · 1 corresponds to the tagged customer completing service in queue
1. The term F−1,−1(t) = 0 corresponds to the failure of the tagged customer
in both queues, with zero probability of completing service in less than time
t for any t > 0. Then we obtain L0,−1, proceeding analogusly to the proof of
Proposition 1.

Lemma 2

L0,0 =
2μs + 2μ2 + 4αμ

s(s + μ + α)(s + 2μ + 2α)
(5)

Proof. For m = 0, n = 0, we have, similarly to above,

(2μ + 2α + s)L0,0 = αL−1,0 + αL0,−1 + 2μ/s = 2αL0,−1 + 2μ/s (6)

The result follows by substituting Equation 4 into Equation 6.

Lemma 3. For |y| < 1,

H−1(y) =
μy(μ + α)

s((μ + α + s)− y(μ + α))(μ + α + s)
(7)

Proof. For m > 0, n = −1, we have

(μ + α + s)Lm,−1 = (α + μ)Lm−1,−1 (8)

Multiplying by ym, summing from m = 1 to ∞ now gives

(μ + α + s)H−1(y) = (α + μ)y(H−1(y) + L0,−1)

The result now follows from Lemma 1.

196 P.G. Harrison and Z. Qiu

Lemma 4. For |y| < 1,

H0(y) =
(α + μ)yL0,0 + αH−1(y) + μy(s(1− y))−1

s + 2μ + 2α− (μ + α)y
(9)

Proof. For m > 0, n = 0, we have, following the previous proof method:

Fm0 = μhFm−1,0(t) + μh · 1 + αhFm−1,0(t) + αhFm,−1(t)

+ (1− 2μh− 2αh)Fm0(t) + o(h)

Similar steps to before yield,

(2μ + 2α + s)Lk,0 = (α + μ)Lk−1,0 + αLk,−1 + μ/s (10)

so that

(2μ + 2α + s)H0(y) = (α + μ)yH0(y) + (α + μ)yL0,0 + αH−1(y) +
μy

s(1 − y)

and the result follows from Lemma 2 and Lemma 3.

Proposition 2. For |x| < 1,

G0(x) =
(αxy0(x)

−1
+ μx)H0(y0(x)) + μxL0,0

s/2 + (α + μ)(1− y0(x)) − μx
, (11)

where y0(x) =
s+2α+2μ−μx−

√
(s+2α+2μ−μx)2−4αx(α+μ)

2(α+μ) .

Proof. For m = n > 0, i.e., k = 0, n ≥ 1, we have:

(2μ + 2α + s)Ln,n = αLn−1,n + αLn,n−1 + 2μLn−1,n−1 (12)

Multiplying by xn, summing from n = 1 to ∞ then gives

(2μ + 2α + s)G0(x) = 2αx(G1(x) + L1,0) + 2μx(G0(x) + L0,0) (13)

Now consider the expression for G(x, y) in equation 2. Since it is analytic in the
unit disks of both x and y, the numerator must vanish wherever the denominator
is equal to 0. The zeros of the denominator are those of the quadratic

Den ≡ (α + μ)y2 − (s + 2μ + 2α− μx)y + αx = 0

When y = 0, Den = αx > 0 and when y = 1, Den = −(α + μ)(1 − x) − s < 0
for 0 < x < 1. When y → +∞, Den > 0 since the equation is dominated by y2.
Thus this equation has one (smaller) root ininterval (0, 1) and another in (1,∞).
Given some x ∈ (0, 1), let the smaller root for y be y0(x) ∈ (0, 1), namely:

y0(x) =
s + 2α + 2μ− μx−

√
(s + 2α + 2μ− μx)2 − 4αx(α + μ)

2(α + μ)
. (14)

Performance Enhancement by Means of Task Replication 197

To make G(x, y) analytic, the pair (x, y0(x)) must also be a root of the numerator
of Equation 2, i.e. we must have

(αxy0(x)
−1

+μx)H0(y0(x))+ (α+μ)y0(x)G0(x)−αxG1(x)−αxL1,0 = 0 (15)

Furthermore, from equation 13, we find

αx(G1(x) + L1,0) = (s/2 + μ + α)G0(x)− μx(G0(x) + L0,0) (16)

Thus, for all x ∈ (0, 1),

(αxy0(x)
−1

+ μx)H0(y0(x)) + (α + μ)y0(x)G0(x)

= (s/2 + μ + α)G0(x)− μx(G0(x) + L0,0)

Substituting into Equation 15, we have

G0(x) =
(αxy0(x)

−1
+ μx)H0(y0(x)) + μxL0,0

s/2 + (α + μ)(1− y0(x)) − μx
, ∀x ∈ (0, 1). (17)

Taking the above lemmas and propositions together, we arrive at the main
result of this paper.

Theorem 1. For |x| < 1, |y| < 1,

G(x, y) =
(αxy−1 + μx)H0(y) + μxL0,0 + G0(x) [μx− (α + μ)(1 − y)− s/2]

2μ + 2α + s− μx− (α + μ)y − αxy−1

(18)

Proof. Substitute the expression for αx(G1(x) + L1,0) given by equation 13 in
equation 2.

3 Initial Equilibrium State-Probabilities

Under FCFS discipline, the unconditional probability distribution of response
time at equilibrium, W (t), is W (t) = P (W ≤ t) =

∑
n≥0

∑
m≥0

πmnFmn(t), which

has Laplace transform W ∗(s) =
∑
n≥0

∑
m≥0

πmnLmn(s), where πmn is the steady

state probability that the joint state of the queues is (m,n). There is no closed
form for πmn and so we proceed in two ways in the following subsections: (a)
direct calculation of πmn and Lmn in a truncated state space; and (b) approxi-
mation of πmn by a product-form and use of the generating function G.

Notice that the probability that a positive customer completes service at either
of the servers is the marginal probability W (∞) = sW ∗(s)|s=0.

198 P.G. Harrison and Z. Qiu

3.1 Direct Solution in a Truncated Space

The equilibrium probabilities πmn are estimated, to any degree of accuracy in
a stable underlying Markov process, by solving directly the Kolmogorov equa-
tions restricted to a finite state space, i.e. in which the queues have finite ca-
pacity C and the equilibrium probability that either queue is at full capacity
is negligible. Let the generator matrix of the Markov process in our model be
A = (aij;mn), (i, j,m, n ≥ 0). Then {πmn | 0 ≤ m,n ≤ C} is the unique, nor-
malised solution of the balance equations

C∑
i=0

C∑
j=0

πijaij;mn = 0, for 0 ≤ m,n ≤ C

The instantaneous rates aij are simply read off from the problem specification,
for example aij;i+1,j+1 = λ for 0 ≤ i, j < C. The capacity C is chosen by
guessing and repeatedly increasing it until the values computed for {πmC | m ≥
0} ∪ {πCn | n ≥ 0} are negligible.

The corresponding conditional Laplace transforms Lmn, Lnm can be obtained
recursively from Equation 3, 4, 5, 8, 10 and 12, then we make the estimate:

W (s) =

C∑
m=0

C∑
n=0

πmnLmn (19)

In fact we found that C = 50 was an appropriate capacity at which to truncate
the state space when computing the exact equilibrium probabilities numerically.

3.2 Product-Form Equilibrium Probabilities

The procedure of the previous section is inefficient and at high utilisations, the
capacity C = 50 would be far too small. Notice too that the generating function
G was not necessary, the coefficients Lmn being calculated directly. However, in
the event that the queues are approximately independent, each with geometric
queue length probability distributions with parameter πmn = (1 − ρ)2ρm+n.
Then by the symmetry between m and n, the Laplace transform of W (t) is

W (s) =
∑
n≥0

[∑
m>n

πmnLmn +
∑
m<n

πmnLmn +
∑
m=n

πmnLmn

]

= 2
∑
n≥0

∑
m>n

πmnLmn +
∞∑
n=0

πnnLnn

When πmn = (1− ρ)2ρm+n, the first term becomes

2

⎡
⎣∑
n≥1

∑
k≥1

πn+k,nLn+k,n +
∑
k≥1

πk,0Lk,0

⎤
⎦ = 2(1− ρ)2

[
G(ρ2, ρ) + H0(ρ)

]

Performance Enhancement by Means of Task Replication 199

and the second (1 − ρ)2
∞∑
n=0

ρ2nLnn = (1 − ρ)2
[
G0(ρ

2) + L0,0

]
. Thus

W (s) = (1− ρ)2
[
2G(ρ2, ρ) + 2H0(ρ) + G0(ρ

2) + L0,0

]
(20)

In the case that α ' μ, the two queues are less synchronised and we might
expect the product-form to give a good approximation. This is investigated in
the next section. We now need to find the value of ρ, which we do by considering
the pair of queues as a G-network [5], in which a customer that completes service
at one node either kills (removes) a customer from another node – in our case,
its partner – with probability p− or just leaves the network with probability
1 − p− without killing. p− is the probability that the partner is still waiting in
the other queue or is being served [1,5], i.e. it is the probability that the queue
length at the other node is less than that of the completing customer’s queue at
the instant of departure. This is a function of the current queue length and does
not admit a geometric probability distribution.

We therefore further approximate by assigning to p− its mean value at equi-
librium. The average killing rate of queue 2, say, given that the queue length of
queue 1 is m, is μIP (1 ≤ N ≤ m) = μ(1−IP (N > m)−IP (N = 0)) = μρ(1−ρm).
The average rate of killing when the queue length of queue 1 is greater than 0
is therefore

μ

1− π0

∞∑
m=1

πmρ(1− ρm) = μ(1− ρ)
∞∑

m=1

(ρm − ρ2m) =
μρ

ρ + 1
(21)

We therefore define the killing probabilty p− = ρ/(ρ + 1). Since the two queues
are symmetric, the traffic equations are:

λ+ = λ, λ− = α + μρp− = α + (μρ2)/(ρ + 1) (22)

where ρ = λ+/(μ + λ−) and λ+, λ− are the positive and negative arrival rates
respectively in a single G-queue. Then the utilization ρ is the root of the following
equation that lies in the interval (0, 1):

μρ3 + (μ + α)ρ2 + (μ + α− λ)ρ− λ = 0 (23)

Since the left hand side is negative at ρ = 0 and positive at ρ = 1 when the
stability condition λ < μ + α + μρ2/(ρ + 1), such a root does exist.

3.3 Numerical Comparisons

The various tables and graphs presented in this section assume that μ = 1
and vary the input rate λ and failure rate α. The mean value and standard
deviation of response time, conditional on a customer not being killed, are ob-
tained from the first two derivatives of the Laplace transform at 0, divided by
W (∞), and tabulated in Tables 1 and 2 for α = 1, 10, 100, 1000 and ratio
λ/(α + μ) = 0.1, 0.5, 0.9. The simulations in this paper were run 10,000 times,

200 P.G. Harrison and Z. Qiu

giving 95% confidence bands. For larger arrival rates λ, the exact truncated
values are noticeably lower than the simulation values, since we ignore queue
lengths bigger than 50. We see that as α increases, the approximation becomes
more accurate.

Table 1. Comparison of mean response times with μ = 1: simulation, exact truncated
values and product-form approximation

α λ Simulation[95%] Exact Truncated Prod. Form App/%err

10
1.1 0.0980 ±0.0002 0.0979 0.0986/0.72
5.5 0.1670 ±0.0002 0.1672 0.1737/3.89
9.9 0.5830 ±0.0008 0.5805 0.6609/13.36

100
10.1 0.0109 ±0.0001 0.0110 0.0110/0.00
50.5 0.0196 ±0.0001 0.0196 0.0197/0.51
90.9 0.0922 ±0.0004 0.0912 0.0950/3.04

1000
100.1 0.0011 ±0.0000 0.0011 0.0011/0.00
500.5 0.0020 ±0.0000 0.0020 0.0020/0.00
900.9 0.0100 ±0.0001 0.0096 0.0099/1.00

For α = 0.1, 1, 10, 100 and ratio λ/(α + μ) = 0.5, we also computed the CDF
of response time using the approximation. This is shown in Figure 2, where it
is compared with the corresponding result computed exactly up to state-space
truncation. The agreement is good when α is large and improves with increasing
α. However, for small α, the approximation is much poorer, especially for α <
0.5. We therefore examined the accuracy of the product-form approximation.

Table 2. Comparison of standard deviation of response times with μ = 1: simulation,
exact truncated values and product-form approximation

α λ Simulation[95%] Exact Truncated Prod. Form App/%err

10
1.1 0.0990 ±0.0001 0.0989 0.0997/0.81
5.5 0.1672 ±0.0002 0.1673 0.1755/4.90
9.9 0.5641 ±0.0005 0.5577 0.6683/18.47

α λ Simulation Exact Truncated Prod. Form App/%err

100
10.1 0.0109 ±0.0001 0.0110 0.0110/0.00
50.5 0.0196 ±0.0001 0.0196 0.0197/0.51
90.9 0.0917 ±0.0003 0.0878 0.0951/3.71

α λ Simulation Exact Truncated Prod. Form App/%err

1000
100.1 0.0011 ±0.0000 0.0011 0.0011/0.00
500.5 0.0020 ±0.0000 0.0020 0.0020/0.00
900.9 0.0100 ±0.0001 0.0091 0.0099/1.00

3.4 Approximate Marginal and Joint Probabilities

To check the accuracy of the approximate, geometric marginal stationary proba-
bilities, we set α = 0.1, 10, 100 and λ/(α+μ) = 0.1, 0.5, 0.9, as shown in figure 1.
We see that as α increases, the approximation becomes more accurate. However,
increasing the ratio λ/(α + μ) makes it less accurate.

Performance Enhancement by Means of Task Replication 201

For the joint stationary probabilities, we set α = 0, 1, 100 respectively. Fig-
ure 3 shows the comparison of the joint probability of exact truncated values
with the approximation using λ/(α + μ) = 0.5. Again it is seen that with the
increasing of α, the approximation becomes more accurate. However, near the
point (0, 0), there is a significant discrepancy in the joint probability, arising
from the dependence between the two queues.

4 Formulation Based on Difference-Modes

Instead of defining the state as the pair of queue lengths, we instead use the
shorter queue length, n, and the difference between the queue lengths, d, which
we call the mode, exploiting the symmetry of the model. We then essentially use
the mode to modulate the Markov process followed by the shorter queue length,
first approximately and then exactly by the Spectral Analysis Method (SEM).
For example, mode 4 means the queue lengths are (4+n, n) or (n, 4+n), where
n ≥ 0 is the length of the shorter queue. To avoid confusion, we denote the
equilibrium probabilities with primes, e.g. π′

d,n = πn,n+d + πn+d,n.

4.1 Approximation

Whilst the mode remains fixed, the shorter queue length can increase by 1, due
to an arrival (to both queues), and can decrease by 1 when the task at the
front of the shorter queue departs and then kills its partner. Thus, we make the
approximation, for n ≥ 0, that π′

0,n = p0(1 − λ/2μ)(λ/2μ)n and πd,n = pd(1 −
λ/μ)(λ/μ)n, for d > 0, where pd is the equilibrium marginal mode-probability
considered next.

We further approximate regarding mode-transitions since the transition rates
depend on the individual queue lengths. For example, no mode-transition is
possible in the empty system with state (0, 0). We therefore use average rates,
with respect to the above shorter queue length probabilities. The transition
from mode 0 to mode 1 is therefore approximated by 2αλ/2μ = αλ/μ, since
a task at the front of either queue can only fail when one is present. For the
mode-transition d → d + 1, (d > 0), the task at the front of the shorter queue
can fail only when that queue is non-empty, so we use the averaged rate αλ/μ.
For the transition d + 1 → d, (d ≥ 0), the rate is α + μ, due to the departure
or failure of the task at the front of the longer queue. This gives equilibrium
mode-probabilities:

p0 =
μ(μ + α)− αλ

μ(μ + α)
, pd =

μ(μ + α)− αλ

μ(μ + α)

(
αλ

μ(μ + α)

)d

(d > 0),

giving Laplace transform

W ∗(s) =
∑
n≥0

∑
m≥0

πmnLmn(s) = p0
∑
n≥0

π′
0,nLn,n +

∑
d>0

pd
∑
n≥0

π′
d,nLd+n,n(s)

202 P.G. Harrison and Z. Qiu

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Truncated Exact Result vs Approximaton: α = 0.1, λ = 0.11

Truncated Exact Result
Approximation

(a) α = 0.1, λ = 0.11

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Truncated Exact Result vs Approximaton: α = 10, λ = 1.1

Truncated Exact Result
Approximation

(b) α = 10, λ = 1.1

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Truncated Exact Result vs Approximaton: α = 100, λ = 10.1

Truncated Exact Result
Approximation

(c) α = 100, λ = 10.1

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Truncated Exact Result vs Approximaton: α = 0.1, λ = 0.55

Truncated Exact Result
Approximation

(d) α = 0.1, λ = 0.55

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

n

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Truncated Exact Result vs Approximaton: α = 10, λ = 5.5

Truncated Exact Result
Approximation

(e) α = 10, λ = 5.5

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

n

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Truncated Exact Result vs Approximaton: α = 100, λ = 50.5

Truncated Exact Result
Approximation

(f) α = 100, λ = 50.5

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

n

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Truncated Exact Result vs Approximaton: α = 0.1, λ = 0.99

Truncated Exact Result
Approximation

(g) α = 0.1, λ = 0.99

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

n

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Truncated Exact Result vs Approximaton: α = 10, λ = 9.9

Truncated Exact Result
Approximation

(h) α = 10, λ = 9.9

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

n

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Truncated Exact Result vs Approximaton: α = 100, λ = 90.9

Truncated Exact Result
Approximation

(i) α = 100, λ = 90.9

Fig. 1. Comparison of truncated exact result with approximaton with the ratio λ/(α+
μ) = 0.1, 0.5, 0.9

Combining Equation 5,9,18, we obtain

W ∗(s) =
(2μ− λ)(μα + μ2 − λα)

2μ2(α + μ)

[
L00 + G0

(λ

2μ

)]

+
(μ− λ)(μα + μ2 − λα)

μ2(α + μ)

[
H0

(λα

μ(α + μ)

)
+ G

(λ

μ
,

λα

μ(α + μ)

)](24)

This approximation is very fast and works well at low α but deteriorates as λ
increases, i.e. at higher utilisations. We therefore seek a more accurate numerical
approximation of the exact result in the next section.

4.2 Spectral Expansion Method

The spectral expansion method (SEM) of [9] is ideally suited to calculating the
joint equilibrium probabilities in the difference-mode formulation, in which the

Performance Enhancement by Means of Task Replication 203

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Exact Truncated

Approximation

(a) α = 0.1, λ = 0.55

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Exact Truncated

Approximation

(b) α = 1, λ = 1

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Exact Truncated

Approximation

(c) α = 10, λ = 5.5

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.0

0.2

0.4

0.6

0.8

1.0

Exact Truncated

Approximation

(d) α = 100, λ = 50.5

Fig. 2. CDF: approximation vs. exact truncated result

0
1

2
3

4
5 0

1
2

3
4

5

0

0.2

0.4

0.6

0.8

n2n1

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

Approximation
Exact Truncated Result

(a) α = 0, λ = 0.5

0
1

2
3

4
5 0

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

n2n1

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n Approximation

Exact Truncated Result

(b) α = 1, λ = 1

0
1

2
3

4
5 0

1
2

3
4

5

0

0.1

0.2

0.3

0.4

n2n1

S
te

ad
y

S
ta

te
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n Approximation

Exact Truncated Result

(c) α = 100, λ = 50.5

Fig. 3. Joint queue length probabilities: exact truncated result vs. approximation with
the ratio λ/(α+ μ) = 0.5

system state is described by a pair of random variables, (K,X); K is a con-
trol variable that determines the transition rates in the Markov process followed
by X . Here, K is the mode (difference between the queue lengths) and X is
the length of the shorter queue. The random variable K must be finite and so
again we truncate the state space, but even at high utilisations the probabil-
ity of large differences between the queue lengths should be small; a trunca-
tion at maximum mode 5 was found sufficient. In the SEM, above a threshold
X = M , the transition rates on X must be independent of K; here the threshold
M = 1. Following the SEM, let the eigenvalue-eigenvector pairs of the character-
istic equation be denoted (α�,v�), with |α�| < 1, 1 ≤ � ≤ N + 1, where N is the

204 P.G. Harrison and Z. Qiu

Table 3. Mean response times with μ = 1: simulation, exact truncated, product-form
approximation, difference-modes approximation and SEM

α λ Simulation[95%]/ Exact Truncated Prod. Form/%err Diff-Modes/%err SEM/%err

0.001
0.1 0.5270 ±0.0003 0.5268 0.5531/4.99 0.5268/0.00 0.5268/0.00
0.5 0.6669 ±0.0004 0.6671 0.8449/26.65 0.6674/0.04 0.6671/0.00
0.9 0.9091 ±0.0004 0.9095 1.4837/63.13 0.9135/0.44 0.9095/0.00

0.01

0.1 0.5310 ±0.0003 0.5312 0.5574/4.93 0.5312/0.00 0.5310/0.04
0.5 0.6707 ±0.0005 0.6708 0.8483/26.46 0.6740/0.48 0.6708/0.00
0.9 0.9121 ±0.0005 0.9127 1.4797/62.12 0.9529/4.40 0.9127/0.00

0.1

0.1 0.5558 ±0.0004 0.5555 0.5810/4.59 0.5583/0.50 0.5555/0.00
0.5 0.6906 ±0.0005 0.6901 0.8563/ 24.08 0.7207/4.43 0.6901/0.00
0.9 0.9236 ±0.0006 0.9223 1.4100/52.88 1.2931/40.20 0.9223/0.00
0.99 0.9987 ±0.0007 0.9993 / / 0.9997/0.04

0.5

0.1 0.5204 ±0.0004 0.5203 0.5349/2.81 0.5315/2.15 0.5203/0.00
0.5 0.6242 ±0.0005 0.6236 0.7145/14.58 0.7407/18.78 0.6236/0.00
0.9 0.7852 ±0.0005 0.7857 1.0115/28.74 2.0558/161.65 0.7857/0.00
1.35 1.1347 ±0.0007 1.1359 / / 1.1359/0.00

1
0.2 0.4470 ±0.0004 0.4469 0.4617/3.31 0.4844/8.39 0.4469/0.00
1.0 0.6351 ±0.0005 0.6352 0.7521/18.40 0.7762/22.20 0.6352/0.00
1.8 1.1446 ±0.0008 1.1467 / / 1.1468/0.01

Table 4. Standard deviation of response times with μ = 1: simulation, exact truncated,
product-form approximation, difference-modes approximation and SEM

α λ Simulation[95%] Exact Truncated Prod. Form/%err Diff-Modes/%err SEM/%err

0.001
0.1 0.5279 ±0.0002 0.5277 0.5522/4.64 0.5277/0.00 0.5277/0.00
0.5 0.6674 ±0.0003 0.6677 0.8164/22.27 0.6682/0.07 0.6677/0.00
0.9 0.9101 ±0.0004 0.9098 1.3980/53.66 0.9319/2.43 0.9098/0.00

0.01

0.1 0.5394 ±0.0002 0.5395 0.5656/4.80 0.5397/0.00 0.5395/0.00
0.5 0.6762 ±0.0003 0.6763 0.8348/23.44 0.6810/0.70 0.6763/0.00
0.9 0.9151 ±0.0004 0.9155 1.4217/55.29 1.1137/21.65 0.9155/0.00

0.1

0.1 0.6042 ±0.0002 0.6037 0.6362/5.38 0.6062/0.41 0.6037/0.00
0.5 0.7243 ±0.0004 0.7234 0.9187/27.00 0.7623/5.38 0.7234/0.00
0.9 0.9409 ±0.0004 0.9392 1.4896/58.60 2.0947/123.03 0.9392/0.00
0.99 1.0115 ±0.0004 1.0128 / / 1.0128/0.00

0.5

0.1 0.5711 ±0.0004 0.5711 0.5909/3.47 0.5814/1.80 0.5711/0.00
0.5 0.6647 ±0.0003 0.6636 0.7833/18.04 0.7934/19.56 0.6636/0.00
0.9 0.8076 ±0.0004 0.8087 1.1019/32.26 3.1574/290.43 0.8087/0.00
1.35 1.1260 ±0.0005 1.1288 / / 1.1288/0.00

1
0.2 0.4469 ±0.0002 0.4772 0.4968/4.06 0.5143/7.73 0.4773/0.02
1.0 0.6514 ±0.0003 0.6515 0.8032/23.28 0.7812/19.91 0.6514/0.02
1.8 1.1165 ±0.0006 1.1201 / / 1.1202/0.01

truncation value chosen for the mode. These values can be computed numerically
by standard algorithms. We then obtain

W ∗(s) =
N∑

k=0

∑
n≥0

πk+n,nLk+n,n(s) =
∑
n≥0

πn,nLn,n(s) +
N∑

k=1

∑
n≥0

πk+n,nLk+n,n(s)

=

N+1∑
�=1

α�/x�

[
v�0(G0(x�) + L00) +

N∑
k=1

v�k(Lk0 + Gk(x�))

]
,

(25)

where Lk,0 and Gk(x) are obtained iteratively from equations 10 and 4.
If the number of eigenvalues obtained in the unit disk is other than N + 1,

a steady-state distribution does not exist, so we increase N . The SEM results

Performance Enhancement by Means of Task Replication 205

for mean and standard deviation of response time are shown and compared with
simulation and exact truncated values in table 4, which reveals a high degree
of accuracy at all parameterisations of the model.

5 Conclusion

We have made a start in analysing the effectiveness of replication schemes by
considering the case of two replicas. Exact solution is not practical because of the
lack of a product-form solution for the equilibrium state, and so we had to find
approximations and bounds on the exact result that do have product-form. Based
on this analysis, we next intend to investigate the corresponding scheme with
n ≥ 2 replicas by approximate methods, for example by considering successively
a set of r replicas together with a further single replica for r = 1 (the base case),
2 (as in this paper), . . . , n.

References

1. Artalejo, J.R.: G-networks: A versatile approach for work removal in queueing
networks. European Journal of Operational Research 126(2), 233–249 (2000)

2. Chan, P., Lyu, M.R., Malek, M.: Reliableweb services: Methodology, experiment
and modeling. In: IEEE International Conference on Web Services, ICWS 2007,
pp. 679–686. IEEE (2007)

3. Dabrowski, C.: Reliability in grid computing systems. Concurrency and Computa-
tion: Practice and Experience 21(8), 927–959 (2009)

4. Dean, J., Barroso, L.A.: The tail at scale. Communications of the ACM 56(2),
74–80 (2013)

5. Gelenbe, E.: Product-form queueing networks with negative and positive cus-
tomers. Journal of Applied Probability, 656–663 (1991)

6. Harrison, P.G., Pitel, E.: Sojourn times in single-server queues with negative cus-
tomers. Journal of Applied Probability, 943–963 (1993)

7. Koren, I., Krishna, C.M.: Fault-tolerant systems. Morgan Kaufmann (2010)
8. Maxion, R.A., Siewiorek, D.P., Elkind, S.A.: Techniques and architectures for fault-

tolerant computing. Annual Review of Computer Science 2(1), 469–520 (1987)
9. Mitrani, I.: Spectral expansion solutions for markov-modulated queues. In:

Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 17–35.
Springer, Heidelberg (2002)

10. Sauro, J.: The high cost of task failure on websites (2012),
http://www.measuringusability.com/blog/cost-task-failure.php

11. Tang, C., Li, Q., Hua, B., Liu, A.: Developing reliable web services using inde-
pendent replicas. In: Fifth International Conference on Semantics, Knowledge and
Grid, SKG 2009, pp. 330–333. IEEE (2009)

http://www.measuringusability.com/blog/cost-task-failure.php

Improving and Assessing the Efficiency

of the MC4CSLTA Model Checker

Elvio Gilberto Amparore and Susanna Donatelli

University of Torino, Corso Svizzera 187, Torino, Italy
{amparore,susi}@di.unito.it

Abstract. CSLTA is a stochastic logic which is able to express prop-
erties on the behavior of a CTMC, in particular in terms of the possi-
ble executions of the CTMC (like the probability that the set of paths
that exhibits a certain behavior is above/below a certain threshold).
This paper presents the new version of the the stochastic model checker
MC4CSLTA, which verifies CSLTA formulas against a Continuous Time
Markov Chain, possibly expressed as a Generalized Stochastic Petri Net.
With respect to the first version of the model checker presented in [1],
version 2 features a totally new solution algorithm, which is able to verify
complex, nested formulas based on the timed automaton, while, at the
same time, is capable of reaching a time and space complexity similar to
that of the CSL model checkers when the automaton specifies a neXt or
an Until formulas. In particular, the goal of this paper is to present a new
way of generating the MRP, which, together with the new MRP solution
method presented in [2] provides the two cornerstone results which are
at the basis of the current version. The model checker has been evaluated
and validated against PRISM [3] (for whose CSLTA formulas which can
be expressed in CSL) and against the statistical model checker Cosmos[4]
(for all types of formulas).

1 Introduction

System verification is a topic whose relevance increases with the increase of the
dependency of everyday life from software systems. The more our society relies
on computer-based systems, more critical is the demand for system reliability.
Model checking of temporal logics has represented an important milestone in the
computer science approach to verification, allowing the exhaustive check of sys-
tems with billions of states and more. Temporal logics allows to express invariant
properties, like ”in all states variable x is positive”, as well as path-dependent
properties, like ”it exists a system execution (a path) in which variable x is al-
ways incremented after a decrement of variable y”. When the system at hand
includes timing aspects, temporal logic can be extended to include constraints
over time intervals, like ”on all paths the lift door will open within 2 seconds
after the lift reaches the target floor”. Finally, when the system description in-
cludes also probabilistic aspects, its evaluation and verification can be based on
stochastic logics that allows properties like: ”with probability greater than α the
lift door will open within 2 seconds after the lift reaches the target floor”.

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 206–220, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Improving the Model Checker MC4CSLTA 207

The most well known stochastic logic is CSL [5], for which various verification
engines (model-checkers) exists, like Prism [3], MRMC [6] and Marcie [7], to
verify behaviour of DTMC or CTMC, possibly generated from higher level lan-
guages, like the guarded command language of Prism or the stochastic Petri nets
of Marcie. CSL has a predefined set of operators to specify the paths of interest
(called neXt and Until), and this might constitute a limitation. This restriction
is nevertheless well motivated by the fact that the verification of these formulas
only requires transient and steady-state solution of the chain.

CSLTA [8] represents a step forward, as it allows to specify the paths of in-
terest as the set of paths accepted by a single clock timed automaton [9], where
the restriction to single clock is the key to allow the verification of CSLTA for-
mulas in terms of the steady-state solution of a Markov Regenerative Process
(MRP). A multi clock CSLTA has been defined in [10], but the gain in formula
expressiveness is paid in solution terms, as the underlying process becomes a
piece-wise deterministic process (PDP). In terms of model checkers, single clock
CSLTA formulas can be verified using MC4CSLTA [1], and single and multiple
clock formulas using Codemoc [11]. More recently the statistical model checker
Cosmos [4] has been delivered. The tool uses simulation to verify formulas speci-
fied through timed (and even hybrid) automata [12], for a stochastic model that
is a Stochastic Petri Net extended to arbitrary distributions for the transition
firing.

This paper concentrates on CSLTA and presents the new version of the model
checker MC4CSLTA. Version 2 solves a few inefficiencies of the first version, as
will be explained in the next section, and introduces a totally new solution en-
gine. As we shall see, the translation into Deterministic Stochastic Petri Net
(DSPN) has been removed; to allow the evaluation of nested formulas the imple-
mentation now includes forward and backward solution; different MRP solution
methods can now be employed (in particular the efficient component-based ap-
proach described in [2]), and non useful computations are removed thanks to
a pre-analysis of the timed automata of the formula. This theory behind the
pre-analysis and an assessment of the correctness and efficiency of MC4CSLTA

version 2 are the main contributions of this paper. Most of the work presented
in this paper is the result of the PhD work of the first author [13].

2 Background and Motivations

In this section we review the basic literature in CSL and CSLTA and related
tools and discuss the status of the MC4CSLTA model checker, version 1 and the
limits that the tool has shown in verifying ”large” systems. The focus will be on
the solution algorithms employed. It is important to recall that ”large” in the
stochastic context is never as large as in the qualitative model checking, since,
unless approximate techniques are applied, the limit in size is given by the size
and the number of vectors required by the solution process. In this paper we
have considered systems with up to 10 millions states.

208 E.G. Amparore and S. Donatelli

CSL and Prism. Prism allows to model check CSL formula in a very efficient
way. The most complex operator, apart from steady state, is the evaluation
of the probability of the set of paths that verify an Until formula of the type
P��λ(Φ U [t,t′]Ψ) for a CTMC M, where Φ and Ψ are boolean functions over the
set AP of atomic propositions associated to the states ofM, �� ∈ {<,≤,≥, >} is
a comparison operator, λ ∈ R[0,1] is interpreted as a probability, and 0 ≤ t ≤ t′

is a time interval. The probability of the paths that satisfy the Until formula can
be computed by the (transient) solution of one or two CTMCs (depending on the
time interval [t, t′]). These CTMCs are derived from the original model M by
making certain states absorbing, and we shall term M[Φ] the CTMC obtained
from M by making all the states that satisfy Φ in M absorbing. When t �= t′

the model checking algorithm requires the transient solution of two modified
CTMCs: the chain πM[¬Φ] is solved for time t, assuming we start in s at time 0,
the resulting probability vector is then used as initial probability for the solution
at time t′ − t of the chain πM[¬Φ∨Ψ], where the result of the first computation
are filtered out to put to zero the probability of all states which are not Φ states.
The elements of the second transient solution vector that satisfy Ψ are then
summed-up to obtain the probability of the set of paths starting from the initial
state s and that satisfy the Until. A comparison with λ allows to define whether
s satisfies the formula or not.

Prism allows also an hybrid solution engine, in which the CTMC, and the
modified CTMCs required in the computation, are stored efficiently using deci-
sion diagrams, while the solution vector is stored in full. Moreover, although the
above description is fully forward, from time 0 to time t′, the model checking
works backward (as explained later) from the states that satisfy Ψ to the set of
states that satisfies the full formula. This allows to compute, through two tran-
sient solutions only, the full set of states that satisfy the formula. Other model
checkers like Marcie and MRMC apply the same solution approach.

CSLTA and MC4CSLTA, version 1 CSLTA (single clock) uses timed automata
(TA) to specify (timed) accepted path and the model checker goal is to compute
the probability of the set of accepted paths. To avoid the introduction of non-
determinism the TA is required to be ”deterministic” (DTA): for each path in
the automaton there is at most one path in the TA that accepts it. A DTA A
is made of a set of locations and a set of edges. Each DTA is equipped with a
clock, usually named x, that runs constantly and whose value increases linearly
over time. Edges describe the transition relation and can be labeled with a clock
constraint. The DTA of Figure 1(A) has three locations l0, l1, l2. Location l0 is
initial, and l2 is final.

An edge with a constraint in the form x = c1 is a Boundary edge (marked with
a �), and is triggered by the elapse of time. An edge with a constraint c1 < x < c2
is an Inner edge (as the l0, l1) edge) and is triggered by a transition firing in
the GSPN (or by a transition in the CTMC). Each edge can have an associated
reset of the clock x. Inner edges can have an associated set of actions (transition
names of a GSPN or action names of a decorated CTMC), and locations can have
an associated boolean formula (the atomic propositions Φ and Ψ in the example).

Improving the Model Checker MC4CSLTA 209

l0 l1Φ Ψ
l2 Φ

Act,
10<x<20 �, x=20

Act, x<10 Act, x<20
�

�
�

�

(A) A simple DTA that describes which CTMC paths are accepted.

(B) State space of the cross product of any CTMC with the DTA (A).

Sat(Φ)× l0

Sat(Ψ)× l1

Zone 0-10

Sat(Φ)× l0 Sat(Φ)× l0

Sat(Ψ)× l1

!

Act

Act

Act�

�

�

�
�

Zone 10-20 Zone 20-∞

Fig. 1. An example of DTA

With reference to GSPN, we can say that a transition in the underlying CTMC
from marking m to marking m′ due to the firing of transition a is accepted
by the DTA in location l through the edge (l, l′) if, assuming that m satisfies
the boolean condition associated to l, the transition a is in the set of actions
associated to the (l, l′) edge, the current value of x satisfies the edge constraint,
and m′ satisfies the boolean condition of l′. The DTA of the example accepts
CTMC paths that stay in a Φ state for at least 10 unit time, then moves to a Ψ
state at any time between 10 and 20, with any CTMC move in the Act set, and
at time 20 is found in a state that satisfies Φ. Note that all edges in the DTA are
Inner edges, but the one between l1 and l2. For each DTA is possible to define
C = {ci}, the ordered set of clock values that label A clock constraints, with
the addition of 0 and ∞. For the example in Figure 1(A), C = {0, 10, 20,∞} A
state of a (D)TA is then given by a pair (l, c) where l is a location and c is a
clock value in C.

CSLTA is a variation of CSL in which the P��λ(ϕ) operator (with ϕ being
either a timed neXt or a a timed Until operator) is substituted by a P��λ(A).
CSLTA is more expressive than CSL [8], and this comes at the price of a more
complex model checking algorithm: verifying a formula requires the steady state
solution of an (absorbing) Markov Regenerative Process (MRP) obtained as the
cross-product of the Markov chain with the DTA. If s is the state of a CTMC
and (l, c) is the state of the DTA, a state in the cross-product is the triple (s, l, c),
or one of the two states ! or ⊥ The cross-product is built in such a way that
all and only the paths of the CTMC that take the DTA to a final location end
up in a ! state. A state s of a CTMC M satisfies the formula P��λ(A) if in

210 E.G. Amparore and S. Donatelli

the cross-product MRP M×A the probability of reaching ! from (s, l0, c0) is
�� λ. Fig. 1(B) shows the general cross-product induced by the DTA (A) on any
CTMC, where the rectangles are set of CTMC states that satisfies the DTA’s
state propositions.

As depicted in the upper part of Figure 2, model checking of CSLTA requires
two steps: building the MRP M×A and then solving it. In the first version of
MC4CSLTA the cross product algorithm produces a DSPN whose underlying
process is isomorphic to the M×A, so that the solution step can be left to
existing DSPN tools. This approach is inspired by software reuse, but it is highly
inefficient, since even the starting CTMC has to be translated into a DSPN,
moreover the use of existing tools, not specifically designed for model-checking,
allows to use only the much less efficient forward approach.

×

CTMC M given
in Petri net format.

DTA A in
textual form.

Cross product M×A
produces a DSPN with
a single initial state.

An external solver build the tangi-
ble reachability graph of the DSPN
and then computes the probability
of reaching the � state from the
initial state s0 of M.

Model checking procedure of MC4CSLTA ver. 1.

Model checking procedure of CoDeMoC:

DTA A in
textual form.

CTMC C given
in MRMC format.

×
DMTA C×A.

The region graph G(C×A)
gives a Piecewise

Deterministic Process.

Multiclock case: Approximate solution
of a set of partial differential equations
obtained by the PDP G(C×A).

Single clock case: An embedded Markov
chain P is derived from the PDP G(C×A)
and solved iteratively in steady state.

Fig. 2. Working structures of the MC4CSLTA and Codemoc model checkers

MRP solution methods There is a large degree of variation in the solution ap-
proaches for MRP. When applied to CSLTA the classical approach builds the
embedded Markov chain P and solves it to compute the probability of the re-
newal state !. This approach suffers from the fill-in approach: P is usually a
very dense matrix and only small states spaces can be solved. A matrix-free
approach has been defined in [14], which computes the probability of renewal
states without ever building and storing P . This approach has been extended
in [15] to deal with non ergodic MRPs, as required by CSLTA. More recently a
component-based approach [2] has been defined for non-ergodic MRPs, which
can significantly reduce the space and time complexity of model-checking CSLTA.
In particular it was shown in the same paper that the algorithm, when applied
for DTAs that are Until formulas, reduces to the computation of the transient
solution of two CTMC, although the space complexity is not the same since the

Improving the Model Checker MC4CSLTA 211

M×A includes both the two CTMCs that have to be solved, while a CSL model
checker can build and solve the one at a time.

CSLTA and Codemoc The work in [10] considers the model checking of paths
specified by DTAs with multiple clocks. It actually changes also the semantics
of how the DTA reads a path in the CTMC, so, even for the single clock case
it might not be trivial to specify a CSLTA properties using the DTAs in [10].
The lower part of Figure 2 shows the algorithm used in the Codemoc tool [11] to
model check CSLTA with multiple clocks: the cross product is built and then a re-
gion graph (a classical construction in multi-clock timed automata) is computed,
which identifies a Piece-wise Deterministic process, that is then solved through
the numerical solution of a set of differential partial equations. Codemoc has
a specific procedure for the case of single clock DTAs (since in this case the
stochastic process reduces to an MRP) , which builds and solves the embedded
DTMC of the MRP. This last solution does not work very well and we could not
use it in our comparison part.

Forward model checking: Backward model checking:

initial
state

s0 M×A process

!

⊥
α(0) = 1

π(!) = ?
S0

all possible
initial states

M×A process

!

⊥

ρ(!) = 1

ξ(s) = ?, ∀ s ∈ S0

Forward solution: π = α · lim
n→∞Pn Backward solution: ξ = lim

n→∞Pn · ρ

Fig. 3. Forward and backward model checking

Forward vs, backward approaches. Forward and backward model checking refers
to the two different ways of formulating the system of linear equations to com-
pute the P() operator. Figure 3 shows the different approaches and the solution
equations. The forward method starts with the probability vector α at time 0,
and computes the limiting probability π of reaching the ! state. Backward prob-
ability instead starts with a reward ρ of 1 in the ! state in the long run, and
computes, for each state, the probability of reaching the ! state, at the same
cost as the computation of the forward probability from a single initial state.
Note that, despite its name, even in the backward approach the M×A state
space is built forward, starting from one or more initial states, and it is only the
numerical solution that works backward.
Overdimensioning of the state space In some cases, the M×A process contains
more states than it is needed. This is very clearly indicated by considering the
cross-product between a generic CTMCM and the DTA of Figure 1(A) depicted
in (B). The M×A is represented in compact form (putting together all states
with the same (l, c) pair. It is clear from the picture that the two sets of states
in the rightmost zone (20,∞) are useless, since the objective is to compute the

212 E.G. Amparore and S. Donatelli

probability of reaching !, a computation that can be correctly performed even
if the two sets are substituted by a single ⊥ state. Since any of the two sets can
be as big as the whole state space, the substitution with a single state can be
particularly interesting.

3 The Zoned-DTA Technique

To avoid the construction of non useful states in the cross-product we propose to
expand the DTA automaton A into its zoned transition system (ZDTA) Z(A),
where each state is a pair (location, clock zone). This new structure is then
analyzed to collapse into a single ⊥ state each pair for which there is no path
that leads to an accepting location, before building the cross-productM×Z(A).

Zoned DTA. Let us recall that C is the ordered set of clock values that la-
bel the A clock constraints, with the addition of 0 and ∞, and we write C =
{c0, c1, . . . , cm}, with c0 = 0, ci+1 > ci ∀i ∈ [0,m) and cm = ∞. Then two
clock values a, b ∈ R≥0 are in the same equivalence class if, for all edges e, the
evaluation of the clock constraint of e is unchanged. A zone automaton R(A)
records the smallest set of equivalence classes of clock values, denoted as zones.
Since A has a single clock x, classes in R(A) have form [x = c] or (c < x < c′),
for all the values c ∈ C. Therefore, the construction of R(A) is a straightforward
partitioning of R≥0, as in [9]. From the above we can build a Zoned DTA Z(A)
for any DTA A, in which the locations of A are paired with the clock zones. We
first define the set of immediate zones Ċ and the set of timed zones C.

Ċ
def
=
{
[c] | c ∈ C

}
and C

def
=
{(

c, next(c)
)
| c ∈ C

}
Starting from the initial location (l0, [c0]) we can generate all possible reachable
pairs (l0, [c]), or

(
l, (c, next(c))

)
through a set of rules that can be found in [13].

Figure 4 illustrates the zoned DTAs of two sample DTAs. Each location in (c)
and (d) reports the location z ∈ Z, the state proposition of l (that holds also in
each z = 〈l, c〉), and, on the second line, the DTA location and the clock zone.
Immediate and timed locations are drawn with a dotted and a solid border, re-
spectively, while final locations have a double border. The set of locations that
cannot reach a final location are colored in gray. Edges are marked as χ if they
are generated from a Boundary edge of the DTA, δ (let time elapse) otherwise.
The timed reachability of some locations (for instance z8 and z9 in (d)) repre-
sents an information that is not directly available in the DTA A. These locations
are irrelevant for the computation of the path probability, and can be discarded,
since they will never reach a final location. Observe also that the construction
of (d) could be modified to avoid the construction of the edge z2

δ↪−→ z3: indeed
the Boundary edges ② and ③ in the DTA have priority over the ① edge and the
process will take for sure one of the first two edges, since the logic condition for
remaining in l0 in [α] is: Φ1∧¬

(
Φ2∨ (Φ1∧¬Φ2)

)
which always evaluates to false,

for any CTMC. If z3 is unreachable, also z4 and z5 are so they could be removed.
This condition can be evaluated for any χ edge, to remove those locations that

Improving the Model Checker MC4CSLTA 213

l0 l1Φ ¬Φ

x>0 x<α

l2

Φ

x<αx>0; {x}

x>α; {x}

�
�

�
�

�
l0

l1

l2
Φ1

Φ2

Φ1∧¬Φ2

0<x<α

α<x<β

α<
x<

β

x=α

x=α�

�

�

�

�

(a) Example DTA with loops of resets.

(c) Zoned DTA of the DTA (a).

(b) The Until[α,β] DTA.

(d) Zoned DTA of the DTA (b).

Act �

Act
�

Act
�

z0 : Φ
〈l0, [0]〉

z1 : Φ
〈l0, (0, α)〉

z2 : Φ
〈l0, [α]〉

z3 : Φ
〈l0, (α,∞)〉

z4 : ¬Φ
〈l1, [0]〉

z5 : ¬Φ
〈l1, (0, α)〉

z6 : ¬Φ
〈l1, [α]〉

z7 : ¬Φ
〈l1, (α,∞)〉

z8 : Φ
〈l2, (0, α)〉

Ċ = {[0], [α]}
C̄ = {(0,α), (α,∞)}

Act
�

� Act , {x}

Act , {x}�
Act , {x}�

χ δ

χ

χ

δ χ

δ χ

Act

χ

δ χ

Act
�

χ

δ χ
z3 : Φ1

〈l0, (α, β)〉
z2 : Φ1

〈l0, [α]〉

z1 : Φ1

〈l0, (0, α)〉
z0 : Φ1

〈l0, [0]〉

z4 : Φ1

〈l0, [β]〉
z5 : Φ1

〈l0, (β,∞)〉

z6 : Φ1∧¬Φ2

〈l1, [α]〉
z7 : Φ1∧¬Φ2

〈l1, (α, β)〉
z8 : Φ1∧¬Φ2

〈l1, [β]〉
z9 : Φ1∧¬Φ2

〈l1, (β,∞)〉

z10 : Φ2

〈l2, [α]〉
z11 : Φ2

〈l2, (α, β)〉

�

Act��

�

�

�

Ċ = {[0], [α], [β]}
C̄ = {(0,α), (α,β), (β,∞)}

Fig. 4. Two sample DTAs with their associated zoned DTAs

214 E.G. Amparore and S. Donatelli

are logically unreachable. Each location 〈l, c〉 of Fig. 4(c,d) is labeled with the
state proposition expressions of l. The presence of immediate zones can make the
construction of theM×Z(A) process more complex and we prefer to define the
concept of tangible zoned DTA, where only timed locations are kept, and bound-
ary locations are collapsed with a transitive closure. The firing of a sequence of
DTA Boundary edges l0

γ1, �, r1−−−−−→ l1
γ2, �, r2−−−−−→ . . . γn, �, rn−−−−−→ ln may happen only if

all the state proposition expressions Λ(l0), Λ(l1), . . . , Λ(ln) are satisfied by the
destination CTMC state s′. A transitive closure of Boundary firings is more eas-
ily expressed by moving the state proposition onto the edge, which give rise to
the Tangible Zoned DTA T (A) of A.

A TZDTA edge (z, z′) has a logical condition λ which is the logical and of
satisfying the destination location condition Λ(z′), as well as all the intermediate
location conditions Λ(żi), 1 ≤ i ≤ n, and in the last immediate location every
other Boundary edge must not be satisfied. Given Z(A), the corresponding T (A)
is constructed by taking all the timed locations and Inner edges, and by applying
the closure rule on all Boundary edges. The ZDTA edges are not marked as either
δ or χ since all edges are from tangible to tangible locations.

init
z0 : 〈l0, (0, α)〉

z2 : 〈l1, (α, β)〉

z3 : 〈l2, (α, β)〉

z4 : 〈l1, (β,∞)〉

Act,Φ1

Act,Φ1∧¬Φ2

Φ1

δ(α) : Φ1∧
(
Φ2

)
δ(α) : Φ1∧

(
Φ1∧¬Φ2

)
δ(α) : Φ1∧¬

(
Φ2∨(Φ1∧¬Φ2)

)
z1 : 〈l0, (α, β)〉

Act,Φ2

δ(β) : True

�

�

�
�

�

/�+�

cannot reach a
final location

not satisfiable

(b) Tangible zoned DTA of the Until[α,β] DTA.

Act
¬Φ
RESET

z1 : 〈l1, (0, α)〉z2 : 〈l2, (0, α)〉 z4 : 〈l1, (α,∞)〉

z3 : 〈l0, (α,∞)〉z0 : 〈l0, (0, α)〉

Act,Φ

Φ

Act,Φ

Act ,¬Φ
Act
Φ

Act ,¬Φ, RESET

Act ,Φ, RESET

δ(α) : True

δ(α) : True

� �

�

�

�

�
init

(a) Tangible zoned DTA of the DTA with reset loop.

Fig. 5. Tangible zoned DTA of the two DTAs of Fig. 4

Figure 5 shows the tangible closure of the two ZDTA of Fig. 4. Boundary edges
are all collapsed into δ edges, which are labeled with a state proposition expression
that is the transitive closure of all the s.p.e. that must be satisfied to follow that
edge. In the tangible ZDTA of the Until [t, t′], location z1 is unreachable because
the condition associated to the edge is false. Location z4 is irrelevant for the com-
putation of the probability of reaching a final state, since any path that reaches this

Improving the Model Checker MC4CSLTA 215

location will certainly be rejected. The advantage of collapsing the state proposi-
tion expression of the closure of Boundary edges is that it becomes clear whether
an edge has an unsatisfiable condition. Each edge is also labelled with the sequence
of DTA edges that represents (with circled numbers), and which DTA edges are
not satified by the transitive closure (written after a ’/’). The structure of Fig. 5(b)
shows that there are atmost three tangible zones for anUntil [α, β], while the other
two zones can be discarded. This allows to optimize theM×A cross product, by
removing irrelevant states in advance.

4 The MC4CSLTA Tool, Version 2: Features and
Assessment

The MC4CSLTA tool, version 1, presented in [1], based on the theoretical results
defined in [16], was meant as a prototype implementation to show the feasibility
of model-checking CSLTA, but it had many drawbacks that make it an unprac-
tical tool to use even on small to medium size examples (around ten thousand
states). The main problem was the use of DSPN, as explained above, and the
limited set of numerical methods available for matrix-free solution of DSPN
solver (as the explicit MRP solution method is never a realistic option). The
dependency from DSPN has been solved by implementing directly the M×A
construction, which leads to an MRP for which several solution techniques can
then be applied, techniques that implement the theoretical advancements in [15]
and [2]. The backward solution approach has been implemented for both the
matrix-free approach (which is rather straightforward despite the fact that the
embedded DTMC P is never built or stored) and the component-based method
(which can be less intuitive). A full discussion of the topic and the precise for-
mulation of the backward solution process can be found in [13], and it is im-
plemented in version 2. Another issue that has been solved in version 2 is the
presence of significant number of states in the M×A process that never lead to
the ! state, since the implementation now is based on a cross product of the
Markov chain with the tangible zoned DTA.

Figure 6 shows the structure of MC4CSLTA version 2, available through [17].
The tool takes in input a model, which can be either a Generalized Stochastic

Model checking procedure of MC4CSLTA ver. 2.

×

CTMC M in
Petri net, MRMC,
or PRISM format.

×Zoned DTA
Z(A) with timed

reachability.

M×A is a Markov re-
generative process with
state space in S×L×C.

M×Z(A) is a Markov
regenerative process with
state space in S × Z.

MRP solution is computed without
constructing the embedded Markov
chain P explicitly (matrix-free
method), or with the component-
based solution method.
Both forward and backward solu-
tions are supported, allowing for
nested P() expressions.

DTA A

Fig. 6. Structure of MC4CSLTA version 2

216 E.G. Amparore and S. Donatelli

Petri Net in GreatSPN [18] format, or a CTMC in MRMC/Prism format, and
a formula specification, which consists of a single clock DTA in textual form.
When the input language is a Petri net, the atomic proposition associated with
the locations of the timed automaton are expressions over the Petri net marking,
while the actions associated to the edges are sets of transitions’ names. There
are two ways of generating the underlying MRP, according to the two different
ways of computing the cross-product: either as M×A or as M×Z(A). We now
evaluate the tool correctness and efficiency against Prism and Cosmos. No com-
parison with version 1 is reported since it would hardly solve the first instances
of the proposed models.
Cell cycle control. This first test considers a probabilistic model of the cell repli-
cation control in eukaryotes. This biological model is taken from [19], and orig-
inally specified in [20]. This model describes the molecular machinery used by
eukaryotic cells in order to control their replication. The control mechanism is
made by an antagonistic interaction between two proteins, CDK and APC, the
first extinguishing the activity of the second and viceversa. The cell replication
cycle is controlled by the binding of CDK with its activator cyclin. The state
of the model is described by the quantities of the proteins involved in the bio-
chemical interaction, and transitions represent the reactions. The tool directly
imports the CTMC produced by Prism.

Table 1 shows three CSL queries asking for the probability of having all the
CDK proteins bound by their cyclin activator in a given time window - where N
is the quantity of CDK proteins in the system. For the first and second queries,
the probability is set at time 10 and in the time interval (10-20). In the third
case, the time interval is (0-5), with the condition that the initial state must
have a probability of having all the CDK molecules bounded within 1 second.

The table shows the overall model checking time of both tools. For Prism,
both the hybrid (default) engine and the sparse engine are used. For MC4CSLTA

the timings for the explicit, matrix-free and component-based (SCC) methods
are shown. The data reflect the theoretical result of [2], which ensures that the
sparse engine of Prism and the SCC method have the same asymptotical cost.
The Table also reports, for the (A) and (B) cases, the state space of the MRP
produced using the DTA A or the tangible zoned DTA T (A) introduced in this
paper, which shows the advantage of the method. The time reported are for the
tangible ZDTA case. In all the tests, Prism performs better than MC4CSLTA,
which is not surprising since the CSL model checking algorithm works with a
predefined structure of the formulas and requires fewer steps than that of CSLTA.
All tests were run on a Xeon 2.13 GHz single-core of a multicore machine with
128G bytes of available memory.
Workflow model. In this second sample we compare the MC4CSLTA tool against
the simulator Cosmos [4], which has an input modeling language that is a su-
perset of CSLTA DTAs [12].

Figure 7 shows the (Generalized Stochastic) Petri net of the model [21] which
describes an order-handling company. The net illustrates the flow of an order,
which involves two separate tasks: preparing and sending the bill to the client, and

Improving the Model Checker MC4CSLTA 217

Table 1. Performance comparison of Prism 4.1 and MC4CSLTA

(A) CSL Until with a single time interval. Durations are expressed in seconds.
 Prism 4.1 MC4CSLTA

N States Trns. hybrid sparse explicit
(1 smc)

matrix-
free

SCC
(1 comp)

MM�A
(no zdta)

MM�T(A)
(zdta)

2 4666 18342 0.1 0.1 0.1 0.2 0.1 8524 4668
3 57667 305502 1.5 0.7 3.2 11.6 2.8 109148 57667
4 431101 2742012 37.3 14.0 39.7 157.9 38.0 830119 431103
5 2326666 16778785 277.8 144.6 306.3 1277.3 307.7 4525426 2326668
6 9960861 78768799 nc nc 2267.5 9108.0 2050.9 19495025 9960863

CSL: P=? [true U[10,10] cyclin_bound=N]
CSLTA: PROB=? until_AA (10 | | True, (#cyclin_bound=N))

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(B) CSL Until with (t, t’) time interval.

 Prism 4.1 MC4CSLTA
N States Trns. hybrid sparse explicit smc matrix-

free
SCC

(2 comp)
MM�A

(no zdta)
MM�T(A)

(zdta)
2 4666 18342 0.5 0.1 78.61 3827 0.6 0.1 12380 8524
3 57667 305502 2.8 1.5 �29 hours 51394 26.0 5.7 160627 109148
4 431101 2742012 54.3 26.0 - - 354.3 73.0 1229135 830119
5 2326666 16778785 502.2 234.5 - - 3814.4 690.6 6724184 4525426
6 9960861 78768799 nc nc - - 21004.2 4646.8 29029187 19495025

CSL: P=? [true U[10,20] cyclin_bound=N]
CSLTA: PROB=? until_AB (10, 20 | | True, (#cyclin_bound=N))

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(A) Nested CSL query.

 Prism 4.1 MC4CSLTA
N States Trns. hybrid sparse matrix-

free
SCC

2 4666 18342 0.1 0.1 0.1 0.1
3 57667 305502 0.7 0.5 5.7 2.0
4 431101 2742012 17.2 9.6 79.6 25.1
5 2326666 16778785 159.1 78.3 608.9 192.0
6 9960861 78768799 nc nc 3356.6 1123.6

CSL: P=? [P>0.5 [true U<1 cdk_cat=2] U<5 cyclin_bound=2]
CSLTA: PROB=? until_0B(5 | | PROB>0.5 until_0B (1 | | True, #cdk_cat=2), #cyclin_bound=2)

to ship the requested goods. The company reckons on three types of employees:
those who manage accounting (F), logistics (L) and generic employees (E). Dif-
ferent tasks are carried out by different employees. The Petri net is made of some
subnets consisting of an immediate transition (thin bar), a place and an exponen-
tially distributed timed transition (white box). Such subnets first allocate one of
these staff resources, execute the specified task and then release the resource. The
staff is represented by three places finance, logistics and employees. Arrows from
and to these three places are drawn only for the case of the activity represented by
the register E transition, and omitted in the picture for the other subnets whose
transitions have labels with suffixes “ E”, “ F” and “ L”.

218 E.G. Amparore and S. Donatelli

start start_F register_F

start_L register_L

start_E register_E

checking

billing

billing_F send_bill_F

reminder

billed

receive_payment

payed

checking_L

check_availability

checked

in_stock

reorder

do_not_order
replenish

updating

update

shipping shipping_L

ship_goods

shipped

replenish_L

replenishing

archiving_F

archive_Farchiving_L

archive_L

archiving_E

archive_E archived

NE

employees
NF

finance
NL

logistics

new_order

Fig. 7. Petri net of the workflow model

Skipping the initial transient,
until initT seconds have passed.

l0 l1 l3l2

Act Act \ {new order}

{new order},
RESET

Act, x<T�, x= initT

Act, x<T

archived=0 archived �=0

Fig. 8. Property tested in the workflow model with Cosmos and MC4CSLTA

The DTA of the measured property is depicted in figure 8. A path starts in the
initial state and skips initT time units, as an initial transient. Then the DTA
waits for the arrival of a new order event, which signals the beginning of the
ordering cycle. The path is accepted if the order is archived in less than T time
units. This DTA can be converted in the input language of Cosmos, allowing for
a cross validation of the MC4CSLTA tool for non-CSL queries.

Table 2. Performance comparison of Cosmos and MC4CSLTA

 Cosmos MC4CSLTA
 width=0.001 width=0.0001 matrix-free SCC

N States Trns paths Time paths Time MC MC
1 44 81 7000 19.95 63000 58.68 0.75 0.02
2 1811 6408 7000 26.25 62000 177.58 330.64 2.12
3 68942 349980 7000 45.64 67000 413.19 - 210.23
4 2440192 15827904 8000 91.03 75000 669.82 - �5 hours
5 81M 633M 9000 108.53 85000 1072.15 - ��

Improving the Model Checker MC4CSLTA 219

The probabilities computed with MC4CSLTA are in accordance with that
computed with Cosmos available in [22]. The comparison with Cosmos, on this
and on other models, proved to be very useful in detecting errors in MC4CSLTA.
Table 2 shows a performance comparison of the simulator Cosmos with the
numerical solution of MC4CSLTA, with the timings set to initT = 100 and
T = 50. Simulations were run at a 99% of precision with the confidence interval
width reported in the Table. As expected, simulator scales better for large state
spaces. The chosen timings of the GSPN transitions and of the DTA queries have
been chosen so as to require very long uniformization sequences, thus putting
MC4CSLTA in its worst possible conditions, a case in which the advantage of the
component-based solution over the matrix-free one is very evident. Tests were
run on a Intel core Duo 2.4GHz with 4G bytes of memory.

5 Conclusion

This paper presents the new version of the CSLTA model checker MC4CSLTA,
which represents a total innovation with respect to the previous version, since
it includes a new solution approach which builds on some recently published
results on MRP solution and on the construction of a zoned DTA, presented in
this same paper. The tool has been evaluated for correctness and performance
against the well-known CSL model checker Prism (on the subset of the DTA
which can be equivalently expressed as a CSL property) and with the statistical
model checker Cosmos, for whose formulas that go beyond CSL. The reported
tests, as well as some other tests reported in [13], suggest that the new version
of MC4CSLTA is a mature tool, able to deal with very large state spaces, where,
again, large is intended as ”large for being a stochastic process”.

The construction of the zoned DTA will be the basis for our future work on the
tool. In particular the application of the component-based method for MRPs,
paired with the analysis of the ZDTA, can lead to an on-the-fly implementation
of the tool: the state space is built component by component, only when it is
actually needed for the computation of the probability of the success state !.

References

1. Amparore, E.G., Donatelli, S.: MC4CSLTA: an efficient model checking tool for
CSLTA. In: International Conference on Quantitative Evaluation of Systems, pp.
153–154. IEEE Computer Society, Los Alamitos (2010)

2. Amparore, E.G., Donatelli, S.: A component-based solution for reducible markov
regenerative processes. Performance Evaluation 70, 400–422 (2013)

3. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Model Checking
for Performance and Reliability Analysis. Performance Evaluation 36, 40–45 (2009)

4. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a sta-
tistical model checker for the hybrid automata stochastic logic. In: Proceedings of
the 8th International Conference on Quantitative Evaluation of Systems (QEST
2011), pp. 143–144. IEEE Computer Society Press, Aachen (2011)

220 E.G. Amparore and S. Donatelli

5. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Transactions on Computational Logic 1, 162–170 (2000)

6. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Performance Evaluation 68, 90–104
(2011)

7. Heiner, M., Rohr, C., Schwarick, M.: Marcie - model checking and reachability
analysis done efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013.
LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013)

8. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSLTA. IEEE Transactions on Software Engineering 35, 224–240 (2009)

9. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Comp. Science 126,
183–235 (1994)

10. Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Model checking of continuous-
time Markov chains against timed automata specifications. Logical Methods in
Computer Science 7 (2011)

11. Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient ctmc model
checking of linear real-time objectives. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 128–142. Springer, Heidelberg (2011)

12. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: HASL: An expressive
language for statistical verification of stochastic models. In: Proceedings of the
5th International Conference on Performance Evaluation Methodologies and Tools
(VALUETOOLS 2011), Cachan, France, pp. 306–315 (2011)

13. Amparore, E.G.: States, actions and path properties in Markov chains. PhD thesis,
University of Torino, Italy (2013)

14. German, R.: Iterative analysis of Markov regenerative models. Performance Eval-
uation 44, 51–72 (2001)

15. Amparore, E.G., Donatelli, S.: Revisiting the Iterative Solution of Markov Regen-
erative Processes. Numerical Linear Algebra with Applications, Special Issue on
Numerical Solutions of Markov Chains 18, 1067–1083 (2011)

16. Amparore, E.G., Donatelli, S.: Model Checking CSLTA with Deterministic and
Stochastic Petri Nets. In: Proceedings of the 2010 IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). IEEE Computer Society
Press (2010); DSN-PDS 2010

17. Amparore, E.G., Donatelli, S.: The MC4CSLTA model checker (2013),
http://www.di.unito.it/˜amparore/mc4cslta/

18. Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis, G.:
The GreatSPN tool: recent enhancements. SIGMETRICS Performance Evaluation
Review 36, 4–9 (2009)

19. Lecca, Priami: Cell Cycle Control in Eukaryotes - Prism case studies (2011),
http://www.prismmodelchecker.org/casestudies/cyclin.php

20. Lecca, P., Priami, C.: Cell cycle control in eukaryotes: A BioSpi model. In: Proc.
Workshop on Concurrent Models in Molecular Biology (BioConcur 2003). Elec-
tronic Notes in Theoretical Computer Science (2003)

21. van der Aalst, W.M.P.: Business process management demystified: A tutorial on
models, systems and standards for workflow management. In: Desel, J., Reisig, W.,
Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 1–65. Springer, Heidelberg
(2004)

22. Amparore, E.G., Ballarini, P., Beccuti, M., Donatelli, S., Franceschinis, G.: Ex-
pressing and Computing Passage Time Measures of GSPN models with HASL. In:
Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 110–129.
Springer, Heidelberg (2013)

http://www.di.unito.it/~amparore/mc4cslta/
http://www.prismmodelchecker.org/casestudies/cyclin.php

End-to-End Performance of Multi-core Systems

in Cloud Environments

Davide Cerotti, Marco Gribaudo, Pietro Piazzolla, and Giuseppe Serazzi

Dip. di Elettronica e Informazione, Politecnico di Milano,
via Ponzio 34/5, 20133 Milano, Italy

{cerotti,gribaudo,piazzolla,serazzi}@elet.polimi.it

Abstract. Multi-core systems are widespread in all types of comput-
ing systems, from embedded to high-end servers, and are achievable in
almost all public cloud providers. The sophistication of the hardware
and software architectures make the performance studies of such sys-
tems very complicated. Further complexity is introduced by the vir-
tual environments which are the basis of all clouds paradigms. While
there have been several studies concerning the performance of multi-core
systems considered stand alone, few of them are focused on the end-
to-end performance of these systems when accessed through virtualized
platforms.

In this paper we describe the results obtained with experiments on
both Amazon EC2 and VirtualBox platforms. The experiments are per-
formed with some of the DaCapo benchmarks and with IOzone. The
objective is to explore at a high abstraction level how the interference
between the characteristics of the applications and those of the architec-
tures impact on the performance that users of multi-core systems experi-
ence. We also designed some expressions that, although the high-level of
abstraction and the low complexity, have a good precision with regard to
the performance prediction of the overall system. We think this is a first
step toward understanding the end-to-end performance that a multi-core
system is able to provide when accessed through a cloud platform.

1 Introduction

The widespread availability of multi-core systems has brought with it a num-
ber of new problems, some of which have yet to be addressed and resolved.
Indeed, it soon became clear that the problem of being able to effectively use
all the available computational power was very complicated. A number of pa-
pers on the performance analysis of stand alone multi-core systems have been
published. Most of them are focused on stand alone systems and investigate the
impact of different architectural design on some performance indices. For exam-
ple, multi-threaded design schemes [17], sharing L2 caches between the cores [6],
[19], [13] and scheduling [15], [14] for reducing memory and cores contention,
optimization algorithms for memory hierarchies[21] are just a few of the stud-
ies appeared in the literature. Other papers, like [16], [3] tackle the problem of

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 221–235, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

222 D. Cerotti et al.

performance prediction of virtualized multi-core systems using queuing networks
models. The computational overhead introduced by virtualization is the subject
of other works like [11] and [5]; the computational overhead introduced by a
complete cloud environment is investigated in [10].

In this paper, we approach the problem of the evaluation of end-to-end per-
formance provided by multi-core systems that are accessed through a cloud plat-
form. We explore the impact of both the different system’s architectural choices
and the application characteristics on the end-to-end performance that users ex-
perience. To this end, we perform experiments executing some of the DaCapo
benchmarks [22] and the IOzone [12] on the Amazon EC2 systems, with up to 8
cores, and on VirtualBox virtual machines executed on a standard x86 quad-core
system.

We then propose analytical expressions to approximate the end-to-end re-
sponse time of the systems at a high level of abstraction, considering both the
processors and the I/O resources. This allows us to take into account the interfer-
ence of the several phenomena that have occurred at the low level of granularity
(e.g., the interferences among threads, caches and memory accesses) together
with the complexity introduced by the virtualized environments. In this way we
can easily estimate the demands D of an application, and then for example use
it in performance models like the one in [9] to determine the best consolidation
or replication options to match a given performance objective.

The paper is organized as follows. The results obtained from the experiments
performed, the measurement environments, the benchmarks used, and the met-
rics used are presented in Section 2. Section 3 is devoted to evaluate the quality
of fitting between the analytical models and the benchmark results. We conclude
the paper in Section 4.

2 Experimental Results

In this Section we present the experimental results obtained running a closed
workload over different multi-core systems. The goal is to obtain a clear under-
standing on how the workload characteristics and the multi-core system config-
uration affects the end-to-end response time. We execute several tests of both
CPU-bound and I/O-bound benchmarks increasing the number of concurrently
running instances. Firstly we investigate the behavior of single-threaded ap-
plications, both CPU-bound and I/O-bound, then we focus on multi-threaded
applications and their efficiency when running on multi-core systems.

2.1 Methodology

The focus of this work is to characterize the performance that a user can ob-
tain from a multi-core systems, when running common applications. For this
reason we have chosen to use benchmarks that allow the evaluation of user end-
to-end completion times of real-life application rather than so called “micro-
benchmarks”. The latter mainly focus on determining very low level features,

End-to-End Performance of Multi-core Systems 223

such as cache miss, spin-locks, and read/write speed. This gives a clear picture
on how system resources are utilized, but it does not give sufficient insights on
the effective performance that a user may experience when running a real appli-
cation. In the following we will refer the “end-to-end response time” simply as
“response time”.

Benchmarks. To test the behavior of CPU-bound applications we use Batik,
Sunflow and Xalan from the daCapo[22] suite. The first one produces a number of
Scalable Vector Graphics (SVG) images based on the unit tests in Apache Batik,
the second renders a set of images using ray tracing, while the last one transforms
XML documents into HTML. The three applications are chosen because they
represent three different ways to exploit multi-threading. In particular, while
the bulk of Batik’s work is handled by a single thread, Sunflow and Xalan are
able to split the load in several threads. Sunflow is driven by a client thread for
each available hardware thread, while Xalan is explicitly driven by the number
of hardware threads.

DaCapo benchmarks can be parametrized to best suit the need of the user.
In particular we can limit the maximum number of threads spawned by an
application to control the usage of the available cores. In most of our tests, we
have limited the number of used threads to one, and this should be considered
as the default setting of the experiments unless explicitly stated.

To test the performance of I/O-Bound applications, we use IOzone[12]. It is
a filesystem benchmark that performs different read-write operations, such as
sequential, backward, strided or random access. Parameters such as maximum
file size, record size and asynchronicity of I/O operations can be specified. Table
1 summarizes the main features of the used benchmarks.

Table 1. Benchmarks features

Benchmark Type Threaded Parallelism

Batik Mixed Single Low
Sunflow CPU-bound Multiple High
Xalan CPU-bound Multiple Medium
IOzone I/O-bound Single None

Performance Metrics.We compute the response time as the mean time needed
to complete a single job in a virtualized environment. As noted in [5] and [7], ap-
plications run in such environments are subject to high performance variability.
We address this problem in Section 2.4.

2.2 Experimental Setup

Environment. Experiments are run on both a hosted hypervisor and a cloud
environment. The hosted hypervisor is a quad-core Asus Intel i7 [2] laptop with
eight physical threads running Windows 8 and V irtualBox[18]. For the cloud
environment we use the Amazon Elastic Computing Cloud (EC2)[1]: an IaaS

224 D. Cerotti et al.

cloud computing service that provides on-demand computational and storage
power in the form of Virtual Servers. These servers are categorized based on
their virtual hardware characteristics into instances that can be requested and
activated by users. Table 2 summarizes the main features of EC2 instances types.

Table 2. Main characteristics of Amazon EC2 instances (March 2012)

type Cores ECU Approx. core speed Memory

m1.small 1 1 1 ECU ∼ 1.2 GHz 1.7 GB
m1.medium 1 2 2 ECU ∼ 2.4 GHz 3.7 GB
m1.large 4 2 2 ECU ∼ 2.4 GHz 7.5 GB
m1.xlarge 4 8 2 ECU ∼ 2.4 GHz 15.0 GB
m2.xlarge 2 6.5 3.25 ECU ∼ 3.9 GHz 17.1 GB
m2.4xlarge 8 26 3.25 ECU ∼ 3.9 GHz 68.4 GB
c1.xlarge 8 20 2.5 ECU ∼ 3 GHz 7 GB

The tests are run mainly on the m2.4xlarge instance type, that is character-
ized by 8 virtual cores.

Experiments Generation. The Linux distribution we used as guest OS allows
to turn off one or more cores using simple bash commands. This feature was
exploited to study the behavior of the benchmarks under different core configu-
rations. To execute the full set of experiments, we resort to a bash script able to
launch the benchmark applications changing some parameters in each run. For
the experiments described in the paper, which require the simulation of a closed
system, the bash script manages to keep constant the number of concurrent
running benchmark instances. Moreover, it collects the response time of each
instance discarding the values that do not satisfy the experiment assumptions.
In particular, we remove the initial and final transient of the experiments when
the number of concurrent instances is not constant.

2.3 Studies on Virtual CPUs

The first set of experiments investigates the performance of an application run-
ning on both a hosted hypervisor and a cloud environment. To this end, we
evaluate the response times of the three DaCapo benchmarks run on the local
V irtualBox[18] installation and on the m2.4xlarge EC2 instance type. For what
concern the VirtualBox experiments, only 4 out of the 8 available threads have
been used to avoid the effects of simultaneous hardware multi-threading. To
study a closed workload, during each experiment a constant number of instances
of the same benchmark are executed concurrently.

For both EC2 and VirtualBox, we perform a full factorial experiment consid-
ering the following parameters: the benchmarks presented in Table 1, the number
of cores c and the number of concurrent benchmark instances N ranging from 1
to 10. For each combination of parameters, each experiment is repeated between

End-to-End Performance of Multi-core Systems 225

40 and 70 times to obtain a statistically significant set of measures. We use an
equivalent number of repetitions for the experiments presented in the following
Sections.

Each curve in Figure 1 represents the behavior of the selected benchmark
executed with a given cores configuration with an increasing number N of con-
current benchmark instances. As expected, the V irtualBox VM are faster than
the EC2 instances, however both of them show a similar behavior. The two
CPU-bound benchmarks, Sunflow and Xalan, maintain a stable response time
R as long as N is less than or equal to the number of cores. In such a case, each
core handles at most one of the N benchmark instances that, as we impose, it
cannot split itself into multiple threads. When N exceeds the number of cores,
the response time starts to increase due to the concurrent execution of several
instances on the same core. Batik behaves in a similar way, but the response
time starts to increase even when N is below the number of cores, in particular
around N = 3 if the system is 4 cores, around N = 6 if the system is 8 cores.
Probably this is due to the load characteristics of the benchmark which includes
both CPU and I/O operations.

2.4 Performance Variability Analysis

In this Section we study the variability of the response times described in Sec-
tion 2.3. Several causes of variability in large-scale cloud environment exist: for
instance, the geographical location [20] and the architecture of the VMs pro-
vided by Amazon [4], the period of time in which the experiments are executed
[8]. A detailed analysis of the causes of the variability of the performance is a
challenging task and is not the main focus of the present work. In this paper
we study the variability due to the application characteristics and the number
of cores of the VMs in which the benchmarks run. To reduce the cloud-related
sources of variability, we run all the experiments on VMs belonging to the same
EU-Ireland (eu-west) availability zone of the Amazon Cloud and in the same
period of time.

Figure 2 shows a sub-set of the resulting distributions using box and whisker
plots1: for space constraints we have omitted to show the same type of figures for
the other experiments, which however exhibit similar behaviors. Independently
on the workload size and the number of cores, the response times of Xalan and
Sunflow have quite narrow distributions, however the spread size with respect
to the number of cores are different. In particular, in Xalan the spread is greater
with a lower number of cores, while in Sunflow the opposite occurs. Disregarding
some outliers, the results suggest that the distributions are narrow, and thus
that they are well characterized by their mean. Instead, Batik presents a huge

1 The two ends of the box correspond to the first and third quartile, while the two
whiskers are respectively the lowest and highest datum inside the 1.5 interquartile
range (IQR) below the lower quartile or above the upper. The mean of the distri-
bution is shown with the horizontal line inside the box. Outliers are represented by
points outside the whiskers.

226 D. Cerotti et al.

VirtualBox EC2

a1. a2.

b1. b2.

c1. c2.

Fig. 1. Response time vs number of instances N of the DaCapo benchmarks.
Comparison between single threaded configuration on EC2 and on VirtualBox VMs.

End-to-End Performance of Multi-core Systems 227

number of outliers independently on number of cores or workload size. This
suggests that the response time distributions of Batik could be heavy tail, and
that care is needed in characterizing such benchmark only with its mean value.
This will also be confirmed by the fitting procedures that will be presented in
Section 3.

2.5 I/O-Bound Applications

In this Section we focus on I/O-bound applications. In Figure 3 the behavior of
IOzone on Amazon EC2 cloud is shown. In both cases we allocate the same type
of EC2 m1.xlarge instance with 4 cores. However, the specific CPU provisioned
in the two runs, and thus its computational power, is different. This is due
to the allocation policy used by Amazon, where a number of processors with
different (but sufficiently similar) computing power may be assigned to satisfy
the same instance type request. The impacts on performance of this flexible
allocation policy of the CPU was investigated deeply in [4]. In Figure 3a the
CPU architecture of the VM provided by Amazon is an Intel E6545, while in
Figure 3b an E2 − 2650 is considered. As it can be seen, the number of active
cores does not influence the response time of IOzone directly. Even if each active
core can contribute with an extra quantity of caching to the overall capacity,
this does not influence the performance of the benchmark. The different power
of the two CPU architectures is reflected by the mean response time obtained
for different values of the number of concurrent executions N . It is important to
note here that the asymptotic behavior is independent of the number of available
cores, as expected by an I/O-Bound application. However, the mean response
time may vary according to CPU architecture. This outcome extends the validity
of the results in [4], obtained for the CPU, also for the I/O.

2.6 Software Multi-threading

A third set of experiments investigates the impact of software multi-threading
on the behavior of the DaCapo benchmarks under different core configurations.
First, we study how the mean execution time of a single multi-thread run varies
as function of the number of cores: in particular, we set the number of threads
that benchmark can use equal to the number of available cores. Results are
shown in Figure 4. As it can be seen, the one that has the best improvement
when increasing the number of cores is Sunflow, since it is the application that
can best exploit the parallelization. On the other hand, Batik does not have
any improvement, since it is mainly composed by a single thread application.
We then focus on Sunflow (since it is the benchmark that can better exploit the
parallelization), and we test an increasing number of simultaneous executions, on
systems with an increasing number of cores. To this end, we exploit the DaCapo
feature that allows to fix the number of threads which Sunflow will be able to
use during its execution. The results are show in Figure 5. As it can be seen, an
higher number of threads can indeed improve the response time performance of
the benchmarks, as long as the system runs a number of instances N less than

228 D. Cerotti et al.

�����������

����������

����

��������������
�����������������
��������

�������

�

�
���

��
��

���

�

���
���

��
�

��
�
�
�
�
��

���

��
�
��
��
�
��
�
�

�������

�
���
�

���
�
��
��
��
��
�

�����

���������������������������������
�������������������������
����
����
��
�
�
��
��
�
������
������
���
�
������

���
����
��
��

���
��

����
��
�
��

�
����
�

�������

�
��
���

����
�

���

���
�
�
�
�
�

���
��
��

���
�����

���
���

���������������������������������
�����
�����
���
������
��
��
��
�������
�����
��
��
��
���
�����
������
��
��
����
��
���
���
�����
�
������

��
����

�
�
��
���������

�

�
�
�
��
��

���
������������
����
��������
���
�������
�
�
���
���
�����
��
����
�������

�

��

��

��
������
���
�����
����

�����

�

��

�
������
����
��
����
�����

�
�
�
�
���
�

�
�������
����

����
�
�
�����
�
�
���

��
��������
���������������
��
�
������
���
��������
������

�

�
�����������

�
�
�

�
�
������������
��

�
�����
�

�����������

�
�
�
���
��
��
����
�

����

�
�
���
�����
��
�
����
�

���
��������������
��������
�������������
��

�

���
����
���������������

�
��
�����

���
����
����������

�

����
����
�
�

��������
�����

����������
��
�

�������

�
����
��
��
���
�
�
��

��
���������
��������������
���������������
�

�
���

����
�����

�����
����

�
�
�
�������

�����
�
�
��

��

����

�

�
�����
��

12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910

5

10

15

20

25

Batik in EC2

R�sec�

One core Two cores Three cores Four cores Five cores Six cores Seven cores Eight cores

�

�

Mean
25� quantile

75� quantile

Far outlier

Outlier

���

�

��
�
�
�

�

�

��

���

����
��
����

�����

������

�
�
��
���

������
��

��

�
�

�

����
������
�
����
���
��
����
�����
�������

��
�
��

��
�

���
�

���
������

�
����
���

��
����
��

����� �
� �
��
�

12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910

5

10

15

20

25

30

35

40

45

50

Xalan in EC2

R�sec�

One core Two cores Three cores Four cores Five cores Six cores Seven cores Eight cores

�

�

Mean
25� quantile

75� quantile

Far outlier

Outlier

��
������������
�����
��

�

���������������
��������������������

���������������������������������� ��
�����
���
������

�����
����
������
�
��
����
��
�

���������������������������������� �� �
��������������
������������
�����������������������

��
���������������������
�����������������
��
�
���������������������������������� �� �

������������������
������

��������
�

12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Sunflow in EC2

R�sec�

One core Two cores Three cores Four cores Five cores Six cores Seven cores Eight cores

�

�

Mean
25� quantile

75� quantile

Far outlier

Outlier

Fig. 2. Response time benchmark distribution. Single threaded configuration with a
constant workload size N ranging from 1 to 10 and a number of cores c from 1 to 8.

End-to-End Performance of Multi-core Systems 229

E5645 E2-2650

a. b.

Fig. 3. Response time vs number of instances N of the IOZone benchmarks.
Comparison between EC2 architectures E5645 and E2-2650.

or equal to the number of active cores. This also means that multi-threading
provides limited advantage when there is a number of instances greater than the
number of available cores.

Fig. 4. Response time vs number of cores c of the DaCapo benchmarks on EC2 with
a single instance in execution. The number of threads is equal to the number of cores.

2.7 Efficiency

On cloud systems, the provisioning of a single machine with many cores can be
more costly than the provisioning of many single-core machines. Thus, when it
comes to run several copies of the same application, it can be useful to provide
an index that support the user in the choice of running all the instances on a
single VM with a large number of cores, or on several single-core VMs. To this
end, we propose an index to measure the efficiency of running several instances

230 D. Cerotti et al.

Fig. 5. Response time vs number of instances N of the Sunflow benchmark on EC2
running on 4 or 8 core machines and with different thread configurations.

of an application in a multi-core environment and we run a set of experiments
to evaluate it for the considered DaCapo benchmarks. We define the efficiency
as:

ε =
R(1, 1)

R(n, c)
(1)

where R(n, c) is the mean response time obtained when n instances of the se-
lected benchmark run on a c-cores system. The proposed definition is similar to
the standard definition of efficiency for parallel applications: speedup divided by
number of processors, or E = T (1)/(n · T (n)). In multi-core systems n · T (n) is
replaced by R(n, c).

ε

Fig. 6. Efficiency vs number of cores c of the DaCapo benchmarks on EC2 with a
single instance in execution

Figure 6 shows how the efficiency decreases as the number of cores increases
for both Batik and Xalan: this means that such applications do not have any

End-to-End Performance of Multi-core Systems 231

benefit on running on VMs with a large number of cores, and that it would
be a better choice to execute several single application instances on single-core
VMs. Sunflow instead exhibits efficiencies greater than one: this means that the
common L2 cache architecture, employed by most multi-core systems, reduces
the execution times, making thus a better choice to consolidate several instances
of the application in a single VM with a larger number of cores.

3 Fitting CPU and I/O Demands in Virtualized
Multi-core Systems

3.1 Resource Demand Estimation for Multi-core CPUs

Applying some simplifying assumptions, a multi-core CPU can be seen as a
service station of an M/M/c queue, where c represents the number of cores.

The service time required by a complete execution of a job can be character-
ized by the service demand D(n, c). The response time can be estimated as:

R(n, c) =
n

min(n, c)
D(n, c) (2)

As a first assumption, we assume D(n, c) = DApplication constant. The param-
eter DApplication can be estimated from the data using a simple model-parameter
fitting procedure. In this work we used the “GRG solver” of Microsoft Excel to
minimize the squared distance between the response time predicted by the Eq.
(2), and the one measured on the real system. The mean relative error of this
procedure is reported in column ”Application” of Table 3. As it can be seen, the
errors are between 10% and 16%. Only Sunflow has a limited error, as shown in
Figure 7a.

As a first improvement, we assume the demand D(n, c) depend on the number
of jobs n, as long as n is less than or equal to the number of cores c, that is
D(n, c) = DJobs(min(n, c)). The number of parameters to be estimated is equal
to the number of cores c. The rationale of this improvement is that a CPU works
in the same way independently on the number of cores used: locks and cache
misses depends only on the number of concurrent jobs in execution, but only
until all the cores are saturated. Column ”Jobs” in Table 3 shows that in this
case the results are much better, and that the mean error remains high only
for Batik, which is the benchmark with the most complex behavior. Figure 7c
compares the estimation with the real data for the Xalan benchmark: the ability
of making the estimation dependent on the number of jobs, allows the estimated
response time to have a variable behavior even when the number of jobs is less
than the number of considered cores, a features that has been observed in the
measurement.

Another option with c parameters, is to assume the demand dependent on
the number of cores, i.e. D(n, c) = DCores(c). However this extension does not
provide great improvement in the results, as it can be seen in Table 3 (column
”Cores”). Figure 7b compares the results of the estimation with the real data
for the Batik benchmark.

232 D. Cerotti et al.

In the most complex scenario, we assume that the demand D(n, c) depend
both on the number of jobs n and on the number of cores c, but only until n
is less than or equal to the number of cores c. In this case a total of c(c + 1)/2
parameters is required, and we have D(n, c) = DFull(min(n, c), c). As expected,
this choice provides very good results, even for problematic benchmarks such as
Batik, as it can be shown in Table 3 (column ”Full”) and Figure 7d. Despite
being high, the number of parameters is still manageable, (i.e. 10 for a quad-core
system, and 36 for an eight core machine).

3.2 Estimating the I/O Demand in Multi-core Environments

As was shown in Figure 3, since the I/O on a multi-core environment cannot be
parallelized as the CPU, the behavior of the I/O, is more like an M/M/1 queue.
Thus, response time can be estimated as:

R(n, c) = n ·D(n, c) (3)

As before, we can fit the measurements by either considering a single de-
mand D(n, c) = DApplication for the entire application, or a demand D(n, c) =
DCores(c) that depends on the number of cores (to account for possible speed-up
at the OS level that can be achieved by exploiting the multi-core CPU to sched-
ule I/O requests). Both cases produces similar errors, as it can be seen in first
two columns of Table 3. A visual comparison of the fitted model (for a single
parameter DApplication) and the measurements is given in Figure 7e.

In order to increase the accuracy, the demand must take into account that the
actual service time can vary as function of the number of jobs, due to scheduling
and disk optimizations that can be made by the OS when it has to serve a large
workload. This however cannot be limited to the number of cores as done for
CPU-bound applications, since the OS optimizations takes place for any I/O
queue length. As a simplifying assumption, we imagine that the actual demand
D(n, c) varies between to levels D0 and D1 that represents the speed at which
the system can work either when it is under or over-utilized. The same two
demands are mixed according to an exponential weight with parameter n0. In
this way, the response time can be estimated as:

R(n, c) = n
[
D0(c)e

− n
n0(c) + D1(c)

(
1− e

− n
n0(c)

)]
(4)

Also in this case, we can consider two cases when either the three parameters
depend on the number of cores (the optimization done by the OS can take
advantage of an higher number of cores, when present), or not. The two cases
have respectively 3·c and 3 parameters, and the results of the fitting are reported
in the last two columns of Table 3. As it can be seen in Figure 7f, the ability of
varying the demand among a high and a low load, allows the expression to follow
precisely the measured behavior. Results further improves when considering a
dependency on the number of cores. Despite the increased complexity, also the
core dependent expression still maintains a reasonable number of parameters
(i.e. 12 for a quad-core, and 24 for an eight core machine).

End-to-End Performance of Multi-core Systems 233

Table 3. Mean relative fitting errors of the considered demand estimations

a. b.

c. d.

e. f.

Fig. 7. Fitting of the measured response times against the considered demand models:
a - Sunflow, independent; b - Batik, core-dependent; c - Xalan, job-dependent; d - Batik,
job and core-dependent; e - IoZone, independent; f - IoZone, job and core-dependent

234 D. Cerotti et al.

4 Conclusions

The main contribution of this paper has been measuring the performance and
the behavior of benchmark applications in virtualized multi-core environment.
The obtained results have been used to define expressions that can provide good
estimates of the end-to-end response time, and we have evaluated the distance
among the measures and performance indexes. In order to have more accurate
parameter estimations, new measurement campaigns, that accounts also for CPU
and I/O usage, should be performed: this will lead our future works. Other
directions will study transactional workloads, and will consider the effects that
can be experienced when considering multiple class of application concurrently
running on the same VM.

Acknowledgments. This work has been partially supported by the “AWS
in Education research grant” from Amazon, and by the “ForgeSDK” project
sponsored by Reply srl.

References

1. Amazon Web Services - Elastic Cloud Computing, http://aws.amazon.com
2. Asus N56VJ specifications, http://www.asus.com/notebooks_ultrabooks/n56vj
3. Benevenuto, F., Fernandes, C., Santos, M., Almeida, V.A.F., Almeida, J.M.,

Janakiraman, G.J., Santos, J.R.: Performance models for virtualized applications.
In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Work-
shops 2006. LNCS, vol. 4331, pp. 427–439. Springer, Heidelberg (2006)

4. Cerotti, D., Gribaudo, M., Piazzolla, P., Serazzi, G.: Flexible cpu provisioning
in clouds: A new source of performance unpredictability. In: QEST, pp. 230–237
(2012)

5. Cherkasova, L., Gardner, R.: Measuring cpu overhead for i/o processing in the xen
virtual machine monitor. In: Proc. of the USENIX Annual Technical Conference,
ATEC 2005, pp. 24–24. USENIX Association, Berkeley (2005)

6. Doweck, J.: Microarchitecture and smart memory access (2006),
http://software.intel.com/sites/default/files/m/3/4/

d/6/3/18374-sma.pdf

7. El-Khamra, Y., Kim, H., Jha, S., Parashar, M.: Exploring the performance fluctua-
tions of hpc workloads on clouds. In: Proceedings of the 2010 IEEE II Intern. Conf.
on Cloud Computing Technology and Science, CLOUDCOM 2010, pp. 383–387.
IEEE Computer Society, Washington, DC (2010)

8. Ghoshal, D., Canon, R.S., Ramakrishnan, L.: I/o performance of virtualized cloud
environments. In: Proceedings of the Second International Workshop on Data In-
tensive Computing in the Clouds, DataCloud-SC 2011, pp. 71–80. ACM, New York
(2011)

9. Gribaudo, M., Piazzolla, P., Serazzi, G.: Consolidation and replication of vms
matching performance objectives. In: Al-Begain, K., Fiems, D., Vincent, J.-M.
(eds.) ASMTA 2012. LNCS, vol. 7314, pp. 106–120. Springer, Heidelberg (2012)

10. Huber, N., von Quast, M., Hauck, M., Kounev, S.: Evaluating and modeling virtu-
alization performance overhead for cloud environments. In: Leymann, F., Ivanov,
I., van Sinderen, M., Shishkov, B. (eds.) CLOSER, pp. 563–573. SciTe Press (2011)

http://aws.amazon.com
http://www.asus.com/notebooks_ultrabooks/n56vj
http://software.intel.com/sites/default/files/m/3/4/d/6/3/18374-sma.pdf
http://software.intel.com/sites/default/files/m/3/4/d/6/3/18374-sma.pdf

End-to-End Performance of Multi-core Systems 235

11. Huber, N., von Quast, M., Brosig, F., Kounev, S.: Analysis of the performance-
influencing factors of virtualization platforms. In: Meersman, R., Dillon, T., Her-
rero, P. (eds.) OTM 2010. LNCS, vol. 6427, pp. 811–828. Springer, Heidelberg
(2010)

12. IOzone Filesystem Benchmark, http://www.iozone.org
13. Kavadias, S.G., Katevenis, M.G., Zampetakis, M., Nikolopoulos, D.S.: On-chip

communication and synchronization mechanisms with cache-integrated network
interfaces. In: Proc. of the 7th ACM Int. Conf. on Computing Frontiers, pp. 217–
226. ACM, New York (2010)

14. Kim, Y., Han, D., Mutlu, O., Harchol-Balter, M.: Atlas: A scalable and high-
performance scheduling algorithm for multiple memory controllers. In: HPCA 2010,
pp. 1–12 (January 2010)

15. Liu, F., Jiang, X., Solihin, Y.: Understanding how off-chip memory bandwidth
partitioning in chip multiprocessors affects system performance. In: HPCA 2010,
pp. 1–12 (January 2010)

16. Menasce’, D.A.: Virtualization: Concepts, applications, and performance modeling.
In: Proc. of the Computer Measurement Groups 2005 International Conference
(2005)

17. Moseley, T., Kihm, J., Connors, D., Grunwald, D.: Methods for modeling resource
contention on simultaneous multithreading processors. In: Proceedings of the 2005
IEEE International Conference on Computer Design: VLSI in Computers and Pro-
cessors, ICCD 2005, pp. 373–380 (2005)

18. Oracle Virtual Box, https://www.virtualbox.org
19. Qureshi, M.K., Patt, Y.N.: Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared caches. In: Proc. of the 39th
IEEE/ACM Int. Symp. on Microarchitecture, MICRO 39, pp. 423–432. IEEE Com-
puter Society, Washington, DC (2006)

20. Schad, J., Dittrich, J., Quiané-Ruiz, J.A.: Runtime measurements in the cloud:
observing, analyzing, and reducing variance. Proc. VLDB Endow. 3, 460–471
(September 2010), http://dl.acm.org/citation.cfm?id=1920841.1920902

21. Schneider, S., Yeom, J.S., Nikolopoulos, D.: Programming multiprocessors with
explicitly managed memory hierarchies. Computer 42(12), 28–34 (2009)

22. The DaCapo Benchmark Suite Website, http://dacapobench.org

http://www.iozone.org
https://www.virtualbox.org
http://dl.acm.org/citation.cfm?id=1920841.1920902
http://dacapobench.org

Performance Analysis and Formal Verification

of Cognitive Wireless Networks

Gian-Luca Dei Rossi, Lucia Gallina, and Sabina Rossi

Università Ca’ Foscari, Venezia, Italy
{deirossi,lgallina,srossi}@dais.unive.it

Abstract. Cognitive Networks are a class of communication networks,
in which nodes can learn how to adjust their behaviour according to
the present and past network conditions. In this paper we introduce
a formal probabilistic model for the analysis of wireless networks in which
nodes are seen as processes capable of adapting their course of action
to the environmental conditions. In particular, we model a network made
of mobile nodes using the gossip protocol, and we study how the energy
performance of the network varies, according to the topology changes and
the transmission power. The stochastic process underlying the model is
a discrete time Markov chain. We use the PRISM model checker to obta-
in, through Monte-Carlo simulation, numerical results for our analysis,
which show how the learning-driven dynamic adjustment of transmission
power can improve the energy performance while preserving connectivity.

1 Introduction

Cognitive networks [4] are communication networks in which nodes can alter
their behaviour according to changes of the environmental conditions. What
differentiate this approach from the one of cognitive radio [8] networks are that,
while in the latter the choices that nodes can take are restricted to radio channel
selection, in the former nodes can take complex decisions, taking into account
the global goals of the network. Cognitive processes are particularly useful when
we have to deal with ad hoc networks, where the absence of a fixed infrastructure
and the dynamic nature of the network topology, as well as the limited power
capacities of nodes, make the network prone to problems such as link breakages,
energy waste and interferences.

Topology Control is a technique aimed at guaranteeing network connectivity,
while optimising network performance with respect to several metrics, depending
on the specific objective of each single network.

Although several formal models for the analysis of wireless ad hoc and sensor
networks and for cognitive radio networks were proposed in the literature (see,
e.g., [13,5]), to the best of our knowledge formal models for the analysis of
cognitive networks are rare. In [9] the authors discuss the issues concerning the
definition of a PEPA model for cognitive networks, although they do not propose
any actual model, and thus they do not perform any quantitative or qualitative
analysis.

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 236–250, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Performance Analysis and Formal Verification 237

PRISM [10] is a tool for modelling and analysing systems that exhibit a prob-
abilistic behaviour. It supports, among others, the modelling of Markov Decision
Processes (MDPs), where nondeterministic and probabilistic aspects coexist. In
addition to the traditional model checking, PRISM provides statistical model
checking, allowing one to compute probabilities of properties’ satisfaction. In
particular, PRISM also offers a discrete-event simulator, allowing one to gener-
ate approximate results for the verification of properties. This approach is par-
ticularly useful for very large models, when other approaches to model checking
are not feasible, due to the well known problem of state space explosion.

This paper presents a probabilistic model for the analysis of networks ex-
hibiting cognitive behaviours. The model is written in the PRISM language, and
supports broadcast communications, node mobility, and the ability of nodes to
dynamically adjust the transmission power during their operations.

Paper structure. The paper is organised as follows. In Section 2 we give an
introduction to the use of cognitive networks for topology control, Section 3
reviews the basic features of PRISM that we use in the rest of the paper. In
Section 4 we introduce a novel model for cognitive networks, and in Section 5 we
use the PRISM tool to analyse its behaviour, giving numerical examples. Finally,
in Section 6 we give some final remarks, concluding the paper.

2 Topology Control with Cognitive Networks

Topology Control [14] is a technique aimed at guaranteeing the connectivity of
a communication network, while limiting other cost factors, such as the level of
interference and the energy consumption, thus extending the network lifetime.
In the presence of mobility this problem is not trivial, since the network topol-
ogy continuously changes, causing frequent link breakages and variations in the
interference levels. In wireless networks, this can be considered as the problem of
finding a trade-off between power saving and network connectivity through the
choice of the appropriate transmission power for each node. It is evident that if
each node transmits at a low power, then its connectivity level, and potentially
the one of the whole network, will be reduced, while if we assign high transmis-
sion power to the nodes, we generally enhance the connectivity of the network,
but we consume far more energy. This relation is, indeed, not a trivial one, since
increasing transmission power, and thus the coverage area of a radio station, can
increase the chances of collisions and interferences, decreasing the whole network
connectivity. For omni-directional antennas we can reasonably model the cover-
age radius as a function of the power used by the transmitter, and vice-versa.
The function can be arbitrary, but usually the coverage radius is proportional
to the square root of the transmission power [12]. Of course connectivity is also
influenced by factors independent from the transmission power, such as routing
and link-level protocols. However in this paper we focus on energy consump-
tion, leaving all the other factors unchanged. In particular, we assume that the
network uses the well-known gossip protocol to propagate messages.

238 G.L. Dei Rossi, L. Gallina, and S. Rossi

In this article we also assume that every node in the network is somewhat
smart, and capable of applying some strategies to decide its transmission power,
based on the conditions in which it operates. In particular, we assume that,
observing the past behaviour of the network, or using some link-level techniques
usually employed for interference, collision and congestion detection [17], each
node is able to guess how many other stations are present in a given radius.
Given that information, the node can perform a very simple decision, i.e.,

– If there is a radius r < rmax for which there are at least n other nodes, use
the minimum transmission power capable of transmitting with radius r.

– Use the maximum allowed power, corresponding to radius rmax, otherwise.

It is clear that, due to mobility and interferences, the guess of the aforemen-
tioned node can be wrong, however this mistake will have an effect on the next
retransmissions of the node itself. In this way, we have just defined a cognitive
network in which nodes are able to learn, from the observed environment, an
appropriate behaviour for the net itself.

3 The PRISM Model Checker

PRISM [10] is a probabilistic model checker which supports several types of
models, such as discrete-time Markov chains (DTMCs), continuous-time Markov
chains (CTMCs), Markov decision processes (MDPs), and Probabilistic Timed
Automata (PTA). Models are expressed using PRISM’s own language.

This paper deals with models that can be represented by Discrete Time
Markov Chains [15], and studies their qualitative and quantitative properties
using model checking techniques. In the following we briefly introduce the main
aspects of the PRISM language.

3.1 Modules

PRISM models consist of modules, expressed through a simple state-based
language. A module is specified as:

module name

...

endmodule

and it is composed of variables and commands. Variables are names associated
to values. The syntax for variables is:

name : [range] init initial_value;

Commands describe all the possible behaviours of the modules, i.e. all the pos-
sible transitions from one state to another. They include guards, which indicate
the states where the transitions can occur, and the updates, which modify the
variables in order to reach the arrival states. The syntax for a command is:

Performance Analysis and Formal Verification 239

[action] guards -> p1:update1 + p2:update2 .. pn:updaten;

where p1, ..., pn express the probability of each possible update (
∑n

i=1pi = 1),
guards is the list of conditions associated to that transitions, and action is the
label of the transitions, which is used to synchronise different modules, since two
modules can synchronise if they can execute an action with the same label.

3.2 The Property Specification Language

PRISM provides a specification language to express rewards and quantitative
properties and it supports the automated analysis of these properties with re-
spect to the probabilistic models. It supports several temporal logics, such as
PCTL (Probabilistic Computation Tree Logic) and LTL (Linear Temporal Logic)
[7]. In particular, when dealing with DTMCs, the PRISM property specification
language enables us to study many important properties, such as the probability
to reach a particular state under some conditions.

The P operator is used to reason about the probability of the occurrence of
an event. Formally, we write:

P bound [pathprop]

which is true if the probability that the path property pathprop is satisfied by
the paths reachable from the initial states respects the bound bound.

We can also adopt a quantitative approach, by computing the actual
probability that a path property is satisfied. An example is:

P =? [pathprop]

which computes the probability of satisfying pathprop.
The PRISM property specification language introduces a set of temporal op-

erators in order to express the PCTL path formulas or the LTL formulas which
can be verified for a single path of a model. Among these operators, the most
used are F, which expresses the property that the condition will be eventually
satisfied by the path, and G which expresses the property that the condition is
always true (i.e., it expresses the invariancy property).

3.3 Costs and Rewards

Reward properties are based on the possibility of defining rewards associated
with a given PRISM model. Rewards can assign values, or costs, either to states
or transitions. We are interested in transitions rewards, whose syntax is:

rewards ‘‘name’’

[action_1] constraint_1 : cost_1

[action_2] constraint_2 : cost_2

...

[action_n]constraint_n : cost_n

endrewards

240 G.L. Dei Rossi, L. Gallina, and S. Rossi

where, for each i ∈ [1 − n] assigns the cost cost i to the transitions labelled
with [action i] satisfying the constraint constraint i.

With the PRISM property specification language we can use the R operator
to compute the expected value of the rewards associated with the model. As for
the reachability properties (the P operator), we can verify if the cost of reaching
the states satisfying some particular property respects a certain bound:

R bound [rewardprop]

We can also compute the expected cost of reaching states satisfying a given
property:

R = ? [F rewardprop]

3.4 Statistical Model Checking

Due to the well-known problem of state space explosion, in addition to the
standard model checking techniques, which need to build the entire model for the
verification of properties, PRISM also provides a discrete-event simulator, which
can be used to perform approximate (or statistical) model checking. Approximate
results can be obtained by generating a large number of paths through the model,
without building the entire state space, evaluating the properties on each run,
and using the information to generate approximate results. This technique can
be used to analyse both reachability and reward properties, and it is particularly
useful to study models with a large number of modules and interactions (see [11]).

4 The Model

We consider a wireless network with both static and mobile devices, where com-
munications are carried on using a basic gossip protocol. Nodes can, through
radio-frequency channels, broadcast messages, which are receivable by all the
nodes which are inside the sender node’s transmission area and are listening to
the same channel. We analyse the energy costs of a multi-hop communication
between two random network nodes, and we study how the ability of learning
and reasoning in the processes behaviour can improve the performance of the
network.

In particular, we model 15 mobile nodes, and 10 static nodes, evenly dis-
tributed in a network area of 50×100 square meters, as depicted in Figure 1.
The static nodes are located at positions {7, 9, 17, 19, 27, 29, 37, 39, 47, 49}, while
the movements for all the other nodes are described by the bidirectional arrows
in Figure 1. We model the network area as a grid of 5×10 cells. The distances
between cells are determined by considering the centre of each cell and calcu-
lating the euclidean distance between each pair of centres (each cell is 10× 10
square metres). Moreover, we consider each node as a cognitive process, that can
dynamically change the transmission power for its communications, depending
on the position of its active neighbours, with the global aim of an efficient topol-
ogy control. Usually, modern technologies allow the devices to choose among a

Performance Analysis and Formal Verification 241

1

4

5

3

2

6

9

10

8

7

11

14

15

13

12

16

19

20

18

17

21

24

25

23

22

26

29

30

28

27

31

34

35

33

32

36

39

40

38

37

41

44

45

43

42

46

49

50

48

47

Fig. 1. Topology of the Network

discrete set of possible power levels. In what follows we will use the transmission
radius to represent the transmission power, since those quantities are strictly re-
lated. As we mentioned in Section 2, usually the power spent for a transmission is
proportional to the squared radius. The processes that model nodes listen to the
channel and, when they receive a message, they forward it, according to the gos-
sip strategy, i.e., they will forward the message with a certain probability psend,
and discard it with probability 1 − psend. We will study the performance of
the network, for different gossip strategies, i.e., with the value of the forwarding
probability ranging in the set {0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0}.

Several papers, such as [6,1,2,3], already present analysis of gossip-based pro-
tocols, comparing modifications which are particularly appropriate for ad hoc
and wireless networks. In this paper we analyse how the presence of cognitive
processes in the network can strongly improve the performance of these kinds of
communication protocols. In our model, each node can choose its transmission
radius in the set {10m, 15m, 20m}. Specifically, it will choose the minimum ra-
dius which ensure the possibility to receive the message for at least two receivers
or, if there are not enough available neighbours in the transmission area, it will
transmit with its maximum power (radius = 20m).

As introduced in Section 3, the PRISMmodel checker supports different model
types. Here we model the network as a DTMC, where probabilities are used to
model both the possible topology changes, and the behaviour of the processes.
In what follows we will give the essential elements of the mapping of the afore-
mentioned model in PRISM’s own language. Table 1 shows the representation
of a single network node.

Variables. The most important variables of our model mapping are the following:

– stepsi controls the sequentiality of the process executed by the sensor node
i. In particular, stepsi = 2 means that the node is ready to receive, stepsi =
1 means that the node is ready to transmit, and stepsi = 0 means that the
node has completed a transmission.

– li: is the variable containing the actual location of the sensor node i.

242 G.L. Dei Rossi, L. Gallina, and S. Rossi

Table 1. The PRISM module for a node

module P8
steps8 : [0 .. 2] init 2;
l8 : [15 .. 20] init 15;

[move] (l8 = 15) → 0.8 : (l8′ = 20) + 0.8 : (l8′ = 15);
[movee] (l8 = 20) → 0.8 : (l8′ = 15) + 0.8 : (l8′ = 20);

//beginning of a new round
[round] no one sending → (steps8′ = 2);

//transmission
//[c8] (steps8 = 1) → (steps8′ = 0);

//reception
[c3] (steps8 = 2)& s1p3& s1p38 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c3] (steps8 = 2)& s2p3& s2p38 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c3] (steps8 = 2)& s3p3& s3p38 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c3] (steps8! = 2) |!((s1p3& s1p38) | (s2p3 & s2p38) | (s3p3& s3p38)) → (steps8′ = steps8)

[c5] (steps8 = 2)& s2p5& s2p58 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c5] (steps8 = 2)& s3p5& s3p58 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c5] (steps8! = 2) |!((s2p5& s2p58) | (s3p5 & s3p58)) → (steps8′ = steps8)

[c7] (steps8 = 2) & s1p7& s1p78 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c7] (steps8 = 2) & s2p7& s2p78 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c7] (steps8 = 2) & s3p7& s3p78 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c7] (steps8! = 2) |!((s1p7& s1p78) | (s2p7 & s2p78) | (s3p7& s3p78)) → (steps8′ = steps8)

[c10] (steps8 = 2) & s1p10& s1p108 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c10] (steps8 = 2) & s2p10& s2p108 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c10] (steps8 = 2) & s3p10& s3p108 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c10] (steps8! = 2) |!((s1p10& s1p108) | (s2p10 & s2p108) | (s3p10& s3p108)) → (steps8′ = steps8)

[c12] (steps8 = 2)& s2p12 & s2p128 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c12] (steps8 = 2)& s3p12 & s3p128 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c12] (steps8! = 2) |!((s2p12 & s2p128) | (s3p12 & s3p128)) → (steps8′ = steps8)

[c13] (steps8 = 2)& s1p13& s1p138 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c13] (steps8 = 2)& s2p13& s2p138 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c13] (steps8 = 2)& s3p13& s3p138 → psend : (steps8′ = 1) + (1 − psend) : (steps8′ = 0);
[c13] (steps8! = 2) |!((s1p13& s1p138) | (s2p13 & s2p138) | (s3p13& s3p138)) → (steps8′ = steps8)

endmodule

Modelling the Network Topology. In order to model the level of connectivity of
the network, which dynamically changes depending on the positions of the nodes
inside the network area, and before defining the modules for the network nodes,
we introduce a list of formulas, which allow us to verify the distance between
each pair of possible neighbours. In particular, for each pair i, j ∈ {1, ..., 25} and
for each h ∈ {2, 3, 4}, if the formula shpij is true, it means that the node Pj

is actually able to listen to a Pi’s transmission with radius 5× h. Moreover, for
each i ∈ {1, ..., 25} and for h ∈ {2, 3, 4}, if the formula shpi is true, then there
exists at least two possible receiver nodes inside the transmission area of the
sender, when transmitting with radius 5× h. Table 2 shows the set of formulas
modelling the connectivity of P1. As an example,

formula s1p12 = ((steps2 = 2) & (l2− l1 = 1));

is true when node P2 is ready to receive (steps2 = 1), and the distance between
P1 and P2 is 1, i.e., looking at Figure 1, is true only when l1 = 2 and l2 = 3,

Performance Analysis and Formal Verification 243

Table 2. Connectivity formulas

//P1 strategies
formula s1p12 = ((steps2 = 2) & (l2− l1 = 1));
formula s1p14 = ((steps4 = 2) & (l4 = l1− 5));

formula s2p12 = s1p12;
formula s2p14 = (steps4 = 2);
formula s2p15 = ((steps5 = 2) & (l5− l1 = 6));

formula s3p12 = ((steps2 = 2) & (l2− l1 < 3));
formula s3p14 = (steps4 = 2);
formula s3p15 = s2p15;
formula s3p16 = ((steps6 = 2) & (l6− l1 = 10));

formula s1p1 = (s1p12& s1p14);
formula s2p1 =!s1p1& ((s2p12& s2p14) | (s2p12 & s2p15) | (s2p14& s2p15));
formula s3p1 =!s1p1& !s2p1;

which, since we consider the nodes lying in the centre of each cell, means that
radius 10m guarantees their connection.

Transitions.

– [move]: is the transition modelling the periodic topology changes. Node mo-
bility is expressed in terms of the transition matrix of a discrete time markov
chain: each entry of the matrix denotes the probability that a sensor node
moves from a location to another. In particular, static nodes are associated
with the identity m atrix. When the transition move is performed, a node
will change location with probability ε, and will remain in the same location
with probability 1− ε. Here we choose 0.8 as the value for ε.

– [round]: is the transition occurring when no more transmissions are possible.
At the end all the nodes will be in the reception state (stepsi = 2), except
for the sender node, whose steps variable will be set to 1.

– [ci]: is the transition modelling a broadcast trasmission. In particular, if
a node is in the state ready to transmit (stepsi = 1), it will execute the
following transition:

[ci] (stepsi = 1)→ (stepsi′ = 0);

meaning that the node i transmits the message and then transits in a sleeping
phase. If another node Pj is in the state ready to transmit (stepsj = 2), and
it is inside the transmission area of the sender node (s1pij, s2pij, s3pij), it
will synchronize with the sender node and receive the message. Transition [ci]
(stepsj = 2)&s1pi&s1pij → psend : (stepsj′ = 1) + (1− psend) : (stepsj′ = 0);
models the basic gossip strategy: the node receiving the message will forward it
with probability psend, and discard it with probability 1− psend.

244 G.L. Dei Rossi, L. Gallina, and S. Rossi

Rewards. As introduced in Section 3, PRISM allows us to specify rewards (or
costs), associated to both states and transitions. In order to study the energy
performance of the networks, we associate a cost to each transition. In partic-
ular, for each transition [ci] (meaning that Pi is sending a message) we verify
which transmission power has been used for the transmission (s1p1, s2p1 or
s3p1), and we use the values 1 for radius 10 m, 1.5 for radius 15m and 2 for
radius 20m.

We are interested also in studying how many retransmissions the sender must
perform before the communication is successfully completed. In order to do so,
we introduce another reward, simply assigning 1 to each transition tagged with
[round].

Formally, rewards are written as follows:

rewards "rounds"

[round] true : 1;

endrewards

rewards "costs"

[c1] s1p1 : 1;

[c1] s2p1 : 1.5;

[c1] s3p1 : 2;

[c2] s1p2 : 1;

[c2] s2p2 : 1.5;

[c2] s3p2 : 2;}

[c3] s1p3 : 1;

[c3] s2p3 : 1.5;

[c3] s3p3 : 2;}

. . .

endrewards

5 Simulations and Results

In this section we show some numerical results obtained using our model for
the analysis of connectivity and performance properties of wireless networks. As
usual for large models, we use statistical model checking, using the discrete-event
simulator of PRISM.

We show how, using a cognitive process, which is able to dynamically adjust
the transmission power of a node depending on the relative positions of the
surrounding ones, it is possible to improve the performance of the network,
guaranteeing a high level of connectivity, while limiting the energy consumption.

In the following examples, we use the same network that we have seen in
Section 4, and we set the node P23, i.e., the red node in Figure 1, as the final
destination for the communications, while we change the sender node, in order
to study how the performance of the network depend on the relative distance
between sender and receiver. In particular we will show numerical results using
as sender either the node P17 or the node P6, i.e., the blue and yellow nodes in
Figure 1, respectively.

Performance Analysis and Formal Verification 245

We compare the connectivity and the power consumption of the cognitive
network with other networks having exactly the same topology and using the
same gossip strategy, but with a fixed transmission power.

5.1 Reachability Property

We first study the reachability properties of the system, i.e., the probability to
reach a successful state of the model, which corresponds to the correct reception
of a message by the final destination of the network.

In our PRISM representation of the model, since steps23 = 1 means that the
node P23 has correctly received the message, the formula which represents the
success of the communication is

formula goal = (steps23 = 1);

and the property that we are interested in verifying is

P=?[F goal]

which gives us the probability that the sender and the receiver nodes will even-
tually complete their communication successfully.

As stated before, in order to perform statistical model checking, i.e., to get
approximate results for the verification of properties, we use the PRISM simu-
lator, that relies on Monte Carlo simulations. As we expected, since we assume
that the sender node may retransmit a possibly infinite number of times, the
probability to reach the goal state was correctly computed as 1.0 for all the
network configurations, where the confidence interval was +/ − 0, based on a
confidence level 95%. This result ensures us that, in our setting , using a fixed
transmission power or dynamically changing the transmission power, depend-
ing on the surrounding environment, does not affect the network connectivity.
Moreover, this result ensures that a message will always reach the destination
in a finite number of steps.

Table 3. Results for Energy Costs, Distance = 28,3 m

VariableRadius

psend cost
0.65 26.15733
0.7 23.741
0.75 22.5360
0.8 20.7675
0.85 18.2167
0.9 15.7207
0.95 13.3402
1.0 11.21633

FixedRadius= 15

psend cost
0.65 25.5838
0.7 24.2405
0.75 22.5333
0.8 20.2982
0.85 17.8995
0.9 15.8523
0.95 13.3570
1.0 10.8015

246 G.L. Dei Rossi, L. Gallina, and S. Rossi

5.2 Energy Cost Properties

As stated before, it is possible to analyse the performance of the network, in
terms of energy consumption. As already introduced in Section 4, the trans-
mission radius of a node in a wireless network is usually strictly related to its
transmission power. In the literature we can find several formulas to estimate
both reception and transmission energy costs (see, e.g., [12], [16]).

Here we abstract from those possible formulas, and we simply assign to each
transmission the correspondent transmission radius as a reward. Notice that
this is a choice that doesn’t affect the complexity of the model or of its analysis.
Moreover, we do not consider the energy spent for receiving data or to move,
since the former is usually a fixed quantity, which does not depend on the actual
activity of the node, and the latter usually come from a different power source,
e.g., the legs of the mobile device user.

Again, we analyse the costs using statistical model checking. The reward
property that has been studied is:

R{‘‘costs’’}=?[F goal]

As in the previous case, we used a Monte Carlo simulation, and we obtained a
maximum confidence interval of 2 − 3% with respect to the averages, based on
a confidence level of 95%.

The results for a distance of 28.3m are shown in Figure 2.(a).
We notice that, while with a fixed radius of 10 or 20m, the energy costs of

the communications critically increase, especially for small value of the gossip
probability psend, using cognitive processes, or a fixed radius of 15m, the per-
formance is consistently improved. Since the curves for the variable radius and
the fixed radius 15m almost overlap, Table 3 reports the results in detail.

We analyse the average number of retransmissions, after the first one, that
the sender node must perform to complete the communication with the receiver
node, since it is useful to better understand the results of the previous reward
property verification. Figure 2.(b) shows some results for this kind of analysis.
Notice that, by fixing the radius to the maximum value, on average the com-
munication reaches the successful state after less than 1 retransmissions. As an
instance, the result for psend = 0.65 is 0.67567. Here the energy waste is given
by the high power employed for each forwarding, rather than by the number
of transmissions to reach the success. Again the curves for the Variable Ra-
dius, and the Fixed Radius 15m are almost overlapping. This result lead us to
the conclusion that, with this particular network configuration, if the processes
can dynamically choose their transmission radius, depending on the neighbours’
positions, the average radius will be 15m.

We now perform the same kind of analysis changing the sender. In this case
the distance between sender and receiver is 72, 1m. Figure 3 shows the results
for energy consumption: in this case, with a fixed radius of 15m ,the energy
performance of the network critically deteriorates. However, the results for a
fixed radius 20m and a variable radius are similar. Table 4 gives the precise
values for each psend. Notice that results for a fixed Radius of 10m are not

Performance Analysis and Formal Verification 247

(a) Energy Costs

(b) Expected Number of Sender’s Retransmissions

Fig. 2. Distance between sender and receiver: 28,3 m

reported: this is due to the fact taht the power needed for small values of psend
is very high and this would have led to an unreadable graph.

Again the analysis of the number of retransmissions by the sender nodes
is helpful to understand the behaviour of the network: the curves for a fixed
radius and a variable radius are similar. For psend = 0.65 we have, on average,
1.6834 retransmissions for the fixed radius network, and 2.519 for the cognitive
networks, while for psend = 1.0 we have 0 on average for both the network
configurations), meaning that, for a larger distance a fixed radius 20m is close to
the ideal value of the transmission radius to guarantee the energy performance
optimisation.

The results prove that, using a fixed radius, the performance of the network
strictly depends on the relative positions of the sender and the receiver, while
using a variable radius, we always get a power consumption that is closed to the
minimum (that is closed to the fixed radius 15m in the first case, and to the
fixed radius 20m in the second case).

248 G.L. Dei Rossi, L. Gallina, and S. Rossi

(a) Energy Costs

(b) Expected Number of Sender’s Retransmissions

Fig. 3. Distance between sender and receiver: 72,1 m

Table 4. Results for Energy Costs, Distance = 71,2 m

VariableRadius

psend cost
0.65 60.9090
0.7 50.61383
0.75 44.64067
0.8 40.1177
0.85 34.9950
0.9 32.8725
0.95 30.8292
1.0 28.6423

FixedRadius= 20

psend cost
0.65 54.7933
0.7 48.95267
0.75 42.7287
0.8 38.3973
0.85 34.2673
0.9 32.1087
0.95 30.2807
1.0 28.1893

Performance Analysis and Formal Verification 249

6 Conclusion

In this paper we have presented a probabilistic model for a class of cognitive
networks in a wireless setting, in which nodes dynamically choose their trans-
mission power, using data collected from the network itself. We have shown how
this model can be encoded in the PRISM language, allowing for the analysis of
its performances and for the verification of properties of its behaviour. Moreover,
we have used that kind of analysis to compare the energy efficiency of those net-
works with others based on different strategies, namely ones in which a static
transmission power is set. We have given some numerical results about this com-
parison, and we have concluded that cognitive-networks-based strategies could
be effective in the analysed setting.

Future works. As a further enhancement of our model, we plan to consider
more sophisticated routing protocols, and different decision strategies as well.
On the other hand, further simplifications of the model could lead to a faster
solution, even for models with a greater number of nodes. Moreover, the analysis
of different kinds of rewards, such as latencies or throughputs, could, and should,
be performed in order to better understand any possible advantage or drawback
of a power allocation strategy in wireless settings.

References

1. Dimakis, A.G., Sarwate, A.D., Wainwright, M.J.: Geographic Gossip: Efficient Ag-
gregation for Sensor Networks. In: Proc. of the 5th International Conference on
Information Processing in Sensor Networks, pp. 69–76. ACM (2006)

2. Donald, J.S., Yasinac, A.: Dynamic probabilistic retransmission in ad hoc networks.
In: Proc. of the Int. Conference on Wireless Networks (ICWN 2004), pp. 158–164.
CSREA Press (2004)

3. Fehnker, A., Gao, P.: Formal Verification and Simulation for Performance Analysis
for Probabilistic Broadcast Protocols. In: Kunz, T., Ravi, S.S. (eds.) ADHOC-
NOW 2006. LNCS, vol. 4104, pp. 128–141. Springer, Heidelberg (2006)

4. Fortuna, C., Mohorcic, M.: Trends in the Development of Communication Net-
works: Cognitive Networks. Computer Networks 53(9), 1354–1376 (2009)

5. Gelenbe, E., Lent, R.: Power-aware ad hoc cognitive packet networks. Ad Hoc
Networks 2(3), 205–216 (2004)

6. Haas, Z.J., Halpern, J.Y., Li, L.: Gossip-based Ad Hoc Routing. IEEE/ACM Trans.
Netw. 14(3), 479–491 (2006)

7. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

8. Mitola III., J.: Cognitive Radio - An Integrated Agent Architecture for Software De-
fined Radio. PhD thesis, Royal Institute of Technology, Stockholm, Sweden (2000)

9. Guo, L., Wang, J., Zhao, G.: Study on Formal Modeling and Analysis Method
Oriented Cognitive Network. In: 2012 Fifth International Symposium on Compu-
tational Intelligence and Design (ISCID), vol. 2, pp. 402–405 (2012)

10. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

250 G.L. Dei Rossi, L. Gallina, and S. Rossi

11. Norman, G., Kwiatkowska, M., Parker, D.: Advances and Challenges of Proba-
bilistic Model Checking. In: 48th Annual Allerton Conference on Communication,
Control, and Computing, pp. 1691–1698. IEEE (2010)

12. Madhav, T.V., Sarma, N.V.S.N.: Maximizing Network Lifetime through Varying
Transmission Radii with Energy Efficient Cluster Routing Algorithm in Wireless
Sensor Networks. International Journal of Information and Electronics Engineer-
ing 2(2), 205–209 (2012)

13. Mahmoodi, T.: Energy-aware routing in the cognitive packet network. Performance
Evaluation 68(4), 338–346 (2011)

14. Santi, P.: Topology Control in Wireless Ad Hoc and Sensor Networks. ACM Com-
puting Surveys (CSUR) 37(2), 164–194 (2005)

15. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton
University Press, UK (2009)

16. Younis, O., Fahmy, S.: HEED: A Hybrid, Energy-Efficient, Distributed Clustering
Approach for Ad Hoc Sensor Networks. IEEE Transactions on Mobile Comput-
ing 3(4), 366–379 (2004)

17. Zhai, H., Fang, Y.: Physical carrier sensing and spatial reuse in multirate and
multihop wireless ad hoc networks. In: Proc. of INFOCOM 2006. 25th IEEE In-
ternational Conference on Computer Communications, pp. 1–12 (2006)

Sliding Hidden Markov Model

for Evaluating Discrete Data

Tiberiu Chis

Department of Computing, Imperial College London,
180 Queen’s Gate, London, SW7 2RH, UK

tc207@doc.ic.ac.uk

Abstract. The possibility of handling infrequent, higher density, ad-
ditional loads, used mainly for on-line characterization of workloads, is
considered. This is achieved through a sliding version of a hidden Markov
model (SlidHMM). Essentially, a SlidHMM keeps track of processes that
change with time and the constant size of the observation set helps reduce
the space and time complexity of the Baum-Welch algorithm, which now
need only deal with the new observations. Practically, an approximate
Baum-Welch algorithm, which is incremental and partly based on the
simple moving average technique, is obtained, where new data points
are added to an input trace without re-calculating model parameters,
whilst simultaneously discarding any outdated points. The success of this
technique could cut processing times significantly, making HMMs more
efficient and thence synthetic workloads computationally more cost ef-
fective. The performance of our SlidHMM is validated in terms of means
and standard deviations of observations (e.g. numbers of operations of
certain types) taken from the original and synthetic traces.

1 Introduction

The hidden Markov model (HMM) has been relatively popular in workload char-
acterization [3] in recent years. Its parsimony, portability and efficient training,
through its expectation maximization algorithm, has made it useful for reproduc-
ing representative workload traces for simulating live systems. Research has also
complimented these applications through an incremental storage model [9,12],
on which quantitative measures were made. This work has proven that com-
putation time for a reliably parameterized model can be significantly reduced,
whilst maintaining accuracy of the model. Indeed, the incremental approach, by
which a model’s parameters are progressively updated rather than periodically
re-calculated, has been appealing in terms of run-time performance.

1.1 Background

To achieve an incremental model, one can adapt the standard HMM algorithms
used to train the model. These statistical algorithms under investigation are es-
sentially those solving the three fundamental problems associated with HMMs:

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 251–262, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

252 T. Chis

firstly, obtain P (O;λ), or the probability of the observed sequence O given the
model λ; secondly, maximize P (O;λ) by adjusting the model parameters for a
given observation sequence O; thirdly, determine the most likely hidden state
sequence for an observed sequence. These three problems are solved by three re-
spective algorithms: using the Forward-Backward algorithm [1], the Baum-Welch
algorithm1 [2] and the Viterbi algorithm [10]. The solutions to the Forward-
Backward and Baum-Welch algorithms are presented in the following sections.

1.2 Forward-Backward Algorithm

The Forward-Backward algorithm aims to find P (O;λ), which is the probability
of the given sequence of observations O = (O1, O2, . . . , OT) given the model
λ = (A,B, π), where there are T observations, A is the state transition matrix, B
is the observation matrix and π is the initial state distribution. This is equivalent
to determining the likelihood of the observed sequence O occuring. We use the
same format presented in [17], which is based partly on Rabiner’s solution [13,14].
Initially, the focus is on the α-pass, which is the “forward” part of the Forward-
Backward algorithm. Then, we shift our attention to the corresponding β-pass,
aka. the “backward” part of the algorithm.

To begin with, we define αt(i) as the probability of obtaining the observation
sequence up to time t together with the state qi at time t, given our model
λ. Using N as the number of states and T as the number of observations, the
mathematical notation is

αt(i) = P (O1, O2, . . . , Ot, st = qi;λ) (1)

where i = 1, 2, . . . , N , t = 1, 2, . . . , T , and st is the state at time t.

Proceeding inductively, we write the solution for αt(i) as follows:

1. For i = 1, 2, . . . , N ,

α1(i) = πibi(O1).

2. For i = 1, 2, . . . , N and t = 1, 2, . . . , T − 1,

αt+1(i) = [
∑N

j=1 αt(j)aji]bi(Ot+1)

where αt(j)aji is the probability of the joint event observing O1, O2, . . . Ot

and moving from state qj at time t to state qi at time t + 1.

3. It follows that,

P (O;λ) =
∑N

i=1 αT (i)

where αT (i) = P (O1, O2, . . . , OT , sT = qi;λ)

1 This algorithm uses the Forward-Backward algorithm iteratively.

Sliding Hidden Markov Model for Evaluating Discrete Data 253

The backward variable, βt(i), is defined as the probability of obtaining the ob-
servation sequence from time t + 1 to T , given state qi at time t and the model
λ:

βt(i) = P (Ot+1, Ot+2, . . . , OT ; st = qi, λ) (2)

and the solution of βt(i) is given by

1. For i = 1, 2, . . . , N ,

βT (i) = 1

2. For i = 1, 2, . . . , N and t = T − 1, T − 2, . . . , 1,

βt(i) =
∑N

j=1 aijbj(Ot+1)βt+1(j)

where we note that Ot+1 can be observed from any state qj .

1.3 Baum-Welch Algorithm

The Baum-Welch algorithm attempts to maximise P (O;λ) by iteratively up-
dating A,B, π, given the model λ = (A,B, π) and the observation sequence
O = (O1, O2, . . . , OT). We first define the probability of making a transition
from state qi at time t to state qj at time t + 1, given O and λ, as

ξt(i, j) = P (st = qi, st+1 = qj ;O, λ) (3)

Computing ξt(i, j) can be described as a three-step process. Firstly, the obser-
vations O1, O2, . . . , Ot finishing in state qi at time t will be covered by αt(i).
Secondly, the transition from qi to qj , where Ot+1 was observed at time t + 1,
is represented by the term aijbj(Ot+1). Thirdly, the remaining observations
Ot+2, Ot+3 . . . OT beginning in state qj at time t+1 are covered by βt+1. Putting
those together, and dividing by a normalizing term (P (O;λ)) we have

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O;λ)
(4)

We now sum the terms in (4) over j and notice that this gives the probability
of being in state qi at time t, given the observation sequence O and model λ:

γt(i) = P (st = qi;O, λ) =
∑N

j=1 ξt(i, j)

Summing γt(i) over time t up to T , we get the expected visits of state qi. Sim-
ilarly, summing up to T − 1 gives the expected number of transitions from qi.
Thus: ∑T

t=1 γt(i) = Expected times state qi is visited.∑T−1
t=1 γt(i) = Expected transitions from qi.

254 T. Chis

Similarly, we sum ξt(i, j) over t as follows:∑T
t=1 ξt(i, j) = Expected visits of qi then qj .∑T−1
t=1 ξt(i, j) = Expected transitions qi to qj .

Using these terms, the re-estimation formulas for our HMM parameters are:

π′
i = γ1(i) , a′

ij =
∑T−1

t=1 ξt(i,j)∑
N
j=1

∑T−1
t=1 ξt(i,j)

, bj(k)
′ =

∑T
t=1,Ot=k γt(j)∑

T
t=1 γt(j)

Using these re-estimation formulas, we can update our model λ′ = (A′, B′, π′),
where A′ = {a′

ij}, B′ = {bj(k)′} and π′ = {π′
i}. Our model will have fixed

parameters once P (O;λ′) > P (O;λ), when the optimal model λ′ is found.

1.4 Incremental Model

The incremental Storage Workload Model (iSWoM) [12] made use of these
algorithms with modifications to the mechanisms of the Forward-Backward al-
gorithm (creating a forward-recurrence backward approximation). Therefore, in-
herently, the Baum-Welch algorithm was adapted to create a model for incre-
mental learning of discrete data. The iSWoM generated workload traces, running
on live systems where quantitative measurements were made. These measure-
ments, acting as statistical validation, included means, standard deviations and
confidence intervals for both raw and iSWoM-generated traces. Also, compar-
isons of hidden state sequences, as generated by the Viterbi algorithm, further
validated the iSWoM with a standard HMM, and found similar model parame-
ters (A,B, π). Using the incremental approach of the iSWoM, by which a model’s
parameters are progressively updated rather than periodically re-calculated, was
accurate and also appealing in terms of run-time performance. However, the con-
tinuous training of new, incoming data points resulted in the accumulation of an
increasingly large observation set. As a result, older observation points become
outdated after many updates and should not necessarily be included in statistical
measurements of traces. Thus, we seek a more efficient on-line characterization
method for discrete time analysis than that of the incremental model. Our aim
is to create a model with a fixed sliding window to effectively analyse discrete
data traces (appropriately discarding the outdated observations) whilst updat-
ing its model parameters. In the next section, we build such a model, which is
essentially a sliding version of a HMM.

2 Sliding HMM

The sliding HMM (SlidHMM) has a number of benefits over the standard HMM:
firstly, handling infrequent, higher density, additional loads mainly for on-line
characterization of workloads; secondly, to measure time-variant processes ef-
ficiently through updating the observation set at different stages of analysis;
thirdly, to reduce the space and time complexity of the Baum-Welch algorithm.

Sliding Hidden Markov Model for Evaluating Discrete Data 255

These benefits are also matched by the iSWoM, but where the SlidHMM main-
tains a fixed window of observations for training, the iSWoM has an observation
set that grows continuously over time. This will make the SlidHMM compu-
tationally more efficient than the iSWoM for training on large data sets. The
SlidHMM allows for effectively comparing different sections of the observation set
using its sliding window, a technique which the iSWoM nor the standard HMM
can achieve. We employ the simple moving average technique on the SlidHMM,
enabling the updating of terms whilst maintaing a fixed size window of analysis.

2.1 Moving Average

A moving average [7] or running average is a statistical technique where a set
of data points is split into subsets and averages are calculated on each of these
subsets. Moving averages have seen many applications in industry, such as trend
following analysis in finance [5]. For a simple moving average (SMA) [6], we
select a fixed subset size (n) and shift along, subtracting old points from the
summation as we add new points to it. For example, if we begin with the data
points {x1, x2, . . . , xn}, then we can work out an average of these points:

ave =
x1 + x2 + · · ·+ xn

n
(5)

Then, from (5) we can create a SMA when we add one more data point (xn+1):

sma = x1+x2+···+xn+xn+1−x1

n = ave + xn+1

n − x1

n

The idea of SMA is applied to HMMs for observation sets with discrete data. New
data points are added to the input trace without any unnecessary re-calculations
of model parameters, whilst simultaneously discarding any “outdated” observa-
tions. We replace the data points xt by our model recurrence terms such as αs,
βs, etc. This process is explained in the following section, where we present a
simple algorithm for executing the slide on discrete data.

2.2 Sliding Baum-Welch Algorithm

To perform the slide on an observation set, the Baum-Welch algorithm trains
on new data, whilst storing information on the original data set. Therefore,
a new technique is required to store existing α and β values (terms worked
out from the current observation set) and efficiently calculate α and β val-
ues for the new set of observations. For example, if we are given the obser-
vation set {OT+1, OT+2, . . . , O2T }, having an existing HMM defined on the set
{O1, O2, . . . , OT }, then the αs for the new observations will be:

For T ≤ t ≤ 2T , we have

αt+1(i) = bi(Ot+1)
∑N

j=1 αt(j)aji

256 T. Chis

However, we cannot compute the new β values incrementally for the new set
{OT+1, OT+2, . . . , O2T } without working out all β values for the aggregate obser-
vation set {O1, O2, . . . , O2T }. Unlike the α values, the β values define β2T (i) = 1
for any state i (as O2T is our latest observation) and the remaining β terms are
calculated using the backward recurrence formula.

There exists a solution, or rather an approximation, of these unknown β val-
ues for the new observation set {OT+1, OT+2, . . . , O2T }. The technique used by
Stenger et al. in 2001 [11] assumes the following simple approximation:

For 1 ≤ i ≤ N , we have

βT (i) = βT+1(i) = βT+2(i) = · · · = β2T (i) = 1 (6)

From the knowledge of the traditional backward recurrence formula for the
β values, we deduce that the sequence β2T (i), β2T−1(i), . . . , βT (i) decreases in
value, where β2T−1(i) is significantly less than β2T (i), etc. Eventually, this de-
creasing sequence of β values should tend exponentially to zero. Therefore, set-
ting all new β values to one, as seen in (6), is not the most efficient solution.
We can attempt a more accurate approximation for the β values by assuming
that only β2T (i) = 1 and then use the normal β recurrence formula to update
the terms: β2T−1(i), β2T−2(i), . . . βT+1(i). Notice the change only for the new
observations in terms of β.

So, β2T−1(i) is calculated as follows:

β2T−1(i) =
∑N

j=1 aijbj(O2T)β2T (j) =
∑N

j=1 aijbj(O2T)

Therefore, β2T−2(i) is given by:

β2T−2(i) =
∑N

k=1 aikbk(O2T−1)β2T−1(k)

=
∑N

k=1 aikbk(O2T−1)[
∑N

j=1 akjbj(O2T)]

We continue in this fashion until we obtain a value for βT+1(i) in terms of all new
β values. Essentially, this methodology utilizes part of the backward formula, but
ignores any “old” β values. Once there is a complete approximation of both α
and β sets, we calculate the ξ and γ values for the set {OT+1, OT+2, . . . , O2T }:

For T + 1 ≤ t ≤ 2T − 1,

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(i)∑N

i=1 αt(i)βt(i)

and for T + 1 ≤ t ≤ 2T ,

γt(i) =
αt(i)βt(i)∑
N
i=1 αt(i)βt(i)

However, these points are added incrementally and therefore the Baum-Welch
algorithm adds one new term for each observation (in T separate steps). Hence,
for each new observation added, the modified re-estimation formulas for Â and
B̂, for i = 1, . . . , N , are as follows:

Sliding Hidden Markov Model for Evaluating Discrete Data 257

âT+1
ij =

∑T
t=2 ξt(i,j) + ξT+1(i,j)∑

N
j=1

∑
T
t=2 ξt(i,j) +

∑
N
j=1 ξT+1(i,j)

=
∑T

t=2 γt(i)∑T+1
t=2 γt(i)

∑T
t=2 ξt(i,j)∑
T
t=2 γt(i)

+ ξT+1(i,j)∑T+1
t=2 γt(i)

=
∑T

t=2 γt(i)∑T+1
t=2 γt(i)

âT
ij + ξT+1(i,j)∑T+1

t=2 γt(i)

Thus, only the new ξT+1(i, j) and γT+1(i) for OT+1 need to be calculated.

b̂j(k)
T+1 =

∑T
t=2,Ot=k γt(j) +

∑T+1
t=T+1,Ot=k γt(j)∑

T
t=2 γt(j) + γT+1(j)

=
∑T

t=2 γt(j)∑T+1
t=2 γt(j)

b̂j(k)
T +

∑T+1
t=T+1,Ot=k γt(j)∑T+1

t=2 γt(j)

where updating γT+1(j) (such that OT+1 = k) is sufficient.
Under these modified parameters (similar to [11]), a sliding version of the

Baum-Welch algorithm is created (referred to as SlidHMM). We summarise
our sliding methodology, for any discrete observation sets, in four steps:

1. Train HMM on observations {O1, O2, . . . , OT } until convergence.
2. Slide on M new observations {OT+1, OT+2, . . . , OT+M} using SlidHMM.
3. Calculate new α, β, ξ and γ sets for new observations.
4. Update parameters (A, B, π) for SlidHMM and continue to step 2.

Since the SlidHMM requires only a partial computation of the forward and back-
ward variables, it converges to fixed results much quicker than training with the
traditional Baum-Welch algorithm. The time steps saved using this “slide” train-
ing can be described as follows. We set K to be the number of times that M
new observations appear and T is the size of the original observation set. Then,
the steps taken to train the HMM (t1) and SlidHMM (t2), respectively, are:

t1 = T + (T+M) + . . . + (T+KM) = T + (KT) + (12K(K+1))M
t2 = T + M + . . . + M = T + KM

Taking the difference between the terms of these two models, we obtain d, the
time saved in training using our SlidHMM, given by:

d = t1 − t2 = KT + 1
2K

2M - 1
2KM = K(T + 1

2M(K-1))

3 Collecting and Processing Traces

To train our SlidHMM on discrete data we process various traces such that they
pass as eligible inputs into the Baum-Welch algorithm. Two different traces are
used to train the model: first, the NetApp trace with thousands of read and
write commands from a server; second, patient arrivals observed at a hospital
over several weeks. In the next sections, this “raw” data is transformed into
binned traces and finally into discrete observation sets.

258 T. Chis

3.1 Raw Traces

The raw NetApp data, which contains hundreds of thousands of entries collected
from NetApp storage servers, essentially form a CIFS (Common Internet File
System) network trace (of about 750 GB). These file servers, located at the
NetApp headquarters, were accessed mainly by Windows desktops and laptops
using various applications. We denote the aforementioned trace as the “NetApp
trace” for the remainder of this paper. The trace used for analysis consisted
of I/O commands (single CIFS reads and writes) and a timestamp entry (i.e.
the time in seconds when the command was made). The data was transferred
from a web page into read and write arrays (in a local Java class) using an
InputStreamReader.

The data describing patient arrival times is anonymised data characterising
patient arrival times at a London hospital between April 2002 and March 2007,
as used in the study [16]. We extracted the arrival times for a period of four
weeks, resulting in a “Hospital trace” that was output into a csv file, read into
a Java class, and stored as an array. With both traces collected, the next stage
of the transformation process is assigning “bins” to these traces.

3.2 Binned Traces

We partitioned the entries of the raw traces into uniform bins of a pre-defined
size. These bins are essentially fixed-size intervals, dividing the raw data into
a discrete time series. For the NetApp trace, each bin contains two values: the
number of read entries and the number of write entries (during each time inter-
val). For the Hospital trace, each bin is an interval (i.e. an hour) where a number
of patients can arrive at the hospital.

The size of the bin was decided by the timescale required for the modelling
exercise. For example, if the raw trace spans a time period of several days, then
we expect much larger bin sizes than if we had a raw trace spanning several
hours. Also, the level of detail at which the raw trace is operating (e.g. at the
Application level) is also an important factor in determining the bin size. After
experimenting with the NetApp raw trace, we found the best bin size to be one
second. Having tried 100 milliseconds resulted in too many empty time intervals,
whilst with a larger time interval (i.e. five seconds), there were issues of missing
out low-level, operation sequence characteristics such as mode transitions. Using
one second bin sizes allowed us to represent each index in an array as a second.
Counting the number of commands occuring each second (separately for reads
and writes) resulted in filling our arrays easily. For example, reads[3] = 76 and
writes[3] = 23 represented 76 reads and 23 writes in the third second. A vector
list, holding a pair of reads and writes was formed from the arrays.

The Hospital trace was binned in a similar fashion, but only contained one
entry (i.e. the number of patient arriving every hour). After analysing the fre-
quency of patient arrivals over four weeks, almost one third of cases had no
activity. On the other hand, two patients arrived in the same hour about 17%
of the time. In fact, on very few occasions were there more than eight patients

Sliding Hidden Markov Model for Evaluating Discrete Data 259

in one hour. Thus, choosing the one hour bin sizes resulted in an ideal range
of values for forming clusters around our data points. In the next section, the
NetApp and Hospital traces (acting as vectors with paired and single tuple val-
ues, respectively) are inputted into a K-means clustering algorithm to obtain
our observation traces.

3.3 K-means Clustering

Apply a clustering algorithm to the binned traces further reduces them to a
more manageable format (i.e. the observation trace). We implemented the K-
means clustering algorithm, which essentially groups data into K clusters. Each
cluster contains either a pair of values (i.e. the mean number of reads and mean
number of writes) or single value (i.e. number of patient arrivals) to represent
the centroid. Logically, the cluster also contains every data point belonging to
that cluster. A Euclidean-distance itervative algorithm calculated the cluster
centroids over and over again until they became fixed. As we inputted K manu-
ally, we chose a value of seven clusters for the NetApp trace and three clusters
for the Hospital trace. These values were not too large (which gives surplus or
even empty clusters) nor too small (missing out significant differences among
clusters) for our data traces. The NetApp trace was divided into seven clusters,
which represented the centroids as vectors consisting of a pair of values (reads
and writes). The Hospital trace was bound by five clusters or less because clus-
tering with K = 6 returned two empty clusters (i.e. value of 0.0). As we inputted
K manually, we chose three clusters, as it gave closer means to the raw data when
compared to HMM-generated data. Having performed the K-means clustering on
both traces, we obtain observation traces ideal for input into the Baum-Welch
algorithm. Essentially, the SlidHMM will train on these observation traces as
slides are performed on various sections of observations.

4 Simulation of SlidHMM and Results

To achieve both simulations of the SlidHMM, for both NetApp and Hospital
traces, each observation trace is inputted into the Baum-Welch algorithm as a
training set of 8000 points. A HMM (with two hidden states) is trained on this
set until parameter convergence (i.e. A,B, π become fixed). Afterwards, 2000
new observations are added to this set, evaluating the 2000 points using the
sliding technique and the new β approximation from the Forward-Backward
algorithm. Thus, a sliding MAP (SlidMAP) with fixed parameters is formed,
which stores information on 10000 consecutive observation points. Our SlidMAP
then generates its own synthetic NetApp and Hospital traces using its initial
state distribution (π), state transition matrix (A) and observation matrix (B).
The SlidMAP reproduces the observed values using random generation sampling,
which are simulated 1000 times, summarised as means and standard deviations,
where 95% intervals are performed on both statistics. We compare SlidHMM-
generated results with mean and standard deviation for raw and HMM-generated

260 T. Chis

traces. Note that the HMM-generated trace is a result of a traditional HMM
trained on an observation trace of length 10000, with no incremental learning.

After performing the simulation of the SlidHMM on both data traces, the
Baum-Welch parameters (A,B, π) converged as expected. From these new pa-
rameters, the SlidHMM generated new observation traces for both NetApp and
Hospital data. We present the results in tables, first for the NetApp trace. Table
1 presents statistics on Reads/bin and Table 2 represents Writes/bin, where the
“bin” is a one-second interval. For example, a “Raw Mean of 111.350 Reads/bin”
implies that the raw NetApp trace produces, on average, 111.350 read commands
per second. The “SlidHMM Mean” and “SlidHMM Std Dev” are the averages
of the SlidHMM-generated trace. The “HMM”-prefixed averages are calculated
from a standard HMM-generated trace with no sliding activity.

Table 1. Reads/bin statistics on the raw, HMM and SlidHMM-generated NetApp
traces after 1000 simulations

Trace Mean Std Dev

Raw 111.350 254.904

HMM 111.26 ± 0.66 254.38 ± 0.65

SlidHMM 113.32 ± 0.60 253.18 ± 0.58

The results in Table 1 show very similar results between raw and HMM-
generated means and standard deviations. The SlidHMM produces a mean of
113.32 with a 95% confidence interval of 0.6, which is pleasing after 1000 simu-
lations, but this mean is less accurate than the traditional HMM. The standard
deviation of the SlidHMM-generated trace (253.18) matches the raw trace well,
but again is outperformed slightly by the value of the HMM trace.

Table 2. Writes/bin statistics on the raw, HMM and SlidHMM-generated NetApp
traces after 1000 simulations

Trace Mean Std Dev

Raw 0.382 0.208

HMM 0.38 ± 0.0005 0.21 ± 0.001

SlidHMM 0.392 ± 0.0005 0.23 ± 0.001

Table 2 shows good results for the SlidHMM-generated mean and standard
deviation, which slightly underperform the values produced by the HMM trace.
The Hospital observation trace is also generated by the SlidHMM, with means
and standard deviations presented in similar fashion. Table 3 shows bin-means
that match well, and more pleasingly, the standard deviations are even closer
to raw values. We can conclude, from these statistics alone, that our SlidHMM
faithfully reproduces meaningful representations of patient arrival times.

Sliding Hidden Markov Model for Evaluating Discrete Data 261

Table 3. Arrivals/bin statistics on the raw, HMM and SlidHMM-generated Hospital
traces after 1000 simulations

Trace Mean Std Dev

Raw 1.483 1.565

HMM 1.461 ± 0.003 1.551 ± 0.001

SlidHMM 1.474 ± 0.002 1.572 ± 0.001

5 Conclusion and Future Work

HMMs, combined with the supporting clustering analysis and appropriate choice
of bins, is able to provide a concise, parsimonious and portable synthetic work-
load. This has already been established, in [3] for example, but the deficiency
of such models is their heavy computing resource requirement, which essentially
precludes them from any form of on-line analysis. The sliding HMM developed
in this paper has a vastly reduced computing requirement making it ideal for
modelling workload data in real-time. In fact, with the availability of new data,
the SlidHMM avoids re-training on “old data” like the traditional HMM. Ad-
ditionally, compared with both the resource-costly HMM and raw traces, the
SlidHMM provides excellent accuracy of training data. In comparison to the
previously mentioned iSWoM [12], the SlidHMM will handle fast-growing obser-
vation sets more efficiently, as it slides and trains on different parts of the data.
Where the iSWoM increases its observation set after every training session, the
SlidHMM also discards outdated data points using its sliding window.

Such mathematical descriptions of workloads and arrivals should be mea-
sured quantitatively against independent data (i.e. traces not used in model
construction) that they represent, and more extensive tests are planned for our
sliding model. Nonetheless, the SlidHMM β approximation has been successful
after statistical comparisons between raw and SlidHMM-generated traces (on
two independent traces). Analysing current work in this field, for example, the
incremental model from [4] used a backward formula in its learning that was
not recursive in terms of previous β values. The SlidHMM backward formula,
however, stores all information in the β set, unlike the formula in [11], where all
βs were set to one and accuracy was lost over Baum-Welch iterations.

There are a few extensions which follow from the SlidHMM. Firstly, another
way to approximate the β values is to use the backward formula from [12]. The
result would be an incremental model (namely the forward-recurrence updating
of the βs) with a “sliding window” learning technique. As this paper illustrates,
SlidHMM applies to discrete time series, in fact on two different traces. The next
step is to derive a sliding model for continuous time, which requires a continuous
Baum-Welch algorithm [8]. The time intervals would not be discrete observation
points, but rather a sliding window along continuous time series. Therefore, a
degree of accuracy is needed in choosing these time intervals for the SlidHMM,
perhaps in terms of timescale of workload traces.

262 T. Chis

References

1. Baum, L.E., Petrie, T.: Stastical Inference for Probabilistic Functions of Finite
Markov Chains. The Annals of Mathematical Statistics 37, 1554–1563 (1966)

2. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. The Annals
of Mathematical Statistics 41, 164–171 (1970)

3. Harrison, P.G., Harrison, S.K., Patel, N.M., Zertal, S.: Storage Workload Modelling
by Hidden Markov Models: Application to Flash Memory. Performance Evalua-
tion 69, 17–40 (2012)

4. Florez-Larrahondo, G., Bridges, S., Hansen, E.A.: Incremental Estimation of Dis-
crete Hidden Markov Models on a New Backward Procedure, Department of
Computer Science and Engineering, Mississippi State University, Mississippi, USA
(2005)

5. Burghardt, G., Duncan, R., Liu, L.: What You Should Expect From Trend Follow-
ing (2004)

6. Chou, Y.: Statistical Analysis. In: Holt International, 17.9 (1975)
7. Whittle, P.: Hypothesis Testing in Time Series Analysis, Almquist and Wicksell

(1951)
8. Zraiaa, M.: Hidden Markov Models: A Continuous-Time Version of the Baum-

Welch Algorithm, Department of Computing, Imperial College London, London
(2010)

9. Chis, T., Harrison, P.G.: Incremental HMM with an improved Baum-Welch Algo-
rithm. In: Proceedings of Imperial College Computing Student Workshop (2012)

10. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory 13, 260–269 (1967)

11. Stenger, B., Ramesh, V., Paragois, N., Coetzee, F., Buhmann, J.M.: Topology free
Hidden Markov Models: Application to background modeling. In: Proceedings of
the International Conference on Computer Vision, pp. 297–301 (2001)

12. Chis, T., Harrison, P.G.: iSWoM: An Incremental Storage Workload Model using
Hidden Markov Models, Department of Computing, Imperial College London (to
be published, 2013)

13. Rabiner, L.R., Juang, B.H.: An Introduction to Hidden Markov Models. IEEE
ASSP Magazine 3, 4–16 (1986)

14. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. IEEE 77, 257–286 (1989)

15. Zhai, C.X.: A Brief Note on the Hidden Markov Models (HMMs), Department of
Computer Science, University of Illinois at Urbana-Champaign, IL, USA (2003)

16. Au-Yeung, S.W.M., Harder, U., McCoy, E., Knottenbelt, W.J.: Predicting patient
arrivals to an accident and emergency department. Emergency Medicine Jour-
nal 26, 241–244 (2009)

17. Chis, T.: Hidden Markov Models: Applications to Flash Memory Data and Hospital
Arrival Times, Department of Computing, Imperial College London (2011)

Using Queuing Models

for Large System Migration Scenarios –
An Industrial Case Study with IBM System z

Robert Vaupel1, Qais Noorshams2, Samuel Kounev2, and Ralf Reussner2

1 IBM R&D GmbH, Böblingen, Germany
vaupel@de.ibm.com

2 Karlsruhe Institute of Technology, Germany
{noorshams,kounev,reussner}@kit.edu

Abstract. Large ITorganizations exchange their computer infrastructure
on a regular time basis. When planning such an environment exchange, it
is required to explicitly consider the impact on the Quality-of-Service of
the applications to avoid violations of Service LevelAgreements. In current
practice, however, using explicit performance models for such estimations
is frequently avoided due to scepticism towards their practical usability and
benefits for complex environments. In this paper, we present a real-world
case study to demonstrate that a queuing model-based approach can be
effectively used to predict performance impact when migrating to a new
environment in an industrial context. We first present a general modeling
methodology and explain how we apply it for system migration scenarios.
Then, we present a real-world industrial case study and show how the per-
formance models can be used. The migration is planned for a System z en-
vironment running a large scale banking application. Finally, we validate
the performance models after the system has been migrated, evaluate the
prediction accuracy, and discuss possible limitations. Overall, themeasure-
ments show very high agreement with the prediction results.

Keywords: Business Transactions, Performance, Prediction.

1 Introduction

Large IT companies use their IT systems for a limited period of time. Typically, the
main computing infrastructure is exchanged every two to three years and replaced
with newer versions of the same computing architecture. These system upgrades
are very expensive and require a thorough planning explicitly considering the per-
formance implications on the existing applications and (business) transactions.

When planning such an environment exchange, i.e., a system migration, mul-
tiple questions arise as for instance: i) What capacity is required to maintain
comparable Quality-of-Service (QoS)? ii) How does the QoS of the main ap-
plications change in the migrated environment? iii) How does the QoS of the
main applications change under higher workload intensity? Moreover, there are
multiple aspects that need to be considered posing further challenges: There

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 263–275, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

264 R. Vaupel et al.

can be many alternatives to choose from with regard to single processor speed
and overall system capacity. Systems with higher processor speed require fewer
processors to maintain the same total capacity. The higher speed of the proces-
sors might improve the transaction response times at a lower system utilization
level, however, the response times might increase more drastically with increas-
ing workload intensity. Furthermore, a system migration might initially target a
system with lower capacity with the possibility of a stepwise capacity increase
(as supported by many system architectures) if required.

In current practice, however, using explicit performance models to answer
typical capacity planning questions is usually avoided. The main obstacle is the
still existing scepticism in industry towards the practical usability, benefits, and
return-on-investment of classical queuing models in the context of complex real-
world scenarios.

To this end, in this paper, we present a real-world case study demonstrating the
practicality and effectiveness of using queuing models to predict the performance
impactwhenmigrating to a new systemenvironment in an industrial context.More
specifically, we first present a general queuing model approach and explain how it
is applied in systemmigration scenarios.Then, we present an industrial case-study
and use our approach to plan a migration of a business transaction workload of a
banking institute in an IBM System z server environment. We evaluate the queu-
ing model and validate the results with real-world production workloads after the
migration has been completed. The evaluation of the approach shows very high
agreement with the predictions. Finally, we discuss practical challenges and pos-
sible limitations that need to be considered when applying our queuing model ap-
proach and under which conditions it can be used.

In summary, the contribution of this paper is a real-world case study in industrial
context to show how a queuing model-based approach can be effectively used to
project transaction response times for large business environments. Furthermore,
we discuss limitations of the modeling approach and identify conditions that need
to be considered when using such methodologies in real-world scenarios.

The remainder of this paper is organized as follows: Section 2 gives an overview
of our modeling approach. In Section 3, we present our case study. Section 4
discusses limitations when using the modeling approach in complex scenarios.
Finally, Section 5 summarizes and concludes the paper.

2 Modeling Approach

To evaluate system migration decisions providing capacity management support,
we employ a queuing model-based approach to predict the performance after mi-
grating to another system environment. Our methodology is based on established
work [1,2] and comprises the following steps:

1. System Environment Analysis :
We analyze the structure of the environment and, more specifically, we iden-
tify the important partitions that need to be analyzed in case of a virtualized
environment.

Using Queuing Models for Large System Migration Scenarios 265

2. Workload Characterization:
We identify and characterize the main workloads for the system migration as
well as possible workloads running in parallel affecting the main workloads.

3. Metrics Measurements and Estimation:
We measure performance metrics for both the workload and the system
infrastructure, e.g., the workload response time and the system utilization.
Furthermore, we estimate the metrics that cannot be measured directly.

4. Performance Modeling :
Finally, we model the transaction processing in a queuing model enabling to
project and predict the response time as well as the system utilization of the
target system environment depending on the workload.

After migrating the system infrastructure, the results can be evaluated and
compared with new measurements to validate the predictions or to refine the
approach and include further performance influences for future studies.

2.1 System Environment Analysis

In general, our approach is not limited to specific environments. In this paper, we
apply our approach to System z mainframe computers. System z environments
are state-of-the-art virtualized environments with logically partitioned, shared re-
sources. The main operating system used by large organizations is predominantly
the mainframe operating system z/OS hosting applications and databases.

Depending on the organization, the partition structure on System z
mainframes may vary significantly. On the one hand, many large IT organi-
zations – especially financial institutes – typically use a few partitions to host
their applications. Such systems use many processors, large I/O subsystems and
big memory environments. On the other hand, the system can be used for up
to 60 partitions with few resources allocated for each partition. Such environ-
ments are mostly used by organizations hosting systems for other companies.
The partition and resource characteristics employed in such environments are
very different and need to be identified in the analysis.

2.2 Workload Characterization

Most z/OS-based production systems deploy batch and online transaction pro-
cessing (OLTP) workloads. Usually, such workloads run in parallel, where either
workload dominates in certain time periods. In some environments, the batch
and the OLTP workloads are deployed in separate partitions. For the considered
environment, we first identify the main workload and the respective performance
characteristics of interest. Since the workload intensity varies over time, we then
choose a representative time period in which the workload is running to param-
eterize the performance model.

The main workload may be a batch workload or an OLTP workload. For a
batch workload, the total runtime and throughput (TP) are significant. Single
request response times (RT) or the system utilization are usually less impor-
tant, since the system is usually fully utilized during the batch runtime. For

266 R. Vaupel et al.

an OLTP workload, the transaction response times and throughput as well as
the system utilization are significant. Moreover, the correlation between trans-
action throughput and system utilization is relevant as an indicator for resource
efficiency and CPU cost per transaction.

Since the transaction response times are usually part of the Service Level
Agreements with end users, our approach is specifically targeted at modeling
and predicting the performance of the OLTP workload after system migration.

2.3 Metrics Measurements and Estimation

As previously mentioned, we focus on i) the transaction response time comprised
by several components, ii) the transaction throughput describing the workload
intensity, and iii) the total system utilization including load generated by work-
loads running in parallel. These metrics are measured in the existing environment.
In general, the transaction response time is comprised of the following compo-
nents, which are estimated on the existing system by measuring the execution
states of the transactions and calculating their proportions of the total response
time: i) CPU Processing Time, ii) CPU Wait Time, iii) I/O Data Transfer Time,
iv) I/O Wait Time, and v) Other Time (e.g., due to software locking).

2.4 Performance Modeling

In this section, we model the system performance for transactional workloads.
More specifically, we model the transaction response times by projecting the
CPU processing times from the existing environment to the target environment.
We assume that the general CPU processor architecture is the same for the ex-
isting and the target system. Furthermore, we assume that the I/O and Other
components of the response time are not affected significantly by the migration.
The assumption is reasonable for I/O if only the computing system is replaced.
For the Other wait times, it is a simplifying assumption that needs to be val-
idated after the migration. Overall, our performance modeling methodology is
comprised of Model Creation, Model Calibration, and Model Projection.

Model Creation. To model the CPU service demand, we use an open multi-
server queuing model with general interarrival and service time, i.e., a G/G/C
queuing model, to cover a wide range of modeling scenarios with arbitrary interar-
rival and service times, which are obtained by parameterization from real-world
measurement data. The model is solved using the Allen-Cunneen Approxima-
tion [3] shown in Equation (1), where k is the Allen-Cunneen factor, U is the
CPU utilization of the system, C is the number of servers (i.e., CPUs) and S
is the service time. Furthermore, PW (U,C) is the probability for waiting in a
system with C servers and utilization U expressed by the Erlang-C formula [4].

W = k · PW (U,C)

C(1 − U)
· S, PW (U,C) =

(UC)C

C!

(UC)C

C!
+ (1− U) ·

C−1∑
i=0

(UC)i

i!

(1)

Using Queuing Models for Large System Migration Scenarios 267

The Allen-Cunneen factor k is determined as

k =
c2a + c2s

2
, where (2)

ca = coefficient of variation of the interarrival time distribution,

cs = coefficient of variation of the service time distribution.

Model Calibration. For model calibration, the Allen-Cunneen factor k is ei-
ther determined based on measurements or estimated. Typically, a value of 1
assuming a M/M/C queuing environment is a reasonable assumption. The CPU
processing time S is estimated based on measured transaction response time and
observed execution states as

S =
CPU Processing States

All States
· RT, (3)

where RT is the transaction response time.

Model Projection. To predict the performance in the target environment,
we project the transaction processing times of the existing environment to the
target environment. Generally, this can be done by determining the relative CPU
capacity of the two systems, e.g., using MIPS1 comparison or CPU benchmarks.

In System z environments, the Large SystemPerformanceReference (LSPR) [5]
value is used to determine the capacity of the target system. In LSPR, the capacity
of all systems is expressed as a multiple or a fraction of a base system. The capac-
ity also depends on the considered workload and the system layout. IBM performs
for each system generation a set of performance benchmarks covering batch work-
loads and different types of OLTPworkloads aswell asmixes of them. These bench-
marks are used to obtain five performance values that characterize the systems
when running different workloads. The values cover aspects from memory to I/O
intensive workloads, batch environments and environments with very high trans-
action volumes. For many real-world environments, the mean or Average value of
the performance numbers can be used as a representative value. This average value
is also used when System z performance is expressed in MIPS. For a given environ-
ment, the exact LSPRvalue can be obtained using a tool called zPCR [6]. Thus, we
project the CPU processing time of the existing system S to the CPU processing
time in the target system S∗ using the relative CPU capacity α as

S∗ = φ(S) = α · S, α ∈ R+. (4)

The system utilization in the target environment U∗ is predicted using the Uti-
lization Law

U∗ = S∗ · TP, (5)

where, in steady state, the arrival rate (or transaction rate) equals the through-
put TP . The transaction response time in the target environment RT ∗ is

1 Million Instructions Per Second

268 R. Vaupel et al.

predicted by using the CPU processing time S∗ from Equation (4) and the
number of CPUs in the target environment C∗ and applying Equation (1) to
obtain W ∗, thus

RT ∗ = S∗ + k · PW∗(U∗, C∗)
C∗(1− U∗)

· S∗ (6)

+ I/O Processing Time + I/O Wait Time

+Other Time

3 Case Study

In this section, we present a real-world migration study for a banking institute
performed in 2012 with the following requirements of the installation:

– An existing System z10 with 33 processors should be upgraded to a target
System zEC12. The I/O subsystem remains unchanged.

– The initial capacity of the target system should be below the existing
system to allow incremental capacity upgrades if necessary. Moreover, the
initial transaction rates were not expected to be that high to require the full
capacity.

To support the migration, appropriate System zEC12 configurations, i.e., number
of CPUs, should be identified with the following two prediction objectives:

– Prediction of the transaction response times of the main application on the
target system as well as their development upon increase in transaction rates.

– Prediction of the utilization of the target system and, especially, the increase
in utilization due to the migration to a system with less capacity.

3.1 System Environment Analysis

The existing System z10, i.e., the base system, hosts two large partitions that
process identical types of workload. For our analysis we summarize the data
from both partitions. The operating system on both partitions is z/OS. The data
collection is performed with a standard monitoring tool Resource Measurement
Facility (RMF). The collected data is written to log files, which are managed by
the z/OS component Systems Management Facility (SMF). The data analysis is
performed using a set of tools created by the authors of this paper.

3.2 Workload Characterization

The workload analysis encompasses a three day period. Figure 1 depicts the total
workload utilization summarized across both z/OS systems for the System z10.
The main OLTP workload is produced by a banking application accessing DB2
databases. In addition, other transaction and batch processing workloads run
on the system. We observe that most batch processing takes place during night

Using Queuing Models for Large System Migration Scenarios 269

�

�

��

��

��

��

��

��

��

��

��

��

��

��

	�

	�

�

�

��

��

���
�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
�	

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
�

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
�	

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
�

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
�	

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
�

��
��
�

��
�

�
�

��
��
��

��
�

�
�

��
��
��

��
�

�
 �

��
��
��

��
�

��
�

������������ ����� �� ���!""�#$�#�%� &�$ '����()%$"�*�����#(��

Fig. 1. Total Workload Utilization for Base Environment

Table 1. Measured Input Data of Base System

Total CPU Average Average
Utilization Transaction Rate Response Time (s)

Day 1 52% 320 0.096
Day 2 48% 343 0.087
Day 3 45% 336 0.087
Average 48% 333 0.090

time and OLTP during day time. Thus, the batch workload shows the highest
utilization periods during night time2. For our analysis, we focus on the OLTP
workload produced by the banking application and, more specifically, we focus
on the period between 8:00 and 12:00 since it is the most critical period having
the highest utilization for that workload, cf. dashed lines in Figure 1.

3.3 Metrics Measurements and Estimation

For our analysis, we summarize the system utilization and transaction rates.
Furthermore, we calculate the average transaction response time (weighted over
the number of transactions per day). Table 1 shows the measured input data
for the specified time period for each day and the average values for all three
days. We use the total utilization for the system, because we must consider the
influence of the other workloads on the OLTP application. Even lower priority
work (e.g., a parallel batch workload) shows influence. One main reason is that

2 The analysis for the batch window has been omitted due to space constraints.

270 R. Vaupel et al.

Table 2. Analysis of Execution States of Base System

Execution Number of Samples Corresponding Time Value (s)

State Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Average

CPU Using 10145 9919 9552 0.029 0.026 0.026 0.027

CPU Wait 2350 2251 2127 0.007 0.006 0.006 0.006

I/O Using 11248 10862 10422 0.032 0.029 0.028 0.030

I/O Wait 734 702 618 0.002 0.002 0.002 0.002

Other 9306 9302 9292 0.026 0.025 0.025 0.025

two partitions are used and the workloads running in different partitions are
equally prioritized. Another reason is that the other workloads use the same
cache structures and influence the execution of the considered workload.

The information shown in Table 1 can be measured directly. To obtain the
CPU processing time for our model, we use execution state samples to apportion
the measured response time. RMF samples execution states of all workloads
in the system. These samples are taken every second and detect whether an
execution unit is i) using CPU, ii) waiting on CPU, iii) using I/O, iv) waiting on
I/O, or v) whether the execution unit is in a state not known to the operating
system, e.g., waiting on a database lock. We summarize the samples of the OLTP
workload and use them to apportion the response time so that we can calculate
the CPU processing time. Table 2 shows the sample breakdown for the time
frame from 08:00 to 12:00 of the three days being analyzed.

We will also use the sample states of Table 2 later when we compare the results
of our model with data from the target system. We then evaluate whether our
assumption that the influence of the I/O subsystem has not changed and that
the I/O load is the same is correct. The same applies for the Other samples.

3.4 Performance Modeling

Model Creation, Calibration, and Projection. The next step is to select
the possible target system configurations. Thus, we calibrate the model with the
results from the previous section and project it using the relative capacity of the
base and target systems. The relative capacity of each possible target system is
taken from LSPR as described in Section 2.4. For our analysis we use the Average
value, which applies to most installations. We also performed the analysis with
the values obtained from the zPCR tool, which provide a slightly more accurate
relative capacity, but in order to simplify the study we omit this step. Also, the
results showed no significant difference.

Our base system has 33 processors. The target system is supposed to have less
capacity and we compare five zEC12 that provide from 85% of the base system
capacity up to a slightly higher capacity. The target system configurations have
between 14 and 18 processors. The single processor speed of the target systems
is nearly twice as fast as for the base system. As described in Section 2.4, for our
model we use the number of processors and the relative capacity of the base and
target system configurations. In addition, initially we assume an Allen-Cunneen

Using Queuing Models for Large System Migration Scenarios 271

����

����

����

����

����

����

���	

���

����

����

����

����

����

����

����

����

���	

���

����

����

����

��
�
��
�
��
�
��
�
��
�
��

�	
�
�

�
�

�
��
	
��
�
��
�
��
�
��
�
��
�
��
�
��

��
�
��
�
��
�
�	
	
�

�
��
�
��
�
��
�
��
�
��
�
��

��
�
��
�
��
�
��
	
��
�
�	
�
�	
�
�

�
��
�
��
�
��

	�
�
	�
�
	�
�
	�
	
	�
�
	�
�
	�
�
	�
�
		
�
	

�
	

	�
�
	�
�
	�
�

�
	

�
�

�
�

������	
���������������	���������	��

��
�	

�
�
�

����������� ���������� ������	��� ����������

Fig. 2. Change in CPU Response Time

factor of one and later modify the model explicitly with factors of two and four
to provide different estimations.

Prediction Results. We model the base system and, as example, three of the
possible target system with 14, 16, and 18 processors. The interesting question is
how the CPU processing time will change when the transaction rate is increased
and how many transactions can be processed before the capacity of any of the
target systems is exceeded. Figure 2 depicts the change in CPU processing time
for the base system and the three possible target system configurations. On the
z10 base system, 320 to 350 transactions per second are processed on average.
With the same rate, no negative impact can be expected on any of the target
systems, because the overall utilization on the base system is well below 60% as
shown in Figure 1. Furthermore, Figure 1 shows that even peak utilizations are
always below 70% during the main online processing time from 08:00 to 12:00.

More interesting is the question how many transactions can be processed be-
fore the CPU response time shows a significant increase. We define the threshold
for a significant increase as two times the measured or projected CPU processing
time. We choose two times, because this means that the CPU wait time at this
point equals approximately the CPU processing time. At this point, we can ex-
pect that a slight change on the system can cause significant queuing and a high
disturbance of transaction response times. We also take into account that the
total system utilization includes other workloads being processed on the system,
which may increase as well.

The base system is able to process at least 680 transactions per second before
the CPU wait time has the same magnitude as the CPU processing time. The
target system with 14 processors will be able to process 570 transactions per

272 R. Vaupel et al.

Table 3. Maximum Capacity in Number of Transactions

Allen Cunneen z10 zEC12

Factor 33 CPUs 14 CPUs 16 CPUs 18 CPUs

1 680 570 630 690

2 660 530 610 665

4 605 500 550 610

Table 4. Measurement Data for New System with 14 Processors

Total CPU Average Average Workload CPU
Utilization Transaction Rate Response Time Processing Time

Day 4 59% 370 0.075 0.014
Day 5 59% 364 0.093 0.017
Day 6 63% 382 0.075 0.014
Average
Measured 60% 372 0.081 0.015

Modeling
Results 62% — 0.080 0.015

Table 5. Analysis of Execution States of New System

Number of Samples Corresponding Time Value

State Day 4 Day 5 Day 6 Day 4 Day 5 Day 6 Average

CPU Using 5114 5249 5462 0.014 0.017 0.014 0.015

CPU Wait 787 870 864 0.002 0.003 0.002 0.002

I/O Using 12328 12558 13208 0.033 0.041 0.034 0.036

I/O Wait 580 589 621 0.002 0.002 0.002 0.002

Other 9271 9469 9460 0.025 0.031 0.024 0.027

second. Table 3 shows the influence of different interarrival and service time
distributions on the maximum number of transactions that can be processed on
the considered systems.

The utilization law shown in Equation (5) allows us to predict the change of
the total CPU Utilization on the target system when the number of transaction
increases. When we use the results in the first row of Table 3 assuming an
exponentially distributed transaction rate, we can determine that the maximum
number of transactions corresponds to a system utilization of around 95%.

Finally, based on the modeling results we can recommend that for the OLTP
workload, a target system with 14 CPUs should replace the existing system. We
previously mentioned that another analysis was performed to estimate the total
execution time of the batch workloads running during night time (cf. Figure 1).
This analysis also suggested that a 14 CPU system was initially sufficient to
accommodate the workload.

3.5 Evaluation

We took another set of measurements for a three day period after replacing the 33
processor system with the newer 14 processor zEC12 system. The measurement
results are now compared to the modeling results in order to evaluate whether

Using Queuing Models for Large System Migration Scenarios 273

the model predictions were accurate. The measurement were taken for the same
time period from 08:00 to 12:00 and summarized in Table 4.

Table 4 also shows the modeling results when we assume around 370 trans-
actions for the new system. A comparison of the measurement data between
Table 1 and Table 4 shows that around 11% more transactions were processed
on the new system for our evaluation period than on the previous z10 system.
Based on the utilization law we can determine that 360 to 380 processed trans-
actions will cause a CPU utilization between 61% and 63%. Our measurements
show a CPU utilization between 59% and 63%. Figure 2 shows that for 360 to
380 transactions the CPU processing time is around 0.015s, which also agrees
with the measurements.

Finally, Table 5 depicts the processing states on the new system, which we
compare with Table 2 from the previous system. We observe that the number
of Other states has not changed, which means that the processing time for non-
OS-related resources has not changed. I/O processing is slightly higher by 13%,
however, we also observed 11% more transactions.

4 Discussion

Next, we discuss encountered caveats and practical challenges when using the
proposed modeling and analysis approach.

CPU Parking. When we take a look at Table 2 and Table 5, we observe that
the CPU wait samples and CPU wait times are higher for the 33 processor system
compared to the 14 processor system. This is surprising and in general the times
look too high for systems that are utilized by less than 70%. It is also not possible
to model these waiting times in Table 2 with the existing queuing formula read-
ily. In fact, the relatively high CPU queuing times result from an optimization for
System z. The queuing formula assumes that the processors are always active and
ready to process work, however, in the real environment, this is not the case. Many
processors are placed in a parking state especially when the system is not too highly
utilized. As a result, the system is optimized to reduce cache conflicts and, thus, the
CPU processing time decreases and exhibits lower variability. The CPUwait time,
however, is slightly higher, because the CPU dispatcher queues are longer than ex-
pected on a highly parallel system. In the end, this optimization provides much
better throughput, however, the effect diminishes when the system utilization ap-
proaches 90% and can be ignored for our purposes.

Secondary Workload. It is difficult to use the model for subordinated work-
loads that typically run with lower priorities than the main workload. Especially
when the transaction rates of the subordinate workloads are low compared to
the main workload, the results may become questionable.

Virtualization. Another limitation arises from the environment setup. Our
case study showed a fairly simple virtualized environment consisting of two par-
titions running identical workloads. This is not always the case. Especially many

274 R. Vaupel et al.

small partitions that process different types of workloads can be very disturbing
and cause that no reliable results can be derived from the queuing model.

Clusters. In our case study, we used the methodology to replace a single hard-
ware system. In many large IT installations, the target workload does not only
run on a single system, but is spread across a cluster of systems. There are var-
ious difficulties arising from clusters to predict transaction response times and
utilization of the systems. The most disturbing factors are that the workload
distribution is often unequal between the systems and that the systems are con-
figured differently. A different configuration means both that the hardware can
be different, for example, that the systems have different number of processors,
as well as that the number of partitions executed on the systems is different.
Such influencing factors can cause inaccuracies when applying the modeling ap-
proach. For such environments, the queuing model needs to be extended to a
queuing network modeling both the workload scheduler and the cluster systems.

5 Conclusion

We presented an industrial migration case study for a banking institute in a
real-world environment based on IBM System z server technology. Our general
goal in this paper was to show how a queuing model-based approach can be
effectively used in a complex state-of-the-art real-world context.

In the study, an existing System z10 should be replaced with a newer Sys-
tem zEC12 model. Our approach was used to determine the appropriate number
of processors to support the main OLTP workload even during peak periods. We
used an open multi-server queuing model with general interarrival and service
time distributions calibrating the service times with measurements on the exist-
ing system. The service times were projected to the new system using relative
capacity information to predict the workload performance in the new environ-
ment. With this model, the recommended number of processors was determined.
After the system migration, the prediction accuracy was evaluated by comparing
the model predictions against measurements with a real-world production work-
load. Both the average response time and the total system utilization exhibited
very high agreement with the predictions.

Finally, we discussed practical challenges and the conditions under which the
queuing model would be inaccurate or require a more fine-grained extension
to provide reliable predictions. Such challenges typically arise when there are
system-specific optimizations, e.g., CPU parking, when the workload is running
under low priority, or when the environment is highly distributed and heteroge-
neous, e.g., in large-scale virtualized and cluster environments.

Acknowledgements. This work was partially supported by the German Re-
search Foundation (DFG) under grant No. RE 1674/5-1 and KO 3445/6-1.

Using Queuing Models for Large System Migration Scenarios 275

References

1. Menascé, D., Almeida, V., Dowdy, L., Dowdy, L.: Performance by Design: Computer
Capacity Planning by Example. Prentice Hall science explorer. Prentice Hall (2004)

2. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications.
Wiley (2006)

3. Allen, A.O.: Probability, Statistics, and Queueing Theory with Computer Science
Applications. Academic Press (September 1978)

4. Kleinrock, L.: Queueing Systems: Theory. In: Queueing Systems. Wiley (1975)
5. IBM: Large Systems Performance Reference for IBM System z,

https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/

pages/lsprindex

6. Shaw, J., Walsh, K.: J.F.: zPCR, IBM’s Processor Capacity Reference. IBM,
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1381

https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex
https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1381

Performance Evaluation for Collision Prevention

Based on a Domain Specific Language�

Freek van den Berg1, Anne Remke1, Arjan Mooij2, and Boudewijn Haverkort1

1 DACS, University of Twente, Enschede, The Netherlands
2 Embedded Systems Innovation by TNO, Eindhoven, The Netherlands
{f.g.b.vandenberg,a.k.i.remke,b.r.h.m.haverkort}@utwente.nl,

arjan.mooij@tno.nl

Abstract. The increasing complexity of embedded systems requires per-
formance evaluation early in the design phase. We introduce a generic
way of generating performance models based on a system description
given in a domain-specific language (DSL). We provide a transforma-
tion from a DSL to a performance model in the Parallel Object-Oriented
Specification Language (POOSL). A case study shows the feasibility of
the approach in a complex interventional X-ray system, which requires
appropriate measurement data on a prototype. Since distance compu-
tations are an integral part of the system, performance profiles of our
chosen distance package, Proximity Query Package, have been created.
The overall model has been successfully validated by comparing its out-
comes with real measurements.

1 Introduction

Model-based and model-driven design methods have been proposed to improve
the complex design process for embedded systems [7, 12, 17], but addressing
the performance aspects remains difficult. Particularly, predicting performance
early-in-design is hard, since the real system does not exist yet [4, 18]. This
paper addresses early-in-design performance evaluation using a Domain Specific
Language (DSL).

We report about an industrial study at Philips Healthcare aimed at redesign-
ing collision prevention components used in their interventional X-ray (iXR)
machines. Collision prevention strategies vary across product configurations and
medical applications. To enhance reuseability across product configurations a
prototype domain specific language (DSL, [16, 22]) for collision prevention was
developed in collaboration with Philips. A DSL instance is a formal system spec-
ification, from which executable code is generated; see Figure 1 (left). Early in
the study, distance computations were identified as performance critical. In the

� This research was supported as part of the Dutch national program COMMIT, and
carried out as part of the Allegio project under the responsibility of the Embed-
ded Systems Innovation group of TNO, with Philips Medical Systems B.V. as the
carrying industrial partner.

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 276–287, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Performance Evaluation for Collision Prevention 277

context of robotics, various contributions [3, 15] about the use of the Proximity
Query Package (PQP, [14]) for distance computations exist. Hence, we decided
to use PQP to illustrate our approach.

This paper introduces DSL-based performance evaluation in the design phase
(Figure 1, right). Formal specification mechanisms that allow reasoning about
product families and enable design space exploration exist [19, 23]. DSL-based
performance evaluation requires an automatic transformation from DSL-instances
to performance models. We used the Parallel Object-Oriented Specification Lan-
guage (POOSL, [6,20]) as modelling language and derive functional flows of ex-
ecutable functions from DSL-instances. To gain insight in the execution times,
we used PQP-profiles and use cases as additional model parameters.

Fig. 1. Basic DSL usage (left), extended with
DSL performance evaluation (right)

Related Work. A variety of
techniques exist for the perfor-
mance evaluation of embedded
software, both from the more tra-
ditional field of queueing theory,
as from the field of embedded
system design. A good overview
using a model-based approach is
provided in [1]. We address a
few recent cases below, without
attempting to be exhaustive. Pro-
cess algebra models, in particu-
lar PEPA, have been used for the
evaluation of an industrial production cell [8], whereas [2] uses PEPA to specify
active badge models to compute so-called passage times. Petri nets, data flow
graphs (SDF) and timed automata (UPPAAL) were compared for the evaluation
of an image processing pipeline [9]. The Petri net approach provided the most ex-
pressive modelling framework, UPPAAL was most adequate in finding schedules
and SDF appeared to be most scalable. [10] describes the evaluation of a printer
datapath, where UPPAAL is used to compute worst-case completion times. Us-
ing PRISM, a CTMC model of an embedded system is evaluated and shutdown
probabilities are obtained [13]. POOSL [6] has been used for a production cell
model [11] and an in-car navigation system model [21]. In the current case study,
a soft real-time system in which consecutive distance query functions need to
be executed is modelled. A worst-case analysis seems less appropriate here, as
this assumes the extremely unlikely case that all functionality under-performs
at the same time. We therefore turn our attention to discrete-event simulations,
supported by the tool POOSL, which provide us with useful statistical results.

Paper Outline. This paper is further organised according to Figure 1. Sec-
tion 2 describes the case study system. Section 3 specifies the PQP-query pro-
filing. Section 4 presents the POOSL model. Section 5 validates the POOSL
performance-model. Section 6 concludes the paper.

278 F. van den Berg et al.

Fig. 2. The structure (GANNT-chart) of the functions of the movement-control loop

2 System Description

iXR systems obtain patient images with X-ray technology. They consist of large
and heavy objects (Figure 3) that move based on user-input. Collision prevention
is vital for the safety of the patient and implemented by a movement control
loop. We focus on a collision prevention technique based on 3D-models which
frequently computes the shortest distance between two 3D-objects.

Fig. 3. iXR system with a “table” that
can move in several dimensions, and an
“arc” that rotates around the table in
various ways, at relatively high speeds

The movement control loop intervenes
when two objects are getting too close
to each other by overriding user speed-
requests. It demands stable and low
response times to ensure timely and cor-
rect actions. The movement control loop
executes in a single-threaded, sequential
and non-preemptive manner. At its high-
est abstraction level, it can be decom-
posed in three functions: Sense, Think

and Act (Figure 2). They are respon-
sible for reading geometric sensor posi-
tions, decision taking, and sending object
speed-requests. Sense and Act are atomic
functions by design. The more complex
function Think has recently been re-
designed using a DSL prototype. It is of utmost importance that the redesigned
function executes fast enough to ensure safety, at all times.

Think consists of several so-called restrictions. The DSL implements re-
strictions by a conditional collision-danger clause (yielding true if it applies to the
currently sensed situation) and a (translational or rotational) speed limit. Both
the collision-danger clause and the speed limit may contain distance queries.

At the lowest abstraction level, distance queries are executed, implemented
using the Proximity Query Package (PQP [14]). Distance queries are performed
for a pair of geometrical objects in a specific model. They comprise one or more
PQP calls (due to object decomposition), each preceded by one preparatory
CNET operation. Compared to PQP, CNET operates fast and in constant time.

Performance Evaluation for Collision Prevention 279

3 PQP Profiling

We create a PQP performance profile by measuring execution times in a variety
of circumstances, using a 3D-model of a real iXR system. The resulting empirical
cumulative density functions are used for simulations (Section 4). PQP-queries
require two sets of triangles as input and execute an heuristic algorithm that
selects one triangle per set, to minimize the distance between triangles. PQP
returns an exact distance even though the algorithm is heuristic. PQP uses
bounded volumes [14] as an abstraction mechanism for objects. This makes PQP
faster than the O(nm) theoretical worst-case (with n and m the number of
triangles per object), however, results in variable execution-times that are hard
to determine a priori.

Experimental profiling conveyed that both the complexity of the input ob-
jects and their relative geometric positions affect the performance of PQP sig-
nificantly. To take this into account, we first classify PQP queries on the basis
of input object-pairs to account for run-time variations resulting from different
object complexities. Hence, we do not compare PQP queries that are performed
on different objects. Second, we perform PQP queries for a large amount of
relative geometric positions to diminish the effect relative positions have. The
effect the relative positions have on the performance of PQP is caused by the
heuristic way PQP looks for the distance-defining triangles. PQP operates in a
3-dimensional space in which objects can be translated and/or rotated using 12
dimensions with ≥ 1035 positions. Due to the immense size of this space, we use
four profiling methods to take a representative sample from the immense search
space, named 2D, 3D, 9D-grid, and 9D-random.

Fig. 4. The execution-time CDFs for PQP1

2D and 3D profiling cover po-
sitions that match so-called test
cases, that represent realistic sce-
narios that include positions in
which objects are near each other.
As will turn out, PQP generally
performs worse when object dis-
tances are small. Profiling using
2D or 3D allows for small step
sizes, but is restricted to a small
part of the sample space. In con-
trast, the 9D-grid method varies in 3 or 4 positions in 9 dimensions, while the
9D-random selects geometric positions with uniform probability in 9 dimensions.
Both cover a large part of the search-space, but local maxima and minima may
be missed. Note that the 2D and 3D methods sample in a biased way and the
9D methods in a unbiased way.

We took 13467 (2D), 137417 (3D), 88671 (9D-grid) and 90012 (9D-random)
geometric positions on which we performed eleven PQP distance queries. PQP-
queries were classified for eleven object pairs and four profiling methods, result-
ing in 44 kinds of PQP-queries. We constructed 44 empirical CDFs, as follows:

280 F. van den Berg et al.

F̂j(t) =
1

nj

nj∑
i=1

1{xj
i ≤ t}, j = 1, · · · , 44,

where nj is the sample size, and xj
i the execution-time of sample i for case j. The

results for the most complex PQP-query in terms of both object complexities and
execution-time illustrate the difference between the different profiling methods.
As shown in Figure 4, the execution times of the 2D and 3D methods are higher
than their 9D counterparts. This is a result of using biased test cases with
’difficult’ geometric positions versus unbiased positions in 9d sampling.

4 POOSL-Performance Model

We present a performance model of the Think-component, by far the most time-
consuming part of the movement control loop. The model is automatically gen-
erated from a DSL instance using a model transformation. It is specified in
POOSL [6, 20], which enables fast-simulation using the Rotalumis engine [5].

4.1 POOSL Model Outline

The POOSL model (Figure 5) contains five components, i.e., Think, Cache,
Distance Query, PQP and Use case. It is initialized using three parameters:
the DSL instance, PQP profiles and Use case characteristics. Loops, conditional
code executions and functions are assumed independent to keep the model simple
without sacrificing accuracy too much.

The POOSL-model corresponds to the Think-part of the movement control
loop. It is triggered by an incoming message at its start-port, after which it
delegates work, via the components Cache and Distance query, to the PQP
component, by triggering the respective start-ports. In return, messages go
all the way back through the finished-ports to confirm successful executions.
This mechanism yields a single-threaded model, in accordance with the real
Think-component. The model components have specific responsibilities: Think
generates distance queries to be performed and forwards them to the Cache.
The Use case determines which conditional distance queries are executed. The
Cache filters out redundant distance queries to ensure consistent distance val-
ues and to enhance performance. PQP simulates PQP-executions according to a
given profile by taking samples from the corresponding CDF. Simulating the
Think-component requires three parameters named DSL-instances, use cases
and PQP profiles, respectively. First, a DSL-instance is transformed into a se-
quence of (conditional) distance queries that repeats indefinitely. For each dis-
tance query in Think, the Use case-component is accessed to decide whether
it should be executed. The Use case-component is initialized with the use-case
parameter, which comprises a set of use case characteristics, i.e., the conditional
distance queries in the Think-component and the probability of execution. Dis-
tance queries in the Think-component that have no cache-hit become PQP-
queries. The CDFs of PQP’s execution-times (the third parameter) are used for

Performance Evaluation for Collision Prevention 281

Fig. 5. POOSL performance-model of the movement control

sampling execution-times using random numbers. The object pair of the PQP-
query determines which CDF is used, while geometric positions are implicitly
considered by the variation the CDF provides.

4.2 The DSL-Instance

A prototypical DSL with a tailored grammar has been designed that specifies safe
object movements by keeping track of object distances and speeds. In practice,
DSL-instances are automatically transformed to executable code. They declare
models and objects that form the basis of distance queries. Restrictions impose
a speed limit on an object when an activation condition is met. The condi-
tion generally contains distance queries to check whether objects are far enough
apart. The speed limit can be constant or may depend on object distances and
potentially overrides higher user requests.

We have also constructed a second transformation from DSL-instances to
POOSL-model Think-components that can be applied to all DSL-instances (Fig-
ure 1, right). It generates a POOSL Think-component with a fixed amount
of distance queries. However, distance queries (may) execute conditionally for
two reasons. First, binary boolean connectors are frequently implemented using
lazy evaluation, making the evaluation of the right operand conditional. Conse-
quently, distance queries in the right operand might not be performed. Second,
when the activation evaluates to false, distance queries that are in the effect
are not performed. The transformation accounts for both aspects by enclosing
conditional POOSL-code fragments with if-statements, the so-called use-case
characteristics.

In our case study, we use a DSL-instance with four pairs of restrictions of
which we show two in Table 1. They prevent collisions between the TableTop
and the Beam object. The remaining pairs are similar, but apply to other object
pairs. The ApproachingTableTopBeam clause (lines 6-11) activates when the
objects are within a certain distance (line 8) and approach each other (line
9). If so, the speed limit is lowered, using a monotone break pattern (line 11).
The CloseTableTopBeam clause (lines 13-18) results in an emergency stop for
very small distances (line 18). We provide pseudo-code of the Think-component
(Table 2) derived from the DSL-instance in Table 1, with seven distance queries.
Both restrictions start with an unconditional distance query (Table 2, lines 1

282 F. van den Berg et al.

Table 1. A DSL-instance example with two restrictions

1 supervisor
2
3 object TableBase, TableTop, Beam, Detector
4 model Now, Future, NowHyst, FutureHyst
5
6 restriction ApproachingTableTopBeam
7 activation
8 Distance[FutureHyst](TableTop, Beam) <18 + 125 &&
9 Distance[Future](TableTop, Beam) <Distance[Now](TableTop, Beam) - 0.3
10 effect
11 limit Beam[Rotation] at ((Distance[Future](TableTop,Beam) - 25) / 100))
12
13 restriction CloseTableTopBeam
14 activation
15 Distance[NowHyst](TableTop, Beam) <17.5 &&
16 Distance[Future](TableTop, Beam) <Distance[Now](TableTop, Beam) + 0.3
17 effect
18 limit TableTop[Translation] at 0

and 9), since the left operands of the &&-operators execute each loop (Table 1,
lines 8 and 15). Next, two queries per restriction are conditional (Table 2, lines
3,4,11 and 12), since the right operands of the &&-operators are lazy-evaluation
susceptible (Table 2, lines 9 and 16). Finally, the first restriction has a fourth
distance query (Table 2, line 6). It only executes when both operands of the
&&-operators yield true, because it is in the effect clause (Table 1, line 11).

4.3 Use Cases

The requirements of iXR-systems depend on the use-case at hand. We define
a use-case as a set of labels that refer to fragments of code and an execution
probability for each label. Table 3 displays, for three use cases, the probabili-
ties for each label (with “other” the probability for all other labels). A label is
decomposed into a fixed prefix “r”, restriction number (1 to 8) and restriction
part (activation or limit) in line with the pseudo code (Table 1). The values
represent the probabilities that the corresponding fragments of conditional code
are executed. For instance, the value 0.29 for r2a in Use case 1, indicates that
in restriction 2, distance queries 2 and 3 (Table 2, lines 11 and 12) are executed
in 29% of the cases.

4.4 PQP Profiles

We created PQP-profiles (Section 3) to enable the sampling of execution-times
for simulation. For this purpose, the profiles are injected into the PQP-component
of the POOSL-model, which simulates the execution of a CNET-operation (con-
verting objects to triangles), followed by a PQP-query based on a distance pair.

Performance Evaluation for Collision Prevention 283

Fig. 6. The experimental setup; compare simulations with Think-prototype executions

The execution of CNET took 517 μs on average with a 58 μs standard deviation.
We model this as an uniform distribution U(459,575), for each distant pair. The
PQP-component receives distance queries (with an object pair parameter) from
Think. PQP selects the CDF of the object-pair, draws a sample from this CDF
and simulates a CNET-operation followed by a PQP-query (using a POOSL de-
lay). While sampling from these CDFs during simulation, we choose to not use
interpolation. Instead, we “round” to the first higher sample, hence, only return
values that have actually been observed during profiling.

5 Validating the Movement-Control Performance Model

Table 2. Pseudo code of Think com-
ponent for two restrictions

Restriction 1
ApproachingTableTopBeam
1 Distance[FutureHyst]
2 if (r1a){
3 Distance[Future]
4 Distance[Now]
5 if (r1lim) {
6 Distance[Future] } }

Restriction 2
CloseTableTopBeam
9 Distance[NowHyst]
10 if (r2a) {
11 Distance[Future]
12 Distance[Now] }

We assess the validity of the performance
model by providing the experimental set-up,
results per use case and additional measure-
ments. We use the DSL-instance (Table 1)
for all experiments and three use cases (Ta-
ble 3). We simulate for four different profil-
ing methods (Section 3).

We performed one real-time execution
on the Think-prototype machine (Figure 6)
with different user inputs, for 278, 284 and
301 seconds, respectively. We performed
simulations, for 4 profiling methods and
3 use cases, covering 125488, 144178 and
140618 cycles, respectively. Finally, we gen-
erated distributions of simulation and exe-
cution results per use case. We used one PC
(i5-2400, QuadCPU@3.10Ghz, 3Gb RAM)
for executions and another PC (AMD A6-
3400m, QuadCPU@1.4Ghz, 6Gb RAM) for
simulations.

Use Case 1. The Arc-object has been rotated in various ways around and
towards the Table-object, while the Table remained motionless. As shown in
Figure 7 (left-top) simulations based on 2D and 3D profiling are pessimistic,
whereas those based on 9D-profiling match the execution slightly better. This is
due to 2D and 3D-based profiling overestimating the most complex query PQP1.

284 F. van den Berg et al.

Fig. 7. The execution-time CDFs for use case 1 and 2 (top), use case 3 and Ω (bottom)

Table 3. Use case 1,2,3: characteristics

Label r2a r2lim r3a r4a r4lim other
UC1 0.29 0.99 0.02 0.11 0.71 0
UC2 0.07 0.04 0 0 0 0
UC3 0.01 0.79 0.01 0.12 0.62 0

Use Case 2. The Table-object
has been moved towards and away
from the Arc mimicking situations
in which patients enter and leave
iXR systems. Figure 7 (right-top)
shows that 9D-simulations match
the prototype execution reasonably
well. Therefore, replacing unknown PQP-queries with similar ones and using as-
sumptions to keep the model simple, has not affected the results much. 2D and
3D simulations overestimate execution-times, which is again contributed to the
PQP1 profile. Both 9D-simulations underestimate for low execution-times.

Use Case 3. Stationary behaviour that is common for iXR machines, has been
performed. Nevertheless, computations took place with objects close to each
other. All stationary positions resemble those in previous use cases. Figure 7 (left-
bottom) displays the results for Use case 3. The curve of the Think-prototype
contains three points of infliction. The results are concentrated around two val-
ues, namely 11 and 16 ms. We contribute this to spending a large amount of
time in a few number of positions, opposed to changing between positions grad-
ually. On average, the outcomes of simulations match the execution well for
non-dependent use case characteristics. Again, simulations based on 2D and 3D
profiles are more pessimistic than their 9D-counterparts.

Performance Evaluation for Collision Prevention 285

Use Case Ω. In addition to the three use cases, we constructed a fourth
one in which all conditional code executes, i.e., all use case characteristics have
value 1. We have simulated this use case for all profiling methods (Figure 7,
right-bottom), but did not execute it on the Think-prototype. The use case Ω
represents the worst use case. Use case Ω illustrates the proportion of conditional
code for the specific DSL instance.

Table 4 shows the Kolmogorov distances K between the Think-prototype F
and corresponding simulations G, per use case and profiling method, computed
as K = supx |F (x) − G(x)|. A small distance indicates a high similarity. The
results indicate that profiling methods that cover many dimensions have lower
Kolmogorov distances. Since both 9D-simulations have similar CDFs, their Kol-
mogorov distances are small. We conclude that for the current geometrical do-
main the 9D grid and 9D random method yield equal results. Although the
simulation and exectuion CDFs differ much for Use case 3, their Kolmogorov
distances are low.

To determine how quickly simulations converge we have also computed the
Kolmogorov distance between short and long simulations runs. 2D and 3D-
simulations converged within a second, while the 9D-ones needed 15 seconds.
Therefore, the presented simulations are of sufficient length.

Table 4. Kolmogorov dis-
tances per use case and profil-
ing method

2D 3D 9Dg 9Dr
UC1 0.67 0.58 0.41 0.41
UC2 0.42 0.30 0.16 0.16
UC3 0.29 0.18 0.27 0.30

Table 5. Maximum
execution-time ratios per
use case and profiling method

2D 3D 9Dg 9Dr
UC1 2.02 2.03 1.53 1.68
UC2 1.79 1.79 1.54 1.72
UC3 1.81 1.81 1.55 1.58

We have computed the ratios of simula-
tion and prototype execution times as a mea-
sure of how much the simulations overesti-
mate the Think-prototype. The ratio R is
derived as R = supx>0∧y>0 {x/y | F (x) = G(y)}.
The results (Table 5) indicate that 2D and
3D-simulations lead to higher ratios than both
9D-simulations. This is due to higher expected
executions-times for 2D and 3D-profiling. Use
case 1 contains the highest ratios of 2.02 (2D)
and 2.03 (3D). They correspond to the large dis-
tances shown in Figure 7 (left-top). In general, low
execution-times correlate with low ratios. Hence,
simulation results have a higher variance than
Think-prototype results and are particularly over-
estimating at peak execution-times. The highest
observed ratio of 2.03 indicates that the amount
of overestimation is bounded.

We draw three conclusions from the experiments. First, applying use cases saves
dramatically on hardware resources and determining the use case characteristics
is a delicate procedure that can lead to underestimating execution-times. Second,
the execution-time ratio between use caseΩ and others is DSL-dependent, since it
depends on the proportional amount of conditional code. Third, we conclude that
simulations yield higher execution-times than the Think-prototype. 2D and 3D
sampling showed higher execution-times then 9D sampling, as a result of test case-
based profiling. Overestimation is desirable to some extend, since underestimation

286 F. van den Berg et al.

might lead to non-safemachines in the very end. However, over-dimensioned hard-
ware literally has its price. Finally, simulations of various lengths have confirmed
that the simulations of the experiment are of sufficient length.

6 Conclusion and Future Work

We have constructed a DSL-based POOSL-performance model for interventional
X-ray systems. Additionally, we have profiled PQP distance queries and in-
troduced use cases to make the models more situation specific. We evaluated
the validity of our model by comparing POOSL-simulation results with Think-
prototype executions. In the worst case, the model over-estimated the execution-
times of the Think-prototype with a factor 2.03. Simulations converged within
15 seconds. When comparing our approach that uses a transformation from DSL
to a performance model with one in which the performance model is made man-
ually, we observe the following. Our DSL-based approach better connects the
roles of the domain expert (building the DSL model) and the performance anal-
ysis expert, building the transformation. Also, the DSL-transformation makes it
possible to easily generate multiple performance model instances based on dif-
ferent DSL-instances. A manual low-level approach would be much more labour
intensive. Compared to a manually constructed performance model, DSLs make
the switch to other performance techniques easier. Furthermore, a DSL-instance
can, using multiple transformations, be the source of different artefacts at the
same time, such as true code, models, and documentation.

In future work, we will investigate the use of analytical methods, such as data
flow diagrams, process algebra and queuing networks to explore a wide range
of scenarios and to get insight in the underlying system characteristics, at even
lower costs than with simulation. Based on our experiences so far, we foresee
DSLs to be an integral aspect while applying these methods.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Transactions on Software En-
gineering 30(5), 295–310 (2004)

2. Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Extracting passage times
from PEPA models with the HYDRA tool: A case study. In: Proc. of the 19th
Annual UK Performance Engineering Workshop, pp. 79–90 (2003)

3. Carpin, S., Mirolo, C., Pagello, E.: A performance comparison of three algorithms
for proximity queries relative to convex polyhedra. In: Proc. of Int. Conference on
Robotics and Automation, pp. 3023–3028. IEEE (2006)

4. de Gooijer, T., Jansen, A., Koziolek, H., Koziolek, A.: An industrial case study of
performance and cost design space exploration. In: Proc. of the 3rd Int. Conference
on Performance Engineering, WOSP/SIPEW, pp. 205–216. ACM (2012)

5. Eindhoven University of Technology. Software/Hardware Engineering - High-Speed
Simulation of POOSL Models with Rotalumis,
http://www.es.ele.tue.nl/she/index.php?select=42

http://www.es.ele.tue.nl/she/index.php?select=42

Performance Evaluation for Collision Prevention 287

6. Eindhoven University of Technology. Software/Hardware Engineering - Parallel
Object-Oriented Specification Language (POOSL),
http://www.es.ele.tue.nl/poosl/

7. Henzinger, T., Sifakis, J.: The discipline of embedded systems design. IEEE Com-
puter 40(10), 32–40 (2007)

8. Holton, D.: A PEPA specification of an industrial production cell. The Computer
Journal 38(7), 542–551 (1995)

9. Igna, G., Kannan, V., Yang, Y., Basten, T., Geilen, M., Vaandrager, F.W., Voorho-
eve, M., de Smet, S., Somers, L.: Formal modeling and scheduling of datapaths of
digital document printers. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS,
vol. 5215, pp. 170–187. Springer, Heidelberg (2008)

10. Igna, G., Vaandrager, F.: Verification of printer datapaths using timed automata.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp.
412–423. Springer, Heidelberg (2010)

11. Jinfeng, H., Voeten, J., Groothuis, M., Broenink, J., Corporaal, H.: A model-driven
design approach for mechatronic systems. In: 7th Int. Conference on Application
of Concurrency to System Design, pp. 127–136. IEEE (2007)

12. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proc. of the IEEE 91(1), 145–164 (2003)

13. Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability analysis by
probabilistic model checking. Control Engineering Practice 15(11), 1427–1434
(2007)

14. Larsen, E., Gottschalk, S., Lin, M., Manocha, D.: Fast distance queries with rect-
angular swept sphere volumes. In: Proc. of Int. Conference on Robotics and Au-
tomation, vol. 4, pp. 3719–3726. IEEE (2000)

15. Lingelbach, F., Aarno, D., Kragic, D.: Constrained path planning for mobile ma-
nipulators. In: Proc. of the 3rd Swedish Workshop on Autonomous Robotics (2005)

16. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

17. Schätz, B., Pretschner, A., Huber, F., Philipps, J.: Model-based development of em-
bedded systems. In: Bruel, J.-M., Bellahsène, Z. (eds.) OOIS 2002. LNCS, vol. 2426,
pp. 298–311. Springer, Heidelberg (2002)

18. Sharma, V., Trivedi, K.: Architecture based analysis of performance, reliability and
security of software systems. In: Proc. of the 5th Int. workshop on Software and
Performance, pp. 217–227. ACM (2005)

19. Tawhid, R., Petriu, D.: User-friendly approach for handling performance param-
eters during predictive software performance engineering. In: Proc. of the 3rd
Int. Conference on Performance Engineering, WOSP/SIPEW, pp. 109–120. ACM
(2012)

20. Theelen, B., Florescu, O., Geilen, M., Huang, J., van der Putten, P., Voeten, J.:
Software/hardware engineering with the parallel object-oriented specification lan-
guage. In: Proc. of Formal Methods and Models for Codesign, pp. 139–148. IEEE
(2007)

21. Theelen, B., Voeten, J., Kramer, R.: Performance modelling of a network processor
using poosl. Computer Networks 41(5), 667–684 (2003)

22. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices 35(6), 26–36 (2000)

23. Wang, S., Shin, K.: Early-stage performance modeling and its application for inte-
grated embedded control software design. ACM Software Engineering Notes 29(1),
110–114 (2004)

http://www.es.ele.tue.nl/poosl/

An Approximate Mean Value Analysis Approach
for System Management and Overload Control

Vittoria De Nitto Personé and Andrea Di Lonardo

University of Rome Tor Vergata, Italy
denitto@info.uniroma2.it

Abstract. Blocking is the phenomenon where a service request is momentarily
stopped, but not lost, until the service becomes available again. Despite its im-
portance, blocking is a difficult phenomenon to model analytically, because it
creates strong inter-dependencies in the systems components. Mean Value Anal-
ysis (MVA) is one of the most appealing evaluation methodology since its low
computational cost and easy of use. In this paper, an approximate MVA for Blok-
ing After Service is presented that greatly outperforms previous results. The new
algorithm is obtained by analyzing the inter-dependencies due to the blocking
mechanism and by consequently modifying the MVA equations. The proposed
algorithm is tested and then applied to a capacity planning and admission control
study of a web server system.

Keywords: blocking, modeling techniques, performance, system management,
overload control, multi-tiered systems.

1 Introduction

Blocking is the phenomenon where a service request is momentarily stopped, but not
lost, until the service becomes available again. This service unavailability can stem from
a physical limit (e.g., memory, connectivity or concurrency constraints) or it can even
relate to a system management decision in order to overcome an overload period and
to guarantee QoS requirements. Consequently, blocking can affect system performance
significantly. We point the interested reader to [3,10,11,12] for an extensive bibliog-
raphy of different blocking mechanisms that model distinct behaviors of real systems.
A lot of applications of blocking models can be found from recent literature including
computer systems [7], communication systems and networks [6], software architectures
[2], multi-tier applications [9] and also in the emerging area of health care systems [8].

Despite its importance, blocking is a difficult phenomenon to model analytically,
because it results in strong dependencies in the behavior of the system components.
As is known, the most results for blocking queueing networks are limited to tandem
or cyclic topologies. Differently, in this paper, we consider general topology networks.
Among the analytical techniques for general topologies, Mean Value Analysis [13] still
plays an important role, since its simplicity and efficiency, as this is proved by its recent
use in different application fields [4,5,16,17,20]. To the best of our knowledge, in the
literature there are very few results for general topology networks and extensions of
MVA were presented for Repetitive Service (RS) blocking in [14] and for Blocking

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 288–299, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Mean Value Analysis Approach for System Management and Overload Control 289

After Service (BAS) blocking in [1,19]. The interested reader can refer to [19] for
other references for cyclic networks. In particular, in [14] a class of product form
(PF) networks is considered. It is worth noting that in that case the interdependencies
among the nodes due to blocking are ”neutralized” by the separability property of PF
networks. Moreover, RS blocking is the simplest blocking model. Indeed, according
to its definition, the queue is not blocked at all, but the service is repeated until the
destination queue becomes ”available” again. In both papers [1,19], non-PF networks
with BAS blocking are considered. In [19], the proposed extension, called EMVA, is
obtained by means of load dependent servers and queue length distribution. As for
standard MVA, in this case the method suffers of instability as more pronounced as the
population grows. The MVABLO algorithm tries to modify the arrival theorem [13]
to include the blocking behavior without resorting to the queue length distribution. In
some cases, the results are quite good to provide the throughput, but are not so reliable
for the other performance measures. In particular, the proposed approximation shows
the worst results for cyclic networks.

On the basis of these considerations, in this paper an iterative version of MVA for
BAS blocking is proposed that greatly improves the previous results. The method is
called MVABAS and is obtained by an in-depth analysis of the inter-dependencies due
to the blocking mechanism and by consequently modifying the MVA equations. MV-
ABAS shows good results for general topology networks and improves significantly the
approximation for cyclic networks. In all cases, the convergence speed is fast. This is the
main contribution of the paper. The proposed method is applied to a capacity planning
study for a web server system under two different workloads. The aim is to investi-
gate among different system management strategies to meet a Service Level Objective
(SLO) defined as the average session response time. The model parameters are set de-
pending on both the workload and the architecture characteristics. Some guidelines are
derived from the results. We chose this case study to further emphasize the importance
of an efficient and low-cost modelling technique to investigate and correctly drive the
system management decision process.

The rest of the paper is organized as follows. Section 2 present the model and the
analysis of the MVABLO algorithm and its weak points. In Section 3, we define our
MVABAS algorithm and compare the results with MVABLO. Section 4 presents the
case study. Finally, Section 5 concludes the paper.

2 MVABLO Analysis

We consider a single-class closed queueing network with routing matrix P such that jobs
departing from queue i are directed to queue j with probability pij . The queue service
time si is assumed exponentially distributed for each queue i. If the capacity of queue
j is Bj and nj denotes the current population at queue j, then when nj = Bj queue j
is full and does not accept in its waiting buffer any new job before a departure occurs.
Queue i can become blocked. Note that deadlock can occur in presence of blocking. In
the following, we assume that the network population value is such that the deadlock
prevention is guaranteed [3]. The time of blocking, the unblocking rule and the behavior
of the job possibly in execution in i at the blocking time are defined by the blocking
mechanism.

290 V. De Nitto Personé and A. Di Lonardo

Blocking After Service (BAS) is one of the most used blocking mechanisms and is
defined as follows: a queue i, if not empty, processes a job regardless of the job pop-
ulation at its destination j. When node i completes service and node j is full, node
i suspends any activity (i.e., it is blocked) and the completed job waits until a depar-
ture occurs from node j. At that moment two simultaneous transitions take place: the
completed/blocked job moves from i to j (since j can now accept a job, i ”unblocks”)
and the job that leaves j (which effectively ”unblocks” server i). In a general network
topology where more than one queue compete for sending a job towards a full queue
j, a policy regulating the order in which queues unblock has to be defined. Usually, the
First Blocked First Unblocked (FBFU) policy is considered fair: first unblock the queue
that was blocked first. BAS mechanism is also used to model production systems and
disk I/O subsystems [18].

Despite the complexity of the queues behavior, due to their dependences and simul-
taneous transitions that can involve more than two queues, in the following section we
show an approximate iterative MVA that shows good results. We focus just on the mean
residence time equation, since this is the modified equation in respect of classical MVA.
According to [1], the mean residence time of queue j can be computed as follows:

E[tj(k)] = E[sj](zj(k) + E[nj(k − 1)]) + BTj(k) (1)

where k is the network population, zj(k) = 1 or zj(k) = 0 represents the job arrived
to queue j when this is not full or full respectively, while BTj(k) ≥ 0 represents the
increment of residence time of queue j due to blocking, as described below. Note that
when zj(k) = 1 and BTj(k) = 0 equation (1) coincides with the standard MVA
equation. On the contrary, when blocking occurs the original arrival theorem does not
hold and the idea behind the proposed solution is as follows:

– when the mean length of queue j exceeds its capacity Bj (called ”violation”), the
job cannot be enqueued and the arrival theorem equation has to be corrected setting
zj(k) = 0; the algorithm continues to iterate until the violation is removed;

– on the other hand, when the queue j is blocked by a queue i, its residence time
is increased by the remaining mean service time E[sresti] of queue i, and assum-
ing exponential service time distribution, E[sresti] = E[si], so the increment is
the blocking time BTj(k) = E[si]pjiej/ei, where ej is the relative throughput
obtained as a solution of the system e= eP.

First, note that the proposed solution does not consider the delay centers. Indeed, all the
experiments in [1] exclude delay centers. Moreover, as we introduced in the previous
section, MVABLO does not yield a so good approximation. In particular, as soon as
the congestion grows the results worse, especially for residence times and mean queue
lengths. Moreover, the results fluctuate between overestimating and underestimating
the performance metrics, so returning difficult error estimate. Cyclic networks show the
worst results. An error cause is identified by the author himself in [1] and resides in
the ”method” to recognize a saturation condition. Indeed, using the mean queue lengths
is not enough to capture the blocking condition: a blocking condition can appear even

Mean Value Analysis Approach for System Management and Overload Control 291

when the mean queue length is less than the node capacity. In fact, it is enough that
the total network population N is greater than Bj to produce blocking conditions in
the sending nodes of node j. On the other hand, by growing N values the blocking will
occur more frequently. In our opinion, this is not the main error cause, but we envisage
the following most important error cause: the ”effective intensity” of the blocking is
not captured and the correction is operated always in the same measure using an ”all or
nothing” rule, that is simply canceling the arriving job (zj(k) = 0). On the contrary, it is
worth noting that the blocked job cannot disappear from the network, but it has to wait
in the sending node, accordingly to BAS blocking. We think cyclic topologies represent
one critical case for this reason: sequence of full queues are possible and simultaneous
transitions can involve more than two queues. Moreover, we define a factor depending
on the network population of the current iteration and on the node finite capacity Bj ,
thus capturing the effective incidence of the blocking phenomenon as the network pop-
ulation grows at each iteration step. As we show in the following section, this seems to
partially overtake the limit of the mean analysis of MVA.

3 The MVABAS Algorithm

The MVA algorithm [13] is based on iteration on the network population and, for each
step, the queue mean performance indices are computed. In MVABLO, as explained in
the previous section, the blocking condition is detected when the mean queue length
E[nj(k)] violates the queue capacity Bj . In this case, the two corrections are produced
both on the queue j itself and on its possibly sending nodes i. This corrections are
lacking in two aspects: 1. the correction is too ”drastic”: the ”blocked job” is canceled
from the network; 2. the corrections are applied without regulating their intensity. This
is against the main characteristic of MVA that is based on mean values. As a conse-
quence, the detected violation cannot capture the different intensities of the blocking
phenomenon on the different queues. Finally, the MVABLO does not consider delay
centers. On the contrary, this kind of servers are very important to model different as-
pects of systems, e.g. sessions in multi-tier applications [17] or access networks.

For these reasons, we define the mean residence time E[tj(k)] as follows:

E[tj(k)] =

⎧⎨
⎩E[sj] +

BTj(k)

k
delay center

E[sj](zj(k) + E[nj(k − 1)]) + BTj(k) single server center
(2)

where k is the network population at the given iteration step, BTj(k) is defined as in
Section 2 and initially set to 0; zj(k) is initially set to 1 and is updated when a blocking
condition is detected, i.e. E[nj(k)] > Bj , as follows:

zj(k) = zj(k)− βj(k) ∗ zj(k) (3)

for the blocking queue j

zi(k) = zi(k) + βj(k) ∗ pij ∗ zj(k) (4)

292 V. De Nitto Personé and A. Di Lonardo

for each sending nodes i. In both equations (3) and (4), βj(k) is a a blocking intensity
factor defined as follows:

βj(k) =

⎧⎨
⎩1−

Bj

k
if k > Bj

0 otherwise
(5)

As explained above, the ratio of the proposed solution is that the blocked job cannot
disappear from the network. On the other hand, given the use of mean measures, the
incidence of the blocked job on j is reduced according to the blocking intensity factor
βj(k) (see eq.((3)). Moreover, this population removed from j, is ”redistributed” on all
its sending node i, according to their ”connectivity weight” pij (see eq.((4)), thus cor-
recting the ”all or nothing” approach in MVABLO. Finally, note that for delay centers,
according to BAS blocking, the blocking time is divided by the number of servers, that
is k (see eq.(2)). The Figure 1 shows the main steps of the proposed algorithm.

To the best of our knowledge just two papers [1,19] consider general topologies with
BAS blocking. We implemented EMVA [19] and conducted a broad experimentation
that reveals instability, in particular when the population grows and the node character-
istics are unbalanced, as frequently happens in a blocking network. As a consequence,
we limit our comparison to the method in [1]. We compare the results obtained by the
proposed MVABAS algorithm with the MVABLO and the exact results [3] for over
50 queueing networks, different in topology and parameters so to verify the algorithm
on networks that are both ”balanced” and ”unbalanced” from the point of view of bot-
tlenecks and blocking incidence. We consider cyclic topology with 3, 4 and 5 nodes,
double ring topology and central server topology with 3 nodes. In all cases we observed
very fast convergence speed. The error is drastically reduced and also the erratic behav-
ior is corrected. We note that, according to intuition, the error grows as the blocking
phenomenon grows in the networks. To this aim, we compute the blocking probability
pbj , for each node j, by exact analysis. It is easy to be convinced that the error is not
so affected by the number of nodes, but by how many nodes can be blocked and with
which frequency, given by pbj . Due to lack of space we just show the results for two
critical cases. In both cases, we show the residence time, since this is the most critical
measure to predict [1].

First, we consider a five nodes cyclic network with the queue parameters as in Table
1 (a). The performance behavior of the network is analyzed as the population grows
until the maximum admissible value (N = 17) for deadlock prevention [3]. The last
column of the Table shows the blocking probability pbj computed by exact results when
N = 17.

Note that this is a critical case: all queues can be blocked and two neighboring queues
(4 and 5) can be both simultaneously full as soon as the population exceeds the value
6 (B5 + B1). As the results in Fig. 2 indicate, as soon as the population enters in
the critical region N > 6, the performance measures significantly deviate from the
exact results. The Fig. 2 (a) shows the mean residence time for queue 1. Even though
queue 1 is practically never blocked, its residence time cannot be accurately predicted
by MVABLO. On the contrary, with the proposed MVABAS the prediction is quite
accurate and the mean relative error decreases from 27.82% of MVABLO to 7.72% of

Mean Value Analysis Approach for System Management and Overload Control 293

for (k = 1; k <= N ; + + k)
do

repeat = 0;
for (j = 0; j < M ; + + j) {

if (j is delay center)

E[tj(k)] = E[sj] +
BTj(k)

k
else

E[tj(k)] = E[sj] ∗ (zj(k) + E[nj(k − 1)]) +BTj(k);
}
for (j = 0; j < M ; + + j) {

temp = 0
for (i = 0; i < M ; i++)

temp+ = E[ti(k)] ∗ ei/ej
E[Xj(k)] =

k

temp
}
for (j = 0; j < M ; + + j) {

E[nj(k)] = E[tj(k)] ∗E[Xj(k)]
if (E[nj(k)] > Bj) { // check for violation

repeat = 1
for (i = 0; i < M ; + + i) {

if (E[ni(k)] < Bi) {
zi(k)+ = βj(k) ∗ pij ∗ zj(k)
BTi(k)+ =

pijei

ej
∗E[sj]

}
}
zj(k)− = βj(k) ∗ zj(k)

}
}

while(repeat); // repeat until no more violation are detected

Fig. 1. MVABAS algorithm

MVABAS. It is worth noting that we evaluate the mean relative error by averaging the
traditional relative error for a given population value k [1] on all the population values
that can determine blocking (i.e. k ≥ min{Bj}+1). On the other hand, for N = 17 the
relative error decreases from 44.47% of MVABLO to 0.18% of MVABAS. Moreover,
MVABLO converges in 200 steps, while MVABAS converges in 85 steps. Note that we
measure the convergence speed as the number of detected violations.

As a second critical case, we consider a central server topology with the parameters
as in Table 1 (b). Again, the population grows until the maximum admissible value
(N = 39) for deadlock prevention. The routing probabilities from the central server are
balanced, that is p1j = 0.5 for j = 2, 3. On the contrary, it is easy to be convinced
that the other parameters values are quite unbalanced. Indeed, for N = 39, queue 1 is
almost always blocked pb0 = 0.966667, while the other two queues are never blocked.

294 V. De Nitto Personé and A. Di Lonardo

Table 1. Networks characteristics

(a) Cyclic network
queue Bj E[sj] pbj

1 4 20.1 0.073476
2 3 2.0 0.907808
3 5 10.0 0.539043
4 4 2.1 0.903199
5 2 5 0.769521

(b) Central server network
queue Bj E[sj] pbj

1 35 0.1 0.966667
2 20 2.5 0.000000
3 5 6.0 0.000003

(a) Queue 1 mean residence time (b) Queue 3 mean residence time

Fig. 2. Mean performance indices for the cyclic network (a) and the central server (b)

Fig. 2 (b) shows the mean residence time of the bottleneck queue 3. The results obtained
by MVABLO show a trend quite erratic that makes them practically unusable. On the
contrary, the results obtained by MVABAS correct well the erratic behavior and reduce
the mean relative error from 5.3% of MVABLO to 2.97%. In this case, the convergence
speed are practically the same, that is 16 steps for MVABLO and 17 steps for MVABAS.

4 The Case Study

In this section, we apply the MVABAS method on capacity planning for a web server
system. The objective of the study is to investigate about different system configurations
and management mechanisms to satisfy QoS requirements. The performance of web
server systems are affected by a lot of aspects related both to the system configuration
and to the load characteristics. As a consequence, simulation studies could be too much
expensive in terms of efforts and time and it is also well known that simulation offers
poor trade-off evaluation. On the contrary, the MVA algorithm is the best candidate to
conduct a broad alternatives evaluation, since its low computational cost and its easy of
use, that make it one of the most well accepted approach in industrial environment.

Let us consider a system that provides web services and which is built according to
the widely used multi-tiered paradigm. Typically, access to a web service occurs in the
form of a session consisting of many individual requests. For example, for e-commerce

Mean Value Analysis Approach for System Management and Overload Control 295

Fig. 3. The baseline system model

systems, placing an order through the web site involves further requests relating to
selecting a product, providing shipping information, arranging payment agreement and
finally receiving a confirmation. For a customer trying to place an order, or a retailer
trying to make a sale, the real measure of a web server performance is its ability to
process the entire sequence of requests needed to complete a transaction. To this aim,
we model the web system as illustrated in Fig. 3. The job flow is modeled at single
request level and we include two client centers, Client 1 and Client 2, to distinguish
between the first request of a session (jobs leaving Client 1) called new request, and
the successive requests of an already accepted sessions (jobs leaving Client 2) called
online requests. Note that in this model, we don’t consider caching effects and assume
that each request makes one visit to front-server and to DB-server before to come back
to the client. This assumption has been taken into account in the parametrization.

To model the workload of a web service system, we use the results obtained by the
TPC-W benchmark, which simulates the operations of an online bookstore [15] . The
TPC-W defines 14 transactions, each of which can be generally classified as browsing or
ordering. In this paper, we use two different traffic mixes: the ordering mix, that consists
of 50% browsing and 50% ordering transactions, and the shopping mix consisting of
80% browsing and 20% ordering transactions. Note that since the model is single-class
we use the mixes separately. Mean request service times at the servers are derived by
the utilization law from the results in [20], where the authors use a one-visit model as
explained above. We obtain the following parameters: for the ordering mix 0.015 sec
and 0.0066 sec for the front- and DB- server respectively; for the shopping mix 0.019
sec and 0.012 sec respectively. For both mixes, the mean think time is set to 7 sec
[15]. Moreover, as stated above, each session consists of a sequence of requests that is
uniformly distributed with parameters 5 and 35, that is with expected mean equal to 20.
Hence, we define the routing probabilities from the DB-server as 0.05 and 0.95 towards
clients 1 and 2 respectively.

We assume that the QoS requirement is to minimize the average response time of the
whole session, in other words the response time in respect of Client 1. In the following,
we investigate on the effectiveness of the following changes in meeting the SLO: 1.

296 V. De Nitto Personé and A. Di Lonardo

server replication; 2. admission control mechanisms 3. dedicated servers 4. possible
combinations of some of these.

First, we consider the baseline system when the workload N grows from 0 to 1500
sessions. Note that, according to MVA analysis, we are considering steady state results.
We evaluate the average response time for the system without any congestion control
and with an admission control mechanism: the mechanism is modeled by means of
finite capacities at both front- and DB-servers of value 80 requests. In all the following
experiments, when we consider admission control we assume queue finite capacity of
value 80 on all servers. The results show a modest improvement of the response time
which reaches about the 3% for both the ordering and the shopping mixes. Due to lack
of space, we omit the figures for this first set of experiments. We evaluate also the mean
queue lengths on both front- and DB- servers. For both mixes, the bottleneck is the
front-server that shows a rapid growth (linear) as soon as the workload is about 400
sessions. It is worth noting that the front-server shows a worse congestion under the
shopping mix. This suggests the use of front-end replica to meet SLO.

Let us consider the three configuration systems with replication: system CS1 with
two replicas FS1 and FS2 for the front-end server; system CS2 with three replicas for
the front-end server, FS1, FS2 and FS3; system CS3 with two replicas for the front-
end, FS1 and FS2, and two replicas for the back-end server DB1 and DB2. In case of
replication, a dispatcher is usually responsible for balancing load across replicas. Note
that we are assuming unbalanced load between replicas. In practise, as remarked in
[17], perfect load balancing is difficult to achieve for the affinity principle according to
which, if a session is stateful, successive requests will need to be serviced by the same
stateful server. Moreover, if caching is employed by a tier, a session and its requests
may be preferentially forwarded to a replica where a response is likely to be cached. To
set the routing probabilities towards the replicas, in all the considered configurations,
we use the results in [17]. In particular, we define the routing probabilities for both
clients j = 1, 2 as follows:

– system CS1: pClj,FS1 = 0.57, pClj,FS2 = 0.43;
– system CS2: pClj,FS1 = 0.25, pClj,FS2 = 0.32, pClj,FS3 = 0.43;
– system CS3: pClj,FS1 = 0.57, pClj,FS2 = 0.43 and pFSi,DB1 = 0.57, pFSi,DB2 =
0.43 for both front-end server i = 1, 2.

Figure 4 shows the session average response time. For the ordering mix, the figure
(a) compares the baseline system with the system CS1 both without admission control.
As one can expect, the session response time is generally improved by replication: the
response time starts to increase for higher load and the gain is about of 43%. In this
case, the admission control mechanism on the CS1 system still gives a further small
improvement of about the 2% only for high load (N > 800). On the contrary, despite
of expectations, the investment in further replicas as in CS2 and in CS3, is not more
effective and the improvement is practically negligible. On the other hand, the results
show that the effect of admission control depends on the load characteristics. Indeed,
the shopping mix seems to be not beneficial of the replication at first tier. To this aim,
we observe the mean queue lengths for each server and note that replication changes
the system bottleneck: while for the ordering mix the bottleneck still remains on the
front-server, for the shopping mix the replica on the first-tier switches the bottleneck to

Mean Value Analysis Approach for System Management and Overload Control 297

(a) ordering mix (b) shopping mix

Fig. 4. Session response time for the system with replication

(a) Session response time (b) Mean queue length in CS4

Fig. 5. Dedicated replicas: ordering mix

the DB-server. This also confirm the results in Fig. 4 (b): further replicas on the first
tier and admission control are not enough to improve SLO in case of the shopping mix
load. Indeed, the system CS2 does not yield better performance than the system CS1
and the response times are practically overlapped. On the contrary, if a replica is used
also at the second tier as in the system CS3 the average session response time show an
improvement using admission control on each server.

Given the inefficacy of system with three replicas on the first tier for both mixes, we
conjecture that the third replica has a negative effect due to more new requests entering
the system. To investigate on this conjecture, we consider a new system configuration
CS4: a replica at the front tier is completely dedicated to the new requests pCl1,FS1 = 1,
while the second replica is dedicated exclusively to the online requests pCl2,FS2 = 1. In
this experiment, we consider the ordering mix since it showed to be more beneficial of
the replicas on the first tier. The Figure 5 (a) compares the session response time for the
system CS4 with admission control with the system CS1 without admission control. In
spite of both the replication and the admission control, for the system CS4 the average
session response time significantly grows even for low load. As contro-intuitive results,
in Figure 5 (b) we show the mean queue lengths for this case. As soon as the number

298 V. De Nitto Personé and A. Di Lonardo

of sessions exceed the value of 400, the online requests explodes to the limit value of
80. Indeed, for a medium value of 800 sessions, the response time grows from 136.71
sec of the CS1 system to 221 sec for the CS4 case, that is an increment of about the
62%. It is easy to be convinced that this sudden worsening is due to the fact that each
new request corresponds to a new session and each new session generates many online
requests. This seems to argue our conjecture: to reach better results the online requests
have to be privileged in obtaining service access with respect to the new ones. This
will favor the session completions instead to overload the system with new arriving
sessions. In this direction, in the last experiment we consider the system CS5 with one
front-server dedicated to only online requests pCl2,FS1 = 0.57, while the least loaded
replica FS2 is shared by the new and online requests pCl1,FS2 = 1, pCl2,FS2 = 0.43.
In Fig. 4, curve CS5 shows a performance improvement of about the 5% starting from
800 sessions.

In conclusion, the following points can be stated: i. the workload characteristics have
great effect on the performance; an intuitive management choice can be good for a
workload profile, but can be bad for another one, as we show for the replication case.
So the model parametrization is an important step. ii. Sometimes, system enhancements
can lead even worse performance, as we show for the shopping mix. iii. Different man-
agement mechanisms, like dedicated servers, can be successful. iv. An investigation and
trade-off analysis needs of efficient solution methods.

5 Conclusions

We have considered the problem of providing an efficient solution for general topology
queueing networks with blocking. In this paper, we have defined an approximate MVA
for queueing networks with BAS blocking (MVABAS), that greatly outperform the pre-
vious results. Moreover, we have extended the algorithm to include delay centers. We
have tested our algorithm on over 50 different networks. In all cases, the convergence
is fast. We have applied the proposed MVABAS to a capacity planning study for a web
system. In this contest, blocking is used to model admission control in order to over-
come an overload period and to guarantee QoS requirements. Since the versatility and
the low computational cost of the proposed algorithm, we have investigated on differ-
ent directions: use of replicas, admission control and dedicated servers. The results of
the case study confirm the importance of an efficient and low-cost modelling technique
to investigate and correctly drive the system management decision process. As future
work, the algorithm should be further improved and also extended to include different
blocking mechanisms and workload burstiness [5].

Acknowledgments. The authors are grateful to the anonymous referees for their use-
ful comments that greatly improved the readability of the paper. The authors thank
Massimiliano Macchia for a previous version of MVABAS in his master degree thesis.

Mean Value Analysis Approach for System Management and Overload Control 299

References

1. Akyildiz, I.F.: Mean value analysis of blocking queueing networks. IEEE Trans. on Software
Eng. 14 (1988)

2. Balsamo, S., De Nitto Personé, V., Inverardi, P.: A review on Queueing Network Models
with finite capacity queues for Software Architectures performance prediction. Perform.
Eval. 51(2-4), 269–288 (2003)

3. Balsamo, S., De Nitto Personé, V., Onvural, R.: Analysis of Queueing Networks with Block-
ing. Kluwer Academic (2001)

4. Bogrdi-Mszly, A., Levendovszky, T.: A novel algorithm for performance prediction of web-
based software systems. Perform. Eval. 68(1), 45–57 (2011)

5. Casale, G., Smirni, E.: MAP-AMVA: Approximate mean value analysis of bursty systems.
In: IEEE/IFIP International Conference on Dependable Systems and Networks (2009)

6. Daduna, H., Holst, M.: Customer Oriented Performance Measures for Packet Transmission in
a Ring Network with Blocking. In: Proc. of 14th GI/ITG Conf. On Measurement, Modeling
and Evaluation of Computer and Comm. Systems (2008)

7. De Almeida, D., Kellert, P.: Markovian and analytical models for multiple bus multiprocessor
systems with memory blockings. Journal of Systems Architecture 46, 455–477 (2000)

8. Koizumi, N., Kuno, E., Smith, T.E.: Modeling patient flows using a queuing network with
blocking. Health Care Management Science 8(1), 49–60 (2005)

9. Lu, L., Cherkasova, L., de Nitto Personè, V., Mi, N., Smirni, E.: AWAIT: Efficient Overload
Management for Busy Multi-tier Web Services under Bursty Workloads. In: Benatallah, B.,
Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 81–97. Springer,
Heidelberg (2010)

10. Onvural, R.O.: Survey of Closed Queueing Networks with Blocking. ACM Computing Sur-
veys 22(2), 83–121 (1990)

11. Onvural, R.O.: Special Issue on Queueing Networks with Finite Capacity. Perform.
Eval. 17(3) (1993)

12. Perros, H.G.: Queueing networks with blocking. Oxford University Press (1994)
13. Reiser, M., Lavenberg, S.S.: Mean value analysis of closed multichain queueing networks. J.

ACM 27(2), 313–322 (1980)
14. Sereno, M.: Mean value analysis of product form solution queueing networks with repetitive

service blocking. Perform. Eval. 36-37, 19–33 (1999)
15. TPC-W Benchmark, http://www.tpc.org
16. Tribastone, M.: Approximate Mean Value Analysis of Process Algebra Models. In: Proc. of

IEEE19th International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, MASCOTS (2011)

17. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An Analytical Model for
Multi-tier Internet Services and its Applications. In: Proc. of the ACM SIGMETRICS 2005,
Banff, Canada, pp. 291–302 (June 2005)

18. Yamadaa, T., Mizuharab, N., Yamamotoc, H., Matsuib, M.: A performance evaluation of
disassembly systems with reverse blocking. Computers & Industrial Engineering Intelligent
Manufacturing and Logistics 56(3), 1113–1125 (2009)

19. Yuzukirmizi, M.: Performance Evaluation of Closed Queueing Networks with Limited Ca-
pacities. Turkish J. Eng. Env. Sci. 30, 269–283 (2006)

20. Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic model for dynamic re-
source provisioning of multitier applications. In: Proc. of the 4th ICAC Conference, p. 27
(2007)

http://www.tpc.org

Modeling and Timing Simulation

of Agilla Agents for WSN Applications
in Executable UML�

Luca Berardinelli1, Antinisca Di Marco1, Stefano Pace1, Stefano Marchesani2,
and Luigi Pomante2

1 Dipartimento di Ingegneria e Scienze dell’Informazione, e Matematica, L’Aquila
2 DEWS Center of Excellence, Università degli Studi dell’Aquila, Italy

{name.surname}@univaq.it

Abstract. Wireless Sensor Networks are becoming one of the most suc-
cessful choices for the development and deployment of a wide range of
applications, from intelligent homes to environment monitoring. In re-
sponse to the growing demand for fast development of WSN applications,
we extend an existing UML-based approach for the design and code
generation of Agilla applications with functional simulation and timing
analysis capabilities through executable UML models. The proposed ap-
proach makes use of both a UML profile and an executable model library
for Agilla. Execution times, annotated on Agilla instructions and pat-
terns in the library, are given as additional input parameters during the
model execution to carry out a timing analysis of the simulated Agilla
applications. Modeling and simulation activities rely on MagicDraw©
and Cameo Simulation Toolkit©. A running case study is provided to
show the approach and the supporting tools at work.

Keywords: Software Performance Engineering, Wireless Sensor
Network, Code Generation, Agilla.

1 Introduction

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous
sensors that cooperate in order to accomplish a task. Sensors have unique char-
acteristics : they are small, low-cost, wireless and battery-powered devices. They
can be easily deployed to monitor different environmental parameters and they
create large-scale flexible architectures. Sensors can be distributed on roads, ve-
hicles, buildings, people and they enable different applications such as domotics,
disaster relief and environmental monitoring.

The unique characteristics of sensors also complicate the development of ap-
plications, mainly because the quality of the services they provide is influenced
by factors like network availability, battery level of the motes, and so on. Despite

� This work is partially supported by the EU-funded VISION ERC project
(ERC-240555), and by PRESTO ARTEMIS project (GA n. 269362).

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 300–311, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Modeling and Simulation of Agilla Agents for WSN Applications 301

this, a WSN must continue providing its services as long as possible, and with
the best effort trying to guarantee network longevity. Traditionally, WSN appli-
cations have been developed by programming each sensor with the use of low
level primitives. Although different programming abstractions and middlewares
have been proposed, various research challenges are still open [17].

Agilla [10] is an agent-based middleware for WSNs, based on TinyOS [18].
It allows creating the agents, substituted and destroyed at run-time, without
stopping the execution of the code. The agents are written in a bytecode-like
language, that is interpreted by the corresponding virtual machine.

In order to help WSN application developers and to provide more abstract
modeling instruments, we proposed in [7] a model-driven approach that per-
mitted to model Agilla agents [3] using the Unified Modeling Language (UML)
[15] combined with our Agilla UML profile. Then, an Acceleo [2] Model-to-
Code (M2C) transformation was implemented to automatically transform the
UML designed models into executable Agilla agents’ code. This paper is the
continuation of the work in [7] and the new contributions are the following:

– We performed measurements of the execution time of each Agilla instruc-
tion on the Memsic MicaZ mote [12]. These measurements were made by
modifying/extending the Agilla platform with additional NesC code;

– We extended the Agilla UML Profile proposed in [7] to allow the annotation
of the models with non-functional information and to permit the modeling of
the timing characteristics of Agilla agents using the UML MARTE profile [1].
This extension introduces a distinct predefined UML behavioral unit (e.g.,
an action) for the whole Agilla instruction set and, beyond the name, it
includes the annotation of the measured execution time.

– We extended the Agilla Profile with a model library that makes the Agilla
behavioral units (e.g., each single instruction, patterns) ready to be directly
executed as part of executable UML Models for sake of functional simulation
and timing analysis.

The rest of the paper is organized as follows. In Section 2, we detail the
model-driven approach we use. Section 3 introduces the case study used to show
the approach at work. Section 4 explains the approach we follow to measure the
execution times of the instructions on Memsic MicaZ mote. Section 5 presents the
Agilla Modeling Framework by recalling the Agilla UML profile characteristics
published in [7] and presenting the new modeling features; moreover, it shows
the modeling of the case study that follows the proposed approach. Section 6,
instead, explains the devised analysis technique and shows it at work on the
proposed case study. Finally, Section 7 reviews related works and Section 8
concludes the paper outlining future research directions.

2 Model-Driven Approach to Agilla Agent Modeling,
Timing Analysis and Code Generation

In this section, we describe the UML-based model-driven approach we follow.
It supports Agilla-based WSN application modeling, timing analysis and code

302 L. Berardinelli et al.

Fig. 1. Our UML-based Model-Driven approach

generation to ease the development of a WSN application to non-expert of Agilla.
Agilla structures an application in terms of one or more mobile agents, which are
special processes that can explicitly migrate or clone from node to node while
maintaining their state. Figure 1 sketches the proposed approach, where boxes
represent artifacts whereas rounded boxes represent operational steps.

The approach is composed by five operational steps:
UML Modeling. A developer models the agents of the WSN application using the
devised Agilla Modeling Framework (AMF). AMF specifies the modeling rules
for an Agilla-based WSN application. The framework leverages UML enriched
with Agilla [7] and MARTE (Modeling and Analysis of Real-Time and Em-
bedded Systems) [1] profiles. An agent is modeled through UML Activities (i.e.,
Actions, Control/Object Flows) and displayed on Activity Diagrams. During the
modeling, the developer might use the library of Agilla patterns we provide to
speed up the modeling process. The Agilla patterns are themselves UML models
annotated through the Agilla and MARTE profiles. A suitably annotated UML
Model is then taken as input from both the Code Generation and Model Simu-
lation steps. In this paper, we extend the modeling approach proposed in [7] to
annotate the models with non-functional information (Section 5).
Code Generation. This step takes as input the UML Model of an agent and gen-
erates the corresponding Agilla code. It is implemented as a M2C transformation
using the Acceleo technology [2]. The annotated UML Model, serialized into the
Eclipse UML file format .uml, is imported into the Acceleo Eclipse plug-in, where
the transformation automatically generates the agents’ code saving it in a .ma
file. More details on this step are given in [7].
Model Simulation. On the annotated UML Model, Functional Simulation and
Timing Analysis can be performed. The former simulates Agilla through Cameo
Simulation Toolkit, plug in of MagicDraw. The AMF relies on these two tools
and extends their capabilities with Timing Analysis of Agilla applications. The
Timing Analysis results are stored within the annotated UML Model itself.

3 Case Study

In this section, we describe the Wildfire Tracking Application (WTA) that we
selected to show the modeling and the simulation steps at work. The WTA

Modeling and Simulation of Agilla Agents for WSN Applications 303

example can be found in the Agilla project (in the agents/case_studies sub-
directory). Figure 2 shows the high-level behavior of the application. WTA is
deployed on a WSN distributed into a region that is prone to forest fires. It must
detect a fire and determine its perimeter. When a fire starts, its movements are
unpredictable and WTA is implemented to continuously reprogram itself, by
using mobile agents.

Fig. 2. The WTA application

In particular, WTA is composed by three Ag-
illa agents. The temp reading agent runs on all the
WSN nodes and is programmed to sense the tem-
perature at regular time intervals. The readings
are sent to the base station (BS).

A temp forwarder agent runs on all the WSN
nodes and the BS. This agent forwards the sensed
values up to the PC, where the temperature level
is evaluated. If the value is greater than a previ-
ously fixed threshold, a tuple containing the posi-
tion and a ”fir” string is saved on the node (i.e., the fir nodes in Figure 2). After
notifying the alarm, the agents on fir nodes release the used resources. Once
notified by fir nodes, the BS can transmit an alarm to the firemen1.

Once a fire has been detected by fir nodes, a tracker agent is injected from
the PC into the BS. The tracker begins to expand from BS into the network, by
cloning itself to random neighbors where, of course, the ”fir” tuple is not present.
The tracker agents collect real-time information about the precise position of the
fire. The life cycle of a tracker agent ends when a ”fir” tuple is inserted into the
tuple space of the node where it runs, killing the agent itself.

In order to dynamically determine the perimeter of the fire, the tracker agents
continuously verify whether the neighbor nodes are in an alarm state (i.e., con-
tains the fir tuple). If not, the tracker agents migrate to a randomly chosen
neighbor. This step is repeated until the tracker agents run on all the neighbors
of the fir nodes. In this way, they swarm around the fire forming a perimeter
and they dynamically adjust it according with the movements of the fire.

WTA shows real-time requirements, in particular it must be fast in determin-
ing the fire perimeter and in readapting it on the basis of the fire movements and
network dimension. In Section 6, we determine the execution time of a single
tracker on the reference platform, while (i) the time WTA needs to distribute
the tracker on a set of automatically generated WSN and (ii) the timing analysis
of fire perimeter re-adaptation are left for the future.

4 Experimental Measurement of Agilla ISA Execution
Times

In order to execute the timing analysis of Agilla-based WSN applications, we
measure the execution times of each Agilla instruction. The experimental ap-
proach we define for this purpose, together with some details about the adopted

1 Note that this part of the system is not included in the considered version of WTA.

agents/case_studies

304 L. Berardinelli et al.

experimental setup, is described in the following. The obtained results are used
to annotate each instruction in the AMF.

In the proposed experimental approach, the execution time of an Agilla in-
struction is evaluated by means of timestamps caught by instrumenting the orig-
inal nesC Agilla code in proper points of measurements. Such timestamps have
been caught by using the SysTimeM component of TinyOS1.x while running
ad-hoc agents (one at a time) on two Memsic MicaZ nodes [12].

The first node, acting as Agilla BS node connected to a PC via the UART
interface, has been used to measure the time of Agilla instructions that is not
related to the radio communications operations. The second node, programmed
with the Agilla middleware and in direct radio visibility with the first one, has
been used to measure the time of radio-related Agilla instructions.

The SysTimeM component implements the SysTime interface that returns
the value of a free running timer. On the adopted platform and configuration,
such a timer is running at a frequency of 921,600 KHz.

The nesC Agilla code has been thoroughly analyzed in order to identify
the best points to catch timestamps. The results of this analysis shows that,
even though each Agilla instruction is characterized by its own execution path
throughout different nesC components, all these paths share a common starting
point. So, timestamps have been taken at the beginning of each execution path.

At a first analysis, it seemed enough to catch a couple of timestamps at the
beginning and at the end of each execute command. However, since some instruc-
tions could involve a more complex execution path (e.g., by posting background
tasks or by means of split-phase operations), this approach could give rise to un-
der measures. Instructions like them are, for example, sense and others related
to agent migration, or that access to the remote tuple space. In order to over-
come this problem and to avoid the detailed analysis of each different execution
path, timestamps have been taken only at the beginning of each execution path.

Such timestamps are then stored in a buffer (in the AgillaEngimeM compo-
nent) and sent to an external PC by means of the UART interfaces, at the end
of the agent execution. In this way, since an Agilla instruction is never executed
before the end of the previous one, the execution time of an Agilla instruction is
simply the difference of sequential timestamps. Since the collected timestamps
are sent to the PC at the end of the agent execution, the timestamps collection
overhead is negligible (i.e. the measurement process does not affect the results).
It is worth noting that this approach is correct when considering only one agent
running on the node. This is exactly the situation that arose in the adopted
experimental setup. In addition, with such a ”very basic” experimental setup,
we have collected times that are deterministic since they are not affected by the
underlying low-level operations like, the events related to radio protocol man-
agement, the packets overhearing, the overall system state/load, the position of
the node in the topology, etc. So, the collected timing data could be considered
as constants (for the selected platform) that represent the best-case situation.
This is very important since the evaluation of both network and system overheads

Modeling and Simulation of Agilla Agents for WSN Applications 305

could be then completely performed at simulation time while taking into account
proper network architecture and topology, and the overall system state/load.

5 The Agilla Modeling Framework

In this section, we present the AMF the proposed approach is based on. Figure 3
shows such a framework that is an extension of [7], whose primary goal was the
generation of Agilla code, to address simulation and timing analysis capabilities.

Fig. 3. The Agilla Profile extended with MARTE and the InstructionSet and Patterns
executable model libraries

5.1 Modeling for Code Generation

The AMF in [7] includes an Agilla Profile (see Figure 3) that defines three
stereotypes: AgillaAgent, AgillaTask, and AgillaInstruction. They are used to
define a hierarchy of Activities as shown Figures 4(a,b) and 5(a,b) for the WTA
temp forwarder and tracker agents, respectively. The Code Generation step takes
as input such Activities and produces the corresponding Agilla code by means
of M2C transformations implemented in Acceleo [2] (see Figure 4(c) and 5(c)).

Fig. 4. The temp forwarder: a) the agillaAgent, b) the ToggleGreenLed agillaTask from
Patterns and c) the corresponding code

306 L. Berardinelli et al.

An AgillaAgent corresponds to a top-level, compound Activity whose actions
are stereotyped as AgillaTasks (Figure 5a). Each AgillaTask represents a middle-
level, compound Activity which groups a flow of ActivityNode stereotyped as
AgillaInstructions (Figures 4(b) and 5(b)). The action names act as indentifiers
of the corresponding blocks within the agent’s code (e.g., BEGIN in Figure 4(c)).
An AgillaInstruction is a basic, atomic behavioral unit of an Agilla agent. In [7],
we modeled the instruction set of Agilla as a UML Enumeration of string-based
values (instrEnum) to be assigned to the instruction property2 of the containing
stereotype, as shown for the Agilla task in Figure 4. Finally, we also provided a
set of already stereotyped UML Activities corresponding to common recurring
tasks in Agilla applications as toggling a led on sensor nodes. For example, the
ToggleGreenLed AgillaTask and the corresponding code, in bold, are shown in
Figure 4(b) and (c), respectively. We collected this and similar Activities in the
Patterns model library in Figure 3.

5.2 Modeling for Simulation

The AMF framework described so far has been suitably extended to support the
model simulation as well as its subsequent steps shown in Figure 1.

We realize two extensions that allow (i) the annotation of the measured exe-
cution times of Agilla instructions and (ii) the model simulation and analysis.

The first extension is realized by integrating the MARTE profile [1] to an-
notate the execution times measured in Section 4. For this purpose, we choose
the execTime property of the MARTE’s ResourceUsage stereotype as shown for
the Agilla instructions of the ToggleGreenLed pattern in Figure 4(b). Thanks
to the predefined annotation of all the instructions as well as patterns within
the respective model libraries of the AMF, the annotation process of any Agilla
application is quicker and less error-prone.

The second extension makes any UML Model of an Agilla application, once
modeled with our framework, directly executable and analyzable in UML, with-
out the need of any model transformation towards an external analysis nota-
tion. In 2011, the Object Management Group published the Foundational UML
(fUML) standard [16]. It defines the operational semantics of a subset of UML
and provides a virtual machine for executing UML models compliant to this
subset. The fUML subset contains parts of the UML language (Classes, Com-
mon Behaviors, Activities, and Actions) and provides actions to manipulate the
UML model at run time. For example, the Activity shown in Figures 5(b) and
(c) include several fUML-specific stereotyped actions like ReadSelf or Value-
Specification. The semantics of these actions was already defined in [15] but only
with fUML [16] they have been concretely implemented as part of the fUML
VM. Similar actions are used to manipulate them in UML model at run-time,
in particular, to access the runtime object (ReadSelf) and to create values like
String o Integer (ValueSpecification), enabling the execution of UML Activities.

2 It is worth noting that action names cannot be used for this purpose since they
should be unique within the same Activity.

Modeling and Simulation of Agilla Agents for WSN Applications 307

Fig. 5. a) The Tracker agent and b) its BEGIN task Activities, c) the BEGIN code
and d) the rdp instruction Activity running within Cameo Simulation Toolkit

Following the fUML standard, we represent any AgillaInstruction, previously
modeled as structural elements by means of string-valued entries of a UML Enu-
meration, for back compatibility with work done in [7] with a distinct UML
Activity. These new activities, grouped together in the InstructionSet library in
Figure 3, remain hidden from and are given as reusable modeling elements to
the users of our framework. The advantage is that any basic, atomic AgillaIn-
struction can now be executed by the fUML VM, as well as their combinations
in compound behavioral units (agents, tasks and patterns).

Figure 5(d) shows an example of such new, fUML-compliant Activities for
the rdp AgillaInstruction that, in turn, is part of the BEGIN AgillaTask (Figure
5(b)) of the tracker AgillaAgent (Figure 5(a)). We modeled the remaining agents

308 L. Berardinelli et al.

of WTA application (i.e., temp reading and temp forwarder) in a similar way3.
The behavior of the AgillaInstructions can be now detailed and simulated in
UML. For example, the rdp Agilla instruction returns 1 whether a certain tuple
is found in the tuple space, 0 otherwise [10]. At run time, this value is stored
in a rdp result::Integer (Figure 5(d)) that, in turn, can be used to influence the
control flow of AgillaAgents. In this respect, the rdp output is used to halt (DIE
AgillaTask) the tracker AgillaAgent if already running on the node.

The functional simulation of UML Models of Agilla applications is supported
by Cameo Simulation Toolkit (CST) [6] that integrates the reference implemen-
tation of the fUML VM as a plug in of the MagicDraw tool. Figure 5(d) shows
a screenshot during the simulation of the rdp Agilla instruction.

6 Timing Analysis by Model Simulation

In AMF, the timing analysis algorithm is directly implemented in fUML and,
then, relies on CST to perform the Timing Analysis of UML Models of Agilla
applications (see Figure 1).

In particular, we use Activities like those shown in Figure 5(d) to collect the
execution time of each AgillaInstruction. The execution times, previously an-
notated through the execTime property of the ResourceUsage stereotype (see
Figure 4), are now modeled through ValueSpecification actions [16]. It is worth
noting that this is not a redundant modeling choice. On the contrary, it is a
necessary step to make this stereotype annotation available during the model
simulation. Indeed the fUML standard does not specify a run-time counterpart
for stereotypes applications. As a consequence, the fUML VM treats them like a
common compiler does with comments in programming languages: they are ig-
nored. In [5], we propose a systematic approach that addresses the combination
of fUML with profiles. The timing analysis of an AgillaAgent is carried out by
an ExecutionTimeAnalyzer that is itself a fUML-compliant model as shown in
Figure 6. It is part of the InstructionSet library and it is linked to any Agilla
agent under analysis through an AgentExecutor class. The TrackerAgentExecu-
tor, that appears in Figure 6, is a user defined UML Class that contains the
AgillaAgent and AgillaTask stereotyped UML Activities as those shown in Fig-
ures 4 and 5. Therefore, during the simulation of an Agilla UML Model, a distinct
instance of the ExecutionTimeAnalyzer is concurrently executed with the corre-
sponding agent-specific AgillaExecutor by the fUML VM. The former sums the
execTimes of the simulated AgillaInstructions, following the simulation workflow
of its constituting AgillaTasks. Figure 5(d) shows a snapshot of the execution
of the rdp AgillaInstruction within the BEGIN AgillaTask of the Tracker agent.
The timing analysis results are then collected by the agent-specific Execution-
TimeAnalyzer as shown in the variable panel on the bottom right corner of the
figure. The execTime run-time variable contains the sum of the execution times

3 The complete model is available on the project web site
https://code.google.com/a/eclipselabs.org/p/agilla-modeling-framework/

https://code.google.com/a/eclipselabs.org/p/agilla-modeling-framework/

Modeling and Simulation of Agilla Agents for WSN Applications 309

Fig. 6. The TrackerAgentExecutor and the ExecutionTimeAnalyzer

of the AgillaInstructions (189 milliseconds) that precede the rdp instruction that
requires 1127 milliseconds for its own execution.

Finally, the results can be saved as slot values of the execTime property in the
agent-specific instance of the ExecutionTimeAnalyzer. As suggested by France et
al. in [11], AMF then realizes the integration of the analysis algorithms directly
with the modeling language, in this case UML, used in systems development.

7 Related Works

In [7], we started our approach, whose continuation led us to this work. We
developed the Agilla UML Profile, that we have now extended, and we took the
direction of code generation, via M2C transformation. The analysis part was
missing, so now we have integrated it for a more complete approach.

In [13], the authors present a model-driven framework in which an application
developer can model a WSN application by using Stateflow constructs and then
the model can be transformed into platform-specific application code or used
to perform multi-platform Hardware-In-the-Loop simulation. The modeling and
analysis framework is based on MathWorks tools. Our approach is more generic
since it considers as starting notation UML, a de facto modeling standard. It tar-
gets Agilla code that, being interpreted opens the approach to dynamic software
adaptation. Further, our simulation technique is UML-based too.

In [4], the authors investigate the possibility to adapt an existing model-based
approach that exploits such techniques to combine the modeling and perfor-
mance analysis of software for WSN. They introduce a UML-based framework
where a system model (i) is extended with a new profile for representing NesC
application along with the supporting hardware platform, and (ii) is annotated
with performance parameters defined in the standard UML MARTE profile.
Thereafter they apply a set of transformations to this enhanced UML model
that targets a Queueing Network performance model.

In [14], the authors generate SystemC code from UML statecharts for simu-
lation purposes. Different from our approach, [14] does not generate executable
code that can be directly run on the sensor nodes. Further, its approach allows
to obtain a simulation model that permits to evaluate the scalability and the
performance of the modeled WSN application, while our approach is actually
used for timing and functional simulations.

In [9], the model-driven approach is used to model separately the software
architecture of the WSN, the low-level hardware specification of the WSN nodes

310 L. Berardinelli et al.

and the physical environment where nodes are deployed in. The framework can
use these models to generate executable code to analyze the energy consumption
of the modeled application. The last three approaches have the aim of evaluating
the quality of the WSN application (that is its performance for the first two and
energy consumption for the last one). Instead our approach wants to generate
executable code, ready to be deployed and run on a node. We plan to extend it
in the future to allow the quality analysis of the modeled application.

In [19], the OMNeT++ simulation environment is presented. It’s a complete
environment capable of simulating various kind of networks, including WSNs.
Even if OMNeT++ is a complete environment, it’s difficult to use and instead
of directly providing simulation components for computer networks, queuing
networks or other domains, it provides the basic machinery and tools to write
such simulations. Further, the Omnet++ models are created with a specific
description language or with a graphical editor, while our models and simulation
environment are all UML based, shortening the beginners’ learning curve.

8 Conclusion

We developed a Model-driven approach that allows the modeling of software
for WSN nodes running the Agilla mobile agents-based middleware. With our
approach, we simplify the design, analysis and the implementation of WSN soft-
ware for non-expert programmers. The proposed approach provides: i) the Ag-
illa Modeling Framework that allows the UML modelling of Agilla-based WSN
application; ii) the generation of agents’ code from models, using M2C trans-
formations; iii) the timing and functional analysis of the models conform to the
Agilla Modeling Framework. We show the modeling framework and the timing
analysis at work on the WTA case study.

Several research directions can be considered in the future. As short-term
goals, we are working on the timing analysis of WTA to determine the aver-
age time needed to the tracker to distribute on a WSN and to readapt the fire
perimeter to fire movements. For this scope we need to extend the existing AMF
with further executable UML model libraries4 to support network-level timing
analysis. Moreover, we are working on removing the gap between the model-
ing for code generation and for simulation to remove extra effort in modeling
Agilla-based WSN applications. We are measuring the energy consumption on
the reference hardware platform [12] of each Agilla instruction to extend the
proposed approach to the analysis of energy consumption. Finally, we plan to
target other quality attributes such as performance and reliability by enriching
the AMF and providing M2C transformations generating analysis models.

As mid-term goals, we will deeply investigate the usage of the presented ap-
proach in run-time adaptation to provide a middleware able to monitor the
WSN motes, to capture context, resources or requirement changes, to trigger

4 For sake of supporting network level analysis we already extended the modeled
library with a random network generator.

Modeling and Simulation of Agilla Agents for WSN Applications 311

the adaptation by deciding how to adapt the application by changing its models
and reflect this change in the running system, similar to what defined in [8].

References

1. UML Profile for MARTE, Version 1.1 (2011), http://www.omg.org/spec/MARTE/
2. Acceleo Eclipse Plug-in, http://www.eclipse.org/acceleo/
3. Agilla Insstruction Set, http://mobilab.cse.wustl.edu/projects/

agilla/isa.html

4. Berardinelli, L., Cortellessa, V., Pace, S.: Modeling and analyzing performance of
software for wireless sensor networks. In: Proc. of the 2nd Workshop on Software
Engineering for Sensor Network Applications, pp. 13–18. ACM (2011)

5. Berardinelli, L., Langer, P., Mayerhofer, T.: Combining fUML and Profiles for Non-
Functional Analysis Based on Model Execution Traces. In: Ninth International
ACM Conference on the Quality of Software Architectures (2013)

6. Cameo Simulation Toolkit, http://www.nomagic.com/products/
magicdraw-addons/cameo-simulation-toolkit.html

7. Di Marco, A., Pace, S.: Model-driven approach to agilla agent generation. In:
IWCMC 2013 Conference - Wireless Sensor Networks Symposium (July 2013)

8. Di Marco, A., Pace, S., Marchesani, S., Pomante, L.: Model-driven agent generation
approach for adaptable and resource-aware sensor node. In: Software Engineering
for Sensor Network Applications

9. Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I., Mostarda, L., Muccini,
H.: A model-driven engineering framework for architecting and analysing wireless
sensor networks. In: Software Engineering for Sensor Network Applications

10. Fok, C.-L., Roman, G.-C., Lu, C.: Agilla: A mobile agent middleware for self-
adaptive wireless sensor networks. ACM Transactions on Autonomous and Adap-
tive Systems 4(3), 16 (2009)

11. France, R.B., Rumpe, B.: Model-driven development of complex software: A re-
search roadmap. In: Proc. of the Workshop on the Future of Software Engineering,
pp. 37–54 (2007)

12. Memsic MicaZ mote, http://www.memsic.com/wireless-sensor-networks/
13. Mozumdar, M.M.R., Lavagno, L., Vanzago, L., Sangiovanni-Vincentelli, A.L.: Hi-

lac: A framework for hardware in the loop simulation and multi-platform automatic
code generation of wsn applications. In: Symposium on Industrial Embedded Sys-
tems (SIES), pp. 88–97. IEEE (2010)

14. Mura, M., Sami, M.G.: Code generation from statecharts: Simulation of wireless
sensor networks. In: Digital System Design Architectures, Methods and Tools, pp.
525–532. IEEE (2008)

15. Object Management Group. OMG Unified Modeling Language, Superstructure,
Version 2.4.1 (2011), http://www.omg.org/spec/UML/2.4.1

16. Object Management Group. Semantics of a foundational subset for executable
UML models (fUML), version 1.0 (February 2011)

17. Stankovic, J.A.: Research challenges for wireless sensor networks. ACM SIGBED
Review 1(2), 9–12 (2004)

18. TinyOS Operating System for WSNs, http://www.tinyos.net/
19. Varga, A., Hornig, R.: An overview of the omnet++ simulation environment. In:

Proc. of the 1st ICST Conference, p. 60 (2008)

http://www.omg.org/spec/MARTE/
http://www.eclipse.org/acceleo/
http://mobilab.cse.wustl.edu/projects/agilla/isa.html
http://mobilab.cse.wustl.edu/projects/agilla/isa.html
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
http://www.memsic.com/wireless-sensor-networks/
http://www.omg.org/spec/UML/2.4.1
http://www.tinyos.net/

Applying Model Differences to Automate
Performance-Driven Refactoring of Software Models

Davide Arcelli, Vittorio Cortellessa, and Davide Di Ruscio

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
Università degli Studi dell’Aquila

67100 L’Aquila, Italy
{davide.arcelli,vittorio.cortellessa,davide.diruscio}@univaq.it

Abstract. Identifying and removing the causes of poor performance in software
systems are complex problems, and these issues are usually tackled after soft-
ware deployment only with human-based means. Performance antipatterns can
be used to harness these problems since they capture design patterns that are
known leading to performance problems, and they suggest refactoring actions that
can solve the problems. This paper introduces an approach to automate software
model refactoring based on performance antipatterns. A Role-Based Modeling
Language is used to model antipattern problems as Source Role Models (SRMs),
and antipattern solutions as Target Role Models (TRMs). Each (SRM, TRM) pair
is represented by a difference model that encodes refactoring actions to be op-
erated on a software model to remove the corresponding antipattern. Differences
are applied to software models through a model transformation automatically
generated by a higher-order transformation. The approach is shown at work on
an example in the e-commerce domain.

1 Introduction

Identifying and removing the causes of poor performance in software systems are
complex problems due to a variety of factors to take into account. Similarly to other
non-functional properties, performance results from interactions among software com-
ponents, underlying platforms, users and contexts [24]. Current approaches to these
problems are mostly based on the skills and experience of software developers or, in
the best cases, the ones of performance analysts. Profiling tools have been introduced
for performance monitoring of running applications [20], but it is well-known that the
cost of solving performance problems at runtime is orders of magnitude larger than
the one at early phases of the software lifecycle. Hence, instruments that help to iden-
tify and remove causes of performance problems early in the lifecycle would be very
beneficial.

In the last two decades the concept of performance antipattern has been used for
“codifying” knowledge and experience of analysts. Smith et al. [21] have ultimately
specified 14 performance antipatterns. A performance antipattern identifies a problem,
i.e. a bad practice that negatively affects software performance, and a solution, i.e. a set
of refactoring actions that can be carried out to remove it. We have based our recent
research work on this repository of knowledge with the aim of making it a cornerstone

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 312–324, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Model Differencing for Automated Performance-Driven Software Models Refactoring 313

in identifying and removing performance problems. We have first tackled the problem
of providing a less ambiguous antipatterns representation, in respect with their original
definition in natural language [7]. However, performance antipatterns are very complex
(as compared to other software patterns) because they are founded on different char-
acteristics of software systems, and they additionally include values of performance
indices. This high complexity requires multi-view representations. Thereafter, we have
introduced several techniques aimed at detecting performance antipatters in software
models [7]. More recently we undertook the problem of removing performance antipat-
terns detected in a software model by introducing a role-based approach that allows to
formalize the refactoring of the latter [3].

In this paper we build up on previous results and move a further step ahead. We work
on introducing automation in refactoring of software models that show unsatisfactory
performance indices. In particular, we present an innovative approach that uses model
differencing to represent and apply actions that remove performance antipatterns from

Fig. 1. Software model refactoring based on antipattern detection

314 D. Arcelli, V. Cortellessa, and D. Di Ruscio

software models. Goal of the paper is to introduce mechanisms that enable developers to
analyze automatically generated solutions to performance problems, instead of looking
for them only on the basis of experience.

Figure 1 shows the process envisaged to address this problem. Human roles are
explicitly shown. Rectangles represent artifacts; gears represent automated activities.

The process starts with a Software Model produced by a software designer. A per-
formance expert1 annotates the software model with performance characteristics (i.e.
workload, resource demands, etc.), and a round-trip performance engineering process
starts in order to meet performance requirements provided by the customer. At each
process iteration the (Performance-annotated) Software Model is transformed into a
Performance Model (i.e. a queueing network) that, once solved, provides Performance
Indices (i.e. response time (RT), throughput (T), and utilization (U)) [9]. If the indices
do not meet performance requirements, then the backward path of the round-trip pro-
cess is executed. A detection step produces a list of Detected Performance Antipat-
terns (APs) occurring in the software model [7]. Then, with the help of heuristic strate-
gies, the development team can identify critical antipatterns [8] and Refactoring Actions
(RefActionsj) that allow to remove them [3]. The final step of the process consists to
apply refactoring actions to the (Performance-annotated) Software Model, thus produc-
ing a refactored software model where the antipatterns have been removed. The focus
of this paper is the specification and automated application of refactoring actions, i.e.
Refactoring Actions and Refactoring Application items in Figure 1.

The paper is organized as follows: Section 2 provides background on antipatterns
and role models; Section 3 describes our approach for antipattern-based software model
refactoring; Section 4 shows the approach at work on an e-commerce case study;
Section 5 presents related work, and finally Section 6 concludes the paper.

2 Role Modeling for Antipatterns Definition and Solution

In this section we provide a background on performance antipatterns through the role-
based description of the Empty Semi Trucks (EST) antipattern [21].

The concept of role has been introduced in the last years in many contexts to express
the possibility to assign different functions to the same entity in different settings. We
have used a Role-Based Modeling Language (RBML) to annotate model entities in-
volved in performance antipatterns, and to track these entities for applying refactoring
actions that remove antipatterns. In particular, we have ported RBML, that was intro-
duced in [12] to assign roles to UML elements for applying design patterns, into the per-
formance antipattern domain. In order to do this, we have first replaced the original UML
elements on which RBML was defined with notation-independent ModelElements2.
They represent a vocabulary, called SML+ [22], used for specifying performance

1 Note that software designer and performance expert are not necessarily distinct.
2 Since we assume to have multi-view software models annotated with performance-related data

that concur to the antipattern definition, ModelElements can appear in static, dynamic and
deployment views.

Model Differencing for Automated Performance-Driven Software Models Refactoring 315

Fig. 2. Role-Based Modeling Language applied to performance antipatterns

antipatterns within a metamodel called PAML (Performance Antipattern Modeling Lan-
guage)3. The left-hand side of Figure 2 shows an excerpt of PAML/SML+.

The right-hand side of Figure 2 shows an excerpt of our RBML reference metamodel
and the relationships that we have defined with PAML [3]. Topmost boxes represent the
RBML concepts we have inherited from [12], that are: RoleModel, Role and Re-
alizationMultiplicity. A RoleModel contains a set of Roles, where each
role annotates (is played by) a certain number of ModelElements. A Realization-
Multiplicity specifies the number of elements playing a certain role. Furthermore,
we have introduced the concepts of SourceRoleModels and TargetRoleModels
(as specializations of RoleModel) in order to describe antipattern problems and solu-
tions as pairs of RoleModels, where a SourceRoleModel (SRM) represents (part
of) a problem and a TargetRoleModel (TRM) represents the corresponding so-
lution. The set of ModelElement specializations in SML+ represents target elements
(i.e. the bases) that should play the Roles (specializations) defined in RBML, thus
enabling the role-annotation of software model elements. Bases and roles have been
detailed in SML+ and RBML but not reported in Figure 2 for sake of readability. Note
that dashed boxes in Figure 2 are not complete, as other ModelElements and Roles
have been defined up to now and can be defined in future.

Different refactoring actions can be applied to solve a performance antipattern, hence
different (SRM, TRM) pairs can be associated to the same antipattern. We have used
RBML to build several (SRM, TRM) pairs. Our repository of RoleModels [2] cur-
rently contains: three pairs for the Blob antipattern, one pair for the Concurrent Pro-
cessing Systems antipattern, one pair for the Empty Semi Trucks, and two pairs for
the Pipe and Filter. We recall that Smith et al. have specified 14 performance an-
tipatterns [21], hence we cover 4/14 performance antipatterns as a starting point for
our work.

3 In the following we use subsequent notation: with a typewritten font we refer RBML
elements, whereas with a sans-serif we refer PAML/SML+ elements.

316 D. Arcelli, V. Cortellessa, and D. Di Ruscio

EST may be due to inefficient use of available bandwidth, an inefficient interface, or
both. Refactoring actions have been proposed for both the cases. We consider here the
latter one, assuming that the solution applies the Facade design pattern4.

According to the vocabulary and the detection rules defined in [7], an EST antipat-
tern occurs when there is a software entity instance (GenericSwEntityInstan-
ce) that: (i) generates an excessive 5 message traffic towards another software entity
instance (RemoteInstance), (ii) is deployed on a processing node with a high uti-
lization value, i.e. GenericSwEntityInstanceDeployNode, and (iii) the net-
work link on which the message traffic is generated shows a high utilization value,
i.e. Network. The simultaneous occurrence of such properties leads to assess that the
GenericSwEntityInstance originates an EST antipattern.

3 Model Differencing for Model Refactoring

In this section we propose our approach based on model differencing of (SRM, TRM)
pairs and model-to-model transformations for automating the application of refactor-
ings aimed at removing antipatterns from software models. Figure 3 maps the concept
of refactoring actions to the metamodeling view of our approach in the MDE domain.

In the conceptual domain, we want to apply a set of refactoring actions RefAc-
tionsj(APi) to a software model that contains a certain antipattern instance APiprob-
lem, in order to produce a new software model where an APisolution has been applied.
In the MDE domain, RefActionsj(APi) are represented by their corresponding differ-
ence model DiffModelj(APi). This model is the output of a model
transformation DiffCalculation that takes as input a (SRMj(APi), TRMj(APi))
pair describing APiproblem and APisolution. Finally, as illustrated in the bottom part
of the MDE domain, refactoring actions are applied by means of the model transforma-
tion DiffApplication that produces the (Role-annotated) Refactored Software Model
starting from the original (Role-annotated) Software Model 6. Topmost half of the MDE
domain box of Figure 3 describes the metamodels to which models
conform and their relationships (level M2 in a MDE hierarchy). Software Models con-
form to SML+. DiffModelj(APi) conforms to RBMLDIFF, i.e. a difference meta-
model corresponding to RBML. RBMLDIFF is automatically generated by means of
the MM2MMDIFF model-to-model transformation we have defined basing on the
metamodel-independent approach for differences representation proposed in [6].
RBMLDIFF contains modeling constructs able to manage all the refactoring actions
that can be operated on models conforming to RBML and can be grouped as add, delete,
change, and keep-as-is actions (see Section 2).

By exploiting a “once-defined” higher-order transformation (HOT) MMDIFF -
2DiffApplication, it is possible to automatically generate the DiffApplication

4 http://developer.java.sun.com/developer/restricted/
patterns/SessionFacade.html

5 The characterization of antipattern parameters related to system characteristics (e.g. excessive
message traffic) or to performance results (e.g. high, low utilization) is based on thresholds [7].

6 Note that Software Models are “Role-annotated” because we need to properly assign roles to
their elements to reflect the refactoring defined by the (SRMj(APi), TRMj(APi)) pair.

http://developer.java.sun.com/developer/restricted/patterns/SessionFacade.html
http://developer.java.sun.com/developer/restricted/patterns/SessionFacade.html

Model Differencing for Automated Performance-Driven Software Models Refactoring 317

Fig. 3. Meta-modeling view and model transformations of the solution step

transformation. Recall that the latter is able to concretely refactor a (Role-Annotated)
Software Model by means of a set of refactoring actions represented by
DiffModelj(APi) and induced by the (SRMj(APi), TRMj(APi)) pair. In this pa-
per, DiffModelj(APi) difference models are manually defined, but we might adopt
model comparison techniques [13] in order to automatically generate them, as similarly
done in [5,19].

In the remaining of this section, the implementation of our approach7 is detailed. It
uses EMF 8 as modeling platform, and ATL9 as model transformation language.

3.1 RBML Difference Model

The MM2MMDIFF transformation is based on the metamodel-independent ap-
proach for differences representation proposed in [6]. In particular, for each metaclass
MC of the RBML metamodel, the metaclasses AddedMC,DeletedMC and Changed-
MC are added in the generated difference metamodel to enable the representation of

7 http://www.di.univaq.it/cortelle/docs/ModelRefactoring.rar
8 http://www.eclipse.org/modeling/emf/
9 http://www.eclipse.org/atl/

http://www.di.univaq.it/cortelle/docs/ModelRefactoring.rar
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/atl/

318 D. Arcelli, V. Cortellessa, and D. Di Ruscio

additions, deletions, and changes, respectively. For instance, the metaclass
GenericSwEntityInstance of RBML induces the generation of the
AddedGenericSwEntityInstance, DeletedGenericSwEntityInstan-
ce, and ChangedGenericSwEntityInstancemetaclasses. As better explained
later in the paper, in order to represent additions, deletions, and changes of struc-
tural features (in the elements of the considered software model), RBMLDIFF contains
also the metaclasses AddedFeature, DeletedFeature, and ChangedFeatu-
re, respectively.

Fig. 4. Sample difference model

Figure 4 shows an excerpt of the difference model for the (SRM1(EST), TRM1-
(EST)) pair of the EST antipattern discussed in the previous section. The model repre-
sents i) the addition of new LocalFacade and RemoteFacade roles and ii) changes
of theGenericSwEntityInstanceDeployNodeelement. On the right-hand side
of the figure, some properties have been represented. In particular, the metaclass Chan-
gedGenericSwEntityInstanceDeployNode represents the changes which
have been operated on the ProcessNode (see the base attribute) where the Gene-
ricSwEntityInstance is deployed. In particular, the RemoteFacade element
is deployed on it. In fact, according to the properties shown on the right-hand side of the
figure, the deploy feature of ChangedGenericSwEntityInstanceDeploy-
Node is changed (see the ChangedFeature element named deploy, which refers to
the updated deploy feature whose type is AddedRemoteFacade).

3.2 Applying Differences for Model Refactoring

A fragment of the ATL implementation of the DiffApplication model transformation
is shown in Listing 1.1. The transformation implements the rules for applying on the
source software model (referred by softwareModel in the code) the additions, dele-
tions, and changes specified in the difference model (referred by delta in the code). In
particular, for each metaclass MC of RBML, the following rules are provided:

Model Differencing for Automated Performance-Driven Software Models Refactoring 319

– AddedMC: it manages the difference model elements that conform to the
AddedMC metaclass of RBMLDIFF. For each element, the rule creates a new el-
ement conforming to the metaclass of the SML+ metamodel referred by the fea-
ture base of the considered AddedMC role. For instance, lines 3-15 of Listing 1.1
are related to the management of AddedRemoteFacade elements. For each of
them, a corresponding SoftwareEntityInstance element is created. By consider-
ing the difference model in Figure 4, the rule is applied on the represented added
RemoteFacade having SoftwareEntityInstance as base element;

– ChangedMC: according to the modifications specified in the difference model by
means of instances of the metaclass ChangedMC, the rule generates refactored
elements of the SML+ metamodel that play the MC role. For instance, lines 16-
29 of Listing 1.1 contain the transformation rule managing the ChangedGene-
ricSwEntityInstanceDeployNodes. For each of them a target Process-
Node element is generated, and to set the changed structural features, dedicated
helpers are exploited. In particular, to specify the value of the reference deploy for
referring to the node where the changed process node is deployed the getChan-

ged deploy helper is used (see lines 23 and 31-35). By considering the changed
process node the helper retrieves all the deploy elements that have kept unchanged
and those that have been added (e.g., see the software entity instance role named
RemoteFacade represented in Figure 4);

Listing 1.1. Fragment of the DiffApplication ATL transformation
1module deltaApplication;
2create refSwModel : SML from swModel : SML, srm : RBML, delta : RBMLDIFF;
3rule AddedRemoteFacade {
4 from
5 s: ROLEPROFILEDIFF!AddedRemoteFacade (
6 s.base.oclIsTypeOf(’SML!SoftwareEntityInstance’))
7 to
8 t : SML!SoftwareEntityInstance (
9 name <- s.name,

10 ...
11)
12 do {
13 thisModule.generatedStaticView.subviews->first().modelElements <- t;
14 }
15}
16rule ChangedGenericSwEntityInstanceDeployNode {
17 from
18 s : ROLEPROFILEDIFF!ChangedGenericSwEntityInstanceDeployNode (
19 s.base.oclIsTypeOf(’SML!ProcessNode’))
20 to
21 t: SML!ProcessNode (
22 name <- s.applicationElement.getDiscoveredProcessNode().name,
23 deploy <- s.getChanged_deploy(),
24 ...
25)
26 do {
27 thisModule.generatedDeploymentView.subviews->first().modelElements <- t;
28 }
29}
30...
31helper context ROLEPROFILEDIFF!ChangedGenericSwEntityInstanceDeployNode def:

getChanged_deploy() : Sequence(SML!SoftwareEntityInstance) =
32 self.applicationElement.getDiscoveredProcessNode().deploy
33 ->union(ROLEPROFILEDIFF!ChangedFeature.allInstances()
34 ->select(cf | cf.owner = self and cf.name = ’deploy’)
35 ->first().updatedFeature.type->collect(e|thisModule.resolveTemp(e ,’t’)))

;

320 D. Arcelli, V. Cortellessa, and D. Di Ruscio

Concerning the management of deleted role elements (i.e., instances of the metaclass
DeletedMC of RBMLDIFF), no rules are provided for them, because they do not
contribute to the generation of any target model element. Contrariwise, additional rules
are provided to manage the unchanged elements of the source software model. In this
respect, for each metaclass MC in the SML+ metamodel a corresponding CopyMC rule
is generated. Such rule copies the unmodified model elements playing the MC role.

A higher-order transformation MMDIFF2DiffApplication has been defined to
generate the DiffApplication transformation.

4 Application Example

In this section we present a case study in the e-commerce domain as an application ex-
ample of our approach. We first describe the (Performance-Annotated) Software Model
of the E-Commerce System (ECS), on which the process in Figure 1 is stepwise applied.
Finally, the obtained numerical results are discussed.

ECS is a web-based system that manages business data related to generic products.
Among all provided services, we focus in this paper on the customer registration sce-
nario, namely Register service (see [2] for a complete figure of ECS).

A performance requirement has been defined on the average response time of Regi-
ster: it has to be completed in 1.4 seconds under workloads of 1, 100 and 200 users.

The performance analysis has been conducted by transforming the software model
into a Queueing Network (QN) model [9], and by solving the latter with JMT [4].

Table 1. Response times of the Register service

Software Model Number of users RT(Register) <= 1.4 sec

1 1.55992 sec
ECS 100 1.56769 sec

200 1.65494 sec
1 0.9199 sec

ECS\ 100 0.9514 sec
{EST − TRM1} 200 1.584 sec

Table 1 reports the response times of the Register service. The first row contains data
of the original ECS model (i.e. without any refactoring). The service shows response
times that do not fulfill the required one for all considered workloads.

The antipatterns detection sub-process [7] reported four performance antipattern oc-
currences: Blob, Concurrent Processing Systems (CPS), Empty Semi Trucks (EST),
and Pipe and Filter (P&F). For sake of space, in the following we only discuss EST [2].

Figure 5 shows the (Role-Annotated) Software Model. The EST antipattern occur-
rence in the ECS can be described as follows: UserController originates the EST, since
it sends to the Database more than two (see ThresholdSpecification in Figure 5) re-
mote messages, and the communicating instances are remotely deployed.

Figure 6 shows the (Role-annotated) refactored ECS software model after the refac-
toring transformation induced by the corresponding DiffModel1(EST) is applied. In
agreement with TRM1(EST): (i) two new software entity instances have been added,
i.e. RemoteFacade and LocalFacade (see Figure 6(a)); (ii) the communication has been

Model Differencing for Automated Performance-Driven Software Models Refactoring 321

Fig. 5. ECS case study - (Role-Annotated) Software Model restricted to the EST occurrence

refactored and local messages have replaced remote ones (see Figure 6(b)); (iii) Re-
moteFacade and LocalFacade have been deployed on LibraryNode and DatabaseNode,
respectively (see Figure 6(c)). This refactoring removes the EST occurrence.

Fig. 6. ECS case study - Refactored Software Model restricted to the EST occurrence

322 D. Arcelli, V. Cortellessa, and D. Di Ruscio

In order to check whether the refactoring actions are effective, the second row of
Table 1 reports response times of the refactored ECS. Refactoring actions are beneficial
for populations of 1 and 100 users, whose new response times become lower than the
required one. Instead, for a population of 200 users the Register service maintains a
response time higher than the required one, probably due to some other antipattern.

5 Related Work

An extensive overview of existing research in the field of software refactoring is pro-
vided in [17]. In literature many approaches often apply the refactoring to the program
itself (i.e. the source code), but it is difficult to maintain consistency between the refac-
tored code and the other software artifacts. Hence, processes and tools that address
refactoring in a more consistent, generic, scalable and flexible way are needed.

In general, there has been a significant effort in the area of refactoring software de-
sign patterns. For example, UML-based design patterns have been specified in [12] in
terms of UML metamodel concepts. However, differently from patterns, antipatterns
look as bad design practices in software systems, and describe commonly occurring
solutions to solve them [21,15].

Performance antipatterns have been documented and discussed in different papers:
technology-independent antipatterns have been defined in [21] and they represent the
main reference in our work; technology-specific antipatterns have been specified in [11].
Nevertheless, few model-based approaches for automated performance diagnosis and
improvement have been introduced up today in the software modeling domain [14,18].

In [25] performance problems are identified before the implementation of the soft-
ware systems, but they are based only on bottlenecks and long paths, identified by
means of performance analysis on Layered Queueing Network (LQN) models.

In [1] we have discussed pros and cons of refactoring either software or performance
models, by comparing two approaches we have recently introduced: one based on de-
tection and solution of performance antipatterns on software models, and another one
based on bidirectional transformations between software and performance models.

Concerning model differencing, over the last years a number of techniques have
been adopted for managing different activities in software development and evolution.
For instance, to support transformation testing [16], coupled evolution of metamodel
and models [5], data migration [23], and to support the upgrade of open source systems
[10]. However, the adoption of model differencing in the area of software refactoring
based on performance analysis is a novelty of this paper.

6 Conclusions

In our previous work [3], we have introduced a first definition of role-based language
to represent (SRM, TRM) pairs of performance antipatterns. In this paper, we have
refined its definition and introduced an approach to refactor software models basing on
results of performance analysis. This result has been achieved by using sophisticated
model-driven techniques, i.e. model differencing.

Model Differencing for Automated Performance-Driven Software Models Refactoring 323

Our experience represents a first promising step towards the automation of this type
of refactoring. In fact, by means of a HOT (which is written only once) we can auto-
matically generate a transformation that applies refactorings described by (SRM, TRM)
pairs. This allows to avoid writing an ad-hoc transformation for each of the latter.

Several aspects of this approach still need more investigation: (i) an extension of the
(SRM, TRM) pairs repository would allow more extensive validation of the approach;
(ii) model view consistency has to be taken into account for allowing automated propa-
gation of changes among views; (iii) the refactoring transformation generated by model
differences could contain ambiguities, due to the application order of refactoring steps,
thus it is our intent to study these ambiguities; (iv) in this paper difference models are
manually built, as conforming to the difference metamodel, but in future we aim at us-
ing automated model-driven techniques for generating a difference model starting from
a (SRM, TRM) pair (e.g., see [5,19]); this step would allow to achieve a full automation
of our process.

Acknowledgments. This work has been supported by EOARD, Grant no. FA8655-11-
1-3055 on “Consistent evolution of software artifacts and non-functional models”.

References

1. Arcelli, D., Cortellessa, V.: Software model refactoring based on performance analysis: better
working on software or performance side? In: Buhnova, B., Happe, L., Kofron, J. (eds.)
FESCA. EPTCS, vol. 108, pp. 33–47 (2013)

2. Arcelli, D., Cortellessa, V., Trubiani, C.: A repository of Source and Target Role Models for
software performance antipatterns. Technical report (2011),
http://www.di.univaq.it/cortelle/docs/005-2011-report.pdf

3. Arcelli, D., Cortellessa, V., Trubiani, C.: Antipattern-based model refactoring for software
performance improvement. In: Proceedings of the 12th QoSA (2012)

4. Casale, G., Serazzi, G.: Quantitative system evaluation with java modeling tools. In: ICPE,
pp. 449–454 (2011)

5. Cicchetti, A., Di Ruscio, D., Iovino, L., Pierantonio, A.: Managing the evolution of data-
intensive web applications by model-driven techniques. Software and Systems Model-
ing 12(1), 53–83 (2013)

6. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to Differ-
ence Representation. Journal of Object Technology 6(9), 165–185 (2007)

7. Cortellessa, V., Di Marco, A., Trubiani, C.: An approach for modeling and detecting soft-
ware performance antipatterns based on first-order logics. Journal of Software and Systems
Modeling (2012), doi:10.1007/s10270-012-0246-z.

8. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: A process to effectively identify
“Guilty” performance antipatterns. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010.
LNCS, vol. 6013, pp. 368–382. Springer, Heidelberg (2010)

9. Cortellessa, V., Mirandola, R.: PRIMA-UML: a performance validation incremental method-
ology on early UML diagrams. Sci. Comput. Program. 44(1), 101–129 (2002)

10. Di Cosmo, R., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Supporting soft-
ware evolution in component-based foss systems. Science of Computer Programming 76(12),
1144–1160 (2011), http://dx.doi.org/10.1016/j.scico.2010.11.001

11. Dudney, B., Asbury, S., Krozak, J.K., Wittkopf, K.: J2EE Antipatterns. Wiley (2003)

http://www.di.univaq.it/cortelle/docs/005-2011-report.pdf
http://dx.doi.org/10.1016/j.scico.2010.11.001

324 D. Arcelli, V. Cortellessa, and D. Di Ruscio

12. France, R.B., Kim, D.-K., Ghosh, S., Song, E.: A UML-Based Pattern Specification Tech-
nique. IEEE Trans. Software Eng. 30(3), 193–206 (2004)

13. Kolovos, D.S., Di Ruscio, D., Paige, R.F., Pierantonio, A.: Different models for model match-
ing: An analysis of approaches to support model differencing. In: CVSM at ICSE (2009)

14. Koziolek, A., Koziolek, H., Reussner, R.: Peropteryx: automated application of tactics in
multi-objective software architecture optimization. In: QoSA/ISARCS, pp. 33–42 (2011)

15. Laplante, P.A., Neill, C.J.: AntiPatterns: Identification, Refactoring and Management. Auer-
bach (2005)

16. Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. Model-Driven
Software Development (2005)

17. Mens, T., Taentzer, G.: Model-driven software refactoring. In: Dig, D. (ed.) WRT, pp. 25–27
(2007)

18. Parsons, T., Murphy, J.: Detecting performance antipatterns in component based enterprise
systems. Journal of Object Technology 7(3), 55–90 (2008)

19. Pierantonio, A., Iovino, L., Di Rocco, J.: Bridging state-based differencing and co-evolution.
In: Models and Evolution Workshop at MODELS (September 2012)

20. Ramachandran, K., Fathi, K., Rao, B.: Recent trends in systems performance monitoring &
failure diagnosis. In: IEEM, pp. 2193–2200 (2010)

21. Smith, C.U., Williams, L.G.: More new software antipatterns: Even more ways to shoot
yourself in the foot. In: CMG Conference, pp. 717–725 (2003)

22. Trubiani, C.: A model-based framework for software performance feedback. In: Dingel, J.,
Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 19–34. Springer, Heidelberg (2011)

23. Vermolen, S., Visser, E.: Heterogeneous Coupled Evolution of Software Languages. In: Czar-
necki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 630–644. Springer, Heidelberg (2008)

24. Woodside, C.M., Franks, G., Petriu, D.C.: The future of software performance engineering.
In: Workshop on the Future of Software Engineering (FOSE), pp. 171–187 (2007)

25. Xu, J.: Rule-based automatic software performance diagnosis and improvement. In: Work-
shop on Software and Performance (WOSP), pp. 1–12 (2008)

Reduction of Subtask Dispersion
in Fork-Join Systems

Iryna Tsimashenka and William J. Knottenbelt

Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, United Kingdom
{it09,wjk}@doc.ic.ac.uk

Abstract. Fork-join and split-merge queueing systems are well-known abstrac-
tions of parallel systems in which each incoming task splits into subtasks that are
processed by a set of parallel servers. A task exits the system when all of its sub-
tasks have completed service. Two key metrics of interest in such systems are task
response time and subtask dispersion. This paper presents a technique applicable
to a class of fork-join systems with heterogeneous exponentially distributed ser-
vice times that is able to reduce subtask dispersion with only a marginal increase
in task response time. Achieving this is challenging since the unsynchronised op-
eration of fork-join systems naturally militates against low subtask dispersion.
Our approach builds on our earlier research examining subtask dispersion and
response time in split-merge systems, and involves the frequent application and
updating of delays to the subtasks at the head of the parallel service queues. Nu-
merical results show the ability to reduce dispersion in fork-join systems to levels
comparable with or below that observed in all varieties of split-merge systems
while retaining the response time and throughput benefits of a fork-join system.

Keywords: Fork-Join System, Subtask Dispersion, Task Response Time.

1 Introduction

Nowadays parallel systems are becoming more prevalent than ever, with large auto-
mated warehouses, concurrent computing systems and distributed storage systems tak-
ing centre stage in the world of industry. Despite the fact that performance and opera-
tional efficiency are primary concerns in these systems, there are significant challenges
from a modelling perspective in predicting and optimising their dynamic behaviour.

Queueing network models are natural abstractions for representing the flow and pro-
cessing of tasks in parallel systems in which high-level tasks split into subtasks which
are concurrently processed by a set of (heterogeneous) parallel servers. This paper fo-
cuses on two subclasses of queueing network models for parallel systems, namely fork-
join and split-merge systems [3]. Definitions and operational characteristics of each of
these two kinds of system are presented in the next section.

Two performance metrics of interest in these systems are task response time – that
is the time taken from the entry of a task into the system until its exit – and subtask
dispersion – that is the difference in time between the service completions of the first
and last subtasks originating from a given task. Since subtasks in a fork-join system

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 325–336, 2013.
© Springer-Verlag Berlin Heidelberg 2013

326 I. Tsimashenka and W.J. Knottenbelt

are subject to less synchronisation than those in a split-merge system, the structure of
a fork-join system naturally yields lower response times but higher subtask dispersion
when compared to a split-merge system with similar parallel service time distributions.

In this paper we present an online technique for applying judiciously-chosen de-
lays to subtask processing times in elementary fork-join systems with heterogeneous
exponential service times. The technique reduces subtask dispersion significantly with
only a marginal impact on task response time. Our method assumes non-preemptive
scheduling; that is, once subtasks begin service they are executed to completion. Al-
though preemption gives more flexibility for scheduling from a theoretical perspective,
preemptive scheduling can lead to considerable overhead when applied in practice [12].

This paper makes the following specific contributions over our previous work ex-
ploring subtask dispersion and task response time in parallel systems [15, 24–26]:

1. We extend our modelling capability to fork-join systems, rather than split-merge
systems. Since fork-join systems are more widely deployed in practice owing to
their greater efficiency, this means our present technique is more applicable to the
realistic modelling of modern parallel systems.

2. In contrast to our previous algorithms which were static, the method we present
here is a dynamic online one that is sensitive to the current state of the system. Not
only is it to be expected that a dynamic method will outperform any static one – at
least in the absence of significant scheduling overhead (see e.g. [13,16,19,21]), but
also our dynamic method can support non-stationary workloads.

The remainder of the paper is organised as follows. Section 2 presents relevant pre-
liminaries including details of the parallel processing systems considered and the the-
ory of homogeneous and heterogenous order statistics (subsequently applied in com-
puting state-dependent subtask delays). Section 3 elaborates on the two performance
metrics we consider and recaps important results from the literature related to each
metric and the trade-off between them. Section 4 describes our method for the online
control of subtask dispersion. Section 5 presents numerical results showing the ability
of our methodology to simultaneously achieve low subtask dispersion (better even that
than achieved by the best static algorithm for reducing subtask dispersion in split-merge
systems), and low response time (only slightly higher than a fork-join system without
subtask delays). Section 6 concludes.

2 Preliminaries

2.1 Parallel Processing Systems

Fork-Join. An elementary fork-join system (see Fig. 1) is composed of N parallel het-
erogeneous FCFS service queues, fork and join points and join queues (join buffers)
for completed subtasks [3]. When a task arrives in the system (usually assumed to hap-
pen according to a Poisson process with mean rate λ) it instantaneously enters the fork
point, where it forks into N independent subtasks. Each subtask enters the queue of its
corresponding parallel server. Here we assume parallel server i processes its queue of
subtasks according to an exponential service time distribution with mean service time

Reduction of Subtask Dispersion in Fork-Join Systems 327

��

��

��

λ

Fork
point

Join
point

Fig. 1. Fork–Join queueing model

��

��

��

λ

Split
point

Merge
point

Fig. 2. Split–Merge queueing model

1/μi, i = 1, . . . , N . After service, a subtask enters a join queue. Only when all subtasks
(of a particular task) are present in the join queues does the original task instantaneously
exit the system via the join point.

Split-Merge. A more synchronised type of parallel system is the split-merge system
(see Fig. 2), where the system processes only one task at a time. A split-merge system
consists of split and merge points, a FCFS queue before the split point (split queue) and
several heterogeneous parallel servers with queueing capability after service (merge
buffers). When a task arrives in the system (usually assumed to happen according to a
Poisson process with mean rate λ) it joins the split queue. Whenever all servers are idle
and the split queue is not empty, a task is taken from the head of the split queue and is
injected into the system, splitting into N subtasks at the split point. Each subtask enters
the queue of its corresponding parallel server (where it is served according to a service
time distribution with mean time 1/μi, i = 1, . . . , N). After service, a subtask enters
a merge buffer. Only when all subtasks (of a particular task) are present in the merge
buffers does the original task instantaneously exit the system via the merge point.

Join and Merge Buffers. We note that in many real-life applications the join/merge
buffers are managed as a single shared physical space set aside for the storage of par-
tially completed subtasks. In such cases we term this space the output buffer. Careful
management of the arrival times of subtasks into the output buffer is vital especially

328 I. Tsimashenka and W.J. Knottenbelt

in circumstances where it occupies limited physical space and/or where it is highly
utilised. One way to achieve this is to maintain low levels of subtask dispersion.

2.2 Theory of Order Statistics

Ordinary (homogeneous) order statistics [6] enable reasoning about sorted samples
drawn from independent random variables having the same underlying distribution.

Definition 1. If iid random variables X1, X2, . . . , Xn each having distribution F (x)
are arranged in the increasing order X(1) ≤ X(2) ≤ . . . ≤ X(n), then X(i) is the ith
order statistic (1 ≤ i ≤ n).

The extremes are given by X(1) (the minimum order statistic), and X(n) (the maximum
order statistic). X(n) −X(1) is the range.

2.3 Theory of Heterogeneous Order Statistics

Heterogeneous order statistics [7] enable reasoning about sorted samples drawn from
independent, but not necessarily identically distributed (inid) random variables.

Definition 2. If inid random variables X1, X2, . . . , Xn each having distribution Fi(x),
are arranged in the increasing order X(1) ≤ X(2) ≤ X(3) ≤ . . . ≤ X(n), then X(k) is
the kth heterogeneous order statistic having corresponding cdf F(k)(x) (1 ≤ k ≤ n).

The cumulative distribution functions of the minimum and maximum heterogeneous
order statistics are:

F(1)(t) = Pr{X(1) ≤ t} = 1−
n∏

i=1

[1− Fi(t)],

and

F(n)(t) = Pr{X(n) ≤ t} =
n∏

i=1

Fi(t).

The cumulative distribution function of the range X(n) −X(1) is [26]:

Frange(t) =

n∑
i=1

∫ ∞

−∞
fi(x)

n∏
j=1,j �=i

[Fj(x + t)− Fj(x)] dx (1)

3 Metrics

There are two important metrics in fork-join and split-merge systems:

– Task response time, that is the time taken from the entry of a task into the system
until its exit. This has been the primary focus of research effort over many decades
(see e.g. [1, 2, 4, 5, 8–11, 14, 17, 18, 20, 22, 23, 27–30]). The vast majority of this
work targets the mean (and rarely higher moments) of task response time and/or
the stationary distribution of the number of tasks queued at parallel servers.

Reduction of Subtask Dispersion in Fork-Join Systems 329

Low Med High
Subtask Dispersion

Low

Med

High
Ta

sk
R

es
po

ns
e

T
im

e

� Fork-Join with dispersion-optimised delays (present paper) �
Fork-Join

� Split-Merge

� Split-Merge with trade-off-optimised delays [25]

�Split-Merge with dispersion-optimised delays [24, 26]

Fig. 3. Task response time vs. subtask dispersion of fork-join and split-merge queues with and
without optimised subtask delays

– Subtask Dispersion, that is the difference in time between the service completions
of the first and last subtasks of a given task. This is an especially important metric
in the context of automated warehouses which process orders made up of multiple
items. In such systems the first arrival of a subtask in the output buffer triggers
reservation of physical space for that subtask and its siblings. Only when the fi-
nal subtask belonging to a task has arrived in the output buffer can the space be
freed. Efficient management of the output buffer space therefore requires the times
of arrival of a subtask and its siblings in the output buffer to be clustered as close
together as possible. It is also a consideration in other environments like full ser-
vice restaurants, where customer satisfaction requires that the food for each course
ordered by each table arrives at nearly the same time, and that each dish is hot
(if appropriate) and freshly prepared. Research interest in this metric is relatively
recent, see e.g. [24–26].

As illustrated in Fig. 3 these metrics are in tension in the sense that taking action
to reduce one usually results in an increase in another; this is especially the case for
high-intensity workloads. Unmodified fork-join systems yield low task response times
(and therefore higher maximum sustainable system throughput), but subtask dispersion
is high under load. Conversely, unmodified split-merge systems are characterised by low
to moderate subtask dispersion, but can suffer from higher task response times (and there-
fore reduced maximum sustainable system throughput) under load. As we have shown
in our previous work, adding delays to subtask processing times in split-merge systems
can help to reduce mean subtask dispersion [24] and/or percentiles of subtask disper-

330 I. Tsimashenka and W.J. Knottenbelt

sion [26], but the sole focus on subtask dispersion only serves to exacerbate the problem
of poor task response times under load. One solution is to apply load-dependent subtask
delays which minimise the product of expected task response time and expected sub-
task dispersion [25]. This is highly effective at achieving a balance between the metrics;
however, maximum sustainable system throughput is still limited to that achievable un-
der an unmodified split-merge system. Our goal in the present work is to find a way to
reduce dispersion in fork-join systems to levels comparable with or below that observed
in all varieties of split-merge systems while retaining the response time and throughput
benefits of a fork-join system.

4 On Online Technique for Reducing Subtask Dispersion in
Fork-Join Systems

In the following we consider a fork-join system with N parallel heterogeneous servers,
the ith of which has an exponential service time distribution with rate parameter μi, i.e.
Fi(x) = 1 − e−μix. To describe the state of the system at time t let ni(t) denote the
number subtasks present in parallel server queue i; as such N(maxi ni(t))−

∑
i ni(t)

subtasks will be present in the join queues (or output buffer) at time t.
Our strategy is to let the system operate in its normal fork-join fashion, but to delay

the start of service of certain of the subtasks that are at the head of the parallel service
queues. In particular, at every time instant at which a hitherto-unserviced subtask S
reaches the front of a parallel queue, we take the following control actions:

1. If any of the siblings of S have already completed service then the best mean sub-
task dispersion and task response time with respect to S’s task are simultaneously
achieved by immediately beginning service of S and also of any of its siblings that
are at the front of their parallel queue.

2. Otherwise all siblings are still present in the parallel queues and we apply delays
to S and its siblings that are at the front of their parallel queues and which have
not yet entered service. We choose appropriate delays (which may include zero
delays) by observing that, from the point of view of subtask S and its siblings,
the system at that instant is equivalent to an N -server split-merge system in which
parallel server i has service time distribution Erlang(qi(t) + 1, μi), where qi(t) is
a number of subtasks in front of S or its sibling subtask in parallel queue i at time
t. The qi(t) form vector q(t) =

(
q1(t), q2(t), . . . , qN (t)

)
. We can then exploit the

optimisation method we developed in our previous work [24–26] to determine a
vector of (near-)optimal deterministic subtask delays d =

(
d1, d2, . . . , dN

)
. Here

element di denotes the deterministic delay which should notionally be applied to
parallel server i. In fact we only adopt the delays corresponding to S and its siblings
that are at the front of their parallel queues and which have not yet entered service
(note this may involve overwriting a currently pending delay).

Similarly at time instants at which a subtask S enters a join queue (or output buffer)
then we immediately begin service of any of the siblings of S that are at the front of
their parallel queues.

Reduction of Subtask Dispersion in Fork-Join Systems 331

The objective function of the optimisation is mean subtask dispersion, computed as
the difference between the maximum and minimum heterogeneous order statistics of
the split-merge-equivalent system with delays. Utilising the linearity property of the
expectation operator over dependent variables, we have:

E[Dd] =
(
E[Xd

(N) −Xd
(1)]
)

=
(
E[Xd

(N)]− E[Xd
(1)]
)

=

∞∫
0

(
1−

N∏
i=1

Fi(x− di)
)
dx−

∞∫
0

(
1−

(
1−

N∏
i=1

(1− Fi(x− di))
))

dx (2)

where Fi(x − di) is a shifted Erlang(qi(t) + 1, μi) cumulative distribution function.
When optimising, we solve for:

dmin = arg min
d

E[Dd] (3)

while additionally applying the constraint (
∏
i

di = 0) to avoid the addition of superflu-

ous delays to bottleneck queues.
The optimisation procedure itself is based on Newton’s method. Practically, it utilises

numerical integration to evaluate the objective function and exploits a disk-based mem-
oisation technique to dramatically reduce the time cost of computing optimised delay
vectors for system states that have already been encountered in the current execution or
in some previous execution.

5 Numerical Results

In this section we present results from C++ simulations of fork-join and split-merge
queueing systems that employ the dynamic optimisation of the present paper for fork-
join systems and the static optimisation techniques developed in our previous work
[24,25] for split-merge systems. The simulations collect a range of performance-related
statistics, e.g. mean task response time, mean subtask dispersion, mean output utilisa-
tion of join/merge buffers, task throughput and distributions of subtask dispersion. The
simulations were performed on a 3.5GHz Intel Core-i5 workstation with 8GB RAM.
Each simulation run is made up of 10 replicas, and each replica consists of a warm-up
period of the processing of 250 000 tasks followed by an measurement period of the
processing of 250 000 tasks. For the static optimisation techniques, it requires approx-
imately one second to run each replica, and for the dynamic optimisation of fork-join
simulator it takes around 7.5 minutes for each replica. The replicas are used to put 95%
confidence intervals (CIs) on all measures. Results are reported to three decimal places.

332 I. Tsimashenka and W.J. Knottenbelt

As our case study, consider a parallel system with Poisson arrivals with rate parame-
ter λ = 0.78 tasks/time unit and 3 parallel service nodes with exponential service time
density functions: Exp(1), Exp(5), Exp(10).

In this context, we compute measures of subtask dispersion and of task response time
of five different types of fork-join and split-merge queueing systems:

1. A fork-join queueing system (without subtask delays). Here the mean task response
time is E[Rd=0] = 4.553 (95% CI [4.504, 4.602]) time units and mean subtask
dispersion E[Dd=0] = 4.490 (95% CI [4.429, 4.54]) time units. The mean number
of subtasks in the output buffer is 6.862 (95% CI [6.79, 6.93]).

2. A fork-join queueing system utilising our dynamic online algorithm for reducing
mean subtask dispersion. Here mean task response time is E[Rdmin] = 4.703 (95%
CI [4.586, 4.819]) time units and mean subtask dispersion isE[Ddmin] = 0.752(95%
CI [0.745, 0.759]) time units. The mean number of subtasks in the output buffer is
1.081 (95% CI [1.071, 1.091]). When compared with the fork-join system without
subtask delays, we observe mean task response time increased very slightly by 3.3%
but mean subtask dispersion dropped very dramatically by 83%. Similarly, the mean
number of subtasks in the output buffer decreased by 84%.

3. A split-merge queueing system (without subtask delays). Mean task response time
is E
[
Rd=0,λ=0.78

]
= 5.212 (95% CI [5.1526, 5.271]) time units and mean subtask

dispersion is E[Dd=0] = 0.976 (95% CI [0.975, 0.977]) time units. The mean
number of subtasks in the output buffer is 1.416 (95% CI [1.415, 1.418]). This
method is thus completely dominated by our dynamic online algorithm for each of
these metrics, by factors of 11%, 30% and 31% respectively.

4. A split-merge queueing system with delays applied to reduce mean subtask disper-
stion [24]. The vector of optimised delays is:

dmin = (0, 0.553, 0.617)

Mean task response time is E
[
Rdmin,λ=0.78

]
= 63.02(95% CI [58.21, 67.83]) time

units and mean subtask dispersion is E[Ddmin] = 0.783 (95% CI [0.780, 0.785])
time units. The mean number of subtasks in the output buffer is 1.029 (95% CI
[1.027, 1.031]). This method is dominated by our dynamic online algorithm with
respect to the mean task response time and mean subtask dispersion metrics, by
factors of 1240% and 4% respectively. There is however a 5% improvement with
respect to the mean number of subtasks in the output buffer.

5. A split-merge queueing system with delays applied to optimise the product of mean
task response time and mean subtask dispersion [25]. The vector of optimised de-
lays is:

dmin = (0.0, 0.0398, 0.0673)

Mean task response time is E
[
Rdmin,λ=0.78

]
= 5.329(95% CI [5.272, 5.385]) time

units and mean subtask dispersion is E[Ddmin] = 0.9343(95%CI [0.9336, 0.9349])
time units. The mean number of subtasks in the output buffer is 1.355 (95% CI
[1.353, 1.357]). While improving dramatically on the mean task response of the
previous case, the method is completely dominated by our dynamic online algo-
rithm for each metric, by factors of 13%, 24% and 25% respectively.

Reduction of Subtask Dispersion in Fork-Join Systems 333

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

fork-join
fork-join with dispersion-optimised delays

split-merge
split-merge with dispersion-optimised delays

split-merge with trade-off-optimised delays

P
r(
R

d
,λ

≤
t)

t
Fig. 4. Distributions of task response time for fork-join and split-merge queueing systems with
and without optimised subtask delays. λ = 0.78

Turning now to distributions of task response time, Fig. 4 demonstrates that the task
response time cdf of the fork-join system with dispersion-optimised delays is very close
to that of the fork-join system without subtask delays. Here, the response time cdf of
the split-merge system without subtask delays is marginally worse than that of the fork-
join system, but after applying dispersion-optimised delays response time suffers heav-
ily. Applying delays optimised for the subtask dispersion–task response time trade-off
impacts only marginally on task response time.

Fig. 5 shows the corresponding distributions of subtask dispersion. The poor subtask
dispersion of the fork-join system without subtask delays is evident. Applying subtask
delays optimised for the subtask dispersion–task response time trade-off yields a similar
subtask dispersion profile to that of the split-merge system without delays. The subtask
dispersion profile of the fork-join system with dispersion-optimised delays is compet-
itive with that of the split-merge system with dispersion-optimised delays, and even
dominates it for percentiles of subtask dispersion below 70%.

Fig. 6 shows how mean task response time varies with various task arrival rates un-
der the various policies. We observe the split-merge system with dispersion-optimised
delays has the lowest maximum sustainable system throughput, followed by the split-
merge system with delays optimised for the subtask dispersion–task response time
trade-off, and then the split-merge system without delays. The highest maximum sus-
tainable system throughput is provided by the fork-join system utilising dispersion-
optimised subtask delays and the fork-join system without subtask delays.

334 I. Tsimashenka and W.J. Knottenbelt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

fork-join
fork-join with dispersion-optimised delays

split-merge
split-merge with dispersion-optimised delays

split-merge with trade-off-optimised delays
P
r(
D

≤
t)

t

Fig. 5. Distributions of subtask dispersion in fork-join and split-merge queues with and without
optimised subtask delays. λ = 0.78

λ = 0.78

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fork-join
fork-join with dispersion-optimised delays

split-merge
split-merge with dispersion-optimised delays

split-merge with trade-off-optimised delays

E
[R

d
,λ
]

λ(tasks/unit time)

Fig. 6. Expected response time of case study of fork-join and split-merge systems for various
customer arrival rates

Reduction of Subtask Dispersion in Fork-Join Systems 335

6 Conclusion

In this paper we considered the problem of reducing subtask dispersion in elemen-
tary fork-join queueing systems. To control this metric, we derived an online algorithm
which dynamically computes and applies state-dependent delays to subtasks and their
siblings at various time instants.

We demonstrated our algorithm on a case study parallel system subjected to five
different kinds of split-merge and fork-join queueing policies. The results show how
the technique proposed in the present paper is able to deliver low subtask dispersion
competitive with split-merge-based systems while simultaneously delivering low task
response times competitive with fork-join-based systems.

Our current research can no doubt be extended to apply to fork-join systems with
non-exponential services times. Certainly extension to Erlang and phase-type service
time distributions is likely to be straightforward given appropriate extensions to the
system state vector.

References

1. Baccelli, F., Makowski, A.M., Shwartz, A.: The fork-join queue and related systems with
synchronization constraints: Stochastic ordering and computable bounds. Advances in Ap-
plied Probability 21(3), 629–660 (1989)

2. Baccelli, F., Massey, W.A., Towsley, D.: Acyclic fork-join queuing networks. Journal of
ACM 36(3), 615–642 (1989)

3. Bolch, G., et al.: Queueing Networks and Markov Chains. J. Wiley & Sons, Inc. (2006)
4. Chen, R.J.: A hybrid solution of fork/join synchronization in parallel queues. IEEE Transac-

tions on Parallel and Distributed Systems 12(8), 829–845 (2001)
5. Chen, R.J.: An upper bound solution for homogeneous fork/join queuing systems. IEEE

Transactions on Parallel and Distributed Systems 22(5), 874–878 (2011)
6. David, H.A.: Order Statistics. Wiley Series in Probability and Mathematical Statistics. John

Wiley (1980)
7. David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley Series in Probability and Math-

ematical Statistics. John Wiley (2003)
8. Flatto, L.: Two parallel queues created by arrivals with two demands II. SIAM Journal on

Applied Mathematics 45(5), 861–878 (1985)
9. Flatto, L., Hahn, S.: Two parallel queues created by arrivals with two demands I. SIAM

Journal on Applied Mathematics 44(5), 1041–1053 (1984)
10. Harrison, P.G., Zertal, S.: Queueing models of RAID systems with maxima of waiting times.

Performance Evaluation 64(7-8), 664–689 (2007)
11. Heidelberger, P., Trivedi, K.S.: Analytic queueing models for programs with internal concur-

rency. IEEE Transactions on Computers C-32(1), 73–82 (1983)
12. Jeffay, K., Stanat, D.F., Martel, C.U.: On non-preemptive scheduling of periodic and sporadic

tasks. In: Proc. 12th Real-Time Systems Symposium, pp. 129–139 (1991)
13. Kameda, H., Li, J., Kim, C., Zhang, Y.: A comparison of static and dynamic load balanc-

ing. In: Optimal Load Balancing in Distributed Computer Systems. Telecommunication Net-
works and Computer Systems, pp. 225–240. Springer (1997)

14. Kim, C., Agrawala, A.K.: Analysis of the fork-join queue. IEEE Transactions on Comput-
ers 38(2), 250–255 (1989)

336 I. Tsimashenka and W.J. Knottenbelt

15. Knottenbelt, W.J., Tsimashenka, I.: Reducing subtask dispersion in parallel systems.
In: Trends in Parallel, Distributed, Grid and Cloud Computing for Engineering, ch. 9,
pp. 203–227. Saxe-Coburg Publications (April 2013)

16. Kwok, Y., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)

17. Lebrecht, A., Knottenbelt, W.J.: Response Time Approximations in Fork-Join Queues. In:
23rd Annual UK Performance Engineering Workshop, UKPEW 2007 (July 2007)

18. Lui, J.C.S., Muntz, R.R., Towsley, D.: Computing performance bounds of fork-join parallel
programs under a multiprocessing environment. IEEE Transactions on Parallel Distributed
Systems 9(3), 295–311 (1998)

19. Mitrani, I.: Management of server farms for performance and profit. Computer Journal 53(7),
1038–1044 (2010)

20. Nelson, R., Tantawi, A.N.: Approximate analysis of fork/join synchronization in parallel
queues. IEEE Transactions on Computers 37(6), 739–743 (1988)

21. Slegers, J., Mitrani, I., Thomas, N.: Static and dynamic server allocation in systems with
on/off sources. Annals of Operations Research 170, 251–263 (2009)

22. Sun, J., Peterson, G.D.: An effective execution time approximation method for parallel com-
puting. IEEE Transactions on Parallel and Distributed Systems 23(11), 2024–2032 (2012)

23. Towsley, D., Rommel, C.G., Stankovic, J.A.: Analysis of fork-join program response times
on multiprocessors. IEEE Transactions on Parallel and Distributed Systems 1(3), 286–303
(1990)

24. Tsimashenka, I., Knottenbelt, W.J.: Reduction of Variability in Split-Merge Systems. In: Im-
perial College Computing Student Workshop (ICCSW 2011), pp. 101–107 (2011)

25. Tsimashenka, I., Knottenbelt, W.J.: Trading off subtask dispersion and response time in split-
merge systems. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984, pp.
431–442. Springer, Heidelberg (2013)

26. Tsimashenka, I., Knottenbelt, W., Harrison, P.: Controlling variability in split-merge sys-
tems. In: Al-Begain, K., Fiems, D., Vincent, J.-M. (eds.) ASMTA 2012. LNCS, vol. 7314,
pp. 165–177. Springer, Heidelberg (2012)

27. Varki, E.: Response time analysis of parallel computer and storage systems. IEEE Transac-
tions on Parallel and Distributed Systems 12(11), 1146–1161 (2001)

28. Varma, S., Makowski, A.M.: Interpolation approximations for symmetric fork-join queues.
Performance Evaluation 20(1-3), 245–265 (1994)

29. Yang, A.T., Gerasoulis: DSC: Scheduling parallel tasks on an unbounded number of proces-
sors. IEEE Transactions on Parallel and Distributed Systems 5(9), 951–967 (1994)

30. Zhao, H., Xia, C.H., Liu, Z., Towsley, D.: A unified modeling framework for distributed
resource allocation of general fork and join processing networks. In: Proc. ACM SIGMET-
RICS International Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS 2010), pp. 299–310. ACM, New York (2010)

SAT-Based Bounded Model Checking

for RTECTL and Simply-Timed Systems∗

Bożena Woźna-Szcześniak, Agnieszka Zbrzezny, and Andrzej Zbrzezny

IMCS, Jan D�lugosz University. Al. Armii Krajowej 13/15,
42-200 Czȩstochowa, Poland

{b.wozna,a.zbrzezny,agnieszka.zbrzezny}@ajd.czest.pl

Abstract. We report on a SAT-based bounded model checking (BMC)
method for simply-timed systems (i.e., Kripke models where transitions
carry a duration, which is an arbitrary natural number) generated by
simply-timed automata with discrete data, and properties expressed in
the existential fragment of a soft real-time temporal logic (RTECTL).
In particular, since in BMC both the system model and the checked
property are translated into a Boolean formula to be analysed by a SAT-
solver, we introduce a new Boolean encoding of the RTECTL formulae
that is particularly optimized for managing quantitative metric temporal
operators, typically found in properties of soft real-time systems (simply-
timed systems). The proposed BMC algorithm is implemented as a new
module of VerICS, and evaluated by means of two scalable scenarios.

1 Introduction

Soft real-time systems can be defined as systems in which the total correctness of
a computation depends not only on its logical correctness, but also on a certain
subset of deadlines in which it is performed. To verify such systems several mod-
els and model checking techniques [2, 9] have been proposed. Popular models
of such systems include timed automata [1] and time Petri nets [14], for which
plethora of model checking techniques have been proposed and implemented
[3–5, 11]. However, soft real-time systems do not always have to be modelled
with timed automata or time Petri nets, whose Kripke models are not so sim-
ple from the state space symbolic encoding point of view. Namely, if one is
interested in verification of soft real-time systems whose time deadlines can be
measured by integer values, the standard Kripke models (i.e., transition systems
where each transition takes one time unit) can be used as models, and either
RTCTL model checking [7, 21] or discrete MTL (or metric LTL) model checking
[10, 17, 20] can be applied. Since RTCTL and discrete MTL model checking are
not harder than CTL [7] and LTL [10] model checking, respectively, these model
checking techniques can enjoy the power of both the OBDD-based symbolic state
space representations and translations to SAT. However their limitation is the
restricted expressive power of standard Kripke models.

∗ Partly supported by National Science Centre under the grant No.
2011/01/B/ST6/05317

M.S. Balsamo, W.J. Knottenbelt, and A. Marin (Eds.): EPEW 2013, LNCS 8168, pp. 337–349, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

338 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

To increase the expressive power of the standard Kripke models and simulta-
neously to be able to enjoy the power of OBDD-based symbolic model checking
techniques, Markey and Schnoebelen [12] have proposed simply-timed systems
(STSs), i.e., Kripke models where each transition holds a duration, which can
be any integer value (including zero). Thus the difference between standard
Kripke models and STSs is that it is not assumed that each transition takes
one and only one time unit. Markey and Schnoebelen have also proposed an
OBDD-based symbolic verification algorithm for model checking RTCTL prop-
erties over STSs generated by the NuSMV (http://nusmv.fbk.eu/) programs.
They implemented this algorithm on the top of NuSMV, and they called it
TSMV (http://www.lsv.ens-cachan.fr/~markey/TSMV/).

There are three main reasons why it is interesting to consider STSs instead of
standard Kripke models. First, STSs allow for transitions that take a long time,
e.g. 100 time units. Such transitions could be simulated in standard Kripke
models by inserting 99 intermediate states. But this increases the size of the
model, and so it makes the model checking process more difficult. Second, STSs
allow transitions to have zero duration. This is very convenient in models where
some steps are described indirectly, as a short succession of micro-steps. Third,
the transitions with the zero duration allow for counting specific events only and
thus omitting the irrelevant ones from the model checking point of view.

SAT-based bounded model checking (BMC) [8, 16, 21] is a verification tech-
nique whose basic idea is to consider only prefixes of executions whose length
are bounded by some integer k, and which may be counterexamples to an uni-
versal property (or equivalently, witnesses to an existential property). If no error
is found, then one increases k until either an error is found, or the problem
becomes intractable. The usefulness of SAT-based BMC for error tracking and
complementarity to the BDD-based symbolic model checking have already been
proven in several works, e.g., [6, 13].

The original contribution of this paper consists in defining a SAT-based BMC
method for the existential fragment of RTCTL (RTECTL) interpreted over simply-
timed systems generated by simply-timed automata with discrete data. We im-
plemented our SAT-based BMC algorithm as a new module of VerICS [11], an
existing model checker for timed and multi-agent systems, and we compared it
with the BDD-based model checking method for RTCTL and STSs that is imple-
mented in TSMV, the only available model checker for STSs. For a constructive
evaluation of our BMC method we have used two scalable scenarios: a modified
bridge-crossing problem [18] and a modified generic pipeline paradigm [15]. Ex-
perimental results have shown that our BMC method performs well in practice,
and unlike TSMV, our method is insensitive to scaling up the timing parameters
(durations).

The rest of the paper is organised as follows. We begin in Section 2 by intro-
ducing simply-timed automata with discrete data, simply-timed systems, and we
present the syntax and semantics of RTECTL over simply-timed systems. In Sec-
tion 3 we present our SAT-based BMC method for RTECTL and simply-timed

http://nusmv.fbk.eu/
http://www.lsv.ens-cachan.fr/~markey/TSMV/

SAT-Based Bounded Model Checking for RTECTL 339

systems. In Section 4 we discuss our experimental results. In the last section we
conclude the paper.

2 Preliminaries

Let Z be the set of integer numbers, Z a finite set of integer variables, c ∈ Z,
z ∈ Z, and ⊕ ∈ {+,−, ∗,mod, div}. Then, the set Expr(Z) of all the arithmetic
expressions over Z is defined by the following grammar:

expr ::= c | z | expr ⊕ expr | −expr | (expr)

For expr ∈ Expr(Z) and ∼∈ {=, �=, <,≤,≥, >}, the set BoE(Z) of all the
Boolean expressions over Z is defined by the following grammar:

β ::= true | expr ∼ expr | β ∧ β | β ∨ β | ¬β | (β)

For z ∈ Z, expr ∈ Expr(Z), ε denoting the empty sequence, and “;” denoting
composition, the set Ins(Z) of all the instructions over Z is defined as:

α ::= ε | z := expr | α;α

We further assume that Ins♦(Z) denotes the set consisting of all these α ∈
Ins(Z) in which any z ∈ Z appears on the left-hand side of “:=” at most once.

By a variables valuation we mean a total mapping v : Z → Z. We extend this
mapping to expressions of Expr(Z) in the usual way. Moreover, we assume that a
domain of values for each variable is finite. Satisfiability of a Boolean expression
β ∈ BoE(Z) by a valuation v, denoted v |= β, is defined inductively as follows:
v |= true, v |= expr1 ∼ expr2 iff v(expr1) ∼ v(expr2), v |= β1 ∧ β2 iff v |= β1

and v |= β2, v |= β1 ∨ β2 iff v |= β1 or v |= β2, v |= ¬β iff v �|= β, v |= (β) iff
(v |= β). Given a variables valuation v and an instruction α ∈ Ins(Z), we denote
by v(α) a valuation v′ such that: if α = ε, then v′ = v; if α = (z := expr), then
for all z′ ∈ Z it holds v′(z′) = v(expr) if z′ = z, and v′(z′) = v(z′) otherwise;
if α = α1;α2 then v′ = (v(α1))(α2).

Definition 1. Let PV be a set of atomic propositions. A simply-timed automa-
ton with discrete data (STADD) is a tuple A = (Σ,L, l0,Z, E, d ,VA), where Σ
is a finite set of actions, L is a finite set of locations, l0 is an initial location,
Z is a finite set of integer variables, E ⊆ L×Σ ×BoE(Z)× Ins♦(Z)× L is a
transition relation, d : Σ → IN is a duration function, and VA : L → 2PV is a
valuation function that assigns to each location a set of propositional variables
that are assumed to be true at that location.

Note that the STADD is a simplified versions of a timed automaton with
discrete data [23] augmented to include a duration function. Each element e =
(�, σ, β, α, �′) ∈ E represents a transition from the location � to the location �′,
where σ is the action of the transition e, β defines the enabling condition for e,
and α is the instruction to be performed.

340 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

Typically, concurrent (soft) real-time systems are modelled as a set of com-
municating processes. Thus to verify them, it is reasonable to model commu-
nicating processes by a network of STADDs that run in parallel, communicate
with each other via shared actions and perform transitions with shared actions
synchronously. For a formal definition of such a parallel composition of STADD
we refer to [23].

The semantics of the STADD is defined by associating to it a simply-timed
system as defined below.

Definition 2. Let PV be a set of atomic propositions, v0 : Z → Z an initial
variables valuation, and A = (Σ,L, �0,Z, E, d ,VA) a simply-timed automaton
with discrete data. A simply-timed system (or a model) for A is a tuple M =
(Σ,S, ι, T, d,V), where Σ is a finite set of actions of A, S = L × Z|Z| is a set
of states, ι = (�0,v0) ∈ S is the initial state, T ⊆ S × Σ × S is the smallest
simply-timed transition relation defined as:
– for σ ∈ Σ, (�,v)

σ−→ (�′,v′) iff there exists a transition (�, σ, β, α, �′) ∈ E
such that v |= β, v′ = v(α). We assume that the relation T is total, i.e., for

any s ∈ S there exists s′ ∈ S and σ ∈ Σ s.t. (s, σ, s′) ∈ T (or s
σ−→ s′),

d : Σ → IN is the duration function of A, and V : S → 2PV is a valuation
function defined as V((�,v)) = VA(�).

A path in M is an infinite sequence π = s0
σ1−→ s1

σ2−→ s2
σ3−→ . . . of transitions.

For such a path, and for m ∈ IN, by π(m) we denote the m-th state sm. For

j ≤ m ∈ IN, π[j..m] denotes the finite sequence sj
σj+1−→ sj+1

σj+2−→ . . . sm with
m− j transitions and m− j + 1 states. The (cumulative) duration Dπ[j..m] of
such a finite sequence is d(σj+1) + . . . + d(σm) (hence 0 when j = m). By Π(s)
we denote the set of all paths starting at s ∈ S.

RTECTL: An Existential Fragment of a Soft Real-Time Temporal
Logic. In the syntax of RTECTL we assume the following: p ∈ PV is an atomic
proposition, and I is an interval in IN = {0, 1, 2, . . .} of the form: [a, b) or [a,∞),
for a, b ∈ IN and a �= b. Moreover, hereafter, by right(I) we denote the right end
of the interval I. The RTECTL formulae are defined by the following grammar:

ϕ ::=true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUIϕ) | E(ϕRIϕ)

Intuitively, we have an existential path quantifier E, and the symbols X, UI ,
and RI that are the temporal operators for “neXt time”, “bounded until”, and
“bounded release”, respectively. The formula E(αUIβ) means that it is possible
to reach a state satisfying β via a finite path whose cumulative duration is in
I, and always earlier α holds. The formula E(αRIβ) means that either it is
possible to reach a state satisfying α and β via a finite path whose cumulative
duration is in I, and always earlier β holds, or there is a path along which β
holds at all states with cumulative duration being in I. The formulae for the

“bounded eventually”, and “bounded always” are defined as standard: EFIϕ
def
=

E(trueUIϕ), EGIϕ
def
= E(falseRIϕ).

SAT-Based Bounded Model Checking for RTECTL 341

An RTECTL formula ϕ is true in the model M (in symbols M |= ϕ) iff
M, ι |= ϕ (i.e., ϕ is true at the initial state of the model M). For every s ∈ S
the relation |= is defined inductively as follows:

M, s |= true, M, s �|= false, M, s |= p iff p ∈ V(s), M, s |= ¬p iff p �∈ V(s),
M, s |= α ∧ β iff M, s |= α and M, s |= β,
M, s |= α ∨ β iff M, s |= α or M, s |= β,
M, s |= EXα iff (∃π ∈ Π(s))(M,π(1) |= α),
M, s |= E(αUIβ) iff (∃π ∈ Π(s))(∃m ≥ 0)(Dπ[0..m] ∈ I and M,π(m) |= β

and (∀j < m)M,π(j) |= α),
M, s |= E(αRIβ) iff (∃π ∈ Π(s))

(
(∃m ≥ 0)(Dπ[0..m] ∈ I and M,π(m) |= α

and (∀j ≤ m)M,π(j) |= β) or (∀m ≥ 0)(Dπ[0..m] ∈ I
implies M,π(m) |= β)

)
.

3 Bounded Model Checking for RTECTL

Bounded semantics is the backbone of each SAT-based bounded model checking
(BMC) method, whose basic idea is to consider only finite prefixes of paths that
may be witnessed to an existential model checking problem. A crucial observation
is that, though the prefix of a path is finite, it still might represent an infinite
path if it is a loop. If the prefix is not a loop, then it does not say anything
about the infinite behavior of the path beyond its last state.

Let M be a model, and k ∈ IN a bound. A k-path πk in M is a finite sequence
s0

σ1−→ s1
σ2−→ . . .

σk−→ sk of transitions (i.e., πk = π[0..k]). Πk(s) denotes the
set of all k-paths of M that start at s. A k-path πk is a (k, l)-loop (or loop) iff
πk(l) = πk(k) for some 0 ≤ l < k. Note that if a k-path πk is a loop, then it

represents the infinite path of the form uvω, where u = (s0
σ1−→ s1

σ2−→ . . .
σl−→ sl)

and v = (sl+1
σl+2−→ . . .

σk−→ sk). Moreover, since in the bounded semantics we
consider finite prefixes of paths only, the duality between GI and FI (i.e., ¬FIα ≡
GI¬α) no longer holds. Therefore, the satisfiability of the RI operator depends
on whether a considered k-path is a loop. Thus, as customary, we introduce a
function loop :

⋃
s∈S Πk(s)→ 2IN, which identifies those k-paths that are loops.

The function is defined as: loop(πk) = {l | 0 ≤ l < k and πk(l) = πk(k)}.
Bounded Semantics for RTECTL. Let M be a model, k ≥ 0 a bound, ϕ
an RTECTL formula, and M, s |=k ϕ denote that ϕ is k-true at the state s of
M . The formula ϕ is k-true in M (in symbols M |=k ϕ) iff M, ι |=k ϕ (i.e., ϕ
is k-true at the initial state of the model M). For every s ∈ S, the relation |=k

(the bounded semantics) is defined inductively as follows:
M, s |=k true, M, s �|=k false,
M, s |=k p iff p ∈ V(s), M, s |=k ¬p iff p �∈ V(s),
M, s |=k α ∨ β iff M, s |=k α or M, s |=k β,
M, s |=k α ∧ β iff M, s |=k α and M, s |=k β,
M, s |=k EXα iff k > 0 and (∃π ∈ Πk(s))M,π(1) |=k α,
M, s |=k E(αUIβ) iff (∃π ∈ Πk(s))(∃0 ≤ m ≤ k)(Dπ[0..m] ∈ I and

M,π(m) |=k β and (∀0 ≤ j < m)M,π(j) |=k α),

342 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

M, s |=k E(αRIβ) iff (∃π ∈ Πk(s))
(
(∃0 ≤ m ≤ k)(Dπ[0..m] ∈ I and

M,π(m) |=k α and (∀0 ≤ j ≤ m)M,π(j) |=k β) or
(Dπ[0..k] ≥ right(I) and (∀0 ≤ j ≤ k)(Dπ[0..j] ∈ I
implies M,π(j) |=k β)) or (Dπ[0..k] < right(I) and
(∃l ∈ loop(π))((∀0 ≤ j < k)(Dπ[0..j] ∈ I implies
M,π(j) |=k β) and (∀l ≤ j < k)(Dπ[0..k]+Dπ[l..j+1]∈I
implies M,π(j + 1) |=k β)))

)
.

The bounded model checking problem asks whether there exists k ∈ IN such
that M |=k ϕ. The following theorem states that for a given model and an
RTECTL formula there exists a bound k such that the model checking problem
(M |= ϕ) can be reduced to the bounded model checking problem (M |=k ϕ).
The theorem can be proven by induction on the length of the formula ϕ.

Theorem 1. Let M be a model and ϕ an RTECTL formula. Then, the following
equivalence holds: M |= ϕ iff there exists k ≥ 0 such that M |=k ϕ.

Translation to SAT. Let M be a simply-timed model, ϕ an RTECTL formula,
and k ≥ 0 a bound. In BMC, in general, we define the propositional formula

[M,ϕ]k := [Mϕ,ι]k ∧ [ϕ]M,k (1)

that is satisfiable if and only if the underlying model M is the valid model for
the property ϕ. Namely, Formula (1) is satisfiable if and only if M |=k ϕ holds.

The definition of the formula [Mϕ,ι]k assumes that states of the model M are
encoded in a symbolic way. Such a symbolic encoding is possible, since the set
of states of M is finite. In particular, each state s can be represented by a vector
w = (w1, . . . , wr) (called a symbolic state) of propositional variables (called state
variables) whose length r depends on the number of locations in each STADD
automaton and the possible maximal value of integer variables.

Further, since the formula [Mϕ,ι]k defines the unfolding of the transition rela-
tion of the model M to the depth k, we need to represent k-paths in a symbolic
way. This representation is usually called a j-th symbolic k-path πj . Moreover,
we have to know how many symbolic k-paths should be considered in the propo-
sitional encoding. The number of k-paths that is sufficient to translate formulae
of RTECTL is given by the function fk : RTECTL→ IN, introduced in [16] and
applied to RTECTL (interpreted over standard Kripke models) in [19], that is
defined as follows: fk(true) = fk(false) = fk(p) = fk(¬p) = 0, where p ∈ PV ;
fk(α∧β) = fk(α)+fk(β); fk(α∨β) = max{fk(α), fk(β)}; fk(EXα) = fk(α)+1;
fk(E(αUIβ)) = k · fk(α) + fk(β) + 1; fk(E(αRIβ)) = (k +1) · fk(β) + fk(α) + 1.

Given the above, the j-th symbolic k-path πj is defined as the following
sequence ((d0,j , w0,j), . . . , (dk,j , wk,j)), where wi,j are symbolic states and di,j
are symbolic durations, for 0 ≤ i ≤ k and 0 ≤ j < fk(ϕ). The symbolic duration
di,j is a vector di,j = (d1,j, . . . , dx,j) of propositional variables (called duration
variables), whose length x equals to �log2(dmax)�, where dmax is a maximal
durations appearing in the system under consideration.

Let w and w′ (resp., d and d′) be two different symbolic states (resp., dura-
tions). We assume definitions of the following auxiliary propositional formulae:

SAT-Based Bounded Model Checking for RTECTL 343

Iι(w) - encodes the initial state of the model M , T ((d, w), (d′w′)) - encodes the
transition relation of M , p(w) - encodes the set of states of M in which p ∈ PV
holds, H(w,w′) - encodes equality of two global states, BI

k(πn) - encodes that
the duration time represented by the sequence d1,n, . . . , dk,n of symbolic dura-
tions is less than right(I), DI

j (πn) - encodes that the duration time represented
by the sequence d1,n, . . . , dj,n of symbolic durations belongs to the interval I,
DI

k;l,m(πn) for l ≤ m - encodes that the duration time represented by the se-
quences d1,n, . . . , dk,n and dl+1,n, . . . , dm,n of symbolic durations belongs to the
interval I.

The formula [Mϕ,ι]k encoding the unfolding of the transition relation of the
model M fk(ϕ)-times to the depth k is defined as follows:

[Mϕ,ι]k := Iι(w0,0) ∧
fk(ϕ)−1∧

j=0

k−1∧
i=0

T ((di,j , wi,j), (di+1,j , wi+1,j)) (2)

For every RTECTL formula ϕ the function fk determines how many symbolic
k-paths are needed for translating the formula ϕ. Given a formula ϕ and a set
A of k-paths such that |A| = fk(ϕ), we divide the set A into subsets needed for
translating the subformulae of ϕ. To accomplish this goal we need some auxiliary
functions that were defined in [22]. We recall the definitions of these functions,
but for more details see the paper [22].

The relation ≺ is defined on the power set of IN as follows: A ≺ B iff for all
natural numbers x and y, if x ∈ A and y ∈ B, then x < y (e.g., {1, 2, 3} ≺ {5, 6},
{1, 2, 5} ⊀ {3, 6}). Now, let A ⊂ IN be a finite nonempty set, and n, e ∈ IN, where
e � |A|. Then,
– gl(A, e) denotes the subset B of A such that |B| = e and B ≺ A \B.
– gr(A, e) denotes the subset C of A such that |C| = e and A \ C ≺ C.
– gs(A) denotes the set A \ {min(A)}.
– If n divides |A| − e− 1, then hU

n (A, e) denotes the sequence (B0, . . . , Bn) of
subsets of A \ {min(A)} such that

⋃n
j=0 Bj = A \ {min(A)}, |B0| = . . . =

|Bn−1|, |Bn| = e, and Bi ≺ Bj for every 0 � i < j � n. If hU
n (A, e) =

(B0, . . . , Bn), then hU
n (A, e)(j) denotes the set Bj , for every 0 � j � n.

– If n+1 divides |A|−e−1, then hR
n (A, e) denotes the sequence (B0, . . . , Bn+1)

of subsets of A \ {min(A)} such that
⋃n+1

j=0 Bj = A \ {min(A)}, |B0| =
. . . = |Bn|, |Bn+1| = e, and Bi ≺ Bj for every 0 � i < j � n + 1. If
hR
n (A, e) = (B0, . . . , Bn+1), then hR

n (A, e)(j) denotes the set Bj , for every
0 � j � n + 1.

Let ϕ be an RTECTL formula, M a model, and k ∈ IN a bound. The propo-

sitional formula [ϕ]M,k := [ϕ]
[0,0,Fk(ϕ)]
k , where Fk(ϕ) = {j ∈ IN | 0 � j <

fk(ϕ)}, encodes the bounded semantics for RTECTL, and it is defined induc-
tively as shown below. Namely, let 0 � n < fk(ϕ), m � k, n′ = min(A),
hU
k = hU

k (A, fk(β)), and hR
k = hR

k (A, fk(α)), then:

[true]
[m,n,A]
k := true, [false]

[m,n,A]
k := false,

[p]
[m,n,A]
k := p(wm,n), [¬p]

[m,n,A]
k := ¬p(wm,n),

[α ∧ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∧ [β]

[m,n,gr(A,fk(β))]
k ,

344 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

[α ∨ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∨ [β]

[m,n,gl(A,fk(β))]
k ,

[EXα]
[m,n,A]
k := H(wm,n, w0,n′) ∧ [α]

[1,n′,gs(A)]
k , if k > 0; false, otherwise,

[E(αUIβ)]
[m,n,A]
k := H(wm,n, w0,n′) ∧

∨k
i=0([β]

[i,n′,hU
k (k)]

k ∧DI
i (πn′)∧∧i−1

j=0[α]
[j, n′,hU

k (j)]
k),

[E(αRIβ)]
[m,n,A]
k := H(wm,n, w0,n′) ∧

(∨k
i=0([α]

[i,n′,hR
k (k+1)]

k ∧DI
i (πn′) ∧

∧i
j=0

[β]
[j, n′,hR

k (j)]
k) ∨ (¬BI

k(πn′) ∧
∧k

j=0(D
I
j (πn′)→ [β]

[j,n′,hR
k (j)]

k))

∨(BI
k(πn′) ∧

∧k
j=0(D

I
j (πn′)→ [β]

[j,n′,hR
k (j)]

k) ∧
∨k−1

l=0

[H(wk,n′ , wl,n′) ∧
∧k−1

j=l (D
I
k;l,j+1(πn′)→ [β]

[j,n′,hR
k (j)]

k)])
)
.

The theorem below states the correctness and the completeness of the pre-
sented translation. It can be proven by induction on the complexity of the given
RTECTL formula.

Theorem 2. Let M be a model, and ϕ an RTECTL formula. Then for every
k ∈ IN, M |=k ϕ if, and only if, the propositional formula [M,ϕ]k is satisfiable.

4 Experimental Results

For the tests we have used a computer with Intel Core i3-2125 processor, 8 GB of
RAM, and running Linux 3.2. We set the timeout to 900 seconds, and memory
limit to 8GB. In our BMC technique we use the state of the art SAT-solver
MiniSat 2 (http://minisat.se/MiniSat.html). We aimed at comparing our
experimental results with other tools, to put them into a wider context. Un-
fortunately, we had not much choice because the number of comparable tools
proved to be limited, and after a careful selection we have identified only the tool
TSMV to be suitable with respect to input formalisms and checked properties.

The Bridge-Crossing Problem. (BCP) [18] is a famous mathematical puzzle
with time critical aspects. A STADD automata model of BCP is shown in Fig. 1.
We have five automata that run in parallel and synchronised on actions LRi,
RLi, and Fij , for i �= j and i, j ∈ {1, . . . , 4}. The action LRi (respectively, RLi)
means that the i-th person goes from the left side of the bridge to its right side
(respectively, from the right side of the bridge to its left side) bringing back
the lamp. The action Fij with i < j (respectively, Fij with i > j) means that
the persons i and j cross the bridge together from its left side to its right side
(respectively, from its right side to its left side). Four automata (those with states
named as Li and Ri, for 1 � i � 4) represent persons, and one represents a lamp
(i.e., a coordination process) that keeps track of the position of the lamp, and
ensures that at most two persons cross in one move.

Let Min denote the minimum time required to cross the bridge, N � 2 be
the number of persons, and right = (2 · N − 3) · (t1 + (N − 1) · 3). We have
tested BCP for N � 4 persons, ti = t1 + (i − 1) · 3 with 1 � i � N and

t1 ≥ 10, on the following RTECTL formulae: ϕ1BCP=EF[Min,Min+1)(
∧N

i=1 Ri)

and ϕ2BCP=EG[0,right)(
∨N

i=1 ¬Ri); the formulae are true in the model for BCP.

http://minisat.se/MiniSat.html

SAT-Based Bounded Model Checking for RTECTL 345

L1start R1 L2start R2 L3start R3

L4start R4 Lstart R

F13?

F12?

F14?

LR1?

F31?

F21?

F41?

RL1?

F23?

F12?

F24?

LR2?

F32?

F21?

F42?

RL2?

F23?

F13?

F34?

LR3?

F32?

F31?

F43?

RL3?

F24?

F14?

F34?

LR4?

F42?

F41?

F43?

RL4?

Fij !, i < j, W > 0, D = 1, W := W − 2

LRi!, W > 0, D = 0, W := W + 1

Fij !, i > j, W > 0, D = 0, W := W − 2

RLi!, W > 0, D = 1, W := W + 1

D = 0,W = 0,D := 1,W := 4 D = 1,W = 0,D := 0,W := 4

Fig. 1. A network of STADD automata that models BCP for 4 persons. The variable
D indicates the crossing direction: D = 1 (D = 0) means that all the persons cross
the bridge from its left side to its right side, (from its right side to its left side). The
variable W denotes the number of persons waiting on the left (right) side of the bridge,
if D = 1 (D = 0).

Moreover, we observed that formula ϕ3BCP=EG[0,right+1)(
∨N

i=1 ¬Ri) is false in
the model for BCP. This has been confirmed by TSMV.

Generic Simply-Timed Pipeline Paradigm. We adapted the benchmark
scenario of a generic pipeline paradigm [15], and we called it the generic simply-
timed pipeline paradigm (GSPP). The model of GSPP involves Producer pro-
ducing data, Consumer receiving data, and a chain of n intermediate Nodes
that transmit data produced by Producer to Consumer. Producer, Nodes, and
Consumer have different producing, sending, processing, and consuming times.

A STADD automata model of GSPP is shown in Fig. 2. We have n + 2
automata (n automata representing Nodes, one automaton for Producer, and
one automaton for Consumer) that run in parallel and synchronise on actions
Sendi (1 � i � n + 1). Action Sendi (1 � i � n) means that i-th Node has
received data produced by Producer. Action Sendn+1 means that Consumer has
received data produced by Producer. Action Proci (1 � i � n) means that i-
th Node processes data. Action Produce means that Producer generates data.
Action Consume means that Consumer consumes data produced by Producer.

Let 1 � i � n. We have tested the GSPP problem with the following basic
durations: d(Produce) = 2, d(sendi) = 2, d(Proci) = 4, d(Consume) = 2, and
their multiplications by 50, 100, 150, etc., on the following RTECTL formulae:

ϕ1GSPP = EF[Min,Min+1)ConsReceived

ϕ2GSPP = EG[0,∞)(¬ProdSend ∨ EF[0,Min−d(Produce)+1)ConsReceived)

ϕ3GSPP = EG[0,∞)(¬ProdSend ∨ EG[0,Min−d(Produce))ConsReady)

346 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

ProdReady-0start

ProdSend-1

Send1Produce

Node1Ready-0start

Node1Proc-1

Send1

Node1Send-2

Proc1

Send2

· · · NodenReady-0start

NodenProc-1

Sendn

NodenSend-2

Procn

Sendn+1

ConsReady-0start

ConsReceived-1

ConsumeSendn+1

Fig. 2. A network of STADD automata that models GSPP

where Min denotes the minimum time required to receive by Consumer the
data produced by Producer. Note that the ϕ2GSPP and ϕ3GSPP are proper-
ties, respectively, of the type the existential bounded-response (asserting that
“something good” will happen within a specified amount of time) and existen-
tial bounded-invariance (asserting that “nothing bad” will happen for a certain
amount of time). All the above formulae are true in the model for GSPP.

Performance Evaluation. The experimental results show that our SAT-based
BMC method and the BDD-based method (also designed for RTECTL and
simply-timed models) implemented in TSMV complement each other. More pre-
cisely, on the one hand, our SAT-based BMC is insensitive to scaling up the
durations, whereas the computation time and memory consumption of TSMV
increases substantially in this case. On the other hand, our method is sensitive
to scaling up the size of benchmarks, whereas the TSMV with relatively small
durations can handle more components, and it performs much better in terms
of the total time and the memory consumption. The inferiority of TSMV in
the first case mentioned above probably results from an inefficient encoding of
the variable duration. The reason that the TSMV performs much better than
our method in the second case is that the length of the counterexamples grows
with the number of the components and the efficiency of the SAT-based BMC
strongly depends on the length of the counterexamples.

We observed that when we scale up the timing parameters of TSMV for both
benchmarks and bounded reachability properties (i.e., ϕ1BCP and ϕ1GSPP), the
computation time grows polynomially and the memory usage grows linearly,
regardless of the number of persons or nodes considered. Moreover, for GSPP
with 1 node and for BCP with 4 persons, respectively, we managed to increase the
timing parameters up to the basic durations multiplied by 30000, and up to the
maximal speed of the 1st person equal to 5000. In contrast, the computation time
and memory consumption of our SAT-based BMC method are nearly constant,
regardless of the value of the timing parameters. To be precise, in order to
calculate results for GSPP with 1 node for both the basic durations (bd for
short) and the bd multiplied by 1000000, our method uses 6.00 MB and the
test lasts 0.05 seconds. To calculate results for BCP with 4 persons for the
maximal speeds of the i-th person being of the form (1) ti = 10+ (i− 1) · 3, (2)

SAT-Based Bounded Model Checking for RTECTL 347

ti = 5000 + (i − 1) · 3, and (3) ti = 1000000 + (i − 1) · 3, our method uses 8.00
MB and the test lasts 0.33 (resp. 0.46, 0.30) seconds.

Further, if the value of durations is relatively small, we scale up the size (i.e.,
the number of nodes/persons) of both benchmarks, and we test formulae ϕ1BCP

and ϕ1GSPP , then the experimental results show that our SAT-based BMC is
inferior to TSMV. Namely, in the set time limit, TSMV can handle GSPP with
350, 300, and 70 nodes, respectively, when we consider the bd, the bd multiplied
by 1000, and the bd multiplied by 5000. In case of BCP, TSMV can handle 24
and 23 persons, respectively, for the maximal speeds of the i-th person being of
the form ti = 10 + (i − 1) · 3 and ti = 100 + (i − 1) · 3. Our method can handle
GSPP with 34 nodes and BCP with 13 persons, regardless of the value of the
timing parameters.

The inferiority mentioned above is less of a problem as we increase both the
size of benchmarks and the timing parameters. More precisely, if we take BCP
with the crossing time of the 1st person equal to 1000 (resp., 3000 and 5000), then
TSMV can handle 11 (resp., 5 and 4) persons only. Thus, TSMV becomes inferior
to our method. Moreover, TSMV managed to compute 34 and 10 nodes only,
respectively, for GSPP with the bd multiplied by 7000 and 10000. In contrast,
our method managed to compute 34 nodes for GSPP with the bd multiplied by
1000000 and larger.

For properties ϕ2BCP , ϕ2GSPP , and ϕ3GSPP we have also scaled up both the
number of persons/nodes and the timing parameters and we observed the same as
for the the bounded reachability properties (see charts in Fig. 3, Fig. 5, Fig. 4).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 4 6 8 10 12 14 16 18 20 22

M
em

or
y

in
 M

B

Number of persons

Memory usage for BCP, BMC ϕ2BCP

t1 =10
t1 =5000

t1 =1000000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 6 8 10 12 14 16 18 20 22

T
im

e
in

 s
ec

.

Number of persons

Total time usage for BCP, BMC ϕ2BCP

t1 =10
t1 =5000

t1 =1000000

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16

M
em

or
y

in
 M

B

Number of nodes

Memory usage for GSPP and BMC, ϕ2GSPP

BMC
BMC, x500

BMC, x5000
BMC, x50000

BMC, x500000
BMC, x1000000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16

T
im

e
in

 s
ec

.

Number of nodes

Total time usage for GSPP and BMC, ϕ2GSPP

BMC
BMC, x500

BMC, x5000
BMC, x50000

BMC, x500000
BMC, x1000000

Fig. 3. BMC: Scaling up both the number of persons/nodes and durations

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35

M
em

or
y

in
 M

B

Number of persons

Memory usage for BCP, TSMV ϕ2BCP

t1 = 10
t1 = 500

t1 = 5000
t1 = 10000
t1 = 32000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 5 10 15 20 25 30 35

T
im

e
in

 s
ec

.

Number of persons

Total time usage for BCP, TSMV ϕ2BCP

t1 = 10
t1 = 500

t1 = 5000
t1 = 10000
t1 = 32000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300 350

M
em

or
y

in
 M

B

Number of nodes

Memory usage for GSPP and TSMV, ϕ2GSPP

TSMV
TSMV, x500

TSMV, x5000
TSMV, x10000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300 350

T
im

e
in

 s
ec

.

Number of nodes

Total time usage for GSPP and TSMV, ϕ2GSPP

TSMV
TSMV, x500

TSMV, x5000
TSMV, x10000

Fig. 4. TSMV: Scaling up both the number of persons/nodes and durations

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45 50

M
em

or
y

in
 M

B

Number of nodes

Memory usage for GSPP, ϕ3GSPP

TSMV
TSMV, x500

TSMV, x5000
TSMV, x10000

BMC
BMC, x500

BMC, x5000
BMC, x500000

BMC, x1000000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
in

 s
ec

.

Number of nodes

Total time usage for GSPP, ϕ3GSPP

TSMV
TSMV, x500

TSMV, x5000
TSMV, x10000

BMC
BMC, x500

BMC, x5000
BMC, x500000

BMC, x1000000

Fig. 5. Scaling up both the number of nodes and durations

348 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

5 Conclusions

We proposed SAT-based BMC verification method for model checking RTECTL
properties interpreted over the simply-time systems (Kripke structures where
transitions carry an arbitrary duration) that are generated for simply-timed
automata with discrete data. For the analysis of soft real-time systems, this
extends the verification facilities that are offered in VerICS, since our algorithm
is implemented as a new module of the tool. Also, to our best knowledge, there
is no other BMC technique (SAT- or BDD-based) for RTECTL interpreted over
the simply-time systems. Moreover, TSMV, the only existing model checking
tool for RTCTL interpreted over the simply-time models, is not being actively
developed anymore.

References

1. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real-time. Information
and Computation 104(1), 2–34 (1993)

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

4. Berthomieu, B., Vernadat, F.: Time petri nets analysis with tina. In: Proceedings
of QEST 2006, pp. 123–124. IEEE Computer Society (2006)

5. Beyer, D.: Rabbit: Verification of real-time systems. In: Proceedings of the Work-
shop on Real-Time Tools (RT-TOOLS 2001), pp. 13–21 (2001)

6. Cabodi, G., Camurati, P., Quer, S.: Can BDDs compete with SAT solvers on
bounded model checking? In: Proceedings of DAC 2002, pp. 117–122. ACM (2002)

7. Campos, S., Clarke, E.: Analysis and verification of real-time systems using quanti-
tative symbolic algorithms. International Journal on Software Tools for Technology
Transfer 2(3), 260–269 (1999)

8. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods in System Design 19(1), 7–34 (2001)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

10. Furia, C.A., Spoletini, P.: Tomorrow and all our yesterdays: MTL satisfiability
over the integers. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC
2008. LNCS, vol. 5160, pp. 126–140. Springer, Heidelberg (2008)

11. Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter,
M., Woźna, B., Zbrzezny, A.: VerICS 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae 85(1-4), 313–328 (2008)

12. Markey, N., Schnoebelen, P.: Symbolic model checking for simply-timed systems.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 102–117. Springer, Heidelberg (2004)

13. Mȩski, A., Penczek, W., Szreter, M., Woźna-Szcześniak, B., Zbrzezny, A.: Two
approaches to bounded model checking for linear time logic with knowledge. In:
Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA
2012. LNCS, vol. 7327, pp. 514–523. Springer, Heidelberg (2012)

SAT-Based Bounded Model Checking for RTECTL 349

14. Merlin, P., Farber, D.J.: Recoverability of communication protocols - implication
of a theoretical study. IEEE Transaction on Communications 24(9), 1036–1043
(1976)

15. Peled, D.: All from one, one for all: On model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg
(1993)

16. Penczek, W., Woźna, B., Zbrzezny, A.: Bounded model checking for the universal
fragment of CTL. Fundamenta Informaticae 51(1-2), 135–156 (2002)

17. Pradella, M., Morzenti, A., San Pietro, P.: A metric encoding for bounded model
checking. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 741–756. Springer, Heidelberg (2009)

18. Saul, X., Levmore, E.E.C.: Super Strategies for Puzzles and Games. Doubleday,
Garden City (1981)

19. Woźna-Szcześniak, B.: Bounded model checking for the existential part of real-time
CTL and knowledge. In: Szmuc, T., Szpyrka, M., Zendulka, J. (eds.) CEE-SET
2009. LNCS, vol. 7054, pp. 164–178. Springer, Heidelberg (2012)

20. Woźna-Szcześniak, B., Zbrzezny, A.: SAT-Based BMC for Deontic Metric Temporal
Logic and Deontic Interleaved Interpreted Systems. In: Baldoni, M., Dennis, L.,
Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS, vol. 7784, pp. 170–189.
Springer, Heidelberg (2013)

21. Woźna-Szcześniak, B., Zbrzezny, A., Zbrzezny, A.: The BMC method for the ex-
istential part of RTCTLK and interleaved interpreted systems. In: Antunes, L.,
Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 551–565. Springer, Heidelberg
(2011)

22. Zbrzezny, A.: Improving the translation from ECTL to SAT. Fundamenta Infor-
maticae 85(1-4), 513–531 (2008)

23. Zbrzezny, A., Pólrola, A.: Sat-based reachability checking for timed automata with
discrete data. Fundamenta Informaticae 79(3-4), 579–593 (2007)

Author Index

Aı̈t-Salaht, Farah 13
Aldhalaan, Arwa 28
Amparore, Elvio Gilberto 206
Arcelli, Davide 312

Berardinelli, Luca 300
Bernardo, Marco 104
Brunnert, Andreas 74

Carnevali, Laura 176
Castel-Taleb, Hind 13
Cerotti, Davide 221
Chis, Tiberiu 251
Ciardo, Gianfranco 58
Cortellessa, Vittorio 1, 312

Dei Rossi, Gian-Luca 236
De Nitto Personé, Vittoria 288
Di Lonardo, Andrea 288
Di Marco, Antinisca 300
Di Ruscio, Davide 312
Donatelli, Susanna 206

Fourneau, Jean-Michel 13

Gallina, Lucia 236
Gribaudo, Marco 221

Haas, Frantǐsek 149
Harrison, Peter G. 191
Haverkort, Boudewijn 276
Horký, Vojtěch 149
Horváth, Gábor 119

Knottenbelt, William J. 325
Kotrč, Jaroslav 149
Kounev, Samuel 263
Krauß, Tilman 164
Krcmar, Helmut 74

Lacina, Martin 149
Lladó, Catalina M. 134

Marchesani, Stefano 300
Markovski, Jasen 43
Menascé, Daniel A. 28
Mészáros, András 89
Mooij, Arjan 276

Noorshams, Qais 263

Okamura, Hiroyuki 119

Pace, Stefano 300
Palazzi, Claudio E. 7
Paolieri, Marco 176
Pekergin, Nihal 13
Piazzolla, Pietro 221
Pomante, Luigi 300

Qiu, Zhan 191

Reinecke, Philipp 164
Remke, Anne 276
Reussner, Ralf 263
Rossi, Sabina 236

Serazzi, Giuseppe 221
Smith, Connie U. 134

Tadano, Kumiko 176
Telek, Miklós 89
Tesei, Luca 104
Tsimashenka, Iryna 325
Tůma, Petr 149

van den Berg, Freek 276
Vaupel, Robert 263
Vicario, Enrico 176
Vögele, Christian 74

Wolter, Katinka 164
Woźna-Szcześniak, Bożena 337

Zbrzezny, Agnieszka 337
Zbrzezny, Andrzej 337
Zhao, Yang 58

	Preface
	Organization
	Table of Contents
	Invited Talks
	Performance Antipatterns:�State-of-Art and Future Perspectives
	1 TheContext
	2 State-of-Art
	3 Future Perspectives
	References

	Online Game Performance Engineering
	1 Introduction
	2 MainRequirements
	3 Smart Architecture: A Holistic Solution
	3.1 Fast Synchronization over a Hybrid Architecture
	3.2 Game Gateway

	4 Conclusion
	References

	Full Papers
	Stochastic Bounds and Histogramsfor Network Performance Analysis
	1 Introduction
	2 Queueing Model Description
	2.1 Histogram Traffic Model
	2.2 State Evolution Equations
	2.3 Histogram Reduction: HBSP Method

	3 Bounding Approach
	3.1 Stochastic Comparison
	3.2 Bounding Histogram Reduction
	3.3 Performance Measure Bounds

	4 Real Traffic Experiments
	4.1 Single Node
	4.2 Queueing Network

	5 Conclusions
	References

	Analytic Performance Modelingand Optimization of Live VM Migration
	1 Introduction
	2 Background and Problem Statement
	3 Analytic Model of Live Migration with Uniform Dirtying Rate
	4 Analytic Model of Live Migration with Hot Pages
	4.1 Model of Copying Hot Pages during the Pre-copy Phase
	4.2 Model of Copying Hot Pages during the Downtime Phase

	5 Summary of Results
	6 Optimizing Live Migration Parameters
	7 Numerical Results
	8 Related Work
	9 Conclusion
	References

	Towards Supervisory Controlof Generally-Distributed Discrete-Event Systems
	1 Introduction
	1.1 Generally-Distributed Delays
	1.2 Motivation and Contributions

	2 Stochastic Nondeterministic Finite Automata
	2.1 Syntax
	2.2 Operational Semantics
	2.3 Synchronous Parallel Composition

	3 Controllability
	3.1 Plant, Supervisor, and Supervised Plant
	3.2 Partial Bisimulation
	3.3 A Process-Theoretic Approach

	4 Towards Supervisor Synthesis
	4.1 Time-Abstracted Supervisors
	4.2 A Model-Based Systems Engineering Framework

	5 Concluding Remarks
	References

	Tackling Truncation Errors in CSL ModelChecking through Bounding Semantics
	1 Introduction
	2 Preliminaries and Notation
	2.1 CSL
	2.2 Model Checking CSL

	3 Bounding the Probability in CSL Model Checking
	3.1 Time-Bounded Until
	3.2 Unbounded Until
	3.3 Point-Interval and General Interval Until

	4 Semantics for CSL Formulas with Bounds
	5 Case Studies
	6 Conclusion
	References

	Automatic Performance Model Generationfor Java Enterprise Edition (EE) Applications
	1 Introduction
	2 Automatic Performance Model Generation
	2.1 Data Collection
	2.2 Data Aggregation
	2.3 Model Generation

	3 Evaluation
	3.1 SPECjEnterprise2010 Industry Benchmark Deployment
	3.2 Automatic Performance Model Generation
	3.3 Measurement and Simulation Results in Comparison

	4 Related Work
	5 Conclusion and Future Work
	References

	Canonical Representation of Discrete Order 2MAP and RAP
	1 Introduction
	2 Markov Chain Driven Point Processes in Discrete and Continuous Time and Their Non-Markovian Generalizations
	2.1 Discrete Phase Type and Matrix Geometric Distributions
	2.2 Discrete Markov Arrival Process and Discrete Rational Arrival Process
	2.3 Continuous Phase Type and Matrix Exponential Distributions
	2.4 Continuous Markov Arrival Process and Continuous Rational Arrival Process

	3 Some Properties of Order 2 DPH and MG Distributions
	4 Canonical Representation of DRAP(2) Processes
	4.1 Canonical Forms of CMAP(2)
	4.2 Canonical Forms of DMAP(2) with Positive Eigenvalues
	4.3 Canonical Forms of DMAP(2) with a Negative Eigenvalue

	5 Explicit Moments and Correlation Matching with the Canonical Forms
	6 Conclusions
	References

	Encoding Timed Modelsas Uniform Labeled Transition Systems
	1 Introduction
	2 Revisiting the Definition of ULTRAS
	3 Encoding Timed LTS Models
	4 Encoding Timed Automata
	5 Encoding Probabilistic Timed LTS Models
	6 Encoding Probabilistic Timed Automata
	7 Encoding Markov Automata
	8 Discussion and Conclusions
	References

	A Fast EM Algorithm for Fitting Marked Markovian Arrival Processeswith a New Special Structure
	1 Introduction
	2 Marked Markovian Arrival Processes
	3 MAP and MMAP Fitting Methods
	4 Fitting Traces with MMAPs Having a Special Structure
	4.1 Motivation
	4.2 The Definition of the Special Structure Used for Fitting
	4.3 The EM Algorithm
	4.4 Optimization of the Shape Parameters

	5 NumericalExperiments
	5.1 Fitting Single-Class Trace
	5.2 Fitting Multi-class Trace

	6 Conclusion
	References

	PMIF+: Extensions to Broadenthe Scope of Supported Models
	1 Introduction
	2 Requirements for the Selection of Extensions
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–

	3 Meta-model Representations of PMIF Extensions
	4 PMIF+ Meta-model
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–

	5 Validation
	5.1 Fork/Join Examples
	5.2 Buffer Example

	6 Conclusions
	References

	Performance Regression Unit Testing:A Case Study
	1 Introduction
	2 SPL Unit Testing Environment
	2.1 Performance Test Construction
	2.2 Performance Test Workload
	2.3 Tool Features Overview

	3 SPL Unit Testing Case Study
	3.1 Case I: Negative Improvement
	3.2 Case II: Confirmed Improvement
	3.3 Case III: Measurement

	4 SPL Case Study Lessons
	4.1 Platform Portability
	4.2 Accuracy and False Alarms
	4.3 Test Duration and Coverage

	5 Related Work
	6 Conclusion
	References

	Phase-Type Fitting Using HyperStar
	1 Introduction
	2 Phase-Type Distributions
	3 The Data Set
	4 Fitting a Data Set in Simple Mode
	4.1 Algorithm

	5 Refinement Using Peak Adjustment
	5.1 Algorithm

	6 The Command-Line Interface
	6.1 Algorithm

	7 The Mathematica Interface
	7.1 Technical Configuration

	8 Simulation
	9 Conclusion
	References

	Towards the Quantitative Evaluation of Phased Maintenance ProceduresUsing Non-Markovian Regenerative Analysis
	1 Introduction
	2 Problem Formulation
	2.1 A General Class of Phased Maintenance Procedures: Stylized Facts
	2.2 An Example

	3 Modeling
	3.1 An Extension of Stochastic Time Petri Nets
	3.2 Deriving an sTPN Model of Maintenance Procedures

	4 Quantitative Analysis
	4.1 Transient Analysis
	4.2 Transient Analysis of Markov Regenerative Processes

	5 Computational Experience
	6 Conclusions
	References

	Performance Enhancement by Meansof Task Replication
	1 Introduction
	2 Conditional Task-Response Time Distribution
	3 Initial Equilibrium State-Probabilities
	3.1 Direct Solution in a Truncated Space
	3.2 Product-Form Equilibrium Probabilities
	3.3 Numerical Comparisons
	3.4 Approximate Marginal and Joint Probabilities

	4 Formulation Based on Difference-Modes
	4.1 Approximation
	4.2 Spectral Expansion Method

	5 Conclusion
	References

	Improving and Assessing the Efficiencyof the MC4CSLTA Model Checker
	1 Introduction
	2 Background and Motivations
	3 The Zoned-DTA Technique
	4 The MC4CSLTA Tool, Version 2: Features and Assessment
	5 Conclusion
	References

	End-to-End Performance of Multi-core Systemsin Cloud Environments
	1 Introduction
	2 Experimental Results
	2.1 Methodology
	2.2 Experimental Setup
	2.3 Studies on Virtual CPUs
	2.4 Performance Variability Analysis
	2.5 I/O-Bound Applications
	2.6 Software Multi-threading
	2.7 Efficiency

	3 Fitting CPU and I/O Demands in Virtualized Multi-core Systems
	3.1 Resource Demand Estimation for Multi-core CPUs
	3.2 Estimating the I/O Demand in Multi-core Environments

	4 Conclusions
	References

	Performance Analysis and Formal Verificationof Cognitive Wireless Networks
	1 Introduction
	2 Topology Control with Cognitive Networks
	3 The PRISM Model Checker
	3.1 Modules
	3.2 The Property Specification Language
	3.3 Costs and Rewards
	3.4 Statistical Model Checking

	4 The Model
	5 Simulations and Results
	5.1 Reachability Property
	5.2 Energy Cost Properties

	6 Conclusion
	References

	Short papers
	Sliding Hidden Markov Modelfor Evaluating Discrete Data
	1 Introduction
	1.1 Background
	1.2 Forward-Backward Algorithm
	1.3 Baum-Welch Algorithm
	1.4 Incremental Model

	2 Sliding HMM
	2.1 Moving Average
	2.2 Sliding Baum-Welch Algorithm

	3 Collecting and Processing Traces
	3.1 Raw Traces
	3.2 Binned Traces
	3.3 K-means Clustering

	4 Simulation of SlidHMM and Results
	5 Conclusion and Future Work
	References

	Using Queuing Models for Large System Migration Scenarios –An Industrial Case Study with IBM System z
	1 Introduction
	2 Modeling Approach
	2.1 System Environment Analysis
	2.2 Workload Characterization
	2.3 Metrics Measurements and Estimation
	2.4 Performance Modeling

	3 Case Study
	3.1 System Environment Analysis
	3.2 Workload Characterization
	3.3 Metrics Measurements and Estimation
	3.4 Performance Modeling
	3.5 Evaluation

	4 Discussion
	5 Conclusion
	References

	Performance Evaluation for Collision PreventionBased on a Domain Specific Language
	1 Introduction
	2 System Description
	3 PQP Profiling
	4 POOSL-Performance Model
	4.1 POOSL Model Outline
	4.2 The DSL-Instance
	4.3 Use Cases
	4.4 PQP Profiles

	5 Validating the Movement-Control Performance Model
	6 Conclusion and Future Work
	References

	An Approximate Mean Value Analysis Approachfor System Management and Overload Control
	1 Introduction
	2 MVABLO Analysis
	3 The MVABAS Algorithm
	4 The Case Study
	5 Conclusions
	References

	Modeling and Timing Simulation of Agilla Agents for WSN Applicationsin Executable UML
	1 Introduction
	2 Model-Driven Approach to Agilla Agent Modeling, Timing Analysis and Code Generation
	3 Case Study
	4 Experimental Measurement of Agilla ISA Execution Times
	5 The Agilla Modeling Framework
	5.1 Modeling for Code Generation
	5.2 Modeling for Simulation

	6 Timing Analysis by Model Simulation
	7 Related Works
	8 Conclusion
	References

	Applying Model Differences to AutomatePerformance-Driven Refactoring of Software Models
	1 Introduction
	2 Role Modeling for Antipatterns Definition and Solution
	3 Model Differencing for Model Refactoring
	3.1 RBML Difference Model
	3.2 Applying Differences for Model Refactoring

	4 Application Example
	5 Related Work
	6 Conclusions
	References

	Reduction of Subtask Dispersionin Fork-Join Systems
	1 Introduction
	2 Preliminaries
	2.1 Parallel Processing Systems
	2.2 Theory of Order Statistics
	2.3 Theory of Heterogeneous Order Statistics

	3 Metrics
	4 On Online Technique for Reducing Subtask Dispersion in Fork-Join Systems
	5 Numerical Results
	6 Conclusion
	References

	SAT-Based Bounded Model Checkingfor RTECTL and Simply-Timed Systems
	1 Introduction
	2 Preliminaries
	3 Bounded Model Checking for RTECTL
	4 Experimental Results
	5 Conclusions
	References

	Author Index

