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Abstract. We present an architecture for coreference resolution based
on joint inference over anaphoricity and coreference, using Markov Logic
Networks. Mentions are discriminatively clustered with discourse enti-
ties established by an anaphoricity classifier. Our entity-based corefer-
ence architecture is realized in a joint inference setting to compensate for
erroneous anaphoricity classifications and avoids local coreference mis-
classifications through global consistency constraints. Defining pairwise
coreference features in a global setting achieves an efficient entity-based
perspective. With a small feature set we obtain a performance of 63.56%
(gold mentions) on the official CoNLL 2012 data set.

1 Introduction

Coreference resolution (CR) is the task of detecting and clustering mentions of
discourse entities in a text. Successfully resolving coreferences is an important
and challenging step in many NLP tasks. This paper takes a discourse-oriented
perspective on CR, by realizing a global, entity-centric approach for mention
clustering that exploits dependencies between anaphoricity and coreference. Of-
ten, clustering is done after pairwise CR to resolve inconsistencies. We are
using a joint approach that performs CR classification and clustering simultane-
ously, while imposing global consistency constraints. To reduce the complexity
of this global clustering approach, we use joint inference with the results of an
anaphoricity classifier. Using the anaphoricity classifier, we create anchors for
discourse entities and cluster mentions with those entities. Treating both pro-
cesses in a joint inference architecture ensures that errors of the anaphoricity
classifier can be counterbalanced, thus avoiding pipeline effects. Global consis-
tency constraints and exploitation of pairwise features in a global, entity-based
coreference formalization enable us to solve the problem efficiently.

Our architecture is basedonMarkovLogicNetworks (Richardson and Domingos,
2006) which combine first-order logic formulas with a probabilistic model. This al-
lows for transparent formalization of the architecture and of the interaction con-
straints, as well as flexible extensions of the feature set.

This paper is organized as follows: Sec. 2 presents related work. Sec. 3 de-
scribes our core architecture for global coreference clustering with anaphoricity.
Sec. 4 introduces the components for anaphoricity and coreference determina-
tion. Sec. 5 presents our experiments and results and Sec. 6 concludes.
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2 Modeling Coreference Resolution

Approaches to Coreference Resolution. Machine learning approaches have long
addressed CR in a pairwise scenario deciding for each pair of mentions whether
they are coreferent or not. A subsequent clustering step then clusters the pairs to
entities (Soon et al. (2001), Ng and Cardie (2002)). This is often implemented
in a pipeline architecture and thus suffers from error propagation and locality
issues, such as violation of transitivity over local CR decisions.

Entity-based approaches, on the other hand, focus on modeling the entity
itself by using entity-level features. This reduces the problem of locality as a
mention is compared to a complete entity instead of creating an entity by pair-
wise classification decisions. Defining entity-level features is challenging, as they
require appropriate representations for judging similarity between mentions and
an entity. Features for entities can, for instance, be defined by aggregating and
comparing specific attributes for all mentions in an entity (Wellner et al., 2004).

A further challenge of entity-based approaches is the number of clusters to be
examined. Luo et al. (2004) make use of Bell trees to reduce this processing com-
plexity. Martschat et al. (2012) perform global CR using multigraphs, allowing
for an entity-based perspective. Finally, ranking approaches are used to find the
best antecedent entity for mentions (Rahman & Ng (2011); Denis & Baldridge
(2008)) instead of relying on single pairwise classifications.

Joint Inference for Coreference Resolution. To overcome the problem of local-
ity, different aspects of CR can be combined using joint inference techniques.
Denis and Baldridge (2009) use Integer Linear Programming to perform joint
inference over independent classifier decisions for anaphoricity, pairwise corefer-
ence and named entity type. They define global ILP constraints over these clas-
sifications to determine a globally optimal solution that respects dependencies
of anaphoricity and coreference decisions. In contrast to our approach, pairwise
coreference decisions need to be harmonized by explicit transitivity constraints.
These could not be fully implemented due to efficiency constraints. Recently,
Song et al. (2012) proposed a joint inference formalization using MLN that in-
terfaces local, pairwise resolution and clustering by way of explicit transitivity
constraints. We, in contrast, will use anaphoricity as an anchor for entities and
perform best-first clustering without stating explicit transitivity constraints.

Poon and Domingos (2008) use MLN to perform unsupervised CR in an entity-
based approach that, like ours, implicitly accounts for transitivity. Their formal-
ization does not model interactions with anaphoricity and offers a restricted set
of entity-level features. Clustering of mentions is driven by head features, and few
semantic type and morphological features are used to assign further mentions to
these clusters. Other factors, such as distance, are encoded using a pre-defined
prior. Thus their formalization is not truly transparent from a linguistic mod-
eling point of view. As many rules are defined as hard constraints, it is unclear
whether the system can be adapted to a supervised scenario, in order to adapt
to specific domains, and whether an extended set of features can be integrated
using hard constraints or independently determined priors.
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2.1 Markov Logic Networks

Markov Logic Networks (MLN) combine two major advantages desirable for NLP
applications: (1) being able to model uncertainty efficiently (using probabilistic
graphical models) and (2) expressing and combining various sources of knowledge
(by first-order logic) (Richardson and Domingos, 2006).

A MLN consists of a predicate logic knowledge base (formulas) with a weight
attached to each formula. The weight of a formula can be regarded as the cost of
violating it. A high accumulated cost over all formulas leads to a less probable
possible world and vice versa. More formally, the probability of a specific state
of a world x can be described in a log-linear model as follows:

P (X = x) =
1

Z
exp(

∑

i

wini(x)) (1)

The weight wi of each formula is multiplied by the number of true groundings
of the formula in the specified world (ni(x)).

Each MLN instantiates a Markov network: binary nodes in the network cor-
respond to possible groundings of first-order predicates and one feature (edge)
for each formula with the corresponding weight. Each set of ground atoms from
a knowledge base thus leads to a specific ground Markov network.

Learning. Learning weights discriminatively for a specific predicate is a problem
of maximizing the conditional probability of a query given a possible world:
P (Y = y|X = x) = 1

Zx
exp

∑
iwini(x, y), where x are evidence predicates and

y the query predicate. ni(x, y) counts the number of true groundings of the ith

formula. Weights are learned to maximize the conditional probability. Intuitively,
the number of true groundings in the data is compared to the expected number
of true groundings. With a gradient descent method, this problem can be solved
efficiently (Lowd and Domingos, 2007)

Inference. MAP inference aims at finding the most probable state y (query
predicate) for given evidence x (argmaxy P (y|x)), which can be expressed as∑

iwini(x, y). Satisfiability solvers solve this NP-hard problem efficiently.
We use Tuffy (Niu et al., 2011) as an inference framework for MLN due to its

efficiency during inference. Tuffy implements the Newton Diagonal method for
learning weights and MaxWalkSAT for inference.

3 Global CR Clustering with Anaphoricity Using MLN

Our approach aims at modeling CR using a global, entity-based approach that
will be complemented by a discourse-based perspective, by using discourse-new, or
anaphoricity information to guide the entity clustering process. This architecture
will be formulated as a joint inference problem using MLN.
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1 // predicate declarations 6 // discourse-new mentions initiate an entity

2 *cand ent(MEN,ENT) 7 cand ent(m,e) , anaph(m,0) ⇒ m in e(m,e)

3 m in e(MEN,ENT!) 8 cand ent(m,e) , anaph(m,1) ⇒ !m in e(m,e)

4 *anaph(MEN,BOOLEAN)

5 *feat(MEN,FEAT) 9 // rule schema for pairwise CR clustering

10 m in e(m e,e), !m in e(m,e) , m != m e,

feat(m e,m,val) ⇒ m in e(m,e)

11 // constraint: resolve all mentions

12 cand ent(m,e) ⇒ m in e(m,e x) .

Fig. 1. Core predicate declarations and rules. , indicates conjunction, ⇒ a conditional
and ! negation. ∗ specifies a closed-world assumption and . defines a hard constraint.

We realize a global, entity-based CR system by clustering all mentions into
entities and choosing a partition of entities that simultaneously satisfies all coref-
erence features. Such an approach circumvents the problem of local classifica-
tions. Implementing this in a brute-force manner is computationally prohibitive,
as it requires considering the probability of each possible clustering of mentions.
As P(M) = 2n for a set M of n mentions, the number of possibilities to compute
increases exponentially with the number of mentions. Luo et al. (2004) introduce
a bell tree to efficiently manage multiple clusterings of mentions using a beam
search, but pruning bears the risk of removing globally good results.

Instead of considering all possible clusterings, we will use anaphoricity as a
guide to establish discourse entities for subsequent mention clustering. Men-
tions that are determined by the anaphoricity classifier to be non-anaphoric, or
discourse-new, will be considered as an ’anchor’ for a new discourse entity that
serves as a reference point for discriminative clustering of mentions classified as
anaphoric. Combining anaphoricity and CR in a joint inference architecture with
soft constraints allows us to compensate for errors in either module. In contrast
to Denis and Baldridge (2009), where pairwise classifications are supported by
anaphoricity, our clustering approach focuses on entities from the beginning.

We use Markov Logic Networks, as they offer a flexible and transparent frame-
work that can be easily extended to incorporate additional knowledge.

3.1 Global Architecture and MLN Formalization

Our MLN formalization consists of four main components. We first give a brief
overview of these components and their interplay and then turn to discuss them
in more detail. Fig. 1 states relevant predicate declarations and rules.

1. Initialization. Allmentionsm are declared as potential anchors for an entity
e, through a predicate cand ent(MEN,ENT) (l. 2) and appropriately defined
knowledge base entries.

2. Establishing Entities through Anaphoricity. Mentions m classified as
discourse-new by an external classifier instantiate a unique discourse entity
e (the one associated withm through cand ent(m,e)), through the coreference
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indicating predicate m in e(m,e). (l. 3, 7). Mentions classified as anaphoric
do not initiate a discourse entity (l. 8).

3. Global Coreference Resolution. The rule schema in line 10 applies to all
mentions m that are not (yet) clustered with an entity e, and evaluates
the strength of individual CR features feat (l. 5) holding between m and
any distinct mention me clustered with e.This implements an entity-based
CR strategy while using mention-level features. The rule quantifies over all
entities e that were established by a discourse-new mention in 2. (l. 7).

4. Two Constraints ensure consistency and constrain the clustering of men-
tions to entities:
a. Uniqueness: Each mention is assigned to exactly one entity. This con-
straint (defined through m in e(MEN,ENT!), l. 3) implies disjointness of dis-
course entities. It considerably reduces the combinatorics of clusterings, since
anchor mentions me of entities e need not be considered by the coreference
clustering rules in 3: a mention me that is already clustered with an entity
e cannot be clustered with a disjoint entity ex �= e.
b. Resolve All Mentions. This constraint (l. 12) enforces that each men-
tion is clustered with an entity: the entity of which it is an anchor (e = ex)
or some other entity (e �= ex). When resolving gold mentions, we define it as
a hard constraint. It can be relaxed when dealing with system mentions.
Transitivity. Unlike Denis&Baldridge (2009) and Song et al. (2012) we
do not encode explicit transitivity constraints. Violations of transitivity
are excluded by Uniqueness. Since clustering is entity-centric (through
m in e(m,e)), the uniqueness constraint implies disjointness of entities, and
thus, discriminative clustering of mentions to entities.1

3.2 Using Anaphoricity to Establish Entities

Anaphoricity determines whether a mention is anaphoric (i.e., refers to a previ-
ously mentioned entity) or non-anaphoric and thus introduces a new discourse
entity. Mentions classified as discourse-new can be used as ’seeds’ for establishing
entities for subsequent (discriminative) clustering of anaphoric mentions to the
created discourse entities. We exploit linguistic knowledge about anaphoricity to
establish the set of discourse entities in a given text, and thereby considerably
reduce the space of possibilities to be investigated for entity clustering.

Anaphoricity of mentions is determined by an external anaphoricity classifier
(AC) (see Sec. 4.1) that provides binary anaphoricity labels (l. 7, 8). Rule 7
receives high weight with mentions classified as discourse-new (non-anaphoric),
and instantiates a discourse entity, of which it is typically the first member. Rule
8 applies to the complementary case, with mentions classified as anaphoric. Here,
the rule states that m does not instantiate a discourse entity.

Reducing Complexity. Our approach provides an initial partitioning of mentions
into a set of anchored discourse entities. Since uniqueness forces each mention

1 A sufficiently high weight of the AC rule avoids clustering all mentions into a single
entity, as it triggers the creation of a sufficient number of entities.
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to be contained in a single entity, mentions serving as anchors for an entity can-
not be clustered with other entities. This knowledge about disjointness severely
reduces the combinatorics of coreference-based clustering of mentions to entities.

Avoiding Pipeline Effects. While our approach reduces the number of cluster-
ings to be examined, errors of the AC may severely harm CR performance
(Denis and Baldridge, 2009). To avoid pipeline effects, the rules that create dis-
course entities are weighted to counterbalance errors of the AC: We allow for
each mention to instantiate a new entity with a learned weight that depends on
the AC result. At present, we use two rules (l. 7, 8) to represent the binary AC
predictions.

3.3 Global Coreference Resolution

There are different ways for using CR features in an entity-based architecture:
cluster- or entity-level features, i.e., features defined between a mention and
an entity, or mention-level features, as typically used in mention-pair models.
As the design of entity-level features is challenging for some feature types (e.g.
distance measures) and computing feature values for all possible entity cluster-
ings is computationally expensive, we make use of mention-level features that
are evaluated in an entity-centric, discriminative ranking approach by exploiting
universal quantification of variables in MLN formulae (Fig. 1, l. 10).

A mention m that is to be classified will be evaluated for coreference with
every entity e by comparing it to all mentions in the cluster and accumulating
the evidence for a mention to be in a specific cluster using the rule weights for
individual pairwise coreference features. In this way, we compare a mention to
all other mentions of the entity using pairwise, mention-level features.

In MLN, this intuition is captured by exploiting implicitly universally quan-
tified variables. I.e., for each feature feat and possible value val of feat, we
employ the rule schema from Fig. 1, l. 10: For all mentions me in an entity e:
if we observe a feature value for the mention pair (me, m), m should also be
assigned to e (with rule weight wfeat). For features encoding negative evidence,
the learned rule weight is negative. According to equation (1), the weight for all
instantiated formulas are accumulated. The final weight for assigning mention m
to some entity e is thus obtained by comparing m to all mentions me in cluster
e, and we assign m to the entity that receives the highest overall score.

3.4 Joint Inference

We now discuss how the components for anaphoricity and coreference interact to
allow for joint inference and ensure consistency for the entire inference process.

Anaphoricity and Coreference. Anaphoricity information is used to provide seeds
for entity clusterings to which anaphoric mentions are attached. Misclassifica-
tions of the AC need to be counterbalanced by coreference features.
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Fig. 2. Joint inference: anaphoricity and coreference

Fig. 2 demonstrates a relevant case: We assume two possible inference re-
sults (a) and (b) for a hypothetical document that contains three mentions
({m1,m2,m3}). Each mention could instantiate a new entity ({e1, e2, e3}). The
AC predicts that mentions m1 and m3 are discourse-new which results in a high
weight (0.8, in this example) for the mentions to instantiate a new entity (Fig.
1, l. 7). We assume that m3 is erroneously classified as discourse-new. Solution
(a) accepts the AC prediction and clusters mentions m1 and m2 with e1 and m3

as a new entity e3, whereas solution (b) rejects the AC prediction for m3.
In addition to anaphoricity, there is an accumulated weight due to all corefer-

ence indicators between each pair of mentions. For solution (a), the accumulated
scores yield an overall weight of 0.8 + 0.8 + 0.9 = 2.7. Solution (b) rejects the
result of the AC and instead attaches m3 to entity e1. The overall score of
0.8+0.8+0.9+0.6 = 3.3 exceeds solution (a). Thus, strong coreference features
can indeed override errors of anaphoricity classification.

Conversely, features that contribute strong negative evidence for coreference
can help to compensate for discourse-new mentions that are wrongly predicted
to be anaphoric. If a mention does not fit with any cluster, it is likely to be non-
anaphoric and to instantiate a new entity. Indeed, given strong negative evidence
for coreference with any entity, we might obtain a globally optimal solution that
establishes an entity using the fallback rule of line 12.

Modeling the mutual interdependence of coreference and anaphoricity deci-
sions using joint inference offers a great advantage over pipeline architectures.

Interaction between Coreference Features. The proposed architecture also han-
dles interactions and contradictions between coreference features. Each mention
is evaluated by multiple coreference rules, each one defining different features
and values, with different rule weights attached to them. As all rule weights for
all features are accumulated (cf. equation (1)), positive or negative evidence for
clustering a mention with an entity, are balanced against each other.

4 Anaphoricity and Coreference Features

4.1 Anaphoricity Classifier

We follow the evaluations in Poesio et al. (2005) and selected the most promising
features from previous works. We optimized classification performance on the de-
velopment set of the CoNLL 2012 dataset and chose the Random Forest classifier
implemented in Weka (Hall et al., 2009) which yielded highest performance.
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For each mention to be classified we determine its mention type, whether it
occurs in the first sentence or is the first occurrence of the head or surface form of
the mention. We check for pre- and post-modification, definiteness, superlative
forms and the grammatical function. In addition to these classical features, we
use 8 measures to capture a raise in term frequency and tf-idf after the first
mention of an entity that also holds for partial string matches (Ritz, 2010).

Training the anaphoricity classifier on the complete training portion of the
CoNLL 2012 data and evaluating it on the development set yields an accuracy
of 86.38% (Prec.: 86.5%, Rec.: 86.4%).

4.2 Coreference Features

We selected and implemented 17 features for coreference resolution from
(Bengtson and Roth, 2008) and used them to test our architecture.2 For each fea-
ture and possible feature value, we add a dedicated rule. For continuous features
(e.g. distances), we first learn weights for each possible feature value individually
and subsume values with a similar weight to obtain plausible feature ranges. We
re-estimate weights for the obtained feature ranges.

As a fallback, we add a feature that attaches mentions to the nearest potential
antecedent if there is not enough evidence for coreference. This avoids promoting
unbound anaphoric mentions to independent discourse entities.

5 Feature Selection and Experiments

5.1 Experimental Setting

We use CoNLL 2012 Shared Task data (Pradhan et al., 2012) for all experiments
and evaluate on the official test set. As our aim in this work is to develop a core
baseline architecture as a proof of concept, we focus on gold standard mentions.
Future work will extend our architecture to include system mentions.

We apply the five evaluation metrics used in the CoNLL 2012 Shared Task:
MUC , B3, CEAF with both the entity- and the mention-based similarity met-
ric and BLANC. The arithmetic mean of all five F1 scores is used for feature
selection and presentation of results.

5.2 Weight Learning and Feature Selection

Despite using pairwise rules, learning weights for many or all rules simultaneously
is still computationally expensive: each predicate that is added to the rule file
adds a node and edges for each possible grounding of the formula to the Markov

2 Surface features (HeadMatch, StringMatch, Alias, StringKernelSim.); Syntactic (Ap-
positive, Predicative, BindingConstraints, HobbsDistance); Semantic (Synonymy,
Antonymy, SemanticDistance); Agreement (Gend-/Num-/Semantic-Agr); Distance
(Token-/Mention-/Sent-Dist).
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Table 1. Performance impact of features in additive feature selection: difference rela-
tive to last iteration (Δavg(F )) and absolute performance (avg(F ))

HeadMatch - 59.82

Added rule Δavg(F ) avg(F )

string kernel similarity +0.56 60.38
gender agreement +0.20 60.58
nearest antecedent +0.04 60.62
hobbs distance +1.68 62.30
string match +1.64 63.94
reflexive match +1.35 65.29
semantic distance +0.00 65.29

network. Dependencies between features in particular result in an exponential
growth of the Markov network.

To reduce the size of the resulting Markov network and speed up the learn-
ing process, we learn weights for different rules (i.e. coreference feature values)
individually. That is, we make a simplifying independence assumption for all
rules so that we can learn rule weights individually: for independent features,
each rule only contains one feature value. Nevertheless, we add the mention type
to restrict rules to mentions for which a feature is appropriate. All weights are
learned on 50 randomly sampled documents of the CoNLL 2012 training set,
containing 2279 mentions in 513 entities.

We extracted features based on the provided automatic annotations and used
the output of the AC during training, in order to ensure that the influence of
erroneous anaphoricity annotation is learned and counterbalanced.

Additive Feature Selection. To determine an optimal feature set, we conduct
greedy forward selection in combination with step-wise backward deletion. We
start with a rule set without any coreference features (l. 1-8, 12 in Fig. 1) and
add individual coreference rules one at a time to determine which rule yields
highest overall performance gain (CoNLL score). This rule is then added to the
rule set and the process is repeated by adding further rules until no further
improvements are observed. After this process, we perform step-wise backward
deletion: at each step, we eliminate one feature. If performance increases after
deletion of a single feature, the feature is removed and we continue with forward
selection again. This combination of forward selection and backward deletion is
repeated until no improvements are observed.

Table 1 lists the features that were selected during the described process, and
their contribution to overall performance on the development set.

5.3 Experiments and Results

Evaluation Setup. For final evaluation, we measure CR performance with the se-
lected feature set (Table 1) on the test set using gold mentions and automatically
created linguistic annotations.
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Table 2. Evaluation results on the test set for four scenarios with optimized features

Evaluation (I) ACauto (II) ACauto (III) ACgold (IV) ACgold

Scenario learned weight constraint learned weight constraint

documents all non-split all all non-split all non-split
Prec Rec F1 F1 F1 F1 F1 F1 F1

MUC 72.55 76.14 74.30 76.31 69.80 75.10 77.08 75.02 77.13
B3 61.03 67.05 63.90 64.28 58.28 64.20 65.71 64.98 67.31
CEAF-M 64.14 86.54 66.27 66.42 53.26 66.58 66.99 67.47 69.26
CEAF-E 55.47 62.92 58.96 59.92 47.55 59.21 62.93 60.19 62.14
BLANC 52.71 56.14 54.37 60.76 53.21 54.64 62.28 55.00 63.63

CoNLL 63.56 65.54 56.42 63.95 67.00 64.53 67.90

Next to the full architecture with joint inference over anaphoricity (AC) and
CR classifications (I) we evaluate further system variants to highlight the impact
of joint inference and the individual anaphoricity and coreference sub modules
(cf. Table 2): (II) highlights the effect of joint inference against a pipeline of
automatic AC predictions and a hard constraint for establishing entities;3 (III)
and (IV) use oracle (gold) AC results with learned weights vs. hard constraints
for the creation of entities. They illustrate the upper bound of the system’s
current AC integration and CR clustering performance.

In the CoNLL data, long documents are split into multiple pieces which artifi-
cially creates new entities at each break. As our anaphoricity-driven architecture
is heavily influenced by such noise, we additionally evaluate most scenarios on
the subset of documents that are not affected by such splits (non-split).

Results. Our final evaluation results are given in (I). With 63.56%, the F1-
score of our model lies within the range of published results for the CoNLL 2012
Shared Task with gold mentions, where scores range from 51.40% to 77.22%.4 A
pipeline architecture (II) suffers from a drop of around 7 percentage points. This
clearly shows that our joint inference architecture is effective in counterbalancing
AC errors. We note a strong effect for both CEAF metrics.

Scenarios (III) and (IV) mark upper bounds for our approach regarding AC
integration and CR performance. As our AC classifier scores at 81.6/84.7/83.12
P/R/F1 on the test set, the small performance difference (0.39 points F1) be-
tween automatic (I) and gold AC using learned rule weights (III) shows that the
learned rule weights are well set. The results using an AC oracle with hard con-
straints for entity creation shows small differences, too. This points to a weakness
of the current model regarding the performance of CR features.

For all models we observe clear performance increases for non-split documents,
which avoids artificial noise that the AC is unable to detect.

3 We simulate a pipeline by marking both anaphoricity rules as hard constraints.
4 http://conll.cemantix.org/2012/

http://conll.cemantix.org/2012/
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5.4 Error Analysis and Discussion

Errors involving anaphoricity. Joint inference over anaphoricity and coreference
is crucial to our architecture. We thus measured how well joint inference counter-
balances (1) false positives (FP) (mentions erroneously classified as anaphoric)
and (2) false negatives (FN) (anaphoric mentions classified as non-anaphoric).

On the test set, the anaphoricity classifier yields a precision of 81.6% and a
recall of 84.7%. In setting I, 32% of the FPs and 68% of the FNs are corrected.
Thus, errors introduced by the AC erroneously classifying a mention as anaphoric
are harder to resolve. Inspection of errors reveals that 52% of the mentions that
are not corrected in our joint inference scenario (I) are pronouns. Most of these
erroneously classified pronouns behave as discourse-new in the gold standard
due to the fact that long documents are split into pieces in the CoNLL data set,
which artificially creates new entities. As our AC is based on linguistic features, it
is deemed to misclassify these mentions as anaphoric. Our approach is especially
sensitive to this artificial noise as it depends on correct anaphoricity information.
If we remove split files, 43% of FPs and 65% of FNs are corrected.

For FNs, stronger CR indicators are needed such that mentions could be
attached to other entities despite being classified as discourse-new.

Discussion and Future Extensions. Our evaluation clearly shows that joint in-
ference over anaphoricity is well designed, so that CR information can counter-
balance classifier mistakes. Further extensions will integrate classifier confidence
values, to help the impact of CR features for correcting false negatives.

The small feature set we are currently using shows that the architecture it-
self plus some strong features result in a strong baseline system. At the same
time, the evaluation points to weaknesses of our current CR feature set. This is
(partially) due to the quite strong independence assumptions during learning. In
current work we perform feature selection using linguistically motivated feature
groups and also use larger training sets, using a more efficient MLN engine.

6 Conclusion

In this paper we propose an architecture for CR that uses anaphoricity to estab-
lish a set of discourse entities in a text and clusters all anaphoric mentions with
these entities. By accumulating weights of pairwise mention-level coreference
comparisons we realize discriminative mention clustering while circumventing
the problem of defining entity-level features. We use Markov Logic Networks as
a framework to perform joint inference over the output of an anaphoricity clas-
sifier and pairwise entity-centric coreference decisions, and show that the system
is able to correct errors of both anaphoricity and coreference. To our knowledge,
this is the first attempt to use anaphoricity to establish discourse entities for
discriminative global mention clustering. This is what clearly distinguishes our
account from Poon and Domingos (2008), where discourse entities are globally
clustered by the heads of mentions and agreement features. Our system achieves
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good performance using a small feature set. We are currently working with fea-
ture combinations on larger training set sizes and integrate system mentions to
realize a powerful end-to-end system. First experiments yield promising results.
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