Chapter 37

Vasoconstriction, Hypertension

and Oxidative Toxicity are Regulated
by Polymerized Hemoglobin Size

Brian M. Belcik and Andre F. Palmer

37.1 Negative Side-Effects of Early Generation HBOCs
37.1.1 Cell-Free Hb

Hb was one of the first HBOCs to be evaluated as a RBC substitute (Savitsky et al.
1978). Unfortunately, Hb is able to extravasate through endothelial cell—cell
junctions and scavenge NO several orders of magnitude more than RBCs
(Suaudeau et al. 1979; Nakai et al. 1998; Dull et al. 2004; Liu et al. 1998; Liao
et al. 1999). This is attributed to the smaller molecular dimensions of cell-free Hb
compared to the RBC, which allows it to extravasate through the endothelial cell-
cell junctions in capillaries into the surrounding tissue space (Suaudeau et al. 1979;
Nakai et al. 1998; Dull et al. 2004). Consequently, vasoconstriction (i.e. reduction
in blood vessel diameter) ensues, due to scavenging of the gaseous signaling
molecule nitric oxide (NO) by the extravasated cell-free Hb (Vogel et al. 1986;
Kavdia et al. 2002). Vasoconstriction at the microcirculatory level then leads to
systemic hypertension, or high blood pressure (Doherty et al. 1998). In a human
clinical trial, human Hb (HbA) induced mild hypertension in patients (Savitsky
et al. 1978). HbA has also been shown to elevate the mean arterial blood pressure
in hemorrhaged pigs and rats (Hess et al. 1993; Thompson et al. 1994). Therefore
in light of these vascular side-effects, Hb is not used as a RBC substitute.
Table 37.1 lists the biochemical and biophysical properties of Hb and various
HBOC:s.

In addition to its’ vascular side-effects, cell-free Hb can also elicit tissue tox-
icity due to its ability to induce oxidative stress. In the blood stream, tetrameric Hb
easily dissociates into two «ff dimers (Alayash 1999; Bunn et al. 1969). The
ferrous heme iron of the off dimer autoxidizes to the ferric or methemoglobin
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(metHb) form at a higher rate than the ferrous heme of tetrameric Hb (Zhang et al.
1991; D’Agnillo 2006). MetHb formation via autoxidation produces the reactive
oxygen species (ROS) superoxide anion and indirectly hydrogen peroxide (H,O,)
(D’ Agnillo 2006; Misra and Fridovich 1972). Hence, the ROS hydroxyl radical
can be generated by the reaction of superoxide with H,O,, and this is catalyzed by
iron released from degraded heme (D’Agnillo 2006; Graf et al. 1984). Hence, Hb
oxidation drives the production of ROS (D’Agnillo 2006; Misra and Fridovich
1972; Graf et al. 1984). Unfortunately, in vivo exposure to hydroxyl radicals has
been linked to renal failure and apoptosis of vascular cells (Walker and Shah 1988;
Shah and Walker 1988; Li et al. 1997). To compound matters further, the small
size of off dimers also facilitates their filtration through the kidneys, and thus
increases the opportunity for tissue exposure to ROS (Bunn et al. 1969). In clinical
human trials, cell-free HbA infusion caused noticeable hemoglobinuria, indicative
of HbA clearance through the kidneys (Savitsky et al. 1978). The highly reactive
species ferryl Hb can also be formed from further reactions of Hb with H,O,
(D’ Agnillo 2006; Giulivi and Davies 1990; Kanner et al. 1988). Ferrous Hb can be
oxidized to ferric Hb via H,O, exposure, and ferryl Hb is formed as an interme-
diate during this reaction (D’ Agnillo 2006; Giulivi and Davies 1990). MetHb itself
can also be converted to ferryl Hb in the presence of H,O, (D’Agnillo 2006;
Kanner et al. 1988). Ferryl Hb can elicit inflammation of vascular endothelial cells
(Silva et al. 2009). Overall, oxidative stress facilitated by Hb oxidation products is
a problem many HBOCs face and aim to prevent.

37.1.2 Recombinant HbA 1.1 (rHb 1.1)

Therefore in order to reduce renal filtration of off dimers, recombinant HbA (rHb
1.1) was developed by Somatogen Inc. (Boulder, CO) (Looker et al. 1992).
Mutations to the native structure of HbA include an oxygen affinity lowering
asparagine to lysine mutation at the 3-108 position, and the insertion of a glycerin
residue which covalently links the neighboring o chains together (Looker et al.
1992; Moo-Penn et al. 1978). Linking the o globin subunits together stabilized the
structure of rHb 1.1 and inhibited dissociation of the tetramer into aff dimers
(Looker et al. 1992). Several clinical human trials demonstrated that prevention of
rHb 1.1 dissociation into off dimers led to reduced oxidative stress and diminished
renal toxicity (Viele et al. 1997; Hayes et al. 2001). Unfortunately, rHb 1.1 also
elicited noticeable levels of hypertension in surgery patients (Hayes et al. 2001). In
another clinical trial, rHb 1.1 caused lower esophageal sphincter tension in humans
(Murray et al. 1995). It was hypothesized that the mechanism of this inhibition is
linked to NO scavenging by rHb 1.1 (Murray et al. 1995). Therefore, although rHb
1.1 exhibited reduced oxidative stress and renal toxicity, it still exhibited unde-
sirable vascular side-effects (Viele et al. 1997; Hayes et al. 2001; Murray et al.
1995). In light of these side-effects and after acquiring Somatogen Inc. (Boulder,
CO), Baxter International Inc. (Deerfield, IL) subsequently engineered rHb 3011
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with a reduced dioxygenation rate constant in order to eliminate vasoconstriction
and systemic hypertension (Olson et al. 2004; Varnado et al. 2012; Baxter 2012).
However, it has recently been shown that rHb 3011 autoxidizes at a greater rate
in vitro compared to the earlier generation rHb 0.1, which could lead to increased
oxidative stress on the vasculature (Varnado et al. 2012).

37.1.3 Diaspirin Cross-Linked HbA (DCLHD)

Site specifically cross-linking HbA represents another strategy to eliminate HbA
dissociation into «ff dimers. Hence, diaspirin cross-linked HbA (DCLHb) was
developed by the United States (US) Army and commercially as HemAssit™ by
Baxter International Inc. (Deerfield, IL) (Baxter 2012; Winslow 2003). DCLHD is
composed of HbA, in which the neighboring o globin chains are covalently cross-
linked using bis-(3,5-dibromosalicyl) fumarate (Chatterjee et al. 1986). DCLHb
consists of 96 % tetrameric HbA and 2-3 % of HbA tetrameric dimers (Yu et al.
1997). In Phase III clinical trials, DCLHb induced hypertension in stroke patients
(Saxena et al. 1999). Elevated blood pressure levels were also reported when
DCLHD was infused in patients after cardiac surgery (Lamy et al. 2000). When
administered to traumatic hemorrhagic shock patients, DCLHb recipients died
more often than saline recipients (Sloan et al. 1999). Despite stabilization of
DCLHD’s tetrameric structure via o globin chain cross-links, DCLHb readily
oxidized in vitro when H,O, was present (Cashon and Alayash 1995). Therefore,
DCLHD exhibited many of the side-effects associated with transfusion of cell-free
Hb and is no longer being pursued by Baxter International Inc. (Winslow 2003;
Saxena et al. 1999; Lamy et al. 2000; Sloan et al. 1999; Cashon and Alayash
1995).

37.2 Hb Polymerization as a Strategy to Mitigate Vascular
Side-Effects

In order to prevent many of the side-effects commonly associated with early
commercial HBOCs, the focus has turned to developing HBOCs which are too
large to pass through the endothelial cell—cell junctions of blood vessels (Alayash
2004; Palmer 2006). The rationale behind this approach centers on reducing
HBOC extravasation into the tissue space so that the HBOC is not in close
proximity to the endothelium (Alayash 2004; Palmer 2006). This should lead to
less scavenging of endothelial-derived NO by the HBOC, reduced vasoconstriction
and hypertension, as well as reduced oxidative tissue toxicity (Alayash 2004;
Palmer 2006). In light of this approach, several companies have developed
polymerized Hb (PolyHb) solutions as potential RBC substitutes.
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37.2.1 Oxyglobin®

OPK Biotech LLC (Cambridge, MA) developed two HBOCs, which have gone
through extensive studies, namely Oxyglobin® and Hemopure® (OPK Biotech
2012). Both Oxyglobin® and Hemopure® consist of glutaraldehyde polymerized
bovine Hb (PolybHb) (OPK Biotech 2012). Glutaraldehyde forms intramolecular
cross-links within the Hb tetramer and intermolecular cross-links between
neighboring Hb tetramers (Chang 1998). Oxyglobin® is composed of PolybHb
with an average MW of 200 kDa (Rentko et al. 2006; Day 2003). It is approved for
veterinary use in the US (Day 2003). However, Oxyglobin® has been shown to
elicit both vasoconstriction and hypertension in vivo (Tsai et al. 2006). Because of
its availability, multiple studies have explored the toxicity of Oxyglobin® Butt
et al. (2010, 2011). The oxidative stress caused by Oxyglobin® damaged blood
brain barrier endothelial cells and elicited cellular apoptosis in vivo (Butt et al.
2011). Iron was found to be deposited in endothelial cells and neurons associated
with the blood brain barrier after administration of Oxyglobin® (Butt et al. 2011)
In addition, Oxyglobin® administered to guinea pigs and rats has been shown to
facilitate iron deposition in renal tissues (Butt et al. 2010). These results indicate
extravasation of Oxyglobin® through endothelial cell-cell junctions and its
deposition in the tissue space Butt et al. (2010, 2011).

37.2.2 Hemopure®

Hemopure® is a glutaraldehyde PolybHb solution with an average MW of
250 kDa, which was also developed by OPK Biotech LLC (Cambridge, MA)
(OPK Biotech 2012; Rentko et al. 2006; Day 2003). Hemopure® is composed of
2 % unpolymerized bovine Hb (bHb) compared to Oxyglobin®, which is com-
posed of 31 % unpolymerized bHb (Rice et al. 2008). A study of resuscitated
hemorrhagic shock-induced swine reported that Hemopure® elevated blood pres-
sure less than Oxyglobin®, and this was attributed to the reduced amount of
unpolymerized bHb present in Hemopure® compared to Oxyglobin® (Rice et al.
2008). When administered before, during, and after elective aortic surgery,
Hemopure® produced hypertension in patients (Kasper et al. 1996; LaMuraglia
et al. 2000). Data from another Hemopure® clinical trial highlighted a possible
vulnerability in elderly orthopedic surgery patients to negative vascular side-
effects (Jahr et al. 2008; Freilich et al. 2009). These findings indicate that despite
having less unpolymerized bHb than Oxyglobin®, Hemopure® still presents risks
to the vasculature in clinical settings (Kasper et al. 1996; LaMuraglia et al. 2000;
Jahr et al. 2008; Freilich et al. 2009; Rice et al. 2008).
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37.2.3 Polyheme®

Northfield Laboratories Inc. (Evanston, IL) developed a glutaraldehyde polymer-
ized pyridoxal phosphate cross-linked HbA product known as PolyHeme® (Day
2003; Sehgal et al. 1984). PolyHeme® has an average MW of 150 kDa (Day
2003). The pyridoxilated HbA reduces the oxygen affinity of PolyHeme® Sehgal
et al. (1981, 1984). In clinical trials, PolyHeme® was administered to trauma,
surgery, and hemorrhagic shock patients, and did not increase blood pressure to
unsafe levels (Gould et al. 1998, 2002; Moore et al. 2009). Unfortunately, Poly-
Heme® has been linked to negative side-effects in various animal studies (Yu et al.
2010; Handrigan et al. 2005). A recent study showed that PolyHeme® induced
vasoconstriction in lambs (Yu et al. 2010). PolyHeme® administration also pro-
duced organ failure and death in hemorrhaged rats (Handrigan et al. 2005).
Negative vascular responses are not surprising considering that Oxyglobin® and
Hemopure®, both two larger sized glutaraldehyde PolybHbs, displayed similar
negative side-effects in vivo (Rentko et al. 2006; Day 2003; Tsai et al. 2006;
Kasper et al. 1996; LaMuraglia et al. 2000; Jahr et al. 2008; Freilich et al. 2009;
Yu et al. 2010; Handrigan et al. 2005). PolyHeme® production was shut down after
ethical questions were raised over the consent requirements of the final clinical
trial (Moore et al. 2009; Chen et al. 2009; Kipnis et al. 2006).

37.2.4 Hemolink™

Hemosol Inc. (Toronto, Canada) developed the O-raffinose cross-linked HbA
product Hemolink™ (Day 2003; Adamson and Moore 1998). Hemolink™ has a
wide range of MWs which consists of less than or equal to 5 % 32 kDa, 33 % 64
kDa, 63 % 128-600 kDa, and less than or equal to 3 % greater than 600 kDa
species (Adamson and Moore 1998). In Phase II and Phase III clinical trials,
Hemolink™ administration lead to hypertension in coronary artery surgery
patients (Cheng et al. 2004; Greenburg and Kim 2004; Hill et al. 2002). Hemo-
link™ exhibited diminished renal toxicity in vivo and NO reactions in vitro
compared to HbA (Lieberthal et al. 1999). In this study, Hemolink™ also induced
hypertension in rats (Lieberthal et al. 1999). Thus despite Hemolink™ having a
low affinity for NO in vitro, there was still evidence of systemic hypertension
(Lieberthal et al. 1999). Hemolink ™ production was discontinued due to negative
side-effects observed in clinical trials (Chen et al. 2009).

37.2.5 OxyVita™

Of all the aforementioned PolyHbs which have reported average MWs, all of them
ranged between 150 and 250 kDa (Rentko et al. 2006; Day 2003). All four of the
PolyHbs exhibited some form of vasoconstriction, hypertension, and/or oxidative
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stress (Tsai et al. 2006; Butt et al. 2010, 2011; Kasper et al. 1996; LaMuraglia et al.
2000; Jahr et al. 2008; Freilich et al. 2009; Yu et al. 2010; Handrigan et al. 2005;
Cheng et al. 2004; Greenburg and Kim 2004; Hill et al. 2002; Lieberthal et al.
1999). The presence of vasoconstriction and systemic hypertension make it rea-
sonable to assume that these commercial HBOCs are still able to extravasate
through the endothelium and scavenge NO despite their larger size compared to
HbA (Rentko et al. 2006; Day 2003; Adamson and Moore 1998; Tsai et al. 2006;
Kasper et al. 1996; LaMuraglia et al. 2000; Jahr et al. 2008; Freilich et al. 2009; Yu
et al. 2010; Handrigan et al. 2005; Cheng et al. 2004; Greenburg and Kim 2004; Hill
et al. 2002; Lieberthal et al. 1999). Therefore, it is possible that since Oxyglobin®
induces oxidative stress, similarly sized HBOCs may possess similar potential for
oxidation Butt et al. (2010, 2011). To avoid vasoconstriction, hypertension, and
oxidative stress, some groups have developed ultrahigh MW PolyHbs.

OXYVITA Inc. (New Windsor, NY) developed a high MW RBC substitute
known as OxyVitaTM (OXYVITA Inc. 2012; Matheson et al. 2002; Bucci et al.
2007; Jia and Alayash 2009). Also known as zero-link polymerized bHb, the
ultrahigh MW of Oxyvita™ has been reported to be 25, 33 and 42 MDa in
separate studies (Matheson et al. 2002; Bucci et al. 2007; Jia and Alayash 2009).
OxyVita™ is synthesized by cross-linking the f globin chains of bHb with
bis(3,5-dibromosalicy)-adipoate (Matheson et al. 2002; Bucci et al. 2007; Jia and
Alayash 2009; Kwansa et al. 2000). 1-ethyl-3-(3-dimethylaminopropyl)carbodi-
imide is then used to polymerize the bHb tetramers (Matheson et al. 2002; Bucci
et al. 2007; Jia and Alayash 2009). OxyVita™ has been shown to produce low
levels of vasoconstriction, which did not lead to hypertension in animal studies
(Matheson et al. 2002; Bucci et al. 2007). These benefits have been attributed to
the large size of the PolybHb, which prevents its extravasation into the tissue space
and thus its inability to scavenge NO (Matheson et al. 2002; Bucci et al. 2007).
Therefore, the zero-link cross-linking process appears to be able to prevent vas-
cular side-effects common to many commercial HBOCs (Matheson et al. 2002;
Bucci et al. 2007). Despite this major advantage, OxyVita'™ possesses a high
oxygen affinity (Matheson et al. 2002; Jia and Alayash 2009). The high oxygen
affinity makes it unclear how well OxyVita™ will deliver oxygen under physio-
logical conditions compared to other commercial HBOCs (Matheson et al. 2002;
Jia and Alayash 2009). OXYVITA Inc. is presently raising resources to pursue
further trials of OxyVita™ (OXYVITA Inc. 2012).

37.2.6 Overview of Commercial PolyHbs

Many of the commercial PolyHbs discussed above failed Phase III clinical trials,
before their potential for negative side-effects were fully understood (Jahr et al.
2008; Freilich et al. 2009; Moore et al. 2009; Greenburg and Kim 2004; Chen et al.
2009). It is reasonable to expect that if a systematic study of these PolyHbs had
been performed they would not have progressed as far without serious design
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alterations. Investigations into the gaseous ligand binding/release kinetics, ability to
induce vasoconstriction, systemic hypertension, and oxidative stress-inducing
potential of these PolyHbs could have foreshadowed the side-effects observed
during Phase III clinical trials (Jahr et al. 2008; Freilich et al. 2009; Greenburg and
Kim 2004). In the future, PolyHb development should include systematic pre-
liminary studies to prevent a reoccurrence of these common side-effects. Therefore,
the wide difference in MW between the low MW PolyHbs Oxyglobin®, Hemo-
pure®, PolyHeme®, Hemolink™ and the ultrahigh MW PolyHb OxyVita™
highlight the need for a systematic study to investigate the effects of PolyHb MW
on its’ safety profile (i.e. ability to induce vasoconstriction, systemic hypertension
and oxidative toxicity) (Rentko et al. 2006; Day 2003; Adamson and Moore 1998;
Matheson et al. 2002; Bucci et al. 2007; Jia and Alayash 2009).

37.3 Systematic Study of PolyHb MW on Safety Profile

In a series of publications, Palmer’s group reported the results of a systematic
study investigating the biophysical properties and in vivo responses of variable
MW glutaraldehyde PolybHbs (Cabrales et al. 2009; Cabrales et al. 2010; Baek
et al. 2012; Palmer et al. 2009a; Buehler et al. 2010; Zhou et al. 2011).
Palmer’s group first demonstrated that the quaternary state of bHb could be
used to control the oxygen affinity of the resultant PolybHb solution Palmer et al.
(2009a). This work took advantage of the fact that Hb can be held in either the
tense (T) or relaxed (R) quaternary state by simply fully deoxygenating or fully
oxygenating the bHb solution, respectively (Palmer et al. 2009a). Hence, T-state
and R-state PolybHbs were synthesized by polymerizing T-state and R-state bHb
with glutaraldehyde, respectively (Palmer et al. 2009a). In this work, T- and
R-state PolybHbs were synthesized at the following glutaraldehyde to bHb molar
ratios (i.e. cross-link densities): 10:1, 20:1, 30:1 and 40:1 (Palmer et al. 2009a). It
was observed that T-state PolybHb displayed a higher Psy compared to R-state
PolybHb (Palmer et al. 2009a). In addition, the cooperativity coefficient of both
T- and R-state PolybHb decreased with increasing cross-link density (Palmer et al.
2009a). This result is consistent with increasing cross-linking density, thereby
reducing the mobility of the globin chains in the Hb tetramer (Palmer et al. 2009a).
A subsequent study evaluated the effect of T-state PolypbHb MW on the extent
of vasoconstriction and systemic hypertension (Cabrales et al. 2009). In this study,
T-state PolybHbs with glutaraldehyde to bHb molar ratios of 20:1, 30:1, 40:1, and
50:1 were synthesized in the lab (Cabrales et al. 2009). Ultrafiltration was then
used to fractionate each PolybHb solution into a fraction greater than 500 kDa in
MW and a fraction less than 500 kDa in MW (Cabrales et al. 2009). All of the
PolybHb solutions with MW less than 500 kDa were shown to induce vasocon-
striction and hypertension in top-loaded hamsters outfitted with the window
chamber, and this was likely due to extravasation of low MW PolyHb through the
endothelium and subsequent PolybHb scavenging of endothelium-derived NO
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(Cabrales et al. 2009). Negative vascular effects were less prevalent for the
PolybHbs with MW greater than 500 kDa. (Cabrales et al. 2009). Most notably, no
vasoconstriction and only minor hypertension were present with the 40:1 and 50:1
PolybHbs (Cabrales et al. 2009). The diminished vascular side-effects exhibited by
the PolybHbs greater than 500 kDa were similar to those observed for the ultra-
high MW PolybHb OxyVita™ (Matheson et al. 2002; Bucci et al. 2007; Jia and
Alayash 2009; Cabrales et al. 2009). An important distinction between OxyVita™
and the high MW T-state PolybHbs is the high Psq of the T-state PolybHbs and the
low Psq of OxyVitaTM (Matheson et al. 2002; Jia and Alayash 2009; Cabrales et al.
2009). Previous work has shown that high Ps; HBOCs deliver oxygen to tissues
more readily versus low Psy; HBOCs (Sakai et al. 2005).

Therefore, the ability of T-state and R-state PolybHbs to deliver O, was
evaluated in vivo to better understand the effect of PolybHb oxygen affinity in
influencing tissue oxygenation (Cabrales et al. 2010). Hence, 40:1 R-state and 50:1
T-state PolybHbs were used in this study, and all HBOCs possessed MW's greater
than 500 kDa (Cabrales et al. 2010). It was observed that T-state PolybHb
delivered more O, to tissues in the hamster chamber window model versus R-state
PolybHb (Cabrales et al. 2010). As expected, this was largely attributed to the high
oxygen affinity of R-state PolybHb (Cabrales et al. 2010). Thus the ability of
T-state PolybHbs to adequately transport oxygen in vivo was confirmed in this
study (Cabrales et al. 2010).

A thorough investigation into the gaseous ligand binding/release kinetics and
autoxidation kinetics of high MW T- and R-state PolybHbs was then conducted to
better understand their in vivo oxidation potential and pharmacokinetics (Buehler
et al. 2010). Stop flow kinetic measurements were used to determine the O, dis-
sociation, CO association, and NO dioxygenation rate constants of 40:1 R-state and
50:1 T-state PolybHbs, all PolybHbs had MWs > 500 kDa (Buehler et al. 2010).
The O, dissociation rate constant increased for 50:1 T-State PolybHb and decreased
for 40:1 R-state PolybHb compared to bHb, indicating that O, is released faster
from the 50:1 T-state PolybHb compared to 40:1 R-state PolybHb (Buehler et al.
2010). The reported value of the CO association rate constant of 50:1 T-state
PolybHb was marginally lower than that of bHb, whereas this rate constant
increased for 40:1 R-state PolybHb (Buehler et al. 2010). The NO dioxygenation
rate constants of both the 50:1 T-state and 40:1 R-state PolybHbs were shown to be
similar to that of bHb (Buehler et al. 2010). This indicates that both PolybHbs and
cell-free bHD interact similarly with NO (Buehler et al. 2010). Counter intuitively,
an earlier study observed that T-state PolybHbs do not produce vasoconstriction
and hypertension, which have been linked to NO scavenging (Cabrales et al. 2009).
Thus since PolybHbs are capable of interacting with NO, it is hypothesized that
their large size (compared to the size of the endothelial cell-cell junctions lining the
blood vessel wall) prevents them from extravasating through the endothelium and
scavenging NO (Cabrales et al. 2009; Buehler et al. 2010). In vivo, 50:1 T-state
PolybHb underwent autoxidation at a significantly lower rate and remained in
circulation longer than 40:1 R-state PolybHb (Buehler et al. 2010). This result is
important, since the reduced rate of heme oxidation prolongs T-state PolybHb
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oxygen delivery in vivo (Buehler et al. 2010). Therefore, high MW T-state
PolybHbs seem to be an ideal HBOC due to their lack of vasoconstriction and
hypertension, increased circulatory half-life, and reduced in vivo oxidation com-
pared to R-state PolybHbs (Buehler et al. 2010).

An evaluation of T- and R-state glutaraldehyde polymerized HbA (PolyhHb)
demonstrated that PolybHbs and PolyhHbs share many of the same biophysical
characteristics (Buehler et al. 2010; Zhang et al. 2011). In this study, 50:1 and 40:1
T-state PolyhHbs and 30:1 and 20:1 R-state PolyhHbs were synthesized with
MWs > 500 kDa (Zhang et al. 2011). Both the P5, and oxygen dissociation rate
constants of T-state PolyhHbs were higher than those of hHb and R-state PolyhHbs
(Zhang et al. 2011). Thus the low oxygen affinity of T-state PolybHbs and high
oxygen affinity of R-state PolybHbs are maintained in T- and R-state PolyhHbs,
respectively (Buehler et al. 2010; Zhang et al. 2011). Polymerization decreased the
CO association binding rate constant of T-state PolyhHbs, while this rate constant
increased for R-state PolyhHbs (Zhang et al. 2011). This is similar to the trends
observed in T- and R-state PolybHbs (Buehler et al. 2010; Zhang et al. 2011).
T- and R-state PolyhHbs also maintained their ability to interact with NO similar
to HbA, regardless of Hb quaternary state (Buehler et al. 2010; Zhang et al. 2011).
In addition to these kinetic experiments, the ability of PolyhHbs to deliver O, was
simulated using a mathematical model of a hepatic hollow fiber bioreactor (Zhang
et al. 2011). Modeling results indicated that T-state PolyhHbs were more effective
at delivering oxygen to hepatocytes housed in the bioreactor compared to R-state
PolyhHbs (Zhang et al. 2011). This study showed that PolyhHbs share many of the
same biophysical characteristics as PolybHbs, and indicated that T-state PolyhHbs
possess the best potential to serve as oxygen transporting RBC substitutes (Buehler
et al. 2010; Zhang et al. 2011).

Another study evaluated the ability of PolybHbs to deliver oxygen using the
same mathematical model of a hepatic hollow fiber bioreactor used to evaluate
PolyhHbs (Zhou et al. 2011; Zhang et al. 2011). In this study, T- and R-state
PolybHbs were synthesized at the following glutaraldehyde to bHb molar ratios:
10:1, 20:1, and 30:1, and previous results for 40:1 R-state and 50:1 T-state
PolybHbs were incorporated in the hepatic hollow fiber model (Buehler et al.
2010; Zhou et al. 2011). The results of these simulations showed that all T-state
PolybHbs were able to more efficiently deliver O, to hepatocytes housed in the
bioreactor compared to R-state PolybHbs, further solidifying the superior
oxygenation potential of T-state PolybHbs as RBC substitutes (Zhou et al. 2011).

In order to evaluate the effect of PolybHb size on oxidative tissue toxicity,
T-state PolybHbs were synthesized at the following glutaraldehyde to bHb molar
ratios: 10:1, 20:1, 30:1 and 40:1 (Baek et al. 2012). Guinea pigs were then
subjected to a 50 % blood for PolybHb solution exchange transfusion and the
pharmacokinetics of PolybHb was evaluated along with iron deposition in the
spleen, liver and kidneys (Baek et al. 2012). The results of this study showed that
the 30:1 PolybHb elicited less in vivo oxidation in the blood compared to the 10:1,
20:1, and 40:1 PolybHbs, that was not a function of PolybHb size (Baek et al. 2012).
However, iron deposition in the kidneys decreased as a function of increasing
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PolybHb size (Baek et al. 2012). Similarly, the extent of systemic hypertension
decreased with increasing PolybHb size, while the circulatory half-life of PolybHb
increased as a function of increasing PolybHb size until it reached a maximum for
the 30:1 PolybHb (Baek et al. 2012). In light of these results, the 30:1 T-state
PolybHb exhibited the best pharmacokinetics with the least iron deposition in the
kidneys along with the absence of systemic hypertension upon transfusion (Baek
et al. 2012). Additional studies will need to be performed to further assess the
clinical safety of this material.

37.4 Conclusions

In summary, Palmer’s group has systematically investigated the biophysical
properties, and in vivo responses upon transfusion of variable sized T- and R-state
PolyHbs (Cabrales et al. 2009, 2010; Baek et al. 2012; Palmer et al. 2009a;
Buehler et al. 2010; Zhou et al. 2011; Zhang et al. 2011). The results of these
studies have identified high MW T-state PolyHbs as a low oxygen affinity HBOC,
which does not elicit vasoconstriction, hypertension, or oxidative tissue toxicity
(Cabrales et al. 2009, 2010; Baek et al. 2012). In addition, high MW T-state
PolyHbs are able to deliver O, in both in vitro and in vivo scenarios (Cabrales
et al. 2010; Buehler et al. 2010; Zhou et al. 2011; Zhang et al. 2011). Therefore,
these results set the stage for exploring the clinical potential of high MW T-state
PolyHbs as RBC substitutes in transfusion medicine.

References

Adamson JG, Moore C (1998) Hemolink™, an o-raffinose crosslinked hemoglobin-based oxygen
carrier. In: Chang TMS (ed) Blood substitutes: principles, methods, products, and clinical
trials vol 2. Krager Landes Systems, Basel, Switzerland, pp 62-81

Alayash Al (1999) Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or
oxidants? Nat Biotechnol 17(6):545-549. doi:10.1038/9849

Alayash Al (2004) Oxygen therapeutics: can we tame haemoglobin? Nat Rev Drug Discovery
3(2):152-159. doi:10.1038/nrd 1307

Alayash Al, Summers AG, Wood F, Jia Y (2001) Effects of glutaraldehyde polymerization on
oxygen transport and redox properties of bovine hemoglobin. Arch Biochem Biophys
391(2):225-234. doi:10.1006/abbi.2001.2426

Baek JH, Zhou Y, Harris DR, Schaer DJ, Palmer AF, Buehler PW (2012) Down selection of
polymerized bovine hemoglobins for use as oxygen releasing therapeutics in a guinea pig
model. Toxicol Sci: Official J Soc Toxicol 127(2):567-581. doi:10.1093/toxsci/kfs109

Baxter (2012) Baxter international Inc. http://www.baxter.com/index.html. Accessed 13 October
2012

Bucci E, Kwansa H, Koehler RC, Matheson B (2007) Development of zero-link polymers of
hemoglobin, which do not extravasate and do not induce pressure increases upon infusion.
Artif Cells Blood Substit Immobil Biotechnol 35(1):11-18. doi:10.1080/10731190600974277


http://dx.doi.org/10.1038/9849
http://dx.doi.org/10.1038/nrd1307
http://dx.doi.org/10.1006/abbi.2001.2426
http://dx.doi.org/10.1093/toxsci/kfs109
http://www.baxter.com/index.html
http://dx.doi.org/10.1080/10731190600974277

37 Vasoconstriction, Hypertension and Oxidative Toxicity 707

Buehler PW, Boykins RA, Jia Y, Norris S, Freedberg DI, Alayash Al (2005) Structural and
functional characterization of glutaraldehyde-polymerized bovine hemoglobin and its isolated
fractions. Anal Chem 77(11):3466-3478. doi:10.1021/ac050064y

Buehler PW, Zhou Y, Cabrales P, Jia Y, Sun G, Harris DR, Tsai AG, Intaglietta M, Palmer AF
(2010) Synthesis, biophysical properties and pharmacokinetics of ultrahigh molecular weight
tense and relaxed state polymerized bovine hemoglobins. Biomaterials 31(13):3723-3735.
doi:10.1016/j.biomaterials.2010.01.072

Bunn HF, Esham WT, Bull RW (1969) The renal handling of hemoglobin. I. Glomerular
filtration. J Exp Med 129(5):909-923

Butt OI, Buehler PW, D’Agnillo F (2010) Differential induction of renal heme oxygenase and
ferritin in ascorbate and nonascorbate producing species transfused with modified cell-free
hemoglobin. Antioxid Redox Signal 12(2):199-208. doi:10.1089/ars.2009.2798

Butt OL, Buehler PW, D’Agnillo F (2011) Blood-brain barrier disruption and oxidative stress in
guinea pig after systemic exposure to modified cell-free hemoglobin. Am J Pathol
178(3):1316-1328. doi:10.1016/j.ajpath.2010.12.006

Cabrales P, Sun G, Zhou Y, Harris DR, Tsai AG, Intaglietta M, Palmer AF (2009) Effects of the
molecular mass of tense-state polymerized bovine hemoglobin on blood pressure and
vasoconstriction. J Appl Physiol 107(5):1548-1558. doi:10.1152/japplphysiol.00622.2009

Cabrales P, Zhou Y, Harris DR, Palmer AF (2010) Tissue oxygenation after exchange transfusion
with ultrahigh-molecular-weight tense- and relaxed-state polymerized bovine hemoglobins. Am
J Physiol Heart Circulatory Physiol 298(3):H1062-H1071. doi:10.1152/ajpheart.01022.2009

Cashon RE, Alayash AI (1995) Reaction of human hemoglobin HbAO and two cross-linked
derivatives with hydrogen peroxide: differential behavior of the ferryl intermediate. Arch
Biochem Biophys 316(1):461-469. doi:10.1006/abbi.1995.1061

Chang TM (1998) Modified hemoglobin-based blood substitutes: crosslinked, recombinant and
encapsulated hemoglobin. Vox Sang 74(Suppl 2):233-241

Chatterjee R, Welty EV, Walder RY, Pruitt SL, Rogers PH, Arnone A, Walder JA (1986)
Isolation and characterization of a new hemoglobin derivative cross-linked between the alpha
chains (lysine 99 alpha 1—lysine 99 alpha 2). J Bio chem 261(21):9929-9937

Chen JY, Scerbo M, Kramer G (2009) A review of blood substitutes: examining the history,
clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics (Sao Paulo)
64(8):803-813. doi:10.1590/S1807-59322009000800016

Cheng DC, Mazer CD, Martineau R, Ralph-Edwards A, Karski J, Robblee J, Finegan B, Hall RI,
Latimer R, Vuylsteke A (2004) A phase II dose-response study of hemoglobin raffimer
(Hemolink) in elective coronary artery bypass surgery. J Thorac Cardiovasc Surg
127(1):79-86. doi:10.1016/j.jtcvs.2003.08.024

D’Agnillo F (2006) Pro-oxidant activity of hemoglobin and endothelial cytotoxicity. In: Winslow
RM (ed) Blood substitutes vol 19. Elsevier Academic Press, Amsterdam, pp 206-216

Day TK (2003) Current development and use of hemoglobin-based oxygen-carrying (HBOC)
solutions. J Vet Emerg Crit Care 13(2):77-93

Doherty DH, Doyle MP, Curry SR, Vali RJ, Fattor TJ, Olson JS, Lemon DD (1998) Rate of
reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat
Biotechnol 16(7):672-676. doi:10.1038/nbt0798-672

Doyle MP, Apostol I, Kerwin BA (1999) Glutaraldehyde modification of recombinant human
hemoglobin alters its hemodynamic properties. J Biol chem 274(4):2583-2591

Dull RO, DeWitt BJ, Dinavahi R, Schwartz L, Hubert C, Pace N, Fronticelli C (2004)
Quantitative assessment of hemoglobin-induced endothelial barrier dysfunction. J Appl
Physiol 97(5):1930-1937. doi:10.1152/japplphysiol.00102.2004

Freilich D, Pearce LB, Pitman A, Greenburg G, Berzins M, Bebris L, Ahlers S, McCarron R
(2009) HBOC-201 vasoactivity in a phase III clinical trial in orthopedic surgery subjects—
extrapolation of potential risk for acute trauma trials. J Trauma 66(2):365-376. doi:10.1097/
TA.0b013e3181820d5¢


http://dx.doi.org/10.1021/ac050064y
http://dx.doi.org/10.1016/j.biomaterials.2010.01.072
http://dx.doi.org/10.1089/ars.2009.2798
http://dx.doi.org/10.1016/j.ajpath.2010.12.006
http://dx.doi.org/10.1152/japplphysiol.00622.2009
http://dx.doi.org/10.1152/ajpheart.01022.2009
http://dx.doi.org/10.1006/abbi.1995.1061
http://dx.doi.org/10.1590/S1807-59322009000800016
http://dx.doi.org/10.1016/j.jtcvs.2003.08.024
http://dx.doi.org/10.1038/nbt0798-672
http://dx.doi.org/10.1152/japplphysiol.00102.2004
http://dx.doi.org/10.1097/TA.0b013e3181820d5c
http://dx.doi.org/10.1097/TA.0b013e3181820d5c

708 B. M. Belcik and A. F. Palmer

Gelderman MP, Yazer MH, Jia Y, Wood F, Alayash Al, Vostal JG (2010) Serial oxygen
equilibrium and kinetic measurements during RBC storage. Transfus Med 20(5):341-345.
doi:10.1111/5.1365-3148.2010.01016.x

Giulivi C, Davies KJ (1990) A novel antioxidant role for hemoglobin. The comproportionation of
ferrylhemoglobin with oxyhemoglobin. J Biol chem 265(32):19453-19460

Gould SA, Moore EE, Hoyt DB, Burch JM, Haenel JB, Garcia J, DeWoskin R, Moss GS (1998)
The first randomized trial of human polymerized hemoglobin as a blood substitute in acute
trauma and emergent surgery. J Am Coll Surg 187(2):113—120. discussion 120—112

Gould SA, Moore EE, Hoyt DB, Ness PM, Norris EJ, Carson JL, Hides GA, Freeman IH,
DeWoskin R, Moss GS (2002) The life-sustaining capacity of human polymerized
hemoglobin when red cells might be unavailable. J Am Coll Surg 195(4):445—452.
discussion 452—445

Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron-catalyzed hydroxyl radical formation.
Stringent requirement for free iron coordination site. J Biol chem 259(6):3620-3624

Greenburg AG, Kim HW (2004) Use of an oxygen therapeutic as an adjunct to intraoperative
autologous donation to reduce transfusion requirements in patients undergoing coronary
artery bypass graft surgery. J Am Coll Surg 198(3):373-383. doi:10.1016/j.jamcollsurg.
2003.11.020 discussion 384-375

Handrigan MT, Bentley TB, Oliver JD, Tabaku LS, Burge JR, Atkins JL (2005) Choice of fluid
influences outcome in prolonged hypotensive resuscitation after hemorrhage in awake rats.
Shock 23(4):337-343

Hayes JK, Stanley TH, Lind GH, East K, Smith B, Kessler K (2001) A double-blind study to
evaluate the safety of recombinant human hemoglobin in surgical patients during general
anesthesia. J Cardiothorac Vasc Anesth 15(5):593-602. doi:10.1053/jcan.2001.26538

Hess JR, MacDonald VW, Brinkley WW (1993) Systemic and pulmonary hypertension after
resuscitation with cell-free hemoglobin. J Appl Physiol 74(4):1769-1778

Hill SE, Gottschalk LI, Grichnik K (2002) Safety and preliminary efficacy of hemoglobin raffimer
for patients undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth
16(6):695-702. doi:10.1053/jcan.2002.128416

Jahr JS, Mackenzie C, Pearce LB, Pitman A, Greenburg AG (2008) HBOC-201 as an alternative
to blood transfusion: efficacy and safety evaluation in a multicenter phase III trial in elective
orthopedic surgery. J Trauma 64(6):1484—1497. doi:10.1097/TA.0b013e318173a93f

Jahr JS, Weeks DL, Desai P, Lim JC, Butch AW, Gunther R, Driessen B (2008) Does OxyVita, a
new-generation hemoglobin-based oxygen carrier, or oxyglobin acutely interfere with
coagulation compared with normal saline or 6 % hetastarch? an ex vivo thromboelastography
study. J Cardiothorac Vasc Anesth 22(1):34-39. doi:10.1053/j.jvca.2007.02.016

Jia Y, Alayash Al (2009) Effects of cross-linking and zero-link polymerization on oxygen
transport and redox chemistry of bovine hemoglobin. Biochim Biophys Acta
1794(8):1234-1242. doi:10.1016/j.bbapap.2009.04.008

Jia Y, Ramasamy S, Wood F, Alayash Al, Rifkind JM (2004) Cross-linking with O-raffinose
lowers oxygen affinity and stabilizes haemoglobin in a non-cooperative T-state conformation.
Biochem J 384(Pt 2):367-375. doi:10.1042/BJ20040612

Kanner J, Harel S, Salan AM (1988) The generation of ferryl or hydroxyl radicals during
interaction of hemeproteins with hydrogen peroxide. Basic Life Sci 49:145-148

Kasper SM, Walter M, Grune F, Bischoff A, Erasmi H, Buzello W (1996) Effects of a
hemoglobin-based oxygen carrier (HBOC-201) on hemodynamics and oxygen transport in
patients undergoing preoperative hemodilution for elective abdominal aortic surgery. Anesth
Analg 83(5):921-927

Kavdia M, Tsoukias NM, Popel AS (2002) Model of nitric oxide diffusion in an arteriole: impact
of hemoglobin-based blood substitutes. Am J Physiol Heart Circulatory Physiol
282(6):H2245-H2253. doi:10.1152/ajpheart.00972.2001

Kipnis K, King NM, Nelson RM (2006) Trials and errors: barriers to oversight of research
conducted under the emergency research consent waiver. Irb 28(2):16-19


http://dx.doi.org/10.1111/j.1365-3148.2010.01016.x
http://dx.doi.org/10.1016/j.jamcollsurg.2003.11.020
http://dx.doi.org/10.1016/j.jamcollsurg.2003.11.020
http://dx.doi.org/10.1053/jcan.2001.26538
http://dx.doi.org/10.1053/jcan.2002.128416
http://dx.doi.org/10.1097/TA.0b013e318173a93f
http://dx.doi.org/10.1053/j.jvca.2007.02.016
http://dx.doi.org/10.1016/j.bbapap.2009.04.008
http://dx.doi.org/10.1042/BJ20040612
http://dx.doi.org/10.1152/ajpheart.00972.2001

37 Vasoconstriction, Hypertension and Oxidative Toxicity 709

Kwansa HE, Young AD, Arosio D, Razynska A, Bucci E (2000) Adipyl crosslinked bovine
hemoglobins as new models of allosteric systems. Proteins 39(2):166—169

LaMuraglia GM, O’Hara PJ, Baker WH, Naslund TC, Norris EJ, Li J, Vandermeersch E (2000)
The reduction of the allogenic transfusion requirement in aortic surgery with a hemoglobin-
based solution. J Vasc Surg 31(2):299-308

Lamy ML, Daily EK, Brichant JF, Larbuisson RP, Demeyere RH, Vandermeersch EA, Lehot JJ,
Parsloe MR, Berridge JC, Sinclair CJ, Baron JF, Przybelski RJ (2000) Randomized trial of
diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac
surgery. the DCLHb Cardiac Surgery Trial Collaborative Group. Anesthesiology
92(3):646-656

Li PF, Dietz R, von Harsdorf R (1997) Reactive oxygen species induce apoptosis of vascular
smooth muscle cell. FEBS Lett 404(2-3):249-252

Liao JC, Hein TW, Vaughn MW, Huang KT, Kuo L (1999) Intravascular flow decreases
erythrocyte consumption of nitric oxide. Proc Natl Acad Sci U S A 96(15):8757-8761

Lieberthal W, Fuhro R, Freedman JE, Toolan G, Loscalzo J, Valeri CR (1999) O-raffinose cross-
linking markedly reduces systemic and renal vasoconstrictor effects of unmodified human
hemoglobin. J Pharmacol Exp Ther 288(3):1278-1287

Liu X, Miller MJ, Joshi MS, Sadowska-Krowicka H, Clark DA, Lancaster JR Jr (1998) Diffusion-
limited reaction of free nitric oxide with erythrocytes. J biol chem 273(30):18709-18713

Looker D, Abbott-Brown D, Cozart P, Durfee S, Hoffman S, Mathews AJ, Miller-Roehrich J,
Shoemaker S, Trimble S, Fermi G et al (1992) A human recombinant haemoglobin designed
for use as a blood substitute. Nature 356(6366):258-260. doi:10.1038/356258a0

Matheson B, Kwansa HE, Bucci E, Rebel A, Koehler RC (2002) Vascular response to infusions
of a nonextravasating hemoglobin polymer. J Appl Physiol 93(4):1479-1486. doi:10.1152/
japplphysiol.00191.2002

Misra HP, Fridovich I (1972) The generation of superoxide radical during the autoxidation of
hemoglobin. J Biol Chem 247(21):6960-6962

Moo-Penn WF, Wolff JA, Simon G, Vacek M, Jue DL, Johnson MH (1978) Hemoglobin
Presbyterian: betal08 (G10) asparagine leads to lysine, a hemoglobin variant with low oxygen
affinity. FEBS Lett 92(1):53-56

Moore EE, Moore FA, Fabian TC, Bernard AC, Fulda GJ, Hoyt DB, Duane TM, Weireter LJ Jr,
Gomez GA, Cipolle MD, Rodman GH Jr, Malangoni MA, Hides GA, Omert LA, Gould SA
(2009) Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood
is unavailable: the USA multicenter trial. J Am Coll Surg 208(1):1-13. doi:10.1016/
jjamcollsurg.2008.09.023

Murray JA, Ledlow A, Launspach J, Evans D, Loveday M, Conklin JL (1995) The effects of
recombinant human hemoglobin on esophageal motor functions in humans. Gastroenterology
109(4):1241-1248

Nagababu E, Ramasamy S, Rifkind JM, Jia Y, Alayash AI (2002) Site-specific cross-linking of
human and bovine hemoglobins differentially alters oxygen binding and redox side reactions
producing rhombic heme and heme degradation. Biochemistry 41(23):7407-7415

Nakai K, Sakuma I, Ohta T, Ando J, Kitabatake A, Nakazato Y, Takahashi TA (1998)
Permeability characteristics of hemoglobin derivatives across cultured endothelial cell
monolayers. J lab clin med 132(4):313-319

Napolitano LM (2009) Hemoglobin-based oxygen carriers: first, second or third generation?
Human or bovine? Where are we now? Crit Care Clin 25(2):279-301. doi:10.1016/
j-ccc.2009.01.003 (Table of Contents)

Olson JS, Foley EW, Rogge C, Tsai AL, Doyle MP, Lemon DD (2004) No scavenging and the
hypertensive effect of hemoglobin-based blood substitutes. Free Radical Biol Med
36(6):685-697. doi:10.1016/j.freeradbiomed.2003.11.030

OPK Biotech (2012) OPK Biotech LLC. http://www.opkbiotech.com/company/about.php.
Accessed 12 October 2012

OXYVITA Inc. (2012) Revolutionizing blood science OXYVITA Inc. http://www.oxyvita.us/.
Accessed 5 August 2012


http://dx.doi.org/10.1038/356258a0
http://dx.doi.org/10.1152/japplphysiol.00191.2002
http://dx.doi.org/10.1152/japplphysiol.00191.2002
http://dx.doi.org/10.1016/j.jamcollsurg.2008.09.023
http://dx.doi.org/10.1016/j.jamcollsurg.2008.09.023
http://dx.doi.org/10.1016/j.ccc.2009.01.003
http://dx.doi.org/10.1016/j.ccc.2009.01.003
http://dx.doi.org/10.1016/j.freeradbiomed.2003.11.030
http://www.opkbiotech.com/company/about.php
http://www.oxyvita.us/

710 B. M. Belcik and A. F. Palmer

Palmer AF (2006) Molecular volume and HBOC-induced vasoconstriction. Blood
108(10):3231-3232

Palmer AF, Sun G, Harris DR (2009a) The quaternary structure of tetrameric hemoglobin
regulates the oxygen affinity of polymerized hemoglobin. Biotechnol Prog 25(6):1803-1809.
doi:10.1002/btpr.265

Palmer AF, Sun G, Harris DR (2009b) Tangential flow filtration of hemoglobin. Biotechnol Prog
25(1):189-199. doi:10.1002/btpr.119

Rameez S, Palmer AF (2011) Simple method for preparing poly(ethylene glycol)-surface-
conjugated liposome-encapsulated hemoglobins: physicochemical properties, long-term
storage stability, and their reactions with O-2, CO, and NO. Langmuir 27(14):8829-8840.
doi:10.1021/La201246m

Rentko VT, Pearce LB, Moon-Massat PF, Gawryl MS (2006) Hemopure® (HBOC-201,
hemoglobin glutamer-250 (Bovine)): preclinical studies. In: Winslow RM (ed) Blood
substitutes. Elsevier Academic Press, Amsterdam, pp 424436

Rice J, Philbin N, Light R, Arnaud F, Steinbach T, McGwin G, Collier S, Malkevich N, Moon-
Massatt P, Rentko V, Pearce LB, Ahlers S, McCarron R, Handrigan M, Freilich D (2008) The
effects of decreasing low-molecular weight hemoglobin components of hemoglobin-based
oxygen carriers in swine with hemorrhagic shock. J Trauma 64(5):1240-1257. doi:10.1097/
TA.0b013e318058245¢

Rohlfs RJ, Bruner E, Chiu A, Gonzales A, Gonzales ML, Magde D, Magde MD Jr, Vandegriff
KD, Winslow RM (1998) Arterial blood pressure responses to cell-free hemoglobin solutions
and the reaction with nitric oxide. J Biol Chemistry 273(20):12128-12134

Sakai H, Cabrales P, Tsai AG, Tsuchida E, Intaglietta M (2005) Oxygen release from low and
normal P50 Hb vesicles in transiently occluded arterioles of the hamster window model. Am J
Physiol Heart Circulatory physiol 288(6):H2897-H2903. doi:10.1152/ajpheart.01184.2004

Sakai H, Sato A, Sobolewski P, Takeoka S, Frangos JA, Kobayashi K, Intaglietta M, Tsuchida E
(2008) NO and CO binding profiles of hemoglobin vesicles as artificial oxygen carriers.
Biochim Biophys Acta 1784(10):1441-1447. doi:10.1016/j.bbapap.2008.03.007

Savitsky JP, Doczi J, Black J, Arnold JD (1978) A clinical safety trial of stroma-free hemoglobin.
Clin Pharmacol Ther 23(1):73-80

Saxena R, Wijnhoud AD, Carton H, Hacke W, Kaste M, Przybelski RJ, Stern KN, Koudstaal PJ
(1999) Controlled safety study of a hemoglobin-based oxygen carrier, DCLHb, in acute
ischemic stroke. Stroke; J Cereb Circ 30(5):993-996

Sehgal LR, Rosen AL, Noud G, Sehgal HL, Gould SA, DeWoskin R, Rice CL, Moss GS (1981)
Large-volume preparation of pyridoxylated hemoglobin with high P50. J Surg Res
30(1):14-20

Sehgal LR, Gould SA, Rosen AL, Sehgal HL, Moss GS (1984) Polymerized pyridoxylated
hemoglobin: a red cell substitute with normal oxygen capacity. Surgery 95(4):433-438

Shah SV, Walker PD (1988) Evidence suggesting a role for hydroxyl radical in glycerol-induced
acute renal failure. Am J Physiol 255(3 Pt 2):F438-F443

Silva G, Jeney V, Chora A, Larsen R, Balla J, Soares MP (2009) Oxidized hemoglobin is an
endogenous proinflammatory agonist that targets vascular endothelial cells. J Biol Chemistry
284(43):29582-29595. doi:10.1074/jbc.M109.045344

Sloan EP, Koenigsberg M, Gens D, Cipolle M, Runge J, Mallory MN, Rodman G Jr (1999)
Diaspirin cross-linked hemoglobin (DCLHD) in the treatment of severe traumatic hemorrhagic
shock: a randomized controlled efficacy trial. JAMA, J Am Med Assoc 282(19):1857-1864

Stetter MN, Baerlocher GM, Meiselman HJ, Reinhart WH (1997) Influence of a recombinant
hemoglobin solution on blood rheology. Transfusion 37(11-12):1149-1155

Suaudeau J, Fallon JT, Kunica E, Austen WG, Erdmann AJ 3rd (1979) Protection by plasma
proteins of the isolated lamb heart perfused with stroma-free hemoglobin at 38 degrees. Ann
Surg 189(3):322-333

Thompson A, McGarry AE, Valeri CR, Lieberthal W (1994) Stroma-free hemoglobin increases
blood pressure and GFR in the hypotensive rat: role of nitric oxide. J Appl Physiol
77(5):2348-2354


http://dx.doi.org/10.1002/btpr.265
http://dx.doi.org/10.1002/btpr.119
http://dx.doi.org/10.1021/La201246m
http://dx.doi.org/10.1097/TA.0b013e318058245e
http://dx.doi.org/10.1097/TA.0b013e318058245e
http://dx.doi.org/10.1152/ajpheart.01184.2004
http://dx.doi.org/10.1016/j.bbapap.2008.03.007
http://dx.doi.org/10.1074/jbc.M109.045344

37 Vasoconstriction, Hypertension and Oxidative Toxicity 711

Tsai AG, Cabrales P, Manjula BN, Acharya SA, Winslow RM, Intaglietta M (2006) Dissociation
of local nitric oxide concentration and vasoconstriction in the presence of cell-free
hemoglobin oxygen carriers. Blood 108(10):3603-3610. doi:10.1182/blood-2006-02-005272

Varnado CL, Mollan T, Birukou I, Smith BJ, Henderson DP, Olson JS (2012) Development of
recombinant hemoglobin-based oxygen carriers. Antioxid Redox Signal. doi:10.1089/
ars.2012.4917

Viele MK, Weiskopf RB, Fisher D (1997) Recombinant human hemoglobin does not affect renal
function in humans: analysis of safety and pharmacokinetics. Anesthesiology 86(4):848-858

Vogel WM, Dennis RC, Cassidy G, Apstein CS, Valeri CR (1986) Coronary constrictor effect of
stroma-free hemoglobin solutions. Am J Physiol 251(2 Pt 2):H413-H420

Walker PD, Shah SV (1988) Evidence suggesting a role for hydroxyl radical in gentamicin-
induced acute renal failure in rats. J Clin Investig 81(2):334-341. doi:10.1172/JCI113325

Winslow RM (2003) Current status of blood substitute research: towards a new paradigm. J Intern
Med 253(5):508-517

Winslow RM, Gonzales A, Gonzales ML, Magde M, McCarthy M, Rohlfs RJ, Vandegriff KD
(1998) Vascular resistance and the efficacy of red cell substitutes in a rat hemorrhage model.
J Appl Physiol 85(3):993-1003

Yu B, Shahid M, Egorina EM, Sovershaev MA, Raher MJ, Lei C, Wu MX, Bloch KD, Zapol WM
(2010) Endothelial dysfunction enhances vasoconstriction due to scavenging of nitric oxide
by a hemoglobin-based oxygen carrier. Anesthesiology 112(3):586-594. doi:10.1097/
ALN.0b013e3181cd7838

Yu Z, Friso G, Miranda JJ, Patel MJ, Lo-Tseng T, Moore EG, Burlingame AL (1997) Structural
characterization of human hemoglobin crosslinked by bis(3,5-dibromosalicyl) fumarate using
mass spectrometric techniques. Protein Sci: Publ Protein Soc 6(12):2568-2577. doi:10.1002/
pro.5560061209

Zhang L, Levy A, Ritkind JM (1991) Autoxidation of hemoglobin enhanced by dissociation into
dimers. J Biol Chemistry 266(36):24698-24701

Zhang N, Jia Y, Chen G, Cabrales P, Palmer AF (2011) Biophysical properties and oxygenation
potential of high-molecular-weight glutaraldehyde-polymerized human hemoglobins main-
tained in the tense and relaxed quaternary states. Tissue Eng Part A 17(7-8):927-940.
doi:10.1089/ten. TEA.2010.0353

Zhou Y, Jia Y, Buehler PW, Chen G, Cabrales P, Palmer AF (2011) Synthesis, biophysical
properties, and oxygenation potential of variable molecular weight glutaraldehyde-polymer-
ized bovine hemoglobins with low and high oxygen affinity. Biotechnol Prog. doi:10.1002/
btpr.624


http://dx.doi.org/10.1182/blood-2006-02-005272
http://dx.doi.org/10.1089/ars.2012.4917
http://dx.doi.org/10.1089/ars.2012.4917
http://dx.doi.org/10.1172/JCI113325
http://dx.doi.org/10.1097/ALN.0b013e3181cd7838
http://dx.doi.org/10.1097/ALN.0b013e3181cd7838
http://dx.doi.org/10.1002/pro.5560061209
http://dx.doi.org/10.1002/pro.5560061209
http://dx.doi.org/10.1089/ten.TEA.2010.0353
http://dx.doi.org/10.1002/btpr.624
http://dx.doi.org/10.1002/btpr.624

	37 Vasoconstriction, Hypertension and Oxidative Toxicity are Regulated by Polymerized Hemoglobin Size
	37.1…Negative Side-Effects of Early Generation HBOCs
	37.1.1 Cell-Free Hb
	37.1.2 Recombinant HbA 1.1 (rHb 1.1)
	37.1.3 Diaspirin Cross-Linked HbA (DCLHb)

	37.2…Hb Polymerization as a Strategy to Mitigate Vascular Side-Effects
	37.2.1 Oxyglobinreg
	37.2.2 Hemopurereg
	37.2.3 Polyhemereg
	37.2.4 Hemolinktrade
	37.2.5 OxyVitatrade
	37.2.6 Overview of Commercial PolyHbs

	37.3…Systematic Study of PolyHb MW on Safety Profile
	37.4…Conclusions
	References


