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Abstract. Constraint-based analysis of metabolic networks has become
a widely used approach in computational systems biology. In the simplest
form, a metabolic network is represented by a stoichiometric matrix and
thermodynamic information on the irreversibility of certain reactions.
Then one studies the set of all steady-state flux vectors satisfying these
stoichiometric and thermodynamic constraints.

We introduce a new lattice-theoretic framework for the computational
analysis of metabolic networks, which focuses on the support of the flux
vectors, i.e., we consider only the qualitative information whether or not
a certain reaction is active, but not its specific flux rate. Our lattice-
theoretic view includes classical metabolic pathway analysis as a special
case, but turns out to be much more flexible and general, with a wide
range of possible applications.

We show how important concepts from metabolic pathway analysis,
such as blocked reactions, flux coupling, or elementary modes, can be
generalized to arbitrary lattice-based models. We develop corresponding
general algorithms and present a number of computational results.

Keywords: metabolic networks, constraint-based analysis, lattices.

1 Introduction

Constraint-based modeling has become a very successful approach for the anal-
ysis of genome-scale reconstructions of metabolic networks [1–4]. Given a set of
metabolites M and a set of reactions R, the network is represented by its stoi-
chiometric matrix S ∈ R

M×R, and a subset of irreversible reactions Irrev ⊆ R.
The steady-state flux cone C = {v ∈ R

R | Sv = 0, vIrrev ≥ 0} contains all
steady-state flux vectors satisfying the stoichiometric and thermodynamic con-
straints. Based on this cone, many analysis methods have been introduced over
the years, among them Flux Balance Analysis (FBA) [5, 6], Elementary Mode
Analysis (EMA) [7–9], and Flux Coupling Analysis (FCA) [10, 11].

While these methods are now well-established, various ideas have been ex-
plored on how to modify or extend the underlying modelling framework. A
lot of research concerns the question of how to include regulatory information
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into the metabolic model (e.g. [12]). This has lead to diverse FBA strategies
like rFBA [13] or SR-FBA [14]. Elementary mode computation has been ex-
tended to include transcriptional regulatory networks in [15]. Further, there has
been a discussion on whether stronger thermodynamic constraints should be ap-
plied [16,17]. Others combine the idea of FBA to analyse optimal-growth steady-
states with the insight that this condition alone does not constrain the system
to a single possible state, but to a mathematical space of different (biologically)
optimal states [18]. Still other approaches give up the steady-state assumption
and use completely different modelling approaches, e.g. hyperpaths that are con-
structed by ordering the reactions of a network based on their (graph-theoretical)
distance to nutrients [19]. So far each modification of the basic modelling ap-
proach required a specific reformulation and adaptation of the algorithms and
analysis tools.

In this paper, we introduce the algebraic framework of lattices as a unifying
approach to metabolic pathway analysis. We will present the necessary concepts
that will allow us to adopt a broad range of modelling ideas within a unique
generic framework. We have already tested ways to include optimal-growth or
thermodynamic constraints as an option into our analysis tools. As a next step,
we intend to create a formalism for regulatory constraints, which can be added to
lattice-based models. Once implemented and tested, we will be able to perform
EMA and especially FCA with regulatory or thermodynamic constraints.

Finite lattices [20, 21] are some of the simplest algebraic structures, but they
have proven to be useful in many applications, such as abstract interpreta-
tion [22], knowledge representation [23], or distributed computing [24]. As we
will see, they can be employed naturally to describe qualitative, pathway-based
metabolic models, including the steady-state flux cone and related constraint-
based methods. Regarding qualitative modelling, our work is related to [25],
who use the concept of abstract interpretation to give knockout predictions in
reaction networks.

Here we will introduce lattice-based EMA and a very fast FCA method. Our
implementation L4FC (Lattices for Flux Coupling) can be used for traditional,
flux-cone-based FCA. But it also allows applying other lattice-based modelling
approaches, by simply changing one particular method that looks for pathways
through a given reaction in the model.

Lattice-based models are independent from the steady-state assumption. In
our models, we can use the flux cone, but we do not have to. The only algebraic
requirement a lattice-based model has to fulfill is one that is easily proven for
most approaches: any two pathways or states a and b can be combined to a
new one that uses together all the reactions of a and b. This already defines a
semi-lattice, which in our setting will automatically be a lattice.

Our approach allows for more flexibility in choosing the model constraints and
provides general analysis tools that we can immediately use without spending
much time on adapting them to our needs. As we will see, lattice-based modelling
is fully compatible with the traditional steady-state flux cone and many of its
extensions. But, it is also open for completely new ideas.
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2 Lattice Theory in Metabolic Pathway Analysis

Many important questions in metabolic pathway analysis involve only qualitative
information: Which reactions participate in a pathway? Which are the minimal
sets of reactions needed to realize certain biological functions? Which reactions
are coupled to each other? To answer these and other questions, we do not
need the quantitative information of reaction rates. Instead we can consider
a pathway to be simply a subset a of the reaction set R, a ⊆ R, satisfying
certain properties. This idea has appeared before in the literature, e.g. as activity
sets [26] or flux patterns [27]. As a unifying framework for various modelling
approaches in metabolic pathway analysis, we propose in this paper the algebraic
concept of (semi-)lattices.

A semi-lattice [21] is an algebraic structure (L, ◦) consisting of a set L and a
binary operation ◦ which satisfy the following axioms:

– L is ◦-closed, i.e., if a, b ∈ L then a ◦ b ∈ L.
– ◦ is associative and commutative, i.e., a ◦ (b ◦ c) = (a ◦ b) ◦ c and a ◦ b = b ◦ a.
– ◦ is idempotent, i.e., a ◦ a = a.

A lattice can be defined as an algebraic structure (L,∨,∧) such that (L,∨) and
(L,∧) are semi-lattices and in addition for any a, b ∈ L, we have a∧ (a∨ b) = a,
and a ∨ (a ∧ b) = a. An example is the lattice (2X ,∪,∩) of all subsets of a set
X , together with the usual set operations of union and intersection.

In the context of metabolic pathway analysis, we will look at semi-lattices
(L,∪), where L ⊆ 2R and R is the finite set of reactions in the metabolic network.
As we will see, many metabolic models are indeed union-closed, which simply
means that the union of two pathways is a pathway again. As noted in [28], such
a finite semi-lattice is already a lattice if there exists a neutral element 0 ∈ L,
with 0 ∪ a = a, for all a ∈ L. This holds if ∅ ∈ L. Thus for any L ⊆ 2R, we can
obtain a lattice (L,∪,∧) if the following two axioms are satisfied:

– L is ∪-closed, i.e., if a, b ∈ L then a ∪ b ∈ L.
– There is an element 0 ∈ L such that 0 ∪ a = a, for all a ∈ L.

With these two axioms, we can define a second operation ∧ on L, so that (L,∪,∧)
becomes a lattice:

a ∧ b :=
⋃

c⊆a,c⊆b

c . (1)

The operation ∧ is well-defined because 0 ⊆ a, for all a ∈ L.
Similarly to this construction, we can prove that every finite lattice L has a

unique maximum 1L:

1L =
⋃

a∈L

a . (2)

Since a ⊆ 1L, for all a ∈ L, we call 1L the maximum of L. In Sect. 4, we will use
the maximum to reformulate the concept of blocked reactions and flux coupling
in metabolic network analysis.
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Additionally, there are ways to describe finite lattices based on special sets of
elements, the so-called minimal and irreducible elements, discussed e.g. in [21].
As we will see, these correspond exactly to the concept of elementary modes in
the steady-state flux cone.

Lattices are sometimes also introduced as specially ordered sets. A partial
ordering on pathways can naturally be defined by a ≤ b ⇔ a ⊆ b. This reflects
the idea that a pathway that is contained in another should be considered smaller
in some sense. Because of their order-theoretical roots, many concepts in lattice
theory should be understood in this context, e.g. the minimal elements, or the
maximum.

The order-theoretical point of view also provides an interesting way of visu-
alizing the relationship of different pathways via the so-called Hasse diagram.
A Hasse diagram represents a finite, partially ordered set in a compact way.
It can be seen as a directed graph with the elements of the set as nodes, and
certain pairs of elements as edges. An element a1 is connected to another ele-
ment a2 by an edge iff a1 is covered by a2, i.e., if a1 < a2 and there is no other
element a with a1 < a < a2. All edges are implicitly oriented from bottom to
top. In lattice-based metabolic models, we can draw a Hasse diagram where the
elements are the reaction sets in our model. Two sets a1, a2 are connected if
a1 ⊂ a2 and there is no other set from the model in between. The Hasse diagram
of a lattice provides a lot of useful information. An element is irreducible iff it
covers only one other element, i.e., there is only one edge going downwards. A
reducible reaction set always covers at least two different reaction sets. Since our
lattices are ∪-closed, it is easy to see that each reaction set that covers three or
more other sets can always be written as the union of any two of those reaction
sets that it covers. This allows us to identify how pathways can be decomposed
into smaller reaction sets. An example is given in Fig. 2.

3 Steady-State Flux Spaces Can Be Modeled as Lattices

Constraint-based analysis of metabolic networks is based on the steady-state flux
cone C =

{
v ∈ R

R
∣∣ Sv = 0, vIrrev ≥ 0

}
, where S ∈ R

M×R is the stoichiometric
matrix over the set of metabolites M and Irrev ⊆ R is the set of irreversible
reactions. Constraint-based methods include Flux Balance Analysis (FBA), Ele-
mentary Mode Analysis (EMA), or Flux Coupling Analysis (FCA), which allow
for growth prediction, structural understanding, or target prediction in metabolic
engineering [5–11].

We will show here how two of these approaches, namely EMA and FCA, may
be reformulated in lattice-theoretic terms. Proving that we can work on a lattice
LC induced by the flux cone C, will allow us to use the general framework of
lattice theory, which simplifies the development of optimized and unified algo-
rithms. As a first step, we prove that any polyhedron P ⊆ R

R induces a lattice.
For this we look at the support of the vectors.

Proposition 1. Given P = {x ∈ R
n | Ax ≤ b}, with A ∈ R

m×n, b ∈ R
m, let

LP := {suppx | x ∈ P}
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with suppx = {r ∈ R | xr �= 0}. Then (LP ,∪) is a finite lattice.

Proof. Let a1, a2 ∈ LP with ai = supp
(
x(i)

)
. Define x(λ) = λx(1) + (1− λ)x(2)

for λ ∈ [0, 1]. P is a polyhedron, thus x(λ) ∈ P and supp
(
x(λ)

) ⊆ a1 ∪ a2. Now

we only have to show that there is λ∗ ∈ [0, 1] with supp
(
x(λ∗)

)
= a1 ∪ a2. So let

us look at the cases where this equality does not hold. We have x
(λ)
i = 0 if and

only if λx
(1)
i + (1− λ) x

(2)
i = 0. So for each i ∈ a1 ∪ a2 there is at most one λ

such that i /∈ supp
(
x(λ)

)
. Because there are less than |R| + 1 values for λ with

supp
(
x(λ)

)
� a1 ∪ a2, we know that the desired λ∗ ∈ [0, 1] must exist. ��

So we know that the flux cone C induces a lattice:

LC := {supp v | Sv = 0, vIrrev ≥ 0} . (3)

But we can also work on bounded flux vectors, where we assume minimal and
maximal reaction rates l, u ∈ R

R:

LC
l≤v≤u := {supp v | Sv = 0, l ≤ v ≤ u} . (4)

A special case of a bounded flux space is the space of all optimal-growth flux
vectors, used in FBA and studied e.g. in [18]:

LC
opt := {supp v | Sv = 0, l ≤ v ≤ u, vBiomass = max} . (5)

Fig. 1 shows an example network for this case. As we will see in Sect. 4, lat-
tice theory allows us to define concepts equivalent to EFMs and FCA on these
bounded flux spaces, too.
Finally, given a lattice L ⊆ 2R and a subset Q ⊆ R, we define

L⊥Q := {a ∈ L | a ∩Q = ∅} , (6)

LQ := {a ∩Q | a ∈ L} . (7)

Clearly, (L⊥Q,∪) resp. (LQ,∪) satisfy the two lattice axioms from Sect. 2. There-
fore, we get two new lattices, which we call L without Q resp. L projected on Q.

4 Methods

4.1 Elementary Modes in Lattices

An elementary mode [7] is a steady-state flux vector v ∈ C that is irreducible
in the sense that it cannot be written in the form v = v1 + v2, with v1, v2 ∈
C, supp v1, supp v2 � supp v. As proven in [8], a flux vector v ∈ C \ {0} is
irreducible if and only if supp v is minimal (w.r.t. ⊆). In the context of this
paper, it is interesting to note that an elementary mode is uniquely determined
by its support, i.e., given two elementary modes v, v′ ∈ C with supp v = supp v′,
there exists λ �= 0 such that v = λv′ [8].
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Fig. 1. Example network with metabolites A, . . . , G and reactions 1, . . . , 10. For exam-
ple, reaction 5 corresponds to the chemical reaction 2C → D+F . Without constraints
on the input reactions 1 and 4, none of the reactions is blocked and flux through re-
action 6 is unbounded. However, if we include bounds on the input fluxes v1, v4 ≤ 1,
then we obtain a maximal flux of v6 = 1. The corresponding optimal solution space is
given by v1 = v6 = 1, v2 = v3 = 0, v4 = 2λ, v5 = v7 = v8 = v9 = λ, v10 = 1 − λ with
λ ∈ [0, 0.5]. In particular, reactions 2 and 3 become blocked.

In general lattices, minimal and irreducible elements have to be distinguished.
[21] defines two sets of lattice elements, which we write as M (L) and I (L):

M (L) := {e ∈ L | ∀a ∈ L : a � e ⇒ a = 0} ,

I (L) := {b ∈ L | ∀A ⊆ L : b =
⋃

a∈A

a ⇒ b ∈ A} .

We call M (L) the set of (non-trivial) minimal elements of L and I (L) the set
of irreducible elements of L. The irreducible elements generate the lattice, i.e.,
for all a ∈ L there exist b1, . . . , bt ∈ I (L) such that a =

⋃t
i=1 bi. Clearly, all

minimal elements are irreducible, i.e., M (L) ⊆ I (L). Lattices where both sets
are the same are called atomic. While the lattice LC is atomic, this does not
hold for the lattice LC

opt of all optimal-growth pathways, cf. Fig. 2. Therefore,
for general lattices, the two concepts are different.

In [27] the notion of elementary flux patterns was introduced to describe
the generating pathways through subsystems Q ⊆ R of a metabolic network.
These may be interpreted as the set of irreducible, but not as the set of minimal
elements, in a suitably defined lattice LQ := {a ∩Q | a ∈ L} (cf. (6)).

4.2 Lattice Maxima Give a New View on FCA

Flux coupling analysis (FCA) [10, 11, 29] studies blocked and coupled reactions
in the steady-state flux cone C. It has been used for exploring a wide range of
biological questions such as network evolution, gene essentiality, or gene regu-
lation [30–35]. Here we offer an extended lattice-theoretic view of FCA, which
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1, 2, 31, 6, 10 1, 4, 5, 6, 7, 8, 9

1, 2, 3, 6, 10 1, 2, 3, 4, 5, 6, 7, 8, 91, 4, 5, 6, 7, 8, 9, 10

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Fig. 2. Hasse diagram for the lattice LC corresponding to the network in Fig. 1.
Each possible support of a flux vector is represented by a box, the empty reac-
tion set (zero flux) as an empty box. Reaction sets that do not represent optimal-
growth flux vectors are contained in dashed boxes. In the space of optimal-growth
flux vectors, there is only one minimal element: M (

LC
opt

)
= {{1, 6, 10}}. To de-

scribe the whole lattice LC
opt, we need another (non-minimal) irreducible element:

I (
LC

opt

)
= {{1, 6, 10} , {1, 4, 5, 6, 7, 8, 9, 10}}.

allows us to apply this tool not only on the classical flux lattice LC (cf. (3)), but
also on many other structures, such as the lattices defined in (4)-(7).

A reaction r ∈ R is blocked, if vr = 0, for all v ∈ C. Two unblocked reactions

r, s are directionally coupled (r
=0→ s) if vr = 0 implies vs = 0, for all v ∈ C,

and partially coupled (r
=0↔ s) if both r

=0→ s and s
=0→ r [10, 11]. If neither r

=0→ s

nor s
=0→ r, then r, s are uncoupled. There is also the special case of fully coupled

reactions, which correspond to enzyme subsets [36]. In the case of the flux cone,
we can find those pairs using the kernel matrix [29].

Blocked and coupled reactions can be naturally defined in the more general
lattice-theoretic framework. A reaction r ∈ R is blocked in a lattice L ⊆ 2R if
and only if r /∈ a, for all a ∈ L. For unblocked reactions r, s ∈ R, we define the
coupling relations in L:

r → s :⇔ ∀a ∈ L : (r /∈ a ⇒ s /∈ a) ,

r ↔ s :⇔ ∀a ∈ L : (r ∈ a ⇔ s ∈ a) .

Now we come back to the unique maximum 1L in a lattice L. From (2), we
know that a reaction r ∈ R is blocked in L if and only if r /∈ 1L. Next we look
at the lattice L⊥{r} := {a ∈ L | r /∈ a}, cf. (6). Using again (2), we see that two
unblocked reactions r, s ∈ 1L are directionally coupled if and only if s is blocked
in 1⊥{r} := 1L⊥{r} . Therefore, we get:

Proposition 2. Given a lattice L ⊆ 2R and a reaction r ∈ R, we have:

r is blocked in L ⇔ r �∈ 1L . (8)
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For two unblocked reactions r, s ∈ R, we have:

r → s ⇔ s /∈ 1⊥{r} . (9)

In Sect. 5, we will give a fast algorithm for determining 1L and 1⊥{r}, which
will allow us to perform FCA in a simplified way.

5 Algorithms and Implementation

5.1 Finding Maxima in General Lattices

We first present an algorithm that can be used to perform FCA in any lattice-
based model. It is designed in a way that it is easily adaptable to all kinds
of models and still very fast. We achieve this by re-using intermediate results
a ∈ L⊥{r}, which we call collect in a set of witnesses W . Using those witnesses,
we search a maximum via nested intervals.

At the beginning, we do not know anything, so we assume lb = ∅ ⊆ 1⊥{r} ⊆
ub = R with lower and upper bounds lb and ub. Each element a ∈ L⊥{r} that we
obtain improves the lower bound. Every time we find that there is no a ∈ L⊥{r}
with s ∈ a, we can decrease ub by removing s. Finally, we get lb = ub, which is
then our maximum 1⊥{r}.

Algorithm 1 FCA

W = ∅
for r ∈ R do

1⊥{r} = R \ {r}
for r ∈ R do

W⊥r = {a ∈ W | r /∈ a}
lb =

⋃

a∈W⊥r

a, ub = R

for s ∈ R do
if s ∈ ub \ lb then

a = Test(r, s)
if s ∈ a then

lb = a ∪ lb, W = {a} ∪W
else

ub = ub ∩ 1⊥{s}
1⊥{r} = ub

Alg. 1 uses the fact that lattices are ∪-closed. Therefore, we can combine each
pair of already known pathways to create a new, larger feasible solution. This
gives us a lower bound for the maxima 1⊥{r}. By keeping already calculated
pathways as witnesses in W , we get a major improvement in running time.

The algorithm does not use any specific properties of the flux cone. It is defined
for any lattice-based model. To use it, we include the method Test(r,s) that



186 Y.A.B. Goldstein and A. Bockmayr

returns a lattice element a ∈ L with r �∈ a � s, if such an element exists, and ∅
otherwise. This method is the only part of the code depending on model-specific
information or constraints.

To implement this method for traditional FCA, we can solve in Test the
following linear program (LP) (with a trivial objective function):

min {0 · v | Sv = 0, vIrrev ≥ 0, vr = 0, vs = σ} . (10)

For reversible reactions s ∈ R \ Irrev, this linear program has to be solved twice,
i.e., σ ∈ Ωs = {1,−1}, for irreversible reactions s ∈ Irrev, we use Ωs = {1}. If we
find a feasible solution v ∈ L⊥{r}, the method Test returns a = {r ∈ R | vr �= 0},
otherwise it returns ∅.
Lemma 1. The LP (10) is infeasible for all σ ∈ Ωs if and only if r

=0→ s.

Proof. ⇒: If r is not directionally coupled to s, there exists a ∈ LC s.t. r �∈ a � s.
Because of the definition of LC there exists v ∈ C with a = {i ∈ R | vi �= 0}.
Thus, vr = 0 �= vs. Because C is a cone, v is scalable by positive scalars λ > 0.
Thus, there exists a feasible solution of LP (10).

⇐: If LP (10) is feasible, it follows that we have found a flux vector v with
support a = {i ∈ R | vi �= 0}. We further know that s ∈ a, but r /∈ a, thus r is
not directionally coupled to s. ��
Theorem 1. Let L ⊆ 2R be a lattice and ∅ ⊆ W ⊆ L a list of known lattice
elements (witnesses). Then Alg. 1 computes the maxima 1⊥{r} needed for FCA
(cf. Prop. 2).

Proof. Given a reaction r ∈ R, we show that Alg. 1 computes 1⊥{r}. SinceW ⊆ L
is a set of lattice elements, we have

lb =
⋃

a∈W⊥r

a ⊆
⋃

a∈L⊥{r}

a = 1⊥{r} . (11)

Therefore, lb is a lower bound for 1⊥{r} before we enter the inner loop. Since
L⊥{r} ⊆ L, we know 1⊥{r} ⊆ 1L. Thus, ub is an upper bound before we enter
the inner loop. Let s ∈ ub\lb be minimal. Let a be the result of Test(r, s) in the
inner loop. By the definition of Test(r, s), we know that a ∈ L⊥{r} and, if a �= ∅,
then s ∈ a. Assume s ∈ a. Then the new lb = a ∪ lb is an element of L⊥{r},
with s ∈ lb. Thus, for the next iteration, it holds that s /∈ ub \ lb. Now assume
s /∈ a. This means that s /∈ 1⊥{r}. It follows 1⊥{r} ⊆ 1⊥{s}. Since ub ⊇ 1⊥{r}, it
follows ub∩1⊥{s} ⊇ 1⊥{r} is an upper bound. Because of the first loop in Alg. 1,
we know s /∈ 1⊥{s}. Thus, in the next iteration, we have s /∈ ub \ lb. ��
Remark 1. We can accelerate Alg. 1 by replacing loops over R with loops over
the set of all unblocked reactions 1L.

Remark 2. Obviously, we can also modify the algorithm and the LP (10) to
calculate this maximum 1L of the lattice. For that, we have to replace Test(r, s)
with a method Test(s) that does not use the constraint vr = 0 in (10).
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5.2 FCA in n Steps

Alg. 1 provides a method that can be used for any lattice-based model for which
we can implement the method Test(r, s). The constraints on this method are as
simple as they could be: find a pathway that goes through s but not through r, if
possible. Any a ∈ L⊥{r} with s ∈ a is suitable. This simplicity is one of the many
reasons why this algorithm is so easily adaptable to other lattice-based models.
But, there may be cases where we can go even simpler. If there is a direct way to
find the lattice maxima 1⊥{r}, we may compare this with Alg. 1. We will do this
for classical FCA defined on the flux cone C. According to Prop. 1, the set LC

of all supports of flux vectors is indeed a lattice. That means there is a feasible
flux vector v∗ ∈ C with 1LC = {r ∈ R | v∗r �= 0}. Obviously, the support of this
flux vector has maximal cardinality.

Figueiredo et al. [9] introduce a mixed-integer linear program (MILP) that
enumerates the (cardinality) shortest elementary modes. To achieve this, they
add binary variables ai = 1 ⇔ vi �= 0 to the LP (10). A slight variation of their
MILP already provides the solution to find the lattice maximum 1LC in one
single step. Since [9] is interested in finding elements of small cardinality, their
objective function is min

∑
i∈R ai. Here, we want to find an element of maximal

cardinality. So we change the function to max
∑

i∈R ai. Doing that we find the
unique a ∈ L with a = 1LC . For finding the maxima 1⊥{r}, we just have to
(re-)add the single constraint vs = 0 or alternatively as = 0.

5.3 Implementation

We have implemented the algorithm for general lattices in the language C#.
Our program L4FC (Lattices for Flux Coupling) accepts files in Metatool
format [36] or separate files for stoichiometric information and irreversibility
constraints. The implementation makes full use of the flexibility of lattices: The
main program first computes the set of (un-)blocked reactions, before it calcu-
lates the FCA-relevant maxima 1⊥{r}. The calculation of those |R| + 1 max-
ima is encapsulated into a separate calculator class. Our current version uses
the idea of nested intervals introduced in Alg. 1. The model-specific method
Test(r, s) is implemented in form of a Gurobi model [37] that solves the LPs
(10). This design allows us to include other modelling approaches in an easy
and elegant way by implementing new calculator classes. The source code is
available at GitHub https://github.com/goldsteiny/L4FC and is licensed under
CC BY-NC-SA 3.0. The projects history and future updates will be linked to
www.hoverboard.io/L4FC.

6 Discussion

We have run our program on seven widely studied genome-scale metabolic net-
works from the BiGG database [38] as well as the more recent reconstruction
E. coli iJO1366 [39]. This selection is comparable to other FCA benchmarks,

https://github.com/goldsteiny/L4FC
www.hoverboard.io/L4FC
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Table 1. Runtime behavior of L4FC applied on 7 genome-scale metabolic networks.
In addition, we report on the number of LPs solved and the number of pathways
found. The computation was done into two steps: First we calculate the set of blocked
reactions, then we search for the pairs of unblocked reactions that are coupled.

Model Step Solution size # LPs |W| Time (sec)

E. coli iJO1366

Total 11100 4322 242.0

find unblocked 1718 reactions 1579 469 9.8

2583 reactions find couples 58613 couples 9521 3853 232.2

E. coli iAF1260

Total 12606 4525 219.5

find unblocked 1543 reactions 1518 424 8.3

2382 reactions find couples 39260 couples 11088 4101 211.2

H. pylori iIT341

Total 2485 591 6.4

find unblocked 436 reactions 190 44 0.3

554 reactions find couples 62006 couples 2295 547 6.1

M. barkeri iAF692

Total 2203 886 8.3

find unblocked 483 reactions 340 75 0.6

690 reactions find couples 76746 couples 1863 811 7.7

M. tuberculosis iNJ661

Total 4141 1699 25.3

find unblocked 744 reactions 497 158 1.3

1025 reactions find couples 60750 couples 3644 1541 23.9

S. aureus iSB619

Total 4329 741 9.6

find unblocked 465 reactions 394 65 0.5

743 reactions find couples 30160 couples 3935 676 9.0

S. cerevisiae iND750

Total 5189 1483 31.1

find unblocked 631 reactions 963 129 3.0

1266 reactions find couples 15511 couples 4226 1354 28.0

e.g. [11, 29]. Table 1 summarizes the results. No calculation took longer than
4 minutes, five of them less than 40 seconds. Given these results we can con-
clude that the new generic algorithm L4FC has a runtime in the same order of
magnitude as F2C2, the fastest dedicated tool currently available [29].

Taking a closer look at the results, we see that the calculation of the blocked
reactions takes around 5 − 20% of the total running time. Similar observations
can be made about the number of LPs to be solved and the number of feasible
reaction sets found during this first step of the program. This is remarkable,
because this first phase calculates only 1 maximum, 1L, whereas the second phase
calculates |1L| ∼ |R| maxima. This large disproportion is a direct consequence
of our use of nested intervals, where we 1) re-use all elements found in phase 1
to get better lower bounds and 2) directly apply earlier found upper bounds
1⊥{s} to improve our approximation of 1⊥{r} for s < r. Doing the iteration
ub = ub ∩ 1⊥{s} is an obvious improvement over ub = ub \ {s}, and is quite
easy to understand with lattices in mind. Using this, we achieve similar run time
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improvements as discussed in [29], where transitivity tables are analysed and
proven.

We ran our algorithm on a machine with Intel Core i7-2600 (3.4 GHz, 4 cores,
hyperthreading) and 4GB RAM. We used Gurobi 5.1 with Windows 7 Profes-
sional, Service Pack 1 (64-bit), .NET Framework 4.0.30319. As tolerance values
for zero flux, we used |vi| ≤ 10−8 ⇒ i /∈ supp (v).

7 Summary

We have shown that the concept of EFMs and FCA can be extended to general
lattice-based models. Using this algebraic framework, we can now apply these
methods to new classes of models. For example, we can run FCA on the space
of all optimal-growth flux vectors.

We have introduced a new algorithm for computing the set of unblocked
reactions 1L and performing FCA, using only lattice properties. This allows
an easy adaptation to any lattice-based model. We have further implemented
the algorithm for traditional FCA of the flux cone and shown on a benchmark
set of genome-scale metabolic networks like E. coli iJO1366 that our generic tool
L4FC is comparable in speed to dedicated FCA algorithms.
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