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Preface

This volume contains the papers presented at CMSB 2013. The 11th Interna-
tional Conference on Computational Methods in Systems Biology was held dur-
ing September 22–24, 2013, at IST Austria in Klosterneuburg.

The conference is an annual event that brings together computer scientists,
biologists, mathematicians, engineers, and physicists from all over the world
who share an interest in the computational modeling and analysis of biological
systems, pathways, and networks. It covers computational models for all levels,
from molecular and cellular, to organs and entire organisms.

There were 27 regular and 19 poster submissions. Each regular submission
was reviewed by at least three, and on average 3.96, Program Committee mem-
bers. Each poster submission was reviewed by at least two, and on average 2.95,
Program Committee members. The committee decided to accept 15 regular pa-
pers, four regular submissions as posters, and all submitted posters. The program
also included five invited talks, by Jürg Bähler, Flavio H. Fenton, John Lygeros,
Nassos Typas, and Verena Wolf.

We thank the Program Committee for their hard work in reviewing sub-
missions. We especially thank Calin Guet and Monika Heiner for their advice
on the academic program and organization of the conference. We thank Marie
Trappl for her help with the organization of the meeting, and Sebastian Nozzi
and Moritz Schepp for their assistance with the website. We acknowledge sup-
port by the EasyChair conference system, see http://www.easychair.org, during
the reviewing process and the production of these proceedings.

We thank Tommaso Mazza and the IEEE Computer Society Technical Com-
mittee on Simulation for supporting the best student paper award. We thank
IST Austria for providing support for the conference and the travel of student
participants. We thank the European Research Council for providing support for
the meeting through the ERC Advanced Grant QUAREM (Quantitative Reac-
tive Modeling). We thank the ACM Transactions on Modeling and Simulation
for inviting the best papers of the conference to a special issue of the journal.

July 2013 Ashutosh Gupta
Thomas A. Henzinger
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Genome Regulation in Fission Yeast

Jurg Bahler

University College London, UK

Abstract. Data on absolute molecule numbers can empower the mod-
elling, understanding, and comparison of cellular functions and biological
systems. We quantified transcripts and proteins in fission yeast during
cell proliferation and quiescence. This data set provides the first compre-
hensive reference for all RNA and most protein concentrations in a eu-
karyote under two distinct physiological conditions. The integrated data
supports quantitative biology and affords unique insights into cell regula-
tion. Although mRNAs are typically expressed in a narrow range above
1 copy per cell, most long non-coding RNAs are tightly repressed be-
low 1 copy/cell. Proteins greatly exceed mRNAs in both abundance and
dynamic range, and their concentrations are regulated to functional de-
mands. During the transition to quiescence, the proteome is substantially
remodelled, but, in stark contrast to mRNAs, proteins do not uniformly
decrease but scale with cell volume.



Complexity, Pattern Formation

and Chaos in the Heart

Flavio H. Fenton

Cornell University, Ithaca, US

Abstract. The heart is an electro-mechanical system in which, under
normal conditions, electrical waves propagate in a coordinated manner to
initiate an efficient contraction. In pathologic states, single and multiple
rapidly rotating spiral and scroll waves of electrical activity can appear
and generate complex spatiotemporal patterns of activation that inhibit
contraction and can be lethal if untreated. Despite much study, many
questions remain regarding the mechanisms that initiate, perpetuate,
and terminate reentrant waves in cardiac tissue.

In this talk, we will show how a combined experimental and compu-
tational approach is used to better understand the dynamics of cardiac
arrhythmias. From a computational point of view we will discuss from
the numerical models derived to represent the dynamics of single cells
to the coupling of millions of cells to represent the three-dimensional
structure of a working heart. Some of the major difficulties of computer
simulations for these kinds of systems include: i) Different orders of mag-
nitude in time scales, from milliseconds to seconds; ii) millions of degrees
of freedom over millions of integration steps within irregular domains;
and iii) the need for near-real-time simulations. Advances in these areas
will be discussed as well as the use of GPUs for large scale simulations.
Finally we will show how computer simulations guide the development
of new low energy defibrillation methods that are being tested exper-
imentally that require only 10 percent the energy of current standard
methods.



On the Use of the Moment Equations for

Parameter Inference, Control and Experimental
Design in Stochastic Biochemical Reaction

Networks

Jakob Ruess and John Lygeros

Automatic Control Laboratory,
CH-8092 Zurich, ETH Zurich,

Switzerland

Abstract. Variability is present at all levels of biological systems. At
the molecular level Brownian motion of the molecules leads to random-
ness of the biochemical reactions inside the cells. On a higher level, the
molecular noise and other stochastic effects can lead to fundamentally
different behavior of the cells in a population. As a consequence, aver-
age dynamics of a cell population are often not adequate to understand
or control the dynamics of the population as a whole. We discuss how
stochastic models of biochemical reaction networks which enable one to
study heterogeneous cell populations can be identified from data and
how experiments which make this identification as easy as possible can
be designed.



From High-throughput Approaches to

Molecular Mechanism

Nassos Typas

European Molecular Biology Laboratory,

Heidelberg, Germany

Abstract. A combination of new technologies, resources and method-
ologies has enabled researchers to move traditional reverse genetics ap-
proaches to a genome-wide level. High-throughput gene-gene, gene-drug
and drug-drug interaction maps, pioneered mostly in yeast, have provided
a plethora of mechanistic insights in gene function, pathway architecture
and drug mode of action. Starting with E. coli, we have implemented
analogous high-throughput approaches in a number of bacteria and used
them to study different aspects of their biology. Here I will illustrate
how these system-approaches can be used to assign function to unchar-
acterized genes, discover new layers of regulation for known biological
processes-pathways, map higher-order interconnections in the genetic
network, and identify the molecular mechanism behind drug mode-of-
action and drug-drug synergy.



Numerical Approximation of Rare Event

Probabilities in Biochemically Reacting Systems

Linar Mikeev, Werner Sandmann, and Verena Wolf

Saarland University, Department of Computer Science,

Campus E1 3, 66123 Saarbrücken, Germany

Abstract. In stochastic biochemically reacting systems, certain rare
events can cause serious consequences, which makes their probabilities
important to analyze. We solve the chemical master equation using a
four-stage fourth order Runge-Kutta integration scheme in combination
with a guided state space exploration and a dynamical state space trun-
cation in order to approximate the unknown probabilities of rare but
important events numerically. The guided state space exploration biases
the system parameters such that the rare event of interest becomes less
rare. For each numerical integration step, the portion of the state space
to be truncated is then dynamically obtained using information from
the biased model and the numerical integration of the unbiased model
is conducted only on the remaining significant part of the state space.
The efficiency and the accuracy of our method are studied through a
benchmark model that recently received considerable attention in the
literature.
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Lucian Bentea, Peter Csaba Ölveczky, and Eduard Bentea

Dynamic Image-Based Modelling of Kidney Branching
Morphogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Srivathsan Adivarahan, Denis Menshykau, Odyssé Michos, and
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On the Use of the Moment Equations

for Parameter Inference, Control and
Experimental Design in Stochastic Biochemical

Reaction Networks

Jakob Ruess and John Lygeros

Automatic Control Laboratory, CH-8092 Zurich, ETH Zurich, Switzerland

Abstract. Variability is present at all levels of biological systems. At
the molecular level Brownian motion of the molecules leads to random-
ness of the biochemical reactions inside the cells. On a higher level, the
molecular noise and other stochastic effects can lead to fundamentally
different behavior of the cells in a population. As a consequence, aver-
age dynamics of a cell population are often not adequate to understand
or control the dynamics of the population as a whole. We discuss how
stochastic models of biochemical reaction networks which enable one to
study heterogeneous cell populations can be identified from data and
how experiments which make this identification as easy as possible can
be designed.

The most widely used model class to capture the molecular noise of biochemical
reaction networks are continuous-time Markov chains (CTMC), where the state
corresponds to the number of molecules of the different chemical species and
random transitions occur when molecules react. It is easy to draw sample paths
from such models using Gillespie’s stochastic simulation algorithm [1]. Comput-
ing the time evolution of the probability distribution of the CTMC, however,
is usually very difficult since it requires one to either solve the chemical mas-
ter equation (CME) or to simulate a very large number of sample paths and
compute statistics from the simulations.

Identifying the parameters of such a model from measurements of the dy-
namics of a cell population is even more difficult. This is because methods for
parameter inference are typically built on iterative schemes where the dynamics
have to be investigated for many different sampled parameter values in order
to find the best agreement of model predictions and measurements (see Fig-
ure 1). Clearly, simulating many sample paths of a CTMC at each iteration
of a search on a potentially high-dimensional parameter space is computation-
ally challenging. More efficient would be to compute the time evolution of the
probability distribution by solving the CME. Unfortunately, solving the CME
or approximating its solution is only possibly in relatively small and simple sys-
tems [2,3]. This (arguably) still poses the main limitation in building stochastic
models from single cell measurements; in contrast to non-identifiable parameters

A. Gupta and T.A. Henzinger (Eds.): CMSB 2013, LNBI 8130, pp. 1–4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Schematic illustration of parameter identification and experimental
design for a simple model of gene expression. Parameter identification requires
searching the parameter space for the parameters that lead to the best agreement of
model predictions with the experimental measurements. Experimental design requires
searching the space of possible experiments for the most informative experiment. Both
these tasks require iteratively computing the model dynamics. Use of the moment equa-
tions allows to perform this fast enough to make parameter inference and experimental
design computationally feasible.

and not informative enough measurements which are usually the major limita-
tions in building ordinary differential equation models from averaged population
measurements.

Many recent experimental results have shown that molecular noise alone can-
not adequately explain the amount of variability which is present in biological
systems. This is often a consequence of differences between the cells such as size
or expression capacity, but can also be due to different local growth conditions
which the cells in a population encounter. It has therefore been suggested that
a CTMC model should be allowed to have (at least some) parameters which
vary between the cells according to some probability distribution and to identify
parameters of these distributions (e.g. moments) along with the original param-
eters of the CTMC from the measurements. While such models can be expected
to represent the true experimental situation better, they pose several additional
challenges. On the one hand, if the variable parameters of the CTMC come from
a continuous distribution, the time evolution of the probability distribution of
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the population is not governed by a CME anymore. On the other hand, such
models will have more free parameters and one has to make sure that the mea-
sured data is informative enough to identify the additional parameters. That is,
one has to make sure that the data allows one to distinguish between molecular
noise and variability stemming from randomness of the parameters.

All of the above difficulties can be addressed (at least in some cases) if one
refrains from trying to compute the time evolution of the entire probability
distribution of the process and focuses on some lower-order moments instead. In
[4] we showed how ordinary differential equations describing the time evolution of
the moments of a CTMC with variable parameters can be derived. The resulting
equations can usually not be solved exactly but reasonable approximations can
often be obtained by using approximation techniques such as moment closure [5]
or the technique we presented in [6]. These approximations can be computed very
fast for systems of at least moderate size and can therefore be used efficiently
in iterative parameter identification schemes. First results in [4] show that this
approach is indeed applicable for real biological systems and can potentially even
be used in cases where the measured population distributions are bimodal and
cannot be adequately described by lower-order moments only.

A way to address the question of whether the data is informative enough to
identify the model parameters and to design informative experiments is through
the computation of the Fisher information [7]. The Fisher information gives
lower bounds for the variances of any unbiased estimators of the model param-
eters and thus tells us to which accuracy the model parameters can at best be
estimated in a given experimental setting. Computing the Fisher information
for CTMC models, however, is usually very difficult and experimental design
schemes which aim at searching the space of possible experiments for the most
informative experiment (see Figure 1) suffer from similar computational prob-
lems as parameter inference schemes: if the information cannot be evaluated in a
fast and efficient way, searching a potentially large space of possible experiments
is computationally prohibitive. In [8] we showed that the moment equations can
be used to approximate the Fisher information and can therefore serve as the
basis of experimental design. Hence, also the question of how informative enough
experiments can be obtained can be addressed.

Finally, also control of cell populations can be addressed in the setting of
the moment equations. Model-based feedback control schemes require online
computation of control actions and one has to be able to predict the response
of the cell population to the control actions very fast if such schemes are to be
used. Contrary to parameter estimation and experimental design, where the goal
is to gain a mechanistic understanding of the underlying biochemical process, in
the context of control accurate models are not always necessary, since feedback
tends to correct modeling errors. Still, even for simplified models, the CME is
usually too difficult to solve for practical use. One has to note, however, that
control schemes based on the moment equations can at best allow one to control
the moments up to the order where the moment equations have been truncated,
since higher order moments are (in contrast to the CME) not included anymore.
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In practice, however, this is hardly the real limitation, since the control inputs
which have so far been implemented in real cells are anyways too limited to allow
joint control of more than one moment. The best that has been achieved so far
in practice is control of population averages neglecting all higher order moments
[9,10].

Concluding, we can say that the fundamental (computational) difficulties in
parameter inference, control and experimental design in stochastic biochemical
reaction networks can all be addressed very well and efficiently with the moment
equations. This is of course all based on being able to accurately compute the
solution of the moment equations. While this is often possible, there are also
many situations where the currently existing approximation techniques for the
moment equations fail. In such situations not much is possible at the moment
and good alternatives remain to be developed.
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Abstract. In stochastic biochemically reacting systems, certain rare
events can cause serious consequences, which makes their probabilities
important to analyze. We solve the chemical master equation using a
four-stage fourth order Runge-Kutta integration scheme in combination
with a guided state space exploration and a dynamical state space trun-
cation in order to approximate the unknown probabilities of rare but
important events numerically. The guided state space exploration biases
the system parameters such that the rare event of interest becomes less
rare. For each numerical integration step, the portion of the state space
to be truncated is then dynamically obtained using information from
the biased model and the numerical integration of the unbiased model
is conducted only on the remaining significant part of the state space.
The efficiency and the accuracy of our method are studied through a
benchmark model that recently received considerable attention in the
literature.

Keywords: Biochemically Reacting Systems, Stochastic Chemical
Kinetics, Rare Events, Chemical Master Equation, Numerical
Approximation.

1 Introduction

Stochastic modeling of biochemically reacting systems has a long tradition [10,
20, 24, 26, 33] and is today well established since the inherent randomness in bio-
chemical reactions has become more and more evident [2, 6, 13, 22, 23, 34, 36].
The most common stochastic approach is to model biochemically reacting sys-
tems by multi-dimensional continuous-time Markov chains (CTMCs), where the
system state is represented by a vector of the numbers of each molecular species.
Then the transient, time dependent state probabilities are given by the chemical
master equation (CME) [14–16, 37], well known as the system of Kolmogorov
forward differential equations in the general theory and applications of Markov
processes [1, 5, 12, 18]. A physical justification [14, 15], rigorously derived in
[16], provides evidence that these stochastic chemical kinetics are in accordance
with the theory of thermodynamics.

In many cases, rare events, that is events that occur with a very small prob-
ability, are particularly important, for instance because they describe a system
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behavior of high practical relevance or because they may have serious conse-
quences. Examples include population sizes exceeding an exceptionally high level
or falling below an exceptionally low level during some fixed time period, extinc-
tion of molecular species, outbreak of infectious diseases, apoptosis (cell death),
or rare but important transitions between different long-lived stable regions in
metastable systems, amongst many others. Determining the probabilities of such
rare but important events is highly desirable.

Explicit closed-form solutions of the CME are usually not available such that
it has to be solved numerically. However, the size of the multi-dimensional state
space of the underlying CTMC typically increases exponentially with the number
of molecular species, hence with the model dimensionality. This effect is known
as state space explosion and often causes models to be numerically intractable
due to the prohibitively large, often even infinite state space.

Therefore, the most widespread approach to analyzing stochastic chemical ki-
netics is stochastic simulation [14, 15], which means to mimic the time evolution
of a biochemically reacting system by repeatedly generating trajectories (sample
paths) of the underlying CTMC with the help of computer-generated random
numbers. Mathematically, this constitutes a statistical estimation procedure for
system properties such as expectations, moments and cumulants of molecular
population sizes, or probabilities of certain events of interests. Proper statistical
output analysis yields point estimators and confidence intervals [4, 19, 32].

Stochastic simulation does not suffer from state space explosion because the
state space need not be explicitly enumerated, but stochastic simulation tends to
be computationally expensive and can only provide estimates whose reliability
and accuracy in terms of relative errors or confidence interval half widths depend
on the variance of the corresponding simulation estimator. In particular, esti-
mating rare event probabilities by ‘standard’ simulation is inefficient, because
rare events are simulated too infrequently. The variance and the relative error of
the corresponding standard estimators are much too large to obtain statistically
reliable estimates in reasonable time. Variance reduction and specific rare event
simulation techniques are required [4, 7, 28].

Despite recent progress in the application of such techniques to biochemically
reacting systems [31, 21, 17, 9, 27], as outlined above a clear disadvantage of
stochastic simulation compared to numerical analysis, provided that such an
analysis would be possible, is the inherent statistical uncertainty of simulation
results, that is estimates of the probabilities of interest. Thus, we argue that
if a problem may be tackled both by stochastic simulation and by numerical
analysis, the latter should be preferred.

In this paper, we consider a numerical solution approach that overcomes the
state space explosion by using a dynamical state space truncation. The under-
lying principle is a guided state space exploration where paths that contribute
significantly to the rare event probability are not truncated. We use parameter
biasing strategies similarly as in rare event simulation to identify the significant
parts of the state space and ‘guide’ the exploration of the state space in such a
way that an accurate approximation of the rare event probability is obtained.
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Our method approximates the solution of the CME by truncating large, pos-
sibly infinite state spaces dynamically in an iterative fashion. At a particular
time instant t, we consider an approximation of the transient distribution and
temporarily neglect states with a probability smaller than a threshold δ, that is,
their probability at time t is set to zero. The CME is then solved for an (adap-
tively chosen) time step h during which the truncated state space is adapted to
the distribution at time t+ h. More precisely, certain states that do not belong
to the truncated space at time t are added at time t+ h, when in the meantime
they receive a significant amount of probability which exceeds δ. Other states
whose probability drops below δ are temporarily neglected. The smaller the sig-
nificance threshold δ is chosen the more accurate the approximation becomes.
A similar approach was previously applied in [25] to the computation of certain
transient rare event probabilities in queueing networks.

In the next section, stochastic chemical kinetics are briefly recapitulated. Sec-
tion 3 describes the dynamical state space truncation and the guided state space
exploration as well as the choice of the parameter biasing for the ‘guiding’ sys-
tem. Numerical results are presented in Section 4. Section 5 concludes the paper
and outlines further research directions.

2 Stochastic Chemical Kinetics

Consider a well-stirred mixture of d ∈ N molecular species S1, . . . , Sd interacting
through M ∈ N chemical reaction channels R1, . . . , RM in a thermally equi-
librated system of fixed volume. Each reaction channel Rm,m = 1, . . . ,M , is
defined by a corresponding stoichiometric equation

Rm : sm1Sm1 + · · ·+ smrSmr

cm−→ smr+1Smr+1 + · · ·+ sm�
Sm�

(1)

with an associated stochastic rate constant cm, reactants Sm1 , . . . , Smr , products
Smr+1 , . . . , Sm�

, and corresponding stoichiometric coefficients sm1 , . . . , sm�
∈ N,

wherem1, . . . ,m� indexes those species involved in the reaction. Mathematically,
the stoichiometry is described by the state change vector vm = (vm1, . . . , vmd),
where vmk is the change of molecules of species Sk due to Rm. At any time t ≥ 0
a discrete random variable Xk(t) describes the number of molecules of species Sk

and the system state is given by the random vector X(t) = (X1(t), . . . , Xd(t)).
The system changes its state due to one of the possible reactions and for each

reaction channel Rm the reaction rate is given by a state dependent propensity
function αm, where αm(x)dt is the conditional probability that a reaction of
type Rm occurs in the time interval [t, t+ dt), given that the system is in state
x at time t. That is

αm(x)dt = P (Rm occurs in [t, t+ dt) | X(t) = x) . (2)

The propensity function is given by cm times the number of possible combina-
tions of the required reactants and thus computes as

αm(x) = cm

mr∏
j=1

(
xmj

smj

)
, (3)
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where xmj is the number of molecules of species Smj present in state x, and smj

is the stoichiometric coefficient of Smj according to (1). Because at any time
the system’s future evolution only depends on the current state, (X(t))t≥0 is a
time-homogeneous continuous-time Markov chain (CTMC) with d-dimensional
state space X ⊆ Nd.

The conditional transient (time dependent) probability that the system is in
state x ∈ X at time t, given that the system starts in an initial state x0 ∈ X at
time t0, is denoted by

p(t)(x) := p(t)(x|x0, t0) = P (X(t) = x | X(t0) = x0) (4)

and the system dynamics in terms of the state probabilities’ time derivatives are
described by the chemical master equation (CME)

∂p(t)(x)

∂t
=

M∑
m=1

(
αm(x − vm)p(t)(x − vm) − αm(x)p(t)(x)

)
=: M(p(t))(x), (5)

which is also well known as the system of Kolmogorov forward differential equa-
tions for Markov processes. Note that (5) is the most common way to write
the CME, namely as a partial differential equation (PDE), where t as well as
x1, . . . , xd are variables. However, for any fixed state x = (x1, . . . , xd) the only
free parameter is the time parameter t such that (5) with fixed x is an ordinary
differential equation (ODE) with variable t. In particular, when solving for the
transient state probabilities numerical ODE solvers can be applied.

3 Numerical Computation of Rare Event Probabilities

In this section we first focus on the solution of (5) using numerical integration
methods where the state probabilities p(t)(x) are approximated up to a certain
absolute error ε > 0. This technique is inefficient if we aim at a very small error
ε that is several orders of magnitude smaller than the probability P (A) of a
rare event A. Therefore, we extend the approximate numerical integration in
such a way that the state probabilities p(t)(x) contributing to P (A) are very
accurate while for states x that do not significantly contribute we obtain high
relative errors. In this way we obtain an accurate approximation of P (A) while
the probability of other events may be very inaccurate.

As a benchmark example throughout the paper we consider the enzymatic
futile cycle

S1 + S2
c1−→ S3,

S3
c2−→ S1 + S2,

S3
c3−→ S1 + S5,

S4 + S5
c4−→ S6,

S6
c5−→ S4 + S5,

S6
c6−→ S4 + S2,
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with stochastic rate constants c1 = c2 = c4 = c5 = 1, c3 = c6 = 0.1 and initial
state x0 = (1, 50, 0, 1, 50, 0), described by [30] and considered in the context of
weighted stochastic simulation algorithms by [21, 17, 9]. The goal is to approxi-
mate the probability that before time t = 100 the number of molecules of species
S5 drops to � for some � ∈ {5, 15, 25}.

3.1 Dynamical State Space Truncation

The system of linear differential equations in (5) is typically large or even infinite
such that its solution with standard numerical integration methods becomes
computationally infeasible. For most systems, however, we can exploit that only
a tractable number of states have ‘significant’ probability, that is, only relatively
few states have a probability that is greater than a small threshold.

The main idea of our dynamical state truncation for numerical integration
methods is to integrate only those differential equations in Equation (5) that
correspond to significant states. All other state probabilities are (temporarily)
set to zero. This reduces the computational effort significantly since in each
iteration step only a comparatively small subset of states is considered. Based
on the fixed probability threshold δ > 0, we dynamically decide which states
to drop or add, respectively. Due to the regular structure of the CTMC the
approximation error of the algorithm remains small since probability mass is
usually concentrated at certain parts of the state space. The farther away a
state is from a ‘significant set’ the smaller is its probability. Thus, in most cases
the total error of the approximation remains small. Since in each iteration step
probability mass may be ‘lost’ the approximation error at step i is the sum
of all probability mass lost (provided that the numerical integration could be
performed without any errors), that is,

ε := 1 −
∑
x∈S

p̂(t)(x) (6)

where p̂(t) is the approximation at time t.
The standard explicit four-stage fourth-order Runge-Kutta method (cf., e.g.,

[3, 8, 11]) applied to Eq. (5) yields the integration step

p(t+h)(x) = p(t)(x) +
h

6

(
k(1)(x) + 2k(2)(x)+2k(3)(x) + k(4)(x)

)
, (7)

where h > 0 is the time step of the method. For i ∈ {1, 2, 3, 4} the values k(i)(x)
are defined recursively as

k(1)(x) = M(p(t))(x),

k(2)(x) = k(1)(x) + h
2M(k(1))(x),

k(3)(x) = k(1)(x) + h
2M(k(2))(x),

k(4)(x) = k(1)(x) + hM(k(3))(x).

(8)
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Table 1. A single iteration step of the fast RK4 algorithm, which approximates the
solution of the CME

1 choose step size h;

2 for i = 1, 2, 3, 4 do //traverse Sig four times

3 //decide which fields from state data structure

4 //are needed for ki

5 switch i

6 case i = 1: coeff := 1; field := p;

7 case i ∈ {2, 3}: coeff := h/2; field := ki−1;

8 case i = 4: coeff := h; field := ki−1;

9 for all x ∈ Sig do

10 x.ki := x.ki + x.k1;

11 for j = 1, . . . ,m with αj(x) > 0 do

12 x.ki := x.ki − coeff · x.field · αj(x);

13 if x+ vj �∈ Sig then

14 Sig := Sig ∪ {x+ vj};
15 (x+ vj).ki := (x+ vj).ki + coeff · x.field · αj(x);

16 for all x ∈ Sig do

17 x.p := x.p + h
6
·(x.k1 + 2 · x.k2 + 2 · x.k3 + x.k4);

18 x.k1 := 0;x.k2 := 0; x.k3 := 0; x.k4 := 0;

19 if x.p < δ then

20 Sig := Sig \ {x};

In order to avoid the explicit construction of a matrix and in order to work with
a dynamic set Sig of significant states that changes in each step, we use for a
state x a data structure with the following components:

– a field x.p for the current probability of state x,

– fields x.k1, . . . , x.ks for the stage terms k(1)(x), . . . , k(s)(x),

– for all m with αm(x) > 0 a pointer to the successor state x+ vm as well as
a field with the rate αm(x).

We start at time t = 0 and initialize the set Sig as the set of all states that
have initially a probability greater than δ, i.e. Sig := {x | p(0)(x) > δ}. Note
that the probability of all states x �∈ Sig is approximated as zero. We perform a
step of the iteration in Eq. (7) by traversing the set Sig five times. In the first
four rounds we compute x.k1, . . . , x.k4 and in the final round we accumulate the
summands. While processing state x in round i, i < 5, for each reaction j, we
transfer probability mass from state x to its successor x + vj , by subtracting a
term from x.ki and adding the same term to (x+ vj).ki. Note that this exactly
gives the result of applying the operator M(·) to ki. A single iteration step is
given in pseudocode in Table 1. In line 20, we ensure that Sig does not contain
states with a probability less than δ. As step size h in line 1 of the algorithm,
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Table 2. Dynamical state space truncation results for the enzymatic futile cycle

δ |Sig| ε

0 378 -

1e-20 330 3e-15

1e-15 266 2e-11

1e-10 190 2e-6

we choose the smallest average sojourn time of all states in Sig, that is,

h = min
x∈Sig

⎛⎝ m∑
j=1

αj(x)

⎞⎠−1

. (9)

In lines 2-15 we compute the values k(1)(x), . . . , k(4)(x) for all x ∈ Sig . The
fifth round starts in line 16 and in line 17 the approximation of the probability
p(t+h)(x) is calculated. Note that the fields x.k1, . . . , x.k4 are initialized with
zero.

The performance of the algorithm can be further improved if we additionally
check in line 13 whether it is worthwhile to add state x + vj to Sig, that is, we
guarantee that x+ vj will receive enough probability mass and that x+ vj will
not be removed in the same iteration due to the check in line 19. Thus, we add
x + vj only if the inflow coeff · x.field · αj(x) to x + vj is greater or equal than

a certain threshold δ̃ > 0. Obviously, x + vj may receive more probability mass

from other states and the total inflow may be greater than δ̃. Thus, if a state is
not a member of Sig and if for each incoming transition the inflow probability
is less than δ̃, then this state will not be added to Sig even if the total inflow
is greater or equal than δ̃. This small modification yields a significant speed-up
since otherwise all states that are reachable within at most four transitions will
always be added to Sig because of line 13, but many of the newly added states
will be removed in the same iteration because of line 19. For our numerical results
we simply chose δ̃ = δ.

In Table 2 we give the results of the numerical approximation of the enzymatic
futile cycle model with the approach outlined above. We list the approximation
error ε and the size of the set Sig of significant states (averaged over all iteration
steps) for different values of δ. The running time was less than one second.
Note that this system is small enough to perform a full exploration of the state
space (δ = 0) which corresponds to a numerical integration of Eq. (5) where all
equations are considered. For more complex models this is typically not possible
and the choice of δ is critical since it affects the number of significant states and
therefore the running time of the method.

For many practical applications, the accuracy of the approximation is suffi-
cient for a moderately small choice of the truncation thresholds δ and δ̃, respec-
tively. If, however, the probabilities of rare events have to be calculated, then
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the truncation approach above is no longer appropriate. As it stands now, the
main drawback of the truncation approach is that rare events of interest may be
neglected, that is, the truncated state space may not include those paths that
lead to a certain rare event because their probability is smaller than the corre-
sponding truncation threshold. If smaller truncation thresholds are chosen then
the paths that significantly contribute to the rare event probability may not be
truncated, but the number of states that have to be considered may become too
large to be manageable.

3.2 Guided State Space Exploration

In this section we propose an extension of the truncation approach presented
in Section 3.1 that is inspired by ideas from importance sampling and recent
weighted stochastic simulation algorithms for estimating rare event probabili-
ties [31, 21, 17, 9, 27]. Assume that we are interested in the probability P (A)
of a rare event A. Besides the CTMC (X(t))t≥0, we consider another CTMC
(Y (t))t≥0 with the same state space and the same reaction channels but with
different propensity functions β1, . . . , βM instead of the true propensity func-
tions α1, . . . , αM . We choose these ‘biased’ propensity functions β1, . . . , βM such
that the occurence of A is more likely than with α1, . . . , αM . Then we use the
CTMC (Y (t))t≥0 as ‘guide’ with regard to the state space truncation, that is
essentially the propensity functions β1, . . . , βM guide us through the state space
exploration in such a way that paths to the rare event of interest are not trun-
cated. Therefore, we refer to β1, . . . , βM as guidance functions.

The idea is to solve X and Y simultaneously using the dynamical state space
truncation. Let p̂(t) (q̂(t)) be the corresponding numerical approximation of the
distribution of X (of Y ) at time t, respectively. The algorithm for solving Y is
exactly as in Section 3.1 whereas for X we slightly modify the dynamical state
space truncation algorithm. The decision whether we remove a state x from the
set Sig at time t depends only on q̂(t) and not on p̂(t). Thus, at all time instances
t for both the solution of X and Y we use the same sets Sig . This ensures that
we do not truncate the paths leading to the rare event A. Intuitively, Y shows
the direction to the rare event. Therefore, we refer to this approach as guided
state space exploration. If the guidance functions are chosen appropriately, then
the vectors q̂(t) are computed using those paths that contribute most to P (A).
Hence, the vector p̂(t) may loose a lot of probability mass over time, that is∑

x∈S p̂(t)(x) � 1. The probability mass that remains in p̂(t) then contains those
parts that contribute most to P (A).

The guided state space exploration differs from the ‘pure’ truncation algorithm
in the following aspects:

– Instead of a single field x.p for the current probability of state x we use two
fields x.p and x.q. The former refers to the current probability of state x in
X and the latter refers to the probability of x in Y .

– In each iteration, we compute two different values for each field x.ki, one
for the probability flow in X and one for the flow in Y . Obviously, for Y we
replace αj by βj (see line 12 of Table 1) and x.p by x.q.
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– We execute the two for-loops in lines 2-18 of Table 1 twice in order to com-
pute x.p and x.q, respectively. Lines 19 and 20, however, are only executed
once in each iteration where we check whether x.q < δ (instead of x.p < δ).

Note that the rare event probability P (A) is directly approximated by the
probabilities x.p and the values x.q are only used to determine the set of states
that are considered in each step of the numerical integration. Actually, it would
even be possible to solve Y and X not simultaneously but one after another.
During the solution of Y , we would then record the elements of Sig for each time
interval and use this information for the subsequent solution of X during which
we truncate the state space in the same way as for Y . The simultaneous solution,
however, has the advantage that it is faster than two subsequent solutions.

Let Pδ(A) denote the computed approximation with the approach outlined
above where δ is the chosen significance threshold. It is important to note that,
if we ignore errors of the numerical integration method, it holds that

Pδ(A) ≤ P (A) (10)

because some paths leading to A may be truncated. Moreover, as δ → 0 our
approximation approaches P (A), that is, limδ→0 Pδ(A) = P (A). In particular,
when we decrease δ the accuracy will improve. Thus, if we apply the guided state
space exploration for decreasing values of δ and see that Pδ(A) converges, we
can estimate the approximation error as Pδ(A) − Pδ̃(A) where δ < δ̃.

3.3 Choice of the Guidance Functions

It remains to choose the guidance functions β1, . . . , βM such that the occur-
rence of A is more likely than with α1, . . . , αM and the CTMC (Y (t))t≥0 prop-
erly guides us to the rare event. For this purpose we borrow ideas from recent
weighted stochastic simulation algorithms (wSSAs) for estimating rare event
probabilities based on the well known importance sampling technique for vari-
ance reduction [31, 21, 17, 9, 27]. Actually, with importance sampling the goal is
to change the probability measure underlying a stochastic system such that cer-
tain target events of interest become more likely to occur in simulations. Hence,
it is nearby that choices of β1, . . . , βM that are useful for importance sampling
simulations are also useful for our guided state space exploration. As we shall
see, our guided state space exploration is far less sensitive against the choice
of β1, . . . , βM than importance sampling and weighted stochastic simulation ap-
proaches.

In the next section we present experimental results where our choice of the
guidance functions is inspired by approaches to state-independent importance
sampling as taken in weighted stochastic simulation algorithms (wSSAs) [21, 17,
9]. We choose guidance functions

βj(x) := γjαj(x) (11)

with positive constants γj > 0. Hence, the parameter biasing consists in assigning
a constant factor to each reaction type and multiplying the reaction propensity
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function by this factor, independent of the specific state in which the reaction oc-
curs. The factors are collected in the biasing parameter vector γ = (γ1, . . . , γM ).
Note that γj = 1 for each reaction Rj whose propensity function is not changed.

In order to keep the choice of the guidance functions as simple as possible,
we do not change all propensity functions α1, . . . , αM but only those for which
an increase or decrease obviously increases the probability of the rare event
of interest. This can be often seen just by inspection. For instance, if we are
interested in a certain species reaching a high or low population level, then we
can select the reactions where this species is involved as reactant or product,
respectively. In many cases, also ‘indirect’ impacts of other species on a certain
target species can be easily seen.

More specifically, for the probability that before time t = 100 the number of
molecules of species S5 drops to � for some � ∈ {5, 15, 25} in the enzymatic futile
cycle with initial state x0 = (1, 50, 0, 1, 50, 0) we should suppress the creation of
S5 molecules. This can be accomplished by decreasing the propensity function of
reaction R3, which creates S5 molecules, and increasing the propensity function
of reaction R6, which by creating S4 molecules encourages the consumption of
S5 molecules via reaction R4. A similar approach has been taken in [21, 17] by
setting the parameter biasing vector to γ = (1, 1, 0.5, 1, 1, 2.0).

We shall generalize this and study γ = (1, 1, γ3, 1, 1, 1/γ3) for various choices
of γ3 with 0 < γ3 ≤ 1. Hence, in essence the propensity function of reaction R3 is
decreased by the factor γj and the propensity function of reactionR6 is increased
correspondingly by the factor 1/γ3, while all other propensity functions remain
unchanged. In addition we apply guidance functions proposed by [9], where the
parameter biasing vector γ was obtained via the cross-entropy method [9, 29].

4 Numerical Results

In this section we provide numerical results from comprehensive studies of our
guided state space exploration for the enzymatic futile cycle benchmark model.
In particular, this model is small enough to obtain an (up to numerical errors)
exact solution. That is, by setting δ = 0 no truncation error is introduced and if
we neglect errors due to the numerical integration method (which is reasonable
for this model with our step size chosen as the smallest average sojourn time of all
states), then we have a ‘quasi-exact’ solution. Hence, we are able to evaluate the
accuracy of the approximations obtained by the guided state space exploration
in terms of their relative errors.

In Table 3 we list the probabilities P (A) for three different choices of � as well
as the size of the set Sig of significant states. For the parameter biasing vector
we chose γ = (1, 1, γ3, 1, 1, 1/γ3), as explained before. In Table 4 we list the
relative error of the approximated rare event probability and the size of the set
Sig of significant states for different values of γ3, δ and �. Note that a relative
error of one corresponds to approximating the rare event probability as zero.
This is actually the same as what happens in direct simulation when due to the
small probability the rare event is not observed and the probability of the non-
observed event is estimated as zero. We also considered the parameter biasing
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Table 3. Exact solution results for the enzymatic futile cycle

� Pr |Sig|
25 1.7382e-07 298

15 6.2866e-13 338

5 1.0015e-19 378

Table 4. Guided state space exploration results for the enzymatic futile cycle and
parameter biasing vector γ = (1, 1, γ3, 1, 1, 1/γ3) with varying γ3

� δ γ3 = 1 γ3 = 0.8 γ3 = 0.65 γ3 = 0.5 γ3 = 0.35 γ3 = 0.2

rel.err. |Sig| rel.err. |Sig| rel.err. |Sig| rel.err. |Sig| rel.err. |Sig| rel.err. |Sig|
25 1e-20 1.06e-6 263 1.06e-6 239 1.06e-6 220 1.06e-6 198 1.06e-6 167 1.06e-6 114

1e-15 1.17e-5 231 1.12e-6 211 1.06e-6 191 1.06e-6 167 1.06e-6 142 1.06e-6 86

1e-10 9.55e-1 190 1.53e-2 173 2.46e-4 155 3.88e-6 135 1.14e-6 109 6.51e-5 48

15 1e-20 2.77e-5 303 1.82e-6 279 1.80e-6 260 1.80e-6 238 1.80e-6 207 1.80e-6 154

1e-15 1 266 2.78e-3 251 8.26e-6 231 1.81e-6 207 1.80e-6 182 1.80e-6 126

1e-10 1 190 1 191 6.18e-1 193 1.90e-3 175 3.42e-6 149 2.60e-6 88

5 1e-20 1 330 1.23e-2 319 6.44e-6 300 2.63e-6 278 2.63e-6 247 2.63e-6 194

1e-15 1 266 1 270 3.60e-1 269 6.11e-5 247 2.63e-6 222 2.63e-6 166

1e-10 1 190 1 191 1 194 1 205 4.93e-4 189 2.72e-6 128

vector γ = (1.000, 1.003, 0.320, 1.003, 0.993, 3.008) proposed in [9] for � = 25.
The results are given in Table 5. We observe a slightly better approximation
compared to the one corresponding to γ3 = 0.35 even though the number of
significant states was less. For all parameters that we chose, the running time of
our algorithm was less than one second.

5 Conclusion

We have presented an accurate and computationally efficient numerical method
for approximating rare event probabilities in stochastic models of biochemically
reacting systems. Rather than estimating such probabilities via stochastic simu-
lation, we numerically integrate the chemical master equation. In order to render
the numerical computations possible we have to truncate the state space such
that rare event probabilities can be approximated efficiently.

For this purpose, our method equips the well established explicit four-stage
fourth order Runge-Kutta (RK4) method with a dynamical state space trunca-
tion and a guided state space exploration. The latter borrows ideas from im-
portance sampling and corresponding weighted stochastic simulation algorithms
for biochemically reacting systems in that we bias the true propensity functions
such that for the biased model the probability of the rare event of interest is
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Table 5. Guided state space exploration results for the enzymatic futile cycle for � = 25
and the parameter biasing vector γ = (1.000, 1.003, 0.320, 1.003, 0.993, 3.008)

δ rel.err. |Sig|
1e-20 5.45e-7 162

1e-15 7.38e-7 138

1e-10 1.10e-6 103

increased. We use the biased model as guide to the rare event, which yields a
guided state exploration that avoids truncating paths to the rare event.

Our method has the general advantages of numerical methods over stochastic
simulation that it does not require the generation of Markov chain trajectories
and has only a numerical error but no statistical error. Moreover, our experimen-
tal results show that it is not very sensitive to the specific parameter biasing,
that is, our method performs well for a quite broad range of the biasing factors.
This is a significant advantage over weighted stochastic simulation algorithms,
which are known to require very specific biasing parameters in order to estimate
rare event probabilities efficiently and with high statistical accuracy. Obtaining
such biasing parameters for weighted stochastic simulation algorithms by hand
is intricate and despite recent advances in automated parameter selection via the
cross-entropy method still often the determination of suitable biasing parameters
takes a substantial amount of computational time.

The accuracy of our method is controlled by the truncation threshold δ. Obvi-
ously, as the truncation threshold δ approaches zero the approximation becomes
‘quasi-exact’ in that truncation errors are avoided and there is only the error in-
troduced by the numerical integration method, which is negligible for sufficiently
small step sizes. For too large values of δ the accuracy of the approximation can
be degraded by badly chosen biasing parameters, but even then the degrada-
tion is far less extreme than for weighted stochastic simulation algorithms. A
sufficiently small truncation threshold yields accurate results.

A couple of further research topics arise. We are currently intensely studying
more complex benchmark models. Besides, the use of more advanced numerical
integration methods than the explicit RK4 method seems to be promising, in
particular implicit integration schemes for stiff models. Furthermore, it is reason-
able that an improved adaptive step size selection based on local error estimates
allows for larger steps than our choice of the minimum average state sojourn
time. This will substantially improve the computational efficiency for extremely
large and stiff models. Our guided state space exploration does not even require
to solve the chemical master equation by numerical integration. It can similarly
combined with other approaches to the transient solution of continuous-time
Markov chains, e.g. with the uniformization method [35].

Another research direction is targeted towards formulas for the approximation
error of the guided state space exploration, including approaches to obtain a priori
error bounds for given guidance functions and truncation thresholds, to determine
the required truncation threshold for a prescribed maximum relative error, and to
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determine the relative error for results obtained with certain guidance functions
and an a priori fixed truncation threshold.
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Abstract. In cell biology, models increasingly capture dynamics at
different organizational levels. Therefore, new modeling languages are
developed, e.g., like ML-Rules, that allow a compact and concise de-
scription of these models. However, the more complex models become
the more important is an efficient execution of these models. τ -leaping
algorithms can speed up the execution of biochemical reaction models
significantly by introducing acceptable inaccurate results. Whereas those
approximate algorithms appear particularly promising to be applied to
hierarchically structured models, the dynamic nested structures cause
specific challenges. We present a τ -leaping algorithm for ML-Rules which
tackles these specific challenges and evaluate the efficiency and accuracy
of this adapted τ -leaping based on a recently developed visual analysis
technique.

Keywords: computational biology, rule-based modeling, multi-level
modeling, tau-leaping, efficient execution.

1 Introduction

The size and complexity of models in systems biology have steadily been increas-
ing in the last decade, also promoted by the development of modeling languages
whose syntax allows a more compact and succinct description of models [6,13].
Consequently, the need for an efficient execution has increased, so that many
improvements of Gillespie’s original stochastic simulation algorithm (SSA) [8]
have been developed, e.g., by using more efficient data structures or performing
tasks concurrently [7,17,5]. However, exact variants of the SSA still execute every
single event that occurs inside the system. Thus, with large propensities (due to
high numbers of molecules, large stochastic rate constants or diffusion constants,
and multi-scale models), the time step between successive events might decrease
drastically, rendering the simulation progress very slow [2].

Multi-level models describe a system at different levels, e.g., combining intra-
cellular and intercellular dynamics. Multi-level rules (ML-Rules) [21] is a rule-
based modeling formalism developed to model systems operating at different
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organizational levels. Therefore, an ML-Rules model can represent dynamically
and arbitrarily nested biochemical reaction networks. So far, the simulation al-
gorithm of ML-Rules bases on the exact SSA and thus, shares its drawbacks.
In contrast, approximate algorithms trade accuracy for execution speed. One
famous family of approximate algorithms are leap methods, e.g., τ -leaping [9],
which abandon the idea of single event executions in favor of larger time jumps
and an estimation of all events within the intervals. These methods can gain a
significant performance improvement compared to exact SSA procedures [15].
Based on the τ -leaping variant presented in [3], we develop a τ -leaping approach
to compute ML-Rules models and present methods to tackle the specific chal-
lenges caused by the dynamic nesting structure. As earlier experiments showed
that the parameters of τ -leaping algorithms influence both speed and accuracy
[15,18], we use visual analysis to illuminate this influence. As case studies serve
a Wnt/β-catenin pathway model [22], a fission yeast model [21], and a lipid raft
model [10].

2 Background

We use the τ -leaping variant of Cao [3] as the basis of our τ -leaping approach
for ML-Rules. In the following, this algorithm is explained in more detail. Ad-
ditionally, a brief description of ML-Rules is given.

2.1 Tau-Leaping

The τ -leaping algorithm was introduced by Gillespie et al. [9] to speed up the
simulation of well-stirred biochemical reaction networks. Instead of simulating
every single reaction that occurs inside the system, as done by exact algorithms,
τ -leaping performs “leaps” along the time line. For each leap, τ -leaping calculates
the number of firings for each reaction during this leap and executes all reaction
firings simultaneously. The length of a single leap is denoted by τ . More formally,
a τ -leap can be described by

X(t+ τ) = X+
∑

r∈R(X)

Kr(τ ;X, t) · v(r) (1)

with R(X) being the set of all potential reactions given the current state X,
v(r) as the state change map for the reaction r and Kr(τ ;X, t) representing the
firings’ number of r during τ forX. Restricting the size of τ to a value sufficiently
small that the propensity a(r) remains nearly constant during the leap for each
reaction r ∈ R(X) allows an approximation of Kr(τ ;X, t) by a Poisson random
variable P (a(r), τ) with mean and variance a(r)τ . This condition on the selection
of τ is called the leap condition. The degree of acceptable propensity changes is
bounded by the error parameter ε.

Many improvements of Gillespie’s original approach have been developed re-
cently [3,11]. Since we use the mechanism of Cao [3] as the basis of our algorithm,
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this method shall be described briefly. Initially, the reaction set R(X) is com-
puted. Afterwards, R(X) is divided into a set of non critical reactions Rncr(X),
and a set of critical reactions Rcr(X) = R(X)\Rncr(X) using the parameter
nc ∈ N. A reaction is assigned as critical if this reaction cannot be fired more
than nc times, i.e., at least one reactant would be completely consumed after
nc firings of this reaction. The separation is done to reduce the probability of
negative populations caused by the unbounded Poisson distribution. Therefore,
critical reactions are only allowed to fire at most once during a τ -leap.

Next, one candidate for τ , denoted τ ′, is computed based on Rncr(X). The
set RSncr(X) of reactant species of all Rncr(X) is determined initially, i.e., the
set of species which are a reactant in at least one reaction of Rncr(X). For each
reactant species rs ∈ RSncr(X), three values are computed. Firstly, the function
g(rs), which is used to “guarantee that bounding the relative change of states
is sufficient for bounding the relative change of propensity functions” [23] is
computed by the equation from [23]:

g(rs) = h(rs) +
h(rs)

n(rs)

n(rs)−1∑
i=1

i

X(rs) − i
(2)

h(rs) denotes the highest order of reactions in which rs is a reactant species.
n(rs) denotes the highest amount of rs which is consumed by any of the highest
order reactions. The changes’ mean and variance of rs of all reactions in Rncr(X)
are computed afterwards by

μ̂(rs) =
∑

r∈Rncr(X)

vr(rs) · a(r) σ̂2(rs) =
∑

r∈Rncr(X)

vr(rs)
2 · a(r) (3)

With the help of these equations, τ ′ is computed by

τ ′ = min
rs∈RSncr(X)

{
max{ε ·X(rs)/g(rs), 1}

|μ̂(rs)| ,
max{ε ·X(rs)/g(rs), 1}2

σ̂2(rs)

}
(4)

If τ ′ is smaller than amultiple α of the propensity sum of all reactions, 1/a(R(X)),
a number NSSA of exact iterations is performed instead of a τ -leap. Very small τ
values would cause many firing numbers being set to zero, so that the algorithm
tries to overcome the critical region in the state space by falling back to a much
more simpler and, in this case, often faster exact simulation.

If τ ′ is sufficiently large, a second τ candidate, denoted τ ′′, is sampled from
Exp(1/a(Rcr(X))), i.e., τ ′′ represents the time interval until the next critical
reaction will fire. The minimum of τ ′ and τ ′′ is used as the next τ value. If τ ′′

is smaller than τ ′, exactly one critical reaction is selected, which will fire once
during this τ -leap. After computing τ , the number of reaction firings can be
computed and these reactions can be executed simultaneously. If any negative
population occurs after executing these reactions, all changes are discarded, τ ′

is halved and the procedure is repeated until a valid τ -leap is executed.
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2.2 ML-Rules

Multi-level rules (ML-Rules) is a rule-based formalism which can be used to
create hierarchical models, including models with downward and upward causa-
tion between different hierarchy levels [21]. It has been realized as part of the
modeling and simulation framework JAMES II [14]. Models are described by
species definitions, a start state, and rule schemata. A species definition declares
a species type, i.e., a unique name (e.g., A, Cell) and a tuple of attributes. A
concrete species is defined by its type, attribute values, and sub species. Further-
more, species are treated population-based, i.e., identical species are summarized
and an amount value is added to the representative of them. Species are identical
if they have the same type, the same attribute values, identical sub species, and
are enclosed by the same species. A rule scheme comprises a set of reactant pat-
terns, a set of products and a kinetic rate. Reactant patterns describe species by
their names, their desired attributes (optionally expressed by variables), and by
sub reactant patterns, i.e., nested patterns can reach across an arbitrary number
of levels. For example, the reactant pattern A[B] describes species of type A,
which contain at least one species B. Products are defined analogously to reac-
tant patterns. The kinetic rate of a rule scheme can be an arbitrary expression,
i.e., ML-Rules is not fixed to mass action kinetics. Such expressions can com-
prise simple arithmetics, conditions, and functions. Mass action kinetics can be
modeled by bounded variables. For example, the rule schema

Bb + Cc b·c·rc−−−−→ D

bounds the variable b to the amount of the selected species B, the variable c to
the amount of the selected species C and uses these variables and a constant
reaction rate rc to compute the reaction propensity. Additionally, the hierarchy
above the reactant species is considered to compute the propensity of a reaction
(see figure 1).

A

5 B 2 C

3 B 4 C

B5 + C2    ... 5·2

B3 + C4    ... 5·3·4

propensity = 10

propensity = 60

Fig. 1. Illustration of the rule schema instantiation of ML-Rules (adapted from

[20, p. 143]). The rule scheme Bb + Cc b·c−−→ . . . is applied to the species on the left.
Two reactions are instantiated. Due to the hierarchical multiplicity, a propensity of 60
(12 · 5) is assigned to the lower reaction.
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So far, ML-Rules models have been executed by simulation algorithms based
on the SSA [21]. These deal with dynamic hierarchical structures, complex rule
schemata, and unbounded sets of species and reactions. To improve the per-
formance of executing a model, a component-based simulation algorithm was
developed recently to tailor the algorithm to specific requirements of concrete
models. Furthermore, reinforcement learning techniques were used to adapt the
algorithm due to changing model requirements during one simulation run [12].

3 τ -leaping for ML-Rules

The principle method of our τ -leaping approach for ML-Rules follows the one
presented in [3] (see sec. 2.1). The algorithm is implemented inside JAMES II
and will be part of the release 0.9.3. At first, all reactions are split into the sets of
critical and non critical reactions. In contrast to the previous ML-Rules simula-
tion algorithm, propensities of non critical reactions are computed locally, as the
changes inside a context during a τ -leap depend neither on the number of con-
text copies nor on the number of species higher up the hierarchy. Consequently,
hierarchical multiplicities are not included in the propensity computation (see
figure 2).

A

5 B 2 C

3 B 4 C

B5 + C2    ... 5·2

B3 + C4    ... 3·4

propensity = 10

propensity = 12

Fig. 2. Hierarchical multiplicities are not included in the propensity calculation of non
critical reactions, because reactions are considered individually, i.e., for each of the five
Bs, a reaction number of the lower reaction is computed and the corresponding number
of reaction firings is applied to the specific B species

Next, each reaction context (rc) is considered separately and local τ ′l values are
computed for each of these reaction contexts based on equation 4. Consequently,
a τ ′l value reflects the relative changes inside its reaction context. τ ′ represents
the minimum of all τ ′l values. After computing a suitable τ ′ value, it is checked
whether τ ′ is too small and if so, a number NSSA of SSA steps is performed.
Otherwise, τ ′′ is computed for the critical reactions. If τ ′′ is smaller than τ ′,
τ is set to τ ′′ and one critical reaction is selected which will fire exactly once.
Otherwise, τ is set to τ ′ and no critical reaction will fire.

In contrast to flat chemical reaction networks, the computation of reaction
firings and the simultaneous execution of all these reactions are complex tasks,
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because they have to be executed recursively along the hierarchy of the model.
Thereby, each species is treated individually, because it is assumed that even
identical species probably have different numbers of reaction firings during a τ -
leap. The algorithm starts from the topmost reaction context of the model, i.e.,
the context which is not enclosed by a species:

1. Compute the number of reaction firings for the current reaction context rc
and τ .

2. Remove all reaction reactants from rc.
3. For each remaining enclosed species of rc, execute this algorithm.
4. Add all reaction products to rc.

If the model state is invalid after a τ -leap, i.e., the amount of at least one species
is negative, the changes are discarded, τ ′ is halved, and the algorithm is repeated.

3.1 Reaction Splitting

We applied the described τ -leaping algorithm to realistic ML-Rules models and
observed that τ -leaping performed poorly. The number of executed reactions
during a τ -leap was too small. The used models describe processes of cells.
Typically, they comprise rules to diffuse species into or out of cells, rules to
manipulate species inside a cell whose products and kinetic rates depend on the
enclosing cell (e.g., on its volume), and rules to manipulate cells. For example,
the following rule describes the diffusion of a protein into a cell:

Cell[sol?]c + Proteinp c·p·rc−−−−→ Cell[Protein+ sol?]

Multiple firings of a reaction based on this rule would add one protein to a num-
ber of cells. Additionally, such reactions tend to be critical, if the number of cells
is small. The question is how to handle these reactions differently so that several
proteins can enter the same cell within one τ -leap and the number of critical re-
actions is reduced. During calculating τ and the firing rates of reactions the cell
in the above example can be ignored as its attributes do not change. Therefore,
such reactions are split into two reactions, one describes the changes outside
the cell and one describes the changes inside the cell. Referring to the example
above, a concrete reaction would be split into the following two reactions:

1. Inside the cell :
p·rc−−−→ Protein

2. Outside the cell : Protein
p·rc−−−→

The creation of these two reactions is possible, because all necessary informa-
tion, e.g., the cell which is used and the values of the variables, are known after
creating the basic reaction. The propensity of these reactions is reduced by the
factor of the cells’ amount, because in τ -leaping each cell is considered individu-
ally. These two reactions can now be handled as ordinary reactions, whereas the
original reaction is not considered during the next τ -leap any more. Finally, the
execution algorithm has only to ensure that both new reactions have the same
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firing number. Currently, we allow reaction splittings if the rule of a reaction
contains exactly one pair of reactant and product pattern which satisfies the
following conditions:

1. The species types and the attributes of the reactant and the product pattern
are the same and the amount of both must be 1.

2. The amount of the top species of the reactant pattern is used as a factor for
the reaction rate.

3. Both patterns comprise two hierarchy levels.

These conditions are a first rather restrictive approach, however, which facili-
tates automating reaction splitting, i.e., everything is done transparently to the
user. Future approaches could generalize these conditions, so that more complex
reactions could be split.

3.2 Population-Based τ -leaps

During the computation of the reaction firing numbers and the corresponding
reactions, species are considered individually, i.e., the population-based approach
cannot be used (see sec. 3). This individual consideration of species during a τ -
leap can lead to a high computational effort. That is why we created a new
parameter μ ∈ N+ ∪ ∞, which introduces the concept of populations to the
execution of τ -leaps. Basically, during the computation of the reaction firing
numbers and the corresponding reactions, it is used to partition a set of identical
species into μ equally sized groups. Afterwards, all individual species of one group
will evolve equally during the current τ -leap. If μ is greater than the amount
of a species (guaranteed by μ = ∞), one group is created for each individual
of this species, i.e., all species are treated individually. Eventually, if μ = 1,
species are completely treated population-based, i.e., all identical species evolves
equally. Consequently, reducing the value of μ on the one hand can decrease the
accuracy of the simulation results but on the other hand can also decrease the
computational effort of the τ -leaps.

1000 A

1000 B

1000 C

1000 A

1000 B

996 C
500 A

500 B 500 B

996 C 993 C

500 A

500 B 500 B

998 C 994 C

μ = 1 

μ = 2 

Fig. 3. Illustration of the impact of different μ values on one τ -leap. The rule scheme
Cc c·rc−−−→ is applied to the left species, i.e., one C is consumed after firing the cor-
responding reaction once. In this example, the concrete reaction firing numbers are
chosen manually for illustration.
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Figure 3 illustrates the concept of μ. The rule scheme Cc c·rc−−→ is applied to the
species on the left, i.e., one reaction is created, which would consume exactly
one C. If μ = 1, species are treated completely population-based. Thus, one
Poisson number is sampled for the reaction firing number and the amount of C is
simply reduced according to that number, i.e., the reaction fires equally frequent
inside all Bs. Afterwards, the whole species comprises again 1000 identical As,
each enclose 1000 identical Bs. If μ = 2, the As are separated into two groups,
each comprises 500 As. For each group of As, the Bs are separated analogously.
One reaction firing number is then computed for each group of Bs, and the
amount of C is reduced accordingly. Thus, a total of four Poisson numbers are
sampled. Finally, if μ would be set to ∞, 1000 groups of As would be created,
each containing 1000 groups of Bs, i.e., one million Poisson numbers would be
sampled.

4 Evaluation

We evaluate the developed τ -leaping approach for ML-Rules based on experi-
ments with three different models, namely a realistic model of the Wnt/β path-
way in neural progenitor cells [22], a cell cycle model [21], and a lipid raft model
[10]. To analyze the effects of different parameter settings, we use a recently
developed visual analysis technique [18].

4.1 The Wnt/β-Catenin Pathway Model

The Wnt/β-catenin pathway model described in [22] comprises five species types
and twelve rule schemes. It defines one species type to represent cells and one
species type to represent nuclei inside cells. The amount of cells can be defined by
a parameter. Moreover, three other types are defined, representing Wnt proteins,
β-catenin proteins, and Axin proteins. The Axin protein species type has one
attribute reflecting the phosphorylation state of such species. Inside a cell, Axin
proteins are phosphorylized and dephosphorylized (partially dependent on the
number of Wnt proteins). β-catenin proteins are constantly moved inside and
outside the nucleus of a cell. Depending on the number of β-catenin proteins
inside the nucleus, dephosphorylized Axin proteins are synthesized inside a cell.
Furthermore, Wnt proteins, Axin proteins, and β-catenin proteins are degraded
constantly. Despite the number of β-catenin proteins, the degree of β-catenin
degradation also depends on the number of phosphorylized Axin proteins.

We use 480 configurations of τ -leaping for the analysis, built from the cross
product of twenty ε values (0.01, 0.02, . . ., 0.2), four α values (5, 10, 15, 20), and
six μ values (1, 2, 4, 6, 8, 10). nc is always set to 10 and NSSA is always set to
100. For each parameter setting, 100 replications with the simulation end time
200 are executed. The model state is observed after 0.4 time units have elapsed,
i.e., 500 observations are made per simulation. Once we executed the experiment
of the model with one cell, once with ten cells.

Referring to the performance, all configurations of τ -leaping need significantly
less execution time per replication on average compared to the SSA. For one
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simulation of the model with one cell, the SSA need ≈ 39 s on average (σ ≈ 2.5 s)
on the used computer, the fastest τ -leaping configuration (ε = 0.2, α = 5, μ = 1)
need ≈ 0.5 s on average (σ ≈ 0.05 s), and the slowest one (ε = 0.01, α = 5,
μ = 10) need ≈ 1.8 s on average (σ ≈ 1.3 s). For one simulation of the model with
ten cells, the execution times of the SSA and of most τ -leaping configurations
nearly increase by thirty, e.g., the SSA need ≈ 1125 s on average (σ ≈ 76 s). The
ε parameter influences the performance significantly, i.e., the higher ε is chosen,
the lower is the execution time. The α parameter influence the execution time
negligibly. As excepted, for the model with one cell, the μ parameter has neither
an effect on the simulation results nor on the execution time, because there is
only one cell and one nucleus, i.e., population-based τ -leaps do not occur. For
the model with ten cells, on the contrary, μ has an impact on the performance,
i.e., τ -leaping performs better with μ = 1 than with the other used values for
μ (e.g., τ -leaping (ε = 0.2, α = 5) need ≈ 8 s with μ = 1 and ≈ 17 s with
μ ∈ {2, 4, 6, 8, 10}). Interestingly, the difference depends on the value of ε, i.e.,
the higher ε is chosen, the smaller is the difference (if ε > 0.07, the difference
diminishes almost completely). We found out that only for μ = 1, population-
based τ -leaps are executed frequently due to identical cells. For the other values
of μ, each cell differs permanently from each other after a short period of the
simulation, so that only a few population-based τ -leaps are executed at the
beginning. The executed SSA steps caused by small τ values are the main reason
for this behavior. Nevertheless, the impact of these SSA steps should diminish
with a higher number of cells, i.e., even with higher μ values several cells should
be identical frequently during the simulation and thus these μ values should have
an effect on the performance.
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Fig. 4. The average results of the SSA (solid lines) compared to τ -leaping (dotted lines)
with ε = 0.2, α = 5, and μ = 10 (i.e., the least accurate configuration we used) of the
species amount of phosphorylized Actin proteins and of β-catenin proteins inside the
nucleus for the Wnt/β-catenin pathway model with one cell.

However, the interesting aspect is how much accuracy is traded for this gain
of efficiency and especially due to their impact on the execution time how is
the impact of the parameters ε and μ on the accuracy. Most importantly, all
configurations of τ -leaping produce similar results compared to the results of the
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SSA (e.g., see figure 4). Due to the high number of parameters, configurations,
and observations, we use visual analysis to examine the impact of ε and μ on
the accuracy, because it enables us to interactively explore data, e.g., to observe
relations, correlations, and interdependencies between parameters and results.
Precisely, we use the software developed in [18]. It visually connects the used
parameter values and the computed accuracy measures with the corresponding
simulation results of one species. Focusing on the first two, the software uses
color coding and maps low values of the five parameters to white and high
values to black, low accuracy values (in this case, represented by the p-value
of the paired Wilcoxon rank sum test [24, p. 513]) of the observations to white
and high values to saturated cyan (see figure 5). Each line corresponds to one
parameter setting aligned to the according accuracy values evolving over time.
The software now enables us to scroll trough, sort, and select parameter settings
by concrete parameters and accuracy values of specific time intervals.
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Fig. 5. Accuracy illustrations of parameter settings sorted by the value of ε (left) and
by the value of μ (right) on the example of the dephosphorylized Axin proteins of the
Wnt/β-catenin pathway model with ten cells. The more saturated the cyan of a field,
the more accurate are the corresponding results.

To analyze the impact of ε on the accuracy, we started by sorting the param-
eter settings according to ε and scrolling through the configurations (see the left
illustrations of figure 5). Characteristic for τ -leaping, the smaller ε is chosen,
the more accurate the results get, which becomes visible by dark cyan regions
in the top left illustration of figure 5. Vice versa, the accuracy decreases if ε
is increased, especially in the beginning of the simulation (see the bottom left
illustration in figure 5). Thus, referring to the impact of ε, the algorithm be-
haves as expected. Sorting the parameter settings according to μ, we observed
another behavior: No relation between its value and the accuracy can be revealed
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(see the right illustrations of figure 5). As this might be specific for the chosen
model, further experiments are needed to analyze the impact of μ on accuracy
in more detail. Also, the parameter α does not influence the result accuracy in
our model either, i.e., the computed τ ′ is usually chosen sufficiently high so that
eventually only few SSA steps are executed. Interestingly, at several time points
the accuracy of all configurations decreases slightly, which results in faint but
noticeable vertical lines in the visualization (e.g., see figure 6). The reason for
this is not yet clear, e.g., whether this is caused by large τ values in comparison
to smaller observation rates or whether it is caused by the execution of SSA
steps.

t = 0 t = 200t = 100

Fig. 6. The accuracy illustrations of some τ -leaping configurations again on the ex-
ample of the dephosphorylized Axin proteins of the Wnt/β-catenin pathway model
with ten cells. The illustrations show noticeable vertical lines, i.e., many configurations
behave similar at these times. Some of these lines are marked by the arrows on top.

4.2 The Lipid Raft Model

The lipid raft model describes the synthesis, degradation and diffusion of lipid
rafts in cell membranes [10]. It comprises receptor species, which diffuse inside
and outside lipid rafts. While degrading a lipid raft, all containing receptors
are removed. For this evaluation, the model was reimplemented in ML-Rules.
We use the same 480 configurations of the experiments with the Wnt/β-catenin
pathway model for the evaluation (see 4.1). Regarding the results, again ε is
the most important parameter. However, if ε > 0.01, the accuracy of the results
decreases significantly. In contrast to the Wnt/β-catenin pathway model, the
α parameter also significantly influences the results (if ε = 0.01). For example,
if α = 5, many SSA steps are executed, so that the results are still relatively
accurate. If α ∈ {10, 15, 20}, SSA steps are executed rarely and the accuracy
of the results decrease dramatically. Thus, accurate results are only achieved
with ε = 0.01 and α = 5. The according configurations perform 16% better
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on average than the SSA, which needs ≈ 72 s. The μ parameter again only
slightly influence the execution time of the simulations and does not noticeable
influence the simulation results. The evaluation of the experiments with the
lipid raft model again shows the importance of an appropriate configuration of
all parameters of τ -leaping, i.e., using inappropriate configurations can lead to
fast execution times but totally wrong results.

4.3 The Fission Yeast Model

The fission yeast model [21] represents the cell division and mating process of
fission yeast cells. It comprises intracellular as well as intercellular reactions and
contains a simple grid-based spatial level to describe specific diffusion reactions.
In this model, a cell species contains two attributes, representing the volume
and the phase of the cell. Further species types describe different pheromones
and proteins. However, initial experiments show that τ -leaping performs worse
for this model than the SSA. Reactions which change attributes of cells are the
most frequent reactions in the model. Typically, the number of cells is small (1
- 100), so that either these reactions are declared as critical, or the computed
τ ′ values are small. Consequently, τ -leaping only summarizes a small number of
reactions per τ -leap, i.e., two reactions are summarized per τ -leap on average.
All in all, these results show that τ -leaping for ML-Rules behaves like existing
τ -leaping algorithms, i.e., if the most frequent reactions involve species with
small amounts, τ -leaping cannot exploit its ability to execute leaps.

5 Related Work

τ -leaping is a promising algorithm to improve the performance of biochemical
reaction networks [9]. Consequently, many improvements and extensions have
been developed over the last years. For example, many τ -leaping variants deal
with the problem of negative populations [1,25]. However, only a few variants
focus on structured models. Related approaches are those τ -leaping variants that
consider space. For example, the binomial spatial τ -leaping algorithm [19] and
S-τ [16] are based on a grid-like structuring of space into subvolumes where
diffusion events happen between and reaction events within those subvolumes.
Similarly to our approach a τ candidate is calculated separately for each subvol-
ume. Calculating τ candidates locally is also a strategy adopted for dynamical
probabilistic P Systems [4]. However, those approaches do not have hierarchi-
cal contexts similar to those of ML-Rules: The former approaches due to not
supporting hierarchies, the latter due to not supporting hierarchical rules and
population-based membranes.

The performance of τ -leaping depends on the model and its configuration,
i.e., the trade-off between execution time and accuracy [15,16]. To explore these
dependencies in the multi-dimensional space of parameter settings and different
accuracies, formulating and testing hypotheses iteratively would be the usual
case. Instead, visual analysis enables the user to execute an exploratory inves-
tigation of the data helping him to get impressions of the data to formulate
hypotheses specifically.
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6 Conclusion

This paper presents a τ -leaping algorithm for the rule-based multi-level for-
malism ML-Rules, which supports dynamic nesting. It extends the traditional
τ -leaping by treating identical individuals as populations (along with the pa-
rameter μ to control the grouping) and by calculating τ ′l values in the respective
contexts (among which the minimum is selected as the overall τ ′). The evalua-
tion shows that the algorithm behaves like other τ -leaping variants, e.g., small
ε values cause more accurate results than high ε values and the improvement
of τ -leaping depends strongly on the used model. Depending on the model, the
execution time can be decreased significantly, e.g., the execution time for one
simulation of the used Wnt/β-catenin pathway model can be reduced by 2 or-
ders on average. The new parameter μ, which configures the population-based
execution of τ -leaps, rarely influences the execution time and does not affect the
accuracy of the results. However, this relation is likely caused by the used mod-
els and thus, deserves further investigations - as do the areas of poor accuracy
which have been revealed in our visual exploratory analysis. Currently, the de-
veloped τ -leaping approach only supports mass action kinetics. Since ML-Rules
is not constrained to mass action kinetics, it has to be investigated which types
of kinetics can be supported by τ -leaping.
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Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 298–313. Springer, Heidel-
berg (2006)
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Abstract. The computation of transient probabilities for continuous-
time Markov chains often employs uniformisation, also known as the
Jensen’s method. The fast adaptive uniformisation method introduced by
Mateescu approximates the probability by neglecting insignificant states,
and has proven to be effective for quantitative analysis of stochastic mod-
els arising in chemical and biological applications. However, this method
has only been formulated for the analysis of properties at a given point
of time t. In this paper, we extend fast adaptive uniformisation to handle
expected reward properties which reason about the model behaviour un-
til time t, for example, the expected number of chemical reactions that
have occurred until t. To show the feasibility of the approach, we inte-
grate the method into the probabilistic model checker PRISM and apply
it to a range of biological models, demonstrating superior performance
compared to existing techniques.

1 Introduction

Model checking of continuous-time Markov chains (CTMCs) [3] is an established
method that has been successfully used for quantitative analysis of a variety
of models, ranging from biochemical reaction networks [9,17] to performance
analysis of computer systems [2]. The analysis typically involves computing the
transient probability of the system residing in a state at a given time t, or, for
a model annotated with time-dependent rewards, the expected reward that can
be obtained. Transient probabilities for finite-state CTMCs can be computed
through the uniformisation method, also known as the Jensen’s method. Uni-
formisation involves discretising the CTMC with respect to a fixed rate, which
enables reduction of the transient probability calculation to an infinite summa-
tion of Poisson distributed steps of the derived discrete-time Markov chain, and
approximating the probability by truncating to a finite summation. The num-
ber of terms required can be precomputed for a specified precision using the
Fox-Glynn method [8].

Many biochemical reaction networks, however, induce CTMC models whose
state space is potentially infinite. To handle such cases, [17] introduced
continuous-time propagation models, a generalisation of continuous-time Markov
chains. The idea of this model is to propagate the (probability or expectation)
mass values along the system execution. In order to analyse propagation models,
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the fast adaptive uniformisation (FAU) method was formulated [16]. Similarly
to standard uniformisation, FAU applies discretisation, except that it does so
dynamically, starting from some initial condition wrt to a sequence of rates (a
birth process) rather than a single rate, and truncates the computation of the
probability to a finite summation, although the number of summation terms
cannot be precomputed. To deal with the unbounded state space, FAU explores
only the relevant states, ignoring the probability of the insignificant states. Thus,
the number of states to be maintained in memory can be kept small, at a cost
of some loss of precision. Importantly, the FAU method can also speed up the
analysis of very large finite models.

Fast adaptive uniformisation was implemented [6] and applied successfully
on a variety of biological systems [6,17], but for transient probabilities only.
Many useful quantitative analyses involve the computation of expected rewards,
which can be instantaneous (incurred at time t) or cumulated (until time t). An
example of an instantaneous reward property is the number of molecules of a
given species at time 100s, and of a cumulative property the expected number
of reactions that occurred for the duration of 100s. Although one can express
cumulative reward properties by adding additional species to the model, for
example by increasing the reward by 1 every time a reaction occurs, this has
the disadvantage of introducing an additional dimension into the model and, as
we show later, can severely affect the performance, resulting in higher memory
requirement and a consequent loss of precision.

In this paper, we extend fast adaptive uniformisation for CTMCs to allow for
efficient computation of cumulative reward properties, thus avoiding the over-
head of adding the additional dimension. We cast our results in the framework
of propagation models of [17]. We implement the method, including the reward
extension, and integrate it into the probabilistic model checker PRISM. To
show the practical applicability of FAU, we have applied it to a range of case
studies from biology, demonstrating superior performance compared to existing
techniques.

Related Work. FAU generalises adaptive uniformisation [18] by accelerating
the discretisation and neglecting states with insignificant probability. Standard
uniformisation is implemented in a number of tools, including PRISM, which
we enhance with the FAU functionality in this paper. SABRE [6] is the first
tool to implement FAU without cumulative rewards. Both PRISM and SABRE
support models written in Systems Biology Markup Language (SBML) as in-
put, in addition to their native modelling languages. SABRE is a stand-alone
tool available for download or as a web interface; it additionally offers determin-
istic approximations using differential equations (by the Runge-Kutta fourth
order method), which is faster and leads to accurate results for large numbers
of molecules. PRISM does not support deterministic approximations, but pro-
vides extensive support for temporal logic model checking that is appropriate for
molecular networks where some species occur in small numbers, or the encod-
ing of spatial information is needed, as we consider in this paper. PRISM also
provides statistical model checking and Gillespie simulation. The tool MARCIE
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[19] implements FAU but does not support cumulative rewards. Further tools
that support reward properties but not FAU include, for instance, Möbius [4]
and MRMC [11].

2 Preliminaries

We begin by giving an overview of the main definitions and results based on
[13,6,17]. A continuous-time Markov chain (CTMC) is given by a set of discrete
states S and the transition rate matrix R : S × S → R≥0 where R(s, s) = 0
for all s ∈ S. The rate R(s, s′) determines the delay before the transition can
occur, i.e. the probability of this transition being triggered within t time-units
is 1 − e−R(s,s′)·t. Let E(s)

def
=
∑

s′∈S R(s, s′) be the exit rate and define the

generator matrix Q by Q
def
= R−diag(E), where diag(E) is the S×S matrix with

E on its diagonal and zero everywhere else. Then πt : S → R≥0, the transient
probability vector at time t, can be expressed as πt = π · eQt given the initial
probability vector π.

We cast our method in the framework of continuous-time (linear) propagation
models [17, Section 2.3.3] which generalise continuous-time Markov chains. We
now recall the relevant results from [17].

Definition 1 (Continuous-time propagation model). A continuous-time
propagation model (CTPM) is a tuple M = (S, π,R), where

– S is a countable or finite set of states,
– π : S → R≥0 where |{s ∈ S | π(s) > 0}| < ∞ is an initialisation vector, and
– R : S × S → R≥0 is a transition matrix, such that for all s ∈ S we have

|{s′ ∈ S | R(s, s′) > 0}| < ∞.

The transition matrix R assigns a rate R(s, s′) to each pair of states, as for
CTMCs, and the initialisation vector π assigns an initial mass value π(s) to
each state s ∈ S. There are only finitely many states to which a positive mass
is assigned initially. The models we consider are finitely branching, that is, for
each state there are only finitely many states to which this state has a positive
transition rate.

A CTPM is a CTMC if
∑

s∈S π(s) = 1 and R(s, s) = 0 for all s ∈ S.

Example 1 (Continuous-time Markov chain). In Fig. 1, we depict a CTPM [7,
001-01], a so-called birth-death process. Each state s is a natural number describ-
ing the number s of molecules of a given species. In each state s, a new molecule
can appear with rate λ · s, and disappear with rate μ · s for λ

def
= 0.1, μ

def
= 0.11.

We thus have R(s, s + 1)
def
= λ · s for all s ≥ 0, R(s, s − 1)

def
= μ · s for s ≥ 1



36 F. Dannenberg, E.M. Hahn, and M. Kwiatkowska

and R(·, ·) def
= 0 otherwise. We assume that π(100)

def
= 1 and for the other states

π(·) def
= 0. Thus, the model is a CTMC.

To reason about the timed behaviour of a CTPM, we now define its generator
matrix which generalises that for CTMCs.

Definition 2 (Generator matrix). The generator matrix Q(M) : S×S → R

of a CTPM M is defined so that

– Q(M)(s, s′)
def
= R(s, s′) for s, s′ ∈ S with s �= s′, and

– Q(M)(s, s)
def
= R(s, s) −

∑
s′∈S,

s′ �=s

R(s, s′).

The propagation process, which propagates probability mass or expectation
values, is then defined as follows. Note that, for CTMCs, πt(s) is the (transient)
probability that the model resides in state s at time t.

Definition 3 (Propagation process). Given a CTPM M = (S, π,R), the
propagation process at time t, πt(M) : S → R, is defined as the solution of the
differential equation

π̇(s′)
def
=
∑
s∈S

π(s) ·Q(M)(s, s′)

at time t, for s′ ∈ S, given the initial value π.

The standard uniformisation [10] method for CTMCs splits the CTMC into a
discrete-time Markov chain (DTMC) and a Poisson process as follows. Define
the DTMC P by P

def
= I + 1

Λ · Q where Λ is the uniformisation rate such that
Λ ≥ maxs∈SE(s). Then πt can be computed as

∑∞
n=0 πt(Ψ

Λ)(n) · τn where
πt(Ψ

Λ)(n) is the value of the Poisson distribution with rate Λ · t at point n, and
τn = τn−1 · P for n > 0, τ0 = π0. For a given precision ε, the summation can be
truncated using the Fox and Glynn method [8].

The fast adaptive uniformisation (FAU) [6,17] is a variant of the adaptive
uniformisation [18] which splits the CTMC into a DTMC and a birth process.
For an infinite sequence Λ = (Λ0, Λ1, . . .) of rates with Λn ∈ R≥0 for all n ∈ N,
the birth process is defined as the CTMC ΦΛ def

= (S, π,R), where

– S
def
= N,

– π(0)
def
= 1 and π(·) def

= 0 otherwise, and
– R(n, n+ 1)

def
= Λn for n ∈ N and R(·, ·) def

= 0 otherwise.

Note that the Poisson process is a special case of the birth process with constant
rates Λ = (Λ,Λ, . . .).

Transient probabilities of birth processes can be approximated efficiently us-
ing specialised techniques [17, Section 4.3.2, Solution of the birth process]. This
is possible by applying standard uniformisation [10] in a way which takes advan-
tage of the particular structure of the process. Finally, transient probabilities of
general CTPMs can be computed as follows, where we reformulate Pn in terms
of the rate matrix, rather than the generator matrix used in [17].
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Theorem 1 (Solving propagation models using a birth process).
Consider

– a CTPM M = (S, π,R),
– an infinite sequence of subsets S = (S0, S1, . . .) with Sn ⊆ S denoting active

states,
– an infinite sequence Λ = (Λ0, Λ1, . . .) with Λn ≥ sups∈Sn

∑
s′∈S,

s′ �=s

R(s, s′) of

uniformisation rates,
– probability matrices Pn(M) : S × S → R≥0 for n ∈ N, where for s, s′ ∈ S

we have

Pn(M)(s, s′)
def
=

⎧⎨⎩
R(s,s′)

Λn
if s �= s′, and

R(s,s′)
Λn

+ 1 −
∑

s′′∈S,
s′′ �=s

R(s,s′′)
Λn

otherwise,

– discrete-time distributions τn(M) : S → R≥0 for n ∈ N with

τn(M)(s′)
def
=

{
π(s′) if n = 0, and∑

s∈S τn−1(M)(s) · Pn−1(s, s
′) otherwise.

We further require that {s ∈ S | τn(M)(s) > 0} ⊆ Sn for n ∈ N.
Then we have that, at time t, for each s ∈ S:

πt(M)(s) =
∞∑

n=0

πt(Φ
Λ)(n) · τn(M)(s).

The fast adaptive uniformisation method [17] builds on the result above and
works as follows. Starting with the initial distribution at step n = 0, at each step
n the FAU explores a subset Ŝn of the states Sn. The sets Ŝn are constructed
by taking Ŝn−1, adding the successor states {s′ ∈ S | ∃s ∈ Ŝn−1. R(s, s′) >
0} of this set, and discarding states s with τn(M)(s) < δ, where δ is a fixed
precision threshold. This process is repeated until step m, for instance so that
(1−
∑m

n=0 πt(Φ
Λ)(n)) < ε. Thus, we add the probability from the birth process

at each step, and stop the state space exploration as soon as the value obtained
this way is at least 1− ε. In contrast to standard uniformisation, where the Fox
and Glynn [8] algorithm can be utilised, we do not have an a priori step bound,
but are still able to decide in a straightforward way when the infinite sum can
be safely truncated.

Definition 4 (Fast Adaptive Uniformisation). Let M, S = (S0, S1, . . .),
and Λ = (Λ0, Λ1, . . .) be as in Theorem 1. Further, consider

– a truncation point m ∈ N,
– a finite sequence of subsets Ŝ = (Ŝ0, . . . , Ŝm) with Ŝn ⊆ Sn denoting active

states for n ∈ {1, . . . ,m},
– probability matrices P̂n(M) : S × S → R≥0 for n ∈ {0, . . . ,m} where

P̂n(M)(s, s′)
def
=

{
Pn(M)(s, s′) if s ∈ Ŝn, and

0 otherwise,
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– discrete-time distributions τ̂n(M) : S → R≥0 for n ∈ N with

τ̂n(M)(s′)
def
=

{
π(s′) if n = 0, and∑

s∈S τ̂n−1(M) · P̂n−1(s, s
′) otherwise.

We define the fast adaptive uniformisation (FAU) value at time t for each s ∈ S
as

π̂t(M, Ŝ,Λ)(s)
def
=

m∑
n=0

πt(Φ
Λ)(n) · τn(M)(s).

Example 2 (Fast Adaptive Uniformisation). We sketch how one can perform
FAU for the CTMC from Example 1 according to Definition 4 and Theorem 1:
only for state s = 100 the initial distribution is positive, so we can use S0

def
=

{100}. Then, we use Sn
def
= {max{0, 100− n}, . . . , n} and Λn

def
= (λ+ μ) · n. The

corresponding birth process is sketched in Fig. 2. In Fig. 3, we depict Sn together
with the relevant parts of the matrices Pn for n = 0, 1, 2, . . . ,∞ (rounding-off the
numbers). In addition, for t = 0.1 we provide the transient probabilities of being
in the nth state of the birth process and the first n summands of π0.1(M)(100).

State s = 0 is absorbing, that is, once entered it cannot be left, and rates
leading to a decrease in molecule count are higher than those leading to an
increase. Thus, in the last line (“Step ∞”) we see that, as n increases, the
probability concentrates on the state s = 0. Thus, we can discard states with
a high number of molecules from the reduced state sets Ŝn, while retaining a
sufficient amount of the total probability.

We now define instantaneous rewards, which can be used to express expected
reward properties incurred at a given time. We annotate the models with state
rewards.

Step 0

Step 1

Step 2

Step ∞

0 1 0

0.476

0.524

0 0.524 0 0.476 0

0.467 0.471 0.476

0.5240.5190.513

0.0100.020

0 0.269 0.010 0.493 0 0.227 0

0.457 0.462 0.467 0.471 0.476

0.5240.5190.5130.5080.010

0.039 0.029 0.020 0.020

1 . . . 0 0 0 0 0 . . .

π0.1(Φ
Λ)(0) ≈ 0.122

π0.1(Φ
Λ)(1) ≈ 0.254

π0.1(Φ
Λ)(2) ≈ 0.267

π0.1(Φ
Λ)(∞) = 0

∑0
n=0 π0.1(Φ

Λ)(n) · τn(M)(100) ≈ 0.122

∑1
n=0 π0.1(Φ

Λ)(n) · τn(M)(100) ≈ 0.122

∑2
n=0 π0.1(Φ

Λ)(n) · τn(M)(100) ≈ 0.254

∑∞
n=0 π0.1(Φ

Λ)(n) · τn(M)(100) ≈ 0.299

Fig. 3. Demonstration of Fast Adaptive Uniformisation
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Definition 5 (State reward structure). A state reward structure for a
CTMC M = (S, π,R) is a function r: S → R≥0.

Definition 6 (Instantaneous rewards). Consider a CTMC M = (S, π,R)
with state reward structure r: S → R≥0 and a time point t ∈ R≥0. The instan-
taneous reward is defined as

It(M, r)
def
=
∑
s∈S

πt(M)(s) · r(s).

We show that instantaneous rewards can be easily accommodated within the
FAU method, and we can approximate the expected mass value by terminat-
ing the state-space exploration using a criterion similar to the probability mass
calculation in [17].

Definition 7 (Instantaneous reward approximation). Let M, S =

(S0, S1, . . .), and Λ = (Λ0, Λ1, . . .) be as in Theorem 1 and let Ŝ be as in
Definition 4. Then we define

It(M, r, Ŝ,Λ)
def
=
∑
s∈S

π̂t(M,S,Λ)(s) · r(s).

Corollary 1 (Error bounds for FAU). Consider a CTMC M = (S, π,R) for
which we have the uniformisation rates Λ (cf. Theorem 1) and a state reward

structure r. Consider m ∈ N, Ŝ, and τ̂ as in Definition 4. Set Λ
def
= (Λ,Λ, . . .).

Then if

max
s∈S

r(s) ·
(
1 −

m∑
n=0

πt(Φ
Λ)(n)

)
<

ε

2
and max

s∈S
r(s) ·

⎛⎝1 −
∑
s∈Ŝm

τ̂m(s)

⎞⎠ <
ε

2

it follows that

It(M, r) − It(M, r, Ŝ,Λ) < ε.

Proof. Part of the expected reward value is lost due to the approximation of
the infinite sum. This is accounted for by first inequality. By discarding states
while exploring the state space, we lose further mass. This is accounted for by
the second inequality. Adding up the maxima of the two errors, we can bound
the error. �

Example 3 (FAU for Instantaneous Rewards). Consider the CTMC from
Example 1 with a reward structure r assigning to each state s the num-
ber of molecules s. When using the transient probability values computed in
Example 2, for the computation of the exact values we have I0.1(M, r) =∑

s∈S π̂t(M,S,Λ)(s) · r(s) ≈ . . .+ 100 · 0.299 + . . . ≈ 99.900.
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3 Cumulative Rewards

In this section, we extend the FAU method to reason about properties of the
behaviour of a CTMC model cumulating the rewards until a given point of time.
The correctness of the method is proved using the framework of CTPMs [17],
where cumulative rewards were not considered.

For a given CTMC, we first extend its state space by adding time-accumulating
states to remember how much time was spent in a specific state, and then, noting
that the time-extended CTPM is not a CTMC, show how the expected reward
computation can be approximated.

Definition 8 (Time-extended CTPM). Given a CTMC M = (S, π,R), the
time-extended CTPM is defined as

ext(M)
def
= (Sext, πext,Rext), where

– Sext
def
= S � Sacc, where for each s ∈ S we have exactly one corresponding

time-accumulating sacc ∈ Sacc, that is, Sacc
def
= {sacc | s ∈ S},

– πext(s)
def
= π for s ∈ S and πext(·) def

= 0 otherwise, and
– the transition matrix Rext : Sext × Sext → R≥0 is defined such that, for

sext, s
′
ext ∈ Sext, we have

Rext(sext, s
′
ext)

def
=

⎧⎪⎨⎪⎩
R(sext, s

′
ext) if sext, s

′
ext ∈ S and sext �= s′ext,

1 if sext = s ∈ S and s′ext ∈ {sext, sacc},
0 otherwise.

We now use time-extended CTPMs to prove the central theorem of the paper.
This is achieved by first approximating the residence time, and then the cumula-
tive reward, by considering the reward per time unit of residing in a given state.
We use themixed birth process probability ΨΛ(n) = 1

Λn
·
∑∞

i=n+1 πt(Φ
Λ)(i), which

denotes the probability that more than n state changes happen within time t in
the birth process, divided by the nth uniformisation rate. This is used to collect
the time spent in given state, as opposed to the probability πt(Φ

Λ)(i) to be in a
state at a given point of time.

Theorem 2 (Residence time). Consider a CTMC M = (S, π,R) and let
ρt(M) : S → R≥0 be defined as

ρt(M)(s)
def
=

t∫
0

πu(s) du

for s ∈ S. Then we have

ρt(M)(s) =

∞∑
n=0

ΨΛ(n) · τn(M)(s),

for s ∈ S, τ and Λ as in Theorem 1 and ΨΛ(n)
def
= 1

Λn
·
∑∞

i=n+1 πt(Φ
Λ)(i).
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Proof. Assume ext(M) = (Sext, πext,Rext). Then, by definition of the structure
of the time-extended CTPM, we have for s ∈ S that

πt(M)(s) = πt(Mext)(s), and ρt(M)(s) = πt(Mext)(sacc).

By the structure of the time-extended CTPM, we have

τ0(Mext)(sacc) = 0,

τn+1(Mext)(sacc) =
1

Λn
· τn(Mext)(s) + τn(Mext)(sacc)

=
1

Λn
· τn(M)(s) + τn(Mext)(sacc)

and thus

τn(Mext)(sacc) =

n−1∑
i=0

1

Λi
· τi(M)(s).

From this and by Theorem 1 we have

πt(Mext)(sacc) =

∞∑
n=0

πt(Φ
Λ)(n) · τn(Mext)(sacc)

=

∞∑
n=0

πt(Φ
Λ)(n) ·

n−1∑
i=0

1

Λi
· τi(M)(s) =

∞∑
n=0

n−1∑
i=0

1

Λi
· τi(M)(s) · πt(Φ

Λ)(n)

=

∞∑
i=0

∞∑
n=i+1

1

Λi
· τi(M)(s) · πt(Φ

Λ)(n) =

∞∑
i=0

(
1

Λi
·

∞∑
n=i+1

πt(Φ
Λ)(n)

)
· τi(M)(s)

=

∞∑
i=0

ΨΛ(i) · τi(M)(s) =

∞∑
n=0

ΨΛ(n) · τn(M)(s). �

The above theorem splits the behaviour of a CTMC into the birth process and
a discrete-time process that determines the time spent in specific states of the
CTMC. Thus, we can now apply the FAU to compute cumulative reward proper-
ties. To do this, we accumulate rewards for being in a state over time. Transition
rewards rt : S × S → R≥0 are obtained for moving from one state to another.

We do not explicitly consider transition rewards for CTMCs here. However,
given state rewards rand transition rewards rt, we can define cumulative reward
rates r′ as r′(s)

def
= r(s) +

∑
s′∈S R(s, s′) · rt(s, s′). For the properties under con-

sideration, this new reward structure is equivalent to using transition rewards,
as shown in [12, Equation 6].

We stress that time-extended CTPMs are used here only in the proof, and
never constructed in our method.

Definition 9 (Cumulative rewards). Consider a CTMC M = (S, π,R) with
state reward structure r: S → R≥0 and a time duration t ∈ R≥0. The cumulative
reward value is defined as

Ct(M, r)
def
=

t∫
0

∑
s∈S

πu(M)(s) · r(s) du.
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We now use the results from Theorem 2 to compute the reward obtained until
a given point of time. The following corollary follows directly from Theorem 2
and can be used to approximate cumulative rewards.

Corollary 2 (Computing rewards). For a CTMC M = (S, π,R) with state
reward structure r: S → R≥0 and a time duration t ∈ R≥0, we have

Ct(M, r) =
∑
s∈S

ρt(M)(s) · r(s) =
∞∑

n=0

∑
s∈S

ΨΛ(n) · τn(M)(s) · r(s).

Definition 10 (Cumulative reward approximation). Let M, S =

(S0, S1, . . .), and Λ = (Λ0, Λ1, . . .) be as in Theorem 1 and let m ∈ N and Ŝ
be as in Definition 4. Then we define

Ct(M, r, t, Ŝ,Λ)
def
=

m∑
n=0

∑
s∈S

ΨΛ(n) · τ̂n(M)(s) · r(s).

Calculating the cumulative rewards is of similar complexity to calculating the
instantaneous rewards. After each step n, we multiply the probability in the
discrete-time process by the corresponding cumulative reward and the value
from Ψ , and then sum up the values obtained this way. The time overhead to
compute the accumulated reward values is negligible. More importantly, it is not
necessary to extend the state space, and hence the space complexity compared
to FAU is not increased.

The corollary can be seen as a generalisation of a previous result [12, The-
orem 1], where the computation of cumulative reward-based properties is also
considered. However, the analysis in [12] relies on complete exploration of the
state space and uses the special case Λ = (Λ,Λ, . . .), which reduces the birth
process to a Poisson process.

The computation of the error and the bounds on the number of steps is more
involved for cumulative rewards than for instantaneous rewards, as shown in
Corollary 1. The precision which can be achieved depends on the structure of
the CTMC and the state rewards. We often have models in which, for each state,
the sum of the rates to new states (further away from initial states) is bounded.
We remark that this does not restrict the rates back to previously visited states.
For this class of models, which includes many realistic examples as shown below,
we derive error bounds as follows.

Corollary 3 (Error bound cumulative). Consider a CTMC M = (S, π,R)
for which we have a fixed Λ so that for each n ∈ N and s ∈ Sn (cf. Theorem 1) we
have that

∑
s′∈Sn+1

R(s, s′) ≤ Λ. Further, consider a state reward structure r so
that we have fixed constants c, d ∈ R≥0 where for all n ∈ N and s ∈ Sn we have

r(s) ≤ c+dn. Consider m ∈ N, Ŝ, and τ̂ as in Definition 4. Set Λb
def
= (Λ,Λ, . . .)

and B
def
= t · (c+ d+ dΛt). If

B −
m∑

n=0

(c+ dn) · ΨΛb(n) <
ε

2
and B ·

⎛⎝1 −
∑
s∈Ŝm

τ̂m(s)

⎞⎠ <
ε

2
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then we have
Ct(M, r) − Ct(M, r, Ŝ,Λ) < ε.

Proof. When applying the FAU method, the worst case of reward loss is when we
have the birth process ΦΛb = (N, π,R) with reward structure r, so that, for all
n ∈ N, we have r(n)

def
= c+ dn. Denote the total accumulated reward until time t

for this model by B. Thus, we lose no more reward thanB−
∑m

n=0(c+dn)·ΨΛb(n)

in case we use Ŝn = Sn and perform m steps in the FAU.
To take into account the loss of rewards from using Ŝn ⊆ Sn, we consider the

total probability lost (1−
∑

s∈Ŝm
τ̂m(s)). In the worst case, this probability was

already lost at the beginning. In this case, we lose up to B · (1−
∑

s∈Ŝm
τ̂m(s)).

By adding up the two sources of error, we obtain the result. �

If the rates or rewards are increasing more quickly, e.g., if we have a quadratic
increase in the rewards, that is, r(s) ≤ c + dn2 for s ∈ Ŝn, the bounds on the
error can be obtained using similar reasoning for a different value of B. Because
of the simple structure of birth processes, it is possible to quickly approximate∑m

n=0(c+dn) ·ΨΛ(n) to find the value m to terminate the approximation in the
worst case.

Example 4 (FAU for Cumulative Rewards). We reconsider the CTMC from
Example 1 for which we computed transient probabilities in Example 2. We are
interested in the expected total number of changes to the number of molecules,
and thus assign a reward of 1 to each state change. As discussed, we trans-
form these transition rewards into a state reward structure r. For instance, state
s = 100 has two transitions with rates 10 and 11, both with reward of 1, so
that the state reward here is 10 · 1 + 11 · 1 = 21. We have ΨΛ(0) ≈ 0.042,
ΨΛ(1) ≈ 0.029, ΨΛ(2) ≈ 0.017. To compute cumulative rewards, according
to Corollary 2 we can proceed as follows: after each step n of Example 2 and
Fig. 3, for each s ∈ Sn (s ∈ Ŝn) we compute the product ΨΛ(n) · τn(s) · r(s)
and build the sum v(n) =

∑
s∈S ΨΛ(n) · τ̂n(M)(s) · r(s) of these values. States

s ∈ S \ Sn need not be considered, because for those τn(s) = 0. This value
v(n) is then added to the partially computed total cumulative reward. In the
example, we have v(0) ≈ 0.042 · 1 · 100, v(1) ≈ 0.029 · (0.524 · 99 + 0.476 · 101),
v(2) = 0.017 · (0.269 ·98+0.010 ·99+0.493 ·100+0.227 ·102). Finally, we obtain
C0.1(M, r) ≈ 2.099.

4 Case Studies and Implementation

We have integrated the fast adaptive uniformisation method in the probabilistic
model checker PRISM [14] and intend to make it available in one of the next
PRISM releases. Our implementation builds on top of the “explicit” engine, and
is written in Java. Models can be input in the native language of PRISM or
SBML. Properties are specified as non-nested continuous stochastic logic (CSL)
[1] formulae extended with the reward operator [13], as either time-bounded
until, or instantaneous or cumulative reward properties.
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To show the practical applicability of our method, we apply it to three
case studies. We terminate the state space exploration once we obtain (1 −∑m

n=0 πt(Φ
Λ(n))) < ε for an adequate ε, and discard states with probability of

less than δ in the discrete-time process. Experiments were performed on a Linux
computer with an Intel i7-3770 processor with 3.40GHz and 32GB of RAM.

Wherever possible, we have compared our results to the PRISM engine which
performs best for that particular model. This includes comparison with the sym-
bolic engines of PRISM (“mtbdd” and “hybrid”), which tended to perform
worse than the “explicit” engine on our examples, likely due to loss of regular-
ity. We note that symbolic engines cannot handle infinite-state models employed
here, but the “explicit” engine is able to, provided that the reachable state
space is finite. Conventional methods could perform better than FAU when the
state space is sufficiently small, in view of the additional overhead necessary for
FAU. We anticipate that the performance of PRISM is indicative of modern
probabilistic model checkers, and therefore our conclusions are more generally
applicable.

In this paper, we do not compare against simulation-based approaches, such
as approximate probabilistic model checking available in PRISM (probability
estimation and statistical hypothesis testing); while simulation has the advantage
of not requiring the generator matrix to be constructed, and hence does not suffer
from state-space explosion, it is sensitive to the size of time bounds and can
only guarantee error bounds with a given confidence interval. FAU can provide
guarantees for an arbitrary precision by controlling δ, although reducing δ will
generally incur higher memory requirements. Investigating the trade-off between
FAU and simulation-based techniques deserves further study.

Note that the performance figures given in the tables reflect the relative speeds
of engines at the time of writing, and can change due to further optimisation.

4.1 Discrete Stochastic Model Test Suite

The Discrete Stochastic Model Test Suite [7] is a test suite of models encoded
in the Systems Biology Markup Language (SBML), for which values of certain
properties have been computed up to a given precision. It is aimed at stochastic
simulator developers who can evaluate the accuracy of their tools against known
results.

We used PRISM’s SBML import functionality1 to convert SBML to PRISM
files. The models have infinitely many states, and so cannot be handled by ex-
isting PRISM engines (except “explicit”, providing the reachable state space is
finite). As the SBML import does not yet support the SBML feature of events,
we were only able to analyse 35 out of the 39 test models. For this case study,
we chose ε = 10−9 and δ = 10−13 and apply analyses for a time bound of 50,
which is the largest one for which results are included in the SBML models.
The results for a selection of the models are given in Table 1. For each “Model”,
we give the “Time (s)” in seconds needed to perform the analysis, the maximal

1 http://www.prismmodelchecker.org/manual/RunningPRISM/SupportForSBML

http://www.prismmodelchecker.org/manual/RunningPRISM/SupportForSBML
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Table 1. Discrete Stochastic Model Test Suite Results

Model Time (s) States Lost Molecules Reactions

001-01 1 321 8.7060E-09 60.6531 826.2856
001-03 2 347 9.6165E-09 0.6738 2,085.8503
001-04 1 163 8.1621E-09 6.0653 82.6286
001-05 22 2,999 1.1078E-08 6,065.3065 82,628.5611
001-06 1 321 8.7060E-09 60.6531 826.2856
001-07 51 161,617 2.0779E-08 60.6531 826.2856
001-08 2 321 8.7060E-09 60.6531 826.2856
001-18 1 277 8.5217E-09 77.8801 464.5184
001-19 1 321 8.7060E-09 60.6531 826.2856
002-01 2 44 5.9691E-09 9.9326 90.0674
002-02 2 151 7.7930E-09 99.3262 900.6738
002-03 2 107 8.3948E-09 49.6631 450.3369
002-04 19 1,377 1.0983E-08 9,932.6204 90,067.3790
002-05 1 151 7.7930E-09 99.3262 900.6738
002-06 5 36,255 9.9788E-09 99.3262 900.6738
002-07 1 151 7.7930E-09 99.3262 900.6738
002-08 2 44 5.9691E-09 9.9326 90.0674
003-01 2 48 5.3131E-09 28.5423 64.7560
003-02 2 156 7.5890E-09 144.9960 573.9888
003-05 2 48 5.3131E-09 35.7289 64.7560
004-01 1 124 8.0978E-09 24.9989 275.0011
004-02 1 173 9.0356E-09 25.0000 525.0000
004-03 4 773 3.5419E-08 25.0000 5,024.9999

ext. 001-01 66 161,617 2.0779E-08 60.6531 826.2856

number of “States” in memory, and the probability “Lost” through approxima-
tion. The column “Molecules” is an instantaneous reward property that returns
the expected number of molecules of the first species of the model under consid-
eration. The column “Reactions” is the expected number of reactions until time
50, which is a cumulative reward property. In the table, each row corresponds
to two analyses; however, the computation time is the same for both since the
same number of states had to be explored.

All analyses (with the exception of “ext. 001-01” not originally from the test
suite, see below) took less than a minute. The results we obtain for “Molecules”
agree with those provided by the test suite, for the number of decimal places
given there (values for “Reactions” are not provided by the test suite). For
the model “001-01”, we attempted a naive approach to compute the number of
reactions by adding a new species “Reactions”, increasing the dimensionality. As
can be seen from results given in the last row (“ext. 001-01”) of Table 1, these
performance figures were much worse than for our implementation. We remark
that these figures are similar to those for the (unmodified) “001-07”, in which
also a species tracking a specific reaction is introduced.

4.2 DNA Strand Displacement

DNA strand displacement (DSD) [20] is a mechanism for performing computa-
tion with DNA molecules. A variety of logic circuits can be designed and imple-
mented using DSD. Initial species of DNA are mixed together in a reaction tube,
and then strand displacement reactions proceed autonomously, relying solely on
hybridisation between complementary nucleotide sequences to perform compu-
tational steps. In this case study, we consider transducer gates modelled and
analysed in [15, Section 2] (example transducer_K=3.sm). This model features
the parameter N , which corresponds to the number of copies for initial species,
and K, the number of transducers placed in series.
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Table 2. DNA Strand Displacement Results

N T
Fastest PRISM engine - explicit FAU
Time (s) States Finished Reactions Time (s) States Lost Finished Reactions

1 10000 3 169 0.0593 15.3193 2 169 1.6882E-09 0.0593 15.3193
1 50000 1 169 0.9999 26.9997 33 169 1.7133E-09 0.9999 26.9997
1 100000 2 169 1.0000 27.0000 140 169 1.7892E-09 1.0000 27.0000
2 10000 1 5,748 0.0224 37.1224 7 5,299 1.3024E-08 0.0224 37.1224
2 50000 2 5,748 0.9999 51.2958 41 5,299 1.5028E-08 0.9999 51.2958
2 100000 2 5,748 1.0000 51.2963 155 5,299 1.5090E-08 1.0000 51.2963
3 10000 15 93,538 0.0138 59.7229 145 67,292 1.0059E-07 0.0138 59.7229
3 50000 52 93,538 0.9999 75.0530 179 67,292 1.0994E-07 0.9999 75.0530
3 100000 96 93,538 1.0000 75.0536 437 67,292 1.1002E-07 1.0000 75.0536
4 10000 268 970,539 0.0103 82.6250 835 514,414 5.6703E-07 0.0103 82.6250
4 50000 1,039 970,539 0.9998 98.6211 872 514,414 5.8001E-07 0.9998 98.6211
4 100000 1,976 970,539 1.0000 98.6218 1,209 514,414 5.8009E-07 1.0000 98.6218
5 10000 3,463 7,377,039 0.0085 105.6602 2,370 2,814,235 2.9759E-06 0.0085 105.6602
5 50000 - - - - 2,416 2,814,235 2.9907E-06 0.9998 122.0891
5 100000 - - - - 2,815 2,814,235 2.9907E-06 1.0000 122.0897
6 10000 - - - - 5,453 12,163,811 1.3377E-05 0.0074 128.7586
6 50000 - - - - 5,644 12,163,811 1.3393E-05 0.9998 145.4913
6 100000 - - - - 5,960 12,163,811 1.3393E-05 1.0000 145.4920

We are interested in the probability that the computation is finished by time T
(“Finished”), an instantaneous reward property, and the expected total number
of reactions (“Reactions”), a cumulative reward property. We fix K = 3 and
provide results for different N and T in Table 2. The state space of this case
study is small enough to be compared against existing methods in PRISM. We
included the results for the “explicit” engine because it was the fastest. In each
row, the best performance in terms of state-space size or time is highlighted in
boldface.

Note also that the FAU method is able to handle larger models than existing
PRISM engines, and obtains better performance for larger model instances.

4.3 DNA Walkers

Fig. 4. Walker ‘XOR’ circuit.
Adding the input X will block the
anchorages labelled ¬X. Once the
walker reaches True or False the
computation ends.

We consider models of DNA walkers [22],
which can also be used to design logic cir-
cuits on the nanoscale. The main difference
from DSD designs is that a DNA walker op-
erates on a track of DNA strands (called an-
chorages) tethered to a surface, rather than
in solution, and thus the model has to in-
corporate spatial information. An example
of an XOR circuit is shown in Fig. 4. We as-
sign True/False values to absorbing anchor-
ages. The walker starts in the Initial position
and can navigate down a series of junctions
[21]. An enzyme cuts the anchorage when
the walker is attached, allowing the walker
to step onto the next anchorage. Depend-
ing on prior input, certain anchorages can
be blocked, which in turn directs the walker
at each junction.
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Table 3. DNA Walkers

Model Time (s) States Lost Signal Steps Blocked (s)

xor(X, Y ) 4126 228,803 1.9736E-02 0.6455 7.7696 606.2731
xor(¬X, Y ) 4070 228,803 1.9736E-02 0.6455 7.7696 606.2731
xor(X, ¬Y ) 4684 239,680 2.2587E-02 0.5979 7.5610 659.3715

xor-(¬X, ¬Y ) 4593 239,680 2.2587E-02 0.5979 7.5610 659.3715
xor-S-(X, Y ) 2970 215,544 1.6719E-02 0.5374 8.8363 133.1672

xor-S-(¬X, Y ) 3027 215,544 1.6719E-02 0.5374 8.8363 133.1672
xor-S-(X, ¬Y ) 3651 233,063 1.8775E-02 0.5473 8.4049 146.7377

xor-S-(¬X, ¬Y ) 3630 233,063 1.8775E-02 0.5473 8.4049 146.7377
xor-large-(X, Y ) 18382 443,584 5.1855E-02 0.5661 9.5020 577.2680

xor-large-(¬X, Y ) 18142 443,584 5.1855E-02 0.5661 9.5020 577.2680
xor-large-(X, ¬Y ) 19418 455,685 5.2995E-02 0.5674 9.4983 567.3420

xor-large-(¬X, ¬Y ) 18114 455,685 5.2995E-02 0.5674 9.4983 567.3420

A Markov chain model of the walker was developed [5] previously, and in this
paper we apply model checking with FAU, using the parameter set ε = 10−6

and δ = 10−8. We analyse three XOR-circuits, from Fig. 4 and two variants,
summarising the results in Table 3. We model check the expected number of steps
(column “Steps”) and the probability of walkers reaching the desired anchorage
(column “Signal”) by time T = 200 min. The walker occasionally steps over
blockades or between tracks, which may cause it to reach the wrong answer.
Determining the size of the reachable state space appears to be a hard problem,
not unlike determining the number self-avoiding walks on a lattice. We estimate
the size to be around 1 · 107 and 9 · 108 reachable states for the normal and
large tracks, respectively. This state space is too large to construct the models
symbolically and compare against other PRISM engines.

The unmodified track, shown in Fig. 4, is “xor”, and the suffix “-S” indicates
that only one blocker is used instead of two consecutive ones, whereas suffix
“-large” indicates a track with more anchorages. The expected number of steps
correlates well with the track layout: when fewer anchorage are blocked (“-S”),
the walker takes more steps on average. A larger track also results in more steps
taken on average. Because the track has a point-symmetry, the results for inputs
X,Y and ¬X,Y are the same, as well as for inputs ¬X,¬Y and X,¬Y . Occa-
sionally, the blockade mechanism fails to block an anchorage. Column “Blocked”
shows how much time the walker spends on anchorages that were supposed to
be blocked, which is in line with expectations.

5 Conclusion

In this paper, we have extended fast adaptive uniformisation so that it can also
be applied to cumulative reward properties. Cumulative measures allow one to
express many important quantitative properties, such as the expected number of
times a certain reaction happens and the average percentage of time the system
spends in a given state. Our method does not introduce a significant overhead
to the analysis, and in particular does not require the explicit construction of
the extended state space of the underlying continuous-time propagation model.
In contrast to simulation-based approaches, we can compute guaranteed error
bounds for properties, as opposed to ensuring a given confidence interval. We
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have applied it to several case studies, obtaining superior performance in virtu-
ally all cases compared to existing methods.
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Abstract. Modeling frameworks bring structure and analysis tools to
large and non-intuitive systems but come with certain inherent assump-
tions and limitations, sometimes to an inhibitive extent. By building
bridges in existing models, we can exploit the advantages of each, widen-
ing the range of analysis possible for larger, more detailed models of gene
regulatory networks. In this paper, we create just such a link between
Process Hitting [6,7,8], a recently introduced discrete framework, and
the Chemical Master Equation in such a way that allows the application
of powerful numerical techniques, namely Proper Generalized Decompo-
sition [1,2,3], to overcome the curse of dimensionality. With these tools
in hand, one can exploit the formal analysis of discrete models without
sacrificing the ability to obtain a full space state solution, widening the
scope of analysis and interpretation possible. As a demonstration of the
utility of this methodology, we have applied it here to the p53-mdm2
network [4,5], a widely studied biological regulatory network.

1 Introduction

Our ability to gather data in the context of gene regulatory networks has sky-
rocketed in the past decades: technology has given scientists an unprecedented
ability to take in large amounts of raw data on the genome and genomic ex-
pression. The scale of this newly available data is massive and uninterpretable
without applying formal analysis. Computational tools are invaluable in this
respect: to put an otherwise incomprehensible data set into the context of a
modeling framework allows scientists to understand the behaviors of a system
and make predictions thereof. Once one imposes a model, however, one is con-
fined to the inherent assumptions and limitations of that method. The resulting
compromise is why there exist many varieties of structures, each exploiting cer-
tain advantages while accepting certain limitations. There is a great interest in
systems biology in how to best navigate this choice or, better yet, how to avoid it
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altogether: by building bridges in existing models, we can utilize the best aspects
of each, widening the range of analysis possible for larger, more realistic models
of gene regulatory networks.

In this paper, we begin what will become a body of work dedicated to this goal:
approaching biological systems in inventive or innovative ways to maximize the
accuracy and utility of modeling structures. We start with a recently introduced
modeling structure called Process Hitting [6,7,8], a discrete model in which one
tracks qualitative shifts of the system. Like other discrete frameworks, it possesses
certain advantages in model fitting and model checking. In addition, Process Hit-
ting offers straightforward ways of incorporating temporal and stochastic prop-
erties and, moreover, can be thought to contain the Generalized Logical Network
in that it has been shown that the interaction graph and discrete Thomas param-
eters can be derived from the Process Hitting model. Simulation is required to
obtain a full description of the local behaviors of the system, a computationally
expensive and sometimes inhibitive aspect. Here, we propose a method to solve
the system, obtaining a solution for all time, by translating Process Hitting to
an equivalent differential equation form, namely the Chemical Master Equation
(or CME), with the intention of applying a novel numerical technique,the Proper
Generalized Decomposition (or PGD)[1,2,3], to overcome problems of dimension-
ality. Since this paper makes use of state-of-the art methods which readers may
not yet be familiar with, we will briefly introduce Process Hitting, Proper Gener-
alized Decomposition and the Chemical Master Equation in Section 2, outlining
advantages, disadvantages and important features of each. In this section, we will
also introduce the p53-mdm2 network [4,5,11], a biologically relevant model for
which an extensive body of work exists and to which we will apply our methodol-
ogy. Once these structures have been defined, the translation of Process Hitting to
a special, discretized form of the Chemical Master Equation is outlined in Section
3. Application to the p53-mdm2 model and the analysis of results can be found
in Section 4, along with a clearly defined path for future work. When fully real-
ized, our proposed methodology has the potential to allow scientists to construct
models without explicit knowledge of reaction kinetics, use a variety of analysis
tools which exploit the discrete, formal structure of Process Hitting and, finally,
efficiently solve this complete system for in-depth analysis.

2 Frameworks and Methods Used

The foundation of this paper is in patching together novel techniques to form a
better, more complete modeling structure. While most readers may be familiar
with discrete and stochastic modeling, for example, it may not be the case for
Process Hitting or the Chemical Master Equation in particular. Here, we have
included a brief description of all of the frameworks and methods used: although
no one section gives neither a full nor formalized description, we hope to give
an intuitive notion of each, as well as an understanding of their significance.
We begin by introducing the p53-mdm2 system, followed by the relevant mod-
eling frameworks, and finally by the numerical method of Proper Generalized
Decomposition.
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2.1 Introductory Example: The p53-mdm2 Network

We have chosen to apply our methodology to a proven and biologically relevant
network, the p53-mdm2 regulatory system [4,5,11]. The protein p53 is a tran-
scription factor for a variety of systems, particularly those relating to arrested
cell growth, DNA repair and cell death. When a cell incurs DNA damage, p53
concentration levels rise, inducing cell repair or, if the damage persists, apop-
tosis, thus preventing the spread of genetically unstable cells. p53 is strictly
regulated by ubiquitin ligase mdm2 via a negative circuit. Since this system is of
such interest in cancer research, there exists an extensive body of experimental
and modeling work dedicated to its study.

In the presence of DNA damage, high concentrations of p53 can promote cel-
lular repair but can be lethal with long-term exposure. As a counter balance,
these same high concentration levels of p53 up-regulate the transcription of gene
mdm2, increasing the concentration of its protein in the cytoplasm of the cell.
When this concentration is high enough, mdm2 moves into the nucleus, where
it blocks further transcription of p53 and facilitates the degradation of existing
proteins, preventing the cell from going into apoptosis. Since the ability to ex-
press p53 at sufficient levels is required for cellular repair, this inhibition cannot
always prevail: byproducts of cellular damage help the degradation of mdm2 in
the nucleus, and translocation itself is inhibited by p53 at a level much lower
than the activation of mdm2. These interactions are summarized as a directed
graph in Figure 1.

mdm2 cyt

p53

damage

mdm2 nuc
+1

+2

−1

−2

−1

−1

Fig. 1. Representation of p53-mdm2 network as a directed graph: interactions are
summarized as activation or inhibition (+ or −), including discretized concentration
levels ([0, 1, 2...]) defined by threshold values. Since mdm2 behaves differently in regards
to the system depending on its location in the cell, cytoplasmic and nucleic mdm2 are
represented separately.

2.2 A Brief Introduction to Process Hitting

Given the biological description of the system, we wish to construct a model for
further analysis and study. Process Hitting is, more generally, a framework for
modeling concurrent processes but is particularly apt for biological regulatory
networks in that it conceals the kinetic mechanisms by which the system moves,
describing instead the qualitative changes that may occur. In this fashion, it is
possible to model a system with observational data and only partial knowledge of
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its inner workings. Although its structure seems simplistic, Process Hitting can
capture complex dynamics and easily lends itself to model-checking, by which one
can determine whether or not certain desired features are preserved by the model.
In addition, temporal and stochastic properties can be naturally integrated into
the Process Hitting structure. A full description of this framework including its
implementation, can be found in [6,7,8].

In Process Hitting, here on referred to as PH, all interacting species —en-
zymes, genes, proteins, etc. —are abstracted as sorts. The sorts of the p53-mdm2
system are cellular damage, nuclear mdm2, cytoplasmic mdm2 and p53, which
are given the labels Dam, Mn, Mc, and p53, respectively. These sorts are then
subdivided into processes, which could represent concentration levels, spatial
configuration, or any other form which has a distinct qualitative impact on the
system. Dam, for example, has two processes, Dam 0 and Dam 1, the absence
and the presence of cellular damage. Conversely, p53 contains three processes
which represent the relevant concentration ranges of p53 in the cell. Processes
interact with one another via actions, in which processes hit one another to cre-
ate a bounce to some new level of the same sort, wherein we find the namesake
of “Process Hitting”. These actions move the state space one level at a time
and are, therefore, asynchronous. For gene regulatory networks, processes are
often abstractions of relevant concentration ranges, discretized domains of real
numbers, and actions represent varying action and inhibition reactions. For in-
stance, we know that, when at a very high level, p53 up-regulates the level of
cytoplasmic mdm2. In PH action terms, this is demonstrated as

p53 2 → Mn 0 � 1

which reads “p53 2 hits Mn 0 to bounce to Mn 1”, as demonstrated in Figure 2.
In this structure, the absence of an activator is equivalent to inhibition and

vice versa. Therefore, whenever p53 is below its activating threshold, it is effec-
tively an inhibitor:

p53 1 → Mn 1 � 0

p53 0 → Mn 1 � 0

Whether or not this is a biologically valid assumption is subject to the modeler,
who may remove any unwanted hits as suits the system in question. But what if
a process can be influenced by more than one factor, as is the case with nucleic
mdm2 which is influenced negatively by p53 and cellular damage but positively
by cytoplasmic mdm2? PH does not enforce separability in its framework, that
is, that effects be additive: the impact of two activators, for example, is not
necessarily equivalent to the addition of their individual impacts. It is instead up
to the modeler to define the results of combined influences. In order to remain
consistent with the formalism of PH, we must introduce cooperative sorts, a
representation of the collective influence of species. In our network, this leads
to the creation of collective sort p53McDam which interacts with the normal
sort Mn. In addition to defining the actions each combination of p53McDam
will perform on Mn, we must also add actions between the normal sorts p53,
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p53

0

1

2

Mn

0

1

Fig. 2. Example of a Process Hitting action. Here, we show sorts p53 and Mn, boxes
which contain processes. If the system is such that process p53 2 and Mn 0 are actice
at the same time; p53 2 will have the chance to “hit” Mn 0, indicated by the solid
arrow, which will then “bounce” to Mn 1, indicated by the light, dashed arrow.

Mc and Dam, and p53McDam which update the cooperative sort such that its
state instantaneously reflects the current state of the system. Note that we do
not need to indicate how an action is performed (the kinetics) nor dictate any
particular behaviors as is the case in other discrete frameworks. Although we
may abstractly incorporate kinetic concepts such as threshold values, as in the
example of p53 via the discretization of concentration levels ([0, 1, 2]), we do
not need to quantitatively define these thresholds. A list of the actions and the
diagram of the Process Hitting of the p53 system can be found in the appendix.

2.3 The Chemical Master Equation

The Chemical Master Equation, or CME [1], is considered a canonical stochastic
model in biological regulatory networks in which the modeler assumes full kinetic
knowledge of the system. The vector z = [zi] ∈ Z≥0

Nsp , i = 1 · · ·Nsp contains
the discretely valued counts of molecules for a given species i. Rather than
tracking the state of the system as it varies in time according to an underlying
deterministic process, we think about the system in terms of the probability
P (z, t|z0, t0) of existing at a certain state z at any given time t given some initial
condition. From any state, reactions occur which move the system to a new
configuration according to the reaction’s known stoichiometry. This is a stark
contrast to the Process Hitting framework, in which observational data and
qualitative knowledge was sufficient. The Chemical Master Equation describes
the evolution of the probability of the system existing at any given state z by
considering the propensities, a, of all reactions rj which leave z and those which
enter z,

∂P (z, t|z0, t0)
∂t

≡
∑
j

[aj(z − vj)P (z − vj , t|z0, t0) − aj(z)P (z, t|z0, t0)]

To simplify this representation, we may aggregate these terms to express the
CME in matrix form, ∂P

∂t = AP where A is known as the connectivity matrix of
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the regulatory network. A is sparse, with nonzero elements Ai,j where a reaction
links states i and j:

Aij =

{
−
∑

ak(z), i = j (reactions leaving state i)∑
ak(z), i �= j (reactions moving from state i to state j)

While the CME is a natural and rich description of the physical system in a
biological regulatory network, it demonstrates what has come to be known as
the curse of dimensionality, growing exponentially with the number of species,
Nsp: that is, if, for each species, we limit the range of possible values to N , the

total state space of the system will be (Nsp)
N
. Since biological regulation can

have many subtly interacting factors, this is clearly an impasse in the application
of the CME to gene regulatory networks, which can become impossible even for
simplified models. Although simulation techniques are common, the structure of
the CME permits the application of state-of-the-art numerical methods. To this
end, PGD has already been shown to effectively and flexibly solve the Chemical
Master Equation.

2.4 Proper Generalized Decomposition

Proper Generalized Decomposition [2,3] is an emerging numerical tool in the
field of mechanical engineering, though it has been applied to a wide range of
problems, including the CME [1]. The foundation of this method is to assume
that the target, in this case, the probability, can be written as a sum of a product
of separable functions.

P (z, t) ∼=
M∑
j=1

F j
1 (z1) · F

j
2 (z2) · ... · F j

N (zN ) · Ft(t)

This is not an entirely novel idea, but its recent applications have proven promis-
ing in dimension reduction problems. Although the accuracy increases with every
addition, only a limited number, M , of functions are needed to capture the be-
havior of the system. Note that, with each function of size N (that is, the state
space of each variable is limited to size N), with Nsp functions, the resulting
dimensionality is the M sum of Nsp functions of size N , or M(N ×Nsp) in con-
trast to the original NN

sp. The inclusion of a time as a separated function means
that the solution is not incremental but complete for all time.

PGD is performed iteratively, searching for each product of separable func-
tions which will minimize the residual of the running sum. These functions are
colloquially called “modes”, although there is no underlying notion that they rep-
resent the greatest source of variance, as is the case with Principal Component
Analysis [10] (PCA). At each step, one is searching for a single one-dimensional
function, in this case a N × 1 vector, with the remainder of the state space
known. These sets of one dimensional functions are found until their sum, the
resulting approximation, meets some stopping criterion. Since all operations can
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be performed by canonical techniques and are highly parallelizable, iterations are
generally fast and computationally inexpensive. In addition, the form of PGD
offers a natural way of handling unknown parameters by incorporating them
as additional state space dimensions without changing the original algorithm.
This, in particular, is a very desirable characteristic for application to biological
regulatory networks since many parameters are often either unknown or come
with some degree of uncertainty.

3 Translation of PH to CME

It is clear that Process Hitting contains certain desirable properties as a modeling
framework for gene regulatory networks, such as the ability to construct a model
from partial knowledge of the system, and that PGD is a fast, efficient way to
numerically solve differential equations by breaking high dimensional systems
into a search for one-dimensional modes. If we are able to move Process Hitting
from its current format to that more like the CME, we have the potential to
apply PGD and solve the system, not only for one desired configuration, but for
the probability of existing at any configuration at any time given the initial state.
An intuitive indication that such a link exists can be found in the simulation
method used in Process Hitting: Gillespie’s Next Reaction Algorithm.[13] This
simulation technique allows for concurrent and competing processes and was
developed by Gillespie as an exact simulation for the CME. That is, the Chemical
Master Equation with any set of reactions can be simulated precisely by the Next
Reaction Algorithm: if Process Hitting uses the Next Reaction Algorithm, there
must exist some corresponding Chemical Master Equation that defines exactly
the same behavior derived from the PH qualitative description of the system
which does not require the addition of kinetic knowledge.

The key to translating the Process Hitting to its Chemical Master Equation
structure is to re-imagine the kinetic reactions found in CME to be much more
abstract, that is, not true physical reactions, but some collection of events which
move the system from one state to another. These abstracted reactions cannot
be interpreted in any greater detail than a PH action, though it is clear that, in
reality, the system is being driven by a series of physical and chemical reactions.
The hiding of kinetic processes was considered an advantage of PH, one which is
conserved in translation to the CME. It is important that we concretize how one
can derive these abstracted reactions, which we refer to as “faux-reactions”, from
any Process Hitting action. To illustrate this process, we will take a particular
example

p53McDam 0 → Mn 0 � 1@
(
4h−1

)
That is, that when p53 AND cytoplasmic mdm2 AND cellular damage are at
their lowest levels, the amount of nuclear mdm2 increases at the propensity of
4 per hour. The combination of those factors activate the uptake of mdm2 to
the nucleus, bringing the system from state set {0, 0, 0, 0} to state set {0, 0, 0, 1}
where it will then be susceptible to other actions. It is easy to write this in a
more readable form
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0p53 + 0Dam+ 0Mc+ 0Mn
4h−1

−−−→ 0p53 + 0Dam+ 0Mc+ 1Mn

Granted, we have intentionally mimicked the structure of a stoichiometry equa-
tion, though it does not follow stoichiometric rules. Rather, this syntax merely
states that there is some process (indicated by an arrow) which occurs at propen-
sity 4h−1 that brings the system from state set {0, 0, 0, 0} to state set {0, 0, 0, 1}.
Any Process Hitting action can be written in these terms: for actions that do
not dictate the full state set as our example has, undetermined variables give
rise to multiple unique reactions with identical rates. So p53 0 → Dam 0 � 1,
for example, will result in four individual reactions wherein Mn and Mc take on
values 0 and 1.

At this point, we must stretch our understanding of the Chemical Master
Equation syntax to accommodate these new faux-reactions, though not by much.
Recall that in the CME the system is described in terms of molecule counts, or
whole numbers. In the same way that one discretizes the real number line in
Generalized Logical Networks [12], so can we discretize the whole number line:
1p53 does not signify one molecule of p53, but a quantity of p53 within some
range. Thus, the faux-reaction equation effectively abstracts the mechanism by
which the system moves as well as its actual quantitative contribution. The
resulting set of equations can be but in the functional form of a discretized
Chemical Master Equation which retains the syntax of its original counterpart,
a sum of the effects of each reaction rj which brings species to or away from a
certain state, z at a given propensity a(z).

4 Application and Results

We begin by constructing the Process Hitting for the p53 system as described in
Section 1.1. This includes the creation of a cooperative sort p53McDam and all of
the actions needed to update such that the state of the cooperative sort reflects
instantaneously the state of the system. A full list of actions, as well as the PH
diagram, can be found in the appendix. Reaction propensities were taken from
[4,5]. At this early stage, we can do model-checking to find out if the fundamental
structure of the graph supports certain desirable dynamics, exploiting the formal
structure of the discrete model. Process Hitting has been implemented in a freely
available software called PINT [9], which, among other things, can search for
steady states, perform reachability analysis, and run simulation. In addition,
PINT has the ability to import and export data from a number of other systems
biology syntaxes, making it a flexible platform for newcomers to Process Hitting.
From here, we can take the approach outlined in Section 3 to translate all actions
into their corresponding faux-reactions.

In this paper, we begin by considering the most basic, intuitive representa-
tion of the Chemical Master Equation, that is, the case where the state space
is represented by a one-dimensional vector of enumerate states, where the prob-
ability is a function of the state of the system and time, P (Z, T ). Here, Z is a
vector of all possible states that can be occupied by the system; so, for example,
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{Mc,Dam, p53,Mn} = {0, 0, 0, 0} is state 1, {1, 0, 0, 0} is state 2, and so on.
This enumeration of states is acceptable for this particular problem but unsup-
portable as the number of species increases, making it impractical for most gene
regulatory networks. However, by using this construction, we retain the poten-
tial to capture important emergent properties, to be addressed later on in the
following subsection. In addition, the method by which we construct the dis-
cretized Chemical Master Equation is very straightforward in the case of a one
dimensional state space. We can begin by considering the a matrix form of the

CME as described in Section 2.3, ∂P (z,t|z0,t0)
∂t = AP (z, t|z0, t0). As an example,

the reaction

0p53 + 0Dam+ 0Mc+ 0Mn
4h−1

−−−→ 0p53 + 0Dam+ 0Mc+ 1Mn

results in a nonzero element at A{0,0,0,0},{0,0,0,0} and A{0,0,0,1},{0,0,0,0}, or, using
arbitrary numbering for states, A1,1 and A7,1. The first element represents the
system leaving state 1 ≡ {0, 0, 0, 0} and the second the system moving to state
7 ≡ {0, 0, 0, 1} from state 1 ≡ {0, 0, 0, 0}. Once the connectivity matrix is con-
structed, we can apply PGD to find the decomposition of P (Z, t) and solution
of the Chemical Master Equation for all time.

4.1 Results of One-Dimensional Problem

In Figure 3, we have taken a snapshot in time to compare results of Process
Hitting and our discretized version of the Chemical Master Equation. We begin
the system in state 3 ≡ {0, 1, 0, 0}, which represents the presence of damage
(Dam = 1) without any other element (p53 = Mn = Mc = 0). Since the
system is small, we can solve the resulting CME using implicit finite differences
as a gold standard to which we can compare the PGD results. PH simulations
were executed using PINT, averaging over 1000 runs. Although this particular
graph only relates to a single instance in time, the PGD solution obtained is for
all time, as can be seen in Figure 4. We stopped the iterative algorithm after
reaching a precision of 10−3. Although there is clearly good agreement in this
solution, even better approximations can be made by continuing the iterative
scheme, though only a limited number of modes are needed to obtain the basic
information of the system.

4.2 Increased Depth of Analysis

By connecting two very different modeling frameworks, we are able to exploit the
advantages of each and, potentially, fill in gaps of analysis. From Process Hitting,
we can quickly and efficiently analyze the global behaviors of the system, using
tools such as steady state or reachability analysis. The application of formal
methods allows a modeler to ask fundamental questions of the system. However,
there exist blind spots in this modeling type like any other. For example, the
p53-mdm2 system as given in the appendix has no focal steady states and,
although we can use model-checking to obtain further information, a complete
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Fig. 3. Comparison of PH simulation with 1000 trials and translated CME, solved via
Finite Differences and PGD

response requires simulation techniques. While manual investigation is possible
in this small network, this ceases to be a viable strategy as the number of species
increases. Moving to the probabilistic syntax of the Chemical Master Equation
opens the potential to solve, rather than simulate, the complete system. In the
p53-mdm2 network, we observe states whose probabilities do not change after a
certain measure of time. This represents a basin of attraction, or a limit cycle,
not yet capturable in PH analysis and predicted in [4,5]. In linear algebra terms,
this is the null space of A, all state vectors Z which satisfy Ax = 0. The PGD
results for this particular problem can be seen on the left of Figure 4. Thus,
even though the experimenter knows that the system does not settle into a
particular steady state, he can know what states will be most or least prominent
and the interactions (the faux-reactions) which connect them. Since the PGD
can be implemented quickly, it facilitates experimentation with the model: one
can easily test the results of adding or removing actions, working up to a model
which demonstrates the correct dynamic behavior. Knowing that our system
contains a limit cycle, we can induce a steady state by removing a single action
in the Process Hitting. In this particular example, we have removed the action
Mn 0 → p53 1 � 2. That is, the absence of mdm2 in the nucleus is insufficient to
bring p53 to its maximum level. As we can see on the right hand side of Figure
4, we do arrive at the desired focal steady state, which can be confirmed using
PH analysis.

4.3 Separability, Emergence and Multidimensional Problems

We can effectively solve a PH system in the context of its one-dimensional state
vector form, P (Z, T ), but the true goal of this work is to consider the multi-
dimensional problem in which the probability is a function of all species of the
system, P (Mc,Dam, p53,Mn, T ). The size of neither the solution nor the prob-
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Fig. 4. The PGD solution of two systems. The original p53-mdm2 system as described
in Section 2.1 (as seen on the left) contains a basin of attraction, or a limit cycle. The
probabilities of the states in this cycle become constant as all trajectories from the
initial condition enter the basin. By removing a single link in this cycle, we can induce
a focus, or a steady state (as seen on the right). In this particular example, we have
removed the action Mn 0 → p53 1 � 2. That is, the absence of mdm2 in the nucleus is
insufficient to bring p53 to its maximum level.

lem has changed, but the structure of the algorithm avoids the same problems of
dimensionality. Where the connectivity matrix A was of size 24× 24, it will now
be 2× 2× 3× 2× 2× 2× 3× 2, which contains the same number of elements. In
this form, however, we do not directly enumerate the states and, at each step in
the PGD algorithm, we search for a function of a very limited size corresponding
to the number of processes in the sort, typically two or three. Without moving
to a multi-dimensional structure, we cannot address larger and more interesting
systems, however, moving into this new representation poses its own difficulties.
A growing awareness of emergent properties in biological systems has developed
from the fields of synthetic and systems biology. Though difficult to explain at a
detailed level, the principle of emergence is, in effect, that the whole is somehow
greater than the sum of its parts. The effect of activators and inhibitors are not
additive but, rather, activators and inhibitors work synergistically to create am-
plified signals. For us, this means that we cannot assume that gene regulatory
networks are separable, a feature we depend on for the PGD representation.
However, that is not to say that it cannot be put into a more or less separated
form: most likely, not all species demonstrate important emergent properties.
The behavior of a system could very well be captured with the inclusion of a
limited number of combined variables, perhaps P (Dam,Mn, p53Mc, T ), for ex-
ample, in which p53Mc captures the combined effects of p53 and cytoplasmic
mdm2 while maintaining the individual influences of p53 and Mc. Developing a
formal method for discovering these significant non-separable elements will be
the topic of future work and brings the promise of opening up our methodology
to the multidimensional formulation which, in turn, frees us from dimensionality.
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5 Conclusion

The linking between very different modeling frameworks to arrive at a more com-
plex, more powerful level of analysis promises to be an interesting vein of research
in synthetic biology. In this paper, we have laid the foundation for just such a
bridge between the discrete framework of Process Hitting and the Chemical Mas-
ter Equation, in the hopes of overcoming the obstacle of dimensionality via the
application of Proper Generalized Decomposition. This particular work consid-
ers the one dimensional “state vector” case, a form which conserves emergent–
or non-separable– properties of the system. In order to broaden our scope to
larger systems, we must be able to move to a multidimensional form. To do so,
we must be able to re-introduce a limited number of non-separable, or combined,
elements, which will be the topic of future works. The methodology introduced
here has the potential to enrich analysis of gene regulatory networks and permit
the study of larger, more complicated, and more realistic models, a necessity if
we hope to make modeling frameworks fruitful in an applied setting.
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9. Paulevé, L., Magnin, M., Roux, O.: Pint-Process Hitting Related Tools (October
10, 2010), http://processhitting.wordpress.com (April 16, 2013)

10. Jolliffe, I.: Principal component analysis, vol. 487. Springer, New York (1986)
11. Leenders, G., Tuszynski, J.: Stochastic and deterministic models of cellular p53

regulation. Frontiers in Molecular and Cellular Oncology 3(64) (2013)

http://processhitting.wordpress.com


62 C. Chancellor et al.

12. Bernot, G., et al.: Application of formal methods to biological regulatory networks:
extending Thomas asynchronous logical approach with temporal logic. Journal of
Theoretical Biology 229(3), 339–347 (2004)
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A The Process Hitting for p53-mdm2

In Section 2.2 we introduced the concept of sorts, processes and actions, as well
as giving a brief introduction as to how actions are constructed based on a
qualitative description of an activation or inhibition reaction. The actions con-
structed from the information outlined in Section 2.1 on the p53-mdm2 system
are as follows:

Mn 1 → p53 2 � 1

p53 0 → Mc 1 � 0

p53 1 → Mc 1 � 0

Mn 0 → p53 1 � 2

Mn 1 → p53 1 � 0

p53 0 → Dam 0 � 1

p53 1 → Dam 0 � 1

Mn 0 → p53 0 � 1

p53 2 → Mc 0 � 1

p53 2 → Dam 1 � 0

p53McDam 0 → Mn 1 � 0

p53McDam 1 → Mn 1 � 0

p53McDam 2 → Mn 1 � 0

p53McDam 3 → Mn 1 � 0

p53McDam 4 → Mn 1 � 0

p53McDam 5 → Mn 1 � 0

p53McDam 6 → Mn 0 � 1

p53McDam 7 → Mn 0 � 1

p53McDam 8 → Mn 0 � 1

p53McDam 9 → Mn 0 � 1

p53McDam 10 → Mn 0 � 1

p53McDam 11 → Mn 0 � 1

Note that, for clarity and brevity, we have not listed those actions which
update the cooperative sort p53McDam to reflect the current status of p53, Mc
and Dam, nor have we included them in the graphical representation of the
system shown in Figure 5. There are 48 such actions compared to the 22 listed
here. As example, we have included two actions of Mc on the cooperative sort,

Mc 1 → p53McDam 0 � 2

Mc 1 → p53McDam 1 � 3

In both cases, p53McDam reflects the state space such that the sort Mc is at
process Mc 0, which is no longer true if Mc 1 and must be updated. These exam-
ples are represented by blue, tightly dashed arrows in the figure, whereas the full
updating action list is generally represented by the red, solid arrows linking the
individual sorts p53, Mc and Dam, to their respective cooperative sort.
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Fig. 5. A graphic representation of the Process Hitting. Each box represents a sort,
which contains processes indicated by circles. Actions linking individual sorts are
demonstrated by black arrows and can be found in the left hand column of the appendix
chapter on PH. The p53-mdm2 system contains one cooperative sort, p53McDam.
For the sake of clarity, not all actions linking the individual sorts and the coopera-
tive sort have been shown; rather, red, solid arrows are drawn to indicate these up-
dating actions, two examples of which are shown in tightly dashed blue lines. Like-
wise, not all actions linking p53McDam and Mn have been drawn, with two examples
given in loosely dashed, green lines. As we have depicted it, our system is in state
{0, 0, 1, 1}. There exists two actions which can be played, p53 1 → Dam 0 � 1 and
p53McDam 4 → Mn 1 � 0. Process Hitting is asynchronous, thus, only one action
can be played at any given time. Which action actually occurs depends on the rates,
stochastic and temporal features assigned to each.
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Abstract. Studying spatial effects in signal transduction, such as co-
localization along scaffold molecules, comes at a cost of complexity. In
this paper, we propose a coarse-grained, particle-based spatial simulator,
suited for large signal transduction models. Our approach is to combine
the particle-based reaction and diffusion method, and (non-spatial) rule-
based modeling: the location of each molecular complex is abstracted by
a spheric particle, while its internal structure in terms of a site-graph is
maintained explicit. The particles diffuse inside the cellular compartment
and the colliding complexes stochastically interact according to a rule-
based scheme. Since rules operate over molecular motifs (instead of full
complexes), the rule set compactly describes a combinatorial or even
infinite number of reactions. The method is tested on a model of Mitogen
Activated Protein Kinase (MAPK) cascade of yeast pheromone response
signaling. Results demonstrate that the molecules of the MAPK cascade
co-localize along scaffold molecules, while the scaffold binds to a plasma
membrane bound upstream component, localizing the whole signaling
complex to the plasma membrane. Especially we show, how rings stabilize
the resulting molecular complexes and derive the effective dissociation
rate constant for it.

1 Introduction

Signal transduction pathways can contain several proteins and activation steps
which give rise to complex spatiotemporal dynamics. Interactions between signal-
ing molecules do not only transmit activations, but can also localize the molecules
to certain structures or compartments in the cell [19]. This work aims at a sim-
ulator that is able to handle the complexity, and includes the localization of the
molecules. Current modeling techniques include ordinary differential equations
(ODE), or, if space is important, the corresponding partial differential equations
(PDE). If the stochasticity is significant, the chemical or reaction-diffusion mas-
ter equation (CME/RDME) describes the system dynamics. More specifically,
each molecule can be tracked individually in the simulation, e.g. using Brown-
ian/Smoluchowski or Green’s function dynamics (see e.g. review [12]).

Transient complex formation of proteins and their post-translational modi-
fication in signaling can lead to a combinatorial number of distinct molecular
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species. Rule-based languages, such as Kappa [6] or BioNetGen [8], provide a
compact representation of such combinatorial processes. Nonspatial rule-based
models can be efficiently simulated [3], and are amenable to further quantitative
analysis, e.g. formal model reduction [9,10].

An extended Kappa framework was proposed in order to model the internal
spatial structure of complexes that form during the process [4]. The Meredys
simulator [20] in addition includes the molecule positions. Furthermore SRSim
[11] provides a high resolution spatial rule-based extension, tracking the posi-
tion and internal structure of all complexes. Indeed, the possibility to specify
the binding angles sometimes naturally enforces a unique assembly path of a de-
sired complex structure: for example, a polymer chain with angles between the
bonds of π − 2π/N in a plane will form a ring of N monomers, and local rules
are sufficient to describe the global structure [4]. However, the exact molecular
geometry of signaling molecules is often not known. In such cases, the simula-
tion including the binding angles becomes more complex, without contributing
additional insights.

Here we present a framework that supports a particle-based, spatial simula-
tion, but omits the internal geometry. Still, as the internal structure in terms of
a site-graph is maintained explicit, their cooperative effect on complex stability
can be investigated effectively. In particular, we derive the dissociation rate con-
stant for rings. The simulation is applied to MAPK (Mitogen activated protein
kinase) signaling in yeast, where both localization and activation is mediated by
a scaffold [19].

The paper is structured as follows. In Sect. 2, the general particle-based frame-
work and the biophysical principles of complex formation are introduced. The
formal framework underlying the simulator is outlined in Sect. 3. In Sect. 4, we
show the application to MAPK signaling and we discuss the results.

2 Coarse-Grained Particle Diffusion and Reaction

The mobility of molecules in the cytoplasm is mainly governed by diffusion.
Diffusion can be modeled efficiently by a random walk of the molecules of interest
such that the myriad of solvent molecules can be omitted. We assume that the
properties of the solvent allow us to use the Stokes-Einstein equation to obtain
the (translational) diffusion coefficient Di ∝ r−1

i for a given molecular radius
ri of particle i. We also assume that rotational diffusion is much faster than
translational diffusion such that the actual shape of the molecules averages to a
sphere with radius ri at the temporal resolution of the method. Therefore only
the position but not the orientation of the molecules has to be tracked.

2.1 Remark on Diffusion-Controlled Reactions

Molecules can only react with each other if they are in contact/collide, and the
collision process is governed by diffusion. Accordingly the observable bulk/macro-
scopic reaction rate constant kij between particles i and j in solution is deter-
mined both by the rate constant of collisions kD(i, j) = 4π(ri + rj)(Di + Dj)
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(in 3D space) and the microscopic rate constant k′ij that determines the reac-
tive fraction of collisions [2]. For spherically symmetric molecules with isotropic
reaction properties the microscopic and macroscopic rate constant are related
in the form k−1

ij = kD(i, j)−1 + k′ij
−1

(Collins-Kimball model). Reactions with
very high kij ≈ kD(i, j) require k′ij → ∞, i.e. every collision leads to a reaction
such that they are diffusion-controlled. In contrast, reactions with kij � kD(i, j)
are reaction-controlled; in this case k′ij ≈ kij . A diffusion factor/function can be
introduced fD(i, j) := kD(i, j)/(kD(i, j) + k′ij) such that k = fDk′ [2].

More in detail, signalingmolecules have specific reaction sites, i.e. non-isotropic
reaction properties. Such molecules have to be in contact (by translational diffu-
sion) and correctly aligned with their reaction sites (by rotational diffusion). We
define the corresponding nanoscopic rate constant as k′′ and the conversion fac-
tor fDR such that k = fDRk

′′, however the derivation of fDR is not straightfor-
ward and several approximations exist [2,21]. For completeness we also introduce
fR = fDRfD

−1 for the conversion k′ = fRk
′′, i.e. for integrating out the rotational

diffusion effect only. In general: k ≤ k′ ≤ k′′.
Reversible reactions A +B � C with forward reaction at rate constant kAB

and backward kC require to scale both rate constants with f(A,B) in order
to maintain the macroscopic reaction equilibrium (dissociation constant Kd =
kC/kAB = k′C/k

′
AB = k′′C/k

′′
AB) [16,13]. For consistency we define the respective

conversion factors f = 1 for unimolecular reactions that are not reversed by a
bimolecular reaction, such that microscopic rate constants are always defined.

2.2 General Particle-Based Diffusion and Reaction Method

The present method implements the λ-ρ model [7], i.e. a discrete time continuous
space random walk for diffusion. Each particle position xi is updated by

xi(t+Δt) = xi(t) +
√
2DiΔtξ (1)

with diffusion coefficient Di and standard normal random variable ξ. Particles
can overlap as discussed in [13], so collision testing is only needed for (static)
reaction compartment boundaries. Reactions are executed with a probability
that depends on their arity as follows.
Unimolecular Reactions. A → . . . at rate constant kA are executed in this
method in every step with probability

PA = 1 − exp(−k′AΔt) ≈ k′AΔt if Δt → 0 (2)

for each molecule which is of type A [7]. Note that the Bernoulli-trial scheme
leads to a binomial distribution, which converges to the Poisson distribution for
small probabilities in each step (law of rare events). The Poissonian reaction
process has exponentially distributed inter event waiting times as expected.
Bimolecular Reactions. A + B → . . . can only occur if two molecules are
closer than their collision distance (rA+ rB). If so, then the reaction is executed
with probability

PA,B =
k′ABΔt

4π(rA + rB)3/3
(3)
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as derived in [15]. The accuracy constraint PA,B < 0.2 gives an upper bound for
Δt, if larger Δt are needed the reaction probability of [7] has to be used.
Higher Order and Hill-Type Reaction Schemes: for a particle-based sim-
ulation higher order reaction models have to be composed into their elementary
uni- and bimolecular reaction steps (in which they also occur in nature).

2.3 Complexes

Complexes C that form out of A + B → C can still be modeled as spherical
particles. The complex radius rC is obtained e.g. under the assumption that the
volume/mass of A and B is redistributed into C with constant mass density, i.e.

rC =

(
3

4π

[
4πr3A
3

+
4πr3B
3

])1/3

=

(∑
i∈C

r3i

)1/3

(4)

as suggested in [22]. Alternatives for Eq. (4) are discussed and listed in Table
1 in [12]. The diffusion coefficient DC is given by DC = D0/r0r

−1
C based on a

referenceD0 and r0 in the Stokes-Einstein relation. Reactions between complexes
α and β can occur when they are within their contact distance. The joint k′αβ =∑

A∈α

∑
B∈β k

′
AB (assume k′AB = 0 if no reaction between A and B is defined)

could directly be used to calculate the binding probability by Eq. (3). However we
decided to track each reaction individually as described in Sect. 3. Therefore also
all resulting bonds in a complex are tracked individually. Such a bond in complex
α between A ∈ α and B ∈ α can break with the corresponding dissociation rate
constant/probability defined for the interaction. But if the two formerly directly
connected molecules A ∈ α and B ∈ α are still connected by other bonds, they
will stay together – and aligned with their binding sites. Therefore A and B
can rebind in every step with PAB , leading to bond recovery with rate constant

k̄AB =
3k′′AB

4π(rA + rB)3
(5)

effectively in a first order reaction (cf. Eq. 3 and Eq. 2) [14]. The recovery reaction
does not take place in the (relatively large) reaction volume of the whole reaction
compartment but in the (relatively tiny) interaction volume of the two agents.
Therefore k̄ is large compared to all other rates, and the lifetime of the open
state of the bond τ ∝ k̄−1 is accordingly relatively small (cf. Test Case 2).

3 Spatial Stochastic Simulation of Rule-Based Model

Each particle of the simulation is an instantiation of a molecular species. A
molecular species can be a protein, its post-translationally modified form or a
protein complex that consists of proteins bound together. In order to reflect this
internal structure of molecular species we represent them by site-graphs, in which
modifications of protein residues and bonds are explicitly encoded, as introduced
in Kappa [6].



68 M. Klann et al.

Notations. We denote by {e1 �→ v1, · · · , eN �→ vN} the mapping from distinct
elements ei to values vi. Given a mapping A, dom(A) denotes its domain, and
A(e) the value associated to e in A. We also write A{e �→ v} for the mapping A
updated so that e maps to v; and A \ e for the mapping A updated so that the
mapping from e is removed.

3.1 Site-Graphs

A site-graph is an undirected graph where typed nodes have sites, and edges are
partial matchings on sites. Moreover, the sites which do not serve for forming
edges are called internal, and they are assigned a value from a predefined set.
The nodes of the site-graph can be interpreted as protein names, and sites of
a node stand for protein binding domains. Internal states are used to encode
post-translational modifications.

Let S denote the set of site labels, and I the set of internal values that can
be assigned to sites. The function I : S → P(I) denotes the set of internal
values that a site s can take. Let A be the set of node types. Each node type is
being equipped with a set of sites, defined by a signature map Σ : A → P(S).
Finally, the set of admissible bindings between sites is defined by the mapping
E : A×S → P(A×S) so that if (a′, s′) ∈ E(a, s) then necessarily (a, s) ∈ E(a′, s′).
A rule-based model is defined over a fixed contact map defined by the tuple
(A, Σ, E , I) that we consider constant in the rest of this section.

Definition 1. A site-graph is a tuple G = (V, T, F,E, ψ) with

1. a set of nodes V ,
2. a node type function T : V → A,
3. a node interface function F : V → P(S), such that for v ∈ V , F (v) ⊆

Σ(T (v)),
4. a set of edges between sites of different nodes, encoded by the function

E : V × S → V × S such that if E(v, s) = (v′, s′) then necessarily v �= v′,
E(v′, s′) = (v, s), and (T (v′), s′) ∈ E(T (v), s).

5. a site evaluation function ψ : V × {s ∈ S | I(s) �= ∅} → I, so that ψ(v, s) ∈
I(s).

Site-graphs will be used in two different contexts: (i) to model physically
existing complexes, also termed concrete site-graphs (or reaction mixtures), and
(ii) to specify the local interaction patterns (rewrite rules). The concrete site-
graphs must have all interfaces complete, in the sense that, for all nodes v ∈ V ,
F (v) = Σ(T (v)).

Definition 2. Site-graph G = (V, T, F,E, ψ) is a union of two site-graphs G1 =
(V1, T1, F1, E1, ψ1) and G2 = (V2, T2, F2, E2, ψ2), denoted by G = G1 ⊕ G2, if
V1 ∩ V2 = ∅, and V = V1 ∪ V2, F = F1 ∪ F2, E = E1 ∪ E2, ψ = ψ1 ∪ ψ2.

Definition 3. Given a site-graph G = (V, T, F,E, ψ), a sequence of edges
(((v1, s1), E(v1, s1)), . . . , ((vk, sk), E(vk, sk))) such that for i = 1, . . . , k, vi ∈ V ,



Coarse-Grained Brownian Dynamics Simulation of Rule-Based Models 69

a b A
C

a b A
C

ci
rule Ri:

f

d A

v2
v1

v4

v3
b

c

b

c f

d

B

A
b

c

b

c

2c

v1
v2

v3

v4

C
C B

C
C

a

a

a

a
e

g

e

g

σσ

G G′ = δi(σ,G)

b� d� b� d� Fig. 1. Rule application. Rule Ri can be
applied to a reaction mixture G via the
embeding σ (indicated by the dotted ar-
rows), and resulting in the reaction mix-
ture G′. The contact map is such that
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formalism can be found e.g. in [18].

si ∈ F (vi), and for i = 1, . . . , k − 1, E(vi, si) = (v, s) ⇒ vi+1 = v and si+1 �= s,
is called a path between nodes v1 and vk. A site-graph G is connected, denoted
cc(G) if there exists a path between every two nodes v and v′.

Two site-graphs can be related by an embedding function, which is important
for defining the applicability of a rule to a reaction mixture (cf. Fig. 1).

Definition 4. The embedding σ between site-graphs G = (V, T, F,E, ψ) and
G′ = (V ′, T ′, F ′, E′, ψ′), is induced by a support function σ∗ : V → V ′, if

1. σ∗ is injective: for all v, v′ ∈ V , [σ∗(v) = σ∗(v′) =⇒ v = v′];
2. for all v ∈ V , T (v) = T ′(σ∗(v));
3. for all v ∈ V , [s ∈ F (v) =⇒ s ∈ F ′(σ�(v))];
4. {(v, s) �→ (v′, s′)} ⊂ E =⇒ {(σ∗(v), s) �→ (σ∗(v′), s′)} ⊂ E′;
5. {(v, s) �→ i} ⊂ ψ =⇒ {(σ∗(v), s) �→ i} ⊂ ψ′.

If σ∗ is bijective, then σ is an isomorphism. The set of embeddings between the
site-graph G and G′ is denoted by embed(G,G′). The set of all embeddings is
denoted by E.

3.2 Rule-Based Models

Definition 5. Consider three types of elementary transformations of site-
graphs, denoted by δae, δde, δci : E × G → G, with the following form:

1. δv,s,v
′,s′

ae (σ,G) = (V, T, F,E{(σ∗(v), s) �→ (σ∗(v′), s′), (σ∗(v′), s′) �→
(σ∗(v), s)}, ψ) (adding an edge)

2. δv,sde (σ,G) = (V, T, F,E \ E((σ∗(v), s)) \ (σ∗(v), s), ψ) (deleting an edge);

3. δv,s,ici (σ,G) = (V, T, F,E, ψ{(σ∗(v), s) �→ i}) (changing the state value),

where G = (V, T, F,E, ψ) ∈ G, σ ∈ E induced by the suport function σ∗ : Vi �→
V , Vi being a set of nodes such that v, v′ ∈ Vi; v �= v′, (T (v′), s′) ∈ E(T (v), s),
and i ∈ I(s).

A rule Ri is a triple (G, δ, c), where G is a site-graph, δ is of type δae, δde,
or δci, and c is a non-negative real number. Applying the rule to a site-graph G
is unique for an embedding σ ∈ embed(G,G), and results in G′ = δ(σ,G) (for
a rigorous explanation, see [5]). In particular, for the identity support function
σ∗ = I, and for G = G, we get G′ = δ(I, G), which is sometimes called the
right-hand-side of the rule (cf. Fig. 1).
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3.3 Stochastic Abstract Machine

This subsection defines the syntax and semantics of the abstract formal machine
for our coarse-grained spatial stochastic simulation of rule-based models.

In our machine, a complex is associated to a connected concrete site-graph,
denoted by G, and a 3-D position. The site-graph of a complex can be modified
according to the rules, and may undergo a split into two site-graphs (dissoci-
ation), adding a new complex in the machine; or a merge with another site-
graph (association), removing the other complex from the machine. The radius
of agents a ∈ A is determined by the constant ra, and the radius of the connected
site-graph G is given by rad(G), according to Eq. (4) (Sect. 2.3):

rad((V, T, F,E, ψ)) =

(∑
v∈V

r3T (v)

)1/3

(6)

The syntax of the abstract machine is given in Def. 6. A machine term M is a
quadruple (t, C,X,R) where t is the current time, C is a map from a complex i
to its current site-graph G, X is a map from a complex i to its position x ∈ R3,
and R the set of rules, as defined in Sect. 3.2.

The execution of the machine at time t follows Eq. (7). First, the position
of each complex is updated according to a Brownian diffusion during a fixed
Δt time (diffuse function, Def. 7). Second, the active rules at time t are applied
according to the probabilities introduced in Sect. 2. The new site-graphs and
positions maps give the new term of the machine at time t+Δt.

X ′ = diffuse(X,C,Δt)
(C′, X ′′) = react(C,X ′,R, Δt)

(t, C,X,R) → (t+Δt,C′, X ′′,R)
(7)

The react function (Def. 12) applies the rules embeddings that are active at
time t in a random order. Each active rule embedding (Def. 11) is specified by
the set of concerned complexes (either one or two), and the quadruple (σ,G, δ, k)
where (G, δ, k) is a rule in R, and σ is the actual embedding being a map from
the nodes of the rule left hand-side G to the nodes of the concrete complex
site-graphs. These rule embeddings gathers the embeddings from any rule in
R to a single complex site-graph C(i) (unary function) or to the union of two
complex site-graphs C(i1)⊕C(i2), assuming that complexes i1 and i2 have their
distance |X(i1)−X(i2)| less than the sum of their radii (neighbors function). A
rule with embedding σ is actually applied if (1) the embedding is still valid, i.e.,
previous rules application have not interfered with it; (2) the random number ζ1
uniformly distributed in [0; 1] is less than the rule probability.

The probability of applying a rule embedding (prob function, Def. 8) depends
on the arity of the reaction and on the modification type, as described in Sect. 2.
The application of rule embedding to the site-graphs and position maps is given
by the do function (Def. 10). In the case of agent site values changes (δci) or an
internal bound creation (δae within one complex i), the embedded rule modifica-
tion is applied to the concerned site-graphs, without any side-effect. In the case
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Stochastic Abstract Machine Definitions

Definition 6. Syntax of the abstract machine. i1, · · · , iN are the complexes identifiers,
assumed all distinct.

M ::= (t, C,X,R) Time t, complex maps C and X, rules R
C ::= {i1 �→ G1, · · · , iN �→ GN} Map from a complex i to its site-graph G
X ::= {i1 �→ x1, · · · , iN �→ xN} Map from a complex i to its position x ∈ R

3

Definition 7. Euler-Maruyama integration of diffusion. Returns the new position
maps of complexes after a Brownian diffusion during Δt time, where ζ is a standard
normal random variable, and D0 and r0 are constants (cf. Eq. (1), Sect. 2.2). Note:
state dependent diffusion in different compartments is introduced in Appendix A.

diffuse(X,C,Δt)
Δ
= {i �→| X(i) + ζ

√
2DiΔt | Di = D0 r0/rad(C(i)), i ∈ dom(X)}

Definition 8. Rule probability. The rates k′, k′′ and k̄ refers to the rule rate k mod-
ified according to Sect. 2, agents(δae) refers to the couple of agents concerned by the
bound creation, and rai is the radius of agent ai.

prob({i}, δci, σ, k, C,Δt)
Δ
= k′Δt

prob({i}, δde, σ, k, C,Δt)
Δ
= k′′Δt if cc(δde(σ, C(i))) else k′Δt

prob({i}, δae, σ, k, C,Δt)
Δ
= k̄Δt

Δ
=

3k′′Δt

4π(ra1 + ra2)
3
if agents(δae) = (a1, a2)

prob({i1, i2}, δ, σ, k, C,Δt)
Δ
=

3k′Δt

4π(rad(C(i1)) + rad(C(i2)))3
if i1 �= i2

Definition 9. Complex formation and dissociation. Returns the modified site-graphs
and positions mappings after a merge or a split of complexes. The condition i2 /∈
dom(C) ensures that the new complex i2 is a fresh identifier.

merge(i1, i2, δ, σ, C,X)
Δ
= ((C \ i2){i1 �→ δ(σ,C(i1)⊕ C(i2))}, X \ i2)

split(i1, δ, σ, C,X)
Δ
= (C{i1 �→ G1, i2 �→ G2}, X{i2 �→ X(i1)})

if i2 /∈ dom(C),G1 ⊕ G2 = δ(σ,C(i1)), cc(G1), cc(G2)

Definition 10. Rule application. Returns the modified site-graphs and positions map-
pings. Predicate cc(G) is true if and only if G is connected (Def. 3, Sect. 3.1).

do(I, δci, σ, C,X)
Δ
= (C{i �→ δci(σ, C(i)) | i ∈ I}, X)

do({i}, δae, σ, C,X)
Δ
= (C{i �→ δae(σ, C(i))}, X)

do({i1, i2}, δae, σ, C,X)
Δ
= merge(i1, i2, δae, σ, C,X) if i1 �= i2

do({i}, δde, σ, C,X)
Δ
= (C{i �→ δde(σ, C(i))}, X) if cc(δde(σ, C(i))

do({i}, δde, σ, C,X)
Δ
= split(i, δde, σ, C,X) if not cc(δde(σ,C(i))
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Stochastic Abstract Machine Definitions (Continued)

Definition 11. Active embeddings. unary and binary returns the embedding specifica-
tions of rules R to single or couples of complexes, respectively; neighbors returns the
couples of complexes close enough to react; act embeds returns the (I,E) couples where
I is the set of complexes concerned by the embedding specification E.

unary(i, C,R)
Δ
= {(σ,G, δ, k) | (G, δ, k) ∈ R, σ ∈ embed(G,C(i))}

binary(i1, i2, C,R)
Δ
= {(σ,G, δ, k) | (G, δ, k) ∈ R, σ ∈ embed(G,C(i1)⊕ C(i2)),

σ /∈ embed(G,C(i1)) ∪ embed(G,C(i2))}
neighbors(C,X)

Δ
= {{i1, i2} | rad(C(i1)) + rad(C(i2)) ≥ |X(i1)−X(i2)|,

i1, i2 ∈ dom(C), i1 �= i2}
act embeds(C,X,R)

Δ
= {({i}, E) | i ∈ dom(C), E ∈ unary(i, C,R)}

∪ {({i1, i2}, E) | {i1, i2} ∈ neighbors(C,X),

E ∈ binary(i1, i2, C,R)}

Definition 12. Sequential application of active rule embeddings, order is assumed to
be random; returns the modified site-graphs and position maps. The set of concerned
complexes is denoted by I, ⊕i∈IC(i) denotes the union of site-graphs of complexes in
I, ζ1 is a random variable uniformly distributed within 0 and 1, and embed is the set
of embeddings from rule left hand-side to reaction mixture (cf. Sect. 3.1).

apply({(I, (σ,G, δ, k))} ∪Q,C,X,Δt)
Δ
= apply(Q,C,X,Δt)

if σ /∈ embed(G,⊕i∈IC(i))

or ζ1 ≥ prob(I, δ, σ, k, C,Δt)

Δ
= apply(Q,C′, X ′,Δt)

if σ ∈ embed(G,⊕i∈IC(i)),

ζ1 < prob(I, δ, σ, k, C,Δt),

(C′, X ′) = do(I, δ, σ, C,X)

apply(∅, C,X,Δt)
Δ
= (C,X)

react(C,X,R,Δt)
Δ
= apply(act embeds(C,X,R), C,X,Δt)
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Fig. 2. Comparison of particle-based simulation according to the presented algorithm
(black symbols) and ODE model (red line, see Appendix B) for two test cases: (a) en-
zymatic activation, Test Case 1 and (b) trimerization, Test Case 2. (c) Overview of the
reactions in the ring formation process of example (b), binding sites are omitted here.
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of a complex formation (δae between two complexes i1 and i2), the two com-
plexes are merged into one and receives the position of one of the two complexes
in a non-deterministic manner (merge function, Def. 9). Finally, in the case of
a bond deletion within a complex (δde), unless the site-graph is still connected,
the complex is split in two complexes receiving the same position (split function,
Def. 9).

4 Test Cases and Application

Test Cases: The accuracy of the simulation was tested on the principal reac-
tion motifs of signaling models, where we assume the reaction-limited case for
simplicity, i.e. k = k′ = k′′. The test cases are (in Kappa like syntax, see Fig. 1
for agents and sites):

1. Reversible enzymatic activation A(d) + C(b) � A(d1), C(b1),
A(d1), C(b1, au) → A(d1), C(b1, ap) and C(ap) → C(au).

2. Reversible trimerization by: A(d) + C(b) � A(d1), C(b1),
A(e) + B(g) � A(e2), B(g2) and C(c) + B(f) � C(c3), B(f3).

Fig. 2 depicts the simulation result which exactly match the ODE models derived
in Appendix B, thus showing the correctness of the approach.

Test Case 2 exemplifies the formation of a ring and the cooperativity of the
bonds in the ring. The ABC trimer can only dissociate if two bonds break and are
open at the same time. For equal binding rate constants k1, equal dissociation
rate constants k2 and under the quasi-steady-state assumption for complexes
with one broken bond the effective dissociation rate constant becomes

k∗ = 6k22/(k̄1 + 2k2) (8)

as shown in Appendix B, Eq. (13). In a ring consisting of N agents the effective
dissociation rate constant k∗ =

(
N(N − 1)k22

)
/
(
k̄1 + (N − 1)k2

)
, will converge

to Nk2, i.e. with rising N the cooperativity vanishes. Especially small rings are
therefore stabilized due to the high bond recovery rate constant k̄. In the present
example k1 = 5× 105M−1s−1, k2 = 0.2s−1, rA = rB = rC = 5nm, DA = DB =
DC = 1μm2/s. Then k̄1 = 198s−1, and k∗ = 0.0012s−1 � k2, i.e. the ring
structure is extremely stable. Diffusion limit kD = 1.51× 108M−1s−1 � k1 i.e.
reaction-limited regime.
Signaling with Scaffolds in Space and Time: In order to exemplify how
the presented method can be used to model signaling in space and time, we
simulate the yeast pheromone response signaling model from Thomson et al.
[19] (see Fig. 3a) up to the MAPK Fus3. In the model the actual signaling
molecules Ste4, Ste11, Ste7 and Fus3 can bind to the scaffold Ste5. In contrast
to Thomson et al. we assume that any activation by the upstream molecule
also involves a possible binding interaction between these molecules – although
that interaction might be weak. The resulting additional bonds, shown in red
in Fig. 3b, enable the formation of three rings around Ste5, which can stabilize
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Fig. 3. (a) Yeast mating MAPK signaling pathway from [19]. (b) Binding and acti-
vation interactions around the scaffold Ste5. Incomplete signaling complexes cannot
transmit the signal and do not include rings, which makes them less stable. (c) Lo-
calization of Ste5 to the plasma membrane. (d) Activation of the MAPK cascade.
The initial fast activation phase of Fus3 takes place in scaffold based complexes that
formed prior to activation. Further activations require that new Ste7-Fus3 pairs form
(diffusion-reaction process) which gives rise to slower kinetics. (e) Visualization of the
complexes in 3D space at t = 184s using ZigCell3D from ScienceVisuals [23]. The trans-
parent spheres with constant radius of 12.5 nm are used for all complexes. Nucleus and
plasma membrane are not shown.

complete signaling complexes. The binding interactions Ste4-Ste11 and Ste11-
Ste7 were omitted in [19] because pheromone response must only be activated if
Ste5 is present. In the present model the binding interaction was weak enough
such that likewise activation requires the presence of Ste5 (data not shown).
Effectively, the bond only establishes along the scaffold, such that crosstalk with
other signaling pathways can be prevented. The arising rings including Ste5 and
the resulting low dissociation due to cooperativity of the bonds in the rings
furthermore makes overexpression of Ste5 less harmful than in [19]. This is due
to the fact that without the bonds parallel to Ste5, each Ste5-Ligand bond would
arise independent of the other ligands. Too many Ste5 instances would therefore
lead to complexes where most likely just 1 ligand is connected to Ste5 such that
the signaling cascade is disrupted. In contrast, the additional bonds drive the
equilibrium towards complete complexes.
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The spatial and temporal dynamics of the activation process in the MAPK
signaling cascade is depicted in Fig. 3c and d. Ste4 is a membrane bound protein,
therefore all complexes containing Ste4 will likewise be membrane bound (cf.
Appendix A). Fig. 3c shows how Ste5 accumulates at the plasma membrane
accordingly. The 3D positions of molecules and complexes in the simulation are
shown in Fig. 3e.

5 Discussion

The present work shows how a simulation for complex signal transduction models
can be implemented, making use of a rule-based model description and includ-
ing biophysical aspects as well as the spatial component. The present algorithm
uses a coarse-grained description and simplified models for binding and dissocia-
tion rate constants on the macro-, micro- and nanoscopic level, thus refining the
simulation method suggested in Meredys [20]. The applied rate constants and
conversion factors as introduced in Sect. 2.1 could be further refined by more de-
tailed models, which e.g. require to solve the reaction-diffusion or corresponding
master equation [16,17].

An accuracy and performance test of the particle-based simulator core in
[13] shows that the presented method performs at least as good as Smoldyn
[1]. Smoldyn however can handle rule-based models only via the libMoleculizer
plugin. Association and dissociation of complexes require costly graph traversal.
However, associations require that two complexes are in contact, which is a rare
event, and dissociation does not occur more frequently (at steady state). Given
the computational cost of the random walk of the molecules and neighbor finding
alone, the rule-based extension does not dramatically slow down simulation. The
performance of the algorithm can be improved by using a Gillespie scheme (draw
exponential waiting time for reaction event) instead of the Bernoulli trials for
unimolecular reactions as in [14]. In that case also the order of unimolecular
reactions is given by the (ordered) waiting times instead of the random order we
proposed in order to execute all reactions in an unbiased manner. For bimolecular
reactions it is extremely unlikely that more than two complexes are within the
reactive distance such that in most cases there is no ambiguity which reaction
is to be applied. Further improvements of the performance could come from
multi-scale or mixed approaches for different domains of the simulation [12].

The coarse-grained rate constants enable the calculation of emerging proper-
ties like the cooperativity between bonds, that stabilizes rings. In the MAPK
signaling example also rings are formed around the scaffold Ste5. Future work
can analyze the stability of signaling complexes and the dose-response curve for
Ste5 now including the cooperative effect of the bonds. The simulation already
includes localization sites that determine the location of the agents (cytoplasmic
or membrane based as shown in Appendix A). In the future we are planning to
include the transport into the nucleus such that the complete signaling path-
way can be analyzed. Furthermore formal model checking of spatial rule-based
models has to be included to ensure meaningful models and simulation results.
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Additional Information

The appendix is available from http://www.bison.ethz.ch/research/

spatial simulations si/CMSB2013 Appendix.pdf and the simulator
as well as example files from http://www.bison.ethz.ch/research/

spatial simulations.
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Abstract. We describe an investigation into spatial modelling by means
of an ongoing case study, namely phase variation patterning in bacterial
colony growth, forming circular colonies on a flat medium. We explore
the application of two different geometries, rectangular and circular, for
modelling and analysing the colony growth in 2.5 dimensions. Our mod-
elling paradigm is that of coloured stochastic Petri nets and we employ
stochastic simulation in order to generate output which is then analysed
for sector patterning. The analysis results are used to compare the two
geometries, and our multidimensional approach is a precursor to more
work on detailed multiscale modelling.

Keywords: Coloured stochastic Petri nets, spatial modelling, Systems
Biology, pattern analysis, multidimensional, BioModel Engineering.

1 Motivation

This paper builds on [5], where we have introduced our methodology for the
use of a structured family of Petri net classes which enables the investigation of
biological systems using complementary modelling abstractions comprising the
qualitative and quantitative, i.e., stochastic, continuous, and hybrid paradigms.

We extend our spatial modelling approach introduced in [2, 3] where we dis-
cretise space within a geometrical framework exploiting finite discrete colour
sets embedded in coloured Petri nets. We motivate our work by describing an
investigation into spatial modelling by means of an ongoing case study, namely
phase variation patterning in bacterial colony growth, forming circular colonies
on a flat medium. In order to illustrate the power and flexibility of our ap-
proach we explore the application of two different geometries, rectangular and
circular, for modelling and analysing the colony growth in 2.5 dimensions: the 2
dimensions of the surface of the colony are modelled explicitly while the height
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is modelled implicitly. In order to capture the stochastic properties of the case
study, we have chosen coloured stochastic Petri nets (SPN C) as our modelling
paradigm and employ stochastic simulation in order to generate output which
is then analysed for sector patterning. The analysis results are used to compare
the two geometries, and our multidimensional approach is a precursor to more
work on detailed multiscale modelling.

The main contributions of our paper are

– a detailed model of phase variation in bacterial colony growth, in two ge-
ometries (rectangular and circular),

– the development and application of techniques to analyse the properties of
the patterns generated by phase variation,

– a comparison of the application of the two geometries.

This paper is organised as follows. The biological background and the basic
model are described in Section 2. In Section 3 we explore the application of
the two alternative geometries using Cartesian and polar coordinates, and the
analysis is presented in Section 4. We conclude our paper with a brief summary
in Section 5. Some additional data are given in the Appendix.

2 Phase Variation in Bacterial Colony Growth

Background. Microbial populations commonly use a stochastic gene switching
process called phase variation, controlled by reversible genetic mutations, in-
versions, or epigenetic modification [14]. Understanding of its adaptive role has
traditionally been within the context of “contingency gene theory” [10] in which
populations will predictably include variants adapted to “foreseeable” frequently
encountered environmental or selective conditions [12]. The mechanistically most
common switches are mediated by random mutations in simple sequence repeats,
as exemplified by H. influenzae [8], H. pylori [13, 15] and Neisseria [18]. Recent
reconsideration suggests a different and additional role for phase variation in
the generation of predictable functional diversity within multicellular microbial
populations, providing differentiated sub-specializations within structured and
predictable communities. Progress in this area requires the design of new mod-
els, moving from existing models of population proportions in freely competing
populations to ones that include and address spatial and structural composition
and interfaces.

The most readily observable compositional effect of phase variation in cultures
grown in vitro is colonial sectoring. In this paper we present preliminary stochas-
tic models that address colonial patterning including bi-directional reversible
switching between two phenotypes, biologically relevant rates, and differences in
the fitness of the two alternate phenotypes. We consider a colony of bacteria with
two phenotypes A and B, which develop over time by cell division. Cell division
may involve cell mutation, and back-mutation alternates phenotypes; see Fig. 1.
We are interested in the proportion of phenotypes in the cell generations, and
how their spatial distribution evolves over time.
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Fig. 1. Phase variation, basic scheme. α / β – forward/backward mutation rate.

Basic Model of Phase Variation. We start with the equations taken from
the previous deterministic model of phase variation [16], which describe syn-
chronous growth in cell colonies with two phenotypes A and B, but no spatial
aspects. These equations include the assumption that “if phase variation oc-
curs, the progeny consists of one A and one B.” Previously [16], behaviour was
explored by iterating the equations on a spreadsheet. We develop a stochastic
Petri net (SPN ) that is directly executable by playing the token game which
facilitates its comprehension, and permits the exploration of the behaviour by
standard analysis and simulation techniques. Our initial SPN model, see Fig. 2,
adopts an asynchronous modelling approach so that cells divide individually.
The model parameters were taken from [16]; α and β represent the forward and
backward mutation rates, and dA, dB the fitness of phenotype A and B, i.e. the
proportions that survive to division.

A B

A2B

B2A

A2A B2B

2

2

v(A2B) = dAαA, v(A2A) = dA(1− α)A
v(B2A) = dBβB, v(B2B) = dB(1− β)B

Fig. 2. SPN corresponding to Fig. 1; v – marking-dependent stochastic rates

Derived Measures of Interest. The n-th generation in a synchronous
model yields 2n bacteria. Vice versa, if we know the total number total of bacteria
generated by asynchronous cell division, then we can obtain the corresponding
synchronous generation counter n by

n = log2 total (1)

For example, 26 synchronous generations (which may develop in about 24
hours) end up with a total population size of approximately 67 · 106. We obtain
the proportion of phenotypes A and B modelled by the variables A and B by

propA =
A

A+B
; propB =

B

A+B
(2)
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Simulating the stochastic model allows us to observe asynchronous population
growth such that cells divide individually. Each event (firing of a transition)
corresponds to the division of one cell. Consequently, the size of the population
will grow in steps by 1, in contrast with the previous synchronous model.

Folding. To prepare for spatial modelling of cell colonies we fold our first
(uncoloured) Petri net. We define two colour sets, Phenotype andDivisionType,
see Appendix A provided in the supplementary materials, to fold the two places
A and B into one coloured place cell with the colour set Phenotype, and to fold
the four transitions into the coloured transition division. We obtain the model
in Fig. 3. The derivation of our final model requires three further steps: adding
space, controlling colony spreading, and controlling thickness, which we discuss
in the next section.

cell1
1`A

Phenotype

division [div=replicate](2`c)++
[div=mutate](c++
(+c))

c

Fig. 3. SPN C as SPN short-hand notation; unfolding this SPN C generates the SPN
in Fig. 2

3 Adding Space

The colony is represented in 2.5 dimensions by an explicit 2D grid with an
implicit constant maximal height over all grid positions.

3.1 Alternative Geometries

Starting from a small initial population the colony spreads out as the number
of bacteria increases maintaining a circular shape throughout its development.
Thus, a circular geometry with polar coordinates for representing space seems
to be most appropriate for this particular modelling task. However, previous
attempts to model bacteria colony growth have represented space employing a
rectangular geometry with Cartesian coordinates. Independently of the chosen
spatial representation, the 2D space is discretised in compartments which are
then mapped to a grid. Each position of the grid is referenced by a unique tuple
(x, y), corresponding to a colour tuple in the model, where x is the index of the
row and y of the column in the grid, respectively. Differences between modelling
in these two coordinate systems will be highlighted next.

Cartesian Coordinate System. In the Cartesian coordinate system [19]
approach, the 2D space is discretised by splitting it into equally sized rows and
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columns obtaining a 2D grid similar to a matrix as shown in Fig. 4. The mapping
between this matrix and the compartments of the 2D grid is direct, because each
position in the matrix corresponds to a compartment in the grid. The area of all
the positions in the grid is equal. The volume of all grid positions is also equal
because their maximal height is the same.

When division occurs, the parent remains in situ and the offspring can either
stay with the parent or be displaced to a neighbouring position. The neighbour-
hood relation between different positions of the grid is represented as a function.
The maximum number of neighbours for each position is eight depending on
whether the considered position is in the interior of the grid, at the edge or in
the corner.

Polar Coordinate System. On the other hand, when considering a polar
coordinate system [19], the 2D space is discretised in a different manner. First
of all, the space is divided into evenly spaced concentric circles. Each one of the
concentric circles and its immediate enclosing circle will form an annulus [19].
All annuli are then split into sectors obtaining annular sectors like the ones
presented in Fig. 4.

Fig. 4. Discretising space considering Cartesian (left) and polar (right) coordinates.
Each annulus in the polar case is mapped to a row in the grid and each sector to a
column, such that a position in the grid (left) has one and only one corresponding
annular sector (right) and vice versa.

When running a simulation from the centre of the discretised space, it is
important that the offsprings are able to be displaced with equal chance in
either of the directions identified by the sectors. For this purpose the origin of
the space is considered as a position in the grid which has as neighbours all the
immediate surrounding annular sectors. Therefore, the first row of the 2D grid
will contain only one entry, the origin.

The number of neighbours for the origin is equal to the number of sectors.
Similar to the neighbourhood relation in a Cartesian coordinate system, all other
annular sectors have maximum eight neighbours, depending if their position is
next to the origin, in the interior or at the edge.

Comparing the Geometries. One of the differences between the two ge-
ometries is that when using the rectangular geometry, the area and volume of
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all positions in the grid are constant while in the circular geometry the area
and volume are variable. In case of the circular geometry the variability of the
volume of each position in the grid has an effect on the transition rate function.
Conversely, in case of the rectangular geometry, the transition rate function is
not influenced by the volume of the positions since it is constant.

Another important aspect which sets the two geometries apart is the shape
of the compartments due to the discretisation process. Let us compare one row
from the grid obtained by discretising the space considering a Cartesian coordi-
nate system and the sector obtained similarly by considering a polar coordinate
system. The angle described by a row in the grid equals 0 degrees. Conversely,
the sides of the sector form a sharp angle greater than 0 degrees (except when
the number of sectors → ∞).

For this particular case study, we are interested in the angle formed by the
patterns of high intensity in the colony. Any sector in the circular geometry will
automatically have a non-zero degrees angle associated. However, in the rectan-
gular geometry a non-zero degrees angle is formed only if the colony spreads out
on multiple rows and columns. In order to obtain comparable results we have
removed the diagonal movement in the polar coordinates model such that the
horizontal spreading of the colony is reduced.

Representing the Geometries Using Colour Sets. In spite of the multi-
ple differences between the rectangular and circular geometries, the definition of
the colour sets used for each Petri net is the same. The Grid colour set is equal to
the Cartesian product of the Grid2D and Phenotype colour sets where Grid2D
represents the two-dimensional grid and Phenotype the type of the bacteria; in
our case either A or B.

Each Petri net place represents a subset of the discretised space. The maxi-
mum number of bacteria in each place is inversely proportional to the resolution
of the grid. Increasing the resolution reduces the maximum capacity of the place,
while decreasing it makes room for more bacteria.

One crucial difference between the geometries consists of the neighbourhood
relation between two positions. This characteristic is captured by the neigh-
bourhood functions neighbourhood2D rectangular and neighbourhood2D circular
described in Appendix B, provided in the supplementary materials. They define
all possible movements in the net. The neighbourhood function for polar coor-
dinates may appear to be more complicated. However, its length is due to the
need of separately considering the neighbours of the origin and not because of
an increased complexity.

In this case study we are concerned with mutation rates and their influence
on the system behaviour. Therefore, their total values for each position have
to be kept constant irrespective of the number of neighbours. Introducing space
means technically multiplying the number of transitions (one for each direction).
To counterbalance this effect, we scale the transition rates by dividing them by
N , where N is the number of neighbours.
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3.2 Controlling the Spatial Dynamic Development of the Colony

Controlling Colony Spreading. The probability of staying with the parent
or being displaced to a neighbouring position is modelled differently depending
on the representation of space.

In the circular case the probability of a bacteria to be displaced to a neigh-
bouring position has to take into account the size of the current position, because
the area of the annular sectors is variable. We employ the interior-edge model de-
scribed in Fig. 5 to capture this aspect. Considering a particular annular sector,
the only bacteria which are able to be displaced from this sector to a neighbour-
ing sector are the ones lying on the edge. Assuming that each bacteria can move
in 8 directions (N, NW, W, SW, S, SE, E, NE) or remain in situ, only three
out of the nine movements of the bacteria on the edge will be to a neighbouring
position. The bacteria which lie in the corner are not treated separately in our
approach. Thus, the probability of being displaced to a neighbouring position is:

P =
3

9
∗ Areaedge
Areagrid position

(3)

and the probability of staying with the parent is 1 − P . Areaedge is given by
the maximum area which can be occupied by bacteria of size 1x1 μm located
around the edge. The difference between the edges and interior of an annular
sector is depicted in Fig. 5. Areagrid position is computed as the total area of the
annular sector. Both areas depend on the index i of the annulus to which the
sector belongs. The value of i is set to 1 for the origin and is incremented with
each enclosing annulus. Thus, the values of the areas are:

Areaedgei =
2rN + 2πr(2i+ 1)

MN
, Areagrid positioni

=
πr2(2i+ 1)

M2N
(4)

where M is the total number of annuli and N the total number of sectors. A
step by step description of how the values of Areaedge and Areagrid position are
computed is given in Appendix C provided in the supplementary materials.

As the area of annular sectors increases, the ratio between the area on the
edge and the total area becomes smaller which means that the probability of a
bacterium to be displaced to a neighbouring position decreases. On the other
hand, in the rectangular case the area of the grid positions is constant which
means that the model from the circular case would impose a constant prob-
ability for all positions in the grid. To add more flexibility to the model, the
probability of staying with the parent or being displaced to a neighbouring posi-
tion is modelled using two preference factors γ and ω without changing the total
transition rate.

Increasing γ increases the preference to stay with the parent, while decreas-
ing γ increases the preference to be displaced. Conversely, increasing ω increases
the preference to be displaced, while decreasing ω increases the preference to stay
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Fig. 5. Interior-edge model used for the circular geometry in order to represent the
probability of a bacterium to be displaced to a neighbouring position. Bacteria lying
on the edge are highlighted in yellow, bacteria lying in the interior in white and the
annular sector boundary in blue.

with the parent. In the general case, the probabilities of staying with the parent
or being displaced to a neighbouring position are:

Pstay with parent =
γ

γ + (#neighbours ∗ ω)

Pdisplace to neighbour =
ω

γ + (#neighbours ∗ ω)

(5)

In the rectangular case, #neighbours is equal to 3 if the position on the grid
is in the corner, 5 on the edge and 8 in the interior. Conversely in the circular
case, #neighbours is equal to 5 on the edge, 8 in the interior, 6 in the annulus
immediately enclosing the origin and “the number of sectors” for the origin.

All probabilities are encoded in the rate function of the transition division,
irrespective of the employed geometry.

Controlling Thickness. The bacteria generated by cell division can pile
up on top of each other and thus increase the colony thickness at that grid
position. This thickness is limited because of the cells’ requirements for access to
oxygen and nutrients. In order to control the thickness we introduce a constant
ρ, denoted as POOLSIZE in the SPN C model, which limits the maximum
number of cells at a certain grid position. The constant ρ is set to give room for 26
generations. The entire set of colour-related definitions common to both circular
and rectangular spatial representations and the final version of the models are
given in Appendix A and D, provided in the supplementary materials. Rate
functions are not described here due to space limitations, but they are defined
in the computational models made available as supplementary materials.

The only structural difference between the models is that polar coordinates
require additionally one Petri net place and two transitions, which are high-
lighted in green colour in the model (see Appendix D, Fig. 10, provided in the
supplementary materials). The pre-transition of the place pool accounts for the
variable pool size (volume) depending on the annulus to which each sector be-
longs. The extra place src index and its pre-transition record to which annulus a
given sector belongs, information which is used to adapt the rate of the transition
division. A future version of our modelling tool will allow specifying a variable
initial marking for a coloured place and accessing the index of a position in
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the grid without the need of additional places and transitions. Henceforth, this
overhead should not be taken into consideration when comparing the spatial
representations.

4 Analysing Phase Variation

4.1 Computational Experiments

The Petri nets were constructed using Snoopy [11], recently extended to support
coloured Petri nets [6]. Simulations were run with Snoopy’s built-in stochas-
tic simulator and Marcie [7]. Simulation traces have been further processed by
customized C++ programs, and finally visualised as images or mp4 movies.

All computational experiments were performed on automatically unfolded
Petri nets. Unfolding the coloured Petri net for a 101×101 grid using a rectan-
gular geometry yields an uncoloured Petri net with 30,605 places and 362,405
transitions with an unfolding time of 780 seconds on a regular desktop computer
(Intel(R) Core(TM) i5-2500 CPU @ 3.30 GHz processor, 2 GB DDR3 RAM).
Similarly, unfolding a coloured Petri net of the same dimensions using a cir-
cular geometry yields an uncoloured Petri net with 40,406 places and 382,191
transitions with an unfolding time of 2000 seconds. The number of places and
transitions is higher in the circular case due to the overhead required by the
current Snoopy version for recording to which annulus each sector belongs.

The unfolded Petri net is simulated using the Gillespie algorithm [4]. The out-
put of the simulation comprises two traces for each grid position, corresponding
to the two phenotypes A and B. The analysis follows the development over time
of the proportion of the given phenotype in the total population, and the for-
mation of the associated patterns. This requires converting the traces from the
stochastic simulations into 2D representations, see Fig. 6, and analysing the de-
velopment of the 2D sector-like patterns over time. We expect that the model
will finally allow the prediction of mutation rates and fitness by counting and ex-
tracting information from the pattern segments, which in the future could give
new insights into the population dynamics of mutation. Currently, the model
predicts behaviour which has not been measured so far in the wet lab in the
sense that it generates a time series description of the evolution of the patterns
in the bacteria colony, while wet lab data just provide snapshots of final states.

4.2 Parameter Scanning

When the mutation rates are fixed, different combinations of values for param-
eters ρ and ω will result in different simulation outcomes. One batch of simula-
tions was run for each parameter ρ and ω by choosing random values from the
parameter space in order to observe how the behaviour is affected.

Changing ρ. In the first batch of simulations, all parameters were kept con-
stant, except ρ, which had a different value for each run. The values for ρ were
selected by starting with an initial value and linearly increasing it after each run.
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Fig. 6. 2D representation of the final state of 4 stochastic simulations, 2 for rectangular
(left) and 2 for circular (right), illustrating the development of sector-like patterns. Due
to the stochastic nature of the simulations, the output is different in every run. The
value of propB, see Equation 2, is encoded by colour. Yellow indicates patches with
high density of phenotype B, dark purple patches of high density of phenotype A, red
patches of approximately equal proportions. The black background shows the grid area
not covered by phenotype B.

In the rectangular case the volume or capacity is constant throughout the grid,
whereas in the circular case it is not. Therefore, ρ has a different interpretation
depending on the chosen spatial representation. For comparison purposes, it is
better to consider the maximum height of the colony which is constant through-
out the entire grid for both geometries. Experiments with the same heights and
corresponding ρ’s were carried out for both geometries and two characteristic
results for each one of the geometries are depicted in Fig. 7a-7d.

Increasing the value of the parameter ρ increases the maximum height of each
grid position which implies that more bacteria can pile up onto each other. Since
the number of generations is fixed and the maximum height limit of the colony
was increased, it is to be expected that the final width of the colony is reduced;
this can be observed in Fig. 7a-7d. The value of ρ was chosen for both geometries
in such a way that the most outwards bacteria with respect to the centre do not
reach the edge of the grid. The reason for this is that we expected some back-
propagation of bacteria from the edge of the grid to affect the final outcome of
the simulation.

Changing ω. The second batch of simulations changed only the value of ω
for each run. Similar to the selection of values for ρ, the values for ω have been
randomly selected from the entire search space. Images representing the final
states of two simulations for each geometry are given in Fig. 7e-7h. The proba-
bility of the offspring to stay with the parent or be displaced to a neighbouring
position depends on the dimensions of the grid position. All grid positions are
equally-sized in the model using Cartesian coordinates, which means that the
probabilities of staying/being displaced are constant. However, the area of the
grid positions in the model using polar coordinates is different, which means
that the probabilities are different as well. The value of ω specified as caption
for the polar coordinates model in Fig. 7e-7h corresponds to the most outward
annular sectors (i.e. annular sectors with the biggest area).

Considering that the value of γ is fixed, the preference of the offspring to be
displaced to a neighbouring position is directly proportional to the value of ω.
Increasing ω increases the chance of the offspring to be displaced which means
that the clear cut between high and low density areas in the images fades away.
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(a) h = 12,
ρ = 10000

(b) h = 29, ρ = 26000 (c) h = 12,
ρ = 80

(d) h = 29,
ρ = 200

(e) ω = 1 (f) ω = 500 (g) ω = 1 (h) ω = 500

Fig. 7. Different values of the parameter ρ, and implicitly maximum height (h), for the
Cartesian coordinate system (a, b) and the polar coordinate system (c, d). Different
values of the parameter ω for the Cartesian coordinate system (e, f) and the polar
coordinate system (g, h).

Thus, in Fig. 7e-7h the images corresponding to a higher value of ω have a more
uniform distribution of concentrations than the ones in which ω was smaller.

4.3 Sector Analysis

In the beginning, the analysis of the sectors was done by looking at the images
of the colony at different time points and deciding if the sector-like patterns
are similar to the ones in the wet lab. Unfortunately, only few images from the
wet lab are available. New wet lab experiments are ongoing, but images of the
colonies can not be provided yet.

For the purpose of improving the assessment of results, there was a need to
formalise the analysis of sectors. The following set of measures was defined to
describe the patterns from the final state of the simulation: Area, angle described
by the sides, distance from the centre of the grid, and the total number of sectors.

Using specific image processing techniques from the open source computer
vision library OpenCV [1], a sector detection module was implemented which
takes images as input. The main steps of the algorithm are given in Appendix
E.1, provided in the supplementary materials.

The advantage of the algorithm working directly with images and not with
the raw output of the simulation is that the images can originate from either
dry or wet lab. Thus, our analysis approach is generic. Since the experiments in
the wet lab are still ongoing, the image processing procedure was validated only
on in silico generated images, but our expectation is that the approach should
work similarly well on images from the wet lab.
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Results. One thousand stochastic simulations were run for both the rectan-
gular and circular model with an average simulation time of 50 minutes. Images
were generated from the final states of the simulations which were then provided
as input to the sector analysis module. An example of the result of the sector
detection procedure for each geometry is depicted in Appendix E.2, provided in
the supplementary materials.

The output of the analysis procedure are csv files containing information about
the area, angle, distance from the centre and number of detected sectors. The
averaged results from all simulations for both the rectangular and circular case
are described in Table 1. We employed a two-sample statistical test for compar-
ing the results. The data corresponding to all measures and both geometries was
tested for normality using the Shapiro-Wilk [17] and the Q-Q plot [21] meth-
ods. In all cases the null hypothesis, i.e. that the sample data is drawn from a
normal distribution, was rejected. Thus, we tested if the sample data for both
geometries is drawn from the same distribution using the Mann-Whitney [9,20]
non-parametric test. Similarly, the null hypothesis, i.e. that the sample data
are drawn from the same distribution, was rejected. The p-values obtained for
all tests are given in Table 2, Appendix E.3, provided in the supplementary
materials.

Table 1. Rectangular (�) and circular (©) sector analysis with μ – mean, σ – standard
deviation, cv – coefficient of variation. Area and distance (from the centre) are given
with respect to total grid area and maximum distance from the centre.

Measures Area Distance Angle Sectors
� © � © � © � ©

μ 3% 5% 41% 39% 56◦ 78◦ 1.47 1.78
σ 2% 2% 17% 16% 18◦ 25◦ 1.14 1.03
cv 0.93 0.62 0.40 0.41 0.32 0.32 0.77 0.58

Both area and angle have higher values in the circular than in the rectangu-
lar case, which is to be expected due to the different 2D space discretisation.
Sectors in the circular geometry inherently have a non-zero degree angle asso-
ciated, while rows in a rectangular geometry do not. Moreover, the area of the
annular sectors is increasing as they are farther away from the centre of the grid.
Conversely, the area of all positions in the rectangular geometry is constant. The
number of sectors is slightly bigger in the circular case because the bacteria from
the starting position can be displaced in maximum “number of sectors” direc-
tions, while in the rectangular case only in maximum 8. Finally, the distance
of the sectors from the grid centre is approximately equal for both geometries.
Thus, according to these results the distance from the centre is the only reli-
able measure which has similar values for both geometries. Running batches of
more simulations will increase the accuracy of the results and more fine-grained
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conclusions can be drawn. Histograms and corresponding normal distribution
curves for all measures have been plotted and added to Appendix E.3 in order
to complement the analytical comparison of the results described above.

5 Summary

In this paper we have described a methodology of modelling bacterial colonies
which evolve in time and space using rectangular and circular geometries, and a
procedure for sector-like patterns detection and analysis.

Currently it is not possible to state which geometry is more appropriate for
the phase variation case study, because there are not sufficient images from the
wet lab against which to validate our results. The emphasis of this paper is on
the generic methodologies which we developed and which can be employed for
different case studies modelled using coloured Petri nets. Work is ongoing in the
wet lab to generate images of actual bacterial colonies which will then be used
as targets for model fitting in order to generate more accurate computational
models for describing bacterial colony growth under different conditions.

In the future we plan to extend our spatial modelling framework from 2.5D
(i.e. 2D and implicitly modelling height) to full 3D representation which would al-
low the simulation and observation of more detailed aspects of bacterial colonies.
We also want to extend our sector detection and analysis procedure from working
with 2D sector-like patterns to linear and non-linear 3D surfaces.

All supplementary materials and appendices are made available at http://
people.brunel.ac.uk/~cspgoop/data/cmsb2013.
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Abstract. We use PSMaude to define a formal real-time model of the
aggregation and interneuronal propagation of the α-synuclein (α-syn)
protein causing Parkinson’s disease (PD). To the best of our knowledge,
this is the first executable formal model of the propagation of α-syn
aggregates through a neural network that is dynamically changing as
a consequence of neuronal death. We then define different probabilistic
strategies on top of our model to formalize the aggregation and propa-
gation of α-syn in three different scenarios: (i) in a healthy person, (ii)
in a person predisposed to PD, and (iii) in a predisposed person that is
given some treatment with rapamycin. We use PSMaude to simulate our
model in these different scenarios.

1 Introduction

The α-synuclein (α-syn) is a protein with unknown function that has been linked
to the progression of Parkinson’s disease (PD) [21]. It is necessary to under-
stand how this process evolves under different pathobiological scenarios, e.g., in
a healthy brain, or in a brain that is predisposed to PD, in order to find different
ways to prevent or delay the onset and progression of PD. It would therefore be
very valuable to have a model of the spread of this protein that would allow us
to reason about the effect of different therapies, for example by realistic simula-
tions and other forms of formal analysis. However, defining useful models of the
spread of α-syn poses a number of challenges for formal modeling, including:

– The need to model both aggregation and propagation of α-syn in the brain.
– The need to model brain regions. Neurons behave differently in different re-

gions; e.g., neurons in the midbrain can withstand less toxicity than neurons
in other regions. Furthermore, α-syn propagates differently between neurons
in the same brain region and between neurons in different brain regions.

– To model propagation, a model of the neural networks, that are changing
dynamically due to the aggregation-induced death of neurons, is needed.

– It is also important to make a distinction between the different types of
aggregates, since they have different dynamics and grow at different rates.

– Both probabilistic and real-time behaviors must be modeled.

A. Gupta and T.A. Henzinger (Eds.): CMSB 2013, LNBI 8130, pp. 92–105, 2013.
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– The probabilities with which certain events take place depend on both the
age and the state of the brain, leading to complex feedback loops.

– The probabilities differ in the three pathobiological scenarios that we would
like to analyze (healthy person, person predisposed to PD, and PD patients
receiving some treatment). It is desirable to have a modular way of modeling
the different settings without redefining the entire model.

This is a tall order, and we are not aware of any previous executable formal
model of the propagation of α-syn in (dynamically changing) neural networks.

In this paper, we use a recent extension of the rewriting-logic-based Maude
system [9], called PSMaude [4], to formally model and simulate the aggregation
and propagation of α-syn under the above scenarios. A novel feature of PSMaude
is its expressive probabilistic strategy language that is used to quantify the nonde-
terminism in a probabilistic rewrite theory to obtain a fully probabilistic model
that can be simulated and statistically model checked in PSMaude.

We model different types of α-syn aggregates, cell defenses against aggre-
gation, the breakage of aggregates, the propagation of aggregates through the
neural network, and the death of neurons due to high toxicity, that leads to a
dynamically changing topology of the neural network. We then use PSMaude
to formalize the different pathobiological conditions. In particular, we simulate
the effect of rapamycin—a drug known to increase the efficiency of cell clearance
mechanisms—in decreasing pathology in persons predisposed to PD.

We meet the above modeling challenges as follows:

– The expressiveness of rewriting logic allows us to define a hierarchical object-
oriented model that models the brain as a network of different brain region
objects, each of which contains its neural network, and where inside each
neuron we have a multiset of α-syn species.

– We use well established techniques from Real-Time Maude [19] to model
real-time behaviors in object-oriented PSMaude models.

– PSMaude’s strategy language enables the following modeling methodology:
We model all possible actions by rewrite rules. The different probabilities
with which the various events in the three scenarios (healthy, predisposed,
and taking medication) take place are then defined by three probabilis-
tic strategies on top of our “base model.” Furthermore, these probabilistic
strategies can depend on both the age and the state of the brain.

A major obstacle to modeling α-syn aggregation and propagation is that im-
portant parameters, such as the different kinetic rates, are unknown. We have
incorporated all the medical facts we are aware of into our model, but had to es-
timate a number of parameters. For example, the probabilities of certain actions
change with age, and we have defined the probabilistic strategies as functions
of the age of the person. However, the values of these probabilities are largely
unknown. The point is that once the numbers become known, they can very
easily be plugged into our model.

We then perform PSMaude simulations in the different settings. Since other
formal approaches typically only perform Gillespie simulations, and since the size
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and complexity of reasonably realistic models and states make it hard to perform
meaningful statistical model checking, we have only simulated our model.

Due to the space limitations, large parts of our model and strategies cannot
be included in this paper. We refer to the longer report [5] for additional details
and discussions; in particular, that report mentions and cites a lot of recent work
in PD research that provides the basis for our model.

2 Preliminaries

Rewriting Logic and Maude. In rewriting logic the data types of the sys-
tem are defined by an algebraic equational specification (Σ,E) (where Σ is a
signature declaring sorts, subsorts, and function symbols, and E is a set of con-
ditional equations), and the system’s local state changes are defined by a set R
of rewrite rules (∀�x) l : t −→ t′ if cond , where l is a label, t and t′ are terms,
cond is a conjunction of equalities, and �x is the set of all variables in the rule. In
probabilistic rewrite theories [2] the righthand side t′ may contain variables that
do not occur in t, and that are instantiated according to a probability measure
taken from a family πl of probability measures—one for each instantiation of
the variables in t.

Maude [9] is a high-performance simulation, reachability analysis, and LTL
model checking tool for rewrite theories. Conditional rules are written crl [l]:

t => t′ if cond . In object-oriented Maude specifications, the state is a term of
sort Configuration denoting a multiset of objects and messages, with multiset
union denoted by juxtaposition. A declaration class C | att1:s1, . . . , attn:sn
declares a class C with attributes att1, . . . , attn of sorts s1, . . . , sn, respectively.
Objects are represented as terms < o:C | att1:val1, . . . , attn:valn >, where o is
the object’s identifier, C is the object’s class, and val1, . . . , valn are the attribute
values. If the sort si of an attribute att i is Configuration, the attribute contains
a subconfiguration, giving a hierarchical specification. A rule of the form

rl [l]: < O : C | a1 : x, a2 : O’, a3 : z > < O’ : C’ | b1 : w, b2 : O >

=> < O : C | a1 : x + w, a2 : O’, a3 : z > < O’ : C’ | b1 : w + x, b2 : O > .

defines a family of transitions in which two objects O and O’, of classes C and
C’, resp., synchronize and update their attributes; e.g., O adds the value w of
the attribute b1 of O’ to its attribute a1 whose current value is x. “Irrelevant”
attributes (such as a3 and the righthand side occurrence of a2) may be omitted.

PSMaude. PSMaude [4] allows the probabilistic quantification of nondeter-
minism in probabilistic rewrite theories. The ways in which the nondeterminism
is quantified are specified as probabilistic strategies on top of the “base” non-
deterministic (and possibly probabilistic) model. PSMaude extends Maude by
adding support for specifying both probabilistic rules and probabilistic strate-
gies, and by providing a probabilistic rewrite command and a statistical model
checker to analyze a probabilistic rewrite theory controlled by a probabilistic
strategy.1 Such a strategy consists of three parts: (i) a rule strategy that spec-
ifies the relative likelihood of applying a certain rewrite rule by giving each

1 PSMaude is available at http://heim.ifi.uio.no/~lucianb/prob-strat/

http://heim.ifi.uio.no/~lucianb/prob-strat/
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rule (label) l a weight wl(s) that may depend on the state s; (ii) a context
strategy that specifies the relative likelihoods of different components in the
system to be involved in an application of a rule; (iii) a substitution strat-
egy that specifies the relative likelihoods of the components involved in a rule
application to have different roles in the event. A rule strategy is defined by
psdrule RuleStrat := given state: s is: ( l1 -> wl1(s) ; . . . ; ln -> wln(s) ),
where wli(s) is the relative weight of the rule labeled li in state s. A context
strategy psdcontext CtxStrat := given state: s rule: l is: C(s) -> wctx (s, l),
defines the relative weight of applying the rule l in context C(s) to be wctx (s, l).

Parkinson’s Disease. Parkinson’s disease (PD) is a movement disorder charac-
terized by the accumulation of a certain type of protein aggregates in the human
brain. There are two main forms of PD: (i) sporadic PD, thought to be due to
exposure to high levels of environmental stress, e.g., exposure to high levels of
pesticides [22]; and (ii) familial PD, due to a genetic predisposition to PD.

The brain is divided into several regions, shown in Fig. 1, each containing
neurons that are connected to one another and to neurons in neighboring regions.
The space surrounding the neurons is called extracellular space. As shown in
Fig. 2, a neuron is composed of a cell body, called soma, a number of dendrites,
and an axon. A connection between an axon terminal and a dendrite of another
neuron is called a synaptic connection.

Fig. 1. Typical progression of PD (left) and connections between brain regions (right)

The aggregates in PD are mainly composed of a protein called α-synuclein
(α-syn), that is synthesized in a neuron’s soma. Single α-syn proteins, called
monomers, may be in two different conformations: a native one, and a misfolded
one that is believed to play a key role in PD development [6]; they may also
bind to form large aggregates. Three main types of aggregates are linked to PD
pathology: (i) small soluble aggregates, called oligomers, or protofibrils ; (ii)mod-
erately large insoluble aggregates called fibrils, that may fragment; and (iii) large
insoluble aggregates, called Lewy bodies (LB), the pathological hallmark of PD.
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Fig. 2. The main means of propagation of pathogenic aggregates in PD

α-syn may spread through a neural network in several ways, shown in Fig. 2:
(i) extracellular propagation between two neurons whose somas are close, but
that are not connected synaptically; (ii) transsynaptic propagation between neu-
rons in neighboring regions; (iii) release into extracellular space through the
ruptured membrane of a dying neuron, from where α-syn may be uptaken by
neighboring neurons.

A neuron has several defense mechanisms against protein aggregation, includ-
ing: (i) the proteasome that regulates the concentration of proteins by degrading
both native and misfolded proteins; and (ii) the lysosomes that may degrade
any number of proteins and aggregates at the same time by autophagy. PD pa-
tients show deficient cell defenses against aggregation and an increase in certain
pathogenic pathways that increase the aggregation propensity and toxicity of
α-syn. A promising approach in treating PD is to increase the efficiency of the
lysosomal system by enhancing autophagy inside each neuron. Following this ap-
proach, the drug rapamycin was shown in a preclinical PD model [20] to enhance
autophagy and decrease α-syn aggregation and neurodegeneration.

3 Formalization of α-syn Aggregation and Propagation

This section presents a PSMaude model of the aggregation and propagation of
α-syn in the brain. Our model is a hierarchical object-oriented one, in which one
brain object contains a set of brain region objects, each containing the region’s
neural network, where each neuron object contains a multiset of α-syn monomers
and aggregates. Our model describes all possible behaviors in the system and has
15 rewrite rules; we show a few of them and refer to [5] for more details.

The brain and the brain regions are modeled as objects of the classes

class Brain | age : Nat, brainRegions : Configuration .

class BrainRegion | neuralNetwork : Configuration, neighbors : OidSet .

where the age attribute denotes the age of the brain in hours, and brainRegions

contains a set of BrainRegion objects, whose neighbors attribute denotes the
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names of the neighboring brain regions, and neuralNetwork denotes the set of
neurons and extracellular spaces in the brain region. Such neurons and extracel-
lular spaces are instances of the classes Neuron and ExtSpace, respectively:

class ProteinSpace | proteins : ASynMSet .

class Neuron . class ExtSpace . subclasses Neuron ExtSpace < ProteinSpace .

where proteins is a multiset of α-syn monomers and aggregates, giving the
contents of a neuron or extracellular space. Oligomers are represented by terms
oligomer(m) and aggregation nuclei by aggNucleus(m), with m a “++”-separated
multiset of α-syn monomers. The term dly(s, τ) represents a delayed species, i.e.,
a species s which can only take part in further biochemical reactions after τ time
units have elapsed.

We identify neurons and extracellular spaces by pairs nid(g,n) and eid(g,n),
respectively, where g is the name of the brain region in which they are located,
and n is a number that identifies them inside region g. In this paper we assume
a simplified arrangement of neurons within the same brain region in a square
lattice, as shown in Fig. 3, that we formalize by a functions reachable(n,n′)
which is true iff the neurons n and n′ are neighbors or are the same neuron.
However, our model is parametric in the topology of the neural network, and
can easily be adapted to a desired topology by redefining the function reachable.

An oligomer that has shrunk to a single monomer is a monomer. If instead its
size is larger than a certain bound, it is an aggregation nucleus, and vice versa,
and an aggregation nucleus can grow to a Lewy body:

var MN : ASynMonomer . var MS : ASynMonomerMSet .

eq oligomer(MN) = MN .

ceq oligomer(MS) = aggNucleus(MS) if noMonomers(MS) > maxOligomerSize .

ceq aggNucleus(MS) = oligomer(MS) if noMonomers(MS) <= maxOligomerSize .

ceq aggNucleus(MS) = LB(MS) if noMonomers(MS) > maxAggNucleusSize .

If the number of aggregates in a neuron exceeds its toxicity threshold, the neuron
dies and all its content is released into the extracellular space in its vicinity:

ceq < nid(S, N) : Neuron | proteins : ASYNMSET >

< eid(S, N) : ExtSpace | proteins : ASYNMSET’ >

= < eid(S, N) : ExtSpace | proteins : ASYNMSET’ ASYNMSET >

if toxicity(ASYNMSET) > toxicityThreshold(S) .

where toxicityThreshold(S) is the minimum number of aggregates to cause the
death of a neuron in the brain region S, and toxicity(ASYNMSET) is a weighted
sum of the number of different α-syn species in ASYNMSET [5].

α-syn Aggregation and Dissociation. The following rules model the formation of
different types of aggregates inside a neuron’s soma. Based on an in vitro study of
α-syn aggregation in [14], we approximate the time it takes for a single monomer
to bind as follows: 10 hours to bind to another monomer, 5 hours to bind to an
oligomer, and 1 hour for a monomer to bind to an aggregation nucleus.
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An oligomer inside a neuron’s soma may recruit a (native or misfolded) α-syn
monomer MN inside its soma, or it may lose one:

rl [oligomerElongation]:

< O : Neuron | proteins : ASYNMSET oligomer(MS) MN >

=> < O : Neuron | proteins : ASYNMSET dly(oligomer(MS ++ MN), 5) > .

rl [oligomerDissociation]:

< O : Neuron | proteins : ASYNMSET oligomer(MS ++ MN) >

=> < O : Neuron | proteins : ASYNMSET dly(oligomer(MS), 5) dly(MN, 5) > .

The following rule models how an aggregation nucleus inside a neuron’s soma
may break into two aggregates which may equal either aggregation nuclei or olig-
omers. We estimate the duration of a single such fragmentation to 10 hours [16]:

rl [aggNucleusFragmentation]:

< O : Neuron | proteins : ASYNMSET aggNucleus(MN ++ NEMS ++ MN’ ++ NEMS’) >

=> < O : Neuron | proteins : ASYNMSET dly(aggNucleus(MN ++ NEMS), 10)

dly(aggNucleus(MN’ ++ NEMS’), 10) > .

α-syn Propagation. The transsynaptic propagation of protein aggregates be-
tween two brain regions takes place along the thick edges represented in Fig.
3, denoting the axons of neurons. The extracellular propagation of α-syn (via
exocytosis and endocytosis) may only take place between neighboring neurons
within the same brain region. Based on the results in [12], we assume that any
propagation event takes 16 hours for small aggregates, and is instantaneous for
α-syn monomers.

neurons in midbrain

neurons in lower brainstem

Fig. 3. Square lattice arrangement of neurons within each brain region, and possible
means of transsynaptic propagation between neurons in neighboring brain regions

A small α-syn species SMALL can be transported transsynaptically2 through the
axon of a neuron nid(S,N) in the brain region S to some neuron nid(S’,N’) in a
neighboring region S’, if these neurons have the same or neighboring positions
in their corresponding lattices (as shown by the thick lines in Fig. 3):

2 We assume that Lewy bodies cannot be propagated this way due to their large size.
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crl [synapticPropagation]:

< S : BrainRegion | neighbors : (S’, OS),

neuralNetwork : < nid(S, N) : Neuron | proteins : ASYNMSET SMALL > NNET >

< S’ : BrainRegion |

neuralNetwork : < nid(S’, N’) : Neuron | proteins : ASYNMSET’ > NNET’ >

=> < S : BrainRegion |

neuralNetwork : < nid(S, N) : Neuron | proteins : ASYNMSET > NNET >

< S’ : BrainRegion |

neuralNetwork : < nid(S’, N’) : Neuron | proteins : ASYNMSET’

dly(SMALL, if SMALL :: ASynMonomer then 0 else 16 fi)

> NNET’ >

if reachable(N, N’) .

Cell Defenses. A neuron’s lysosomal system may degrade small α-syn species
by autophagy:

rl [lysosomalAutophagy]: < O : Neuron | proteins : ASYNMSET SMALL >

=> < O : Neuron | proteins : ASYNMSET > .

Time Elapse. We are only aware of one in vitro study of the kinetics of α-
syn aggregation [14], which does not consider the stochastic fluctuations in the
kinetics, but instead provides kinetic curves based upon which we estimate fixed
durations of these reactions. We have therefore defined a real-time model with
deterministic delays instead of stochastic delays, where the following rule models
the elapse of time:

rl [tick]: < "Brain" : Brain | age : T, brainRegions : REGIONS >

=> < "Brain" : Brain | age : T + 1, brainRegions : delta(REGIONS, 1) > .

where delta(m, τ ′) defines the effect of time elapse by τ ′ units on the given mul-
tiset m, by decreasing the remaining delay τ of each delayed species dly(s, τ) by
τ ′ units in the neural network of each brain region [19]. This tick rule, advancing
time by one hour, may also be applied when instantaneous rules are enabled.

4 Probabilistic Strategies

The model in Section 3 specifies all the possible actions that may happen in the
aggregation and propagation of α-syn. However, it does not take into account
that some events happen with higher probability than others. One could of
course incorporate these probabilities directly into the model, but that solution
has some drawbacks: (i) given the complex global dependencies between rules,
it would be quite hard and ugly to try to encode such global properties into
“local” probabilistic rewrite rules; and (ii) these probabilities are different for
the different kinds of individuals that we want to analyze. Therefore, we follow
a modeling and analysis methodology made possible by PSMaude: A simple and
uncluttered rewrite theory defines all possible behaviors. The different global
probabilities are then defined as different probabilistic strategies in PSMaude—
on top of the “base” model—allowing us to probabilistically simulate our model.
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In this section, we define three probabilistic strategies that formalize different
probabilistic settings: (i) that of a healthy person, (ii) that of a person predis-
posed to sporadic PD, and (iii) that of a PD patient who is given a daily dose
of rapamycin. These strategies are quite complex. For example, the efficiency of
the body’s defense mechanism decreases with age; therefore, the probability of
applying a rule modeling such a defensive action decreases with the age of the
brain. Likewise, the efficiency of a neuron’s defense mechanisms is inversely pro-
portional to the number of α-syn aggregates in its soma, i.e., to α-syn toxicity,
which in the next stages promotes α-syn aggregation.

Since the kinetic rates for the different processes involved in the aggregation
and propagation of α-syn are currently unknown, the weights that we set in the
following strategies only approximate reality. We also made a series of assump-
tions, e.g., that the synthesis of α-syn and the propagation of α-syn monomers
and aggregates take place at the same rate in all brain regions, etc. In our strate-
gies they are encoded as uniform distributions over the corresponding choices.
We refer to [5] for details.

Healthy Individual. We first set the likelihoods of different rules to be applied in
the brain of a healthy person, who is not predisposed to PD:

psdrule HealthyRuleStrat :=

given state: < "Brain" : Brain | age : AGE, ATTS >

is: --- time elapse --- alpha-syn synthesis

( tick ) -> 20 ; ( synthesis ) -> 20 ;

--- monomer folding dynamics

( toMisfolded ) -> (70 + AGE quo 200) ; ( toNative ) -> 10 ;

--- aggregation dynamics

( dimerization ) -> (20 + AGE quo 400) ;

( oligomerElongation ) -> (20 + AGE quo 400) ;

( aggNucleusElongation ) -> (20 + AGE quo 400) ;

( oligomerDissociation ) -> 2 ;

( aggNucleusFragmentation ) -> 5 ;

--- cellular defense mechanisms

( proteasomalDegradation ) -> (50 / ((AGE quo 200) + 2)) ;

( lysosomalAutophagy ) -> (50 / ((AGE quo 200) + 2)) ;

--- propagation dynamics

( exocytosis ) -> 8 ; ( endocytosis ) -> 4 ;

( synapticPropagation ) -> 8 ;

--- extracellular dynamics

( dissolution ) -> 1 .

Since the weight of the exocytosis rule is 8, and the weight of endocytosis

is 4, the probability of applying the exocytosis rule is twice that of applying
the endocytosis rule in a state where both rules are enabled. The probabili-
ties depend on the current age, e.g., the relative weight of rule toMisfolded is
70 + AGE/200 (where AGE is the value of the age attribute in the Brain object
in the current state); i.e., the probability of applying this rule increases with
a person’s age [10]. Likewise, the probability of selecting a rule modeling cell
defense decreases with age [10].



Formalizing α-Synuclein Aggregation and Propagation in PSMaude 101

A context strategy defines to which “components” a selected rule should be
applied. We show the context strategy for the rule toMisfolded, which mod-
els how native α-syn monomers may become misfolded. The probability for a
monomer to fold into a non-native conformation is different from one brain re-
gion to another [15], and is given by a function oxStressVulnerability that also
depends on the number of oligomers in the neuron.

psdcontext HealthyContextStrat :=

given state:

< "Brain" : Brain | age : AGE,

brainRegions : < S : BrainRegion | neighbors : OS,

neuralNetwork : < O : Neuron | proteins : ASYNMSET > NNET >

REGIONS >

rule: toMisfolded

is: (< "Brain" : Brain | age : AGE,

brainRegions :

< S : BrainRegion | neighbors : OS, neuralNetwork : [] NNET >

REGIONS >)

-> ( oxStressVulnerability(S, noOligomers(ASYNMSET)) ) .

This context strategy sets the relative weight of applying the rule toMisfolded to
neuron O in region S to oxStressVulnerability(S, noOligomers(ASYNMSET)) (the
hole variable [] denotes the place of the rewrite).

Individual Predisposed to PD. In the sporadic form of PD, the likelihood of α-syn
synthesis is the same in predisposed individuals as in healthy people. However,
by assigning a larger weight 90+ AGE/200 to rule toMisfolded we model that for
persons predisposed to sporadic PD, different causes for oxidative stress are pos-
sible. Similarly, we set a larger weight of 40+ AGE/400 to the rules dimerization,
oligomerElongation and aggNucleusElongation, to model how oxidative stress
due to aging, as well as other factors in individuals predisposed to sporadic
PD, further promote α-syn aggregation. Finally, the cell defense mechanisms
are also about 5 times less efficient than in a healthy individual; we therefore
divide by 5 the weights associated with the rules proteasomalDegradation and
lysosomalAutophagy. The context and substitution strategies are the same as for
healthy individuals.

Predisposed Individual Treated with Rapamycin. In this scenario, the strategies
are the same as in the previous setting, except for the rule weight associated with
the rule lysosomalAutophagy, that is changed to formalize the administration of
a daily dose of rapamycin at time 00:00, whose effects we estimate to be present
for 6 hours [17]. As explained in Section 2, rapamycin enhances autophagy, and
based on [11] we estimate that while rapamycin is active, it roughly doubles the
efficiency of the lysosomal system:

( lysosomalAutophagy ) ->

((if AGE rem 24 < 6 then 100 else 50 fi) / ((AGE quo 200) + 2))
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5 Probabilistic Simulation in PSMaude

We use PSMaude to simulate the system under the different scenarios mentioned
in the previous section, from an initial state in which all neurons are empty,
except for those in the lower brainstem, in which we set an initial insult in each
neuron of 20 native and 20 misfolded α-syn monomers, as well as 20 oligomers
made up of 3 monomers, and 10 aggregation nuclei made up of 6 monomers.
Since we use approximate weights (due to missing kinetic data in the literature),
the graphs below are also approximating reality. We simulate our system for a
duration of a few months, that is enough to show some aspects of PD pathology,
such as the propagation and accumulation of α-syn in the brain, the formation
of Lewy bodies, and the effect of rapamycin. We refer to [5] for more details.

Healthy Individual. The results of the simulation in Fig. 4 show that α-syn also
can accumulate in large amounts in healthy people, in agreement with experi-
mental data [7], since aging influences α-syn aggregation. The graphs also show
that the initial insult almost disappears, so that the progression of the disease
seems to depend more on age than on the initial insult. The effect of aging is
seen by the increase in total α-syn and misfolded monomers and oligomers after
about 1000 hours. However, no neuronal death took place during the simulation,
indicating that cell defenses are efficient in a healthy individual, at least for a
few thousand hours.

Fig. 4. The amount of different α-syn species over time in a healthy person

Sporadic PD. The results in Fig. 5 show the effect on the lower brainstem, the
forebrain and the neocortex of taking rapamycin (the graph drawn in black).
With rapamycin, the formation of Lewy bodies throughout the brain is delayed,
and the total amount of aggregation nuclei is decreased. These graphs also show
that the aggregates eventually reached the neocortex.

6 Related Work

Many formal stochastic approaches to biochemical reactions rely on counting
abstraction, which represents a set of components by its number of elements
(see, e.g., [13]). This abstraction does not allow us to keep track of the size of
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Fig. 5. Effect of rapamycin on patients with sporadic PD

single aggregates, which is important, since, e.g., the probability of degrading an
aggregate is inversely proportional to its size. Our model gives a precise view of
α-syn aggregation that takes stochastic fluctuations into account. We also model
the dynamically changing neural networks and the intra-region and inter-region
propagation of α-syn, which affects its aggregation. In contrast, [16] provides a
deterministic differential equation model for protein aggregation in a single cell,
and assumes a continuous change of concentrations for aggregates of different
sizes. This model provides a view of the “average” dynamics of the aggregation
process, and is not accurate for small amounts of aggregates. Furthermore, it does
not consider the propagation of aggregates, which seems difficult to accomodate
in a differential equation model.

The quantitative and probabilistic extension of Pathway Logic (PL) in [1] is
also a rewriting-logic-based tool for modeling and analyzing biochemical path-
ways. PL focuses on a single cell, and does not support hierarchical models, nor
does it support the complex probabilistic strategies in this paper.

Bio-PEPA [8] requires a static hierarchical model structure, and hence makes
it hard to model dynamic aspects like the death of a neuron. It also does not
support advanced probabilistic strategies, although it allows defining different
kinetic laws for the reactions in the “base” model in a modular way.

In [18] the biochemical stochastic π-calculus has been used to model and
simulate a detailed model of α-syn aggregation and degradation at the single-cell
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level. This work does not consider the propagation of these proteins, and hence
does not model a multi-cellular neural network. Furthermore, their kinetic rates
are just constants, whereas in our model they are a function of the age and the
state of the brain.

In [3] a Maude model is given for the pathological pathways in Alzheimer’s
disease. This work is different from ours in several ways: (i) the pathways to
neurodegeneration in Alzheimer’s disease differ from those in PD; (ii) the model
in [3] is a purely qualitative model, modeling in detail the signaling pathway
for β-amyloid regulation. We do not model the pathological pathway in PD in
such detail, but we include a significant amount of probabilistic information,
providing both qualitative and quantitative insights. The model proposed in [3]
is also not object-oriented or real-time, and has a flat, single-cell system state.

7 Conclusions

We have used PSMaude, a recent probabilistic extension of Maude, to define
the first executable formal model of α-syn aggregation and propagation. We
then used probabilistic strategies to define the probabilistic behaviors in three
pathobiological scenarios, and used PSMaude to simulate the spread of α-syn in
these scenarios. Since the kinetic rates of most reactions are unknown, the actual
values used in our strategies may not be the correct ones. However, as further
experimental data become available about the kinetics of different pathological
processes, they could easily be incorporated into our model via the weights in
the probabilistic strategies.

Since different neurodegenerative disorders have been shown to be prion-like,
our model should be easily adaptable to model other diseases such as Alzheimer’s
and the Creutzfeldt-Jakob disease.

Due to the size and complexity of our model, we focus on simulation, and
restrict ourselves to analyzing α-syn aggregation and propagation in fairly small
neural networks. This is also the case with many existing approaches, which
mainly use the Gillespie stochastic simulation algorithm to analyze different
intracellular pathways, and rarely do a formal verification of such models. Nev-
ertheless, our tool should be optimized to also make feasible nontrivial statistical
model checking of α-syn aggregation and propagation in large neural networks.

Acknowledgments. We thank the anonymous reviewers for their very useful
comments on a previous version of this paper.
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Abstract. Kidney branching morphogenesis has been studied exten-
sively, but the mechanism that defines the branch points is still elusive.
Here we obtained a 2D movie of kidney branching morphogenesis in
culture to test different models of branching morphogenesis with physi-
ological growth dynamics. We carried out image segmentation and cal-
culated the displacement fields between the frames. The models were
subsequently solved on the 2D domain, that was extracted from the
movie. We find that Turing patterns are sensitive to the initial conditions
when solved on the epithelial shapes. A previously proposed diffusion-
dependent geometry effect allowed us to reproduce the growth fields rea-
sonably well, both for an inhibitor of branching that was produced in
the epithelium, and for an inducer of branching that was produced in
the mesenchyme. The latter could be represented by Glial-derived neu-
rotrophic factor (GDNF), which is expressed in the mesenchyme and
induces outgrowth of ureteric branches. Considering that the Turing
model represents the interaction between the GDNF and its receptor
RET very well and that the model reproduces the relevant expression
patterns in developing wildtype and mutant kidneys, it is well possible
that a combination of the Turing mechanism and the geometry effect
control branching morphogenesis.

Keywords: image-based modelling, kidney, branching morphogenesis,
signaling networks, in silico organogenesis.

1 Introduction

Theoretical models have long been used to understand developmental pattern-
ing processes. Recent advances in imaging and computing allow us to develop
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increasingly realistic models of developmental pattern formation that can be
validated with experimental data [1]. Such models open up new opportunities
in that validated models can be used to clarify underlying mechanisms and to
make predictions about further processes. The latter may enable a new field of
in silico genetics where mutations are tested computationally before creating
a mouse mutant. The advantage of such an approach is that models may pre-
dict a lack of phenotype because of compensating regulatory interactions that
would otherwise have been overlooked. In silico genetics can thus help to avoid
inconclusive experiments.

Most of the information about developmental processes are image-based and
patterns typically evolve on growing domains (Figure 1). The geometry of the
domain, in turn, can greatly affect model predictions. It is therefore important
to simulate models on such physiological, growing domains [2]. This requires the
development and combination of suitable techniques. In this paper we describe
the methodology to obtain the geometries and displacement fields of developing
kidneys that are undergoing branching morphogenesis. These can then be used
to test models that describe the processes that regulate branching by simulating

Fig. 1. Time course of kidney branching morphogenesis. The figure shows six out of
48 frames of a movie of kidney branching morphogenesis in vitro.
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Fig. 2. The core Network regulating Kidney Branching Morphogenesis. (A) The dimer
GDNF (G) binds GFRα1 and RET receptor (R) to form the GDNF-receptor com-
plex, G · R2. The complex induces the expression of the receptor, Ret, and of Wnt11
(W ). Moreover, signaling by the GDNF-RET receptor complex triggers bud outgrowth.
Adapted from Figure 1A in [15]. (B) Graphical representation of the ligand-receptor
interactions in the simplified Schakenberg-type Turing model (Equations 2).

the models on the extracted geometries and by comparing predicted signaling
spots and embryonic growth field.

The kidney collecting ducts form via branching of an epithelial cell layer
(Figure 1). During kidney development the ureteric bud invades the metanephric
mesenchyme around embryonic day (E)10.5 [3]. It is currently not possible to
image this branching process in utero. We therefore obtained the data by cul-
turing developing kidneys and by imaging the branching process over 48 hours.
In culture, most branching events in the kidney are terminal bifurcations and
to a lesser extent trifurcations, and only 6% of all branching events are lateral
branching events [4,5,6]. The branching pattern differs from the one observed
in the embryo, which is likely the result of the different geometric constraints,
but the core signaling mechanism should still be the same. The culture exper-
iments should thus be adequately suited to test models for this core signaling
mechanism.

At the core of the mechanism controlling branching appears to be the TGF-
beta family protein Glial-derived neurotrophic factor (GDNF) (Figure 2A). Thus
beads soaked with GDNF induce the outgrowth of extra ureteric buds in kid-
ney culture explants [6,3,7,8,9,10]. Based on the chemoattractive properties of
GDNF [11,12], it was suggested that branching of the ureteric bud is caused by
the attraction of the tips toward local sources of GDNF [13]. Mice that do not
express Gdnf, or the GDNF receptor Ret, or co-receptor GDNF family receptor
alpha (Gfrα1 ), do not develop kidneys [6,3,7,8,9,10,14]. GDNF signaling induces
Wnt11 expression in the epithelial tip of the ureteric bud and WNT signaling
up-regulates expression of Gdnf in the mesenchyme, which results in the estab-
lishment of an autoregulatory epithelial-mesenchymal feedback signaling loop.
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We have recently developed a model for the core network (Figure 2A) of
GDNF (G), RET (R), and WNT (W ) [15], which in non-dimensional form reads

Ġ = ΔG︸︷︷︸
diffusion

+ ρG0 + ρG
W 2

W 2 + 1︸ ︷︷ ︸
production

− δGG︸︷︷︸
degradation

− δCR
2G︸ ︷︷ ︸

complex formation

Ṙ = DRΔR︸ ︷︷ ︸
diffusion

+ ρR + νR2G︸ ︷︷ ︸
producation

− δRR︸︷︷︸
degradation

− 2δCR
2G︸ ︷︷ ︸

complex formation

Ẇ = DWΔW︸ ︷︷ ︸
diffusion

+ ρW0 + ρW
R2G

R2G+ 1︸ ︷︷ ︸
production

− δWW︸ ︷︷ ︸
degradation

. (1)

When solved on a idealized 3D bud-shaped domain the model gives rise to
GDNF-RET patterns that are reminiscent of, lateral branching events, bifur-
cations, and trifurcations. Much as reported for the embryo, the split concen-
tration patterns as characteristic for bifurcations and trifurcations dominate in
the model for physiological parameter values, while elongation and subsequent
lateral branching are rather rare. Further simulations on deforming domains
showed that the split concentration profiles can support bifurcating and trifur-
cating outgrowth [15].

We previously noticed in a model for lung branching morphogenesis that the
interaction between Sonic Hedgehog (SHH) and its receptor PTCH1 results in
Schnakenberg-type reaction kinetics [16]. Similarly, we notice that the model
for the biochemical interactions between GDNF and its receptors (Figure 2A)
reduces to Schnakenberg-type reaction kinetics of the form

∂u

∂τ
= Δu+ γ(a− u+ u2v)

∂v

∂τ
= DΔv + γ(b− u2v). (2)

if we assume large concentrations of WNT, i.e. W � 1, a negligible receptor-
independent decay rate, δG, for GDNF, and ν ∼ 3δC . u and v then correspond to
the receptor RET and its ligand GDNF respectively (Figure 2B). Schnakenberg
reaction kinetics [17] can result in Turing pattern [18], i.e. in the emergence of
stable pattern from noisy homogenous initial conditions, as a result of a diffusion-
driven instability [19].

Alternatively, it has been proposed that outgrowth of branches in the lung and
mammary gland may be controlled by a diffusion-based geometry effect [20,21].
If ligand is produced only in part of a tissue, then diffusion will result in a
higher concentration at the centre of the ligand-producing domain. If the ligand
supports outgrowth then this could support budding. When analysed on epithe-
lial shapes of developing chicken lungs, it was concluded that, due to the same
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diffusion effect, the lowest concentration was observed at the highly curved tips.
The branching controlling factor would thus have to be an inhibitor of branching
[20].

We tested both mechanisms by obtaining a 2D movie of cultured ureteric buds
and by following their epithelial dynamics over time. We extracted the shapes
and displacement fields and simulated our model on these physiological domains.
We find that the Turing type pattern is unstable to the noise in the initial
conditions when solved on the epithelial shapes. A Turing mechanism alone can
thus not control branching morphogenesis in the kidney. The diffusion-based
geometry effect allowed us to reproduce the measured growth fields reasonably
well, as long as it was based on an inhibitor of branching, which was expressed
in the epithelium, or on an inducer of branching that was expressed in the
mesenchyme. It is well possible that a combination of the Turing mechanism
and the geometry effect control branching morphogenesis.

2 Results

To obtain the shapes of the ureteric bud during branching morphogenesis, E11.5
kidney rudiments were dissected and imaged as previously described [22]. Kid-
neys were imaged every 60 minutes using the epifluorescence inverted micro-
scope Nikon TE300. We obtained a total of 49 frames, six of which are shown
in Figure 1. To solve our computational models on these dynamic geometries we
first segmented the images to obtain the boundary of the epithelium and calcu-
lated the displacement field between subsequent stages. The initial geometry and
displacement fields were imported into the commercial FEM solver COMSOL
Multiphysics to perform the simulations and parameter optimization.

2.1 Image Segmentation and Border Extraction

The images were segmented in MATLAB with a threshold based filter (Figure
3A,B). Prior to segmentation, the contrast of the image was increased with the
built in MATLAB function imadjust. Next the images were segmented with a
threshold filter. Threshold filters group pixels according to their intensity - pix-
els with intensities higher than a threshold value are assigned to the epithelium
and those with intensity below a threshold value are assigned to the exterior. To
apply threshold filters we used the MATLAB function imb2bw, which normal-
izes the intensity of each pixel prior to the application of the threshold filter.
Threshold filters can wrongly assign islands of bright pixels to the kidney ep-
ithelium. To eliminate such small islands, we first labelled all separate objects
with the MATLAB function bwlabeln and the object with the largest area was
selected. (Figure 3C). We next extracted the border of the epithelium with the
MATLAB function bwboundaries (Figure 3D).

The extracted boundaries had to be smoothened before they could be used
for simulations and further calculations. The smoothening was done using the
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MATLAB function smooth which uses a moving average method to smooth over
the entire curve. Visual inspection confirmed that the extracted smoothened
shape identifies the boundary of the kidney epithelium correctly (Figure 3E).
The number of points in the extracted boundary was large, and were reduced to
a set number using the interpolation function interparc [23].

2.2 Calculation of a Displacement Field

To simulate the signaling models on growing domains we needed to determine the
displacement fields between the different stages. The displacement field between
two consecutive stages was calculated by determining the minimum distance
from each point on the curve at time t to the curve at time t + Δt using the
MATLAB function distance2curve [24].

Fig. 3. Image Segmentation and Calculation of the Displacement Fields. (A) An orig-
inal image from the movie shown in Figure 1. (B) Segmented image with a threshold
filter. Isolated points are still present; one such group of points has been marked by red
circle. (C) Segmented image after the removal of isolated points. (D) Extraction and
smoothing of the boundary; the black dotted line shows the boundary obtained from
C and the grey line shows the smoothed boundary. (E ) The smoothed boundary (in
red) superimposed on the original image. (F ) Calculated displacement field between
two images - the blue lines represent the displacement vectors; the black and the grey
lines represent the contours at two subsequent stages.
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Fig. 4. Mesh Generation. (A) The meshed growing domain as generated in COMSOL
Multiphysics at various time steps as indicated; the maximum size of the element was
3, minimum element quality 0.4 (B) Solution of a traveling wave equation (Equation
3) on a static domain at τ=0 and τ=6. (C) The upper plot shows the computational
time for varying maximum size of mesh element (from 0.2 to 6.4) for τ = 6 while the
lower plot shows the maximum deviation of the solution at τ = 6 for different mesh
sizes. The deviation was calculated between a solution for a particular mesh size and
the solution for a mesh with a mesh element size that was 0.2 greater than the current.

2.3 Meshing and Simulations

We next imported the curve that describes the initial shape of the epithelium into
the FEM-solver COMSOL Multiphysics, using the ASCII file format. COMSOL
Multiphysics is a well-established software package and several studies confirm
that COMSOL provides accurate solutions to reaction-diffusion equations both
on constant[25] and growing domains [26,27,28]. Details of how to efficiently
implement these models in COMSOL have been described by us recently [29,30].
The imported domain was meshed with a free triangular mesh (Figure 4). The
quality of the mesh can be assessed according to the following two parameters:
mesh size and the ratio of the sides of the mesh elements. The linear size of the
mesh should be much smaller than any feature of interest in the computational
solution, i.e. if the gradient length scale in the model is 50 μm then the linear
size of the mesh should be at least several times less than 50 μm. Additionally,
the ratio of the length of the shortest side to the longest side should be 0.1 or
higher.

Next the displacement field was imported into COMSOL and the domain
was deformed accordingly. COMSOLMultiphysics uses the Arbitrary Lagrangian-
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Eulerian (ALE) formalism to solve PDEs on a deforming domain. Figure 4A
shows a sequence of meshes generated on a deforming domain. To confirm the
convergence of the simulation, we solved a traveling wave equation of the form

∂u

∂τ
= Δu+ u(1 − u) (3)

on a series of refined meshes (Figure 4B). As the maximum mesh size decreased
the maximum deviation in the solution decreased initially without greatly in-
creasing the computation time (Figure 4C). As the mesh size was further de-
creased, the maximum deviation remained about constant while the computa-
tion time sharply increased. There is thus an optimal mesh size that needs to be
defined for each particular model that is simulated on the domain.

2.4 Kidney Branching Morphogenesis

Depending on the choice of parameters Turing pattern can reproduce almost
any pattern. We were interested whether we could find a parameter combination
that would allow the model to reproduce the measured displacement field over
time, while respecting all biological costraints. We started with a single frame of
the extracted shape of the kidney epithelium from the movie (Figure 5). When
we simulated the Schnakenberg Turing model (Equations 2) on this shape we
noticed that the emerging pattern depended on the initial conditions. Given the
noise in these initial conditions many different patterns emerged for the same
parameter set. We therefore conclude that the Turing-based mechanism alone
cannot explain the stereotyped, reliable pattern observed in the embryo.

A number of alternative mechanisms have previously been proposed to control
branching morphogenesis in the lung. Most of these are based on the distance
between the mesothelium and the epithelium, and thus cannot apply to the
kidney. However, one mechanism relies on the particular tissue geometry [20,21],
and we decided to test this one also for the kidney.

Fig. 5. Turing pattern on a static domain in the shape of embryonic kidney epithelium
depends on noise in initial conditions. The three panels show the steady-state pattern
of the receptor-ligand complex, u2v (rainbow color code: red - highest level, blue -
lowest level). The three panels were computed with the same parameter set, but with
different random initial conditions The parameter values used for generating the figure
are: a = 0.2, b = 1.5 and γ = 0.04, D = 100.
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The mechanism requires that expression of the signalling factor is restricted
to part of the tissue, and diffuses from there into the surrounding tissue. If ligand
expression is restricted to the epithelium (and receptors to the mesenchyme) the
model reads

Epithelium:
∂L

∂τ
= DΔL+ 1

Mesenchyme:
∂L

∂τ
= DΔL − L. (4)

Gdnf is expressed in the mesenchyme, and we therefore also wanted to study
this case. The shape of the mesenchyme could not be extracted from the movies,
and we therefore added an idealized domain in the shape of an ellipse to approx-
imate the real shape of the mesenchyme. If ligand expression is restricted to the
mesenchyme (and receptors to the epithelium), then the model reads

Epithelium:
∂L

∂τ
= DΔL − L

Mesenchyme:
∂L

∂τ
= DΔL+ 1. (5)

Next we tested if the model could predict the areas of growth that were ob-
served during kidney branching morphogenesis. To that end we adjusted the
only parameter value in the model, D, to minimize the deviation, Δ, between
the computed signaling field and the registered displacement field based on the
L2 distance (Euclidean distance), i.e.

Δ =

√√√√∫
L

(|v| − S)2, (6)

|v| refers to normalized length of vectors of the displacement field, S refers to
the normalized computational signal. We used S = L to model a ligand that
induces branch outgrowth, and S = 1/L to model a ligand that inhibits branch
outgrowth. The PDE models were solved on the kidney shapes of four separate
stages (Figure 6B) for a wide range of the non-dimensional diffusion coefficient
D ∈ [10, 105]. For each stage, 1000 parameter sets were sampled randomly from
a logarithmic uniform distribution within these ranges.

The lowest deviation was obtained for the model where the ligand L was ex-
pressed in the epithelium and acted as an inhibitor of branch outgrowth (Figure
6A, black, solid line). The best fitting pattern matches the observed growth field
quite well, though not perfectly (Figure 6B). The second closest match was ob-
tained when an activator of branching was expressed in the mesenchyme, which
could be represented by GDNF. The other two cases did not provide a good
match. The observed displacement of the stalk could not be captured by the
model. However, we note that according to experimental observations (at least a
later stages) the receptor Ret is not expressed in the stalk [31]; this displacement
must thus be the result of other processes than GDNF/RET signaling.
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Fig. 6. A diffusion-based geometry effect results in patterns similar to those of the dis-
placement field. (A) The deviation Δ (Eq. 6) between signalling pattern and displace-
ment field if L is expressed either in the epithelium (solid lines) or in the mesenchyme
(broken lines), and if L acts either as activator (green lines) or inhibitor (black lines)
of branch outgrowth. (B) The correspondence of the signalling effect and the displace-
ment field for the best matching case, i.e. for L expressed in the epithelium, acting as
an inhibitor of branching, and D = 200. The solid colours represent the value of 1/L
(red - high to blue -low). The arrows mark the displacement field, with the length of
the arrows indicating the strength of the displacement.

Due to high computational cost we were unable to perform the optimization
on the deforming domain; thus all results discussed so far were obtained on a
series of static frames. To test whether the resulting pattern would be stable on a
growing, deforming domain, we ran a simulation with the best fitting parameter
value (D = 200) on the recorded kidney movie, i.e. we started with the first
frame and deformed the domain according to the measured displacement field of
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Fig. 7. Simulations on a continuously deforming domain, according to the measured
displacement field. The correspondence of the signalling effect and the displacement
field for the case of L expressed in the epithelium, acting as an inhibitor of branching,
and D = 200. The solid colours represent the value of 1/L (red - high to blue -low).
The arrows mark the displacement field, with the length of the arrows indicating the
strength of the displacement.

the kidney explants (Figure 7). The distribution of the signalling activity that
we obtained on a series of static frames (Figure 6B) is indeed similar to the one
obtained on a growing domain (Figure 7).

3 Discussion

Mathematical models can help with the understanding of biological complexity
if thoroughly rooted in experimental data. Most data in developmental biology
is image based. In this contribution we used 2D movies that document branching
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of cultured kidneys to test a mathematical model for branching morphogenesis.
We used MATLAB-based functions to extract the shapes and to calculate the
displacement fields between frames. The shapes and displacement fields were
subsequently imported into COMSOL to simulate the model on physiological
geometries. Our previously proposed model for the core signaling mechanism is
based on Schnakenberg reaction kinetics that can give rise to Turing pattern
[15]. When simulating the model on the extracted epithelial shapes we noticed
that the pattern were sensitive to the noisy initial conditions, which rules out
such mechanism for robust pattern formation.

We next tested a diffusion-based geometry effect [20,21], which reproduced
the growth fields of the cultured kidneys reasonably well. Much as in previous
studies in the lung and mammary gland [20,21], when the ligand was produced
only in the epithelium, it needed to be an inhibitor of branching to explain the
observed growth fields. On the other hand, if produced in the mesenchyme, it
had to be an inducer of outgrowth. The latter could be represented by GDNF,
an inducer of the outgrowth of the ureteric bud.

While the Turing mechanism was unstable when solved on the epithelial do-
main, we note that it is well conceivable that both the Turing mechanism and the
geometry effect act together during branching morphogenesis. After all, the Tur-
ing mechanism allowed us to reproduce the phenotype of all relevant, published
mutants when solved on idealized domains [15]. Further analysis of movies that
include both the epithelium and themesenchymewill be important to address this.

The here-described methods permit the analysis of 2D movies. To further en-
hance the power of the analysis it would be valuable to obtain image frames in
3D rather than 2D. The calculation of the displacement field is more difficult in
3D. Several softwares are available to support morphing between 3D structures.
The software package AMIRA employs the landmark-based Bookstein algorithm
[32], which uses paired thin-plate splines to interpolate surfaces over landmarks
defined on a pair of surfaces. The landmark points need to be placed by hand on
the 3D geometries to identify corresponding points on the pair of surfaces. This
is both time consuming and limits the accuracy of the reconstructed 4D series, in
particular if the geometries are complex as is the case during kidney branching
morphogenesis and if single frames are further apart. Further developments are
clearly needed to enable a faster and more accurate reconstruction of 4D datasets.
Similarly, computational methods need to be improved to facilitate the solution of
computational models on complex, growing domains, that comprise several sub-
domains (tissue layers). While this is feasible, it is currently computationally very
expensive, which makes it difficult to screen larger parameter spaces.
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Abstract. We present a statistical model checking (SMC) based framework for
studying ordinary differential equation (ODE) models of bio-pathways. We ad-
dress cell-to-cell variability explicitly by using probability distributions to model
initial concentrations and kinetic rate values. This implicitly defines a distribu-
tion over a set of ODE trajectories, the properties of which are to be character-
ized. The core component of our framework is an SMC procedure for verifying
the dynamical properties of an ODE system accompanied by such prior distri-
butions. To cope with the imprecise nature of biological data, we use a formal
specification logic that allows us to encode both qualitative properties and ex-
perimental data. Using SMC, we verify such specifications in a tractable way,
independent of the system size. This further enables us to develop SMC based
parameter estimation and sensitivity analysis procedures. We have evaluated our
method on two large pathway models, namely, the segmentation clock network
and the thrombin-dependent MLC phosphorylation pathway. The results show
that our method scales well and yields good parameter estimates that are robust.
Our sensitivity analysis framework leads to interesting insights about the under-
lying dynamics of these systems.

1 Introduction

Biochemical networks–often called bio-pathways–govern a variety of cellular func-
tions. Their malfunctioning can lead to major diseases [1]. Thus it is important to under-
stand their dynamics using mathematical models [2]. However, building and analyzing
such models poses considerable challenges. In this paper, we address the particular chal-
lenge of accounting for variable behavior across individual cells. A natural way to cater
for this is to use a probabilistic system model such as continuous time Markov chains
(CTMCs) [3]. However, such models typically track the occurrences of individual reac-
tions. Hence for pathways of realistic size, calibrating these models using experimental
data and analyzing them using stochastic simulations is very difficult. The alternative is
to use ordinary differential equations (ODEs) to capture the dynamics. This approach is
often computationally more tractable, although it requires that the number of molecules
of each type involved in the pathway be abundantly present [4]. In this paper our focus
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is on accounting for cell-to-cell variability in the setting of ODE based models. Specif-
ically, our main contribution is a statistical model checking (SMC) based framework,
using which a system with such variability can be efficiently calibrated and analyzed.

Variability in a population of cells has at least two major causes. First, as shown
in [5], differences in the initial concentrations of proteins are the primary source of
variability in response to external stimuli. Second, due to differing internal and external
conditions among cells, the values of kinetic rate constants also vary across cells [6, 7].
In our ODE setting the variables will represent the concentrations of the biochemical
species (typically proteins) in the pathway, and hence the initial concentrations of these
species will constitute the initial values of the variables. Further, the parameters appear-
ing in the equations will consist of the kinetic rate constants governing the reactions.
Thus we can capture cell-to-cell variability in the behavior of the bio-pathway by study-
ing the ODE dynamics across a range of values for the initial concentrations and kinetic
rate constant values. We do this in a probabilistic setting by assuming initial probability
distributions (usually uniform) over an interval of values for the initial concentrations
and rate constants. We then show that the resulting space of trajectories can be used
to construct a natural probability measure space if the vector field defined by the ODE
system is continuously differentiable. In our setting this requirement is easily met.

To analyze the ODE system, we first formalize properties using our specification
logic and decide a corresponding confidence level (probability) with which we wish to
assess them. Consequently, an SMC procedure –which poses the problem as a hypoth-
esis test– is used to decide approximately, but with statistical guarantees, whether the
properties are satisfied with the desired probability. SMC continues to sample and ver-
ify trajectories from the ODE system until a decision can be made. It is well-established
that SMC is efficient since its complexity does not depend on the size of the system.
Moreover, posing the problem as a sequential hypothesis test reduces the overall num-
ber of samples needed to make a decision [8]. These components form a principled
method for analyzing the dynamics of a bio-pathway in the presence of dynamic vari-
ability across a population of cells.

To demonstrate the applicability of our approach, we develop an SMC based pa-
rameter estimation method. The unknown model parameters usually consist of initial
concentrations and kinetic rate constants. Here, for convenience, we shall assume all
the initial concentrations are known but that their nominal values can vary over a cell
population. The parameter estimation procedure searches through the value space of the
unknown parameters to determine the “best” combination of values that can explain the
given data and predict new behaviors [9]. The key step in this procedure is to determine
the fitness-to-data of the current set of parameter values. We use our specification logic
to encode both experimental time series data and known qualitative trends concerning
the dynamics of the pathway. We then use our SMC procedure to determine the good-
ness of the given set of parameter values, while taking into account that these values
can fluctuate across the population of cells that the data is based on. Subsequently, we
use a global optimization strategy known as SRES [10] to choose a new set of candidate
parameter values according to the SMC based score assigned to the current set.

An important analysis task to be performed on the model is quantifying the influ-
ence of different parameters on the model dynamics. The information gained from such
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a sensitivity analysis procedure can help in robustness analysis, optimal experimental
design and drug target selection [11]. We show how SMC can be used to generate the
statistics needed by the global sensitivity analysis method MPSA [12]. Consequently,
one can incorporate a rich class of dynamic behaviors–encoded as formulas in our spec-
ification logic–to drive our sensitivity analysis method.

We evaluated our method on two pathway models taken from the BioModels database
[13]. For both case studies, we assumed that noisy experimental data and qualitative dy-
namic traits of a few species were known. This data was separated into training and test
components. A subset of the rate constants were assumed to be unknown and estimated
using our parameter estimation procedure. The first model, the segmentation clock path-
way, consists of 16 differential equations and 75 rate constants, out of which 39 were
fixed to be unknown. The second model, the thrombin-dependent myosin light chain
(MLC) pathway consists of 105 differential equations and 197 rate constants, out of
which 100 were fixed to be unknown. Our results (Section 5) show that our SMC based
technique is efficient and scales well. We also applied our sensitivity analysis method
to obtain interesting insights into the dynamics of these two bio-pathways.

1.1 Related Work

Probabilistic model checking of stochastic models is an active field of research [14–
17]. Of particular interest in our context are sampling based methods such as [18, 19],
which verify probabilistic properties using a fixed number of sampled trajectories. In
contrast, SMC based methods such as [14, 20] adaptively generate a sufficient number
of trajectories to determine if the property is satisfied while meeting the strengths of the
statistical test specified by the user. Characterizing the behavior of dynamical systems
where the initial conditions and the rate parameters are under-determined has also been
discussed in [21] with a focus on sampling methods and computing reachable sets.

Turning to parameter estimation using temporal logic constraints, a brute force
search of the parameter space is employed in [16] for Petri nets. In the ODE context, pa-
rameter estimation combined with model checking appears in [22] using again a brute
force sampling based parameter search approach, and in [23], using an evolutionary
strategy to guide the search. However, both these techniques only generate a single sim-
ulation trace of the ODE to evaluate a proposed set of parameters. A symbolic model
checking approach is explored for the restricted class of multi-affine ODEs in [24, 25].
The work reported in [19] deploys a genetic algorithm to search for the best set of
parameters. A fixed number of samples–this number is fixed in an ad hoc manner–is
generated, and the probability of satisfying a property is calculated to be the fraction of
the samples which satisfy the property. In all these studies, the quality of the estimated
parameters is not validated using test data (i.e. data that was not used as training data).
While [19] does mention identifying critical parameters, we believe that our approach is
the first systematic attempt to develop a property-based sensitivity analysis framework
using statistical model checking.

In the next section, we introduce ODE models and their dynamics. In Section 3, we
discuss our specification logic and the statistical model checking procedure.
Subsequently, we present our parameter estimation and sensitivity analysis framework.
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Experimental results are reported in Section 5. Additional experimental results are re-
ported in the supplementary material [26].

2 ODE Based Models and Their Behaviors

A popular formalism for describing the dynamics of a biochemical network is a system
of ODEs. For each molecular species xi in the pathway, there will be an equation of the
form dxi/dt = fi(x, Θi). Here fi describes the kinetics of the reactions that produce
and consume xi, x denotes the concentrations of the molecular species taking part in
these reactions, while the vector Θi gives the rate constants governing these reactions.

Each xi is a real-valued function of t ∈ R+, where R+ denotes the set of non-
negative reals. We shall realistically assume that xi(t) takes values in the interval
[Li, Ui], where Li and Ui are non-negative rationals with Li < Ui. Hence the state
space of the system is V = [L1, U1] × . . . × [Ln, Un], a bounded subset of Rn

+. Let
Θ =

⋃
iΘi = {θ1, θ2, . . . , θm} be the set of all rate constants. We again assume that

the range of values for each θj is [Lj, U j ] for 1 ≤ j ≤ m. We shall present the SMC
procedure while assuming that all the rate constants are known. In Section 4, it will
become clear how unknown rate constants are handled.

An implicit assumption in what follows is that the value of a rate constant, when
fixed initially, does not change during the time evolution of the dynamics, although this
value can be different for different cells. To capture the cell-to-cell variability regarding
the initial states, we define for each variable xi an interval [Linit

i , U init
i ] with Li ≤

Linit
i < U init

i ≤ Ui. The actual value of the initial concentration of xi is assumed
to fall in this interval. Similarly, we shall assume that the nominal value of the rate
constant θj falls in the interval [Lj

init, U
j
init] with Lj ≤ Lj

init < U j
init ≤ U j . We set

INIT = (
∏

i[L
init
i , U init

i ])× (
∏

j [L
j
init, U

j
init]). Thus INIT captures the cell-to-cell

variability in the initial concentration and the rate constant values. In what follows we
let v to range over

∏
i[L

init
i , U init

i ] and w to range over
∏

j [L
j
init, U

j
init].

We will represent our system of ODEs in vector form as dx/dt = F (x, Θ) with
Fi(x, Θ) := fi. Recall that a function fi : V → V is a C1 function if f ′

i , the derivative
of fi, exists at all v ∈ V, and is a continuous function. In the setting of biochemical
networks, the expressions in fi will model kinetic laws such as mass law and Michaelis-
Menten [4]. Thus it is reasonable to assume that fi ∈ C1 for each i and hence F :
V → V is also a C1 function. As a result, for each (v,w) ∈ INIT the system of
ODEs will have a unique solution Xv,w(t) [27]. Further, it will satisfy: Xv,w(0) = v
and X′

v,w(t) = F (Xv,w(t)). We are also guaranteed that Xv,w(t) is a C0-function (i.e.
continuous function) [27], and hence measurable. This fact will be crucial for our SMC
procedure.

It will be convenient to define the flow Φw : R+×V → V for arbitrary initial vectors
v. Intuitively, Φw(t, v) is the state reached under the ODE dynamics if the system starts
at v at time 0. The flow will be the C0-function given by: Φw(t, v) = Xv,w(t). Thus
Φw(0, v) = Xv,w(0)=v and ∂(Φw(t, v))/∂t = F (Φw(t, v)) for all t. We will, in fact,
work with Φw,t : V → V where Φw,t(v) = Φw(t, v) for every t and every v ∈ V. again,
Φw,t is guaranteed to be a C0 function.

In our application, the dynamics will be of interest only up to a maximal time pointT .
Fixing such a T , a trajectory starting from v ∈ V at time 0 and with w as the parameter
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values is denoted σv,w. It is the (continuous) function σv,w : [0, T ] → V satisfying:
σv,w(t) = Xv,w(t). The behavior of our dynamical system is the set of trajectories
given by BEH = {σv,w | (v,w) ∈ INIT }. Our goal is to develop an SMC procedure
to verify the dynamical properties of BEH .

3 Statistical Model Checking of ODE Dynamics

3.1 Bounded Linear Time Temporal Logic

To formally express dynamical properties of BEH , we use formulas in a specification
logic. We will use bounded linear time temporal logic (BLTL) since our trajectories will
be of finite duration. An atomic proposition in our logic will be of the form (i, �, u) with
Li ≤ � < u ≤ Ui. Such a proposition will be interpreted as “the current concentration
level of xi is in the interval [�, u]”, and we fix a finite set of such atomic propositions.

We first introduce the syntax and then the semantics of BLTL formulas. The formulas
of BLTL are defined as: (i) Every atomic proposition as well as the constants true,
false are BLTL formulas. (ii) If ψ, ψ′ are BLTL formulas then ¬ψ and ψ ∨ ψ′ are
BLTL formulas. (iii) If ψ, ψ′ are BLTL formulas and t ≤ T is a positive integer then
ψU≤tψ′ and ψUtψ′ are BLTL formulas. We have mildly strengthened BLTL to be able
to express that a certain property will hold exactly at t time units from now. This will
enable us to encode experimental data in the specification. The derived propositional
operators such as ∧, ⊃, ≡, and the temporal operators G≤t, F≤t are defined in the
usual way.

We will interpret the formulas of our logic at the finite set of time points T =
{0, 1, . . . , T }. Such a discretization is reasonable since experimental data will be avail-
able only at a finite number of discrete time points. Further, qualitative properties of
interest are expressible in discrete time. We assume that T has been chosen appropri-
ately and it includes all the relevant time points with respect to the specified properties.

The semantics of the logic is defined in terms of the relation σ, t |= ϕ, where σ is a
trajectory in BEH and t ∈ T .

– σ, t |= (i, �, u) iff � ≤ σ(t)(i) ≤ u where σ(t)(i) is the ith component of the
n-dimensional vector σ(t) ∈ V.

– ¬ and ∨ are interpreted in the usual way.
– σ, t |= ψU≤kψ′ iff there exists k′ such that k′ ≤ k, t+k′ ≤ T and σ, t+k′ |= ψ′.

Further, σ, t+ k′′ |= ψ for every 0 ≤ k′′ < k′.
– σ, t |= ψUkψ′ iff t + k ≤ T and σ, t + k |= ψ′. Further, σ, t + k′ |= ψ for every
0 ≤ k′ < k.

We now define models(ψ) = {σ | σ, 0 |= ψ, σ ∈ BEH}.
Next, we wish to make statements of the form P≥r(ψ), where the intended meaning

is that the probability that a trajectory in BEH belongs to models(ψ) is at least r. To
assign meaning to such statements, we need to define a probability measure over sets of
trajectories. Note, however, that the trajectory σ ∈ BEH is completely determined by
σ(0), the (vector) value it assumes at t = 0. Hence we will identify BEH with INIT ,
the set of initial states. To make this explicit, we define the set Models(ψ) ⊆ INIT as:
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(v,w) ∈ Models(ψ) iff σv,w ∈ models(ψ). We define the formulas of PBLTL as P≥rψ
and P≤r′ψ provided r ∈ [0, 1) , r′ ∈ (0, 1] and ψ is a BLTL formula. We shall say that
S, the system of ODEs, meets the specificationP≥rψ – and this is denoted S |= P≥rψ –
iff P (Models(ψ)) ≥ r, while S |= P≤r′ψ iff P (Models(ψ)) ≤ r′. Here, and in what
follows, P is the standard probability measure assigned to members of the σ-algebra
generated by the open intervals contained in INIT . It is easy to show that Models(ψ)
is a member of this σ-algebra for every ψ. The only case that requires an argument is
the one for atomic propositions, and here the measurability of the solution functions
Xv,w(t) is crucial. The details can be found in the supplementary material [26].

3.2 Statistical Model Checking of PBLTL Formulas

We now introduce a statistical framework for deciding approximately, but with statis-
tical guarantees, whether the model satisfies a property of the form P≥rψ. Instead of
directly approximating the probability of ψ being satisfied [28], we formulate whether
S |= P≥rψ, as a hypothesis test. According to [29], the test is posed between the
null hypothesis H0 : p ≥ r + δ and the alternative hypothesis H1 : p ≤ r − δ, where
p = P (Models(ψ)) . Here, δ is supplied by the user and signifies an indifference re-
gion in which one cannot decide on either H0 or H1. The strength of the statistical test
is decided by parameters α and β which bound the probability of verifying the prop-
erty as false when it is in fact true (Type-I error) and verifying it as true when it is in
fact false (Type-II error) respectively. Thus the verification is carried out approximately
but with guaranteed confidence levels and error bounds. The test proceeds by generat-
ing a sequence of sample trajectories σ1, σ2, . . . by randomly sampling an initial state
from INIT . One assumes a corresponding sequence of Bernoulli random variables
y1, y2 . . ., where each yk is assigned the value 1 if σk, 0 |= ψ; otherwise, yk is assigned
the value 0. We next construct a sequential test that lets us decide if the number of sam-
ples taken are sufficient, or whether more samples need to be taken to guarantee the
chosen test strength. For each m ≥ 1, after drawing m samples, we compute a quantity
qm as:

qm =
[r − δ]

(
∑m

i=1 yi)[1 − [r − δ]]
(m−

∑m
i=1 yi)

[r + δ](
∑

m
i=1 yi)[1 − [r + δ]](m−

∑
m
i=1 yi)

. (1)

The ratio qm serves as a stopping criterion for the sampling process. Hypothesis H0
is accepted if qm ≥ Â, and hypothesis H1 is accepted if qm ≤ B̂. If neither is the
case then another sample is drawn. The constants Â and B̂ are chosen such that it
results in a test of strength (α, β). In practice, a good approximation is Â = 1−β

α and

B̂ = β
1−α . A detailed account of our on-line model checking algorithm (used to verify

each trajectory) can be found in the supplementary material [26].

4 Analysis Methods

Here we present our parameter estimation and sensitivity analysis methods. In doing
so, we assume the terminology and notations developed in the previous sections. As
a first step, we describe how experimental data can be encoded as a BLTL formula.
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Assume, without loss of generality, that O ⊆ {x1, x2, . . . , xk} is the set of variables
for which experimental data is available, and which has been allotted as training data to
be used for parameter estimation. Assume Ti = {τ i1, τ i2, . . . , τ iTi

} are the time points at
which the concentration level of xi has been measured and reported as [�it, u

i
t] for each

t ∈ Ti. The interval [�it, u
i
t] is chosen to reflect the noisiness, the limited precision and

the cell-population based nature of the experimental data. For each t ∈ Ti, we define the
formula ψt

i = Ft(i, �it, u
i
t). Then ψi

exp =
∧

t∈Ti
ψt
i . We then set ψexp =

∧
i∈O ψi

exp.
In case the species xi has been measured under multiple experimental conditions, the
above encoding scheme is extended in the obvious way.

Often qualitative dynamic trends will be available–typically from the literature–for
some of the molecular species in the pathway. For instance, we may know that a species
shows transient activation, in which its level rises in the early time points, and later falls
back to initial levels. Similarly, a species may be known to show oscillatory behavior
with certain characteristics. Such information can be described as BLTL formulas that
we term to be trend formulas. Examples of such formulas can be found in Table1. We
let ψqlty to be the conjunction of all the trend formulas.

Finally, we fix the PBLTL formula P≥r(ψexp ∧ ψqlty), where r will capture the
confidence level with which we wish to assess the goodness of the fit of the current set
of parameters to experimental data and qualitative trends. We also fix an indifference
region δ and the strength of the test (α, β). The constants r, δ, α and β are to be fixed
by the user. In our application, it will be useful to exploit the fact that both ψexp and
ψqlty are conjunctions, and hence can be evaluated separately. As shown in [29], one
can choose the strength of each of these tests to be (αJ , β), where J is the total number
of conjuncts in the specification. This will ensure that the overall strength of the test
is (α, β). Further, the results of individual statistical tests can be used to compute the
objective function associated with the global search strategy to be described below.

4.1 Parameter Estimation Based on PBLTL Specification

We assume Θu = {θ1, θ2, . . . , θK} is the set of unknown parameters. For convenience
we will assume that the other parameter values are known and that their nominal values
do not fluctuate across the cell population. We will also assume nominal values for the
initial concentrations and the range of their fluctuations of the form [Linit

i , U init
i ] for

each variable xi. Again, for convenience, we fix a constant δ′′ so that if the current
estimate of the values of the unknown parameters is w ∈

∏
1≤j≤K [Lj, U j ] then this

value will fluctuate in the range [w(j)−δ′′,w(j)+δ′′]. Setting Lj
init,w = w(j)−δ′′ and

U j
init,w = w(j) + δ′′ we define INITw = (

∏
i[L

init
i , U init

i ]) × (
∏

j [L
j
init,wU

j
init,w]).

The set of trajectories BEHw is defined accordingly.
To estimate the quality of w, we run our SMC procedure–using INITw instead of

INIT –to verify P≥r(ψexp ∧ ψqlty). Depending on the outcome of this test for the
various conjuncts in the specification, we assign a score to w using an objective function
detailed below. We then iterate this scheme for various values of w generated using a
suitable search strategy. The objective function consists of two components, evaluating
the contribution from the qualitative properties and the experimental data respectively.
It evaluates how many statistical tests carried out with w resulted in acceptance of the
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null hypothesis (desired outcome). For the second component, the tests are evaluated
species-wise. The corresponding objective value is then composed as a summation of
normalized contribution from each species.

Let J i
exp (= Ti) be the number of conjuncts in ψi

exp, and Jqlty the number of con-
juncts in ψqlty . Let J i,+

exp(w) be the number of formulas of the form ψt
i (a conjunct

in ψi
exp) such that the statistical test for P≥r(ψ

t
i) accepts the null hypothesis (that is,

P≥r(ψ
t
i) holds) with the strength (αJ , β), where J =

∑
i∈O J i

exp + Jqlty . Similarly, let
J+
qlty(w) be the number of conjuncts in ψqlty of the form ψ�,qlty that pass the statistical

test P≥r(ψ�,qlty) with the strength (αJ , β). Then G(w) is computed via:

G(w) = J+
qlty(w) +

∑
i∈O

J i,+
exp

J i
exp

(2)

Thus the goodness to fit of w is measured by how well it agrees with the qualitative
properties as well as the number of experimental data points with which there is accept-
able agreement. To avoid over-training the model, we do not insist that every qualitative
property and every data point must fit well with the dynamics predicted by w.

The search strategy to evolve candidate parameters will use the values G(w) to tra-
verse the parameter value space. Global search methods such as Genetic Algorithms
(GA) [30], and Stochastic Ranking Evolutionary Strategy (SRES) [10] are computa-
tionally more intensive than local methods, but are much better at avoiding local min-
ima. The overall structure of our parameter estimation procedure is presented in Algo-
rithm 1. In practice, one usually maintains a population of parameter value vectors in
each round, and a round is usually called a generation. For convenience, we have as-
sumed that each population is a singleton in the description of Algorithm 1. We use the
SRES strategy in our work since it is known to perform well in the context of pathway
models [9]. The particular choice of search algorithm, however, is orthogonal to our
proposed method.

4.2 Sensitivity Analysis Based on PBLTL Specification

As another application of our SMC procedure, we have constructed a property based
sensitivity analysis method by coupling our SMC routine with the global sensitivity
analysis technique called multi-parametric sensitivity analysis (MPSA) [12]. We as-
sume we have specified a set of properties (encoded as PBLTL formulas), and are inter-
ested in knowing which parameters, when changed, affect these properties significantly.
The MPSA procedure involves sampling a large number of parameter combinations
from their valid ranges. For each sampled combination, one calculates the objective
value with respect to the PBLTL properties according to Equation 2. The objective val-
ues allow us to assess the extent to which each parameter affects the model’s behavior
to the given formulas. Intuitively, if the objective value shows strong dependence on
the value of a parameter (over its range) then the output is sensitive to that parameter.
The MPSA method employs statistical tests to quantify this dependence, which can be
directly interpreted as a measure of sensitivity. The sensitivity is based on computing
the Kolmogorov-Smirnov (KS) test to compare the two profiles consisting of (a) the
cumulative appearance of good intervals along the value space of the parameter and
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(b) the same for the bad intervals. If these profiles differ significantly then the system
is more sensitive to this parameter, and the KS test will assign a higher score to this
parameter. Our procedure is outlined in Algorithm 2.

input : ODE model; PBLTL formulas; SMC
parameters; Number of generations k;
Initial parameter guess w0;

output: The best parameter found wmax

initialization: � = 0; Gmax = 0;

while � < k do
Run SMC on the trajectories defined by
BEHw�

with respect to the PBLTL formulas;
Compute G(w�);
if G(w�) ≥ Gmax then

wmax = w�;
Gmax = G(w�)

end
w�+1 = Picked by SRES / GA search
procedure based on w�;
� = �+ 1;

end

Algorithm 1. Parameter estimation

input : ODE model; PBLTL formulas; SMC parameters; Number of
discretization intervals Nd; Objective function G; threshold

output: Sensitivity[1 . . .K]

Discretize each parameter into Nd intervals to get (Nd)
K hypercubes;

for i ← 0 to Nd do
wi = Sample one hypercube out of the(Nd)

K using LHS;
Run SMC on BEHwi

; Calculate G(wi);
if G(wi) > threshold then

Add wi to good set;
else

Add wi to bad set;
end

end
for j ← 0 to K do

Construct cumulative distribution of good and bad intervals in the
range of parameter j;
Sensitivity[j] = KS statistic of difference of the two distributions;

end

Algorithm 2. Sensitivity analysis

5 Results

We applied our SMC based analysis framework to pathway models taken from the
BioModels database [13]. These models have nominal point values for all the rate con-
stants and initial concentrations. We first verified a few properties of the two pathways
using SMC. Then, for parameter estimation, we formulated qualitative trends for some
species, and generated synthetic experimental data for some other species as follows.
We set a ±5% range around the nominal value for the initial concentration of each
species and assumed a uniform distribution over the resulting set of initial states. To
mimic western blot data, which is cell population based, we averaged 104 random tra-
jectories generated by sampling these initial concentration intervals. We then added
noise to the data and used a major portion of it for training, and reserved the rest as test
data. Finally, we fixed a subset of rate constants to be unknown, and ran our param-
eter estimation procedure. We let the variability in parameters (δ′′) to be 0.5% of the
proposed value.

We implemented our method using MATLAB and C++ on a PC with a 3.4Ghz Intel
Core i7 processor with 8GB RAM. ODE systems were numerically solved using the
SUNDIALS CVODE package [31, 32]. The source code is available at [26]. The code
has been optimized to take advantage of the multi-core architecture; all experimental
results were run on 8 threads. The parameters used for the statistical model checking
algorithm were r = 0.9, α = β = δ = 0.05 for all our experiments. The choice of
these parameters were made so that the probability of satisfaction of the formulas was
sufficiently high, and the errors were sufficiently low. The dependence of the perfor-
mance of the statistical test on the parameters of SMC is well established, we refer the
interested reader to [29] for more details. To show the goodness of our estimated param-
eters (taking into account the variability concerning the initial states and reaction rates),
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Table 1. Statistical model checking based verification - The PBLTL Formulas

Pathway Property Formula Result

Thrombin-MLC sustained activation P≥0.9(([Phospho MLC ≤ 1]) ∧ (F≤20(G≤20([Phospho MLC ≥
3])))

false

Thrombin-MLC transient activation P≥0.9(([Phospho MLC ≤ 1]) ∧ F≤20(([Phospho MLC ≥ 3]) ∧
F≤20(G≤20((Phospho MLC ≤ 1)))))

true

Segmentation
clock

oscillations P≥0.9(([Lunatic fringe mRNA ≤ 0.4]) ∧ (F≤40([Lunatic fringe

mRNA ≥ 2.2] ∧ F≤40([Lunatic fringe mRNA ≤ 0.4] ∧
F≤40([Lunatic fringe mRNA ≥ 2.2] ∧ F≤40([Lunatic fringe mRNA
≤ 0.4]))))))

true

we generated 1000 trajectories and plotted these to show that the estimated parameters
result in a good fit to the data. In each case, experimental data is plotted along with the
tolerance interval used in constructing the specification.

For the experiments reported in this section, we used an SRES based global strategy
to guide the search. Here we present only the highlights of our experimental results.
Many further details including the results obtained using a Genetic Algorithm based
search can be found in the supplementary material [26].

5.1 The Case Studies

The segmentation clock network An oscillating segmentation clock governs the seg-
mentation pattern of the spine in developing vertebrate embryos. It couples signaling
pathways of FGF, Notch and Wnt, whose periodic behaviors are produced by negative
feedback loops. The ODE model consists of 16 differential equations and 75 kinetic rate
parameters. Simulation time (T ) was fixed at 200 minutes assumed to be observable at
40 equally spaced time points.

The thrombin-dependent MLC phosphorylation pathway Endothelial cells form a dy-
namic barrier between blood/lymph and the underlying connective tissue, and their con-
traction is crucial to physiological and pathological processes. Agonists such as throm-
bin play an important role in the contraction function through phosphorylation of MLC,
while Rho-kinase is crucial for the sustained contraction of endothelial cells. The path-
way model with 105 differential equations and 197 kinetic parameters is considerably
large. Simulation time was fixed at 1000 seconds assumed to be observable at 20 equally
spaced time points.

5.2 Statistical Model Checking Based Verification

First, we used our SMC framework to verify pathway properties expressed in PBLTL.
We used the nominal models (all rate parameter values known, taken from the BioMod-
els database) to verify if they conformed to properties expressed in our logic with high
probability. We describe a few such properties along with their BLTL formulas and the
result of verification in Table1. For instance, for the MLC phosphorylation pathway,
it is known experimentally that the concentration of phosphorylated MLC starts at a
low level, and then reaches a high steady state value. Our SMC method shows that the
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nominal model does not satisfy the property, instead, phosphorylated MLC exhibits a
transient profile. This discrepancy has been studied in [33], and attributed to missing
components and interactions in the proposed model.

5.3 Parameter Estimation

For the segmentation clock pathway, we assumed 39 of the rate parameters as unknown.
We used a combination of dynamic trends and quantitative experimental data. Specifi-
cally, we synthesized population based experimental time series data for Axin2 mRNA
measured at 14 time points up to 165 minutes. For 5 other species {Notch protein, nu-
clear NicD, Lunatic fringe mRNA, active ERK and Dusp6 mRNA}, we encoded the dy-
namic trends as properties in our logic. The dynamic trend of 2 species (cytosolic NicD
and Dusp6 protein) were used as test data. Parameter estimation was done with a pop-
ulation of 200 per generation and for 300 generations. The time taken by SRES based
search was 2.3 hours. Figure 1 shows simulation profiles with the estimated parameters.
Figure 1(a) shows that the model fits training data consisting of the experimental data
of Axin2 mRNA and qualitative trends for 3 other species. Figure 1(b) shows dynamic
trends of cytosolic NicD used for testing. The simulated time profiles fit the specified
test properties (see [26]).
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Fig. 1. Parameter estimation results of the segmentation clock pathway. (a) Training data includ-
ing the experimental data for Axin2 mRNA and the dynamic trends for 3 species), and (b) the
test data for one of the species.

To illustrate the scalability of our approach, for the thrombin pathway, we assumed
100 of the kinetic parameters to be unknown. We synthesized population based exper-
imental time series data for 10 species including RGS2, Rho.GTP, PKC.DAG, MLC2,
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Fig. 2. Parameter estimation results of Thrombin-dependent MLC phosphorylation pathway. (a)
Training data, including experimental data of 3 species and dynamic trends of one species, and
(b) the test data for one of the species.



Statistical Model Checking Based Calibration and Analysis of Bio-pathway Models 131

CPI-17, Ca-super-2-plus, p115RhoGEF-GTP-alpha, MYPT1-PPase, Rho-kinase.MLC,
MYPT1.Rho-kinase2. For thrombinR-active and 3IP3.IP3R we assumed that only the
dynamic trend is known. The data of Rho-kinase.MLC and MYPT1.Rho-kinase2 were
reserved as test data to evaluate the quality of our parameter estimates, while the data of
all other species was used to calibrate the model. Parameter estimation was done with
a population of 100 per generation and for 1000 generations. The time taken by SRES
based search was 48.8 hours. Figure 2 shows the fit to data of the simulation profiles
with the best predicted parameter values for both the training data (Figure 2(a)) and the
test data (Figure 2(b)).

5.4 Property Based Sensitivity Analysis

Here we report results just for the segmentation clock pathway (due to the space con-
straints). We evaluated the sensitivity of parameters against all properties used for pa-
rameter estimation. The results are shown in Figure 3(a). It can be seen that the most
sensitive parameters are ksDusp, kcDusp, VMsMDusp, VMdMDusp, VMaX, VMdX.
This also indicates that the reactions involving Dusp6 degradation and transcription
affect the overall dynamics most. Since all these parameters belong to the FGF path-
way, we hypothesize that FGF pathway is the most crucial component that drives the
behavior of the system.
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Fig. 3. Sensitivity analysis results. (a-c) Parameter sensitivities of the segmentation clock pathway
with respect to (a) all properties, (b) Dusp6mRNA profile, and (c) nuclear nicD profile.

We next searched for parameters affecting the oscillatory property of Dusp6 mRNA
alone. We found that the same set of parameters as above are the most crucial (see
Figure 3(b)). However, when evaluating the oscillatory property of nuclear NicD (Fig-
ure 3(c)), we find that the parameters vsN, kt1, VdNan are the most significant. This
suggests that although the Notch synthesis (vsN), and nuclear NicD transportation (kt1)
and degradation (VdNan) do not significantly affect the overall dynamics, they play a
dominant role in segmentation patterning.

6 Conclusion

We have proposed an SMC based approach for studying ODE based bio-pathway mod-
els. We have used the temporal logic BLTL to encode both quantitative experimental
data and qualitative properties of pathway dynamics. To cater for variability among
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cells, we assume a uniform distribution over a set of initial states and kinetic rate
constants–and impose a reasonable continuity restriction–and show how the probabil-
ity of the property being met by the behavior of the model can be assessed using an
SMC procedure. By combining this method with a global search strategy, we arrive at
a parameter estimation procedure as well as a sensitivity analysis technique.

We have demonstrated the applicability of our method with the help of two ODE
based bio-pathway models: the segmentation clock network and the thrombin-
dependent MLC phosphorylation pathway. Our method successfully obtained good
parameter estimates using noisy cell-population data and qualitative knowledge. The
results show that our method scales well and can cope with large biological networks.
We also show results for performing property based sensitivity analysis, and thereby
gain interesting insights about the pathway dynamics that would be difficult to obtain
using conventional approaches.

Our parameter estimation method is a generic one and has the potential to be applied
to model classes such as continuous time Markov chain (CTMC) models and stochas-
tic differential equation (SDE) models [3]. We plan to explore this in our future work.
Another interesting direction will be to develop a GPU-based implementation of our
method to exploit the inherent massive parallelism in generating trajectories through
numerical integration. In this connection, the platform-aware implementation of a re-
lated systems biology application presented in [17] promises to offer helpful pointers.
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Abstract. Gene Regulatory Network (GRN) inference is a major ob-
jective of Systems Biology. The complexity of biological systems and the
lack of adequate data have posed many challenges to the inference prob-
lem. Community networks integrate predictions from individual methods
in a “meta predictor”, in order to compose the advantages of differ-
ent methods and soften individual limitations. This paper proposes a
novel methodology to integrate prediction ensembles using Constraint
Programming, a declarative modeling paradigm, which allows the for-
mulation of dependencies among components of the problem, enabling
the integration of diverse forms of knowledge. The paper experimentally
shows the potential of this method: the addition of biological constraints
can offer improvements in the prediction accuracy, and the method shows
promising results in assessing biological hypothesis using constraints.

1 Introduction

Within a cellular context, genes interact to orchestrate a multitude of important
tasks. These interactions are regulated by different gene products, as proteins
called Transcription Factors (TFs) and RNA, and they constitute an intricate
machinery of regulation referred to as Gene Regulatory Networks (GRNs). In
turn GRN inference describes the process of inferring the topology of a partic-
ular GRN. GRN inference from high-throughput data is of central importance
in computational system biology. Its use is crucial in understanding important
genetic diseases, such as cancer, and to devise effective medical interventions.

The availability of a wealth of genomic data has encouraged the development
of diverse methods for GRN inference. However, data sets are quite heteroge-
neous in nature, containing information which is limited and difficult to ana-
lyze [20]. This reverberates on performance of GRN inference methods, which
tend to be biased toward the type of data and experiments. For instance, meth-
ods based on linear models perform poorly on highly non-linear data, such as
the one produced in presence of severe perturbations like gene knock-outs [11].
To alleviate these difficulties several alternatives have been proposed, such as
integrating heterogeneous data into the inference model [17], or integrating a
collection of predictions across different inference methods in Community Net-
works (CNs) [13,14]. The former is a promising research direction but it has to
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face several challenges which span from how to relate different types of data to
data sets normalization processes. The latter has the advantage of promoting the
benefits of individual methods while smoothing out their drawbacks. Moreover
it does not exclude the use of the former solution within the initial prediction
set. The CN integration process poses many challenges, raising questions like:
(i) how to take into account strengths and weaknesses of individual inference
methods—e.g., the difficulty for Mutual Information (MI) or correlation based
methods to discriminate TFs; and (ii) how to leverage additional information
which cannot be taken into account by the individual methods.

In this paper, we propose a novel methodology based on Constraint Program-
ming (CP) to integrate community predictions. CP is a declarative problem
solving paradigm, where logical rules are used to model problem properties and
to guide the construction of solutions. CP offers a natural environment where
heterogeneous information can be actively handled. The use of constraint expres-
sions allows the incremental refinements of a model. This is particularly suitable
to take care of biological knowledge integration, when such knowledge cannot be
directly handled by individual prediction methods.

We test our method on a set of 110 benchmarks proposed by the DREAM3 [14]
and DREAM4 [16] challenges. We show increases in prediction accuracy with
respect to a CN prediction based on the Borda count election method [13]. In
addition, we show promising results in assessing biological hypotheses that could
be used to guide the biological experimental design process.

2 Background

2.1 Basic Definitions

Gene Regulatory Networks. A GRN can be described by a weighted directed
graph G = (V,E), where V is the set of regulatory elements of the network and
E ⊆ V × V × [0, 1] is the set of regulatory interactions. The presence of an edge
〈s, t, w〉 ∈ E indicates that an interaction between the regulatory elements s and
t is present with confidence value w. The number |V | of regulatory elements of
the GRN is referred to as its size. If the GRN has no uncertainty, then each
edge in E has weight 1. In the problem of GRN inference, we are given the set
of vertices V and a set of experiments describing the behavior of the regulatory
elements. The goal is to accurately detect the set of regulatory interactions E.

Constraint Programming. CP is a declarative programming methodology
commonly used to address combinatorial search problems. It focuses on cap-
turing properties of the problem in the form of constraints, which are satisfied
exclusively by solutions of the problem. CP models are fully declarative and
elaboration tolerant, enabling the incremental integration of new knowledge.

A Constraint Satisfaction Problem (CSP) is formalized as a triple 〈X ,D, C〉,
where X = 〈x1, . . . , xn〉 is an n-tuple of variables, D = 〈D1, . . . , Dn〉 is a cor-
responding n-tuple of domains (and each Di is a set of possible values for the
variable xi), and C = 〈C1, . . . , Ck〉 is a k-tuple of constraints. A constraint Cj
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over a set of variables Sj ⊆ X is a subset of the Cartesian product of the domains
of the variables in Sj . A constraint represents the set of joint assignments that
can be given to the tuple of variables in Sj . Given an n-tuple A = 〈a1, . . . , an〉,
we denote with A|Sj the restriction of the tuple to the variables in Sj.

A solution of a CSP 〈X ,D, C〉 is an n-tuple A = 〈a1, . . . , an〉 where ai ∈ Di

(for 1 ≤ i ≤ n) and A|Sj ∈ Cj (for 1 ≤ j ≤ k)—i.e., the projection of A onto
the set of variables involved in Cj satisfies the relation Cj . Typical resolution
algorithms for CSP rely on efficient procedures to explore the search space of
possible solutions and on consistency methods, where constraints are used to
remove infeasible elements from the domains of the variables.

Related Work. A wide variety of GRN inference methods from expression data
have been proposed [17]. These include: (1) Discrete models based on Boolean
networks and Bayesian networks [11]; (2) Regression methods like TIGRESS—
which imposes a regression problem to each gene; (3) Methods based on mutual
information (MI) theory, such as ARACNE [15] and CLR [5], based on statistical
likelihood of MI values. Ensemble learning has been explored for example by
GENIE3, which uses a Random Forest approach [10]. Meta approaches have also
been explored, such as INFLEATOR, based on re-sampling combining median-
corrected z-scores(MCZ), time-lagged CLR (tlCLR), and linear ODE models [8].
Community Networks (CNs) integrate multiple inference methods to obtain a
common consensus prediction. They have been shown to achieve better average
confidence across different datasets and produce more robust results with respect
to the individual methods being composed [13]. A simple scheme for combining
predictions in a community network has been proposed in [13], where each in-
teraction is re-scored by averaging the ranks it obtained within each of all the
employed predictions. In the rest of the paper we will refer to it with CNrank.
Constraint Technologies have been recently successfully applied in the field of
System Biology [19]. For example, Answer Set Programming has been adopted
to address problems in network inconsistencies detection [7] and in metabolic
network analysis [18]. CP has been investigated to reason over discrete network
models, where GRNs are modeled using multi-valued variables and transition
rules [4]. In particular, CP is exploited to represent GRNs’ possible dynamics [6].

3 Methods

The CN approach adopted in this work is built by combining four GRN inference
procedures and creating an inference ensemble. Three of them are top-ranking
methods that have been presented in the past DREAM competitions [13]: (i)
TIGRESS [9], (ii) INFLEATOR [8], and (iii) GENIE3 [10]. The fourth is an
“off-the-shelf” widely adopted MI-based method (CLR) [5]. We use the GP-
DREAM web platform (http://dream.broadinstitute.org) to develop the
predictions from each of these methods. These methods have been selected to
provide robustness and diversity, avoiding method redundancies that could po-
tentially bias the inference ensemble.

http://dream.broadinstitute.org
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3.1 Problem Formalization

Given a set of n genes, a GRN inference problem is formalized as a CSP 〈X ,D, C〉,
with X = 〈x1, . . . , xn2−n〉; each xk describes a regulatory relation (without self
regulations), and each Dk = {0, . . . , 100} is the set of possible confidence values
associated with such relation. A variable xi is said to be assigned if its associated
domain Di has been reduced to a singleton set. We adopt the notation d(xi) to
indicate the value of an assigned variable xi. For the sake of presentation, we
denote with x〈s,t〉 the variable associated with the regulatory relation “s regulates
t” and D〈s,t〉 its domain. A solution to the above CSP defines a GRN prediction
G = (V,E), with V = {1, . . . , n} and E = {〈s, t, w〉 | d(x〈s,t〉) > 0}, where
w = d(x〈s,t〉)/100.

Variables and Domains. The proposed CSP solution leverages the collection
of GRN predictions obtained employing all the methods described in Sec. 3
by: (1) considerably reducing the size of the solution search space1 and (2)
taking into account the discrepancies among the community predictions. These
objectives are achieved by mapping the edge confidence levels of each prediction
to the corresponding CSP variable domain. The greater the agreement in the
inference ensemble, the smaller is the set of values in the domain of the variable
representing the relation being considered. The size of each domain captures
the degree of uncertainty expressed by an edge prediction within the inference
ensemble.

Let us consider a set of predictions G of a GRN G = (V,E). We denote with
Gj each prediction in the inference ensemble, and we denote with Ej the edges of
E that have been identified by Gj . We also assume that each prediction has been
normalized with respect to the ensemble itself. Furthermore, let θd (0 ≤ θd ≤ 1)
be a given disagreement threshold. The procedure described in Alg. 1 reduces
the content of the domains in D to at most three values. For each edge (s, t) we
calculate the average confidence value (w rank)—according to the Borda count
election method, as presented in [13], which averages the ranked edge confidence
values assigned by each prediction—and the discrepancy value (w d) within G
(line 4). The latter captures the ensemble prediction disagreement for a given
edge, averaging the pairwise differences of the edge ranks associated to each
prediction of the ensemble. If the discrepancy value exceeds the discrepancy
threshold θd and the average confidence value is not strongly informative (line
6), we force the domain D〈s,t〉 to take account of the prediction disagreement
by adding a variation of w d/2 to the average confidence value. fd is the nearest
integer function which converts a prediction confidence value into an integer
domain encoding, and it is defined as: fd(x) = "100 x + 0.5#. Line 5 ensures

the presence of the value w rank in D〈s,t〉. For a given prediction Gj , ω
#
j (s, t)

is the function ranking the prediction confidence for the edge (s, t) within the
confidence values in Ej .

1 An upper bound for the search space of a GRN inference problem of size n is 101n
2

.
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Algorithm 1. Domain Variable Population

Require: normalized Gj ∈ G, θd, G = (V,E)
1: J ← |G|
2: for all (s, t) ∈ E do
3: B ← ∅
4: (w rank, w d) ←

(
1

J

J∑
j=1

ω#
j (s, t),

1(
J
2

) J∑
j=1

J∑
i=j+1

∣∣ω#
j (s, t)− ω#

i (s, t)
∣∣)

5: B ← B ∪ {fd(w rank)}
6: if w d ≥ θd ∧ 0.1 < w rank < 0.9 then

7: B ← B ∪
{
max

(
0, fd

(
w rank− w d

2

))
, min

(
100, fd

(
w rank+

w d

2

))}
8: end if
9: D〈s,t〉 ← D〈s,t〉 ∩B
10: end for

Constraint Modeling. Let us analyze the constraints that can be exploited to
enforce the satisfaction of GRNs’ specific properties and to take into account col-
lective strengths and individual weaknesses of the CN predictions. Furthermore,
we will discuss the propagation rules associated with the various constraints used
to reduce the domain size of the variables ensuring constraint consistency.

Sparsity Constraints. It is widely accepted that the GRN machinery is controlled
by a relatively small number of genes. Several state-of-the-art methods for reverse
engineering GRN encourage sparsity in the inferred networks [13]. Nevertheless,
when combining predictions in a community based approach, no guarantees on
the sparsity of the resulting prediction can be provided. To address this issue we
introduce a sparsity constraint, which is built from two more general constraints:
atleast k ge and atmost k ge. They both enforce a relation among a set of
variables and ensure that among the variables involved at least (resp. at most) k
of them have values greater or equal than a threshold. Formally, the constraint:

atleast k ge(k,X, θ) :
∣∣{xi ∈ X | d(xi) > θ}

∣∣ ≥ k (1)

enforces a lower bound (k) on the number of variables in X whose confidence
value is greater than θ; the constraint:

atmost k ge(k,X, θ) :
∣∣{xi ∈ X | d(xi) > θ}

∣∣ ≤ k (2)

limits to at most k the variables in X with confidence value greater than θ.
The propagation of the atmost k ge constraint is exploited during the solution

search to enforce the property (2) by the following:

atmost k ge(k,X, θ) :
S = {xi ∈ X | d(xi) > θ}, |S| = k∧
xj∈X\S

D〈xj〉=D〈xj〉 ∩ {0, . . . , θ}
(3)
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The atleast k ge cannot benefit from a powerful propagation rule, but early
failures can be detected during the solution search by checking the upper bound
on the number of variables not yet instantiated which satisfy property (1).

The sparsity constraint g-sparsity is a global constraint over the variables in
X . It enforces lower and upper bounds on the number of edges whose confidence
value is outside a given threshold. Formally, given kl, km, θl, θm:

atleast k ge(kl, X, θl) ∩ atmost k ge(km, X, θm) (4)

Redundant Edge Constraints. Several state-of-the-art inference methods rely on
MI or correlation techniques; the community approach adopted for this work
employs CLR and INFLEATOR, which are both MI-based methods (see Sec. 3).
One of the disadvantages of such methods is the difficulty in speculating on the
directionality of a given prediction. We define a constraint that has been effective
in our experiments in detecting the edge directionality based on the collective
decision of the CN predictions, among the non MI- or correlation-based methods.

Let us consider a collection of predictions G = {G1, . . . , Gn} for a GRN G =
(V,E), and a non-empty set of MI- or correlation-based methods H ⊆ G. An
edge (t, s) is said to be redundant if:

∀Gi ∈ G \ H . ωi(t, s) < ωi(s, t) ∧ (ωi(s, t) − ωi(t, s)) > β (5)

where ωi(s, t) : V × V → [0, 1] ⊆ R expresses the confidence value of the edge
(s, t) in the prediction Gi. Given a redundant edge (t, s) we call the edge (s, t) the
required edge. The redundant edge constraint enforces a relation between two
variables x〈s,t〉 and x〈t,s〉. Let XR be the set of all the redundant and required
variables.2 For a pair of variables x〈s,t〉, x〈t,s〉 ∈ XR the constraint:

redundant edge(x〈s,t〉, x〈t,s〉, θe, L) : x〈s,t〉 > θe ∧ max(D〈t,s〉) < L (6)

ensures that the confidence value assigned to the required variable x〈s,t〉 is greater
than a given threshold value θe ∈ N, with 0 ≤ θe ≤ 100, and that the domain
of the redundant edge variable x〈t,s〉 contains no values greater than L. The
propagation of the redundant edge constraint is exploited during the solution
search to enforce property (6):

(x〈s,t〉, x〈t,s〉, θe, L) :
min(D〈s,t〉) > θe, max(D〈t,s〉) ≥ L

D〈t,s〉 = D〈t,s〉 ∩ {0, . . . , L− 1} (7)

Transcriptor Factor Constraints. Often, GRN specific information, such as se-
quence DNA-binding TFs or functional activity of a set of genes, is available
from public sources (e.g., DBD [12]). Moreover, several studies show that sim-
ilar mRNA expression profiles are likely to be regulated via the same mecha-
nisms [1]. Not every method may be designed to handle such information, or
this information can become available in an incremental fashion, and hence not

2 x〈s,t〉 is redundant/required if the corresponding edge (s, t) is redundant/required.
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suitably usable by prediction methods. We propose constraints that can directly
incorporate such information in the CN model.

A regulatory element is a Transcription-factor (TF) if it regulates the pro-
duction of other genes. This property is described through a relation on the out-
degree of the involved gene for those edges with an adequate confidence value.
The transc-factor constraint over a gene s is enforced by an atleast k ge(k,
Xs, θ) constraint with Xs = {x〈s,u〉 ∈ X | u ∈ V }, and k representing the co-
expressing degree, i.e., the number of genes targeted by the TF.

Multiple TFs can cooperate to regulate the transcription of specific genes;
these are referred to as Co-regulators. When this information is available it can
be expressed by a coregulator constraint. The latter involves two TFs, s′ and
s′′; it enforces a relation over a set of variablesX , to guarantee the existence of at
least k elements that are co-regulated by both s′ and s′′ for which an interaction
is predicted with confidence value greater than θ (0 < θ ≤ 1). Formally:

coregulator(k,X, θ) : ∀x〈s′,t′〉, x〈s′′,t′′〉 ∈ X∣∣ {(s′, s′′, t′) | s′ �=s′′ ∧ t′= t′′ ∧ d(x〈s′,t′〉)>θ ∧ d(x〈s′′,t′′〉)>θ}
∣∣ ≥ k (8)

Search Strategy. The proposed modeling of GRN prediction allows a great
degree of flexibility in exploring the solution space. We implement two search
strategies: (1) a classical prop-labeling tree exploration (DFS), where constraint
propagation phases are interleaved with non-deterministic branching phases used
to explore different value assignments to variables [2], and (2) a Monte Carlo
(MC)-based prop-labeling tree exploration, which performs a random value as-
signment to each variable. We set a trial limit for the MC-based solution and a
solution number limit for both strategies.

GRN Consensus. A challenge in GRN inference is the absence of a widely
accepted objective function to drive the solution search. We decided to generate
an ensemble of m solutions and propose three criteria to compute the final
GRN prediction. Given a set of m solutions S = {S1, . . . , Sm}, where each
Si = 〈ai1, . . . , ain2−n〉, let S|xk

=
⋃m

i=1{aik} be the set of values assigned to the
variable xk in the different solutions, and freq(a, k) be the function counting
the occurrences of the value a among the assignments to xk in the solution set.
The consensus value a∗k associated with the variable xk is computed by:

• Max Frequency: a∗k = argmaxa∈S|xk
(freq(a, k)). This estimator rewards the

edge confidence value appearing with the highest frequency in the solution
set. The intuition is that edge-specific confidence values appearing in many
solutions may be important for the satisfaction of the constraints.

• Average: a∗k = 1
m

∑m
i=1 a

i
k. It computes the average edge consensus among

all solution in order to capture recurring predictive trends.

• Weighted average: a∗k = 1∑
a∈S|xk

freq(a,k)2
∑

a∈S|xk
freq(a, k)2a. This es-

timator combines the intuitions of the two above by weighting the average
edge confidence by the individual quadratic value frequencies.
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We also investigated some potential global measures—i.e., acting collectively on
the prediction values of all edges—in terms of the solution which minimizes the
Hamming distance among all edge prediction values. These global measures were
always outperformed by the three estimators discussed above.

3.2 A Case Study

We provide an example to illustrate our approach. We adopt the “E.coli2” net-
work from the 10-node DREAM3 subchallenge [14] (Fig. 1). The target network
has two co-regulators (G1 and G5) which are in turn regulated by gene G9. The
network has 15 interactions.
Phase 1: CN Predictions. The inference en-
semble was generated by feeding the datasets
provided within the DREAM3 challenge to
each of the four methods adopted in the com-
munity network schema (see Sec. 3). In addi-
tion, we generate a CNrank as done in [13],
and use it as baseline to build the domain
variables (see Alg. 1) and for evaluation.
Phase 2: Modeling the CSP. The execution of
Alg. 1 for the prediction disagreements analy-
sis reduced the initial domain sizes to 1 for 64
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Fig. 1. An extract of E.coli GRN

cases, and to 3 for the others. The disagreement threshold was set to θd = 0.20.
As the inference ensemble adopted employs methods that may suffer from the
edge redundancy problem, we impose a redundant edge constraint for all the
edge pairs (s, t), (t, s) that satisfy the definition with β = 0.15 as:

redundant edge(x〈s,t〉, x〈t,s〉, 75, 50). (r)

This constraint was able to reduce the value uncertainty for two additional
variables—only one element in their domains can possibly satisfy the condi-
tions above for any value choice of the required edge variable.
A sparsity constraint was imposed at a global level as:

g-sparsity : atleast k ge(10,X , 65) ∩ atmost k ge(25,X , 65). (s)

Phase 3: Generating the Consensus.We performed 1, 000 Monte Carlo samplings
and return the first 100 solutions found, which we refer to as Constrained Com-
munity Networks (CCNs). To illustrate the effect of constraints integration on
the CCNs we consider the best prediction returned by each CSP exhibiting a
different combinations of the imposed constraints. We plot it as a graph contain-
ing all and only the edges of highest confidence necessary to make such graph
weakly connected. These resulting predictions are illustrated in Fig. 2, together
with the CNrank (top-right). In each network the green edges (thick with filled
arrows) denote the true positive predictions, the red edges (with empty arrows)
denote the false positive predictions, and the gray (dotted) edges denote the
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Fig. 2. The CNrank consensus (top-right) and the CCN prediction after the integration
of the redundant edge and sparsity constraints (top-left), the TF constraints (bottom-
left) and Co-factor constraint (bottom-right).

false negatives. The results are also summarized in Table 1, where we report the
AUC scores [3] for the best prediction (CCNbest) generated and for each CCN
generated by the evaluation criteria presented in in Sec. 3.1.
Phase 4: Employing network specific information. Let us now model some specific
information about the target network. The target network includes three TFs:
G1, G5, G9, which can be modeled via three transc factor constraints as:

atleast k ge(2, N1, 85), atleast k ge(2, N5, 85), atleast k ge(2, N9, 85) (t)

with Ni = {x〈i,s〉 | (∀Gj ∈ G) ωj(i, s) > 0.10}. Note that ωj(i, s) is the prediction
confidence assigned to edge (i, s) by the inference method J in the prediction
Gj . Fig. 2 and Table 1 show the improvements using the latter formalization.

Table 1. The effects of constraint integration on the AUC scores for the “Ecoli2”
CCNs

Constr. CN rank CCN best CCNmax-f CCN avg CCNw-avg

r 0.7271 0.8036 0.7556 0.7644 0.7751
s 0.7271 0.8044 0.7529 0.7164 0.7591

r, s 0.7271 0.8453 0.7778 0.7609 0.7760
r, s, t 0.7271 0.9209 0.7458 0.8489 0.8587

r, s, t, c 0.7271 0.9378 0.7929 0.8622 0.8729
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Finally, speculation about the activity of genes G1 and G2 as co-regulators
can be captured via a coregulator constraint expressed by:

coregulator(1, V, 75) (c)

with V defined as in (8) with s′ = 1, s′′ = 5. As shown in Fig. 2 and in Table 1,
the application of this additional constraint produces further improvements.

4 Results and Discussions

Benchmark Networks and Datasets. The proposed approach has been
tested using benchmarks from the DREAM3 and DREAM4 competitions [14,16].
The datasets adopted include the steady state expression levels for wild type and
for knock-outs of every gene and the time-series data (a variable number of tra-
jectories, depending on the size of the network). We generate 110 predictions: 50
of size 10, 25 of size 50, and 50 of size 100. For each problem we generate four
consensus from each of the community methods described in Sec. 3 together with
a consensus network constructed by averaging individual edges ranks (CN rank).

Validation. To measure prediction accuracy against the corresponding refer-
ence network we adopted the AUC score [3], which relates the ratio between the
true positive rate and the false positive rate. An AUC value of 0.5 corresponds
to a random prediction, whereas a value of 1.0 indicates perfect prediction.

Settings. For each experiment we perform a 1, 000 Monte Carlo samplings and
return the first 100 solutions found. We observed that the DFS was always out-
performed by the MC search and therefore not reported. To guide the parameter
selection for the sparsity constraint, given the thresholds θl, θm (see Eq. (4)), we
identity the bounds kl and km which would make the constraint unsatisfiable
and use them to set the sparsity parameters. In this way, kl and km are set so
that they are bounded, respectively, above by |{xi|xi ∈ X ∧ max(Dxi) > θl}|,
and below by |{xi|xi ∈ X ∧min(Dxi) > θm}|, provided that kl < km. The closer
are their values to the respective bounds, the more restrictive is the constraint.

The g sparsity (s) and redundant edge (r) constraints have been enabled

for all the experiments, with parameters kl=
n2

10 , km= n2

4 , θl, θm, θe in {65, 75},
and L = 50 (from ref. (4) and (6)). The latter was applied to all the pairs of
edges satisfying (6) with β=0.15. The disagreement threshold θd was set to 0.2
(see Alg. 1). We observed that such settings, for both search and constraints pa-
rameters, produced stable results across the whole benchmark set, which in turn
was designed to capture a variety of network topologies to asseses GRN infer-
ence algorithms. We generate four CN consensus (CCNs), one for each estimator
described in Sec. 3.1 (CCNmax-f, CCNavg, CCNw-avg) and CCNbest, as best pre-
diction with respect to the AUC score, and compare them against CNrank. The
estimators-based CCNs may outperform the CCNbest as they are not elements
of the set of solutions returned. We experimentally verified their constraints
consistency, which was always satisfied.
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Table 2. Average AUC score improvements (in percentage) with respect to CN rank

Dream3 10 Dream4 10 Dream3 50 Dream3 100 Dream4 100

CCNs r
best +10.52 +7.01 +3.63 +1.75 −0.17

CCNs r
w-avg +3.01 +1.96 +1.49 +0.43 +0.05

CCNs r t
best +15.02 +8.43 +8.49 +4.13 +2.29

CCNs r t
w-avg +5.42 +2.48 +6.32 +3.21 +4.21

Experiments. Wefirst focused on examining the predictedCCNs using the spar-
sity and redundant edge constraints to leverage community-method features and
networks properties. We categorize the benchmarks by DREAM edition and size,
and average their respective AUC scores. Table 2 reports the percentage of the av-
erage AUC improvements for the best CCNbest and best CCNw-avg with respect
to CNrank across all the benchmarks (first two columns). Our choice of reporting
only the weighted average estimator, among all those defined in Sect. 3.1, is driven
by the observation that the former offers higher stability to parameter tuning and
in general outperforms the other two. The CCNs achieved higher average predic-
tion accuracy with respect to CNrank for small and medium size networks, while
performance improvements decreased for bigger networks. This is probably due to
the high permissiveness of the CSP model for bigger networks.We show next that
the application of additional constraints overcomes such effect.

We extended the set of constraints to include specific knowledge about in-
dividual networks. We enabled the transcriptor-factor constraint over a set of
randomly selected genes which were verified TFs in the target networks. The
TFs set sizes were chosen to be at most 30%, 15% and 10%, respectively, for the
networks of size 10, 50 and 100; the co-expressing degree was set as k= 2 and
θ=85.We performed 5 repetitions and for each TF t the set of possible regulators
X has been chosen among the variables x〈t,s〉 such that ω#(t, s) > 0.25. More-
over to promote such constraint we increased the uncertainty for the regulation
x〈t,s〉 such that maxD〈t,s〉 ≤ 50. These parameters were chosen in accordance
to the study presented in [1]. The integration of additional knowledge produced
improvements of the AUC scores for both the best and the weighted average
measures—see the last two columns of Table 2. A complete summary of the
results is reported in Table 3.

The CCNs outperformed in general CNrank, and CCNw-avg offers larger im-
provement for the bigger networks with respect to the version without the TF
constraint. This supports our hypothesis that the addition of biological knowl-
edge can better guide the predictions even if re-adopting the same inference
ensemble. From a preliminary analysis of the incorrect predicted regulations
supported by the TF constraint we observed that many of the erroneous infer-
ences relate genes located in different regions of the graph. This effect could be
attenuated by clustering the consensus graph for different connectivities, and
targeting the TF constraint on the same cluster (if no prior knowledge on the
specific TF is given). We plan to investigate this direction as future work.
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4.1 Other Uses: Validating Biological Hypothesis

The underlying technology adopted in this work allows us to test biological
hypotheses, expressed in form of constraints, that may assist the phase of exper-
imental design. The solver verifies the existence of a set of solutions consistent
with the given hypotheses and its size can be related to confidence strength of
the answer.

Consider a case study based on the “E.coli2” network presented in Sec. 3.2
(Fig. 1) to verify the hypothesis on the presence of a co-regulatory interaction.
We perform 90 experiments, one for each pair of vertexes s′, s′′ of the network,
with s′ �= s′′, involved in a constraint of the type coregulator(2, V, 75) with V
defined as in (8) and employ the same settings as the one adopted in Sec. 3.2.
Among the entire set of problems only four satisfied the imposed hypothesis
returning a non-empty set of solutions. These were the ones associated with
the putative co-regulators (G1, G5), (G5, G3), (G5, G6) and (G1, G8), generating
respectively 115, 151, 32 and 48 solutions. This notably restricts the number of
possible biological tests to be performed, and also assigns higher probability to
the first two co-regulators as they were able to generate more consistent solutions.
We tried to shrink the set of putative co-regulators even more by imposing a
stronger constraint: coregulator(3, V, 70) with the same settings used above.
This produced only one consistent set of solutions, associated with the pair
(G1, G5), containing 151 elements. The result confirms the biological value of
the experiment (see Figure 1). We stress that the hypothesis tested leverage
the collective knowledge as well as additional network specific constraints (e.g.,
sparsity, redundant edge) which are collectively handled in the CP model.

5 Conclusions

In this paper we introduced a novel approach based on CP to infer GRNs by
integrating a collection of predictions in a CN. Our approach does not impose
any hypothesis on the datasets adopted nor on the type of inference methods.
We introduced a class of constraints able to (1) enforce the satisfaction of GRNs’
specific properties and (2) take account of the community prediction collective
agreements on each edge, and of method-specific limitations. Experiments over
a set of 110 benchmarks proposed in past editions of the DREAM challenges
show that our approach can consistently outperform the consensus networks con-
structed by averaging individual edges ranks, as proposed in [13] (up to 15.02%
for small networks and 4.13% for big networks). We have shown how knowledge
specific about target networks could provide further improvements in the AUC
measure. This was possible as our model encourages the modular integration of
biological knowledge, in form of logical rules, and proposes a set of candidate
solutions satisfying the imposed constraints rather than an arbitrary one chosen
among many. We introduced three estimators to compute a consensus from the
set of consistent candidates and verified their consistency among the imposed
constraints. We also show the potential of the proposed solution to assess bio-
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logical hypotheses by verifying the consistency of the constrained model. This
can be helpful in assisting the biological experimental design.

We plan to investigate new optimization measures by taking into account local
and global network properties, e.g., the number of specific network motifs in a
target GRN region, or the scale free degree in a given a portion of the graph. This
can be achieved by including soft constraints in our model. We also plan to use
this information to address method-specific biases towards different connectivity
patterns. On the CP side, we will extend existing constraints, for instance by
studying the most likely set where a TF constraint could be targeted, and model
new constrains and propagators to capture different type of biological knowledge,
such us information about cell conditions at the time of the experiments.
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Abstract. Formal methods have long been employed to capture the
dynamics of biological systems in terms of Continuous Time Markov
Chains. The formal approach enables the use of elegant analysis tools
such as model checking, but usually relies on a complete specification of
the model of interest and cannot easily accommodate uncertain data. In
contrast, data-driven modelling, based on machine learning techniques,
can fit models to available data but their reliance on low level mathemat-
ical descriptions of systems makes it difficult to readily transfer methods
from one problem to the next. Probabilistic programming languages po-
tentially offer a framework in which the strengths of these two approaches
can be combined, yet their expressivity is limited at the moment.

We propose a high-level framework for specifying and performing
inference on descriptions of models using a probabilistic programming
language. We extend the expressivity of an existing probabilistic pro-
gramming language, Infer.NET Fun, in order to enable inference and
simulation of CTMCs. We demonstrate our method on simple test cases,
including a more complex model of gene expression. Our results suggest
that this is a promising approach with room for future development on
the interface between formal methods and machine learning.

1 Introduction

Continuous Time Markov Chains (CTMCs) have long been established as a
framework for the description and analysis of dynamical systems, including those
encountered in the life sciences. Of particular interest, and also widespread, is
their use within high-level formalisms, such as process algebras. Adopting a
high-level language rather than working with the CTMC itself offers various
advantages: a friendlier language to specify the system, easier modification and
some degree of inbuilt error-checking, among others. It also gives access to an
array of tools to analyse and reason about the behaviour of the system, such as
stochastic simulation and model-checking. The major weakness of this framework
is that the models implicitly assume complete mechanistic knowledge of the
system. Therefore it does not offer support for integrating experimental data
into models or inferring parameters from observations.

In contrast, machine learning techniques applied to models of biological pro-
cesses are designed to predict a system’s behaviour in the presence of uncertainty.
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An important category of such methods is concerned with using (possibly noisy)
observations from the system in order to refine our understanding of it, a task
often referred to as learning and which can be broken down into two aspects:
learning the structure of the system in question, or learning its parameters (for
a given structure). These methods mostly work on mathematical descriptions of
systems, often in the form of ordinary, partial or stochastic differential equations.
For example, Bayesian Networks, a graphical framework for describing proba-
bilistic models, while intuitive and widely used are still essentially a front-end
to the underlying equations. Working with the low-level description negates the
advantages afforded by high-level languages, as described above, thus limiting
the applicability of the inference techniques.

Some common ground between the two approaches may be found in the
field of probabilistic programming. Probabilistic programming promises to of-
fer a high-level language that can be used for both describing and learning
non-deterministic systems. Using a programming language and the expressive
power it affords makes the the process of specifying a system easier, while at the
same time offering a range of other features such as modularity and type sys-
tems. Additionally, we also obtain a unified, general framework for automatically
performing inference on a given model, eliminating the need to write bespoke
solutions and learning algorithms for every system of interest.

While the field of probabilistic programming has generated considerable inter-
est in recent years, current probabilistic programming languages are limited in the
types of models they can describe, as well as in the inference methodologies they
implement. In particular, to our knowledge, continuous time, non-parametricmod-
els such as CTMCs cannot be handled by current probabilistic programs. Several
techniques have been proposed, including approximations based on finite dimen-
sional projections [1], sampling methodologies (e.g.[15,3]), and variational infer-
ence approaches [12]. However, these methods all require a low level mathematical
description of the system (usually a way of approximately solving the chemical
master equation).

In this paper, we explore the potential for a framework which encompasses
the strengths of both high-level formalisms and machine learning by extending
an existing probabilistic programming language, Infer.NET Fun [2], in order to
enable stochastic simulation and approximate Bayesian inference for CTMCs.
We call the resulting approach ABC–Fun and illustrate it on two examples of
biological significance, showing the potential of probabilistic programming as an
effective tool for modelling in systems biology. Our focus, however, is not on
presenting a fully-formed solution but rather on exploring the applicability of a
novel approach, with the ultimate aim of facilitating interfacing of models and
experiments.

The rest of the paper is structured as follows: we give an overview of proba-
bilistic programming and the platform we are using, Infer.NET Fun; we briefly
describe our implementation of Gillespie’s stochastic simulation algorithm, the
basis of our approach, before presenting the inference process; finally, we describe
our experiments and discuss their results.
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2 Background

2.1 Bayesian Inference

In this work, we focus on the Bayesian approach to learning, which uses prob-
ability distributions to model and quantify uncertainty about all aspects of the
system under study, including its structure or parameters. Assume the system
to be characterised by a set of parameter values Θ (e.g. transition rates of a
certain CTMC). We are also given a set of (partial) observations of the system
y. The principal ingredients of the Bayesian approach are two: the prior distri-
bution p(Θ) encodes any initial beliefs about the values of the parameters. The
likelihood p(y|Θ) (sometimes called observation model) gives the probability of
the observations given the values of the parameters. Since the observations are
fixed, this is a function of the parameter values. Bayes’ rule combines these two
ingredients to provide a mathematically sound way of estimating the impact of
the observations on our beliefs over the parameters,

p (Θ|y) = 1

Z
p (y|Θ) p (Θ) . (1)

p (Θ|y) is the posterior distribution over the parameters, which quantifies the
uncertainty over the parameters implied by the data and the prior beliefs.

A major computational hurdle in applying Bayes’ rule is the estimation of the
proportionality constant Z in equation (1). This term, the marginal likelihood or
evidence, represents the probability of the data under all possible settings of the
parameters; its value is obtained by performing (usually analytically intractable)
integrals over the parameter space, which become prohibitive in even moderate
dimensions. In the case of CTMCs, this problem is further compounded by the
fact that (in general) even the likelihood cannot be computed analytically: the
probability of the state of a CTMC taking a particular value at a certain time can
only be obtained by solving the chemical master equation, which is impossible
in most cases. In general, Bayesian inference in CTMCs remains a challenging
problem: current methods either resort to approximations to the chemical master
equations [12,1] or sampling approximations [15,3]. In all of these approaches,
inference relies on a low level mathematical description of the system as a Markov
transition system, and often specific characteristics of the system (e.g. functional
form of the transition rates) are hard-wired in any accompanying code, greatly
reducing the ease of portability and applicability of the approach.

2.2 Probabilistic Programming

Probabilistic programs can be thought of as an extension of conventional, deter-
ministic programs, in which expressions describe stochastic experiments. Rather
than having a concrete value, then, an expression corresponds to a whole dis-
tribution over values and evaluating it means performing the experiment and
recording its outcome [13]. Constraining some variables within an expression to



ABC–Fun: A Probabilistic Programming Language for Biology 153

have a specified value is equivalent to performing inference, with the observations
representing constraints.

Historically, probabilistic programming languages have been primarily tar-
geted at graphical models, a popular class of models in machine learning. Briefly,
a graphical model is a specification of a finite number of random variables and
the (conditional) dependence relationship which define their joint distribution.
The name graphical model derives from the fact that such models can be repre-
sented as graphs or networks; this graphical representation enables a quick and
intuitive formulation of the model, and also encodes several properties which are
important for simplifying inference. For a thorough review, we refer the reader
to the excellent book [7].

Examples of languages for probabilistic programming include IBAL [13] and
Church [5]. Both of these use a functional language to specify probabilistic mod-
els, equipped with a way of performing inference on them. The generation of the
inference code is automated and tailored to the model at hand, which means
the user can focus on describing the model and not on adjusting or rewriting
code for every different model. However, the automation of inference comes at
a cost, either in terms of the class of models that can be considered (IBAL for
example only considers finite graphical models), or of the inference methodol-
ogy employed (Church only allows the Metropolis-Hastings sampling algorithm,
which requires an analytically tractable likelihood function).

Infer.NET [9] is a probabilistic programming framework developed by Mi-
crosoft Research for specifying probabilistic models and performing Bayesian in-
ference on them. More specifically, it offers a high-level, programming language
interface for the description of graphical models. Further to this, Infer.NET in-
cludes an inference engine that can use a number of different algorithms, such as
Expectation Propagation and Gibbs Sampling, to obtain estimates of the distri-
bution of the model’s parameters, informed by the knowledge of some observed
data. Infer.NET also provides bindings for programming languages such as C#
and Python and these can be used to describe a model and the desired inference
queries, which are then compiled into source code. The resulting code can then
itself be compiled and executed, returning the results of the inference queries.
An additional component of Infer.NET is Fun ([2,6]), an F# interface that aims
to make the process of describing a model even more similar to “conventional”
programming. As such, its syntax is very lightweight and consists of simple ad-
ditions to the standard F# syntax, resulting in a user-friendly framework.

A model expressed in Fun can be used in two different yet related ways. The
first is to view it as a generative model, that is, a description of how data points
are generated. In this case, every random expression produces a sample from the
given distribution. The model can therefore be “run forwards”, giving rise to a
set of values in a style similar to ancestral sampling.

The second way to use a model is to pass it to the Infer.NET inference engine.
The model is then “run backwards”. We use observe expressions to specify
observed data and condition the model on them — when such an expression is
encountered, if its condition is not met, the execution is marked as failed. The
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result of this procedure is that we can obtain the posterior distributions on the
random variables of the model, i.e. the distribution when only considering those
executions which satisfy all the observations.

To illustrate what models probabilistic programming languages can handle,
and see why they are not sufficient for CTMCs, we consider the kind of systems
that can be modelled in Fun. In the simplest case, a Fun model can describe a
static system with a finite number of random variables. In this case, one would
describe how the variables depend on one another by specifying their conditional
distributions. Some of these distributions may be parametrized, and the unknown
parameters are also treated like random variables, in the Bayesian style.

A more complex example which can still be modelled in Fun is a dynamical
system with a known number of steps. The state at each time depends only on the
previous state, thus the system can be represented as a Markov Chain. Describing
this would result in a recursive definition, which is not supported by Infer.NET.
However, in the functional programming paradigm, this can be reformulated as
a folding operation, to avoid explicit recursion. Folding a function over an array
involves applying it to all elements of the array sequentially. The result of every
application is used to obtain a new function, which is then applied to the next
element, and so on. This technique has been applied to one of the examples
in [6], but it should be noted that this is made possible because the number of
steps in the system is known a priori.

3 Probabilistic Programming for CTMCs

In this section we highlight the limitations of Fun and describe how these can
be addressed in an economic way by exploiting Fun’s parent language, F#.

Infer.NET, and Fun in particular, is designed to address graphical models,
i.e. models with a known, finite number of random variables. In particular, the
number of random variables is hard-wired in the definition of a Fun model type.
In the case of CTMCs, however, the number of transitions that may occur in a
given time is generally unknown, therefore so is the number of random variables
(since every transition is associated with two random variables, one each for the
choice of transition and delay). This means both that we do not have an array
to fold over, and so cannot eliminate the recursion, and that we must use lists
instead of arrays, since the latter have a fixed size while the former can grow
indefinitely. However, these are not features supported by Fun or Infer.NET, so
we must leave Fun for a different language. A major implication of this is that
the inbuilt inference engine of Infer.NET cannot be used, so that alternative
inference strategies need to be used (detailed in Section 3.2).

As we would like to retain some of the functionality of Fun, such as drawing
samples, we turn to its base language, F#, and use Fun as a library for the oper-
ations we need. This way, we can retain useful language structures and features
such as random number generators for various different probability distributions,
although the final code will not be compatible with the Infer.NET inference en-
gine. Moreover the F# code has been packaged as a library for FUN making
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it available to other users who are not necessarily familiar with the implemen-
tation details for CTMCs. This illustrates our aim to lift the data generation
and inference techniques into a high-level language, supporting their use by a
wide-range of users as transparently as possible.

3.1 Implementing the Stochastic Simulation Algorithm

The ability to simulate CTMCs is central for both modelling and inference. We
describe here the ABC-Fun implementation of Gillespie’s Stochastic Simulation
Algorithm [4]; this is given in considerable detail both because of its importance
and in order to provide the reader with a concrete example of ABC-Fun syntax.

We handle models as chemical reactions: a model with N species and K
reactions is comprised of a stoichiometry matrix and a list of kinetic laws. The
stoichiometry matrix is implemented as a list of lists; each of its K sub-lists has
length N , corresponds to a reaction and contains the updates for the population
of each species when that reaction occurs. Each reaction also has an associated
kinetic law, which is a function that acts on a list of integers (the state of the
system) and returns a real value (the rate of the reaction); these are collected
in the second component of the model. A model can also be parametrized –
such a model is essentially a function that takes a list of parameters and returns
a concrete model, as described above. We define a Model constructor, which
combines the two elements (list of rates and stoichiometry matrix) and creates
a model object. Technically, this has the F# type:

( i n t l i s t −> f l o a t ) l i s t ∗ ( i n t l i s t ) l i s t −> model

This provides an interface through which one can specify models, without
concern for how the simulation is performed. For example, a model of a single
species birth-process can be encoded as follows:

l e t r1 1 l = 0 .1 ∗ f l o a t ( L i s t . head l )
l e t r1 2 l = 20 .0 // constant rat e
l e t rateLaws1 = [ r1 1 ; r1 2 ]
l e t s t o i ch 1 = [ [ − 1 ] ; [ 1 ] ]
l e t m1 = Model ( rateLaws1 , s t o i ch 1 )

A trace (one possible run of the CTMC) can then be obtained simply by calling
the function pathSample, which accepts a model, an initial state and the stop-
ping time, and returns a trajectory through the state space (a list of states and
a list of the corresponding times). Its type is therefore

model −> i n t l i s t −> f l o a t −> i n t l i s t l i s t ∗ f l o a t l i s t

In order to generate a trace, we must make explicit the sampling steps involved
in the SSA. To do so in a probabilistic programming language, we use some of
the Fun in-built functions (primarily the random number generators). The SSA
can be recast in probabilistic programming terms if we consider that, at every
step, the next reaction to occur is a discrete random variable, with each possible
value having a probability that can be calculated from the reaction rates at the
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current state. Similarly, the time to the next state is also a random variable.
Both of these probabilities are encoded in the kinetic parameters of the model.
In order to simulate the CTMC, we keep the parameter fixed; we will see in
the next section how to vary the parameters in an inference scheme. The code
below shows how we implement the standard version of the SSA in F# using
Fun as a library. The part shown here specifies how the next reaction and delay
are chosen. It is straightforward to use this in order to recursively build the
trajectory, keeping a list of the states and transition times and stopping when
we reach the final time.

l e t nextStateAndTime s t a t e rat eFunct ion s s t o i ch =
l e t r a t e s = [ | for r in ra t eFunct ion s −> r s t a t e | ]
l e t sumRates = Seq . sum ra t e s

i f sumRates > 0 .0 then
let delay = ExponentialSample sumRates
l e t r e a c t i on = random( D i s c r e t e ( Vector . FromArray r a t e s ) )
l e t newState = updateState s t a t e ( L i s t . nth s t o i ch r e a c t i on )

( newState , de lay )
else // a l l r a t e s are 0 , we can stop

( s tat e , i n f i n i t y )

Note that the code above uses the random construct from Fun to sample from
a distribution. ExponentialSample is also defined using random to draw from
an exponential distribution with the specified rate:

l e t Exponent ia lDist ra t e = GammaFromShapeAndRate( 1 . 0 , ra t e )
l e t Exponent ialSample rat e = random( Exponent ia lDist ra t e )

updateState simply calculates the next state given the current state and the
row of the stoichiometry matrix corresponding to the chosen reaction. As both
these arguments are represented as lists, this can be expressed as the pairwise
sum of their elements.

3.2 Choosing an Inference Engine

As explained earlier, the limitations of the Infer.NET engine mean that we must
adopt a different inference method. For the purposes of this work, we use Ap-
proximate Bayesian Computation (ABC) [19], a parameter inference scheme that
constructs an approximation of the posterior distribution by repeated simula-
tions of the system. This enables us to use our implementation of the SSA to
also perform inference, as described below.

ABC works by generating samples of parameters. For each such parameter,
the behaviour of the system is simulated, in our case producing a path through
the state space. If the path obtained this way matches the observed data, under
some given metrics and tolerance, the parameter sample is kept, otherwise it
is discarded. The process is repeated until a sufficient number of samples has
been accepted, and the resulting set of accepted parameter values serves as
the approximate representation of the posterior. ABC can therefore be thought
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of as a way of converting simulation into an inference technique. The choice
of tolerance can be significant, as there is a trade-off between accuracy and
efficiency of the algorithm. The lower the tolerance, the harder it is to accept a
sample, which means more sampling attempts will be required in order to reach
the desired number of accepted samples (as the rejection rate will be higher) but
the final set will be more representative of the true posterior distribution.

There are different versions of the algorithm (as described, for example, in [17]),
depending on how the parameter samples are generated. The simplest approach
is to sample independently from a prior distribution, which may however prove
to be inefficient, while another is to have each sample depend on the previous
one, giving rise to a Markov Chain Monte Carlo (MCMC) scheme.

Choosing a metric to evaluate the distance between a simulated trace and the
observed data is an important issue. Assume we have a series of successive obser-
vations along with the corresponding measurement times {(y1, t1), ..., (yN , tN )},
and a simulated trace {(x1, τ1), ..., (xM , τM )}, with M > N1. In this work,
the first thing we do is “shift” and thin the trace, keeping the value at ev-
ery ti. Formally, we define a new time-series x̂ such that x̂i = xm, where
m = argmaxj(τj ≤ ti), for i = 1, .., N .

The simplest way to calculate the distance between x and y is to take the
absolute difference between x̂ and y, averaged over all points:

d(x, y) =
1

N

N∑
i=1

|x̂i − yi| (2)

In the case of CTMCs, a plausible alternative could be to rescale the difference
between x̂ and y adaptively according to the value of y; this can be justified
by noticing that noise in CTMCs is usually multiplicative. We therefore also
consider the following metric

d̃(x, y) =
1

N

N∑
i=1

|x̂i − yi|√
yi

(3)

which may be more suitable when the observations span a wide range of values.
In this work, we perform parameter estimation using the MCMC version of

the ABC algorithm. This works by constructing a Markov chain in parameter
space which asymptotically will converge to an approximation of the posterior
distribution. Given data and an initial set of parameter values, we sample a
new set of parameter values from a proposal distribution which depends on the
current parameters (in our application, a Gaussian centred at the old parameter
values). We then simulate the system (by running the model forwards using
these values), compare the trace obtained this way with the input data and
decide whether to accept it or not, depending on the “distance” between the
two traces, our tolerance level and the prior and proposal distributions. We

1 Notice that our measurements are counts at individual times, not transition times;
therefore, an analytical expression for the likelihood is in general not available.
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repeat this sampling scheme for a previously specified number of steps, then use
the samples collected this way as a representation of the posterior distribution
of the parameters.

4 Experiments

4.1 Birth-Death Process

We have tested ABC–Fun on a simple model of a birth-death process, in which
a single species can be created at a constant rate or degraded according to
mass-action kinetics (i.e. at a rate proportional to its amount). We initially fix
the death rate and reduce the problem to a one-dimensional one, where we try
to estimate the birth rate. We use a uniform prior, reflecting a belief that all
parameter values are equally likely in the absence of any data.After 105 steps,
the distribution of samples is clearly centred around the true parameter value
(Figure 1). A common issue with MCMC schemes is the difficulty of assessing
whether the process has converged, i.e. whether the samples are truly repre-
sentative of the posterior distribution and have “overcome” the influence of the
initial state. Experimenting with different initial samples indicated that this con-
vergence to the true value was robust, although it required more samples when
the initial point was further away from the true value (Figure 2).
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Fig. 1. Histogram showing the number of accepted samples after 100000 steps of the
ABC-MCMC algorithm when inferring only the birth rate. The true value of the pa-
rameter is 2, shown by the vertical line.

We then considered the problem of inferring the full model, i.e. estimating
both rates. The parameters chosen for the simulation were a birth rate of 2
and a death rate of 0.02, leading to the steady state of 100 being reached after
about 250 time units. The data that was used as input for the inference came
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Fig. 2. Accepted samples when inferring only the birth rate, showing convergence to
the true value. The algorithm was run for 10000 steps, starting from an initial value of
6 (red) or 10 (blue). Similar results occur for all tested initializations.

from a single stochastic simulation, taking 20 samples from the resulting trace
(approximately 15 during the transient phase and 5 at the steady state).

This time, the results are not as clear-cut: the heat map (Figure 3b) indicates
there are multiple value pairs that match the observed data. This reflects an
identifiability issue with the system, which can be easily explained if we consider
that the probability of choosing one reaction over the other depends only on the
ratio between the two rates. Therefore, there exist multiple parameterizations
which would give the same relative probabilities, and the unknown parameters
can only be estimated up to a multiplicative constant. It is possible to reduce
this uncertainty by considering information about the timing of the reactions, as
the duration of the reactions does depend on the concrete values of the param-
eters, rather than just their ratio — intuitively, higher rates will result in faster
reactions.

The results show that the highest number of accepted samples is concentrated
around the true values of the parameters. Additionally, the other areas with a
significant number of samples lie on a diagonal line, indicating a constant ratio
between the two parameters, matching our expectation. If we plot the ratio of
the two parameters for each of the accepted samples (Figure 3a), we can see that
this quantity is most often close to 100, its true value. In short, the inference
procedure manages to distinguish the true parameter pair from the others that
give a similar behaviour.

4.2 Regulation of Gene Expression in Single Cells

As a more biologically meaningful example, we consider the classic on/ off model
of gene expression (e.g. [14]). Here, the rate of mRNA production is assumed to
depend solely on the state of the gene promoter: thus, mRNA can be produced at
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for the accepted samples (true value: 100)
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(b) heat map of accepted samples (true
values: 2 and 0.02)

Fig. 3. Accepted samples when inferring both kinetic rates in the new experimental
configuration

a high rate (promoter ON) or a low rate (promoter OFF). The inference task is to
reconstruct both mRNA production/ decay rates and the promoter occupancy
state from gene expression time series. This model was recently used in [18]
to tease apart bursting kinetics in mRNA production; there the parameters
were estimated by maximum likelihood. Bayesian inference methodologies for
this model have been recently proposed assuming mRNA concentrations to be
continuous variables [16,11]; here, we consider the Bayesian inference problem
when mRNA counts are discrete, and are thus governed by a birth/ death process
whose birth rate depends on an unobserved binary process2. The importance
of this model lies not only in its fundamental role as a mechanism for gene
expression, but also in the possibility of using it as a building block for modelling
complex gene regulatory networks [10].

To slightly simplify the task, we assumed that the promoter state only per-
formed two transitions within the time frame under consideration (i.e., it starts
in the OFF condition, turns ON at a random time, and then turns OFF again).
We then tested the ABC–Fun approach on simulated data under ten different
configurations of the model parameters/ switching times. For these experiments
we used the modified distance metric d̃ (Equation 3). Figure 4 shows the pos-
terior probabilities of the ON and OFF times in a particular run, with the true
values indicated by a vertical line. As we can see, the posterior distribution is
approximately centred around the true value. The inferred posterior distribu-
tions for the promoter activity (difference between birth rate in the two states)
and the decay rate are shown in Figure 5. We can see that the posterior distribu-
tion has substantial mass concentrated around the true value, but is quite wide
due to the identifiability problems already mentioned in Section 4.1. Results for
other configurations of the parameters gave qualitatively similar results.

2 This can be seen as a special case of Bayesian inference for Markov Jump Processes
[12,20], albeit employing a different inference methodology.
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Fig. 4. Accepted samples when inferring the (a) switch-on and (b) switch-off time (real
value shown by red vertical line)
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Fig. 5. Accepted samples when inferring the (a) promoter activity A) and (b) degra-
dation rate λ (real value shown by red vertical line)

5 Discussion and Conclusions

We have presented ABC–Fun, a probabilistic programming language which han-
dles biological models expressed as CTMCs with uncertain rates. Our approach
uses features of an existing probabilistic programming language, Infer.NET-Fun;
however, the non-parametric nature of CTMCs cannot directly be handled by
Fun, so that we have to extend it by defining new types in F#, and use a different
inference engine to perform approximate Bayesian inference. Our initial results
on two simple but biologically relevant models show that this approach can be a
valuable addition to the systems biology toolkit: in particular, the two different
models only required minimal coding changes. We expect this high portability
to be an increasingly important feature as systems biology matures to handle
ever more complex models.
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Our method extends the range of systems and inference methodologies that
can be modelled using probabilistic programming languages, in addition to pro-
viding a test case for applying the latter in a biological context. We note that
semi-automated inference packages using ABC have been proposed before: for
example, [8] will take as input an SBML file and perform ABC-based inference
on model parameters. Nevertheless, their approach is not based on a probabilis-
tic programming language, and this has drawbacks: for example, it is not easy to
express in SBML models with latent variables like the ON-OFF model of gene
expression. In a probabilistic programming environment, this is straightforward
as it is merely the addition of a further random variable.

Our choice of ABC as an inference engine was primarily motivated by its im-
plementation ease and its applicability in intractable likelihood problems (such
as CTMCs). Nevertheless, ABC has several drawbacks, both in terms of com-
putational efficiency, and in terms of relying on a tolerance parameter which is
difficult to tune in a principled way. Exploring alternative inference approaches
which can ameliorate these problems will be key to extending our methodology
to larger, more relevant models.
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Abstract. We present a new approach for the design of a synthetic biological
circuit whose behaviour is specified in terms of signal temporal logic (STL) for-
mulae. We first show how to characterise with STL formulae the input/output
behaviour of biological modules miming the classical logical gates (AND, NOT,
OR). Hence, we provide the regions of the parameter space for which these
specifications are satisfied. Given a STL specification of the target circuit to be
designed and the networks of its constituent components, we propose a methodol-
ogy to constrain the behaviour of each module, then identifying the subset of the
parameter space in which those constraints are satisfied, providing also a measure
of the robustness for the target circuit design. This approach, which leverages re-
cent results on the quantitative semantics of Signal Temporal Logic, is illustrated
by synthesising a biological implementation of an half-adder.

Keywords: Synthetic Biology, Parameter Synthesis, Temporal Logic.

1 Introduction

Synthetic Biology [15, 28] is an emerging discipline that aims at the rational design of
artificial living systems with a predictable behaviour, either by creating new biologi-
cal entities that do not exist in nature or by redesigning the existing ones. Even though
important technological developments have been achieved in this field, the de-novo de-
sign of biological circuits implementing a desired behaviour results to be a very hard
task, especially for large scale networks. Biological systems are complex to understand
and to be engineered: the non-linear nature of interactions reflects in the emergence
of systemic behavioural properties, not directly derivable from the knowledge of the
individual parts. To model and control such systems we need to understand the rela-
tionships between the emergent behaviour and the topology of such complex interac-
tions. A possible approach is to divide the whole system in “subunits” and to look at the
structure of the interactions between them. This subdivision is often suggested by the
way we describe (the components of) those systems. The idea is that compositionality
at the specification level, to a certain extent, has to be reflected into compositionality at
the behavioural level. This should depend on the properties satisfied by a single “sub-
unit” and on the wiring between them. This way to approach the study of a system
is called modularity and the “subunits” of the system are called modules. Modularity

A. Gupta and T.A. Henzinger (Eds.): CMSB 2013, LNBI 8130, pp. 164–177, 2013.
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Fig. 1. Overview of the proposed approach

can be effectively achieved in Synthetic Biology, combining a bottom-up [32] and a
top-down [31] methodology. The former consists in the assembling of a set of well-
characterised modules [32] together to build sophisticated biological circuits and de-
vices. The latter [31] aims to identify and characterise the possible “subunits” and this
is also helpful to understand real biological systems, for example to discover unknown
structures or behaviours or to better understand and test current knowledge.

To unveil the system dynamics, it is important to correlate the denotation of a module
with some of its specific behaviours, and understand how the global properties emerge
from these local ones. This can be performed better if the emergent behaviours are
specified in a formal language. We consider here a logical characterisation in terms of
(linear) temporal logic formulae. In particular, we focus our attention on genetic regu-
latory circuits, seen as networks of interacting genetic modules (each representing, for
instance, a logic gate). Each module has a set of inputs and outputs (usually transcrip-
tion factors), and its local behaviour is specified by temporal logic properties.

In particular, we characterise the behaviour of logic gates with the addition of con-
straints on the response time. Logic gates are physical devices implementing a boolean
function and they are the fundamental bricks upon which all the other logic circuits, in-
cluding multiplexers, arithmetic logic units, memories and microprocessors, are built.
They are primarily implemented using electronic transistors acting as electronic switches.
In the last decade, genetic circuits acting as logic gates have been successfully identified
and synthesised [23]. This lead researchers to hope to engineer cells to turn them into
miniature computers.

The main idea of this paper, sketched in Figure 1, is to translate the structural compo-
sitionality of networks of modules into compositionality of local behaviours, exploting
it to enforce a set of global behaviours to the network. This is realised by identifying
a subset of parameters for which the truth of local properties implies the truth of the
global specification, exploiting the modular structure of the network. We thus interpret
the network of modules as a composition of their local properties, connecting the emer-
gent behaviours with the topology of interaction of those local properties. The technical
core of our approach is the quantitative semantics of Signal Temporal Logic [21], which
can be seen as a measure of robustness of the satisfaction of a certain formula, and which
comes with simulation-based methods to compute the robustness score and to identify
a region of the parameter space in which the formula holds true.

The contributions of this paper are thus twofold: a design methodology for biological
circuits based on a high level logical specification of behaviours and an algorithmic pro-
cedure exploiting compositionality to make parameter synthesis more effective, which
gives as a byproduct a measure of robustness of the implementation.
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The paper is structured as follows: in Section 2 we introduce the background mate-
rial. In Section 3 we discuss the logical characterisation of the basic modules in terms
of Signal Temporal Logic (STL). In Section 4 we sketch the algorithmic approach to
parameter synthesis and in Section 5 we show an application to the design of an half-
adder, a fundamental building block of microprocessors. The related works and the final
discussion are in Section 6.

2 Background Material

Modelling of Gene-Regulatory Networks. In this paper we consider deterministic
models of gene regulatory networks, given by a set of non-linear Ordinary Differential
Equation (ODE) [17]. For simplicity, we consider lumped models of gene expression,
in which mRNA is not explicitly represented (cf. Remark 2 for a further discussion on
this point). We assume to have n genes and proteins. Concentration of protein i at time
t, i = 1, . . . , n, is denoted by the variable xi[t], while x = (x1, . . . , xn) denotes the
vector of concentration variables. The ODE for xi[t] will then be of the form

dxi

dt
= fi(x) = f+

i (x) − f−
i (x),

where f+
i is a function giving the net production rate of xi, while f−

i is its degradation
rate, which is usually a linear function of the form μixi, for some μi > 0. The func-
tion f+

i , instead, encodes the regulatory mechanism of gene i, and is a combination of
Michaelis-Menten or Hill functions [28].

Signal Temporal Logic. Temporal logic [24] provides a very elegant framework to
specify in a compact and formal way an emergent behaviour in terms of time-dependent
events. Among the myriads of temporal logic extensions available, Signal Temporal
Logic [21] (STL) is very suitable to characterise behavioural patterns in time series
of real values generated during the simulation of a dynamical system. STL extends
the dense-time semantics of Metric Interval Temporal Logic [1] (MITL), with a set of
parametrised numerical predicates playing the role of atomic propositions. STL pro-
vides two different semantics: a boolean semantics that returns yes/no depending if the
observed trace satisfies or not the STL specification, and a quantitative semantics that in
addition returns a measure of robustness of the specification. Recently, Donze et. al [12]
proposed a very efficient monitoring algorithm for STL robustness, now implemented
in the Breach [9] tool. The combination of robustness and sensitivity-based analysis of
STL formulae have been successfully applied in several domains, ranging from analog
circuits [16] to systems biology [10,11], to study the parameter space and also to refine
the uncertainty of the parameter sets. In the following we recall [13] the syntax and the
quantitative semantics of STL that will be used in the rest of the paper. The boolean
semantics can be inferred using the sign of the quantitative result (positive for true and
negative for false).

Definition 1 (STL syntax). The syntax of the STL is given by

ϕ := % | μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[a,b] ϕ2
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where % is a true formula, conjunction and negation are the standard boolean connec-
tives, [a, b] is a dense-time interval with a < b and U[a,b] is the until operator.

The atomic predicate μ : Rn → B is defined as μ(x) := (y(x) � 0), with x[t] =
(x1[t], ..., xn[t]), t ∈ R�0, xi ∈ R, and y : Rn → R a real-valued function.

The (bounded) until operator ϕ1 U[a,b] ϕ2 requires ϕ1 to hold from now until, in a
time between a and b time units, ϕ2 becomes true. The eventually operator F[a,b] and
the always operator G[a,b] can be defined as usual: F[a,b]ϕ := %U[a,b]ϕ, G[a,b]ϕ :=
¬F[a,b]¬ϕ.

Definition 2 (STL Quantitative Semantics).

ρ(μ,x, t) = y(x[t]) where μ ≡ (y(x[t]) � 0)

ρ(¬ϕ,x, t) = − ρ(ϕ,x, t)

ρ(ϕ1 ∧ ϕ2,x, t) = min(ρ(ϕ1,x, t), ρ(ϕ2,x, t))

ρ(ϕ1 U[a,b]ϕ2,x, t) = max
t′∈t+[a,b]

(min(ρ(ϕ2,x, t
′), min

t′′∈[t,t′]
(ρ(ϕ1,x, t

′′))))

where ρ is the quantitative satisfaction function, returning a real number ρ(ϕ,x, t)
quantifying the degree of satisfaction of the property ϕ by the signal x at time t. More-
over, ρ(ϕ,x) := ρ(ϕ,x, 0).

3 Logical Characterisation of Modules

The approach for the synthesis of biological circuits is based on the idea of combining
simple genetic networks according to a specific design. These basic building blocks, or
modules, are usually composed of a single or few genes, and express a specific tran-
scription factor (or signal) in response to an input signal, generally the presence or
absence of activators or repressors influencing the module behaviour. In most of the
proposed approaches [28, 29], such modules are the biological equivalent of the logic
gates of electronics, and as such they encode simple boolean functions, like AND, OR,
or NOT, that can be combined together to build more complex circuits. Logic gates are
usually described by their truth table. However, when moving from electronics to biol-
ogy, the temporal dimension becomes much more relevant, and it cannot be neglected.
Furthermore, biological modules considered in literature often produce more complex
input/output (I/O) responses than a boolean I/O relationship, like pulses and oscilla-
tions [28]. For this reason, we find more convenient to describe the I/O behaviour of a
module by a set of temporal logic properties.

More precisely, we define a module M to be a genetic network containing n genes,
that produce proteins whose concentration is indicated by x = (x1, . . . , xn). The genes
of M are also regulated by additional nI external transcription factors, which are the
inputs of the module. A subset of nO of the produced proteins constitutes the output of
the module. The behaviour of such a module is characterised by a set of STL formulae
of the form ϕI → ϕO , expressing an I/O relationship, which can be arbitrarily complex.
Here ϕI depends only on the concentration of the input signals xI = (xI1 , ..., xInI

) and
ϕO only on the concentration of the output signals xO = (xO1 , ..., xOnO

). Modules
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can be easily connected into a network, by using one output of a module as the input
of another module (see Figure 2). Such networks can still have external inputs, while
a subset of outputs of their modules will be identified as the output of the network.
Furthermore, the network behaviour can also be characterised in terms of a temporal
I/O relationship given by STL formulae of the form ϕI → ϕO. In this sense, a network
is nothing but a more complex module, which can then be used as a building block
itself, resulting in a hierarchical compositional approach to circuit design.

Example: Logic Gates. As an example, in this paper we consider modules correspond-
ing to AND, OR, and NOT logic gates. For instance, a simple biological implementation
of an AND gate can be obtained by a module in which a single gene, producing the out-
put protein, is activated by two input signals, both required to start the gene expression.
This requirement can be enforced directly at the level of the gene promoter [23] or by
letting the complex formed by two input proteins activate the gene [20]. We stick to
the first formulation. The truth table of the gate is shown in Table 1. To each input and
output protein, we associate two thresholds, θ+ and θ−. The value true in the truth ta-
ble corresponds to a concentration of the corresponding protein above θ+, while the
value false corresponds to the concentration being below θ−. In the truth table we also
provide a high level specification of the temporal behaviour of the gate, in terms of the
maximum response time δ and the minimum duration λ of the output signal. The former
is an upper bound on the time needed by the gate to stabilise. The latter, instead, spec-
ifies for how long the output remains up or down. This in turn implies a constraint on
the duration of the input signal: if we want the output to remain up for λ units of time,
then both inputs have to remain up for at least λ + δ units of time. We can easily turn
such a truth table into a set of STL formulae, a formula for each row. For instance, the
row four of Table 2 gives:

G[0,λ+δ](xA ≥ θA+ ∧ xB ≥ θB+) → F[0,δ]G[0,λ](xC ≥ θC+), (1)

where xA and xB are the input signals and xC is the output. The mathematical model
associated with this gate will be given by the non-linear ODE:

ẋC = HAND(xA, xB, xC ,k) = kAB
xn
A

Kn
A + xn

A

xn
B

Kn
B + xn

B

− kCxC , (2)

where k = (kAB, kC ,KA,KB, n) is a tuple of 5 parameters: kAB , the maximum pro-
duction rate (here we assume a zero basal expression rate), kC , the degradation rate,
KA and KB, governing the Hill activation function, and n, governing the steepness of
the Hill function.

The other basic logic gates can be modelled in a similar fashion [23]: the OR gate
can be obtained from the AND gate by a non-collaborative activation of gene expression
(e.g., replacing in the ODE model the product of Hill functions by a single Hill function
depending on the sum of the two concentrations), while the NOT gate can be modeled
by a gene whose production is repressed by the input protein. For actual biological
implementations, see for instance the discussion in [23, 28].
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Example: XOR Gate. Figure 2 shows how to build a XOR gate using AND, OR, and
NOT gates. We stress here that the circuit architecture, seen as an implementation of a
boolean function, can be obtained by classical techniques (e.g. by Karnaugh maps [18]).
To fully specify the extended truth table of the XOR gate, like for the AND gate (cf.
Table 1), we need to specify additional information about the maximum response time
and the minimal duration of the output signal for the network. These two quantities
obviously depend on the corresponding ones of the constituent modules. Here we will
specify a target temporal behaviour for the network and we will consequently constrain
the temporal behaviour of modules.

Suppose we fix a maximum response time δ and a minimum duration λ of the output
signal for the XOR gate. Looking at Figure 2, we clearly see that the input signal to
the XOR gate has to go through no more than three gates before influencing the out-
put. Hence, if each gate has a maximum response time of δ/3, we obviously obtain a
response time for the XOR bounded by δ. To enforce the constraint on the minimum
duration of the output signal, we just need to make the output signals of internal gates
last sufficiently long to trigger an output signal of the network of the target duration.
This can be done by simply taking into account the maximum response delay of each
gate. In the XOR example, we obtain that the AND gates need to have a minimal du-
ration of λ + δ/3, while the NOT gates of λ + 2δ/3. Clearly, the input signal of the
network needs to stay on for λ+ δ units of time.

Constraints for Arbitrary Acyclic Networks of Logic Gates. This simple compati-
bility analysis is easily generalised to arbitrary acyclic networks of logic gates, to which
we restrict ourselves for the moment. Dealing with feedback loops is more complicated
and is left to future investigation.

Consider a generic module/logic gate in an acyclic network, with target maximum
delay δ and target output signal duration λ. For each module M (with a single output)
of such a network, let �f (M) be the length of the longest path from M to an output
module (i.e. a module producing one output of the network) and �b(M) be the length of
the longest path from M to an input module (i.e. a module with an external input). Due
to the acyclic nature of the network, both such quantities are finite and can be easily
computed by a visit of the graph. Then the processing of an input signal passing from
M has to go through at most �f (M)+�b(M)+1 modules, so that a maximum delay of
δ(M) = δ/(�f(M)+ �b(M)+1) guarantees the response time bound on the network.
As for the minimum duration of the output for module M, we can obtain it by the
recursive relation λ(M) = δ(M) + max{λ(M′)}, where (M,M′) is an edge of the
network, i.e. M′ is a module receiving as input an output of M. These relationships are
easily extended to modules with more than one output, defining a max response time
constraint for each output.

We observe here that this compatibility analysis between delays and durations has a
counterpart in the STL characterisation of module behaviours. The main idea is that we
can express the consistency of the output-input links by the STL formulae like:

F[ν1,ν1+γ1]G[0,μ1](x ≥ θ+) → G[ν2,ν2+μ2](x ≥ θ+), (3)
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Table 1. Extended truth table for the AND gate

Inputs Output Input\Output
max delay=δ min. duration=λ
pA pB pC STL Formula
low low low G[0,λ+δ](xA ≤ θA− ∧ xB ≤ θB−) → F[0,δ]G[0,λ](xC ≤ θC−)
low high low G[0,λ+δ](xA ≤ θA− ∧ xB ≥ θB+) → F[0,δ]G[0,λ](xC ≤ θC−)

high low low G[0,λ+δ](xA ≥ θA+ ∧ xB ≤ θB−) → F[0,δ]G[0,λ](xC ≤ θC−)

high high high G[0,λ+δ](xA ≥ θA+ ∧ xB ≥ θB+) → F[0,δ]G[0,λ](xC ≥ θC+)

This formula states that if a variable is eventually expressed for μ1 units of time, starting
between time ν1 and ν1 + γ1, it is for sure expressed for μ2 units of time, starting at
time ν2. If we set μ1 = λ+ δ, μ2 = λ, γ1 = δ, and ν2 = ν1 + δ, with ν1 ≥ 0, λ, δ > 0
arbitrary, we obtain that the formula (3) is valid. According to the previous discussion,
we need to choose λ = λ(M) and δ = δ(M).

Remark 1. In principle, we can consider more complex building blocks than logic gates,
for instance modules acting as switches or oscillators. To this end, we need to generalise
the technique for combining modules. More specifically, effective connection of mod-
ules is enforced by requiring the validity of formula (3), which is of the form ϕO → ϕI .
Such a formulation in terms of validity of STL formulae can be extended to more gen-
eral output properties (or proper subformulae thereof). For instance, we can describe
oscillations as signals being eventually above a high threshold for some time, and then
falling below a low threshold for a subsequent period of time (this property holding
globally). The subformulae describing these two behaviours can then be matched with
input formulae of the kind considered in this paper.

4 Parameter Synthesis

Consider a network composed by modules representing logic gates, fix a network spec-
ification in terms of an extended truth table/ STL formulae, and consider an ODE model
of the network, depending on a tuple of parameters k. We now tackle the problem of
identifying parameters k such that the network satisfies the specifications. According
to the previous section, in order to satisfy the temporal constraints at the network level,
we can simply enforce local constraints at the module level. The key intuition of our ap-
proach is that modularity can be further exploited, doing parameter synthesis for each
module, with a guarantee that the so obtained parametrisation will satisfy the global
specification at the network level. Furthermore, we will identify a set of compatible pa-
rameter values rather than a single point. Within the set, furthermore, we can identify
an optimal parametrisation, by maximising the satisfaction level of the properties, ac-
cording to STL quantitative semantics. We can also search a biological database, like
BioBricks, to find genes with the synthesised kinetic constraints.

At the heart of the proposed approach resides the STL characterization of (the biolog-
ical implementation of) logic gates. Essentially, we will restrict to a single gate, fixing
the temporal constraints to those implied by the network requirements and by its struc-
ture, and find a subset of the parameter space in which the STL formulae characterising
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the gate behaviour hold true. This can be done algorithmically, using the simulation
approach to parameter synthesis of [10], based on sensitivity analysis and STL quan-
titative semantics and implemented in Breach [9]. For the simple class of logic gates
considered here, we can also do this analytically. Modularity is the key to the efficiency
of our approach: as we treat independently each gate, we just need to explore a low
dimensional parameter space, which makes the (computational) procedure feasible.

Modularity of Parameter Synthesis for Logic Gates. The main difficulty we have to
solve is related to the fact that modules are connected in the network, hence they are
not independent. Indeed, the expression of a gene is driven by the dynamical behaviour
of its input transcription factors. The idea to get around this problem is to do a worst
case analysis, showing that a specific parameter combination satisfies the properties for
the “worst possible input signal”, and that this implies the satisfaction for all possible
input signals compatible with the input constraints. This will result in a conservative,
but computationally efficient, estimate. We can define the notion of “worst case input
signal” in terms of the STL characterisation of module behaviour. Given an input signal
xI[t] of a module M, t ∈ [0, T ], we denote with xxI,k[t] the trajectory of the module,
with input xI[t] and parameters k.

Definition 3. An input signal x̂I[t], t ∈ [0, T ] is a worst-case input signal for the STL
specification ϕInput → ϕOutput of the behaviour of a module M if and only if, for
each parameter configuration k such that ρ(ϕInput, x̂I) ≥ 0 (and ϕInput true) and
ρ(ϕOutput,xx̂I,k) > 0, the following property holds:

– for each other input signal xI satisfying ρ(ϕInput,xI) ≥ 0 (and ϕInput true), it
holds that ρ(ϕOutput,xxI,k) ≥ ρ(ϕOutput,xx̂I,k).

The characterisation of such a “worst possible input signal” depends on the structure
of the target STL formula and on the system of ODE describing a particular module.
We provide now such a characterisation for the basic logic gate models considered in
this paper and for the STL formulae associated with their extended truth tables.
Consider the property G[0,λ+δ](xA ≥ θA+ ∧ xB ≥ θB+) → F[0,δ]G[0,λ](xC ≥ θC+),
which describes a row of the extended truth table of an AND gate. This property is of
the desired form ϕInput → ϕOutput. Now, ϕInput identifies a subset of trajectories
of the space of functions from [0, λ + δ] to R2, i.e. those that satisfy the inequality
xA ≥ θA+ ∧ xB ≥ θB+ for all t ∈ [0, λ + δ]. Among those functions, we consider
x̂A[t] ≡ θA+ and x̂B [t] ≡ θB+ , which satisfy ϕInput but have quantitative satisfac-
tion score equal to zero. Furthermore, for any other trajectory xA[t], xB [t] that satisfies
ϕInput, we have xA[t] ≥ x̂A[t] for each t ∈ [0, λ+ δ], and similarly for xB . By mono-
tonicity of Hill functions, this implies that the vector field of the AND gate satisfies
fAND(xA[t], xB [t], xC ,k) ≥ fAND(x̂A[t], x̂B [t], xC ,k) for any xC ≥ 0. It then fol-
lows, by integrating the vector field, that xC [t] ≥ x̂C [t] for t ∈ [0, λ + δ]. Looking at
the satisfaction function of ϕOutput, defined by

ρ(ϕOutput, xC) = max
t̂∈[0,δ]

( min
t∈[t̂,t̂+λ]

(xC [t] − θC+)),

it is easy to see that xC [t] ≥ x̂C [t] for t ∈ [0, λ + δ] implies ρ(ϕOutput, xC) ≥
ρ(ϕOutput, x̂C). Hence, any configuration of parameters such that ρ(ϕOutput, x̂C) > 0
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will imply the truth of ϕOutput for any input signal satisfying ϕInput, and therefore the
truth of ϕInput → ϕOutput. It follows that x̂A, x̂B is a worst-case input signal.

For the AND gate, a similar approach allows us to deal with the other three STL prop-
erties associated with the other rows of the truth table. In these cases, we need to find
an upper bound for xC [t], as we need to satisfy the output property F[0,δ]G[0,λ](xC ≤
θC−). To achieve this, we just need to set xJ [t] to θJ− , if the input J is false, and to γJ
if the input J is true, where γJ is the maximum concentration level for the input xJ , ob-
tained by dividing maximum production rate by the degradation rate (here J = A,B).
In fact, in this way we maximise the production rate. All this analysis is easily extended
to OR and NOT gates, and is captured in the following proposition.

Proposition 1. Let xO be the output of a AND or OR logic gate and let xJ be a generic
input. Fix the attention on a row of the extended truth table.

– If xO is high, and xJ high, then x̂J ≡ θJ+ .
– If xO is high, and xJ low, then x̂J ≡ 0.
– If xO is low, and xJ high, then x̂J ≡ γJ .
– If xO is low, and xJ low, then x̂J ≡ θJ− .

Similarly, let xO be the output of a NOT logic gate1 and let xJ be its input. Then

– If xO is high, then xJ is low and x̂J ≡ θJ− .
– If xO is low, then xJ is high and x̂J ≡ θJ+ .

We stress that this proposition not only allows us to do parameter synthesis modularly,
but also to find a lower bound on the robustness score of each parameterization.

Remark 2. The worst case analysis presented in this section relies on the monotonicity
of the robustness score with respect to the input signal. This follows from the mono-
tone dependence of the output on the input (in fact, ∂f

∂xJ
> 0), and of the robustness

score on the output. The construction of the worst case input is easily generalised to
more complex scenarios satisfying a generalised monotonic property of the robust-
ness score, following [27]. As an example, consider a model of the gene expression
in which the gene produces the mRNA, and mRNA is in turn translated into the pro-
tein. In this case, for an AND gate, we have an ODE for mRNA similar to the one
above, namely dmC

dt = fAND(xA, xB ,mC ,k), while the ODE for the protein becomes
dxC

dt = fC(mC , xC ,k) = ktmC − kdxC , with kt the translation constant and kd the
protein degradation constant. The monotonic dependence of the robustness score (when
both inputs are on) from inputs essentially follows because a larger input concentration
will produce more mRNA, which in turn will result in a higher expression of the pro-
tein, giving a larger robustness degree (input/ output properties are the same). If such a
monotonic dependence fails, determining the worst case input can be more challenging.
We will tackle this issue in our future work.

1 The difference between AND/ OR and NOT gates is in the fact that the input is an activator in
the first two cases and a repressor in the last one.
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Fig. 2. a) Half Adder implemented using two logic gates (XOR, AND), b) Half Adder imple-
mented combining six logic gates, c) truth table for the Half Adder

Sketch of the Algorithm. Assuming the temporal constraints on the extended truth
tables of modules have been derived from those of the network, the algorithm for pa-
rameter synthesis then work as follows: for any module/gate of the network, and any
row in the extended truth table, fix the values of input signals to the worst case ones, and
then do STL parameter synthesis to identify a subset of the parameter space in which
the STL formula associated with the row is true. Take the intersection of these sets for
each row in the truth table of each module2.

The STL parameter synthesis can be performed applying the sensitivity-based algo-
rithm [10] implemented in the Matlab toolbox Breach [9]. This is a general approach,
applicable to any module for which a worst-case input signal has been identified. How-
ever, for logic gates AND, OR, and NOT, we can further exploit their simplicity and
characterise analytically a subset of parameters for which the STL specification is sat-
isfied. This is due to the fact that, once the input signals are fixed, the non-linear model
of the gate reduces to a linear set of ODEs, for which we can compute the solution in
closed form. The details of the computation are reported in [2].

5 Example: Half-Adder

The half-adder is a digital component that perfoms the sum of two bits A and B and
provides two outputs, the sum (S) and the carry (C) signal representing an overflow into
the next digit of a multi-digit addition. The value of the sum is 2C + S. Figure 2 a)
shows the simplest half-adder design and it incorporates a XOR gate for S and an AND
gate for C. Figure 2 b) shows an alternative design using two NOT gates, two AND
gates and one OR gate instead of a XOR gate. This is the design of the half-adder we
intend to use, thus exploiting the characterisation of worst-case inputs for AND, OR,
and NOT gates given in Proposition 1. Figure 2 c) shows the output of each component
gate of the half-adder, for each pair of inputs.

We applied the algorithm discussed in the previous section to such a network lay-
out, fixing the maximum total delay of the half-adder to 12 time units. Applying the
method to enforce time constraints to each module, we obtain that all the gates that
are part of the XOR gate must have a maximum time delay of 4 time units, while
the AND gate whose output is C can have a maximum response time bounded by
12 time units. Before doing parameter synthesis, we also rescaled the concentration

2 We use the convention that parameters not influencing a gate are set to their whole domain by
the STL procedure.
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Fig. 3. The red curves represent the output signals of the Half-Adder gate, S and C, in the four
different combination of the inputs A and B, one for each column; the horizontal lines are the
threshold concentrations (θ+ in blue and θ− in green); the yellow vertical line represents the time
bound δ.

of each protein to the interval [0,1]. In this way, activation and deactivation thresh-
olds are relative to the maximum steady state expression level of each protein. For
this example, we then arbitrarily fixed all the activation thresholds to θ+ = 0.75
and the deactivation thresholds to θ− = 0.25, and then synthesised set of parame-
ters consistent with the STL network specification and with such thresholds. We ob-
tained the following bounds for parameters, with indices in the n and α parameters
referring to the output variable and indices in the K parameters referring to the input
and output protein, as from Figure 2 b). AND gate: nC , nE , nG ≥ 3.2129, 0.3406 ≤
KAC ,KBC ,KAE ,KDE,KBG,KFG ≤ 0.4228, αC ≥ 0.3074, αE , αG ≥ 0.9222.
OR gate: nS ≥ 3.1681, 0.4050 ≤ KES,KGS ≤ 0.5090, αS ≥ 0.9222. NOT gates:
nD, nF ≥ 2.5372, 0.4192 ≤ KAF ,KBD ≤ 0.4966, αD, αF ≥ 0.9222. Constraints
are similar for all gates of a given class (e.g. all AND gates) as a consequence of the
rescaling of variables in [0,1]. Obviously, in a further step matching actual biological
components to the circuit design, this rescaling has to be properly accounted for (for in-
stance, by rescaling also the parameters of the biological components). Picking a value
for each parameter consistent with the previous constraints, we can observe in Figure 3
that the dynamics of the network indeed satisfies the specifications of a half-adder.

We remark that, even if in this example we fixed the activation and deactivation
thresholds and did parameter synthesis for the other parameters of the model, in the
formal derivation we considered such threshold as parameters themselves.

6 Discussion

In this paper we focused on the design techniques for synthetic biological systems. We
developed an approach based on two ideas: the specification of system properties in
terms of signal temporal logic, and the exploitation of modularity to obtain an efficient
procedure to identify a set of parameters for which the network satisfies its STL spec-
ification. In particular, we considered the parameter synthesis problem for networks of
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logic gates, implemented as simple genetic networks. For acyclic networks, we are able
to identify efficiently a set of parameters satisfying STL formulae encoding not only
the desired boolean behaviour of the network, but also constraints on its response time.

Modularity allows us to synthesise parameters efficiently, processing each gate com-
ponent independently. This is possible by isolating each module from the network as-
suming the worst possible input, which we formally characterised for the basic logic
gates considered. We then showed the approach at work with a network implementing
an half-adder.

The approach of this paper can be complemented by looking at databases of biolog-
ical components, like BioBricks [19], for actual combinations of gene and promoters
that satisfy the constraints on parameters. A delicate point for this plan is that we are
implicitly requiring each module to produce different, non-interfering, output proteins,
a not necessarily biologically realistic hypothesis. We will look at possible ways of
relaxing this constraint, as in [33]. Other directions for future work include the general-
isation of Proposition 1 to deal with more complex modules, for instance feed-forward
networks implementing pulse generation or a low-pass filter. Moreover, we will con-
sider the problem of dealing with more complex network topologies, having feedback
loops. We expect to make some progress in this direction by suitably rephrasing param-
eter synthesis as the computation of a fixed point. Finally, we will also take into account
the effects of stochasticity, for instance by exploiting moment closure techniques [30].

Related Work. De novo design of a synthetic biological circuit [8] implementing a
desired behaviour is a very computational intensive task. The majority of the exist-
ing approaches relies on brute-force techniques running sophisticated optimization (i.e.
evolutionary algorithms [14], simulating annealing [7]) algorithms to tune the kinetic
parameters [6, 25, 29] values in order to match the desired beahaviour.

These methodologies, lacking of compositionality, do not scale well and they are
very computationally expensive for large networks. A more rational approach for au-
tomatic design was proposed by Marchisio and Stelling in [4, 22] where they show a
workflow design taking as input a truth table and generating as output several possible
circuit schemes, ranking them in the order of complexity. The choice of a truth table as
a input specification for the target circuit design may be not enough when we need to
guarantee that the result is produced after a proper delay. Additionally, the design needs
to take in consideration the signal compatibility among the “wired” devices (a prob-
lem treated in [33]): the output signal of one device must match (in terms of low/high
thresholds) with the input signal the other design. The novelty of our contribution is us-
ing signal temporal logic as specification language both for the target circuit and for the
available components, adding also time constraints in the design process. Furthermore,
the device compatibility is rephrased in terms of a STL formula, of the form ϕO → ϕI ,
and the correct matching is elegantly obtained by requiring this formula to be valid.

Another related approach, is the one proposed by Batt et al. in [3], where the authors
approximate the behaviour of genetic regulatory networks with piecewise multi-affine
systems. In this class of models, the state-space is partitioned in hyper-rectangles ex-
hibiting useful convexity properties [5] that allows to compute an over-approximation
of the reachable sets. The authors exploit this characteristic to guide the parameter space
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partitioning in search of the intervals for which the gene networks is enforced to satisfy
a particular behaviour expressed in a linear temporal logic formula. However, their ap-
proach is not modular, and only the rates of production and degradation of the proteins
can be chosen as possible parameters. Furthermore, by using an over-approximation, the
property usually expresses invariants and the parameter ranges found are very coarse,
without discriminating trajectories with different time-constraints.

Finally, among the vast literature on combinatorial circuit design, we mention [26],
where authors study the timing behaviour of a acyclic circuits by means of timed au-
tomata. Our approach is simpler and motivated by the inherent precision of delays in
ODE models. However, the techniques of [26] could be helpful to relax the timing con-
straints we impose and to deal with intrinsic variability of biochemical systems.

Acknowledgements. Work partially funded by the EU-FET project QUANTICOL (nr.
600708) and by FRA-UniTS.
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Abstract. Constraint-based analysis of metabolic networks has become
a widely used approach in computational systems biology. In the simplest
form, a metabolic network is represented by a stoichiometric matrix and
thermodynamic information on the irreversibility of certain reactions.
Then one studies the set of all steady-state flux vectors satisfying these
stoichiometric and thermodynamic constraints.

We introduce a new lattice-theoretic framework for the computational
analysis of metabolic networks, which focuses on the support of the flux
vectors, i.e., we consider only the qualitative information whether or not
a certain reaction is active, but not its specific flux rate. Our lattice-
theoretic view includes classical metabolic pathway analysis as a special
case, but turns out to be much more flexible and general, with a wide
range of possible applications.

We show how important concepts from metabolic pathway analysis,
such as blocked reactions, flux coupling, or elementary modes, can be
generalized to arbitrary lattice-based models. We develop corresponding
general algorithms and present a number of computational results.

Keywords: metabolic networks, constraint-based analysis, lattices.

1 Introduction

Constraint-based modeling has become a very successful approach for the anal-
ysis of genome-scale reconstructions of metabolic networks [1–4]. Given a set of
metabolites M and a set of reactions R, the network is represented by its stoi-
chiometric matrix S ∈ RM×R, and a subset of irreversible reactions Irrev ⊆ R.
The steady-state flux cone C = {v ∈ RR | Sv = 0, vIrrev ≥ 0} contains all
steady-state flux vectors satisfying the stoichiometric and thermodynamic con-
straints. Based on this cone, many analysis methods have been introduced over
the years, among them Flux Balance Analysis (FBA) [5, 6], Elementary Mode
Analysis (EMA) [7–9], and Flux Coupling Analysis (FCA) [10, 11].

While these methods are now well-established, various ideas have been ex-
plored on how to modify or extend the underlying modelling framework. A
lot of research concerns the question of how to include regulatory information
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into the metabolic model (e.g. [12]). This has lead to diverse FBA strategies
like rFBA [13] or SR-FBA [14]. Elementary mode computation has been ex-
tended to include transcriptional regulatory networks in [15]. Further, there has
been a discussion on whether stronger thermodynamic constraints should be ap-
plied [16,17]. Others combine the idea of FBA to analyse optimal-growth steady-
states with the insight that this condition alone does not constrain the system
to a single possible state, but to a mathematical space of different (biologically)
optimal states [18]. Still other approaches give up the steady-state assumption
and use completely different modelling approaches, e.g. hyperpaths that are con-
structed by ordering the reactions of a network based on their (graph-theoretical)
distance to nutrients [19]. So far each modification of the basic modelling ap-
proach required a specific reformulation and adaptation of the algorithms and
analysis tools.

In this paper, we introduce the algebraic framework of lattices as a unifying
approach to metabolic pathway analysis. We will present the necessary concepts
that will allow us to adopt a broad range of modelling ideas within a unique
generic framework. We have already tested ways to include optimal-growth or
thermodynamic constraints as an option into our analysis tools. As a next step,
we intend to create a formalism for regulatory constraints, which can be added to
lattice-based models. Once implemented and tested, we will be able to perform
EMA and especially FCA with regulatory or thermodynamic constraints.

Finite lattices [20, 21] are some of the simplest algebraic structures, but they
have proven to be useful in many applications, such as abstract interpreta-
tion [22], knowledge representation [23], or distributed computing [24]. As we
will see, they can be employed naturally to describe qualitative, pathway-based
metabolic models, including the steady-state flux cone and related constraint-
based methods. Regarding qualitative modelling, our work is related to [25],
who use the concept of abstract interpretation to give knockout predictions in
reaction networks.

Here we will introduce lattice-based EMA and a very fast FCA method. Our
implementation L4FC (Lattices for Flux Coupling) can be used for traditional,
flux-cone-based FCA. But it also allows applying other lattice-based modelling
approaches, by simply changing one particular method that looks for pathways
through a given reaction in the model.

Lattice-based models are independent from the steady-state assumption. In
our models, we can use the flux cone, but we do not have to. The only algebraic
requirement a lattice-based model has to fulfill is one that is easily proven for
most approaches: any two pathways or states a and b can be combined to a
new one that uses together all the reactions of a and b. This already defines a
semi-lattice, which in our setting will automatically be a lattice.

Our approach allows for more flexibility in choosing the model constraints and
provides general analysis tools that we can immediately use without spending
much time on adapting them to our needs. As we will see, lattice-based modelling
is fully compatible with the traditional steady-state flux cone and many of its
extensions. But, it is also open for completely new ideas.
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2 Lattice Theory in Metabolic Pathway Analysis

Many important questions in metabolic pathway analysis involve only qualitative
information: Which reactions participate in a pathway? Which are the minimal
sets of reactions needed to realize certain biological functions? Which reactions
are coupled to each other? To answer these and other questions, we do not
need the quantitative information of reaction rates. Instead we can consider
a pathway to be simply a subset a of the reaction set R, a ⊆ R, satisfying
certain properties. This idea has appeared before in the literature, e.g. as activity
sets [26] or flux patterns [27]. As a unifying framework for various modelling
approaches in metabolic pathway analysis, we propose in this paper the algebraic
concept of (semi-)lattices.

A semi-lattice [21] is an algebraic structure (L, ◦) consisting of a set L and a
binary operation ◦ which satisfy the following axioms:

– L is ◦-closed, i.e., if a, b ∈ L then a ◦ b ∈ L.
– ◦ is associative and commutative, i.e., a ◦ (b ◦ c) = (a ◦ b) ◦ c and a ◦ b = b ◦ a.
– ◦ is idempotent, i.e., a ◦ a = a.

A lattice can be defined as an algebraic structure (L,∨,∧) such that (L,∨) and
(L,∧) are semi-lattices and in addition for any a, b ∈ L, we have a∧ (a∨ b) = a,
and a ∨ (a ∧ b) = a. An example is the lattice (2X ,∪,∩) of all subsets of a set
X , together with the usual set operations of union and intersection.

In the context of metabolic pathway analysis, we will look at semi-lattices
(L,∪), where L ⊆ 2R and R is the finite set of reactions in the metabolic network.
As we will see, many metabolic models are indeed union-closed, which simply
means that the union of two pathways is a pathway again. As noted in [28], such
a finite semi-lattice is already a lattice if there exists a neutral element 0 ∈ L,
with 0 ∪ a = a, for all a ∈ L. This holds if ∅ ∈ L. Thus for any L ⊆ 2R, we can
obtain a lattice (L,∪,∧) if the following two axioms are satisfied:

– L is ∪-closed, i.e., if a, b ∈ L then a ∪ b ∈ L.
– There is an element 0 ∈ L such that 0 ∪ a = a, for all a ∈ L.

With these two axioms, we can define a second operation ∧ on L, so that (L,∪,∧)
becomes a lattice:

a ∧ b :=
⋃

c⊆a,c⊆b

c . (1)

The operation ∧ is well-defined because 0 ⊆ a, for all a ∈ L.
Similarly to this construction, we can prove that every finite lattice L has a

unique maximum 1L:

1L =
⋃
a∈L

a . (2)

Since a ⊆ 1L, for all a ∈ L, we call 1L the maximum of L. In Sect. 4, we will use
the maximum to reformulate the concept of blocked reactions and flux coupling
in metabolic network analysis.
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Additionally, there are ways to describe finite lattices based on special sets of
elements, the so-called minimal and irreducible elements, discussed e.g. in [21].
As we will see, these correspond exactly to the concept of elementary modes in
the steady-state flux cone.

Lattices are sometimes also introduced as specially ordered sets. A partial
ordering on pathways can naturally be defined by a ≤ b ⇔ a ⊆ b. This reflects
the idea that a pathway that is contained in another should be considered smaller
in some sense. Because of their order-theoretical roots, many concepts in lattice
theory should be understood in this context, e.g. the minimal elements, or the
maximum.

The order-theoretical point of view also provides an interesting way of visu-
alizing the relationship of different pathways via the so-called Hasse diagram.
A Hasse diagram represents a finite, partially ordered set in a compact way.
It can be seen as a directed graph with the elements of the set as nodes, and
certain pairs of elements as edges. An element a1 is connected to another ele-
ment a2 by an edge iff a1 is covered by a2, i.e., if a1 < a2 and there is no other
element a with a1 < a < a2. All edges are implicitly oriented from bottom to
top. In lattice-based metabolic models, we can draw a Hasse diagram where the
elements are the reaction sets in our model. Two sets a1, a2 are connected if
a1 ⊂ a2 and there is no other set from the model in between. The Hasse diagram
of a lattice provides a lot of useful information. An element is irreducible iff it
covers only one other element, i.e., there is only one edge going downwards. A
reducible reaction set always covers at least two different reaction sets. Since our
lattices are ∪-closed, it is easy to see that each reaction set that covers three or
more other sets can always be written as the union of any two of those reaction
sets that it covers. This allows us to identify how pathways can be decomposed
into smaller reaction sets. An example is given in Fig. 2.

3 Steady-State Flux Spaces Can Be Modeled as Lattices

Constraint-based analysis of metabolic networks is based on the steady-state flux
cone C =

{
v ∈ RR

∣∣ Sv = 0, vIrrev ≥ 0
}
, where S ∈ RM×R is the stoichiometric

matrix over the set of metabolites M and Irrev ⊆ R is the set of irreversible
reactions. Constraint-based methods include Flux Balance Analysis (FBA), Ele-
mentary Mode Analysis (EMA), or Flux Coupling Analysis (FCA), which allow
for growth prediction, structural understanding, or target prediction in metabolic
engineering [5–11].

We will show here how two of these approaches, namely EMA and FCA, may
be reformulated in lattice-theoretic terms. Proving that we can work on a lattice
LC induced by the flux cone C, will allow us to use the general framework of
lattice theory, which simplifies the development of optimized and unified algo-
rithms. As a first step, we prove that any polyhedron P ⊆ RR induces a lattice.
For this we look at the support of the vectors.

Proposition 1. Given P = {x ∈ Rn | Ax ≤ b}, with A ∈ Rm×n, b ∈ Rm, let

LP := {suppx | x ∈ P}
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with suppx = {r ∈ R | xr �= 0}. Then (LP ,∪) is a finite lattice.

Proof. Let a1, a2 ∈ LP with ai = supp
(
x(i)
)
. Define x(λ) = λx(1) + (1 − λ)x(2)

for λ ∈ [0, 1]. P is a polyhedron, thus x(λ) ∈ P and supp
(
x(λ)
)
⊆ a1 ∪ a2. Now

we only have to show that there is λ∗ ∈ [0, 1] with supp
(
x(λ∗)

)
= a1 ∪ a2. So let

us look at the cases where this equality does not hold. We have x
(λ)
i = 0 if and

only if λx
(1)
i + (1 − λ) x

(2)
i = 0. So for each i ∈ a1 ∪ a2 there is at most one λ

such that i /∈ supp
(
x(λ)
)
. Because there are less than |R| + 1 values for λ with

supp
(
x(λ)
)
� a1 ∪ a2, we know that the desired λ∗ ∈ [0, 1] must exist. �

So we know that the flux cone C induces a lattice:

LC := {supp v | Sv = 0, vIrrev ≥ 0} . (3)

But we can also work on bounded flux vectors, where we assume minimal and
maximal reaction rates l, u ∈ RR:

LC
l≤v≤u := {supp v | Sv = 0, l ≤ v ≤ u} . (4)

A special case of a bounded flux space is the space of all optimal-growth flux
vectors, used in FBA and studied e.g. in [18]:

LC
opt := {supp v | Sv = 0, l ≤ v ≤ u, vBiomass = max} . (5)

Fig. 1 shows an example network for this case. As we will see in Sect. 4, lat-
tice theory allows us to define concepts equivalent to EFMs and FCA on these
bounded flux spaces, too.
Finally, given a lattice L ⊆ 2R and a subset Q ⊆ R, we define

L⊥Q := {a ∈ L | a ∩ Q = ∅} , (6)

LQ := {a ∩ Q | a ∈ L} . (7)

Clearly, (L⊥Q,∪) resp. (LQ,∪) satisfy the two lattice axioms from Sect. 2. There-
fore, we get two new lattices, which we call L without Q resp. L projected on Q.

4 Methods

4.1 Elementary Modes in Lattices

An elementary mode [7] is a steady-state flux vector v ∈ C that is irreducible
in the sense that it cannot be written in the form v = v1 + v2, with v1, v2 ∈
C, supp v1, supp v2 � supp v. As proven in [8], a flux vector v ∈ C \ {0} is
irreducible if and only if supp v is minimal (w.r.t. ⊆). In the context of this
paper, it is interesting to note that an elementary mode is uniquely determined
by its support, i.e., given two elementary modes v, v′ ∈ C with supp v = supp v′,
there exists λ �= 0 such that v = λv′ [8].
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Fig. 1. Example network with metabolites A, . . . , G and reactions 1, . . . , 10. For exam-
ple, reaction 5 corresponds to the chemical reaction 2C → D+F . Without constraints
on the input reactions 1 and 4, none of the reactions is blocked and flux through re-
action 6 is unbounded. However, if we include bounds on the input fluxes v1, v4 ≤ 1,
then we obtain a maximal flux of v6 = 1. The corresponding optimal solution space is
given by v1 = v6 = 1, v2 = v3 = 0, v4 = 2λ, v5 = v7 = v8 = v9 = λ, v10 = 1 − λ with
λ ∈ [0, 0.5]. In particular, reactions 2 and 3 become blocked.

In general lattices, minimal and irreducible elements have to be distinguished.
[21] defines two sets of lattice elements, which we write as M (L) and I (L):

M (L) := {e ∈ L | ∀a ∈ L : a � e ⇒ a = 0} ,

I (L) := {b ∈ L | ∀A ⊆ L : b =
⋃
a∈A

a ⇒ b ∈ A} .

We call M (L) the set of (non-trivial) minimal elements of L and I (L) the set
of irreducible elements of L. The irreducible elements generate the lattice, i.e.,
for all a ∈ L there exist b1, . . . , bt ∈ I (L) such that a =

⋃t
i=1 bi. Clearly, all

minimal elements are irreducible, i.e., M (L) ⊆ I (L). Lattices where both sets
are the same are called atomic. While the lattice LC is atomic, this does not
hold for the lattice LC

opt of all optimal-growth pathways, cf. Fig. 2. Therefore,
for general lattices, the two concepts are different.

In [27] the notion of elementary flux patterns was introduced to describe
the generating pathways through subsystems Q ⊆ R of a metabolic network.
These may be interpreted as the set of irreducible, but not as the set of minimal
elements, in a suitably defined lattice LQ := {a ∩ Q | a ∈ L} (cf. (6)).

4.2 Lattice Maxima Give a New View on FCA

Flux coupling analysis (FCA) [10, 11, 29] studies blocked and coupled reactions
in the steady-state flux cone C. It has been used for exploring a wide range of
biological questions such as network evolution, gene essentiality, or gene regu-
lation [30–35]. Here we offer an extended lattice-theoretic view of FCA, which
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1, 2, 31, 6, 10 1, 4, 5, 6, 7, 8, 9

1, 2, 3, 6, 10 1, 2, 3, 4, 5, 6, 7, 8, 91, 4, 5, 6, 7, 8, 9, 10

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Fig. 2. Hasse diagram for the lattice LC corresponding to the network in Fig. 1.
Each possible support of a flux vector is represented by a box, the empty reac-
tion set (zero flux) as an empty box. Reaction sets that do not represent optimal-
growth flux vectors are contained in dashed boxes. In the space of optimal-growth
flux vectors, there is only one minimal element: M (

LC
opt

)
= {{1, 6, 10}}. To de-

scribe the whole lattice LC
opt, we need another (non-minimal) irreducible element:

I (LC
opt

)
= {{1, 6, 10} , {1, 4, 5, 6, 7, 8, 9, 10}}.

allows us to apply this tool not only on the classical flux lattice LC (cf. (3)), but
also on many other structures, such as the lattices defined in (4)-(7).

A reaction r ∈ R is blocked, if vr = 0, for all v ∈ C. Two unblocked reactions

r, s are directionally coupled (r
=0→ s) if vr = 0 implies vs = 0, for all v ∈ C,

and partially coupled (r
=0↔ s) if both r

=0→ s and s
=0→ r [10, 11]. If neither r

=0→ s

nor s
=0→ r, then r, s are uncoupled. There is also the special case of fully coupled

reactions, which correspond to enzyme subsets [36]. In the case of the flux cone,
we can find those pairs using the kernel matrix [29].

Blocked and coupled reactions can be naturally defined in the more general
lattice-theoretic framework. A reaction r ∈ R is blocked in a lattice L ⊆ 2R if
and only if r /∈ a, for all a ∈ L. For unblocked reactions r, s ∈ R, we define the
coupling relations in L:

r → s :⇔ ∀a ∈ L : (r /∈ a ⇒ s /∈ a) ,

r ↔ s :⇔ ∀a ∈ L : (r ∈ a ⇔ s ∈ a) .

Now we come back to the unique maximum 1L in a lattice L. From (2), we
know that a reaction r ∈ R is blocked in L if and only if r /∈ 1L. Next we look
at the lattice L⊥{r} := {a ∈ L | r /∈ a}, cf. (6). Using again (2), we see that two
unblocked reactions r, s ∈ 1L are directionally coupled if and only if s is blocked
in 1⊥{r} := 1L⊥{r} . Therefore, we get:

Proposition 2. Given a lattice L ⊆ 2R and a reaction r ∈ R, we have:

r is blocked in L ⇔ r �∈ 1L . (8)
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For two unblocked reactions r, s ∈ R, we have:

r → s ⇔ s /∈ 1⊥{r} . (9)

In Sect. 5, we will give a fast algorithm for determining 1L and 1⊥{r}, which
will allow us to perform FCA in a simplified way.

5 Algorithms and Implementation

5.1 Finding Maxima in General Lattices

We first present an algorithm that can be used to perform FCA in any lattice-
based model. It is designed in a way that it is easily adaptable to all kinds
of models and still very fast. We achieve this by re-using intermediate results
a ∈ L⊥{r}, which we call collect in a set of witnesses W . Using those witnesses,
we search a maximum via nested intervals.

At the beginning, we do not know anything, so we assume lb = ∅ ⊆ 1⊥{r} ⊆
ub = R with lower and upper bounds lb and ub. Each element a ∈ L⊥{r} that we
obtain improves the lower bound. Every time we find that there is no a ∈ L⊥{r}
with s ∈ a, we can decrease ub by removing s. Finally, we get lb = ub, which is
then our maximum 1⊥{r}.

Algorithm 1 FCA

W = ∅
for r ∈ R do

1⊥{r} = R \ {r}
for r ∈ R do

W⊥r = {a ∈ W | r /∈ a}
lb =

⋃
a∈W⊥r

a, ub = R

for s ∈ R do
if s ∈ ub \ lb then

a = Test(r, s)
if s ∈ a then

lb = a ∪ lb, W = {a} ∪ W
else

ub = ub ∩ 1⊥{s}

1⊥{r} = ub

Alg. 1 uses the fact that lattices are ∪-closed. Therefore, we can combine each
pair of already known pathways to create a new, larger feasible solution. This
gives us a lower bound for the maxima 1⊥{r}. By keeping already calculated
pathways as witnesses in W , we get a major improvement in running time.

The algorithm does not use any specific properties of the flux cone. It is defined
for any lattice-based model. To use it, we include the method Test(r,s) that
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returns a lattice element a ∈ L with r �∈ a ) s, if such an element exists, and ∅
otherwise. This method is the only part of the code depending on model-specific
information or constraints.

To implement this method for traditional FCA, we can solve in Test the
following linear program (LP) (with a trivial objective function):

min {0 · v | Sv = 0, vIrrev ≥ 0, vr = 0, vs = σ} . (10)

For reversible reactions s ∈ R \ Irrev, this linear program has to be solved twice,
i.e., σ ∈ Ωs = {1,−1}, for irreversible reactions s ∈ Irrev, we use Ωs = {1}. If we
find a feasible solution v ∈ L⊥{r}, the method Test returns a = {r ∈ R | vr �= 0},
otherwise it returns ∅.

Lemma 1. The LP (10) is infeasible for all σ ∈ Ωs if and only if r
=0→ s.

Proof. ⇒: If r is not directionally coupled to s, there exists a ∈ LC s.t. r �∈ a ) s.
Because of the definition of LC there exists v ∈ C with a = {i ∈ R | vi �= 0}.
Thus, vr = 0 �= vs. Because C is a cone, v is scalable by positive scalars λ > 0.
Thus, there exists a feasible solution of LP (10).

⇐: If LP (10) is feasible, it follows that we have found a flux vector v with
support a = {i ∈ R | vi �= 0}. We further know that s ∈ a, but r /∈ a, thus r is
not directionally coupled to s. �

Theorem 1. Let L ⊆ 2R be a lattice and ∅ ⊆ W ⊆ L a list of known lattice
elements (witnesses). Then Alg. 1 computes the maxima 1⊥{r} needed for FCA
(cf. Prop. 2).

Proof. Given a reaction r ∈ R, we show that Alg. 1 computes 1⊥{r}. Since W ⊆ L
is a set of lattice elements, we have

lb =
⋃

a∈W⊥r

a ⊆
⋃

a∈L⊥{r}

a = 1⊥{r} . (11)

Therefore, lb is a lower bound for 1⊥{r} before we enter the inner loop. Since
L⊥{r} ⊆ L, we know 1⊥{r} ⊆ 1L. Thus, ub is an upper bound before we enter
the inner loop. Let s ∈ ub\lb be minimal. Let a be the result of Test(r, s) in the
inner loop. By the definition of Test(r, s), we know that a ∈ L⊥{r} and, if a �= ∅,
then s ∈ a. Assume s ∈ a. Then the new lb = a ∪ lb is an element of L⊥{r},
with s ∈ lb. Thus, for the next iteration, it holds that s /∈ ub \ lb. Now assume
s /∈ a. This means that s /∈ 1⊥{r}. It follows 1⊥{r} ⊆ 1⊥{s}. Since ub ⊇ 1⊥{r}, it
follows ub∩1⊥{s} ⊇ 1⊥{r} is an upper bound. Because of the first loop in Alg. 1,
we know s /∈ 1⊥{s}. Thus, in the next iteration, we have s /∈ ub \ lb. �

Remark 1. We can accelerate Alg. 1 by replacing loops over R with loops over
the set of all unblocked reactions 1L.

Remark 2. Obviously, we can also modify the algorithm and the LP (10) to
calculate this maximum 1L of the lattice. For that, we have to replace Test(r, s)
with a method Test(s) that does not use the constraint vr = 0 in (10).
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5.2 FCA in n Steps

Alg. 1 provides a method that can be used for any lattice-based model for which
we can implement the method Test(r, s). The constraints on this method are as
simple as they could be: find a pathway that goes through s but not through r, if
possible. Any a ∈ L⊥{r} with s ∈ a is suitable. This simplicity is one of the many
reasons why this algorithm is so easily adaptable to other lattice-based models.
But, there may be cases where we can go even simpler. If there is a direct way to
find the lattice maxima 1⊥{r}, we may compare this with Alg. 1. We will do this
for classical FCA defined on the flux cone C. According to Prop. 1, the set LC

of all supports of flux vectors is indeed a lattice. That means there is a feasible
flux vector v∗ ∈ C with 1LC = {r ∈ R | v∗r �= 0}. Obviously, the support of this
flux vector has maximal cardinality.

Figueiredo et al. [9] introduce a mixed-integer linear program (MILP) that
enumerates the (cardinality) shortest elementary modes. To achieve this, they
add binary variables ai = 1 ⇔ vi �= 0 to the LP (10). A slight variation of their
MILP already provides the solution to find the lattice maximum 1LC in one
single step. Since [9] is interested in finding elements of small cardinality, their
objective function is min

∑
i∈R ai. Here, we want to find an element of maximal

cardinality. So we change the function to max
∑

i∈R ai. Doing that we find the
unique a ∈ L with a = 1LC . For finding the maxima 1⊥{r}, we just have to
(re-)add the single constraint vs = 0 or alternatively as = 0.

5.3 Implementation

We have implemented the algorithm for general lattices in the language C#.
Our program L4FC (Lattices for Flux Coupling) accepts files in Metatool
format [36] or separate files for stoichiometric information and irreversibility
constraints. The implementation makes full use of the flexibility of lattices: The
main program first computes the set of (un-)blocked reactions, before it calcu-
lates the FCA-relevant maxima 1⊥{r}. The calculation of those |R| + 1 max-
ima is encapsulated into a separate calculator class. Our current version uses
the idea of nested intervals introduced in Alg. 1. The model-specific method
Test(r, s) is implemented in form of a Gurobi model [37] that solves the LPs
(10). This design allows us to include other modelling approaches in an easy
and elegant way by implementing new calculator classes. The source code is
available at GitHub https://github.com/goldsteiny/L4FC and is licensed under
CC BY-NC-SA 3.0. The projects history and future updates will be linked to
www.hoverboard.io/L4FC.

6 Discussion

We have run our program on seven widely studied genome-scale metabolic net-
works from the BiGG database [38] as well as the more recent reconstruction
E. coli iJO1366 [39]. This selection is comparable to other FCA benchmarks,

https://github.com/goldsteiny/L4FC
www.hoverboard.io/L4FC
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Table 1. Runtime behavior of L4FC applied on 7 genome-scale metabolic networks.
In addition, we report on the number of LPs solved and the number of pathways
found. The computation was done into two steps: First we calculate the set of blocked
reactions, then we search for the pairs of unblocked reactions that are coupled.

Model Step Solution size # LPs |W| Time (sec)

E. coli iJO1366

Total 11100 4322 242.0

find unblocked 1718 reactions 1579 469 9.8

2583 reactions find couples 58613 couples 9521 3853 232.2

E. coli iAF1260

Total 12606 4525 219.5

find unblocked 1543 reactions 1518 424 8.3

2382 reactions find couples 39260 couples 11088 4101 211.2

H. pylori iIT341

Total 2485 591 6.4

find unblocked 436 reactions 190 44 0.3

554 reactions find couples 62006 couples 2295 547 6.1

M. barkeri iAF692

Total 2203 886 8.3

find unblocked 483 reactions 340 75 0.6

690 reactions find couples 76746 couples 1863 811 7.7

M. tuberculosis iNJ661

Total 4141 1699 25.3

find unblocked 744 reactions 497 158 1.3

1025 reactions find couples 60750 couples 3644 1541 23.9

S. aureus iSB619

Total 4329 741 9.6

find unblocked 465 reactions 394 65 0.5

743 reactions find couples 30160 couples 3935 676 9.0

S. cerevisiae iND750

Total 5189 1483 31.1

find unblocked 631 reactions 963 129 3.0

1266 reactions find couples 15511 couples 4226 1354 28.0

e.g. [11, 29]. Table 1 summarizes the results. No calculation took longer than
4 minutes, five of them less than 40 seconds. Given these results we can con-
clude that the new generic algorithm L4FC has a runtime in the same order of
magnitude as F2C2, the fastest dedicated tool currently available [29].

Taking a closer look at the results, we see that the calculation of the blocked
reactions takes around 5 − 20% of the total running time. Similar observations
can be made about the number of LPs to be solved and the number of feasible
reaction sets found during this first step of the program. This is remarkable,
because this first phase calculates only 1 maximum, 1L, whereas the second phase
calculates |1L| ∼ |R| maxima. This large disproportion is a direct consequence
of our use of nested intervals, where we 1) re-use all elements found in phase 1
to get better lower bounds and 2) directly apply earlier found upper bounds
1⊥{s} to improve our approximation of 1⊥{r} for s < r. Doing the iteration
ub = ub ∩ 1⊥{s} is an obvious improvement over ub = ub \ {s}, and is quite
easy to understand with lattices in mind. Using this, we achieve similar run time
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improvements as discussed in [29], where transitivity tables are analysed and
proven.

We ran our algorithm on a machine with Intel Core i7-2600 (3.4 GHz, 4 cores,
hyperthreading) and 4GB RAM. We used Gurobi 5.1 with Windows 7 Profes-
sional, Service Pack 1 (64-bit), .NET Framework 4.0.30319. As tolerance values
for zero flux, we used |vi| ≤ 10−8 ⇒ i /∈ supp (v).

7 Summary

We have shown that the concept of EFMs and FCA can be extended to general
lattice-based models. Using this algebraic framework, we can now apply these
methods to new classes of models. For example, we can run FCA on the space
of all optimal-growth flux vectors.

We have introduced a new algorithm for computing the set of unblocked
reactions 1L and performing FCA, using only lattice properties. This allows
an easy adaptation to any lattice-based model. We have further implemented
the algorithm for traditional FCA of the flux cone and shown on a benchmark
set of genome-scale metabolic networks like E. coli iJO1366 that our generic tool
L4FC is comparable in speed to dedicated FCA algorithms.
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35. Szappanos, B., Kovács, K., Szamecz, B., Honti, F., Costanzo, M., Baryshnikova,
A., Gelius-Dietrich, G., Lercher, M., Jelasity, M., Myers, C., Andrews, B., Boone,
C., Oliver, S., Pál, C., Papp, B.: An integrated approach to characterize genetic
interaction networks in yeast metabolism. Nat. Genet. 43(7), 656–662 (2011)

36. Pfeiffer, T., Sanchez-Valdenebro, I., Nuno, J., Montero, F., Schuster, S.: META-
TOOL: for studying metabolic networks. Bioinformatics 15(3), 251–257 (1999)

37. Gurobi Optimization Inc: Gurobi 5.1 (2012)
38. Schellenberger, J., Park, J.O., Conrad, T.M., Palsson, B.O.: BiGG: A Biochemical

Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC
Bioinformatics 11(213), 213 (2010)

39. Orth, J.D., Conrad, T.M., Na, J., Lerman, J.A., Nam, H., Feist, A.M., Palsson, B.:
A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011.
Molecular Systems Biology 7(535) (2011)

http://www.math.hawaii.edu/~jb/


On the Hybrid Composition and Simulation
of Heterogeneous Biochemical Models

Katherine Chiang1,2, François Fages1, Jie-Hong Jiang2, and Sylvain Soliman1

1 EPI Contraintes, Inria Paris-Rocquencourt, France
2 Graduate Institute of Electronics Engineering, National Taiwan University, Taiwan

Abstract. Models of biochemical systems presented as a set of formal
reaction rules with kinetic expressions can be interpreted with differ-
ent semantics: as either deterministic Ordinary Differential Equations,
stochastic continuous-time Markov Chains, Petri nets or Boolean tran-
sition systems. While the formal composition of reaction models can be
syntactically defined as the (multiset) union of the reactions, the hybrid
composition of models in different formalisms is a largely open issue. In
this paper, we show that the combination of reaction rules with condi-
tional events, as the ones already present in SBML, does provide the
expressive power of hybrid automata and can be used in a non standard
way to give meaning to the hybrid composition of heterogeneous models
of biochemical processes. In particular, we show how hybrid differential-
stochastic and hybrid differential-Boolean models can be compiled and
simulated in this framework, through the specification of a high-level
interface for composing heterogeneous models. This is illustrated by a
hybrid stochastic-differential model of bacteriophage T7 infection, and
by a reconstruction of the hybrid model of the mammalian cell cycle
regulation of Singhania et al. as the composition of a Boolean model of
cell cycle phase transitions and a differential model of cyclin activation.

1 Introduction

Systems biology aims at elucidating the high-level functions of the cell from their
biochemical basis at the molecular level [24]. A lot of work has been done for col-
lecting genomic and post-genomic data, making them available in databases [5,25],
and organizing the knowledge on pathways and interaction networks into models of
cell metabolism, signaling, cell cycle, apoptosis, etc. now published in model reposi-
tories (e.g. http://biomodels.net/). In particular, the Systems Biology Markup
Language (SBML) [23] provides a common exchange format for biochemical reaction
models and is nowadays supported by a majority of modeling tools.

According to the knowledge available on the system and to the nature of the queries
that will be asked to the model, e.g. qualitative or quantitative predictions, these
reaction rule-based models can be interpreted (and simulated) under different semantics
as either:

– ordinary differential equations (differential semantics),
– continuous-time Markov chains (stochastic semantics),
– Petri nets (discrete semantics),
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– Boolean transition systems (Boolean semantics),
– and many variants.

Some modeling tools support several of these different interpretations which can also
be related by approximation [16,17,18] or abstraction [11] relationships.

In the perspective of applying engineering methods to the analysis and control of
biological systems, the issue of building complex models by composition of elementary
models is a central issue. While reaction rule-based models can be formally composed
simply by the multiset union of reaction rules, and interpreted by one common se-
mantics, there is also a need to compose models with different semantics. What we
call a hybrid model is a model obtained by composition of models with heterogeneous
semantics (differential, stochastic, Boolean, etc.), and hybrid simulation is the topic of
simulating such hybrid models.

Hybrid simulation is a classical topic in physics on the one hand, e.g. for numeri-
cally solving equations describing stochastic systems using ordinary differential equa-
tions whenever possible in place of stochastic equations in order to speed-up simula-
tions [3,31], and on the other hand, in computer science for programming and verifying
hybrid systems which have both discrete and continuous dynamics [9,4,21]. Hybrid
modeling is also used in systems biology for reducing the complexity of many modeling
task, e.g. [29,4,13,6,26,1,33], or for speeding up stochastic simulations [32,19,22].

In this paper, we show that the combination of reaction rules with conditional
events, as the one already present in SBML, does provide the expressive power of
hybrid automata and can be used in a non standard way to give meaning to the hy-
brid composition of heterogeneous reaction models. In particular, we show how hybrid
differential-stochastic and hybrid differential-Boolean models can be compiled and sim-
ulated in this formal framework of reactions plus events, through the specification of a
high-level interface for composing reaction models.

This interface for composing models has been implemented as a preprocessor for
Biocham [7,10]. This preprocessor transforms stochastic reaction models in events that
implement Gillespie’s direct method for stochastic simulation and that can be combined
with the simulation of differential reaction models. Similarly, it transforms Boolean
state transition models in events with extra conditions that express the links to the
continuous variables and parameters of the differential reaction model.

This approach is illustrated through the hybrid stochastic-differential composition
and simulation of bacteriophage T7 infection [3], and a reconstruction of the hybrid
model of the mammalian cell cycle regulation of Singhania et al. [33] as the composition
of a Boolean model of cell cycle phase transitions and a differential model of cyclin
activation.

2 The Expressive Power of Events with Kinetic Reactions

2.1 Reactions Rules with Kinetics

In the spirit of the Chemical Reaction Network Theory [12], we define our systems of
study as sets of reaction rules ri, however as in SBML [23] any function can be used as
reaction rate. In the following this will be represented using Biocham syntax [10] as:
vi for

∑
j lij×Sj ⇒∑

rij×Sj , where vi is a continuous function1 of parameters of the

1 It would be possible to admit non-continuous functions as rates (e.g., conditional
statements in vi), and that is actually the case in many tools, however the same
result can be obtained with the event mechanism described in the next section.
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system and of species concentrations defining the rate of reaction i (mass action kinetics
of parameter k are abbreviated as MA(k)), lij and rij are stoichiometric coefficients,
and the Sj are the species of the model.

According to the data available on the system and to the nature of the queries
that will be asked to the model, e.g. qualitative or quantitative predictions, these reac-
tion models can be interpreted (and simulated) under different semantics: differential,
stochastic, discrete or boolean. We recall here the basics of these semantics. An Or-
dinary Differential Equation (ODE) system can be defined from a reaction model as
follows: d[Sj ]

dt
=
∑

i(rij − lij)× vi
The differential semantics corresponds to the limit of the Continuous-Time Markov

Chain defined using the vi as propensities, and realizing the solution of the Chemical
Master Equation [16]. The differential semantics usually leads to numerical integration,
whereas the stochastic semantics is either used for exact or approximate simulation, or
for stochastic Model-checking (see for instance [27]).

The discrete semantics forgets about the rates vi but keeps the stoichiometric infor-
mation, for instance as weights in a Petri net representation [8,14].

Finally, the Boolean semantics forgets about precise stoichiometry and keeps only
information about whether or not a species is active. It can be defined as an abstraction
of the previous discrete semantics [11].

2.2 Semantics of Events

In this section, we present a generic notion of events compatible with the differential
semantics of reaction models and then describe how it relates to existing concepts,
most notably the events of SBML and Biocham.

An event is basically twofold, it is built by a condition, determining when it fires,
and by an action, i.e., its influence on the current state (parameters, concentrations). If
one wants to enforce the continuity of concentration variables, they can simply exclude
them from the variables that can be modified by the action part of the events.

Following Biocham syntax, we will write an event as follows: event(condition,
[s1, . . . , sn], [f1, . . . , fn]), where the si indicate the state variables that are modified
by the event, the fi are functions of the state that give the new value to si.

There are many possible semantics for events but the basic idea is that an event
fires when its condition changes from false to true. This induces however several issues:

- what happens at the start of the simulation?
- how to find the precise time when a condition becomes true?
- what happens if some events are enabled simultaneously?
The first point is easy to settle, it is an arbitrary decision but does not have a big

impact. The simplest choice is to avoid the firing of events at the initial point of the
simulation and to reflect initial events by modifying accordingly the initial state.

The second point has been solved in practical tools for a long time: since numer-
ical integration goes by steps, one detects changes in conditions only in the interval
of a simulation step. One can simply go back in time until one finds—with a given
precision—the first time point where a condition becomes true. Note however that if
arbitrarily complex conditions appear in the events, a numerical integrator unaware
of the events can hide inside a single step that a condition went from false to true
and back to false again. Therefore, a cautious implementation is necessary, and often,
fixed step size integration methods are recommended to use, instead of more efficient
adaptive step size methods in presence of events.
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The final point is again a question with multiple possible answers. Generally, the
set of events that are enabled simultaneously at a given time will all be fired, whatever
the actions of the events are, but what if several events modify the same variable? It
is possible to assume a synchronous semantics, where the simultaneous events execute
their actions in parallel, but then one must forbid events with conflicting actions, i.e.,
events that would modify in different ways the same variable at the same time point.
The more common choice is an asynchronous semantics, that will fire all the events
enabled at a given time one after the other, even if some actions invalidate the condition
of other enabled events. Conflicts in actions are then solved by the ordering of events,
which can be either random, i.e. non-deterministic, or given by the modeller, e.g. by
the order of writing or by priorities.

The SBML choice is to keep a very flexible semantics, with asynchronous events,
that may be ordered by priorities, and that can use either the values at the time they
were enabled, or the current values at the time they are actually executed, after the
execution of the simultaneous events with higher priority.

In Biocham, there are no priorities, the events that are enabled simultaneously are
executed in the order of their writing using current values. An event with n assignments
of fi to si is therefore equivalent to the sequence of n events with the same condition
for each assignment fi to si. The semantics of events implemented in Biocham can thus
be defined in SBML using the current value option and priorities corresponding to the
order of writing.

2.3 Representation of Hybrid Automata by Reactions and Events

A hybrid automaton (HA) is a dynamical system containing both continuous and dis-
crete components [20]. They are therefore commonly used to formalize real-life safety-
critical systems and have led to various works on the verification of their different
semantics and on their composition (e.g. with Hytech [21]).

Formally, a hybrid automaton is defined by a set of continuous variables, a control
graph where edges are labelled by jump conditions and events, defining the discrete
state changes with some labels, and vertices are labelled by initial, invariant and flow
conditions defining the continuous change in each state. Figure 1 (left) shows the
traditional thermostat example.

Off
ẋ = −0.1x
x ≥ 18

On
ẋ = 5−0.1x

x ≤ 22x = 20

x < 19

x > 21

Off/On
ẋ = 5s − 0.1x

(s = 0∧x ≥ 18)∨
(s = 1 ∧ x ≤ 22)

x = 20
s = 0

x < 19
s ← 1

x > 21
s ← 0

Fig. 1. The classical thermostat example encoded in a single state hybrid automaton

Since the jumps describe the possible transitions with a complete description of the
resulting state, there are no issues similar to what was described in the previous section
to handle conflicting updates.

Note that, it is enough to restrict oneself to hybrid automata with a single state
(vertex) with a big parametric system of ODEs corresponding to all the ODEs of the
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initial states, multiplied by a parameter that is non null only when the corresponding
state is active. Then the jumps and event labels can remain the same, except that they
go from the single state to itself, and change the state variable according to the initial
state change. The invariants have as additional condition that the corresponding state
must be active to be enforced. One obtains Figure 1 (right) where the ODE system
has been factorized for readability.

Now to represent an hybrid automaton in the framework of reaction and events
described above, one can first note that the initial and flow conditions simply define
an ODE system. Such a system can be represented with reactions, for instance as a
synthesis for each variable with rate corresponding to the variable’s derivative in the
corresponding state.

The jumps can easily be represented as events, however since they do not represent
events that should fire, but, unless it violates an invariant, events that may fire, they
should be accompanied by another event allowing the state not to change. This event
will have as condition the fact that the current invariant is true and that a condition
to leave is true. This second part is not necessary but avoids useless firings of events
that do not change anything. This event will also need to be able to fire repeatedly, it
will thus have a supplementary condition can_fire that it will itself make false, another
event will always make it true again when it is false.

Note that this encoding relies on a non-deterministic asynchronous semantics for
events, as discussed in Section 2.2.Here is the thermostat example as reactions and events:

5*s for _ => x. 0.1*[x] for x => _.

present(x, 20). parameter(enabled1, 0).
parameter(enabled2, 0).

parameter(s, 0). parameter(can_fire, 1).

event(s = 1 and [x] > 21 and can_fire = 1, [s, can_fire], [0, 0]).
event(s = 1 and [x] > 21 and [x] =< 22 and can_fire = 1,

[s, can_fire], [1, 0]).

event(s = 0 and [x] < 19 and can_fire = 1, [s, can_fire], [1, 0]).
event(s = 0 and [x] < 19 and [x] >= 18 and can_fire = 1,

[s, can_fire], [0, 0]).

event(can_fire = 0, [can_fire], [1]).

3 Hybrid Differential-Stochastic Semantics

Chemical reactions, originated from random collisions of particles, are discrete and
stochastic in nature. Although there is no way to predict the exact state of a chemical
system at a specific time point, its statistical behavior can be effectively calculated
from known probabilistic properties. A well-mixed, non-linear chemical system can be
described by a set of master equations, which in turn can be completely solved by
Gillespie’s stochastic simulation algorithm (SSA) [15], to be detailed in Section 3.1.
Essentially the computation cost of an SSA grows proportional to the number of re-
action occurrences. Simulating a system of chemical reactions can be especially slow if
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one or more of the reactions have fast reaction rates (or high event occurrences) be-
cause the next reaction time will be very short due to the high probability of selecting
(one of the) fast reactions for firing.

A chemical system may consist of reactions proceeding with significantly different
rates. Despite the fact that all reactions are innately stochastic, those with large reactant
counts and high reaction rates can be accurately approximated in terms of deterministic
behavior expressed by ODEs. By incorporating both differential and stochastic seman-
tics into one simulator, an optimal balance between simulation runtime and accuracy
can be achieved. This potentially lifts the scalability of simulating large biological sys-
tems. In Section 3.2, we provide an event-based view on the SSA, that serves as basis to
a hybrid differential-stochastic simulator built upon an ODE simulator with events.

3.1 Gillespie’s Direct Method

A reaction model with kinetic expressions can be interpreted under the stochastic
semantics as a continuous-time Markov chain (CTMC). A CTMC can be simulated
with a stochastic simulation algorithm (SSA), for example, Gillespie’s direct method
[15]. Rather than solving all possible trajectories’ probabilities as in the case of Master
equations, the algorithm generates statistically correct trajectories.

Gillespie’s direct method first calculates when the next reaction will occur, then
decides which reaction should occur with the help of a random number generator.
The probability that a certain reaction μ will take place in the next instant of time is
given by its propensity: αμ = (#combinations of reactants) · kμ where kμ is μ’s rate
coefficient. The algorithm repeats the following steps.

1. Calculate how long from now (�t) the next reaction will occur.

�t =
−1∑
j αj

· log(r1),

where r1 is a random number within range (0, 1) and the αj are propensities at
the current state.

2. Choose which reaction will occur according to the probability distribution of re-
actions. This is done by generating a random number r2 within range (0, 1), and
letting the reaction μi be chosen for∑i−1

k=1 αk∑
j αj

< r2 �
∑i

k=1 αk∑
j αj

.

3. Update the numbers of molecules to reflect the execution of reaction μi, and set
current time to t = t+�t.

3.2 Event Model of Stochastic Simulation

By considering every firing of a chemical reaction as one firing of an event, the event se-
mantics of Section 2 enables a direct embedding of stochastic reactions into an intrinsi-
cally differential framework without additional implementation of a separate stochastic
simulation algorithm. Under this framework, time is the only unifying variable to keep
track of current state at each instant. This event-based approach permits the simple
integration of ODE and stochastic simulation as will be elaborated in Section 3.3.
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Notice that, in the SSA of Section 3.1, when the next reaction will occur is indepen-
dent of which reaction will occur, and also that only one reaction is chosen each time.
These facts make the complete set of stochastic reaction rules be simulated correctly
with a single event. Essentially the simulation can be accomplished by compiling the
when and which questions Gillespie’s direct method asks into an event. Specifically the
event is triggered by the calculated next reaction time (tau); the event obtains a new
random variable (ran) and then conditionally updates the molecular counts depending
on which reaction is chosen to occur next. To accommodate all stochastic rules in one
event, each update entry is composed of conditional expressions over the propensities
and the random number that decides which reaction occurs.

Example 1 ([15]). Given the stochastic reaction rules A+ 2B
k1−→ C and C

k2−→ 2A we
derive their propensities by alpha1 = k1 × (#A)× (#B)×(#B−1)

2
, alpha2 = k2 × (#C),

where “#” denotes the particle count of a species. Then the next reaction time from
the current time point can be decided by e = −1

alpha_sum
· log(random1) for random1

within (0, 1) and where alpha_sum = alpha1+ alpha2. The first reaction is chosen for
the next occurring reaction if 0 < (alpha_sum × random2) � alpha1, which leads to
the consumption of one A and two B’s and producing one C:

event(Time>tau, [tau, ran, #A, #B, #C],
[Time + e, random,
if alpha_sum*ran =< alpha1 then #A-1 else #A+2,
if alpha_sum*ran =< alpha1 then #B-2 else #B,
if alpha_sum*ran =< alpha1 then #C+1 else #C-1]).

Note that the update of the particle counts of the first reaction is reflected in the three
then entries, and that of the second reaction is reflected in the three else entries.

This encoding relies on the left to right ordering of the different events associated
to a single trigger (see Section 2.2). This ordering is imposed to three kinds of param-
eters, including the random number for choosing reaction, the lower bound for particle
number, and a reaction’s propensity function, such that possible errors are avoided. Be-
cause these three kinds of parameters all depend on the current number of molecules,
they are listed in front of molecular species. So their values are not changed before the
completion of reaction firing, that is, all species’ counts have been updated according
to the chosen reaction.

3.3 Preprocessor for Composing Differential and Stochastic Models

The purpose of our preprocessor for composing heterogeneous biochemical models is
to provide a user-friendly interface to allow users of various backgrounds to conduct
hybrid simulation without knowing algorithmic details. The only work required is to
decide the semantic model for each of the reactions under simulation.

In classical work on hybrid simulation [3,26], chemical reactions are divided accord-
ing to their propensities and reactants’ concentrations into two groups: one consisting
of reactions to be simulated stochastically using SSAs, and the other consisting of
reactions to be simulated deterministically using ODEs. The former is referred to as
the stochastic reactions and the latter differential reactions. While differential reac-
tions simply advance with the pass of time, stochastic reactions fire discretely in time
with frequency in accordance with their propensities. When the reactant concentra-
tions and the propensity of a reaction are sufficiently large, ODE simulation can be
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faithfully applied. It avoids frequent simulation updates within a small time interval,
thus accelerating simulation speed.

Hybrid species are referred to as those involved in both stochastic and differential
rules. This kind of species requires special attention because they are influenced by two
different mechanisms: ODEs that govern differential behavior by continuously chang-
ing related concentrations, and events that regulate stochastic behavior by modifying
molecule counts discretely whenever triggered. So a hybrid species is under two kinds
of modification: one targets at the evolution of macroscopic concentrations and the
other targets at the changes in microscopic particle counts.

In our implementation, a fresh new variable is introduced for each hybrid species to
represent its quantity (the summation of the numbers of particles from both differential
and stochastic models). In all kinetic expressions, the hybrid species are expressed by
the corresponding new variables. It is then a simple matter to put together the ODEs
for the continuous part and the events corresponding to the encoding of the stochastic
part as described in the previous section.

Fig. 2. Gene Regulation Network

Example 2. Let us consider the single gene regulatory model shown in Figure 2. Let the
reactions for protein generation and degradation, namely, mRNA

k2−→ mRNA+protein
and protein

r−→ ∅ be under the differential interpretation, and all other reactions,
namely, A

c−⇀↽−
b

B, B
h−→ mRNA + B and mRNA

k1−→ ∅ be under the stochastic in-

terpretation.

% Differential rules % Stochastic rules
MA(k2) for mRNA => mRNA + protein. (MA(c), MA(b)) for A <=> B.
MA(r) for protein => _. MA(h) for B => mRNA + B.

MA(k1) for mRNA => _.

Our preprocessor generates a hybrid model composed of reactions and events. Due
to the stochastic nature of the reactions, there is no way to check the results point
by point. Nevertheless, comparison of mean values and standard deviations shows very
good agreement with purely stochastic simulations. The following table shows the CPU
time improvement in this example. The number of fired events is about six times smaller
and the runtime on a Macbook Pro is about four times faster.

step size = 0.01 step size = 0.02
method #fired_event CPU time (sec) #fired_event CPU time (sec)

stochastic 89066 63.2 83856 51.5
hybrid 14258 15.1 14183 12.9
ratio 0.16 0.24 0.17 0.25
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Example 3. The reaction model of bacteriophage T7 infection described in [3] is an
interesting example that can be similarly hybridized by partitioning the reactions with
differential semantics for protein synthesis and with stochastic semantics for gene ac-
tivation, as follows:

% Differential reaction rules % Stochastic reaction rules
MA(c5) for tem => tem + struc. MA(c1) for gen => tem.
MA(c6) for struc => _. MA(c2) for tem => _.

MA(c3) for tem => tem + gen.
MA(c4) for gen + struc => virus.

In this example, tem and struc are hybrid species, while gen and virus are purely
stochastic. The following table shows that the hybrid simulation improves by three
orders of magnitude the simulation time over a time horizon of 100 hours with a step
size of 0.01:

method #fired_event CPU time (sec)
stochastic 276556 218.7

hybrid 832 0.75
ratio 0.003 0.003

It is worth noting that in these examples, the user is responsible for a partition of
reactions into differential and stochastic groups, that is fixed for the rest of simula-
tion. This restriction may lead to inaccurate or inefficient simulation if the propensity
and/or reactants’ counts of a reaction change substantially over time and violate the
underlying assumptions of differential and stochastic semantics. It is therefore desirable
to dynamically adjust the reaction partition along the progress of simulation.

Interestingly, the described framework allows us to easily explore various dynamic
partitioning strategies considering the crucial factors of particle count and propensity
value [3]. All species become potentially hybrid and criteria are imposed such that,
during the simulation run, the reactions interpreted under the differential semantics
are maximized while their current particle counts and propensity values must satisfy
some accuracy requirement with respect to the simulation step size.

4 Hybrid Differential-Boolean Semantics

4.1 Preprocessor for Composing Differential and Boolean Models

In this section, we consider the hybrid composition of differential reaction models with
Boolean transition models. One typical use of this form of composition is for model-
ing the interactions between gene expression and metabolism on different time scales.
Gene networks can be modeled by simple Boolean regulatory models representing the
on/off states of the genes and the possible transitions from one state to another, while
metabolic networks are naturally modeled by ODE systems. Hybrid models of gene
expression and metabolism can thus be naturally built as hybrid Boolean-differential
models, and analyzed and simulated as hybrid automata.

A Differential-Boolean composition necessitates specifying:

– the link between the continuous variables and the Boolean variables, e.g. by fixing
concentration threshold values,
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– the relationship between the discrete logical time of the Boolean model and the
continuous real time of the ODE model, e.g. by adding delays on Boolean transi-
tions,

– the integrity constraints between both dynamics.

There is currently no general method for these tasks. As shown in Section 2.3 however,
a set of reactions and events can be interpreted as a hybrid automaton in which there
is a state with a particular ODE for each combination of the trigger values, and there
is a transition from one state to another state when at least one trigger changes value
from false to true in the source state.

This low level mechanism provides all what is necessary to compose differential
models with Boolean models, compile them in reaction rules plus events and execute
them using hybrid simulations. In the following section we illustrate our composition
preprocessor on a hybrid model of the cell cycle.

4.2 Hybrid Composition of Differential-Boolean Cell Cycle Models

In [33], Singhania et al. have proposed a simple hybrid model of the mammalian cell
cycle regulation. This cell cycle model of low dimension has been evaluated in terms
of flow cytometry measurements of cyclin proteins in asynchronous populations of
human cell lines. The few kinetic constants in the model are easier to estimate from
the experimental data that the numerous kinetic constants of a single large ODE model.
Using this hybrid approach, modelers could thus quickly create quantitatively accurate,
computational models of protein regulatory networks in cells.

In this model, Cyclin abundances are tracked by piecewise linear differential equa-
tions for cyclin synthesis and degradation. Cyclin synthesis is regulated by transcription
factors whose activities are represented by discrete variables (0 or 1) and likewise for
the activities of the ubiquitin-ligating enzyme complexes that govern cyclin degrada-
tion. The discrete variables change according to a predetermined sequence, with the
times between transitions determined by the amount of cyclin presented as well as
exponentially distributed random variables.

This model can be reconstructed in our framework as the hybrid composition of a
differential reaction model of cyclin activation and degradation, with a Boolean model
of cell cycle phase transitions. In our high level interface, this composition is specified
by providing as input

1. the differential reaction model of cyclin activation:

k_sa for _ => CycA. MA(k_da) for CycA => _.
k_sb for _ => CycB. MA(k_db) for CycB => _.
k_se for _ => CycE. MA(k_de) for CycE => _.

with initial concentrations and symbolic kinetic expressions

k_sa=5+6*B_tfe+20*B_tfb. k_da=0.2+1.2*B_cdc20a+1.2*B_cdh1.
k_sb=2.5+6*B_tfb. k_db=0.2+1.2*B_cdc20b+0.3*B_cdh1.
k_se=0.02+2*B_tfe. k_de=0.02+0.5*B_scf.

2. the Boolean transition system of the cell cycle [33]:

states (B_tfe,B_scf,B_tfb,B_cdc20a,B_cdc20b,B_cdh1).
(0,0,0,0,0,1) ->2 (1,0,0,0,0,1) ->3 (1,0,0,0,0,0)
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->4 (1,1,0,0,0,0) ->5 (1,1,1,0,0,0) ->6 (0,1,1,0,0,0)
->7 (0,1,1,1,0,0) ->8 (0,1,1,1,1,0) ->9 (0,1,0,1,1,1)
->1 (0,0,0,0,0,1)

3. the specification of the interface between both models as a set conditions and
actions associated to the Boolean transitions and macros:

delta_t=lambda*exp(random). tau=Time-delta_t.
masst=mass*exp(0.029*(Time-start_time)).
->2 condition [Time>tau] action [lambda=2,mass=masst/2]
->3 condition [Time>tau and [CycE]*masst>=80] action [lambda=0].
->4 condition [Time>tau and [CycA]>12.5] action [lambda=0.01].
->5 condition [Time>(tau+7)] action[lambda=1].
->6 condition [Time>tau and [CycB]>21.25] action [lambda=0.5].
->7 condition [Time>tau] action [lambda=0.75].
->8 condition [Time>tau] action [lambda=1.5].
->9 condition [Time>tau] action [lambda=0.5].
->1 condition [Time>tau and [CycB]<3] action [lambda=0.025].

The compilation process described in Section 2.2 returns the input differential reaction
model augmented with a set of events for the Boolean transitions from state 1 to 9 and
back to 1, and their synchronization with the differential reaction model. In this form,
the simulation over a time horizon of 100 hours takes 60 ms on a MacBook Pro.

4.3 Related Work on Boolean Regulatory Models with Delays

René Thomas’s discrete modelling of gene regulatory networks (GRN) is a well known
approach to study the logical dynamics of a set of interacting genes. It deals with
a graph of positive and negative influences between genes and logical functions that
determine the possible trajectories in the state space. Those parameters are a priori
unknown, but they may generally be deduced from a large set of biologically observed
behaviors in various conditions. Besides, it neglects the time delays for a gene to pass
from one level of expression to another one. In [1], it is shown that one can account for
time delays depending on the expression levels of genes in a GRN, while preserving pow-
erful enough computer-aided reasoning capabilities. The characteristic of this approach
is that, among possible execution trajectories in the model, one can automatically find
out both viability cycles and absorption in capture basins. Model-checking techniques
developed for hybrid systems are used for this purpose [2]. The authors describe a Hy-
brid model for the mucus production in the bacterium Pseudomonas aeruginosa and
show that they are able to discriminate between various possible dynamics [1,2]. Such a
model can be presented and compiled in a set of reaction rules with events as described
in the previous section.

Time constraints provide another mean to refine Boolean or discrete models which
are often too coarse to be useful. In [28], the authors present a new technique for over-
approximating (in the sense of timed trace inclusion) continuous dynamical systems by
timed automata for the purpose of efficiently checking timed (as well as untimed) prop-
erties. The essence of this technique is the partition of the state space into cubes and
the allocation of a clock for each dimension. This is in contrast with other approaches
which use only one clock. This idea is close in spirit to rectangular hybrid automata in
the sense of separating and bounding the dynamics of each dimension. This makes it
possible to get better approximations of the behavior. The timed automata produced
by these techniques can be directly composed in our preprocessor for simulation.
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5 Conclusion

The combination of kinetic reaction rules with conditional events, as already present in
SBML, provides the expressive power of hybrid automata for combining discrete and
continuous dynamics. Although introduced in SBML for handling some discrete events,
such as for instance the division of the mass by two at each cell division in cell cycle
models, SBML events can be used on a large scale as a basic mechanisms allowing for
the composition of heterogeneous models and implementing hybrid simulators.

We have presented a high-level interface for composing hybrid models, compiling
them in reactions plus events, and running hybrid simulations. In particular we have
shown that hybrid differential-stochastic reaction models can be assembled with this
interface, compiled in differential reactions plus events for emulating the stochastic re-
actions, and executed with a de facto hybrid simulator with either static or dynamic
strategies. This has been illustrated with the hybrid model of bacteriophage T7 infec-
tion [3].

We have also shown that hybrid Boolean-differential models can similarly be com-
posed, compiled in reactions plus events, and simulated, through a high-level interface
for specifying the input models, the conditions on the continuous variables, and the
time delays of the Boolean transitions. This has been illustrated by a reconstruction
of the hybrid mammalian cell cycle model of Singhania et al. [33].

This shows the expressive power of SBML events and their possible use as a low-
level implementation language for representing and simulating hybrid models. This also
shows the need for generating such hybrid models with a preprocessor using a high-
level interface as the one prototyped here in Biocham. We are currently improving this
interface to use it on more examples and on hybrid models obtained by model reduction
using tropicalization methods [30].
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Abstract. In this paper we consider the problem of verification of large
dynamic models of biological systems. We present syntactical criteria
based on biochemical kinetics to ensure the plausibility of a model and
the positivity of its solution. These criteria include the positivity of the
rate functions, their kinetic type dependence on the reactant species
concentrations, and the absence of the negative cross-effects that together
guarantee the nonnegativity of the dynamics. Further, the stoichiometric
matrix of the truncated reaction system is checked against conservation
using its algebraic properties. Algorithmic procedures are then proposed
for checking these criteria with emphasis on good scaling up properties.
In addition to these verification procedures, we also provide, for certain
typical errors, model correcting methods. The capabilities and usefulness
of these procedures are illustrated on biochemical models taken from the
Biomodels database. In particular, a set of 11 kinetic models related with
E. coli are checked, finding two with deficiencies. Correcting actions for
these models are proposed.

Keywords: verification, model checking, kinetic models.

1 Introduction

Dynamics play a key role in the explanation of complex phenomena occurring in
living systems. Therefore, the dynamic modeling and model analysis of biochemi-
cal networks is of high importance in systems biology, as quantitative mathemati-
cal models allow the description, analysis and/or manipulation of a wide range of
biochemical processes.

The mathematical form of these models varies depending on the aim of mod-
eling and on the quality of measured data available. Petri-net models –both
deterministic and stochastic– are widely used for the analysis of qualitative dy-
namic properties, such as persistency [1], stability [2], etc. Qualitative dynamic
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models in the form of nonlinear ordinary differential equations (ODEs) are also
widely used when good quality measured data are available for model parameter
estimation, model verification, validation and detailed dynamic analysis. More
in particular, the class of kinetic models [3] (with mass action type or other rate
functions) is a widely accepted description form.

In practice, however, many of the medium and large-scale kinetic models in
systems biology show problems when the space of parameters is explored. For
example, dynamic simulations for certain parameter values result in negative
concentrations (suggesting that mass-balance may not be correct), or simply
blow-up. Therefore, careful checks should be performed before the use of a pub-
lished model. This is routinely done in large biochemical model bases (see e.g.
[4]), but these checks cannot detect every deficiency that may arise from the
many different uses (simulation, parameter estimation, experiment design, etc.)
of these models.

A biologically valid model should be valid both from physical and chemical
point of view. There are some tools which help the user to avoid making mod-
elling mistakes e.g. by offering predefined rate-functions, tracking the variables,
or supporting measurement units and their consistency. These tools serve mostly
for syntactic checking purposes. Furthermore, some tools can also check funda-
mental model properties, such as e.g. mass balance, the existence of admissible
steady states, or the characteristics of the dynamic behaviour near a steady
state, among others.

The Systems Biology Markup Language (SBML) [5] is a kind of accepted
“standard”, which offers model syntax checking, e.g. checking that the measure-
ment units are correct. Systems Biology Toolbox 2 offers in addition (i) moiety
conservation, (ii) steady state calculation, (iii) stoichiometry analysis, and (iv)
bifurcation analysis.

As another well-known example, COPASI [6] provides a systematic model
building framework to reduce the possibility of making modelling errors. Further
functions are: steady state analysis, mass conservation, time scale separation,
sensitivity calculation etc.

Despite the above efforts to ensure the acceptable quality of a biochemical
model, it is easy to find in the literature such models that do not possess very
basic properties, like positivity. This is usually the consequence of model sim-
plification based on assumptions [7]. However these assumptions are sometimes
forgotten or not known explicitly. Therefore, our aim was to formulate simple
syntactical and semantic criteria of biochemical origin that ensure the plausibil-
ity of the studied model and the positivity (more precisely, non-negativity) of
its solution. Similar ideas of model checking appear in [8] and [9].

The basic properties of dynamic models that describe reaction kinetic systems
are used for this purpose. Roughly speaking, the kinetic property of these mod-
els means that the individual reaction rates are non-negative and there cannot
be negative cross-effects between the dynamics of species [10]. Besides other im-
portant features, the kinetic property implies non-negativity which means that
the non-negative orthant of the coordinates system remains invariant for the
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process dynamics (i.e. the differential variables that typically describe concen-
trations, always remain non-negative). However, as it is illustrated in this paper,
some models published in journals and/or in open access biological databases
do not fulfill fundamental kinetic properties, and this can be a serious obstacle
in tasks such as parameter estimation, or in the later use or extension of these
models.

In addition to the model verification procedures, we aim at localizing the
reaction, or set of reactions, that cause a particular problem (for example, possi-
ble negative solutions), and at giving advice on how to correct them. Note that
verification in this paper is used in the sense of checking for the presence of in-
correct dynamic behaviour of the model, and not in the sense of its experimental
(in)validation.

2 Plausible Biochemical Models

2.1 Mathematical Models of Biochemical Reactions

Biochemical reactions form an important sub-class in chemical reaction kinetics,
that are characterized by the generally large number of reaction steps, and by the
potentially complex, e.g. non-monotonous nature of the reaction rate functions.
The reaction scheme together with the appropriate reaction constants of the
most important biochemical reaction systems is collected in large biochemical
databases (such as the Biomodels database [4]), and special description languages
(such as SBML [5]) are developed for their standardized representation.

In order to develop a model representation of biochemical reaction systems
that is suitable for model verification, the model representation of chemical
reaction networks [3] can be used with some adjustments.

2.2 Basic Notions for Describing Biochemical Reactions

Complex biochemical reaction schemes are composed of elementary reaction
steps that are irreversible. This means, that a reversible reaction step is rep-
resented as two irreversible elementary reaction steps. An elementary reaction
step R� can be formally described using n species X1, . . . , Xn and associated
stoichiometric coefficients. The species are classified as reactants (with stoichio-
metric coefficients ν1, . . . , νn) and products (with μ1, . . . , μn).

R� :

n∑
k=1

νkiXk
rij−−−→

n∑
k=1

μkjXk. (1)

The non-negative linear combinations of the species
∑n

k=1 νkiXk and∑n
k=1 μkjXk are called the complexes and are denoted by C1, . . . Cm, e.g.

C1 = 2X1 +X3.
It is important to note that some species may appear on both sides of a given

reaction with the same stoichiometric coefficients (νki = μki).
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A reaction (elementary reaction step) Rij is an ordered pair of complexes
Ci, Cj ∈ C, which means that the reactant complex Ci is transformed to the
product complex Cj in the chemical reaction network i.e. Rij = (Ci, Cj). Re-
actant complexes are also called source complexes. To each of the reactions, a
reaction rate function rij is associated that may depend on the concentration
[Xi] = xi of any species Xi in the biochemical reaction system. The reaction
rate is usually measured in units [mol

s ] and shows how many moles of a reactant
Xk with νki = 1 is used, or how many moles of a product X� with μ�j = 1 is
produced by the reaction in one second.

2.3 Plausible Reaction Rate Functions

Because of the above chemical meaning of the reaction rate, the reaction rate
function should posses the following properties.

1. Rate positivity. As the elementary reaction steps are irreversible and the reac-
tion rate is defined as the rate of the consumption (decrease) of the reactant
concentrations, the inequality rij ≥ 0 should be fulfilled over the entire do-
main of the reaction rate function, i.e. for all non-negative concentration
values in its argument.

2. Kinetic dependence. Reaction rate functions in biochemical reactions include
the concentrations of the reactants such as substrates, which are consumed
in the reaction. Some species concentration may not change in the reaction
because the same amount is consumed as produced, i.e. νki = μkj . Further,
the reaction function may include other concentrations that modify the re-
action rate either in a catalytic way, or in the form of inhibitors, e.g. the
concentration of a product of that reaction. However, one only considers the
real reactants in the source complex which influence the reaction rate in a
dominant way that is described by the notion of kinetic dependence. rij is
said to be kinetic with respect to the species in the source complex (Xk ∈ Ci)
if

rij(xk = 0) = 0 for all k = {1, . . . , n|Xk ∈ Ci} , (2)

i.e., if the concentration of any species in the source complex is zero, then
the reaction rate becomes zero.

2.4 Plausibility of Some Common Biochemical Reaction Rate
Functions

Only a limited number of rate function types are usually present in biochemical
reaction systems, that are characterized by a functional form and the values of its
parameters [11]. A few of the most important ones are analysed for plausibility
below.

(i) Mass action kinetics
This is the simplest reaction rate function form rMA,i = ki ·

∏n
l=1 x

νli
l

where ki > 0 is the reaction rate constant, and the reactant complex is
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Ci =
∑n

l=1 νliXl. It is easy to see that rMA,i is kinetic in each of the
species in complex Ci.

(ii) Michaelis-Menten kinetics
Recall, that elementary reaction steps are irreversible, then the rate func-
tion is in the form

rMM,i = ki ·
xi

(Ki + xi)
(3)

where where ki > 0 and Ki > 0 are constant parameters, and the reactant
complex Ci = Xi. This reaction rate function is kinetic in Xi.

(iii) Constant level reactions
Here the rate function is simply a constant, i.e. rC,i = kMi , where kMi >
0 is a constant. This rate function does not have kinetic dependence on
any specie, thus no reactant species can be associated to this reaction.
Consequently it is not a plausible reaction rate function, whenever it is a
consuming reaction. Note that, when this reaction stands for model input
it always occurs with positive sign in the balance equations.

Correcting Non-plausible Reaction Rates. There is unfortunately no general way
of correcting non-plausible reaction rates. However, in some cases, such rates
can be made plausible. An example of this case is, when a constant level type
reaction rate function is present in the kinetic equation of the species Xi with
negative sign. Then we can multiply the rate function with xi that will make
this rate function kinetic in Xi.

2.5 Positive (Non-negative) Kinetic Models

The dynamic variables xk of any biochemical model are species concentrations,
that are non-negative. Therefore, any plausible biochemical model should have
this property, that is based mathematically on the notion of essentially non-
negative functions [12]. A function f = [f1 . . . fn]

T : [0,∞)n �→ Rn is called
essentially non-negative if, for all i = 1, . . . , n, fi(x) ≥ 0 for all x ∈ [0,∞)n ,
whenever xi = 0. In the context of biochemical models, where the components
fi correspond to the right-hand sides of the kinetic differential equations, the
non-negativity of individual rate functions and the lack of negative cross-effects
between species together guarantee essential non-negativity of the model [10].

2.6 Component Mass Conservation

Kinetic models are constructed based on the conservation of the masses of species
assuming closed systems and isothermal conditions.

The conservation equations are constructed for species that are either reac-
tants or products of the chemical reactions in the form

dxk

dt
= −

m∑
i=1

νkiri +

m∑
i=1

μkiri =

m∑
i=1

skiri, (4)
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where s is the element of the S ∈ Rn×m stoichiometric matrix. No dynamic
conservation equations are written to species with only catalytic or inhibitory
role.

In open systems one has in addition (i) input terms, that have positive sign
and may depend on externally set concentrations and/or mass flow of certain
non-conserved specie, and (ii) output terms, that are linear in one conserved
specie, have negative sign and appear only in the dynamic equation of that
particular specie. Therefore, all of the input and output terms should be set to
zero when checking the conservation property: this form of the dynamic model
will be called the truncated model.

A truncated stoichiometric matrix S̃ ∈ Rn×m is constructed from the trun-
cated model by associating a column Si to each complex Ci with [S̃]ki = μki−νki
for only the reactant species (but not to the catalytic or inhibitory ones). The
truncated biochemical model has the conservation property taking into consid-
eration all species, if there exists a strictly positive vector m such that mT S̃ = 0
(see [13], [14] and for efficient computation methods [15]).

Some biological models do not obey mass conservation on purpose, other-
wise the above property enables us to check the truncated stoichiometric matrix
S̃ against conservation, that is only a partial verification of the values of the
stoichiometric coefficients μki and νki in the model.

Plausible Model Structure. The model structure is said to be plausible, when
the stoichiometric constants in the conservation equations (4) are consistent with
the reactants and products of the reactions, i.e. νki is strictly positive if reaction
ri consumes the species Xk and μki is strictly positive if Xk is a product of the
reaction ri. The stoichiometric coefficient of a reaction which neither consumes
nor produces a species should be zero in the corresponding balance equation.

3 Model Checking and Correction in Practice

3.1 Steps of Model Verification

Given a biochemical reaction network in terms of the reaction rate functions
and the system of ordinary differential equations. The reaction rate functions
are assumed to be smooth functions of the time, some concentrations and pa-
rameters: ri = ri(t, x, k). The explicit time dependency of the reactions permits
to incorporate boundary conditions or model inputs for the dynamic system.
The ordinary differential equation form of the model is given by Eq. (4).

Inputs of the Algorithm. We can either start with the list of differential
equations and the algebraic equations of the reactions, or the model defined
in SBML. Since the SBML model does not contain explicitly the differential
equations, in this case the SBML import function of the System Biology Toolbox
2 [16] is used to translate the SBML into MATLAB structure and generate the
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Fig. 1. Continuous flow stirred tank reactor and its reaction graph representation

differential equations. It is important to note that the parameter values of the
rate functions are not needed for the verification.

A homogeneous, continuous flow stirred tank bioreactor serves as an tutorial
example depicted in Fig. 1. The reaction network consists of three species (A,
B, C and their concentrations xA, xB and xC , respectively) and two elementary
reactions: a two substrate, one product reversible Michaelis-Menten kinetics (5)
and a non-plausible (see subsection 2.4 (iii)) constant reaction (6). The zero
complex denoted by a ”0” in the reaction graph corresponds to the environ-
ment of the system (for clarification see e.g. [17]). The reactor feed contains the

substrates A and B with xf
A and xf

B constant concentrations, respectively, the
corresponding pseudo-reactions [17] are in Eq. (7). The output stream that con-
tains all species is represented by the pseudo-reactions in Eq. (8). The reaction
rate functions and the ODEs of the system are

r1 = Vf

xA

KxA

xB

KxB

1 + xA

KxA
+ xB

KxB

− Vr

xC

KxC

1 + xC

KxC

(5)

r2 = Kd (6)

r3 = ζxf
A; r4 = ζxf

B (7)

r5 = ζxA; r6 = ζxB ; r7 = ζxC (8)

dxA

dt
= −r1 + r3 − r5 (9)

dxB

dt
= −r1 + r4 − r6 (10)

dxC

dt
= r1 − r2 − r7 . (11)

Splitting the Reversible Reactions. The irreversible forward and backward
reactions are created from the original reactions using regular expressions and
the Symbolic Math Toolbox of MATLAB. In this example the algorithm finds
the subtraction with two operands in Eq. (5) and separates to

rf1 = Vf

xA

KxA

xB

KxB

1 + xA

KxA
+ xB

KxB

and rb1 = Vr

xC

KxC

1 + xC

KxC

. (12)
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Simultaneously the differential equations are updated to

dxA

dt
= −(rf1 − rb1) + r3 − r5 (13)

dxB

dt
= −(rf1 − rb1) + r4 − r6 (14)

dxC

dt
= (rf1 − rb1) − r2 − r7 . (15)

Model Positivity by Checking the Kinetic Property. Next, the stoichio-
metric matrix (S) is constructed by parsing the string of the ODEs and collecting
the coefficients of the rate functions. Whenever the vij element of S is negative,
i.e. reaction rj consumes the species xi, rj must be kinetic with respect to xi.
This can be checked by substituting zeros for the species xi in the rate function
and evaluating it; the result must be zero.

In our example the model Eqs. (13)-(15) give rise to the stoichiometric matrix

S =

⎡⎣−1 1 0 1 0 −1 0 0
−1 1 0 0 1 0 −1 0
1 −1 −1 0 0 0 0 −1

⎤⎦ (16)

and the irreversible reaction vector R = [rf1 , r
b
1, r2, r3, r4, r5, r6, r7]

T . Consid-

ering the location of the negative entries of S reaction rf1 and r5 must be kinetic

to species A, rf1 and r6 with respect to B and rb1, r2 and r7 with respect to C. By

substituting zeros for the reactant species in the rate functions –e.g. rf1 (xA = 0),

r5(xA = 0), rf1 (xB = 0) etc. – the plausible ones give zeros. At this point reaction
r2 is found to be non-kinetic to the species C, and thus it is a non-plausible reac-
tion. We may correct the rate function by multiplying with its reactant species
concentration: r∗2 = KdxC . This reaction can be regarded as a model output,
too.

Component Mass Conservation. The truncated model without the input
reactions (Eqs. (7)) and the output reactions (Eqs. (8) and the corrected r∗2) is
represented by the first two columns of S. This sub–matrix is rank deficient and
has the m = [1 1 2]T strictly positive vector in the left nullspace indicating the
mass conservation law.

3.2 Verified Models

We have checked 11 E. coli curated models of the Biomodels database, and some
of them turned out to contain non-plausible reactions. Table 1 shows the unique
identifiers of the models in the database. The number of species, the number
of reactions and the computation time of the algorithm is also included in the
following columns. The 5th column contains the non-plausible reaction, while
the last column shows whether the truncated model admits mass conservation.
In the next section, the verification of two of these models will be presented in
detail.
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Table 1. Verified models

BioModel No. of No. of Time Non-plausible Mass

ID species reactions [s] reaction conservation

BIOMD296 4 10 man.* plausible no
BIOMD413 5 9 0.3 plausible no
BIOMD200 22 46 2.3 plausible yes
BIOMD217 12 22 23 plausible yes
BIOMD051 18 62 5 reaction vMURSYNTH is not no

kinetic w.r.t. species CF6P
BIOMD066 11 10 man.* reaction vATPASE is not yes

kinetic w.r.t. species ATP
BIOMD012 6 12 0.8 plausible no
BIOMD067 7 16 0.6 plausible no
BIOMD221 8 22 1.9 reaction vSYN is not no

kinetic w.r.t. species AKG
BIOMD222 8 22 1.9 reaction vSYN is not no

kinetic w.r.t. species AKG
BIOMD065 8 16 0.5 plausible no

*the separation of some reaction rate function needed manual manipulation

3.3 Case Study 1: Central Carbon Metabolism of E. coli

Chassagnole et al. [18] describe the central carbon metabolism of the Escherichia
coli. Although we could reproduce the results in the paper [18] with the pub-
lished model (BIOMD0000000051), numerical simulations with CVODES [19]
during parameter estimation tasks gave errors, because negative concentrations
appeared.

About the Model. The metabolism is described by 48 reactions which are
grouped into kinetic types: reversible and irreversible Michealis-Menten kinet-
ics, two-substrate reversible and irreversible Michaelis-Menten kinetics, allosteric
enzyme reactions, allosteric regulation, allosteric activation, ordered uni-bi mech-
anism, Hill kinetics, constant level reaction and reversible mass action kinetics.
Appendix A contains examples of these reactions. The mass balance equations
for the 18 metabolites are in the following form

dCi

dt
=
∑
j

vijrj(C, k) − μCi , (17)

where C is the concentration of the metabolite, vij is the (i, j)th element of the
stoichiometric matrix, rj(C, k) denotes the j-th reaction rate function, which
depends on the concentrations and the k rate function parameters. Finally, μ is
the growth factor. The detailed equations are listed in [18] Tables I. and IV.

Checking the Rate Expressions. The first criteria of a plausible model is
the non-negativity of the reaction rate functions, for which the reversible reac-
tions have to be cut into a forward and a backward reaction. The separation of
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the reactions are straightforward in this case study. It is also easy to see that
the reactions are always non-negative since the rate expressions contain only
such mathematical operators that preserve the positivity. The model have three
constant reactions: the Mureine synthesis, the Tryptophan synthesis and the
Methionine synthesis

rMurSynth = rmax
MurSynth, (18)

rTrpSynth = rmax
TrpSynth and rMetSynth = rmax

MetSynth , (19)

but only rMurSynth is not kinetic to its source specie, the others are input terms.

Checking the Model Structure. The positivity condition from Section 2.5
together with the model Eq. (17) give rise to the model specific positivity con-
dition

dCi

dt
=
∑
j

vijrj − μCi ≥ 0 whenever Ci = 0, for all i = 1, . . . 18.

This condition holds for plausible reaction rate functions which have the source
kinetic property according to Eq. (2). Furthermore, whenever a reaction is not
kinetic w.r.t. its source species and has negative stoichiometric coefficient, de-
pending on the numerical values of the parameters it can violate the condition
and cause negative concentrations during simulations.

This is exactly what happens in some parameter domain of this E.coli model.
From the following model equation ([18] Table I. Eq.(3)):

dCf6p

dt
= rPGI − rPFK + rTKb + rTKa − 2rMurSynth − μCf6p (20)

one can see that the stoichiometric coefficient of the Mureine synthesis rMurSynth

is negative, but it is not kinetic w.r.t. any metabolite. This may result in the
appearance of negative concentrations and thus in a non-plausible model.

Correction of the Non-plausible Reaction. There are several ways to cor-
rect the non-plausible reaction. A switching function can be included, which
turns off the reaction, whenever the concentration of fp6 reach zero. This pro-
cedure does not influence the model dynamics in the plausible concentration
domain, but the switching function may result in mathematical or numerical
simulation issues. Alternatively, one can make the reaction source kinetic by
multiplying it with Cfp6: r

cured
MurSynth = rmax

MurSynthCf6p. It changes the dynamics of
the system, but results in a smooth, plausible reaction rate function.

Mass Conservation. The truncated model is created by omitting the reactions
which are either stand for inflows or outflows. We have found three linearly
independent non-negative vectors for which mT

i S = 0, for i = 1, 2, 3. This
implies three moiety conservation laws, but there is no strictly positive m vector
in the left kernel of S, and thus the model does not obey to the total mass
conservation.
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3.4 Case Study 2: Verification of the Model BIOMD0000000221

Singh et al. [20] present two kinetic models of the tricarboxylic acid cycle and
glyoxylate bypass in the Mycobacterium tuberculosis. Both models are based
on a validated E. coli model, which is in the focus of this case study. The
kinetic model contains 12 metabolites and 12 reactions. The reactions and the
differential equations are listed in Appendix B.

The reaction rate functions can be categorized into three kinetic reaction
types: one substrate reversible Michaelis-Menten kinetics; two substrate re-
versible Michaelis-Menten kinetics and ordered uni-bi mechanism. The separa-
tion of them to irreversible forward and backward reactions is straightforward.
The irreversible forms fulfil the rate positivity condition.

For the positivity of the model the kinetic property of the rate expressions
should be analysed. The reactions must be kinetic to the species, which are
consumed in that reactions. However, due to a modelling assumption, the r11
reaction

rf11 = 0.0341 · rf3 = Vcell · 0.0341
V f
11

Cicit

K11,icit

1 + Cicit

K11,icit
+

Cakg

K11,akg

. (21)

is not kinetic with respect to the akg source specie, which is consumed in this
reaction according to the balance equation:

dCakg

dt
= rf3 − rb3 − rf4 + rb4 − rf11 + rb11 (22)

Note that rf11 has a negative stoichiometric coefficient.
Thus, our algorithm detected the consequence of the modelling assumption

which lead the model out from the kinetic model system class.
The model has four boundary species, the concentrations of which are hold

constant. The omission of the reactions containing these species leads to the
truncated model and the corresponding reduced stoichiometric matrix S. There
is no strictly positive vector in the left null-space of S: actually, all species but
the glyoxylate participate in the mass conservation.

4 Conclusion

Using the syntax and semantics of biochemical models, simple syntactical criteria
were formulated in this paper that ensure the plausibility of the studied model
and the positivity of its solution.

First, the plausibility of reaction rate function was defined that include its
positivity, and its kinetic dependence on the real reactants of the reaction. The
absence of the negative cross-effects in the dynamic equations were used to ensure
the positivity of the species concentration functions. The stoichiometric matrix
of the truncated reaction system was checked against conservation using its
algebraic properties.
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Algorithmic procedures were proposed for checking these criteria that scale
up well with the size of the biochemical model. For certain typical errors, model
correcting methods were also proposed.

The developed notions and tools are illustrated on biochemical kinetic models
of E. coli.
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Appendix

A Reaction Rate Functions of the First Case Study

Some examples of the reaction rate functions and their irreversible form can be
found in the following list.

1. Reversible mass action kinetics, e.g. Ribose phosphate isomerase reaction

rR5P1 = rmax
R5P1(Cribu5p − Crib5p

KR5P1,eq
) ,

the forward and backward reactions of which are:

rfR5P1 = rmax
R5P1Cribu5p and rbR5P1 = rmax

R5P1

Crib5p

KR5P1,eq
.

2. Irreversible Michaelis-Menten kinetics, for example Serine synthesis

rSerSynth =
rmax
SerSynthC3pg

KSerSynth,3pg + C3pg
.

3. Allosteric enzyme activation, for example Glucose 1-phosphate adenyltrans-
ferase reaction

rGIPAT =
rmax
GIPATCglpCatp

(
1 +
(

Cfdp

KGIPAT,fdp

)nGIPAT,fdp
)

(KGIPAT,glp + Cglp)(KGIPAT,atp + Catp)

4. Constant level reaction, such as Mureine synthesis

rMurSynth = rmax
MurSynth

http://www.sbtoolbox2.org
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B Model Equations of the Second Case Study

This section contains the reaction rate functions and the dynamic model equa-
tions of the tricarboxylic acid cycle and glyoxylate bypass model of E. coli. The
1st and 10th reactions have two substrate reversible Michaelis-Menten kinetics:

ri = Vcell

V f
i

S1

Ki,S1

S2

Ki,S2
− V r

i
P1

Ki,P1

P2

Ki,P2(
1 + S1

Ki,S1
+ P1

Ki,P1

)(
1 + S2

Ki,S2
+ P2

Ki,P2

) for i = {1, 10} ,

where S and P denote the concentrations of the substrates and products respec-
tively, K , are constant parameters and V r/b are the maximal rates of forward
and backward reactions.

The 2nd – 8th and 11th reactions belong to the one substrate Michaelis-
Menten kinetics

ri = Vcell

V f
i

S1

Ki,S1
− V r

i
P1

Ki,P1

1 + S1

Ki,S1
+ P1

Ki,P1

for i = {2, . . .8, 11} .

Finally, the 9th reaction has the form:

ri = Vcell

V f
i

S1

Ki,S1
− V r

i
P1

Ki,P1

P2

Ki,2(
1 + S1

Ki,S1
+ P1

Ki,P1
+ P2

Ki,P2
+ S1

Ki,S1

P1

Ki,P1
+ P1

Ki,P1

P2

Ki,P2

) for i = 9 .

The system of differential equations expressed in terms of the reactions is

dCaca

dt
= 0,

dCoaa

dt
= 0,

dCcoa

dt
= 0,

dCbiosyn

dt
= 0

dCcit

dt
= rf1 − rb1 − rf2 + rb2

dCicit

dt
= rf2 − rb2 − rf3 + rb3 − rf9 + rb9

dCakg

dt
= rf3 − rb3 − rf4 + rb4 − rf11 + rb11

dCsca

dt
= rf4 − rb4 − rf5 + rb5

dCsuc

dt
= rf5 − v5b + rf9 − rb9 − rf6 + rb6

dCfa

dt
= rf6 − rb6 − rf7 + rb7

dCmal

dt
= rf7 − rb7 + rf10 − rb10 − rf8 + rb8

dCgly

dt
= rf9 − rb9 − rf10 + rb10
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Abstract. Rule-based modelling allows very compact descriptions of
protein-protein interaction networks. However, combinatorial complexity
increases again when one attempts to describe formally the behaviour of
the networks, which motivates the use of abstractions to make these
models more coarse-grained.

Context-insensitive abstractions of the intrinsic flow of information
among the sites of chemical complexes through the rules have been pro-
posed to infer sound coarse-graining, providing an efficient way to find
macro-variables and the corresponding reduced models. In this paper, we
propose a framework to allow the tuning of the context-sensitivity of the
information flow analyses and show how these finer analyses can be used
to find fewer macro-variables and smaller reduced differential models.

1 Introduction

Modellers of molecular signalling networks must cope with the combinatorial
explosion of protein states generated by post-translational modifications and
complex formations. Rule-based models [13,1] provide a powerful alternative to
approaches that require an explicit enumeration of all possible molecular species
of a system. Such models consist of formal rules stipulating the (partial) contexts
for specific protein-protein interactions to occur. The behaviour of the models
can be formally described by stochastic or differential semantics. Yet, the naive
computation of these semantics does not scale to large systems, because it does
not exploit the lower resolution at which rules specify interactions.

Rules explicitly describe the intrinsic flow of information between sites of
complexes. Indeed, rules are contextual: they document only the state of which
sites has an influence on the kinetic of the interactions. This can be used to
detect some correlations that can be safely ignored. Thus, we can cut molecular
complexes into molecular patterns, called fragments, and derive a coarse-grained
system which describes exactly the concentration (or population) evolution of
these fragments. This method never requires the execution of the concrete rule-
based model and the approach is proved exact by abstract interpretation [8].

The so-obtained coarse-graining crucially depends on the accuracy of the anal-
ysis of the intrinsic flow of information. In this paper, we introduce a framework
to tune the context-sensitivity of the analyses of the flow of information and de-
rive the induced coarse-graining. This way, our analysis can zoom-in or zoom-out

A. Gupta and T.A. Henzinger (Eds.): CMSB 2013, LNBI 8130, pp. 220–233, 2013.
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to increase or decrease the accuracy of the description of the flow of information
which passes through each site, according to some conditions about the states of
the other sites around this site. It bridges the gap between fully insensitive anal-
yses (where the information about the sites are summarized according to their
type only) [14,12,5] and fully context-sensitive analyses (that are computed in
the concrete on molecular species) [17] that have been proposed so far, and
provide a whole hierarchy of trade-off between accuracy and efficiency.

Related works. Dependencies between sites and reactions have been used in sys-
tematic [7,3] and automatic [1] informal methods for designing coarse-grained
models. These informal methods do not provide exact coarse-graining in sev-
eral cases, like whenever a site is activated through a binding or in the case of
homo/hetero dimerizations. In [14,12,5], we have introduced a formal framework
which ensures a formal relation between the initial differential semantics and the
reduced one, by the means of abstract interpretation [8]. A similar framework
has been proposed for lumping the stochastic semantics [16,15]. Symmetries can
also be used to reduce the combinatorial complexity of models [6].

These methods are context-insensitive: for each kind of agents, all the infor-
mation about the agents of this kind is summarised into the single node of a
graph, called the contact map. The framework in [17] is fully context-sensitive:
the abstraction of the information flow is done in the concrete, thanks to a
direct iteration on the molecular species. In comparison, the framework that
is proposed in this paper allows the user to select any trade-off between fully
context-insensitive and fully context-sensitive abstractions.

Context-sensitive approximations of graph-structures have been deeply stud-
ied in the field of memory analysis, where complex invariants [18] about recursive
data-structures have to be inferred [19,2]. Our framework is a kind of partitioning
[4], a generic method for refining abstractions.

2 Case Study

Before describing the framework formally, we introduce a case study. We con-
sider one kind of protein P with three numbered phosphorylation sites. Each
site can be phosphorylated, or not. We consider that any site can get phospho-
rylated or lose its phosphorylation. Configurations and reactions are summarised
in Fig. 1(a). The configuration of a protein P is denoted as a triple (s1, s2, s3)
of symbols among u and p. In general, the rate of phosphorylation (resp. de-
phosphorylation) can depend on the state of the other sites. Here we make the
assumption that only the phosphorylation rate of the third site depends on the
state of the two other sites, but we assume that the phosphorylation rate of
the third site is the same in the configurations (u,u,u) and (u,p,u).

So as to model the behaviour of our system, we assume 1) that the sys-
tem satisfies the well stirred assumption of mass action law, and 2) that the
population of proteins is large. Under these assumptions, the behaviour of the
system can be formalised by the means of the following system of differential
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flow of information. The dotted arrow
represents a dependency that can be
dropped if the rate k1 is zero.

Fig. 1. Case study

equations, which describes the derivatives of the concentrations of each config-
uration of P as an expression of the concentrations of the configurations of P :

[(u, u, u)]′ = k2[(p, u, u)] + k4[(u, p, u)] + k8[(u, u, p)] − (k1 + k3 + k5)[(u, u, u)]
[(u, u, p)]′ = k2[(p, u, p)] + k4[(u, p, p)] + k5[(u, u, u)] − (k1 + k3 + k8)[(u, u, p)]
[(u, p, p)]′ = k2[(p, p, p)] + k3[(u, u, p)] + k5[(u, p, u)] − (k1 + k4 + k8)[(u, p, p)]
[(u, p, u)]′ = k2[(p, p, u)] + k3[(u, u, u)] + k8[(u, p, p)] − (k1 + k4 + k5)[(u, p, u)]
[(p, p, u)]′ = k1[(u, p, u)] + k3[(p, u, u)] + k8[(p, p, p)] − (k2 + k4 + k7)[(p, p, u)]
[(p, p, p)]′ = k1[(u, p, p)] + k3[(p, u, p)] + k7[(p, p, u)] − (k2 + k4 + k8)[(p, p, p)]
[(p, u, p)]′ = k1[(u, u, p)] + k4[(p, p, p)] + k6[(p, u, u)] − (k2 + k3 + k8)[(p, u, p)]
[(p, u, u)]′ = k1[(u, u, u)] + k4[(p, p, u)] + k8[(p, u, p)] − (k2 + k3 + k6)[(p, u, u)].

Providing an initial state mapping each configuration to their initial concentra-
tion, this system has a unique smooth solution over the time interval R+.

Now, we wonder whether or not our model can be coarse-grained: we are look-
ing for a set macro-variables which are defined as a linear combination of the
variables of the initial systems (so called micro-variables) that are self-consistent.
In previous works [14,12,5], we have introduced frameworks for detecting self-
consistent coarse-graining thanks to an over-approximation of the flow of infor-
mation between the states of the sites of proteins. Indeed the flow of information
can be summarised by annotating a contact map (which describes the different
kinds of proteins, their sites, their potential phosphorylation states and their po-
tential binding) with an oriented relation over the sites, which summarises how
each site may influence the other ones: an arrow from a site s1 to a site s2 means
that the capability of modifying the state of the site s2 may change according to
the state of the site s1. The annotated contact map for our case study is given in
Fig. 1(b). This is a context-insensitive approximation since all the information
about the sites of P is summarised in a single node, regardless the states of its
sites. The arrow from the 1st (resp. 2nd) site to the 3rd one comes from the fact
that the phosphorilation rate of the 3rd site may depend on the state of the 1st

(resp. 2nd). As a result, no coarse-graining can be found in this way.
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Indeed, without further assumptions, the model cannot be coarse-grained
by any means. But interestingly, if we set the rate k1 equal to 0, we can ab-
stract away the relation between the state of the 2nd site and the 3rd site in
the case when the 1st site is activated, as shown by the following equations:

[(?, u, ?)]′ = k4[(?, p, ?)] − k3[(?, u, ?)]
[(?, p, ?)]′ = k3[(?, u, ?)] − k4[(?, p, ?)]
[(u, ?, p)]′ = k2([(p, u, p)] + [(p, p, p)]) + k5[(u, ?, u)]− k8[(u, ?, p)]
[(u, ?, u)]′ = k2([(p, u, u)] + [(p, p, u)]) + k8[(u, ?, p)]− k5[(u, ?, u)]
[(p, p, u)]′ = k3[(p, u, u)] + k8[(p, p, p)]− (k2 + k4 + k7)[(p, p, u)]
[(p, p, p)]′ = k3[(p, u, p)] + k7[(p, p, u)]− (k2 + k4 + k8)[(p, p, p)]
[(p, u, p)]′ = k4[(p, p, p)] + k6[(p, u, u)]− (k2 + k3 + k8)[(p, u, p)]
[(p, u, u)]′ = k4[(p, p, u)] + k8[(p, u, p)]− (k2 + k3 + k6)[(p, u, u)],

where the macro-variables are intentionally defined as fragments of configura-
tions (question marks denote sites which have been cut away), and extentionally
as linear combinations of the configurations which contain these fragments:

[(?, u, ?)] = [(u, u, u)] + [(u, u, p)] + [(p, u, u)] + [(p, u, p)]
[(?, p, ?)] = [(u, p, u)] + [(u, p, p)] + [(p, p, u)] + [(p, p, p)]
[(u, ?, u)] = [(u, u, u)] + [(u, p, u)]
[(u, ?, p)] = [(u, u, p)] + [(u, p, p)].

This coarse-graining can be discovered by tuning the context-sensitivity of the in-
formation flow analysis. Indeed, the behaviour of the protein P can be partitioned
into two distinct modes. Whenever the 1st site is phosphorylated, the evolution
of the state of the 3rd site is controlled by the state of both the 1st and the 2nd

sites. But whenever the 1st site is not phosphorylated, the evolution of the state
of the 3rd site is not controlled by the state of the 2nd site anymore. This accurate
approximation of the flow of information is out of the reach of context-insensitive
analysis. Thus we propose to use arbitrary Σ-graphs where different annotations
can be written according to the state of well chosen sites, unlike the contact map.
An example Σ-graph is given in Fig. 1(c). We notice that two nodes are used
to describe the protein P , according to whether or not the 1st site is phospho-
rylated. The notion of Σ-graph will be formally defined in Sect. 3. Then, we
can annotate our Σ-graph with context-sensitive information about the flow of
information and obtain the plain arrows in Fig. 1(c). Interestingly, in the left con-
nected component, there is no flow of information from any site into the 2nd site
and no flow of information from the 2nd site into the 3rd site. As a consequence,
the fragments of proteins that contain the 1st and the 3rd site and the ones that
only contain the 2nd site are good candidates as macro-variables. Yet, since in the
right connected component there is a potential flow of information from the 1st

and the 2nd sites into the 3rd site, any micro-variable where the 1st site is phos-
phorylated has to be preserved. Thus, we find again the set of macro-variables
{[(?, u, ?)], [(?, p, ?)], [(u, ?, u)], [(u, ?, p)], [(p, p, u)], [(p, p, p)], [(p, u, p)], [(p, u, u)]},
which is self-consistent, as we have shown previously.

Then we may wonder why this coarse-graining is not self-consistent when the
phosphorylation reaction of the 1st site is not knocked out. This is because con-
figurations of the form (u, ?, ?) can now be transformed into configurations of the
form (p, ?, ?). Then, so as to express the concentration of the configurations of the
form (p, ?, ?) which are produced this way, we need to express the configurations
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of the form (u, ?, ?) with at least the same fine-grained level of description. This
is captured by the right-gluing construction in [17]. In the present framework, it
is necessary to duplicate the arrow between the 2nd site and the 3rd one, from
the right connected component into the left one. The resulting arrow, drawn in
dotted in Fig. 1(c), prevents any coarse-graining.

The rest of the paper is organised as follows. In Sec. 3, we recall the notion of
Σ-graphs and use it to abstract relations between sites in chemical complexes. In
Sec. 4, we give an abstract syntax and a formal differential semantics for Kappa.
In Sec. 5, we define our generic flow analysis and its induced model reduction.

3 Σ-Graphs

Σ-Graphs with a given signature, Σ-graphs, play a central role in the semantics
of Kappa. In this section, we recall the definition of Σ-graphs [10] and show how
to annotate them with a relation over their sites.

Definition 1. A signature is a tuple Σ = (Σag, Σst, Σint, Σ
int
ag-st, Σ

lnk
ag-st) where

Σag is a finite set of agent types, Σst is a finite set of site identifiers, Σint is
a finite set of internal state identifiers, Σlnk

ag-st : Σag → ℘(Σst) and Σint
ag-st :

Σag → ℘(Σst) are site maps.

Agent types in Σag denote agents of interest, as kinds of proteins for in-
stance. A site identifier in Σst represents an identified locus for capability of
interactions. Internal state identifiers in Σint are special attributes which encode
potential state configurations. Each agent type A is associated with a set of sites
which can bear an internal state Σint

ag-st(A) and a set of sites which can be linked

Σlnk
ag-st(A). We assume without reducing the expressive power of the framework

that Σlnk
ag-st(A) ∩ Σint

ag-st(A) = ∅, for any A ∈ Σag and we write Σag-st(A) for the

set Σlnk
ag-st(A) � Σint

ag-st(A). In our case study, Σag = {P}, Σst = {1st, 2nd, 3rd},
Σint = {u, p}, Σint

ag-st(P ) = Σst, and Σlnk
ag-st(P ) = ∅.

Σ-graphs describe both patterns and chemical species. Their nodes are typed
agents with some sites which can bear internal states and linking states. We
introduce the set Ext as {,,−}∪{(A, s) | A ∈ Σag, s ∈ Σlnk

ag-st(A)} for describing
some linking states.

Definition 2. A Σ-graph is a tuple G = (A, type,S,L, pκ) where A is a set of
agents, type : A → Σag is a function mapping each agent to its type, S is a
set of sites such that S ⊆ {(n, i) | n ∈ A, i ∈ Σag-st(type(n))}, L is a symmetric
relation such that L ⊆ ({(n, i) ∈ S | i ∈ Σlnk

ag-st(type(n))} ∪ Ext)2 \ Ext2, and pκ

maps each site (n, i) ∈ S such that i ∈ Σint
ag-st(type(n)) to a set of internal states

pκ(n, i) ∈ ℘(Σint).

A site (n, i) ∈ S such that i ∈ Σint
ag-st(type(n)) is called a property site, whereas

a site (n, i) ∈ S such that i ∈ Σlnk
ag-st(type(n)) is called a binding site. Whenever

((n, i),,) ∈ L, the binding site (n, i) may be free. Various levels of information
can be given about the sites that can be bound. Whenever ((n, i),−) ∈ L, then
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the binding site (n, i) may be bound to any other site. Whenever ((n, i), (A′, i′)) ∈
L for a given agent type A′ ∈ Σag and a given site identifier i′ ∈ Σlnk

ag-st(A
′), then

the binding site (n, i) can be bound to the site i′ of an agent of type A′. Whenever
((n, i), s) ∈ L with s ∈ S then the binding site (n, i) may be bound to the binding
site s. We introduce a sub-typing relation ≤G over binding states, that is defined
as the least reflexive relation such that − ≤G (type(n), i) ≤G (n, i), for any n ∈ A
and i ∈ Σlnk

ag-st(type(n)).
For a Σ-graph G, we write as AG its set of agents, typeG its typing function,

SG its set of sites, LG its set of links, and pκG for the internal states map.
Two Σ-graphs can be related by structure-preserving functions, which are

called homomorphisms.

Definition 3. A homomorphism h : G → H between two Σ-graphs G and H
is a function of agents h : AG → AH satisfying:
1. typeG(n) = typeH(h(n)) for all n ∈ AG;
2. (h(n), i) ∈ SH for all (n, i) ∈ SG;
3. pκG(n, i) ⊆ pκH(h(n), i) for all (n, i) ∈ SG such that i ∈ Σint

ag-st(typeG(n));
4. ((h(n), i), (h(n′), i′) ∈ LH for all ((n, i), (n′, i′)) ∈ LG ∩ S2

G;
5. there exists y ∈ SH ∪ Ext such that ((h(n), i), y) ∈ LH and x ≤H y for all

((n, i), x) ∈ LG such that x ∈ Ext.

An injective embedding is called an embedding. The number of embeddings
between two Σ-graphsG andH is denoted as [G,H ]. WheneverG = H and h is a
bijection, then h is called an automorphism. We notice that the identity function
is always an automorphism. Homomorphisms f : G → H and g : H → K
compose in the usual way. Moreover, whenever two homomorphisms f : G → H
and g : H → G are such that g◦f is the identity homomorphism over G and f◦g
is the identity homomorphism over H , then f and g are called isomorphisms and
G and H are said to be isomorphic which is written G ≈ H . All the constructions
in this paper are defined up to isomorphisms.

Now we want to annotate a Σ-graph with a binary relation over its sites, so as
to abstract the flow of information among its sites. Two sites can be in relation
when they belong to the same agent or when they are linked together.

Definition 4. An annotated Σ-graph Ga = (G,�Ga) is a pair where G is a
Σ-graph and �Ga⊆ {(n, i), (n, i′) | n ∈ AG, (n, i), (n, i

′) ∈ SG} � (LG ∩ S2
G).

Ordered pairs of sites in {(n, i), (n, i′) | n ∈ AG, (n, i), (n, i
′) ∈ SG} are called

internal edges and are denoted as (n, i)
∨�Ga (n, i′), whereas ordered pairs in

LG ∩ S2
G are called external edges and are denoted as (n, i)

∧�Ga (n′, i′). An
ordered pair of sites can be connected by both an internal edge and an external
edge. We omit the symbols ∨ and ∧ when they are not important.

Given an annotated Σ-graph Ga, we write as G the Σ-graph and �Ga the
binary relation over its sites.

The set of annotations of a Σ-graph G forms a Boolean lattice isomorphic to
the set of the parts of {((n, i), (n, i′)) | n ∈ AG, (n, i), (n, i

′) ∈ SG} � (LG ∩ S2
G).

The least element is the empty annotation and is denoted as G∅ = (G, ∅), and
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the top element relates each pair of sites such that they either belong to the
same agent or are linked together and is denoted as G� = (G,�G	).

4 Differential Semantics

Mixtures, representing the states to which rules are applied, and site graphs,
representing patterns, are Σ-graphs. In particular, site graphs are finite, they
have no links that immediately loop back to the same site and have at most
one link from any site, moreover their sites can bear at most one internal state.
Mixtures additionally specify the link state and the internal state of all sites and
have no external links.

Definition 5. A site graph G is a Σ-graph such that: 1) the set AG is finite; 2)
its link relation LG is irreflexive; 3) for any binding site (n, i) ∈ SG, ((n, i), x) ∈
LG and ((n, i), y) ∈ LG implies x = y; and 4) for any state site (n, i) ∈ SG,
pκ(n, i) contains at most one element.

In a site graph G, the states of some sites in SG are specified, while others are
not. The state of a binding site (n, i) ∈ SG is specified if there exists x ∈ SG∪Ext
such that ((n, i), x) ∈ LG, whereas the state of a state site (n, i) ∈ SG is specified
if pκG(n, i) is a singleton.

Definition 6. A Σ-graph G is said to be fully specified if the three following
properties hold: 1) S = {(n, s) | n ∈ A, s ∈ Σag-st(type(n))}; 2) L ⊆ (S ∪ {,})2;
and 3) the state of each site in SG is specified.

Definition 7. A site graph G is said to be connected if for any pair of distinct
agents n1, n2 ∈ A, there exists two sites i1, i2 ∈ Σst such that (n1, i1), (n2, i2) ∈ S
and (n1, i1) ��

G	 (n2, i2).

A site graph can be decomposed into a set of connected graphs, called its con-
nected components (ccs). A mixture is a fully specified site graph. The variables
of the differential semantics are the concentrations of the chemical species, which
are defined as isomorphism classes of connected mixtures. Thus we introduce C
as a set of connected mixtures such that for any connected mixture c there exists
a unique connected mixture c′ ∈ C such that c ≈ c′. We assume that C is finite.

Transformations between site graphs are described by rules. A rule is a trans-
formation between two site graphs, a left hand side (lhs) L and a right hand side
(rhs) R. In a rule, some agents and some sites are preserved. This is specified by
a site graph D which is embedded both into L and into R and which describes
anything that is preserved. Not all transformations are allowed: one can remove
and add agents, create links between free sites, free pairs of sites that are con-
nected and change the internal state of some sites. The agents that are created
have to fully define the state of their sites. We also make extra assumptions to
simplify the definition of the approximation of the flow of information: we as-
sume that only the bonds that are shared between two sites can be removed, and
that the agents that are removed have to fully define the state of their sites has
well. The framework can be easily tuned to relax these two assumptions. Our
requirements are formalised in the following definition:
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Fig. 2. Examples of rules

Definition 8. A rule is a span such that: L � �
f�� D � � g �� R such that :

1. for any span L � �
f ′
�� D′ � � g

′
�� R and any embedding D

� � h �� D′ such that f =
f ′h and g = g′h, then h is an isomorphism;

2. for any x ∈ Ext \ {,} and any site (n, i) ∈ SL, if ((n, i), x) ∈ LL then there
exists m ∈ AD such that n = f(m), (m, i) ∈ SD, and ((m, i), x) ∈ LD;

3. for any x ∈ Ext \ {,} and any site (n, i) ∈ SR, if ((n, i), x) ∈ LR then there
exists m ∈ AD such that n = g(m), (m, i) ∈ SD, and ((m, i), x) ∈ LD;

4. if m ∈ AD, then for any i ∈ Σag-st(typeD(m)), (m, i) ∈ SD iff (f(m), i) ∈ SL

iff ((g(m), i)) ∈ SR and, in such a case, the state of the site (f(m), i) is
specified in the site graph L iff the state of the site (g(m), i) is specified in
the site graph R;

5. if m ∈ AL and m �∈ image(f), then, for any i ∈ Σag-st(typeL(m)), (f(m), i) ∈
SL and the state of the site (f(m), i) is specified in the site graph L;

6. if m ∈ AR and m �∈ image(g), then, for any i ∈ Σag-st(typeR(m)), (g(m), i) ∈
SR and the state of the site (g(m), i) is specified in the site graph R.

The first property ensures that D is a local greatest upper bound.
A rule L � ��� D � � �� R is usually denoted as L � �� R (leaving the two embed-

dings and the common region implicit).

Rules can be more or less refined [11] by adding more
or less information about the context in which they can be
applied. A rule L′ � ��� D′ � � �� R′ is said to be a refinement
of the rule L � ��� D � � �� R is and only if there exist three
embeddings hL, hD, hR which make the diagram on the right

L′ � ��R′
��

D′� �
		���� � 	



����

L
� ��

��

hL

��

R

��

hR

��

D

��

hD

��

� �
		����� � 	



����

commute. In such a case, the two action maps and the embeddings hL and hR

form a pushout (e.g. see [10]). Moreover, whenever L′ is a mixture, then R′ is a
mixture as well. Given L′ (resp. R′) a site graph and an embedding f between
L and L′ (resp. between R and R′) there exists a unique (up to isomorphisms)
refinement that is defined by a triple of embeddings (hX)X∈{L,D,R} such that
hL = f (resp. hR = f), this refinement is called the left-refinement (resp. right-
refinement) of the rule r by the embedding f . The unicity of the right-refinement
does not hold in full Kappa, but follows from our simplifying assumptions. Yet,
in general there exists a unique least refined refinement such that hL = f .

Each rule comes with a kinetic rate k which is denoted as r : L � �� R @k.
We define the corrected rate γ as k/[L,L], where [L,L] is the number of
automorphisms (i.e. symmetries) of L. The rule r can be seen as a symbolic
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representation of a set of reactions among chemical complexes, that is obtained
as a left refinement of r by a join of embeddings mapping each cc of L into
a chemical complex c ∈ C. For any such refinement, both the lhs and the rhs
are mixtures and are respectively isomorphic to the disjoint union of a tuple
of reactants r1, . . . , rm ∈ C� and a tuple of products p1, . . . , pn ∈ C�. Each such
refinement is associated with the following contribution to the system of differen-

tial equations: xrs(t)
′ +
= −γ ·

∏
1≤j≤mxrj (t) for any integer s such that 1 ≤ s ≤ m

and xpt(t)
′ +
= γ ·

∏
1≤j≤mxrj (t) for any integer t such that 1 ≤ t ≤ n.

The differential semantics associated to a set of rules maps each initial state
init ∈ (R+)C to the unique solution x ∈ ([0, T ) → R)C of the so obtained
system of equations such that xc(0) = initc for any c ∈ C and T is maximal. By
construction, this solution is positive [12].

5 Context-Sensitive Model Reduction

The annotation of a Σ-graph can be viewed as a symbolic representation of a
set of patterns, called prefragments. More precisely, given an annotated Σ-graph
Ga, a site graph P is a prefragment if we get a directed relation over its sites
when we annotate it by the meet of the inverse image of the annotation of Ga

by any homomorphism between P and Ga. This is formalised as follows:

Definition 9. Given an annotated Σ-graph Ga and a Σ-graph H, we define the
canonical annotation �H,Ga of H by the annotated Σ-graph Ga as follows: for

any (a, i), (a′, i′) ∈ SH and any w ∈ {∨,∧}, (a, i) w�H,Ga(a′, i′) if and only if for

all homomorphisms φ : G → H, (φ(a), i)
w�Ga (φ(a′), i′).

Definition 10. Given an annotated Σ-graph Ga, we say that a site graph P is
a prefragment for Ga if and only if the set of sites SP and the transitive and
reflexive closure of the relation �P,Ga form a directed set (i.e. for any s1, s2 ∈
SP , there exists s ∈ SP such that s1��

P,Gas and s2��
P,Gas).

We notice that prefragments are connected and that, since the set SP is finite,
a site graph P is a prefragment if and only if there exists s• ∈ SP such that for
any site s ∈ SP , s�P,Ga

� s•. In such a case, we call the site s• (which may not
be unique) a root of the prefragment.

A connected site graph P can also be seen extensionally as set of embeddings
between itself and any reachable species in C.

Definition 11. For any connected site graph P , we define yp as
∑

v∈C,φ:P→v xv.

Thus the set of prefragments define a linear change of variables.
Now we wonder how to annotate, given a set of rules, a Σ-graph such that

this change of variables is self-consistent. For this purpose, we will use a special
kind of Σ-graphs, the summary graphs. Roughly speaking, summary graphs
are used to abstract information about the potential overlaps between the left
and right hand sides of rules and connected site graphs such that the common
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region contains sites that are modified by the rules, so as to express the proper
consumption and the proper production of these connected site graphs.

We now formalise the notions of summary graphs:

Definition 12. A Σ-graph G is summary graph if the three following properties
hold: 1) L ⊆ (S ∪ {,})2; 2) for any chemical complex V ∈ C, there exists a
homomorphism h : V → G; 3) for any homomorphism h : P → G between
a connected site graph P and G, there exists a chemical complex V ∈ C, an
embedding φ : P

� � �� V and a homomorphism h′ : V → G such that h = h′φ.

The disjoint union of all chemical complexes is a summary graph (the most
concrete one), and the contact map as well (the most abstract one).

An overlap between two site graphs is defined by a common region which
identifies some nodes in the two site graphs and a merged site graph which
ensures that the two site graphs are compatible. The common region can be
chosen as a local lower-bound and the merged site graph as a local upper-bound,
which ensures that each overlap is defined non-ambiguously:

Definition 13. An overlap between two site graphs P and C is defined as a pair
of a span P � ��� X � � �� C and a cospan P � � �� Y � ��� C of embeddings where X
and Y are non-empty site graphs which make the square commute
and such that for any other such pair of a span P � ��� X ′ � � �� C
and a cospan P � � �� Y ′ � ��� C where X ′, Y ′ are site graphs,
there exists a unique pair of embeddings X ′ � � �� X and Y

� � �� Y ′

which makes the diagram on the right commute.

Y ′

P � ��
� �





Y
� � !

��

X �  ��
� 


		

C

�

		

� �

��

X ′�
�



� � !
��

��

��

Flow of information abstracts the relation between the sites that are tested
and the sites that are modified. A site is tested in a rule if it occurs in the lhs

of this rule. A site (n, i) ∈ SL is modified in the lhs L of a rule L � �
f�� D � � g �� R

iff either n �∈ image(f), or (m, i) is not specified in D (where m is the unique
agent m ∈ AD such that f(m) = n). We define the same way the sites that are
modified in the rhs of a rule. For the sake of simplicity, we assume that each cc
in the lhs of a rule has a site that is modified by the rule.

We call a path in a site graph P a sequence (n0, i0)
w1�P	 . . .

wk�P	(nk, ik) of
steps in SP . The path is said alternating if, moreover, for any integer j between
1 and k − 1, wj = ∨ if and only if wj+1 = ∧.

Some rules induce no direct flow of information. We say that a rule is trivial if
it releases a bond between two sites in distinct agents without testing anything
(except that the two sites are bound together).

We are now ready to give the constraints for the annotation of a summary
graph so as to ensure that its induced change of variables is self-consistent.

Definition 14. Suppose given a rule r : L � �
f�� D

� � g �� R, an annotated sum-
mary graph Ga. We say that Ga is compatible with the rule r if and only if the
three following sets of constraints are satisfied:
1. direct flow. if r is a non-trivial rule, for any homomorphism ψ : L → G,
any alternating path p = (a0, i0)

w1�L	 . . .
wk�L	(ak, ik) in the lhs L of the rule r
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such that the site (ak, ik) is modified by the rule r, and any integer j such that

0 ≤ j < k, (ψ(aj), ij)
wj�Ga (ψ(aj+1), ij+1);

2. backward compatiblity. whatever r is trivial or not, for any site graph
P , for any overlap (S, φ1, φ2, ψ1, ψ2, X) between the site graph P and the site
graph D, for any ground refinement RL

� ��� RD
� � �� RR of r defined by a triple

of embeddings of the form (hl, hψ2, hr), for any a homomorphism φ between
RR and G, for any homomorphism ψ between RL and G, and for any site
(n, i) ∈ SS such that the state of the site (φ2(n), i) is not specified in D (ie. the
site (f(φ2(n)), i) (resp. (g(φ2(n)), i)) is modified in L (resp. R), for any sequence
w1, . . . wj ∈ {∨,∧}k and any two integers j0, j1 such that:

– 0 ≤ j0 ≤ j1 < k,
– (ψ1(nj0), ij0) = (ψ2φ2(n), i),

– ([φg′hψ1](nj), ij)
wj+1� Ga ([φg′hψ1](nj+1), ij+1) for

any j such that 0 ≤ j < j1,

– ([φg′hψ1](nj+1), ij+1)
wj+1� Ga ([φg′hψ1](nj), ij) for

any j such that j1 ≤ j ≤ k;
we have that:
– ([ψf ′hψ1](nj), ij)

wj+1� Ga ([ψf ′hψ1](nj+1), ij+1)
for any j such that 0 ≤ j < j1,

– ([ψf ′hψ1](nj+1), ij+1)
wj+1� Ga ([ψf ′hψ1](nj), ij)

for any j such that j1 ≤ j ≤ k.

G

RL

ψ ��

� �� RR

φ��

RD

� 	f ′

��
� �

g′
��

X


�
h

		

L

� 


		

� ��R


�

		

P
��

ψ1
��

D


�

ψ2

		

� 	
f

��
� � g

��

S
� �φ1

��
��

φ2

��

3. cycle. Let A,B ∈ A be two agent types and iA ∈ Σlnk
ag-st(A) and iB ∈ Σlnk

ag-st(B)
be two site identifiers. For any trivial rule r that removes bounds between the sites
iA in agents of type A and the sites iB in agents of type B, if there exists a site
s ∈ SG and two agents nA,nB ∈ AG such that : type(nA) = A, type(nB) = B and
two distinct paths p = (nA, iA) �∗

Ga s and p′ = (nB, iB) �∗
Ga s, then the rule

r is considered to be not trivial, and the direct flow constraints (see Def. 14(1))
must be applied also with it.

The set of the annotations of a summary graph that are compatible with a set of
rules forms a Moore family. Thus, it has a least element. Seeing each constraint
instantiation as an upper closure operator, this least element is also the image
of G∅ by the least upper bound in the lattice of the upper closure operators of
this set of closure operators [20] and can be computed, whenever the summary
graph G is finite, using asynchronous iterations [20,9].

Now we assume that the annotation of the summary graph G is the least
solution of the constraints in Def. 14 and that prefragments are defined as in
Def. 10. Let us explain the constraints in Def. 14. Direct flow is obtained by
taking any homomorphism between the lhs of a rule and the summary graph G
and annotating the image of any alternating path between a site that is tested
and a site that is modified. For instance, in the Σ-graph that is given in Fig. 1(c)
the annotation of the right connected component describes the direct flow that
is due to the rule that is given in Fig. 2(b). The existence of the homomorphism
ensures the context-sensitivity of the analysis, since only the parts of G that
match the lhs are annotated. As a consequence, we report no direct flow for the
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rule in Fig. 2(b) in the left connected component. The direct flow constraints
(see Def. 14(1)) ensure the following property:

Property 1. For any overlap (X,ψ1, ψ2, φ1, φ2, Y ) between a cc in the lhs of a non
trivial rule and a prefragment such that there exists a site of the form (ψ1(n), i)
that is modified in the rule, the site graph Y is a prefragment as well.

In particular, since each cc in the lhs of a rule contains a site that is modified,
each cc in the lhs of a rule is a prefragment.

Backward compatibility ensures that prefragments that overlap with the lhs
of rules are always more refined than the ones that overlap with the rhs. Since a
prefragment contains at least one root r, any site s of the prefragment is reach-
able through the annotation by starting from the site that is modified, following
a path forward to the root r and following a path backward to the site s. Thus
we copy these paths at any place in G which matches with a potential antecedent
of the pattern by the rule, which is ensured by the existence of the ground refine-
ment RL

� ��� RD
� � �� RR. For instance, the annotation of the right connected

component in Fig. 1(c) has to be reported into the left connected component,
due to the rule that is given in Fig. 2(a) and the ground refinement when the last
two sites are unphosphorylated. Backward compatibility (see Def. 14(2)) ensures
the following property:

Property 2. For any overlap (X,ψ1, ψ2, φ1, φ2, Y ) between the rhs of a non trivial
rule and a prefragment such that there exists a site of the form (ψ1(n), i) that is
modified in the rule, if the cc of the lhs of the right refinement of the rule by the
embedding φ1 is such that the number of ccs in the lhs is preserved, then each
cc in the lhs of the refined rule is a prefragment.

Backward compatibility is subject to abstraction. Instead of a ground refinement,
one may look for a k-depth context around the site graph X .

When a trivial rule that breaks a bond between two sites, it is crucial to
express the concentration of prefragments in which the two sites are actually
bound together. This is the purpose of constraints in Def. 14(3).

Property 3. Suppose that there exists a trivial rule which breaks a bond
between the site iA of agents of type A and the site iB of agents
of type B. Then for any prefragment pf = (A, type,S,L, pκ) that con-
tains two agents nA and nB such that (nA, iA) ∈ S, (nB , iB) ∈ S,
((nA, iA), (B, iB)) ∈ L, ((nB , iB), (A, iA)) ∈ L, and (nA, iA) �= (nB, iB)
and for any agent n• such that either n• ∈ A and type(n•) = B, or
n• �∈ A, the site graph (A ∪ {n•}, type[n• → B],S ∪ {(n•, iB)}, (L ∪
L+) \ L−, pκ) with L+ = {((nA, iA), (n•, iB)), ((n•, iB), (nA, iA))}, L− =
{((n•, iB), (A, iA)), ((nA, iA), (B, iB)), ((A, iA), (n•, iB)), ((B, iB), (nA, iA))}, is
a prefragment as well.

We may notice that the cycle constraints can be relaxed while still ensuring
Prop. 3. But these are technical details that we skip for the sake of simplicity.

Properties 1,2, and 3 are enough to describe the evolution of the concentration
of the prefragments by system of differential equations. We consider a set F̂ that
contains exactely one prefragment per ≈-equivalence class of prefragments.
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Definition 15 (Consumption). For any rule L � �� R @k, L decomposed into
ccs c1, . . . , cn, and any overlap (X,ψ1, ψ2, φ1, φ2, Y ) between a cc ci and a pre-
fragment pf ∈ F̂ such that ψ1(X) contains a site that is modified, then, the
proper consumption term for pf due to this overlap can be expressed as follows:

y′pf
+
= −γ · ypf ·

∏
1≤j≤n,j �=iycj , where γ = k/[L,L].

Definition 16 (Production). For any rule r = L � �� R @k and any overlap
(X,ψ1, ψ2, φ1, φ2, Y ) between R of the rule r and a prefragment pf ∈ F̂ such
that ψ1(X) contains a site that is modified, we consider L′ � �� R′ @k the right
refinement of r by the embedding φ1. Then, the contribution is 0 whenever L

and L′ have not the same number of ccs, and is given as: y′pf
+
= γ ·

∏
1≤j≤n yc′j

otherwise, where L′ is decomposed into ccs c′1, . . . , c
′
n and γ = k/[L,L].

We have skipped some technical details about the handling of trivial rules.
The following theorem formalises the relation between the initial and the

reduced system of differential equations:

Theorem 1. We consider x ∈ ([0, T ) → R)C the solution of the initial differ-
ential system with a given initial state init ∈ (R+)C and such that T is maximal

and y ∈ ([0, T ′) → R)F̂ the solution of the reduced system with the initial state

init� that is defined as init�
f̂
=
∑

c∈C [f̂ , c] ·initf̂ for any f̂ ∈ F̂ and such that T ′ is

maximal. Then, T = T ′, and for any prefragment f̂ ∈ F̂ , at any time t ∈ [0, T ),

yf̂ (t) =
∑

c∈C [f̂ , c] · xf̂ (t).

Thm.1 follows from the proof that can be found in [12] and which only requires
the Properties 1, 2 and 3 to hold.

The prefragments which can be refined into a set of prefragments can be
eliminated of the system of equations. The others are called fragments.

6 Conclusion

We have introduced a parametric framework for coarse-graining the differential
semantics of rule-based models. A summary graph is used to define which con-
texts are distinguished and allows us to tune the accuracy of our approximation
of the flow of information between the sites of chemical complexes. The result
of this analysis is used to detect useless correlations between the states of sites,
which defines formally our coarse-graining.

As usual with partitioning techniques, the choice of the summary graph can
be driven thanks to appropriate strategies. For instance, we can abstract the
behaviour of each site by a transition system. Then, we can choose to zoom in
the accuracy of the analysis by distinguishing contexts according to the states
of the sites the transition system of which is not strongly connected.

Our framework is highly generic and we have focused on the formal founda-
tions so far. In future works, we will address more practical issues: for instance
we will define subsets of summary graphs, which make the computation of the
set of coarse-grained variables easier.
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Abstract. Physical network inference methods use a template of molec-
ular interaction to infer biological networks from high throughput
datasets. Current inference methods have limited applicability, relying
on cause-effect pairs or systematically perturbed datasets and fail to
capture complex network structures. Here we present a novel framework,
ARNI, based on abductive inference, that addresses these limitations.

Keywords: abductive inference, logic-based modeling, gene networks.

1 Introduction

Amongst the approaches proposed to tackle the task of network reconstruc-
tion are methods based on physical network models. These approaches explain
experimental observations on a template of protein-protein and transcription
factor-DNA interactions. The links in the inferred networks represent molecular
interactions and can capture biological mechanism of action. Despite the contri-
butions of current approaches in inferring causal networks with hidden regulatory
elements, so far there has not been an approach able to capture complex regula-
tory structures which govern fundamental properties of biological systems. We
present a general framework, Abductive Regulatory Network Inference (ARNI),
for regulatory network inference that addresses these limitations. Logical rules
use prior knowledge from online databases, and a signal propagation model, ex-
pressed as constraints, to determine how affected genes are organized in causal
network. ARNI extents the use of physical network inference methods to datasets
where the source of perturbation is unknown (e.g in the case of environment fac-
tors). Using a network controlling T-cell differentiation, we illustrate that ARNI
can effectively capture complex structures not detected by existing methods.

2 Methods

Abduction is commonly defined as the problem of finding a set of hypotheses of
a specified form that, when added to a given (partial) knowledge, allows a given
set of observations to be explained, whilst satisfying predefined domain specific

A. Gupta and T.A. Henzinger (Eds.): CMSB 2013, LNBI 8130, pp. 235–237, 2013.
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integrity constraints [2]. The problem of network reconstruction naturally maps
to an abductive framework: i) the gene expression data constitute the observa-
tions; these are expressed as binary variables, that if equal to 1 (resp. −1) denote
that the expression value of the gene has increased (resp. decreased). ii) the given
(partial) knowledge is a logic-based representation of the interactome and gene
ontologies. The template of all possible interactions between genes is captured
by logical facts of the form interactive potential(G1, G2). The prior knowledge
also includes information on the known function of specific genes. This is mod-
elled by regulatory potential(R1, RPV ), where R1 is a specific regulator gene
and RPV is a binary variable over the set {1,−1}. Integrity constraints cap-
ture signal propagation principles to ensure consistency with the experimental
data and the biological priors stated above. The edges in the network consti-
tute the abducible sentences of our inference process and they can be of two
forms: compatible regulator(G1, Qx,E) which infers complementary gene in-
fluences and overpowered regulator(G2, Qx,E2) which infers competitive gene
influences. The first two arguments are genes, whereas the third argument E is a
binary variable over the set {1,−1} denoting the causal effect of the interaction
between two genes. Hence, the abductive computation task of our approach is the
inference of possible signed-directed networks, in terms of complementary and
competitive gene regulations, that, together with the prior biological knowledge,
fully explain the observations. Compatible regulators are consistent with the
data, whereas overpower regulators are allowed to be inconsistent iff there exist
sufficient compatible regulators in the inferred network that overpower them.
ARNI implements a function to quantify the influence of each regulator.

3 Results

A key dimension of our work is the definition of a rule-based model that caters
for the notions of feedback loop detection, correct assignment of overpowered
influences and post-translational regulations so enabling the inference of more
complete biological networks. Using a known network active in T-cells we as-
sessed ARNI’s faithfulness to biological reality in terms of inferring the complete
network. We compared our results with those achieved by an existing approach
[1]. ARNI was able to infer the entire gold standard network, whereas the ap-
proach in [1] was able to infer only a partial network. The missing and mislabeled
links can be attributed to specific limitations in the assumptions used in [1].

4 Conclusions

In its current form, ARNI offers a computational method with improved expres-
siveness and wider applicability. Future direction of the work includes evaluation
of ARNI in terms of scalability, thorough comparison with existing methods and
a probabilistic extension of the work.

Acknowledgments. This work is funded by BHF Centre of Excellence.



ARNI: Abductive Inference of Complex Regulatory Network Structures 237

References

1. Yeang, C.-H., Ideker, T., Jaakkola, T.: Physical network models. Journal of Com-
putational Biology 11, 243–262 (2004)

2. Kakas, A.C., Kowalski, R.A., Toni, F.: The Role of Abduction in Logic Program-
ming. Handbook of Logic in Artificial Intelligence and Logic Programming, 235–324
(1998)



A Systems Biology and Ecology Framework

for POPs Bioaccumulation in Marine Ecosystems
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Abstract. We propose a modelling framework for studying bioaccumu-
lation of Persistent Organic Pollutants (POPs) and microbial
bioremediation in the Adriatic food web. The integration of network
estimation methods, ODE simulation and sensitivity analysis and tools
from synthetic biology allows investigating multiscale effects and biologi-
cal responses to POPs contamination, from the molecular level (bacteria
metabolism) to the ecosystem level (food web) of a marine ecosystem.

Keywords: bioaccumulation modelling, PCBs, bioremediation, FBA.

When a chemical compound is released into an ecosystem, its ecological impact
on living organisms and environment is hard to predict. Due to their biochemi-
cal and biophysical characteristics, POPs (Persistent Organic Pollutants) enter
protein pathways at the cell surface or inside organisms, in which bioaccumu-
lation occurs as the result of the uptake from contaminated environment and
food. The marine ecosystem is a sink and a source of POPs that, being resistant
to degradation, remain persistently into the environment and bind permanently
with the fat tissue of fish. Thus, contaminants follow the same paths as biomass
flows, making every species in a polluted ecosystem prone to bioaccumulation,
a phenomenon that increases at higher trophic levels. What is important is not
just estimating contamination levels, but also identifying which species has the
largest effect on the diffusion of a pollutant through a food web (keystones).

On the other hand, microbial communities constitute the most prominent ma-
rine compartment in terms of abundance and diversity and, more importantly,
are able to degrade POPs by using them as growth substrates in their metabolic
pathways (bioremediation). Despite of that, the role of micro-organisms in bioac-
cumulation modelling has been poorly considered so far.

In this work, we investigate the systems biology of Polychronated Biphenyls
(PCBs, a class of POPs) bioaccumulation in the Adriatic ecosystem, by inte-
grating the classical food web of macro-organisms with the complex chemical
pathways of the many micro-organisms involved in bioremediation. We model
the microbial pool as a unique super-organism where a continuous exchange of
genetic information occurs among bacteria by means of conjugative plasmids,
prophages and DNA uptake [2].
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Procedurally, we have estimated the food web structure in terms of trophic
and contaminant flows from literature data with the Linear Inverse Modelling
(LIM) [3] method (Fig. 1 a). Estimated rates have been used to parametrize a
ODE dynamic bioaccumulation model (Fig. 1 b). Keystones have been identified
with network analysis tools (trophic and topological centrality indices), and with
a newly introduced index, Sensitivity Centrality (SC), based on the sensitivity
analysis of the ODE model. Using Flux Balance Analysis (FBA) we have recon-
structed the metabolic pathways of PCB bioremedation, by extending a FBA
model of P. Putida [1]. In this way, we investigate the multiscale effects of the
optimization of bacterial functions and perturbations (e.g. gene knockout) in the
metabolic network on the bioaccumulation dynamics in the food web.

The combination of synthetic biology and ecological analysis tools provided
insights into both the key species in a contaminated network through a novel
network index; and the role that the bioengineering of bacterial metabolism plays
in the remediation of polluted environments.
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Fig. 1. PCBs bioaccumulation in Adriatic food web (a). Nodes represent species (size
proportional to PCBs concentration). Edges represent feeding links. (b) Dynamic bioac-
cumulation model (x-axis, time; y-axis, PCB concentration).
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{emmanuelle.gallet,pascale.legall,paolo.ballarini}@ecp.fr

2 LISITE Laboratory, ISEP, 28 Rue Notre-Dame-des-Champs 75006 Paris, France
matthieu.manceny@isep.fr

Biological Context. To understand the dynamics of a Genetic Regulatory
Network (GRN), various continuous and discrete modeling approaches have been
advocated for supporting analysis techniques [9,7,8]. However, most of them suf-
fer from the need of determining biological parameters on which depend the
possible dynamics and which are difficult to estimate. Indeed, not all of the
GRN dynamics are consistent with biological knowledge or observations. This
knowledge can be used to determine the value of some parameters or can be
translated in the form of constraints that parameters should comply with. By
abstracting continuous dynamics using a discrete-step asynchronous dynamics,
the R. Thomas discrete modeling of GRN has the double advantage of high-
lighting qualitative reasoning and enabling the application of formal methods,
especially model checking approaches [1]. After having formally specified a bi-
ological observation in form of a temporal logic property, it becomes possible
to verify if a target dynamics satisfies the given property. However, the prob-
lem of parameter identification requires to investigate the entire set of possible
dynamics, that is to consider each possible combination of parameter values. Un-
fortunately, the number of such dynamics rapidly grows with the size of the GRN
and the key question becomes the design of effective techniques for analyzing a
family of models parameterized by unknown parameters.

Related Work. Bernot et al.[3] is a pioneering work where model checking tech-
niques are applied to verify whether a given discrete Thomas model fulfills some
relevant biological temporal properties given as Computation Tree Logic (CTL)
formulas [1]. The need to test each dynamics one after the other makes this
approach only usable with small networks. [6,2] define an approach to share
computations between different models. Algorithms are optimized for the par-
ticular case of time series, that are sequences of dynamic states observed one
after the other. In [4], Constraint Logic Programming techniques are used: once
GRN dynamics and biological knowledge are described by means of declarative
rules and constraints on parameters, target behaviors are expressed as some kind
of finite paths that models have to verify.
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Our Contribution. Similarly to [6], our approach considers LTL properties
and represents several models of a GRN in a unique representation. Neverthe-
less, our models are not manipulated using an explicit enumeration, but are
implicitly referenced as solutions of constraints defined over parameters. Indeed,
we follow the same creed as the one advocated in [4]: model sets have to be
handled intentionally through some logical language both to avoid combinato-
rial explosion and to take benefit of the expressive power of a logical language
and of constraint solving techniques. For that, we represent a set of dynamics
with one structure called Parametric GRN where biological parameters are pro-
cessed as symbols within constraints. We developed an algorithm, inspired by
LTL model checking, combining symbolic execution and constraint solving tech-
niques. Our method combines the advantage of identifying values of biological
parameters by symbolically manipulating them as constraints and by expressing
biological knowledge in the form of LTL properties or direct constraints over
parameters. Moreover, we consider the full LTL language while [5,4] focus on fi-
nite paths and [6] focuses on time series (that represent finite paths of arbitrary
length). We demonstrated our methodology by analyzing a real case study (i.e.
cytotoxicity of P. aeruginosa). Such analysis has been carried out through the
SPuTNIk tool, a prototype software implementation of the proposed method.
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Abstract. We show that the 13-state sodium channel component of the
Iyer et al. cardiac cell model can be replaced with a previously identi-
fied δ-bisimilar 2-state Hodgkin Huxley-type abstraction by appealing
to a small gain theorem. To prove this feedback compositionality result,
we construct quadratic-polynomial exponentially decaying bisimulation
functions between the two sodium channel models and also for the rest of
a simplified version of the Iyer et al. model using the SOSTOOLS tool-
box. Our experimental results validate the analytical ones. To the best
of our knowledge, this is the first application of δ-bisimilar, feedback-
assisting, compositional reasoning in biological systems.

The Iyer et al. model (IMW) [3] is a physiologically detailed cardiac myocyte
(ventricular) model that can be used to to simulate the change in a cell’s trans-
membrane potential in response to an external electrical stimulus, also known
as the Action Potential (AP). In this work, we ask “assuming that the AP is
the only observable, can we replace the sodium current component, MI , of IMW
with an equivalent model-order reduced Hodgkin Huxley (HH)-type model MH?”
The HH model [2], uses two variables m and h to model a squid neuron’s trans-
membrane sodium current. In [4], we proposed an algorithm to identify MH that
is δ-bisimilar (equivalent) to the 13-state voltage-controlled MI .

(a) (b)

Fig. 1. (a)The IMW model, showing various currents. (b)The sodium channel com-
ponents MI (detailed) and MH (abstract) composed with the potassium and voltage
components forming the rest of a simplified version (IMW’) of the IMW model.
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Compositionality of the equivalent sodium channels with the rest of the sim-
plified IMW model (IMW-RT’) can be established using Bisimulation Functions
(BFs) and a small gain theorem based on them.

Definition 1. Consider two dynamical systems Σi, as per [1], but with gi :
Xi → Yi, being the output functions that map a state to yi ∈ Yi ⊆ Rp. Let
Rδ = {(x1,x2)| ‖ g1(x1) − g2(x2) ‖≤ δ}.A smooth function S : Rδ → R+

0 is a
δ-Restricted BF (δ-RBF) over Σ1 and Σ2 if:

‖ g1(x1) − g2(x2) ‖ ≤ S(x1,x2) (1)

and there exists λ > 0, γ ≥ 0 such that ∀u1 ∈ U1,u2 ∈ U2,

∂S

∂x1
f1(x1,u1) +

∂S

∂x2
f2(x2,u2) ≤ −λS(x1,x2) + γ ‖ u1 − u2 ‖ (2)

Theorem 1. Let Σ1, Σ2 and Σ3 be three dynamical systems. Let Σ13 and Σ23

be interconnections (as defined in [1]) of Σ3 with Σ1 and Σ2 respectively. Let S12

be a δ-RBF between Σ1 and Σ2 and S3 be δ-RBF for Σ3. We denote by λ12 and
γ12 (λ3 and γ3 respectively) the constants such that Eq. (2) holds. If γ12γ3

λ12λ3
<

1, then there exists a BF S between Σ13 and Σ23 of the form S(x13,x23) =
α1S12(x1,x2) + α2S3(x3,x

′
3) where, x13 = [x1,x3], and x23 = [x2,x

′
3] The real

constants α1 and α2 can be chosen as in Eq.4 of [1] by replacing λ1 = λ12,
γ1 = γ12, λ2 = λ3 and γ2 = λ3.

The two BFs, 1) between MI and MH and 2) for IMW-RT’ were identified in
the SOSTOOLS toolbox [5] by adding the following constraint along with the
ones that define a BF: S(x,x′)− ‖ g1(x) − g2(x

′) ‖≤ δ. The parameter λ was
fixed to either 10−4 and 10−5 for the two BFs and γ was found to be 10−6, which
resulted in the small-gain condition being satisfied. Fig. 2 shows experimental
evidence of the model equivalence on replacing MI by MH .
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(d) IKv43 current.

Fig. 2. IMW’ was stimulated using -100 pA/pF stimulus with MI and then MH . The
resulting mean L1 errors were ONa : 9.15×10−4, INa: 3.8pA/pF , IKv43: 0.0078pA/pF ,
V : 2.29mV .
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High-throughput profiling of gene expression has opened new avenues for the un-
derstanding of biological processes at the molecular level. However, the amount
of information collected can be overwhelming, making interpretation of the data
difficult and subsequent detailed biological understanding elusive. Reducing the
complexity of such data by evaluating them in a relevant biological context is
required to gain meaningful insight. We propose that “cause-and-effect” net-
work approaches to pharmacology and toxicology are valuable to quantify net-
work perturbations caused by bio-active substances, and to identify mechanisms
and biomarkers modulated in response to exposure (Hoeng & al., Drug Discov
Today, 2012). The underlying concept is that transcriptional changes are the
consequences of the biological processes described in the network.

We have recently built an ensemble of network models that consist of cause-
and-effect relationships (typically activation or inhibition) between molecular
entities and activities (e.g. kinase activation or increased protein abundance)
(Westra & al, BMC Sys Biol 2011, Schlage & al, ibid, Gebel & al, Bioinfor-
matics and Biology Insights, 2013, Westra & al, ibid). The description of the
biological context has been manually built into the network models using prior
knowledge extracted from both relevant literature and published datasets after
a large-scale knowledge mining effort. Some network nodes are also related to
mRNA abundance entities that they positively or negatively regulate. Thus, our
biological network models have a two-layer structure, where the functional level
is explicitly distinguished from the transcriptional level. Using transcriptional
downstream effects to infer the activity of upstream entities has its advantages,
because the activity of a node is inferred based on the differential expression
of many genes known to be regulated by a given entity, even the ones encod-
ing proteins with unknown functions. This is unlike the networks derived from
other pathway databases, which rely upon the “forward assumption” stating
that changes in gene expression induce changes in the activity and abundance
of the gene product.

We present a novel framework for the quantification of the amplitude of net-
work perturbations to enable comparisons between different exposures and sys-
tems. Also, our approach enables quantification of each biological entity
(nodes) in the network, among which key contributors, referred to as leading
nodes, can be identified to unravel biological mechanisms. It efficiently integrates
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transcriptomics data and network models to enable a mathematically coherent
framework from quantitative impact assessment to data interpretation and mech-
anistic hypothesis generation. The gene expression fold-changes are translated
into differential values for each node of the network (denoted by f) by fitting the
functional layer relationships with respect to the boundary constraint given by
the observed fold-changes. The node differential values are in turn summarized
into a quantitative measure of network perturbation amplitude (NPA). The NPA
is computed as a (semi-) Sobolev norm on the signed directed graph underlying
the network, which can be expressed as a quadratic form fTQf . In addition to
the confidence intervals of the NPA scores, which account for experimental error,
companion statistics were derived to inform on the specificity of the NPA score
with respect to the biology described in the network. The network is considered
to be specifically perturbed if all P-values are low (typically < 0.05).

An in-vivo dataset was generated to study cessation effect upon smoking in
C57/Bl6 mouse emphysema model. Mice were exposed to mainstream cigarette
smoke (CS) from the Kentucky reference cigarette, 3R4F, or to fresh air for up
to 7 months. Following 2- and 3-month exposure to 3R4F, subgroups of mice
were exposed to fresh air for a 3-, 4-, or 5-month cessation period.

Cell proliferation mechanism was investigated based on lung transcriptomics
data using a mechanistic network model (Westra & al, BMC Sys Biol 2011). The
growth factor subnetwork is clearly perturbed and released from perturbation,
following CS exposure and cessation, respectively. Of the growth factors that
could be measured in BronchoAlveolar Lavage Fluid (BALF), bFGF and VEGF
levels are similarly altered in CS exposed mice. The Vegfa node in the network
follows the same trend as the analyte level in the BALF, being most affected
at 7 months of exposure. On the other hand, Egf signaling shows no consistent
behavior at the network node level and similarly, the protein measured in BALF
fails to serve as a marker for disease progression/reversal.

Next we investigated the activation of cell cycle using the submodel within the
cell proliferation network. While there are no BALF analytes that could serve as
a surrogate for cell cycle progression, NPA can provide meaningful insights into
the disease progression. CS is known to affect cell cycle, but its role is not clear in
emphysema development. Similar to other biological processes, the perturbation
of the cell cycle model is decreased upon smoking cessation. The comparison
of the leading nodes of the network perturbation, for the 3 months CS exposed
group and two cessation groups, reveals nodes that persist highly ranked even
after smoking cessation. Interestingly, while the overall perturbation of cell cycle
after cessation is low as compared to 7 month exposure, the leading nodes that
persist are essentially the same.

In summary, the NPA of the network models offers mechanistic understanding
on the biological impact of the CS exposure, revealing multiple network models,
subnetworks and nodes, whose scores are consistent with measured experimental
endpoints. Moreover, even when there is no phenotypic information available,
network scoring provides valuable mechanistic insight and testable hypotheses.
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Abstract. A key to a systems-level understanding of the regulatory circuitry 
and the complex flow of genetic information that guides the development of a 
single cell is to understand when, where, and how is genomic information 
extracted through the process of transcription as well as all essential 
components of its genome. Using Caulobacter crescentus as a model organism 
and taking advantage of high-throughput sequencing, high-density microarrays, 
and hyper-saturated transposon mutagenesis, we have mapped, at the resolution 
of single base pairs, all sites of transcriptional initiation as a function of the 
Caulobacter cell cycle as well as all essential elements of its genome including 
480 essential genes, 8 small RNAs, 402 regulatory regions, and 90 intergenic 
regions.   Our study has shown that the transcriptional landscape of Caulobacter 
is much more complex than previously thought.  We have discovered many 
novel transcriptional elements including open reading frames (ORFs) with 
internal transcriptional initiation, small non-coding RNAs, ORFs with multiple 
promoters, as well as ORFs with antisense transcription, one of these is the cell 
cycle master regulator dnaA.  We have also made the surprising discovery that 
operon structures are dynamic and cell cycle regulated.   Furthermore, our study 
has also enhanced the resolution of the cell-cycle expression of genes down to 
the level of individual promoters, a drastic improvement over standard 
microarrays, which shows gene expression as the result of multiple regulatory 
phenomena.   

Keywords:  Caulobacter, transcriptome, essential genome, non-coding sRNA, 
antisense, transcription, promoter.  
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Introduction. Quantitative dynamical mathematical models are very useful in
the thorough understanding and possible targeted manipulation of biological
processes. However, determining the model parameters from available data is
often a challenging task for such models, typically given in the form of nonlinear
ordinary differential equations. Global structural identifiability of parameterized
ODE models means that there is (at least a theoretical) possibility to uniquely
determine system parameters from appropriate measurement data [2]. The aim
of this paper is to study structural identifiability for a published molecular level
model of human blood glucose control, to achieve improvement in model fit
compared to published results, and thus to obtain a model that will be suitable
to examine the effect of natural and artificial feedbacks.

Model and Goals. We selected the mathematical model published in [1] that
has the following form:

dpi
dt

= −(a1,i + a2,i)pi + ui(g2),
dhi

dt
= −a4,ihi(R

0
i − ri)− a3,ihi + a1,ipi

Vp

V
dri
dt

= a4,ihi(R
0
i − ri)− a5,iri,

dg1
dt

=
k1r2

1 + k2r1

V gs
maxg2

Kgs
m + g2

− k3r1
V gp
maxg1

Kgp
m + g1

(1)

dg2
dt

= − k1r2
1 + k2r1

V gs
maxg2

Kgs
m + g2

+ k3r1
V gp
maxg1

Kgp
m + g1

− fu(g2, h2) +Gin,

where fu(g2, h2) = Ub(1 − exp
(

−g2
C2

)
) + g2

C3
·
(
U0 +

(Um−U0)
(

h2
C4

)β

1+
(

h2
C4

)β

)
.

The state variables of the model are the following: pi, the plasma hormone, hi

the cellular hormone and ri the hormone-bound receptor concentration, where
i = 1 and 2 stand for glucagon and insulin, respectively. g1 represents blood
glycogen and g2 blood glucose levels, the latter being the measured output. The
model in a simplified form contains the hormone dynamics, glycogen-glucose
transition in the liver, insulin-independent and dependent utilization (fu(g2, h2))
of glucose. Feedback was incorporated in the glucose-dependent hormone infu-
sion rates via ui (see the detailed explanation of the model and its parameters in
[1]). Based on literature data, our current study focuses on the most uncertain
parameters, namely: the plasma hormone transitional rates a1,i; the feedback
gains for glycogen-glucose transition ki (i = 1, 2, 3); and the two most crucial
parameters of glucose utilization, C2 and β.
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Methods and Tools. First of all, the set of parameters was divided into two
subsets: the first four parameters in which the system is linear (θ1 = {k1, k3, a1,i})
and the three remaining parameters in which the dependence is non-linear (θ2=
{k2, C2, β}). Structural identifiability was studied using the GenSSI toolbox
available in Matlab [2].

The parameter estimation cost function was the standard normed quadratic
error between the experimental data taken from literature and the simulated
output. The estimation procedure was an iterative process, where θ1 was esti-
mated using a least squares procedure, while θ2 was estimated by the pattern
search minimization method.

Results and Discussion. Identifiability analysis showed that considering only
θ1, the model is structurally globally identifiable. On the other hand, includ-
ing any of the remaining parameters of θ2 into the unknown parameter vector,
global identifiability could not be proved with the applied tools. This result fur-
ther justifies the separation of parameters into θ1 and θ2. Moreover, the value
of the estimation objective function was 2% lower than in [1]. The model was
validated using a new input based on the widely used oral glucose tolerance test
(OGTT) [3]. The main results are shown in Fig. 1. The model output shows
the well-known features of healthy OGTT test results, such as a downstroke in
glucose level due to the temporary increase of insulin (which can lead to a hy-
poglycemic state in patients with reactive hypoglycemia).

Fig. 1. (a) glucose input, glucose and glycogen levels, (b) glucagon and insulin levels
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RNA interference (RNAi) is a cellular process for silencing gene expression.
This process is driven by the RNA-induced silencing complex (RISC). Here,
we present a mathematical model that shows that RNA silencing of a single
gene with positive feedback can produce bistability and oscillatory behaviour.
We focus our study on a specific gene network: RISC acting on the so-called
E2F proteins. These E2F proteins are an important family of transcription fac-
tors related with cancer and cell cycle [1]. Members of the E2F family positive

Fig. 1. The model. A gene expresses a E2F protein that binds to the promoter of its
own gene increasing the transcription rate. RISC molecules are assembled at constant
rate (from miRNAs and argonaute proteins) and bind to target mRNA molecules.
Then, RISC can be degraded together with mRNA (variant 1) or recycled (variant 2).

regulate their own transcription creating a positive feedback. Recently, microR-
NAs (miRNAs) that downregulate E2F gene expression have been discovered.
The model presented here takes into account these two basic parts of E2F

� This work was supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and EU
project Development of Research Capacities of the Silesian University in Opava
(CZ.1.07/2.3.00/30.0007).
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Fig. 2. Variant 1 (A and C) and variant 2 (B and D) of the model1. (A) Differential
equation of variant 1. (B) Differential equations of variant 2. (C) Hysteresis diagram
obtained from A. The two stable states high and low (solid lines) depends on RISC
assembly rate (k9). (D) Oscillations obtained from numerical solution of B. The oscil-
lations are mainly driven by M and C.

proteins regulated by miRNAs: 1) a gene with a positive transcriptional feed-
back loop and 2) a negative interaction carried out by RISC (Fig. 1). We study
two variants of the model depending on whether RISC is recycled or not. If
RISC is not recycled (variant 1) the model produces bistability and the dynam-
ics is described by one ODE (Fig. 2A,C). If RISC is recycled (variant 2) the
gene network produces oscillations and two ODEs describe the dynamics (Fig.
2B,D). The variants 1 and 2 of this model are modifications of refs. [2] and [3],
respectively. Here the molecule repressed is the mRNA, whereas in refs. [2] and
[3] the molecule repressed is the activator protein. This means that here the
dynamics is mainly driven by mRNAs instead of proteins. In this model, tran-
scription activation of miRNAs or other genes are not necessary to obtain these
two behaviours in contrast to other more complex models [4]. The predictions
of our simple model can be useful to clarify the role of E2F gene networks in
cancer and cell cycle, and as well in other positive autoregulatory gene networks
silenced by RNAi. The model can be also interesting in synthetic biology for
engineering new genetic circuits based on RNAi.

1 The model can be reduced by QSSA if standard values for the rates are assumed [3].
The slow variable in the variant 1 is the mRNA (M). In variant 2, the slow variables
are the mRNA (M) and mRNA-RISC complex (C). The parameters are as follows:
α = k−1k2k6/k1k5, γ = k−1k6/k1k5 and δ = k10/k7. (k1: binding rate of E2F to
its gene promoter, k−1: unbinding rate of E2F from its gene promoter, k2: basal
transcription rate, k3: activated transcription rate, k4: mRNA degradation rate, k5:
translation rate, k6: E2F degradation rate, k7: binding rate of RISC to mRNA, k8:
RISC cleavage rate, k9: RISC assembly rate, k10: RISC degradation rate).
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Problem Statement. Constructing a computational model for a biological sys-
tem consists of two main steps: (1) specifying the model structure and (2) deter-
mining the values for the parameters of the model. Usually, the model structure is
represented in the form of a biochemical reaction network and the parameters are
the reaction rate constants. The values of the reaction rates can be determined
by fitting the model to experimental data by performing parameter estimation.
However, the question remains whether the experimental data allow for unique
identification of the parameters. To address this problem, one could perform
a number of independent parameter estimations and investigate the range of
obtained values among those parameter sets that result in a good fit. From the
correlation of the obtained parameter sets one could, e.g., study whether only
certain parameters are identifiable. This approach requires an effective, efficient
and automatic way of performing estimation. In this study we concentrate on
the case of fitting a deterministic mathematical model of a biological process,
i.e., expressed in terms of a system of ordinary differential equations (ODEs),
and a number of its variants to multi-experiment steady-state data. We propose
a computational pipeline involving available software packages for achieving this
goal while keeping a balance between the optimisation time and accuracy.

Our Approach. The number of steady-state measurements may be insufficient
to identify all the parameters of a model, especially when the number of param-
eters is larger than the number of measured species. To address this difficulty,
we take into account data of the so called knockout mutant models, i.e., variants
of the original model obtained by eliminating one or more interactions between
species. Since the knockout mutants of real biological systems can be obtained
and investigated in experimental practice as well as the physical/chemical prop-
erties are common for all variants, the steady-state measurements of the mutants
can enrich the set of data available for parameter estimation and make possible
the identification of model parameters. In our approach we assume that such
multi-experiment, steady-state data are available. The aim is to gather in an au-
tomatic way (to the possibly largest extent) a number of parameter sets that
result in a good simultaneous fit of all the mutants. The collected parameter sets
could further be used to investigate the parameter identifiability question.

We propose MATLAB as a control environment for the task of executing many
independent parameter estimation runs. In the proposed computational pipeline
the ODE-based knockout model variants are compiled with the SBTOOLBOX2
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for MATLAB to C MEX files for efficiency. Parameter estimation is performed
using a pattern search optimisation algorithm provided in the PSwarm global
optimisation solver [1], mainly because (1) the solver provides a pattern search
algorithm, which assures a local minimum convergence and does not require any
information on the gradient of the score function and (2) the search step of the
algorithm is implemented as the particle swarm algorithm [2], which makes it to
a global optimisation algorithm.

Since the SBTOOLBOX2 does not provide any methods for an efficient and
direct computation of the steady-state, we estimate the steady-state values by
independently integrating each of the C MEX models to a point where a neces-
sary steady-state condition is satisfied, i.e., the norm of the difference between
points on the trajectory is less than a threshold. Since the accuracy depends on
this threshold, the main challenge is to find a balance between the computational
time and the accuracy of steady state estimation. To reduce the computational
time, we first perform model fitting with a threshold that results in a steady state
or a state close to a steady state but which can be reached with a relatively small
number of integration steps. Next, the obtained parameter values are taken to
COPASI for further optimisation with another direct method algorithm, i.e.,
PRAXIS, and a direct, efficient computation of a steady state.

Preliminary Results. We apply the proposed approach to fit an ODE-based
model of the PDGF signalling pathway [3] to steady-state experimental data.
The model consists of 31 species and 40 reactions. Nine different variants of the
model are considered and 31 unknown parameters common for all the variants
need to be estimated. The experimental data are on the concentration of two
species at steady state. In total the data set consists of 18 measurements. The
models are implemented both in MATLAB and COPASI. The simultaneous
implementation of all nine mutants in COPASI results in 279 ODEs.

One parameter estimation run in MATLAB lasts for approximately 30 mins
and the cost function is evaluated for 40000 times. Then, the resulting parameter
values are given to COPASI as a starting point for further optimisation with
PRAXIS and 2000 cost function evaluations. This requires up to 2 hours of
computational time of four cores. The improvement in the fit score is up to 30%
of the score obtained in MATLAB. Our experiments show that this level of fit
quality is unreachable in comparable amount of time if parameter estimation
is performed from scratch in COPASI alone, even if a combination of COPASI
optimisation algorithms is applied.
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Abstract. Starting from (i) an ODE-based kinetic model, covering metabolic 
processes and mass-flows in hepatocytes and (ii) a Boolean network, 
encompassing associated intracellular hormonal signaling and gene-regulatory 
events, we introduce a new formalism to integrate signal transduction 
processes, gene regulation, and metabolism. The integrated model was 
eventually tested for physiologic representativity by in silico simulations, the 
latter qualitatively addressing and demonstrating the hepatocyte’s switch-like 
behaviour upon nutrient-dependent changes in extracellular insulin and 
glucagon levels. 

Keywords: model integration, kinetic modeling, logical modeling, hormonal 
signaling, gene regulation, liver metabolism. 

1 Introduction 

Given the variety of different modeling approaches and implementation strategies in 
systems biology (reviewed in [1]) with each being increasingly forced to cope with 
physiological questions spanning a multitude of intra- and intercellular organization 
scales, integration concepts gain vital importance. Model integration is, however, a 
delicate task as computational complexity needs to be minimized while individual 
model characteristics (such as complex regulatory network structures) might, on the 
other hand, be essential with respect to certain aspects or questions and should there-
fore be preserved, for instance, when computing potential intervention points of 
pharmacological concern. 

2 Method 

We therefore introduce a new fusion approach exemplarily addressing the linking of 
intracellular signaling and metabolic processes whereas technically realizing the inte-
gration of qualitative logical transitions and quantitative mass-flow kinetics within the 
following steps (manuscript in preparation): An (i) ODE-based kinetic model 
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representing glycolytic vs. gluconeogenic reactions and mass-flows and an (ii) apriori 
Boolean network, which covers the associated signaling and gene-regulatory events 
controlling the metabolic fluxes constitute the starting points. The logical signaling 
model is (iii) subsequently transformed into a set of qualitative ODEs using a method 
by Wittmann et al. [2]. Model interfaces, i.e. continuous metabolic enzyme activities 
depicting signaling outputs to metabolism and normalized metabolic compound con-
centrations denoting metabolic outputs to signaling, are (iv) eventually coupled,  
linking signaling to metabolism and vice versa. 

3 Results and Perspective 

The integrated model was finally parameterized to qualitatively reproduce a hepato-
cyte’s response to extracellular nutritional changes in insulin vs. glucagon levels, the 
latter characterizing hormonal regulation of glucose homeostasis. Subsequent in silico 
simulations demonstrated the coupled system to successfully respond in a physiologi-
cally representative manner, as hormonal stimuli adaptation and switch-like behavior 
with respect to glycolytic vs. gluconeogenic processes could be qualitatively resem-
bled. However concerning the practical model consistency, further efforts have to aim 
at model validation and verification based on data from targeted experiments. 
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1 Introduction

The framework of boolean networks and its derivatives have proven to be a use-
ful tool for getting insights into biological processes of gene regulation and signal
transduction [1]. Using such a framework one describes a system as a regulatory
graph where a node stands for a component of the system, each of which can
adopt one of finitely many discrete levels. Directed edges represent component
interactions. The knowledge captured in this graph is generally insufficient to
infer the system dynamics. In particular, to be able to simulate a behavior of
the system, one must also add logical parameters that describe how a level of
a component changes based on the levels of its regulators. The set of possibili-
ties is usually quite sizable and the process of parameter identification—finding
parametrizations that provide high correspondence to the modeled system—is
laborious both methodologically and computationally.

In [2] we have introduced a parameter identification tool-chain consisting of a
model-checker and data management and visualization tools. The volume of the
data obtained—possible parameters, simulation traces etc.—is usually extensive.
The complexity and heterogeneity of the results are increasing even more as we
develop new tools, making the usage of the tool-chain nontrivial even for an
experienced user.

To tackle this problem we have developed Esther—an on-line service (avail-
able at http://esther.fi.muni.cz/) with a visual interface and server-side data
management, providing an instant access to our existing tools.

2 Esther

Results of the model checking and other analytical processes are all stored within
an SQLite database, generally dividing the tools into three groups based on
whether they:

1. Enumerate all the parametrizations that satisfy imposed constraints and
thus create a database.

2. Change the database, either by computing additional data or by filtering the
current content based on the demands of a user.

3. Read the database to create human-readable plots of the data.
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Fig. 1. A scheme of the Esther architecture

Currently only a single tool is available through Esther for each of the steps.
The design of the service however expects other tools to be employed as well—
each tool can be connected to the server using a so-called Esther Widget (EW).
Each EW spawns an individual tab within a user session and provides a meta-
layer between a user and a tool or a datafile present on the server. The func-
tionality of an EW then depends on its purpose and may include execution of
a tool, data editing, viewing results, etc. A scheme of the architecture is given
in Fig. 1. The platform comprises file management utilities allowing for simple
manipulation, storing and sharing files between users.

3 Conclusion

Currently available tools mostly do not provide any means of manipulating multi-
ple parametrizations. In this sense, the closest relative to Esther is the SMBioNet
tool [3], which is however restricted only to the process of parameter filtering
and moreover is not currently available for download. Considering existing web
platforms, the closest one would be BMA [4]. This user-friendly service utilizes
a similar framework and relies also on model-checking, however, BMA requires
complete specification of parameters a priori.

Therefore we believe that our web service makes a significant contribution.
Here we present its first instance, which we plan to further refine and equip with
new tools, some of which are currently in late stages of their development.
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Abstract. In systems biology, a general aim is to derive regulatory mod-
els from multivariate readouts, thereby generating predictions for novel
experiments. However any model only approximates reality, leaving out
details or regulations. These may be completely new entities such as mi-
croRNAs or metabolic fluxes which have a substantial contribution to the
network structure and can be used to improve the model describing the
regulatory system and thus produce meaningful results. In this poster,
we consider the case where a given model fails to predict a set of observa-
tions with acceptable accuracy. In order to refine the model, we propose
an algorithm for inferring additional upstream species that improve the
prediction as well as the model fit and at the same time are subject
to the model dynamics. In the studied context of ODE-based models,
this means systematically extending the network by an additional latent
dynamic variable. This variable is modeled by splines in order to easily
access derivatives; the influence vector of the variable onto the species is
then estimated from the data via model selection.

Keywords: Dynamical modeling, Differential Equations, Splines, Model
Selection, Maximum Likelihood Estimation.

A central objective in systems biology is to identify components of biological
system networks and their relation to one another. For the prediction of net-
work behavior, mathematical models are employed, typically involving several
unknown parameters in addition to the network components. A popular model-
ing approach for time-resolved measurements are ordinary differential equations
(ODEs), representing the dynamics of and dependencies between the compo-
nents of the network. The parameters describing the dynamics in the ODE have
to be inferred statistically, and in case of several competing network models, the
most appropriate one can be chosen by model selection methods.

In such an analysis, the ODEs directly arise from the network topology, i. e.
the modeller specifies the components of the network and possible interactions.
In many applications, key elements of the dynamics of interest have been de-
termined in various studies and are well-known in the literature. It is possible,
however, that some interaction partners or possible connections are still miss-
ing. For example, in addition to transcription factors modulating gene regulation,
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Fig. 1. Example networks (circles: observed and hidden components, triangle: unob-
served or indirectly observed components). A: network without hidden components
and all components observed. B: network with one hidden component (h) and all
other components observed.

there is strong evidence that microRNAs play an important role in transcrip-
tion and translation processes . Translation could also be influenced by external
influences like drugs. Consequently, a considered mathematical model might be
insufficient to explain the dynamics of interest, i. e. even the best model fit can
show discrepancies to the measured data which are not simply due to measure-
ment error.

In our work, we address this problem by considering the effect of hidden in-
fluences to the network. We do not assume a functional form of the putative
time courses of such hidden processes but flexibly estimate their dynamics and
interaction strengths. If we find a hidden influence that substantially improves
the model explaining the data, we will also provide its biological meaning with
the help of experimental collaborators. Thus, we can guide design of additional
experiments in a detailed manner by providing exact quantification of the hidden
time courses as well as relative reaction rates between the hidden components
and the existing network.

Figure 1 demonstrates the central idea of our work. Existing biological net-
works (Figure 1A) are systematically extended with the addition of a latent com-
ponent h (Figure 1B). We develop a two-step method in which we use splines
and maximum likelihood estimation in order to estimate and identify the time
course of the hidden component as well as its reaction rate constants ai.

Application of our method on several artificially created examples suggest a
very good performance in terms of prediction of the unknown time course of
the hidden component as well as the produced estimates of the parameters of
interest. Additionally our method can be used as a tool for recovering previously
misspecified networks.
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Abstract. Comprehensive bioinformatics repositories for the standard model 
organisms like mouse [9], rat [8], zebrafish [12], Drosophila [10] and Xenopus 
[4] provide access to all levels of sequence data sets, including genome, tran-
scriptome and proteome data. For non‐standard model organisms, very little in-
formation from publically accessible data have been collected and organized. 
This situation prevents dissemination of useful research information to a broad-
er research community and keeps such model organisms in isolation. 

One of these organisms is the red spotted newt Notophthalmus viridescens, 
known for its exceptional regenerative capabilities for more than 200 years. The 
newt possesses the ability to entirely replace lost appendages [5, 13] and rege-
nerate the lens [7], parts of the central nervous system [2], and the heart [1, 11]. 

These unique features make the newt an excellent model to study fundamen-
tal processes of tissue regeneration. Challenging is the fact, that the estimated 
genome size of the newt is up to 10 times larger than that of humans. These cir-
cumstances have severely impeded genome projects despite the increasing 
speed and capacities of modern sequencing machines and assembly algorithms. 
As a result of these drawbacks, approximately only 100 non‐redundant protein 
sequences for the newt are available in the NCBI-NR database, although a set 
of almost 11 000 sequenced Expressed Sequence Tags (ESTs) from regenerat-
ing hearts of the newt Notophthalmus viridescens exists [3]. 

In this context the 'Newtomics Resource' (http://newtomics.mpi-bn.mpg.de/) 
[6] is developed as a bioinformatics tool with an integrated database, which 
enables researchers to analyze, retrieve and store data sets dedicated to the  
molecular characterization of this organism in a data-warehouse like manner. 
Newtomics has a unique transcript-centered database design, which refers to the 
biological reality and allows analyzing, storing, managing and data-mining of 
complex high-throughput datasets, as well as meta-information. The integrated 
design combines high-throughput data from NGS and traditional sequencing, 
annotation and functional characterization as well as quantitative expression da-
ta from time-series microarray-experiments and RNA-seq approaches. Further-
more, Newt-omics is also capable to work with large sets of identified peptides 
derived from a mass spectrometry approach. 

The design is open to additional datasets from different sources, without the 
need to change the database-structure or the data within. The integrated infor-
mation is analyzed and data-mined by bioinformatics tools and pipelines, which 
processes the external data from operational sources. A web based graphical  
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user interface allows access to the sets of molecular data. The implemented 
tools and the transcript-centered view combines and visualizes all kinds of data 
and allows a live view of the data on the transcriptomic and proteomic level. 

The open design and the bioinformatics tools allow a transfer of these 
achievements and use this important bio-computational tool in similar projects, 
which also focus on the characterization of niche model organisms. 

Keywords: Next-Generation Sequencing, N. viridescens, heart regeneration, 
database, data-warehouse, data-mining, high-throughput techniques. 
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Abstract. Notophthalmus viridescens, a member of the salamander family, is an 
excellent model organism to study regenerative processes. Recently we gained 
first molecular insights into its ability to regenerate parts of its heart after injury 
by generating and analyzing the transcriptome.[1] This study now reveals addi-
tional information about  miRNAs, a small class of non-coding RNA which 
play an important role in post-transcriptional gene regulation in many biological 
processes, including development and regeneration.[2] 

Small RNA libraries including several time points during heart regeneration 
were prepared and analysed by next-generation sequencing. Due to the lack of a 
genomic sequence of the newt MiRNAs have been identified by searching ho-
mologue sequences contained in miRBase[3], leading to set of 588 annotated 
sequences. Several potential new mi-RNAs could be detected but were not used 
for further analysis. Expression profiles of candidates included in each library 
were generated, indicating several miRNAs with distinct expressions. Among 
those mir-451 was the most abundant one and manifold higher expressed in re-
sponse to heart damage. All miRNAs were clustered regarding to their profiles 
in order to find functional similarities.  

Keywords: MiRNA, Next-Generation Sequencing, N. viridescens, heart  
regeneration. 
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The Watson-Crick model for the B-DNA type double-helix has always been
regarded as the biologically relevant structure of DNA. In addition to this canon-
ical duplex structure, single-stranded DNAs can fold into a wide variety of
non-canonical base pairs such as: hairpin, triplex, G-quadruplex, and i-motif
structures. Polypurine and polypyrimidine tracts and other repetitive sequences
can form non-duplex structure, which are related to a wide variety of bio-
logical activities. It has been previously found that some G-rich DNA (and
RNA) sequences are able to forme stable four-stranded structures known as
G-quadruplexes. The topology of the G-quadruplexes (or G4) consists of stacks
of a square arrangement of four guanines (named a tetrad or a G-quartet) in a
planar Hoogsteen hydrogen bonded form. This structure is stabilized by mono-
valent cation e.g. K+ and Na+. The core guanines are linked by three nucleic
acid sequences (loops) of varying composition and topology [1]. Our goal is to
accurately predict which genomic sequences are able to form G4.

The high thermodynamic stability of G4 under near-physiological conditions
suggests that these structures may form in genomic DNA in vivo. In addition a
structure-specific antibody has been employed to quantitatively visualize DNA
G-quadruplex in human cell [2]. Altogether, these findings suggest that G4 struc-
tures are physiologically relevant.

Bioinformatic approaches have played an important role by identifying
genomes candidate sequences with G-quadruplex forming potential. A number of
algorithms have been used to date such us pattern-based sequences algorithms.
They are used to predict G4 based on data from DNA experiments, with limited
structural information available and comparative analyses. The most important
limitation is that the prediction is generally limited to the standard descrip-
tion G3+N(1−7)G3+N(1−7)G3+N(1−7)G3+ needed for G4 formation [3],[4]. Ap-
proximately 370000 sequences with putative G-quadruplex-forming motifs are
dispersed in the human genome [5], [4]. They are concentrated in promoter re-
gions [6], 5’ and 3’ UTR’ s [4]. Both the β subunit of the Oxytricha telomere
end-bending protein (βTBP)[7] and repressor activator protein 1 (RAP1) in Sac-
charomyces cerevisieae [8] promotes G-quadruplex formation. G4 structures are
also associated with a number of important aspects of genome function, which
include transcription, recombination and replication [4].
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Based on these findings [3], the pattern used in most current bioinformatics
searches for identifying putative G-quadruplex-forming sequences could be refor-
mulated, and the number of putative G4 in the genome is expected to be larger
than previously reported.

We propose an objective score function that would predict G4 folding propen-
sity from a linear nucleic acid sequence. The new method focus on Guanines clus-
ters and GC asymmetry, taking into account the whole genomic region rather
than individual quadruplexes sequences. In parallel with this computational tech-
nique, a large scale in vitro experimental work has also been developed to test
the prediction of our algorithm in silico on some genes of interest and small
prokaryotes and eukaryotes genomes. It is relatively straightforward to experi-
mentally determine the thermodynamic stability using Ultra Violet melting[9],
the structural insight of the nucleic acid sequence by Circular Dichroism, Ther-
mal Difference Spectra and NMR [10],[11]. Finally, the accuracy of our pre-
diction method has already been proved and compared to previously predicted
sequences. In addition this methodology has found new quadruplex putative se-
quences in HIV and Dictyostelium, which could not be identified by previous
computational methods.
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Abstract. An optimization-based network inference approach was developed 
and applied to in silico metabolome data of Escherichia coli and Saccharomyc-
es cerevisiae. The steady-state metabolome data used were generated in silico 
by simulating kinetic models belonging to the investigated microorganisms. 
Lyapunov equation, which puts a link between Jacobian matrix of the system 
and the covariance matrix is the basis for the optimization based approach. Da-
ta-derived covariance matrix is the input to the underdetermined Lyapunov  
equation, which is used for the prediction of Jacobian matrix based on an objec-
tive function.  Taking into account the sparsity of biological networks as cellu-
lar objective, a consistent mathematical objective function was chosen.  
Inference of the underlying metabolic network was performed based on a genet-
ic-algorithm formulation. The approach results in promising inference of the 
metabolic networks in question. Sensitivity of the results to the approach is also 
investigated.   

Keywords: Network Inference, Lyapunov equation, Metabolome Data, Reverse 
Engineering. 

1 Introduction 

Network Inference based on high-throughput data is a common approach with many 
examples on transcriptome data-based inference of gene-regulatory networks [1, 2]. 
On the other hand, application to metabolome data to reverse-engineer metabolic 
networks is scarce [3, 4, 5]. These examples have used synthetic metabolome data 
belonging to different organisms to infer mostly undirected metabolic networks. Me-
tabolic network inference has the potential to identify both enzymatic and regulatory 
interactions in metabolism.   

A proper experimental design is important for the inference of cellular networks. 
The main focus is on dynamic data in literature since it is considered to be more in-
formative in terms of reverse engineering. The mathemathical approaches are also 
abundant, from statistical analyses to Bayesian based models and optimization  
approaches [6]. This study focuses on an optimization based network inference of 
metabolic networks based on steady-state type of metabolome data. 
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2 Results 

In silico data based on available kinetic models of  Escherichia coli (central carbon 
metabolism) [7] and Saccharomyces cerevisiae (glycolysis) [7] was used as an input 
to the optimization based approach.  Simulations were performed in MATLAB 2013a, 
with the help of Global Optimization and Parallel Computing Toolboxes. The genetic-
algorithm based optimization approach takes the data as an input to Lyapunov equa-
tion, and uses maximal sparsity as the cellular objective function. The calculated  
Jacobian matrix holds the information on directed metabolic network. The demonstra-
tion of the approach on in silico metabolome data is promising, with close to one true 
positive and false positive rates. The effect of noise on data was also investigated to 
see the sensitivity of the approach. Compared to an undirected statistics-based  
approach (Graphical Gaussian Model), the approach was shown to have acceptable 
prediction rates, with directionality information. The approach was shown to be appli-
cable to small metabolic systems successfully. One other promising aspect of the 
approach is the inference of a directed network from steady-state data. 

Acknowledgements. The financial support by TUBITAK (Project Code: 110M464) 
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Abstract. The interactions between the proteins of infectious microorganisms, 
pathogens, and their human hosts are the cause behind the manipulation of hu-
man cellular mechanisms by the microorganisms to their own advantage, result-
ing in infection in the host organism. Improved understanding of pathogen-host 
interactions (PHIs) will significantly contribute to our knowledge of the me-
chanisms involved in infection, and allow novel therapeutic solutions to be  
devised. In the post-genomic era, following the advances in genomics, proteo-
mics, and then interactomics, interspecies protein interaction data of pathogen-
human systems could be produced in large-scale within very recent years. 
PHISTO (Pathogen-Host Interaction Search Tool, www.phisto.org) is a new 
Web platform that provides relevant information about pathogen-host protein-
protein interactions. It enables access to the most up-to-date PHI data for all pa-
thogen types for which experimentally-verified protein interactions with human 
are available. The platform also offers integrated tools for visualization of PHI 
networks, graph theoretical analysis of human proteins targeted by pathogens 
and BLAST search. PHISTO aims to facilitate PHI studies that provide poten-
tial therapeutic targets for infectious diseases by offering up-to-date data 
through its database functionality as well as computational analysis tools.  

Keywords: pathogen-human interaction, web-accessible platform, bioinformat-
ics, infection mechanism, therapeutic target. 

1 Introduction 

The recent advances in high-throughput protein interaction detection methods have 
led to the production of large-scale interspecies protein-protein interaction (PPI) data 
of pathogen-human systems [1]. Currently, there are a number of pathogen–host inte-
raction (PHI) resources that are specific to some pathogens. The only available  
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resource to access all PHI data in a single database [2] does not offer any additional 
functionality to analyze PHI networks.  

PHISTO has been developed to serve as an up-to-date and functionally enhanced 
source of PHI data through a user-friendly interface [3]. PHIs in PHISTO are im-
ported from several PPI databases using the PSICQUIC tool [4]. Text mining is used 
to label PHIs extracted without any information on interaction detection method. 
Tools for visualization of small PHI networks and graph-theoretical analysis of tar-
geted human proteins may enable users to gain crucial insights on roles of patho-
gen/human proteins within infection mechanisms [5; 6]. The BLAST interface offers 
to search for orthologous PHIs for pathogens lacking experimental data. 

2 Results 

PHISTO is designed as a Web-accessible platform with two-tier architecture. The 
back tier is a MySQL-based database. The front tier is a PHP- and Javascript-based 
user interface that runs on an Apache Web server. 

With regular data updates and complete coverage of all data available for each pa-
thogen type, PHISTO will always provide unified access to up-to-date PHI data. 
PHISTO is aimed to provide a centralized and up-to-date platform for studying pa-
thogen–host protein interaction systems with future curation of PHIs from literature 
by text mining and additional advanced analysis tools for PHI networks. 
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Abstract. Frameshift errors in de novo sequenced transcriptome data are diffi-
cult to find since not all transcripts are covered with publicly available and cu-
rated reference data. One approach for finding frameshift errors are hidden 
markov models. HMMs are a widely used approach in bioinformatics to identi-
fy patterns in sequences such as coding or conserved regions [1]. However there 
haven't been made many efforts using HMMs for detecting frameshift errors in 
nucleotide sequences.  

Here we introduce an approach for frameshift correction using hidden mar-
kov models, blast alignment data and peptide data derived from mass spectro-
metry [2]. This algorithm is implemented as pipeline with three correction steps 
for transcriptomic sequences. First, it employs peptide data for a preliminary 
correction, followed by aligning the investigated sequences against publicly 
available protein databases such as the SwissProt database utilizing the  
BlastX alignment tool. Finally, the resulting alignment files for correction are 
used for creating training data sets for the HMM using known coding and 
shifted areas on the sequence. The trained HMM is then used to perform the  
final identification.  

Keywords: Hidden markov models, Frameshift errors, Transcriptome data,  
de novo. 
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Abstract. Exciting technological developments including rapid and cost-
effective DNA sequencing have led to an explosion of information considering 
prokaryotic genome sequences, annotation, classification, genomic epidemiolo-
gy, taxonomy, and pathogen detection. While production of these extensive data 
sets summarizing a pan-genome has become a standard procedure, interpreta-
tion frequently necessitates massive manual intervention by a trained bioinfor-
matician in order to correlate and extract relevant data [1]. 

We have devised an integrated software suite serving as a centralized hub 
for comparative genomic assessment called GECO, which is able to streamline 
further analyses using third-party tools and can be operated using a web brows-
er [2]. GECO allows fully automatic classification of genes by pan-genomic 
conservation into core, accessory and specific clusters based on flexible se-
quence homology criteria. Resulting correlations can be exported graphically or 
in the form of tab-delimited lists. Among the latter are matrices sorted for con-
servation in selected replicons or for synteny according to a reference strain. 
These can be employed to create concise and congruent batch annotations of 
new genome sequences. 

The size and distribution of the pan-genome of any prokaryotic set of ge-
nomes can be surveyed in order to identify insertions or deletions supporting 
taxonomic or phenotypic divisions, evolutionary patterns, pathogenicity deter-
minants, or genomic loci valuable for typing purposes [3]. Putatively horizon-
tally transferred genes can be identified by deviation of GC content from the 
average of the genome, as well as a deviating codon composition [4]. A simple 
procedure for extraction of gene and protein sequences of single genes and 
complete homology clusters supports further analyses like multiple sequence 
alignments and phylogenetic reconstructions [5, 6]. Finally, diverging regions 
inside related replicons can be identified and visualized in publication quality 
images to recognize hyperdynamic hotspots, mobile elements and prophages. 

All of these methods to analyze, annotate and model prokaryotic pan-
genomes are offered by GECO to an audience of researchers without detailed 
knowledge of computational sciences, and can be installed on local hardware. 
Streamlined integration and correlation of pan-genomic data will be paramount 
to the effective synthesis of available knowledge. 
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System Parameters and Deterministic Limit. This work focuses on biolog-
ical systems modelled as density dependent Markov processes[2]. The dynamics
of such systems is often studied by considering the deterministic limit, which is
obtained as the solution of a set of Ordinary Differential Equations (ODEs)[1].
The deterministic limit might not capture important system behaviours such as
oscillations[2]. The method presented here averages the distances and angles of
a number of stochastic simulations to easily detect oscillating behaviours.

System parameters: a) s ∈ N and n ∈ N are the number of species and events;
c) X(t) ∈ N

q
≥0 is the state of the system at time t (Xi(t) denotes the number of

elements of species i at time t); d) ν ∈ N
q×n
≥0 is the stoichiometry matrix, i.e., νji

is the change produced in species i by event j; e) V ∈ R>0 is the system size; f)
Wj : Rq

≥0 × R>0 → R≥0 is the transition rate function, i.e, Wj(X(t), V ) is the
rate associated to event j for population X(t) and system size V (for conciseness,
we will use X rather than X(t), and Wj(X) rather than Wj(X(t), V )).

The system is modelled as a jump Markov process in which events are expo-
nentially distributed with rates Wj(X). The occurrence of an event j changes
the system state from X to X+ νj . Functions Wj(X) are assumed to be differ-
entiable, nonnegative, time independent and to satisfy the mass-action law[2].

Deterministic limit: Under some conditions[1] on Wj(X), the deterministic

limit behaviour is given by the following set of ODEs: dXi

dt =
∑n

j=1 ν
j
iWj(X).

Method.Consider the trajectories obtained for two stochatic simulations. When
computing the mean populations, one averages the cartesian coordinates of the
populations in the phase space. Nevertheless, other coordinate systems, e.g.,
polar coordinates if s = 2, can be considered. Figure 1(a) shows the result of
averaging the cartesian and polar coordinates of two states.

Let us describe how to average the polar coordinates of a number of stochastic
simulations (for systems with s > 2, hyperspherical coordinates can be used).
Assume that M stochastic simulations have been performed, and the trajec-
tories have been resampled at same sampling times. Let (X0

q , Y
0
q ), (X

1
q , Y

1
q ),

. . ., be the cartesian coordinates of simulation q ∈ {1 . . .M} at the sampling
times. Let the origin of the polar coordinate system be the reference point a
with cartesian coordinates (ax, ay). Each (Xk

q , Y
k
q ) can be transformed to polar
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Fig. 1. (a) Average cartesian (C) and polar (P ) coordinates of U and W with respect
to a; (b) Average cartesian and polar trajectories

coordinates (ρkq , θ
k
q ) with origin at a by using: ρkq =

√
(Xk

q − ax)2 + (Y k
q − ay)2,

θkq = atan(Y k
q −ay, X

k
q −ax) where atan(y, x) : R×R → R is the arctangent of

a point with cartesian coordinates (x, y) that takes into account the quadrant.
We will assume that the range of atan(y, x) is (−π, π] and that atan(0, 0) = 0.
This straightforwad transformation to polar coordinates poses a problem when
averaging θ: if at step k, θki is positive and close to π while θkj is negative and
close to −π, the mean of will be close to 0 what is not a useful average. To over-
come this problem, we define a new value φk

q to account for the overall angular
distance run by the trajectory. Let us define φ0

q = θ0q , and for each k ≥ 0, let

us express φk
q as φk

q = zkq 2π + hk
q , with zkq ∈ Z and −π < hk

q ≤ π, i.e, zkq is

the number of completed loops and hk
q is the angular distance run on the cur-

rent loop. The value of zkq is positive(negative) if the angular distance was run

anticlockwise(clockwise). Then, for k > 0, φk
q can be computed as follows:

φk
q =

⎧⎪⎨⎪⎩
z
(k−1)
q 2π + θkq + 2π if h

(k−1)
q > π

2 and θkq < −π
2

z
(k−1)
q 2π + θkq − 2π if h

(k−1)
q < −π

2 and θkq > π
2

z
(k−1)
q 2π + θkq otherwise

The first(second) case of the expresion account for the discontinuity of the an-
gle returned by atan when the trajectory moves from the second to the third(from
the third to the second) quadrant. An average trajectory in polar coordinates is
obtained as the mean of ρkq and φk

q over all simulations.

Results.Consider the following system[2]: s = 2; n = 5; ν =
(
1 −1 −1 1 0
0 0 1 −1 −1

)
;

V = 5 · 103; W1 = X1+X2

1+(0.4·(X1+X2))/V
, W2 = 0.2 ·X1, W3 = 10 ·X1 ·X2/V , W4 =

3 ·X2 and W5 = 5 ·X2 with initial populations X1(0) = 4080 and X2(0) = 500.
The system has a unique non extinction fixed point a = (4000, 502) which is
taken as origin of the polar coordinate system. Figure 1(b) shows the average
trajectories of 5000 simulations. The trajectory tending to a is the average of
the cartesian coordinates, while the trajectory tending to a steady oscillation
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is the average of the polar coordinates. The interpretetation is that simulation
trajectories tend to loop around the fixed point at an average distance of 170.
Thus, while the cartesian mean informs about the trajectory of the center of
mass of the simulations, the polar mean informs about the average circular
motion what uncovers the undamped oscillations reported in[2].
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Abstract. It is in many cases not known which structures of a metabolic
network are responsible for qualitative phenomena like bistability. Here
we examine a model of E. coli’s metabolism including the methylglyoxal
pathway but without regulation. We use a method called subnetwork
analysis to look for subnetworks that may cause multistationarity (a pre-
requisite for bistability). As there are no such subnetworks we conclude
that the unregulated metabolic network contains no bistability causing
structures.

Keywords: Multistationarity, Bistability, Methylglyoxal.

1 Introduction

Complex dynamical phenomena like bistability and oscillations have been ob-
served experimentally in Escherichia coli. In [1], for example, bistability has been
observed in the lactose utilisation network, while [2] describes oscillations in the
methylglyoxal pathway. The methylglyoxal pathway is a particularly interesting
object of study, as it plays an important role in energy production and free radi-
cal generation in procaryotes and eucaryotes alike [3]. Methylglyoxal remarkably
shows versatile toxicity to the cell because of its high reactivity to DNA, RNA
and proteins. Furthermore methylglyoxal has been reported to influence the cell
division machinery [4]. The methylglyoxal detoxification pathway is highly con-
served in the metabolism of procaryotes and eucaryotes [3]. Hence studying it
in the metabolism of the well known organism E. coli might have consequences
for eucaryotes as well.

Recent experimental studies concerning the role of methylglyoxal in the
metabolism of E. coli deal with the participation of methylglyoxal in the
anaplerotic pathway, the regulatory impact of methylglyoxal on the triose-
phosphate balancing in carbohydrate metabolism (especially connected to nutri-
tion imbalancing) and the methylglyoxal detoxification pathways. It is, however,
unknown which parts of the methylglyoxal pathway (or the metabolism as a
whole) are responsible for qualitative phenomena like bistability and oscilla-
tions. With respect to bistability we propose to use E. coli metabolic models
and the results of [5] to identify structures that may cause bistability.
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2 Method

Numerous dynamical models have been developed describing the metabolism
of E. coli including the central carbon metabolism around glycolysis, diauxic
growth, catabolite repression, and combining metabolism and regulation. For an
overview on models covering these topics see [6]. For our investigation we created
a model by extending the dynamic model of Kotte et al. [7].

The publication [5] is concerned with multistationarity, a prerequisite for
bistability. The reference shows a method where it is easy to partition a com-
plex network into a collection of smaller networks for which it is not difficult to
establish multistationarity. It furthermore discusses conditions which allow to
infer multistationarity in the overall network from multistationarity arising in a
subnetwork. We consider these subnetworks as bistability causing structures.

3 Results

Using the aforementioned method we partitioned the network into 24869 sub-
networks (of which 24800 contain at least 5 reactions and subsequently were
subjected to the algorithm analysing these subnetworks towards multistationar-
ity). Taken with mass action kinetics none of these subnetworks showed multi-
stationarity and hence bistability. This indicates that the unregulated network
contains no bistability causing structures. Hence bistability arises either from
the complete metabolic network or from influences of a higher level regulatory
mechanism.
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The tumor necrosis factor receptor 1 (TNFR1) pathway plays a crucial role
in immune signalling and development by controlling cell growth and death [7].
The binding of tumor necrosis factor-α (TNFα) to TNFR1 can either trigger two
different forms of cell death - apoptosis and necroptosis - or promote cell survival
due to the activation of the transcription factor nuclear factor-κB (NF-κB) [5].
A dysregulation of this pathway can result in chronic diseases and cancer-related
inflammation and features a strictly controlled regulatory network [6]. Therefore,
the logic of the pathway regulation is of interest for cancer research to recognise
the mechanisms that determine the outcome of death receptor stimulation.

The TNFR1 pathway displays a complex signalling network with different
regulatory features like feedforward, feedback, and crosstalk. The membrane
bound receptor signalling complex (RSC) builds a crucial part in the signalling
cascade, since the duration and composition of its formation determine the ac-
tivity of the effector kinases and thereby the capacity of gene expression. In this
context, ubiquitylation plays a pivotal role as an important post-translational
modification process [2]. Just recently a novel component of the NF-κB pathway
was discovered being responsible for linear ubiquitylation events, which enhance
the activation of the transcription factor [6]. In order to elucidate the complex
dynamics of these interwoven pathways, we established an interaction network
in a systems biology approach using the Petri net formalism. Therefore, we con-
structed a Petri net with focus on TNFR1-mediated NF-κB pathway to examine
the assembly of macromolecular complexes orchestrating the decision between
survival and cell death. Here, we especially consider ubiquitylation events and
their effect on signalling to NF-κB.

Petri nets permit to model systems with concurrent processes at different
levels of abstraction within a unique and well defined formalism. Many analysis
methods have been developed that allow for static as well as dynamic analysis,
so that the network dynamics can be predicted without the knowledge of kinetic
data. Moreover, Petri nets provide an intuitive graphical representation allowing
for optimal interdisciplinary communication [4]. As a consequence, Petri net
theory is of particular interest for the investigation of signalling processes, since
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the determination of kinetic parameters is still difficult for signal transduction
pathways. Due to this, we apply a P/T-Petri net instead of a kinetic or stochastic
Petri net, since no quantitative data are available to describe the biochemical
processes. We model at qualitative level of detail according to literature while
taking into account previously gained insights about signalling to NF-κB. Our
Petri net model analyses the pivotal regulatory processes of the NF-κB pathway
such as RSC formation-, ubiquitylation-, and feedback mechanisms. The Petri
net was modelled and analysed by usage of MonaLisa software [1].

The mathematical analysis of the model detects the basal regulatory pro-
cesses. Since the Petri net is covered by elementary modes, it fulfils the necessary
CTI property confirming its consistency [4]. The analysis of the P-Invariants [3]
reveals feedback mechanisms of the NF-κB pathway. Furthermore, the anima-
tion of the Petri net allows for investigating the basal behaviour and regulatory
dynamics of the signalling cascade. The model describes the sequential assembly
of the RSC in detail while having regard to the necessary ubiquitylation events.
Hence, it considers the effect of linear ubiquitylation for subsequent gene expres-
sion and points out the inhibitory regulation of cell death signalling. Addition-
ally, regulatory feedback modules are incorporated along with the dissociation
of the RSC resulting in the termination of signal transduction.

In this study, new insights regarding the role of ubiquitylation for NF-κB
and cell death processes were examined in a Petri net approach. The established
Petri net of NF-κB signalling delivers a valuable tool to investigate the regulatory
mechanisms along with their dynamics on a basic molecular level, even though
the processes are described without any knowledge of kinetic data. Thus, the
constructed pathway model reflects the current understanding of signalling to
NF-κB emphasising the pivotal role of post-translational modifications for the
conduction of the cell response following TNFR1 activation.
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Abstract. Temporal microarray data of Simian Immunodeficiency Virus
(SIV) infection make it possible to infer gene interaction networks and
help unveil new infection mechanisms. In this work, we show that the in-
ference and analysis of gene interaction networks can be enhanced using
graph databases. Gene interaction network modules and the provenance
associated to the inference process are modeled into the graph data and
high-level queries can help comparing different results and studying in-
dividual modules.

Keywords: SIV interactions, Module network, Graph Database.

1 Introduction

The SIV infects many African Nonhuman Pimates (NHP) in the wild. While
some monkey species such as African Green Monkey (AGM) and Sooty
Mangabey (SM) do not develop the immunodeficiency syndrome (AIDS), the
Rhesus Macaque (RM), a non-natural host, is affected by the disease [1].

In [2], the complexity involved in inferring gene interactions network was dis-
cussed. Currently, various tools are used during this process, each with different
assumptions leading to different, and possibly complementary, results (ibid).
Thus, researchers may find themselves with several output networks that must
be interpreted, compared, and analyzed. It is clear that there is an urgent need
to support the storage and high level access to inferred gene networks.

In order to support the analysis of interactions inferred from gene expres-
sion data, we investigated the adoption of graph model databases [3]. We have
conceived a graph representation for inferred gene interaction networks and im-
plemented it using the Neo4j database system. Queries may compare the results
on different networks and explore relationships in individual modules.

2 Methods

In this work, AGM, RM and SM transcript expression data were obtained from
Jacquelin et al., (2009) and Bosinger et al., (2009). The dataset consists in
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biological replicates for each species providing time series of gene transcripts
spanning three phases: before infection, acute infection and chronic phase. First,
we selected probes showing significant differential expression and fitted a linear
model to each probe. Modular structures emerged from the application of cor-
relation analysis, hierarchical clustering and gene set enrichment analysis. We
devised a graph data representation (Fig. 1), in which provenance information
describes the process of generating the network. We extended the basic model
proposed by the PROV initiative (http://www.w3.org/TR/prov-primer/). The
gene interaction network was translated into the graph representation.

Fig. 1. From expression data to graph database

3 Conclusion

We discussed the adoption of graph databases technology to help unveiling new
mechanisms of genetic regulation in SIV infection. The graph data model na-
tively supports the representation of gene networks, as well as the provenance
information describing the process used to derive each network module. Our
approach enables comparisons between different inferred networks and the ex-
ploration of gene interaction paths, using queries expressed in the high-level
language offered by the database system.
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Wolf, Verena 5

Xiang, Yang 245

Zhou, Bo 247


	Preface
	Organization
	Table of Contents
	Regular Papers
	On the Use of the Moment Equations for Parameter Inference, Control and Experimental Design in Stochastic BiochemicalReaction Networks
	References

	Numerical Approximation of Rare EventProbabilities in Biochemically Reacting Systems
	1 Introduction
	2 Stochastic Chemical Kinetics
	3 Numerical Computation of Rare Event Probabilities
	3.1 Dynamical State Space Truncation
	3.2 Guided State Space Exploration
	3.3 Choice of the Guidance Functions

	4 Numerical Results
	5 Conclusion
	References

	An Approximate Execution of Rule-BasedMulti-level Models
	1 Introduction
	2 Background
	2.1 Tau-Leaping
	2.2 ML-Rules

	3 r-leaping for ML-Rules
	3.1 Reaction Splitting
	3.2 Population-Based τ -leaps

	4 Evaluation
	4.1 The Wnt/β-Catenin Pathway Model
	4.2 The Lipid Raft Model
	4.3 The Fission Yeast Model

	5 Related Work
	6 Conclusion
	References

	Computing Cumulative RewardsUsing Fast Adaptive Uniformisation
	1 Introduction
	2 Preliminaries
	3 Cumulative Rewards
	4 Case Studies and Implementation
	4.1 Discrete Stochastic Model Test Suite
	4.2 DNA Strand Displacement
	4.3 DNA Walkers

	5 Conclusion
	References

	Linking Discrete and Stochastic Models: The Chemical Master Equation as a Bridge between Process Hitting and Proper GeneralizedDecomposition
	1 Introduction
	2 Frameworks and Methods Used
	2.1 Introductory Example: The p53-mdm2 Network
	2.2 A Brief Introduction to Process Hitting
	2.3 The Chemical Master Equation
	2.4 Proper Generalized Decomposition

	3 Translation of PH to CME
	4 Application and Results
	4.1 Results of One-Dimensional Problem
	4.2 Increased Depth of Analysis
	4.3 Separability, Emergence and Multidimensional Problems

	5 Conclusion
	References

	Coarse-Grained Brownian Dynamics Simulationof Rule-Based Models
	1 Introduction
	2 Coarse-Grained Particle Diffusion and Reaction
	2.1 Remark on Diffusion-Controlled Reactions
	2.2 General Particle-Based Diffusion and Reaction Method
	2.3 Complexes

	3 Spatial Stochastic Simulation of Rule-Based Model
	3.1 Site-Graphs
	3.2 Rule-Based Models
	3.3 Stochastic Abstract Machine

	4 Test Cases and Application
	5 Discussion
	References

	Modelling and Analysis of Phase Variationin Bacterial Colony Growth
	1 Motivation
	2 Phase Variation in Bacterial Colony Growth
	3 Adding Space
	3.1 Alternative Geometries
	3.2 Controlling the Spatial Dynamic Development of the Colony

	4 Analysing Phase Variation
	4.1 Computational Experiments
	4.2 Parameter Scanning
	4.3 Sector Analysis

	5 Summary
	References

	Using Probabilistic Strategies to Formalize and Compare α-Synuclein Aggregationand Propagation under Different Scenarios
	1 Introduction
	2 Preliminaries
	3 Formalization of α-syn Aggregation and Propagation
	4 Probabilistic Strategies
	5 Probabilistic Simulation in PSMaude
	6 Related Work
	7 Conclusions
	References

	Dynamic Image-Based Modellingof Kidney Branching Morphogenesis
	1 Introduction
	2 Results
	2.1 Image Segmentation and Border Extraction
	2.2 Calculation of a Displacement Field
	2.3 Meshing and Simulations
	2.4 Kidney Branching Morphogenesis

	3 Discussion
	References

	Statistical Model Checking Based Calibrationand Analysis of Bio-pathway Models
	1 Introduction
	2 ODE Based Models and Their Behaviors
	3 Statistical Model Checking of ODE Dynamics
	4 Analysis Methods
	5 Results
	6 Conclusion
	References

	Constraint Programming in Community-BasedGene Regulatory Network Inference
	1 Introduction
	2 Background
	2.1 Basic Definitions

	3 Methods
	3.1 Problem Formalization
	3.2 A Case Study

	4 Results and Discussions
	4.1 Other Uses: Validating Biological Hypothesis

	5 Conclusions
	References

	ABC–Fun: A Probabilistic ProgrammingLanguage for Biology
	1 Introduction
	2 Background
	2.1 Bayesian Inference
	2.2 Probabilistic Programming

	3 Probabilistic Programming for CTMCs
	3.1 Implementing the Stochastic Simulation Algorithm
	3.2 Choosing an Inference Engine

	4 Experiments
	4.1 Birth-Death Process
	4.2 Regulation of Gene Expression in Single Cells

	5 Discussion and Conclusions
	References

	A Temporal Logic Approach to Modular Designof Synthetic Biological Circuits
	1 Introduction
	2 Background Material
	3 Logical Characterisation of Modules
	4 Parameter Synthesis
	5 Example: Half-Adder
	6 Discussion
	References

	A Lattice-Theoretic Frameworkfor Metabolic Pathway Analysis
	1 Introduction
	2 Lattice Theory in Metabolic Pathway Analysis
	3 Steady-State Flux Spaces Can Be Modeled as Lattices
	4 Methods
	4.1 Elementary Modes in Lattices
	4.2 Lattice Maxima Give a New View on FCA

	5 Algorithms and Implementation
	5.1 Finding Maxima in General Lattices
	5.2 FCA in n Steps
	5.3 Implementation

	6 Discussion
	7 Summary
	References

	On the Hybrid Composition and Simulationof Heterogeneous Biochemical Models
	1 Introduction
	2 The Expressive Power of Events with Kinetic Reactions
	2.1 Reactions Rules with Kinetics
	2.2 Semantics of Events
	2.3 Representation of Hybrid Automata by Reactions and Events

	3 Hybrid Differential-Stochastic Semantics
	3.1 Gillespie’s Direct Method
	3.2 Event Model of Stochastic Simulation
	3.3 Preprocessor for Composing Differential and Stochastic Models

	4 Hybrid Differential-Boolean Semantics
	4.1 Preprocessor for Composing Differential and Boolean Models
	4.2 Hybrid Composition of Differential-Boolean Cell Cycle Models
	4.3 Related Work on Boolean Regulatory Models with Delays

	5 Conclusion
	References

	On the Verification and Correction of Large-Scale Kinetic Modelsin Systems Biology
	1 Introduction
	2 Plausible Biochemical Models
	2.1 Mathematical Models of Biochemical Reactions
	2.2 Basic Notions for Describing Biochemical Reactions
	2.3 Plausible Reaction Rate Functions
	2.4 Plausibility of Some Common Biochemical Reaction Rate Functions
	2.5 Positive (Non-negative) Kinetic Models
	2.6 Component Mass Conservation

	3 Model Checking and Correction in Practice
	3.1 Steps of Model Verification
	3.2 Verified Models
	3.3 Case Study 1: Central Carbon Metabolism of
	3.4 Case Study 2: Verification of the Model BIOMD0000000221

	4 Conclusion
	References

	Context-Sensitive Flow Analyses:A Hierarchy of Model Reductions
	1 Introduction
	2 Case Study
	3 E-Graphs
	4 Differential Semantics
	5 Context-Sensitive Model Reduction
	6 Conclusion
	References


	Posters
	ARNI: Abductive Inference of ComplexRegulatory Network Structures
	1 Introduction
	2 Methods
	3 Results
	4 Conclusions
	References

	A Systems Biology and Ecology Frameworkfor POPs Bioaccumulation in Marine Ecosystems
	References

	A Symbolic Approach Based on Model Checking and Constraint Solving Techniques for ReverseEngineering of Thomas Networks Parameters
	References

	Compositionality Resultsfor Cardiac Cell Dynamics
	References

	Quantification of Biological Network Perturbations: Impact Assessment Using CausalBiological Networks
	Deciphering the Transcriptional Landscapeof Caulobacter crescentus at Base Pair Resolution
	Identifiablity Analysis and Improved Parameter Estimation of a Human Blood Glucose ControlSystem Model
	References

	RNA Interference in Cancer and Cell CycleNetworks: A Case Study of E2F Proteins
	References

	A Balancing Act: Parameter Estimation for Biological Models with Steady-StateMeasurements
	References

	A Fusion Approach Linking Signaling Logicand Metabolic Mass-Flow Kinetics in Hepatocytes
	1 Introduction
	2 Method
	3 Results and Perspective
	References

	Esther: Introducing an Online Platformfor Parameter Identification of Boolean Networks
	1 Introduction
	2 Esther
	3 Conclusion
	References

	Identifying Latent Dynamic Componentsin Biological Systems
	Next-Newtomics: The Next Generation Repository for Bioinformatical Interpreted Omics Datasetsfrom the Newt Notophthalmus viridescens
	References

	miRNA Expression Analysis during Heart Regenerationof N. viridescens
	References

	Algorithm to Predict G-Quadruplex Foldingthrough Score Computing
	References

	Optimization Based Inference of Metabolic Networksfrom Metabolome Data
	1 Introduction
	2 Results
	References

	PHISTO: A New Web Platform for Pathogen-HumanInteractions
	1 Introduction
	2 Results
	References

	Frameshift Correction in De Novo Assembled Transcriptome Data Using Peptide Data, Blast SequenceAlignments and Hidden Markov Models
	References

	From Prokaryote Genome Sequencing to Pan-Genomic�Modeling
	References

	A Simulation Approach to Detect OscillatingBehaviour in Stochastic Population Models
	References

	On Bistability Causing Structuresin Escherichia Coli’s Metabolism
	1 Introduction
	2 Method
	References

	Mathematical Modelling of the Function of Ubiquitylation in TNFR1-MediatedNF-κB Signalling
	References

	Organizing SIV Gene Network Modulesinto Graph Database
	1 Introduction
	2 Methods
	3 Conclusion
	References


	Author Index



