
Self-Practice Imitation Learning
from Weak Policy

Qing Da, Yang Yu(B), and Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210046, China
{daq, yuy, zhouzh}@lamda.nju.edu.cn

Abstract. Imitation learning is an effective strategy to reinforcement
learning, which avoids the delayed reward problem by learning from
mentor-demonstrated trajectories. A limitation for imitation learning is
that collecting sufficient qualified demonstrations is quite expensive. In
this work, we study how an agent can automatically improve its perfor-
mance from a weak policy, by automatically acquiring more demonstra-
tions for learning. We propose the LEWE framework to sample tasks for
the weak policy to execute, and then learn from the successful trajecto-
ries to achieve an improvement. As the sampling strategy is the key to
the efficiency of LEWE, we further propose to incorporate active learning
for the sampling strategy for LEWE. Experiments in a spatial positioning
task show that LEWE with active learning can effectively and efficiently
improve the weak policy and achieves a better performance than the
comparing sampling approaches.

Keywords: Imitation learning · Active sampling

1 Introduction

In traditional reinforcement learning, an agent receives a reward after a sequen-
tial of actions, and tries to figure out the best actions according to the received
rewards [1]. The high latency of the reward feedback forces the agent to search
in a very large state space, which is of low efficiency and low effectiveness. Moti-
vated by the teaching process in human society, imitation learning [2], alleviates
this difficulty by introducing an expert mentor. The mentor provides demonstra-
tions that successfully accomplish a specific task, and then the agent learns to
follow the demonstrations that provide much more guiding information.

Imitation learning has drawn many attentions, and several approaches have
been proposed (see [3] for a survey). These approaches roughly fall into two
categories, inverse reinforcement learning and direct policy learning. In the first
category, the aim is to learn a reward function, which associates actions with val-
ues, from the demonstration data instead of the delayed rewards, and the reward
function is then used to derive a policy by reinforcement learning approaches
[4,5]. In the second category, demonstration trajectories are used to directly

Z.-H. Zhou and F. Schwenker (Eds.): PSL 2013, LNAI 8183, pp. 9–20, 2013.
DOI: 10.1007/978-3-642-40705-5 2,
c© Springer-Verlag Berlin Heidelberg 2013

10 Q. Da et al.

learn a mapping function from agent’s state observations to action [6,7]. In this
work, we focus on the second category for deriving policies directly.

Direct policy learning requires sufficient demonstrations from an expert men-
tor, so it has several limitations in real-world situations. First, it is usually quite
expensive to collect demonstrations from expert mentors; even if we are free
from the budget problem, expert mentors may also produce suboptimal demon-
strations; and in real-world reinforcement learning problems, the state space can
be extremely large so that it is hard to have enough demonstrations for a good
learning.

In this work, in order to tackle the problem of insufficient demonstration,
we investigate approaches that an agent can automatically acquire more demon-
strations to improve itself. We propose the LEWE (LEarning from WEak policy)
framework that automatically improves a weak policy. The main idea of LEWE
is, for a few tasks, the weak policy can lead to successful trajectories, which can
serve as good examples for learning an improved policy. Therefore, LEWE sam-
ples the task space and runs the weak policy on the sampled tasks in order to
acquire successful trajectories. The sampling strategy is a key to the efficiency of
LEWE. We therefore further propose three sampling strategies utilizing different
information.

We experiment the proposed approaches in a spatial positioning task. Experi-
ment results verify the effectiveness of LEWE by showing that LEWE significantly
improves the weak policy with various configurations. Moreover, the results also
show that the proposed active sampling leads to a better performance than other
sampling strategies.

The rest of this paper starts with an introduction of the background, and
then presents the LEWE framework, which is followed by the experiment results,
and ends with a section of conclusion.

2 Background

A Markov Decision Process (MDP) can be represented by a 4-tuple (S,A, T,R),
where S is a set of states, A is a set of actions, T (sj |si, a) : S × A × S → R

is the transition probability of reaching state sj from state si after executing
a, and R(s, a) : S × A → R defines the immediate reward by executing a from
state si. Given an MDP, the goal is to derive a policy π that maps from S to A
maximizing a long term reward. Imitation learning derives a policy by learning
from a set of successful demonstration trajectories D = {di = (sit, ait)Ti

t=0}ni=1

without using explicit reward functions.
One branch of imitation learning research focuses on forming the reward func-

tion, also named inverse reinforcement learning (IRL) [8]. This method assumes
that there exists a latent reward function R of a given task and the actual inten-
tion of the demonstrations is to maximize the expected discounted reward over
time. Based on this assumption, IRL learns a reward function from the trajecto-
ries data and then use conventional reinforcement learning algorithms to derive
a policy, such as methods in [4,5,9].

Self-Practice Imitation Learning from Weak Policy 11

Another branch alternatively focuses on learning a mapping function directly
from demonstrated trajectories, also named direct policy learning. These methods
directly learn a policy π from D by taking the state-action pairs (sit, ait) collected
from demonstrations as training examples, using supervised learning algorithms,
such as kNN [10], local weighted learning [11], decision trees [12], etc.

Active learning, also referred as query learning or optimal experimental design
in the statistics literature, is a subfield of machine learning, which only queries
the labels of useful instances so that it achieves a good performance with a
small amount of examples [13]. Some popular approaches for active learning are
[13,14].

3 The Proposed Approach

Our aim is to train an agent to accomplish a class of tasks. We assume without
loss of generality that a task is parameterized by a vector p = [p1, p2, ..., pC]T .
The i-th parameter is constrained by the range Li respectively, i.e., pi ∈ Li =
[ai, bi]. Then L = L1 × L2 × . . . × LC ∈ RC is the task space, and C is the
dimensionality of L. A weak policy then can be defined as a policy which is only
able to successfully accomplish tasks in U ⊆ L with a small volume ratio |U |

|L| , in
the given time. It is relatively easy to obtain a weak policy in practice, either
from an insufficient imitation learning, or from hand-written rules. Our goal is
to make an agent improve itself starting from a weak policy, such that it will be
able to accomplish unseen tasks.

3.1 The LEWE Framework

We propose the LEarning from WEak policy (LEWE) framework that outlines
the self-improve procedure for an agent, as shown in Algorithm 1.

A weak policy π0, the task space L, the maximum number of sampled tasks
N and the maximum number of iterations in a run T are provided as the inputs
of the framework. The framework consists of two phases, sampling and learning.
In the sampling phase, LEWE first invokes TaskSampling to generate a task in
line 3, and then executes the weak policy for the task at most T steps, in lines
4 to 10. In each step of executing a task, the agent queries an action a from
the weak policy π0 on the current state s in line 6, then the agent executes a
and updates its state as in line 7, where execute returns the state of the agent
after taking the action. A task is considered to be accomplished successfully if
the goal state is reached (determined by the function TaskFinished) within T
steps. If the task is accomplished successfully, LEWE records the trajectory as
a successful demonstration, and at the same time, records the task parameters
as a successful task or a failed task, in lines 11 to 17. In the learning phase, an
improved policy π∗ is learned from the recorded data D through direct policy
learning. Note that, although one can easily take the improved policy as a weak
policy and use LEWE to refine it again, we rather choose to stay studying the
effectiveness of this simple framework.

12 Q. Da et al.

Algorithm 1 The LEWE Framework
Input:

A weak policy π0

Task space L
The maximum number of sampled tasks N
The maximum number of iterations T

Output:
The learned policy π∗

1: Ne ← 0, D ← ∅, Psuc ← ∅, Pfail ← ∅

2: while Ne < N
3: p = TaskSampling(L, Psuc, Pfail)
4: s← s0, t← 0, Demo← ∅

5: while !TaskF inished(p, s) or t < T
6: a← π0(s)
7: s← execute(p, s, a)
8: Demo← Demo ∪ {(s, a)}
9: t← t + 1

10: end
11: if TaskF inished(p, s)
12: D ← D ∪ {Demo}
13: Psuc ← Psuc ∪ {p}
14: else
15: Pfail ← Pfail ∪ {p}
16: end
17: Ne ← Ne + 1
18: end
19: π∗ ← directPolicyLearning(D)

There are two important issues in order to achieve a successful application of
LEWE framework. In LEWE framework, we expect that, by learning the success-
ful demonstrations of a weak policy, an improved policy can be obtained via the
generalization ability of the employed learning algorithm. Therefore, the gener-
alization ability of the learning algorithm is important. The other issue is the
sampling strategy that implements the TaskSampling function. We investigate
three sampling strategies, random sampling, evolutionary sampling and active
sampling in the follows.

3.2 Random Sampling

Random sampling simply selects a task p from the task space L uniformly
at random. This strategy serves as the baseline approach, and is denoted as
TaskSamplingr function. A drawback of random sampling is that it is high
likely to sample tasks that are too hard for a weak policy, which will waste a lot
of time and resource.

Self-Practice Imitation Learning from Weak Policy 13

3.3 Evolutionary Sampling

Evolutionary sampling is an improvement over random sampling on the basis
of a simple observation: a weak policy will be more likely to succeed on tasks
similar to the succeeded tasks in history rather than on totally strange tasks.
Evolutionary sampling uses the mutation operator of evolutionary strategy algo-
rithms [15] to generate new tasks by perturbating the succeeded tasks. Instead
of sampling a task from L uniformly, with probability ρ, evolutionary sampling
selects a succeeded task, and generates a new task by perturbating this task as
following

pi ← qi +N (0, ε2i), i = 1, 2, ..., C (1)

where N (0, ε2i) is a normal distribution with mean zero and standard devia-
tion εi. With the remaining 1− ρ probability, it does the random sampling. The
probability ρ can be regarded as a trade-off between the possibility of success of
the new task and the overall exploration in the task space.

3.4 Active Sampling

The evolutionary sampling, however, may not try best to exploit the whole task
space, moreover, is only aware of the succeeded tasks but not the failed tasks.
Ideally, we want to sample a task that

1. will result a successful trajectory with confidence.
2. is dissimilar to the past tasks as much as possible.
3. can produce the states dissimilar to the past collected states as much as

possible.

The first property is with the same idea of evolutionary sampling. The second
one is based on the assumption that different tasks tend to produce different
states. The other one directly seeks such a task by estimating the distribution
of possible states for a given task.

Based on this idea, we propose an active sampling strategy incorporating
the active learning [14] idea. For an unseen task, we employ an SVM model
to estimate the confidence that the weak policy will be successful, a Gaussian
Mixture Model to estimate the distance to the explored area in task space, and
the likelihood that unseen states will be visited. The implementation details of
these three components are introduced as the follows.

To estimate the probability that a task can be successfully executed by
the weak policy, we train a classifier to distinguish the succeeded tasks from
the failed tasks. We combine the records Psuc and Pfail to get a training set
Ptrain = (pj , yj)

n

j=1
, where n is the total number of recorded tasks, and yj is

the label of task pj and is assigned to 1 for pj ∈ Psuc and −1 otherwise. Then
a standard SVM classifier f(p) = wT Φ(p) is trained from Ptrain, where Φ is
a function mapping p to a high-dimension space that appears implicitly in the
kernel function K(p1,p2) = 〈Φ(p1), Φ(p2)〉, where 〈·, ·〉 denotes the inner prod-
uct. For any unseen task p, the higher f(p) is, the higher probability that task
p can be successfully executed by the weak policy.

14 Q. Da et al.

Fig. 1. An illustrative example of combining a SVM classifier and a GMM density
estimator in task space

To estimate how far a task is from the past tasks, we use Gaussian Mixture
Models (GMM) to estimate the visited area in task space. We approximate a
distribution of task p belonging to the area we have explored with a GMM as

Pr(p|τk, μk, Σk) =
K∑

k=1

τkN (p, μk, Σk) (2)

where K is number of components of this model, and {τk, μk, Σk}Kk=1 are model
parameters to be estimated. We estimate these parameters through the Expec-
tation Maximization (EM) algorithm from data Psuc ∪ Pfail. For any unknown
task p, the lower Pr(p) is, the higher probability that the surrounding of task p
has not been explored yet. We give an illustration of above discussion in Fig. 1.
By the SVM, we separate the succeeded and failed tasks, so that we can estimate
the task p has a high probability to be successfully executed by the weak policy,
since it is far from the failed tasks. By the GMM, we can estimate that the task
p is not in the explored area of the task space. Further, to estimate how far all
possible states produced by a task from the past collected states, we firstly build
the relationship between a task and all the states it produces. For task p, all
states {si}p produced by this task are assumed to be generated from a linear
model

sT = pT B + εT (3)

here B ∈ RC×d is a coefficient matrix, C is the dimensionality of task space and
d is that of state space. ε is a noise sampled from N (0, Σε).

Denote M as the number of states collected so far, and Ŝ = [s1, s2, ..., sM]T ∈
RM×d are all the historical states, and P̂ = [p1, p2, ..., pM]T ∈ RM×C are the
corresponding tasks that produced the states. Then the likelihood function can
be represented as

p(Ŝ|P̂ , B,Σε) ∝ |Σε|− M
2 exp(−1

2
tr((Ŝ − P̂B)T Σ−1

ε (ŜT − P̂B))) (4)

Since we don’t have any prior knowledge of the distribution of the parameter,
we apply the classical frequentist least squares solution to estimate B using
moore-penrose pseudoinverse

B = (P̂T P̂)−1P̂T Ŝ (5)

Self-Practice Imitation Learning from Weak Policy 15

So for any unknown task p, the probability that a history state si can be pro-
duced by p is p(si|p), we can now estimate the improvement of the diversity
in state space that the task p brings by calculating the probability of historical
states being produced by p

h(p) =
M∏

i=1

p(si|p) (6)

For any unknown task p, the lower h(p) is, the higher probability that task p
can produce more unobserved states.

Considering all three components, active sampling strategy uses the following
objective function

g(p) = −wT Φ(p) + c

K∑

k=1

τkN (p, μk, Σk) + λ

M∏

i=1

p(si|p) (7)

where c and λ are the trade-off coefficient. To find a task p∗ that minimizes the
objective function, we first employ the random sampling to generate a pool of
tasks Pcandidate, then we find p∗ from the pool that

p∗ = arg min
p∈Pcandidate

g(p) (8)

4 Experiment

We investigate three questions by experiments:

1. Can LEWE improve a weak policy?
2. Is active sampling better than the other two sampling strategies?
3. Is the generalization ability of the direct policy learning algorithm important

to the performance of LEWE?

4.1 Spatial Positioning Task

We use a positioning with heading problem studied in [16] to validate our algo-
rithms. This task consists of attaining a 2D planar target position with a target
heading (xg, yg, θg) from the origin (0, 0, 0), as shown in Fig. 2.

For this problem, the task parameters are the target position and the target
heading, i.e., (xg, yg, θg). The corresponding task space is L = L1 × L2 × L3 =
[3m, 8m] × [3m, 8m] × [0, 2π

3 rad]. For this class of tasks, some tasks are easy to
perform (for example, task (0, 3, 0) can be done by directly moving forward by
3 meters), while some other tasks are relatively hard such like task (3, 3, 2π

3).

16 Q. Da et al.

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

(0,0,0)
starting point

target point
(3,3,π/2)

target angle

Fig. 2. The experimented task

4.2 The Weak Policy

We use a simple greedy-based method with a customized cost function R0 as
the weak policy π0. This policy chooses the action that minimizes the expected
cost of being executed at time t

π0(st) = argmin
ak

E[R0(execute(st, ak))] (9)

The cost function R0 is defined as a weighted summation of the axis distance
between the agent and target position, absolute difference between the agent
heading and the target heading and the distance to the optimal line (the line
that passes through the target position (xg, yg) with the slope tan(θg)), as

R0(st) =w1|xt − xg|+ w2|yt − yg|+ w3|θt − θg|

+ w4
|Axt + Byt + C|√

A2 + B2 + C2
(10)

Here, A, B, C are the equations coefficients of optimal line and the weights used
in the experiments are w1 = 0.1, w2 = 0.1, w3 = 0.15 and w4 = 1.

4.3 Experiment Setup

To measure the performance of our algorithms, policies are evaluated for success
rate of task performing. A task is successfully executed if and only if the agent
steps into 0.1m range of the target position and within 0.1 rad error to the
target angle, i.e., ‖xt−xg, yt−yg‖ < 0.1m and |θt− θg| < 0.1 rad, which can be
considered as a more strict criterion comparing to the existing work (e.g. [16]).

In our experiments, each policy is tested with a test set containing 200 tasks
uniformly sampled from L. We employ 4 start-of-the-art supervise learning algo-
rithms as the direct policy learning methods, i.e., kNN [17], decision tree [18]
and random forest [19] implemented in WEKA [20] and SVM [21] in LIBSVM
[22]. The parameters of the four classifiers are

– kNN: k = 7 (obtained by cross validation)
– Decision tree: Default settings of WEKA
– Random forest: Default settings of WEKA with ensemble size 100
– SVM: Radial Basis Function (RBF) kernel with γ = 0.01 and C is 200.

Self-Practice Imitation Learning from Weak Policy 17

3 4 5 6 7 8

4

6

8

0

0.5

1

1.5

2

y
g

x
g

θ g

(a) real distribution

3 4 5 6 7 8

4

6

8

0

0.5

1

1.5

2

y
g

x
g

θ g

(b) classification result by SVM

Fig. 3. The distribution of successful and failed tasks in tasks space

For task (xg, yg, θg), we extract 11 arbitrary geometry features from state
(x, y, θ), including x−xg, y−yg, θg−θ, α−θ (α is the angle of (xg−x, yg−y)),
‖x− xg, y − yg‖ and some other geometry features.

We denote LEWEr, LEWEe and LEWEa as LEWE with random sampling,
evolutionary sampling and active sampling, respectively. For active sampling
strategy, we also use LIBSVM as the SVM solver. Note that for both evolutionary
sampling and active sampling strategies, there’s no historical data in the very
beginning, thus, random sampling strategy is used to sample first 30 successful
demonstrations for both cases. The size of candidate set for active sampling is
100. The parameters ρ, c and λ are selected by cross validation. Finally, we run
every configuration 200 times and report the mean success rate.

4.4 Experiment Results

We firstly investigate how the weak policy acts for this class of tasks. We ran-
domly sample 10000 tasks from L and apply the weak policy to perform on
these tasks. Figure 3a shows the task space, where the green points are the tasks
accomplished (about 41 %) and the red ones are those not accomplished by the
weak policy. It is easy to observe that the successful tasks are separated well
from failed ones. Moreover, we apply a standard SVM classifier (with RBF ker-
nel, C is 200 and γ is 0.1) to classify these tasks with a training set consists of
only 75 randomly chosen tasks (30 successful v.s. 45 failed). The classification
result is shown in Fig. 3b with an accuracy rate of about 88 %, which implies the
learnability of easy and hard tasks.

We then investigate the first question, i.e., can LEWE improve the weak
policy. Figure 4 plots the success rates against the number of executed demon-
strations ranged from 30 to 300, for the weak policy as well as LEWE with the
four learning algorithms and the three sampling strategies. We first observe that
LEWE has a higher success rate than the weak policy, only except when using
SVM with less than 60 demonstrations. It can also be observed that the success
rate of LEWE increases as the number of the executed demonstrations increases.
When 300 demonstrations are executed, LEWE achieves at least 0.67 success rate

18 Q. Da et al.

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#executed demonstrations

su
cc

es
s

ra
te

Weak Policy
LEWE

r
+kNN

LEWE
e
+kNN

LEWE
a
+kNN

(a) with kNN

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#executed demonstrations

su
cc

es
s

ra
te

Weak Policy
LEWE

r
+Decision tree

LEWE
e
+Decision tree

LEWE
a
+Decision tree

(b) with decision tree

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#executed demonstrations

su
cc

es
s

ra
te

Weak Policy
LEWE

r
+Random forest

LEWE
e
+Random forest

LEWE
a
+Random forest

(c) with random forest

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#executed demonstrations
su

cc
es

s
ra

te

Weak Policy
LEWE

r
+SVM

LEWE
e
+SVM

LEWE
a
+SVM

(d) with SVM

Fig. 4. The success rates of LEWE against the weak policy

Table 1. Success rates of LEWE after 300 executed demonstrations.

Algorithm LEWEr LEWEe LEWEa

kNN 0.67 ± 0.13 0.70 ± 0.11 0.77± 0.06
Decision tree 0.80 ± 0.11 0.79 ± 0.11 0.82± 0.11
Random forest 0.87 ± 0.05 0.88 ± 0.05 0.90± 0.04
SVM 0.87 ± 0.09 0.89 ± 0.07 0.92± 0.03

and as high as 0.92 success rate while that of weak policy is 0.41. Therefore, it
is clear that LEWE effectively improves the weak policy.

For the second question, i.e., is the proposed active sampling better than
the other, we look into Fig. 4, where each plot also compares the three sampling
strategy with a policy learning algorithm. The parameter selected for ρ, c and
λ are 0.6, 2.5 and 1.0. For active sampling, the GMM with only one component
in the task space shows to be the best in this case, which in fact degrades into
a Gaussian distribution. It can be observed that the curves of active sampling
are almost always above the comparing curves, particularly when the number
of executed demonstrations is large. Table 1 compares the success rates after
300 executed demonstrations, where it can be found that active sampling is
significantly better than the compared approaches by the t-tests with 95 % con-
fidence. To further investigate how the sampling strategies work, we plot the
number of executed demonstrations against the sampled ones in Fig. 5a. It can be
observed that random sampling executes more demonstrations than evolutionary
and active sampling for sampling the same number of successful demonstrations,
which confirms our design that evolutionary and active sampling treat the sam-
ples much smarter so that the waste of failed executions is fewer. Meanwhile from

Self-Practice Imitation Learning from Weak Policy 19

0 50 100 150 200
0

50

100

150

200

250

300

#sampled demonstrations#e
xe

cu
te

d
de

m
on

st
ra

tio
ns

LEWE
r
+SVM

LEWE
e
+SVM

LEWE
a
+SVM

(a)

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#sampled demonstrations

su
cc

es
s

ra
te

LEWE
r
+SVM

LEWE
e
+SVM

LEWE
a
+SVM

(b)

Fig. 5. Effectiveness of sampling strategies

0 100 200 300
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

#executed demonstrations

su
cc

es
s

ra
te

LEWE
r
+kNN

LEWE
r
+Decision tree

LEWE
r
+Random forest

LEWE
r
+SVM

(a) with random sampling
strategy

0 100 200 300
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

#executed demonstrations

su
cc

es
s

ra
te

LEWE
e
+kNN

LEWE
e
+Decision tree

LEWE
e
+Random forest

LEWE
e
+SVM

(b) with evolutionary
sampling strategy

0 100 200 300
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

#executed demonstrations

su
cc

es
s

ra
te

LEWE
a
+kNN

LEWE
a
+Decision tree

LEWE
a
+Random forest

LEWE
a
+SVM

(c) with active sampling
strategy

Fig. 6. The success rates of LEWE with different direct policy learning algorithms

Fig. 5b, it is clear that active sampling makes a better utilization of the sam-
ples than evolutionary sampling, which confirms our design that active learning
utilizes full information. Finally, we investigate the third question, i.e., is gener-
alization ability of the policy learning algorithm important. Figure 6 compares
LEWE with the four learning algorithms with each sampling strategy. It can
be observed that random forest always takes the most advantage except that
SVM is comparable with random forest when there are 300 demonstrations. It is
consistent with the experience that random forest and SVM are the two state-of-
the-art supervised learning approaches [23]. We recommend using random forest
as it has a more stable performance and fewer parameters to be tuned.

5 Conclusion

In this paper, we propose the LEWE framework for an agent to improve its per-
formance from a weak policy using imitation learning. We incorporate active
sampling for LEWE to smartly choose demonstrations to practice. Experiments
verified the effectiveness of the LEWE framework as well as the active sampling
strategy. The work verifies the possibility that an agent can acquire demonstra-
tions to improve its performance by itself. The future work will combine the
learning policy with other reinforcement learning approaches towards a better
performance.

20 Q. Da et al.

Acknowledgements. This research was supported by the Jiangsu Science Foun-
dation (BK2012303), the 2013 State Grid Research Project, and the Baidu Fund
(181315P00651).

References

1. Sutton, R., Barto, A.: Reinforcement Learning. An Introduction. Cambridge Uni-
versity Press, Cambridge (1998)

2. Schaal, S.: Is imitation learning the route to humanoid robots. Trends Cogn. Sci.
3(6), 233–242 (1999)

3. Argall, B., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from
demonstration. Rob. Auton. Syst. 57(5), 469–483 (2009)

4. Atkeson, C., Schaal, S.: Robot learning from demonstration. In: Proceedings of the
ICML’97, San Francisco, USA, pp. 12–20, July 1997

5. Choi, J., Kim, K.: Inverse reinforcement learning in partially observable environ-
ments. In: Proceedings of IJCAI’09, Barcelona, Spain, pp. 1028–1033, July 2009

6. Jetchev, N., Toussaint, M.: Task space retrieval using inverse feedback control. In:
Proceedings of ICML’11, Bellevue, WA, USA, pp. 449–456, June 2011

7. Zhang, D., Cai, Z., Nebel, B.: Playing tetris using learning by imitation. In: Pro-
ceedings of GAMEON’10, Leicester, UK, pp. 23–27, November 2010

8. Ng, A., Russell, S.: Algorithms for inverse reinforcement learning. In: Proceedings
of ICML’00, Stanford, USA, pp. 663–670, June 2000

9. Ziebart, B., Maas, A., Bagnell, J., Dey, A.: Maximum entropy inverse reinforcement
learning. In: Proceedings of AAAI’08, Chicago, USA, pp. 1433–1438, July 2008

10. Bentivegna, D.: Learning from Observation Using Primitives. Ph.D. thesis, College
of Computing, Georgia Institute of Technology (2011)

11. Bentivegna, D., Atkeson, C.: Learning from observation using primitives. In: Pro-
ceedings of ICRA’11, Seoul, Korea, pp. 1988–1993, May 2001

12. Silver, D., Bagnell, J., Stentz, A.: Perceptual interpretation for autonomous navi-
gation through dynamic imitation learning. Robot. Res. 70, 433–449 (2011)

13. Settles, B.: Active learning literature survey. Computer Sciences Technical Report,
University of Wisconsin-Madison (2009)

14. Huang, S., Jin, R., Zhou, Z.: Active learning by querying informative and repre-
sentative examples. In: NIPS’11, pp. 892–900 (2011)

15. Beyer, H., Schwefel, H.: Evolution strategies-a comprehensive introduction. Nat.
Comput. 1(1), 3–52 (2002)

16. Argall, B., Browning, B., Veloso, M.: Learning robot motion control with demon-
stration and advice-operators. In: Proceedings of IROS’08, Nice, France, pp. 399–
404, September 2008

17. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New
York (2001)

18. Quinlan, J.: C4.5: Programs for machine learning. Morgan kaufmann, San Fran-
scisco (1993)

19. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
20. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann, San Franscisco (2005)
21. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2000)
22. Chang, C., Lin, C.: Libsvm: a library for support vector machines. ACM Trans.

Intell. Syss. Technol. 2(3), 27 (2011)
23. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning

algorithms. In: Proceedings of ICML’06, Pittsburgh, PE, pp. 161–168 (2006)

	Self-Practice Imitation Learningfrom Weak Policy
	1 Introduction
	2 Background
	3 The Proposed Approach
	3.1 The LEWE Framework
	3.2 Random Sampling
	3.3 Evolutionary Sampling
	3.4 Active Sampling

	4 Experiment
	4.1 Spatial Positioning Task
	4.2 The Weak Policy
	4.3 Experiment Setup
	4.4 Experiment Results

	5 Conclusion
	References

