
OpenMP on the Low-Power TI Keystone II

ARM/DSP System-on-Chip

Eric Stotzer1, Ajay Jayaraj1, Murtaza Ali1, Arnon Friedmann1,
Gaurav Mitra , Alistair P. Rendell , and2 2 3

1 Texas Instruments, Dallas TX, USA
{estotzer,ajayj,mali,arnon}@ti.com

2 Australian National University, Canberra ACT, Australia
{gaurav.mitra,alistair.rendell}@anu.edu.au

3 nCore HPC, USA

Abstract. The Texas Instrument (TI) Keystone II architecture inte-
grates an octa-core C66X DSP with a quad-core ARM Cortex A15 MP-
Core processor in a non-cache coherent shared memory environment.
This System-on-a-Chip (SoC) offers very high Floating Point Opera-
tions per second (FLOPS) per Watt, if used efficiently. This paper re-
ports an initial attempt at developing a bare-metal OpenMP runtime for
the C66X multi-core DSP using the Open Event Machine RTOS. It also
outlines an extension to OpenMP that allows code to run across both
the ARM and the DSP cores simultaneously. Preliminary performance
data for OpenMP constructs running on the ARM and DSP parts of the
SoC are given and compared with other current processors.

1 Introduction

High performance computing has evolved to use specialized accelerators such
as Graphics Processing Units (GPUs) for a variety of problems. However, such
accelerators suffer from two main issues of excessive power consumption and
insufficient device memory. Low-power SoCs with on-chip accelerators sharing
the same address space and physical memory are increasingly being considered
as alternatives. In recent work on using ARM NEON Floating Point Units (FPU)
to accelerate application codes [1], low-power ARM based SoCs demonstrated
comparable performance speedups to Intel processors using SSE2.

It has also been demonstrated that the TI Keystone I C66X Multi-core DSP
provides higher GFLOPS/Watt (with 57% utilization of resources) for SGEMM
matrix multiplication using OpenMP than Intel Core i7-960, IBM Cell Broad-
band Engine, Stratix IV FPGA and NVIDIA GTX480, GTX280 systems [2].
Increase in net utilization of the C66x DSP for other applications would result
in higher GFLOPS/Watt. The TI Keystone II architecture integrates this C66X
octa-core DSP with a quad-core ARM Cortex A15 MPCore processor. This com-
bination of ARM and DSP processors on the same SoC promises excellent energy
efficient performance if used efficiently.

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 114–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

thea@ncorehpc.com

Théa-Martine Gauthier



OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 115

Performance of OpenMP based applications depends heavily on the runtime li-
brary implementation. The runtime in [2] used the underlying SYS/BIOS RTOS.
In this paper, we demonstrate a lighter weight OpenMP runtime implementa-
tion for the C66X multi-core DSP using the Open Event Machine RTOS. For key
OpenMP directives, overheads are 2.5× lower than the previous implementation
using SYS/BIOS. EPCC v3 micro-benchmarks [3] are provided for Keystone II
and other Intel, ARM processors for comparison.

The rest of the paper is organized as follows. Section 2 provides a concise
overview of the TI Keystone architecture. Description of our new bare-metal
implementation of the OpenMP runtime for C66X DSP is given in Section 3. A
brief introduction to our OpenMP accelerator dispatch prototype is outlined in
Section 4. Micro-benchmarks of CPU cycle overheads for OpenMP constructs
are discussed in Section 5. Related work, conclusions and future work, and ac-
knowledgements follow in Sections 6, 7 and 7.

2 TI Keystone Overview

The Keystone architecture from Texas Instruments is an innovative platform in-
tegrating RISC and DSP cores along with application-specific co-processors and
input/output peripherals. This high performance structure includes adequate
internal bandwidth for non-blocking access to all processing cores, peripherals,
co-processors and I/O. Figure 1 shows two instantiations of the Keystone archi-
tecture applicable to high performance compute applications.

2.1 C66x DSP Core

The main compute core inside the Keystone architecture is the C66x DSP from
Texas Instruments [4]. This is based on a Very Long Instruction Word (VLIW)
architecture. The core has two data-paths, each capable of executing four in-
structions per cycle on four functional units named M, D, L and S. The M unit
primarily performs multiplication operations, the D-unit performs load/store
and address calculations, and the L and S units perform addition and logical
operations. Overall the two data-paths appear as an 8-way VLIW machine ca-
pable of executing up to eight instructions in each cycle. The instruction set also
includes Single Instruction Multiple Data (SIMD) instructions allowing vector
processing on up to 128-bit vectors. For example, the M unit can perform four
single precision multiplies per cycles, whereas each L and S unit can each perform
two single precision additions per cycle. Together the two data-paths can issue
16 single FLOP per cycle. The double precision capability is about one-fourth
of single precision FLOPs.

2.2 C6678 ’Shannon’ System-on-Chip

The C6678 System-on-Chip (SoC) is the highest performance Keystone I de-
vice that includes only DSP cores [5]. Figure 1(a) shows the block diagram of



116 E. Stotzer et al.

(a) C6678 SoC based on Keystone
I Architecture

(b) 66AK2H12 SoC based on
Keystone II Architecture

Fig. 1. Texas Instruments Keystone Architectures

this device. It has eight C66x cores and a three-level memory system. The cores
can run at 1.25 GHz, thereby providing a peak performance of 160 single pre-
cision GFLOPS and 40 double precision GFLOPS. The memory system is a
Non-Uniform Memory Architecture (NUMA) [6]. A C66x subsystem can access
different memory regions, with accesses to memories that are physically closer
to a processor being faster. The memory regions and access times are as follows:

– Level-1 program (L1P) and data (L1D): 32KB, 1-cycle access time, config-
urable as mapped RAM, cache, or a combination of mapped and cached.

– Local-L2: 512KB, 2-cycle access time, configurable as mapped RAM, cache,
or a combination of mapped and cached, and shared between the L1D and
L1P caches.

– Shared-L2: 4MB, 2-cycle access time, shared memory on-chip.
– Shared-L3: multiple megabytes of off-chip memory with greater than 60-cycle

access time. One DDR3 controller in this device.

The device comes with a rich set of standard interfaces like PCI express, Serial
Rapid I/O (SRIO), multiple Gigabit Ethernet ports as well as a proprietary inter-
face known as the Hyperlink that provides a 50 Gbps point-to-point connectivity.

2.3 66AK2H12 ’Hawking’ System-on-Chip

The 66AK2H12 SoC is the highest performance Keystone II device architecture
that includes an ARM RISC processor in addition to the compute-efficient C66x
DSP cores [7]. This particular device (Figure 1(b)) integrates a Cortex-A15 quad-
core cluster and a C66x DSP octa-core cluster. The Cortex-A15 quad cores are
fully cache coherent, although as on the C6678 the DSP cores do not maintain
cache coherency. External memory bandwidth is doubled with dual DDR3
controllers. An additional Hyperlink interface is also included. Compared to the



OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 117

Keystone I C6678 SoC the memory sizes are also increased. On the DSP, the L1D
and L1P cache sizes remain at 32KB per core, but the L2 cache size is increased to
1024KBper core. On theARM side, there is 32KB of L1D and 32KB of L1P cache
per core, and a coherent 4 MB L2 cache. The level 2 shared memory is increased
to 6 MB and is accessible by all ARM and DSP cores. This SoC brings the ARM-
based processor and DSP accelerator together in the same memory address space,
along with infrastructure class I/O peripherals. It therefore provides an attractive
low-power alternative for HPC applications.

3 Bare-Metal Implementation of OpenMP on C66X DSP

Most compilers translate OpenMP into multi-threaded code with calls to a cus-
tom runtime library, either via outlining [8] or inlining [9]. Because many execu-
tion details are often unknown in advance, much of the actual work of assigning
computations must be performed dynamically. Part of the implementation com-
plexity is in ensuring that the presence of OpenMP constructs does not impede
sequential optimization in the compiler. An efficient runtime library to support
thread management and scheduling, and shared memory and fine-grained syn-
chronization execution is essential.

The basic hardware and operating environment of the DSP cores on the Key-
stone I and II systems presents some special challenges when seeking to support
the OpenMP programming model. Notably the shared memory controller in
Keystone devices does not maintain coherency between the C66X subsystems,
and it is the responsibility of the running program to use synchronization mecha-
nisms and cache control operations to maintain coherent views of the memories.
(Coherency within a given C6X subsystem for all levels of memory is maintained
by the hardware).

Traditionally, application codes executing across multiple C6X subsystems are
required to explicitly manage thread synchronization and cache coherence, and
communicate via the shared-L2 and shared-L3 memories. A processor can trans-
fer a data buffer to the local-L2 via a direct memory access (DMA) controller.
The hardware maintains L1D cache coherency with the local-L2 for DMA ac-
cesses. Also, the DMA transfer completion event can be used as a synchronization
event between the data producer and data consumer. There is no virtual memory
management unit (MMU), but a memory protection mechanism protects some
shared memory from being accessed by a non-authorized processor.

TI provides a light-weight multi-core task dispatch API called Open Event
Machine (OpenEM). OpenEM is designed to require minimal memory and CPU
cycles [10]. OpenEM is implemented to leverage the C66X SoC’s Navigator hard-
ware queues. Various types of interactions between cores, such as blocking, com-
munication and synchronization, are implemented by OpenEM. OpenEM also
provides a fast, shared, thread-safe memory management system that is used to
allocate/deallocate memory in the runtime.

An understanding of the memory model used by OpenMP is fundamental to
its implementation on the Keystone I/II systems. In this respect, OpenMP spec-
ifies a relaxed consistency memory model that is close to weak consistency [11].



118 E. Stotzer et al.

In this model threads execute in parallel with a temporary view of shared mem-
ory until they reach memory synchronization or flush points in the execution
flow. At a flush point, threads are required to write back and invalidate their
temporary view of memory. After the memory synchronization point, threads
again have a temporary view of memory.

Although the C66x provides a shared memory, its consistency is not auto-
matically maintained by the hardware. It is the responsibility of the OpenMP
runtime library to perform the appropriate cache control operations to maintain
the consistency of the shared memory when required.

3.1 Memory Model

OpenMP has both shared and private variables. Each thread has its own copy of
a private variable that the other threads cannot access. There is only one copy of
a shared variable, and all threads can access it. Private variables are located on
the stack of each thread of execution. The stack can be placed in any of on-chip
local, on-chip shared or off-chip shared memory.

OpenMP requires that threads synchronize their local view of shared variables
with the global view at a set of implicit and explicit flush points defined in the
OpenMP specification. The runtime performs this synchronization in software.
The synchronization steps depend on whether the shared variable is placed in
on-chip local memory (L2SRAM) or on-chip/off-chip shared memory (MSMC-
SRAM/DDR) as follows:

• Shared variables in on-chip “local” scratch memory(L2SRAM)
1. L2SRAM on a core is accessible to external DSP cores via a global ad-

dress space
2. Any updates to L2 scratch by external DSP cores are kept coherent by

the memory subsystem
3. The runtime performs a write-back invalidate of L1 at all flush points.

• Shared variables in on-chip/off-chip shared memory (MSMCSRAM/DDR)
1. Shared memory regions are marked write-through
2. The runtime performs cache invalidate operations at all flush points.

Since write-through is enabled shared memory has already been updated
and there is no need to write-back data.

3.2 Parallel Regions

The essential parts of the OpenMP runtime library are implemented using the
OpenEM API. For each parallel region, the OpenMP compiler divides the work-
load into chunks that are assigned to OpenEM tasks (micro-tasks) at runtime.
One of the DSP cores is treated as a master core and the other cores are worker
cores. The master core runs the main thread of execution. It is responsible for
initializing the OpenMP runtime and starts executing the OpenMP program
(main). The worker cores wait in a dispatch loop for OpenEM tasks to show up
in a queue.



OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 119

A parallel region’s fork-join mechanism is implemented by the following steps:

1. After initialization, worker threads wait in a dispatch loop and check a task
queue for micro-task execution notification.

2. The master thread assigns micro-tasks to worker threads by posting the
micro-tasks to an OpenEM queue. The micro-task description includes a
function pointer and a data pointer. It also initializes a shared counter to
the number of micro-tasks generated.

3. Worker cores pull micro-tasks out of the OpenEM queue. Upon receipt of the
micro-task, each worker thread executes the micro-task specified by the func-
tion pointer. The data pointer is passed as an argument to the micro-task.

4. Upon completion of a micro-task, the worker core that executed the micro-
task decrements the shared micro-task counter.

5. After the master completes the execution of its own chunk, it waits for
the shared micro-task counter to reach 0, indicating that all workers have
completed their micro-tasks.

3.3 Synchronization

The runtime implements three methods of synchronization depending on what
is being synchronized:

1. To synchronize master and worker cores during runtime initialization, a fast
synchronization mechanism is implemented using coherent shared memory
to store a vector. Each core independently sets or clears an element in the
vector. Every core can concurrently query the entire vector by using a single
64-bit memory access. As shown in Figure 2, this mechanism is based on
Lamport’s Bakery algorithm [12]. The buffers are stored in non-cacheable
shared memory. The message queue is used at the start of a parallel region,
but all other synchronizations are performed using this new mechanism.

1 void sync(char buf0[8], char buf1[8])
{

3 int core_id = get_core_id();

5 buf1[core_id] = 1;
buf0[core_id] = 0;

7 /* wait until all threads have cleared buf0 */
while (*(volatile long long *)buf0 != 0) ;

9
buf1[core_id] = 0;

11 /* wait until all threads have cleared buf1 */
while (*(volatile long long *)buf1 != 0) ;

13
/* reset buf0 */

15 buf0[core_id] = 1;
}

Fig. 2. Fast synchronization mechanism using coherent shared memory

2. To synchronize master and worker cores at the end of a parallel region, a
shared counter, as described in Section 3.2 is used.

3. For implicit and explicit OpenMP barriers, the sense reversing barrier shown
in Figure 3 is used. This has a counter that keeps track of the number of
cores participating in the barrier and a sense flag to allow the barrier to
be re-used. To avoid coherency overheads, the barrier variable is placed in
non-cached memory.



120 E. Stotzer et al.

void sense_reversing_barrier(Barrier *barrier)
2 {

/* To allow re-use, the barrier contains a sense variation */
4 char mysense = !barrier->sense;

6 if (atomic_decrement(barrier->count) == 1)
{

8 /* Last thread resets the sense and count */
barrier->count = barrier->size;

10 barrier->sense = !(barrier->sense);
}

12 else
{

14 /* Modification of sense represents end of the barrier */
while (mysense != barrier->sense);

16 }
}

Fig. 3. Sense reversing barrier

4 ARM to DSP OpenMP Dispatch

We have implemented an early prototype of the OpenMP 4.0 accelerator ex-
tension [13,14] target construct. Our prototype implementation uses the dis-
patch keyword along with memory copyin and copyout. A host program uses the
dispatch construct in the following way:

1 void foo(int *in1, int *in2, int *out1, int count)
{

3 #pragma omp dispatch copyin (in1[0:count-1], in2[0:count-1], count) \
copyout (out1[0:count-1])

5 {
#pragma omp parallel shared(in1, in2, out1)

7 {
int i;

9 #pragma omp for
for (i = 0; i < count; i++)

11 out1[i] = in1[i] + in2[i];
}

13 }
}

Fig. 4. Usage of dispatch construct in host program

A source-to-source translator is used to transform the initial source file with
code outlined in Figure 4 to produce the ARM host side and DSP target side
annotated code, as shown in Figure 5. The ARM host annotations include
data movement calls. In Keystone II, these calls resort to memory maps using
the UNIX mmap system call to leverage physical shared memory between the
ARM and DSP. Therefore copyin/copyout operations have minimal overhead.
The DSP source annotations made by the translator include standard OpenMP
pragma additions. These two separate source files are then compiled with the gcc
toolchain on the ARM side, and the TI Code Generation Tools OpenMP compiler
toolchain and our OpenMP DSP runtime library on the DSP side to produce a
fat executable with the DSP binary embedded inside the ARM executable. This
is launched from the ARM using the TI Multi-Process Manager which loads and
runs the DSP binary and the ARM host executable. Shared memory regions
are set up, synchronization messages are exchanged between the ARM and DSP
and the required functions are then run on DSP, which writes back the result to
shared memory. An initial implementation of the dispatch construct was tested
on the Appleton EVM which has a TCI6614 SoC [15] with ARM Cortex-A8
and quad-core C66X DSP on-chip. Porting the dispatch construct to utilize our
current implementation of the OpenMP runtime on Keystone II is in progress.



OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 121

Fig. 5. Dispatch executable compilation strategy

5 Evaluation Using Micro-benchmarks

In order to evaluate the performance of our DSP runtime implementation,
we used the EPCC v3 benchmark [3]. For comparison we also collected data
across other contemporary ARM and Intel platforms. The EPCC suite of micro-
benchmarks measure the time overheads associated with invoking the different
OpenMP constructs. For example, the cost of parallel to create a parallel region
or barrier to synchronize threads. Here we report the overheads associated with
some of the most widely used constructs.

Table 1 lists the systems considered and their main characteristics. Two dif-
ferent Intel platforms with at least four physical cores were considered. The
Core2 Q9400 Yorkfield processor, has four cores running at 2.66 Ghz. The hexa-
core Xeon X5650 Westmere processor is part of a dual-socket system and runs
at 2.66 Ghz. The ARM platforms considered, include the Keystone II Hawk-
ing EVM’s ARM Cortex A15 quad-core processor running at 625 Mhz and a
Samsung Exynos 4412 prime SoC with quad-core ARM Cortex-A9 processors
running at 2 Ghz. The ARM Cortex A15 is referred to as Hawking-A15 and the
A9 as Exynos-A9. The octa-core C66X DSP processor in Keystone II Hawking
EVM ran at 983 Mhz and is referred to as Hawking-DSP.

Table 1. Platforms Used in Benchmarks

PROCESSOR CODENAME Threads/Cores/Ghz Memory

Intel Core2 Q9400 YorkField 4/4/2.67 8GB DDR3
Intel Xeon X5650 Westmere 12/6/2.67 24GB DDR3

Samsung Exynos 4412 (ARM) Odroid-X2 4/4.Cortex-A9/2.0 2GB LPDDR2
TI Keystone II (ARM) Hawking 4/4.Cortex-A15/0.625 2GB DDR3

TI Keystone II (DSP) Hawking 8/8.C6678 DSP/0.983 2GB DDR3

5.1 Compilers and Tools

For the Intel Westmere platform we used GCC 4.6.4 and ICC 13.1.1 (compatible
with GCC 4.6) to separately compile and run the benchmarks. These versions
are denoted as X5650-GCC and X5650-ICC. They were linked against libgomp
and libiomp5 respectively. On the Intel Yorkfield and ARM platforms GCC 4.7.3
with libgomp was used. The compiler option -mcpu=cortex-a9 was used on the
Exynos and -mcpu=cortex-a15 on the Hawking. In addition both ARM plat-
forms used the -mfpu=neon,mfloat-abi=hard compiler flag. TI Code Generation



122 E. Stotzer et al.

Tools 7.4.2, XDC Tools 3.24.05.48, OpenEM 1.2.0.1, PDK Keystone2 1.00.00.09,
PDK C6678 1.1.2.6 along with our current version of the OpenMP runtime
were used to create the executable for the C6678 DSP. All platforms except the
Hawking-A15 and the DSPs were running Ubuntu Linux with kernel version
greater than 3.0. The Hawking ARM cores used a custom distribution of Linux,
called Arago, built specifically for the Hawking EVM. It includes the 3.8.4 Linux
kernel. On the Linux hosts, the OMP PROC BIND and GOMP CPU AFFINITY en-
vironment variables were set to bind threads to processor cores and to pre-
vent thread migration between cores. For timing measurements on the Intel
and ARM platforms, the EPCC v3 timer function getclock() which uses
omp get wtime() remained unchanged and reported times in microseconds.
Measurements on the DSP required modifications to the timer function. A na-
tive time-stamp counter was used to measure the exact CPU cycles elapsed as
shown in Figure 6. For direct comparison of all platforms, all time measurements
were normalized w.r.t CPU clock speed and reported in CPU cycles using the
equation, cpu cycles = overhead time(µs) ∗mhz.

/* Wall cycles using TSC_read */
2 void wcycles(unsigned long long *c)

{
4 static int first = 1;

extern void TSC_enable(void);
6 extern unsigned long long TSC_read(void);

if (first)
8 {

TSC_enable();
10 first = 0;

}
12 *c = TSC_read();

}
14

/* TSC_enable Assembly Code */
16 .global TSC_enable

18 TSC_enable:

20 RETNOP B3, 4
MVC B4, TSCL ; writing any value enables timer

22
/* TSC_read Assembly Code*/

24 .global TSC_read

26 TSC_read:

28 RETNOP B3, 2
DINT

30 MVC TSCH, B5 ; Read the snapshot of the high half
MV B5, A5

Fig. 6. Measuring cpu cycles on the DSP

5.2 Discussion

A crucial difference between the multi-core DSP in the Keystone architectures
and other processors evaluated in this study is cache coherence. While the Intel
and ARM multi-core processors have hardware managed cache coherence proto-
cols, programs running on the multi-core DSP have to ensure cache coherence
in software. As explained in Section 3, the Keystone shared memory controller
does not ensure this memory consistency. As a result we perform flush opera-
tions at implicit and explicit synchronization points in our OpenMP runtime,
which invalidate L1 and L2 caches and write them back to main memory. In our



OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 123

Table 2. Cost of software managed cache coherency operation for DSP (cycles)

DSP (L2 = 0) 1 Thread 2 Threads 4 Threads 6 Threads 8 Threads

Hawking-DSP 1350 1355 1357 1353 1364

evaluation, we set DSP L2 cache to be 0K to minimize flush overhead. Table 2
presents operation cycle counts on Hawking DSPs averaged over 200 iterations.
This shows the cost to be roughly 1350 cycles regardless of thread count.

Results for the EPCC benchmarks are given in Figure 7. In each bar-graph the
cpu cycle overhead values are given for each platform using 1-8 OpenMP threads.
For platforms with 4 cores, only results with up to 4 threads are given.The PAR-
ALLEL construct is most fundamental, specifying the creation of an OpenMP
parallel region and spawning a team of threads. Each of the platforms in Fig-
ure 7(a) demonstrates the expected behaviour of increasing cycles overhead with
increasing number of threads. The X5650-ICC results show the least 1-thread
overhead time of 585 cycles. Not surprisingly a sharp increase is seen on the
X5650 with both the GCC and ICC compilers in going from 6-thread to 8-threads
as the last 2 threads are spawned on a different socket. The Exynos and Hawking
ARM processors show comparable overheads to the Intel platforms. Overheads
for more than 1-threads observed on the DSP are higher than Intel and ARM
platforms. However, each parallel region incorporates implicit cache-coherence
flush operations. Discounting the cost of these flush operations, performance of
the OpenMP DSP runtime is comparable to Intel and ARM processors.

The BARRIER construct is used to specify an explicit synchronization point
inside a parallel region which all threads must reach for any to progress beyond
that point. As shown in Figure 7(b), X5650-ICC performs the best among all
platforms across all thread configurations. Similar to PARALLEL overheads, the
ARM platforms have comparable times to Intel. The Hawking DSP has cycle
overheads of between 1800 and 3206. Subtracting the cost of 1 flush operation
from these yields overheads of between 450 and 1842. The latter are almost
on a par with the X5650-GCC values. The FOR construct is used to split for
loops between thread and data in Figure 7(c) and show similar patterns to those
observed for PARALLEL and BARRIER.

The STATIC constructs are used to specify compile-time scheduling of loop
iterations between threads. STATIC 1 indicates that each thread gets 1 loop iter-
ation to process at a time, while STATIC 128 gives 128 loop iterations at a time.
Figure 7(d) and 7(e) show that the DSP platforms perform significantly better
than the Intel platforms, while the ARM platforms perform the best overall. This
suggests that the chunk sizes of 1 and 128 are not ideal for the memory hierar-
chy and architecture of the Intel platforms, but are more suited for the ARM
and DSP platforms. It also shows that the DSP OpenMP runtime performs
effective static scheduling for these chunk sizes. The DYNAMIC construct is
similar to STATIC in that it partitions the scheduling of loop iterations between
threads. However, in contrast to STATIC the loop iterations are now partitioned
dynamically with the next available thread executing the next loop iteration.



124 E. Stotzer et al.

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP
0

2,000

4,000

6,000

8,000
6
9
9

5
8
5

5
4
7

1
,5

5
9

1
,9

5
4

7
7
9

1
,4

6
6

1
,3

0
2

1
,5

5
7

2
,3

4
8

3
,3

7
0

5
,9

1
0

3
,2

7
9

2
,2

0
6

1
,9

6
3 2
,4

7
3

3
,4

1
1

6
,2

5
9

2
,8

2
3

2
,4

3
5

6
,6

1
5

5
,7

4
6

4
,3

2
7

7
,1

5
6

P
A
R
A
L
L
E
L
(c
y
cl
es
)

1-thread 2-threads 4-threads

6-threads 8-threads

(a) PARALLEL

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP

1,000

2,000

3,000

4
0
9

2
9
9

3
3

7
0
7

1
,0

3
5

1
,8

0
0

4
7
1

3
9
8 5
2
6

7
3
8

1
,1

0
7

1
,9

8
6

8
5
0

6
4
4 7
3
6

7
3
6

1
,1

5
9

2
,3

3
6

8
0
7

1
,0

2
0

2
,7

8
9

2
,2

8
2

1
,6

7
8

3
,2

0
6

B
A
R
R
IE

R
(c
y
cl
es
)

1-thread 2-threads 4-threads

6-threads 8-threads

(b) BARRIER

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP

1,000

2,000

3,000

4,000

4
2
0

3
0
5

6
5

6
9
0

1
,0

5
9

2
,0

2
1

4
8
9

3
7
4 5

6
6 7
4
0

1
,1

1
9

2
,2

1
6

1
,5

2
0

6
2
6 7
6
4

7
3
8

1
,2

0
6

2
,5

6
2

7
9
8

1
,0

7
0

3
,0

1
4

2
,3

9
7

1
,7

4
9

3
,4

1
9

F
O
R

(c
y
cl
es
)

(c) FOR

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP
0

0.5

1

1.5

2

2.5

3

3.5
·105

1
.6

·1
0
3

1
.7

·1
0
3

2
.9

·1
0
3

1
.9

·1
0
4

4
.4

·1
0
4

4
.4

·1
0
4

4
·1

0
3

1
.8

·1
0
3

5
.7

·1
0
4

7
.2

·1
0
4

2
.8

·1
0
5

2
.9

·1
0
5

2
.1

·1
0
4

2
.2

·1
0
3

5
.7

·1
0
4

3
·1

0
5

3
·1

0
5

5
.8

·1
0
4

2
.7

·1
0
5

2
.8

·1
0
5

5
.8

·1
0
4S
T
A
T
IC

1
(c
y
cl
es
)

(d) STATIC 1

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP
0

0.5

1

1.5

2

2.5

3

3.5

·105

1
.8

·1
0
3

1
.3

·1
0
3

2
.9

·1
0
3

1
.3

·1
0
4

6
.3

·1
0
4

3
.9

·1
0
4

2
.9

·1
0
3

1
.4

·1
0
3

3
.6

·1
0
3

1
.7

·1
0
5

2
.5

·1
0
5

2
.5

·1
0
5

4
.6

·1
0
3

4
.2

·1
0
3

4
.1

·1
0
3

3
·1

0
5

3
·1

0
5

4
.5

·1
0
3

2
.8

·1
0
5

2
.9

·1
0
5

5
.1

·1
0
3

S
T
A
T
IC

1
2
8
(c
y
cl
es
)

(e) STATIC 128

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP
0

0.5

1

1.5

2

2.5

3

·105

2
.7

·1
0
3

4
.6

·1
0
2

2
·1

0
4

5
.5

·1
0
4

1
.8

·1
0
4

3
.9

·1
0
4

4
.4

·1
0
4

1
.3

·1
0
4

3
.1

·1
0
4

5
.6

·1
0
4

1
.1

·1
0
5

2
.5

·1
0
5

2
.5

·1
0
5

1
.5

·1
0
4

3
.2

·1
0
4

5
.7

·1
0
4

2
.6

·1
0
5

2
.6

·1
0
5

5
.8

·1
0
4

2
.2

·1
0
5

2
.3

·1
0
5

5
.9

·1
0
4

D
Y
N
A
M
IC

1
(c
y
cl
es
)

(f) DYNAMIC 1

Fig. 7. Cost comparison of OpenMP constructs in CPU cycles



OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 125

This permits load balancing when iterations give rise to variable work. Interest-
ingly the results for DYNAMIC 1 scheduling in Figure 7(f) are very similar to
those for STATIC 1.

6 Related Work

Use of TI C66X DSPs for HPC is demonstrated in [2,16,17,18]. Directive based
programming for GPU accelerators has most recently been standardized by Ope-
nACC [19] after previous implementations such as hiCUDA [20] and PGI Accel-
erator Model [21]. IBM provides an OpenMP compiler [22] and runtime library
for the Cell Broadband Engine. Extensions to OpenMP to support accelerators
were introduced in [23,24,25,14]. Various RTOSs such as SYS/BIOS [26] and
DSP/BIOS [10] have been used on the C6678 DSP. [27] provides an OpenMP
runtime using DSP/BIOS for the TI C64x DSP. A bare-metal implementation of
an OpenMP runtime for the Cradle CT3400 multi-core DSP is outlined in [28].

7 Conclusions and Future Work

We have presented our initial experiences with implementing a bare-metal
OpenMP runtime for the Keystone II C66X multi-core DSP. We addressed var-
ious challenges such as lack of memory management units and cache coher-
ence as part of our implementation process. CPU cycle overheads for various
OpenMP synchronization and scheduling constructs were measured using the
EPCC micro-benchmarks on the C66X DSP and other contemporary Intel and
ARM processors. The results demonstrated that our DSP runtime performed at
par or better than Intel and GCC OpenMP runtimes for most OpenMP con-
structs. Software managed cache coherence was acknowledged to be a limiting
factor for DSP runtime performance. Porting and evaluating the efficiency and
performance of the OpenMP accelerator dispatch construct to Keystone II is a
future work item. Evaluation of OpenMP task performance on C66X DSP and
implementation of task dispatch from ARM to DSP is of interest. Measurement
of energy efficiency and performance of various application codes using OpenMP
is also of interest.

Acknowledgements. This work is supported in part by the Australian Re-
search Council Discovery Project DP0987773. We thank Andrew Tridgell for
providing us with an the ODROID-X2 development platform.

References

1. Mitra, G., Johnston, B., Rendell, A.P., McCreath, E., Zhou, J.: Use of SIMD vector
operations to accelerate application code performance on low-powered ARM and
Intel platforms. In: Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW). IEEE (2013)



126 E. Stotzer et al.

2. Igual, F.D., Ali, M., Friedmann, A., Stotzer, E., Wentz, T., van de Geijn, R.A.:
Unleashing the high-performance and low-power of multi-core dsps for general-
purpose hpc. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, vol. 26. IEEE Computer Society
Press (2012)

3. Bull, J.M., Reid, F., McDonnell, N.: A microbenchmark suite for openMP tasks.
In: Chapman, B.M., et al. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 271–274.
Springer, Heidelberg (2012)

4. Texas Instruments Literature: SPRUGH7: TMS320C66x DSP CPU and Instruction
Set Reference Guide

5. Texas Instruments Literature: SPRS691C: TMS320C6678 Multicore Fixed and
Floating-Point Digital Signal Processor

6. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco (2003)

7. Texas Instruments Literature: SPRS866: 66AK2H12/06 Multicore DSP+ARM
Keystone II System-on-Chip (SoC)

8. Brunschen, C., Brorsson, M.: OdinMP/CCp - a portable implementation of
OpenMP for C. Concurrency - Practice and Experience 12(12), 1193–1203 (2000)

9. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An opti-
mizing, portable OpenMP compiler. In: Concurrency and Computation: Practice
and Experience, Special Issueon CPC 2006 selected papers (2006) (accepted)

10. Texas Instruments Literature: SPRU423D: DSP/BIOS user’s guide

11. Hoeflinger, J.P., de Supinski, B.R.: The openmp memory model. In: Mueller,
M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005/2006. LNCS, vol. 4315, pp. 167–177. Springer, Heidelberg (2008)

12. Lamport, L.: The parallel execution of do loops. Commun. ACM 17(2), 83–93
(1974)

13. OpenMP, A.: Openmp application program interface, v. 4.0 - rc 2 (2013)

14. Beyer, J.C., Stotzer, E.J., Hart, A., de Supinski, B.R.: OpenMP for accelerators. In:
Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011.
LNCS, vol. 6665, pp. 108–121. Springer, Heidelberg (2011)

15. Texas Instruments Literature: SPRT610: TMS320TCI6612/14 High Performance
comes to small cell base stations

16. Ali, M., Stotzer, E., Igual, F.D., van de Geijn, R.A.: Level-3 blas on the ti c6678
multi-core dsp. In: 2012 IEEE 24th International Symposium on Computer Ar-
chitecture and High Performance Computing (SBAC-PAD), pp. 179–186. IEEE
(2012)

17. Ahmad, A., Ali, M., South, F., Monroy, G.L., Adie, S.G., Shemonski, N., Carney,
P.S., Boppart, S.A.: Interferometric synthetic aperture microscopy implementation
on a floating point multi-core digital signal processer. In: SPIE BiOS, International
Society for Optics and Photonics, p. 857134 (2013)

18. Note, F.W., Van Zee, F.G., Smith, T., Igual, F.D., Smelyanskiy, M., Zhang, X.,
Kistler, M., Austel, V., Gunnels, J., Low, T.M., et al.: Implementing level-3 blas
with blis: Early experience (2013)

19. Reyes, R., Lopez, I., Fumero, J.J., de Sande, F.: Directive-based programming for
gpus: A comparative study. In: 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Con-
ference on Embedded Software and Systems (HPCC-ICESS), pp. 410–417. IEEE
(2012)



OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 127

20. Han, T.D., Abdelrahman, T.S.: hi cuda: a high-level directive-based language for
gpu programming. In: Proceedings of 2nd Workshop on General Purpose Process-
ing on Graphics Processing Units, pp. 52–61. ACM (2009)

21. Wolfe, M.: Implementing the pgi accelerator model. In: Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing Units,
pp. 43–50. ACM (2010)

22. Eichenberger, A.E., O’Brien, J.K., O’Brien, K.M., Wu, P., Chen, T., Oden, P.H.,
Prener, D.A., Shepherd, J.C., So, B., Sura, Z., et al.: Using advanced compiler
technology to exploit the performance of the cell broadband engine architecture.
IBM Systems Journal 45(1), 59–84 (2006)

23. Ayguade, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F.,
Jimenez, D., Labarta, J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Ort́ı,
E.S.: A proposal to extend the openMP tasking model for heterogeneous architec-
tures. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009.
LNCS, vol. 5568, pp. 154–167. Springer, Heidelberg (2009)

24. Cabrera, D., Martorell, X., Gaydadjiev, G., Ayguade, E., Jiménez-González, D.:
Openmp extensions for fpga accelerators. In: International Symposium on Systems,
Architectures, Modeling, and Simulation, SAMOS 2009, pp. 17–24. IEEE (2009)

25. Ayguadé, E., Badia, R.M., Bellens, P., Cabrera, D., Duran, A., Ferrer, R., Gonzàlez,
M., Igual, F., Jiménez-González, D., Labarta, J., et al.: Extending openmp to sur-
vive the heterogeneous multi-core era. International Journal of Parallel Program-
ming 38(5-6), 440–459 (2010)

26. Texas Instruments Literature: SPRUGO6A: SYS/BIOS inter-processor communi-
cation (IPC) and I/O user’s guide

27. Chapman, B., Huang, L., Biscondi, E., Stotzer, E., Shrivastava, A., Gatherer, A.:
Implementing openmp on a high performance embedded multicore mpsoc. In: IEEE
International Symposium on Parallel & Distributed Processing, IPDPS 2009, pp.
1–8. IEEE (2009)

28. Jeun, W.C., Ha, S.: Effective openmp implementation and translation for multi-
processor system-on-chip without using os. In: Proceedings of the 2007 Asia and
South Pacific Design Automation Conference, pp. 44–49. IEEE Computer Society
(2007)


	OpenMP on the Low-Power TI Keystone IIARM/DSP System-on-Chip
	1 Introduction
	2 TI Keystone Overview
	2.1 C66x DSP Core
	2.2 C6678 ’Shannon’ System-on-Chip
	2.3 66AK2H12 ’Hawking’ System-on-Chip

	3 Bare-Metal Implementation of OpenMP on C66X DSP
	3.1 Memory Model
	3.2 Parallel Regions
	3.3 Synchronization

	4 ARM to DSP OpenMP Dispatch
	5 Evaluation Using Micro-benchmarks
	5.1 Compilers and Tools
	5.2 Discussion

	6 Related Work
	7 Conclusions and Future Work
	References




