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Abstract. Different types of shared memory machines with large core counts
exist today. Standard x86-based servers are build with up to eight sockets per
machine. To obtain larger machines, some companies, like SGI or Bull, invented
special interconnects to couple a bunch of small servers into one larger SMP,
Scalemp uses a special software layer on top of a standard cluster for the same
purpose. There is also a trend to couple many small and simple cores into one
chip, like in the Intel Xeon Phi chip. In this work we want to highlight differ-
ent performance attributes of these machine types. Therefor we use some kernel
benchmarks to look at basic performance characteristics and we compare the per-
formance for real application codes. We will show different scaling behaviors for
the applications which we explain with the use of the kernel benchmarks used
before.

1 Introduction

OpenMP is probably the most widely used paradigm for shared memory parallelization
in high performance computing. It is often said to be easy to use and in fact it is often
easy to get a first loop parallel version of an application, but getting good performance
is often more difficult due to the complex design of large shared memory machines. Es-
pecially for a larger number of threads good scaling can in many cases only be achieved
if the underlying hardware is taken into account.

Hardware vendors have established different types of shared memory machines.
Standard servers, based on x86 processors exist with up to 8 sockets in a single ma-
chine. E.g. SGI and Bull invented a special interconnect to combine smaller two or four
socket machines into one larger shared memory machines. Scalemp provides a software
layer, called vSMP foundation, to couple several servers with a standard Infiniband net-
work into one machine running a single OS instance. A different approach to provide
the ability to run hundreds of threads is used in Intel’s new Many Integrated Core archi-
tecture. Here, a lot of small and simple cores are combined in one single chip. The first
product in this architecture line is the Intel Xeon Phi coprocessor. The Xeon Phi chip
resides in a PCIe extension card and can on the one hand be used as an accelerator to
speedup applications and on the other hand it is able to execute standalone executables,
since it runs a full operating system instance.

Given this variety of different machines, it is hard for a programmer to choose the ap-
propriate machine for his application. It is also difficult for computing centers to decide
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on a machine type when a new machine is going to be purchased. Since, it is often hard
to get excess to all these machine types to try out the performance on a given applica-
tion, we want to present a comparison of the basic differences of these machine types.
We investigate performance attributes on a standard 8 socket HP server, a SGI Altix
ultraviolet, a Bull BCS machine, which both use a special network to couple smaller
machines into a larger single system, a Scalemp machine which uses a software for the
same purpose and a Xeon Phi extension card which can run a lot of threads on one
single chip. We will look at basic characteristics of the memory subsystem, investigate
the influence of memory allocation and initialization and run several applications on all
platforms to highlight relevant differences between these machines.

The rest of this paper is structured as follows: First, we present related work in sec-
tion 2 and describe the systems used in section 3. Then, we look at basic performance
relevant attributes by means of kernel benchmarks in section 4, before we compare the
performance of applications in section 5. After all, we draw our final conclusions in
section 6.

2 Related Work

Comparing the performance of shared memory machines is subject to investigations
for many years. Many benchmarks or benchmark suites exist to investigate attributes
of standard machines. The Stream benchmark [7] for example is widely used to mea-
sure the memory bandwidth of a machine and the LMbench benchmark suite [8] offers
kernels to measure certain operating system and machine properties. Other benchmarks
like the EPCC benchmark [4] concentrate on the performance of the OpenMP runtime,
which of course is essential for the scalability of OpenMP applications.

Besides these very basic benchmarks which can give a good indication on specific
machine or software attributes, also application benchmarks exist. The SPEC OMP
Benchmark Suite [1] delivers a collection of representative OpenMP applications. Other
benchmark suites like the Barcelona OpenMP Task Suite [5] or the NAS parallel bench-
marks [2], contain relevant application kernels. These benchmarks can be used to com-
pare the performance of different architectures for representative application codes.

These projects focus on the benchmark techniques, also they provide reference re-
sults for several architectures. In this work we will focus more on the differences of the
architecture, also we reuse some of the ideas provided in the benchmarks mentioned
above.

3 Architecture Description

3.1 HP ProLiant

The HP ProLiant DL980 G7 server used for our experiments is a single server equipped
with eight Intel Xeon X6550 processors. All processors are clocked at 2 GHz and con-
nected to each other through the Intel Quick Path interconnect. Every processor contains
a memory controller attached to 32 GB of main memory, making this server a ccNUMA
machine with a total of 256 GB of memory.
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3.2 SGI Altix UltraViolet

The SGI Altix UV system consists of several two socket boards, each equipped with
two Intel Xeon E7- 4870 10-core processors clocked at 2.4 GHz. All of these boards are
connected with SGIs NUMALink interconnect into a single shared memory machine.
Since on one board the cache-coherence is established directly over the QPI, whereas
the NUMALink network is needed for different board, this machine is a hierarchical
NUMA machine, with different cache-coherency mechanisms on different hierarchical
levels. The total machine used in our tests has 2080 cores and about 2 TB of main
memory. All of our tests were done on up to 16 processors during batch operation of the
system. For a better comparison with the 8-core processors used in the other systems,
all tests were done using only eight of the ten available cores on each socket.

3.3 BCS

The BCS system consists of four bullx s6010 boards. Each board is equipped with four
Intel Xeon X7550 processors and 64 GB of main memory. The Intel Quick Path Inter-
connect combines the four sockets to a single system and the Bull Coherence Switch
(BCS) technology is used to extents the QPI to combine four of those boards into one
SMP machine with 128 cores and 256 GB of main memory. So, this system is also a
hierarchical NUMA system.

3.4 Scalemp

The Scalemp machine investigated here consists of 16 boards, each board is also
equipped with four Intel Xeon X7550 processors clocked at 2 GHz and 256 GB of
main memory. The boards are connected via a 4x QDR InfiniBand network, where ev-
ery board is connected via two HCAs. Thus, from a hardware point of view this is an
ordinary (small) cluster. The innovative part of the machine is the vSMP software of the
company Scalemp, which runs below the operating system and creates a Single System
Image on top of the described hardware. The virtualization layer of the processors and
the InfiniBand network is used by the vSMP software to create cache-coherency on a
per page basis and to allow remote memory access between all the boards. A parti-
tion of the main memory is reserved by the vSMP software to run different caching
and prefetching mechanisms automatically in the background, as well as a page-based
memory migration mechanism. These mechanisms do not only move pages on access,
they can also adjust the home node of memory pages if frequently used on a remote
node. This is a notable difference to standard x86-based non-uniform memory architec-
tures (NUMA), like the Altix or BCS machine, where page migration needs to be done
by the user, if possible at all. From a user point of view the machine looks like a single
Linux machine with 64 eight-core processors and about 3.7 TB of main memory. About
300 GB of the available memory are used by the vSMP software internally for caching.
Linux sees 64 NUMA nodes, each containing about 64 GB of main memory.

3.5 Intel Xeon Phi

The Intel Xeon Phi coprocessor is based on the concepts of the Intel Architecture
(IA) and provides a shared-memory many-core CPU that is packed on a PCI Express
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extension card. The version used here has 60 cores clocked at 1.053 GHz and offers full
cache coherency across all cores with 8 GB of GDDR5 memory. A ring network con-
nects all cores with each other and with memory and I/O devices. Every core supports
4-way Hyperthreading, which allows the system to run up to 240 threads in parallel.
The comparably small amount of main memory is attached to the Xeon Phi Chip as one
NUMA node. Thus, the system is a 240-way parallel system with a uniform memory
architecture, which is another difference to the other machines with are large NUMA
systems.

The Xeon Phi card used in out experiments was plugged into a host system with
two Intel Xeon E5 processors. For all of our experiments we used the host system only
to cross compile the executables, which were copied and executed stand-alone on the
Xeon Phi. This procedure gives us insight in the performance attributes of the chip, in-
dependent from the programming model used. Of course comparing one extension card
with complete systems is an uneven comparison, but for sure we will see standalone
systems with hundreds of cores in the near future and the Phi might give evidence on
the behavior of such systems.

4 Performance Characteristics

Before we look into the performance of application codes, it is useful to understand in
detail the differences of the investigated architectures. We use several benchmarks to
highlight certain properties of the machines.

4.1 Serial Memory Bandwidth

Many scientific applications are limited by the memory bottleneck in modern systems.
Therefore, the memory bandwidth is the most important factor for these applications.

We measured the read and write bandwidth with one thread on these machines. Since
the trends for read and write bandwidth were nearly identical with the only difference
that the write bandwidth was slightly slower on all machines, we concentrate on the
write bandwidth during the following discussion. The simple benchmark writes a single
value to an array of a given size several times and calculates the reached bandwidth. On
the NUMA machines, i.e. HP, Altix, BCS and Scalemp, we measured the bandwidth to
NUMA nodes on all NUMA levels (local, on the same board and on a remote board).
We used the numactl tool provided by Linux to influence the used core and NUMA
node. On the Xeon Phi machine only one NUMA level exists, so the placement was not
varied here.

Figure 1 illustrates the reached write bandwidths for increasing memory footprints.
On all machines we can see a typical cache behavior. For very small data sizes the
bandwidth is poor, since complete cache lines need to be written. Then the bandwidth
rises for memory sizes that fit into the caches. On the Xeon Phi a peak of 4 GB/s is
reach, on the other systems a bandwidth of about 14-18 GB/s is achieved. When the
memory sizes exceed the capacity of the last level caches, the memory bandwidth drops
down significantly. On the Xeon Phi system the Standard curve displays the band-
width reached, when the code was just cross compiled for the system. The Intel Com-
piler allows to provide a switch to insert software prefetch instructions into the binary.
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Fig. 1. Write Bandwidth in GB/s of the HP, Altix, BCS, Scalemp and Xeon Phi system for differ-
ent memory footprints

The downside of this approach is, that the user needs to specify exactly the range that
should be prefetched. When we instruct the Compiler to prefetch 64 elements ahead for
the L2 cache and 8 for the L1 cache, we can improve the reached bandwidth for writing
as depicted by the SW-prefetching line. These results show, that no temporal store
operations are used by the compiler and that all cachelines are first read before they
are written, so prefetching can have a positive effect. Here, nearly the full L2 cache
bandwidth can be reached for arbitrary data sizes, as long as they fit into the 8 GB of
memory.

On the other systems these switches did not work. On these systems we observe a
bandwidth reduction to about 4-5 GB/s if the memory is located in the local NUMA
node and to about 3 GB/s if a NUMA node on the same board is used. If the memory is
located on a different board, we can observe an interesting difference between the Altix
and BCS machine on the one hand and the Scalemp machine on the other hand. The
bandwidth on Altix and BCS descents to 0.5 GB/s whereas it stays at 3 GB/s on the
Scalemp machine. The reason therefor is, the caching inside of the vSMP software. The
memory pages can be kept in a board local cache and thus only data on the local board
is affected by the benchmark. This mechanism can help to achieve a good data locality,
even if the data is spread across the system and no memory migration is performed by
the user.

4.2 Distance Matrix

Of course the remote bandwidth to different sockets depends on the distance of the
sockets and the used interconnect. In [10] we described a way to measure and present
the distance between sockets in a distance matrix. Basically, we measure the bandwidth
between all sockets and scale the matrix in a way that the upper left element has the
value 10 and the others are scaled in a way that decreasing bandwidth between two
sockets results in increasing distance. Figure 2 shows the distance matrices for the HP
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and BCS machine. For the ScaleMP and Altix machine the tests were not possible, since
we could not get the machine exclusively and on the Phi machine the measurements are
useless, since only one socket exists.

Socket 0 1 2 3 4 5 6 7 
0 10 10 17 13 18 18 18 18 
1 10 10 17 13 18 18 18 18 
2 17 17 10 11 18 18 18 18 
3 17 17 10 11 19 19 18 18 
4 18 18 18 18 10 10 17 17 
5 18 18 18 18 10 10 17 17 
6 18 18 18 18 17 17 10 10 
7 18 19 18 18 17 17 10 9 

Socket 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 10 13 13 13 57 57 57 57 59 59 59 59 59 57 57 57 
1 13 10 13 13 56 55 56 56 56 56 56 55 55 56 56 55 
2 14 13 10 13 58 58 58 58 56 56 56 56 58 58 58 58 
3 13 13 13 10 56 55 56 55 56 56 56 55 56 55 56 55 
4 56 56 56 56 10 13 13 13 56 56 56 57 58 58 58 58 
5 55 55 55 55 13 10 13 13 55 55 55 55 56 56 56 55 
6 58 58 58 59 13 13 10 13 58 58 58 58 56 56 56 57 
7 56 55 56 55 13 13 13 10 56 56 56 56 56 56 56 56 
8 58 58 58 58 56 57 56 56 10 13 13 13 56 56 56 56 
9 56 56 55 55 55 55 55 55 13 10 13 13 55 55 56 55 

10 56 56 56 56 58 58 58 58 13 13 10 13 58 58 58 58 
11 56 56 56 55 56 56 56 55 13 13 13 10 56 56 56 56 
12 56 56 56 56 58 58 58 58 56 57 56 56 10 13 13 13 
13 55 55 55 55 56 56 55 55 56 55 55 55 13 10 13 13 
14 58 58 58 58 56 56 56 56 58 58 58 58 13 13 10 13 
15 56 56 56 56 56 56 56 56 56 56 56 56 13 13 13 10 

Fig. 2. Distance matrix of the HP (left) and the BCS system (right). The matrix is scaled such that
the upper left value is always ten, larger numbers indicate higher distances.

Obviously, there are differences between both systems. On the HP board there are
always two sockets which seem to be connected very fast, whereas the other sockets
have distances between 17 - 19. On the BCS system all accesses on one board are
between 10 and 13, which is faster than most of the connections on the one HP board.
All connections using the BCS chip, are significantly slower, here a distance of 55 - 59
is reached. So, the BCS machine can provide cache coherence over a larger number of
cores, but some performance regressions comes along with this.

4.3 Parallel Memory Bandwidth

Parallel applications of course use more than one core at a time. Thus, the total band-
width for a parallel application is important. We modified the benchmark from section
4.1 to work with several threads on an array and measure the read and write bandwidth.
We use a compact thread binding on all of the machines. So, we first fill up cores and
sockets with the maximum number of threads, before we use the next core or socket.

Figure 3 shows the bandwidth for an increasing number of threads on the different
platforms for a memory footprint of 16 MB per thread. On the Intel Xeon Phi ma-
chine the maximum bandwidth of about 130 GB/s for reading and 60 GB/s for writing
can be achieved with about 120 threads. Beyond this, the bandwidth stagnates. On the
NUMA systems the bandwidth rises with the number of sockets used and does not stag-
nate at all. Here, the read bandwidth is higher than the write bandwidth available for
all systems. Noticeable is, that the BCS machine reaches an 5-10 % higher maximum
bandwidth compared to the Scalemp machine, also the same underlying hardware is
used. The reason therefor is the vSMP software layer which inserts a slight overhead
for memory management and leads to a small reduction in the available bandwidth.

4.4 Memory Go Around

The parallel bandwidth measured before is the optimal bandwidth that is reached, when
all threads work on their own data. In many algorithms, some data sharing is required
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Fig. 3. Parallel read and write bandwidth on the HP, Altix, BCS, Scalemp and Xeon Phi systems
for an increasing number of threads

which leads to a certain amount of necessary remote accesses. To investigate the drop
down in the reached bandwidth with remote accesses, we modified the bandwidth
benchmark in a way, that it no longer works only on local data.

The modified benchmark, we call it memory go around, works in n+1 steps for
n threads. In step zero, every thread initializes its own data and measures the memory
bandwidth to access it. In step one, all threads work on the data of their right neighbor,
so thread t works on memory initialized by thread (t+ 1)mod (n− 1), as exemplified
in figure 4. As before, we place threads in a way that neighboring threads are as close
as possible to each other, meaning that there is a high chance that they run on the same
NUMA node or board. Hence, the number of remote memory accesses rises for the first
n/2 steps. Then the number shrinks again. In step n − 1 every thread works on the
memory of the left neighbor and in step n again only local accesses occur.

Figure 5 shows the result for 64 Threads on the HP, 120 threads on the Xeon Phi
and for 128 threads on the Altix, BCS and Scalemp machine. Since the Xeon Phi ma-
chine has only one NUMA node, the data is always stored on this NUMA node and the
reached bandwidth is the same in all steps, about 130 GB/s. On the other machine the
bandwidth declines for the first half of the steps and then rises up again. Of course this
is related to the increasing number of remote accesses and the increasing distance be-
tween these accesses. On the HP system, the performance drops down from about 120
to 60 GB/s. So, with maximum traffic over the QPI bus, still 50% of the peak bandwidth
can be reached. On the Altix and BCS machine the drop down is from about 250 to 18
or 8 GB/s which is 6% or 3% of the available maximum bandwidth. On the Scalemp
the drop down is even higher, here only 0.5 GB/s are reached, which means roughly
0.2% of the maximum bandwidth. Overall, the bandwidth goes down on all hierarchi-
cal NUMA machines (Altix, BCS and Scalemp) significantly, this is one of the biggest
differences in comparison to single systems with one level of NUMAness, like the HP
machine. However, if an application does not require a lot of data sharing between the
threads, proper data placement can avoid these problems.



Performance Characteristics of Large SMP Machines 65

 
 
 
 
 

Socket 1 

 
 
 
 
 

Socket 0 

T0 T1 T2 T3 T4 

M0 M1 M2 M3 M4 

T4 

M4 

 
 
 
 
 

Socket 1 

 
 
 
 
 

Socket 0 

T0 T1 T2 T3 T4 

M0 M1 M2 M3 M4 

T4 

M4 

Step 0 

Step 1 

 
 
 
 
 

Socket 1 

 
 
 
 
 

Socket 0 

T0 T1 T2 T3 T4 

M0 M1 M2 M3 M4 

T4 

M4 
Step 3 

 
 
 
 
 

Socket 1 

 
 
 
 
 

Socket 0 

T0 T1 T2 T3 T4 

M0 M1 M2 M3 M4 

T4 

M4 
Step n -1 

 
 
 
 
 

Socket 1 

 
 
 
 
 

Socket 0 

T0 T1 T2 T3 T4 

M0 M1 M2 M3 M4 

T4 

M4 
Step n 

… 

Fig. 4. The memory go around benchmark forks in n+1 steps. In the first step the memory of
the right neighbour is used to measure the bandwidth, in the next step the memory of the next
neighbour and so on. This increases the distance between thread and memory in every step, until
half of the steps are done, then the distance decreases until it reaches zero in the last step.

4.5 Synchronization Overhead

Besides the memory bandwidth, locks are often critical for the performance of an ap-
plication on larger shared memory systems. Locks can occur explicitly, like calls to
omp set lock, or they can happen inside of other calls, e.g. a call to malloc re-
quires synchronization. We measured the overhead of these two mentioned routines.
The results are shown in the left part of table 1 for all investigated systems. For mem-
ory allocation the Intel OpenMP runtime provides a version of malloc which is op-
timized for multithreading, called kmp malloc. We investigated this version as well,
the results are shown in the bottom right part of the table.

To measure the overhead of explicit locks we used the syncbench out of the EPCC
microbenchmarks [4]. Our malloc test calls malloc or kmp malloc on all threads
simultaneously 1000 times and computes the average duration of one call. The overhead
of OpenMP Locks increases with the number of threads involved on all platforms. On
the HP, Altix, BCS and Scalemp machine it is nearly the same, as long as only a small
number of threads is involved, but for 64 and 128 threads the overhead rises more
drastically on the Scalemp machine, where the maximum is about 35 microseconds,
what is high compared to the 1 - 3 microseconds on the other machine. On the Xeon
Phi system, the overhead for 120 threads is nearly the same on the other hardware
based systems. However, the overhead with one thread is higher, due to the slower
serial threads. Overall, the ratio between serial and parallel execution is advantageous
on the Phi system. The overhead for a lock goes up for a factor of 5 for 120 threads (0.4
to 2 microseconds) whereas for example it goes up by a factor of about 27 on the BCS
system (0.06 to 1.64). This means, that the scaling of lock based applications on the Phi
is better than on the other system.

For the malloc calls, the overhead rises much faster with the number of threads
on all systems, than for the OpenMP locks. E.g on the Altix machine it starts at 3
microseconds and goes up to about 20,000. On the other machines the behavior is nearly
the same for a large number of threads.
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on the HP, Altix, BCS, Scalemp and Xeon Phi system

The kmp malloc calls introduce less overhead on most of the machines. On the
Scalemp machine the overhead is smaller for a medium number of threads, but higher
for 128 threads compared to ordinarymalloc calls. On the Xeon Phi machine the over-
head is significantly higher for all numbers of threads, e.g. with 175,641 microseconds
compared to 26,603 for 120 threads.

Another point where synchronization might be needed, which is not always obvious
to the programmer is, when data is initialized. The operating system needs to establish
a unique mapping between virtual and physical addresses which might require lock.
Therefor we implemented a test which initializes 2 GB of data and measures the band-
width reached during initialization. Table 1 in the upper right part shows the reached
bandwidth on all systems. Noticeable is, that the bandwidth rises on all systems for a
small numbers of threads. Of course this is due to the higher memory bandwidth which
seems to be the bottleneck for only a few threads. On the HP, Altix and BCS machine
the bandwidth goes up until the end of 64 / 128 threads is reached. However, on the
Scalemp machine the bandwidth drops down as soon as more than 32 threads are in-
volved, meaning as soon as more than one physical board is used. The overhead of the
vSMP software seems to slow down the initialization of memory whereas the hardware
based solution in the HP, Altix and BCS system does not. On the Phi system, the band-
width goes slightly down for 120 threads. However, we have seen before, that the total
memory bandwidth also goes down at the end, so this is not a surprise here.

Overall, the overhead for locking seems to work better on the hardware based solu-
tions. The vSMP software seems to introduce a significant overhead, so it is much more
important to avoid extensive synchronization, e.g. though many malloc calls, on the
Scalemp machine.

5 Application Case Studies

Finally, we want to look at the performance of two applications from the RWTH Aachen
University and compare the results on the different systems.
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Table 1. Overhead of OpenMP locks, calls to malloc and calls to kmp malloc on the investigated
machines were measured in microseconds and initialization times to initialize 2 GB of data was
measured in GB/s. 30, 60 and 120 threads were used on the Xeon Phi, 32,46 and 128 on the other
machines.

OMP Locks Initialization
#Threads HP ALTIX BCS SCMP PHI HP ALTIX BCS SCMP PHI

1 0.03 0.05 0.06 0.07 0.40 1.42 1.38 1.31 1.15 0.67
32/30 0.97 3.29 0.62 0.99 1.77 16.70 18.30 18.36 15.07 17.73
64/60 1.07 3.72 1.04 24.36 1.94 32.93 33.70 34.24 4.86 23.12

128/120 2.99 1.64 35.78 2.01 72.10 67.98 3.63 19.32
malloc kmp malloc

#Threads HP ALTIX BCS SCMP PHI HP ALTIX BCS SCMP PHI
1 3.61 3.46 4.30 63.64 15.27 3.04 2.60 3.63 45 981

32/30 6075 5146 4902 6887 11023 411 558 530 546 37211
64/60 12470 10473 14007 13882 19807 1476 2646 2786 12260 88717

128/120 21030 29552 28702 26603 11742 12958 54959 175641

5.1 NestedCP

NestedCP [6] is developed at the Virtual Reality Group of the RWTH Aachen Univer-
sity and is used to extract critical points in unsteady flow field datasets. Critical points
are essential parts of the velocity field topologies and extracting them helps to interac-
tively visualize the data in virtual environments.
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Fig. 6. Peformance and Speedup of the NestedCP code

Figure 6 shows the runtime and speedup of NestedCP on all platforms. We used
a code version parallelized with OpenMP tasks for our experiments. Apparently the
runtime of the Code on the Xeon Phi is significantly slower than on the other systems.
This is due to the slower clockrate and the simple structure of the cores. However, the
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scalability is best on the Xeon Phi system. With 240 threads a speedup of about 90
can be reached. On the BCS system, a speedup of 45 can be observed for 64 threads.
On the HP system and the Altix machine, a slightly worse speedup can be observed.
This is due to the slightly better single threaded runtime on these systems. But, on
the HP and Altix machine, the code scales until 60 or 128 threads are used, whereas
the performance slightly drops down on the BCS machine at the end. On the Scalemp
machine the scalability is much worse. Here, the performance rises as long as only one
board is used and drops down significantly with 64 and 128 threads.

This behavior is exactly what we have seen for the synchronization mechanisms on
the mentioned machines. The Xeon Phi system has the worst serial performance but a
better scaling behavior than the other machines. The HP system provides a good scaling
behavior. On the Altix and BCS system the performance goes down, when more than
one board is used, but not as significant as on the Scalemp machine. Our assumption
is, that the NestedCP code is limited by locking routines and therefore the mentioned
scaling behavior is observed.

5.2 TrajSearch

The second code investigated here is TrajSearch. TrajSearch is a code to investigate
turbulences which occur during combustion. It is a post-processing code for dissipation
element analysis developed by Peters and Wang [9] from the Institute for Combustion
Technology at the RWTH Aachen University. It decomposes a highly resolved 3D tur-
bulent flow field obtained by Direct Numerical Simulation (DNS) into non-arbitrary,
space-filling and non-overlapping geometrical elements called ’dissipation elements’.
Starting from every grid point in the direction of ascending and descending gradient of
an underlaying diffusion controlled scalar field, the local maximum and minimum point
are found. A dissipation element is defined as a volume from which all trajectories reach
the same minimum and maximum point.
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Fig. 7. Runtime and scaleability of the TrajSearch code on the Altix, BCS and Scalemp machine
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We reduced locking and optimized the data placement of this code to gain good
performance on the Scalemp machine, see [3] for details. Figure 7 shows the runtime
and performance of TrajSearch on the Altix, BCS and Scalemp machine. The memory
available for the Xeon Phi did not suffice to store the dataset, so the Phi system is not
taken into account for this comparison and the HP machine was not available for a time
slot large enough to do this tests. Although the code was optimized for the Scalemp
system, it scales slightly better on the Altix and BCS machine. It reaches a speedup of
about 127 on the Altix and BCS and about 110 on the Scalemp machine for 128 threads.
This indicates, that the tuning steps done for the Scalemp machine were also useful for
the Altix and BCS machine. However, the code reaches a noticeable speedup, even on
the Scalemp machine, which makes all three machines suitable for execution.

6 Conclusion

We investigated performance attributes of several large SMP systems. One standard 8-
socket server from HP, an SGI Altix UV, a system based on the Bull Coherence Switch,
a Scalemp system and the Intel Xeon Phi chip. We showed, differences in the memory
bandwidth on all systems, e.g. when the vSMP software cache has positive influence.
Furthermore we investigated the performance influence of remote accesses with the help
of the memory go around benchmark. The benchmark showed, that the negative
influence is significantly higher on the Altix, BCS and Scalemp machine than on the
HP server and that there is no influence on the Xeon Phi system. Synchronization and
locks had a bad influence on all systems, when the number of threads rises. On the
Xeon Phi the best ratio of locking overhead between serial and parallel execution could
be observed.

This behavior was also reflected in the NestedCP code, where we observed a good
scaling on the HP and Xeon Phi, a slightly worse scaling on the Altix and BCS and a
bad scaling on the Scalemp machine. However, the TrajSearch code investigated at the
end scaled well on all investigated systems, the Altix, the BCS and the Scalemp system.

Overall, if a code is optimized and does not need many locking routines, it can per-
form well on all investigated systems. If locking or remote accesses cannot be avoided,
there is a high chance that a code scales best on the Phi system, followed by the one level
NUMA machine and then followed by the hierarchical NUMA machines. However,
non-hierarchical NUMA machines are typically limited to 8 sockets or less, whereas
the hierarchical machines allow the use of 16 sockets in case of the BCS machine and
several hundred sockets for the Altix UV and the ScaleMP machine. So, if the appli-
cation scales well hierarchical NUMA machines offer an tremendous amount of shared
memory compute resources.

Of course the scaling behavior of a system is important for the application perfor-
mance, but the single core performance is equally important for the overall runtime.
All investigated systems besides the Xeon Phi system use comparable Xeon Processors
which deliver nearly the same single thread performance, so the differences in scaling
directly reflect the overall performance. On the Xeon Phi the single thread performance
is worse compared to the Xeon based systems, so the overall runtime of an application
might still be worse on this system, even if it scales well.
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