
Alistair P. Rendell
Barbara M. Chapman
Matthias S. Müller (Eds.)

 123

LN
CS

 8
12

2

9th International Workshop on OpenMP, IWOMP 2013
Canberra, ACT, Australia, September 2013
Proceedings

OpenMP in the Era
of Low Power Devices
and Accelerators

Lecture Notes in Computer Science 8122
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Alistair P. Rendell Barbara M. Chapman
Matthias S. Müller (Eds.)

OpenMP in the Era
of Low Power Devices
and Accelerators
9th International Workshop on OpenMP, IWOMP 2013
Canberra, ACT, Australia, September 16-18, 2013
Proceedings

13

Volume Editors

Alistair P. Rendell
Australian National University
Research School of Computer Science
Bldg 108, North Road, 0200 Canberra, ACT, Australia
E-mail: alistair.rendell@anu.edu.au

Barbara M. Chapman
University of Houston
Department of Computer Science
4800 Calhoun Road, Houston, TX 77204, USA
E-mail: chapman@cs.uh.edu

Matthias S. Müller
RWTH Aachen University
Lehrstuhl für Hochleistungsrechnen und Rechen- und Kommunikationszentrum
Seffenter Weg 23, 52074 Aachen, Germany
E-mail: mueller@rz.rwth-aachen.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40697-3 e-ISBN 978-3-642-40698-0
DOI 10.1007/978-3-642-40698-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946472

CR Subject Classification (1998): C.1, D.1, F.2, D.4, C.3, C.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

OpenMP is a widely accepted, standard application programming interface (API)
for high-level shared-memory parallel programming in Fortran, C, and C++.
Since its introduction in 1997, OpenMP has gained support from most high-
performance compiler and hardware vendors. Under the direction of the OpenMP
Architecture Review Board (ARB), the OpenMP specification has evolved up
to the upcoming release of version 4.0. This version will include several new
features like accelerator support for heterogeneous hardware environments, an
enhanced tasking model, user-defined reductions and thread affinity to support
binding for performance improvements on non-uniform memory architectures.

The evolution of the standard would be impossible without active research
in OpenMP compilers, runtime systems, tools, and environments. OpenMP is
both an important programming model for single multicore processors and as
part of a hybrid programming model for massively parallel, distributed memory
systems built from multicore or manycore processors. In fact, most of the growth
in parallelism of the upcoming Exascale systems is expected to be coming from
an increased parallelism within a node. OpenMP offers important features that
can improve the scalability of applications on such systems.

The community of OpenMP researchers and developers in academia and
industry is united under cOMPunity (www.compunity.org). This organization
has held workshops on OpenMP around the world since 1999: the European
Workshop on OpenMP (EWOMP), the North American Workshop on OpenMP
Applications and Tools (WOMPAT), and the Asian Workshop on OpenMP
Experiences and Implementation (WOMPEI) attracted annual audiences from
academia and industry. The International Workshop on OpenMP (IWOMP)
consolidated these three workshop series into a single annual international event
that rotates across Asia, Europe, and America. The first IWOMP workshop was
organized under the auspices of cOMPunity. Since that workshop, the IWOMP
Steering Committee has organized these events and guided the development of
the series. The first IWOMP meeting was held in 2005, in Eugene, Oregon, USA.
Since then, meetings have been held each year, in Reims, France, Beijing, China,
West Lafayette, USA, Dresden, Germany, Tsukuba, Japan, Chicago, USA, and
Rome, Italy. Each workshop has drawn participants from research and industry
throughout the world. IWOMP 2013 continued the series with technical papers,
tutorials, and OpenMP status reports. The IWOMP meetings have been suc-
cessful in large part due to the generous support from numerous sponsors.

The cOMPunity website (www.compunity.org) provides access to the talks
given at the meetings and to photos of the activities. The IWOMP website

VI Preface

(www.iwomp.org) provides information on the latest event. This book contains
proceedings of IWOMP 2013. The workshop program included 14 technical pa-
pers, 2 keynote talks, a tutorial on OpenMP and a report of the OpenMP Lan-
guage Committee about the latest developments of OpenMP. All technical pa-
pers were peer reviewed by at least three different members of the Program
Committee.

September 2013 Alistair P. Rendell
Barbara M. Chapman

Matthias S. Müller

Organization

Program and Organizing Chair

Alistair Rendell Australian National University, Australia

Program Co-chairs

Matthias Müller RWTH Aachen University, Germany
Barbara Chapman University of Houston, USA

Tutorials Chair

Ruud van der Pas Oracle America, USA

Local Organizing Committee

Eric McCreath Australian National University, Australia
Josh Milthorpe Australian National University, Australia
Alistair Rendell Australian National University, Australia

Program Committee

Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé Barcelona Supercomputing Center, Spain
Mark Bull EPCC, UK
Nawal Copty Oracle America, USA
Rudi Eigenmann Purdue University, USA
Larry Meadows Intel, USA
Alistair Rendell Australian National University, Australia
Bronis R. de Supinski NNSA ASC, LLNL, USA
Mitsuhisa Sato University of Tsukuba, Japan
Christian Terboven RWTH Aachen University, Germany
Ruud van der Pas Oracle America, USA
Michael Wong IBM, Canada

Steering Committee Chair

Matthias S. Müller RWTH Aachen University, Germany

VIII Organization

Steering Committee

Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé BSC/UPC, Spain
Mark Bull EPCC, UK
Barbara M. Chapman University of Houston, USA
Rudolf Eigenmann Purdue University, USA
Guang R. Gao University of Delaware, USA
William Gropp University of Illinois, USA
Ricky Kendall Oak Ridge National Laboratory, USA
Michael Krajecki University of Reims, France
Rick Kufrin NCSA/Univerity of Illinois, USA
Kalyan Kumaran Argonne National Laboratory, USA
Federico Massaioli CASPUR, Italy
Larry Meadows Intel, USA
Arnaud Renard University of Reims, France
Mitsuhisa Sato University of Tsukuba, Japan
Sanjiv Shah Intel, USA
Bronis R. de Supinski NNSA ASC, LLNL, USA
Ruud van der Pas Oracle America, USA
Matthijs van Waveren Fujitsu, France
Michael Wong IBM, Canada
Weimin Zheng Tsinghua University, China

Table of Contents

Proposed Extensions to OpenMP

A Proposal for Task-Generating Loops in OpenMP 1
Xavier Teruel, Michael Klemm, Kelvin Li, Xavier Martorell,
Stephen L. Olivier, and Christian Terboven

Using OpenMP under Android . 15
Vikas, Travis Scott, Nasser Giacaman, and Oliver Sinnen

Expressing DOACROSS Loop Dependences in OpenMP 30
Jun Shirako, Priya Unnikrishnan, Sanjay Chatterjee, Kelvin Li, and
Vivek Sarkar

Applications

Manycore Parallelism through OpenMP: High-Performance Scientific
Computing with Xeon Phi . 45

James Barker and Josh Bowden

Performance Characteristics of Large SMP Machines 58
Dirk Schmidl, Dieter an Mey, and Matthias S. Müller

Evaluating OpenMP Tasking at Scale for the Computation of Graph
Hyperbolicity . 71

Aaron B. Adcock, Blair D. Sullivan, Oscar R. Hernandez, and
Michael W. Mahoney

Accelerators

Early Experiences With the OpenMP Accelerator Model 84
Chunhua Liao, Yonghong Yan, Bronis R. de Supinski,
Daniel J. Quinlan, and Barbara Chapman

An OpenMP* Barrier Using SIMD Instructions for Intel R© Xeon PhiTM

Coprocessor . 99
Diego Caballero, Alejandro Duran, and Xavier Martorell

OpenMP on the Low-Power TI Keystone II ARM/DSP
System-on-Chip . 114

Eric Stotzer, Ajay Jayaraj, Murtaza Ali, Arnon Friedmann,
Gaurav Mitra, Alistair P. Rendell, and Théa-Martine Gauthier

X Table of Contents

Scheduling

A Prototype Implementation of OpenMP Task Dependency Support . . . 128
Priyanka Ghosh, Yonghong Yan, Deepak Eachempati, and
Barbara Chapman

An Efficient OpenMP Loop Scheduler for Irregular Applications on
Large-Scale NUMA Machines . 141

Marie Durand, François Broquedis, Thierry Gautier, and
Bruno Raffin

Locality-Aware Task Scheduling and Data Distribution on NUMA
Systems . 156

Ananya Muddukrishna, Peter A. Jonsson, Vladimir Vlassov, and
Mats Brorsson

Tools

OMPT: An OpenMP Tools Application Programming Interface for
Performance Analysis . 171

Alexandre E. Eichenberger, John Mellor-Crummey, Martin Schulz,
Michael Wong, Nawal Copty, Robert Dietrich, Xu Liu,
Eugene Loh, Daniel Lorenz, and
other members of the OpenMP Tools Working Group

Open Source Task Profiling by Extending the OpenMP Runtime API . . . 186
Ahmad Qawasmeh, Abid Malik, Barbara Chapman, Kevin Huck, and
Allen Malony

Author Index . 201

A Proposal for Task-Generating
Loops in OpenMP*

Xavier Teruel1, Michael Klemm2, Kelvin Li3, Xavier Martorell1,
Stephen L. Olivier4, and Christian Terboven5

1 Barcelona Supercomputing Center
2 Intel Corporation
3 IBM Corporation

4 Sandia National Laboratories
5 RWTH Aachen University

{xavier.teruel,xavier.martorell}@bsc.es, michael.klemm@intel.com,
kli@ca.ibm.com, slolivi@sandia.gov, terboven@rz.rwth-aachen.de

Abstract. With the addition of the OpenMP* tasking model, program-
mers are able to improve and extend the parallelization opportunities of
their codes. Programmers can also distribute the creation of tasks using
a worksharing construct, which allows the generation of work to be par-
allelized. However, while it is possible to create tasks inside worksharing
constructs, it is not possible to distribute work when not all threads reach
the same worksharing construct. We propose a new worksharing-like con-
struct that removes this restriction: the taskloop construct. With this
new construct, we can distribute work when executing in the context
of an explicit task, a single, or a master construct, enabling us to ex-
plore new parallelization opportunities in our applications. Although we
focus our current work on evaluating expressiveness rather than perfor-
mance evaluation, we present some initial performance results using a
naive implementation for the new taskloop construct based on a lazy
task instantiation mechanism.

Keywords: OpenMP, Task, Worksharing, Loop, Fork/Join.

1 Introduction

The proliferation of multi-core and many-core architectures necessitates wide-
spread use of shared memory parallel programming. The OpenMP* Applica-
tion Program Interface [9], with its cross-vendor portability and straightforward
directive-based approach, offers a convenient means to exploit these architectures
for application performance. Though originally designed to standardize the ex-
pression of loop-based parallelism, the addition of support for explicit tasks in
OpenMP has enabled the expression of divide-and-conquer algorithms and ap-
plications with irregular parallelism [1]. At the same time, OpenMP worksharing
has been recast in the specification to use the task model. A parallel region is
said to create a set of implicit tasks equal to the number of threads in the team.

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 1–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 X. Teruel et al.

Each implicit task is tied to a different thread in the team, and iterations of a
worksharing loop are executed in the context of these implicit tasks.

However, no interaction has been defined between explicit tasks and workshar-
ing loops. This leads to an asymmetry since the implicit tasks of a worksharing
construct can create explicit tasks, while explicit tasks may not encounter a
worksharing construct. Hence it becomes cumbersome for programmers to com-
pose source code and libraries into a single application that uses a mixture of
OpenMP tasks and worksharing constructs.

We aim to relieve this burden by defining a new type of worksharing construct
that generates (explicit) OpenMP tasks to execute a parallel loop. The new
construct is designed to be placed virtually anywhere that OpenMP accepts
creation of tasks, making the new construct fully composable. The generated
tasks are then executed through the existing tasks queues, enabling transparent
load balancing and work stealing [3] in the OpenMP runtime system.

The remainder of the paper is organized as follows. Section 2 discusses the
rationale and the design principles of the new task-generating worksharing con-
struct. In Section 3, we describe the syntax and semantics of the new construct.
We evaluate the performance of the new construct in Section 4. Section 5 presents
related work, and Section 6 concludes the paper and outlines future work.

2 Rationale and Design Considerations

OpenMP currently offers loop-based worksharing constructs (#pragma omp for
for C/C++ and !$omp do for Fortran) only to distribute the work of a loop
across the worker threads of the current team. When OpenMP 3.0 introduced
the notion of task-based programming, the effect of the parallel construct
was recast to generate so-called implicit tasks that are assigned to run on the
threads of the current team. Hence, the existing worksharing constructs now
assign loop iterations to these implicit tasks. While this generalizes OpenMP
semantics and also simplifies the implementation of an OpenMP compiler and
runtime, it still maintains the traditional semantics and restrictions of the work-
sharing constructs [9].

A worksharing region cannot be closely nested inside another worksharing
region. This becomes an issue when not all source code is under control of the
programmer, e.g., if the application code calls into a library. Today, the only
solution is to employ nested parallelism to create a new team of threads for the
nested worksharing construct. However, this approach potentially limits paral-
lelism on the outer levels, while the inner parallel regions cannot dynamically
balance the load on their level. It also leads to increased synchronization over-
head due to the inner barrier. Furthermore, current OpenMP implementations
cannot maintain a consistent mapping of OpenMP threads to native threads
when nested parallel regions occur, which may lead to bad performance, partic-
ularly on systems with a hierarchical memory and cache architecture.

The threading and tasking model in OpenMP is not symmetric for workshar-
ing constructs and tasks. All OpenMP worksharing constructs can arbitrarily

A Proposal for Task-Generating Loops in OpenMP 3

create tasks from their regions. However, the reverse is not permitted: workshar-
ing constructs may not be encountered from the dynamic extent of a task.

OpenMP tasks on the other hand provide an elegant way to describe many dif-
ferent algorithms. Tasks are not restricted to regular algorithms and may be used
to describe (almost) arbitrarily irregular algorithms. Unfortunately, OpenMP
does not offer an easy-to-use construct to express parallel loops with tasks. Pro-
gramming languages like Intel R© CilkTM Plus or libraries such as Intel R© Thread-
ing Building Blocks define keywords or C++ templates to generate tasks from a
parallel loop. This is a very convenient approach to express loop parallelism on
top of a task-based parallel programming model. In OpenMP this is not possible
with the current specification of worksharing constructs.

Today, programmers are forced to use a work-around. Listing 1.1 shows the
manual task implementation of a simple loop. The traditional worksharing con-
struct is in the function daxpy_parallel_for. The parallel loop with man-
ual tasking is rather cumbersome, since it involves a lot of boilerplate code. In
daxpy_parallel_explicit_tasks, a for loop runs over the individual chunks
of the iteration space to create explicit tasks. Programmers are responsible for
computing a chunk’s lower (lb) and upper bound (ub). The typical parallel-
single pattern is used to only have one producer create tasks. The code of func-
tion daxpy_parallel_taskloop shows how the syntax of the proposed taskloop
construct eases the implementation and makes the code more concise.

A task-based loop construct for OpenMP can solve these issues with existing
worksharing constructs and increase expressiveness. Since tasks in OpenMP are
(by definition) nestable, an OpenMP loop construct that generates tasks from
a loop is also nestable. Load balancing is performed automatically as tasks are
scheduled onto the threads by the runtime system, often by work stealing [3].
Mixing regular tasks and task-generating loop constructs is also possible. The
generated tasks of a loop are inserted into the task queue; threads eventually
schedule the loop tasks and execute them intermixed with all other tasks created.

3 The Task-Generating Loop Construct

This section describes the syntax and semantics of the proposed taskloop con-
struct. We use the same syntax description format as the OpenMP specification.

3.1 Syntax

The syntax of the taskloop construct is syntactically similar to the existing
worksharing constructs:

#pragma omp taskloop [clause[[,] clause] ...]
for-loops

where clause is one of the following:

– if(scalar-expression)
– shared(list)

4 X. Teruel et al.

1 void daxpy_parallel_for(float* x, float* y, float a, int length) {
2 #pragma omp parallel for shared(x,y) firstprivate(a,length)
3 for (int i = 0; i < length; i++) x[i] = a * y[i];
4 }
5
6 void daxpy_parallel_explicit_tasks(float* x, float* y, float a, int length) {
7 #pragma omp parallel shared(x,y) firstprivate(a,length)
8 {
9 #pragma omp single

10 {
11 int lb = 0; // initial loop start
12 for (lb = 0; lb < length; lb += chunksz) {
13 int ub = min(lb + chunksz , length);
14 #pragma omp task firstprivate(lb,ub)
15 {
16 for (int i = lb; i < ub; i++) x[i] = a * y[i];
17 } }
18 #pragma omp taskwait
19 } } }
20
21 void daxpy_parallel_taskloop(float* x, float* y, float a, int length) {
22 #pragma omp parallel taskloop shared(x,y) firstprivate(a,length)
23 for (int i = 0; i < length; i++) x[i] = a * y[i];
24 }

Listing 1.1. Implementation overhead of explicit tasking for a parallel for loop

– private(list)
– firstprivate(list)
– lastprivate(list)
– partition(kind[, chunk_size])
– collapse(n)
– taskgroup
– nowait

In line with the existing worksharing constructs and for completeness, we
also define a combined version of the parallel and the taskloop construct.
The parallel taskloop construct is a shortcut for specifying a parallel con-
struct containing one taskloop construct with its associated loops and no other
statements.

#pragma omp parallel taskloop [clause[[,] clause] ...]
for-loops

The Fortran syntax is similar to C/C++ and the clauses are the same as
C/C++:

!$omp taskloop [clause[[,] clause] ...]
do-loops
[!$omp end taskloop [nowait|taskgroup]]

!$omp parallel taskloop [clause[[,] clause] ...]
do-loops
[!$omp end parallel taskloop [nowait|taskgroup]]

A Proposal for Task-Generating Loops in OpenMP 5

3.2 Semantics

All loops that are supported by the traditional worksharing constructs are also
supported by taskloop. The taskloop construct requires the same restrictions
on the for and do loops as the existing worksharing constructs. Although very
similar in syntax to the do/for worksharing construct, the proposed taskloop
construct does not follow the definition of an OpenMP worksharing construct,
as instead of defining units of work to be executed by threads, it generates
tasks. Hence, restrictions on worksharing constructs, such as the requirement to
be encountered by all threads of a team, do not apply, nor could the existing
do/for construct be extended to provide this functionality.

When an if clause is present on a taskloop construct and its expression
evaluates to false, the encountering thread must suspend the current task region
until the whole loop iteration space is completed.

The collapse clause has its well-known OpenMP semantics specifying the
number of nested loops that are associated with the taskloop construct. The
parameter of the collapse clause indicates the number of loops which must
collapse into a single iteration space.

The data-sharing attributes are slightly reinterpreted for the taskloop to
fit the notion of task creation. In today’s OpenMP semantics, data-sharing
clauses are defined in terms of implicit and explicit tasks (and SIMD lanes in
OpenMP 4.0 RC2 [10]). For the taskloop construct, the shared clause declares
a list of variables to be shared across the tasks created by the taskloop con-
struct. Variables marked as private, firstprivate, or lastprivate are private
to the created tasks. The loop index variable is automatically made private.

The partition clause defines the way the iteration space is split to generate
the tasks from the loop iterations:

– partition(linear) is the analog to the dynamic schedule of existing loop
constructs, i.e., the iteration space is split into (almost) equally sized chunks
of the given chunk size.

– partition(binary) uses a binary splitting approach in which the iteration
space is recursively split into chunks. Each chunk is assigned to a new task
that continues binary splitting until a minimal chunk size is reached.

– partition(guided) is the analog of the guided schedule of existing loop con-
structs, i.e., tasks are generated with continually decreasing amounts of work.

The chunk_size parameter defines the chunk size of the generated tasks:

– If partition(linear) is specified, then the value determines the exact size of
each chunk, as it does in the dynamic schedule of existing loop constructs.

– If partition(binary) or partition(guided) is specified, then the value de-
termines the minimal size of a chunk, as it does in the guided schedule of
existing loop constructs.

– The default chunk size is 1 (if the chunk_size parameter is not present).

When an implicit or explicit task encounters a taskloop construct, it precom-
putes the iteration count and then starts creating tasks according to the split

6 X. Teruel et al.

policy specified in the partition clause. For the linear case, the encountering
tasks computes the work distribution and creates the tasks to execute based on
the distribution computed. For the binary case, the encountering task cuts the
iteration space into two partitions and creates a child task for each of the par-
titions. This continues recursively until the threshold is reached and the tasks
start to execute loop chunks. The guided policy forces the encountering task to
create a series of loop tasks of decreasing size.

The default synchronization at the end of the taskloop region is an implicit
taskwait synchronization. Thus, only tasks generated directly by the taskloop
construct must have been completed at the end of the taskloop region. The
taskgroup clause instead establishes a task group for all the tasks that are gener-
ated from the task-generating loop construct and enforces an implicit taskgroup
synchronization at the end of the taskloop region.1 A taskgroup synchroniza-
tion requires completion of all tasks: not only those tasks generated directly by
the taskloop construct, but also all descendants of those tasks. The nowait
clause removes the implicit taskwait synchronization at the end of the tasking
loop construct. Only one of the nowait or taskgroup clauses may be specified.

4 Evaluation

In this section, we discuss some parallelization patterns that benefit from the new
construct. The main goal for this new construct is to increase the expressiveness
of OpenMP, but we present some performance results that demonstrate that
increasing such expressiveness can sometimes also improve performance.

4.1 Parallelization Approach

The first benchmark is Cholesky factorization. Cholesky decomposition is a com-
mon linear algebra method which is also used to solve systems of linear equa-
tions. Our implementation is based on the LAPACK library version and uses
four different kernels: potrf, trsm, gemm and syrk (Listing 1.2).

A possible parallelization of the algorithm creates a different task for each
kernel. In this parallelization we already use task dependences, set to be in-
cluded in OpenMP 4.0 [10], in order to solve some imbalance problems when
using traditional worksharing constructs [6]. Listing 1.2 includes this baseline
parallelization.

Holding constant the number of tasks generated (which usually is related
to the problem size) while changing the number of threads (which is related
to available resources) may greatly impact performance. Some applications can
benefit from an extra level of parallelism to alleviate load imbalance. In order to
include this extra level of parallelism, we can create a task for each loop iteration
(including loop body) but the granularity issue remains: we still have a constant
number of tasks and constant task granularity.
1 Taskgroups are not part of OpenMP 3.1, but have been added to the draft specifi-
cation of OpenMP 4.0 RC2 [10].

A Proposal for Task-Generating Loops in OpenMP 7

1 void omp_gemm (double *A, double *B, double *C, int ts , int bs) {
2 int i, j, k;
3 static const char TR = ’T’, NT = ’N’;
4 static double DONE = 1.0, DMONE = -1.0;
5
6 for(k=0; k<ts ;k+=bs)
7 for(i=0; i<ts;i+=bs)
8 for(j=0; j<ts; j+=bs)
9 dgemm_ (&NT, &TR, &bs , &bs, &bs, &DMONE , A[k*ts+i],

10 &ts, B[k*ts+j], &ts, &DONE , C[j*ts+i], &ts);
11 }
12
13 #pragma omp parallel
14 #pragma omp single
15 for (int k = 0; k < nt; k++) {
16 #pragma omp task depend(inout:Ah[k][k])
17 omp_potrf (Ah[k][k], ts);
18 for (int i = k + 1; i < nt; i++) {
19 #pragma omp task depend(in:Ah[k][k],inout:Ah[k][i])
20 omp_trsm (Ah[k][k], Ah[k][i], ts);
21 }
22 for (int i = k + 1; i < nt; i++) {
23 for (int j = k + 1; j < i; j++) {
24 #pragma omp task depend(in:Ah[k][i],Ah[k][j],inout:Ah[j][i])
25 omp_gemm (Ah[k][i], Ah[k][j], Ah[j][i], ts, ts/BLOCK_SIZE);
26 }
27 #pragma omp task depend(in:Ah[k][i], inout:C[i][i])
28 omp_syrk (Ah[k][i], Ah[i][i], ts);
29 }
30 }

Listing 1.2. Cholesky’s baseline parallelization code

Following with that solution we can handle the inner loop chunk size and
transform this inner loop into a task. If we use the available number of threads
as part of the chunk-size computation, we can effectively manage the trade-off be-
tween task number and task granularity according to the availability of resources.
This approach is demonstrated in function omp_gemm_tasks() in Listing 1.3.

The same result can be achieved using a guided policy with the new loop con-
struct (see function omp_gemm_loop(), the second function in Listing 1.3). This
last solution does not require adding extra code into the user’s program, allowing
equivalent behavior by including just a single OpenMP pragma directive.

Our second benchmark is the Conjugate Gradient (CG) iterative kernel. The
conjugate gradient method is a numerical algorithm to solve systems of linear
equations and is commonly used in optimization problems. It is implemented
as an iterative method, providing monotonically improving approximations to
the exact solution (i.e., the method converges iteration after iteration to the real
solution). The algorithm completes after it reaches the required tolerance or after
executing some maximum number of iterations. The tolerance and maximum
iteration count are fixed as input parameters.

Initial parallelization of this code comprises a sequence of parallel regions
and a worksharing construct which computes each of the component kernels
used in the algorithm. In Listing 1.4, we show only the matvec function, the
most important kernel in the CG benchmark, but other kernels follow the same

8 X. Teruel et al.

1 void omp_gemm_tasks(double *A, double *B, double *C, int ts, int bs) {
2 ...
3 for(k=0; k<ts ;k+=bs) {
4 for(i=0; i<ts;i+=bs) {
5 lower = 0;
6 nthreads = omp_get_num_threads();
7 while (lower < ts) {
8 upper = compute_upper(lower , nthreads , bs, ts);
9 #pragma omp task firstprivate(x,k,i,ts,bs) nowait

10 for(j = lower; j < upper; j+=bs)
11 dgemm_ (&NT, &TR, &bs, &bs, &bs, &DMONE , A[k*ts+i],
12 &ts, B[k*ts+j], &ts, &DONE , C[j*ts+i], &ts);
13 lower = upper;
14 }
15 }
16 #pragma omp taskwait
17 }
18 }
19
20 void omp_gemm_loop(double *A, double *B, double *C, int ts, int bs) {
21 ...
22 for(k=0; k<ts ;k+=bs) {
23 for(i=0; i<ts;i+=bs) {
24 #pragma omp taskloop partition(guided ,1) firstprivate(k,i,ts,bs) nowait
25 for(j=0; j<ts; j+=bs)
26 dgemm_ (&NT, &TR, &bs , &bs, &bs, &DMONE , A[k*ts+i],
27 &ts, B[k*ts+j], &ts, &DONE , C[j*ts+i], &ts);
28 }
29 #pragma omp taskwait
30 }
31 }

Listing 1.3. Parallelization approaches of the GEMM code

pattern. This approach incurs the overhead costs of creating a parallel region
to execute each kernel.

Using our proposed loop construct, we only need to create one team using the
OpenMP parallel construct before starting the iterative computation. We also
enclose the parallel region (i.e., the user’s code associated with the parallel
construct) with an OpenMP single directive. This approach is shown in List-
ing 1.5. A team of threads is created, but only one thread executes the code
inside the parallel region due to the closely nested single directive. We simi-
larly modify all the other kernels, replacing the existing loop construct with the
new loop construct. Although the code still includes a worksharing construct, we
eliminate the overhead costs of opening and closing successive parallel regions.

4.2 Performance Results

We evaluate all our benchmarks on the MareNostrum III supercomputer, located
at the Barcelona Supercomputing Center and on Gothmog, a machine at the
Royal Institute of Technology in Stockholm. Due the nature of our evaluation
all benchmarks are executed on a single node.

Each MareNostrum node is a 16-core node with two Intel R© Xeon R© processors
E5-2670 (former codename “Sandybridge”), running at 2.6 GHz (turbo mode at
3.3 GHz) and with 20 MB L3 cache. Each node has 32 GB of main memory,
which is organized as two NUMA nodes. Gothmog is a 48-core machine with four

A Proposal for Task-Generating Loops in OpenMP 9

1 void matvec(Matix *A, double *x, double *y)
2 {
3 ...
4 #pragma omp parallel for private (i,j,is,ie,j0,y0) schedule (static)
5 for (i = 0; i < A->n; i++) {
6 y0 = 0;
7 is = A->ptr[i];
8 ie = A->ptr[i + 1];
9 for (j = is; j < ie; j++) {

10 j0 = index[j];
11 y0 += value[j] * x[j0];
12 }
13 y[i] = y0;
14 }
15 ...
16 }
17
18 for (iter = 0; iter < sc->maxIter ; iter++) {
19 precon(A, r, z);
20 vectorDot(r, z, n, &rho);
21 beta = rho / rho_old ;
22 xpay(z, beta , n, p);
23 matvec(A, p, q);
24 vectorDot(p, q, n, &dot_pq);
25 alpha = rho / dot_pq;
26 axpy(alpha , p, n, x);
27 axpy(-alpha , q, n, r);
28 sc->residual = sqrt(rho) * bnrm2;
29 if (sc->residual <= sc-> tolerance) break;
30 rho_old = rho;
31 }

Listing 1.4. CG baseline implementation

12-core AMD Opteron* 6172 processors (codename “Magny-Cours”), running at
2.1 GHz, with 6 MB L2 and 12 MB L3 caches. The machine has 64 GB of main
memory organized as eight NUMA nodes. We use the Nanos++ runtime library2

and Mercurium compiler3 [2].
In the next subsections, we detail the results obtained for Cholesky and CG.

Cholesky. Figure 4.2 summarizes the results obtained by executing Cholesky
on MareNostrum III and Gothmog. We executed three different versions of
Cholesky: The first version, labeled 1-level tasks, uses a single level of paral-
lelism. The second version, labeled nested, includes an additional level of nested
parallelism with tasks. In the final version, labeled taskloops, the nested paral-
lelism is implemented using the taskloop construct with guided partitioning.

The MareNostrum results show that adding a new level of parallelism im-
proves the performance when we reach a given number of threads, in this case 16.
These nested versions (nested and taskloops) have a similar behavior on MareNos-
trum, though we expected some improvement due to guided scheduling reduc-
ing the overhead of task creation. On Gothmog, the taskloops version has better

2 Based on git repository (http://pm.bsc.es/git/nanox.git) revision nanox 0.7a
(git master 37f3a0d 2013-02-26 15:14:11 +0100 developer version).

3 Based on git repository (http://pm.bsc.es/git/mcxx.git) revision mcxx 1.99.0
(git b51a11c 2013-04-10 09:27:34 +0200 developer version).

http://pm.bsc.es/git/nanox.git
http://pm.bsc.es/git/mcxx.git

10 X. Teruel et al.

1 void matvec(Matix *A, double *x, double *y) {
2 ...
3 #pragma omp taskloop private (i,j,is,ie,j0,y0) partition(linear)
4 for (i = 0; i < A->n; i++) {
5 y0 = 0;
6 is = A->ptr[i];
7 ie = A->ptr[i + 1];
8 for (j = is; j < ie; j++) {
9 j0 = index[j];

10 y0 += value[j] * x[j0];
11 }
12 y[i] = y0;
13 }
14 ...
15 }
16

17 #pragma parallel
18 #pragma single
19 for (iter = 0; iter < sc->maxIter ; iter++) {
20 precon(A, r, z);
21 vectorDot(r, z, n, &rho);
22 beta = rho / rho_old ;
23 xpay(z, beta , n, p);
24 matvec(A, p, q);
25 vectorDot(p, q, n, &dot_pq);
26 alpha = rho / dot_pq;
27 axpy(alpha , p, n, x);
28 axpy(-alpha , q, n, r);
29 sc->residual = sqrt(rho) * bnrm2;
30 if (sc->residual <= sc-> tolerance) break;
31 rho_old = rho;
32 }

Listing 1.5. CG implementation based on the taskloop construct

performance than nested beyond 16 threads. This improvement is a result of de-
creased overhead of spawning work using taskloops compared to creating inde-
pendent tasks. In our implementation, a taskloop is represented by a single task
descriptor structure that is enqueued using a single enqueue operation rather
than using a number of individual task enqueues.

On Gothmog, using the nested versions does not improve the performance
compared to the 1-level tasks version. One explanation of that performance
degradation is that although nesting reduces application imbalance (i.e., the
ratio between the number of tasks and threads), it degrades data locality. The
first level of parallelism distributes large matrix blocks among cores. If we ap-
ply a second level of parallelism, we break large matrix blocks into smaller ones
that are then spread among all cores, potentially breaking data locality in the
NUMA nodes. Since a discussion about NUMA nodes, data locality and nested
parallelism is not the main goal of this study, we leave further analysis of this
issue to future work.

CG. In order to benchmark the CG kernel we use two matrices of different size.
Figure 2(a) shows the results for a small matrix. In an experiment with work of
such small granularities, the OpenMP fork/join overhead is noticeable, and the
taskloops implementation performs better.

A Proposal for Task-Generating Loops in OpenMP 11

(a) MareNostrum III (b) Gothmog

Fig. 1. Cholesky performance results

Figure 2(b) shows the shape of the larger matrix problem. This is the Fluo-
rem/RM07R Matrix, used in computational fluid dynamics problems. This ma-
trix is publicly available at The University of Florida Sparse Matrix Collection4

web site. Figure 2(c) shows that for this larger problem, in a 16-core node, the
behavior of both approaches is almost the same. In this case, the larger data set
makes the fork/join overhead comparatively smaller. In larger nodes with higher
NUMA memory distances, (e.g., on Gothmog, see Figure 2(d)) the loss of data lo-
cality caused by the taskloops approach substantially degrades its performance.
Again, this will be a focus of our future work.

5 Related Work

The idea of generating tasks to execute a parallel loop is not new and has been
implemented in various other parallel programming languages and libraries.

Intel R© Cilk Plus and its predecessor Cilk++ [7] implement their cilk_for
construct by recursively splitting the iteration space down to a minimum chunk
size, generating tasks using cilk_spawn at each level of recursion.5 A similar ap-
proach is taken by the parallel_for template of the Intel R© Threading Building
Blocks [11]. The loop is parallelized by splitting the iteration space recursively
until the task granularity reaches a threshold. As part of the .NET 4.5 framework,
the Task Parallel Library [8] offers task-parallel execution of for and foreach
loops (through Parallel.For and Parallel.ForEach). All of these approaches
only support C and/or C++ and are not applicable for Fortran; they also do
not blend well with OpenMP.

Ferrer et al. [5] show that with minimal compiler assistance, for loops con-
taining task parallelism can be successfully unrolled and aggregated for better
performance. Ferrer [4] proposes an extension of the while loop that gener-
ates chunked parallel tasks. Employing this approach “by hand”, Terboven et
al. [12] found multi-level parallelism with tasks to be more profitable than nested
OpenMP for several applications. The proposed construct is a short-cut for the
4 http://www.cise.ufl.edu/research/sparse/matrices
5 The Cilk Plus run time system is now open source, available at http://cilkplus.org

http://www.cise.ufl.edu/research/sparse/matrices
http://cilkplus.org

12 X. Teruel et al.

(a) MareNostrum III (b) RM07R Matrix

(c) MareNostrum III (d) Gothmog

Fig. 2. CG performance results

programmer to avoid extensive code patterns and to give the compiler more
information about the code structure and the intent of the program.

6 Conclusions and Future Work

In this paper, we have introduced the task-generating loop construct, which
avoids the limitation on the number of threads reaching a worksharing con-
struct, increasing opportunities for the expression of parallelism. We have also
demonstrated the new construct in two different situations. In the first scenario,
we exploit a new level of parallelism by using the worksharing construct inside
an explicitly created task. Such mechanisms mitigate the imbalance that results
from increasing the number of threads and adapt the task granularity to the
number of threads. In the second scenario, we use the new construct to avoid
creating and closing successive parallel regions. With the new approach we
create just one parallel region with a nested single construct, creating the
team of threads but allowing only a single thread to execute the enclosed code.
To generate the tasks in each kernel, we replace all the inner parallel worksharing
constructs with the new task-generating loop construct.

We evaluate both scenarios against baseline implementations of the applica-
tions using the Nanos++ run time library and Mercurium compiler infrastruc-
ture. The results demonstrate that in addition to improving expressiveness, the
new construct improves performance for some, but not all, applications.

A Proposal for Task-Generating Loops in OpenMP 13

As future work we plan to further evaluate our taskloop proposal imple-
mentation with other benchmarks and on other platforms. We especially seek
to explore further the behavior of taskloop in the context of NUMA, and ana-
lyze more advanced implementation techniques to exploit data locality. We also
plan to explore the possibility of nested taskloop regions and how these tech-
niques can impact the performance and application load imbalance. Another
future topic is the extension of taskloop to also support irregular loops such as
while loops and for loops that do not adhere to the restrictions of the current
OpenMP worksharing constructs.

Acknowledgments. We would like to acknowledge the support received from
the European Comission through the DEEP project (FP7-ICT-287530), and the
HiPEAC-3 Network of Excellence (ICT FP7 NoE 287759), from the Spanish Min-
istry of Education (under contracts TIN2012-34557, TIN2007-60625, CSD2007-
00050), and the Generalitat Catalunya (contract 2009-SGR-980).

We thankfully acknowledge the Royal Institute of Technology in Stockholm
and the Barcelona Supercomputing Center for the use of their machines (Goth-
mog, and Marenostrum III).

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Intel, Xeon, and Cilk are trademarks or registered trademarks of Intel Cor-
poration or its subsidiaries in the United States and other countries.

* Other brands and names are the property of their respective owners.
Software and workloads used in performance tests may have been optimized

for performance only on Intel microprocessors. Performance tests, such as SYS-
mark and MobileMark, are measured using specific computer systems, compo-
nents, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and per-
formance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.
For more information go to http://www.intel.com/performance.

References

1. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,
Unnikrishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Trans. Parallel
Distrib. Syst. 20(3), 404–418 (2009)

2. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.: Nanos
Mercurium: a Research Compiler for OpenMP. In: Proc. of the 6th European
Workshop on OpenMP (EWOMP 2004), pp. 103–109 (October 2004)

3. Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work
Stealing. Journal of the ACM 46(5), 720–748 (1999)

4. Ferrer, R.: Task Chunking of Iterative Constructions in OpenMP 3.0. In: Proc.
of the 1st Workshop on Execution Environments for Distributed Computing,
pp. 49–54 (July 2007)

http://www.intel.com/performance

14 X. Teruel et al.

5. Ferrer, R., Duran, A., Martorell, X., Ayguadé, E.: Unrolling Loops Containing Task
Parallelism. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.) LCPC 2009.
LNCS, vol. 5898, pp. 416–423. Springer, Heidelberg (2010)

6. Kurzak, J., Ltaief, H., Dongarra, J.J., Badia, R.M.: Scheduling for Numerical Lin-
ear Algebra Library at Scale. In: Proc. of the High Performance Computing Work-
shop, pp. 3–26 (June 2008)

7. Leiserson, C.E.: The Cilk++ Concurrency Platform. The Journal of Supercomput-
ing 51(3), 244–257 (2010)

8. Microsoft: Task Parallel Library (2013),
http://msdn.microsoft.com/en-us/library/dd460717.aspx (last accessed June
21, 2013)

9. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 3.1 (July 2011)

10. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.0: Public Review Release Candidate 2 (March 2013)

11. Reinders, J.: Intel Threading Building Blocks. O’Reilly, Sebastopol (2007)
12. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Task-Parallel Programming

on NUMA Architectures. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 638–649. Springer, Heidelberg (2012)

http://msdn.microsoft.com/en-us/library/dd460717.aspx

Using OpenMP under Android

Vikas1, Travis Scott2, Nasser Giacaman3, and Oliver Sinnen4

The University of Auckland, New Zealand
{vik609,tsco033}@aucklanduni.ac.nz,
{n.giacaman,o.sinnen}@auckland.ac.nz

Abstract. The majority of software authored for the mobile platforms
are GUI-based applications. With the advent of multi-core processors
for the mobile platforms, these interactive applications need to employ
sophisticated programming constructs for parallelism-concurrency, in or-
der to leverage the potential of these platforms. An OpenMP-like, easy
to use programming construct, can be an ideal way to add productivity.
However, such as environment needs to be adapted to object-oriented
needs and should be designed with an awareness of the interactive ap-
plications. Also, OpenMP does not provide a binding that target these
platforms. This paper presents a compiler-runtime system for Android
that presents OpenMP-like directives and GUI-aware enhancements.

Keywords: OpenMP, Android, GUI applications.

1 Introduction

For several years now (since 2006), the number of cores available in mainstream
desktops started increasing; only half a decade later (in 2011), this trend started
emerging in the mobile space, including smartphones and tablets. All flagship
mobile devices are now multi-core, most of which are running Android. Much
like the dilemma that faced software developers when mainstream desktops went
multi-core [15], the same dilemma now faces mobile application developers; in
order to harness the computing power provided by these additional cores, mobile
“apps” must be parallelised since traditional sequential code is unable to utilise
the increased resources provided by multiple cores.

Java, the language used by Android [3], provides a suite of native constructs
for writing concurrent code, in the form of threads, thread pools, handlers,
runnables and so forth. However, successfully using these tools can be difficult,
and may not be immediately obvious to developers with a sequential program-
ming background. This is especially important as the appeal of application de-
velopment is being embraced by non-experienced programmers, whereas parallel
programming was traditionally the domain of experienced programmers target-
ing large scientific and engineering problems. But even for experienced users,
managing a large number of threading constructs can be time consuming and
leads to the introduction of additional bugs [9].

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 15–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

16 Vikas et al.

1.1 Motivation

Keeping the above in mind, it can be seen that the rapid advancement of multi-
core processors for mobile devices necessitate the GUI applications (existing
and new ones) to be parallel and concurrent. The mismatch between the pace
of hardware advancement and software development can be bridged by using
the principles and methodologies of directive-based constructs. The directive-
based approach can decrease the general complexities of parallel-concurrent
programming. Furthermore, with the ever increasing importance of the mobile
domain, and in the absence of any directive-based implementation or binding,
an OpenMP-like environment can be helpful to a great extent.

1.2 Contributions

This paper acknowledges OpenMP’s expressive power and ease of use in the
domain of shared memory parallel programming. However, should we wish to
extend OpenMP’s coverage to encompass mobile application development, there
are concepts vital to the development of object-oriented GUI-based applications
that are absent in the OpenMP model. To address these shortcomings, this paper
makes the following contributions:
Study of GUI application: We explore the basic nature of GUI-based ap-

plications, particularly on mobile platforms. This leads to formalising the
general requirements for such applications.

OpenMP-like environment for Android: The most dominant mobile plat-
forms (Android and iOS) use object-oriented languages for the development
of interactive applications. This paper presents OpenMP-like1 directives and
runtime support for Android.

GUI aware enhancements: Assisted with the exploration of the nature of
GUI-based applications, this paper proposes GUI-aware extensions.

Implementation exploration for Android: Android supports Java as an ap-
plication development language (and C/C++ through NDK), but it omits
some standard Java libraries used in standard GUI application development
(such as Swing and AWT). In this light, the paper presents implementation
details of the proposed compiler, demonstrating a sample Android-based
OpenMP compiler implementation.

Performance evaluation on mobile domain: We evaluate the proposed sys-
tem using a set of interactive GUI applications for Android.

2 Background

2.1 Distinct Structure of GUI-Based Applications

In many ways, the execution flow in a GUI application is different from that of
a conventional batch-type application. Firstly, the interactive applications have

1 The directives, specially the GUI directives, that we present here are not official
directives in the OpenMP standard; they are however designed with the intention
of promoting the spirit of OpenMP, and as such, we refer to them as OpenMP-like
directives.

Using OpenMP under Android 17

their execution flow determined by the various inputs from the user. Secondly,
the control flow is largely guided by the framework code of which the program
is built on; this distinguishing aspect is known as inversion of control [7], when
the flow of control is dictated by a framework rather than the application code.

The primary concept is that events are generated from within the framework
code in response to user actions. The programmer only needs to implement spe-
cific routines, known as event handlers, in the application code in response to
those events. The control returns back to the framework upon completion of the
respective event handler, namely to the event loop. In most GUI frameworks,
this is performed by a dedicated thread known as the GUI thread. In compari-
son, batch-type programs have the control flow determined by the programmer
(i.e. the application code) and deal with serial input-output (even though the
processing may be parallelised).

From the requirements perspective, in addition to the generic software re-
quirements, an important criterion for GUI applications is their responsiveness.
The application should always remain interactive and responsive to user actions.
From the execution semantics, programmers must ensure that the GUI thread
minimises its execution in the application code, therefore remaining largely in
the event loop to respond to other potential events. In addition to off-loading
the main computation away from the GUI thread, regular intermittent progress
updates frequently need to be communicated back to the user to be perceived
as having a positive user experience.

2.2 Mobile Devices and GUI Application Development

The mobile environment differs from the desktop environment on both the hard-
ware and the software levels. From the hardware aspect, the mobile environment
is largely constrained in memory and processing power (the dominant ARM pro-
cessors focus on efficiency of power consumption). On the software side, the GUI
frameworks support high level languages (such as Java in Android, Objective-C
in iOS); however, not all the libraries or APIs are supported in a mobile ap-
plication. Some possible reasons might be that these frameworks cater to the
specific needs of the mobile devices and do not need to provide support for
general purpose libraries. Also, many libraries and tools have been part of the
desktop environment for legacy purposes. In many cases, they were designed and
developed for systems with larger memory and faster processing power, and thus
do not find a place on mobile platform. Nevertheless, mobile-based GUI applica-
tions do follow a similar architecture to desktop-based GUI applications, but the
general consideration for memory and processing efficiency is always present.

2.3 Distinctions in Android Application Development Environment

There are some mentionable factors that make Android GUI application develop-
ment different from that of the desktop environment. First, Android’s execution
environment runs every application in a separate sandboxed process and only
a single application is displayed on the screen at a time (under the hood, An-
droid uses a Linux kernel and every application is treated as an individual user).

18 Vikas et al.

This restricts the applications to have shared access to the file system, the ap-
plication data, and more. The applications are executed in separate instances of
the virtual machine, thus each application has a separate instance to itself. This
enforces a design requirement over the applications. Moreover, Android’s virtual
machine, known as the Dalvik Virtual Machine (DVM), is not like a regular Java
Virtual Machine (JVM). It is a slimmed down virtual machine that is designed
to run on low memory. Importantly, DVM uses its own byte code and runs .dex
(Dalvik Executable File) instead of the .class files that the standard JVM runs.
In effect, the legacy Java libraries or Java code need a recompilation in order to
be used for the Android.

On the framework side, Java is only supported as a language; libraries like
Swing, AWT and SWT are not supported [13]. Nevertheless, it provides extra
concurrency features, as will be discussed in section 3. Thus, even an experienced
Java programmer needs to become acquainted with alternative constructs and
the legacy programs cannot be directly ported.

Furthermore, owing to its recent development, Android has incorporated the
generic requirements of a GUI-based application into the framework. For ex-
ample, to counter the responsiveness related application freeze, Android throws
an Application Not Responding (ANR) [2] error when an application remains
unresponsive for more than a certain amount of time (around 5 seconds for Jelly
Bean). In effect, this enforces a rule on the GUI applications to avoid the time
consuming computations on the GUI thread and the applications should offload
them. Another example is that of the CalledFromWrongThreadException excep-
tion; like most of the GUI framework, the Android framework is single threaded
and the thread safety is maintained by throwing this exception if any non-GUI
thread tries to update the GUI. Therefore, the programmer always needs to use
specific constructs in concurrent programs for updating the GUI.

3 Related Work

3.1 Android Concurrency

Android supports the prominent concurrency libraries of Java using the
java.util.- concurrent package, thus supporting the ExecutorService

framework. The native threading is also supported. Additionally, Android ex-
poses AsyncTask and Handler [12] for advanced concurrency. AsyncTask enables
to perform asynchronous processing on background worker threads and enables
methods to update the results on the GUI. Handler enables the posting and
processing of the Runnables to the thread’s message queue.

3.2 OpenMP for Android

There is no official OpenMP specification for Java, so OpenMP is not supported
on Android. The Android Native Development Kit (NDK) supports C/C++ [11],
but it does not support an OpenMP distribution. Although there are no Android
OpenMP implementations, there are however some respectable Java OpenMP

Using OpenMP under Android 19

implementations, namely JOMP [6] and JaMP [8]. While these tools provide im-
portant contributions to OpenMP Java bindings, they do not specifically target
GUI applications as is the focus of Pyjama. More specifically, these solutions
were developed well before the time of Android application development, as is
the focus of this research.

4 Android Pyjama Compiler-Runtime

Pyjama [16] is a compiler-runtime system that supports OpenMP-like direc-
tives for an object-oriented environment, specifically for Java. Where required,
Pyjama adapts the principles and semantics of OpenMP to an object-oriented
domain and, in addition, provides the GUI-aware enhancements. The research
presented in this paper is based on the preliminary work done on Pyjama, and
now extending it to mobile application development.

4.1 Standard Directive Syntax

In the absence of any Android specification for OpenMP, we propose a format
that is close to the OpenMP specification. A program line beginning with //#omp

is treated as a directive by the proposed compiler and ignored as inline comments
by the other compilers. Generic syntax is as shown below:

//#omp directiveName[clause[[,]clause]..]

4.2 Conventional OpenMP Directives and Semantics

The conventional directives [16], are supported in Android Pyjama as well. The
system also supports object-oriented semantics within the scope of these con-
ventional directives. For instance, for -each loop construct is a way to traverse
over a collection of objects in object-oriented programming and parallelising a
for -each loop is permissible using the parallel for construct. Furthermore,
the OpenMP synchronisation directives like barrier, critical, atomic and
ordered are supported with identical semantics as that of OpenMP for C/C++.

4.3 GUI-Aware Extensions

To improve upon the usability of OpenMP for GUI applications, Pyjama on
Android introduces the following GUI-aware constructs:

– freeguithread directive

Specifies a structured block that is executed asynchronously from the GUI
thread, freeing the GUI thread to process events.
//#omp freeguithread

structured-block

– gui directive

20 Vikas et al.

Specifies a structured block that is executed by the GUI thread. An implicit
barrier is placed after the structured block unless an optional nowait clause is
used.
//#omp gui [nowait]

structured-block

freeguithread Construct. A prominent limitation of using OpenMP in a
GUI application is that OpenMP’s fork-join threading model effectively violates
the responsiveness of a GUI application. Consider the scenario where the code
inside an event handler encounters an OpenMP construct; the master thread
(MT) would be the GUI thread and would therefore take part in the processing
of the OpenMP region. But in a GUI application, this is a problem; the GUI
thread will remain busy processing (the parallel region), effectively blocking the
GUI. The GUI-aware thread model addresses this responsiveness related issue;
the basic principle is that an application will not have the tendency to become
unresponsive, or block, if the GUI thread is free to process user inputs.

To achieve this responsiveness, we need to relieve the GUI thread from the
execution of a specified region; hence the freeguithread directive. The underly-
ing mechanism determines if the thread encountering freeguithread is the GUI
thread. If yes, a new thread is created, called the Substitute Thread (ST), which
executes this region on behalf of the GUI thread. As a result, the GUI thread is
free to return to the event loop and handle incoming events. The structured block
of the freeguithread directive is executed asynchronously to the GUI thread.
When the execution of the region is completed by the ST, the GUI thread is no-
tified and returns to execute the region following the freeguithread directive.
This approach keeps the OpenMP threading model with its fork-join structure
intact. Any parallel region that is then encountered by the ST is handled in
the usual manner, whereby the ST is the master thread of that region.

gui Construct. For GUI applications, there is a need to update the GUI with
intermittent results when the application code is still busy in the background pro-
cessing. This may be related to conveying the partial results of the background
processing or it may be a GUI update to convey the completion of background
processing. In GUI application development, this is achieved by implementing a
way to provide periodic updates to the GUI. Generally, it involves careful syn-
chronisation methods or shared global flags. A programmer needs to introduce
major code restructuring to spawn the computational work to other thread(s)
and then again to execute GUI code, commonly encapsulated within Runnable

instances and posted to the GUI thread. These methods have their own limita-
tions and complexities and make it difficult to involve any OpenMP-like program-
ming. It also opposes the the OpenMP philosophy of maintaining the program’s
original sequential structure when the OpenMP directives are ignored. For an
elegant and easy solution of these issues, Pyjama introduces the new gui di-
rective. Using it, a program can execute part of the code on the GUI thread
from a background-processing region. This eliminates the need to maintain

Using OpenMP under Android 21

complexities of synchronisation. The addition of the freeguithread and gui

directives enable programmers to achieve responsive application development
by obeying the single-thread rule of most GUI toolkits.

Syntactically, freeguithread and parallel can be combined in one directive
statement. The further combination with the worksharing directives for and
sections is also possible.

4.4 Runtime

The runtime component provides execution environment and timing routines,
conforming to OpenMP 2.5 [10]. Additionally, the runtime provides a set of
utility methods for the benefit of a programmer.

5 Implementation

5.1 Construction of Compiler

The parser for the compiler was created using Java Compiler Compiler (JavaCC).
JavaCC is an open source parser generator for Java and the Java 1.5 grammar is
provided as a part of the JavaCC distribution. It should be noted that JavaCC is
not a lexical analyser or parser by itself. It needs to be provided with regular ex-
pressions and grammar and it generates a lexical analyser and a parser. The Java
1.5 grammar file was used as the base and was augmented with extended Backus
Naur form (EBNF) -like2 grammar notations for the OpenMP-like directives, to
generate the lexical analyser and the parser.

5.2 Code Generation

The elementary process involves lexical analysis and parsing of the input code to
generate an intermediate representation of the code (in this case, it is an AST);
the AST is then traversed, using the visitor design pattern [14], and the directive
specific nodes are translated to the respective parallel or concurrent version of
the code.

From the software engineering perspective, the implementation is modularised
by dividing the generation into two broad passes of normalisation and transla-
tion. Normalisation operations help simplify the process of target code genera-
tion. A wider range of directives are supported by actually implementing only
the basic directives and normalising other directives to those implemented ones.
The next pass is the translation pass, where an explicit parallel and concurrent
version of the code is generated.

Translation of Conventional Directives and Clauses. The semantics of
multi-threaded and GUI-aware translation adheres to the OpenMP’s threading
model. While introducing parallelism through the directives, the execution se-
mantics follows the fork-join threading model and identifies a distinct master
thread, like the OpenMP model.

2 JavaCC provides the notation for defining grammar in a manner similar to EBNF.

22 Vikas et al.

Implementation wise, code outlining is the elementary approach employed
by the translation pass. As figure 1 illustrates, the structured block from the
onClick() method is outlined to form a new method (steps 1 and 2) and then
executed using the runtime native queue and the native task-pool (steps 3, 4
and 5). Reflection is used to retrieve and execute the respective user code, thus
implementing a fork and a barrier is placed after the region, thus implementing
the join.

Also, the compiler achieves data passing by creating a new class to hold the
variables from the encountering thread. Here, based on the data clauses used,
an object of this class is instantiated and values from the encountering thread
are assigned to it.

Fig. 1. The code outlining and queuing approach

Translation of GUI Directives. Translation of GUI directives forms an inter-
esting part of this research. Semantically, the freeguithread region is treated
as a task and moved to a new method which is enqueued and executed in the
same way as a conventional directive. Like the semantics for the conventional
directive, the enqueuing serves as the fork. The exception being that the en-
countering thread is not assigned as the master. Also, no barrier is placed in
the original code, but a callback method is created using the code that appears
after the freeguithread region in the original code. This callback is processed
only after the execution of the task. This point serves as a continuation point
and effectively as the join.

Concerning the specifics of implementation, the Android framework does not
have an Event Dispatch Thread (EDT) and that is why the rudimentary im-
plementation uses the application’s looper instead. Every Android application
has a main thread living inside the process in which the application is running.
This thread contains a looper, which is called the main looper (instance of class
Looper). For an activity or a service with a GUI, the main looper handles the
GUI events. The main looper in Android is essentially analogous to the EDT in
Java. With that knowledge, the GUI-aware directive verifies if the encountering
thread is an event loop or not, using the method shown below:

Using OpenMP under Android 23

private boolean isEventLoop() {
boolean bELoop = false;

if(Looper.myLooper()!= null) {
bELoop = (Looper.myLooper() == Looper.getMainLooper())

}
return bELoop;

}
The gui directive translation searches for the main looper and posts the user

code (as a Runnable) to it, as illustrated in the following code:

pHandler handler = new Handler(Looper.getMainLooper());

handler.post(new Runnable(() {
public void run() {
....

}
});

Here, Handler is another class that allows sending and processing the runnable
objects associated with a thread’s message queue. It binds to the threads message
queue that created it. Also, as shown in the code, Looper.myLooper() returns
the looper associated with the current thread, if it has one. If the returned one
is not the application’s main looper, then it is concluded that the current thread
is not the main thread of the application.

6 Evaluations

In this section we present the preliminary evaluations of the conventional andGUI
directives for Android. The overall strategy has been to evaluate the system on
diverse devices and using diverse applications (non-conventional application, con-
ventionalmainstreamapplications andpure performancemeasuring applications).

6.1 Evolution Strategy Algorithm

The first application we present is an implementation of the EvoLisa algorithm
created by Roger Alsing [1]. It is an evolution strategy algorithm, and is a subset
of the broader class of evolutionary algorithms [5]. For this evaluation, we used
a Galaxy Nexus 7 tablet, running an ARM Cortex-A9 Nvidia Tegra 1.2 GHz
quad core processor with 1GB of RAM.

Strategy. In order to accurately gauge the suitability of the system as a de-
velopment tool, and also more accurately reflect a real design scenario, an al-
gorithm was chosen that was not already parallelised. Without prior knowledge
of the algorithm model it was ensured that selection bias would not result in
an algorithm being selected that was naturally suited to a fork-join model. The
challenge of parallelising the algorithm also provided the opportunity to explore

24 Vikas et al.

how the environment can be used to parallelise non trivial algorithms. In ad-
dition to being unknown, the algorithm was also required to be long running
and computationally expensive, such that it would be completely impossible to
implement purely on the GUI thread. It also needed to provide updates to the
user interface and have some level of user interactivity, so that it cannot simply
be passed to a background thread to execute in isolation from the rest of the
application. In fact, below is the code snippet of this app using Android Pyjama:

performImageGeneration(){
initialise starting working set of polygons

....

//#omp freeguithread parallel

{
while(continueToGenerate){
// fetch portion of polygons for current thread

....

// attempt 100 random mutations and select best one

....

//#omp barrier

....

//#omp single

{
//recombine polygons and create new parent

// create display image

//#omp gui

{
// update GUI

}
}

}
}

}

This code snippet promotes the harmony of using standard OpenMP for per-
formance and synchronisation (in green), in combination with the GUI-aware
constructs of Pyjama (in blue) to adhere to GUI concurrency rules in promoting
a responsive Android GUI application. Furthermore, this code demonstrates the
elegance of using a directive-based solution (such as OpenMP) to a new class of
user interactive applications, not just the batch-type scientific and engineering
applications traditionally tackled by OpenMP.

Evaluations. The algorithm was run repeatedly using different numbers of
threads on three versions of the application: sequential, multi-threaded using
ExecutorService and Android Pyjama directives. Tests were all performed on
a single boot, with tests interleaved (i.e. single thread test performed, multi-
threaded test with 2 threads performed, multi-threaded test with 4 threads per-
formed). To perform the test an image was left to generate for 900 seconds, with

Using OpenMP under Android 25

Fig. 2. Execution time vs fitness Values. Left:Pyjama vs native treads.
Right:Improvement in fitness value with increase in number of threads.

the execution time and fitness level of the generated image recorded after each
evolution cycle.

Results of the testing are shown in figure 2, displaying three runs of each of
the manual threading (using ExecutorService) and Android Pyjama when each
use four threads. It can be observed that the scalability and performance gain
achieved is similar in both versions; the directive-base parallel-concurrent ver-
sion (i.e. Pyjama) performs similar to the manually programmed multi-threaded
version (lower fitness value is better). Due to the randomness aspect of the al-
gorithm, there is sometimes a large degree of variation between runs. Figure 2
helps confirm though, that having increased parallelism does in fact speed up
the progress of the algorithm on the mobile device, as increasing from 1 to 2 to
4 threads.

From the GUI aspect, intermittent GUI updates (i.e. results from the muta-
tions) is an important part of this application. The code snippet showed how
this was effectively handled by the GUI directive, embedded within a stan-
dard OpenMP single construct to ensure only one update request is made per
cycle. In effect, the Android Pyjama implementation exhibited identical respon-
siveness to the manually threaded implementation using standard Android con-
structs; however, the Android Pyjama implementation clearly has the advantage
of highly resembling the sequential version with minimal recoding. Irrespective
of the ongoing background processing, the GUI remained responsive to the user
actions. Figure 3, presents a small gallery of screenshots from the application.

6.2 Pattern Rendering Application

We developed another GUI application that creates psychedelic renderings on
the screen. We used the Samsung GT-I9300 (Samsung Galaxy S-III) smartphone
that has a 1.4 GHz quad-core ARM Cortex-A9 CPU and 1 GB of RAM.

Strategy. We designed the Android application in a way that it can serve as a
representation of the major types of applications that are published for mobile

26 Vikas et al.

Fig. 3. Responsiveness while reconstruction of images in the EvoLisa Application

devices. Firstly, it creates a standard GUI for information screens and the help-
screen using standard components of the Android toolkit, such as layouts and
widgets. Secondly, the rendering screen of the application draws directly to the
canvas, and controls all the drawings to it directly. In this way, it represents
typical gaming and graphical applications, which are more compute intensive
and richer in rendering.

The directives add incremental concurrency, performance and responsiveness
to the application. Each screen (activity) uses the GUI-aware directive (gui), to
render the screen components (layouts and widgets). The parallel for direc-
tive, along with GUI-aware directives (freeguithread/gui) are used to migrate
the computations to the thread pool and to keep the screen responsive to gestures
and touch inputs. For evaluations, we used two versions of the same applications.
The first one using the directives and the second one using standard Android
constructs, and compared the behaviours. This reflects on the completeness of
the system on Android.

Evaluations. Considering the application responsiveness and behaviour, the
two versions of the applications performed identically. The GUI display and pat-
tern rendering on the screen is seen to be the same. Looking at the responsive-
ness, as figure 4 quantifies, the gesture and touch inputs were correctly registered.

6.3 Responsiveness Evaluation with Monkey Tool

The Monkey tool [4], distributed with Android SDK, generates random events
(such as touch, motion, key events, clicks and more) which can be fired at the
application. In figure 2, we observed that an increase in the number of threads
improves the performance; we used the Monkey tool to test the responsiveness
in the face of this improved performance. We evaluated different versions of
the application by averaging over 20 runs and in each run we fired 5000 UI
events at the applications. We measured the number of events that get dropped
while the GUI thread is busy processing. We also measured the response time.
The lesser the response time, the more responsive the application, and lesser
are the chances of an application-freeze. We compared the Android Pyjama

Using OpenMP under Android 27

Fig. 4. Snapshots showing response to user’s gestures. A “circle” gesture adds more
colours to the fractal generation.

version of the application with that of another version developed using the native
threads. The non-concurrent (single thread) version remains unresponsive to the
events while processing the computationally intensive load and so could not be
evaluated (Android throws an exception if workload is processed on the GUI
thread). The results are shown in figure 5.

The results provide a fairly quantifiable measurement of the responsiveness
in the Android Pyjama version. An overall responsiveness is achieved with both
the Android concurrency and Pyjama, with comparable results. Here, it should
be noted that Pyjama utilises a native task pool and therefore avoids the thread
creation and destruction overheads. Also, as the number of threads increases and
the application achieves more computation, the GUI thread gets smaller time
slice to process the UI events. But this results in very small loss of responsiveness
when compared to the performance gain that the application achieves.

Fig. 5. Results of the responsiveness test with the Monkey tool

6.4 Mandelbrot Application

In order to measure the gross performance gain, by minimising the effects of
GUI-based processing, we implemented an Android Mandelbrot application.

28 Vikas et al.

Two versions of the application were created for this evaluation; a serial ver-
sion which does not use any concurrency or parallelism constructs (although
a background thread is necessary to be launched for time consuming compu-
tations, otherwise the Android operating system throws an exception) and the
second one uses the directives for parallelism (the parallel construct and the
parallel for construct). It was observed that Android Pyjama scaled well on
the Galaxy S III; for 4 cores, a speedup of 2.7x was observed in comparison to
the serial version.

6.5 Productivity Evaluation

Even though in its preliminary stages, the proposed system exhibits good reasons
for bringing a directives-based approach to the Android platform. By replacing
native threading constructs with compiler directives, we were able to remove
much of the fragmentation introduced into the code by these constructs (a 75%
reduction was achieved in the EvoLisa demonstration application), resulting in
more sequential, readable code. For the GUI applications, the aim is to provide
a fluid experience for the user, and achieving this aim is often hindered by a
large number of small tasks which introduce slight delays. The proposed system
makes it simple for developers to offload these tasks to background threads, and
provides the necessary tools to manage the complex interactions between these
background threads and the GUI thread, thus removing the burden of manually
managing this process.

7 Conclusion

With the mobile domain being so relevant today, we presented a compiler-
runtime system to support directives based parallelism for Android promoting
the OpenMP philosophy. The evaluations demonstrated positive results using
a set of Android applications that focused on the GUI aspect of these appli-
cations; here, traditional parallelism in the form of speedup is only one aspect
of performance, the other vital measure of performance being that of ensuring
a user-perceived positive experience. Code snippets for the used directives also
helped illustrate the contribution such a tool can provide for the productivity of
mobile application developers.

References

1. Alsing, R.: Genetic Programming: Evolution of Mona Lisa (December 2008)

2. Google Inc. Android. Keep your app responsive (April 2013)

3. Android, Google Inc.,
http://developer.android.com/guide/basics/what-is-android.html

4. Android, Google Inc.,
http://developer.android.com/tools/help/monkey.html

5. Brownlee, J.: Evolution Strategies

http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/tools/help/monkey.html

Using OpenMP under Android 29

6. Bull, J.M., Kambites, M.E.: JOMP—an OpenMP-like interface for Java. In: JAVA
2000: Proceedings of the ACM 2000 Conference on Java Grande, pp. 44–53. ACM,
New York (2000)

7. Fayad, M., Schmidt, D.C.: Object-oriented application framework. Communica-
tions of the ACM 40(10), 32–38 (1997)

8. Klemm, M., Bezold, M., Veldema, R., Philippsen, M.: JaMP: an implementation
of OpenMP for a Java DSM. Concurrency & Computation: Practice & Experi-
ence 19(18), 2333–2352 (2007)

9. Lee, E.A.: The Problem With Threads. IEEE Computer 39(5), 33–42 (2006)
10. OpenMP Architecture Review Board. OpenMP Application Program Interface

Version 2.5 (2005)
11. Ratabouil, S.: Android NDK: discover the native side of Android and inject the

power of C/C++ is your applications: begineer’s guide. Packt Pub., Birmingham
(2012)

12. Satya, K., Dave, M., Franchomme, E.: Pro Android 4. Apress, New York (2012)
13. Satya, K., Dave, M., Sayed, H.Y.: Pro Android 3. Apress, New York (2011)
14. Schordan, M.: The language of the visitor design pattern. Journal of Universal

Computer Science 12(7), 849–867 (2006)
15. Sutter, H.: A fundamental turn toward concurrency in software. Dr. Dobb’s Jour-

nal 30(3) (February 2005)
16. Vikas, Giacaman, N., Sinnen, O.: Pyjama: OpenMP-like implementation for Java,

with GUI extensions. In: International Workshop on Programming Models and Ap-
plications for Multicores and Manycores (PMAM) Held in Conjunction with 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2013 (2013)

Expressing DOACROSS Loop Dependences

in OpenMP

Jun Shirako1, Priya Unnikrishnan2, Sanjay Chatterjee1,
Kelvin Li2, and Vivek Sarkar1

1 Department of Computer Science, Rice University
2 IBM Toronto Laboratory

Abstract. OpenMP is a widely used programming standard for a broad
range of parallel systems. In the OpenMP programming model, syn-
chronization points are specified by implicit or explicit barrier opera-
tions within a parallel region. However, certain classes of computations,
such as stencil algorithms, can be supported with better synchronization
efficiency and data locality when using doacross parallelism with point-
to-point synchronization than wavefront parallelism with barrier syn-
chronization. In this paper, we propose new synchronization constructs
to enable doacross parallelism in the context of the OpenMP program-
ming model. Experimental results on a 32-core IBM Power7 system using
four benchmark programs show performance improvements of the pro-
posed doacross approach over OpenMP barriers by factors of 1.4× to
5.2× when using all 32 cores.

1 Introduction

Multicore and manycore processors are now becoming mainstream in the
computer industry. Instead of using processors with faster clock speeds, all
computers— embedded, mainstream, and high-end systems — are being built
using chips with an increasing number of processor cores with little or no in-
crease in clock speed per core. This trend has forced the need for improved
productivity in parallel programming models. A major obstacle to productivity
lies in the programmability and performance challenges related to coordinat-
ing and synchronizing parallel tasks. Effective use of barrier and point-to-point
synchronization are major sources of complexity in that regard. In the OpenMP
programming model [1, 2], synchronization points are specified by implicit or ex-
plicit barrier operations, which force all parallel threads in the current parallel
region to synchronize with each other1. However, certain classes of computations
such as stencil algorithms require to specify synchronization only among particu-
lar iterations so as to support doacross parallelism [3] with better synchronization
efficiency and data locality than wavefront parallelism using all-to-all barriers.

In this paper, we propose new synchronization constructs to express cross-
iteration dependences of a parallelized loop and enable doacross parallelism in

1 This paper focuses on extensions to OpenMP synchronization constructs for parallel
loops rather than parallel tasks.

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 30–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Expressing DOACROSS Loop Dependences in OpenMP 31

the context of the OpenMP programming model. Note that the proposed con-
structs aim to express ordering constraints among iterations and we do not
distinguish among flow, anti and output dependences. Experimental results on
a 32-core IBM Power7 system using numerical applications show performance
improvements of the proposed doacross approach over OpenMP barriers by the
factors of 1.4–5.2 when using all 32 cores.

The rest of the paper is organized as follows. Section 2 provides background
on OpenMP and discusses current limitations in expressing iteration-level de-
pendences. This section also includes examples of low-level hand-coded doacross
synchronization in current OpenMP programs, thereby providing additional mo-
tivation for our proposed doacross extensions. Section 3 introduces the proposed
extensions to support cross-iteration dependence in OpenMP. Section 4 discusses
the interaction of the proposed doacross extensions with existing OpenMP con-
structs. Section 5 describes compiler optimizations to reduce synchronization
overhead and runtime implementations to support efficient cross-iteration syn-
chronizations. Section 6 presents our experimental results on a 32-core IBM
Power7 platform. Related work is discussed in Section 7, and we conclude in
Section 8.

2 Background

2.1 OpenMP

In this section, we give a brief summary of the OpenMP constructs [2] that are
most relevant to this paper. The parallel construct supports the functionality
to start parallel execution by creating parallel threads. The number of threads
created is determined by the environment variable OMP NUM THREADS, runtime
function omp set num threads or num threads clause specified on the parallel
construct. The barrier construct specifies an all-to-all barrier operation among
threads in the current parallel region2. Therefore, each barrier region must be
encountered by all threads or by none at all. The loop constructs, for construct
in C/C++ and do construct in Fortran, are work-sharing constructs to specify
that the iterations of the loop will be executed in parallel. An implicit barrier
is performed immediately after the loop region. The implicit barrier may be
omitted if a nowait clause is specified on the loop directive. Further, a barrier

is not allowed inside a loop region. The collapse clause on a loop directive
collapses multiple perfectly nested rectangular loops into a singly nested loop
with an equivalent size of iteration space. The ordered construct specifies a
structured block in a loop region that will be executed in the order of the loop
iterations. This sequentializes and orders the code within an ordered region
while allowing code outside the region to run in parallel. Note that an ordered

clause must be specified on the loop directive, and the ordered region must be
executed only once per iteration of the loop.

2 A region may be thought of as the dynamic or runtime extent of construct - i.e.,
region includes any code in called routines while a construct does not.

32 J. Shirako et al.

1 #pragma omp p a r a l l e l for c o l l a p s e (2) ordered
2 for (i = 1 ; i < n−1; i++) {
3 for (j = 1 ; j < m−1; j++) {
4 #pragma omp ordered
5 A[i] [j] = s t e n c i l (A[i] [j] , A[i] [j −1] , A[i] [j +1] ,
6 A[i −1] [j] , A[i +1] [j]) ;
7 } }
8 (a) Ordered cons t ruc t
9

10 #pragma omp p a r a l l e l p r i v a t e (i 2)
11 {
12 for (i 2 = 2 ; i 2 < n+m−3; i 2++) { /∗ Loop skewing ∗/
13 #pragma omp for
14 for (j = max(1 , i2−n+2) ; j < min(m−1, i 2) ; j++) {
15 int i = i 2 − j ;
16 A[i] [j] = s t e n c i l (A[i] [j] , A[i] [j −1] , A[i] [j +1] ,
17 A[i −1] [j] , A[i +1] [j]) ;
18 } } }
19 (b) Doal l with imp l i c i t b a r r i e r

Fig. 1. 2-D Stencil using existing OpenMP constructs: (a) serialized execution using
ordered construct, (b) doall with all-to-all barrier after loop skewing

2.2 Expressiveness of Loop Dependences in OpenMP

As mentioned earlier, a barrier construct is not allowed within a loop region,
and ordered is the only synchronization construct that expresses cross-iteration
loop dependences among for/do loop iterations. However, the expressiveness of
loop dependence by ordered construct is limited to sequential order and does not
cover general loop dependence expressions such as dependence distance vectors.
Figure 1a shows an example code for 2-D stencil computation using ordered.
The collapse clause on the for directive converts the doubly nested loops into a
single nest. This clause is used to ensure that the ordered region is executed only
once per iteration of the parallel loop, as required by the specifications. Although
the dependence distance vectors of the doubly nested loop are (1,0) and (0,1) and
hence it has doacross parallelism, the ordered construct serializes the execution
and no parallelism is available as shown in Figure 2a. An alternative way to
exploit parallelism is to apply loop skewing so as to convert doacross parallelism
into doall in wavefront fashion. Figure 1b shows the code after loop skewing
and parallelizing the inner j-loop using a for construct, which is followed by an
implicit barrier. As shown in Figure 2b, the major performance drawback of this
approach is using all-to-all barrier synchronizations, which are generally more
expensive than point-to-point synchronizations used for doacross. Further, this
requires programmer expertise in loop restructuring techniques - i.e., selecting
correct loop skewing factor and providing skewed loop boundaries.

Expressing DOACROSS Loop Dependences in OpenMP 33

i=1 i=2 i=3 i=4
j=1

j=2

j=3

j=4

: Serialized order
(a) Ordered construct

i2=3 i2=4 i2=5
j=1

j=2

j=3

j=4

i2=2 i2=6 i2=7 i2=8

: All-to-all barrier
(b) Doall with implicit barrier

i=1 i=2 i=3 i=4
j=1

j=2

j=3

j=4

: p2p sync : seq
(c) Doacross extensions

Fig. 2. Synchronization Pattern for 2-D Stencil

2.3 Examples of Hand-Coded Doacross Synchronization in Current
OpenMP Programs

Some expert users provide customized barriers/point-to-point synchronizations
based on busy-wait local spinning implementations [4] using additional volatile
variables for handling synchronization. Although such customized implementa-
tions can bring fully optimized performance, they require solid knowledge of
parallel programming and the underlying system and are easy to introduce error
and/or potential deadlock.

Examples can be found in the OpenMP version of the NAS Parallel Bench-
mark [5, 6], which is a widely used HPC benchmark suite since 1992. E.g., in
NPB3.3.1/NPB3.3-OMP/LU, the pipelining of the SSOR algorithm is achieved
by point-to-point synchronizations through extra synchronization variables,
busy-waiting, and flush directive for memory consistency. The code utilizes
OpenMP library functions, threadprivate directive in addition to the loop
construct with schedule(static) and nowait clauses. The end result is code
that is non-intuitive and unduly complicated.

Further, the LU implementation in NPB reveals a non-compliant usage of
nowait. Although it makes an assumption that a nowait is always enforced,
the OpenMP standard states that “... If a nowait clause is present, an imple-
mentation may omit the barrier at the end of the worksharing region.”. Because
of “may”, implementations are allowed to ignore the nowait and introduce a
barrier. However, if this happens, then the LU implementation will deadlock.

Our proposal aims to address all those issues regarding complexity and dead-
lock avoidance while keeping the synchronization efficiency via point-to-point
synchronizations.

3 New Pragmas for Doacross Parallelization

This section introduces our proposed OpenMP extensions to express general
cross-iteration loop dependences and thereby support doacross parallelization.
Due to space limitations, we focus on the pragma syntax for C/C++ in this pa-
per, although our proposal is naturally applicable to both C/C++ and Fortran.

34 J. Shirako et al.

The proposed doacross annotations consist of nest clause to specify target
loops of doacross parallelization and post/await constructs to express source/
sink of cross-iteration dependences. Ideally, an await construct works as a block-
ing operation that waits for post constructs in specific loop iterations. The post
construct serves as the corresponding unblocking operation. According to the
OpenMP terminology, loops that are affected by a loop directive are called as-
sociated loops. For ease of presentation, we will call the associated loops that are
the target of doacross parallelization as a doacross loop nest. According to the
OpenMP specification [2], all the associated loops must be perfectly nested and
have canonical form.

– nest clause:
The “nest(n)” clause, which appears on a loop directive, specifies the nest-
level of a doacross loop nest. Although nest clause defines associated loops
as with collapse clause, there are two semantical differences from collapse

clause: 1) nest clause is an informational clause and does not necessarily im-
ply any loop restructuring, and 2) nest clause permits triangular/trapezoidal
loops, whereas collapse clause is restricted to rectangular loops.

– await construct:
The “await depend(vect)[[,] depend(vect)...]” construct specifies the source
iteration vectors of the cross-iteration dependences. There must be at least
one depend clause on an await directive. The current iteration is blocked
until all the source iterations specified by vect of depend clauses3 execute
their post constructs. Based on OpenMP’s default sequential semantics,
the loop dependence vector defined by depend clause must be lexicograph-
ically positive, and we also require that the dependence vector is constant
at compile-time so as to simplify the legality check. Therefore, we restrict
the form of vect to (x1 − d1, x2 − d2, ..., xn − dn), where n is the dimension
specified by the nest clause, xi denotes the loop index of i-th nested loop,
and di is a constant integer for all 1 ≤ i ≤ n 4. The dependence distance
vector is simply defined as (d1, d2, ..., dn). If the vect indicates an invalid
iteration (i.e., if vector (d1, . . . , dn) is lexicographically non-positive) then
the depend clause is ignored implying that there is no real cross-iteration
dependence. The await is a stand-alone directive without associated exe-
cutable user codes and designates the location where the blocking operation
is invoked. Note that at most one await construct can exist in the lexical
scope5 of the loop body of a doacross loop nest.

– post construct:
The “post” construct indicates the termination of the computation that
causes loop dependences from the current iteration. This stand-alone

3 The depend clause is also under consideration for expressing “inter-task” depen-
dences for task construct in OpenMP 4.0.

4 It is a simple matter to also permit + operators in this syntax since xi + d is the
same as xi − (−d).

5 This means await and post cannot be dynamically nested inside a function invoked
from the loop body because they are closely associated with the induction variables
of the doacross loop nest.

Expressing DOACROSS Loop Dependences in OpenMP 35

1 #pragma omp p a r a l l e l for nest (2)
2 for (i = 1 ; i < n−1; i++) {
3 for (j = 1 ; j < m−1; j++) {
4 #pragma omp await depend (i −1, j) depend (i , j−1)
5 A[i] [j] = s t e n c i l (A[i] [j] , A[i] [j −1] , A[i] [j +1] ,
6 A[i −1] [j] , A[i +1] [j]) ;
7 } }
8 (a) I t e r a t i on−l e v e l dependences : e x p l i c i t await at top and

imp l i c i t post at bottom
9

10 #pragma omp p a r a l l e l for nest (2)
11 for (i = 1 ; i < n−1; i++) {
12 for (j = 1 ; j < m−1; j++) {
13 int tmp = foo (A[i] [j]) ;
14 #pragma omp await depend (i −1, j) depend (i , j−1)
15 A[i] [j] = s t e n c i l (tmp , A[i] [j −1] , A[i] [j +1] ,
16 A[i −1] [j] , A[i +1] [j]) ;
17 #pragma omp post
18 B[i] [j] = bar (A[i] [j]) ;
19 } }
20 (b) Statement−l e v e l dependences : e x p l i c i t await b e f o r e l i n e

15 and e x p l i c i t post a f t e r l i n e 16

Fig. 3. 2-D Stencil with the doacross extensions

directive designates the location to invoke the unblocking operation. Anal-
ogous to await construct, the location must be in the loop body of the
doacross loop nest. The difference from await construct is that there is an
implicit post at the end of the loop body. Note that the parameter in the
nest clause determines the location of the implicit post. Due to the presence
of the implicit post, it is legal to have no post constructs inserted by users
while the explicit post is allowed at most once. The implicit post becomes
no-op when the invocation of the explicit post per loop body is detected at
runtime. Finally, it is possible for an explicit post to be invoked before an
await in the loop body.

Figure 3 contains two example codes for the 2-D stencil with the doacross ex-
tensions that specify cross-iteration dependences (1, 0) and (0, 1). As shown in
Figure 3a, programmers can specify iteration-level dependences very simply by
placing an await construct at the start of the loop body and relying on the im-
plicit post construct at the end of the loop body. On the other hand, Figure 3b
shows a case in which post and await are optimally placed around lines 15 and
16 to optimize statement-level dependences and minimize the critical path length
of the doacross loop nest. Note that functions foo and bar at lines 13 and 18 do
not contribute to the cross-iteration dependences; foo can be executed before the
await and bar can execute after the post. The post/await constructs semanti-
cally specify the source/sink of cross-iteration dependences and allow flexibility
on how to parallelize the doacross loop nest.

36 J. Shirako et al.

4 Interaction with Other OpenMP Constructs

This section discusses the interaction of the proposed doacross extensions with
the existing OpenMP constructs. We classify the existing constructs into three
categories: 1) constructs that cannot be legally used in conjunction with the
doacross extensions, 2) constructs that can be safely used with the doacross
extensions, and 3) constructs that require careful consideration when used with
the doacross extensions.

4.1 Illegal Usage with Doacross

The nest, await and post constructs make sense only in the context of loops.
So the usage of these constructs along with the sections, single and master

constructs are illegal. Similarly using them with a parallel region without an
associate loop construct is illegal, e.g., #pragma omp parallel for nest() is
legitimate but #pragma omp parallel nest() is not.

4.2 Safe Usage with Doacross

The nest, await and post constructs are to be used in conjunction with loops
only. The doacross extension can be safely used with the following clauses.

– private/firstprivate/lastprivate clauses:
These are data handling clauses that appear on a loop construct. Because
they are only concerned with the data and have not affect on loop scheduling
nor synchronization, it is always safe to use with the doacross extensions.

– reduction clause:
This clause appears on a loop directive and specifies a reduction opera-
tor, e.g., + and *, and target variable(s). Analogous to private constructs,
reduction clause can be safely combined with the doacross constructs.

– ordered construct:
The ordered clause to appear on a loop directive serializes loop iterations as
demonstrated in Section 2. The ordered construct specifies a statement or
structured block to be serialized in the loop body. Because loop dependences
specified by await constructs are lexicographically positive, any doacross de-
pendence does not go against with the sequential order by the ordered con-
struct, and hence the combination of ordered and await constructs creates
no theoretical deadlock cycle.

– collapse clause:
The collapse clause attached on a loop directive is to specify how many
loops are associated with the loop construct, and the iterations of all as-
sociated loops are collapsed into one iteration space with equivalent size.
We allow the combination of collapse clause and nest clause in the fol-
lowing manner. When collapse(m) and nest(n) clauses are specified on
a loop nest whose nest-level is l, the loop transformation due to collapse

clause is first processed and the original l-level loop nest is converted into

Expressing DOACROSS Loop Dependences in OpenMP 37

a (l − m + 1)-level loop nest. Then, the nest(n) clause and correspond-
ing post/await constructs are applied to the resulting loop nest. Note that
l ≥ m+ n− 1, otherwise it results in a compile-timer error.

– schedule clause:
The schedule clause attached on a loop directive is to specify how the
parallel loop iterations are divided into chunks, which are contiguous non-
empty subsets, and how these chunks are distributed among threads. The
schedule clause supports several loop scheduling kinds: static, dynamic,
guided, auto and runtime, and allows users to specify the chunk size. As
discussed in Section 5, any scheduling kind and chunk size are safe to use
with the doacross extensions.

– task construct:
The task construct to define an explicit task is available within a loop region.
Analogous to ordered construct, we prohibit a post construct from being
used within a task region since such a post will have a race condition with
the implicit post at the loop body end.

– atomic/critical constructs:
The atomic and critical constructs to support atomicity and mutual ex-
clusion respectively can be used within a loop region. In order to avoid
deadlock, we disallow a critical region to contain an await construct as
with ordered construct.

– simd construct:
The simd construct, which will be introduced in the OpenMP 4.0, can be ap-
plied to a loop to indicate that the loop can be transformed into a SIMD loop
(that is, multiple iterations of the loop can be executed concurrently using
SIMD instructions). We disallow simd clause and nest clause from appear-
ing on the same loop construct due to conflict in semantics, i.e., nest clause
implies loop dependence while simd mentions SIMD parallelism. Instead, we
allow SIMD loop(s) to be nested inside a doacross loop nest.

4.3 Constructs Requiring Careful Consideration

The lock routines supported in the OpenMP library can cause a deadlock when
interacted with the await construct, especially under the following situation: 1)
an await construct is located between lock and unlock operations and 2) a post

construct is located after the lock operation. It is user’s responsibility to avoid
such deadlock situations due to the interaction.

5 Implementation

This section describes a simple and efficient implementation approach for the
proposed doacross extensions to OpenMP; however, other implementation ap-
proaches are possible as well. Our approach only parallelizes the outermost loop
of the doacross loop nest and keeps inner loops as sequential to be processed
by a single thread. The loop dependences that cross the parallelized iterations

38 J. Shirako et al.

are enforced via runtime point-to-point synchronizations. Figure 2c shows the
synchronization pattern of this approach for the doacross loop in Figure 3, where
the outer i-loop is parallelized and its cross-iteration dependence, (1, 0), is pre-
served by the point-to-point synchronizations. In order to avoid deadlock due to
the point-to-point synchronization, the runtime loop scheduling must satisfy a
condition that an earlier iteration of the parallel loop is scheduled to a thread
before a later iteration. According to the OpenMP Specification (lines 19–21
in page 49 for 4.0 RC2) [2], this condition is satisfied by any OpenMP loop
scheduling policy. Note that the same condition is necessary for ordered clause
to avoid deadlock. Further, any chunk size can be used without causing deadlock.
However, chunk sizes greater than the dependence distance of the parallel loop
significantly reduce doacross parallelism. Therefore, we assume that the default
chunk size for doacross loops is 1. Further, the default loop schedule is static
so as to enable the lightweight version of synchronization runtime as discussed
in Section 5.2.

5.1 Compiler Supports for Doacross Extension

The major task for compilers is to check the legality of the annotated informa-
tion via the nest and post/await constructs, and convert the information into
runtime calls to POST/WAIT operations. Further, we introduce a compile-time
optimization called dependence folding [7], which integrates the specified cross-
iteration dependences into a conservative dependence vector so as to reduce the
runtime synchronizations [7].

Legality Check and Parsing for Doacross Annotations: As with collapse

clause, the loop nest specified by nest clause must be perfectly nested and have
canonical loop form [2]. To verify nest clauses, we can reuse the same check
as collapse clause. The legality check for await, depend and post constructs
ensure 1) at most one post/await directive exists at the nest-level specified by
the nest clause, 2) the dependence vector of a depend clause is lexicographically
positive and constant, and 3) the dimension of the dependence vector is same as
the parameter of the nest clause.

After all checks are passed and the optimization described in next paragraph is
applied, the doacross information is converted into the POST and WAIT runtime
calls. The locations for these calls are same as the post/await constructs. The
argument for the POST call is the current iteration vector (x1, x2, ..., xn), while
the argument for the WAIT call is defined as (x1 − c1, x2 − c2, ..., xn − cn) by
using the conservative dependence vector discussed below.

Dependence Folding: In order to reduce the runtime synchronization
overhead, we employ dependence folding [7] that integrates the multiple cross-
iteration dependences specified by the await construct into a single conservative
dependence. First, we ignore dependence vectors whose first dimension - i.e., the
dependence distance of the outermost loop - is zero because such dependences
are always preserved by the single thread execution. The following discussion

Expressing DOACROSS Loop Dependences in OpenMP 39

assumes that any dependence vector has a positive value in the first dimension
in addition to the guarantee of constant dependence vectors.

For an n-th nested doacross loop with k dependence distance vectors, let
Di = (di1, d

i
2, ..., d

i
n) denote the i-th dependence vector (1 ≤ i ≤ k). We define

the conservative dependence vector C = (c1, c2, ..., cn) of all k dependences as
follow.

C =

(
C[1] : (c1)

C[2..n] : (c2, c3, ..., cn)

)
=

(
gcd(d11, d

2
1, ..., d

k
1)

min vect(D1[2..n], D2[2..n], ..., Dk[2..n])

)

Because the outermost loop is parallelized, the first dimension of Di, di1, denotes
the stride of dependence across parallel iterations. Therefore, the first dimension
of C should correspond to the GCD value of d11, d21, ..., dk1 . The remaining
dimensions, C[2..n], can be computed as the lexicographical minimum vector of
D1[2..n],D2[2..n], ...,Dk[2..n] because such a minimum vector and the sequential
execution of inner loops should preserve all other dependence vectors. After
dependence folding, the conservative dependence C is used for the POST call as
described in the previous paragraph.

5.2 Runtime Supports for POST/WAIT Synchronizations

This section briefly introduces the runtime algorithms of the POST/WAIT op-
erations. When the loop schedule kind is specified as static, which is the de-
fault for doacross loops, we employ the algorithms introduced in our previous
work [7]. For other schedule kinds such as dynamic, guided, auto, and runtime,
we use the following simple extensions. Figure 4 shows the pseudo codes for
the extended POST/WAIT operations. To trace the POST operations, we pro-
vides a 2-dimensional synchronization field sync vec[lw : up][1 : n], where lw/up
is the lower/upper bound of the outermost loop and n is the nest-level of the
doacross loop nest. Because the iteration space of the outermost loop is paral-
lelized and scheduled to arbitrary threads at runtime, we need to trace all the
parallel iterations separately while the status of an iteration i (lw ≤ i ≤ up) is
represented by sync vec[i][1 : n]. During the execution of inner loops by a single
thread, the thread keeps updating the sync vec[i] via the POST operation with
the current iteration vector pvec, while the WAIT operation is implemented as
a local-spinning until the POST operation corresponding to the current WAIT is
done - i.e., sync vec[i] becomes greater or equal to the dependence source itera-
tion vector wvec. As shown at Line 9 of Figure 4, the WAIT operation becomes
no-op if the wvec is outside the legal loop boundaries.

6 Experimental Results

In this section, we present the experimental results for the proposed doacross
extensions in OpenMP. The experiments were performed on a Power7 system
with 32-core 3.55GHz processors running Red Hat Enterprise Linux release 5.4.

40 J. Shirako et al.

1 volat i le int sync vec [lw : up] [1 : n] ;
2
3 void post (int pvec [1 : n]) {
4 int i = pvec [1] ; /∗ Outermost loop index va lue ∗/
5 for (int j = n ; j > 0 ; j−−) sync vec [i] [j] = pvec [j] ;
6 }
7
8 void wait (int wvec [1 : n]) {
9 i f (out s ide l oop bounds (wvec)) return ; /∗ i n v a l i d awai t ∗/

10 int i = wvec [1] ; /∗ Outermost loop index va lue ∗/
11 while (vector compare (sync vec [i] , wvec]) < 0) s l e e p () ;
12 }

Fig. 4. Pseudo codes for POST and WAIT operations

The measurements were done using a development version of the XL Fortran 13.1
for Linux, which supports automatic doacross loop parallelization in addition to
doall parallelization. Although we use the Fortran compiler and benchmarks for
our experiments, essential functionalities to support the doacross paralleliza-
tion are also common for any C compilers. We used 4 benchmark programs
for our evaluation: SOR and Jacobi, which are variants of the 2-dimensional
stencil computation, Poisson computation, and 2-dimensional LU from the NAS
Parallel Benchmarks Suite (Version 3.2). All these benchmarks are excellent can-
didates for doacross parallelization. All benchmarks were compiled with option
“-O5” for the sequential baseline, and “-O5 -qsmp” for the parallel executions.
a) omp doacross is the speedup where the doacross parallelism is enabled by the
proposed doacross extensions (right), b) omp existing is the speedup where the
same doacross parallelism is converted into doall parallelism via manual loop
skewing and parallelized by the OpenMP loop construct (center), and c) auto
par represents the speedup where the automatic parallelization for doall and
doacross loops by the XL compiler is enabled (left). As shown below, auto par
does not always find the same doacross parallelism as omp doacross. We used
default schedule kind and chunk size, i.e., static with chunk size = 1 for omp
doacross and auto par, and static with no chunk size specified for omp existing.

6.1 SOR and Jacobi

Figure 5 shows the kernel computation of SOR, which repeats mjmax×mimax

2-D stencil by nstep times. We selected nstep = 10000, mjmax = 10000 and
mimax = 100 so as to highlight the existing OpenMP performance with loop
skewing. Jacobi has a very similar computation to SOR and both have the same
pattern of cross-iteration dependences. For the proposed doacross extensions,
we specified the outermost l-loop and middle j-loop as doubly nested doacross
loops with cross-iteration dependences (1,-1) and (0,1). For the existing OpenMP
parallelization, we converted the same doacross parallelism into doall via loop
skewing.

Expressing DOACROSS Loop Dependences in OpenMP 41

1 ! $omp p a r a l l e l do nest (2)
2 do 10 l = 1 , nstep
3 do 10 j = 2 , mjmax
4 ! $omp await (l −1, j +1) await (l , j−1)
5 do 10 i = 2 , mimax
6 p(i , j)=(p(i , j)+p(i +1, j)+p(i −1, j)+p(i , j +1)+p(i , j−1)) /5
7 10 continue
8 ! $omp end p a r a l l e l do

Fig. 5. SOR Kernel

Figure 6 shows the speedups of the three versions listed above when compared
to the sequential execution. As shown in the Figure 6a and 6b, omp doacross has
better scalability than omp existing for both SOR and Jacobi despite of the same
degree of parallelism. This is mainly because the doacross version enables point-
to-point synchronizations between neighboring threads, which is more efficient
than the all-to-all barrier operations by the existing approach. The version of
auto par applied doacross parallelization to the middle j-loop and innermost i-
loop; the scalability is worse than the manual approaches due to the finer-grained
parallelism. Note that the outermost l-loop is time dimension and difficult for
compilers to automatically compute dependence distance vectors. The enhanced
dependence analysis in the XL compiler should be addressed in future work

6.2 Poisson

The kernel loop of Poisson is also a triply nested doacross loop with size of
400×400×400. As with SOR and Jacobi, omp doacross and omp existing use
the doubly nested doacross parallelism of the outermost and middle loops, and
the innermost loop is executed without any synchronization. Figure 6c shows
the doacross version has better scalability due to the point-to-point synchro-
nizations. On the other hand, although auto par exactly detected all the depen-
dence distance vectors and applied doacross parallelization at the outermost loop
level, it parallelized the loop nest as a triply nested doacross and inserted the
POST/WAIT synchronizations at the innermost loop body. Note that auto par
applies compile-time and runtime granularity controls (loop unrolling and POST

canceling, respectively) based on the cost estimation [7]. However, selecting the
doacross nest-level as 2 brought more efficiency for the manual versions as shown
in Figure 6c. The automatic selection of doacross nest-level is another important
future work for the doacross parallelization by the XL compiler.

6.3 LU

LU has 2 doacross loop nests in subroutines blts and buts, which are 160×160
doubly nested doacross loops and account for about 40% of the sequential execu-
tion time. As observed for other benchmarks, omp doacross has better scalability
than omp existing due to the synchronization efficiency. For the case of LU, both
omp doacross and auto par use the same doacross parallelism. A difference is that

42 J. Shirako et al.

� � � � �� ��

�	

��
	
��

��

�
���

����
�
� � � � �� ��

�	

��
	
��

��

�
���

����
�

� � � � �� ��

�	

��
	
��

��

�
���

����

(c) Poisson

� � � � �� ��

�	

��
	
��

��

�
���

����

(a) SOR

(d) LU

(b) Jacobi

�

�

��

��

��

��

�

�

�

�

�

�
��
��
��
��
��
��

�
�

��
��
��
��
��
��

����	�� ��	
������� ��	��������

Fig. 6. Speedup related to sequential run on Power7

the granularity control is disabled for omp doacross since we should not assume
such optimizations in the language specification. However, the execution cost for
the doacross loop bodies in blts and buts is not small; disabling granularity
control did not result in large performance degradation with up to 8 cores, and
even better/same performance was shown with 32/16 cores because increasing
granularity can also affect the amount of parallelism.

7 Related Work

There is an extensive body of literature on doacross parallelization and point-
to-point synchronization. In this section, we focus on past contributions that are
most closely related to this paper.

Some of the seminal work in synchronization mechanism was done by Padua
and Midkiff [8, 9], where they focused on synchronization techniques for single-
nested doacross loops using synchronization variable per loop dependence. MPI
supports several functions for point-to-point synchronization and communica-
tion among threads, such as MPI send and MPI recv. As a recent research out-
come, phasers in the Habanero project [10] and java.util.concurrent.Phaser

from Java 7, which was influenced by Habanero phasers [11], support point-
to-point synchronizations among dynamically created tasks. Further, a large
amount of existing work on handling non-uniform cross-iteration dependences
at runtime [12–15] have been proposed.

Expressing DOACROSS Loop Dependences in OpenMP 43

There is also a long history on doacross loop scheduling and granularity con-
trol [3, 16–18] and compile-time/runtime optimizations for synchronizations [19–
21]. These techniques are applicable to the proposed doacross extensions.

8 Conclusions

This paper proposed new synchronization constructs to express cross-iteration
dependences of a parallelized loop and enable doacross parallelism in the con-
text of OpenMP programming model. We introduced the proposed API designs
and detailed semantics, and discussed the interaction with the existing OpenMP
constructs. Further, we described the fundamental implementations for compil-
ers and runtime libraries to support the proposed doacross extensions. Exper-
imental results on a 32-core IBM Power7 system using numerical applications
show performance improvements of the proposed doacross approach over exist-
ing OpenMP approach with additional loop restructuring by factors of 1.4–5.2
when using all 32 cores. Opportunities for future research include performance
experiments with different program sizes and platforms, explorations for the
combination with other OpenMP features, e.g., simd and task constructs, and
generalization of point-to-point synchronization aiming for the support of task
dependence in OpenMP 4.0.

References

1. Dagum, L., Menon, R.: OpenMP: An industry standard API for shared memory
programming. IEEE Computational Science & Engineering (1998)

2. OpenMP specifications, http://openmp.org/wp/openmp-specifications
3. Cytron, R.: Doacross: Beyond vectorization for multiprocessors. In: Proceedings of

the 1986 International Conference for Parallel Processing, pp. 836–844 (1986)
4. Mellor-Crummey, J., Scott, M.: Algorithms for Scalable Synchronization on Shared

Memory Multiprocessors. ACM Transactions on Computer Systems 9(1), 21–65
(1991)

5. N. A. S. Division, NAS Parallel Benchmarks Changes,
http://www.nas.nasa.gov/publications/npb_changes.html#url

6. Jin, H., Frumkin, M., Yan, J.: The openmp implementation of nas parallel bench-
marks and its performance. Tech. Rep. (1999)

7. Unnikrishnan, P., Shirako, J., Barton, K., Chatterjee, S., Silvera, R., Sarkar, V.:
A practical approach to doacross parallelization. In: International European Con-
ference on Parallel and Distributed Computing, Euro-Par (2012)

8. Padua, D.A.: Multiprocessors: Discussion of sometheoretical and practical prob-
lems. PhD thesis, Department of Computer Science, University of Illinois, Urbana,
Illinois (October 1979)

9. Midkiff, S.P., Padua, D.A.: Compiler algorithms for synchronization. IEEE Trans-
actions on Computers C-36, 1485–1495 (1987)

10. Shirako, J., et al.: Phasers: a unified deadlock-free construct for collective and
point-to-point synchronization. In: ICS 2008: Proceedings of the 22nd Annual In-
ternational Conference on Supercomputing, pp. 277–288. ACM, New York (2008)

http://openmp.org/wp/openmp-specifications
http://www.nas.nasa.gov/publications/npb_changes.html#url

44 J. Shirako et al.

11. Miller, A.: Set your Java 7 Phasers to stun (2008),
http://tech.puredanger.com/2008/07/08/java7-phasers/

12. Su, H.-M., Yew, P.-C.: On data synchronization for multiprocessors. In: Proc. of
the 16th Annual International Symposium on Computer Architecture, Jerusalem,
Israel, pp. 416–423 (April 1989)

13. Tang, C.Z.P., Yew, P.: Compiler techniques for data synchronization in nested
parallel loop. In: Proc. of 1990 ACM Intl. Conf. on Supercomputing, Amsterdam,
Amsterdam, pp. 177–186 (June 1990)

14. Li, Z.: Compiler algorithms for event variable synchronization. In: Proceedings of
the 5th International Conference on Supercomputing, Cologne, West, Germany,
pp. 85–95 (June 1991)

15. Ding-Kai Chen, P.-C.Y., Torrellas, J.: An efficient algorithm for the run-time par-
allelization of doacross loops. In: Proc. Supercomputing 1994, pp. 518–527 (1994)

16. Lowenthal, D.K.: Accurately selecting block size at run time in pipelined parallel
programs. International Journal of Parallel Programming 28(3), 245–274 (2000)

17. Manjikian, N., Abdelrahman, T.S.: Exploiting wavefront parallelism on large-scale
shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed
Systems 12(3), 259–271 (2001)

18. Pan, Z., Armstrong, B., Bae, H., Eigenmann, R.: On the interaction of tiling and
automatic parallelization. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R.,
Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315,
pp. 24–35. Springer, Heidelberg (2008)

19. Krothapalli, P.S.V.P.: Removal of redundant dependences in doacross loops with
constant dependences. IEEE Transactions on Parallel and Distributed Systems,
281–289 (July 1991)

20. Chen, D.-K.: Compiler optimizations for parallel loops with fine-grained synchro-
nization. PhD Thesis (1994)

21. Rajamony, A.L.C.R.: Optimally synchronizing doacross loops on shared memory
multiprocessors. In: Proc. of Intl. Conf. on Parallel Architectures and Compilation
Techniques (November 1997)

http://tech.puredanger.com/2008/07/08/java7-phasers/

Manycore Parallelism through OpenMP
High-Performance Scientific Computing with Xeon Phi

James Barker1 and Josh Bowden2

1 Application Support, CSIRO Advanced Scientific Computing (IM&T)
james.barker@csiro.au

2 Novel Technologies, CSIRO Advanced Scientific Computing (IM&T)
josh.bowden@csiro.au

Abstract. Intel’s Xeon Phi coprocessor presents a manycore architec-
ture that is superficially similar to a standard multicore SMP. Xeon Phi
can be programmed using the OpenMP standard for shared-memory par-
allelism. We investigate the performance and optimisation of two real-
world scientific codes, parallelised with OpenMP and accelerated on Xeon
Phi, and compare with a conventional CPU architecture. We conclude
that Xeon Phi offers the potential of significant speedup compared to
conventional CPU architectures, much of which is attainable through
the use of OpenMP.

1 Introduction

A defining trend of recent high-performance scientific computing has been the
movement towards specialised architectures. Although transistor density gains
and reductions in lithographic feature size have continued to occur at the pace
predicted by Moore’s Law, this is unlikely to continue indefinitely [1]; the rises in
clock speed and general-purpose single-core performance that drove computing in
the 1990s have ceased. Modern architecture design instead focuses on parallelism,
demonstrated in the development of manycore accelerator architectures. The
most notable of these is the graphics programming unit (GPU).

Since their uptake in high-performance computing in the mid-2000s, there has
been a flood of research into the capabilities of these devices and their potential
application to algorithms in various fields. The results have often been positive:
GPUs have been used to achieve significant speedup over conventional CPU
architectures in scientific applications such as the modelling of ion channels over
the walls of the heart [2]. Nevertheless, despite advances in both architecture
design and development tools, GPUs remain difficult to program effectively, and
challenging to integrate into existing workflows.

Intel’s Xeon Phi coprocessor architecture is the scion of an experimental line
that traces back to the Larrabee prototype [3]. At first glance, Xeon Phi’s many-
core design resembles a conventional multicore chip, writ large. The cores on a
Xeon Phi chip support both standard x86 instructions and a comprehensive set
of SIMD instructions, and possess fully-coherent L1 and L2 caches (32K and
512K respectively).

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 45–57, 2013.
© Springer-Verlag Berlin Heidelberg 2013

46 J. Barker and J. Bowden

While GPUs have been programmed through specialised languages such as
Nvidia’s CUDA and Khronos’ OpenCL, Xeon Phi can be programmed under
several models, including OpenMP. The ability to run existing OpenMP codes
on Xeon Phi, potentially without modification, is attractive. However, it is not
clear whether performance benefits over conventional hardware are achievable
through the use of OpenMP alone.

Here, we present a brief overview of the Xeon Phi architecture, as well as
the software development environment that surrounds it. We then measure and
analyse the performance of two scientific codes, parallelised for conventional CPU
architectures with OpenMP and ported to Xeon Phi.

2 The Xeon Phi Architecture

The Xeon Phi architecture can be described as an homogenous manycore co-
processor. It comprises up to 61 in-order dual-issue processing cores, each x86-
capable and supplemented by a 512-bit vector processing unit (VPU). The cores
are arranged around a bidirectional ring interconnect. Cores are clocked at up
to 1.1GHz, and can fetch and decode instructions from four hardware thread
contexts. No single thread context can issue back-to-back instructions in consec-
utive cycles; therefore, at least two threads must be resident per core for peak
computational throughput. (All hardware and software specifications are drawn
from [4] and [5] unless otherwise cited.)

The VPU attached to each core executes vector instructions drawn from a
new 512-bit SIMD instruction set extending the Intel 64 ISA. The VPUs are
compliant with the IEEE 754 2008 floating-point standard, for both single- and
double-precision packed vectors. Intel emphasises that extracting peak applica-
tion performance from Xeon Phi requires use of the vector unit.

Each Xeon Phi coprocessor is equipped with up to 16GB of off-chip GDDR5
RAM. The coprocessor maintains a separate 64-bit address space to the host
system; as coprocessors are currently only available in a PCIe 2.0 form-factor,
data must be transferred between the host and the device across the PCIe bus,
which is a potential application performance bottleneck. Each core possesses a
32KB L1 instruction cache, a 32KB L1 data cache, and a shared 512KB L2
instruction/data cache. Cache lines are 64B; caches are fully coherent with main
device memory. A core holding the requested data in cache may service a miss
generated by any other core.

The theoretical peak performance of a Xeon Phi coprocessor is approximately
1.1 TFLOP/s in double-precision. Although it remains unclear how closely this
can be approached by real-world application code, Intel has reported speeds up
to 883 GFLOP/s running the DGEMM BLAS routine from its Math Kernel
Library (MKL) [6].

3 The Xeon Phi Software Development Environment

A Xeon Phi coprocessor presents as a separate Symmetric Multi-Processing
(SMP) device, loosely coupled to a host system over PCIe. Each device runs

Manycore Parallelism through OpenMP 47

a stripped-down Linux OS, and maintains an in-memory file-system. The In-
tel Composer XE compiler suite (for both C/C++ and FORTRAN) can cross-
compile code on the host for execution on the device; Intel also provides tools for
profiling and debugging. Intel’s Math Kernel Library (MKL) provides numerical
routines (including BLAS and LAPACK functions) optimised for the device.

The Intel compilers support the full set of directives and functionality de-
fined in the OpenMP 3.1 standard; however, limitations and features of the
device architecture mean that performance and scaling characteristics may dif-
fer from conventional architectures. Applications access the coprocessor through
two main programming models: native execution and offload execution.

Natively-executed code is cross-compiled for the Xeon Phi architecture, and is
executed exclusively on the device. OpenMP directives may be applied as usual.
Codes with a high ratio of parallel to serial work are most likely to benefit from
native execution, because serial sections of natively-executing code are limited to
a single hardware thread context; a single device core is underpowered compared
to a modern general-purpose CPU core, especially when restricted to an effective
clock speed no higher than 550MHz.

For offload execution, the compiler generates “fat” binaries containing codes
for both the host and the device. These are run simultaneously, with data and
execution flow transitioning between the two. This allows serial sections to ben-
efit from a modern CPU, and sufficiently-parallel problems to be accelerated on
the coprocessor. Offloaded execution is either automatic or manual.

Under automatic offload mode, calls made to supported MKL functions are
flagged by the compiler, and selectively offloaded to available devices at runtime.
Although it requires no modification of code, automatic offload implies data
movement to and from the device for each MKL call, which can be inefficient
for smaller computations. Applications using MKL and exhibiting a high ratio
of computation to data size stand to benefit the most from automatic offload.

Manual offloads are specified through offload sections – blocks of code, marked
with the offload pragma, to be executed on a coprocessor1. Upon encounter-
ing an offload section on the host, execution flow transfers to the coprocessor,
through the offloaded block, and then back to the host. Pragma clauses are used
to specify variables and flat data-structures which must move to and/or from the
device; data can persist on the device between offload sections. Directives exist
for specifying asynchronous data movement and offload execution. OpenMP di-
rectives can be inserted into offload sections, and control parallel behaviour on
the device only.

OpenMP thread/core affinity can be adjusted in both native and automatic
offload modes using the KMP_AFFINITY environment variable, as made visible
on the device. Three affinity presets are available: the familiar compact and
scatter, and a new preset, balanced, which distributes threads as evenly as
possible between cores, with contiguously-numbered threads as close as possible
to each other under this constraint.

1 Jeffers and Reinders note in [5] that specifications for OpenMP 4.0 may include
offload-style semantics, as set forth in [7].

48 J. Barker and J. Bowden

Optimisation for Xeon Phi requires attention to three key elements: paral-
lel efficiency, cache/memory behaviour, and effective use of SIMD capabilities.
These are also crucial to extracting peak performance out of modern multicore
SMP systems, so the developer is in the unusual position of being able to op-
timise both host and device code simultaneously. An optimisation intended to
target a performance characteristic on the device may produce similar or better
performance improvements on the host, and vice versa.

4 Optimised Data-Parallelism in SOMA

The self-organising map (SOM) is a tool for unsupervised learning, introduced by
Kohonen as a clustering and visualisation method for high-dimensional data [8].
A self-organising map embeds a two-dimensional mesh of nodes on a logical grid
into an n-dimensional data space, and iteratively trains the mesh towards the
set of sample data points. The trained mesh can be considered an approximation
to a nonlinear manifold representing the topological distribution of the sample
data, from which a number of desirable visualisations and metrics may be ob-
tained. SOMs have been applied to many problems in high-dimensional statistics
and machine learning, and several extensions have been made to the underly-
ing algorithm [9]. In [10], Paini et al. investigate the exposure of the contiguous
United States to invasive insect pest species. They use a SOM approach to clus-
ter high-dimensional biotic presence/absence datasets, allowing calculation of
the likelihood that pests will establish in a given state.

Most modern implementations of SOMs use the batch-training algorithm.
Some number N of sample data points drawn from IRd are stored as rows xi of
an N×d data matrix X. A SOM mesh geometry is determined, and a codebook
matrix C of size M×d is generated, where M is the number of nodes to be placed
on the SOM mesh and cti is the embedded location, or weight vector, of the ith
mesh node at timestep t. The number of nodes M is determined according to
the desired purpose of the SOM, but is usually an order of magnitude smaller
than N . The node weights are linearly initialised in data space on a grid swept
out by the first two principal components of X, with side lengths determined
by the magnitude of the respective principal components.

The batch-training process itself is repeated for T training iterations, with
two operations performed in each. First, the best-matching units (BMUs) of the
various data points xi are calculated. The BMU of a data point is the node
weight that is “closest” to that point in data space at timestep t, and is defined
as

BMU(xi, t) = ctj , such that d(xi, c
t
j) = argmin

k

{
d(xi, c

t
k)

}
, (1)

where d(·, ·) is an appropriate metric on IRd, usually Euclidean distance. Once
all BMUs have been calculated, the codebook vectors are updated to a weighted
mean of the data points xi:

ct+1
i =

∑N
j=1 ht(i,BMU(xj , t)) · xj
∑N

j=1 ht(i,BMU(xj , t))
, (2)

Manycore Parallelism through OpenMP 49

where ht(i, j) is a neighbourhood function (usually Gaussian) between two map
units i and j at iteration t, representing a sympathetic force between mesh nodes
on the logical grid topology. The radius of the neighbourhood function decreases
over time, aiding fine-scale convergence.

Paini et al. performed analyses for [10] using the SOM Toolbox package for the
MATLAB numerical computing environment [11]. The SOM Toolbox allows ini-
tialisation, batch-training, and numerical and graphical investigation of SOMs.
However, it was discovered during further work by Paini that the SOM Toolbox’s
initialisation and training algorithms scaled poorly to extremely large datasets.
To address this, the SOMA (Self-Organising Maps, Accelerated) package was
developed.

SOMA implements the batch-training algorithm in C99, with particular care
paid to efficient and scalable memory usage. SOMA is intended as a companion
tool for the SOM Toolbox, and uses data formats compatible with that pack-
age. SOMA offers two efficiency improvements over the SOM Toolbox. Firstly,
the first two principal components of the data matrix that are used during ini-
tialisation are computed through the Non-linear Iterative Partial Least Squares
(NIPALS) algorithm [12]. This algorithm, implemented using BLAS and LA-
PACK functions drawn from MKL, allows the efficient calculation of only the
first two principal components; SOM Toolbox uses a standard eigensystem rou-
tine to calculate all principal components for the data, an approach which scales
poorly.

Secondly, SOMA exposes data parallelism explicit in the SOM algorithm using
OpenMP. This parallelism is obvious, and relatively coarse-grained: the BMUs
for every data point can be calculated in parallel, as can updates to the rows of
the codebook matrix. An abridged version of the main SOMA computation loop
can be found in Fig. 1, demonstrating the basic OpenMP parallelisation scheme
applied. Several other data-parallel loops external to the main loop were also
parallelised using OpenMP.

As the majority of time during execution is spent in the main loop, SOMA
represents an opportunity to evaluate the performance of Xeon Phi in native-
execution mode. SOMA was initially recompiled for Xeon Phi, with no mod-
ification required to the code and the addition of only a single compiler flag
to the makefile. However, profiling showed the potential for further optimisa-
tion. To remove the risk of false sharing and improve compiler optimisation, all
dynamically-allocated memory was aligned to cache-line size, and matrix row
dimensions were padded to cache-line boundaries. Additionally, a loop-tiling
scheme was introduced to block data access to fit within cache, reducing the
impact of cache misses on performance. These optimisations were also applica-
ble, and were applied, to the original CPU version of the code.

SOMA uses a relatively simple nested loop-tiling scheme, applied separately
to each of the parallelised sections in the main loop. Selecting the optimal tile
sizes for a given dataset and map size proved non-trivial. Inner loops behaved
best when blocked to half of cache size; CPU code performed best when inner
loops were tiled for L1 cache (32KB on Sandy Bridge), while Xeon Phi inner

50 J. Barker and J. Bowden

for (step = 0; step < nTimeSteps; step++) {

// Calculate BMUs.
pragma omp parallel for

for (i = 0; i < nDataPoints; i++) {
for (j = 0; j < nMapNodes; j++) {

...
}

}

// Update map codebook vectors.
pragma omp parallel for

for (i = 0; i < nMapNodes; i++) {
for (j = 0; j < nDataPoints; j++) {

...
}

}
}

Fig. 1. Main computation loop of SOMA, displaying the two inner sections and demon-
strating the use of OpenMP for data parallelism over their outer loops. Pragma clauses
are omitted for reasons of space and clarity.

loops were optimal when tiled for L2 cache (512KB). Outer loops were harder to
tile, as the choice of tile size impacts on parallel decomposition. If an outer-loop
tile size does not evenly divide the number of work items, some threads will be
allocated one fewer tile than others. This load imbalance can have a substantial
impact on parallel efficiency, especially when tile sizes are large and there are
fewer tiles to distribute between threads (of which there may be hundreds). An
heuristic method was used to select candidate tilings; these candidates were then
trialled for a small number of iterations, and the best-performing adopted for
the main training run.

Although the compiler’s attempts at automatic vectorisation for Xeon Phi are
reasonable, closer inspection indicated the emission of peel and remainder loops
during the vectorisation of the two innermost loops. (That is, the calculation of
Euclidean distance in (1), and accumulation into the weight vector ct+1

i in (2).)
Given the alignment and padding of rows in the codebook and data matrices,
these constructions are unnecessary, and are a potential source of inefficiency.
To ensure optimal use of the VPU, these two loops were manually vectorised
for Xeon Phi using intrinsic functions. Manual vectorisation reduces the abil-
ity of the compiler to automatically perform some optimisations; in particular,
manually-vectorised loops required unrolling by hand, and prefetching behaviour
needed aggressive tuning.

5 Mixed Data- and Task-Parallelism in FDTD-GPR

The Finite Difference in the Time Domain (FDTD) method was first described
in a seminal paper by Yee [13]. It provides a second-order method for discretising
Maxwell’s equations for the time-dependent electromagnetic field, through the
adoption of a finite difference scheme over a spatially-staggered pair of grids rep-
resenting the electric and magnetic fields on a bounded domain, with a leapfrog

Manycore Parallelism through OpenMP 51

method used for integration in time. FDTD is a well-understood and widely-
studied algorithm that has been applied to many problems in electromagnetics.

An important application of the FDTD method is the modelling of electro-
magnetic transmission behaviour in non-dispersive media, such as the behaviour
of ground-penetrating radar (GPR) signals. The most common form of GPR
transmits an electromagnetic pulse into the ground, which is reflected at inter-
faces between layers with contrasting dielectric properties and then received on
the surface. The received signal can be used to image and evaluate subsurface
material properties and geometry; uses of GPR include archaeological surveying,
buried landmine detection, and snow thickness evaluation [14].

In [14], Strange describes a system for the application of low-powered GPR
to the estimation of coal seam geometry, using a pattern-recognition approach
to extract feature vectors from and thereby classify segmented GPR signal
data. The pattern-recognition system is trained using synthetic data generated
by the FDTD-GPR (FDTD for Ground-Penetrating Radar) software, a two-
dimensional implementation of the FDTD method. FDTD-GPR models signal
propagation through specified subsurface geometries, according to the tranverse-
magnetic form of the FDTD update equations. Mur’s absorbing boundary
conditions [15] are applied to the edges of the grid. Pulse output from the
GPR transmitter is modelled using a wavelet function, perturbed according to
timestep resolution.

FDTD-GPR was originally implemented in the MATLAB numerical com-
puting environment, and has since been ported to C++ to enable greater
performance. An optimised OpenCL kernel has also been developed, employ-
ing mixed-precision arithmetic to enable effective use of texture caches on
GPU devices. The main FDTD computational loop is given in Fig. 2. The
CalculateInternal(...) and CalculateMagnetic(...) subroutines of the
main loop implement the FDTD update equations across the interior of the
electric field domain and the whole of the magnetic field domain respectively;
the computational costs of these routines scale as O(mn), where m and n are the
height and width of the discretised grid. OpenMP parallel for directives ex-
pose data parallelism in these subroutines. Although the O(mn) routines demon-
strate good parallel performance, the surrounding serial code (which includes the
expensive allocation and population of 2D pointer arrays) in the main compu-
tational loop remains a barrier to overall speedup, in accordance with Amdahl’s
Law.

Since model initialisation requires a large amount of serial work, and typical
use of the software often involves many separate model calculations, FDTD-GPR
is a poor candidate for Xeon Phi native execution. Instead, the main computa-
tional loop was marked as an offload section. As the device maintains a separate
memory space to the host, pointer values used to access data structures were
recalculated inside the offload section. Although the O(mn) routines in the main
loop exhibited adequate parallel behaviour, the lower-order routines surrounding
them consumed a disproportionately large amount of runtime, even considering
their negative impact on conventional architectures.

52 J. Barker and J. Bowden

for (t = 0; t < nTimeSteps; t++) {

// Store information from time (t -1).
// O(1) and O(m + n) respectively.
SaveCorners(...);
SaveWalls(...);

// Update the electric field inside domain boundaries. O(mn).
CalculateInternal(...);

// Perturb the source wavelet. O(1).
UpdateSource(...);

// Update the electric field on domain boundaries , using
// absorbing boundary conditions. O(m + n) and O(1).
CalculateWalls(...);
CalculateCorners(...);

// Update the magnetic field. O(mn).
CalculateMagnetics(...);

}

Fig. 2. The main computational loop of the FDTD-GPR system, annotated to display
the computational cost of the various subroutines. m and n are grid height and grid
width respectively.

To address memory allocation inefficiencies in main loop subroutines, an in-
lined version of the main loop was developed. As well as the existing OpenMP
parallel for directives, a task-based approach was used to minimise the serial
span of the main loop, and thereby increase overall main loop parallel efficiency.
Small logically-independent tasks within the various lower-order routines were
exposed through the use of the OpenMP omp task directive; for example, up-
date calculations on domain boundaries can be decomposed into eight separate
subtasks: one for each of four walls, and one for each of four corners. Correctness
was enforced using the omp taskwait directive.

6 Results

We measured the performance of the SOMA and FDTD-GPR codes, both on
Xeon Phi and on a conventional CPU platform. All Xeon Phi performance re-
sults were obtained using pre-production hardware2. All CPU-specific results
were obtained using dual Intel Xeon E5-2650 processors on a dual-socket cluster
compute node, for a total of 16 Sandy Bridge cores clocked at 2.0GHz. Although
reference against a single CPU core is interesting, it is also important to consider
the performance of the compute node as a whole; production runs of shared-
memory parallel scientific software generally make use of as many threads as
are usefully available on a node, and an accelerator architecture is of particular
interest if it can outperform their collective efforts.
2 Precise Xeon Phi specifications are as follows. Silicon: B0. SW level: gold. Cores: 61

@ 1090909kHz. Memory: 7936MB @ 2750000kHz. Power consumption: 300W, active
cooling.

Manycore Parallelism through OpenMP 53

Base OMP Data Aligned
/Padded

Loop-tiled Manually
Vectorised

0

50

100

150

200

250

300

350

400

450

T
im

e
(s

)

400.1

307.7

155.0154.3 157.2

108.6

81.6

(a) Walltime, 100 SOMA Training Iterations, by Optimisation

Sandy Bridge (16 threads)
Xeon Phi (244 threads)

1 2 4 6 8 10 12 14 16
Number of threads

2

4

6

8

10

12

14

16

Sp
ee

du
p

fa
ct

or

(b) Threaded SOMA Speedup, Sandy Bridge (16 cores)

Linear Speedup
Base OpenMP
Loop-tiled

1 50 100 150 200 244
Number of threads

50

100

150

200

Sp
ee

du
p

fa
ct

or

(c) Threaded SOMA Speedup, Xeon Phi (61 Cores)

Linear Speedup (Threads)
Linear Speedup (Cores)
Base OpenMP
Loop-tiled
Tiled and vectorised

Fig. 3. Performance figures for SOMA

SOMA’s serial initialisation routines performed roughly an order of magni-
tude slower on the device than on the compute node. The MKL routines in the
NIPALS initialisation component made good use of the device, delivering com-
parable performance to the compute node (operating 16 threads). Figure 3(a)
displays the walltime taken to execute 100 iterations of SOMA over a repre-
sentative test case by both compute node and device, under the optimisations
described in Sect. 4: the base OpenMP SOMA code, fitted with, cumulatively,
data alignment and padding, loop-tiling, and (in the case of Xeon Phi) manual
vectorisation. Manually-vectorised code for Xeon Phi was unable to be executed
unmodified on Sandy Bridge; preliminary experiments with manually-vectorised
code targeting Sandy Bridge have failed to produce performance benefits, sug-
gesting that automatic vectorisation is more effective on Sandy Bridge. We found
that compact thread affinity consistently produced the best results at all stages
of optimisation, for both Xeon Phi and Sandy Bridge, as it maximises cache-
sharing between contiguously-numbered threads. The use of balanced thread
affinity produced results that were comparable with or slightly worse than com-
pact affinity, depending on the number of threads used; the use of scatter affinity
produced a significant drop in performance for all numbers of threads.

Although all SOMA optimisations were targeted at Xeon Phi, the relative ben-
efit to CPU code was sometimes greater. Most notably, the introduction of data
alignment/padding, which is cited by Intel as a critical optimisation, produced
no benefit on Xeon Phi, while driving a 30% increase in performance on Sandy
Bridge. (Effort spent on data-alignment did, however, allow further optimisation
through manual vectorisation.) Loop-tiling was similar: Sandy Bridge obtains
a 50% improvement through loop-tiling compared to the data-aligned version,
while Xeon Phi experiences only 29% improvement. The manually-vectorised
version of SOMA offers the best performance, outperforming the Sandy Bridge
blade by 1.9x, which translates to a speedup of 27x versus a single Sandy Bridge
CPU core running loop-tiled SOMA. Achieving this performance gain requires
substantial additional code: compared to the original OpenMP code, the size of
the SOMA main loop increased from around 40 LOC to around 800 LOC.

54 J. Barker and J. Bowden

1252 x 1252 2560 x 2560 5118 x 5118
0

20

40

60

80

100

120

T
im

e
(s

)

6.4

25.8

101.9

6.7

26.4

110.5

8.5

22.0

68.6

10.4

27.1

84.4

5.0

18.5

71.5

3.9

12.9

48.9

(a) FDTD-GPR Sample Model Calculation Times, by Grid Size

Sandy Bridge (Tasks)
Sandy Bridge (No Tasks)
Xeon Phi (Tasks)
Xeon Phi (No Tasks)
Tesla S2050 (OpenCL)
Tesla K20 (OpenCL)

1 2 4 6 8
Number of threads

2

4

6

8

10

12

14

16

Sp
ee

du
p

fa
ct

or

(b) Threaded FDTD-GPR Speedup, Sandy Bridge (16 cores)

Linear Speedup
1252x1252 (tasks)
1252x1252 (no tasks)
2560x2560 (tasks)

2560x2560 (no tasks)
5118x5118 (tasks)
5118x5118 (no tasks)

10 20 30 40 50 60
Number of threads

10

20

30

40

50

60

Sp
ee

du
p

fa
ct

or

(c) Threaded FDTD-GPR Speedup, Xeon Phi (Offload, 60 Cores)

Linear Speedup (Threads)
Linear Speedup (Cores)
1252x1252 (tasks)
1252x1252 (no tasks)

2560x2560 (tasks)
2560x2560 (no tasks)
5118x5118 (tasks)
5118x5118 (no tasks)

Fig. 4. Performance figures for FDTD-GPR

Figures 3(b) and 3(c) display the observed speedup of both the original
OpenMP, loop-tiled, and loop-tiled and vectorised (Xeon Phi only) versions of
SOMA operating different numbers of threads, on Sandy Bridge and Xeon Phi
respectively. Figure 3(c) includes reference lines for linear speedup measured
both in the number of threads, and the number of cores (calculated as number
of threads divided by four). The original OpenMP code scales adequately on
Sandy Bridge, but is improved substantially by the addition of loop-tiling, ap-
proaching linear speedup. The introduction of loop-tiling on Xeon Phi appears
to negatively impact the scaling characteristics of the code; however, scaling be-
haviour with manual vectorisation is near-identical to that of the unoptimised
OpenMP code. This illustrates a challenge of measuring speedup on Xeon Phi,
namely the difficulty of obtaining a reference single-thread timing; different opti-
misations may help or hinder the single-thread case, which can potentially skew
speedup results. As manual vectorisation only impacts the speed of calculation
of inner loops, we have no reason to expect it to scale so differently to the
automatically-vectorised loop-tiling code. Nevertheless, Fig. 3(c) demonstrates
that all versions of the code scale roughly linearly in the number of Xeon Phi
cores used; this implies that while optimisations such as manual vectorisation
can decrease walltime, good parallel scaling behaviour is available through the
use of OpenMP only.

Parallel code that exhibits poor scaling and performance characteristics on
the compute node generally behaves similarly, or worse, on the device. Figures
measuring the performance and scaling of the main computation loop of FDTD-
GPR over three sample grid sizes are provided in Fig. 4(a); reference timings are
also provided for the calculation of these test cases using an optimised mixed-
precision OpenCL kernel executing on two Nvidia GPUs, a Tesla S2050 (Fermi
generation) and a Tesla K20 (Kepler generation) respectively. As the OpenCL
kernel has been aggressively tuned for GPU hardware, its application to Xeon
Phi was not considered. We found that balanced core affinity produced best
results. Xeon Phi achieves speedup of 1.49x over the Sandy Bridge node for

Manycore Parallelism through OpenMP 55

the 5118 x 5118 case, comparable with the Fermi-generation GPU; we note in
passing that the effort required to port and optimise the FDTD algorithm for
OpenCL was significantly greater than for Xeon Phi.

However, Xeon Phi and the full Sandy Bridge node execute the main FDTD-
GPR computation loop only 7x and 4.4x faster than a single Sandy Bridge core
respectively, limited by serial sections in the main loop, as noted in Sect. 5. This
inefficiency is obvious in the threaded speedup graphs for Sandy Bridge and Xeon
Phi, given in Figs. 4(b) and (c); the unoptimised OpenMP version scales poorly in
the number of threads on the compute node, and this remains true when the main
computation loop is offloaded to the device. (Speedup was tested up to 16 threads
on Sandy Bridge, and up to 240 threads on Xeon Phi; however, as the speedup
behaviour remains flat at higher number of threads, Figs. 4(b) and (c) are clipped
at 8 and 60 threads respectively in the interest of readability.) Nevertheless, the
device does offer improved performance, particularly for the largest grid; larger
problem sizes expose more work to Xeon Phi threads, improving the performance
of the two parallel for regions relative to the serial sections. We anticipate
that problems with even larger grid sizes will see increased benefit from Xeon
Phi.

The tasking approach used to minimise serialisation inside the loop provides
performance benefit, although it does not substantially adjust the parallel scaling
properties of the code (cf. Figs. 4(b) and (c)). This is particularly true on Xeon
Phi, where the application of tasking reduces runtime by 19% for the 5118 x 5118
case (cf. Fig. 4(a)). This suggests that algorithms that contain serial sections may
be able to maximise acceleration from the device, by ensuring that the serial span
of the algorithm is minimised through task-based parallelism.

7 Conclusions

Intel’s Xeon Phi coprocessor offers a compelling proposition: a powerful and
relatively general-purpose accelerator architecture that can execute existing
OpenMP codes with minimal or no modification. This stands in contrast to
other accelerator architectures, such as GPUs, which offer comparable power
to Xeon Phi but are more challenging to port existing codes to. Although fur-
ther optimisation is required to extract maximum benefit from Xeon Phi, the
optimisation process is relatively straightforward, and will be familiar to those
experienced with conventional SMP architectures. Standard OpenMP parallel
directives for data- and task-parallelism expose much of the power available to
Xeon Phi, and (given a sufficiently-large problem size) scale as well or better
than on a conventional CPU architecture.

We ported two real-world scientific codes to Xeon Phi, using the offload and
native execution programming models; both displayed significant performance
benefits relative to execution on a conventional CPU system. The codes were
simultaneously optimised for both Xeon Phi and a conventional CPU architec-
ture, which allows us to be confident that this performance is not available to
the CPU. We conclude that Xeon Phi offers the potential for significant speedup,

56 J. Barker and J. Bowden

relative to both a single CPU core and a modern multicore SMP compute node,
attainable through the effective use of OpenMP. We anticipate that further re-
search into high-performance computing with Xeon Phi will clarify the benefit
of particular optimisation techniques for the device.

Acknowledgements. The SOMA and FDTD-GPR packages are the intellec-
tual properties of Dr. Dean Paini (CSIRO Ecosystem Sciences) and Dr. Andrew
Strange (CSIRO Earth Science and Resource Engineering) respectively. Funding
for development and optimisation of SOMA and FDTD-GPR was drawn from
the CSIRO Computational and Simulation Sciences platform. Xeon Phi hard-
ware was provided by Intel; technical support was provided by Sam Moskwa
(Novel Technologies), and Brian Davis and Steve McMahon (Cluster Services),
CSIRO Advanced Scientific Computing (IM&T).

References

1. Mack, C.A.: Fifty Years of Moore’s Law. IEEE Transactions on Semiconductor
Manufacturing 24(2), 202–207 (2011)

2. Sadrieh, A., Mann, S.A., Subbiah, R.N., Domanski, L., Taylor, J.A., Vandenberg,
J.I., Hill, A.: Quantifying the Origins of Population Variability in Cardiac Electrical
Activity through Sensitivity Analysis of the Electrocardiogram. J. Physiol. (April
2013); Epub ahead of print

3. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junk-
ins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T.,
Hanrahan, P.: Larrabee: a Many-Core x86 Architecture for Visual Computing. In:
ACM SIGGRAPH 2008 papers. SIGGRAPH 2008, pp. 18:1–18:15. ACM, New
York (2008)

4. Intel Corporation: Intel Xeon Phi Coprocessor System Software Developers Guide
(April 2013)

5. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High-Performance Program-
ming. Elsevier Inc. (2013)

6. Huck, S.: Intel Xeon Phi Product Family Performance (April 2013)
7. Stotzer, E., Beyer, J., Das, D., Jost, G., Raghavendra, P., Leidel, J., Duran, A.,

Narayanaswamy, R., Tian, X., Hernandez, O., Terboven, C., Wienke, S., Koesterke,
L., Milfeld, K., Jayaraj, A., Dietrich, R.: OpenMP Technical Report 1 on Directives
for Attached Accelerators. Technical report, OpenMP Architecture Review Board
(November 2012)

8. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps.
Biological Cybernetics 43(1), 59–69 (1982)

9. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sci-
ences. Springer (2001)

10. Paini, D.R., Worner, S.P., Cook, D.C., De Barro, P.J., Thomas, M.B.: Threat of
Invasive Pests From Within National Borders. Nat. Commun. 1(115) (2010)

11. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-Organizing Map in
MATLAB: the SOM Toolbox. In: Proceedings of the MATLAB DSP Conference,
vol. 99, pp. 16–17 (1999)

Manycore Parallelism through OpenMP 57

12. Wold, S., Esbensen, K., Geladi, P.: Principal Component Analysis. Chemomet-
rics and Intelligent Laboratory Systems 2(1-3), 37–52 (1987); Proceedings of the
Multivariate Statistical Workshop for Geologists and Geochemists

13. Yee, K.: Numerical Solution of Initial Boundary Value Problems involving
Maxwell’s Equations in Isotropic Media. IEEE Transactions on Antennas and Prop-
agation 14(3), 302–307 (1966)

14. Strange, A.: Robust Thin Layer Coal Thickness Estimation Using Ground Pene-
trating Radar. PhD thesis, School of Engineering Systems, University of Queens-
land (March 2007)

15. Mur, G.: Absorbing Boundary Conditions for the Finite-Difference Approxima-
tion of the Time-Domain Electromagnetic-Field Equations. IEEE Transactions on
Electromagnetic Compatibility EMC-23(4), 377–382 (1981)

Performance Characteristics of Large SMP Machines

Dirk Schmidl1,3, Dieter an Mey1,3, and Matthias S. Müller1,2,3

1 Center for Computing and Communication, RWTH Aachen University, D - 52074 Aachen
2 Chair for High Performance Computing, RWTH Aachen University, D - 52074 Aachen

3 JARA High-Performance Computing, Schinkelstraße 2, D 52062 Aachen
{schmidl,anmey,mueller}@rz.rwth-aachen.de

Abstract. Different types of shared memory machines with large core counts
exist today. Standard x86-based servers are build with up to eight sockets per
machine. To obtain larger machines, some companies, like SGI or Bull, invented
special interconnects to couple a bunch of small servers into one larger SMP,
Scalemp uses a special software layer on top of a standard cluster for the same
purpose. There is also a trend to couple many small and simple cores into one
chip, like in the Intel Xeon Phi chip. In this work we want to highlight differ-
ent performance attributes of these machine types. Therefor we use some kernel
benchmarks to look at basic performance characteristics and we compare the per-
formance for real application codes. We will show different scaling behaviors for
the applications which we explain with the use of the kernel benchmarks used
before.

1 Introduction

OpenMP is probably the most widely used paradigm for shared memory parallelization
in high performance computing. It is often said to be easy to use and in fact it is often
easy to get a first loop parallel version of an application, but getting good performance
is often more difficult due to the complex design of large shared memory machines. Es-
pecially for a larger number of threads good scaling can in many cases only be achieved
if the underlying hardware is taken into account.

Hardware vendors have established different types of shared memory machines.
Standard servers, based on x86 processors exist with up to 8 sockets in a single ma-
chine. E.g. SGI and Bull invented a special interconnect to combine smaller two or four
socket machines into one larger shared memory machines. Scalemp provides a software
layer, called vSMP foundation, to couple several servers with a standard Infiniband net-
work into one machine running a single OS instance. A different approach to provide
the ability to run hundreds of threads is used in Intel’s new Many Integrated Core archi-
tecture. Here, a lot of small and simple cores are combined in one single chip. The first
product in this architecture line is the Intel Xeon Phi coprocessor. The Xeon Phi chip
resides in a PCIe extension card and can on the one hand be used as an accelerator to
speedup applications and on the other hand it is able to execute standalone executables,
since it runs a full operating system instance.

Given this variety of different machines, it is hard for a programmer to choose the ap-
propriate machine for his application. It is also difficult for computing centers to decide

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 58–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Performance Characteristics of Large SMP Machines 59

on a machine type when a new machine is going to be purchased. Since, it is often hard
to get excess to all these machine types to try out the performance on a given applica-
tion, we want to present a comparison of the basic differences of these machine types.
We investigate performance attributes on a standard 8 socket HP server, a SGI Altix
ultraviolet, a Bull BCS machine, which both use a special network to couple smaller
machines into a larger single system, a Scalemp machine which uses a software for the
same purpose and a Xeon Phi extension card which can run a lot of threads on one
single chip. We will look at basic characteristics of the memory subsystem, investigate
the influence of memory allocation and initialization and run several applications on all
platforms to highlight relevant differences between these machines.

The rest of this paper is structured as follows: First, we present related work in sec-
tion 2 and describe the systems used in section 3. Then, we look at basic performance
relevant attributes by means of kernel benchmarks in section 4, before we compare the
performance of applications in section 5. After all, we draw our final conclusions in
section 6.

2 Related Work

Comparing the performance of shared memory machines is subject to investigations
for many years. Many benchmarks or benchmark suites exist to investigate attributes
of standard machines. The Stream benchmark [7] for example is widely used to mea-
sure the memory bandwidth of a machine and the LMbench benchmark suite [8] offers
kernels to measure certain operating system and machine properties. Other benchmarks
like the EPCC benchmark [4] concentrate on the performance of the OpenMP runtime,
which of course is essential for the scalability of OpenMP applications.

Besides these very basic benchmarks which can give a good indication on specific
machine or software attributes, also application benchmarks exist. The SPEC OMP
Benchmark Suite [1] delivers a collection of representative OpenMP applications. Other
benchmark suites like the Barcelona OpenMP Task Suite [5] or the NAS parallel bench-
marks [2], contain relevant application kernels. These benchmarks can be used to com-
pare the performance of different architectures for representative application codes.

These projects focus on the benchmark techniques, also they provide reference re-
sults for several architectures. In this work we will focus more on the differences of the
architecture, also we reuse some of the ideas provided in the benchmarks mentioned
above.

3 Architecture Description

3.1 HP ProLiant

The HP ProLiant DL980 G7 server used for our experiments is a single server equipped
with eight Intel Xeon X6550 processors. All processors are clocked at 2 GHz and con-
nected to each other through the Intel Quick Path interconnect. Every processor contains
a memory controller attached to 32 GB of main memory, making this server a ccNUMA
machine with a total of 256 GB of memory.

60 D. Schmidl, D. an Mey, and M.S. Müller

3.2 SGI Altix UltraViolet

The SGI Altix UV system consists of several two socket boards, each equipped with
two Intel Xeon E7- 4870 10-core processors clocked at 2.4 GHz. All of these boards are
connected with SGIs NUMALink interconnect into a single shared memory machine.
Since on one board the cache-coherence is established directly over the QPI, whereas
the NUMALink network is needed for different board, this machine is a hierarchical
NUMA machine, with different cache-coherency mechanisms on different hierarchical
levels. The total machine used in our tests has 2080 cores and about 2 TB of main
memory. All of our tests were done on up to 16 processors during batch operation of the
system. For a better comparison with the 8-core processors used in the other systems,
all tests were done using only eight of the ten available cores on each socket.

3.3 BCS

The BCS system consists of four bullx s6010 boards. Each board is equipped with four
Intel Xeon X7550 processors and 64 GB of main memory. The Intel Quick Path Inter-
connect combines the four sockets to a single system and the Bull Coherence Switch
(BCS) technology is used to extents the QPI to combine four of those boards into one
SMP machine with 128 cores and 256 GB of main memory. So, this system is also a
hierarchical NUMA system.

3.4 Scalemp

The Scalemp machine investigated here consists of 16 boards, each board is also
equipped with four Intel Xeon X7550 processors clocked at 2 GHz and 256 GB of
main memory. The boards are connected via a 4x QDR InfiniBand network, where ev-
ery board is connected via two HCAs. Thus, from a hardware point of view this is an
ordinary (small) cluster. The innovative part of the machine is the vSMP software of the
company Scalemp, which runs below the operating system and creates a Single System
Image on top of the described hardware. The virtualization layer of the processors and
the InfiniBand network is used by the vSMP software to create cache-coherency on a
per page basis and to allow remote memory access between all the boards. A parti-
tion of the main memory is reserved by the vSMP software to run different caching
and prefetching mechanisms automatically in the background, as well as a page-based
memory migration mechanism. These mechanisms do not only move pages on access,
they can also adjust the home node of memory pages if frequently used on a remote
node. This is a notable difference to standard x86-based non-uniform memory architec-
tures (NUMA), like the Altix or BCS machine, where page migration needs to be done
by the user, if possible at all. From a user point of view the machine looks like a single
Linux machine with 64 eight-core processors and about 3.7 TB of main memory. About
300 GB of the available memory are used by the vSMP software internally for caching.
Linux sees 64 NUMA nodes, each containing about 64 GB of main memory.

3.5 Intel Xeon Phi

The Intel Xeon Phi coprocessor is based on the concepts of the Intel Architecture
(IA) and provides a shared-memory many-core CPU that is packed on a PCI Express

Performance Characteristics of Large SMP Machines 61

extension card. The version used here has 60 cores clocked at 1.053 GHz and offers full
cache coherency across all cores with 8 GB of GDDR5 memory. A ring network con-
nects all cores with each other and with memory and I/O devices. Every core supports
4-way Hyperthreading, which allows the system to run up to 240 threads in parallel.
The comparably small amount of main memory is attached to the Xeon Phi Chip as one
NUMA node. Thus, the system is a 240-way parallel system with a uniform memory
architecture, which is another difference to the other machines with are large NUMA
systems.

The Xeon Phi card used in out experiments was plugged into a host system with
two Intel Xeon E5 processors. For all of our experiments we used the host system only
to cross compile the executables, which were copied and executed stand-alone on the
Xeon Phi. This procedure gives us insight in the performance attributes of the chip, in-
dependent from the programming model used. Of course comparing one extension card
with complete systems is an uneven comparison, but for sure we will see standalone
systems with hundreds of cores in the near future and the Phi might give evidence on
the behavior of such systems.

4 Performance Characteristics

Before we look into the performance of application codes, it is useful to understand in
detail the differences of the investigated architectures. We use several benchmarks to
highlight certain properties of the machines.

4.1 Serial Memory Bandwidth

Many scientific applications are limited by the memory bottleneck in modern systems.
Therefore, the memory bandwidth is the most important factor for these applications.

We measured the read and write bandwidth with one thread on these machines. Since
the trends for read and write bandwidth were nearly identical with the only difference
that the write bandwidth was slightly slower on all machines, we concentrate on the
write bandwidth during the following discussion. The simple benchmark writes a single
value to an array of a given size several times and calculates the reached bandwidth. On
the NUMA machines, i.e. HP, Altix, BCS and Scalemp, we measured the bandwidth to
NUMA nodes on all NUMA levels (local, on the same board and on a remote board).
We used the numactl tool provided by Linux to influence the used core and NUMA
node. On the Xeon Phi machine only one NUMA level exists, so the placement was not
varied here.

Figure 1 illustrates the reached write bandwidths for increasing memory footprints.
On all machines we can see a typical cache behavior. For very small data sizes the
bandwidth is poor, since complete cache lines need to be written. Then the bandwidth
rises for memory sizes that fit into the caches. On the Xeon Phi a peak of 4 GB/s is
reach, on the other systems a bandwidth of about 14-18 GB/s is achieved. When the
memory sizes exceed the capacity of the last level caches, the memory bandwidth drops
down significantly. On the Xeon Phi system the Standard curve displays the band-
width reached, when the code was just cross compiled for the system. The Intel Com-
piler allows to provide a switch to insert software prefetch instructions into the binary.

62 D. Schmidl, D. an Mey, and M.S. Müller

0
2
4
6
8

10
12
14
16
18

1B 8B 64
B

51
2B 4K

B

32
KB

25
6K

B

2M
B

16
M

B

12
8M

B

1G
B

8G
B

Ba
nd

w
id

th
 in

 G
B/

s
Write Bandwidth HP

0
2
4
6
8

10
12
14
16
18

1B 8B 64
B

51
2B 4K

B

32
KB

25
6K

B

2M
B

16
M

B

12
8M

B

1G
B

8G
B

Ba
nd

w
id

th
 in

 G
B/

s

Write Bandwidth AltixUV

0
2
4
6
8

10
12
14
16
18

1B 8B 64
B

51
2B 4K

B

32
KB

25
6K

B

2M
B

16
M

B

12
8M

B

1G
B

8G
B

Ba
nd

w
id

th
 in

 G
B/

s

Write Bandwidth BCS

0
2
4
6
8

10
12
14
16
18

1B 8B 64
B

51
2B 4K

B

32
KB

25
6K

B

2M
B

16
M

B

12
8M

B

1G
B

8G
B

Ba
nd

w
id

th
 in

 G
B/

s

Write Bandwidth ScaleMP

0

1

2

3

4

5

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB
25

6K
B

1M
B

4M
B

16
M

B
64

M
B

25
6M

B
1G

B
4G

B

Ba
nd

w
id

th
 in

 G
B/

s

Write Bandwidth Phi

Standard SW-Prefetching

local remote 1st level remote 2nd level
HP, Altix, BCS, ScaleMP:

Phi:

Fig. 1. Write Bandwidth in GB/s of the HP, Altix, BCS, Scalemp and Xeon Phi system for differ-
ent memory footprints

The downside of this approach is, that the user needs to specify exactly the range that
should be prefetched. When we instruct the Compiler to prefetch 64 elements ahead for
the L2 cache and 8 for the L1 cache, we can improve the reached bandwidth for writing
as depicted by the SW-prefetching line. These results show, that no temporal store
operations are used by the compiler and that all cachelines are first read before they
are written, so prefetching can have a positive effect. Here, nearly the full L2 cache
bandwidth can be reached for arbitrary data sizes, as long as they fit into the 8 GB of
memory.

On the other systems these switches did not work. On these systems we observe a
bandwidth reduction to about 4-5 GB/s if the memory is located in the local NUMA
node and to about 3 GB/s if a NUMA node on the same board is used. If the memory is
located on a different board, we can observe an interesting difference between the Altix
and BCS machine on the one hand and the Scalemp machine on the other hand. The
bandwidth on Altix and BCS descents to 0.5 GB/s whereas it stays at 3 GB/s on the
Scalemp machine. The reason therefor is, the caching inside of the vSMP software. The
memory pages can be kept in a board local cache and thus only data on the local board
is affected by the benchmark. This mechanism can help to achieve a good data locality,
even if the data is spread across the system and no memory migration is performed by
the user.

4.2 Distance Matrix

Of course the remote bandwidth to different sockets depends on the distance of the
sockets and the used interconnect. In [10] we described a way to measure and present
the distance between sockets in a distance matrix. Basically, we measure the bandwidth
between all sockets and scale the matrix in a way that the upper left element has the
value 10 and the others are scaled in a way that decreasing bandwidth between two
sockets results in increasing distance. Figure 2 shows the distance matrices for the HP

Performance Characteristics of Large SMP Machines 63

and BCS machine. For the ScaleMP and Altix machine the tests were not possible, since
we could not get the machine exclusively and on the Phi machine the measurements are
useless, since only one socket exists.

Socket 0 1 2 3 4 5 6 7
0 10 10 17 13 18 18 18 18
1 10 10 17 13 18 18 18 18
2 17 17 10 11 18 18 18 18
3 17 17 10 11 19 19 18 18
4 18 18 18 18 10 10 17 17
5 18 18 18 18 10 10 17 17
6 18 18 18 18 17 17 10 10
7 18 19 18 18 17 17 10 9

Socket 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 10 13 13 13 57 57 57 57 59 59 59 59 59 57 57 57
1 13 10 13 13 56 55 56 56 56 56 56 55 55 56 56 55
2 14 13 10 13 58 58 58 58 56 56 56 56 58 58 58 58
3 13 13 13 10 56 55 56 55 56 56 56 55 56 55 56 55
4 56 56 56 56 10 13 13 13 56 56 56 57 58 58 58 58
5 55 55 55 55 13 10 13 13 55 55 55 55 56 56 56 55
6 58 58 58 59 13 13 10 13 58 58 58 58 56 56 56 57
7 56 55 56 55 13 13 13 10 56 56 56 56 56 56 56 56
8 58 58 58 58 56 57 56 56 10 13 13 13 56 56 56 56
9 56 56 55 55 55 55 55 55 13 10 13 13 55 55 56 55

10 56 56 56 56 58 58 58 58 13 13 10 13 58 58 58 58
11 56 56 56 55 56 56 56 55 13 13 13 10 56 56 56 56
12 56 56 56 56 58 58 58 58 56 57 56 56 10 13 13 13
13 55 55 55 55 56 56 55 55 56 55 55 55 13 10 13 13
14 58 58 58 58 56 56 56 56 58 58 58 58 13 13 10 13
15 56 56 56 56 56 56 56 56 56 56 56 56 13 13 13 10

Fig. 2. Distance matrix of the HP (left) and the BCS system (right). The matrix is scaled such that
the upper left value is always ten, larger numbers indicate higher distances.

Obviously, there are differences between both systems. On the HP board there are
always two sockets which seem to be connected very fast, whereas the other sockets
have distances between 17 - 19. On the BCS system all accesses on one board are
between 10 and 13, which is faster than most of the connections on the one HP board.
All connections using the BCS chip, are significantly slower, here a distance of 55 - 59
is reached. So, the BCS machine can provide cache coherence over a larger number of
cores, but some performance regressions comes along with this.

4.3 Parallel Memory Bandwidth

Parallel applications of course use more than one core at a time. Thus, the total band-
width for a parallel application is important. We modified the benchmark from section
4.1 to work with several threads on an array and measure the read and write bandwidth.
We use a compact thread binding on all of the machines. So, we first fill up cores and
sockets with the maximum number of threads, before we use the next core or socket.

Figure 3 shows the bandwidth for an increasing number of threads on the different
platforms for a memory footprint of 16 MB per thread. On the Intel Xeon Phi ma-
chine the maximum bandwidth of about 130 GB/s for reading and 60 GB/s for writing
can be achieved with about 120 threads. Beyond this, the bandwidth stagnates. On the
NUMA systems the bandwidth rises with the number of sockets used and does not stag-
nate at all. Here, the read bandwidth is higher than the write bandwidth available for
all systems. Noticeable is, that the BCS machine reaches an 5-10 % higher maximum
bandwidth compared to the Scalemp machine, also the same underlying hardware is
used. The reason therefor is the vSMP software layer which inserts a slight overhead
for memory management and leads to a small reduction in the available bandwidth.

4.4 Memory Go Around

The parallel bandwidth measured before is the optimal bandwidth that is reached, when
all threads work on their own data. In many algorithms, some data sharing is required

64 D. Schmidl, D. an Mey, and M.S. Müller

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

Ba
nd

w
id

th
 in

 G
B/

s

Number of Threads

HP-read ALTIX-read BCS-read SCALEMP-read Phi-read

HP-write ALTIX-write BCS-write SCALEMP-write Phi-write

Fig. 3. Parallel read and write bandwidth on the HP, Altix, BCS, Scalemp and Xeon Phi systems
for an increasing number of threads

which leads to a certain amount of necessary remote accesses. To investigate the drop
down in the reached bandwidth with remote accesses, we modified the bandwidth
benchmark in a way, that it no longer works only on local data.

The modified benchmark, we call it memory go around, works in n+1 steps for
n threads. In step zero, every thread initializes its own data and measures the memory
bandwidth to access it. In step one, all threads work on the data of their right neighbor,
so thread t works on memory initialized by thread (t+ 1)mod (n− 1), as exemplified
in figure 4. As before, we place threads in a way that neighboring threads are as close
as possible to each other, meaning that there is a high chance that they run on the same
NUMA node or board. Hence, the number of remote memory accesses rises for the first
n/2 steps. Then the number shrinks again. In step n − 1 every thread works on the
memory of the left neighbor and in step n again only local accesses occur.

Figure 5 shows the result for 64 Threads on the HP, 120 threads on the Xeon Phi
and for 128 threads on the Altix, BCS and Scalemp machine. Since the Xeon Phi ma-
chine has only one NUMA node, the data is always stored on this NUMA node and the
reached bandwidth is the same in all steps, about 130 GB/s. On the other machine the
bandwidth declines for the first half of the steps and then rises up again. Of course this
is related to the increasing number of remote accesses and the increasing distance be-
tween these accesses. On the HP system, the performance drops down from about 120
to 60 GB/s. So, with maximum traffic over the QPI bus, still 50% of the peak bandwidth
can be reached. On the Altix and BCS machine the drop down is from about 250 to 18
or 8 GB/s which is 6% or 3% of the available maximum bandwidth. On the Scalemp
the drop down is even higher, here only 0.5 GB/s are reached, which means roughly
0.2% of the maximum bandwidth. Overall, the bandwidth goes down on all hierarchi-
cal NUMA machines (Altix, BCS and Scalemp) significantly, this is one of the biggest
differences in comparison to single systems with one level of NUMAness, like the HP
machine. However, if an application does not require a lot of data sharing between the
threads, proper data placement can avoid these problems.

Performance Characteristics of Large SMP Machines 65

Socket 1

Socket 0

T0 T1 T2 T3 T4

M0 M1 M2 M3 M4

T4

M4

Socket 1

Socket 0

T0 T1 T2 T3 T4

M0 M1 M2 M3 M4

T4

M4

Step 0

Step 1

Socket 1

Socket 0

T0 T1 T2 T3 T4

M0 M1 M2 M3 M4

T4

M4
Step 3

Socket 1

Socket 0

T0 T1 T2 T3 T4

M0 M1 M2 M3 M4

T4

M4
Step n -1

Socket 1

Socket 0

T0 T1 T2 T3 T4

M0 M1 M2 M3 M4

T4

M4
Step n

…

Fig. 4. The memory go around benchmark forks in n+1 steps. In the first step the memory of
the right neighbour is used to measure the bandwidth, in the next step the memory of the next
neighbour and so on. This increases the distance between thread and memory in every step, until
half of the steps are done, then the distance decreases until it reaches zero in the last step.

4.5 Synchronization Overhead

Besides the memory bandwidth, locks are often critical for the performance of an ap-
plication on larger shared memory systems. Locks can occur explicitly, like calls to
omp set lock, or they can happen inside of other calls, e.g. a call to malloc re-
quires synchronization. We measured the overhead of these two mentioned routines.
The results are shown in the left part of table 1 for all investigated systems. For mem-
ory allocation the Intel OpenMP runtime provides a version of malloc which is op-
timized for multithreading, called kmp malloc. We investigated this version as well,
the results are shown in the bottom right part of the table.

To measure the overhead of explicit locks we used the syncbench out of the EPCC
microbenchmarks [4]. Our malloc test calls malloc or kmp malloc on all threads
simultaneously 1000 times and computes the average duration of one call. The overhead
of OpenMP Locks increases with the number of threads involved on all platforms. On
the HP, Altix, BCS and Scalemp machine it is nearly the same, as long as only a small
number of threads is involved, but for 64 and 128 threads the overhead rises more
drastically on the Scalemp machine, where the maximum is about 35 microseconds,
what is high compared to the 1 - 3 microseconds on the other machine. On the Xeon
Phi system, the overhead for 120 threads is nearly the same on the other hardware
based systems. However, the overhead with one thread is higher, due to the slower
serial threads. Overall, the ratio between serial and parallel execution is advantageous
on the Phi system. The overhead for a lock goes up for a factor of 5 for 120 threads (0.4
to 2 microseconds) whereas for example it goes up by a factor of about 27 on the BCS
system (0.06 to 1.64). This means, that the scaling of lock based applications on the Phi
is better than on the other system.

For the malloc calls, the overhead rises much faster with the number of threads
on all systems, than for the OpenMP locks. E.g on the Altix machine it starts at 3
microseconds and goes up to about 20,000. On the other machines the behavior is nearly
the same for a large number of threads.

66 D. Schmidl, D. an Mey, and M.S. Müller

1
2
4
8

16
32
64

128
256
512

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

M
em

or
y

Ba
nd

w
id

th
 in

 G
B/

s

Turn
HP Altix BCS ScaleMP Phi

Fig. 5. Bandwidth measured with the memory go around benchmark for n+1 steps with n threads
on the HP, Altix, BCS, Scalemp and Xeon Phi system

The kmp malloc calls introduce less overhead on most of the machines. On the
Scalemp machine the overhead is smaller for a medium number of threads, but higher
for 128 threads compared to ordinarymalloc calls. On the Xeon Phi machine the over-
head is significantly higher for all numbers of threads, e.g. with 175,641 microseconds
compared to 26,603 for 120 threads.

Another point where synchronization might be needed, which is not always obvious
to the programmer is, when data is initialized. The operating system needs to establish
a unique mapping between virtual and physical addresses which might require lock.
Therefor we implemented a test which initializes 2 GB of data and measures the band-
width reached during initialization. Table 1 in the upper right part shows the reached
bandwidth on all systems. Noticeable is, that the bandwidth rises on all systems for a
small numbers of threads. Of course this is due to the higher memory bandwidth which
seems to be the bottleneck for only a few threads. On the HP, Altix and BCS machine
the bandwidth goes up until the end of 64 / 128 threads is reached. However, on the
Scalemp machine the bandwidth drops down as soon as more than 32 threads are in-
volved, meaning as soon as more than one physical board is used. The overhead of the
vSMP software seems to slow down the initialization of memory whereas the hardware
based solution in the HP, Altix and BCS system does not. On the Phi system, the band-
width goes slightly down for 120 threads. However, we have seen before, that the total
memory bandwidth also goes down at the end, so this is not a surprise here.

Overall, the overhead for locking seems to work better on the hardware based solu-
tions. The vSMP software seems to introduce a significant overhead, so it is much more
important to avoid extensive synchronization, e.g. though many malloc calls, on the
Scalemp machine.

5 Application Case Studies

Finally, we want to look at the performance of two applications from the RWTH Aachen
University and compare the results on the different systems.

Performance Characteristics of Large SMP Machines 67

Table 1. Overhead of OpenMP locks, calls to malloc and calls to kmp malloc on the investigated
machines were measured in microseconds and initialization times to initialize 2 GB of data was
measured in GB/s. 30, 60 and 120 threads were used on the Xeon Phi, 32,46 and 128 on the other
machines.

OMP Locks Initialization
#Threads HP ALTIX BCS SCMP PHI HP ALTIX BCS SCMP PHI

1 0.03 0.05 0.06 0.07 0.40 1.42 1.38 1.31 1.15 0.67
32/30 0.97 3.29 0.62 0.99 1.77 16.70 18.30 18.36 15.07 17.73
64/60 1.07 3.72 1.04 24.36 1.94 32.93 33.70 34.24 4.86 23.12

128/120 2.99 1.64 35.78 2.01 72.10 67.98 3.63 19.32
malloc kmp malloc

#Threads HP ALTIX BCS SCMP PHI HP ALTIX BCS SCMP PHI
1 3.61 3.46 4.30 63.64 15.27 3.04 2.60 3.63 45 981

32/30 6075 5146 4902 6887 11023 411 558 530 546 37211
64/60 12470 10473 14007 13882 19807 1476 2646 2786 12260 88717

128/120 21030 29552 28702 26603 11742 12958 54959 175641

5.1 NestedCP

NestedCP [6] is developed at the Virtual Reality Group of the RWTH Aachen Univer-
sity and is used to extract critical points in unsteady flow field datasets. Critical points
are essential parts of the velocity field topologies and extracting them helps to interac-
tively visualize the data in virtual environments.

0
10
20
30
40
50
60
70
80
90
100

0

50

100

150

200

250

300

1 2 4 8 16 32

64
/6

0

12
8/

12
0

24
0

Sp
ee

du
p

Ru
nt

im
e

in
 se

c.

Number of Threads

BCS SCALEMP PHI ALTIX HP

BCS-Speedup SCALEMP-Speedup PHI-Speedup ALTIX-Speedup HP-Speedup

Fig. 6. Peformance and Speedup of the NestedCP code

Figure 6 shows the runtime and speedup of NestedCP on all platforms. We used
a code version parallelized with OpenMP tasks for our experiments. Apparently the
runtime of the Code on the Xeon Phi is significantly slower than on the other systems.
This is due to the slower clockrate and the simple structure of the cores. However, the

68 D. Schmidl, D. an Mey, and M.S. Müller

scalability is best on the Xeon Phi system. With 240 threads a speedup of about 90
can be reached. On the BCS system, a speedup of 45 can be observed for 64 threads.
On the HP system and the Altix machine, a slightly worse speedup can be observed.
This is due to the slightly better single threaded runtime on these systems. But, on
the HP and Altix machine, the code scales until 60 or 128 threads are used, whereas
the performance slightly drops down on the BCS machine at the end. On the Scalemp
machine the scalability is much worse. Here, the performance rises as long as only one
board is used and drops down significantly with 64 and 128 threads.

This behavior is exactly what we have seen for the synchronization mechanisms on
the mentioned machines. The Xeon Phi system has the worst serial performance but a
better scaling behavior than the other machines. The HP system provides a good scaling
behavior. On the Altix and BCS system the performance goes down, when more than
one board is used, but not as significant as on the Scalemp machine. Our assumption
is, that the NestedCP code is limited by locking routines and therefore the mentioned
scaling behavior is observed.

5.2 TrajSearch

The second code investigated here is TrajSearch. TrajSearch is a code to investigate
turbulences which occur during combustion. It is a post-processing code for dissipation
element analysis developed by Peters and Wang [9] from the Institute for Combustion
Technology at the RWTH Aachen University. It decomposes a highly resolved 3D tur-
bulent flow field obtained by Direct Numerical Simulation (DNS) into non-arbitrary,
space-filling and non-overlapping geometrical elements called ’dissipation elements’.
Starting from every grid point in the direction of ascending and descending gradient of
an underlaying diffusion controlled scalar field, the local maximum and minimum point
are found. A dissipation element is defined as a volume from which all trajectories reach
the same minimum and maximum point.

0

20

40

60

80

100

120

140

0

5

10

15

20

25

30

35

40

8 16 32 64 12
8

Sp
ee

du
p

Ru
nt

im
e

in
 h

ou
rs

Number of Threads

ALTIX BCS SCALEMP ALTIX-Speedup BCS-Speedup SCALEMP-Speedup

Fig. 7. Runtime and scaleability of the TrajSearch code on the Altix, BCS and Scalemp machine

Performance Characteristics of Large SMP Machines 69

We reduced locking and optimized the data placement of this code to gain good
performance on the Scalemp machine, see [3] for details. Figure 7 shows the runtime
and performance of TrajSearch on the Altix, BCS and Scalemp machine. The memory
available for the Xeon Phi did not suffice to store the dataset, so the Phi system is not
taken into account for this comparison and the HP machine was not available for a time
slot large enough to do this tests. Although the code was optimized for the Scalemp
system, it scales slightly better on the Altix and BCS machine. It reaches a speedup of
about 127 on the Altix and BCS and about 110 on the Scalemp machine for 128 threads.
This indicates, that the tuning steps done for the Scalemp machine were also useful for
the Altix and BCS machine. However, the code reaches a noticeable speedup, even on
the Scalemp machine, which makes all three machines suitable for execution.

6 Conclusion

We investigated performance attributes of several large SMP systems. One standard 8-
socket server from HP, an SGI Altix UV, a system based on the Bull Coherence Switch,
a Scalemp system and the Intel Xeon Phi chip. We showed, differences in the memory
bandwidth on all systems, e.g. when the vSMP software cache has positive influence.
Furthermore we investigated the performance influence of remote accesses with the help
of the memory go around benchmark. The benchmark showed, that the negative
influence is significantly higher on the Altix, BCS and Scalemp machine than on the
HP server and that there is no influence on the Xeon Phi system. Synchronization and
locks had a bad influence on all systems, when the number of threads rises. On the
Xeon Phi the best ratio of locking overhead between serial and parallel execution could
be observed.

This behavior was also reflected in the NestedCP code, where we observed a good
scaling on the HP and Xeon Phi, a slightly worse scaling on the Altix and BCS and a
bad scaling on the Scalemp machine. However, the TrajSearch code investigated at the
end scaled well on all investigated systems, the Altix, the BCS and the Scalemp system.

Overall, if a code is optimized and does not need many locking routines, it can per-
form well on all investigated systems. If locking or remote accesses cannot be avoided,
there is a high chance that a code scales best on the Phi system, followed by the one level
NUMA machine and then followed by the hierarchical NUMA machines. However,
non-hierarchical NUMA machines are typically limited to 8 sockets or less, whereas
the hierarchical machines allow the use of 16 sockets in case of the BCS machine and
several hundred sockets for the Altix UV and the ScaleMP machine. So, if the appli-
cation scales well hierarchical NUMA machines offer an tremendous amount of shared
memory compute resources.

Of course the scaling behavior of a system is important for the application perfor-
mance, but the single core performance is equally important for the overall runtime.
All investigated systems besides the Xeon Phi system use comparable Xeon Processors
which deliver nearly the same single thread performance, so the differences in scaling
directly reflect the overall performance. On the Xeon Phi the single thread performance
is worse compared to the Xeon based systems, so the overall runtime of an application
might still be worse on this system, even if it scales well.

70 D. Schmidl, D. an Mey, and M.S. Müller

Acknowledgement. Some of the Tests were performed with computing resources
granted by JARA-HPC from RWTH Aachen University under project jara0001. Parts
of this work were funded by the German Federal Ministry of Research and Education
(BMBF) under Grant No. 01IH11006. The authors also like to thank the LRZ in Munich
for the provided compute time on the SGI Altix system.

References

1. Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones, W.B., Parady, B.: SPEComp:
A New Benchmark Suite for Measuring Parallel Computer Performance. In: Eigenmann, R.,
Voss, M.J. (eds.) WOMPAT 2001. LNCS, vol. 2104, pp. 1–10. Springer, Heidelberg (2001)

2. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Fatoohi, R.A., Freder-
ickson, P.O., Lasinski, T.A., Simon, H.D., Venkatakrishnan, V., Weeratunga, S.K.: The NAS
parallel benchmarks. Technical report, NASA Ames Research Center (1991)

3. Berr, N., Schmidl, D., Göbbert, J.H., Lankes, S., Mey, D., Bemmerl, T., Bischof, C.:
Trajectory-Search on ScaleMP’s vSMP Architecture. In: Applications, Tools and Techniques
on the Road to Exascale Computing: Proceedings of the 14th Biennial ParCo Conference,
ParCo 2011, Advances in Parallel Computing, Ghent, Belgium, vol. 22. IOS Press, New
York (2012)

4. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: Proceed-
ings of First European Workshop on OpenMP, pp. 99–105 (1999)

5. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP Tasks Suite:
A Set of Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP. In: Interna-
tional Conference on Parallel Processing, ICPP 2009, pp. 124–131 (2009)

6. Gerndt, A., Sarholz, S., Wolter, M., Mey, D.A., Bischof, C., Kuhlen, T.: Nested OpenMP
for Efficient Computation of 3D Critical Points in Multi-Block CFD Datasets. In: SC 2006
Conference, Proceedings of the ACM/IEEE, p. 46 (November 2006)

7. McCalpin, J.: STREAM: Sustainable Memory Bandwidth in High Performance Computers
(1999), http://www.cs.virginia.edu/stream (accessed March 29, 2012)

8. McVoy, L., Staelin, C.: lmbench: Portable Tools for Performance Analysis. In: Proceedings
of the 1996 Annual Conference on USENIX Annual Technical Conference, ATEC 1996,
Berkeley, CA, USA, p. 23. USENIX Association (1996)

9. Peters, N., Wang, L.: Dissipation element analysis of scalar fields in turbulence. C. R.
Mechanique 334, 493–506 (2006)

10. Schmidl, D., Terboven, C., an Mey, D.: Towards NUMA Support with Distance Information.
In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS,
vol. 6665, pp. 69–79. Springer, Heidelberg (2011)

http://www.cs.virginia.edu/stream

Evaluating OpenMP Tasking at Scale

for the Computation of Graph Hyperbolicity�

Aaron B. Adcock1, Blair D. Sullivan2, Oscar R. Hernandez2,
and Michael W. Mahoney1

1 Department of Mathematics
Stanford University, Stanford, CA 94305

aadcock@stanford.edu,mmahoney@cs.stanford.edu
2 Computer Science and Mathematics Division,

Oak Ridge National Laboratory, Oak Ridge, TN 37831
{sullivanb,oscar}@ornl.gov

Abstract. We describe using OpenMP to compute δ-hyperbolicity, a
quantity of interest in social and information network analysis, at a scale
that uses up to 1000 threads. By considering both OpenMP workshare
and tasking models to parallelize the computations, we find that multiple
task levels permits finer grained tasks at runtime and results in better
performance at scale than worksharing constructs. We also characterize
effects of task inflation, load balancing, and scheduling overhead in this
application, using both GNU and Intel compilers. Finally, we show how
OpenMP 3.1 tasking clauses can be used to mitigate overheads at scale.

1 Introduction

Many graph analytics problems present challenges for thread-centric computing
paradigms because the dynamic algorithms involve irregular loops, where special
attention is needed to satisfy data dependencies. Perhaps better suited is a task-
ing model, where independent units of work can be parceled out and scheduled at
runtime. OpenMP, the de facto standard in shared memory programming, origi-
nally targeted worksharing constructs to coordinate distribution of computation
between threads. In the OpenMP 3.0 specification, this model was extended to
include tasks, and additional tasking features, such as mergeable and final,
were added in 3.1. The task-based model allows asynchronous completion of
user-specified blocks of work, which are scheduled to the threads at runtime to
achieve good load balance. The tasking model of OpenMP also solves the prob-
lem of dealing with multiple levels of parallelism in the application. For example,
tasks may spawn child tasks in complex nested loops that cannot be parallelized
with OpenMP worksharing constructs. OpenMP 3.1 enables the programmer to
control task overhead via the task final and if clauses, and to reduce the

� This manuscript has been authored by a contractor of the U.S. Government under
Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a
non-exclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 71–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

72 A.B. Adcock et al.

data environment size with the mergeable clause. These features operate by
managing the overhead of creating tasks at runtime and can easily be used to
control the parallelism of the applications. Also, in OpenMP, the programmer
is responsible for laying out and placing the memory correctly for shared data
structures to achieve good data locality and avoid task inflation [1] overheads.

Clearly, it is of continuing interest to evaluate OpenMP tasking at scale in
the context of challenging real-world applications where loop-level parallelism
creates significant load-imbalances between threads. In this paper, we work with
one such application, the calculation of the δ-hyperbolicity of a graph. The δ-
hyperbolicity is a number that captures how “tree-like” a graph is in terms of its
metric structure; and thus it is of interest in internet routing, complex network
analysis, and other hyperbolic graph embedding applications [2–5]. The usual
algorithm to compute δ involves looping over all quadruplets of nodes; its Θ(n4)
running time presents scalability challenges, and its looping structure creates
serious load balancing problems.

Our main contribution is to describe challenges we encountered while using
OpenMP 3.1 to calculate exactly, on a large shared-memory machine, the δ-
hyperbolicity of real-world networks. The networks have thousands of nodes,
and the experiments used up to 1015 threads. We evaluate both worksharing and
tasking implementations of the algorithm, demonstrating improved performance
using multilevel tasking over OpenMP worksharing clauses. We also evaluate
and compare the performance of GNU and Intel compilers with regards to task
scheduling and load balance at scale. Finally, we show that performance gains can
be made at very large scale by improving data structures, adding tasking levels,
and using the task final, if, and mergeable clauses to manage overheads.

2 Background and Preliminaries

2.1 Gromov δ-hyperbolicity

The concept of δ-hyperbolicity was introduced by Gromov in the context of
geometric group theory [6], and has received attention in the analysis of networks
and informatics graphs. We refer the reader to [2–5, 7, 8], and references therein,
for details on the motivating network applications; but we note that our interest
arose as part of a project to characterize and exploit tree-like structure in large
informatics graphs [8]. Due to the Θ(n4) running time of the usual algorithm for
computing δ, previous work resorted to computing δ only for very small networks
(with up to hundreds of nodes [7]) or involved sampling triangles in networks
(of up to 10,000 nodes [4]). In our application, we needed to compute δ exactly
for networks that were as large as possible.

Let G = (V,E) be a graph with vertex set V and unordered edge set E ⊆
V ×V , and assume G has no self-loops, i.e., if u ∈ V , (u, u) /∈ E. We refer to |V |
as the size of the graph. A path of length l is an alternating sequence of vertices
and edges v1e1v2 . . . elvl+1 such that ek = (vk, vk+1) and no vertex is repeated. A
graph is connected (which we will always assume) if there exists a path between
all vertices. We define a function l : V × V → Z

+ that equals the length of the

OpenMP Tasking for Graph Hyperbolicity Computation 73

shortest path between u, v ∈ V . This function defines a metric on G, creating a
metric space (G, l), and a geodesic is a shortest path in G. A geodesic triangle
is composed of three vertices and a geodesic between each vertex pair.

There are several characterizations of δ-hyperbolic spaces, all of which are
equivalent up to a constant factor [6]. We tested the computation of three such
definitions as candidates for parallelization: δ-slim triangles [6], δ-fat triangles [7],
and the 4-point condition [6]. Except for a brief discussion in Section 4.1 of other
notions of δ, in this paper we will only consider the following definition.

Definition 1. Let (X, l) be a metric space, and let 0 ≤ δ < ∞. (X, l) is called 4-
point δ-hyperbolic if and only if for all x, y, u, v ∈ X, ordered such that l(x, y)+
l(u, v) ≥ l(x, u) + l(y, v) ≥ l(x, v) + l(y, u), the following condition holds:

(l(x, y) + l(u, v))− (l(x, u) + l(y, v)) ≤ 2δ.

Thus, the 4-point condition requires sets of four points (called quadruplets) to
have certain properties, and these can be checked by looping over all quadruplets.

2.2 OpenMP and Parallel Computations

There are several task parallel languages and runtime libraries that have been
used to parallelize graph applications [9]. OpenMP task parallelism is a profitable
approach for dynamic applications because it provides a mechanism to express
parallelism on irregular regions of code where dependencies can be satisfied at
runtime. Studies [10–12] have shown that OpenMP tasks are often more efficient
for parallelizing graph-based applications than thread-level parallelism because
it is easier to express the parallelism on unstructured regions while leaving the
task scheduling decisions to the runtime. However, such studies do not include
applications with large numbers of threads on production codes. Additional work
has shown that load imbalances, scheduling overheads and work inflation (due to
data locality) can adversely affect the efficiency of task parallelism at scale [1].
These sources of overhead need to be mitigated carefully in applications, espe-
cially at large scale. OpenMP 3.1 provides mechanisms to manage some of these
overheads by allowing work stealing with the untied clause to improve load
balance, reducing the memory overheads by merging the data environment of
tasks with the mergeable clause, and by reducing the task overhead with the
specification of undeferred and included tasks via the if and final clauses.

In dynamic and irregular applications, it is difficult to know the total number
of tasks and granularity generated at runtime and how this affects synchroniza-
tion points and overheads. Controlling task granularity is important to reduce
runtime overhead and improve load balance — e.g. if the tasks generated are too
fine grained, the application will lose parallel efficiency due to runtime overheads.
Few studies [13] have evaluated the use of the final and mergeable clauses to
manage runtime overheads on large graph-based applications running on hun-
dreds of threads. These can further be combined with the task cutoff technique:
when the cutoff threshold is exceeded, newly generated tasks are serialized.

74 A.B. Adcock et al.

Different techniques have been explored [12], including the use of adaptive cut-
off schemes [14] and iterative chunking [15].

3 Algorithm for Computing δ and Its Implementation

3.1 The Four-Point Algorithm

To describe the algorithm for computing δ on a graph G = (V,E) of size n, we
represent V as a set of integers, i.e., V = {0, 1, 2, . . . , n− 1}. We precompute the
distance matrix l using a breadth first search and store it in memory; the graph
itself is not needed after l is constructed. We then let δ(i, j, k, p) represent the
hyperbolicity of a quadruplet and Δ be a vector where Δ[δ] is the number of
quadruplets with hyperbolicity δ. Given an ordered tuple of vertices (i, j, k, p),
we let φ be a function re-labelling them as (x, y, u, v) so that l(x, y) + l(u, v) ≥
l(x, u) + l(y, v) ≥ l(x, v) + l(y, u). Then, to calculate the 4-point δ-hyperbolicity
of G, we use a set of nested for loops and loop over all vertices satisfying
0 ≤ i < j < k < p < n to find

δ(i, j, k, p) = (l(x, y)+l(u, v))−(l(x, u)+l(y, v)) s.t. (x, y, u, v) = φ(i, j, k, p). (1)

These quantities are recorded by incrementing Δ[δ(i, j, k, p)].
Clearly, this algorithm is naturally parallelizable, since for each set of four

vertices, the δ calculation (which occurs in the inner-most loop) depends only
on the distances between the nodes (and not on the calculated δ of any other
quadruplet). One must be slightly careful to avoid conflicts or contention when
storing values in the Δ vector, but this can be alleviated by allocating thread-
local storage for Δ and summing on completion to achieve the final distribution.
It is important to note that we require 0 ≤ i < j < k < p < n to reduce total
work by a factor of 24 (since δ of a quadruplet is independent of the ordering).
This, however, has a significant effect on the load balancing of the loops. The
number of iterations of each for loop is dependent on the index in the previous
loop, and decreases as we progress through the calculation. With four levels of
nested loops, this effect becomes very pronounced for later iterations.

3.2 OpenMP Implementations

We implemented two versions of this algorithm in OpenMP, both using the
Boost Graph Library to store the graph as an adjacency list. The first approach
(Code 1.1) makes use of the omp for workshare construct on the outer loop. The
innermost loop consists of a straightforward retrieval of the distances between
the six different pairings of each quadruplet and the calculation of Eqn (1). Due
to the load balancing issues described previously, we obtain a significant speedup
using dynamic (instead of static) scheduling, especially with smaller chunksizes
(see Table 1(b)). After the loop, we use a short critical region to collate the local
Δ vectors into a single master Δ.

The second approach (Code 1.2) implements parallelization using multiple
levels of tasking to split the computations into smaller chunks (with the intent
of balancing the load given to each processor). We determined two levels of

OpenMP Tasking for Graph Hyperbolicity Computation 75

tasking was optimal—three or more resulted in massive overheads for generat-
ing/maintaining the tasks, increasing time by an order of magnitude. Figure 1
shows the task graph associated with this approach, when processing a network
with n nodes, and it illustrates why load balancing is such a challenge. Each
task is labelled with the vertices it sweeps over in the network and, e.g., the 1st
level task (1, ∗, ∗, ∗) (on the left) has n− 1 child tasks, which in total has O(n3)
iterations of computation, but its sibling task (n − 3, ∗, ∗, ∗) (on the far right)
generates only a single child which has a single iteration of work.

1 /∗Distance matrix p r e c a l cu l a t ed ∗/
#pragma omp p a r a l l e l shared (Delta [])

3 {
/∗ Var iab le i n i t i a l i z a t i o n s ∗/

5 #pragma omp f o r schedu le (dynamic , 1)
f o r (s i z e t i =0; i<s i z e ; ++i)

7 f o r (s i z e t j=i +1; j<s i z e ; ++j)
f o r (s i z e t k=j +1; k<s i z e ; ++k)

9 f o r (s i z e t p=k+1; p<s i z e ; ++p)
/∗ c a l c u l a t e d e l t a (i , j , k , p) as in Eq . (1) ∗/

11 #pragma omp c r i t i c a l
/∗ Co l l a t e l o c a l De l tas ∗/

13 }

Code 1.1. Parallelization using the for construct

The critical region in these implementations may seem to be a bottleneck for
the computation, but because of the complexity of the main loop, the small size
of the δ vectors (on the order of graph diameter), and the linear nature of the
collation, the runtime of this region is small relative to the total runtime. Our
empirical results support this analysis—e.g., the critical region took less than
one second on all runs using 1015 threads.

1 /∗Distance matrix p r e c a l cu l a t ed ∗/
#pragma omp p a r a l l e l shared (Delta , De l t a p t r)

3 {
/∗ Var iab le i n i t i a l i z a t i o n s ∗/

5 vector<double> De l ta l o c (diam of network , 0) ;
i n t th r e ad id = omp get thread num () ;

7 De l ta p t r [th r e ad id] = &De l t a l o c ;
#pragma omp s i n g l e

9 {
f o r (s i z e t i =0; i<s i z e ; ++i) //Task l e v e l 1

11 #pragma omp task shared (De l ta ptr , d i s t an c e mat r i x)
f o r (s i z e t j=i +1; j<s i z e ; ++j) //Task l e v e l 2

13 #pragma omp task shared (De l ta ptr , d i s t an c e mat r i x)
f o r (s i z e t k=j +1; k<s i z e ; ++k)

15 f o r (s i z e t p=k+1; p<s i z e ; ++p)
/∗Get l o c a l Delta vec tor ∗/

17 i n t tn = omp get thread num () ;
vector<double> &loc De l t a = ∗De l ta p t r [tn] ;

19 /∗ c a l c u l a t e d e l t a (i , j , k , p) as in Eq . (1) ∗/
}

21 #pragma omp c r i t i c a l
/∗ Co l l a t e l o c a l De l tas ∗/

23 }

Code 1.2. Parallelization using two levels of tasking

In the worksharing case, the details of writing/collating the Δ vectors are
straightforward. With tasking, the situation is more complex, as the thread that

76 A.B. Adcock et al.

�������	
����

����

���� �����

�����

�����

����	���������

����	���������

�����

����������
�

� ����������
�

� �

������������������������

����������
�

����� ����� �����

���� ������

���� ������ ���� ������ ��������

Fig. 1. The task graph of a network with n nodes

generates the first task may not be the same thread that executes the subsequent
levels of tasking. As each lower level task takes on the memory space of the task
above it, we would have threads writing to the local Δ vector of other threads
(i.e., the threads that generated the upper level tasks). Related to this locality
issue, multiple threads could be writing to the same local Δ vector, depending
on how the tasks are passed to the threads. To avoid this, we create a shared
array of N pointers, where N is the number of threads and pointer i points to
a local copy of Δ for thread i. Then, when we write out δ values, we first check
which thread is executing the task and use the shared pointer array to find the
appropriate Δ to update.

4 Empirical Evaluation and Main Results

In this section, we describe the results of our implementation of the algorithms
of Section 3. We considered four networks (Polblogs, CA-GrQc, as20000102, and
Gnutella09; the last three are from http://snap.stanford.edu, and the first
is from [16]) of interest in social network analysis. These networks were chosen
to represent a range of sizes (1222 to 8104 vertices) where Θ(n4) is feasible in a
parallel environment, but too large for serial codes.

Our computations were performed using Nautilus, an SGI Altix UV 1000
system at the National Institute for Computational Science (NICS) consisting
of 1024 Intel Nehalem EX processor cores and 4 terabytes of shared memory.
Each core has a speed of 2.0 GHz and the machine’s peak performance is 8.2
Teraflops. As eight of the cores are reserved for system operations, only 1016
cores can be used for a single job. We performed our experiments up to 1015
threads, leaving one core for helper threads or the operating system. The system
runs on SUSE 11.1 and Propack 7SP1. The Altix dplace command was used
to bind threads to cores. We used Intel 11.1 and GNU 4.6.3 to evaluate task
scalability, and the newer GNU 4.7.3 to evaluate the new OpenMP 3.1 tasking
features at the end of Section 4.3. Newer versions of the Intel compiler (12.1
and 13.x) experienced a massive runtime slowdown which prevented completion

OpenMP Tasking for Graph Hyperbolicity Computation 77

Table 1. Representative Running Times (in seconds)

(a) Timing of Three δ Definitions

Definition of δ Time (96 threads)

δ-slim 2910
δ-fat 1187

4-point δ 111

(b) Timing of Scheduling Policies

Dynamic Static
Chunksize 1 10 1 10

128 threads 23851 19901 34854 46384
256 threads 17359 20705 22456 25546

of jobs using even the smallest of our test networks, which we believe can be
attributed to calls to the Boost Graph Library.

4.1 An Aside: Comparison of Different δ Definitions

Both the δ-slim and δ-fat triangle-based definitions of δ (see [6, 7] for precise
definitions) restrict computations to triplets of nodes, but they require us to
compute, store, and then check the distances between nodes on each side of a
geodesic triangle. Representative timings for computations based on all three
definitions using straightforward worksharing implementations are presented in
Table 1(a). The more than an order of magnitude improvement for computations
based on the 4-point condition are largely because the data structures needed to
track all of the shortest paths between points, as required by the triangle-based
definitions of δ, are not needed for the 4-point condition.

4.2 Comparison of Tasking versus Worksharing

Our initial evaluation of the tasking feature of OpenMP pitted it against the
worksharing approach on the GNU compiler. For each of the four networks, we
ran the algorithms in Codes 1.1 and 1.2 repeatedly, starting with a single thread,
repeatedly doubling the number of threads until we reached the hardware limit.
The results are presented in Figure 2 and Table 2, where missing values are due
to a wall-clock limit of 24 hours on Nautilus, preventing completion of jobs. Since
the single thread job did not complete for all networks, in Figure 2, we present
scaling relative to the “first run,” meaning the timing of the execution with the
smallest number of threads which completed in under 24 hours (e.g., Gnutella
is relative to a 512 thread run). Smaller numbers in the table correspond to
faster timings, and these results clearly indicate that—as a general rule, e.g.,
aside from a performance degradation on the smallest network when using the
largest number of threads—tasking is better than worksharing. In addition, for
the worksharing implementation, we tested the impact of choosing static versus
dynamic scheduling with the omp for directive, again varying the chunksize. Our
timings, a representative sample of which are presented in Table 1(b), indicate
that the best results are generally achieved using the dynamic clause with a
chunksize of one. Our profiling data indicate this is most likely caused by the
increased imbalances in the amount of work associated with each chunk as the
chunksize increases.

78 A.B. Adcock et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 64 128 256 512 1015

T
im

in
g

(x
10

00
s)

of Threads

OpenMP Timing

Polblogs (T)
Polblogs (WS)

CA-QrGc (T)
CA-QrGc (WS)

as20000102 (T)
as20000102 (WS)

Gnutella09 (T)
Gnutella09 (WS)

(a) Timing versus number of threads

 1

 10

 100

 64 128 256 512 1015

S
ca

lin
g

(b
y

fir
st

 r
un

)

of Threads

OpenMP Scaling

(b) Scaling versus number of threads

Fig. 2. Comparison of tasking (T) and workshare (WS) implementations

Table 2. Computation time (in seconds) of tasking versus workshare

Number of CPUs
Network n 32 64 128 256 512 1015

Polblogs 1222 tasking 70 42 42 69 137 269
workshare 71 47 46 70 132 292

CA-GrQc 4158 tasking 8989 4933 2723 2053 1916 3691
workshare 10433 5749 5012 3260 2688 3136

as20000102 6474 tasking 50002 37417 15308 9851 9039 11419
workshare 47197 29309 23851 17359 12231 11491

Gnutella09 8104 tasking - - - - 26888 13295
workshare - - - - 28564 21456

4.3 Comparison of Tasking Performance on Different Compilers

Next, we compare the task scheduling and load balancing strategies of the GNU
and Intel compilers. In doing so, we illustrate differences in challenges encoun-
tered on problems with small versus large numbers of threads and tasks. Pro-
filing runs that calculate the δ-hyperbolicity of CA-GrQc (4158 nodes) allow us
to evaluate the number of tasks per thread, amount of task switching, and load
balancing up to 1015 threads. Comparison with runs on Polblogs (1222 nodes)
provides perspective on the scaling behavior of each compiler’s scheduler.

The first characteristic considered is the number of tasks (at each level) that
are executed per thread. At the first level, each task is primarily concerned with
spawning its child tasks (distributing the work of task creation). As shown in
Figures 3(a) and 3(b), the GNU compiler has a relatively equitable distribution
on first level tasks, but the Intel compiler has “outlier” threads that execute
an order of magnitude more first level tasks than the other threads. Further
investigation revealed that, when using Intel, the thread creating the first level
of tasks (in the single directive region) schedules more first level tasks to itself.
For both compilers, the distribution becomes more imbalanced at higher thread
counts—we suspect this is due to either the variability in the numbers of children
spawned by each first level task (recall Figure 1) or the imbalance in the amount
of computation (i.e., number of iterations) in each of these children. For second

OpenMP Tasking for Graph Hyperbolicity Computation 79

�

��

���

����

� ��� ��� ��� ��� ����

��
��
��
��
	�
�
�
��
�

����������

���	
���� ����	
���� ����	
���� ����	
���� �����	
����

(a) GNU First Level Tasks

1

10

100

1000

10000

0 200 400 600 800 1000

of

 T
as

ks
 (l

og
)

Thread ID

64 Threads 128 Threads 256 Threads 512 Threads 1015 Threads

(b) Intel First Level Tasks

0

20000

40000

60000

80000

100000

120000

140000

160000

0 200 400 600 800 1000

of

 T
as

ks

Thread ID

64 Threads 128 Threads 256 Threads 512 Threads 1015 Threads

(c) GNU Second Level Tasks

0

50000

100000

150000

200000

250000

300000

350000

0 200 400 600 800 1000

of

 T
as

ks

Thread ID

64Threads 128 Threads 256 Threads 512 Threads 1015 Threads

(d) Intel Second Level Tasks

Fig. 3. Number of first and second level tasks executed per thread in CA-GrQc

level tasks, Figures 3(c) and 3(d) illustrate a relatively uniform distribution for
the GNU compiler, with imbalances appearing at 1015 thread count, as well as
an outlier thread with the Intel compiler, but only at small thread counts.

Given these data, a natural question to ask is how many tasks are “switching”
threads between creation and execution. Figure 4 shows this count for second
level tasks, and it clearly highlights a difference in task scheduling strategy be-
tween the compilers—which differ by two orders of magnitude at all thread
counts. In particular, Intel’s runtime scheduler seems to do more aggressive load
balancing, leading to higher switch counts. Also note the order of magnitude
increase in switching for the GNU compiler when we reach 1015 threads which
starts to do more aggressive load balancing at this scale. Analysis of the data re-
veals the number of tasks switching is not uniformly distributed across threads,
and we suspect load imbalances are occurring at this size scale.

The remaining evaluations use both CA-GrQc and Polblogs, whose sizes differ
by a factor of approximately 4. Figure 5 shows the time spent executing tasks
by each thread, sorted in decreasing order to illustrate more clearly the load
imbalances.1 For CA-GrQc, the work is well-balanced among the threads on
both compilers when using 64 and 128 threads. Figure 5(a) shows that, with the

1 While Figure 5 shows that the Intel compiler has a higher average execution time
than the GNU compiler, note that this task inflation is due to the way that Intel
load balancing is affecting locality and the way it is optimizing calls to the C++
Boost library.

80 A.B. Adcock et al.

1

10

100

1000

10000

0 200 400 600 800 1000

of

 T
as

ks

Thread ID

64 Threads 128 Threads 256 Threads 512 Threads 1015 Threads

(a) GNU

1

10

100

1000

10000

100000

1000000

0 200 400 600 800 1000

of

 T
as

ks
 (l

og
)

Thread ID

64 Threads 128 Threads 256 Threads 512 Threads 1015 Threads

(b) Intel

Fig. 4. Number of tasks created by one thread and executed by another one

Table 3. Performance ratio (original runtime / optimized runtime) on GNU-compiled
code

Dataset Polblogs CA-GrQc

Threads 64 128 256 256 512 1015

PSD 0.990 0.694 0.926 0.709 0.813 1.410

PSD-CM 1.010 0.840 0.800 0.794 0.862 1.370

PSD-CMF 0.500 0.758 0.746 0.775 0.952 1.450

GNU compiler, by the time one reaches 512 threads, the variability has grown
so that 10% of the task region overhead is attributable to load imbalance (at
1015 threads, this balloons to 27%). In contrast, Figure 5(b) shows that the
Intel compiler limits this overhead contribution to 3% and 9% for 512 and 1015
threads, respectively. This is unlikely to be independent of the increased Intel
task switching seen in Figure 4(b). Figures 5(a) and 5(b) also show that there
is a significant performance loss due to task inflation at higher thread counts.
When one decreases the size of the network by a factor of 4 (and thus the number
of tasks by approximately 28), load imbalance occurs at a lower thread count,
but the effects of task inflation are limited because data locality impacts the
performance less at smaller thread counts. Figure 5(c) and 5(d) suggest that,
independent of task inflation, Intel may have a better OpenMP load balancing
strategy than GNU at this scale.

Finally, in Figure 6, we break down the overhead of the task region into that
attributable to load imbalance and that caused by task creation and scheduling.
For the smaller Polblogs network, most of the overhead is due to load imbalance,
although at 256 threads we see the balance begin to shift for the GNU compiler.
When considering the larger CA-GrQc network, large thread counts correspond
to significant load imbalance with the GNU compiler. In contrast, the Intel
compiler maintains a low load imbalance, but at the expense of a drastically
higher task creation and scheduling overhead for large numbers of threads.

Table 3 gives the running time performance ratio under various optimizations
(larger numbers are better) using the new OpenMP 3.1 tasking features; we note
that statistics are given only for the GNU compiler, as in some cases the Intel-
compiled code slows down to the point of timing out under similar optimizations
(even on the Polblogs network). First, to mitigate the cost of task inflation

OpenMP Tasking for Graph Hyperbolicity Computation 81

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� ��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�
��
��
��
��

�	
�������

���	
����� ����	
����� ����	
����� ����	
����� �����	
�����

(a) GNU CA-GrQc

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

������

������

�� ��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�
��
��
��
	�

�
�����

���	
����� ����	
����� ����	
����� ����	
����� �����	
�����

(b) Intel CA-GrQc

��
���
���
���
���
���
���
���
���

�� ��
�

��
�

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�
��
��
��
��

�	
�����

���	
����� ����	
����� ����	
�����

(c) GNU Polblogs

��

���

���

���

���

���

���

���

�� ��
�

��
�

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�
��
��
��
	�

�
�����

���	
����� ����	
����� ����	
�����

(d) Intel Polblogs

Fig. 5. Time spent executing tasks per thread

seen in CA-GrQc, we padded the task-shared data structures (PSD) with an
extra dimension of the size of a memory page (4096 bytes). Once shared data
structures were restructured, we tried to address load imbalance seen at high
thread counts by adding an additional level of tasking with a cutoff at .8*size
of the k iteration space, and using the mergeable clause to merge the data
environment with that of the second level task (denoted as PSD-CM). Finally,
we inserted a final clause that applies to the last two iterations of the second
level task (denoted PSD-CMF). In most cases, these optimizations did not reduce
the running time until the number of threads became very large, which highlights
the importance of testing these OpenMP features at scale. In particular, padding
shared data structures might make them less cache friendly when page migration
costs are not as expensive at small thread counts, but it drastically improves the
locality when significant task switching occurs for load balance at high thread
counts. Furthermore, adding the third level of tasking in PSD-CM allowed better
load balancing at high thread counts, but it could not overcome the increased
overhead of task creation, without the additional control exerted by the final

clause. We will still need to investigate why the mergeable clause only decreases
the performance of the application at scale, but one possible reason is that
sharing the data environment among tasks may stress the memory interconnect
when two tasks are executed on different cores. When applying the final clause,
this issue may be resolved because the second and third level of tasks become
un-deferred and may execute on the same core. This would allow the tasks to
benefit from the data locality of the merged data environment.

82 A.B. Adcock et al.

��� ���

����

���

����
����

��� ���

���

���

����

���

���
���

����
����
����
����
����
����
����
����
����
����
����
����

������� 	�������� ������!� ��������!� �������� ����������

�
��
��
��
��
��
��

����	
������������������

�	"#�#�
�� �#$��%�#&'��(��
���)�����

(a) Polblogs

��� ��� ��� ���
���� !�� ����

���

����

���
���

���
���

��� ���

���� ����

���

����

����

����

����

����

����

��
�

���

���
��

���

��
�

��!�

���
��

��!�

��
�

����

���
��

����

��
�

����

���
��

����

��
�

�����

���
��

�����

�
��
��
��
��
��
��

����	
������������������

�	"#�#�
�� �#$��%�#&'��(��
���)�����

(b) Ca-GrQc

Fig. 6. Overhead of the task region

5 Conclusions

We have found that algorithms with multiple levels of tasking give improved
performance over the OpenMP workshare construct since they allow us to par-
allelize irregular loops by splitting the work into smaller chunks, and enable
better load balancing among threads. We have also used performance tools to
analyze and compare the GCC 4.6.3 and Intel 11.1 compilers, finding that the
two compilers use different task scheduling and load balancing strategies whose
differences emerge when performing moderately large-scale versus very large-
scale computations; and we have used new tasking features in OpenMP 3.1 to
mitigate the cost of task creation and scheduling overheads. We expect that our
conclusions will be useful in other applications that require hundreds or thou-
sands of threads.

Acknowledgments. This work was funded by the Defense Advanced Research
Projects Agency (DARPA), and it was supported by an allocation of advanced
computing resources provided by the National Science Foundation. The compu-
tations were performed on Nautilus at the National Institute for Computational
Sciences. This work was also funded by the Office of Advanced Scientific Com-
puting Research, Office of Science, U.S. Department of Energy under Contract
No. DE-AC05-00OR22725 with UT-Battelle, LLC.

References

1. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and mit-
igating work time inflation in task parallel programs. In: Proc. of the Intl. Conf.
on High Performance Computing, Networking, Storage and Analysis (SC 2012),
pp. 65:1–65:12 (2012)

2. Kleinberg, R.: Geographic routing using hyperbolic space. In: Proc. of the 26th
IEEE Intl. Conf. on Computer Communications (INFOCOM), pp. 1902–1909
(2007)

3. Shavitt, Y., Tankel, T.: Hyperbolic embedding of Internet graph for distance esti-
mation and overlay construction. IEEE/ACM Trans. Netw. 16, 25–36 (2008)

OpenMP Tasking for Graph Hyperbolicity Computation 83

4. Narayan, O., Saniee, I.: Large-scale curvature of networks. Phys. Rev. E 84, 066108
(2011)

5. Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world
and tree-like random graphs. In: Proc. of the 23rd ISAAC, pp. 278–288 (2012)

6. Bridson, M.R., Häfliger, A.: Metric Spaces of Non-Positive Curvature. Springer
(1999)

7. Jonckheere, E., Lohsoonthorn, P., Bonahon, F.: Scaled Gromov hyperbolic graphs.
J. of Graph Theory 57(2), 157–180 (2008)

8. Adcock, A.B., Sullivan, B.D., Mahoney, M.W. In preparation: Tree-like structure
in large social and information networks (2013)

9. Khaldi, D., Jouvelot, P., Ancourt, C., Irigoin, F.: Task parallelism and synchro-
nization: An overview of explicit parallel programming languages. Technical Report
CRI/A-486, MINES ParisTech (2012)

10. Olivier, S.L., Prins, J.F.: Evaluating OpenMP 3.0 run time systems on unbalanced
task graphs. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 63–78. Springer, Heidelberg (2009)

11. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Assessing OpenMP tasking im-
plementations on NUMA architectures. In: Chapman, B.M., Massaioli, F., Müller,
M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 182–195. Springer,
Heidelberg (2012)

12. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP
tasks suite: A set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: Proc. of the 2009 Intl. Conf. on Parallel Processing (ICPP 2009),
pp. 124–131 (2009)

13. Ayguadé, E., Beyer, J., Duran, A., Ferrer, R., Haab, G., Li, K., Massaioli, F.: An
extension to improve OpenMP tasking control. In: Sato, M., Hanawa, T., Müller,
M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132,
pp. 56–69. Springer, Heidelberg (2010)

14. Duran, A., Corbalán, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC 2008),
36:1–36:11 (2008)

15. Ibanez, R.F.: Task chunking of iterative constructions in OpenMP 3.0. In: First
Workshop on Execution Environments for Distributed Computing, pp. 49–54
(2007)

16. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 U.S. election:
divided they blog. In: Proc. of the 3rd Intl. Workshop on Link Discovery (LinkKDD
2005), pp. 36–43 (2005)

Early Experiences with the OpenMP

Accelerator Model�

Chunhua Liao1, Yonghong Yan2, Bronis R. de Supinski1, Daniel J. Quinlan1,
and Barbara Chapman2

1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
{liao6,dquinlan,desupinski1}@llnl.gov

2 Department of Computer Science, University of Houston
{yanyh,chapman}@cs.uh.edu

Abstract. A recent trend in mainstream computer nodes is the com-
bined use of general-purpose multicore processors and specialized accel-
erators such as GPUs and DSPs in order to achieve better performance
and to reduce power consumption. To support this trend, the OpenMP
Language Committee has approved a set of extensions to OpenMP (re-
ferred to as the OpenMP accelerator model). The initial version is the
subject of Technical Report 1 (TR1) while OpenMP 4.0 Release Candi-
date 2 (RC2) further refines the extensions.

In this paper, we examine the newly released accelerator directives
and create an initial reference implementation, referred to as HOMP
(Heterogeneous OpenMP). Focused on targeting NVIDIA GPUs, our
work is based on an existing OpenMP implementation in the ROSE
source-to-source compiler infrastructure. HOMP includes extensions to
parse the new constructs and to represent them in the AST and other
compiler translation details. Further we provide initial runtime support.
For our evaluation, we have adapted a few existing OpenMP codes to
use the accelerator model directives and present preliminary performance
results. Finally, we critique the accelerator model in terms of its impact
on developers and compiler writers and suggest possible improvements.

1 Introduction

Heterogeneous computer architectures that combine general-purpose multicore
CPUs with specialized accelerators have become a viable solution to build high
performance supercomputers, as demonstrated by Titan at ORNL (NVIDIA
GPGPUs) and Stampede at TACC (Intel Xeon Phi) in the recent top500 list.
Multicore CPUs are good at processing coarse-grained, irregular tasks; while
accelerators excel in certain workloads such as large-scale data parallel and finer-
grained vector processing. However, to exploit their computation capabilities

� LLNL-CONF-636479. This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. This work was also supported by the National Science Foun-
dations Computer Research Infrastructure program under Award No. CNS-1205708.

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 84–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Early Experiences with the OpenMP Accelerator Model 85

efficiently has required significant programmer effort to optimize an application
programwith respect to the specific hardware features of each type of accelerator.

Programming models such as OpenCL, CUDA and Brook provide mecha-
nisms for an application to exploit the hardware capabilities of accelerators.
High-level programming models, such as OpenACC [1], aim to provide an eas-
ier migration option from a sequential or parallel CPU version to the use of
accelerators, typically GPGPUs. However, using these programming models to
exploit their capabilities completely still poses significant challenges, even for
expert programmers. Using multiple programming models in one application, as
is likely with models that provide accelerator support that is distinct from CPU
models, increases code complexity and decreases its portability. Mixing multiple
programming models also complicates the compiler and runtime support due to
the language complexity and to support runtime interoperability.

OpenMP has proven to be a productive solution for parallel programming
with CPUs in shared memory systems. Recently, the OpenMP Language Com-
mittee has been working toward a single specification that supports heteroge-
neous computation nodes using both CPUs and accelerators. The committee has
developed a set of extensions that they released first as a dedicated Technical
Report 1 (TR1) and then as part of OpenMP 4.0 Release Candidate 2 (RC2) [2].
The extensions in this OpenMP accelerator model build on existing OpenMP
concepts and constructs to provide a unified model for GPUs and CPUs. This
model relies on compiler analysis and transformations to generate code that
can execute on accelerators for specified source code regions, as well as runtime
support to provide data movement and other support for hybrid execution.

In this paper, we review the OpenMP accelerator model and share our ex-
periences of creating an initial implementation, the Heterogeneous OpenMP
(HOMP) compiler. We have two goals: to provide early feedback on the us-
ability of the OpenMP accelerator model and its impact on compiler writers;
and to create a reference implementation for the extensions that the research
community can leverage to explore further extensions.

The rest of the paper is organized as follow. Section 2 reviews the major accel-
erator extensions to OpenMP. Section 3 describes our initial implementation of
those extensions. We present our preliminary results in Section 4 and critique the
current model in Section 5. Section 6 presents related work. Section 7 concludes
the paper and discusses our future work.

2 The OpenMP Accelerator Model

OpenMP 4.0 Release Candidate 2 [2] extends the execution model of the specifi-
cation to support accelerators with device constructs. The OpenMP accelerator
model assumes that a computation node has a host device connected with one
or multiple accelerators as target devices. It uses a host-centric model in which a
host device “offloads” code regions and data to accelerators for execution, spec-
ified using the target construct. This construct causes data and an executable to
be copied (offloaded) to the accelerator before computation.

86 C. Liao et al.

The OpenMP memory model is extended so that the code region has its own
data environment. A device appears to have an independent shared memory,
although copies cannot be assumed. Data-mapping attributes, specified using the
map clause, define how variables are handled for the device data environments,
including allocation, initialization and assignment to the host variables at the
end of a target [data] region.

A device, which can be any logical execution engine defined by an imple-
mentation, has threads that behave almost the same as threads on the host
device. Initially, only a single thread starts on a device to run an implicit task
region. This single thread can fork more threads later when it encounters paral-
lel constructs. It can also generate tasks as can its CPU counterpart. RC2 also
introduced “thread teams” for organizing device threads in a structured way,
which we will discuss in more detail in later sections.

2.1 Directives for Data and Computation Offloading

The target directive is introduced to offload data and computation to a device.
It can have clauses to indicate a target device (device), data-mapping attributes
(map), and an if condition to control the use of offloading at runtime.

The device data environment reflects the data-mapping attributes specified
by the map clauses and the existing device data environment, which may have
previously mapped variables due to target data constructs. Data mapping at-
tributes include alloc, to, from, and tofrom, which determine how the list item is
allocated, initialized and copied (handled) at region completion. The map clause
can apply to “array sections”, which designate a subset of an array, building on
standard Fortran syntax or syntax added to OpenMP to support the concept
for C and C++ for native arrays and pointer-based arrays.

Figure 1 shows a Jacobi iteration kernel written using the OpenMP 4.0 RC2
specification. One directive (line 6 and 7 of Figure 1) converts the existing host
OpenMP code to device code. Since a target region can run on a host device
whenever an implementation chooses, programmers should generally write a host
version before adding accelerator-specific directives.

To avoid repetitive creation and cancellation of device data environments,
the target data directive defines a device data region, in which multiple target
regions can share the same device data. As shown at lines 1 and 2 in Figure 1,
a device data region is defined before the while loop that contains the kernel.
So each kernel launch within the while loop can reuse the enclosing data region.
However, the map type of a data item in a map clause of a target construct can
change if it is enclosed in a data region. For example, the map type for uold is to
(copy the new values generated to the device) at line 6 while it has an alloc type
at line 2. The reason is that outside of the while loop, uold is neither live-in nor
live-out. Users must use care for their choice of map type depending on where
they define data regions.

Another new directive, target update, can have motion clauses (to and from)
and a device clause. According to the motion clauses, this construct makes a
set of variables in the device data environment consistent with their original

Early Experiences with the OpenMP Accelerator Model 87

1 #pragma omp target data map(to : n , m, omega , ax , ay , b , f [0 : n] [0 :m]) \
2 map(tofrom : u [0 : n] [0 :m]) map(al loc : uold [0 : n] [0 :m])
3 while ((k<=mits)&&(er ror>t o l))
4 {
5 // a ” ta rge t + p a r a l l e l for ” loop copying u to uold i s omitted . . .
6 #pragma omp target map(to : n , m, omega , ax , ay , b , f [0 : n] [0 :m] , \
7 uold [0 : n] [0 :m]) map(tofrom : u [0 : n] [0 :m])
8 #pragma omp paral le l for private (r e s id , j , i) reduction (+: error)
9 for (i =1; i<(n−1); i++)

10 for (j =1; j<(m−1); j++)
11 {
12 r e s i d = (ax ∗(uold [i −1] [j] + uold [i +1] [j])\
13 + ay ∗(uold [i] [j −1] + uold [i] [j +1])+ b ∗ uold [i] [j] − f [i] [j]) / b ;
14 u [i] [j] = uold [i] [j] − omega ∗ r e s i d ;
15 e r r o r = e r r o r + r e s i d ∗ r e s i d ;
16 } // the r e s t code omitted . . .
17 }

Fig. 1. Jacobi kernel using accelerator directives

list items. With it, programmers can selectively update data values between the
host and device data environments. Another directive, declare target, specifies
that variables, functions (C, C++ and Fortran), and subroutines (Fortran) are
mapped to (compiled for) a device. This directive generates device binaries for
code that is not in the lexical scope of the target region, including the use of
OpenMP constructs.

2.2 Directives for Thread Hierarchy

Accelerators are often massively parallel architecture devices that support hun-
dreds or even thousands of concurrent threads with a hierarchical organization.
Language constructs that allow users to manage the thread hierarchy are often
needed. For example, CUDA provides the hierarchy of threads in blocks and
grids. RC2 provides the teams and distribute constructs to manage a two-level
thread hierarchy. Previously, OpenMP included the concept of a thread team, a
group of synchronizable threads, to support nested parallelism. The teams con-
struct creates a league or group of these thread teams. Initially each team in
the league has one thread; subsequent parallel regions can create more threads
in that team. The distribute construct specifies that the iterations of an associ-
ated loop are distributed across the master threads of all teams that execute the
teams region to which the distribute region binds. Figure 2 gives a simple example
of calculating the sum of an integer array using these constructs. The complex
semantics lead to less intuitive code than existing OpenMP constructs. Without
combined constructs, users must manually split a single loop into two loops in
order to schedule the original loop at two levels of threads. The resulting code
may be only useful for certain accelerators types such as NVIDIA GPGPUs.

3 HOMP: A Prototype Implementation

We are building a prototype implementation (referred to as HOMP, short for Het-
erogeneous OpenMP) for the OpenMP accelerator model. The current

88 C. Liao et al.

1 int sum = 0 ;
2 int A[1 0 0 0] ;
3 . . .
4 #pragma omp target map(to : A[0 : 1 0 0 0])
5 #pragma omp teams num teams (2) num threads(100) reduction(+:sum)
6 #pragma omp distribute
7 for (i 0 = 0 ; i 0 < 1000 ; i 0 += 500)
8 #pragma omp paral lel for reduction(+:sum)
9 for (i = i 0 ; i < i 0 + 500 ; i++)

10 sum += A[i] ;

Fig. 2. Calculating sum explicitly using multiple contention teams

focus is to generate CUDA code because of the popularity of NVIDIA GPUs for
high performance computing. Built upon ROSE’s OpenMP implementation [3],
HOMP is designed as an open implementation that the community can leverage
to explore the design space of OpenMP extensions for accelerators. In particu-
lar, we have extended ROSE’s pragma parsing to parse the new directives and
clauses. We added new node types to ROSE’s intermediate representation for
the new directives and clauses related to accelerators, including the target and
target data regions and the map clause. We similarly extended OpenMP lower-
ing and runtime support. We give more details about the fundamental OpenMP
implementation and our additional work for device constructs below.

3.1 ROSE and HOMP

HOMP is built on ROSE [4], a source-to-source compiler infrastructure devel-
oped at Lawrence Livermore National Laboratory to build compilers or program
transformation and analysis tools for large-scale C/C++ and Fortran applica-
tions. Essentially, ROSE provides an object-oriented abstract syntax tree (AST)
with a set of parsing, unparsing, analysis and transformation interfaces allowing
users to build translators, analyzers, optimizers, and specialized tools quickly.

The existing ROSE OpenMP implementation [3] supports OpenMP 3.0 direc-
tives for C, C++ and a subset of Fortran. Internally, ROSE’s OpenMP support
works through the following steps: 1) AST generation of input code. 2) OpenMP
pragma parsing since the frontends used by ROSE do not recognize OpenMP.
3) AST patching for adding new nodes and edges representing OpenMP di-
rectives and clauses. These new OpenMP-specific AST nodes are created to
represent the semantics of OpenMP intuitively. For example, a node named
(SgOmpParallelStatement) with a body statement block represents an omp parallel

region. 4) OpenMP lowering to generate multithreaded code calling runtime
functions. 5) Generate (unparse) transformed source code from the AST. A
backend compiler will be transparently invoked to generate object code from the
output code. 6) Link with runtime support to generate the executable. ROSE
defines a generic runtime layer (XOMP) that abstracts common runtime support
for OpenMP implementations and insulates the compiler translation from minor
changes to runtime libraries. As a result, ROSE is unique in that a single set of
OpenMP translations can work with multiple OpenMP runtime libraries.

Early Experiences with the OpenMP Accelerator Model 89

3.2 Implementing the Accelerator Model

Target Regions. A target region starts a sequential execution of the initial implicit
task on a target device. Using the latest CUDA 5.0 environment and GPUs with
Compute Capability 3.5 or beyond, a target region can be implemented with a
kernel launch configured with a single thread block with a single thread. When
a parallel or teams region is encountered, dynamic parallelism can be used to
launch another CUDA kernel configured with the requested number of thread
blocks and threads per block.

We have at least two choices for CUDA environments that lack support for
dynamic parallelism. The first one is to launch enough thread blocks and threads
per block when the first sequential region of a target region is encountered despite
actually using only a single thread. However, accurate estimation of the thread
and block counts is difficult since later parallel regions may occur in functions
and may dynamically change the counts. This choice may also waste energy if the
sequential region has a long duration. The other choice translates each sequential
portion and parallel portion into an independent kernel launch, with unnecessary
synchronization after each launch. We consider this the better choice.

For a target region immediately followed by a parallel region, directly launch-
ing a multiple-thread execution kernel without an initial sequential part is the
best choice. This choice more intuitively fits the semantics that users often ex-
press for GPUs. Thus, combined omp target parallel or omp target teams parallel
are more useful and more intuitive than their separate forms.

Parallel Regions and Teams. With this target region implementation, each en-
closed parallel region can be implemented as a separate kernel launch. However,
with CUDA, only threads within the same thread block can (easily) synchronize.
Unless developers explicitly use teams with parallel, an implementation cannot
blindly spawn threads across multiple blocks since the parallel region may have
synchronization points in the middle of its execution.

When the programmer does not specify the teams construct, compilers can
limit the spawned threads to be those belonging to a single thread block, without
leveraging all available GPU threads. Alternatively, they can use analysis to
rule out synchronization points in the middle of the parallel region and then
freely spawn threads across thread blocks as needed. This optimization requires
a scan of the parallel region for synchronization constructs in the middle, such as
barrier and atomic, and any unresolvable function calls that might contain such
constructs. This alternative allows more parallelism in exchange for increased
compiler complexity. Another solution would introduce a new clause such as no-
middle-sync for a parallel region to indicate explicitly that the region does not
contain any synchronization points.

For example, we outline the source code of the parallel region in Figure 1 so
it can be transformed into the CUDA kernel in Figure 3. We insert CUDA exe-
cution configuration and kernel launch statements at lines 19 to 27 in Figure 4.
Two runtime functions xomp get maxThreadsPerBlock() and xomp get max1DBlock() ob-
tain the default execution configuration based on the hardware information and

90 C. Liao et al.

1 g l o b a l void OUT 1 10117 (int n , int m, f loat omega , f loat ax , \
2 f loat ay , f loat b , f loat ∗ dev pe r b l o c k e r r o r , \
3 f loat ∗ dev u , f loat ∗ dev f , f loat ∗ dev uo ld)
4 {
5 /∗ l o c a l v a r i a b l e s for loop , reduction , e tc ∗/
6 int p j ; f loat p e r r o r ; p e r r o r = 0 ; f loat p r e s i d ;
7 int dev i , dev lower , dev upper ;
8
9 /∗ Obtain loop bounds for current thread of current b lock ∗/

10 XOMP acce le rator loop de fau l t (1 , n−2, 1 , & dev lower , & dev upper) ;
11 for (d e v i = dev lower ; dev i<= dev upper ; d e v i ++) {
12 for (p j = 1 ; p j < (m − 1) ; p j++) {
13 /∗ rep lace o r i g i na l v a r i a b l e s with device va r i a b l e s
14 l i n e a r i z e 2−D array accesses ∗/
15 p r e s i d = (((((ax ∗ (dev uo ld [(d e v i − 1) ∗ 512 + p j] \
16 + dev uo ld [(d e v i + 1) ∗ 512 + p j])) \
17 + (ay ∗ (dev uo ld [d e v i ∗ 512 + (p j − 1)] \
18 + dev uo ld [d e v i ∗ 512 + (p j + 1)]))) \
19 + (b ∗ dev uo ld [d e v i ∗ 512 + p j])) \
20 − dev f [d e v i ∗ 512 + p j]) / b) ;
21 dev u [d e v i ∗ 512 + p j] = (dev uo ld [d e v i ∗ 512 + p j] \
22 − (omega ∗ p r e s i d)) ;
23 p e r r o r = (p e r r o r + (p r e s i d ∗ p r e s i d)) ;
24 }
25 }
26 /∗ thread b lock l e v e l reduct ion for f l o a t type ∗/
27 xomp inne r b l o ck r educ t i on f l o a t (p e r r o r , d e v p e r b l o c k e r r o r , 6) ;
28 }

Fig. 3. Generated CUDA kernel

the number of iterations. Our current strategy uses the full number of supported
hardware threads within a thread block before using more blocks.

Data Handling. Based on the specified map types, the map clause guides the
translation of device variable declarations, memory allocation, value copying
between CPU memory and GPU memory, and deallocation. Since a variable in
a nested map clause may already exist in an enclosing data environment (e.g.,
array u shown at both lines 2 and 7 in Figure 1), an implementation must
track active device data environments to reuse the versions in enclosing data
environments when they exist.

We track the data environments that target data and target constructs create
in a stack and add runtime functions for that purpose. First, xomp DDE Enter()

(line 2 in Figure 4; DDE stands for deviceDataEnvironment) initializes a data
structure for each new data environment and pushes it onto the stack. The data
structure stores information about variables allocated within the current data en-
vironment. Second, xomp DDE GetInheritedVariable() (line 6) checks if a variable in a
map clause already exists in enclosing environments. Third, xomp DDE AddVariable

(line 13) registers a newly mapped variable with its original address, device ad-
dress, size, and a copy back flag. Finally, based on stored information for mapped
variables, xomp DDE Exit() (line 35) transparently copies data back to the host and
deallocates device memory deallocation before it is popped from the stack.

We linearize the storage of array variables with two or more dimensions. Ac-
cordingly, we replace all references to the original array elements with

Early Experiences with the OpenMP Accelerator Model 91

1 /∗ I n i t i a l i z e a new data environment , push i t to a s tack ∗/
2 xomp deviceDataEnvironmentEnter () ;
3
4 int d e v u s i z e = s izeof (f loat) ∗ (n − 0) ∗ (m − 0) ;
5 /∗ Try to grab a mapped var i a b l e from enc los ing data environments ∗/
6 f loat ∗ dev u=(f loat ∗) xomp deviceDataEnvironmentGetInheritedVariable \
7 ((void ∗)u , d e v u s i z e) ;
8 /∗ I f not inhe r i t a b l e , a l l o c a t e and r e g i s t e r the mapped var i a b l e ∗/
9 i f (dev u == NULL)

10 {
11 dev u = ((f loat ∗) (xomp deviceMalloc (d e v u s i z e))) ;
12 /∗ Regis ter CPU address , dev ice address , s i ze , and a copy−back f l a g ∗/
13 xomp deviceDataEnvironmentAddVariable ((void ∗)u , d ev u s i z e , \
14 (void ∗) dev u , true) ;
15 // data copy from Host to Device a l so here i f s p e c i f i e d
16 }
17 . . . // handling of other va r i a b l e s i s omitted
18
19 /∗ Execution conf igura t ion : threads per b lock and t o t a l b lock numbers∗/
20 int t h r e ad s p e r b l o c k = xomp get maxThreadsPerBlock () ;
21 int num blocks = xomp get max1DBlock ((n − 1) − 1) ;
22 f loat ∗ d ev p e r b l o c k e r r o r = (f loat ∗) (xomp deviceMalloc (\
23 num blocks ∗ s izeof (f loat))) ;
24 /∗ Launch the CUDA kerne l . . . ∗/
25 OUT 1 10117 <<< num blocks , t h r e ad s p e r b l o ck , \
26 (t h r e ad s p e r b l o c k ∗ s izeof (f loat))>>> \
27 (n ,m, omega , ax , ay , b , d ev p e r b l o c k e r r o r , dev u , dev f , dev uo ld) ;
28 /∗ Beyond thread b lock reduct ion ∗/
29 e r r o r = xomp beyond b lock reduct i on f l oa t (d ev p e r b l o c k e r r o r , \
30 num blocks , 6) ;
31 /∗ Data dea l loca t ion , copy−back , e tc . ∗/
32 xomp freeDevice (d e v p e r b l o c k e r r o r) ;
33 . . .
34 /∗Copy back and dea l l o ca t e va r i a b l e s within t h i s environment , pop s tack ∗/
35 xomp deviceDataEnvironmentExit () ;

Fig. 4. Generated kernel configuration and launch code

references that use the device variable with a linear address calculation (e.g.,
dev u[dev i∗512 + p j] at line 21 in Figure 3).
For simplicity, we use a two-level algorithm to implement reductions that

leverage GPUs. One level is within each CUDA thread block and the other is
across multiple thread blocks on the host side. We provide a set of runtime func-
tions (e.g., xomp inner block reduction ∗() and xomp beyond block reduction ∗()) to support
these two-level reductions. Figure 3 shows example code for the GPU-based
inner-block reduction (line 27). The CPU side’s across-block reduction is shown
at line 29 of Figure 4.

Loop and Distribute Directives. By default, only the outermost loop is affected
by the loop constructs unless a collapse clause is specified to allow an implemen-
tation to combine multiple loops into a larger iteration space. Three choices to
schedule loop iterations among GPU threads are available: 1) use only master
threads of multiple thread blocks when distribute is used right before the loop;
2) use threads from a single thread block; or 3) use a combination of multiple
blocks and multiple threads per block, when applicable. Figure 3 shows an ex-
ample translation. The translation calls XOMP accelerator loop default() at line 10 to
obtain the bounds for the current thread within the current thread block. No
loop splitting is needed even for scheduling loops across teams.

92 C. Liao et al.

On a final note, all runtime functions are designed to have a C binding so that
they can interoperate easily with multiple programming languages including C,
C++ and Fortran. The function interfaces are designed to be similar to their
counterparts in C libraries. The bodies of the functions can be conditionally
implemented through CUDA or OpenCL so that the same compiler translation
can be reused across different lower-level accelerator APIs.

4 Preliminary Results

We have chosen three scientific kernels, including AXPY, Jacobi and matrix
mulplication to evaluate our initial implementation. We also use the PGI [5] and
HMPP [6] OpenACC compilers for comparison. All execution time measurements
include the data transfer time between CPU memory and GPU memory. In
addition, both sequential and OpenMP versions’ performance results on CPUs
are provided as a baseline.

The machine used for this evaluation has 4 quad-core Intel Xeon processors
(16 cores in total) running at 2.27GHz with 32GB DRAM. An NVIDIA Tesla
K20c of the Kepler architecture is installed on the machine, with CUDA version
5.0/5.0 driver as its software environment. The PGI OpenACC compiler used is
version 13.4 with the command line options pgcc -acc -ta=nvidia -Minfo=accel -
mp -O3; and the HMPP OpenACC compiler used is version 3.3.3 with command
line options as hmpp gcc -fopenmp -O3. As source-to-source compilers, both the
HOMP compiler and the HMPP compiler use GCC 4.4.7 and the CUDA 5.0
compiler as backend compilers.

Figure 5(a) shows the performance results for AXPY. The performance for the
HOMP and HMPP versions are close. However, the actual computation of AXPY
is very small compared to the data transfer cost, which accounts for 99% of the
total execution time. Therefore, the OpenMP version of AXPY outperformed all
three GPU versions when the vector size is large. The performance of using the
PGI OpenACC compiler is relatively poor for large input data. We were able to
look at the intermediate files generated by the PGI compiler, and have observed
that the PGI compiler performs aggressive loop unrolling, which introduces a
large number of branch instructions. Those instructions create divergence during
thread executions, which can hurt GPU performance.

Figure 5(b) shows the performance results of Jacobi, which is computation
intensive. More than 95% of the total GPU-related execution time is spent on
kernel execution. While we are still working to implement collapse in HOMP, we
tried to test the OpenACC version with the collapse clause, which is supported by
the HMPP compiler. The PGI compiler could not compile the code when collapse
is used with reduction. Without the loop collapse, the difference in performance
between the three compilers is small. The use of collapse significantly improves
performance on the GPU since iterations of both loops are exposed to exploit
the abundant GPU threads. According to the generated CUDA code, HMPP
translates the collapse clause by mapping the associated two-level loop nest to a
2-D grid, instead of linearizing the loops.

Early Experiences with the OpenMP Accelerator Model 93

0

0.5

1

1.5

2

2.5

3

3.5

4

5000 50000 500000 5000000 50000000 100000000 500000000
Vector size (float)

AXPY Execution Time (s)
PGI OpenACC

Sequential

HOMP

HMPP OpenACC

OpenMP(16 threads)

(a) AXPY

0

20

40

60

80

100

120

140

160

180

200

128x128 256x256 512x512 1024x1024 2048x2048

Matrix size (float)

Jacobi Execution Time (s)
Sequential

HMPP OpenACC

PGI OpenACC

HOMP

OpenMP (16 threads)

HMPP OpenACC collapse

(b) Jacobi

Fig. 5. Performance results for AXPY and Jacobi

Figure 6(a) shows results for matrix multiplication, which has significant com-
putation for each element. Using the GPU for larger data sets easily outperforms
the corresponding OpenMP version. The kernel execution time begins to dom-
inate the total acceleration time when the data size is larger, as shown in Fig-
ure 6(b). Again, we tried to add the collapse clause for the OpenACC version
of the kernel. The HMPP compiler could efficiently exploit this addition and
generated much more efficient code as shown in the figure. The PGI compiler
did not generate any better performance so we do not show those results.

We further compared the performance of the best generated CUDA code so far
with a handwritten CUDA SDK versions and the CUBLAS version. The CUDA
SDK and CUBLAS versions use completely different algorithms and apply agres-
sive optimizations to the algorithms [7], including the use of shared memory
within blocks and apply tiling to the algorithms. The performance difference
(ratio between execution times) can be large (3.21 X-9931.29 X) as shown in
Table 1, although the difference decreases for larger inputs. Generation of those

94 C. Liao et al.

0

5

10

15

20

25

30

35

40

45

50

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096

Matrix size (float)

Matrix Multiplication Execution Time (s)
Sequential

OpenMP (16 threads)

PGI OpenACC

HMPP OpenACC

HOMP

HMPP OpenACC Collapse

(a) Execution time

�;�

��;�

��;�

��;�

��;�

��;�

��;�

	�;�

�;�

��;�

���;�

��
���
� �������� �������� ���������� ���
����
� ����������
�������������������

	���
���������������������� ����� ����������� ����������

����������
�������
���������

(b) HOMP execution time breakdown

Fig. 6. Performance results for matrix multiplication

highly-optimized codes using a compiler is challenging without introducing new
language constructs.

5 Discussion

Unifying programming for both CPUs and accelerators in a single high-level pro-
gramming interface is an important and challenging effort. Based on our early
experiences shown above, the current OpenMP extensions for accelerators are
a useful step that can lead to a complete solution. The extensions are mostly
intuitive for users and straightforward for compiler developers to implement.
Nevertheless, the following refinements and additions would improve the usabil-
ity of the OpenMP accelerator model.

Multiple Device Support. Specifying a device ID in the device() clause may not
be portable. The current design may require manual code assignment and data

Early Experiences with the OpenMP Accelerator Model 95

Table 1. Compare performance results of matrix multiplication (in seconds)

Version/Size 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
HMPP collapse 0.238351 0.222798 0.226316 0.238678 0.444121 1.728459
CUDA SDK 0.000034 0.000141 0.001069 0.008441 0.067459 0.538174
CUBLAS 0.000024 0.000054 0.000207 0.001092 0.007229 0.052283

Ratio(HMPP/SDK) 7010.32 1580.13 211.71 28.28 6.58 3.21
Ratio(HMPP/BLAS) 9931.29 4125.89 1093.31 218.57 61.44 33.06

decomposition for each device ID if multiple devices are used. New clauses such
as device type(), num devices() and data distribute() would support automatic
code assignment and data distribution by the compiler across multiple devices.

Combined Constructs. Separate target and parallel constructs do not intuitively
express what users often want: immediate parallelism on accelerators without
any sequential execution. Combined constructs such as target parallel (or target
teams parallel) would conveniently meet user needs and simplify compiler imple-
mentation. Similarly, a combined teams distribute parallel for construct could be
allowed so that a compiler could automatically schedule an affected loop over
multiple threads from multiple teams without loop splitting in the source code.

No-Middle-Sync Clause. Compilers may not have sufficient analysis to deter-
mine if a parallel region within a target region will have synchronization points
during its execution. An implementation may have to execute the parallel region
conservatively within a single CUDA thread block, which may severely under-
utilize abundant GPU threads. Manually adding teams and distribute by users is
often cumbersome and may not be portable. We suggest to introduce new clauses
such as no-middle-sync or ignore-middle-sync to facilitate an implementation to
leverage threads across multiple thread blocks. no-middle-sync expresses the se-
mantics of no middle synchronization points while ignore-middle-sync is used to
tell an implementation to ignore any possible middle synchronization points.

Array Sections. Some may feel that RC2’s different array section notations for
C/C++ ([lower-bound : length]) and Fortran (built-in triplet format) are confus-
ing. Although RC2’s notation may prove more natural to C/C++ programmers,
a consistent notation for both languages would fit well with many compilers that
have a single IR shared by multiple languages.

Global Barrier. The current device constructs do not support specifying syn-
chronizations across multiple thread teams, or a league, which may often be
needed. Instead, multiple target regions can be used effectively to provide barri-
ers within a single target region. A clause (such as league or team) in the barrier
directive could explicitly set the synchronization scope.

Mapping Nested Loops. RC2 keeps the original collapse semantics, which com-
bines multiple associated loops into one large iteration space. OpenACC has a

96 C. Liao et al.

similar clause, but does not restrict only to linearization. For example, the as-
sociated loops could be mapped to multi-dimensional grids and thread blocks
when using NVIDIA GPUs. OpenMP should explicitly allow similar flexibility
since linearization may not always lead to optimal performance.

Mapped Data Reuse. In RC2, reusing mapped data relies on looking up enclosing
target data regions and the data declared in the global scope using the declare
target directive. Passing mapped variable pointers across a function scope may
become tricky and inconvenient. A possible solution is to have explicit liveness
attributes of mapped variables (keep, present, and final) in the map clause, a
similar approach adopted in OpenACC. Making data reuse explicit can also
simplify the implementation so that less runtime support is needed.

6 Related Work

Several previous studies [1, 6, 8–11] have explored directive-based language ex-
tensions and compiler techniques to exploit parallelism using NVIDIA GPUs.
We briefly mention a few of them in this section.

OpenACC [1] is a standard for programming accelerators in conjunction with
a host CPU, which could be a multicore platform. Similar to OpenMP, Ope-
nACC programmers annotate a sequential program written in either C/C++
or Fortran with OpenACC constructs so compilers can transform the annotated
program region to be executed on accelerator devices. OpenACC supports both
implicit (using acc kernels) and explicit (using acc parallel) parallelism. The cur-
rent OpenACC standard has limited expressivity for hybrid parallelism between
CPU and GPU tasks and most compiler supports do not yet address multi-
ple accelerators. Similarly, PGI Fortran & C accelerator extensions [8] define
pragma-based directives, such as acc region and acc data region, for program-
mers to specify regions of computation and data to be offloaded to GPUs. An
accelerator loop directive (acc for) is also provided to allow programmers to spec-
ify more explicit information for parallelizing loops. For loops without explicit
scheduling clauses, its implementation relies on sophisticated compiler analysis
to choose a better mapping among a few choices [5, 8].

Lee and Eigenmann [10] presented an approach of directly translating OpenMP
CPU code to GPU code without using language extensions. Compiler analysis
finds synchronization points in each parallel region, which can then be split into
multiple subregions as necessary for generating multiple CUDA kernels. Mint [11]
is a domain-specific language extension specialized in stencil kernels. Based on
ROSE, Mint translates annotated C code into CUDA code. OmpSs [12, 13] is
another interesting effort that allows users to define data dependences among
tasks. The solution includes a powerful runtime that manages data and schedules
tasks among different types of hardware devices, thus requiring little compiler
support. More recently, Lee et. al. [14] compared six different directive-based
GPU programming models.

Compared to previous work, our work examines OpenMP accelerator exten-
sions and creates a prototype implementation for them. We are interested in

Early Experiences with the OpenMP Accelerator Model 97

accelerator language extensions that are compatible with existing OpenMP ex-
ecution and memory models. Consequently, the implementation techniques that
we explore are based on an existing open-source OpenMP compiler.

7 Conclusions and Future Work

In this paper, we have examined the newly introduced accelerator model in
OpenMP 4.0 (RC2) and shared our experiences of creating a prototype imple-
mentation for it. Our implementation has already been released under a BSD
license as part of the ROSE compiler framework.

The OpenMP accelerator extensions represent a major enhancement for
OpenMP to meet the increasing demands to support accelerators and hetero-
geneous architectures. For developers, most extensions are intuitive and fit well
with OpenMP’s existing execution model and memory model. Complexity arises
from the use of teams and distribute constructs to organize the thread teams
and hierarchy. Combined constructs are needed. For compiler developers, cre-
ating a working implementation that leverages an existing OpenMP compiler
framework is straightforward based on our early experience, though aggressive
compiler analysis and optimization techniques further enhance the performance
of generated codes. It also requires efficient runtime support to manage the data
mapping and to coordinate the executions of CPU tasks and accelerator kernels.

Our future work includes the following research directions. We will target
more hardware architectures such as the Intel Many Integrated Core Archi-
tecture (MIC). We also will generate OpenCL in addition to CUDA. We will
investigate techniques to aid users in choosing between CPU threads, accelera-
tors and vectorization; We will explore a peer-to-peer execution model that can
express code and data offload without always involving a host device.

References

1. OpenACC: Directives for Accelerators, http://www.openacc-standard.org/
2. OpenMP Architecture Review Board, The OpenMP API Specification for Parallel

Programming, http://www.openmp.org/
3. Liao, C., Quinlan, D.J., Panas, T., de Supinski, B.R.: A ROSE-Based OpenMP 3.0

Research Compiler Supporting Multiple Runtime Libraries. In: Sato, M., Hanawa,
T., Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS,
vol. 6132, pp. 15–28. Springer, Heidelberg (2010)

4. Quinlan, D., et al.: ROSE Compiler Infrastructure,
http://www.rosecompiler.org/

5. Wolfe, M.: Implementing the PGI Accelerator Model. In: Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing Units,
GPGPU 2010, pp. 43–50. ACM, New York (2010)

6. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A Hybrid Multicore Parallel Program-
ming Environment (2007)

7. Volkov, V., Demmel, J.W.: Benchmarking GPUs to Tune Dense Linear Algebra.
In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC 2008,
pp. 31:1–31:11. IEEE Press, Piscataway (2008)

http://www.openacc-standard.org/
http://www.openmp.org/
http://www.rosecompiler.org/

98 C. Liao et al.

8. The Portland Group, “PGI Fortran & C Accelerator Compilers and Programming
Model,” Tech. Rep. (November 2008)

9. Han, T.D., Abdelrahman, T.S.: hiCUDA: A High-Level Directive-Based Language
for GPU Programming. In: Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, GPGPU-2, pp. 52–61. ACM, New York
(2009)

10. Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP Programming and Tun-
ing for GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2010,
pp. 1–11. IEEE Computer Society, Washington, DC (2010)

11. Unat, D., Cai, X., Baden, S.B.: Mint: Realizing CUDA Performance in 3D Stencil
Methods with Annotated C. In: Proceedings of the International Conference on
Supercomputing, ICS 2011, pp. 214–224. ACM, New York (2011)

12. Duran, A., Ayguade, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: A Proposal for Programming Heterogeneous Multi-core Archi-
tectures. Parallel Processing Letters 21(02), 173–193 (2011)

13. Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X., Ayguade, E.,
Labarta, J.: Productive Programming of GPU Clusters with OmpSs. In: 2012 IEEE
26th International on Parallel & Distributed Processing Symposium (IPDPS),
pp. 557–568. IEEE (2012)

14. Lee, S., Vetter, J.S.: Early Evaluation of Directive-Based GPU Programming Mod-
els for Productive Exascale Computing. In: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, SC
2012, pp. 23:1–23:11. IEEE Computer Society Press, Los Alamitos (2012)

An OpenMP* Barrier Using SIMD Instructions
for Intel R© Xeon PhiTM Coprocessor

Diego Caballero1,2, Alejandro Duran3, and Xavier Martorell1,2

1 Barcelona Supercomputing Center
diego.caballero@bsc.es

2 Universitat Politecnica de Catalunya
xavim@ac.upc.edu

3 Intel Corporation
alejandro.duran@intel.com

Abstract. Barrier synchronisation is a widely-studied topic since the supercom-
puter era due to its significant impact on the overall performance of parallel ap-
plications. With the current shift to many-core architectures, such as the Intel R©

Many Integrated Core Architecture, software barriers need to be revisited from
an on-chip point of view to exploit their new specific resources. In this paper,
we propose a tree-based barrier that takes advantage of SIMD instructions and
the inter-thread cache locality provided by the 4-way SMT of the Intel R© Xeon
PhiTM coprocessor. Our SIMD approach shows a speed-up of up to 2.84x over
the default Intel OpenMP* barrier in the EPCC barrier microbenchmark. It also
improves by up to 60% and 21% the Livermore Loop kernel number six and the
NAS MG benchmark, respectively.

Keywords: Barrier, SIMD, synchronisation primitives, combining tree, many-
cores, Intel R© Xeon PhiTM coprocessor, Intel R© Many Integrated Core Architec-
ture, OpenMP*.

1 Introduction and Motivation

Barrier synchronisation primitives became especially relevant for large-scale supercom-
puters where communication among hundreds of threads is known to be very expensive
in terms of time. The traditional software approaches imply an important number of
memory operations through very high-latency interconnection networks [24]. Accord-
ing to this, barriers turns into a potentially critical bottleneck in terms of performance
[17]. As a result, in an attempt to improve this issue, expensive hardware approaches
have been adopted in the design of supercomputers [9] [22] [5].

This time-consuming component has gone unnoticed for small general-purpose multi-
core CMPs. However, the continuous improvements in core integration rise this topic
into prominence again for many-core CMPs [19], such as the Intel R© Many Integrated
Core Architecture (Intel MIC Architecture) [2]. Because of the inherently high number
of threads in many-core architectures, the synchronisation process acquires greater im-
portance at the same time as computational work is now distributed between a larger
number of workers. Therefore, this finer distribution decreases the weight of compu-
tation time and increases the weight of synchronisation constructs, such as it occurs
exploiting fine-grained parallelism [19].

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 99–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

100 D. Caballero, A. Duran, and X. Martorell

Fig. 1. Clock cycles (on the left) and execution time (on the right) of the default Intel OpenMP
barrier (EPCC barrier). Quad-socket Intel Xeon processor E5-4650 at 2.7 GHz (32 cores / 64
threads) and Intel Xeon Phi coprocessor 7120P at 1.238 GHz (61 cores / 244 threads). Mean of
10 executions. 4 threads step.

Fig. 1 shows the clock cycles (on the left) and the execution time (on the right) of a
single barrier in an Intel R© Xeon R© processor (quad-socket) and an Intel R© Xeon PhiTM

coprocessor. From the single-chip point of view, a single-socket of the Intel Xeon pro-
cessor E5-4650 (16 threads) takes 2,393 clock cycles whereas the Intel Xeon Phi copro-
cessor (244 threads) spends 15,880 cycles. Even in the quad-socket scenario (4 multi-
cores, 64 threads), a single barrier consumes only 9,721 clock ticks. Despite the fact
that synchronising 4 multi-core processors requires a more expensive off-chip com-
munication, the performance is still notably better than in the single-chip Intel Xeon
Phi coprocessor. Such significant difference in the synchronisation process is mainly
due to the aforementioned increase in the number of threads from the multi-core to the
many-core architecture.

Furthermore, many-core architectures may suffer from harder frequency constrains
than multi-core architectures [13]. The Intel Xeon Phi coprocessor used in our experi-
ments runs at a considerably slower frequency (1.238 GHz) than the Intel Xeon proces-
sor E5-4650 (2.7 GHz). Thus, as far as a single barrier execution time is concerned, the
Intel Xeon processor E5-4650 farther outperforms the Intel Xeon Phi coprocessor.

Apart from software approaches, much hardware research has been done on bar-
rier synchronisation for CMPs [19] [20]. Nevertheless, such approaches are prohibitive
in terms of on-chip area since a hardware implementation would reduce the resource
available for computational units.

All these facts reveal that software barriers need to be revisited from the many-core
architectures point of view, where the interconnection network is essential but also the
resources of the cores must be taken into account.

Focusing on the Intel MIC Architecture, with 4-way Symmetric Multi-Threading
(SMT) and 512-bit SIMD instructions, we propose a reconfigurable and multi-degree
combining tree barrier algorithm that uses groups of distributed counters orchestrated
by SIMD instructions. It is aimed at exploiting the 4-way inter-thread cache locality
in the synchronisation process and optimising the acquisition and releasing phase with
SIMD instructions. SIMD operations prevent the algorithm from having to iterate in a
scalar fashion on every single counter to release a group of threads. This fact reduces
the well-known ping-pong effect that occurs when several threads share a cache line.

An OpenMP* Barrier Using SIMD Instructions 101

We compare our SIMD barrier against the production-optimised barrier of the In-
tel OpenMP runtime using three different benchmarks and two thread binding poli-
cies. Our algorithm outperforms the implementation of the Intel OpenMP barrier in our
experiments.

2 Related Work

Barrier synchronisation came into prominence with the advent of first supercomputers.
Initially, threads busy-waited on a shared variable for the synchronisation process to
be completed. The memory contention problem caused by many threads accessing to
the same memory module at once is a well-known issue from that time [18]. Soon, the
relevance of this issue brought expensive hardware-specific solutions, such as dedicated
interconnection networks [9], that still have influence on more recent systems [22] [5].

To tackle barrier synchronisation constructs from a cheaper and more flexible per-
spective, many software barrier algorithms have been proposed. Mellor-Crummey and
Scott [15] described several barrier approaches already available and improved the com-
bining tree and tournament barriers spinning on separate locally-accessible flags. Nan-
jegowda et al. [16] evaluated these algorithms in OpenMP, concluding that the best
algorithm is dependent on the number of threads used, the architecture and the appli-
cation. Hoefler et al. [12] summarised nine barrier algorithms and analysed them in the
context of the InfiniBand* interconnection network. Zhang et al. [25] introduced a bar-
rier algorithm based on distributed counters with locally-separated waiting flags, which
considerably reduced overhead on IBM* POWER3 and IBM POWER4 systems.

Focusing on tree-based barrier algorithms similar to ours, Yew et al. [24] presented
the combining tree structure for the first time to palliate memory contention on shared
variables. They used a lock-based centralised counter per tree node and determined an
optimal uniform group size of four (fan-in) for each node in the tree. This is far from
our heterogeneous lock-free distributed approach. Mellor-Crummey and Scott [15] de-
scribed several barrier approaches and investigated on a new lock-free combining tree
barrier with scalar flags where two tree structures (arrival and wakeup) are used. Threads
are statically linked to a unique node in both trees, not only to leaf nodes but also to
nodes of any level. Only one thread is attached to non-leaf nodes and a group of threads
are attached to leaf nodes. Unlike us, they use a uniform group size of four (fan-in) in
the arrival tree and two (fan-out) in the wakeup tree. Their implementation is not re-
configurable and is bound to these fixed fan-in and fan-out parameters. On the contrary,
we use a traditional combining tree structure that allows us to set a different tree degree
per level. Furthermore, nodes contain reconfigurable distributed counters operated by
SIMD instructions which allow checking and releasing a larger group of threads at the
same time. In addition, all threads start from leaf nodes but some threads are designated
to continue to the following levels. There, threads are also placed in groups.

Gupta and Hill [10] presented and adaptive combining tree with lock-based cen-
tralised counters which reshapes itself to move late threads towards the root of the tree.
Scott [21] later improved this idea, and Eichenberger [8] also evaluated it from the load
imbalance point of view, denoting that the optimal degree of combining trees could
reach up to 128 in the presence of load imbalance.

102 D. Caballero, A. Duran, and X. Martorell

Gupta and Hill [10] presented and adaptive combining tree with lock-based cen-
tralised counters which reshapes itself to move late threads towards the root of the tree.
A fuzzy [11] barrier version is also proposed and later improved by Scott and Mellor-
Crummey [21]. Eichenberger and Abraham [8] revisited the idea of placing slow threads
close to the root but based on the tree-based barrier structure published by Mellor-
Crummey and Scott [15]. They pointed out that the optimal degree of combining trees
could reach up to 128 in the presence of load imbalance.

Regarding current multi- and many-core architectures, research trends on barriers are
dominated by hardware proposals. Abellán et al. [4] developed a hardware-based bar-
rier mechanism by means of an independent interconnection network based on global
interconnection lines. Sampson and González [19] remarked the inefficiency of soft-
ware barriers in the presence of fine-grained parallelism. They also proposed a new
cache-based barrier scheme that only requires additional hardware in the shared mem-
ory subsystem. Sartori and Kumar [20] evaluated three hybrid hardware-software ap-
proaches that take advantage of the on-chip network with slight modifications. They
achieve performance comparable with dedicated synchronisation networks. Villa et al.
[23] studied four hardware and software algorithms and evaluated them in a Network-
on-Chip architecture. It was demostrated that, in many cases, simple networks can be
more efficient than highly connected topologies.

In spite of the fact that an extensive variety of hardware proposals have been devel-
oped for CMPs, they have not been widely adopted by industry because on-die hardware
implementations would decrease the resources available for computational units.

3 The Intel Xeon Phi Coprocessor

The Intel Xeon Phi coprocessor [2] is the first product based on the Intel MIC architec-
ture. It features a large number (at least 50) of cores.

Each core is based on the x86 architecture but are in-order cores that run on a much
lower frequency than the standard Intel Xeon processors. Each core can issue up to
two instructions per cycle from different thread contexts. In addition, it comes with a
specially designed Vector Processing Unit (VPU) that provides the architecture with
512-bit SIMD instructions, denominated Intel R© Initial Many Core Instructions (Intel R©

IMCI). This SIMD instruction set also supports masked operations, gathers, scatters,
and fused multiply-and-add operations. As a result, the coprocessor can yield a perfor-
mance of 1.2 TFLOPS/s in double precision on a 300W TDP package.

Each core has four hardware threads that are scheduled in a round-robin fashion. The
L1 cache (32KB for instructions, 32KB for data) is shared among the hardware threads.
The L2 cache is distributed across the different cores (with a 512KB slice in each core
for both data and instructions) and it is also shared among the threads of the same core.
Both L1 and L2 caches are fully coherent. The coherence protocol is implemented by
means of a distributed tag directory (DTD) which keeps the coherence information of
each cache line.

Cores and the L2 slices are connected through a double ring (one ring in each direc-
tion). The ring also connects the memory controllers and the I/O interface that allows
the coprocessor to communicate with the host through the PCIe bus. The memory con-
trollers has up to 16 memory channels available to access the on-board GDDR memory.

An OpenMP* Barrier Using SIMD Instructions 103

Table 1. Characteristics of the Intel Xeon Phi coprocessor 7120P

Number of chips 1 SIMD size 512 bits
Cores / chip 61 Memory size 16 GB
Hardware stepping C0 Memory bandwidth 352 GB/s
Threads / core 4 ECC mode Supported
Frequency 1.238 GHz Peak performance (DP) 1.2 TFLOPS/s
L1 size / core 32+32 KB Power consumption (TDP) 300 W
L2 size / core 512 KB Software stack Gold

The coprocessor supports a standard software stack with a Linux operating system
and programming models such as OpenMP*, OpenCL*, MPI, or Intel R© Threading
Building Blocks. In this sense, applications written in one of these paradigms are read-
ily available to run on the Intel Xeon Phi coprocessor. Therefore, the optimization of
these programming models for the Intel MIC Architecture is of great importance.

In this work, we use the Intel Xeon Phi coprocessor described in Table 1.

4 Multi-Degree SIMD Combining Tree Barrier Algorithm

To profit SIMD resources in the barrier synchronisation primitive, we propose a vector
barrier algorithm that exploits SIMD instructions to perform memory operations on a
large set of data (vector length) at once. The shortest way of describing this barrier
is as a reconfigurable multi-degree combining tree barrier with lock-free distributed
SIMD counters. It is a combining tree barrier because it uses a traditional combining
tree data structure. It is reconfigurable so as the internal structure of the barrier can
be reconfigured depending on the number of threads and how we want to distribute
them across this structure. Because of its multi-degree denomination, each level of the
tree may have a different degree of children. Furthermore, it has lock-free distributed
SIMD counters as each node of the tree contains lock-free distributed counters partially
orchestrated by SIMD memory operations.

4.1 Barrier Design

The barrier algorithm deploys a combining tree data structure which is walked from
leaves to root in the acquisition phase and from root to leaves in the releasing phase.
The degree of each level of the tree depends on the total number of threads that executes
the barrier and the configuration of the nodes of that level. Each tree node in the same
level groups a prefixed number of threads. This number of threads is the same for every
node within that level whilst it may be different for each particular level of the tree. If
the number of threads reaching a level is not divisible by the group size, the last group
of that level will contain the remaining threads of the division. Fig. 2 shows the scheme
of the barrier for the synchronisation of 21 threads with group sizes of 6, 2 and 2 for
levels 1, 2 and 3 of the tree, respectively.

104 D. Caballero, A. Duran, and X. Martorell

Level 1 (Group Size = 6)

...M S

...M S S S S S ...M S S S S S ...M S S S S S ...M S S

...M S

...M S

Level 2 (Group Size = 2)

Level 3 (Group Size = 2)

Acqu./Wait. Phase
Releasing Phase
Thread counter (1 Byte)

Padding (1 Byte)

S Slave of the group
M Master of the group

Cache Line

Fig. 2. SIMD Combining tree barrier scheme for 21 threads. First, second and third level group
size = 6, 2 and 2, respectively. Seven nodes/distributed SIMD counters in total.

In each particular tree node only one thread is designated to play the master role (M)
of the group while the remaining threads assume the slave role (S). These roles will
affect their duties in the different phases of the barrier, described in Section 4.2 and
Section 4.3.

Those threads assigned to the same tree node constitute an independent group of syn-
chronisation. Inside this group, each thread has an exclusive one-byte counter available
for taking part into the synchronisation process. All counters of the group are allo-
cated contiguously in memory and satisfying the alignment constraints of the underly-
ing SIMD instruction set, since they will be handled with SIMD memory operations by
the master thread. To prevent false-sharing, only one group of counters is placed per
cache line and the remaining memory in the line is padded. In Fig. 2 one-byte counters
are depicted in dark grey and padding in light grey.

This particular tree-based design with distributed counters allows exploiting SIMD
resources and the inter-thread cache locality in cores with simetric multithreading. This
inter-thread locality may be useful to carry out a first intra-core syncronisation step. In
addition, the tree structure also offers the possibility of reshaping the flavour of the bar-
rier from a multi-level combining tree structure to a lock-free totally-centralised barrier.
Hence, it will be possible to take advantage of two utterly different barrier algorithms
with only one implementation. It will be able to choose the most appropriate one de-
pending on the number of threads and the characteristics of the system.

4.2 Acquisition and Waiting Phase

In the acquisition phase, the intra-group synchronisation is carried out through the al-
ready mentioned distributed counters. On the one hand, slave threads signal their arrival
to the barrier changing the value of their exclusive counters. It is important to note that
just in case that several slaves from different cores in the same group achieve the barrier
at the same time, their stores could be partially serialised as several cores will be using
the same cache line. Nevertheless, groups with only slave threads of the same core will
not suffer from this risk of serialisation.

An OpenMP* Barrier Using SIMD Instructions 105

On the other hand, the master thread waits for all its slaves to reach the group. To do
that, the master thread busy-waits on the slave counters using SIMD instructions. In this
way, just one SIMD instruction allows checking at the same time as many slave counters
as bytes the vector length has. Hence, we prevent the master thread from iterating in a
scalar fashion on each single counter.

Once all threads of a particular group have reached the barrier, the master thread
might compute the partial reductions of its group or designate some slave to do it.
Afterwards, it continues to the next level of the tree (continuous arrow in Fig. 2). In the
meantime, slaves wait on their counters for the master to release them at its return. In
the next level, several master threads from different groups converge at a same group,
and new master and slave roles are reassigned as in the previous step.

This process is repeated until the last level (tree root) is reached. At that point, it is
guaranteed that all threads have arrived at the barrier and the releasing phase starts.

4.3 Releasing Phase

In the releasing phase, the tree structure is traversed from root to leaves until all threads
have been freed. In this case, starting from the root node, the master thread carries out
a SIMD store on all the slave counters of the level that releases them at the same time.
Then, both master and slaves move back to their respective groups in the previous level
and retake their former master role (dashed arrow in Fig. 2).

As in the previous phase, these steps are applied to each level until the first level is
revisited again and each master thread releases to all its slaves. It is at that point when
the released slave threads and their masters are allowed to leave the barrier and the
synchronisation is completed.

The biggest benefit of performing only one SIMD store is that master threads avoid
the intensive time-consuming ping-pong phenomenon. This would occur if masters
wrote each counter in a scalar way as slaves, in between, were requesting the same
cache line for reading their counters. Thus, per each scalar store, the master could have
to reclaim the ownership of the cache line since it could have been spread to some
slaves.

5 Implementation

Similarly to the vast majority of the previous paper on this topic [16] [15], we opted for
a combined implementation scheme of the differentiated phases of the barrier. However,
an implementation scheme with several independent functions representing each phase
of the barrier is feasible.

We studied several recursive and iterative approaches. Since the barrier synchronisa-
tion is a process dominated by memory transactions, we did not observe any significant
variation in performance. Hence, we selected a recursive approach that uses less amount
of memory at some minimal extra computation sacrifice.

106 D. Caballero, A. Duran, and X. Martorell

1 vo id t r e e b a r r i e r (i n t l e v e l , i n t l e v e l t h r e a d s , i n t l e v e l t h r e a d i d)
2 {
3 i f (m y l e v e l g r o u p o f f s e t == 0) {
4 / / Master SIMD busy−wai ts f o r a l l i t s s laves i n i t s group
5 whi le (! c h e c k s l a v e s (s i m d l o a d (&(m y l e v e l t r e e c o u n t e r s [my group id])))) ;
6

7 / / Master computes the p a r t i a l reduct ions of i t s group
8 c o m p u t e g r o u p p a r t i a l r e d u c t i o n s () ;
9

10 i f (l e v e l != l a s t l e v e l) / / Master goes to next t ree l e v e l
11 t r e e b a r r i e r (l e v e l +1 ,
12 l e v e l t h r e a d s / g r o u p s i z e [l e v e l] ,
13 l e v e l t h r e a d i d / g r o u p s i z e [l e v e l]) ;
14

15 / / Master re leases to i t s s laves wi th on ly one SIMD i n s t r u c t i o n
16 s i m d s t o r e (&(m y l e v e l t r e e c o u n t e r s [my group id]) , i n i t v a l u e [l e v e l]) ;
17 }
18 e l s e {
19 / / Slave s i gna l s i t s a r r i v a l on i t s one−byte counter
20 m y l e v e l t r e e c o u n t e r s [m y l e v e l c h a r i d] = 0x00 ;
21

22 / / Slave busy−wai t on i t s sca l a r counter
23 whi le (m y l e v e l t r e e c o u n t e r s [m y l e v e l c h a r i d] == 0) ;
24 }
25 }

Fig. 3. Basic SIMD combining tree barrier algorithm (pseudocode). For simplicity, it is not shown
how to deal with odd groups when threads in a particular level are not multiple of the group size.

5.1 Generic Implementation

The generic implementation of the SIMD barrier is outlined in Fig. 3. Function tree
barrier receives three parameters:level is the current level of the tree (initially 0),
level threads is the number of threads that reaches that level and level thread
id is the thread id in that level. The char pointer my level tree counters

points to the group counters of the current level, initialized to the value 0xFF. Padding
is set to 0x00.

The master thread in a group is the first thread of the group (line 3). When all its
slaves have reached the barrier, the master thread computes the partial reductions of the
group. After that, it proceeds to the next level calling recursively to thetree barrier
function (line 11). Once it returns from the recursive call, it carries out the SIMD re-
lease of its slaves (line 16) using init value[level], that corresponds to the initial
value of the counters.

Slave threads signal on their one-byte local counter (line 20) and then they busy-wait
on them (line 23) until their release.

5.2 SIMD Implementation for Intel MIC Architecture

Fig. 4 shows the changes from Fig. 3 that are required for incorporating the 64-bytes
SIMD instructions of the Intel MIC Architecture. It is important to note that this SIMD
instruction set does not support working directly on 64 one-byte char data types. To
overcome this issue, we load and compare 64 one-byte counters using instructions for
16 four-byte integer.

An OpenMP* Barrier Using SIMD Instructions 107

1 / / Master SIMD busy−wai ts f o r a l l i t s s laves i n i t s group
2 whi le (mm512 cmpneq epi32 mask (
3 mm512 load ep i32 ((vo id ∗) &(((v o l a t i l e m512i ∗)
4 m y l e v e l t r e e c o u n t e r s) [my group id])) ,
5 m m 5 1 2 s e t z e r o e p i 3 2 ())) ;
6 . . .
7 / / Master re leases to i t s s laves wi th on ly one SIMD i n s t r u c t i o n
8 mm512 s to ren rngo ps ((vo id ∗) & (((m512 i ∗)
9 m y l e v e l t r e e c o u n t e r s) [my group id]) , (m512) i n i t v a l u e [l e v e l]) ;

10

11 / / Memory fence operat ion
12 a s m v o l a t i l e ("lock addq $0x0,(%rsp)") ;

Fig. 4. Basic tree-based SIMD barrier algorithm for the Intel MIC Architecture. Only differences
from Fig. 3 are shown (Master busy-waiting and Master releasing).

Firstly, in the SIMD busy-wait of the master thread (line 2), intrinsic mm512
cmpneq epi32 mask compares if two registers, one with the group counters and an-
other set to all-zero, are not equal. This intrinsic returns a special 16-bit integer where
each bit represents the comparison between every pair of four-byte integers of the two
source registers. Only when all counters are zero, the SIMD busy-wait will be done.

Secondly, to release the slave threads in a SIMD way, the master thread carries out
a SIMD store (line 8). init value[level] is a m512i vector that contains the
SIMD values to reset the counters to their initial state and release the slaves. In order to
optimise this SIMD store, we use the intrinsic mm512 storenrngo ps (stream store
[2]) which performs a 64-byte store with a no-read hint. This hint avoids reading the
original content of the entire 64-bytes cache line since we are completely overwriting
it. Moreover, it relaxes the memory consistency model in the way that these stores are
not globally-ordered [3]. As a consequence of this, a memory fence-like operation (line
12) is necessary to make this store available to slave threads as soon as possible.

So as to optimise the exhaustive busy-waits of the algorithm, both the master’s and
the slaves’, we use the intrinsic mm delay 32 that stops the issue of instructions of
the thread for a parameterised number of cycles. Hence, this reduces the intensity of the
busy-wait and leaves more execution cycles available for those threads that are outside
of the waiting region.

6 Evaluation

To measure the performance of our barrier algorithm on the Intel Xeon Phi coprocessor,
we conducted some experiments on OpenMP benchmarks where barrier synchronisa-
tion primitives have different impact on the overall performance.

6.1 Benchmarks

The selection of benchmarks was particularly difficult since we needed benchmarks
where the barrier strongly impacts on the overall execution time as well as it provides
the coprocessor with enough parallelism. In addition, we decided to choose benchmarks

108 D. Caballero, A. Duran, and X. Martorell

Table 2. Benchmarks setup

Benchmark Number of Threads Size Executions (mean)
EPCC barrier (1st Expl.)

8,16,24,32,61,122,183,244
1.000.000 5

EPCC barrier (Best Conf.) 4.000.000 20

Livermore Loop
8,16,32,61,122,183,244

244 (≈234KB) 1000 * 20
2440 (≈23MB) 100 * 20

24400 (≈2.21GB) 10 * 20
NAS MG S, W, A, B, C 20

that do not perform OpenMP reductions since they could significantly alter the final
performance, overtaking the impact of the barrier algorithm.

Our final selection of benchmarks embraces three varied scopes. It comprises an
OpenMP-target microbenchmark focused on barriers, another kernel benchmark that
operates on a big amount of data with load imbalance, and one benchmark closer to a
real application.

EPCC Microbenchmarks is a suite of benchmarks aimed at measuring the impact of
different OpenMP parallel services [7]. For our purpose, we choose only the EPCC
barrier where the omp barrier directive is intensively tested.

Livermore Loops. [14] is a set of kernels that has long been used to evaluate the op-
timisation capabilities of compilers. To exploit fine-grained parallelism, we choose
kernel 6 and modify it in a similar way to how is done in [19]. We also add an out-
ermost loop to run the kernel multiple times (1000, 100 and 10 in Table 2) which
requires the output array to be reset to its initial values. We do that with a loop
annotated with an omp for directive. This kernel introduces an incremental load
imbalance since the number of threads that does not have work to do increases
proportionally to the progress of the iterations of the outer loop.

MG Benchmark belongs to the NAS Parallel Benchmarks suite [6] and it represents
a full application-like algorithm that computes the approximate solution to a scalar
poisson problem using multigrid data structures. The original benchmark has been
modified adding a collape(2) clause to the omp for directives in order to
increase the parallelism and reduce its grain. The innermost loop is not collapsed,
so each thread continues exploiting the original cache locality pattern.

6.2 Testing Environment and Methodology

We run our experiments natively in an Intel Xeon Phi coprocessor, model 7120P with
C0 silicon and ECC memory mode enabled. Further details of the architecture are de-
scribed in Section 3. We also set up the device with MPSS v2.1.6720-13, driver v6720-
13, flash v2.1.02.0386 and device OS v2.6.38.8-g5f2543d.

The coprocessor is hosted in a system with a dual-socket Intel Xeon processor E5-
2670 at 2.60GHz, with 64 GB of main memory. We use the Intel R© Composer XE 2013
Update 4 C/C++ compiler and its bundled OpenMP runtime library to run all the exper-
iments with the default Intel barrier and our SIMD approach. We set the environment

An OpenMP* Barrier Using SIMD Instructions 109

Table 3. EPCC barrier. Clock cycles of the default Intel OpenMP barrier and the best two config-
urations of the SIMD barrier on the Intel Xeon Phi coprocessor. *Some cores have less threads.

Num
Thrds

Compact Binding Balanced Binding
Cores SIMD Tree Barrier Intel Barrier Cores SIMD Tree Barrier Intel Barrier

(Thrds/Core) Local Group Sizes Cycles Cycles (Thrds/Core) Local Group Sizes Cycles Cycles

8 2 (4)
8 1608.67

4565.40 8 (1)
2, 4 3654.13

5414.75
4, 2 1815.94 2, 2, 2 4080.09

16 4 (4)
16 2382.03

6434.82 16 (1)
2, 4, 2 4985.75

7583.84
4, 4 2558.29 2, 3, 3 5029.98

24 6 (4)
24 3435.15

7336.66 24 (1)
3, 8 5918.51

8416.42
4, 3, 3541.54 2, 4, 3 5953.99

32 8 (4)
4, 2, 4 3989.14

8088.15 32 (1)
2, 4, 4 6320.07

9337.46
4, 3, 3 4012.54 2, 6, 3 6474.41

61 16 (4*)
4, 4, 4 5170.41

10109.74 61 (1)
4, 4, 4 7299.77

12308.85
8, 5, 2 5405.65 3, 3, 5, 2 8219.90

122 31 (4*)
8, 4, 4 6194.33

12150.87 61 (2)
2, 3, 6, 4 7647.77

13306.19
4, 3, 4, 3 6351.53 2, 3, 5, 5 8125.92

183 46 (4*)
12, 4, 4 6680.26

13278.33 61 (3)
3, 3, 6, 4 7733.00

14675.34
12, 3, 6 7012.77 3, 3, 4, 6 7823.09

244 61 (4)
16, 4, 4 7583.07

14733.50 61 (4)
16, 4, 4 7583.07

14733.50
12, 3, 7 7682.86 12, 3, 7 7682.86

variables KMP LIBRARY to turnaround and KMP AFFINITY to binding, granular-
ity=thread, where binding is set to compact (threads within the same core are used
before threads of different cores) and balanced (threads of different cores are used be-
fore threads within the same core)[1]. We keep KMP BLOCKTIME to its default value
since we did not perceive any different in performance in our tests.

To run experiments with our SIMD barrier, we intercept the call to the Intel runtime
function kmp barrier, and replace it with a call to our barrier algorithm previously
initialised. We set the value of mm delay 32 of our busy-wait regions to 100 cycles
and run the benchmarks with the parameters summarised in Table 2. Firstly, we explore
our SIMD barrier running an exhaustive set of experiments with EPCC barrier. We
repeat the executions of the 20 best configurations per threads with a larger number of
barriers and executions. For the remaining benchmarks, we set up our SIMD barrier
with the best configuration per thread achieved in EPCC barrier (shown in Table 3).

6.3 Results

Table 3 shows the two best configurations for each number of threads using compact
and balanced thread binding policies. In general terms, as the number of threads in-
creases, it is interesting to observe how the best configurations for the compact policy
tend to shape a shallower tree with a larger first group. The main reason is that this
binding policy allows the four threads sharing a core to carry out a first intra-core syn-
chronisation through the local L1 cache. However, when many threads take part in the
barrier, an even larger first group that includes several cores (up to 16 threads / 4 cores)
comes up as the best configuration. Such configurations considerably reduce the total
number of master threads which may be beneficial since the number of in-flight stores
is limited in the architecture. SIMD instructions become indispensable to achieve the
best performance using these large groups.

On the other hand, a single cache-line totally-centralised barrier is worth as the best
configuration for a number of threads lower or equal than 24 (i.e. up to 6 cores with 4

110 D. Caballero, A. Duran, and X. Martorell

Fig. 5. EPCC barrier. Execution time (left) and speed-up (right) of the best SIMD barrier config-
uration and the default Intel barrier (speed-up baseline). Compact (C) and balanced (B) policies.

threads per core). This centralised approach makes sense when the number of threads
and cores are not enough to congest the memory hierarchy. Again, SIMD instructions
are crucial to achieve the best performance with these configurations.

With regard to the balanced policy, threads are placed farther away from each
other and memory traffic increases. As a result, the best configurations deploy a deeper
tree with smaller groups. The main reason is that a first intra-core synchronisation step
is not possible when only one thread is bound to each core (scenarios with 61 total
threads and lower). Furthermore, when a core hosts only a single thread, not all its
resources can be exploited and no other threads within the core are asking for the same
cache line (there is no prefetching effect). As long as the number of threads increases
and cores host several threads, the first level group allows exploiting a first intra-core
synchronisation step and the best configurations converge to the compact policy ones.

Fig. 5 plots the scalability (left chart) and the speed-up (right chart) of the best con-
figuration of our SIMD barrier (shown in Table 3) and the default Intel OpenMP barrier.
As depicted, both barriers are slower for balanced policy than for compact policy. Fur-
thermore, both compact approaches scale in a logarithmic way, though the slope of
the scalability curve is slightly smaller in our barrier than in Intel’s.

Fig. 6. 6th Livermore Loop speed-up. Best SIMD configuration versus the default Intel barrier
(baseline). Benchmark size: 244, 2440 and 24400 elements.

An OpenMP* Barrier Using SIMD Instructions 111

Fig. 7. MG benchmark speed-up (compact and balanced binding polices). Best SIMD configura-
tion vs default Intel barrier (baseline). Speed-up of A, B and C sizes ≈ 1 ± 0.05 (not shown).

Concerning the speed-up, on the one hand the SIMD approach keeps a sustained fac-
tor of two over the Intel barrier for a large number of threads in compact policy. It peaks
at 2.84 when this number is small. On the other hand, our barrier gains at least 48% of
speed-up over Intel’s with balanced policy, even when a first intra-core synchronisation
step is not possible. However, the speed-up converges towards the compact policy curve
as threads increases and the binding policies tend to be similar.

The Livermore Loop (Fig. 6) runs between 43% and 65% (compact policy), and 20%
and 57% (balanced policy) faster using our SIMD barrier for the size of 244 elements.
Here, each thread computes a small number of elements and also load imbalance is
present from the beginning of the execution. In the two other cases, the speed-up is also
very significant. Even for the largest size, where the barrier weight is reduced in favour
of computation, our SIMD barrier gains up to a 21% of speed-up in both policies.

Fig. 7 depicts the speed-up of the SIMD barrier for the MG benchmark. Because of
the high computational density of this benchmark, barriers only has relevant impact on
the overall execution time of the two smallest sizes of the problem (S and W). For S
size in compact policy, the speed-up reaches a peak for 61 threads (21%) and drops as
the number of threads increases. Since the data layout of the application is distributed
among a higher number of threads, the downswing may be due to the increase of the
false-sharing on the application data. Thus, the weight of the barrier falls off. Regarding
the balanced policy, the speed-up is not significant enough except from the 7% achieved
with 32 threads. For W size, the speed-up mainly increases with the number of threads,
reaching up to a 15% in compact policy and 13% in binding policy. With this very small
input sizes, cache misses have a great impact on the overall performance, which justifies
the curve fluctuations. For bigger sizes, such as A, B and C, the speed-up is sustained
around 1 ± 0.05 (not shown for simplicity), since the barrier weight becomes

7 Conclusions and Future Work

In this paper we propose a reconfigurable lock-free combining tree algorithm that makes
use of SIMD instructions to implement a barrier synchronisation construct. Our ap-
proach shows an outstanding improvement over the default Intel OpenMP barrier. This

112 D. Caballero, A. Duran, and X. Martorell

is especially remarkable for the compact binding policy, where the algorithm better
takes advantage of the inter-thread data locality to carry out a first intra-core synchro-
nisation step.

On the Intel Xeon Phi coprocessor, we achieve a sustained 2x of speed-up with
peaks of up to 2.84x in the EPCC barrier. Furthermore, our barrier improves a memory-
intensive benchmark (Livermore loop) by 60% and a computation-intensive benchmark
(NAS MG) by 21%.

Our exhaustive experiments show that the best barrier configuration may signifi-
cantly vary for different number of threads, such as a totally centralised group of 24
threads, a 3-level tree with groups of 16, 4 and 4 threads and a 4-level tree with groups
of 3, 3, 6 and 4. Therefore, a flexible and reconfigurable barrier algorithm is required.
Hence, either with a lower or a larger number of threads, our results strongly support
the use of SIMD to achieve the best barrier configuration for the Intel MIC architecture
in our barrier scheme.

As a future work, we will deeply examine the cache coherency protocol of the In-
tel Xeon Phi coprocessor so that our SIMD barrier takes even more advantage of the
sophisticated memory hierarchy of this architecture. We will also extend our idea of
exploiting SIMD resources to other barrier algorithms.

Acknowledgments. Intel, Xeon, Xeon Phi and Many Integrated Core are trademarks
or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

This work was supported by AGAUR through the grant FI-DGR 2012 (FI B 00295),
the European Commission through the DEEP project (FP7-ICT-287530), the Spanish
Ministry of Education (contracts TIN2012-34557, TIN2007-60625, CSD2007-00050),
and the Generalitat de Catalunya (contract 2009-SGR-980).
* Other brands and names are the property of their respective owners.

References

1. Balanced affinity type. Intel R© C++ Compiler XE 13.1 User and Reference Guides,
http://software.intel.com/sites/products/
documentation/doclib/iss/2013/compiler/cpp-lin/
(accessed: May 09,2013)

2. Intel R© Xeon Phi TM Coprocessor - The Architecture,
http://software.intel.com/en-us/articles/
intel-xeon-phi-coprocessor-codename-knights-corner
(accessed: May 09, 2013)

3. Intel R© Xeon Phi TM Coprocessor Instruction Set Architecture Reference Manual (2012)
4. Abellán, J.L., Fernández, J., Acacio, M.E.: Efficient and scalable barrier synchronization for

many-core CMPs. In: Proceedings of the 7th ACM International Conference on Computing
Frontiers, CF 2010, pp. 73–74 (2010)

5. Almási, G., Heidelberger, P., Archer, C.J., Martorell, X., Erway, C.C., Moreira, J.E.,
Steinmacher-Burow, B., Zheng, Y.: Optimization of MPI collective communication on Blue-
Gene/L systems. In: Proc. of the 19th Int. Conf. on Supercomp., ICS 2005 (2005)

http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

An OpenMP* Barrier Using SIMD Instructions 113

6. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K.: The NAS parallel benchmarks - summary and preliminary results. In:
Proc. of the 1991 ACM/IEEE Conf. on Supercomp., SC 1991, pp. 158–165 (1991)

7. Bull, J.M., Reid, F., McDonnell, N.: A microbenchmark suite for openMP tasks. In: Chap-
man, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312,
pp. 271–274. Springer, Heidelberg (2012)

8. Eichenberger, A.E., Abraham, S.G.: Impact of load imbalance on the design of software
barriers. In: Proc. of the 1995 Int. Conf. on Parallel Processing, pp. 63–72 (1995)

9. Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P., Rudolph, L., Snir, M.: The NYU
ultracomputer. designing an MIMD shared memory parallel computer. IEEE Transactions on
Computers C-32(2), 175–189 (1983)

10. Gupta, R., Hill, C.R.: A scalable implementation of barrier synchronization using an adaptive
combining tree. Internat. Journal of Parallel Programming 18(3), 161–180 (1989)

11. Gupta, R.: The fuzzy barrier: a mechanism for high speed synchronization of processors.
SIGARCH Comput. Archit. News 17(2), 54–63 (1989)

12. Hoefler, T., Mehlan, T., Mietke, F., Rehm, W.: A survey of barrier algorithms for coarse
grained supercomputers chemnitzer informatik berichte (2004)

13. Huang, W., Stant, M.R., Sankaranarayanan, K., Ribando, R.J., Skadron, K.: Many-core de-
sign from a thermal perspective. In: Proceed. of the 45th Annual Design Automation Con-
ference, DAC 2008, pp. 746–749. ACM, New York (2008)

14. McMahon, F.H.: The Livermore Fortran kernels: A computer test of the numerical perfor-
mance range (1986)

15. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

16. Nanjegowda, R., Hernandez, O., Chapman, B., Jin, H.H.: Scalability evaluation of barrier
algorithms for openMP. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 42–52. Springer, Heidelberg (2009)

17. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer performance:
Achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of the
2003 ACM/IEEE Conference on Supercomputing, SC 2003, p. 55 (2003)

18. Pfister, G.F., Norton, V.A.: Hot-spot contention and combining in multistage interconnection
networks. IEEE Transactions on Computers C-34(10), 943–948 (1985)

19. Sampson, J., Gonzalez, R., Collard, J., Jouppi, N.P., Schlansker, M., Calder, B.: Exploiting
fine-grained data parallelism with chip multiprocessors and fast barriers. In: Proc. of the 39th
Annual IEEE/ACM Int. Symp. on Microarchitecture, MICRO 39, pp. 235–246 (2006)

20. Sartori, J., Kumar, R.: Low-overhead, high-speed multi-core barrier synchronization. In: Patt,
Y.N., Foglia, P., Duesterwald, E., Faraboschi, P., Martorell, X. (eds.) HiPEAC 2010. LNCS,
vol. 5952, pp. 18–34. Springer, Heidelberg (2010)

21. Scott, M.L., Mellor-Crummey, J.M.: Fast, contention-free combining tree barriers for shared-
memory multiprocessors. Int. Journal of Parallel Prog. 22(4), 449–481 (1994)

22. Scott, S.L.: Synchronization and communication in the T3E multiprocessor. SIGPLAN
Not. 31(9), 26–36 (1996)

23. Villa, O., Palermo, G., Silvano, C.: Efficiency and scalability of barrier synchronization on
NoC based many-core architectures. In: Proceedings of the 2008 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, pp. 81–90 (2008)

24. Yew, P., Tzeng, N., Lawrie, D.H.: Distributing hot-spot addressing in large-scale multipro-
cessors. IEEE Transactions on Computers C-36(4), 388–395 (1987)

25. Zhang, G., Martı́nez, F., Tal, A., Blainey, B.: Busy-wait barrier synchronization using dis-
tributed counters with local sensor. In: Proc. of the WOMPAT, pp. 84–98 (2003)

OpenMP on the Low-Power TI Keystone II

ARM/DSP System-on-Chip

Abstract. The Texas Instrument (TI) Keystone II architecture inte-
grates an octa-core C66X DSP with a quad-core ARM Cortex A15 MP-
Core processor in a non-cache coherent shared memory environment.
This System-on-a-Chip (SoC) offers very high Floating Point Opera-
tions per second (FLOPS) per Watt, if used efficiently. This paper re-
ports an initial attempt at developing a bare-metal OpenMP runtime for
the C66X multi-core DSP using the Open Event Machine RTOS. It also
outlines an extension to OpenMP that allows code to run across both
the ARM and the DSP cores simultaneously. Preliminary performance
data for OpenMP constructs running on the ARM and DSP parts of the
SoC are given and compared with other current processors.

1 Introduction

High performance computing has evolved to use specialized accelerators such
as Graphics Processing Units (GPUs) for a variety of problems. However, such
accelerators suffer from two main issues of excessive power consumption and
insufficient device memory. Low-power SoCs with on-chip accelerators sharing
the same address space and physical memory are increasingly being considered
as alternatives. In recent work on using ARM NEON Floating Point Units (FPU)
to accelerate application codes [1], low-power ARM based SoCs demonstrated
comparable performance speedups to Intel processors using SSE2.

It has also been demonstrated that the TI Keystone I C66X Multi-core DSP
provides higher GFLOPS/Watt (with 57% utilization of resources) for SGEMM
matrix multiplication using OpenMP than Intel Core i7-960, IBM Cell Broad-
band Engine, Stratix IV FPGA and NVIDIA GTX480, GTX280 systems [2].
Increase in net utilization of the C66x DSP for other applications would result
in higher GFLOPS/Watt. The TI Keystone II architecture integrates this C66X
octa-core DSP with a quad-core ARM Cortex A15 MPCore processor. This com-
bination of ARM and DSP processors on the same SoC promises excellent energy
efficient performance if used efficiently.

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 114–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Eric Stotzer1, Ajay Jayaraj1, Murtaza Ali1, Arnon Friedmann1,
Gaurav Mitra , Alistair P. Rendell , and2 2 3

1 Texas Instruments, Dallas TX, USA
{estotzer,ajayj,mali,arnon}@ti.com

2 Australian National University, Canberra ACT, Australia
{gaurav.mitra,alistair.rendell}@anu.edu.au

3 nCore HPC, USA
thea@ncorehpc.com

Théa-Martine Gauthier

OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 115

Performance of OpenMP based applications depends heavily on the runtime li-
brary implementation. The runtime in [2] used the underlying SYS/BIOS RTOS.
In this paper, we demonstrate a lighter weight OpenMP runtime implementa-
tion for the C66X multi-core DSP using the Open Event Machine RTOS. For key
OpenMP directives, overheads are 2.5× lower than the previous implementation
using SYS/BIOS. EPCC v3 micro-benchmarks [3] are provided for Keystone II
and other Intel, ARM processors for comparison.

The rest of the paper is organized as follows. Section 2 provides a concise
overview of the TI Keystone architecture. Description of our new bare-metal
implementation of the OpenMP runtime for C66X DSP is given in Section 3. A
brief introduction to our OpenMP accelerator dispatch prototype is outlined in
Section 4. Micro-benchmarks of CPU cycle overheads for OpenMP constructs
are discussed in Section 5. Related work, conclusions and future work, and ac-
knowledgements follow in Sections 6, 7 and 7.

2 TI Keystone Overview

The Keystone architecture from Texas Instruments is an innovative platform in-
tegrating RISC and DSP cores along with application-specific co-processors and
input/output peripherals. This high performance structure includes adequate
internal bandwidth for non-blocking access to all processing cores, peripherals,
co-processors and I/O. Figure 1 shows two instantiations of the Keystone archi-
tecture applicable to high performance compute applications.

2.1 C66x DSP Core

The main compute core inside the Keystone architecture is the C66x DSP from
Texas Instruments [4]. This is based on a Very Long Instruction Word (VLIW)
architecture. The core has two data-paths, each capable of executing four in-
structions per cycle on four functional units named M, D, L and S. The M unit
primarily performs multiplication operations, the D-unit performs load/store
and address calculations, and the L and S units perform addition and logical
operations. Overall the two data-paths appear as an 8-way VLIW machine ca-
pable of executing up to eight instructions in each cycle. The instruction set also
includes Single Instruction Multiple Data (SIMD) instructions allowing vector
processing on up to 128-bit vectors. For example, the M unit can perform four
single precision multiplies per cycles, whereas each L and S unit can each perform
two single precision additions per cycle. Together the two data-paths can issue
16 single FLOP per cycle. The double precision capability is about one-fourth
of single precision FLOPs.

2.2 C6678 ’Shannon’ System-on-Chip

The C6678 System-on-Chip (SoC) is the highest performance Keystone I de-
vice that includes only DSP cores [5]. Figure 1(a) shows the block diagram of

116 E. Stotzer et al.

(a) C6678 SoC based on Keystone
I Architecture

(b) 66AK2H12 SoC based on
Keystone II Architecture

Fig. 1. Texas Instruments Keystone Architectures

this device. It has eight C66x cores and a three-level memory system. The cores
can run at 1.25 GHz, thereby providing a peak performance of 160 single pre-
cision GFLOPS and 40 double precision GFLOPS. The memory system is a
Non-Uniform Memory Architecture (NUMA) [6]. A C66x subsystem can access
different memory regions, with accesses to memories that are physically closer
to a processor being faster. The memory regions and access times are as follows:

– Level-1 program (L1P) and data (L1D): 32KB, 1-cycle access time, config-
urable as mapped RAM, cache, or a combination of mapped and cached.

– Local-L2: 512KB, 2-cycle access time, configurable as mapped RAM, cache,
or a combination of mapped and cached, and shared between the L1D and
L1P caches.

– Shared-L2: 4MB, 2-cycle access time, shared memory on-chip.
– Shared-L3: multiple megabytes of off-chip memory with greater than 60-cycle

access time. One DDR3 controller in this device.

The device comes with a rich set of standard interfaces like PCI express, Serial
Rapid I/O (SRIO), multiple Gigabit Ethernet ports as well as a proprietary inter-
face known as the Hyperlink that provides a 50 Gbps point-to-point connectivity.

2.3 66AK2H12 ’Hawking’ System-on-Chip

The 66AK2H12 SoC is the highest performance Keystone II device architecture
that includes an ARM RISC processor in addition to the compute-efficient C66x
DSP cores [7]. This particular device (Figure 1(b)) integrates a Cortex-A15 quad-
core cluster and a C66x DSP octa-core cluster. The Cortex-A15 quad cores are
fully cache coherent, although as on the C6678 the DSP cores do not maintain
cache coherency. External memory bandwidth is doubled with dual DDR3
controllers. An additional Hyperlink interface is also included. Compared to the

OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 117

Keystone I C6678 SoC the memory sizes are also increased. On the DSP, the L1D
and L1P cache sizes remain at 32KB per core, but the L2 cache size is increased to
1024KBper core. On theARM side, there is 32KB of L1D and 32KB of L1P cache
per core, and a coherent 4 MB L2 cache. The level 2 shared memory is increased
to 6 MB and is accessible by all ARM and DSP cores. This SoC brings the ARM-
based processor and DSP accelerator together in the same memory address space,
along with infrastructure class I/O peripherals. It therefore provides an attractive
low-power alternative for HPC applications.

3 Bare-Metal Implementation of OpenMP on C66X DSP

Most compilers translate OpenMP into multi-threaded code with calls to a cus-
tom runtime library, either via outlining [8] or inlining [9]. Because many execu-
tion details are often unknown in advance, much of the actual work of assigning
computations must be performed dynamically. Part of the implementation com-
plexity is in ensuring that the presence of OpenMP constructs does not impede
sequential optimization in the compiler. An efficient runtime library to support
thread management and scheduling, and shared memory and fine-grained syn-
chronization execution is essential.

The basic hardware and operating environment of the DSP cores on the Key-
stone I and II systems presents some special challenges when seeking to support
the OpenMP programming model. Notably the shared memory controller in
Keystone devices does not maintain coherency between the C66X subsystems,
and it is the responsibility of the running program to use synchronization mecha-
nisms and cache control operations to maintain coherent views of the memories.
(Coherency within a given C6X subsystem for all levels of memory is maintained
by the hardware).

Traditionally, application codes executing across multiple C6X subsystems are
required to explicitly manage thread synchronization and cache coherence, and
communicate via the shared-L2 and shared-L3 memories. A processor can trans-
fer a data buffer to the local-L2 via a direct memory access (DMA) controller.
The hardware maintains L1D cache coherency with the local-L2 for DMA ac-
cesses. Also, the DMA transfer completion event can be used as a synchronization
event between the data producer and data consumer. There is no virtual memory
management unit (MMU), but a memory protection mechanism protects some
shared memory from being accessed by a non-authorized processor.

TI provides a light-weight multi-core task dispatch API called Open Event
Machine (OpenEM). OpenEM is designed to require minimal memory and CPU
cycles [10]. OpenEM is implemented to leverage the C66X SoC’s Navigator hard-
ware queues. Various types of interactions between cores, such as blocking, com-
munication and synchronization, are implemented by OpenEM. OpenEM also
provides a fast, shared, thread-safe memory management system that is used to
allocate/deallocate memory in the runtime.

An understanding of the memory model used by OpenMP is fundamental to
its implementation on the Keystone I/II systems. In this respect, OpenMP spec-
ifies a relaxed consistency memory model that is close to weak consistency [11].

118 E. Stotzer et al.

In this model threads execute in parallel with a temporary view of shared mem-
ory until they reach memory synchronization or flush points in the execution
flow. At a flush point, threads are required to write back and invalidate their
temporary view of memory. After the memory synchronization point, threads
again have a temporary view of memory.

Although the C66x provides a shared memory, its consistency is not auto-
matically maintained by the hardware. It is the responsibility of the OpenMP
runtime library to perform the appropriate cache control operations to maintain
the consistency of the shared memory when required.

3.1 Memory Model

OpenMP has both shared and private variables. Each thread has its own copy of
a private variable that the other threads cannot access. There is only one copy of
a shared variable, and all threads can access it. Private variables are located on
the stack of each thread of execution. The stack can be placed in any of on-chip
local, on-chip shared or off-chip shared memory.

OpenMP requires that threads synchronize their local view of shared variables
with the global view at a set of implicit and explicit flush points defined in the
OpenMP specification. The runtime performs this synchronization in software.
The synchronization steps depend on whether the shared variable is placed in
on-chip local memory (L2SRAM) or on-chip/off-chip shared memory (MSMC-
SRAM/DDR) as follows:

• Shared variables in on-chip “local” scratch memory(L2SRAM)
1. L2SRAM on a core is accessible to external DSP cores via a global ad-

dress space
2. Any updates to L2 scratch by external DSP cores are kept coherent by

the memory subsystem
3. The runtime performs a write-back invalidate of L1 at all flush points.

• Shared variables in on-chip/off-chip shared memory (MSMCSRAM/DDR)
1. Shared memory regions are marked write-through
2. The runtime performs cache invalidate operations at all flush points.

Since write-through is enabled shared memory has already been updated
and there is no need to write-back data.

3.2 Parallel Regions

The essential parts of the OpenMP runtime library are implemented using the
OpenEM API. For each parallel region, the OpenMP compiler divides the work-
load into chunks that are assigned to OpenEM tasks (micro-tasks) at runtime.
One of the DSP cores is treated as a master core and the other cores are worker
cores. The master core runs the main thread of execution. It is responsible for
initializing the OpenMP runtime and starts executing the OpenMP program
(main). The worker cores wait in a dispatch loop for OpenEM tasks to show up
in a queue.

OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 119

A parallel region’s fork-join mechanism is implemented by the following steps:

1. After initialization, worker threads wait in a dispatch loop and check a task
queue for micro-task execution notification.

2. The master thread assigns micro-tasks to worker threads by posting the
micro-tasks to an OpenEM queue. The micro-task description includes a
function pointer and a data pointer. It also initializes a shared counter to
the number of micro-tasks generated.

3. Worker cores pull micro-tasks out of the OpenEM queue. Upon receipt of the
micro-task, each worker thread executes the micro-task specified by the func-
tion pointer. The data pointer is passed as an argument to the micro-task.

4. Upon completion of a micro-task, the worker core that executed the micro-
task decrements the shared micro-task counter.

5. After the master completes the execution of its own chunk, it waits for
the shared micro-task counter to reach 0, indicating that all workers have
completed their micro-tasks.

3.3 Synchronization

The runtime implements three methods of synchronization depending on what
is being synchronized:

1. To synchronize master and worker cores during runtime initialization, a fast
synchronization mechanism is implemented using coherent shared memory
to store a vector. Each core independently sets or clears an element in the
vector. Every core can concurrently query the entire vector by using a single
64-bit memory access. As shown in Figure 2, this mechanism is based on
Lamport’s Bakery algorithm [12]. The buffers are stored in non-cacheable
shared memory. The message queue is used at the start of a parallel region,
but all other synchronizations are performed using this new mechanism.

1 void sync(char buf0[8], char buf1[8])
{

3 int core_id = get_core_id();

5 buf1[core_id] = 1;
buf0[core_id] = 0;

7 /* wait until all threads have cleared buf0 */
while (*(volatile long long *)buf0 != 0) ;

9
buf1[core_id] = 0;

11 /* wait until all threads have cleared buf1 */
while (*(volatile long long *)buf1 != 0) ;

13
/* reset buf0 */

15 buf0[core_id] = 1;
}

Fig. 2. Fast synchronization mechanism using coherent shared memory

2. To synchronize master and worker cores at the end of a parallel region, a
shared counter, as described in Section 3.2 is used.

3. For implicit and explicit OpenMP barriers, the sense reversing barrier shown
in Figure 3 is used. This has a counter that keeps track of the number of
cores participating in the barrier and a sense flag to allow the barrier to
be re-used. To avoid coherency overheads, the barrier variable is placed in
non-cached memory.

120 E. Stotzer et al.

void sense_reversing_barrier(Barrier *barrier)
2 {

/* To allow re-use, the barrier contains a sense variation */
4 char mysense = !barrier->sense;

6 if (atomic_decrement(barrier->count) == 1)
{

8 /* Last thread resets the sense and count */
barrier->count = barrier->size;

10 barrier->sense = !(barrier->sense);
}

12 else
{

14 /* Modification of sense represents end of the barrier */
while (mysense != barrier->sense);

16 }
}

Fig. 3. Sense reversing barrier

4 ARM to DSP OpenMP Dispatch

We have implemented an early prototype of the OpenMP 4.0 accelerator ex-
tension [13,14] target construct. Our prototype implementation uses the dis-
patch keyword along with memory copyin and copyout. A host program uses the
dispatch construct in the following way:

1 void foo(int *in1, int *in2, int *out1, int count)
{

3 #pragma omp dispatch copyin (in1[0:count-1], in2[0:count-1], count) \
copyout (out1[0:count-1])

5 {
#pragma omp parallel shared(in1, in2, out1)

7 {
int i;

9 #pragma omp for
for (i = 0; i < count; i++)

11 out1[i] = in1[i] + in2[i];
}

13 }
}

Fig. 4. Usage of dispatch construct in host program

A source-to-source translator is used to transform the initial source file with
code outlined in Figure 4 to produce the ARM host side and DSP target side
annotated code, as shown in Figure 5. The ARM host annotations include
data movement calls. In Keystone II, these calls resort to memory maps using
the UNIX mmap system call to leverage physical shared memory between the
ARM and DSP. Therefore copyin/copyout operations have minimal overhead.
The DSP source annotations made by the translator include standard OpenMP
pragma additions. These two separate source files are then compiled with the gcc
toolchain on the ARM side, and the TI Code Generation Tools OpenMP compiler
toolchain and our OpenMP DSP runtime library on the DSP side to produce a
fat executable with the DSP binary embedded inside the ARM executable. This
is launched from the ARM using the TI Multi-Process Manager which loads and
runs the DSP binary and the ARM host executable. Shared memory regions
are set up, synchronization messages are exchanged between the ARM and DSP
and the required functions are then run on DSP, which writes back the result to
shared memory. An initial implementation of the dispatch construct was tested
on the Appleton EVM which has a TCI6614 SoC [15] with ARM Cortex-A8
and quad-core C66X DSP on-chip. Porting the dispatch construct to utilize our
current implementation of the OpenMP runtime on Keystone II is in progress.

OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 121

Fig. 5. Dispatch executable compilation strategy

5 Evaluation Using Micro-benchmarks

In order to evaluate the performance of our DSP runtime implementation,
we used the EPCC v3 benchmark [3]. For comparison we also collected data
across other contemporary ARM and Intel platforms. The EPCC suite of micro-
benchmarks measure the time overheads associated with invoking the different
OpenMP constructs. For example, the cost of parallel to create a parallel region
or barrier to synchronize threads. Here we report the overheads associated with
some of the most widely used constructs.

Table 1 lists the systems considered and their main characteristics. Two dif-
ferent Intel platforms with at least four physical cores were considered. The
Core2 Q9400 Yorkfield processor, has four cores running at 2.66 Ghz. The hexa-
core Xeon X5650 Westmere processor is part of a dual-socket system and runs
at 2.66 Ghz. The ARM platforms considered, include the Keystone II Hawk-
ing EVM’s ARM Cortex A15 quad-core processor running at 625 Mhz and a
Samsung Exynos 4412 prime SoC with quad-core ARM Cortex-A9 processors
running at 2 Ghz. The ARM Cortex A15 is referred to as Hawking-A15 and the
A9 as Exynos-A9. The octa-core C66X DSP processor in Keystone II Hawking
EVM ran at 983 Mhz and is referred to as Hawking-DSP.

Table 1. Platforms Used in Benchmarks

PROCESSOR CODENAME Threads/Cores/Ghz Memory

Intel Core2 Q9400 YorkField 4/4/2.67 8GB DDR3
Intel Xeon X5650 Westmere 12/6/2.67 24GB DDR3

Samsung Exynos 4412 (ARM) Odroid-X2 4/4.Cortex-A9/2.0 2GB LPDDR2
TI Keystone II (ARM) Hawking 4/4.Cortex-A15/0.625 2GB DDR3

TI Keystone II (DSP) Hawking 8/8.C6678 DSP/0.983 2GB DDR3

5.1 Compilers and Tools

For the Intel Westmere platform we used GCC 4.6.4 and ICC 13.1.1 (compatible
with GCC 4.6) to separately compile and run the benchmarks. These versions
are denoted as X5650-GCC and X5650-ICC. They were linked against libgomp
and libiomp5 respectively. On the Intel Yorkfield and ARM platforms GCC 4.7.3
with libgomp was used. The compiler option -mcpu=cortex-a9 was used on the
Exynos and -mcpu=cortex-a15 on the Hawking. In addition both ARM plat-
forms used the -mfpu=neon,mfloat-abi=hard compiler flag. TI Code Generation

122 E. Stotzer et al.

Tools 7.4.2, XDC Tools 3.24.05.48, OpenEM 1.2.0.1, PDK Keystone2 1.00.00.09,
PDK C6678 1.1.2.6 along with our current version of the OpenMP runtime
were used to create the executable for the C6678 DSP. All platforms except the
Hawking-A15 and the DSPs were running Ubuntu Linux with kernel version
greater than 3.0. The Hawking ARM cores used a custom distribution of Linux,
called Arago, built specifically for the Hawking EVM. It includes the 3.8.4 Linux
kernel. On the Linux hosts, the OMP PROC BIND and GOMP CPU AFFINITY en-
vironment variables were set to bind threads to processor cores and to pre-
vent thread migration between cores. For timing measurements on the Intel
and ARM platforms, the EPCC v3 timer function getclock() which uses
omp get wtime() remained unchanged and reported times in microseconds.
Measurements on the DSP required modifications to the timer function. A na-
tive time-stamp counter was used to measure the exact CPU cycles elapsed as
shown in Figure 6. For direct comparison of all platforms, all time measurements
were normalized w.r.t CPU clock speed and reported in CPU cycles using the
equation, cpu cycles = overhead time(μs) ∗mhz.

/* Wall cycles using TSC_read */
2 void wcycles(unsigned long long *c)

{
4 static int first = 1;

extern void TSC_enable(void);
6 extern unsigned long long TSC_read(void);

if (first)
8 {

TSC_enable();
10 first = 0;

}
12 *c = TSC_read();

}
14

/* TSC_enable Assembly Code */
16 .global TSC_enable

18 TSC_enable:

20 RETNOP B3, 4
MVC B4, TSCL ; writing any value enables timer

22
/* TSC_read Assembly Code*/

24 .global TSC_read

26 TSC_read:

28 RETNOP B3, 2
DINT

30 MVC TSCH, B5 ; Read the snapshot of the high half
MV B5, A5

Fig. 6. Measuring cpu cycles on the DSP

5.2 Discussion

A crucial difference between the multi-core DSP in the Keystone architectures
and other processors evaluated in this study is cache coherence. While the Intel
and ARM multi-core processors have hardware managed cache coherence proto-
cols, programs running on the multi-core DSP have to ensure cache coherence
in software. As explained in Section 3, the Keystone shared memory controller
does not ensure this memory consistency. As a result we perform flush opera-
tions at implicit and explicit synchronization points in our OpenMP runtime,
which invalidate L1 and L2 caches and write them back to main memory. In our

OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 123

Table 2. Cost of software managed cache coherency operation for DSP (cycles)

DSP (L2 = 0) 1 Thread 2 Threads 4 Threads 6 Threads 8 Threads

Hawking-DSP 1350 1355 1357 1353 1364

evaluation, we set DSP L2 cache to be 0K to minimize flush overhead. Table 2
presents operation cycle counts on Hawking DSPs averaged over 200 iterations.
This shows the cost to be roughly 1350 cycles regardless of thread count.

Results for the EPCC benchmarks are given in Figure 7. In each bar-graph the
cpu cycle overhead values are given for each platform using 1-8 OpenMP threads.
For platforms with 4 cores, only results with up to 4 threads are given.The PAR-
ALLEL construct is most fundamental, specifying the creation of an OpenMP
parallel region and spawning a team of threads. Each of the platforms in Fig-
ure 7(a) demonstrates the expected behaviour of increasing cycles overhead with
increasing number of threads. The X5650-ICC results show the least 1-thread
overhead time of 585 cycles. Not surprisingly a sharp increase is seen on the
X5650 with both the GCC and ICC compilers in going from 6-thread to 8-threads
as the last 2 threads are spawned on a different socket. The Exynos and Hawking
ARM processors show comparable overheads to the Intel platforms. Overheads
for more than 1-threads observed on the DSP are higher than Intel and ARM
platforms. However, each parallel region incorporates implicit cache-coherence
flush operations. Discounting the cost of these flush operations, performance of
the OpenMP DSP runtime is comparable to Intel and ARM processors.

The BARRIER construct is used to specify an explicit synchronization point
inside a parallel region which all threads must reach for any to progress beyond
that point. As shown in Figure 7(b), X5650-ICC performs the best among all
platforms across all thread configurations. Similar to PARALLEL overheads, the
ARM platforms have comparable times to Intel. The Hawking DSP has cycle
overheads of between 1800 and 3206. Subtracting the cost of 1 flush operation
from these yields overheads of between 450 and 1842. The latter are almost
on a par with the X5650-GCC values. The FOR construct is used to split for
loops between thread and data in Figure 7(c) and show similar patterns to those
observed for PARALLEL and BARRIER.

The STATIC constructs are used to specify compile-time scheduling of loop
iterations between threads. STATIC 1 indicates that each thread gets 1 loop iter-
ation to process at a time, while STATIC 128 gives 128 loop iterations at a time.
Figure 7(d) and 7(e) show that the DSP platforms perform significantly better
than the Intel platforms, while the ARM platforms perform the best overall. This
suggests that the chunk sizes of 1 and 128 are not ideal for the memory hierar-
chy and architecture of the Intel platforms, but are more suited for the ARM
and DSP platforms. It also shows that the DSP OpenMP runtime performs
effective static scheduling for these chunk sizes. The DYNAMIC construct is
similar to STATIC in that it partitions the scheduling of loop iterations between
threads. However, in contrast to STATIC the loop iterations are now partitioned
dynamically with the next available thread executing the next loop iteration.

124 E. Stotzer et al.

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP
0

2,000

4,000

6,000

8,000
6
9
9

5
8
5

5
4
7

1
,5

5
9

1
,9

5
4

7
7
9

1
,4

6
6

1
,3

0
2

1
,5

5
7

2
,3

4
8

3
,3

7
0

5
,9

1
0

3
,2

7
9

2
,2

0
6

1
,9

6
3 2
,4

7
3

3
,4

1
1

6
,2

5
9

2
,8

2
3

2
,4

3
5

6
,6

1
5

5
,7

4
6

4
,3

2
7

7
,1

5
6

P
A
R
A
L
L
E
L
(c
y
cl
es
)

1-thread 2-threads 4-threads

6-threads 8-threads

(a) PARALLEL

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP

1,000

2,000

3,000

4
0
9

2
9
9

3
3

7
0
7

1
,0

3
5

1
,8

0
0

4
7
1

3
9
8 5
2
6

7
3
8

1
,1

0
7

1
,9

8
6

8
5
0

6
4
4 7
3
6

7
3
6

1
,1

5
9

2
,3

3
6

8
0
7

1
,0

2
0

2
,7

8
9

2
,2

8
2

1
,6

7
8

3
,2

0
6

B
A
R
R
IE

R
(c
y
cl
es
)

1-thread 2-threads 4-threads

6-threads 8-threads

(b) BARRIER

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP

1,000

2,000

3,000

4,000

4
2
0

3
0
5

6
5

6
9
0

1
,0

5
9

2
,0

2
1

4
8
9

3
7
4 5

6
6 7
4
0

1
,1

1
9

2
,2

1
6

1
,5

2
0

6
2
6 7
6
4

7
3
8

1
,2

0
6

2
,5

6
2

7
9
8

1
,0

7
0

3
,0

1
4

2
,3

9
7

1
,7

4
9

3
,4

1
9

F
O
R

(c
y
cl
es
)

(c) FOR

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP
0

0.5

1

1.5

2

2.5

3

3.5
·105

1
.6

·1
0
3

1
.7

·1
0
3

2
.9

·1
0
3

1
.9

·1
0
4

4
.4

·1
0
4

4
.4

·1
0
4

4
·1

0
3

1
.8

·1
0
3

5
.7

·1
0
4

7
.2

·1
0
4

2
.8

·1
0
5

2
.9

·1
0
5

2
.1

·1
0
4

2
.2

·1
0
3

5
.7

·1
0
4

3
·1

0
5

3
·1

0
5

5
.8

·1
0
4

2
.7

·1
0
5

2
.8

·1
0
5

5
.8

·1
0
4S
T
A
T
IC

1
(c
y
cl
es
)

(d) STATIC 1

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP
0

0.5

1

1.5

2

2.5

3

3.5

·105

1
.8

·1
0
3

1
.3

·1
0
3

2
.9

·1
0
3

1
.3

·1
0
4

6
.3

·1
0
4

3
.9

·1
0
4

2
.9

·1
0
3

1
.4

·1
0
3

3
.6

·1
0
3

1
.7

·1
0
5

2
.5

·1
0
5

2
.5

·1
0
5

4
.6

·1
0
3

4
.2

·1
0
3

4
.1

·1
0
3

3
·1

0
5

3
·1

0
5

4
.5

·1
0
3

2
.8

·1
0
5

2
.9

·1
0
5

5
.1

·1
0
3

S
T
A
T
IC

1
2
8
(c
y
cl
es
)

(e) STATIC 128

Q9400

X565
0-GCC

X565
0-IC

C
Exyn

os-A
9

Haw
king-

A15

Haw
king-

DSP
0

0.5

1

1.5

2

2.5

3

·105

2
.7

·1
0
3

4
.6

·1
0
2

2
·1

0
4

5
.5

·1
0
4

1
.8

·1
0
4

3
.9

·1
0
4

4
.4

·1
0
4

1
.3

·1
0
4

3
.1

·1
0
4

5
.6

·1
0
4

1
.1

·1
0
5

2
.5

·1
0
5

2
.5

·1
0
5

1
.5

·1
0
4

3
.2

·1
0
4

5
.7

·1
0
4

2
.6

·1
0
5

2
.6

·1
0
5

5
.8

·1
0
4

2
.2

·1
0
5

2
.3

·1
0
5

5
.9

·1
0
4

D
Y
N
A
M
IC

1
(c
y
cl
es
)

(f) DYNAMIC 1

Fig. 7. Cost comparison of OpenMP constructs in CPU cycles

OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 125

This permits load balancing when iterations give rise to variable work. Interest-
ingly the results for DYNAMIC 1 scheduling in Figure 7(f) are very similar to
those for STATIC 1.

6 Related Work

Use of TI C66X DSPs for HPC is demonstrated in [2,16,17,18]. Directive based
programming for GPU accelerators has most recently been standardized by Ope-
nACC [19] after previous implementations such as hiCUDA [20] and PGI Accel-
erator Model [21]. IBM provides an OpenMP compiler [22] and runtime library
for the Cell Broadband Engine. Extensions to OpenMP to support accelerators
were introduced in [23,24,25,14]. Various RTOSs such as SYS/BIOS [26] and
DSP/BIOS [10] have been used on the C6678 DSP. [27] provides an OpenMP
runtime using DSP/BIOS for the TI C64x DSP. A bare-metal implementation of
an OpenMP runtime for the Cradle CT3400 multi-core DSP is outlined in [28].

7 Conclusions and Future Work

We have presented our initial experiences with implementing a bare-metal
OpenMP runtime for the Keystone II C66X multi-core DSP. We addressed var-
ious challenges such as lack of memory management units and cache coher-
ence as part of our implementation process. CPU cycle overheads for various
OpenMP synchronization and scheduling constructs were measured using the
EPCC micro-benchmarks on the C66X DSP and other contemporary Intel and
ARM processors. The results demonstrated that our DSP runtime performed at
par or better than Intel and GCC OpenMP runtimes for most OpenMP con-
structs. Software managed cache coherence was acknowledged to be a limiting
factor for DSP runtime performance. Porting and evaluating the efficiency and
performance of the OpenMP accelerator dispatch construct to Keystone II is a
future work item. Evaluation of OpenMP task performance on C66X DSP and
implementation of task dispatch from ARM to DSP is of interest. Measurement
of energy efficiency and performance of various application codes using OpenMP
is also of interest.

Acknowledgements. This work is supported in part by the Australian Re-
search Council Discovery Project DP0987773. We thank Andrew Tridgell for
providing us with an the ODROID-X2 development platform.

References

1. Mitra, G., Johnston, B., Rendell, A.P., McCreath, E., Zhou, J.: Use of SIMD vector
operations to accelerate application code performance on low-powered ARM and
Intel platforms. In: Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW). IEEE (2013)

126 E. Stotzer et al.

2. Igual, F.D., Ali, M., Friedmann, A., Stotzer, E., Wentz, T., van de Geijn, R.A.:
Unleashing the high-performance and low-power of multi-core dsps for general-
purpose hpc. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, vol. 26. IEEE Computer Society
Press (2012)

3. Bull, J.M., Reid, F., McDonnell, N.: A microbenchmark suite for openMP tasks.
In: Chapman, B.M., et al. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 271–274.
Springer, Heidelberg (2012)

4. Texas Instruments Literature: SPRUGH7: TMS320C66x DSP CPU and Instruction
Set Reference Guide

5. Texas Instruments Literature: SPRS691C: TMS320C6678 Multicore Fixed and
Floating-Point Digital Signal Processor

6. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco (2003)

7. Texas Instruments Literature: SPRS866: 66AK2H12/06 Multicore DSP+ARM
Keystone II System-on-Chip (SoC)

8. Brunschen, C., Brorsson, M.: OdinMP/CCp - a portable implementation of
OpenMP for C. Concurrency - Practice and Experience 12(12), 1193–1203 (2000)

9. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An opti-
mizing, portable OpenMP compiler. In: Concurrency and Computation: Practice
and Experience, Special Issueon CPC 2006 selected papers (2006) (accepted)

10. Texas Instruments Literature: SPRU423D: DSP/BIOS user’s guide

11. Hoeflinger, J.P., de Supinski, B.R.: The openmp memory model. In: Mueller,
M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005/2006. LNCS, vol. 4315, pp. 167–177. Springer, Heidelberg (2008)

12. Lamport, L.: The parallel execution of do loops. Commun. ACM 17(2), 83–93
(1974)

13. OpenMP, A.: Openmp application program interface, v. 4.0 - rc 2 (2013)

14. Beyer, J.C., Stotzer, E.J., Hart, A., de Supinski, B.R.: OpenMP for accelerators. In:
Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011.
LNCS, vol. 6665, pp. 108–121. Springer, Heidelberg (2011)

15. Texas Instruments Literature: SPRT610: TMS320TCI6612/14 High Performance
comes to small cell base stations

16. Ali, M., Stotzer, E., Igual, F.D., van de Geijn, R.A.: Level-3 blas on the ti c6678
multi-core dsp. In: 2012 IEEE 24th International Symposium on Computer Ar-
chitecture and High Performance Computing (SBAC-PAD), pp. 179–186. IEEE
(2012)

17. Ahmad, A., Ali, M., South, F., Monroy, G.L., Adie, S.G., Shemonski, N., Carney,
P.S., Boppart, S.A.: Interferometric synthetic aperture microscopy implementation
on a floating point multi-core digital signal processer. In: SPIE BiOS, International
Society for Optics and Photonics, p. 857134 (2013)

18. Note, F.W., Van Zee, F.G., Smith, T., Igual, F.D., Smelyanskiy, M., Zhang, X.,
Kistler, M., Austel, V., Gunnels, J., Low, T.M., et al.: Implementing level-3 blas
with blis: Early experience (2013)

19. Reyes, R., Lopez, I., Fumero, J.J., de Sande, F.: Directive-based programming for
gpus: A comparative study. In: 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Con-
ference on Embedded Software and Systems (HPCC-ICESS), pp. 410–417. IEEE
(2012)

OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip 127

20. Han, T.D., Abdelrahman, T.S.: hi cuda: a high-level directive-based language for
gpu programming. In: Proceedings of 2nd Workshop on General Purpose Process-
ing on Graphics Processing Units, pp. 52–61. ACM (2009)

21. Wolfe, M.: Implementing the pgi accelerator model. In: Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing Units,
pp. 43–50. ACM (2010)

22. Eichenberger, A.E., O’Brien, J.K., O’Brien, K.M., Wu, P., Chen, T., Oden, P.H.,
Prener, D.A., Shepherd, J.C., So, B., Sura, Z., et al.: Using advanced compiler
technology to exploit the performance of the cell broadband engine architecture.
IBM Systems Journal 45(1), 59–84 (2006)

23. Ayguade, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F.,
Jimenez, D., Labarta, J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Ort́ı,
E.S.: A proposal to extend the openMP tasking model for heterogeneous architec-
tures. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009.
LNCS, vol. 5568, pp. 154–167. Springer, Heidelberg (2009)

24. Cabrera, D., Martorell, X., Gaydadjiev, G., Ayguade, E., Jiménez-González, D.:
Openmp extensions for fpga accelerators. In: International Symposium on Systems,
Architectures, Modeling, and Simulation, SAMOS 2009, pp. 17–24. IEEE (2009)

25. Ayguadé, E., Badia, R.M., Bellens, P., Cabrera, D., Duran, A., Ferrer, R., Gonzàlez,
M., Igual, F., Jiménez-González, D., Labarta, J., et al.: Extending openmp to sur-
vive the heterogeneous multi-core era. International Journal of Parallel Program-
ming 38(5-6), 440–459 (2010)

26. Texas Instruments Literature: SPRUGO6A: SYS/BIOS inter-processor communi-
cation (IPC) and I/O user’s guide

27. Chapman, B., Huang, L., Biscondi, E., Stotzer, E., Shrivastava, A., Gatherer, A.:
Implementing openmp on a high performance embedded multicore mpsoc. In: IEEE
International Symposium on Parallel & Distributed Processing, IPDPS 2009, pp.
1–8. IEEE (2009)

28. Jeun, W.C., Ha, S.: Effective openmp implementation and translation for multi-
processor system-on-chip without using os. In: Proceedings of the 2007 Asia and
South Pacific Design Automation Conference, pp. 44–49. IEEE Computer Society
(2007)

A Prototype Implementation of OpenMP Task

Dependency Support

Priyanka Ghosh, Yonghong Yan, Deepak Eachempati, and Barbara Chapman

Department of Computer Science, University of Houston
{pghosh06,yanyh,dreachem,chapman}@cs.uh.edu

Abstract. OpenMP 3.0 introduced the concept of asynchronous tasks,
independent units of work that may be dynamically created and sched-
uled. Task synchronization is accomplished via the insertion of taskwait
and barrier constructs. However, the inappropriate use of these con-
structs may incur significant overhead owing to global synchronizations
for specific algorithms on large platforms. The performance of such al-
gorithms may benefit substantially if a mechanism of specifying finer
gained point-to-point synchronization between tasks is available. In this
paper we present extensions to the current OpenMP task directive to
enable the specification of dependencies among tasks. A task waits only
until the explicit dependencies as specified by the programmer are satis-
fied, thereby enabling support for a dataflow model within OpenMP. We
evaluate the extensions implemented in the OpenUH OpenMP compiler
using LU decomposition and Smith-Waterman algorithms. By applying
the extensions to the two algorithms, we demonstrate significant perfor-
mance improvement over the standard tasking versions. When comparing
our results with those obtained using related dataflow models - OmpSs
and QUARK, we observed that the versions using our task extensions
delivered an average speedup of 2-6x.

1 Introduction

To improve its expressivity with respect to unstructured parallelism, OpenMP
3.0 introduced the concept of asynchronous tasks, independent units of work
that may be dynamically created and scheduled. Task synchronization is ac-
complished via the insertion of taskwait and barrier constructs. However, the
inappropriate use of those constructs and the runtime overhead incurred during
the synchronization between concurrent tasks could typically present an obsta-
cle in obtaining high performance and scalability on parallel systems [11]. For
example, the inability to express dependence relationships among specific tasks
in some algorithms forces the programmer to utilize either a taskwait or barrier,
which dictates global synchronizations, including all tasks created before these
constructs. This prevents such parallel algorithms from fully exploiting their
maximum concurrency that is theoretically achievable.

Thus, the need for point-to-point synchronization among specific tasks is
particularly important when dealing with applications that can be expressed
through a task graph, exhibit pipeline parallelism, or require wavefront synchro-
nization. Computations in these types of problems exhibit a data dependency

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 128–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Prototype Implementation of OpenMP Task Dependency Support 129

pattern within certain periods of its execution, and stand to benefit from the
exploitation of fine-grained parallelism.

In this paper, we present extensions to the current OpenMP task directive to
enable the specification of dependencies between tasks sharing the same parent.
A task waits only until the explicit dependencies as specified by the programmer
are satisfied, thereby enabling support for a dataflow model within OpenMP.
We apply the extensions on two algorithms, LU decomposition [6] and Smith-
Waterman [7] by replacing the taskwait barrier-type synchronizations with our
extensions, and demonstrate the performance improvement obtained over the
standard tasking versions. When comparing our results with those obtained us-
ing other dataflow models - OmpSs [8] and QUARK [16], we observed that the
versions using our task extensions delivered an average speedup of 2-6x. Our
approach is similar to the depend clause of task directive that is currently under
discussion in the OpenMP 4.0 release candidate [2]. We hope our experience
could provide a proof of concept of this feature, and also the solution to imple-
menting this feature in our compiler could be helpful for other implementers.

In the rest of the paper, Section 2 describes the motivation for supporting
task dependency. Section 3 discusses two relevant efforts that support the spec-
ification of task dependencies and introduces our approach. Section 4 provides
a brief description of the implementation in OpenUH runtime library. Section
5 presents the performance results. In Section 6, we briefly discuss the related
work, and Section 7 contains our conclusion and future work.

2 Motivation

In this section we introduce two algorithms and evaluate how their performance
may be improved when using point-to-point inter-task synchronizations.

2.1 LU Decomposition

LU decomposition is a widely used algorithm in solving a system of linear equa-
tions, matrix inversion or computing the determinant of a matrix. A typical
parallel implementation uses a blocking algorithm, which is illustrated in Figure
1. Each block, a submatrix, is being processed by an explicit task, and the data
dependencies of those tasks are denoted by red arrow lines. In every iteration, the
outermost diagonal block is factorized. After the factorization(F) of that block,
the execution of the swap(S) and triangular solve(TS) operations on all blocks
in the same column and row can be started. These blocks are updated in parallel
since there are no dependencies among them. Blocks of the inner blocks can be
updated with a matrix multiplication(M) operation as soon as their dependen-
cies are solved, and each of these inner M blocks is only dependent on their
corresponding S and TS blocks. In the absence of means of specifying explicit
dependencies between tasks, synchronization between the M and S/TS blocks
requires the use of taskwait constructs to maintain the dependence relationships,
as shown in Listing 1.1. Such an approach constrains the execution order of those

130 P. Ghosh et al.

tasks, that is, each of the M blocks has to wait for the completion of all the S
and TS blocks. Thus the algorithmic parallelism will not be fully exploited due
to the lack of this particular language feature.

1 # pragma omp parallel

2 {

3 #pragma omp master

4 {

5 for (i=0; i < matrix_size ; i++) {

6 /** Processing Diagonal block **/

7 ProcessDiagonalBlock (.....);

8
9 for (j=1;j<M;j++) {

10 /** Processing block on column **/

11 #pragma omp task

12 ProcessBlockOnColumn (.......);

13 /** Processing block on row **/

14 #pragma omp task

15 ProcessBlockOnRow (........) ;

16 }

17 #pragma omp taskwait /* global synchronization point */

18 /* Processing remaining inner block */

19 for (i=1;i<M;i++)

20 for (j=1;j<M;j++) {

21 #pragma omp task

22 ProcessInnerBlock (............) ;

23 }

24 #pragma omp taskwait

25 } // end of outer for loop

26 } // end of master region

27 } // end of parallel region

Listing 1.1. Tasking implementation for LU
decomposition

Fig. 1. Left: Diagram showing the existing data dependencies in a single iteration of
the LU kernel. Right:Pseudocode of LU decomposition algorithm implemented using
OpenMP tasks.

2.2 Smith-Waterman Algorithm

The Smith-Waterman algorithm is used primarily in the field of DNA and
protein sequencing to determine similarities between biomolecule sequences ac-
cording to a scoring system defined by a substitution matrix and gap penalty
function. It employs a dynamic computational matrix technique that makes
the algorithm more computationally intense, especially in the presence of data

Fig. 2. 2D wavefront of smith-
waterman algorithm [7]

dependencies which restrict it from scaling
well for parallel applications. Figure 2 repre-
sents the algorithm using 2D wavefront op-
erations. Updating an element in the matrix
requires updating the previous neighboring el-
ements, resulting in a computation that re-
sembles a diagonal sweep across the elements
in the logical plane. Each element in the scor-
ing matrix has three explicit dependencies on:
a) its immediate north neighbor, b) its im-
mediate west neighbor, and c) its immediate
north-west neighbor.

A Prototype Implementation of OpenMP Task Dependency Support 131

The computations start at the extreme upper-left corner of the matrix and a
gradual sweep moves along the diagonal down to the opposite corner. The diag-
onal represents the number of elements that could be executed in parallel. Hence
the individual elements on each diagonal are mutually independent of each other
and depend only on the respective neighboring elements from the previous two
diagonals. In a chunked (blocked) tasking implementation of the algorithm, the
presence of a taskwait introduces complexity in accessing elements belonging to
multiple diagonals at a given time. This means elements of any given diagonal
have to wait until all the elements of its previous diagonal have completed exe-
cution, even after their respective dependencies in the aforementioned diagonal
have been satisfied. This prevents the code from exploiting the maximum amount
of concurrency that is achievable, even in the presence of available resources.

3 Approaches to Handling Task Dependencies

OpenMP 4.0 release candidate 2 [2] introduced the depends clause for task direc-
tive for the purpose of specifying dependencies of asynchronous tasks, inspired
by several previous efforts. While these efforts all aim to achieve the same goal,
there are differences in both the language syntax and implementation details.

3.1 The OmpSs Programming Model

OmpSs (OpenMP SuperScalar) language and StarSs programming model devel-
oped by Barcelona Supercomputing Center [8] are the early efforts of defining
additions to the OpenMP standard to enable a dataflow representation in C
and C++ programs. It makes use of pragmas that define tasks with a set of
input, output, and inout parameters. With the addresses for expressions pro-
vided in these clauses as arguments, the dependence information is evaluated at
task creation time. Additionally, OmpSs currently supports array sections which
may completely overlap. OmpSs embodies the dataflow principles of execution
with the implementation of a task dependency graph at runtime, where tasks
are scheduled for execution as soon as all their predecessors in the graph have
finished (which does not mean they are executed immediately) or at creation if
they have no predecessors.

3.2 QUARK Runtime API

QUARK (QUeuing And Runtime for Kernels) [16] developed primarily at the
University of Tennessee, provides a runtime environment which enables the dy-
namic execution of tasks with data dependencies in a multi-core, multi-socket,
shared-memory environment. QUARK infers data dependencies and precedence
constraints among tasks from the way that the data is being used, and then
executes the tasks in an asynchronous, dynamic fashion in order to achieve a
high utilization of the available resources. Even though the main focus for the
development of the API was catered to support basic linear algebraic algorithms

132 P. Ghosh et al.

(BLAS) for the PLASMA [3] library, it is capable of supporting other data-driven
applications that can be decomposed into tasks with data dependencies. Paral-
lelization using QUARK relies on two steps: transforming function calls to task
definitions and replacing function calls with task queuing constructs. QUARK
was designed to embody the principle of a dataflow model in an easy-to-use in-
terface, and scheduling is based on data dependencies between tasks in a task
graph. It also enables built-in optimizations to obtain comparable performance
with respect to the static scheduler employed by the PLASMA library.

3.3 Extensions Implemented in OpenUH Compiler

The extensions we proposed in our OpenUH OpenMP compiler are syntactically
similar to other related efforts. Three clauses for the OpenMP task construct,
described in greater detail in [9], were introduced to allow the programmer to
express dependencies among sibling tasks of the same parent in an OpenMP
program. We apply the notion of “tags“, or task synchronizers among sibling
tasks. These “tags“ may be ideally expressed as a list of integral expressions
(as simple as a unique constant). If the programmer’s intent is to synchronize a
variable access, then this identifier may uniquely identify that variable (e.g. an
address). Listing 1.2 explains very briefly the functionality of the extensions:

– #pragma omp task out [t1,t2,....,tn] A generated task is denoted to have
“out” dependence if it compute’s variables required by succeeding tasks.

– #pragma omp task in [t1,t2,....,tn] A generated task is denoted to have “in”
dependence if it requires variables that have been computed previously.

– #pragma omp task inout [t1,t2,....,tn] Entails a task having an in and out
dependence on the same tag.

t1,t2,....,tn are arguments of integer expressions (which could be constants, ex-
pressions, variables, and addresses) denoting the tags as specified by the pro-
grammer. Using these extensions, programmers are able to specify dependencies
of either true(RaW), Output(WaW) or Anti(WaR) as seen in Figure 3.

In Figure 3, tasks T1 and T2 can be scheduled in parallel since they have
no prior unresolved dependencies. Tasks T3 and T4 have true dependencies on
tasks T1 and T2 (referenced by tags t3, t4 and t5 respectively) and can only be
scheduled after T1 and T2 have completed. Similarly, task T5 has a true and
output dependence based on tags t1 and t2 (with respect to task T1) respectively,
as well as an anti dependence on tag t3. Hence T5 shall be scheduled last. We
also observe in this instance that tasks 3 and 4 can be scheduled in parallel.
Details of the implementation of the extensions within the OpenUH OpenMP
runtime library are described in section 4.

3.4 Comparison

There are several differences of the above three approaches. Firstly, in OpenUH,
the actual specification of the dependencies among tasks (by the programmer
in the argument list associated with the extension) comprises of integer expres-
sions as compared to blocks of contiguous memory locations proposed by OmpSs.

A Prototype Implementation of OpenMP Task Dependency Support 133

TRUE ANTI OUTPUT

1 #pragma omp parallel

2 {

3 #pragma omp master

4 {

5 #pragma omp task out(t1) out(t2) out(t3) /* task 1 created

*/

6 x = f1();

7 #pragma omp task out(t4) out(t5) /* task 2 created */

8 y = f2();

9 #pragma omp task in(t3) in(t4) /* task 3 created */

10 v = f3();

11 #pragma omp task in(t5) /* task 4 created */

12 z = f4(v,y);

13 #pragma omp task in(t1) out (t2) out(t3) /* task 5 created

*/

14 w = f5(x,z)

15 }

16 }

Listing 1.2. sample code quoting the extensions
to the task construct.

Fig. 3. Left: Task graph of Listing 1.2. Right: example quoting the extensions described
in 3.3

Secondly, OmpSs constructs a task dependency graph (DAG) and maintains a
table data structure to store and manage the data dependencies among tasks,
whereas OpenUH employs only a tag table (unordered hash map) to account
for the same. Dependencies among tasks in OmpSs are expressed based on arbi-
trary accesses made to regions in memory which may pose challenges in terms
of implementation. The dynamic detection of overlapping dependent regions on
the fly and the resolution of such dependencies, at task level granularity may
introduce significant overheads at runtime. OmpSs offers expressivity in terms
of application of their proposed extensions, allowing programmers to specify de-
pendencies among tasks at program level with ease. However the specified array
sections must overlap in order to maintain the dependence. OpenUH alterna-
tively supports a lower level abstraction declaring dependencies more directly
with the use of virtual variables in the form of task tags. This simplifies the de-
tection of dependent tasks by matching their respective tags, thereby promoting
an easier implementation at runtime and incurring lesser overhead. In QUARK
however, the master thread is solely devoted to inserting the tasks, determining
their dependencies and queuing the tasks within the DAG and therefore, does
not participate in the actual execution of the tasks. All these dataflow model
implementations support a ready pool of tasks, containing tasks with resolved
or no dependencies, allowing worker threads to steal and execute the work.

4 Implementation of Extensions in OpenUH

The OpenUH compiler [4] is a branch of the Open64 compiler suite for C, C++,
Fortran 2003. OpenUH includes support for OpenMP 3.x tasks. This consists of
front-end support ported from the GNU C/C++ compiler, a back-end transla-
tion implemented jointly with Tsinghua University, and an efficient runtime task
scheduling infrastructure which holds support for improved nested parallelism.
Its implementation supports a configurable task pool framework that allows the

134 P. Ghosh et al.

user to adapt the runtime environment based on the needs of the applications.
For instance, for greater control over task scheduling, the programmer can choose
at runtime an appropriate task queue organization as well as control the order
in which tasks are added/removed from a task queue.

The efficiency of an OpenMP runtime implementation will heavily impact the
performance of application’s using tasks. An ideal task scheduler will schedule
tasks for execution in a way that maximizes concurrency and, therefore, perfor-
mance. We introduce a parent table (unordered hashmap) called the “tag” table
in the runtime which holds the dependencies associated among the tasks. If the
programmer does not specify any dependencies, the OpenUH runtime places a
newly created task immediately into a task pool, allowing it to be executed by
the next available thread.

(a) Addition of task 1 (b) Addition of task 2

(c) Addition of task 3 (d) Addition of task 4

Fig. 4. Addition of tasks to tag table at the time of task creation

However if dependencies are enforced, a task will be placed in the pool only
after its corresponding Dep Count is equivalent to zero. The Dep Count counter
is a parameter that indicates the number dependencies associated with that
task. The task is put on hold (in a WAIT state) until all its previous requisite
dependencies are resolved. Figure 4 illustrates the process of addition of tags to
the tag table at the time of task creation.

The dependencies specified by the programmer are individually associated
with a “tag”. Each tag holds a unique entry in the parent table as a hash key.
Its corresponding hash value is a linked list representation of all dependent tasks
sharing the same tag. At any time when a task’s Dep Counter reaches zero, it
has satisfied all its related dependencies and can now be placed in the task pool

A Prototype Implementation of OpenMP Task Dependency Support 135

for it to be scheduled. However, if the Dep Counter is not zero, it implies that
it has to wait for the subsequent dependent tasks to finish execution before it
could be placed on the task pool. Once a task is placed in the task pool it is
available for execution. Similarly tasks after execution need to be removed from
the tag table at the time of task deletion. Before the tasks are removed from
the table, it is essential that the Dep Counter of its subsequent dependent tasks
are updated accordingly, so that they may be scheduled for execution after their
dependencies has been resolved.

In the implementation of our extensions we avoid the frequent use of global
locks thereby eliminating waiting time for tasks created at runtime to access the
parent table. With the use of compare and swap operations we ensure atomic
access to shared resources at the time of task creation and task exit. We omit
further details of the implementation owing to space limitation and refer the
reader to [9].

5 Experimental Results

In this section we evaluate, in terms of performance, scalability and overhead
incurred, the extensions implemented in the OpenUH compiler for two algo-
rithms, LU decomposition and Smith-Waterman. The comparison was performed
with respect to a) the standard tasking versions on some commercial and open
source compilers and b) related dataflow model implementations, QUARK and
OmpSs. Performance results for the standard tasking version have been acquired
on the following compilers: GNU version 4.7.1, Intel version 12.0, OpenUH ver-
sion 3.0.27, PGI version 11.9, Sun/Oracle version 12.3, and OmpSs programming
model - Mercurium compiler with Nanos++ runtime system (1.3.5.8), with the
default scheduling policy. The version of QUARK we have used is 0.9.0.

5.1 Performance Analysis for LU Decomposition Algorithm

Our testbed for the following set of experiments comprises of an AMD Opteron
Processor 6174 with 48 cores - 63GB of main memory, L1 cache - 64KB, L2
cache - 512KB and last level cache, L3 of size 10MB.

Listing 1.3 below represents the pseudo-code for implementing the LU decom-
position algorithm using the OpenUH task extensions thereby eliminating the
need to apply the first taskwait, depicted in Line 17 of Listing 1.1. The flexibil-
ity of task execution in the hands of the programmer warrants the reduction of
overheads normally encountered (in the absence of the extensions), while having
to wait until all the tasks executing ProcessBlockOnColumn and ProcessBlock-
OnRow have concluded, prior to the execution of ProcessInnerBlock.

Figure 5(a) measures the speedup obtained by varying number of cores, with
16 blocks per dimension on a matrix of size 4096 X 4096. We observe that the
version implemented with the OpenUH task extensions scales well up to 24x
on a single core. Figure 5(b) measures the performance obtained by varying
the number of blocks per dimension (8,16,32 and 48), on 48 threads, wherein

136 P. Ghosh et al.

the matrices are partitioned into smaller blocks so that they could fit in mem-
ory registers and cache. This allows spatial locality to improve by increasing
reuse of the data in cache memory and can be acknowledged as a significant
memory optimization uplifting code performance. We observe improvement in
performance as we gradually increase the number of blocks per dimension. How-
ever, implementing 32 blocks per dimension degrades performance mainly due
to the creation of excessive tasks, adding additional overhead attributed to task
creation/deletion as well as task synchronization. Additionally by gradually de-
creasing the size of blocks we reduce the chances of achieving higher data reuse
causing the performance to suffer.

1 #pragma omp parallel
2 {
3 #pragma omp master
4 {
5 for (i=0; i<matrix_size; i++) {
6 /* Processing Diagonal block */
7 ProcessDiagonalBlock(.......);
8 for (j=1;j<M;j++){
9 /* Processing block on column */

10 #pragma omp task out(2*j)
11 ProcessBlockOnColumn(........);
12 /* Processing block on row */
13 #pragma omp task out(2*j+1)
14 ProcessBlockOnRow

(...................);
15 }
16 /* Processing remaining inner block

*/
17 for (i=1;i<M;i++)
18 for (j=1;j<M;j++){
19 #pragma omp task in(2*i) in(2*j+1)
20 ProcessInnerBlock(..............)

;
21 }
22 #pragma omp taskwait
23 }
24 }
25 }

Listing 1.3. LU decomposition
Algorithm using OpenMP tasks with
extensions implemented in OpenUH [15]

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 4 8 16 24 32 48

S
pe

ed
up

 V
s

1
th

re
ad

Number of threads

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN-Oracle
PGI

(a) Speedup for matrix size 4096 X 4096

with -O3 optimization

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

8 16 32 48

T
im

e
in

 s
ec

on
ds

Number of blocks per dimension

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN/Oracle
PGI

(b) Performance varying blocks per

dimension-matrix size 4096 with -O3 op-

timization with 48 threads

Fig. 5. Results obtained for LU decomposition on OpenUH with and without the use of
task extensions and with respect to the results obtained from standard tasking versions
on other compilers

Figure 6 allows us to make an assessment on how well OmpSs and QUARK
scale in comparison to OpenUH, with varying matrix sizes. With the increase in
size of input data, both OmpSs and QUARK show consistent improvement in
terms of scalability. In the case of OpenUH, where, with the application of the
extensions, we account for an average performance improvement of 20% (com-
pared to the version excluding the extensions), there is a subsequent degradation

A Prototype Implementation of OpenMP Task Dependency Support 137

in performance estimated close to an average 30%, observed for OmpSs. This
may be attributed to that fact that the master thread invests significant amount
of time in maintaining the task graph at runtime along with the overhead en-
countered by worker threads waiting for tasks to populate the ready pool [8]. We
observe that QUARK scales poorly as well for smaller data sizes and the drop
in scalability for large number of cores can be attributed to overhead incurred
due to use of broader thread mutex locks resulting in contention.

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 24 32 48

S
pe

ed
up

 V
s.

 1
 th

re
ad

Number of threads

OpenUH-with ext
OmpSs-with ext

QUARK
OpenUH-no ext
OmpSs-no ext

(a) matrix size 2048 X 2048

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8 16 24 32 48

S
pe

ed
up

 V
s.

 1
 th

re
ad

Number of threads

OpenUH-with ext
OmpSs-with ext

QUARK
OpenUH-no ext
OmpSs-no ext

(b) matrix size 4096 X 4096

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 2 4 8 16 24 32 48

S
pe

ed
up

 V
s.

 1
 th

re
ad

Number of threads

OpenUH-with ext
OmpSs-with ext

QUARK
OpenUH-no ext
OmpSs-no ext

(c) matrix size 6144 X 6144

Fig. 6. Scalability (measure of speedup Vs 1 thread) obtained across the three dataflow
model implementations by varying the number of threads for various matrix sizes, with
16 blocks per dimension

5.2 Performance Analysis for Smith-Waterman Algorithm

Our testbed for the following set of experiments comprises of a Dual Intel Ne-
halem - E5520 processor with 16 cores. 32GB of total memory capacity, L1 cache
32K, L2 cache 256K and an L3 cache of 8MB.

 0

 2

 4

 6

 8

2 4 8 16

T
im

e
in

 s
ec

on
ds

Number of Threads

Intel
GNU

OpenUH-without ext
OpenUH-with-ext

SUN-Oracle
PGI

(a) Performance for sequence size 4096

with -O0 optimization

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 4 8 16

T
im

e
in

 s
ec

on
ds

Number of Threads

Intel
GNU

OpenUH-without ext
OpenUH-with-ext

SUN-Oracle
PGI

(b) Performance for sequence size 8192

with -O2 optimization

Fig. 7. Performance results (in seconds) for Smith-Waterman kernel with varying num-
ber of threads. We compare the results obtained on OpenUH with and without the task
extensions and with respect to the results obtained from standard tasking versions on
other compilers.

Figures 7(a) and 7(b) present the performance obtained for sequences of size
4096 and 8192, with -O0 and -O2 levels of optimization respectively, for a stan-
dard tasking version of the Smith-Waterman kernel where tasks have been cre-
ated as chunks of 320 and 512 per diagonal. The version with the OpenUH task

138 P. Ghosh et al.

extensions outperforms the version without the use of the extensions by a factor
of 6x. This improvement is attributed to the use of less constrained synchroniza-
tion, allowing tasks to execute as soon as their respective dependencies have been
satisfied. This performance is consistent even when tested with -O0 optimiza-
tion validating that the improvement observed is due to the elimination of the
taskwait, and without the interference of any other optimizations. Another obser-
vation suggests none of the compilers produce scalable results beyond 8 threads.
This is attributed to the memory bound nature of the application, wherein tasks
being very fine grained add additional overhead of task scheduling.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

2 4 8 16

T
im

e
in

 s
ec

on
ds

Number of threads

OpenUH-with ext
OmpSs-with ext

QUARK
OpenUH-no ext
OmpSs-no ext

(a) Sequence size 4096, chunk 320, -O0 opti-

mization

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

2 4 8 16

T
im

e
in

 s
ec

on
ds

Number of threads

OpenUH-with ext
OmpSs-with ext

QUARK
OpenUH-no ext
OmpSs-no ext

(b) Sequence size 8192, chunk 512, -O2 opti-

mization

Fig. 8. Performance comparison amongst the dataflow models (in seconds)

Figures 8(a) and 8(b) perform a comparative analysis based on the perfor-
mance obtained from the three dataflow model implementations, across varying
number of threads for sequences of size 4096 and 8192 tested with task chunk
sizes 320 and 512 with -O0 and -O2 optimizations respectively. For both test
cases, we observe that OpenUH has the overall better performance. We argue
that avoiding the frequent use of global lock operations, eliminates waiting time
for tasks created at runtime attempting to access the tag table, thereby achiev-
ing higher scalability. The overhead incurred by OmpSs may be attributed to
difficulty encountered by the runtime, in computing task dependencies and at-
tending to finished tasks fast enough, (owing to the fine grained nature of the
tasks) in order to keep all cores busy [5]. The drop in performance for QUARK
is attributed to the fact that the master thread, which does not participate in
computation, spends cycles tracking dependencies among fine grained tasks in a
memory bound kernel. QUARK being sensitive to task size generates overhead
at the runtime when tasks are too fine grained and the switching time between
ready tasks is very short [10].

6 Related Work

Other than the OmpSs and QUARK presented in Section 2, data-driven tasks
(DDT) have been widely advocated by researchers to replace the use of po-
tentially expensive global barriers [13]. Some of these efforts rely on compiler
transformation to decompose data parallel computations into tasks with depen-
dencies, and to achieve higher degree of overlap and concurrency between these

A Prototype Implementation of OpenMP Task Dependency Support 139

tasks [14]. Other extension to task parallelism, described as data-driven futures
(DDFs) in [12], allows users to create write-once tags as input and output events
that could trigger other tasks. The write-once restriction, same as in the Intel
Concurrent Collection [1] programming model for data-flow parallelism, simplify
the programming logic and algorithms reasoning, as well as the runtime imple-
mentations, but may introduce overheads when handling a large number of tags
requiring multiple read/write.

The standardization of the task dependency model in OpenMP represents
a major step toward its adoption from research community to applications in
real world. We believe our work and other related efforts have demonstrated its
effectiveness and usability toward this direction.

7 Conclusions and Future Work

In this paper we highlighted extensions implemented in the OpenUH OpenMP
compiler and runtime library to support a dependence-based synchronization
which resembles a dataflow model of execution. These extensions enable sim-
ple and intuitive expression of data driven algorithms that rely especially on
patterns such as pipeline processing and wavefront propagation. Experiments
conducted on the LU decomposition and Smith-Waterman algorithms, exhib-
ited an improvement in performance by a average factor of 2x and 6x respec-
tively, in comparison to the the standard tasking versions. On comparing the
performance against related dataflow models, OmpSs and QUARK, we observed
OpenUH achieved better performance. This is attributed to the reduction in task
synchronization and scheduling overheads when dealing with larger input data
sizes. Additionally with limited global lock operations it incurs minimal overhead
at runtime thereby providing scope for achieving higher scalability.

As future work we would like to extend support for the specification of the
extensions in Fortran. We also wish to extend our implementation of such data
driven algorithms in the direction of a distributed memory environment.

Acknowledgments. This work was supported in part by the National Sci-
ence Foundations Computer Systems Research program under Award No. CCF-
0833201 and Department of Energy under Award Agreement No. DE-FC02-
12ER26099. The evaluation platform used for for this work was supported by
the National Science Foundation’s Computer Systems Research program under
Award No. CNS-0833201 and CRI-0958464. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation or the
Department of Energy. We would also like to thank Sayan Ghosh for reviewing
our paper. Our appreciations also went to Elkin Garcia and Professor Guang R.
Gao who provided us the sequential version of the LU program.

References

1. Intel Concurrent Collections,
http://software.intel.com/en-us/

articles/intel-concurrent-collections-for-cc/

http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/

140 P. Ghosh et al.

2. OpenMP 4.0 release candidate 2,
http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf/

3. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: The
plasma and magma projects. In: Journal of Physics: Conference Series. vol. 180,
p. 012037. IOP Publishing (2009)

4. Chapman, B., Eachempati, D., Hernandez, O.: Experiences developing the openuh
compiler and runtime infrastructure. International Journal of Parallel Program-
ming, 1–30 (2012)

5. Dallou, T., Juurlink, B.: Hardware-based task dependency resolution for the starss
programming model. In: 2012 41st International Conference on Parallel Processing
Workshops (ICPPW), pp. 367–374. IEEE (2012)

6. Desprez, F., Domas, S., Tourancheau, B.: Optimization of the scalapack lu fac-
torization routine using communication/computation overlap. In: Euro-Par 1996
Parallel Processing, pp. 1–10. Springer (1996)

7. Dios, A.J., Asenjo, R., Navarro, A., Corbera, F., Zapata, E.L.: Evaluation of the
task programming model in the parallelization of wavefront problems. In: 2010
12th IEEE International Conference on High Performance Computing and Com-
munications (HPCC), pp. 257–264. IEEE (2010)

8. Duran, A., Perez, J.M., Ayguadé, E., Badia, R.M., Labarta, J.: Extending the
openMP tasking model to allow dependent tasks. In: Eigenmann, R., de Supinski,
B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 111–122. Springer, Heidelberg
(2008)

9. Ghosh, P., Yan, Y., Chapman, B.: Support for dependency driven executions among
openmp tasks. In: Workshop on Data-Flow Execution Models for Extreme Scale
Computing (DFM 2012) in conjunction with PACT (September 2012)

10. Haidar, A., Ltaief, H., Luszczek, P., Dongarra, J.: A comprehensive study of task
coalescing for selecting parallelism granularity in a two-stage bidiagonal reduction.
In: 2012 IEEE 26th International Parallel & Distributed Processing Symposium
(IPDPS), pp. 25–35. IEEE (2012)

11. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and miti-
gating work time inflation in task parallel programs. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2012, pp. 65:1–65:12. IEEE Computer Society Press, Los Alamitos
(2012)

12. Taşırlar, S., Sarkar, V.: Data-Driven Tasks and their Implementation. In: Proceed-
ings of the International Conference on Parallel Processing (September 2011)

13. Vajracharya, S., Karmesin, S., Beckman, P., Crotinger, J., Malony, A., Shende,
S., Oldehoeft, R., Smith, S.: Smarts: Exploiting temporal locality and parallelism
through vertical execution. In: Proceedings of the 13th International Conference
on Supercomputing, pp. 302–310. ACM (1999)

14. Weng, T.H.: Translation of OpenMP to Dataflow Execution Model for Data locality
and Efficient Parallel Execution. PhD thesis, Department of Computer Science,
University of Houston (2003)

15. Yan, Y., Chatterjee, S., Orozco, D.A., Garcia, E., Budimlić, Z., Shirako, J., Pavel,
R.S., Gao, G.R., Sarkar, V.: Hardware and software tradeoffs for task synchro-
nization on manycore architectures. In: Jeannot, E., Namyst, R., Roman, J. (eds.)
Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 112–123. Springer, Heidelberg (2011)

16. YarKhan, A., Kurzak, J., Dongarra, J.: Quark users guide: Queueing and runtime
for kernels. University of Tennessee Innovative Computing Laboratory Technical
Report ICL-UT-11-02 (2011)

http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf/

An Efficient OpenMP Loop Scheduler for Irregular
Applications on Large-Scale NUMAMachines

Marie Durand1, François Broquedis2, Thierry Gautier1, and Bruno Raffin1

1 INRIA
2 Grenoble Institute of Technology

MOAIS Team, Computer Science Laboratory of Grenoble, France
marie.durand@inria.fr, françois.broquedis@imag.fr,
thierry.gautier@inrialpes.fr, bruno.raffin@inria.fr

Abstract. Nowadays shared memory HPC platforms expose a large number of
cores organized in a hierarchical way. Parallel application programmers strug-
gle to express more and more fine-grain parallelism and to ensure locality on
such NUMA platforms. Independent loops stand as a natural source of paral-
lelism. Parallel environments like OpenMP provide ways of parallelizing them
efficiently, but the achieved performance is closely related to the choice of pa-
rameters like the granularity of work or the loop scheduler. Considering that both
can depend on the target computer, the input data and the loop workload, the
application programmer most of the time fails at designing both portable and ef-
ficient implementations. We propose in this paper a new OpenMP loop scheduler,
called adaptive, that dynamically adapts the granularity of work considering the
underlying system state. Our scheduler is able to perform dynamic load balancing
while taking memory affinity into account on NUMA architectures. Results show
that adaptive outperforms state-of-the-art OpenMP loop schedulers on memory-
bound irregular applications, while obtaining performance comparable to static
on parallel loops with a regular workload.

Keywords: OpenMP, NUMA, loop scheduling, runtime systems.

1 Introduction

Large-scale multicore platforms are commonly used by the HPC community. They ex-
pose a constantly-growing number of cores organized in a hierarchical way, leading
to large-scale NUMA machines. To exploit them at their full potential, the applica-
tion programmer needs to express massive fine-grain parallelism while taking memory
affinity into account. Applications exposing irregular workloads are really difficult to
execute efficiently on such platforms, as they require to deal with both load balancing
and memory locality.

OpenMP [17], the de-facto standard for shared memory parallel programming, pro-
vides the programmer with high-level constructs to ease the parallelization of serial ap-
plications. The parallel loop certainly remains the most widely used OpenMP construct,
allowing to easily parallelize loops with independant iterations. The end-user can con-
trol the way loop iterations are assigned to OpenMP threads by invoking OpenMP loop
schedulers. Choosing the best scheduler for a specific parallel loop can be a difficult

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 141–155, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

142 M. Durand et al.

task to perform in a portable way [1]. The application programmer is also responsible
for defining the granularity of work within the loop, using the chunk_size clause.

While being designed to tackle loops with irregular workloads, the OpenMP
dynamic scheduler suffers from two main issues on large-scale NUMA machines.

First, defining a chunk size from the application level that achieves both high and
portable performance has never been so difficult. Indeed, parallel loops with big chunks
may suffer from load imbalance, while the ones with smaller chunks are more sensitive
to runtime-related overheads which are getting more and more noticeable as the number
of cores per NUMA node increases.

Second, traditional techniques to increase the performance of memory bound appli-
cations, like guiding the data allocation on the different NUMA nodes of the platform,
are useless using dynamic scheduling, as the assignment of loop iterations to OpenMP
threads is non-deterministic.

We introduce in this paper a new loop scheduler, called adaptive, that outperforms
state-of-the-art loop schedulers when executing memory bound irregular applications.
In particular, our loop scheduler:

1. dynamically adapts the granularity of work within parallel loops according to the
machine resources utilization,

2. relies on data placement information to guide load balancing on NUMA platforms.

The remainder of the paper is organized as follows. We first describe the related
work on loop scheduling over NUMA architectures in section 2. Then we introduce
the adaptive loop scheduler and the way we implemented it inside the LIBGOMP li-
brary in sections 3 and 4. Eventually, we report the performance we obtained on several
benchmarks and applications in section 5 before concluding.

2 Related Work

Many research projects have been carried out to improve execution of OpenMP appli-
cations on NUMA machines.

The HPCTools group at the University of Houston has been working in this area
for a long time, proposing compile-time techniques that can help improving memory
affinity on hierarchical architectures like distributed shared memory platforms [13].
Huang et al. [10] proposed OpenMP extensions to deal with memory affinity on NUMA
machines, like ways of explicitly aligning tasks and data inside logical partitions of
the architecture called locations. While the proposed extension is interesting to deal
with regular memory-bound applications, it does not tackle the problems induced by
irregular workloads.

Olivier et al. [16,15] introduced node-level queues of OpenMP tasks, called local-
ity domains, to ensure tasks and data locality on NUMA systems. The runtime system
does not maintain affinity information between tasks and data during execution. Data
placement is implicitly obtained considering that the tasks access memory pages that
were allocated using the first-touch allocation policy. The authors thus ensure local-
ity by always scheduling a task on the same locality domain, preventing application
programmers to experiment with other memory bindings.

An Efficient OpenMP Loop Scheduler for Irregular Applications 143

The INRIA Runtime group at the University of Bordeaux proposed the ForestGOMP
runtime system [2] that comes with an API to express affinities between OpenMP paral-
lel regions and dynamically allocated data. ForestGOMP implements load balancing of
nested OpenMP parallel regions by moving branches of the corresponding tree of user-
level threads on a hierarchical way. Memory affinity information is gathered at runtime
and can be taken into account when performing load balancing. Our work extends this
approach to deal with parallel loops while ensuring load balancing in a different way.

Mahéo et al. [12] used similar techniques to speed up hybrid MPI/OpenMP synchro-
nizations on hierarchical architectures, including NUMA machines. Both our work and
theirs build upon the same concepts and can be stated as complementary.

Subramanian and Eager [18] introduce an affinity loop scheduler for unbalanced
workload. They study iterative applications involving series of parallel loops in which
"the execution times of any particular iteration do not vary widely from one execution of
the loop to the next"[18]. Their proposition is based upon a two-phase algorithm: first,
the iterations are equally divided between the processors; then the scheduler dynami-
cally adapts the workload by making idle processors steal a constant fraction (1/P) of
the remaining iterations from occupied ones. In [21], Yong et al. extends the work of
Subramanian and Eager by providing new ways of adapting the workload considering
an history of previous executions of a particular parallel loop.

Taking advantage of the temporal coherency of the simulation is a very interesting
idea but cannot be used in all situations. For instance, it would not be effective on appli-
cations involving several parallel loops with varying workloads, like the PMA applica-
tion we used to evaluate our adaptive loop scheduler. The first phase of our scheduling
strategy is similar to the one introduced by Subramanian et al., as adaptive equally
pre-distributes the loop iterations over the processors, which is a compromise between
balancing the workload of the loop and preserving the affinity across several executions
of the same loop. However, the second phase of our algorithm is different from the
one implemented by Subramanian’s adaptive loop scheduler. Indeed, adaptive relies on
a work-stealing algorithm [8] in which idle processors steal half of the remaining it-
erations from a randomly-selected victim. With such an approach, our adaptive loop
scheduler does not require to maintain a global view of the workloads associated to
each processor, unlike proposition [18].

3 Introducing the Adaptive Loop Scheduler

The OpenMP programmer can rely on two main loop schedulers to specify the way
loops iterations should be assigned to threads. The first one, called static, statically
assigns fixed portions of work in a round-robin fashion. This scheduler behaves well
on loops with a regular workload and is often used in the context of NUMA architec-
tures, along with the first-touch allocation policy, to maximize memory locality. The
second one, called dynamic, makes OpenMP threads steal fixed portions of work from
a centralized queue. This scheduler behaves better than static on loops with an irreg-
ular workload. However, dynamic is seldom used on NUMA architectures because of
its non-deterministic behavior, preventing the programmer from controlling memory
locality.

144 M. Durand et al.

The loop scheduler we propose goes beyond those two, providing ways of balancing
the load of irregular loops while respecting memory locality. This section first intro-
duces the main scheduling algorithm provided by our adaptive loop scheduler before
presenting the way we extended it to deal with memory locality on NUMA machines.

3.1 Designing an OpenMP Loop Scheduler with Adaptive Granularity

Dealing with irregular parallel applications requires efficient runtime-level functional-
ities to perform dynamic load balancing with the lowest overhead possible. OpenMP
application programmers can rely on the dynamic loop scheduler to execute loops with
irregular workload, as long as they manage to specify a chunk size that achieves good
performance. Indeed, a too small chunk size will increase the time spent inside the run-
time system, while a too coarse chunk size will limit the potential parallelism and the
ability to balance the work load.

We adopted a different approach implementing our adaptive scheduler. We relieve
the application programmer from statically deciding the granularity of work which can
lead to non-portable solutions. Instead, we consider work-stealing as an oblivious tech-
nique to dynamically balance the load on the threads of the corresponding OpenMP
parallel region.

(a) Initial distribution of the
iteration space.

(b) T3 has completed its
range and starts stealing.

(c) T3 stole half of the re-
maining iterations of T1.

Fig. 1. Illustration of adaptive loop scheduling on a 256-iterations loop with irregular workload
executed on 4 threads. Darker color means higher workload.

We broke the vision of centralized work used by the state-of-the-art OpenMP loop
scheduler to introduce a per-thread data structure describing the range of iterations as-
signed to each thread. Figure 1 illustrates the behavior of our adaptive scheduler on a
synthetic example. Considering a loop of imax iterations executed by nthr threads, the
scheduler first assigns imax / nthr iterations to each thread, like presented on figure 1a.
This initial behavior allows our scheduler to achieve performance that is comparable to
static on loops with regular workload. Even if every thread has the same number of it-
erations to execute here, the associated workload is different: the 64 iterations of thread
T3 have shorter execution times than the ones assigned to T2 for example. This leads to
load imbalance: at some point of the execution of the loop, thread T3 will be starving
like showed on figure 1b. T3 will then trigger adaptive’s work-stealing algorithm which
steals half of the remaining iterations of a loaded thread.

An Efficient OpenMP Loop Scheduler for Irregular Applications 145

iter_adaptive_next:
1 if (try_local_work (&begin, &end) == true)
2 return (begin, end);
3
4 /* We’ve completed our previously-assigned range,
5 let’s try to steal some new work! */
6 while (!loop_is_finished()) {
7 victim = pick_random_victim ();
8 if (steal_from_victim (victim, &begin, &end) == true)
9 return (begin, end);
10 }

steal_from_victim:
11 if ((victim->end-victim->begin)>0){
12 lock (victim);
13 chunk_size

=(victim->end - victim->begin)/2;
14 end = victim->end - chunk_size;
15 victim->end = end;
16 if (end <= victim->begin) {

/* rollback and abort */
17 victim->end = end + chunk_size;
18 unlock (victim)
19 return false;
20 }
21 begin = end;
22 end = begin+chunk_size;
23 unlock (victim);
24 return true;
25 }
26 return false;

try_local_work:
27 begin = own->begin +1;
28 own->begin = begin;
29 if (begin < own->end) {
30 end = begin;
31 begin = end - 1;
32 return true;
33 }
34 /*conflict detected: rollback and lock*/
35 own->begin = begin-1;
36 lock (self)
37 begin = own->begin;
38 if (begin < own->end)
39 end = own->begin = begin + 1;
39 unlock (self);
40 if (begin < own->begin) return true;
41 return false;

Fig. 2. Pseudo-code of the adaptive loop scheduler. The implementation extends the THE protocol
by stealing more than one item at each steal operation.

The algorithm1 called to select the next chunk of iterations to execute is summarized
on figure 2. Most importantly, our approach deals with dynamic per-thread chunk sizes,
as shown on line 13 of this pseudo-code. The amount of work a thread will steal depends
on the amount of work its victim still has to execute, unlike the dynamic scheduler in
which the chunk_size is statically defined and cannot change during execution.

Unlike [18,21] in which a constant fraction of the work (1/P) is removed from
the most loaded processor, the random selection of the work-stealing algorithm does
not suffer from maintaining the global state of the workloads associated to processors.
Moreover, it is possible to derive theoretical performance guarantee of scheduling par-
allel loop with work stealing [20]. Frigo et al. [8] introduced two main metrics to model
the performance of work-stealing-based algorithms: theworkW , i.e. the time to sequen-
tially execute the loop, and the depth D, also called the critical path, i.e. the execution
time on an infinite number of processors.

Considering these metrics, the average completion time of the parallel loop is
O(W/P + D). If the work is W =

∑n−1
i=0 wi, where wi is the work associated to

the i-th iteration, then D = O(log n+max{wi}).
3.2 Extending the Adaptive Scheduler to Deal with Locality
Ensuring memory locality is crucial to achieve good performance on NUMA archi-
tectures. We extended the adaptive scheduler in order to benefit from shared memory

1 If the memory consistency is not sequential, memory barriers have to be inserted between lines
15-16 and 28-29.

146 M. Durand et al.

/* get the number of locality domains of a parallel region */
#pragma omp parallel
#pragma omp master

printf("Number of locality domains = %i\n",
omp_get_num_locality_domains());

/* sample of the modified STREAM benchmark with the adaptive
scheduler and bloc memory distribution on locality domains */

#pragma omp parallel
#pragma omp master

a = (double*)omp_locality_domain_allocate_bloc1d(
sizeof(double)*STREAM_ARRAY_SIZE+OFFSET);

Fig. 3. Code sample using our extended OpenMP runtime APIs

banks of NUMA multicore machines. This is done at two levels. First, we make the
cores attached to the same memory bank work on contiguous iterations. This step is
useful to abstract the OS identification of cores that may not be contiguous on a NUMA
node. adaptivemakes idle threads steal work from cores that belong to the same NUMA
node. Thanks to this strategy, a successful steal will hopefully reduces the number of
remote memory transfers. Moreover, this local steal strategy may not be enough to bal-
ance the workload among all the cores. That is why, if the number of unsuccessful steal
operations reaches a threshold, the idle thread emits a steal request to a victim randomly
selected over the whole machine.

The second feature is to provide ways of distributing the application data over
the NUMA nodes. Our extension of the libGOMP library comes with APIs to dis-
tribute data as proposed in MAMI [4], implementing bloc and bloc-cyclic data dis-
tributions as runtime extensions. For now, we only support data distribution within par-
allel regions where the participating threads are bound to cores, for example using the
GOMP_CPU_AFFINITY environment variable. As in [10,16,15], we refer to NUMA
nodes as locality domains.

omp_get_num_locality_domains() : returns the number of locality domains holding
threads from the current OpenMP parallel region.

omp_get_locality_domain_num() : returns the locality domain of the running thread.
omp_locality_domain_allocate_bloc1dcyclic (size, blocsize) : allocates an array of

size bytes in a blocsize-cyclic distribution over the locality domain of the
parallel region.

omp_locality_domain_allocate_bloc1d (size) : allocates an array of size bytes us-
ing a bloc distribution over the locality domain of the parallel region.

These routines performs allocation following the OS constraints: sizes are rounded up
to a multiple of page size. If the OS does not support NUMA allocation routines, the
implementation triggers calls to the libc’s malloc function.

Figure 3 illustrates the use of the runtime APIs we propose. In order to allow reuse of
memory mapping across parallel regions, we ensure that the i − th thread of a parallel
region will be bound to the same core across parallel regions if and only if the following
parallel regions have the same size and are nested in the same parallel region or are at
the top level.

An Efficient OpenMP Loop Scheduler for Irregular Applications 147

3.3 Discussion

Defining the best granularity of work is certainly one of the most difficult challenge a
parallel application programmer has to face to exploit HPC platforms at their full poten-
tial. For example, the best chunk_size for a specific OpenMP loop may depend on the
target architecture and the input data of the parallel application. In other words, applica-
tion programmers have to consider the underlying system state to specify the granularity
that will achieve the best performance. This is an old problem for the OpenMP commu-
nity: defining the right number of threads, the right level of nested parallel regions and
the right chunk size for parallel loops are a few examples of the many crucial steps to
achieve good performance and scalability.

The addition of tasks to the OpenMP standard provides new ways of expressing par-
allelism with a finer granularity. One can consider tasks as another way of dealing with
irregular workload, as tasks can move from one OpenMP thread to another to perform
load balancing. However, tasks will not solve the problem of granularity, as defining the
right number of tasks can be challenging, as studied in our previous work [3].

Our proposal introduces a runtime-level approach to deal with granularity and has
been implemented inside a loop scheduler. The same approach could be applied to task
parallelism as well, considering ways of splitting OpenMP tasks when necessary. Our
group has carried out research in this context [19] that could be extended to OpenMP.
The application programmer could provide functions to split a running task into smaller
ones, similarly to the way our adaptive loop scheduler splits ranges of iterations. This
idea was applied to more general iterative algorithms where dependencies may exist
between iterations [20].

4 Implementation Details on Extending libGOMP with Adaptive
Loop Scheduling

We implemented our adaptive loop scheduler inside the original LIBGOMP library that
comes with GCC 4.6.2. Our loop scheduler can be experimented with parallel loops
stated as schedule(runtime) by setting the OMP_SCHEDULE environment vari-
able to "adaptive,chunk_size" before running the application. This allows us to
experiment with our proof-of-concept implementation without modifying the compiler.

The implementation (figure 2) of the stealing mechanism used in the adaptive loop
scheduler is greatly inspired from Cilk’s THE algorithm [8] designed to limit the per-
turbation of the serial execution from stealing-related overheads. Unlike other OpenMP
loop schedulers, adaptive uses a per-thread data structure describing the range of itera-
tions assigned to the considered thread. This structure basically contains the boundaries
of this range ([begin, end)) and an atomic-based lock used to synchronize the stealing
thread and its victim. Each thread pops chunk_size iterations to execute out of its own
range (begin += chunk_size), until there are no more iterations left (begin == end).
Stealing a range of iterations from a busy thread is simply a matter of shrinking the
end bound of the victim’s data structure down to end - N, N being the number of itera-
tions we want to steal. The THE algorithm uses an optimistic approach to minimize the
need for a thread to lock its own data structure on a pop operation. This can be done

148 M. Durand et al.

Table 1. Overhead measured by EPCC benchmark (in μs) of the adaptive loop scheduler versus
static, dynamic and guided on the AMD48 platform.

chunk size 1 2 4 8 16 32 64 128

static 30.44 28.20 25.97 25.03 24.40 24.50 24.18 24.50
dynamic 1328.43 594.30 232.61 75.43 36.29 35.20 34.02 33.21
guided 77.86 69.49 55.55 45.47 42.90 43.16 58.66 30.54

adaptive 55.92 50.74 48.26 47.72 47.69 47.97 48.90 49.44

adaptive (no steal) 30.29 27.48 25.67 24.48 25.21 24.48 24.16 23.23

by detecting conflicting accesses to the same data structure, by comparing the value of
end before and after the pop operation. If the value has changed, someone accessed the
data structure during the pop: the thread will then undo this last pop and acquire the
lock before trying again. Such implementation greatly minimizes the overhead added
to threads performing local work (Cilk’s work first principle [8]).

The memory binding routines rely on libNUMA and the mbind system call. The
current prototype was developed on Linux. libGOMP maintains a pool of threads
(gomp_thread and gomp_thread_pool) attached to each parallel region. We ex-
tended the data structures in order to maintain simple per-thread NUMA-related infor-
mation, like the core id, the NUMA node id and a list of threads per NUMA node that
can be used by the adaptive scheduler to select a victim. Based on this information, the
scheduler initializes of per-loop data structure to balance the iterations over the NUMA
nodes taking the number of cores per NUMA node into account.

5 Performance Evaluation

We conducted our experiments on two different ccNUMA configurations.
The first one holds 8 AMD Magny Cours processors for a total of 48 cores. Each

core has access to 64 KB of L1 cache, 512 KB of L2 cache. Both L1 and L2 caches are
private, while L3 cache is shared between the 6 cores of a processor. This configuration
provides a total of 256 GB (32 GB per NUMA node) of main memory. We will refer to
this configuration as AMD48 in the following of the paper.

The second configuration holds 12 groups containing two Intel Sandy Bridge proces-
sors each for a total of 192 cores. 32 GB of main memory is attached to each socket, for
a total of 768 GB. Inter-groups communications use the SGI NUMAlink technology,
while standard Intel QuickPath interconnect provides inner-group communications. We
will refer to this configuration as Intel192 in the following of the paper.

All experiments were performed with the libGOMP library distributed with GCC
4.6.2.

5.1 EPCC: Overhead of the Adaptive Loop Scheduler

The EPCC benchmark [5] reports runtime-related overheads when performing OpenMP
loop scheduling with respect to the corresponding serial execution. The measured over-
heads of the four loop schedulers are reported in table 1 for different chunk sizes.

An Efficient OpenMP Loop Scheduler for Irregular Applications 149

A larger chunk size implies less calls to the runtime and thus a smaller overhead.
Reported measures reported represent the average performance over 10 runs. The lib-
GOMP implementation of both the dynamic and the guided schedulers suffer from a
high overhead for the three smallest chunk size values tested in this experiment.

The adaptive scheduler adds an extra overhead to 25μs with respect to the static
scheduler. By disabling the steal operations from the adaptive scheduling algorithm,
we are able to provide finer estimation of the overheads. The performance of this mod-
ified scheduler, named adaptive (no steal) in the table, reports no overhead induced by
the initial work distribution over the static scheduler. We can thus infer that an extra
25μs includes the overheads of the work-stealing operations and the detection of the
termination.

Obviously, our code is not as optimized as the other scheduler implementations from
libGOMP. We will add some optimizations (memory alignment of data structures, lazy
initialization) to reduce overheads, and we believe that those may improve the perfor-
mance of all libGOMP schedulers as well.

5.2 STREAM: Impact of the Memory Hierarchy

The STREAM benchmark [14] measures the maximal achievable bandwidth over four
memory bound kernels (copy, scale, add and triad). We evaluated the behavior
of the static and the adaptive schedulers with two memory allocation strategies: a first-
touch strategy and an explicit bloc distribution of the arrays over the 8 NUMA nodes of
the AMD48 platform using the API presented in section 3.2 . The memory per array is
150.0MB and the number of iterations is set to 500. Measures are reported in table 4a.

static adaptive
first- bloc first- bloc
touch touch

Copy 6.9 6.9 6.4 6.8
Scale 6.7 6.8 6.2 6.7
Add 7.2 7.4 6.8 7.3
Triad 6.9 7.5 6.6 7.4

(a) Achieved bandwidth
(GB/s) reported by the
STREAM benchmark for
the static and adaptive loop
schedulers.

(b) Number of steal operations with the adaptive scheduler
with and without bloc memory allocation.

Fig. 4. Performance evaluation of the STREAM benchmark on the AMD48 platform

150 M. Durand et al.

On the Triad kernel, the bloc allocation strategy increases the performance of at most
7% with the static scheduler and of at most 12% with the adaptive scheduler. The two
schedulers reach comparable performances on this highly regular benchmark, with a
slight advantage for static over adaptive.

This difference comes from the steal operations performed by the adaptive scheduler.
Figure 4b shows the average number over 500 iterations of successful steal requests per
core. We can see that the adaptive scheduler with the NUMA-aware extension taking
the memory distribution into account helps reducing the number of steal operations.

On this memory-intensive benchmark, adaptive is able to reach performances that
are similar to static as the load balancing strategy first conside the cores from the same
NUMA node to perform work-stealing, thus favoring memory locality on such archi-
tectures.

(a) Execution time, in CPU cycles, of each iteration of the
kmeans kernel main loop on a single core of the Intel192
platform.

(b) Average performance of different OpenMP loop
schedulers for varying values of chunk_size on the In-
tel192 platform.

Fig. 5. Performance evaluation of the K-Means benchmark on the Intel192 platform

An Efficient OpenMP Loop Scheduler for Irregular Applications 151

Table 2. Comparison of the four loop schedulers on PMA on the AMD48 platform

Time in static dynamic dynamic guided adaptive
ms chunk=1 chunk=3000

numactl 17.8 57.4 12.1 15.2 11.6

bloc distribution 16.3 57.2 14.2 14.9 6.95

5.3 K-Means: Benefits of Adaptive Granularity for OpenMP Loops

We evaluated the adaptive loop scheduler with the OpenMP version of the K-Means
kernel coming from the Rodinia benchmark suite [6]. This kernel implements a cluster-
ing algorithm commonly used by data-mining applications. Its parallel implementation
involves an OpenMP parallel loop with an irregular workload.

Figure 5a reports the execution times of each one of the 494020 iterations of this
loop executed on a single core of the Intel192 platform. We can distinguish at least
two main classes of iterations on this figure with different execution times, but we can
only consider this as a rough source of information, as the execution times of the same
iterations may vary when executing them in parallel, depending for example on the
capacity of threads to efficiently communicate through shared cache memory.

The results obtained running this kernel with the adaptive scheduler confirms K-
Means can benefit from dynamic load balancing. Figure 5b shows a performance com-
parison between the adaptive, static, dynamic and guided schedulers on the K-Means
kernel. We experimented with different values for the chunk_size clause of the for loop.
These tests were executed on the 192 cores of the Intel192 platform. We tested every
value of chunk_size from 1 to 2574, corresponding to imax / nthr here. The best perfor-
mance is achieved by our scheduler. adaptive performs especially well for executions
with small chunk sizes, as they offer more options to perform load balancing. We can
also note that, even if the workload of this kernel is irregular, the best performance of
the dynamic scheduler can almost be achieved by static for a tuned value of chunk_size.

5.4 PMA: Dealing with Both Load Balancing and Locality

We applied our adaptive loop scheduler to a practical situation in physical simulations
considering elements of a 3D space that evolve with respect to physical laws. Maintain-
ing these elements ordered is a key factor to improve memory efficiency as elements
are likely to interact with their neighbors [11].

The Packed Memory Array (PMA) [7] data structure has been proposed to help main-
taining its elements ordered in an efficient way. This sparse data structure was designed
to reduce the amount of memory movement induced by reordering operations.

We focus on the loop that handles both the detection of the moving elements and their
copy in a dense array. In real applications, the workload gets irregular since some parts
of the physical space go through a lot of changes while others report only a few changes.
We extracted actual change distribution from a memory-intensive fluid simulation [9]
ran with 2 900 000 elements.

In this code, the data structure is initialized from reading sequentially a file.
Without major rewrite of the initialization phase, it is not possible control the

152 M. Durand et al.

affinity with the simple first touch strategy as OpenMP standard preaches it. Ta-
ble 2 reports average times for each of the four loop schedulers with two mem-
ory distribution strategies. The first strategies, called numactl in the table, dis-
tributes memory pages in a round robin fashion among the NUMA nodes using
numactl --interleave. The second strategy leads to a bloc distribution using
the API omp_locality_domain_allocate_bloc1d presented in section 3.2.

When the array is distributed with the bloc distribution, contigous elements in the ar-
ray are mostly on the same NUMA node. Even with this distribution, the static scheduler
does not reach the best time, which illustrates the irregularity of the application. The
dynamic and guided schedulers are able to improve performance but without control of
the locality while workload is balanced. The adaptive scheduler obtains the best times
for the two memory distribution strategies. This is due to a good compromise between
a good balance of iterations to control affinity and a dynamic balance of the workload.

The plots in figures 6, 7 and 8 correspond to execution where the memory is bound
using bloc distribution strategy among the NUMA nodes.

Figures 6a and 6b report a per-core execution using the libGOMP dynamic and
guided schedulers with a bloc data distribution over the NUMA nodes. The "compute"
(green) part of the graph represents the time spent, in CPU cycles, during the execution
of the loop body. The "schedule" part represents the time spent to perform the required
computations, apply the scheduling decisions and wait until the loop completion.

The histogram represents the number of iterations performed by each core. We can
conclude from the top two plots that:

1. the libGOMP dynamic scheduler with a chunk size of 1 spends a lot of time in the
runtime system. This is mainly due to contention generated by concurrent accesses
to internal data structures,

2. the number of iterations and the time spent executing iterations vary from one core
to another. The computation of a correct chunk size helps decreasing the schedule
time. The performance is thus increased as the average time per iteration decreases
from 57.2ms to 14.2ms.

(a) Dynamic scheduler, chunk size=3000 (b) Guided scheduler

Fig. 6. Times (ms) per core for the same PMA iteration with dynamic and guided schedulers.
The histograms have the same scale.

An Efficient OpenMP Loop Scheduler for Irregular Applications 153

(a) Static scheduler (b) Adaptive scheduler

Fig. 7. Times (ms) per core for the same PAM iteration with static and adaptive schedulers. The
histograms have the same scale.

Fig. 8. Comparison of loop schedulers with respect to the time step of PMA simulation

Figures 7a and 7b report results with the static and our adaptive loop schedulers with
a bloc data distribution. The blue line in the bottom left plot validates the behavior of the
static scheduler, as every thread executes the same number of iterations. Nevertheless,
the CPU times are highly variable: the distribution of iterations fails at balancing the
workload. On the other hand, our adaptive scheduler is able to keep the workload well
balanced at the expense of an irregular distribution of iterations. The average execution
time is 6.95ms for the adaptive scheduler and 16.3ms for the static scheduler.

Figure 8 reports the behavior of the 4 loop schedulers on PMA simulation with re-
spect to the time step. Even if the iterations are well balanced among the cores, the static
scheduler is unable to balance the workload. Both the dynamic and the guided sched-
ulers reach the same level of performances and are able to better balance the workload,

154 M. Durand et al.

even if memory affinity is not ensured. Our adaptive scheduler is a good compromise
between the static and the dynamic schedulers, and reaches a speed-up of 2.35 over the
static scheduler.

6 Conclusion and Future Work

This paper introduced adaptive, a new OpenMP loop scheduler implementing a
runtime-level approach to deal with irregular memory-bound applications on NUMA
architectures. Instead of distributing statically-fixed portions of work over the threads
of a parallel region, this scheduler adapts the granularity of work on demand by mak-
ing idle threads steal a subset of the victim’s remaining iterations, thus introducing the
notion of dynamic per-thread granularity. Our scheduler is also capable of adapting its
work-stealing algorithm to fit different memory bindings on NUMA architectures and
outperforms OpenMP-based approaches to deal with memory locality, like the joint use
of the static loop scheduling and the first-touch allocation policy, on several benchmarks
and applications.

This work could be extended to task parallelism, providing the OpenMP application
programmer with ways of annotating splitter functions called to generate parallelism
on demand by splitting a running task into smaller ones. We also consider extending
our approach using the concept of places recently added to the OpenMP standard that
could help the programmer transmitting valuable and portable information on the way
memory should be allocated on hierarchical architectures.

Acknowledgement. This work has been partially supported by the ANR 09-COSI-
011-05 Repdyn project and the FP7-PEOPLE-2011-IRSES HPC-GA project.

References

1. Ayguadé, E., Blainey, B., Duran, A., Labarta, J., Martínez, F., Martorell, X., Silvera, R.: Is the
Schedule clause really necessary in openMP? In: Voss, M.J. (ed.) WOMPAT 2003. LNCS,
vol. 2716, pp. 147–159. Springer, Heidelberg (2003)

2. Broquedis, F., Aumage, O., Goglin, B., Thibault, S., Wacrenier, P.-A., Namyst, R.: Struc-
turing the execution of OpenMP applications for multicore architectures. In: Proceedings
of 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2010),
Atlanta, GA. IEEE Computer Society Press (April 2010)

3. Broquedis, F., Gautier, T., Danjean, V.: LIBKOMP, an efficient openMP runtime system for
both fork-join and data flow paradigms. In: Chapman, B.M., Massaioli, F., Müller, M.S.,
Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 102–115. Springer, Heidelberg (2012)

4. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.-A.: Dynamic Task and
Data Placement over NUMA Architectures: An OpenMP Runtime Perspective. In: Müller,
M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 79–92.
Springer, Heidelberg (2009)

5. Bull, J.M.: Measuring synchronisation and scheduling overheads in openmp. In: Proceedings
of First European Workshop on OpenMP, pp. 99–105 (1999)

6. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-H., Skadron, K.: Rodinia:
A benchmark suite for heterogeneous computing. In: Proceedings of the 2009 IEEE Interna-
tional Symposium on Workload Characterization, IISWC 2009, pp. 44–54. IEEE Computer
Society, Washington, DC (2009)

An Efficient OpenMP Loop Scheduler for Irregular Applications 155

7. Durand, M., Raffin, B., Faure, F.: A Packed Memory Array to Keep Moving Particles Sorted.
In: 9th Workshop on Virtual Reality Interaction and Physical Simulation (2012)

8. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multithreaded
language. SIGPLAN Not. 33(5), 212–223 (1998)

9. Hoetzlein, R.C.: Fluids v2.0, open source, fluid simulator (2008)
10. Huang, L., Jin, H., Yi, L., Chapman, B.: Enabling locality-aware computations in openmp.

Sci. Program. 18(3-4), 169–181 (2010)
11. Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel sph implementation on multi-

core cpus. Computer Graphics Forum 30(1), 99–112 (2011)
12. Mahéo, A., Koliaï, S., Carribault, P., Pérache, M., Jalby, W.: Adaptive openmp for large

numa nodes. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 254–257. Springer, Heidelberg (2012)

13. Marowka, A., Liu, Z., Chapman, B.: Openmp-oriented applications for distributed shared
memory architectures: Research articles. Concurr. Comput.: Pract. Exper. (2004)

14. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance com-
puters. In: IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
Newsletter, pp. 19–25 (December 1995)

15. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and mitigating work
time inflation in task parallel programs. In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC 2012, pp. 65:1–65:12.
IEEE Computer Society Press, Los Alamitos

16. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: Openmp task schedul-
ing strategies for multicore numa systems. Int. J. High Perform. Comput. Appl. 26(2),
110–124 (2012)

17. OpenMP Architecture Review Board (1997-2008), http://www.openmp.org
18. Subramaniam, S., Eager, D.L.: Affinity scheduling of unbalanced workloads. In: Pro-

ceedings of the 1994 ACM/IEEE Conference on Supercomputing, Supercomputing 1994,
pp. 214–226. IEEE Computer Society Press, Los Alamitos (1994)

19. Tchiboukdjian, M., Danjean, V., Gautier, T., Le Mentec, F., Raffin, B.: A work stealing sched-
uler for parallel loops on shared cache multicores. In: Proceedings of the 2010 Conference
on Parallel Processing, Euro-Par 2010, pp. 99–107. Springer (2011)

20. Traoré, D., Roch, J.-L., Maillard, N., Gautier, T., Bernard, J.: Deque-free work-optimal paral-
lel stl algorithms. In: Proceedings of the 14th International Euro-Par Conference on Parallel
Processing, Euro-Par 2008, Berlin, Heidelberg, pp. 887–897 (2008)

21. Yan, Y., Jin, C., Zhang, X.: Adaptively scheduling parallel loops in distributed shared-
memory systems. IEEE Trans. on Parallel and Distributed Systems 1 (January 1997)

http://www.openmp.org

Locality-Aware Task Scheduling and Data

Distribution on NUMA Systems

Ananya Muddukrishna1, Peter A. Jonsson2,
Vladimir Vlassov1, and Mats Brorsson1,2

1 KTH Royal Institute of Technology
2 SICS Swedish ICT AB

Abstract. Modern parallel computer systems exhibit Non-Uniform
Memory Access (NUMA) behavior. For best performance, any paral-
lel program therefore has to match data allocation and scheduling of
computations to the memory architecture of the machine. When done
manually, this becomes a tedious process and since each individual sys-
tem has its own peculiarities this also leads to programs that are not
performance-portable.

We propose the use of a data distribution scheme in which NUMA
hardware peculiarities are abstracted away from the programmer and
data distribution is delegated to a runtime system which is generated
once for each machine. In addition we propose using task data depen-
dence information now possible with the OpenMP 4.0RC2 proposal to
guide the scheduling of OpenMP tasks to further reduce data stall times.

We demonstrate the viability and performance of our proposals on a
four socket AMD Opteron machine with eight NUMA nodes. We iden-
tify that both data distribution and locality-aware task scheduling im-
proves performance compared to default policies while still providing an
architecture-oblivious approach for the programmer.

1 Introduction

According to conventional wisdom, memory intensive OpenMP programs must
distribute data wisely across NUMA nodes to minimize remote memory ac-
cesses. However, NUMA architectures have reached such complexity that even
simple memory-oblivious algorithms such as the recursive fibonacci have begun
to suffer from NUMA effects [1]. Careful data distribution, regardless of memory
footprint, has become an absolute necessity for achieving good performance on
NUMA systems.

Despite the importance of data distribution there are no mechanisms available
to application programmers for dealing with the issue, even in the latest OpenMP
4.0 Public Review RC2 version. Programmers cope by using third-party tools
and APIs [2–4] or by re-purposing the OpenMP for work-sharing construct to
allocate and distribute data to different NUMA nodes. The third-party tools are
fragile and might not be available on all machines, and the clever use of the for

work sharing construct [5] depends on a particular OS page management policy
and require that the programmer knows about the NUMA node topology on the
target machine.

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 156–170, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Locality-Aware Task Scheduling and Data Distribution on NUMA Systems 157

Expert programmers can still work around the current situation, but even
for them the process can be described as fragile and error prone. The average
programmers that do not manage to cope with all the complexity at once pay a
performance penalty when running their applications, a penalty that might be
partially mitigated from clever caching by the hardware. The current situation
will get increasingly worse for everybody since NUMA effects are exacerbated
by growing network diameters and increased cache coherence complexity [6] that
will inevitably follow from increasing sizes of NUMA machines.

We present a runtime system assisted data distribution scheme that allows
programmers to control data distribution in a portable fashion without forcing
them to understand low-level system details. The scheme relies on the program-
mer to provide high-level hints on the granularity of the data distribution in calls
to malloc. Programs without hints will work and have the same performance
as before, which allows gradual addition of hints to programs to get partial
performance benefits. Our runtime system assisted distribution scheme requires
nearly the same programmer effort as regular calls to malloc and yet doubles
the performance for some scientific workloads.

We also present a locality-aware task scheduling algorithm which reduces
memory access times by leveraging page locality information gained from data
distribution and task data footprint information from the programmer. Our
scheduling algorithm demonstrates a performance improvement of up to 11%
compared to a work-stealing scheduler when NUMA effects degrade application
performance and remains competitive for other applications.

2 Potential for Performance Improvements

We indicate the performance improvement that can be gained by distributing ap-
plication data across NUMA nodes by means of an experiment. We execute task-
based OpenMP applications taken or derived from the Barcelona OpenMP Task
Suite (BOTS) [7] with two different memory allocation strategies: the first strat-
egy uses malloc with the first-touch policy and the second distributes memory
pages evenly across NUMA nodes using the numactl [4] tool. We use first-touch
as a short hand for malloc with first-touch policy in the rest of the paper.

We perform the experiment on a four socket, eight NUMA node machine built
using four AMD Opteron 6172 processors. We use the OpenMP implementation
from the Intel C compiler. We measure the execution time of the parallel section
of each application and count the number of dispatch stall cycles to quantify
the amount of time spent waiting for memory. The dispatch stall cycles include
Load/Store Unit stall cycles [8].

Five out of nine applications show a significant reduction in execution time
when data is distributed across NUMA nodes as shown in Figure 1. The reduc-
tion in dispatch stall cycles contributes to the reduction in execution time. The
performance of the remaining applications, except for strassen, is approximately
the same with data distribution and first-touch cases. Speedup compared to se-
quential execution is close to ideal which implies low communication as seen in

158 A. Muddukrishna et al.

sparselu t matmul sort map reduction jacobi alignment strassen
60

40

20

0

20

40

60

80

100
R

ed
uc

tio
n

co
m

pa
re

d
to

rs

t-
to

uc
h

[%
]

Execution time Dispatch stall cycles

Fig. 1. Execution time and dispatch stall cycle reduction when application data is dis-
tributed across NUMA nodes in comparison to first-touch. Execution time corresponds
to the critical path of parallel section. Dispatch stall cycles are aggregated over all
application tasks.

the alignment benchmark or that page-wise interleaved data distribution does
not relieve the memory sub-system as seen in the fft, sparselu and strassen
benchmarks.

In summary, overheads from memory access latencies are significant in
OpenMP applications. Our goal is to provide simple and portable abstractions
that mitigate these overheads by performing data distribution.

3 Runtime System Assisted Data Distribution

Runtime system assisted data distribution is one mechanism for increasing per-
formance portability – handling specific OS and hardware details can be dele-
gated to an architecture-specific runtime system which has a global view of the
execution of the application.

We propose a memory allocation and distribution mechanism controlled by a
simple data distribution policy which is chosen by the programmer. The distri-
bution policy choice is deliberately kept simple with only a few choices in order
to provide predictable behavior and be easy to understand for the programmer,
just like process binding hints in OpenMP are defined. There are two different
policies available to the programmer:

Fine: distributes memory with a page-wise round-robin interleaving across all
NUMA nodes. This policy is a good choice if data structures are allocated
using a single call to malloc in the original application and many tasks
operate on the same data structures.

Coarse: distributes memory with a block-wise round-robin interleaving across
all NUMA nodes. This policy is a good choice if the data structures are
allocated using multiple calls to malloc in the original application and tasks
operate exclusively on the data structures.

Locality-Aware Task Scheduling and Data Distribution on NUMA Systems 159

We demonstrate how the data distribution policies work at the machine level
and propose preliminary interfaces for policy selection using an example C pro-
gram in Figure 2. The example program requests memory using a proposed
interface called omp malloc whose signature is similar to malloc. The two mem-
ory allocation requests, A and B, are eight memory pages each. The user se-
lects the data distribution policy by setting a proposed environment variable
OMP DATA DISTRIBUTION to one of standard, fine or coarse prior to
the program invocation. The standard data distribution policy choice refers
to the machine default – first-touch. The memory requested using omp malloc

is distributed to different NUMA nodes based on the global data distribution
policy selected.

int main(...)

{

...

/* Allocate data */

size_t sz = 8 * PAGE_SIZE;

void * A = omp_malloc(sz);

void * B = omp_malloc(sz);

...

/* Initialize data */

init(A, sz, ...);

init(B, sz, ...);

...

/* Work in parallel */

...

}

$ export OMP_DATA_DISTRIBUTION=<standard | fine | coarse>

$ <invoke application>

�����

�����

�����	�

�����	

����� �����

�
�����

�
����

������

�����

�������

������

�����������������

��������

�������� !"#$

�	�

�����

������ �����
 ������ ������

�� �
 �� ��

�	 �� � ��

�� �
 �� ��

�	 �� � ��

�����

�%% "&�� '��

�%% "&�� '��

Fig. 2. Proposed preliminary interfaces for selecting the policy-based data distribution
and machine level results

We provide heuristics in Table 1 to assist in the choice of data distribution
policy based on the number of malloc based data allocations in the original
application and the number of tasks operating on those allocations.

160 A. Muddukrishna et al.

We have built the runtime system assisted distribution scheme using readily
available OS support - libnuma on Linux. The overheads of the distribution
scheme is low since the implementation is essentially a wrapper for libnuma API
with a few additional book-keeping instructions. The book-keeping instructions
track the round-robin node selection counter for the coarse distribution policy
and cache the NUMA node affinity of memory pages when requested by the
locality-aware scheduling policy as described in the Section 4.

Programmers do not need to be concerned about NUMA node identifiers
and topology in order to use our data distribution scheme. The distribution
policy choice is kept simple with only those choices that are easy to predict and
understand for the programmer. In addition, programmers can incrementally
distribute data by targeting specific memory allocation sites. We also provide
precise control for expert programmers in our implementation allowing them
to over-ride the global data distribution policy and request fine or coarse data
distribution for a specific allocation as shown in Figure 3.

We have implemented two simple distribution policies to demonstrate the po-
tential of our data distribution scheme. Runtime system developers can use the
extensibility of our scheme to provide more advanced distribution policies as
plug-ins. Programmers can be educated about distribution policies in a man-
ner similar to existing education about for loop scheduling policies within the
OpenMP specification.

4 Locality-Aware Task Scheduling

Our implementation of locality-aware scheduling aims to further leverage the
performance benefits of data distribution. The main idea behind our locality-
aware scheduler is to schedule tasks with minimal memory access latencies. Our
machine model consists of a number of NUMA nodes where each node has local
access to DRAM and is connected directly to a set of cores. The locality-aware
scheduler use one task queue per NUMA node and takes locality-aware decisions
both during work-dealing and work-stealing. Work-dealing are to actions taken
at the point of task creation and work-stealing are actions taken when cores are
idle.

Knowing the data footprint of tasks is crucial for the scheduler. We expect
data footprint information to come from the programmer through expressive task
definition clauses which do not yet exist in the OpenMP specification. We cur-
rently estimate the data footprint of each task through the information provided
by the depend clause which is new in the OpenMP specification version 4.0RC2.

Table 1. Heuristics to select data distribution scheme

Number of tasks operating on data
One Many

Number of malloc calls
One Regular malloc Fine
Many Coarse Coarse

Locality-Aware Task Scheduling and Data Distribution on NUMA Systems 161

int main(...)

{

...

/* Allocate data */

size_t sz = 8 * PAGE_SIZE;

void * A = omp_malloc_specific(sz, OMP_MALLOC_COARSE);

void * B = omp_malloc_specific(sz, OMP_MALLOC_COARSE);

void * C = omp_malloc_specific(sz, OMP_MALLOC_FINE);

...

/* Initialize data */

init(A, sz, ...);

init(B, sz, ...);

init(C, sz, ...);

...

/* Work in parallel */

...

}

�����

�����	

�����

������
������ C3, C7

�����������������

������ ������ ������ ������

�� A1 A2 A3

A4 A5 A6 A7

�� B1 B2 B3

B4 B5 B6 B7

�����

�		
���
���

�		
���
���

�� C1 C2 C3

C4 C5 C6 C7

�		
���
���

Fig. 3. Proposed interfaces for specific data distribution

This estimate is fragile when programmers specify an incomplete depend clause
that is sufficient for scheduling decisions but underestimate the data footprint.
The limitation can be overcome if programmers use low-effort expressive con-
structs such as array-sections to express a large fraction of the data footprint in
the depend clause in return for improved execution performance.

We describe the work-dealing algorithm of the locality-aware scheduler in
Algorithm 1. The scheduler deals a task at the point of task creation to the node
queue having the least total memory access latency for pages not in the last-level
cache (LLC). The individual access latencies are computed by weighting NUMA
node distances with the node-wise distribution D of the data footprint of the
task.

NUMA node distances are obtained from OS tables which are cached by the
scheduler for performance reasons. The distribution D is calculated using page

162 A. Muddukrishna et al.

locality information cached by the data distribution mechanism. The complexity
of the access cost computation is O(N2) where N is the number of NUMA nodes
in the system, typically a small number.

1 Procedure deal-work(task T, queues Q1, . . . , QN , current node n, cores per
node C)

2 Populate D[1:N] with bytes in T.depend list;
3 if sum(D) > sizeof(LLC)/C and Standard Deviation(D) > 0 then
4 find Ql with least NUMA distance-weighted cost to D ;
5 i = l;

6 else
7 i = n;
8 end
9 enqueue(Qi, T);

10 end
Algorithm 1: Work-dealing algorithm

Tasks are immediately added into the local queue if two thresholds make it
clear that scheduling costs outweigh the performance benefits. The first threshold
- Sum(D) > sizeof(LLC)/C - ensures that tasks have a working set size exceeding
the LLC size per core. The second threshold - Standard Deviation(D) > 0 -
ensures that scheduling effort will not be wasted on tasks with a perfect data
distribution.

Distributed task queues may lead to load-imbalance and in our experience the
performance benefits from load-balancing often trumps those from locality. We
have therefore implemented a work-stealing algorithm to balance the load. The
cycles spent while dealing tasks are wasted when steals occur but stealing is still
preferred over idle cores.

1 Procedure find-work(queues Q1, . . . , QN , current node n, cores per node C)
2 if empty Qn then
3 Attempt to steal work;
4 for Qi in (Sort Q1 . . . QN by NUMA distance from n) do
5 if sizeof(Qi) > distance(i, n)*C then
6 Run dequeue(Qi);
7 break;

8 end

9 end

10 else
11 Run dequeue(Qn);
12 end

13 end
Algorithm 2: Work-finding algorithm

We show the stealing algorithm of the scheduler in Algorithm 2. Cores attempt
to steal when there is no work in the local queue. Candidate queues for steals

Locality-Aware Task Scheduling and Data Distribution on NUMA Systems 163

are ranked based on NUMA node distances. The algorithm includes a threshold
which prevents tasks from being stolen from nearly empty task queues which
would incur further steals for the cores in the victim node. In addition, there is
an exponential back-off for steal attempts when work cannot be found.

5 Experimental Setup

We perform our evaluation on an AMD Opteron 6172 processor based system
with eight NUMA nodes, four sockets and 48 cores. Cache sizes of the processor
are: 64 KB DL1, 512 KB DL2 and 5MB LLC. The maximum NUMA distance of
the system obtained from OS tables is 22. NUMA interconnects of the system are
configured for maximum performance with an average NUMA factor of 1.19 [9].
Memory latencies of the system measured using the BenchIT tool are similar to
the measurements reported by Molka et al. [10]. The OS is Linux v2.6.32. We
use the Intel C compiler v13.1.1 with -O3 to compile both the runtime system
and benchmarks.

The benchmarks we use in the evaluation are described in Table 2. The bench-
marks are executed using MIR, a task-based runtime system library which we
have developed. MIR supports the OpenMP tied tasks model. We have pro-
grammed the evaluation benchmarks using the runtime system interface directly
since MIR does not currently have a source-to-source translation front-end. MIR
provides plugin based scheduling and data allocation policies which allows us to
compare different policies within the same system.

Table 2. Benchmarks used in the evaluation. T48 in baseline speedup computation
corresponds to page-wise interleaved data distribution using numactl.

Benchmark Behavior Input
Baseline speedup

(T48/T1)

matmul
Blocked matrix multiplication
with BLAS task kernel

Dimension = 4096;
Block size = 128

32

map 1D vector scaling
48 vectors of 1MB
each

18

jacobi Blocked 2D heat equation solver
Dimension = 16834;
Block size = 512

36

sparselu
LU factorization of sparse matrix
from BOTS [7]

Dimension = 8192;
Block size = 256

35

reduction
Iterative implementation of the
merge phase of Sort from BOTS

Depth = 10; Array
size = 256 MB

6

We use a work-stealing scheduler as the baseline for comparing the locality-
aware scheduler. The work-stealing scheduler has one task queue per core. Each
core adds newly-created tasks to its own task queue. Cores look for work in their
own task queue first. Cores with empty task queues select victims for stealing
in a round-robin fashion. Both queueing and stealing decisions of the work-
stealing scheduler are fast but can result in drastic memory latencies during task
execution since the work-stealing scheduler is oblivious to data locality.

164 A. Muddukrishna et al.

0

1

2

jacobi map matmul reduction sparselu

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

ws numactl ws fine ws coarse locality−aware fine locality−aware coarse

Fig. 4. Performance of data distribution combined with work-stealing and locality-
aware scheduling. Execution time is normalized against the first column for each bench-
mark.

We use cycle counters and dispatch stall cycle counters to measure the execu-
tion time and memory access latency of tasks. We also collect execution traces
of thread state which can be viewed using Paraver [11].

We run each benchmark 20 times for all combinations of scheduling and data
distribution policies except for the combination of numactl page-wise interleaving
and locality-aware scheduling. The locality-aware scheduler does not currently
support querying numactl for page locality information. We record the execution
time of the critical path of the parallel section as the main performance metric
to measure speedup. We collect execution traces and performance counter events
on an additional set of runs to conduct a detailed analysis using Paraver.

6 Results

We show the performance of our set of evaluation benchmarks for combinations
of data distribution and scheduling policy in Figure 4. The fine distribution is
a feasible replacement for numactl since execution times with the work-stealing
scheduler are comparable to page-wise interleaving using numactl. As expected,
when coarse distribution is used according to the guidelines in Table 1 the ex-
ecution time is reduced in each benchmark for both schedulers and when using
coarse distribution against the guidelines the execution time increases for both
schedulers. The locality-aware scheduler coupled with the best data distribution
choice for each benchmark gives execution times that are comparable with or
reduced compared to the work-stealing scheduler.

Locality-Aware Task Scheduling and Data Distribution on NUMA Systems 165

We use execution timelines for the map and matmul benchmark in Figure 5
to explain that reduced memory page access time is the main reason behind the
difference in task execution times of the work-stealing and locality-aware sched-
uler. The execution timeline captures the entire program execution. The timeline
is essentially a 3D figure drawn with cores on the Y-axis, time on the X-axis and
dispatch stall cycles on the Z-axis. The Z-axis is represented in using a linear
green to blue gradient which encodes dispatch stall cycles. We filter out all core
states except the state of task execution. On the Z-axis, green presents lower dis-
patch stall cycles and blue higher. The execution timelines are time aligned (same
X-axis span) and gradient aligned (same Z-axis span) for all benchmarks.

We can explain why the locality-aware scheduler reduces task execution time
by understanding the structure of the benchmarks. Each task in the map bench-
mark scale the values of a single array chosen from a list and with coarse dis-
tribution all pages of the array reside on a single node whereas fine distribu-
tion spreads the pages evenly across all nodes. Tasks of the matmul benchmark
update a block in the output matrix using a chain of blocks from the input
matrices.

For the map benchmark, the locality-aware scheduler combined with coarse
distribution ensures that each task accesses its unique vector from the local
node. The behavior is consistent with the low number of dispatch stall cycles
seen in Figure 5. The work-stealing scheduler steals tasks without consideration
for locality and risks increasing remote memory accesses which is witnessed by
the relatively large number of stall cycles appearing as dark green and blue. The
locality-aware scheduler with fine distribution detects that pages are evenly bal-
anced across nodes and places all tasks on the same local queue. The imbalance
can not be completely recovered from since steals are restricted (Table 3). The
work-stealing scheduler is able to balance the load more effectively (Table 3)
which results in reduced execution times. We note that fine distribution is a case
of going against the guidelines and also results in the slowest execution for both
schedulers since pages are interleaved across all nodes.

For the matmul benchmark, it may seem surprising to see the 11% reduction
in task execution time produced by the locality-aware scheduler. The memory
pages touched by a task are located on different nodes for both coarse and fine

Table 3. Work-dealing time and task steal ratio for matmul and map benchmarks
aggregated over all cores. Steal ratio is the number of tasks stolen divided by the
number of tasks created.

matmul map
Work-deal

time (cycles)
Steal ratio

Work-deal
time (cycles)

Steal ratio

ws numactl 775293 1003/1024 44762 47/48

ws fine 480245 1002/1024 51157 47/48

ws coarse 498719 1003/1024 47799 47/48

locality-aware fine 116170458 0/1024 106536909 6/48

locality-aware coarse 26370885 0/1024 512435 0/48

166 A. Muddukrishna et al.

distribution. With fine distribution, the locality-aware scheduler detects that
data is evenly distributed and falls back to work-stealing by queuing tasks in its
own node. Both schedulers show increased execution time for tasks as revealed
by similar amounts of dispatch stall cycles (similar intensity levels of green and
blue) in the timeline. However, with coarse distribution the locality-aware sched-
uler is able to exploit the locality arising from distributing blocks of pages in
round-robin as evident by the relatively smaller amount of dispatch stall cycles
(lighter intensity levels of green and blue) in comparison to the work-stealing
scheduler.

The locality-aware scheduler can safely be used as the default scheduler for
all work loads without performance degradation. For workloads which provide
strong locality with data distribution, there is a performance benefit in us-
ing the locality-aware scheduler. For workloads which do not improve locality
with data distribution, the locality-aware scheduler behaves similar to the work-
stealing scheduler. The locality-aware scheduler can also work for OpenMP un-
tied tasks since it preserves locality by restricting steals at node boundaries.
Untied tasks are more likely to be stolen by cores of the same node for balanced
applications.

7 Related Work

Numerous ways of how to distribute data programmatically on NUMA machines
have been proposed in the literature. We discuss the proposals that are closest
to our approach.

Huang et al. [12] propose extensions to OpenMP to distribute data over an
abstract notion of locations. The primary distribution scheme is a block-wise
distribution which is similar to our coarse distribution scheme. The scheme
allows precise control of data distribution but relies on compiler support and
additionally requires changes to the OpenMP specification. Locations provide
fine-grained control over data distribution at the expense of programming ef-
fort.

The Minas framework [3] incorporates a sophisticated data distribution API
which gives precise control on where memory pages end up. The API is intended
to be used by an automatic code transformation in Minas that uses profiling
information for finding the best possible distribution for a given application. The
precise control is powerful but requires expert programmers who are capable of
writing code that will decide on the distribution required.

Majo and Gross [13] use fine grained data distribution API to distribute mem-
ory pages. Execution profiling is used to get data access patterns of loops and
used for both guiding code transformation as well as data distribution. Data
distribution is performed in between loop iterations which guarantee that each
loop iteration accesses memory pages locally.

Runtime tracing techniques that provide automatic page migration based on
hardware monitoring through performance counters have the same end goal as
we do: to provide good performance with low programming effort. Nikolopoulos

Locality-Aware Task Scheduling and Data Distribution on NUMA Systems 167

matmul map

ws
numactl

ws
fine

ws
coarse

locality-
aware
fine

locality-
aware
coarse

748756556 cycles 2826613325 cycles

Fig. 5. Execution timelines to demonstrate reduced task execution time and dispatch
stall cycles. The timeline for the matmul benchmark is zoomed-in.

et al. [14] pioneered the idea of page migration with user-level framework. Page
accesses are traced in the background and hot pages are migrated closer to
the accessing node. Terboven et al. [15] presented a next-touch dynamic page
migration implementation on Linux. An alternative approach to migrating pages

168 A. Muddukrishna et al.

which is costly is to move threads instead, an idea exploited by Broquedis et
al. [16] in a framework where decisions to migrate threads and data are based
on information about thread idleness, available node memory, and hardware
performance counters.

Dynamic page migration requires zero effort from the programmer, which is a
double edged sword. The benefit of getting good performance without any effort
is obvious, but when the programmer experiences bad performance it is difficult
to analyze the root cause of the problem. Performance can also be affected by
input changes. Attempts at reducing the cost of page migration by providing
native kernel support give promising results for matrix multiplication on large
matrices [17].

Locality-aware scheduling for OpenMP has been studied extensively. Since
our approach is based on tasks we indicate task based approaches relevant for
our work.

Locality domains where programmers manually place tasks in abstract bins
have been proposed [1, 18]. The tasks are scheduled within their domain which
reduces remote memory accesses. MTS [19] is a scheduling policy structured on
the socket hierarchy of the machine. MTS uses one task queue per socket which
is similar to our task queue per NUMA node. Only one idle core per socket is
allowed to steal bulk work from other sockets. Charm++ uses NUMA topology
information and task communication information to reduce communication costs
between tasks [20].

Memphis uses hardware monitoring techniques and provide methods to fix
NUMA problems on general class of OpenMP computations [6]. Monitoring
cross-bar (QPI) related and LLC cache miss related performance counters are
used to measure network activity. Memphis provides diagnostics to the pro-
grammer for when to pin threads, distribute memory and keep computation
in a consistent shape throughout the execution. Their recommendations have
inspired the design of our locality-aware scheduler and our evaluation method-
ology.

Schmidl et al. propose the keywords scatter and compact for guiding thread
placement using SLIT-like distance matrices [21]. Our names for data distribu-
tion, fine and coarse, are directly inspired by their work.

8 Conclusions

We have presented a data distribution and memory page locality-aware schedul-
ing technique that gives good performance in our tests. The major benefit is
simplicity to use which allows ordinary programmers to reduce their suffering
from NUMA effects by reduced performance. Our technique can be built on stan-
dard components provided by the operating system without special frameworks
and third party tools. The locality-aware scheduler can be used as the default
scheduler since it will fall back to behaving like a work-stealing scheduler when
locality is missing, something also indicated from our measurements.

Locality-Aware Task Scheduling and Data Distribution on NUMA Systems 169

Acknowledgments. This work was partially funded by European FP7 project
ENCORE Project grant agreement nr. 248647 and Artemis PaPP Project nr.
295440.

References

1. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and mitigat-
ing work time inflation in task parallel programs. In: 2012 International Conference
on High Performance Computing, Networking, Storage and Analysis (SC), pp. 1–12
(2012)

2. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: A generic framework for managing hardware
affinities in HPC applications. In: 2010 18th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pp. 180–186 (2010)

3. Ribeiro, C.P., Méhaut, J.F.: Minas: Memory affinity management framework (2009)
4. Kleen, A.: A NUMA API for Linux. Novel Inc. (2005)
5. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Assessing openMP tasking im-

plementations on NUMA architectures. In: Chapman, B.M., Massaioli, F., Müller,
M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 182–195. Springer,
Heidelberg (2012)

6. McCurdy, C., Vetter, J.: Memphis: Finding and fixing NUMA-related performance
problems on multi-core platforms

7. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A set of benchmarks targeting the exploitation of task parallelism
in OpenMP. In: International Conference on Parallel Processing, ICPP 2009, pp.
124–131 (2009)

8. AMD: BIOS and Kernel Developers Guide for AMD Family 10h Processors
9. Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., Hughes, B.: Cache hier-

archy and memory subsystem of the AMD Opteron processor. IEEE Micro. 30(2),
16–29 (2010)

10. Molka, D., Schöne, R., Hackenberg, D., Müller, M.S.: Memory performance and
SPEC openMP scalability on quad-socket x86 64 systems. In: Xiang, Y., Cuz-
zocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011, Part I. LNCS, vol. 7016, pp.
170–181. Springer, Heidelberg (2011)

11. Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and
analyze parallel code. WoTUG-18, 17–31 (1995)

12. Huang, L., Jin, H., Yi, L., Chapman, B.: Enabling locality-aware computations in
OpenMP. Scientific Programming 18(3), 169–181 (2010)

13. Majo, Z., Gross, T.R.: Matching memory access patterns and data placement for
NUMA systems. In: Proceedings of the Tenth International Symposium on Code
Generation and Optimization, pp. 230–241 (2012)

14. Nikolopoulos, D.S., Papatheodorou, T.S., Polychronopoulos, C.D., Labarta, J.: Is
data distribution necessary in OpenMP? In: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (CDROM), p. 47 (2000)

15. Terboven, C., Schmidl, D., Jin, H., Reichstein, T.: Data and thread affinity in
OpenMP programs. In: Proceedings of the 2008 Workshop on Memory Access on
Future Processors: A Solved Problem?, pp. 377–384 (2008)

16. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.-A.: Dynamic
task and data placement over NUMA architectures: An openMP runtime perspec-
tive. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009.
LNCS, vol. 5568, pp. 79–92. Springer, Heidelberg (2009)

170 A. Muddukrishna et al.

17. Goglin, B., Furmento, N.: Enabling high-performance memory migration for mul-
tithreaded applications on Linux. In: IEEE International Symposium on Parallel
& Distributed Processing, IPDPS 2009, pp. 1–9 (2009)

18. Wittmann, M., Hager, G.: Optimizing ccNUMA locality for task-parallel exe-
cution under OpenMP and TBB on multicore-based systems. arXiv preprint
arXiv:1101.0093 (2010)

19. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore NUMA systems. International Journal of
High Performance Computing Applications 26(2), 110–124 (2012)

20. Pilla, L.L., Ribeiro, C.P., Cordeiro, D., Mhaut, J.F.: Charm++ on NUMA plat-
forms: the impact of SMP optimizations and a NUMA-aware load balancer. In: 4th
workshop of the INRIA-Illinois Joint Laboratory on Petascale Computing, Urbana,
IL, USA (2010)

21. Schmidl, D., Terboven, C., an Mey, D.: Towards NUMA support with distance
information. In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.)
IWOMP 2011. LNCS, vol. 6665, pp. 69–79. Springer, Heidelberg (2011)

OMPT: An OpenMP Tools Application

Programming Interface for Performance Analysis

Alexandre E. Eichenberger1, John Mellor-Crummey2, Martin Schulz3,
Michael Wong4, Nawal Copty5, Robert Dietrich6, Xu Liu2, Eugene Loh5,

and Daniel Lorenz7

and other members of the OpenMP Tools Working Group

1 IBM T.J. Watson Research Center
2 Rice University

3 LLNL
4 IBM Canada

5 Oracle
6 TU Dresden, ZIH

7 Jülich Supercomputer Center

Abstract. A shortcoming of OpenMP standards to date is that they
lack an application programming interface (API) to support construction
of portable, efficient, and vendor-neutral performance tools. To address
this issue, the tools working group of the OpenMP Language Committee
has designed OMPT—a performance tools API for OpenMP. OMPT en-
ables performance tools to gather useful performance information from
applications with low overhead and to map this information back to a
user-level view of applications. OMPT provides three principal capabil-
ities: (1) runtime state tracking, which enables a sampling-based per-
formance tool to understand what an application thread is doing, (2)
callbacks and inquiry functions that enable sampling-based performance
tools to attribute application performance to complete calling contexts,
and (3) additional callback notifications that enable construction of more
full-featured monitoring capabilities. The earnest hope of the tools work-
ing group is that OMPT be adopted as part of the OpenMP standard
and supported by all standard-compliant OpenMP implementations.

1 Introduction

Over the last decade, multicore processors have become ubiquitous. As a result,
programming models and tools that help an application developer exploit thread-
level parallelism within and across multicore chips have attracted increasing in-
terest. In this context, OpenMP [1] has emerged as a popular directive-based
programming model for multithreaded parallel programming. However, con-
structing portable, efficient, and vendor-neutral performance tools for OpenMP
has remained a challenge. To date, there has not been a standard application
programming interface (API) to support tools for OpenMP. In this paper, we
describe OMPT—an emerging application programming interface for OpenMP

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 171–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

172 A.E. Eichenberger et al.

performance tools. OMPT is designed to enable performance tools to gather use-
ful performance information from applications and to hide low-level OpenMP
implementation idiosyncrasies from users. At the same time, OMPT is designed
to minimize the runtime overhead for supporting performance tools. The devel-
opment of OMPT was a community effort by the tools working group of the
OpenMP Language Committee. The earnest hope of the tools working group is
that OMPT be adopted as part of the OpenMP standard and supported by all
standard-compliant OpenMP implementations.

1.1 Design Objectives

OMPT tries to satisfy several design objectives for a performance tool interface
for OpenMP. These objectives are listed in decreasing order of importance.

– The API should enable tools to gather sufficient information about an appli-
cation executing under control of an OpenMP runtime system to associate
costs both with application source code and the runtime system.
• The API should provide an interface sufficient to construct low-overhead
performance tools based on asynchronous sampling.

• The API should enable a profiler that uses call stack unwinding to iden-
tify which frames in its call stack correspond to routines in the OpenMP
runtime system.

• An OpenMP runtime system should associate the activity of a thread at
any point in time with a state, which will enable a performance tool to
interpret program execution behavior.

• Certain API routines must be defined as async signal safe so that they
can be invoked in a signal handler by a profiler while processing asyn-
chronous events.

– Incorporating support for the API in an OpenMP runtime system should
add negligible overhead to an OpenMP runtime system if the interface is
not in use by a tool.

– The API should define support for trace-based performance tools.
– Adding the API to an OpenMP implementation must not impose an unrea-

sonable development burden on runtime implementers.
– The API should not impose an unreasonable development burden on tool

implementers.

1.2 Prior Work

The design of OMPT is based on experience with two prior efforts to define a
standard tools API for OpenMP: the POMP API [2] and the Sun/Oracle Col-
lector API [3,4]. POMP is geared toward trace-based measurement. A disadvan-
tage of POMP’s trace-based measurement is that it can lead to large measure-
ment overhead because operations to be traced, e.g., an iteration of an OpenMP
work-sharing loop, can take less time than recording an event in a trace. As
an alternative to POMP’s trace-based approach, the Sun/Oracle Collector API

OMPT: An OpenMP Tools Application Programming Interface 173

was designed primarily to support measurement and attribution of performance
information using asynchronous sampling of call stacks. This sampling-based
design enables construction of tools that attribute costs to full calling contexts
without the drawbacks of tracing; namely, tools can record compact profiles with
low runtime overhead.

OMPT builds on ideas of both POMP and the Sun/Oracle collector API to
support asynchronous sampling as well as define an optional interface to sup-
port trace-based tools. In addition, OMPT defines a series of optional callbacks
to support blame shifting [5,6], which helps tools shift attribution of costs from
symptoms to causes. The OMPT interface can be implemented entirely by the
OpenMP runtime system, entirely by a compiler, or using a combination of com-
piler and runtime support. Using a prototype version of OMPT, Rice University’s
HPCToolkit performance tools have been able to provide deep insight into the
performance of OpenMP programs with low runtime and space overhead [7].

1.3 OMPT Interface

To support the OMPT interface for tools, an OpenMP runtime system has two
responsibilities: maintain information about the state of each OpenMP thread
and provide a set of API calls that tools can use to interrogate the OpenMP
runtime. Maintaining information about the state of each thread in the runtime
system is not free and thus an OpenMP runtime system need not maintain state
information unless a tool has registered itself, an environment variable directed
the tool to track runtime state, or a debugger has demanded that runtime state
information be maintained. Without any explicit request for tool support to be
enabled, an OpenMP runtime need not maintain any information to support
tools and may provide trivial (and thus, perhaps useless) answers to any API
queries.

The API is designed so that callbacks enable a tool to keep track of various
phases of an OpenMP application. Callback signatures are customized so that
most information that we anticipate a tool will need is provided as callback ar-
guments. For example, callbacks associated with a new parallel region receive
information about the parallel region and the parent task creating the parallel re-
gion. Similarly, callbacks associated with lock waiting receive information about
the lock awaited. If necessary, callbacks may gather additional information using
API queries. Tools that gather information using asynchronous sampling rather
than tracing callbacks have access to runtime information via API queries.

In addition to the callback and queries, the API enables a tool to leave
“cookies” associated with threads and tasks within the internal structures of
the OpenMP runtime. These cookies enable a tool to quickly retrieve its own
information (e.g., pointers to tool data-structures associated with OpenMP con-
structs) without costly hash maps.

Most routines in the OMPT API are intended only for use by tools rather than
for direct use by applications. As a result, almost all OMPT API functions have
a C binding only. A Fortran binding is provided only for a few application-facing
inquiry and control functions, described in Section 6.

174 A.E. Eichenberger et al.

1.4 Document Roadmap

Section 2 describes state information maintained by the OpenMP runtime sys-
tem for use by tools. Section 3 describes callback events for tools supported
by the OpenMP runtime system. Section 4 describes tool data structures. Sec-
tion 5 describes runtime system inquiry operations for tools. Section 6 describes
runtime system inquiry and control operations available to applications.

2 Runtime State

Table 1. OpenMP runtime states

/* work states (0..15) */
ompt_state_work_serial = 0x00, /* serial work */
ompt_state_work_parallel = 0x01, /* parallel work */
ompt_state_work_reduction = 0x02, /* performing a reduction */

/* idle (16..31) */
ompt_state_idle = 0x10, /* waiting for work */

/* overhead states (32..63) */
ompt_state_overhead = 0x20, /* non-wait overhead */

/* barrier wait states (64..79) */
ompt_state_wait_barrier = 0x40, /* waiting at any barrier */
ompt_state_wait_barrier_explicit = 0x41, /* waiting at an explicit barrier */

ompt_state_wait_barrier_implicit = 0x42, /* waiting at an implicit barrier */

/* task wait states (80..95) */
ompt_state_wait_taskwait = 0x50, /* waiting at a taskwait */
ompt_state_wait_taskgroup = 0x51, /* waiting at a taskgroup */

/* wait states mutex (96..111) */
ompt_state_wait_lock = 0x60, /* waiting for lock */
ompt_state_wait_nest_lock = 0x61, /* waiting for nest lock */
ompt_state_wait_critical = 0x62, /* waiting for critical */
ompt_state_wait_atomic = 0x63, /* waiting for atomic */
ompt_state_wait_ordered = 0x64, /* waiting for ordered */

/* miscellaneous (112..127)*/
ompt_state_undefined = 0x70, /* undefined thread state */
ompt_state_first = 0x71, /* initial enumeration state */

To enable a tool to understand what an OpenMP thread is doing, when
tools support has been enabled, an OpenMP runtime will maintain state in-
formation for each OpenMP thread that may execute user code; we call such
threadsOpenMP threads. Some OpenMP runtime systems launch a helper thread
to shepherd worker threads; OMPT doesn’t consider such helper threads to
be OpenMP threads. The state maintained for each OpenMP thread by the
OpenMP runtime is an approximation of the thread’s instantaneous state.

Table 1 shows the states defined by OMPT. States are divided into seven
groups. A work state indicates that a thread is performing either serial or parallel

OMPT: An OpenMP Tools Application Programming Interface 175

work. The idle state is typically reported by a worker thread waiting for work
outside a parallel region. The overhead state may be reported by a thread when
it is executing runtime system code. A barrier wait state indicates that a thread
is waiting at a barrier. A task wait state indicates that a thread is waiting for
tasks to complete. The OpenMP runtime will report the undefined state for any
thread that is not an OpenMP thread.

Each mutex wait state has the obvious interpretation. When a thread is in
a mutex wait state, the thread also maintains an identifier that represents the
identity the mutex awaited. This capability is described in Section 4.3.

To enable low overhead implementations, OMPT does not precisely specify if
or when an OpenMP runtime must report thread state transitions. For example,
consider a thread acquiring a lock. One compliant runtime may transition the
thread state to lock wait before attempting to acquire a lock. Another may
transition the thread state to lock wait only if the thread begins to spin or
block for an unavailable lock. A third compliant runtime may transition the
state to lock wait only after a thread waits for a significant amount of time.
A comprehensive discussion of OMPT states can be found in a draft OpenMP
Tools API Technical Report [8].

3 Events

OMPT prescribes events for which an OpenMP runtime may provide callback
notification for tools. There are two classes of events: mandatory events and op-
tional events. Mandatory events must be implemented in any compliant runtime
implementation. Optional events are grouped in sets of related events. While
each event can be individually included or omitted, we encourage runtimes and
tools to consider implementing all or none of the events in a given set. A call-
back need not be registered for an event. An OpenMP runtime system will not
make any callback unless a tool has registered to receive it. Each callback has a
specified type signature.

ompt_event_thread_create

ompt_event_thread_exit

ompt_event_parallel_create

ompt_event_parallel_exit

ompt_event_task_create

ompt_event_task_exit

ompt_event_runtime_shutdown

ompt_event_control

Fig. 1. Mandatory OMPT events

Mandatory Events. Figure 1 lists the
mandatory events for which an OpenMP
runtime system must provide callback no-
tification. Mandatory events include cre-
ation and destruction of worker threads,
entry and exit from a parallel region, cre-
ation and destruction of explicit tasks,
and notification of when an OpenMP run-
time is shutting down. Finally, the con-
trol event, inspired by MPI pcontrol en-
ables an application to directly control a

176 A.E. Eichenberger et al.

tool. If the user program calls ompt control, the OpenMP runtime invokes the
control callback. The callback executes in the environment of the user control
call. The arguments passed to the callback are the ones passed by the user to
ompt control. Details about the type signatures for other callbacks are available
in the draft OpenMP Tools Technical report [8].

3.1 Optional Events

This section describes two sets of events. One set of events is used by sampling-
based performance tools that employ a strategy known as blame shifting to
attribute waiting by one or more threads to activity by contexts that cause
other threads to wait, e.g., a thread holding a lock, rather than the contexts in
which the waiting is observed, e.g., threads waiting to acquire a lock. Support for
any events described in this section is optional for a compliant runtime system.

ompt_event_idle_begin

ompt_event_idle_end

ompt_event_wait_barrier_begin

ompt_event_wait_barrier_end

ompt_event_wait_taskwait_begin

ompt_event_wait_taskwait_end

ompt_event_wait_taskgroup_begin

ompt_event_wait_taskgroup_end

ompt_event_release_lock

ompt_event_release_nest_lock_last

ompt_event_release_critical

ompt_event_release_atomic

ompt_event_release_ordered

Fig. 2. Optional events for blame shifting

Events for Blame Shifting. Fig-
ure 2 lists synchronous ’blame shift-
ing’ events. These events enable
sampling-based performance tools
to transfer blame for waiting from
contexts where waiting is observed
to code responsible for the wait-
ing.1 A tool can use these callbacks
to blame time worker threads idle
between parallel regions on the se-
rial code executing. Similarly, using
these callbacks, a tool can attribute
time spent waiting at barriers, wait-
ing for tasks to complete, or wait-
ing for a thread to release a con-
struct that provides mutual exclu-
sion (e.g., a lock, critical section,
atomic, region, or ordered section)
on the thread or threads responsible for the waiting.

Events for Trace-Based Measurement Tools. Figure 3 lists optional events
to support trace-based measurement tools. Most of these callback events consist
of start/end pairs that bracket an activity. A few events, such as lock initial-
ization, lock destruction, and flush merit only a single event. Additional details
about these events and the type signatures of their callbacks can be found in the
draft OpenMP Tools Technical report [8].

1 Blame shifting is effective for attributing idle time while threads await work [5] and
idle time while threads spin wait for a lock [6]. The utility of such blame shifting
has also been demonstrated for performance analysis of OpenMP programs [7].

OMPT: An OpenMP Tools Application Programming Interface 177

ompt_event_implicit_task_create ompt_event_taskgroup_end

ompt_event_implicit_task_exit ompt_event_release_nest_lock_prev

ompt_event_task_switch ompt_event_wait_lock

ompt_event_loop_begin ompt_event_wait_nest_lock

ompt_event_loop_end ompt_event_wait_critical

ompt_event_section_begin ompt_event_wait_atomic

ompt_event_section_end ompt_event_wait_ordered

ompt_event_single_in_block_begin ompt_event_acquired_lock

ompt_event_single_in_block_end ompt_event_acquired_nest_lock_first

ompt_event_single_others_begin ompt_event_acquired_nest_lock_next

ompt_event_single_others_end ompt_event_acquired_critical

ompt_event_master_begin ompt_event_acquired_atomic

ompt_event_master_end ompt_event_acquired_ordered

ompt_event_barrier_begin ompt_event_init_lock

ompt_event_barrier_end ompt_event_init_nest_lock

ompt_event_taskwait_begin ompt_event_destroy_lock

ompt_event_taskwait_end ompt_event_destroy_nest_lock

ompt_event_taskgroup_begin ompt_event_flush

Fig. 3. Optional events for tracing

4 Tool Data Structures

4.1 Thread and Task Data

Each OpenMP thread and task instance provides an ompt_data_t object, which
is a union of an integer and a pointer:

typedef union ompt_data_u {

uint64_t value; /* data under tool control */

void *ptr; /* pointer under tool control */

} ompt_data_t;

The lifetime of an ompt_data_t object for a thread or task instance begins
when the instance is created and ends when the instance is destroyed. While the
value of an ompt_data_t is preserved throughout the life of its associated thread
or task instance, tools should not assume that the address of an ompt_data_t

remains constant over its lifetime.
When a thread or task instance is created, the callback associated with the

instance creation event must initialize the ompt_data_t object. If there is no
callback associated with the event, the OpenMP runtime initializes the structure
value field to 0. The address of the ompt_data_t structure is passed to callbacks
associated with the creation/destruction of threads/tasks. The address of the
structure can also be retrieved on demand, e.g., by invoking an inquiry function
in a signal handler.

If the ompt_data_t value field is 0 for a thread or task instance at the point
that an exit callback would be made, the exit callback is not invoked. The tool
is responsible for coordinating any concurrent accesses to ompt_data_t objects.

178 A.E. Eichenberger et al.

4.2 Parallel Region Identifier

Each OpenMP parallel region instance has ompt_parallel_id_t that uniquely
identifies the region instance. An ompt_parallel_id_t is represented as a 64-
bit unsigned integer. The ompt_parallel_id_t for a parallel region instance is
unique across all instances of all parallel regions.

An ompt_parallel_id_t is defined when a parallel region instance is cre-
ated and passed to callbacks associated with creation/destruction of the parallel
region instance. A parallel region’s ID can be retrieved on demand, e.g., by in-
voking an inquiry function in a signal handler. Tools should not assume that
ompt_parallel_id_t values for adjacent region instances are consecutive.

4.3 Wait Identifier

When a thread enters a mutex wait state, it assigns a unsigned 64-bit integer
ompt_wait_id_t that indicates a program variable, lock, or internal runtime
object associated with a critical section, ordered section, or atomic region that
caused the thread to wait. The value of the ompt_wait_id_t structure is passed
to callbacks associated with wait events, and can also be retrieved on demand
by invoking the ompt_get_state operation, described in Section 5.1. The value
of a thread’s ompt_wait_id_t is undefined if the thread is not awaiting a mutex.

4.4 Pointers to Support Classification of Stack Frames

Each implicit or explicit task instance provides an ompt_frame_t data structure
which contains pointers to OpenMP runtime procedure frames that appear above
and below procedure frames associated with user task code.

typedef struct ompt_frame_s {

void *exit_runtime_frame; /* next frame is user code */

void *reenter_runtime_frame; /* prev frame is user code */

} ompt_frame_t;

The structure’s lifetime begins when a task instance is created and ends when
the task instance is destroyed. While the value of the structure is preserved over
the lifetime of the task, tools should not assume that the address of a structure
remains constant over its lifetime. Frame data is passed to some callbacks; it can
also be retrieved for a task (e.g. by a signal handler). Frame data contains two
components:

exit_runtime_frame This value is set when a task exits the runtime to begin
executing user code. This field points to the stack frame of the runtime
procedure that called the user code. This value is NULL until just before
the task exits the runtime.

reenter_runtime_frame This value is set when the current task re-enters the
runtime to create new (implicit or explicit) tasks. This field points to the
stack frame of the runtime procedure called by a task to re-enter the runtime.
This value is NULL until just after the task re-enters the runtime.

OMPT: An OpenMP Tools Application Programming Interface 179

codeA (f10)

codeA (f11)

par (f12)

par (f14)

idle (f0)

codeB (f1)

codeB (f2)

codeB (f15)

par (f3)

par (f5)

codeC (f6)

code A

par “b”

exit (b)

par “c”

reentry (b)

exit (c)

reentry (c)

exit (a)

reentry(a)

exit (b)

reentry(b)

par (f13) par (f4)

Thread 1 Thread 2

0

0 0

code B
#pragma omp parallel “b”

code C
#pragma omp parallel “c”

Fig. 4. Frame information

Figure 4 illustrates a program executing a nested parallel region, where code A,
B, and C represent, respectively, code associated with the sequential, outer-
parallel, and inner-parallel regions. Figure 4 also depicts the stacks of two
threads, where each new function call installs a new stack frame below the
previous frames. When Thread 1 encounters the outer-parallel region (paral-
lel ”b”), it jumps into the runtime functions responsible for creating a new
parallel region. This functionality is performed here by 3 consecutive function
calls labeled ”par” and frames f12 to f14. The OMPT API guarantees that the
reenter_runtime_frame field of the parent task will points to the first frame of
the runtime upon reentering the runtime (f12 here).

Before starting the parallel work, the runtime instantiates the
exit_runtime_frame to the last runtime frame for each of the implicit
tasks created by the parallel region: f14 for Thread 1 and f0 for Thread 2
here. Let us focus now on Thread 2, which is created by the runtime to
execute the outer-parallel region ”b”. This thread first exits a runtime function,
labeled ”idle” here, which is responsible for initializing a worker thread prior
to executing user work. Before exiting the runtime, the runtime instantiates
the exit_runtime_frame field to Frame f0. When Thread 2 later encounters
the inner-parallel region ”c”, the execution returns to the runtime where the
runtime will instantiate the reentry_runtime_frame field of the parent task to
Frame f3.

180 A.E. Eichenberger et al.

Table 2. Meaning of values for exit runtime frame and reenter runtime frame

exit / reentry reentry = null reentry = defined

exit = null case 1) initial task in user code
case 2) explicit task that is cre-
ated but not yet scheduled

initial task in runtime because of a
parallel region or a task creation

exit = defined non-initial task in user code non-initial task in runtime because
of a parallel region or a task creation

The function stack frames introduced by the OpenMP runtime can thus be
elided by walking back the stack and eliminating every frames between the
exit_runtime_frame of a child’s task and the reenter_runtime_frame of its
parent’s task. When reaching the first frame of a stack, for example, when walk-
ing back the stack of Thread 2, a tool can resume the walking in the parent’s
stack starting above the reentry_runtime_frame field associated with its par-
ent’s task.

As a reference for tool designers, Table 2 enumerates the meaning of possible
NULL or non-NULL entries in exit / re-enter pairs. In the presence of nested
parallelism, a tool may observe a sequence of pairs for a thread. The pairing
between reenter and exit events is worth noting. A exit event in an ompt_frame_t

at level k always pairs with the reenter event in the frame at level k + 1. Tools
must be prepared to observe frame exit and reenter values that have not yet
been set or reset as the program exits the runtime or returns into the runtime.
In such cases, an exit or reenter pointer may point above the frame at the top
of the thread’s stack, or the ompt_frame_t at level 0 may contain only NULL
pointers.

5 Inquiry Functions for Tools

Inquiry functions retrieve data from the execution environment for the tools. All
inquiry functions are async signal safe.

5.1 Enumerate States Supported by an OpenMP Runtime

An OpenMP runtime system is allowed to support other states in addition to
those described herein. For instance, a particular runtime system may want to
provide finer-grain information about the nature of runtime overhead, e.g., to
differentiate between the overhead associated with setting up a parallel region
and the overhead associated with setting up a task. Further, a tool may not
report all states defined herein, e.g., if state tracking for a particular state would
be too expensive. To enable a tool to identify all states that an OpenMP runtime

OMPT: An OpenMP Tools Application Programming Interface 181

system implements, OMPT provides the following interface for enumerating all
possibly reported runtime states.

int ompt_enumerate_state(int current_state,

int *next_state, const char **next_state_name);

When this interface is invoked for the first time, the value ompt_state_first

should be supplied for current_state. The argument next_state is a pointer
to an integer that will be set to the code for the next state in the enumeration.
The argument next_state_name is a pointer to a location that will be filled in
with a pointer to the name associated with next_state. Subsequent invocations
of ompt_enumerate_state should pass the code returned in next_state by the
prior call. The enumeration is complete when ompt_enumerate_state returns 0.
The canonical way to enumerate the states supported by an OpenMP runtime
system is shown below:

int state; const char *state_name;

for (int ok = ompt_enumerate_state(ompt_state_first, &state,

&state_name); ok; ok = ompt_enumerate_state(state, &state,

&state_name))

{ /* "state" is supported with name "state_name" */ }

Thread Data Inquiry. Function ompt_get_thread_data is an inquiry func-
tion to access data stored by the OpenMP runtime system for the current thread
for use by a tool.

ompt_data_t *ompt_get_thread_data(void);

This inquiry function returns NULL prior to OpenMP initialization or when no
tool is attached to the runtime. This function is async signal safe.

Thread State Inquiry. Function ompt_get_state is the inquiry function to
determine the state of the current thread.

ompt_state_t ompt_get_state(ompt_wait_id_t *wait_id);

The location specified by wait_id is updated point to the wait identifier asso-
ciated with the current state, if any, or NULL otherwise. This function returns
ompt_state_undefined prior to OpenMP initialization or when no tool is at-
tached to the runtime. This function is async signal safe.

Parallel Region Inquiry. OMPT defines two inquiry functions to access data
stored by the OpenMP runtime for parallel regions. The first region inquiry func-
tion returns the unique parallel id associated with an enclosing parallel region
instance:

ompt_parallel_id_t ompt_get_parallel_id(int ancestor_level);

Outside a parallel region or in the idle state, ompt_get_parallel_id returns 0.
In other cases, except as we discuss below, the thread should return the identity
of the enclosing parallel region at the requested level.

182 A.E. Eichenberger et al.

The second region inquiry function returns a pointer to a compiler-generated
function invoked by the OpenMP runtime to encapsulate the code of the parallel
region, if any, and NULL otherwise:

void *ompt_get_parallel_function(int ancestor_level);

Both of parallel region inquiry functions take an ancestor level as an argument.
By specifying different values for ancestor level (0 is current, 1 is parent, 2 is
grandparent...), one can access information about each parallel region, even if
parallel regions are nested. These functions return the value 0 when requesting
higher levels of ancestry than available, prior to OpenMP initialization, or when
no tool is attached to the OpenMP runtime. These functions are async signal
safe.

Task Region Inquiry. OMPT defines three inquiry functions to access data
stored by the OpenMP runtime for task regions. Function ompt_get_task_data

returns the tool data object associated with a given task. Similarly, function
ompt_get_task_frame returns the tool frame associated with a given task.
Frame objects for tasks are used to support classification of call stack frames
as being associated with user code or the OpenMP runtime system, as described
in Section 4.4.

ompt_data_t *ompt_get_task_data(int ancestor_level);

ompt_frame_t *ompt_get_task_frame(int ancestor_level);

The value returned by the ompt_get_task_function indicates the compiler-
generated function used by the OpenMP runtime to encapsulate the code of the
task construct, if any, and NULL otherwise.

void *ompt_get_task_function(int ancestor_level);

These functions return NULL when requesting higher levels of ancestry than
available, prior to OpenMP initialization, or when no tool is attached to the
OpenMP runtime. These functions are async signal safe.

Tool Support Version Inquiry. OMPT provides a function to determine the
version of the OMPT interface supported by a runtime:

int ompt_get_ompt_version(void);

The version of OMPT described by this document is known as version 1.

6 Inquiry and Control Functions for Applications

The functions described in this section are the only ones with a Fortran interface
in addition to a C/C++ interface.

OMPT: An OpenMP Tools Application Programming Interface 183

Runtime Version Inquiry. OMPT provides an interface to extract informa-
tion about the version of an OpenMP runtime system in the form of a string:

int ompt_get_runtime_version(char *buffer, int length);

ompt_get_runtime_version fills bufferwith a version-specific string of at most
length characters. The suggested format is

<vendor>-<major version>.<minor version>[-<optional feature]*

Namely, a vendor name, major and minor version numbers, and, optionally, a list
of zero or more features, separated by dashes. As an example, IBM’s OpenMP
runtime might return the following version string “ IBM-1.1-blame=1-trace=0”,
indicating that IBM’s OpenMP runtime supports the OMPT tools API core
augmented with support for blame shifting, but not support for detailed tracing.

Tool Control. The function ompt_control can be called by an application
to pass control information to a tool. The signature for this function is shown
below:

void ompt_control(uint64_t command, uint64_t modifier);

A classic use case for the ompt_control routine might be for an application to
start and stop data collection by a tool.

7 Initializing OMPT Support for Tools

An OpenMP runtime need not maintain information to support tools and may
provide trivial (and thus, perhaps useless) answers in response to invocations
of any API inquiry functions. Section 7.1 describes normal initialization for a
tool. A further section describing the environment variable control over tool
initialization and the tool initialization API for debugger can be found in the
draft OpenMP Tools Technical Report [8].

7.1 Initialization of a Tool

A tool must register itself with an OpenMP runtime system and then specify
callbacks for events of interest. Section 7.1 describes the initializer for a tool.
Section 7.1 describes registration of callbacks for OMPT events.

Tool initializer. A tool must register itself with an OpenMP runtime by defin-
ing the following function:

int ompt_initialize(void);

The role of ompt_initialize is to register callbacks for specific events, e.g.,
creating a parallel region. A tool must register a callback for every event of
interest using ompt_set_callback, as described in Section 7.1. The OpenMP
runtime system defines a weak symbol version of ompt_initialize that returns
0; a tool-provided version must return 1.

184 A.E. Eichenberger et al.

Table 3. Meaning of return codes for ompt set callback

return code meaning

0 event may occur; runtimes does not support this callback.

1 event will never occur in runtime.

2 event may occur; callback invoked when convenient.

3 event may occur; callback always invoked when event occurs.

Since only one tool-provided definition of ompt_initialize will be invoked
by an OpenMP runtime, only one tool can be registered. Ordinarily, the tool ini-
tializer ompt_initialize will be invoked by an OpenMP runtime immediately
after the runtime initializes itself.

An OpenMP runtime system may allow registration of a tool after initializa-
tion of the OpenMP runtime at a clean point. An OpenMP runtime is said to
be at a clean point when no pthread is inside a parallel region. An OpenMP
runtime system will not necessarily attempt to register a tool at a clean point
unless a debugger has previously called ompd_enable(true)as described in the
draft OpenMP Tools Technical Report [8].

After a process fork, if OpenMP is re-initialized in the child process, the
OpenMP runtime system in the child process will call ompt_initialize under
the same conditions as it would in any process.

Callback Registration. Tools register callbacks to receive notification of var-
ious events that occur as an OpenMP program executes. To register callbacks,
a tool uses the following function:

int ompt_set_callback(ompt_event_t e, ompt_callback_t cb);

The function ompt_set_callback may only be called within the implementa-
tion of ompt_initialize provided by a tool, as described above. The possible
return codes for ompt_set_callback and their meaning is shown in Table 3.
Registration of supported callbacks may fail if this function is called outside
ompt_initialize. The ompt_callback_t type for a callback does not reflect
the actual signature of the callback; OMPT uses this generic type to avoid the
need to declare a separate registration function for each actual callback type.

The function ompt_get_callback, as shown below, may be called at any time
to inspect whether a callback has been registered or not. If a callback has been
registered, ompt_set_callback will return 1 and set callback to the address
of the callback function; otherwise, ompt_set_callback will return 0.

int ompt_get_callback(ompt_event_t e, ompt_callback_t *cb);

8 Status

This paper defines an application programming interface (API) for tools that
we propose for adoption as part of the OpenMP standard and supported by
all OpenMP compliant implementation. An initial implementation of OMPT in

OMPT: An OpenMP Tools Application Programming Interface 185

IBM’s lightweight OpenMP runtime system has been completed and tested with
tools. An implementation of OMPT in Intel’s open-source OpenMP Runtime
Library by Rice University and the University of Oregon is nearing completion.
The OMPT implementation in IBM’s runtime has runtime overhead of less than
1% for OMPT.

In the spring of 2013, there has been an effort to extend the OMPT OpenMP
tools API to provide an interface for debuggers as well. The design for a debugger
interface, known as OMPD, embraces the OMPT design and supports a superset
of OMPT interface operations in a shared library intended to be loaded into a
debugger interacting with the state of an OpenMP application in a core file or
a live process. The design for OMPD builds upon an earlier effort to design a
debugger library [9].

A more detailed description of OMPT and the proposed OMPD extensions
are part of a draft OpenMP Tools API Technical Report [8].

References

1. OpenMP Architecture Review Board: OpenMP Application Programming Interface,
version 3.1. (July 2011), http://www.openmp.org/mp-documents/OpenMP3.1.pdf

2. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and prototype of a performance
tool interface for OpenMP. The Journal of Supercomputing 23, 105–128 (2002)

3. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP runtime API for pro-
filing Sun Microsystems, Inc. OpenMP ARB White Paper,
http://www.compunity.org/futures/omp-api.html

4. Jost, G., Mazurov, O., An Mey, D.: Adding new dimensions to performance analysis
through user-defined objects. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R.,
Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315,
pp. 255–266. Springer, Heidelberg (2008)

5. Tallent, N.R., Mellor-Crummey, J.M.: Effective performance measurement and anal-
ysis of multithreaded applications. In: Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2009,
pp. 229–240. ACM, New York (2009)

6. Tallent, N.R., Mellor-Crummey, J.M., Porterfield, A.: Analyzing lock contention in
multithreaded applications. In: Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2010, pp. 269–280.
ACM, New York (2010)

7. Liu, X., Mellor-Crummey, J., Fagan, M.: A new approach for performance analysis
of OpenMP programs. In: Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing. ICS 2013, pp. 69–80. ACM, New
York (2013)

8. Eichenberger, A., Mellor-Crummey, J., Schulz, M., Copty, N., DelSignore, J., Diet-
rich, R., Liu, X., Loh, E., Lorenz, D.: OMPT: An openMP tools application pro-
gramming interface for performance analysis. In: Rendell, A.P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer, Heidel-
berg (2013), http://openmp.org/mp-documents/ompt-tr.pdf

9. Cownie, J., Del Signore, J., de Supinski, B.R., Warren, K.: DMPL: An openMP
DLL debugging interface. In: Voss, M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716,
pp. 137–146. Springer, Heidelberg (2003)

http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.compunity.org/futures/omp-api.html
http://openmp.org/mp-documents/ompt-tr.pdf

Open Source Task Profiling by Extending

the OpenMP Runtime API

Ahmad Qawasmeh1, Abid Malik1, Barbara Chapman1, Kevin Huck2,
and Allen Malony2

1 University of Houston, Dept. of Computer Science,
Houston, Texas

{arqawasm,malik,chapman}@cs.uh.edu

www2.cs.uh.edu/~hpctools
2 University of Oregon, Dept. of Computer and Information Science,

Eugene, Oregon
{khuck,malony}@cs.uoregon.edu

www.cs.uoregon.edu/research/tau/home.php

Abstract. The introduction of tasks in the OpenMP programming
model brings a new level of parallelism. This also creates new challenges
with respect to its meanings and applicability through an event-based
performance profiling. The OpenMP Architecture Review Board (ARB)
has approved an interface specification known as the “OpenMP Runtime
API for Profiling” to enable performance tools to collect performance data
for OpenMP programs. In this paper, we propose new extensions to the
OpenMP Runtime API for profiling task level parallelism. We present an
efficient method to distinguish individual task instances in order to track
their associated events at the micro level. We implement the proposed ex-
tensions in the OpenUH compiler which is an open-source OpenMP com-
piler. With negligible overheads, we are able to capture important events
like task creation, execution, suspension, and exiting. These events help
in identifying overheads associated with the OpenMP tasking model, e.g.,
task waiting until a task starts execution or task cleanup etc. These events
also help in constructing important parent-child relationships that de-
fine tasks’ call paths. The proposed extensions are in line with the newest
specifications recently proposed by the OpenMP tools committee for task
profiling.

Keywords: OpenMP, OpenMP Runtime API for Profiling, Open-Source
Implementation, OpenMP Tasks.

1 Introduction

OpenMP is a standard API for shared memory programming. It provides a
directive-basedprogrammingapproach for generatingparallel versionsofprograms
from the sequential ones. The compiler generated code invokes the OpenMP run-
time library routines to create and manage threads and tasks. The lack of stan-
dards in the runtime layer has hampered the development of third-party tools to

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 186–199, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www2.cs.uh.edu/~hpctools
www.cs.uoregon.edu/research/tau/home.php

Open Source Task Profiling by Extending the OpenMP Runtime API 187

support OpenMP application development. The OpenMP Runtime API (ORA)
for profiling OpenMP applications was presented in [9]. The ORA has been ac-
cepted by the tools committee of the OpenMPArchitecture ReviewBoard (ARB).
The API is designed to permit a tool, known as a collector, to gather information
about anOpenMPprogramfrom the runtime system in such amanner that neither
the collector nor the runtime system needs to know any details about each other.
The ORA is designed to ensure that tool developers are not required to have an
insight into the details of the different OpenMP implementations. However, these
tools shouldmaintain information about the OpenMP executionmodel in order to
trouble-shoot the OpenMP specific performance problems.

The ORA is an event-based interface that relies on bi-directional commu-
nications between a performance tool, i.e. collector, and an OpenMP runtime
library. The communication is established through a collection of requests that
take a send-receive protocol with a distinct functionality for each request. The
main advantage of the ORA is that no modifications to an application’s source
code are required. Consequently, compiler analysis and optimizations will not be
affected. Hence, the performance measurements of an application, collected by
a performance tool, are more accurate and specific.

Traditionally, parallel programming models for shared memory multiproces-
sors had focused on scientific applications using large arrays and exhibiting loop
level parallelism. In order to exploit the new massive parallelism provided by the
modern architectures, the parallel programming models had to propose a new
dimension of concurrency to cap available parallelism within high performance
computing applications. Applications exhibiting irregular parallelism in the form
of recursive algorithms and pointer based data structures were not taken care of
before the introduction of tasking in the OpenMP programming model. Tasking
has added a new dimension of concurrency, represented by the task construct,
to OpenMP applications. The task construct allows a developer to dynamically
create asynchronous units of work to be scheduled at runtime. Two types of tasks
have been introduced in the OpenMP specification; 1) Tied tasks 2) Untied
tasks. Tied tasks can be suspended at specific scheduling points that include
the creation of tasks, taskwait constructs, barriers, and completion of tasks etc.
Untied tasks can be suspended at any point in an OpenMP program according
to OpenMP 3.1 specifications. Moreover, a tied task can be resumed only by the
thread that started its execution while an untied task can be resumed by any
thread in the team.

In order to handle the challenges and performance issues associated with the
introduction of tasks, we propose new extensions to the ORA in the OpenMP
runtime library of the OpenUH compiler [17], [2]. The main motivation behind
this work lies in observing the viability of monitoring the individual task in-
stances and tracking the events associated with each one of them at the micro
level. The new API we propose allows developers to:

– Distinguish the individual task instances in the same task construct by as-
signing a distinct ID to each task instance.

188 A. Qawasmeh et al.

– Distinguish the task instances that get suspended at the different scheduling
points.

– Construct parent-child relationships between tasks, which can be used to
construct a task tree.

– Track task creation, switching, suspension, resumption, exiting, and comple-
tion.

– Allow collector tools to maintain performance measurements associated with
the aforementioned events.

Our implementation supports C/C++ and Fortran programs with tied tasks
and untied tasks. Furthermore, our implementation is in line with the task profil-
ing specification proposed by the OpenMP ARB tools committee [4]. Reference
implementations of the ORA are sparse since it requires compiler and OpenMP
runtime library support. To the best of our knowledge, the work reported here
is the first open-source implementation of the ORA with extensions to support
tasks.

The remainder of the paper is organized as follows. Section 2 briefly describes
the OpenMP task implementation in the OpenUH compiler runtime library.
Section 3 gives details about our new extensions in the ORA for task profiling.
Section 4 presents the experimental framework used to evaluate the implemen-
tation. The related work is discussed in Section 5. Finally, Section 6 concludes
our contributions and discusses directions for the future work.

2 OpenMP Tasking Implementation in OpenUH

The OpenUH compiler supports OpenMP 3.0 tasking on the IA-64, IA-32,
x86 64, and Opteron Linux ABI platforms. This includes the front-end sup-
port ported from the GNU C/C++ compiler, back-end translation implemented
by the HPCTool group at the University of Houston jointly with the Tsinghua
University, and an efficient task scheduling infrastructure developed by the HPC-
Tools group. The HPCTools group also implemented a configurable task pool
framework that allows a user to choose an appropriate task queue organization
at runtime.

We use the popular Fibonacci code in Figure 1a to explain the role of the
OpenMP runtime library regarding our implementation. In the code, two task
constructs have been inserted to handle recursion in a dynamic parallel fashion.
In the same manner, a taskwait construct has been used to get correct results by
preventing parent tasks from proceeding while child tasks are still running. The
number of tasks created depends on the value of integer n. The task construct
will create a task instance. The execution of the task will be deferred based on
the availability of threads and the status of its children. Figure 2 shows how the
OpenMP tasking directives in Figure 1a are translated into the OpenMP runtime
routines. A description of the tasking runtime routines is given in Table 1.

We use the OpenMP runtime routines to capture the OpenMP events and
states related to the OpenMP task, such as task creation, task waiting in the task

Open Source Task Profiling by Extending the OpenMP Runtime API 189

Table 1. Description of the OpenMP tasking runtime routines in OpenUH

Routine Description

ompc task create() creates a task and inserts it into a queue

ompc task wait() suspends a task until all of its children complete

ompc task exit() called at the end of a task to perform cleanup and
schedule a new task

ompc task switch() switches the execution from one task to another

ompc task firstprivates alloc() allocate memory for firstprivate copies

ompc task will defer() checks if a task should be deferred or executed im-
mediately

ompc task firstprivates free() deallocate memory for firstprivate copies

(a) Fibonacci code (b) A task tree (n=4)

Fig. 1. Fibonacci OpenMP tasking example

pool, task switching from a create state to a suspend state etc. These states and
events are captured by simply modifying the OpenMP runtime routines, without
modifying the OpenMP translation of the source code. The ORA extensions to
support task profiling provide an API to query the OpenMP runtime library for
task states and event notifications using callback functions.

3 Implementation of the OpenMP Tasking Profiling APIs

The ORA interface [9] consists of a single routine that takes the form: int
omp collector api (void *arg). The arg parameter is a pointer to a byte array

that can be used by a collector tool to pass one or more requests for information
from the runtime. The collector requests notification of a specific event by passing
the name of the event to be tracked as well as a callback routine to be invoked
by the OpenMP runtime each time the event occurs. Figure 4 demonstrates the
interaction between the collector and the OpenMP runtime library through the
Collector API. As shown, this interaction is acheived by a set of implemented
requests.

The aforementioned single routine is implemented once in the runtime and its
symbol is exported in the OpenMP runtime library. This strategy allows the tool

190 A. Qawasmeh et al.

Fig. 2. OpenUH translation of the Fibonacci code in Fig. 1a into explicitly multi-
threaded code

to check whether the symbol exists via a dynamic linker in order to establish
a communication with the runtime and start sending requests and monitor-
ing events and states. The OpenMP runtime should distinguish thread’s states,
which are related to tasks. These states include when a task is created, sus-
pended, existing, or being executed. When the collector tool makes a request for
notification of a specified task event(s), the OpenMP runtime will start keeping
track of this event inside its environment. The collector may also make requests
to pause, resume, or stop event generation.

When a collector tool sends a request to register any event through the ORA,
the event type OMP COLLECTORAPI REQUEST and a callback function
pointer is passed as an argument to the API call in the runtime. Race con-
ditions might occur when multiple threads try to register the same event with
multiple callbacks. The callback function pointer is stored in a table in which
each entry has a lock associated with it to prevent race conditions. This ta-
ble contains the event callbacks shared by all the threads. The frequency in
which the events are registered relies on the nature of the collector tool. Two
functions, ompc event callback(event) and ompc set state(state), are inserted
at different positions in the OpenMP runtime task routines specifed in Table
1. These functions implement the different events and states associated with

Open Source Task Profiling by Extending the OpenMP Runtime API 191

Fig. 3. OpenUH tasking execution model

the task instances. The state values are stored in the OpenMP thread de-
scriptor in the runtime. Once a thread reaches an event point, the function
ompc event callback((OMP COLLECTORAPI EVENT) e) is executed and

the callback function, associated with this event, is invoked. The functionality of
the callback is determined by a performance tool in order to collect the required
performance measurements.

The OpenMP ARB tools committee proposed a framework for task profiling
in the face to face meeting recently held at the University of Houston [4]. The
proposal categorizes the profiling events into two groups 1) mandatory events
2) optional events. The proposal defines the OpenMP task creation and task
exiting as mandatory events, while task waiting and task switching have been
defined as optional events. Our extensions include support for the mandatory
events proposed during this meeting. We also provide support for some optional
events in addition to some other events specific to our tasking model. Figure 3
shows the task execution model implemented in the OpenUH runtime to support
OpenMP tasks. The model depicts all the different states encountered by each
task instance starting from task’s creation to its completion ,i.e., when the task
is destroyed. In the following sections, we describe our extensions in detail.

3.1 Task Creation Events and States

These events and states are designed to capture the start and completion of a
task instance creation. The following states and events have been defined:

– THR TASK CREATE STATE : The enumerated value of this state is as-
signed to the thread’s state field in the descriptor whenever the thread is
working on a task creation.

192 A. Qawasmeh et al.

Fig. 4. Example of an interaction between collector and OpenMP runtime

– OMP EVENT THR BEGIN CREATE TASK : This event indicates that the
parent task creates a new explicit task before the new task starts execution.

– OMP EVENT THR END CREATE TASK IMM : This event indicates that
the process of creating the task is done and its execution will start immedi-
ately.

– OMP EVENT THR END CREATE TASK DEL: This event indicates that
the process of creating the task is done and its execution will start with a
delay.

3.2 Task Suspension Events and States

These events and states are designed to capture the start and completion of a
task instance suspension. This suspension occurs when the taskwait construct is
encountered.

– THR TASK SUSPEND STATE : The enumerated value of this state is in-
stantly assigned to the thread’s descriptor once the parent task encounters
a taskwait construct. The thread, working on the parent task, will later be
asssigned to another work. Child tasks, associated with the suspended task,
should finish their execution in order for the suspended task to resume its
execution.

– OMP EVENT THR BEGIN SUSPEND TASK : This event indicates that
the parent task has been suspended.

– OMP EVENT THR END SUSPEND TASK : This event indicates the com-
pletion of the parent task’s suspension.

Open Source Task Profiling by Extending the OpenMP Runtime API 193

3.3 Task Execution/Exiting Events and States

These events and states are designed to capture the start and completion of a task
instance execution and exiting. Once a new task is created, it may start executing
immediately or with some delay depending on the availability of threads.

– THR WORK STATE : The enumerated value of this state is assigned to the
thread’s descriptor once the thread starts the execution of a task.

– OMP EVENT THR BEGIN EXEC TASK : This event is hit once the task’s
execution begins.

– OMP EVENT THR BEGIN FINISH TASK : This event indicates that the
task’s execution is done. This event is hit immediately after the previous
event if the task being executed does not encounter a taskwait construct.

– OMP EVENT THR END FINISH TASK : This event indicates that the re-
moval of the task from the task-pool and the required cleanup have success-
fully been completed.

By defining these new states, we guarantee that a thread will always have a
distinct state associated with it while working on tasks. The collector tool can
request the state of a thread at any given point during the execution of the
program.

3.4 Task IDs and Parent Task IDs

In order to distinguish the various task instances, keep track of their associated
events, and construct parent-child relationships between tasks, we have added a
new OpenMP task ID field to the task data structure descriptor. It is initialized
with a value corresponding to the initial implicit task. Each time a new task is
created, the task ID is incremented atomically to ensure that only one thread
can modify this field at any instance of time. The parent task ID is obtained
by having a pointer to the parent task. Two requests are defined to enable the
collector tool to obtain these IDs at any given point of the program execution.

4 Evaluation

We evaluated our implementation in the OpenUH compiler. We performed the
following two analyses;

– We measured the overheads introduced by the inclusion of our implementa-
tion in the runtime.

– We tracked the newly developed task IDs, states, and events through our em-
ployed requests. This part was achieved by developing a prototype OpenMP
task profiler tool.

We used the Barcelona OpenMP Task Suite (BOTS) kernels [3] as benchmark
applications. The experiments were done using the x86 64 Linux system with
four 2.2 GHz 12-core AMD Opteron processor (48 cores total).

194 A. Qawasmeh et al.

4.1 Overhead Measurements

Table 2 gives details about our measurements. Each sub-table represents a kernel
in the BOTS. Interested readers can consult the work [3] for full details about
these kernels. We used six different numbers of threads. We collected data for
both tied and untied tasks. Each kernel has two versions. One with tied tasks
and the other with untied tasks. To calculate the overheads, we compiled the
benchmark kernels using the OpenUH compiler. We ran the binaries with our
OpenMP runtime library, while the tool is not attached. We employed a without
vs. a with scenario, in which the without case excludes: assigning an ID to each
task instance, assigning states to threads while working on tasks, tracking tasking
events, and implementing task requests.

The results show that the overhead associted with our implementation is in-
significant. The absolute overhead percentage ranges from 0% to 6% of the execu-
tion time. The average overhead percentage obtained is less than 1%. Overhead
detail from Floorplan and NQueens kernels are given by Table 2g and Table 2h

(a) FFT (b) Health (c) UTS

(d) Alignment (e) SparseLU (f) Fibonacci

(g) Floorplan (h) NQueens (i) Sort

(j) Strassen

Fig. 5. BOTS overhead comparison (Tied vs. Untied)

Open Source Task Profiling by Extending the OpenMP Runtime API 195

respectively. These two kernels produced the maximum overhead. SparseLU and
FFT, overhead described in Table 2e and Table 2a respectively, generated the
minimum overhead. The variation in overhead is due to the behavior of these
benchmarks.

Figure 5 demonstrates the overhead percentage obtained using tied vs. untied
tasks for all the aforementioned kernels. The x-axis in each sub-figure represents
the number of threads, while the y-axis represents the overhead percentage.
As we can see from Figure 5, the behavior of tied and untied tasks, in terms
of the range of deviations and the overhead’s average, is very similar, except
for the SparseLU benchmark shown in Figure 5e, where tied tasks have higher
overheads.

Furthermore, when more threads are used, the overhead scales well with the
increment of threads. As an example, when 48 threads are used, the worst over-
head percentage obtained, among the different kernels, is 2.56%.

Table 2 can be consulted to obtain detailed overhead measurements about
each benchmark.

4.2 Prototype OpenMP Task Profiler Tool

The motivation behind having such a profiler is to evaluate our proposed exten-
sions in the runtime. The tool’s functionality is to collect profiling measurements
regarding task instances. These measurements can lead to a better utilization of
task load-balancing, scheduling, and reducing overheads. OMP REQ START
request should be used first to initialize the collector API to establish a connec-
tion with the runtime. OMP REQ RE

GISTER request should be used next to selectively register the
task events required for our calculations. OMP REQ TASK ID and
OMP REQ TASK PID are used to get the task ID and the parent task ID
respectively to construct the task-tree. By tracking the task events, we are able
to request the thread-ID associated with each task as well as the thread’s state
while working on these tasks at any instance of time. Our tool also enables
developers to obtain measurements about:

– Task instance creation time
– Task instance suspension time
– Task instance execution time
– Task instance cleanup and destroying time
– Task instance overhead waiting after creation to start execution

We have tested our tool with all the BOTS kernels. Our tool is capable of track-
ing millions of task instances including their IDs, states, and events. For the sake
of simplicity, we show how our tool is useful by using the Fibonacci code shown
in Figure 1a with different input sizes N and two threads. Figure 1b displays the
task tree showing the parent and child tasks for each instance associatedwith their
task IDs when N=4. Task 2 has to wait for tasks 7 and 8 until they finish their ex-
ecution. We found that task 7 and task 8 were running in parallel since the two

196 A. Qawasmeh et al.

Table 2. The Barcelona OpenMP Task Suite (BOTS) overhead measurements

(a) FFT

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 10.35/10.26 10.37/10.27 0.02/0.01 0.19%/0.097%

4 5.94/5.65 5.971/5.67 0.031/0.02 0.52%/0.35%

8 3.73/3.36 3.67/3.39 (-0.06)/0.03 (-1.61%)/0.89%

16 2.839/3.3 2.866/3.31 0.027/0.01 0.95%/0.30%

32 3.17/4.33 3.2/4.17 0.03/-0.16 0.95%/-3.69%

48 4.22/5.73 4.26/5.75 0.04/0.02 0.95%/0.35%

(b) Health

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 1.85/1.8 1.9/1.9 0.05/0.1 2.7%/5%

4 1.15/1.13 1.2/1.2 0.05/0.07 4.34%/6%

8 1/0.95 1.06/1 0.06/0.05 6%/5%

16 1.28/1.25 1.29/1.26 0.01/0.004 0.78%/0.3%

32 1.25/1.19 1.26/1.2 0.007/0.01 0.55%/0.8%

48 1.36/1.36 1.37/1.37 0.004/0.01 0.29%/0.7%

(c) UTS

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 1.55/1.47 1.6/1.5 0.05/0.03 3.22%/2.04%

4 1.47/1.35 1.5/1.4 0.03/0.05 2.04%/3.70%

8 1.45/1.45 1.5/1.49 0.05/0.04 3.44%/2.75%

16 1.59/1.46 1.6/1.5 0.01/0.04 0.63%/2.74%

32 1.68/1.499 1.72/1.5 0.04/0.001 2.38%/0.07%

48 1.99/1.59 2/1.61 0.01/0.02 0.5%/1.25%

(d) Alignment

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 8.28/8.27 8.3/8.272 0.05/0.002 0.24%/0.024%

4 4.13/4.14 4.13/4.14 0/0 0%/0%

8 2.079/2.07 2.08/2.08 0.001/0.01 0.05%/0.48%

16 1.046/1.044 1.049/1.049 0.003/0.005 0.28%/0.48%

32 0.546/0.541 0.549/0.542 0.003/0.001 0.55%/0.18%

48 0.396/0.389 0.4/0.394 0.004/0.005 1.01%/1.29%

(e) SparseLU

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 1.27/1.278 1.27/1.28 0/0.001 0%/0.08%

4 3.661/3.663 3.664/3.66 0.003/0.002 0.08%/0.05%

8 1.945/1.955 1.953/1.956 0.008/0.001 0.41%/0.05%

16 1.0884/1.08 1.089/1.082 0.001/0.0003 0.055%/0.03%

32 0.658/0.659 0.66/0.659 0.002/0.0002 0.30%/0.030%

48 0.54/0.54 0.541/0.54 0.001/0 0.18%/0%

(f) Fibonacci

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 4.38/2.899 4.5/3 0.12/0.101 2.7%/3.48%

4 3.79/1.97 3.85/2 0.06/0.03 1.58%/1.52%

8 3.529/2.59 3.53/2.6 0.001/0.01 0.03%/0.38%

16 3.19/2.86 3.24/2.9 0.05/0.04 1.56%/1.39%

32 5.28/2.15 5.28/2.2 0.07/0.05 1.32%/2.32%

48 6.68/1.95 6.74/2 0.06/0.05 0.89%/2.56%

(g) Floorplan

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 24/11 25/11.5 1/0.5 4.1%/4.5%

4 11/7.5 11.49/8 0.49/0.5 4.45%/6.6%

8 9.7/8.7 9.89/9 0.19/0.3 1.95%/3.4%

16 11.87/12.5 11.9/13 0.03/0.5 0.25%/4%

32 11.02/9.7 11.24/9.73 0.22/0.03 1.99%/0.3%

48 10.98/9.66 10.99/9.68 0.01/0.02 0.09%/0.2%

(h) NQueens

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 5/4.8 4/5 0/0.2 0%/4.1%

4 3.5/3.5 3.65/3.65 0.15/0.15 4.3%/4.3%

8 3.5/3.6 3.65/3.75 0.15/0.15 4.3%/4.2%

16 4.35/4.12 4.35/4.22 0/0.1 0%/2.4%

32 5.17/4.68 5.18/4.69 0.01/0.01 0.19%/0.21%

48 5.64/5.01 5.68/5.02 0.04/0.01 0.7%/0.19%

(i) Sort

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 2.5/2.51 2.51/2.52 0.01/0.01 0.4%/0.39%

4 1.45/1.36 1.47/1.36 0.02/0.005 1.37%/0.36%

8 0.905/0.89 0.908/0.892 0.003/0.002 0.33%/0.22%

16 0.686/0.723 0.69/0.728 0.004/0.005 0.58%/0.69%

32 0.635/0.71 0.64/0.719 0.005/0.009 0.78%/1.26%

48 0.78/1.43 0.785/1.44 0.005/0.01 0.64%/0.69%

(j) Strassen

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 0.353/0.353 0.354/0.354 0.001/0.001 0.28%/0.28%

4 0.205/0.207 0.207/0.208 0.002/0.001 0.97%/0.48%

8 1.4/0.132 1.4/0.133 0/0.001 0%/0.75%

16 0.121/0.124 0.122/0.125 0.001/0.001 0.828%/0.81%

32 0.201/0.23 0.205/0.234 0.004/0.004 1.9%/1.73%

48 0.345/0.44 0.35/0.445 0.005/0.003 1.4%/0.68%

threads were available at that instance of time. Table 3 records the timing mea-
surements in seconds when Task-ID=2 with different values of N . The different
task instance timings that include creation, execution (not including suspension),
waiting before execution, and exiting were not affected by the input size, which is
normal due to the fact that these events cannot be interrupted by another thread
or task instance once they start. The main variation was found in the suspension
time, which is due to the fact that the number of child tasks is positively pro-
portional to the input size in a 2N relationship. The parent task-id, which is 2 in
Table 3, has to wait for all its child tasks before it can resume execution. The sus-
pension time measurements, indicated by our tool, grow with the number of child
tasks in the same relationship 2N . These measurements present the efficiency and
necessity of using our tool to get precise profiling information about the different
OpenMP task applications.

Open Source Task Profiling by Extending the OpenMP Runtime API 197

Tasking collector API, proposed in this paper, are crucial to validate the var-
ious OpenMP task scheduling algorithms. OpenMP runtime library developers
can consult our proposal to find the best approach in which a task should start
execution and the thread that should be assigned to it. Two main optimizations
(load balancing and data locality) related to task scheduling can be tested using
our proposal. Load balancing should be taken care of when scheduling OpenMP
tasks. Assigning tasks to the working threads in an equivalent manner is manda-
tory for any task scheduling algorithm. Our tool shows the thread associated with
each task instance during all the different phases of the task execution. On the
other hand, data locality is another concern for any scheduling algorithm. Tasks
operating on the same data should be scheduled for execution on the same thread
to improve data reuse, especially on non-uniform memory access (NUMA) archi-
tectures. The task tree constructed by our tool can indicate the data that was as-
signed to each task by mapping this tree back to the source code application.

Table 3. Fibonacci code timing measurements for Task-ID=2

Input #Childs Creation Pool-waiting Execution Suspension Exiting

2 0 0.0001 0.0001 0.0001 0.0 0.0001

4 2 0.0001 0.0001 0.0001 0.0002 0.0001

8 33 0.0001 0.0001 0.0001 0.0011 0.0001

16 1596 0.0001 0.0001 0.0001 0.3100 0.0001

32 3524577 0.0001 0.0001 0.0001 970 0.0001

5 Related Work

Profiler for OpenMP (POMP) [15] was the first profiling mechanism for OpenMP
runtime. It enables performance tools to detect OpenMP events by specifying the
names and properties of some instrumentation calls, including the invocation po-
sition and time associated with each event. The POMP adheres to the abstract
OpenMP execution model and is independent of a compiler and an OpenMP
runtime library. OpenMP Pragma and Region Instrumentor (OPARI) [15] is a
portable source-to-source translation tool that inserts the POMP instrumenta-
tion calls in Fortran, C, and C++ programs. However, these instrumentation
calls can notably affect the compiler optimizations and hence might not capture
the true picture of an OpenMP program. The OPARI has been broadly used
for OpenMP instrumentation in different performance tools such as TAU [18],
KOJAK [16], and Scalasca [7]. Vampir [10] is another tool, which provides thread-
specific measurements that can include the OpenMP static and runtime context.
Another version of the POMP [14] was proposed as an attempt to standardize
the OpenMP monitoring interface. However, this version was rejected by the
OpenMP ARB because of its complexity and its implementation cost.

The work proposed by the Sun Microsystems [9] describes the OpenMP Run-
time API (ORA) for profiling OpenMP applications. The ORA was accepted by
the OpenMP Architecture Review Board (ARB). The ORA provides a framework
to the performance collector tools to collect necessary information. This informa-
tion is needed to enhance the performance of OpenMP programs. The OpenUH

198 A. Qawasmeh et al.

research compiler group has developed an open source implementation [1], [8] for
the ORA in the OpenUH runtime library. Another paper by Lin [11] presents
a data model that captures the runtime behavior of OpenMP applications with
tasks constructs. However, the work only captures the abstraction-level (construct-
level) information of the OpenMP tasking constructs.

In order to measure the performance of task instances, Lorenz et al. [12] de-
scribe a portable method to distinguish individual task instances and track their
suspension and resumption events using instrumentation calls implemented as
an extension of OPARI. Lorenz et al. [13] also present an implementation within
the Score-P performance measurement system to overcome the performance is-
sues related to task profiling. Furlinger and Skinner [6] describe the support for
task profiling using instrumentation in the ompP tool [5].

6 Conclusions and Future Work

In this work, we have presented our experiences in implementing a new API for
OpenMP task profiling. The OpenMP Runtime API for profiling (ORA) was
approved by the OpenMP tool committee to create a standardized tool inter-
face for OpenMP programs. We have extended the ORA to support profiling for
OpenMP tasks at the micro level. We have implemented our extensions using
the OpenUH open-source compiler. Our extensions to the ORA allow the exe-
cution and scheduling of tied and untied OpenMP tasks to be tracked by a tool
to collect performance measurements. These measurements assist OpenMP ap-
plication developers to gain more insight into the dynamic behavior of OpenMP
based applications. Our extensions adhere to the proposal recently suggested by
the OpenMP tool committee for task profiling. Moreover, Our experimental re-
sults show that the overheads associated with our implementation are negligible.
Finally, C/C++ and Fortran programs are supported by our implementation.

Our next step is to integrate our implementation with TAU, a powerful per-
formance tool, to visualize the ORA measurements. We also plan to extend the
ORA to support taskgroup and work-sharing constructs in order to make the
ORA more powerful and comprehensive. We also plan to use the task related dy-
namic information, extracted through the ORA, for task-related optimizations
using a feedback framework.

Acknowledgments. The authors would like to thank their colleagues in the
HPCTools group, especially Deepak Eachempati, for their extensive collabora-
tion to make this work a reality. This work is supported by the National Science
Foundation under grant CCF-1148052. Development at the University of Hous-
ton was supported in part by the NSFs Computer Systems Research program
under Award No. CRI-0958464.

References

1. Bui, V., Hernandez, O., Chapman, B., Kufrin, R., Tafti, D., Gopalkrishnan, P.:
Towards an implementation of the OpenMP collector API. Urbana 51, 61801 (2007)

Open Source Task Profiling by Extending the OpenMP Runtime API 199

2. Chapman, B., Eachempati, D., Hernandez, O.: Experiences developing the
OpenUH compiler and runtime infrastructure. International Journal of Parallel
Programming, 1–30 (2012)

3. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: A set of benchmarks targeting the exploitation of task parallelism
in OpenMP. In: International Conference on Parallel Processing, ICPP 2009,
pp. 124–131. IEEE (2009)

4. Eichenberger, A., Mellor-Crummey, J., Schulz, M., Copty, N., DelSignore, J., Di-
etrich, R., Liu, X., Loh, E., Lorenz, D.: OMPT: An openMP tools application pro-
gramming interface for performance analysis. In: Rendell, A.P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer, Heidel-
berg (2013)

5. Fürlinger, K., Gerndt, M.: ompP: A profiling tool for OpenMP. OpenMP Shared
Memory Parallel Programming, 15–23 (2008)

6. Fürlinger, K., Skinner, D.: Performance profiling for openMP tasks. In: Müller,
M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568,
pp. 132–139. Springer, Heidelberg (2009)

7. Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurrency and Computation: Practice and Ex-
perience 22(6), 702–719 (2010)

8. Hernandez, O., Nanjegowda, R.C., Chapman, B., Bui, V., Kufrin, R.: Open source
software support for the OpenMP runtime API for profiling. In: International Con-
ference on Parallel Processing Workshops, ICPPW 2009, pp. 130–137. IEEE (2009)

9. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP runtime API for
profiling. OpenMP ARB as an official ARB White Paper 314, 181–190 (2007),
http://www.compunity.org/futures/omp-api.html

10. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The Vampir performance analysis tool-set. In: Tools for High
Performance Computing, pp. 139–155. Springer (2008)

11. Lin, Y., Mazurov, O.: Providing observability for openMP 3.0 applications. In:
Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS,
vol. 5568, pp. 104–117. Springer, Heidelberg (2009)

12. Lorenz, D., Mohr, B., Rössel, C., Schmidl, D., Wolf, F.: How to reconcile event-
based performance analysis with tasking in openMP. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS,
vol. 6132, pp. 109–121. Springer, Heidelberg (2010)

13. Lorenz, D., Philippen, P., Schmidl, D., Wolf, F.: Profiling of OpenMP tasks with
score-p. In: 2012 41st International Conference on Parallel Processing Workshops
(ICPPW), pp. 444–453. IEEE (2012)

14. Mohr, B., Malony, A.D., Hoppe, H.-C., Schlimbach, F., Haab, G., Hoeflinger, J.,
Shah, S.: A performance monitoring interface for OpenMP. In: Proceedings of the
Fourth Workshop on OpenMP, EWOMP 2002 (2002)

15. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and prototype of a perfor-
mance tool interface for OpenMP. The Journal of Supercomputing 23(1), 105–128
(2001)

16. Mohr, B., Wolf, F.: KOJAK–a tool set for automatic performance analysis of par-
allel programs. In: Euro-Par 2003 Parallel Processing, pp. 1301–1304 (2003)

17. Qawasmeh, A., Chapman, B., Banerjee, A.: A compiler-based tool for array analysis
in HPC applications. In: 2012 41st International Conference on Parallel Processing
Workshops (ICPPW), pp. 454–463. IEEE (2012)

18. Shende, S.S., Malony, A.D.: The TAU parallel performance system. International
Journal of High Performance Computing Applications 20(2), 287–311 (2006)

http://www.compunity.org/futures/omp-api.html

Author Index

Adcock, Aaron B. 71
Ali, Murtaza 114
an Mey, Dieter 58

Barker, James 45
Bowden, Josh 45
Broquedis, François 141
Brorsson, Mats 156

Caballero, Diego 99
Chapman, Barbara 84, 128, 186
Chatterjee, Sanjay 30
Copty, Nawal 171

de Supinski, Bronis R. 84
Dietrich, Robert 171
Duran, Alejandro 99
Durand, Marie 141

Eachempati, Deepak 128
Eichenberger, Alexandre E. 171

Friedmann, Arnon 114

Loh, Eugene 171
Lorenz, Daniel 171

Mahoney, Michael W. 71
Malik, Abid 186
Malony, Allen 186
Martorell, Xavier 1, 99
Mellor-Crummey, John 171
Mitra, Gaurav 114
Muddukrishna, Ananya 156
Müller, Matthias S. 58

Olivier, Stephen L. 1

Qawasmeh, Ahmad 186
Quinlan, Daniel J. 84

Raffin, Bruno 141
Rendell, Alistair P. 114

Sarkar, Vivek 30
Schmidl, Dirk 58
Schulz, Martin 171
Scott, Travis 15
Shirako, Jun 30
Sinnen, Oliver 15
Stotzer, Eric 114
Sullivan, Blair D. 71

Terboven, Christian 1
Teruel, Xavier 1

Unnikrishnan, Priya 30

Vikas, 15
Vlassov, Vladimir 156

Wong, Michael 171

Yan, Yonghong 84, 128

Gautier, Thierry 141
Ghosh, Priyanka 128
Giacaman, Nasser 15

Hernandez, Oscar R. 71
Huck, Kevin 186

Jayaraj, Ajay 114
Jonsson, Peter A. 156

Klemm, Michael 1

Li, Kelvin 1, 30
Liao, Chunhua 84
Liu, Xu 171

114Gauthier, Théa-Martine

	Preface
	Organization
	Table of Contents
	Proposed Extensions to OpenMP
	A Proposal for Task-Generating Loops in OpenMP
	1 Introduction
	2 Rationale and Design Considerations
	3 The Task-Generating Loop Construct
	3.1 Syntax
	3.2 Semantics

	4 Evaluation
	4.1 Parallelization Approach
	4.2 Performance Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Using OpenMP under Android
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Distinct Structure of GUI-Based Applications
	2.2 Mobile Devices and GUI Application Development
	2.3 Distinctions in Android Application Development Environment

	3 Related Work
	3.1 Android Concurrency
	3.2 OpenMP for Android

	4 Android Pyjama Compiler-Runtime
	4.1 Standard Directive Syntax
	4.2 Conventional OpenMP Directives and Semantics
	4.3 GUI-Aware Extensions
	4.4 Runtime

	5 Implementation
	5.1 Construction of Compiler
	5.2 Code Generation

	6 Evaluations
	6.1 Evolution Strategy Algorithm
	6.2 Pattern Rendering Application
	6.3 Responsiveness Evaluation with Monkey Tool
	6.4 Mandelbrot Application
	6.5 Productivity Evaluation

	7 Conclusion
	References

	Expressing DOACROSS Loop Dependencesin OpenMP
	1 Introduction
	2 Background
	2.1 OpenMP
	2.2 Expressiveness of Loop Dependences in OpenMP
	2.3 Examples of Hand-Coded Doacross Synchronization in Current OpenMP Programs

	3 New Pragmas for Doacross Parallelization
	4 Interaction with Other OpenMP Constructs
	4.1 Illegal Usage with Doacross
	4.2 Safe Usage with Doacross
	4.3 Constructs Requiring Careful Consideration

	5 Implementation
	5.1 Compiler Supports for Doacross Extension
	5.2 Runtime Supports for POST/WAIT Synchronizations

	6 Experimental Results
	6.1 SOR and Jacobi
	6.2 Poisson
	6.3 LU

	7 Related Work
	8 Conclusions
	References

	Applications
	Manycore Parallelism through OpenMP
	1 Introduction
	2 The Xeon Phi Architecture
	3 The Xeon Phi Software Development Environment
	4 Optimised Data-Parallelism in SOMA
	5 Mixed Data- and Task-Parallelism in FDTD-GPR
	6 Results
	7 Conclusions
	References

	Performance Characteristics of Large SMP Machines
	1 Introduction
	2 Related Work
	3 Architecture Description
	3.1 HP ProLiant
	3.2 SGI Altix UltraViolet
	3.3 BCS
	3.4 Scalemp
	3.5 Intel Xeon Phi

	4 Performance Characteristics
	4.1 Serial Memory Bandwidth
	4.2 Distance Matrix
	4.3 ParallelMemory Bandwidth
	4.4 Memory Go Around
	4.5 Synchronization Overhead

	5 Application Case Studies
	5.1 NestedCP
	5.2 TrajSearch

	6 Conclusion
	References

	Evaluating OpenMP Tasking at Scalefor the Computation of Graph Hyperbolicity
	1 Introduction
	2 Background and Preliminaries
	2.1 Gromov
	2.2 OpenMP and Parallel Computations

	3 Algorithm for Computing and Its Implementation
	3.1 The Four-Point Algorithm
	3.2 OpenMP Implementations

	4 Empirical Evaluation and Main Results
	4.1 An Aside: Comparison of Different
	4.2 Comparison of Tasking versus Worksharing
	4.3 Comparison of Tasking Performance on Different Compilers

	5 Conclusions
	References

	Accelerators
	Early Experiences with the OpenMPAccelerator Model
	1 Introduction
	2 The OpenMP Accelerator Model
	2.1 Directives for Data and Computation Offloading
	2.2 Directives for Thread Hierarchy

	3 HOMP: A Prototype Implementation
	3.1 ROSE and HOMP
	3.2 Implementing the Accelerator Model

	4 Preliminary Results
	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

	An OpenMP* Barrier Using SIMD Instructionsfor Intel R 	 Xeon PhiTM Coprocessor
	1 Introduction and Motivation
	2 Related Work
	3 The Intel Xeon Phi Coprocessor
	4 Multi-Degree SIMD Combining Tree Barrier Algorithm
	4.1 Barrier Design
	4.2 Acquisition andWaiting Phase
	4.3 Releasing Phase

	5 Implementation
	5.1 Generic Implementation
	5.2 SIMD Implementation for Intel MIC Architecture

	6 Evaluation
	6.1 Benchmarks
	6.2 Testing Environment and Methodology
	6.3 Results

	7 Conclusions and Future Work
	References

	OpenMP on the Low-Power TI Keystone IIARM/DSP System-on-Chip
	1 Introduction
	2 TI Keystone Overview
	2.1 C66x DSP Core
	2.2 C6678 ’Shannon’ System-on-Chip
	2.3 66AK2H12 ’Hawking’ System-on-Chip

	3 Bare-Metal Implementation of OpenMP on C66X DSP
	3.1 Memory Model
	3.2 Parallel Regions
	3.3 Synchronization

	4 ARM to DSP OpenMP Dispatch
	5 Evaluation Using Micro-benchmarks
	5.1 Compilers and Tools
	5.2 Discussion

	6 Related Work
	7 Conclusions and Future Work
	References

	Scheduling
	A Prototype Implementation of OpenMP TaskDependency Support
	1 Introduction
	2 Motivation
	2.1 LU Decomposition
	2.2 Smith-Waterman Algorithm

	3 Approaches to Handling
	Dependencies
	3.1 The OmpSs Programming Model
	3.2 QUARK Runtime API
	3.3 Extensions Implemented in OpenUH Compiler
	3.4 Comparison

	4 Implementation of Extensions in OpenUH
	5 Experimental Results
	5.1 Performance Analysis for LU Decomposition Algorithm
	5.2 Performance Analysis for Smith-Waterman Algorithm

	6 Related Work
	7 Conclusions and Future Work
	References

	An Efficient OpenMP Loop Scheduler for IrregularApplications on Large-Scale NUMA Machines
	1 Introduction
	2 Related Work
	3 Introducing the Adaptive Loop Scheduler
	3.1 Designing an OpenMP Loop Scheduler with Adaptive Granularity
	3.2 Extending the Adaptive Scheduler to Deal with Locality
	3.3 Discussion

	4 Implementation Details on Extending libGOMP with Adaptive Loop Scheduling
	5 Performance Evaluation
	5.1 EPCC: Overhead of the Adaptive Loop Scheduler
	5.2 STREAM: Impact of the Memory Hierarchy
	5.3 K-Means: Benefits of Adaptive Granularity for OpenMP Loops
	5.4 PMA: Dealing with Both Load Balancing and Locality

	6 Conclusion and Future Work
	References

	Locality-Aware Task Scheduling and DataDistribution on NUMA Systems
	1 Introduction
	2 Potential for Performance Improvements
	3 Runtime System Assisted Data Distribution
	4 Locality-Aware Task Scheduling
	5 Experimental Setup
	6 Results
	7 Related Work
	8 Conclusions
	References

	Tools
	OMPT: An OpenMP Tools ApplicationProgramming Interface for Performance Analysis
	1 Introduction
	1.1 Design Objectives
	1.2 Prior Work
	1.3 OMPT Interface
	1.4 Document Roadmap

	2 Runtime State
	3 Events
	3.1 Optional Events

	4 Tool Data Structures
	4.1 Thread and Task Data
	4.2 Parallel Region Identifier
	4.3 Wait Identifier
	4.4 Pointers to Support Classification of Stack Frames

	5 Inquiry Functions for Tools
	5.1 Enumerate States Supported by an OpenMP Runtime

	6 Inquiry and Control Functions for Applications
	7 Initializing OMPT Support for Tools
	7.1 Initialization of a Tool

	8 Status
	References

	Open Source Task Profiling by Extendingthe OpenMP Runtime API
	1 Introduction
	2 OpenMP Tasking Implementation in OpenUH
	3 Implementation of the OpenMP Tasking Profiling APIs
	3.1 Task Creation Events and States
	3.2 Task Suspension Events and States
	3.3 Task Execution/Exiting Events and States
	3.4 Task IDs and Parent Task IDs

	4 Evaluation
	4.1 Overhead Measurements
	4.2 Prototype OpenMP Task Profiler Tool

	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index

