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Abstract. We are witnessing a tremendous increase in internet con-
nected, geo-positioned mobile devices, e.g., smartphones and personal
navigation devices. Therefore, location related services are becoming
more and more important. This results in a very high load on both com-
munication networks and server-side infrastructure. To avoid an overload
we point out the beneficial effects of exploiting future routes for the early
generation of the expected results of spatio-temporal queries. Probability
density functions are employed to model the uncertain movement of ob-
jects. This kind of probable results is important for operative analytics
in many applications like smart fleet management or intelligent logistics.
An index structure is presented which allows for a fast maintenance of
query results under continuous changes of mobile objects. We present
a cost model to derive initialization parameters of the index and show
that extensive parallelization is possible. A set of experiments based on
realistic data shows the efficiency of our approach.

1 Introduction

Due to the advances in GPS-technology, navigational devices are available in
almost all vehicles and mobile phones today. These devices are primarily used
for the computation of (optimal) routes and for giving instructions to the driver
using his/her actual position on a route. Moreover, web services where devices
periodically transmit their actual position are very popular. Surprisingly, there
is an obvious mismatch between the available information and the information
used by these services.

We are convinced that the information about future positions is also very
valuable in many application scenarios, and that all of the available knowledge
should be exploited. It is very simple to transmit the routes being computed
by the navigational devices to these web services and utilize that information.

B. Catania, G. Guerrini, and J. Pokorný (Eds.): ADBIS 2013, LNCS 8133, pp. 112–125, 2013.
© Springer-Verlag Berlin Heidelberg 2013



A Probabilistic Index Structure for Querying Future Positions 113

In contrast to existing work, in this paper we focus on the efficient indexing of fu-
ture positions for a high number of mobile objects given their preset trajectories
and current positions. Our experimental evaluation confirms that a processing of
this information in real-time is possible. Of course, the accuracy of the predicted
position decreases over time. This can be modeled by a time variant probability
density function, which can be efficiently handled by the methods proposed in
this paper.

To illustrate the importance of using knowledge about future positions, let
us consider a logistics company that manages a large fleet of trucks. Nowadays
it is common that each parcels’ position is known with high accuracy. Trucks
delivering parcels have a rigid schedule, thus their future position is known with
high accuracy. Still this knowledge is not yet exploited. A typical query would
then be to select all trucks within a given region at the same time in the near
future with a high probability:

select * from my_trucks where
position is within

’my_company_headquarter’
[range (now + 1 hours)

to (now + 2 hours)]
[probability 90%]

In order to optimize the delivery service of goods, it might be important to
exchange goods among trucks dynamically. An optimal meeting point for a set
of cooperating trucks has to be found:

select * from my_trucks t where
distance(’truck_a’, t) < 5 kilometers
[range 14:00 to 15:00]
[probability 75%]

Note that the results of these queries are not only important at the point in
time when they will occur, but already earlier at the time when they have been
computed. In fact, these “early” results are important for global planning and
coordination of a fleet.

These examples show that the efficient determination of the future position
of mobile objects represents a relevant problem. To this end, a framework is
needed that supports continuous queries over a dynamic set of moving objects
whose future travel routes are computed in advance. While the problem seems
to be closely related to historical management of trajectories (like in [1]), the dy-
namic nature of the problem makes it substantially harder to address. Contrary
to one-time queries, our problem is more related to continuous queries for the
following reasons. First, mobile objects that start a new tour can influence the
result sets of continuous queries. Second, traffic jams and other unforeseeable
events will have a serious impact on traveling, and consequently also on contin-
uous queries and their results. The difference to other approaches to continuous
queries is that results already delivered to the user might become invalid later.
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However, these early results are very important to the user for the purpose of
planning. The key question of the paper is therefore how to manage the results
of a set of continuous queries efficiently and how to update the results due to
the occurrence of unforeseeable events. This paper is based on the previous work
([2] and [3]). However, we did not take into account the decreasing probability
of the knowledge of an object position over time. This made the approach quite
unrealistic for many scenarios. Furthermore, the parameters for the creation of
the index had to be determined manually, whereas in this paper a cost model is
proposed. We also show that an efficient parallelization of the algorithms intro-
duced in the previous papers is possible. In sum, the additional contributions of
this paper are the using of a probability density function (pdf) to approximate
an objects position. Second, the introduction of a cost model to allow a precise
determination of the parameters of the index structure. And third the added
capability to parallelize the algorithms.

2 Preliminaries

In this section we introduce the formal definitions of moving objects,
trajectories, and queries. We assume that the moving objects are bounded in
a two-dimensional universe, e.g., the unit square. Our approach is based on a
continuous timeline that allows us to compute all results, even if they are valid
only between two discrete timestamps. This is a major difference to the discrete-
time model commonly used in data stream management systems like [4].

2.1 Trajectories

Within the universe, a path can be specified as a sequence of two-dimensional
points P = (p1, . . . , pn), termed waypoints throughout this paper. Associated
to P is a series of points in time T = (t1, . . . , tn). A trajectory traj = (P, T )
consists of a sequence of points and a sequence of time stamps with equal length
|P | = |T |. Note that the trajectories of different objects do not need to and in
general will not have the same length. Furthermore, if two consecutive waypoints
are equal whereas the corresponding points in time are not, idleness is modeled.

For sake of simplicity, we assume that the movement between two waypoints pi
and pi+1 can be linearly interpolated. Note that our approach can be generalized
to more advanced interpolation functions.

Note that in many scenarios trajectories are confined to road networks.
This is, however, not necessary in our approach where arbitrary trajectories
are handled.

2.2 Moving Objects

A moving object can be any locatable device, e.g., a GPS-enabled mobile phone
or a trackable truck. With each object o, a trajectory trajo is associated. Similar
to [5], we require that an object is aware of its current position, but also of its
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future positions and their certainty, not only its current position, direction, and
speed. However, this only disqualifies very simple GPS loggers, but even cheap
navigational devices have enough storage capacity and computational power to
comply with this requirement.

The decreasing accuracy of the predicted position in the course of time is
included in our design by using a probability density function (pdf), which allows
us to model the uncertainty of the objects’ position in a mathematically precise
way. It is also possible to include uncertainty about the trajectory. However,
the semantically more sound approach is to have a certain trajectory, where the
objects current position is uncertain. This also allows for more flexibility, as the
trajectories are independent of the type of moving object they are used by.

A moving object is therefore defined as a tuple M = (traj,P), where traj is
the associated trajectory and P can be an arbitrary pdf.

In the remainder of the paper, we will discuss Gaussian functions with expec-
tation E and covariance matrix C as pdfs only, for the sake of simplicity. However,
any probability density function could be employed. In the two-dimensional case,
E is a two-dimensional vector and V is a 2x2 matrix.

In the case of moving objects, the mean is defined by the trajectory, whereas
the covariance matrix is a function growing with the time difference to the last
reported accurate position. The uncertainty of the position of a moving object
at time t is therefore modeled by

N (
puncertain(t); p(t), V(t− t0)

)

where puncertain(t) is the random variable denoting the uncertain position of
the object, p(t) is the predicted position according to the given trajectory and
V(t − t0) is a covariance matrix, increasing with distance to time t0 where the
last certain position was reported. For the sake of simplicity we will assume that
V(t0) is a diagonal matrix obtained by multiplying the identity matrix with a
scalar factor. By that the error of the expected value is the same regardless of the
direction. For practical purposes we cut all probability values which are below a
predefined threshold θ.

An example is given in Figure 1, where an object moves on the road. The
uncertainty at the first timestamp in the foreground of the figure is very small.
This is indicated by a high peak of the pdf and a narrow base. On the planned
path (further in the background) the uncertainty has increased, shown by a
larger covariance and a smaller absolute value for the expected position. Note
that the knowledge of a road network will have a great impact on the shape of
the pdf. This is, however, beyond the scope of this paper and does not affect
the methods used for indexing. Using such meta information will be addressed
in future work.

Introducing probability in the context of moving objects introduces a broad
variety of challenging tasks like tracking, filtering, or retrospection (see [6]).
These problems are, however, beyond the scope of this paper.
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Fig. 1. Object Moving with Uncertain Position

2.3 Queries

A continuous query q over mobile objects is formally defined as

q = (pred(o), [tstart, tend], Θ(optional)),

where [tstart, tend] denotes the time interval within the query result is of interest
to a user. pred(o) �→ {[s0, e0], . . . [sn, en]} is a function returning for every moving
object o the set of time intervals when o qualifies for the query predicate pred.
These intervals are non-overlapping, and adjacent intervals are required to be
coalesced. Once a query is created, results are received continuously. Θ is an
optional probability threshold for this query. It is possible to specify that, e.g.,
only results having a probability greater then 95% should be reported. It is
worthwhile noting that this cannot be specified within the query predicate as
the predicate ultimately decides whether a moving object can be a result of the
query, e.g., if the object might be in the query region at any point in time.
However, the probability can dynamically change when after the transmission
of the expected trajectory the correct position is reported. The probability of
query result changes after the transmission, and previously discarded results
might have an updated probability which is higher than the query threshold Θ.

3 A Probabilistic Index Structure

3.1 Index Structure

For indexing the spatial domain, a simple grid index [7] is used. The basic idea
of a grid index is to partition the spatial data space into partitions (cells) using
a two dimensional quadratic grid. Each cell of the grid index contains pointers
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to the objects that intersect this cell. The advantage of such a simple structure
is that the uncertainty of the position of a moving object can be included in an
intuitive way. Pointers are not only generated for cells intersecting the (certain)
trajectory, but for all cells the object might be within. The probability threshold
θ is used to avoid having too many cells affected with a very low probability
of the object actually being there. The computation of the overlap with the
object’s pdf is straightforward if a Gaussian pdf is used and the covariance
matrix is monotonically increasing. The first is assumed in this paper for sake of
simplicity, the second is a quite natural thought. This implies that the covariance
matrix, dependent on time t, is defined as

C =

{
a 0
0 a

}
· t = t · a · I.

As the error ellipses are circles for sake of simplicity, as defined in the beginning
of the paper, the radius r has to be calculated as the only parameter of the
circle. As in our two dimensional setting both spatial coordinates (px and py)
are normally distributed, the circle radius r2 = p2x + p2y is χ2 distributed. Thus,
for each desired confidence interval p, e.g. 95%, the value of the χ2 distribution
can be conveniently looked up in a χ2 table, or be computed on the fly. The
radius r is therefore given by r =

√
χ2(p) · a. In case of p = 95%, a lookup in

the chi2 table shows that chi2(95%) = 0.103
As time passes, uncertainty on positions grows. In this case, it is sufficient

to calculate the extent of the Gaussian pdf which is above the threshold θ for
each waypoint. The resulting trapezoid is a superset of the region the object
might be in. Note that a superset is sufficient for the index to function properly,
as the actual intersection of the object’s pdf and a query region always has to
be calculated. Only performance might suffer if the superregion is too large.
It is important to note, however, that the index is independent of the actual
pdf used. Other distributions unlike the Gaussian could be employed. Only the
calculation of the confidence region has then to be adapted, the index itself
remaining unchanged.

The temporal index does not store any probability information, as time is
assumed to be certain, i.e., all clocks are synchronized. An anomaly regarding
time has to be taken into account, however. If the end time of the trajectory
is closely before the start time of a query, and both the last waypoint and
the border of the query are in close spatial vicinity, the query will be ignored.
Due to the uncertainty in space, however, the query predicate might still be
fulfilled with a high probability. This anomaly can be circumvented by adding
‘dummy’ elements to the trajectory, where the last waypoint is repeated. That
is, the moving object is not immediately regarded as deleted, but treated as
a non-moving object for some time, until the probability decreased below the
threshold θ. As this can be done programmatically, the described anomaly can
automatically be handled and correct results are delivered.

In Figure 2, the interaction of the spatial and the temporal index is illustrated.
A trajectory and a temporally bounded range query are stored in this example.
The range query is shown in light green. As it touches four cells of the spatial
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grid, a reference to the query is stored in each cell. Also, references of the query
are added to the temporal index in each cell overlapping with the lifetime of the
query. The same is done for the trajectory. All cells where the probability of the
object being in this cell is greater then θ, a reference to the object is stored.
These cells are marked in grey.

3.2 Cost-Based Parameters

This subsection introduces a cost model that can be used to set the grid resolu-
tion of the spatial grid indexes appropriately. This means that once the approx-
imate lengths of the routes and the sizes of the queries are known, the optimal
resolution of the index can be calculated with a simple formula. We assume here
the case of a general update and a constant pdf for each object, which leads to
a pessimistic model.

Let us consider the unit square to be the universe. The grid resolution r is
the number of slices in each dimension of the grid index. We assume that the
resolution is constant for every dimension. However, we distinguish the resolution
of the query index (rq) and the resolution of the object index (ro). Note that
the side length of a grid cell is then 1

ro
and 1

rq
, respectively. Overall, there are

|Q| queries and |O| objects being distributed uniformly across the universe. We
assume a constant number of objects and a constant number of queries. The
average length of a trajectory is given by ltrajectory. We first examine range
queries, all of them being rectangular with extension lquery in every dimension.

In the worst case, the trajectory of an object crosses lobject · ro grid cells.
Analogously, l2query · r2q cells are occupied by a single query. This means that a

cell contains approximately |O|·(lobject·ro)
r2o

=
|O|·lobject

ro
objects and |Q|·l2query ·rq

r2q
=

|Q|·lquery

rq
queries.

The cost of an insertion of a moving object can therefore be estimated by

lobject · ro︸ ︷︷ ︸
cells to consider

· |Q| · lquery
rq︸ ︷︷ ︸

queries per cell

Fig. 2. Decoupled Indexes
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(a) Object Index Comparison (b) Query Index Comparison

Fig. 3. Confirmation of Cost-Model

Fig. 4. Sizes of Thread Pool

= lobject · |Q| · lquery · ro
rq

By using the same parameter set, we now examine the cost of a general update.
First, the grid index has to be updated. The object has to be found and deleted,
before the new trajectory can be inserted. (ro · lobject) · log( |O|·lobject

ro
). In the

next step, the cells intersecting with the query have to be retrieved. rq · lobject ·
(
|Q|·lobject·lquery

rq
)

Finally, new events have to be calculated for each qualifying query. Since this
cost is constant for a given instance, it is not included in the cost model.

We also experimentally confirmed our model. The trajectories for the exper-
iments were created synthetically to match the underlying assumptions of the
cost model. However, we also found that the cost model is sufficiently accurate
for realistic data sets, created by Brinkhoffs generator[8]. In order to demon-
strate the accuracy we compared the runtimes with the cost model, too. This,
however, is only possible by not using the pure numbers of operations as a cost
measure, but to introduce an additional weighting factor for each operation to
express the required CPU-time.

Figure 3(a) shows the time needed to access the object index as a function
of its resolution. The resolution of the query index was kept constant in this
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experiment. We conducted the same experiments with a varying resolution of
the query index, while keeping the resolution of the object index constant. The
results are shown in Figure 3(b). The results demonstrate that the cost model
is sufficiently accurate (with a relative error less than 10% for almost all cases).
Moreover, the cost model shows that a global minimum for the resolution of
the grid indexes exists. In particular, this observation is useful for setting this
important parameter.

3.3 Parallelization

For the developed algorithms synchronization is essential due to the extremely
high concurrency with respect to the number of objects and queries. Our goal
was to provide flexibility and parallelism as much as possible, while still guar-
anteeing correctness. Each object has its own mutual lock, allowing multiple
readers but only a single writer. The grid index also has such a lock, guaran-
teeing the integrity of the grid cells. In case of an update of a moving object,
both a write-lock for the grid index and the updated object have to be acquired,
preventing concurrent changes of an object or concurrent insertions of multiple
queries (objects) into the grid index. The efficiency can be proven by measuring
the total runtime of the algorithms with a given set of parameters. Figure 4
depicts the total runtime as a function of the number of threads available to
the algorithms. As the experiments where executed on a quad core processor,
having more than four threads does not have an effect on the runtime. The index
structures and algorithms are also designed to be executed in a shared-nothing
environment[9]. As this task is purely engineering due to the inherent ability of
all methods to run in parallel it is not discussed in this paper.

4 Experiments

A set of experiments was conducted to validate the performance of our proposed
approach to supporting continuous queries.

4.1 Dataset and Experimental Setup

Unfortunately, no real world dataset is available due to the novelty of our ap-
proach. Nevertheless, we tested the proposed data structures and algorithms on
a real road network. Due to its popularity, we choose to use Brinkhoff’s moving
object generator[8] to simulate the moving objects. In our experiments, we re-
strict the discussion of the results to the network generated from the street map
of the San Francisco Bay Area. The usage of other maps showed similar effects,
and therefore, are omitted.

Our default setting of the generator results in a simulation of 10,000 moving
objects and 1,000 randomly distributed range queries, each of them covered 1%
of the data space as these numbers match with a typical application in the
area of fleet management. Note that the algorithms are easily parallelizable and
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therefore using a larger experimental setting, e.g., a typical one in the domain
of social networks, can be done. The experimental results for this are given in
Figure 4. A more detailled description can be found in section 3.3 of this paper.

The algorithms presented here were implemented in JAVA and were performed
on an Intel Dual Core Xeon 3.4 GHz with 6GB RAM running CentOS 5. The
JAVA virtual machine occupied 3GB RAM.

4.2 Comparison

In the following, we compare our approach with the one presented in [5]. Let
us first describe it briefly. Similar to our approach, the queries are stored in
a grid index. There the moving objects are assumed to move along a straight
line using the speed and the direction as reported at the last position. In fact,
moving objects are required to report their position whenever their route or
speed changes. This information is then used to compute the current results of
each query. Note that future results are obtained by a simple extrapolation of
the linear movement of the object. To limit the length of this predicted line, a
maximum-update-interval (MUI) is defined. The period between two updates of
a moving object must be within the MUI. An example is given in Figure 5. The
trajectory is implied in the center of the figure, the necessary transmissions using
a linear extrapolation approach above it, the single transmission of the trajectory
approach beneath. The third transmission is necessary because the MUI has
been reached, although the route did not change and the linear prediction is still
correct.

We are aware that there are fundamental differences between this approach
and ours, especially as it does not take probabilistic values into account. Recall
that our approach delivers all results of a continuous query starting at the time
the query is issued and results are updated when changes occur. Nonetheless
we opted to use this competitive approach for our comparison, since it is still
the one that is closest to our approach among those published so far. To keep
the comparison as fair as possible, we compared the average total processing
time of each object in both approaches. This means we added up the costs of all
operations performed on a single object.

To model the dynamic changes of a trajectory, caused by a traffic jam, at
each waypoint an object is updated with a given probability. This probability is
called the update rate. We examined update rates between 0% and 15% in the
experiments. In most real-life applications, this update rate will presumably be
very small as we assume that a user follows the suggested track of the navigation
system. The higher the update rate the higher the costs of our approach, while
the update rate has no impact on the competitive approach.

Figure 6 depicts the average time for applying all updates to a moving object
as a function of the MUI. It provides the costs of temporal updates for update
rates 1%, 5%, 10% and 15% , In addition, the curve is plotted for the competitive
approach. The costs of the competitive approach increase with increasing MUI,
while the curves of our approach are obviously independent from MUI. Note
that the range of the MUI is chosen in accordance with the recommendations
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Fig. 5. Necessary Transmissions

Fig. 6. Update Performance

in [5]. The results show that the performance of the competitive approach is
superior to our approach only in case of general updates and small settings of
MUI. For MUI > 6, our approach with general updates only is even superior to
the competitive approach, If temporal updates are applicable, a large difference
in the performance can be observed.

5 Related Work

There has been a large interest in supporting queries on moving objects, but only
few papers address the problem of continuous queries on these objects. Most
similar to our work is the QMOS (Query Moving Object Stream) system [5].
However, the fundamental difference to our work is that the knowledge about
future trajectories is not exploited for query processing. Instead, the author
predicts the future movement by only using a linear extrapolation. This requires
that objects permanently transfer their current positions, an overhead that can
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be avoided in our approach. Moreover, the temporal horizon of continuous queries
is very limited, while there is no limitation in our approach on how far a query
is in the future.

Most related work (e.g. [10,11]) deals with indexing of historical data. In
general however, these methods are not applicable to continuous queries as they
lack the option to update predicted future trajectories. As emphasized before,
the efficient processing of updates is of utmost importance in the context of
continuous queries.

Using stream processing technology in the context of moving objects is sug-
gested by different papers. The main idea of SCUBA [12] is to group objects
into clusters. Moving objects are constrained to a road network and an update
of the direction can occur when a crossroad is reached. PLACE [13] also offers
the evaluation of moving queries on moving objects. The moving objects have to
submit their position continuously to the system, which then decides whether the
information is processed or discarded. Though queries are constantly reporting
changing results, continuous queries are not supported. SINA (Scalable INcre-
mental hash based Algorithm) [14] is similar to PLACE, but uses a different
data structure.

The problem of managing trajectories led to the development of different kinds
of index structures. Most are based on the TPR*-tree[15], an index structure of
the R-tree family enhanced to better support the temporal domain. STRIPES
[10] is based on dual transformations, but its limitation is that its efficiency is
only acceptable in case of a small time-horizon, whereas a larger horizon leads to
a rapid degeneration of query performance. The horizon has to be set in advance
and cannot be adapted to the incoming data. As a consequence, moving objects
have to report their position frequently, even if neither the path nor the speed
has changed. Another approach for moving objects is to keep the objects in a
one-dimensional index structure. Space filling curves are used by the authors
of [11] for their index structures in combination with the popular B-Tree. In
general, these kinds of adapted B-trees can handle updates more efficiently than
methods derived from R-trees and are therefore the preferred choice in dynamic
settings. However, as objects are still assumed to move in a linear fashion, the
limitation of these approaches is that only the near future of moving objects can
be indexed.

There are a few papers dealing with future trajectories. In [16], trajectories are
considered uncertain within a given bound. Queries are defined on these trajec-
tories, allowing the user to specify, for example, whether an object is possibly or
definitely inside a given region. Based on a common relational database system,
[17] proposes methods for bulk updating trajectories when a road obstruction
occurs. The processing is based on triggers and relational database technology.
This severely limits performance and does not scale well. [18] focuses on insertion
and deletion of trajectories without considering the problem of updating results.

While there are indexing methods for historical trajectories, as for example
[19,20], we are not aware of approaches indexing future trajectories. For indexing
historical data, updates on past states are not allowed. The proposed methods
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are therefore not applicable to the problem of efficiently processing future tra-
jectories, where updates frequently occur.

Related to our approach have been methods from data stream processing
that are designed for processing predictive queries [21]. However, these methods
are not designed for managing trajectories, but for supporting current and near
future results only.

6 Conclusion and Future Work

In this paper we extended index structures and algorithms for processing the
future trajectories of moving objects. The decreasing accuracy of the prediction
was accounted for by using a probability density function. A cost model for
determining the index parameters was introduced. It was also shown that the
proposed methods can be efficiently parallelized.

In our present and future work, we address more advanced continuous queries
like nearest neighbor queries. The predicates of these queries cannot be evaluated
on the base of a single object, but require the inspection of multiple objects. We
will also include the efficient processing of multi-modal pdf, where, e.g., at an
intersection, many alternative routes are possible.
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