

B. Catania, G. Guerrini, and J. Pokorný (Eds.): ADBIS 2013, LNCS 8133, pp. 316–329, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Resource Allocation for Query Optimization
in Data Grid Systems: Static Load Balancing Strategies

Shaoyi Yin, Igor Epimakhov, Franck Morvan, and Abdelkader Hameurlain

IRIT Laboratory, Paul Sabatier University, France
{yin,epimakhov,morvan,hameurlain}@irit.fr

Abstract. Resource allocation is one of the principal stages of relational query
processing in data grid systems. Static allocation methods allocate nodes to
relational operations during query compilation. Existing heuristics did not take
into account the multi-queries environment, where some nodes may become
overloaded because they are allocated to too many concurrent queries. Dynamic
resource allocation mechanisms are currently developed to modify the physical
plan during query execution. In fact, when a node is detected to be overloaded,
some of the operations on it will migrate. However, if the resource contention is
too heavy in the initial execution plan, the operation migration cost may be very
high. In this paper, we propose two load balancing strategies adopted during the
static resource allocation phase, so that the workload is balanced at the begin-
ning, the operation migration cost is decreased during the query execution, and
therefore the average response time is reduced.

Keywords: Resource Allocation, Data Grid Systems, Query Optimization,
Load Balancing.

1 Introduction

In recent years, large amount of scientific data have been produced and need to be
shared by researchers from different organizations all over the world. Examples in-
clude the Large Hadron Collider (LHC) [1] at CERN and the Sloan Digital Sky Sur-
vey (SDSS) [2]. Data grid systems are designed to support such applications. With the
objective of accessing and analyzing huge volume of data, the data grid systems rely
on distributed, heterogeneous and autonomous computing resources [3]. On the one
hand, a data grid system needs to perform query processing efficiently. On the other
hand, a data grid system is characterized as large scale, heterogeneous and dynamic.
Putting these two aspects together, many technical problems such as resource alloca-
tion become more challenging.

In a data grid system, there are different types of resources such as CPU, memory,
storage and network. A node in the data grid system corresponds to a computer con-
taining some of these resources. A user query is often issued on one of the nodes and
is expressed using a declarative language such as SQL or OQL [4]. The query proces-
sor then transforms the query statement into an algebraic tree, called a logical query

 Resource Allocation for Query Optimization in Data Grid Systems 317

plan, where nodes denote relational operations and edges represent data flows. Fig. 1
shows a query statement in SQL and its corresponding logical query plan.

At a given time, a node N of the data grid system which has access to a set of re-
sources R = {r1, r2, …, rn} receives a query Q which consists of a set of operations
{o1, o2, …, ol}. Assume that R is collected during a preceding stage called resource
discovery [5]. The problem of resource allocation is to assign one or more resources
in R to each oi such that the execution time of Q is minimized. Thereafter, we call the
node N an allocator. Note that, the query type that we deal with is the Scan-Project-
Join query. Obviously, the complexity of an exhaustive matching algorithm is expo-
nential, so heuristics [6-9] have been proposed to solve this problem. However, most
of these heuristics rely on the same principle: they first rank the operations according
to certain criteria, then for each operation, they rank the available nodes and allocate
the best ones to it. The criteria for ranking the operations, the criteria for ranking the
nodes and the number of nodes to allocate are different in each heuristic method.

Fig. 1. A query statement and its logical query plan

These heuristics did not take into account the following constraints of the data grid
system. Constraint 1: Multi-queries are treated by the same allocator. For each query,
the allocator consumes the same list of candidate nodes, so the most powerful nodes
are allocated to too many queries and become overloaded, while the least powerful
nodes stay idle. Constraint 2: Multi-allocators co-exist in the data grid system (as
shown in Fig. 2). The resources discovered for one allocator may also be discovered
for other allocators. These resources will become overloaded if they are chosen by too
many allocators.

Fig. 2. Multi-allocators in a data grid system

318 S. Yin et al.

The overloading problem caused by the above constraints is currently addressed by
adding a resource reallocation phase (which is called dynamic resource allocation)
during the query execution [10-15], that is, to move part of the work from overloaded
resources to less loaded resources. The dynamic phase is very important, not only
because the static allocation result may be under optimal, but also because in the data
grid system, nodes may leave or enter at any time. However, the efficiency of the
dynamic allocation is truly linked with the initial static allocation result. If the work-
load is already well balanced between nodes after the static resource allocation, much
less work needs to be done during the dynamic phase, which is actually the objective
of our paper.

In this paper, we propose two load-balancing strategies which aim at improving the
physical execution plan generated by the static resource allocation, such that the aver-
age response time of the queries is reduced. They cannot replace the dynamic re-
source allocation phase, but they could make the latter more efficient. The principles
of the proposed strategies are as follows:

• Local Load Balancing (LLB): virtually reserve resources of a node each time

after it is allocated to an operation and virtually release the resources used by a
query after it is finished;

• Global Load Balancing (GLB): Instead of allocating directly the best node to
an operation, the algorithm first proposes K candidates and collects the current
workload information of their resources by contacting them, then ranks the K
nodes and returns the best one.

The rest of the paper is organized as follows. Section 2 presents a brief survey of

the existing static and dynamic resource allocation methods in data grid systems. Sec-
tion 3 describes the principles of our strategies and the corresponding algorithms.
Section 4 evaluates the proposed strategies by combining them with existing resource
allocation methods. Section 5 concludes the paper.

2 Related Work

The earliest work dealing with the resource allocation problem for query optimization
in the data grid environment is the work of Gounaris[6]. It is a static resource alloca-
tion method. During the initiation phase, only one node is allocated to each operation.
Then the algorithm increases the degree of parallelism for the most costly operation
by allocating the most powerful nodes one by one to it. When the benefit of increas-
ing a node to the operation is less than a threshold, the algorithm chooses the next
most costly operation and increases the degree of parallelism for it. The iteration con-
tinues like this. When the chosen operation does not change any more, the resource
allocation is finished. The load balancing is not addressed at all by this work.

Several other static resource allocation methods have been proposed [7-9]. The
most recent one is called GeoLoc[9]. It has two main contributions. First, it defines an
Allocation Space (AS) for each operation. It distinguishes two kinds of nodes: data
nodes which contain the relation fragments and computing nodes which do not

 Resource Allocation for Query Optimization in Data Grid Systems 319

con-tain any relation fragment. For a scan operation, the AS is defined to contain all
the nodes storing the used relation fragments. For a join operation, the AS is defined
to contain the nodes allocated to its input operations and the nodes geographically
close to these nodes. Second, it takes into account the dependency between relational
operations. It determines the degree of parallelism for each join operation according
to the resource requirements driven by its input operations. For example, if the scan
operations send 1000 tuples per second to a join operation, GeoLoc will allocate to
that join operation just enough resources which can process 1000 tuples per second.
Even though the load balancing problem is not explicitly addressed by the GeoLoc
method, the usage of the AS decreases the resource contention. However, it is still
possible that a same node is allocated for many queries simultaneously.

In the data grid system, due to the multi-queries and multi-allocators constraints,
some nodes may become overloaded during the query execution, thus the average re-
sponse time is increased. The current solution to this problem is to add a dynamic re-
source allocation phase which modifies the physical plan during the query execu-tion.
There exist two main approaches: centralized and decentralized. In the central-ized
approach, the workload status of the nodes is monitored by a dedicated resource broker
[10-14]. In the decentralized approach, each node detects if it is over-loaded and makes
autonomously the decision of moving operations from it to other nodes [15]. In the
work [15], each relational operation is implemented as a mobile agent running on the
allocated node, meaning that, it keeps track of its own status and can migrate to another
node at any time. Thanks to a two-level cooperation mechanism between the autonom-
ous nodes and autonomous operations, the workload is dynamically balanced among
the grid nodes during query execution. The dynamic resource allocation phase is very
important for query optimization, especially when there are node leavings and enters.
However, the total migration cost could be high if the static resource allocation result is
too imbalanced. In this paper, we aim at producing a balanced resource allocation re-
sult during the static phase, so that the migration cost of the dynamic phase is reduced,
and therefore the average query response time is decreased.

3 Static Load Balancing Strategies

After the resource discovery phase, the allocator keeps the resource information (for
example the size of memory, the CPU speed, the IO throughput and the network
bandwidth) of each discovered node in a local table. This information is used as me-
tadata during the resource allocation for the arriving queries. When the queries arrive
frequently or even in batch, it is not realistic to update the resource information for
each query due to the expensive communication cost. It means that, for a group (hun-
dreds or thousands) of queries, the allocator consumes the same resource infor-mation
table. This may introduce a kind of resource contention: some more powerful nodes
may be allocated to too many concurrent queries while some less powerful nodes stay
almost idle. Since the nodes are shared by the entire grid system, there is another kind
of resource contention: a same node may be discovered for several different allocators
and then become overloaded easily. In order to relieve these two kinds of resource
contention, we propose in this section two load balancing strategies.

320 S. Yin et al.

3.1 Local Load Balancing (LLB) Strategy

This strategy is proposed to solve the resource contention problem caused by the mul-
ti-queries constraint. The principle is to balance the workload between nodes by tak-
ing into account the local resource allocation history. In the resource information table
RIT, the allocator maintains a counter for each resource type. Table 1 is a snapshot of
the RIT, where NB_DM_X denotes the number of active demands for a resource type
X and RC_X denotes the resource capacity on X. For example, if node N is allocated
to a query which needs only I/O and network resources, we increase each of the coun-
ters NB_DM_ION and NB_DM_NETN by one.

Table 1. Snapshot of the resource information table RIT

N_ID RC_

RAM

RC_

CPU

RC_

IO

RC_

NET

NB_DM

_RAM

NB_DM

_CPU

NB_DM

_IO

NB_DM

_NET

205 15000 24000 19000 27000 10 5 8 10

192 8000 36000 12000 35000 6 12 3 5

…

When the allocator allocates nodes for an operation, instead of using RC_X of each

node to estimate the execution cost, it uses the currently available resource AR_X,
which is computed using the following formula (where N is the node ID):

N

N
N XDMNB

XRC
XAR

__

_
_ = (1)

Table 2. Snapshot of the resource demand table RDT

Q_ID N_ID DM_RAM DM_CPU DM_IO DM_NET

11 205 0 0 1 1

11 192 0 1 1 0

12

…

The allocator also maintains a table to register the resource demand of each treated

operation. In this table, each tuple contains the query ID, node ID and the demand
(DM_X, Boolean) for each resource type X. Each time after allocating a node to an
operation, the allocator adds a tuple to this table. Each time a query is finished, the
allocator decreases the demand counters in the resource information table RIT accord-
ing to resource demand history related to the finished query. Finally, the history
records related to that query are removed. Table 2 is a snapshot of the resource de-
mand table RDT. For example, when query 11 is finished, we decrease each of the
counters NB_DM_IO205, NB_DM_NET205, NB_DM_CPU192 and NB_DM_IO192 by
one respectively, and we remove the first two tuples from table RDT.

 Resource Allocation for Query Optimization in Data Grid Systems 321

Algorithm 1 describes the process of the maintenance of the resource information
table and the resource demand table each time after allocating a node N to an
operation O of a query Q. Algorithm 2 describes the process of maintenance each
time after a query Q is finished.

Algorithm 1. VirtualResourceReservation()

INPUT: Query Q, Node N, resource demand DM_X for each X
BEGIN
 FOR each resource type X of node N DO
 IF DM_X > 0 THEN

 Increase the counter NB_DM_XN by one in table RIT;
 END IF
 END FOR

 Insert the tuple (Q, N, DM_RAM, …) into table RDT;
END

Algorithm 2. VirtualResourceRelease()

INPUT: Query Q
BEGIN
 FOR each node N related to query Q in RDT DO
 FOR each resource type X of node N DO
 IF DM_XN > 0 THEN
 Decrease the counter NB_DM_XN by one in table RIT;
 END IF
 END FOR
 END FOR
 Delete the tuples related to Q from table RDT;
END

3.2 Global Load Balancing (GLB) Strategy

This strategy is proposed to solve the resource contention problem caused by the mul-
ti-allocators constraint. When choosing a node to allocate for an operation, the alloca-
tor proposes several candidate nodes according to the local resource information, and
then it contacts these nodes to collect their workload status at the moment. Using the
new resource information, the allocator ranks these candidate nodes and chooses the
best one. Table 3 shows an example of candidate nodes list CNL after contacting
them, where CNB_DM_X means the current number of demands for resource X reg-
istered by the node. The allocator estimates then the execution cost using the available
resource capacity AR_X computed by the new formula:

N

N
N XDMCNB

XRC
XAR

__

_
_ = (2)

322 S. Yin et al.

Table 3. Example of the candidate nodes list CNL

N_ID CNB_DM

_RAM

CNB_DM

_CPU

CNB_DM

_IO

CNB_DM

_NET

39 12 6 9 10

267 8 3 6 7

…

Algorithm 3 illustrates the steps of using GLB to select a node N for an operation

O. Note that, the current workload information collected from the nodes is used only
to choose the best node for an operation, but not to update the RIT table. The RIT
table could be only modified by the LLB strategy so that the information is kept con-
sistent.

Algorithm 3. NodeSelection()

INPUT: the resource information table RIT, an operation O
OUTPUT: the node N to be allocated to O
BEGIN
 Choose K candidate nodes using RIT;
 FOR each chosen node N DO
 Contact N and get CNB_DM_XN for each resource X;
 Insert the collected information into CNL;
 END FOR
 FOR each node N in CNL DO

Estimate the execution cost of O by adding N to it;
 END FOR
 Return the node N with the minimal estimated cost;
END

4 Performance Evaluation

We first measure the impact of LLB and GLB strategies on two existing static re-
source allocation methods: method of Gounaris [6] and GeoLoc method [9]. We then
add the dynamic resource allocation phase to each method and measure again the
impact of LLB and GLB. The dynamic allocation algorithm that we use is the work
published in [15]. Our proposed load balancing strategies can be combined with other
static or dynamic resource allocation methods, even though we choose only the above
representatives for the performance evaluation.

For the experimentation, we use the grid simulator presented in [9], [15] with some
extensions. The simulated data grid contains 2000 nodes that store 2000 relations.
Each relation contains 5 equal fragments, each of which in turn is duplicated on 4
nodes. So in average we have 20 copies of different fragments on each node. To simu-
late the dynamicity of the grid system, 5% of the nodes quit the system at the 600th
millisecond and reenter at the 1200th millisecond. The main parameters that we used
for the simulation are listed in Table 4.

 Resource Allocation for Query Optimization in Data Grid Systems 323

Table 4. System configuration and database parameters

 Parameter Value

Node CPU performance 100 - 10 000 MIPS
 I/O throughput 10 – 1000 Mb/s
 Memory amount 10 – 1000 MB
 Network connection bandwidth 10 – 1000 Mb/s
 Network connection latency 0.05s
Relation Number of attributes 10
 Size of attribute 1 – 50 Bytes
 Cardinality of attributes 0.01 – 1
 Number of tuples 1000 – 11000
 Number of fragments 5
 Number of duplicates per fragment 4

Section 4.1 shows the impact of the proposed strategies on the static resource allo-

cation, in terms of average query response time and optimization cost. Section 4.2
shows the impact of the proposed strategies on the static resource allocation combined
with a dynamic resource allocation phase, in terms of average query response time
and number of operation migrations. We also measured the effect of increasing the
number of concurrent queries.

4.1 Impact of LLB and GLB on Static Resource Allocation

We take Gounaris’ method and the GeoLoc method as two examples to examine our
load balancing strategies. LLB and GLB strategies are evaluated in a gradual way,
meaning that, we first measure the initial allocation method (named Gouna/GeoLoc),
then the initial method combined with LLB (named GouLLB/GeoLLB), and finally
the initial method combined with LLB and GLB (named GouLLB+GLB
/GeoLLB+GLB).

Impact on Gounaris’ Method. The average response time varying with the number
of queries is shown Fig. 3. The speedup factor of the two strategies is illustrated in
Fig. 4. Not surprisingly, we find that the speedup factor is more significant when there
are more concurrent queries.

We measured also the average optimization cost of each query by varying the
number of queries. The result can be found in Fig. 5. Interestingly, we see that the
optimization time is not always longer when adding our load balancing strategies.
This is because the query optimization contains several steps including mainly 1)
generation of the logical plan, 2) selection of nodes for each operation and 3) genera-
tion of physical operators. When adding LLB or GLB, the first step does not change,
the second step is slowed down, but the third step could be sped up or slowed down
depending on the result of the second step. For example, when adding LLB strategy,
fewer physical operators are generated during the third step, so the optimization time
is shorter.

324 S. Yin et al.

Fig. 3. Average query response time varying with the number of queries

Fig. 4. Speedup factor of load balancing strategies varying with the number of queries

Fig. 5. Average optimization time per query varying with the number of queries

1

10

100

1000

10000

100000

100 150 200 250

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

(m
s)

Number of quries

Gouna GouLLB GouLLB+GLB

10

15

20

25

30

35

40

45

100 150 200 250

Sp
ee

du
p

fa
ct

or

Number of queries

GouLLB
GouLLB+GLB

0
2
4
6
8

10
12
14
16

100 150 200 250

Av
er

ag
e

op
tim

iza
tio

n
tim

e
(m

s)

Number of queries

Gouna
GouLLB
GouLLB+GLB

 Resource Allocation for Query Optimization in Data Grid Systems 325

Impact on GeoLoc Method. The average response time and the speedup factor are
shown in Fig. 6 and Fig. 7 respectively. The impact of the load balancing strategies is
less significant than for Gounaris’ method, because GeoLoc has already balanced the
workload to some extent thanks to the using of Allocation Space. However, the same
conclusion can be drawn: the speedup factor of LLB and GLB is more important
when there are more concurrent queries. The average optimization time of each query
is given in Fig. 8. We have three remarks: 1) the optimization time is not always in-
creased by adding the load balancing strategies; 2) even when the optimization time is
increased, the discrepancy is not very high; 3) compared to the total response time,
the optimization cost is trivial.

Fig. 6. Average query response time varying with the number of queries

Fig. 7. Speedup factor of load balancing strategies varying with the number of queries

0

200

400

600

800

1000

1200

1400

100 150 200 250

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

(m
s)

Number of queries

GeoLoc
GeoLLB
GeoLLB+GLB

1

1.5

2

2.5

3

3.5

4

100 150 200 250

Sp
ee

du
p

fa
ct

or

Number of queries

GeoLLB

GeoLLB+GLB

326 S. Yin et al.

Fig. 8. Average optimization time per query varying with the number of queries

4.2 Impact of LLB and GLB on Dynamic Resource Allocation

We still take Gounaris’ method and the GeoLoc method as two examples of static
resource allocation methods. A dynamic resource allocation phase is added to each
using the same mechanism published in [15]. We evaluate the impact of our load
balancing strategies in terms of the average response time of a query and the number
of operation migrations in the system during query execution. The notations of the
methods are the same as in Section 4.1.

Impact on Gounaris’ Method. The average response time and the speedup factor are
shown in Fig. 9 and Fig. 10 respectively. The speedup factor is less high than doing
only static allocation, but it is still remarkable. The total number of operation migra-
tions during the query execution is given by Fig. 11. We can see that LLB and GLB
have avoided many operation migrations, and this is one of the reasons why the aver-
age response time is reduced.

Impact on GeoLoc Method. The average response time and the speedup factor are
shown in Fig. 12 and Fig. 13 respectively. The number of operation migrations is not
shown due to space limitation. The conclusion is that, LLB and GLB have avoided
most of the operation migrations during execution, and the average response time is
reduced accordingly.

0
10
20
30
40
50
60
70
80

100 150 200 250

Av
er

ag
e

op
tim

iz
at

io
n

tim
e

(m
s)

Number of queries

GeoLoc
GeoLLB
GeoLLB+GLB

 Resource Allocation for Query Optimization in Data Grid Systems 327

Fig. 9. Average query response time varying with the number of queries

Fig. 10. Speedup factor of load balancing strategies varying with the number of queries

Fig. 11. Number of operation migrations varying with the number of queries

1

10

100

1000

10000

100000

100 150 200 250

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

(m
s)

Number of quries

Gouna GouLLB GouLLB+GLB

10

15

20

25

30

100 150 200 250

Sp
ee

du
p

fa
ct

or

Number of queries

GouLLB
GouLLB+GLB

0
50

100
150
200
250
300
350
400

100 150 200 250

N
um

be
r o

f o
pe

ra
tio

n
m

ig
ra

tio
ns

Number of queries

Gouna

GouLLB

GouLLB+GLB

328 S. Yin et al.

Fig. 12. Average query response time varying with the number of queries

Fig. 13. Speedup factor of load balancing strategies varying with the number of queries

5 Conclusion

In this paper, we presented two static load balancing strategies during resource alloca-
tion for query optimization in data grid systems, in order to avoid the node overload
situation, so that the average query response time is reduced. When combined with
the dynamic allocation phase, they could reduce the operation migration cost during
execution and therefore decrease the query response time accordingly.

The first strategy is called Local Load Balancing (LLB). It is designed to solve the
resource contention problem caused by the multi-queries constraint of data grid sys-
tems. It makes fully use of the local resource allocation history to finally distribute the
workload proportionally according to the capacity of the nodes. The second strategy is
called Global Load Balancing (GLB). It is designed to solve the resource contention

0

200

400

600

800

1000

1200

1400

100 150 200 250

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

(m
s)

Number of queries

GeoLoc
GeoLLB
GeoLLB+GLB

1

1,5

2

2,5

3

3,5

100 150 200 250

Sp
ee

du
p

fa
ct

or

Number of queries

GeoLLB

GeoLLB+GLB

 Resource Allocation for Query Optimization in Data Grid Systems 329

problem caused by the multi-allocators constraint of data grid systems. It first chooses
several candidate nodes for an operation using the local information, then contacts
these nodes and collects their current workload status, and finally re-ranks these nodes
to select the best one.

The result of the performance evaluation has shown the efficiency of the proposed
strategies. For example, by integrating our LLB and GLB strategies with Gounaris’
method, the query execution time is reduced by 10 to 40 times; by integrating them
with the GeoLoc method, the query execution time is reduced by 2 to 4 times. The
proposed strategies could be combined with other existing static and dynamic re-
source allocation methods in data grid systems. They decrease significantly the query
response time, but they don’t increase much the allocation cost.

References

1. http://lhc.web.cern.ch/lhc/
2. http://www.sdss.org/
3. Chervenak, A., et al.: The Data Grid: Towards an Architecture for the Distributed Man-

agement and Analysis of Large Scientific Datasets. Journal of Network and Computer Ap-
plications 23, 187–200 (1999)

4. Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Dis-
tributed Query Processing on the Grid. In: Parashar, M. (ed.) GRID 2002. LNCS,
vol. 2536, pp. 279–290. Springer, Heidelberg (2002)

5. Krauter, K., et al.: A taxonomy and survey of grid resource management systems for dis-
tributed computing. Journal of Software: Practice and Experience 32, 135–164 (2002)

6. Gounaris, A., et al.: Resource scheduling for parallel query processing on computational
grids. In: GRID (2004)

7. Soe, K.M., et al.: Efficient scheduling of resources for parallel query processing on grid-
based architecture. In: Information and Telecommunication Technologies (2005)

8. Liu, S., Karimi, H.A.: Grid query optimizer to improve query processing in grids. Future
Gener. Comput. Syst. 24, 342–353 (2008)

9. Epimakhov, I., et al.: GeoLoc: Robust Resource Allocation Method for Query Optimiza-
tion in Data Grid Systems. In: DB&IS (2012)

10. Gounaris, A., et al.: Adaptive query processing and the grid: Opportunities and challenges.
In: DEXA Workshops (2004)

11. Gounaris, A., et al.: Practical adaptation to changing resources in grid query processing.
In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006
(2006)

12. Da Silva, V.F.V., et al.: An adaptive parallel query processing middleware for the grid.
Concurrency and Computation: Practice and Experience 18(6), 621–634 (2006)

13. Avnur, R., Hellerstein, J.M.: Eddies: Continuously adaptive query processing. In: Proceed-
ings of the SIGMOD Conference, pp. 261–272 (2000)

14. Patni, J., et al.: Load balancing strategies for grid computing. In: Proceedings of the 3rd In-
ternational Conference on Electronics Computer Technology, ICECT (2011)

15. Epimakhov, I., et al.: Mobile Agent-based Dynamic Resource Allocation Method for
Query Optimization in Data Grid Systems. In: International KES Conference on Agents
and Multi-agent Systems – Technologies and Applications (2013)

	Resource Allocation for Query Optimization in Data Grid Systems: Static Load Balancing Strategies
	1 Introduction
	2 Related Work
	3 Static Load Balancing Strategies
	3.1 Local Load Balancing (LLB) Strategy
	3.2 Global Load Balancing (GLB) Strategy

	4 Performance Evaluation
	4.1 Impact of LLB and GLB on Static Resource Allocation
	4.2 Impact of LLB and GLB on Dynamic Resource Allocation

	5 Conclusion
	References

