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Abstract. Collocation Pattern Discovery is a very interesting field of
data mining in spatial databases. It consists in searching for types of
spatial objects that are frequently located together in a spatial neighbor-
hood. Application domains of such patterns include, but are not limited
to, biology, geography, marketing and meteorology. To cope with pro-
cessing of these huge volumes of data programmable high-performance
graphic cards (GPU) can be used. GPUs have been proven recently to be
extremely efficient in accelerating many existing algorithms. In this pa-
per we present GPU-CM, a GPU-accelerated version of iCPI-tree based
algorithm for the collocation discovery problem. To achieve the best
performance we introduce specially designed structures and processing
methods for the best utilization of the SIMD execution model. In exper-
imental evaluation we compare our GPU implementation with a parallel
implementation of iCPI-tree method for CPU. Collected results show
order of magnitude speedups over the CPU version of the algorithm.

1 Introduction

The enormous growth of spatial databases limits human abilities to interpret
such data and to make useful conclusions. Automatic methods, known as Knowl-
edge Discovery in Databases (KDD) are therefore required. KDD has been de-
fined as a non-trivial process of discovering valid, novel, and potentially useful,
and ultimately understandable patterns in large data volumes [8]. The most in-
teresting part of this process is called data mining and consists in application of
specially designed algorithms to find particular patterns in data.

Popular spatial data mining tasks include spatial clustering, spatial outliers
detection, spatial classification and spatial associations. In this work we focus on
the problem of detecting classes of spatial objects (the so-called spatial features)
that are frequently located together. Each spatial feature can be interpreted as
a characteristic of space in a particular location. Typical examples of spatial fea-
tures include species, business types or points of interest (e.g., hospitals, airports
etc.). For example, a mobile company providing multiple services for customers
can be interested in relationships between particular factors in the neighborhood
of mobile service requests. In ecology and meteorology, the co-occurrence among
natural phenomenons can be very interesting for scientists [12].
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Shekhar and Huang defined this data mining task as a collocation pattern
discovery [11]. A spatial collocation pattern (or in short a collocation) is a set of
spatial features that are frequently located together in a spatial proximity. Iden-
tification of such patterns requires computationally demanding step of searching
for all instances of these patterns. Many algorithms for collocation pattern dis-
covery problem have been developed [11,12,13,14,15,16]. However, no solutions
utilizing hardware support to accelerate collocation pattern discovery have been
proposed yet.

In this paper we propose an algorithm which utilizes the power of modern
graphics processing units (GPUs) to accelerate the state of the art algorithm for
the collocation pattern discovery.

The structure of this paper is as follows. In section 2 we formally define
the terms used throughout the rest of the paper. In section 3, we present the
state of the art algorithm for collocation pattern discovery and introduce basic
concepts of general processing on GPUs. Section 4 presents our contribution -
the GPU-accelerated version of the collocation mining algorithm. The results
of experimental evaluation are presented in section 5. We summarize our paper
and present plans for future work in section 6.

2 Definitions

In this section we introduce the basic collocation pattern mining concepts and
definition of the collocation pattern mining problem.

Definition 1. Let f be a spatial feature. An object x is an instance of the
feature f , if x is a type of f and is described by a location and unique identifier.
Let F be a set of spatial features and S be a set of their instances. Given a
neighbor relation R, we say that the collocation pattern C is a subset of spatial
features C ⊆ F whose instances I ⊆ S form a clique w.r.t. the relation R.

Definition 2. The participation ratio Pr (C, fi) of a feature fi in the colloca-
tion C = {f1, f2, . . . , fk} is a fraction of objects representing the feature fi in the
neighborhood of instances of collocation C−{fi}. Pr (C, fi) is equal to the num-
ber of distinct objects of fiin instances of C divided by the number of all instances
with feature fi. The participation index (prevalence measure) Pi (C) of a
collocation C = {f1, f2, . . . , fk} is defined as Pi (C) = minfi∈C {Pr (C, fi)}.
Theorem 1. The participation ratio and participation index are monotonically
non-increasing with increases in the collocation size.

The collocation pattern mining is defined as follows. Given (1) a set of spatial
features F = {f1, f2, . . . , fk} and (2) a set of their instances S = S1∪S2∪. . .∪Sk

where S (1 ≤ i ≤ k) is a set of instances of feature fi ∈ F and each instance
that belongs to S contains information about its feature type, instance id and
location, (3) a neighbor relationship R over locations, (4) a minimum prevalence
threshold (min_prev), find efficiently a correct and complete set of collocation
patterns with a participation index ≥ min_prev.
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3 Related Work

3.1 The iCPI-Tree Based Collocation Pattern Discovery

The general approach to collocation mining problem has been proposed in [11]
and consists in three major steps. In the first step, a well-known Apriori strat-
egy [1] is used to generate candidate collocations utilizing anti-monotonicity
property of the prevalence measure. In the second step instances of such candi-
dates are identified. Finally, in the last step, the prevalence measure is computed
for each candidate. Candidates with the prevalence below the given threshold
are filtered out.

Although there are researches that do not follow the aforementioned Apri-
ori strategy (e.g., maximal collocation patterns [16], density based collocation
patterns [14]), the general approach is the most popular one. Among the most
notable general approach methods are Co-Location Miner [11], Joinless [15] and
current state of the art iCPI-tree based method [13]. In the next paragraphs we
briefly describe the idea behind this algorithm.
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Fig. 1. Sample dataset and the corresponding iCPI-tree

At the beginning each spatial feature is denoted as a one element collocation.
Next, two element candidates are generated following the Apriori strategy. To
compute their prevalences, a list of their instances is required. In the iCPI-tree
method, the concept of star neighborhoods (originally introduced in [15]) is used.
For each object in space, a list of all neighbors with spatial features greater
than the feature of this particular object is called a star neighborhood. Such
information is stored in the form of an iCPI-tree. Each child of the root node
is a subtree that contains neighbors for instances of a specific spatial feature.
Sub-trees are composed of nodes representing spatial features of neighbors and
leafs corresponding to neighbor instances. A sample dataset and a corresponding
iCPI-tree is shown in Fig. 1. For example, a star neighborhood for object A1
consists of objects B1, B3, C1, C3 and is represented by a subtree below a node
A in the iCPI-tree. To identify instances of a candidate, e.g, B,C we can easily
read all neighbors with C feature of B instances (B2, C2 and B3, C3). In n-
th iteration of the algorithm, n size candidates are processed. For n = 2 all
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instances generated from the tree are cliques (Def. 1). For n > 2 the following
method for generating collocation instances is used. To identify instances of
n size collocation candidates, a set of instances from n− 1 iteration is used. For
each n size candidate, instances of the prevalent n− 1 size collocation with the
same first n− 1 features as candidate are expanded. Only common neighbors of
all collocation instance objects can be used. For example, given the candidate
A,B,C we use consecutive instances of the collocation A,B, e.g., the instance
A2, B3. We try to extend it with instances of feature C. To get clique instances
of A,B,C we look for C instances that are simultaneously neighbors of A2 as
well as of B3. Using the obtained iCPI-tree we can easily find that A2 has
neighbors C1 and C3 while B3 has only the neighbor C3. Therefore, the only
common neighbor is C3 and a new instance of candidate is A2,B3,C3. Such
processing is repeated for each candidate. The algorithm stops when there are
no new candidates. For details of the iCPI-tree based algorithm please consult
the paper [13].

3.2 General Processing on Graphics Processing Units

The rapid development of computer graphics cards has led to creating powerful
devices performing highly parallel single instruction multiple data computations.
This high performance may be utilized not only for graphics applications but also
for any general processing applications. Newly developed APIs such as NVIDIA
CUDA [10] and OpenCL [9] allow to relatively easily develop programs which uti-
lize graphics processing units (GPUs) of graphics cards to accelerate their normal
data processing tasks. In our solutions we utilize NVIDIA CUDA, though many
of the results presented in this paper are also applicable to OpenCL based appli-
cations. NVIDIA CUDA is a low level API which while designed to be universal,
is currently only implemented for NVIDIA GPUs. This will probably change in
short time as there are new compilation frameworks currently in development,
which allow to run CUDA programs on AMD and Intel GPUs as well [7]. Below
we give a short description of NVIDIA CUDA API and its capabilities.

Computation tasks are submitted to GPUs in a form of kernels. A kernel
is a function which is composed of a sequence of operations which need to be
performed concurrently in multiple threads. Threads are divided by the pro-
grammer into equally sized blocks. A block is a one, two or three dimensional
array of at most 1024 threads (or 512 depending on the graphics cards’ architec-
ture), where each thread can be uniquely identified by its position in this array.
The set of blocks forms a so-called computation grid. Threads in a single block
may communicate by using the same portion of the so-called shared memory
which is physically located on-chip and therefore very fast. Threads running in
different blocks may only communicate through the very slow global memory of
the graphics card. Different memory types have different efficient access pattern
requirements. Synchronization capabilities of the threads are limited. Threads in
a single block may be synchronized; however, global synchronization of threads
is achievable only by means of a costly workaround. Threads in a block are
executed in 32 thread SIMD groups called warps (all of these threads should
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perform the same instruction at the same time). A programmer implementing
an algorithm using the NVIDIA CUDA API must take into account all of these
low level GPU limitations to obtain the most efficient implementations.

To facilitate creation of programs performing parallel computations (not nec-
essarily GPUs) many parallel primitives have been developed. For the purpose of
solutions presented in this paper we utilize the following: inclusive and exclusive
scan, compact, sort, unique, reduce and reduce by key. Most of these primitives
are implemented for GPUs in such libraries as Thrust [3]. In our implementa-
tion we use this library though we implement our own version of the compact
algorithm. Below we give short description of each primitive.

Given any array a an inclusive scan finds an array b of the same size such
that each b[i] =

∑i
k=1 a[i]. An exclusive scan works similarly. For any array a an

exclusive scan finds and array b of the same size such that each b[i] =
∑i−1

k=1 a[i].
Any associative binary operator may be used instead of sum. A compact al-
gorithm given any array a removes all entries that fulfill some condition. Most
commonly an additional array of flags storing 0 and 1 (remove/keep) is supplied.
A sort algorithm sorts any array. Sorting may also be based on some additional
key array. A unique algorithm is used to find a set of all distinct values stored in
a user supplied array. Thrust implementation requires data to be sorted first. A
reduce algorithm performs reduction of all values within a user specified array
a by using any associative binary operator such as sum, i.e., it can be used to
find a sum of all values within an array. A reduce by key algorithm is a more
advanced version of reduce algorithm. Given two equally sized arrays k and v
where array k stores keys and array v stores values, reduce by key performs
reduction of all values belonging to the same key, i.e., for each distinct key value
a single reduced result is obtained. Thrust implementation requires data to be
sorted by key value.

4 The GPU-CM Algorithm

Our GPU-CM algorithm assumes that the iCPI-tree has already been built.
Efficient algorithms for constructing this structure from raw input data already
exist [13,15]. Moreover this algorithm step takes only a small fraction of the
whole mining process time [4].

4.1 Data Structures

Following the solutions presented in [4] we represent an iCPI-tree as a hash map.
Each entry in the hash map stores a list of instances of a single spatial feature
f1 which are neighbors of a single instance i of some other spatial feature f2.
This structure is implemented in GPU memory as follows.

Lists of instance neighbors are stored in a single memory block. Due to per-
formance reasons, each list has a constant length L which can be any power of
2 (up to 32). If the number of neighbors is smaller than this value some entries
are left empty. The memory block size is therefore equal to the number of lists
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times L. Each entry on a list is an instance representation. Each feature instance
is represented as a 32 bit word where the least significant 16 bits store instance
number and more significant 8 bits are used for storing the feature number. The
most significant 8 bits are set to zero. An empty entry is represented by the value
FFFFFFFFh. Each list occupies continuous L× 4 bytes of memory. Each list
is sorted. We will denote this data structure as an instance neighbor buffer.

A hash map is represented by two arrays: keys and values. Each key stores
feature f1 number as well as feature f2 number and instance number i. This is
encoded on a 32 bit word where the least significant 16 bits encode instance num-
ber i, more significant 8 bits encode feature f2 identifier and the most significant
8 bits encode the feature f1 number. Each entry in the keys array stores either
a key value or is empty (equal to FFFFFFFFh). We use the open addressing
scheme for hashing [2]. The array values stores, for each key stored in keys ar-
ray, a pointer to the start of the appropriate list in the memory block described
above. We will denote this hash map as an instance neighbor hash map.

During the collocation pattern mining process, the algorithm stores for each
pattern (or a candidate for one) a list of its instances. To accelerate the search for
instances of a specified pattern, another hash map is employed. This structure is
more complicated than iCPI-tree representation and is implemented as follows.

Depending on the number of features, each pattern is represented as a se-
quence of several 32 bit words, where each bit corresponds to a single feature.
We denote the number of pattern words as BL. All patterns are stored in a single
memory block of size equal to the number of patterns times BL. Due to the ac-
cess methods employed during collocation mining each pattern does not occupy
continuous regions of memory. Instead, consecutive words in memory store first
words of all patterns, then second words and so on. Patterns are sorted in the
lexicographic order. We will denote this structure as a pattern buffer. Pattern in-
stances are stored similarly in a separate memory block. Each pattern instance
is represented as a sequence of 32 bit words where each word is a feature in-
stance encoded as described at the beginning of this section. Consequently, this
memory block’s size is equal to the number of all pattern instances times the pat-
tern length. Similarly as with patterns, continuous regions of memory store first
words of all pattern instances, then second words and so on. Pattern instances
of a single pattern occupy neighboring regions of memory, i.e., pattern instances
are not interleaved. Moreover, pattern instances are sorted in the lexicographic
order (within the groups corresponding to their patterns). We will denote this
structure as a pattern instance buffer.

A hash map used for finding instances of a pattern is represented by two
arrays: keys and values. Array keys stores pointers to starting positions of corre-
sponding patterns in the pattern memory block described above or nulls if entry
is empty. Array values stores, for each corresponding key, records that consist of:
the number of pattern instances, the prevalence of the pattern and the pointer to
the first word of a first pattern instance in the pattern instance memory block.
We use open addressing scheme for hashing. We will denote this hash map as a
pattern hash map.
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One might notice that the keys array of the pattern hash map could store pat-
terns instead of pointers to patterns. The current solution was used to achieve
atomic insertions into the hash map. In general we follow a solution presented
in [2] where a parallel hash map based on open addressing scheme is introduced
(among others). This solution is based on compare and swap scheme. Unfortu-
nately the atomicCAS CUDA function (perfoming atomic compare and swap)
works only on 32 bit and 64 bit words. Atomic insertion of longer patterns is not
possible by means of this function. We have decided to atomically store pointers
(which are either 32 or 64 bit) to larger representations of patterns instead.

4.2 Initialization of Mining

The mining process starts with reading of the initial iCPI-tree and construc-
tion of iCPI-tree hashmap. Instance neighbor buffer is constructed sequentially.
Additional data such as numbers of instances of each feature are also retrieved.
Moreover, a temporary array of all instance neighbor hash map keys and values
(pointers to lists) is sequentially constructed as well. Finally, all of these key -
value pairs are inserted into the instance neighbor hash map in parallel.

After the instance neighbor buffer and the instance neighbor hash map are
constructed, a pattern buffer, a pattern instance buffer and a pattern hash map
for patterns of length 1 are constructed as well. While we have designed a parallel
algorithm for this step, we will omit the details as the processing time of this
step is negligible.

4.3 Generation of Candidates - Pattern Join

Generation of n-size candidates utilizes a pattern buffer which stores n− 1 size
patterns. As patterns in the pattern buffer are sorted in the lexicographic order,
all n − 1 size patterns that may be joined into an n size pattern form groups
of several consecutive, joinable patterns. We will refer to these groups as join
groups. At the final stage of the algorithm, the join groups will be converted into
result groups. A result group is a group of several consecutive patterns that are
obtained from joining all patterns within a single join group. The order of groups
is retained, i.e., given any two join groups A and B, if group A is before group B
in the input pattern buffer, the corresponding result groups will be in the same
order in the output pattern buffer (unless one of the join groups contains only
a single pattern and therefore does not create any join results). If the patterns
within a result group are sorted in lexicographic order then this property will
guarantee that the resulting pattern buffer is sorted globally.

The pattern join algorithm works in several sequential stages, though each
stage can be composed of parallel operations. First stages identify join groups,
find their number (denoted kJG), compute their size and the size of corresponding
result groups (the number of combinations of two). Several important arrays are
created:

– groupSizes - an array of size kJG which contains for each join group its size,
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– joinCounts - an array of size kJG which contains for each join group the size
of corresponding result group,

– positions - an array of size kJG which contains for each join group an index
of the last pattern for this group within the input pattern buffer,

– scannedJoinCounts - an array of size kJG which is a result of exclusive scan
operation performed on joinCounts array.

Next stages compute an additional important auxiliary array called scanned-
JoinFlags of size equal to the number of result patterns (kP ). The obtained
array contains (for each pattern in each result group) a reference number of the
corresponding join group.

The final stage creates the final pattern join. Each join group is converted
into a result group. First, a pattern buffer of size kp × BL is allocated (recall
that BL is the number of 32 bit words needed to encode a single pattern).
Next, kp threads are started. Each thread, based on the array scannedJoinFlags
determines the reference number of the corresponding join group. Given this
value, the thread retrieves from the scannedJoinCounts array the position at
which its corresponding result group should start in the result pattern buffer. The
thread also computes the difference between its global number and the retrieved
position to find its position pos within the corresponding result group. This value
is then decomposed into numbers of two sequences within the corresponding join
block via the following formulas: p1 = bs− 1−

⌈
0.5(

√
8(jc− 1− pos) + 9− 1)

⌉

and p2 = pos− 0.5p1(2bs− p1− 3)+1, where: bs is the corresponding join group
size retrieved from the array groupSizes and jc is the corresponding result group
size retrieved from the array joinCounts.

These formulas accomplish two tasks: (1) a threads position within the corre-
sponding result group is decomposed into a combination of two patterns within
the corresponding join group and (2) the joined patterns will be sorted lexico-
graphically within the result group. The positions p1 and p2 are converted into
global positions within the input pattern buffer by adding the appropriate value
from the positions array (and increasing by 1). Finally, the thread joins the two
patterns by performing a binary bitwise OR operation between all words of the
two patterns and stores the result in the resulting pattern buffer.

4.4 Generation of Candidates - Candidate Pruning

Each pattern obtained through joining must be checked whether its every sub-
pattern is prevalent or not. To perform this check for patterns of length n we
utilize: a pattern buffer obtained in the previous algorithm step (see section 4.3)
and a pattern hash map for prevalent patterns of length n−1. Assume there are
kp patterns obtained through joining. First, an array flags of size kp is allocated.
Next, kp threads are started. Each thread retrieves its corresponding pattern
from input pattern buffer and sequentially generates all n subpatterns of length
n − 1. Each subpattern is checked whether the corresponding entry exists in
the pattern hash map. If all subpatterns of a single pattern have corresponding
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entries in the pattern hash map, the thread stores 1 in the corresponding position
in the flags array, otherwise 0 is stored.

As a second step a parallel compact algorithm is employed to remove all pat-
terns except for patterns with the corresponding flag equal to 1. As parallel
compact does not change the order of patterns, the lexicographic order is re-
tained. The obtained pattern buffer will be referred to as a candidate pattern
buffer.

4.5 Generation of Instances

In this section we describe an algorithm which performs the most time consuming
step of the collocation pattern discovery - the generation of instances. Let us
introduce several useful terms. Let the number of candidate patterns be equal
to kC . Any n− 1 size pattern that is a prefix of a n size candidate pattern will
be denoted as a candidate prefix pattern. Instances of a candidate prefix pattern
will be called candidate prefix pattern instances. The last feature of a candidate
pattern will be called an extending feature.

The basic idea for instance generation algorithm is based on the following
observations. In the basic iCPI-tree based algorithm finding instances of some
candidate pattern C with extending feature fe involves: (1) retrieving every can-
didate prefix instance Pi, (2) finding for each feature instance of Pi a list of its
neighbors with feature fe by means of iCPI-tree and (3) finding a common part
of these lists. As processing of every candidate prefix instance is independent it is
a natural candidate for parallelization. Our algorithm processes each candidate
prefix instance of every candidate pattern in parallel. Let kI be the number of
processed prefix instances. Notice that each candidate prefix instance might be
processed more than once if there are several candidates with the same candidate
prefix pattern but different extending feature. Each candidate prefix instance can
have two (local and global) numbers. A local candidate prefix instance number is
a number of the candidate prefix instance within the group of candidate prefix
instances of a single candidate prefix pattern. A global candidate prefix instance
number is a number of candidate prefix instance within the set of all candidate
prefix instances used in generation of candidate pattern instances. As an input
the algorithm utilizes: a candidate pattern buffer containing n size patterns ob-
tained in the previous stage, a pattern buffer, a pattern instance buffer, a pattern
hash map of prevalent n− 1 size patterns as well as an instance neighbor buffer
and an instance neighbor hash map. The main instance generation algorithm
requires also several auxiliary arrays which can be computed in parallel as well:

– listPointers - an array of size kC which for every candidate pattern stores a
pointer to the first candidate prefix instance in the pattern instance buffer,

– instanceCounts and scannedInstanceCount - instanceCounts is an array of
size kC which for every candidate pattern stores the number of corresponding
candidate prefix instances, scannedInstanceCount is a result of perfoming a
parallel inclusive scan on the instanceCounts array,

– correspondingPatterns and extendingFeatures - arrays of size kI which map
global candidate prefix instance number to the number of the corresponding
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candidate pattern and its extending feature respectively, entries in both of
these arrays are sorted by the corresponding pattern.

In the first step, for each candidate prefix instance a list of common fe feature
instances is generated. Two arrays are created: (1) listSizes of size kI which will
store lengths of each neighbor list and (2) newNeighbors of size kI × L (recall
that L is the length of neighbor list in instance neighbor buffer structure) which
will store the neighbor lists. The memory alignment and the structure of the
newNeighbors array is the same as that of the instance neighbor buffer. To per-
form this step kI × L threads are started. Each group of consecutive L threads
cooperates to generate one neighbor list in the newNeighbors array. Each thread
at start determines the following information: (1) the global number candidate
prefix instance c ∈ 0, . . . , kI − 1 (the same for each of L consecutive threads),
(2) the corresponding position within the neighbor list l ∈ 0, . . . , L − 1, (3) the
corresponding candidate pattern number p from the correspondingPatterns ar-
ray and (4) the extending feature fe from the extendingFeatures array. Next,
based on the global candidate prefix instance number c each thread at start
determines the local candidate prefix instance number. This is done by sub-
stracting scannedInstanceCounts[p-1] from c. If p = 0 the candidate pattern
instance number is equal to c. Each thread also retrieves from the listPointers
array a pointer to the first candidate prefix instance of their corresponding can-
didate pattern p. Based on this pointer and the local candidate prefix instance
number each thread computes the address of the first feature instance of the
corresponding candidate prefix instance that it is going to process. Now each of
the L threads work synchronously to find an intersection of the lists of neighbors
with fe feature of every feature instance being a part of the processed candidate
prefix instance. The whole process is performed almost solely in the fast shared
memory of GPU. When the threads finish their work they copy their results
into the newNeighbors array and store the lengths of the obtained lists into the
listSizes array.

After the neighbor lists are found, the algorithm performs a modified parallel
compact algorithm which removes empty entries from the obtained lists, but
every remaining entry is materialized in the resulting array as a complete candi-
date pattern instance, i.e., the corresponding candidate prefix instance with the
appended entry. The resulting array is built in such a way that its structure and
properties are the same as that of the pattern instance buffer.

4.6 Computation of Prevalence

The computation of prevalence is based on several classic parallel algorithms such
as sort, reduce by key and unique (see section 2 for details). The process starts
with computing, for every feature instance of each candidate pattern instance,
a value composed of: its position within the candidate instance, a candidate
pattern number, and an instance identifier constructed as described in section
4.1. An array of such values is then sorted in the lexicographic order. Next,
non unique values are removed via the unique algorithm. The obtained array
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now stores for every candidate pattern a list of unique feature instances at each
position of its instances. Next, in parallel a feature instance number is removed
from every value in the obtained array (although feature identifier remains).
Finally, the reduce by key algorithm is used to count the number of distinct
values in the array obtained in the previous step (the array is treated as key array
and value array is composed of ones). The obtained results store for each position
of every candidate pattern a number of unique feature instances appearing in
candidate pattern instances. Based on these values, the participation ratios and
prevalences of all candidate patterns are computed (in parallel).

Non prevalent candidate patterns and their corresponding instances are re-
moved via the parallel compact algorithm. Only the prevalent patterns and their
instances remain (in the pattern buffer and the pattern instance buffer respec-
tively). Finally, a new pattern hash map is constructed (in parallel). These struc-
tures now form an input of the next iteration of the collocation pattern discovery
algorithm.

5 Experiments

5.1 Implementation and Testing Environment

For the purpose of this paper we have prepared two implementations of the iCPI-
tree based collocation pattern discovery algorithm: for GPU and for CPU. The
GPU version uses the solutions described in section 4. The CPU version uses
similar data structures as the ones described in section 4.1, however the paral-
lelization of computations is done differently. Instead of SIMD approach, multiple
instruction multiple data approach is used (MIMD). CPU implementation uses
OpenMP [6] to parallelize instance generation and prevalence computation on a
multi-core CPU. The implementation starts the number of threads equal to the
number of cores of a CPU and the computation tasks are distributed among the
started threads. The parameter L (length of lists in instance neighbor buffer) for
both implementations was set to 8.

Experiments were run on a computer with Core2 Duo 2,1Ghz CPU (CPU
implementation started two threads) and 8GB of RAM and GeForce 580GTX
graphics card with 1.5GB of RAM (Fermi architecture) working under Microsoft
Windows 7 operating system.

5.2 Data Sets and Experiments

To evaluate our GPU version of the algorithm we have prepared 10 synthetic
datasets. We have used a synthetic generator similar to the one described in [15].
The number of data objects ranged from 25 K to 120 K, the number of spatial
features ranged from 30 to 90 and 20 to 80 percent of total instances were noisy
instances. Two kinds of datasets have been prepared: dense and sparse. Dense
datasets have been generated by reducing the size of spatial framework ten times
in each dimension while preserving the number of objects (sparse datasets were
generated over a grid of size of 10000x10000 units).
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We have conducted three series of experiments. Each time we measured
speedup, i.e., the ratio of execution time of CPU version of the algorithm to
the execution time of GPU implementation. In the first series we have examined
how increasing of the minimum prevalence threshold affects speedup in both
dense and sparse datasets. In the second series we investigated the influence of
the distance threshold between neighbors on speedup for two opposite levels of
minimum prevalence. Finally we examined how speedup changes with increasing
size of the input dataset.

5.3 Results and Interpretation

Figure 2(a) presents results of the first experiment which tested the influence of
the minimum prevalence parameter on the algorithm performance. Two inter-
esting observations can be made. First, notice that the density of the dataset
does not influence the speedup, i.e., while processing times may change, GPU
version is faster than CPU version by approximately the same factor for the
same minimum prevalence. Second, the speedup drops monotonically with the
increase of minimum prevalence. In our testing environment for minimum preva-
lence equal to 0.2 the achieved speedup is roughly twice the speedup achieved
for the minimum prevalence 0.6. This is due to the fact that the increased min-
imum prevalence parameter causes less candidate patterns to be generated and
(indirectly) less candidate prefix instances to be processed. This in turn causes
less threads to be started. Less threads mean that: (1) memory transfers may
not be hidden, (2) GPU multiprocessors might not have recieved a full load and
(3) instance generation step takes less time in comparison to other algorithm
steps (as we have primarily focused on optimizing instance generation step this
could cause the observed speedup to drop).

Figure 2(b) presents results of the second experiment which tested the influ-
ence of the distance threshold between neighbors on the algorithm performance.
One can notice that in general, the larger the distance threshold, the greater the
speedup. The explanation of this observation is very similar to the one made in
the previous experiment. For large distance thresholds, each feature instance has
more neighbors. Consequently neighbor lists in the instance neighbor buffer are
longer and more instances are generated in the instance generation step of the
algorithm. As we have shown in the previous paragraph, the larger the number of
instances, the higher speedups can be achieved. One can also notice that we have
performed this experiment for two values of minimum prevalence parameter: 0.2
and 0.6. Plots corresponding to these two values confirm the observations made
in the previous experiment: the lower the minimum prevalence the higher the ob-
served speedup. Moreover, similarly as before, one can notice that for minimum
prevalence 0.2 observed speedup is twice the speedup observed for minimum
prevalence 0.6.

Figure 2(c) presents results of the third experiment which tested the influence
of the number of feature instances (objects) on the observed speedup. What is
surprising is that the observed speedup grows linearly (for the tested datasets)
with respect to the number of objects. It is of course obvious that the speedup
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Fig. 2. Experiment results

cannot grow forever. The same curve for larger instances would asymptotically
approach the maximum achievable speedup dependant on relative performances
of GPU and CPU. The monotonic dependency can be explained similarly as be-
fore. Greater number of objects leads to greater number of pattern instances and
therefore candidate prefix instances. The larger the number of such instances,
the larger the number of threads started and the better the utilization of GPU.

Unfortunately, due to limited GPU memory we were not able to run instances
large enough to achieve maximal speedups. Algorithm’s memory requirements
depend on data and query characteristics such as the number of objects, the
number of spatial features, data density and the minimal prevalence. In our
case, 1.5GB of GPU memory was enough to run dense datasets of size up to
120K objects, 90 spatial features, for the minimal prevalence of 0.2.

6 Summary and Future Work

In this paper we have presented an algorithm performing most operations of the
state of the art collocation pattern discovery algorithm in parallel on GPU. We
have compared our implementation to the multi-threaded CPU implementation
and shown that GPU offers an order of magnitude speedup over the CPU version.

While the results are very promising, there is still a lot of work to do. The
main problem is the limited graphics cards memory. This problem can be tackled
in two ways. First, we plan on modifying our algorithm to be able to process
variable length neighbor lists. Current solution wastes both memory and com-
puting power (a lot of threads process empty positions on these lists). Second,
we plan on adapting the solutions introduced in [5] which already try to solve the
collocation pattern mining problem in limited memory conditions. We also plan
designing an algorithm for efficient construction of iCPI-trees on GPU (currently
done on CPU). Finally we also want to approach a more difficult problem of the
maximal collocation pattern discovery on GPUs.
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