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Abstract. xml keyword search provides a simple and user-friendly way
of retrieving data from xml databases, but the ambiguities of keywords
make it difficult to effectively answer keyword queries. In this paper,
we tackle the keyword ambiguity problem by exploiting the relationship
between keywords in a query. We propose an approach which infers and
ranks a set of likely search intentions. Extensive experiments verified
the better effectiveness of our approach than existing systems.

1 Introduction

Keyword search in XML databases has been extensively studied recently. How-
ever, the search effectiveness problem is far from solved. One of the main causes
of the problem is the ambiguity of keywords. In particular, a word can have
multiple meanings1. Consider the XML tree in Fig. 1. The word 16 appears as
a text value of volume and initPage nodes, and the word issue exists as an xml
tag name and a text value of title node. When a user types in such keywords, it
is hard to know which meaning of the keyword the user wants.

In this work, we propose to tackle keyword ambiguities and infer users’ search
intention by exploiting the relationship between different keywords in a query.
The basic observation is that users seldom issue a query arbitrarily. Instead,
most of the time they construct queries logically. They usually place closely
related keywords at adjacent positions. For example, if the user intends to re-
trieve the articles about database from issue 16, he is more likely to submit the
query {issue 16 database} than the query {16 database issue} because the key-
words “16” and “issue” are closely related. This intuition motivates us to infer
a keyword’s meaning by preferentially evaluating the relationship between this
keyword and its adjacent keywords. In the example above, if the query is {issue
16 database}, it is more likely to infer “issue” as the tag name issue by con-
sidering this keyword together with its adjacent keyword “16” than considering
this keyword with “database”.

1 We use word type to represent a word’s meaning. See Definition 5 for the definition
of word type.
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Fig. 1. A Sample xml data tree of SigmodRecord

We developed a system XInfer that infers a set of likely search intentions
using the above intuition as well as keyword distribution in the data tree, and
ranks them appropriately. For example, for the data tree in Fig. 1, if the user
types the query {issue 16 database}, XInfer will infer that the most likely search
intention as articles in issue 16 whose title contains “database”; if the query is
{16 database issue}, it will infer the most likely search intention as articles
with initial page “16” whose title contains the words “database” and “issue”; If
the user query is {database issue 16}, then both of the afore-mentioned search
intentions will be ranked highly, with the second one being ranked the highest.

Related Work. Works that are most closely related to ours include XReal
[2], XBridge [3] and XSeek [4]. XReal uses statistics of the data (mainly term
frequency) to find a search-for node type (SNT), and XBridge [3] estimates the
promising result types based on off-line synopsis of the XML tree (structural
distribution and value distribution). XSeek tried to recognize the possible entities
and attributes in the data tree, distinguish between search predicates and return
specifications in the keywords, and return nodes based on the analysis of both
xml data structures and keyword match patterns. Many other works on XML
keyword search are based on variants of LCA (lowest common ancestor). One of
the variants is maxMatch [5], which prunes irrelevant nodes from result subtrees
obtained using the SLCA semantics. Due to page limit, we refer the readers to
the full version of this paper2 and the recent survey [6] for more details. To the
best of our knowledge, no previous work has utilized the relationship between
adjacent keywords when inferring the search intention.

Organization. After introducing the data model (Section 2), we design a formula
to evaluate the relationship between two adjacent keywords without considering
other keywords in the query, which takes into account the statistics and struc-
tural properties of a keyword’s different meanings (Section 3). Then we propose
the Pair-wise Comparison Strategy, which utilizes the inference results of pairs
of adjacent keywords, to infer a set of likely search intentions and rank them

2 Available from http://www.ict.griffith.edu.au/~jw/report/xinfer.pdf

http://www.ict.griffith.edu.au/~jw/report/xinfer.pdf
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appropriately (Section 4). In Section 5, we show how to generate result subtrees.
We present our experiments in Section 6 and conclude the paper in Section 7.

2 Background

Data Model. An xml document is modeled as an unordered tree, called the
data tree. Each internal node (i.e., non-leaf node) has a label, and each leaf node
has a value. The internal nodes represent elements or attributes, while the leaf
nodes represent the values of elements or attributes. Each node v in the data
tree has a unique Dewey code. Fig. 1 shows an example data tree.

Entity Nodes. In reality, an xml document is usually a container of related
entities. For instance, Fig. 1 is a collection of issue and article entities. We use
an approach similar to that of [4] to identify entity nodes.

Definition 1. (Entity Node) Let t be a data tree. A node v in t is said to be
a simple node if it is a leaf node, or has a single child which is a leaf node. A
node v is said to be an entity node if: (1) it corresponds to a ∗-node in the DTD
(if DTD exists), or has siblings with the same tag name as itself (if DTD does
not exist), and (2) it is not a simple node. The entity type of an entity node e
refers to the node type of e. A node v in t is called a grouping node if it has
children of entity nodes only.

Consider the data tree in Fig. 1, nodes issue (0.0) and article (0.0.2.0) are
entity nodes. The nodes SigmodRecord (0) and articles (0.0.2) are grouping
nodes.

Keyword Query. A keyword query is a finite set of keywordsK = {w1, ..., wn}.
Given a keyword w and a data tree t, the search of w in t will check both the
labels of internal nodes and values of leaf nodes for possible occurrences of w.

3 Inferring the Meaning of Two Adjacent Keywords

3.1 Preliminary Definitions

Definition 2. (Node Type) Let v be a node in data tree t. The node type of
v is the sequence of node labels on the path from the root to v if v is an internal
node, and is denoted l1.l2. · · · .ln, where li (1 ≤ i ≤ n) is the label of the ith node
on the path. If v is a leaf node, its node type is the node type of its parent. The
length of a node type is the number of nodes on the path.

In Fig. 1, the node type of author (0.0.2.0.3.0) is SigmodRecord.issue.

articles.article.authors.author. For simplicity, we will use the tag name
of a node to denote the node type when there is no confusion.

Definition 3. (Ancestor Node Type) Given a node type T ≡ l1.l2. · · · .ln,
we say l1.l2. · · · .li is an ancestor node type of T , for any i ∈ [1, n− 1].



Exploiting the Relationship between Keywords 235

We use T1 ≺ T2 to denote that T1 is an ancestor node type of T2.

Definition 4. Let T1, · · · , Tn be node types. The longest common ancestor of
T1, · · · , Tn, denoted NtLCA(T1, · · · , Tn), is a node type V such that (1) V ≺ Ti

for all i ∈ [1, n]; (2) there is no node type U such that V ≺ U ≺ Ti for all
i ∈ [1, n].

We now define word type, which is used to represent the meaning of a word.

Definition 5. (Word Type) Let t be the data tree and w be a word that occurs
in t. A node type is said to be a word type of w if some nodes of this node type
directly contain w.

Table 1 lists the word types of several words for the data tree in Fig. 1.

Table 1. Sample Word Types

Word No. Word Type

issue
1 SigmodRecord.issue
2 SigmodRecord.issue.articles.article.title

16
3 SigmodRecord.issue.volume
4 SigmodRecord.issue.articles.article.initPage

database
5 SigmodRecord.issue.articles.article.title
6 SigmodRecord.issue.articles.article.authors.author

Definition 6. (Search Intention) Given a keyword query K = {w1, · · · , wn}
and their corresponding word type sets {WT1, · · · ,WTn}, a search intention of
this query is a tuple of word types (wt1, · · · , wtn), where wti ∈ WTi (1 ≤ i ≤ n).

Once we have a search intention, we can find the result subtrees accordingly.
The details of the result subtree will be given in Section 5.

3.2 Inferring the Word Types of Two Adjacent Keywords

If two adjacent keywordswi and wi+1 are taken as a keyword query with two key-
words, the number of possible search intentions is equal to |WTi|× |WTi+1|. We
design a formula to compute the proximity score between wti and wti+1 which
is used to evaluate how closely wti and wti+1 are related, where (wti, wti+1) ∈
WTi ×WTi+1. The tuple (wts, wtt) that achieves the largest proximity score is
considered as the desired search intention of wi and wi+1.

Basically, the proximity score between two word types is affected by the dis-
tance between them and the statistics of them.

Distance between Two Word Types. The distance between two word types
wt1 and wt2 is defined as the total number of edges from NtLCA(wt1, wt2) to the
ends of wt1 and wt2, which can be calculated using the following formula:

Dis(wt1, wt2) = len(wt1) + len(wt2)− 2 ∗ clen(wt1, wt2) (1)

In the formula above, len is the length of a word type. clen(wt1, wt2) is the
length of the longest common ancestor of wt1 and wt2. Consider word types
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2 and 6 in Table 1. According to Formula (1), the distance between them is
5 + 6− 2 ∗ 4 = 3.

Intuitively, the shorter the distance between two word types, the more closely
these two word types are related. In our work, we use pDis(wt1,wt2) to formulate
the intuition above, where p is a tuning parameter which is used to determine
how much penalty should be given to the distance between two word types. In
our experiments we found setting p to 0.87 achieves good results.

Statistics of Word Types. Another important factor that influences the prox-
imity score is the statistics of word types. Given a pair of word types of two
adjacent keywords, we formulate the influencing factor of the statistics of the
two word types as follows:

Sta(wt1, wt2) = loge(f
NtLCA(wt1,wt2)
w1,wt1 + f

NtLCA(wt1,wt2)
w2,wt2 ) ∗R (2)

where R is a reduction factor which will be explained shortly. fT
w,wt is the number

of T-typed nodes that contain the keyword w with the word type wt in their
subtrees. The intuition (similar to XReal) behind the statistics is as follows:

The more xml nodes of node type NtLCA(wt1, wt2) contain the keywords with
word types wt1 and wt2, the more likely these two word types are related through
the nodes of node type NtLCA(wt1, wt2) and this kind of relationship between wt1
and wt2 is desired by the user.

We now explain the reduction factor R. Due to the tree structure, the number
of nodes at higher levels is usually significantly less than the number of nodes at
lower levels. This may bring unfairness when collecting statistics. Fewer nodes
at higher levels are usually caused by design, which may not reflect the real
occurrences of data. Therefore, we put a reduction factor of depth to the for-
mula to reduce the unfairness. A straightforward reduction factor of depth is

1
Dep(NtLCA(wt1,wt2))

, but it reduces too much and too quickly when the depth

increases. Instead, we use the following formula as the reduction factor:

R =

√
1

Dep(NtLCA(wt1, wt2))
(3)

With the two influencing factors above, the proximity score between two word
types is defined as follows:

P (wt1, wt2) = pDis(wt1,wt2) ∗ Sta(wt1, wt2) (4)

Desired Word Types. Given two adjacent keywords wi and wi+1, the pre-
ferred relationship between them achieves the largest proximity score among all
P(wti, wti+1), where wti ∈ WTi and wti+1 ∈ WTi+1. The word types that form
this relationship are the desired word types of wi and wi+1. In the sequel, the
largest proximity score between wi and wi+1 will be denoted HP(wi, wi+1), i.e.,

HP(wi, wi+1) = max{P(wti, wti+1) | wti ∈ WTi, wti+1 ∈ WTi+1} (5)
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4 Inferring Likely Search Intentions

4.1 One Keyword

If a query contains only one keyword, each word type of this keyword is consid-
ered as a search intention. We use the following formula to compute the likelihood
that the word type wt is desired by the user.

C(wt) = loge(f
wt
k,wt) ∗

√
1

Dep(wt)
(6)

4.2 Two or More Keywords

When there are two or more keywords, we use a pair-wise comparison strategy
(PCS) to infer a set of likely search intentions. We first explain the ideas and
then present the detailed algorithms.

Inferring One Likely Search Intention. Given the keywords {w1, · · · , wn}
(n > 1) and their corresponding word type sets {WT1, · · · ,WTn}, we infer a
likely search intention as follows.

In the case n = 2, i.e., there are only two keywords w1 and w2 in the query, we
will compute the largest proximity score between w1 and w2 (i.e., HP(w1, w2)) us-
ing formula (5), and choose the word types of w1 and w2 that achieve HP(w1, w2)
as the word types of w1 and w2.

In the case n > 2, we need to go through several iterations. In the first
iteration, we scan the keywords from left to right pair by pair and compute
HP(wi, wi+1) (1 ≤ i < n). We group wj and wj+1 together if they achieve the
largest HP value, that is, if HP(wj , wj+1) = max{HP(wi, wi+1) | i ∈ [1, n − 1]}.
Whenever a pair of adjacent keywords wi, wi+1 are put into a group, the word
types of wi and wi+1 that achieve HP(wi, wi+1) will be chosen as the word types of
wi and wi+1 respectively, and we will go to the next iteration. In each subsequent
iteration, we scan the keywords or groups of keywords from left to right, grouping
a pair of two keywords, or a keyword and a group, into the same group by using
the largest proximity score in a way similar to the first iteration, except that for
each group (that contains more than one keyword), a unique word type of each
keyword in the group has been chosen as the word type for that keyword (and
this unique word type will not be changed later), thus the computation of the
largest proximity score between a keyword and a group, or two groups will use
the word types of each keyword in the group as shown in formulae 7 to 8 below.
This process continues until all keywords joins a group (so that its word type
can be determined).

For a keyword wi and a group g = {wk, . . . , ws} of keywords, suppose the
word types of wk, · · · , ws are wtk, · · · , wts respectively, then

HP(wi, g) = HP(g, wi) = max{P(wti, wt) | wti ∈ WTi, wt ∈ {wtk, . . . , wts}} (7)
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For two neighboring groups g1 = {wj , . . . , wk} and g2 = {wk+1, . . . , wt} with
word types wtj , . . . , wtk and wtk+1, . . . , wtt respectively, we define

HP(g1, g2) = P (wtk, wtk+1) (8)

The HP score between two groups is not used to merge two groups. It is only
used in the ranking of the returned search intentions, as we will discuss later.

Inferring a Set of Likely Search Intentions. To reduce the possibility of
missing the real search intention, we generate a set of likely search intentions as
described below.

Given the keywords {w1, . . . , wn} and their word type sets {WT1, . . . ,WTn},
we treat each word type in WTi as the only word type of wi, and use PCS to infer
a search intention which is considered as a likely search intention. In total, we
will produce

∑
1≤i≤n |WTi| likely search intentions if there are no duplicates3,

which is much smaller than
∏

1≤i≤n |WTi| (the number of all possible search
intentions). Applying PCS against each word type guarantees a good coverage
of different word types in the query. In other words, every word type of each
keyword exists in at least one likely search intention.

Ranking Likely Search Intentions. In order to rank the inferred likely search
intentions, we define their ranking scores as follows.

Definition 7. (Ranking Score) Given a query K = {w1, · · · , wn} (n ≥ 2)
and a search intention I inferred by PCS, the ranking score of I is defined as
a vector (r1, · · · , rn−1), where ri ≥ ri+1 (1 ≤ i < n − 1), and ri is a largest
proximity score between two keywords or between a keyword and a group that
are grouped together in PCS (calculated by formulae (5) to (7)), or the largest
proximity score between two neighboring groups (calculated by Formula (8)).
Given two ranking scores A and B, A = (a1, · · · , an−1) is smaller than B =
(b1, · · · , bn) iff the first ai which is different from bi is smaller than bi.

Example 1. Suppose the keywords in the query {w1 w2 w3 w4} are grouped as
{(w1, w2), (w3, w4)} and the inferred search intention is I = (wt1, wt2, wt3, wt4).
The ranking score of I is a sequence of proximity scores HP(w1, w2), HP(w3, w4)
and P(wt2, wt3), which will be sorted in descending order. The ranking score
(2.5, 2, 1.2) is larger than (2.5, 1.8, 1).

Note that we use (r1, · · · , rn−1) rather than
∑

i ri as the ranking score. The
reason for this will become clear if one considers the data tree in Fig. 1 and the
query {issue 16 database}. The correct search intention (1, 3, 5) (where 1,3, 5
refer to the word types in Table 3.1) will be ranked higher than the intention
(2,4, 5) using our ranking scheme. However, if we use

∑
i ri as the ranking score,

then the intention (1, 3, 5) will be ranked lower than (2,4,5).

3 Note that there may exist duplicates in the inferred likely search intentions.
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Algorithm 1. PCS (K,WT)
Input: Query K = {w1, · · · , wn}, the corresponding word type sets {WT1, · · · ,WTn}
Output: a search intention: list l = (l1, . . . , ln) and it ranking vector r

1: let l = (null, . . . , null); r = ∅
2: while ExistUngroupedKeyword() do
3: let j = 1; k = 1 + w1; largestScore = 0
4: while k ≤ n do
5: if not(wj .num > 1 ∧ wk.num > 1) then
6: (scorej,k, wtj , wtk) = computeHPscore(wj, wk)
7: if scorej,k > largestScore then
8: let largestScore = scorej,k; s = j; t = k

9: let j = k; k = j + wj .num

10: group(ws, wt)
11: add largestScore to r
12: let ls = wts if ws.num = 1; let lt = wtt if wt.num = 1

13: add to r the HP scores between neighboring groups, then sort r

Algorithms. We implemented PCS in Algorithm 1. Before explaining this algo-
rithm, we first present some notation and functions used in the algorithm.

Notation.For each keywordwi, we use an attributewi.num to record the number
of keywords in the group thatwi sits. Ifwi is not groupedwith others,wi.num = 1.
The function group(wj, wk) puts wj and wk into the same group if they are not
grouped yet, or puts one into the same group as the other (if only one of them is
grouped), and while doing this it also sets wi.num to wj .num+wk.num for every
keyword wi in the group. The function computeHPscore(wj, wk) returns a score,
which is the HP value calculated using formula 5 if neither wj nor wk is grouped
with others, or calculated using formula 7 if only one of wj , wk is grouped with
others. The corresponding word types of wj , wk that achieve the HP value are also
returned as wtj and wtk respectively. The function ExistUngroupedKeyword()
returns true iff there is a keyword inK that has not been grouped with others (A
linear scan of each keyword in K, checking whether wi.num = 1, will do).

Now we explain Algorithm 1. Line 1 initializes l and r. If there exists a keyword
which is not grouped with others, lines 3 to 9 will compute the HP value between
two keywords or between a keyword and a group, and find a pair of keywords
(or a keyword and a group), represented by ws and wt, that achieves the largest
HP value. Line 10 groups the pair together. The largest HP value is then added
to r (line 11), and if ws is not grouped before , we set its word type to wts, the
word type in WTs that achieves the above largest HP value (line 12). The same is
done for wt. Finally, line 13 computes the HP values between neighboring groups
and add them to the ranking score r, and then sorts r.

Example 2. Suppose the user submits the query {volume 11 article Karen} over
the real SigmodRecord data set obtained from [1]. In the first run of lines 3 to
12, HP(volume, 11), HP(11, article) and HP(article,Karen) are computed, and
because HP(volume, 11) is greater than HP(11, article) and HP(article,Karen),
we group volume and 11 together. Since HP(volume, 11) is achieved by the word
types SimmodRecord.issue.volume (for volume) and SimmodRecord.issue.volume
(for 11), these word types are chosen as the word types of volume and 11
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(line 12), and HP(volume, 11) is added into r. Since there are still keywords
that are not grouped, lines 2 to 12 will execute again. This time, we compute
HP((volume, 11), article) and HP(article,Karen), and since HP(article,Karen)
is larger and it is achieved by the word types SigmodRecord.issue.articles.article
and SigmodRecord.issue.articles.article.authors.author. Thus we group article
and Karen together and set their word types to the aforementioned word types.
We add HP(article,Karen) to r. Now every keyword is in a group (and thus
has a word type chosen), the outer loop (lines 2 to 12) stops. Finally we add
P (SimmodRecord.issue.volume, SigmodRecord.issue.articles.article) into r
and then sort r.

Time complexity. Given a keyword query K = {w1, · · · , wn}, the worst case
time complexity of Algorithm 1 is O(n2|WT1||WT2|), where WT1 and WT2 are
the sets of word types of the two keywords which have the most word types.
The detailed analysis of time complexity is as follows: Computing the HP score
between keywords wi and wi+1 needs O(|WTi||WTi+1|). Computing the HP score
between a keyword wi and a group g needs O(|WTi||g|) (note that |g| < n). The
loop (lines 2 to 12) runs at most n times, and each time, the HP score will be
computed for at most n − 1 pairs of keywords (and/or groups). The function
existUngroupedKeyword() is also in O(n). Computing the HP values between
neighboring groups takes O(n), and sorting r takes O(n2). Thus the algorithm
takes O(n2|WT1||WT2|).
Algorithm for Inferring a Set of Likely Search Intentions. The algorithm
for inferring the set of likely search intentions is rather simple. It simply calls
PCS repeatedly, each time it chooses one keyword wi and uses one word type as
the word type set of wi. The detailed steps are omitted in order to save space.

5 Generating Results

In this section, we explain how to retrieve result subtrees for a set of likely search
intentions. Before defining result subtree, we need to define entity types of a node
type.

Definition 8. (Entity-type of a Node Type) If a node type T is the node
type of some entity node, its entity-type is itself; otherwise, its entity-type is its
ancestor node type T ′ such that (1) T ′ is the node type of some entity node, and
(2) T ′ is the longest among all ancestor node types of T satisfying condition (1).

Note that every node type in the data tree owns one and only one entity-type.
For example, in Fig. 1, the entity-type of node type initPage is the node type
article. Node type article’s entity-type is itself.

The result subtree is defined as follows.

Definition 9. (Result Subtree) Given a keyword query K = {w1, · · · , wn}
and a search intention {wt1, · · · , wtn}, a subtree of t is a result subtree iff: (1) its
root has the node type ENtLCA(wt1, · · · , wtn), (2) it contains all of the keywords in
K, and at least one of the occurrences of keyword wi has the word type wti.
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Algorithm 2. GenerateResults(L)
Input: A set of likely search intentions L
Output: result subtrees

1: for each l in L do
2: rt = GetNodeTypeofRoot(l) // rt: node type of the root
3: rl = RetrieveInvertedList(root)
4: for 1 ≤ i ≤ |l| do
5: ILi = RetrieveInvertedList(li )

6: while rl.isEnd() = false do
7: for 1 ≤ i ≤ |l| do
8: ILi.Moveto(rl.getCurrent())
9: if isAncestor(rl.getCurrent(), ILi.getCurrent()) == false then
10: break
11: if i > |l| then
12: resultList.insert(rl.getCurrent())

13: rl.movetoNext()

14: Build result subtrees rooted at the nodes in resultList and exclude irrelevant entities.
15: Return result subtrees to the user

The purpose of using ENtLCA instead of NtLCA in the definition above is to
make the returned result subtrees more informative and meaningful.

Excluding Irrelevant Entities. Sometimes, a retrieved result subtree may
contain lots of irrelevant information. Consider the query {issue 16 database}.
Suppose our approach is to return the result subtrees rooted at issue nodes.
However, if we return the whole subtrees rooted at issue nodes, a number of
articles that are not related to database are also returned to the user. Therefore,
we should exclude these irrelevant entities. In order to achieve this goal, we first
find the entity-type of each keyword’s word type, then we know the keywords
and their word types that an entity should contain. If an entity does not contain
the keywords with the inferred word types, it will be excluded. In the example
above, an article entity should contain the keyword “database” with the word
type No.5 in Table 1. The entities that do not satisfy this condition will be
excluded.

Algorithm. The algorithm for generating results is shown in Algorithm 2. We
refer the readers to the full version of the paper for a detailed explanation of the
algorithm.

6 Experiments

In this section, we present the experimental results on the effectiveness of our
approach against XReal [2], XBridge [3] and MaxMatch [5]. XReal and XBridge

are the most up-to-date xml keyword search system which utilize statistics of
data to infer the major search intention of a query. Comparisons of these systems
with XSeek can be found in [2] and [3].

6.1 Experimental Setup

We implemented XReal, XBridge and our system XInfer in C++. All the ex-
periments were performed on an Intel Pentium-M 1.7G laptop with 1G RAM.
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Note that XBridge only provides information on how to suggest the promising
result types, so we extend XBridge with the part of generating result subtrees.
Similar to XReal, the subtrees that are rooted at the nodes of the suggested re-
sult types and contain all of the keywords are considered as the result subtrees.
The executable file of MaxMatch was kindly provided by its authors. We used the
following three data sets that are obtained from [1] for evaluation:

DBLP: The structure of this data set is wide and shallow. It has many different
types of entities. Many words in this data set have multiple word types.
SigmodRecord: This data set has a little more complicated structure than
DBLP, but has less entity types. Fig. 1 provides a similar sample.
WSU: Similar to DBLP, the structure of this data set is also wide and shallow.
However, it has only one entity type and many words have only one word type.

The queries we use for evaluation are listed in Table 2. These queries were
chosen by three student users who were given the data sets.

Table 2. Queries

dataset ID Query

QD1 {Automated Software Engineering}
QD2 {Han data mining}
QD3 {WISE 2000}
QD4 {Jeffrey XML}

DBLP QD5 {author Jim Gray}
QD6 {Relational Database Theory}
QD7 {article spatial database}
QD8 {Wise database}
QD9 {Han VLDB 2000}
QD10 {twig pattern matching}
QS1 {Database Design}
QS2 {title XML}
QS3 {article Database}
QS4 {Karen Ward}

SigmodRecord QS5 {author Karen Ward}
QS6 {volume 11 database}
QS7 {issue 11 database}
QS8 {Anthony 11}
QS9 {Anthony issue 11}
QS10 {issue 21 article semantics author Jennifer}
QW1 {CAC 101}
QW2 {title ECON}
QW3 {instructor MCELDOWNEY}
QW4 {FINITE MATH}

WSU QW5 {prefix MATH}
QW6 {place TODD}
QW7 {COST ACCT enrolled}
QW8 {CELL BIOLOGY times}
QW9 {ECON days times place}
QW10 {prefix ACCTG instructor credit}

6.2 Effectiveness

We conducted a user survey on the search intentions of the queries in Table 2. 19
graduate students participated in the survey. We used the search intentions se-
lected by the majority of people to determine the relevant matches. We evaluate
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Fig. 2. Precision and recall

the effectiveness of XReal, XBridge, MaxMatch and XInfer based on precision,
recall and F-measure. Precision is the percentage of retrieved results that are
desired by users. Recall is the percentage of relevant results that can be retrieved.
F-measure is the weighted harmonic mean of precision and recall.

As shown in Fig. 2(a), XReal and XBridge have a very low precision on the
queries QD1, QD6 and QD8. This is mainly because XReal and XBridge infer
undesired Search-for Node Types (SNTs). For these queries, XReal and XBridge

infer the same SNTs, even though they use different strategies. Suppose the user
submits QD1 to retrieve the articles from the journal of Automated Software
Engineering. XReal and XBridge just return the inproceedings that are related
to the automated software engineering, but both MaxMatch and XInfer return
the articles from the journal of Automated Software Engineering besides the
inproceedings about automated software engineering. Suppose the user submits
the query QD8 to retrieve the publications written by Wise. XReal and XBridge
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Table 3. Comparison on F-Measure

F-Measure XReal XBridge MaxMatch XInfer

DBLP 0.69 0.69 0.79 0.90
SigmodRecord 0.51 0.65 0.48 0.88

WSU 0.96 0.96 0.91 0.96

return the inproceedings of WISE conference. MaxMatch and XInfer return the
inproceedings of WISE conference as well as Wise’s publications. Suppose the
user wants to search the book called Relational Database Theory and submits the
query QD6. XReal and XBridge does not return this book. MaxMatch and XInfer

return this book but have low precisions because they return much irrelevant
information at the same time (e.g., the inproceedings about relational database
theory, etc). On Query QD2-QD4, XReal and XBridge achieve a little higher
precisions than MaxMatch and XInfer because XReal and XBridge just infer
one search-for node type which reduces the irrelevant information in the results.
Actually this is not a serious problem for XInfer because XInfer rank the desired
search intention as the top-1 search intention, so it is very easy for the user to find
their desired results. Suppose the user wants to retrieve the publications written
by Jim Gray and submits query QD5. XReal, XBridge and XInfer return the
desired results, but MaxMatch just returns the author nodes, which means the
returned information is too limited. Therefore, MaxMatch has a very low precision
on this query. Fig. 2(b) presents the recalls of XReal, XBridge, MaxMatch and
XInfer on the query QD1-QD10. XReal and XBridge have very low recalls on
the query QD1, QD6 and QD8 because they do not return the relevant results as
we explained above. MaxMatch has a very low recall on the query QD5 because
it just returns the subtrees rooted at author nodes.

As shown in Fig. 2(c), XInfer achieves higher precision than XReal, XBridge
and MaxMatch for the SigmodRecord dataset. For the queries QS1 and QS4,
XReal shows low precision mainly because it infers issue as the search-for node
type for these two queries, which results in many irrelevant articles being re-
turned to the user. For example, according to the survey, the user intends to
retrieve articles about database design with the query QS1. However, lots of
articles that are not related to database design are also returned to the user
in XReal. XBridge and XInfer returns the articles about database design for
QS1 and the articles written by Karen Ward for QS4, which are desired by the
user. XInfer, XReal and MaxMatch achieve good precisions on the queries QS2
and QS3. MaxMatch gets very low precision on the queries QS4 and QS5. Most
participants think the user wants the articles written by Karen Ward with the
queries QS4 or QS5, but MaxMatch only returns author nodes, which do not
provide much information desired by the user. In order to retrieve the articles
about database from the issues of volume 11, the user submits the query QS6 or
QS7. XReal and XBridge return lots of irrelevant articles (including the articles
that are not about database, the database articles whose initPage is 11, etc) to
the user. XInfer infers five search intentions on QS6 and one search intention
on QS7. Compared with QS6, QS7 adds a new keyword “issue” which is used to
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specify the meaning of “11”. XInfer notices this difference, and correctly infers
the user’s search intention. For the recall, as shown in Fig. 2(d), all of these
three approaches present good recalls.

For data set WSU, Fig. 2(e) shows that all of these approaches generally
achieve good precision. This is mainly because WSU has a simple and shallow
structure compared with the data set SigmodRecord. For the query QW9, they
present a relatively low precision. The user intends to retrieve the days, times
and place of the courses whose titles contain “ECON”, but the systems return
the courses whose prefix contain “ECON” as well and give them the highest
ranks because most words “ECON” appear in the prefix nodes. MaxMatch has
a low precision on query QW2 because it also returns the courses whose prefix
contain “ECON” even though the user adds a describing word “title”. As shown
in Fig. 2(f), all of the four approaches present good recalls.

We calculated the average F-measure of the queries over each data set and
they are listed in Table 3. It can be seen that XInfer achieves higher F-measure
than XReal, XBridge and MaxMatch over all three datasets.

Other Metrics. More experimental results are provided in the full version
of this paper. These include the categorized efficiency, scalability of efficiency,
index structures and index size, the number of returned likely search intentions,
ranking effectiveness, and the effect of individual factors (distance, statistics) on
the search quality.

7 Conclusion

In this paper, we presented a method to improve the effectiveness of xml keyword
search by exploiting the relationship between different keywords in a query. We
proposed the Pair-wise Comparison Strategy to infer and rank a set of likely
search intentions. We developed an xml keyword search system called XInfer

which realizes the techniques we propose. The better search quality of XInfer
was verified by our experiments.
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