
Dynamics of Neuronal Models

in Online Neuroevolution of Robotic Controllers

Fernando Silva1,3, Lúıs Correia3, and Anders Lyhne Christensen1,2

1 Instituto de Telecomunicações, Lisboa, Portugal
2 Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

3 LabMAg, Faculdade de Ciências, Universidade de Lisboa, Portugal
{fsilva,luis.correia}@di.fc.ul.pt, anders.christensen@iscte.pt

Abstract. In this paper, we investigate the dynamics of different neu-
ronal models on online neuroevolution of robotic controllers in multirobot
systems. We compare the performance and robustness of neural network-
based controllers using summing neurons, multiplicative neurons, and a
combination of the two. We perform a series of simulation-based experi-
ments in which a group of e-puck-like robots must perform an integrated
navigation and obstacle avoidance task in environments of different com-
plexity.We show that: (i) multiplicative controllers and hybrid controllers
maintain stable performance levels across tasks of different complexity,
(ii) summing controllers evolve diverse behaviours that vary qualitatively
during task execution, and (iii) multiplicative controllers lead to less di-
verse andmore static behaviours that are maintained despite environmen-
tal changes. Complementary, hybrid controllers exhibit both behavioural
characteristics, and display superior generalisation capabilities in simple
and complex tasks.

Keywords: Evolutionary robotics, artificial neural network, evolution-
ary algorithm, online neuroevolution.

1 Introduction

Evolutionary computation has been widely studied in the field of robotics as a
means to automate the design of robotic systems [1]. In evolutionary robotics
(ER), robot controllers are typically based on artificial neural networks (ANNs)
due to their capacity to tolerate noise in sensors. The parameters of the ANN,
such as the connection weights, and occasionally the topology, are optimised by
an evolutionary algorithm (EA), a process termed neuroevolution [2].

Online neuroevolution of controllers is a process of continuous adaptation
that potentially gives robots the capacity to respond to changes or unforeseen
circumstances by modifying their behaviour. An EA is executed on the robots
themselves while they perform their task. The main components of the EA (eval-
uation, selection, and reproduction) are carried out autonomously by the robots
without any external supervision. This way, robots may be capable of long-term
self-adaptation in a completely autonomous manner.

L. Correia, L.P. Reis, and J. Cascalho (Eds.): EPIA 2013, LNAI 8154, pp. 90–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Dynamics of Neuronal Models in Online Neuroevolution 91

In a contribution by Watson et al. [3], the use of multirobot systems in online
neuroevolution was motivated by the speed-up of evolution due to the inherent
parallelism in groups of robots that evolve together in the task environment.
Over the last decade, different approaches to online neuroevolution in multi-
robot systems have been proposed [4]. Notwithstanding, properties at the level
of individual neurons have largely been left unstudied. Online neuroevolution
studies have been almost exclusively based on ANNs composed of a variation of
the neuronal model introduced in the 1940s by McCulloch and Pitts [5], that is,
summing neurons. With advances in biology, multiplicative-like operations have
been found in neurons as a means to process non-linear interactions between
sensory inputs [6,7]. In machine learning, multiplicative neurons have shown to
increase the computational power and storage capacities of ANNs [8,9].

In this paper, we investigate the dynamics and potential benefits of multiplica-
tive neurons and of summing neurons, separately and combined, in online neu-
roevolution in multirobot systems. We conduct a simulated experiment in which
a group of robots modelled after the e-puck [10] must perform an integrated
navigation and obstacle avoidance task in environments of distinct complexity.
The task implies an integrated set of actions, and consequently a trade-off be-
tween avoiding obstacles, maintaining speed, and forward movement. The three
types of controllers are compared with respect to the speed of convergence, task
performance, generalisation capabilities, complexity of solutions, and diversity
of behaviours evolved. The main conclusion is that the combination of summing
neurons and multiplicative neurons leads to superior generalisation capabilities,
and allows robots to exhibit different behaviours that vary qualitatively or that
remain static, depending on task complexity.

2 Background and Related Work

In this section, we describe the neuronal models considered, and we introduce
odNEAT, the online neuroevolution algorithm used in this study. We exclusively
consider discrete-time ANNs with summing or multiplicative neuronal models.
Models that have more complex or explicit time-dependent dynamics, such as
spiking neurons [11], are left for posterior investigation.

2.1 Neuronal Models

In discrete-time ANNs, the classic summing unit is the most commonly used
neuronal model. The summing unit model performs the computation as follows:

ai = f
(N∑

j=1

wji · xj + w0

)
. (1)

where ai is the activation level of a given neuron i, and f is the activation
function applied on the weighted sum of inputs from incoming neurons xj , plus
the bias value w0. The activation function f can take the form of, for instance, a

92 F. Silva, L. Correia, and A.L. Christensen

threshold function or a sigmoid function. However, relying exclusively on sums
of weighted inputs potentially limits performance and learning capabilities when
complex or non-linear interactions are considered [6,9], as in the case of robotics.

In machine learning, multiplicative neuronal models were introduced more
than 20 years ago. Examples include the pi-sigma and the sigma-pi units [9],
and the more general product unit neuronal model [8], which we use in this
study. In the product unit model, the activation of a neuron i is computed as
follows:

ai = f
(N∏

j=1

x
wji

j

)
. (2)

with notations similar to Eq. 1. The number of exponents j gives the order of the
neuron, thus denoting the ANN as a higher-order neural network. The exponents
are real values, in which negative exponents enable division operations.

The potential benefits of the product unit model have been widely discussed
in the literature. Using gradient descent methods, Durbin and Rumelhart [8]
concluded that product units have superior information and learning capabilities
compared to summing units. Complementary, Schmitt [9] analysed the gains
in information processing and learning capabilities of product unit neurons in
terms of solution complexity and computational power. Despite the positive
results, only recently the potential benefits of product units were investigated
in an evolutionary robotics context. Cazenille et al. [7] performed the offline
evolution of ANN controllers for the coupled inverted pendulums problem, a
benchmark in modular robotics. The authors investigated the interplay between
microscopic properties such as the neuronal model, and macroscopic properties
such as modularity and repeating motifs in ANNs. Surprisingly, their results
suggested that product units may be counter-productive when used alone. If
ANNs display regularities such as modularity, then product units may lead to
better fitness scores, while requiring fewer evaluations for evolving a solution.

2.2 odNEAT: An Online Neuroevolution Algorithm

odNEAT [4] is a decentralised online neuroevolution algorithm for multirobot
systems. odNEAT optimises both the parameters and the topology of the ANN
controllers. The algorithm starts with networks with no hidden neurons, and with
each input neuron connected to every output neuron. Topologies are gradually
complexified by adding new neurons and new connections through mutation,
thus allowing odNEAT to find an appropriate degree of complexity for the task.

odNEAT implements the online evolutionary process according to a physi-
cally distributed island model. Each robot optimises an internal population of
genomes through intra-island variation, and genetic information between two
or more robots is exchanged through inter-island migration. In this way, each
robot is potentially self-sufficient and the evolutionary process capitalises on the
exchange of genetic information between multiple robots for faster adaptation.

Dynamics of Neuronal Models in Online Neuroevolution 93

During task execution, each robot is controlled by an ANN that represents
a candidate solution to a given task. Agents maintain a virtual energy level re-
flecting their individual performance. The fitness value is defined as the average
of the energy level, sampled at regular time intervals. When the virtual energy
level of a robot reaches zero, the current controller is considered unfit for the
task. A new controller is then created by selecting two parents from the reposi-
tory, each one via a tournament selection of size 2. Offspring is created through
crossover of the parents’ genomes and mutation of the new genome. Mutation
is both structural and parametric, as it adds new neurons and new connections,
and optimises parameters such as connection weights and neuron bias values.

Note that odNEAT is used in this study as a representative efficient online
neuroevolution algorithm that optimises ANN weights and topologies [4]. As all
experiments are based on odNEAT, the main distinctions among them will be
the use of summing neurons, multiplicative neurons, or a combination of the
two, rather than the online neuroevolution algorithm or its particular details.

3 Methods

In this section, we define our experimental methodology, including the robot
model, the two variants of the navigation and obstacle avoidance task, the ex-
perimental parameters, and how we characterise the behaviours evolved.

3.1 Robot Model and Behavioural Control

To conduct our simulated experiments, we use JBotEvolver1, an open-source,
multirobot simulation platform, and neuroevolution framework. The simulator
implements 2D differential drive kinematics. In our experimental setup, the sim-
ulated robots are modelled after the e-puck [10], a small (75 mm in diameter)
differential drive robot capable of moving at a maximum speed of 13 cm/s. Each
robot is equipped with eight infrared sensors, for obstacle detection, and com-
munication of, for instance, genomes at a range of up to 25 cm between sender
and receiver. Each infrared sensor and each actuator are subject to noise, which
is simulated by adding a random Gaussian component within ±5% of the sensor
saturation value or actuation value. Each robot also has an internal sensor that
allows it to perceive its current virtual energy level.

Each robot is controlled by an ANN synthesised by odNEAT. The ANN’s
connection weights ∈ [-10,10]. The input layer consists of 17 neurons: (i) eight
for robot detection, (ii) eight for wall detection, and (iii) one neuron for the
virtual energy level sensor. The output layer contains two neurons, one for each
wheel.

3.2 Integrated Navigation and Obstacle Avoidance

Navigation and obstacle avoidance is a classic task in evolutionary robotics, and
an essential feature for autonomous robots operating in real-world environments.

1 https://code.google.com/p/jbotevolver/

https://code.google.com/p/jbotevolver/

94 F. Silva, L. Correia, and A.L. Christensen

Robots have to simultaneouslymove as straight as possible,maximise wheel speed,
and avoid obstacles. The task implies an integrated set of actions, and consequently
a trade-off between avoiding obstacles in sensor range and maintaining speed and
forward movement. Navigation and obstacle avoidance is typically conducted in
single robot experiments. In multirobot experiments, each robot poses as an ad-
ditional, moving obstacle for the remaining group.

In our experiments, a group of five robots operates in a square arena sur-
rounded by walls. The size of the arena was chosen to be 3 x 3 meters. Initially,
robots are placed in random positions. During simulation, the virtual energy
level E is updated every 100 ms according to the following equation:

ΔE

Δt
= fnorm(V · (1−

√
Δv) · (1− dr) · (1− dw)) . (3)

where V is the sum of rotation speeds of the two wheels, with 0 ≤ V ≤ 1.
Δv ∈ [0, 1] is the normalised algebraic difference between the signed speed values
of the wheels (positive in one direction, negative in the other). dr and dw are
the highest activation values of the infrared sensors for robot detection and for
wall detection, respectively. dr and dw are normalised to a value between 0 (no
robot/wall in sight) and 1 (collision with a robot or wall). fnorm maps from the
domain [0, 1] into [−1, 1].

Experimental Setup. We conducted experiments in two different environ-
ments to assess performance. The first environment is a plain arena, in which
the only obstacles are the robots and the walls that confine the arena. The sec-
ond environment is an arena with five additional obstacles with dimensions of
0.5 x 0.5 meters. The additional obstacles are of the same material as the walls,
and intuitively increase the difficulty of the task by reducing the area for navi-
gation. In each evolutionary run conducted in the second environment, obstacles
are placed at random locations. The environments are illustrated in Fig. 1.

We performed three sets of evolutionary experiments in each environment,
characterised by different neuronal models. In one set of experiments, neurons

(a) Plain environment (b) Complex environ-
ment — example 1

(c) Complex environ-
ment — example 2

Fig. 1. The two types of environments used to evolve controllers. Each of the arenas
measures 3 x 3 meters. The dark areas denote physical obstacles, while the white areas
denote the arena surface on which robots can navigate.

Dynamics of Neuronal Models in Online Neuroevolution 95

added through structural mutation are multiplicative product units. In the sec-
ond set of experiments, neurons introduced are summing units. In the third set
of experiments, each new neuron has an equal probability of 0.5, sampled from a
uniform distribution, of being either a multiplicative or summing neuron. Mul-
tiplicative product units may therefore be combined with summing units, and
introduce the ability for computing weighted sums of products, and vice-versa.

For each experimental configuration, we performed 30 independent evolution-
ary runs. Each run lasts for 100 hours of simulated time. The virtual energy level
of robots is limited to the range [0,100] energy units.When the energy level reaches
zero, a new controller is generated and assigned the default energy value of 50 units.
Other parameters are the same as in [4].

3.3 Characterisation of Behavioural Diversity

Ultimately, online neuroevolution of controllers synthesises the behavioural con-
trol of robots. To characterise and compare behaviours evolved, we use a generic
Hamming distance-based behavioural metric based on the mapping between sen-
sors and actuators. This measure has shown to be, at least, as efficient as domain-
dependent behavioural metrics [12]. The behaviour metric is based on the set of
sensor readings and actuation values ϑ normalised into [0,1], as follows:

ϑ =
[
{s(t), a(t)}, t ∈ [0, T]

]
. (4)

where s(t) and a(t) are the sensor readings and actuation values at time t,
respectively, and T is the number of observations. The binary version ϑbin of ϑ
is computed as follows:

ϑbin =
[
ϑbin(t), t ∈ [0, T]

]
=

[
{sbin(t), abin(t)}, t ∈ [0, T]

]
. (5)

where each sbin,i(t) ∈ sbin(t) is defined as 1 if si(t) > 0.5 and 0 otherwise,
and each abin,i(t) ∈ abin(t) is defined as 1 if ai(t) > 0.5 and 0 otherwise. The
Hamming distance between two behaviours is then computed as follows:

σ(ϑ1, ϑ2) =

T∑
t=0

h(ϑ1,bin(t), ϑ2,bin(t)) . (6)

h(ϑ1, ϑ2) =

len(ϑ1)∑
i=1

1− δ(ϑ1[i], ϑ2[i]) . (7)

where len(ϑ1) = len(ϑ2) denotes the length of the binary sequences ϑ1 and ϑ2,
and δ(i, j) is the Kronecker delta defined as δ(i, j) = 1 if i = j, and 0 otherwise.
We further extend the generic Hamming distance between sensor readings and
actuation values to capture the intra-behaviour distance as follows:

σ(ϑbin) =

T∑
t=1

h(ϑbin(t− 1), ϑbin(t)) . (8)

96 F. Silva, L. Correia, and A.L. Christensen

σ(ϑbin) captures the differences between consecutive observations of the relation
between sensor readings and actuation values, thereby approximating to what
extent the behaviour of a robot varies during task execution.

4 Experimental Results

In this section, we present and discuss the experimental results. We use the
Mann-Whitney test to compute statistical significance of differences between
sets of results because it is a non-parametric test, and therefore no strong as-
sumptions need to be made about the underlying distributions. Success rates
are compared using Fisher’s exact test, a non-parametric test suitable for this
purpose [13]. Statistical dependence between two variables is computed using
the non-parametric Spearman’s rank correlation coefficient.

4.1 Comparison of Performance

We start by comparing the performance of the three controller models. We focus
on three aspects: (i) the number of evaluations, i.e., the number of controllers
tested by each robot before a solution to the task is found, (ii) the complexity
of solutions evolved, and (iii) their generalisation capabilities.

The number of evaluations for the three types of controllers is listed in
Table 1. In the plain environment, neuroevolution of hybrid controllers required
fewer evaluations to synthesise solutions for the task. Differences between hybrid
controllers and multiplicative controllers are statistically significant (ρ < 0.001,
Mann-Whitney). Differences between other types of controllers are not signifi-
cant. In the complex environment, solutions are synthesised faster when summing
controllers are evolved. Multiplicative controllers, once again, require more eval-
uations to evolve solutions. Differences are significant with respect to summing
controllers (ρ < 0.001, Mann-Whitney), and to hybrid controllers (ρ < 0.01).
Differences between summing controllers and hybrid controllers are not signifi-
cant, although summing controllers converged to a solution in fewer evaluations
on average. Interestingly, both hybrid controllers and multiplicative controllers
are affected by the increase in task complexity. Summing controllers, on the
other hand, require an approximate number of evaluations in the two tasks.

Table 1. Comparison of the number of evaluations between the three types of con-
trollers considered in the two tasks (average ± std. dev.)

Controller Plain environment Complex environment

Summing 23.63 ± 19.16 22.61 ± 18.68
Multiplicative 26.08 ± 21.10 32.02 ± 24.93
Hybrid 21.54 ± 20.53 27.81 ± 29.16

Dynamics of Neuronal Models in Online Neuroevolution 97

By analysing the complexity of solutions evolved2, we observed simple neu-
ral topologies for solving each task, as listed in Table 2. Overall, multiplicative
controllers present the least complex topologies, in equality with summing con-
trollers in the complex environment. Despite solving the tasks with less struc-
ture, the number of evaluations to synthesise suitable multiplicative neurons
is higher, as discussed previously and shown in Table 1. This is due to multi-
plicative neurons requiring a finer-grain adjustment of parameters. Compared to
summing neurons, multiplicative controllers required more adjustments of con-
nection weights through mutation and, therefore, a higher number of evaluations.

Complementary, hybrid controllers present the most complex topologies. The
crossover operator manipulates topological structure involving different neural
dynamics, i.e., summing and multiplicative neurons. We analysed the effects of
evolutionary operators and found a more accentuated decrease in fitness scores
when hybrid controllers are recombined. This effect is progressively eliminated
as new neurons and new connections are added to the network. Nonetheless,
despite differences in terms of neural complexity and number of evaluations,
each experimental configuration lead to the evolution of high-scoring controllers.
The average fitness score of solutions varies from 91.31 to 94.59 in the plain
environment, and from 91.24 to 95.49 in the complex environment. Differences
in fitness scores are not statistically significant across all comparisons.

Table 2. Neural complexity of solutions evolved. Neurons and connections added
through evolution (average ± std. dev.).

Plain environment Complex environment

Controller Neurons Connections Neurons Connections

Summing 3.14 ± 0.35 6.59 ± 0.90 1.17 ± 0.41 2.57 ± 1.03
Multiplicative 2.16 ± 0.40 4.62 ± 0.94 1.21 ± 0.42 2.84 ± 1.09
Hybrid 3.16 ± 0.39 6.56 ± 1.13 3.11 ± 0.32 6.47 ± 0.79

Testing for Generalisation. To analyse the generalisation capabilities of the
different types of controllers, we conducted a series of generalisation tests. For
each evolutionary run conducted previously, we restarted the task 100 times us-
ing the controllers evolved and not allowing further evolution. Each task restart
is a generalisation test serving to assess if robots can continuously operate after
redeployment, and for evaluating the ability to operate in conditions not expe-
rienced during the evolution phase. A group of robots passes a generalisation
test if it continues to solve the task, i.e., if the virtual energy level of none of
the robots reaches zero. Each generalisation test has the same duration as the
evolutionary phase, 100 hours of simulated time. In the complex environment,
the five obstacles are placed in random locations in each test.

2 The complete set of networks evolved is available at http://dx.doi.org/10.6084/
m9.figshare.705842

http://dx.doi.org/10.6084/m9.figshare.705842
http://dx.doi.org/10.6084/m9.figshare.705842

98 F. Silva, L. Correia, and A.L. Christensen

Table 3. Generalisation performance of each controller model. The table lists the
average generalisation capabilities of each group of five robots, and the total of gener-
alisation tests solved successfully.

Plain environment Complex environment

Controller Generalisation (%) Succ. tests Generalisation (%) Succ. tests

Summing 73.40 ± 23.33 2202/3000 45.30 ± 30.36 1359/3000
Multiplicative 85.87 ± 13.07 2576/3000 57.03 ± 26.09 1711/3000
Hybrid 84.10 ± 24.24 2523/3000 80.60 ± 14.77 2418/3000

In Table 3, we show the generalisation performance of each controller model.
In the plain environment, multiplicative controllers outperform summing con-
trollers by 12% as they solve 374 tests more. Differences in successful and un-
successful generalisation tests are statistically significant (ρ < 1 · 10−4, Fisher’s
exact test). The hybrid controllers display high generalisation performance, sim-
ilar to multiplicative controllers. Differences between these two controllers are
not statistically significant. In the complex task, multiplicative controllers also
outperform summing controllers by approximately 12% due to solving 352 tests
more (ρ < 1 · 10−4, Fisher’s exact test). More importantly, hybrid controllers
significantly outperform both summing controllers and multiplicative controllers
(ρ < 1·10−4, Fisher’s exact test), and maintain approximate generalisation levels
across the two tasks. In this way, the higher number of evaluations to synthesise
hybrid controllers for complex tasks is compensated for by the increase in gen-
eralisation performance caused by the interplay between summing neurons and
multiplicative neurons in the same neural architecture.

The generalisation performance of hybrid controllers is a factor particularly
important in the case of online evolution. Results obtained indicate that hybrid
controllers can adapt more efficiently than multiplicative and summing con-
trollers alone to contexts not explicitly encountered during evolution, thus avoid-
ing the continuation of the evolutionary process. In this way, hybrid controllers
revealed to be advantageous as they are high-scoring controllers with superior
generalisation capabilities that require a competitive number of evaluations.

4.2 Analysis of Genotypic and Behavioural Search Space

To unveil the neuroevolution dynamics of summing neurons and of multiplica-
tive neurons, we compared how the evolutionary search proceeds through the
high-dimensional genotypic search space. To visualise the intermediate geno-
types produced when using the two neuronal models, and how they traverse
the search space with respect to each other, we use Sammon’s nonlinear map-
ping [14]. Sammon’s mapping performs a point mapping of high-dimensional
data to two-dimensional spaces, such that the structure of the data is approx-
imately preserved. The distance in the high-dimensional space δij between two

Dynamics of Neuronal Models in Online Neuroevolution 99

-6 -4 -2 0 2 4 6

-6
-4

-2
0

2
4

6 SN
MN

(a) Plain environment

-6 -4 -2 0 2 4 6

-6
-4

-2
0

2
4

6 SN
MN

(b) Complex environment

Fig. 2. Combined Sammon’s mapping of intermediate genotypes. Genotypes represent-
ing networks using summing neurons are marked in black, and genotypes representing
networks with multiplicative neurons are marked in gray.

genotypes i and j is based on genomic distance as used in odNEAT. The distance
between two points in the two-dimensional space is their Euclidean distance.

In Fig 2, we show the Sammon’s mapping for the plain environment and
for the complex environment. In order to obtain a clearer visualisation, and a
consistent and representative selection of genotypes, we map the 50 most geneti-
cally different genotypes, which in turn represent the 50 most diverse topologies
with respect to each experimental configuration. Generally speaking, there is a
balanced exploration of the search space, as different controller models discover
similar regions of the genotypic search space. Genotypes representing hybrid
controllers also explore similar regions of the search space (data not shown).
The progress throughout the evolutionary process is therefore similar in the
three controller models, indicating that the fitness landscape is not significantly
altered by the use of different neuronal models. In this way, the dynamics of
neuronal models may lead to the evolution of different behaviours, which in turn
would account for differences in performance. To verify this hypothesis, we anal-
ysed the behaviour space explored by solutions evolved. We used the two generic
Hamming distance-based behaviour metrics described in Sect. 3.3. For each so-
lution, we analysed the behaviour during 10,000 seconds of simulated time with
a sampling rate of 10 seconds, resulting in a behaviour vector of length 1000.

In Fig. 3, we show the distribution of inter-behaviour distances and the dis-
tribution of intra-behaviour distances. In all experimental configurations, there
is a very strong monotonic correlation between the novelty of the behaviour
in terms of average inter-behaviour distance and the degree of intra-behaviour
variance (ρ > 0.98, Spearman’s correlation). The more different the behaviour
is compared to remaining behaviours, the more it varies during task execution.
Complementary, more common behaviours present a lower intra-behaviour vari-
ance during task execution. Despite behavioural differences, there is no clear
correlation between the inter- and intra-behaviour distances and fitness scores
(-0.09 < ρ < 0.34), as both types of behaviours lead to high performance.

100 F. Silva, L. Correia, and A.L. Christensen

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Sum Mult Hyb Sum Mult Hyb

I
n
t
e
r
-
b
e
h
a
v
i
o
u
r

d
i
s
t
a
n
c
e
s

Plain environment Complex environment

(a) Inter-behaviour distances

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Sum Mult Hyb Sum Mult Hyb

I
n
t
r
a
-
b
e
h
a
v
i
o
u
r

d
i
s
t
a
n
c
e
s

Plain environment Complex environment

(b) Intra-behaviour distances

Fig. 3. Distribution of: (a) inter-behaviour distances between behaviours evolved for
each task, by each type of controllers, and (b) intra-behaviour distances

Compared to multiplicative controllers, robots using summing controllers syn-
thesise more diverse behaviours in the two environments (ρ < 0.001, Mann-
Whitney) with higher intra-behaviour variance. Multiplicative controllers lead
to less diverse behaviours with lower intra-behaviour variance, which maintain
the same qualitative behaviour despite environmental changes. Summing con-
trollers, on the other hand, adopt qualitatively different behaviours, especially
in more complex tasks. Hybrid controllers appear to exhibit both behavioural
characteristics. In the plain environment, robots evolved a greater diversity of
robust behaviours with the higher intra-behaviour variance. With the increase
of task complexity, robots exhibit intermediate behaviours in terms of inter-
and intra-behaviour distances. In other words, hybrid controllers appear to cap-
italise on the tendency exhibited by multiplicative controllers to maintain the
same qualitative behaviour, and on the ability of summing controllers to modify
the behaviour of robots during task execution.

5 Conclusions and Future Work

In this paper, we investigated the effects of multiplicative neurons in online neu-
roevolution of robotic controllers. We compared the dynamics of multiplicative
neurons, separately and when combined with summing neurons, in terms of speed
of convergence, complexity of solutions evolved, task performance, generalisation
capabilities, and diversity of behaviours evolved.

We showed that solutions are synthesised faster when summing neurons are
used alone. We also showed that neural controllers using a combination of sum-
ming neurons and multiplications provide competitive results in terms of speed
of convergence. In complex environments, the hybrid controllers rely on larger
topologies, with one or two hidden neurons more. Nonetheless, these controllers
exhibit significantly superior generalisation capabilities, and appear to balance
between maintaining the same behaviour and modifying the behaviour depend-
ing on task requirements and complexity. An analysis of neural activation

Dynamics of Neuronal Models in Online Neuroevolution 101

and structural patterns could potentially unveil differences in neural dynamics
and the decision making mechanisms underlying the robot’s behaviour.

The immediate follow-up work includes the study of macroscopic properties
such as modularity, structural regularity and hierarchy, and investigating if these
properties can facilitate online neuroevolution for real-world complex tasks.

Acknowledgments. This work was partly supported by the Fundação para
a Ciência e a Tecnologia (FCT) under the grants PEst-OE/EEI/LA0008/2013
and SFRH/BD/89573/2012.

References

1. Floreano, D., Keller, L.: Evolution of adaptive behaviour by means of Darwinian
selection. PLoS Biology 8(1), e1000292 (2010)

2. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learn-
ing. Evolutionary Intelligence 1(1), 47–62 (2008)

3. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: Distributing an evolution-
ary algorithm in a population of robots. Robotics and Autonomous Systems 39(1),
1–18 (2002)

4. Silva, F., Urbano, P., Oliveira, S., Christensen, A.L.: odNEAT: An algorithm for
distributed online, onboard evolution of robot behaviours. In: 13th International
Conference on Simulation & Synthesis of Living Systems, pp. 251–258. MIT Press,
Cambridge (2012)

5. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biology 5(4), 115–133 (1943)

6. Koch, C.: Biophysics of computation: information processing in single neurons.
Oxford Univ. Press, Oxford (2004)

7. Cazenille, L., Bredeche, N., Hamann, H., Stradner, J.: Impact of neuron models
and network structure on evolving modular robot neural network controllers. In:
14th Genetic and Evolutionary Computation Conference, pp. 89–96. ACM Press,
New York (2012)

8. Durbin, R., Rumelhart, D.E.: Product units: A computationally powerful and
biologically plausible extension to backpropagation networks. Neural Computa-
tion 1(1), 133–142 (1989)

9. Schmitt, M.: On the complexity of computing and learning with multiplicative
neural networks. Neural Computation 14(2), 241–301 (2002)

10. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magne-
nat, S., Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: 9th Conference on Autonomous Robot Systems and
Competitions, IPCB, Castelo Branco, Portugal, pp. 59–65 (2009)

11. Floreano, D., Schoeni, N., Caprari, G., Blynel, J.: Evolutionary bits ’n’ spikes. In:
8th International Conference on Simulation & Synthesis of Living Systems, pp.
335–344. MIT Press, Cambridge (2003)

12. Mouret, J., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics:
An empirical study. Evolutionary Computation 20(1), 91–133 (2012)

13. Fisher, R.: Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh
(1925)

14. Sammon Jr., J.: A nonlinear mapping for data structure analysis. IEEE Transac-
tions on Computers C-18(5), 401–409 (1969)

	Dynamics of Neuronal Modelsin Online Neuroevolution of Robotic Controllers
	1 Introduction
	2 Background and Related Work
	2.1 Neuronal Models
	2.2 odNEAT: An Online Neuroevolution Algorithm

	3 Methods
	3.1 Robot Model and Behavioural Control
	3.2 Integrated Navigation and Obstacle Avoidance
	3.3 Characterisation of Behavioural Diversity

	4 Experimental Results
	4.1 Comparison of Performance
	4.2 Analysis of Genotypic and Behavioural Search Space

	5 Conclusions and Future Work
	References

