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Abstract. The purpose of this study is to develop an innovative system for
Coumarin-derived drug dosing, suitable for elderly patients. Recent research
highlights that the pharmacological response of the patient is often affected by
many exogenous factors other than the dosage prescribed and these factors could
form a very complex relationship with the drug dosage. For this reason, new pow-
erful computational tools are needed for approaching this problem. The system
we propose is called Geometric Semantic Genetic Programming, and it is based
on the use of recently defined geometric semantic genetic operators. In this pa-
per, we present a new implementation of this Genetic Programming system, that
allow us to use it for real-life applications in an efficient way, something that was
impossible using the original definition. Experimental results show the suitability
of the proposed system for managing anticoagulation therapy. In particular, re-
sults obtained with Geometric Semantic Genetic Programming are significantly
better than the ones produced by standard Genetic Programming both on training
and on out-of-sample test data.

1 Introduction

In the last few years researchers have dedicated several efforts to the definition of Ge-
netic Programming (GP) [8] systems based on the semantics of the solutions, where by
semantics we generally intend the behavior of a program once it is executed on a set
of inputs, or more particularly the set of its output values on input training data [13].
In particular, very recently new genetic operators, called geometric semantic operators,
have been proposed by Moraglio et al. [15]. As Moraglio et al. demonstrate in [15],
these operators have the interesting property of inducing a unimodal fitness landscape
on any problem consisting in finding the match between a set of input data and a set
of known outputs (like for instance regression and classification), which facilitates GP
evolvability. In this paper the objective is to evaluate the regression performance of this
new GP system on a field of pharmacogenetics of oral anticoagulation therapy, compar-
ing the results with the ones obtained by standard GP. The indication for the use of oral
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anticoagulant in many patients is to reduce the embolic risk associated with diseases
such as atrial fibrillation, left ventricular dysfunction, deep vein thrombosis and me-
chanical aortic valve replacement and could be useful for patients who had undergone
orthopedic surgery. The trial-error basis of the methods currently in use to fine tune the
dosage for a given patient along with the responses’ variability due to genetic and be-
havioral factors can result in out of range periods and, therefore, in a non negligible risk
of thromboembolic and bleeding events. Therefore, the problem addressed is the predic-
tion of appropriate oral anticoagulant level of medical drugs. A difficulty with the use
of oral anticoagulants is that prescription needs to be individually determined for each
patient, usually by following a standard initial dosing protocol, measuring the coagula-
tion rate regularly (using the international normalized ratio, INR, which is a measure of
prothrombin time. A high INR value indicates overcoagulation) and then adjusting the
dose until the required rate of coagulation is obtained. Relevant help could come from
computer support. Mathematical models, able to predict the maintenance dose, were
already elaborated more than 20 years ago [16]. These models have widely been ap-
plied only recently [7]. The use of computer-based techniques has been shown to have
a favorable impact in this field [6] and computational techniques capable of producing
reliable predictive models are needed.

Geometric Semantic GP could definitely be a promising approach for this issue,
given its ability of inducing unimodal fitness landscapes on problems, independently of
how complex they are. Nevertheless, as stated by Moraglio et al. [15], these operators
have a serious limitation: by construction, they always produce offspring that are larger
than their parents (expressed as the total number of tree nodes) and, as demonstrated
in [15], this makes the size of the individuals in the population grow exponentially with
generations. Thus, after a few generations the population is composed by individuals
so big that the computational cost of evaluating their fitness is unmanageable. This
limitation makes these operators impossible to use in practice, in particular on complex
real-life applications.

The solution suggested in [15] to overcome this drawback is to integrate in the GP
algorithm a “simplification” phase, aimed at transforming each individual in the popu-
lation into an equivalent (i.e. with the same semantics) but possibly smaller one. Even
though this is an interesting and challenging study, depending on the language used to
code individuals simplification can be very difficult, and it is often a very time con-
suming task. For this reason, in this paper we propose a different strategy to solve the
problem: we develop a GP system incorporating a new implementation of geometric
semantic genetic operators that makes them usable in practice, and does so very effi-
ciently, without requiring any simplification of the individuals during the GP run.

The paper is organized as follows: Section 2 describes the geometric semantic oper-
ators introduced by Moraglio et al., while Section 3 presents our new implementation
that overcomes the current limitations of these operators, making them usable and ef-
ficient. Section 4 presents the medical problem addressed in this paper and highlights
its importance for clinicians. Section 5 presents the experimental settings and discusses
the obtained results. Finally, Section 6 concludes the paper and provides hints for future
research.
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2 Geometric Semantic Operators

While semantically aware methods [1,9,10] often produced superior performances with
respect to traditional methods, many of them are indirect: search operators act on the
syntax of the parents to produce offspring, which are successively accepted only if some
semantic criterion is satisfied. As reported in [15], this has at least two drawbacks: (i)
these implementations are very wasteful as heavily based on trial-and-error; (ii) they
do not provide insights on how syntactic and semantic searches relate to each other. To
overcome these drawbacks, new operators were introduced in [15] that directly search
the semantic space.

To explain the idea behind these operators, let us first give an example using Genetic
Algorithms (GAs). Let us consider a GA problem in which the target solution is known
and the fitness of each individual corresponds to its distance to the target (our reasoning
holds for any distance measure used). This problem is characterized by a very good
evolvability and it is in general easy to solve for GAs. In fact, for instance, if we use
point mutation, any possible individual different from the global optimum has at least
one neighbor (individual resulting from its mutation) that is closer than itself to the
target, and thus fitter. So, there are no local optima. In other words, the fitness landscape
is unimodal, which usually indicates a good evolvability. Similar considerations hold
for many types of crossover, including various kinds of geometric crossover as the ones
defined in [10].

Now, let us consider the typical GP problem of finding a function that maps sets of
input data into known target ones (regression and classification are particular cases).
The fitness of an individual for this problem is typically a distance between its calcu-
lated values and the target ones (error measure). Now, let us assume that we are able
to find a transformation on the syntax of the individuals, whose effect is just a random
perturbation of one of their calculated values. In other words, let us assume that we are
able to transform an individual G into an individual H whose output is like the out-
put of G, except for one value, that is randomly perturbed. Under this hypothesis, we
are able to map the considered GP problem into the GA problem discussed above, in
which point mutation is used. So, this transformation, if known, would induce a uni-
modal fitness landscape on every problem like the considered one (e.g. regressions and
classifications), making those problems easily evolvable by GP, at least on training data.
The same also holds for transformations on pairs of solutions that correspond to GAs
semantic crossovers.

This idea of looking for such operators is very ambitious and extremely challenging:
finding those operators would allow us to directly search the space of semantics, at the
same time working on unimodal fitness landscapes. Although not without limitations,
contribution [15] accomplishes this task, defining new operators that have exactly these
characteristics.

Here we report the definition of geometric semantic operators given in [15] for real
functions domains, since these are the operators we will use in the experimental phase.
For applications that consider other kinds of data, the reader is referred to [15].
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Definition 1. (Geometric Semantic Crossover). Given two parent functions T1, T2 :
R

n → R, the geometric semantic crossover returns the real function TXO = (T1 ·
TR) + ((1− TR) · T2), where TR is a random real function whose output values range
in the interval [0, 1].

The interested reader is referred to [15] for a formal proof of the fact that this operator
corresponds to a geometric crossover on the semantic space. Nevertheless, even without
formally proving it, we can have an intuition of it by considering that the (unique)
offspring generated by this crossover has a semantic vector that is a linear combination
of the semantics of the parents with random coefficients included in [0, 1] and whose
sum is equal to 1. To constrain TR in producing values in [0, 1] we use the sigmoid
function: TR = 1

1+e−Trand
where Trand is a random tree with no constraints on the

output values.

Definition 2. (Geometric Semantic Mutation). Given a parent function T : Rn → R,
the geometric semantic mutation with mutation step ms returns the real function TM =
T +ms · (TR1 − TR2), where TR1 and TR2 are random real functions.

Reference [15] formally proves that this operator corresponds to a box mutation on
the semantic space, and induces a unimodal fitness landscape. However, even though
without a formal proof, it is not difficult to have an intuition of it, considering that
each element of the semantic vector of the offspring is a “weak” perturbation of the
corresponding element in the parent’s semantics. We informally define this perturbation
as “weak” because it is given by a random expression centered in zero (the difference
between two random trees). Nevertheless, by changing parameter ms, we are able to
tune the “step” of the mutation, and thus the importance of this perturbation.

We also point out that at every step of one of these operators, offspring contain the
complete structure of the parents, plus one or more random trees as its subtrees and
some arithmetic operators: the size of each offspring is thus clearly much larger than
the one of their parents. The exponential growth of the individuals in the population
(demonstrated in [15]) makes these operators unusable in practice: after a few gen-
erations the population becomes unmanageable because the fitness evaluation process
becomes unbearably slow. The solution that is suggested in [15] consists in perform-
ing an automatic simplification step after every generation in which the programs are
replaced by (hopefully smaller) semantically equivalent ones. However, this additional
step adds to the computational cost of GP and is only a partial solution to the pro-
gressive program size growth. Last but not least, according to the particular language
used to code individuals and the used primitives, automatic simplification can be a very
hard task.

In the next section, we present a new implementation of these operators that over-
comes this limitation, making them efficient without performing any simplification step
and without imposing any particular representation for the individuals (for example the
traditional tree-based representation of GP individuals can be used, as well as a linear
representation, or any other one).

For simplicity, from now on, our implementation of GP using the geometric
semantic crossover and mutation presented in [15] will be indicated as GS-GP
(Geometric-Semantic GP).
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3 Implementation of Geometric Semantic GP

The implementation we propose can be described as follows. Note that, although we
describe the algorithm assuming the representation of the individuals is tree based, the
implementation fits any other type of representation.

In a first step, we create an initial population of (typically random) individuals, ex-
actly as in standard GP. We store these individuals in a table (that we call P from now
on) as shown in Figure 1(a), and we evaluate them. To store the evaluations we create
a table (that we call V from now on) containing, for each individual in P , the values
resulting from its evaluation on each fitness case (in other words, it contains the seman-
tics of that individual). Hence, with a population of n individuals and a training set of
k fitness cases, table V will be made of n rows and k columns.

Then, for every generation, a new empty table V ′ is created. Whenever a new in-
dividual T must be generated by crossover between selected parents T1 and T2, T is
represented by a triplet T = 〈&(T1),&(T2),&(R)〉, where R is a random tree and
for any tree τ , &(τ) is a reference (or memory pointer) to τ (using a C-like notation).
This triplet is stored in an appropriate structure (that we call M from now on) that also
contains the name of the operator used, as shown in Figure 1c. The random tree R is
created, stored in P , and evaluated in each fitness case to reveal its semantics. The val-
ues of the semantics of T are also easily obtained, by calculating (T1 ·R)+((1−R)·T2)
for each fitness case, according to the definition of geometric semantic crossover, and
stored in V ′. Analogously, whenever a new individual T must be obtained by applying
mutation to an individual T1, T is represented by a triplet T = 〈&(T1),&(R1),&(R2)〉
(stored in M), where R1 and R2 are two random trees (newly created, stored in P and
evaluated for their semantics). The semantics of T is calculated as T1+ms · (R1−R2)
for each fitness case, according to the definition of geometric semantic mutation, and
stored in V ′. In the end of each generation, table V ′ is copied into V and erased. At this
point, all the rows of P and M referring to individuals that are not ancestors1 of the
new population can also be erased, because they will not be used anymore.

In synthesis, this algorithm is based on the idea that, when semantic operators are used,
an individual can be fully described by its semantics (which makes the syntactic com-
ponent much less important than in standard GP), a concept discussed in depth in [15].
Therefore, at every generation we update tableV with the semantics of the new individu-
als, and save the information needed to build their syntactic structures without explicitly
building them. In terms of computational time, we emphasize that the process of updating
table V is very efficient as it does not require the evaluation of the entire trees. Indeed,
evaluating each individual requires (except for the initial generation) a constant time,
which is independent from the size of the individual itself. In terms of memory, tables P
andM grow during the run. However, tableP adds a maximum of 2×n rows per gener-
ation (if all new individuals are created by mutation) and table M (which contains only
memory pointers) adds a maximum of n rows per generation. Even if we never erase the
“ex-ancestors” from these tables (and never reuse random trees, which is also possible),
we can manage them efficiently for several thousands of generations.

1 We abuse the term “ancestors” to designate not only the parents but also the random trees used
to build an individual by crossover or mutation.
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The final step of the algorithm is performed after the end of the last generation:
in order to reconstruct the individuals, we need to “unwind” our compact representa-
tion and make the syntax of the individuals explicit. Therefore, despite performing the
evolutionary search very efficiently, in the end we cannot avoid dealing with the large
trees that characterize the standard implementation of geometric semantic operators.
However, most probably we will only be interested in the best individual found, so this
unwinding (and recommended simplification) process may be required only once, and
it is done offline after the run is finished. This greatly contrasts with the solution pro-
posed by Moraglio et al. of building and simplifying every tree in the population at each
generation online with the search process.

Let us briefly consider the computational cost of evolving a population of n indi-
viduals for g generations. At every generation, we need O(n) space to store the new
individuals. Thus, we need O(ng) space in total. Since we need to do only O(1) op-
erations for any new individual (since the fitness can be computed directly from the
semantics, which can immediately be obtained from the semantics of the parents), the
time complexity is also O(ng). Thus, we have a linear space and time complexity with
respect to population size and number of generations.

Excluding the time needed to build and simplify the best individual, the proposed
implementation allowed us to evolve populations for thousands of generations with a
considerable speed up with respect to standard GP. Next we provide a simple example
that illustrates the functioning of the proposed algorithm.

Example. Let us consider the simple initial populationP shown in table (a) of Figure 1
and the simple pool of random trees that are added to P as needed, shown in table (b).
For simplicity, we will generate all the individuals in the new population (that we call P ′

from now on) using only crossover, which will require only this small amount of random
trees. Besides the representation of the individuals in infix notation, these tables contain
an identifier (Id) for each individual (T1, ..., T5 and R1, ..., R5). These identifiers will
be used to represent the different individuals, and the individuals created for the new
population will be represented by the identifiers T6, ..., T10.

We now describe the generation of a new populationP ′. Let us assume that the (non-
deterministic) selection process imposes that T6 is generated by crossover between T1

and T4. Analogously, we assume that T7 is generated by crossover between T4 and T5,
T8 is generated by crossover between T3 and T5, T9 is generated by crossover between
T1 and T5, and T10 is generated by crossover between T3 and T4. Furthermore, we
assume that to perform these five crossovers the random trees R1, R2, R3, R4 and
R5 are used, respectively. The individuals in P ′ are simply represented by the set of
entries exhibited in table (c) of Figure 1 (structure M). This table contains, for each
new individual, a reference to the ancestors that have been used to generate it and the
name of the operator used to generate it (either “crossover” or “mutation”).

Let us assume that now we want to reconstruct the genotype of one of the individuals
in P ′, for example T10. The tables in Figure 1 contain all the information needed to do
that. In particular, from table (c) we learn that T10 is obtained by crossover between
T3 and T4, using random tree R5. Thus, from the definition of geometric semantic
crossover, we know that it will have the following structure: (T3 ·R5)+((1−R5) ·T4).
The remaining tables (a) and (b), that contain the syntactic structure of T3, T4, and
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Id Individual
T1 x1 + x2x3

T2 x3 − x2x4

T3 x3 + x4 − 2x1

T4 x1x3

T5 x1 − x3

Id Individual
R1 x1 + x2 − 2x4

R2 x2 − x1

R3 x1 + x4 − 3x3

R4 x2 − x3 − x4

R5 2x1

Id Operator Entry
T6 crossover 〈&(T1),&(T4),&(R1)〉
T7 crossover 〈&(T4),&(T5),&(R2)〉
T8 crossover 〈&(T3),&(T5),&(R3)〉
T9 crossover 〈&(T1),&(T5),&(R4)〉
T10 crossover 〈&(T3),&(T4),&(R5)〉

(a) (b) (c)

Fig. 1. Illustration of the example described in Section 3. (a) The initial population P ; (b) The
random trees used by crossover; (c) The representation in memory of the new population P ′.

R5, provide us with the rest of the information we need to completely reconstruct the
syntactic structure of T10, which is ((x3 + x4 − 2x1) · (2x1)) + ((1− (2x1)) · (x1x3))
and upon simplification can become −x1(4x1 − 3x3 − 2x4 + 2x1x3).

4 Oral Anticoagulant Therapy

Coumarins-derived Oral Anticoagulant therapy (OAT), prescribed to more than 2.5 mil-
lion new patients per year, is commonly used as life-long therapy in the prevention of
systemic embolism in patients with atrial fibrillation, valvular heart disease, and in the
primary and secondary prevention of venous and pulmonary thromboembolism. It is
also used for the prevention of thromboembolic events in patients with acute myocar-
dial infarction and with angina pectoris, in patients with heart valves, and after some
types of orthopedic surgery.

Due to the increased prevalence of atrial fibrillation and thromboembolic disorders in
elderly people [3] oral anticoagulation is one of the most frequently prescribed therapy
in elderly patients.

Aging is a complex process which is accompanied by a potential multitude of is-
sues that include numerous health problems associated to a multiple administration of
medications, often coupled with reduced mobility and greater frailty, with a tendency
to fall. Despite its validated efficiency, all these conditions are often cited as reasons to
preclude the elderly from being anticoagulated [4].

In all subjects a combination of personal, genetic and non-genetic factors are re-
sponsible for about 20-fold variation in the coumarins dose required to achieve the
therapeutic range of drug action, evaluated by the prothrombin international normal-
ized ratio (INR) measurement. In case of elderly patients, this variability is highlight
by clinically significant interaction due to coadministration of different drugs [14], and
by liver and renal impairment which can further emphasize this interaction or directly
modify the anticoagulant action [2]. For this reasons, oral anticoagulant therapy Initia-
tion in elderly is more challenging than other patients.

The safety and efficacy of warfarin therapy are dependent on maintaining the INR
within the target range for the indication. Due to above-cited inter patient variability in
drug dose requirements, empiric dosing results in frequent dose changes as the thera-
peutic international normalized ratio (INR) gets too high or low, leaving patients at risk
for bleeding (over-coagulation) and thromboembolism (under-coagulation). This means
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that there is a need to carry on the research to develop predictive models that are able to
account for strong intraindividual variability in elderly patients’ response to coumarins
treatment.

Most of the computational approaches in the literature for the definition of mathe-
matical models to support management decisions for OAT, provide the use of regression
methods. The widely applied technique is Multiple Linear Regression, especially used
to predict the value of the maintenance dose [7]. Other linear and non linear approaches
enclose Generalized Linear Models [5] and polynomial regression [11]. More complex
machine learning techniques were also employed to support clinical decisions on ther-
apy management. A review of these methods is proposed in [12] for a review).

5 Experimental Study

In this section the experimental phase is outlined. In particular, section 5.1 briefly de-
scribed the data used in the experimental phase; section 5.2 presents the experimental
settings for the considered systems, while section 5.3 contains a detailed analysis of the
obtained results.

5.1 Data Description

We collect data from clinical computerized databases based on 950 genotyped over
65 years old patients in anticoagulant therapy. A data preprocessing approach returned
748 cleaned patients (i.e. with complete data, not missing any information) useful for
analysis. The features of this dataset can be summarized in four main entities: personal
characteristics, anamnestic features, genetic data and therapy’s characteristics . Demo-
graphic information includes body mass index and smoke habit; the anamnestic data are
related to medical evidence leading to OAT (Atrial Fibrillation, Deep Venous Thrombo-
sis/Pulmunary Embolism, other), a comorbidity (yes or not) and polipharmacotherapy
evaluations (digitalis, amiodarone, furosemide, nitrates, beta blockers, calcium channel
blockers, ACE inhibitors, diuretic tiazidic, sartanic, statins and other) and a renal func-
tion parameter (creatinine clearance); genetic data include the information related to the
genetic polymorphysms involved in the metabolism of anticoagulant drug (CYP2C9,
VKORC1 and CYP4F2); therapy’s features describe patient’s INR range, the INR range
assigned within which patient should remain during therapy (2-3, 2.5-3.5 , 2.5-3), tar-
get INR (represented by the average of the values of INR range, respectively 2.5, 3 and
2.75), vitamin k antagonist anticoagulant drug (warfarin 5mg and acenocumarol 4 or
1mg) and their dosage, which is the independent variable of the study. All data used
in the study were checked by clinicians of the anticoagulation clinical center. Dataset
includes two subsets of patients: 403 stable patients which reached a stable response to
therapy (stay in assigned INR range without significant modification of drug dose) and
345 unstable patients which did not reach stability. Descriptive statistic table relative to
all features of the dataset is available as supplementary material on the authors’ website
(<anonymized>).
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5.2 Experimental Settings

We have tested our implementation of GP with geometric semantic operators (GS-GP)
against a standard GP system (STD-GP). A total of 30 runs were performed with each
technique using different randomly generated partitions of the dataset into training
(70%) and test (30%) sets. All the runs used populations of 200 individuals allowed
to evolve for 500 generations. Tree initialization was performed with the Ramped Half-
and-Half method [8] with a maximum initial depth equal to 6. The function set con-
tained the four binary arithmetic operators+, −, ∗, and / protected as in [8]. Fitness was
calculated as the root mean squared error (RMSE) between predicted and expected out-
puts. The terminal set contained the number of variables corresponding to the number
of features in each dataset. Tournaments of size 4 were used to select the parents of the
new generation. To create new individuals, STD-GP used standard (subtree swapping)
crossover [8] and (subtree) mutation [8] with probabilities 0.9 and 0.1, respectively. In
our system this means that crossover is applied 90% of the times (while 10% of the
times a parent is copied into the new generation) and 10% of the offspring are mutated.
For GS-GP, crossover rate was 0.7, while mutation rate was 0.3, since preliminary tests
have shown that the geometric semantic operators require a relatively high mutation
rate in order to be able to effectively explore the search space. Survival was elitist as
it always copied the best individual into the next generation. No maximum tree depth
limit has been imposed during the evolution.

5.3 Experimental Results

The experimental results are reported using curves of the fitness (RMSE) on the train-
ing and test sets and boxplots obtained in the following way. For each generation the
training fitness of the best individual, as well as its fitness in the test set (that we call
test fitness) were recorded. The curves in the plots report the median of these values for
the 30 runs. The median was preferred over the mean because of its higher robustness
to outliers. The boxplots refer to the fitness values in generation 500. In the following
text we may use the terms fitness, error and RMSE interchangeably.

Figure 2(a) and Figure 2(b) report training and test error for STD-GP and GS-GP
while generations elapse. These figures clearly show that GS-GP outperforms STD-GP
on both training and test sets. Figure 2(c) and Figure 2(d) report a statistical study of the
training and test fitness of the best individual, both for GS-GP and STD-GP, for each of
the 30 performed runs. Denoting by IQR the interquartile range, the ends of the whiskers
represent the lowest datum still within 1.5 IQR of the lower quartile, and the highest da-
tum still within 1.5 IQR of the upper quartile. As it is possible to see, GS-GP produces
solutions with a lower dispersion with respect to the ones produced by STD-GP. To an-
alyze the statistical significance of these results, a set of tests has been performed on the
median errors. As a first step, the Kolmogorov-Smirnov test has shown that the data are
not normally distributed and hence a rank-based statistic has been used. Successively,
the Wilcoxon rank-sum test for pairwise data comparison has been used under the alter-
native hypothesis that the samples do not have equal medians. The p-values obtained are
3.4783 × 10−4 when test fitness of STD-GP is compared to test fitness of GS-GP and
4.6890× 10−7 when training fitness of STD-GP is compared to training fitness of GS-
GP. Therefore, when employing the usual significance level α = 0.05 (or even a smaller
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Fig. 2. Median of train (a) and test (b) fitness for the considered techniques at each generation
calculated over 30 independent runs. Train (c) and test (c) fitness of the best individual produced
in each of the 30 runs at the last performed generation.

one), we can clearly state that GS-GP produces fitness values that are significantly lower
(i.e., better) than the STD-GP both on training and test data.

5.4 Generalization Ability

Given the very promising results obtained by GS-GP, we have performed a further ex-
perimental analysis to investigate the generalization ability of the models produced by
the new technique.

A first indication about the behavior of GS-GP and STD-GP on unseen data comes
from the Figure 2(b) of the previous section. From this figure, it seems that, differently
from ST −GP , GS-GP is able to produce a model that does not overfit the unseen data.

To confirm this hypothesis, in this section we report the results obtained running
GS-GP for 10000 generations. Given the fact that geometric semantic genetic operators
induce a unimodal fitness landscape, we expected that the fitness on the training set
will improve for GS-GP, but the main concern regards its generalization ability when
the number of generations increases. In particular, in this section we want to answer
the following question: do the good performances of GS-GP on training set result in an
overfitted model for unseen data?

Figure 3(a) and Figure 3(b) allow to answer to this question. In particular, the good
results that GS-GP has obtained on training data were expected: the geometric semantic
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Fig. 3. Median of train (left) and test (right) fitness for GS-GP at each generation calculated over
30 independent runs
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operators induce an unimodal fitness landscape, which facilitates evolvability. On the
other hand, these excellent results on the training set do not affect the generalization
ability of the model on unseen data. As it is possible to note from Figure 3(b), GS-GP
produces a model that is able to handle unseen instances with a test fitness comparable
to the one obtained in Figure 2(b). Furthermore, from Figure 3(b) we see that after
generation 500 the error on the training set is slightly increasing, but not in a comparable
way to the irregular behavior of the curve of STD-GP reported in Figure 2(b). This is a
very promising result, in particular with respect to the considered applicative domain.
Moreover, this results seems to indicate an important difference between STD − GP
and GS-GP: while STD −GP overfits the data after a few generations, GS-GP seems
to be much more robust to unseen data, at least for the studied application.

6 Conclusions

New genetic operators, called geometric semantic operators, have been proposed for
genetic programming. They have the extremely interesting property of inducing a uni-
modal fitness landscape for any problem consisting in matching input data into known
target outputs. This should make all the problems of this kind easily evolvable by ge-
netic programming.

Nevertheless, in their first definition these new operators have a strong limitation that
makes them unusable in practice: they produce offspring that are larger than their par-
ents, and this results in an exponential growth of the size of the individuals in the popu-
lation. This paper proposed an implementation of GP that uses the geometric semantic
operators efficiently. This new GP system evolves the semantics of the individuals with-
out explicitly building their syntax. It does so by keeping a set of trees (of the initial
population and the random ones used by geometric semantic crossover and mutation)
in memory and a set of pointers to them, representing the “instructions” on how to build
the new individuals. Thanks to this compact representation, it is possible to make use
of the great potential of geometric semantic GP to solve complex real-life problems.

The proposed GP system was used to address an important application in the field of
pharmacogenetics. In particular, the problem addressed is the prediction of appropriate
oral anticoagulant level of medical drugs. A difficulty with oral anticoagulants use is
that prescription needs to be individually determined for each patient, usually by fol-
lowing a standard initial dosing protocol, measuring the coagulation rate regularly and
then adjusting the dose until the required rate of coagulation is obtained.

The experimental results demonstrate that the new system outperforms standard ge-
netic programming.Besides the fact that the new genetic programming system has excel-
lent results on training data, we were positively surprised by its excellent generalization
ability on the studied applications, testified by the good results obtained on test data.

Considering the good result achieved in this study, we will pursue it: beside new
experimental validations on new data and different applications, we plan to orient our
future activity towards more theoretical studies of the generalization ability of geomet-
ric semantic genetic programming. Moreover, regarding the oral anticoagulant therapy
problem, we plan to start a work of interpretation of the models generated by GP, in
strict collaboration with a team of expert clinicians.
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