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Abstract. In evolutionary game theory, one is normally interested in
the investigation about how the distribution of strategies changes along
time. Equilibrium-based methods are not appropriate for open, dynamic
systems, as for instance those in which individual drivers learn to select
routes. In this paper we model route choice in which many agents adapt
simultaneously. We investigate the dynamics with a continuous method
(replicator dynamics), and with learning methods (social and individual).
We show how the convergence to one of the Nash equilibria depends on
the underlying learning dynamics selected, as well as on the pace of
adjustments by the driver agents.

1 Introduction and Related Work

The number of large metropolitan areas with more than ten million inhabitants
is increasing rapidly, with the number of these so-called mega-cities now at more
than 20. This increase has strong consequences to traffic and transportation.
According to the keynote speaker of the IEEE 2011 forum on integrated sus-
tainable transportation systems, Martin Wachs, mobility is perhaps the single
greatest global force in the quest for equality of opportunity because it plays a
role in offering improved access to other services. Congestion is mentioned as
one of the major problems in various parts of the world, leading to a significant
decrease in the quality of life, especially in mega-cities of countries experiencing
booming economies. Mobility is severely impacted with 4.8 billion hours of travel
delay that put the cost of urban congestion in USA alone at 114 billion dollars
(www.its.dot.org). Moreover environmental costs must be considered.

One important part in the whole effort around intelligent transportation sys-
tems (ITS), in which artificial intelligence (AI) plays a role, relates to efficient
management of the traffic. This in turn can be achieved, among others, by an
efficient assignment of routes, especially if one thinks that in urban scenarios a
considerable important part of the network remains sub-utilized whereas jams
occur in a small portion of the network.

The conventional process of modeling assignment is macroscopic, based on
equilibrium. In the traffic engineering literature, the Nash equilibrium is referred
as Wardrop equilibrium [1]. This is convenient as it has sound mathematical
grounds. Static traffic assignment models have mathematical properties such as
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existence and uniqueness of equilibrium. Each link in the transportation network
can be described by the so-called volume-delay functions expressing the average
or steady-state travel time on a link. However, equilibrium in traffic networks
are often inefficient at collective level. Important results regarding this relate
to the price of anarchy |2-4] and Braess paradox [3]. Given these results, one
may try to improve the load balancing by routing drivers. However, whereas it
is possible to do this in particle systems (e.g., data packages in communication
networks), this is not the case in social systems.

Other drawbacks of equilibrium-based methods are that they assume station-
arity, and rationality plus common knowledge. Regarding the former, it is not
clear what equilibria can say about changes in the environment. Regarding ra-
tionality and common knowledge, it is well-known that both conceptually and
empirically this argument has many problems. Just to mention one of them, in
games with more than one equilibria, even if one assumes that players are able
to coordinate their expectations using some selection procedure, it is not clear
how such a procedure comes to be common knowledge.

Therefore, evolutionary game theory (EGT) offers alternative explanations
to rationality and stationarity by focusing on equilibrium arising as a long-run
outcome of a process in which populations of bounded rational agents interact
over time. See for instance [6] for an extensive discussion about the various
approaches based on learning in games. However, we note that one of the EGT
approaches, the replicator dynamics (RD), presents some problems regarding its
justification in decentralized or multiagent encounters. Thus an explanation for
the replicator could be that there is an underlying model of learning (by the
agents) that gives rise to the dynamics.

Some alternatives have been proposed in this line. Fudenberg and Levine [6]
refer to two interpretations that relate to learning. The first is social learning,
a kind of ”asking around “ model in which players can learn from others in the
population. The second is a kind of satisfying-rather-than-optimizing learning
process in which the probability of a determined strategy is proportional to the
payoff difference with the mean expected payoff. This second variant has been
explored, among others, by [, [8]. In particular, in the stimulus-response based
approach of Borgers and Sarin, the reinforcement is proportional to the realized
payoff. In the limit, it is shown that the trajectories of the stochastic process
converge to the continuous RD. This is valid in a stationary environment. How-
ever, this does not imply that the RD and the stochastic process have the same
asymptotic behavior when the play of both players follow a stimulus-response
learning approach.

We remark that 6] specifically mention a two agent or two population game,
but the same is true (even more seriously), when it comes to more. The rea-
sons for this difference are manifold. First, Borgers and Sarin’s main assumption
is 7...an appropriately constructed continuous time limit“, i.e., a gradual (very
small) adjustment is made by players between two iterations of the game. More
specifically, the RD treats the player as a population (of strategies). By the con-
struct of the continuous time of [7], in each iteration, a random sample of the
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population is taken to play the game. Due to the law of large numbers, this sam-
ple represents the whole population. However, in the discrete learning process,
at each time, only one strategy is played by each agent. Moreover, the outcome
of each of these interactions affects the probabilities with which the strategies
are used in the next time step. This implies that the discrete learning model
evolves stochastically, whereas the equations of the RD are deterministic. Also,
there is the fact that players may be stuck in suboptimal strategies because they
are all using a learning mechanism, thus turning the problem non-stationary.

These facts have as consequences that other popular dynamics in game-theory
as, e.g., best response dynamics, which involves instantaneous adjustments to
best replies, depict difference in the asymptotic behavior. Theoretical results
regarding an extension by [8] were verified with experiments in 3 classes of
2 x 2 games. The differences in behavior of the continuous/discrete models were
verified, with matching pennies converging to a pure strategy (thus, not a Nash
equilibrium), while the RD cycles. This suggests that other dynamics, e.g., based
on less gradual adjustments may lead to different results in other games as well.

In summary, there are advantages and disadvantages in using the discussed
approaches and interpretations, i.e., the continuous, analytical variant of RD,
and learning approaches such as best response, social learning, and stimulus-
response based models.

In this paper we aim at applying different approaches and compare their per-
formance. Specifically, we use three of them: the analytical equations of the RD,
a kind of social learning where dissatisfied agents ask their peers, and individual
Q-learning. We remark that other multiagent reinforcement learning approaches
are not appropriate for this problem as they either consider perfect monitoring
(observation of other agents’ actions, as in [9]), or modeling of the opponent (as
in fictitious play), or both. [ In our case this is not possible given the high num-
ber of agents involved and the unlikelihood of encounters happening frequently
among the same agents.

Here, the scenario is an asymmetric population game that models traffic as-
signmen. Populations with different sets of actions interact and the payoff matrix
of the stage game is also asymmetric. We note that, most of the literature refers
to homogeneous population, two actions, rendering the game symmetric. We are
interested in the trajectory of a population of decision-makers with very little
knowledge of the game. Indeed, they are only aware of the payoff or reward re-
ceived, thus departing from the assumption of knowledge of payoff matrix and
rationality being common knowledge, frequently made in GT.

In the next section we introduce our method and the formalization of route
choice as population games. Experiments and their analysis follow in Section [3
The last section concludes the paper and discusses some future directions.

! Since a comprehensive review on learning in repeated games is not possible here, we
refer the reader to |10, [11] and references therein for a discussion on the assumptions
made in the proposed methods.
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2 Methods

2.1 Formalization of Population Games

Population games are quite different from the games studied by the classical
GT because population-wide interaction generally implies that the payoff to a
given member of the population is not necessarily linear in the probabilities with
which pure strategies are played. A population game can be defined as follows.

— (populations) P = {1, ..., p}: society of p > 1 populations of agents, where
|p| is the number of populations
— (strategies) S? = {sf, ..., sP, }: set of strategies available to agents in popu-
lation p
— (payoff function) n(s?,qP)
Agents in each p have m? possible strategies. Let n! be the number of individ-

p
uals using strategy s?. Then, the fraction of agents using s is 2 =

N»» Where
NP is the size of p. gP is the mP-dimensional vector of the z¥, for i = 1,2, ..., mP.
As usual, 7P represents the set of qP’s when excluding the population p. The
set of all gP’s is q. Hence, the payoff of an agent of population p using strategy
s? while the rest of the populations play the profile 7P is m(s?, q™P).

Consider a (large) population of agents that can use a set of pure strategies
SP. A population profile is a vector o that gives the probability o(s?) with which
strategy st € SP is played in p.

One important class within population games is that of symmetric games,
in which two random members of a single population meet and play the stage
game, whose payoff matrix is symmetric. The reasoning behind these games is
that members of a population cannot be distinguished, i.e., two meet randomly
and each plays one role but these need not to be the same in each contest. Thus
the symmetry. However, there is no reason to use a symmetric modeling in other
scenarios beyond population biology. For instance, in economics, a market can be
composed of buyers and sellers and these may have asymmetric payoff functions
and/or may have sets of actions whose cardinality is not the same. In the route
choice game discussed here, asymmetric games correspond to multi-commodity
flow (more than one origin-destination pair).

Before we present the particular modeling of asymmetric population game, we
introduce the concept of RD. The previously mentioned idea that the composi-
tion of the population of agents (and hence of strategies) in the next generations
changes with time suggests that we can see these agents as replicators. Moreover,
an evolutionary stable strategy (ESS) may not even exist, given that the set of
ESSs is a possibly empty subset of the set of Nash equilibria computed for the
normal form game (NFG). In the RD, the rate of use of a determined strategy is
proportional to the payoff difference with the mean expected payoff, as in Eq. [l

&7 = (m(sf,xP) — A(xP)) x a} (1)

The state of population p can be described as a vector xP = (a¥, ..., 22 ). We are

interested in how the fraction of agents using each strategy changes with time,
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Table 1. Available routes in the three populations

route description length
GO B1—-C1—C3— E3— FE5 7
S0 Bl —F1—F2— E2—FE5 9
B0 Bl —+Fl1— F4— FE4— E5 9
Gl A2 — A3 — E3 — E5 7
S1 A2 — A5 — E5 10
Bl A2 —» A6 - F6 — F4— E4— E5 13
G2 D5— D3 — E3— E5 5
S2 D5 —D4—C4— C5— E5 5

Table 2. Payoff matrices for the three-player traffic game; payoffs are for player 0
/ player 1 / player 2 (the three Nash equilibria in pure strategies are indicated in
boldface)

G2 SP)
Gl S1 Bl Gl S1 Bl
GO 1/1/4 5/6/7 5/1/7 GO 4/4/8 7/4/6 T/1/8
S0 3/4/6 4/6/8 4/1/8 SO 4/6/8 5/4/6 5/1/8
B0 5/5/7 5/6/8 4/0/9 B0 5/7/8 5/4/6 4/0/8

p

i.e., the derivative djti (henceforth denoted 2%). In Eq. [l #(xP) is the average

payoff obtained by p:
m
T(xP) =) alm(s],xP)
i=1

Obviously, to analytically compute this average payoff, each agent would have
to know all the payoffs, which is quite unrealistic in real scenarios.

Henceforth, in order to illustrate the approach and introduce the evaluation
scenario, we refer to a specific instance. However this has some important prop-
erties: non-symmetry and presence of several equilibria.

In the three-population game considered here, to avoid confusion we use the
term ”player” with its classical interpretation, i.e., the decision-makers of the
normal form game (NFG). Because this game is played by randomly matched
individuals, one from each population, we call these individuals ”agents”. Thus
player refers to a population of agents.

The way the three populations interact determines their reward functions. For
the sake of illustration, it is assumed that the three populations of agents use
a road network I' to go from their respective origins, and that there is a single
destination (typical morning peak).

Each agent in each p has some alternative routes or strategies SP. These are
named after the following reasoning: G means greedy selection (G is the most
preferred because this route yields the highest utility if not shared with other
populations); S means second preferred alternative; and B means border route
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Table 3. Five Nash equilibria for the three-player traffic game

GO SO BO G1 S1 B1 G2 S2
profile zy 2l (1—ad —af) zg xl (1—af—27) z3 (1—a3) payoff
oa 1 0 0 0 1 0 1 0 5/6/7
ob ) 1 0 0 1 1 0 5/6/8
oo 0 0 1 1 0 0 0 1 5/7/8
odq 0 0 1 2 : 0 2 3 5/5.5/ ~ 7.3
Oe ~0.474 0 ~ 0.526 ~ 0.386 ~ 0.614 0 ~ 0.352 =~ 0.648 5/~ 4.7/~ 6.8

(a route that uses the periphery of I"). Populations p = 0 and p = 1 have strate-
gies SY = {G0, S0, B0} and S' = {G1,S1, B1}. p = 2 has only two strategies:
S8? = {G2,52}. Combining all these sets, there are 18 possible assignments of
routes.

Each agent selects a route and the payoff obtained is a function of the delay
on the route taken. The delay in each route is the sum of delays on each link in
the route. These are given by a volume-delay function (VDF). The VDF used in
the present paper considers the number of agents using each link. Specifically,
it adds 1 unit each time an agent uses a given link. This way, a link has cost 0
if no agent uses it; cost 1 if one agent uses it; and so forth. The only exception
is a bottleneck link b that belongs to the greedy routes GO, G1, and G2. Link b
does not accommodate all agents. Thus if too many agents use it at the same
time, each receives a penalty of 1 unit. Hence, considering the 18 combinations
of routes that appear in Table [Il costs depend on length of routes and how
routes share the I'. The maximum cost is incurred by agents in p = 1 when the
following combination of route choices is made: BO / B1 / G2. This cost is 13. In
order to deal with maximization (of payoff) rather than cost minimization, costs
are transformed in payoffs. The highest cost of 13 is transformed in reward zero
and so on. Payoffs computed this way are given in Table Pl Note that strategy
B1 is dominated or p = 1, thus the learning models tested here must be able to
recognize this.

Values in Table [2] represent an arbitrary assignment of utility of the three
players involved, based on the topology of I' as explained. The utility function
u(.) that underlies Table [ is however equivalent to any other @(.) if a(.) rep-
resents identical preferences of the players, and w(.) and 4(.) differ by a linear
transformation of the form 4(.) = A x u(.) + B, A > 0. Of course equivalence
here refers to the solution concept, i.e., a qualitative, not quantitative concept.
Equivalent game models will make the same prediction or prescription.

For the three-population game whose payoffs are given in Table 2 there are
five Nash equilibria. All appear in Table Bl In this table, columns 2—4 specify
x% (fraction of agents selecting each strategy s in population p = 0), columns
5-7 specify x! and the last two columns specify x2. For example, for the first
equilibrium (profile o), because #) = 1, 1 = 1, and 23 = 1, all agents in p =0
select action GO, all agents in p = 1 select S1 and all agents in p = 2 select G2.
Regarding the mixed strategy profile g4, all agents in p = 0 select action BO
(because xJ = 2§ = 0), whereas in p = 1, g of agents select G1 and ;’ select S1.
Inp=2, i of agents select G2 and 411 select S2. Profiles oy, 0., and o, can be
similarly interpreted.



48 A.L.C. Bazzan

It must also be noticed that in asymmetric games, all ESS are pure strategies
(for a proof see, e.g., [12]). Thus only o4, 0p, and o, are candidates for ESS.
Besides, clearly, among o4, 03, and o, the first two are (weakly) Pareto inefficient
because o is an outcome that make all agents better off.

2.2 Replicator Dynamics, Social and Individual Learning

As mentioned, the continuous RD model, which is hard to justify, can be re-
produced with some forms of learning. To compare the performance of these
learning models, we first formulate the continuous RD for our specific three-

population game. The equation for z3 (others are similar), derived from Eq. [I]

is: 2) = 2d(—adxd — 223 — 4x} + 3 + afadal + 22¢x] + 422l — 32y + 2E2l +

20028 — o8 — b + alal -+ alal)

The three Nash equilibria that need to be investigated are those in pure
strategies (o4, op, and o.). We have analytically checked that only o, is an
ESS (by means of the divergence operator, to find out where all derivatives
are negative). This way, it was verified that the only Nash equilibria where all
derivatives are negative is o..

Now we turn to the learning models. In both models reported below, in each
time step, agents from each population p play g games in which payoffs are as
in Table 2

For the social learning, we use one of the possibilities mentioned in [6], which is
based on an ask-around strategy. This of course involves at least some sampling
of other agents’ rewards. However, it does not involve sophisticated modeling as
perfect monitoring. It works as follows: when dissatisfied with their own rewards,
some agents ask around in their social network and eventually change strategy.
To replicate this behavior, we use an ask-around rate p,: at each time step, with
probability p, each agent in the population p copies the strategy of a better
performing acquaintance. The higher p,, the more “anxious” is the agent (i.e.,
the faster it gets dissatisfied). We recall that, according to [7], it is expected that
if the adjustment is not gradual, there may be no convergence to the behavior
of the continuous RD.

For the individual learning, no ask-around strategy is used. Rather, agents
learn using individual Q-learning (Eq. ), thus assessing the value of each strat-
egy by means of Q values.

Q(s,a) < Q(s,a) + a (r + ymazy Q(s',a") — Q(s,a)) (2)

For action selection, e-greedy was used. In line with the just mentioned issue
of gradual adjustments, and from [8], we know that the value of ¢ is key to
reproduce the behavior of the continuous RD.

3 Experiments and Results

In this section we discuss the numerical simulations of the learning based ap-
proaches and compare them with the continuous RD, from which we know the
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Nash equilibria, and that the only ESS is profile o.. With the learning models,
we are interested in investigating issues such as what happens if each population
p starts using a given profile ¢? in games that have more than one equilibrium.
To which extent the rate p, shifts this pattern?

The main parameters of the model, as well as the values that were used in
the simulations are: P = {0,1,2}, N* = N! = N? = 300, g = 10,000, o = 0.5;
g, A (number of time steps) and p, were varied. In all cases, at step 0, agents
select strategies from a uniform distribution of probability.

We first discuss the social learning. Because five variables (strategies) are
involved, it is not possible to show typical (2d) RD-like plots that depict the
trajectory of these variables. Therefore, as an alternative to show the dynamics,
we use heatmaps. In the plots that appear in Figures [l to [3] heatmaps are used
to convey the idea of the intensity of the selection of each of the 18 joint actions
(represented in the vertical axis) along time (horizontal axis), with A = 1000.
Due to an internal coding used, the 18 joint actions are labeled such that 0, 1
and 2 mean the selection of G, S, or B respectively. The order of the triplet is
such that the first digit indicates the action of p = 2, the second digit is for the
action of p = 1, and the third digit is for p = 0. In particular, the three Nash
equilibria (o4, 0p, and o.) are represented as 010 (G2-S1-G0), 012 (G2-S1-B0),
and 102 (52-G1-B0).

In the heatmaps, to render them cleaner we just use shades of gray color
(instead of hot colors as usual). In any case, the darker the shade, the more
intense one joint action is selected. Thus we should expect that the three Nash
equilibria correspond to the darker strips.

BT [N (- ALi],J

w\\’H

o B
I L

e

(b) po = 1073

Fig. 1. Evolution of dynamics for different p,

In Figure [[l we show how the selection evolves along time, for relatively high
Da- Figure is for p, = 1071, i.e., each agent asks around with this rate. It is
possible to see that although o, (010) is clearly selected more frequently, other
joint actions also appear often, as, e.g. 012. Interestingly, their counterparts 110
and 112, which differ from 010 and 012 by p = 2 selecting S2 instead of G2,
also appear relatively often. This indicates that agents in p = 2 try to adapt
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e e

(a) pa = 107" (b) pa = 107"

Fig. 2. Evolution of dynamics for p, = 107*

to the other two populations. In the end the performance is poor because this
co-adaptation is disturbed by the high rate of changes by the social agents.

This overall picture improves a little bit with the reduction in p,. When
pa = 1072 (not shown) and p, = 1073, (Figure the convergence pattern is
clearer but still it is not possible to affirm that one profile has established.

When we decrease the rate to p, = 10~* (Figure [)), it is possible to observe
that one of the two cases occur: either profile 102 (o.) establishes right in the
beginning (Figure 2(a)), or there is a competition between 010 and 012, with
one or the other ending up establishing. For p, = 10~ the pattern is pretty
much the same as for p, = 1074,

With further decrease in p,, the time needed to either 010 or 012 establish
decreases, if 102 has not already set. For instance, comparing Figure [3(b)| to
Figure 2(b)] one sees that profile o, (010) established before in the former case.

A remark is that the dominated strategy B1, in p = 1, is quickly discarded in
all cases, even when p, = 10~%.

Regarding the individual learning, experiments were run with different values
of o and change in €. It seems that a has much less influence in the result than e.
Thus we concentrate on o = 0.5. We show plots for € starting at 1.0 with decay

(a) pa =107° (b) pa =107° (¢) pa =107°

Fig. 3. Evolution of dynamics for p, = 107°
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Fig. 4. Evolution of each xP (y axis) along time (x axis) using QL

of 0.995 each time step, which, at the end of A = 5000 turns ¢ of the order of
10~ . Figure @ depicts the evolution of each component of each vector xP (i.e.,
state of each population in terms of strategies selected) along time. As seen in
the three plots, BO establishes for population p = 0, G1 and S1 are selected
with near the same probabilities in p = 1, and G2 converges to nearly 0.7. This
pattern is not a Nash equilibrium. However, the payoffs for the three population
of agents are: & 5 (p = 0), & 54 (p = 1), and = 7.3 (p = 2), which are very
close to o4 (see TableB]). Note that strategy B1, dominated, is quickly discarded
(Figure [4(b)).

How agents have converged to this behavior is better explained by the tra-
jectories of the probabilities to play each strategy, for each population. Due to
the number of variables, it is not possible to plot them all together. Even a 3d
plot, where one could see at least one variable per population, was rendered
not informative. Thus we opted to show the behavior of selected variables in a
pairwise fashion, namely B0 x G1, B0 x G2, G1 x G2 (Figure[d]). It is possible to
see that the fraction of agents using G2 (z2), the black line, vertical component,
has reached ~ i (as in profile o4), but this was not stable and there was a shift
to lower values, which has influenced also the fraction of agents using G1 (blue
circles, vertical), where we also see a shift.
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Fig. 5. Trajectories: BO x G1, B0 x S2, G1 x G2

In short, some conclusions can be drawn from these simulations. First, si-
multaneous learning by the agents does not always lead to a Nash equilibrium
when there are more than one of them, much less to the ESS computed for the
corresponding RD of the static NFG. Whereas there is only one ESS among the
three Nash equilibria in pure strategies (o.), depending on the p, rate, and on
the exploration rate €, any of the three Nash equilibria (in pure strategies) may
establish, or agents may be stuck at a sub-optimal state, even if, as in the case
shown here, this state is very close to one of the Nash equilibria. This is in line
with the result in [7], which prescribes gradual adjustments. The profile o, does
establish fast (and does not shift) if it sets at all. When this is not the case,
there is a competition between the other two. This competition is determined
by agents in p = 2: from the payoff matrix (Table ), one can see that only
agents in p = 2 have different payoffs in profiles o, and o,. This leads to an
important remark: agents in p = 2 have an asymmetric role in this game (not
only due to the fact that they have less options), given that the establishment of
profile o, is also related to a choice by agents in p = 2. Thus, in real-world traffic
networks, such a study may prove key to determine which fraction of drivers to
target when controlling traffic by means of route guidance.

4 Conclusion and Future Work

This paper contributes to the effort of analyzing route choices among population
of agents. It shows that the use of models that assume stationarity may fail.
An alternative approach is provided that helps the analysis of the dynamics of
the RD of the static game, as well as the dynamics provided by two learning
methods. In the case of the social learning, convergence is achieved depending
on the rate of experimentation in the populations. Thus, anxious drivers may be
stuck at sub-optimal equilibrium. For the individual Q-learning, results can be
extrapolated to cases in which drivers tend to make too much experimentation
(e.g., in response to broadcast of route information). In the case illustrated here,
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agents converge to a solution close to a Nash equilibrium, which is not an ESS.
We remark that the use of a standard macroscopic modeling method (common
practice in traffic engineering) would not have provided such insights.

Although the scenario used as illustration considers three populations only,
each having a few actions, we claim that this is not an unrealistic simplification.
In fact, in the majority of the situations a traffic engineer has to deal with, there
is a small number of commodities (origin-destination pairs) that really matter,
i.e., end up collecting (thus representing) several sources and sinks. Regarding
the number of actions, it is equally the case that in the majority of the real-world
cases drivers do not have more than a handful of options to go from A to B.

A future direction is to explicitly consider information broadcast to agents,
in order to have a further way to model action selection.
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