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Abstract. Predicting the future impact of academic publications has
many important applications. In this paper, we propose methods for
predicting future article impact, leveraging digital libraries of academic
publications containing citation information. Using a set of successive
past impact scores, obtained through graph-ranking algorithms such as
PageRank, we study the evolution of the publications in terms of their
yearly impact scores, learning regression models to predict the future
PageRank scores, or to predict the future number of downloads. Results
obtained over a DBLP citation dataset, covering papers published up to
the year of 2011, show that the impact predictions are highly accurate for
all experimental setups. A model based on regression trees, using features
relative to PageRank scores, PageRank change rates, author PageRank
scores, and term occurrence frequencies in the abstracts and titles of
the publications, computed over citation graphs from the three previous
years, obtained the best results.

1 Introduction

Citations between articles published in academic digital libraries constitute a
highly dynamic structure that is continuously changing, as new publications and
new citations are added. Moreover, the graph of citations between publications
can provide information for estimating the impact of particular publications,
through algorithms such as PageRank, since highly cited papers are more likely
to be influential and to have a high impact on their fields. Ranking papers
according to their potential impact is thus a highly relevant problem, given that
this can enable users to effectively retrieve relevant and important information
from digital libraries. Having accurate prediction methods for estimating the
impact of recently published papers is particularly important for researchers,
since articles with high future impact ranks can be more attractive to read and
should be presented first when searching for publications within digital libraries.
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In this paper, we propose a framework that enables the prediction of the im-
pact ranking of academic publications, based on their previous impact rankings.
Specifically, given a series of time-ordered rankings of the nodes (i.e., the indi-
vidual publications) from a citation graph, where each node is associated with
its ranking score (e.g., the PageRank score) for each time-stamp, we propose
a learning mechanism that enables the prediction of the node scores in future
times. Through the formalism of regression trees, we propose to capitalize on ex-
isting trends through the changes in impact rankings between different snapshots
of the citation graph, in order to accurately predict future PageRank scores and
the future number of downloads. Moreover, we also experimented with the use of
features derived from the textual abstracts and titles of the publications, in an
attempt to capture trending topics. We evaluate the prediction quality through
the correlation between the predicted ranked lists and the actual ranking lists,
and through the error rates computed between the predictions and the correct
results. The obtained results show that there is a significant correlation between
the predicted ranked lists and the actual impact ranking lists, therefore revealing
that this methodology is suitable for impact score prediction.

The remaining of this paper is organized as follows: Section 2 presents re-
lated work. Section 3 describes the proposed approaches for predicting the fu-
ture impact of academic publications, detailing both the computation of impact
estimates at a given time, and the machine learning models for making predic-
tions. Section 4 presents the experimental validation of the proposed approaches,
describing the evaluation protocol and the obtained results. Finally, Section 5
presents our conclusions and points directions for future work.

2 Related Work

The PageRank algorithm is a well-known method for ranking nodes in a graph
according to their importance or prestige. It was originally proposed in the con-
text of the Google search engine, and it has been extensively studied [9]. Many
authors have proposed the application of PageRank, or of adaptations of this
particular algorithm, to measure impact in scientific publication networks en-
coding citation and/or co-authorship information [2, 18].

An interesting approach that aims at approximating PageRank values without
the need of performing the computations over the entire graph is that of Chien
et al. [3]. The authors propose an efficient algorithm to incrementally compute
approximations to PageRank scores, based on the evolution of the link structure
of the Web graph. Davis and Dhillon proposed an algorithm that offers estimates
of cumulative PageRank scores for Web communities [4]. In our work we also
propose algorithms for estimating PageRank scores, but instead focusing on the
prediction of future scores, based on previous PageRank computations.

Specifically focusing on PageRank computation over time-dynamic networks
encoding citations, Radicchi et al. divided the entire data period into homo-
geneous intervals, containing equal numbers of citations, and then applied a
PageRank-like algorithm to rank papers and authors within each time slice,
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thereby enabling them to study how an author’s influence changes over time [12].
Lerman et al. proposed a novel centrality metric for dynamic network analysis
that is similar to PageRank, but exploiting the intuition that, in order for one
node in a dynamic network to influence another over some period of time, there
must exist a path that connects the source and destination nodes through in-
termediaries at different times [10]. The authors used their dynamic centrality
metric to study citation information from articles uploaded to the theoretical
high energy physics (hep-th) section of the arXiv preprints server, obtaining
results contrasting to those reached by static network analysis methods.

Sayyadi and Getoor suggested a new measure for ranking scientific articles,
based on future citations [13]. The authors presented the FutureRank model,
based on publication time and author prestige, that predicts future citations.
FutureRank implicitly takes time into account by partitioning data in the tem-
poral dimension, using data in one period to predict a paper’s ranking in the
next period. The FutureRank scores are shown to correlate well with the paper’s
PageRank score computed on citation links that will appear in the future.

Kan and Thi have partially addressed the problem of predicting impact scores,
by presenting a study that focused on Web page classification, based on URL
features [6]. In their study, the authors also report on experiments concerning
with predicting PageRank scores for graphs of hyperlinks between Web pages,
using the extracted URL features and linear regression models.

The works that are perhaps more similar to ours are those of Vazirgiannis et
al. [16] and of Voudigari et al. [17]. Vazirgiannis et al. presented an approach
for predicting PageRank scores for Web pages, generating Markov Models from
historical ranked lists and using them for making the predictions. Voudigari et
al. extended this method, comparing models based on linear regression and high-
order Markov models. Although both these works aimed at predicting PageRank
for Web graphs, the authors evaluated their methods on co-authorship networks
built from DBLP data. In this paper, we instead report on experiments made
over citation networks built from DBLP data, aiming at the prediction of both
PageRank scores and number of downloads for publications. We also relied on a
highly-robust regression approach for learning to make the predictions, namely
ensemble models based on Gradient Boosting Regression Tress (GBRT) [11].

3 Predicting the Future Impact of Publications

In this section, we present a learning method for predicting the future impact of
academic publications, leveraging on patterns existing in the ranking evolution
of the publications, and on the textual contents of the titles and abstracts. Given
a set of successive snapshots for the graph of citations between publications, we
generate, for each publication, a sequence of features that captures the trends
of this publication through the previous snapshots. For each publication, we
also generate features based on the publication date, and based on the words
appearing on the title and abstract. We then use these features of previous
snapshots as training data for a learning method, afterwards trying to predict
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the future impact of particular publications, based on the previous snapshots.
Figure 1 presents a general overview on the proposed methodology.

Let Gti be a snapshot of the citation graph, capturing citations between pa-
pers published before the timestamp ti that is associated to the snapshot. Let
Nti = |Gti | be the number of publications at time ti. In the case of citation
networks for academic publications, we have that Nti ≤ Nti+1 . We also assume
the existence of a function rank(p, ti) that provides an influence estimate for
a publication p ∈ Gti , according to some criterion. In this paper, we used the
original PageRank algorithm, over the citation graphs, to compute rank(p, ti),
although other impact estimates could also have been used instead.

The original PageRank formulation states that a probability distribution over
the nodes in a graph, encoding importance scores for each of the nodes, can be
computed by leveraging links through the following equation, which represents
a random walk with restarts in the graph:

Pr(pi) =
1− d

N
+ d

∑

pj∈I(pi)

Pr(pj)

L(pj)
(1)

In the formula, Pr(pi) refers to the PageRank score of a node pi, I(pi) is
the set of nodes that link to pi (i.e., the citations made to article pi), L(pj)
(i.e., the citations made in article pj towards other articles) is the number of
outbound links on node pj , and N is the total number of nodes in the graph.
The parameter d controls the random transitions to all nodes in the graph (i.e.,
the restarts), with a residual probability that is usually set to d = 0.85. In
our experiments, the computation of PageRank relied on the implementation
present in the WebGraph package1, from the Laboratory of Web Algorithms of
the University of Milan.

Let xp = (rp1 , . . . , rpm) encode the rank values for a publication p at time
points t = (t1, . . . , tm), and let M = (N × m) be a matrix storing all the
observed rank values, so that each row corresponds to a publication and each
column corresponds to a time point. Given these values, we wish to predict the
rank value rp∗ for each publication at some time t∗, corresponding to a future
time point. To do this, we propose to leverage on a regression model, using the
k previous rank values as features, together with other features that capture
(i) trends in the evolution of influence scores, and (ii) intrinsic properties of the
publications, that can be used to group together similar sequences of impact
scores (e.g., having the same authors or using the same textual terms).

Regarding the first group of features from the above enumeration, we propose
to use the Rank Change Rate between consecutive snapshots of the citation
graph, in order to capture trends in the evolution of the PageRank impact scores.
The Rank Change Rate (Racer) between two instances ti−1 and ti is given by
the following equation:

Racer(p, ti) =
rank(p, ti)− rank(p, ti − 1)

rank(p, ti)
(2)

1 Available at http://law.dsi.unimi.it/software.php#pagerank

http://law.dsi.unimi.it/software.php#pagerank
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Fig. 1. The framework for predicting the future impact of academic publications

As for the second group of features, we used the assumption that publications
from the same authors are likely to exhibit similar trends in the evolution of
their impact scores. Thus, for each publication p, we computed the average and
the maximum PageRank scores of all publications having an author in common
with the set of authors of publication p.

To capture the intuition that impact metrics evolve differently for recent or
older publications, we also used a feature that corresponds to the difference
between the year for which we are making the predictions, and the year of pub-
lication. Finally, on what concerns the textual features, we used term frequency
scores for the top 100 most frequent tokens in the abstracts and titles of the
publications, not considering terms from a standard English stop-word list.

The above features were integrated into an ensemble regression approach
based on the formalism of Gradient Boosting Regression Trees (GBRT).

We developed two different models, using the formulation of GBRT, for better
understanding the impact of the combination of the aforementioned features,
namely the (i) Age Model, and the (ii) Text Model. Both these regression models
share a set of common features, which are:

– PageRank score of the publication in previous year(s) (Rank);

– Rank Change Rate (Racer) score towards the previous year(s);

– Average and maximum PageRank scores of all publications having an author
in common with the set of authors of the publication (Auth);

In addition to the these common features, the Age Model also includes a
feature that indicates the age of the publication, while the Text Model includes
a feature indicating the age of the publication, as well as, features for the term
frequency scores of the top 100 most frequent tokens in the abstracts and titles
of the publications, up until the current date.

By experimenting with different groups of features, we can compare the impact
of the amount of information that each model is given.
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The actual learning approach that was used to build both the Age and Text
models is named Initialized Gradient Boosting Regression Trees (IGBRT). This
is an ensemble learning technique that, instead of being initialized with a con-
stant function like in traditional Gradient Boosting approaches, it is initialized
with the predictions obtained through the application of the Random Forests
(RF) technique [1]. The IGBRT algorithm has, thus, a first step, in which the
RF technique is applied, and then a final step, in which the traditional Gradi-
ent Boosting Regression Trees (GBRT) technique is applied [11]. The algorithm
for GBRT evolved from the application of boosting methods to regression trees,
through the idea that each step of the algorithm (i.e., the fitting of each of the
regression trees for the final model) can involve the use of gradient descent to op-
timize any continuous, convex, and differentiable loss function (e.g., the squared
loss). In the implementation that we have used, the individual regression trees
that make up the boosting ensemble have a depth of 4, and they are are built
through a version of the traditional CART algorithm, greedily building a re-
gression tree that minimizes the squared-loss and that, at each split, uniformly
samples k features and only evaluates those as candidates for splitting.

The general idea in GBRT is to compute a sequence of trees, where each
successive tree is built over the prediction residuals of the preceding tree [5].
More specifically, the average y-value can be used as a first guess for predicting
all observations (in the case of the IGBRT approach, the first guesses are instead
given by the RF model). The residuals from the model are computed, and a
regression tree is then fit to these residuals. The regression tree can then used
to predict the residuals (i.e., in the first step, this means that a regression tree
is fit to the difference between the observation and the average y-value, and the
tree can then predict those differences), and these predictions are used to set
the optimal step length (i.e., the weight of the current tree in the final model).
The boosting regression model, consisting of the sum of all previous regression
trees, is updated to reflect the current regression tree. The residuals are updated
to reflect the changes in the boosting regression model, and a new tree is then
fit to the new residuals, proceeding up to a given number of steps. Each term
of the resulting regression model thus consists of a tree, and each tree fits the
residuals of the prediction of all previous trees combined. The additive weighted
expansions of trees can eventually produce an excellent fit of the predicted values
to the observed values, even if the specific nature of the relationships between
the predictor variables and the dependent variable of interest is very complex
(i.e., nonlinear in nature).

4 Experimental Validation

To validate the proposed approach, we used a dataset2 made available in the
context of the ArnetMiner project, which encodes citation information between
academic publications listed in the DBLP service [15]. The dataset contains
information about 1,572,277 papers published until August 2011, having a total

2 Available at http://www.arnetminer.org/citation .

http://www.arnetminer.org/citation
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ACM DL for the papers in the dataset

●
●

● ● ●

Link & Paper Distribution in DBLP

Years

lo
g
(l
in

ks
/p

a
p
e
rs

)

2007 2008 2009 2010 20111
3
.5

1
5

1
6

● Total Links
Total Papers

Fig. 3. Distribution for the links and
the total number of papers

of 2,084,019 citation relationships. We also enriched the original ArnetMiner
dataset with information about the number of downloads associated to each
paper, by collecting this information in January 2012 from the ACM Digital
Library service. We collected download information for a total of 17,973 papers.
Figure 2 presents the distribution for the number of papers associated with a
given number of downloads, while Figure 3 presents the number of papers and
the number of citations, collected for each different year.

The dataset was split into five different groups, thus generating five graphs,
corresponding to citations between papers published until the years of 2007,
2008, 2009, 2010 and 2011, respectively. PageRank scores were computed for
each of these five graphs. We then evaluated our results on the tasks of (i)
predicting the PageRank scores for the years of 2010 and 2011, based on the
PageRank scores from the previous k years (with 1 ≤ k ≤ 3), and (ii) predicting
the number of downloads for papers in 2012, based on the PageRank scores
from the most recent and from the previous k years. In terms of the prediction
method, we used an implementation of the IGBRT algorithm that is provided by
the RT-Rank project3 [11]. Table 1 presents a brief statistical characterization of
the DBLP dataset and of the five considered yearly graphs, showing the number
of publications, citations, and authors per year.

To measure the quality of the results, we used Kendall’s τ rank correlation
coefficient [8], which consists of a non-parametric rank statistic that captures the
strength of the association between two variables, with sample size n. Kendall’s
τ rank correlation coefficient is given by the formula below:

τ =
|concordant pairs| − |discordant pairs|

1
2n(n− 1)

(3)

Kendall’s τ rank correlation coefficient varies from +1 through −1, being +1 if
the two rankings are equal and −1 if they are the exact opposite.

We also used Spearman’s Rank Correlation Coefficient to measure the quality
of the obtained results [14]. In this case, if X1 and X2 are two variables with
corresponding ranks x1,i and x2,i, and if n is the sample size, then their Spearman
Rank Correlation Coefficient is given by the following equation:

ρ = 1− 6×∑n
i=1(x1,i − x2,i)

2

n(n2 − 1)
(4)

3 Available at https://sites.google.com/site/rtranking/

https://sites.google.com/site/rtranking/


Predicting the Future Impact of Academic Publications 373

As in the case of Kendall’s τ , the Spearman correlation corresponds to a
value between +1 and −1. Notice that Kendall’s τ penalizes dislocations in the
ranked lists independently of the distance of the dislocation, whereas Spearman’s
ρ does this through the square of the distance. Thus, Kendall’s τ penalizes two
independent swaps as much as two sequential swaps, while Spearman’s ρ gives
a stronger penalty to the latter than to the former. Both Spearman’s ρ and
Kendall’s τ measure the quality of the ranked lists independently of the actual
impact scores that are produced as estimates (i.e., only the relative ordering is
taken into account).

In order to measure the accuracy of the prediction models, we used the nor-
malized root-mean-squared error (NRMSE) metric between our predictions and
the actual ranks, which is given by the following formula:

NRMSE =

√∑n
i=1(x1,i−x2,i)2

n

xmax − xmin
(5)

In the formula, xmin and xmax correspond, respectively, to the minimum and
maximum values observed in the sample of objects being predicted, and n corre-
sponds to the sample size. We also used the Mean Absolute Error (MAE) metric,
which in turn corresponds to the formula bellow, where x1,i corresponds to the
prediction and x2,i to the real value:

MAE =
1

n

n∑

i=1

|x1,i − x2,i| (6)

Tables 2 and 3 present the obtained results, respectively for the prediction of
the PageRank scores for the years of 2010 and 2011, and for the prediction of
the number of downloads for each paper in the dataset.

Considering the prediction of the PageRank scores for the year of 2010, both
models (i.e., the Age Model and the Text Model) have provided very similar
results. Both models are also improved if we consider more input information
(i.e., comparing the three groups of features and also within the same groups,

Table 1. Statistical characterization of the DBLP dataset

Papers Papers Average
with with Terms

Publications Citations Authors Downloads Abstract Per Paper

Overall 1,572,277 2,084,019 601,339 17,973 529,498 104

2007 135,277 1,150,195 330,001 15,516 343,837 95
2008 146,714 1,611,761 385,783 17,188 419,747 98
2009 155,299 1,958,352 448,951 17,973 504,900 101
2010 129,173 2,082,864 469,719 17,973 529,201 103
2011 8,418 2,083,947 469,917 17,973 529,498 104
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the quality of the results improves consistently). Only for the set of features
that combines the PageRank score of one previous year (Rank k = 1) with
its respective PageRank Change Rate (Racer) and the average and maximum
PageRank score of the author (Auth), the Age Model is outperformed by the Text
Model. Comparing the error rate for the same year, one can acknowledge that,
for both models, as we add more information, the error rate increases, causing a
deviation in the results. Nevertheless, for the first two groups of features, the Text
Model has a lower error rate than the Age Model, while the opposite happens
for the third group of features. Having computed the absolute error for all the
groups of features in both models, the results show that, on average, the Text
Model has always a lower absolute error than the Age Model.

For the year of 2011, as we add more information to the models, the Text
Model outperforms the Age Model, as shown in the last two sets of features from
the third group, i.e., PageRank score, Rank Change Rate score and Average and
Maximum PageRank scores of all publications having an author in common with
the set of authors of the publication. Also, in the scenario in which the models
only have information about the immediately previous PageRank score, the Age
Model is again outperformed by the Text Model. Nevertheless, when considering
the error rate for both models for the year of 2011, the Text Model has an overall
higher error rate than the Age Model, showing that, even though the quality of
the predicted results is lower in the Age Model, the rankings are more accurate.

As occurred in the computation of the absolute error for the year 2010, in all
the groups of features in both models, the results for the year of 2011 show that,
on average, the Text Model has a lower NRMSE than the Age Model.

Table 2. Results for the prediction of future impact scores. Highlighted in bold are
the best results for each metric, according to group of features, and for each year.

PageRank 2010 PageRank 2011
Model Features ρ τ NRMSE ρ τ NRMSE

Age

Rank k = 1 0.97251 0.91640 0.00032 0.99299 0.98371 0.00011
Rank k = 2 0.98365 0.93819 0.00062 0.99991 0.99948 0.00001
Rank k = 3 0.98907 0.95064 0.00064 0.99990 0.99938 0.00048
Racer + Rank k = 1 0.97245 0.91736 0.00035 0.99989 0.99940 0.00023
Racer + Rank k = 2 0.98371 0.93876 0.00065 0.99990 0.99930 0.00016
Racer + Rank k = 3 0.98887 0.94937 0.00066 0.99524 0.98662 0.00055
Auth + Racer + Rank k = 1 0.96752 0.90985 0.00054 0.99985 0.99945 0.00025
Auth + Racer + Rank k = 2 0.98405 0.93555 0.00083 0.99984 0.99934 0.00030
Auth + Racer + Rank k = 3 0.98925 0.94687 0.00070 0.99380 0.98285 0.00053

Text

Rank k = 1 0.97087 0.91017 0.00036 0.99921 0.99797 0.00025
Rank k = 2 0.98310 0.93104 0.00063 0.99980 0.99924 0.00045
Rank k = 3 0.98869 0.94515 0.00063 0.99950 0.99834 0.00058
Racer + Rank k = 1 0.97112 0.90989 0.00055 0.99943 0.99845 0.00016
Racer + Rank k = 2 0.98320 0.93144 0.00067 0.99973 0.99907 0.00019
Racer + Rank k = 3 0.98880 0.94701 0.00067 0.99941 0.99807 0.00064
Auth + Racer + Rank k = 1 0.97052 0.99845 0.00016 0.99970 0.99906 0.00025
Auth + Racer + Rank k = 2 0.98370 0.99907 0.00019 0.99986 0.99934 0.00028
Auth + Racer + Rank k = 3 0.98884 0.99807 0.00064 0.99988 0.99939 0.00070
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Regarding the prediction of download numbers, one can acknowledge that the
Text Model shows evidence of better results. Moreover, in the Age Model, we can
verify that adding information about PageRank Change Rates to the previous
PageRank scores affects the results negatively, while combining previous PageR-
ank scores with PageRank Change Rates, and average and maximum PageRank
score of the author, provides better results, as well as, a lower error rate. From
this fact, we can conclude that the Age Model provides a more accurate predic-
tion as it includes more information, while the opposite happens in all groups
of the Text Model (i.e., within the same group, as we add more information to
the model, the quality of the results decreases, even though they are far better
than the corresponding results in the Age Model).

We can also verify that the Age Model, for the groups of features that only in-
clude previous PageRank scores, and for the ones that combine previous PageR-
ank scores with PageRank Change Rates and average and maximum PageRank
score of the author, have a lower error rate than the corresponding groups in
the Text Model. Even though with better overall results, the Text Model has a
greater error rate than the Age Model for the prediction of download numbers.
In what concerns the MAE, the results showed that, overall, the Text Model has
a lower absolute error rate than the Age Model, in all groups except for the third.

From the results in Tables 2 and 3, we can see that predicting the number of
downloads is a harder task than predicting the future PageRank scores. Also,
predicting the future PageRank scores for 2011 turned out to be easier than
making the same prediction for the year of 2010, which may be due to the
combination of some aspects, namely the fact that we naturally took more papers
into account while predicting the future PageRank scores for 2011 (i.e., we used

Table 3. Results for the prediction of future download numbers. Highlighted in bold
are the best results for each metric, according to group of features, and for each year.

Model Features ρ τ NRMSE MAE

Age

Rank k = 1 0.38648 0.27430 0.00806 31.78320
Rank k = 2 0.42215 0.30015 0.00310 28.29388
Rank k = 3 0.43232 0.30810 0.00292 25.6090
Racer + Rank k = 1 0.43966 0.30766 0.00767 30.14214
Racer + Rank k = 2 0.33702 0.47472 0.00784 29.38590
Racer + Rank k = 3 0.33134 0.46124 0.00883 27.01311
Auth + Racer + Rank k = 1 0.33776 0.25584 0.01547 37.21956
Auth + Racer + Rank k = 2 0.53355 0.38949 0.00881 28.10313
Auth + Racer + Rank k = 3 0.54069 0.39625 0.00786 25.62784

Text

Rank k = 1 0.52502 0.38370 0.00912 39.33091
Rank k = 2 0.52612 0.38496 0.00913 39.30055
Rank k = 3 0.50600 0.36748 0.00932 36.39041
Racer + Rank k = 1 0.53254 0.38880 0.00912 39.33073
Racer + Rank k = 2 0.52240 0.38230 0.00913 39.30457
Racer + Rank k = 3 0.50874 0.37034 0.00932 36.39390
Auth + Racer + Rank k = 1 0.57098 0.42348 0.00912 39.30848
Auth + Racer + Rank k = 2 0.56513 0.41801 0.00913 39.29639
Auth + Racer + Rank k = 3 0.56090 0.41486 0.00932 36.36546
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more 20,768 papers than in 2010) providing, therefore, more information to the
models, for training and for testing.

In sum, we have shown that the proposed framework based on ensemble re-
gression models, offers accurate predictions, providing an effective mechanism to
support the ranking of papers in academic digital libraries.

5 Conclusions and Future Work

In this paper, we proposed and evaluated methods for predicting the future im-
pact of academic publications, based on ensemble regression models. Using a
set of successive past top-k impact rankings, obtained through the PageRank
graph-ranking algorithm, we studied the evolution of publications in terms of
their impact trend sequences, effectively learning models to predict the future
PageRank scores, or to predict the future number of downloads for the publica-
tions. Results obtained over a DBLP citation dataset, covering papers published
in years up to 2011, show that the predictions are accurate for all experimental
setups, with a model that uses features relative to PageRank scores, PageRank
change rates, and author PageRank scores from the three previous impact rank-
ings, alongside with the term frequency of the top 100 most frequent tokens in
the abstracts and titles of the publications, obtaining the best results.

Despite the interesting results, there are also many ideas for future work.
Our currently ongoing work is focusing on the application of the prediction
mechanism to other impact metrics, perhaps better suited to academic citation
networks. A particular example is the CiteRank method, which is essentially
a modified version of PageRank that explicitly takes paper’s age into account,
in order to address the bias in PageRank towards older papers, which accumu-
late more citations [18]. Another interesting example of an impact metric for
publications would be the Affinity Index Ranking mechanism proposed by Kaul
et al., which models graphs as electrical circuits and tries to find the electrical
potential of each node in order to estimate its importance [7]. We also plan on
experimenting with the application of the proposed method in the context of
networks encoding information from other domains, particularly on the case of
online social networks (i.e., predicting the future impact of blog postings or twit-
ter users) and location-based online social networks (i.e., predicting the future
impact of spots and/or users in services such as FourSquare).
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