
Online SLAM Based on a Fast Scan-Matching

Algorithm

Eurico Pedrosa, Nuno Lau, and Artur Pereira

University Of Aveiro,
Institute of Electronics and Telematics Engineering of Aveiro, Portugal

{efp,nunolau,artur}@ua.pt

http://www.ieeta.pt

Abstract. This paper presents a scan-matching approach for online si-
multaneous localization and mapping. This approach combines a fast
and efficient scan-matching algorithm for localization with dynamic and
approximate likelihood fields to incrementally build a map. The achiev-
able results of the approach are evaluated using an objective benchmark
designed to compare SLAM solutions that use different methods. The
result is a fast online SLAM approach suitable for real-time operations.

Keywords: scan-matching, localization, mapping, simultaneous localiza-
tion and mapping (SLAM), real-time.

1 Introduction

A basic requirement of an autonomous service robot is the capability to selflocal-
ize in the real-world indoor and domestic environment where it operates. These
type of environments are typically dynamic, cluttered and populated by humans
(e.g. Figure 1). Not only should the robot act adequately and in due time to
the perceived dynamic changes in the environment, it should also be robust to
inconsistencies between the collected sensorial information and its internal world
representation. The latter is of utmost importance for localization in dynamic
environments like the ones already mentioned.

Providing the robot with the required representation of the environment (i.e.
obstacles, free space and unknown space) can be a cumbersome task, even un-
feasible, when done manually. Simultaneous Localization and Mapping (SLAM)
provides the means towards a truly autonomous robot, by minimizing manual in-
put. A robot carrying out SLAM has, in principle, the capability to autonomously
construct an internal representation (or map) of the environment. The resulting
map captures the structure of the environment that have been sensed at least
once.

A common approach to SLAM in real-world applications is to manually direct
the robot through the environment while collecting the acquired sensory infor-
mation. The collected data is then processed offline to construct a representation
of the world that can be used by the robot for localization in subsequent tasks.
However, there are several tasks that require the robot to construct its internal
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Fig. 1. Example of scan acquired in an office space

representation of the environment during operation, like, for instance, following
a person through unknown space. The applied algorithm needs to be efficient
so that it can be used during operation and to allow for further sensor data
processing in real-time.

In this paper, we present a fast and practical online SLAM algorithm suitable
for real-time usage. The overall algorithm is based on a fast, scan-matching
based, localization algorithm for mobile robots. The remainder of this paper is
organized as follow: in the next section related work is presented; in section 3
the localization algorithm is described; in section 4 the necessary changes and
additions to the base localization algorithm for performing SLAM are detailed;
section 5 presents practical experiments and adequate evaluation of the proposed
SLAM algorithm; finally, section 6 presents the conclusion of this paper.

2 Related Work

There has been a fair amount of research into the SLAM problem in the last two
decades. The probabilistic SLAM trend provide us with solutions that explicitly
handle uncertainties about pose estimations and sensory information by esti-
mating a probability distribution over the potential solutions. Example of such
approaches are the Extended Kalman Filters (EKFs) [17], Unscented Kalman
Filters (UKFs) [3], Sparse Extended Information Filters (SEIFs) [25], and Rao-
Blackwellized Particle Filters (RBPFs) [9]. Notwithstanding their robust and
accurate results, the necessary computational effort makes it difficult to use the
previous techniques for real-time applicability.

SLAM algorithms based on graphs [10,21] compose the problem in terms of
a graph where nodes are poses of the robot during mapping and edges are spa-
cial constraint between the nodes. They are typically data association problem
solvers with highly efficient algorithms used to find the most probable configu-
ration of nodes given their constraints.
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Iterative Closest Point (ICP) [26] and Iterative Closest Line (ICL) (e.g. [2])
are widely used in scan-matching. They both try to find the rigid-body trans-
formation that best align the reference and the query points. Lu and Milios [18]
describe methods using ICP and LIDAR scans for localization and map build-
ing. Peter Biber proposed the Normal Distribution Transform (NDT) [1] for
SLAM. Using a grid map, a normal distribution is assigned to each cell which
locally models the probability of measuring a point. This representation is then
used for localization, making use of a gradient descent algorithm, and incre-
mentally building a map. Holz et al. [11] proposed a fast ICP-based method
for SLAM. It is based on range image registration using ICP and sparse point
maps. Kohlbrecher et al. [12] proposed the combination of scan-matching using
a LIDAR system with a 3D attitude estimation. A multi-resolution occupancy
grid maps and approximation of map gradients are used for 2D localization and
mapping.

3 The Perfect Match Algorithm

The original Perfect Match (PM) algorithm was developed by Lauer et al. [16] to
provide a robust real time self-localization, in a highly dynamic but structured
environment, to a mobile robot using a camera system to sense the world.

To the best of our knowledge, an initial adaptation of PM to indoor local-
ization was proposed by Gouveia et al. [8] using range data from a LIDAR.
Cunha et al. [4] proposes the use of PM using depth information. Both follow
the original implementation of the algorithm with hand built maps that are not
practical for a general use because of the geometric diversity of indoor environ-
ments. Here, we assume that the provided map was built in an automatic way,
e.g. with SLAM. This can be seen as a prelude for map building using PM.

Without loosing the original properties of the algorithm, PM will be presented
within a probabilistic formulation, a trending and well grounded point of view
[24]. Furthermore, global localization and pose tracking will be omitted, for they
are not relevant to this paper.

3.1 Probabilistic Formulation

Let st be the robot state at time t, furthermore, let zt be the measurement at time
t. The control ut at time t determines the change of state in the time interval
(t − 1, t], and the map m models the environment. The posterior probability
p(st|z1:t, u1:t,m) is given by the following recursive update equation [23]:

p(st|z1:t, u1:t,m) = η p(zt|st,m)

∫
p(st|ut, st−1,m)

p(st−1|z1:t−1, u1:t−1,m)dst−1

, (1)

where η is a normalizer. Furthermore, assuming that the robot motion does
not depend of the map m, and assuming that st−1 is known at time t − 1, the
posterior for localization is:
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p(st|z1:t, u1:t,m) ∝ (p(zt|st,m)p(st|ŝt−1, ut)) . (2)

The first term, p(zt|st,m), is the observation model, and the second term,
p(st|ut, st−1), is the motion model.

The motion model p(st|ut, st−1) describes the probability of the robot pose st
after executing the control ut, that is, a probabilistic generalization of the robot
kinematics. This model is typically known in terms of a multivariate Gaussian.

The measurement model p(zt|st,m), physically models the sensors of the
robot. Assuming that the robot pose st and the map m are known, the mea-
surements model specifies the probability that zt is measured. It is common, for
sensors equipped in robots, to generates more than one measurement at time t.
Thus, the result calculation is the collection of probabilities p(zit|st,m), where zit
is the ith measurement. Assuming conditional independence between the mea-
surements, the resulting probability is given by:

p(zt|st,m) =
∏
i

p(zit|st,m) . (3)

3.2 Likelihood Field for Range Finders

The inception of PM has assumed scans extracted from processed images [19],
in a way it mimics a range finder (e.g. sonar or LIDAR). Therefore, using range
data from a LIDAR, a more precise sensor, is a change without cost.

The adopted model for measurement is the likelihood field [23]. It is a model
that lacks a plausible physical explanation, like the beam model [5]. However, it
works well in practice and its computation is more efficient.

While the beam model applies a ray casting function to find the “true” zi∗t
range of the object measured by zit, the likelihood field projects the endpoint
of zit into global coordinates of the map m to find the distance to the nearest
object. Let st = (x y θ)T denote the robot pose at time t, (xi,sens yi,sens)

T the
relative position of the sensor on frame of the robot, and θi,sens the angular
orientation of the sensor relative to the heading of the robot. The endpoint of
the measurement zit, in global coordinates, is given by the transformation T :

(
xzi

t

yzi
t

)
=

(
x
y

)
+

(
cos θ − sin θ
sin θ cos θ

)[(
xi,sens

yi,sens

)
+ zit

(
cos θi,sens
sin θi,sens

)]
(4)

The noise of the process is modeled by a probability density function (pdf)
that requires finding the nearest object in the map. Let Δi denote the Euclidean
distance between (xzi

t
yzi

t
)T and the nearest object in the map m. Then, mea-

surement noise can be modeled by

p(zit|st,m) = ηi
σ2

σ2 +Δ2
i

, (5)

a derivation of the error function presented in the original PM [16]. Furthermore,
the value measured by a range sensor is, in practice, bounded by the interval
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[0, zmax], where zmax is the maximum value that a measurement yields. Hence,
the normalizer η is given by

ηi =

(∫ zmax

0

σ2

σ2 +Δ2
i

dzit

)−1

. (6)

The value of Δi is computed by a search function defined by

D(xzi
t
, yzi

t
) = min

x′,y′

(√
(xzi

t
− x′)2 + (yzi

t
− y′)2 | 〈x′, y′〉occupied in m

)
. (7)

To speed up this search, D is a look-up table created by computing the Euclidean
distance transform of the map. First, the map is converted to a binary occupancy
map, then a simple and fast method is used to compute the distance transfor-
mation [7]. This method operates over discrete grids, therefore, the obtained
result is only an approximation. To improve this approximation an interpolation
scheme, using bilinear filtering, is employed to estimate a more accurate Δi [12].

3.3 Maximum Likelihood Pose Estimation

Themaximum likelihood approach for pose estimation, although non-probabilistic,
is simpler and easier to calculate than the posterior (1). The idea is simple: given
a measurement and odometry reading, calculate the most likely pose. Mathemat-
ically speaking, the st pose is obtained as the maximum likelihood estimate of (2):

ŝt = argmax
st

p(zt|st,m) p(st|ŝt−1, ut) (8)

To summarize, in time t− 1 the (non-probabilistic) estimate of ŝt−1 is given to
the robot. As ut is executed and a new zt is obtained, the most likely pose ŝt is
calculated by the robot.

In this approach ŝt is found using a gradient ascent algorithm in log likelihood
space. It is common to maximize the log likelihood instead of the likelihood
because it is mathematically easier to handle, and the maximization is justified
by the fact that it is a strict monotonic function. Thus, this approach tries to
calculate

ŝt = argmax
st

ln[p(zt|st,m) p(st|ŝt−1, ut)] . (9)

Taking advantage of the properties of the logarithm, this expression can be
decomposed into additive terms:

ŝt = argmax
st

ln p(zt|st,m) + ln p(st|ŝt−1, ut) . (10)

The required differentiation with respect to the pose st are:

∇stL = ∇st ln p(zt|st,m) +∇ ln p(st|ŝt−1, ut) , (11)

where L is the log likelihood. To simplify the calculation of ∇stL the motion
model, in this approach, is assumed to have constant probability, therefore the
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calculation of ∇ ln p(st|ŝt−1, ut) is not required. Consequently, the required gra-
dient is given by:

∇stL =∇st |zt| ln η + 2|zt| lnσ −
∑
i

ln(σ2 +Δ2)

=−
∑
i

2Δ

σ2 +Δ2
∇T D(xzi

t
, xzi

t
)T

[
1 0 (−x̂zi

t
sin θ − ŷzi

t
cos θ)

0 1 (x̂zi
t
cos θ − ŷzi

t
sin θ)

] , (12)

where (x̂zi
t
ŷzi

t
)T is the zit endpoint relative to the robot, and ∇T D(xzi

t
, xzi

t
) is

the gradient of the Euclidean distance transform with respect to T (see (4) ).
This gradient can not be presented in closed form, but is calculated with the
sobel operator.

The gradient ascent maximizes the log likelihood interactively changing the
pose st in the direction of the gradient. The aforementioned maximization is
computed with the RPROP algorithm [22], which is capable of providing prac-
tical result in 10 iterations.

4 Mapping with Perfect Match

Mapping is the problem of generating a map from measurement values, which
can be easy to execute if done with known locations [23]. The localization prob-
lem with a map is also relatively simple. However when both are combined the
problem has a much higher dimensionality, one could argue that the problem
has infinite dimensions [24].

The PM is a fast and robust algorithm for localization based on scan-matching.
This type of algorithm has already been augmented for SLAM (e.g. [18,12]).
Thus, knowing that PM is fast (i.e. execution times of about 1ms in our exper-
iments), the goal is to create an also fast and practical online SLAM solution
using PM.

4.1 Concurrent Mapping and Localization

To construct the map, a function for incrementally building maps with knowl-
edge of the poses of the robot is required. The function m̂(s1:t, z1:t) is used to
incrementally build the map as a probabilistic occupancy grid [6,20].

Let us follow the same probabilistic framework presented for localization. By
augmenting the state s that is being estimated by the map m, and maintaining
the same assumptions already made, the posterior can be defined by:

p(st, m̂(s1:t, z1:t)|z1:t, u1:t) ∝ p(zt|st, m̂(s1:t, z1:t))p(st|ŝt−1, ut) . (13)

The change of m by m̂(s1:t, z1:t) also propagates to the estimation of the robot
pose ŝt (see subsection 3.3). The implication of this formulation, is that PM is
used for localization using the map constructed so far, i.e. m̂(s1:t−1, z1:t−1).

The initial distribution p(s,m) is not known, but it is straightforward. The
initial pose is set to s = 〈0, 0, 0〉, and the occupancy grid that models the map
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is initialized with an uniform prior. However, by having an uniform map the
localization would fail at the very first execution due to the lack of a reference.
Therefore, the first estimation of the robot pose ŝ is equal to the initial s.

4.2 Dynamic Likelihood Field

PM requires a known map to work, and its speed relies in the use of the likelihood
field model and the RPROP algorithm. In essence, the computation of the robot
pose st with PM is the result of several transformations T for table look-ups
(likelihood field) during the RPROP iterations to find a local maximum. The
created tables are static over time, therefore, the overhead time introduced by
their creation is negligible because it happens only once.

In the presented approach the map is built incrementally, thus as a result,
the map changes over time and the static assumption falls through. For the
PM to work, each time the map changes the Euclidean distance map D and
gradient must be recalculated. For small maps their computation time can be
ignored, however, as the map grows in dimension PM looses its fast and real-time
“badges”.

To solve the execution time degradation a dynamic update of the Euclidean
distance map is employed. Let D̂ denote the Euclidean distance map with relation
to m̂(s1:t, z1:t). The implemented algorithm was presented by Lau et al. [15], and
it seek to update only the cells affected by the change of state (i.e. from occupied
to free or vice versa) of the cells involved in the update of the map. Additionally,
the same interpolation scheme used in section 3.2 is employed.

The gradient ∇T D̂(xzi
t
, yzi

t
) also needs to be calculated. Applying a sobel

operator each time D̂ changes creates the same kind of temporal overhead already
discussed for updatingD. The adopted solution is the one presented in [12], where
the gradient is an interpolation of the difference of the four closest samples in
the map along x- and y-axis.

5 Experiments and Evaluation

The initial experiments were carried out on an office type environment dataset
with a fair amount of clutter, chairs and tables, and people walking. The legs
of the chairs and tables create a considerable amount of misreadings from the
LIDAR. It has a long corridor, but it lacks a loop. The obtained map was visually
compared with a map generated with GMapping (see Figure 2), a state-of-the-art
RBPF implementation [9], and both are very similar, meaning that our proposal
can achieve practical results. However since it is a subjective evaluation, further
tests were done.

Kümmerle et al. [14] proposes an objective benchmark for evaluating SLAM
solutions. Instead of using the map itself in the evaluation procedure, the poses
of the robot during data acquisition are used. The benchmark allows to compare
different algorithm independently of the type of map representation they use,
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(a) Map built with GMapping.

(b) Map built with the proposed approach.

Fig. 2. Visual comparison of the same map built from the same dataset but with
different SLAM approaches

such as occupancy grids or feature maps. The metric is based on relative dis-
placement between robot poses δi,j = sj � si instead of comparing poses in the
global coordinates. The comparison is made with the mean error in translation
ε̄trans and mean error in rotation ε̄rot calculated from the obtained trajectory
relation δi,j and the ground truth relation δ∗i,j :

ε(δ) =
1

N

∑
i,j

trans(δi,j � δ∗i,j)
2

︸ ︷︷ ︸
ε̄trans

+
1

N

∑
i,j

rot(δi,j � δ∗i,j)
2

︸ ︷︷ ︸
ε̄rot

, (14)

where the functions trans and rot draw the translational and rotational part of
(δi,j � δ∗i,j), respectively.

To compare the PM for map building described in section 4 with other SLAM
approaches, selected experiences from [14] were repeated using the datasets and
evaluation software available in [13]. The obtained results are summarized in
Table 1 and Table 2. The presented results also include the ones reported by
Kümmerle et al. [14] and Holz et al. [11].

For each one of the selected datasets, the ACES building at the University
of Texas in Austin (Figure 3a), the Intel Research Lab (Figure 3b), and the
Freiburg Building 079 (Figure 3c), a consistent map was built using the proposed
approach. The translational and rotational errors are, in the majority of the
cases, lower than those from the other approaches. Additionally, an approximate
distribution of the errors is visually presented in Figure 4 and Figure 5.

As expected, the PM algorithm for map building is also fast. The measured
execution time per scan (t̄scan) provides an approximate trend (see Figure 6)
showing that the proposed method can be applied online for most, if not all,
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Table 1. Quantitative results of different datasets/approaches on the absolute trans-
lational error

PM (proposed) ICP [11] Scanmatching [14] RBPF [14] GraphMapping [14]
ε̄trans/m ε̄trans/m ε̄trans/m ε̄trans/m ε̄trans/m

ACES 0.038 ± 0.036 0.060 ± 0.055 0.173 ± 0.614 0.060 ± 0.049 0.044 ± 0.044

INTEL 0.025 ± 0.037 0.043 ± 0.058 0.220 ± 0.296 0.070 ± 0.083 0.031 ± 0.026

FR79 0.037 ± 0.028 0.057 ± 0.043 0.258 ± 0.427 0.061 ± 0.044 0.056 ± 0.042

Table 2. Quantitative results of different datasets/approaches on the absolute rota-
tional error

PM (proposed) ICP [11] Scanmatching [14] RBPF [14] GraphMapping [14]
ε̄rot/def ε̄rot/deg ε̄rot/deg ε̄rot/deg ε̄rot/deg

ACES 0.55 ± 1.15 1.21 ± 1.61 1.2± 1.5 1.2± 1.3 0.4 ± 0.4

INTEL 1.03 ± 2.92 1.50 ± 3.07 1.7± 4.8 3.0± 5.3 1.3 ± 4.7

FR79 0.51 ± 0.74 1.49 ± 1.71 1.7± 2.1 0.6± 0.6 0.6 ± 0.6

(a) ACES (b) Intel (c) FR79

Fig. 3. Constructed occupancy grid maps for the three datasets using the proposed
approach. From visual inspection all maps all globally consistent.
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Fig. 4. Distribution of the translational errors of the proposed approach for the three
datasets



304 E. Pedrosa, N. Lau, and A. Pereira

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

rotational error (m)

%

(a) ACES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rotational error (m)

(b) Intel

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

rotational error (m)

%

(c) FR79

Fig. 5. Distribution of the rotational errors of the proposed approach for the three
datasets
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Fig. 6. Execution times of the proposed approach for the three datasets.

scans. The value of t̄scan has a tendency to decrease as more information about
the environment is added to the map. This can be explained by the fact that
revised areas of the environment introduce smaller changes to the map, resulting
in smaller updates to the Euclidean distance map D̂. There are other factors that
can influence t̄scan , including the number of measurements zit and their range,
the number of iterations performed by RPROP, the granularity of the map m̂ ,
and obviously the hardware used for computation. In the conducted experiments,
a MacBook Pro with an Intel Core i7 2.8GHz and 4GB of RAM was used for the
construction of the maps with 0.05m of resolution updated with measurements
zt with a maximum range of 40m after 30 optimizations of RPROP.

It should also be noticed that no pre-processing was applied to the used
datasets, which was not true in the experiments of Kümmerle et al. [14] and
Holz et al. [11]. Instead, to cope with the unreliable odometry of the datasets,
shorter accumulated displacement, 0.01m for translation and 0.5rad for rotation,
was used as threshold for update. As result, smaller errors had to be handle.
For comparison, in the office dataset, an accumulated displacement of 1.0m for
translation and 0.5rad for rotation was used.

6 Conclusion

In this paper an incremental map building algorithm, based on the scan-matching
algorithm PM, was presented. Several modification were made to the original
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algorithm, including the use of a dynamic likelihood field capable of a fast adap-
tation to the changes of the map being builr, while maintaining the necessary
properties for the localization part of SLAM.

In the experimental evaluation, it is shown that the obtained results are com-
parable with those of the extensively used GMapping, and others, to construct
a suitable model of the perceived environment. Furthermore, the resulting exe-
cution times show that the method in question has run-time characteristics that
makes it practical for concurrent operations with real-time restrictions.
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