
Towards Practical Tabled Abduction in Logic Programs

Ari Saptawijaya� and Luı́s Moniz Pereira

Centro de Inteligência Artificial (CENTRIA), Departamento de Informática
Faculdade de Ciências e Tecnologia, Univ. Nova de Lisboa, 2829-516 Caparica, Portugal

ar.saptawijaya@campus.fct.unl.pt, lmp@fct.unl.pt

Abstract. Despite its potential as a reasoning paradigm in AI applications, ab-
duction has been on the back burner in logic programming, as abduction can be
too difficult to implement, and costly to perform, in particular if abductive so-
lutions are not tabled. If they become tabled, then abductive solutions can be
reused, even from one abductive context to another. On the other hand, current
Prolog systems, with their tabling mechanisms, are mature enough to facilitate
the introduction of tabling abductive solutions (tabled abduction) into them. The
concept of tabled abduction has been realized recently in an abductive logic pro-
gramming system TABDUAL. Besides tabling abductive solutions, TABDUAL also
relies on the dual transformation. In this paper, we emphasize two TABDUAL

improvements: (1) the dual transformation by need, and (2) a new construct for
accessing ongoing abductive solutions, that permits modular mixes between ab-
ductive and non-abductive program parts. We apply subsequently these improve-
ments on two distinct problems, and evaluate the performance and the scalability
of TABDUAL on several benchmarks on the basis of these problems, by examining
four TABDUAL variants.

Keywords: tabled abduction, abductive logic programming, tabled logic pro-
gramming, dual transformation.

1 Introduction

Abduction has already been well studied in the field of computational logic, and logic
programming in particular, for a few decades by now [1, 3, 4, 8]. Abduction in logic
programs offers a formalism to declaratively express problems in a variety of areas,
e.g. in decision-making, diagnosis, planning, belief revision, and hypothetical reasoning
(cf. [2, 5, 9–11]). On the other hand, many Prolog systems have become mature and
practical, and thus it makes sense to facilitate the use of abduction into such systems.

In abduction, finding some best explanations (i.e. abductive solutions) to the ob-
served evidence, or finding assumptions that can justify a goal, can be very costly. It is
often the case that abductive solutions found within a context are relevant in a different
context, and thus can be reused with little cost. In logic programming, absent of abduc-
tion, goal solution reuse is commonly addressed by employing a tabling mechanism.
Therefore, tabling is conceptually suitable for abduction, to deal with the reuse of ab-
ductive solutions. In practice, abductive solutions reuse is not immediately amenable to

� Affiliated with Fakultas Ilmu Komputer at Universitas Indonesia, Depok, Indonesia.

L. Correia, L.P. Reis, and J. Cascalho (Eds.): EPIA 2013, LNAI 8154, pp. 223–234, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

224 A. Saptawijaya and L.M. Pereira

tabling, because such solutions go together with an ongoing abductive context. It also
poses a new problem on how to reuse them in a different but compatible context, while
catering as well to loops in logic programs, i.e. positive loops and loops over negation,
now complicated by abduction.

A concept of tabled abduction in abductive normal logic programs, and its prototype
TABDUAL, to address the above issues, was recently introduced [16]. It is realized via
a program transformation, where abduction is subsequently enacted on the transformed
program. The transformation relies on the theory of the dual transformation [1], which
allows one to more efficiently handle the problem of abduction under negative goals,
by introducing their positive dual counterparts. We review TABDUAL in Section 2.

While TABDUAL successfully addresses abductive solution reuse, even in different
contexts, and also correctly deals with loops in programs, it may suffer from a heavy
transformation load due to performing the complete dual transformation of an input
program in advance. Such heavy transformation clearly may hinder its practical use in
real world problems. In the current work, we contribute by enacting a by-need dual
transformation, i.e. dual rules are only created as they are needed during abduction,
either eagerly or lazily – the two approaches we shall examine. We furthermore en-
hance TABDUAL’s flexibility by introducing a new system predicate to access ongoing
abductive solutions, thereby permitting modular mixes of abductive and non-abductive
program parts. These and other improvements are detailed in Section 3.

Until now there has been no evaluation of TABDUAL, both in terms of performance
and scalability, as to gauge its suitability for likely applications. In order to understand
better the influence of TABDUAL’s features on its performance, we separately factor
out its important features, resulting in four TABDUAL variants of the same underlying
implementation. One evaluation uses the well-known N -queens problem, as the prob-
lem size can be easily scaled up and in that we can additionally study how tabling of
conflicts or nogoods of subproblems influences the performance and the scalability of
these variants. The other evaluation is based on an example from declarative debug-
ging, previously characterized as belief revision [13, 14]. The latter evaluation reveals
the relative worth of the newly introduced dual transformation by need. We discuss all
evaluation results in Section 4, and conclude in Section 5.

2 Tabled Abduction

A logic rule has the form H ← B1, . . . , Bm, not Bm+1, . . . , not Bn, where n ≥ m ≥
0 and H,Bi with 1 ≤ i ≤ n are atoms. In a rule, H is called the head of the rule and
B1, . . . , Bm, not Bm+1, . . . , not Bn its body. We use ‘not’ to denote default negation.
The atom Bi and its default negation not Bi are named positive and negative literals,
respectively. When n = 0, we say the rule is a fact and render it simply as H . The atoms
true and false are, by definition, respectively true and false in every interpretation. A
rule in the form of a denial, i.e. with empty head, or equivalently with false as head,
is an integrity constraint (IC). A logic program (LP) is a set of logic rules, where non-
ground rules (i.e. rules containing variables) stand for all their ground instances. In this
work we focus on normal logic programs, i.e. those whose heads of rules are positive
literals or empty. As usual, we write p/n to denote predicate p with arity n.

Towards Practical Tabled Abduction in Logic Programs 225

2.1 Abduction in Logic Programs

Let us recall that abduction, or inference to the best explanation (a designation com-
mon in the philosophy of science [7, 12]), is a reasoning method, whence one chooses
hypotheses that would, if true, best explain observed evidence – whilst meeting any
prescribed ICs – or that would satisfy some query. In LPs, abductive hypotheses (or
abducibles) are named literals of the program having no rules, whose truth value is
not assumed initially. Abducibles can have parameters, but must be ground when ab-
duced. An abductive normal logic program is a normal logic program that allows for
abducibles in the body of rules. Note that the negation ‘not a’ of an abducible a refers
not to its default negation, as abducibles by definition lack any rules, but rather to an
assumed hypothetical negation of a.

The truth value of abucibles may be distinctly assumed true or false, through either
their positive or negated form, as the case may be, as a means to produce an abduc-
tive solution to a goal query in the form of a consistent set of assumed hypotheses that
lend support to it. An abductive solution to a query is thus a consistent set of abducible
ground instances or their negations that, when replaced by their assigned truth value ev-
erywhere in the program P , provides a model of P (for the specific semantics used on
P), satisfying both the query and the ICs – called an abductive model. Abduction in LPs
can be accomplished naturally by a top-down query-oriented procedure to identify an
(abductive) solution by need, i.e. as abducibles are encountered, where the abducibles
in the solution are leaves in the procedural query-rooted call-graph, i.e. the graph recur-
sively generated by the procedure calls from the literals in bodies of rules to the heads
of rules, and subsequently to the literals in the rule’s body.

2.2 Tabled Abduction in TABDUAL

Next, we recall the basics of tabled abduction in TABDUAL. Consider an abductive logic
program, taken from [16]:

Example 1. Program P1: q ← a. s← b, q. t← s, q.
where a and b are abducibles.

Suppose three queries: q, s, and t, are individually posed, in that order. The first
query, q, is satisfied simply by taking [a] as the abductive solution for q, and tabling it.
Executing the second query, s, amounts to satisfying the two subgoals in its body, i.e.
abducing b followed by invoking q. Since q has previously been invoked, we can benefit
from reusing its solution, instead of recomputing, given that the solution was tabled.
That is, query s can be solved by extending the current ongoing abductive context [b]
of subgoal q with the already tabled abductive solution [a] of q, yielding [a, b]. The
final query t can be solved similarly. Invoking the first subgoal s results in the priorly
registered abductive solution [a, b], which becomes the current abductive context of the
second subgoal q. Since [a, b] subsumes the previously obtained abductive solution [a]
of q, we can then safely take [a, b] as the abductive solution to query t. This example
shows how [a], as the abductive solution of the first query q, can be reused from an
abductive context of q (i.e. [b] in the second query, s) to another context (i.e. [a, b] in the
third query, t). In practice the body of rule q may contain a huge number of subgoals,

226 A. Saptawijaya and L.M. Pereira

causing potentially expensive recomputation of its abductive solutions and thus such
unnecessary recomputation should be avoided.

Tabled abduction is realized in a prototype TABDUAL, implemented in the most ad-
vanced LP tabling system XSB Prolog [19], which involves a program transformation
of abductive logic programs. Abduction can then be enacted on the transformed pro-
gram directly, without the need of a meta-interpreter. Example 1 already indicates two
key ingredients of the transformation: (1) abductive context, which relays the ongoing
abductive solution from one subgoal to subsequent subgoals, as well as from the head to
the body of a rule, via input and output contexts, where abducibles can be envisaged as
the terminals of parsing; and (2) tabled predicates, which table the abductive solutions
for predicates defined in the input program.

Example 2. The rule t← s, q from Example 1 is transformed into two rules:
tab(E)← s([], T), q(T,E). t(I, O)← tab(E), produce(O, I, E).

Predicate tab(E) is the tabled predicate which tables the abductive solution of t in its
argument E. Its definition, in the left rule, follows from the original definition of t. Two
extra arguments, that serve as input and output contexts, are added to the subgoals s and
q in the rule’s body. The left rule expresses that the tabled abductive solution E of tab
is obtained by relaying the ongoing abductive solution in context T from subgoal s to
subgoal q in the body, given the empty input abductive context of s (because there is no
abducible in the body of the original rule of t). The rule on the right expresses that the
output abductive solution O of t is obtained from the the solution entry E of tab and
the given input context I of t, via TABDUAL system predicate produce(O, I, E), that
checks consistency. The other rules are transformed following the same idea.

An abducible is transformed into a rule that inserts it into the abductive context. For
example, the abducible a of Example 1 is transformed into: a(I, O)← insert(a, I, O),
where insert(a, I, O) is a TABDUAL system predicate which inserts a into the input
context I , resulting in the output context O, while also checking consistency. The nega-
tion not a of the abducible a is transformed similarly, except that it is renamed into
not a in the head: not a(I, O)← insert(not a, I, O).

The TABDUAL program transformation employs the dual transformation [1], which
makes negative goals ‘positive’, thus permitting to avoid the computation of all ab-
ductive solutions, and then negating them, under the otherwise regular negative goals.
Instead, we are able to obtain one abductive solution at a time, as when we treat ab-
duction under positive goals. The dual transformation defines for each atom A and its
set of rules R in a program P , a set of dual rules whose head not A is true if and
only if A is false by R in the employed semantics of P . Note that, instead of having a
negative goal not A as the rules’ head, we use its corresponding ‘positive’ one, not A.
Example 3 illustrates only the main idea of how the dual transformation is employed
in TABDUAL and omits many details, e.g. checking loops in the input program, all of
which are referred in [16].

Example 3. Consider the following program fragment, in which p is defined as:
p← a. p← q, not r.

Towards Practical Tabled Abduction in Logic Programs 227

where a is an abducible. The TABDUAL transformation will create a set of dual rules for
p which falsify p with respect to its two rules, i.e. by falsifying both the first rule and
the second rule, expressed below by predicate p∗1 and p∗2, respectively:

not p(I, O)← p∗1(I, T), p∗2(T,O).
In the TABDUAL transformation, this rule is known as the first layer of the dual transfor-
mation. Notice the addition of the input and output abductive context arguments, I and
O, in the head, and similarly in each subgoal of the rule’s body, where the intermediate
context T is used to relay the abductive solution from p∗1 to p∗2.

The second layer contains the definitions of p∗1 and p∗2, where p∗1 and p∗2 are
defined by falsifying the body of p’s first rule and second rule, respectively. In case of
p∗1, the first rule of p is falsified by abducing the negation of a:

p∗1(I, O)← not a(I, O).
Notice that the negation of a, i.e. not a, is abduced by invoking the subgoalnot a(I, O).
This subgoal is defined via the transformation of abducibles, as discussed earlier. In case
of p∗2, the second rule of p is falsified by alternatively failing one subgoal in its body
at a time, i.e. by negating q or, alternatively, by negating not r.

p∗2(I, O)← not q(I, O). p∗2(I, O)← r(I, O).

Finally, TABDUAL transforms integrity constraints like any other rules, and top-goal
queries are always launched by also satisfying integrity constraints.

3 Improvements on TABDUAL

The number of dual rules for atom A, produced by a naive dual transformation, is gen-
erally exponential in the number of A’s rules, because all combinations of body literals
from the positive rules need to be generated. For complexity result of the core TABDUAL

transformation, the reader is referred to [17]. We propound here, for the first time, two
approaches of dual transformation by need, as a means to avoid a heavy TABDUAL

transformation load due to superfluous dual transformation. We also extend TABDUAL

features here with a new system predicate that allows accessing ongoing abductive so-
lutions for dynamic manipulation.

3.1 By-need Dual Transformation

By its very previous specification, TABDUAL performs a complete dual transformation
for every defined atom in the program in advance, i.e. as an integral part of the whole
TABDUAL transformation. This certainly has a drawback, as potentially massive dual
rules are created in the transformation, though only a few of them might be invoked
during abduction. That is unpractical, as real-world problems typically consist of a huge
number of rules, and such a complete dual transformation may hinder abduction to start
taking place, not to mention the compile time, and space requirements, of the large thus
produced transformed program.

One pragmatic and practical solution to this problem is to compute dual rules by
need. That is, dual rules are created during abduction, based on the need of the on-going

228 A. Saptawijaya and L.M. Pereira

invoked goals. The transformed program still contains the first layer of the dual transfor-
mation, but its second layer is defined using a newly introduced TABDUAL system pred-
icate, which will be interpreted by the TABDUAL system on-the-fly, during abduction,
to produce the concrete definitions of the second layer. Recall Example 3. The by-need
dual transformation contains the same first layer: not p(I, O)← p∗1(I, T), p∗2(T,O).
The second layer now contains, for each i ∈ {1, 2}, rule p∗i(I, O) ← dual(i, p, I, O).
The newly introduced system predicate dual/4 facilitates the by-need construction of
generic dual rules (i.e. without any context attached to them) from the i-th rule of p/1,
during abduction. It will also instantiate the generic dual rules with the provided argu-
ments and contexts, and subsequently invoke the instantiated dual rules.

Extra computation load that may occur during the abduction phase, due to the by-
need construction of dual rules, can be reduced by memoizing the already constructed
generic dual rules. Therefore, when such dual rules are later needed, they are available
for reuse and thus their recomputation can be avoided. We discuss two approaches for
memoizing generic dual rules; each approach influences how generic dual rules are
constructed:

– Tabling generic dual rules, which results in an eager construction of dual rules,
due to the local table scheduling employed by default in XSB. This scheduling
strategy may not return any answers out of a strongly connected component (SCC)
in the subgoal dependency graph, until that SCC is completely evaluated [19].
For instance, in Example 3, when p∗2(I, O) is invoked, all two alternatives of
generic dual rules from the second rule of p, i.e. p∗2(I, O) ← not q(I, O) and
p∗2(I, O)← r(I, O) are constructed before they are subsequently instantiated and
invoked. XSB also provides other (in general less efficient) table scheduling alter-
native, i.e. batched scheduling, which allows constructing only one generic dual
rule at a time before it is instantiated and invoked. But the choice between the two
scheduling strategies is fixed in each XSB installation, i.e. at present one cannot
switch from one to the other without a new installation. Hence, we propose the
second approach.

– Storing generic dual rules in a trie, which results in a lazy construction of dual
rules. The trie data structure in XSB allows facts to be stored in a tree representa-
tion, and is built from a prefix ordering of each fact; thus, in this case factors out
the common prefix of the (stored) facts [20]. In our context, facts are used to rep-
resent generic dual rules, which can be directly stored and manipulated in a trie.
This approach permits simulating batched scheduling within the local scheduling
employed by default in XSB. It hence allows constructing one generic dual rule at
a time, before it is instantiated and invoked, and memoizing it explicitly through
storing it in the trie for later reuse. By constructing only one generic dual rule at a
time, additional information to track through literal’s position, used in constructing
the latest dual rule, should then be maintained. All these steps are made possible
through XSB’s trie manipulation predicates.

3.2 Towards a More Flexible TABDUAL

TABDUAL encapsulates the ongoing abductive solution in an abductive context, which
is relayed from one subgoal to another. In many problems, it is often the case that one

Towards Practical Tabled Abduction in Logic Programs 229

needs to access the ongoing abductive solution in order to manipulate it dynamically,
e.g. to filter abducibles using preferences. But since it is encapsulated in an abductive
context, and such context is only introduced in the transformed program, the only way
to accomplish it would be to modify directly the transformed program rather than the
original problem representation. This is inconvenient and clearly unpractical when we
deal with real world problems with a huge number of rules. We overcome this issue by
introducing a new system predicate abdQ(P) that allows to access the ongoing abduc-
tive solution and to manipulate it using the rules of P . This system predicate is trans-
formed by unwrapping it and adding an extra argument to P for the ongoing abductive
solution.

Example 4. Consider a program fragment: q ← r, abdQ(s), t. s(X)← v(X).
along with some other rules. Note that, though predicate s within system predicate
wrapper abdQ/1 has no argument, its rule definition has one extra argument for the
ongoing abductive solution. The tabled predicate qab in the transformed program would
be qab(E) ← r([], T1), s(T1, T1, T2), t(T2, E). That is, s/3 now gets access to the
ongoing abductive solution T1 from r/2, via its additional first argument. It still has
the usual input and output contexts, T1 and T2, respectively, in its second and third
arguments. Rule s/1 in P3 is transformed like any other rules.

The new system predicate abdQ/1 permits modular mixes of abductive and
non-abductive program parts. For instance, the rule of s/1 in P3 may naturally be
defined by some non-abductive program parts. Suppose that the argument of s rep-
resents the ongoing board configuration for the N -queens problem (i.e. the ongoing
abductive solution is some board configuration). Then, the rule of s/1 can be instead,
s(X) ← prolog(safe(X)), where the prolog/1 wrapper is the existing TABDUAL

predicate to execute normal Prolog predicates, i.e. those not transformed by TABDUAL.
Predicate safe(X) can then be defined in the non-abductive program part, to check
whether the ongoing board configuration of queens is momentarily safe.

The treatment of facts in programs may also benefit from modular mixes of abductive
and non-abductive parts. As facts do not induce any abduction, a predicate comprised
of just facts can be much more simply transformed: only a bridge transformed rule for
invoking Prolog facts, is needed, which keeps the output abductive context equal to the
input one. The facts are listed, untransformed, in the non-abductive part.

4 Evaluation of TABDUAL

As our benchmarks do not involve loops in their representation, we employ in the eval-
uation the version of TABDUAL which does not handle loops in programs, such as
positive loops (e.g. program P1 = {p ← p.}), or loops over negation (e.g. program
P2 = {p ← not q. ; q ← p.}). Loops handling in TABDUAL and the evaluation per-
taining to that are fully discussed in [17]. For better understanding of how TABDUAL’s
features influence its performance, we consider four distinct TABDUAL variants (of the
same underlying implementation), obtained by separately factoring out its important
features:

230 A. Saptawijaya and L.M. Pereira

1. TABDUAL-need, i.e. without dual transformation by need,
2. TABDUAL+eager, i.e. with eager dual transformation by need,
3. TABDUAL+lazy, i.e. with lazy dual transformation by need, and
4. TABDUAL+lazy-tab, i.e. TABDUAL+lazy without tabling abductive solutions.

The last variant is accomplished by removing the table declarations of abductive predi-
cates ∗ab, where ∗ is the predicate name (cf. Example 2), in the transformed program.

4.1 Benchmarks

The first benchmark is the well-known N -queens problem, where abduction is used to
find safe board configurations of N queens. The problem is represented in TABDUAL as
follows (for simplicity, we omit some syntactic details):

q(0, N).
q(M,N)←M > 0, q(M − 1, N), d(Y), pos(M,Y), not abdQ(conflict).
conflict(BoardConf)← prolog(conflictual(BoardConf)).

with the query q(N,N) for N queens. Here, pos/2 is the abducible predicate represent-
ing the position of a queen, and d/1 is a column generator predicate, available as facts
d(i) for 1 ≤ i ≤ N . Predicate conflictual/1 is defined in a non-abductive program
module, to check whether the ongoing board configuration BoardConf of queens is
conflictual. By scaling up the problem, i.e. increasing the value of N , we aim at evaluat-
ing the scalability of TABDUAL, concentrating on tabling nogoods of subproblems, i.e.
tabling conflictual configurations of queens (essentially, tabling the ongoing abductive
solutions), influences scalability of the four variants.

The second benchmark concerns an example of declarative debugging. Our aim with
this benchmark is to evaluate the relative worth of the by-need dual transformation in
TABDUAL, with respect to both the transformation and the abduction time. Declarative
debugging of normal logic programs has been characterized before as belief
revision [13, 14], and it has been shown recently that they can also be viewed as ab-
duction [18]. There are two problems of declarative debugging: incorrect solutions and
missing solutions. The problem of debugging incorrect solution S is characterized by
an IC of the form← S, whereas debugging missing solution S by an IC of the form
← not S. Since with this benchmark we aim at evaluating the by-need dual transfor-
mation, we consider only the problem of debugging incorrect solutions (its form of IC
perforce constructs and invokes dual rules). The benchmark takes the following program
to debug, where the size n > 1 can easily be increased:

q0(0, 1). q0(X, 0).
q1(1). q1(X)← q0(X,X).
qn(n). qn(X)← qn−1(X).

with the IC:← qm(0), for 0 ≤ m ≤ n, to debug incorrect solution qm(0).

4.2 Results

The experiments were run under XSB-Prolog 3.3.6 on a 2.26 GHz Intel Core 2 Duo
with 2 GB RAM. The time indicated in all results refers to the CPU time (as an average
of several runs) to aggregate all abductive solutions.

Towards Practical Tabled Abduction in Logic Programs 231

4 5 6 7 8 9 10 11

Number of Queens (N)

0

5

10

15

20

Ti
m

e
(s

ec
.)

TABDUAL+lazy
TABDUAL+lazy-tab

Abduction Time N-queens

Fig. 1. The abduction time of different N queens.

N -queens. Since this benchmark is used to evaluate the benefit of tabling nogoods of
subproblems (as abductive solutions), and not the benefit of the dual by-need improve-
ment, we focus only on two TABDUAL variants: one with tabling feature, represented
by TABDUAL+lazy, and the other without it, i.e. TABDUAL+lazy-tab. The transforma-
tion time of the problem representation is similar for both variants, i.e. around 0.003
seconds. Figure 1 shows abduction time for N queens, 4 ≤ N ≤ 11. The reason that
TABDUAL+lazy performs worse than TABDUAL+lazy-tab is that the conflict constraints
in the N -queens problem are quite simple, i.e. consist of only column and diagonal
checking. It turns out that tabling such simple conflicts does not pay off, that the cost
of tabling overreaches the cost of Prolog recomputation. But what if we increase the
complexity of the constraints, e.g. adding more queen’s attributes (colors, shapes, etc.)
to further constrain its safe positioning?

Figure 2 shows abduction time for 11 queens with increasing complexity of the con-
flict constraints. To simulate different complexity, the conflict constraints are repeated
m number of times, where m varies from 1 to 400. It shows that TABDUAL+lazy’s per-
formance is remedied and, benefitting from tabling the ongoing conflict configurations,
it consistently surpasses the performance of TABDUAL+lazy-tab (with increasing im-
provement as m increases, up to 15% for m = 400). That is, it is scale consistent with
respect to the complexity of the constraints.

Declarative Debugging. Since our aim with this benchmark is to evaluate the relative
worth of the by-need dual transformation, we focus on three variants: TABDUAL-need,
TABDUAL+eager, and TABDUAL+lazy. We evaluate the benchmark for n = 600, i.e.
debugging a program with 1202 rules. After applying the declarative debugging trans-
formation (of incorrect solutions), which results in an abductive logic program, we ap-
ply the TABDUAL transformation. The TABDUAL transformation of variants employing
the dual transformation by need takes 0.4691 seconds (compiled in 3.3 secs with 1.5
MB of memory in use), whereas TABDUAL-need takes 0.7388 seconds (compiled in 2.6

232 A. Saptawijaya and L.M. Pereira

0 100 200 300 400

Multiple of Constraints (m)

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(s

ec
.)

TABDUAL+lazy
TABDUAL+lazy-tab

Abduction Time 11-queens: Multiple Constraints

Fig. 2. The abduction time of 11 queens with increasing complexity of conflict constraints

secs with 2 MB of memory in use). Whereas TABDUAL-need creates 1802 second layer
dual rules during the transformation, both TABDUAL+eager and TABDUAL+lazy creates
only 601 second layer dual rules in the form similar to that of Example 4. And during
abduction, the latter two variants construct only, by need, 60% of the complete second
layer dual rules produced by the other variant.

Figure 3 shows how the by-need dual transformation influences the abduction time,
where different values of m in the IC: ← qm(0) are evaluated consecutively, 100 ≤
m ≤ 600; in this way, greater m may reuse generic dual rules constructed earlier by
smaller m. We can observe that TABDUAL-need is faster than the two variants with the
dual transformation by need. This is expected, due to the overhead incurred for com-
puting dual rules on-the-fly, by need, during abduction. On the other hand, the overhead
is compensated with the significantly less transformation time: the total (transforma-
tion plus abduction) time of TABDUAL-need is 0.8261, whereas TABDUAL+eager and
TABDUAL+lazy need are 0.601 and 0.6511, respectively. That is, either dual by-need
approach gives an overall better performance than TABDUAL-need.

In this scenario, where all abductive solutions are aggregated, TABDUAL+lazy is
slower than TABDUAL+eager; the culprit could be the extra maintenance of the track-
ing information needed for the explicit memoization. But, TABDUAL+lazy returns the
first abductive solution much faster than TABDUAL+eager, e.g. at m = 600 the lazy
one needs 0.0003 seconds, whereas the eager one 0.0105 seconds. Aggregating all so-
lutions may not be a realistic scenario in abduction as one cannot wait indefinitely for
all solutions, whose number might even be infinite. Instead, one chooses a solution that
satisfices so far, and may continue searching for more, if needed. In that case, it seems
reasonable that the lazy dual rules computation may be competitive with the eager one.
Nevertheless, the two approaches may become options for TABDUAL customization.

Towards Practical Tabled Abduction in Logic Programs 233

100 200 300 400 500 600

m

0.01

0.02

0.03

0.04

0.05

Ti
m

e
(s

ec
.)

TABDUAL-need
TABDUAL+eager
TABDUAL+lazy

Abduction Time Declarative Debugging: n = 600

Fig. 3. The abduction time for debugging incorrect solution qm(0) (with n = 600)

5 Conclusion and Future Work

We introduced in TABDUAL two approaches for the dual transformation by need, and
enhanced it with a system predicate to access ongoing abductive solutions for dynamic
manipulation. Employing these improvements, we evaluated TABDUAL by factoring
out their important features and studied its scalability and performance. An issue that
we have touched upon the TABDUAL evaluation is tabling nogoods of subproblems
(as ongoing abductive solutions) and how it may improve performance and scalability.
With respect to our benchmarks, TABDUAL shows good scalability as complexity of
constraints increases. The other evaluation result reveals that each approach of the dual
transformation by need may be suitable for different situation, i.e. both approaches, lazy
or eager, may become options for TABDUAL customization.

TABDUAL still has much room for improvement, which we shall explore in the future.
We also look forward to applying TABDUAL, integrating it with other logic program-
ming features (e.g. program updates, uncertainty), to moral reasoning [6, 15].

Acknowledgements. Ari Saptawijaya acknowledges the support of FCT/MEC Portu-
gal, grant SFRH/BD/72795/2010. We thank Terrance Swift and David Warren for their
expert advice in dealing with implementation issues in XSB.

References

1. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in well-founded semantics and generalized
stable models via tabled dual programs. Theory and Practice of Logic Programming 4(4),
383–428 (2004)

2. de Castro, J.F., Pereira, L.M.: Abductive validation of a power-grid expert system diagnoser.
In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 838–
847. Springer, Heidelberg (2004)

234 A. Saptawijaya and L.M. Pereira

3. Denecker, M., Kakas, A.C.: Abduction in logic programming. In: Kakas, A.C., Sadri, F.
(eds.) Computat. Logic (Kowalski Festschrift). LNCS (LNAI), vol. 2407, pp. 402–436.
Springer, Heidelberg (2002)

4. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: semantics and complexity.
Theoretical Computer Science 189(1-2), 129–177 (1997)

5. Gartner, J., Swift, T., Tien, A., Damásio, C.V., Pereira, L.M.: Psychiatric diagnosis from the
viewpoint of computational logic. In: Palamidessi, C., et al. (eds.) CL 2000. LNCS (LNAI),
vol. 1861, pp. 1362–1376. Springer, Heidelberg (2000)

6. Han, T.A., Saptawijaya, A., Pereira, L.M.: Moral reasoning under uncertainty. In: Bjørner, N.,
Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 212–227. Springer, Heidelberg (2012)

7. Josephson, J.R., Josephson, S.G.: Abductive Inference: Computation, Philosophy, Technol-
ogy. Cambridge U. P. (1995)

8. Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In: Gabbay,
D., Hogger, C., Robinson, J. (eds.) Handbook of Logic in Artificial Intelligence and Logic
Programming, vol. 5. Oxford U. P. (1998)

9. Kakas, A.C., Michael, A.: An abductive-based scheduler for air-crew assignment. J. of Ap-
plied Artificial Intelligence 15(1-3), 333–360 (2001)

10. Kowalski, R.: Computational Logic and Human Thinking: How to be Artificially Intelligent.
Cambridge U. P. (2011)

11. Kowalski, R., Sadri, F.: Abductive logic programming agents with destructive databases.
Annals of Mathematics and Artificial Intelligence 62(1), 129–158 (2011)

12. Lipton, P.: Inference to the Best Explanation. Routledge (2001)
13. Pereira, L.M., Damásio, C.V., Alferes, J.J.: Debugging by diagnosing assumptions. In: Fritz-

son, P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 58–74. Springer, Heidelberg (1993)
14. Pereira, L.M., Damásio, C.V., Alferes, J.J.: Diagnosis and debugging as contradiction re-

moval in logic programs. In: Damas, L.M.M., Filgueiras, M. (eds.) EPIA 1993. LNCS
(LNAI), vol. 727, pp. 183–197. Springer, Heidelberg (1993)

15. Pereira, L.M., Saptawijaya, A.: Modelling Morality with Prospective Logic. In: Anderson,
M., Anderson, S.L. (eds.) Machine Ethics, pp. 398–421. Cambridge U. P. (2011)

16. Pereira, L.M., Saptawijaya, A.: Abductive logic programming with tabled abduction. In:
Procs. 7th Intl. Conf. on Software Engineering Advances (ICSEA), pp. 548–556. ThinkMind
(2012)

17. Saptawijaya, A., Pereira, L.M.: Tabled abduction in logic programs. Accepted as Technical
Communication at ICLP 2013 (2013), http://centria.di.fct.unl.pt/˜lmp/
publications/online-papers/tabdual lp.pdf

18. Saptawijaya, A., Pereira, L.M.: Towards practical tabled abduction usable in decision mak-
ing. In: Procs. 5th. KES Intl. Symposium on Intelligent Decision Technologies (KES-IDT).
Frontiers of Artificial Intelligence and Applications (FAIA). IOS Press (2013)

19. Swift, T., Warren, D.S.: XSB: Extending Prolog with tabled logic programming. Theory and
Practice of Logic Programming 12(1-2), 157–187 (2012)

20. Swift, T., Warren, D.S., Sagonas, K., Freire, J., Rao, P., Cui, B., Johnson, E., de Castro, L.,
Marques, R.F., Saha, D., Dawson, S., Kifer, M.: The XSB System Version 3.3.x vol.ume 1:
Programmer’s Manual (2012)

http://centria.di.fct.unl.pt/~lmp/publications/online-papers/tabdual_lp.pdf
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/tabdual_lp.pdf

	Towards Practical Tabled Abduction in Logic Programs
	1 Introduction
	2 Tabled Abduction
	2.1 Abduction in Logic Programs
	2.2 Tabled Abduction in

	3 Improvements on
	3.1 By-need Dual Transformation
	3.2 Towards a More Flexible

	4 Evaluation of
	4.1 Benchmarks
	4.2 Results

	5 Conclusion and Future Work
	References

