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Abstract. A binary classification algorithm, called Probabilistic Vector
Machine – PVM, is proposed. It is based on statistical measurements of
the training data, providing a robust and lightweight classification model
with reliable performance. The proposed model is also shown to provide
the optimal binary classifier, in terms of probability of error, under a set
of loose conditions regarding the data distribution. We compare PVM
against GEPSVM and PSVM and provide evidence of superior perfor-
mance on a number of datasets in terms of average accuracy and standard
deviation of accuracy.
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1 Introduction

In the field of supervised classification, linear binary discriminative classifiers
have long been a useful decision tool. Two representatives of this class are the
Perceptron, introduced in [7], and Support Vector Machines (SVM), introduced
in [19], [5], [20], which have been highly successful in tackling problems from
diverse fields, such as bioinformatics, malware detection and many others.

Binary classification problems have as input a training set, which we will
denote as S = {(xi, yi)|xi ∈ R

n, yi ∈ {±1}, i ∈ 1..m}, consisting of points
xi ∈ R

n and their labels yi ∈ {±1}. We will also denote by S+ = {xi ∈ S|yi = 1}
and by S− = {xi ∈ S|yi = −1} the positively and, respectively, negatively
labeled training points.

For an input training set a decision function, f : Rn → {±1}, is obtained,
for which the parameters are chosen according to the training set. This decision
function is later used to classify new examples, referred to as test examples.

Linear binary classifiers search for a hyperplane defined by its normal vector,
w ∈ R

n, and its offset b ∈ R. This hyperplane is used to define the decision
function as label(x) = sgn(< w, x > +b), thus assigning positive labels to the
points found in the positive semispace and negative labels to those found in the
negative semispace. The hyperplane is refered to as a separating hyperplane.

The focus of this paper is to introduce a binary classifier - named Probabilistic
Vector Machine (PVM) - which is based on statistical information derived from
the training data. This will provide a strong link to the generalization ability
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and a robust model that would be resilient to outliers. The mathematical mod-
eling should also allow for complete and efficient resolution of the optimization
problem.

The paper is structured as follows: related work in Section 2; model and moti-
vation in Section 3; kernel usage for nonlinear classification in Section 4; solution
for the proposed optimization problem in Section 5; test results in Section 6 and
conclusions in Section 7.

2 Related Work

Since the first linear binary classifier, the perceptron, was first introduced in [7]
many other classifiers using the same type of decision function have been intro-
duced. The differences among linear binary classifiers are given by the criteria for
choosing the separating hyperplane. SVM, introduced in [19], [5], [20], searches
for the separating hyperplane which maximizes the distance to the closest point
from the S+ and S− sets. It was originally developed only for the separable
case, in which conv(S+) ∩ conv(S−) = ∅, also referred to as the hard margin
SVM. However, this rather stringent constraint on the input was later relaxed
by allowing training errors, for which the objective is altered. This introduces
a tradeoff which is sometimes hard to balance and requires a grid search for
the parameters, where every combination of parameters is evaluated via a fold
procedure. This can be very time consuming.

SVMs are shown by Vapnik to be built upon the Structural Risk Minimiza-
tion (SRM) principle. Shortly after its introduction, it quickly outperformed the
existing classifiers as shown in domains such as pattern classification [15], text
processing [12], bioinformatics [17] and many others. The choice of the hyper-
plane as done by SVM has been shown to be relatable to the probability of error
in [3] and [4]. Some of the shortcomings of SVM stem from the fact that it bases
the hyperplane construction on the border elements of S+ and S−.

To address some of the limitations of SVMs, [9] introduces a bound on the
expected generalization error and subsequently uses this bound in [10] to develop
a classifier which minimizes this measure. This allows the separating hyperplane
to be built using information derived from the distribution of the entire training
set.

The bounds approach, however, produces optimization problems with non-
convex objectives. It leads to models which are difficult to solve efficiently. Cur-
rently, the methods based on error bounds resort to simple hill climbing, as the
optimization process can become very complicated if one aims at fully solving
the underlying problems.

A different approach is taken by [8], where the proximal support vector ma-
chines (PSVM) are introduced. PSVM uses two parallel hyperplanes in order to
label points. The label is attributed based on which of the two hyperplanes is
closer. This, of course, is equivalent to having a single separating hyperplane.
This approach eliminates the quadratic program and provides similar classifi-
cation ability. [16] later introduces the generalized eigenvalue proximal SVM
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(GEPSVM), a classification process based on two nonparallel hyperplanes. This
idea is further built upon in [11] by introducing the twin SVM (TSVM), where
two hyperplanes are used to represent the data. Later, [14] use the same idea
to introduce the least squares TSVM (LSTSVM) which also searches for two
nonparallel hyperplanes that minimize the distances introduced in [11] in a least
squares sense. [18] present a noise resistant variant of TSVM entitled robust
twin SVM (R-TWSVM) designed to correctly classify data that contains mea-
surement errors. The various versions that have been introduced in previous
years have also provided a incremental increase in clasiffication ability.

A detailed overview of some of the most popular classification techniques can
be found in [21] and [13].

3 Probabilistic Vector Machine

For a motivation of our model, let h = (w, b) ∈ R
n × R be a hyperplane in the

problem space. Let x ∈ R
n be a point whose actual label is y ∈ {±1}. The

probability of error may then be expressed as:

P (err) =P (y �= sgn(< w, x > +b))

=P ((y = 1) ∩ (< w, x > +b < 0))

+ P ((y = −1) ∩ (< w, x > +b > 0))

So the probability of error is the sum of the probabilities of false negatives (FN)
and false positives (FP). The objective proposed by PVM is the minimization
of the maximum between these two components. Specifically, the hyperplane
sought is:

(w, b) = arg(w,b)minmax{P ((y = 1) ∩ (< w, x > +b < 0)),

P ((y = −1) ∩ (< w, x > +b > 0))}
This choice is motivated by several arguments:

– In practical settings, the accuracy of a classifier is not the only measure. In
order to be of use, both FN and FP probabilities have to be low.

– The reduction of the two also leads to the reduction of their sum, although,
admittedly, sometimes not the lowest possible value. However, there is clearly
a strong link between minimizing the maximum of the two and minimizing
their sum.

– Minimizing the maximum of the two leads, under certain conditions, to a
mathematical model which can be solved with convex optimizers.

During the training stage of the problem we only have the S+ and S− to base
the choice of the hyperplane upon. Therefore, the probabilities for FN and FP
have to be related to these sets. The objective expressed using only S+ and S−
is expressed as:

(w, b) = arg(w,b)minmax{P ((< w, x > +b < 0)|x ∈ S+),

P ((< w, x > +b > 0)|x ∈ S−)} (3.1)
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Assume that the signed distances to the hyperplane are normally distributed.
Let E+, E− be the averages over the positive and, respectively, negative training
set. Let σ+, σ− be the respective standard deviations. Note that these are in fact
induced by the choice of the hyperplane. The probabilities can be expressed as
a function of the distance between the hyperplane and the average divided by
the corresponding σ±. The hyperplane coresponds to a signed distance of 0, so
if we denote by λ+ = E+

σ+
and λ− = −E−

σ−
, then we get:

P ((< w, x > +b < 0)|x ∈ S+) =
∫ −λ+

−∞ f(s)ds

P ((< w, x > +b > 0)|x ∈ S−) =
∫ −λ−
−∞ f(s)ds

where f : R → [0, 1] is the gaussian density of probability function. The objective
can then be stated as:

(w, b) = arg(w,b) minmax{−λ+,−λ−}
=arg(w,b) maxmin{λ+, λ−}

The condition that the distributions are normal can be replaced by a weaker
one.

Definition 1. Two random variables, D+ and D−, with means E+, E− and
standard deviations σ+, σ−, are called similarly negatively distributed if:

P (
D+ − E+

σ+
≤ −λ) = P (

D− + E−
σ−

≤ −λ), ∀λ ∈ [0,∞) (3.2)

This property obviously holds if D+ and D− are each normally distributed. It
also holds for random variables which are distributed simetrically and identically,
but with different means.

If the distances to the separating hyperplane have the property (3.2), then
the optimal hyperplane in terms of (3.1) can be found by optimizing:

(w, b) = arg(w,b) maxmin{E+

σ+
,−E−

σ−
}

Making the choice of the separating hyperplane in this way would yield signed
distance distributions as shown in Figure 1.

The standard deviation is then replaced by the average deviation, in order
to obtain a model to which convex optimization can be applied. This will be
the case for all σ definitions. The system that defines our problem is then be
expressed as: ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minmax{ σ+

E+
, σ−
E− }

1
|S+|

∑
xi∈S+

d(xi, h) = E+

− 1
|S−|

∑
xi∈S− d(xi, h) = E−

E+ > 0, E− > 0
σ+ = 1

|S+|−1

∑
xi∈S+

|d(xi, h)− E+|
σ− = 1

|S−|−1

∑
xi∈S− |d(xi, h) + E−|
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Fig. 1. Induced distance distributions. The hyperplane is sought such as to minimize
the maximum between the red and blue areas, which correspond to the FN and FP
probabilities. Equivalently, the hyperplane has to maximize the minimum between λ+

and λ−.

Note that d(xi, h) =
<w,x>+b

||w|| , so:

1
||w||·|S+|

∑
xi∈S+

< w, xi > +b = E+

− 1
||w||·|S−|

∑
xi∈S− < w, xi > +b = E−

σ+ = 1
||w||·|S+|−1

∑
xi∈S+

| < w, xi > +b− ||w|| ·E+|
σ− = 1

||w||·|S−|−1

∑
xi∈S− | < w, xi > +b+ ||w|| · E−|

Since the objective depends upon σ+

E+
and σ−

E− , the system may be rewritten as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minmax{ σ+

E+
, σ−
E− }

1
|S+|

∑
xi∈S+

< w, xi > +b = E+

− 1
|S−|

∑
xi∈S− < w, xi > +b = E−

E+ ≥ 1, E− ≥ 1
σ+ = 1

|S+|−1

∑
xi∈S+

| < w, xi > +b− E+|
σ− = 1

|S−|−1

∑
xi∈S− | < w, xi > +b+ E−|

(3.3)

Note that, in order for the system to be feasible, all that is required is that
1

|S+|
∑

xi∈S+
xi �= 1

|S−|
∑

xi∈S− xi, because then one can choose w0 ∈ R
n such

that:
1

|S+|
∑

xi∈S+

w0 · xi �= 1

|S−|
∑

xi∈S−

w0 · xi
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. If 1
|S+|

∑
xi∈S+

w0 · xi <
1

|S−|
∑

xi∈S− w0 · xi, then w1 = −w0; else, w1 = w0.
We now have:

1

|S+|
∑

xi∈S+

w0 · xi >
1

|S−|
∑

xi∈S−

w0 · xi

and may choose the offset b ∈ R such that:

b+
1

|S+|
∑

xi∈S+

w0 · xi > 0 > b+
1

|S−|
∑

xi∈S−

w0 · xi

which, after scaling, gives a feasible solution to System (3.3).
If the system is not feasible, then, from the viewpoint of a normal distribution

of distances, it would be pointless to search for a separation, because the accuracy
rate would be at most 50%.

Lemma 1. The optimization problem (3.3) is equivalent to solving:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minmax{ σ+

E+
, σ−
E−

}
b+ 1

|S+|
∑

xi∈S+
< w, xi > = E+

−b− 1
|S−|

∑
xi∈S− < w, xi > = E−

E+ ≥ 1, E− ≥ 1
| < w, xi > +b− E+| ≤ σi

+, ∀xi ∈ S+

| < w, xi > +b+ E−| ≤ σi
−, ∀xi ∈ S−

σ+ = 1
|S+|−1

∑
xi∈S+

σi
+

σ− = 1
|S−|−1

∑
xi∈S− σi

−

(3.4)

Note that, apart from the objective function, system (3.4) uses only linear equa-
tions. This will lead to an easy solution, as detailed in Section 5.

The important properties of the model proposed thus far are that it has a
direct connection to the generalization error embedded in the objective function
and that it is likely to be resilient to outliers; the latter results from the fact that
it is based on a statistical model of the training data which provides a built–in
mechanism for dealing with outliers.

Also note that, because of the way the system is built, it does not require
for S+ and S− to be linearly separable, as hard margin SVM would require,
and does not require special treatment for classification errors, thus avoiding the
introduction of a tradeoff term in the objective function.

4 Using Kernels

The system introduced thus far focuses on simply the linear aspect of the prob-
lem. However, many practical applications require nonlinear separation. The way
to achieve this is by using kernel functions. In order to do so, we first project
the points into a Hilbert space, H , via a projection function Φ : Rn → H . In
the H space we train our classifier in the linear manner described in Section 3.
Since the constraint equations are linear and the separation is linear as well, the
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search for w can be restricted to the linear subspace generated by the training
points.

Consider w =
∑m

i=1 αiΦ(xi), where αi ∈ R. The scalar products can be ex-
pressed as:

< w,Φ(x) >=<

m∑

i=1

αiΦ(xi), Φ(x) >=

m∑

i=1

αi < Φ(xi), Φ(x) >

By defining K : R
n × R

n → R as K(u, v) =< Φ(u), Φ(v) >, the projection
function does not require an explicit definition. Indeed, using Mercer’s theorem,
one only needs to define the kernel function, K, and have the projection function
Φ implicitly defined.

Replacing the scalar product accordingly in system (3.4), we obtain the fol-
lowing system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minmax{ σ+

E+
, σ−
E− }

b+
∑m

i=1 [αi · 1
|S+|

∑
xj∈S+

K(xi, xj)] = E+

−b−∑m
i=1 [αi · 1

|S−|
∑

xj∈S− K(xi, xj)] = E−
|∑xi∈S αiK(xi, xj) + b− E+| ≤ σj

+ , ∀xj ∈ S+

|∑xi∈S αiK(xi, xj) + b+ E−| ≤ σj
− , ∀xj ∈ S−

1
|S+|−1

∑
xi∈S+

σi
+ = σ+

1
|S−|−1

∑
xi∈S− σi− = σ−

σ+ ≤ t · E+

σ− ≤ t · E−
E+ ≥ 1, E− ≥ 1

(4.1)

5 Solving the PVM Problem

While thus far we have proposed a model for the problem, we have not discussed
yet the way this system can be solved.

In the current formulation, since fractions do not preserve convexity, the ob-
jective minmax{ σ+

E+
, σ−
E−

} is not a convex function. However, each of the frac-
tions used has linear factors. Hence, one deals with a quasilinear function (see
[1], Chapter 3, pg. 95 for details), meaning that each sublevel and superlevel
set is a convex set. Moreover, the maximum of two quasiconvex functions is a
quasiconvex function. To see this, let t ∈ [0,+∞). Restricting our domain to
E+ > 0, E− > 0, we get:

max{ σ+

E+
, σ−
E−

} ≤ t ⇔

⇔
{

σ+

E+
≤ t

σ−
E−

≤ t
⇔

{
σ+ ≤ t ·E+

σ− ≤ t ·E−

which, for a fixed t, is a set of linear equations, the intersection of which is a
convex domain.
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A quasiconvex function has only one (strict) local optimum, which is also the
global one. As a consequence, one can solve system (4.1) via a set of feasibility
problems. To see this, let us denote by Feas(t) the feasibility problem obtained
by enforcing the condition max{ σ+

E+
, σ−
E−

} ≤ t:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σj
+ −∑

xi∈S αi(K(xi, xj)−Ki
+) ≥ 0 , ∀xj ∈ S+

σj
+ +

∑
xi∈S αi(K(xi, xj)−Ki

+) ≥ 0 , ∀xj ∈ S+

σj
− −∑

xi∈S αi(K(xi, xj)−Ki−) ≥ 0 , ∀xj ∈ S−
σj
− +

∑
xi∈S αi(K(xi, xj)−Ki

−) ≥ 0 , ∀xj ∈ S−
(|S+| − 1)t · (b+∑

xi∈S αiK
i
+

)−∑
xi∈S+

σi
+ ≥ 0

(|S−| − 1)t · (−b−∑
xi∈S αiK

i−
)−∑

xi∈S− σi− ≥ 0

b+
∑

xi∈S αiK
i
+ ≥ 1

−b−∑
xi∈S αiK

i
− ≥ 1

(5.1)

The optimal solution to system (4.1) is, then:

toptimal = inf{t ∈ R+|Feas(t) is feasible}
= sup{t ∈ R+|Feas(t) is infeasible}

The toptimal value can thus be easily found using a simple bisection procedure.
Initialize 0 = tleft < toptimal < tright = ∞. Each iteration, let t = 0.5 · (tleft +
tright). If Feas(t) is feasible, then tright = t, otherwise tleft = t.

The feasibility problems formulated during this bisection procedure can be
solved using one of the many linear programming solvers freely available. Note,
however, that as the bounds on toptimal get closer together, the feasible region
of Feas(t) approaches a single point and this can lead to numerical problems in
the linear solvers.

6 Results

For the linear solver required by PVM, we have used the GNU Linear Program-
ming Kit (GLPK) which is freely available. The CPLEX library can also be used
with the code. A version of the algorithm, with a few extra features which are not
discussed in this paper, can be found at https://code.google.com/p/dpvm/.

6.1 Testing on Aritificial Data

In the figures shown in this section the stars have positive labels, the circles
have negative labels and the obtained separating hyperplane is represented by a
single black line.

In Figure 2 we compared our method with the soft margin SVM. For train-
ing the SVM we use a well known package, libSVM, presented in [6], [2]. The
comparisons where done using artificial datasets. This is for illustrating the way
in which PVM works. As can be seen, PVM takes into account the distribution

https://code.google.com/p/dpvm/
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Fig. 2. PVM Separation on the left; SVM Separation on the right; PVM separation
takes into account the distributions of the two sets, not just the closest members

Fig. 3. Comparing the result of the training process on a set of points with the same
training result on the same set to which some outliers have been added

of the entire training dataset, while SVM takes into account only the bordering
elements of S+ and S−.

Figure 3 compares the training result when using the same data as in Figure
2 with the training result obtained when adding some outliers to this data. As
is evident, the outliers bear little influence on the training process.

6.2 Testing on Public Datasets

We have conducted a set of tests on datasets from the University of California
Irvine Machine Learning (UCI ML) repository. The datasets used can be found
at http://archive.ics.uci.edu/ml/. Table 1 describes the datasets used. Pre-
processing consisted in normalizing the features in each database. PVM has been
compared to GEPSVM, presented in [16] and PSVM, presented in [8], which
both proved similar or superior performance to SVMs. The parameters of each
algorithm were obtained via grid searches and the evaluation of a combination
of parameters was done using tenfold cross validation. The optimal parameters

http://archive.ics.uci.edu/ml/
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Table 1. UCI ML datasets description

Dataset Records Features Positive Negative

Hepatitis 156 19 32 123
WPBC 199 34 47 151
Sonar 209 60 111 97

Heart-statlog 270 14 150 120
Heart-c 303 14 139 164

Bupa Liver 345 7 200 145
Ionosphere 351 34 126 225

Votes 434 16 267 167
Australian 690 14 307 383

Pima-Indian 768 8 500 268

where then used for a set of 100 tenfold cross validation tests, or equivalently
1000 tests. Table 2 shows the results in terms of average accuracy and standard
deviation obtained for the RBF kernel for PVM, GEPSVM and PSVM. The av-
erage accuracy and its standard deviation where computed over the 1000 tests.
As the results presented in Table 2 suggest, PVM outperforms the other classfiers
in terms of average accuracy, winning on 5 of the datasets, with a large improve-
ment on 3 of these, namely Hepatitis, Heart–c and Votes. It is important to note
that PVM outperforms the other algorithms especially on the larger datasets.
One possibility why this happens is that the statistical measurements used offer
more relevant and stable information once the number of training points is large

Table 2. Comparison between PVM, GEPSVM and PSVM on the UCI ML datasets
on the RBF kernel. The results indicate the average accuracy over 100 tenfold runs.
The accuracy is measured in percentages. The best results for a dataset are shown in
bold.

Dataset PVM GEPSVM PSVM

Hepatitis 87.151±0.94 79.28±5.2 78.57±0.24
WPBC 78.853±0.64 80±5.97 80.55±3.92
Sonar 86.995±1.37 80±5.97 90±7.21

Heart–statlog 77.548±1.84 86.52±7.36 70.74±6.86
Heart–c 77.119±1.21 70.37±8.90 70.68±7.66

Bupa Liver 73.021±0.92 68.18±6.2 74.84±9.04
Ionosphere 92.903±1.36 84.41±6.2 95±4.17

Votes 96.54±0.39 94.5±3.37 95.95±2.25
Australian 83.623±0.94 69.55±5.37 73.97±6.16

Pima-Indian 77.133±0.31 75.33±4.91 76.8±3.83
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enough. One other important observation is that, of the algorithms tested here,
PVM has a distinctly lower standard deviation of the accuracy. This implies that
the derived separating hyperplane is more stable than the one derived by PSVM
or the two hyperplanes of GEPSVM. The datasets used in this comparison have
not been chosen such that the condition (3.2) is satisfied. However, PVM proves
to be competitive. This suggests that, although the setting in which PVM pro-
vides an optimal separation hyperplane requires a special condition, practical
examples do not always stray from the proposed model more than they stray
from the models proposed by GEPSVM or PSVM.

7 Conclusion

We have introduced a new linear binary classifier designed to use statistical
measurements of the training datasets. The underlying model of PVM is robust
to outliers and shows good generalization ability on the datasets tested. PVM can
also use linear programming tools, which are well established in the literature.

Future work will include the study of dedicated linear programming tools
and will focus on developing a stable distributed feasibility solver to tackle the
optimization problem proposed by the theoretical foundation of the algorithm.
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