
Probabilistic Vector Machine: Scalability
through Clustering Hybridization

Mihai Cimpoeşu, Andrei Sucilă, and Henri Luchian

Alexandru Ioan Cuza University, Faculty of Computer Science, Iasi, Romania
mihai.cimpoesu@info.uaic.ro

Abstract. In this paper, a hybrid clustering and classification algorithm
is obtained by exploring the specific statistical model of a hyperplane clas-
sifier. We show how the seamless integration of the clustering component
allows a substantial cost decrease in the training stage, without impairing
the performance of the classifier. The algorithm is also robust to outliers
and deals with training errors in a natural and efficient manner.

Keywords: algorithm, classification, clustering, hybrid, statistical model,
probabilistic classifier.

1 Introduction

One side-effect of the need for accurate prediction in critical fields such as disease
identification in biological data or identifying credit fraud in financial data hasbeen
a steady increase in the size of the datasets to be processed. Most prediction tasks
require classification in order to sort and label dataset records. With the help of
decision trees, a binary classifier often can be used to solve this type of problems. A
binary classifier assigns either a positive or a negative label to each new unlabeled
record, after having been developed using a training set of labeled records.

The introduction in [1], [2] and [3] of Support Vector Machine (SVM) and
specifically, soft margin SVMs, has provided a good tool to deal with classifica-
tion tasks. SVM is one of the most succesful algorithms in the field of classifi-
cation, with numerous applications in text processing, bioinformatics and many
other fields. However, the basic model of a soft margin SVM has some draw-
backs. Some of these are: the inability to directly deal with outliers, defining the
decision function based solely on border points and ignoring the distribution of
the training set. These have been addressed by the introduction of error bounds
in [4] and based on these bounds, a method for choosing parameters for SVMs
has been presented in [5]. The bounds developed are not tight and overestimate
the probability of error.

A serious problem with SVMs has been the handling of large databases, which
becomes especially cumbersome as the training phase requires five fold cross-
validation of parameters. The existing solvers, such as libSVM presented in [6]
and [7], have a scalability problem, both in execution time and memory require-
ments which increase by an O(n2) factor in the database size. As a consequence,
the authors of [8], [9] and [10] integrate clustering techniques in the training

L. Correia, L.P. Reis, and J. Cascalho (Eds.): EPIA 2013, LNAI 8154, pp. 187–198, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

188 M. Cimpoeşu, A. Sucilă, and H. Luchian

phase in order to reduce the size of databases and [11] changes the formula-
tion of SVMs to a second order cone programming problem, to allow for better
scalability with the increase of database size.

We propose an alternative hyperplane classifier, based on the Probabilistic
Vector Machine (PVM) classifier, introduced in [12], which has a built–in ap-
proach to dealing with outliers and classification errors. This leads to a smaller
number of parameters, which decreases the cost of the five fold cross-validation
in the search of the effective parameters.

Although the classifier only requires to solve linear feasibility problems, these
are dense and can lead to memory problems in the linear programming algorithms.
Therefore, the training phase can become very expensive –similar to the SVM–
and a reduction in the problem size is in order. Clustering and the PVM algo-
rithm have a natural way of being hybridized, allowing for a unified approach of the
classification problem. The idea of bringing clustering and classification together,
applied on SVM, were pursued in [13], [14] and [15]. Besides applying clustering
before training the PVM, we also bring them closer together by readjusting the
cluster architecture during the training of the classification algorithm.

The paper is structured as follows: a quick presentation of the background on
PVM in Section 2; a first variant of the PVM model, followed by the combined
implicit clustering variant in Section 3; experimental results and a discussion
based on these results in Section 4 and conclusions in Section 5.

2 Probabilistic Vector Machine

The classifier upon which we base our hybrid approach is the Probabilistic Vector
Machine, which has been recently introduced in [12]. It is a statistical binary clas-
sifier which learns a separating hyperplane, used to make the decision whether
to label a point positively or negatively. The hyperplane is chosen such as to
optimize a statistical measure of the training data.

Let S = {(xi, yi|xi ∈ R
n), yi ∈ {±1}} be the training set and let S+ = {xi ∈

S|yi = 1} and S− = {xi ∈ S|yi = −1}be the training subsets comprized of
positively and negatively labeled points. For a hyperplane determined by its
normal, w ∈ R

n, and its offset, or bias, b ∈ R, we denote by E+ and E− the
average signed distance to the hyperplane of the points in S+ and S− respec-
tively. We also denote by σ+, σ− the average deviations from E+ and E− of the
corresponding points. This can be written as:

E+ = b+
1

|S+|
∑

xi∈S+

< w, xi >, E− = −b− 1

|S−|
∑

xi∈S−

< w, xi >

σ+ =
1

|S+| − 1

∑

xi∈S+

|< w, xi > +b− E+|

σ− =
1

|S−| − 1

∑

xi∈S−

|< w, xi > +b+ E−|

PVM: Scalability through Clustering 189

PVM searches for the hyperplane which optimizes the function:
{
minmax{ σ+

E+
,− σ−

E− }
E+ ≥ 1, E− ≤ −1

(2.1)

This system is solvable through a series of linear feasibility problems which
searches for the objective via bisection.

Nonlinear training may be achieved by using kernel functions. Let Φ : Rn →
H , where H is a Hilbert space, be the a projection function. Let K : Rn×R

n → R

be the kernel function, defined as K(u, v) =< Φ(u), Φ(v) >H . We search for w
as a linear combination of the training points, w =

∑m
i=1 αiΦ(xi).

Let Ki
+ = 1

|S+|
∑

xj∈S+
K(xi, xj) and Ki

− = 1
|S−|

∑
xj∈S− K(xi, xj). The pos-

itive and negative averages are, then:

E+ =
m∑

i=1

αiK
i
+, E− = −

m∑

i=1

αiK
i
−

The linear feasibility systems formulated by PVM, parameterized by t ∈ [0,∞):

Feas(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∑
xi∈S αi(K(xi, xj)−Ki

+)
∣∣ ≤ σj

+ , ∀xj ∈ S+

(|S+| − 1)t · (b+∑xi∈S αiK
i
+

)−∑xi∈S+
σi
+ ≥ 0

b+
∑

xi∈S αiK
i
+ ≥ 1

∣∣∑
xi∈S αi(K(xi, xj)−Ki

−)
∣∣ ≤ σj

− , ∀xj ∈ S−
(|S−| − 1)t · (−b−∑xi∈S αiK

i
−
)−∑xi∈S− σi

− ≥ 0

−b−∑xi∈S αiK
i
− ≥ 1

(2.2)

where σj
+ is a majorant for the deviation of xj ∈ S+ and σj

− is a majorant for
the deviation of xj ∈ S−. The optimal hyperplane for System 2.1 may be found
by searching the minimal value of t, denoted as toptimal, for which the linear
system Feas(t) is still feasible.

3 Integration of a Data Clustering Step

Although PVM can be solved efficiently using any of the readily available linear
solvers, it turns out that solving times can be quite long. This is in part due
to the fact that system (2.2) is a dense system, which, when we deal with m
entries, has 2m+ 4 equations, with 2m unknowns and a ratio of non zero terms
of approximately 0.5 of the total size of the system. Another factor is that the
systems required to be solved will always turn into degenerate ones, as –whilst
t → toptimal– the feasible area shrinks to just one point.

190 M. Cimpoeşu, A. Sucilă, and H. Luchian

The strong constraints on the feasibility systems, as well as the memory com-
plexity explosion of simplex solvers naturally lead to the idea of sampling the
training database.

The first thing to consider when reducing the training set is to observe that
PVM is based on a statistical model. One can obtain the same separating hy-
perplane by sampling the initial training set such that only a small deviation of
the statistical measures is induced. Suppose that the signed distances from the
hyperplane is normally distributed, with average μ. Let E be the average signed
distance of a sample set. E has the property that (E−μ)

√
N

s follows a Student-T
distribution with N − 1 degrees of freedom, where s is the standard deviation
of the sample set and N is the sample set size. s has the property that (N−1)s2

σ2

follows a χ2 distribution, where σ is the standard deviation of the whole popula-
tion. Therefore, for very large databases, we may compute the required sample
set size for a desired level of confidence.

3.1 Using Weights

A first approach in reducing the database size is to combine the training with a
clustering step. It is shown below that, by using weights in the training phase,
one can obtain the same statistical model for the clustered set as that obtained
for the original set.

Let C1, C2, . . . , Ck ⊂ S denote a partitioning of the training data with the
property that a cluster contains only points of one label:

C1 ∪C2 ∪ . . . ∪ Ck = S
Ci
= ∅, ∀i ∈ {1, . . . , k}
Ci ∩ Cj = ∅, ∀i, j ∈ {1, . . . , k}, i
= j
yj = yl, ∀xj , xl ∈ Ci, ∀i ∈ {1, . . . , k}

Let Pi, i ∈ {1, . . . , k} be the centers of these clusters:

Pi =
1

|Ci|
∑

x∈Ci

x

In order to obtain the same statistical model, a weighted average is used instead
of the simple average when training on the cluster centers. Let C+ be the set
of clusters which contain only positively labeled points and with C− the set of
clusters which contain only negatively labeled points.

Note that ∪C∈C+C = S+ and ∪C∈C−C = S−. The positive and negative
averages are, then :

EC+ = b+ 1
|S+|

∑
Ci∈C+

|Ci| < w,Pi >

EC− = −b− 1
|S−|

∑
Ci∈C− |Ci| < w,Pi >

PVM: Scalability through Clustering 191

Given the way Pi are computed and since ∪C∈C+C = S+, we have:

EC+ = b+
1

|S+|
∑

Ci∈C+

|Ci| < w,Pi > (3.1)

= b+
1

|S+|
∑

Ci∈C+

(
|Ci| < w,

1

|Ci|
∑

x∈Ci

x >

)
(3.2)

= b+
1

|S+|
∑

Ci∈C+

(
∑

x∈Ci

< w, x >) (3.3)

= b+
1

|S+|
∑

x∈S+

< w, x > = E+ (3.4)

and similarly, EC− = S−. Hence, computing the average in a weighted man-
ner leads to obtaining the same average as on the nonclustered set. The same
weighing is used when the average deviations are computed:

σ+ = 1
|S+|−1

∑
Ci∈C+

|Ci|σi
+

σ− = 1
|S−|−1

∑
Ci∈C− |Ci|σi

−

but in this case one no longer obtains the same average deviations as on the
original set. This is due to the inequality:

∣∣∣∣∣
∑

x∈Ci

(< w, x > +b− E)

∣∣∣∣∣ ≤
∑

x∈Ci

| < w, x > +b− E| (3.5)

which becomes a strict inequality when there are at least two members in the
first sum with opposite signs.

The two sides in (3.5) are equal if all the terms < w, x > +b − E have the
same sign for all x ∈ Ci.

When using kernels, the clustering will take place in the projection space. It
is important to reformulate the system such that the cluster centers themselves
will no longer be explicitly used.

Let Φ : R
n → H be the implicit projection function and redefine Pi, the

cluster centers as:
Pi =

1

|Ci|
∑

x∈Ci

Φ(x)

The normal to the hyperplane then becomes:

w =

k∑

i=1

αi|Ci|Pi

=

k∑

i=1

αi

(
∑

x∈Ci

Φ(x)

)

192 M. Cimpoeşu, A. Sucilă, and H. Luchian

The < w,Pj >H scalar products in H can be rewritten as:

< w,Pj >H =

k∑

i=1

αi

(
∑

x∈Ci

< Φ(x), Pj >H

)

=

k∑

i=1

αi
1

|Cj |
∑

xi∈Ci,xj∈Cj

< Φ(xi), Φ(xj) >H

=
1

|Cj |
k∑

i=1

αi

∑

xi∈Ci,xj∈Cj

K(xi, xj)

Hence, the feasibility system (2.2) can be rewrittten without explicitly using the
cluster centers. Instead, they can be replaced by the average of the projected
points in the clusters, resulting in the following system for Feas(t):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E+ = b+
∑k

i=1 αi

∑
xi∈Ci

Ki
+∣∣∣ 1

|Cj|
∑k

i=1 αi

∑
xi∈Ci,xj∈Cj

K(xi, xj) + b− E+

∣∣∣ ≤ σj
+,

∀Cj ∈ C+

σ+ = 1
|S+|−1

∑
Ci∈C+

|Ci|σi
+

σ+ ≤ tE+

E+ ≥ 1

E− = −b−∑k
i=1 αi

∑
xi∈Ci

Ki
−∣∣∣ 1

|Cj|
∑k

i=1 αi

∑
xi∈Ci,xj∈Cj

K(xi, xj) + b+ E−
∣∣∣ ≤ σj

−,
∀Cj ∈ C−
σ− = 1

|S−|−1

∑
Ci∈C− |Ci|σi−

σ− ≤ tE−
E− ≥ 1

(3.6)

In doing so, we eliminate the necessity of explicitly using the cluster centers,
which leads to correct average computations even when using kernels. Further-
more, the advantages of using a clustered data set are preserved, as the actual
problem size coincides with that of the clustered data set, due to the decrease
of the number of unknowns in the linear feasibility problem.

3.2 Dividing Clusters

Due to the inequality (3.5), the average deviations used for the clustered set
can substantially differ from the ones that would result on the unclustered data.
Initial testing confirmed that this induces a negative effect marked by a severe
degradation of the classification ability. Therefore, it is important to obtain a
set of clusters which lead to relatively small differences between the members of
inequality (3.5).

PVM: Scalability through Clustering 193

We define the relative induced distortion for cluster Cj , denoted A(Cj), as:

1−

∣∣∣
∑k

i=1 αi

∑
xi∈Ci,xj∈Cj

K(xi, xj) + |Cj |b− |Cj |E
∣∣∣

∑
xj∈Cj

∣∣∣b+
∑k

i=1 αi

∑
xi∈Ci

K(xi, xj)− E
∣∣∣

(3.7)

where E is either E+ or E− depending on the labeling of the points in cluster
Cj . This measure reflects the relative amount by which the average deviation
differs in the clustered data from the nonclustered data.

For a cluster where all its points lie on the same side of E, the nominator
and denominator in (3.7) will be equal and, hence, A(Cj) = 0. After training
the classifier for a given cluster set, we will check which clusters have a relative
induced distortion over a certain threshold and split each such cluster into two
new clusters. For a cluster with high relative induced distortion, Cj , the two new
clusters are:

Cj+ = {xj ∈ Cj |b+
∑k

i=1 αi

∑
xi∈Ci

K(xi, xj) ≥ E}
Cj− = {xj ∈ Cj |b+

∑k
i=1 αi

∑
xi∈Ci

K(xi, xj) < E}

Consequently:
Cj+
= ∅, Cj−
= ∅
Cj+ ∩ Cj− = ∅
Cj+ ∪ Cj− = Cj

A(Cj+) = A(Cj−) = 0

The idea is to cycle through training and splitting clusters until a sufficiently low
error in the statistical model is reached. The only question that remains open is
what would be a good halting criteria.

After training the classifier with a cluster set, the actual σ+, σ− for the non-
clustered sets can be calculated. Let σc

+, σ
c
− be the average deviations obtained

for the clustered set and let σn
+, σ

n− be the average deviations for the nonclustered
set. Let:

tcopt = max{ σc
+

E+
,
σc
−

E−
}

tnopt = max{ σn
+

E+
,
σn
−

E−
}

Note that, when the relative distortion of all clusters is 0, the only difference
between toptimal and tnopt is the subspace of H where w is sought. When training
over nonclustered data, the dimension of the subspace, Wtrain, is at most m, the
number of training points. When training over clustered data, some points are
enforced to have the same weight in the expression of w. The subspace in which
we search for w, Wtrainclst

, is k-dimensional, where k is the number of clusters,
and Wtrainclst

⊂ Wtrain.
From (3.5) it follows that tcopt ≤ tnopt. As the hyperplane obtained in the

clustered form satisfies the conditions of system (2.1), but is not necessarily
optimal for system (2.1), toptimal ≤ tnopt will also hold.

Suppose that the linear subspace generated by the implicit cluster centers is
identical to the linear subspace generated by the points themselves, Wtrainclst

=

194 M. Cimpoeşu, A. Sucilă, and H. Luchian

Wtrain. As the statistical model obtained in the clustered form always has lower
average deviations than the non clustered form, we will also have tcopt ≤ toptimal.
Furthermore, under this condition we have:

tcopt ≤ toptimal ≤ tnopt

Notice that, according to Section 2, tnopt is a good indicator for the probability of
error. We will use the relative difference between tcopt and tnopt as a halting criteria
for our algorithm. The complete procedure for training with implicit clusters is
presented in Algorithm 1.

Algorithm 1. Algorithm for training with implicit clusters

Function bool SplitClusters(double maxDistortion)
retV alue← FALSE
for i = Clusters.count - 1; i ≥ 0; i−− do

if Distortion(Clusters[i]) ≥ maxDistortion then
Clusters.Append(Clusters[i].SplitPositive())
Clusters.Append(Clusters[i].SplitNegative())
Clusters.Erase(i)
retV alue← TRUE

end if
end for
return retV alue
EndFunction
maxDistortion← 1.0
distortionDecreaseRate← 0.9
ε← 0.05
while true do

TrainUsingCurrentClusters()
RecomputeStatistics(tcopt, tnopt)
if tnopt < tcopt · (1 + ε) then

break
end if
while !SplitClusters(maxDistortion) do

maxDistortion∗ = distortionDecreaseRate
end while

end while

For all the trainings, we used an distortionDecreaseRate of 0.9. This param-
eter controls how fast the maximum relative induced distortion will decrease.
Smaller values for this determine a faster termination of the algorithm, but
increase the final number of clusters. The reason for this behaviour is that,
when the distortionDecreaseRate is smaller the subsequent values obtained for
maxDistortion are less coarse and, hence, may miss the value for which the
number of clusters is minimal.

In Figure 1 we show how tcopt and tnopt, labeled as Clustered T and Real T,
evolve over successive iterations on the tested databases.

PVM: Scalability through Clustering 195

����a�a��	�
��	

��
������a�a��	�
��	

.d4

.d8

.d5

.d�

2

. 1 2. 21 4. 41 6.

(a) Credit Data

����a�a��	�
��	

��
������a�a��	�
��	

.d5�

.d�

.d��

2

2d5�

2d�

. � 2. 2� 5. 5�

(b) Heart Disease Wisconsin

����a�a��	�
��	

��
������a�a��	�
��	

.d1

1

1.

1..

1...

1.
2

1.
6

. 4 2 8 � 1.

(c) Ionosphere

����a�a��	�
��	

��
������a�a��	�
��	

.d1

1

1.

1..

1...

1.
5

. 4d7 7 �d7 1. 14d7

(d) Liver Buppa

����a�a��	�
��	

��
������a�a��	�
��	

�0

1

0

2

3

4

5

1 2 4 6 �

(e) Spect Heart Train

Fig. 1. Evolution of tcopt(Clustered T) and tnopt(Real T). The X axis represents the
iteration count, the Y axis the values for tcopt and tnopt.

196 M. Cimpoeşu, A. Sucilă, and H. Luchian

4 Results and Discussion

For the TrainUsingCurrentClusters procedure of Algorithm 1 we have used the
GNU Linear Programming Kit (GLPK), which is freely available. A version of
the algorithm, with a few extra features which are not discussed in this paper,
can be found at https://code.google.com/p/dpvm/. This code also functions
with CPLEX.

We tested the classifier on 5 databases taken from the UCI ML repository.
The datasets used can be found at http://archive.ics.uci.edu/ml/.

On each of the databases, 30 random splits were used separately, with each
split containing 80% of the data for training phase and 20% for the testing phase.
The results presented are averages over these 30 runs.

For reference, we also included in the comparison the soft margin SVM, which
we have trained using the same kernel. We have used five fold cross-validation
in order to determine the optimal value of the SVM parameter which controls
error tradeoff in the objective. This parameter is usually denoted as C. We then
used the obtained value for running the trainings on the 30 slices. The results

Table 1. Results for the Clustering PVM with cluster splitting

Problem Name SVM PVM toptimal C-PVM tnopt
Credit Screening 76.98 84.13 0.5397 84.76 0.5514

Heart Disease Cleaveland 54.23 82.11 0.7437 80.91 0.7543
Ionosphere 64.28 82.18 0.5922 82.13 0.6112

Liver 68.45 66.91 1.6927 66.31 1.715
Heart Spect Train 76.45 62.31 0.7018 66.90 0.7545

in Table 1 are obtained using an ε value of 0.05 in Algorithm 1. There is almost
no decrease in accuracy and the value of tnopt closely follows that of toptimal.

For ε = 0, the final number of clusters increases only slightly, but the overall
running time increases considerably as in the final iterations only a very small
clusters require splitting. However, for ε = 0, we obtain a completely identical
model for the clustered and nonclustered training, giving perfectly identical re-
sults in the testing phase. This implies that the separating hyperplane is equally
well expressed using only the subspace of the clustered data.

Table 2 shows how the average number of clusters obtained for a problem over
the course of the 30 slices compares to the original size of the problem. These
were obtained for ε = 0.05. The ratio of clustered versus unclustered data size
is, on average, 0.37.

The starting number of clusters has been set to 3% of the original dataset
size. We have experimented with different numbers of starting clusters, but have
found only a small variation in both the final number of clusters and the accuracy
of the resulting classifier.

https://code.google.com/p/dpvm/
http://archive.ics.uci.edu/ml/

PVM: Scalability through Clustering 197

Table 2. Original and clustered dataset sizes

Problem Name Original Size Average Clustered Size
Credit Screening 690 225.03
Heart Disease Cleaveland 303 104.83
Ionosphere 351 145.7
Liver 341 67.4
Heart Spect Train 80 48.17

5 Conclusions

We have shown how, through exploitation of the specific structure of the PVM
classifier, hybridization with a clustering step is possible, designed to reduce the
size of the training problem whilst maintaining the properties of the statistical
classifier, namely its good generalization ability and its natural stability to out-
liers. One important observation is that the number of clusters does not increase
linearly with the size of the original dataset. The reduction is significant as the
simplex solvers used are sensible to the size of the problem, in terms of memory
and running time.

Future development on the matter will search for a suitable way of unifying
clusters after the split procedure in order to further reduce the size of the prob-
lem. We also plan to develop a distributed solver for the problem for tackling
very large databases.

Future research will also target the clustering method used, as K-means is not
necessarily optimal and was chosen in this research only for its ease of usage.

Acknowledgements. This work has been supported by the European Social
Fund in Romania, under the responsibility of the Managing Authority for the
Sectoral Operational Programme for Human Resources Development 2007-2013
[grant POSDRU/CPP 107/DMI 1.5/S/ 78342].

References

1. Vapnik, V.N., Boser, B.E., Guyon, I.: A training algorithm for optimal margin
classifiers. In: COLT 1992 Proceedings of the Fifth Annual Workshop on Com-
putational Learning, Pittsburgh, PA, USA, vol. 5, pp. 144–152. ACM, New York
(1992)

2. Cortes, C., Vapnik, V.N.: Support-vector networks. Machine Learning 20(3), 273–
297 (1995)

3. Vapnik, V.N.: Statistical learning theory. John Wiley and Sons Inc. (1998)
4. Chapelle, O., Vapnik, V.N.: Bounds on error expectation for support vector ma-

chines. Neural Computation 12(9), 2012–2036 (2000)
5. Chapelle, O., Vapnik, V.N.: Choosing multiple parameters for support vector ma-

chines. Machine Learning 46(1-3), 131–159 (2001)

198 M. Cimpoeşu, A. Sucilă, and H. Luchian

6. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order in-
formation for training support vector machines. The Journal of Machine Learning
Research 6, 1889–1918 (2005)

7. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2(3) (2011)

8. Yu, H., Yang, J., Han, J.: Classifying large data sets using svms with hierarchical
clusters. In: Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, pp. 306–315.
ACM, New York (2003)

9. Ligges, U., Krey, S.: Feature clustering for instrument classification. Computational
Statistics 23, 279–291 (2011)

10. Awad, M., Khan, L., Bastani, F., Yen, I.-L.: An effective support vector machines
(svm) performance using hierarchical clustering. In: Proceedings of the 16th IEEE
International Conference on Tools with Artificial Intelligence, Boca Raton, FL,
USA, pp. 663–667. IEEE Computer Society, Washington (2004)

11. Nath, J.S., Bhattacharyya, C., Murty, M.N.: Clustering based large margin classi-
fication: A scalable approach using socp formulation. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Philadelphia, USA, pp. 374–379. ACM, New York (2006)

12. Sucilă, A.: A Distributed Statistical Binary Classifier. Probabilistic Vector Ma-
chine. Ph.D. Thesis, Alexandru Ioan Cuza University, Faculty of Computer Science
(2012)

13. Cervantes, J., Li, X., Yu, W.: Support vector machine classification based on fuzzy
clustering for large data sets. In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI
2006. LNCS (LNAI), vol. 4293, pp. 572–582. Springer, Heidelberg (2006)

14. Cervantes, J., Li, X., Yu, W., Li, K.: Support vector machine classification for large
data sets via minimum enclosing ball clustering. Neurocomputing 71(4-6), 611–619
(2008)

15. Nath, J.S., Bhattacharyya, C., Murty, M.N.: Clustering based large margin clas-
sification: a scalable approach using socp formulation. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 2006, pp. 674–679. ACM, New York (2006)

	Probabilistic Vector Machine: Scalability through Clustering Hybridization
	1 Introduction
	2 Probabilistic Vector Machine
	3 Integration of a Data Clustering Step
	3.1 Using Weights
	3.2 Dividing Clusters

	4 Results and Discussion
	5 Conclusions
	References

