
Structure-Based Constants

in Genetic Programming

Christian B. Veenhuis

Berlin University of Technology, Berlin, Germany
veenhuis@googlemail.com

Abstract. Evolving constants in Genetic Programming is still an open
issue. As real values they cannot be integrated in GP trees in a direct
manner, because the nodes represent discrete symbols. Present solutions
are the concept of ephemeral random constants or hybrid approaches,
which have additional computational costs. Furthermore, one has to
change the GP algorithm for them. This paper proposes a concept, which
does not change the GP algorithm or its components. Instead, it intro-
duces structure-based constants realized as functions, which can be sim-
ply added to each function set while keeping the original GP approach.
These constant functions derive their constant values from the tree struc-
tures of their child-trees (subtrees). That is, a constant is represented by
a tree structure being this way under the influence of the typical genetic
operators like subtree crossover or mutation. These structure-based con-
stants were applied to symbolic regression problems. They outperformed
the standard approach of ephemeral random constants. Their results to-
gether with their better properties make the structure-based constant
concept a possible candidate for the replacement of the ephemeral ran-
dom constants.

Keywords: GeneticProgramming,Constant, Structure-basedConstant,
ConstantFunction,SubtreeRelationship,FullTreeNormalization,Generic
Benchmark, Polynomial Benchmark, Sum-of-Gaussians Benchmark.

1 Introduction

If one applies Genetic Programming to problem domains, whose solutions are
represented by mathematical expressions, as for instance in symbolic regression,
one possibly needs to enable the usage of constants. Since constants are typically
real values and the tree nodes represent discrete symbols like SIN or ADD, the
question arises how to integrate these real values into the trees, a problem which
is still considered as an open issue [8].

In order to overcome GP’s weakness in discovering numerical constants, Koza
has introduced the concept of Ephemeral Random Constants (ERC) [6,7]. These
constants are represented by the terminal symbol�, whereby each terminal node
additionally keeps a real value with the numerical value of this constant. For this
concept it is necessary to change two aspects of GP: Firstly, the initialization

L. Correia, L.P. Reis, and J. Cascalho (Eds.): EPIA 2013, LNAI 8154, pp. 126–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Constants in GP 127

component of GP needs to be changed. Each time, the terminal symbol of con-
stants shall be added to an initial tree, a random number uniformly drawn from
a given interval [cmin, cmax] is added to its node, too. It is hoped that GP is
able to produce all needed constants later on based on these pre-created ones
by combining them with the (mathematical) operations contained in the set of
functions. Secondly, the data structure of a node needs to be extended to be able
to held this additional real value. Thus, this concept can not be used with every
GP implementation without changing it. Beside these disadvantages, the ERC
concept has the advantage that the number of created constants is not restricted,
since a constant here is just a terminal symbol being randomly selected by the
initializer.

Although the ephemeral random constants can still be considered as standard,
other methods have been developed as well to improve the numeric quality of
constants. In [1,2] the authors introduced an operator they called ”Numeric
Mutation”, which extends the ERC concept. This operator is applied to a subset
of the population at each generation and replaces all constants in existence
by new ones uniformly drawn from a given constant interval, which is defined
around the current constant value to be changed. The bounds of this interval
are controlled by a ”temperature factor” adopted from Kirkpatrick’s simulated
annealing method [5]. This ”temperature factor” is set in dependence to the
objective value of the best individual. If the run converges to good solutions, the
interval becomes narrower, which leads to smaller changes in constant values.
Otherwise, the interval becomes wider to allow bigger changes. Since this concept
uses ephemeral random constants, it inherits their disadvantages: the need to
change the node structure as well as to change the initialization component.
Furthermore, a GP can not be run with standard configurations, because the
new mutation operator needs to be considered.

Another method that changes constant values is introduced in [9]. There, the
authors borrow the idea from [4] who use a table (array) of constants, whereby
the constants in the trees use indices into this table. This concept was extended
by using a sorted table so a smaller index also means a smaller constant value.
Before creating the initial population, this sorted table is filled up with random
values. Then, while creating the initial trees, each time the terminal symbol of
constants shall be added, an index into the sorted table is added to its node,
too. Based on these indices, the authors introduced two mutation operators. The
first one is called ”Uniform” and replaces an index of a constant by a new index,
which is uniformly drawn from the whole range of indices. The second operator
is called ”Creep” and chooses the new index directly above or below the old one.
This way also the change of the constant value is relatively small. In order to
use this concept, one needs to change the node structure to be able to store an
index as well as to change the initialization component. Furthermore, the sorted
table mechanism needs to be integrated into the GP approach. This sorted table
is of fixed size. Thus, the number of constants needs to be pre-specified. Finally,
GP can not be run with standard configurations, because the new mutation
operators need to be considered, too.

128 C.B. Veenhuis

The above methods work by adding operators to GP or changing its ini-
tialization component. Another category of methods hybridize GP with other
optimizers, whereby the other optimizers are used to adjust the constant values.
These approaches are not GP methods as such, but hybrid concepts. In [10] GP
is combined with a local optimizer based on gradient descent. There, at each
generation all constant values of all trees are optimized by three iterations of a
gradient descent approach. Since this concept uses ephemeral random constants,
the node structure as well as the initialization component of a GP need to be
changed, if one wants to use this concept. Furthermore, the local optimizer needs
to be embedded as well.

In [3] another GP hybrid is presented, which uses a genetic algorithm as local
optimizer for constants. Quite similar to the work of [4], the constants use indices
into a table of constants. The difference is that each individual has its own local
constant table. All these constant tables of the population are optimized by
the employed genetic algorithm. If one wants to use this concept, a lot of GP
aspects need to be changed: the node structure (for the index), the initialization
component and the individual, which needs to keep its table of constants. Since
this table is of fixed size, the number of constants per individual also needs to
be pre-specified. Last but not least, the genetic algorithm needs to be integrated
as well.

All in all, one can state that the methods developed so far have one ”problem”
in common: they all change either the GP algorithm as such by introducing new
mechanisms like tables or by hybridizing GP with other algorithms, or they
change components of GP like the initialization procedure to randomly produce
constants or indices. If one wants to use constants, one can be certain to have to
change his GP library for this. Furthermore, a hybrid could be considered to be
not a GP anymore, but merely GP-like! A hybrid solves the constant problem
just for the hybrid itself and not for GP in general. Thus, these approaches are
not suitable to solve the constant problem in a sufficient manner. They are all
”pragmatic” solutions. This raises the question, whether it is possible to replace
the current concepts by another one, which does not need to change GP or one
of its components. Further desirable properties would be that as few parameters
as possible need to be specified and that the concept is problem-independent.

These are strong wishes, but can they be fulfilled? A main reason for the
nature of current solutions to the constant problem is that intuitively everyone
associates a constant with a value. And a value needs to be hold in a variable,
it needs to be created and adjusted. This automatically leads to changes of data
structures and of the procedures that deal with them. In order to get rid of this
effect, one has to change the overall nature of solutions to the constant problem.
But, if one wants to change the nature of current constant concepts, one needs
to change the nature of constants, too.

Since the business of GP and its operators is to create and rearrange (sub)trees,
a constant should also be a subtree to be under the influence of the typical ge-
netic operators like subtree crossover or mutation. Therefore, in the proposed
concept, a constant is not anymore a terminal, but a function. As a function it

Constants in GP 129

has subtrees as operands. The value of this constant function is derived from the
tree structures of its operands. Thereby, the constant functions do not consider
the content of the nodes. They are completely based on properties of the tree
structures. Thus, they can be used in and added to each GP application being
this way problem-independent.

The further paper is organized as follows. Section 2 introduces the proposed
concept called Structure-based Constants. Two generic benchmark functions,
which allow to specify the number of constants, are introduced in section 3. In
section 4 the conducted experiments with their results are presented. Finally, in
section 5 some conclusions are drawn.

2 Structure-Based Constants

Since the business of GP operators is to create and rearrange trees, a constant
should also be represented in some way by a tree. This way, constants would also
be under the influence of the subtree crossover and mutation operators. There-
fore, in this section, a constant concept called Structure-based Constants (SC)
is introduced, which replaces constant terminals by constant functions denoted
by SC. A constant function has subtrees as operands, like all other functions,
too. The value of this constant function is deterministically derived from the
tree structures of its children (subtrees). This way, the constants are totally in-
tegrated into the GP trees without the need to pre-generate randomized ones or
to determine them by additional algorithms in parallel or afterwards. This saves
computation time and one can keep the original GP algorithm.

Let T denote the set of all trees

T = {T1, · · · ,T|T|}
and |T| the number of nodes (or cardinality) of the given tree T ∈ T. Each tree
has at least a root node and is not empty.

Furthermore, let [cmin, cmax] be a pre-specified interval of constant values as it is
also used for ephemeral random constants. Then, the structure-based constants
(SC), as proposed and used in this paper, can be defined as in the following
subsections.

2.1 Subtree Relationships

This category of structure-based constants uses the child-trees of the constant
function and sets their tree properties into relationship. A simple property of a
tree is the number of nodes it is composed of. These numbers of nodes of the
child-trees are combined to deterministically compute constants:

Definition 1 (SCquot). The structure-based constant

SCquot : T × T→ R

130 C.B. Veenhuis

is the quotient of the number of nodes of its left and right child-trees Tle f t and
Tright:

SCquot(Tle f t,Tright) :=
|Tle f t|
|Tright|

Definition 2 (SCmmquot). The structure-based constant

SCmmquot : T × T→ R
is the minimum-maximum quotient of the number of nodes of both child-trees
Tle f t and Tright mapped into the constant interval [cmin, cmax]:

SCmmquot(Tle f t,Tright) := cmin +
min(|Tle f t|, |Tright|)
max(|Tle f t|, |Tright|) (cmax − cmin)

2.2 Full Tree Normalization

This category of structure-based constants uses a child-tree of the constant func-
tion and normalizes one of its tree properties with respect to a full tree structure.
A full tree is a structurally complete tree (and some authors call it also complete
tree, perfect tree or perfect A-ary tree):

Definition 3 (Full Tree). A full tree denoted by TL,A is a rooted A-ary tree
with L levels, i.e., a tree with exactly one root node and every internal node has
exactly A children. All nodes of the last level are in existence and no internal
node is missing as depicted in the following for a full tree T3,2 with 3 levels and
an arity of 2:

�

� �

� � � �

A simple property of a tree is the number of nodes it is composed of. Thus,
the number of nodes of a child-tree is normalized by the number of nodes of a
full tree to deterministically compute constants. The total number of nodes of a
full tree TL,A can be computed by Eq. (1).

Nnodes(L,A) =
L−1∑

i=0

Ai (L ≥ 1,A ≥ 1) (1)

Definition 4 (SCf ull). The structure-based constant

SCf ull : T→ R

Constants in GP 131

normalizes a child-tree T by its corresponding full tree based on the number of
nodes and maps it into the constant interval [cmin, cmax]:

SCf ull(T) := cmin +
|T|

Nnodes(level(T), arity(T))
(cmax − cmin)

The function level(T) delivers the maximum depth of subtree T and arity(T) the
maximum arity occurring in T.

The full tree represents the maximum structure of a tree. Thus, a subtree
T can be either this full tree, which leads to a quotient of 1, or a structurally
smaller version of the full tree, which produces a quotient < 1. In this sense, a
tree is divided by a maximum tree performing this way a normalization.

The corresponding full tree used by SCf ull is based on the arity and depth of
the child-tree. Thus, a child-tree [sin[x]] as depicted in

SC sin x

is a full tree, because the maximum arity occurring is 1 and the depth is 2, which
leads to Nnodes(L,A) = Nnodes(2, 1) = 2 = | [sin[x]] | . But typically mathematical
expressions also allow binary operations so the question arises whether it would
not be better to use the global maximum arity from the whole function set.
In this case the former example would not be anymore a full tree, because the
corresponding full tree would have Nnodes(L,A) = Nnodes(2, 2) = 3 nodes. A child-
tree that is a full tree represents cmax. Maybe using the global maximum arity
produces more different constants, because the number of possible full trees is
reduced. In order to examine this, a variation to SCf ull is defined in the following,
which uses the global maximum arity out of the function set denoted by Amax.

Definition 5 (SCf ull−g). The structure-based constant

SCf ull−g : T→ R
normalizes a child-tree T by a corresponding full tree based on the number of
nodes and maps it into the constant interval [cmin, cmax]:

SCf ull−g(T) := cmin +
|T|

Nnodes(level(T),Amax)
(cmax − cmin)

The function level(T) delivers the maximum depth of subtree T and Amax is the
global maximum arity out of the function set.

3 Benchmark Functions

In order to evaluate the capabilities of the introduced structure-based constants
concept, two generic benchmark functions (subsections 3.1 and 3.2) were specif-
ically created for the work at hand and allow to specify the number of constants
cnum as a sort of parameter of model complexity.

132 C.B. Veenhuis

3.1 Polynomial Benchmark

This generic benchmark function allows to specify the number of constants cnum

as a benchmark parameter. It is designed for the standard set of functions (see
Table 1). Since the standard set is particularly able to build polynomials, this
benchmark function is just a reduced polynomial, whose degree is used as the
number of constants:

Pcnum(x) =
cnum∑

i=1

(cmin +
i

cnum
(cmax − cmin)) · xi (2)

The interval [cmin, cmax] is the allowed range of constant values. Note that
the x0 term is omitted. This way, the degree of the polynomial is the number
of wished constants cnum. The coefficients, which are the searched constants,
increase from the lowest to the highest exponent.

3.2 Sum-of-Gaussians Benchmark

Like the previous one, also this benchmark function allows to specify the number
of constants cnum as a benchmark parameter. But this one is designed for the
extended set of functions (see Table 1). The idea is to use a Gaussian for each
constant, whereby the constant shifts the Gaussian’s position and works this
way as an offset. They are shifted in a way that all Gaussians are distributed
over the given range [Xmin,Xmax]. All shifted Gaussians are summed up to build
the Sum-of-Gaussians Benchmark:

Gcnum(x) =
cnum∑

i=1

e−
(

x + Xmin + (i−0.5)
Xmax−Xmin

cnum

)2
(3)

4 Experiments

The aim of the conducted experiments was to find out, whether the structure-
based constants perform at least comparably to Koza’s ERC concept. That they
have better properties, because they do not change anything in the GP algo-
rithm, is not enough. Thus, all four SCs (SCquot,SCmmquot,SCf ull,SCf ull−g) as well
as Koza’s ERC concept were applied to all benchmark functions as introduced
in section 3. Each of the two generic benchmarks was used with cnum = 1 , · · · ,
10 constants leading to 10 different benchmark functions per generic benchmark.
The used [cmin, cmax] interval for constants was set to [−5,+5] for all structure-
based constants as well as for ERC. According to the used function sets (see
below), the global maximum arity Amax for SCf ull−g was set to 2.

For each benchmark function and constant concept, 50 independent runs were
performed. For all benchmark functions Pcnum and Gcnum , samples of 100 points
were used with all x(k) being uniformly distributed in [Xmin,Xmax] = [−10, 10] and
y(k) = Pcnum(x(k)) or y(k) = Gcnum(x(k)), respectively. For all experiments, a standard
GP was used with the settings as given in Table 1.

Constants in GP 133

Table 1. The settings of the used GP approach

Objective: Symbolic regression with constants evaluated by
sum of deviations over all points
F(T) =

∑
k |I(T, x(k)) − y(k)|

with tree T ∈ T and interpreter I
Standard Function Set: NEG, ADD, SUB, MUL, DIV and X as terminal

plus � or the appropriate SC... constant
Extended Function Set: NEG, ADD, SUB, MUL, DIV, POW, ABS, SQRT,

SIN, COS, TAN, EXP, LN, LOG and X as terminal
plus � or the appropriate SC... constant

Initialization: Ramped half-and-half, min = 2, max = 6

Crossover: Standard crossover, probability = 0.9

Mutation: Subtree mutation, probability = 0.1

Selection: Tournament selection, 3 competitors

Fitness: Raw (standard) fitness

Replacement: Generational replacement scheme

Parameters: Population size = 500, generations = 40, no elitists

4.1 Polynomial Benchmark

For this benchmark, the experiments were conducted for the first ten numbers
of constants (cnum ∈ {1, · · · , 10}). In Table 2 (page 134), the results are given
as numerical values. The winners are printed in boldface. Inspecting this table
reveals that the Polynomial benchmarks were best solved by all SC approaches.
But among the SCs, there is no clear winner. Three of them win in four and five
of the ten cases and one only in two cases (SCf ull−g). Among the best three SCs,
one (SCquot) performed only well for the lower numbers of constants, whereas the
other two (SCmmquot,SCf ull) won cases over the whole range.

4.2 Sum-of-Gaussians Benchmark

Also for this benchmark, the experiments were conducted for the first ten num-
bers of constants (cnum ∈ {1, · · · , 10}). According to Table 3 (page 135), the
Sum-of-Gaussians benchmarks were best solved by SCmmquot. It wins in 6 of the
ten cases, outperforming this way all other methods (with respect to the number
of won cases). The other three SCs win only in zero, one and two cases. Although
very tight, the ERC method wins one case and outperformed SCquot. The reached
fitness values of all methods are close for all benchmarks.

4.3 Summary

In Table 4 (page 136) the final results over all benchmark functions are given in
terms of the numbers of cases in which a constant concept performs as best. The
last row gives the total numbers of won cases. From there it can be seen that
the winner over all benchmarks is clearly SCmmquot. The second bests are SCf ull

134 C.B. Veenhuis

Table 2. The obtained results for the POLYNOMIAL benchmark averaged over 50
independent runs. The columns ’Avg. Fitness’ are the best fitness values reached on
average and ’sd’ are the appropriate standard deviations.

ERC SCquot SCmmquot SCf ull SCf ull−g

cnum

1

2

3

4

5

6

7

8

9

10

Avg. Fitness

5.45922
(sd: 15.6871)

50.945
(sd: 92.6602)

959.358
(sd: 1178.68)

11401.3
(sd: 9706.61)

102873
(sd: 113909)

1.12797e + 006
(sd: 1.14452e+006)

2.63987e + 007
(sd: 3.32783e+007)

1.14364e + 008
(sd: 1.77641e+008)

3.12286e + 009
(sd: 3.11849e+009)

1.63328e + 010
(sd: 1.74503e+010)

Avg. Fitness

0
(sd: 0)

0.000106878
(sd: 0.000748143)

411.188
(sd: 365.07)

2207.93
(sd: 4602.83)

19747.8
(sd: 65657.6)

569027
(sd: 895749)

1.05336e + 007
(sd: 2.0743e+007)

5.03722e + 007
(sd: 5.97271e+007)

1.08845e + 009
(sd: 1.94807e+009)

7.36193e + 009
(sd: 9.44926e+009)

Avg. Fitness

0
(sd: 0)

0
(sd: 0)

542.772
(sd: 399.006)

4128.93
(sd: 3238.93)

30664.9
(sd: 91940.9)

296845
(sd: 562651)

8.3599e + 006
(sd: 1.38128e+007)

3.87227e + 007
(sd: 6.56279e+007)

7.09581e + 008
(sd: 8.15087e+008)

3.70365e + 009
(sd: 4.755e+009)

Avg. Fitness

0
(sd: 0)

0
(sd: 0)

531.82
(sd: 467.849)

3492.59
(sd: 3076.52)

64953.9
(sd: 336065)

284145
(sd: 314191)

8.57059e + 006
(sd: 9.45898e+006)

2.35991e + 007
(sd: 2.33994e+007)

1.48731e + 009
(sd: 2.2571e+009)

3.0351e + 009
(sd: 4.06186e+009)

Avg. Fitness

0
(sd: 0)

0
(sd: 0)

450.682
(sd: 307.877)

4441.4
(sd: 3156.95)

47246.9
(sd: 116539)

436775
(sd: 640290)

1.11821e + 007
(sd: 2.49654e+007)

2.61194e + 007
(sd: 3.1674e+007)

1.24917e + 009
(sd: 2.32232e+009)

4.18589e + 009
(sd: 9.61241e+009)

Constants in GP 135

Table 3. The obtained results for the SUM-OF-GAUSSIANS benchmark averaged
over 50 independent runs. The columns ’Avg. Fitness’ are the best fitness values reached
on average and ’sd’ are the appropriate standard deviations.

ERC SCquot SCmmquot SCf ull SCf ull−g

cnum

1

2

3

4

5

6

7

8

9

10

Avg. Fitness

7.92484
(sd: 2.45881)

17.5234
(sd: 0.0690329)

22.7068
(sd: 4.75156)

29.8323
(sd: 0.344268)

30.2103
(sd: 0.707123)

20.7481
(sd: 5.78303)

23.6415
(sd: 1.02372)

19.4204
(sd: 0.208013)

14.7881
(sd: 0.177806)

10.8935
(sd: 0.0634859)

Avg. Fitness

7.06104
(sd: 3.36676)

17.5466
(sd: 0.002927)

24.0421
(sd: 3.74773)

29.6072
(sd: 1.40193)

30.04
(sd: 1.22604)

19.5825
(sd: 6.47734)

19.2354
(sd: 5.1414)

14.377
(sd: 4.89492)

12.4597
(sd: 3.8964)

10.5945
(sd: 0.853805)

Avg. Fitness

6.86777
(sd: 3.5924)

17.5473
(sd: 1.06581e−014)

21.9589
(sd: 5.61472)

27.1038
(sd: 4.65437)

24.1434
(sd: 6.01809)

16.0718
(sd: 2.42268)

17.5072
(sd: 4.74239)

11.6531
(sd: 5.85684)

8.36133
(sd: 5.28631)

10.4401
(sd: 1.31411)

Avg. Fitness

7.81503
(sd: 2.66586)

17.5458
(sd: 0.00873155)

24.3213
(sd: 4.34347)

27.5833
(sd: 3.84845)

25.2328
(sd: 6.67785)

15.1753
(sd: 3.70877)

18.3589
(sd: 4.79823)

13.708
(sd: 6.13544)

10.0999
(sd: 5.31754)

10.2638
(sd: 1.32116)

Avg. Fitness

7.6386
(sd: 2.8158)

17.5473
(sd: 1.06581e−014)

24.4268
(sd: 3.72864)

27.7314
(sd: 2.86172)

23.6527
(sd: 6.88129)

15.7694
(sd: 3.41595)

17.8244
(sd: 5.47548)

12.6103
(sd: 6.13404)

9.5832
(sd: 4.95699)

9.99404
(sd: 1.56859)

136 C.B. Veenhuis

and SCf ull−g. The worst of the structure-based constants is SCquot, which only
performs well for the Polynomial benchmark Pcnum with fewer constants. Note
that SCquot is the only SC, which neither specifies a constant interval nor repre-
sents negative constants. All other methods (including ERC) allow for negative
constants by using appropriate cmin and cmax bounds. It seems that forcing neg-
ative constants by an interval is easier for GP than to build negative constants
by applying the NEG function to a positive constant.

Considered over all 20 benchmark functions, the ERC concept only won 1
case. In all other 19 cases it was outperformed by most of the structure-based
constants.

Table 4. The numbers of won cases over all benchmarks

Benchmark ERC SCquot SCmmquot SCf ull SCf ull−g

Polynomial 0 4 4 5 2

Sum-of-Gaussians 1 0 6 1 2∑
1 4 10 6 4

5 Conclusions

In this paper a new constant concept called Structure-based Constants (SC) was
introduced. It represents a constant by a tree so it is under the influence of the
subtree crossover and mutation operators. Opposed to the common procedure,
such a structure-based constant is not a terminal, but a function. The value of
this constant function is derived from the tree structures of its child-trees. This
new concept has a number of advantages compared to ERC and other solutions
to the constant problem:

– Since a constant is a tree itself, it totally integrates into the GP trees. Thus,
it is evolved with subtree crossover and mutation and no additional opti-
mizer is needed anymore. This saves computation time.

– An SC only needs to be added to the function set the same way as all other
functions, too.

– Neither the GP algorithm, nor one of its components need to be changed
or extended. Thus, one can keep the original GP and use standard
configurations.

– Only few parameters need to be specified. In fact, it is the interval of
constant values as already used by the ERC approach. (For SCf ull−g also
Amax needs to be set. But this parameter cannot be freely adjusted by the
user – it must be set to the global maximum arity of the used function set.
Thus, it can not be considered to be a real parameter in the same sense as
the interval bounds.)

– The SCs do not consider the content of tree nodes, because they are based
on properties of tree structures. Thus, they are problem-independent and
can be used in each GP application.

Constants in GP 137

– Since the original GP is not changed, the SCs can be used with each GP
implementation already in existence.

In 19 of 20 cases the SC concept outperformed ERC. With this result the
demand that it must be at least comparable to ERC is fulfilled. It seems that
the structure-based constants could be a suitable approach to replace Koza’s
ERC concept.

References

1. Evett, M., Fernandez, T.: Numeric Mutation Improves the Discovery of Numeric
Constants in Genetic Programming. In: Proc. 3rd Annual Conference on Genetic
Programming, pp. 66–71. Morgan Kaufmann (1998)

2. Fernandez, T., Evett, M.: Numeric Mutation as an Improvement to Symbolic Re-
gression in Genetic Programming. In: Porto, V.W., Waagen, D. (eds.) EP 1998.
LNCS, vol. 1447, pp. 251–260. Springer, Heidelberg (1998)

3. Howard, L.M., D’Angelo, D.J.: The GA-P: A Genetic Algorithm and Ge-
netic Programming Hybrid. IEEE Intelligent Systems 10(3), 11–15 (1995),
doi:10.1109/64.393137

4. Keith, M.J., Martin, M.C.: Genetic Programming in C++: Implementation Issues.
In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming (1994)

5. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

6. Koza, J.R.: Genetic Programming: A Paradigm for Genetically Breeding Popula-
tions of Computer Programs to Solve Problems, Stanford University, Computer
Science Department. Technical Report STAN-CS-90-1314 (June 1990)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

8. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic pro-
gramming. Genetic Programming and Evolvable Machines 11(3-4), 339–363 (2010),
doi:10.1007/s10710-010-9113-2

9. Ryan, C., Keijzer, M.: An Analysis of Diversity of Constants of Genetic Program-
ming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 404–413. Springer, Heidelberg (2003)

10. Topchy, A., Punch, W.F.: Faster Genetic Programming based on Local Gradient
Search of Numeric Leaf Values. In: Proc. of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2001), pp. 155–162. Morgan Kaufmann (2001)

	Structure-Based Constantsin Genetic Programming
	1 Introduction
	2 Structure-Based Constants
	2.1 Subtree Relationships
	2.2 Full Tree Normalization

	3 Benchmark Functions
	3.1 Polynomial Benchmark
	3.2 Sum-of-Gaussians Benchmark

	4 Experiments
	4.1 Polynomial Benchmark
	4.2 Sum-of-Gaussians Benchmark
	4.3 Summary

	5 Conclusions
	References

