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Preface

This volume of LNCS is devoted to CAI 2013, the 5th International Conference
on Algebraic Informatics, organized under the auspices of Aix-Marseille Univer-
sity, ERISCS Research Group and IML Research Laboratory. The conference,
held at IGESA Center, Porquerolles Island, during September 3–6, intended to
cover topics in mathematical aspects of computing such as algebraic specifica-
tions and algorithms, algebraic coding theory, algebraic aspects of cryptography,
computational number theory, formal power series, algebraic semantics, finite
and infinite computations, algebraic characterization of logical theories, process
algebra, program construction and refinements, acceptors and transducers for
discrete structures, decision problems, term rewriting, abstract machines and
systems, hybrid automata composition.

These topics involve considerable interaction between various theoretical math-
ematical disciplines, including the theory of computation, algebraic models of
computing, and data coding, for future critical computer applications in indus-
try.

This volume contains five invited lectures and 19 contributed papers, out of
24 submissions from eight countries, which were presented at the conference.

The papers cover a broad range of topics of recent research and ongoing work
in the field featuring

– Data models and coding theory
– Fundamental aspects of cryptography and security
– Algebraic and stochastic models of computing
– Logic and program modelling

We are grateful to all members of the Program Committee for the evaluation
of the submissions and the valuable suggestions from referees who assisted in
this work.

We also thank all authors for having submitted high-quality papers.
Special thanks are due to Alfred Hofmann, Editorial Director at Springer,

who helped us to publish the proceedings of CAI 2013 in the LNCS series, as
well as to Anna Kramer for the excellent cooperation.

The sponsors of CAI 2013 are also gratefully acknowledged.

May 2013 Traian Muntean
Dimitrios Poulakis

Robert Rolland
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Stéphane Ballet Marseille
Alexis Bonnecaze Marseille
Symeon Bozapalidis Thessaloniki
Bruno Courcelle Bordeaux
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Euclidean Model Checking: A Scalable Method

for Verifying Quantitative Properties
in Probabilistic Systems

Gul Agha�

Department of Computer Science
University of Illinois, Urbana, Illinois, USA

agha@illinois.edu

http://osl.cs.illinois.edu

We typically represent the global state of a concurrent system as the cross-
product of individual states of its components. This leads to an explosion of
potential global states: consider a concurrent system with a thousand actors,
each of which may be in one of 5 states. This leads to a possible 51000 global
states. Obviously, it is not feasible to exhaustively search the state space in such
systems. In fact, actors often have an even larger number of states (than say 5),
although these states may be abstracted to fewer states.

Our work is motivated by the following observation. In large concurrent sys-
tems, we are often interested in probabilistic guarantees on the behavior of the
system. This suggests the possibility of sampling the behavior. In the real world,
engineers often use monte carlo simulations to analyze systems. This process
can be made more rigorous by expressing the desired properties of a system in
a formal logic such as continuous stochastic logic (CSL). We have earlier pro-
posed using an approach we call statistical method checking to verify properties
expressed in a sublogic of CSL [11]. This work was extended to verify properties
involving unbounded untils in [12]. The methods are implemented in a tool called
VESTA [12] which has been used in a number of applications. A parallel version
of the tool, called pVeSTA, has also been implemented [2].

In this lecture, I will focus on an alternate method for addressing the problem
of large state spaces. For many purposes, it may not be necessary to consider
the global state as a cross-product of the states of individual actors. We take our
inspiration from statistical physics where macro properties of a system may be
related to the properties of individual molecules using probability distributions
on the states of the latter. Consider a simple example. Suppose associated with
each state is the amount of energy a node consumes when in that state (such

� The work reviewed in this presentation was done primarily in collaboration with
YoungMin Kwon, Koushik Sen, Vijay Korthikanti, and Mahesh Viswanathan. The
research has been supported in part by the Defense Advanced Research Projects
Agency (DARPA) under Award No. F33615-01-C-1907, by ONR Grant N00014-02-
1- 0715, by NSF under grant CNS 05-09321, by the AFRL and the AFOSR under
agreement number FA8750-11-2-0084, and by the Army Research Office under Award
No. W911NF- 09-1-0273.

T. Muntean, D. Poulakis, and R. Rolland (Eds.): CAI 2013, LNCS 8080, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 G. Agha

an associated value mapping is called the reward function of the state). Now, if
we have a frequency count of the nodes in each state, we can estimate the total
energy consumed by the system. This suggests a model where the global state
is a vector of probability mass functions (pmfs). In the above example, the size
of the vector would be 5, one element for each possible state of a node. Each
element of the vector represents the probability that any node is in the particular
state corresponding to entry.

Given transitions between the global states, we can also compute how much
energy has been consumed up to some point in time. Note that using such a
global state assumes a certain symmetry (at least as a statistical approximation).
However, we have also explored cases where there may be more than one type
of node in a system (with its own associated Markovian behaviors). We have
defined a temporal logic iLTL which can be used to write specifications where
the global state of system is defined by such pmf vectors [6]. These vectors
represent points in (convex subspace of) an Euclidean space. The evolution of a
concurrent system can then be modeled as trajectories in this Euclidean space.

The behavior of many large concurrent system is Markovian and often
modeled using Discrete Time Markov Chains (DTMC). The DTMC governs
transforms of pmf vectors representing the state evolution. We have developed
methods to check properties of systems governed by DTMCs expressed using
iLTL formulas [9], [10]. Given the nature of the model, we term the method Eu-
clidean Model Checking [10]. The method has been implemented in a tool [8] and
used to verify properties such communication bandwidth, maximum expected
queue lengths, energy consumption in sensor networks, pharmacokinetic models
[5], and software reliability of many threaded concurrent software [7]. More gen-
eral models may be considered, for example, Markov Decision Processes (MDPs)
where there is no commitment to a single Markov matrix governing the transfor-
mations [4]. However this makes the verification problem in general intractable,
except in special cases such as MDPs with a unique compact invariant set of
distributions [3].

References

1. Second International Conference on the Quantitative Evaluaiton of Systems
(QEST 2005), Torino, Italy, September 19-22. IEEE Computer Society (2005)

2. AlTurki, M., Meseguer, J.: pVeStA: A parallel statistical model checking and quan-
titative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011.
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transformers of probability distributions. In: QEST, pp. 199–208. IEEE Computer
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In: Advances in Computational Biology. Advances in Experimental Medicine and
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Quantitative Analysis

of Randomized Distributed Systems
and Probabilistic Automata�

Christel Baier

Technische Universität Dresden, Faculty of Computer Science, Germany

The automata-based model checking approach for randomized distributed
systems relies on an operational interleaving semantics of the system by means of
a Markov decision process (MDP) and a formalization of the desired event E by
an ω-regular linear-time property, e.g., an LTL formula. The task is then to com-
pute the greatest lower bound for the probability for E that can be guaranteed
even in worst-case scenarios. Such bounds can be computed by a combination
of polynomially time-bounded graph algorithm with methods for solving linear
programs. See e.g. [7,4,3].

In the classical approach, the “worst-case” is determined when ranging over all
schedulers that decide which action to perform next. In particular, all possible
interleavings and resolutions of other nondeterministic choices in the system
model are taken into account.

As in the nonprobabilistic case, the commutativity of independent concurrent
actions can be used to avoid redundancies in the system model and to increase
the efficiency of the quantitative analysis. This motivates the use of partial-
order reduction to construct and analyze a smaller sub-MDP that is equivalent
to the original MDP for stutter-invariant ω-regular properties. Although the
main concepts are the same as in the non-probabilistic case, there are certain
phenomena that are specific for the probabilistic case and require additional
conditions for the reduced model to ensure that the worst-case probabilities are
preserved [2,6].

Related to this observation is also the fact that the worst-case analysis that
ranges over all schedulers is often too pessimistic and leads to extreme prob-
ability values that can be achieved only by schedulers that are unrealistic for
parallel systems. This motivates the switch to more realistic classes of schedulers
that respect the fact that the individual processes only have partial information
about the global system states. Such classes of partial-information schedulers
yield more realistic worst-case probabilities, but computationally they are much
harder since the semantic model of randomized systems with partial-information

� This work was in part funded through the CRC 912 Highly-Adaptive Energy-
Efficient Computing (HAEC), the EU under FP7 grant 295261 (MEALS), the
DFG/NWO-project ROCKS, the cluster of excellence cfAED (center for Advanc-
ing Electronics Dresden) and the DFG project QuaOS.
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schedulers is closely related to probabilistic automata over words. Indeed, a wide
range of verification problems that impose conditions on all partial-information
schedulers turns out to be undecidable [5,1].
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On Elliptic Curve Paillier Schemes

Marc Joye

Technicolor, France
marc.joye@technicolor.com

Abstract. In 1999, Paillier proposed an elegant cryptosystem from the
integers modulo N2 where N is an RSA modulus. Paillier public-key
encryption scheme enjoys a number of interesting properties, including a
homomorphic property: the encryption of two messages allows anyone to
derive the encryption of their sum. This reveals useful in cryptographic
applications such as electronic voting. In this talk we review several
generalizations of the original Paillier scheme to the elliptic curve
setting. Using similar ideas, we then present a new elliptic curve scheme
which is semantically secure in the standard model. Interestingly, the
new encryption scheme does not require to encode messages as points on
an elliptic curve and features a partial homomorphic property.

T. Muntean, D. Poulakis, and R. Rolland (Eds.): CAI 2013, LNCS 8080, p. 6, 2013.
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Proofs of Storage:

Theory, Constructions and Applications

Seny Kamara

Microsoft Research
senyk@microsoft.com

Abstract. Proofs of storage (PoS) are cryptographic protocols that
allow a client to efficiently verify the integrity of remotely stored data.
To use a PoS, the client sends an encoded version of its data to the
server while keeping a small amount of state locally. At any point in
time, the client can then verify the integrity of its data by executing a
highly-efficient challenge-response protocol with the server.

Since their introduction in 2007 by Ateniese et al. (Computer and
Communications Security, 2007) and Juels and Kaliski (Computer and
Communications Security, 2007), PoS have received a lot of attention
from the research community. This is due in large part to their potential
practical applications (e.g., to the design of various kinds of secure cloud
storage systems) but also due to their inherent theoretical properties
and their connections to fundamental primitives like digital signatures,
identification schemes, zero-knowledge proofs and error-correcting codes.

In this talk, I will survey the current state of PoS research. This
will include the many variants of PoS that have been invented over the
years, how to design them, the connections that have been established
between PoS and other primitives and the many new applications PoS
have enabled.
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Abstract. For a long time, coding theory was only concerned by mes-
sage integrity (how to protect against errors a message sent via some
noisely channel). Nowadays, coding theory plays an important role in
the area of cryptography and steganography. The aim of this paper is
to show how algebraic coding theory offers ways to define secure crypto-
graphic primitives and efficient steganographic schemes.

Cryptography

1 Introduction

Cryptography addresses the following problem: how to scramble a message before
sending it in order to make it unintelligible to any outsider. In symmetric cryptog-
raphy (or private key cryptography), the message is enciphered with a function e
and deciphered using a function d. These two functions depend on a parameter k
called the secret-key such that for all messages m, d(e(m, k), k) = m. As a con-
sequence, this key must be shared by the sender and the recipient. In practice,
this may be very difficult to achieve, especially if the key has to be sent via some
channel. In 1976, W. Diffie and M.E. Hellman [37] laid the foundation for public
key cryptography (or asymmetric cryptography) asking the following question: is
it possible to use a pair of keys (k, �) such that only k be necessary for encryption,
while � would be necessary for decryption ? For such a protocol, d and emust sat-
isfy for all messages m, d(e(m, k), �) = m. A cryptosystem devised in this way is
called a public key cryptosystem since k can be made public to all users. Obviously,
it should be computationally infeasible to determine � from k.

The security of all conventional public key cryptosystems actually deployed
in practice depends on the hardness of two mathematical problems coming from
number theory: integer factoring and discrete logarithm. At this time no one
knows an efficient algorithm in order to solve them in a reasonable time al-
though numerous researchers make good progress in this area. If the security of
the schemes based on this two problems is well defined, one drawback is that
they rely on arithmetic operations over large numbers. Moerover, Shor’s quan-
tum algorithm [96] published in 1994 poses a serious threat to the security of
these conventional cryptosystems. Indeed, quantum computers (of an appropri-
ate size) can potentially break them in polynomial time. Although such quantum
computers still do not exist, there is a strong need to develop and study alterna-
tive public key cryptosystems that would be secured in a post quantum world.

T. Muntean, D. Poulakis, and R. Rolland (Eds.): CAI 2013, LNCS 8080, pp. 9–46, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Algebraic coding theory offers an alternative supposed to resist to quantum
attackers. Remember that the aim of algebraic coding theory is to restore a
message m sent via a channel disrupted by some natural perturbation and that
the goal of cryptography is to intentionally scramble a messagem before sending
it, so that it becomes unintelligible except for its recipient. Obviously there
are some links between these two fields. Security of code based cryptographic
primitives depends on a problem which in its general form is a well known NP-
complete problem: the syndrome decoding problem. Generally these protocols are
easier to implement, use only basic operations over the two element field and
provides fast encryption and decryption algorithms.

2 Minimal Background in Coding Theory

In this section, we recall few notions on coding theory in order to understand
the sequel of this paper. For a more complete overview on this topic, the reader
is addressed to [74].

Definition 1 (Linear code). A linear code C is a k-dimensional subspace of
an n-dimensional vector space over a finite field Fq, where k and n are positive
integers with k � n, and q a prime power. The error-correcting capability of such
a code is the maximum number t of errors that the code is able to decode.

Definition 2 (Hamming weight). The (Hamming) weight of a vector x is
the number of non-zero entries. We use ω(x) to represent the Hamming weight
of x.

Definition 3 (Generator and Parity Check Matrix). Let C be a linear
code over Fq. A generator matrix G of C is a matrix whose rows form a basis of
C:

C = {xG : x ∈ Fk
q} .

A parity check matrix H of C is is an (n − k) × n matrix whose rows form a
basis of the orthogonal complement of the vector subspace C, i.e. it holds that,

C = {x ∈ Fn
q : H tx = 0} .

For the sequel, we will focus our attention on the decoding problem for binary
linear codes (i.e. q = 2). First we recall two important results.

First Result. A binary linear code C of length n can correct t errors if for any
x, y ∈ C (x �= y), B(x, t)∩B(y, t) = ∅ where B(x, t) = {y ∈ {0, 1}n | d(x, y) � t}
and d(x, y) denotes the Hamming distance.

Second Result. A binary linear code C(n, k) whose minimal distance is d can
correct �(d− 1)/2� errors.
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Let C be a binary [n, k, d] code. Let us consider a word c′ such that c′ = c0 + e
where c0 ∈ C and e is what is called an error vector. Let H be a parity check
matrix of C and let s be the syndrome of c′, i.e. s = H tc′. Notice that the 2k

solutions x which satisfy the equation

H tx = s , (1)

are given by the set {u + e, u ∈ C} (remember that ∀u ∈ C, H tu = 0). If the
Hamming weight of e (i.e. the number of non-zero bits of e) satisfies

∀u ∈ C \ {0}, w(e) < w(u + e) , (2)

then the error e is the minimum weight solution of (1).

Remark 1. If w(e) � �(d− 1)/2�, then e satisfies eq. (2).

Hence, without any extra information on the code, to decode c′ one has to solve
an optimization problem. Notice that searching for the minimum weight word
which satisfies eq. (1) is equivalent to search for the closest codeword from c′.
Indeed, it is easy to see that eq. (2) is equivalent to:

∀u ∈ C \ {c0}, d(c0, c
′) < d(u, c′) . (3)

One goal of coding theory is to find codes for which the minimum weight solution
of (1) can be computed in polynomial time without constraints on the size of H .
Such a problem can be stated in a more general setting as it will be developped
in the next section.

3 The Syndrome Decoding Problem

Except for the Mc Eliece’s cryptosystem and the CFS signature scheme, the
security of all the code based cryptographic schemes that we are going to detail
is based on the difficulty of the Syndrome Decoding Problem. The SD problem
is a decision problem which can be stated as follows:

Name : SD
Input : H(r, n) a binary matrix , s a binary column vector with

r coordinates, p an integer.
Question : Is there a binary vector e of length n such that H te = s

and w(e) ≤ p ?

In the context of coding theory, if H is a parity check matrix, this means that
the problem to decide wether there exists or not a word of given weight and
syndrome is NP-complete.

This decision problem is linked to the optimization problem induced by maxi-
mum likelihood decoding. Indeed, searching for the closest codeword of a received
word x is equivalent to find the minimum weight solution e of the equation
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H te = H tx. Now, let (H, s, p) be an instance of the SD problem, the vector e
exists if and only if the minimum weight solution of H tx = s is less or equal than
p. On the other hand, if one knows a polynomial time algorithm to solve SD,
then it can be turned into a polynomial time algorithm to compute the mini-
mal weight of a solution of the system H tx = s. In 1978, E.R. Berlekamp, R.J.
McEliece and H.C.A. Van Tilborg [13] proved that this problem is NP-complete
reducing it to the Three-Dimensional Matching problem [56].

Remark 2. The problem still remains NP-complete if:

– the matrix H is full rank (as it is the case for a parity check matrix),
– we ask for an s with exactly p 1’s.

The SD problem can be stated in terms of the generator matrix since one
can go from the parity-check matrix to the generator matrix (or vice versa) in
polynomial time:

Name : G-SD
Input : G(k, n) a generator matrix of a binary (n, k) code C, x ∈ {0, 1}n

and p > 0 an integer.
Question : Is there a vector e of length n and weight p such that x+ e ∈ C?
While the SD problem is NP-complete, there exists weak matrices for which
an efficient algorithm can be developed. Hence, one can alternatively define al-
gebraic coding theory as the science whose one goal is to build easy instances
of the SD problem, in order to set up polynomial time algorithms for decoding.
However for a random matrix H , it is necessary to know for which parameters
(n, r, p) the problem seems to be difficult to solve.

4 Algorithms for the SD Problem

Nowadays, there exists eight probabilistic algorithms to compute a solution to
the SD problem: Lee and Brickell’s algorithm [70], Leon’s algorithm [71], Stern’s
algorithm [99], the toolbox of A. Canteaut and F. Chabaud [25], Johansson and
Jönsonn’s algorithm [69], the “ball-collision” decoding algorithm [18], the MMT
algorithm [75] and the “1+1=0” decoding algorithm [10]. All these algorithms
are devoted to search a word of small weight in a random code.

Proposition 1. SD problem is equivalent to the following problem:
Input : H(k, n) a binary matrix of rank k, p > 0 an integer.
Question : Is there a vector x ∈ {0, 1}n such that H tx = 0,

w(x) ≤ p and xn = 1 ?

All these algorithms are based on the notion of information set decoding (ISD)
introduced by Prange [87].

Definition 4. Let G be a generator matrix of an [n, k] code and c = mG be
a codeword. Let us denote by Gi the ith column of G and let I = {i1, . . . , ik}
such that GI = (Gi1 , . . . , Gik) be a k × k invertible submatrix. Then these k
coordinates uniquely determine the vector m, since m = (ci1 , . . . , cik)G

−1
I . The

set I is called an information set.
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Now suppose that a received word x = (c + e) is such that no errors occur
in the information set I. The error pattern e can be recovered by computing
(xi1 , . . . , xik )G

−1
I +x. Hence, the main idea used in all the algorithms is to select

random information sets from the generator matrix (or the parity check matrix
for Stern’s scheme) until the support of the error does not meet the selected set
which leads to a probability of success of:(

n−p
k

)(
n
k

) (4)

Using the usual binomial approximation this gives the following probability of
success:

Psucc = O(1).2−nH2(p/n)−(1−k)H2(p/(n−k)) (5)

where H2(x) is the classical entropy function. Hence, the work factor (number
of operations) needed to compute a solution for the SD problem can be roughly
estimated by:

Inv(k)

Psucc
(6)

where Inv(k) is the cost for inverting a k×k matrix. Usually this operation needs
k3 binary operations (notice that in order to be more precised, we should have
take into account the probability for a random k × k matrix to be invertible).
The algorithms of Lee and Brickell, Leon and Stern use some heuristic in order
to minimize the call to the inverse procedure by:

1. taking into account information set which contains a small part (say w bits)
of the support of the error pattern,

2. using a size-� window of zeroes outside of I in order to constrain the possible
locations for the error.

Canteaut and Chabaud combine these heuristics with a trick (proposed by J.
Van Tilburg [104] and latter by H. Chabanne and B. Courteau [31]) in order to
reduce the cost of the inverse procedure. Let I be the current information set for
which the algorithm did not succeed, instead of randomly select k new columns,
they exchange one column whose index is in I with a column whose index is in
{1, . . . , n} \ I which decreases the cost of the Gaussian elimination. Interested
readers can find a complete description and analysis of the first four algorithms
in [24,25]. It follows from the study of [25] that the modified version of Stern’s
algorithm is the best one to solve the SD problem.

“Ball-collision”, MMT and “1+1=0” algorithms are improvement of modified
Stern’s scheme where the major contribution comes in that some positions of
the error vector are also fixed in two subsets Z1 and Z2 outside I. Moreover,
the “1+1=0” algorithm adds a further improvement in the initial search step.
Here is a graphical representation (from [19]) which illustrates how the word e
is searched for a given information set I.
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Nowadays, the “1+1=0” algorithm is the best one to solve the SD problem.
Another important result is that hard instances of the SD problem are ob-

tained when the weight of the vector e is near from the theoretical minimal
distance d of the code which is given by the Gilbert-Varshamov bound:

H2(d/n) 
 1− k/n. (7)

Since random binary linear codes attain with overwhelming probability a rate
R(= k/n) (which is close to the Gilbert-Varshamov bound) the running time
of the decoding algorithms (for random binary linear codes) can be expressed
as a function of n and R only, namely T (n,R). Let T (n,R) = O(2θn), where
Θ = limn→∞

log(T (n,R))
n , table 1 gives the value of θ whenR is close to the Gilbert

Varshamov bound. In this table, half decoding means that we are searching for
a word of weight �(d− 1)/2� where d is the theoritical minimum distance of the
code, while full decoding means that we are searching for the closest codeword
from an arbitrary vector x ∈ Fn

2 (see eq. 3). The algorithm of Johansson and
Jönsson is slightly different from the other one. The input is a list of received
words and the goal is to try to decode one of them. Since the algorithm works
with information set, all the tricks used in the other algorithms can be used in
order to optimize it. The probability of success grows with the size of the initial
list. When this list is to small, the performances are not better than those of the
other algorithms (see table 2).

4.1 The q-SD Problem

The SD problem can be considered over an arbitrary finite field.

Table 1. Complexity of the decoding algorithms for SD for random codes

θ(half dec.) θ(full dec.)

Lee− Brickell(1988) 0.05751 0.1208
Stern(1989) 0.05563 0.1167
Ball− collision(2011) 0.05558 0.1164
MMT(2011) 0.05364 0.1116
1 + 1 = 0(2012) 0.0497 0.1019
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Table 2. Workfactor of Johansson and Jönsson algorithm

size of list n = 1024, k = 524, p = 50 n = 512, k = 256, p = 56

1 268.1 272.2

25 263.7 268.9

210 259.5 265.9

215 256.2 264.1

230 250.2 260

Definition 5 (q-ary Syndrome Decoding (qSD) problem).
Input : H(r, n) a matrix over Fq, s a vector with r coordinates over Fq,

an integer p > 0.
Question : Is there a q-ary vector e of length n

such that H te = s and w(e) ≤ p ?

In 1994, A. Barg proved that this last problem remains NP-complete [8, in
russian]. In [86], C. Peters generalizes all the ISD algorithms to the case of codes
over Fq with q > 2. As an example, to reach a complexity of 2128, it is enough
to choose a [961, 771] code over F31 and a word of weight 48. For the same
complexity, in the binary case, we have to choose a [2960, 2988] code and a word
of weight 57. If the matrix is a public key, the matrix over F31 can be stored
usion 90Kb while the one over F2 needs 188Kb.

4.2 Quantum Computers and the SD Problem

The SD problem cannot be polynomially solved using quantum computers. How-
ever, the Grover’s quantum algorithm [63,64] for computing roots of a function
can be used in order to speedup the probabilistic algorithms against SD. In
[15], the author shows that the quantum version of the information set decoding
algorithms takes time only c(1/2+o(1))n/ log2 n to break a length n and rate R
code (with c = 1/(1 − R)1−R) where as the non quantum version takes time
c(1+o(1))n/ log2 n. As a consequence, protecting against these quantum attacks
requires essentially quadrupling the key size.

5 The SD Identification Scheme

5.1 Introduction

The SD Identification scheme is the first cryptographic protocol whose secu-
rity relies on the difficulty of the SD problem. An identification scheme is a
cryptographic protocol which enables party A (called the “prover”) to prove his
identity (by means of an on-line communication) polynomially many times to
party B (called the “verifier”) without enabling B to misrepresent himself as A
to someone else. In 1985, S. Goldwasser, S. Micali and C. Rackoff described a
very nice solution to this problem with zero-knowledge proofs [61], where a user
convinces with a non-negligible probability an entity that he knows the solution
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s of a public instance of a “difficult” problem without giving any information
on s (see [88] for a nice introduction to zero-knowledge). In 1986, A. Fiat and
A. Shamir proved the practical significance of zero-knowledge proofs for public-
key identification [42]. Their scheme relies on the difficulty of factoring. Notice
that, from a practical point of view, the prover may be identified to a smart
card, hence it is supposed that he has reduced computational power and a small
amount of memory. Since 1988, there were several attempts to build identifi-
cation schemes which did not rely on number theory and use only very simple
operations so as to minimize computing load. The idea to use error-correcting
codes for identification is due to S. Harari [65] , unfortunately his scheme was not
zero-knowledge and not really practical due to its heavy communication load.
Moreover, the scheme has been proved to be insecure in [105]. Another scheme
proposed by M. Girault [59] has been cryptanalysed in [93].

5.2 Stern’s Scheme

The first truly practical scheme using error-correcting codes is due to J. Stern
[100]. The scheme uses a fixed binary (k, n) parity check matrix H which is
common to all users. In 1995, a dual version of Stern’s scheme has been defined:
the G-SD identification scheme [106]. This version improves the communication
complexity (number of bits exchanged during the protocol) for exactly the same
level of security as those of Stern’s scheme.
Table 3 lists the secret and public data used in the SD protocol. The pair (i, p) is
the public identification of the prover. His data can be computed by a certifica-
tion center having the confidence of all users or the prover can choose his secret
keys and the center certifies the corresponding public keys. The principle of the

Table 3. Public and secret data in the G-SD identification scheme

Common public data : H(k, n) a full rank binary matrix , a hash function
denoted by 〈.〉.

Prover’s secret data : s ∈ {0, 1}n.
Prover’s public data : i = Hs and p = ω(s).

protocol is the following: the prover (Alice) knows the secret vector s which sat-
isfies Hs = i and p = ω(s). Bob (the verifier) asks Alice a series of questions. If
Alice really knows s, she can answer all the questions correctly. If she does not,
she has a probability q of answering correctly. After r successful iterations of the
protocol, Bob will be convinced that Alice knows s with probability 1− qr.
The identification scheme relies on the notion of commitment. Commitment is
a protocol between Alice and Bob which operates in 3 stages:

– Stage 1: Alice hides a sequence u of bits and sends it to Bob. The hidden
function is public and hard to invert.

– Stage 2: Alice and Bob execute some protocol,
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– Stage 3: Alice reveals u, Bob checks the validity of the hidden value received
during stage 1.

From a practical point of view, u is hidden via a cryptographic public hash
function. Hence Alice sends to Bob the image 〈u〉 of u. The hash function must
be collision-free (i.e. it should be “infeasible” to compute u′ �= u such that
〈u′〉 = 〈u〉). Discussion on the length of the hash value 〈u〉 can be found in [60].
Let us denote by x.y the concatenation of the binary strings x and y and by yσ
the image of y ∈ {0, 1}n under the permutation σ of {1, . . . , n}, the SD scheme
includes r rounds each of these being performed as described in table 4.

Table 4. A round of the SD scheme

– A randomly computes :
- y ∈ {0, 1}n,
- σ a permutation of {1, . . . , n}.

and send to B three commitments:

c1 = 〈σ,Hy〉, c2 = 〈(y + s)σ〉, c3 = 〈yσ〉
– B sends a random element b ∈ {0, 1, 2} (challenge).
– if b = 0,

- A reveals y and σ,
- B checks the value of c1 and c3.

– if b = 1,
- A reveals y + s and σ,
- B checks the value of c1 and c2.

– if b = 2,
- A reveals yσ and sσ,
- B checks the value of c2 and c3 and verifies that w(sσ) = p.

5.3 Security and Performances

It can be proved that:

– the scheme is zero-knowledge i.e., informally speaking, during the protocol
the transactions contain no information on s (more formally one can con-
struct a polynomial time machine S which outputs a communication tape
having the same probability distribution as a real communication).

– a cheater can bypass the protocol with a probability bounded by (2/3)r,
otherwise one can construct a polynomial-time probabilistic machine which
either outputs a valid secret s or finds collision for the public hash function.

Practical security of the scheme is linked to the parameters n, k, p and r. Let
H be the parity check matrix used in the scheme. In order to impersonate A,
an intruder has to be able to compute a word s of weight p whose image under
H is i (this is the SD problem). If p is chosen slightly below the value of the
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theoretical minimum distance of C then the probability that there exists a word
s′ �= s of weight p such that Hs = Hs′ is very low. Hence by choosing

n = 700, k = 350, p = 75,

searching the vector e with the probabilistic algorithms described in section 4
needs around 270 operations. Moreover taking r = 35, the probability of success
of a cheater is bounded by 10−6.

If we envisage the prover as a smart card, essentially three parameters are to
be taken into account: the communication complexity (number of bits exchanged
during the protocol), the complexity of the computations done by the prover and
the storage capacity needed by the prover. The SD identification scheme uses
only very simple operations over the two element field (i.e . over bits) and can be
implemented in hardware in a quite efficient way. One drawback is the size of the
matrixH which must be stored by the prover. Another one is the communication
complexity since at least 35 rounds are needed in order to achieve a reasonable
level of security while for the same level (from a dishonest prover point of view)
identification schemes based on number theory can be performed in only few
rounds (4 rounds for Fiat-Shamir’s scheme) . Table 5 sums up the performances
of Stern’s scheme, G-SD scheme and Fiat-Shamir’s scheme (1024 bits version)
giving for each one: the number of rounds needed to achieve a probability of
success of 10−6 for a dishonest prover, the total communication complexity,
the size of the ROM (number of bits stored by the prover), the total prover’s
computation complexity (number of binary operations performed by the prover
during the whole protocol).

6 The McEliece’s Public-Key Cryptosystem

Despite Mc Eliece’s cryptosystem be the first code based cryptosystem, we decide
to not describe it first because its security does not directly rely on the SD
problem.

Soon after Diffie-Helmman’s paper on public key cryptography , R.L. Rivest,
A. Shamir and L. Adleman exhibited such a system: the well known RSA cryp-
tosystem based on the factorization of integers [89]. Merkle and Hellman [78]
proposed another cryptosystem based on the difficulty of the integer packing
“knapsack” problem. There were several variants around this latter but the de-
velopment of the LLL algorithm made most of them insecure. In 1978, R.J.

Table 5. SD schemes versus Fiat-Shamir scheme

SD G-SD Fiat-Shamir

Rounds 35 35 4
ROM 123550 124250 5120
Computation complexity 223.04 223.04 225.4

Communication complexity 52523 44357 4628
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McEliece defined the first public key cryptosystem using algebraic coding theory
[76]. The basic idea is quite simple: use as a secret key a code C which belongs
to a family of codes for which a polynomial time decoding algorithm exists and
give as a public key an equivalent code C′ which masks the algebraic structure
of C, so that C′ looks like a random binary linear code. Table 6 describes the
general protocol. Of course, one important parameter of this protocol is the code
C to use:

– For n, k and d fixed, C must belong to a large family of codes so that it is
impossible to find it via an exhaustive search. Notice that is is enough to find
an equivalent code to the public one using an algorithm due to N. Sendrier
[93] which can determine if two generator matrices define equivalent codes
and can find back the permutation,

– a polynomial-time decoding algorithm must exist for C,
– no information about the code C can be obtained from the generatormatrixG′.

The third condition eliminates some classes of well known “decodable” codes
such as generalized Reed-Solomon codes (as shown by V.M. Sidelnikov and
S.O. Shestakov [98]), and concatenated codes (as shown by N. Sendrier [92]).
The class of binary Goppa codes [62] as suggested by McEliece seems to satisfy
these 3 conditions.

Definition 6. Let g(z) ∈ F2m [z], L = {α1, . . . , αn} ⊂ F2m such that ∀i, g(αi) �=
0. The Goppa code Γ (L, g), of length n over F2, is the set of codewords, i.e.
n− tuples (c1, . . . , cn) ∈ Fn

2 , satisfying

n∑
i=1

ci
z − αi

≡ 0 (mod g(z)).

Table 6. A code based public key cryptosystem

Secret Key:

– G a generator matrix of a binary linear [n, k, d] code C for which a polynomial
time decoding algorithm A is known,

– S a non-singular random k × k binary matrix,
– P a random binary n× n permutation matrix.

Public Key: G′ = SGP and t = �(d− 1)/2�.

Encryption :

. Message : m ∈ {0, 1}k,

. Cryptogram : c = mG′ + e where e ∈ {0, 1}n satisfies w(e) = t.

Decryption : Since w(eP−1) = w(e), successively compute :

. mS = A(cP−1) = A((mS)G+ eP−1),

. m = (mS)S−1.
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Proposition 2. The dimension k of Γ (L, g) and its minimal distance d satisfy

k � n−m deg g(z)
d � deg ḡ(z) + 1.

where ḡ(z) is the lowest degree perfect square which is divisible by g(z).

Remark 3. For irreducible Goppa codes (i.e. codes for which g(z) is irreducible),
we deduce that the minimum distance satisfies d � 2 deg g(z) + 1.

6.1 Cryptanalysis

McEliece recommended using an irreducible binary Goppa code of length 1024
with L = F210 and g(z) an irreducible polynomial of degree 50. Since the
number of monic irreducible polynomials of degree 50 over F210 is given by
(
∑

d|50 μ(d)2
500/d)/50 (where μ is the Möbius function), this gives about 2500

candidates which clearly prevents any exhaustive search. However, two other
kind of attacks can be envisaged against McEliece’s cryptosystem:

– a structural attack,
– a generic attack.

A Structural Attack. A structural attack against McEliece’s cryptosystem
consists in studying the algebraic structure of the public code C in order to build
a decoder (or at least to find some parameters of the hidden code). Remember
that L and g(z) are the two essential parameters for the decoding algorithm.
Until know, there does not exist any algorithm which takes as input a generator
matrix of a Goppa code and which outputs these two data. However, as pointed
out by J.K. Gibson, if a generator matrix G of a binary Goppa code and L are
known, it is then possible to find back the polynomial g(z) [58] . Hence one can
devise a cryptanalysis in three steps:

1. fix a permutation of F2m say L̄ = {β1, . . . , β2m},
2. search for a permutation π of the columns of G′ which transforms the public

matrix into the generator matrix Ḡ of a Γ (L̄, ḡ) Goppa code,
3. compute ḡ from Ḡ and L̄ and use the decoder of Γ (L̄, ḡ) to decode the public

code C.

In [1], C.M. Adams and H. Meijer claim that there is no more than one per-
mutation which satisfies step 2 of the cryptanalysis. This is not true, as proved
by J.K. Gibson [58], who showed that there exists at least m2m(2m − 1) such
permutations. Unfortunately for m = 10, this represents less than 2−8713% of all
the permutations !Nevertheless, P. Loidreau and N. Sendrier developed a nice
attack when the polynomial g(z) has only binary coefficients [73]. They use the
support splitting algorithm (SSA) [93] which is able to decide if two linear codes
are equivalent and outputs the permutation. Their structural attack uses the
fact that Goppa codes defined from a binary polynomial have a non-trivial au-
tomorphism group (and so the automorphism group of the corresponding public
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code is also non-trivial). This cryptanalysis brings out weak keys in McEliece’s
cryptosystem even if their number is negligible as compared to the number of
possible keys. A “real” structural attack to date necessitates a proper classifica-
tion of Goppa codes.

A Generic Attack. Without the knowledge of L and g, it seems that it is
computationally hard to make the difference between a random matrix and
the generator matrix of a Goppa code. This is the Goppa code distinguishing
problem (see section 6.4):

Name : GD
Input : G(k, n) a binary matrix,
Question : Does there exists m ∈ N, L ⊂ Fqm and g(z) ∈ Fqm [z] such that

G be a generator matrix of the Γ (L, g) code ?

Since there does not exist any suitable algorithm which uses the underlying
Goppa code structure of McEliece’s cryptosystem, cryptanalysis of the system
boils down to the general problem of the decoding of a random binary linear code
(the G-SD problem). In fact, cryptanalysis of McEliece’s cryptosystem relies on
a variant of the G-SD problem. Indeed, the weight t of the error

is linked to the parameters of the code. Let n = 2m, it seems that for ir-
reducible Goppa codes the dimension k always satisfies k = n − mt, hence
t = (n− k)/ log2(n). The underlying problem to solve is then the following:

Name : GPBD (Goppa Parametrized Bounded Decoding)
Input : G a fullrank binary matrix k × n , y ∈ {0, 1}n
Question : Does there exists e ∈ {0, 1}n such that y + e be a linear

combination of rows from G and w(e) � (n− k)/ log2 n ?

This problem is NP-complete [43].
McEliece’s cryptosystem with its original parameters can be cryptanalysed

in 264.2 binary operations using the algorithms to solve the SD problem [26].
Johansonn and Jönsson algorithm can output a cleartext from a list of 1024
cryptogram in 259.5 operations. In order to obtain a security level of 280 the
parameters to use are [17]:

m = 11, n = 2048, k = 1685, t = 33 .

For a security level of 2128, a set of possible parameters is [46]:

m = 12, n = 4096, k = 3604, t = 41 .

In [19], the authors proposed a bound on “future improvements” in attacks
against the McEliece’s cryptosystem, and suggested that designers use this bound
to “choose durable parameters”.

Remark 4. In its original form, the cryptosystem is vulnerable to active attacks
where an intruder modifies the cryptogram and uses as an oracle a deciphering
machine. The protocol is also vulnerable to message replay. That is to say that
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an intruder is able to distinguish the fact that two cryptogram come from the
same plaintext and in this context he can devise an attack which can recover the
message in less than 8 iterations for the original parameters.

6.2 Niederreiter’s Variant

In 1986, Niederreiter [83] defined the dual version of McEliece’s cryptosystem
using the parity check matrix of the code instead of the generator matrix (see ta-
ble 7). From a security point of view Niederreiter’s cryptosystem and McEliece’s
cryptosystem are equivalent (if used with exactly the same parameters [72]).
However they differ from a practical point of view. Unlike McEliece’s cryptosys-
tem, it is not necessary to use a pseudo-random generator for encryption process.
Notice, however that the plaintext is a n-binary word of weight t, hence we need
a practical algorithm which maps the integers between 1 and

(
n
t

)
to the set of

words of weight t and length n and vice-versa. Such algorithms can be found in
[47,91].

Niederreiter’s cryptosystem allows to reduce by a factor of 2 the size of the
public key. Indeed, the matrix H can be expressed as H = (In−k | M), hence
it is enough to store the (n − k) × n matrix M . Such a trick is impossible in
McEliece’s cryptosystem since if G′ = (Ik | M) and the original message is not
random, the cryptogram c = mG′ + e would reveal a part of the plaintext.

Table 7. Niederreiter’s cryptosystem

Secret key :

– A binary linear code C[n, k, d] for which there exists a polynomial algorithm
A able to correct t � �(d− 1)/2� errors,

– S(n− k, n− k) an invertible matrix,
– P (n, n) a permutation matrix.

Public key : (H ′ = SHP , t) where H is a parity check matrix of C.

Encryption :

. Message : m ∈ {0, 1}n of weight t,

. Cryptogram : c = H ′tm.

Decryption :

. Compute S−1c = HP tm,

. Since w(P tm) � t, apply A to find back P tm,

. Compute m = t(P−1P tm).
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Since the public key in Niederreiter’s cryptosystem is smaller and the plaintext
is a word of small weight, this implies that the number of operations involved dur-
ing the encryption process is less than what is done in McEliece’s cryptosystem.
Finally, depending on the parameters, the transmission rate (number of informa-
tion symbols/ number of transmitted symbols) which is equal to log2

(
n
t

)
/(n−k)

can be better or worst that those of McEliece (k/n).
Table 8 sums up these differences and makes a comparison with the RSA

cryptosystem when used with a 2048 modulus and a public exponent e equal to
216 + 1 as in openssl toolbox (the complexity is given as the number of binary
operations to perform per information bit):

Table 8. A comparison between McEliece, Niederreiter and RSA cryptosystems

McEliece Niederreiter RSA-2048
(2048, 1718, t = 30) (2048, 1718, t = 30) e = 216 + 1

Public-key size (Kbytes) 429.5 69.2 0.5
Transmission rate 83.9% 67.3% 100%
Encryption complexity 1025 46.63 40555
Decryption complexity 2311 8450 6557176, 5

Remark 5. Notice that in his original paper, Niederreiter suggested using either
a binary [104, 24, 32] code (obtained by concatenation of other binary codes)
or a [30, 12, 19] Reed-Solomon code over F31. These two codes were verified as
insecure by Brickell and Odlyzko [23] using the LLL algorithm.

6.3 Hardware and Software Implementations

To assess the performances of Mc Eliece’s cryptosystem, several implementation
have been realized. In [22], on a 32 bits processor, for a security level of 2128,
the software implementation of Mc Eliece’s cryptosystem gains an order of mag-
nitude for both encryption and decryption compared to RSA-2048 (CPU cycles
are divided by 5 per byte to encrypt and by 100 per byte to decrypt).

An 8-bit version for AVR microprocessors and for FPGA is described in [39].
Once again, results show that Mc Eliece’s cryptosystem gives better results com-
pared to RSA but not compared to elliptic cryptosystems.. A smart card imple-
mentation (16 bits processor) is described in [101], ciphering and deciphering is
done in less than 2 seconds for a 2048 code length.

Hardware implementations of Mc Eliece’s cryptosystem gave rise to several
side channel attacks [102,97,66,27,80].

6.4 The Goppa Distinguishing Problem

This problem has been stated in [32] by N. Courtois, M. Finiasz and N. Sendrier.
It has been widely believed for ten years that this problem was computationally
hard. As a consequence, this hardness assumption has been used in numerous
proofs of security of code based cryptosystems [22,84,38,29,35]. However, notice
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that even if a security proof cannot be stated for a cryptosystem, it does not
mean that there exists an efficient cryptanalysis against this scheme. Unformally
speaking, it just means that it cannot be formally proved that an efficient algo-
rithm breaking the scheme can be turned into an efficient algorithm being able
to solve a well known difficult problem.

In 2010, J.C Faugère, A. Otmani, L. Perret and J.-P. Tillich proposed the first
algorithm which can decide if a binay (k, n) matrix is a random one or generates
a Goppa code [41]. The distinguisher is highly discriminant for high rate code
(i.e. when k is near from n).

The main idea is to compute the rank of a linear system deduced from the
generator matrix G. Goppa codes are a subset of alternant codes whose parity
check matrix is:

Vr(x, y) =

⎛⎜⎜⎜⎝
y1 yn
y1x1 ynxn
...

...
y1x

r−1
1 ynx

r−1
n

⎞⎟⎟⎟⎠
where xi, yi ∈ Fqm . The corresponding alternant code (whose dimension is
greater or equal than n−mr) is Ker Vr(x, y) ∩ Fn

q . Using this matrix, one can
build a polynomial decoder which can correct up to �r/2� errors.

By defintion of the public encryption matrix G, we have Vr(x, y)G
t = 0, where

the elements xi and yi are the solution of the system:

{gi,1y1xj1 + · · ·+ gi,nynx
j
n = 0 | i ∈ {1, . . . , k}, j ∈ {0, . . . , r − 1}} . (8)

For the parameters used in Mc Eliece’s cryptosystem, such a system cannot
be solved. Moreover, if we recover the xi’s and the yi’s only r/2 errors can
be decoded instead of r. However, a distinguisher can be designed from this
system. Using a linearization process, this system can be transformed in another
one with k equations and

(
mr
2

)
unknowns. For high-rate Goppa codes, the rank

of this system is (with high probability):

mr((2� + 1)r − 2� − 1) ,

where � = �log2 r� + 1. It holds that the rank of the same system, obtained
from a random binary matrix G, will be 0 or

(
mr
2

)
− k depending wether k �(

mr
2

)
or not. Table 9 gives, for codes of length 2m, the smallest r for which the

distinguisher does not work. This result has to be seriously taken into account
for the parameters to use in a code based cryptosystem whose security proof
relies on the hardness of GD assumption.

Table 9. Smallest order r of a binary Goppa code of length n = 2m for which the
distinguisher does not work

m 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

rmin 5 8 8 11 16 20 26 34 47 62 85 114 157 213 290 400
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7 Some other Code Based Cryptosystems

During the past 20 years, a lot of code based cryptosystems have been designed.
Here are few comments about these schemes and a list of bibliographical notes
for further reading. Some of the protocols listed below are described in [107].

A Pseudo Random Generator. In 1996, B. Fischer and J. Stern [47] de-
fined a set of strongly one-way functions related to the SD problem. Using this
set, they described an efficient pseudo random generator which can output 3500
bits/sec as compared to an RSA based generator (512 bits modulus) which out-
puts 1800 bits/sec. Their scheme has been improved in 2007 [54] using regular
words and circulants codes (see table 10 section 8.3).

A Signature Scheme. A signature scheme is a protocol where the recipient
of a message M can check its integrity, the sender’s identity and such that the
sender cannot refute that he sent M . Usually the sender does not sign the mes-
sage M itself but a hash value h(M) of M . Every public key cryptosystem can
be used to sign a message, using the deciphering algorithm with h(M) as input,
and the output of this algorithm as the signature s. The recipient uses s and the
public key of the sender as inputs of the enciphering algorithm and checks that
the output is equal to h(M). Using Niederreiter’s cryptosystem, N. Courtois, M.
Finiasz and N. Sendrier proposed in 2001 [32] a signature scheme which ouputs
very short signatures. The main problem is that hash values lie in the set of syn-
dromes and must match the syndrome of an error of weight t in order to apply
the deciphering function. For Goppa codes, the probability for a syndrome to be
a “decodable” syndrome is roughly 1/t!. Hence instead of directly compute the
value h(m) the idea is to successively compute h(m||i) where i is a counter which
is increased by 1 until a decodable syndrome be obtained (|| is the concatenat-
ing operator). The proof of security of the scheme [34] relies on the hardness
of GPBD problem (see sec. 6.1) and GD problem (see sec. 6.4). Notice however
that, since t must be small (at mots t! attempts are needed to find a decodable
syndrome), the scheme must use very large Goppa codes to resist against the
various ISD algorithms. Since the dimension of a Goppa code is n−mt, it means
that CFS uses high rate Goppa code and thus the GD problem falls in the area
of parameters where it can be easily solved ! To reach a security level of 280, the
scheme uses a code of length 221 and codimension 210, and produces 211 bits
signature. The size of the public matrix H is 52.5Mb. This size can be reduced
using parallel CFS [44]. CFS has been implemented in hardware on a FPGA
(Field Programmable Gate Array) giving a signature time of 0.86 second [21]
for a security level of 263.

A Hash Function. At Mcrypt 2005, a provably collision resistant family of
hash functions have been proposed by D. Augot, N. Finiasz and N. Sendrier
[6]. The Fast Syndrome Based Hash function is based on the Merkle-Damg̊ard
design [36] which consists in iterating a compression function F . This function
takes as input a word of s bits, maps it to a word of length n and weight t and
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computes its syndrome from a given r×n parity check matrix (with r < s). The
mapping is done using regular words in order to speed up the process.

Definition 7. Let consider a binary word of size n as n/t consecutive blocks of
size t. A (n, t) regular word is a word which has exactly one non-zero coordinate
in each block.

From an algorithmic point of view, the generation of (n, t) regular worlds is ob-
viously easiest than the one of constant weight words. The security of the hash
function relies on two new NP-complete problems [43] linked to the original SD
problem: RSD and 2-RNSD.

Name : RSD (Regular Syndrome Decoding);
Input : H a fullrank r × n binary matrix , an integer t and a syndrome y,
question : Does there exists a (n, t) regular word e∈{0, 1}n such thatH te=y ?

Name : 2-RNSD (2-Regular Null Syndrome Decoding)
Input : H a full rank r × n binary matrix r, p an integer,
Question : Does there exists a 2-regular (n, p) word e such that H te = 0 ?

Remark 6. A 2-regular (n, p) word is a word of length n such that each of the p
consecutive blocks of size n/p contains either zero or two one.

Depending on the value of n, r and t, the hash function can be cryptanalysed
using ISD algorithms or Wagner’s generalized birthday technique [108]. Taking
into account this two kind of attacks, the size of the output functions must be
of at least 5� bits for a security level of 2�. The proposed scheme has two main
drawbacks:

– the size of the matrix H is large (around 1Mbytes for the parameters sug-
gested in [6]). Paradoxically, the speed of the compression function can be
improved with larger n while keeping a constant security level of 280,

– usually the security of a hash function must be half its output size.

In 2007, an improvement of this scheme has been proposed by N. Finiasz, P. Ga-
borit andN. Sendrier [45]. Unfortunately the proposedparameters lead to two kind
of cryptanalysis [90,48]. Taking into account these two attacks, a new version has
been proposed for the SHA-3 challenge [5], but the function was quite slow and was
not selected for the second round of competition. Later, an optimization (RFSB)
has been proposed in [14]. TheRFSB hash function runs at 13.62 cycles/bytewhile
SHA-256 runs at 15 cycles/byte.

An Identity Based Identification Scheme. The main problem in “real life”
public key cryptography is to establish a link between a public key and its
owner’s identity. In 1984, Shamir introduced the notion of identity based pub-
lic key cryptography [95]. The concept make use of a trusted third party: the
KGC (Key Generation Center). This one has a master public key and a master
secret key. From an identity i and the master public key, any one can derive
the public key linked to i. In 2004, Bellare, Neven and Namprempre described
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a generic method to derive an identity base identification scheme from a stan-
dard authentication scheme [11]. As usual this concept has only been applied to
number theory schemes. In 2007 [29], P.-L. Cayrel, P. Gaborit and M. Girault
considered the combination of two code based schemes (CFS signature scheme
and Stern’s identification scheme) in order to produce the first identity based
identification scheme using error correcting codes. The generation of Alice’s pa-
rameters is obtained from an execution of the CFS signature’s scheme. Hence in
order to prevent an intruder to be able to compute Alice’s secret key from her
identity, one has to consider the parameters that guarantee the security of the
CFS scheme. The drawback is that the CFS scheme uses very long Goppa codes
while Stern’s scheme uses shorter ones. Since the same matrix has to be used by
the KGC and by the identification process, this will overload the communication
complexity.

A Ring Signature Scheme. A t-out-of-N threshold ring signature scheme
is a protocol which enable any t participating users belonging to a set of N
users to produce a signature in such a way that the verifier cannot determine
the identity of the t actual signers. Classical t-out-of-N threshold ring signature
schemes based on number theory have complexity O(tN). Using Stern’s three-
pass identification scheme, Aguilar et al. [2] defined the first t-out-of-N threshold
ring signature scheme whose complexity is O(N). Performances of the scheme
has been improved in [28] and a security proof is given in [40].

8 Improving Code Based Cryptosystems

There are essentially two drawbacks in code based cryptography. First, some
protocols needs the generation of constant weight. This is a problem which in-
volves computation which slow down the whole process. Next, all the schemes
depend on a public matrix whose size is greater than the usual public data used
in number theory based cryptography. An issue to the first problem is to used
regular words (see preceeding section) instead of constant weight words. For the
second problem, numerous research have been done in order to find codes with a
“compact” representation. At this stage, it is important to distinguish protocols
which use Goppa codes (like Mc Eliece or CFS) from those which use random
codes.

8.1 List Decoding Algorithms, Specific Polynomials

In Mc Eliece’s cryptosystem, for a given keysize, the security level will be in-
creased by adding extra errors. Symmetrically, adding extra errors makes it
possible to use shorter keys while keeping a similar security level, but it also re-
quires the receiver to decode the additional errors. Let t be the error capacity of
the code, in [4] authors described a “list decoding algorithm” which can correct
up to (n−

√
n(n− 4t− 2))/2) � t+ 1 errors which is an improvement of a first

algorithm decribed in [16]. Since we add extra errors, encrypting distinct code-
words can lead to the same cryptogram. A list decoding algorithm outputs a list
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of candidates. Hence, if the initial message m has been first formatted, before
computingmG, it should be easy to find back the correct codeword. Adding only
one extra error, a security level of 280 can be obtained using a (1632, 1269, 33)
Goppa code instead of (2048, 1751, 27) Goppa code. The size of the public matrix
will be 460647 bits instead of 520047 bits, i.e. 12% smaller [16]. Using a list de-
coding algorithm leads to shorter keys at the expense of a moderately increased
decryption time.

Another idea to reduce the size of the public key, is to use Goppa codes
over Fq built on polynomials of the form gq−1 where g ∈ Fm

q is an irreducible
polynomial of degree t over Fm

q . From [103], these codes have a better error-
correction capacity: they can correct up to �qt/2� errors. Combining this trick
with the preceeding one, a [1633, 1297, 49] code over F7 with 2 extra errors
achieves a security level of 2128 and leads to a public matrix of 1223423 bits [20].
For the same security level, over F2, the size of the matrix will be 1537536 bits
using a [2960, 2288, 57] code with one extra error.

8.2 Quasi Cyclic and Dyadic Codes

Another way to reduce the size of the public key in Mc Eliece’s cryptosystem
is to used some structured codes which admit a “compact” representation. This
issue has been first addressed in 2005 by P. Gaborit [52] by using set of s quasi-
cyclic subcodes of a given BCH code. The particularity of quasi-cyclic codes is
that the whole generator matrix can be derived from the knowledge of few rows.
Hence it is enough to publish these few rows (a kind of compressed version of the
public matrix) instead of the whole matrix. In 2007, M. Baldi and F. Chiaraluce
proposed to use quasi-cyclic LDPC codes [7]. LDPC codes are defined by a very
sparse parity-check matrix and can be represented in a compact form. These two
propositions have been cryptanalyzed in [85].

In 2009, two new modifications have been proposed using alternant quasi-
cyclic codes and quasi dyadic codes [12,79] and cryptanalyzed in [41,57]. The
generator matrix of these two families can be derived from the knowledge of one
row. Only the binary version of quasi dyadic codes has not been cryptanalyzed.
With these codes, the size of the public key of Mc Eliece’s cryptosystem and
CFS signature scheme can be highly reduced [9] (see table 10).

8.3 Circulant Codes

For protocols using random codes, a particular class of quasi-cyclic codes can
be used, those whose generator matrix is obtained by concatenation of circulant
matrix.

Definition 8. A r × r circulant matrix is such that the r − 1 latest rows are
obtained by cyclic shifts of the first row.

It was shown in [55] that, if one admits a small constraint on the size n of
the code then such codes behave like purely random codes (in particular they
satisfy the Gilbert-Varshamov bound). Hence they are well suited to be used in
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code base schemes for which a random matrix is needed. Although all classical
algorithms used to find a word of given weight in a code do not give better results
when applied to quasi cyclic codes, nowadays it is not known if the decoding of
a random quasi cyclic code is an NP-complete problem.

In 2007, a modification of Stern’s identification scheme has been proposed
using as public matrix H , the concatenation of two k×k circulant matrices (the
identity matrix and a random one) [53]. This way, the public matrix can only be
described from the first line of the random matrix which in particular decreases
the size of the data which must be stored by the prover. The underlying difficult
problem upon which the security of the scheme is linked can be stated as follows:

Name : Syndrome Decoding of Double Circulant Linear Codes
Input : H(k, 2k) a double binary circulant matrix , s a binary

column vector with r coordinates, p an integer.
Question : Is there a binary vector e of length n

such that H te = s and w(e) ≤ p ?

Nowadays, it is not known if this problem is NP-complete.
Using this same trick and the regular words C. Laudauroux, P Gaborit, and N.

Sendrier have defined in 2007 a modified version of Fischer-Stern’s algorithm in
order to speed the output of the generator : the SYND pseudo random generator
[54]. They obtain this way a pseudo random generator as fast as AES in counter
mode[67] with few memory requirement (around 1Kbytes). Moreover, the scheme
has a formal proof of security.

8.4 Codes Over Fq

Stern’s identification scheme has two major drawbacks:

1. since the probability of a successful impersonation is 2/3 for Stern’s con-
struction instead of 1/2 as in the case of Fiat-Shamir’s protocol based on
integer factorization, Stern’s scheme uses more rounds to achieve the same
security, typically 28 rounds for an impersonation resistance of 216,

2. there is a common data shared by all users (from which the public identi-
cation is derived) which is very large, typically 66 Kbits. In Fiat Shamir’s
scheme, this common data is 1024 bits long.

In [30], using the q-SD problem, the authors proposed a 5-pass identification
scheme for which the success probability of a cheater is 1/2, reducing this way
the number of rounds needed for an identification process. Using quasi dyadic
codes, they also reduce the size of the public data.

We sum up in table 10 the characteristics of this different improvements when
applied to various code based schemes.

Remark 7. For the modified version of Stern’s identification scheme there exists
a variant in which the secret key is embedded in the public one. This allows to
reduce again the size of the public and private data but increases the complexity
computation and the global transmission rate (see [53] for more details).



30 P. Véron

9 Secret Sharing Schemes

A (k, n) secret sharing scheme is a protocol where a secret S is split into n
pieces, each one being distributed to n users. If strictly fewer than k users meet
together, they must not be able to compute S. Any assembly of k (or more)
users can retrieve S. This problem was first considered by A. Shamir and he
gives a solution using interpolation of polynomials over Zp, the secret being the
constant term of a polynomial f of degree k − 1. Each participant owns a pair
(i, f(i)) (i ∈ Z×

p ) and using Lagrange’s formulas, any k users can compute f and
deduce its constant term [94]. R.J. McEliece and D.V. Sarwate show that this
scheme can be generalized using Reed-Solomon codes [77] for which a polynomial
time decoding algorithm is known. Let {α1, . . . , αn} be the non-zero elements
of the field F and C an [n, k] RS code over F, then each word (m0, . . . ,mk−1)
can be encoded into the codeword c = (c1, . . . , cn) such that ci = m(αi) where

m(x) =
∑k−1

j=0 mjx
j (Shamir’s scheme corresponds to the case where n + 1 is

prime and αi = i). The secret to be shared is the information symbol m0. Table
11 describes the protocol. When r users meet together, they know r symbols
(and their positions) of the whole codeword c. The remaining n − r symbols
are called erasures: simply replace them with 0 and they become special errors
whose positions are known.

Remark 8. Notice that since the protocol is used over Fq we have n = q − 1.

Proposition 3. Reed-Solomon codes can polynomially decode ne errors and nε
erasures provided that 2ne + nε < n− k + 1.

Table 10. Some characteristics of the improved schemes

McEliece[79]

(n, k) (4096, 2048)
t 128
Pub.key 4 Ko
Security level 2128

QD version

Pseudo Random Generator[54]

(n, k) (8192, 256)
t 32
Data 1.03 Ko
Trans. rate 1Gbits/sec
Security level 2152

QC version + Regular words

CFS[9]

(m, t) (21,10)
Signature cost 222.8

Pub. key 24.49 Mo
Security level 281.5

QD Version

SD identification scheme[53]

(n, k) (634, 317)
t 69
Public data 634 bits
Private data 951 bits
Trans. rate 40096 bits
Security level 285

QC Version

q-SD identification scheme (F28)[30]

(n, k) (134, 67)
t 49
Public data 1072 bits
Private data 1072 bits
Trans. rate 33040 bits
Security level 287

QD Version
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Table 11. A code based secret sharing scheme

Secret : m0 ∈ Fq

Secret sharing :

. Compute the codeword c = (c1, . . . , cn) from the information symbols
(m0, . . . ,mk−1), (m1,. . . ,mk−1) being randomly generated.

. Each user receives a pair (i, ci).

Secret recovering :

. From r(� k) pairs (i1, ci1), . . . , (ir, cir ), build an n bits word c′ such that c′i = ci
if i ∈ {i1, . . . , ir}, c′i = 0 otherwise.

. Use the erasure decoding algorithm to compute c and then m0.

In our case, we have ne = 0 and nε = n − r, thus if r � k, every assembly of
r users can compute the whole codeword c using the decoding algorithm of RS
codes and deduce m0.

Remark 9. Notice that m0 = −
∑n

i=1 ci. Moreover the encoding of RS code can
be done in an efficient way without the generator matrix of the code. Hence in
this protocol, there is no need to store this matrix.

This protocol has a non-negligible advantage as compared to Shamir’s scheme.
Suppose that a dishonest party want to denied access to the secret to legitimate
users by tampering some of the pieces ci (or being less paranoiac, just envisage
that some ci’s have been tampered with some “natural” phenomena). Let t
be the number of invalid ci. Suppose r users meet together and t of them have
corrupted pieces, the whole codeword c can be computed if 2t+n−r < n−k+1,
i.e. r � k + 2t. Hence, if some pieces are damaged, it is still possible to retrieve
the secret. On the other hand, since there are n users, the opponent has to alter
more than �(n− k)/2� pieces to ensure that the secret be inaccessible.

A more general situation is to specify some users who have greater privileges
of access to the secret than to others. An access structure consists of all subsets
of participants that should be able to compute the secret but that contains no
proper subset that also could determine it. J.L. Massey proposed to treat this
problem using linear codes and the notion of minimal codewords [68],[3].

10 Conclusion

While code based cryptosystems use only elementary operations over the two
elements field, they were not really considered by cryptographic community be-
cause of the size of the public data. Since these last years, numerous works have
been developed in order to enhance the performance of code based cryptogra-
phy leading to realistic alternatives to number based theory schemes even in
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constrained environments such as smart cards or RFID tags. Nowadays code
based cryptography has to be considered as a real alternative to number theory
based cryptography especially since:

. despite several speedups and improvements, best cryptanalysis against the
Syndrome Decoding problem is still exponential whereas it is subexponential
for factoring,

. there does not exist a quantum algorithm which can polynomially solve the
SD problem while Shor’s algorithm can factor an integer N in O((logN)3)
operations on a quantum computer.

Steganography

1 Introduction

Steganography (from greek steganos, or “covered”, and graphie, or “writing”) is
the art and science of hidding a secret message within an ordinary message (the
cover-medium) in such a way that no one, apart from the sender and intended
recipient, even realizes there is a hidden message. While cryptography intends to
make a message unreadable from a third party without hiding the secret commu-
nication, the aim of steganography is covert communication to hide the message
from a third party. As an increasing amount of data is stored on computers and
transmitted over networks, multimedia objects like image, audio and video files
are today’s most common cover-media.

Usually, the sender extracts from the cover-medium some of its components to
construct a cover-data vector (for example the least significant bit of each byte
of the cover medium). Then, the message is embedded into the cover-data to
produce the stego-data. Finally, the cover-data is replaced by the stego-data in
the cover-medium, which gives the stego-medium communicated to the recipient.
From the stego-medium, the recipient uses a recovering algorithm in order to
extract the embedded message. The embedding and recovering algorithms form
the steganographic scheme (or stegoscheme).

Only the sender and the receiver should be able to tell if the stego-medium
carries an hidden message or not. This means that the stego-medium should be
statistically indistinguishable from the cover-medium. Especially, it is of impor-
tance to embed the message while modifying as less components of the cover-data
as possible.

2 Definitions, Properties

Definition 9 (Stegoscheme). Let A a finite alphabet, r, n ∈ N such that r <
n, x ∈ An denote the cover-data, m ∈ Ar denote the message to embed, and T
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be a strictly positive integer. A stegoscheme is defined by a pair of functions Ext
and Emb such that:

Emb : Fn
2 × Fr

2 −→ Fn
2

Ext : Fn
2 −→ Fr

2

Ext(Emb(x,m)) = m
d(x, Emb(x,m)) ≤ T

where d(., .) denotes the Hamming distance over An.

We focus in this paper on binary stegoscheme, i.e. A = F2. The efficiency of
a stegoscheme is usually evaluated through two quantities: the embedding effi-
ciency and the relative payload.

Definition 10 (Embedding efficiency). The average embedding efficiency of
a stegoscheme, is usually defined by the ratio of the number of message symbols
we can embed by the average number of symbols changed. We denote it by e.

Definition 11 (Relative payload). The relative payload of a stegoscheme,
denoted by α, is the ratio of the number of message symbols we can embed by the
number of (modifiable) symbols of covered data.

3 LSB Embedding

The simplest and most common steganographic algorithm uses LSB (Least Sig-
nificant Bit) embedding. Let us assume that the cover-medium is an image com-
posed of n pixels. The cover-data is the sequence x1, . . . , xn where xi is the
LSB of the ith pixel of the image. The message to embed is composed of n bits
m1, . . . ,mn. The functions Ext and Emb are defined as:

Emb : Fn
2 × Fn

2 −→ Fn
2

((x1, . . . , xn), (m1, . . . ,mn)) �−→ (m1, . . . ,mn)
Ext : Fn

2 −→ Fn
2

(y1, . . . , yn) �−→ (y1, . . . , yn)

Hence, each bit of the cover-data conveys one bit of the message, and if the
bits of the message are uniformally distributed (which should be the case if it
has been encrypted before) then on average one bit over 2 is not modified in
the cover-data, i.e. on average we modify only one bit to insert two bits of the
message. Hence for this system: α = 1 and e = 2.

Unfortunately, one can easily detect the presence of a secret message by look-
ing at the image histogram. Let us consider each pixel as an integer, and denote
by:

– h[j] the number of pixels whose value is j in the cover-medium,
– hs[j] the number of pixels whose value is j in the stego-medium.

Notice that if a pixel is equal to 2i in the cover-medium and if the bits of the
message to hide are uniformally distributed, then in the stego-medium, this same
pixel is equal to 2i (with probability 1/2) or 2i+1 (with probability 1/2), hence:

E(hs[2i]) =
h[2i] + h[2i+ 1]

2
.
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Similarly, a pixel whose value is 2i+ 1 gives rise to a pixel equal to 2i+ 1 (with
probability 1/2) or 2i (with probability 1/2), hence:

E(hs[2i+ 1]) =
h[2i] + h[2i+ 1]

2
= E(hs[2i]) .

Such a result shows that LSB embedding has a tendency to even out the his-
togram within each pair of bin representing a pair (2i, 2i+1). This is the starting
point of several powerful attacks against this scheme.

Another drawback of this scheme comes from the embedding efficiency. Let us
suppose that the message we aim to hide contains 2n/3 bits. It is obvious that
the size of the message has no impact on the embedding efficiency for the LSB
scheme, we will always (on average) modify 1 bit of the cover-data to insert two
bits of the message.

Let us now consider the cover-data as a vector composed of n/3 blocks
(x0, x1, x2) and the message as vector of n/2 blocks (m0,m1). For each block,
apply the following algorithm to compute the stego-data:

If x0 ⊕ x2 �= m0 and x1 ⊕ x2 �= m1 then flip x2
elsif x0 ⊕ x2 �= m0 then flip x0
elsif x1 ⊕ x2 �= m1 then flip x1

In each block of the cover-data, the probability that one bit is changed is:

1− Pr(x0 ⊕ x2 = m0 and x1 ⊕ x2 = m1) =
3

4
.

Thus the embedding efficiency of this scheme is:

e =
2n/3

(3/4)(n/3)
=

8

3
> 2 .

Hence, less bits are modified in this scheme to insert the message as compared
to the LSB scheme.

4 From LSB Embedding to Matrix Embedding and
Coding Theory

In the preceeding scheme, in order to extract the message m, consider the
stego-data as n/3 blocks of three bits (y0, y1, y2) and compute for each block:

m0 = y0 ⊕ y2, m1 = y1 ⊕ y2 .

Let y =

⎛⎝y0y1
y2

⎞⎠ and m =

(
m0

m1

)
, then for each block (y0, y1, y2), the extraction

algorithm computes m = Hy where

H =

(
1 0 1
0 1 1

)
,
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is a matrix over F2. This method named matrix embedding has been proposed
in 1998 by Crandall [33]. Notice that H is the parity check matrix of the [3, 1]
binary Hamming code.

Definition 12. The binary Hamming code is a linear code whose columns of
the parity check matrix are all the non zero vectors of Fn

2 . Code length is 2n− 1,
dimension is 2n − 1− n and minimal distance is 3.

To embed any message m in a fixed cover-data x we have to solve the equation
Hy = m and we substitute x by y. Since there exists e ∈ F3

2 such that y = x+ e,
the embedding process is equivalent to find e such that He = m−Hx.

With this method, we can embed 2 bits in 3 pixels and at most one bit is
modified. Remember that a good steganographic scheme has to embed as much
information as possible in the cover with as few changes as possible. Suppose
now that we want to embed any sequence of p bits into a set of s fixed pixels
allowing one change at most. What is the minimum value of s ? Since there are
2p sequences of p bits and since changing at most 1 bit in s gives s + 1 new
pixels, then we must have s+ 1 � 2p.

Theorem 1. Let H be the parity check matrix of the [2p−1, 2p−1−p] Hamming
code, let x ∈ F2p−1

2 , the system

He = m−Hx ,
ω(e) � 1 .

where ω(e) denotes the Hamming weight of e, always admits, for any m ∈ Fp
2, a

solution e ∈ F2p−1
2 .

Proof. Since H contains all the non zero vectors of Fp
2, if m − Hx �= 0, then

m−Hx is one of the column of H .

From this, we can deduce the following theorem:

Theorem 2. Let H be the parity check matrix of the [2p−1, 2p−1−p] Hamming
code, the corresponding stegoscheme verifies:

α =
p

2p − 1
, e =

p

1− 2−p
.

Proof. H can be used to embed p bits in 2p−1 pixels, hence the relative payload
is p/(2p − 1). During the embedding process, the 2p − 1 bits are not modified
with probability 1/2p, and exactly one bit is modified with probability 1− 1/2p.
The average number of bits modified is thus 0× 1/2p + 1× (1− 1/2p).

From this theorem, we can see that embedding efficiency increases with p while
relative payload decreases (see tab. 12). Hamming codes are well suited when
the size of the message to embed is a small fraction of the cover-data since many
bits can be embedded with a single change. For example, when the size of the
message is 18% of the size of the cover-data, 9 bits of information are embedded
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Table 12. Relative payload αp and embedding efficiency ep for stegoscheme defined
from the [2p − 1, 2p − 1− p] Hamming code

p αp ep
1 1 2
2 0.667 2.667
3 0.429 3.429
4 0.267 4.267
5 0.161 5.161
6 0.093 6.093
7 0.055 7.055
8 0.031 8.031
9 0.018 9.018

with a single bit modification. Notice that when p = 1, matrix embedding leads
to classical LSB embedding. Moreover, for any relative payload α, since one has
to choose the largest αp such that αp � α to embed a message using Hamming
codes, this method boils down to LSB embedding when α > 2/3.

Let us now consider a random binary linear [n, k] code C and let x ∈ Fn
2 be a

stego-data. To build a stegoscheme from C, we have to solve the following system:

∀m ∈ Fn−k
2 , find e ∈ Fn

2 , such that:

He = m−Hx ,
ω(e) � T .

(9)

where H is a (n − k, n) parity check matrix of C, and T must be as “small”
as possible in order to minimize the number of changes in x. Hence, for any
message m, we have to solve an instance of the well-known SD problem which
is NP-complete. In other words, for general linear codes, computing the vector
e is a problem whose complexity will exponentially increase with n.

Now for any code C, we have to answer to the following questions:

1. What is the maximum number of changes needed to embed a message m ?
2. What is the relative payload ?
3. What is the embedding efficiency ?

As we are going to show, all these values are well determined by the parameters
of the code. The first problem is to determine for a given code C, what is the
maximal number of changes needed to embed any message m. In other words,
we need an upperbound on T . Let us denote by R the covering radius of C which
is determined by the most distant point y from the code, i.e.:

R = max
y∈Fn

2

d(y, C) .

For any s ∈ Fn−k
2 , let C(s) = {e ∈ Fn

2 , He = s}. This set has 2n−k members.
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Definition 13. A coset leader es for s is a member of C(s) with the smallest
Hamming weight.

Proposition 4. The Hamming weight of any coset leader is at most R.

Proof. Let z ∈ Fn
2 , and s = Hz. From elementary linear algebra, C(s) = {x ∈

Fn
2 | x = z − c, c ∈ C}. Let es be a coset leader,

R = max
y∈Fn

2

d(y, C) � d(z, C) = min
c∈C

ω(z − c) = ω(es) .

The minimum number of changes in the stego-data is obtained when the solution
e of the problem (9) is a coset leader of C(m−Hx). Hence, this problem always
admits a solution e ∈ Fn

2 such that ω(e) � R.

Theorem 3 (Matrix embedding theorem). A stegoscheme defined from an
[n, k] binary code C whose covering radius is R can embed n−k bits in n pixels by
making at most R changes. The relative payload is (n− k)/n and the embedding
efficiency is (n− k)/RC where:

RC =
1

2n

∑
x∈Fn

2

d(x, C) ,

is the average distance to the code.

Proof. As already mentionned, the bound on the number of changes comes from
the property that the Hamming weight of any coset leader is bounded by the
covering radius R of the code. Next, by definition, we have α = (n − k)/n.
Now, let us suppose that the messages to embed are uniformally distributed, so
that m − Hx is uniformally ditributed in Fn−k

2 , to find the average number of
changes, we thus have to compute the expected weight of a coset leader:

1

2n−k

∑
s∈F

n−k
2

ω(es) =
1

2n

∑
s∈F

n−k
2

2kω(es) .

Let s ∈ Fn−k
2 , from proposition 4, for any x ∈ C(s), d(x, C) = ω(es), hence:

1

2n

∑
s∈F

n−k
2

2kω(es) =
1

2n

∑
s∈F

n−k
2

∑
x∈C(s)

d(x, C) = 1

2n

∑
x∈Fn

2

d(x, C) .

since ∪s∈F
n−k
2

C(s) = Fn
2 .

To end this section we will give (without proofs, see [51]) asymptotic bounds on
optimal matrix embedding schemes when embedding into cover-medium
containing n pixels:

Proposition 5. Let H2(x) be the binary entropy function defined by:

H2(x) = −x log2(x)− (1− x) log2(1 − x) ,

and H−1
2 () be its inverse function, then:



38 P. Véron

1. The maximal number of bits which can be embedded making at most R
changes is nH2(R/n).

2. The average number of embedding changes to embed m bits is nH−1
2 (m/n).

3. The maximal embedding efficiency to embed m bits is m/n

H−1
2 (m/n)

.

Last property can be generalized to obtain:

Proposition 6 (Sphere-covering bound [49]). For any binary stegoscheme,

e ≤ α

H−1
2 (α)

,

where α is the relative payload associated to the stegoscheme.

Remark 10. These bounds are still valid for q-ary codes using the q-entropy
function:

Hq(x) = x log2(q − 1)− x log2(x)− (1 − x) log2(1− x) .

5 Wet Paper Codes

Usually, the sender does not use all pixels of the image to embed a message m.
He may select part of the image where embedding changes will be more difficult
to detect. The set of pixels which can be modified is called the selection channel.
Most of the time, the selection channel is unknown to the receiver, he may even
not know the selection rules used by the sender, we then call it a non-shared
selection channel.

Wet paper codes, introduced in [50], have been designed to tackle the non-
shared selection channel context. The idea is to consider that the cover-medium
has been altered (like a sheet of paper) by rain. Hence a subset W of the com-
ponents are “wet” and cannot be changed. Only a subset D of components (the
“dry” components) can be modified to embed the message. During the trans-
mission, the cover medium dries out and the receiver cannot determine D andW .

Let C be an [n, k] linear binary code, D ⊂ {1, . . . , n}, W = {1, . . . , n} \ D,
to build a stegoscheme for the non-shared selection channel defined by D, we
have to solve the following problem:

Let x ∈ Fn
2 , ∀m ∈ Fn−k

2 , find e ∈ Fn
2 , such that:

He = m−Hx ,
ei = 0 , ∀i ∈ W .

(10)

Notice that in this context, we do not seek for a word of minimum weight, but for
a word e whose support is contained in D. Let HD denote the matrix composed
of the columns of H whose index is in D, then (10) is equivalent to:
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Let x ∈ Fn
2 , ∀m ∈ Fn−k

2 , find ẽ ∈ F#D
2 , such that:

HD ẽ = m−Hx . (11)

The problem is thatHD depends on D, that in turn depends on the cover object,
hence even if H comes from some structure code for which the computation of a
coset leader is easy, the sender cannot always deduce nice properties on HD. In
particular, this means that trying to choose ẽ as a coset leader will constitute a
much harder task than computing an arbitrary coset member.

Proposition 7 ([81]). Problem (10) has a solution if and only the matrix GW
is of full rank, where GW is the projection over W of the columns of a generator
matrix G of the code C.

Proof. Let us denote by πW the projection over the set W . Let x ∈ Fn
2 , notice

that (10) has a solution, if and only if for any m ∈ Fn−k
2 , πW(x) ∈ πW(C(m)),

where C(m) = {z ∈ Fn
2 | Hz = m}. Now, for any m,

#πW(C(m)) = #πW (C) = 2rank(GW) ,

since C(m) = z+C, where z satisfies Hz = m. For any x, we must have πW(x) ∈
πW(C(m)), it means that πW (Fn

2 ) ⊂ πW(C(m)), hence rank(GW) = #W (notice
that #W � k since we need to embed n− k symbols in #D dry symbols).

Proposition 8 ([81]). GW is full rank iff there is no word in C⊥ with support
contained in W.

Proof. Can be easily deduced from the fact that there exists a word of weight δ
in C⊥ iff there are δ linear dependent columns in G.

Proposition 9 ([81]). Problem (10) has a solution for any W iff #W <
dmin(C⊥) and in this case the number of solutions is exactly qk−#W .

Proof. If #W < dmin(C⊥) then no codeword of C⊥ has its support contained
in W hence, from proposition 7 and 8, problem (10) has a solution. Conversely,
suppose that problem (10) has a solution for any W and that #W � dmin(C⊥).
Choose a setW and a word c of C⊥ such that its support be contained inW then,
from propostion 8, rank(GW) < #W which is a contradiction with proposition 7.
Last, when rank(GW) = #W , the number of solutions is #C/#πW(C) = qk−#W .

From these propositions, we deduce that for a general [n, k] code C, n−k symbols
can be embed in a cover medium if there are strictly less than d⊥ wet positions.
As an example, using the binary Hamming code, p bits can be embed in 2p − 1
bits, if there are at most 2p−1 − 1 wet positions.

Remark 11. A more general result states that, for n large enough, the number
of dry symbols needed on average to transmit k informations symbols is roughly
equal to k [81].
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6 The ε + 1 Matrix Embedding Scheme

In this section we describe how to use wet paper codes to transform an optimal
binary matrix embedding scheme into an optimal ternary matrix embedding
scheme. Let us suppose that we have a binary code C with embedding efficiency
equal to ε, i.e. k bits can be embed in n bits by making on average k/ε changes.
Let (x1, . . . , xn) be the cover-data obtained by taking the LSB of the n pixels
of the image. Let us denote by D ⊂ {1, . . . , n} the indices of the modified pixels
during the embedding process, and let W = {1, . . . , n} \ D. When the sender
flips the last bit of the pixel pi, i ∈ D, he also adjusts the second LSB of pi
to insert one more bit of information. Here is the description of the embedding
process:

1. Letm a message of length k, x the cover-data, find e such thatH(x+e) = m.
Let t be the Hamming weight of e (on average t 
 k/ε).

2. Let m̃ a message of lenght t and x̃ the cover-data computed from the second
LSB of the cover-medium. Find ẽ such that H̃(x̃ + ẽ) = m̃ and ẽi = 0 for
i ∈ W (where H̃ is obtained from the t first rows of H).

The value t must be communicated to the receiver, a small portion of the cover
image can be used to embed this value.

Notice that instead of flipping a bit (or adding 1 if the bit is even and -1 is
the bit is odd) , we now modify a pixel by adding +1 or -1 regardless its parity.
On average, k+k/ε bits are embedded making k/ε modifications, the embedding
efficiency is then:

k + k/ε

k/ε
= ε+ 1 .

From proposition 5, if the binary stegoscheme is optimal than the maximal
number of bits which can be embed making at most R changes is nH2(R/n).
Using this scheme with wet paper trick, we can embed at most nH2(R/n) + R
bits. Now,

nH2(R/n) +R = n(H2(R/n) +R/n)

= n(H2(R/n) +R/n log2(3− 1)) = nH3(R/n)

which is the maximal number of bits that can be embed using an optimal ternary
stegoscheme (see remark 10).

The first practical steganographic scheme which incorporates the matrix em-
bedding mechanism is the F5 algorithm [109]. A good starting point on Steganog-
raphy and matrix embedding is [51]. In [82], steganography is described from a
coding theory point of view and numerous bibliographical notes are given about
the study of some well known codes in this context (Hamming, Golay, BCH,
Reed-Solomon, Z4 linear codes).
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105. Véron, P.: Cryptanalysis of harari’s identification scheme. In: Boyd, C. (ed.) Cryp-
tography and Coding 1995. LNCS, vol. 1025, pp. 264–269. Springer, Heidelberg
(1995)
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Abstract. A set X ⊆ Σ∗∗ of pictures is a code if every picture over
Σ is tilable in at most one way with pictures in X. The definition of
strong prefix code is introduced and it is proved that the corresponding
family of finite strong prefix codes is decidable and it has a polynomial
time decoding algorithm. Maximality for finite strong prefix codes is
also considered. Given a strong prefix code, it is proved that there exists
a unique maximal strong prefix code that contains it and that has a
minimal size. The notion of completeness is also investigated in relation
to maximality.

1 Introduction

The notion of codes in two dimensions is an interesting subject for researchers
both from theoretical and applicative side due to the important role that images
have nowadays in human communications. The aim is to generalize to 2D the
well established theory of string codes (see [7] for a complete reference).

In the last two decades, two dimensional codes were studied in different
contexts and it were defined polyomino codes, picture codes, and brick codes. A
set C of polyominoes is a code if every polyomino that is tilable with (copies of)
elements of C, it is so in a unique way. Most of the results show that in the 2D
context we loose important properties. A major result due to D. Beauquier and
M. Nivat states that the problem whether a finite set of polyominoes is a code
is undecidable, and the same result holds also for dominoes ([6]). Related par-
ticular cases were studied in [1]. In [12] codes of directed polyominoes equipped
with catenation operations are considered, and some special decidable cases are
detected. Codes of labeled polyominoes, called bricks, are studied in [13] and
further undecidability results are proved.
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As major observation, remark that all mentioned results consider 2D codes
independently from a 2D language theory. The first attempt to connect this two
sides was presented by S. Bozapalidis in [8]. The paper considers codes of pic-
tures, i.e. rectangular arrays of symbols. Between pictures there can be defined
two partial concatenation operations, sometimes referred to as horizontal and
vertical concatenation: pictures to be concatenated need to have same number
of rows or columns, respectively. Using these operations, doubly-ranked monoids
are introduced and picture codes are studied in order to extend syntactic prop-
erties to two dimensions. Unfortunately many results are again negative and
involve undecidability issues. Even the definition of prefix picture codes in [11]
does not lead to any wide enough class.

Very recently, in [3], a new definition for picture codes was introduced in
relation to the family REC of picture languages recognized by tiling systems
(see [10]). Instead of referring to horizontal and vertical concatenation, it is
considered the operation of tiling star as defined in [14]: the tiling star of a set
X is the set X∗∗ of all pictures that are tilable (in the polyominoes style) by
elements of X . Then X is a code if any picture in X∗∗ is tilable in one way.
Remark that if X ∈ REC then X∗∗ is also in REC. By analogy to the string
case, it holds that if X is a finite picture code then, starting from pictures in X
we can easily construct an unambiguous tiling system for X∗∗ [4]. Unfortunately,
despite this nice connection to the word code theory, it is proved that it is still
undecidable whether a given set of pictures is a code. This is actually coherent
with the known result of undecidability for unambiguity inside REC.

Looking for decidable subclasses of picture codes, in [3] the definition of prefix
code is proposed. Pictures are then considered with a preferred scanning direc-
tion: from top-left corner to the bottom-right one. Then a picture p is a prefix
of a picture q, if p coincides with the ”top-left portion” of q. Observe that it
is not possible to define a set X to be prefix by merely imposing that its pic-
tures are not mutually prefixes: this would not automatically imply that X is a
code. The property that is maintained going from string to pictures is then the
following: if X is a prefix code, when decoding a picture p starting from top-left
corner, it should be univocally decided which element in X we can start with.
The formal definition of prefix sets involves special kind of polyominoes: in fact
”pieces” of pictures get in the intermediate steps of a decoding process are not
in general pictures itself. And this is actually what makes the major difference
when passing from string to pictures.

In [3] it is proved that it is decidable whether a finite set of picture is a prefix
set and that, as in the 1D case, every prefix set of pictures is a code. Moreover
a polynomial time decoding algorithm for finite prefix codes is presented. Prefix
codes for pictures inherit several properties from the original family of prefix
string codes and several non trivial examples can be exhibited. Nevertheless it
is worth to say that the definition is sometimes difficult to manage, since the
presence of a specific picture in the prefix set depends on a tiling combination
of (possibly) many other pictures in the same set.
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In this paper we take back the definition of prefix set for strings and generalize
the notion to 2D in a different way. We introduce the notion of horizontal prefix
and vertical prefix restricted to pairs of pictures with the same number of rows or
columns, respectively. More specifically, picture x is horizontal prefix of p when
x is prefix of p and moreover x and p have the same numbers of rows. Similarly
for vertical prefix. Then a set of picture X will be said strong prefix if no picture
in X is prefix of another one and moreover no two pictures p and q in X can
have a common prefix x that is horizontal prefix of p and vertical prefix of q.

Strong prefix sets are again a decidable family of picture codes with a simple
polynomial decoding algorithm. Then maximal strong prefix sets are considered
and the maximality of a given finite strong prefix set is shown to be decidable.
The embedding of a strong prefix set in a maximal one can be realized by a
polynomial algorithm. Moreover it is proved that, given a strong prefix set X ,
there exists a unique maximal strong prefix set containing X that has minimal
size. This result is quite surprising since a picture can be ”grown” in several
ways, following the horizontal or the vertical direction. Some results concerning
completeness and its relations with maximality for strong prefix sets are also
described.

2 Preliminaries

We introduce some definitions about pictures and two-dimensional languages
(see [10] for a complete reference).

A picture over a finite alphabet Σ is a two-dimensional rectangular array
of elements of Σ. Given a picture p, |p|row and |p|col denote the number of
rows and columns, respectively; |p| = (|p|row, |p|col) denotes the picture size.
Differently from the one-dimensional case, we can define an infinite number of
empty pictures namely pictures of size (m, 0) and of size (0, n), for all m,n ≥ 0,
will be called empty columns and empty rows, and denote by λm,0 and λ0,n
respectively.

The set of all pictures over Σ of fixed size (m,n) is denoted by Σm,n, while
Σm∗ and Σ∗n denote the set of all pictures over Σ with m rows and n columns,
respectively. The set of all pictures over Σ is denoted by Σ∗∗. A two-dimensional
language (or picture language) over Σ is a subset of Σ∗∗.

The domain of a picture p is the set of coordinates

dom(p) = {1, 2, . . . , |p|row} × {1, 2, . . . , |p|col}.

We let p(i, j) denote the symbol in p at coordinates (i, j). Positions in dom(p)
are ordered following the lexicographic order: (i, j) < (i′, j′) if either i < i′ or
i = i′ and j < j′. Moreover, to easily detect border positions of pictures, we
use initials of words “top”, “bottom”, “left” and “right”: then, for example the
tl-corner of p refers to position (1, 1). A subdomain of dom(p) is a set d of the
form {i, i+1, . . . , i′}× {j, j +1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤
|p|col, also specified by the pair [(i, j), (i′, j′)]. The subpicture of p associated to
[(i, j), (i′, j′)] is the portion of p corresponding to positions in the subdomain
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and is denoted by p[(i, j), (i′, j′)]. Given pictures x, p, with |x|row ≤ |p|row and
|x|col ≤ |p|col, we say that x is a prefix of p if x is a subpicture of p corresponding
to its top-left portion, i.e. if x = p[(1, 1), (|x|row, |x|col)].

Dealing with pictures, two ”classical” concatenation products are defined.
Let p, q ∈ Σ∗∗ pictures of size (m,n) and (m′, n′), respectively, the column
concatenation of p and q (denoted by p� q) and the row concatenation of p and
q (denoted by p�q) are partial operations, defined only if m = m′ and if n = n′,
respectively, as:

p� q = p q p� q = p
q

.

These definitions can be extended to define two-dimensional languages row- and
column- concatenations and row- and column- stars. If X ⊆ Σ∗∗ is a set of
pictures then the row- and column- star of X will be denoted by X	∗ and X�∗,
respectively. ([10]).

We also consider another interesting star operation for picture language
introduced by D. Simplot in [14]. The idea is to compose pictures in a way to
cover a rectangular area without the restriction that each single concatenation
must be a � or � operation. For example, the following figure sketches a possible
kind of composition that is not allowed applying only � or a � operations.

Definition 1. The tiling star of X, denoted by X∗∗, is the set of pictures p
whose domain can be partitioned in disjoint subdomains {d1, d2, . . . , dk} such
that any subpicture ph of p associated with the subdomain dh belongs to X, for
all h = 1, ..., k.

LanguageX∗∗ is called the set of all tilings byX in [14]. In the sequel, if p ∈ X∗∗,
the partition t = {d1, d2, . . . , dk} of dom(p), together with the corresponding
pictures {p1, p2, . . . , pk}, is called a tiling decomposition of p in X .

In this paper, while dealing with tiling star of a set X , we will need to manage
also non-rectangular “portions” of pictures composed by elements of X : those
are actually labeled polyominoes, that we will call polyominoes, for the sake of
simplicity. We extend to polyominoes the notion of tiling decomposition in a set
of pictures X . We also define a sort of tiling star that, applied to a set of pictures
X , produces the set of all polyominoes that have a tiling decomposition in X . If
a polyomino p belongs to the polyomino star of X , we say that p is tilable in X .

2.1 Two-Dimensional Codes

In this paper we refer to the definition of code given in [3] where two-dimensional
codes are introduced in the setting of the theory of recognizable two-dimensional
languages and coherently to the notion of language unambiguity as in [2,4].
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Definition 2. Let Σ be a finite alphabet. X ⊆ Σ∗∗ is a code iff any p ∈ Σ∗∗

has at most one tiling decomposition in X.

We show some simple examples. Let Σ = {a, b} be the alphabet.

Example 1. Let X =

{
a b ,

a
b
,
a a
a a

}
. It is easy to see that X is a code. Any

picture p ∈ X∗∗ can be decomposed starting at tl-corner and checking the size
(2, 2) subpicture p[(1, 1), (2, 2)]: it can be univocally decomposed in X . Then,
proceed similarly for the next contiguous size (2, 2) subpictures.

Example 2. Let X =

{
a b , b a ,

a
a

}
. Notice that no picture in X is prefix of

another picture in X ; nevertheless X is not a code. Indeed picture
a b a
a b a

has the

two following different tiling decompositions in X : t1 =
a b a
a b a

and t2 =
a b a
a b a

.

For the rest of the section we summarize the main results in [3].
First the problem whether a given set of pictures is a code is in general

undecidable.
With the aim of defining a subclass of codes that is decidable two-dimensional

prefix codes are then introduced as a generalization to two dimensions of the
family of string prefix codes.

The basic idea in defining a prefix code is to prevent the possibility to start
decoding a picture in two different ways (as it is for the prefix string codes). One
major difference going from 1D to 2D case is that, while any initial part of a
decomposition of a string is still a string, the initial part of a decomposition of a
picture has not necessarily a rectangular shape: it is in general a (labeled) poly-
omino. Hence a notion related to tiling and referred to as covering is introduced.
Informally a picture p is covered by (pictures in a set) X , if p can be tiled with
pictures that possibly “exit” p throughout the bottom and the right border. For
example, in the figure below, the picture with thick borders is (properly) covered
by the others. Refer to [3] for the formal definition.

Then the definition of prefix set given in [3] is equivalent to the following one.

Definition 3. A set X is prefix if and only if every x ∈ X cannot be properly
covered by pictures in X.

It is easy to verify that the set X of Example 1 is prefix. On the contrary, the

set X of Example 2 is not prefix: picture
a
a
, can be covered by two copies of

a b .
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Definition 3 is a good generalization of prefix set of strings in fact it is proved
that a prefix set is a code referred to as prefix code. Contrarily to the case
of all other known classes of 2D codes, the family of finite prefix codes has
the important property to be decidable. Furthermore a polynomial decoding
algorithm for a finite prefix picture code is given.

Maximality is a central notion in theory of (word) codes: the subset of any
code is a code, and then the investigation may restrict to maximal codes. In 1D,
the notion of maximality of (prefix) codes is related to the one of (right) com-
pleteness. The notions of maximality and completeness are extended to picture
codes. In 2D, a prefix code X ⊆ Σ∗∗ is said maximal prefix over Σ if it is not
properly contained in any other prefix code over Σ. In 1D maximality coincides
with completeness (for thin codes), while in 2D, complete prefix codes are a
proper subset of maximal prefix codes, that is fully characterized. Maximality
of finite prefix codes is decidable.

3 Strong Prefix Codes

We now introduce an alternative definition of prefix set for pictures; it can be
viewed as a more direct generalization from the notion of prefix sets for strings.
We will refer to it as strong prefix. Despite the notion will correspond to a smaller
family of codes, such family has many remarkable properties that generalize the
theory of codes from one to two dimensions.

We first specialize the definition of ”picture p prefix of picture q” in the
particular cases when p and q have the same number of rows (columns resp.): in
this case p will correspond to a left (top resp.) portion of q. Here below there is
the formal definition.

Definition 4. Let p, q ∈ Σ∗∗. Picture p is a horizontal prefix of q, denoted by
p ≤h q, if there exists x ∈ Σ∗∗ such that q = p �x. Picture p is a vertical prefix
of q, denoted by p ≤v q, if there exists y ∈ Σ∗∗ such that q = p �y. If x (y resp.)
is empty the horizontal (vertical, resp.) prefix is proper.

Then, combining the previous two definitions of horizontal and vertical prefix
for pictures, we generalize the notion of prefix set from strings to pictures.

Definition 5. Let X ⊆ Σ∗∗. X is strong prefix if there is no picture in X that
is prefix of another picture in X and, moreover, for any two different pictures
p and q in X, there does not exist any non-empty picture x ∈ Σ∗∗ such that
x ≤h p and x ≤v q.

Remark that the previous Definition 5 can be stated by referring directly to
picture domains by imposing that any two distinct pictures in X differ in the
common part of the domain, i.e. they do not overlap if we let their tl-corners
coincide. For example, the following two pictures p and q cannot both belong to
a strong prefix set:
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a b
a a

a b a a
a b a a
a a

p q p and q “overlapped”

Let us give some examples.

Example 3. Let X = { a b a , a b b ,
b
b
,
a a
a a

,
a a
a b

,
b a
a a

,
b a
a b

,
b b
a a

,
b b
a b
}.

Language X is strong prefix: no two pictures in X overlap on their tl-corner.

Example 4. LetΣ = {a, b} andX = {
a a
b b
b b

,
a b a
a b a
b b b

,
a b a b
a b a a
b b a b

,
b a b b
a a b b
b a a b

}. Language
X is strong prefix. Note that X ⊆ Σ3∗.

Definition 5 seems a valid generalization from the 1D case; in fact it can be easily
proved the following result.

Proposition 1. If X ⊆ Σ∗∗ is strong prefix then X is a code.

Proof. Suppose by contradiction that there exists a picture u ∈ Σ∗∗ that admits
two different tiling decompositions in X , say t1 and t2. Now, let (i0, j0) the
smallest position (in lexicographic order) of u, where t1 and t2 differ. Position
(i0, j0) corresponds in t1 to position (1, 1) of some x1 ∈ X , and in t2 to position
(1, 1) of some x2 ∈ X , with x1 �= x2. Consider now the size of x1 and x2: if
|x1|row = |x2|row, then one of them is a horizontal prefix of the other one. If,
instead, |x1|row �= |x2|row, suppose without loss of generality that |x1|row ≥
|x2|row. This implies that either x2 is a prefix of x1, (in the case |x1|col ≥ |x2|col)
or there exists a non-empty picture x ∈ Σ∗∗ such that x ≤h x1 and x ≤h x2 (in
the case |x1|col < |x2|col), against X strong prefix. ��

Applying directly the definition it can be shown that, given a set of pictures X ,
one can decide whether X is strong prefix in time polynomial with respect to the
total area of pictures in X (just compare every pair of pictures). Hence strong
prefix sets are a decidable family of picture codes.

Remark that strong prefix sets are in particular prefix sets (in the sense
introduced in [3]). They are a proper subclass of prefix sets (see Example 1)
that is simpler to handle with. The definitions of ”prefix set” and of ”strong pre-
fix set” both reduce to the definition of ”prefix set” of strings, when restricted
to one-row pictures (identifiable with strings). Moreover observe that they also
coincide on a more general kind of languages: languages X ⊆ Σm∗ and X ⊆ Σ∗n

(see Example 4). Such languages can be viewed as ”one-dimensional” languages,
over the alphabet Σm,1, or Σ1,n. Their properties will be addressed to in the
sequel.
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Strong prefix codes inherit some properties from the prefix codes family. For
example, in [3] a polynomial algorithm is presented that, given a finite prefix
code X ⊆ Σ∗∗ and a picture p ∈ Σ∗∗, finds, if it exists, a tiling decomposition
of p in X . The algorithm becomes even simpler when applied to strong prefix
codes.

4 Maximal Strong Prefix Codes

In this section we present the main results concerning maximality of codes
introduced in the previous section.

Definition 6. A strong prefix set X ⊆ Σ∗∗ is maximal strong prefix over Σ
if it is not properly contained in any other strong prefix set over Σ; that is,
X ⊆ Y ⊆ Σ∗∗ and Y strong prefix imply X = Y .

The following lemma gives a general tool to decide whether a finite strong prefix
set is maximal strong prefix. It shows that if a strong prefix set is not maximal
strong prefix, there is always a “small” picture that witnesses it. As a conse-
quence, one can check whether a strong prefix set is maximal strong prefix by
restricting the test to a finite number of pictures.

Lemma 1. Let X be a strong prefix finite set, rX = max{|x|row, x ∈ X}, and
cX = max{|x|col, x ∈ X}. If X is not maximal strong prefix, then there exists
p′ ∈ Σ∗∗, p′ /∈ X, such that X ∪ {p′} is still strong prefix and |p′|row ≤ rX ,
|p′|col ≤ cX .

Proof. Let p ∈ Σ∗∗, p /∈ X , such that X∪{p} is still strong prefix. If |p|row ≤ rX ,
|p|col ≤ cX , then let p′ = p. Otherwise, let h = min {|p|row, rX}, k = min
{|p|col, cX} and let p′ be the prefix of p of size (h, k). Let us show that X ∪ {p′}
is strong prefix.

By contradiction, suppose that X ∪ {p′} is not strong prefix. Then, if |p′| =
(rX , cX), since X is strong prefix, there exists x ∈ X prefix of p′. Therefore x is
also prefix of p, against X ∪ {p} strong prefix. If instead, |p′| �= (rX , cX), let us
suppose |p′| = (|p|row, cX) (the case |p′| = (rX , |p|col) is analogous). Since X is
strong prefix, two different cases can occur. In the first case, there exists x ∈ X
such that x is prefix of p′ or p′ is prefix of x. But, if x ∈ X is prefix of p′ then
x ∈ X is also prefix of p, against X ∪ {p} strong prefix. If instead p′ is prefix of
x, then it must be p′ ≤v x and, since p′ ≤h p, this contradicts X ∪ {p} strong
prefix. In the second case, there exist x ∈ X and y ∈ Σ∗∗ such that y ≤h p

′ and
y ≤v x. Since p

′ ≤h p, it implies y ≤h p against X ∪ {p} strong prefix. ��

The following proposition is a direct consequence of Lemma 1.

Proposition 2. It is decidable whether a finite strong prefix set X is maximal
strong prefix.

Let X be a strong prefix set. By applying the definition, one can show that if
X is maximal prefix then it is maximal strong prefix. We let open the question
whether the vice versa holds.



Strong Prefix Codes of Pictures 55

4.1 Embedding of Strong Prefix Codes

Lemma 1 can be also used to embed finite strong prefix codes into maximal finite
ones.

Proposition 3. Let X ⊆ Σ∗∗ be a finite strong prefix set. Then it is possible to
construct a finite set Y ⊆ Σ∗∗ such that Y is maximal strong prefix and X ⊆ Y .

Proof. Let rX = max{|x|row, x ∈ X}, cX = max{|x|col, x ∈ X} and Z be the
finite set of pictures of size (m,n) with m ≤ rX and n ≤ cX . Language Y can be
incrementally obtained starting from X , and adding one by one all pictures in Z
that do not overlap any picture of the current Y . Let us show that Y is maximal
strong prefix. By contradiction, suppose that Y is not maximal strong prefix.
Then, from Lemma 1, there exists p ∈ Σ∗∗, p /∈ Y , such that Y ∪{p} is still strong
prefix and |p|row ≤ max{|y|row, y ∈ Y } = rX , |p|col ≤ max{|y|col, y ∈ Y } = cX .
But this is not possible since all pictures p, with |p|row ≤ rX , |p|col ≤ cX , have
already been considered. ��

The proof of the previous proposition shows the correctness of an algorithm that
constructs a maximal strong prefix code containing a given strong prefix code
X . The procedure can output different sets depending on the order in which it
processes the candidate pictures to be added. See the next example.

Example 5. Let X = { a b a , a b b ,
b
b
}. Following Proposition 3, we can

construct the following two sets, that are both maximal strong prefix sets and
contain X :

Y = X∪ { a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

,
b a
a a

,
b a
a b

,
b b
a a

,
b b
a b
} and

Y ′ = X∪ { a a ,
b
a
}.

In 1D, given a finite prefix code, there exists a unique maximal finite code that
contains it, and that is minimum both in cardinality and in the total length of
its strings. We ask whether a similar situation holds in 2D. The setting looks
like more involved, since pictures can ”extend” both horizontally and vertically.
Surprisingly, the following result holds.

Define the area of a picture of size (m,n) as m × n, and the size of a finite
picture language X , denoted size(X), as the sum of the areas of its pictures.
Then define the following order on pictures p and q with size(p) = (m,n) and
size(q) = (m′, n′) : p ≤ q, if m×n < m′×n′; when p and q have the same area,
p ≤ q when (m,n) is lexicographically smaller than (m′, n′); and when p and q
have same area and same size, p ≤ q when the string obtained reading p row by
row is lexicographically smaller than the string obtained reading q row by row.

Proposition 4. Let X ⊆ Σ∗∗ be a finite strong prefix set. There exists a unique
finite maximal strong prefix set Y ⊆ Σ∗∗ that contains X and has minimum
size. Moreover Y is minimum in cardinality too.
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Proof. Specialize the algorithm provided by the proof of Proposition 3, by choos-
ing pictures from the finite set of pictures of size (m,n) withm ≤ rX and n ≤ cX ,
following the order on pictures defined above. First show that this algorithm pro-
vides a solution of minimal size. Let A = {p1, · · · , ph} be the maximal strong
prefix set returned by the execution of the algorithm on X , and O = {q1, · · · , qk}
be a maximal strong prefix set of minimal size. Suppose that pictures in both
A and O are in increasing order. The goal is to prove that A = O. Suppose by
the contrary that A �= O. Consider p1. If p1 ∈ O then p1 = q1 (by minimality of
p1) and repeat the considerations for p2. Suppose without loss of generality that
p1 /∈ O. Since O is maximal strong prefix then p1 ”overlaps” with some qi ∈ O.
Let x be the ”intersection” of p1 with qi. Then one could replace in O, picture qi
with x (x is ”compatible” with all the other pictures in O). Then the minimality
of O implies that size(x) = size(qi), that is qi ≤h p1, or qi ≤v p1. Now qi cannot
be a proper prefix of p1 (for the minimality of p1) then qi = p1 against p1 /∈ O.
This proves that A = O. Then, given two maximal strong prefix sets of minimal
size, say O1 and O2, they are both equal to A, and then O1 = O2.

Finally observe that the proof also holds when minimality with respect to the
cardinality of sets is concerned. ��

Example 6. Referring to the set X in Example 5, and using the algorithm
provided by the proof of Proposition 4, one can prove that the set Y ′ is the
maximal strong prefix set of minimum size that contains X .

Let us consider again prefix languages of pictures of fixed number of rows/co-
lumns, as in Example 4. They form a special family of strong prefix codes that
warrants many properties. The following proposition regards the embedding of
such languages. It states that among all possible embedding there is always one
(not necessarily the minimal one), preserving the fixed number of rows/columns.
Despite such languages are somehow ”one-dimensional” languages, the result is
not straightforward, since they have to be compared with pictures of any number
of rows/columns.

Proposition 5. Let X ⊆ Σm∗ (X ⊆ Σ∗n, resp.) be a finite (strong) prefix set.
Then it is possible to construct a finite set Y ⊆ Σm∗ (Y ⊆ Σ∗n, resp.) such that
Y is maximal strong prefix and X ⊆ Y .

Proof. Setting Γ = Σm,1, X can be considered as a set of strings over Γ and,
in particular, X is a prefix set of strings. From classical theory of codes (see e.g.
[7]), we know that there exists Y ⊆ Γ ∗ such that X ⊆ Y , Y finite maximal prefix
(set of strings). Moreover, Y can be chosen so that the maximal length of a string
in X is equal to the maximal length of a string in Y . Remark that Y ⊆ Σm∗

and that Y , viewed as a set of pictures, is strong prefix. Let us show that Y is
maximal strong prefix. By contradiction, suppose that Y is not maximal strong
prefix that is there exists p ∈ Σ∗∗, p /∈ Y , such that Y ∪{p} is still strong prefix.
Clearly |p|row �= m. If |p|row > m, let cY = max{|y|col, y ∈ Y } and consider
the prefix p′ of p of size (m,n′), where n′ = min{|p|col, cY }. Then there exists
y ∈ Y such that either p′ ≤h y and p′ ≤v p or p is a prefix of y and this
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contradicts Y ∪ {p} strong prefix. If |p|row < m, consider any picture q ∈ Σ∗∗

such that p′ = p �q ∈ Σm∗. Picture p′ can be considered as a string over Γ and,
since Y considered as a set of strings is right-complete (recall that in 1D a set is
maximal prefix if and only if it is right-complete [7]), there exist y1, . . . , yk ∈ Y
and r ∈ Σm∗ such that p′ �r = y1 �. . . �yk. But this implies that either p prefix
of y1 or z ≤h p and z ≤v y

′ for some z ∈ Σ∗∗ and, again, this contradicts Y ∪{p}
strong prefix. ��

4.2 Maximality and Completeness

In 1D the notion of maximality coincides with that of (right-) completeness
for thin (prefix) codes. Let us compare the two notions for strong prefix two-
dimensional codes. The definition below was first given in [3], and refers to the
notion of covering recalled in Section 2.1.

Definition 7. A set X ⊆ Σ∗∗ is br-complete if every p ∈ Σ∗∗ can be covered
by (pictures in) X.

Proposition 6. Let X be a strong prefix code. If X is br-complete then it is
strong prefix maximal.

Proof. By contradiction, suppose that there exists p ∈ Σ∗∗, p /∈ X such that
X∪{p} is still strong prefix. Since X is br-complete, p can be properly covered by
pictures in X . We will show that this contradicts X ∪ {p} strong prefix. Indeed,
let x ∈ X be the picture that covers position (1, 1) of p. If |x|row = |p|row and
|x|col < |p|col (|x|col > |p|col, resp.) then x (p, resp.) is a prefix of p (x, resp.). If
|x|row > |p|row and |x|col ≥ |p|col, then p is a prefix of x. If |x|row > |p|row and
|x|col < |p|col, then there exists y ∈ Σ∗∗ such that y ≤v x and y ≤h p. The cases
with |x|row < |p|row are analogous. ��

The vice versa does not hold, as shown by the following example.

Example 7. Let Y ⊆ Σ∗∗ as in Example 5: Y is a maximal strong prefix set.

Let us show that Y is not br-complete. Consider the picture p =
b b a b
b b b x
a b y z

with

x, y, z ∈ Σ: p cannot be covered with pictures in Y . Indeed, from a careful
analysis of possible compositions of pictures in Y , it follows that the symbol b
in position (2, 3) of p cannot be tiled by pictures in Y .

Maximality and completeness, that do not coincide in general for strong prefix
codes, are in fact equivalent for the family of languages of pictures with fixed
number of rows/columns.

Proposition 7. Let X ⊆ Σm∗ or X ⊆ Σ∗n be a finite (strong) prefix set. X is
maximal strong prefix set iff X is br-complete.
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Proof. Suppose that X ⊆ Σm∗ is maximal strong prefix. Setting Γ = Σm,1, X
can be considered as a set of strings over Γ and, in particular, X is a maximal
prefix set of strings over Γ . Then X is right-complete. Let us show that X is
br-complete. Let p ∈ Σ∗∗. If |p|row = m then, obviously, p can be covered by
pictures of X , since X is right-complete. If |p|row < m then consider a picture
p′, |p′|row = m obtained by adding some rows to p: p′ ∈ Γ ∗ and, since X is right-
complete, it can be “covered” by strings in X . But this implies that picture p
can be covered by pictures of X . If |p|row > m then p can be considered as
the row concatenation of some pictures in Σm∗, and a picture with a number
of rows less than or equal to m. Applying previous considerations, each of these
pictures can be “covered” by pictures of X and, therefore p too can be covered
by pictures of X . The case X ⊆ Σ∗n is analogous.

The fact that X br-complete implies X maximal strong prefix follows from
Proposition 6. ��

5 Conclusions

We introduced the definitions of strong prefix code that generalizes in two
dimensions the definition of prefix string code, and inherits many of its prop-
erties. In particular, given a strong prefix code, we proved the existence and
unicity of a maximal strong prefix code that contains it, and that has a minimal
size. Then we showed that the br-completeness of a picture language implies the
strong prefix maximality, but, differently from the 1D case, the converse does
not hold. The two notions are equivalent on the restricted family S of strong
prefix languages containing pictures of fixed number of rows/columns.

The following hierarchy summarizes the results on families of 2D finite codes
obtained in this paper and in our previous work [3]:

Prefix maximal codes in S = Prefix (maximal and) br-complete codes
� Prefix maximal codes ⊆ Strong prefix maximal codes

� Strong prefix codes � Prefix codes
� Codes.

We let open the problem whether (finite) prefix maximal codes equals (finite)
strong prefix maximal codes or not. As future research, we will try to remove the
finiteness hypothesis and consider prefix sets belonging to particular sub-families
in REC, such as deterministic ones ([2,5]).
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Michaël Cadilhac1, Andreas Krebs2, and Pierre McKenzie1,�

1 DIRO at U. de Montréal and Chaire Digiteo ENS Cachan-École Polytechnique
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Abstract. The Parikh automaton model equips a finite automaton with
integer registers and imposes a semilinear constraint on the set of their
final settings. Here the theory of typed monoids is used to character-
ize the language classes that arise algebraically. Complexity bounds are
derived, such as containment of the unambiguous Parikh automata
languages in NC1. Noting that DetAPA languages are positive supports
of rational Z-series, DetAPA are further shown stronger than Parikh
automata on unary langages. This suggests unary DetAPA languages as
candidates for separating the two better known variants of uniform NC1.

Introduction

The Parikh automaton model was introduced in [19]. It amounts to a nonde-
terministic finite automaton equipped with registers tallying up the number of
occurrences of each transition along an accepting run. Such a run is then deemed
successful iff the tuple of final register settings falls within a fixed semilinear set.
An affine variant of the model in which transitions further induce an affine
transformation on the registers was considered in [10]. An unambiguous variant
of the model was considered in [11]. Tree Parikh automata and other variants
were considered in [18].

Recall the tight connection between AC0, ACC0 and NC1 and aperiodic
monoids, solvable monoids and nonsolvable monoids respectively [2,3]. This
connection was refined and studied in depth (see [24] for a lovely account), but
the class TC0 ⊆ NC1 was left out of the picture because the MAJ gate in circuits
could not be translated into the operation of a finite algebraic structure. Typed
monoids were introduced in [20] as a means of capturing TC0 meaningfully in
the algebraic framework.

In both the classical and the typed monoid framework, a compelling notion of a
natural class of monoids is that of a variety. In both frameworks, different monoid
varieties capture different classes of languages as inverse homomorphic images of
an accepting subset of the monoid [13,6]. The internal structure of NC1 hinges
on whether different monoid varieties still capture different classes of languages
when the classical notion of a homomorphism is appropriately generalized to
capture as above complexity classes such as ACC0, TC0 and NC1.
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Our contribution is an algebraic characterization of the language classes
defined by the deterministic and unambiguous variants of the Parikh automaton
(called CA, for “constrained automaton”) and the affine Parikh automaton. We
show:

– the class LDetCA of languages accepted by deterministic CA is the set of
languages recognized by typed monoids from Z+ �M, i.e., by wreath products
of the monoid of integers with some finite monoid; the least typed monoid
variety generated by Z+ �M also captures LDetCA

– the class LUnCA of languages accepted by unambiguous CA is the set of
languages recognized by typed monoids from Z+�M, i.e., by block products
of the monoid of integers with some finite monoid; the least typed monoid
variety generated by Z+�M also captures LUnCA

– the classes LDetAPA and LUnAPA, of languages accepted by deterministic
and by unambiguous affine Parikh automata respectively (where an affine
Parikh automaton generalizes the constrained automaton by allowing each
transition to perform an affine transformation on the automaton registers),
are the Boolean closure of the positive supports of rational series over the
integers.

The first two characterizations above add legitimacy to the theory of typed
monoids, and they suggest further relevance of that theory to our understanding
of NC1. It follows from the characterization of LUnCA that LUnCA ⊆ NC1, a
fact which is not immediately obvious from the operation of an unambiguous
constrained automaton.

The Boolean closure of the class of positive supports of rational series over
the integers, hence LDetAPA = LUnAPA, can be viewed as a very tightly uniform
version of the (DLOGTIME-uniform) class PNC1, introduced in [12] as the log
depth analog of the poly time and log space classes PP and PL [16]. Fulfilling
NC1 ⊆ PNC1 ⊆ L, PNC1 is robust, pointedly characterized using iterated prod-
ucts of constant dimension integer matrices, but also characterized using paths in
bounded width graphs, proof trees in log depth circuits, accepting paths in non-
deterministic finite automata or evaluation of a log depth {+,×}-formula [12].
An elaborate structural complexity evolved around PNC1 with the work of [21].
We note that using formal power series as a tool to investigate counting classes
below L was already suggested in [1], but with emphasis there on the complexity
of performing operations such as inversion and root extraction on such series.

1 Preliminaries

Monoids, integers, vectors. A monoid is a set M with an associative operation,
usually denoted multiplicatively (x, y) �→ xy, and an identity element denoted
1. For S ⊆ M , we write S∗ for the monoid generated by S, i.e., the smallest
submonoid of M containing S. A (monoid) morphism from M to N is a map
preserving product and identity. Moreover, ifM = Σ∗ for some alphabet Σ (i.e.,
Σ is a finite set of symbols), then h need only be defined on the elements of Σ.
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We write N, Z, Z+, Z−
0 for the sets of nonnegative integers, integers, positive

integers, and nonpositive integers respectively. Vectors in Nd are noted in bold,
e.g., v whose elements are v1, v2, . . . , vd. We write ei ∈ {0, 1}d for the vector
having a 1 only in position i, and 0 for the all-zero vector. We view Nd as the
additive monoid (Nd,+), with + the component-wise addition and 0 the identity
element. We letMZ(k), for k ≥ 1, be the monoid of square matrices of dimension
k × k with values in Z and with the operation mapping (M1,M2) to M2M1. In
particular, a morphism h : {a, b}∗ →MZ(k) is such that h(ab) = h(b).h(a) with
. the usual matrix multiplication. We write Ψi for the projection on the i-th
component, Ψi(a1, a2, . . . , ai, . . .) = ai.

Semilinear sets, Parikh image. A subset C of Nd is linear if there exist c ∈ Nd

and a finite P ⊆ Nd such that C = c+P ∗. The subset C is said to be semilinear
if it is equal to a finite union of linear sets: {4n + 56 | n > 0} is semilinear
while {2n | n > 0} is not. We will often use the fact that the semilinear sets are
those sets of natural numbers definable in first-order logic with addition [17].
Let Σ = {a1, a2, . . . , an} be an (ordered) alphabet and 1 be the empty word.
The Parikh image is the morphism Pkh : Σ∗ → Nn defined by Pkh(ai) = ei,
for 1 ≤ i ≤ n — in particular, we have that Pkh(1) = 0. For w ∈ Σ∗, with
Pkh(w) = x and ai ∈ Σ, we write |w|ai for xi. The Parikh image of a language
L is defined as Pkh(L) = {Pkh(w) | w ∈ L}. The name of this morphism stems
from Parikh’s theorem [22], stating that for L context-free, Pkh(L) is semilinear;
outside language theory, it is also referred to as the commutative image.

Affine functions. A function f : Nd → Nd is a (total and positive) affine function
of dimension d if there exist a matrix M ∈ Nd×d and v ∈ Nd such that for any
x ∈ Nd, f(x) =Mx+v. We abusively write f = (M,v). We let Fd be the monoid
of such functions under the operation � defined by (f � g)(x) = g(f(x)), where
the identity element is the identity function, i.e., (Id ,0) with Id the identity
matrix of dimension d.

Automata. An automaton is a quintuple A = (Q,Σ, δ, q0, F ) where Q is a finite
set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q is a set of transitions, q0 ∈ Q is the
initial state, and F ⊆ Q is a set of final states. For a transition t = (q, a, q′) ∈ δ,
define From(t) = q and To(t) = q′. We define LabelA : δ∗ → Σ∗ as the morphism
given by LabelA(t) = a, with, in particular, LabelA(1) = 1, and write Label when
A is clear from the context. The set of accepting paths of A, i.e., the set of words
over δ describing paths starting from q0 and ending in F , is written Run(A).
The language of the automaton is L(A) = LabelA(Run(A)). An automaton is
unambiguous if for all w ∈ L(A) there is a unique π ∈ Run(A) with Label(π) = w.

A constrained automaton (CA) [10] is a pair (A,C) where A is an automa-
ton with d transitions and C ⊆ Nd is semilinear. Its language is L(A,C) =
LabelA({π ∈ Run(A) | Pkh(π) ∈ C}). The CA is said to be deterministic (DetCA)
if A is deterministic, and unambiguous (UnCA) if A is unambiguous. We write
LCA, LDetCA, and LUnCA for the classes of languages recognized by CA, DetCA,
and UnCA, respectively.
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An affine Parikh automaton (APA) [10] of dimension d is a triple (A,U,C)
where A is an automaton with transition set δ, U : δ∗ → Fd is a morphism,
and C ⊆ Nd is semilinear. Its language is L(A,U,C) = LabelA({π ∈ Run(A) |
[U(π)](0) ∈ C}). The APA is said to be deterministic (DetAPA) if A is deter-
ministic, and unambiguous (UnAPA) if A is unambiguous. We write LDetAPA

and LUnAPA for the classes of languages recognized by DetAPA and UnAPA,
respectively.

Transition monoid. Let A = (Q,Σ, δ, q0, F ) be a complete deterministic automa-
ton. For a ∈ Σ, define fa : Q → Q by fa(q) = q′ iff (q, a, q′) ∈ δ. The transition
monoid M of A is the closure under composition of the set {fa | a ∈ Σ}. The
monoidM acts onQ naturally by q.m = m(q),m ∈M , q ∈ Q. Write η : Σ∗ →M
for the canonical surjective morphism associated, that is, the morphism defined
by η(a) = fa, a ∈ Σ. Then q.η(w) is the state reached by reading w ∈ Σ∗ from
the state q ∈ Q.

2 Normal Forms of CA and APA

We present several technical lemmata on CA and APA that will help us in
devising concise proofs for the algebraic characterizations that follow. Their main
purpose is to simplify the constraint set, so that only sign checks on linear
combinations of variables are performed.

Recall (e.g., [14]) that for any semilinear set C ⊆ Zd, there is a Boolean

combination of expressions of the form:
∑d

i=1 αixi > c and
∑d

i=1 αixi ≡p c,
with αi, c ∈ Z and p > 1, which is true iff (x1, x2, . . . , xd) ∈ C. Note that the αi

may be zero. We define two notions which refine this point of view:

Definition 1. We say that a semilinear set C is modulo-free if it can be
expressed as a Boolean combination of expressions of the form

∑
i αixi > c,

for αi ∈ Z. We say that C is basic if it can further be expressed as a positive
Boolean combination of expressions of the form

∑
i αixi > 0.

The first normal form concerns DetCA and UnCA:

Lemma 1. Every DetCA (resp. UnCA) has the same language L ⊆ Σ+ as
another DetCA (resp. UnCA) (A,C) with L(A) = Σ∗ and C a basic set.

We also note the following simple fact:

Lemma 2. For (A,C1 ∩C2) a DetCA or an UnCA it holds that:

L(A,C1 ∩ C2) = L(A,C1) ∩ L(A,C2) .

The same holds for ∪.

We show more in the context of APA to allow the forthcoming proofs of charac-
terization to translate smoothly from CA to APA. In the following, we consider
that a matrix M ∈ MZ(k) is in a set C ⊆ Zk2

if the vector consisting of the
columns of M is in C.
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Lemma 3. Let L ⊆ Σ+ be in LDetAPA. There is a morphism h : Σ∗ →MZ(k),

for some k, and a set Z ⊆ Zk2

expressible as a Boolean combination of
expressions xi > 0, such that L = h−1(Z).

Similarly, let L ⊆ Σ+ be in LUnAPA. There is an unambiguous automaton
A with transition set δ, a morphism h : δ∗ → MZ(k), for some k, and a set

Z ⊆ Zk2

expressible as a Boolean combination of expressions xi > 0, such that
L = LabelA(h

−1(Z) ∩ Run(A)).

3 Capturing Parikh Automata Classes Algebraically

In this section we characterize DetCA, UnCA, DetAPA, and UnAPA using the
theory of (finitely) typed monoids [20].

3.1 Typed Monoids

In the following, we will use such notions as language recognition by a finite
monoid, varieties of languages, and pseudovarieties of finite monoids (see, e.g.,
[13]). In algebraic language theory, central tools for finite monoid composition
include the block and wreath products, the definitions of which we recall here,
before giving similar definitions in the theory of typed monoids.

Let M and N be finite monoids. To distinguish the operation of M and N ,
we denote the operation of M as + and its identity element as 0 (although this
operation is not necessarily commutative) and the operation of N implicitly and
its identity element as 1. A left action of N on M is a function mapping pairs
(n,m) ∈ N×M to nm ∈M and satisfying n(m1+m2) = nm1+nm2, n1(n2m) =
(n1n2)m, n0 = 0 and 1m = m. Right actions are defined symmetrically. If we
have both a right and a left action of N on M that further satisfy n1(mn2) =
(n1m)n2, we define the bilateral semidirect product M ∗∗N as the monoid with
elements in M × N and multiplication defined as (m1, n1)(m2, n2) = (m1n2 +
n1m2, n1n2). This operation is associative and (0, 1) acts as an identity for it.
Given only a left action, the unilateral semidirect productM ∗N is the bilateral
semidirect product M ∗∗N where the right action on M is trivial (mn = m).

Let M,N be two monoids. The wreath product ofM and N , writtenM �N , is
defined as the unilateral semidirect product ofMN and N , where the left action
of N on MN is given by (n · f)(n′) = f(n′n), for f : N →M and n, n′ ∈ N . The
block product of M and N , written M�N , is defined as the bilateral semidirect
product of MN×N and N , where the right (resp. left) action of N on MN×N

is given by (f · n)(n1, n2) = f(n1, nn2) (resp. (n · f)(n1, n2) = f(n1n, n2)), for
f : N ×N →M and n, n1, n2 ∈ N .

We now turn to the theory of typed monoids.

Definition 2 (Typed monoid [20]). A typed monoid is a pair (S,S) where
S is a finitely generated monoid and S is a finite Boolean algebra of subsets of
S whose elements are called types. We write (S, {S1,S2, . . . ,Sn}) for the typed
monoid (S,S) where S is generated by the Si’s. If n = 1, we simply write
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(S,S1). For two typed monoids (M,M), (N,N), their direct product (S,S) =
(M,M)×(N,N) is defined by S =M×N , and S is the Boolean algebra generated
by {M×N | M ∈M and N ∈ N}. A typed monoid (S,S) recognizes a language
L if there are a morphism h : Σ∗ → S and a type S ∈ S such that L = h−1(S).
We write L((S,S)) for the class of languages, over any alphabet, recognized by
(S,S) and extend this notation naturally to classes of typed monoids.

We view a finite monoid M as the typed monoid (M, 2M ), and write M for the
class of typed finite monoids; note that the usual notion of language recognition
then coincides with the one given here.

The usual wreath product (resp. block product) of M and N , i.e., the unilat-
eral (resp. bilateral) semidirect product of MN (resp. MN×N ) and N , results,
in the infinite monoid case, in monoids with uncountably many elements, failing
to fall within the definition of typed monoid. Thus the block product was re-
stricted, in [20], to type-respecting functions, that is, functions that only depend
on the type of their arguments (multiplied by some constants). Here, we are not
concerned with this technicality as all our monoids N will be finite. Hence we
define:

Definition 3 (Typed block [20] and wreath products). Let (M,M) and
(N,N) be typed monoids. The block product (resp. wreath product) of (M,M)
and (N,N), written (M,M)�(N,N) (resp. (M,M)�(N,N)), is (M�N,S) (resp.
(M �N,S)) with S = {SM | M ∈M} where:

SM = {(f, n) ∈ S | f(1, 1) ∈ M} (resp. SM = {(f, n) ∈ S | f(1) ∈ M}) .

The appropriateness of typed monoids in the study of the algebraic properties
of nonregular languages is witnessed by the following Eilenberg-like theorem of
Behle, Krebs, and Reifferscheid:

Theorem 1 ([6]). Varieties of typed monoids and varieties of languages are in
a one-to-one correspondence, i.e., (1) Let V be a variety of languages and V
the smallest variety of typed monoids that recognizes all languages in V, then
L(V) = V; (2) Let V be a variety of typed monoids and W be the smallest
variety that recognizes all languages of L(V), then V = W.

Similar to the untyped algebraic theory of languages, if a typed monoid recog-
nizes a language, it also recognizes its complement. This implies that LCA, which
is not closed under complement, does not accept a typed monoid characteriza-
tion. We will thus focus on characterizing the deterministic and unambiguous
classes. Note that we will frequently focus on languages which do not contain
the empty word. This is a technical simplification which introduces no loss of
generality, as all our typed monoid classes recognize {1} and are closed under
union.

3.2 Capturing DetCA and UnCA

Let Z+ be the set of typed monoids {(Z,Z+)k | k ≥ 1}.
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Theorem 2. L(Z+ �M) = LDetCA.

Proof. (LDetCA ⊆ L(Z+ �M)) We first show that L(Z+ �M) is closed under
union and intersection. Let L1, L2 ∈ L(Z+ �M) be two languages over Σ, that is,
for i = 1, 2, there exist a finite monoid Mi, an integer ki, a morphism hi : Σ

∗ →
Zki �Mi, and a type Ti of (Z,Z+)ki such that Li = h−1

i (Ti).
Consider the typed monoid (Z,Z+)k1+k2 � (M1 ×M2) ∈ Z+ �M. This monoid

recognizes both the intersection and union of L1 and L2 as follows. Define
h : Σ∗ → Zk1+k2 � (M1 × M2) by h(a) = (fa, (Ψ2(h1(a)), Ψ2(h2(a)))) where
a ∈ Σ and fa((m1,m2)) = ([Ψ1(h1(a))](m1), [Ψ1(h2(a))](m2)) ∈ Zk1+k2 . Now let
� ∈ {∪,∩}. We define T
 = (T1×Zk2)�(Zk1×T2), and thus h−1(T
) = L1�L2.

Now let (A,C) be a DetCA with A = (Q,Σ, δ, q0, F ), and suppose (by
Lemma 1) that F = Q and that the constraint set is expressed by a positive
Boolean combination of clauses of the form

∑
t∈δ αtxt > 0. Closure of L(Z+ �M)

under ∪ and ∩ together with Lemma 2 imply that it is enough to argue the case
in which C is defined by a single such clause.

Let M be the transition monoid of A, η : Σ∗ → M the canonical morphism
associated. We now define h : Σ∗ → Z �M as follows. Let τ : M × Σ → δ be
defined by τ(m, a) = (q0.m, a, q0.mη(a)). Then:

h(a) = (fa, η(a)), where fa(m) = ατ(m,a) .

Now let w = w1w2 · · ·wn ∈ Σ∗ and π = π1π2 · · ·πn where wi ∈ Σ and πi ∈ δ for
every 1 ≤ i ≤ n, such that π is the unique accepting path in A from q0 labeled
w. We have:

h(w) = (fw1 + η(w1) · fw2 + · · ·+ η(w1w2 · · ·wn−1) · fwn , η(w))

[Ψ1(h(w))](η(1)) = ατ(η(1),w1) +

n∑
i=2

ατ(η(w1···wi−1),wi) ,

note that q0.η(w1 · · ·wi−1) is From(πi) and thus τ(η(w1 · · ·wi−1), wi) = πi,
hence:

[Ψ1(h(w))](η(1)) =

n∑
i=1

απi =
∑
t∈δ

|π|t × αt .

Thus, Pkh(π) ∈ C iff [Ψ1(h(w))](η(1)) > 0. Hence with the type T = {(f,m) ∈
(Z,Z+) �M | f(η(1)) > 0}, which is indeed a type of (Z,Z+) �M , we have that
h−1(T ) = L(A,C).

(L(Z+ �M) ⊆ LDetCA) Let L ⊆ Σ∗ be recognized by (Z,Z+)k �M using
a type T and a morphism h : Σ∗ → (Zk)M × M , and write for convenience
hi(w) = Ψi(h(w)), i = 1, 2. Let A be the automaton (M,Σ, δ, 1,M), where:

δ = {(m, a,m′) | m ∈M,a ∈ Σ and m′ = m.h2(a)} .
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Now as LDetCA is closed under union and intersection, we may suppose that the
type T is of the following form:

T =

k∏
i=1

{(f,m) | f(1) ∈ Ti} ,

where each Ti ∈ {∅,Z−
0 ,Z

+,Z}. Define T = T1×T2×· · ·×Tk, and the semilinear
set C consisting of elements:

(xt1 , xt2 , . . . , xt|δ| ) s.t.
∑
t∈δ

xt × [h1(Label(t))](From(t)) ∈ T .

We claim that the language of the DetCA (A,C) is L. Let w = w1w2 · · ·wn ∈
Σ∗. There is an (accepting) path in A labeled w going through the states 1 =
h2(1), h2(w1), h2(w1w2), . . . , h2(w1w2 · · ·wn). Thus the sum computed by the
semilinear set is h1(w1)+h2(w1) ·h1(w2)+ · · ·+h2(w1w2 · · ·wn) ·h1(wn), taken
at the point 1. This is precisely [h1(w)](1), and thus checking whether it belongs
to T is equivalent to checking whether h(w) ∈ T . Hence L = L(A,C). ��

Now LDetCA is a variety of languages and we may naturally ask whether the
smallest variety containing Z+�M, which recognizes only the languages of LDetCA

by Theorem 1, is closed under iterated wreath product. We note this is not the
case. Let U1 = ({0, 1},×), then:

Theorem 3. There is a language L /∈ LCA recognized by U1 � (Z,Z+) and by
(Z,Z+) � (Z,Z+).

We now turn to unambiguous CA:

Theorem 4. L(Z+�M) = LUnCA.

Proof. (LUnCA ⊆ L(Z+�M)) We first note that L(Z+�M) is closed under
union and intersection; this is the same proof as in Theorem 2 except that fa is
now defined as:

fa((m1,m2), (m
′
1,m

′
2)) = ([Ψ1(h1(a))](m1,m

′
1), [Ψ1(h2(a))](m2,m

′
2)) .

Next consider an UnCA (A,C) with A = (Q,Σ, δ, q0, F ), and suppose (using
Lemma 1) that L(A) = Σ∗ and that the constraint set is expressed by a positive
Boolean combination of clauses of the form

∑
t∈δ αtxt > 0. Closure of L(Z+�M)

under ∪ and ∩ together with Lemma 2 imply that it is enough to argue the case
in which C is defined by a single such clause.

Let M be the transition monoid of the deterministic version of A, obtained
using the powerset construction. Let A′ be defined as A with all transitions
inverted (i.e., (p, a, q) is in A iff (q, a, p) is in A′). Let M ′ be the transition
monoid of the deterministic version of A′, using again the powerset construction,
and let M c be the monoid defined on the same elements as M ′ but with the
operation reversed (i.e., m1 ◦M ′ m2 in M ′ is m2 ◦Mc m1 in M c; this is still a
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monoid as ◦Mc is still associative). We will show that L(A,C) is recognized by
(S,S) = (Z,Z+)�(M ×M c).

Write η and ηc for the canonical morphisms associated with M and M c; for
m ∈ M and R ⊆ Q, write R.m for the action of m on R, and likewise for M c.
We first note that for w ∈ Σ∗, {q0}.η(w) is the set of states of A that can be
reached in A reading w from q0, and, likewise, that F.η

c(w) is the set of states
in A from which reading w leads to a final state.

Now for m1 ∈ M , a ∈ Σ, and m2 ∈ M c, let τ(m1, a,m2) be the unique
transition in A from a state in {q0}.m1 to a state in F.m2 labeled a. We show
that τ is well-defined. Let w1, w2 such that η(w1) = m1 and ηc(w2) = m2; this
means that there are w1-labeled paths in A from q0 to any state in {q0}.m1,
and, likewise, w2-labeled paths in A from any state in F.m2 to a final state.
(Existence): as w1aw2 is in Σ∗ = L(A), there is a transition in A from a state in
{q0}.m1 to a state in F.m2 labeled a. (Uniqueness): if two transitions (p, a, p′)
and (q, a, q′) are such that p, q ∈ {q0}.m1 and p

′, q′ ∈ F.m2, this means that there
are multiple accepting paths in A labeled w1aw2, contradicting the unambiguity
of A. We now define the morphism h : Σ∗ → S by:

h(a) = (fa, (η(a), η
c(a))), where

fa((m1,m2), (m
′
1,m

′
2)) = ατ(m1,a,m′

2)
.

Now let w = w1w2 · · ·wn ∈ Σ∗, wi ∈ Σ for every 1 ≤ i ≤ n, and π be the unique
path in A from q0 to a final state labeled w. Then:

π = π1π2 · · ·πn where

πi = τ(η(w1w2 · · ·wi−1), wi, η
c(wi+1wi+2 · · ·wn)) ,

and thus:
[Ψ1(h(w))]((η(1), η

c(1))) =
∑
t∈δ

|π|t × αt .

Thus Pkh(π) ∈ C iff [Ψ1(h(w))]((η(1), η
c(1))) > 0. Hence with the type S =

{(f,m) ∈ S | f((η(1), ηc(1))) ∈ Z+}, which is indeed a type in S as Z+ is a type
of (Z,Z+), we have that h−1(S) = L(A,C).

(L(Z+�M) ⊆ LUnCA) Let L ⊆ Σ∗ be recognized by (Z,Z+)k�M using
a type T and a morphism h : Σ∗ → ZM×M × M , and write for convenience
hi(w) = Ψi(h(w)), i = 1, 2. For any (s1, s2) ∈ M × M , Let A(s1, s2) be the
automaton (M ×M,Σ, δ, (s1, s2),M × {1}) where:

δ ={((m1,m2), a, (m
′
1,m

′
2)) |

m′
1 = m1h2(a) and h2(a)m

′
2 = m2 ∈M and a ∈ Σ} .

Note that w ∈ L(A(s1, s2)) implies h2(w) = s2. We argue that A(s1, s2) is
unambiguous for any (s1, s2) ∈M ×M . We show that for any w ∈ Σ∗ and any
(s1, s2) ∈ M ×M , w is the label of at most one accepting path in A(s1, s2), by
induction on |w|. If w = 1, then every A(s1, s2) has at most one accepting path
labeled w. Now let w = a · v for v ∈ Σ∗. Suppose w ∈ L(A(s1, s2)). This implies
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that h2(w) = s2. The states that can be reached from (s1, h2(w)) reading a are all
of the form (s1h2(a),m), m ∈ M . Now v should be accepted by the automaton
A where the initial state is set to one of these states; thus there is only one
state fitting, (s1h2(a), h2(v)). By induction hypothesis, there is only one path
in A(s1h2(a), h2(v)) recognizing v, thus there is only one path in A(s1, h2(w))
recognizing w. This shows that for any s1, s2, A(s1, s2) is unambiguous.

Now, with e = (1, 1), and as LUnCA is closed under union and intersection,
we may suppose that the type T is of the following form:

T =

k∏
i=1

{(f,m) | f(e, e) ∈ Ti} ,

where each Ti ∈ {∅,Z−
0 ,Z

+,Z}. Define T = T1×T2×· · ·×Tk, and the semilinear
set C consisting of elements:

(xt1 , xt2 , . . . , xt|δ| ) s.t.
∑
t∈δ

xt × [h1(Label(t))](Ψ1(From(t)), Ψ2(To(t))) ∈ T .

We show that
⋃

m∈M L(A(1,m), C) is L. Let w = w1w2 · · ·wn ∈ Σ∗. There
is a unique accepting path in A(1, h2(w)) (and in no other A(1,m)) labeled
w, and it is going successively through the states (h2(1), h2(w)) = (1, h2(w)),
(h2(w1), h2(w2 · · ·wn)), . . . , (h2(w), 1) = (h2(w), h2(1)). For this path, the sum
computed by the semilinear set is:

n∑
i=1

h2(w1 · · ·wi−1) · h1(wi) · h2(wi+1 · · ·wn) ,

at the point (1, 1). This is precisely [h1(w)](1, 1), and checking whether it is in
T amounts to checking whether h(w) ∈ T , thus L =

⋃
m∈M L(A(1,m), C). ��

We derive an interesting property of the logical characterization and circuit
complexity of UnCA. Let MSO[<] be the monadic second-order logic with < as
the unique numerical predicate, and FO+G[<] be the first-order logic with group
quantifiers and < as the unique numerical predicate. Both logics
express exactly the regular languages (these are respectively the classical
results of Büchi [8] and Barrington, Immerman, Straubing [4]). Now define the

extended majority quantifier M̂aj, introduced in [5], as: w |= M̂aj x 〈ϕi〉i=1,...,m

iff
∑|w|

j=1 |{i | wx=j |= ϕi}| − |{i | wx=j � ϕi}| > 0. Then:

Corollary 1. A language is in LUnCA iff it can be expressed as a Boolean
combination of formulas of the form:

M̂aj x 〈ϕi〉i=1,...,m

where each ϕi is an MSO[<] formula or an FO+G[<] formula. Hence,
LUnCA � NC1.
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3.3 Capturing DetAPA and UnAPA

Write Z+(k) for the type set of (Z,Z+)k, that is, the sets expressible as a Boolean
combination of expressions of the form xi > 0. Let ZMat+ be the set of typed
monoids {(MZ(k),Z

+(k × k)) | k ≥ 1}, then:

Theorem 5. L(ZMat+) = LDetAPA.

Proof. (LDetAPA ⊆ L(ZMat+)) This is a direct consequence of Lemma 3.
(L(ZMat+) ⊆ LDetAPA) Given k ≥ 1, a type Z of (Z,Z+)k×k, and a

morphism h : Σ∗ → MZ(k), we build a two-state DetAPA of dimension k2 for
h−1(Z). First, let h′ : Σ∗ →MZ(k

2) be such that h′(a) is the Kronecker product
of the identity matrix of dimension k and h(a). Define e = (e1, e2, . . . , ek) where
each ei is of dimension k. Then for any word w, h(w) ∈ Z iff h′(w)e ∈ Z. Now
let A = ({r, s}, Σ, δ, r, {s}), with δ = {r, s}×Σ×{s}. Then let U : δ∗ → Fk2 for

q ∈ {r, s}, a ∈ Σ, and x ∈ Zk2

be defined by:

[U((q, a, s))](x) =

{
h′(a)e if q = r,

h′(a)x otherwise.

This implies that for w ∈ Σ+ and π its unique accepting path in A, it holds that
[U(π)](0) = h′(w)e. Thus L(A,U,Z) = h−1(Z). ��

Theorem 6. L(ZMat+�M) = LUnAPA.

Proof. LUnAPA ⊆ L(ZMat+�M) is the same as LUnCA ⊆ L(Z+�M) in
Theorem 4, thanks to Lemma 3.
L(ZMat+�M) ⊆ LUnAPA is the same as L(Z+�M) ⊆ LUnCA in Theorem 4

for the automaton part, and the same as Theorem 5 for the constraint set and
affine function parts. ��

Now, applying the same arguments as in [9, Lemma 5], we have that DetAPA
can simulate unambiguity, and thus LUnAPA = LDetAPA. This translates nicely
in the algebraic framework thanks to Theorem 1:

Theorem 7. The smallest variety containing ZMat+�M is equal to that
containing ZMat+.

4 Formal Power Series

In this section, we show that the languages of DetAPA are those expressible as a
Boolean combination of positive supports of Z-valued rational series. This helps
us derive a separation over the unary languages between LCA and LDetAPA —
the separation was known ([10, Proposition 28]), but not over unary languages.

Definition 4 (e.g., [7]). Functions from Σ∗ into Z are called (Z-)series. For
such a series r, it is customary to write (r, w) for r(w). We write supp+(r) for
the positive support of r, i.e., {w | (r, w) > 0}.
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A linear representation of dimension k ≥ 1 is a triple (s, h,g) such that
s ∈ Zk is a row vector, g ∈ Zk is a column vector, and h : Σ∗ → Zk×k is a
monoid morphism, where the operation of the matrix monoid is the usual matrix
multiplication. It defines the series r = ||(s, h,g)|| with (r, w) = sh(w)g.

A series is said to be rational if it is defined by a linear representation. We
write Zrat〈〈Σ∗〉〉 for the set of rational series.

For a class C of languages, write BC(C) for the Boolean closure of C. Arguments
similar to those used in proving Theorem 5 allow us to show:

Theorem 8. Over any alphabet Σ, LDetAPA = BC(supp+(Z
rat〈〈Σ∗〉〉)).

Proof. (LDetAPA ⊆ BC(supp+(Z
rat〈〈Σ∗〉〉))) First note that there is a rational

series r such that supp+(r) = {1}. Let L be in LDetAPA; we may thus suppose
that 1 /∈ L. By the same token as in the proof of Theorem 5, there is a morphism
h : Σ∗ → MZ(k), for some k, a vector v ∈ {0, 1}k, and a type Z of (Z,Z+)k

such that:
L = {w | h(w)v ∈ Z} .

Further, similar to Lemma 2, L(A,U,C1 � C2) = L(A,U,C1) � L(A,U,C2),
for � ∈ {∪,∩} and any DetAPA (A,U,C1 � C2). Moreover, L(A,U,C) =
L(A,U,C)∩L(A). We may thus suppose that Z is reduced to Zi−1×Z+×Zk−i

for some i.
Now let h′ be the morphism from Σ∗ to Zk×k (with the usual matrix multi-

plication as operation), where h′(a) = (h(a))T, with a ∈ Σ and MT the trans-

pose of M . Note that h(a1a2) = h(a2)h(a1) = ((h(a1))
T
(h(a2))

T
)
T
, which is

(h′(a1a2))
T
; more generally, h(w) = (h′(w))

T
. Thus we have that vTh′(w) =

(h(w)v)
T
. Hence with s = vT and g the column vector ei, sh

′(w)g > 0 iff
h(w)v ∈ Z.

Now the triple (s, h′,g) is a linear representation of a rational series which
associates w to sh′(w)g, and this concludes the proof.

(BC(supp+(Z
rat〈〈Σ∗〉〉)) ⊆ LDetAPA) As LDetAPA is closed under union, com-

plement, and intersection, we need only show that supp+(Z
rat〈〈Σ∗〉〉) ⊆ LDetAPA.

Let (s, h,g) be a linear representation of dimension k of a rational series r

over the alphabet Σ. Define h′ : Σ∗ → MZ(k) by letting h′(a) = (h(a))T, for

a ∈ Σ. Then for w ∈ Σ∗, h(w) = (h′(w))
T
. Now the rest of the proof is similar

to that of Theorem 5: define A = ({r, t}, Σ, δ, r, {r, t}), with δ = {r, t}×Σ×{t}.
Then let U : δ∗ → Fk for q ∈ {r, t}, a ∈ Σ, and x ∈ Zk, be defined by:

[U((q, a, t))](x) =

{
h′(a)s if q = r,

h′(a)x otherwise.

This implies that for w ∈ Σ∗ and π its unique accepting path in A, it holds that
[U(π)](0) = sh(w). Thus letting C = {x | xg > 0}, with x a row vector and g a
column vector, we have that L(A,U,C) = supp+(r). ��
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Remark 1. The class of positive supports of Z-rational series is the class of
Q-stochastic languages (see, e.g., [23]). As we are interested in showing that
LDetAPA is not closed under concatenation, it is worth noting that Q-stochastic
languages are not closed under concatenation. We mention three proofs of this
fact. Two proofs [15,23] show that Q-stochastic languages are not closed
under concatenation with a finite language; such a concatenation is expressible as
a finite union of Q-stochastic languages, and is thus not directly
applicable to our case. A third proof [25] shows that the Q-stochastic language
L = {ai#(a +#)∗#ai | i ∈ N} is such that L · {a,#}∗ is not Q-stochastic. We
conjecture that L · {a,#}∗ is neither in LDetAPA, but the proof given in [25]
does not apply directly to our case. Finally, we note that the fact that unary
Q-stochastic languages are not closed under union [23] implies, as any regular
language is Q-stochastic, that there are nonregular unary languages in LDetAPA.

Let #NC1 be the class of functions computed by DLOGTIME-uniform arith-
metic circuits of polynomial size and logarithmic depth and PNC1 be the class
of languages expressible as {w | f(w) > 0} for f ∈ #NC1 (see [12]). Note that
this class is included in L. As iterated matrix multiplication can be done in
#NC1 and PNC1 is closed under the Boolean operations, it is readily seen from
Theorem 8 that:

Corollary 2. LDetAPA ⊆ PNC1.

Conclusion

Connections between variants of the Parikh automaton and complexity classes
were investigated. In particular, natural characterizations of the language classes
defined by deterministic and unambiguous constrained automata, in the the-
ory of typed monoids, were obtained. We hope that these characterizations will
suggest refinements that may help to better understand classes such as PNC1

and NC1.
We note in conclusion that the unary languages in LDetAPA, and indeed the

bounded languages in LDetAPA, can be shown to belong to the DLOGTIME-
DCL-uniform variant of NC1. Recall that the latter is not known to equal
what is commonly referred to as DLOGTIME-uniform NC1 (see [26, p. 162]), or
ALOGTIME. Yet we were unable to show that the unary languages in LDetAPA

belong to the latter. Do they?
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Abstract. We extend the construction of GAG codes to the case of
evaluation codes. We estimate the minimum distance of these extended
evaluation codes and we describe the connection to the one-point GAG
codes.
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1 Introduction

In 1999, Xing, Niederreiter and Lam proposed [1,2] two constructions of linear
codes based on algebraic curves using points of arbitrary degree. These gener-
alize the construction of Algebraic Geometry (AG) codes introduced by Goppa
[3,4]. Özbudak and Stichtenoth [5] showed that there is essentially only one new
construction, namely that of Generalized Algebraic Geometric (GAG) codes,
and introduced the notion of designed minimum distance for GAG codes.

Until now several papers have studied GAG codes in an algebraic geometry
way, see e.g. [6], [7], [8], [9].

Høholdt, van Lint and Pellikaan [10] founded the theory of order domains and
of the order domain codes (or evaluation codes) to simplify the description of
one-point AG codes. The minimum distance of evaluation codes can be found
by applying bound that relies only on some relatively simple theory [10].

Affine-variety codes, introduced by Fitzgerald and Lax in [11], are particularly
interesting for their parameters and for a new efficient decoding system [12]. Geil,
in [13], presents the AG codes as an example of affine-variety codes and their
relation with evaluation codes.

In this paper we will extend the construction of affine-variety codes to
introduce the GAG codes as a particular example of these family of codes. We
extend, also, the construction of the evaluation codes and we analyze a partic-
ular case of the one-point GAG codes into the setting of these new codes. The
remainder of this paper contains the following sections.

- In Section 2 we recall definitions and theorems about the minimum distance
for affine-variety codes, order domain codes and generalized algebraic geo-
metric codes.
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- In Section 3 we introduce two constructions of linear codes, the extended
affine-variety codes and the extended order domain codes, and we estimate
a lower bound on the minimum distance for these families of codes.

- In section 4 we analyze the relation between an extended order domain code
and a GAG code constructed from a rational point and we compare the
relevant bounds on the minimum distance of the code.

2 Preliminaries

2.1 Affine-Variety Codes

Let I ⊆ Fq[X1, . . . , Xm] be an ideal, we define

Iq = I + 〈Xq
1 −X1, . . . , X

q
m −Xm〉

Rq = Fq[X1, . . . , Xm]/Iq

Let
V = {P1, . . . , Pn} = VFq(I) = VFq

(Iq)

be the variety of I over Fq. Here F means the algebraic closure of the field F.
Define the evaluation map ev : Rq → Fq

n, the Fq-linear map such that

ev(f + Iq) = (f(P1), . . . , f(Pn)). (1)

The evaluation map is a vector space isomorphism.

Definition 1. Let L be an Fq- vector subspace of Rq. We define the affine
variety code

C(I, L) = ev(L).

The notation of this subsection comes from [11], where also the code C(I, L)⊥

is called an affine-variety code. In this paper we will not consider this type of
codes.

2.2 Order Domain Conditions

Let J ⊆ F[X1, . . . , Xm] be an ideal and let ≺ be a fixed monomial ordering.
Denote byM(X1, . . . , Xm) the set of all monomials in the variables X1, . . . , Xm.
The footprint of J (or Hilbert staircase) with respect to ≺ is the set

Δ≺(J) = {p ∈ M(X1, . . . , Xm)

| p is not the leading monomial of any polynomial in J}.

Definition 2. Let I ⊆ F[X1, . . . , Xm] be an ideal. Let ≺w be a generalized
weighted degree ordering, w : M → Nr

0. Assume I possesses a Gröbner basis
G such that:
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(i) any g ∈ G has exactly two monomials of highest weight in its support.
(ii) no two monomials in Δ≺w(I) are of the same weight.

Then we say that (I,≺w) satisfies the order domain conditions.

Let L ⊆ Rq be a subspace. By using Gaussian elimination any basis of L can be
transformed into a basis of the following form.

Definition 3. Let ≺ be a fixed monomial ordering and k = dim(L). A basis
{b1 + Iq, . . . , bk + Iq} for L such that Supp(bi) ⊆ Δ≺(Iq) for i = 1, . . . , k and
lm(b1) ≺ · · · ≺ lm(bk) is said to be well-behaving with respect to ≺. Here Supp(f)
means the support of f , and lm(f) means the leading monomial of f .

The sequence (lm(b1), . . . , lm(bk)) is the same for all choices of well-behaving
basis of L. So we define the set

�≺(L) = {lm(b1), . . . , lm(bk)}.

Definition 4. Assume I and ≺w satisfy the order domain conditions. Let Γ =
w(Δ≺w (I)) ⊆ Nr

0 and Δ = Δ≺w(Iq). For any λ ∈ w(Δ) we define

σΔ(λ) = σ(λ) = |{η ∈ w(Δ) | η − λ ∈ Γ}|.

Theorem 1 (Th. 4.27 in [13]). Assume (I,≺w) satisfies the order domain
condition and let L subspace of Rq with {b1 + Iq, . . . , bdim(L) + Iq} well-behaving
basis. Then the minimum distance of C(I, L) is at least

min{σ(w(α)) |α ∈ �≺w(L)}.

Remark 1 (Remark 4.29 in [13]). Assume that the pair (I,≺w) satisfies the order
domain conditions. Let U ⊆ VFq(I). Every finite set of points is a variety and
therefore there exists polynomials h1, . . . , hr such that the vanishing ideal of U
equals

IU = I + 〈h1, . . . , hr〉.
The estimates of the minimum distances of C(I, L) can be adapted if these codes
are made by evaluating in U rather than in the entire variety, but we need to
replace Iq with IU .

2.3 Weight Functions and Order Domains

The concept of a weight function was introduced by Høholdt et al. in [10]
to simplify the treatment of one-point geometric AG codes and to propose a
generalization to objects of higher dimensions than curves.

Let (R, ρ, Γ ) be an order domain, where Γ ⊆ Nr is a semigroup and ρ : R →
Γ ∪ {−∞} is a weight function.

From [14][Th. 10.4] we know that every order domain with a finitely generated
semigroup, Γ , can be constructed as a factor ring, F[X1, . . . , Xm]/I. Therefore
it can be described in the language of Gröbner basis theory.
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Definition 5. Let R be an Fq-algebra. A surjective map φ : R → Fq
n is called

a morphism of Fq-algebras if φ is Fq-linear and if

φ(fg) = φ(f) ∗ φ(g)
for all f, g ∈ R. Here ∗ is the component-wise product.

Definition 6. Let (R, ρ, Γ ) be an order domain over Fq and {fλ | ρ(fλ) = λ, λ ∈
Γ} be a basis. Let φ : R → Fq

n be a morphism as in Definition 5. Define
α(1) = 0. For i = 2, . . . , n define recursively α(i) to be the smallest element in
Γ that is greater than α(1), . . . , α(i− 1) and satisfies

φ(fα(i)) /∈ SpanFq{φ(fλ) |λ ≺Nr α(i)}.
Write Δ(R, ρ, φ) = {α(1), . . . , α(n)}.
Definition 7. Let R be an order domain over Fq and let φ be a morphism . Fix
a basis {fλ | ρ(fλ) = λ, λ ∈ Γ} and let Δ = Δ(R, ρ, φ). For λ ∈ Γ and δ ∈ N
consider the codes

E(λ) = SpanFq{φ(fη) | η �Nr λ}
Ẽ(δ) = SpanFq{φ(fη) | η ∈ Δ and σΔ(η) ≥ δ}.

Theorem 2 (Th. 2 in [15]). The minimum distance of E(λ) is at least

min{σΔ(η) | η �Nr λ}
and the minimum distance of Ẽ(δ) is at least δ.

2.4 GAG Codes

Let X be a projective, geometrically irreducible, non-singular algebraic curve
defined over the finite field Fq. Let g be the genus of X . Let Φ be the Frobenius
map on X , namely the map sending a point P with homogeneous coordinates
(a0, . . . , ar) to the point Φ(P ) with coordinates (aq0, . . . , a

q
r).

Let P be a point of X . Then deg(P ) denotes the degree of P , namely the least
positive integer n such that P is Fqn -rational, and the closed point of P is the
set OΦ(P ) = {P,Φ(P ), . . . , Φn−1(P )}.

Let X be a curve, let P1, . . . , Ps be points of X such that for every i �= j the
closed points OΦ(Pi) and OΦ(Pj) are disjoint. Let G be an Fq-rational divisor
that has support disjoint from any closed point OΦ(Pi). Let ki := deg(Pi). For
i = 1, . . . , s let πi : Fqki → Ci be an Fq-linear isomorphism from the finite field
Fqki onto a linear [ni, ki, di] code Ci ⊆ Fq

ni .

Definition 8. Let n =
∑s

i=1 ni, and consider the Fq-linear map

π :

{
L(G)→ Fq

n

f �→ (π1(f(P1), . . . , πs(f(Ps)))

The image of π is a Generalized Algebraic Geometric code

C(P1, . . . , Ps;G;C1, . . . , Cs) = π(L(G)).
Here L(G) denotes the Riemann-Roch space of G over Fq.
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The designed minimum distance d̄ of C(P1, . . . , Ps;G;C1, . . . , Cs) is defined as
follows (see [5]): let

X =

{
S ⊆ {1, . . . , s} |

∑
i∈S

ki ≤ deg(G)

}
.

Then

d̄ := min

{∑
i/∈S

di | S ∈ X
}

Proposition 1 (Prop. 4.1 in [5]). If
∑s

i=1 ki > deg(G), then

C(P1, . . . , Ps;G;C1, . . . , Cs)

is an [n, k, d] code with parameters

k = dim(L(G)) ≥ deg(G) + 1− g and d ≥ d̄.

Throughout this paper, the codes Ci will be called the inner codes of the GAG
code.

Remark 2. If we construct the GAG code using P1, . . . , Ps points of which h
are Fq-rational, a divisor G with deg(G) ≤ h and inner codes having mini-
mum distance all equals to 1, then the designed minimum distance is equal to
s− deg(G).

3 New Construction of Codes

For any v ∈ Fq
n, let wH(v) = |{i | vi �= 0}|.

3.1 Extended Affine-Variety Codes

Let (I,≺w) satisfying the order domain condition and let P = {P1, . . . , Ph} ⊆
V
Fq
(I), with deg(Pi) = ri for i = 1, . . . , h. As in Remark 1 there is an ideal

J ⊆ Fq[X1, . . . , Xm] such that P = V
Fq
(I + J). Let I + J = IP .

Let L ⊆ Rq be a space over Fq with well-behaving basis B = {b1+IP , . . . , bk+
IP}, and for i = 1, . . . , h let πi : Fqri → Ci be an Fq-linear isomorphism from
the finite field Fqri onto the inner code Ci over Fq with parameters [ni, ri, di].

Definition 9. Let n =
∑h

i=1 ni, P = {P1, . . . , Ph} and C = {C1, . . . , Ch}.
Consider the Fq-linear map,

ev :

{
L→ Fq

n

f �→ (π1(f(P1), . . . , πh(f(Ph)))

Then the extended affine-variety code is

ev(L) = C(I, L,P , C).
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Theorem 3. Let Δ = Δ≺w(IP ), then C(I, L,P , C) has minimum distance at
least

δd̂,

where δ = min{σ(w(α) |α ∈ �(L)} and d̂ = min{d1, . . . , dh}.

Proof. Let r = m.c.m.{r1, . . . , rh} and B be a well-behaving basis for L.
Consider

L′ = SpanFqr
B

and let ev(L′) ⊆ (Fqr )
h (where ev is as in (1)) be the affine variety code over

Fqr restricted at the points P1, . . . , Ph. From Theorem 1, the minimum distance
of this code is at least δ.

Note that L ⊆ L′, then for every non zero c ∈ ev(L) we have wH(c) ≥ δ.
Let c̄ ∈ C(I, L,P , C) \ {0}, then c̄ = (π1(f(P1), . . . , πh(f(Ph))) for some f . So

let S = {i | f(Pi) �= 0}, we have

wH(c) =

r∑
i=1

wH(πi(f(Pi))) =
∑
i∈S

di ≥ δd̂.

Remark 3. We also can estimate the minimum distance of the extended code
C(I, L,P , C) if the order domain conditions are not satisfy. We can look at the
number of one-way well-behaving pairs (see Def. 4.8 in [13]) as in Th. 4.9 in [13].
So we are able to obtain a bound similar to Theorem 3.

3.2 Extended Order Domain Codes

Let (R, ρ, Γ ) be an order domain over Fq and B be a well-behaving basis for R.
Consider R′ = SpanFqr

B, then (R′, ρ, Γ ) is an order domain over Fqr . Note that
R ⊆ R′.

Now let φ : R′ → Fh
qr be a morphism φ = (φ1, . . . , φh). For i = 1, . . . , h define

ri = min{l |φi(R) ⊆ Fql}.
Let Δ = Δ(R′, ρ, Γ ) be as in Definition 6. For i = 1, . . . , h let πi : Fqri → Ci

be an Fq-linear isomorphism from the finite field Fqri onto the inner code Ci

over Fq with parameters [ni, ri, di].

Definition 10. Let C = {C1, . . . , Ch} and R = {r1, . . . , rh}. For λ ∈ Γ and
δ ∈ N consider the codes

E(λ,R, C) = SpanFq{(π1(φ1(fη)), . . . , πh(φh(fη))) | η �Nr λ}

Ê(δ,R, C) = SpanFq{(π1(φ1(fη)), . . . , πh(φh(fη))) | η ∈ Δ and σΔ(η) ≥ δ}.

Theorem 4. The minimum distance of E(λ,R, C) is at least

γd̂,

where γ = min{σΔ(η) | η �Nr λ} and d̂ = min{d1, . . . , dh}.
The minimum distance of Ê(δ,R, C) is at least δd̂.

Proof. Obvious adaption of the proof at Theorem 3.
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4 One-Point GAG Codes as Extended Order Domain
Codes

Now we consider the GAG codes constructed from a rational point of the curve,
using as inner code Ci = Fri

q for i = 1, . . . , h. We refer to these as one-point
GAG codes.

Let P be a rational point of a curve X defined over a field Fq. Let νP be the
valuation corresponding to P . Consider the algebraic structure

R =

∞⋃
m=0

L(mP ). (2)

Defining ρ = −νP we have ρ(R) = Γ ∪ {−∞} where Γ ⊆ N is known as the
Weierstrass semigroup corresponding to P . By inspection (R, ρ, Γ ) is an order
domain over Fq.

Let P1, . . . , Ph be distinct points, with distinct closed points, and of degree
r1, . . . , rh, respectively. Let B be a well-behaving basis for R. Define R′ =
SpanFqr

B and let φ : R′ → Fh
qr be a morphism with φ(f) = (f(P1), . . . , f(Ph)).

Then we have

C(P1, . . . , Ph, λP, C1, . . . , Ch) = C(I, L,P , C) = E(λ,R, C),

where L = {f | ρ(f) ≤ λ}, P = {P1, . . . , Ph}, R = {r1, . . . , rh} and C =
{C1, . . . , Ch}.

Lemma 1 (Lemma 2 in [15]). Let Γ = {λ1, λ2, . . . } with λ1 < λ2 < . . . be a
numerical semigroup with finitely many gaps. For any λi we have

#(Γ \ (λi + Γ )) = λi.

Theorem 5. The minimum distance of E(λ,R, C) is at least

min{σΔ(η) | η ≤ λ} ≥ h− λ

where Δ = Δ(R′, ρ, φ).

Proof. The distances of the inner codes are all equal to 1. Consider λi ∈ Δ, with
λi ≤ λ. We have σ(λi) = #(Δ ∩ (λi + Γ )), the elements in Δ that are not in
λi + Γ are at most λi. Then σ(λi) ≥ h− λi ≥ h− λ.

Remark 4. With order domain code it is possible, sometimes, to have a bound
on the minimum distance of a one-point Algebraic Geometry code better than
the Goppa bound [15]. So also for GAG codes, if we are in the case as in the
Remark 2, using the order domains is possible to obtain a bound always at least
as good as (and sometimes better than) the bound in the Proposition 1.
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Example 1. Let F4 = {0, 1, α, α2}, where α is a primitive element. Consider
the plane curve of affine equation X : X6 + Y 5 + Y . Let ≺ be the weighted
degree lexicographic ordering given by w(X) = 5, w(Y ) = 6. Let I = 〈X6 +
Y 5 + Y 〉, then (I,≺) satisfies the order domain conditions and w(Δ(I)) is the
semigroup 〈5, 6〉.

We have 8 F4-rational points

V(I4) = {(0, 0), (0, 1), (1, α), (1, α2), (α, α), (α, α2), (α2, α), (α2, α2)}

and G = {Y 2 +X3 + Y,XY 2 +XY +X,Y 4 + Y } is a Gröbner basis for I4. The
monomials in the footprint of I4 are

Δ(I4) = {1, X, Y,X2, XY, Y 2, X2Y, Y 3}

and its corresponding weights are

w(Δ(I4)) = {0, 5, 6, 10, 11, 12, 16, 18}.

Now we consider a point of the variety V
F4
(I) of degree 3 (there are not points

of degree 2). Let F64 = F4[Z]/〈Z3 + Z + 1〉 and let β3 = β + 1. The point that
we consider is (1, β3). Using Buchberger-Möller’s algorithm we can compute
the Gröbner basis of the vanishing ideal of the nine points, so we adjoint the
monomial X3 at the footprint and the weight 15 to w(Δ(I4)).

Consider now L = SpanFq{1, X, Y }, then the minimum distance of the code
C(I, L,P , C), where the inner codes used are C1 = · · · = C8 = F4 and C9 = F3

4,
is at least min{σ(0), σ(5), σ(6)} = 5. This value improves on what obtainable
from the GAG construction, as follows.

Looking at this code as a one-point GAG code we can note that the semigroup
w(Δ(I)) is the Weiestrass semigroup of the unique rational point at infinity, P∞,
of the curve and L = L(6P∞). Therefore the bound on minimum distance of the
GAG code as in Proposition 1 is equal to 3.

In [16] was shown that an order domain with numerical weight function (i.e.
the weights are in N0) is a sub algebra of a structure as in (2). If the semigroup
related to the order domain are not numerical then they are related to structures
of transcendence degree greater than one, that is, these structures are curves no
longer ([14] Sec. 11). Examples of evaluation codes coming from higher dimen-
sional objects than curves are given in [17] and these codes can be viewed as
generalizations of one-point AG codes. Then our extension can be consider a
generalization of the one-point GAG codes.
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Abstract. We present a general theory to obtain good linear network
codes utilizing the osculating nature of algebraic varieties. In particular,
we obtain from the osculating spaces of Veronese varieties explicit fami-
lies of equidimensional vector spaces, in which any pair of distinct vector
spaces intersect in the same dimension.

Linear network coding transmits information in terms of a basis of
a vector space and the information is received as a basis of a possible
altered vector space. Ralf Koetter and Frank R. Kschischang [KK08]
introduced a metric on the set of vector spaces and showed that a min-
imal distance decoder for this metric achieves correct decoding if the
dimension of the intersection of the transmitted and received vector space
is sufficiently large.

The proposed osculating spaces of Veronese varieties are equidistant
in the above metric. The parameters of the resulting linear network codes
are determined.

Notation

– F is the finite field with q elements of characteristic p.

– F = Fq is an algebraic closure of F.
– Rd = F[X0, . . . , Xn]d and Rd(F) = F[X0, . . . , Xn]d the homogenous

polynomials of degree d with coefficients in F and F.
– R = F[X0, . . . , Xn] = ⊕dRd and R(F) = F[X0, . . . , Xn] = ⊕dRd(F)
– AffCone(Y ) ⊆ FM+1 denotes the affine cone of the subvariety Y ⊆ PM and

AffCone(Y )(F) its F-rational points.
– Ok,X,P ⊆ PM is the embedded k-osculating space of a variety X ⊆ PM at

the point P ∈ X and Ok,X,P (F) its F-rational points, see 2.

– V = σd(Pn) ⊆ PM with M =
(
d+n
n

)
− 1 is the Veronese variety, see 1.1.

For generalities on algebraic geometry we refer to [Har77].
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1 Introduction

Algebraic varieties have in general an osculating structure. By Terracini’s lemma
[Ter11], their embedded tangent spaces tend to be in general position. Specif-
ically, the tangent space at a generic point P ∈ Q1Q2 on the secant variety
of points on some secant is spanned by the tangent spaces at Q1 and Q2. In
general, the secant variety of points on some secant have the expected maximal
dimension and therefore the tangent spaces generically span a space of maximal
dimension, see [Zak93].

This paper suggests k-osculating spaces including tangent spaces of algebraic
varieties as a source for constructing linear subspaces in general position of
interest for linear network coding. The k-osculating spaces are presented in 1.1.

In particular, we will present the k-osculating subspaces of Veronese
varieties and apply them to obtain linear network codes generalizing the results
in [Han12]. The Veronese varieties are presented in 2.

Definition 1. Let X ⊆ PM be a smooth projective variety of dimension n
defined over the finite field F with q elements. For each positive integer k we
define the k-osculating linear network code Ck,X . The elements of the code are
the linear subspaces in FM+1 which are the affine cones of the k-osculating
subspaces Ok,X,P (F) at F-rational points P on X, as defined in 1.1.

Specifically

Ck,X = {AffCone(Ok,X,P )(F) | P ∈ X(F)} .

The number of elements in Ck,X is by construction |X(F)|, the number of
F-rational points on X.

One should remark that the elements in Ck,X are not necessarily equidimensional

as linear vector spaces, however, their dimension is at most
(
k+n
n

)
.

Applying the construction to the Veronese variety Xn,d presented in 2, we
obtain a linear network code Ck,Xn,d

and the following result, which is proved in
section 2.1.

Theorem 1. Let n, d be positive integers and consider the Veronese variety
Xn,d ⊆ PM , with M =

(
d+n
n

)
− 1, defined over the finite field F as in 2.

Let Ck,Xn,d
be the associated k-osculating linear network code, as defined in

Definition 1.
The packet length of the linear network code is

(
d+n
n

)
, the dimension of the

ambient vector space. The number of vector spaces in the linear network code
Ck,Xn,d

is |Pn(F)| = 1+ q+ q2 + · · ·+ qn, the number of F-rational points on Pn.
The vector spaces V ∈ Ck,Xn,d

in the linear network code are equidimen-

sional of dimension
(
k+n
n

)
as linear subspaces of the ambient

(
d+n
n

)
-dimensional

F-vector space.
The elements in the code are equidistant in the metric dist(V1, V2) of (5) of

Section 3. Specifically, we have the following results.
For vector spaces V1, V2 ∈ Ck,Xn,d

with V1 �= V2
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i) if 2k ≥ d, then dimF(V1 ∩ V2) =
(
2k−d+n

n

)
and

dist(V1, V2) = 2

((
k + n

n

)
−

(
2k − d+ n

n

))
.

ii) if 2k ≤ d, then dimF(V1 ∩ V2) = 0 and

dist(V1, V2) = 2

(
k + n

n

)
.

1.1 Osculating Spaces

Principal Parts. Let X be a smooth variety of dimension n defined over the
field K and let F be a locally free OX -module. The sheaves of k-principal parts
Pk
X(F) are locally free and if L is of rank 1, then Pk

X(L) is a locally free sheaf

of rank
(
k+n
n

)
.

There are the fundamental exact sequences

0→ SkΩX ⊗OX F → Pk
X(F)→ Pk−1

X (F)→ 0 ,

where ΩX is the sheaf of differentials on X and SkΩX its kth symmetric power.
These sequences can be used to give a local description of the sheaf princi-
pal parts. Specifically, if L is of rank 1, then Pk

X(L) is a locally free sheaf of

rank
(
k+n
n

)
. Assume furthermore that X is affine with coordinate ring A =

K[x1, . . . , xn], then X and L can be identified with A. Also SkΩX can be
identified with the forms of degree k in A[dx1, . . . , dxn] in the indeterminates
dx1, . . . dxn and Pk

X(L) with the polynomials of total degree ≤ k in the indeter-
minates dx1, . . . dxn. For arbitrary X , the local picture is similar, taking local
coordinates x1, . . . , xn at the point in question replacing A by the completion of
the local ring at that point.

In general, for each k there is a canonical morphism

dk : F → Pk
X(F) .

For L of rank 1, using local coordinates as above, dk maps an element in A to
its truncated Taylor series

f = f(x1, . . . , xn) �→
∑
|α|≤k

1

|α|!
∂|α|f

∂xα
,

where α = i1i2 . . . in and |α| = i1 + i2 + · · ·+ in.

Osculating Spaces. Let X be a smooth variety of dimension n and let f :
X → PM be an immersion. For L = f∗OPn(1) let Pk

X(L) denote the sheaf of

principal parts of order k. Then Pk
X(L) is a locally free sheaf of rank

(
k+n
n

)
and

there are homomorphisms

ak : OM+1
X → Pk

X(L) .
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For P ∈ X the morphism ak(P ) defines the k-osculating space Ok,X,P to X at
P as

Ok,X,P := P(Im(ak(P ))) ⊆ PM (1)

of projective dimension at most
(
k+n
n

)
− 1, see [Pie77], [BPT92] and [PT90]. For

k = 1 the osculating space is the tangent space to X at P .

2 The Veronese Variety

Let R1 = F[X0, . . . , Xn]1 be the n+ 1 dimensional vector space of linear forms
in X0, . . . , Xn and let Pn = P(R1) be the associated projective n-space over F.

For each integer d ≥ 1, consider Rd the vector space of forms of degree d. A
basis consists of the

(
n+d
d

)
monomialsXd0

0 X
d1
1 . . . Xdn

n with d0+d1+· · ·+dn = d.

Let PM = P(Rd) be the associated projective space of dimensionM =
(
n+d
d

)
−1.

The d-uple morphism of Pn = P(R1) to PM = P(Rd) is the morphism

σd : Pn = P(R1)→ PM = P(Rd)

L �→ Ld

with image the Veronese variety

Xn,d = σd(Pn) = {Ld| L ∈ P(R1)} ⊆ PM . (2)

2.1 Osculating Subspaces of the Veronese Variety

For the Veronese variety Xn,d of (2), the k-osculating subspaces of (1) with
1 ≤ k < d, at the point P ∈ Xn,d corresponding to the 1-form L ∈ R1, can be
described explicitly as

Ok,Xn,d,P = P({Ld−kF | F ∈ Rk}) = P(Rk) ⊆ PM (3)

of projective dimension exactly
(
k+n
n

)
− 1, see [Seg46], [CGG02], [BCGI07] and

[BF03]. The osculating spaces constitute a flag of linear subspaces

O1,Xn,d,P ⊆ O2,Xn,d,P ⊆ · · · ⊆ Od−1,Xn,d,P .

This explicit description of the k-osculating spaces allows us to establish the
claims in Theorem 1.

The associated affine cone of the k-osculating space in (3) is

AffCone(Ok,Xn,d,P )(F) = {Ld−kF | F ∈ Rk} (4)

of dimension
(
k+n
n

)
, proving the claim on the dimension of the vector spaces in

the linear network code Ck,Xn,d
.

As there is one element in Ck,Xn,d
for each F-rational point on Pn, it follows

that the number of elements in Ck,Xn,d
is
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|Ck,Xn,d
| = |Pn(F)| = 1 + q + q2 + · · ·+ qn .

Finally, let V1, V2 ∈ Ck,Xn,d
with V1 �= V2 and

Vi = {Ld−k
i Fi| Fi ∈ Rk}

If 2k ≥ d, we have

V1 ∩ V2 ={Ld−k
1 F1| F1 ∈ Rk} ∩ {Ld−k

2 F2| F2 ∈ Rk}
={Ld−k

1 Ld−k
2 G| G ∈ R2k−d} .

Otherwise the intersection is trivial, proving the claims on the dimension of the
intersections and the derived distances.

3 Linear Network Coding

In linear network, coding transmission is obtained by transmitting a number of
packets into the network and each packet is regarded as a vector of length N
over a finite field F. The packets travel the network through intermediate nodes,
each forwarding F-linear combinations of the packets it has available. Eventually
the receiver tries to infer the originally transmitted packages from the packets
that are received, see [CWJJ03] and [HMK+06].

All packets are vectors in FN ; however, Ralf Koetter and Frank R. Kschischang
[KK08] describe a transmission model in terms of linear subspaces of FN spanned
by the packets and they define a fixed dimension code as a nonempty subset
C ⊆ G(n,N)(F) of the Grassmannian of n-dimensional F-linear subspaces of
FN . They endowed the Grassmannian G(n,N)(F) with the metric

dist(V1, V2) := dimF(V1 + V2)− dimF(V1 ∩ V2), (5)

where V1, V2 ∈ G(n,N)(F).
The size of the code C ⊆ G(n,N)(F) is denoted by |C|, the minimal distance by

D(C) := min
V1,V2∈C,V1 =V2

dist(V1, V2) (6)

and C is said to be of type [N,n, logq |C|, D(C)]. Its normalized weight is λ = n
N ,

its rate is R =
logq(|C|)

Nn and its normalized minimal distance is δ = D(C)
2n .

They showed that a minimal distance decoder for this metric achieves
correct decoding if the dimension of the intersection of the transmitted and
received vector-space is sufficiently large. Also they obtained Hamming,
Gilbert-Varshamov and Singleton coding bounds.

E. Ballico [Bal13] has recently proved that every network code can be realized
by the above method.
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Abstract. In this work, it is proved that a set of numbers closed under
addition and whose representations in a rational base numeration system
is a rational language is not a finitely generated additive monoid.

A key to the proof is the definition of a strong combinatorial property
on languages : the bounded left iteration property. It is both an unnatural
property in usual formal language theory (as it contradicts any kind
of pumping lemma) and an ideal fit to the languages defined through
rational base number systems.

1 Introduction

The numeration systems in which the base is a rational number have been
introduced and studied in [1]. It appeared there that the language of repre-
sentations of all integers in such a system is “complicated”, by reference to
the classical Chomsky hierarchy and its usual iteration properties. This work
is a contribution to a better understanding of the structure of this language. It
consists in a result whose statement first requires some basic facts about number
systems.

Given an integer p as a base, the set of non-negative integers N is represented
by the set of words on the alphabet Ap = {0, 1, . . . , (p − 1)} which do not
begin with a 0. This set Lp = (Ap \ 0)A∗

p is rational, that is, accepted by a finite
automaton. This representation of integers has another property related to finite
automata: the addition is realised by a finite 3-tape automaton.

This addition algorithm can be broken down into two steps: first a digit-wise
addition which outputs a word on the double alphabet A2p−1 whose value in
base p is the sum of the two input words; second a transformation of a word of
(A2p−1)

∗
into a word of A∗

p without modifying its value. This second step can
be done by a finite transducer called the converter (see Section 2.2.2 of [3]).

Many non-standard numeration systems that have been studied so far have the
property that the set of representations of the integers is a rational language.
It is even the property that is retained in the study of the abstract numera-
tion systems, even if it is not the case that addition can be realised by a finite
automaton (cf. [6]).
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In the rational base numeration systems, as defined and studied in [1], the
situation is reverse: the set of integers is not represented by a rational language
(not even a context-free one), but nevertheless the addition is realised by a finite
automaton. More precisely, let p and q be two coprime integers, with p > q.
In the p

q -numeration system, the digit alphabet is again Ap, and the value of

a word u = an · · · a2a1 in A∗
p is π(u) = 1

q

∑n
i=0 ai(

p
q )

i. In this system, every

integer has a unique finite representation, but the set L p
q
of the p

q -representations

of the integers is not a rational language. The set V p
q
of all numbers that can

be represented in this system, V p
q
= π(A∗

p), is closed under addition but is not

finitely generated (as an additive monoid).
In this work, we establish the contradiction between being a finitely generated

additive monoid and having a rational set of representations in a rational base
number system.

Theorem 1. The set of the p
q -representations of any finitely generated additive

submonoid of V p
q
is not a rational language.

The proof of this statement relies on three ingredients. The first one is the
description of a weak iteration property whose negation is satisfied by the lan-
guage L p

q
. The second one is the construction of a sequential letter-to-letter right

transducer that realises, on the p
q -representations, the addition of a fixed value

to the elements of V p
q
. Finally, the third one is a characterisation of a finitely

generated additive submonoid of V p
q
as a finite union of translates of the set of

the integers.
The paper is organised as follows: after the preliminaries, where we essentially

recall the definition of transducers, we present with more details in Section 3 the
numeration system in base p

q . In Section 4, we describe the Bounded Left Itera-

tion Property (BLIP) and in Section 5, we build a transducer called incrementer.
In the last section, we give the proof of a much stronger statement than Theorem
1, expressed with the BLIP property.

2 Preliminaries

We essentially follow notations and definitions of [8] for automata and trans-
ducers. An alphabet is a finite set of letters, the free monoid generated by A,
and denoted by A∗, is the set of finite words over A. The concatenation of two
words u and v of A∗ is denoted by uv, or by u.v when the dot adds hopefully
to readability. A language (over A) is any subset of A∗.

A language is said to be rational (resp. context-free) if it is accepted by a
finite automaton (resp. a pushdown automaton). The precise definitions of these
classes of automata are however irrelevant to the present work, and can be found
in [5]. Similarly, we are only considering (and thus defining) a very restricted class
of transducers, namely the sequential letter-to-letter transducer.

Given two alphabets A and B, a sequential letter-to-letter (left) transducer T
from A∗ to B∗ is a directed graph whose edges are labelled in A × B. More
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precisely, T is defined by a 6-tuple T = 〈Q,A,B, δ, η, i, ω〉 where Q is the set of
states ; A is the input alphabet ; B is the output alphabet ; δ : Q × A → Q is the
transition function; η : Q × A → B is the output function; i is the initial state
and ω : Q→ B∗ is the final function.

Moreover, we call final any state in the definition domain of ω. As usual,
the function δ (resp. η) is extended to Q × A∗ → Q (resp. Q × A∗ → B∗)
by δ(p, ε) = p (resp. η(p, ε) = ε) and δ(p, a.u) = δ(δ(p, a), u) (resp. η(p, a.u) =
η(p, a).η(δ(p, a), u)).

Given T , we write p
u | v−−→
T

q if, and only if, δ(p, u) = q and η(p, u) = v. By

analogy, we denote by p
w−−→
T

the fact that p is a final state and that ω(p) = w.

The image by T of a word u, denoted by T (u), is the word v.w , if i
u | v−−→
T

p
w−−→
T

.

Finally, a transducer is said to be a right transducer, if it reads the words from
right to left; and to be complete if both the transition function and the output
function are total functions.

In the following, every considered transducer will be complete, letter-to-letter,
right and sequential.

3 Rational Base Number System

We recall here the definitions, notations and constructions of [1]. Let p and q
be two coprime integers such that p > q > 1. Given a positive integer N , let us
define N0 = N and for all i > 0:

qNi = pNi+1 + ai (1)

where ai is the remainder of the Euclidean division of qNi by p, hence in Ap.
Since p > q, the sequence (Ni)i is strictly decreasing and eventually stops at
Nk+1 = 0. Moreover the equation

N =
k∑

i=0

ai
q

(
p

q

)i

(2)

holds. The evaluation function π is derived from this formula. The value of a
word u = anan−1 · · ·a0 over Ap is defined as

π(anan−1 · · · a0) =
n∑

i=0

ai
q

(
p

q

)i

(3)

Conversely, a word u is called a p
q -representation of a number x

if π(u) = x. Since the representation is unique up to leading 0’s (see [1, The-
orem 1]), u is denoted by 〈x〉 p

q
(or 〈x〉 for short), and in the case of integers,

can be computed with the modified Euclidean division algorithm above. By
convention, the representation of 0 is the empty word ε.
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It should be noted that a rational base number systems is not a β-numeration
(cf. [7, Chapter 7]) in the special case where β is rational. In the latter, the digit
set is {0, 1, . . . , !pq "} and the weight of the i-th leftmost digit is (pq )

i; whereas in

rational base number systems, they respectively are {0, 1, . . . , (p−1)} and 1
q (

p
q )

i.

Definition 1. The representations of integers in the p
q -system form a language

over Ap, which is denoted by L p
q
.

It is immediate that L p
q
is prefix-closed (since, in the modified Euclidean divi-

sion algorithm 〈N〉 = 〈N1〉.a0) and prolongable (there exists an a such that q
divides (np+ a) and then 〈np+a

q 〉 = 〈n〉.a).
As a consequence, L p

q
can be represented as a tree whose branches are all

infinite (cf. Figure 1).

Fig. 1. The tree representation of the language L 3
2

On the other hand, the suffix language of L p
q
is all A∗

p, and, moreover, every

suffix appears periodically as established by the following:

Proposition 1 ([1, Proposition 10]). For every word u over Ap of length k,
there exists an integer n < pk such that u is a suffix of 〈m〉 if, and only if, m is
congruent to n modulo pk.

In short, the congruence modulo pk of n determines the suffix of length k of 〈n〉.
In contrast, the congruence modulo qk of n determines the words of length k
appendable to 〈n〉 in order to stay in L p

q
, as is stated in the next lemma.



On Sets of Numbers Rationally Represented 93

Lemma 1 ([1, Lemma 6]). Given two integers n,m and a word u over Ap:

(i) if both 〈n〉.u and 〈m〉.u are in L p
q
, then n ≡ m [q|u|]

(ii) if n ≡ m [q|u|], 〈n〉.u is in L p
q
implies 〈m〉.u is in L p

q
.

Proof. (i). The word 〈n〉.u is in L p
q
if, and only, if (n(pq )

|u| + π(u)) is an integer,

and similarly for m. It follows that (n−m)(pq )
|u| is equal to some integer z, and

then (p|u|)(n−m) = zq|u|, hence n ≡ m [q|u|].
(ii). Analogous to (i).

A direct consequence of this lemma is that given any two distinct words u and v
of L p

q
, there exists a word w such that uw is in L p

q
but vw is not. Hence, the

set {u−1L p
q
| u ∈ A∗

p} of left quotients of L p
q
is infinite, or equivalently:

Corollary 1. The language L p
q
is not rational.

Definition 2 (The value set). We denote by V p
q

the set of numbers

representable in base p
q , namely:

V p
q
= {x | ∃u ∈ A∗

p, π(u) = x} (4)

or equivalently V p
q
= π(A∗

p)

The most notable property of V p
q
is that it is closed under addition, or more

precisely that the addition is realised by a transducer, described in 5 (a full
proof can be found in [1, Section 3.3]).

Secondly, from the definition of π, one derives easily that V p
q
⊆ Q. More

precisely V p
q
contains only numbers of the form x

y where y divides a power of q,

and conversely, for all k, V p
q
contains almost every number x

qk
.

Lemma 2. For every integer k, there exits an integer mk such that, for every
integer n greater than mk,

n
qk belongs to V p

q
.

Proof. If k = 0, then one can take m = 0 since N is contained in V p
q
.

For k ≥ 1, the words 1 and 1.0(k−1) have for respective value 1
q and pk−1

qk
.

For every integer i and j, the number ( i×p(k−1)+j×q(k−1)

qk ) is in V p
q
, since V p

q
is

closed under addition, and this can be rewritten as (p(k−1)N+ q(k−1)N) 1
qk ⊆ V p

q
.

Since p(k−1) and q(k−1) are coprime, (p(k−1)N+ q(k−1)N) ultimately covers N.

Experimentally, the bound mk is increasing with k but the expression resulting
from this Lemma is far from being tight. As a consequence, it proves to be
difficult to define V p

q
without using the p

q -rational base number system.
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4 BLIP Languages

In the previous section, an insight is given about why L p
q
is not rational. It

is additionally proven in [1] that L p
q
is not context-free either. However, being

context sensitive doesn’t seem to accurately describe L p
q
. This section depicts

a very strong language property, taylored to capture the structural complexity
of L p

q
.

Let us first define a (very) weak iteration property for languages:

Definition 3. A language L of A∗ is said to be left-iterable if there exist two
words u and v in A∗ such that u vi is a prefix of words in L for an infinite
number of exponents i.

Of course, every rational or context-free language is left-iterable. The definition
is indeed designed above all for stating its negation.

Definition 4. A language L which is not left-iterable is said to have the
Bounded Left-Iteration Property, or, for short, to be BLIP.

Example 1. A very simple way of building BLIP languages is to consider
infinitely many prefixes of an infinite and aperiodic word. For instance the lan-
guage {ui}, where u0 = ε and ui+1 = ui.1.0

i; or the language of the finite powers
of the Fibonacci morphism {σi(0)} where σ(0) = 01 and σ(1) = 0.

In order to build a less trivial example let us define the following family of
functions fi:

fi : n �→ n if n �= i
n �→ 0 if n = i.

The language {ui,j}, where ui,0 = 1 and ui,j+1 = ui,j .1.0
fi(j), is BLIP as can be

easily checked.

Since Definition 4 was taylored for the study of L p
q
, the following holds, as

essentially established in [1, Lemma 8].

Proposition 2. The language L p
q
is BLIP.

Proof. If L p
q
were left iterable, there would exist two nonempty words u and v

such that u vi is prefix of a word of L p
q
for infinitely many i. Since L p

q
is prefix-

closed, the word u vi would be itself in L p
q
, for all i. From Lemma 1, it follows that

the integers π(u) and π(uv) are congruent modulo qk, for all k, a contradiction.

Being BLIP is a very stable property for languages, as expressed by the following
properties.

Lemma 3. (i) Every finite language is BLIP.
(ii) Any finite union of BLIP languages is BLIP.
(iii) Any intersection of BLIP languages is BLIP.
(iv) Any sublanguage of a BLIP language is BLIP.
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Of course, BLIP languages are not closed under complementation, star or
transposition.

The bounded left iteration property can be expressed with the more classical
notion of IRS language (for Infinite Regular Subset) that has been introduced
by Sheila Greibach in her study of the family of context-free languages ([4],
cf. also [2]). A language is IRS if it does not contain any infinite rational sub-
language. For instance, the language {an | n is a prime number} is IRS (but not
BLIP).

It is immediate that a BLIP language is IRS; even that a BLIP language
contains no infinite context-free sublanguage. However the converse is not true
as seen with the above example. More precisely, the following statement holds:

Proposition 3. A language L is BLIP if, and only if, Pref(L) is IRS.

Proof.

Pref(L) is not IRS⇐⇒ Pref(L) contains a sublanguage of the form u v∗w

⇐⇒ uv∗ is a sublanguage of Pref(L)

⇐⇒ for infinitely many i, u vi is prefix of a word of L

⇐⇒ L is not BLIP

Proposition 3 shows that BLIP and IRS are equivalent properties on prefix-
closed languages, which means that IRS is indeed a very strong property for
prefix-closed languages.

Even though the purpose of this work is to prove Theorem 1, we actually
prove a stronger version of it:

Theorem 2. The set of the p
q -representations of any finitely generated additive

submonoid of V p
q
is a BLIP language.

This is not a minor improvement, as it shows that every language representing
a finitely generated monoid is basically as complex as L p

q
.

5 The Incrementer

The purpose of this section is to build a letter-to-letter sequential right
transducer Ap → Ap realising a constant addition: given as parameter a word w
of A∗

p it would perform the application u �→ v, such that π(v) = π(u)+π(w). This
transducer is based on the converter defined in [3] that we recall in Definition 5,
below.

Theorem 3 ([1],[3]). Given any digit alphabet An, there exists a finite letter-
to-letter right sequential transducer C p

q ,n
from An to Ap such that for every w

in An
∗, π

(
C p

q ,n
(w)

)
= π(w).
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Definition 5. For every integer n, the converter C p
q ,n

= 〈N, An, Ap, 0, δ, η, ω〉,
is the right transducer with input alphabet An, output alphabet Ap, and whose
transition and output functions are defined by:

∀s ∈ N, ∀a ∈ An s
a | c−−→ s′ ⇐⇒ q s+ a = p s′ + c,

and final function by: ω(s) = 〈s〉 p
q
, for every state s in N.

Definition 5 describes a transducer with an infinite number of states, but its
reachable part is finite (cf. [1, Proposition 13] or [3, Section 2.2.2]). In
particular, if n = 2p− 1, the converter is in fact an additioner: given two words
u = an · · · a2 a1 and v = bn · · · b2 b1 over Ap, the digit-wise addition yields
the word (an + bn) · · · (a1 + b1) over A2p−1 which is transformed by C p

q ,2p−1

into 〈π(u) + π(v)〉 p
q
. The converter from A5 to A3 in base 3

2 is shown at 2.

Fig. 2. The converter C 3
2
,5

For every word w of A∗
p, we define a letter-to-letter sequential right transducer

R p
q ,w

which increments the input by w, that is, given a word u as input, it

outputs the p
q -representation 〈π(u) + π(w)〉 p

q
. It is obtained as a specialisation

of C p
q ,2p−1.

Definition 6. For every w = bn−1 · · · b1 b0 in A∗
p, the incrementer

R p
q ,w

= 〈N× {0, 1, . . . , n}, Ap, Ap, (0, 0), δ
′, η′, ψ〉

is the (right) transducer with input and output alphabet Ap, and whose transition
and output functions are defined by:
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∀s ∈ N, ∀a ∈ Ap,

∀i < n (s, i)
a | c−−→ (s′, i+ 1)⇐⇒ q s+ (a+ bi) = p s′ + c

(s, n)
a | c−−→ (s′, n) ⇐⇒ q s+ a = p s′ + c

and whose final function is defined by:

∀s ∈ N ψ((s, n)) = 〈s〉 p
q

ψ((s, i)) = ψ((s′, i+ 1)).c if i < n and (s, i)
0 | c−−→ (s′, i+ 1)

This last line means that if the input word is shorter than w, then the final
function behaves as if the input word ended with enough 0’s (on the left, since
we read from right to left). Definition 6 describes a transducer with an infinite
number of states but, as in the case of the converter, it is easy to verify that its
reachable part is finite. The incrementer R 3

2 ,121
is shown at Figure 3.

Fig. 3. The incrementer R 3
2
,121

It is a simple verification that the incrementer has the expected behaviour.

Proposition 4. For every u and w in A∗
p, v = R p

q ,w
(u) is a word in A∗

p such

that π(v) = π(u) + π(w) holds.

6 Proof of Theorem 2

The core of the proof lies in the next statement.

Proposition 5. For every w in A∗
p, the image of a left-iterable language byR p

q ,w

is left-iterable.
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Proof. Let u and v be in A∗
p, I ⊆ N an infinite set of indexes and {yi}i∈I an

infinite family of words in A∗
p. The proof consists in showing that{
R p

q ,w
(u vi yi) | i ∈ I

}
is left-iterable. Since I is infinite, we may assume, without loss of generality,
that the length of the yi’s is strictly increasing hence, that all yi’s have a length
greater than n = |w| but also that the reading of every yi leads R p

q ,w
to a same

state (s, 0):

∀s ∈ N, ∀i ∈ I (0, n)
yi|y′

i−−−→
R p

q
,w

(s, 0)

From the definition of the transitions of R p
q ,w

:

(s, 0)
a | c−−→ (s′, 0) ⇐⇒ q s+ a = p s′ + c

follows, since a < p and q < p, that s ≥ s′.
Hence, the sequence of (first component of) states of R p

q ,w
in a computation

starting in (s, 0) and with input vi, with unbounded i, is ultimately stationary
at state (t, 0).

Without loss of generality, we thus may assume that (0, n)
yi|y′

i−−−→ (t, 0) for

every i in I and, since (t, 0)
v | v′
−−→ (t, 0), it holds that R p

q ,w
(u viyi) = u′ v′iy′i,

where u′ is the output of a computation starting in (t, 0) and with input u.

The special case of additive submonoids of V p
q
allows us to reverse the condition

from left-iterable to BLIP:

Proposition 6. Let w be a word of A∗
p, and L be a BLIP language such that

π(L) is an additive submonoid of V p
q
. The language R p

q ,w
(L) is BLIP.

Proof. Since π(L) is an additive submonoid of V p
q
, it contains mN for some m

(as it must contains some number m
ql

for some m and l).

Let n and k be the integers such that π(w) = n
qk = x. From Lemma 2, it follows

that there exists mk such that for every j > mk,
j
qk

is in V p
q
. In particular, there

exists j such that n+j ≡ 0 mod (mqk) and j
qk

is in V p
q
. If we denote by y = j

qk
,

it means that (x+ y) is in mN. Hence, π(L) + x+ y is contained in π(L).
Let us denote by u = 〈y〉 p

q
, and L′ = R p

q ,w
(L).

It follows that π
(
R p

q ,u
(L′)

)
= (π(L)+x+ y) ⊆ π(L), hence that R p

q ,u
(L′) is

an infinite subset of L, and as such BLIP (from Lemma 3). If L′ were left-iterable,
so would be R p

q ,u
(L′) by Proposition 5, a contradiction.

Finally we prove a property of finitely generated submonoids of V p
q
.
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Proposition 7. Let M be a finitely generated additive submonoid of V p
q
. There

exists a finite family {gi}i∈I of elements of V p
q
such that M is contained in⋃

i∈I

(gi + N).

Proof. Let {y1, y2, . . . , yh} be a generating family ofM . Every yj is in V p
q
and it

is then a rational number
nj

qkj
for some integers nj and kj . Let k be the largest

of the kj . Hence, every element in M is a rational number whose denominator

is a divisor of qk, and thus M ⊆ V p
q
∩
(

1
qk
N
)
.

Since every number in 1
qk N can be written as n + i

qk for some n in N and

some i in {0, 1, . . . , qk − 1}, it follows that 1
qk
N =

⋃
0�i<qk(N+ i

qk
), hence

M ⊆
⋃

0�i<qk

(V p
q
∩ (N+

i

qk
)).

Besides, for every i in {0, 1, . . . , qk − 1}, we denote by gi the smallest number
in V p

q
∩(N+ i

qk ). Then, and since V p
q
+N = V p

q
, for every i, V p

q
∩(N+ i

qk ) = mi+N.
Hence M ⊆

⋃
0�i<qk(N+mi).

Even though this proposition seems rather weak (it is a poor approximation from
above), it is enough: it indeed reduces Theorem 2 to proving that
〈n+ N〉 (or equivalently R p

q ,w
(L p

q
)) is BLIP for any n, which was proven in

Proposition 6.

Proof (of Theorem 2). Let M be a finitely generated additive submonoid of V p
q
.

By Proposition 7, there exists a finite family {mi}i∈I of elements of V p
q
such

that M ⊆
⋃

i∈I(mi + N).
Let L = 〈M〉 p

q
the language of the p

q -representations of the elements of M

and write wi = 〈mi〉 p
q
. Hence, L is contained in (

⋃
iR p

q ,wi
(L p

q
)), and thus BLIP

by Lemma 3.

7 Conclusion and Future Work

In this work, we have defined a new property, in an effort to capture the struc-
tural complexity of L p

q
. This property contradicts any form of pumping lemma,

placing L p
q
outside the scope of classical language theory. Even more so that

every other example of BLIP languages we describe seem to be purely artificial
(cf. Example 3)

Paradoxically, Theorem 2 shows that such examples are very common within
a rational base number system. It seems that every reasonable number set is
represented by a BLIP language and that every simple language represents a
complicated set of numbers.

This work led us to a conjecture about rational approximations of L p
q
:
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Conjecture 1. Let L be a rational language closed by addition and
containing L p

q
. Then L contains X.A∗

p where X = L p
q
∩ A�k

p , for some k.

Any approximation of L p
q
by a rational language L, would only keep a finite part

of the structure: the automaton accepting L would be the subtree of depth k
of L p

q
whose leaves are all-accepting states. Figure 4 gives two examples of

rational approximation of L 3
2
, respectively when the L p

q
is cut at depth k = 2

and k = 5.

Fig. 4. Two rational approximations of L 3
2
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Abstract. We present a lower bound for the distance of a cyclic code,
which is computed in polynomial time from the defining set of the code.
Our bound beats other similar bounds, including the Roos bound, in the
majority of computed cases.

Keywords: Cyclic code, BCH bound, Hartmann-Tzeng bound, Roos
bound.

1 Introduction

Many lower bounds exist for the distance of a cyclic code, that elaborate in
polynomial time some information from the defining set of the code, e. g. the
BCH bound [1], the HT bound [2], the Roos bound [4] and BS bound [5]. We
present a new bound which also has polynomial-time cost, beating all other
similar bounds in the majority of computed cases. We call this bound “ bound
C ”(Theorem 2). It comes from two preliminary results: bound A (Proposition 1)
and bound B (Proposition 2).

2 Preliminaries

In this section we fix some notation and we recall the method we use to prove
our result.
Let (k)n be the remainder of division k by n. Let Fq be a finite field with q
elements, C indicates an arbitrary cyclic code [n, k, d] over Fq, and we denote
with g the generator polynomial of C. From now on, we always assume that
gcd(n, q) = 1. Let F be the splitting field of xn−1 and let α be a primitive n−th
root of unity in F then we indicate with SC the defining set of C:

SC =
{
1 ≤ i ≤ n− 1 | g(αi) = 0

}
.

We collect together some definitions from [5] and [8]:

– Let U be a set of three symbols
{
0, Δ,Δ+

}
then, with a little abuse of

notation, U = (U ,+, ·) represents a field where we have partial information
on the element value. More precisely: Δ+ represents an element for which we

T. Muntean, D. Poulakis, and R. Rolland (Eds.): CAI 2013, LNCS 8080, pp. 101–112, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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are sure it is different from zero, 0 represents an element for which we are
sure it is zero, Δ represents an element for which we do not claim if it is zero
or not. (The sum and the product on U are straightforward, but you can see
[5], [8] or [6] for a complete description).

– R(n, SC) is the n−tuple (u0, . . . , un−1) ∈ Un such that

ui =

{
0, if i ∈ SC

Δ, otherwise.

– M(v) ∈ Un×n is the circulant matrix obtained from a v ∈ Un.

– Given a v ∈ Un we denote by A(v) the set of all u ∈ U \ 0 s.t.

u[i] = 0, if v[i] = 0,

u[i] = Δ+, if v[i] = Δ+,

u[i] = Δ+ or u[i] = 0, if v[i] = Δ.

We recall the singleton procedure (see [5], [8], [9]) to verify the linear indepen-
dence of a set of rows on U . For any matrix M , M [i, j] is the (i, j) entry, M [i]
is the i−th row and M(j) is the j−th column.

Definition 1. Let M be a matrix over U . We say that a column M(j) is a
singleton if it contains only one non-zero component M [i, j], i.e. M [i, j] = Δ+

and M [t, j] = 0 for t �= i. When this happens we say that M [i] is the row
corresponding to the singleton.

Any set of t rows of length n with t ≤ n forms a matrix Mt ∈ U t×n. If a column
M(j) is a singleton, then the row corresponding to the singleton is clearly linear
independent from the others. Then we delete the j − th column and the corre-
sponding row (we call this operation s-deletion), obtaining a new matrix,Mt−1,
and we search for a new singleton in Mt−1. If this procedure can continue until
we find a matrix M1 with at least one Δ+, we say that the singleton procedure
is successful for the set of t rows considered.

Definition 2. Let M be a matrix over U , we denote by prk(M) the pseudo rank
of M , i.e., the largest t such that there exists a set of t rows in M for which the
singleton procedure is successful.

Our interest for the rank of a matrix on U is due to the following result.

Theorem 1. Let C be a cyclic code with defining set SC and length n. If d is
the distance of the code, then

d ≥ min { prk(M(u)) | u ∈ A(R(n, Sc)) }

Proof. See [6] or [9].
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3 Statement of Bound A and Bound B

Proposition 1 (bound A). Let C be an Fq[n, k, d] cyclic code with defining
set SC and gcd(q, n) = 1. Suppose that there are �, m, r, s ∈ N, 1 ≤ m ≤ � and
i0 ∈ { 0, . . . , n− 1 } such that gcd(n,m+ r) < m or gcd(n,m+ r) = 1. If:

a) (i0 + j)n ∈ SC , ∀j = 0, . . . , �− 1,

b) (i0 + j)n ∈ SC ,

∀j = i0 + �+ r + h(m+ r) + 1, . . . , i0 + �+ r +m+ h(m+ r)

∀0 ≤ h ≤ s− 1

then

d ≥ �+ 1 + s− r
⌊

�

m+ r

⌋
−max { (�)m+r −m, 0 } . (1)

In other words, the assumptions of Proposition 1 are equivalent to saying that
R(n, SC) contains a block of the form (0�Δr)(0mΔr)s, i.e. :

0 . . . 0︸ ︷︷ ︸
�

Δ . . .Δ︸ ︷︷ ︸
r

(0 . . . 0︸ ︷︷ ︸
m

Δ . . .Δ︸ ︷︷ ︸
r

)s ⊂ R(n, SC).

Remark 1. We can see Proposition 1 as generalization of the HT bound. In fact
with � = m our statement becomes the same of the general Hartmann-Tzeng
bound (see [8] and [3] ).

We are able to prove another bound, similar to the previous:

Proposition 2 (bound B). Let C be an [n, k, d] cyclic code over Fq with
defining set SC . Suppose that there are m, �, s ∈ N, m, � ≥ 1, s ≥ m + 1,
gcd(n, �) < �− 1 or gcd(n, �) = 1. If there is i0 ∈ {0, . . . , n− 1} such that:

a) (i0 + j)n ∈ SC , j = 0, . . . ,m�− 1,

b) (i0 + j)n ∈ SC , j = (m+ h)�+ 1, . . . , (m+ h)�+ �− 1, 0 ≤ h ≤ s− 1,

Then:

d ≥ m�+ �+ s−m− 1.

In other words, the assumptions of Proposition 2 are equivalent to saying that
R(n, SC) contains a block of the form (0�mΔ)(0�−1Δr)s, i.e. :

0 . . . 0︸ ︷︷ ︸
�m

Δ(0 . . . 0︸ ︷︷ ︸
�−1

Δ)s ⊂ R(n, SC).

Remark 2. Proposition 2 is a generalization of the BS bound ([5]), except for the
uncommon cases in which �|n, since gcd(n, �) ≤ � and gcd(n, �) = � ⇐⇒ �|n.
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4 Proofs of Bound A and Bound B

In this section we provide the proof of Proposition 1, and we sketch the proof of
Proposition 2.

Remark 3. The main tool we use to prove Proposition 1 and Proposition 2 is
Theorem 1 which, in principle, allows us to work only with matrices that have
as entries just 0 or Δ+. Nevertheless during the proof we use matrices that have
also Δ as entry. This fact must not worry the reader, since when a Δ appears
we mean it can be indifferently 0 or Δ+, and the correctness of the proof is not
affected by such decision.

Proof (of Proposition 1). The general plan of the proof is as follow. Thanks to
Theorem 1 we aim at proving that

min{ prk(M(v))|v∈A(R(n,Sc)) }≥�+1+s−r� �
m+r �−max{ (�)m+r−m,0 }.

In order to do that, for any v ∈ A(n, SC), we need to choose �+s+1 rows inM(v)

and we must prove that, discarding at most r
⌊

�
m+r

⌋
+ max { (�)m+r −m, 0 }

rows, we actually obtain a set of rows for which the singleton procedure is suc-
cessful.

We can suppose w.l.o.g. that i0 = n− � (see Lemma 3.1 in [5]), so that:

v = Δ . . .Δ︸ ︷︷ ︸
r

(0 . . . 0︸ ︷︷ ︸
m

Δ . . .Δ︸ ︷︷ ︸
r

)s . . . 0 . . . 0 . . . 0︸ ︷︷ ︸
�

.

We introduce two notions releated to v (see [8]). From now on, the meaning of
v is fixed.

Definition 3. Let 1 ≤ i′ ≤ n. We say that i′ is the primary pivot of v if v[i′]
is the first Δ+ that occurs in v, i.e.

i′ = min{h | v[h] = Δ+} .

We can suppose that 1 ≤ i′ ≤ r, otherwise v = 0r(0mΔr)s . . . 0� and so
(0�+r+mΔr)(0mΔr)s−1 ⊂ v and the bound would be trivially satisfied, since
it would give:

d ≥ �+ r +m+ 1 + s− 1−
⌊
�+ r +m

m+ r

⌋
r −max { (�+m+ r)m+r −m, 0 }

= �+ r +m+ s−
⌊

�

m+ r

⌋
r −max { (�)m+r −m, 0 }

≥ �+ r + 1 + s−
⌊

�

m+ r

⌋
r −max { (�)m+r −m, 0 } .

Definition 4. Let n,m, r, s ∈ N s. t. m, s ≥ 1, n ≥ m+ r and (n,m+ r) ≤ m.
((0)m(Δ)r)s ⊂ v. Then there are i′′ in {1, . . . , n}, k ∈ N and t ∈ {1, . . . ,m},
with the following properties:
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1. v[i′′] = Δ+,
2. i′′ ≡ (s+ k)(m+ r) + t mod (n),
3. v[i] = 0, for any i s.t.

i ≡ (s+ k′)(m+ r) + j mod (n) ,

where k′ ∈ {0, . . . , k − 1} and j ∈ {1, . . . ,m}.

We call such i′′ the secondary pivot of v with respect to block ((0)m(Δ)r)s.

It is possible to show that if gcd(m+ r, n) ≤ m (which includes the classical case
gcd(m+ r, n) = 1), then the secondary pivot exists.

We can suppose s(m+ r) + r+1 ≤ i′′ ≤ s(m+ r) + r+m, otherwise we have
(0�Δr)(0mΔr)s+1 ⊂ v and the bound is trivially satisfied:

d ≥ �+ 1 + s+ 1−
⌊

�

m+ r

⌋
r −max { (�+m+ r)m+r −m, 0 }

≥ �+ 1 + s−
⌊

�

m+ r

⌋
r −max { (�)m+r −m, 0 } .

We note that v[i′′ − z · (m + r)] = 0 for any z = 1, . . . , s. Moreover, i′ and i′′

may coincide, but this is not a problem.
Now, we are going to choose (� + 1 + s) rows of M(v). We start from the

((n − i′ + k)n + 1)− th rows with k = 1, . . . ,m, that is, we take the rows with
the primary pivot in the first position and its shifts up to the (m − 1)−th shift
included. We collect these rows in submatrix T1.

T1=

⎛⎜⎜⎜⎝
Δ+ . . . 0 . . . 0 Δ . . . Δ . . . 0 . . . 0 Δ . . . Δ+ . . . . . . . . . 0 . . . . . . 0

0 Δ+ . . . 0 . . . 0 Δ . . . Δ . . . 0 . . . 0 Δ . . . Δ+ . . . . . . . . . 0 . . . 0

0 0 Δ+ . . . 0 . . . 0 Δ . . . Δ . . . 0 . . . 0 Δ . . . Δ+ . . . . . . . . . 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . 0 Δ+ . . . 0 . . . 0 Δ . . . Δ . . . 0 . . . 0 Δ . . . Δ+ . . . . . . 0 . . .
↓
m

⎞⎟⎟⎟⎠
We now consider the (k+1)-th rows for k = m, . . . , �, collected in submatrix T2.

T2=

⎛⎜⎜⎜⎜⎝
0 . . . 0 Δ . . . Δ . . . 0 . . . 0 Δ . . . Δ . . . Δ+ . . . . . . . . . . . . 0 . . . . . .

0 . . . . . . 0 Δ . . . Δ . . . 0 . . . 0 Δ . . . Δ . . . Δ+ . . . . . . . . . . . . 0 . . .

0 . . . 0 . . . 0 Δ . . . Δ . . . 0 . . . 0 Δ . . . Δ . . . Δ+ . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . . . . 0 . . . 0 . . . 0 Δ . . . Δ . . . 0 . . . 0 Δ . . . Δ . . . Δ+ . . . . . .

0 . . . 0 . . . 0 . . . 0 . . . 0 Δ . . . Δ . . . 0 . . . 0 Δ . . . Δ . . . Δ+ . . .
↓ ↓
m �

⎞⎟⎟⎟⎟⎠
Note that T1 and T2 have no common rows. Note also that in T2 for any row
h = 1, . . . , �+ 1−m and any column 1 ≤ j ≤ (s− 1)(m+ r) +m we have:

T2[h, j] = Δ =⇒ T2[h, j + (m+ r)] = Δ (2)
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Our third and last submatrix, T3, is formed by the ((n−r−k · (m+r))n+1)−th
rows, for k = 0, . . . , (s− 1):

T3=

⎛⎜⎜⎜⎝
0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ 0 ... 0 Δ ... Δ ... Δ+ ...

0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... ... ... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... ... ... ... ... ... ... ... ... ... ...
↓ ↓ ↓ ↓

m m + r
i′′−r−

(s − 1)(m + r) i′′ − r

⎞⎟⎟⎟⎠

Lemma 1. The singleton procedure is successful for T3 and thus prk(T3) = s.

Proof. We note that the rows of T3, by construction, have the property that
T3[a + 1, h] = T3[a, h + (m + r)] because each row is a (m + r) left shift of the
previous one. This is sufficient to prove that T3(i

′′ − r − (s − 1)(m + r)) is a
singleton. We claim that the s−th row of T3 corresponds to a singleton. Indeed

T3[s, i
′′ − r − (s− 1)(m+ r)] = T3[1, i

′′ − r − (s− 1)(m+ r) + (s− 1)(m+ r)] =

T3[1, i
′′ − r] = Δ+

and for k = 1, . . . , s− 1:

T3[k, i
′′ − r − (s− 1)(m+ r)] = T3[1, i

′′ − r − (s− 1)(m+ r) + (k − 1)(m+ r)] =

T3[i
′′ − r − (s− k)(m+ r)] = 0

so we can s-delete it. Once this is done, we might also s-delete the (s − 1)−th
row, since

T3[s− 1, i′′ − r − (s− 2)(m+ r)] = T3[1, i
′′ − r − (s− 2)(m+ r) + (s− 2)(m+ r)] =

T3[1, i
′′ − r] = Δ+

and for k = 1, . . . , s− 2:

T3[k, i
′′ − r − (s− 2)(m+ r)] = T3[i

′′ − r − (s− 2)(m+ r) + (k − 1)(m+ r)] =

T3[1, i
′′ − r − (s− 1− k)(m+ r)] = 0.

In this way for any row of T3 we obtain a singleton in T3 (i
′′ − r − k(m+ r))

for k = 0, . . . , s− 1, by recursively s-deleting from the last row to the first.
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Collecting all these submatrices T1, T2, T3, we obtain an (�+ 1 + s)× n matrix
T , as follows:

T=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ+ ... 0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ+ ... ... ... 0 ... ... 0 → 1

0 Δ+ ... 0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ+ ... ... ... 0 ... 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. T1
0 0 Δ+ ... 0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ+ ... ... ... 0 ...

0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... 0 ... ... → m + 1

0 ... ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... 0 ...

0 ... 0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ... T2
0 ... 0 ... 0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ...

0 ... 0 ... 0 ... 0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... → � + 1

0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ 0 ... 0 Δ ... Δ ... Δ+ ...

0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... ... ... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ... T3

0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... ... ... ... ... ... ... ... ... ... ... →
�+1
+s

↓ ↓
m m + r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Observe that the rows from (m+1) to (�+s+1) have a block of zero in the first
m positions and then we can obviously s-delete the first m rows (i.e the rows of
T1). After these first m s-deletions we obtain a matrix T ′ composed of the last
(�+ 1 + s−m) rows of T , as the following:

T ′=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... 0 ... ... → m + 1

0 ... . 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... 0 ...

0 ... 0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ...

0 ... 0 ... 0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ...

0 ... 0 ... 0 ... 0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... → � + 1

0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ 0 ... 0 Δ ... Δ ... Δ+ ...

0 ... 0 Δ ... Δ ... 0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... ... ... ...
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.

.

.

.

.

.

.

.

.

.

.

.

. ...

0 ... 0 Δ ... Δ ... Δ+ ... ... ... ... ... ... ... ... ... ... ... ... ... ... → � + 1 + s

↓ ↓ ↓ ↓
m m + r s(m + r) i′′ − r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 1 + s(m+ r) ≤ i′′ − r ≤ m+ s(m+ r) by hypothesis. We note that T ′ is
composed by the rows of T2 and T3.

We use the singletons of T3 to proceed with the singleton procedure, but in
order to do that we have to discard some rows in T2. More precisely, let us define:

Bk = { h | T2[h, i′′ − r − k(m+ r)] = Δ } for k = 0, . . . , s− 1

then the rows to discard in T2 in order that T (i′′ − r − k(m + r)) becomes a
singleton for k = 0, . . . , s− 1 are:

B = ∪s−1
k=0Bk. (3)

Lemma 2. Let 0 ≤ k < k′ ≤ s− 1, then Bk′ ⊆ Bk.

Proof. Obvious from (2).
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Corollary 1. B = B0 = { h | T2[h, i′′ − r] = Δ }.

Thanks to Corollary 1, since s(m+ r) + 1 ≤ i′′ − r ≤ s(m+ r) +m, if we define
ηj = | { h | T2[h, s(m+ r) + j] = Δ } |, we have:

|B| ≤ max { ηj | 1 ≤ j ≤ m } .

and we can further improve this result with the following lemma, which is not
difficult to prove.

Lemma 3. For 1 ≤ j ≤ m:

η1 ≥ η2 ≥ · · · ≥ ηm.

Thanks to lemma 3 we are able to estimate the maximal number of rows of T2
that we have to discard.

Lemma 4.

|B| ≤ η1 ≤
⌊

�

m+ r

⌋
r +max { (�)m+r −m, 0 }

Proof. For Corollary 1 and Lemma 3 we have |B| ≤ η1. Now:

η1 = | { h | T2[h, s(m+ r) + 1] = Δ } |, but recall 1 ≤ h ≤ �+ 1−m.

We rewrite v in the worst case where i′′ = s(m+ r) + r + 1:

v = Δ . . . Δ 0 . . . 0 (Δr0m)s−2 Δ . . . Δ 0 . . . 0 Δ . . . Δ Δ+ . . . . . .
↓ ↓ ↓ ↓ ↓ ↓
1 r m + r s(m + r) − m + 1 s(m + r) s(m + r) + r + 1

Since T2[1, s(m+ r) + 1] = v[s(m+ r) + 1−m] = 0, we have

η1 = | { h | T2[h, s(m+ r) + 1] = Δ, 1 ≤ h ≤ �+ 1−m } |
= | { h | T2[h, s(m+ r) + 1] = Δ, 2 ≤ h ≤ �+ 1−m } |.

Now T2[h+1, j] = T2[h, j−1] (for h ≥ 1) and T2[1, j] = v[j−m], by construction
of T2. So:

η1 = | { h | T2[h, s(m+ r) + 1] = Δ, 2 ≤ h ≤ �+ 1−m } |
= | { h | T2[1, s(m+ r) + 1− (h− 1)] = Δ, 2 ≤ h ≤ �+ 1−m } |
= | { h | v[s(m + r)−m+ 2− h] = Δ, 2 ≤ h ≤ �+ 1−m } |
= | { h | v[s(m + r) + 2− h] = Δ, 2 ≤ h ≤ �+ 1 } |

Thus, to compute η1 we have to count the number of Δ’s we meet, v[s(m + r)]
to v[s(m + r) − � + 1] (i.e. from v[s(m + r)] and going back of � positions).
Let us consider the worst case, which is when � ≤ s(m + r). Passing through
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the block (0mΔr) from right to left of � positions, every m + r steps we meet
a block formed by r Δ’s and m 0’s, thus the contibute to η1 per block is by r.

Since we move only by � positions, we can meet no more than
⌊

�
m+r

⌋
blocks

and so we have η1 ≤
⌊

�
m+r

⌋
r + η′1, where η

′
1 are the Δ’s coming from the last

(�)m+r steps left. The first m-positions we meet doing the last (�)m+r steps are
zero, since they correspond to the last block (Δr0m), thus η′1 can be at most
(�)m+r − m and it is non-negative only if (�)m+r ≥ m. In conclusion: η1 ≤⌊

�
m+r

⌋
r +max { (�)m+r −m, 0 }.

Thanks to Lemma 4, discarding at most
⌊

�
m+r

⌋
r +max { (�)m+r −m, 0 } rows

of T2, we can remove by s-deletions T3 from T ′. The matrix that remains, T̃ , is
a submatrix of T2 not having row indeces in B which has full rank, since T2 has
full rank, adopting the singleton procedure as can be seen by Lemma 3.2 in [5].

Example 1. Let us suppose C be a cyclic code of length n, with defining set SC

satisfying the assumptions of Proposition 1 with parameters � = 7,m = 2, r = 1,
s = 5. We want to prove that for Proposition 1 the distance of the code C is at

least d ≥ 7+ 1+ 5−
⌊

7
2+1

⌋
1−max

{
(7)3+2 − 2, 0

}
= 11. Let v ∈ A(R(n, SC))

with v[1] = Δ+. The matrix T is:

Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ . . . . . .

0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ . . . . . .

0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ . . . . . .

0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ . . . . . .
0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ . . . . . .

0 0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ . . . . . .

0 0 0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ . . . . . .
0 0 0 0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ . . . . . .

0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . . . .

0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . . . .

0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . . . .
0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . . . .

0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . . . .

For the secondary pivot we have two possibilities: i′′ = 11 or i′′ = 12. We
show that in both cases it is possible to obtain 11 s-deletions, removing at most⌊

7
2+1

⌋
1 + max

{
(7)3+2 − 2, 0

}
= 2 rows from the matrix T .

Case 1: i′′ = 11.

Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 1st s-deletion

0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ . . . → 2nd s-deletion

0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ . . . → 8th s-deletion

0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ . . . → REMOVED

0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ . . . → 9th s-deletion

0 0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ . . . → 10th s-deletion

0 0 0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ . . . → REMOVED

0 0 0 0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ . . . → 11th s-deletion

0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 7th s-deletion

0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 6th s-deletion

0 0 Δ 0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 5th s-deletion

0 0 Δ 0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 4th s-deletion

0 0 Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 3rd s-deletion
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Case 2: i′′ = 12.

Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ Δ Δ Δ Δ Δ Δ . . . → 1st s-deletion

0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ Δ Δ Δ Δ Δ . . . → 2nd s-deletion

0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ Δ Δ Δ Δ . . . → 8th s-deletion

0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ Δ Δ Δ . . . → 9th s-deletion

0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ Δ Δ . . . → REMOVED

0 0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ Δ . . . → 10th s-deletion

0 0 0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ . . . → 11th s-deletion

0 0 0 0 0 0 0 Δ+ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ . . . → REMOVED

0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 7th s-deletion

0 0 Δ 0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 6th s-deletion

0 0 Δ 0 0 Δ 0 0 Δ Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 5th s-deletion

0 0 Δ 0 0 Δ Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 4th s-deletion

0 0 Δ Δ Δ+ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ . . . → 3rd s-deletion

For Proposition 2 the proof proceeds similarly.

Proof (of Proposition 2). We can suppose:

(i) v = 0 . . . 0Δ
︸ ︷︷ ︸

�m+1

s−times
︷ ︸︸ ︷

0 . . . 0Δ
︸ ︷︷ ︸

�

. . . . . . 0 . . . 0Δ
︸ ︷︷ ︸

�

. . . ;

(ii) i′ = �m+ 1 ;
(iii) m�+ s(�) + 2 ≤ i′′ ≤ m�+ s(�) + 1 +m.

We take the rows ((n − (�m + 1) + k)n + 1)− th rows, with k = 1, . . . ,m� + �:
we take the rows with the primary pivot in first position and its shifts until the
(m�+ �− 1)−th shift:

T1=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ+ 0 ... 0 Δ 0 ... 0 Δ 0 ... 0 Δ ... Δ+ ... ... 0 ... ... ... 0 → 1

0 Δ+ 0 ... 0 Δ 0 ... 0 Δ 0 ... 0 Δ ... Δ+ ... ... 0 ... ... ...

0 0 Δ+ 0 ... 0 Δ 0 ... 0 Δ 0 ... 0 Δ ... Δ+ ... ... 0 ... ...

0 ... 0 Δ+ 0 ... 0 Δ 0 ... 0 Δ 0 ... 0 Δ ... Δ+ ... ... ... ...

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Δ Δ 0 ... 0 Δ+ 0 ... 0 Δ 0 ... 0 Δ 0 ... 0 Δ ... Δ+ ... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Δ ... Δ 0 ... 0 Δ+ 0 ... 0 Δ 0 ... 0 Δ 0 ... 0 Δ ... Δ+ ... → m� + �
↓ ↓
� m� + �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and then we add s− 1 rows: the ((n− i′′ − (s�+ 1))n + (k + 1)�)−th rows with
k = 1, . . . , s−1, which are the rows with the secondary pivot in position (k+1)�
with k = 1, . . . , s− 1.

T2=

⎛⎜⎜⎜⎝
Δ ... Δ 0 ... 0 Δ 0 ... 0 Δ ... ... 0 ... 0 Δ ... Δ+ ... ... ... → 1

Δ ... Δ 0 ... 0 Δ ... ... 0 ... 0 Δ ... Δ+ ... ... ... ... ... ... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Δ ... Δ 0 ... 0 Δ 0 ... 0 Δ ... Δ+ ... ... ... ... ... ... ... ... ... → s − 2

Δ ... Δ 0 ... 0 Δ ... Δ+ ... ... ... ... ... ... ... ... ... ... ... ... ... → s − 1
↓ ↓ ↓ ↓
2� 3� (s − 1)� s�

⎞⎟⎟⎟⎠
And collecting together the rows of T1 and T2, the proof concludes as in case of
Proposition 1.

We summarize the results of Proposition 1 and Proposition 2 in a unique form
that constitutes the statement of bound C.



A New Bound for Cyclic Codes Beating the Roos Bound 111

Theorem 2 (bound C). Let C be an Fq[n, k, d] cyclic code with defining set
SC and gcd(q, n) = 1. Suppose that there are �, m, r, s ∈ N, 1 ≤ m ≤ � and
i0 ∈ { 0, . . . , n− 1 } such that gcd(n,m+ r) < m or gcd(n,m+ r) = 1. If

a) (i0 + j)n ∈ SC , ∀j = 0, . . . , �− 1,
b) (i0 + j)n ∈ SC ,

∀j = i0 + �+ r + h(m+ r), . . . , i0 + �+ r +m− 1 + h(m+ r)

∀0 ≤ h ≤ s− 1.

Then

d ≥ �+ 1 + s− r
⌊

�

m+ r

⌋
−max { (�)m+r −m, 0 } . (4)

In the particular case that for some �′ and m′, � = m′�′, m = �′ − 1, s ≥ m′ + 1
and r = 1 we also have:

d ≥ �′m′ + �′ + s−m′ − 1. (5)

5 Computational Results and Costs

As explained in Remark 1 and in Remark 2 bound C is both a generalization
of HT bound and BS bound (except when �|n) and so it is sharper and tighter.
The relation between our bound and the Roos bound is not clear: sometimes our
bound is sharper and tighter than Roos or but for other codes it is the opposite.
However, from the computed codes it appears that bound C works better than
the Roos bound in general. Although the BS bound sometimes beats the Roos
bound, in the majority of computed cases the Roos bound is better, as reported in
[5] and checked by us. Bound C is the first polynomial-time bound outperforming
the Roos bound on a significant sample of codes.
As regards computational costs, bound C requires:

– n operations for i0
– n operations for �
– n operations for m
– n operations for r
– n operations for s

and so it costs O(n5) which is slightly more than the Roos bound which needs
O(n4), in fact the latter requires at most:

– n operations for i0,
– n operations for m,
– n operations for r,
– n operations for s

while the other bounds cost less: BCH-O(n2), HT-O(n3), bound BS-O(n2.5).
We tested all cyclic codes in the following range: on F2 with 15 ≤ n ≤ 125, on
F3 with 8 ≤ n ≤ 79 and 82 ≤ n ≤ 89, on F5 with 8 ≤ n ≤ 61, on F7 with
8 ≤ n ≤ 47. We have chosen the largest ranges that we could compute in a
reasonable time.

In the following table we report the number of codes on which each bound
considered is not tight.
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Table 1. Bound tightness

F2 F3 F5 F7 total

number of codes 70488 93960 1163176 106804 1434428
BCH 11192 16376 151219 13696 182483
HT 10531 15334 139161 11093 176119
BS 10959 15545 139783 11283 177570

ROOS 10014 14583 133546 10709 168852
bound C 10306 14565 131072 9541 165484

Acknowledgments. These bounds appear in the 2010 Master’s thesis of the
first author [10], who thanks his supervisor (the second author).
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On a Conjecture of Helleseth

Yves Aubry1,2 and Philippe Langevin1,�
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Abstract. We are concerned about a conjecture proposed in the middle
of the seventies by Hellesseth in the framework of maximal sequences
and theirs cross-correlations. The conjecture claims the existence of a
zero outphase Fourier coefficient. We give some divisibility properties in
this direction.

1 Two Conjectures of Helleseth

Let L be a finite field of order q > 2 and characteristic p. Let μ be the canonical
additive character of L i.e.

μ(x) = exp(2iπTr (x)/p)

where Tr is the trace function with respect to the finite field extension L/Fp.
The Fourier coefficient of a mapping f : L→ L is defined at a ∈ L by

f̂(a) =
∑
x∈L

μ(ax+ f(x)). (1)

The distribution of these values is called the Fourier spectrum of f . Note that
when f is a permutation the phase Fourier coefficient f̂(0) is equal to 0.

The mapping f(x) = xs is called the power function of exponent s, and it is
a permutation if and only if (s, q − 1) = 1. Moreover, if s ≡ 1 mod (p − 1) the
Fourier coefficients of f are rational integers. Helleseth made in [3] the following
conjecture on the quantity (related to Dedekind determinant, see [9])

D(f) =
∏

a∈L×
f̂(a). (2)

Conjecture 1 (Helleseth). Let L be a field of cardinal q > 2. If f is a power
permutation of L of exponent s ≡ 1 mod (p− 1) then D(f) = 0.

For p = 2, it generalizes Dillon’s conjecture (see [2]) which corresponds to the
case s = q − 2 ≡ −1 (mod q − 1), and known to be true because it is related to
the vanishing of Kloosterman sums and the class number hq of the imaginary
quadratic number field Q(

√
1− 4q) (see [5,8]). Note also that in odd character-

istic the Kloosterman sums do not vanish (see [7]) except if p = 3 (see [5]).
In the same paper [3], Helleseth proposed a second conjecture:

� The authors would like to thank the anonymous reviewers for their valuable com-
ments and suggestions to improve this manuscript.

T. Muntean, D. Poulakis, and R. Rolland (Eds.): CAI 2013, LNCS 8080, pp. 113–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Conjecture 2. If [L : Fp] is a power of 2 then the spectrum of a power permuta-
tion of exponent not a power of p modulo q − 1 takes at least four values.

In this note, we prove some results concerning the divisibility properties of the
Fourier coefficients of a power permutation in connection with Conjecture 1. Our
results can be seen as a proof “modulo �” of Conjecture 1 for certain primes �.

2 Boolean Function Case

In this section, we assume p = 2. In [10], the second author has computed the
Fourier spectra of power permutations for all the fields of characteristic 2 with
degree less or equal to 25 without finding any counter-example to the above con-
jectures. More curiously, if we denote by nbz (s) the number of vanishing Fourier
coefficients of the power function of exponent s then the numerical experience
suggests that:

nbz (s) ≥ nbz (−1) = hq.

At this point, it is interesting to notice that Helleseth’s conjecture can not be
extended to the set of all permutations. Indeed, let m be a positive integer and
let g : Fm

2 → F2 be a Boolean function in m variables. One defines the Walsh
coefficient of g at a ∈ Fm

2 by :

gW(a) =
∑
x∈Fm

2

(−1)a.x+g(x).

Identifying L with the F2-vector space Fm
2 , the Boolean function g has a trace

representation i.e. there exists a mapping f : L→ L such that g(x) = TrL(f(x))
for all x in L. Of course, the trace representation is not unique. Moreover, if g is
balanced then g can be represented by a permutation of L. In all the cases, the
Walsh spectrum of g and the Fourier spectrum of f are identical.

In [6], an example of a ten-variables Boolean function with a very atypical
Walsh spectrum (see Tab. 1) is given. This Boolean function is balanced and its
Walsh coefficients vanish only once. This numerical example, say g, implies the
existence of a permutation f of F1024 (not a power permutation) such that

g(x) = TrF1024f(x),

whence the Fourier spectrum of f is equal to the Walsh spectrum of g, and thus∑
x∈F1024

μ(ax+ f(x)) �= 0 for all a ∈ F×
1024.

A possible generalization of the conjecture of Helleseth could be the following
one:

Conjecture 3. If f is a permutation of L then
∏

λ∈Ltimes D(λf) = 0.

Note that Conjecture 2 is know to be true in characteristic 2 since recent works
of Daniel Katz in [4] and Tao Feng in [12]. The next conjecture that appeared
in the paper by Pursley and Sarwate (see [11]) is still open
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Table 1. An example of Walsh spectrum having only one Walsh coefficient equal to
zero (see [6])

Walsh -48 -44 -40 -36 -32 -28 -24 - 20 -16 -12

mult. 5 30 85 70 115 100 31 62 20 10

Walsh 0 8 16 20 24 28 32 36 40 44

mult. 1 5 25 20 85 90 90 80 50 50

Conjecture 4. If f is a power permutation of L where [L : F2] is even then

supa∈L f̂(a) ≥ 2
√
q.

In the sequel, if λ ∈ L then we denote by f̂(a) the Fourier coefficient of x �→
λf(x). If f is a power permutation of exponent s, denoting by t the inverse of s
modulo q − 1, for all y ∈ L×, we have :

f̂λ(a) =
∑
x∈L

μ(λxs + ax) =
∑
x∈L

μ(λysxs + axy) = f̂(aλ−t). (3)

Hence, one of the specifities of power permutations among the permutations of
L is that the spectrum of λf does not depend on λ ∈ L×.

We conclude this section by giving a divisibility result. Recall that a function
f defined over a field L of characteristic 2 is said to be almost perfect nonlinear
(APN) if for all u ∈ L× the derivative x �→ f(x + u) + f(x) is two-to-one. It
is for example the case of f(x) = x3 over any field L and of f(x) = x−1 when
[L : F2] is odd.

Theorem 1. Let f be a power permutation over a field L of even characteristic
of cardinal q �≡ 2, 4 mod 5. If f is almost perfect nonlinear then there exists
a ∈ L× such that f̂(a) ≡ 0 mod 5 i.e.

D(f) ≡ 0 mod 5.

Proof. It is well-known (see [1]) that an APN function f satisfies∑
λ∈L×

∑
a∈L

f̂λ(a)
4 = 2q3(q − 1). (4)

Since the spectrum of f does not depend on λ, it implies that:∑
a∈L

f̂λ(a)
4 = 2q3. (5)

Assuming D(f) �≡ 0 mod 5, we get the congruence

q − 1 = 2q3 (mod 5)

implying q ≡ 2, 4 mod 5.
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3 Hyperplane Section

The key point of view of this note is to consider the number, say Nn(u, v), of
solutions in Ln of the system{

x1 + x2 + . . . + xn = u
f(x1) + f(x2) + . . . + f(xn) = v.

(6)

By a counting principle using characters, we can state:

Lemma 1. Let f be a permutation of L. The number Nn(u, v) of solutions in
Ln of the system (6) verifies

q2Nn(u, v) = qn +
∑

α∈L×

∑
β∈L×

f̂β(α)
nμ̄(αu + βv).

Proof. For any function f : X −→ G where X is a set and G is a finite abelian
group, the number N of solutions in X of f(x) = y for y ∈ G is

N =
1

| G |
∑
x∈X

∑
χ∈Ĝ

χ(f(x)− y)

where Ĝ denotes the group of characters of G.
For any α ∈ L, we denote by μα the additive character of L defined by

μα(x) = μ(αx), then we have:

q2Nn(u, v) =
∑

x1,x2,...,xn

∑
β∈L

∑
α∈L

μ̄β(v −
n∑

i=1

f(xi))μ̄α(u−
n∑

i=1

xi)

=
∑
β

∑
α

(∑
y∈L

μ(βf(y) + αy)
)n
μ̄(αu + βv)

=
∑
β

∑
α

f̂β(α)
nμ̄(αu + βv)

=
∑
α

f̂0(α)
nμ̄(αu) +

∑
β =0

∑
α

f̂β(α)
nμ̄(αu + βv)

= qn +
∑
α=0

∑
β =0

f̂β(α)
nμ̄(αu + βv).

Proposition 1. Assuming the Fourier coefficients of λf , λ ∈ L, are integers.
Let � �= p be a prime such that

∏
λ∈L× D(λf) �≡ 0 mod �. Then

q2N�−1(u, v) ≡ 1 + (qδ0(u)− 1)(qδ0(v)− 1) mod �

where δa(b) is equal to 1 if b = a and 0 otherwise.



On a Conjecture of Helleseth 117

Proof. By the Fermat’s little Theorem, we have the congruence

f̂λ(a)
�−1

≡ 1− δ0(a) mod �.

Hence, by Lemma (1), we have:

q2N�−1(u, v) = q�−1 +
∑
α=0

∑
β =0

f̂β(α)
�−1μ̄(αu + βv)

≡ 1 +
∑
α=0

∑
β =0

μ̄(αu + βv) mod �

and we conclude remarking that
∑

α∈L× μ̄(αu) = qδ0(u)− 1.

4 Divisibility of Fourier Coefficients

In [3], it is proved that for the exponents s ≡ 1 (mod p− 1), the Fourier coeffi-
cients are multiple of p. In this section, we are interested in divisibility properties
modulo a prime � �= p.

Assuming that the Fourier coefficients of any permutation f are rational in-
tegers, we can see that if 3 does not divide D(f) then we have necessarily q ≡ 2
mod 3. Indeed, using Parseval relation, we can write

1 ≡ q2 =
∑
a∈L

|f̂(a)|2 ≡ q − 1 mod 3.

Theorem 2. Let f be a power permutation of Fpn (with pn > 2) of exponent
s = 1 mod (p− 1). Then

D(f) ≡ 0 mod 3.

Moreover, if n is a power of a prime � and p �≡ 2 mod � then

D(f) ≡ 0 mod �.

Proof. First point. Since p divides D(f), we may assume that p �= 3. Suppose
that D(f) �≡ 0 mod 3. Applying Proposition 1 with � = 3, we get

∀u ∈ L×, ∀v ∈ L×, N2(u, v) �≡ 0 (mod �). (7)

In order to obtain a contradiction, we prove the existence of v ∈ L× such that
N2(1, v) = 0. The mapping x �→ (1 − x)s + xs sends x and 1 − x to the same
point. An element v in the image has at least 2 preimages except when x = 1−x,
which can only happen when p is odd and x = 1/2. So this means that if
p = 2, the cardinality of the image is less or equal to q/2 elements, while if
p is odd, the image of the map has at most (q + 1)/2 elements. If q > 3 the
complementary of the image contains at least two elements whence a nonzero v
such that N(1, v) = 0.
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Second point. Suppose now that n is a power of a prime � and p �≡ 2
mod �. The Frobenius automorphism acts on the solutions of the system (6)
with u = 0, v = 1. Since s ≡ 1 mod (p − 1), the system has no Fp-solutions,
thus N�−1(0, 1) ≡ 0 mod �. On the other hand, by Proposition 1, if D(f) �≡ 0
mod � then

q2N�−1(0, 1) ≡ 2− q ≡ 2− p mod �.
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Abstract. Using Lagrange’s algorithm for the computation of a basis
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1 Introduction

The signature schemes DSA and ECDSA. In 1985, T. ElGamal published the
first digital signature scheme based on the discrete logarithm problem in the
finite prime fields Fp [5]. Since then several variants of this scheme have been
proposed. In 1991, the U.S. government’s National Institute of Standards and
Technology (NIST) proposed an efficient variant of the ElGamal signature scheme
known as DSA, for Digital Signature Algorithm [6,12,14]. In 1998, an elliptic
curve analogue called Elliptic Curve Digital Signature Algorithm (ECDSA) was
proposed and standardized [8,11,12].

First, let us summarize DSA. The signer chooses a prime p of size between
1024 and 3072 bits with increments of 1024, as recommended in FIPS 186-3 [6,
page 15]. Also he chooses a prime q of size 160, 224 or 256 bits, with q|p− 1 and
a generator g of the unique order q subgroup G of F∗

p. Furthermore, he selects
a random integer a ∈ {1, . . . , q − 1} and computes R = ga mod p. The public
key of the signer is (p, q, g, R) and his private key a. He also publishes a hash
function h : {0, 1}∗ → {0, . . . , q − 1}. To sign a message m ∈ {0, 1}∗, he selects
a random number k ∈ {1, . . . , q − 1} which is the ephemeral key, and computes

r = (gk mod p) mod q, s = k−1(h(m) + ar) mod q.

T. Muntean, D. Poulakis, and R. Rolland (Eds.): CAI 2013, LNCS 8080, pp. 119–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The signature ofm is the pair (r, s). The verification of the signature is performed
by checking

r = ((gs
−1h(m)modqRs−1rmodq) mod p) mod q.

For the ECDSA the signer selects an elliptic curve E over the finite prime field
Fp, a point P ∈ E(Fp) with order a prime q of size at least 160 bits. According
to FIPS 186-3, the prime p must be in the set {160, 224, 256, 512}. Further, he
chooses a random integer a ∈ {1, . . . , q − 1} and computes Q = aP . The public
key of the signer is (E, p, q, P,Q) and his private key a. He also publishes a hash
function h : {0, 1}∗ → {0, . . . , q − 1}. To sign a message m, he selects a random
number k ∈ {1, . . . , q− 1} which is the ephemeral key and computes kP = (x, y)
(where x and y are regarded as integers between 0 and p−1). Next, he computes

r = x mod q and s = k−1(h(m) + ar) mod q.

The signature of m is (r, s). For its verification one computes

u1 = s−1h(m) mod q, u2 = s−1r mod q, u1P + u2Q = (x0, y0).

He accepts the signature if and only if r = x0 mod q.
The security of the two systems is relied on the assumption that the only way
to forge the signature is to recover either the secret key a, or the ephemeral
key k (in this case is very easy to compute a). Thus, the parameters of these
systems were chosen in such a way that the computation of discrete logarithms
is computationally infeasible.

Related Work. A very important tool for attacking public-key cryptosystems
are the lattices and the so-called LLL reduction method [13]. Attacks to DSA
and to ECDSA based on these techniques and using he equality s = k−1(h(m)+
ar) mod q are described in [1,3,10,16,17,18,19]. In [1], it was shown that the
DSA secret key a can be computed provided the ephemeral key k is produced
by Knuth’s linear congruential generator with known parameters, or variants.
In [10] the authors pointed out that Babai’s method can be used heuristically
in order to recover the secret key a, if enough signatures and some bits of the
ephemeral keys are known. A polynomial time attack which computes the DSA
secret key a is proposed in [15], in case the following holds: The size of q is not too
small compared with p, the probability of collisions for the hash function is not
too large compared to 1/q and for a polynomially bounded number of messages,
about �

√
log2 q� of the least significant bits of the ephemeral keys are known.

This attack is adapted to the case of ECDSA [18]. In [3], the authors compute,
using the LLL reduction method, two short vectors of a three-dimensional lattice
and in case where the second shortest vector is sufficiently short, they deduce
two lines which intersect in (a, k), provided that a and k are sufficiently small.
Finally, in [19], an attack is described in case where the secret and the ephemeral
key of a signed message or their modular inverses are sufficiently small.

Our Contribution. In this paper we present some attacks on DSA and ECDSA
taking advantage of the equation s = k−1(h(m) + ar) mod q. We use a two-
dimensional lattice L defined by a signed message. Lagrange Lattice Reduction
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algorithm, provide us with a basis of L formed by two successive minima b1,b2.
Using this basis we construct two linear polynomials fi(x, y) such that (a, k)
is the intersection point of two straight lines of the form fi(x, y) = ciq, where
ci ∈ Z (i = 1, 2). If a and k are sufficiently small, then ci belong to a small set
and so we can compute the secret key a in polynomial time. Similar attacks hold
for the pairs (k−1 mod q, k−1a mod q) and (a−1 mod q, a−1k mod q).

If two signed messages with ephemeral keys k1 and k2 are available, then we
obtain an equation of the same form relating k1 and k2 and so, earlier statements
about secret and ephemeral keys also apply to k1 and k2. In case we know some
bits of the secret and ephemeral keys and their sum is almost the half of sum of
the bits of secret and ephemeral keys, then we can compute efficiently the secret
key. Similar results also hold for all the aforementioned cases.

The paper is organized as follows. In Section 2, we recall some basic results
about Lagrange lattice reduction algorithm. Our attacks are presented in Sec-
tions 3 - 10. An example is given in Section 11 and Section 12 concludes the
paper.

2 Lagrange Lattice Reduction

Let Rn denote the n-dimensional real Euclidean space. The inner product of two
elements u = (u1, . . . , un) and v = (v1, . . . , vn) of Rn is defined to be the quantity
u · v = u1v1 + · · · + unvn and the Euclidean norm of a vector v = (v1, . . . , vn)
the quantity ‖v‖ = (v21 + · · ·+ v2n)

1/2.
Let B = {b1, . . . ,bn} be a basis of Rn. A n-dimensional lattice spanned by

B is the set
L = {z1b1 + · · ·+ znbn/ z1, . . . , zn ∈ Z}.

If bi = (bi1, . . . , bin) (i = 1, . . . , n), then the determinant detL of L is the
absolute value of the determinant whose (i, j) element is bi,j .

Let L ⊂ R2 be a 2-dimensional lattice. We say that a basis {v1,v2} of L is
formed by two successive minima of L, if v1 is the shortest nonzero vector of L
and v2 is the shortest vector of L among all vectors of L linearly independent
from v1. In this section we recall an algorithm due to Lagrange (1773) which
computes a basis of L formed by two successive minima of L. This algorithm
was also described later by Gauss (1801), and is often erroneously called Gauss’
algorithm. If x ∈ R, then we set �x" = �x+ 0.5�.

LAGRANGE’S ALGORITHM
Input: A basis {v1,v2} of L.
Output: A basis {b1,b2} formed by two successive minima of L.
Loop

If ‖v2‖ < ‖v1‖, then swap v1 and v2.
Compute m = �v1 · v2/‖v1‖2".
If m = 0, return the basis vectors v1 and v2.
Replace v2 with v2 −mv1.

Continue Loop
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Theorem 1. The above algorithm computes a basis {b1,b2} formed by two suc-
cessive minima of L in time O((logM)2) bit operations, where M is defined by
M = max{‖v1‖, ‖v2‖}. If θ is the angle between b1 and b2, then π/3 ≤ θ ≤ 2π/3
and |cosθ| < ‖b1‖/2‖b2‖. Further, ‖b1‖ ≤

√
4/3 (detL)1/2.

Proof. See [15], [9, Section 6.12.1] and [9, Theorem 6.25].

3 The DSA-ATTACK-1 Algorithm

Let m be a message and (r, s) its signature with DSA (resp. ECDSA). Then
there is k ∈ {1, . . . , q − 1} such that r = (gk mod p) mod q (resp. kP = (x, y))
and s = k−1(h(m) + ar) mod q. We conserve these notations for the rest of the
paper. In this section we present our first attack using the signed message.

Let Z(q) be the subring of Q formed by the fractions u/v, where u and v are
integers with gcd(u, v) = 1 and q � |v. If x ∈ Z, then we denote by x̄ the class of x
in Fq. We have a ring homomorphism φ : Z(q) → Fq defined by φ(u/v) = ū(v̄)−1.
We denote by [u/v]q the representative of the class φ(u/v) having the smallest
absolute value. We have chosen this presentation for the elements of Fq since
our method involves the absolute values of the unknown quantities which give
the keys and our attacks are practical when these quantities are below a certain
bound.

The following algorithm computes efficiently a in case where a and k are
sufficiently small.

DSA-ATTACK-1
Input: A signed message (m, r, s) and integers 0 < X, Y < q with X >

√
q.

1. Compute A = −rs−1 mod q and B = −s−1h(m) mod q.
2. Compute, using Lagrange’s algorithm, a basis formed by two successive min-

ima b1 = (b11X, b12Y ) and b2 = (b21X, b22Y ) of the lattice L spanned by
the vectors (AX, Y ) and (qX, 0).

3. Compute bi3 = bi2B mod q.
4. Compute the quantities

βi =

⌊
bi3 +

√
2 ‖bi‖
q

⌋
(i = 1, 2).

5. For every c1 ∈ {0,±1, . . . ,±β1} and c2 ∈ {0,±1, . . . ,±β2},
(a) compute

x0 = c1b22 − c2b12 +
b23b12 − b13b22

q
,

(b) compute gx0 mod p (resp. x0P ).
(c) If gx0 = R mod p (resp. x0P = Q), then output a = x0 mod q and stop.

Otherwise, output “Failure”.
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Proof of Correctness. We shall prove that this algorithm computes correctly a
in case |[a]q| < X and |[k]q| < Y . For this purpose, we shall construct, using
Lagrange’s algorithm, a family of pairs of independent bivariate linear equations
such that ([a]q, [k]q) is the common solution of one such pair, and hence we shall
be able to determine it.

The determinant of the lattice L spanned by (AX, Y ) and (qX, 0) is detL =
qXY . By Theorem 1, Lagrange’s algorithm gives a basis {b1,b2} of L formed
by two successive minima of L satisfying

2 |cosθ| ‖b2‖ < ‖b1‖ ≤
√
4/3 (qXY )1/2, (1)

where θ is the angle between b1 and b2.
Put bi = (bi1X, bi2Y ) (i = 1, 2). Then there are λi1, λi2 ∈ Z such that

bi1 = λi1q + λi2A and bi2 = λi2 (i = 1, 2). Suppose that q|λi2. Then λi2 = λ′i2q,
where λ′i2 ∈ Z (i = 1, 2). We have

‖bi‖2 = q2
(
(λi1 + λ′i2A)

2X2 + λ′i2Y
2
)
> ‖(qX, 0)‖.

Since X >
√
q and 0 < X, Y < q, we have Y/X <

√
q and so

‖(AX, Y )‖2 ≤ ((q − 1)2 + q)X2 < ‖(qX, 0)‖2.

Hence, we get
‖(AX, Y )‖ < ‖(qX, 0)‖ < ‖bi‖ (i = 1, 2)

which is a contradiction, since b1, b2 are two successive minima of L. Hence, we
have λi2 �≡ 0 (mod q). Further, by the Euclidean division, there are πi, bi3 ∈ Z
such that λi2B = πiq + bi3 and 0 < bi3 < q (i = 1, 2).

Put hi(x, y) = bi1x+ bi2y + bi3 (i = 1, 2). We have

hi(x, y) ≡ λi2(y +Ax+B) (mod q) (i = 1, 2).

Since λi2 �≡ 0 (mod q), we deduce that hi(x, y) (i = 1, 2) are not identical to
zero over Fq. Moreover, the congruence [k]q + A[a]q + B ≡ 0 (mod q) implies
hi([a]q, [k]q) ≡ 0 (mod q) (i = 1, 2). On the other hand, we deduce

|hi([a]q, [k]q)| ≤ bi3 + |bi · ([a]q/X, [k]q/Y )| ≤ bi3 +
√
2 ‖bi‖ (i = 1, 2).

Setting

βi =

⌊
bi3 +

√
2 ‖bi‖
q

⌋
(i = 1, 2),

we have hi([a]q, [k]q) = ciq where |ci| ∈ {0, 1, . . . , βi} (i = 1, 2).
Since the vectors b1 and b2 are linearly independent, the lines defined by the

equations h1(x, y) = c1q and h2(x, y) = c2q are not parallels. Thus there are
c1, c2 as previously such that ([a]q, [k]q) is the intersection point of the lines
h1(x, y) = c1q and h2(x, y) = c2q. Hence we have

[a]q = c1b22 − c2b12 +
b23b12 − b13b22

q
, [k]q = c2b11 − c1b21 +

b13b21 − b11b23
q

,
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where |ci| ∈ {0, 1, . . . , βi} (i = 1, 2).
Time Complexity. In Step 1, the application of the Extended Euclidean algo-

rithm for the computation of s−1 mod q and next the modular multiplications
for the computations of A and B require O((log q)2) bit operations. By Theorem
1, the complexity of Step 2 is O((log qXY )2) bit operations. Step 3 and 4 need
O((log q)2) bit operations. Put β∗

i = max{1, βi} (i = 1, 2). Step 5 needs

O(β∗
1β

∗
2(log p)

2 log(qβ∗
1β

∗
2 ))

bit operations, in case of DSA and

O(β∗
1β

∗
2 log q log(qβ

∗
1β

∗
2 ))

bit operations and
O(β∗

1β
∗
2 log q)

elliptic curve group operations, in case of ECDSA. Further, note that the bit
complexity analysis can be improved by using the Shoenhage-Strassen multipli-
cation algorithm.

From the above discussion it is clear that the time complexity of our algo-
rithm it heavily depends on the size of the quantities β1 and β2. As large these
quantities are as less practical our attack is. We shall compute bounds for β1 and
β2 in order to evaluate more closely the time complexity of our attack. Using
the bounds for b13 and ‖b1‖ we obtain β1 < 3(XY/q)1/2. In case where θ is
not very close to 90o, using the inequalities (1) and 0 < b23 < q, we get β2 <
1 + C(θ)(XY/q)1/2, where C(θ) =

√
2/(
√
3|cosθ|). We have π/3 ≤ θ ≤ 2π/3.

Furthermore, suppose that θ is not between 89.999o and 90.001o. It follows that
C(θ) < 46785. Hence β2 < 46785(XY/q)1/2. Therefore, in case where the keys
a and k are quite small, say [a]q[k]q < q(log q)4 and θ is not very close to 90o,
we can efficiently compute a. Note that the assumption about the angle θ is not
really essential (see Appendix).

It is worthwhile to remark that the step 5 of our algorithm can be parallelized
and so its running time can be reduced.

4 The DSA ATTACK-2 Algorithm

Put A = −h(m)s−1 mod q and B = −rs−1 mod q. Then ([a−1]q, [a
−1k]q) is

a solution to the congruence y + Ax + B ≡ 0 (mod q). So we can develop an
algorithm similar to the previous one, which computes the secret key a in case
where |[a−1]q| < X , |[a−1k]q| < Y . The only differences are in Step 5. More
precisely, in Steps 5(b) and 5(c) instead of x0 we set x−1

0 mod q.

5 The DSA-ATTACK-3 Algorithm

We set A = h(m)r−1 mod q and B = −sr−1 mod q. Then, ([k−1]q, [k
−1a]q) is

a solution to the congruence y + Ax + B ≡ 0 (mod q). Thus, we can develop
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an algorithm, similar to the first one, which computes the secret key a in case
where |[k−1]q| < X and |[k−1a]q| < Y . The only differences are in Step 5.
More precisely, in Step 5(a) we have not only to compute x0 but also y0 =
−Ax0 − B mod q, and in Steps 5(b) and 5(c) instead of x0 (of the first attack)
we consider the value y0x

−1
0 mod q.

6 The DSA-ATTACK-4 Algorithm

In this section we give a version of DSA-Attack 1 which the computation of its
complexity in terms of q does not involve the angle between the vectors of the
basis that we use.

DSA-ATTACK-4
Input: One signed message (m, r, s) and integers X , Y with 1 < X, Y < q.

1. Compute A = !(
√
12qXY − 9Y 2)/3X". Put a = (AX, Y ).

2. Compute η ∈ {1, . . . , q− 1} such that −ηs−1r = A mod q and next compute
B = −ηs−1h(m) mod q.

3. Compute, using Lagrange’s algorithm, a vector b = (b1X, b2Y ) having the
smallest size among the nonzero vectors of the lattice spanned by (qX, 0)
and a.

4. Compute b3 = b2B mod q.
5. Compute the quantities

α =

⌊
B +

√
2 ‖a‖
q

⌋
, β =

⌊
b3 +

√
2 ‖b‖
q

⌋
.

6. For every c ∈ {0,±1, . . . ,±α} and d ∈ {0,±1, . . . ,±β},
(a) compute x0 = cb2 − d+ (b3 −Bb2)/q,
(b) compute gx0 mod p (resp. x0P ).
(c) If gx0 = R mod p (resp. x0P = Q), then output a = x0 mod q and stop.

Otherwise output “Failure”.

Proof of Correctness. Since k − s−1ra − ηs−1h(m) ≡ 0 (mod q), setting l =
ηk mod q and f(x, y) = y + Ax + B, we have that ([a]q, [l]q) is a solution of
f(x, y) ≡ 0 (mod q). We shall prove that this algorithm computes correctly a in
case where |[a]q| ≤ X and |[l]q| ≤ Y .

Denote by L the lattice spanned by the linearly independent vectors a and
(qX, 0). By Theorem 1, Lagrange’s algorithm gives a vector b = (b1X, b2Y ) of
L with size

‖b‖ ≤
√
4/3 detL1/2 ≤

√
4/3 (qXY )1/2.

Further, we have ‖a‖ >
√
4/3(qXY )1/2 and so, we get ‖b‖ < ‖a‖. If a and b

are linear dependent, then b1 = b2A, whence b = b2a. Hence ‖b‖ ≥ ‖a‖ which
is a contradiction. Thus, a and b are linearly independent.
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Let b = λa + μ(qX, 0), where λ, μ ∈ Z. Then λ = b2. By the Euclidean
division of λB by q, we have λB = πq+ b3, where π, b3 ∈ Z and 0 ≤ b3 < q. Put
h(x, y) = b1x+ b2y + b3. Therefore

h(x, y) ≡ λf(x, y) (mod q).

If q|λ, then we deduce ‖b‖ ≥ qY and so, qY < 2(qXY )1/2, whence qY < 2X .
Since Y > 1 and X < q we have a contradiction. Therefore q � |λ and so, h(x, y)
is not identical to zero over Fq. Furthermore, we have h([a]q, [l]q) ≡ 0 (mod q).
On the other hand, we deduce

|f([a]q, [l]q)| ≤ B +
√
2 ‖a‖, |h([a]q, [l]q)| ≤ b3 +

√
2 ‖b‖.

Since h([a]q, [l]q) ≡ f([a]q, [l]q) ≡ 0 (mod q), setting

α =

⌊
B +

√
2 ‖a‖
q

⌋
, β =

⌊
|b3|+

√
2 ‖b‖

q

⌋
,

we get f([a]q, [l]q) = cq and h([a]q, [l]q) = dq, where c ∈ {0,±1, . . . ,±α} and
d ∈ {0,±1, . . . ,±β}. Since a and b are linear independent, we have that the
polynomials f(x, y) − cq and h(x, y) − dq are independent and so we obtain
[a]q = cb2 − d+ (b3 −Bb2)/q.

Time Complexity. The Step 1 requires O((log qXY )2) and Step 2, O((log q)2)
bit operations. By Theorem 1, the time complexity of Step 3 is O((log qXY )2)
bit operations. The use of Euclidean division in Step 4 needs O((log q)2) bit op-
erations. Since ‖a‖ ≤ 2(qXY )1/2 and ‖b‖ <

√
4/3 (qXY )1/2, Step 5 needs

O((log qXY )2) bit operations. Furthermore, we deduce α, β < 3(XY/q)1/2.
So, Step 6, in case of DSA, requires O((XY/q)(log p)2 log(pXY/q)) bit oper-
ations and, in case of ECDSA, O((XY/q) log q log(XY )) bit operations and
O(XY (log q)/q) elliptic curve group operations. Therefore, for DSA, the time
complexity of our algorithm is O((XY/q) log p log(pXY/q)) bit operations, and
for ECDSA, O((XY/q) log q log(XY )) bit operations and O(XY (log q)/q) el-
liptic curve group operations. Note that when XY < q(log q)4 our attack is
practical. Moreover, the computation of the complexity in terms of q does not
use the angle between the vectors a and b, as in the previous section.

7 The DSA-ATTACK-5 Algorithm

Set B = !(
√

12qXY − 9Y 2)/3X". We determine η ∈ {1, . . . , q − 1} such that
−ηs−1h(m1) ≡ B (mod q) and next we compute A = −ηs−1r mod q. Then
taking l = [ηk]q, we have l+B[a−1]q +A ≡ 0 (mod q). Thus, we can develop an
algorithm similar of the above for the computation of [a−1]q and hence a.

8 Heuristic Attacks

Every loop of Lagrange’s algorithm provide us with linear polynomials h1(x, y)
and h2(x, y). Taking advantage of this fact we develop an heuristic attack. Put
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A = −rs−1 mod q and B = −s−1h(m) mod q and fix bounds M1 and M2.
We apply Lagrange’s algorithm on the lattice L spanned by v1 = (A, 1) and
v2 = (q, 0). In each loop the algorithm provide us with a basis b1 = (b11, b12)
and b2 = (b21, b22) of L. Further, we compute bi3 = bi2B mod q. For every
ci ∈ {0,±1, . . . ,±Mi} (i = 1, 2) we compute

x0 = c1b22 − c2b12 +
b23b12 − b13b22

q
,

and next gx0 mod p (resp. x0P ). If g
x0 = R mod p (resp. x0P = Q), then output

a = x0 mod q. Similar attacks hold for the other two cases.

9 Attacks Using Some Known Bits

Suppose now, as in [10,17,18,3], that some side channel attack or another attack
has provided us with some bits of the two keys which consist of some blocks of
non-contiguous bits. Then the unknown bits are in, say d blocks, of contiguous
bits. So a = u+ a′ where a′ =

∑d
j=1 2

λjaj , with u, λj are known and aj (j > 0)
are unknown. Similarly, k = v + k′, where v and k′ are positive integers. Then
(a′, k′) is a solution of y + Ax + B′ ≡ 0 (mod q), where A = −rs−1 mod q
and B′ = −h(m)s−1 + Au + v mod q. If [a]q[k]q < q(log q)4, then we can use
the algorithm DSA-ATTACK-1 in order to determine efficiently a′ and so a.
Similarly, we proceed for the other cases.

10 Attacks Using Two Signed Messages

Suppose now that we possess two signed messages (m1, r1, s1), (m2, r2, s2) signed
with ephemeral keys k1 and k2 respectively. Eliminating a from the resulting
congruences, we obtain a new congruence in k1 and k2, and so we can use the
above attacks in order to compute k1 or k2 and hence a.

11 An Example

We consider the elliptic curve E given in [2, Example 3, p. 182] defined over the
finite field Fp, where p = 2160 + 7 is a prime, by the equation

y2 = x3 + 10x+ 1343632762150092499701637438970764818528075565078.

The number of points of E(Fp) is the 160-bit prime

q = 1461501637330902918203683518218126812711137002561.

Consider the point P = (x(P ), y(P )) of E(Fp) of order q, where

x(P ) = 858713481053070278779168032920613680360047535271,
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y(P ) = 364938321350392265038182051503279726748224184066.

We take as private key the 159− bit integer

a = 632790624926327566095930109784509564088868719925

and so, the public key is Q = aP = (x(Q), y(Q)) where

x(Q) = 323143541338258768513217516737351163416580216802,

y(Q) = 108256574209433569821431121048146863357122767205.

Let m be a message with hash value

h(m) = 142942603167529132165819177831617629501580942.

We shall produce two different signatures to m and we shall apply our attacks
on the signed messages.

(1) We choose the 160−bit integer

k = 1379446954338586918993483976734898999722877873502

as an ephemeral key and we produce the signature (r, s) for m, where

r = 1068783781268713267197646474159527053924987016485,

s = 1378560981845469016588440780739126281039851915903.

We have
a−1 mod q = 18014398509481986<

√
q log q,

a−1k mod q = 43459871673287390856765008<
√
q log q.

We apply DSA-ATTACK-2 with X = Y = �√q log q� and, since β1 = 141, β2 =
176, we have to check 99899 values.

(2) Next, we choose the 147−bit integer

k = 166512230815695319456800029769107765911320439

as an ephemeral key and we produce the signature (r, s) for m, where

s = 1306196044283986966897196176500887228348994582394,

r = 724139290201395716568648544869144698056699972161.

We have |[a]q|, |[k]q| > q0.9. Also, a−1 mod q <
√
q log q and |[a−1k]q| > q0.9.

Further, |[k−1]q| and |[k−1a]q| are > q0.9 and so, the attacks of Section 3, 4
and 5 do not work. We try the heuristic attacks of Section 3.4. We set A =
−h(m)s−1 mod q, B = −rs−1 mod q and we take M = 292820000 
 2(log q)4.
In 12th loop we obtain b1 = (b11, b12) and b2 = (b21, b22), where

b11 = −10081856157042815729460537928423189368902, b12 = −84226299,
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b21 = 1012670394183657723999456780974912306541, b22 = −136503451,

which form a basis of the lattice spanned by (q, 0), (A, 1). We compute

Bb12 mod q = −781982649082028777596295134710513450423832598231

Bb22 mod q = −206354035197723594446285891701235586069110289872.

which are b13 and b23, respectively. For c1 = −197283790 and c2 = −105851969
we obtain a−1 mod q and hence a.

The above attack can be easily parallelized. We divide the interval [−M,M ]
to κ = 1000 ≈ !(log q)2.54" subintervals of length about μ = !2M/κ" = 312745.
For � = 0, 1, 2, ..., κ−1, we consider the intervals I� = [−M+�μ,−M+(�+1)μ]
and we compute x0 for each integer pair (c1, c2) ∈ Ii × Ij . Thus, this step
can be executed in O(μ2) steps. For this parallel computation we need κ2 = 106

processors. Note that the bitcoin grid uses at least 105.2 processors and a modern
supercomputer uses over 105 processors.

All the computations are executed in a computer with Pentium 2GHz and
memory 3Gb. Further for the elliptic curve computations we have used SAGE
[20], for the arithmetic computations MAPLE 12 and for the choice of h(m) and
k the B.B.S. pseudo-random generator [4]. The secret key a is not chosen at
random but in order to support a case where our attack works.

12 Conclusion

In this paper we have presented rigorous attacks on the DSA and ECDSA based
on Lagrange’s algorithm, which recover the secret key in polynomial time, pro-
vided that the sizes of the numbers in one of the pairs ([a]q, [k]q), ([k

−1]q, [k
−1a]q)

and ([a−1]q, [a
−1k]q) are sufficiently small. Thus, a signer has to take care about

the size of all the above quantities and not only of a and k. We have also presented
an heuristic variant of this attack using all the loops of Lagrange’s algorithm and
attacks in case where two signed messages are known. An interesting feature of
all these attacks are that can be parallelized. If we know a sufficient number of
bits of a and k, then our attacks can compute a. Note that the needed number of
known bits is fewer than in [3]. Our attacks can also be applied on other signa-
ture schemes where the secret and the ephemeral keys are solutions of a modular
bivariate linear equation. Such schemes are Schnorr’ signature, Heyst-Pedersen
signature, GPS, etc [7,14,21].
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Appendix

Here we give some experiential results for the angle θ between the two reduced
vectors of a lattice of the form Lq = {(qX, 0), (AX, Y )} after we applied Lagrange
algorithm.We considered five random choices for the prime q of 160-bits. For each
prime q we have chosen randomly 200 triples of X,Y,A in the interval (

√
q, q),

and then we applied Lagrange algorithm to the lattice Lq. In all cases, the angle
between the two reduced vectors was not in the interval I = [89.999o, 90.001o].

Now we fix (q, A,B) and we let X,Y to vary under the constraints X >
√
q

and XY < q(log q)4. In each row of the matrix below, we chose a random triple
(q, A,B) with q having 160 bits and A,B random integers in the interval (

√
q, q).

We chose 200 random values of (X,Y ) under the previous constraints and for
each instance (X,Y ) we executed Lagrange algorithm. Then we compute the pair
(X,Y ) which give us the closest angle to 90o (of the output vectors). Finally, for
the specific value of (X,Y ) we compare the real bound β2 with the theoretical
bound C(θ) · (log q)2 
 C(θ) · 1602. We summarize the results in the matrix
below. We observe that the bound β2 is far smaller than the theoretical bound
C(θ) · (log q)2. This suggests that the algorithm has complexity far smaller than
the theoretical given under the assumptions that the angle of the output vectors
must be in the interval I. Also, if for some choice of X,Y we got an angle in the
interval I, then a new choice is very likely to give a new anlge not in I.

(q, A,B) β2 angle θ C(θ) · (log q)2
1 14375 90.04o 1170 · 1602 = 259531 · 102
2 15460 89.99o 4678 · 1602 = 1197743 · 102
3 64888 90.001o 46782 · 1602 = 11976330 · 102
4 52999 89.984o 2924 · 1602 = 748636 · 102
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Abstract. In [17], Lubicz and Robert generalized the Tate pairing over
any abelian variety and more precisely over Theta functions. The secu-
rity of the new algorithms is an important issue for the use of practical
cryptography. Side channel attacks are powerful attacks, using the leak-
age of information to reveal sensitive data. The pairings over elliptic
curves were sensitive to side channel attacks. In this article, we study
the weaknesses of the Tate pairing over Theta functions when submitted
to side channel attacks.
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1 Introduction

Since they appeared in cryptography, the efficient computation of pairings is
a very active area of research. Originally defined over elliptic curves in Weier-
strass model [19], pairings have been computed in other models of elliptic curves
(for example Edwards [13], Huff [14], Jacobi [5]). They have also been stud-
ied in different systems of coordinates such as affine [16], Jacobian, projective,
Chudnovsky [3] or in original representation of finite fields RNS [2]. The main
algorithm to compute pairings is the Miller algorithm [19]. It is based on a dou-
ble and add scheme. Several works aimed to reduce the number of iterations of
Miller’s algorithm and to develop the notion of optimal pairings [12]. In both
Optimal Pairings [21] and Pairings Lattices [11] the authors present methods to
find the Miller algorithm with the smallest number of iterations. All these works
deal with a computation of pairing over elliptic (or hyper elliptic) curves.

The latest improvement in the computation of pairing was the description of
efficient pairing computation in a more general case for any algebraic variety; and
in particular pairings over Theta functions. In [17], Lubicz and Robert generalize
the notion of the Weil and the Tate pairings to any abelian variety. To do so, they
made an explicit link between the Weil and the Tate pairings and the intersection
pairing on the degree 1 homology of an abelian variety. The result is a general
definition of pairings and they explicit the formulas for the case of level 2 and
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4 Theta functions in order to obtain the most efficient algorithm, considering
time and memory consumption. Their algorithm to compute pairing is based on
a Montgomery Ladder’s approach.

Each time new formulas for pairing are proposed, the security and imple-
mentation of the new algorithms are an important issue for the use in practical
cryptography. As for every cryptographic protocol constructed nowadays, the
size of groups involved in pairing computation are chosen to be large enough to
avoid the discrete logarithm attack. Consequently, pairing implementations are
secured against mathematical attacks. Nevertheless, considering side channel at-
tacks, we cannot predict if an algorithm is more or less secure than another given
the representation of the groups. Weaknesses to side channel attacks of pairing
based cryptography over elliptic curve have been highlighted [20,23,22,7,8]. Then,
wondering if a pairing implemented in Theta function would be vulnerable to
side channel attacks is an important issue for pairing based cryptography and
this is the main objective of this contribution. The remaining of the article is
organized as follows. The Section 2 is devoted to the definition of pairings over
Theta functions. In Section 3 we describe the application of side channel attacks
to pairing over Theta functions, we highlight the weaknesses of the pairing and
provide countermeasures to secure the computation. We conclude in Section 4.

2 Pairings over Theta Function

This Section is a brief review of the results in [17]. We present the notations
and background of Theta functions in Section 2.1. We give the definition of the
Weil and the Tate pairings and of the algorithm to compute the Tate pairing in
Section 2.2.

2.1 Background on Theta Function

Let Hg be the g dimensional Siegel upper-half space which is the set of g ×
g symmetric matrices Ω whose imaginary part is positive definite. For Ω ∈
Hg, let ΛΩ = ΩZg × Zg the lattice of Cg defined by Ω. If A is an abelian
variety of dimension g over the number field K with a principal polarization
then A is analytically isomorphic to Cg/ΛΩ. Let Π : C → Cg/ΛΩ = A be
the canonical projection. The classical theory of Theta functions gives a lot of
functions on Cg that are pseudo-periodic with respect to ΛΩ and can be used
as a projective coordinate system for A. For a, b ∈ Qg, the Theta function with
rational characteristics (a, b) is an analytic function on Cg ×Hg given by

θ

[
a
b

]
(z,Ω) =

∑
n∈Zg

exp
[
Πit(n+ a).Ω.(n+ a) + 2Πit(n+ a).(z + b)

]
,

where t represents the transpose of a vector.



134 N. El Mrabet

In order to describe the pseudo-periodicity relations verified by the Theta
function, we introduce a certain pairing on Cg. We have that Cg is isomorphic
to R2g via the map {

R2g −→ Cg

(x1, x2) −→ Ωx1 + x2.

For α, β ∈ R2g, let α = (α1, α2) and β = (β1, β2), we define eΩ : R2g → C by
eΩ(α, β) = exp (2iΠ(α1β2 − α2β1)).

The pseudo periodicity of θ is given by

θ

[
a
b

]
(z +Ω.m+ n,Ω) =

eΩ(Ωa+ b,Ωm+ n)× e(−ΠitmΩm−2Πitmz) × θ
[
a
b

]
(z,Ω).

A function f on Cg is ΛΩ-Theta-periodic of level l ∈ N if for all z ∈ Cg and
m ∈ Zg, we have

f(z +m) = f(z), f(z +Ω.m) = exp(−Πiltm.Ω.m− 2Πiltz.m)f(z).

For any l ∈ N�, the set HΩ,l of ΛΩ-quasi-periodic functions of level l is a finite
dimensional C-vector space whose basis can be given by the Theta functions with

characteristics

(
θ

[
0
b/l

]
(z, l−1.Ω)

)
b∈[0,...,l−1]g

. If l = k2, then an alternative

basis of HΩ,l is

(
θ

[
a/k
b/k

]
(kz,Ω)

)
a,b∈[0,...,k−1]g

.

Once the level l ∈ N is fixed, the following conventions are adopted Z(l) =
(Z/lZ)g and for a point zP ∈ Cg and i ∈ Z(l) let

θi(zP ) = θ

[
0
i/l

]
(zP , Ω/l).

If l = k2, for i, j ∈ Z(k), let θi,j(zP ) = θ

[
i/k
j/k

]
(k.zP , Ω).

Let P̃ denote the element of Alg (C) with coordinates P̃i = θi(zP ). Let P be the
associated point of A that will be be considered depending on the situation as
embedded in Plg−1 or as a point on the analytic variety Cg/ΛΩ. For n, l ∈ N, if
n divides l then Z(n) will be considered as a subgroup of Z(l) via the morphism
x → (l/n).x. Let Ξ be the Theta divisor of level l on A, i.e. Ξ is the divisor

of zero of

(
θ

[
0
0

]
(z, l−1Ω̇)

)
. There is an isogeny φl : A → Â = Pic0A, defined

by x→ τ∗xΞl − Ξl where τx is the translation by x morphism on A. Let A[l] be
the kernel of φl. Let K(A) be the function field of A and (f) be the divisor of
a function f ∈ K(A). We then present the definition of the Weil and the Tate
pairing.
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2.2 Definition and Computation of Pairings over Theta Function

The Weil Pairing. For Ω ∈ Hg, let A = Cg/ΛΩ be the complex abelian variety
and denote by π : Cg → A the natural projection. Let l be a positive integer
and μl be the subgroup of C� of lth roots of unity. For zP , zQ ∈ Cg, let P , Q be
the associated points of A. The Weil pairing is the map eW : A[l] × A[l] → μl,
(P,Q)→ eΩ(zP , zQ)

l. The value eW (P,Q) does not depend on the choice of zP
and zQ representing P and Q and eW is a non-degenerate skew linear form. This
pairing can be expressed using certain Theta functions.

Definition 1. Let Ω ∈ Hg, a, b ∈ Qg, l be a positive integer and let zP , zQ ∈ Cg

be such that l.zP = l.zQ = 0 mod ΛΩ. Let P = π(zP ) and Q = π(zQ). Let

L(zP , zQ) =

θ

[
a
b

]
(l.zP + zQ, Ω)

θ

[
a
b

]
(zQ, Ω)

θ

[
a
b

]
(0, Ω)

θ

[
a
b

]
(l.zP , Ω)

,

R(zP , zQ) =

θ

[
a
b

]
(l.zQ + zP , Ω)

θ

[
a
b

]
(zP , Ω)

θ

[
a
b

]
(0, Ω)

θ

[
a
b

]
(l.zQ, Ω)

.

If L(zP , zQ) and R(zP , zQ) are well defined and non null, then

eW (P,Q) = L(zP , zQ)
−1.R(zP , zQ) = eΩ(zP , zQ)

l.

The algorithm to compute the Weil pairing is composed of four calls to the
function ScalarMult.

Theorem 1. Suppose that n and l are relatively prime. For X, Y ∈ A(K),

denote by X̃, Ỹ , X̃ + Y any affine lifts of X, Y and X + Y . For i ∈ Z(n), let
X̃i be the ith coordinate of X̃. For ∈ N and i ∈ Z(n), let

fT (X̃, Ỹ , X̃ + Y , 0̃, l, i) =
ScalarMult(X̃ + Y , X̃, Ỹ , 0̃, l)i

ScalarMult(X̃, X̃, 0̃, 0̃, l)i

0̃i

Ỹi
.

Then for P , Q ∈ A[l] and i ∈ Z(n), we have

eW (P,Q)n = fT (P̃ , Q̃, P̃ +Q, 0̃, l, i)−1fT (Q̃, P̃ , P̃ +Q, 0̃, l, i),

whenever the right hand side is well defined.

The Tate Pairing. For efficiency reasons, the pairing that will be implemented
is the Tate pairing (or a variant of the Tate pairing) so we only consider the side
channel attacks against the Tate pairing. Let K be a number field and suppose
that A is defined over K. Recall that l ∈ N is the level of the Theta function and
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it is fixed once for all. In this section, we suppose that μl ⊂ K and that A[l] is
rational overK. LetK be the algebraic closure ofK and G = Gal(K/K). Let δ1 :
K�/K�l → Hom(G,μl) (respectively δ2 : A(K)/[l]A(K)→ Hom(G,A[l])) be the
connecting morphism of the Galois cohomology long exact sequence associated
to the Kummer exact sequence (respectively to the short exact sequence 0 →
A[l]→ A(K)→ A(K)→ 0). There exists a bilinear application often referred to
as the Tate pairing eT : A(K)/[l]A(K)×A[l]→ K�/K�l such that for (P,Q) ∈
A(K)/[l]A(K)×A[l], eW (δ2(P ), Q) = δ1(eT (P,Q)), where eW is the Weil pairing
over Theta functions.

Definition 2. Let K be a number field and let A be a dimension g abelian
variety over K. Let Ω ∈ Hg be such that A is analytically isomorphic to Cg/ΛΩ.
Let a, b ∈ Qg and l be a positive integer. Let P ∈ A(K)/[l]A(K), Q ∈ A[l](K)
and zP , zQ ∈ Cg such that π(zP ) = P and π(zQ) = Q where π : Cg → A is the
natural projection 1. Suppose that zP , zQ and zP+Q are chosen such that

θ

[
0
0

]
(zP + zQ, Ω)

θ

[
0
0

]
(zP , Ω)

θ

[
0
0

]
(0, Ω)

θ

[
0
0

]
(zQ, Ω)

∈ K�,

then

eT (P,Q) =

θ

[
0
0

]
(l.zQ + zP , Ω)

θ

[
0
0

]
(zP , Ω)

θ

[
0
0

]
(0, Ω)

θ

[
0
0

]
(l.zQ, Ω)

.

The Algorithm for Computation of Pairings over Theta Functions.
Let n, l ∈ N and assume that 2 divides n and that gcd(n, l) = 1. Let A be
an abelian variety over C with period matrix Ω. We represent A as a closed
subvariety of Png−1 by the way of level n Theta functions and suppose that
this embedding is defined over K. Let Ã be the pullback of A via the natural
projection κ : Ang → Png−1. For P ∈ A, let P̃ be an affine lift of P that is a point
of Ang

such that κ(P̃ ) = P . Important ingredients of the algorithm in [17] are the
Riemann addition formulas. Suppose that the Theta null point 0̃ = (θi(0))i∈Z(n)

is known. From [17, Theorem 1], we can construct an algorithm that takes as

input P̃ =
(
P̃i

)
i∈Z(n)

, Q̃ =
(
Q̃i

)
i∈Z(n)

and P̃ −Q =
(
(P̃ −Q)i

)
i∈Z(n)

and

outputs P̃ +Q =
(
(P̃ +Q)i

)
i∈Z(n)

. Let P̃ +Q = PseudoAdd(P̃ , Q̃, P̃ −Q).
Using the Riemann addition formulas, if n = 4, the projective point P +Q can
be recovered from P and Q. As a consequence, with the knowledge of P̃ , Q̃

1 By abuse of notation we use P , Q to denote the corresponding points of an algebraic
and analytic model of A.
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and P̃ −Q there is a unique affine point P̃ +Q above P + Q that satisfies the
addition formulas from [17, Theorem 1]. The result is extended in [17] for n = 2.

Chaining the algorithm PseudoAdd in a classical Montgomery Ladder yields

an algorithm that takes as inputs Q̃, P̃ +Q, P̃ , 0̃ and an integer l and outputs

P̃ + lQ.

Let P̃ + lQ = ScalarMult(P̃ +Q, Q̃, P̃ , 0̃, l). In particular,

lP̃ = ScalarMult(P̃ , P̃ , 0̃, 0̃, l).

The output of the function ScalarMult is independent on the particular chain of
PseudoAdd calls it uses.

Theorem 2. Suppose that n and l are relatively prime. For X, Y ∈ A(K),

denote by X̃, Ỹ , X̃ + Y any affine lifts of X, Y and X + Y . For i ∈ Z(n), let
X̃i be the ith coordinate of X̃. For ∈ N and i ∈ Z(n), let

fT (X̃, Ỹ , X̃ + Y , 0̃, l, i) =
ScalarMult(X̃ + Y , X̃, Ỹ , 0̃, l)i

ScalarMult(X̃, X̃, 0̃, 0̃, l)i

0̃i

Ỹi
.

Then, for P ∈ A(K)/[l]A(K), Q ∈ A[l], if we suppose that 0̃, P̃ , Q̃ and P̃ +Q
are affine lifts of 0, P , Q and P + Q with coordinates in K, then we have for
i ∈ Z(n),

eT (P,Q)
n = fT (Q̃, P̃ , P̃ +Q, 0̃, l, i),

whenever the right hand side is well defined.

For example, let E be an elliptic curve defined by Ω ∈ H1 and Ω′ = Ω/2. Put

a = θ

[
0
0

]
(0, Ω′); b =

[
0

1/2

]
(0, Ω′);

A = θ

[
0
0

]
(0, 2Ω′); B = θ

[
1/2
0

]
(0, 2Ω′).

The algorithm ScalarMult is composed by a doubling algorithm and a differential
addition algorithm given in Figure 1.

3 Side Chanel Attacks against the Tate Pairing
over Theta Function

3.1 Side Channel Attacks in Pairing Based Cryptography

The general scheme of an identity based encryption is recalled in [9]. The im-
portant point is that to decipher a message using an Identity Based Protocol,
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Doubling Algorithm Differential Addition Algorithm
Input: A point P = (xP : zP ). Input: Two points P = (xP : zP ) and

Q = (xQ, zQ) on E, R = (xR : zR) = P −Q,
with xRzR �= 0.

Output: The double 2P = (x2P : z2P ) Output: The point P +Q = (xP+Q : zP+Q)
1. x0 = (x2

P + z2P )
2 1. x0 = (x2

P + z2P )(x
2
Q + z2Q)

2. z0 = A2

B2 (x
2
P − z2P )

2 2. z0 = A2

B2 (x
2
P − z2P )(x

2
Q − z2Q)

3. x2P = x0 + z0 3. xP+Q = (x0 + z0)/xR

4. z2P = a
b
(x0 − z0) 4. zP+Q = (x0 − z0)/zR

5. Return (x2P : z2P ) 5. Return (xP+Q : zP+Q)

Fig. 1. Doubling and Differential Addition Algorithms

a computation of a pairing between a private key and a public message is per-
formed. Side channel attacks are powerful attacks using the leakage of informa-
tion during the execution of a cryptographic protocol. As soon as the algorithm
involves a computation between a secret and a public data, side channel attacks
can be applied in order to reveal the secret, or information about the secret. The
particularity of identity based cryptography is that an attacker can know the
algorithm used, the number of iterations and the exponent. The secret is only
one of the arguments of the pairing. We describe here two attacks, namely the
Differential Power Analysis (DPA) and the fault attack. There are other side
channel attacks, but the popular ones are either a generalization of the DPA
(DEMA, CPA) or fault attacks.

3.2 The Possible Targets

If we compare the efficiency of the Tate and of the Weil pairings, the former
is more efficient than the later at least for the security levels considering today,
when pairings are computed using a Miller’s algorithm. In the case of Theta func-
tions, the algorithmic complexity of the Tate pairing consists in two applications
of the function ScalarMult, while the Weil pairing consists in four applications
of this function. It is quite evident that the Tate pairing over Theta function
will always be more efficient than the Weil pairing over the Theta function. So
we study only the weakness of the Tate pairing considering side channel attacks.
Nevertheless, the attacks described for the Tate pairing can easily be adapted
to the Weil pairing. As a consequence the countermeasure proposed here must
be considered also for the implementation of the Weil pairing.

The Tate pairing is composed of two applications of ScalarMult. First of all,
we focus on side channel attacks against one application of ScalarMult and after
that we will consider side channel attacks against the Tate pairing. The same
argument can provide the result of side channel attacks against the Weil pairing,
or any optimizations of the Tate pairing namely Ate, twisted Ate or optimal
pairings. The function ScalarMult is a Montgomery Ladder composed by the
Doubling and Differential Addition algorithms at each step. When the secret
is the exponent this algorithm is an efficient countermeasure to side channel
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attacks. In the case of pairing based cryptography, the secret is not the exponent
but one of the parameters of the Mongtomery Ladder algorithm. Consequently,
the analysis considering side channel attacks against Montgomery’s Ladder for
the classical use in cryptography (efficient exponentiation) is no more available.
We analyze the weaknesses of the algorithm to compute pairing using Theta
functions. We will focus on the DPA and on the fault attack. The consideration
of the DPA includes also the consideration of the Correlation Power Analysis
(CPA) and the Differential Electromagnetic Attack (DEMA). Indeed the DEMA
works exactly like the DPA and the CPA is an improvement of the DPA.

3.3 Differential Power Analysis Attack and Generalization

In order to simplify the explanation, we describe here only the differential power
analysis (DPA) attack. As the concept is the same for all differential attacks,
we include in the same family the differential power analysis (DPA) and the
differential electromagnetic attack (DEMA) [4]. Further on, correlation attack
[23] is just a form of DPA using the particular side-channel distinguisher i.e.
Pearson correlation.

We now introduce some theoretical issues that allow the reader to understand
the principle underlying the DPA attack, more details can be found in [15,18].
We consider the output of a gate whose state depends on both the plain text to
be ciphered (primary inputs) and the secret key. It is called the target node. We
consider now a sequence of input patterns P0, P1, . . . , Pn that generate the tran-
sitions T1(P0 → P1), T2(P1 → P2), . . . , Tn(Pn−1 → Pn) on the circuit primary
inputs. A logic simulation of the circuit while monitoring the target node allows
classifying these input transitions in two sets, according to a guess on the key:

• PA, composed by the transitions that make the target node to commute from
0 to 1 and therefore that make the target gate to consume current;

• PB, composed by the transitions that do not lead the target gate to partic-
ipate to the power consumed by the circuit (i.e., transitions from 0 to 0, 1
to 1 and 1 to 0 on the target node).

Figure 2 represents the power consumption of the device when stimulated by
numerous input vectors. We assume here that the guess on the secret key is cor-
rect. In other word, the simulation is performed with the key actually used in the
circuit from which power consumptions are collected. Each rectangle represents
the total power consumed by the circuit when a new vector is applied to the
inputs. In this figure and just for clarity of explanation, the power consumption
is represented by a rectangle corresponding to the average of the consumption
over the transition time. The set of transitions on the circuit inputs is splitted
in the two sets: in the left part there are the PA transitions and the related
consumptions while in the right part there are the PB transitions and their cor-
responding consumptions. A part of the power consumption related to the tran-
sitions belonging to PA is due to the power consumed by the target gate (shaded
rectangles). Obviously, the commutation from 0 to 1 of non-target nodes also
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Fig. 2. Power consumption after pattern partitioning

contributes to the power consumption of the circuit but input transitions that
lead to such commutations are assumed to be evenly distributed to sets PA and
PB. If a large number of transitions are considered, mean consumptions related
to sets PA and PB are almost equal, except for the contribution of the target
node. In other words, since the two sets are classified in such a way that the set
PA always leads to a component of power consumption that is not present in the
set PB , the difference between the two mean powers computed from set PA and
set PB must show a noticeable difference.

During a DPA attack, the target node is chosen in such a way that it depends
on a small part of the key only, so that all the key guesses can be considered.

For each key guess, the two sets PA and PB are created according to the results
of the logic simulation and the key guess under evaluation. The power mean
values are calculated for each set using the simulated power traces of the circuit
under attack for each transition. Finally, the differences of the mean values of
the two sets are calculated. When the key guess is correct (and only in this case),
PA actually includes the input transitions that lead to a transition 0 to 1 on the
target node while PB does not include any of these transitions. The difference
between the mean power obtained from PA and PB can be observed in this case.
On the contrary, when the curves are classed in PA or PB independently from
the actual value of the secret key, the two average curves do not present any
noticeable difference. The classification process is illustrated in Figure 3 where
Kx is assumed to be the correct key, the one actually used during ciphering.

3.4 DPA Attack

The computations sensitive to the DPA attack are the one involving the
coordinates of the points P and Q. As a consequence, the DPA attack could
only be done in the addition step. Indeed, the doubling step does not involve
any computation between the coordinates of P and Q, the operations are mul-
tiplications by constant.
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Fig. 3. Pattern classification for several key guesses

Without protection, the DPA attack is a threat against the addition step,
whenever the secret is (point P or Q). According to the algorithm of ScalarMult,
the argument Q of the pairing is in fact a multiple of the point Q and the point
P is fixed.

The target of the DPA attack is the computation of x0 and z0 in the differential
addition algorithm. In order to compute x0, we have to perform a multiplication
between (x2P + z2P ) and (x2Q + z2Q). Suppose that the point P is public and that

Q is secret, we know the value of (x2P + z2P ) and the value (x2Q + z2Q) is secret.

We perform the DPA attack against the multiplication (x2P + z2P )× (x2Q + z2Q).
Assuming that the multiplication is implemented using the Schoolbook method,
the guesses on the value (x2Q + z2Q) can be done by words of 32 or 64 bits and
begin by the less significant bits. The result of the DPA attack against x0 is
(x2Q + z2Q).

During the computation of x0 the Differential Addition Algorithm would give
us the value x̃Q

2
+ z̃Q

2
. In parallel, another DPA attack during the computation

of z0 would give the value x̃Q
2 − z̃Q2

. Once we have these two values, it is easy

to extract x̃Q
2
and z̃Q

2
, which gives 4 possible couples for the coordinates of

point Q.
As the Differential Addition Algorithm is symmetric in the coordinates of P

and Q, the same attack is efficient if the point P is secret and Q is public.
Classical countermeasures presented in the case of pairing over elliptic curves

can easily be adapted for the computation of pairings over Theta functions [8]. A
native countermeasure is the homogeneity of the projective coordinates. Indeed,
the point P = (xP : zP ) is also the point (λxP : λzQ), for λ a non zero integer
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and Q = (βxQ, βyQ), for β a non zero integer. The main hypothesis of a DPA
attack is that the secret is the same for several executions of the algorithm. So,
if we modify the coordinates of the secret for each execution the DPA attack can
no longer be performed.

An efficient countermeasure consists in multiplying the coordinates of P by
a random non zero integer λ and the coordinates Q by a random β for every
iteration of the ScalarMult algorithm. This countermeasure is a good protection
against any differential attack (power or electromagnetic) and consequently a
protection for the Tate (and the Weil) pairing.

3.5 Description of the Fault Attack

The goal of a fault injection attack is to provoke mistakes during the calculation
of an algorithm, for example by modifying the internal memory, in order to reveal
sensitive data. This attack needs a very precise positioning and an expensive
apparatus to be performed. Nevertheless, current technologies could allow for
this attack [10]. the faults can be performed using a laser or electromagnetic
emissions [4].

We follow the scheme of attack described in [20] and completed in [6]. We
assume that the pairing is used during an Identity Based Protocol, the secret
point is introduced in a smart card or an electronic device and is a parameter
of the pairing. In order to find the secret, we modify the number of iterations in
the Tate pairing algorithm by the following way.

First of all, we have to find the flip-flops belonging to the counter of the
number of iterations (i.e. log2(s)) in the Tate pairing algorithm. This step can
be done by using reverse engineering procedures. In classical architecture, the
counter is divided into small pieces of 32 or 64 bits (according to the size of
a word). To find it, we make one normal execution of the algorithm, without
any fault. Then we choose one piece of the counter and provoke disturbances in
order to modify it and consequently the number of iterations of the algorithm.
For example the disturbance can be induced by a laser [1]. Nowadays lasers are
thin enough to make this attack realistic [10]. Counting the clock cycles, we are
able to know how many iterations the Tate pairing loop has done. Each time,
we record the value of the pairing loop and the number of iterations we made.

3.6 Fault Attack

State of the Art. The principle of fault attacks in pairing based cryptogra-
phy consists to force the algorithm to stop by reducing the number of itera-
tions and by finding the results of two consecutive iterations τ and τ + 1. The
results of these two executions give equations that allow to find the secret. In
the case of pairings over Theta function, the fault attack consists in finding one

the coordinates involved during the computation of ScalarMult(P̃ +Q, Q̃, P̃ ).
The ScalarMult algorithm is composed by the doubling and differential addi-

tion algorithms, the result of of ScalarMult are the coordinates of P̃ + lQ. The



Side Channel Attacks against Pairing over Theta Functions 143

fault attack consists in reducing the number of iteration of ScalarMult. To do
so, we can use a laser or electromagnetic emissions to locally modify the register
storing l. The target of this attack is then a smart card or a FPGA. Let τ be
the reduced number of iteration performed by ScalarMult. In practice τ can be
recovered using the number of clock cycles made by the algorithm. Indeed, we
know the binary decomposition of l, we are then able to find when the algorithm
stops and how many iterations were done. Let j be the integer composed by the
τ most significant bits of l, which is public. The fault attack for pairing over
Theta function is easier than the classical fault attack in pairing based cryptog-
raphy. We need only one fault and the result of this faulty execution to find the
secret involved in the ScalarMult algorithm

The result of the pairing is the coordinates of the point P̃ + lQ. We can
suppose that we obtain one of the two coordinates, for example the coordinate
z. With the z coordinate of the result, we are able to recover the secret argument
of the pairing computations.

Suppose that we can recover the coordinate z of the point P̃ + jQ, for j < l.
As the points P and Q are of order l by construction, the result of the pairing
itself cannot give us information. That is why we need to provoke a fault reducing
the number of iterations of the ScalarMult algorithm.

Let z1 = zP+jQ, where j is a known integer. The equation of z1 is the following

z1 =

[
(x2j + z2j )(x

2
P + z2P )−

A2

B2
(x2j − z2j )(x2P − z2P )

]
1

z
, (1)

where

◦ P = (xP , zP ) = (x, z) (with the notations introduced above)
◦ (j − 1)Q = (xj , zj)
◦ P + jQ = (x1, z1)
◦ A and B are constants.

We first describe the attack of the algorithm ScalarMult, before considering the
fault attack against the whole Tate pairing algorithm.

If the Secret Is the Point P . Suppose that the point P is secret. The fault
attack provide us z1, the values A, B, xj and zj are public. All together, they
verify the equation

λzP = β(x2P + z2P ) + γ(x2P − z2P ),

where the data in bold (λ,β,γ) are known. The coordinates xP and zP are the
values we are looking for.

The point P is given in projective coordinates, this equality is correct for any
representative of the point P , i.e. for any α �= 0 we have that

λ(αzP ) = β((αxP )
2 + (αzP )

2) + γ((αxP )
2 − (αzP )

2).
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As the coordinates of P are such that xP zP �= 0, we can consider that α = 1
zP

and write the equation

λ = β((x′P )
2 + 1) + γ((x′P )

2 − 1),

which leads to

(x′P )
2 =

λ − β + γ

β − γ
.

Up to the sign, we find one coordinate of a representative of the point P and
from that point we can find the secret.

if the secret is the point Q. The formulas are symmetric in the coordinates
of P and jQ. Following the same scheme, we obtain z1 for j not equal to the
order of Q and that gives the coordinates of a representative of jQ, knowing j.
To find the coordinates of Q, we just have to compute the inverse of j mod (l)
and after that we can recover the coordinates of the point Q.

The condition to perform the fault attack when Q is secret is to stop the
computation before j = l, as Q is a point of order l. This is a simplification of
the fault attack against the pairing considering Miller’s algorithm, because we
only need one faulty execution of ScalarMult.

Considering the computation of the Tate Pairing. Recall that the
algorithm to compute the Tate pairing is

eT =
ScalarMult(P̃ +Q, Q̃, P̃ , l)i

ScalarMult(Q̃, Q̃, 0̃, l)i

0̃i

P̃i

.

The attacks described above for ScalarMult can be directly adapted to the Tate
pairing (and also to the Weil pairing). For efficiency reasons, the computation

of ScalarMult(P̃ +Q, Q̃, P̃ , l)i and ScalarMult(Q̃, Q̃, 0̃, l)i would certainly be im-
plemented in parallel. As a consequence, the fault attack forces the algorithm to
stop after the same number of iterations and the result

ScalarMult(P̃ +Q, Q̃, P̃ , j)i and ScalarMult(Q̃, Q̃, 0̃, j)i,

for the same integer j. For both cases, either P secret or either Q, the homo-
geneity of projective coordinates is a trapdoor that gives information about the
secret. Let P be the secret point and Q be public, then the coordinate P̃i is also
secret, but the homogeneity of the projective coordinates allows us to consider
that for example the z coordinate is set to 1, exactly like in the attack described
above. We just have to be careful to set the same coordinate to 1 in both calls
to ScalarMult, the z one for example. The Equation (1) would give a slightly
different system but linear and easily solvable. The method is the same if the
point Q is secret.
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Countermeasure to the Fault Attack. Considering that the fault attack
uses the homogeneity of the coordinates, the countermeasure to the DPA attack
is clearly not sufficient. We have to present another countermeasure and this
countermeasure must protect the pairing algorithm from the fault and the DPA
attacks. So, we have to modify the coordinates of the point P and Q for every
pairing computation. A solution would be to use the bilinearity of the pairing
[8]. Indeed, if we compute the Tate pairing between the points P and Q, the
bilinearity induces that

eT (P,Q) = eT
(
δP, (δ−1 mod (l))Q

)
,

for a non zero integer δ. The cost of this countermeasure consists in two
exponentiations over t he variety A(K).

4 Conclusion

We analyze the weaknesses of the pairings over Theta function with respect to
side channel attacks. We consider the differential power analysis and the fault
attack. The scheme of the differential power analysis embraces the differential
electromagnetic attack and the correlation power analysis. The ScalarMult al-
gorithm is sensitive to the DPA attack, but the homogeneity of the projective
coordinates provides a native countermeasure. Unfortunately, the homogeneity
is a trapdoor for the fault attack. The fault attack against pairing over Theta
functions is easier than in the case of pairings using the Miller’s algorithm. We
only need one fault to recover the secret. As the homogeneity of the coordinates
is no longer a countermeasure, we present an alternative countermeasure. This
countermeasure relies on the bilinearity of pairings and is efficient for all side
channel attacks.
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In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197,
pp. 251–269. Springer, Heidelberg (2010)

18. Mangard, S., Oswald, E., Popp, T.: DPA book. Graz University of Technology
(2007)

19. Miller, V.S.: The weil pairing, and its efficient calculation. Journal of Cryptology
17(4), 235–261 (2004)

20. Page, D., Vercauteren, F.: A fault attack on pairing-based cryptography. IEEE
Trans. Computers 55, 1075–1080 (2006)

21. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory
56(1), 455–461 (2010)

22. Whelan, C., Scott, M.: The importance of the final exponentiation in pairings when
considering fault attacks. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T.
(eds.) Pairing 2007. LNCS, vol. 4575, pp. 225–246. Springer, Heidelberg (2007)

23. Whelan, C., Scott, M.: Side channel analysis of practical pairing implementations:
Which path is more secure? In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS,
vol. 4341, pp. 99–114. Springer, Heidelberg (2006)



On the Efficient Generation of Generalized

MNT Elliptic Curves

Georgios Fotiadis and Elisavet Konstantinou

Department of Information and Communication Systems Engineering,
University of the Aegean, 83200 Karlovassi, Samos, Greece

{gfotiadis,ekonstantinou}@aegean.gr

Abstract. Finding suitable elliptic curves for pairing-based cryptosys-
tems is a crucial step for their actual deployment. Miyaji, Nakabayashi
and Takano [12] (MNT) were the first to produce ordinary pairing-
friendly elliptic curves of prime order with embedding degree k ∈ {3, 4, 6}.
Scott and Barreto [16] as well as Galbraith et al. [10] extended this
method by allowing the group order to be non-prime. The advantage
of this idea is the construction of much more suitable elliptic curves,
which we will call generalized MNT curves. A necessary step for the con-
struction of such elliptic curves is finding the solutions of a generalized
Pell equation. However, these equations are not always solvable and this
fact considerably affects the efficiency of the curve construction. In this
paper we discuss a way to construct generalized MNT curves through
Pell equations which are always solvable and thus considerably improve
the efficiency of the whole generation process. We provide analytic tables
with all polynomial families that lead to non-prime pairing-friendly ellip-
tic curves with embedding degree k ∈ {3, 4, 6} and discuss the efficiency
of our method through extensive experimental assessments.

Keywords: Pairing-based cryptography, MNT elliptic curves, effective
polynomial families, Pell equations.

1 Introduction

Pairing-based cryptography has gained much interest during the past few years.
Several pairing-based protocols have been proposed such as the well known
Boneh et al.’s ID-based encryption [5] and short signatures schemes [6]. All these
cryptographic schemes are based on the construction of elliptic curves that satisfy
certain properties. Clearly, generating suitable elliptic curves for pairing-based
cryptosystems is a very important issue in pairing-based cryptography. These
curves are known as pairing-friendly elliptic curves [8].

Let E/Fq be an elliptic curve of order #E(Fq) = n defined over a prime field
Fq. In most pairing-based cryptographic protocols the ideal case is to construct
elliptic curves of prime order. However, such curves are rare and so the ideal
case is hard to achieve in practice. To this end we may relax this condition and
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allow the use of curves with #E(Fq) = hr for a small cofactor h > 1 and r a
large prime. The ρ-value is defined as ρ = log(q)/ log(r) and shows how close to
the ideal case is the constructed curve. Clearly, we require the ρ-value to be as
close to 1 as possible. Furthermore, let E[r] denote the set of r-torsion points of
E/Fq. Then the embedding degree of E[r] is the smallest positive integer k > 1,
such that E[r] ⊆ E(Fqk), or equivalently the smallest positive integer such that
r | qk − 1, where Fqk is a finite extension of Fq of degree k. According to [8], an
elliptic curve E defined over a prime field Fq with small embedding degree and
large prime order subgroup is called pairing-friendly.

A well known method to construct elliptic curves over a large prime field is
the Complex Multiplication (CM) method [1]. By Hasse’s theorem, Z = 4q− t2
must be positive and, thus, there is a unique factorization Z = DY 2, with D a
square free positive integer. Therefore

4q = t2 +DY 2 (1)

is satisfied for a given pair (q, t). The negative parameter −D is called a CM
discriminant for the prime q. For convenience throughout the paper, we will use
(the positive integer) D to refer to the CM discriminant. Knowing the values
of q and t, an elliptic curve E defined over Fq with n = q + 1 − t number of
Fq-rational points can be constructed. The triple (q, t, n) represents the curve
parameters, i.e. the order of the finite field, the Frobenius trace and the group
order of E(Fq) respectively.

A pairing on an elliptic curve E/Fq is a map of the form e : E(Fq)[r] ×
E(Fqk) → F∗

qk which is bilinear, non-degenerate and efficiently computable. As

mentioned in [16] the most commonly used pairings are the Weil and Tate pair-
ings [2,9]. In order to use pairings in cryptography, we must guarantee that the
discrete logarithm problem (DLP) in both E(Fq)[r] and F∗

qk is computationally
infeasible. Thus the embedding degree must be chosen to be large enough in or-
der to keep the DLP in F∗

qk as hard as possible, but also k must be small enough

for the efficient arithmetic in F∗
qk . As stated in [16], a good choice for an 80-bit

security level is log r ≈ 160 and k log q ≈ 1024 bits, so that the cryptosystem
can resist attacks both in elliptic curve groups and in finite fields.

Miyaji, Nakabayashi and Takano in 2001 [12] were the first who proposed a
method (the so called MNT method) for the construction of prime order pairing-
friendly elliptic curves with embedding degrees k ∈ {3, 4, 6}. Using the CM equa-
tion (1) and representing the elliptic curve parameters (q, t, n) as polynomials in
Z[x], they created three Pell-type equations, one for each k ∈ {3, 4, 6}. The solu-
tions of these equations lead to potential suitable curve parameters (q, t, n). Scott
and Barreto [16] extended the idea of Miyaji et al. by allowing the group order to
contain a large prime factor r and a positive small integer h > 1 called cofactor.
In particular, they describe an explicit algorithm that constructs more Pell-type
equations for h > 1, whose solutions lead to the generation of much more suit-
able elliptic curves when k ∈ {3, 4, 6}. Galbraith, McKee and Valença [10] also
extended the MNT method for k ∈ {3, 4, 6} by using non-prime elliptic curves.
The difference of their work from [16] is that Galbraith et al. represent the curve
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parameters (q, t, r) as polynomial families (q(x), t(x), r(x)). In their paper they
give all polynomial families for h ∈ {2, 3, 4, 5} when k ∈ {3, 4, 6}. In [7], Duan,
Cui and Wah Chan present a general algorithm for the construction of pairing
friendly elliptic curves with arbitrary embedding degree and similarly to [10]
they represent the curve parameters as polynomial families. In their method
they also construct Pell-type equations from which they obtain suitable curve
parameters. Furthermore they introduce the term of effective polynomial families
by inducing some restrictions on the choice of polynomials (q(x), t(x), r(x)).

In this paper we further investigate the construction of generalized MNT el-
liptic curves with embedding degree k ∈ {3, 4, 6} by using quadratic families that
have better chances in producing suitable elliptic curve parameters. In particular
we extend the idea of effective polynomial families, first introduced in [7], and
enhance them with the ability to lead to generalized Pell equations which are
always solvable. The solutions of these Pell equations can be tested for suitability
in more than one quadratic families. This observation increases the chances of
finding suitable parameters and speeds up the method considerably. While pre-
vious works in [10,16] study cases where h ≤ 5 we extend the search to families
with larger cofactors h > 5, but not too large since we wish to keep the ρ-value
as close to one as possible. The advantage of our method is that we avoid solving
Pell equations leading to a small number of suitable curve parameters. We also
present experimental evidence that our method can considerably speed up the
generation of generalized MNT elliptic curves.

The paper is organized as follows. In Section 2 we present previous work
for the generation of MNT elliptic curves with embedding degree k ∈ {3, 4, 6}.
In Section 3 we describe our method for the construction of generalized MNT
curves. In Section 4 we present our experimental results and we conclude the
paper in Section 5.

2 Previous Work

In this section we give a brief overview of previous work concerning the gener-
ation of pairing-friendly elliptic curves with embedding degree k ∈ {3, 4, 6}. All
methods share a common characteristic: in order to generate the curve parame-
ters, they use the solutions of some Pell-type equations. These equations are of
the form

X2 − SDY 2 = m (2)

where S,m ∈ Z and S > 0. The integer D represents the CM discriminant and it
is positive and square-free. If a Pell equation of this form is solvable, then there
is an infinite number of integral pairs (Xi, Yi) satisfying it. For more detailed
analysis on the theory of Pell equations the interested reader can consult [13].
Throughout the paper we will consider elliptic curves E defined over a finite field
Fq where q is a large prime and #E(Fq) = n = hr for some large prime r and a
cofactor h ≥ 1.

Miyaji, Nakabayashi and Takano were the first to describe a method for pro-
ducing ordinary pairing-friendly elliptic curves of prime order with embedding
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Table 1. MNT Families

k q(x) t(x) n(x) Pell Equation Suitable X

3 12x2 − 1 ±6x− 1 12x2 ± 6x+ 1 X2 − 3DY 2 = 24 X = 6x± 3

4 x2 + x+ 1 −x, x+ 1 x2 + 2x+ 2, x2 + 1 X2 − 3DY 2 = −8 X = 3x+ 2, 3x+ 1

6 4x2 + 1 ±2x+ 1 4x2 ± 2x+ 1 X2 − 3DY 2 = −8 X = 6x∓ 1

degree k ∈ {3, 4, 6} (e.g. #E(Fq) = n is a large prime number). In their work
they represent the values (q, t) as polynomials q(x), t(x) ∈ Z[x], such that the
polynomial n(x) = q(x) + 1 − t(x) divides Φk(q(x)), where Φk(x) is the kth-
cyclotomic polynomial for k ∈ {3, 4, 6}. When the polynomial q(x) is quadratic,
we will refer to the families (q(x), t(x), n(x)) as quadratic polynomial families.

The quadratic polynomial families of Miyaji et al. are presented in Table 1 and
are known as the MNT families. For any pair (q(x), t(x)) of Table 1 substitute
them into the CM equation (Eq. 1) to get

4q(x)− t2(x) = DY 2 (3)

Multiplying by a constant factor and completing the squares yields to the Pell-
type equations of Table 1. We refer to these equations as the MNT equations.
Suppose that the integral pair (Xi, Yi) represents a solution of an equation in
Table 1, for some i ∈ N. Then check if there is an integer x0 such that Xi is
suitable, i.e. if it is written in the form given in the last column of Table 1. If
such a x0 exists, substitute x0 into the corresponding polynomials q(x), t(x) and
r(x) and check if q(x0) is prime, |t(x0)| ≤ 2

√
q(x0) and n(x0) is also prime.

If these conditions hold, the triple (q(x0), t(x0), n(x0)) represents the suitable
elliptic curve parameters. An implementation of the MNT method can be found
in [11].

In [16], Scott and Barreto argue that by using the MNT method we can find
few curves for actual deployment and furthermore these are the only curves
available if we insist on constructing prime order pairing-friendly elliptic curves
with k ∈ {3, 4, 6}. To overcome this problem, they generalized the method by
allowing the use of curves with nearly prime order, i.e. #E(Fq) = n = hr where
r is a large prime and h > 1. Note that in this case the field size q satisfies
the relation q = hr + t − 1. The advantage of this idea is the construction of
more Pell-type equations leading to the generation of much more suitable curve
parameters.

Since the group E(Fq) has a subgroup of prime order r and k is the embedding
degree of this subgroup, we must have r | qk − 1 and r � qi − 1 for any i ∈
{1, . . . , k−1}, according to the definition of the embedding degree. This condition
is equivalent to r | Φk(t− 1) and r � Φi(t− 1) for any i ∈ {1, . . . , k− 1}, as shown
in Lemma 1 in [3]. Thus we may assume that Φk(t − 1) = ar for some positive
integer a. Now substitute q, x = t− 1 and r = Φk(t− 1)/a into Eq. (1) to obtain
the equivalent equation

DY 2 = 4h
Φk(x)

a
− (x − 1)2. (4)
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By setting x = (X − ak)/(4h − a), λ = −2�k/2� + 4, ak = λh + a and fk =
a2k − (4h− a)2 Eq. (4) is transformed into

X2 − a(4h− a)DY 2 = fk. (5)

This equation has the form of Eq. (2) where D is the CM discriminant. Thus
a(4h − a) > 0 forcing a < 4h. If the above Pell equation is solvable for some
values D, h and a with solution an integral pair (Xi, Yi), then it is checked if
x0 = (Xi−ak)/(4h−a) is integer. If this is the case, check if q = hr+x0 is prime
and r = Φk(x0)/a is also prime. As mentioned in [16], we may further relax the
condition on the group order by allowing r to contain itself a large prime factor,
i.e. r = ms, for some m ≥ 1 and s a large prime. If both conditions hold, the
integers (q, t, r) are suitable elliptic curve parameters.

Galbraith, McKee and Valença [10] (GMV) also generalize the MNT method
by using non-prime elliptic curves. In their work they present a complete charac-
terization of all polynomial families (q(x), t(x), r(x)) with cofactors h ∈ {2, 3, 4, 5}
for cases where k ∈ {3, 4, 6}. Their polynomial families appear in [10] and lead
to the same Pell equations as in the case of Scott and Barreto method. In order
to find suitable curve parameters for a fixed embedding degree k and a cofactor
h, the GMV method proceeds as the original MNT method.

In [7], Duan, Cui and Wah Chan present an alternative way for producing
pairing-friendly elliptic curves with arbitrary embedding degree k. Following
the same approach as [10], they represent the curve parameters as polyno-
mials q(x), t(x), r(x) ∈ Z[x]. Furthermore they introduce the concept of ef-
fective polynomial families. According to their definition a polynomial family
(q(x), t(x), r(x)) is called effective if the polynomial f(x) = 4q(x)− t2(x) can be
factorized with one square polynomial, or it is quadratic and factorable, or it
only contains terms with smaller degree compared to q(x). An example for the
first case is studied by Barreto and Naehrig in [4] for k = 12. Duan et al. ar-
gue that an effective polynomial family has better chances in producing suitable
elliptic curve parameters.

Although the method of Duan et al. is suitable for any k we focus on the case
where k ∈ {3, 4, 6}. If we substitute q(x) = hr(x) + 1 − t(x) in Eq. (3) we have
that

f(x) = DY 2 = 4hr(x)− (t(x) − 2)2. (6)

Then, we choose a quadratic polynomial r(x) and since we wish r to be prime,
the polynomial r(x) must be irreducible over Z[x]. A linear trace polynomial t(x)
must also be chosen, such that r(x) | Φk(t(x)−1). Knowing r(x) and t(x) we may
compute f(x) and q(x). Since deg r(x) = 2, the polynomial f(x) is quadratic
and a generalized Pell equation should be solved. Using the solutions of these
equations we may search for suitable curve parameters in the usual way.

3 The Proposed Method

We focus on the generation of pairing-friendly elliptic curves with embedding
degree k ∈ {3, 4, 6} and we determine a way to construct quadratic polynomial
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families that have better chances in producing suitable elliptic curve parame-
ters. To this end we adopt the remarks from the work of Duan, Cui and Wah
Chan [7] about effective polynomial families. In our study we will consider effec-
tive polynomial families where the polynomial f(x) = 4q(x)− t2(x) is quadratic
and factorable. We present a complete characterization of all such polynomial
families and we argue that these families lead to a special kind of Pell equations
which are always solvable and this fact considerably improves the efficiency of
the whole generation method. We also extend the ideas presented in the previ-
ous section by allowing the cofactor to take values larger than the ones studied
by Scott and Barreto and Galbraith et al. i.e. h > 5. We begin our study by
analyzing the case k = 6, while the same ideas hold for the other two cases
k ∈ {3, 4}.

3.1 The Case of k = 6

Suppose that q(x), t(x), r(x) ∈ Z[x] is a polynomial representation for the field
size, the trace polynomial and the subgroup order respectively. Let a be a positive
integer and suppose that the trace polynomial is linear of the form t(x) = ax+ b
for some b ∈ Z. Substitute t(x)− 1 into Φ6(x) to obtain

Φ6(t(x) − 1) = a2x2 + a(2b− 3)x+ b2 − 3b+ 3. (7)

Since Φ6(t(x) − 1) must be divisible by r(x), we may set

r(x) = ax2 + (2b− 3)x+
b2 − 3b+ 3

a
. (8)

and thus a must be chosen such that the congruence b2 − 3b + 3 ≡ 0 mod a is
satisfied for some b ∈ Z. The polynomial r(x) is irreducible over Z[x], since its
discriminant is equal to Δr = −3 < 0. Because r(x) represents the order of a
subgroup of E(Fq), it has to represent primes and therefore the condition that
r(x) is irreducible over Z[x] is essential. We may then assume that the order
of E(Fq) is given by a small integer cofactor h times the polynomial r(x), i.e.
#E(Fq) = hr(x). Now substitute r(x) into q(x) = hr(x)+ t(x)− 1 to obtain the
corresponding field polynomial

q(x) = ahx2 + (2bh− 3h+ a)x+
b2h− 3bh+ 3h+ ab− a

a
. (9)

Note that (b2h− 3bh+3h+ab−a)/a ∈ Z, since we have chosen a | (b2− 3b+3).
Furthermore the field size must be prime and thus the polynomial q(x) must be
irreducible over Z[x]. This means that the integer Δq = (a− h)2− 4h2 must not
be a perfect square and also the coefficients of q(x) must not have a common
factor. Now substitute q(x) and t(x) into Eq. (3) represented in polynomial field
and set f(x) = 4q(x)− t2(x). We obtain the quadratic polynomial

f(x) = a(4h− a)x2 + 2
(
(4h− a)b + 2a− 6h

)
x
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Table 2. Some effective polynomial families for k = 6

h t(x) q(x) r(x) Pell Equation

4 13x + 5 52x2 + 41x+ 8 13x2 + 7x + 1 (39x + 17)2 − 39DY 2 = 42

13x + 11 52x2 + 89x + 38 13x2 + 19x + 7 (39x + 35)2 − 39DY 2 = 42

9 31x + 7 279x2 + 130x + 15 31x2 + 11x + 1 (155x + 43)2 − 155DY 2 = 122

31x + 27 279x2 + 490x + 215 31x2 + 51x + 21 (155x + 143)2 − 155DY 2 = 122

12 39x + 18 468x2 + 435x + 101 39x2 + 33x + 7 (117x + 56)2 − 39DY 2 = 42

39x + 24 468x2 + 579x + 179 39x2 + 45x + 13 (117x + 74)2 − 39DY 2 = 42

16 49x + 20 784x2 + 641x + 131 49x2 + 37x + 7 (735x + 302)2 − 735DY 2 = 82

49x + 32 784x2 + 1025x + 335 49x2 + 61x + 19 (735x + 482)2 − 735DY 2 = 82

25 79x + 25 1975x2 + 1254x + 199 79x2 + 47x + 7 (1659x + 533)2 − 1659DY 2 = 202

79x + 57 1975x2 + 2854x + 1031 79x2 + 111x + 39 (1659x + 1205)2 − 1659DY 2 = 202

25 91x + 11 2275x2 + 566x + 35 91x2 + 19x + 1 (819x + 131)2 − 819DY 2 = 402

91x + 18 2275x2 + 916x + 92 91x2 + 33x + 3 (819x + 194)2 − 819DY 2 = 402

91x + 76 2275x2 + 3816x + 1600 91x2 + 149x + 61 (819x + 716)2 − 819DY 2 = 402

91x + 83 2275x2 + 4166x + 1907 91x2 + 163x + 73 (819x + 779)2 − 819DY 2 = 402

36 109x + 47 3924x2 + 3385x + 730 109x2 + 91x + 19 (3815x + 1647)2 − 3815DY 2 = 122

109x + 65 3924x2 + 4681x + 1396 109x2 + 127x + 37 (3815x + 2277)2 − 3815DY 2 = 122

+
(4h− a)b2 + 2(2a− 6h)b+ 12h− 4a

a
.

Since deg f(x) = 2, this will lead us to a generalized Pell equation. Following
the definition of Duan et al. when f(x) is factorable over Z[x] we have better
chances in finding suitable pairing-friendly elliptic curves and in this case the
triple (q(x), t(x), r(x)) is an effective polynomial family. In particular suppose
that the above polynomial f(x) is factorable over Z[x]. Then the integer Δf =
16h(a− 3h) must be positive and perfect square. Moreover since Δf > 0 we get
that a > 3h. Multiplying the relation f(x) = 4q(x)− t2(x) = DY 2 by a(4h− a),
completing the squares and setting X = a(4h − a)x + (4h − a)b + 2a − 6h we
obtain an equation of the form

X2 − a(4h− a)DY 2 =
(
2
√
h(a− 3h)

)2

. (10)

This is a generalized Pell equation and in fact it is the same as the one found
by Scott and Barreto, since f6 = 4h(a− 3h). The difference is that we consider
these equations only when f6 is a perfect square. Furthermore, combining the
two inequalities for a we conclude that an equation of the form of Eq. (10) is
possible, if a is chosen in the range 3h < a < 4h.

Conversely, suppose that the polynomial f(x) is quadratic of the form f(x) =
ax2 + bx + c ∈ Z[x] that leads to a generalized Pell equation of the form X2 −
SDY 2 = m with m a perfect square. Multiply f(x) by 4a and complete the
squares to obtain the Pell equation (2ax + b)2 − aD(2Y )2 = b2 − 4ac where
S = a and m = b2 − 4ac. Since m is a perfect square, we have that the integer
b2 − 4ac must be a perfect square which in turn means that f(x) is factorable



154 G. Fotiadis and E. Konstantinou

over Z[x]. Hence we have shown that in order to get a generalized Pell equation
of the form of Eq. (10) we must have f(x) factorable and thus h(a−3h) must be
a perfect square. The above discussion actually indicates that these are the only
Pell equations of this form for k = 6. We conclude that all effective polynomial
families for k = 6 have the next parametric polynomial representation

t(x) = ax+ b

r(x) = ax2 + (2b− 3)x+
b2 − 3b+ 3

a

q(x) = ahx2 + (2bh− 3h+ a)x+
b2h− 3bh+ 3h+ ab− a

a

where the following conditions must be satisfied: (i) the integer h(a − 3h) is
a perfect square, (ii) the congruence b2 − 3b + 3 ≡ 0 mod a is solvable, (iii)
the integer (a − h)2 − 4h2 is not a perfect square and (iv) the coefficients of
q(x) have no common factor. The last two conditions guarantee that q(x) has
no constant or linear factors. Some examples of Pell equations of the form of
Eq. (10), obtained by effective polynomial families are given in Table 2.

Pell equations of the form of Eq. (10) are considered as a special case and this
is because they have a very usefull advantage compared to others. In particular
consider the standard Pell equation

U2 − a(4h− a)DV 2 = 1. (11)

By Theorem 4.1 [14] Eq. (11) is always solvable for every positive integer D,
such that a(4h − a)D is not a perfect square. Suppose that the pairs (Ui, Vi)
define a sequence of solutions for Eq. (11), with i ∈ N. Then the pairs (Xi, Yi) =
(2
√
h(a− 3h)Ui, 2

√
h(a− 3h)Vi) represent the corresdonding solutions of the

generalized Pell equation (10). Thus there is always at least one class of solutions
for Eq. (10) arising from the units in the quadratic field Q(

√
a(4h− a)D). Of

course in most cases there are more than one classes of solutions. This is a very
important observation because the more integer solutions we have to test, the
more possibilities we have to generate suitable curve parameters. Once a solution
(Xi, Yi) of the appropriate size is obtained, we follow the standard MNT method
in order to construct the curve parameters. More precisely check if there is a
x0 ∈ Z such that Xi is written as Xi = a(4h − a)x0 + (4h − a)b + 2a − 6h, for
some b ∈ Z satisfying the congruence b2 − 3b+ 3 ≡ 0 mod a. If such a x0 exists,
substitute into q(x) and r(x) and check if q(x0) is prime and r(x0) is prime or
nearly prime.

The above procedure generalizes the work of Duan et al. [7] since it defines
a parametric representation of all effective polynomial families (q(x), t(x), r(x))
such that f(x) is quadratic and factorable. This analysis also shows that for
a chosen pair (a, h) such that h(a − 3h) is a perfect square and b2 − 3b + 3 ≡
0 mod a is solvable there are more than one effective polynomial families and the
number of these families depends on the number of different b ∈ Za satisfying
the above congruence. All these different families lead to the same generalized
Pell equation. For example the effective polynomial family proposed in [7] for
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k = 6, h = 9 and t(x) = 31x+ 7 is not the only one. In Table 2 we have shown
that there is a second family for t(x) = 31x + 27. Thus in our case we solve
this generalized Pell equation only once and we are searching for suitable values
q(x0) and r(x0) for all effective polynomial families leading to this Pell equation.
Following the strategy of Duan et al., the same Pell equation may be solved more
than once which induces a considerable delay in the execution time.

3.2 The Case of k = 3, 4

For the cases where k = 3, 4 we follow the same arguments as in the case
of k = 6. In particular when k = 3 we may represent the quadratic families
(q(x), t(x), r(x)) by the parametrization

t(x) = ax+ b

r(x) = ax2 + (2b− 1)x+
b2 − b+ 1

a

q(x) = ahx2 + (2bh− h+ 1)x+
b2h− bh+ h+ ab− a

a

where the following conditions are satisfied: (1) the integer 48h(a−h) is a perfect
square, (2) the congruence b2 − b + 1 ≡ 0 mod a is solvable, (3) the integer
(a+h)2−4h2 is not a perfect square and (4) the coefficients of q(x) are coprime.
Furthermore a and h must also satisfy the relations 4h−a > 0 and a−h > 0 and
thus a lies in the range h < a < 4h. Multiplying the relation f(x) = 4q(x)−t2(x)
by a(4h− a), completing the squares and setting X = a(4h− a)x+ (4h− a)b+
2a− 2h we conclude to the special Pell equation

X2 − a(4h− a)DY 2 =
(
2
√
3h(a− h)

)2

. (12)

In the same way if k = 4 then there is a parametrization of the quadratic families
(q(x), t(x), r(x)) as

t(x) = ax+ b

r(x) = ax2 + 2(b− 1)x+
b2 − 2b+ 2

a

q(x) = ahx2 + (2bh− 2h+ a)x+
b2h− 2bh+ 2h+ ab− a

a

where the following conditions are satisfied: (1) the integer 32h(a − 2h) is a
perfect square, (2) the congruence b2 − 2b + 2 ≡ 0 mod a is solvable, (3) the
integer a2 − 4h2 is not a perfect square and (4) the coefficients of q(x) have
no common factor. Multiplying the relation f(x) = 4q(x) − t2(x) by a(4h− a),
completing the squares and setting X = a(4h− a)x+ (4h− a)b+2a− 4h yields
the special Pell equation

X2 − a(4h− a)DY 2 =
(
2
√
2h(a− 2h)

)2

. (13)
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If we wish to find suitable curve parameters in both cases we proceed in the
usual way. Note here that the number of effective polynomial families decreases
as the value of k increases in {3, 4, 6}. The reason is that the choices for a are
decreased. In particular when k = 3 the integer a is chosen in the range (h, 4h)
while if k = 6, the integer a lies in (3h, 4h).

4 Experimental Results

The most crucial step in the above procedure is solving a generalized Pell equa-
tion of the form of Eq. (2). A well known method used to solve any kind of Pell
equations is the LMM algorithm [14,15]. Alternative ways are also presented
in [15]. One of these methods finds all solutions of an equation of the form
(2) by computing the simple continued fraction expansion of the quadratic irra-
tional

√
SD, but it is only suitable for values of the CM discriminantD such that

m2/S < D. This method is also implemented by Karabina and Teske in [11] for
the original MNT equations. When m2/S > D this procedure finds only some
of the solutions for some D. Thus in our implementation we might lost a few
suitable parameters. For more precise results, one should implement the LMM
algorithm when m2/S > D.

Table 3 presents the number of suitable curve parameters obtained by effective
polynomial families for certain choices of h when k ∈ {3, 4, 6}. The criteria for
suitability are the same as those in [16]. In particular the field size q is chosen
such that 768 ≤ k log q ≤ 1536 and the group order r is chosen to be a product
r = ms for some prime s with log s > 128 bits.

For example when k = 6 we are looking for primes q such that 128 ≤ log q ≤
256 bits. In this case the most lucky families appear when h = 4 and a = 13
where we found 384 suitable triples (q, t, r). When k = 3 the field size q must be
chosen between the sizes 256 ≤ log q ≤ 512. The most lucky case appears when
h = 4 and a = 7 where we found 392 suitable curve parameters. When k = 4 the
best results appear when h = 18 and a = 37 where we found 60 suitable triples
(q, t, r) with 192 ≤ log q ≤ 384.

Table 3. Suitable parameters for k ∈ {3, 4, 6} and h > 1 from effective polynomial
families (768 ≤ k log q ≤ 1536, log s > 128 and D < 105)

k = 3 k = 4 k = 6

Cofactor a Suitable Cofactor a Suitable Cofactor a Suitable
h (q, t, r) h (q, t, r) h (q, t, r)

4 7 392 8 17 52 4 13 384

12 21 46 8 25 19 9 31 13

12 37 45 16 34 52 12 39 72

16 19 57 16 50 19 16 49 37

16 43 10 18 37 60 25 79 7

36 111 36 18 61 23 25 91 17

48 49 33 32 65 53 36 109 40
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Table 4. Time required for the generation of suitable triples (q, t, r) when k ∈ {3, 4,6}
(768 ≤ k log q ≤ 1536 and log s > 128)

k = 3 k = 4 k = 6

SB Effective SB Effective SB Effective
Triples h Method Families h Method Families h Method Families

(sec) (sec) (sec) (sec) (sec) (sec)

4 a = 7 8 a = 17 4 a = 13

1 9.01 18.03 20.43 3.38 0.26 0.82
5 212.38 50.87 733.42 25.29 36.94 9.24
10 739.51 76.68 2717.25 100.61 377.71 11.69
20 1172.41 208.80 3670.81 383.85 1809.48 23.84
30 1641.05 310.70 6053.82 962.65 1874.23 45.34

12 a = 21 16 a = 34 9 a = 31

1 8.68 9.26 4.82 3.45 12.49 18.58
5 279.08 132.92 240.88 27.50 72.48 226.62
10 931.51 1635.00 1112.30 121.02 3773.71 3176.45

16 a = 19 18 a = 37 12 a = 39

1 2.60 12.62 21.40 44.23 111.06 0.19
5 1303.61 70.88 92.37 255.47 3118.85 50.67
10 3135.41 165.36 3869.22 638.52 6537.99 275.64

48 a = 49 32 a = 65 16 a = 49

1 1.68 0.51 307.74 5.65 0.94 11.96
5 157.48 99.35 5899.03 44.15 298.87 35.30
10 6386.99 1170.49 13121.12 199.86 1168.44 141.01

According to our earlier analysis we expect that the number of suitable pa-
rameters obtained from effective polynomial families is larger than the number of
parameters from non-effective ones. Thus we argue that one may use only the ef-
fective polynomial families for finding suitable triples (q, t, r) when k ∈ {3, 4, 6}.
In order to show the efficiency of our method, we implemented the algorithm
proposed by Scott and Barreto and compared the time required for the con-
struction of a fixed number of suitable parameters with their method and our
proposal. The results appear in Table 4. In the case where there are more than
one effective polynomial families, we studied only the first one, i.e. the first a ∈ Z
leading to an effective polynomial family.

In almost all cases, we observe that our method is faster than the method
of Scott and Barreto, especially as the number of the desired suitable triples
(q, t, r) increases. This is because the Pell equations from non-effective polyno-
mial families are not always solvable and thus there might be a large distance
between the suitable values of D. For example consider the case where k = 6 and
h = 4. If we wish to construct only one elliptic curve (e.g. one triple (q, t, r)), the
algorithm of Scott and Barreto requires 0.26 seconds, while our method needs
0.82 seconds. If we wish to construct 5 elliptic curves (or the first 5 triples), Scott
and Barreto method requires 36.94 seconds, while our method needs only 9.24.
For a required number of 10 parameters, the difference is more clear. Taking the
number of suitable parameters even further, say 20 or 30 the method of Scott
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Table 5. Time required for the generation of suitable triples (q, t, r) when k = 6 and
3072 ≤ k log q ≤ 4608

SB Effective SB Effective SB Effective
Triples h Method Families h Method Families h Method Families

(sec) (sec) (sec) (sec) (sec) (sec)

4 a = 13 12 a = 39 16 a = 49

1 3.68 9.60 1278.23 1.18 15.13 35.75
5 1004.76 106.19 8703.31 228.67 1465.73 356.10

and Barreto needs to solve more than one Pell equations. This fact provides a
considerable delay in the whole procedure. The same remarks hold also for the
case k = 3 and h = 4. Furthermore since the density of the values of D is larger
in our case, we expect that for a fixed number of suitable triples the values of the
discriminants will be smaller in the case of effective polynomial families than in
the case of Scott and Barreto method. For example when k = 6 and h = 4 the
first 30 suitable triples appear for values of D ≤ 2221, while in the case of Scott
and Barreto the same number of triples were found for D ≤ 97282. In order to
achieve higher security levels, we may increase the size of the prime q. In this
case we observe the same behaviour as in Table 4. Some indicative results are
presented in Table 5.

5 Conclusion

According to Scott and Barreto [16] the construction of generalized MNT ellip-
tic curves is based on solving several Pell-type equations of the form of Eq. (2).
For certain choices of cofactor h, some of these equations have more chances
than others in producing suitable elliptic curve parameters. In particular the
most lucky quadratic polynomial families (q(x), t(x), r(x)) are those for which
f(x) = 4q(x) − t2(x) is quadratic and factorable. The Pell equations obtained
by such families have the advantage that they are always solvable for every
positive and square-free integer D and thus the more solutions we have to test
for suitability, the higher is the probability to get suitable curve parameters.
This observation also implies that this special kind of Pell equations provides
even more flexibility on the CM discriminant, since there are no congruential
restrictions on D. In this work we isolate these equations and introduce a proce-
dure that uses only these special equations to construct the desired generalized
MNT elliptic curves.Based on our experimental assessments, we argue that our
method can considerably speed up the algorithm proposed in [16]. This is theo-
retically explained (mainly) from the fact that we manage to avoid the solution
of ”unlucky” Pell equations.
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Abstract. We obtain new asymptotical bounds for the symmetric ten-
sor rank of multiplication in any finite extension of any finite field Fq. In
this aim, we use the symmetric Chudnovsky-type generalized algorithm
applied on a family of Shimura modular curves defined over Fq2 attain-
ing the Drinfeld-Vlăduţ bound and on the descent of this family over the
definition field Fq.

Keywords: Algebraic function field, tower of function fields, tensor
rank, algorithm, finite field, modular curve, Shimura curve.

1 Introduction

1.1 General Context

The determination of the tensor rank of multiplication in finite fields is a problem
which has been widely studied over the past decades both for its theoretical and
practical importance. Besides it allows one to obtain multiplication algorithms
with a low bilinear complexity, which determination is of crucial significance in
cryptography, it has also its own interest in algebraic complexity theory. The
pioneer work of D.V. and G.V. Chudnovsky [15] resulted in the design of a
Karatsuba-like algorithm where the interpolation is done on points of algebraic
curves with a sufficient number of rational points over the ground field. Follow-
ing these footsteps, several improvements and generalizations of this algorithm
leading to ever sharper bounds have been proposed since by various authors
[9,1,14,19], and have required to investigate and combine different techniques
and objects from algebraic geometry such as evaluations on places of arbitrary
degree, generalized evaluations, towers of algebraic function fields. . . Further-
more, a lot of connexions with other topics have been made : Shparlinski, Ts-
fasman and Vlăduţ [21] have first developed a correspondence between decom-
positions of the tensor of multiplication and a family of linear codes with good
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parameters that they called (exact) supercodes. These codes, renamed multipli-
cation friendly codes, had recently be more extensively studied and exploited
by Cascudo, Cramer, Xing and Yang [13] to obtain good asymptotic results on
the tensor rank. Moreover they combined their notion of multiplication friendly
codes with two newly introduced primitives for function fields over finite fields
[11], namely the torsion limit and systems of Riemann-Roch equations, to get
news results not only on asymptotic tensor rank but also on linear secret sharing
systems and frameproof codes. This stresses that the tensor rank determination
problem has just as many mathematical interests as consequences and applica-
tions in various domains of computer science.

1.2 Tensor Rank of Multiplication

Let q = ps be a prime power, Fq be the finite field with q elements and Fqn

be the degree n extension of Fq. The multiplication of two elements of Fqn is
an Fq-bilinear application from Fqn × Fqn onto Fqn . Then it can be considered
as an Fq-linear application from the tensor product Fqn ⊗Fq Fqn onto Fqn . Con-
sequently it can be also considered as an element T of (Fqn ⊗Fq Fqn)

� ⊗Fq Fqn ,
namely an element of Fqn

� ⊗Fq Fqn
� ⊗Fq Fqn . More precisely, when T is written

T =

r∑
i=1

x�i ⊗ y�i ⊗ ci, (1)

where the r elements x�i and the r elements y�i are in the dual Fqn
� of Fqn and

the r elements ci are in Fqn , the following holds for any x, y ∈ Fqn :

x · y =
r∑

i=1

x�i (x)y
�
i (y)ci.

Unfortunately, the decomposition (1) is not unique.

Definition 1. The minimal number of summands in a decomposition of the ten-
sor T of the multiplication is called the bilinear complexity of the multiplication
and is denoted by μq(n):

μq(n) = min

{
r
∣∣∣ T =

r∑
i=1

x�i ⊗ y�i ⊗ ci

}
.

However, the tensor T admits also a symmetric decomposition:

T =

r∑
i=1

x�i ⊗ x�i ⊗ ci. (2)

Definition 2. The minimal number of summands in a symmetric decomposition
of the tensor T of the multiplication is called the symmetric bilinear complexity
of the multiplication and is denoted by μsymq (n):

μsymq (n) = min

{
r
∣∣∣ T =

r∑
i=1

x�i ⊗ x�i ⊗ ci

}
.
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One easily gets that μq(n) ≤ μsymq (n). We know some cases where
μq(n) = μsymq (n) but to the best of our knowledge, no example is known where
we can prove that μq(n) < μsymq (n). However, better upper bounds have been
established in the asymmetric case and this may suggest that in general the
asymmetric bilinear complexity of the multiplication and the symmetric one are
distinct. In any case, at the moment, we must consider separately these two
quantities. Remark that from an algorithmic point on view, as well as for some
specific applications, a symmetric bilinear algorithm can be more interesting
than an asymmetric one, unless if a priori, the constant factor in the bilinear
complexity estimation is a little worse. In this note we study the asymptotic be-
havior of the symmetric bilinear complexity of the multiplication. More precisely
we study the two following quantities:

M sym
q = lim sup

k→∞

μsymq (k)

k
, (3)

msym
q = lim inf

k→∞

μsymq (k)

k
. (4)

1.3 Known Results

The bilinear complexity μq(n) of the multiplication in the n-degree extension
of a finite field Fq is known for certain values of n. In particular, S. Winograd
[24] and H. de Groote [16] have shown that this complexity is ≥ 2n− 1, with
equality holding if and only if n ≤ 1

2q + 1. Using the principle of the D.V. and
G.V. Chudnovsky algorithm [15] applied to elliptic curves, M.A. Shokrollahi has
shown in [20] that the symmetric bilinear complexity of multiplication is equal
to 2n for 1

2q + 1 < n < 1
2 (q + 1+ ε(q)) where ε is the function defined by:

ε(q) =

{
greatest integer ≤ 2

√
q prime to q, if q is not a perfect square

2
√
q, if q is a perfect square.

Moreover, U. Baum and M.A. Shokrollahi have succeeded in [10] to construct
effective optimal algorithms of type Chudnovsky in the elliptic case.

Recently in [3], [4], [9], [8], [7], [6] and [5] the study made by M.A. Shokrollahi
has been generalized to algebraic function fields of genus g.

Let us recall that the original algorithm of D.V. and G.V. Chudnovsky intro-
duced in [15] is symmetric by definition and leads to the following theorem:

Theorem 1. Let q = pr be a power of the prime p. The symmetric tensor rank
μsymq (n) of multiplication in any finite field Fqn is linear with respect to the
extension degree; more precisely, there exists a constant Cq such that:

μsymq (n) ≤ Cqn.

General forms for Cq have been established since, depending on the cases where
q is a prime or a prime power, a square or not. . . In order to obtain these good
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estimates for the constant Cq, S. Ballet has given in [3] some easy to verify
conditions allowing the use of the D.V. and G.V. Chudnovsky algorithm. Then
S. Ballet and R. Rolland have generalized in [9] the algorithm using places of
degree one and two. The best finalized version of this algorithm in this direction
is a generalization introduced by N. Arnaud in [1] and developed later by M.
Cenk and F. Özbudak in [14]. This generalization uses several coefficients, instead
of just the first one in the local expansion at each place on which we perform
evaluations. Recently, Randriambolona introduced in [19] a new generalization
of the algorithm, which allows asymmetry in the construction.

From the results of [3] and the generalized symmetric algorithm, we obtain
(cf. [3], [9]):

Theorem 2. Let q be a prime power and let n > 1 be an integer. Let F/Fq be
an algebraic function field of genus g and Nk be the number of places of degree

k in F/Fq. If F/Fq is such that 2g + 1 ≤ q n−1
2 (q

1
2 − 1) then:

1) if N1 > 2n+ 2g − 2, then

μsymq (n) ≤ 2n+ g − 1,

2) if there is a non-special divisor of degree g− 1 and N1 + 2N2 > 2n+ 2g − 2,
then

μsymq (n) ≤ 3n+ 3g,

3) if N1 + 2N2 > 2n+ 4g − 2, then

μsymq (n) ≤ 3n+ 6g.

Theorem 3. Let q be a square ≥ 25. Then

msym
q ≤ 2

(
1 +

1
√
q − 3

)
.

Moreover, let us recall a very useful lemma due to D.V. and G.V. Chudnovsky [15]
and Shparlinski, Tsfasman and Vlăduţ [21, Lemma 1.2 and Corollary 1.3].

Lemma 1. For any prime power q and for all positive integers n and m, one
has

μq(m) ≤ μq(mn) ≤ μq(n) · μqn(m),

mq ≤ mqn · μq(n)/n,
Mq ≤Mqn · μq(n).

Note that these inequalities are also true in the symmetric case. Recall the
following definitions that will be useful in the sequel. Let F/Fq be a function
field over the finite field Fq and N1(F ) be the number of places of degree one of
F/Fq. Let us define:

Nq(g) = max
{
N1(F )

∣∣F is a function field over Fq of genus g
}
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and

A(q) = lim sup
g→+∞

Nq(g)

g
.

We know that (Drinfeld-Vlăduţ bound):

A(q) ≤ q 1
2 − 1,

the bound being reached if and only if q is a square.

2 New Upper Bounds for msym
q and M sym

q

In this section, we give upper bounds for the asymptotical quantities M sym
q and

msym
q which are defined respectively by (3) and (4). As was noted in [11, p. 694]

and more precisely in [12, Section 5] (cf. also [18]), Theorems 3.1 and 3.9 in
[21] are not completely correct. We are going to repair that in the following two
propositions.

Proposition 1. Let q be a prime power such that A(q) > 2. Then

msym
q ≤ 2

(
1 +

1

A(q) − 2

)
.

Proof. Let {Fs/Fq}s be a sequence of algebraic function fields defined over Fq.
Let us denote by gs the genus of Fs/Fq and by N1(s) the number of places of
degree 1 of Fs/Fq. Suppose that the sequence (Fs/Fq)s was chosen such that:

1. lims→+∞ gs = +∞,

2. lims→+∞
N1(s)
gs

= A(q).

Let ε be any real number such that 0 < ε < A(q)
2 − 1. Let us define the following

integer

ns =

⌊
N1(s)− 2gs(1 + ε)

2

⌋
.

Let us remark that
N1(s) = gsA(q) + o(gs),

so N1(s)− 2(1 + ε)gs = gs
(
A(q) − 2(1 + ε)

)
+ o(gs).

Then the following holds:

1. there exists an integer s0 such that for any s ≥ s0 the integer ns is strictly
positive,

2. for any real number c such that 0 < c < A(q) − 2(1 + ε) there exists an
integer s1 such that for any integer s ≥ s1 the following holds: ns ≥ c

2gs,
hence ns tends to +∞,

3. there exists an integer s2 such that for any integer s ≥ s2 the following holds:
2gs +1 ≤ q ns−1

2

(
q

1
2 − 1

)
and consequently there exists a place of degree ns

(cf. [22, Corollary 5.2.10 (c) p. 207]),
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4. the following inequality holds: N1(s) > 2ns+2gs−2 and consequently, using
Theorem 2 we conclude that μsymq (ns) ≤ 2ns + gs − 1.

Consequently,
μsymq (ns)

ns
≤ 2 +

gs − 1

ns
,

so

msym
q ≤ 2 + lim

s→+∞

2gs − 2

N1(s)− 2(1 + ε)gs − 2
≤ 2

(
1 +

1

A(q)− 2(1 + ε)

)
.

This inequality holding for any ε > 0 sufficiently small, we then obtain the result.
��

Corollary 1. Let q = pm be a prime power such that q ≥ 4. Then

msym
q2 ≤ 2

(
1 +

1

q − 3

)
.

Note that this corollary lightly improves Theorem 3. Now in the case of arbitrary
q, we obtain:

Corollary 2. For any q = pm > 3,

msym
q ≤ 3

(
1 +

1

q − 3

)
.

Proof. For any q = pm > 3, we have q2 = p2m ≥ 16 and thus Corollary 1 gives

msym
q2 ≤ 2

(
1 + 1

q−3

)
. Then, by Lemma 1, we have

msym
q ≤ msym

q2 · μsymq (2)/2

which gives the result since μsymq (2) = 3 for any q. ��

Now, we are going to show that forM sym
q the same upper bound as for msym

q can
be proved though only in the case of q being an even power of a prime. However,
we are going to prove that in the case of q being an odd power of a prime, the
difference between the two bounds is very slight.

Proposition 2. Let q = pm be a prime power such that q ≥ 4. Then

M sym
q2 ≤ 2

(
1 +

1

q − 3

)
.

Proof. Let q = pm be a prime power such that q ≥ 4. Let us consider two
cases. First, we suppose that q = p. Moreover, firstly, let us consider the char-
acteristic p such that p �= 11. Then it is known ([23] and [21]) that the curve
Xk = X0(11�k), where �k is the kth prime number, has a genus gk = �k and
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satisfies N1(Xk(Fq2)) ≥ (q − 1)(gk + 1) where N1(Xk(Fq2)) denotes the num-
ber of rational points over Fq2 of the curve Xk. Let us consider a sufficiently
large n. There exist two consecutive prime numbers �k and �k+1 such that
(p− 1)(�k+1 + 1) > 2n+ 2�k+1 − 2 and (p− 1)(�k + 1) ≤ 2n+ 2�k − 2. Let us
consider the algebraic function field Fk+1/Fp2 associated to the curve Xk+1 of
genus �k+1 defined over Fp2 . Let Ni(Fk/Fp2) be the number of places of degree
i of Fk/Fp2 . Then we get N1(Fk+1/Fp2) ≥ (p− 1)(�k+1 + 1) > 2n+ 2�k+1 − 2.
Moreover, it is known that Nn(Fk+1/Fp2) > 0 for any integer n sufficiently

large. We also know that �k+1 − �k ≤ �0,525k for any integer k ≥ k0 where k0
can be effectively determined by [2]. Then there exists a real number ε > 0 such
that �k+1 − �k = ε�k ≤ �0,525k namely �k+1 ≤ (1 + ε)�k. It is sufficient to choose

ε such that ε�0,475k ≤ 1. Consequently, for any integer n sufficiently large, this
algebraic function field Fk+1/Fp2 satisfies Theorem 2, and so

μsymp2 (n) ≤ 2n+ �k+1 − 1 ≤ 2n+ (1 + ε)�k − 1 with �k ≤ 2n
p−3 −

p+1
p−3 . Thus,

as n→ +∞ then �k → +∞ and ε→ 0, so we obtain M sym
p2 ≤ 2

(
1 + 1

p−3

)
. Note

that for p = 11, Proposition 4.1.20 in [23] enables us to obtain gk = �k +O(1).
Now, let us study the more difficult case where q = pm with m > 1. We use

the Shimura curves as in [21]. Recall the construction of this good family. Let
L be a totally real abelian over Q number field of degree m in which p is inert,
thus the residue class field OL/(p) of p, where OL denotes the ring of integers
of L, is isomorphic to the finite field Fq. Let ℘ be a prime of L which does not
divide p and let B be a quaternion algebra for which

B ⊗Q R = M2(R)⊗H⊗ · · · ⊗H

where H is the skew field of Hamilton quaternions. Let B be also unramified at
any finite place if (m−1) is even; let B be also unramified outside infinity and ℘
if (m− 1) is odd. Then, over L one can define the Shimura curve by its complex
points XΓ (C) = Γ \ h, where h is the Poincaré upper half-plane and Γ is the
group of units of a maximal order O of B with totally positive norm modulo
its center. Hence, the considered Shimura curve admits an integral model over
L and it is well known that its reduction XΓ,p(Fp2m) modulo p is good and is
defined over the residue class field OL/(p) of p, which is isomorphic to Fq since
p is inert in L. Moreover, by [17], the number N1(XΓ,p(Fq2)) of Fq2 -points of
XΓ,p is such that N1(XΓ,p(Fq2)) ≥ (q − 1)(g + 1), where g denotes the genus of
XΓ,p(Fq2). Let now � be a prime which is greater than the maximum order of
stabilizers Γz, where z ∈ h is a fixed point of Γ and let ℘ � �. Let Γ0(�)� be the
following subgroup of GL2(Z�):

Γ0(�)� =

{(
a b
c d

)
∈ GL2(Z�) ; c ≡ 0 (mod �)

}
.

Suppose that � splits completely in L. Then there exists an embedding L→ Q�

where Q� denotes the usual �-adic field, and since B ⊗Q Q� = M2(Q�), we have
a natural map:

φ� : Γ → GL2(Z�).
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Let Γ� be the inverse image of Γ0(�)� in Γ under φ�. Then Γ� is a subgroup of
Γ of index �. We consider the Shimura curve X� with

X�(C) = Γ� \ h.

It admits an integral model over L and so can be defined over L. Hence, its
reduction X�,p modulo p is good and it is defined over the residue class field
OL/(p) of p, which is isomorphic to Fq since p is inert in L. Moreover the
supersingular Fp-points of XΓ,p split completely in the natural projection

π� : X�,p → XΓ,p.

Thus, the number of rational points of X�,p(Fq2) verifies:

N1(X�,p(Fq2)) ≥ �(q − 1)(g + 1).

Moreover, since � is greater than the maximum order of a fixed point of Γ on h,
the projection π� is unramified and thus by Hurwitz formula,

g� = 1 + �(g − 1)

where g� is the genus of X� (and also of X�,p).
Note that since the field L is abelian over Q, there exists an integer N such

that the field L is contained in a cyclotomic extension Q(ζN ) where ζN denotes
a primitive root of unity with minimal polynomial ΦN . Let us consider the
reduction ΦN,� of ΦN modulo the prime �. Then, the prime � is totally split in the
integer ring of L if and only if the polynomial ΦN,� is totally split in F� = Z/�Z
i.e. if and only if F� contains the Nth roots of unity which is equivalent to
N | �− 1. Hence, any prime � such that � ≡ 1 (mod N) is totally split in Q(ζN )
and then in L. Since � runs over primes in an arithmetical progression, the ratio
of two consecutive prime numbers � ≡ 1 (mod N) tends to one.

Then for any real number ε > 0, there exists an integer k0 such that for any
integer k ≥ k0, �k+1 ≤ (1 + ε)�k where �k and �k+1 are two consecutive prime
numbers congruent to one modulo N . Then there exists an integer nε such that
for any integer n ≥ nε, the integer k such that the two following inequalities hold

�k+1(q − 1)(g + 1) > 2n+ 2g�k+1
− 2

and
�k(q − 1)(g + 1) ≤ 2n+ 2g�k − 2,

satisfies k ≥ k0; where g�i = 1 + �i(g − 1) for any integer i.
Let us consider the algebraic function field Fk/Fq2 defined over the finite field

Fq2 associated to the Shimura curve X�k of genus g�k . Let Ni(Fk/Fq2) be the
number of places of degree i of Fk/Fq2 . Then

N1(Fk+1/Fq2) ≥ �k+1(q − 1)(g + 1) > 2n+ 2g�k+1
− 2

where g is the genus of the Shimura curve XΓ,p(Fq2). Moreover, it is known that
there exists an integer n0 such that for any integer n ≥ n0, Nn(Fk+1/Fq2) > 0.
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Consequently, for any integer n ≥ max(nε, n0) this algebraic function field
Fk+1/Fq2 satisfies Theorem 2 and so

μsymq2 (n) ≤ 2n+ g�k+1
− 1 ≤ 2n+ �k+1(g − 1) ≤ 2n+ (1 + ε)�k(g − 1)

with �k <
2n

(q−1)(g+1)−2(g−1) . Thus, for any real number ε > 0 and for any

n ≥ max(nε, n0), we obtain μsymq2 (n) ≤ 2n+ 2n(1+ε)(g−1)
(q−1)(g+1)−2(g−1) which gives

M sym
q2 ≤ 2

(
1 + 1

q−3

)
. ��

Proposition 3. Let q = pm be a prime power with odd m such that q ≥ 5. Then

M sym
q ≤ 3

(
1 +

2

q − 3

)
.

Proof. It is sufficient to consider the same families of curves than in Proposi-
tion 2. These families of curves {Xk} are defined over the residue class field
of p which is isomorphic to Fq. Hence, we can consider the associated alge-
braic function fields Fk/Fq defined over Fq. If q = p, we have N1(Fk+1/Fp2) =
N1(Fk+1/Fp) + 2N2(Fk+1/Fp) ≥ (p − 1)(�k+1 + 1) > 2n + 2�k+1 − 2 since
Fk+1/Fp2 = Fk+1/Fp ⊗Fp Fp2 . Then, for any real number ε > 0 and for any inte-
ger n sufficiently large, we have μsymp (n) ≤ 3n+ 3g�k+1

≤ 3n+ 3(1 + ε)�k by The-

orem 2 since Nn(Fk+1/Fq2) > 0. Then, by using the condition �k ≤ 2n
p−3 −

p+1
p−3 ,

we obtainM sym
p ≤ 3

(
1 + 2

p−3

)
. If q = pm with odd m, we have N1(Fk+1/Fq2) =

N1(Fk+1/Fq) + 2N2(Fk+1/Fq) ≥ �k+1(q − 1)(g + 1) > 2n + 2g�k+1
− 2 since

Fk+1/Fq2 = Fk+1/Fq ⊗Fq Fq2 . Then, for any real number ε > 0 and for any inte-
ger n sufficiently large as in Proof of Proposition 2, we have
μsymq (n) ≤ 3n+ 3g�k+1

≤ 3n+ 3(1 + ε)�k(g − 1) by Theorem 2 since

Nn(Fk+1/Fq2) > 0. Then, by using the condition �k <
2n

(q−1)(g+1)−2(g−1) we ob-

tain M sym
q ≤ 3

(
1 + 2

q−3

)
. ��

Remark 1. Note that in [13, Lemma IV.4], Elkies gives another construction of
a family {χs}∞s=1 of Shimura curves over Fq satisfying for any prime power q and
for any integer t ≥ 1 the following conditions:

(i) the genus g(Fs) tends to +∞ as s tends to +∞, where Fs stands for the
function field Fq(χs),

(ii) lims→+∞ g(Fs)/g(Fs−1) = 1,
(iii) lims→+∞B2t(Fs)/g(Fs) = (qt − 1)/(2t), where B2t(Fs) stands for the

number of places of degree 2t in Fs.

However, this construction is not sufficiently explicit to enable Cascudo and al.
[12] (and [13]) to derive the best bounds in all the cases (cf. Section 3). Indeed,
let us recall the construction of Elkies.

Let q = pr be a prime power and put f = rt. Let K be a totally real number
field such that K/Q is a Galois extension of degree f and p is totally inert in K.
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Let B be a quaternion algebra over K such that the set S of non-archimedean
primes of K that are ramified in B is Galois invariant. Note that B can be
constructed by taking S to be either the empty set for odd f , or the set of
primes lying over p for even f (see [21]).

Let � �= p be a rational prime outside S such that � is totally inert in K (note
that in [21], � is chosen such that it is completely splitting). Consider the Shimura
curve XB

0 (�) := Γ0(�OK)\h, where h is the upper half-plane and Γ0(�OK) is the
subgroup of the unit group of the maximal order of B mapping to upper triangle
matrices modulo �OK . Then XB

0 (�) is defined over the rational field Q and has
a good reduction modulo p. Thus, the reduction of XB

0 (�) is defined over Fp,
and therefore over Fq as well. This curve has at least (pf − 1)g� supersingular
points over Fp2f = Fq2t , where g� is the genus of XB

0 (�). One knows that the
ratio g�/�

f tends to a fixed number a when � tends to +∞. Now let {�s}+∞
s=1 be

the set of consecutive primes such that �s are totally inert in K and �s /∈ S. By
Chebotarev’s density theorem, we have �s/�s−1 → 1 as s tends to +∞. Hence,
g�s/g�s−1 → 1 as s tends to +∞.

For the family of function fields {Fs/Fq} of the above Shimura curves, the
number N2t(Fs) of Fq2t -rational places of Fs satisfies

lim
g(Fs)→+∞

N2t(Fs)

g(Fs)
= pf − 1 = qt − 1.

Moreover, (i) and (ii) are satisfied as well.
By the identity N2t(Fs) =

∑
i|2t iBi(Fs), we get

lim inf
g(Fs)→+∞

1

g(Fs)

2t∑
i=1

iBi(Fs)

qt − 1
≥ lim inf

g(Fs)→+∞

1

g(Fs)

∑
i|2t

iBi(Fs)

qt − 1

= lim inf
g(Fs)→+∞

N2t(Fs)

g(Fs)(qt − 1)
= 1.

Thus, the inequality

lim inf
g(Fs)→+∞

1

g(Fs)

2t∑
i=1

iBi(Fs)

qt − 1
≥ 1

is satisfied and consequently (iii) is also satisfied by [13, Lemma IV.3].

3 Comparison with the Current Best Asymptotical
Bounds

In this section, we recall the results obtained in [13, Theorem IV.6 and IV.7]
and [12, Theorem 5.18] which are known to give the best current estimates for
M sym

q , and compare these bounds to those established in Propositions 2 and 3.
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3.1 Comparison with the Bounds in [13]

In [13], the authors establish the following results:

Theorem 4. For any prime power q ≥ 2, one has

M sym
q ≤ μsymq (2t)

qt − 1

t(qt − 5)
(5)

for any t ≥ 1 as long as qt − 5 > 0, and

M sym
q2 ≤ μsymq2 (t)

2(qt − 1)

t(qt − 5)
(6)

for any t ≥ 1 as long as qt − 5 > 0.

Let us show that our results are better than those of this theorem except for
some small values of q.

Bounds Over Fq. The estimates obtained in [13, Corollary IV.8.] show that
(5) gives better bounds than Proposition 3 for any q ≤ 13. Indeed, one has:

q 5 7 8 9 11 13
M sym

q [13, Cor. IV.8] 4.8 3.82 3.74 3.68 3.62 3.59

M sym
q [Prop. 3] 6 4.5 4.2 4 3.75 3.6

However, as soon as q ≥ 15, our estimate is sharper than (5). Indeed, for q ≥ 15,
Proposition 3 gives:

M sym
q ≤ 3.5.

On the other hand, since μsymq (2t) ≥ 4t− 1, the best estimate that can be ob-
tained with Bound (5) is:

M sym
q ≤ (4t− 1) · qt − 1

t(qt − 5)
=

(
4− 1

t

)
·
(
1 +

4

qt − 5

)
. (7)

Thus one must have 4− 1
t < 3.5 to obtain a better estimate than 3.5, which

requires t = 1. In this case, (7) becomes:

M sym
q ≤ 3

(
1 +

4

q − 5

)
which is less precise than the bound of Proposition 3 for any q ≥ 15.

Bounds Over Fq2. For q = 4, Proposition 2 givesM sym
q2 ≤ 4, which is less sharp

than Bound (6) applied with t = 4, which leads to M sym
q2 ≤ 3.56.

However, for any q ≥ 5, Proposition 2 gives better bounds than (6). Indeed,
since μsymq2 (t) ≥ 2t− 1, the best estimate that can be obtained with (6) is:

M sym
q2 ≤ 2(2t− 1) · qt − 1

t(qt − 5)
=

(
4− 2

t

)
·
(
1 +

4

qt − 5

)
. (8)
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Since Proposition 2 givesM sym
q2 ≤ 3 for any q ≥ 5, it is necessary to have 4− 2

t <3

to obtain a better bound with (8), which requires t = 1. This is impossible for
q = 5 since Bound (6) is undefined in this case, and for q > 5 and t = 1, (8)
becomes:

M sym
q2 ≤ 2

(
1 +

4

q − 5

)
which is less sharp than the bound obtained from Proposition 2.

3.2 Comparison with the Bounds in [12]

In [12] (which is an extended version of [11]), the authors establish the following
asymptotic bounds:

Theorem 5. For a prime power q, one has

M sym
q ≤

⎧⎨⎩μsymq (2t) qt−1
t(qt−2−logq 2) , if 2|q

μsymq (2t) qt−1
t(qt−2−2 logq 2) , otherwise

for any t ≥ 1 as long as qt − 2− logq 2 > 0 for even q; and
qt − 2− 2 logq 2 > 0 for odd q.

This bound always beats the one of Proposition 3 for arbitrary q (for example,
by setting t = 1 and μsymq (2t) = 4t− 1). Nevertheless, if we focus on the case of
M sym

q2 , then the bound of Proposition 2 is better as soon as q > 5 since in this
case, it gives:

M sym
q2 < 3

which can not be reached with the bound of Theorem 3.2, since the best that
one can get is:

M sym
q ≤

⎧⎨⎩
(
4− 1

t

) (
1 +

1+logq 2

qt−2−logq 2

)
, if 2|q(

4− 1
t

) (
1 +

1+2 logq 2

qt−2−2 logq 2

)
, otherwise

which obviously can not be < 3.
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Abstract. We introduce systems of equations of stochastic tree series
and we consider two types of solutions, the [IO] and the OI, accord-
ing to the substitutions we use to solve them. We show the existence of
least [IO]- and OI -solutions whose non-zero components are proved to be
stochastic tree series. A Kleene characterization holds for stochastically
OI-equational tree series, i.e., components of least OI -solutions. Further-
more, we consider stochastic algebras and we state a Mezei-Wright type
result relating least solutions of systems in arbitrary stochastic algebras
and the term algebra.

Keywords: Stochastic tree series, systems of equations, least [IO]- and
OI-solutions, Mezei-Wright result.

1 Introduction

Systems of equations of stochastic polynomials arise in several areas of
Computer Science like probabilistic program verification, analysis of recursive
Markov chains, multi-type branching processes, and model checking of recursive
probabilistic systems (cf. [8,9,10,11]). Least solutions of such systems play a cen-
tral role also in other sciences, namely in Physics, Biology and Computational
Linguistics [8].

On the other hand, least OI -solutions of systems of equations of finite tree
languages coincide, according to an important result of Mezei and Wright [15],
with recognizable tree languages. Recently, in [4], most of the well-known tree
transductions characterized as least [IO]- and OI-solutions of systems of equa-
tions of finite tree transformations. In the weighted setup, the aforementioned
result of Mezei and Wright proved in [1] for tree series over fields, and in [3] for
tree series over well ω-additive semirings. Furthermore, the relation among least
[IO]- and OI-solutions of systems of equations of weighted tree transformations
and weighted tree transductions was investigated in [5], and with discounting in
[12]. We refer the reader to [2,3,7,13,14] for tree series, and systems of equations
of tree series over term and general algebras.

In this paper, we consider systems of equations of stochastic tree series, i.e.,
systems of the form

(E) x1 = p1, . . . , xn = pn,

T. Muntean, D. Poulakis, and R. Rolland (Eds.): CAI 2013, LNCS 8080, pp. 173–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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where pi, for every 1 ≤ i ≤ n, is a tree series with finite support whose co-
efficients sum up to 1. We consider solutions of such systems using [IO]- and
OI-substitutions of tree series. The existence of least [IO]- and OI-solutions is
ensured by the fixpoint theorem of Tarski. Tree series obtained as components
of least [IO]- and OI-solutions of our systems are called stochastically [IO]-
equational (resp. OI-equational) and they are proved to be stochastic (whenever
they differ from the constant series 0̃). We show that a Kleene characteriza-
tion holds for stochastically OI-equational tree series. More precisely, the class
of stochastically OI-equational tree series is the smallest convex set containing
the constant tree series 0̃ and characteristic series of trees and being closed un-
der OI-substitution and star operation. Furthermore, we state that the closure
of the class of stochastically OI-equational tree series under nondeleting tree
homomorphisms coincides with the class of stochastically [IO]-equational ones.

We consider also stochastic Σ-algebras (Σ a ranked alphabet), and we solve
systems of equations of the above form in such algebras. Stochastic functions
obtained as components of least [IO]-solutions (resp. OI -solutions) are called
stochastically [IO]-regular (resp.OI -regular). We show the robustness of our the-
ory, by proving a Mezei-Wright result relating stochastically OI -equational tree
series to stochastically OI -regular functions, and stochastically [IO] -equational
tree series to stochastically [IO] -regular functions.

2 Preliminaries

We denote by R+ the set of nonnegative reals. Multiplication in real numbers
will be denoted simply by concatenation. We recall a notation from [5]. More
precisely, let A be a set, n ≥ 1, 1 ≤ i1 < . . . < ik ≤ n, and a1, . . . , ak ∈ A. We
let

An|(i1,a1)...(ik,ak) = {(b1, . . . , bn) ∈ An | bi1 = a1, . . . , bik = ak}

i.e., An|(i1,a1)...(ik,ak) is the set of those elements of An, each of which has aj as
its ijth component for j = 1, . . . , k. For n = 0, we define A0 = {( )} (even if
A = ∅), where ( ) is the empty vector.

A partially ordered set (poset for short) is a pair (A,≤), where A is a set and
≤ is a partial order, i.e., a reflexive, antisymmetric, and transitive relation on A.
We will write simply A for (A,≤) and, for every A′ ⊆ A, we denote by supA′

the supremum of A′ in A, if it exists. A poset A is called ω-complete if it has
a least element ⊥ and every ω-chain a0 ≤ a1 ≤ . . . in A has a supremum in A,
denoted by supi≥0 ai.

Let f : A → A be a mapping. A fixpoint of f is an element a ∈ A such that
f(a) = a. A fixpoint a of f is the least fixpoint if a ≤ a′ for every fixpoint a′ of f .
Moreover, f is called ω-continuous if for every ω-chain a0 ≤ a1 ≤ . . . in A which
has a supremum, the supremum of {f(ai) | i ≥ 0} exists and f(supi≥0 ai) =
sup{f(ai) | i ≥ 0}. It is obvious that if f is ω-continuous, then it is monotonic,
meaning that f(a) ≤ f(a′) whenever a ≤ a′ for every a, a′ ∈ A. The subsequent
result is known as the fixpoint theorem (cf. e.g. [16, Sect. 1.5, Thm. 7]).
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Proposition 1. Let (A,≤) be an ω-complete poset and f : A → A an ω-
continuous mapping. Then f has a least fixpoint fixf , and fixf = sup{f (i)(⊥) |
i ≥ 0}, where f (i) denotes the i-fold composition of f .

Let (xi)i∈I be a family of elements in R+ such that supI′⊆finI

∑
i∈I′ xi exists,

where the notation I ′ ⊆fin I means that I ′ is a finite subset of I. Then, we say
that the sum

∑
i∈I xi exists and we set∑

i∈I
xi = sup

I′⊆finI

∑
i∈I′ xi.

Furthermore, if the sequence (xij)j≥0 is increasing and supj≥0 xij exists for every

i ∈ I, and
∑

i∈I′ xij ≤ 1 for every I ′ ⊆fin I, j ≥ 0, then∑
i∈I

sup
j≥0

xij = sup
j≥0

∑
i∈I

xij .

Let f : A → [0, 1] be a function. The sum
∑

a∈A f(a), whenever it exists, is
called the content of f and is denoted by cont(f). If cont(f) = 1, then f is
called a stochastic function (over A). The class of all stochastic functions over A
is denoted by STOCH(A). The support of f : A→ [0, 1] is the set of all elements
of A with non-vanishing image, i.e., supp(f) = {a ∈ A | f(a) > 0}. A stochastic
function f : A→ [0, 1] with finite support is a stochastic polynomial. We denote
by Stoch(A) the family of stochastic polynomials over A. Let (fi)i∈I be a family
of functions fi : A → R+ such that for every a ∈ A the sum

∑
i∈I fi(a) exists.

Then the assignment

a �→
∑

i∈I
fi(a)

defines a function from A to R+ denoted by
∑

i∈I fi, i.e.,(∑
i∈I

fi

)
(a) =

∑
i∈I

fi(a)

for every a ∈ A.
A family (λi)i∈I of numbers in [0, 1] is called stochastic if

∑
i∈I λi = 1. Let

(λi)i∈I be a stochastic family and fi ∈ STOCH(A) for every i ∈ I. Then
for every finite subset I ′ ⊆ I and a ∈ A we have

∑
i∈I′ λifi(a) ≤ 1, hence

supI′⊆finI

∑
i∈I′ λifi(a) exists, and∑

i∈I
λifi(a) = sup

I′⊆finI

∑
i∈I′ λifi(a) ≤ 1.

Therefore, the function
∑

i∈I λifi is well-defined. Moreover, it is stochastic.
Thus, we get the following result which is called the Strong Convexity Lemma
(SCL for short).

Lemma 1 (Strong Convexity Lemma). The set STOCH(A) is a strongly
convex set, i.e., if (λi)i∈I is a stochastic family and fi ∈ STOCH(A) for every
i ∈ I, then the function

∑
i∈I λifi is stochastic.
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The class of all functions [0, 1]A is a poset where the order of functions is
defined elementwise, i.e., f ≤ f ′ iff f(a) ≤ f ′(a) for every a ∈ A. Moreover, it is
ω-complete since if (fi)i≥0 is an ω-chain in [0, 1]A, then the function supi≥0 fi is

well-defined by
(
supi≥0 fi

)
(a) = supi≥0 fi(a) for every a ∈ A. If (fi)i≥0 is an ω-

chain in STOCH(A), then the function supi≥0 fi is also stochastic. Nevertheless,

the class STOCH(A) fails to be ω-complete since the least element of [0, 1]A,
i.e., the constant function assigning the value 0 to every a ∈ A is not stochastic.

Next let B be a further set and h : A→ STOCH(B) a mapping. Then h can
be extended to a mapping h : STOCH(A)→ STOCH(B) by setting

h(f) =
∑

a∈A
f(a)h(a)

for every f ∈ STOCH(A). Indeed, since (f(a))a∈A is a stochastic family of
numbers and h(a) is, by definition, stochastic for every a ∈ A, we get by the
SCL, that h̄(f) is also stochastic. In particular, every mapping h : A → B is
extended to a mapping h : STOCH(A)→ STOCH(B) using the same as above
formula. Moreover, if (λi)i∈I is a stochastic family of numbers and (fi)i∈I a
family of elements in STOCH(A), then we can show that

h
(∑

i∈I
λifi

)
=

∑
i∈I

λih (fi) .

3 Stochastic Tree Series

A ranked alphabet is a pair (Σ, rk) (simply denoted by Σ) where Σ is a finite set
and rk : Σ → N is the rank function. As usual, we set Σk = {σ ∈ Σ | rk(σ) = k}
for every k ≥ 0.

Let Σ0 �= ∅ and V be a finite set with V ∩ Σ = ∅. The set TΣ(V ) of finite
trees over Σ and V is defined by induction to be the least set T such that (i)
V ⊆ T and (ii) if k ≥ 0, σ ∈ Σk, and t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T .
If σ ∈ Σ0, then we write just σ for σ( ) and we write TΣ for TΣ(∅). Note that
TΣ �= ∅ since Σ0 �= ∅. Every subset of TΣ(V ) is called a tree language. Let
X = {x1, x2, . . .} be a countably infinite set of variables, which is disjoint from
every ranked alphabet considered in the paper. We set Xn = {x1, . . . , xn} for
n ≥ 0, hence X0 = ∅. Let t ∈ TΣ(Xn) be a tree. The set var(t) ⊆ Xn of variables

in t is defined such that var(t) = {t} if t ∈ Xn, and var(t) =
⋃k

i=1 var(ti) if
t = σ(t1, . . . , tk) for some k ≥ 0, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Xn). We denote
by |t|xi the number of occurrences of xi in t for every 1 ≤ i ≤ n. Then t is called
(Xn-)linear (resp. nondeleting) if |t|xi ≤ 1 (resp. |t|xi ≥ 1) for every 1 ≤ i ≤ n.
A subset L ⊆ TΣ(Xn) is linear (resp. nondeleting), if every t ∈ L is linear (resp.
nondeleting).

Next we recall tree substitution. Let t ∈ TΣ(Xn) and t1, . . . , tn ∈ TΣ(V ).
We denote by t[t1/x1, . . . , tn/xn] or simply by t[t1, . . . , tn] the tree which we
obtain by substituting simultaneously ti for every occurrence of xi in t for every
1 ≤ i ≤ n.



Stochastic Equationality 177

Remark 1. If xi /∈ var(t), then t[t1, . . . , ti, . . . , tn] = t[t1, . . . , t
′, . . . , tn] for every

t′ ∈ TΣ(V ).

Let nowΔ be a further ranked alphabet and Ξ = {ξ1, ξ2, . . .} be another set of
variables, which is disjoint from every ranked alphabet considered in the paper,
and let Ξn = {ξ1, . . . , ξn} for every n ≥ 0. A tree homomorphism from Σ to Δ
is a family of mappings (hk)k≥0 such that for every k ≥ 0, hk : Σk → TΔ (Ξk).
Such a tree homomorphism is called linear (resp. nondeleting) if for every k ≥ 1
and σ ∈ Σk the tree hk(σ) is Ξk-linear (resp. nondeleting).

For every finite set V , the tree homomorphism (hk)k≥0 induces a mapping h :
TΣ (V )→ TΔ (V ) defined inductively in the following way. For every t ∈ TΣ (V )
we let

– h(t) = t if t ∈ V , and
– h(t) = hk(σ)[h (t1) /ξ1, . . . , h (tk) /ξk] if t = σ (t1, . . . , tk) with k ≥ 0, σ ∈ Σk,

and t1, . . . , tk ∈ TΣ (V ).

As usual, we also call the induced mapping h tree homomorphism. We shall
denote by Hnd

Σ,Δ (cf. [13]) the class of all nondeleting tree homomorphisms from
TΣ to TΔ.

A function s : TΣ(V ) → [0, 1] (n ≥ 0) is usually called a tree series over Σ,
V , and [0, 1]. For every t ∈ TΣ(V ) we write (s, t) for s(t) and refer to it as the
coefficient of t in s. In case V = Xn, the tree series s is linear (resp. nondeleting)
if its support is linear (resp. nondeleting). We denote by 0̃ the constant series
defined by (0̃, t) = 0 for every t ∈ TΣ(V ). A tree series s : TΣ(V ) → [0, 1] is
called stochastic over Σ and V if the sum of all its coefficients exists and equals
to 1, i.e., cont(s) = 1. We shall denote by STOCH(Σ, V ) the set of all stochastic
tree series over Σ and V . In case V = ∅, we shall write STOCH(Σ). For every
L ⊆ TΣ(V ), the characteristic series 1L of L is defined as usual by (1L, t) = 1
if t ∈ L and 0 otherwise. Obviously, the characteristic series 1{t}, denoted for
simplicity by 1t, is stochastic for every t ∈ TΣ(V ).

Let h : TΣ (V ) → TΔ (V ) be a tree homomorphism. For every element s ∈
STOCH(Σ, V ) we let

h(s) =
∑

t∈TΣ(V )

(s, t)h(t).

By SCL h(s) is a stochastic tree series over Δ and V , hence we derive a mapping
h : STOCH(Σ, V )→ STOCH(Δ,V ).

Proposition 2. The set STOCH(Σ, V ) is strongly convex, i.e., for every sto-
chastic family (λi)i∈I of elements of [0, 1] and every family (si)i∈I of tree series
in STOCH(Σ, V ) the tree series

∑
i∈I λisi exists and belongs to STOCH(Σ, V ).

Let k ≥ 1 and σ ∈ Σk. The σ-catenation σ(s1, . . . , sk) of the tree series
s1, . . . , sk : TΣ(V )→ [0, 1] is defined by

σ(s1, . . . , sk) =
∑

t1,...,tk∈TΣ(V )

(s1, t1). . . (sk, tk)σ(t1, . . .tk)
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and clearly has its coefficients in [0, 1].
Now we recall (cf. [3,6]) the [IO]-1 and OI-substitutions of tree series. More

precisely, let t ∈ TΣ(Xn) with var(t) = {xi1 , . . . , xik} and s1, . . . , sn : TΣ(V )→
[0, 1] be trees series. The [IO]-substitution of s1, . . . , sn in t is the tree series

t[s1, . . . , sn][IO] =
∑

t1,...,tk∈TΣ(V )

(si1 , t1) . . . (sik , tk)t[v1, . . . , vn]

where for every t1, . . . , tk ∈ TΣ(V ), the sequence v1, . . . , vn is an arbitrary ele-
ment of TΣ(V )n|(i1,t1)...(ik,tk). The right-hand side of the above equality is, by
Remark 1, independent of the choice of the sequences v1, . . . , vn, hence the [IO] -
substitution is well-defined.

The OI-substitution of s1, . . . , sn in t is the tree series t[s1, . . . , sn]OI which
is defined inductively on the structure of t as follows.

(i) If t = c ∈ Σ0, then t[s1, . . . , sn]OI = c.
(ii) If t = xi, then t[s1, . . . , sn]OI = si.
(iii) If t = σ(t1, . . . , tk), for some k ≥ 1, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Xn), then

t[s1, . . . , sn]OI = σ (t1[s1, . . . , sn]OI , . . . , tk[s1, . . . , sn]OI).

Let s ∈ STOCH(Σ,Xn) and s1, . . . , sn : TΣ(V ) → [0, 1]. The u-substitution
of s1, . . . , sn in s is the tree series s[s1, . . . , sn]u : TΣ(V )→ [0, 1] defined by

s[s1, . . . , sn]u =
∑

t∈TΣ(Xn)

(s, t)t[s1, . . . , sn]u

for u=[IO], OI.

Proposition 3. Let s ∈ STOCH(Σ,Xn) and s1, . . . , sn ∈ STOCH(Σ, V ).
Then the tree series s[s1, . . . , sn]u is stochastic for u=[IO],OI.

Next, for every s ∈ STOCH(Σ,Xn), u=[IO],OI we define the mapping

Φs,u :
(
[0, 1]TΣ(V )

)n

→ [0, 1]TΣ(V ), (s1, . . . , sn) �→ s[s1, . . . , sn]u

for every (s1, . . . , sn) ∈
(
[0, 1]TΣ(V )

)n
.

Lemma 2. For every s ∈ STOCH(Σ,Xn) and u=[IO],OI, the mapping Φs,u is
ω-continuous.

4 Systems of Equations of Stochastic Tree Series

In this section, we deal with systems of equations of stochastic tree series. More
precisely, a system of equations of stochastic tree series over Σ and Xn is a
system

(E) x1 = p1, . . . , xn = pn,

1 We should note that the [IO]- differs from the IO-substitution mode. Due to space
limitations, we refer the reader to [6,13] for details.



Stochastic Equationality 179

where pi ∈ Stoch(Σ,Xn), i.e., pi is a stochastic polynomial over Σ and Xn for
every 1 ≤ i ≤ n. The system (E) is called linear (resp. nondeleting) if pi is linear
(resp. nondeleting) for every 1 ≤ i ≤ n.

We associate with (E) the mapping

ΦE,u :
(
[0, 1]TΣ

)n → (
[0, 1]TΣ

)n
which is defined by ΦE,u(s1, . . . , sn) = (Φp1,u(s1, . . . , sn), . . . , Φpn,u(s1, . . . , sn))
for u=[IO],OI and (s1, . . . , sn) ∈

(
[0, 1]TΣ

)n
. The mapping ΦE,u is ω-continuous

since by Lemma 2, the mapping Φpi,u is ω-continuous for every 1 ≤ i ≤ n.
Therefore, by Proposition 1, the least fixpoint fixΦE,u exists for u=[IO],OI. More
precisely, we have fixΦE,u = supk≥0 ((s1,k,u, . . . , sn,k,u)) where for every 1 ≤ i ≤
n

si,0,u = 0̃ and si,k+1,u = pi [s1,k,u, . . . , sn,k,u]u , for k ≥ 0.

In the sequel, we shall call a fixpoint of ΦE,u a u-solution of (E) and fixΦE,u the
least u-solution of (E).

A tree series s : TΣ → [0, 1] is called stochastically u-equational (over Σ) if
it is a component of the least u-solution of a system of equations of stochastic
tree series over Σ and Xn. For u=[IO],OI, we denote by StochEqu(Σ) the class
of stochastically u-equational tree series over Σ. The constant tree series 0̃ is
stochastically u-equational for every u=[IO],OI. For instance, if supp(pi)∩TΣ =

∅ for every 1 ≤ i ≤ n, then
(
0̃, . . . , 0̃

)
is the least u-solution of (E) for u=[IO],OI.

Theorem 1. Let

(E) x1 = p1, . . . , xn = pn,

be a system of equations of stochastic tree series. If either supp(pi)∩TΣ �= ∅ and
supp(pi)∩(TΣ(Xn)\TΣ) is nondeleting for every 1 ≤ i ≤ n or supp(pi)∩TΣ = ∅
for every 1 ≤ i ≤ n, then the components of the least u-solution (u=[IO],OI) of
(E) either are stochastic tree series or equal to 0̃, respectively.

Proof. (Sketch) Let fixΦE,u = (s1,u, . . . , sn,u) for u=[IO],OI. Observe that if

supp(pi) ∩ TΣ = ∅, for some 1 ≤ i ≤ n, then si,u = 0̃ because of our assumption
for (E). Therefore, let us assume that supp(pi) ∩ TΣ �= ∅ for every 1 ≤ i ≤ n,

and let p
(0)
i be the restriction of pi on TΣ , i.e., p

(0)
i = pi|TΣ and p

(1)
i = pi − p(0)i .

Thus, we get cont (pi) = cont
(
p
(0)
i

)
+ cont

(
p
(1)
i

)
. If for some index 1 ≤ i ≤ n

we have p
(1)
i = 0̃, then the ith component of the least u-solution of (E) equals

to p
(0)
i = pi, hence it is stochastic. Thus, without any loss, we may assume that

(E) satisfies the condition cont
(
p
(1)
i

)
> 0 for every 1 ≤ i ≤ n. Furthermore, let

cont
(
p
(1)
1

)
= λ, hence by our assumption for fixΦE,u, we have 0 < λ < 1. For

every 1 ≤ i ≤ n, u=[IO],OI we let

si,0,u = 0̃ and si,k+1,u = pi [s1,k,u, . . . , sn,k,u]u , for k ≥ 0
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and thus, si,u = supk≥0 si,k,u. By construction, the sequence (si,k,u)k≥0 is in-
creasing and bounded, hence

sup
k≥0

(cont (si,k,u)) = lim
k→∞

cont (si,k,u) .

Now, for every 1 ≤ i ≤ n, u=[IO],OI, we consider the sequence (si,k,u)k≥1 of
polynomials over Σ and Xn as follows

si,1,u = pi and si,k+1,u = pi [s1,k,u, . . . , sn,k,u]u , for k ≥ 0.

By Proposition 3, the polynomial si,k,u is stochastic for every 1 ≤ i ≤ n, k ≥ 1,
and u=[IO],OI. Moreover, we have si,k,u

(0) = si,k,u, and since cont (si,k,u) =
cont

(
si,k,u

(0)
)
+ cont

(
si,k,u

(1)
)
= 1, we get

cont (si,k,u) + cont
(
si,k,u

(1)
)
= 1. (1)

We show that limk→∞ cont
(
si,k,u

(1)
)
= 0, hence by (1) we get

lim
k→∞

cont (si,k,u) = 1

i.e., supk≥0 (cont(si,k,u)) = 1. Using the last relation, we show that cont (si,u) =
1, for every 1 ≤ i ≤ n, and we are done.

In the proof of theorem above, we did not use the finiteness of the supports
of pi’s. Therefore, we can state the following result.

Theorem 2. Let
(Eg) x1 = p1, . . . , xn = pn,

be a generalized system of equations of stochastic tree series, i.e., pi ∈
STOCH(Σ,Xn) for every 1 ≤ i ≤ n. If either supp(pi) ∩ TΣ �= ∅ and
supp(pi)∩(TΣ(Xn)\TΣ) is nondeleting for every 1 ≤ i ≤ n or supp(pi)∩TΣ = ∅
for every 1 ≤ i ≤ n, then the components of the least u-solution (u=[IO],OI) of
(Eg) either are stochastic tree series or equal to 0̃, respectively.

Given p ∈ STOCH(Σ,Xn) the kth star of p (1 ≤ k ≤ n) is by definition
the least OI-solution of the equation xk = p and it is denoted by p∗,k. We note
that in this case the variables x1, . . . , xk−1, xk+1, . . . xn are considered as letters
of rank 0.

Theorem 3. Let
(Eg) x1 = p1, . . . , xn = pn

be a generalized system of equations of stochastic tree series and assume that
p∗,nn �= 0̃. Consider the system

(E
′
g) x1 = p1 [x1, . . . , xn−1, p

∗,n
n /xn]OI , . . . ,

xn−1 = pn−1 [x1, . . . , xn−1, p
∗,n
n /xn]OI
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of n − 1 equations of stochastic tree series. If (s1, . . . , sn−1) is the least OI-
solution of (E

′
g), then (s1, . . . , sn−1, p

∗,n
n [s1, . . . , sn−1]) is the least OI-solution

of (Eg).

The last theorem allows us to solve equation by equation a generalized sys-
tem of equations of stochastic tree series. Furthermore, it has nice consequences.
First, we get that Theorem 2 remains valid, for the case u=OI, without “non-
deleting”assumption on the supports of its right-hand side members.

Theorem 4. Let
(Eg) x1 = p1, . . . , xn = pn,

be a generalized system of equations of stochastic tree series. If either supp(pi)∩
TΣ �= ∅ for every 1 ≤ i ≤ n or supp(pi) ∩ TΣ = ∅ for every 1 ≤ i ≤ n, then the
components of the least OI -solution of (Eg) either are stochastic tree series or

equal to 0̃, respectively.

The second important consequence of Theorem 3 is a Kleene characterization
for the class StochEqOI(Σ).

Theorem 5. The class StochEqOI(Σ,X) is the smallest convex set containing
the constant tree series 0̃ and characteristic series 1t for every t ∈ TΣ(X), and
being closed under OI -substitution and star operation.

We conclude this section, by stating a relation among StochEqOI and
StochEq[IO], i.e., the classes of all stochastically [IO]- and OI-equational tree
series. We need the following notation. For a class of tree series C, we let

Hnd(C) =
{
h(s) | h ∈ Hnd

Σ,Δ, s : TΣ → [0, 1], s ∈ C
}
.

Theorem 6. Hnd (StochEqOI) = StochEq[IO].

5 Stochastic Algebras

In this section, we introduce stochastic Σ-algebras and we state a Mezei-Wright
type result for stochastically u-equational tree series. More precisely, a stochastic
Σ-algebra is a pair A = (A,ΣA) where the nonempty set A is the domain set of
A, and ΣA is a family (σA | σ ∈ Σ) of operations on A such that for every k ≥ 0
and σ ∈ Σk, we have σA : Ak → STOCH(A). If σ ∈ Σ0, then σA ∈ STOCH(A).
If no confusion arises, then we dropA fromΣA. The mapping σA can be extended
into a function σA : STOCH(A)k → STOCH(A) by setting

σA(f1, . . . , fk) =
∑

a1,...,ak∈A

f1(a1) . . . fk(ak)σA(a1, . . . , ak)

for every f1, . . . , fk ∈ STOCH(A). Clearly, σA(f1, . . . , fk) is stochastic by the
SCL.
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Proposition 4. The mapping σA preserves strong convex combinations at every
argument, i.e., it holds

σA

( ∑
i1∈I1

λ1,i1f1,i1 , . . . ,
∑
ik∈Ik

λk,ikfk,ik

)
=

∑
i1∈I1,...,ik∈Ik

λ1,i1 . . . λk,ikσA(f1,i1 , . . . , fk,ik)

where (λ1,i1)i1∈I1
, . . . , (λk,ik)ik∈Ik

are stochastic families of real numbers and
f1,i1 , . . . , fk,ik ∈ STOCH(A) for every i1 ∈ I1, . . . , ik ∈ Ik.

Let B = (B,ΣB) be a further stochastic Σ-algebra. A mapping H : A →
STOCH(B) can be extended to a mapping H : STOCH(A)→ STOCH(B) by
letting for every f ∈ STOCH(A)

H(f) =
∑
a∈A

f(a)H(a).

Then H is called a morphism of stochastic Σ-algebras if

H (σA(a1, . . . , ak)) = σB (H(a1), . . . , H(ak))

for every k ≥ 0, σ ∈ Σk, and a1, . . . , ak ∈ A. This implies that H (σA) = σB for
every σ ∈ Σ0.

It should be clear that every Σ-algebra A can be considered as a stochastic
Σ-algebra, in particular the term algebra TΣ(V ) = (TΣ(V ), Σ) of all trees over
Σ and V , where σTΣ(V )(t1, . . . , tk) = σ(t1, . . . , tk) for every k ≥ 0, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ(V ). In fact, it is the free stochastic Σ-algebra generated
by V in the class of all Σ-algebras, i.e., for every Σ-algebra A, every mapping
H : V → STOCH(A) extends uniquely to a Σ-algebra morphism H : TΣ(V )→
STOCH(A). If V = ∅, then we denote the unique morphism from TΣ to A by
HA.

Let A = (A,Σ) be a Σ-algebra, t ∈ TΣ(Xn), a1, . . . , an ∈ A, and H : Xn → A
be a mapping with H(xi) = ai (1 ≤ i ≤ n). For every t ∈ TΣ(Xn) we denote
H(t) by tA[a1, . . . , an] and call it the substitution of a1, . . . , an in t. In case
A = TΣ(X), then tTΣ(X)[a1, . . . , an] coincides with the substitution of ai at xi
(1 ≤ i ≤ n) defined in Section 3. Next, we define the [IO]- and OI-substitutions
of stochastic functions over A in tree series over Σ and Xn. More precisely, let
t ∈ TΣ(Xn) with var(t) = {xi1 , . . . , xik} and f1, . . . , fn ∈ STOCH(A). The
[IO]-substitution of f1, . . . , fn in t, is defined as follows:

tA[f1, . . . , fn][IO] =
∑

a1,...,ak∈A

fi1(a1) . . . fik(ak)tA[b1, . . . , bn]

where for every a1, . . . , ak ∈ A, the sequence b1, . . . , bn is an arbitrary element
of An|(i1,a1)...(ik,ak). The OI-substitution of f1, . . . , fn in t is defined inductively
in the following way.
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(i) If t = xi, then tA[f1, . . . , fn]OI = fi.
(ii) If t = σ (t1, . . . , tk) for some k ≥ 0, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Xn), then

tA[f1, . . . , fn]OI = σA (t1,A[f1, . . . , fn]OI , . . . , tk,A[f1, . . . , fn]OI).

Let s ∈ STOCH(Σ,Xn), f1, . . . , fn ∈ STOCH(A). The u-substitution of
f1, . . . , fn in s is the stochastic function sA[f1, . . . , fn]u ∈ STOCH(A) defined
by

sA[f1, . . . , fn]u =
∑

t∈TΣ(Xn)

(s, t)tA[f1, . . . , fn]u.

Next, for every s ∈ STOCH(Σ,Xn), u=[IO],OI we define the mapping

ΦA
s,u :

(
[0, 1]A

)n → [0, 1]A, (f1, . . . , fn) �→ sA[f1, . . . , fn]u

for every (f1, . . . , fn) ∈
(
[0, 1]A

)n
.

Lemma 3. For every s ∈ STOCH(Σ,Xn) and u=[IO],OI the mapping ΦA
s,u is

ω-continuous.

In the sequel, we consider least u-solutions of generalized systems of equations
of stochastic tree series

(Eg) x1 = p1, . . . , xn = pn,

in the Σ-algebra A. More precisely, we associate with (Eg) the mapping

ΦA
E,u :

(
[0, 1]A

)n → (
[0, 1]A

)n
which is defined by ΦA

E,u(f1, . . . , fn) =
(
ΦA
p1,u(f1, . . . , fn), . . . , Φ

A
pn,u(f1, . . . , fn)

)
for every u=[IO],OI and (f1, . . . , fn) ∈

(
[0, 1]A

)n
. The mapping ΦA

E,u is ω-

continuous since by Lemma 3, the mapping ΦA
pi,u is ω-continuous for every

1 ≤ i ≤ n. Therefore, by Proposition 1, the least fixpoint fixΦA
E,u exists for

u=[IO],OI. We call a fixpoint of ΦA
E,u a u-solution of (Eg) in A and fixΦA

E,u the
least u-solution of (Eg) in A. A function f : A → [0, 1] is called stochastically
u-regular if it is a component of the least u-solution of a system of equations
of stochastic tree series over Σ and Xn whose right-hand sides are polynomials.
We denote by StochRegu(A) the class of all stochastically u-regular functions
over A.

Theorem 7. The class StochRegOI(A) is a convex set closed under stochasti-
cally regular substitution, i.e., if s is in STOCH(Σ,Xn) and if f1, . . . , fn are in
StochRegOI(A), then sA[f1, . . . , fn]OI ∈ StochRegOI(A) as well. Moreover, if
the right-hand sides of a system (Eg) consist of stochastically OI -equational tree
series, then every component of the least OI -solution of (Eg) is stochastically
OI -regular.in

Finally, we present the announced Mezei-Wright type result.

Theorem 8. Let A = (A,Σ) be a stochastic Σ-algebra. A function f ∈ [0, 1]A

is stochastically u-regular iff there exists a stochastically u-equational tree series
s over Σ such that HA(s) = f , for u=[IO],OI.
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6 Conclusion

We introduced systems of equations of stochastic tree series and we proved
the existence of their least [IO]- and OI-solutions whose non-zero components
are stochastic tree series. We gave a Kleene characterization for the class of
stochastically OI-equational tree series. Furthermore, we proved that the class
of stochastically [IO] -equational tree series is the closure of the class of stochas-
tically OI-equational tree series under nondeleting tree homomorphisms. We
considered also stochastic algebras and established a Mezei-Wright result show-
ing the robustness of our theory. We note that systems of equations of stochastic
polynomials over non-commuting variables are a special case of our systems over
stochastic Σ-algebras.

Several open problems arise for our systems of equations of stochastic tree
series. The behaviors of existing models of probabilistic tree automata fail to
have an equational characterization as well a Kleene type one. It is our next
task to introduce a reasonable model of stochastic tree automata having these
properties. On the other hand, the fixpoint theory ensures the existence of the
least [IO]- and OI-solutions which can be determined by the suprema of the cor-
responding approximating sequences. Nevertheless, it is shown in other setups of
stochastic systems of equations that the determination of these suprema is expo-
nentially [9]. Therefore, the complexity of the computation of our stochastically
equational tree series is an interesting open problem for further investigation.
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2. Bloom, S.L., Ésik, Z.: An extension theorem with an application to formal tree
series. J. Autom. Lang. Comb. 8, 145–185 (2003)

3. Bozapalidis, S.: Equational elements in additive algebras. Theory of Comput.
Syst. 32, 1–33 (1999)
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On Gröbner Bases in the Context

of Satisfiability-Modulo-Theories Solving
over the Real Numbers
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RWTH Aachen University, Germany

Abstract. We address satisfiability checking for the first-order theory
of the real-closed field (RCF) using satisfiability-modulo-theories (SMT)
solving. SMT solvers combine a SAT solver to resolve the Boolean struc-
ture of a given formula with theory solvers to verify the consistency of
sets of theory constraints.

In this paper, we report on an integration of Gröbner bases as a theory
solver so that it conforms with the requirements for efficient SMT solving:
(1) it allows the incremental adding and removing of polynomials from
the input set and (2) it can compute an inconsistent subset of the input
constraints if the Gröbner basis contains 1.

We modify Buchberger’s algorithm by implementing a new update
operator to optimize the Gröbner basis and provide two methods to han-
dle inequalities. Our implementation uses special data structures tuned
to be efficient for huge sets of sparse polynomials. Besides solving, the
resulting module can be used to simplify constraints before being passed
to other RCF theory solvers based on, e.g., the cylindrical algebraic
decomposition.

1 Introduction

Formulas of first-order logic over the theory of the real-closed field (RCF) are
Boolean combinations of polynomial constraints with real-valued variables. Be
it the analysis of real-time systems, the optimization of railway schedules or the
computation of dense sphere packings in Euclidean space, many practical and
theoretical problems can be expressed in this logic. Sophisticated decision pro-
cedures and increased computational power have led to efficient tools to analyze
such formulas.

Boolean formulas are well-suited for the description of discrete systems, e.g.,
digital controllers. State-of-the-art SAT solvers, dedicated programs to deter-
mine the satisfiability of Boolean formulas, are highly tuned for efficiency. They
can handle formulas with millions of literals and are frequently used not only in
academic research but also in industry.
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The success of SAT solvers has led to an approach called satisfiability-modulo-
theories (SMT ) solving for handling first-order logic over certain theories. This
approach combines the high efficiency of SAT solvers to handle the Boolean
structure with dedicated theory solvers to check sets of constraints from the
given theory for consistency. For the optimal combination of these modules,
theory solvers should be SMT compliant : they should support the extension of
the constraint set (incrementality), the removal of constraints (backtracking) and
the generation of small infeasible subsets in case of inconsistency [2][Ch. 26].

In this paper, we consider the existential fragment of the first-order logic over
the theory of the RCF. Immense advances have been made in this area in the
last decades. Besides complete decision procedures as the cylindrical algebraic
decomposition (CAD) method [4], e.g. implemented in the tool QEPCAD, also
incomplete methods such as the virtual substitution (VS) method [15], e.g. avail-
able in the package Redlog of the computer algebra system Reduce, simplex [8]
or interval constraint propagation [9], e.g. implemented in iSAT, are available. In
addition to such explicit methods working on the solution space, some symbolic
approaches find application in SMT solving for preprocessing by using simple
rules and basic Gröbner basis computations, or outside of SMT solvers in stan-
dalone tools, often based on some application of the Positivstellensatz [13] such
as in the tool KeYmaera.

We aim to improve the integration of the Gröbner bases methodology in SMT
solving, thereby enhancing speed and effectiveness. To reach this goal, we have
to overcome several challenges. (1) The methodology has to be adapted to be
SMT compliant and (2) to cope with typical SMT-problem structures, which
often significantly differ from algebraically hard problems. (3) As we are solving
over the RCF, we are more interested in the real radical than the ideal of our
input polynomials. (4) Finally, we need to handle inequalities as well.

Gröbner basis computations are used for preprocessing in [7] and [11]. [13]
proposes a combination of Gröbner basis computations with the Fourier-Motzkin
method. However, this work is not directly related to SMT. Direct relation to
SMT can be found in [6] for finding minimal infeasible subsets, and in [12] for
coping with the special structure. Saturation to approximate the real radical is
used in [11] and in [13].

We implement our approaches as a module in the SMT-solving framework
SMT-RAT, which is a C++ toolbox allowing the combination of different theory
solvers in a user-defined strategy. Our Gröbner bases module can be applied
both as a preprocessing and as a solving technique.

Regarding (1), our Gröbner bases module supports the adding and removal
of constraints as well as the computation of small infeasible subsets. The basic
features of this module are the simplification of equations and the check whether
there are common zeros of the input equations. To tackle (2), we utilize some
ideas from [12] and [14] to develop data structures that can handle a large
number of variables and huge sets of sparse input polynomials, not necessarily
of low degree, as they frequently occur in our setting. For (3), we further adapt
Buchberger’s algorithm in that we prune polynomials without real zeros in the
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Gröbner basis. We implemented two different strategies to realize (4): firstly,
we can encode all inequalities as equations and compute a Gröbner basis of the
extended set of polynomials, or secondly, we reduce the polynomials belonging
to the inequalities modulo the Gröbner basis for the equations.

The rest of the paper is structured as follows: In Section 2 we recall some
basics for Gröbner bases. In Section 3 we describe our SMT framework before
explaining our methods and their integration in Section 4. After giving some
experimental results in Section 5, we conclude the paper in Section 6.

2 Preliminaries

We denote the set of real, rational and natural numbers by R, Q and N (0 ∈ N)
respectively. We use R and Q also for the corresponding (ordered) fields over the
arithmetic operations +, · and the ordering relation <. W.l.o.g., we refer to R
as the real-closed field (RCF ). We omit the symbol · when the context is clear.
We abbreviate sequences of variables x1, . . . , xn, n ≥ 1, by x.

Let K be a field. K[x] denotes the polynomial ring over K in the variables x.
We call a product m =

∏
1≤i≤n x

di

i with di ∈ N a monomial having the degree
deg(m) :=

∑
1≤i≤n di. With Mx we denote the set of all monomials in x. A

product a · m with a ∈ K and m ∈ Mx is called a term and a the coefficient
of m. Hence, a polynomial p ∈ K[x] is a sum of terms. We say that xi ∈ p
if xi occurs in the polynomial p ∈ K[x]. We define the total degree of p as
tdeg(p) := max{deg(m) | m monomial in p}. A monomial ordering is a linear
well-ordering on monomials respecting multiplication of monomials, i.e., a linear
ordering ≺ with a minimal element such that m1 ≺ m2 entails m1m3 ≺ m2m3

for all m1,m2,m3 ∈ Mx. By lm(p) we denote the leading monomial of p, i.e.,
the maximal monomial w.r.t. the current ordering. Analogously, we define lt(p)
to be the leading term of p. The coefficient of lt(p) is called leading coefficient,
denoted by lc(p). It holds that lt(p) = lc(p)lm(p) for all polynomials p ∈ K[x].

Let p ∈ Q[x]. We call p ∼ 0 a (polynomial) constraint over p if and only
if ∼ ∈ {=, >,≥, �=}. For P ⊆ K[x] and C a set of constraints over P we
define pol(C) := P . Our input formulas are quantifier-free first-order formulas
over polynomial constraints, i.e., Boolean combinations connected by ∧, ∨, ¬
of constraints. We refer to such formulas as RCF formulas. Note that we only
consider the existential fragment of the first-order theory of the RCF here.

2.1 Gröbner Bases

We briefly introduce Gröbner bases and an application to solve real-algebraic
constraint systems. More information can be found in [1].

Let R = Q[x] with a fixed monomial ordering. Given a finite set of polynomials
P ⊆ R, we define the ideal generated by P as the set 〈P 〉 := {

∑
p∈P rpp | rp ∈

R for each p ∈ P}. Note that the more general notion of an ideal is also covered
by our definition because, due to Hilbert’s basis theorem, every ideal in R has
a finite set of generators. By VK(〈P 〉) := {a ∈ K | p(a) = 0 for all p ∈ P} we
denote the K variety of P , i.e., the set of common zeros of P in K.
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Reduction. Let p, p′, f ∈ R with p, f �= 0, p =
∑k

i=0 aimi, k ∈ N and let F ⊆ R.
If p′ = p− sf for some s ∈ R such that s · lt(f) = aimi for some i ∈ {1, . . . , k}
then p reduces to p′ modulo f , written p

f−→ p′. We call f the reductor of p. We

say that p reduces to p′ modulo F , written p
F−→ p′, if p

f−→ p′ for some f ∈ F . If
no f ∈ F with p

f−→ p′ exists, p is in normal form modulo F . If p
F−→ . . .

F−→ p′

and p′ is in normal form modulo F then we call p′ the normal form of P modulo
F , denoted by redF (p).

Definition 1 (Gröbner basis). Let P ⊆ R. A finite set G ⊆ 〈P 〉 is called a
Gröbner basis (GB) of 〈P 〉 if 〈{lt(g) | g ∈ G}〉 = 〈{lt(p) | p ∈ P}〉. Let lc(p) = 1
for all p ∈ G. We call G minimal if lt(g) /∈ 〈lt(g̃) | g̃ ∈ G \ {g}〉 for all g ∈ G,
and reduced if m /∈ 〈lt(g̃) | g̃ ∈ G \ {g}〉 for all monomials m of g.

We always regard a reduced GB, which is unique for a given monomial ordering.
If the reduced Gröbner basis of 〈P 〉 is {1} then VR(〈P 〉) = ∅, i.e., P has no
common zeros.

Buchberger’s Algorithm. In his PhD thesis, Bruno Buchberger suggested a sim-
ple fixed-point iteration algorithm for computing a Gröbner basis [3] (see List-
ing (1) of Table 1). The most important tool in Buchberger’s algorithm is the

S-polynomial: Let p, q ∈ R with lm(p) =
∏n

i=1 x
di

i and lm(q) =
∏n

i=1 x
d̃i

i ,
then the least common multiple of lm(p) and lm(q) is lcm(lm(p), lm(q)) =∏n

i=1 x
max(di,d̃i)
i =: l. We define S(p, q) := l

lt(p) ·p−
l

lt(q) ·q to be the S-polynomial

of p and q. All possible S-polynomials are computed during Buchberger’s algo-
rithm. We refer to a pair (p, q) whose S-polynomial is not yet computed as
S-pair.

We call a mapping U : 2R × R → 2R an update operator, where 2R denotes
the power set of R. Buchberger’s algorithm uses the standard update operator
Ustd(G, s) = G ∪ {s}.

A reduced Gröbner basis can be obtained by iteratively removing each
polynomial whose leading term is a multiple of another leading term, and
applying reduction modulo G \ {p} for the remaining p ∈ G, see [1][Table 5.5].

3 SMT-RAT

In this section, we give a short overview of our toolbox SMT-RAT [5], in which we
embed our Gröbner bases implementation. The core procedure of Buchberger’s
algorithm and it’s underlying data structures are implemented in the extension
GiNaCRA of the GiNaC library.

Framework. SMT-RAT is a C++ library consisting of (1) a collection of SMT-
compliant theory solver modules which can be used to extend an existing SMT
solver to RCF and (2) an SMT solver in which these modules can be (and most
of them are) integrated to tackle RCF. The latter is intended to be a testing
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Table 1. Buchberger’s algorithm and GB module consistency check

Listing (1) Buchberger’s algorithm.

1 Input: Set of polynomials P
2 Output: Gröbner basis G for 〈P 〉
3

4 G := P
5 while true:

6 G′ := G
7 for each {p, q} ⊆ G′, p �= q
8 s := redG(S(p, q))
9 if s �= 0:
10 G := Ustd(G, s)
11 if G = G′:
12 break

13 return G
14

15

Listing (2) GB module consistency
check.

1 Input: Crcv, state (A,G)
2 Output: (ans,Cinf ),
3 with Cinf ⊆ Crcv

4 and ans ∈ {sat, unsat, unknown}
5

6 if A �= ∅:
7 G := Groebner(G ∪ A)
8 A := ∅
9 if G = {1}:
10 return (unsat, Crsn(1 = 0))
11 Cpas := (Crcv \ Crcv[=])
12 ∪ {p = 0 | p ∈ G}
13 (r, C′

inf) := runBackends(Cpas)

14 determine Cinf from C′
inf

15 return (r,Cinf)

environment for the development of SMT-compliant theory solvers, as the one
presented in this paper. SMT-RAT defines three types of components (see [10,
Appendix B]): manager, strategy and module. In the following we first describe
the functionality of a module and show how the manager composes different
modules according to a strategy to a solver.

Modules. The main procedure of a module is check(Crcv). For a given set Crcv

of RCF formulas, called the set of received formulas, the procedure either decides
whether Crcv is satisfiable or not returning sat or unsat, respectively, or returns
unknown. Note, that a set of formulas is semantically defined by their con-
junction. We can manipulate the set of received formulas by adding (removing)
formulas ϕ to (from) it with add(ϕ) (remove(ϕ)). Since in the SMT embed-
ding Crcv is usually changed between two consecutive check(Crcv) calls only by
adding/removing constraints, the solver’s performance can be significantly im-
proved if the modules can make use of the results of previous checks (incremen-
tality and backtracking). In case that the module determines the unsatisfiability
of Crcv, it is expected to compute at least one preferably small infeasible subset
Cinf ⊆ Crcv. Moreover, a module has the possibility to name lemmas, which are
RCF tautologies. These lemmas should encapsulate information which can be
extracted from a module’s internal state and propagated among other SMT-RAT
modules. Furthermore, SMT-RAT provides the feature that a module itself can ask
other modules for the satisfiability of a set Cpas of RCF formulas, called the set
of passed formulas, using the procedure runBackends(Cpas) which is controlled
by the manager.

This paper presents the implementation of a new SMT-RAT module called MGB
based on Gröbner bases; the next section gives details on its implementation.
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SMT-RAT already contains various modules implementing, among others a con-
junctive normal form transformer MCNF, a SAT solver MSAT and the modules MLRA
for simplex, MVS for VS and MCAD for CAD. Note that most of these procedures are
not complete. If a module cannot solve a problem then it either returns unknown
or consults another module as explained below.

Manager and Strategy. A strategy is a directed tree T := (V,E) with a set
V of module instances as nodes and E ⊆ V × Ω × V , where Ω is a set of
conditions. Initially, the manager calls the method check(Crcv) of the module
instance given by the root of the strategy, where Crcv is a set of RCF formulas.
Whenever a module instance m ∈ V calls runBackends(Cpas), the manager
calls check(Cpas) of each module m′, for which an edge (m,ω,m′) ∈ E exists
such that ω holds for Cpas, and passes the results back to m. Furthermore,
it also passes back the infeasible subsets and lemmas provided by the invoked
modules. The modulem can now benefit in its solving and reasoning process from
this shared information. In the following we write short (m,m′) for (m,ω,m) if
ω = True.

Usually, the root module MCNF transforms its set of received formulas Crcv to an
equisatisfiable set of clauses Cpas and calls runBackends(Cpas). The backend is a
SAT-solver module MSAT, which runs DPLL-style SAT-solving on the Boolean ab-
straction of the set of received clauses Crcv. MSAT might call runBackends(Cpas)

for partial Boolean assignments on the corresponding set of formulas Cpas; we
refer to such a backend call as theory call. The Boolean abstraction of the ob-
tained infeasible subsets and lemmas are stored as additional clauses. Infeasible
subsets and lemmas, which contain only formulas from Crcv, prune the Boolean
search space and hence the number of theory calls. Smaller infeasible subsets
are usually more advantageous, because they make larger cuts in the search
space. Other types of lemmas contain new formulas, so-called inventive lemmas
(non-inventive otherwise) and might enlarge the Boolean search space, but they
can reduce the complexity of later theory calls. This way we can compose SMT
solvers for RCF, e.g., using the simple strategy defined by the nodes IMCNF , IMSAT
and IMCAD and the edges (IMCNF , IMSAT) and (IMSAT , IMCAD).

4 Applying Gröbner Bases

In this section we describe our SMT-RATmodule MGB applying Gröbner bases (GB)
computations. In Section 4.1 we discuss how its design wraps a GB procedure
such as Buchberger’s algorithm, while leaving the GB procedure itself untouched.
In turn, Section 4.2 comprises how Buchberger’s algorithm can be adapted to
work inside an SMT-RAT module. Moreover, we show how to treat inequalities in
Section 4.3, how to realize a tighter SMT integration by giving lemmas in Section
4.4, and an extension to the GB module MGB which makes it more suitable for
preprocessing in Section 4.5.

In this section we assume Crcv to be a set of constraints. Given a constraint c,
a set of constraints C and a set of polynomials P , we use C[∼] = {p ∼ 0 | p ∼ 0 ∈
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C} to select constraints and C∼(P ) := {p ∼ 0 | p ∈ P} to construct constraints
from polynomials. We call Crsn(c) ⊆ Crcv a reason set of c if

∧
r∈Crsn(c)

r =⇒ c

and Crsn(C) =
⋃

c∈C Crsn(c) a reason set of C.

4.1 SMT-Compliant Consistency Checking

In this section we show how consistency checking in an SMT-RAT module based
on a Gröbner bases core procedure can be accomplished. We do not further
specify this core procedure here. It is thus possible to plug in an off-the-shelf GB
procedure implementation such as the one in Singular.

The input consists of a set Crcv of received constraints and the set of con-
straints arrived since the last consistency check. We call a tuple (A,G) ⊆
Q[x]×Q[x] a (GB module) state if A ⊆ pol(Crcv) is the set of polynomials added
since the last consistency check and G is a Gröbner basis for 〈pol(Crcv[=]) \A〉.

The incremental consistency check procedure is given in Listing (2) of Table
1. It operates on Crcv and the state (A,G). The procedure possibly updates the
state (A,G) and outputs, first, an answer as to whether Crcv is sat, unsat or
its consistency is unknown, and second, a subset of Crcv building an infeasible
subset Cinf in case of the answer unsat. The first step in the procedure is the
computation of a Gröbner basis of all polynomials appearing on the left-hand-
side in Crcv[=] (line 6 in Listing (2) of Table 1). Thereby we recompute the GB
only if A �= ∅. Then, we reuse G for the computation of the GB of pol(Crcv[=]),
what is possible because 〈pol(Crcv[=])〉 = 〈G ∪ A〉. If the Gröbner basis is {1},
the polynomials have no common real zeros; hence, we determine the infeasible
subset Cinf as reason set of 1 = 0 (details below) and return unsat. Otherwise, we
call a module with the same inequations, and instead of the original equations,
we pass equations formed by the Gröbner basis. In the following, we describe the
extensions around the algorithm in Listing (2) of Table 1 to provide the SMT
compliance.

Backtracking. As in SMT solving constraints can be removed from theory solvers,
we make bookkeeping of the GB module states. Because SAT solvers mostly
use chronological backtracking we use a stack of states ((A0, G0), . . . , (Ak, Gk)),
k ∈ N, illustrated in Figure 1: We start with an empty stack. Whenever an
equality is added, we add a state to the stack (a). After each consistency check,
we update the topmost state from the stack (b). If an equality is removed, we
remove all states from the stack which were added afterwards (c). Then, we add
the polynomials which were added after the just removed equality iteratively,
like a new equality (d).

Infeasible Subsets. As argued before, the module is expected to return a subset
Cinf ⊂ Crcv in case the set of received constraints Crcv is inconsistent.

To determine such a subset, in [6] certificates for inconsistency were intro-
duced. It was also shown that minimality of these certificates is a problem which
is as hard as calculating the Gröbner basis. These certificates are basically tu-
ples of polynomials (h1, . . . , hn) such that for an ideal I = 〈f1, . . . , fn〉 and a
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Fig. 1. The state stack in the GB module

polynomial p ∈ I we have
∑n

i=1 hifi = p for suitable hi ∈ K[x̄]. In the case
of inconsistency, we have p = 1. Calculating certificates requires the reductions
within the Gröbner basis calculation to be extended to ordinary divisions, which
is certainly less efficient. As we do this calculation for all reason sets, we imple-
mented a more naive way. The realization of smaller reason and infeasible sets
is obvious under the assumption that our GB procedure returns reason sets for
each p ∈ G, with G a GB.

4.2 Our Gröbner Bases Procedure

We describe the adaptions to Buchberger’s algorithm according to our setting
of being called in an SMT-compliant way. The implementation is based on the
description in [1].

Incrementality. As we call the GB procedure incrementally (cf. line 7 in Listing
(2) of Table 1), we usually have to calculate Gröbner bases of G ∪ A for some
set of polynomials A where G is a GB already. Instead of using Buchberger’s
algorithm from scratch, we skip all S-pairs (g1, g2), g1, g2 ∈ G as they reduce to
zero.

Reason Set Calculation. We calculate the origin set Corg(p) of a polynomial p
as follows: If p is added to our module, Corg(p) = {p}. Furthermore, for p =

S(p1, p2) and p1
p2−→ p, we set Corg(p) = Corg(p1)∪Corg(p2). Then Crsn(p = 0) =

Corg(p). The set representations are realized by bit vectors and therefore taking
the union costs at most a couple of machine operations.

Data Structures. We base our implementation of data structures on [14], e.g., we
use a compressed heap during the reduction and for storing S-pairs. However, the
term and ideal representations are adapted based on the following observations:
The number of variables in the system is usually high and, due to incremental-
ity, we do not have a fixed bound on the number of variables at initialization.
However, most polynomials appearing are sparse, i.e., they consist of only few
terms, each having small number of variables.

A term a·
∏n

i=1 x
di

i is represented as (a, [(xi1 , di1), . . . , (xik , dik)],
∑n

i=1 di) with
dij �= 0 for all 1 ≤ j ≤ k and ij < ij+1 for all 1 ≤ j < k. In our context, this
representation seems more suitable than those from [14]. The degree is saved for
fast access. For the ideal representation, we propose the adaption of the index
structure from [12], which reduces the number of potential reductors. This can
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be done in two ways, but both indexing strategies are based on the observation
in [10, Appendix C]. Instead of searching for a suitable reductor in a single
container of polynomials, we introduce lists lx for each variable x. We have two
possibilities to fill these lists. Either each lx is filled with all polynomials p with
x ∈ lm(p) and during reduction of p we only search in an arbitrary lx wheres
x ∈ lm(p), or for each polynomial p we fill one arbitrary lx with x ∈ lm(p) with
p and during reduction of p, we search in all lx where x ∈ lm(p). To reduce the
number of terms which appear during the reduction, we order the polynomials
in the index explained above according to the number of terms.

Real Radical. Among others, [11] discusses the problem that calculating the real
radical is hard. They both propose the iterative application of simple rules to
the ideal and thereby approximating the real radical. We propose to take this
one step further. Instead of alternately calculating the GB and applying such
rules, we integrate the rules within the calculation of the GB. For a given set
of polynomials P , such a procedure thus no longer yields a GB for the ideal.
However, we neither require the procedure the calculate the real radical of P .
We only require that it preserves the common real zeroes.

Definition 2 (Real-radical preserving GB procedure). A procedure G is
called a real-radical preserving GB procedure if VR(P ) = VR(G(P )) and G(P ) is
a GB.

To achieve such a procedure, we modify the update operator in Buchberger’s
algorithm (line 9, in Listing (1) of Table 1).

Definition 3 (Real-radical preserving update operator). Let U be an up-
date operator, ≺ be a monomial ordering. U is said to be real-radical preserving
if for P ⊂ Q[x] and s ∈ Q[x] we have that U(P, s) = P ∪ Q, where Q ⊂ Q[x]
such that VR(Q) = VR(〈s〉) and q is normal form modulo P for all q ∈ Q.

The following theorem formalizes the relation between the used update operator
and the GB procedure.

Theorem 1. If the update operator in the Buchberger algorithm is modified into
a real-radical preserving update operator, then the modified Buchberger algorithm
is a real-radical preserving GB procedure.

The proof is included in [10, Appendix D]. In [10, Appendix E] we give some
computationally cheap rules implemented.

4.3 The Handling of Inequalities

Our implementation offers two different approaches to deal with a received in-
equality p ∼ 0. The first approach equalizes the inequation by introducing a new
variable y according to the following valid equivalences [13]:

p ≥ 0⇔ ∃y.p− y2 = 0, p > 0⇔ ∃y.py2 − 1 = 0, p �= 0⇔ ∃y.py − 1 = 0
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The resulting equation can then be handled as before.
In the second approach we reduce p to q := redP (p) w.r.t. some subset P

of a GB G. If q ∈ Q, then either q ∼ 0 and we do not have to pass it to our
backends, or q �∼ 0 and we obtain Crsn(C=(P ))∪{p ∼ 0} as infeasible subset and
return unsat. In order to allow the correct interaction of the reduction of p ∼ 0
with the GB module stack, we store the most relevant reductions in a reduction
chain RC(p ∼ 0) ⊆ Q[x]× N: Assuming our stack is ((A0, G0), . . . , (Ak, Gk)),
then RC(p ∼ 0) = {(p, 0)} ∪ {(redGk

(p), k) | redGk
(p) �= p}. If a new state

(Aj , Gj) is added to the stack, we set RC(p ∼ 0) = RC(p ∼ 0)∪{(redGj (pm), j) |
redGj (pm) �= pm} where m = max{i ∈ N | (p, i) ∈ RC(p ∼ 0)}. If an equality is
removed such that the new stack size is k′, then we remove all (p, i), i > k′ from
RC(p ∼ 0). If p ∼ 0 is removed, we simply delete RC(p ∼ 0).

4.4 Learning

In the following we consider that a constraint p ∼ 0 is deduced from Crcv by the
module. If we achieve a constant value, i.e. q ∈ Q and q ∼ 0 holds, we obtain
the non-inventive lemma Crsn(C=(P )) → (p ∼ 0). If q is a linear polynomial
and P contains at least one nonlinear constraint, we share the inventive lemma
Crsn(C=(P ))→ (q = 0). Successive theory calls might then be solved by a more
efficient linear solver. Note, that linear solvers are usually capable of detecting
such deductions where P consists only of linear constraints. Finally, if q :=

∑
tix

and tdeg(q) is sufficiently small, for instance less then the maximum degree
occurring in Crcv, we learn the inventive lemma Crsn(C=(P ))→ (x = 0∨

∑
ti =

0). It forms a case splitting and at least one case reduces the complexity of the
subsequent theory call significantly.

4.5 Iterative Variable Elimination

In Section 4.2 we have discussed the embedding of saturation rules for the real
radical into the GB procedure. However, some saturation rules from [11][13] are
not (yet) suitable for this kind of integration, e.g., rules involving a case splitting,
which is optimally resolved by learning as discussed in the previous subsection.

Another example is the iterative variable elimination (IVE) as introduced in
[13]. In practice, a GB G contains a lot of identities of the form t− x, where t is
a term not containing x. IVE removes the respective identity and substitutes x
by t in G, in symbols G[t\x], yielding G′ = (G\{t−x})[t\x], which is in general
not a GB. Then, it applies the GB procedure to obtain a GB and repeats these
two steps until we reach a fixpoint. The strict embedding of this saturation rule
into the GB procedure is not straightforward, as potentially all GB elements
are affected. Furthermore, we apply the encountered substitutions to the GB
module’s received inequalities.

When applying IVE, we have to preserve the module’s SMT compliance,
which turns out to be rather straightforward for the provided mechanisms.
The incrementality can be guaranteed as all substitutions can be applied to
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Table 2. # instances more than δ ms faster/slower than SMT-RAT with Sref

Set (# instances) δ GBnp GBIVEnp GBp GBIVEp GBt GBIVEt Any

Key(421)
5 102/36 120/44 110/46 119/51 183/45 178/56 252/4

500 29/0 29/1 28/5 27/6 31/2 35/0 36/0

Met(8276) 25 267/231 175/416 352/434 254/613 167/1410 239/1401 698/77

Bounce(180) 500 0/0 0/1 10/11 77/7 0/0 1/0 78/0

the polynomials of added constraints belatedly. In order to provide backtracka-
bility, we add the substitutions to the stored module state. We define the reason
set of a constraint c′ := c[t\x] we obtained by applying a substitution to be
Crsn(c

′) := Crsn(c) ∪ Crsn(t− x = 0) and identify infeasible subsets as before.
With IVE we are able to detect the infeasibitity of a set of constraints more

often. Moreover, the constraints we pass to our backends contain less variables
by the cost of an in general higher complexity in the remaining variables. A
drawback of IVE is that it blows up the reason sets of the constraints and
therefore leads to greater infeasible subsets.

5 Experimental Results

The symbolic computations we present in this paper can significantly improve the
performance of an SMT-RAT solver instance. We tested six different MGB settings
with the SMT-RAT strategy S := (V,E) where V := {IMCNF , IMSAT , IMLRA , IMGB , IMVS , IMCAD}
with IM an instance of moduleM and E := {(IMCNF , IMSAT), (IMSAT , IMLRA), (IMLRA , IMGB),
(IMGB , IMVS), (IMVS , IMCAD)}. Since MLRA performs significantly faster on many instances
containing linear constraints, it is positioned before MGB. All MGB settings imple-
ment the approaches explained in the Sections 4.1 and 4.2. The settings GBnp
and GBp reduce inequalities, GBt transforms them. GBnp and GBt, however, set
Cpas = Crcv, while GBp passes constraints as described in Section 4.1. GBIVEp , GBIVEnp ,
GBIVEt are the extensions of the aforementioned settings by IVE. The computa-
tional effort and thus the room for optimization stepwise increases with enabling
transformation and IVE. Passing the constraints has a major influence on the
backends. We compared all settings with the reference strategy Sref := (Vref, Eref)
where Vref := V \ {IMGB} and Eref := (E \ {(IMLRA , IMGB), (IMGB , IMVS)})∪ {(IMLRA , IMVS)}.
We regard three example sets: Bounce is an extension of examples introduced
in [5]. Key andMet originate from the tools KeYmaera and MetiTarski. Details
of our benchmarks can be found in [10, Appendix A], here we give a summary.

Table 2 shows for each setting how many instances ran more than δ millisec-
onds faster/slower than the reference solver. In the last column, we give results
for a hypothetical optimal solver, which always takes the setting yielding the
best running time. Although many instances are not significantly influenced by
MGB in terms of running time, we observe a critical speed-up on specific instances.
For Key, improvements are gained by detecting unsatisfiability, which in most
cases occurs during the reduction of inequalities. Here the received constraints
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are more suitable for passing. For Bounce, MGB has only effect if the resolved
identities are passed by GBIVEp . A heuristic choosing the right setting increases
the overall performance, and is essential for Met.

6 Conclusion and Future Work

In this work, we made use of the strength of traditional computer algebra pro-
cedures to resolve weaknesses of SMT solving for RCF. In particular, we inte-
grated Gröbner bases computations in a module of an SMT solver. Moreover, we
adapted the implementation of the Buchberger algorithm and its data structures
to reflect differences in treated problems. To meet our requirement of real solu-
tions, we embedded saturation rules for the real radical within the Buchberger
algorithm, which makes the module more powerful. Experimental results show
that selected instances are solved a lot faster.

As a next step we want to optimize the heuristics used in our Gröbner bases
module and do other improvements, e.g., by developing new saturation rules or
by algorithmic improvements tailored towards special input problem structures.
We are also interested in integrating further methods based on (lexicographic)
Gröbner bases, and especially in realizing applications of the Positivstellensatz.
Another open point is the choice of the SMT-RAT strategy. For instance, the
interplay between the GB and the CAD module could be much more dynamic
as compared to one fixed strategy with fixed CAD settings.
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Abstract. We consider networks of Markov Decision Processes (MDPs)
where identical MDPs are placed on N nodes of a graph G. The transi-
tion probabilities of an MDP depend on the states of its direct neighbors
in the graph, and runs operate by selecting a random node and following
a random transition in the chosen device MDP. As the state space of all
the configurations of the network is exponential in N, classical analysis
are unpractical. We study how a polynomial size statistical representa-
tion of the system, which gives the densities of the subgraphs of width k,
can be used to analyze its behaviors, generalizing the approximate Model
Checking of an MDP. We propose a Structured Population Protocol as
a new Population MDP where states are statistical representations of
the network, and transitions are inferred from the statistical s tructure.
Our main results show that for some large networks, the distributions
of probability of the statistics vectors of the population MDP approxi-
mate the distributions of probability of the statistics vectors of the real
process. Moreover, when the network has some regularity, both real and
approximation processes converge to the same distributions.

1 Introduction

We consider large networks of probabilistic systems, where each system (or
device) is a Markov Decision Process, i.e. a transition system with both non de-
terministic and probabilistic transitions. The device MDPs are placed at nodes
of the graph of the network with N nodes. A policy σ determines the decisions
for all device MDPs, and the network itself can be considered as an MDP whose
state space is the set of configurations of the network, of size exponential in N .
Given a policy and an initial distribution, we define a stochastic process on the
set of configurations by selecting a random node and by following a transition in
the chosen MDP, which may be deterministic or randomized. Sensors networks
are typical applications where sensors are nodes of a graph connected to some
neighbors, and other applications include system biology and statistical physics.
The classical Ising model is a special case where the network is a grid and the
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device MDP is a Markov chain with 2 states. We consider Evaluation problems
which predict the global behavior when a policy is fixed, and Reachability prob-
lems which look for possible policies to ensure predictable behaviors with high
probabilities.

In [7], we presented some techniques to approximately decide both questions
on a given MDP by associating frequency vectors to runs. Given an MDP with
n states, we built its Polytope of frequency vectors H which represents the k-
frequencies of the different states in runs, in polynomial time. We can then decide
if there is a run which approximately verifies some Property with high probability
with simple geometrical procedures.

Given a network of N device MDPs, the polytope-based method remains ex-
ponential in N . In this paper, we introduce a new approximate method based
on the statistics on graph neighborhoods of depth k of the network. The crucial
point is that the set of k-statistics has size polynomially bounded in N . A Struc-
tured Population Protocol with Decisions (SPPD) will define a new Population-
MDP whose states are statistics vectors and where transitions are determined
by the graph. If we fix a precision for the values of the statistics densities, say
1%, the number of possible vectors becomes independent of N . The construc-
tion of the population-MDP becomes feasible and we can then apply the initial
polytope-based method. In this context, the classical problems are:

– Evaluation problems. Given a fixed policy σ for all the device MDPs and an
initial distribution C, can we reach configuration C′ with probability greater
than λ ? For a property P on the runs, decide if Pσ,C [a run satisfies P ] ≥ λ
where λ ≤ 1 is a threshold value.

– Reachability problem. Is there a policy σ, such that we can we reach
configuration C′ from configuration C with probability greater than λ ?
If the device MDPs have two states for example, dead and alive, we may ask
if Pσ,C [more than 80% of the states are alive in a run ] ≥ 1

2 ?

We map configurations to their statistics, and approach these problems by
considering their approximate versions on the population MDP. The approx-
imate evaluation is: given the statistics of the configuration C, can we reach
the statistics of configuration C′ with probability greater than λ? The other
problems can be formulated in a similar way. The main results of the paper are:

– The k-SPPD associated to a network of MDPs is itself an MDP.
– Bounds on the approximation of the network of MDPs by the k-SPPD

(proposition 3 and theorem 1).
– Sufficient conditions for the convergence of the approximate process induced

by the k-SPPD towards the limit of the real process.
– The polytope associated to the k-SPPD approximates the polytope of the

class of statistics policies on the network of MDPs (theorem 2)

In section 2 we review the approximation of Markov Decision Processes (MDPs)
[7] and define the k-statistics on graphs. In section 3 we define our model of
network of MDPs. In section 4 we introduce the general model of k-Structured
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Population Protocols with Decisions on a graph (k-SPPD), and we present how
to associate a k-SPPD to a network of MDPs. In section 5 we present sufficient
conditions for good approximations of networks of MDPs by our k-SPPDs. The
conditions rely on a notion of mixed configurations. We also study the conver-
gence of the approximate process induced by a k-SPPD, and present the polytope
associated to the set of statistics policies on a network of MDPs.

1.1 Comparison with Related Models

Various theoretical models of networks have been considered in a context of
distributed computing and statistical physics. Models for distributed comput-
ing [3] also include Petri nets [10], computer networks models [13] and cellular
automata [18] which can be seen as a deterministic and synchronous restriction
of our model. In statistical physics, spatial models [9] have similar probabilis-
tic transitions associated with physical neighborhoods, in particular the Ising
model describing models of spins. These statistical models do not integrate the
possibility to take decisions, and the associated processes induce Markov chains
on the sets of configurations.

If we restrict to MDPs with no decisions, i.e. to Markov chains, our model
lies between the totally non ordered model of population protocols, introduced
by Angluin et al in [3], and the totally ordered model of cellular automata. We
differentiate from the population protocol model of [3], as structured graphs
neighborhoods are chosen according to some statistics, as opposed to pairs of
devices. Our work is closer to [2] where the authors consider devices distributed
on the vertex of a graph with non randomized interactions between couples of
devices. Cellular automata and dynamical systems consider regular geometries
such as linear or square grid graphs (see [18,16]), and update all devices syn-
chronously. In [1], the model is close to our model of SPP since the update
function is asynchronous and uniformly random among the devices, with the
restriction that the transition functions are deterministic.

2 Preliminaries

We first review the approximation of MDPs and graphs. They allow for efficient
approximate solutions to reachability problems [7], in the spirit of Property
testing [11] . We want to extend them to networks of MDPs.

2.1 Markov Decision Processes

Let D(S) be the set of distributions on a set S. A Markov Decision Process
(MDP) is a triple S = (S,Σ, P ) where S is a finite set of states, Σ is a set
of actions, and P : S × Σ × S → [0, 1] is the transition function: P (s, a, t),
also written P (t|s, a), is the probability to arrive in t in one step when the
current state is s and action a ∈ Σ is chosen for the transition. If action a is
not allowed from state s, P (t|s, a) = 0 for all t ∈ S. A run on S is a finite
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or infinite sequence of states. Given a run r and n ∈ N, we write r|n for the
sequence of the first n − 1 states in r. A policy on S, see [17], is a function
σ : S → D(Σ) which resolves the non determinism of the system by choosing a
distribution on the set of available actions for each state of the MDP (we restrict
our model to stationary and possibly randomized policies). A policy σ and an
initial distribution α ∈ D(S) induce a probability distribution Pσ,α on the σ-field
F of the set of runs, generated by the cones Cρ = {r | r|ρ| = ρ}, (see [6,17]).
When there is no decision for the MDP, i.e. when |Σ| = 1, the MDP is in fact a
Markov chain.

The frequency vector freqT (r) of the prefix of length T of a run r on S is the
density vector of dimension |S| which measures the proportions of time spent on
the different states of the MDP until time T . That is, given s ∈ S,

freqT (r)[s] =
number of occurrences of s in r|T

T

Let σ be a policy on S and T ≥ 0, and let x̂T be the random variable on the set
of runs which associates to all r its frequency vector of length T : x̂T = freqT (r).
Given an initial distribution α, the Expected frequency vector xTσ,α is Eσ,α[x̂

T ],

the expectation of x̂T . Let x∞σ,α be the empty set if xTσ,α does not converge as

T → +∞, and the limit point if xTσ,α converges. We define:

H(α) =
⋃

σ policy

x∞σ,α

If S is an irreducible Markov chain, then H(α) is the stationary distribution on
the states of the chain. For a general MDP, H(α) is a convex combination of
the set of stationary distributions which can be reached on the Markov chains
induced by stationary policies on S. Generalizing the classical linear characteri-
zation of the stationary distribution of an irreducible Markov chain, the authors
of [8,15] give linear characterizations of H(α) [15]. As a consequence, the set
H(α) is a polytope, characterized by a number of linear equation polynomial in
the size of the system. This makes possible the evaluation of properties such that:
with high probability, is state s in a run followed by state t? [7]. Moreover, H is
also the convex hull of the limit frequency vectors associated to non randomized
policies.

2.2 Graph Neighborhoods and Statistics

Let G = (V,E) be a graph with vertex set V and edge set E, and S be a finite
set of labels. Let N = |V |. An S-labeled graph on G is a triple (G, C, S) where
C : V → S is a labeling function which associates a label in S to each state
in V . We will often write C for the labeled graph (G, C, S). We write C for the
set of S-labeled graphs on G. The density vectors of neighborhoods at distance
k for graphs G and labeled graphs C, resp. ustatk(G) and ustatk(C) (uniform
statistics) give the probabilities for a random v ∈ V that its neighborhood at
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distance k appear in G (resp. C). If we restrict to classes of graphs with uniformly
bounded degrees, then |{ustatk(C) | C ∈ C}| is polynomial in the number of
nodes of the graphs.

3 Networks of MDPs

Our network of MDPs is a labeled graph where the set of labels is the set of
states of an MDP S = (S,Σ, P ). We need to generalize the notion of MDP to
make the transitions depend on the environment of a node v. An environment
of a node v is a pointed S-labeled graph ((H, C, S), v) where H = (V,E), v ∈ V ,
and each vertex in H is at distance at most 1 from v. Let N1 be the set of
such environments. Notice that in particular, given any S-labeled graph F on a
structure G and v a vertex in F , the neighborhood N1(F , v, 1) is in N1.

A device MDP is a triple S = (S,Σ, PD) where S is a finite state space, Σ is
a finite set of actions, and PD is the transition function: PD : N1 ×Σ → D(S).
Given H ∈ N1, s ∈ S and a ∈ Σ, PD(H, a)(s), also written PD(s|H, a), is the
probability that the state of the device MDP is s after the transition, given its
environment is H and action a is chosen. The classical definition of an MDP can
be retrieved by restricting the transition function PD so that its values depend
only on a and on the label of the pointed node of H .

Definition 1 (Network of MDPs). A network of MDPs is a couple M =
(G,S), where G = (V,E) is a graph and S = (S,Σ, PD) is a device MDP.

A configuration on M is a function C : V → S which assigns to each vertex of
G a state of the associated device MDP. We write C for the set of configurations
on M. A configuration can be seen as an S-labeled graph on G. We may write
C indifferently for the configuration or for the associated S-labeled graph.

3.1 Transitions on a Network of MDPs

We define transitions on M and obtain a new MDP, S(M). The state space of
S(M) is C, the set of configurations. The set of actions is Σ, used by each device
MDP. For a transition, a random device MDP is chosen and its state is updated
according to the transition function PD. We sample uniformly at random a node
v (device MDP) to update, as for the random independent scheme, a classical
model for asynchronous Cellular Automata and other models of computation.

Let C ∈ C, v ∈ V and s ∈ S. We define Cv→s as the function from V to S
which coincide with C on every w ∈ V − {v}, and such that Cv→s(v) = s.

Given v and its 1-neighborhood H = N (C, v, 1) in the current configuration
C, let s be sampled randomly according to distribution PD(−|H, a), where a ∈ Σ
is the chosen action. The configuration is changed to C′ = Cv→s. This process
defines a transition function P on the MDP S(M) = (C, Σ, P ) as follows: let
a ∈ Σ, and let C,C′ ∈ C. Recall that N = |V |.
1. If C �= C′ and there exists v ∈ V and s ∈ S such that C′ = Cv→s, then we

define P (C′|C, a) = PD(s|N (C, v, 1), a)

N
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2. If C = C′, then we define P (C′|C, a) =
∑

v∈V PD(C(v)|N (C, v, 1), a)

N
3. In the other cases, we define P (C′|C, a) = 0.

For all a ∈ Σ and C ∈ C, P (−|C, a) is indeed a probability distribution on C,
and S(M) = (C, Σ, P ) is an MDP. Notice that the policies on S(M) are global,
i.e. they consider the configurations, not the particular devices.

We will use shift vectors to quantify the change in the statistics of the config-
urations induced by the update of the state of one device MDP in the network.
Given C ∈ C, v ∈ V and a ∈ Σ, let:

Δk(C, v → s) = N · [ustatk(Cv→s)− ustatk(C)]

By extension, Δk(N (C, v, φ(k)), v → s) is the similar vector when we restrict C
to the neighborhood of v at distance φ(k). Given k ∈ N, a k-statistics shift vector
on G is a vector Δ ∈ [−N,N ]Nk(C) whose components in Z sum to zero. Clearly,
vectors of the type Δk(C, v → s) are k-shift vectors. The following proposition
shows that when the state of one of the vertices of a labeled graph is changed,
the variation on the k-statistics depends only on bounded neighborhoods around
the changed vertex.

Proposition 1 ((k, φ(k))-locality). Let k ∈ N. Let φ : N → N be such that
φ(0) = 1 and φ(k) = 2 · k if k ≥ 1. Then for all C ∈ C, v ∈ V and s ∈ S we
have Δk(C, v → s) = Δk(N (C, v, φ(k)), v → s), i.e. for all H ∈ Nk(C) we have:

Δk(C, v → s)[H ] =
N · [ustatk(N (C, v, φ(k))v→s))[H ]− ustatk((N (C, v, φ(k)))[H ]]

We can generalize this fact to the transition function of a network of MDPs. In
the following, given C ∈ C, we write C′ for the random configuration distributed
accordingly to the probability distribution P (−|C, a). The following proposition
is a direct consequence of proposition 1.

Proposition 2. Let M be a network of MDPs, a ∈ Σ, C ∈ C, k ∈ N, and let
Δk be a k-statistics shift vector. Then:

P (ustatk(C
′) = ustatk(C) +

Δk

N | C, a) =
P (ustatk(C

′) = ustatk(C) +
Δk

N | ustatφ(k)(C), a)
In other words, the distribution of the k-order statistics of the configurations
after a transition depends only on the φ(k)-th order statistics of the configuration
C before the transition.

4 Structured Population Protocols with Decisions

Let G = (V,E) be a graph network, and let N = |V |. Let S be a finite set of
labels, and let C be the set of S-labeled graphs on G. Given k ∈ N, recall that
Nk(C) is the set of all possible k-neighborhoods which can appear in S-labeled
graphs on the structure G. We define a Structured Population Protocol which will
induce an MDP on the set of statistics vectors. Our model generalizes classical
Population Protocols in two ways:
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– it uses statistics on graphs neighborhoods, i.e. on a structured domain, as
opposed to statistics on sets,

– decisions can be taken on states, using the same decision space Σ as the
original device MDPs.

A Population of statistics of order k, or k-Population, on G, is a vector A ∈
NNk(C) whose components sum to N . We write Ak for the set of k-Populations.
A Population can be seen as a soup of neighborhoods, i.e. a multiset of neigh-
borhoods with no structure. Given a neighborhood H in Nk(C), A[H ] is equal to
the number of times the neighborhood H appears in the soup of neighborhoods
A. A k-Population A induces a distribution A

N on Nk(C), with A
N (H) = A[H ]/N .

Reciprocally, an ustatk vector x = ustatk(C) induces a k-Population A = N · x.
Typically, a k-Population counts the different k-neighborhoods which appear in
an S-labeled graph C on G. In that case, the probability distribution A

N (−) is
equal to ustatk(C)(−). Notice however that there may exist k-Populations A
such that for no S-labeled graph C on G we have A

N (−) = ustatk(C)(−). Notice
also that if L = |Nk(C)|, then |Ak| ≤ NL.

As in [3], in our approach of Population Protocols, the devices, i.e. the nodes
of the graph, will interact locally. The associated transition probabilities will
be given by a transition function δ. A k-Structured Population Protocols with
Decisions on G is given by a transition function δ and a reconstruction function
Rk. The function Rk will impose the updates to depend on the structure of the
underlying graph G.

Definition 2 (k-Structured Population Protocols with Decisions). Gi-
ven k ∈ N, a k-Structured Population Protocols with Decisions, or k-SPPD,
on G, is a triple Ok = (δ, Rk, Σ) where δ : N1(C) × Σ → D(S) and Rk :
Ak ×Nφ(k)(G)→ D(Nφ(k)(C)).

The function δ : N1(C)×Σ → D(S) is the transition function. When |Σ| = 1, the
domain of δ isN1(C) and the system is called a k-Structured Population Protocol,
or k-SPP. In that case, our model is close to the standard model of Population
Protocol, [4]. Because the interaction is local only N1(C) is considered. Given
k ≥ 0 and Hv ∈ Nφ(k)(C), δ induces a distribution δ(−|Hv, a) on the set of

k-shift vectors. If Δk is a k-shift vector, δ(Δk|Hv, a) is the probability that
an update of the label of the center node v of Hv according to the transition
function δ induces a change Δk in the k-statistics. Formally, let δ(Δk|Hv, a) be
defined as:

δ(Δk|Hv, a) =
∑

s∈S s.t. Δk(Hv,v→s)=Δk

δ(N (Hv, v, 1), a)(s)

The function Rk : Ak × Nφ(k)(G) → D(Nφ(k)(C)) is a reconstruction function:
given a k-Population A and Hv a φ(k)-neighborhood of the graph G, it outputs
randomly a valuation in S for the nodes of Hv. The distribution Rk(A,Hv)(−)
assigns probabilities to the labellings of Hv. A k-SPPD is an MDP whose domain
is Ak, action set is Σ and probabilities depend on δ and Rk.
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4.1 The k-SPPD Associated to a Network of MDPs

Let M = (G,S) be a network of MDPs, with G = (V,E) and S = (S,Σ, PD).
Let S(M) = (C, Σ, P ) be the MDP associated to M. Given k ∈ N, we want to
define a k-SPPD Ok(M) = (δ, Rk, Σ

′) on G such that the associated MDP SOk

mimics the transitions of S(M) on the set of k-statistics vectors.
The set of actions on Ok(M) will be Σ, the same as forM. The state space of

Ok(M) will be Ak, the set of k-Populations on G, which can also be seen as the
set of k-statistics of configurations on M. The transition function δ of Ok(M)
will be equal to the transition function PD of the device MDPs ofM. The point
is to define a relevant reconstruction function Rk. The role of the function Rk is,
given a k-Population A and a φ(k)-neighborhoodH ∈ Nk(G), to guess valuations
for the nodes in H . Ideally, we would like, given C ∈ C and H ∈ Nφ(k)(G),
the distributions Rk(N ·ustatk(C), H)(−) and (ustatφ(k)(C)|H)(−) to be equal.
That is, the reconstruction of size φ(k) of the k-statistics of a configuration is the
φ(k) statistics of the configuration. This is not possible in general, but we give
an algorithm to compute the function Rk which will give good approximations
on a restricted class of mixed configuration, defined in the next subsection. We
use the following algorithm to sample the function Rk.

Algorithm 1 (Sampling from Rk)
Input: A Population A ∈ Ak, H ∈ Nφ(k)(G).
Output: H = (H,C) ∈ Nφ(k)(C) an S-valuation of the nodes of H.
Method: We define C incrementally on the set of nodes of H. Until a valuation
for all the node of H is defined:

1: Sample a node v uniformly at random among the nodes in H whose
k-neighborhood contains unlabeled nodes, and which is at distance at most k from
the center of H.

2: Sample K ∈ Nk(C) according to distribution (A
N |C)(−). That is,

sample K according to the distribution A
N conditioned to the partial valuation C

defined so far. This corresponds to sampling labels for a neighborhood of size k
in H. For all w ∈ K, define C(w) = K(w).
Return H = (H,C).

Finally, given M = (G,S) the network of MDPs, using the algorithm 1 for the
construction of Rk, we have a k-SPPD Ok(M) = (δ, Rk, Σ) on G, with state
space Ak.

Given a policy on the MDP M, how can we build a related policy on Ok?
Since the state space of M has size exponential in the state space of Ok, we
cannot associate a policy on Ok to each policy on M. We will have to restrict
the class of policies that we consider on M: a policy on M must satisfy certain
compatibility properties to be transferable on Ok. A natural condition is the fact
that it depends only on the k-statistics of the configurations. We call statistical
policies such policies on M:

Definition 3 (Statistical Policies). A policy σ on M is k-statistical if:

∀C,C′ ∈ C, ustatk(C) = ustatk(C
′) ⇒ σ(C) = σ(C′)
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Let SRk(M) be the set of k-Statistical and Randomized policies. For instance, a
policy which takes its decisions according to the 0-statistic of the configurations,
i.e. according to the proportions of the different states among the devices, is
k-statistical for all k ∈ N. A policy σ ∈ SRk(M) induces trivially a policy σ on
Ok, since σ can be defined on the set of ustatk vectors, hence on Ak.

5 Approximations on Networks of MDPs.

Let M be a network of MDPs as before, with state space C and transition
function P , and let Ok be the associated k-SPPD, with state space Ak and
transition function POk

. In this section we show that we can bound the difference
in the evolutions of the statistics of the real process induced by M, and the
evolution of the approximation process induced by Ok. More precisely, we show
that we can define a notion of mixed configurations, quantified by a mixing
parameter, such that the reconstruction function Rk defined by algorithm 1 on
the Population Protocol approximatesM.

5.1 Mixed Configurations

A partially labeled graph is a graph such that labels are associated only to a
subset of nodes. In particular, a graph H = (V,E) can be seen as a partially
labeled graph, where no valuation is defined for any node. We write Nk(Cp)
for the set of k-neighborhoods of partially labeled graphs on G. Given F, F ′

two partially labeled graphs on the same domain V , F and F ′ are said to be
compatible if there exists no node of V to which F and F ′ assign different labels.
Given CH a partially labeled graph on a graph H , we define L(CH) as the set
of labeled graphs on H compatible with CH . We need to condition probability
distributions by a structure: given a distribution μ on Nk(C), given H ∈ Nk(G)
and given CH a partially labeled graph on H such that μ(L(CH)) > 0 , the
distribution (μ|CH)(−) on Nk(C) is defined as follows: for all K ∈ Nk(C),

(μ|CH)(K) = 0 if K �∈ L(CH) and else (μ|CH)(K) =
μ(K)

μ(L(CH))

We now want to quantify the quality of the reconstruction function Rk. As
we said before, ideally, given a configuration C ∈ C and H ∈ Nφ(k)(G), the
distributions Rk(N ·ustatk(C), H)(−) and (ustatφ(k)(C)|H)(−) should be equal.
However, this is not possible in general, since there may exist configurations
C,C′ ∈ C such that ustatk(C) = ustatk(C

′) but ustatφ(k)(C) �= ustatφ(k)(C
′).

We present a class of configurations for which there exist good reconstruction
functions, i.e. functions Rk such that the distributions Rk(N · ustatk(C), H)(−)
and (ustatφ(k)(C)|H)(−) are close. Such configurations can be seen as ”mixed”
configurations, and we define a mixing coefficient.

Let C ∈ C, let v be a node in C and let H = N (C, v, k). Let K be a
partial labeling of N (G, v, φ(k)) such that the partial labeling KH induced by
K on N (G, v, k) is compatible with H . Let PC be the probability distribution
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ustatk(C)(−). We define the following conditional probabilities: PC [H |H ∩K] is
the probability, among the k-neighborhoods of C, of the neighborhood H , given
the partial valuation KH is given. PC [H |K] is the probability, among the φ(k)-
neighborhoods of C, of the neighborhood which contains H around its center,
given the partial valuation K is given. Formally:

PC [H |H ∩K] =
|{u ∈ V s.t. N (C, u, k) 
 H}|

|{u ∈ V s.t. N (C, u, k) ∈ L(KH)}|

PC [H |K] =
|{u ∈ V s.t. N (C, u, k) 
 H ∧ N (C, u, φ(k)) ∈ L(K)}|

|{u ∈ V s.t. N (C, u, φ(k)) ∈ L(K)}|
If K is not compatible with C, let PC [H |H ∩K] = PC [H |K] = 0.

Definition 4 (Mixing coefficient εk). Let C ∈ C be a configuration. The
k-mixing coefficient of C is defined as:

εk(C) =MaxH=N (C,u,k), K∈Nφ(k)(Cp){|PC [H |H ∩K]− PC [H |K]|}

Intuitively, εk(C) is small if the distribution of the k-neighborhoods does not
depend on their environment. We say that C is well mixed if εk(C) is small. The
following proposition, shows that if configuration C is well mixed, the function
Rk defined by the algorithm 1 is a good reconstruction function. We measure
the distance between the distributions using the ‖ ‖∞-norm: given v ∈ Rn,
‖v‖∞ = maxi∈[1;n]|vi|. As a consequence, if C is well mixed, we can find a good
approximation of ustatφ(k)(C) from ustatk(C). This is exactly what the function
Rk is supposed to do.

Proposition 3. Let C ∈ C be a configuration, and let Rk be defined by algorithm
1. Then for all H ∈ Nφ(k)(G) we have:

‖Rk(N · ustatk(C), H)(−) − (ustatφ(k)(C)|H)(−)‖∞ ≤ εk(C)

We now use the mixing coefficient to give bounds on approximation of the be-
havior of networks of MDPs by our k-SPPDs. In [12], the authors approximate
the short term evolution of large Markov chains by using a “sliding windows”
approach. As in [12], we try to bound the deviation between our approximation
and the real process as time goes on. Given C ∈ C and a ∈ Σ, we write C′ for the
random configuration induced by the probability distribution P (−|C, a). Given
C ∈ C and A = N · ustatk(C), define the distributions μkC,a and νkA,a on Ak as
follows: given A′ ∈ Ak, let:

μkC,a(A
′) = P (N · ustatk(C′) = A′ | C, a), and νkA,a(A

′) = POk
(A′ | A, a)

In other words, μkC,a(−) is the distribution of the k-statistics of configurations
after a transition from the configuration C, on the network of MDPs M. On
the other hand, νkA,a(−) is the distribution of the k-statistics after a transition
from the population N · ustatk(C), on Ok. The following theorem measures the
quality of the approximation of the network of MDPs by the k-SPPD, on the
set of k-statistics.
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Theorem 1. ‖μkC,a − νkA,a‖∞ ≤ ‖ustatk(C)(−) −
A

N
(−)‖∞ + εk(C)

We first study the Evaluation problem for Markov chains, in the paper’s final
version.

5.2 Approximations for Markov Decision Processes.

Now, we extend our approach to networks of MDPs with non-determinism. Given
M, the associated polytope H (see section 2.1) is a subset of RC . The k-SPPD
Ok associated to M is also an MDP, and its polytope lies in RAk . How can we
relate these two polytopes?

We consider the set of the limit points associated to stationary statistics
policies onM, and we prove that it is also a polytope. We obtain a natural ap-
proximation of Hk

stat(M) by the polytope H(Ok) associated to all the stationary
policies on Ok.

Theorem 2. The set Hk
stat(M) = {N · ustatk(x∞σ,α) | σ ∈ SRk} is a polytope

of RAk , with a number of extremal points polynomial in N .

Proof. First, notice that a convex combination of k-statistical policy is clearly
a statistical policy. Thus, Hk

stat(M) is convex. Next, any statistical policy is
a convex combination of ”deterministic” statistical policies which assign Dirac
distribution to statistic vectors of configurations. (i.e. policies σ such that, given
A ∈ Ak, σ(A) ∈ Σ). This proves that Hk

stat(M) is a polytope, and it is the
convex hull of the limit frequency vectors associated to deterministic statistical
policies. We can conclude using the fact that since there exists only a polynomial
number of ustatk vectors of configurations in Ak, there exists only a polynomial
number of ”deterministic” statistical policies, hence of extremal points of the
polytope.

6 Conclusion

We studied how to approximate the evolution of large probabilistic networks
of MDPs. Given a network M of N device MDPs, we defined a k-Structured
Population Protocol with Decisions Ok, which is also an MDP, whose states
are statistics vectors. From an exponential number of configurations, we obtain
a polynomial number of statistics. This allows the use of standard evaluation
methods on the approximate system, and we gave a sufficient condition, using
a mixing parameter εk, to guarantee a good approximation. If we discretize the
statistics vectors up to a coefficient γ, the size of the set of configurations of
the approximate process becomes independent of N : it depends only on δ, k,
and the degree of the underlying graph. In the paper’s final version, we will
present the values of the sizes of the state spaces of the real and the approx-
imate processes for various parameters, underlying the efficiency of the dis-
cretization model. The application to the Ising model is described by an applet
at http://www.up2.fr/Ising which visualizes both the real process and its
approximate version.
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Abstract. We present logic based methods for constructing XP and
FPT graph algorithms, parameterized by tree-width or clique-width. We
will use fly-automata introduced in a previous article. They make it pos-
sible to check properties that are not monadic second-order expressible
because their states may include counters, so that their set of states may
be infinite. We equip these automata with output functions, so that they
can compute values associated with terms or graphs. We present tools
for constructing easily algorithms by combining predefined automata for
basic functions and properties.

1 Introduction

Finite automata on terms that denote graphs of bounded tree-width or clique-
width can be used to check monadic second-order properties of the denoted
graphs. However, these automata have in most cases so many states that their
transition tables cannot be built [13,15]. In the article [4] we have introduced
automata called fly-automata whose states are described (but not listed) and
whose transitions are computed on the fly (and not tabulated). Fly-automata can
have infinite sets of states. For example, a state can record, among other things,
the (unbounded) number of occurrences of a particular symbol. We exploit this
feature in the construction of fly-automata that check properties that are not
monadic second-order (MS) expressible. Furthermore, we equip automata with
output functions, which map accepting states to some effectively given domain
D (e.g., the set of integers, or of pairs of integers, or the set of words over a
fixed alphabet). Hence, a fly-automaton A defines a mapping from T (F ) (the
set of terms over the signature F ) to D, and we construct automata that yield
polynomial-time algorithms for these mappings. The height ht(t) of a term t
and the number |t| of its positions are obviously computable in this way. The
uniformity of a term, i.e., the property that all maximal branches of its syntactic
tree have the same length, can be checked by a polynomial-time fly-automaton
(but not by a finite automaton). (Symbolic automata [16] have ”small” sets of
states and ”large” sets of symbols. Symbols are described by properties rather
than listed. Fly-automata have, to the opposite, ”small” sets of symbols and
”large” sets of states).

Our main interest is actually in the case where F is the signature F∞ of
”clique-width graph operations”, and for fly-automata that define mappings from
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the graphs defined by terms in T (F∞) to D. We construct fly-automata that yield
FPT and XP algorithms [10,12] for clique-width as parameter. Since the clique-
width cwd(G) of a simple graph G is bounded in terms of its tree-width twd(G)
(we have cwd(G) ≤ 22twd(G)+2+1, [7], Proposition 2.114, and [3]), all our results
for graphs of bounded clique-width apply immediately to graphs of bounded tree-
width. The graphs of clique-width at most k are those denoted by the terms in
T (Fk) where Fk is a finite subset of F∞. As in [4], we construct elementary fly-
automata for basic functions and properties, e.g., the degree of a vertex or the
regularity of graph. Then, we consider more complex functions and properties
written with these functions and properties (and the basic MS properties of [4])
and functional and logical constructors. For example, ∃X,Y.(Partition(X,Y )
∧Reg[X ]∧Reg[Y ]) expresses that the graph is the union of two disjoint regular
graphs with possibly some edges between them. Here are some typical examples
of questions and functions that we can handle in this way:

(1) Is it possible to cover a graph with s cliques?
(2) Does there exist an equitable s-coloring? Equitable means that the sizes

of any two color classes differ by at most 1 (see [11]). We express this property
by: ∃X1, . . . , Xs.(Partition(X1, . . . , Xs) ∧ St[X1] ∧ ... ∧ St[Xs]

∧|X1| = . . . = |Xi−1| ≥ |Xi| = . . . = |Xs| ≥ |X1| − 1)
where St[X ] means that G[X ] is stable, i.e., has no edge.

(3) Assuming that the graph is s-colorable, what is the minimum size of X1

in an s-coloring (X1, . . . , Xs) ?
(4) Which sets X such that G[X ] and G[VG − X ] are connected, minimize

the number of edges between X and VG −X?

More generally, let P (X1, ..., Xs) be a property of vertex sets X1, ..., Xs. Ev-
erywhere in the sequel, we denote (X1, ..., Xs) by X and t |= P (X) means that
X satisfies P in the graph G(t) defined by t; this writing does not assume that
P is written in any particular logical language. We are interested, not only to
check the validity of ∃X.P (X) in some term t, but also to compute from t the
following objects:

#X.P (X), defined as the number of assignments X such that t |= P (X),

SpX.P (X), the spectrum of P (X), defined as the set of tuples of the
form (|X1|, . . . , |Xs|) such that t |= P (X),

MSpX.P (X), the multispectrum of P (X), defined as the multiset of tu-
ples (|X1|, . . . , |Xs|) such that t |= P (X),

SatX.P (X) as the set of assignments X such that t |= P (X).

Each prefix #X, SpX. etc. can be considered as a generalized quantifier that
binds the variables of X. The associated values (numbers or sets of tuples of
numbers) can be computed from SatX.P (X), a set of s-tuples of subsets of
Pos(t) (the set of positions of t, i.e., of nodes of the syntactic tree of t) that may
be of exponential cardinality 2s.|t|, hence, not computable by a polynomial-time
algorithm.
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We provide logic based methods for proving the existence of FPT and XP
algorithms for terms and graphs. We generalize constructions of [1,2,8]. These
constructions have been implemented and tested [4,5,6].

Lacking of space (see [5] for details and proofs), we do not review MS logic and
clique-width. We only recall that edges are introduced by means of operations
on vertex labeled graphs. A vertex labeled by a is an a-port. Notation is as in
[4,7]. If t ∈ T (F ), i.e., is a term over a signature F , we let Sig(t) be the set of
symbols of F that occur in t.

Tuples of Sets of Positions in Terms
Let F be a signature and s be a positive integer. We let F (s) be the set F×{0, 1}s
made into the signature such that the arity ρ((f, w)) of (f, w) is ρ(f). We let
prs : F

(s) → F be the relabeling that deletes the second component of a symbol
(f, w). To every term t ∈ T (F (s)) corresponds the term prs(t) in T (F ) and the
s-tuple ν(t) = (X1, ..., Xs) of subsets of Pos(t) = Pos(prs(t)) such that u ∈ Xi

if and only if w[i] = 1 where the symbol at position u in t is (f, w). Conversely,
if t ∈ T (F ) and (X1, ..., Xs) is an s-tuple of sets of positions of t, then there
is a unique term t′ ∈ T (F (s)) such that prs(t

′) = t and ν(t′) = (X1, ..., Xs).We
will denote this term by t ∗ (X1, ..., Xs) or by t ∗X .

A property P (X) of sets of positions of terms over a signature F is charac-
terized by the language TP (X) over F (s) defined as {t ∗X | t |= P (X)}. A key

fact about prs is that T∃X.P (X) = prs(TP (X)). A function α whose arguments

are t and X such that t ∈ T (F ) and X is an s-tuple of positions of t, and
whose values are in a set D corresponds to a function α : T (F (s))→ D such that
α(t ∗X) = α(t,X).

Tuples of sets of vertices
The operations defining clique-width form a countably infinite signature F∞.
Those using only labels in [k] form Fk. The nullary symbols a (for vertex labels
a) denote the vertices of the graph G(t) defined by t. The same technique as
above applies to tuples of sets of vertices of graphs defined by terms in T (F∞).

In particular, we define F
(s)
∞ from F∞ by replacing all nullary symbols a by the

nullary symbols (a, w) for all w ∈ {0, 1}s. (The other symbols are not changed).

2 Polynomial-Time Fly-Automata

All automata run bottom-up (or frontier-to-root) on terms without ε-transitions.

Definitions 1: Fly-automata recognizing languages.
(a) Let F be a finite or infinite (effectively given) signature. A fly-automaton

over F (in short, an FA over F ) is a 4-tuple A = 〈F,QA, δA,AccA〉 such that
QA is the finite or infinite, effectively given set of states, AccA is a computable
mapping QA → {True, False} so that Acc−1

A (True) is the set of accepting states,
and δA is a computable function that defines the transition rules : for each tuple
(f, q1, . . . , qm) with q1, . . . , qm ∈ QA, f ∈ F , ρ(f) = m ≥ 0, δA(f, q1, . . . , qm)
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is a finite set of states. We will write f [q1, . . . , qm] →A q (and f →A q if f is
nullary) to mean that q ∈ δA(f, q1, . . . , qm). Each set δA(f, q1, . . . , qm) is linearly
ordered for some fixed (say lexicographic) linear order on Z∗ where Z is the
alphabet used to encode states. We say that A is finite if F and QA are finite.
If furthermore, QA, its accepting states and its transitions are listed in tables,
it is called a table-automaton.

(b) Runs and recognized languages are defined as usual. A deterministic FA A
(”deterministic” will mean ”deterministic and complete”) has a unique run on
each term t, denoted by runA,t; we let also qA(t) := runA,t(roott). The mapping
qA is computable and the membership in L(A) of a term t is decidable.

Every fly-automaton A over F can be determinized as follows. For every term
t ∈ T (F ), we denote by run∗

A,t the mapping: Pos(t)→ Pf (QA) that associates
with every position u, the finite set of states of the form r(roott/u) for some run
r on the subterm t/u of t issued from u. The run of det(A) on t is called the
determinized run of A and we define ndegA(t), the nondeterminism degree of A
on t, as the maximal cardinality of run∗

A,t(u) for u in Pos(t). The mapping run∗
A,t

is computable and the membership in L(A) of a term in T (F ) is decidable:
clearly, t ∈ L(A) if and only if the set run∗

A,t(roott) contains an accepting state.

Definitions 2: Fly-automata computing functions.
A fly-automaton over F with output function is a 4-tuple A = 〈F,QA, δA, OutA〉
as above except that AccA is replaced by a total and computable output function
OutA: QA → D where D is an effectively given domain. If A is deterministic,
the function computed by A is Comp(A) : T (F )→ D such that Comp(A)(t) :=
OutA(qA(t)). If A is not deterministic, we let B be det(A) equipped with output
function OutB:Pf (QA) → Pf (D) such that OutB(R) := {OutA(q) | q ∈ R}.
Then, we define Comp(det(A)) as Comp(B). (In some cases, we may take a
computable function OutB : Pf (QA) → D′ where D′ is another effectively
given domain).

Definitions 3: Polynomial-time fly-automata and related notions
(a) A fly-automaton A over a signature F , possibly with output, is a polyno-

mial-time fly-automaton (a P-FA) if it is deterministic and there is a polynomial
p such that its computation time on any term t ∈ T (F ) is at most p(‖t‖), where
‖t‖ is the size of t, written as a word; the operation symbols are encoded by
words of non constant length. This time includes the time taken by the output
function. We call p a bounding polynomial for A.

(b) A fly-automaton A as above is an XP fly-automaton (an XP-FA in short)
if, for each finite subsignature F ′ of F, A � F ′ (the subautomaton of A induced
by F ′) is a P-FA. It is an FPT fly-automaton (an FPT-FA in short) if, for each
finite subsignature F ′ of F , A � F ′ is a P-FA with bounding polynomial whose
degree does not depend on F ′. We have the inclusions of classes of automata:

P-FA ⊆ FPT-FA ⊆ XP-FA with equalities for finite signatures.

Lemma 4: Let A be a nondeterministic fly-automaton over a signature F .
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(1) The fly-automaton det(A) is a P-FA if and only if there are polynomials
p1, ..., p4 such that, in the determinized computation of A on any term t ∈ T (F ),
p1(‖t‖) bounds the time for firing the next transition (and recognizing that there
is no next transition), p2(‖t‖) bounds the size of a state, p3(‖t‖) bounds the
time for checking if a state is accepting or for computing the output and p4(‖t‖)
bounds the nondeterminism degree of A on t.

(2) The fly-automaton det(A) is an XP-FA if and only if, for each finite
subsignature F ′ of F , there are polynomials p1, ..., p4 that bound as above the
computations on terms in T (F ′). It is an FPT-FA if and only if, for each finite
subsignature F ′ of F , there are polynomials p1, ..., p4 that bound as above the
computations on terms in T (F ′) and whose degrees are independent of F ′.

Definition 5: Functions computable by fly-automata.

A function α : T (F )→ D is P-FA computable (or is a P-FA function for short)
if it is computable by a P-FA over F that we have constructed or that we know
how to construct by an algorithm. For a property P , we say that it is P-FA
decidable. In this definition, F can be H(s) for some signature H , hence, a P-FA
computable function or property can take as arguments, not only a term, but
also a tuple of sets of positions or of vertices.

It is well-known that every MS property P of a term over a finite signature
is P-FA decidable. The cardinality of a set and the height of a term are P-FA
functions. We will construct an FPT-FA to check if a graph is regular (this not
an MS property).

The mapping SatX.P (X) is not P-FA computable, and not even XP-FA
computable in general for the obvious reason that its output is not always of
polynomial size (take P (X) always true).

Proposition 6: Let F be a signature. Every P-computable (resp. FPT- com-
putable or XP-computable) function α on T (F ) is computable by a P-FA (resp.
by an FPT-FA or an XP-FA).

Hence, our three notions of FA may look trivial. Actually, we will be interested by
giving effective constructions of P-FA, FPT-FA and XP-FA from logical expres-
sions of functions and properties. These constructions will apply to properties
that are not MS expressible but are decidable in polynomial time on graphs of
bounded tree-width or clique-width.

3 Fly-Automata for Logically Defined Functions and
Properties

Proposition 7: (1) If α1, ..., αr are P-FA functions of same type and g is a
P-computable function (or relation) of appropriate type, the function (or the
property) g ◦ (α1, ..., αr) is P-FA computable (or decidable).

(2) If P and Q are P-FA properties of same type, then, so are ¬P , P ∨ Q
and P ∧Q.
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(3) The same properties hold with FPT-FA and XP-FA.

The proof is based on easy constructions like taking a product of automata.

First-order constructions
We now consider the more delicate case of existential quantifications. We define
one more construction: if α(X) is a function (relative to a term t), we define
SetValX.α(X) as the set of values α(X) �= ⊥ (⊥ stands for undefined) for
all relevant tuples X. We let ∃x1, ..., xs.P (x1, ..., xs) (also written ∃x.P (x))
abbreviate ∃X1, ..., Xs.(P (X1, ..., Xs) ∧ Sgl(X1) ∧ ... ∧ Sgl(Xs)) (where Sgl(X)
means that X is singleton) and similarly, SetVal(x1, ..., xs).α(x1, ..., xs) (also
written SetValx.α(x)) is the set of well-defined values of α(X1, ..., Xs) such
that: Sgl(X1) ∧ ... ∧ Sgl(Xs).

Proposition 8: (1) If P (X) is a P-FA property, then the property ∃x.P (x) is P-
FA decidable and the functions Satx.P (x) and #x.P (x) are P-FA computable.

(2) If α(X) is a P-FA function, then the function SetValx.α(x) is P-FA
computable.

(3) The same implications hold for the classes FPT-FA and XP-FA.

Proof Sketch: If A, deterministic, checks P (x), then the nondeterministic
automaton prs(A) defines ∃x.P (x) with nondeterminism degree bounded by
the polynomial p(n) = 1 + (n + 1)s that does not depend on Sig(t). Hence
det(prs(A)) is a P-FA, an FPT-FA or an XP-FA by Lemma 4 if A is so. �

These results remain valid if each condition Sgl(Xi) is replaced by the condition
Card(Xi) = ci or Card(Xi) ≤ ci for fixed integers ci. For example, we can
compute

#(X1, ..., Xs).P (X1, ..., Xs) ∧ Card(X1) ≤ c1 ∧ ... ∧ Card(Xs) ≤ cs.

The exponents in the bounding polynomial become larger, but they still depend
only on the numbers c1, ..., cs. This does not work for Card(Xi) ≥ ci because
the bound would not be polynomial.

Monadic second-order constructions
We recall that for finite signatures, the notions of P-FA, FPT-FA and XP-FA
coincide. We let P (X) be a property of terms in T (F ) with s set arguments and
α(X) be similarly a function. The relabeling pr: F (s) → F has a computable
inverse. We consider infinite signatures F . Our main application will be to the
infinite signature F∞ that generates all finite graphs. We will use Sig(t), the set
of symbols that occur in a term t, as a parameter for FPT and XP algorithms.
If t ∈ T (F∞), this is equivalent to taking as parameter the minimal k such that
t ∈ T (Fk), hence, the clique-width of the considered graph because clique-width
can be approximated in cubic time.

Definitions 9: Multisets of tuples of numbers; a semi-ring.
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(a) If μ and μ′ are two mappings Ns → N, we define μ+μ′ and μ∗μ′ : Ns → N
by:

(μ+ μ′)(n1, ..., ns) := μ(n1, ..., ns) + μ′(n1, ..., ns), and
(μ ∗ μ′)(n1, ..., ns) :=

∑
0≤pi≤ni

μ(p1, ..., ps).μ
′(n1 − p1, ..., ns − ps).

[Ns → N]f is the set of finite mappings: Ns → N, i.e., with value 0 almost
everywhere. The functions μ + μ′ and μ ∗ μ′ are finite if μ and μ′ are. The
operations + and ∗ are associative and commutative. The constant mapping:
Ns → N with value 0 is denoted by 0. If w ∈ {0, 1}s, we letMw: Ns → N be such
that Mw(n) :=if n = w then 1 else 0. We have μ+ 0 = μ, μ ∗ 0 = 0 and μ ∗
M0...0 = μ. Since ∗ is distributive over +, we get that 〈[Ns → N]f ,+, ∗,0,M0...0 〉
is a semi-ring; μ ∈ [Ns → N]f is (represents) a finite multiset of s-tuples of
integers.

(b) If E is a set and Z ⊆ Pf (E)
s, we define MSp(Z) as the mapping: Ns → N

such that MSp(Z)(n1, ..., ns) is the number of tuples (X1, . . . , Xs) ∈ Z such that
ni = |Xi| for each i, hence is the multiset {(|X1|, ..., |Xs|) | (X1, . . . , Xs) ∈ Z}.
If Z and Z ′ ⊆ Pf (E)

s are disjoint, then MSp(Z ∪ Z ′) = MSp(Z) +MSp(Z ′). If
Z ⊆ Pf (E)

s and Z ′ ⊆ Pf(E
′)s with E ∩E′ = ∅, and if W = {(X1∪Y1, . . . , Xs∪

Ys) | (X1, . . . , Xs) ∈ Z, (Y1, . . . , Ys) ∈ Z ′}, then MSp(W ) = MSp(Z)∗MSp(Z ′).

Definition 10: A fly-automatonA over F has an FPT-bounded nondeterminism
degree (cf. p4 in Lemma 4) if, for every t ∈ T (F ), ndegA(t) ≤ f(Sig(t)) · ‖t‖a
for some fixed function f and constant a. It has an XP-bounded nondeterminism
degree if ndegA(t) ≤ f(Sig(t)) · ‖t‖|g(Sig(t)) for some fixed functions f and g,
equivalently, if A � H has a polynomially bounded nondeterminism degree for
each finite subsignature H of F .

Proposition 11: (1) If P (X) is decided by a P-FA (resp. FPT-FA, resp. XP-
FA) A over F (s) such that the FA pr(A) has a polynomially bounded (resp.
FPT-bounded, resp. XP-bounded) nondeterminism degree, then the property
∃X.P (X) is P-FA (resp. FPT-FA, resp. XP-FA) decidable, and the function
MSpX.P (X) is P-FA (resp. FPT-FA, resp. XP-FA) computable. These results
also hold for SpX.P (X), #X.P (X), MinCardX.P (X) and MaxCardX.P (X).

(2) If α(X) is computed by a P-FA (resp. FPT-FA, resp. XP-FA) A such that
pr(A) has a polynomially bounded (resp. FPT-bounded, resp. XP-bounded)
nondeterminism degree, then the function SetValX.α(X) is P-FA (resp.
FPT-FA, resp. XP-FA) computable.

Proof Sketch: We start from a deterministic automaton A over F (s) that
defines P (X). Let t ∈ T (F ). For each state q and position u of t, we let Z(q, u)
be the set of s-tuples X ∈ (Pf (Pos(t)/u))

s (where Pos(t)/u is the set of po-
sitions of t below or equal to u; to be distinguished from Pos(t/u)) such that
runA,t∗X(u) = q. At the root, these sets define SatX.P (X).We extract informa-
tion from Z(q, u) and make it into an attribute of q. Depending on the case, this
attribute may be a Boolean for emptiness of Z(q, u) (for ∃X), its cardinality
(for #X), the multiset MSp(Z(q, u)) (for MSpX). We focus on the last case.
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The operation + sums the multisets coming from the different runs of pr(A)
that reach q at u. The operation ∗ combines the attributes at the sons of u in
each run that reaches q at u. We obtain a nondeterministic automaton B whose
states are pairs (q, α) where α is an attribute. Then det(B) is a determinis-
tic FA that computes MSpX.P (X) which is equal to the sum of the multisets
MSp(Z(q, roott)) for q accepting.

We consider the case where P (X) is MS expressible and F is finite. Then
A is finite. A state of det(B) can be implemented as the finite set of tuples
(q, n1, ..., ns,m) such that q ∈ QA, m = α(n1, ..., ns) �= 0 where α is the attribute
of q (at some position). Then det(B) is a P-FA because its states (on a term with
n nodes) can be encoded by words of length ≤ |QA|.(n+1)s. log(2s.n) = O(ns+1)
(the numbers α(n1, ..., ns) being written in binary). Computing the transitions
and the output takes polynomial time. The proof extends to infinite F as stated.
The cases of SpX.P (X) etc. are even simpler because we have less information
from Z(q, u) to encode. The computation of SetValX.α(X), the set of all values
of α, is based on det(A) .

If SatX.P (X)) is not empty, a P-FA (resp. an FPT-FA, resp. an XP-FA) can
compute one of its tuples (but not all of them in general). �

4 Properties of Terms and Functions on Terms

The height of a term t can be computed by a P-FA Aht whose states are positive
integers (the state at u is ht(t/u) where ht(a) = 1 for a nullary symbol a). A
term t is uniform (this property is denoted by Unif (t)) if and only if any two
leaves of its syntactic tree are at same distance to the root. This is equivalent to
the condition that for every position u with sons u′ and u”, the subterms t/u′ and
t/u” have same height. The automaton Aht can be modified into a P-FA AUnif

that decides uniformity. Its set of states is N+ ∪ {Error} and qAUnif
(t) = ht(t)

if t is uniform, = Error if t is not uniform.

Definition 12: An extension of MS logic on terms.
We consider properties and functions constructed in the following way:
(a) We use free set variablesX1, ...,Xs (that will not be quantified), first-order

(FO) variables, y1, ..., ym and set terms over X1, ..., Xs, {y1}, ..., {ym}.
(b) As basic properties, we use Unif and all properties P expressible by

MS formulas (that can use other bound variables than X1, ..., Xs, y1, ..., ym). As
basic functions, we use ht, Card (that yields the cardinality of a set of positions).

(c) We construct properties from already constructed properties P,Q, ... and
from functions α,α1, ..., αr, ... by the following compositions:

P ∧Q,P ∨Q,¬P,
R ◦ (α1, ..., αr) where R is an r-ary P-decidable relation on D,
P (S1, ..., Sp) where S1, ..., Sp are set terms over X1, ..., Xs, {y1}, ..., {ym}
(set terms are built with union, intersection and complementation; see
[4]).
∃y.P (y) where y is a tuple of variables among y1, ..., ym.
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(d) Similarly, we construct functions in the following ways:

g ◦ (α1, ..., αr) where g is P-computable: D → Dr,
α(S1, ..., Sp) where S1, ..., Sp are set terms over X1, ..., Xs, {y1}, ..., {ym},
SetValy.α(y) (the set of values of α), #y.P (y) and Saty.P (y) where y
is a tuple of variables among y1, ..., ym.

We assume that we have for R in (c) and g in (d) a certified polynomial-time
algorithm. This is necessary to build automata. We denote by PF(F ) the set of
all these formulas.

Theorem 13: Every property (or function) defined by a formula of PF(F )
is decidable (or computable) by a P-FA over F . Such an automaton can be
constructed from automata for the basic properties and functions.

Our language PF(F ) does not exhaust the possibilities of extension of MS logic
that yield P-FA computable properties and functions. We can for example in-
troduce a relativized height ht(t,X) for t ∈ T (F ) and X ⊆ Pos(t), defined as
the maximal number of elements of X on a branch of the syntactic tree of t.
However, we cannot use set quantifications.

5 Properties and Functions on Graphs

1. Degrees of vertices
For a directed graphG, we generalize the notion of outdegree by defining e(X1, X2)
as the number of edges from X1 to X2 if X1 and X2 are disjoint sets of vertices
and as ⊥ otherwise. Hence e({x}, VG−{x}) is the outdegree of x in G (all graphs
are loop-free). Note that e(X1, X2) is not of the form #Y.P (Y,X1, X2) for an
MS property P as we do not allow edge set quantification.

We can define a deterministic FA Ak over F
(2)
k , intended to run on irredundant

terms (such that no edge is defined twice, see [4]) written with labels in C := [k].
Its set of states is (N×[C → N]× [C → N])∪ {Error}. If X ⊆ VG, we denote by
λX the mapping that gives, for each a, the number of a-ports in X ; if X = VG,
we denote it by λG. We want that qAk

(t∗ (X1, X2)) = Error if X1∩X2 �= ∅ and
qAk

(t ∗ (X1, X2)) = (e(X1, X2), λX1 , λX2 ) otherwise. The transitions are easy to

write. For example
−−→
adda,b[(m,λ1, λ2)] → (m + λ1(a).λ2(b), λ1, λ2), is correct

because t is assumed irredundant.
On a term that denotes a graph with n vertices, each state belongs to the set

([0, n2]×[C → [0, n]]×[C → [0, n]])∪{Error} of cardinality less than (n+1)2+2k,
hence, has size O(k. log(n)) (the integers m and the values of λ1 and λ2 are
written in binary notation). Transitions and outputs can be computed in time
O(k. log(n)). Hence, Ak is a P-FA. We represent a function λ : C → N by the
set {(a, λ(a)) | λ(a) �= 0}. This implies that Ak is a subautomaton of Ak′ if

k < k′. Hence, the union of the automata Ak is a P-FA A∞ over F
(2)
∞ . For an

undirected graph, we define e(X1, X2) as the number of edges between X1 and
X2 if X1 and X2 are disjoint and ⊥ otherwise. The construction is similar.
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2. Regularity of a graph
The regularity of an undirected graph is not MS expressible because the complete
bipartite graph Kn,m is regular if and only if n = m and we apply the arguments
of Proposition 5.13 of [7]. That a graph is not regular can be checked by a FA
constructed from the formula ∃X,Y.(P (X,Y )∧Sgl(X)∧Sgl(Y )) where P (X,Y )
is the property e(X,Xc) �= e(Y, Y c). By previous constructions, this property is
P-FA decidable, and we can apply Proposition 14(1) to get a P-FA for checking
regularity. However, we can construct directly a simpler P-FA without using an
intermediate nondeterministic automaton. Its state at position u is Error if two
a-ports of G(t/u) have different degrees, and otherwise indicates, for each a, the
number of a-ports and their common degree. In its run on a term t such that
G(t) has n vertices, less than (n + 1)2k states occur and these states have size
O(k. log(n)). We get a P-FAAReg[X]. The nondeterminism degree of pr(AReg[X])

is bounded by O((n+ 1)2k) where the exponent depends on the bound k to the
clique-width.

The property ∃X.(Card≤p(X)∧Reg[Xc]) expressing that the considered graph
becomes regular if we remove at most p vertices, is P-FA decidable by Proposi-
tion 11(1) and the remark following it. The function MaxCardX.Reg[X ] that
defines the maximal cardinality of a regular induced subgraph of the considered
graph is XP-FA computable. So is the property that the graph can be partitioned
into two regular subgraphs, expressed by ∃X.(Reg[X ]∧Reg[Xc]) (the proof uses
the same propositions).

3. Graph partition problems with numerical constraints
Many partition problems (cf. also [14]) consist in finding (X1, · · · , Xs), an s-tuple
satisfying:

Partition(X1, ..., Xs) ∧ P1(X1) ∧ ... ∧ Ps(Xs) ∧R(|X1|, ..., |Xs|),

where, P1, ..., Ps are properties of sets and R is a P-computable arithmetic con-
dition. We may also wish to count the number of such partitions, or to find
one that maximizes or minimizes the number Ext(X) := Σ1≤i<j≤se(Xi, Xj) of
external edges, i.e., of edges not in the induced subgraphs G[X1], ..., G[Xs]. This
number is P-FA computable.

We can handle partitions in s planar induced subgraphs with an FPT-FA,
however, its implementation does not seem doable (planarity is MS expressible,
but the formula is complicated).

If Pi(Xi) is stability for each i, (i.e., the induced subgraphs have no edge),
we get a constrained coloring problem of the form:

∃X1, ..., Xs.(Partition(X1, ..., Xs) ∧ St[X1] ∧ ... ∧ St[Xs] ∧R(|X1|, ..., |Xs|)).

An example is the notion of equitable s-coloring : condition R(|X1|, ..., |Xs|) is
∃i ∈ [s].(|X1| = ... = |Xi−1| ≥ |Xi| = ... = |Xs| ≥ |X1| − 1), which means
that any two color classes have same cardinality up to 1. The existence of an
equitable 3-coloring is not trivial: it holds for the cycles but not for the graphs
Kn,n for large n. The existence of an equitable s-coloring is W[1]-hard for the



Model-Checking by Infinite Fly-Automata 221

parameter defined as s plus the tree-width [11], hence presumably not FPT
for this parameter. Our constructions yield, for each integer s, an FPT-FA for
checking the existence of an equitable s-coloring for clique-width as parameter.

6 Implementations

Let AP (X) be an automaton recognizing graphs with assignments of sets to the

variables of X. From AP (X), we can obtain the automaton AΓ.P (X) for Γ ∈
{#X, SpX,MSpX, MinCardX,MaxCardX} for graphs with no assignments.
This is done in two steps. The first step is to associate to the automaton an
attribute mechanism such that the automaton, instead of computing a state q,
computes a state [q, a] where a is the attribute to be computed according to Γ , for
instance the number of runs yielding q for #X.P (X). The attribute mechanism
is composed of two functions: the first function applies to symbols and yields
a function for computing the attribute obtained at t = f(t1, . . . , tp) from the
ones obtained for t1, . . . , tp in the deterministic case; sometimes this function
is the same for all symbols as for the counting case. The second function is
for combining several attributes of identical states accessed with different runs.
For #X.P (X), the first function is the addition function for all symbols and
the second is the multiplication function. (The case of ∃X.P (X) is handled by
determinizing pr(AP (X)).)

This can be applied for counting the s-colorings of a graph or for constructing
”special” colorings. From an appropriate A, we can obtain an automaton that
computes the number of s-colorings as the number of runs of A on the repre-
senting term. This is done by using the attribute mechanism for counting runs.
For classic graphs such as Petersen’s, with known chromatic polynomials, we can
verify the computation. We can also count acyclic-colorings [4]. The number of 4-
acyclic colorings of Petersen’s graph is 10800. The number of 3-acyclic-colorings
of McGee’s graph is 57024. We also provide a mechanism for enumerating color-
ings (more generally, satisfying assignments) [9]. It is also useful for determining
”quickly” the existence a coloring (but not for counting them).

7 Conclusion and References

In this communication, we have given logic based methods for proving the exis-
tence of FPT and XP algorithms that check properties or compute functions on
terms and on graphs defined by terms. These constructions are currently under
implementation. They are quite general and flexible and so, they do not give
necessarily the best possible time complexities. They generalize constructions
of [1,2,8]. Detailed definitions and proofs are in [5]. Implementation issues are
described in [6,9].
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Abstract. In this paper, we define a Hopf algebra structure on the vec-
tor space spanned by packed words using a selection-quotient coprod-
uct. We show that this algebra is free on its irreducible packed words.
its primitive elements. Finally, we give some brief explanations on the
Maple codes we have used.
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1 Introduction

In computer science, one is led to the study of algebraic structures based on
trees, graphs, tableaux, matroids, words and other discrete structures. Hopf al-
gebras are also shown to play an important role in quantum field theory [1],
non-commutative QFT [4], [5], (see also the review articles [6] [8]), or in quan-
tum gravity spin-foam models [3], [7]. These algebras use a selection-quotient
rule for the coproduct.

Δ(S) =
∑
A⊆S

+Conditions

S[A]⊗ S/A, (1)

where S is some (general) combinatorial object (tree, graph, matroid, etc.), S[A]
is a substructure of S and S/A is a quotient.

The present article introduces a new Hopf algebraic structure, which we call
WMat, on the set of packed words. The product is given by the shifted concate-
nation and the coproduct is given by such a selection-quotient principle.

2 Algebra Structure

2.1 Definitions

Let X be an infinite totally ordered alphabet {xi}i≥0 and X∗ be the set of words
with letters in the alphabet X .

T. Muntean, D. Poulakis, and R. Rolland (Eds.): CAI 2013, LNCS 8080, pp. 223–234, 2013.
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A word w of length n = |w| is a mapping i �→ w[i] from [1..|w|] to X . For a
letter xi ∈ X , the partial degree |w|xi is the number of times the letter xi occurs
in the word w. One has:

|w|xi =

|w|∑
j=1

δw[j],xi
. (2)

For a word w ∈ X∗, one defines the alphabet Alph(w) as the set of its letters,
while IAlph(w) is the set of indices in Alph(w).

Alph(w) = {xi| |w|xi �= 0} ; IAlph(w) = {i ∈ N| |w|xi �= 0}. (3)

The upper bound sup(w) is the supremum of IAlph(w), i. e.

sup(w) = supN(IAlph(w)). (4)

Note that sup(1X∗) = 0.
Let us define the substitution operators. Let w = xi1 . . . xim and
φ : IAlph(w) −→ N, with φ(0) = 0. One then defines:

Sφ(xi1 . . . xim ) = xφ(i1) . . . xφ(im). (5)

Let us define the pack operator of a word w. Let {j1, . . . , jk} = IAlph(w) \ {0}
with j1 < j2 < · · · < jk and define φw as

φw(i) =

{
m if i = jm

0 if i = 0
. (6)

The corresponding packed word, denoted by pack(w), is Sφw(w). This means that
if the word w has (one or several) “gap(s)” between the indices of its letters,
then in the word pack(w) these gaps have vanished (the indices of the respective
letters being modified accordingly).

Example 1. Let w = x1x1x5x0x4 . One then has pack(w) = x1x1x3x0x2.

A word w ∈ X∗ is said to be packed if w = pack(w).

Example 2. The packed words of weight 2 are xk1
0 x1x

k2
0 x1x

k3
0 , with k1, k2, k3 ≥ 0.

The operator pack : X∗ −→ X∗ is idempotent (pack ◦ pack = pack). It defines,
by linear extension, a projector. The image, pack(X∗), is the set of packed words.

Let u, v be two words; one defines the shifted concatenation ∗ by

u ∗ v = uTsup(u)(v), (7)

where, for t ∈ N, Tt(w) denotes the image of w by Sφ for φ(n) = n + t if
n > 0 and φ(0) = 0 (in general, all letters can be reindexed except x0). It is
straightforward to check that, in the case the words are packed, the result of a
shifted concatenation is a packed word.
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Definition 1. Let k be a field. One defines a vector space H = spank(pack(X
∗))

and endows this space with a product (on the words) given by

μ :H⊗H −→ H,
u⊗ v �−→ u ∗ v.

Remark 1. The product above is similar to the shifted concatenation for permu-
tations. Moreover, if u, v are two words in X∗, then sup(u∗v) = sup(u)+sup(v).

Proposition 1. (H, μ, 1X∗) is an associative algebra with unit (AAU).

Proof. Let u, v, w be three words in H. One then has:

(u ∗ v) ∗ w = u(Tsup(u)(v)(Tsup(u)+sup(v))(w)) = u ∗ (v ∗ w). (8)

Thus, the algebra (H, μ) is associative. On the other hand, for all u ∈ pack(X∗),
one can easily check that

u ∗ 1X∗ = u = 1X∗ ∗ u.

Now remark that pack(1X∗) = 1X∗ . This is clear from the fact that 1X∗ = 1H.
One concludes that (H, μ, 1X∗) is an AAU. ��

As already announced in the introduction, we call this algebra WMat.

Remark 2. The product is non-commutative, for example: x1 ∗x1x1 �= x1x1 ∗x1.

Let w = xk1 . . . xkn be a word and I ⊆ [1 . . . n]. A sub-word w[I] is defined as
xki1

. . . xkil
, where ij ∈ I.

Lemma 1. Let u, v be two words. Let I ⊂ [1 . . . |u|] and J ⊂ [|u|+1 . . . |u|+ |v|].
One then has

pack(u ∗ v[I + J ]) = pack(u[I]) ∗ pack(v[J ′]), (9)

where J ′ is the set {i− |u|}i∈J .

Proof. By direct computation, one has:

pack(u ∗ v[I + J ]) = pack(uTsup(u)(v)[I + J ]) = pack(u[I]Tsup(u)(v)[J ])

= pack(u[I]Tsup(u[I])(v[J
′])) = pack(u[I]) ∗ pack(v[J ′]). (10)

��

Theorem 1. Let k < X > be equipped with the shifted concatenation. The
mapping pack

k < X >
pack−−−→ H (11)

is then a morphism AAU.

Proof. By using the Lemma 1 and taking I = [1 . . . |u|] and J = [|u|+1 . . . |u|+
|v|], one gets the conclusion. ��
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2.2 WMat Is a Free Algebra

WMat is, by construction, the algebra of the monoid pack(X∗), therefore to
check that WMat is a free algebra, it is sufficient to show that pack(X∗) is a
free monoid on its atoms. a free monoid is a pair (F (X), jX) where F (X) is a
monoid, jX : X → F (X) is a mapping such that (∀M ∈ Mon) (∀f : X → M)
(∃!fX ∈Mor(F (X),M)) f = fx ◦ jX .

Here we will use an “internal” characterization of free monoids in terms of
irreducible elements.

Definition 2. A packed word w in pack(X∗) is called an irreducible word if and
only if it can not be written under the form w = u ∗ v, where u and v are two
non trivial packed words.

Example 3. The word x1x1x1 is an irreducible word. The word x1x1x2 is a re-
ducible word because it can be written as x1x1x2 = x1x1 ∗ x1.

Proposition 2. If w is a packed word, then w can be written uniquely as w =
v1 ∗ v2 ∗ · · · ∗ vn, where vi, 1 ≤ i ≤ n, are non-trivial irreducible words.

Proof. The ith position of word w is called an admissible cut if sup(w[1 . . . i]) =
inf(w[i+ 1 . . . |w|]) − 1 or sup(w[i+ 1 . . . |w|]) = 0, where inf(w) is infimum of
IAlph(w).

Because the length of word is finite, one can get w = v1 ∗ v2 ∗ · · · ∗ vn, with n
maximal and vi non trivial, ∀1 ≤ i ≤ n.

One assumes that one word can be written in two ways

w = v1 ∗ v2 ∗ · · · ∗ vn (12)

and

w = v′1 ∗ v′2 ∗ · · · ∗ v′m. (13)

Denoting by k the first number such that vk �= v′k, without loss of generality,
one can suppose that |vk| < |v′k|. From equation (12), the kth position is an
admissible cut of w. From equation (13), the kth position is not an admissible
cut of w. One thus has a contradiction. One has n = m and vi = v′i for all
1 ≤ i ≤ n. ��

One can thus conclude that pack(X∗) is free as monoid with the packed words
as a basis.

3 Bialgebra Structure

Let us give the definition of the coproduct and prove that the coassociativity
property holds.
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Definition 3. Let A ⊂ X, one defines w/A = SφA(w) with

φA(i) =

{
i if xi �∈ A,
0 if xi ∈ A.

Let u be a word. One defines w/u =w /Alph(u).

Definition 4. The coproduct of H is given by

Δ(w) =
∑

I+J=[1...|w|]
pack(w[I])⊗ pack(w[J ]/w[I]), ∀w ∈ H, (14)

where this sum runs over all partitions of [1 . . . |w|] divided into two blocks, I ∪
J = [1 . . . |w|] and I ∩ J = ∅.
Example 4. One has:

Δ(x1x2x1) = x1x2x1 ⊗ 1X∗ + x1 ⊗ x1x0 + x1 ⊗ x21 + x1 ⊗ x0x1 + x1x2 ⊗ x0
+x21 ⊗ x1 + x2x1 ⊗ x0 + 1X∗ ⊗ x1x2x1.

Let us now prove the coassociativity.
Let I = [i1, . . . , in], and α be a mapping:

α : I −→ [1 . . . n],

is �−→ s. (15)

Lemma 2. Let w ∈ X∗ be a word, I be a subset of [1 . . . |w|] and I1 ⊂ [1 . . . |I|].
One then has

pack(w[I])[I1] = Sφw[I]
(w[I ′1]), (16)

where I ′1 is α−1(I1) and φw[I] is the packing map of w[I] that is given in (6) .

Proof. Using the definition of packing map φw[I], one can directly check that
equation 16 holds. ��
Lemma 3. Let w ∈ X∗ be a word and φ be a strictly increasing map from
IAlph(w) to N. One then has:

1)
pack(Sφ(w)) = pack(w). (17)

2)
Sφ(

w1/w2) =
Sφ(w1) /Sφ(w2). (18)

Proof. 1) Using the definition (6) of the packing map, one has the following
identity:

pack(Sφ(w)) = SφSφ(w)
(Sφ(w)) = SφSφ(w)◦φ(w) = Sφw(w) = pack(w).

2) Let I2 = Alph(w2) and I ′2 = Alph(Sφ(w2)). One can directly check that
φ ◦ φI2(i) = φI′

2
◦ φ(i), for all i ∈ IAlph(w1). One thus has

Sφ(
w1/w2) = Sφ(SφI2

(w1)) = Sφ◦φI2
(w1) =

SφI′
2
◦φ(w1) = SφI′

2
(Sφ(w1)) =

Sφ(w1) /Sφ(w2). (19)

��
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Lemma 4. Let w be a word in H, and I, J,K be three disjoint subsets of the
set {1 . . . |w|}. One then has:

w[K]/w[I]

w[J]/w[I]

=w[K] /w[I+J]. (20)

Proof. Using Lemma 3, one has:

w[K]/w[I]

w[J]/w[I]

=SφI
(w[K]) /SφI

(w[J]) = SφI (
w[K]/w[J]) = SφI (SφJ (w[K]))

= SφI◦φJ (w[K]) =w[K] /w[I+J]. (21)

��

Proposition 3. The vector space H endowed with the coproduct (14) is a coas-
sociative coalgebra with co-unit (c-AAU). The co-unit is given by:

ε(w) =

{
1 if w = 1H,

0 otherwise.

Proof. Using the lemmas 2, 3 and 4, one has the following identity:

(Δ⊗ Id) ◦Δ(w) =
∑

I+J+K=[1...|w|] pack(w[I])⊗ pack(w[J]/w[I])

⊗pack(w[K]/w[I+J]) = (Id⊗Δ) ◦Δ(w). (22)

Thus, one can conclude that the coproduct (14) is coassociative.
One can easily check that

(ε ⊗ Id) ◦Δ(w) = (Id⊗ ε) ◦Δ(w), (23)

for all word w ∈ H.
One thus concludes that (H, Δ, ε) is a c-AAU. ��

Remark 3. This coalgebra is not cocommutative, for example:

T12 ◦Δ(x21) = T12(x
2
1 ⊗ 1H + 2x1 ⊗ x0 + 1H ⊗ x21)

= x21 ⊗ 1H + 2x0 ⊗ x1 + 1H ⊗ x21 �= Δ(x21),

where the operator T12 is given by T12(u⊗ v) = v ⊗ u.

Lemma 5. Let u, v be two words. Let I1 + J1 = [1 . . . |u|] and I2 + J2 = [|u|+
1 . . . |u|+ |v|]. One then has

pack(u∗v[J1+J2]/u∗v[I1+I2]) = pack(u[J1]/u[I1]) ∗ pack(v[J
′
2]/v[I′

2]
), (24)

where I ′2 is the set {k − |u|, k ∈ I2} and J ′
2 is the set {k − |u|, k ∈ J2}.
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Proof. One has:

pack(u∗v[J1+J2]/u∗v[I1+I2]) = pack(SφI1+I2
(u ∗ v[J1 + J2]))

= pack(SφI1+φI2
(u[J1]Tsup(u)(v)[J2])) = pack(SφI1

(u[J1])SφI2
(Tsup(u)(v[J

′
2])))

= pack(u[J1]/u[I1])Tsup(u[J1]/u[I1])
pack(SφI′2

(v[J ′
2]))

= pack((u[J1]/u[I1]) ∗ pack(u[J
′
2]/u[I′

2]
). (25)

��

Proposition 4. Let u, v be two words in H. One has:

Δ(u ∗ v) = Δ(u) ∗⊗2 Δ(v). (26)

Proof. Using the Lemma 5, the proof can be done by a direct check.
��

Since H is graded by the word’s length, one has the following theorem:

Theorem 2. (H, ∗, 1H, Δ, ε) is a Hopf algebra.

Proof. The proof follows from the above results. ��

For w �= 1H, the antipode is given by the recursion:

S(w) = −w −
∑

I+J=[1...|w|],I,J =∅
S(pack(w[I])) ∗ pack(w[J]/w[I]). (27)

4 Hilbert Series of the Hopf Algebra WMat

In this section, we compute the number of packed words with length n and
supremum k. Using the formula of Stirling numbers of the second kind, one can
get the explicit formula for the number of packed words with length n, number
which we denote by dn.

Definition 5. The Stirling numbers of the second kind count the number of
set unordered partitions of an n-element set into precisely k non-void parts
(or blocks). The Stirling numbers, denoted by S(n, k) are given by the recursive
definition:

1. S(n, n) = 1(n ≥ 0),

2. S(n, 0) = 0(n > 0),

3. S(n+ 1, k) = S(n, k − 1) + kS(n, k), for 0 < k ≤ n.
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One can define a word without x0 by its positions, this means that if a word
w = xi1xi2 . . . xin has length n and alphabet IAlph(w) = {1, 2, . . . , k}, then
this word can be determine from the list [S1, S2, . . . , Sk], where Si is the set of
positions of xi in the word w, with 1 ≤ i ≤ k. It is straightforward to check that
(Si)0≤i≤k is a partition of [1 . . . n].

One can divide the set of packed words with length n and supremum k
in two parts: “pure” packed words (which have no x0 in their alphabet), de-
note pack+n,k(X) and packed words which have x0 in their alphabet, denote

pack0n,k(X). It is clear that:

d(n, k) = #pack+n,k(X) + #pack0n,k(X). (28)

Let us now compute the cardinal of these two sets pack+n,k(X) and pack0n,k(X).

Consider a word w ∈ pack+n,k(X), then IAlph(w) = {1, 2, . . . , k}. This word
is determined by [S1, S2, . . . , Sk], in which Si is a set of positions of xi, for
1 ≤ i ≤ k. One can see that:

1. Si �= ∅, ∀i ∈ [1, k];

2. �1≤i≤kSi = {1, 2, . . . , n}.

Note that 1-2 hold even with w = 1H.
Thus, one has the cardinal of packed words with length n and supremum k:

d+(n, k) = #pack+n,k(X) = S(n, k)k!. (29)

Similarly, a word w ∈ #pack0n,k(X) can be determined by [S0, S1, S2, . . . , Sk]
where Si is the set of positions of xi, for all 0 ≤ i ≤ k. One then has:

d0(n, k) = #pack0n,k(X) = S(n, k + 1)(k + 1)!. (30)

From the two equations above, one can get the number of packed word with
length n, supremum k:

d(n, k) = d+(n, k)+d0(n, k) = S(n, k)k!+S(n, k+1)(k+1)! = S(n+1, k+1)k!.
(31)

From this formula, using Maple, one can get some values of d(n, k). We give in
the Table 1 the first values.

Note that the values of Table 1 correspond to those of the triangular array
A028246 of Sloane [9].

Remark 4. Formulas (29) and (30) imply that the packed words of length n
and supremum k without, and respectively with, x0 are in bijection with the
circularly ordered partitions of [n] in k parts and respectively in k + 1 parts.
Therefore (31) implies that the set of packed words of length n with supremum
k is in bijection with the circularly ordered partitions of n+1 elements in k+1
parts.
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Table 1. Values of d(n, k) given by the explicit formula (31) and computed with Maple

k
0 1 2 3 4 5 6 7 8

n

0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
2 1 3 2 0 0 0 0 0 0
3 1 7 12 6 0 0 0 0 0
4 1 15 50 60 24 0 0 0 0
5 1 31 180 390 360 120 0 0 0
6 1 63 602 2100 3360 2520 720 0 0
7 1 127 1932 10206 25200 31920 20160 5040 0
8 1 255 6050 46620 166824 317520 332640 181440 40320

The formula for the number of packed words of length n, dn (n ≥ 1), is then
given by

dn =

n∑
k=0

d(n, k) =

n∑
k=0

S(n+ 1, k + 1)k!. (32)

Using again Maple, one can get the values listed in Table 2.

Table 2. Some values of dn obtained from formula (32)

n 0 1 2 3 4 5 6 7 8 9 10

dn 1 2 6 26 150 1082 9366 94586 1091670 14174522 204495126

The number of packed words is the sequence A000629 of Sloane [9], where it
is also mentioned that this sequence corresponds to the ordered Bell numbers
sequence times two (except for the 0th order term).

The ordinary and exponential generating function of our sequence are also
given in [9]. The ordinary one is given by the formula:

∑
n≥0

2nn!xn∏n
k=0(1+kx) . The

exponential one is given by: ex

2−ex . Let us give the proof of this.
Firstly, recall that the exponential generating function of the ordered Bell

numbers (see, for example, page 109 of Philippe Flajolet’s book [2]) is:

1

2− ex =
∑
n≥0

n∑
k=0

S(n, k)k!
xn

n!
. (33)

By deriving both side of equation (33) with respect to x , one obtains:

ex

2− ex =
∑
n≥1

n∑
k=1

S(n, k)k!
xn−1

(n− 1)!
. (34)
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From equations (32) and (34), one gets the exponential generating function of
our sequence:

ex

2− ex =
∑
n≥0

n∑
k=0

S(n+ 1, k + 1)k!
xn

n!
=

∑
n≥0

dn
xn

n!
. (35)

Let us now investigate the combinatorics of irreducible packed words (see Def-
inition 2). Firstly, we notice that one still has an infinity of irreducible packed
words of weight m, which are again obtained by adding multiple copies of the
letter x0.

Example 5. The word x1x
k
0x1x

k
0x1 (with k an arbitrary integer) is an irreducible

packed word of weight 3.

Let us denote by in the number of irreducible packed words of length n. Then
one has:

in =
∑

j1+···+jk=n
jl =0

(−1)k+1dj1 . . . djk . (36)

Using Maple, one can get the values of in, which we give in Table 3 below.

Table 3. Ten first values of the number of irreducible packed words.

n 0 1 2 3 4 5 6 7 8 9 10

in 1 2 2 10 66 538 5170 59906 704226 9671930 145992338

Note that this sequence does not appear in Sloane’s On-Line Encyclopedia of
Integer Sequences [9].

5 Primitive Elements of WMat

Let us emphasize that this Hopf algebra, although graded, is not cocommutative
and thus the primitive elements do not generate the whole algebra but only a
sub Hopf algebra on which Δ is cocommutative (the biggest on which CQMM
theorem holds).

We denote by Prim(WMat) the algebra generated by the primitive elements
of H.

Let us recall the following result:

Lemma 6. Let V (1) and V (2) be two graded vector space.

V (i) = ⊕n≥0V
(i)
n , i = 1, 2. (37)

Let φ ∈ Homgr(V (1), V (2)), that means (∀n ≥ 0)(φ(V
(1)
n ) ⊆ V (2)

n ). Then, Ker(φ)
is graded.
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One then has:

Proposition 5. Prim(WMat) is a Lie subalgebra of WMat graded by the word’s
length.

Proof. Let us define the mapping

Δ+ : WMat −→WMat⊗WMat{
1H �−→ 0

h �−→ Δ(h)− 1H ⊗ h− h⊗ 1H
. (38)

This mapping is graded. Using Lemma 6, one has Prim(WMat) = Ker(Δ+).
Thus, the subalgebra Prim(WMat) is graded. ��

Let WMatn be the subalgebra generated by the packed words of length n, n ≥ 0.
One can see an element P of this subalgebra as a polynomial of packed words
of length n.

P =
∑

w∈WMatn

〈P |w〉w. (39)

Let us now compute the dimensions of the first few spaces Prim(WMat)n. For
n = 1, one has a basis formed by the primitive elements x0 and x1. Then one
can check that the primitive elements of length 1 have the form ax0 + bx1, with
a and b scalars. For n = 2, one has a basis formed by the primitive elements:
x0x1−x1x0 and x1x2−x2x1. Then one can check that all the primitive elements
of the length 2 have the form a(x0x1 − x1x0) + b(x1x2 − x2x1), with a and b
scalars. This comes from explicitly solving a system of 4 equations with d2 = 6
variables.

Nevertheless, the explicit calculations quickly become lengthy. Thus, for n = 3,
one has to solve a system of 22 equations with 26 variables.

6 Maple Coding

To test our results with Maple, we implement a random word in the following
way. To each word we associate a certain monomial which encodes, using a
given alphabet the position of any letter and its value. For example, to the word
x2x3 we associate the monomial a21a

3
2 where the powers (2 and respectively 3)

correspond to the values of the letters (x2 and respectively x3) and the indices
(1 and 2) correspond to the positions of the respective letters.

One has to keep in mind that the letter x0 can also be present in the words.
which is encoded with a supplementary word length variable.

Using this idea we can then implement in Maple packed words (obtained with
a Maple function taking as an argument a general word).

We have also implemented the LHS (left hand side) and the RHS (right hand
side) of the coproduct formula. For this purpose, one needs to refine the above
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function by considering two distinct alphabets to ”build up” the words, such
that one can easily separate - as function of the different alphabets - the LHS
from the RHS.

Finally, using all of the above, we have checked the coassociativity condition
for random words up to length 7, with maximal power 7.
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Abstract. The expressive power of synchronous forest (tree-sequence)
substitution grammars (SFSG) is studied in relation to multi bottom-up
tree transducers (MBOT). It is proved that SFSG have exactly the same
expressive power as compositions of an inverse MBOT with an MBOT.
This result is used to derive complexity results for SFSG and the fact
that compositions of an MBOT with an inverse MBOT can compute tree
translations that cannot be computed by any SFSG, although the class
of tree translations computable by MBOT is closed under composition.

1 Introduction

Synchronous forest substitution grammars (SFSG) [19] or the rational binary
tree relations [17] computed by them received renewed interest recently due to
their applications in Chinese-to-English machine translation [21,22]. The fact
that [19] and [17] arrived independently and with completely different back-
grounds at the same model shows that SFSG are a natural, practically
relevant, and theoretically interesting model for tree translations. Roughly speak-
ing, SFSG are a synchronous grammar formalism [2] that utilizes only first-order
substitution (as in a regular tree grammar [7,8]), but allows several components
that develop simultaneously for both the input and the output side. This fea-
ture allows them to model linguistic discontinuity on both the source and target
language. The rational binary tree relations (or tree translations computed by
SFSG) can also be characterized by rational expressions [17] and automata [16].

Multi bottom-up tree transducers (MBOT) [1,4] are restricted SFSG, in which
only the output side is allowed to have several components. They were rediscov-
ered in [5,6], but were studied extensively by [3,11,1] already in the 70s and 80s.
Their properties [13] are desirable in statistical syntax-based machine transla-
tion [10]. This led to a closer inspection [4,15,9] of their properties in recent
years. Overall, their expressive power is rather well-understood by now.

In this contribution, we investigate the expressive power of SFSG in terms
of MBOT. We show that the expressive power of SFSG coincides exactly with
that of compositions of an inverse MBOT followed by an MBOT. This charac-
terization is natural in terms of bimorphisms and shows that the input and the

� The author gratefully acknowledges the financial support by the German Research
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output tree are independently obtained by a full MBOT from an intermediate
tree language (which is always regular [7,8]). This paves the way to complemen-
tary results. In particular, we derive the first complexity results for SFSG and
we demonstrate that the composition in the other order (first an MBOT followed
by an inverse MBOT) contains tree translations that cannot be computed by
any SFSG. This shows a limitation of MBOT, which are closed under composi-
tion [4]. Overall, we can thus also characterize the expressive power of SFSG by
an arbitrary chain of inverse MBOT followed by an arbitrary chain of MBOT.

2 Preliminaries

The set of nonnegative integers is N. We write [k] for the set {i ∈ N | 1 ≤ i ≤ k},
and we treat functions (or maps) as special relations. For all relations R ⊆ A×B
and subsets A′ ⊆ A, we let R(A′) = {b ∈ B | ∃a ∈ A′ : (a, b) ∈ R}. Moreover,

R−1 = {(b, a) | (a, b) ∈ R} dom(R) = R−1(B) ran(R) = dom(R−1) ,

which are called the inverse of R, the domain of R, and the range of R, respec-
tively. Given R1 ⊆ A×B and R2 ⊆ B ×C, the composition R1 ;R2 ⊆ A×C of
R1 and R2 is R1 ;R2 = {(a, c) ∈ A×C | ∃b ∈ B : (a, b) ∈ R1, (b, c) ∈ R2}. These
notions and notations are lifted to sets of relations as usual. Given a set Σ, the
set of all words over Σ is Σ∗, of which ε is the empty word. The concatenation
of two words u,w ∈ Σ∗ is denoted by uw. The length of a word w = σ1 · · ·σk
with σi ∈ Σ for all i ∈ [k] is |w| = k. We simply write wi for the i

th letter of w
(i.e., wi = σi) for all i ∈ [k]. For every k ∈ N, we let Σk = {w ∈ Σ∗ | k = |w|}.

A ranked alphabet (Σ, rk) consists of an alphabet Σ and a map rk: Σ → N.
The symbol σ ∈ Σ has rank rk(σ), and we let Σk = {σ ∈ Σ | rk(σ) = k} for all
k ∈ N. We usually denote the ranked alphabet (Σ, rk) by just Σ and write σ(k) to
indicate that rk(σ) = k. The set TΣ(N) of all Σ-trees indexed by the set N is the
smallest set T such that N ⊆ T and σ(t) ∈ T for all σ ∈ Σ and t ∈ T rk(σ). Such a
sequence t of trees is also called forest. Consequently, a tree t is either an element
ofN or it consists of a root node labeled σ followed by a forest t of rk(σ) children.
To improve the readability, we often write a forest t1 · · · tk as t1, . . . , tk. The
positions pos(t), pos(u) ⊆ N∗ of a tree t ∈ TΣ(N) and a forest u ∈ TΣ(N)∗

are inductively defined by (i) pos(n) = {ε}, (ii) pos(σ(t)) = {ε} ∪ pos(t), and

(iii) pos(u) =
⋃|u|

i=1{ip | p ∈ pos(ui)} for every n ∈ N , σ ∈ Σk, and t ∈ TΣ(N)k.
This yields an undesirable difference between pos(t) and pos(u) with u = (t).
Note that positions are totally ordered via the (standard) lexicographic ordering
on N∗. Let t, t′ ∈ TΣ(N) and p ∈ pos(t). The label of t at position p is t(p),
the subtree rooted at position p is t|p, and the tree obtained by replacing the
subtree at position p by t′ is denoted by t[t′]p. Formally, they are defined by
n(ε) = n|ε = n and n[t′]ε = t′ for every n ∈ N and

t(p) =

{
σ if p = ε

t(p) if p �= ε
t|p =

{
t if p = ε

t|p if p �= ε
t[t′]p =

{
t′ if p = ε

t[t′]p if p �= ε

u(ip′) = ui(p
′) u|ip′ = ui|p′ u[t′]ip′ = ui[t

′]p′
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for all t = σ(t) with σ ∈ Σk and t ∈ TΣ(N)k, u ∈ TΣ(N)∗, 1 ≤ i ≤ |u|, and
p′ ∈ pos(ui). As demonstrated, these notions are also defined for forests u. A
position p ∈ pos(t) is a leaf (in t) if p1 /∈ pos(t). For every S ⊆ N ∪ Σ, we let
posS(t) = {p ∈ pos(t) | t(p) ∈ S} and poss(t) = pos{s}(t) for every s ∈ N ∪ Σ.
The tree t ∈ TΣ(N) is linear in S ⊆ N if |poss(t)| ≤ 1 for every s ∈ S. The
variables of t are var(t) = {n ∈ N | posn(t) �= ∅}, and var(u) =

⋃|u|
i=1 var(ui)

for all u ∈ TΣ(N)∗. Given S ⊆ N , u ∈ TΣ(N)∗, and θ : S → TΣ(N)∗ such that
|θ(s)| = |poss(u)| for every s ∈ S, the forest uθ is obtained from u by replacing
for every s ∈ S the occurrences poss(u) = {p1, . . . , pk} with p1 < · · · < pk of
(the leaf) s in u by the trees θ(s)1, . . . , θ(s)k, respectively.

Given ranked alphabets Σ and Δ, a mapping d :
⋃

k∈NΣk → (Δk ∪ {�}) is a
delabeling if d(σ) ∈ Δk for all σ ∈ Σk with k �= 1. Thus, a delabeling is similar
to a relabeling [7,8], but it can also erase unary symbols. It induces a mapping
d : TΣ → TΔ such that d(σ(t)) = d(t1) if d(σ) = � and d(σ)(d(t1), . . . , d(tk))
otherwise for all σ ∈ Σk and t ∈ T k

Σ . Finally, let us recall the regular tree
languages [7,8]. A regular tree grammar (RTG) is a tuple G = (N,Σ, I, R) such
that N is a finite set of nonterminals, Σ is a ranked alphabet of symbols, I ⊆ N
is a set of initial nonterminals, and R ⊆ N × TΣ(N) is a finite set of rules.
A rule (n, r) ∈ R is typically written n → r, and for every n ∈ N , we let
Rn = {n→ r | n→ r ∈ R}. Given ξ, ζ ∈ TΣ(N) we write ξ ⇒G ζ if there exists
a a rule n→ r ∈ R and a position p ∈ posn(ξ) such that ζ = ξ[r]p. The regular
tree grammar G generates the tree language L(G) = {t ∈ TΣ | ∃n ∈ I : n⇒∗

G t},
where⇒∗

G is the reflexive and transitive closure of⇒G. A tree language L ⊆ TΣ
is regular if there exists a regular tree grammar G such that L = L(G). The
class of regular tree languages is denoted by Reg. Moreover, FTA denotes the
class of partial identities computed by the regular tree languages; i.e., FTA =
{idL | L ∈ Reg}, where idL = {(t, t) | t ∈ L}.

3 Synchronous Forest Substitution Grammars

The (stateful) synchronous forest substitution grammars (SFSG) are a natu-
ral generalization of the non-contiguous synchronous tree sequence substitution
grammars of [19] to include full grammar nonterminals (or states). They natu-
rally coincide with the binary rational relations studied by [17,16]. To keep the
presentation simple, we assume a global ranked alphabet Σ of input and output
terminal symbols. Moreover, we immediately present it in a form inspired by
tree bimorphisms [1] and tree grammars with multi-variables [17].

Definition 1. A (stateful) synchronous forest substitution grammar (SFSG) is
a tuple G = (N,Σ, I, R,B), where

– (N,Σ, I, R) is a regular tree grammar, and

– B ⊆ (
⋃

n∈I Rn ×Rn) ∪ (
⋃

n∈N\I R
∗
n ×R∗

n) is a finite set of aligned rules.

It is a multi bottom-up tree transducer (MBOT) if B ⊆
⋃

n∈N Rn ×R∗
n.
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n→
( γ1

n

γ1

n
, ε

)
n→

( γ2

n

γ2

n
, ε

)
n→

(
α α , ε

)
n′ →

(
α , α α

)

n0 →
( σ

n n′ n
,

σ

n′ α n′

)
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( γ1

n′
,

γ1

n′

γ1

n′

)
n′ →

( γ2

n′
,

γ2

n′

γ2

n′

)

Fig. 1. Aligned example rules of the SFSG of Example 1

Roughly speaking, we have a regular tree grammar containing all the potentially
used rules. However, potentially several rules with the same left-hand side are
applied at the same time on both the input and the output side. This dependence
is expressed by the set B of aligned rules. For all initial nonterminals, only
one rule is applied to the input and output side as we want to compute a tree
translation. For the remaining nonterminals we can use arbitrarily many rules on
the input and the output side. The alignment in the rules is established implicitly
by occurrences of the same nonterminal in the right-hand sides. To make aligned
rules more readable, we also write n → (�1 · · · �k, r1 · · · rk′ ) or n → (�, r) for a
rule (n→ �1 · · ·n→ �k, n→ r1 · · ·n→ rk′ ) ∈ B, where n→ �1, . . . , n→ �k, n→
r1, . . . , n → rk′ ∈ Rn are rules for the same nonterminal n ∈ N . In short, we
write the common nonterminal only once on the left-hand side and then group
all the right-hand sides of the rules of Rn. We assume that the nonterminals N
of each SFSG are totally ordered by ≤N . Finally, we let var(χ) = var(�)∪var(r)
for every rule χ = n → (�, r), where � and r contain only the right-hand sides
of rules of R (as per the previous declaration).

Example 1. Let (N,Σ, {n0}, R) be the regular tree grammar such that

– N = {n0, n, n′} with n0 <N n <N n′ and Σ = {α(0), γ
(1)
1 , γ

(1)
2 , σ(3)}, and

– the following rules are in R:

ρ0 : n0 → σ(n, n′, n) ρ2 : n→ γ1(n) ρ4 : n→ γ2(n) ρ6 : n→ α

ρ1 : n0 → σ(n′, α, n′) ρ3 : n
′ → γ1(n

′) ρ5 : n
′ → γ2(n

′) ρ7 : n
′ → α .

Based on this RTG we construct the SFSG G = (N,Σ, {n0}, R,B) with

B = {(ρ0, ρ1), (ρ2ρ2, ε), (ρ4ρ4, ε), (ρ6ρ6, ε), (ρ3, ρ3ρ3), (ρ5, ρ5ρ5) (ρ7, ρ7ρ7)} .

We illustrate these aligned rules in Fig. 1, where we indicate the implicit links
by splines. Clearly, the SFSG G is (syntactically) not an MBOT.

Next, we introduce the (bottom-up) semantics of an SFSG G. It works on pre-
translations, which are pairs of input and output tree sequences together with
a governing nonterminal. The pre-translations computed by G are inductively
defined, and each pre-translation is obtained from an aligned rule χ = n→ (�, r)
of G by replacing each nonterminal n ∈ var(χ) by a pre-translation computed
by G that is governed by n. Alongside, we introduce the derivation tree, which
records how the aligned rules combined.
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Definition 2. Let G = (N,Σ, I, R,B) be an SFSG. A pre-translation for G
is a triple 〈t, n,u〉 consisting of a nonterminal n ∈ N and input and output
tree sequences t,u ∈ T ∗

Σ. The set PT(G) of pre-translations generated by G
is the smallest set T such that (†): 〈�θ , n , rθ′〉 ∈ PT(G) for all aligned rules
χ = n→ (�, r) ∈ B, all mappings θ, θ′ : var(χ)→ T ∗

Σ, and for all n′ ∈ var(χ)

– |θ(n′)| = |posn′(�)| and |θ′(n′)| = |posn′(r)|, and
– 〈θ(n′), n′, θ′(n′)〉 ∈ T is a pre-translation generated by G.

The derivation tree corresponding to the pre-translation (†) is χ(dn1 , . . . , dnk
),

where var(χ) = {n1, . . . , nk} with n1 <N · · · <N nk and dn is the derivation tree
corresponding to the pre-translation 〈θ(n), n, θ′(n)〉 for every n ∈ var(χ).

Example 2. Recall the SFSG G of Example 1. The aligned rules χ6 = (ρ6ρ6, ε)
and χ7 = (ρ7, ρ7ρ7) immediately yield the pre-translations 〈(α, α) , n , ε〉 and
〈α , n′ , (α, α)〉 with derivation trees χ6 and χ7, respectively. The former pre-
translation (and the pre-translations obtained) can be used with the aligned
rules χ2 = (ρ2ρ2, ε) and χ4 = (ρ4ρ4, ε) to obtain the pre-translations

〈(γ1(α), γ1(α)) , n , ε〉 with derivation tree χ2(χ6), or more generally,

{〈(t, t) , n , ε〉 | t ∈ T{γ1,γ2,α}} with derivation trees d ∈ T{χ2,χ4,χ6},

where the rules χ2 and χ4 have rank 1 in the derivation trees. Similarly, with
the help of the rules χ3 = (ρ3, ρ3ρ3) and χ5 = (ρ5, ρ5ρ5) we can obtain the pre-
translations {〈(t, t) , n′ , t〉 | t ∈ T{γ1,γ2,α}} with derivation trees d ∈ T{χ3,χ5,χ7}.
Plugging those pre-translations into the rule χ1 = (ρ0, ρ1), we obtain

{〈σ(t, u, t) , n0 , σ(u, α, u)〉 | t, u ∈ T{γ1,γ2,α}} ⊆ PT(G)

with derivation trees {χ1(d1, d2) | d1 ∈ T{χ2,χ4,χ6}, d2 ∈ T{χ3,χ5,χ7}}. We illus-
trate the last step of the process in Fig. 2.

Now we are ready to define the tree translation computed by an SFSG. Intuitively
all pre-translations governed by initial nonterminals are translations.

Definition 3. Let G = (N,Σ, I, R,B) be an SFSG. It computes the tree transla-
tion τG ⊆ TΣ×TΣ defined by τG =

⋃
n∈I{(t, u) | 〈t, n, u〉 ∈ PT(G)}. The deriva-

tion tree language D(G) contains all derivation trees for the pre-translations
〈t, n, u〉 ∈ PT(G) with n ∈ I. As usual, two SFSG are equivalent if their com-
puted tree translations coincide. Finally, we denote the classes of tree translations
computable by SFSG and MBOT by SFSG and MBOT, respectively.

In the rest of this section, we present a normal form for MBOT, which allows us
to relate our notion of MBOT to that of [4]. Moreover, we present some simple
properties of SFSG. Let us start with classic MBOT [4].

Definition 4. The MBOT (N,Σ, I, R,B) is classic if � is linear in N and
var(r) ⊆ var(�) for every n→ (�, r) ∈ B.
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n0 →
( σ

n n′ n
,

σ

n′ α n′

)

〈( t , t ) , n , ε〉 〈 u , n′ , ( u , u )〉

Fig. 2. Illustration of the combination of an aligned rule with pre-translations

Proposition 1. For every MBOT there exists an equivalent classic MBOT.

Proof. Let G = (N,Σ, I, R,B) be the given MBOT. We construct the MBOT
G′ = (N,Σ, I, R,B′) with B′ = {n→ (�, r) ∈ B | � linear in N, var(r) ⊆ var(�)}
that is obviously classic. It remains to prove that G and G′ are equivalent. To
this end, we observe that |t| = 1 for all 〈t, n,u〉 ∈ PT(G) due to the rule shape
of G. Now, let χ = n→ (�, r) ∈ B be a rule and n′ ∈ var(r) \ var(�). To build a
pre-translation of PT(G) with χ, we need an existing pre-translation 〈ε, n′,u〉 ∈
PT(G) because n′ ∈ var(χ), but n′ /∈ var(�). Such pre-translations do not exist,
hence the rule χ is useless (i.e., there are no derivation trees that contain χ),
which proves that deleting it does not affect the semantics. In the same manner,
rules whose left-hand side is not linear in N can be deleted (because they would
require a pre-translation 〈t, n,u〉 ∈ PT(G) with |t| ≥ 2). ��

Consequently, our class MBOT coincides the standard notion [4], so we can freely
use the known properties of MBOT. Already in [12,4] the MBOT were trans-
formed into a special normal form before composition. In this normal form, at
most one (input or output) symbol is allowed per aligned rule. For our purposes,
a slightly less restricted variant, in which at most one input symbol may occur
per aligned rule is sufficient since we compose the input parts of two MBOT.
Let us recall the property and the associated normalization result [4].

Definition 5. The classic MBOT (N,Σ, I, R,B) is in one-symbol (input) nor-
mal form if |posΣ(�)| ≤ 1 for every aligned rule n→ (�, r).

Lemma 1 (see [4, Lemma 14]). For every MBOT there exists an equivalent
classic MBOT in one-symbol (input) normal form.

Proof. By Proposition 1 we can construct an equivalent classic MBOT for every
MBOT. With the help of [4, Lemma 14] we can then construct an equivalent
MBOT in one-symbol normal form. ��

Given one-symbol normal form, we can now define deterministic MBOT, which
we use instead of k-morphisms [1] to avoid another concept. It should be noted
that deterministic MBOT are slightly more expressive than k-morphisms.

Definition 6. A classic MBOT (N,Σ, I, R,B) in one-symbol normal form is
deterministic if (i) I is a singleton, (ii) � /∈ N for every n → (�, r) ∈ B,
and (iii) for every n ∈ N and σ ∈ Σ there exists at most one aligned rule
n→ (�, r) ∈ B such that �(ε) = σ.
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Theorem 1. The following simple properties can easily be observed:

1. SFSG = SFSG−1.
2. The domain dom(τ) and the range ran(τ) of a tree translation τ ∈ SFSG

are not necessarily regular.
3. MBOT � SFSG.

Proof. The first property is immediate because the syntactic definition of SFSG
is completely symmetric. For the second property we observe that the tree trans-
lation τG computed by the SFSG G of Example 1 is such that both its domain
and its range are not regular. Finally, the inclusion in the third item is obvious.
Moreover, we know that dom(τ) is regular for every τ ∈MBOT by Proposition 1
and [4, Theorem 25], so the tree translation τG is not in MBOT. ��

4 Composition and Decomposition

In this section, we develop a characterization of SFSG in terms of MBOT in
order to better understand the expressive power of SFSG. Since we already
showed MBOT � SFSG in Theorem 1, we will use compositions of MBOT to
characterize the expressive power of SFSG. To this end, we need a decomposition
(see Theorem 2) and a composition (see Theorem 4) result.

Theorem 2 (see [17, Proposition 4.5]). For every SFSG G, there exist two
deterministic MBOT G1 and G2 such that τG = τ−1

G1
; τG2 .

Proof. Let G = (N,Σ, I, R,B) be the original SFSG. Without loss of generality,
we can assume that I is a singleton. Whenever we explicitly list nonterminals
like {n1, . . . , nk}, we assume that n1 <N · · · <N nk. We construct the two
MBOT G1 = (N,Σ ∪B, I,R ∪R′, B′) and G2 = (N,Σ ∪B, I,R ∪R′, B′′) with

– R′ = {n→ χ(n1, . . . , nk) | χ = n→ (�, r) ∈ B, var(χ) = {n1, . . . , nk}},
– B′ = {n → (χ(n1, . . . , nk), �) | χ = n → (�, r) ∈ B, var(χ) = {n1, . . . , nk}},

and
– B′′ = {n→ (χ(n1, . . . , nk), r) | χ = n→ (�, r) ∈ B, var(χ) = {n1, . . . , nk}}.

Obviously, both G1 and G2 are classic MBOT in one-symbol normal form, and
moreover, they are deterministic. It only remains to prove that τG = τ−1

G1
; τG2 .

A straightforward induction can be used to prove that G1 and G2 translate
derivation trees ofD(G) to the corresponding input and output tree, respectively.
Since each derivation tree d ∈ D(G) uniquely determines the corresponding input
and the output tree, we immediately obtain the statement. A more detailed proof
can be found in [17]. ��

Corollary 1 (of Theorem 2). The derivation tree language D(G) of an SFSG
G is regular.

Proof. By the proof of Theorem 2, there exist classic MBOT that translate the
derivation trees to the corresponding input and output tree. Moreover, by [4,
Theorem 25] the domain of each MBOT is regular, which yields the result. ��
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Note that in the proof of Theorem 2 the rule χ uniquely determines the nonter-
minal n. Nevertheless, the constructed MBOT have (potentially) several nonter-
minals as we need to check that the behavior of the original SFSG is properly
matched. In fact, it follows straightforwardly from the proof of Theorem 2 that
each SFSG can be characterized by a regular derivation tree language and two
deterministic MBOT mapping the derivation trees to the input and output trees.
This view essentially coincides with the bimorphism approach of [1] (essentially,
SFSG are equally expressive the bimorphisms of [1], in which both the input
and output morphisms are allowed to be k-morphisms). We will reuse this char-
acterization, so let us make it more explicit.

Theorem 3. SFSG = d-MBOT−1 ;FTA;d-MBOT, where d-MBOT is the class
of all tree translations computed by deterministic MBOT.

Now we are ready to state our composition result. We first prove it using several
known results on decompositions and compositions together with a few new
results. However, for the reader’s benefit, we will present an fully integrated
construction and an example after the next theorem.

Theorem 4. MBOT−1 ; MBOT ⊆ SFSG.

Proof. Let G1 and G2 be the given MBOT. By Lemma 1 we can assume without
loss of generality that G1 and G2 are classic MBOT in one-symbol normal form.
By the construction of [4, Lemma 6] applied to both G1 and G2 we obtain that

τG1 = d−1
1 ; idL1 ; τG′

1
and τG1 = d−1

2 ; idL2 ; τG′
2

for some delabelings d1 and d2, regular tree languages L1, L2 ∈ Reg, and deter-
ministic MBOT G′

1 and G′
2. Our approach is displayed in Fig. 3. Consequently,

τ−1
G1

;τG2 = (d−1
1 ; idL1 ;τG′

1
)−1 ; (d−1

2 ; idL2 ;τG′
2
) = (τ−1

G′
1
; idL1 ;d1) ;(d

−1
2 ; idL2 ;τG′

2
)

Now we show that d1 ; d−1
2 = e−1

2 ; e1 for some delabelings e1 and e2 in the
spirit of [3, Sect. II-1-4-2-1]. Let Σ′ = {σ | σ ∈ Σ, d1(σ) = �} be the ranked
alphabet containing (same-rank) copies of the elements of Σ that are erased
by d1. Similarly, let Σ′′ = {σ | σ ∈ Σ, d2(σ) = �} contain copies of those
elements that are erased by d2. Moreover, let

Σ′′′ = {〈σ, σ′〉 | σ, σ′ ∈ Σ, d1(σ) = d2(σ
′) �= �}

and Δ = Σ′ ∪ Σ′′ ∪ Σ′′′. Then we construct delabelings e1, e2 : TΔ → TΣ as
follows:

e2(σ) = σ e2(σ) = � e2(〈σ, σ′〉) = σ

e1(σ) = � e2(σ) = σ e2(〈σ, σ′〉) = σ′

for all σ, σ′ ∈ Σ provided that the listed elements belong to Σ′, Σ′′, and Σ′′′,
respectively. We omit the formal proof of d1 ;d

−1
2 = e−1

2 ;e1, but it can be achieved
by a simple induction. So far we thus obtained

τ−1
G1

; τG2 = (τ−1
G′

1
; idL1 ; d1) ; (d

−1
2 ; idL2 ; τG′

2
) = (τ−1

G′
1
; idL1 ; e

−1
2 ) ; (e1 ; idL2 ; τG′

2
)
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L′
1 ∩ L′

2

L1 L2

e2 e1

τG′
1 d1 d2 τG′

2

Fig. 3. Illustration of the approach used in the proof of Theorem 4

by the exchange of the delabelings. Now let L′
1 = e−1

2 (L1) and L′
2 = e−1

1 (L2).
Clearly, both L′

1 and L′
2 are regular, and also L′

1 ∩ L′
2 is regular [7,8]. Thus

τ−1
G1

; τG2 = (τ−1
G′

1
; e−1

2 ) ; idL′
1∩L′

2
; (e1 ; τG′

2
) ,

which can be simplified to τ−1
G′′

1
; idL′

1∩L′
2
; τG′′

2
because we can compose the de-

labelings e1 and e2 with the deterministic MBOT G′
1 and G′

2 to obtain the
deterministic MBOT G′′

1 and G′′
2 , respectively, using [4, Theorem 23]. With this

final step, we obtain a form suitable for Theorem 3, so τ−1
G1

; τG2 ∈ SFSG. ��

Corollary 2 (of Theorems 2 and 4). SFSG = MBOT−1 ; MBOT.

As mentioned, we provide an explicit construction for the composition of an
inverse MBOT with an MBOT into an SFSG. Our construction follows the
general approach of translating the output of the first MBOT with the help of
the second MBOT as also demonstrated in [4].

Definition 7. Let G1 = (N1, Σ, I1, R1, B1) and G2 = (N2, Σ, I2, R2, B2) be
classic MBOT such that N1 ∩ N2 = ∅. Moreover, let G′

1 = (N1, Σ, I1, R1) and
G′

2 = (N2, Σ, I2, R2) be the underlying regular tree grammars, respectively. We
construct the composed SFSG (G−1

1 ;G2) = (N1×N2, Σ, I1× I2, R,B) such that

– the set R of rules is given by:
• 〈n1, n2〉 → 〈n1, n′2〉 ∈ R for every n1 ∈ N1 and n2, n

′
2 ∈ N2,

• 〈n1, n2〉 → 〈n′1, n2〉 ∈ R for every n1, n
′
1 ∈ N1 and n2 ∈ N2,

• 〈n1, n2〉 → r(f1) with r(f1) = r[n ← 〈n, f1(n)〉 | n ∈ var(r)] ∈ R for
every rule ρ = n1 → r ∈ R1, n2 ∈ N2, and injection f1 : var(r)→ N2,

• 〈n1, n2〉 → r(f2) with r(f2) = r[n ← 〈f2(n), n〉 | n ∈ var(r)] ∈ R for
every rule ρ = n2 → r ∈ R2, n1 ∈ N1, and injection f2 : var(r)→ N1,

• and no further rules are in R, and
– the set B of aligned rules is given by:

• 〈n1, n2〉 → (r[n′1 ← 〈n′1, n2〉] , 〈n′1, n2〉) ∈ B for every aligned rule n1 →
(n′1, r) ∈ B1 with n′1 ∈ N1 and n2 ∈ N2,

• 〈n1, n2〉 → (〈n1, n′2〉 , r[n′2 ← 〈n1, n′2〉]) ∈ B for every aligned rule n2 →
(n′2, r) ∈ B2 with n′2 ∈ N2 and n1 ∈ N1,
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n0 →
( σ

n n′ n′′
,

σ

n n′ n

)
n→

( γ1/γ2

n

,
γ1/γ2

n

γ1/γ2

n

)
n→

(
α , α α

)
n′′ →

(
α , ε

)

n0 →
( σ

n′ n n

,
σ

n n′ n

)
n′ →

( γ1/γ2

n′

,
γ1/γ2

n′

)
n′ →

(
α , α

)
n′′ →

( γ1

n′′
, ε

)
n→

( γ1

n′′
, ε

)

Fig. 4. Rules of the classic MBOT G1 used in Example 3

m0 →
( σ

m m′ m′′
,

σ

m′ α m′

)
m′ →

( γ1/γ2

m′

,
γ1/γ2

m′

γ1/γ2

m′

)
m′ →

(
α , α α

)

m→
( γ1/γ2

m
, ε

)
m→

(
α , ε

)
m′′ →

( γ2

n′′
, ε

)
m′′ →

(
α , ε

)

Fig. 5. Rules of the classic MBOT G2 used in Example 3

• χ = 〈n1, n2〉 → (�(f1) , r(f2)) ∈ B for all aligned rules n1 → (r, �) ∈ B1

and n2 → (r′, r) ∈ B2, and injective mappings f1 : var(r) → N2 and
f2 : var(r

′) → N1 such that r(f1) = r′(f2) and L(G′
1)n′

1
∩ L(G′

2)n′
2
�= ∅

for all omitted nonterminals 〈n′1, n′2〉 ∈ var(r(f1)) \ var(χ),1
• and no further aligned rules are in B.

Let us illustrate the construction on an example.

Example 3. Let G1 = (N,Σ, {n0}, R1, B1) be the classic MBOT with nonter-

minals N = {n0, n, n′, n′′, n}, Σ = {α(0), γ
(1)
1 , γ

(1)
2 , σ(3)}, and the rules R1 and

aligned rules B1 that are depicted in Fig. 4. Let G2 = (M,Σ, {m0}, R2, B2) be
the classic MBOT with nonterminals M = {m0,m,m

′,m′′} and the rules R2

and aligned rules B2 depicted in Fig. 5. The SFSG G−1
1 ; G2 is essentially the

SFSG of Example 1, but we will explain the construction of two aligned rules.
The aligned rule 〈n0,m0〉 →

(
σ(〈n,m〉, 〈n′,m′〉, 〈n,m〉) , σ(〈n′,m′〉, α, 〈n′,m′〉)

)
is constructed from the first aligned rule of G1 (left, top row in Fig. 4) and the
first aligned rule of G2 (left, top row in Fig. 5). During the overlay of the left-
hand sides also the state 〈n′′,m′′〉 is created. Since the languages of n′′ and m′′

both contain the tree α, the previous aligned rule can be constructed. The pro-
cess is illustrated in Fig. 6. However, if we want to use the left rule in the second
row in Fig. 4 instead, then we can construct

〈n0,m0〉 →
(
σ(〈n,m′〉, 〈n′,m〉, 〈n,m′〉) , σ(〈n,m′〉, α, 〈n,m′〉)

)
,

but it is not in the composition because the state 〈n,m′′〉 combines the states
n and m′′, which have an empty intersection.

We conclude with some further properties of SFSG and their consequences for
MBOT using our main result of Corollary 2. In particular, it is known [9] that the

1 As usual �(f1) = 	1(f1) · · · 	k(f1) provided that � = 	1 · · · 	k.
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n0

↓( σ

n n′ n′′
,

σ

n n′ n

)
m0

↓( σ

m m′ m′′
,

σ

m′ α m′

)

Fig. 6. Illustration of the composition construction (see Example 3). The matching
happens inside the boxes and the obtained linked states are paired in the left-hand and
right-hand side outside the box.

Table 1. Complexity results for a SFSG G and input strings (w1, w2) and trees (t1, t2),
where rk(G) is the length of the longest sequence in an aligned rule of G

problem string level tree level

Parsing O(|G| · (|w1| · |w2|)2rk(G)+2) O(|G| · |t1| · |t2|)
Translation O(|G| · |w1|2rk(G)+2) O(|G| · |t1|)

output string language of an MBOT is an LCFRS [20,18]. Using Corollary 2, we
can conclude that both the input and the output string language of an SFSG are
LCFRS. Moreover, we can import several complexity results from MBOT [14]
to SFSG as indicated in Table 1.

Theorem 5 (see [16, Example 5]). SFSG is not closed under composition.

Corollary 3. MBOT ; MBOT−1 �⊆ SFSG.

Proof. Let us assume that (†): MBOT ; MBOT−1 ⊆ SFSG. Then

SFSG ; SFSG

⊆ (MBOT−1 ; MBOT) ; (MBOT−1 ; MBOT) ⊆ MBOT−1 ; SFSG ; MBOT

⊆MBOT−1 ; (MBOT−1 ; MBOT) ; MBOT ⊆ MBOT−1 ; MBOT = SFSG

using Corollary 2, (†), Corollary 2, the closure under composition for MBOT
[4, Theorem 23], and Corollary 2 once more. However, the result contradicts
Theorem 5, thus (†) is false, proving the result. ��
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Abstract. We generalize, in the weighted setup over idempotent, zero-
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1 Introduction

Linear temporal logic (LTL for short) and its several alternatives serve as spec-
ification languages in model checking for real world applications [1,12,15]. LTL
definable languages have several characterizations, namely they coincide with
FO (first-order) logic definable, aperiodic, star-free, and counter-free languages.
It is well-known that all these characterizations hold for finitary and infinitary
languages as well (cf. for instance [3]).

The aforementioned equivalence, excluding the counter-freeness characteriza-
tion, has been established in [5] in the setup of arbitrary bounded lattices. A
quantitative LTL, in the framework of regular cost functions over finite words,
has been introduced in [10], and in [11], the expressive equivalence of that logic,
cost FO logic, and very-weak alternating automata, over finite and infinite words,
has been proved. Clearly, the last few years, there is an increasing interest in
lifting fundamental results from classical to quantitative models. This is moti-
vated by the need to create model checking tools which incorporate quantitative
features. Recently, in [13], in the framework of infinitary series over the max-plus
semiring with discounting, we established the coincidence of (a fragment of) LTL
definability, of (a fragment of) FO logic definability, of star-freeness and of (a
fragment of) counter-freeness.
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In this paper, we develop the theory of [3] within the setup of arbitrary
idempotent and zero-divisor free semirings which satisfy concrete complete-
ness’ axioms. More precisely, we consider a weighted LTL, a weighted FO logic,
ω-star-free series, and counter-free weighted Büchi automata, and we prove the
expressive equivalence of (fragments) of all these objects.

2 Preliminaries

Let A be an alphabet, i.e., a finite nonempty set. As usually, we denote by A∗

(resp. Aω) the set of all finite (resp. infinite) words over A and A+ = A∗ \ {ε},
where ε is the empty word. For every infinite word w = a0a1 . . ., which is written
also as w = w(0)w(1) . . ., we denote by w≥i the suffix w(i)w(i + 1) . . . of w, for
every i ≥ 0. Throughout the paper A will denote an alphabet.

Let (K,+, ·, 0, 1) be a semiring which will be simply denoted by K if the
operations and the constant elements are understood. The semiring K is called
commutative iff k ·k′ = k′ ·k for every k, k′ ∈ K. It is called additively idempotent
(or simply idempotent), if k+ k = k for every k ∈ K. Moreover, the semiring K
is zero-sum free (resp. zero-divisor free) if k + k′ = 0 implies k = k′ = 0 (resp.
k ·k′ = 0 implies k = 0 or k′ = 0) for every k, k′ ∈ K. It is well known that every
idempotent semiring is necessarily zero-sum free.

Next assume that the semiring K is equipped, for every index set I, with
infinitary sum operations

∑
I : KI → K, such that for every family (ki | i ∈ I)

of elements of K and k ∈ K we have∑
i∈∅

ki = 0,
∑
i∈{j}

ki = kj ,
∑

i∈{j,l}
ki = kj + kl for j �= l,

∑
j∈J

(∑
i∈Ij

ki

)
=

∑
i∈I

ki, if
⋃

j∈J Ij = I and Ij ∩ Ij′ = ∅ for j �= j′,

∑
i∈I

(k · ki) = k ·
(∑
i∈I

ki

)
,

∑
i∈I

(ki · k) =
(∑

i∈I

ki

)
· k.

Then the semiring K together with the operations
∑

I is called complete [6,9].
Moreover, a complete semiring is said to be totally complete [8], if it is endowed
with a countably infinite product operation satisfying for every sequence (ki |
i ≥ 0) of elements of K the subsequent conditions:∏

i≥0

1 = 1,
∏
i≥0

ki =
∏
i≥0

k′i

k0 ·
∏
i≥0

ki+1 =
∏
i≥0

ki,
∏
j≥1

∑
i∈Ij

ki =
∑

(i1,i2,...)∈I1×I2×...

∏
j≥1

kij ,

where in the second equality k′0 = k0 · . . . · kn1 , k
′
2 = kn1+1 · . . . · kn2 , . . . for an

increasing sequence 0 < n1 < n2 < . . . , and in the last equality I1, I2, . . . are
arbitrary index sets.
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Furthermore, we will call a totally complete semiring K totally commutative
complete if it satisfies the statement:

∏
i≥0

(ki · k′i) =

⎛⎝∏
i≥0

ki

⎞⎠ ·

⎛⎝∏
i≥0

k′i

⎞⎠ .

Obviously a totally commutative complete semiring is commutative.

Example 1. The following semirings are totally commutative complete, and all
but the first one are idempotent. The semiring (N ∪ {∞},+, ·, 0, 1) of extended
natural numbers [7], the min-plus semiring (R+ ∪ {∞},min,+,∞, 0) where
R+ = {r ∈ R | r ≥ 0}, the max-plus semiring (R+ ∪ {±∞},max,+,−∞, 0),
every completely distributive complete lattice with the operations supremum
and infimum, in particular the fuzzy semiring F = ([0, 1], sup, inf, 0, 1).

In the rest of the paper K will denote a totally commutative complete,
idempotent and zero-divisor free semiring.

Let Q be a set. A formal series (or simply series) over Q and K is a mapping
s : Q→ K. For every v ∈ Q we write (s, v) for the value s(v) and refer to it as the
coefficient of s on v. The support of s is the set supp(s) = {v ∈ Q | (s, v) �= 0}.
The constant series k̃ (k ∈ K) is defined, for every v ∈ Q, by

(
k̃, v

)
= k. We

denote by K 〈〈Q〉〉 the class of all series over Q and K.
Let s, r ∈ K 〈〈Q〉〉 and k ∈ K. The sum s+ r, the scalar products ks and sk

as well as the Hadamard product s 0 r are defined elementwise by (s + r, v) =
(s, v)+(r, v), (ks, v) = k·(s, v), (sk, v) = (s, v)·k, and (s0r, v) = (s, v)·(r, v) for
every v ∈ Q. Abusing notations, if P ⊆ Q, then we shall identify the restriction
s|P of s on P with the series s0 1P , where as usually we denote by 1P the char-

acteristic series of P . It is well-known that the structure
(
K 〈〈Q〉〉 ,+,0, 0̃, 1̃

)
is a commutative semiring. In our paper, we work with the semirings K 〈〈A∗〉〉
and K 〈〈Aω〉〉 of finitary and infinitary series over A and K, respectively.

Let B be another alphabet and h : A∗ → B∗ be a nondeleting homomorphism,
i.e., h(a) �= ε for each a ∈ A. Then h can be extended to a mapping h : Aω → Bω

by letting h(w) = (h(w(i)))i≥0 for every w ∈ Aω . Moreover, h is extended to
a mapping h : K 〈〈A∗〉〉 → K 〈〈B∗〉〉 as follows. For every s ∈ K 〈〈A∗〉〉 the
series h(s) ∈ K 〈〈B∗〉〉 is given by (h(s), u) =

∑
w∈h−1(u)(s, w) for every u ∈ B∗.

Since K is complete, h is also extended to a mapping h : K 〈〈Aω〉〉 → K 〈〈Bω〉〉
in the same way as for finitary series. If r ∈ K 〈〈B∗〉〉 (resp. r ∈ K 〈〈Bω〉〉),
then the series h−1(r) ∈ K 〈〈A∗〉〉 (resp. h−1(r) ∈ K 〈〈Aω〉〉) is determined by
(h−1(r), w) = (r, h(w)) for every w ∈ A∗ (resp. w ∈ Aω).

3 Weighted LTL and FO Logic

For every letter a ∈ A we consider a proposition pa and we let AP = {pa | a ∈ A}.
As usually, for every p ∈ AP we identify ¬¬p with p.
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Definition 1. The syntax of formulas of the weighted linear temporal logic
(LTL for short) over A and K is given by the grammar

ϕ ::= k | pa | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ | �ϕ

where k ∈ K and pa ∈ AP . We denote by LTL(K,A) the set of all such weighted
LTL formulas ϕ.

We represent the semantics ‖ϕ‖ of formulas ϕ ∈ LTL(K,A) as infinitary
series in K 〈〈Aω〉〉.

Definition 2. Let ϕ ∈ LTL(K,A). The semantics of ϕ is a series ‖ϕ‖ ∈
K 〈〈Aω〉〉 which is defined inductively as follows. For every w ∈ Aω we set

- (‖k‖ , w) = k,

- (‖pa‖ , w) =
{
1 if w(0) = a
0 otherwise

, - (‖¬ϕ‖ , w) =
{
1 if (‖ϕ‖ , w) = 0
0 otherwise

,

- (‖ϕ ∨ ψ‖ , w) = (‖ϕ‖ , w)+(‖ψ‖ , w) , - (‖ϕ ∧ ψ‖ , w) = (‖ϕ‖ , w)·(‖ψ‖ , w) ,
- (‖©ϕ‖ , w) = (‖ϕ‖ , w≥1) , - (‖�ϕ‖ , w) =

∏
i≥0

(‖ϕ‖ , w≥i) ,

- (‖ϕUψ‖ , w) =
∑
i≥0

⎛⎝⎛⎝ ∏
0≤j<i

(‖ϕ‖ , w≥j)

⎞⎠ · (‖ψ‖ , w≥i)

⎞⎠ .

The eventually operator is defined as in the classical LTL, i.e., by ♦ϕ := 1Uϕ,

and then we have (‖♦ϕ‖ , w) =
∑
i≥0

(‖ϕ‖ , w≥i) for every w ∈ Aω.

The syntactic boolean fragment bLTL(K,A) of LTL(K,A) is given by the
grammar

ϕ ::= 0 | 1 | pa | ¬ϕ | ϕ ∨ ϕ | ©ϕ | ϕUϕ.

For every formula ϕ ∈ bLTL(K,A) it is easily obtained, by structural induction
on ϕ and using idempotency of K, that ‖ϕ‖ gets only values in {0, 1}.

We aim to define a further fragment of LTL(K,A). For this we need some
preliminary matter. More precisely, an atomic-step formula is an LTL(K,A)
formula of the form

∨
a∈A (ka ∧ pa) where ka ∈ K and pa ∈ AP for every a ∈ A.

An LTL-step formula is an LTL(K,A) formula of the form
∨

1≤i≤n (ki ∧ ϕi)
where ki ∈ K and ϕi ∈ bLTL(K,A) for every 1 ≤ i ≤ n. We shall denote by
stLTL (K,A) the class of LTL-step formulas over A and K. Furthermore, we
shall denote by abLTL (K,A) the class of almost boolean LTL formulas over A
and K, i.e., formulas of the form

∧
1≤i≤n ϕi with ϕi ∈ bLTL (K,A) or ϕi =∨

a∈A (ka ∧ pa), for every 1 ≤ i ≤ n.

Definition 3. The fragment ULTL (K,A) of U -nesting LTL formulas over A
and K is the least class of formulas in LTL (K,A) which is defined inductively
in the following way.
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– k ∈ ULTL (K,A) for every k ∈ K.
– abLTL (K,A) ⊆ ULTL (K,A).
– If ϕ ∈ ULTL (K,A), then ¬ϕ ∈ ULTL (K,A).
– If ϕ, ψ ∈ ULTL (K,A), then ϕ ∧ ψ, ϕ ∨ ψ ∈ ULTL (K,A).
– If ϕ ∈ ULTL (K,A), then ©ϕ ∈ ULTL (K,A).
– If ϕ ∈ bLTL (K,A) or ϕ is an atomic-step formula, then �ϕ ∈ ULTL (K,A).
– If ϕ ∈ abLTL (K,A) and ψ ∈ ULTL (K,A), then ϕUψ ∈ ULTL (K,A).

A series r ∈ K 〈〈Aω〉〉 is called ω-ULtl -definable if there is a formula ϕ ∈
ULTL (K,A) such that r = ‖ϕ‖. We shall denote by ω-ULtl (K,A) the class of
all ω-ULtl -definable series over A and K.

In the sequel, we consider the weighted first-order logic (weighted FO logic,
for short), and we show that the class of semantics in a fragment of this logic
contains the class ω-ULtl (K,A).

Definition 4. The syntax of formulas of the weighted FO logic over A and K
is given by the grammar

ϕ ::= k | Pa(x) | x ≤ y | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x � ϕ | ∀x � ϕ

where k ∈ K and a ∈ A.

We shall denote by FO(K,A) the set of all weighted FO formulas over A
and K. In order to define the semantics of FO(K,A) formulas, we recall the
notions of extended alphabet and valid assignment (cf. for instance [14]). Let
V be a finite set of first-order variables. For an infinite word w ∈ Aω we let
dom(w) = ω. A (V , w)-assignment σ is a mapping associating variables from
V to elements of ω. For every x ∈ V and i ∈ ω, we denote by σ[x → i] the
(V , w)-assignment which associates i to x and acts as σ on V \ {x}. We encode
pairs (w, σ) for every w ∈ Aω and (V , w)-assignment σ, by using the extended
alphabet AV = A × {0, 1}V . Each pair (w, σ) is a word in Aω

V where w is the
projection over A and σ is the projection over {0, 1}V . Then σ is called a valid
(V , w)-assignment whenever for every x ∈ V the x-row contains exactly one 1. In
this case, we identify σ with the (V , w)-assignment so that for every first-order
variable x ∈ V , σ(x) is the position of the 1 on the x-row. It is well-known
(cf. [3]) that the set NV = {(w, σ) | w ∈ Aω, σ is a valid (V , w) -assignment} is
an ω-star-free language over AV . The set free(ϕ) of free variables in a formula
ϕ ∈ FO(K,A) is defined as usual.

Definition 5. Let ϕ ∈ FO(K,A) and V be a finite set of variables with
free(ϕ) ⊆ V. The semantics of ϕ is a series ‖ϕ‖V ∈ K 〈〈Aω

V〉〉 . Consider an ele-
ment (w, σ) ∈ Aω

V . If σ is not a valid assignment, then we put (‖ϕ‖V , (w, σ)) = 0.
Otherwise, we inductively define (‖ϕ‖V , (w, σ)) ∈ K as follows.

- (‖k‖V , (w, σ)) = k, - (‖¬ϕ‖V , (w, σ)) =
{
1 if (‖ϕ‖V , (w, σ)) = 0
0 otherwise

,

- (‖Pa(x)‖V , (w, σ)) =
{
1 if w(σ(x)) = a
0 otherwise

,
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- (‖x ≤ y‖V , (w, σ)) =
{
1 if σ(x) ≤ σ(y)
0 otherwise

,

- (‖ϕ ∨ ψ‖V , (w, σ)) = (‖ϕ‖V , (w, σ)) + (‖ψ‖V , (w, σ)) ,
- (‖ϕ ∧ ψ‖V , (w, σ)) = (‖ϕ‖V , (w, σ)) · (‖ψ‖V , (w, σ)) ,
- (‖∃x � ϕ‖V , (w, σ)) =

∑
i≥0

(
‖ϕ‖V∪{x} , (w, σ[x→ i])

)
,

- (‖∀x � ϕ‖V , (w, σ)) =
∏
i≥0

(
‖ϕ‖V∪{x} , (w, σ[x→ i])

)
.

If V = free(ϕ), then we simply write ‖ϕ‖ for ‖ϕ‖free(ϕ). The syntactic

boolean fragment bFO(K,A) of FO(K,A) is defined by the grammar

ϕ ::= 0 | 1 | Pa(x) | x ≤ y | ¬ϕ | ϕ ∨ ϕ | ∃x � ϕ.

For every formula ϕ ∈ bFO(K,A) it is easily obtained, by structural induction
on ϕ and using idempotency of K, that ‖ϕ‖ gets only values in {0, 1}.

Next, we define a fragment of our logic. For this, we recall the notion of an
FO -step formula from [2]. More precisely, a formula ϕ ∈ FO(K,A) is an FO-
step formula if ϕ =

∨
1≤i≤n (ki ∧ ϕi) with ϕi ∈ bFO(K,A) and ki ∈ K for every

1 ≤ i ≤ n. Moreover, a formula ϕ ∈ FO(K,A) is called a letter-step formula
whenever ϕ =

∨
a∈A (ka ∧ Pa(x)) with ka ∈ K for every a ∈ A. We shall need

also the following macros:

- x = y := x ≤ y ∧ y ≤ x, - x < y := x ≤ y ∧ ¬(x = y),
- z ≤ x < y := z ≤ x∧x < y, - (y ≤ x)→ ϕ := ¬(y ≤ x)∨((y ≤ x) ∧ ϕ) ,
- (z ≤ x < y)→ ϕ := ¬(z ≤ x < y) ∨ ((z ≤ x < y) ∧ ϕ) .

Definition 6. A formula ϕ ∈ FO(K,A) will be called weakly quantified if
whenever ϕ contains a subformula of the form ∀x �ψ, then ψ is either a boolean
or a letter-step formula with free variable x or a formula of the form y ≤ x→ ψ′

or z ≤ x < y → ψ′ where ψ′ is a letter-step formula with free variable x.

We denote by WQFO(K,A) the set of all weakly quantified FO(K,A) for-
mulas over A and K. A series s ∈ K 〈〈Aω〉〉 is called ω-wqFo-definable if there
is a sentence ϕ ∈WQFO(K,A) such that s = ‖ϕ‖. We write ω-wqFo(K,A) for
the class of all ω-wqFo-definable series in K 〈〈Aω〉〉.

By structural induction on ULTL (K,A) formulas, we can show that for every
ϕ ∈ ULTL (K,A) we can construct a WQFO (K,A) formula ϕ′ (x) such that
(‖ϕ′ (x)‖ , (w, [x→ i])) = (‖ϕ‖ , w≥i) for every w ∈ Aω, i ≥ 0. By this, we deduce
that for every ϕ ∈ ULTL (K,A) there exists a sentence ϕ′ ∈ WQFO(K,A) such
that ‖ϕ‖ = ‖ϕ′‖. Therefore, we obtain the next first main result of our paper.

Theorem 1. ω-ULtl (K,A) ⊆ ω-wqFo(K,A).
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4 Star-Free Series

In this section, we introduce the notions of star-free and ω-star-free series over A
and K, and we show that the class of ω-wqFo-definable series is contained into
the class of ω-star-free series.

Let L ⊆ A∗ (resp. L ⊆ Aω). If L is a singleton, i.e., L = {w}, then we simply
write 1w for the characteristic series 1{w}. Furthermore, we simply denote by kL
the series k1L for k ∈ K. The monomials over A and K are series of the form
(ka)a for a ∈ A and ka ∈ K. For simplicity, we shall consider also the series of
the form kε with k ∈ K as monomials. A series s ∈ K 〈〈A∗〉〉 is called a letter-
step series if s =

∑
a∈A (ka)a where a ∈ A and ka ∈ K for every a ∈ A. The

complement s of a series s is given by (s, w) = 1 if (s, w) = 0 and 0 otherwise.
Let r, s ∈ K 〈〈A∗〉〉. The Cauchy product of r and s is the series r · s ∈ K 〈〈A∗〉〉
defined for every w ∈ A∗ by

(r · s, w) =
∑

{(r, u) · (s, v) | u, v ∈ A∗, w = uv}.
The nth-iteration rn ∈ K 〈〈A∗〉〉 (n ≥ 0) of a series r ∈ K 〈〈A∗〉〉 is defined

inductively by
r0 = 1ε and rn+1 = r · rn for n ≥ 0.

Then, we have (rn, w) =
∑{∏

1≤i≤n(r, ui) | ui ∈ A∗, w = u1 . . . un

}
for every

w ∈ A∗. A series r ∈ K 〈〈A∗〉〉 is called proper if (r, ε) = 0. If r is proper, then
for every w ∈ A∗ and n > |w| we have (rn, w) = 0. The iteration r+ ∈ K 〈〈A∗〉〉
of a proper series r ∈ K 〈〈A∗〉〉 is defined by r+ =

∑
n>0 r

n. Thus, for every

w ∈ A+ we have (r+, w) =
∑

1≤n≤|w|
(rn, w) and (r+, ε) = 0.

Definition 7. The class of star-free series over A and K, denoted by sf(K,A),
is the least class of series containing the monomials (over A and K) and being
closed under sum, Hadamard product, complement, Cauchy product, and itera-
tion restricted to letter-step series.

Next, let r ∈ K 〈〈A∗〉〉 be a finitary and s ∈ K 〈〈Aω〉〉 an infinitary series.
Then, the Cauchy product of r and s is the infinitary series r · s ∈ K 〈〈Aω〉〉
defined for every w ∈ Aω by

(r · s, w) =
∑

{(r, u) · (s, v) | u ∈ A∗, v ∈ Aω, w = uv}.
The ω-iteration of a proper finitary series r ∈ K 〈〈A∗〉〉 is the infinitary series
rω ∈ K 〈〈Aω〉〉 which is defined by

(rω , w) =
∑{∏

i≥1(r, ui) | ui ∈ A∗, w = u1u2 . . .
}

for every w ∈ Aω .

Definition 8. The class of ω-star-free series over A and K, denoted by ω-
sf(K,A), is the least class of infinitary series generated by the monomials (over
A and K) by applying finitely many times the operations of sum, Hadamard
product, complement, Cauchy product, iteration restricted to letter-step series,
and ω-iteration restricted to letter-step series.
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Due to the idempotency ofK one can easily show that L ⊆ A∗ (resp. L ⊆ Aω) is a
star-free (resp. ω-star-free) language iff 1L ∈ sf (K,A) (resp. 1L ∈ ω-sf (K,A)).
Next, we state properties of the classes sf(K,A) and ω-sf(K,A).

Proposition 1 (Splitting lemma for finitary series). Let s ∈ sf (K,A) and
B,Γ ⊆ A with B ∩ Γ = ∅. Then s|B∗ΓB∗ =

∑
1≤i≤n

(
s
(i)
1 ·

(
s
(i)
2 · s(i)3

))
where

for every 1 ≤ i ≤ n, s(i)1 , s
(i)
3 ∈ sf (K,B) and s

(i)
2 = (ki)γi

with γi ∈ Γ, ki ∈ K.

Proposition 2 (Splitting lemma for infinitary series). Let s ∈ ω-sf (K,A)
and B,Γ ⊆ A with B ∩ Γ = ∅. Then s|B∗ΓBω =

∑
1≤i≤n

(
s
(i)
1 ·

(
s
(i)
2 · s(i)3

))
where for every 1 ≤ i ≤ n, s(i)1 ∈ sf (K,B) , s

(i)
3 ∈ ω-sf (K,B), and s

(i)
2 = (ki)γi

with γi ∈ Γ, ki ∈ K.

Proposition 3. Let A,B be two alphabets.
(i) If h : A→ B is a bijection and s ∈ sf (K,A) (resp. s ∈ ω-sf (K,A)), then

h (s) ∈ sf (K,B) (resp. h (s) ∈ ω-sf (K,B)).
(ii) If h : A→ B is a strict alphabetic epimorphism and s ∈ sf (K,B) (resp.

s ∈ ω-sf (K,B)), then h−1 (s) ∈ sf (K,A) (resp. h−1 (s) ∈ ω-sf (K,A)).

Our next main result states that ω-wqFo (K,A) ⊆ ω-sf (K,A). For this, we
shall need the following auxiliary lemma.

Lemma 1. Let ϕ ∈ FO (K,A) and V be a finite set of first-order variables
containing free (ϕ). If ‖ϕ‖ is an ω-star-free series, then ‖ϕ‖V is an ω-star-free
series.

Theorem 2. ω-wqFo (K,A) ⊆ ω-sf (K,A).

Proof. (Sketch) The proof is by induction on the structure of weakly quantified
FO formulas. For k ∈ K, atomic formulas, and the inductive steps of negation,
conjunction, and disjunction we use standard arguments. We argue on the in-
ductive step for the existential operator. To this end, let ϕ ∈ FO (K,A) such
that ‖ϕ‖ is an ω-star-free series. Let W =free (ϕ) ∪ {x} and V = free(∃x.ϕ) =
W \ {x}. We define B,Γ ⊆ AW , by B = {(a, f) ∈ AW | f (x) = 0} and Γ =
{(a, f) ∈ AW | f (x) = 1}. Since ‖ϕ‖W ∈ ω-sf (K,AW) (by Lemma 1, in case

x /∈ free(ϕ)), by Proposition 2 we get ‖ϕ‖W |B∗ΓBω =
∑

1≤i≤n

(
s
(i)
1 ·

(
s
(i)
2 · s(i)3

))
with s

(i)
1 ∈ sf (K,B) , s

(i)
3 ∈ ω-sf (K,B) , and s

(i)
2 = (ki)γi

, where ki ∈ K,
γi ∈ Γ for every 1 ≤ i ≤ n. It holds

‖∃x.ϕ‖ =

⎛⎝ ∑
1≤i≤n

(
h|B

(
s
(i)
1

)
·
(
(ki)h(γi)

· h|B
(
s
(i)
3

)))⎞⎠0 1NV

where h : AW → AV is the strict alphabetic epimorphism assigning (a, f |V)
to (a, f) for every (a, f) ∈ AW . Clearly h|B is a bijection. By Proposition 3,
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for every 1 ≤ i ≤ n, we get that h|B
(
si1

)
∈ sf (K,AV) , h|B

(
s
(i)
3

)
∈ ω-

sf (K,AV). Therefore ‖∃x.ϕ‖ is an ω-star-free series.
Now, let ϕ ∈ FO (K,A) being a boolean, or a letter-step formula with free

variable x, or ϕ = (y ≤ x) → ψ, or ϕ = (y ≤ x < z) → ψ where ψ is a letter-
step formula with free variable x. We will show that ‖∀x.ϕ‖ is an ω-star-free
series. Due to space limitations, we only argue on the case where ϕ = (y ≤
x) →

∨
a∈A (ka ∧ Pa(x)). We consider the subsets F = {(a, 0) | a ∈ A} and

F ′ = {(a, 1) | a ∈ A} of A{y}. The language F
+ is star-free, hence, the series 1F+

is star-free. Consider the series s =
∑

a∈A

(
(ka)(a,0)

)
and s′ =

∑
a∈A

(
(ka)(a,1)

)
over A{y} and K. Then, it holds ‖∀x.ϕ‖ = 1F+ · (s′ · sω) which proves our claim.

5 Counter-Free Series

In this section, we consider the concept of counter-freeness within weighted (resp.
weighted Büchi) automata over A and K. Our models will be nondeterministic.
Firstly, we recall the notions of weighted automata and weighted Büchi automata
over A and K.

A weighted automaton over A and K is a quadruple A = (Q, in, wt, F ) where
Q is the finite state set, in : Q→ K is the initial distribution, wt : Q×A×Q→ K
is a mapping assigning weights to the transitions of the automaton and F ⊆ Q
is the final state set.

Given a word w = a0 . . . an−1 ∈ A∗, a path of A over w is a finite sequence of
transitions Pw := ((qi, ai, qi+1))0≤i≤n−1. The running weight of Pw is the value
rwt(Pw) :=

∏
0≤i≤n−1 wt ((qi, ai, qi+1))

and the weight of Pw is given by
weight(Pw) := in(q0) · rwt(Pw).
The path Pw is called successful if qn ∈ F . Then, the behavior of A is the

series ‖A‖ : A∗ → K which is defined, for every w ∈ A∗, by (‖A‖ , w) =∑
Pw succ

weight(Pw). A series r ∈ K 〈〈A∗〉〉 is called recognizable if it is the be-

havior of a weighted automaton over A and K.

A weighted Büchi automaton A = (Q, in, wt, F ) over A and K is defined as
a weighted automaton. Given an infinite word w = a0a1 . . . ∈ Aω, a path of A
over w is an infinite sequence of transitions Pw := ((qi, ai, qi+1))i≥0. The running
weight of Pw is the value
rwt(Pw) :=

∏
i≥0 wt ((qi, ai, qi+1))

and the weight of Pw is given by
weight(Pw) := in(q0) · rwt(Pw).
A path Pw is called successful if at least one final state occurs infinitely often

along Pw. Then, the behavior of A is the infinitary series ‖A‖ : Aω → K whose
coefficients are given by (‖A‖ , w) =

∑
Pw succ

weight(Pw), for every w ∈ Aω. An

infinitary series r ∈ K 〈〈Aω〉〉 is called ω-recognizable if it is the behavior of a
weighted Büchi automaton over A and K.
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We shall need the following notation. Given a weighted (resp. weighted Büchi)
automaton A = (Q, in, wt, F ), a word w = a0 . . . an−1 ∈ A∗, and states q, q′ ∈ Q,
we shall denote by P(q,w,q′) a path ofA over w starting at state q and terminating
at state q′, i.e., P(q,w,q′) = (q, a0, q1) ((qi, ai, qi+1))1≤i≤n−2 (qn−1, an−1, q

′). Then

rwt
(
P(q,w,q′)

)
= wt ((q, a0, q1))·

∏
1≤i≤n−2 wt ((qi, ai, qi+1))·wt ((qn−1, an−1, q

′)).
Now, we are ready to introduce our counter-free weighted and counter-free

weighted Büchi automata.

Definition 9. A weighted automaton (resp. weighted Büchi automaton) A =
(Q, in, wt, F ) over A and K is called counter-free ( cfwa, resp. cfwBa, for short)
if for every q ∈ Q, w ∈ A∗, and n ≥ 1, the relation

∑
P(q,wn,q)

rwt
(
P(q,wn,q)

)
�= 0

implies
∑

P(q,wn,q)

rwt
(
P(q,wn,q)

)
=

( ∑
P(q,w,q)

rwt
(
P(q,w,q)

))n

.

A series r ∈ K 〈〈A∗〉〉 (resp. r ∈ K 〈〈Aω〉〉) is called counter-free (resp. ω-
counter-free) if it is accepted by a cfwa (resp. cfwBa) over A and K. We shall
denote by cf(K,A) (resp. ω-cf(K,A)) the class of all counter-free (resp. ω-
counter-free) series over A and K.

Proposition 4. (i) The class cf(K,A) contains the monomials and it is closed
under sum, Hadamard product, complement, Cauchy product, and iteration re-
stricted to letter-step series.

(ii) The class ω-cf(K,A) is closed under sum, complement, Cauchy product
and ω-iteration restricted to letter-step series.

Note that the Cauchy product in Proposition 4(ii) is considered among series in
cf(K,A) and ω-cf(K,A).

Next, we introduce the subclass of almost simple counter-free (resp. almost
simple ω-counter-free) series and we show that it contains the class sf(K,A)
(resp. ω-sf(K,A)).

Definition 10. A cfwa (resp. cfwBa) A = (Q, in, wt, F ) over A and K is called
simple if for every q, q′, p, p′ ∈ Q, and a ∈ A, in(q) �= 0 �= in(q′) implies in(q) =
in(q′), and wt((q, a, q′)) �= 0 �= wt((p, a, p′)) implies wt((q, a, q′)) = wt((p, a, p′)).
Furthermore, a series r ∈ K 〈〈A∗〉〉 (resp. r ∈ K 〈〈Aω〉〉) is simple if it is the
behavior of a simple cfwa (resp. cfwBa) over A and K.

Definition 11.

– A series r ∈ K 〈〈A∗〉〉 is called almost simple if r =
∑

1≤i≤n

(
r
(i)
1 · . . . · r(i)mi

)
where, for every 1 ≤ i ≤ n, r

(i)
1 , . . . , r

(i)
mi are simple counter-free series over

A and K.
– A series r ∈ K 〈〈Aω〉〉 is called almost simple if r =

∑
1≤i≤n

(
r
(i)
1 · . . . · r(i)mi

)
where, for every 1 ≤ i ≤ n, r(i)1 , . . . , r

(i)
mi−1 are simple counter-free series and

r
(i)
mi is a simple ω-counter-free series over A and K.
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From the above definition and Proposition 4, we get that a finitary (resp. infini-
tary) almost simple series is a counter-free (resp. an ω-counter-free) series1. We
shall denote by ascf(K,A) (resp. ω-ascf(K,A)) the class of all almost simple
counter-free (resp. ω-counter-free) series over A and K.

Theorem 3. (i) sf(K,A) ⊆ ascf(K,A).
(ii) ω-sf(K,A) ⊆ ω-ascf(K,A).
In the sequel, we state the inclusion of the class of almost simple ω-counter-
free series into the class ω-ULtl (K,A). For this, we need several notions and
technical auxiliary results. Due to space limitations we skip all this stuff.

Proposition 5. Let L ⊆ A+ be a star-free language and r ∈ K 〈〈A∗〉〉 be
a letter-step series. Then, for every ϕ ∈ ULTL (K,A) the infinitary series
(1L 0 r+) · ‖ϕ‖ is ω-ULtl-definable.

Theorem 4. ω-ascf(K,A) ⊆ ω-ULtl(K,A).
Proof. Clearly it suffices to show that whenever A1, . . . ,An−1 are simple cfwa
and An is a simple cfwBa over A and K, then ‖A1‖ · . . . · ‖An‖ ∈ ω-ULtl(K,A).
We let ri = ‖Ai‖, and denote by ki the initial weight�= 0 and k

(i)
a the weight�= 0

of the transitions of Ai (1 ≤ i ≤ n) labelled by a ∈ A. Since K is zero-divisor
free, we get that supp (rn) is an ω-counter-free language, and thus it is also ω-
LTL-definable. Hence, there is formula ϕ ∈ bLTL(K,A) with ‖ϕ‖ = 1supp(rn).

We let ϕn = kn ∧ ϕ ∧
(
�

( ∨
a∈A

(
k
(n)
a ∧ pa

)))
and we trivially get rn = ‖ϕn‖.

By construction ϕn ∈ ULTL (K,A). Furthermore, for every 1 ≤ i ≤ n − 1, the
language supp (ri) \ {ε} ⊆ A∗ is counter-free hence, star-free. Since

ri|A+ = 1supp(ri)\{ε} 0
(
ki

(∑
a∈A

(
k
(i)
a

)
a

)+
)

for every 1 ≤ i ≤ n− 1, and

rn−1|A+ · rn = kn−1

((
1supp(rn−1)\{ε} 0

(∑
a∈A

(
k
(n−1)
a

)
a

)+
)
· rn

)
,

by applying Proposition 5, we get that(
1supp(rn−1)\{ε} 0

(∑
a∈A

(
k
(n−1)
a

)
a

)+
)
· rn ∈ ω-ULtl(K,A)

which implies that there exists a ULTL (K,A) formula ϕ+
n−1 such that(

1supp(rn−1)\{ε} 0
(∑

a∈A

(
k
(n−1)
a

)
a

)+
)
· rn =

∥∥ϕ+
n−1

∥∥.
Hence, rn−1|A+ · rn =

∥∥kn−1 ∧ ϕ+
n−1

∥∥. We let

ϕn−1 =
(
kn−1 ∧ ϕ+

n−1

)
∨ ((rn−1, ε) ∧ ϕn) ∈ ULTL (K,A)

1 In fact we can define an almost simple counter-free weighted (resp. Büchi) automa-
ton, but we do not need it here.
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and we have ‖ϕn−1‖ = rn−1 · rn. Thus rn−1 · rn ∈ ω-ULtl(K,A). We proceed in
the same way, and we show that ri·. . .·rn ∈ ω-ULtl(K,A), for every 1 ≤ i ≤ n−2,
which concludes our proof.

By Theorems 1, 2, 3(ii), and 4 we conclude the main result of our paper.

Theorem 5 (Main theorem).

ω-ULtl (K,A) = ω-wqFo(K,A) = ω-sf(K,A) = ω-ascf(K,A).

6 Conclusion

We showed the coincidence of series definable in fragments of the weighted LTL
and FO logic, the class of ω-star-free series, and the class of almost simple
ω-counter-free series. Our underlying semiring required to be idempotent, zero-
divisor free and totally commutative complete. Recently, in [4], the authors stud-
ied weighted automata and weighted MSO logics over general structures which
play an important role in practical applications. Therefore, the development of
our theory in that setup is a challenging perspective.
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Abstract. The set of natural integers is fundamental for at least two
reasons: it is the free induction algebra over the empty set (and at such
allows definitions of maps by primitive recursion) and it is the free
monoid over a one-element set, the latter structure being a consequence
of the former. In this contribution, we study the corresponding structure
in the linear setting, i.e. in the category of modules over a commuta-
tive ring rather than in the category of sets, namely the free module
generated by the integers. It also provides free structures of induction
algebra and of monoid (in the category of modules). Moreover we prove
that each of its linear endomorphisms admits a unique normal form,
explicitly constructed, as a non-commutative formal power series.
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1 Overview

The set of natural integers is fundamental for at least two reasons: it is the free
induction algebra over the empty set (and at such allows definitions of maps
by primitive recursion) and it is the free monoid over a one-element set, the
latter structure being a consequence of the former. It is possible to define a
similar object, with similar properties, in the category of modules over some
commutative ring R (with a unit), namely the free R-module V generated by
N. We prove that this module inherits from the integers a structure of initial
R-linear induction algebra, and also of free R-linear monoid (a usual R-algebra).
General definitions of varieties of algebraic structures (in the setting of universal
algebra) in the category of R-modules, rather than set-based, are given in sec-
tion 2 together with some results concerning the relations between a set-theoretic
algebra and its R-linear counterpart. These results are applied to V in section 3,
and allow us to outline a theory of R-linear recursive functions, and to pro-
vide relations between the (free) monoid structure of V and well-known usual
algebraic constructions (polynomials, tensor algebra and algebra of a monoid).
Finally in section 4 we prove that any R-linear endomorphism of V may be
written uniquely as an infinite sum, and so admits a unique normal form as a
non-commutative formal power series.
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2 Linear Universal Algebra

In this contribution are assumed known some basic notions about category
theory and universal algebra that may be found in any textbooks ([2,11] for
instance). We also refer to [5] for notions concerning modules and their tensor
product. However some of them are recalled hereafter. The basic categories used
are the category Set of sets (with set-theoretic maps) and the category R-Mod of
modules over some fixed commutative ring R with a unit (and R-linear maps).
If C denotes a category and a, b are two objects of this category, then the class
of all morphisms from a to b in C is denoted by C(a, b). For instance, if V,W
are two R-modules, then R-Mod (V,W ) denotes the set of all R-linear maps from
V to W . Let (Σ,α) be a (finitary and homogeneous) signature (also called an
algebra type or an operator domain), i.e., a set Σ (the elements of which are
referred to as symbols of functions) together with a map α : Σ → N called the
arity function. In what follows we simply denote by Σ a signature (Σ,α), and
α−1({n }) is denoted by Σ(n). The elements of Σ(0) ⊆ Σ with an arity of zero
are called symbols of constants. A Σ-algebra, or algebra of type Σ, is a pair (A,F )
where A is a set and F is a map that associates to each symbol of function f
of arity α(f) = n (for each n) an actual map F (f) : An → A (we sometimes
call F the Σ-algebra structure map of A). In particular if α(c) = 0, then F (c) is
identified to an element of A (which explains the term of symbol of constant).
An homomorphism between two algebras (A,F ), (B,G) over the same signature
Σ is a set-theoretic map φ : A → B such that for every f ∈ Σ(n), and every
a1, · · · , an ∈ A, φ(F (f)(a1, · · · , an)) = G(f)(φ(a1), · · · , φ(an)) (in particular for
each c ∈ Σ(0), φ(F (c)) = G(φ(c))). An isomorphism is a homomorphism which
is also a bijective map. A sub-algebra (B,G) of (A,F ) is a Σ-algebra such that the
natural inclusion B ⊆ A is a homomorphism of Σ-algebras. A congruence ∼= on
a Σ-algebra (A,F ) is an equivalence relation on A such that for every f ∈ Σ(n),
if ai ∼= bi, i = 1, · · · , n, then F (f)(a1, · · · , an) ∼= F (f)(b1, · · · , bn). This implies
that the quotient set A/∼= inherits a natural structure of Σ-algebra from that of
A. It is well-known (see [2]) that such congruences form a lattice, and then for
every R ⊆ A2, we may talk about the least congruence on A generated by R in
an evident way. For any set X there exists a free Σ-algebra Σ[X ] on X . It is
constructed by induction as follows (it is a subset of the free monoid (Σ �X)∗

over Σ �X , and the parentheses to form its elements are only used for readabil-
ity; see [2]). The base cases: Σ(0) ⊆ Σ[X ] and X ⊆ Σ[X ], the induction rule: for
every n, and every f ∈ Σ(n), if t1, · · · , tn ∈ Σ[X ], then f(t1, · · · , tn) ∈ Σ[X ],
and the closure property: it is the least subset of (Σ�X)∗ with these two proper-
ties. Its structure of Σ-algebra is the evident one. It is called free because for any
Σ-algebra (A,F ) and any set-theoretic map φ : X → A, there exists a unique

homomorphism φ̂ : Σ[X ] → (A,F ) such that φ̂(x) = φ(x) for every x ∈ X . In
category-theoretic terms, this means that the (obvious) forgetful functor from
the category of Σ-algebras to Set admits a left adjoint, and this implies that a
free algebra is unique up to a unique isomorphism (we can talk about the free
algebra).
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Example 1. The set N, together with the constant 0 and the usual successor
function, is the free induction algebra over the empty set (see for instance [2])
where we call induction algebra any algebra over the signature Ind = { 0, S }
where 0 ∈ Ind (0) and S ∈ Ind (1).

A variety of Σ-algebras is a class of algebras closed under homomorphic images,
sub-algebras, and direct products. A law or identity over Σ on the standard
alphabet X = { xi : i ≥ 0 } is a pair (u, v) ∈ Σ[X ]2 sometimes written as an
equation u = v. We say that a law (u, v) holds in a Σ-algebra (A,F ), or that
(A,F ) satisfies (u, v), if under every homomorphism Σ[X ] → (A,F ) the values
of u and v coincide. If E is any set of laws in Σ[X ], then VΣ,E or simply VE , is
the class of all algebras which satisfy all the laws in E. By the famous Garrett
Birkhoff’s theorem, VE is a variety and any variety arises in such a way.

Example 2. The variety of all monoids is given by VM,E where M(0) = { 1 },
M(2) = {μ },M(n) = ∅ for every n �= 0, 2, and E consists in the three equations
(μ(x1, 1), x1), (μ(1, x1), x1) and (μ(μ(x1, x2), x3), μ(x1, μ(x2, x3))). The variety
of all commutative monoids is obtained in an obvious way.

A free algebra over a set X in a variety VΣ,E is a Σ-algebra VX in the class VΣ,E ,
together with a set-theoretic map iX : X → VX , such that for every algebra
(A,F ) in VΣ,E and every map φ : X → A, there is a unique homomorphism

φ̂ : VX → (A,F ) with φ̂ ◦ iX = φ. Thus the free Σ-algebra Σ[X ] is easily seen as
a free algebra in the variety VΣ,∅. In category-theoretic terms, when a variety is
seen as a category (whose morphisms are the homomorphisms of algebras), this
means that the obvious forgetful functor from the variety to Set admits a left
adjoint. This implies that a free algebra is unique up to a unique isomorphism.
Let us see a way to construct it. Let ∼=E be the least congruence of Σ-algebra
on Σ[X ] generated by the relations { (σ̂(u), σ̂(v)) : (u, v) ∈ E, σ : X → Σ[X ] }
(recall that σ̂ : Σ[X ] → Σ[X ] is the unique homomorphism of Σ-algebras that
extends σ). Let VX = Σ[X ]/∼=E

together with its structure of quotient Σ-algebra
inherited from that of Σ[X ]. Let (B,G) be any Σ-algebra in the variety VΣ,E ,
and φ : X → B be a set-theoretic map. It admits a unique homomorphism
extension φ̂ : Σ[X ]→ (B,G) since Σ[X ] is free. Because (B,G) belongs to VΣ,E

and φ̂ ◦ σ : Σ[X ]→ (B,G) is a homomorphism whenever σ : Σ[X ]→ Σ[X ] is so,

then for each (u, v) ∈ E, φ̂(σ(u)) = φ̂(σ(v)). Therefore φ̂ passes to the quotient
by ∼=E and defines a homomorphism from VX to (B,G) as expected.

Example 3. For instance N with its structure of (commutative) monoid is the
free algebra in VM,E over { 1 }, while N \ { 0 } with its multiplicative structure
of monoid in the free algebra in the variety of all commutative monoids over the
set of all prime numbers.

Up to now, we only describe set-based algebras. But it is possible to talk about
linear algebras. For this let us recall some basic facts about modules and their
tensor product (see [5]). Let X be any set. The free R-module generated by X is
the R-module RX of all formal sums

∑
x∈X αxx (αx ∈ R) where all but finitely

many coefficients αx ∈ R are zero (this is the free R-module with basis X),
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and for any x0 ∈ X , we refer to the element ex0 ∈ RX , obtained as the formal
sum

∑
x∈X αxx with αx = 0 for every x �= x0 and αx0 = 1 (the unit of R), as

the canonical image of x0 into RX , and therefore this defines a one-to-one map
e : X → RX by e(x) = ex. If W is any over R-module, then any R-linear map
φ : RX →W is entirely defined by its values on the basis X . Let V1, · · · , Vn,W
be R-modules. A map φ : V1×· · ·×Vn →W is said to be multilinear (or bilinear
when n = 2) if it is linear in each of its variables when the other ones are
fixed. Given a multilinear map φ : V1 × · · · × Vn → W , there is a unique linear
map ψ : V1 ⊗R · · · ⊗R Vn → V , where ⊗R denotes the tensor product over R
(see [5]), such that ψ ◦ q = φ (where q : V1 × · · · × Vn → V1 ⊗R · · · ⊗R Vn is
the canonical multilinear map; the image of (v1, · · · , vn) under q is denoted by
v1⊗· · ·⊗vn). In what follows, φ is referred to as themultilinear map associated to
ψ, and denoted by ψ0. If V1, · · · , Vn are free qua R-modules with basis (e(j))i∈Ij ,

j = 1, · · · , n, then V1 ⊗R · · · ⊗R Vn also is free with basis { e(1)i1
⊗ · · · ⊗ e(n)in

: ij ∈
Ij , j = 1, · · · , n }. Moreover given a linear map φ : V1 → R-Mod (V2, V3), then
it determines a unique linear map ψ : V1 ⊗R V2 → V3 (it is obtained from the
bilinear map φ′ : V1 × V2 → V3 given by φ′(v1, v2) = φ(v1)(v2)).

Lemma 1. For every sets X1, · · · , Xn, R(X1×· · ·×Xn) and RX1⊗R· · ·⊗RRXn

are isomorphic R-modules.

Proof. (Sketch) It is clear that R(X1×· · ·×Xn) is identified as a sub-module of
R(RX1×· · ·×RXn) by ι : (x1, · · · , xn) �→ e(e(x1), · · · , e(xn)). Let q ◦ ι : R(X1×
· · · ×Xn)→ RX1 ⊗R · · · ⊗R RXn be the restriction of the canonical multilinear
map (it is clearly onto and is easily shown to be R-linear), and s : RX1 × · · · ×
RXn → R(X1×· · ·×Xn) be the multilinear map given by s(e(x1), · · · , e(xn)) =
e(x1, · · · , xn) for every xi ∈ Xi, i = 1, · · · , n. Therefore it gives rise to a unique
linear map s̃ : RX1 ⊗R · · · ⊗R RXn → R(X1 × · · · ×Xn). It is easy to see that
s̃ ◦ q = id, but q is onto so that it is an R-linear isomorphism (the details are
left to the reader). ��

From lemma 1, it follows that any set-theoretic map φ : X1 × · · · × Xn → W
may be extended in a unique way to a linear map φ̃ : RX1⊗R · · ·⊗RRXn →W .
Following the notations from the proof of lemma 1, φ : X1 × · · · ×Xn → W is
first freely extended to a R-linear map φ : R(X1 × · · · × Xn) → W , and then

φ ◦ ŝ : RX1 ⊗R · · · ⊗R RXn → W is the expected linear map φ̃. Moreover its
associated multilinear map φ̃0 : RX1 × · · · × RXn → W is sometimes referred
to as the extension of φ by multilinearity. We are now in position to introduce
R-linear Σ-algebras and varieties. Let Σ be an operator domain, and R be a
commutative ring with a unit. A R-linear Σ-algebra is a R-module with a struc-
ture of Σ-algebra such that all operations are R-multilinear. More precisely it is
a R-module V with a Σ-algebra structure map F such that for each f ∈ Σ(n)
(n ≥ 0), F (f) : V ⊗R · · · ⊗R V︸ ︷︷ ︸

n factors

→ V is R-linear. Following [3], if V is a R-linear

Σ-algebra, let U(V ) denote its underlying (set-theoretic) Σ-algebra (its structure
of Σ-algebra is given by the multilinear map F0(f) : V ×· · ·×V → V associated
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to F (f)), and if (A,F ) is a usual Σ-algebra, let (RA, F̃ ) denote the R-linear
Σ-algebra made from the free R-module RA on A by extending the Σ-operation
F (f), f ∈ Σ(n), of A by multilinearity. More precisely, F̃ (f) : RA⊗R· · ·⊗RRA→
RA is the unique linear map obtained from lemma 1. It is given by F̃ (f)(e(a1)⊗
· · · ⊗ e(an)) = e(F (f)(a1, · · · , an)) for each a1, · · · , an ∈ A (this map is well de-
fined since { e(a1)⊗ · · · ⊗ e(an) : a1, · · · , an ∈ A } forms a basis). (According to

the above discussion, this is equivalent to a multilinear map F̃0(f) : RA
n → RA

with F̃0(f)(e(a1, · · · , an)) = e(F (f)(a1, · · · , an)).) Actually we obtain a functo-
rial correspondence between Σ-algebras and R-linear Σ-algebras: the forgetful
functor U admits a left adjoint given by the construction RA. More precisely,
given a R-linear Σ-algebra (W,G), and a homomorphism φ : (A,F )→ U(W,G),
φ̃ : (RA, F̃ ) → (W,G), given by φ̃(e(a)) = φ(a) for each a ∈ A, is the unique
extension of φ which is a homomorphism of R-linear Σ-algebras (this means that

φ̃ is R-linear, and φ̃(F̃ (f)(x1 ⊗ · · · ⊗ xn)) = G(f)(φ̃(x1)⊗ · · · ⊗ φ̃(xn)) for every
x1, · · · , xn ∈ RA). To determine such a correspondence between varieties and
linear varieties we must be more careful due to multilinearity. A law u = v on X is
said to be regular when the same elements of X occur in u and v, and exactly once
in both of them. For instance, μ(x1, 1) = x1, μ(μ(x1, x2), x3) = μ(x1, μ(x2, x3))
are regular laws. If E is any set of regular equations on Σ[X ], and (V, F ) is a
R-linear Σ-algebra, then we say that (V, F ) satisfies E when under all homomor-
phisms Σ[X ]→ U(V ), the images of u and of v are equal for each (u, v) ∈ E. If
E is any set of regular equations on Σ[X ], then there is a very close connection
between the variety VΣ,E of Σ-algebras satisfying E, and the variety VΣ,R,E

of R-linear Σ-algebras satisfying E: it is easy to see that a R-linear Σ-algebra
V will lie in VΣ,R,E if, and only if, U(V ) lies in VΣ,R,E . Conversely, according
to [3], a Σ-algebra (A,F ) will lie in VΣ,E if, and only if, RA lies in VΣ,R,E . A
free R-linear algebra in VΣ,R,E over a set (resp. a R-module, resp. a Σ-algebra
in the variety VΣ,E) X is a R-linear Σ-algebra VX in the variety VΣ,R,E with a
set-theoretic map (resp. a R-linear map, resp. a homomorphism) jX : X → VX
(called the canonical map) such that for all R-linear algebra W in VΣ,R,E and
all set-theoretic map (resp. R-linear map, resp. homomorphism) φ : X → W

there is a unique homomorphism φ̂ : VX → W of R-linear algebras such that
φ̂ ◦ jX = φ. Such a free algebra is unique up to a unique isomorphism. As an
example, the free R-linear algebra in VΣ,R,E over a R-module W is made as
follows. Let us assume that the free R-linear algebra VW on the underlying set
W is constructed with the set-theoretic map jW : W → VW (we see in lemma 2
that it always exists). Let F be the Σ-algebra structure map of VW (this means
that F (f) is a linear map from VW ⊗R · · · ⊗R VW → VW for each f ∈ Σ). Let
W be the least sub-module of VW stable under all F (f)’s (this means that the
image of W ⊗R · · · ⊗R W by all F (f)’s lies into W ) and that contains the sub-
module generated by jW (w1 + w2) − jW (w1) − jW (w2), jW (αw) − αjW (w) for
every α ∈ R, w1, w2, w ∈ W . Then it is easily seen that the quotient module
VW /W inherits a structure of R-linear Σ-algebra from that of VW , and is the
expected free algebra (where the canonical map is the composition of the natural
epimorphism VW → VW /W with the set-theoretic canonical map W → VW ).
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Remark 1. These three notions of free algebras (over a set, a module or a
Σ-algebra in the variety VΣ,E) come from the fact that there are three forgetful
functors, and each of them admits a left adjoint.

Lemma 2. Let E be a set of regular equations. Let X be a set and VX be the
free Σ-algebra over X in the variety VΣ,E with iX : X → VX . Then, RVX with
jX : X → RVX given by jX(x) = e(iX(x)) is the free R-linear Σ-algebra over X
in VΣ,R,E. Moreover, RVX , with the R-linear map kRX : RX → RVX defined by
hRX(ex) = e(iX(x)) for every x ∈ X, is the free R-linear Σ-algebra (in VΣ,R,E)
over RX. Finally, let kVX : VX → RVX be the unique homomorphism such that
kVX ◦ iX = jX = e ◦ iX . Then, RVX with hVX is free over VX .

Proof. (The proof of this lemma is easy for a category theorist or universal
algebraist but is given for the sake of completeness.) Let (W,G) be a R-linear
Σ-algebra, and φ : X → W be a set-theoretic map. Then, there exists a unique
homomorphism of Σ-algebras φ̂ : VX → U(W ) such that φ̂◦iX = φ. Since RVX is
free with basis VX overR, there is a unique R-linear map ψ : RVX →W such that
ψ◦e = φ̂ (so ψ◦jX = ψ◦e◦jX = φ̂◦jX = φ). Moreover from the above discussion
we know that RVX is a R-linear Σ-algebra of the variety VΣ,R,E . It remains to
prove that ψ is a homomorphism of Σ-algebra from VX to W . Let f ∈ Σ(n),
and a1, · · · , an ∈ VX . Let F be the Σ-algebra structure map of VX . We have
ψ(F̃ (f)(e(a1)⊗· · ·⊗e(an))) = ψ(e(F (f)(a1, · · · , an))) = φ̂(F (f)(a1, · · · , an)) =
G(f)(φ̂(a1), · · · , φ̂(an)) = G(f)(ψ(e(a1))⊗· · ·⊗ψ(e(an))), for each a1, · · · , an ∈
VX . Now, let φ : RX → W be any R-linear map (whereW is a R-linearΣ-algebra
in the variety VΣ,R,E). Then, there exists a unique set-theoretic map φ0 : X →W
such that φ0(x) = φ(e(x)) for every x ∈ X . Therefore there exists a unique

homomorphism of Σ-algebras φ̂0 : VX → W such that φ̂0 ◦ iX = φ0. Finally,
there exists a unique R-linear map, wich is also a homomorphism of Σ-algebras
ψ : RVX →W such that ψ ◦e = φ̂0. Then, φ0 = ψ ◦ jX = ψ ◦e◦ iX = ψ ◦hRX ◦e.
But φ ◦ e = φ0, and both maps φ and ψ ◦ hRX are R-linear and equal on
basis elements of RX , so that they are equal on RX as expected. Finally, let
φ : VX → U(W ) be a homomorphism of Σ-algebras. Then, there exists a unique
set-theoretic map φ0 : X → W such that φ0 = φ ◦ iX . Then, there exists a
unique homomorphism of Σ-algebras which is a R-linear map φ̂0 : RVX → W
with φ̂0 ◦ jX = φ0. Then, φ̂0 ◦ kVX ◦ iX = φ̂0 ◦ jX = φ0 = φ ◦ iX , and since

φ̂0 ◦ kVX and φ are both homomorphisms from VX to W it follows that their are
equal (since VX is free). ��

3 R-linear Induction Algebra

3.1 The Initial R-linear Induction Algebra

The free R-module RN over N is denoted by V . The canonical image of an
integer n into V is denoted by en so ei �= ej for every i �= j and { en : n ∈
N } happens to be a basis of V over R. The constant 0 of the signature Ind
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corresponds to e0, and the successor map s : N → N is uniquely extended by
R-linearity (no need here of multilinearity) to U ∈ R-Mod (V, V ) defined on
the basis elements by Uen = en+1, n ∈ N. It is clear that (V, e0, U) is a
R-linear induction algebra, and according to lemma 2, (V, e0, U) is even the free
R-linear induction algebra over the empty set, the free R-linear induction over
the zero vector space, and the free R-linear induction over the induction algebra
N. We call (V, U, e0) the initial R-linear induction algebra because given another
R-linear induction algebra (W,w, S) (w ∈ W , S ∈ R-Mod (W,W )), there is a
unique R-linear map φ : V → W such that φ(e0) = w, and φ ◦ U = S ◦ φ.
This may be proved directly from the fact that V is free over (en)n∈N, and
en = Un(e0) for each n ∈ N. (Indeed, there is a unique linear map φ : V → W
such that φ(en) = Sn(w).)

Remark 2. It is obvious that N is the initial induction algebra (since it is freely
generated by the empty set). This means that for each induction algebra A, we
have a natural isomorphism (see [11] for a precise definition of this notion) of sets
VInd ,∅(N, A) ∼= Set(∅, A) = { ∅ } (where the variety VInd ,∅ of all induction algebras
is considered as a category). Now, since V is the free R-linear induction algebra
on N, for every R-linear induction algebraW , one also has natural isomorphisms
(of sets) VInd ,R,∅(V,W ) ∼= VInd ,∅(N,U(W )) ∼= { ∅ }.

For every n ∈ N, let Vn be the sub-module of V generated by (ek)k≥n (which
is obviously free over (ek)k≥n). It is a R-linear induction algebra on its own
(Vn, en, U) (since U : Vn → Vn+1 ⊆ Vn). Therefore, for every n ∈ N, there exists a
unique R-linear map, which is a homomorphism of induction algebras, μn : V →
Vn such that μn(e0) = en and μn(ek+1) = μn(Uek) = U(μn(ek)). It is easy to
prove by induction that μn(ek) = ek+n. Now, we define μ : V → R-Mod (V, V ) by
μ(en) = μn for each n ≥ 0. Therefore we obtain a bilinear map V ×V → V given
by φ(em, en) = μ(em)(en) = μm(en) = em+n. Finally this leads to the existence
of a linear map μ : V ⊗R V → V defined by μ(em ⊗ en) = em+n. A simple
calculation shows that μ is associative (in the sense that μ(μ(u ⊗ v) ⊗ w) =
μ(u ⊗ μ(v ⊗ w)) for every u, v, w ∈ V and not only for basis elements) and
μ(v ⊗ e0) = v = μ(e0 ⊗ v) for every v ∈ V . This means that V becomes a
monoid, and more precisely an R-algebra (an internal monoid in the category of
R-modules, see [11]). We see below another way to build this R-algebra structure
on V .

Remark 3. Similarly it is also possible to define the free linear extension of the
usual multiplication on N to a linear map μ′ : V ⊗ V → by μ′(em ⊗ en) = emn,
which happens to be associative and has a unit e1. But e0 is not an absorbing
element: for instance μ′((αem + βen) ⊗ e0) = αμ′(em ⊗ e0) + βμ′(en ⊗ e0) =
(α + β)e0 �= e0 whenever α + β �= 0 (in R). It is due to the fact that the
equation x1× 0 = 0 or 0× x1 = 0 is not a regular law. Similarly, even if we have
μ′(em ⊗ μ(en ⊗ ep)) = μ(μ′(em ⊗ en)⊗ μ′(em ⊗ ep)), the distributivity law does
not hold for any u, v, w ∈ V (again essentially because it is not a regular law).
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3.2 A Free Monoid Structure and Its Links with Classical Algebra

We also know that (N,+, 0) is the free monoid { 1 }∗ over { 1 }. Therefore, again
by lemma 2, (V, μ, e0) is the free monoid over { 1 }, or over the module R, or
over the monoid (N,+, 0), where μ : V ⊗R V → V is the R-linear map given by
μ(em ⊗ en) = em+n (it satisfies μ(μ(u ⊗ v) ⊗ w) = μ(u ⊗ μ(v ⊗ w)) for every
u, v, w ∈ V , and μ(v⊗ e0) = v = μ(e0⊗ v) for every v ∈ V ). Therefore (V, μ, e0)
has a structure of commutative R-algebra which is actually the same as that
defined in subsection 3.1. Moreover it is nothing else than the usual algebra of
polynomials R[x] in one indeterminate (an isomorphism is given by en �→ xn).
The fact that (V, μ, e0) is the free monoid over R is also re-captured by the fact
that R[x] may be seen as the tensor R-algebra generated by Rx ∼= R (see [5]).
Finally the fact that (V, μ, e0) is free over the monoid (N,+, 0) is recovered in
the usual algebraic setting by the fact that qua a R-algebra V (and therefore
R[x]) is isomorphic to the R-algebra of the monoid N.

Remark 4. According to the remark 3, there is no hope to use the multiplication
from N in order to define a structure of ring on V internal to the category of
modules.

3.3 Linear Primitive Recursion Operator

Back to the fact that V is the initial R-linear induction algebra, we show here how
to define linear maps by primitive recursion in a way similar to the usual clone of
primitive recursive functions (see for instance [16]). Recall that given two maps
g : Nk → N and h : Nk+2 → N it is possible to define a unique map R(g, h) =
f : Nk+1 → N by primitive recursion as f(0, n1, · · · , nk) = g(n1, · · · , nk) and
f(n + 1, n1, · · · , nk) = h(n1, · · · , nk, n, f(n1, · · · , nk)) for every n1, · · · , nk, n ∈
N. If W is a R-module, then W⊗n is the tensor product W ⊗R · · · ⊗R W︸ ︷︷ ︸

n times

(so

that W⊗0 ∼= R). Now, any set-theoretic map f : N� → U(V ) gives rise to a

unique R-linear map f̂ : V ⊗� → V by f̂(en1 ⊗ · · · ⊗ en�
) = f(n1, · · · , n�). There-

fore given g : Nk → V and h : Nk+2 → V , there exists a unique R-linear map
R̂(g, h) : V ⊗k+1 → V by R̂(g, h)(en1 ⊗ · · · ⊗ enk+1

) = R(g, h)(n1, · · · , nk+1) and

thus by R̂(g, h)(e0 ⊗ en1 ⊗ · · · ⊗ enk
) = g(n1, · · · , nk) = ĝ(en1 ⊗ · · · ⊗ enk

)

and R̂(g, h)(en+1 ⊗ en1 ⊗ · · · ⊗ enk
) = h(n1, · · · , nk, n, R(g, h)(n, n1, · · · , nk)) =

ĥ(en1⊗· · ·⊗enk
⊗en⊗R̂(g, h)(en⊗en1⊗· · ·⊗enk

)) for each n, n1, · · · , nk, nk+1 ∈
N. The following result is then proved.

Theorem 1 (Linear primitive recursion). Let g ∈ Set(Nk, V ) and h ∈
Set(Nk+2, V ). Then there exists a unique linear map φ : V ⊗k+1 → V such that
φ(e0 ⊗ en1 ⊗ · · · ⊗ enk

) = ĝ(en1 ⊗ · · · ⊗ enk
) and φ(en+1 ⊗ en1 ⊗ · · · ⊗ ek) =

ĥ(en1 ⊗ · · · ⊗ enk
⊗ en ⊗ φ(en ⊗ en1 ⊗ · · · ⊗ enk

)) for every n, n1, · · · , nk ∈ N.

Remark 5. The two R-linear maps μ and μ′ from subsection 3.1 may be obtained
by linear primitive recursion.
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In order to close this subsection, let us briefly see the corresponding notion of
clone of primitive recursive functions in the linear case. Let f : R-Mod (V ⊗m, V ),
and g1 · · · , gm ∈ R-Mod (V ⊗n, V ), then the superposition μ(f, g1, · · · , gm) in
R-Mod (V ⊗n, V ) is defined by μ(f, g1, · · · , gm)(ei1 ⊗ · · · ⊗ ein) = f(g1(ei1 ⊗ · · · ⊗
ein)⊗· · ·⊗gn(ei1⊗· · ·⊗ein)) for every ei1 , · · · , ein ∈ V . For every n, i = 1, · · · , n,
we define the projections π

(n)
i ∈ R-Mod (V ⊗n, V ) by π

(n)
i (ej1⊗· · ·⊗ejn) = eji for

every j1, · · · , jn ∈ N. Then the clone of all linear primitive recursive functions is
the set of all R-linear maps from V ⊗k, for varying k, to V which is closed under
superposition, and linear primitive recursion (in the sense that if g : V ⊗k → V

and h : V ⊗k+2 → V are primitive recursion linear maps, then R̂(g0, h0) is linear
primitive recursive, where g0 : Nk → V and h0 : Nk+2 → V are the unique maps
such that g = ĝ0 and h = ĥ0), that contains, for every set-theoretic primitive

recursive function f ∈ Nk → N, the map f̃ : V ⊗k → V where f̃(ei1 ⊗· · ·⊗ eik) =
ef(i1,··· ,ik) for all (i1, · · · , ik) ∈ Nk, and that contains the projections.

4 A Normal Form for R-linear Endomorphisms of V

In [6] the authors generalize a result from [9] that concerns the decomposition of
linear endomorphisms of V (in [6] only the case where R is a field is considered)
with respect to a pair of raising and lowering ladder operators. In the present
paper, after recalling this result in a more general setting, we show that it may
be seen as a strong version of Jacobson’s density theorem and that it gives rise
to a unique normal form for the endomorphisms of V in a way made precise
hereafter.

4.1 Jacobson’s Density Theorem

Jacobson’s density theorem is a result made of two parts: an algebraic and a
topological one. Let us begin with definitions needed for the algebraic part. Let
R be a unitary ring (commutative or not). If M is a left R-module, then we
denote by ν : R → Ab(M) the associated (module) structure map (where Ab
denotes the category of all Abelian groups). This is a ring map since it is a
linear representation of R. A left R-module M is said to be a faithful module if
the structure map is one-to-one, i.e., ker ν = (0). A left R-moduleM is said to be
a simple module if it is non-zero and it has no non-trivial sub-modules (modules
different from (0) and M itself). Finally, a ring R is said to be (left-)primitive if
it admits a faithful simple left-module. Now, let us turn to the topological part.
Given two topological spaces X,Y , we let Top(X,Y ) be the set of all continuous
maps from X to Y (here Top denotes the category of all topological spaces).
Let K be a compact subset of X and U be an open set in Y , then we define
V (K,U) = { f ∈ Top(X,Y ) : f(K) ⊆ U }. The collection of all such sets V (K,U)
(with varying K and U) forms a subbasis for the compact-open topology on
Top(X,Y ). This means that for every non-void open set V in the compact-open
topology, and every f ∈ V , there exist compact sets K1, · · · ,Kn of X and open
sets U1, · · · , Un in Y such that f ∈

⋂n
i=1 V (Ki, Ui) ⊆ V , see [1,7].
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Remark 6. Let R be a ring (commutative or not), and let M be a left module
over R. Let us assume that M has the discrete topology. Therefore its com-
pact subsets are exactly its finite subsets. Then, the compact-open topology
induced by Top(M,M) = MM on the sub-space of all R-linear endomorphisms
R-Mod (M,M) of M is the same as the topology of simple convergence (here
R-Mod is the category of all left R-modules), i.e. for every topological space X ,
a map φ : X → R-Mod (M,M) is continuous if, and only if, for every v ∈M , the
map φv : x ∈ X �→ φ(x)(v) ∈M is continuous. Moreover with this topology, and
R discrete, R-Mod (M,M) is a Hausdorff complete topological R-algebra ([17]).

We are now in position to state Jacobson’s density theorem (see [8] for a proof).

Theorem 2 (Jacobson’s density theorem). Let R be a unitary ring (com-
mutative or not). The ring R is primitive if, and only if, it is a dense subring (in
the compact-open topology) of a ring D-Mod (M,M) of linear endomorphisms of
some (left) vector space M over a division ring D (where M is discrete).

4.2 Decomposition of Endomorphisms

A direct consequence of Jacobson’s density theorem is the following. Let K
be a field of characteristic zero, and A(K) be the Weyl algebra which is the
quotient algebra of the free algebra K〈x, y〉 in two non-commutative variables by
the two-sided ideal generated by xy−yx−1 (this means that although the gener-
ators of A(K) do not commute their commutator is equal to 1). (See [10] for more
details.) Now, A(K) is a primitive ring by Jacobson’s density theorem.
Indeed, A(K) admits a faithful representation into K-Mod (K[z],K[z]) by [x] �→
(P (z) �→ zP (z)) and [y] �→ (P (z) �→ d

dzP (z)) (where P (z) denotes an ele-
ment of K[z], [x], [y] are the canonical images of x, y onto A(K), and it is clear
that the commutation relation is preserved by this representation), and it is
an easy exercise to check that through this representation A(K) is a dense
subring of K-Mod (K[z],K[z]) (under the topology of simple convergence with
K[z] discrete). Nevertheless given φ ∈ K-Mod (K[z],K[z]) and an open neigh-
borhood V of φ, Jacobson’s density theorem does not provide any effective nor
even constructive way to build some φ0 ∈ A(K) such that φ0 ∈ V . In [9] the
authors show how to build in a recursive way a sequence of operators (Ωn)n∈N,
Ωn ∈ A(K) for each n, such that limn→∞Ωn = φ. In [6] the authors gener-
alize this result to the case of K-linear endomorphisms of V , with K any field
(of any characteristic), proving that the multiplicative structure of the alge-
bra K[z] is unnecessary (recall that as K-vector spaces, V ∼= K[z]). We now
recall this result in a more general setting where a commutative ring R with
unit replaces the field K. Let (en)n∈N be a basis of V = RN. We define a
R-linear map D : V → V by D(e0) = 0 and D(en+1) = en for every n ∈ N.
(This linear map D may be given a definition by linear primitive recursion as

D = R̂(0, π
(1)
2 ).) According to [12] (see page 109), for any sequence (φn)n∈N

with φn ∈ R-Mod (V, V ), the family (φn ◦ Dn)n∈N is summable in the topol-
ogy of simple convergence of R-Mod (V, V ) (where, for every endomorphism φ
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of V , φ0 = idV and φn+1 = φ ◦ φn). This means that there is an element of
R-Mod (V, V ) denoted by

∑
n∈N φn ◦ Dn, and called the sum of (φn ◦ Dn)n≥0,

such that for every v ∈ V , v �= 0,
(∑

n∈N φn ◦Dn
)
(v) =

∑d(v)
n=0 φ(D

n(v)), where
d(v) is the maximum of all k’s such that the coefficient of ek in the decomposition
of v in the basis (en)n≥0 is non-zero.

Remark 7. The above summability of (φn ◦Dn)n∈N essentially comes from topo-
logical nilpotence of D in the topology of simple convergence which means that
for every v ∈ V , there exists nv ∈ N (for instance d(v) when v �= 0) such that
for every n ≥ nv, Dn(v) = 0 (Dn → 0 in the topology of simple convergence).

For every polynomial P (x) =
∑m

n=0 pnx
n ∈ R[x], every sequence v = (vn)n∈N of

elements of V , and every R-linear endomorphism φ of V , we define P (v) =∑m
n=0 pnvn ∈ V , and P (φ) =

∑m
n=0 pnφ

n ∈ R-Mod (V, V ). It is clear that
P (x) ∈ R[x] �→ P (e) ∈ V for e = (en)n∈N defines a linear isomorphism be-
tween R[x] and V . Moreover we have P (e) = P (U)(e0). Now, let φ be given.
There exists a sequence of polynomials (Pn(x))n such that φ =

∑
n∈N Pn(U)◦Dn

(this means that φ is the sum of the summable family (Pn(U)◦Dn)n≥0 and it is
equivalent to φ(en) =

∑n
k=0 Pk(U)(D

k(en)) for each n ∈ N, because Dk(en) = 0
for every k > n). This can be proved by induction on n as follows. We have
φ(e0) = P0(e) = P0(U)(e0) for a unique P0(x) ∈ R[x]. Let us assume that
there are P1(x), · · · , Pn(x) ∈ R[x] such that φ(en) =

∑n
k=0 Pk(U)D

k(en) =∑n
k=0 Pk(U)en−k. Let Pn+1(U)(e0) = Pn+1(e) = φ(en+1)−

∑n
k=0 Pk(U)en+1−k

(Pn+1 is uniquely determined). Then, φ(en+1) =
∑n+1

k=0 Pk(U) ◦Dk(en+1).

Remark 8. This result is outside the scope of Jacobson’s density theorem since R
is not a division ring, and also more precise since it provides a recursive algorithm
to construct explicitly a sequence that converges to any given endomorphism.

Every sequence (Pn)n defines an endomorphism φ given by the sum of (Pn(U) ◦
Dn)n, and the above construction applied to φ recovers the sequence (Pn)n. The
correspondence between φ and (Pn)n as constructed above is functional, and it is
actually a R-linear map (R[x]N is the product R-module), onto and one-to-one.

4.3 A Normal Form for R-linear Endomorphisms of V

Let us consider the following subset of the R-algebra of non-commutative series
R〈〈x, y〉〉 in two variables (see [5]): R〈x, y〉〉 = {

∑
n≥0 Pn(x)y

n : ∀n, Pn(x) ∈
R[x] }. This is a R-sub-module of R〈〈x, y〉〉, and a R[x]-module with action given
by Q(x) · (

∑
n≥0 Pn(x)y

n) =
∑

n≥0(Q(x)Pn(x))y
n = (

∑
n≥0 Pn(x)y

n) · Q(x).
(We observe that xy = y · x but yx does not belong to R〈x, y〉〉. ) According to
the result of subsection 4.2, there exists a R-linear isomorphism π : R〈x, y〉〉 →
R-Mod (V, V ) which maps

∑
n≥0 Pn(x)y

n to
∑

n∈N Pn(U) ◦Dn.

Remark 9. It is essential that xy �= yx, otherwise π(xy) = U ◦ D �= idV =
D ◦ U = π(yx), and π would be ill-defined.
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For any φ ∈ R-Mod (V, V ), the unique S =
∑

n≥0 Pn(x)y
n ∈ R〈x, y〉〉 such that

π(S) = φ should be called the normal form s(φ) of φ for a reason made clear
hereafter. We observe that any set-theoretic map φ : N → N also has such a
normal form through the natural isomorphism Set(N,N) ∼= R-Mod (V, V ).

Example 4. 1. Let us assume that R contains Q as a sub-ring. Let us consider
the formal integration operator

∫
on V defined by

∫
en = en+1

n+1 for every

integer n. Then, s(
∫
) =

∑
n≥0(−1)n xn+1

(n+1)!y
n (by recurrence).

2. Since the commutator [D,U ] = D ◦ U − U ◦ D = idV − U ◦ D, we obtain
s([D,U ]) = 1− xy.

Let π0(x) = U , π0(y) = D, and π̂ : { x, y }∗ → R-Mod (V, V ) be the unique
monoid homomorphism extension of π0 (where R-Mod (V, V ) is seen as a monoid
under composition). Let R{{x, y}} be the set of all series S =

∑
w∈{x,y }∗ αww

in R〈〈x, y〉〉 such that the family (αwπ̂(w))w∈{ x,y }∗ of endomorphisms of V is
summable.

Example 5. Let us consider the series S =
∑

n≥0 y
nxn ∈ R〈〈x, y〉〉. Then, S �∈

R{{x, y}} since π̂(ynxn) = π0(y)
n◦π0(x)n = Dn◦Un = idV for each n. Whereas

S′ =
∑

n≥0 x
nyn ∈ R{{x, y}} since

∑
n≥0 U

nDn is equal to the operator en �→
(n+ 1)en.

From general properties of summability [17], R{{x, y}} is a sub R-algebra of
R〈〈x, y〉〉, and the homomorphism of monoids π̂ may be extended to an alge-
bra map π̃ : R{{x, y}} → R-Mod (V, V ) by π̃(

∑
w αww) =

∑
w αwπ̂(w) which is

obviously onto, so that R-Mod (V, V ) ∼= R{{x, y}}/ker π̃ (as R-algebras). We have
π̃(s(φ)) = φ, so that s defines a linear section of π̃. Let N : R{{x, y}} → R〈x, y〉〉
be the R-linear map defined by N (S) = s(π̃(S)). Then, for every S, S′ ∈
R{{x, y}}, S ∼= S′ mod ker π̃ (i.e., π̃(S) = π̃(S′)) if, and only if, N (S) = N (S′).
Also it holds that N (N (S)) = S. The module of all normal forms R〈x, y〉〉 inher-
its a structure of R-algebra by S ∗ S′ = N (SS′) = s(π̃(SS′)) = s(π̃(S) ◦ π̃(S′))
isomorphic to R-Mod (V, V ) ∼= R{{x, y}}/ker π̃.

Example 6. We have y ∗ x = 1 while x ∗ y = xy, so that [y, x] = y ∗ x − x ∗
y = 1 − xy. Let us define the operator ∂ on V by ∂en+1 = (n + 1)en for
each integer n and ∂e0 = 0. Then, we have s(∂) =

∑
n≥1 x

nyn−1. Moreover,
[∂, U ] = ∂ ◦ U − U ◦ ∂ = idV . It follows that [s(∂), x] = 1. Let A(R) be the
quotient algebra R〈x, y〉 by the two-sided ideal generated by xy−yx−1, namely
the Weyl algebra over R. Therefore there exists a unique morphism of algebras
φ : A(R) → R〈x, y〉〉 such that φ(x) = x and φ(y) = s(∂). Composing with
the isomorphism π : R〈x, y〉〉 → R-Mod (V, V ), we obtain a representation of the
algebra A(R) on the module V (x acts on V as U while y acts on V as ∂). When
R is a field K of characteristic zero, then this representation is faithful (see [4]),
hence in this case K〈x, y〉〉 contains a copy of the Weyl algebra A(K), namely
the sub-algebra generated by x and s(∂).
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5 Concluding Remarks and Perspectives

5.1 Free Linear Induction Algebras

Let X be any set. According to section 2, we may define the free R-linear induc-
tion algebra VX on X . It is isomorphic to the direct product of |X | + 1 copies
of V , namely the R-module V ⊕

⊕
x∈X V , this is so because the free induction

algebra on X is {Sn(0) : n ≥ 0} �
⊔

x∈X{Sn(x) : n ≥ 0} (where
⊔

is the set-
theoretic disjoint sum). As an example, take X finite of cardinal say n, then
VX is isomorphic to V n+1. In this finite case, we have R-Mod (V n+1, V n+1) ∼=
R-Mod (V, V )(n+1)2 ∼= R〈x, y〉〉(n+1)2 . From subsection 4.3 it follows that any
endomorphism of V n+1 may be written as a vector of length (n+1)2 or better a
(n+1)× (n+1) matrix with entries some members of R〈x, y〉〉. More generally,
for each integers m,n, we have R-Mod (V m, V n) ∼= R-Mod (V, V )mn so that we
have obtained a complete description of all linear maps between spaces of the
form V n in terms of the basic operators U and D.

5.2 Links with Sheffer Sequences

It is not difficult to check that we may define a new associative multiplication
on R〈x, y〉〉, and therefore also on R-Mod (V, V ), by⎛⎝∑

n≥0

Pn(x)y
n

⎞⎠#

⎛⎝∑
n≥0

Qn(x)y
n

⎞⎠ =
∑
n≥0

⎛⎝∑
k≥0

〈Pn(x) | xk〉Qk(x)

⎞⎠ yn

where 〈P (x) | xk〉 denotes the coefficient of xk in the polynomial P (x) (so that
in the above formula the sum indexed by k is actually a sum with a finite number
of non-zero terms for each n), with a two-sided identity

∑
n≥0 x

nyn (that corre-
sponds to the operator en �→ (n+1)en of V ). This product is a generalization of
the so-called umbral composition [14]. Let us assume that K is a field of charac-
teristic zero. Following [15] (see also [13]) a sequence (pn(x))n≥0 of polynomials
in K[x] such that the degree of pn(x) is n for each integer n is called a Sheffer
sequence if there are two series μ(y), σ(y) ∈ K[[y]], where x and y are assumed
to be commuting variables, with μ(0) �= 0, σ(0) = 0, and σ′(0) �= 0 (where σ′

denotes the usual derivation of series) such that
∑

n≥0 pn(x)
yn

n! = μ(y)exσ(y) ∈
K[[x, y]]. A series S =

∑
n≥0

1
n!pn(x)y

n ∈ K〈x, y〉〉 is said to be a Sheffer
series whenever (pn(x))n is a Sheffer sequence. Such series correspond to Sheffer
operators on V given by

∑
n≥0

1
n!pn(U) ◦ Dn. For instance Laguerre’s polyno-

mials given by Ln(x) =
∑n

k=0

(
n
k

) (−1)k

k! xk form a Sheffer sequence, and thus∑
n≥0

1
n!Ln(U) ◦ Dn is a Sheffer operator. We observe that the above multi-

plication # corresponds to the umbral composition of (Pn(x))n and (Qn(x))n.
Because Sheffer sequences form a group under umbral composition (see [14]), it
follows that Sheffer operators and Sheffer series form an isomorphic group under
the corresponding umbral composition. The perspectives of our present contri-
bution concern the study of such operators and their combinatorial properties.
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